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CHAPTER 8

Enhancing Self-Regulated Learning 
for Information Problem Solving with 
Ambient Big Data Gathered by nStudy

Philip H. Winne

Today’s post-secondary students are more and more frequently engaged 
in learning projects. Learning projects are major assignments in which 
students research, appraise, organize and transform information. This 
work typically is oriented to producing a complex and multisection docu-
ment, such as a report describing a science lab experiment, a course term 
paper, a plan for operating a business, a course of therapy or even an hon-
ors thesis. Some learning projects are coconstructed by a team of learners. 
This adds complexity to the work each individual does arising from needs 
to coordinate people, resources, subtasks, scheduling, and sometimes 
shared access to resources.

Learning projects almost always call for a complex activity called infor-
mation problem solving (IPS). Synthesizing Brand-Gruwel, Wopereis and 
Walraven’s IPS-1 model (2009) and the model of self-regulated learning 
(SRL) I codeveloped with A. F. Hadwin (Winne and Hadwin 1998; see 
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also Hadwin and Winne 2012; Winne 2013), round-trip IPS can be 
described in terms of six major components (cf. Eisenberg 2008; Winne 
et al. 2017a):

	1.	 developing a clear understanding about resources available to sup-
port or that may impede work on the learning project;

	2.	 designing a framework for the product of the learning project, and 
setting standards for judging how well information fits that 
framework;

	3.	 searching for, then filtering sources of information (websites, docu-
ments) after scanning them for potential fit to the project’s 
framework;

	4.	 analyzing the set of filtered sources to extract information from 
them, and organizing these selections according to the framework 
previously set out;

	5.	 planning and drafting a report, and
	6.	 evaluating and revising the draft report to produce a final polished 

version satisfying requirements set for the learning project.

Learners who are productive in self-regulating learning to become better 
learners understand a seventh component should be added to the preced-
ing six. That seventh component is reexamining the full scope of work to 
diagnose shortcomings, hypothesizing ways in which work might be 
improved, and planning how to launch this possibly better approach when 
they begin the next learning project.

Improving students’ overall IPS along with component skills students 
engage when they work on learning projects are widely claimed to be keys 
to success as a student. These skills are often also described as significant 
contributors to personal well-being and the capacity to contribute produc-
tively to the national economy. The Social Science and Humanities 
Research Council of Canada implicitly takes this stance in identifying its 
Challenge Area #1, “new ways of learning, particularly in higher education 
[that] Canadians need to thrive in an evolving society and labour market” 
(SSHRC 2017). A survey undertaken for the Association of American 
Colleges and Universities was more direct in reporting “… employers indi-
cate that they prioritize critical thinking, communication, and complex 
problem-solving skills over a job candidate’s major field of study when 
making hiring decisions” (Hart Research Associates 2013, p. 4).

Post-secondary institutions recognize that they play a key role in helping 
students develop information literacy and other skills needed for successful 
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information problem solving in learning projects. Commonly, institutions 
approach this charge by posting guides and tutorials online, distributing 
handouts and posters around campus, recommending self-help books on 
study skills, and offering face-to-face workshops. Across these various chan-
nels, the kinds of skills addressed mainly concern annotating, how to review 
content, and self-test mastery of it, writing, test taking, managing time and 
(variously labeled) thinking critically or argumentation (e.g., Hadwin et al. 
2005). A trending theme augmenting this set of basic skills is searching for 
information. “Google it” might be almost everyone’s first step when start-
ing a learning project. Unfortunately, by and large, attempts to help stu-
dents improve skills in all these areas are not as effective as might be 
expected (Hadwin and Winne 1996; Winne 2013).

One might predict learning science can remedy this situation with its 
wide array of research findings. In the next section, I critique a corner-
stone for this belief. I argue experimental findings claimed to show “what 
works” are not as useful as has been claimed. This is because the preferred 
methodology for generating recommendations in learning science 
research, the randomized controlled trial (RCT), has significant limita-
tions when one attempts to generalize experimental results as guidelines 
for any particular individual learner. Following my critique, I revisit and 
elaborate an approach to researching learning that I proposed some time 
ago (Winne 1992, 2006) and update in a recent article (Winne 2017a). 
The approach I commend rests on students’ using software to engage 
in  online learning projects. This affords opportunity to generate big, 
ambient data about learning at both individual and group levels. I suggest 
these data can be mined to bootstrap ever more useful and empirically 
grounded recommendations to guide individual learners toward better 
learning practices and SRL that leads to improving skills for IPS.

