
Synthesizing Controllers:
On the Correspondence Between LTL

Synthesis and Non-deterministic Planning

Alberto Camacho1(B), Jorge A. Baier2, Christian Muise3,
and Sheila A. McIlraith1

1 Department of Computer Science, University of Toronto, Toronto, Canada
acamacho@cs.toronto.edu

2 Chilean Center for Semantic Web Research,
Pontificia Universidad Católica de Chile, Santiago, Chile

3 IBM Research, Cambridge Research Center, Cambridge, USA

Abstract. Linear Temporal Logic (LTL) synthesis can be understood
as the problem of building a controller that defines a winning strategy,
for a two-player game against the environment, where the objective is
to satisfy a given LTL formula. It is an important problem with applica-
tions in software synthesis, including controller synthesis. In this paper
we establish the correspondence between LTL synthesis and fully observ-
able non-deterministic (FOND) planning. We study LTL interpreted over
both finite and infinite traces. We also provide the first explicit compi-
lation that translates an LTL synthesis problem to a FOND problem.
Experiments with state-of-the-art LTL FOND and synthesis solvers show
automated planning to be a viable and effective tool for highly structured
LTL synthesis problems.

Keywords: Automated planning · Controller synthesis · LTL
Non-deterministic planning

1 Introduction

The problem of synthesizing software, including controllers, from logical speci-
fication is a fundamental problem in AI and computer science more generally.
Church’s synthesis problem was first posed by Church in 1957 in the context
of synthesizing digital circuits from a logical specification [1] and is consid-
ered one of the most challenging problems in reactive systems [2]. Two com-
mon approaches to solving the problem have emerged: reducing the problem to
the emptiness problem of tree automata, and characterizing the problem as a
two-player game.

In 1989, Pnueli and Rosner examined the problem of reactive synthesis using
Linear Temporal Logic (LTL) [3] as the specification language (henceforth “LTL
synthesis”) viewing the problem as a two-player game, and showing that this

c© Springer International Publishing AG, part of Springer Nature 2018
E. Bagheri and J. C. K. Cheung (Eds.): Canadian AI 2018, LNAI 10832, pp. 45–59, 2018.
https://doi.org/10.1007/978-3-319-89656-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89656-4_4&domain=pdf

46 A. Camacho et al.

problem was 2EXPTIME-complete [4]. This discouraging result has been miti-
gated by the identification of several restricted classes of LTL for which synthesis
is less complex. For example, if the LTL specification is restricted to the class
of so-called Generalized Reactivity(1) (GR1) formulae, an N3-time algorithm
exists [2]. Today, a number of synthesis tools exist with varying effectiveness
(e.g., Acacia+ [5], Lily [6]).

Recent work has explored various connections between automated planning
and synthesis (e.g., [7–12]) but has not provided a full mapping between the two
problems, nor have the practical implications of such a mapping been explored
from an automated planning perspective. In this paper we investigate the rela-
tionship between (LTL) synthesis and automated planning, and in particular
(LTL) Fully Observable Non-Deterministic (FOND) planning. We do so by lever-
aging a correspondence between FOND and 2-player games. This work is inspired
by significant recent advances in the computational efficiency of FOND planning
that have produced FOND planners that scale well in many domains (e.g., myND
[13] and PRP [14]). Our insights are that just as SAT can be (and has been)
used as a black-box solver for a myriad of problems that can be reduced to SAT,
so too can FOND be used as a black-box solver for suitable problems. Estab-
lishing the connection between FOND and 2-player games not only provides a
connection to LTL synthesis – the primary subject of this exploration – it also
provides the key to leveraging FOND for other problems.

In Sect. 3 we establish the correspondence between LTL synthesis and strong
solutions to FOND planning. In Sect. 4 we provide the first automatic transla-
tion of a realizability problem into a planning problem, described in the Planning
Domain Definition Language (PDDL), the de facto standard input language for
automated planners. Experiments with state-of-the-art LTL synthesis and FOND
solvers illustrate that the choice of formalism and solver can have a dramatic
impact. Indeed, planning-based approaches excel if the problem is highly struc-
tured and the uncertainty largely restricted, as is the case for synthesis problems
associated with engineered physical devices.

2 Preliminaries

FOND: A FOND planning problem is a tuple 〈F , I,G,A〉, where F is a set
of fluents; I ⊆ F characterizes what holds initially; G ⊆ F characterizes the
goal condition; and A is the set of actions. The set of literals of F is Lits(F) =
F ∪ {¬f | f ∈ F}. Each action a ∈ A is associated with 〈Prea,Eff a〉, where
Prea ⊆ Lits(F) is the precondition and Eff a is a set of outcomes of a. We
sometimes write oneof(Eff a) to emphasize that Eff a is non-deterministic. Each
outcome e ∈ Eff a is a set of conditional effects of the form (C → �), where
C ⊆ Lits(F) and � ∈ Lits(F). Given a planning state s ⊆ F and a fluent f ∈ F ,
we say that s satisfies f , denoted s |= f , iff f ∈ s. In addition s |= ¬f if f �∈ s,
and s |= L for a set of literals L, if s |= � for every � ∈ L. Action a is applicable in
state s if s |= Prea. We say s′ is a result of applying a in s iff, for one outcome e
in Eff a, s′ is equal to s \ {f | (C → ¬f) ∈ e, s |= C}∪{f | (C → f) ∈ e, s |= C}.

