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Chapter 8
Deregulation of RNA Metabolism 
in Microsatellite Expansion Diseases

Chaitali Misra, Feikai Lin, and Auinash Kalsotra

Abstract  RNA metabolism impacts different steps of mRNA life cycle including 
splicing, polyadenylation, nucleo-cytoplasmic export, translation, and decay. 
Growing evidence indicates that defects in any of these steps lead to devastating 
diseases in humans. This chapter reviews the various RNA metabolic mechanisms 
that are disrupted in Myotonic Dystrophy—a trinucleotide repeat expansion dis-
ease—due to dysregulation of RNA-Binding Proteins. We also compare Myotonic 
Dystrophy to other microsatellite expansion disorders and describe how some of 
these mechanisms commonly exert direct versus indirect effects toward disease 
pathologies.

Keywords  Microsatellite repeat expansions · Post-transcriptional gene regulation 
· RNA toxicity · Alternative splicing and polyadenylation · RNA-binding proteins

8.1  �Introduction

Gene expression is a highly coordinated multistep process, which allows organisms 
to integrate intrinsic and environmental information to exert appropriate cellular 
functions. The expression of most genes can be regulated at distinct stages of RNA 
metabolism including synthesis or transcription, post-transcriptional processing or 
maturation, nucleo-cytoplasmic export, translation, as well as degradation at a rate 
that is often dictated by transcript- and cell-type-specific cues. Although transcrip-
tion is a general point of control, many co- and post-transcriptional pre-mRNA pro-
cessing events add substantial capacity to tune overall gene expression [1]. The 
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typical pre-mRNA processing events comprise 5′ capping, splicing, and 3′ polyad-
enylation, which are directly linked to the nucleo-cytoplasmic export and eventual 
fate of mRNAs. RNA-Binding Proteins (RBPs) are essential in carrying out these 
processing events in both the nucleus and cytoplasm by interacting with RNA 
sequence or structural elements and forming distinct mRNA-protein (mRNP) com-
plexes [2]. Disruption of RBP function(s), therefore, frequently results in deleteri-
ous RNA metabolism defects that in some cases become pathogenic [3, 4].

Neurodegenerative diseases are a heterogeneous group of neurological disorders 
characterized by progressive degeneration of structure and function of the central or 
peripheral nervous systems. Aberrant RNA metabolism is increasingly implicated 
in neurodegenerative diseases, a subset of which are caused by the expansion of 
short repetitive elements (microsatellites) within particular genes [5]. The causative 
repeat expansion mutation for this group of disorders is unstable because the repeat 
size changes through generations and even within an individual, as different tissues 
have cell populations with variable repeat length and in some cases the repeat length 
varies within the same tissue [6]. The severity of a repeat expansion disease is 
dependent on numerous variables, including the length of the repeat, its sequence 
context, and the native function of the protein-coding gene with which the repeat is 
associated. A typical pathogenic feature of these diseases is the accumulation of 
repeat-containing transcripts into aberrant RNA foci, which can sequester RBPs and 
prevent them from performing their normal functions [7–9]. Interestingly, once the 
repeat length cross a critical number, the repeat-containing RNAs can undergo 
phase separation—partitioning into granules due to multivalent base-pairing 
between repeat RNAs—or spontaneous gelation to form RNA foci, explaining why 
disease symptoms appear to be triggered after the expansions have reached a par-
ticular threshold number [10].

8.2  �Toxicity of Coding and Noncoding Microsatellite Repeat 
Expansions

Over 25 human genes with tandem repeat expansions have been identified to date, 
and these disease-causing repeats can occur in the coding or noncoding regions [6] 
(Fig. 8.1 and Table 8.1). Majority of the microsatellites arise due to the expansion 
of trinucleotide repeats. However, expanded tetranucleotide, pentanucleotide, and 
hexanucleotide repeats are also detected. In the early 1990s, two microsatellites 
were discovered providing the first evidence that simple repeat expansions are 
linked to human disease. Fragile X Syndrome (FXS)—an X-linked disorder caused 
by CGG repeat expansions in the 5′ untranslated region (UTR) of the FMR1 gene—
is the most prevalent form of inherited cognitive impairment and mental retardation 
[11–16]. The repeat expansion in FXS causes loss of FMR1 gene product FMRP, a 
polyribosome-associated RBP that binds ~4% of brain mRNAs and regulates their 
expression—either enhancing or suppressing translation through unknown mecha-
nisms [17–20].
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5’UTR intron exon 3’UTR

FXS (CGG)>200
SCA 12 (CAG)46-78

polyQ (CAG)n
DM2 (CCUG)75-11000
SCA 10 (AUUCU)800-4500
SCA 31 (UGGAA)>110
SCA 36 (GGCCUG)650-2500
ALS/FTD (GGGGCC)250–1600