Challenges Using Findings from Randomized 
Controlled Trials to Improve IPS1

A widely held view is that recommending changes that will benefit learning 
requires carrying out a “true” experiment, that is, a randomized controlled 
trial (RCT). Two key requirements must be met to have confidence in the 
findings of an RCT serving this end (What Works Clearinghouse, n.d.):

1 This section draws largely on Winne, P. H. (2017a). Leveraging big data to  help each 
learner upgrade learning and accelerate learning science. Teachers College Record, 119(3), 1–24.
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	(a)	 The sample of participants in the RCT must be representative of a 
well-defined population.

	(b)	 Participants in the RCT must be assigned to each condition inves-
tigated in the experiment by random assignment or some method 
that is functionally random.

Assuming other features of an RCT’s methods are well done, which is 
no mean feat (see Shadish et al. 2002), meeting both requirements sets a 
stage for a recommendation like this: “If a student is a member of the 
same population as participants in the RCT, changing how that student 
goes about learning by replicating the intervention operationalized in the 
RCT (or in a collection of RCTs examined in a meta-analysis) has a high 
probability of producing a result for that student like the result that was 
observed for the treatment group in the RCT.” I argue RCTs can build 
only a “fragile foundation” for strong claims like this about what works 
(Winne 2017a). Main points are summarized as follows.

Findings of an RCT Are Unacceptably Elastic

RCTs produce findings about differences among mean scores of groups of 
participants who have different experiences in the experiment. 
Methodologists call this difference in mean scores the effect size. It is 
agreed that, unless the entire population of students can participate in an 
experiment, the real effect size is unknowable. Because only a sample of 
the population of students participates in almost any experiment, the effect 
size observed in an RCT is just one effect size sampled randomly from a 
huge (theoretically, infinite) number of possible samples. This description 
is tacit about methodologists’ conservative approach in assuming the real 
effect size is zero—the null hypothesis—which is tested statistically for 
whether data sufficiently challenge that assumption. Colloquially, what 
you see in one RCT is a quite fuzzy image of what you might expect to see.

Fuzziness can be illustrated quantitatively if I make a few plausible (and 
arguable) assumptions. First, suppose the real effect size in the population, 
expressed as a correlation (ρ), ranges somewhere in the range 0.10 ≤ ρ ≤ 0.40. 
Using another common metric, Cohen’s d, this range is 0.20 ≤ d ≤ 0.87. 
Yet another expression may be clearer to readers less steeped in statistical 
methods. If we say the comparison group’s mean score lies at the 50th per-
centile of all scores in the population, a treatment in this RCT would be 
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predicted to have a mean score ranging somewhere between the 58th per-
centile and the 81st percentile.

Second, no measurement is perfectly reliable. So, I assume the psycho-
metric reliability of the outcome measure in this RCT is 0.70 in this RCT’s 
sample.

These assumptions are backdrops for interpreting effects observed in 
this one RCT. Suppose it produces an effect size of r = 0.30, equivalent to 
d = 0.63. In this RCT, the treatment improved the mean score of students 
in the treatment group from the 50th percentile (the comparison group’s 
mean score) to the 74th percentile. Now, imagine this same sample of 
students completely forgot everything about their experience in this RCT 
and participated in a perfect replication of the experiment. Results of this 
replication would have a 95% confidence interval that ranges from of 
r  = −0.33 (d  = −0.70, 24th percentile)—note: the treatment reduces 
achievement—to r = 0.65 (d = 1.71, 96th percentile)—the treatment is a 
potent benefit. It is worth pointing out the span of this interval grows 
wider to an unknown degree if different students experience the interven-
tion. That, of course, must be the case when anyone applies findings of the 
RCT to a new sample.