Synthesizing Controllers 47

A policy p, is a partial function from states to actions such that if p(s) = a,
then a is applicable in s. An execution π of a policy p in state s is a sequence
s0, a0, s1, a1, . . . (finite or infinite), where s0 = s, and such that every state-
action-state substring s, a, s′ are such that p(s) = a and s′ is a result of applying
a in s. Finite executions ending in a state s are such that p(s) is undefined.

A finite execution π achieves a set of literals L if its ending state s is such
that s |= L. An infinite execution π achieves a set of literals L if there exists a
state s that appears infinitely often in π and that is such that s |= L. An infinite
execution σ is fair iff whenever s, a occurs infinitely often within σ, then so does
s, a, s′, for every s′ that is a result of applying a in s [15]. Note this implies that
finite executions are fair. A policy p is a strong plan (resp. strong-cyclic plan)
for a FOND problem P = 〈F , I,G,A〉, iff every execution (resp. fair execution)
of p over I satisfies the goal G.

Linear Temporal Logic: Linear Temporal Logic (LTL) is a propositional logic
extended with temporal modal operators next (�) and until (U). The set of LTL
formulae over a set of propositions P is defined inductively as follows. p is a
formula if p ∈ P or the constant 	. If ϕ1 and ϕ2 are LTL formulas, then so are
¬ϕ1, ϕ1 ∧ ϕ2, �ϕ1 and ϕ1 Uϕ2. Let σ = s0, s1, . . . be an infinite sequence of
subsets of P, and ϕ be an LTL formula. Then σ satisfies ϕ, denoted as σ |= ϕ
iff σ, 0 |= ϕ, where:

σ, i |= p, for each p ∈ P ∪ {�} iff si |= p σ, i |= ¬ϕ iff σ, i |= ϕ does not hold
σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2 σ, i |= �ϕ iff σ, (i + 1) |= ϕ

σ, i |= ϕ1 Uϕ2 iff there exists a j ≥ i such that
σ, j |= ϕ2, and σ, k |= ϕ1, for each k ∈ {i, i + 1, . . . , j − 1}

Intuitively, the next operator tells what needs to hold in the next time step,
and the until operator tells what needs to hold until something else holds. The
modal operators eventually (♦) and always (�) are defined by ♦ϕ ≡ 	Uϕ, �ϕ ≡
¬♦¬ϕ. Additional constants and operators are defined by following conventional
rules as follows ⊥ ≡ ¬	, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2,
ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1).

LTL over Finite Traces: LTLf is a variant of LTL interpreted over finite
traces [16]. Such finite variants have been applied to problems in verification,
model checking and planning. LTLf and LTL share the same syntax, but their
interpretations differ. For example, the LTLf formula ♦¬ �	 is true in a finite
trace, whereas the same formula in LTL evaluates false on infinite traces. Simi-
larly, weak next must often replace next to avoid unintended interpretations of
LTL over finite traces. (See [16] for details.)

Automata: There is a well-established correspondence between LTL and
automata. A Non-deterministic Büchi Automaton (NBA) is a tuple M =
(Q,Σ, δ, q0, QFin), where Q is the set of automaton states, Σ is the alphabet,
δ ⊆ Q × Σ × Q is the transition relation, q0 is the initial state, and QFin ⊆ Q is
the set of accepting states. The automaton is deterministic (DBA) when for each
q ∈ Q, and s ∈ Σ, there exists a unique q′ ∈ Q such that (q, s, q′) ∈ δ. A run of

48 A. Camacho et al.

M on an infinite word σ = s0, s1, . . . of elements in Σ is a sequence of automaton
states, starting in q0, such that (qi, si, qi+1) ∈ δ for all i ≥ 0. A run is accept-
ing if it visits an infinite number of accepting states. Finally, we say that M
accepts σ if there is an accepting run of M on σ. Non-deterministic Finite-state
Automata (NFAs) differ from NBAs in that the acceptance condition is defined
on finite words: a word σ = s0, s1, . . . , sm is accepting if qm+1 ∈ QFin. Finally,
Deterministic Finite-state Automata are NFAs where the transition relation is
deterministic.

Given an LTL formula ϕ, it is possible to construct an NBA Aϕ that accepts
σ iff σ |= ϕ. The construction is worst-case exponential in the size of ϕ [17].
It is not always possible to construct a DBA, and the construction is double
exponential. Similar results hold for LTLf : it is always possible to construct an
NFA (resp. DFA) that accepts σ iff σ |= ϕ, and the construction is worst-case
exponential (resp. double exponential) [18].

LTL FOND: Recently [11] extended FOND with LTL goals. An LTL FOND
problem is a tuple 〈F , I,G,A〉, where G is an LTL or LTLf formula over F , and
F , I,A are defined as in FOND planning. In short, LTL FOND executions are
defined just like in FOND, and a policy is a strong-cyclic (resp. strong) plan for
problem P if each fair (resp. unrestricted) execution π results in a sequence of
states σ such that σ |= G.

