
Junfeng Fan
Benedikt Gierlichs (Eds.)

 123

LN
CS

 1
08

15

9th International Workshop, COSADE 2018
Singapore, April 23–24, 2018
Proceedings

Constructive
Side-Channel Analysis
and Secure Design

Lecture Notes in Computer Science 10815

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Junfeng Fan • Benedikt Gierlichs (Eds.)

Constructive
Side-Channel Analysis
and Secure Design
9th International Workshop, COSADE 2018
Singapore, April 23–24, 2018
Proceedings

123

Editors
Junfeng Fan
Open Security Research
Shenzhen
China

Benedikt Gierlichs
KU Leuven
Leuven
Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-89640-3 ISBN 978-3-319-89641-0 (eBook)
https://doi.org/10.1007/978-3-319-89641-0

Library of Congress Control Number: 2018939449

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5866-1990

Preface

The 9th International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE) was held at Nanyang Technological University in Singapore during
April 23–24, 2018. The workshop was held in cooperation with the International
Association for Cryptologic Research (IACR). COSADE brings together researchers
from academia, industry, and government who share a common interest in the design
and secure implementation of cryptographic primitives. COSADE 2018 received 31
submissions. Each paper was anonymously reviewed by at least four Program Com-
mittee members in a double-blind peer review process. The review process relied on the
EasyChair system. From the pool of submissions, 14 high-quality papers were selected
carefully after deliberations by the 30 Program Committee members who were sup-
ported by 45 additional reviewers. The composition of the Program Committee was
representative of the good mix between academic and industrial researchers, the geo-
graphic spread of researchers across the globe, and their expertise. We would like to
express our sincere gratitude to both the Program Committee members and the
reviewers for their hard work. We would also like to thank the invited speakers Jeroen
Delvaux and Emmanuel Prouff for joining us in Singapore and for delivering inspiring
talks. Finally, we would like to thank the local organizers Shivam Bhasin, Michael
Kasper, and Marc Stöttinger for their support and for making this great event possible.
On behalf of the COSADE community we are very grateful to our sponsors Alpha-
NOV, Continental, eshard, NewAE, Riscure, Secure-IC, Cryptography Research,
Nanyang Technological University, for their financial support. And most importantly,
we would like to thank the authors for their excellent contributions. Without them this
workshop would not exist.

April 2018 Junfeng Fan
Benedikt Gierlichs

Organization

Program Committee

Zhimin Chen Apple, USA
Christophe Clavier Université de Limoges, France
Elke De Mulder Cryptography Research, Inc., USA
Hermann Drexler G+D Mobile Security, Germany
Junfeng Fan Open Security Research (OSR), China
Benoit Feix Eshard, France
Wieland Fischer Infineon Technologies, Germany
Benedikt Gierlichs KU Leuven imec-COSIC, Belgium
Christophe Giraud IDEMIA, France
Xu Guo Qualcomm, USA
Naofumi Homma Tohoku University, Japan
Michael Hutter Cryptography Research, USA
Markus Kuhn University of Cambridge, UK
Kerstin Lemke-Rust Bonn-Rhein-Sieg University of Applied Sciences,

Germany
Tancrède Lepoint SRI International, USA
Yang Li Nanjing University of Aeronautics and Astronautics, China
Roel Maes Intrinsic-ID, The Netherlands
Stefan Mangard TU Graz, Austria
Marcel Medwed NXP Semiconductors Austria GmbH, Austria
Amir Moradi Ruhr University Bochum, Germany
Debdeep

Mukhopadhyay
IIT Kharagpur, India

Elisabeth Oswald University of Bristol, UK
Thomas Peyrin Nanyang Technological University, Singapore
Axel Y. Poschmann DarkMatter, Abu Dhabi, UAE
Emmanuel Prouff ANSSI, France
Francesco Regazzoni ALaRI – USI, Switzerland
Oscar Reparaz KU Leuven imec-COSIC, Belgium and Square Inc., USA
Matt Robshaw Impinj, USA
Kazuo Sakiyama The University of Electro-Communications, Japan
Patrick Schaumont Virginia Tech, USA
Alexander Schlösser NXP Semiconductors, Germany
Brecht Wyseur Kudelski Group, Switzerland

Additional Reviewers

Manaar Alam
Anubhab Baksi
Subhadeep Banik
Guillaume Barbu
Debapriya Basu Roy
Alberto Battistello
Begül Bilgin
Manuel Bluhm
Martin Butkus
Nicolas Debande
Santos Merino Del Pozo
Christoph Dobraunig
Dahmun Goudarzi
Hannes Gross
Max Hoffmann
Mustafa Kairallah
Elif Bilge Kavun
Bodhisatwa Mazumdar
Florian Mendel
Xiaohan Meng
Oliver Mischke
Nicolas Moro
Ventzi Nikov

Sikhar Patranabis
Peter Pessl
Léo Reynaud
Bastian Richter
Sayandeep Saha
Hermann Seuschek
Rémi Strullu
Takeshi Sugawara
Atsushi Takayasu
Adrian Thillard
Michael Tunstall
Rei Ueno
Thomas Unterluggauer
Vincent Verneuil
Karine Villegas
Ruyang Wang
Shuang Wang
Felix Wegener
Antoine Wurcker
Mo Yang
Yuan Yao
Ville Yli-Mäyry

VIII Organization

Contents

Countermeasures Against Side-Channel Attacks (1)

Secure Multiplication for Bitslice Higher-Order Masking:
Optimisation and Comparison . 3

Dahmun Goudarzi, Anthony Journault, Matthieu Rivain,
and François-Xavier Standaert

Vectorizing Higher-Order Masking . 23
Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe,
and Ko Stoffelen

On Masked Galois-Field Multiplication for Authenticated Encryption
Resistant to Side Channel Analysis . 44

Hirokazu Oshida, Rei Ueno, Naofumi Homma, and Takafumi Aoki

Tools for Side-Channel Analysis

On the Use of Independent Component Analysis to Denoise
Side-Channel Measurements . 61

Houssem Maghrebi and Emmanuel Prouff

Micro-architectural Power Simulator for Leakage Assessment
of Cryptographic Software on ARM Cortex-M3 Processors 82

Yann Le Corre, Johann Großschädl, and Daniel Dinu

Fault Attacks and Hardware Trojans

Lattice-Based Fault Attacks Against ECMQV. 101
Weiqiong Cao, Hua Chen, Jingyi Feng, Limin Fan, and Wenling Wu

Thermal Scans for Detecting Hardware Trojans. 117
Maxime Cozzi, Jean-Marc Galliere, and Philippe Maurine

Side-Channel Analysis Attacks

SCATTER: A New Dimension in Side-Channel . 135
Hugues Thiebeauld, Georges Gagnerot, Antoine Wurcker,
and Christophe Clavier

Quadrivariate Improved Blind Side-Channel Analysis on Boolean
Masked AES . 153

Christophe Clavier, Léo Reynaud, and Antoine Wurcker

Differential Power Analysis of XMSS and SPHINCS 168
Matthias J. Kannwischer, Aymeric Genêt, Denis Butin, Juliane Krämer,
and Johannes Buchmann

Path Leaks of HTTPS Side-Channel by Cookie Injection 189
Fuqing Chen, Haixin Duan, Xiaofeng Zheng, Jian Jiang,
and Jianjun Chen

Countermeasures Against Side-Channel Attacks (2)

Protecting Triple-DES Against DPA: A Practical Application
of Domain-Oriented Masking . 207

Pascal Sasdrich and Michael Hutter

Threshold Implementation in Software: Case Study of PRESENT 227
Pascal Sasdrich, René Bock, and Amir Moradi

A First-Order SCA Resistant AES Without Fresh Randomness 245
Felix Wegener and Amir Moradi

Author Index . 263

X Contents

Countermeasures Against Side-Channel
Attacks (1)

Secure Multiplication for Bitslice
Higher-Order Masking: Optimisation

and Comparison

Dahmun Goudarzi1,2(B), Anthony Journault3(B), Matthieu Rivain1,
and François-Xavier Standaert3

1 CryptoExperts, Paris, France
{dahmun.goudarzi,matthieu.rivain}@cryptoexperts.com

2 ENS, CNRS, INRIA and PSL Research University, Paris, France
3 ICTEAM/ELEN/Crypto Group, Université catholique de Louvain,

Louvain-la-Neuve, Belgium
{anthony.journault,fstandae}@uclouvain.be

Abstract. In this paper, we optimize the performances and compare
several recent masking schemes in bitslice on 32-bit arm devices, with a
focus on multiplication. Our main conclusion is that efficiency (or ran-
domness) gains always come at a cost, either in terms of composability or
in terms of resistance against horizontal attacks. Our evaluations should
therefore allow a designer to select a masking scheme based on imple-
mentation constraints and security requirements. They also highlight the
increasing feasibility of (very) high-order masking that are offered by
increasingly powerful embedded devices, with new opportunities of high-
security devices in various contexts.

1 Introduction

Nowadays, higher-order masking is one of the soundest approaches to protect
the implementation of a block cipher against side-channel attacks. Recent stud-
ies have shown that the bitslice implementation strategy can provide the best
performances in software [DPV01,BGRV15,GR17,JS17]. This strategy allows
to perform parallel evaluations of a Boolean circuit where the logical gates are
replaced by instructions working on registers of several bits. Then, higher-order
masking is applied at the Boolean level, where the linear gates become linear
instructions working on registers and non-linear gates become calls to secure
bitwise non-linear operations.

Since secure non-linear operations are quadratic in the masking order d
(whereas for linear operation the cost is in O(d)), their evaluation is the main
bottleneck for implementers. In the past couple of years, several multiplication
schemes have been proposed in the literature offering different tradeoffs between
security (e.g., in terms of composability or resistance against so-called horizontal
attacks) and performances (timings, randomness requirements).

c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 3–22, 2018.
https://doi.org/10.1007/978-3-319-89641-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_1&domain=pdf

4 D. Goudarzi et al.

One of the most popular algorithms is the so-called ISW multiplication
scheme introduced in the seminal work of Ishai, Sahai and Wagner at Crypto
2003 [ISW03]. It provides composable security captured by the notion of Strong
Non Interference (SNI). Based on this construction, Beläıd et al. proposed at
Eurocrypt 2016 [BBP+16] a variant with randomness savings at the cost of only
satisfying the (weaker) Non Interference (NI) notion. At CHES 2016, Battis-
tello et al. [BCPZ16] went the other way by proposing not only SNI security
but also improved resistance against horizontal attacks, at the cost of increased
randomness requirements. Eventually, at Eurocrypt 2017, Barthe et al. intro-
duced an alternative approach to the ISW-based multiplications. This approach
is optimized for parallel implementations such as bitslicing and handles regis-
ters that hold all the shares of a given bit. It also comes with different secu-
rity risks in terms of assumptions. Namely, storing the shares of a single bit
potentially allows better resistance against shares re-combinations due to tran-
sitions [CGP+12,BGG+14], while leading to higher risks of re-combinations
due to couplings [CBG+17]. Journault and Standaert [JS17] compared this new
approach with the ISW approach for the AES S-box implemented by Goudarzi
and Rivain [GR17], showing that for the optimal case, i.e. the masking order is
equal to the size of the register, Barthe et al.’s approach slightly outperforms
ISW multiplication. However, no comparison has been made with other masking
orders.

In this paper, we aim to optimize and compare these different masking
schemes, in order to better understand the performance gains and overheads
that correspond to their different security guarantees. For this purpose, we first
try to increase the efficiency of these four schemes, not only at the algorithmic
level, but also by taking into account the implementation perspective and pos-
sible implementation tricks. We also propose an efficient way to evaluate the
Barthe et al. multiplication when the masking order is lower than the architec-
ture’s size. Subsequently, we propose a comparison regarding different aspects
such as timing cost, memory overhead, randomness usage and the given secu-
rity level for each of these multiplications. Ultimately, the goal of this paper
is therefore to provide insight to designers and developers who wish to protect
efficiently a block cipher with higher-order masking (i.e., which multiplication
scheme to use depending on their needs, depending on their hardware limitations
or security requirements).

This paper is organized as follows. Section 2 gives some preliminaries on bit-
slice higher-order masking and security notions. We then introduce in Sect. 3
the four multiplications studied and discuss the proposed optimization either at
the algorithmic level or for the implementation prospective. Section 4 presents
the two refresh mask algorithms (ISW and Barthe et al. based) that are needed
when implementing a block cipher. Finally, Sect. 5 describes our implementa-
tions and the obtained performances to compare the multiplications as well as
the refreshing procedures.

The code source of all our implementations is available on Github [GJRS18]
under the GPL licence (v3).

Secure Multiplication for Bitslice Higher-Order Masking 5

2 Preliminaries

2.1 Bitsliced Higher-Order Masking

One of the most studied countermeasure against said-channel attacks is mask-
ing, a.k.a. secret sharing. It consists in splitting a secret value x into d shares
x1, x2, . . . , xd satisfying

x = x1 ⊕ x2 ⊕ · · · ⊕ xd

where x2, · · · , xd are randomly distributed and x1 is computed accordingly. The
parameter d is then called the masking order.

Recently, bitslicing has been shown to give excellent performances for block
cipher implementations protected with masking in software [GR17,JS17]. The
bitslice implementation strategy is to perform parallel evaluations of a Boolean
circuit where the logic gates are replaced by instructions working on registers
of several bits. In the context of masked implementations of block ciphers, this
strategy is applied to speed up the evaluations of S-boxes, which are then com-
puted in parallel. Each XOR gate in the underlying Boolean circuit gives rise to
d bitwise XOR instructions and each AND gate is replaced by a secure bitwise
AND operation based on a secure multiplication scheme such as the ones studied
in this paper.

2.2 Security Notions

In the following we informally recall the different security models usually consid-
ered in the side-channel community, starting from the abstract probing model
(NI/SNI security), then the intermediate bounded moment model and finally
the practical noisy leakage model.

At Crypto 2003, Ishai, Sahai and Wagner introduced in their seminal
paper [ISW03] the so-called probing model. In this model, the adversary is allowed
to probe a limited number of wires in a target (protected) circuit. If no adversary
is able to recover secret information using up to t probes, the circuit is said to
be t-probing secure. In their paper, the authors show how to achieve t-probing
security using masking of order d = 2t + 1. It was later shown that a t-probing
secure multiplication can be obtained with d = t + 1 shares [RP10] but this
approach might result in some security flaws while composing several masked
operations without proper mask refreshing [CPRR14]. The stronger notion of
SNI has then been introduced in [BBD+16]: it allows to prove t-probing security
with only d = t + 1 shares for the composition of several gadgets. In particular,
any masked circuit composed of t-SNI secure gadgets is also t-SNI secure (and
therefore t-probing secure).

Next, the bounded moment model was introduced in [BDF+17] as a relax-
ation of the probing model in order to capture parallel implementations of mask-
ing schemes where all the shares might be contained in a single register and pro-
cessed in a single cycle (which is hardly captured with the probing model). The
idea of the bounded moment model is to look at the higher-order moments to

6 D. Goudarzi et al.

get a security parameter (since the security of a masked implementation usually
comes from the need to evaluate higher-order statistical moments).

Eventually, the noisy leakage model was introduced by Prouff and Rivain
in [PR13] and reflects concrete adversaries who obtain an intermediate value per-
turbed by a noisy leakage function. This is a more realistic side-channel model
as this is typically what an attacker can recover from a side-channel analysis.
Masking can be formally shown to be a sound countermeasure in such a model
since the information revealed on a variable x by noisy leakages on the shares x1,
. . . , xd decreases exponentially with the masking order d [CJRR99,PR13]. The
latter model is in general more tricky to manipulate, but is strictly needed to
evaluate security against so-called horizontal attacks, where the repeated manip-
ulation of the shares enable to get rid of a part of the noise as the masking order
d grows. Under the condition of sufficient noise and independence, security in
the noisy leakage model is implied by probing security [DDF14].

2.3 ARMv7 Architectures

We made our implementation in the generic ARM v7 assembly language. Most
of the ARM processors are composed of 16 registers of 32 bits, ranging from R0
to R15: registers R0 to R12 are known as variable registers and are available for
computation. The three last registers are usually reserved for special purposes:
R13 is used as the stack pointer (SP), R14 is the link register (LR) storing the
return address during a function call, and R15 is the program counter (PC).

The ARM instruction set is essentially composed of three classes (summa-
rized in Table 1): the data instructions which performs arithmetic operations on
the register, the memory instructions which allows to load and store data and
the branching instructions which are used for loops, conditional statements and
function calls. One important feature of the ARM assembly is the barrel shifter
allowing any data instruction to shift one of its operands at no extra cost in
terms of clock cycles. However to fully benefit from its efficiency, the rotation
offset for the barrel shifter needs to be defined with immediate values instead of
registers.

Table 1. ARM instructions.

Class Examples Clock cycles

Data instructions EOR, ADD, SUB, AND, MOV 1

Memory instructions LDR, STR / LDM, STM 3 or n + 2

Branching instructions B, BX, BL 3 or 4

Eventually, we assume that our target architecture include a True Random
Number Generator (TRNG), that frequently fills a register with a fresh 32-bit
random string. We consider two different settings for this TRNG: the setting
of [GR17] where one needs to wait 10 clock cycles to get a new random string;

Secure Multiplication for Bitslice Higher-Order Masking 7

and the one of [JS17] where one needs to wait 80 clock cycles to get a new
random string. The TRNG register can then be read at the cost of a single load
instruction.

3 Secure Multiplications

In this section we describe optimized low-level implementations of the four fol-
lowing secure multiplications:

ISW (Ishai-Sahai-Wagner, Crypto’03): probing secure multiplication,
BDF+ (Barthe et al., Eurocrypt’17): bounded-moment secure multiplication,
BBP+ (Beläıd et al., Eurocrypt’16): ISW gadget with randomness saving,
BCPZ (Battistello et al., CHES’16): ISW gadget with additional refreshing.

Each multiplication is described at the algorithmic level and at the implemen-
tation level (with possible implementation tricks). We further give implementa-
tion results (clock cycles and code size) in the first TRNG setting. The four
schemes are then compared in terms of performances, randomness consumption,
and security guarantees in Sect. 5 in both TRNG settings.

3.1 ISW: the Standard Probing-Secure Multiplication

At Crypto 2003, Ishai, Sahai and Wagner [ISW03] proposed an algorithm to
securely compute an AND gate for any number of shares d, the so-called ISW
multiplication is described in Algorithm 1. They also introduced the probing
model and proved that their multiplication has a security order t = �(d − 1)/2�
in this model. The security proof was extended to the order t = d− 1 in [RP10]
and to the stronger t-SNI property in [BBD+16], both extensions assuming
independent input sharings.

Algorithm 1. ISW (Ishai-Sahai-Wagner, Crypto’03)
Input: sharings (a1, . . . , ad) ∈ {0, 1}32×d and (b1, . . . , bd) ∈ {0, 1}32×d

Output: sharing (c1, . . . , cd) ∈ {0, 1}32×d such that
⊕

i ci = (
⊕

i ai) ∧ (
⊕

j bj)
1. for i = 1 to d do
2. ci ← ai ∧ bi
3. end for
4. for i = 1 to d do
5. for j = i + 1 to d do
6. s ← {0, 1}32

7. s′ ← (s ⊕ (ai ∧ bj)) ⊕ (aj ∧ bi)
8. ci ← ci ⊕ s
9. cj ← cj ⊕ s′

10. end for
11. end for
12. return (c1, . . . , cd)

8 D. Goudarzi et al.

From two sharings (a1, . . . , ad) and (b1, . . . , bd), the ISW multiplication sim-
ply computes all the d2 crossed products ai · bj which are then summed in d new
shares ci with new random elements ri,j . Each new random element is involved
twice in the new shares implying

⊕
i ci =

⊕
i,j ai · bj = (

⊕
i ai) · (

⊕
j bj). The

ISW scheme is pictured in Algorithm 1 for the bitwise setting, where ∧ and ⊕
denote the (32-bit) bitwise AND and XOR.

From the implementation viewpoint, we follow the work of [GR17] and imple-
ment the scheme without any particular implementation trick for any masking
order d. In order to push forward the optimization, we also propose a version
of the code where the nested loops are unrolled for specific values of d, namely
when d is a power of 2. The performances of our low-levels implementations are
summarized in Table 2. We observe that unrolling the loops allows us to save
15% to 23% clock cycles with an overhead factor from 3 to 200 for the code size.
The only case where the unrolling fully benefits in both time and memory is for
d = 2.

Table 2. Implementation results for the ISW multiplication

Clock cycles Code size (bytes) Register usage Random usage

d 2 4 8 16 32 2 4 8 16 32

Straight ISW 75 291 1155 4611 18435 164 164 164 164 164 10 d (d − 1)/2

Unrolled ISW 58 231 949 3876 15682 132 464 1848 7500 30324 8 d (d − 1)/2

3.2 BDF+: a Bounded-Moment Secure Multiplication

At Eurocrypt 2017, Barthe et al. introduced a new way to compute a secure
multiplication specifically tailored for the bitwise context (i.e. for bitslice imple-
mentations) [BDF+17]. Their scheme handles registers holding all the shares of
a given bit whereas in traditional ISW-based scheme, the shares of a variable
are stored in different registers for security reasons. Nevertheless, Barthe et al.
show that their multiplication is secure in the relaxed bounded moment model,
which is argued to be sound in practice.

Intuitively the BDF+ multiplication can be decomposed in different steps:
the loading of the input shares a and b; the computation of the partial products
between a and b; the loading of fresh randomness r; and the compression phase
where these partial products are XORed all together and separated by the fresh
randomness.

Its implementation is especially efficient when the number of shares d is
equal to the size of the registers in the target architecture. This has been shown
in [JS17] for the case d = 32. However, a question left open in the latter work is
the scenario where the number of shares mismatches the register size. This issue
is addressed hereafter.

For this purpose, we generalize the BDF+ algorithm to a scenario where d can
be lower than the register size. We propose a parallel version of this algorithm
in which several sharings are stored in a register (e.g. 4 sharings of order d = 8

Secure Multiplication for Bitslice Higher-Order Masking 9

in one 32-bit register) and we describe an efficient way to perform sharing-wise
rotations to keep good performances in such a non-optimal scenario. The main
restriction is that our generalization only works for masking order that are power
of 2 (so that the sharing size divides the register size), including the case d = 2
which was not taken into account in the original publication. The optimized
BDF+ multiplication is described in Algorithm2.

Algorithm 2. BDF+ (Barthe et al., Eurocrypt’17)
Input: shares a = (a1, · · · , ad) ∈ {0, 1}32, shares b = (b1, · · · , bd) ∈ {0, 1}32

Output: shares c = (c1, · · · , cd) ∈ {0, 1}32

1. x1 ← a ∧ b
2. r ← {0, 1}32

3. y1 ← x1 ⊕ r
4. if d = 2 then
5. x2 ← a ∧ ROT(b, 1)
6. y2 ← y1 ⊕ x2

7. c ← y2 ⊕ ROT(r, 1)
8. else
9. for i = 1 to d/2 − 1 do

10. if i mod 2 = 0 then
11. r ← {0, 1}32

12. end if
13. x2i ← a ∧ ROT(b, i)
14. x2i+1 ← ROT(a, i) ∧ b
15. y3i−1 ← y3i−2 ⊕ x2i

16. y3i ← y3i−1 ⊕ x2i+1

17. y3i+1 ← y3i ⊕ ROT(r, i mod 2)
18. end for
19. xd ← a ∧ ROT(b, d/2)
20. c ← y3�(d−1)/2�+1 ⊕ xd

21. end if
22. return c

Encoding. In order to make full use of the register when d is less than 32
(i.e. d is not equal to the architecture size), but d is a power of 2, we fill the
input registers with k = 32/d words of d shares. We thus process k secure
multiplications in parallel. More specifically, let us denote w0, . . . , w31 the bits
of a 32-bit register w (from MSB to LSB). For d = 16, w encodes 2 secret bits
z0 and z1 such that

⊕15
i=0 wi = z0 and

⊕31
i=16 wi = z1. For d = 8, w encodes

4 secret bits z0, z1, z2 and z3 such that
⊕7

i=0 wi = z0 and
⊕15

i=8 wi = z1 and
⊕23

i=16 wi = z2 and
⊕31

i=24 wi = z3, and so on.

Efficient Sharing-Wise Rotation. Algorithm 2 can directly be applied on
multi-sharing input registers. The only operation which needs to be modified

10 D. Goudarzi et al.

accordingly is the rotation ROT(w, i). We propose an efficient low-level imple-
mentation for such a sharing-wise rotation. Our method relies on the observation
that applying an i-bit rotation to every d-bit chunck in a word w can be obtained
by the following equation:

ROT(w, i) =
(
(w � i) ∧ maskd,i

) ⊕ (
(w � d − i) ∧ maskd,i

)
(1)

where maskd,i is a selection mask defined as

maskd,i = 11 . . . 1︸ ︷︷ ︸
d−i

00 . . . 0︸ ︷︷ ︸
i

‖ · · · ‖ 11 . . . 1︸ ︷︷ ︸
d−i

00 . . . 0︸ ︷︷ ︸
i

,

and maskd,i denotes its complement. From this equation we can directly compute
the sharing-wise rotation. The main trick in the implementation is to efficiently
deal with the generation of maskd,i and the sharing-wise rotation.

The mask generation is decomposed into two steps. The first step allows to
setup the mask correctly: maskd,0 is initialized with the value 0xFFFFFFFF. We
then need a correction value which will be used to update the mask correctly.
correction is initialized with values given in Table 3. Note that these operations
are performed only once at the beginning of the multiplication. The second step
will update the mask for the rotation according to the offset of the rotation given
by the following formula:

maskd,i = maskd,0 ⊕ (correction � i)

In practice, we only store maskd,0 and correction in two registers and we update
them accordingly in each iteration of the loop. The cost of the update is 2 cycles.

;;mask update

EOR $mask , $mask , $correction

LSL $correction , $correction , #1

Note that we make use of another register in order to store maskd,1 (i.e. the
rotation by 1) which is always needed to compute the rotations of the random
values (instead of computing it again each time).

Table 3. Possible values for correction

d 2 4 8 16

correction 0x5555555 0x11111111 0x01010101 0x00010001

The rotation ROT(w, i) is then quite straightforward to implement as
describes hereafter:

Secure Multiplication for Bitslice Higher-Order Masking 11

;; rotation of $w by $i

AND $tmp , $mask , $w , LSL $i

LSR $w, $w, $(d-i)

BIC $w, $w, $mask

EOR $w, $tmp , $w

Since the offsets of the shift lie in a register, we cannot benefit from the barrel
shifter. Hence the overall cost of one rotation is 5 cycles.

In Table 4, we report results of our implementation of the BDF+ multiplica-
tion for d ranging from 2 to 32 for the generic version and an unrolled version
(where the main advantage is to be able to hardcode the masks and values for
the shifts). We observe that the unrolled version for d = 32 is faster and has less
code size than for d = 16. This is easily explained by the fact that we can make
full use of the barrel shifter in the case d = 32. Moreover, we observe that the
unrolled version is 40% to 80% faster than the regular version. This is due to
the fact that we can hardcode the masks, which makes the barrel shifter work
again. The code size of the unrolled version ranges from 0.3 to 3 times the generic
one. Note also that the code size of the generic version is decreasing as d grows
because we compute the correction value iteratively (i.e. it needs log(32/d)
iterations).

Table 4. Performance results for BDF+ (generic and unrolled)

Clock cycles Code size (bytes) Registers Random usage

d 2 4 8 16 32 2 4 8 16 32

BDF+ generic n/a 77 146 285 n/a n/a 248 244 240 n/a 13 �(d − 1)/4�
BDF+ unrolled 34 47 81 149 120 280 356 504 808 748 13 �(d − 1)/4�

3.3 BBP+: Towards Optimal Randomness Consumption

Beläıd et al. at Eurocrypt 2016 [BBP+16] tackled the problem of minimizing
the amount of randomness required in a secure multiplication. They described
a generic algorithm which makes use of less randomness than ISW, reducing
the former randomness requirement from d (d−1)

2 to d2

4 + d. As opposed to the
ISW multiplication (which achieves (d− 1)-SNI security), this algorithm is only
proven (d − 1)-NI secure. The original description of this secure multiplication
(see [BBP+16]) is generic for any masking order d ≥ 4 (specific algorithms for
the case where d = 2 and 3 are given in their paper). However, it makes use of
several conditional branches to process additional operations depending on the
parity of the order d and/or of the loop index i.

We rewrote the algorithm such that all the conditional branches are removed,
without affecting the correctness (see Algorithm 3). These changes lead to sev-
eral improvements in practice: first replacing if/else statement with loops allows

12 D. Goudarzi et al.

avoiding several conditional branches treatment that are quit expensive in ARM
assembly. Moreover, by rewriting the algorithm in such a way, we can compute
all the randomness on-the-fly and avoid multiple load and store instructions for
the correction step. Such improvements come at the cost of a less generic algo-
rithm (it only works for even orders d). For the sake of comparison, we have
implemented both algorithms to show the performance gained in clock cycles
and code size (see Table 5). We can see that our improvements allow a gain in
timing ranging from 18% to 20% with an overhead of only 80 bytes of memory.
Furthermore, we also unrolled the nested loops in order to get better results
in timings. The timing gain ranges from 17% to 60% with an overhead factor
between 3.5 and 50 for the code size for d ≥ 8 only. For smaller d’s, the unrolled
version is better for both timing and code size.

Algorithm 3. BBP+ (Beläıd et al., Eurocrypt’16) w/o conditional branches
Input: sharings (a1, . . . , ad) ∈ {0, 1}32×d and (b1, . . . , bd) ∈ {0, 1}32×d

Output: sharing (c1, . . . , cd) ∈ {0, 1}32×d such that
⊕

i ci = (
⊕

i ai) ∧ (
⊕

j bj)
1. c1 ← a1 ∧ b1
2. c2 ← a2 ∧ b2
3. for i = 3 to d − 1 by 2 do
4. ci ← ai ∧ bi
5. ci+1 ← ai+1 ∧ bi+1

6. si ← {0, 1}32

7. end for
8. for i = 1 to d − 1 by 2 do
9. ri,i+1 ← {0, 1}32

10. LoopRow(i, i + 3)
11. ci ← ci ⊕ (ri,i+1 ⊕ ai ∧ bi+1 ⊕ ai+1 ∧ bi)
12. LoopRow(i + 1, i + 3)
13. ci+1 ← ci+1 ⊕ r
14. end for

Algorithm 4. LoopRow Procedure
Input: indexes i, t randoms (sj)j∈{3,...,d−1}
1. for j = d down to t by 2 do
2. ri,j ← {0, 1}32

3. ci ← ci ⊕ (
r ⊕ (ai ∧ bj ⊕ aj ∧ bi) ⊕ sj−1 ⊕ (ai ∧ bj−1 ⊕ aj−1 ∧ bi)

)

4. cj ← cj ⊕ ri,j
5. end for

3.4 BPCZ: Towards Security Against Horizontal Attacks

At CHES 2016, Battistello et al. described a horizontal side-channel attack on
the standard ISW multiplication [BCPZ16]. This attack essentially consists in

Secure Multiplication for Bitslice Higher-Order Masking 13

Table 5. Implementation results for the BBP+ multiplication

Clock cycles Code size (bytes) Register usage Random usage

d 2 4 8 16 32 2 4 8 16 32

Original BBP+ n/a 334 1204 4552 17680 n/a 344 344 344 344 12 d + d2/4

Optimized BBP+ 88 274 970 3658 14218 428 428 428 428 428 12 d + d2/4

Unrolled BBP+ 36 161 775 3018 11920 100 344 1544 5996 23732 11 d + d2/4

reducing the noise in the targeted values by averaging them. More precisely,
during the computation of Algorithm1, each share ai (resp. bi) is manipulated
d times. Hence one can average the noise and reduce it by a factor

√
d (in a

standard deviation metric). Such an attack is inherent to the ISW scheme and
implies that despite the probing-security, increasing the masking order d implies
increasingly high noise requirements for the masking countermeasure to bring
security improvements (i.e., for the noise to be large enough after averaging, it
has to increase before averaging).

Battistello et al. also proposed a mitigation of such a horizontal attack. Their
multiplication, given in Algorithm5, is similar to the standard ISW multiplica-
tion but the matrix of the crossed products ai · bj is computed differently (see
Algorithm 6): refreshings are regularly inserted to avoid the multiple apparition
of each share ai (resp. bi). The RefreshMasks operation is a simple ISW-based
refreshing as described later in Sect. 4. The authors also proved that their mul-
tiplication is (d − 1)-SNI secure.

Algorithm 5. BCPZ (Battistello et al., CHES’16)
Input: shares ai such that

∑
i ai = a, shares bi such that

∑
i bi = b

Output: shares ci such that
∑

i ci = a · b
1. Mi,j ← MatMult((x1, . . . , xd), (y1, . . . , yd))
2. for i = 1 to d do
3. ci ← Mi,i

4. end for
5. for i = 1 to d do
6. for j = i + 1 to d do
7. s ← F

8. s′ ← (s + Mi,j) + Mj,i

9. ci ← ci + s
10. cj ← cj + s′

11. end for
12. end for
13. return c1, ..., cd

The implementation of Algorithm 5 is straightforward (same as ISW). The
main challenge is to efficiently implement Algorithm 6 in a recursive way. In fact,
due to the restrictive amount of registers available, using functions to perform
the recursion in ARM assembly becomes very costly. Each recursive call needs

14 D. Goudarzi et al.

Algorithm 6. MatMult
Input: the n-sharings (xi)i∈[1..n] and (yi)i∈[1..n] of x∗ and y∗ respectively
Output: the n2-sharing (Mi,j)i∈[1..n],j∈[1..n] of x∗ · y∗

1. if n = 1 then
2. M ← [x1 · y1]
3. else
4. X (1) ← (x1, . . . , xn/2), X

(1) ← (xn/2+1, . . . , xn)

5. Y (1) ← (y1, . . . , yn/2), Y
(1) ← (yn/2+1, . . . , yn)

6. M (1,1) ← MatMult(X (1),Y (1))
7. X (1) ← RefreshMasks(X (1)), Y (1) ← RefreshMasks(Y (1))
8. M (1,2) ← MatMult(X (1),Y (2))
9. M (2,1) ← MatMult(X (2),Y (1))

10. X (2) ← RefreshMasks(X (2)), Y (2) ← RefreshMasks(Y (2))
11. M (2,2) ← MatMult(X (2),Y (2))

12. M ←
(
M (1,1) M (1,2)

M (2,1) M (2,2)

)

13. end if
14. return M

to have access to several informations: the correct set of input sharings, namely
the start of X1, X2, Y 1 and Y 2 as well as the correct addresses for the output
sharings. This means that several registers containing those information needs to
be pushed to the stack prior to each call to a recursive function and poped before
the computation. As push and pop are basically load and store in ARM assembly
the total cost of managing the inputs and outputs of a recursive function is
approximately equal to a dozen of clock cycles for each recursive calls. This
costs, on top of the associated jumps for each recursive function, is equivalent
to the computation of a complete ISW multiplication. Therefore and since we
restrict ourselves in this study to d ≤ 32, we developed the MatMult procedure
with macros. Specifically, for each masking order d that is a power of 2, we
simply implements Algorithm 6 using macros for each possible input sharing
size n ∈ {2, 4, . . . , 32}, which allows us to save several clock cycles. However the
main drawback of implementing the MatMult procedure in such way is that the
code size exponentially grows. To lower down the explosion of the code size, we
have also implemented a version of the code where the terminal case macro (for
n = 2) is implemented as a function. This allows us to divide by up to 5 the
code size while having a performance decrease of around 20%. Both timing and
code size for the BPCZ multiplication with the two versions of the MatMult
procedure are given in Table 6.