As if elasticity in “the” finding of an RCT was not enough, it is actually 
even more elastic. A hallmark of RCTs is the C of this acronym. It identi-
fies the trial (or experiment) as “controlled.” This means the researcher did 
everything possible to insure that every other factor theoretically reasoned 
or empirically demonstrated to affect the outcome variable was controlled, 
that is, did not vary. This usually makes an RCT very unlike other contexts 
in which the experiment’s intervention might be applied. Whenever one of 
these factors in the real world has a value or a range different than the value 
it had in the RCT, the confidence interval just described blurs. It may con-
tract. It may elongate. The center point on which it pivots may slide up or 
down. In short, predictions about what to expect on “replicating” the 
intervention studied in the RCT become quite fuzzy.

This analysis of an effect size observed in a single RCT delivers an 
unhappy message. It is a very chancy proposition to predict what to expect 
about the mean performance of a different group of students who experience 
an intervention researched in one RCT. You might counter: “A meta-anal-
ysis, where a collection of RCTs are examined, will fix this problem.” 
Unfortunately, no. The elasticity of the confidence interval for an effect 
size does not shrink if it is produced by a meta-analysis. The collection of 
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statistically detectable moderator variables a meta-analysis identifies help to 
point out which factors moderate an intervention’s effects but this list does 
not make generalizing “the” effect any more robust.

Means Cannot Predict an Individual Student’s Results

It is easy to show the mean score of a group is useless as a prediction about 
the score of any individual in the group, such as a student who experiences 
a treatment in an RCT. Statisticians model an individual’s score, which 
they represent symbolically as Xij, in terms of three components. One 
component, symbolized by μ, represents the mean score of all students in 
the population to which an individual student belongs. The second com-
ponent, τj, indicates how much the population mean μ changes as a result 
of everyone in the population experiencing the treatment. The subscript j 
is appended to signal a particular group in the experiment—say, the treat-
ment group (1) or the comparison group (0)—to which a particular stu-
dent belongs. Finally, the third component is an “error” term, symbolized 
εij. This component reflects how much the score of a particular individual 
i who is in group j differs from the mean score of all the other students 
from the population who are in group j. Putting these all together, the ith 
individual student who is group j has a score equal to the sum of these 
three components. Eq. (8.1) shows how this is represented when a weight-
ing factor, b, is applied to the term representing the effect of a treatment. 
If the student is in the treatment group, b = 1. If the student is in the 
comparison group, b = 0 and the effect of the treatment (τj) is nullified 
when it is multiplied by zero.

 
X bij j j ij= + +µ τ ε

 
(8.1)

What is critical to know about how statisticians use this expression 
when they construct a statistical analysis is this: When an average score in 
a group, say the jth one, is calculated by aggregating all the individual 
students’ scores, it is assumed the sum of all the individual εij components 
will be zero. The average obliterates individuality; the εij term is zero. If 
this is not the case, the analysis suffers bias. In short, knowing the mean 
score of a group of students offers no help in predicting what the score will 
be for any individual student.
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Populations Are Ineffectually Described

At the outset, I noted the validity of inferring the presence of an effect in an 
RCT depends on the sample of participants in the experiment being a ran-
dom sample from a well-defined population. The requirement that the sam-
ple be random arises because this is a critical assumption underlying statistical 
models used to investigate inferences about whether an intervention in an 
RCT produces a statistically detectable effect. If the sample is not randomly 
drawn from its population, inaccuracy is introduced into the inference of 
whether an effect appeared in the experiment. I believe it safe to say the vast 
majority of RCTs fail this requirement. Samples participating in RCTs are 
almost always samples of convenience. I (Winne 2017a) coined the term 
“pseudo-random controlled trial” or P-RCT to reflect this situation.

Another issue arises regarding the requirement that the population be 
well defined. In this context, “well defined” means the population is 
defined by factors that are empirically and reliably known to cause varia-
tion in the outcome variable measured in a P-RCT. Why is this a require-
ment? Consider an experiment in which high school students in the 
intervention group study new terms that will be important in an upcom-
ing lesson. They study until every student can perfectly define each term 
from memory. Peers in the comparison group join these students after the 
intervention group’s preparatory session, and all students are shown a 
movie about farming practices before they all take exactly the same achieve-
ment test. Now, suppose I define the population as 14-year olds and 60% 
female. (The APA Publication Manual requires noting these two demo-
graphic features of participants in studies.) My sample of 30 students in 
the intervention group, being a randomly lucky one, consists of only 
14-year-olds and has 18 (60% of 30) girls.