LTL Synthesis: Intuitively, the LTL synthesis problem [4] describes a two-
player game between a controller and the environment. The game consists of an
infinite sequence of turns. In each turn the environment chooses an action, and
the controller then chooses another. Each action corresponds to setting the values
of some variables. The controller has a winning strategy if, no matter how the
environment plays, the sequences of states generated satisfy a given LTL formula
ϕ. Formally, a synthesis problem is a tuple 〈X ,Y, ϕ〉, where X = {x1, . . . , xn},
the environment variables, and Y = {y1, . . . , ym}, the controller variables, are
disjoint sets. An LTL formula over X ∪ Y is realizable if there exists a function
f : (2X)∗ → 2Y such that for every infinite sequence of subsets of X , X1X2 . . ., it
holds that π = (X1 ∪ f(X1)), (X2 ∪ f(X1X2)) . . . is such that π |= ϕ. Intuitively,
no matter what the choice of the environment is, which is given by the sequence
X1X2 . . ., the controller has a strategy, given by f , that ensures formula ϕ is
satisfied in the resulting game. The synthesis problem corresponds to computing
function f . Synthesis has also been studied over finite sequences of turns using
LTLf specifications (e.g. [10]). In the rest of the paper, we write LTL synthesis
to also refer to LTLf synthesis, and make the distinction explicit only when
necessary.

3 Relationship Between FOND and Synthesis

Both LTL synthesis and FOND are related to two-player games: in both problems
an agent (or controller) seeks a solution that achieves a condition regardless of the
choices made by the environment. There are, however, two important differences.

Synthesizing Controllers 49

First, in LTL synthesis the controller reacts to the environment; in other words,
the environment “plays first”, while the controller “plays second”.1 In FOND, the
play sequence is inverted since the environment decides the outcome of an action,
which is in turn defined by the agent (controller). Second, state-of-the-art FOND
solvers find strong-cyclic solutions predicated on an assumption of fairness in
the environment, which is not an assumption inherent to LTL synthesis. Thus a
correct mapping between FOND and Synthesis must handle fairness correctly.

Previous work has explored the relation between FOND and synthesis. [9]
show how to translate FOND as a reactive synthesis problem by expressing
fairness constraints as temporal logic formulae. [16] sketches a mapping from
FOND to LTL synthesis, in which the effects of actions are specified using LTL.
This approach, however, does not dive into the details of the inverted turns.
Neither do the works by [7,19], which show a correspondence between two-player
game structures and FOND planning. In the rest of the section we provide an
explicit mapping between LTL FOND and LTL synthesis. Efficiency is the focus
of the next section.

To establish a correspondence between LTL synthesis and LTL FOND, we
address the inverted turns by considering the negation of realizability. Observe
that an instance 〈X ,Y, ϕ〉 is not realizable iff there exists a sequence X1X2X3 . . .
of subsets of X such that for every function f : (2X)∗ → 2Y :

X1 ∪ f(X1),X2 ∪ f(X1X2),X3 ∪ f(X1X2X3) . . . |= ¬ϕ

Note that what comes after the “iff” maps directly into an instance of LTL
FOND: we define the problem Pϕ = 〈F , I,G,A〉 such that fluents are the union
of all variables (i.e., F = X ∪Y), and the set of actions is the set of subsets of X
(i.e., A = {ax | x ⊆ X}). Intuitively action ax is always executable (has empty
preconditions) and deterministically sets to true the variables in x and to false
the variables in X \ x. In addition, it non-deterministically sets the values of
variables in Y to every possible combination. Formally, Eff ax

= {ex,y | y ⊆ Y},
where each ex,y = {f | f ∈ x ∪ y} ∪ {¬f | f ∈ (X ∪ Y) \ (x ∪ y)}. Finally, we set
I = {} and G = �¬ϕ.

A more involved argument follows for LTLf synthesis. In this case, an
instance 〈X ,Y, ϕ〉 is not realizable iff for every finite m there exists a sequence
X1X2 . . . Xm of subsets of X such that, for every function f : (2X)∗ → 2Y :

X1 ∪ f(X1), . . . , (X1 . . . Xm) ∪ f(X1 . . . Xm) |= ¬ϕ

What follows after the “iff” cannot be directly mapped into an instance of LTL
FOND, because the formula above has to hold for all m. We can mitigate for
this by adding a new variable to Pϕ, yok, that acts like any other variable in Y.
The goal of Pϕ is the LTLf formula G = �(¬ϕ∧♦(yok ∧ ¬ �))∨♦(¬yok ∧ ¬ �).

Theorem 1. LTL synthesis problem 〈X ,Y, ϕ〉 is realizable iff Pϕ has no strong
plan.
1 The problem with inverted turns, where the agent “plays first”, has also been studied

(e.g. [5]).