4 Refresh Masks

Most of the multiplication gadgets rely on the condition that their two inputs
have to be independently shared in order to guaranty full security (and avoid
doubling the number of shares instead). But in complex circuit involving many

Secure Multiplication for Bitslice Higher-Order Masking 15

Table 6. Implementation results for the BCPZ multiplication

Clock cycles Code size (bytes) Register Random usage

d 2 4 8 16 32 2 4 8 16 32

BCPZ (macros) 108 498 2106 8698 35386 240 648 2324 9368 38168 13 (log(d) − 1)d2/2 − (d/2 − 1)d

BCPZ (functions) 134 593 2529 10473 42649 400 476 780 1996 6860 13 (log(d) − 1)d2/2 − (d/2 − 1)d

multiplications and other linear operations, this condition might not always be
fulfilled (e.g. the two inputs of a multiplication might be linearly related) leading
to security flaws as pointed out by Coron et al. [CPRR14]. Refreshing gadgets (in
particular SNI ones) allow avoiding such kind of behavior if used systematically
on one of the input of the multiplication. In this section, we describe and compare
the refresh gadgets associated to their multiplication, i.e. the ISW refresh and
the BDF+ refresh.

4.1 ISW

A sound refresh can be performed by using the ISW multiplication: it simply
consist in multiplying the shares ai by the vector (1, 0, · · · , 0) and has been
proven (d − 1)-SNI secure. The ISW refresh needs d(d − 1)/2 random bits and
performs d(d − 1) additions. The overall algorithm is described in Algorithm7.

Algorithm 7. ISW Refresh
Input: shares a1, a2, . . . , ad

Output: shares c1, c2, . . . , cd such that
∑d

i=1 ci =
∑d

i=1 ai

1. for i = 1 to d do
2. ci ← ai

3. end for
4. for i = 1 to d do
5. for j = i + 1 to d do
6. r ← {0, 1}32

7. ci ← ci ⊕ r
8. cj ← cj ⊕ r
9. end for

10. end for
11. return c1, c2, . . . , cd

As shown by Goudarzi and Rivain [GR17], this refreshing procedure can
be optimized by partially unrolling the nested loops by taking advantages of
available registers. This allows to load multiple shares at once and perform the
sound operations on all of them, instead of doing it one by one. Namely, for
masking orders equal to power of 2, this allows to load the ai’s four by four,
namely loading ai, ai+1, ai+2, ai+3 and have the number of operations in the
nested loop divided by 4. As in ARM assembly, the multiple load instruction is

16 D. Goudarzi et al.

Table 7. Implementation results for the ISW refresh

Clock cycles Code size (bytes) Register usage Random usage

d 2 4 8 16 32 2 4 8 16 32

ISW Refresh 51 72 239 933 3761 224 224 224 224 224 10 d (d − 1)/2

more efficient that several single loads, this improvement yields a very efficient
ISW-based refresh implementation. The performance results of the ISW refresh
can be found in Table 7.

4.2 BDF+ Refresh

Barthe et al. in [BDF+17], along with their multiplication gadget, also provide
a refreshing gadget described in Algorithm8. It simply consists in XORing the
share to refresh by a random value and a rotation of it. The iteration of the BDF+

refresh (d − 1)/3� times makes it SNI secure. The overall BDF+ refresh needs
d(d − 1)/3� random bits and performs 2(d − 1)/3� additions and (d − 1)/3�
ROT. There is no particular implementations tricks except we use the same
ROT algorithm introduced in Sect. 3.2 in order to keep the correctness with the
specific encoding. Implementations results can be found in Table 8.

Algorithm 8. BDF+ Refresh
Input: shares a
Output: shares c
1. r ← {0, 1}32

2. c ← a ⊕ r ⊕ ROT(r, 1)
3. return c

Table 8. Implementation results for the BDF+ refresh

Clock cycles Code size (bytes) Register usage Random usage

d 2 4 8 16 32 2 4 8 16 32

BDF+ Refresh 25 25 25 25 16 116 116 116 116 110 10 d

5 Comparisons and Discussion

We conclude the paper by comparing the different implementations and dis-
cussing their pros and cons regarding both the security properties they guarantee
and the performances they allow.

Secure Multiplication for Bitslice Higher-Order Masking 17

5.1 High Level Comparison

In Table 9 we gather the four multiplications we studied in this paper and we
compare them at an algorithmic level. Namely, we give the operation counts (in
terms of 32-bit XOR, 32-bit AND, and sharing-wise ROT) to perform a secure
32-bit AND between two sharings. The NI/SNI row specifies if the considered
multiplication is SNI- or NI-secure. The row “max use of shares” represents
(informally) the level of protection against horizontal side-channels attacks: O(d)
means that each shares is processed a linear number in d times (i.e. no protection)
and O(1) means that each shares is processed a constant number of times (i.e.
protection).

We differentiate two cases for the BDF+ multiplication. A first case where we
consider the multiplication alone, which is SNI until d = 3 and only NI secure
afterwards. A second case where we consider the composition of the multipli-
cation with one iteration of the BDF+ refresh (described in Sect. 4), which is
SNI secure up to d = 8 and only NI secure afterwards (see [BDF+17]). The cost
difference between these two versions is simply the cost of an elementary refresh
(i.e., the addition of a share of zero). Finding the number of such refreshes that
are required to be SNI at any order is an open problem. Note that for BDF+,
the results are given for d calls to the multiplication (since each call allows to
compute 32/d elements).

We note that we did not perform the same addition for the BBP+ multi-
plication since it would imply the need of a more expensive SNI refresh on the
output, which would contradict the goal of [BBP+16] to minimize randomness
by mixing NI and SNI multiplications instead of solely SNI multiplications (and
in particular, if an SNI multiplication is then required, one could use the ISW
one, or the BDF+ up to order 8).

Table 9. Comparison of the multiplications at the algorithmic level.

Algorithm: ISW BDF+

(BM model)

BDF+ w. refresh

(BM model)

BBP+ BCPZ

NI/SNI: SNI SNI (up to

d = 3)

SNI (up to d = 8) NI SNI

Max use of shares: O(d) O(d) O(d) O(d) O(1)

XOR-32 count: 2d(d − 1) d(3d/2 − 1) d(3d/2 + 1) (7d2 − 6d)/4 d2 log(d) + 2d

AND-32 count: d2 d2 d2 d2 d2

ROT count: 0 d(5d/4 − 1) 5d2/4 0 0

Random bits: 16d(d − 1) 32d�(d − 1)/4� 32d�(d−1)/4�+32 8d2 + 16d − 1 16d2 log(d) + d

We also recall that this table does not mention the different risks of unsatis-
fied (independence) assumption mentioned in introduction. Namely the fact that
the BDF+ multiplication can suffer from a reduced security order due to cou-
plings while for the other algorithms, the main risk of security order reduction
comes from transition-based leakages.

18 D. Goudarzi et al.

5.2 Implementation-Based Comparison

Based on the results in the previous sections, we can compare the performances of
our implementations of the multiplications for bitsliced inputs with higher-order
masking in ARM v7. We make the comparison for five masking orders, namely
2, 4, 8, 16 and 32. Moreover, we also give the performance results for two sets of
TRNG. For the first one (called the TRNG-1 settings in the following), we make
the same assumption as in [GR17] that we need to wait 10 clock cycles to get
a fresh 32-bit random word. For the second one (called the TRNG-2 settings in
the following), we make the same assumption as in [JS17] that we need to wait
80 clock cycles to get a fresh 32-bit random word. Finally, in order to have a fair
comparison between the four algorithms the implementation results are given
for the computation of a multiplication between two shared 32-bit operands.
This means that for the 3 ISW-based multiplication (ISW, BCPZ, BBP+) the
results are given for a single call to their respective functions, whereas for the
BDF+ multiplication the results are given for d calls to the function (since each
calls allows to compute 32/d elements). The overall results are given in Tables 10
and 11 for respectively the TRNG-1 and the TRNG-2 settings. As illustration,
we also plot the performances in clock cycles (log scale) for both TRNG-1 and
TRNG-2 settings in Figs. 1 and 2 respectively.

Table 10. Multiplication performances for TRNG-1.

TRNG-1

Clock cycles Code size (bytes)

d 2 4 8 16 32 2 4 8 16 32

ISW 75 291 1155 4611 18435 164 164 164 164 164

ISW unrolled 58 231 949 3876 15682 132 464 1848 7500 30324

BDF+ bcdmacros + functions n/a 308 1168 4560 n/a n/a 248 244 240 n/a

BDF+ unrolled 68 188 648 2384 3840 280 356 504 808 748

BDF+ (+ refresh) n/a 408 1568 5360 n/a n/a 360 356 352 n/a

BDF+ unrolled (+ refresh) 118 288 1048 3184 5440 392 468 616 920 960

BBP+ 88 274 970 3658 14218 428 428 428 428 428

BBP+ unrolled 36 161 775 3018 11910 100 344 1544 5996 23732

BCPZ (macros) 108 498 2106 8698 35386 240 648 2334 9368 38168

BCPZ (macros + functions) 134 593 2529 10473 42649 400 476 780 1996 6860

ISW refresh 51 72 239 933 3761 236 236 236 236 236

BDF+ refresh 50 50 50 50 50 128 128 128 128 128

As expected the BCPZ offers the worst performances because of the many
refreshings which intend to provide resistance to horizontal side-channel attacks,
for both of the TRNG settings.

Secure Multiplication for Bitslice Higher-Order Masking 19

Table 11. Multiplication performances for TRNG-2.

TRNG-2

Clock cycles Code size (bytes)

d 2 4 8 16 32 2 4 8 16 32

ISW 166 837 3703 15531 63571 500 500 500 500 500

ISW unrolled 149 777 3497 14796 60818 480 872 2508 9264 36600

BDF+ bcdmacros + functions n/a 672 2624 10384 n/a n/a 596 592 588 n/a

BDF+ unrolled 250 552 2104 8208 27136 448 500 876 1204 1192

BDF+ (+ refresh) n/a 1136 3552 12240 n/a n/a 1016 1012 1008 n/a

BDF+ unrolled (+ refresh) 482 1016 3032 10064 30848 868 920 1296 1624 1612

BBP+ 270 820 2790 10210 38970 800 800 800 800 800

BBP+ unrolled 127 525 2504 9479 36581 436 716 2096 7172 27776

BCPZ (macros) 199 1408 7202 32358 136942 576 1032 2988 11372 45932

BCPZ (macros + functions) 225 1503 7625 34133 144205 760 836 1128 2344 7208

ISW refresh 142 345 2241 10761 46713 412 412 412 412 412

BDF+ refresh 116 116 116 116 116 420 420 420 420 420

The BBP+ multiplication outperforms the ISW multiplication (up to 25%
faster) even in the case where the randomness is cheap. The difference becomes
more significant in the TRNG-2 context (up to 40% faster), since BBP+ have
reduced randomness requirements.

For the TRNG-2 settings, we can also observe that unrolling the loops does
not offer an interesting tradeoff as the gain in timing is not very significant
compared to the code size overhead.

As shown in Table 2 of [BDF+17], the iteration of the BDF+ refresh requires
a bit less randomness than ISW one but is more computationally involved. This
is well reflected in Tables 10: the ISW refresh has better performances than the
BDF+ refresh for the TRNG-1 setting while it is the opposite for the TRNG-2
setting.

2 4 8 16 32

102

103

104

d

cl
oc
k
cy
cl
es

ISW
ISW unrolled
BDF+ (+refresh)
BDF+ unrolled (+refresh)
BBP+

BBP+ unrolled
BCPZ (macros)
BCPZ (macros + functions)

Fig. 1. Multiplication performances for TRNG-1 in clock cycles

20 D. Goudarzi et al.

2 4 8 16 32

103

104

105

d

cl
oc
k
cy
cl
es

ISW
ISW unrolled
BDF+ (+refresh)
BDF+ unrolled (+refresh)
BBP+

BBP+ unrolled
BCPZ (macros)
BCPZ (macros + functions)

Fig. 2. Multiplication performances for TRNG-2 in clock cycles

Overall, BDF+ and BBP+ multiplications provide the best performances
in both TRNG settings thanks to their lower randomness requirements (com-
pared to the classical ISW). Of course these two multiplications also have weaker
security guaranties (in terms of composability and resistance against horizontal
attacks). On the other hand, ISW and BCPZ offer better security guaranties and
hence are more involved in terms of randomness requirements, making these dif-
ferences more visible in the TRNG-2 setting.

Conclusion and Future Work. One interesting consequence of this observa-
tion is that it raises interesting optimization problems on how to best exploit
different multiplications in order to obtain the best security vs. performance
tradeoff for full implementations (e.g., of block ciphers), which is a nice scope
for further research.

Our implementations heavily relies on the use of the barrel shifter of the
ARM 32-bit architecture. Comparing these schemes on different architectures
and with different register sizes could lead to different performance results (even
though the general trend should not differ due to the randomness requirements
of the different schemes).

Of course these schemes should also be evaluated considering their practical
side-channel security and not only software performances. By providing the code
on an open source platform, we hope that this will provide good material for
future research in that direction.

Acknowledgments. This work has been funded in part by the European Commission
and the Walloon Region through the FEDER project USERMedia (convention number
501907-379156) and by the INNOVIRIS project SCAUT. François-Xavier Standaert is
a research associate of the Belgian Fund for Scientific Research.

Secure Multiplication for Bitslice Higher-Order Masking 21

References

[BBD+16] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y., Zucchini, R.: Strong non-interference and type-directed higher-order
masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C.,
Halevi, S. (eds.) ACM CCS 16: 23rd Conference on Computer and Com-
munications Security, Vienna, Austria, pp. 116–129. ACM Press, 24–28
October 2016

[BBP+16] Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A.,
Vergnaud, D.: Randomness complexity of private circuits for multiplica-
tion. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 616–648. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49896-5 22

[BCPZ16] Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel
attacks and countermeasures on the ISW masking scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 2

[BDF+17] Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub,
P.-Y.: Parallel implementations of masking schemes and the bounded
moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56620-7 19

[BGG+14] Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On
the cost of lazy engineering for masked software implementations. In: Joye,
M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16763-3 5

[BGRV15] Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing
and masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 599–619. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48324-4 30

[CBG+17] De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? In: Guilley, S.
(ed.) COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-64647-3 1

[CGP+12] Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.:
Conversion of security proofs from one leakage model to another: a new
issue. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275,
pp. 69–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29912-4 6

[CJRR99] Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches
to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48405-1 26

[CPRR14] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410–424. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43933-3 21

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 24

https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-642-29912-4_6
https://doi.org/10.1007/978-3-642-29912-4_6
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24

22 D. Goudarzi et al.

[DPV01] Daemen, J., Peeters, M., Van Assche, G.: Bitslice ciphers and power analy-
sis attacks. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.)
FSE 2000. LNCS, vol. 1978, pp. 134–149. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 10

[GJRS18] Goudarzi, D., Journault, A., Rivain, M., Standaert, F.-X.: Source
code (2018). https://github.com/CryptoExperts/bitslice-masking-
multiplication

[GR17] Goudarzi, D., Rivain, M.: How fast can higher-order masking be in soft-
ware? In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 567–597. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-56620-7 20

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[JS17] Journault, A., Standaert, F.-X.: Very high order masking: efficient imple-
mentation and security evaluation. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 623–643. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66787-4 30

[PR13] Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-38348-9 9

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15031-9 28

https://doi.org/10.1007/3-540-44706-7_10
https://github.com/CryptoExperts/bitslice-masking-multiplication
https://github.com/CryptoExperts/bitslice-masking-multiplication
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28

Vectorizing Higher-Order Masking

Benjamin Grégoire1, Kostas Papagiannopoulos2 ,
Peter Schwabe2, and Ko Stoffelen2(B)

1 Inria Sophia Antipolis, Biot, France
benjamin.gregoire@inria.fr

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
{k.papagiannopoulos,k.stoffelen}@cs.ru.nl, peter@cryptojedi.org

Abstract. The cost of higher-order masking as a countermeasure
against side-channel attacks is often considered too high for practical
scenarios, as protected implementations become very slow. At Eurocrypt
2017, the bounded moment leakage model was proposed to study the
(theoretical) security of parallel implementations of masking schemes [5].
Work at CHES 2017 then brought this to practice by considering an
implementation of AES with 32 shares [26], bitsliced inside 32-bit regis-
ters of ARM Cortex-M processors. In this paper we show how the NEON
vector instructions of larger ARM Cortex-A processors can be exploited
to build much faster masked implementations of AES. Specifically, we
present AES with 4 and 8 shares, which in theory provide security against
3rd and 7th-order attacks, respectively. The software is publicly available
and optimized for the ARM Cortex-A8. We use refreshing and multipli-
cation algorithms that are proven to be secure in the bounded moment
leakage model and to be strongly non-interfering. Additionally, we per-
form a concrete side-channel evaluation on a BeagleBone Black, using a
combination of test vector leakage assessment (TVLA), leakage certifi-
cation tools and information-theoretic bounds.

Keywords: Higher-order masking · Side-channel analysis · AES
ARM Cortex-A8

1 Introduction

There is a long history of protecting AES [15] implementations against side-
channel analysis (SCA) attacks. Side-channel attacks exploit physical informa-
tion, such as power consumption or electromagnetic radiation of devices run-
ning some cryptographic primitive, to learn information about secret data, typ-
ically cryptographic keys. Higher-order masking is a well-studied countermea-
sure against such attacks [11,22]; unfortunately, it comes at a rather high cost
in terms of performance. This is a reason why in practice, well-protected imple-
mentations are not as ubiquitous as one would hope. In software, higher-order
masked implementations are typically orders of magnitude slower compared to
unprotected implementations, as was explored at Eurocrypt 2017 by Goudarzi
and Rivain [23].
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 23–43, 2018.
https://doi.org/10.1007/978-3-319-89641-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_2&domain=pdf
http://orcid.org/0000-0002-5008-1756

24 B. Grégoire et al.

Simultaneously at Eurocrypt 2017, a theoretical model was proposed to study
the security of parallel implementations of masking schemes, called the bounded
moment leakage model [5]. As parallelization is a very powerful tool to increase
performance, this model gives the foundation for faster protected implemen-
tations. One common way to parallelize software implementations is through
vectorization. In a vectorized implementation, a single instruction operates on
multiple data elements inside one vector register at the same time. For vectoriza-
tion to be useful, data parallelism is required, which in the case of higher-order
masking is trivially provided by the availability of multiple shares.

Precisely this approach of vectorization with data-level parallelism coming
from multiple shares was used in a CHES 2017 paper by Journault and Stan-
daert [26]. That paper studies a parallel bitsliced (i.e., vectorized with 1-bit
vector elements) implementation using 32 shares on the ARM Cortex-M4. The
reason for using 32 shares was the fact that the Cortex-M4 has 32-bit regis-
ters and bitslicing thus needs 32× data-level parallelism. Empirical tests in this
paper confirmed that the bounded moment model is useful also in practice.
Specifically, these tests showed that a 4-share version of their implementation
yielded no leakage of order less than 4. It is of course still possible that the
actual security order is lower, but it can at least be viewed as an optimistic
result. They conclude their evaluation by performing an information-theoretic
analysis of the leakage in order to bound the attack complexity for the 32-share
implementation.

In this paper we study how the powerful NEON vector unit on larger ARM
Cortex-A processors can be used to obtain efficient masked AES implementa-
tions. Straight-forwardly adapting the approach from [26] to obtain data-level
parallelism would result in implementations with 64 or 128 shares (for 64-bit
or 128-bit vector registers), which would be a security overkill and result in
terrible performance. Instead we follow the approach of the bitsliced AES imple-
mentations presented in [27,30], which exploit the data-level parallelism of 16
independent S-Box computations. As a result, we present implementations using
4 and 8 shares, which in theory offer security at the 3rd and 7th order. We use
refreshing and multiplication algorithms that are based on the algorithms in [5]
and even slightly improve on some of them by requiring less randomness. They
are proven secure in the bounded moment model and also proven to be strongly
non-interfering [4]. We provide a concrete evaluation of our implementations on
a BeagleBone Black, which has been used successfully before to perform dif-
ferential electromagnetic analysis at 1 GHz [2]. Using nearly the same setup,
we employ the popular TVLA methodology [13] in conjunction with leakage
certification [18] and we show that there is actually some leakage in the 3rd
order of our 4-share implementation, but not in the 2nd order. We then continue
to bound the measurement complexity of the 8-share implementation using an
information-theoretic approach [17].
To summarize, the contributions of this paper are that

– we provide the first vectorized instantiation of the bounded moment leakage
model published at Eurocrypt 2017 [5] with strong non-interference [4];

Vectorizing Higher-Order Masking 25

– we provide the fastest publicly available higher-order masked AES implemen-
tations with 4 and 8 shares for the ARM Cortex-A8; and that

– we perform a practical side-channel evaluation of the 4-share AES implemen-
tation and derive security bounds for the 8-share implementation.

Source Code. The source code of our implementations is available in the public
domain. It can be downloaded at https://github.com/Ko-/aes-masked-neon.

2 Preliminaries

2.1 Higher-Order Masking of AES

Implementations of cryptographic primitives such as block ciphers are typically
vulnerable to attacks that use side-channel analysis (SCA). Information about
physical characteristics, such as the electromagnetic radiation, of a device that
executes a block cipher can be used to recover the secret key [21,29].

A well-studied countermeasure against this class of attacks is (higher-order)
masking. It works by splitting each secret variable x into d shares xi that satisfy
x0 ⊕ x1 ⊕ x2 ⊕ · · · ⊕ xd−1 = x. When ⊕ denotes the Boolean XOR operation,
this is called Boolean masking. Any d − 1 of these shares should be statistically
independent of x and should be uniformly randomly distributed. If this is the
case, then this masking scheme provides privacy in the (d − 1)-probing model,
as put forward by Ishai, Sahai, and Wagner [25]. The idea is that an attacker
applying d − 1 probes to learn intermediate values of the computation will not
be able to learn anything about the secret value. We call the value d − 1 the
order of the masking scheme.

When masking is applied, operations on x are to be performed on its shares.
For linear operations f , those that satisfy f(x + y) = f(x) + f(y) and f(ax) =
af(x), it holds that they can trivially be computed on the shares of x individually.
For nonlinear operations, several algorithms have been suggested to retrieve the
correct result. In [25] it was shown how to compute a masked AND gate and,
together with the linear NOT, this is functionally complete.

AES [15] in particular has received a lot of attention when it comes to pro-
tected implementations. The round function of AES consists of AddRoundKey,
SubBytes, ShiftRows, and MixColums. AddRoundKey, ShiftRows, and Mix-
Columns are all linear. SubBytes is not. Much research has therefore been
aimed at finding efficient representations of a masked variant of the AES
S-box [10,23,28,33].

2.2 Strong Non-interference

Strong non-interference (SNI) is a security notion, formalized in [4], that is
slightly stronger than probing security. It currently seems to be the right security
notion when considering practical security. The problem with probing security
is that, given two algorithms that are secure at order d−1 in the probing model,

https://github.com/Ko-/aes-masked-neon

26 B. Grégoire et al.

the composition of these algorithms is not necessarily secure at order d−1. SNI,
on the other hand, means that an algorithm is composable, guaranteeing that
one can verify the security of the composition of multiple secure algorithms.

As an example to see why SNI is desirable, consider the provably secure
masking scheme by Rivain and Prouff from CHES 2010 [33]. Three years later,
an attack was found against the composition of the refreshing of masks and the
masked multiplication [14]. The scheme was fixed subsequently. It was shown
in [4] that the main difference between the original and the fixed algorithms is
exactly this notion of strong non-interference.

Automated verification tools exist to formally prove strong non-interference.
This gives stronger guarantees on the theoretical security of a masking scheme.

2.3 Bounded Moment Leakage Model

The probing model and its variants are not always straightforward to interpret.
The fact that d − 1 shares should be statistically independent is based on the
idea that an attacker can inspect the leakage of intermediate computations on
the shares separately. In software, it therefore applies better to serial implemen-
tations. When computations are performed on multiple shares in parallel, it is
not immediately clear what the relation with the probing security model is.

To handle this, the bounded moment model has been proposed in [5]. It is
more targeted towards parallel implementations and can deal with the concept
that multiple shares are manipulated simultaneously. Barthe, Dupressoir, Faust,
Grégoire, Standaert, and Strub proved that probing security of a serial imple-
mentation implies bounded moment security for its parallel counterpart. It is a
weaker security notion than the noisy leakage model [11,32].

Security in the bounded moment model is defined using leakage vectors and
mixed moments. For every clock cycle c, there is a leakage vector Lc. The leakage
vector is a random variable that is computed as the sum of a deterministic part
that depends on the shares that are manipulated, and on the noise Rc. The
mixed moment of a set {Y1, . . . , Yr} of r random variables at orders o1, . . . , or
can be defined as E [

∏r
i=1 Yi], where E denotes the expected value. Now, consider

an N -cycle cryptographic implementation that manipulates a secret variable x.
This results in a set {L1, . . . , LN} of N leakage vectors. The implementation
is said to be secure at order o in the bounded moment model if all the mixed
moments of order ≤ o of {L1, . . . , LN} are statistically independent of x.

2.4 Vectorization with NEON

The ARM Cortex-A8 is a 32-bit processor that implements the ARMv7-A
microarchitecture. It is used in smartphones, digital TVs, and printers, among
others. It was first introduced in 2005 and is currently widely deployed. Its main
core can run at 1 GHz and implements features such as superscalar execution,
an advanced branch prediction unit, and a 13-stage pipeline. There are 16 32-bit
r registers, of which 14 are generally available to the programmer.

Vectorizing Higher-Order Masking 27

The Cortex-A8 comes with the so-called Advanced SIMD extension, better
known as NEON, that add another 16 128-bit q registers. These vector registers
can also be viewed as 32 64-bit d registers. For example, q0 consists of d0 and
d1, q1 consists of d2 and d3, et cetera. Operations can typically be performed
on 8-, 16-, or 32-bit elements in a SIMD fashion. While 128-bit registers are
supported, the data path of the Cortex-A8 is actually only 64 bits wide, which
means that operations on 128-bit registers will be performed in two steps. NEON
has a separate 10-stage pipeline. In particular, it has a load/store unit that runs
next to an arithmetic unit. This means that an aligned load and an arithmetic
instruction can be executed in the same cycle.

NEON has been used successfully in the past to vectorize and optimize imple-
mentations of cryptographic primitives [8], but its power has to the best of our
knowledge not yet been exploited for higher-order masking in the way that we
propose here.

3 Vectorizing Masking of AES

3.1 Representing the Masked State

The AES state [15] is usually pictured as a square matrix of 4 by 4 byte elements.
This representation leads to efficient software implementations when SubBytes
is implemented using lookup tables. However, such implementations are also
prone to cache-timing attacks [7], as the memory location of the value that is
looked up depends on some secret intermediate value. An alternative bitsliced
representation avoids these attacks. In this bitsliced representation, all the first
bits of every byte are put in one register, all the second bits in the next register,
etc. For SubBytes, one can now compute the S-box on the individual bits and do
that for all 16 bytes in parallel. The S-box parallelism of AES for bitslicing was
first exploited by Könighofer in [30] and it was also used in the speed-record-
setting AES implementation targeting Intel Core 2 processors by Käsper and
Schwabe [27]. At a small cost, the other (linear) operations of AES are modified
to operate on this bitsliced representation as well.

However, on most devices registers are longer than 16 bits, so it would be a
waste to not utilize this. AES implementations without side-channel protections
choose to process multiple blocks in parallel, by simply concatenating multiple
16-bit chunks from independent blocks in one register. For example, the AES
implementation of [27] processes 8 blocks in parallel in a 128-bit XMM register.
When the vector registers become larger, this trivially leads to higher through-
puts for parallel modes of operation.

In this section we present three implementations that, instead of multiple
blocks, process multiple shares in parallel (Fig. 1). The first implementation fills
a 64-bit d register with 4 shares. The second has 8 shares, that are used to
fill a 128-bit q register. The third combines 2 blocks with each 4 shares, and
also utilizes the 128-bit q registers. It interleaves the shares of the 2 blocks for
efficiency reasons. Note that this third implementation requires a parallel mode
of operation.

28 B. Grégoire et al.

erahs0erahs d− 1

row 0 row 1 row 2 row 3
co
l
0

co
l
1

co
l
2

co
l
3

co
l
0

co
l
1

co
l
2

co
l
3

co
l
0

co
l
1

co
l
2

co
l
3

co
l
0

co
l
1

co
l
2

co
l
3

Fig. 1. Register lay-out for the single-block implementations. There are 8 of these
16d-bit vector registers. The cells on the bottom row represent individual bits.

3.2 Parallel Multiplication and Refreshing

In [5], new algorithms for parallel multiplication (including the AND opera-
tion) and parallel refreshing were proposed. They are proven to be secure in
the bounded moment model and proven to be strongly non-interfering using
techniques from automated program verification [3]. Correct implementations of
these algorithms are critical for the security of our implementations. We suggest
slightly improved algorithms for d = 4 and d = 8 that require less randomness,
but we could not generalize them to an improvement for all orders. As with
the original algorithms, they are proven secure using the same automatic ver-
ification tools. NEON code that implements these algorithms can be found in
AppendixA.

Refreshing. Refreshing can be necessary to make sure that values in registers
are again statistically independent. The refreshing algorithm in [5] requires 2d
bytes of fresh uniform randomness. Let x (in boldface) denote a vector register
that contains [x0, . . . , xd−1], where

⊕d−1
i=0 xi = x, and let r be a vector of the

same length that contains uniformly random values. In the case of AES, a single
share would be 16 bits long, so a randomness vector r will be 2d bytes.

Then x ′ = r ⊕ rot(r , 1) ⊕ x is a secure way to refresh x, where rot(a , n)
rotates a to either left or right by n shares. Note that in the case of AES, this
is equal to applying a rotation by 2n bytes.

For 4 shares, this algorithm additionally achieves SNI. However, to reach
this with 8 shares, in [5] it turned out to be necessary to iterate the refreshing
algorithm 3 times. In other words, one would need to compute

r ⊕ rot(r , 1) ⊕ r ′ ⊕ rot(r ′, 1) ⊕ r ′′ ⊕ rot(r ′′, 1) ⊕ x

to achieve SNI at order 7. This requires 3 vectors of uniform randomness, or 48
bytes with AES. We improve this algorithm by computing:

r ⊕ rot(r , 1) ⊕ r ′ ⊕ rot(r ′, 2) ⊕ x .

We verified with the current version of the tool of [3] that this also achieves SNI
at order 7. Moreover, it requires one less randomness vector. In the case of AES,
we now require 32 bytes of uniform randomness.

Vectorizing Higher-Order Masking 29

Multiplication. Multiplication in a finite field, or an AND gate in the case of F2,
is trickier to perform in a secure way. Consider the case where one wants to
compute z = x · y. Let r and r ′ be uniformly random vectors. Then, with 4
shares, the algorithm suggested in [5] computes the following to achieve SNI at
order 3:

z = x · y ⊕ r ⊕ x · rot(y , 1) ⊕ rot(x , 1) · y ⊕ rot(r , 1)
⊕ x · rot(y , 2) ⊕ r ′ ⊕ rot(r ′, 1).

However, we can again improve this slightly such that less randomness will
be necessary. Let r4 be a uniformly random value. Then we proved using the
tool of [3] that the following is also 3rd-order SNI-secure. For AES, this requires
10 fresh uniformly random bytes (8 for r and 2 for r4) instead of 16:

z = x · y ⊕ r ⊕ x · rot(y , 1) ⊕ rot(x , 1) · y ⊕ rot(r , 1)
⊕ x · rot(y , 2) ⊕ [r4, r4, r4, r4].

With 8 shares, we use the original algorithm of [5] that is SNI at order 7. This
requires 3 randomness vectors, which in the case of AES amounts to 48 bytes:

z = x · y ⊕ r ⊕ x · rot(y , 1) ⊕ rot(x , 1) · y ⊕ rot(r , 1)
⊕ x · rot(y , 2) ⊕ rot(x , 2) · y ⊕ r ′

⊕ x · rot(y , 3) ⊕ rot(x , 3) · y ⊕ rot(r ′, 1)
⊕ x · rot(y , 4) ⊕ r ′′ ⊕ rot(r ′′, 1).

We attempted to reduce this by replacing the last randomness vector by a
vector with a single random value, as in the algorithm for 4 shares, but we found
that this does not achieve SNI at order 7.

Randomness. Implementations that are protected using higher-order masking
require a lot of randomness. To be able to prove statistical independence, this
randomness should be fresh and uniformly distributed. For resisting attacks in
practice, it is not so clear whether the exact requirements are this strict. For
instance, it might also be fine to expand a random seed using a pseudo-random
number generator, or even to re-use randomness [1]. We consider this discussion
to be out of scope of this work. However, because the impact on the performance
can be very significant, we consider various approaches that occur in the litera-
ture. The first is to read all the randomness that we require from /dev/urandom
using fread, like in [2]. This is the most conservative approach, but it is rather
slow. Second, we also consider the case where all required randomness is already
in a file that needs to be read into memory. The third approach assumes that
there exists a fast true random-number generator and only considers the cost of
a normal load instruction (vld1), like in [23].

The AES implementation with 4 shares requires 8 bytes per refresh and 10
bytes per masked AND. In the next section we will see that this amounts to
10 · 32 · (8 + 10) = 5760 random bytes in total for the full AES, excluding the

30 B. Grégoire et al.

randomness used to do the initial masking of the input and the round keys.
Naturally, the implementation that computes two blocks in parallel requires
double the amount of random bytes. For 8 shares, refreshing takes 32 bytes and
a masked AND uses 48 bytes, which makes the total 10 · 32 · (32 + 48) = 25600
bytes.

3.3 SubBytes

Using the masked AND and refreshing algorithms, we can build our bitsliced
SubBytes. Several papers have presented optimized bitsliced representations of
the AES S-box. The smallest known to us is by Boyar and Peralta [9]. It uses
83 XORs/XNORs and 32 ANDs, which was later improved to 81 XORs/XNORs and 32
ANDs. The few NOTs can be moved into the key expansion, so we only need to
consider XORs and ANDs. We use this implementation as our starting point, as
this is also the implementation with the smallest number of binary ANDs, and an
AND will be much slower to compute than a XOR.

We have used the compiler provided in [4] to generate a first masked imple-
mentation of SubBytes. This tells us when it is necessary to refresh a value,
making sure that we do not refresh more often than strictly necessary. For our
version of SubBytes, however, the compiler adds a refresh on one of the inputs
for every AND. Then we implement an XOR on multiple shares in parallel with
a veor instruction. For an AND, we use the algorithms of the previous section.
Finally, the code has been manually optimized to limit pipeline stalls.

The S-box implementation has many intermediate variables. With 4 shares
and a single block, the d registers are used. There are 32 of them and this turns
out to be sufficient to store all the intermediate values. With two blocks or with
8 shares, however, we can use only 16 q registers. This implies that values have
to be spilled to the stack. Of course, we want to minimize the overhead caused by
this. In [36], an instruction scheduler and register allocator for the ARM Cortex-
M4 was used to optimize the number of pushes to the stack. We modified this
tool to handle the NEON instructions that we need, and use it to obtain an
implementation with 18 push instructions and 18 loads.

According to a cycle-count simulator [38], our SubBytes implementation
takes 1035 cycles with one block and 4 shares and 2127 cycles with 8 shares.

3.4 Linear Layer

We now discuss the linear operations of AES. We manually optimized them using
a cycle-count simulator to hide as many latencies as possible [38].

AddRoundKey. AddRoundKey loads the round key with the vld1 instruction
and adds it to the state using veor. The loads and arithmetic instructions can
be interleaved. This helps because they go into separate NEON pipelines. An
arithmetic instruction can than be executed in parallel with the load of the next
part of the round key. For the loads, we make sure that they are aligned to at
least 64 bits. AddRoundKey then only takes 10 cycles.

Vectorizing Higher-Order Masking 31

ShiftRows. With ShiftRows, rotations by fixed distances over 16 bits need to be
computed. This can be implemented using vand, vsra, vshl, and vorr instruc-
tions. The arithmetic pipeline is now clearly the bottleneck. According to the
simulator, our ShiftRows takes 150 cycles.

MixColumns. MixColumns requires more rotations by 4 or by 12 over 16 bits.
This takes 106 cycles as measured by the simulator.

3.5 Performance

We benchmark our implementations on the BeagleBone Black with the clock
frequency fixed at 1 GHz. In other words, we disabled frequency scaling. For the
rest, we did not apply any changes to a standard Debian Linux 9 installation. In
particular, we did not disable background processes and did not give our process
special priority or CPU core affinity. The implementations are run 10000 times
and the median cycle counts are given in Table 1.

Table 1. Performance of our masked AES implementations.