DM1 (CUG)50-4000
SCA 8 (CUG)71–1300

FXTAS (CGG)55-200
polyA (GCG)n

Fig. 8.1  Origin and expansion of microsatellite repeats in human disease. Schematic of the gene 
location for various disease-associated repeat expansions. Types of repeat expansions are indicated 
within the parentheses along with the range of expanded repeat numbers  (UTR: untranslated 
region) 

Table 8.1  Summary of the tissue-specific symptoms of the repeat expansion diseases with the 
disease-associated gene

Defected 
mRNA 
region Disease Defected gene

Tissue-specific clinical symptoms

Neuronal tissues Other tissues

5′UTR FXTAS FMR1 [158] Ataxia [159], brain atrophy, 
white matter lesions [160, 
161], cognitive decline, 
parkinsonism [160], 
peripheral neuropathy, 
autonomic dysfunction and 
short-term memory loss [162]

Premature ovarian 
failure, 
hypothyroidism in 
female [159], limb 
proximal muscle 
weakness [160]

FXS FMR1 [14] Autism [163], mental 
retardation, developmental 
delay and increased 
susceptibility to seizures [15]

Macroorchidism [15], 
cardiac murmur [164], 
hyperflexible joints, 
hernias, flat feet [165]

SCA12 PPP2R2B [166] Ataxia, cerebral and/or 
cerebellar atrophy [167], 
seizures [22]

Dysarthria, action 
tremors in upper limbs 
[167]

Intron DM2 ZNF9 [168] Cognitive impairment [169], 
intellectual disability, 
sleepiness and fatigue [170], 
brain atrophy, white and grey 
matter abnormalities [171, 
172]

Myotonia, muscle 
dysfunction, cardiac 
arrhythmia [40, 173], 
hypertrophy calf 
muscles [174]

ALS C9ORF72 [28, 
29]

Motor neuron degeneration, 
frontotemporal lobar 
dysfunction, dementia and 
cognitive impairment [175]

Progressive spasticity, 
muscle wasting, 
weakness and muscle 
atrophy [28]

FTD C9ORF72 [28, 
29]

Frontotemporal lobar 
dysfunction, motor neuron 
dysfunction [176], changes in 
personality, behavior, and 
language ability, dementia 
[175]

Fasciculation, muscle 
atrophy, weakness 
[177].

(continued)
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Table 8.1  (continued)

Defected 
mRNA 
region Disease Defected gene

Tissue-specific clinical symptoms

Neuronal tissues Other tissues

Coding 
region

Polyglutamine (PolyQ) diseases
SBMA AR [21] Lower motor neuron 

degeneration [178], androgen 
insensitivity [22]

Muscle weakness, 
gynecomastia and 
reduced fertility [22, 
178]

HD HTT [179] Cognitive decline and 
dementia [22], dystonia [180]

Chorea [22], 
movement disorder 
[181]

DRPLA ATN1 
[182–184]

White matter lesion, neural 
loss, ataxia, seizures, 
choreoathetosis, dementia [22, 
185], myoclonus, epilepsy 
[184]

Chorea, incoordination 
[185]

SCA 1, 
2, 3, 6, 7, 
17

ATXN1 [186, 
187], ATXN2 
[188–190], 
ATXN3 [191], 
CACNA1A 
[192], ATXN7 
[193], TBP 
[194]

Ataxia, tremor, and dysarthria, 
parkinsonism (SCA3), retinal 
dystrophy (SCA7), seizures 
(SCA17) [22].

Slurred speech 
(SCA1); hyporeflexia 
(SCA2); cardiac 
dysfunction (SCA7) 
[22]

Poly Alanine (Poly A) diseases
OPMD 
(OPMD)

PABPN1 [195] – (no data) Eyelid ptosis and 
dysphagia [195], 
involuntary muscle 
weakness [196].

XLMR ARX [197] Cognitive impairment [198], 
mental retardation [199], 
dysarthria [200]

Involuntary hand 
movements (MRXS), 
growth abnormality 
[200]

3′UTR DM1 DMPK [37] Neuropsychiatric 
disturbances, cognitive 
defeats, sleepiness and 
fatigue; brain atrophy [169], 
white and grey matter 
abnormalities [201], mood 
disorder, emotion problem and 
memory problem

Myotonia, muscle 
wasting, cardiac 
arrhythmias, insulin 
resistance, 
gastrointestinal 
dysfunctions, posterior 
iridescent cataracts 
[54]

SCA8 ATXN8 [202] Cerebellar atrophy [203], 
progressive ataxia [204]

Limb ataxia, 
dysarthria, nystagmus, 
spasticity [22]