50 A. Camacho et al.

In the other direction, let P = 〈F , I,G,A〉 be an LTL FOND problem. We
now construct a synthesis problem 〈XP ,YP , ϕP 〉 following well-known encodings
of planning as SAT [20]; we use LTL to establish a connection between a state
and its successors, instead of different variables, and we consider explicitly that
actions have a number of outcomes. The specification ϕP is: ϕP := ϕinit →
(ϕenv → (ϕagt ∧ ϕg)). Intuitively, ϕinit models the initial state I, ϕenv and ϕagt

model the dynamics in P, and ϕg is the LTL goal formula G.
For each action in a ∈ A, we create a variable a ∈ XP . Each fluent f ∈ F

is also a variable in XP . Variables in YP are used to choose one of the non-
deterministic outcomes of each action; this way if the action with the largest
number of outcomes has n outcomes, we create �log n� variables, whose objective
is to “choose” the outcome for an action. To model the preconditions of the
action, we conjoin in ϕenv, for each action a the formula �(a → ∧

�∈Prea
�). We

express the fact that only one action can execute at a time by conjoining to ϕenv

the formulae �
∨

a∈Aa, and �(a → ¬a′), for each a′ ∈ A different from a. To
model the fact that the environment selects the outcome being performed, for
each action outcome e we create a variable ae in XP . For each action a ∈ A
and outcome e ∈ Eff a, ϕagt has formulae of the form �(a ∧ χa,e → ae), where
χa,e is a formula over YP , which intuitively “selects” outcome e for action a.
For space, we do not go into the details of how to encode χa,e. However, these
formulae have the following property: for any action a, given an assignment for
YP variables there is exactly one e ∈ Eff a for which χa,e becomes true. This
models the fact that the YP variables are used to select the outcomes.

Finally, we now conjoin to ϕenv formulae to express the dynamics of the
domain. Specifically we add successor-state-axiom-like expressions [21] of the
form:

�(�f ≡ (φ+
f ∨ (f ∧ ¬φ−

f)), for each f ∈ F

where φ+
f is a formula that encodes the conditions under which f becomes true

after an outcome has occurred, and where φ−
f encodes the conditions under which

f becomes false in the next state. Both of these formulae can be computed from
Eff a [21], and have fluents ae for e ∈ Eff a. Finally, ϕinit is the conjunction of
the fluents in the initial state I, and ϕg is the goal formula, G. When the goal of
P is an LTLf formula, the construction conjoins �	 to the successor state axioms
in ϕenv .

Now, it is not hard to see that there exists a strong solution to the LTL
problem P iff there exists a (finite for LTLf goals, infinite for LTL) sequence of
settings of the XP variables, such that for every sequence of settings of the Y
variables (i.e., for every function f : (2X)∗ → 2Y), it holds that (X1 ∪ Y1), (X2 ∪
Y2), (X3 ∪ Y3), . . . |= ϕP .

Theorem 2. LTL FOND problem P = 〈F , I,G,A〉 has a strong plan if and
only if 〈XP ,YP ,¬ϕP 〉 is not realizable.

Synthesizing Controllers 51

4 Approach

In Sect. 3 we established the correspondence between existence of solutions to
LTL synthesis, and existence of strong solutions to LTL FOND planning. In this
section we introduce the first translation from LTL synthesis into FOND planning
(and by inclusion, into LTL FOND), and a translation for LTLf specifications.

Our approach to solve an LTL synthesis problem P = 〈X ,Y, ϕ〉 as FOND
consists of three stages. First, we pre-process P. Second, we compile it into a
standard FOND problem P ′. Finally, we solve P ′ with a strong-cyclic planner.
Extracting a strategy for P from a solution to P ′ is straightforward, and we omit
the details for lack of space.

Automaton Transformation: In a pre-processing stage, we simplify the spec-
ification by removing from X and Y those variables that do not appear in ϕ.
Then, we transform ϕ into an automaton, Aϕ = (Q,Σ, δ, q0, QFin), that can
be a DBA when the LTL formula is interpreted over infinite traces, or an NFA
(or DFA, by inclusion) when the specification is an LTLf formula. In addition
to DBAs, our algorithm can seamlessly handle NBAs at the cost of losing its
completeness guarantee. NBAs are a good alternative to DBAs as they are usu-
ally more compact, and only a subset of LTL formulae can be transformed into
DBAs. The transition relation δ in Aϕ implicitly defines the conditions under
which the automaton in state q is allowed to transition to state q′. These con-
ditions are known as guards. Formally, guard(q, q′) =

∨
(q,s,q′)∈δ s. In our case,

elements of the alphabet Σ are conjunctions of boolean variables, that allow for
guard formulae to be described in a compact symbolic form. In what follows,
we assume guard formulae guard(q, q′) =

∨
m cm are given in DNF, where each

clause cm is a conjunction of boolean state variables. We denote as δ� the set of
tuples Tm = (q, cm, q′) for each pair (q, q′) with guard(q, q′) �= ⊥, and for each
clause cm in guard(q, q′). For convenience, we write guard(Tm) = cm, and refer
to elements of δ� as transitions. Wherever convenient, we drop the subindex of
transitions and simply write T .