4 shares
1 block

4 shares
2 blocks

8 shares
1 block

Clock cycles
(randomness from /dev/urandom)

1, 598, 133 4, 738, 024 9, 470, 743

Clock cycles
(randomness from normal file)

14, 488 17, 586 26, 601

Clock cycles
(pre-loaded randomness)

12, 385 15, 194 23, 616

Random bytes 5, 760 11, 520 25, 600

Stack usage in bytes 12 300 300

Code size in bytes 39, 748 44, 004 70, 188

When using /dev/urandom, more than 99% of the time is spent on waiting for
randomness, which is delivered at a rate of only 369 cycles per byte in the 8-share
case. With a faster RNG, it becomes clear that our implementations are very
fast and practical. We reach 474 cycles/byte with 4 shares and 1476 cycles/byte
with 8 shares with pre-loaded randomness. Note that all implementations are
fully unrolled, so the code size can trivially be decreased to roughly a tenth
when this is a concern. However, we do not expect this to be an issue for devices
with a Cortex-A8 or similar microprocessors, as they are relatively high-end.

Comparison to Related Work. In the following we discuss how our implemen-
tation compares to related work. We note that one should be cautious when it
comes to comparing cycle counts, in particular when benchmarks were obtained
on different microarchitectures or from simulators.

32 B. Grégoire et al.

Goudarzi and Rivain [23] compared the performance of different higher-order
masking approaches on ARM architectures. A simplified model is assumed for
the number of cycles that specific instructions take, without referring to a specific
microarchitecture. Private communication made clear that they are derived from
the Keil simulator based on an ARM7TDMI-S. Their fastest bitsliced implemen-
tation is claimed to take 120,972 cycles with 4 shares and 334,712 cycles with
8 shares. To achieve this performance, the presence of a fast TRNG is assumed
that delivers fresh randomness at 2.5 cycles per byte. Only the cost of a normal
ldr instruction it taken into account, which corresponds to our performance with
pre-loaded randomness. Despite the differences between ARMv4T and ARMv7-
A, it is clear that there is quite a performance gap.

Wang et al. [43] presented a masked AES implementation for NEON that
appears to run in 14,855 cycles with 4 shares and 77,820 with 8 shares on a
Cortex-A15 simulator. This uses a cheap LFSR-based PRNG to provide random-
ness of which the authors already say that it should be replaced by a better source
of randomness. We require less randomness due to a different masking scheme
and apply bitslicing instead of computing SubBytes with tower-field arithmetic.
The Cortex-A15 is more modern and powerful than the Cortex-A8. It can decode
3 instructions instead of 2, has out-of-order execution, and its NEON unit has a
128-bit wide datapath instead of 64-bit. However, it has longer pipelines which
means that the penalty for, for instance, wrong branch predictions will be higher.
We ran their code on our Cortex-A8-based benchmarking device and measured
34,662 cycles for the 4-share implementation and 158,330 cycles for the 8-share
implementation, but we cannot fully explain the difference due to the amount
of possible causes and the unavailability of more detailed information.

Balasch et al. [2] do use the same microarchitecture, but not the NEON
SIMD processor. They do not mention the performance of their implementation.
They explicitly say that they focus on the security evaluation and do not aim to
achieve a high-throughput implementation.

Finally, Journault and Standaert [26] consider a bitsliced AES implementa-
tion with up to 32 shares on an ARM Cortex-M4. They exploit the parallelism
of the shares, but not of AES itself as there are only 32-bit registers. An on-
board TRNG is used to provide randomness at a reported speed of 20 cycles per
byte. They use the refreshing and multiplication algorithms of [5] and almost
the same S-box baseline implementation. Eventually, they report that 2,783,510
cycles are required to compute AES with 32 shares, of which 73% are spent on
generating randomness. While this is certainly a very interesting idea, we show
how the parallelism in SubBytes can additionally be exploited on a higher-end
CPU with vector registers when using less shares might be sufficient.

Compared to unmasked implementations, there is of course still a noticeable
performance penalty for adding side-channel protections. The unmasked bitsliced
AES implementation of Bernstein and Schwabe [8] also exploits NEON to run
at 19.12 cycles per byte (i.e., 306 cycles per block) in CTR mode, but that uses
counter-mode caching and processes 8 blocks in parallel.

Vectorizing Higher-Order Masking 33

4 Side-Channel Evaluation

4.1 Measurement Setup

Balasch et al. [2] described in detail how they performed DPA attacks on a
BeagleBone Black running at 1 GHz. Our experimental setup and measuring
environment follow their approach. The board is running Debian Jessie and
has several processes running in the background. We power the board using a
standard AC adapter and connect it to the measurement PC over Ethernet. A
few lines of Python on the BeagleBone open a TCP socket and spawn a new
AES process for every input that it receives. The measurement PC connects to
the socket and sends inputs over Ethernet.

We use a LeCroy WaveRunner 8404M-MS oscilloscope with a bandwidth of
4 GHz, operating at a sampling rate of 2.5 GSamples/sec. The AES process sets a
GPIO port high before the execution of AES and sets it low after AES is finished,
so that it can be used as the trigger signal. We place a magnetic field probe from
Langer, model RF-B 0.3–3, with a small tip on the back of the BeagleBone
board, near capacitor 66. The probe is connected to a Langer amplifier, model
PA 303 SMA. The acquired traces were post-processed in order to perform signal
alignment. We note that OS-related interrupts in conjunction with time-variant
cache behavior result in a fairly unstable acquisition process. Thus, the evaluator
has to either discard a large portion of the acquired trace set or resort to more
sophisticated alignment techniques such as elastic alignment [41].

4.2 Security Order Evaluation

Since our implementation uses SNI gadgets, it maintains theoretical security
against probing attacks of order d − 1 or less. The natural starting point of our
side-channel evaluation is to identify any discrepancy between the theoretical
and the actual security order, i.e., to determine the real-world effectiveness of the
masking scheme. To achieve that goal, we need to assess whether the shares leak
independently or whether the leakage function recombines them. Such recombi-
nations can be captured by evaluating the security order in the bounded moment
model [5] using, e.g., the leakage detection methodology [13,34,44].

Several lines of work have observed divergence between the theoretical order
of a masking scheme and its real-world counterpart. Initially, Balasch, Gier-
lichs, Grosso, Reparaz, and Standaert [1] put forward the issue of distance-based
leakages, which can result in the order reduction of a scheme. Specifically, if a
(d − 1)th-order scheme is implemented on a device that exhibits distance-based
leakages, its actual order will reduce to �(d − 1)/2�, damaging its effectiveness
w.r.t. noise amplification. Such effects have been observed in numerous architec-
tures such as AVR, 8051 [1], ARM Cortex-M4 [16], FPGAs [12] and stem from
both architectural choices and physical phenomena. To some extent, they can
be mitigated by either increasing the order of the scheme or by “hardening” the
implementation against effects that breach the independence of shares [31].

34 B. Grégoire et al.

We evaluate the security order using the leakage detection methodology
known as TVLA [13], which emphasizes detection over exploitation in order
to speed-up the procedure. To make the evaluation feasible w.r.t. data complex-
ity, we focus on the first round of our single-block 4-share implementation and
employ the random vs. fixed Welch t-test, which uses random and fixed plaintexts
acquired in a non-deterministic and randomly interleaved manner. Consecutively,
we perform univariate t-tests of orders 1 through 4 using the incremental, one-
pass formulas of Schneider and Moradi [34] at a level of significance α = 0.00001.
The results are plotted in Fig. 2. Note that the number of samples per trace is
fairly high due to the lengthy computation of the 4-share masked AES round and
due to the high sampling rate dictated by the clock frequency (1 GHz) and the
Nyquist theorem. As a result, the t-test methodology faces the issue of multiple
comparisons and we need to control the familywise error rate using the Šidák
correction αSID = 1− (1−α)1/#samples [37]. The leakage detection threshold th
is then computed using the formula th = CDF−1

N (0,1)(1 − αSID/2), which equals
to 6.25 when testing 25k samples per trace [44].

(a) 1st-order, 1M random vs. 1M fixed. (b) 2nd-order, 1M random vs. 1M fixed.

(c) 3rd-order, 1M random vs. 1M fixed. (d) 4th-order, 1M random vs. 1M fixed.

Fig. 2. Univariate leakage detection of orders 1 until 4.

In Fig. 2 we observe that for orders 1 and 2, a 1M random vs. 1M fixed
t-test does not reject the null hypothesis, thus no leakage is detected in the

Vectorizing Higher-Order Masking 35

first two statistical moments. The situation is different for higher orders: both
the 3rd and the 4th-order univariate t-tests are able to detect leakage. This
demonstrates that the actual security order of the implementation is less than
the theoretical one and detecting the presence of 3rd-order leakage is in fact
easier than detecting 4th-order leakage. Interestingly, the experimental results
are not in direct accordance with the order reduction suggested by [1], i.e.,
our 3rd-order (4-share) implementation achieves practical order of 2, while the
theorized reduction suggests �3/2� = 1st-order security.

An additional way to approach the order reduction issue is to phrase it as a
leakage certification problem [18,19]. The leakage certification procedure allows
us to assess the quality of a leakage model w.r.t. estimation and assumption
errors. Gauging the effect of estimation errors, i.e., those that arise from insuffi-
cient profiling, is straightforward and can be carried out via cross-validation tech-
niques [20]. Assumption errors are more difficult to assess, since they arise from
incorrect modeling choices and would ideally require the comparison between
the chosen model and an unknown perfect model. To tackle this, the indirect
approach of Durvaux, Standaert and Veyrat-Charvillon [19] observes the rela-
tion between estimation and assumption errors and if the latter are negligible in
comparison, they conclude that the chosen model is adequate.

In our approach, we use the t-test-based certification toolset of Durvaux,
Standaert, and Del Pozo [18], which focuses on the assumption and estimation
errors for each statistical moment. Initially, we start with an erroneous model for
our 4-share implementation: we assume that the leakage is sufficiently captured
by a Gaussian template, i.e., a normal distribution that is fully described by
the first two statistical moments. The results are visible in the upper part of
Fig. 3, using a trace set of size 900,000. In particular, we plot the p-value of
a t-test that compares an actual statistical moment (estimated from the trace
set) with a simulated statistical moment (estimated by sampling the profiled
model). A high p-value (i.e., a mostly white image) indicates that estimation
errors overwhelm assumption errors and that the chosen model is adequate. A
small p-value indicates that assumption errors are larger than estimation errors,
thus the chosen model is erroneous. The process is repeated for all first four
statistical moments (mean, variance, skewness, kurtosis) using cross-validation.

In the first two images of Fig. 3 (upper part, mean and variance), the high
p-values indicate that these moments are well-captured by the model. Naturally,
the fourth image (upper part, kurtosis) is black, indicating that the model dis-
regards the 4th moment of a parallel 4-share implementation which should (in
theory) contain useful information. Interestingly, the third image (skewness) is
also black, penalizing any model that does not include the 3rd statistical moment,
although in a perfect scheme it should not convey any information. We continue
this approach with a more adequate model for the 4-share implementation: we
assume that the leakage is captured by a Pearson type I distribution [35], i.e.,
a 4-moment Beta distribution. The results are visible in the lower part of Fig. 3
and show that the assumption errors in the 3rd and 4th moments tend to be
smaller than the corresponding estimation errors.

36 B. Grégoire et al.

Fig. 3. Leakage certification p-values for Gaussian templates and Pearson type I.

As demonstrated by both the t-test methodology and the leakage certification
process, the NEON-based implementations on ARM Cortex-A8 are likely to
be subject to order reduction and may require further hardening to prevent
dependencies between shares. The potential causes of the order reduction remain
unexplored since they may stem from bus/register/memory transitions, pipelined
data processing or even electrical coupling effects. Pinpointing the origin of the
security reduction remains an open problem in the side-channel field since it
essentially requires the countermeasure designer to access/modify the hardware
architecture and chip layout, a task that is not possible with proprietary designs.

4.3 Information-Theoretic Evaluation

Having investigated the security order of the single-block 4-share AES imple-
mentation, we turn to the evaluation of its 8-share counterpart. The core feature
of a masking scheme is the noise amplification stage. Assuming sufficient noise,
it has been shown that the number of traces required for a successful attack
grows exponentially w.r.t. the order d − 1 [11]. As a result, the evaluation of the
proposed 8-share implementation can be beyond the measurement capability of
most evaluators. To tackle this issue, we will rely on an information-theoretic
approach used by Standaert et al. and Journault et al. [26,39,40], assisted by
the bound-oriented works of Prouff and Rivain [32], Duc et al. [17], and Grosso
and Standaert [24].

Analytically, we start with an unprotected (single-share) AES implementa-
tion and estimate the device/setup signal to noise ratio (SNR). We define the
random variable S to correspond to the sensitive (key-dependent) intermediate
values that we try to recover. Likewise, we define the random variable L to cor-
respond to the time sample that exhibits high leakage (heuristically chosen as
the sample with the highest t-test value). Subsequently, we profile Gaussian tem-
plates for all sensitive values s that are instances of variable S. In other words,

Vectorizing Higher-Order Masking 37

we estimate P̂ r[L|s]model ∼ N (μ̂s, σ̂
2
s) for all s. Using the estimated moments,

we compute the SNR as the ratio ˆvars(μ̂s)/Ês(σ̂2
s), resulting in SNR ≈ 0.004.

We continue to compute the Hypothetical Information (HI) which shows the
amount of information leaked if the leakage is adequately represented by the
estimated model P̂ rmodel.

HI(S;L) = H[S] +
∑

s∈S
Pr[s] ·

∫

l∈L
P̂ rmodel[l|s] · log2P̂ rmodel[s|l] dl,

where P̂ rmodel[s|l] =
P̂ rmodel[l|s]

∑
s∗∈S P̂ rmodel[l|s∗]

.

To simplify the evaluation process, we employ the independent shares’ leakage
assumption so as to extrapolate the information of a single share to the informa-
tion of a d-tuple of shares. Thus, in order to obtain the HI bounds for security
orders 3 and 7, we raise HI(S;L) to the security order. In addition, the evaluator
should take special consideration w.r.t. horizontal exploitation [6,42], which can
be particularly hazardous, e.g., in the context of lengthy masked multiplications.
To showcase such a scenario, we employ the bound of Prouff and Rivain [32],
stating that the multiplication leakage is roughly 1.72d + 2.72 times the leakage
of a d-tuple of shares. The results of the information-theoretic evaluation are
visible in Fig. 4.

Fig. 4. Information-theoretic evaluation for the 8-share masked implementation.

Figure 4 assesses the performance of the proposed 8-share AES implementa-
tion, using information-theoretic bounds. The solid line shows the ideal masking
performance, while the dashed line shows a conservative masking performance

38 B. Grégoire et al.

due to order reduction from order 7 to order 3. Last, the dotted line demonstrates
the scenario where the adversary exploits the order-reduced (conservative) ver-
sion in a horizontal fashion, i.e., (s)he incorporates all intermediate values com-
puted during a masked AES multiplication. For the current SNR of the device,
the measurement complexity is bounded by approximately 291 measurements
(ideal case), 245 (conservative case) and 242 (conservative horizontal case) [17].

5 Conclusion and Outlook

We have shown how higher-order masking of AES can be sped up using NEON
vector registers. With a good randomness source, such implementations are very
fast and practical. We also performed a side-channel evaluation to study the
security order of the single-block 4-share implementation and an information-
theoretic analysis to bound the measurement complexity w.r.t. the 8-share imple-
mentation.

Future SCA work can delve deeper into order-reduction issues, in conjunction
with multivariate and horizontal exploitation. For instance, with our high-order
univariate methodology, it is implicitly assumed that all the shares are manipu-
lated in parallel. While this appears to hold when looking at the NEON assem-
bly specifications, full parallelism may not be enforced on a hardware level. A
deeper inspection of the circuitry could potentially clarify the actual parallelism
and identify the underlying issues behind order reduction. Moving towards mul-
tivariate exploitation, practical horizontal attacks such as soft-analytical attacks
need to be carried out such that we can gauge in practice the detrimental effects
of lengthy leaky computations and establish a fairer evaluation procedure.

A NEON Implementations

A.1 Refreshing, 4 Shares

//param rand is r register with address of randomness

//param a is d register to refresh

//param tmp is d register that gets overwritten

.macro refresh rand a tmp

vld1 .64 {\tmp}, [\rand]! //get 8 bytes of randomness

veor \a, \tmp

vext .16 \tmp, \tmp, #1

veor \a, \tmp

.endm

A.2 Refreshing, 8 Shares

//param rand is r register with address of randomness

//param a is q register to refresh

//param tmp is q register that gets overwritten

.macro refresh rand a tmp

Vectorizing Higher-Order Masking 39

vld1 .64 {\tmp}, [\rand :128]! //get 16 bytes of randomness

veor \a, \tmp

vext .16 \tmp, \tmp, #1

veor \a, \tmp

vld1 .64 {\tmp}, [\rand :128]! //get 16 bytes of randomness

veor \a, \tmp

vext .16 \tmp, \tmp, #2

veor \a, \tmp

.endm

A.3 Multiplication, 4 Shares

//param rand is r register with address of randomness

//param c is d register where result gets stored

//param a and b are d registers to and, remain unchanged

//param tmp and tmpr are d registers that get overwritten

.macro masked_and rand c a b tmp tmpr

vand \c, \a, \b //z = x.y

vld1 .64 {\tmpr}, [\rand]! //get 8 bytes of randomness

vext .16 \tmp, \b, \b, #1

veor \c, \tmpr // + r

vand \tmp, \a

veor \c, \tmp // + x.(rot y 1)

vext .16 \tmp, \a, \a, #1

vand \tmp, \b

veor \c, \tmp // + (rot x 1).y

vext .16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot r 1)

vext .16 \tmp, \b, \b, #2

vand \tmp, \a

veor \c, \tmp // + x.(rot y 2)

vld1 .16 {\tmp []}, [\rand]! //get 2 bytes of randomness

veor \c, \tmp // + (r4,r4,r4,r4)

.endm

A.4 Multiplication, 8 Shares

//param rand is r register with address of randomness

//param c is q register where result gets stored

//param a and b are q registers to and, remain unchanged

//param tmp and tmpr are q registers that get overwritten

.macro masked_and rand c a b tmp tmpr

vand \c, \a, \b //K = A.B

vld1 .64 {\tmpr}, [\rand :128]! //get 16 bytes of randomness

vext .16 \tmp, \b, \b, #1

veor \c, \tmpr // + R

vand \tmp, \a

veor \c, \tmp // + A.(rot B 1)

vext .16 \tmp, \a, \a, #1

40 B. Grégoire et al.

vand \tmp, \b

veor \c, \tmp // + (rot A 1).B

vext .16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot R 1)

vext .16 \tmp, \b, \b, #2

vand \tmp, \a

veor \c, \tmp // + A.(rot B 2)

vext .16 \tmp, \a, \a, #2

vand \tmp, \b

veor \c, \tmp // + (rot A 2).B

vld1 .64 {\tmpr}, [\rand :128]! //get 16 bytes of randomness

vext .16 \tmp, \b, \b, #3

veor \c, \tmpr // + R’

vand \tmp, \a

veor \c, \tmp // + A.(rot B 3)

vext .16 \tmp, \a, \a, #3

vand \tmp, \b

veor \c, \tmp // + (rot A 3).B

vext .16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot R’ 1)

vext .16 \tmp, \b, \b, #4

vand \tmp, \a

veor \c, \tmp // + A.(rot B 4)

vld1 .64 {\tmpr}, [\rand :128]! //get 16 bytes of randomness

veor \c, \tmpr // + R’’

vext .16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot R’’ 1)

.endm

References

1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

2. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 599–619. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4 30

3. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 18

4. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.,
Zucchini, R.: Strong non-interference and type-directed higher-order masking. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS 2016, pp. 116–129. ACM (2016). https://doi.org/10.1145/
2976749.2978427

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1145/2976749.2978427

Vectorizing Higher-Order Masking 41

5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-
Y.: Parallel implementations of masking schemes and the bounded moment leak-
age model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56620-7 19

6. Battistello, A., Coron, J.-S., Prouff, E., Zeitoun, R.: Horizontal side-channel attacks
and countermeasures on the ISW masking scheme. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 23–39. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 2

7. Bernstein, D.J.: Cache-timing attacks on AES. https://cr.yp.to/antiforgery/
cachetiming-20050414.pdf (2005)

8. Bernstein, D.J., Schwabe, P.: NEON crypto. In: Prouff, E., Schaumont, P. (eds.)
CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33027-8 19

9. Boyar, J., Peralta, R.: A new combinational logic minimization technique with
applications to cryptology. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 178–
189. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-6 16

10. Canright, D., Batina, L.: A very compact “perfectly masked” S-Box for AES. In:
Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446–459. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68914-0 27

11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

12. De Cnudde, T., Bilgin, B., Gierlichs, B., Nikov, V., Nikova, S., Rijmen, V.:
Does coupling affect the security of masked implementations? In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 1–18. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 1

13. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test
vector leakage assessment (TVLA) methodology in practice (2013). http://icmc-
2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf

14. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

15. Daemen, J., Rijmen, V.: The design of Rijndael. AES – The Advanced Encryption
Standard. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

16. de Groot, W., Papagiannopoulos, K., de La Piedra, A., Schneider, E., Batina,
L.: Bitsliced masking and ARM: friends or foes? In: Bogdanov, A. (ed.) LightSec
2016. LNCS, vol. 10098, pp. 91–109. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-55714-4 7

17. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

18. Durvaux, F., Standaert, F.-X., Del Pozo, S.M.: Towards easy leakage certification.
In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 40–60.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2 3

19. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N.: How to certify the leakage
of a chip? In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol.
8441, pp. 459–476. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-55220-5 26

https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-662-53140-2_2
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/978-3-319-55714-4_7
https://doi.org/10.1007/978-3-319-55714-4_7
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-53140-2_3
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/978-3-642-55220-5_26

42 B. Grégoire et al.

20. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. CRC Press, Boca
Raton (1994)

21. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

22. Goubin, L., Patarin, J.: DES and differential power analysis — the “duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

23. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–
597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 20

24. Grosso, V., Standaert, F.-X.: Masking proofs are tight (and how to exploit it in
security evaluations). Cryptology ePrint Archive, Report 2017/116 (2017). http://
eprint.iacr.org/2017/116

25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

26. Journault, A., Standaert, F.-X.: Very high order masking: efficient implementation
and security evaluation. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 623–643. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4 30

27. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04138-9 1

28. Kim, H.S., Hong, S., Lim, J.: A fast and provably secure higher-order masking of
AES S-Box. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp.
95–107. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 7

29. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

30. Könighofer, R.: A fast and cache-timing resistant implementation of the AES. In:
Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 187–202. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-79263-5 12

31. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order
masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp.
282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3 17

32. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security
proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol.
7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 9

33. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

34. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

35. Schneider, T., Moradi, A., Standaert, F.-X., Güneysu, T.: Bridging the gap:
advanced tools for side-channel leakage estimation beyond Gaussian templates and
histograms. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 58–78.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 4

https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-56620-7_20
http://eprint.iacr.org/2017/116
http://eprint.iacr.org/2017/116
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-23951-9_7
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-319-69453-5_4

Vectorizing Higher-Order Masking 43

36. Schwabe, P., Stoffelen, K.: All the AES you need on Cortex-M3 and M4. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 180–194. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-69453-5 10

37. Sidak, Z.: Rectangular confidence regions for the means of multivariate normal
distributions. J. Am. Stat. Assoc. 62(318), 626–633 (1967)

38. Sobole, E.: Cycle counter for Cortex-A8. http://pulsar.webshaker.net/ccc/index.
php?lng=us

39. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

40. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 7

41. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol.
6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 8

42. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
282–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 15

43. Wang, J., Vadnala, P.K., Großschädl, J., Xu, Q.: Higher-order masking in practice:
a vector implementation of masked AES for ARM NEON. In: Nyberg, K. (ed.) CT-
RSA 2015. LNCS, vol. 9048, pp. 181–198. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-16715-2 10

44. Ding, A.A., Zhang, L., Durvaux, F., Standaert, F.-X., Fei, Y.: Towards sound and
optimal leakage detection procedure. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 105–122. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 7

https://doi.org/10.1007/978-3-319-69453-5_10
http://pulsar.webshaker.net/ccc/index.php?lng=us
http://pulsar.webshaker.net/ccc/index.php?lng=us
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-319-16715-2_10
https://doi.org/10.1007/978-3-319-16715-2_10
https://doi.org/10.1007/978-3-319-75208-2_7
https://doi.org/10.1007/978-3-319-75208-2_7

On Masked Galois-Field Multiplication
for Authenticated Encryption Resistant

to Side Channel Analysis

Hirokazu Oshida(B), Rei Ueno(B), Naofumi Homma, and Takafumi Aoki

Tohoku University, Aramaki Aza Aoba 6–6–05, Aoba-ku, Sendai-shi 980-8579, Japan
oshida@riec.tohoku.ac.jp

Abstract. This paper presents a side-channel attack on masked Galois-
field (GF) multiplication used in authenticated encryptions including
AES-GCM and a new countermeasure against the proposed attack.
While the previous side-channel attack is likely to recover the full key of
GHASH in AES-GCM, no countermeasure has been discussed and eval-
uated until now. In this paper, we first apply a straightforward masking
countermeasure to GF multiplication for GHASH and show that the
masked GF multiplication is resistant to the previous attack. We then
show the straightforward masked GHASH can be defeated by a new
attack utilizing the variance of power trace. The feasibility of the new
attack is demonstrated by an experiment with power traces measured
from a smart card operating the masked GHASH. Finally, we propose a
new masking countermeasure against the proposed attack.

Keywords: Galois-field multiplication · AES-GCM · Masking
Side-channel attack · Authenticated encryption

1 Introduction

Authenticated encryptions (AEs) have been widely used in secure information
systems demonstrating both confidentiality and integrity. In recent years, AEs
are expected to be implemented on even resource-constrained embedded devices
for securing Internet of Things (IoT) applications. Currently, AES-GCM is one
of the most widely used AEs, with applications including SSL/TLS and SSH [14].
It is composed of AES encryption in the counter mode and authentication tag
generation based on a Galois-field (GF) multiply and accumulator (GHASH).
Thanks to the block-wise parallelism, AES-GCM achieves higher throughput
and implementation efficiency than that of block-chaining modes of operations
(e.g., CMAC). Thus, studies on AES-GCM has an influence on other AE designs
including candidates for CAESAR competition [7].

AES-GCM is computationally secure against existing cryptanalyses. On the
other hand, the possibility of a side-channel attack (SCA) [12] on AES-GCM
should also be evaluated like other ciphers. Because of its increasing demand,
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 44–57, 2018.
https://doi.org/10.1007/978-3-319-89641-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_3&domain=pdf

On Masked Galois-Field Multiplication for Authenticated Encryption 45

an AES-GCM module resistant to SCAs is strongly required for secure imple-
mentation on smart cards and embedded systems. So far, much work has been
devoted to differential power analyses (DPAs) on AES primitives [9,13] and
DPA-resistant AES implementations [4,6,16,21,23]. On the other hand, SCAs
on GF multiplication in GHASH, which is another major component of AES-
GCM, were recently reported in [2,3,17]. These attacks are likely to recover the
secret key for authentication tag generation in order to forge tags. However, to
the best of the authors’ knowledge, no countermeasures against such attacks
have been discussed and evaluated with actual devices until now. In the context
of AEs, a development of SCA-resistant GF multiplication for GHASH is also
important for secure AES-GCM implementations on smart cards and embedded
systems.

This paper presents a new attack on GF multiplication in GHASH and a
corresponding countermeasure. The contribution of this study is threefold: (i)
We first apply a straightforward masking countermeasure to GF multiplication
in GHASH in order to evaluate its resistance to the previous attack of [2]. The
resistance is evaluated using power traces generated by a simulation. (ii) We then
propose a new attack on the straightforward masked GHASH. The basic idea
of the proposed attack is to exploit the variance of power consumption like the
second-order DPA, given measured masked intermediate values and mask values.
For the validity verification, we measure power traces of a straightforwardly
masked GHASH implemented on a smart card and apply the proposed attack.
Finally, (iii) we present a masking countermeasure which proves resilient even
against the proposed attack.

2 Preliminaries and Related Work

2.1 Brief Description and Notation of AES-GCM

Let (P1, P2, . . . , Pn), (A1, A2, . . . , Am), and (C1, C2, . . . , Cn) be plaintexts,
associated data, and ciphertexts, respectively. Here, Pi, Aj , and Ci (1 ≤ i ≤ n
and 1 ≤ j ≤ m) denote a 128-bit block. Let K, IV , and T be a 128-bit secret
key, a 96-bit initialization vector, and a 128-bit authentication tag, respectively.
Figure 1 shows the block diagram of the AES-GCM, where each arrow basically
represents a 128-bit data flow. Blocks “AES ENC”, “MULT”, and “⊕” denote
one block AES encryption, GF multiplication, and GF addition (i.e., bit-parallel
XOR), respectively. Note here that these GF arithmetic operations are performed
over a polynomial basis (PB)-based GF (2128) with an irreducible polynomial
x128 ⊕ x7 ⊕ x2 ⊕ x ⊕ 1.

AES-GCM encryption consists of n AES encryption operations in the counter
mode and a tag generation based on GHASH denoted by the blue and red
dotted frames in Fig. 1, respectively. The counter values for n AES encryption
operations Y0, Y1, Y2, . . . , Yi . . . , Yn generated from IV , namely, Y0 = IV ′, Yi =
Yi−1 + 1 (= IV + i), where IV ′ is a 128-bit value obtained by concatenating
a 32-bit value 0311 to the LSB of a 96-bit IV . Note here that the encryption
result of Y0 is only used as a sub key S for the following tag generation, but not

46 H. Oshida et al.

HH

PnP1

Y1 Yn

X1 Xm Xm+1 Xm+n
Xm+n+1

Am
A1

H HH

S

T

m||n

K

Y0IV ||0311

Tag Generation with GHASH

C1C1 Cn

96

K K

Encryption with AES CTR

Fig. 1. Block diagram of AES-GCM.

for the counter-mode encryption. On the other hand, in the tag generation part,
we first compute a GHASH, that is, a hash value Xm+n+1, where H is a secret
128-bit hash key given by the AES encryption result of the 128-bit zero vector
with the secret key K. More precisely, we first compute Xj = (Xj−1⊕Aj)H and
then Xm+i = (Xm+i−1 ⊕ Ci)H, where X0 = 0. Finally, we compute the hash
value Xm+n+1 = (Xm+n ⊕ m||n)H, where m||n denotes m × 2log(n) + n. After
the computation of GHASH, we obtain the authentication tag T = S⊕Xm+n+1.

The security of AES-GCM should be preserved for not only the confiden-
tiality of the secret key K, but also the confidentiality of the hash key H and
sub key S. If either H or S is exposed, attackers can compute (i.e., forge) valid
authentication tags for any pairs of associated data and ciphertexts [10]. Forged
authentication tags make an AE fatally vulnerable because such an AE cannot
provide message integrity. For example, the forging attackers can make victims
perform a compromised HTTPS authentication that redirects to malicious web-
sites by deceiving the authentication provided by TLS [5]. Therefore, it is quite
important to implement an AES-GCM module which never exposes H and S in
addition to K.

2.2 Side-Channel Attack on AES-GCM

AES-GCM consists of AES encryption operations in the counter mode and
a GHASH-based tag generation. SCAs on AES primitives (in the counter
mode) [9,13] and its countermeasures [4,6,16,21,23] have been studied by many
researchers. On the other hand, SCAs on the GHASH-based tag generation to
retrieve H were recently reported in [2,3,11], but no countermeasures against
them have been discussed and evaluated so far.

In the following, we briefly introduce the state-of-the-art attack presented
in 2015 [2]. The attacker observes the power traces of the first GF multiplica-
tion of GHASH when the AES-GCM module performs its encryption z times.

On Masked Galois-Field Multiplication for Authenticated Encryption 47

Let A
(s)
1 and X

(s)
1 be the first block of authentication data for the s-th encryp-

tion (1 ≤ s ≤ z) and the result of the first multiplication (i.e., the product of
A

(s)
1 and H), respectively. The attacker can roughly estimate HW (X(s)

1) from
the observed power trace, where HW (x) denotes the Hamming weight of x.
The main focus of the attack is to compute H from A

(s)
1 inversely and estimate

HW (X(s)
1); that is, X(s)

1 = A
(s)
1 H. However, HW (X(s)

1) cannot always be esti-
mated accurately because of noise included in the power trace. In other words,
we should recover H from A

(s)
1 and the inaccurate HW (X(s)

1). Therefore, the
attack [2] recovers H with these three steps: (i) select desired A

(s)
1 s according

to the observed traces (and discard remaining ones), (ii) build a learning parity
with noise (LPN) problem whose solution is H, and (iii) solve the LPN problem
to recover H. Here, an LPN problem is represented by a set of equations over
GF (2) including incorrect equations (i.e., errors) at a small ratio. In other words,
the LPN problem is equal to learning with an error (LWE) problem over GF (2).

Step (i) selects operands A(s1)
1 , A

(s2)
1 , . . . , A

(su)
1 , . . . , A

(st)
1 (1 ≤ u ≤ t) in accor-

dance with measured power traces of multiplication X
(s)
1 = A

(s)
1 H such that

HW (X(su)
1) would be extremely large or small, where t is the number of selected

operands and is determined by z and the signal to-noise ratio (SNR) of the mea-
surement. Here, it is assumed that HW (X(su)

1) and the corresponding power
trace have a positive correlation. In other words, if the power consumption of
multiplication X

(su)
1 = A

(su)
1 H is extremely large (or small), HW (X(su)

1) would
be extremely large (or small).

Step (ii) builds an LPN problem in accordance with A
(su)
1 . Let hv(1 ≤ v ≤

128) be the v-th bit of H. Since the multiplication over GF (2128) can be repre-
sented by a set of 128 linear equations over GF (2), we can build linear equations
with variable hv if we know X

(su)
1 . However, in general, we cannot know the

secret value X
(su)
1 . Then, the attacker builds the linear equations by considering

X
(su)
1 as the 128-bit 1’s or 0’s vector according to the result of Step (i). Note

here that these equations include some errors (i.e., wrong equations) with a small
discrepancy resulting from the fact that X

(su)
1 is not exactly equal to the 1’s or

0’s vector. Thus, we can recover hv (i.e., H) by solving the LPN problem. Since
128 linear equations are obtained from A

(su)
1 , the LPN problem is composed of

128 × t equations.
Step (iii) finally solves the LPN problem. The solution of LPN problem (i.e.

the hash key hv) is denoted as a candidate value that satisfies most equations of
the LPN problem among all of the candidate values because values except for the
solution satisfy about half of the whole equations statistically. This indicates that
we can solve the LPN problem by counting the number of satisfied equations for
all the candidate values. However, the attacker cannot examine all the candidate
values by straightforward brute force since the variables of the LPN problem
are given by 128 bits. For reducing the computational complexity, the attack
of [2] consists of two steps: (a) to reduce the number of variables (i.e., bit-
length) based on a Generalized Birthday Paradox-like (GBP) algorithm [24], and

48 H. Oshida et al.

Table 1. Trade-offs between time and memory for solving LPN problem

Available memory 227 236 244

Computation time 259.31 251.68 250

(b) to enumerate the number of satisfied equations for each candidate value with
a Walsh-Hadamard transform (WHT). In Step (iii)(a), GBP algorithm reduces
the number of variables in the LPN problem by adding equations to each other
in a similar manner to Gaussian elimination. Here, the number of additions in
the GBP algorithm is limited according to the number of erroneous equations
in order to avoid diffusing the error too much. In other words, the number of
erroneous equations determines the complexity of solving the LPN problem. In
Step (iii)(b), WHT enables to perform the enumeration faster than a brute force.
However, the space and time complexities of WHT increase exponentially to the
bit-length of inputs. Table 1 shows an example of time/memory trade-offs for
solving the LPN problem with 220 traces under the condition that the signal-to-
noise ratio (SNR) of the measurement is given by 8, where “Computation time”
denotes the approximate number of arithmetic operations (i.e. addition,) and
“Available memory” denotes the approximate memory size in bytes. The SNR
and the number of traces also have an impact on the computational complexities
because the number of erroneous equations depends on them. Table 1 indicates
that this attack would be feasible for attackers who have sufficient traces and
memory even when the SNR of the measurement is not good (SNR = 8). See [2]
for details.