Does age cause variation in, say, understanding why the early stages of 
root infection are greatly affected by soil pH? No, age is a poor proxy for 
opportunity to learn about content. Moreover, age is not at all a useful 
proxy for the quality of those opportunities as learning experiences. Is sex 
a cause of learning or lack thereof? No, it is a poor proxy for potential 
interest in or opportunity to engage in learning about this topic. Because 
these “defining” factors are poor proxies, and other factors that really 
cause variation in the outcome measure in this experiment are unspecified, 
this study suffers what statisticians call the specification error. If an effect 
is detected, there is neither theoretical nor empirical warrant to generalize 
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the effect to people who happen to be 14 years old or have any basis for 
considering how much the effect might vary if the population of students 
is only 52% female or all female.

Summary

The randomized controlled trial (RCT), much acclaimed in research on 
learning science, is really a pseudo-randomized controlled trial (P-RCT). 
Even  if shortcomings of P-RCTs could be redressed, a probabilistically 
inferred effect is limited to describing differences between the mean scores 
of groups. It cannot forecast what to expect for any particular student who 
later experiences the same treatment studied in the experiment. If we hold 
a view that each student is responsible for carrying out operations that 
generate learning, P-RCTs have significant limitations as sources of robust 
recommendations about “what works for you.”

I hasten to emphasize the bulk of learning science should not, ipso 
facto, be ignored or discarded. Later, I suggest an important role for the 
current body of research in learning science. Moreover, I argue learning 
science can be accelerated and lend much value to helping students tackle 
learning projects and other IPS tasks.

To reach this point, I first set out goals to be achieved by a new approach 
to research. Then, I explore how modern software systems can support 
approaching those goals. The prize at the end of this journey is a system-
atic plan for helping individual students productively tackle information 
problem solving in the age of nearly unlimited online resources.

Goals for Research on IPS
There are two key goals for a new approach to research on promoting 
IPS. One is to describe, in terms that each student can understand and act 
on, what should replace the tactics and strategies they presently use in IPS 
that do not produce optimal results. It is important to emphasize: Students 
need to be clear about an intervention’s operational definition because 
they enact the “treatment.” Related to this goal are two assumptions.

Learning science commonly identifies the ways an author can structure 
information presentations (texts, videos, diagrams, etc.) to improve 
IPS.  However, I assume very few authors posting information to the 
Internet know about or care to implement these recommendations. If my 
conjecture is valid, students must “fend for themselves” when they source 
and analyze information for IPS.
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Principles of learning science are typically expressed in terms of unob-
served constructs, e.g., rehearsal, decay, metacognitive monitoring, elabo-
ration, etc. To most students, these are foggy notions. In contrast, students 
could readily understand operational definitions of these constructs, for 
example, considering the foregoing constructs: Retype text you high-
lighted. Of text you highlighted, you did not recall this (particular infor-
mation.) List standards you use to decide whether you recall enough 
about this (particular information). Illustrate this principle by an example 
from your experience.

I recommend research in IPS be designed to generate learning analytics 
expressed in terms of operational definitions rather than theoretical con-
structs. I predict when learning analytics have this form, students can 
understand clearly what they did when they studied previously and what 
they can consider as supplements to or replacements for prior actions to 
improve learning.

A second goal for the new approach to research I recommend for improv-
ing students’ IPS is to trace, as much as possible, everything students do as 
they work on IPS tasks. If this goal can be achieved, RCT’s fetters to ran-
dom sampling and random assignment can be cut. Here is why.

In the classical approach of experimenting to identify an intervention’s 
effect(s) on outcomes, it is axiomatic numerous unknown factors causally 
affect the outcome. This is, in fact, how the normal distribution of scores 
acquires its shape. When the number of participants is large enough, and 
when other experimental controls are sufficiently well implemented, ran-
dom selection and random assignment of participants to an experiment’s 
conditions provide mathematical insurance that causes with positive influ-
ence and with negative influence “balance out.” When this is the case, 
interpretations about the effect(s) of an intervention do not suffer con-
founds such that an effect is just as likely attributed to the intervention 
rather as to some unknown causal factor(s).