Abbreviations: FXTAS fragile X-associated tremor/ataxia syndrome, FXS fragile X Syndrome, 
SCA12 spinocerebellar ataxia type 12, DM2 myotonic dystrophy type 2, ALS amyotrophic lateral 
sclerosis, FTD frontotemporal degeneration, SBMA spinal and bulbar muscular atrophy, HD 
Huntington disease, DRPLA dentatorubral pallidoluysian atrophy, SCA spinocerebellar ataxias, 
PolyA polyalanine diseases, OPMD oculopharyngeal muscular dystrophy, XLMR syndromic and 
non-syndromic X-linked mental retardation, DM1 myotonic dystrophy type 1
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Spinal and bulbar muscular atrophy (SBMA)—the other microsatellite disease 
discovered along with FXS—arises due to a CAG repeat expansion in the coding 
region of the X chromosome-linked androgen receptor (AR) gene [21]. The discov-
ery of SBMA was soon followed by the elucidation of a similar mutation as the 
basis for a group of disorders now known as the polyglutamine (polyQ) neurode-
generative diseases (Table  8.1). Along with SBMA, the polyQ diseases include 
Huntington disease (HD), dentatorubral-pallidoluysian atrophy, and six spinocere-
bellar ataxias (SCA) 1, 2, 3, 6, 7, and 17 [22]. As a group, these nine diseases are 
among the more common forms of inherited neurodegeneration. The translation of 
exons containing CAG repeats gives rise to elongated stretches of polyQs in mutant 
proteins, which aggregate into nuclear or cytoplasmic inclusions in the diseased 
brain [23–25]. Several observations indicate that the CAG repeat-containing RNAs, 
in the absence of coding for a protein, may also be a source of toxicity in polyQ 
diseases [26, 27]. GGGGCC hexanucleotide repeat expansion in the C9ORF72 
gene has gained much attention in the past few years and is now considered the most 
frequent inherited cause of Amyotrophic lateral sclerosis (ALS) and Frontotemporal 
dementia (FTD) [28, 29]. Pathology occurs due to the toxicity of expanded repeats, 
which are transcribed in both the sense and antisense directions and give rise to 
distinct sets of intracellular RNA and protein aggregates [30–33].

Myotonic Dystrophy (DM) is part of a group of diseases characterized by repeat 
expansions in noncoding regions of genes. DM is defined in two clinical and molec-
ular forms: myotonic dystrophy type 1 (DM1), and type 2 (DM2), both of which are 
inherited in an autosomal dominant fashion. The combined worldwide incidence of 
DM is approximately 1 in 8000 [34, 35]. DM1 is the most prevalent form of adult 
onset muscular dystrophy [36] and is caused by a CTG repeat expansion in the 3′ 
UTR of Dystrophia Myotonica Protein Kinase (DMPK) gene [37, 38]. DM2, on the 
other hand, is caused by a CCTG repeat expansion in an intron of Zinc Finger 
Protein 9 (ZNF9) gene [39]. While 5–37 repeats are considered normal, DM1 
patients can have up to several thousand CTG repeats, which can reduce expression 
of DMPK [40] (Fig. 8.2a). DMPK is expressed in multiple tissues, and the major 
symptoms of the disease include muscle hyperexcitability (myotonia), progressive 
muscle wasting, cardiac defects, insulin resistance, and neuropsychiatric distur-
bances [41–44]. Table 8.1 provides further description of tissue-specific symptoms 
observed in DM and other microsatellite expansion disorders.

8.3  �RNA Metabolism Defects in Myotonic Dystrophy

Closely after the discovery of repeats, the DMPK haploinsufficiency model was put 
forward to explain the DM1 pathology. However, the removal of DMPK gene in 
mice failed to recapitulate the major neuromuscular symptoms of DM1 [45, 46]. A 
separate hypothesis proposed that expanded CTG repeats might affect the expres-
sion of nearby genes. Although the adjacent gene, SIX5, exhibits reduced expression 
in DM1 patients [47], Six5 knockout mice also do not reproduce DM1 muscle 
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Fig. 8.2  Schematic showing different pathological mechanisms for Myotonic Dystrophy type 1 
(DM1) and 2 (DM2). (a) Causative mutation for DM1 is CUG repeat expansion in 3′UTR of 
DMPK gene and for DM2 is CCUG repeat expansion in intron 1 of ZNF9 gene. The severity of the 
disease is dependent on the number of repeats. Although these mutations are in two different genes, 
the disease mechanisms for both diseases are surprisingly similar. Most of the pathology is consis-
tent with the toxic RNA gain-of-function mechanism and affects general RNA metabolism in both 
the nucleus and cytoplasm. (b) After transcription, the repeat-containing transcripts form stable 
hairpin loop comprising secondary structures (pink), which aggregate to form ribonuclear foci. (c) 
Members of the Mbnl family of RNA-binding proteins (RBPs) MBNL1/2 (purple) bind the CUG 
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pathology [48]. Instead, the CTG repeats alone, regardless of the gene context, are 
sufficient to induce pathogenic features of DM1 [49, 50]. The predominant pathol-
ogy of DM1 actually stems from the toxic effects of expanded CUG RNA, which 
disrupts the normal activity of certain RBPs. Further support for the RNA toxicity 
model comes from the finding that although the repeat expansion in DM2 is on an 
entirely different gene, both diseases exhibit similar symptoms.