3 Masked GHASH

To perform the attack, the attacker should observe the power trace of the mul-
tiplication A

(s)
1 H to estimate HW (X(s)

1). A practical idea for a countermeasure
is to mask the multiplication of X

(s)
1 = A

(s)
1 H. Figure 2 shows the block dia-

gram of a straightforwardly masked GHASH, where M (s) denotes the 128-bit
mask value, X ′(s)

l (= X
(s)
l ⊕M (s)H l) is masked X

(s)
l , and U

(s)
l (= M (s)H l) is the

unmasked value of X ′(s)
l for the s-th encryption (1 ≤ l ≤ m + n + 1). Here, we

do not consider masking H because there is no known exploitable side-channel
leakage from a fixed value of H itself [18]. In addition, according to [8,15,19,22],
masking H requires non-negligible overhead compared to the above scheme.

The masked GHASH in Fig. 2 consists of a masked multiplication and an
unmasked value calculation in a similar manner to the typical masking schemes
for symmetric key ciphers. The multiplications A

(s)
1 H and (A(s)

1 H ⊕ A
(s)
2)H

should be masked because they can be represented by linear equations of hv.
Note that X

(s)
2 can also be exploited by the attack due to the linearity of the

squaring operation over GF (2128).
To evaluate the resistance of the above masked GHASH, we perform the

attack of [2] on an unmasked and a masked 8-bit multiplier by simulation.

On Masked Galois-Field Multiplication for Authenticated Encryption 49

X’X’X’X1

T
A2

(s)

H H H

A1
(s)

M (s)

(m||n)

Unmask value calculation

 Masked multiplication

(s) X2
(s) Xm+n+1

(s)

H H HM (s)

U1
(s) Um+n+1U2

(s) (s)

S

Fig. 2. Masked GHASH.

Figure 3 shows the measures to disclose for (a) the unmasked and (b) masked
multipliers, where the horizontal axis denotes the number of traces and the ver-
tical axis denotes the ratio of the number of satisfied equations to that of all
equations for all the candidate values to solve this LPN problem. Here, the ratio
for the correct key is denoted in black. While we can easily identify the correct
key from the unmasked multiplier in Fig. 3(a), we have difficulty in distinguish-
ing the correct and incorrect keys from the masked multiplier in Fig. 3(b). This
means that the attacker cannot recover the secret key from the masked multiplier
even if the attacker solves the LPN problem. Although we used 8-bit multipliers
in this experiment for simplicity, we would obtain the equivalent results for the
case of those with other bit-lengths, including 128 bits. Thus, we can confirm
the resistance of the above masked GHASH.

0.8

0.9

0.7

0.6

0.5

R
at

io
 o

f n
um

be
r o

f
sa

tis
fie

d
eq

ua
tio

ns

Number of traces
0

Correct key Wrong key

2.0 4.0 6.0 8.0 10.0
×104

(a)

0 4.0 10.02.0 6.0 8.0
Number of traces ×104

0.5

0.6

0.8

0.9

0.7

R
at

io
 o

f n
um

be
r o

f
sa

tis
fie

d
eq

ua
tio

ns Correct
Wrong key

key

(b)

Fig. 3. Measure to disclosure for (a) unmasked and (b) masked multipliers.

50 H. Oshida et al.

4 New Attack on Masked GHASH

In this section, we extend the attack of [2] for applying it to the above masked
GHASH. The attacker considered here can observe the sum of the power con-
sumption of the masked intermediate value X

(s)
1 and the unmasking value U

(s)
1

like the common higher-order DPAs on symmetric key ciphers. The main idea of
the new method is to select A(su)

1 with a very small HW (X(s)
1) according to the

observed power trace, whose variance depends on the unmasked intermediate
value (i.e., X(s)

1).
As a preliminary step, we describe the characteristics of the power traces

for the masked multiplication. Figure 4 shows the histogram of the simulated
power traces for an 8-bit masked multiplier (i.e., the sum of the power consump-
tion corresponding to both X ′(s)

1 and U
(s)
1), where the power consumption are

simulated 100,000 times and are classified by HW (X(s)
1). In addition, Table 2

shows the mean and variance of power consumption for each HW (X(s)
1). From

Fig. 4 and Table 2, we can find that the variance decreases linearly by HW (X(s)
1)

while the means are fixed for every HW (X(s)
1). In particular, the variance is the

largest when HW (X(s)
1) = 0. This result indicates that we can roughly estimate

HW (X(s)
1) even from the power traces of the masked multiplication.

In this paper, we assume two attack scenarios: known-input and chosen-
input. We first describe how to recover H in the known-input scenario (where the
attacker cannot control the input). The main difference between the conventional
and new attack is in Step (ii). In the case of masked multiplication, HW (X(s)

1)
would be very small if the corresponding power trace is extremely large or small
as shown in Fig. 4. Therefore, Step (ii) of our attack builds an LPN problem
by considering X

(su)
1 as the 128-bit 0’s vector according to A

(su)
1 . Note that

our attack considers X
(su)
1 as the 128-bit 0’s vector instead of 1’s, even if the

corresponding power trace is extremely large. Then, the attacker can recover H
by solving the LPN problem in Step (iii).

For validation, we perform the new attack using a smart card implementation
of the masked GHASH. Figure 5 shows the measure of disclosure in the case of
the new attack on the masked 8-bit multiplication in the same manner as Fig. 3.
The only correct key denoted by black has a higher ratio than any other wrong
keys, which means that the new attack can recover H even from the masked
multiplication. However, the correct key has a smaller peak than Fig. 3(a); that
is, the conventional attack on unmasked multiplication. This is because the new
attack exploits the power trace of the masked multiplication, and likewise, the
attacker has to select an A

(s)
1 where both HW (X ′(s)

1) and HW (U (s)
1) are very

small. In other words, the new attack requires more traces to select an optimal
A

(s)
1 with a small HW (X(s)

1) than the conventional attack because U
(s)
1 is con-

sidered to be noise. As a result, the peak of the correct key in Fig. 5 is smaller
than that in Fig. 3(a). This indicates that it is more time-consuming to solve
the LPN problem in the new attack than that in the conventional attack on the
unmasked GHASH.

On Masked Galois-Field Multiplication for Authenticated Encryption 51

0 2 4 6 8 14 1610 12
Power consumptions

30

10

20

0Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e 40

(a)

0 2 4 6 8 14 1610 12
Power consumptions

0

20

40

60

80
100

Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e

(b)

0 2 4 6 8 14 1610 12
Power consumptions

0

50

100

150

Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e

(c)

0 2 4 6 8 14 1610 12
Power consumptions

0

50

100

150

200

Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e

(d)

0 2 4 6 8 14 1610 12
Power consumptions

0

40

80

120

160

Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e

(e)

0 2 4 6 8 14 1610 12
Power consumptions

0

60

20

40

80

Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e

(f)

0 2 4 6 8 14 1610 12
Power consumptions

0Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e

5

10

15

20

(g)

0 2 4 6 8 14 1610 12
Power consumptions

0

3

1

2

4

Fr
eq

en
cy

 o
f o

cc
ur

re
nc

e

(h)

Fig. 4. Histograms of power consumptions of masked multiplication for different
HW (X

(s)
1) from (a) 1 to (h) 8.

The computational complexity of the new attack is evaluated in simulation.
The computational complexity for solving the LPN problem heavily depends on
the ratio of erroneous equations to all equations. The ratio then depends on
the number of traces and the SNR of measurement. In addition, the available

52 H. Oshida et al.

Table 2. Mean and variance of power consumptions for 8-bit masked multiplier

HW (X
(s)
1) 0 1 2 3 4 5 6 7 8

Mean 7.97 7.96 7.99 7.96 7.99 7.99 8.01 8.00 8.00

Variance 7.97 6.87 5.92 4.96 4.00 3.04 2.04 1.04 0.03

0 4.0 10.02.0 6.0 8.0
Number of traces ×104

0.5

0.6

0.8

0.9

0.7

R
at

io
 o

f n
um

be
r o

f
sa

tis
fie

d
eq

ua
tio

ns Correct
Wrong key

key

Fig. 5. Measure to disclosure for masked 8-bit multiplication.

memory also has an impact on the time complexity of solving the LPN problem.
Table 3 shows the time complexity of the new attack. Time complexity is the
approximate number of arithmetic operations. Here “Mem.” denotes the avail-
able memory and “N/A” denotes Not Attackable. Note that we cannot solve the
LPN problem when the SNR and the number of traces are too small due to the
limitation of GBP algorithm. However, from Table 3, we can find that the new
attack is feasible when the SNR of measurement is enough large (64∼). Thus,
we can confirm the effectiveness of the new attack on the masked GHASH.

Table 3. Time complexity of proposed attack

SNR Num. of traces: 218 Num. of traces: 222 Num. of traces: 224

Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem. Mem.

225 233 246 225 233 246 225 233 246

8 N/A N/A N/A N/A N/A N/A N/A N/A 86.0

32 N/A N/A N/A N/A N/A 81.3 N/A N/A 74.7

64 48.2 48.0 48.0 47.6 47.6 47.6 44.4 44.4 44.4

In order to validate the new attack, we perform an experimental evaluation
using masked AES-GCM implemented on a smart card with an 8-bit microcon-
troller. Figure 6 shows the overview of the experimental setup consisting of a
side-channel attack standard evaluation board (SASEBO-W) [1] equipped with
an ATmega163-based smart card, and an Agilent MSO6104A digital oscilloscope

On Masked Galois-Field Multiplication for Authenticated Encryption 53

for the power trace measurement. For the 8-bit microcontroller, we implemented
the masked 128-bit GF multiplication by the shift-and-add method, and then
calculated the SNR of the measurement according to [20]. Note that the 128-
bit leakage is simulated by summing the intermediate leakage on 8-bit parts of
the result. The SNR is 107.9, which means that even the masked AES-GCM
implemented on the smart card would be vulnerable to the new attack.

Oscilloscope
Agilent

MSO6104A

Smart card
ATmega 163

SASEBO-W

Fig. 6. Experimental setup and example of power trace with masked GHASH.

In addition, we briefly describe the new attack in the chosen-input scenario.
The chosen-input attacker can recover H with less computational complexity
for solving the LPN problem than the known-input attacker. Since the attacker
can observe the variance of the power traces for an X

(s)
1 by repeating encryp-

tion with a fixed input, the attacker can estimate HW (X(s)
1) for any HW (X(s)

1)
from the variance. Thus, the attacker can build an LPN problem with a less
erroneous equation in Step (ii) than that in the known-input scenario, and can
solve it with a computational complexity close to that of the conventional attack
on an unmasked GHASH as described in Sect. 2.2. In addition, it is possible to
combine the new attack and chosen-input attack in [2] for achieving a more
efficient attack on masked GHASH. Note that we omit the evaluation of compu-
tational complexity of the chosen-input attack because this is an easier attack
than the known-input variety, and the complexity would be similar to that of
the conventional attack [2] on an unmasked GHASH.

5 New Countermeasure

In this section, we present an efficient countermeasure against the above new
attack. Figure 7 shows the block diagram of the proposed countermeasure. Unlike
the conventional masked GHASH in Sect. 3, the proposed method has the two

54 H. Oshida et al.

following features: (i) to compute unmask value U
(s)
m+n+1(= M (s)Hm+n+1) from

Hm+n+1 calculated prior to masked multiplication, and (ii) to add an offset S to
masked intermediate values in order to prevent the attackers from using masked
intermediate value and unmask value. The conventional masking schemes (e.g.,
trichina gate, ISW, and TI) require the correctness property [19], which indi-
cates that the sum of all shares (i.e., masked and unmask values) should be
equal to the original value in order to defeat DPAs. However, in the case of
side-channel attack on GHASH, we should not care about the correctness prop-
erty because the proposed attack exploits the sum of HWs of masked values
and unmask values. In other words, the values in the form of [(secret inter-
mediate value) ⊕ (mask value)] and [(unmask value)] should not appear in
masked GHASH computation. Therefore, we first calculate Hm+n+1 and then
calculate the unmask value M (s)Hm+n+1. Thus, we have no longer unmask
values (i.e., U (s)

1 , U
(s)
2 , . . . , U

(s)
m+n) during the GHASH computation, which indi-

cates that the proposed attack is not applicable to the intermediate values
X

(s)
1 ,X

(s)
2 , . . . , X

(s)
m+n.

On the other hand, the output of masked GHASH in the above method is
given by X

′(s)
m+n+1 (= X

(s)
m+n+1 ⊕ U

(s)
m+n+1) and U

(s)
m+n+1, which can be targeted.

In particular, if the attacker can choose the inputs (i.e., Aj and Ci), the proposed
attack can be directly applied to the output of GHASH by letting the inputs be
zeros. To prevent such an attack, we initially add the subkey S to the interme-
diate value as an offset, and add S ⊕ SH to the output of each multiplication
for correcting the offset. As a result, the output of proposed masked GHASH is
directly given by S ⊕ X

(s)
m+n+1 ⊕ U

(s)
m+n+1 and U

(s)
m+n+1 (i.e., masked authentica-

tion tag and its unmask value, respectively) without computing the vulnerable
values given in the form of [(secret intermediate value) ⊕ (mask value)] and
[(unmask value)]. Note that S⊕X

(s)
m+n+1 is the output of AES-GCM, and there-

fore the output of the proposed masked GHASH is not exploitable by (univariate)
side-channel attacks.

The overhead of the proposed countermeasure is evaluated by the addi-
tional number of GF multiplication and addition operations. The computation
of Hm+n+1 requires the highest computational cost in the proposed masked
GHASH. The computation of Hm+n+1 with at least log(m + n + 1) multiplica-
tions is pre-computable, On the other hand, the initial addition of mask value
and offset, the computation of S ⊕SH, the correct of offset (i.e., the addition of
S ⊕ SH to masked values), the computation of M (s)Hm+n+1, and the unmask
of authentication tag should be performed on-the-fly, which require two addi-
tion, one addition and multiplication, m + n + 1 addition, one multiplication,
and one addition, respectively. Thus, the proposed masked GHASH requires
log(m + n + 1) multiplication operations for pre-computation of Hm+n+1 and
additional m + n + 5 addition and two multiplication operations for one-the-fly
computation in total. This indicates that the overhead of the masked GHASH is
relatively small compared to GHASH computation itself with m+n+1 addition
and m + n + 1 multiplication.

On Masked Galois-Field Multiplication for Authenticated Encryption 55

T
A2

(s)

H H H

A1
(s)

M (s)

(m||n)

Unmask value calculation

 Masked multiplication

H m+n+1M (s)

Um+n+1
(s)

S SH

S

S SH S SH

Fig. 7. Proposed countermeasure.

And if the attacker cannot choose the inputs in a practical attack scenario,
the overhead can be reduced by unmasking the mask value after the third mul-
tiplication (i.e., the computation of masked X

(s)
3 because there is no longer the

intermediate value represented by the linear equation of hv. The reduced masked
GHASH requires three multiplication for computing U

(s)
3 (= M (s)H3) and two

addition for initial masking and unmasking. Such reduced masked GHASH is
useful for devices where the overhead of the countermeasure can be critical if
the attacker cannot control the input.

6 Conclusion

This paper presented an SCA on masked GF multiplication in GHASH of AES-
GCM and its associated countermeasure. First, we described a masked GHASH
resistant to a state-of-the-art SCA. We then proposed an extended attack on
the masked GHASH, which exploits the variance of power consumption. We
confirmed that the proposed attack was feasible through an experimental eval-
uation using AES-GCM implemented on a smart card. Finally, we proposed an
efficient countermeasure against the proposed attack. In the future, a further
evaluation of the proposed countermeasure would be required. A design of an
AES-GCM processor with the proposed countermeasure would also be a part of
this future work.

Acknowledgment. We would like to show our greatest appreciation to Dr. S. Beläıd,
and Dr. B. Gérard for their valuable and insightful comments. This work has been
supported by JSPS KAKENHI Grants No. 17H00729.

56 H. Oshida et al.

References

1. Side-channel attack standard evaluation board (sasebo). http://www.rcis.aist.go.
jp/special/SASEBO

2. Beläıd, S., Coron, J.-S., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Prouff, E.:
Improved side-channel analysis of finite-field multiplication. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 395–415. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 20

3. Beläıd, S., Fouque, P.-A., Gérard, B.: Side-channel analysis of multiplications in
GF(2128). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
306–325. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 17

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for threshold
implementations illustrated on AES. IEEE Trans. Comput. Aided Des. Integr.
Syst. 34(7), 1188–1200 (2015)

5. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-disrespecting
adversaries: practical forgeny attacks on GCM in TLS. In: 10th USENIX Workshop
on Offensive Technologies (WOOT 16), pp. 1–13. USENIX Association (2016)

6. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2 10

7. Cryptographic competitions: Caesar: competition for authenticated encryp-
tion: security, applicability, and robustness (2016). https://competitions.cr.yp.to/
caesar.html

8. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

9. Jaffe, J.: A first-order DPA attack against AES in counter mode with unknown
initial counter. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727,
pp. 1–13. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-
2 1

10. Joux, A.: A authentication failures in NIST version of GCM (2006). http://csrc.
nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38 Series-Drafts/
GCM/Joux comments.pdf

11. Käsper, E., Schwabe, P.: Faster and timing-attack resistant AES-GCM. In: Clavier,
C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 1–17. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04138-9 1

12. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

13. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 12

14. McGrew, D.A., Viega, J.: The Galois/Counter Mode of operation (GCM) (2005).
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/gcm-revised-spec.pdf

15. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24, 292–321 (2011)

http://www.rcis.aist.go.jp/special/SASEBO
http://www.rcis.aist.go.jp/special/SASEBO
https://doi.org/10.1007/978-3-662-48324-4_20
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/978-3-662-45608-8_17
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-74735-2_1
https://doi.org/10.1007/978-3-540-74735-2_1
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/comments/800-38_Series-Drafts/GCM/Joux_comments.pdf
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/11545262_12
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/gcm-revised-spec.pdf

On Masked Galois-Field Multiplication for Authenticated Encryption 57

16. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760 28

17. Pessl, P., Mangard, S.: Enhancing side-channel analysis of binary-field multiplica-
tion with bit reliability. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp.
255–270. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29485-8 15

18. Poschmann, A., Moradi, A., Khoo, K., Lim, C.W., Wang, H., Ling, S.: Side-channel
resistant crypto for less than 2,300 GE. J. Cryptol. 24, 322–334 (2011)

19. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-
38162-6

21. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Design, Automation and Test in
Europe Conference and Exhibition (DATE), vol. 1, pp. 246–251 (2004)

22. Trichina, E.: Combinational logic design for AES SubBytes transformation on
masked data. Cryptology ePrint Archive, Report 2003/236 (2003). http://eprint.
iacr.org/2003/236

23. Ueno, R., Homma, N., Aoki, T.: Toward more efficient DPA-resistant AES
hardware architecture based on threshold implementation. In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 50–64. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 4

24. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 19

https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/978-3-319-29485-8_15
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
http://eprint.iacr.org/2003/236
http://eprint.iacr.org/2003/236
https://doi.org/10.1007/978-3-319-64647-3_4
https://doi.org/10.1007/978-3-319-64647-3_4
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19

Tools for Side-Channel Analysis

On the Use of Independent Component
Analysis to Denoise Side-Channel

Measurements

Houssem Maghrebi1(B) and Emmanuel Prouff2,3

1 Underwriters Laboratories, La Ciotat, France
houssem.maghrebi@ul.com

2 ANSSI, Paris, France
emmanuel.prouff@ssi.gouv.fr

3 CNRS, Inria, Laboratoire d’Informatique de Paris 6 (LIP6), Équipe PolSys,
Sorbonne Universités, UPMC Univ Paris 06, 4 place Jussieu, 75252 Paris, France

Abstract. Independent Component Analysis (ICA) is a powerful tech-
nique for blind source separation. It has been successfully applied to
signal processing problems, such as feature extraction and noise reduc-
tion, in many different areas including medical signal processing and
telecommunication. In this work, we propose a framework to apply ICA
to denoise side-channel measurements and hence to reduce the complex-
ity of key recovery attacks. Based on several case studies, we afterwards
demonstrate the overwhelming advantages of ICA with respect to the
commonly used preprocessing techniques such as the singular spectrum
analysis. Mainly, we target a software masked implementation of an AES
and a hardware unprotected one. Our results show a significant Signal-
to-Noise Ratio (SNR) gain which translates into a gain in the number of
traces needed for a successful side-channel attack. This states the ICA
as an important new tool for the security assessment of cryptographic
implementations.

Keywords: Independent Component Analysis · Side-channel analysis
Preprocessing · Noise filtering · Correlation Power Analysis
Boolean masking scheme

1 Introduction

Side-Channel Attacks. Side-Channel Attacks (SCA) are nowadays well
known and most designers of secure embedded systems are aware of them.
Since the first public reporting of these threats [37] in 1996, a lot of effort has
been devoted towards the research about side-channel attacks and the develop-
ment of corresponding countermeasures. SCA take advantage of the fact that the

H. Maghrebi and E. Prouff—This work has been done when the authors was working
at Safran Identity and Security.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 61–81, 2018.
https://doi.org/10.1007/978-3-319-89641-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_4&domain=pdf

62 H. Maghrebi and E. Prouff

power consumption (or the electromagnetic radiation) of a cryptographic device
depends on the internally used secret key. Since this property can be exploited
with relatively cheap equipment, these attacks pose a serious practical threat to
cryptographic embedded systems. To perform a successful side-channel attack
against embedded cryptographic implementations, several steps should be care-
fully followed [28]. First, the physical leakage (e.g. the power consumption or
the electromagnetic radiation) of the target device must be measured during
the processing of cryptographic algorithms. Second, it is common to preprocess
the collected measurements by applying for instance: traces alignment, noise
filtering, Points-Of-Interest (POI) selection and dimensionality reduction [41].
Finally, statistical distinguishers are applied on the (preprocessed) traces to dis-
criminate key hypotheses.

Preprocessing Tools in SCA Context. When looking at the broad litera-
ture of side-channel attacks, several techniques and tools have been proposed to
preprocess the measurements. The goal behind is to reduce the attack complex-
ity in terms of computational time and number of traces needed for a successful
attack. From the side-channel evaluation perspective, the preprocessing step is
of great importance especially when targeting modern embedded systems (e.g.
mobile phone) [24] and System-on-Chip (SoC) devices with high clock frequen-
cies [3,39].

We provide hereafter a brief overview of the most commonly used prepro-
cessing techniques in side-channel context:

– Traces synchronization: to conceal the traces misalignment typically
caused by inaccuracies in triggering the power measurements or by some
activated countermeasures (e.g. clock jitter), several works have proposed
to apply synchronization techniques like the alignment [41] (i.e. performing
a cross-correlation with sliding widow to search a pattern) or elastic align-
ment [52] based on the Dynamic Time Warping (DTW) algorithm.

– Noise filtering: several techniques have been applied to deal with traces
denoising. These techniques range from simple ones like averaging to sophis-
ticated ones like the use of the fourth-order cumulant [38] or the application
of some linear filters (e.g. Wiener filter or Kalman filter [48]). Recently at
CHES 2014, Del Pozo et al. have suggested using the Singular Spectrum Anal-
ysis (SSA) as a filtering technique to improve the efficiency of side-channel
attacks [42]. The results obtained on various scenario (e.g. unprotected and
masked software implementations of an AES and a Hardware implementa-
tion of PRESENT) have shown the overwhelming advantages of using this
technique. However, some (hyper) parameters (i.e. the choice of the window
length for constructing the trajectory matrix and the principal components
selection for the reconstruction [42]) are ad-hoc and thus, if not properly
executed could diminish the associated gains of SSA.

– POI selection: the computation complexity of side-channel attacks can be
reduced by selecting a small subset of time samples where leakage prevails. To
achieve this goal, several works have proposed some preprocessing techniques

On the Use of Independent Component Analysis 63

amongst which we identify the Sum Of Squared pairwise Differences (SOSD)
and the Sum Of Squared pairwise T-differences (SOST) [27] based on the
T-Test algorithm [19,47] to choose the most relevant time samples. Other
techniques exist and are rather based on SNR computation [41], variance
tests [7], correlation and mutual information [20,26].

– Dimensionality reduction: the most commonly used methods for dimen-
sionality reduction in side-channel context are the Principal Component Anal-
ysis (PCA) and the Linear Discriminant Analysis (LDA) [2,4,14,49] or the
Kernel Discriminant Analysis (KDA) [10]. While the first provides a set of
vectors (aka the principal components) onto which the data are first projected
and then only few projections (these that maximize the variance between the
mean leakage traces) are kept, the second one projects the data on the direc-
tions that maximize the ratio between inter-class and intra-class variances.
So, reducing the data complexity aims at decreasing the computation time
during the key recovery phase.

Our Contribution. By contrast, the denoising techniques are in general dis-
cussed less, despite their importance in reducing the complexity of side-channel
attacks especially for Common Criteria evaluation [17]. In this paper, we pro-
pose the use of the Independent Component Analysis (ICA) [15,16,36] to denoise
side-channel measurements. This technique is widely applied for Blind Source
Separation (BSS) (see e.g. [32] for an application of the ICA in reducing the noise
in natural images) and aims at finding a linear representation of the processed
multivariate data so that the resulting components are statistically independent.
To the best of our knowledge this is the first complete attempt to apply ICA
as a preprocessing technique in side-channel context. Actually, in [23] Gao et al.
have proposed a new profiled attack based on the ICA and they claimed that it
could be used to improve the signal-to-noise (SNR) ratio, but they left this for
further research. In another paper [8], Bohy et al. have also suggested a similar
application but they didn’t provide a practical framework on how to efficiently
apply it.

Throughout several practical experiments (see Sect. 4), we argue that ICA
outperforms the commonly used denoising methods in side-channel context and
leads to a significant SNR gain which translates into a significant advantage in
terms of number of traces needed to succeed an attack. For instance, we represent
in Fig. 1 the results of a first-order Correlation Power Analysis (CPA) attack [9]
when targeting an unprotected software implementation of the AES running on
an ATMega163 micro-controller. Several denoising techniques have been applied
for the sake of comparison.

From Fig. 1, one can conclude that the gain in terms of number of traces
needed to succeed the CPA attack, with respect to our specific experiments, is
about 120% compared to the SCA state-of-the-art filtering techniques.

Moreover, we compare ICA to the well-known preprocessing techniques used
in SCA context to ensure dimensionality reduction and POI selection (i.e.
PCA [49], LDA [14] and the Projection Pursuit (PP) [22]). Despite the fact that

64 H. Maghrebi and E. Prouff

Fig. 1. Evolution of the correct key rank (y-axis) according to an increasing number of
traces (x-axis) for several filtering techniques when targeting an unprotected software
implementation of the AES.

these methods are applied for different purposes than measurements denoising,
we pinpoint several similarities with ICA that we discuss in Sect. 2.4.

2 Independent Component Analysis

2.1 Notations

In the rest of the paper, bold block capitals X denote matrices and bold lower
cases x denote real row vectors. The identity matrix of dimension n is denoted
by In. The ith row vector of a matrix X is denoted by xi, while its ith coordinate
is denoted by x[i]. The transpose and the inverse of a matrix X are respectively
denoted by XT and X−1. The capital letters X are used for random variables
while the lower-case letter x for their realizations. The mean, the variance and
the entropy of a random variable X are respectively denoted by E[X], V[X] and
H[X]. We any (n,m)-matrix M, we shall denote by E[M] the mean of the matrix
when drawn uniformly at random in its definition set. The dot/inner product
and the matrix product shall be denoted by ·, while the product over R and the
product between a scalar and a vector shall be denoted by ×.

2.2 Overview of ICA

ICA [15,16,36] is one of the most widely used techniques for blind source sep-
aration [44]. It assumes that the observed data are drawn from multiple source
signals and aims at recovering these individual signals. A typical example is the
so-called cocktail party problem: in a room, multiple people are speaking simulta-
neously while there are some recorders in different places of the room capturing
the superimposition of their voices. The objective is to recover the speech of each
individual speaker from the recorded voices.

On the Use of Independent Component Analysis 65

We present hereafter a mathematical model of this problem. Let xi and
si respectively denote an observation and a source p-dimensional vector over
R. We define X = (xi)1≤i≤n and S = (si)1≤i≤n as respectively the so-called
observations (n, p)-matrix and the so-called sources (n, p)-matrix both defined
over R

n×p such that:
X = A · S, (1)

where A = (ai,j)1≤i,j≤n is the so-called mixing matrix defined over Rn×n. Hence,
(1) implies that the observations (e.g. the recorded speech) are considered as a
linear combination of the sources (e.g. the individual voice of each speaker). For
instance, the ith p-dimensional row vector of X rewrites:

xi =
n∑

j=1

ai,j × sj . (2)

Remark 1. In the rest of this paper, we will often consider the xi and sj as
random variables drawn uniformly from their respective definition set.

The goal of ICA is to solve the following problem:

Problem 1. Approximate the unknown matrix A in order to recover the latent
signals sj from the observable data X.

To address Problem 1, the ICA first looks for an estimation Ŵ of the so-
called unmixing matrix W defined over Rn×n such that W = A−1 and secondly
recovers an approximation of the sources matrix by computing:

Ŝ = Ŵ · X.

The ICA asymptotically succeeds in solving Problem 1 (i.e. Ŝ = S) if the two
following assumptions are satisfied [34].

Assumption 1 (Statistical independence). The source signals sj are mutu-
ally independent.

Assumption 2 (Non-Gaussian distribution). The source signals sj have
non-Gaussian distributions.

Remark 2. Remarkably, Assumption 2 can be relaxed by allowing at most one
source signal to have a Gaussian distribution [34]. This is an important remark
in our case study since, as we will see in the following, one of the source sig-
nals corresponds to a noise observation (often assumed to have a Gaussian
distribution).

From the ICA model in (1), the following ambiguities may already be dis-
cussed:

66 H. Maghrebi and E. Prouff

– Whitening: it is impossible to estimate the original variance and sign of
the source signals. Indeed, since both S and A are unknown, then any scalar
multiple of one of the sources sj can always be cancelled by dividing the
corresponding column vector aj of A by the same scalar; namely, for every
α ∈ R the relation X = (A · α−1) · (α · S) holds.

As a consequence, and unlike PCA which focus on the variance maximiza-
tion problem to find the optimal projections of the data [35], ICA exploits
higher-order statistical moments to recover the sources sj [34]. Indeed, before
performing ICA, the observations X are centered and whitened, that is, mod-
ified to have identity covariance matrix [34]. This is typically done by apply-
ing first the Eigen-Value Decomposition (EVD) of the covariance matrix
E[X · XT] defined by E[X·XT] = E·D·ET where E and D denote respectively
the orthogonal matrix of eigenvectors and the diagonal matrix of eigenvalues.
Then, the whitened observations are defined as X̃ = E ·D1/2 ·ET ·X and one
can easily check that the covariance matrix E[X̃ · X̃T] is the identity matrix
In.

– Order invariant: it is impossible to determine the order of the source signals.
In fact, since both S and A are unknown, then any permutation of the source
signals could always be canceled by applying the inverse permutation on the
mixing matrix A. Let P be a permutation matrix defined over R

n×n, then
from (1) we have X = (A · P−1) · (P · S). Consequently, we shall say that
Ŵ is a good estimation of W if there exists a matrix Q permutation of the
identity matrix In such that Ŵ = Q · W.

2.3 ICA Estimation

Let us denote by yj the jth p-dimensional row vector ŵj ·X where ŵj is the jth

row of Ŵ. Then, as a direct consequence of (1) and after denoting zj = ŵj · A,
for j ∈ [1;n] we have:

yj =
n∑

i=1

zj [i] × si. (3)

Thus, yj is a linear combination of the source signals si. If a single coefficient
zj [i] in (3) is non-zero then the sum contains a single signal si and therefore yj

corresponds to a row of the signal matrix S we want to recover (equivalently, ŵj

corresponds to one row of the unmixing matrix W). In other terms if for every
j ∈ [1;n], the sum in (3) contains a single signal si then Ŵ is a good estimation
of W modulo a permutation of the rows order.

Since the si are mutually independent (Assumption 1), this linear combi-
nation yj tends towards a Gaussian distribution when the number of non-
zero coefficients zj [i] increases (by Central Limit Theorem). Conversely, due to
Assumption 2 the vector yj , viewed as a random variable, becomes least Gaus-
sian when the number of non-zero coefficients zj [i] tends towards one. Such
a non-Gaussianity of a probability density function (pdf) may for instance be
measured thanks to the Kurtosis moments. Based on this remark, the core idea

On the Use of Independent Component Analysis 67

of ICA is to find, among all possible estimations ŵj , the one that maximizes
the non-Gaussianity of ŵj · X. Such a vector would necessarily correspond to
a vector z which has a single nonzero component and the corresponding vector
yj = ŵj · X should therefore equal one of the source signals si.

More formally, ICA is an optimization algorithm that aims (1) at estimating
the unmixing matrix W by maximizing the non-Gaussianity of yj = ŵj · X,
and (2) at afterwards deducing the sources signals. In fact, the optimization
landscape for non-Gaussianity in a n-dimensional space of vectors ŵj ∈ R

p has
2n local maxima (two for each source signal corresponding to +si and −si). To
find all independent source signals, we need to find all these local maxima.

2.4 Differences Between ICA, Projection Pursuit, PCA and LDA

The Projection Pursuit [22] is a statistical technique that aims at finding the
most informative projections of a highly multivariate data. It has been demon-
strated in [29] that the most interesting directions are those that show the lowest
Gaussianity and this is exactly what the ICA estimation does. Thus, both tech-
niques are remarkably similar and optimize the same criterion despite the fact
that they have been developed independently by the Statistics and the Signal
Processing communities [34]. Meanwhile, several major differences between these
techniques can be pinpointed:

– PP aims at reducing the dimension of the processed data such that only
few (i.e. mainly one or two) directions are preserved, whereas ICA aims at
identifying all source vectors (i.e. all directions) with the same dimension as
the processed data.

– Unlike ICA, PP makes no assumption about the source signals. Said differ-
ently, when ICA assumptions are satisfied, then its estimation returns the
independent components of the processed data. Otherwise, what we obtain
by applying ICA is the projection pursuit directions.

Regarding PCA [35] and LDA [21], which are widely used in the SCA con-
text for dimensionality reduction and measurement processing [2,4,14,49], sev-
eral important differences may be noticed. In fact, while PCA aims at finding
the most interesting orthogonal projections that maximize the variance of the
data, LDA seeks for some directions that maximize the inter-class variance and
minimize the intra-class variance of the data. Hence, both techniques exploit
the second-order statistic of the processed data unlike ICA that aims rather at
estimating higher-order statistics such as the fourth-order cummulant (i.e. the
Kurtosis) by finding the interesting projections (not necessarily orthogonal) that
minimize the Gaussianity of the components [34]. So, PCA and LDA are suitable
when the source signals are Gaussian ones and when the signal variance is infor-
mative. However, when dealing with strongly non-Gaussian data, the variance
may not be the statistic of interest compared to higher-order moments. Indeed,
in the ICA model, all timing samples are a priori equally important unlike
for PCA and LDA where many components will be discarded since judged less

68 H. Maghrebi and E. Prouff

informative. Actually, we think that ICA and PCA/LDA are not competitors but
complement each other; applying a dimensionality reduction technique (PCA or
LDA) after processing ICA to filter the SCA traces may increase the success of
the attack.

2.5 ICA Methods

Several algorithms were developed to perform the ICA estimation. We review in
this section the most popular ones.

InfoMax. It is based on a neural network approach which tries to maximize
the entropy of the network’s output [5,43]. Let us view the observations’ matrix
X ∈ R

n×p as an input layer, then the p-dimensional rows yj , j ∈ [1;n], of
the matrix Y defined in Sect. 2.3 satisfies yj = fj(ŵj · X), where fj is some
non-linear function and the vectors ŵj can be viewed as the weight vectors of
the neurons. So, finding the weight matrix Ŵ = (ŵj)1≤j≤n that maximizes the
negentropy of Y for a well chosen set of fj functions leads to an ICA estimation.
The InfoMax approach is equivalent to the maximum likelihood estimation, not
detailed in this work for lack of room, which could be also used to estimate the
ICA model [12].

