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Abstract. Improvement in software development practices to predict
and reduce software defects can lead to major cost savings. The goal
of this study is to demonstrate the value of static analysis metrics in
predicting software defects at a much larger scale than previous efforts.
The study analyses data collected from more than 500 software appli-
cations, across 3 multi-year software development programs, and uses
over 150 software static analysis measurements. A number of machine
learning techniques such as neural network and random forest are used
to determine whether seemingly innocuous rule violations can be used
as significant predictors of software defect rates.
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1 Introduction

Lehman’s Laws of Software Evolution have demonstrated that software devel-
opment projects are becoming larger and more complex as the years go by [1].
With this ever-increasing complexity and size and decreasing quality, it is becom-
ing increasingly difficult to accurately predict how a development program will
unfold.

Research has demonstrated that the later a software defect is found during
development, the more costly it becomes to fix [2]. One reason for this escalation
has been attributed to the fact that the longer a development project runs,
the higher the overhead cost and the higher the cost required to change the
system [2].

Many static analysis tools exist today, each of which provides a particular
focus on the quality of software. Research recommends that software develop-
ment teams should utilize a “meta tool” that would allow them to combine
the results from various static analysis tools together, thus achieving a better
results [3]. SonarQube is such a “meta-tool” that provides a software devel-
opment team with the ability to import, customize and automatically execute
static analysis on code utilizing a variety of rule definitions.
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Unfortunately, with the advent of meta-tools such as SonarQube, a new prob-
lem is created: Metrics Galore [4]. Metrics Galore is a situation where a team
is paralysed by attempting to monitor too many metrics simultaneously. Many
issues can occur such as de-motivation of the team, focusing on the wrong met-
rics, losing sight of the important goals of the program, etc. In order to address
this issue, while still providing metrics for the software development team to
track and improve upon, it is possible to employ machine learning algorithms to
help. While unsupervised learning can provide a solution to the overwhelming
metrics issue [5], regression and classification could serve to solve the prediction
issues by providing a predictive model that could be used by the development
team and by the software development managers [3].

The goal of the proposed research is to demonstrate the value of static anal-
ysis metrics in predicting software defects at a much larger scale than has been
proposed previously as is indicated in Table 1:

Table 1. Program measurements

Measure Program 1 Program 2 Program 3

Duration (Years) 2 1 7

Team size (People) 30 10 80

Applications 290 132 352

LoC (MSLOCs) 4.28 2.96 7.72

2 Methodology

Analyses will be performed on a data set consisting of software metrics data
collected from three large-scale software development programs. These programs
consisted of software with high-reliability, high-criticality and safety-critical per-
formance requirements, and thus were extensively tested during and after soft-
ware development activities.

The data are snapshots of a continuum of ever-changing values. In order
to limit the scope of the research in this paper to a manageable size, it was
determined that a single snapshot in time of software source code and a single
snapshot in time of software defect metrics would be analysed.

In order to determine the optimum point in time to perform both of these
snapshots, intimate knowledge of the program plans was required. The theory
built around these data collections is based on two key points: The source code
should be analysed after major software development was completed, but prior to
acceptance testing was performed as this source repository will have a maximum
number of undiscovered defects; and the software defect measurements should
be analysed well after acceptance testing was performed in order to have high
confidence that most major defects have been discovered.
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Since there are several hundred static analysis metrics and rules that could
be counted in the analysis, it will be necessary to narrow down the predictors
to a more manageable number in order to aid in analysis as well as to avoid
model over-fitting. This feature reduction will be performed in several steps as
described below.

– Eliminate zero and near-zero variance predictors
– Eliminate single items of strongly intercorrelated predictor pairs
– Feature clustering using k-means in order to group similar features together
– Recursive feature elimination to remove insignificant features from the model

After feature selection is performed, analysis of each of the models will be
compared where appropriate and statistical findings will be provided and anal-
ysed upon completion of the research. The research will focus on Regression
and Classification prediction models. For regression, the following models will
be used: Linear Regression, Neural Network Regression, and Support Vector
Machine (SVM) Regression. For classification, the following models will be used:
Decision Tree, Random Forest, Neural Network, and SVM.

Regression analysis will target the raw defect count as the outcome, while
Binary classification will use a binary definition by answering the following ques-
tion: “Does the application contain a defect?”. Finally, Multi-class classification
will be performed on the software defect count by stratifying it across several
classes. These values will be defined as: No defects, Low defect rate, Moderate
defect rate, High defect rate, and Extreme defect rate.

3 Results To-Date

Progress to date has followed the plan as laid out in the methodology. The data
has been collected, cleaned and prepared for analysis. Feature elimination has
been performed by variance elimination and inter-correlation elimination. The
feature sets were further narrowed by clustering similar features together using
a k-means analysis. Regression and Binary classification has been performed on
the reduced feature set and the results can be observed in the following tables.

Table 2. Linear regression performance summary - top three

Name RMSE (Root Mean Squared Error)

lm-2 11637.48

sl-2 11669.20

sl-1 11844.82

As shown in Table 2, the Regression performance is less than desirable for
the dataset, as the RMSE is quite large. In fact, the best RMSE value is nearly
three-times that of the mean of the outcome column in the original dataset.

Conversely, Table 3 shows favourable results for binary classification, with a
top accuracy of over 70% using Random Forest Classification.
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Table 3. Binary classification performance summary - top three

Name Accuracy

rf-all 70.82%

rf-1 70.31%

rp-all 65.36%

4 Future Work

The thesis has made significant progress in generating the dataset and subse-
quent data preparation. This dataset is unique in terms of its size and scope -
spanning 500 software applications over three years of software development and
includes 150 software static analysis measurements. The initial results shown
in Table 3 provides strong evidence for our original hypothesis that seemingly
innocuous rule violations can be used as strong predictors of software defect
rates. The remaining work includes experimentation with a number of machine
learning techniques to create a credible model to predict the software defects. In
addition to the successful use of Random Forest for predictions, the project will
experiment with different neural network architectures. The results of predic-
tions will be compared against multi-class classifications. Finally, the thesis will
conclude with a comprehensive analysis of feature importance and make recom-
mendations for best practices in software development process. The remaining
work is intended to constitute the majority of the thesis research of the author.
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