In both DM1 and DM2, the RNAs with expanded repeats (CUG in DM1; and 
CCUG in DM2) fold into stable hairpin loops that accumulate as ribonuclear foci in 
the nuclei of affected tissues [9] (Fig.  8.2b). These expanded RNA transcripts 
directly trap RBPs such as muscleblind-like proteins (MBNLs) and cause upregula-
tion of CUG-binding protein 1 (CELF1) family of alternative splicing factors [51–
54], which results in aberrant splicing of many transcripts and a broad, multi-systemic 
phenotype (Fig.  8.2c, d). Alternative pre-mRNA splicing generates much of the 
transcriptome diversity in higher eukaryotes as it enables the production of multiple 
transcripts with potentially different functions from each  individual gene [55]. 
Alternative splicing decisions are generally influenced by cis-acting regulatory ele-
ments within pre-mRNAs that promote or inhibit exon recognition, as well as 
expression/activity of trans-acting factors (e.g., MBNL and CELF proteins) that 
bind to these cis elements and regulate the accessibility of the spliceosome to splice 
sites [56]. The misregulated splicing events in DM are usually developmentally 
regulated and exhibit an adult-to-embryonic switch in splicing patterns (Fig. 8.2e). 
Some of these embryonic isoforms fail to meet the adult tissue requirements and 
thus directly contribute to the overall disease pathology [54].

8.3.1  �Misregulation of mRNA Processing

MBNL loss-of-function in DM1 and DM2 is a prominent example of RBP seques-
tration by disease-associated microsatellite expansion RNAs. The MBNL proteins 
were initially identified in Drosophila melanogaster for their requirement in muscle 
development and eye differentiation [57], and they were later shown as direct regu-
lators of alternative splicing [58]. There are three MBNL paralogues in mammals, 
named MBNL1–3. MBNL1 and MBNL2 are widely expressed across many tissues, 

Fig.  8.2  (continued) or CCUG repeats and are sequestered in the ribonuclear foci. (d) 
Hyperphosphorylation by PKC stabilizes another RBP, CELF1, resulting in its gain-of-function. 
(e) Both MBNL and CELF proteins regulate various aspects of RNA metabolism during normal 
development. Alterations in their functional levels due to toxic repeat RNA cause adult-to-fetal 
reversion of splicing and polyadenylation for many pre-mRNAs in the nucleus. (f) MBNL deple-
tion also leads to cellular mislocalization of many mRNAs. CELF1 gain-of-function further affects 
(g) miRNA metabolism and (h) mRNA translation. (i) Dysregulation of MBNL and CELF activity 
in the cytoplasm also affects mRNA stability through various mechanisms. (j) Both sense and 
antisense CUG/CCUG-containing transcripts are subject to RAN translation in all three frames 
giving rise to homopolymeric polypeptides that accumulate in the cytoplasm and form pathologi-
cal intracellular aggregates
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including brain, heart, muscle, and liver, whereas MBNL3 expression is restricted 
to the placenta [59]. In a majority of tissues, MBNL1 and MBNL2 mRNA levels rise 
during differentiation [60, 61]. Besides their roles in pre-mRNA processing, MBNLs 
also influence gene expression by regulating cellular mRNA transport, stability as 
well as microRNA biogenesis [62–67]. The high expression of MBNL1 in the heart 
and skeletal muscle is consistent with the most severe DM phenotypes in these tis-
sues. For instance, independent of the repeat expansion, Mbnl1 deletion in mice 
reproduces many of the cardinal symptoms of DM1 such as myotonia, myopathy, 
cataracts, and misregulation of developmentally regulated RNA processing [63, 68].

The expanded repeat-containing RNAs in DM sequester MBNL1, 2, and 3  in 
nuclear RNA foci [69–71], and this protein redistribution explains the inhibition of 
their normal functions predominantly in alternative splicing and polyadenylation, 
microRNA processing, and mRNA localization [58, 62, 67, 72–75]. The MBNL 
loss-of-function hypothesis is further supported by studies on Mbnl single- and 
compound-knockout mice, which recapitulate many of the DM phenotypes [68, 
76–78]. The extent of symptoms, however, varies depending on the tissue context, 
relative concentrations of MBNL paralogues, and the degree to which they are 
sequestered [78]. For instance, compared to skeletal muscle, only few splicing 
defects are observed in the brains of Mbnl1 knockout mice [63, 79]. Alternatively, 
Mbnl2 knockout mice exhibit a number of DM-related central nervous system 
abnormalities including irregular REM sleep propensity and deficits in spatial mem-
ory [76], which is consistent with the observation that MBNL2 expression in the 
brain is higher than MBNL1 [59]. MBNL2 is directly sequestered by repeat expan-
sions in the brain tissue of human DM patients resulting in misregulation of alterna-
tive splicing and polyadenylation of its normal RNA targets [80]. One of the most 
misspliced mRNA due to loss of MBNL2 is human microtubule-associated protein 
tau (MAPT) in the DM1 frontal cortex [80]. RNA toxicity mediated through 
MBNL2 sequestration leads to abnormal expression of tau isoforms and the pro-
gressive appearance of neurofibrillary tangles composed of intraneuronal aggre-
gates of hyper-phosphorylated tau protein [81].