FastICA. It is the most commonly used approach, based on the maximization
of the negentropy, to estimate the ICA [31,33]. Indeed, it is faster than the
conventional ICA algorithms and can be used to perform projection pursuit as
well [30].

Joint Approximate Diagonalization of Eigenmatrices (JADE). It is
based on the diagonalization of the cumulant matrices [13]. In fact, the diagonal
elements of a cumulant matrix characterize the distribution of a signal, while the
off-diagonal elements indicate the statistical dependencies between signals. So,
JADE algorithm uses the second and the fourth cumulant matrix. First, the data
are transformed into a reduced set of PCA loadings (i.e. a diagonalization of the
second-order cumulant matrix with a selection of the interesting directions) that
are then whitened to have equal variances. Second, the fourth-order cumulant
matrix is diagonalized via a rotation matrix (using the Jacobi algorithm) yielding
the mixing matrix.

3 Filtering Leakage Using ICA

3.1 SCA Model vs. ICA Model

In a side-channel context, the matrix of observations X ∈ R
n×p in (1) is assumed

to be related to the manipulation of a sensitive variable Z ranging over some
finite set. We recall that the values taken by Z correspond to the output of

On the Use of Independent Component Analysis 69

a processing ϕ(m, k) involving a plaintext m and a secret parameter k. The
dimension n of X corresponds to the number of observations of the manipulation,
while p denotes the length of each observation. It is often assumed that an
observation x, viewed as a random variable defined over Rp, is well modelled by
a linear combination of two mutually independent parts:

– a part Z �→ D(Z) ∈ R
p which is a deterministic function representing the

un-noisy leakage on Z during its manipulation by the system and,
– a random part r representing the noise in the observations and being associ-

ated with a Gaussian distribution N (0,Σ) (in our case we make the classical
assumption that Σ is diagonal which essentially implies that the instanta-
neous noises in the observation vectors are mutually independent).

Hence, the noisy observation of the manipulation of Z can be associated with a
random variable x defined over R

p as:

x = a1 × D(Z) + a2 × r, (4)

where (a1, a2) are some weighting coefficients defined over R
2 (and a2 is often

assumed to be equal to one). After assuming that the n rows of X are n indepen-
dent realizations of the random variable x defined in (4), it may be checked that
X fits well the ICA model defined in (1) and (2) by setting D(Z) = s(m)

1 and
r = s2.1 So, the ICA noise reduction technique described in previous sections
should allow for an easy detection of the interesting components.

Remark 3. The deterministic part D(Z) is often assumed to be well estimated
by a linear combination in R of the bits of Z. Under this modelling, the different
sources si are no longer 2 but log2(Z) (i.e. composed of the bits of Z and the
noise). In this context, the ICA could be used to isolate the noise signal from
the other ones.

Remark 4. We stress the fact that one can extend the leakage model defined in
(4) to the following one:

x = a1 × D(Z1) + a2 × D′(Z2) + a3 × r,

where (a1, a2, a3) is a triplet of weighting coefficients defined over R, where
D(Z1) is the deterministic part of the targeted variable Z1 and where D′(Z2) is
the deterministic part of a non-targeted variable Z2 (aka algorithmic noise). This
model can be used, for instance, when an adversary tries his attack on several
SBoxes processed in parallel in a hardware setting context.

At this point, it must be observed that, unlike SSA (which transforms indi-
vidual traces [42]), the ICA cannot be applied on a single observation in our
context (i.e. on matrices X with a single row) since at least n > t measure-
ments are generally required to recover t source signals [25]. So according to

1 Note that we used the notation s
(m)
1 to alert on the fact that the signal s1 corresponds

to the plaintext m.

70 H. Maghrebi and E. Prouff

our modelling where t = 2, at least two measurements are required, for each
possible value z of Z (or equivalently for each possible m), to recover the power
consumption of D(Z = z) = D(ϕ(m, k)). Let us assume that we collected two
such power observations by executing the processing two times for a randomly
chosen plaintext m. We then get a matrix of observations X composed of two
rows x1 and x2) which are realizations of the same random variable defined in
(4) and hence satisfy:

x1 = a1,1 × D(Z = z where z = ϕ(m, k))︸ ︷︷ ︸
realization of s

(m)
1

+a1,2 × r1︸︷︷︸
realization of s2

(5)

and

x2 = a2,1 × D(Z = z where z = ϕ(m, k))︸ ︷︷ ︸
realization of s

(m)
1

+a2,2 × r2︸︷︷︸
realization of s2

(6)

with r1 and r2 being two realizations of the same noise random variable r ∼
N (0,Σ). As recalled in Sect. 2, the ICA technique recovers the source signals
D(Z = z) and r by estimating the unmixing matrix W = A−1 s.t.

A =
(

a1,1 a1,2

a2,1 a2,2

)
.

3.2 First Approach to Apply ICA in SCA Context

To apply ICA for denoising side-channel measurements, a first approach may
consist in using two identical probes to capture the leakage during the execu-
tion of a cryptographic implementation. So, for each execution (e.g. a plaintext
encryption) two measurements (one per probe) are collected satisfying (5) and
(6). Then, an ICA algorithm is applied to recover the noise-free signal.

To efficiently apply this approach, both probes must be positioned above the
same location of the chip surface to collect the same activity. We believe that
this constraint is sometime hard to fulfill in practice and is also highly dependent
on the size of the targeted chip under evaluation.

3.3 Second Approach to Apply ICA in SCA Context

We present in Algorithm 1 a second framework for using the ICA technique in
order to filter the side-channel measurements.

Our algorithm takes as input the matrix of observations X (with row ele-
ments denoted by xi) and the corresponding set of plaintexts (or ciphertexts)
M = {mi} used during the execution of the targeted cryptographic operation.
The goal is to output a set of noise-free measurements. To do so, for each pos-
sible value m of the plaintext we collect all2 the observations xi that have been
2 Another option could consist in only using a few number of measurements (e.g. 100)

for each value m in order to speed up the execution of our algorithm.

On the Use of Independent Component Analysis 71

Algorithm 1. Denoising side-channel traces using ICA technique
Require: X: the noisy measurements dataset and M: the set of plaintexts (or cipher-

texts) m such that Z = ϕ(m, k) for some public function ϕ and some target secret
k

Ensure: filtered measurement dataset
1: for each value m do
2: From X take the observations xi that have been captured during the processing

of m and store them in a new observation matrix X(m)

3: end for
4: for each value m do
5: Apply ICA on X(m) to remove the noise signal (s2) and keep the genuine signal

(s
(m)
1)

6: In X(m), replace each row by s
(m)
1

7: end for
8: return (X(m))m

captured during the processing of this value (i.e. for which mi = m) and we
store them in a new observations matrix X(m). Then, for each of the X(m), one
of the ICA methods described in Sect. 2.5 (e.g. FastICA or JADE) is applied to
recover the source signals: the noise s2 and the genuine signal s(m)

1 . At this step,
the genuine signal can be identified by mere visual inspection and/or by fixing
a threshold to distinguish it from the noise signal3.

Actually, this phase is quite essential since as discussed in Sect. 2.2 one of
the ambiguities of the ICA technique is that the recovered source signals are
outputted in a random order. Then, the noise component s2 is removed and
only the genuine signal s(m)

1 is kept. Finally, we replace all the measurements
in X(m) that have been captured during the processing of m by the noise-free
signal s(m)

1 . Once, we have performed this procedure for all m values, we obtain
a set of filtered measurements.

In the sequel, we will rather use the second approach for applying the ICA
technique. Our choice was motivated by the fact that it is faster than the first
approach and requires fewer measurements.

4 Practical Experiments

4.1 Experimental Setup

Targeted Implementations. To evaluate the efficiency of the ICA framework
described in Sect. 3.3, we have targeted two different implementations: (1) a

3 This threshold is defined for one m value (e.g. m = 0) and then applied for the
other ones. We stress the fact that other approaches could be applied to distinguish
the genuine signal from the noise. For instance, one can (1) compute the correlation
between the noisy signal and the obtained source signals or (2) apply a dimensionality
reduction algorithm (e.g. PCA or LDA).

72 H. Maghrebi and E. Prouff

software AES implementation first unprotected and secondly protected by first-
order Boolean masking and (2) a hardware unprotected one.

While for the software unprotected AES implementation (running on an
ATMega163 micro-controller) the power traces were acquired using our in-house
equipment4, we used the power measurements publicly provided in the website
of DPA-contest V2 [51] for the hardware one. The rationale behind using the
DPA contest V2 campaign is twofold: (1) to evaluate the efficiency of ICA on
a very noisy setup [51] and (2) to ease the reproduction of our results by the
side-channel community. Finally, our first-order Boolean masking scheme was
implemented on the ChipWhisperer-Lite Board (CW1173) [45] and the power
traces were collected using our in-house equipment. The goal is to assess the
efficiency of ICA technique in the presence of side-channel countermeasures.

Denoising Setup and Evaluation Metric. Regarding the ICA methods, we
have considered mainly the FastICA and the JADE algorithms. The source code
of these algorithms are publicly available [1,11]. We have just adapted them
to our context (i.e. by setting the number of the output components and the
dimensions of the processed traces). Once, the traces have been filtered using our
framework described in Algorithm 1, we conducted a CPA attack over several
independent sets of traces. Then, we have computed the averaged rank of the
correct key among all key hypotheses (aka the guessing entropy metric [50]).

ICA vs. State-of-the-art Denoising Techniques. For the sake of compari-
son, we have applied the averaging method5, the Wiener filter [48] and the SSA
technique to filter the power traces of both AES implementations6. Moreover,
we have performed the CPA attack on noisy traces without preprocessing. The
goal was to evaluate the efficiency of ICA w.r.t. the commonly used filtering
techniques in side-channel context.

4.2 Unprotected AES Implementation on ATMega163

To fulfill the requirement pointed out in the second part of Sect. 3.1 to apply the
ICA technique, we chose to repeat each acquisition two times with the same AES
input. We got 10.000 power traces, aka 5.000 pairs of acquisitions. Then, for a
sample size n ranging from 50 to 1000, we ran Algorithm1 for a subset of our
acquisitions such that |X| = |M| = n and we filtered the traces by applying one
of the denoising techniques described in Sect. 2.5. To quantify the mean behavior
of the algorithm, we repeated each experiment 100 times (for each sample size n

4 A LeCroy WavePro 725Zi oscilloscope with maximum 40 GS/s sampling rate and
an active differential probe Lecroy ZD1500 have been used to measure the voltage
drop over a 1Ω resistor in the VDD path.

5 It merely consists in replacing the fifth step in Algorithm 1 by an averaging of the
traces in X(m).

6 We recall that other filtering techniques exist, e.g. the wavelet [18], but are not
considered in our work since are heuristic methods.

On the Use of Independent Component Analysis 73

and each denoising technique). For an illustration, an exemplary power trace of
the implementation and the source signals (i.e. the noise and the filtered trace)
recovered by the FastICA method are shown in AppendixA.

Regarding the SSA, we followed the approach described in [42]: (1) the win-
dow length WL was fixed by applying the rule-of-thumb WL = [log(n)c] with
c = 1.5, and (2) during the reconstruction phase only the second component
is used. In fact, it was argued in [42] that the first component usually corre-
sponds to low-frequency noise and thus should not be considered during the
reconstruction phase. This observation was confirmed during our experiments.

The efficiency of a CPA attack targeting the first AES SBox7 after each
filtering technique is depicted in Fig. 1 with respect to the number of traces
before denoising (as described below, the CPA efficiency has been averaged over
100 experiments).

From Fig. 1, the following observations may be emphasized:

– the CPA attack performs well when the traces are filtered using ICA tech-
niques (i.e. either FastICA or JADE). In fact, one can see that less traces are
needed to disclose the good value of the key when ICA is applied to filter the
traces.

– when the SSA is used to denoise the measurements, the gain in terms of
SNR is low (compared to the ICA techniques) which translates into a small
(or even no) gain in terms of number of traces needed to discover the key
with respect to those needed when no preprocessing is done. This can be
explained by the fact that SSA is a heuristic tool and that the results are
highly dependent on the choice made to set the window length and/or to
select the components standing for the useful information. Indeed, in [42],
authors have argued that the selection of the most informative components
may be simply done by a mere visual inspection of the obtained singular
spectrum. However, this ad-hoc approach is subject to errors due to biased
selection of the appropriate components. The same conclusion holds for the
choice of the window length for constructing the trajectory matrix. Despite
the fact that some rules and guidelines exist, the optimal choice is highly
dependent on the processed data [53].

– regarding the use of the averaging method and the Wiener filter to denoise the
traces, the related attack results are less efficient compared to those obtained
when ICA is applied.

4.3 Unprotected AES Implementation on FPGA

For this second scenario, we performed a similar evaluation with the minor dif-
ference that we have first estimated the SNR of the traces before and after
applying the FastICA technique for denoising. This choice was motivated by
the fact that the DPA contest V2 traces are more noisy compared to these

7 We stress the fact that same results were obtained when targeting the other SBoxes
and are not shown here for lack of room.

74 H. Maghrebi and E. Prouff

acquired on the ATMega163 micro-controller. Let us recall that the leakage sat-
isfies x = a1 × D(Z) + a2 × r, then it is well known that the instantaneous
SNR (i.e. the SNR for each of p coordinates of the observation vector) is a
p-dimensional vector such that its ith coordinate is defined as:

SNR[i] =
VZ [E[x[i] | Z]]
EZ [V[x[i] | Z]]

. (7)

Remark 5. By definition of x, it may be checked that, for every z, E[x | Z = z]
equals a1×E[D(z)]+a2×E[r], and hence that VZ [E[x[i] | Z]] equals a2

1V[D(Z)[i]]
if the noise r is independent of Z (which are classical and reasonable assump-
tions). On the other hand, it can be checked that, for every z, V[x[i] | Z = z]
equals a2

2V[r[i]]. Consequently, (7) is equivalent to SNR[i] = a2
1

a2
2

V[D(Z)[i]]
V[r[i]] , under

the independent and additive noise assumption. This can be rephrased as the
ratio between the variance of the information and the variance of the noise.

Remark 6. In [6], the authors propose to use the Normalized Inter-Class Vari-
ance (NICV) instead of the SNR. This essentially replaces the denominator in
(7) by V[x[i]], that is a2

2V[r[i]] + a2
1V[D(Z)[i]] since the noise is considered inde-

pendent of Z. Eventually, this gives NICV[i] = 1
SNR[i]+1 .

So, to obtain a first intuition about the efficiency of the ICA as a denoising
technique we have compared the obtained SNR with and without applying the
FastICA. For the sake of comparison, we also added the SNR when the averaging
technique is applied. The results are shown on Fig. 2.

Fig. 2. Signal-to-Noise Ratio estimation without filtering (left) and when applying the
FastICA and averaging techniques (right).

From Fig. 2, one can conclude that the SNR gain is close to a factor of 100. In
general, higher SNR should translate into a successful attack requiring much less
traces. To confirm this claim, we have performed a CPA attack by targeting the
output of the first AES SBox. For the sake of comparison, we considered the same
filtering techniques as those used in the first case study (Sect. 4.2). Regarding

On the Use of Independent Component Analysis 75

the SSA, the window length has been set using the previously described rule-
of-thumb and only the second component was selected for the re-construction
phase. The attack results for each filtering technique are depicted in Fig. 3 (left-
hand side).

Fig. 3. Evolution of the correct key rank (y-axis) according to an increasing num-
ber of traces (x-axis) for each filtering technique when targeting the first AES SBox
(unprotected implementation at left-hand side and protected one at right-hand side).

As expected the connection between the SNR gain and the number of traces
needed for a successful attack is confirmed. In fact, when applying the FastICA
technique less traces are needed to recover the good value of the key (i.e. 1.000
traces instead of 3.000 for the non-preprocessed traces). Actually, in several
works [40,41] the relation between the number of traces required to achieve 90%
of success rate for the CPA attack (N90%) and the SNR has been exhibited and,
for every coordinate i ∈ [1; p], it rewrites:

N90% ≈ 2β2
90%

SNR[i]
, (8)

where β90% is a quantile of a normal distribution for the 2-sided confidence
interval [41]. So, (8) confirms our experimental findings, the higher the SNR is,
the less traces are required to succeed a CPA attack. Regarding the SSA, the
averaging method and the Wiener filter, the gains are not that large.

4.4 Masked AES Implementation on the ChipWhisperer-Lite
Board (ATMega128)

We focus in this section on the practical evaluation of the ICA against a first-
order Boolean masking scheme8 implemented on the ChipWhisperer-Lite board

8 Particular attention has been paid on the implementation to ensure that no first-
order leakage occurred.

76 H. Maghrebi and E. Prouff

(CW1173) [45]. To do so, we have acquired a set of power measurements standing
for the loading of the masks and the processing of the first AES round. For
our attack phase, we assumed that the leaking points related to the loading
of the masks are known. Then, we have performed a second-order CPA attack
with centered product as a combination function [46]. The attack results when
applying different filtering techniques are depicted in Fig. 3 (right-hand side).

From Fig. 3 (right-hand side), one can conclude that the FastICA is more
efficient than the other tested denoising techniques. Noticeably, the gain in terms
of number of traces needed to succeed a second-order CPA attack is not very
high (as it was the case for the second scenario)9. This could be explained by
the fact that the noise level of the ChipWhisperer-Lite board is quite low.

5 Conclusion and Perspectives

In this work, we proposed an in-depth study of the application of ICA in side-
channel context. In particular, we discussed the relationship between the ICA
and the commonly used preprocessing techniques (e.g. PCA, LDA and projec-
tion pursuit). Then, we proposed a framework to use the ICA as a preprocess-
ing technique to reduce the noise level of side-channel measurements. Finally,
we validated its interest in three different scenarios. Namely, we considered an
unprotected software AES implementation, the noisy traces of the DPA contest
v2 and a first-order Boolean masking implementation. The obtained results have
shown that the ICA introduces a significant SNR gain which implies a gain in
terms of the number of measurements required to succeed a side-channel attack.

9 On other protected implementations, we observed that the gain with ICA techniques
is more important. However, we cannot communicate information related to these
implementations and the tested chips since these are confidential IPs.

On the Use of Independent Component Analysis 77

A Example of Trace Denoising Based on the FastICA
Method

For illustration, an exemplary power trace and the resulting filtered trace after
applying ICA are shown in Fig. 4.

(a) Original trace

(b) Noise signal

(c) Filtered trace

Fig. 4. Unprotected AES implementation: original power trace, noise signal and filtered
trace.

78 H. Maghrebi and E. Prouff

References

1. Python implementation of FastICA algorithm. http://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.FastICA.html

2. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

3. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol.
9293, pp. 599–619. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48324-4 30

4. Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA:
first results of using principal component analysis for extensive power analysis.
In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383–397. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6 24

5. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind sepa-
ration and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

6. Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: NICV: normalized inter-class vari-
ance for detection of side-channel leakage. In: International Symposium on Elec-
tromagnetic Compatibility (EMC 2014/Tokyo). Session OS09: EM Information
Leakage. Hitotsubashi Hall (National Center of Sciences), Chiyoda, Tokyo, Japan.
IEEE, 12–16 May 2014

7. Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: Side-channel leakage and trace
compression using normalized inter-class variance. In: Proceedings of the Third
Workshop on Hardware and Architectural Support for Security and Privacy, HASP
2014, pp. 7:1–7:9. ACM, New York (2014)

8. Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.: Principal and independent com-
ponent analysis for crypto-systems with hardware unmasked units. In: Proceedings
of e-Smart 2003 (2003)

9. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

10. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information
extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.)
CARDIS 2016. LNCS, vol. 10146, pp. 1–22. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54669-8 1

11. Cardoso, J.F.: Python and Matlab implementations of JADE algorithm. https://
github.com/camilleanne/pulse/blob/master/jade.py and http://perso.telecom-
paristech.fr/∼cardoso/Algo/Jade/jadeR.m

12. Cardoso, J.F.: Infomax and maximum likelihood for blind source separation. IEEE
Sig. Process. Lett. 4(4), 112–114 (1997)

13. Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE
Proc. F - Radar Sig. Process. 140(6), 362–370 (1993)

14. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

15. Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3),
287–314 (1994)

16. Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Com-
ponent Analysis and Applications. Academic Press, Cambridge (2010)

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-642-27954-6_24
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1
https://github.com/camilleanne/pulse/blob/master/jade.py
https://github.com/camilleanne/pulse/blob/master/jade.py
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
https://doi.org/10.1007/978-3-319-08302-5_17

On the Use of Independent Component Analysis 79

17. China Consulting Consortium: Common Criteria (aka CC) for Informa-
tion Technology Security Evaluation (ISO/IEC 15408) (2013). http://www.
commoncriteriaportal.org/

18. Debande, N., Souissi, Y., Elaabid, M.A., Guilley, S., Danger, J.-L.: Wavelet trans-
form based pre-processing for side channel analysis. In: HASP, Vancouver, British
Columbia, Canada, pp. 32–38. IEEE, 2 December 2012. https://doi.org/10.1109/
MICROW.2012.15

19. Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, faster, and more robust t-test based
leakage detection. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS,
vol. 9689, pp. 163–183. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
43283-0 10

20. Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection
of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EURO-
CRYPT 2016. LNCS, vol. 9665, pp. 240–262. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49890-3 10

21. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann.
Eugenics 7(7), 179–188 (1936)

22. Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data
analysis. IEEE Trans. Comput. 23(9), 881–890 (1974)

23. Gao, S., Chen, H., Wu, W., Fan, L., Cao, W., Ma, X.: My traces learn what you did
in the dark: recovering secret signals without key guesses. In: Handschuh, H. (ed.)
CT-RSA 2017. LNCS, vol. 10159, pp. 363–378. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-52153-4 21

24. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extrac-
tion from mobile devices via nonintrusive physical side channels. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2016, pp. 1626–1638. ACM, New York (2016)

25. Georgiev, P., Theis, F.J.: Blind source separation of linear mixtures with singular
matrices. In: Puntonet, C.G., Prieto, A. (eds.) ICA 2004. LNCS, vol. 3195, pp.
121–128. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30110-
3 16

26. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

27. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 2

28. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel
resistance validation. In: NIST Non-Invasive Attack Testing Workshop, Septem-
ber 2011. http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

29. Huber, P.J.: Projection pursuit. Ann. Stat. 13(2), 435–475 (1985)
30. Hyvärinen, A.: New approximations of differential entropy for independent com-

ponent analysis and projection pursuit. In: Jordan, M.I., Kearns, M.J., Solla, S.A.
(eds.) Advances in Neural Information Processing Systems 10, pp. 273–279. MIT
Press (1998)

31. Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component
analysis. Trans. Neur. Netw. 10(3), 626–634 (1999)

32. Hyvärinen, A.: Sparse code shrinkage: denoising of nongaussian data by maximum
likelihood estimation. Neural Comput. 11(7), 1739–1768 (1999)

http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
https://doi.org/10.1109/MICROW.2012.15
https://doi.org/10.1109/MICROW.2012.15
https://doi.org/10.1007/978-3-319-43283-0_10
https://doi.org/10.1007/978-3-319-43283-0_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-662-49890-3_10
https://doi.org/10.1007/978-3-319-52153-4_21
https://doi.org/10.1007/978-3-319-52153-4_21
https://doi.org/10.1007/978-3-540-30110-3_16
https://doi.org/10.1007/978-3-540-30110-3_16
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/11894063_2
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

80 H. Maghrebi and E. Prouff

33. Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component
analysis. Neural Comput. 9(7), 1483–1492 (1997)

34. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applica-
tions. Neural Netw. 13, 411–430 (2000)

35. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics. Springer,
Heidelberg (2002). ISBN 0387954422

36. Jutten, C., Herault, J.: Blind separation of sources, part i: an adaptive algorithm
based on neuromimetic architecture. Sig. Process. 24(1), 1–10 (1991)

37. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

38. Le, T.-H., Cledière, J., Servière, C., Lacoume, J.-L.: Noise reduction in side channel
attack using fourth-order cumulant. IEEE Trans. Inf. Forensics Secur. 2(4), 710–
720 (2007). https://doi.org/10.1109/TIFS.2007.910252

39. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC it to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 31

40. Maghrebi, H., Servant, V., Bringer, J.: There is wisdom in harnessing the strengths
of your enemy: customized encoding to thwart side-channel attacks. In: Peyrin,
T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 223–243. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52993-5 12

41. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-
38162-6. http://www.dpabook.org/. ISBN 0-387-30857-1

42. Merino Del Pozo, S., Standaert, F.-X.: Blind source separation from single mea-
surements using singular spectrum analysis. In: Güneysu, T., Handschuh, H. (eds.)
CHES 2015. LNCS, vol. 9293, pp. 42–59. Springer, Heidelberg (2015). https://doi.
org/10.1007/978-3-662-48324-4 3

43. Nadal, J.-P., Parga, N.: Nonlinear neurons in the low-noise limit: a factorial code
maximizes information transfer. Netw.: Comput. Neural Syst. 5(4), 565–581 (1994)

44. Naik, G.R., Wang, W.: Blind Source Separation: Advances in Theory, Algorithms
and Applications. Springer Publishing Company, Heidelberg (2014). Incorporated

45. O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware
embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622,
pp. 243–260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-
0 17

46. Prouff, E., Rivain, M., Bévan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

47. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

48. Souissi, Y., Guilley, S., Danger, J.-L., Duc, G., Mekki, S.: Improvement of power
analysis attacks using Kalman filter. In: ICASSP, IEEE Signal Processing Society,
Dallas, TX, USA, 14–19 March 2010, pp. 1778–1781. IEEE (2010). https://doi.
org/10.1109/ICASSP.2010.5495428

49. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/TIFS.2007.910252
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1007/978-3-662-52993-5_12
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
http://www.dpabook.org/
https://doi.org/10.1007/978-3-662-48324-4_3
https://doi.org/10.1007/978-3-662-48324-4_3
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1109/ICASSP.2010.5495428
https://doi.org/10.1109/ICASSP.2010.5495428
https://doi.org/10.1007/978-3-540-85053-3_26

On the Use of Independent Component Analysis 81

50. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

51. TELECOM ParisTech SEN research group. DPA Contest (2nd edition) 2009–2010.
http://www.DPAcontest.org/v2/

52. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol.
6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 8

53. Wang, R., Ma, H.-G., Liu, G.-Q., Zuo, D.-G.: Selection of window length for sin-
gular spectrum analysis. J. Franklin Inst. 352(4), 1541–1560 (2015)

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
http://www.DPAcontest.org/v2/
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8

Micro-architectural Power Simulator for
Leakage Assessment of Cryptographic

Software on ARM Cortex-M3 Processors

Yann Le Corre(B), Johann Großschädl, and Daniel Dinu

CSC and SnT, University of Luxembourg,
6, Avenue de la Fonte, 4364 Esch-sur-Alzette, Luxembourg

{yann.lecorre,johann.groszschaedl,dumitru-daniel.dinu}@uni.lu

Abstract. Masking is a common technique to protect software imple-
mentations of symmetric cryptographic algorithms against Differential
Power Analysis (DPA) attacks. The development of a properly masked
version of a block cipher is an incremental and time-consuming process
since each iteration of the development cycle involves a costly leakage
assessment. To achieve a high level of DPA resistance, the architecture-
specific leakage properties of the target processor need to be taken into
account. However, for most embedded processors, a detailed description
of these leakage properties is lacking and often not even the HDL model
of the micro-architecture is openly available. Recent research has shown
that power simulators for leakage assessment can significantly speed up
the development process. Unfortunately, few such simulators exist and
even fewer take target-specific leakages into account. To fill this gap, we
present MAPS, a micro-architectural power simulator for the M3 series
of ARM Cortex processors, one of today’s most widely-used embedded
platforms. MAPS is fast, easy to use, and able to model the Cortex-M3
pipeline leakages, in particular the leakage introduced by the pipeline
registers. The M3 leakage properties are inferred from its HDL source
code, and therefore MAPS does not need a complicated and expensive
profiling phase. Taking first-order masked Assembler implementations
of the lightweight cipher Simon as example, we study how the pipeline
leakages manifest and discuss some guidelines on how to avoid them.

Keywords: Leakage assessment · Architecture-specific leakage
Pipeline leakage · Power simulator · Cortex-M3

1 Introduction

Side-channel attacks [14] pose a serious threat to the security of cryptographic
primitives, in particular when they are executed on mobile or embedded devices
that are physically accessible to an attacker. A typical example of such devices
are wireless sensor nodes, which are often deployed in unattended areas and do
not come with any measures or techniques to minimize the leakage of sensitive
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 82–98, 2018.
https://doi.org/10.1007/978-3-319-89641-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_5&domain=pdf

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 83

information through power or electromagnetic (EM) side channels. One of the
most sophisticated forms of side-channel attack is Differential Power Analysis
(DPA), first described in the open cryptographic literature almost 20 years ago
by Kocher et al. [13]. A standard DPA attack involves two steps, namely (i) an
acquisition step, in which the attacker measures the power consumption of the
target device while it executes a cryptographic algorithm, and (ii) an analysis
step, in which she uses advanced statistical techniques to recover the sensitive
(i.e. key-dependent) data processed during the execution of the algorithm from
the acquired power consumption traces. There exists a large body of literature
demonstrating successful DPA attacks against (unprotected) implementations
of both secret-key and public-key cryptographic primitives, see e.g. [15] and the
references therein. In the case of block ciphers, it was shown that a few dozens
of power traces can be sufficient to reveal the full secret key [7].

Due to the efficacy of DPA attacks, it is necessary to protect an implemen-
tation of a block cipher through the integration of countermeasures. One of the
most well-known and widely used DPA countermeasures is masking, which can
be realized in both hardware and software [8,11,22]. Masking aims to conceal
every key-dependent variable with a random value, called mask, to de-correlate
the sensitive data of the algorithm from the data that is actually processed on
the device. The basic principle is related to the idea of secret sharing because
every sensitive variable is split up into n ≥ 2 “shares” so that any combination
of up to d = n − 1 shares is statistically independent of any secret value. These
n shares have to be processed separately during the execution of the algorithm
(to ensure their leakages are independent of each other) and then recombined in
the end to yield the correct result. What makes masking attractive is that its
security can be proven in the framework of Isai, Sahai, and Wagner [12]. How-
ever, despite the theoretical security guarantees, it turned out that masking is
challenging to implement in practice without introducing unintended (and often
unobvious) leakage. For example, it was shown in [16] that a masked hardware
implementation of the AES can be broken by exploiting glitches at the outputs
of logic gates. On the other hand, software implementations of masked ciphers
can also be vulnerable to DPA attacks because of unintended violations of the
independent leakage requirement mentioned above, typically caused by certain
micro-architectural effects and features [4,18,21]. Therefore, it is important to
check whether a masked implementation meets its theoretical security promises
also in practice (i.e. does not show any DPA-exploitable leakage), which can be
done by performing a leakage assessment test [6] or a full DPA attack.

Developing a masked software implementation of a block cipher is a tedious
and highly iterative endeavor. The developer tries to eliminate existing leakage
and then performs a leakage assessment, and thereafter the same cycle starts
again until no leakage can be detected anymore [4,7]. In order to decrease the
development time, a power simulator like ELMO [17] can be used to generate
the power traces. However, to get realistic traces, the simulator should be able
to take certain micro-architectural effects into account, in particular the inter-
instruction dependencies in the power consumption (and, hence, leakage) of the

84 Y. Le Corre et al.

target processor. For example, due to pipelining effects, the power consumption
caused by the execution of a certain instruction does not solely depend on the
operands/results and from/to which register(s) they are read/written, but also
on preceding and succeeding instructions that are in the pipeline at the same
time. ELMO takes these effects into account by using measured power charac-
teristics and by grouping instructions together. In the case of ARM Cortex M0
and M4 microcontrollers, which are currently supported by ELMO, up to three
instructions need to be considered since the pipeline has three stages.

Even though ELMO is a undoubtedly a useful tool, it suffers from a couple
of shortcomings. In particular, getting realistic instruction-level power models is
a non-trivial task and requires a lot of measurements. Furthermore, in order to
model differential data-dependent effects of “neighboring” instructions, ELMO
uses power models for groups of instructions, whereby the size of the groups is
determined by the number of instructions that can be in the processor pipeline
at the same time (i.e. the number of pipeline stages). This approach achieves
promising results, as demonstrated through several experiments by the authors
of [17], but seems only viable for processors with few (e.g. up to three) pipeline
stages. However, there exists a large number of embedded processors with five
(e.g. ARM9), eight (e.g. ARM11), or even eleven (e.g. Cortex-R7/R8) pipeline
stages, which makes it very costly to develop accurate power models for groups
of instructions. Our simulator MAPS (Micro-Architectural Power Simulator) is
based on a different approach and takes the inter-instruction dependency of the
power consumption into account by utilizing a more refined micro-architectural
model of the target processor. Specifically, MAPS models all pipeline registers
and validates these models through simulations with an HDL description of the
target micro-architecture. Thus, MAPS has two advantages over ELMO: (i) the
power model does not require any measurements, especially no measurements
of inter-instruction dependencies, and (ii) MAPS is also suitable for processors
with deep(er) pipelines consisting of more than three stages.

Our Contributions. We present the basic concepts of MAPS, which is to the
best of our knowledge the first open-source power simulator for leakage assess-
ment targeting the Cortex-M3 architecture, one of the most popular platforms
in the embedded domain. Besides being fast and easy to use, MAPS is capable
to model (certain) architecture-specific leakages based on a structural analysis
of an HDL description of the Cortex-M3 pipeline. As a second contribution, we
analyze the impact of pipeline registers on the leakage of masked ciphers.

2 State of the Art

Over the years, numerous power simulators have been developed; the interested
reader can find a survey in [24, Sect. 5.3]. We focus here on recent simulators
that perform high-level simulations rather than analog or transistor/gate-level
simulations. While low-level simulators are, in general, more accurate, they are

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 85

relatively slow and rely on VLSI-technology-specific data (e.g. netlists, parasitic
components, back-annotated delays), which is usually not publicly available.

Gagnerot introduced in his thesis [10] a power simulator that was developed
for leakage assessment of cryptographic implementations. It is able to generate
power traces by monitoring all read/write operations on the registers and buses
of a complete system (e.g. a smart card). No concrete details of the system are
described because the power simulator was developed in collaboration with an
industry partner. However, what was stated is that it contained a 16-bit RISC
processor, UART interfaces, as well as two coprocessors. The simulator accepts
a compiled binary object file as input. Neither the simulator nor its source code
are publicly available; hence, it is not known how detailed the modeling of the
processor is, e.g. whether it includes the pipeline registers or not.

SILK stands for “Simple Leakage Simulator” and was presented by
Veshchikov in 2014 [23]. It is not tied to a specific processor architecture but
generates power traces using a high level of abstraction. The power model is
very flexible and can be easily adapted to support different leakage scenarios.
SILK accepts a C file as input. The source code is publicly available on Github1.

Also Reparaz described in [19] a simulator capable to generate power traces
from a high-level C description of a cryptographic algorithm. The values of the
intermediate variables are traced after the implementation has been compiled
with a modified version of the LLVM compiler. Thus, the simulator is not tied
to a specific architecture. Yet, it is fast and also provides debugging capabilities
that help a developer to pinpoint the sources of leakage.

ELMO (“Emulator for Power Leakage for Cortex M0”) was introduced in
2016 by McCann et al. [17]. It is dedicated to the Cortex-M0 and M4 families
of processors and takes a compiled binary object file as input. ELMO is based
on an existing ARM v6-M emulator, which was “back-annotated” with leakage
information. This leakage information was extracted using elaborate statistical
processing that was applied to power measurements performed on a hardware
setup. Therefore, ELMO belongs to the category of profiled simulators. Due to
limitations of the underlying emulator, it supports only the Thumb instruction
set but not Thumb-2. The reported leakages are potentially very accurate since
the hardware measurements include various leakage effects such as glitches and
coupling. However, adding a new target to ELMO is very challenging because
it requires an elaborate measurement setup and the statistical processing has to
be done again since it depends on the characteristics of the target instruction
set and micro-architecture, e.g. pipeline depth. ELMO is publicly available2.