There are problems with this. Randomly selecting a sample of partici-
pants from a well-defined population is almost never achieved. Setting this 
aside, sample sizes would typically need to be prohibitively large. For 
example, a meta-analysis by Bakermans-Kranenburg et al. (2005) nomi-
nated six factors as moderator variables affecting the outcomes of early 
childhood interventions. If a new RCT was planned to investigate a new 
intervention, I calculated the size of a random sample of children from a 
well-defined population would need to be approximately 12,960 to avoid 
a confounded interpretation about whether the treatment was beneficial 
(or harmful) (Winne 2006). While samples of that size might occasionally 
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be achieved, interventions requiring special training or unconventional 
environmental designs suffer erosion of control when samples are so large.

To recap, new research on IPS should strive to provide students with 
learning analytics describing operationally how to study rather than con-
structs that matter theoretically. To generate such learning analytics 
requires data fully describing what each student does while studying in 
every studying episode. Next, I describe software designed to accomplish 
meet this standard.

nStudy: Software for Everyday IPS That Generates 
Ambient Big Data

nStudy is an extension programmed for the popular Google Chrome web 
browser. nStudy’s features are tools learners can use to operate on infor-
mation presented in web pages, pdf documents and videos they find on 
the Internet. The software was designed, in part, to open the black box of 
learning, that is, to bring into observable form learners’ cognitive opera-
tions on information and motivational states that shape what they learn 
(Winne 1982; Winne et al. 2017b).

Suppose Noah’s project is to argue whether owning a hybrid car is a 
wise consumer choice. After opening his browser and logging into nStudy, 
Noah enters “hybrid cars pros and cons” in nStudy’s search box. From 
Google’s returns, he selects one source he judges should be rather positive 
(www.plugincars.com) and begins reading. Early in the text, he drags his 
cursor over “the cost per mile to fuel an EV is approximately one-third to 
one-quarter the cost of gasoline (on a cost per mile basis)” (Berman 
2016). As soon as he lifts his finger from the trackpad, nStudy pops up a 
menu of options for operating on that selected information: quote, note, 
term (Fig. 8.1). Noah chooses quote and creates a tag for the information 
he selected, “pro.” In response, nStudy (a) highlights the text Noah 
selected, (b) paints a small colored nub next to the scroll bar (a region we 
call the gutter) to mark the quote’s relative location in the web page so 
Noah can see where he’s made quotes, (c) adds beneath the Tags header 
in of the sidebar the new tag Noah created, and (d) copies the text Noah 
selected to a sector of nStudy’s sidebar as a quote (Fig. 8.2).

Table 8.1 shows data nStudy records about Noah’s work so far in a data-
base on a server. Every event is time-stamped, accurate to at least 1/100th 
second. These data are ambient data; they are “collected as a matter of course” 
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Fig. 8.1  Noah selects information to quote and tag “pro”

(Pistilli et al. 2014, p. 85) and trace, as much as possible, every event that 
could be observed as Noah worked on his learning project.

The principle guiding nStudy’s design was to record everything possi-
bly observable about learners’ studying activities so that a full account of 
the studying episode was created. nStudy’s trace data help open the black 
box of learning (Winne 1982). For example, Noah’s choice of search 
terms reveals his judgment about key components in crafting an argu-
ment: pro, con. His search query also reveals a choice to focus on, or 
ignorance about, the difference between hybrids, all-electric plug-in cars, 
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Fig. 8.2  nStudy’s trace data mirror Noah’s operations on information quoted 
and tagged

and hybrid plug-in cars. Noah’s selection of text about cost per mile of 
ownership signals he was metacognitively monitoring information in the 
web page. The selection he quoted satisfied standards used in metacogni-
tive monitoring. His specific standard is revealed by the tag he created.

nStudy offers an array of other features that students can use in IPS 
tasks. These features afford gathering data that can recreate the temporal, 
operational, and informational aspects of work on learning projects. Brief 
descriptions of artifacts and features in nStudy are provided in Table 8.2.