In the second stage, we compile P = 〈X ,Y, ϕ〉 with automaton Aϕ into a
parameterized FOND problem P ′(X ,Y, Aϕ,H) = 〈F , I,G,A〉 that integrates
the dynamics of Aϕ with a two-player game between the environment and the
agent. Before introducing the technical details of the compilation, we give an
overview. The compilation simulates automaton states by means of fluents q,
one for each automaton state with the same name. Planning states s have the
following property: an automaton fluent q is true in s iff for some σ, a run σ
of Aϕ finishes in q. Notably, the input word σ can be obtained directly from
the state-action plan that leads the initial state to s in the search tree. When
the input to the algorithm is a non-deterministic automaton (NBA or NFA),
planning states can simultaneously capture multiple runs of the automaton in
parallel by simultaneously having multiple q fluents set to true.

The acceptance condition behaves differently for Büchi and non-Büchi
automata, and this is reflected in our compilation. For Büchi automata, the
planning process expands a graph that simulates the environment and agent

52 A. Camacho et al.

moves, and the search for solutions becomes a search for strong cyclic compo-
nents that hit an accepting state infinitely often. The latter property is checked
by means of tokenized fluents qt, one for each q. Intuitively, the truth of q ∧ qt

in state s indicates a commitment to progress runs finishing in q into runs that
reach an accepting state. Conversely, s |= q∧¬qt represents that such a commit-
ment has been accomplished. The role of the parameter H is twofold: it bounds
the horizon in the search for cycles, and it allows the use of strong-cyclic solvers
to find solutions to a problem whose non-determinism has unrestricted fairness.

The compilation runs in two sequentially alternating modes simulating each
two-player turn. The environment mode simulates the environment moves, which
are non-deterministic and uncontrollable to the agent. In automaton mode, the
agent moves are simulated and the automaton state fluents are synchronized
according to valid transitions in δ�. Auxiliary fluents qs and qs,t are used to
store the value of automaton state fluents q and qt prior to synchronization, so
that more than one transition can be simulated in the case of non-deterministic
automata compilations. When an accepting state q is recognized, the agent can
set the token fluents qt to commit to progress the runs that finish in q into a run
that hits another accepting state.

The dynamics of the compilation are similar for non-Büchi automata. The
exception is that accepting runs are recognized whenever an accepting automa-
ton state fluent is reached, and there is no need to commit to reaching another
accepting state. Consequently, tokenized fluents qt and qs,t are not needed but
have been kept, for generality, in the algorithm below.

The sets of fluents (F) and actions (A) of the problem are listed below. In
what follows, we describe the technical details of the compilation.

F =
{
q, qs, qt, qs,t | q ∈ Q

} ∪ {goal} ∪ {next(h + 1, h)}0≤h<H ∪ {turnk}1≤x≤|X|
∪ {at horizon(h)}0≤h≤H ∪ {env mode, aut mode, can switch, can accept}
∪ {vx, v¬x}x∈X ∪ {vy, v¬y}y∈Y

A = {move k}1≤k≤|X| ∪ {transT }T∈δ� ∪ {switch2aut, switch2env, accept}

Environment Mode: In the environment mode, the dynamics of the problem
simulates the move of the environment. As this move is not controllable by the
agent, it can be simulated with a non-deterministic action that has 2|X | effects,
each simulating an assignment to variables in X . Fluents vl simulate the truth
value of variables in X ∪Y. More precisely, vx (resp. v¬x) indicates that x ∈ X is
made true (resp. false), and similarly for y ∈ Y. In order to reduce the explosion
in non-deterministic action effects, we simulate the environment’s move with a
cascade of non-deterministic actions movek, each one setting (vxk) or unsetting
(v¬xk) the value of a variable xk in X ,

Premove k = {env mode, turnk}
Eff move k = oneof({vxk,¬v¬xk} , {¬vxk, v¬xk}) ∪ Ψk

Synthesizing Controllers 53

where Ψk = {turnk+1,¬turnk} if k < |X |, and Ψk = {can switch,¬turnk}
if k = |X |. After the environment’s move has been simulated, the switch2aut
action switches the dynamics to automaton mode, and the automaton configu-
ration (represented by fluents of the form q and qt) is frozen into copies qs and
qs,t. Special predicates at horizon(h) capture the number of turns from the last
recognized accepting state in the plan. If h < H, the horizon value is incremented
by one.

Automaton Mode: The automaton mode simulates the assignment to variables
in Y and the automaton state transitions. Whereas the update in the automaton
configuration is usually understood as a response to the observation to variables
in X ∪ Y, the dynamics of the encoding take a different perspective: the agent
can decide which automaton transitions to perform, and then set the variables
in Y so that the transition guards are satisfied. Such transitions are simulated
by means of transT actions, one for each T = (qi, guard(T), qj) ∈ δ�:

PretransT
= {aut mode, qs

i ,¬qj} ∪ {¬v¬l}l∈guard(T)