3 Cortex-M3 Architecture-Specific Leakages

3.1 Cortex-M3 Overview

The Cortex-M3 is a 32-bit RISC processor developed by ARM that implements
version v7-M [1] of the ARM instruction set. It is one of the most widely-used
1 https://github.com/nikita-veshchikov/silk.
2 https://github.com/bristol-sca/ELMO.

https://github.com/nikita-veshchikov/silk
https://github.com/bristol-sca/ELMO

86 Y. Le Corre et al.

embedded platforms because it combines an efficient and compact instruction
set with a high-quality tool chain. The Cortex-M3 has a Harvard architecture
with both 16-bit and 32-bit instructions as well as a 32-bit data path. It does
not include a data cache and comes with a pre-fetch buffer instead of a more
complex instruction cache. Like other 32-bit ARM processors, the Cortex-M3 is
equipped with 16 registers; besides 13 general-purpose registers (r0–r12) there
is a stack pointer (r13), a link register (r14), and a program counter (r15).

The arithmetic and logical instructions operate solely on registers. A barrel
shifter located between the register file and the Arithmetic-Logic Unit (ALU)
allows one to combine an ALU operation with a shift or rotation of the second
operand. Most ALU instructions execute in one cycle; the only exceptions are
mul (multiply), div (divide), and operations targeting the program counter.

The pipeline is made of three stages. In the first stage, the instruction gets
fetched from instruction memory. Thereafter, the instruction is decoded in the
second stage, and finally executed in the third stage. Conditional branches are
speculated (i.e. one of the alternative instructions is speculatively executed and
eventually discarded if it turns out that the speculation was wrong). Store to
memory instructions (e.g. str) are buffered and executed in one cycle, whereas
load from memory instructions (e.g. ldr) introduce a wait-state. The typical
Clock-Per-Instruction (CPI) figure for embedded software is close to 1.

3.2 Cortex-M3 HDL Analysis

ARM makes the entire HDL source code of the Cortex-M3 processor available
to universities via the DesignStart Pro Academic program. The source package
contains the M3 core, which is described in a set of Verilog files, and a minimal
system that connects the core with the memories through AMBA (“Advanced
Microcontroller Bus Architecture”) buses. The system also includes peripherals
like communication and debugging interfaces to enable developers to trace the
execution of a program. By default, the Verilog simulation of the system loads
and executes a C program cross-compiled for the ARM v7-M architecture.

Since we have access to the HDL source code, all registers related with the
data path can be isolated and then traced. At the logic level, any information
leakage could be related to the values held by the registers. The dependencies
between the succeeding instructions and the sensitive data will be captured too
since these registers also define the pipeline stages. All registers in the core can
be easily found by looking for signals defined with the Verilog keyword reg and
assigned in an “always @(posedge <clock>)” block. Of these registers, only the
ones involved in the manipulation of data are relevant from a leakage-detection
point of view. We can further discriminate by selecting the registers that have
a width of 32 bits. In addition, since the ALU operates exclusively on operands
read from registers, only the 32-bit registers connected to the two output ports
of the register file have to be analyzed. Based on these criteria, the 16 registers
of the register file (i.e. r0 to r15), along with two registers ra and rb located
between the register file and the ALU and three registers inside the ALU, are
retained. However, the latter three registers are solely used during multi-cycle

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 87

Fig. 1. Simplified structure of the Cortex-M3 pipeline

ALU instructions like umull, umlal, or udiv. Since such instructions are quite
uncommon in the context of symmetric cryptosystems, we decided to not trace
these three registers. The program counter r15 is also not traced by default in
order to limit the length of the power traces. A major requirement for secure
cryptographic software is that the control flow is independent of any sensitive
data; if this is the case then the program counter can not leak anyway.

The registers ra and rb are pipeline registers isolating the decode from the
execute stage. Their existence and location could have also been inferred from
the fact that an ALU instruction can be executed while the succeeding instruc-
tion can access the registers. However, our analysis of the HDL code confirmed
their exact location and allowed us to find out what values are written to them
in each instruction. A simplified version of the pipeline is shown in Fig. 1.

3.3 Cortex-M3 Pipeline Leakages

The registers ra and rb are specific to the pipeline architecture of the M3 pro-
cessor. They are a possible source of leakage since they combine operand values
of consecutive instructions. Indeed, the power consumption associated with the
writing to these registers is directly related to the Hamming distance between
the current operand value and the previous one. Both the first and the second
operand of ALU instructions can be affected. Since the register ra connects the
register file with the barrel shifter, even an ALU instruction with a shifted or
rotated second operand may leak through this register.

88 Y. Le Corre et al.

Listing 1. Code fragment with second-operand leakage

; r2 and r3 conta in the two shares
; r4 and r5 conta in random and unre l a t ed va l u e s
; r6 and r7 are i n i t i a l i z e d to 0
and r 6 , r 4 , r 2 , l s l 4
orr r 7 , r 5 , r 3 , ro r 5

0 500 1000 1500 2000 2500
sample index

−40

−30

−20

−10

0

10

20

t-v
al

ue

4.5

-4.5

Fig. 2. T-test confirming second-operand leakage (hardware measurements)

Register Transfer Notation 1. Equivalent to Listing 1
1: rb ← r4

2: ra ← r2

3: r6 ← rb ∧ (ra � 4)
4: rb ← r5

5: ra ← r3 � Power(ra) = HW (r2 ⊕ r3)
6: r7 ← rb ∨ (ra ≫ 5)

Listing 1 illustrates such a leakage. In this code fragment, the two registers
r2 and r3 hold the shares of a secret value, which is (r2 ⊕ r3). Register r4 and
r5 contain arbitrary values unrelated with the content of other registers. From
an architectural view, there should be no leakage. However, our measurements
on an actual Cortex-M3 processor show that there is a leakage, as illustrated in
Fig. 2. The measurements were taken on an Atmel Cortex-M3 SAM3X8E chip
using a Langer EM probe connected to a LeCroy WR 8254M oscilloscope sam-
pling at 500 MSamples/s. This leakage is not difficult to explain when we take
all register transfers involving ra and rb into account. Listing 1 is equivalent to
the Register Transfer Notation 1. As expected, (r2 ⊕ r3) leaks through ra.

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 89

Listing 2. Code fragment with str instruction leakage

; r2 and r3 conta in the two shares
str r 2 , [r 0 , 0]
str r 3 , [r 0 , 4]

Register Transfer Notation 2. Equivalent to Listing 2
1: rb ← r0

2: ra ← r2

3: rb ← r0

4: ra ← r3 � Power(ra) = HW (r2 ⊕ r3)

In general, every instruction using a value read from a general-purpose reg-
ister is affected, not only the ALU instructions. For example, all memory store
instructions will leak when executed one right after another, as in Listing 2 and
its equivalent Register Transfer Notation 2. The leakage of the str instructions
extends further to the push and the store-multiple (stm) instructions since the
latter are actually a shorthand for a sequence of str instructions.

3.4 Guidelines to Reduce Cortex-M3 Pipeline Leakage

The Cortex-M3 pipeline leakages can be reduced or even entirely circumvented
in a few different ways, listed below in ascending order of their implementation
cost in terms of execution time and code size.

1. Simply swap the operands of commutative instructions.
2. Schedule instructions so that the two shares are not processed by successive

instructions. This may be difficult to achieve because of the relatively small
number of general-purpose registers.

3. Overwrite the pipeline registers with unrelated values, which can sometimes
be done by just using more complex instructions for certain operations. To
give a concrete example, the statement “mov r0, 0” to clear register r0 can
be replaced by “eor r0, rx, rx” where rx is an arbitrary register. In the
former version using mov, the registers ra and rb are not written since the
immediate value 0 gets directly transferred from the instruction decoder to
the register r0. In the second version, ra and rb are written with the value
of rx before r0 is cleared. This version can, depending on which register is
actually used as rx, increase code size by two bytes at most.

4. Explicitly set the registers ra and rb to a value unrelated to any sensitive
data. This can be done by a statement of the form “orr r0, r0, r0” where
r0 contains some random data; for example, r0 could be the address of an
input buffer. The cost is a clock cycle and two or four bytes of code size.

Note that inserting a nop instruction will not prevent the leakage since the
nop instruction does not pass the instruction decoder and, consequently, it can
not modify the two pipeline registers ra and rb.

90 Y. Le Corre et al.

4 Our Simulator: MAPS

In this section, we provide an overview of the main properties (i.e. features and
limitations) of MAPS and briefly describe its operation.

4.1 Features

MAPS has been created to aid and simplify the development of masked imple-
mentations of cryptographic primitives. Its main features are as follows.

Easy to Use. The implementation and testing of a masked primitive requires
advanced skills in cryptographic engineering. In addition, it is a highly iterative
task that takes a lot of time, effort, and scrutiny. Our simulator is easy to use
(even for non-experts) and provides a convenient way to do automated leakage
assessment of cryptographic implementations. In this way, MAPS simplifies the
whole development and testing process.

Advanced Debug Support. In this paper, the word debug has actually two
meanings; the first relates to the debugging of the functionality of the primitive
to achieve (algorithmic) correctness. Our simulator is able to interact with the
GNU debugger GDB through a GDB server. The other meaning refers to iden-
tifying which instructions cause information leakage. MAPS generates an index
file linking the program counter and the power trace sample index, which allows
for easy identification of the instruction that leaks.

Fast(er) Development Cycles. Securely-masked versions of a cryptographic
algorithm are typically implemented in Assembly language to have full control
over the instructions that will be executed. The allocation of registers and the
selection of operands may require several tries, but long simulation times make
it costly to try various “what-if” scenarios. MAPS is very fast so that an entire
“compile-simulate-test” cycle can be completed in just a few minutes.

Only One Set of Source Files. In absence of a leakage simulator for Cortex-
M3, implementers commonly resort to emulated leakages, which, as mentioned
in Sect. 2, are typically generated using a high-level C implementation instead
of the Assembler implementation that will actually be deployed. Having to deal
with two separate code bases can easily lead to mistakes due to inconsistencies
and may require adaptations of one or both source codes. Using MAPS avoids
such problems since the leakage assessment can be carried out with exactly the
same implementation that will finally end up on the target device.

Target-Specific Leakages. Our simulator reports algorithmic leakages and as
many as possible target-specific leakages. The power waveforms are computed
from the trace of all registers related to the data being processed, including the
pipeline registers.

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 91

Fig. 3. MAPS flow

Open-Source. MAPS is open-source software3 and may be used and modified
without restrictions. In addition, anyone can contribute to the further develop-
ment of MAPS by adding not-yet-supported instructions or new features.

4.2 Simulation Flow

A high-level view of the operation of MAPS is depicted in Fig. 3. At first, one
has to produce a simulator executable, which is labeled sim masked func.exe
in Fig. 3. The executable is tasked with loading and simulating the function to
be analyzed. It “glues” together the Cortex-M3 simulation engine, the interface
functions, and the test functions, all written in C++ 11.

The Cortex-M3 simulation engine is a C++ object with the usual methods
such as load(), step(), run(), and so on. It is also responsible for tracing the
register writes: each time a register is written, the Hamming distance between
the previous register value and the new value is added as a new sample to the
power trace. A power trace is a std::vector that can be manipulated after the
end of the simulation. The Cortex-M3 simulation engine as well as some useful
functions, such as a default main() function handling common command-line
options, are grouped together in a library named libsim.a.

The file masked func wrapper.cpp contains both the test functions and the
interface functions. The latter functions wrap the call to the simulator engine so
that the function to be analyzed regarding leakage appears like a host-domain
function. It “abstracts” the process of passing parameters from the host to the

3 The full source code of MAPS is available on Github under the GNU General Public
License version 3 (GPLv3): https://github.com/cryptolu/maps.

https://github.com/cryptolu/maps

92 Y. Le Corre et al.

simulated function. All parameters are simply copied into the simulated target
memory as required by the ARM Application Binary Interface (ABI) [2].

The test functions implement a standard fixed-vs-random Welch t-test leak-
age assessment as described in detail in [6]. However, the assessment method is
independent of the simulation engine and can therefore be easily replaced. The
test functions and interface functions are not part of the library libsim.a since
different functions to be analyzed will have different interfaces.

The function to be analyzed regarding leakage needs to be written in C and
can contain inlined Assembly code as well as macros. It must be stored in the
file masked func.c, which is cross-compiled for ARM v7-M and converted into
binary format. When the simulator executable is run, it loads the result of the
cross-compilation and applies the fixed and random inputs as instructed by the
test functions. Welch’s t-test is computed over the collected power traces and
stored in a Numpy (.npy) file that can be conveniently visualized using Python
scripts. A so-called trace index file is also generated, mapping the t-test sample
index to the simulated program counter. Thanks to this file, the address of an
instruction causing leakage can be quickly spotted.

4.3 Validation

In order to ensure that the Cortex-M3 processor is correctly modeled, both its
functionality and leakage generation features were carefully tested in a specific
test environment. All supported instructions were collected in a C file that was
cross-compiled for the Cortex-M3. Then, they were simulated using MAPS as
well as ARM’s Verilog-based minimal system testbench. For each simulation, a
trace of the registers was created and the two traces were compared. The trace
generated by our simulator exactly matched the one produced by the system
testbench, which guarantees that MAPS behaves like the actual processor.

4.4 Limitations

The current version of MAPS has the following limitations:

– Only the Cortex-M3 target is supported.
– Not all instructions of the Cortex-M3 described in [1] are supported. The

currently-not supported instructions include conditional instructions, table
branch instructions, saturation instructions, multiply instructions, packing
instructions, as well as hint instructions. However, all these instructions are
unlikely to be found in an implementation of a symmetric primitive.

– The simulator traces only the registers. Glitches or the power consumption
of the ALU are not taken into account. For example, a “cmp r2, r3” leaks
(r2 − r3) on the actual hardware, but does not leak on the simulator.

– No peripheral components or interfaces are modeled, and data can only be
transferred between host and targets using the ABI and target memory.

– The simulator traces only registers of the Cortex-M3 core. Other registers
located outside of the core, e.g. in a memory interface, are not considered.

– The simulator is not cycle-accurate.

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 93

4.5 Performance

The simulation speed of MAPS is summarized in Table 1. All test cases corre-
spond to a fixed-vs-random Welch t-test as in [6] for one million measurements
(i.e. two million executions of the simulated function). The tests were executed
on an Intel i7-6700 processor running at 3.4 GHz. For comparison, it should be
noted that the acquisition speed of the setup employed by the organizers of the
DPA contest v4 to measure AES power traces was about 0.9 traces/s [24].

Table 1. MAPS simulation performance for three first-order masked block ciphers
(generation of one million traces)

Algorithm No. of instructions Simulation time [s] Traces/s

Simon-64/128 1194 113 17700

Rectangle-64/128 2279 220 9091

Speck-64/128 6055 488 4098

We used for our performance evaluation first-order masked implementations
of three well-known lightweight block ciphers, namely Simon and Speck [5], as
well as Rectangle [25]. Simon-64/128 is a hardware-oriented cipher with an
And-Rotation-Xor structure. The version we tested is a 2-share masked imple-
mentation protected with the Trichina AND gate [22]. Speck-64/128 is a more
software-optimized cipher based on an Addition-Rotation-Xor structure. The
tested implementation is protected by a 2-share Boolean masking, whereby the
modular addition is performed directly on the Boolean shares according to the
Kogge-Stone Adder (KSA) technique introduced in [9]. Rectangle-64/128 is
a bit-sliced lightweight cipher designed on basis of a substitution-permutation
network. The tested implementation is protected by a 2-share Boolean masking
using the Trichina AND gate [22] and the OR gate from Baek et al. [3] with an
additional random variable to mirror the AND gate.

5 Case Study

In this section, we show how MAPS can be used to implement a secure version
of Simon-64/128 on a Cortex-M3 processor. All results we will present in the
following are based on a leakage assessment using Welch’s t-test on power traces
generated by MAPS in a fixed-vs-random setting. For each experiment, 10,000
traces with fixed inputs and 10,000 traces with random inputs were collected.

First, Fig. 4(a) shows the result of a naive implementation of Simon-64/128
protected using Trichina AND gates. This naive implementation minimizes the
number of execution cycles and places intermediate results of the computation
in the next free register. Any Hamming distance effect due to the reuse of some
registers was not taken into account and MAPS was configured to not trace the
pipeline registers ra and rb. Unsurprisingly, this implementation leaks.

94 Y. Le Corre et al.

0 200 400 600 800 1000 1200
sample index

−100

−50

0

50

100

t-v
al

ue 4.5
-4.5

(a) without pipeline leakages

0 1000 2000 3000
sample index

−200

−100

0

100

200

300

t-v
al

ue

4.5
-4.5

(b) with pipeline leakages

Fig. 4. Leakage assessment of the naive implementation of Simon-64/128, simulated
(a) without and (b) with pipeline leakages

Figure 4(b) visualizes the result of the leakage assessment test for the same
naive implementation, but this time the tracing of the pipeline registers ra and
rb is enabled in the simulator. Many more leakage points can be observed.

Next, the naive implementation was improved by fixing the leakages due to
the reuse of registers. The obtained result of the leakage assessment is depicted
in Fig. 5(a), whereby the simulator was configured to not trace register ra and
rb. Now the leakages seem to be fixed. However, Fig. 5(b) illustrates that this
improved version still leaks through the pipeline registers when their tracing is
enabled. In fact, most of the leakage comes from the two pipeline registers.

Table 2. Comparison of three masked implementations of Simon-64/128

Version No. of instructions Penalty factor

(1) naive 1106 1.00

(2) fixed register-reuse leakages 1194 1.08

(3) fixed pipeline leakages 1285 1.16

Table 2 lists the number of instructions executed by the three Simon imple-
mentations. Version (1) is the naive implementation and version (2) the naive
implementation with fixed register-reuse leakage effects. Version (3) represents
an improvement of version (2) to fix all pipeline leakages using the techniques

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 95

0 200 400 600 800 1000 1200
sample index

−4

−2

0

2

4

t-v
al

ue
4.5

-4.5

(a) without pipeline leakages

0 1000 2000 3000
sample index

−200

−100

0

100

200

300

t-v
al

ue

4.5
-4.5

(b) with pipeline leakages

Fig. 5. Leakage assessment of the improved implementation of Simon-64/128 (register-
reuse leakages corrected), simulated (a) without and (b) with pipeline leakages

given in Subect. 3.4. It should be noted that the number of instructions differs
from the number of clock cycles. For example, replacing one stm instruction by
several str instructions does not increase the number of cycles.

Figure 6 shows the result of the t-test for the further-improved implemen-
tation of Simon-64/128 where we tried to fix all pipeline leakages. The t-test
was performed using measured traces (acquired with the hardware setup that
was also used for the t-test shown in Fig. 2) in a fixed-vs-random setting. As
can be seen in Fig. 6, this implementation is still not entirely leakage-free, but
the t value exceeds the threshold of 4.5 only insignificantly compared to the
naive implementation in Fig. 2. Performing the t-test with this implementation
on simulated traces did not show any leakage anymore, i.e. the t value was always
well below the threshold of 4.5. Therefore, an implementer can conveniently use
MAPS in the early stages of the leakage elimination process until the t-test on
simulated traces is free of leakage. The final step is then the “fine-tuning” of the
implementation until the t-test on measured traces does not show any leakage
anymore. However, thanks to MAPS, an implementer needs to measure traces
only at the very end of the implementation process, but not in the early stages
of the implementation, which significantly reduces the development time.

With our setup, the measurement of power traces took roughly eight hours
for 8,000 encryptions with a fixed input and 8,000 encryptions with a random
inputs. Each encryption was repeated eight times and then averaged to reduce
the noise. On the other hand, obtaining simulated traces with MAPS for 8,000
fixed-input/random-input encryptions took just 1.2 seconds altogether, which is
24,000 times faster than the eight hours we needed to measure the traces.

96 Y. Le Corre et al.

0 1000 2000 3000 4000 5000
sample index

−6

−4

−2

0

2

4

6

t-v
al

ue
4.5

-4.5

Fig. 6. Leakage assessment of the further-improved implementation of Simon-64/128
(all pipeline leakages corrected) based on measured power traces

6 Conclusions and Future Work

In this paper, we presented the design of MAPS, a simulator for fast leakage
assessment of cryptographic software on ARM Cortex-M3 processors, which are
widely used in the embedded domain. We demonstrated that our simulator can
greatly speed up the implementation of masked block ciphers by identifying the
architecture-specific leakages early in the development phase. Furthermore, we
analyzed Cortex-M3-specific leakages introduced by the pipeline registers and
showed that they are significant. In this way, we contribute to a better under-
standing of which micro-architectural properties and features of a Cortex-M3
processor actually cause the leakage that can be exploited in a DPA attack. We
also provided a number of guidelines on how to take the pipeline leakages into
consideration when developing a masked implementation of a cipher.

Our approach to analyze architecture-specific leakages can be easily applied
to other targets without the need of complex profiling procedures, provided the
HDL code of the processor is available. A possible candidate is Cortex-M0 since
it is also part of the DesignStart Pro Academic program. The simulation speed
may be further improved by optimizing the t-test implementation following the
recent proposal of Reparaz et al. [20].

References

1. ARM Limited. ARM v7-M Architecture Reference Manual (2010). http://static.
docs.arm.com/ddi0403/eb/DDI0403E B armv7m arm.pdf

2. ARM Limited. Procedure Call Standard for the ARM Architecture (2015). http://
infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F aapcs.pdf

http://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
http://static.docs.arm.com/ddi0403/eb/DDI0403E_B_armv7m_arm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042f/IHI0042F_aapcs.pdf

Micro-architectural Power Simulator for Leakage Assessment on Cortex-M3 97

3. Baek, Y.-J., Noh, M.-J.: Differential power attack and masking method. Trends
Math. 8(1), 1–15 (2005)

4. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd
Annual Design Automation Conference, San Francisco, CA, USA, 7–11 June 2015,
pp. 175:1–175:6. ACM (2015)

6. Becker, G., Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G.,
Kouzminov, T., Leiserson, A., Marson, M., Rohatgi, P., Saab, S.: Test vector leak-
age assessment (TVLA) methodology in practice. In: International Cryptographic
Module Conference (2013)

7. Biryukov, A., Dinu, D., Großschädl, J.: Correlation power analysis of lightweight
block ciphers: from theory to practice. In: Manulis, M., Sadeghi, A.-R., Schnei-
der, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 537–557. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-39555-5 29

8. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

9. Coron, J.-S., Großschädl, J., Tibouchi, M., Vadnala, P.K.: Conversion from arith-
metic to Boolean masking with logarithmic complexity. In: Leander, G. (ed.) FSE
2015. LNCS, vol. 9054, pp. 130–149. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48116-5 7

10. Gagnerot, G.: Étude des attaques et des contre-mesures assoccées sur composants
embarqués. Ph.D. thesis, Université de Limoges (2013)

11. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

12. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Le, T., Canovas, C., Clédière, J.: An overview of side channel analysis attacks. In:
Abe, M., Gligor, V.D. (eds.) Proceedings of the 2008 ACM Symposium on Infor-
mation, Computer and Communications Security, ASIACCS 2008, Tokyo, Japan,
18–20 March 2008, pp. 33–43. ACM (2008)

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-
38162-6

16. Mangard, S., Pramstaller, N., Oswald, E.: Successfully attacking masked AES hard-
ware implementations. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 157–171. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 12

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-39555-5_29
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/978-3-662-48116-5_7
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/11545262_12

98 Y. Le Corre et al.

17. McCann, D., Oswald, E., Whitnall, C.: Towards practical tools for side chan-
nel aware software engineering: ‘Grey Box’ modelling for instruction leakages. In:
Kirda, E., Ristenpart, T. (eds.) 26th USENIX Security Symposium, USENIX Secu-
rity 2017, Vancouver, BC, Canada, 16–18 August 2017, pp. 199–216. USENIX
Association (2017)

18. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order
masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp.
282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3 17

19. Reparaz, O.: Detecting flawed masking schemes with leakage detection tests. In:
Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 204–222. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 11

20. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Fast leakage assessment. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 387–399. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 19

21. Seuschek, H., De Santis, F., Guillen, O.M.: Side-channel leakage aware instruction
scheduling. In: Brorsson, M., Lu, Z., Agosta, G., Barenghi, A., Pelosi, G. (eds.)
Proceedings of the 4th Workshop on Cryptography and Security in Computing
Systems (CS2@HiPEAC 2017), pp. 7–12. ACM Press (2017)

22. Trichina, E., Korkishko, T., Lee, K.H.: Small size, low power, side channel-immune
AES coprocessor: design and synthesis results. In: Dobbertin, H., Rijmen, V., Sowa,
A. (eds.) AES 2004. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005).
https://doi.org/10.1007/11506447 10

23. Veshchikov, N.: SILK: high level of abstraction leakage simulator for side chan-
nel analysis. In: Preda, M.D., McDonald, J.T. (eds.) Proceedings of the 4th Pro-
gram Protection and Reverse Engineering Workshop, PPREW@ACSAC 2014, New
Orleans, LA, USA, 9 December 2014, pp. 3:1–3:11. ACM (2014)

24. Veshchikov, N.: Use of simulators for side-channel analysis: leakage detection and
analysis of cryptographic systems in early stages of development. Ph.D. thesis,
Université Libre de Bruxelles (2017)

25. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-662-52993-5_11
https://doi.org/10.1007/978-3-319-66787-4_19
https://doi.org/10.1007/11506447_10

Fault Attacks and Hardware Trojans

Lattice-Based Fault Attacks Against
ECMQV

Weiqiong Cao, Hua Chen(B), Jingyi Feng, Limin Fan, and Wenling Wu

Trusted Computing and Information Assurance Laboratory, Institute of Software,
Chinese Academy of Sciences, South Fourth Street 4#, ZhongGuanCun,

Beijing 100190, People’s Republic of China
{caowq,chenhua,fengjingyi,fanlimin,wwl}@tca.iscas.ac.cn

Abstract. ECMQV is a standardized key agreement protocol based on
ECC with an additional implicit signature authentication. In this paper
we investigate the vulnerability of ECMQV against fault attacks and pro-
pose two efficient lattice-based fault attacks. In our attacks, by inducing a
storage fault to the ECC parameter a before the execution of ECMQV,
we can construct two kinds of weak curves and successfully pass the
public-key validation step in the protocol. Then, by solving ECDLP and
using a guess-and-determine method, some information of the victim’s
temporary private key and the implicit-signature result can be deduced.
Based on the retrieved information, we build two new lattice-attack mod-
els and recover the upper half of the static private key. Compared with
the previous lattice-attack models, our models relax the attack condi-
tions and do not require the exact partial knowledge of the nonces. The
validity of the attacks is proven by experimental simulations, which show
our attacks pose real threats to the unprotected ECMQV implementa-
tions since only one permanent fault is sufficient to retrieve half bits of
the secret key.

Keywords: ECC · Fault attack · Lattice attack · ECMQV

1 Introduction

Smart cards and mobile devices are playing indispensable roles today, since a lot
of important data such as mobile payment data and bank account information is
stored on them. Hence, it is necessary to protect their security with cryptographic
algorithms. Among various algorithms, elliptic curve cryptosystem (ECC) [1] is
a popular one because it ensures the same level of security with less key bits and
faster run time than RSA.

It is necessary to analyze not only the theoretical security but also the
implementation security resisting physical attacks. When ECC is implemented
on embedded devices, physical attacks may gain some information by physi-
cal tools to recover the secrets. Among various physical attacks, fault attack
(FA) is a powerful one which exploits the faulty results caused by fault injec-
tion using laser injection, strong electromagnetic radiation and glitches. So far,
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 101–116, 2018.
https://doi.org/10.1007/978-3-319-89641-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_6&domain=pdf

102 W. Cao et al.

many different types of fault attacks (FAs) against ECC have been proposed
and weak curve attack (WCA) based on low-order feature is a common one. In
CRYPTO’2000 [2], the WCA based on the faulty basic point was first proposed
by Biehl et al. After that, the WCAs based on the faulty curve parameters a and
p were also proposed in [3,4]. Differential fault attack (DFA) [2,5,6] is another
powerful FA. It recovers the scalar by inducing faults to alter the sign bit or
instruction flow during the implementation of a scalar multiplication (SM) kG,
and analyzing the difference between the correct and faulty results of the SM.
Furthermore, the combination of FA and other attacks has also been used to
analyze various algorithms of ECC. In CHES’2011 [7], the combination of FA
and simple power analysis (SPA) has been proposed to attack a SM. Besides, FA
combining with lattice attack (LA) [6] is also applied to signature algorithms.
Nevertheless, to our knowledge, there seems to be no FA on the authenticated
key agreement protocol ECMQV.

ECMQV is an extension of MQV proposed by Law, Menezes et al. [8], which
has been standardized in IEEE 1363 [9], ANSI X9.63 [10], Chinese standard
GM/T 0009-2012 (SM2) [11], etc. It is based on the Diffie-Hellman key agree-
ment protocol on ECC (ECDH) with an additional implicit signature authenti-
cation. There mainly exist two kinds of attacks on ECMQV at present. Man-in-
the-middle attack based on the application of ECMQV is the first one, such as
forgery attack [12] and unknown key-share attack [13]. The other one is the tra-
ditional algorithm analysis based on the structure of ECMQV. WCA is naturally
the common one and was proposed against one-pass ECMQV in PKC’2003 [14],
in which the attacker pretending one party in the agreement sends two low-order
points as public keys to the other-party victim. After several runs of the proto-
col, the victim’s private key can be recovered by guessing the implicit-signature
results and using Chinese Remainder Theorem (CRT). However, the attack can-
not be applied to ECMQV with authentication and public key validation. Mean-
while, Leadbitter and Smart presented a LA against ECMQV in ISC’2003 [15]. If
the attacker has partial knowledge of the victim’s nonces: the temporary private
key and the implicit-signature result, then the LA can be mounted to recover the
upper half of the victim’s static private key. The remainder bits can be obtained
by Baby-Step/Giant-Step algorithm with a run time of O(n1/4), where n is the
order of basic point in the ECMQV protocol. After that, the combinations of
WCA and LA are mentioned in INDOCRYPT’2006 [16] and JMC’2007 [17],
respectively. However, such attacks have the following limits: (1) The victim’s
temporary private key is required to be known to the attacker; (2) There exists
no or only part public-key validations to make the victim accept the low-order
public keys; (3) The order of the low-order points must have the factor 2l to
ensure l bits of the nonce known for LA, where l is a positive integer. Appar-
ently, the limits above are impractical for an integrated ECMQV. In view of
the importance of public-key validation in ECMQV, we think it is interesting if
some faults are induced so that the public-key validations are passed. Moreover,
because of the existence of the implicit signature, the lattice-based fault attacks
against ECDSA probably can be applied to ECMQV.

Lattice-Based Fault Attacks Against ECMQV 103

Our contributions. In this paper, we present two new lattice-based fault
attacks against ECMQV. Our attack procedures can be divided into two stages.
In the first stage, a storage fault is induced to the ECC parameter a before the
running of ECMQV and two kinds of weak curves are constructed. The low-order
points on the first weak curve can thereby pass the public-key validation steps
in ECMQV. By solving ECDLP and using a guess-and-determine method, some
reduced information of the victim’s temporary private key rB and the implicit-
signature result sB can be deduced. In the second stage, we build two new LA
models with the retrieved information and successfully recover the upper half of
the static private key dB in ECMQV.

In our attacks, the LA models are more relaxed because it is unnecessary for
the attacker to know the partial bits of the nonces sB and rB exactly, while it is
required in the previous models [15–17]. The first model only utilizes the reduced
values s = sB mod d and r = rB mod d, where d is the greatest common
divisor derived from the weak curves constructed in the first stage. In our case,
only when d is equal to 2l (l is a positive integer), the model is equivalent to the
previous model which means the l bits of the nonces have to be known. Except
that, the attacker does not need to know any bit of the nonces. The second model
is totally different from the previous ones, in which s = sB mod d and r = rB

mod n2 are required. Here d is a small factor of the order of the first weak curve
and n2 is the order of basic point G on the second weak curve. When the sum of
bit lengths of n2 and d is greater than a lower bound, the LA model will work.
We also prove the correctness and effectiveness of the two attacks by software
simulations. The simulations show that our attacks only require one permanent
effective fault to retrieve half bits of the secret key. Thus, the corresponding
countermeasure should be considered in practical implementations.

The remainder of the paper is organized as follows: Sect. 2 introduces the
ECMQV protocol and some basic theory about lattices. In Sect. 3, the first
lattice-based fault attack against ECMQV is presented, and the second one is
presented in Sect. 4. The corresponding feasibility is verified by simulations in
Sect. 5. Finally, conclusion is given in Sect. 6.

2 Preliminaries

2.1 ECMQV Authenticated Key Agreement Protocol

In this section, we will discuss the elliptic curves in prime field Fp(p > 3) and
ECMQV protocol. Elliptic curve E(a, b) is defined by Weierstrass equation

E(a, b) : y2 = x3 + ax + b mod p, (1)

where a, b ∈ Fp, and 4a3 + 27b2 �= 0 mod p.
The additive group E(Fp) consists of the set of points and infinity point O

on E(a, b).

E(Fp) =
{
(x, y)|x, y ∈ Fp, y

2 = x3 + ax + b mod p
} ∪ {O} . (2)

104 W. Cao et al.

Given a basic point G ∈ E(Fp) with order n, <G> is the group taking G as its
generator. For any point Q ∈ <G>, there exists a scalar k ∈ [0, n−1], so that Q =
kG. The scalar multiplication (SM) kG is an elementary operation on E(a, b)
and is composed of point doublings and additions. There are many algorithms
for calculating SM, such as binary algorithm, wNAF window algorithm and
Montgomery algorithm [18]. The security of ECC is based on the elliptic curve
discrete logarithm problem (ECDLP): knowing the basic point G ∈ E(Fp) and
point Q ∈ E(Fp), it is hard to find the scalar k ∈ [0, n−1] satisfying Q = kG. As
the best general attack on ECDLP, the combination of Pohlig Hellman algorithm
and Pollard’s rho algorithm reduces the ECDLP in the group <G> into in a
subgroup with prime order q, where q is the biggest prime factor of order n
and the time complexity is O(q1/2). Therefore, the security of ECC depends on
the bit-size of q, so the curve parameters and basic point G of ECC are usually
selected to make q as big as possible.

Next, we will introduce the three pass ECMQV protocol [18]. ECMQV is
usually used for negotiating the shared session key between party A and B.
In ECMQV, #E(Fp) is the order of E(Fp), cofactor h is equal to #E(Fp)/n,
and (a, b, p,G, n,#E(Fp), h) are the optional parameters. A and B all have two
private-public key pairs, the temporary and the static key pairs, respectively.
The temporary key pair is variable with every key agreement. It is assumed that
(PA, dA), (RA, rA) are the static and temporary key pairs of A and (PB , dB),
(RB , rB) are the corresponding key pairs of B, respectively, where PA = dAG,
RA = rAG, PB = dBG and RB = rBG. In order to resist WCA, it is neces-
sary for both A and B to perform public key validation on each other’s static
and temporary public keys. As stated in [18], Algorithm 1 is usually used for
validating public key.

Algorithm 1. Public Key Validation [18]
Require: parameters a, b, p, n, h and public key Q
Ensure: the validation of Q is pass or not.

1. Verify Q �= O;
2. Verify that the x/y-values xQ and yQ of Q are the elements of field Fp, namely,
xQ, yQ ∈ [0, p − 1];
3. Verify that Q lies on the elliptic curve E(a, b) defined by a, b and p;
4. If any one of the verifications above fails, then return false; else return true.

Besides, we also define
f = �log2n� + 1.

For any point Q ∈ E(Fp), let

Q = xQ mod 2�f/2� + 2�f/2�, (3)

where xQ is the x-value of Q, and f is the bit length of n.

Lattice-Based Fault Attacks Against ECMQV 105

There exists an implicit signature with their own static private key to ensure
the session key shared by A and B. After that, a key derivation function (KDF)
based on hash function is executed to generate the shared key. KDF (S) is the
concatenation of the values of hash functions H(S, i), where i is a counter that is
accumulated until the sum of the bit lengths of hash values equals the bit length
of required key. Meanwhile, as the optional steps, the results are processed by
a message authentication code (MAC) algorithm and the result of MAC is sent
to the other party for further verification. The whole protocol is specified in
Algorithm 2, where IDA and IDB are the IDs of A and B, respectively.

Algorithm 2. ECMQV Key Agreement [18]
Require:

A → B : RA, IDA;

B → A : RB , IDB , tB ;

A → B : tA.