  P. H. WINNE



157

Table 8.1  Operations and information operated on in Noah’s studying session

Operation Information

Log in Identity
Choose search Place cursor in search box
Search Search terms entered: hybrid cars pros cons
View Search results
Choose URL www.plugincars.com
View Content of the page at www.plugincars.com
Choose text The cost per mile to fuel an EV is approximately one-third to one-quarter 

the cost of gasoline (on a cost per mile basis)
Choose 
operation

Quote option on popup menu

Create tag “Pro”
Quote The cost per mile to fuel an EV is approximately one-third to one-quarter 

the cost of gasoline (on a cost per mile basis)

When learners create, edit, file, review, or destroy an artifact, nStudy 
logs the complete interaction. Similarly, when learners interact with a fea-
ture, for example, searching for an artifact, that interaction is also logged.

nStudy is now being extended to retrieve and organize data from one 
or multiple learners’ databases for input to computations generating learn-
ing analytics. In addition to straightforward mirror reports (e.g., “You 
made 18 notes in today’s 2 studying sessions, 8 of which you tagged review 
later.) comparisons can be ipsative (within one learner across time), crite-
rion referenced or norm referenced (relative to a defined group of a learn-
er’s peers). Because inputs to learning analytics are operations a learner 
applies using nStudy’s tools, for example, quoting or searching for a note 
about a particular topic, and because the information a learner operates on 
is recorded in nStudy’s database, learning analytics can be presented in 
terms learners are accustomed to using when they use the software.

How Software Helps

Data that nStudy gathers approach big data. A common 500-page intro-
ductory textbook containing approximately 1000 terms, wherein the 
learner makes 2 quotes per page and 2 notes per page, plus searches for 
and reviews 25% of these artifacts, will generate approximately 500 × 2 × 
2 + 1000 + .25 × 3000 = 4000–5000 records per student-semester. An 
estimate of data points generated in a typical IPS project, such as a term 
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Table 8.2  nStudy’s feature set

Artifact/
feature

Description

Bookmark Titled, clickable and searchable links to source content (pages, pdfs) in the 
Internet

Quote Text selected in a source that is copied to and searchable in a learner’s 
workspace. Clicking a quote returns the learner to its source and the quote 
in context

Note Learners’ elaborations and interpretations of quotes. Replacement text in a 
text field guides learners’ entries, e.g., “title your note” or “describe your 
feeling”

Note form Schemas guiding analysis of content. Forms can be configured with multiple 
kinds of fields: field labels, text, checkboxes, radio buttons, sliders, drop-
down lists, dates, images, attached files and “see also” field which records 
hyperlinks between the active note and other nStudy artifacts

Term Notes that name and describe key terms, characters, events, etc.; the term 
form includes a “see also” field

Termnet A node-edge network in which nodes are terms and edges signify a relation. 
Clicking a node opens the term note for quick review. When a bookmark, 
essay or discussion (see Hub) is opened, nStudy identifies its subgraph of 
terms—a local glossary.

Tag An index to be applied to a set of nStudy artifacts to classify them 
conceptually (e.g., “conjectures”), motivationally (e.g., “interesting”), 
qualitatively (e.g., “vague”), or in relation to tasks (e.g., “review for test).
Tags can be restricted to a set provided by a researcher/instructor or freely 
created by a learner

Essay A feature for drafting and formatting compositions, lab reports, business 
plans, diagnoses, etc. Quotes, notes, and terms can be incorporated into an 
essay by dragging or copy/pasting them into an essay

Hub A feature for communicating with peers synchronously or asynchronously. 
Any nStudy artifact (bookmark, quote, note, term, essay, map) can be sent 
to collaborators

Library A feature for browsing and searching for artifacts by title, content, kind, 
temporal attributes (e.g., edited this week) and other artifact metadata

Map A feature for constructing and displaying relations (links) among nStudy 
artifacts (nodes); a concept map. Learners construct maps by adding items 
and linking them at will; or by filtering the library to a desired subset, then 
clicking a button, “map it.” Artifacts in maps can be grouped to form 
submaps. An item’s “conceptual neighborhood” can be shown at arbitrary 
“distance” measured by the number of links traversed