More recently, MBNL proteins were found to serve essential roles in poly(A) site 
selection for many transcripts (Fig. 8.2e). By integrating HITS-CLIP and RNA-seq 
from MBNL knockout cells and transgenic DM1 mouse model, along with minigene 
reporter studies, Swanson and colleagues demonstrated that MBNL proteins directly 
suppress or activate polyadenylation for thousands of pre-mRNAs [75, 80]. Thus, 
MBNL proteins coordinate multiple pre-mRNA processing steps and their seques-
tration in DM depletes them from their normal RNA targets.

Besides MBNL loss-of-function, there is accumulation and aberrant sub-cellular 
distribution of another splicing factor CELF1 in DM. CELF proteins are normally 
downregulated during postnatal striated muscle development, which facilitates 
fetal-to-adult splicing transitions in hundreds of muscle transcripts [61, 82]. CELF1 
actually does not colocalize with RNA foci [83], and its upregulation in DM1 occurs 
through two separate mechanisms. First, CELF1 protein is stabilized through its 
hyper-phosphorylation [84]; and second, reduced levels of microRNAs in DM1 
derepress CELF1 protein translation [85, 86] (Fig. 8.2d, g, h). The situation is less 
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clear in DM2, with conflicting reports of normal [87, 88] and increasing CELF1 
protein levels [89] in patient tissues and cells. It is interesting to note that for many 
pre-mRNAs whose splicing is disrupted in DM1, CELF1 and MBNL1 regulate 
them in an antagonistic manner [58, 61, 90–92]. The antagonism, however, is not 
due to direct competition for the binding site as both CELF1 and MBNL1 bind and 
regulate splicing independently via distinct cis-acting RNA motifs.

In addition to MBNL and CELF proteins, other RNA splicing factors are impli-
cated in DM.  For instance, hnRNP H binds to DMPK-derived CUG-expanded 
RNAs in  vitro and increased hnRNP H levels may also contribute toward DM 
pathogenesis [93]. hnRNP H forms a repressor complex with MBNL1 and nine 
other proteins (hnRNP H2, H3, F, A2/B1, K, L, DDX5, DDX17, and DHX9) in 
normal myoblast extracts but elevated hnRNP H levels in DM1 disrupt the stoichi-
ometry of these complexes which affects splicing of specific pre-mRNAs [94, 95]. 
Since expanded CUG repeat RNAs fold into hairpin structures [96], the partial 
recruitment and colocalization of the RNA helicase p68/DDX5 with RNA foci may 
also have a contributing role in splicing dysregulation. Moreover, p68/DDX5 can 
modulate MBNL1-binding activity, and its colocalization with nuclear RNA foci 
can further stimulate MBNL1 binding to repeat RNAs [97].

8.3.2  �Misregulation of mRNA Localization and Stability

Following transcription, newly synthesized and fully processed mRNAs are bound 
by specific RBPs to form export-competent mRNPs, which help their transport 
through the nuclear pore complex (NPC). Some pre-mRNAs are processed at the 
speckle periphery before being exported and repeat-containing nuclear foci can 
colocalize at the periphery of nuclear speckles, a non-membrane bound nuclear 
assembly of macromolecules including splicing factors. The presence of expanded 
CUG repeats may, therefore, prevent entry of other RNAs into the nuclear speckle 
[98, 99]. However, in DM2, the mutant ZNF9 mRNA is exported normally as the 
expanded CCUG repeats are removed during splicing. The nuclear foci formed by 
DM2 intronic repeats are widely dispersed in the nucleoplasm and not associated 
with nuclear speckles. Also, it is not yet clear whether the DM1 and/or DM2 nuclear 
foci contain partially degraded fragments of CUG or CCUG repeats or larger intact 
RNAs respectively.