Ensure: share key K
1. A selects randomly rA ∈ [1, n − 1], calculates RA = rAG, and sends RA, IDA

to B;
2. B calculates the following:

2.1 validates the public key RA with Algorithm 1;
2.2 selects randomly rB ∈ [1, n − 1] and calculates RB = rBG;
2.3 calculates sB = rB + RBdB mod n and V = hsB(RA + RAPA), and
verifies V �= O;
2.4 calculates K = KDF (V, IDA, IDB);
2.5 (options)calculates tB = MAC(2, V, IDA, IDB , RB , RA);
2.6 sends RB , IDB(, options tB) to A;

3. A calculates the following:
3.1 validates the public key RB with Algorithm 1;
3.2 calculates sA = rA + RAdA mod n and V = hsA(RB + RBPB), and
verifies V �= O;
3.3 calculates K = KDF (V, IDA, IDB);
3.4 (options)calculates t = MAC(2, V, IDA, IDB , RB , RA), and
verifies t = tB ;
3.5 (options) calculates tA = MAC(3, V, IDA, IDB , RA, RB), and
sends tA to B;

4. (options) B calculates t = MAC(3, V, IDA, IDB , RA, RB), verifies t = tA.

2.2 Lattices

In this section, we will introduce some basic definitions of lattice. Lattice is an old
mathematical concept. Let vectors b1, b2, ..., bd ∈ R

m are linearly independent,
then the set L

L = L(b1, b2, ..., bd) = {z =
d∑

i=1

xi · bi|xi ∈ Z} (4)

106 W. Cao et al.

is called a lattice and regards the vectors bi(i = 1, 2, ..., d)s as its basis, where Rm

is the m dimensional space in real number field R. Matrix B = (b1, b2, ..., bd)T

is denoted as the basis matrix of L. For any z ∈ L, there exists x ∈ Z
d so that

z = xB. d is the dimension of L. If m = d, then L is full rank. L is an integer
lattice when any vector bi(i = 1, ..., d) belongs to Z

m.
There are two famous problems in lattice L, the shortest vector prob-

lem(SVP) and the closest vector problem(CVP). For SVP, given the basis bis of
L, find a nonzero vector v ∈ L so that ‖v‖ = λ1 (L), where λ1(L) is the length
of shortest vector in lattice L and ‖.‖ is denoted as Euclidean norm. It has been
proven that LLL algorithm [19] and LLL-based BKZ algorithms [20] can solve
approximate SVP in polynomial time. Similarly, CVP is defined as follow: given
the basis bis of L and a target vector u ∈ R

m, find a nonzero vector v ∈ L
satisfying ‖v − u‖ = λ (L,u), where λ (L,u) is the closest distance from vec-
tor u to lattice L. CVP is harder than SVP and the approximate CVP can be
solved by using LLL-based Babai’s nearest plane algorithm [21] in polynomial
time. Hence, CVP is usually reduced into SVP by the embedding technique in
practice [22]. Given the basis bis of L and the target vector u , a new lattice L′

can be built with new basis b
′
1, b

′
2, ..., b

′
d+1, where b

′
i = (bi, 0)(i = 1, ..., d) and

b
′
d+1 = (u , β). β is a parameter to be determined. If v is the closest vector in L

from u , then (u − v , β) is the shortest vector in L′.
It has been proved [23] that a full-rank random lattice L ∈ R

m satisfies with
overwhelming probability

λ1 (L) ≈
√

d

2πe
vol(L)

1
d , (5)

where vol(L) is the determinant of L satisfying vol(L) =
d∏

i=1

‖b∗
i ‖. b∗

i s are the

corresponding Gram-Schmidt basis derived from matrix B.
Furthermore, the theorem above can be extended to CVP. Babai has

proved [21] that given a target vector u , the lattice vector v can be determined
in polynomial time when satisfying the in equation

‖v − u‖ ≤ c1||b∗
N ||2 ≤

√
d

2πe
vol(L)

1
d . (6)

3 First Lattice-Based Fault Attack Against ECMQV

As mentioned above, there exist public key validations described in Algorithm 1
for resisting WCA, and the point V generating shared key cannot be gained
directly except the MAC results in Algorithm 2. Therefore, the DFA making
use of the difference between correct and faulty points, and the WCA utilizing
the feature of low-order point, all cannot be applied to the ECMQV protocol.
However, if we disturb the curve parameter a into a′ by fault injection before
the execution of ECMQV protocol, then the following public-key validations in

Lattice-Based Fault Attacks Against ECMQV 107

ECMQV will be executed on a new weak curve E1(a′, b). Obviously, the low-
order points on E1(a′, b) can pass the public key validation. In addition, the
basic point G(xG, yG) does not lie on the original curve E(a, b) but on another
new weak curve E2(a′, b′), where b′ = yG

2 − xG
3 − a′xG. Thereby, as long as

ECMQV protocol can run repeatedly on the two weak curves, we can recover
the upper half of the static private key.

In this section, we present the first lattice-based fault attack against ECMQV.
To recover the full key, the attack usually composes of three stages. First, FA is
carried out to retrieve some reduced information of the nonces. Next, a LA model
different from the one in ISC’2003 [15] is built to reveal the upper half of dB

with the retrieved information. Finally, the remaining bits of dB can be solved
by a Baby-Step/Giant-Step algorithm, which is same with the stage presented
in ISC’2003 [15] and is not the focus of our study. Hence, our attack just takes
the first two stages into account. The following sections describe the FA and its
corresponding LA.

3.1 Fault Attack Scenario

Our attack assumes that the attacker as party A intends to acquire the static
private dB of party B and the SM calculation involves the parameter a1. More-
over, there exist no additional countermeasures for resisting WCA except the
common Algorithm 1. Party A disturbs the parameter a stored in the crypto-
graphic device of party B to generate a faulty a′ which is unknown to party
A. Meanwhile, the static public key PA invoked by party B can be changed by
party A, which exists in practical applications, such as PA = RA in the ECMQV
of SSH protocol. Finally, it is assumed that the curve parameter b is quadratic
residue, that is, there exists g ∈ Fp so that b = g2 mod p. This is true for
most of the curves recommended in standards. The point C(0,±g) is so-called
common point lying on the curve E(ã, b) for any ã ∈ Fp as mentioned in [24].

3.2 Fault Attack Against ECMQV

The FA includes the following steps, in which fault injection and sending low-
order public keys to B are online, and the remaining steps are off-line for analysis.

Step 1: disturb a into a′ by fault injection (online). At the beginning
of ECMQV in the cryptographic device, the parameter a is written into RAM
through the bus. If the attacker mounts FI on the bus/RAM during/after the
write operation to disturb a into a′, a′ will replace a for the following operations
of ECMQV and remains unchanged until the device resets or powers down.

Based on the faulty parameter a′, we have the first weak curve

E1(a′, b) : y2 = x3 + a′x + b. (7)

n1 is the order of E1(Fp).

1 a is usually not involved in the SM calculation directly when a = p − 3.

108 W. Cao et al.

Meanwhile, because of the faulty a′, the SM RB = rBG is computed on the
second new curve E2(a′, b′) instead of the original curve E(a, b).

E2(a′, b′) : y2 = x3 + a′x + b′. (8)

n2 is the order of G on E2(a′, b′).
In order to determine the values of a′ and b′, the attacker first sends the

common point C(0,±√
b) lying on E1(a′, b) to B. Obviously, B would accept the

point C after validation and send its temporary public key RB to the attacker.
Thereby, the points G(xG, yG) and RB(xRB

, yRB
) on the weak curve E2(a′, b′)

are all known to the attacker. Apparently, a′ and b′ can be determined by the
equations

yG
2 = xG

3 + a′xG + b′ mod p

yRB

2 = xRB

3 + a′xRB
+ b′ mod p.

(9)

Let d ∈ Z be the greatest common divisor of n1 and n2, that is, d =
gcd(n1, n2), then there exists m2 so that n2 = m2d. To ensure the success of the
next LA, we should find an effective faulty a′ to make d as big as possible under
the feasible time complexity O(d). Otherwise, reset the device and restart FI.

Step 2: send low-order public keys on weak curve E1(a′, b) to B (online).
After determining an effective a′, the attacker intentionally selects a point RA

lying on E1(a′, b) with order d as its temporary public key and a point PA

satisfying PA = uRA as its static public key, where u ∈ [1, d − 1] and gcd(d, h +
huRA) = 1, and then sends them to B. According to Algorithm 2, B calculates
the shared key K and outputs RB ,IDB , and tB(options) to the attacker.

Step 3: deduce the reduced information r of the temporary private-
key rB (off-line). Given that RB = rBG, it follows that m2RB = rB(m2G).
Because of the low-order point m2G, it is easy to solve the ECDLP and gain the
result r = rB mod d, i.e., rB = r + λd, where λ < n/d.

Step 4: guess and determine the reduced information s of the implicit-
signature result sB (off-line). Since PA = uRA and gcd(d, h + huRA) = 1,
h(RA + RAPA) lies on E1(a′, b) and its order d

gcd(d,h+huRA) equals d. Guess the

reduced value s = sB mod d and calculate the following formulas

V = hs(RA + RAPA),
K = KDF (V, IDA, IDB),
t = MAC(2, V, IDA, IDB , RB , RA).

(10)

As long as t = tB , the corresponding guessed s is the correct value and
sB = s + μd, where μ < n/d.

As an option in Algorithm 2, B may terminate the ECMQV agreement
without calculating tB . In that case, the attacker needs to implement the
encryption/decryption using the shared key K with B. If the results of encryp-
tion/decryption are correct, the guessed s is also correct. Besides, in case the
static public key PA is sent to B before FI and cannot be changed by the attacker,

Lattice-Based Fault Attacks Against ECMQV 109

the attacker could construct a low-order point RA + RAPA with order n3 on a
new weak curve by uprating RA. d will become the greatest common divisor of
n2 and n3 for analysis by then.

To sum up, by the fault attack above, the attacker can get some reduced
information of rB and sB , i.e., r and s, which can be applied to build the model
of lattice attack.

3.3 Lattice Attack Against ECMQV

As stated above, although the attacker does not know the exact partial bits of
rB and sB as presented in ISC’2003 [15], the LA still can be mounted with the
reduced information retrieved by FA.

Assuming that the ECMQV protocol based on the faulty parameter a′ is
executed N times, the attacker gets N reduced results (ri, si) by FA. For i =
1, . . . , N , the i-th temporary private key rB,i and the i-th implicit-signature
result sB,i satisfy the following equations, respectively.

rB,i = ri + λid,

sB,i = si + μid.
(11)

where λi, μi < n/d.
As shown in Algorithm 2, it is known

sB,i = rB,i + RB,idB mod n, (12)

where RB,i is the i-th temporary public key, and RB,i ∈ [2�f/2�, 2�f/2�+1 − 1] is
derived from the Eq. (3).

Substituting the Eqs. (11) into (12), we have

(μi − λi)d = ri − si + RB,idB mod n. (13)

Hence, there exists hi ∈ Z satisfying the equation

(μi − λi) = (d−1RB,i mod n)dB + hin − d−1(si − ri) mod n. (14)

Since λi, μi < n/d, we have

|hin + (d−1RB,i mod n)dB − d−1(si − ri) mod n| < n/d. (15)

A model of LA can be built by the inequation (15). Let Ai = d−1(si−ri) mod n,
Bi = d−1RB,i mod n. For i = 1, . . . , N , a lattice L can be spanned by the row
vectors b1, . . . , bN+1 of matrix

M =

⎛

⎜
⎜
⎜
⎜
⎝

n 0 · · · 0

0
. . .

...
... n 0

B1 · · · BN 1/d

⎞

⎟
⎟
⎟
⎟
⎠

.

110 W. Cao et al.

Let x = (h1, . . . , hN , dB) ∈ Z
N+1, then xM is a nonzero vector in L and

v = xM = (B1dB+h1n, . . . , BNdB+hNn, dB/d). In addition, let the non-lattice
vector u = (A1, . . . , AN , 0) ∈ Z

N+1. Naturally, the in Eq. (15) can be rewritten
into

‖v − u‖ <
√

N + 1n/d (16)

As mentioned in Sect. 2, if
√

N + 1n/d <
√

N+1
2πe vol(L)

1
N+1 , i.e., N >

f+log 2πe
ld−log 2πe , then v can be determined by solving CVP, where vol(L) = det(M) =
nN/d and ld = �log d� is the bit length of d. Nevertheless, due to RB,i ∈
[2�f/2�, 2�f/2�+1 − 1], there is only the upper half of dA recovered in the lat-
tice attack as proved in ISC’2003 [15].

4 Second Lattice-Based Fault Attack Against ECMQV

In this section, we will introduce the second lattice-based FA against ECMQV.
The target of fault injection is still the parameter a and the FA scenario is same
with the first attack. However, the two constructed weak curves and the model
of LA have some different features.

4.1 Fault Attack Against ECMQV

Similarly, the steps of fault attack are mainly divided into two parts, online and
off-line.

The online steps
As stated above, after disturbing a into a′ by fault injection repeatedly, we

obtain the two weak curves E1(a′, b) and E2(a′, b′). But unlike the first attack, it
assumes that the order n1 of E1(a′, b) have a small factor d and the ECDLP on
E2(a′, b′) is solvable, that is, the time complexity O(d) and O(

√
q) are feasible

for calculation, where q is the greatest prime factor of order n2 of the basic point
G on E2(a′, b′).

Next, using the same method as the first attack, the attacker selects the
low-order point RA and PA on E1(a′, b) as its public keys and sends them to B,
where the selected RA and PA are same as those in the first attack. Finally, the
attacker receives the corresponding RB, IDB , and tB(options) from B.

The off-line analysis steps
First, the reduced information of temporary private key rB is deduce by solv-

ing ECDLP. Given that RB = rBG and the time complexity O(
√

q) is feasible,
we can deduce the value r ∈ [1, n2 − 1] by using Pohlig-Hellman algorithm and
Pollard’s rho algorithm, so rB = r + λn2, where λ ∈ Z and λ < n/n2.

Next, the correct value s ∈ d is determined by using the same guess-and-
determine method as the first attack, and then sB = s + μd, where μ < n/d.

Although it is uncertainty whether there exists an available common divisor
between n2 and d, a model of lattice attack still can be built.

Lattice-Based Fault Attacks Against ECMQV 111

4.2 Lattice Attack Against ECMQV

In the same way, after the faulty ECMQV runs N times, we have the following
equations for i = 1, . . . , N .

rB,i = ri + λin2,

sB,i = si + μid.
(17)

Where λi, μi ∈ Z, λi < n/n2 and μi < n/d.
Substitute the Eq. (17) into the equation sB,i = rB,i + RB,idB mod n, then

si + μid = ri + λin2 + RB,idB mod n(i > 1)

s1 + μ1d = r1 + λ1n2 + RB,1dB mod n(i = 1).
(18)

We have the following N − 1 equations by eliminating dB .

μi = d−1 (ri − si) − d−1RB,1
−1

RB,i (r1 − s1) − d−1RB,1
−1

RB,in2λ1

+ d−1n2λi + RB,1
−1

RB,iμ1 mod n(1 < i ≤ N)
(19)

Let Ai = d−1RB,1
−1

RB,i (r1 − s1) − d−1 (ri − si) mod n, Bi =
−d−1RB,1

−1
RB,in2 mod n, C = d−1n2 mod n and Di = RB,1

−1
RB,i mod n,

then there exists hi ∈ Z so that

μi = Biλ1 + Cλi + Diμ1 + hin − Ai. (20)

Since μi < n/d, we have

|Biλ1 + Cλi + Diμ1 + hin − Ai| < n/(2d). (21)

Similarly, for i = 2, . . . , N , we can construct a lattice L spanned by the row
vectors b1, . . . , b2N of matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δn · · · 0

0
. . .

δn

δD2 · · · δDN δ
...

δB2 · · · δBN 0 γ

δC
. . .

. . . γ
0 δC 0 · · · γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where γ, δ ∈ R. Let x = (h2, . . . , hN , μ1, λ1, . . . , λN) ∈ Z
2N , then

v = xM = (δ(h2n + D2μ1 + B2λ1 + Cλ2), . . . , δ(hNn + DNμ1 +
BNλ1 + CλN), δμ1, γλ1, . . . , γλN). In addition, let non-lattice vector u =
(δA2, . . . , δAN , 0, · · · , 0) ∈ Z

2N , then v−u = (δμ2, . . . , δμN , δμ1, γλ1, . . . , γλN).
Supposing that β ∈ R, δ = dβ and γ = n2β, we have

‖v − u‖ <
√

2Nnβ (22)

112 W. Cao et al.

It is assumed that l2 = �log n2� and ld = �log d�. If l2+ ld > f +log 2πe and N >

f/ (l2 + ld − f − log 2πe), then ‖v − u‖ <
√

2Nnβ <
√

2N
2πevol(L)

1
2N , where

vol (L) = det(M) = β2NnN−1dNn2
N . Hence, v can be determined by solving

CVP, and then dB = RB,1
−1

(s1 − r1 + δμ1/β − γλ1/β) mod n. Similarly, since
RB,i belongs to [2�f/2�, 2�f/2�+1 − 1], only the upper half of dA can be recovered
by the LA.

5 Feasibility Analysis and Simulation of Attacks

In this section, we will verify the feasibility of our proposed attacks by software
simulations. First, we carry out some simulations in two standard curves to
analyze the rate of effective faulty parameter a′s for the attacks. Next, based on
the effective faulty a′s, we verify the two attacks by experiments.

We choose the curves in prime field with 256-bit keys recommended in FIPS
186-2 and SM2 as the FI objects, and then simulate the flipped single fault and
32-bit random fault of parameter a, respectively. For the flipped single fault,
every bit of a is flipped in turn, so there are 256 kinds of different faulty a′s.
As for the random fault, a continuous 32-bit part of a is randomized, which is
also simulated 256 times. After that, we compute the orders n1, n2 of the two
constructed curves by using the MIRACL implementation of SEA algorithm [25],
respectively.

As stated above in the first attack, the number N of ECMQV protocol needed
for LA is greater than f+log 2πe

ld−log 2πe . Hence, the case ld ≥ 5(i.e., �log d� > �log 2πe�)
is required for the two weak curves. Moreover, the greater d, the smaller N .
Figure 1 displays the cumulative outcome probability that the greatest common
divisor d is bigger than a certain bit length for the two faulty types of the two
standard curves. To better understand these results, we list the faulty number
Nd, dmax(namely the biggest d) and the bit length �log dmax� of dmax when
ld ≥ 5 as shown in Table 1. From the results the probability of faulty a′s available
for the first attack exceeds 4%, and the optimal dmaxs for the four faulty types
are sufficient to mount lattice attack successfully.

As for the second attack, our analysis concerns the probability that the
ECDLP with time complexity O(2lq/2) is solved by modern computers, where
lq = �log q� and q is the biggest prime factor of order n2 on E2(a′, b′). We assume
that the computation limit for solving ECDLP is bound to 112 bits complex-
ity [26], thus we consider the faulty a′s whose q is smaller than 112 bits are
effective for the attack. Meanwhile, in order to ensure the success rate of LA,
l2 + ld > f + log 2πe is also required under the premise of feasible computation
complexity O(2ld). Similarly, Fig. 2 displays the cumulative outcome probability
that the biggest factor q is smaller than a certain bit-length. It can be observed
that the probability to obtain sufficiently small sizes of q exceeds 19%. Table 2
lists the number Nlq of all the faulty a′s under the conditions lq ≤ 112, ld < 40
and l2 + ld > f + log 2πe, in which qmin is the smallest q satisfying the con-
ditions above. L equals the biggest l2 + ld − f − �log 2πe� when q = qmin.

Lattice-Based Fault Attacks Against ECMQV 113

Fig. 1. Cumulative probability of the bit length of each common factor d in the first
attack

Table 1. Effective faulty a′s for the first attack

Curve Data

Nd Nd/256 dmax �log dmax�
FIPS-flipped fault 14 5.5% 0 × 374 10

FIPS-random fault 21 8.2% 0 × 1E9 9

SM2-flipped fault 13 5.1% 0 × 409 11

SM2-random fault 10 4.0% 0 × 2B0 10

Compared to the first attack, the probability Nlq/256 of effective faulty a′s in
the second attack is greater than Nd/256, but at the same time the computation
complexity is higher as well.

To sum up, there are at least 24% faulty a′s available for both of the above
attacks in all. Which attack to choose depends on the case generated by the
faulty a′.

Finally, we carry out the two attacks based on the flipped single fault of the
FIPS 186-2 curve, in which the lattice attacks invoke the Babai algorithm based
on BKZ reduced basis in NTL library [27]. In the first LA, the upper half of dA

can be recovered correctly by LA as long as ld ≥ 5, and at least N = 62 is needed
when ld = 5(ld −�log 2πe� = 1). The N needed is far smaller than the theoretical
one(i.e., N > f+�log 2πe�

ld−�log 2πe� = 260). Meanwhile, we choose the faulty case �log q� =
58, l2 = 253, ld = 8 and L = 1 for the second attack. The experiments show that
at least N = 90 is needed for a successful LA when ld + l2 − f − �log 2πe� = 1.
This is also far smaller than f

ld+l2−f−�log 2πe� = 256. Thus, the results from lattice
attack in practice are actually better than those in theory.

114 W. Cao et al.

Fig. 2. Cumulative probability of the bit length of each biggest factor q in the second
attack

Table 2. Effective faulty a′s for the second attack

Fault type Data

Nlq Nlq/256 q = qmin

�log qmin� l2 ld L

FIPS-flipped fault 56 21.9% 58 253 8 1

FIPS-random fault 43 16.8% 55 256 39 35

SM2-flipped fault 49 19.1% 60 255 39 26

SM2-random fault 60 23.4% 57 256 39 35

6 Conclusion

In this paper, we present two new lattice-based fault attacks on ECMQV, which
are based on the possibility of storage error of parameter a. Both of the attacks
construct two weak curves with the faulty parameter a′. Because of the great-
est common divisor d of the two curves, the first attack reduces the temporary
private key and implicit-signature result (rB , sB) into (rB mod d, sB mod d),
respectively. The second attack reduces (rB , sB) into (rB mod n2, sB mod d)
by solving ECDLP on the second weak curve E2(a′, b′) and using the guess-
determine method. Next, the two new lattice attacks with the reduced infor-
mation of (rB , sB) are launched to recover half bits of the static private key
dB . Finally, the experiments confirm the feasibility of our attacks. For a 256-bit
standard key length, 62 faulty agreements with a 5 bit-length common divisor d
are sufficient to recover 128 bits of the private key dB in the first attack, and 90

Lattice-Based Fault Attacks Against ECMQV 115

faulty agreements are sufficient to determine half of dB using the second attack
when the sum of the bit lengths of the small factor d and order n2 equals 261.

The ideas of such attacks also can be applied to the other ECC algorithms,
such as ECDSA and SM2 signature. Note that although the point RA sent to
victim from attacker can pass through the public key validation, the general
countermeasure such as the point validation toward the points G,QB during the
calculation of SM QB = rBG is effective at resisting our attacks. For this reason,
our further research will focus on how to mount attacks when there are some
countermeasures in SM. For example, we can consider fault attacks based on the
storage error of parameter p.

Acknowledgments. We thank the anonymous reviewers for their careful reading and
insightful comments. This work is supported by China’s National Cryptography Devel-
opment Fund (No. MMJJ20170214 and No. MMJJ20170211), National Natural Science
Foundation (No. 61672509) and National Science and Technology Major Project (No.
2014ZX01032401-001).

References

1. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://
doi.org/10.1007/3-540-39799-X 31

2. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 8

3. Ciet, M., Joye, M.: Elliptic curve cryptosystems in the presence of permanent and
transient faults. Des. Codes Crypt. 36(1), 33–43 (2005)

4. Kim, T., Tibouchi, M.: Bit-flip faults on elliptic curve base fields, revisited. In:
Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp.
163–180. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5 11

5. Blömer, J., Otto, M., Seifert, J.-P.: Sign change fault attacks on elliptic curve
cryptosystems. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.)
FDTC 2006. LNCS, vol. 4236, pp. 36–52. Springer, Heidelberg (2006). https://doi.
org/10.1007/11889700 4

6. Schmidt, J., Medwed, M.: A fault attack on ECDSA. In: 2009 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 93–99. IEEE (2009)

7. Fan, J., Gierlichs, B., Vercauteren, F.: To infinity and beyond: combined attack
on ECC using points of low order. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 143–159. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 10

8. Elkamchouchi, H.M., Abu Elkair, E.F.: An efficient protocol for authenticated key
agreement. Des. Codes Crypt. 28(2), 119–134 (2003)

9. IEEE Std: 1363-2000 - IEEE standard specifications for public-key cryptography,
pp. 1–228. IEEE Computer Society, August 2000

10. Alberta Teachers’ Association: Public key cryptography for the financial services
industry, key agreement and key transport using elliptic curve cryptography. Specu-
lum 81(2), 566–569 (2006)

https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/978-3-319-07536-5_11
https://doi.org/10.1007/11889700_4
https://doi.org/10.1007/11889700_4
https://doi.org/10.1007/978-3-642-23951-9_10
https://doi.org/10.1007/978-3-642-23951-9_10

116 W. Cao et al.

11. Office of State Commercial Cryptgraphy Administration: Public Key Crypto-
graphic Algorithm SM2 Based on Elliptic Curves (2010, in Chinese). http://www.
oscca.gov.cn/UpFile/2010122214822692.pdf

12. Yeh, H.T., Sun, H.M., Hwang, T.: Improved authenticated multiple-key agreement
protocol. Comput. Math. Appl. 46(2), 207–211 (2003)

13. Kaliski, B.S.: An unknown key-share attack on the MQV key agreement protocol.
ACM Trans. Inf. Syst. Secur. 4(3), 275–288 (2001)

14. Antipa, A., Brown, D., Menezes, A., Struik, R., Vanstone, S.: Validation of elliptic
curve public keys. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 211–
223. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6 16

15. Leadbitter, P.J., Smart, N.P.: Analysis of the insecurity of ECMQV with partially
known nonces. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 240–
251. Springer, Heidelberg (2003). https://doi.org/10.1007/10958513 19

16. Menezes, A., Ustaoglu, B.: On the importance of public-key validation in the MQV
and HMQV key agreement protocols. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 133–147. Springer, Heidelberg (2006). https://doi.org/
10.1007/11941378 11

17. Menezes, A.: Another look at HMQV. JMC 1(1), 47–64 (2007)
18. Hankerson, D., Menezes, A.J., Vanstone, S.: Guide to Elliptic Curve Cryptography.

Springer, Heidelberg (2004). https://doi.org/10.1007/b97644
19. Lenstra, H.W., Lenstra, A.K., Lovfiasz, L.: Factoring polynomials with rational

coefficients. Mathematische Ann. 261, 515–534 (1982)
20. Schnorr, C.P.: A hierarchy of polynomial time lattice basis reduction algorithms.

Theor. Comput. Sci. 53(2–3), 201–224 (1987)
21. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem (short-

ened version). Combinatorica 6(1), 1–13 (1986)
22. Nguyen, P.Q., Stern, J.: Lattice reduction in cryptology: an update. In: Bosma,

W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 85–112. Springer, Heidelberg (2000).
https://doi.org/10.1007/10722028 4

23. Ajtai, M.: Generating random lattices according to the invariant distribution. Draft
of March (2006)

24. Battistello, A.: Common points on elliptic curves: the Achilles’ heel of fault attack
countermeasures. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 69–81.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0 6

25. Schoof, R.: Counting points on elliptic curves over finite fields. J. de Theorie des
Nombres de Bordeaux 7(1), 219–254 (1995)

26. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using
sloppy reduction. Int. J. Appl. Crypt. 2(3), 212–228 (2012)

27. Shoup, V.: Number Theory C++ Library (NTL) version 9.6.4. (2016). http://
www.shoup.net/ntl/

http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
https://doi.org/10.1007/3-540-36288-6_16
https://doi.org/10.1007/10958513_19
https://doi.org/10.1007/11941378_11
https://doi.org/10.1007/11941378_11
https://doi.org/10.1007/b97644
https://doi.org/10.1007/10722028_4
https://doi.org/10.1007/978-3-319-10175-0_6
http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

Thermal Scans for Detecting Hardware
Trojans

Maxime Cozzi(B), Jean-Marc Galliere, and Philippe Maurine

LIRMM, 161 Rue Ada, Montpellier, France
maxime.cozzi@lirmm.fr

Abstract. It is well known that companies have been outsourcing their
IC production to countries where it is simply not possible to guaran-
tee the integrity of final products. This relocation trend creates a need
for methodologies and embedded design solutions to identify counterfeits
but also to detect potential Hardware Trojans (HT). Hardware Trojans
are tiny pieces of hardware that can be maliciously inserted in designs
for several purposes ranging from denial of service, programmed obso-
lescence etc. They are usually stealthy and characterized by small area
and power overheads. Their detection is thus a challenging task.

Various solutions have been investigated to detect Hardware Trojans.
We focus in this paper on the use of thermal near field scans to that aim.
Therefore we first introduce and characterize a low cost, large bandwidth
(20 kHz) thermal scanning system with the high detectivity required to
detect small Hardware Trojans. Then, we experimentally demonstrate
its efficiency on different test cases.

Keywords: Trojan detection · Lock-in thermography
Thermal mapping · Thermal modeling

1 Introduction

Hardware security recently emerged as an important research problem. Attacks
such as Side Channel proved that it was possible to break trusted ciphering
algorithms such as Rijndael and therefore raised the problem of securing elec-
tronic devices [1]. This concern is even greater in the economic context where
the quest for better performances pushes CMOS technology close to its limits
and to an exponential growth of Integrated Circuits (IC) complexity and cost.
Consequently, more and more companies are fabless and are outsourcing their
production to foreign countries. As a result, ensuring the integrity of integrated
products has become a critical issue because most of electronic systems, even
critical ones, rely on ICs. We obtained these last years more and more evidence
that counterfeits, cloning and Trojan insertion have become a credible vector of
attack against electronic systems [2–4].

The increasing complexity of ICs and the scaling of technology have made
Trojan detection a particularly challenging task as both their size and power
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 117–132, 2018.
https://doi.org/10.1007/978-3-319-89641-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_7&domain=pdf

118 M. Cozzi et al.

overhead have become infinitesimal in their respective applicative context, thus
creating the need for high performance methodologies (inspired from Side Chan-
nel Attacks for most of them) [2–4] and embedded design solutions [5,6].

Infra-Red (IR) thermography has proven to be efficient in detecting small
defects in ICs [7]. It has also demonstrated to be efficient, by simulation only,
for Trojan identification in [8]. One drawback is their reliance on IR camera
set-ups which have a very limited frame rate, a limited number of pixels and
are costly. Within this context we propose in this paper a low cost and high
detectivity thermal platform characterized by a bandwidth of 20 kHz as well as
Side Channel Attacks (SCA) inspired techniques to exploit IR data collected.

The organization of this paper is as follows. Section 2 provides a theoretical
background on thermal emissions. It also gives a state of the Art relative to
our application domain and illustrates that DC silicon thermal response can
be modeled by a first order system to deduce a usage policy of tunable IR
platforms to manage their spatial resolution and detectivity. Section 3 details
the proposed low cost and high detectivity experimental IR set-up. Then, Sect. 4
gives experimental results demonstrating the efficiency of the proposed IR set-
up. Finally, in Sect. 5, performance of the proposed platform regarding Trojan
detection is given, as well as the SCA inspired techniques defined for this purpose.

2 State of the Art

This section aims at introducing ICs thermal mapping. Many other thermal
investigation methods have been proposed, such as thermoreflectance presented
in [9]. Here, we only present techniques that are relevant to our measurement
system.

2.1 Light Emission from Above 0 ◦K Bodies

It is well known that every body above absolute 0 ◦K emits light [10]. This
principle is described by Planck’s law which shows that the wavelength of the
light emitted by a black body is linked to its temperature by the following
formula:

Iλ,b = 2.h.c20.λ
−5.e

−h.c0
k.λ.T (1)

where c0 is the electromagnetic radiation propagation speed in a vacuum, h and
k respectively are the Plank and Boltzmann constants, and λ is the wavelength of
the emitted light. Considering a classical environment for the Device Under Test
(DUT), e.g. a room temperature of 25 ◦C, we get from (1) that light emission
should be observed in the (IR) spectrum. Silicon is transparent to wavelengths
above 1100 nm. It is therefore possible to detect hot spots using IR sensors,
through the backside of DUTs [7].

One of the challenges in IR thermography is compensating for natural emis-
sivity of materials. Indeed, if every body does emit light depending on its tem-
perature, it does not radiate the same intensity depending on its constitution.
For that matter, we define emissivity as the ratio between the intensity of the

Thermal Scans for Detecting Hardware Trojans 119

radiation emitted by the studied material and the intensity of the radiation emit-
ted by a black body at the same temperature. A precise thermal map of a DUT
composed of different materials with high contrast in emissivity can be difficult
to obtain as weak thermal sources can be concealed by surrounding hot spots
emissions. This is particularly true for modern ICs because of the high emissiv-
ity contrast between metals and silicon. To overcome this phenomenon, we use
lock-in thermography techniques as proposed in [11] and detailed in Sect. 2.3.

2.2 DC Measurements

The simplest method in order to detect circuit activity is to directly acquire
all thermal emissions from the chip using an IR camera. Work in [12] presents
a methodology for post silicon power characterization. Based on temperature
measurements obtained using a −196 ◦C cooled SC5600 FLIR IR camera with
a resolution of 640 × 512 pixels, the authors managed to retrieve a power den-
sity cartography of a die for different workloads. For that, they show that the
heat diffusion equation can be approximated by the following linear matrix
formulation

Rp + e = t (2)

where R is the matrix of the thermal resistivities between different locations,
p is the desired power map, e is the error in temperature measurement and t
is the temperature matrix. Previous methodology used least squares estimation
to find the p value that gives temperatures as close as possible to measured
temperatures t. According to the authors, this technique poses several prob-
lems because of the inherent thermal spatial low-pass filter effect of silicon dies
that leads to critical loss of information, especially in high frequencies. Hence,
many power patterns can lead to the same thermal image, thus rendering the
problem of temperature to power conversion ill-posed. To replace this method
Reda et al. proposed instead minimizing the total squared error between tem-
perature computed using (2) and measured ones combined with techniques from
regularization theory [14].

In [13,15] authors managed to obtain a high resolution thermal map of a
dual-core AMD Athlon II 240 running at 2.1 GHz, using the same IR acquisition
platform. The circuit has a power consumption of 65 W and measured tempera-
ture gradients were up to 16 ◦C. In these papers, the authors demonstrated how
different workloads can lead to variations in hot spot location. Several configu-
rations, assigning the workload only to one core or both of them, were used by
Reda et al., highlighting the possibility of active area tracking by IR thermog-
raphy because hot spots were found on top of active areas while sectors of lower
activity such as memory remained cooler. They then applied their method of
temperature to power inversion in order to recover the power density map of the
chip.

We find that this method of IR image acquisition is flawed, as a DC offset
is generated by the static power consumption of the chip (including constant
power consumption of the IC such as the clock tree), and the diffusion of the

120 M. Cozzi et al.

heat generated by this phenomenon can lead to weak spot concealing. Moreover,
this method requires steady environmental conditions as both the detector and
the thermal emissions are sensible to room temperature variations. This is espe-
cially true because our area of investigation mainly includes ICs such as FPGAs
or microcontrollers which have a significantly lower power consumption than
ICs considered in [13,15]. These devices consume few hundreds of milliampere,
whereas microprocessor can draw up to several dozens of ampere. So it is obvious
that this methodology (DC measurements) is highly unsuitable for weak thermal
spot detection because of the high contrast of material emissivity, static thermal
emissions, and heat diffusion.

However, if DC measurements are not suitable for hot spot mapping, they are
of a great utility to learn about the thermal behavior of the DUT and thus for
guiding dynamic measurements, i.e. to apply the lock-in thermography approach
described in the next section. Indeed, a few DC measurements of the DUT step
response enables us to quickly set up a first order model of its thermal behavior;
such a model is of great help in deciding which (flockin, gain) couple should be
used to obtain lock-in maps of high quality.