Eff transT
= {qj} ∪ {vl}l∈guard(T) ∪ ΨtransT

where ΨtransT
=

{
qs,t
i → qt

j

}
if qj �∈ QFin and ΨtransT

= {can accept} other-
wise. A transition T = (qi, guard(T), qj) can be simulated when there exists
a run of the automaton finishing in qi (as such, qi had to be frozen into qs

i

by means of switch2aut). Preconditions include the set {¬v¬l | l ∈ guard(T)},
that checks that the transition guard is not violated by the current assignment
to variables. Here, we abuse notation and write l ∈ guard(T) if the literal l
appears in guard(T). As usual, we use the equivalence ¬(¬l) = l. The effects
{vl | l ∈ guard(T)} set the variables in Y so that the guard is satisfied and T
can be fired. In parallel, the automaton state fluent qj is set, as to reflect the
transition T . According to the semantics of the tokenized fluents, when qs,t

i holds
in the current state the token is progressed into qt

j to denote a commitment to
reach an accepting state. If qj is indeed an accepting state, then the tokenized
fluent is not propagated and instead the fluent can accept is set. Notably, the
conditional effects qs,t

i → qt
j do not delete the copies qs

i and qs,t
i . This allows

the agent to simulate more than one transition when the automaton is an non-
deterministic, thereby capturing multiple runs of the automaton in the planning
state (although it is not obliged to simulate all transitions). When the automa-
ton is deterministic, the effects of transT allow for at most one transition can be
simulated. Finally, the fluent qj appears negated in the preconditions of transT

merely for efficiency purposes, as executing transT when qj is true has no value
to the plan (and transT can be safely pruned).

The agent has two action mechanisms to switch back to environment mode:
accept and switch2env. At any time during automaton mode, the agent can exe-
cute switch2env causing all frozen copies qs and qs,t to be deleted. The purpose

54 A. Camacho et al.

of Regularize, which is optional and defined as {¬vz,¬v¬z | z ∈ X ∪ Y}, is to
improve search performance.

Preswitch2env = {aut mode}
Eff switch2env = {env mode, ¬aut mode, turn1} ∪ {¬qs, ¬qs,t | q ∈ Q

} ∪ Regularize

The accept action is useful to compilations based on Büchi automata, and rec-
ognizes runs that have satisfied a commitment to hit an accepting state. At
least one of these runs exist if fluent can accept (which is part of the precon-
ditions) holds true. By executing accept, the agent forgets those runs that did
not satisfy the commitment to hit an accepting state, and commits to progress
the rest of the runs into runs that hit another accepting state. The agent can
postpone action accept as much as necessary in order to progress all relevant
runs into runs that hit an accepting state. Action accept has a non-deterministic
effect goal, introduced artificially as a method to find infinite plans that visit
accepting states infinitely often. Full details can be found in [11].

Preaccept(h) = {aut mode, can accept, at horizon(h)}
Eff accept(h) = oneof({goal} ,

{turn1, at horizon(0), ¬at horizon(h)} ∪ {env mode, ¬aut mode, ¬can accept} ∪
{
qs → ¬qs, qs,t → ¬qs,t | q ∈ Q

} ∪ {
q ∧ qt → {¬q, ¬qt

} | q ∈ (Q \ QFin)
} ∪

{
q ∧ ¬qt → qt | q ∈ Q

} ∪ Regularize)

Initial andGoal States:The initial state of is I = {next(h + 1, h) | h ∈ 0 . . . H}
∪ {q0, env mode, turn1, at horizon(0)}. When the input of the algorithm is a
Büchi automaton, the goal is G = {goal}. For NFAs and DFAs, the goal is G =
{can accept}.

These steps comprise our compilation of LTL synthesis into FOND,
Syn2FOND.

Definition 1 (Syn2FOND). For LTL synthesis problem P = 〈X ,Y, ϕ〉, (NBA,
DBA, NFA, or DFA) automaton Aϕ, and parameter H, the Syn2FOND compi-
lation constructs the FOND problem P ′(X ,Y, Aϕ,H) = 〈F , I,G,A〉 as described
above.

Solutions to the compiled problem P ′ yield solutions to P (cf. Theorem 3). The
iterated search of solutions to Syn2FOND compilations (with H = 1, 2 . . . , 2|Q|)
is guaranteed to succeed, if P is realizable, when the input automaton is a DBA,
NFA, or DFA (cf. Theorem 4). This follows, intuitively, from the fact that if a
solution exists, then a strong cyclic policy can be unfolded and simulated in a
Syn2FOND compilation search graph. If the agent’s strategy cannot always guar-
antee hitting an accepting state within H ≤ 2|Q| turns, then the environment can
force a non-accepting cycle – i.e., the environment has a winning strategy that
prevents the agent from satisfying the specification. With deterministic automata,
the bound can be lowered to H ≤ |Q|. We illustrate below with a counter-example
that completeness is not guaranteed for NBAs.

Synthesizing Controllers 55

Theorem 3 (soundness). Strong-cyclic plans to the Syn2FOND compilation
P ′ correspond to solutions for P.

Theorem 4 (completeness). For a realizable LTL synthesis problem P =
〈X ,Y, ϕ〉, and NFA automaton Aϕ, the Syn2FOND compilation P ′ is solvable
for some H ≤ 2|Q|. When Aϕ is a DBA or DFA, the bound can be lowered to
H ≤ |Q|.