As discussed above, CELF1 upregulation and MBNL sequestration by the CUG 
repeats in DM1 cause misprocessing of hundreds of transcripts. Aberrant process-
ing results in nucleocytoplasmic export defects for many of these transcripts. 
Furthermore, MBNL proteins are localized both in the nucleus and cytoplasm and 
several studies have demonstrated their direct roles in mRNA localization [62, 100] 
(Fig. 8.2f). For instance, by interacting with the 3′-UTR of Integrin α3, MBNL2 
moves it to the plasma membrane for its local translation [64]. Similarly, MBNL1 
also plays major roles in mRNA localization and membrane-associated translation. 
Transcriptome-wide analyses of subcellular compartments from mouse myoblasts 

8  Deregulation of RNA Metabolism in Microsatellite Expansion Diseases



222

showed widespread defects in mRNA localization upon combined depletion of 
MBNL1 and MBNL2 [62]. Many of the mislocalized mRNAs encode for secreted 
proteins, extracellular matrix components, and proteins involved in cell–cell com-
munication. MBNL depletion in DM can thus have a significant impact on mRNA 
localization potentially affecting proper neuromuscular junction formation.

In the cytoplasm, MBNLs also regulate mRNA stability [101] (Fig.  8.2i). 
MBNL1 specifically recognizes YGCY-containing motifs within the 3′-UTR 
regions and destabilizes the target mRNAs through unknown mechanisms [65, 92]. 
CELF1, on the other hand, induces mRNA decay of short-lived transcripts through 
interactions with GU-rich elements (GREs) in their 3′-UTR and possibly recruit-
ment of poly(A)-specific ribonuclease, which promotes deadenylation of target 
transcripts [102–104]. Many of the CELF mRNA targets with GREs encode pro-
teins essential for muscle cell development and function [105–108]. Interestingly, 
CELF1 binds to the mRNAs coding for SRP protein subunits and promotes their 
decay [109]. Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein 
complex, which regulates the translation of secreted and membrane-associated pro-
teins. It is likely that the CELF1 overexpression contributes to the faster turnover of 
SRP mRNAs and the reduced SRP levels thereby attenuate the protein secretory 
pathway in DM1 [109].

8.3.3  �Misregulation of mRNA Translation

CELF1 is additionally involved in the regulation of mRNA translation [106, 110–
112] (Fig. 8.2h). The affinity of CELF1 toward its mRNA targets can be modulated 
through phosphorylation [113]. For instance, phosphorylated CELF1 interacts with 
a subunit of initiation factor eIF2, leading to the recruitment of translational machin-
ery to target mRNAs [106]. In myoblasts, AKT phosphorylates CELF1 and increases 
its affinity for CCND1 mRNA.  During myoblast-to-myotube differentiation, 
cyclinD3-cdk4/6 phosphorylates CELF1, which increases CELF1 interaction with 
5′-UTR of p21 mRNA (a cell cycle inhibitor) and enhances its translation. Myoblasts 
from DM1 patients show an increased interaction between CELF1 and AKT and 
have reduced cyclinD3-CDK4/6 levels during differentiation [105]. Moreover, 
DM1 myoblasts during differentiation show a reduced ability to withdraw from cell 
cycle, which may be due to the altered translation of P21 or myogenic transcription 
factor MEF2A by CELF1 [111, 112].

mRNA translation in DM1 is also affected due to microRNA deregulation 
(Fig. 8.2g). A subset of developmentally regulated microRNAs associated with car-
diac arrhythmias is downregulated in the hearts of DM1 patients and mice [67, 86]. 
Downregulation of these microRNAs recapitulates particular gene expression defi-
cits seen in DM1 hearts including enhanced protein levels of miR-1 targets CX43 
and Cav1.2 as well as miR-23a/b target CELF1 [67, 86]. In DM1 and DM2 skeletal 
muscle biopsies, both the levels and cellular distribution of several evolutionarily 
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conserved microRNAs are altered affecting their downstream targets [114–117]. 
Furthermore, specific microRNAs are differentially detected in peripheral blood 
plasma of DM1 patients, which inversely correlate with skeletal muscle strength 
and may serve as noninvasive biomarkers [118]. More recently, reduced expression 
of miR-200c/141 tumor suppressor family was shown to correlate with increased 
oncologic risk in women with DM1 especially for gynecologic, brain, and thyroid 
cancer [119].

Besides altering cellular translation through misregulation of RBPs and microR-
NAs, the microsatellite expansions also promote unconventional translation of 
repeats in multiple reading frames producing homopolymeric peptides that aggre-
gate in both the nucleus and the cytoplasm [120] (Fig. 8.2j). Designated as Repeat 
Associated Non-AUG Translation (RAN translation), it was first described for the 
expanded CAG and CTG repeats that cause spinocerebellar ataxia 8 (SCA8) and 
DM1, respectively [120]. Interestingly, the efficiency of RAN translation increases 
with the size of repeats and when RNA forms hairpin-like structures [121]. 
Additionally, the cells making the toxic RAN protein products are prone to apopto-
sis as detected in tissues of affected patients, indicating a potential contribution of 
RAN to pathogenesis. In addition to DM1, Zu et al. recently demonstrated that in 
DM2 the tetranucleotide expansion repeats are bidirectionally transcribed, and the 
resulting transcripts are RAN translated, producing tetrapeptide expansion proteins 
with Leu-Pro-Ala-Cys (LPAC) from the sense strand or Gln-Ala-Gly-Arg (QAGR) 
repeats from the antisense strand [122]. These RAN proteins were readily detected 
in the DM2 patient brains; however, the specific roles of these RAN proteins regard-
ing toxicity, mechanism of action, and their regulation are yet to be determined.