Queries A special folder in the library of researcher-provided or learner-designed 
search expressions with optional fill-in text fields, e.g., “find notes made last 
week not reviewed about [topic]”
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paper, might be 500. If a typical learner enrolls in four courses and data 
are available for a freshman class of 5000, the flow of data is approximately 
100 million raw data points per semester, not counting time stamps and 
semantic features of information on which learners operate. Because 
nStudy’s data share a common format independently of where students 
enroll, post-secondary institutions pooling data would expand this vol-
ume. There can be big data about how learners study.

Ambient data of this volume gathered in the natural ecology of study-
ing and IPS projects offer significant affordances for mining to trace how 
students study and orchestrate their work in IPS projects. These data 
also can be mined to identify how naturally arising events as well as 
inserted learning analytics perturb patterns of IPS and nudge achieve-
ment (Winne and Baker 2013). It is practically inevitable within this 
volume of data that some naturally occurring patterns will validate find-
ings already developed in learning science. It is also highly likely new 
patterns will be discovered that have not yet been explored in learning 
science. A particularly appealing opportunity is the ability to track the 
nature of IPS skills, study tactics, and their adaptations arising from 
injections of learning analytics over time. While time spans fall consider-
ably short of “life long  learning,” there is an exceptional prospect of 
mapping the developmental trajectory of IPS skills over several years of 
an undergraduate career.

An additional advantage of software systems like nStudy is future capa-
bility to offer just-in-time responsive support for students. In conventional 
research programs, data for a single experiment may be gathered over 
1–2 months. This is followed by a period where data are analyzed, a paper 
is drafted and submitted for publication, the publication is published with 
a lag of 1–2 years and, perhaps 2–5 years after that, someone synthesizes 
multiple studies in a meta-analysis. In contrast, when ambient data are col-
lected using software systems like nStudy, data are immediately available 
for automated or hand-crafted analyses. The concept of a contained study 
disappears. It can be replaced by “overnight” updates to the state of the 
art. As and when findings cohere, so recommendations can be justified, 
these can be distributed directly and immediately to students. This sparks 
a continuous and rapidly responsive cycle of evidence-based investigation 
and adaptation. In addition, students are relieved of having to visit a tutor 
or study skills center. They can receive advice tailored to their idiosyncratic 
approach to IPS as they log in to the next study session.
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Conclusion

Online information is a major resource students mine in learning projects, 
less extensive IPS tasks, and everyday academic work. With robust regard 
for privacy, as learners use online technologies for studying and other IPS 
tasks, unparalleled prospects arise to gather extensive ambient data about 
every learner’s work over time and across learning projects. The data gen-
erated are significantly greater in volume and detail than has been possible 
to realize in a pen-and-paper world. But volume is actually a drawback 
unless it can be intelligently mined and analyzed. Powerful tools for min-
ing and analyzing large sets of data knock down this potential barrier.

Data that software systems can gather will accelerate learning science 
and enhance learners’ achievements (Winne 2006, 2017a, b; Winne et al. 
2017b). The learning management systems in widespread use across post-
secondary institutions miss this opportunity because data they gather can-
not reveal what learners do in the IPS “activity stream” (DiCerbo and 
Behrens 2014).

As previously forecast, prior findings and models developed through 
diligent work in prior learning science should not be set aside in a frenzy 
to gather big ambient data about learning. Current findings are the best 
available hypotheses about how to support learning, increase motivation 
and enhance achievement. The very attractive opportunity afforded by 
software systems like nStudy is a hugely increased capacity to test such 
findings further and more penetratingly. Opportunity to identify modera-
tor and mediator variables is hugely advantaged in this technologically 
supported ecology. And, because data are big, the pool of data can be 
stratified to finer grain and arrayed in more complex combinations than 
today’s experimental samples or meta-analyses allow. Moreover, the scope 
of ambient trace data made available by online systems like nStudy opens 
doors to explore new research questions in far less costly and much greater 
variety than is possible today. A new era in research in IPS supported by 
software systems may help learning science evolve to its next level.
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