Incompleteness of the NBA-based compilation. The NBA-based compilation is
not guaranteed to preserve solutions. Let ϕ = �(�x ∨ ♦¬x), and consider the
NBA Aϕ with states Q = {q0, q1, q2, q3}, δ� = {(q0,	, q1), (q0,	, q2), (q1, x, q1),
(q2, x, q2), (q3,	, q3)}, and QFin = {q1, q3}. The environment can consistently
play x a finite, but unbounded number of times before playing ¬x – at which
point the runs of the automaton that finish in q2 must not have been forgotten.
There is no bounded parameter H that can satisfy such a requirement.

5 Evaluation

Our main objective for the evaluation is to give a sense of when to choose one
formalism over another. Although the same problems can be represented as either
LTL synthesis or FOND planning, the choice of formalism can have a dramatic
impact on the time required to find a solution. We would expect the FOND
setting to be better suited for problems with more “structure”, and our results
serve to illustrate this hypothesis. In our experiments, we used state-of-the-art
synthesis and FOND tools Acacia+ [5] and PRP [14]. Our Syn2FOND algorithm
was implemented in a tool we named SynKit. SynKit uses Spot [22] to transform
LTL formulae into NBA, and PRP as FOND planner.

We considered some representative problems from both synthesis and FOND
perspectives, retrieved from the Syntcomp and IPC competitions, respectively.
The first group of problems – lily and loadcomp (load, for short) – come from
the synthesis community. The second group of problems – ttw and ctw – come
from the FOND benchmark tireworld. We performed experiments with Acacia+

and our synthesis tool Syn2FOND equipped with PRP as strong cyclic plan-
ner. Additionally, we tested PRP in some problems directly encoded as FOND.
The first thing to note is the drastic performance hit that can occur converting
from one formalism to another. Going from LTL synthesis to FOND is work-
able in some instances, but the opposite direction proved impossible for even the
simplest ttw problems that can be solved very efficiently in its native FOND for-
mulation. Automata transformations become a bottleneck in the synthesis tools,
causing time (TLE, 30 min) and memory (MLE, 512 MB) limit exceptions. This
is because the specification requires complex constraints to properly maintain
the reachable state-space. It is this “structure” that we conjecture the synthe-
sis tools struggle with, and test separately below with two newly introduced
domains.

56 A. Camacho et al.

We encoded directly and compactly in both LTL and FOND the newly intro-
duced domain build. The build domain addresses the problem of building main-
tenance, and requires the agent to maintain which rooms have their lights on or
off depending on the time of day and whether or not people are in the room.
The environment controls the transition between day and night, as well as when
people enter or leave a room. The agent must control the lights in response.
Problems build-p# have # rooms, and problems build-irr-p#-n introduce
n rooms that may non-deterministically be vacuumed at night (controlled by
the environment). Note that this is irrelevant to the task of turning lights on
or off (the vacuuming can be done in any lighting condition). For the build-irr
domain, we could see that the synthesis tools scale far worse as the number of
rooms increases (both in generating automata and performing the synthesis).
Further, as the number of rooms that need to be vacuumed (which is irrelevant
to computing a controller), the relevance reasoning present in the FOND plan-
ner is able to cope by largely ignoring the irrelevant aspects of the environment.
Conversely, the synthesis component of Acacia+ struggles a great deal. This
highlights the strength of the FOND tools for leveraging state relevance to solve
problems efficiently.

Finally, we created a synthetic domain that lets us tune the level of “struc-
ture” in a problem: more structure leads to fewer possibilities for the environment
to act without violating a constraint or assumption. In the switches domain, a
total of n switches, s1 . . . sn, initially switched on, need to be all switched off even-
tually. The environment affects the state of the switches non-deterministically.
However, the dynamics of the environment is such that immediately after the
agent switches off sk, the environmental non-determinism can only affect the
state of a certain number of switches sk′ , with k′ > k. A trivial strategy for the
agent is to switch off s1 to sn in that order. We encoded a series of switches
problems natively as LTL specifications in TLSF format and also as FOND.
Table 1 shows how Acacia+, Syn2FOND, and PRP fared with these problems.
They are in three distinct sets (each of increasing number of switches), and
within each set the problems range from most structured to least (by varying
k). The problems in the first two groups are solved quite readily by PRP, and
so the trend is less clear, but for the larger problems we find that PRP strug-
gles when there is less structure and the environment can flip many switches
without violating an assumption. This trend also manifests in the Syn2FOND
compilations. On the other side, we find that the most structured problems are
the most difficult for Acacia+, and the compilation into automata becomes the
bottleneck again. On the other hand, the synthesis becomes easier when there
is less structure (i.e., more switches can be flipped).

The structure we tune in the switches domain is one property of a problem
that may favour FOND technology over the synthesis tools. Another is the pres-
ence of state variables that are irrelevant. Other notions, such as causal structure
in the problem, may also play an important role in features that separate the
effectiveness of the two formalisms. We plan to investigate these possibilities in
future work.

Synthesizing Controllers 57

Table 1. Performance of LTL synthesis and FOND planning on the switches
problems.