Since their original discovery, RAN translation has now been observed in many 
other repeat-expansion diseases, including ALS/FTD, FXTAS, and Huntington’s 
disease [52, 123]. However, the exact mechanisms initiating translation from these 
repeats likely differ across diverse sequence contexts [124]. For instance, in case of 
FMR1, expanded CGG repeats in the 5′-UTR initiate CAP-dependent RAN transla-
tion upstream of the canonical AUG start codon, producing FMRpolyGlycine and 
FMRpolyAlanine in FXTAS [123, 125]. In contrast to FXTAS, the expanded repeats 
in DM1 exist within the 3′ UTR of DMPK mRNA, which is not in the normal path 
of ribosome scanning; thus, unconventional ribosome interactions must contribute 
in their translation. For HTT in Huntington’s disease, the CAG repeats are in the 
ORF, and canonical translation starts at the native AUG codon upstream of the 
repeats. But in some instances, HTTpolySerine and HTTpolyAlanine proteins are 
also produced due to RAN-translation and frame shifting from the normal 
HTTpolyGlutamine frame of the repeats [126]. Finally, in case of ALS/FTD, the 
GGGGCC repeats are within C9ORF72 intron, and the RAN-translation generates 
polyGlycine-Alanine, polyGlycine-Arginine, and polyGlycine-Proline dipeptide 
products [31, 127]. The RAN translation in this case, however, may occur from the 
intron retained transcript, spliced lariat, or a 3′ truncated RNA generated due to 
stalled transcription [124, 128].
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8.4  �Disrupted Function of RBPs in Other Microsatellite 
Expansion Disorders

Recent paradigm-shifting advances have established that defective RNA processing 
through disrupted function of RBPs is central to many other repeat expansion dis-
eases (Table 8.2). For instance, RBP defects occur in both familial and sporadic 
cases of ALS/FTD [129, 130]. Mutations in TARDBP and FUS genes respectively 
encoding TDP-43 and FUS/TLS proteins result in abnormal aggregation of these 
proteins in neurons and are considered pathogenic for ALS/FTD. TDP-43 and FUS/
TLS are RNA/DNA-binding proteins, with noticeable structural and functional 
similarities.

TDP-43 functions in multiple RNA processing steps including pre-mRNA splic-
ing [131–134], RNA stability [135–137], and transport [138]. Similar to TDP-43, 
FUS interacts with serine-arginine (SR) proteins that serve diverse roles in splicing 
[139] and regulates transcription by recruiting other RBPs through noncoding 
RNAs [140]. Hence, the association of TDP43 and FUS/TLS with ALS and FTD is 

Table 8.2  Common postulated pathological mechanisms and associated RNA-Binding Proteins 
(RBPs) for disease-associated microsatellite repeat expansions

Diseases 
name RBPs Pathological mechanism

(a) FXTAS, 
FXS

FMRP [11–14] Pur α and 
hnRNP A2/B1 [205, 206], 
CELF1 [207], Sam68 [208]

mRNP transport and translation [209–213]
Nuclear Foci and RBP Sequestration leads to 
changes in expression and cellular distribution of 
several proteins [214, 215], RNA Splicing [208, 
216].

(b) DM1/2 MBNL1/2/3 [49, 68, 72–74]; 
and CELF [39, 83, 84, 90, 
91, 111, 217], HnRNP H 
[93], p68/DDX5 [97]

Nuclear Foci and RBP Sequestration, RNA 
splicing [58, 61, 62, 82, 218, 219] and 
polyadenylation misregulation [75, 80], miRNA 
biogenesis [67, 86, 115], Translation and cellular 
localization disruption [62, 99], Intracellular 
aggregation by non-canonical RAN translation 
[122]

(c) ALS/
FTD

TDP-43 [220, 221] FUS 
[222, 223], TAF15 [141, 
142], EWSR1 [143, 144] 
hnRNPA1 and hnRNPA2B1 
[146], Ataxin 2 [145], TIA1 
[224]

Nuclear foci [225], Splicing misregulation [132, 
134, 226], translation, and RNA transport [227], 
impaired cytoplasmic localization [154, 228, 
229], mutated LCD domain mediated cytoplasmic 
inclusions [146, 230–233]

(d) SCA 8 MBNL/CELF [234], Staufen 
[235]

RNA Splicing [234], RAN Translation [120]

Abbreviations: FXTAS fragile X-associated tremor/ataxia syndrome, FXS fragile X syndrome, 
DM1/2 myotonic dystrophy type 1/2, ALS amyotrophic lateral sclerosis, FTD frontotemporal 
degeneration, SCA spinocerebellar ataxias, FMRP fragile X mental retardation protein, CELF 
CUGBP Elav-like family member, mbnl Muscleblind like splicing regulator, hnRNPs heteroge-
neous nuclear ribonucleoprotein, TAF15 TATA box-binding protein-associated factor 15, EWSR1 
Ewing sarcoma breakpoint region 1, TIA1 T cell intracytoplasmic antigen
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redirecting research efforts toward identifying additional RBPs that are mutated in 
neurological diseases, defining their normal RNA substrates and determining the 
misprocessed RNAs that underlie particular disease symptoms. In fact, mutations in 
several other RBPs that are functionally and structurally similar to FUS/TLS such 
as TAF15 [141, 142] and EWSR1 [143, 144], as well as the less closely related 
RBPs—Ataxin 2 [145], hnRNPA2B1 [146], hnRNPA1 [146], and Matrin3 [147] 
were recently identified. Among these RBPs, TDP-43, FUS, and hnRNPA1 harbor 
low complexity domains (LCDs), which can polymerize and drive phase separation 
to form dynamic membrane-less organelles or liquid droplets. For instance, a 
57-residue segment within the FUS-LCD was recently shown to assemble into a 
fibril core that promotes phase-separation and hydrogel formation. Interestingly, 
phosphorylation of the core-forming residues by DNA-dependent protein kinase 
dissolves the FUS-LCD liquid droplets providing a molecular basis for the dynam-
ics of LCD polymerization and phase separation [148].

Disease-associated mutations within LCDs of RBPs also enhance prion-like 
properties and accelerate the shift from liquid to solid phase disturbing proper ribo-
nucleoprotein (RNP) formation [127, 149, 150]. These mutations likely trigger pro-
tein aggregation due to aberrant self-assembly of LCDs. The cytoplasmic aggregation 
of RBPs not only affects their typical functions in RNA metabolism but also dimin-
ishes general nucleocytoplasmic trafficking, a common consequence of ALS-
initiating mutations [151–153]. While the exact reasons impeding nuclear/
cytoplasmic transport in ALS are not yet fully established, multiple independent 
mechanisms have been proposed. For example, nucleocytoplasmic trafficking 
defects can arise due to proteotoxicity caused by cytoplasmic β-sheet containing 
protein aggregations [154], direct interactions between repeat RNAs and nuclear 
import factors [153], or inhibition by RAN translation-products of repeat RNAs 
[151]. Interestingly, arginine-containing dipeptide repeats produced from RAN 
translation of hexanucleotide GGGGCC expansions in ALS interact with LCDs of 
RBPs, which disrupts the dynamics and functions of membrane-less organelle for-
mation by LCDs [155, 156]. Furthermore, subsets of these arginine-containing 
dipeptides frequently bind to the LCDs encoded by the nuclear pore proteins block-
ing the transport of macromolecules into and out of the nucleus [157]. Thus, interac-
tion of RAN translation products with LCDs is a yet another pathogenic mechanism 
that interferes with the normal function of RBPs in microsatellite expansion 
disorders.

8.5  �Conclusions

The past decade has seen remarkable progress in our understanding of the molecu-
lar pathogenesis of microsatellite repeat expansion disorders. Although the repeats 
may vary in terms of their length and location within a gene or the multiple ways 
through which they cause disease, one commonality of microsatellite expansions is 
the production of toxic RNA species containing repeats. Mechanistically, the 
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pathology arises either due to loss-of-function of the affected gene, or gain-of-func-
tion of the repeat-containing RNAs. Regarding loss-of-function, the repeats can 
induce transcriptional silencing of the affected gene through epigenetic modifica-
tions or produce a non-functional protein that contains a long stretch of homopoly-
meric amino acids. In case of gain-of-function, the RNAs with expanded repeats 
often sequester RBPs and thus disrupt their normal activities. Alternatively, the 
translated protein with a repetitive stretch of homopolymeric peptide sequence can 
misfold, aggregate, and trap critical cellular proteins causing nucleo-cytoplasmic 
export defects and further proteotoxicity. For a number of repeat expansion disor-
ders, there is an intricate overlap of such loss- and gain-of-function mechanisms 
resulting in complex molecular pathologies. We envision that for many repeat 
expansions, the future investigations will be geared toward determining the unique 
versus overlapping disease mechanisms, dissecting direct versus indirect RNA 
metabolism defects, and finally, understanding whether alterations in RNA metabo-
lism occur early or during late stages of the disease.
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