Problem Acacia+ Syn2FOND(PRP) PRP

Aut N × |Q| Syn H Aut |Q| Search Search

p4-0 212 6 × 131 0.01 3 0.16 13 3.10 0.01

p4-1 11.1 6 × 195 0.03 3 0.17 13 2.56 0.32

p4-2 1.55 6 × 181 0.02 3 0.16 13 1.26 0.66

p4-3 0.58 6 × 46 0.02 3 0.10 12 1.04 0.22

p5-0 TLE —– —– 3 1.33 15 1.02 0.01

p5-1 TLE —– —– 3 1.59 15 0.88 3.30

p5-2 16991 7 × 548 0.02 3 1.25 15 0.94 2.14

p5-3 533 7 × 452 0.08 3 1.34 15 15.8 3.82

p5-4 111 7 × 236 0.06 3 0.59 14 10.2 4.66

p6-0 TLE —– —– 3 9.11 17 1.90 0.01

p6-1 TLE —– —– 3 11.8 17 1.80 4.90

p6-2 TLE —– —– 3 11.4 17 1.78 5.54

p6-3 TLE —– —– 3 10.7 17 1.52 16.7

p6-4 TLE —– —– 3 10.4 17 3.66 25.4

p6-5 TLE —– —– 3 6.15 16 3.32 26.2

6 Concluding Remarks

LTL synthesis is an important and challenging problem for which broadly effec-
tive tools have remained largely elusive. Motivated by recent advances in the
efficiency of FOND planning, this work sought to examine the viability of FOND
planning as a computational tool for the realization of LTL synthesis. To this end,
we established the theoretical correspondence between LTL synthesis and strong
solutions to FOND planning. We also provided the first approach to automati-
cally translate a realizability problem, given by a specification in LTL or LTLf ,
into a planning problem described in PDDL. Experiments with state-of-the-art
LTL synthesis and FOND solvers highlighted properties that challenged or sup-
ported each of the solvers. Our experiments show automated planning to be a
viable and effective tool for highly structured LTL synthesis problems.

Acknowledgements. The authors gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada (NSERC) and Fondecyt grant
numbers 1150328 and 1161526.

58 A. Camacho et al.

References

1. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic, Cornell University, vol.
1, pp. 3–50 (1957)

2. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Saar, Y.: Synthesis of reactive
(1) designs. J. Comput. Syst. Sci. JCSS 78(3), 911–938 (2012)

3. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
4. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–

190 (1989)
5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL

synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-
7 45

6. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp.
117–124 (2006)

7. De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player game structures for
generalized planning and agent composition. In: AAAI (2010)

8. Patrizi, F., Lipovetzky, N., Geffner, H.: Fair LTL synthesis for non-deterministic
systems using strong cyclic planners. In: IJCAI (2013)

9. Sardiña, S., D’Ippolito, N.: Towards fully observable non-deterministic planning as
assumption-based automatic synthesis. In: IJCAI, pp. 3200–3206 (2015)

10. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In:
IJCAI, pp. 1558–1564 (2015)

11. Camacho, A., Triantafillou, E., Muise, C., Baier, J.A., McIlraith, S.A.: Non-
deterministic planning with temporally extended goals: LTL over finite and infinite
traces. In: AAAI, pp. 3716–3724 (2017)

12. Camacho, A., Baier, J.A., Muise, C.J., McIlraith, S.A.: Finite LTL synthesis as
planning. In: ICAPS (2018, to appear)

13. Mattmüller, R., Ortlieb, M., Helmert, M., Bercher, P.: Pattern database heuristics
for fully observable nondeterministic planning. In: ICAPS, pp. 105–112 (2010)

14. Muise, C., McIlraith, S.A., Beck, J.C.: Improved non-deterministic planning by
exploiting state relevance. In: ICAPS, pp. 172–180 (2012)

15. Geffner, H., Bonet, B.: A concise introduction to models and methods for auto-
mated planning. Synth. Lectu. Artif. Intell. Mach. Learn. 7(2), 1–141 (2013)

16. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on
finite traces. In: IJCAI (2013)

17. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994)

18. Baier, J.A., McIlraith, S.A.: Planning with temporally extended goals using heuris-
tic search. In: ICAPS, pp. 342–345 (2006)

19. Kissmann, P., Edelkamp, S.: Solving fully-observable non-deterministic planning
problems via translation into a general game. In: Mertsching, B., Hund, M., Aziz,
Z. (eds.) KI 2009. LNCS (LNAI), vol. 5803, pp. 1–8. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04617-9 1

20. Rintanen, J., Heljanko, K., Niemelä, I.: Planning as satisfiability: parallel plans
and algorithms for plan search. Artif. Intell. AIJ 170(12–13), 1031–1080 (2006)

https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-31424-7_45
https://doi.org/10.1007/978-3-642-04617-9_1

Synthesizing Controllers 59

21. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

22. Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0 - a framework for LTL and ω-automata manipulation. In: ATVA, pp.
122–129 (2016)

	Synthesizing Controllers: On the Correspondence Between LTL Synthesis and Non-deterministic Planning
	1 Introduction
	2 Preliminaries
	3 Relationship Between FOND and Synthesis
	4 Approach
	5 Evaluation
	6 Concluding Remarks
	References