By way of illustration Fig. 1 gives, for several current steps, the responses of
the DUT considered in the rest of the paper as well as the responses deduced
from the identified first order model. In the present case, the IC thermal behavior
of the DUT is characterized by a cutting frequency of 5 mHz. This is extremely
low and implies the use of an amplification chain of at least 60 dB to obtain lock
in thermography maps at 10 Hz. Implementation and protocol used to produce
Fig. 1 is described in Sect. 4.

Time (s/rad)

Se
ns

or
ou

tp
ut

 (V
)

Fig. 1. Experimental and calculated thermal responses of the DUT to several step
inputs.

Thermal Scans for Detecting Hardware Trojans 121

2.3 Lock-in Thermography

Lock-in thermography is a correlation technique that allows retrieving periodic
signals deeply drowned in noise. The principle, which is illustrated in Fig. 2, is
very close to lock-in detection. It mainly consists of imposing a periodic thermal
modulation to the DUT. With only the knowledge of the modulation frequency,
it is then possible to retrieve the amplitude A and phase φ of the thermal signal
and thus to fully rebuild the thermal behavior of the DUT [11].

Considering two processing channels, lock-in correlation consists of integrat-
ing the multiplication of sensor output by the correlation signal on the first
channel and by the 90◦ phase shifted correlation signal on the second channel.
Results are respectively named S0 and S90 and are given by Eqs. (3)–(5) where
Kj is the correlation signal, Fi,j is the incoming signal, n is the number of
samples and N is the number of lock-in periods the measurement is averaged
over.

S =
1

n · N
n∑

i=1

N∑

j=1

KjFi,j (3)

S0 = A · cos(φ) (4)

S90 = A · sin(φ) (5)

From (4) and (5) we easily infer Eqs. (6) and (7) that provide amplitude and
phase of the thermal wave.

A =
√

S2
0 + S2

90 (6)

φ = Arctan(
S0

S90
) (7)

Fig. 2. Discrete lock-in process

This methodology was first implemented by Busse et al. in [16] and used to
implement the first lock-in camera system in 1992. This was then deepened by

122 M. Cozzi et al.

Breintenstein et al. in [11,17] to investigate small resistive defects in solar panels.
In this work, authors show that lock-in thermography can be used to highlight
small hot spots created by resistive paths in silicon dies, dynamic operations of
a particular circuit element turned on and off at 54 Hz, and gate oxide integrity
defects in Cu-grown silicon MOS structures.

Following on [12,13,15], the authors demonstrated in [18] that increasing the
lock-in frequency reduces considerably the heat diffusion distance comparing
results from DC to 8 Hz. According to Breitenstein in [11] the lock-in frequency
must be chosen respectively to a trade off between the Signal to Noise Ratio
(SNR) and the spatial resolution. Indeed, if raising the lock-in frequency certainly
reduces the heat diffusion distance, it also impacts the thermal load’s duration
on the die, thus the amount of signal that can be measured. In [19], it was
demonstrated both theoretically and experimentally, that for their specific IR
acquisition platform, SNR rises at first with the lock-in frequency but starts
decreasing after a corner frequency around 3 Hz. The corner frequency obviously
relies on detectivity, bandwidth and the amplifiers of the measurement chain.

So, using lock-in correlation to create a thermal map of the DUT brings
forward several advantages. First, as mentioned earlier, it allows detection of
signals deeply buried in noise which is critical in low power IC characterization.
Secondly, the use of lock-in thermography discards any thermal emission that is
not modulated at flockin. This means that, not only the final thermal map is free
from any DC offset, but the user is able to target a specific area of the chip by
adapting the modulation (induced through power supply modulation, software
modulation, data or address modulation, etc.) used to create the thermal wave.
In addition, heat diffusion is controllable by modifying the lock-in frequency.
Finally, retrieving the signal phase is a tremendous advantage that allows us
to completely discard the emissivity contrast, which is a critical problem while
facing complex ICs as aforementioned in Sect. 2.1.

3 Experimental Set-Up

From the state of the Art, we get that IR cameras have been widely preferred
to single pixel sensors as they provide faster image acquisition and easier cal-
ibration. On the other hand, the latter advantages are at the expanse of cost
(around 70k USD), bulk and bandwidth as their frame-rate rarely exceed 100 Hz
using full resolution [11,18].

In this paper, we propose a low cost compact measurement set-up, based on
a mono pixel IR sensor providing a large acquisition bandwidth and a higher
detectivity at equivalent temperatures. Our testbench is composed of a InAs IR
sensor working in the 1–3.8µm spectrum at −60 ◦C, a trans-impedance amplifier
providing a 2.108 V. A gain and a remote controlled oscilloscope, for a total
cost of 3.5k USD, not counting the oscilloscope which is basic measurement
equipment. This set-up is able to detect signals from DC up to 20 kHz.

In order to draw a thermal map, we use the lock-in correlation algorithm to
compute amplitude and phase values at every position on the die. One drawback

Thermal Scans for Detecting Hardware Trojans 123

of our system is the acquisition time of a full map, which is around 12 h for a
160 × 160 pixels thermal map (acquiring 10 measurements at flockin = 10 Hz
at each position). However, the mapping time is customizable by modifying the
number of acquired traces, the cartography spatial step, the trace length, and
flockin.

4 IC Thermal Characterization

As explained in Sect. 2.3, the flockin value has an influence on several parameters.
The higher the frequency the shorter is the heat diffusion distance [18]. Therefore,
to increase the spatial resolution of thermal maps, it is necessary to increase
flockin. On the other hand, increasing the heat modulation frequency leads to
shorter periods of heating and thus to weaker IR amplitude and SNR. In this
section we demonstrate that this trade off can be managed rationally through a
first order modeling of the thermal behavior of ICs.

4.1 Experimental Protocol

For many designs or research objectives, FPGAs are suitable integration targets
as they are nearly 100% customizable. This is the case for our work. We have
thus implemented our several designs on a Xilinx Virtex 5 FPGA after having
removed the metallic package to get a direct access to the backside. This FPGA
has a die area equal to 16 × 16 mm2 and is designed with a 65 nm CMOS
technology.

The aim of our first experiment was to estimate the detectivity of our plat-
form and to observe the thermal behavior of the FPGA. We integrated 255 Ring
Oscillators (RO) to use them as micro-heaters [18]. Each RO was composed
of two inverters and one Nand2 gate allowing us to enable/disable it. All ROs
were placed as homogeneously as possible in a constrained area. The main idea
was to integrate a local and controllable source of heat by driving the number
of active ROs. Indeed, ROs are constant micro-heater thanks to their constant
power consumption. By modifying the number of active ROs we were able to
linearly control the local power density.

The lock-in toggling frequency of ROs was fixed at 10 Hz. This toggling
imposed with an external signal generator creates a current variation and thus a
heat wave. The amplitude of this current variation was measured after removal
of the on-board voltage regulator. The toggling of a single RO generated a cur-
rent variation equal to approximately 3.23 mA, while the core was biased by a
316 mA current under a voltage of 1 V.

4.2 Electrical Activity Detection by Heat Detection

Thermal maps with n = 1, 8, 16, 32 and 255 active ROs were collected and drawn.
In order to diminish experimental measurement time, only the top right quarter
of the die was mapped. The results for n = 1, 8, 16 and 32 ROs are presented
Fig. 3.

124 M. Cozzi et al.

On the amplitude map, heat generation is clearly and visually distinguishable
when at least 16 ROs are activated. Even if a few heat sources can be spotted
on the 8 ROs map, they can not be directly separated from heat diffusion of the
surrounding hot spots or measurement noise without application of statistical
or signal processing techniques.

Fig. 3. (a) Amplitude map, (b) Phase map, (c) Amplitude histograms; 1: Heat source
generated by the control logic. 2: Localization of implemented ROs used as thermal
heaters. (Color figure online)

On the other hand, looking at phase maps in Fig. 3(b), one can observe that
the presence of the 8 ROs is more visible than on the amplitude maps reported
in (a). In (b), dark blue areas correspond to heat diffusion zones whereas dark
red zones represent areas free of heat diffusion and hot spots. This confirms
that the study of phase signal is a key element in separating diffusion heat from
heat sources. The higher information of the reported phase maps is a direct
illustration of former comments related to emission contrast. It proves that the
phase image can provide much more accurate information in several situations.

However, the main point here is that the distributions in Fig. 3(c) of the
lock-in amplitudes over the IC surface are also highly interpretable. Indeed, the
effect of 8, 16 and 32 ROs on the distribution shapes is clearly visible. From
these observations, we believe it is possible to extrapolate whether a circuit is
infected or not by a stealthy hardware Trojans (HT) using statistical means.
This point will be further discussed in Sect. 5.

Using the same IR measurement platform, we were able to acquire ther-
mal maps for n = 255 ROs with a flockin up to 210 Hz. In comparison, works
reported in [18,19] used a maximal flockin of 8 Hz. This considerably increases

Thermal Scans for Detecting Hardware Trojans 125

our detection capability (as shown Fig. 4) as we are able to detect weaker hot
spots diffusing on a very limited area at higher flockin frequencies. This is pre-
sented in the top left map of Fig. 4 that shows a regular pattern in the target
FPGA heat diffusion, which is less visible in the 10 Hz bottom left thermal map.
Without any access to the layout of this FPGA we are not able to explain the
origin of this pattern at this time.

Fig. 4. Thermal maps at 10Hz and 210Hz

5 Trojan Detection

This section describes the methodology we proposed to detect rough and stealthy
hardware Trojans. It also gives and discusses experimental results obtained on
the considered DUT.

5.1 Hardware Trojan Characteristics

A Trojan is a tiny integrated circuit maliciously added to an existing design
without knowledge of the company owing its intellectual propriety. This circuit’s
purpose can be variable, including denial of service, programmed obsolescence
etc. They usually aim to avoid being detected, both from a power overhead and
surface point of view. As a consequence, detecting them is a challenging task
and requires a comprehensive knowledge on the subject.

A Trojan is made up of two components: the trigger and the payload [20].
The trigger is the part of the circuit waiting for the occurrence of an event to

126 M. Cozzi et al.

activate the malicious function of the Trojan, i.e. its payload. This trigger could
be ‘always-on’ or active when a part or a functional block of the IC is under use.
This is, a priori, the only part of the HT we can detect since the payload remains
quiet before its triggering. The trigger could be sequential or combinatorial. In
the rest of the paper we consider a sequential trigger, i.e. a trigger waiting for a
sequence of states.

The payload is the hostile part of the HT which is activated by the trigger
when the firing condition is met. A HT can be spread inside the circuit as well as
restrained to a particular area. It could be hidden in the functional block where it
is waiting the triggering condition (e.g. a particular sequence of values of different
registers in the block). In that case we say it is ‘stealthy’. It can also be placed far
from the functional block(s) from which it is waiting for the triggering condition.
In that case we say it is ‘externalized’. Most former papers on HT detection using
SCA focused on externalized HTs. In the following paragraphs, we consider both
externalized HTs and stealthy HTs, placed in a restraint area of the device, and
with a sequential trigger.

5.2 Testchips and Emulation of HTs

To demonstrate the efficiency of thermal maps in detecting HTs we chose to
emulate the infection by an HT of a simple design mapped into a Xilinx virtex
5 FPGA. This simple design is made of a hardware 128-bit AES block and its
associated control logic. This AES is clock gated. This means that its electrical
activity, and thus its heating effect, can be fully stopped by disabling its clock
signal.

Two different implementations of this simple design were done. The resulting
floorplans are shown in Fig. 5. For both implementations, the HT is a 16-bit
Linear Feedback Serial Register (LFSR) clocked with the same clock signal as
the AES as explained in [6]. It is therefore only active when the AES is operating.
It occupies 4 slices of the FPGA among the 17280 available slices. This represents
less than 0.023% of the total resources (surface). For a convincing demonstration
that the proposed lock-in thermography platform is able to detect stealthy HTs,
we implemented the HT with an enable signal to be sure that the golden design
and the infected designs are exactly the same from a hardware routing point of
view and thermally differs only when the HT is enabled.

The two implementations of the design differ by the placement of the HT
with respect to the AES block. In the first implementation, the HT is placed far
from the AES block (Fig. 5 left). This case corresponds to an HT externalized
in a block which is inactive when the AES is operating (or externalized in an
empty place of the circuit, an improbable situation in real ICs). In the second
implementation (Fig. 5 right), the place and route constraints were set so that
the HT is merged in the middle of the AES. This situation corresponds to an
adversary trying to hide the HT activity within the activity of another func-
tional block, i.e. trying to render its HT to be as stealthy as possible. This case
corresponds to a more challenging situation regarding HT detection.

Thermal Scans for Detecting Hardware Trojans 127

AES Slices
AES Nets
Trojan Slices and Nets

Fig. 5. Left: testchip with a externalized HT. Right: testchip with a stealthy HT.

5.3 Detection Methodology

The principle of the detection methodology consists of comparing golden thermal
maps drawn from measurements done on a IC from a trusted production lot (i.e.
a golden chip) with the corresponding thermal maps obtained above the DUT,
i.e. above an IC coming from a potentially infected lot.

These thermal maps correspond to several computational activities of the
design. The latter should be chosen so that it activates all the functional blocks
of the design or has high coverage of its surface.

According to the size of the infection which is expected or researched, i.e.
according the stealthiness of the HT, the comparison between the golden IC and
the DUT can be done with different levels of accuracy. It can be done visually
to detect externalized un-stealthy HTs or by simple difference of means between
corresponding positions of the maps for quite stealthy HTs. Alternatively, it can
be done using statistical tests such as the Welch’s t-test for stealthy HTs. The
next sections detail the application of this methodology to our two testcases and
give the obtained experimental results.

5.4 Experimental Results

Case 1: Externalized HT. This first case considers a HT externalized in an
inactive area when the HT is active. This is thus the case of a rough HT. To
detect it, a basic use of our IR measurement platform could be sufficient. Such
a use, which can also be applied to detect rough counterfeit products (but not
clones), consists of (a) visually comparing a golden thermal map with the ones
obtained for a potentially infected IC or (b) computing a basic difference of
means between the two thermal maps.

128 M. Cozzi et al.

Thermal maps were therefore acquired on the same FPGA with HT activated
or not. The acquisition of one map consists of collecting n = 10 lock-in traces
(vectors length of N = 1000). The lock-in frequency was fixed at 10 Hz. This
means that the AES (or the AES and the HT in case of an infection) is disabled
during 0.05 s (cold phase of the lock-in process) and active during 0.05 s (hot
phase of the lock-in process).

Figure 6 gives the thermal maps of the whole die. They are made of 160 × 160
pixels. The first left column of this figure gives the amplitude of the thermal
wave at each coordinate with a color scale corresponding to the dynamic of
all measurements. The second column gives the same results but with a color
scale allowing us to detect the HT which is in the rectangle labeled (3) in the
maps. The rectangles labeled (2) point out areas where large buffers are used to
drive IO pads allowing to get out output values of the AES. The third column
gives the phase of the thermal wave with respect to the lock-in signal. One can
observe the significant impact of the HT on the phase map, impact which is much
more visible than on the amplitude map. These results demonstrate that our IR
platform is efficient in detecting rough or externalized HTs (and probably rough
counterfeits) by simple visual inspection of thermal maps and this especially by
considering the phase map.

Fig. 6. First row: thermal maps (amplitude and phase) obtained with the golden cir-
cuit. Second row: thermal maps obtained with the infected circuit. Label (1) shows the
position of the AES, label (2) shows the position of large output buffers and label (3)
shows the position of the externalized HT. (Color figure online)

Thermal Scans for Detecting Hardware Trojans 129

Fig. 7. Left: amplitudes of the thermal waves collected above the golden IC. Right:
amplitudes of the thermal waves collected above the infected IC.

Case 2: Stealthy HT. Figure 7 gives the thermal maps (amplitude only) of the
quarter of the IC surface containing the AES and the stealthy HT which is hidden
in the AES. For this experiment, the output signals of the AES were gated using
a Nand gate to suppress the electrical activity of the IO pad’s buffers. As shown,
there are no visual difference between these two maps. The heat generated by the
HT is masked within the AES’s heat. Thus an enhanced comparison technique
must be used to detect the thermal impact of the HT.

The main idea to compare these thermal maps is to apply a Welch’s t-test
between corresponding positions of the maps in order to detect small heat differ-
ences due to the HT. However this cannot be done in a straight forward manner.
Indeed, thermal maps were not done the same day and in a controlled envi-
ronment. Thus temperature changes significantly during their acquisitions and
one must take these changes into account prior to applying the Welch’s t-test
application.

Because we observed that this global shift of the room temperature dur-
ing the cartography process acts as a multiplicative coefficient on the lock-in
amplitudes, the applied procedure to conceal the effects of temperature changes
is quite simple. It consists of considering the amplitudes of thermal maps as
statistical distributions and standardizing them in order to get the best match
between the two distributions; one distribution being associated with the golden
IC and the other with the DUT. Concealing the room’s temperature shift allows
us to minimize, as best as possible, the differences between the thermal maps
(distributions) prior to applying the Welch’s t-test.

The standardization of all the lock-in values, Al(x, y), obtained at coordinate
(x, y) is done using the following formula:

AS
l (x, y) =

Al(x, y) − <Āl>

σ(<Āl>)
(8)

where <Āl> is the empirical mean of mean amplitudes obtained over the whole
map; σ(<Āl>) is the standard deviation of the mean amplitudes obtained over

130 M. Cozzi et al.

the whole map and AS
l (x, y) is the standardized lock-in value of Al(x, y) at coor-

dinate (x, y). By way of illustration Fig. 8 gives the cumulative density functions
(cdf) associated with two set of measures above the same circuit before and after
concealing effects of the temperature variation.

(a) (b)

Fig. 8. (a) cdfs of two thermal maps of the same IC before temperature effect concealing
(b) after concealing of temperature effect

After correction, by standardization of the effect of room temperature change,
the Welch’s t-test can be applied to detect the remaining changes due to the
presence of an HT. Applying this test means herein computing, for each (x, y)
coordinate of the maps, the statistic of the the Welch’s t-test, T(x,y) between two
samples of AG

l and AD
l .

Then the obtained T(x,y) value is compared to a critical value Tcrit defined
according to the chosen confidence level fixed by α that sets the critical p-value
for the test. Typically, α is set to 0.05 or 0.01. This means that we accept 5% (or
1%) of chance that the detected difference is a false positive. If |T(x,y)| > |Tcrit|,
the samples do not have the same mean and one can conclude that at this
coordinate there is an extra source of heat, i.e. in our application case an HT.

Figure 9(a) gives the T(x,y) map obtained by comparing two thermal maps
performed with the same golden IC. From this map, it clearly appears that the
means of all corresponding samples of the two maps are the same. This result
indicates that the IC are the same.

Figure 9(b) gives the T(x,y) map obtained by comparing with the Welch’s
t-test the thermal maps associated to the stealthy HT of Fig. 5 with the one
associated to the golden IC. From this map it is clear that there is an HT close
to (x, y) = (70, 30) which is close to the effective HT position. This demonstrates
the correctness of the proposed HT detection technique and the interest of lock-
in thermography for detecting HT and for locating small electrical activities in
IC in general.

Thermal Scans for Detecting Hardware Trojans 131

(a) (b)

Fig. 9. (a) Welch t-test between two golden chips, (b) Welch t-test between a golden
IC and a IC infected by a stealthy HT.

6 Conclusion

In this paper we have introduced a cost effective IR measurement platform char-
acterized by a large bandwidth and a high detectivity. It has been designed to be
able to locate small electrical activities within ICs using lock-in correlation. An
application has been shown to the detect a stealthy hardware Trojan hidden in
a functional block. Results obtained are very encouraging and demonstrate the
usefulness of lock-in thermography in the field of secure device characterization.

References

1. Loai, A., Houssain, H., Al-Somani, T.F.: Review of Side Channel Attacks and
Countermeasures on ECC, RSA, and AES Cryptosystems

2. Nowroz, A.N., Hu, K., Koushanfar, F., Reda, S.: Novel techniques for high-
sensitivity hardware Trojan detection using thermal and power maps. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 33(12), 1792–1805 (2014)

3. Ngo, X.T., Najm, Z., Bhasin, S., Guilley, S., Danger, J.L.: Method taking into
account process dispersion to detect hardware Trojan Horse by side-channel anal-
ysis. J. Cryptogr. Eng. 6, 239–247 (2016)

4. Balasch, J., Gierlichs, B., Verbauwhede, I.: Electromagnetic circuit fingerprints for
hardware Trojan detection. In: IEEE International Symposium on Electromagnetic
Compatibility (EMC), Dresden, pp. 246–251 (2015)

5. Zhang, X., Tehranipoor, M.: RON: an on-chip ring oscillator network for hardware
Trojan detection. In: Design, Automation and Test in Europe, Grenoble, pp. 1–6
(2011)

6. Lecomte, M., Fournier, J., Maurine, P.: An on-chip technique to detect hardware
Trojans and assist counterfeit identification. IEEE Trans. Very Large Scale Integr.
VLSI Syst. 25(12), 3317–3330 (2017)

132 M. Cozzi et al.

7. Tan, M.C., Tay, M.Y., Qiu, W., Phoa, S.L.: Fault localization using infra-red lock-
in thermography for SOI-based advanced microprocessors. In: Physical and Failure
Analysis of Integrated Circuits, IPFA, p. 15 (2011)

8. Hu, K., Nowroz, A.N., Reda, S., Koushanfar, F.: High-sensitivity hardware Trojan
detection using multimodal characterization. In: Design, Automation and Test in
Europe Conference and Exhibition, DATE, pp. 1271–1276 (2013)

9. Tessier, G., Bardoux, M., Bou, C., Filloy, C., Fournier, D.: Back side thermal
imaging of integrated circuits at high spatial resolution. Appl. Phys. Lett. 90(17),
171–172 (2007)

10. Incropera, F.P., Dewitt, D.P.: Fundamentals of Heat and Mass Transfer, 5th edn,
pp. 700–746. Wiley, Hoboken (2001)

11. Breitenstein, O., Warta, W., Langenkamp, M.: Lock-in Thermography, vol. 10.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02417-7

12. Cochran, R., Nowroz, A.N., Reda, S.: Post-silicon power characterization using
thermal infrared emissions. In: Proceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 331–336 (2010)

13. Reda, S., Cochran, R., Nowroz, A.N.: Improved thermal tracking for processors
using hard and soft sensor allocation techniques. IEEE Trans. Comput. 60(6),
841–851 (2011)

14. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute
of Physics Publishing, Bristol (1998)

15. Reda, S.: Thermal and power characterization of real computing devices. IEEE J.
Emerg. Sel. Top. Circuits Syst. 1(2), 76–87 (2011)

16. Busse, G., Wu, D., Karpen, W.: J. Appl. Phys. 71, 3962 (1992)
17. Huth, S., Breitenstein, O., Huber, A., Dantz, D., Lambert, U., Altmann, F.: Lock-in

IR-thermography-a novel tool for material and device characterization. In: Diffu-
sion and Defect Data Part B Solid State Phenomena, pp. 741–746 (2002)

18. Nowroz, A., Woods, G., Reda, S.: Improved post-silicon power modeling using AC
lock-in techniques. In: 48th ACM/EDAC/IEEE Design Automation Conference,
DAC, pp. 101–107 (2011)

19. Nowroz, A.N., Woods, G., Reda, S.: Power mapping of integrated circuits using
AC-based thermography. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(8),
1398–1409 (2013)

20. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: threats and
emerging solutions. In: IEEE International High Level Design Validation and Test
Workshop, HLDVT 2009, pp. 166–171 (2009)

https://doi.org/10.1007/978-3-642-02417-7

Side-Channel Analysis Attacks

SCATTER: A New Dimension
in Side-Channel

Hugues Thiebeauld1 , Georges Gagnerot1, Antoine Wurcker1(B),
and Christophe Clavier2

1 eshard, Martillac, France
{hugues.thiebeauld,georges.gagnerot,antoine.wurcker}@eshard.com

2 Université de Limoges, XLIM-CNRS, Limoges, France
christophe.clavier@unilim.fr

Abstract. Side-channel techniques have been progressing over the last
few years, leading to the creation of a variety of statistical tools, aiming
at extracting secrets handled in cryptographic algorithms. Noticeably,
the vast majority of side-channel techniques requires to get the traces
aligned together prior to applying statistics. This prerequisite turns out
to be challenging in the practical realization of attacks as implementa-
tions tend to include hardware or software countermeasures to increase
this difficulty. This is typically achieved by adding random jitters or ran-
dom executions with fake operations. In this paper, we introduce the
new side-channel technique scatter, whose potential is to tackle align-
ment issues. By construction, scatter brings an additional dimension
and opens the door to a large set of potential new attack techniques. The
effectiveness of scatter has been proven on both simulated traces and real
world secure products. In summary scatter is a new side-channel tech-
nique offering a valuable alternative when the trace alignment represents
an issue. Furthermore, scatter represents a suitable option for low-cost
attacks, as the requirements in terms of equipment and expertise are
significantly reduced.

Keywords: Side-channel · Scatter · Mutual information
Pearson chi-squared

1 Introduction

Over the past few years, Side-Channel Attacks have been proven effective on
a wide range of hardware devices [17–19]. Recent works have highlighted that
software based products can also be subject to these attacks [5]. When successful,
the impact of side-channel attacks is severe as it leads to the disclosure of the
secret cryptographic key. In case of partial recovery, several techniques [33] can
be used to achieve the whole key recovery. As a result, a flaw can be exploited
and leads to losses. In order to avoid any exposure on the field, it is recommended
to implement the right protections and validate them by practical testing.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 135–152, 2018.
https://doi.org/10.1007/978-3-319-89641-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_8&domain=pdf
http://orcid.org/0000-0001-7810-8570
http://orcid.org/0000-0002-0767-3684

136 H. Thiebeauld et al.

The number of side-channel attack techniques to take into consideration
reaches a significant number. Beginning with the original Simple Power Analysis
(SPA) [23] and Differential Power Analysis (DPA) [24], several other techniques
have been developed over the past few years. The most famous distinguishers
are CPA [6], standing for Correlation Power Analysis and exploiting Pearson
coefficient, the MIA [20], standing for Mutual Information Analysis and taking
benefit of the Shannon entropy and the LRA for Linear Regression Analysis
[14,36]. These attacks can be run on devices without any prerequisite knowledge
about their implementation. Some other attacks (such as the Templates Attacks
and more generally Profiled Attacks) [7] make use of a profiling stage used to
learn about the target and exploit this knowledge on a secret during a matching
or exploitation phase. Finally, another testing methodology with the T-Tests has
been introduced [4,15,21,22] to provide an efficient way to characterize potential
leakages.

In parallel, research works have been run to design countermeasures defeat-
ing these attack techniques. Most common ones consist of adding misalignment
using hardware and software techniques [10,12,37] and/or to de-correlate the
information from the traces using random values by masking the data manipu-
lated [1,9,11,16,23,35]. In the masking case, more complex but realistic, attacks
named Higher-Order Side-Channel Analysis introduced by Messerges [29], stud-
ied [34] and later improved [3,27,30,32,38] are still applicable. Generally speak-
ing, traces alignment remains a critical phase when conducting first or higher
order practical side-channel attacks.

We present in this paper a new side-channel analysis technique named scat-
ter which has the potential to tackle most of the alignment issues, such as ran-
dom jitters or random order execution. We believe that scatter opens doors
to improvements of side-channel analyses as they are implemented including for
higher order side-channel attacks. It could lead developers to revisit the way they
implement countermeasures. This article shows the new technique efficiency on
simulated traces, and some practical testing as well.

This paper is organized as follows. Section 2 gives necessary background on
side-channel analysis. We present in Sect. 3 the principles of our scatter method.
Section 4 presents a first validation of scatter efficiency based on simulations
when practical results on physical measurements from a real hardware device
are given in Sect. 6. Section 5 shows a comparison with some other window-
based techniques, such as Fast Fourier Transform (FFT) or average. We discuss
the impact of this new technique on secure products and state-of-the art coun-
termeasures in Sect. 7, and conclude in Sect. 8.

2 Side-Channel Analysis Practical Issues

Most of the time, except for simple side-channel attacks using one single trace,
attack techniques mostly rely on the assumption that the data traces have been
aligned before applying a statistical analysis tool. In other words, it requires the

SCATTER: A New Dimension in Side-Channel 137

estimated variable to be located at the same (X-axis) index along a certain num-
ber of traces - being the minimum number of aligned traces required to exploit
the leakage with the statistical test. The success rate drops when a proper align-
ment is not possible. And this condition increasingly becomes an issue when the
cryptography is executed on recent secure devices and on complex devices such
as a SoC (System on Chip) in a mobile platform, due to complex mechanisms
involved such as multi-stage pipeline or speculative execution.

When conducted practically, the alignment step may be time consuming and
difficult. This requires a specific expertise and may increase dramatically the
number of traces required to expose the key when not properly done. More-
over, the alignment represents a significant part of the effort for performing an
attack. Conscious of this, some interesting, but limited, work has been devel-
oped to investigate automated ways to run the alignment. The most remarkable
is the elastic alignment [39] exploiting fast Dynamic Time Warping. Some other
techniques explored the use of wavelets [13,26,31]. All these techniques repre-
sent good tools, but remain hard to apply in a generic way, are computationally
demanding and sometimes turn out to be inefficient.

On the other hand, some other studies investigated the opportunity to work
in the frequency domain via Fourier transformations. Interesting results were
obtained on second order attacks in [3]. Indeed, Discrete Fourier transformations
represent a valuable tool when fine alignment is hard to achieve. By construction,
it integrates a piece of trace in time domain into its equivalent in frequency
domain. All values gathered within the window, even non-aligned, are spread
over their corresponding set of frequencies. Practically, this technique shows
interesting results, but the results are hard to predict as its success depends on
non controllable parameters such as the phase, the impact of the interfering noise,
or the under sampling when the number of point is too small. Whereas a practical
study would be worth of interest, no deep comparison is done in this article.
Indeed, both techniques are only comparable by the fact they are window-based.
For the rest, they remain different by construction. To avoid misleading technical
results on specific targets, this article focuses on exposing scatter technique and
shows it works practically. Limited comparisons are developed in simulation
though.

Since the alignment is a critical condition for most side-channel attacks, a
large set of protections exploits this by making this task as difficult as possible.
Excluding the inherent protocol based countermeasures (padding, session-keys)
we can categorize the side-channel countermeasures in the two following cate-
gories:

– Signals desynchronization: it aims at avoiding as much as possible an effi-
cient alignment between the same point of interest of the execution among
the different traces (executions). This can be achieved with hardware secu-
rity features: noise generators, dummy cycles, clock jittering or power filter-
ing. It can also be done using software security measures: dummy operations,
inserting fake or variable instructions amongst the real one, execute the oper-
ations in random order but constant time [10,12,37]. Doing so, it makes the

138 H. Thiebeauld et al.

alignment task difficult or even impossible when the same operation is hidden
in the middle of fake but similar operations.

– Signals de-correlation: the principle is to make the leakage independent
from the sensitive data to prevent attackers from predicting intermediate
values manipulated during the known algorithm execution. Masking and ran-
domization techniques are in this category. It consists of the application to
the sensitive data of a randomly chosen value, named the mask.

As a result, there remains a significant technical challenge of extracting a
secret key when the information is present in the traces but the alignment is
not obvious. Scatter addresses this technical problem, by reducing or at most
removing the need of alignment.

Notations. In this paper the following notations are being used:

– P denote the set of the n plaintext values {P0, . . . ,Pn−1},
– S denote the set of n side-channel traces {S0, . . . ,Sn−1},
– U denote the set containing all the possible ordinates values of points of S,
– Si,j the jth point of ith trace Si of the set S,
– Li denote the set of #Li points of interest in the trace Si, so the points

related to the side-channel leakage,
– Oi denote the set of #Oi points of no-interest in the trace Si, so the points

not related to the side-channel leakage,
– The set of value of Si is equal to Li ∪ Oi,
– G = {g0, . . . , gb−1} is the set of b = 2� possible guesses for k, a targeted secret

key �-bit part of whole key K,
⇒ e.g. G = {0, . . . , 255} for a guess on 8-bit key part.

– f(Pi, g) is the intermediate calculation targeted for the statistical analysis,
for instance the output of the SubBytes in the first round of the AES,

– w(.) is the function used to model the way the information leaks, for instance
w(x) is the Hamming weight of point value x in case of a Hamming weight
based leakage,

– H is the set of possible values h = w(x) for x = f(Pi, g), for instance H =
{0, . . . , 8} for h = w(x) in the case where x are byte values.

3 Scatter Principle

Scatter lies on the exploitation of side-channel leakages using an new represen-
tation of the measurements points and the way to process them. More precisely,
it integrates the measurements of a set of points and convert it into the corre-
sponding distribution depicting the number of times each value occurred. The
set of point can be chosen without limitations as long as it includes the leakage
into it. Unlike other window-based techniques, the technique remains relevant
when points are selected without being adjacent. This method is defeating first
order leakages, the case of higher order leakages is evoked in Sect. 7.

SCATTER: A New Dimension in Side-Channel 139

It is processed for each trace by choosing a relevant set of points of inter-
est, encompassing leakages. Figure 1 shows a window selection in traces and
the corresponding conversion into their respective distributions. We will denote
hereafter distribution of a trace the outcome of the distribution process for a
trace.

Fig. 1. Illustration of transformation from temporal traces portions to untemporal
distributions.

Doing so, a new dimension is created. Indeed the useful information counts
the same wherever it stands in the selected set of points. In the following, we use
the defined notation Li and Oi respectively for the leakage related measurement
part and not related part in a trace Si. The corresponding number of points are
respectively #Li and #Oi.

The corresponding distribution for the ith realization can be expressed as:

DTD(Si) = DTD(Li) + DTD(Oi)

For the next step of the attack, the distribution of each trace needs to be
sorted against the estimated value over all key guesses. The estimated value is
denoted h. In this paper, h will be chosen as the Hamming weight of the targeted
variable. This choice is not restrictive; other models could be applied, such as
the value itself or any subset. Moreover, it is important to mention that scatter
is built in such a way that it does not assume anything about the linearity of the
model. In other words, scatter works indifferently on either linear or non linear
leakages.

Sorting the traces requires the creation of so called accumulators. An accu-
mulator Acc is a two dimensional vector defined for each guess g ∈ G and for each
value h ∈ H. It holds the frequency of each possible ordinate value u ∈ U . The
integer value Acc(g,h)[u] is then counting the number of times the value u was
found in the trace selections whose intermediate value was h when the guess g is
considered: h = w o f(Pi, g). As an example, attacking an AES implementation
by 8-bit key chuncks (#G = 256) with traces acquired on a 10-bit oscilloscope

140 H. Thiebeauld et al.

(#U = 210 = 1024) and with a leakage in Hamming weight of the SubBytes out-
put (#H = 9) would require a accumulator composed of 256×9×1024 integers.
In the following, Acc(g,h) denotes the vector of #U counters corresponding to
the guess g and the intermediate value h.

In the course of the attack, each trace is distributed only once. The #U sized
vector generated is then accumulated #G times: once for each guess value g into
Acc(g,h) with h = w o f(Pi, g).

Once the accumulation step is performed, the corresponding values shall be
normalized with the total number of point added in the accumulator:

pdf(g,h)[u] =
Accg,h[u]

∑

u′∈U

Accg,h[u′]

Denoting X the random variable related to the measurement, and Y the random
variable related to the estimation, the new expression leads to the probability
density function pdf(x) = P (X = x|Y).

Exploring the resulting probability density function pdf(g,h) helps to under-
stand different behaviors. Non key-related points O are spread over the distri-
bution and converge towards an average distribution. This average distribution
is shaped according to the nature of the signal and remains the same regardless
the key guess. All the key-related points L follow however a specific behavior
depending on the correctness of the key guess, thus allowing to distinguish the
good candidate from wrong ones.

In order to illustrate the distinguishability by a visual manner we built simu-
lations by creating a set of 10 point traces without noise. One point over 10 was
the Hamming weight of an intermediate byte value of an algorithm1 representing
the L set of points and 9 over 10 was the Hamming weight of random byte values
representing the O set of points.

The Fig. 2 shows resulting accumulators after accumulation of several traces.
On the left-hand side and in the middle are the representations of two accumu-
lators Accg,h that are histograms of 9 values. We chose h = 4 and g as the right
candidate k on the left and a wrong candidate in the middle. We can see that
the O distribution is almost the same for both candidates when L points dis-
tribution is significantly different. Indeed, for the latter all values are correctly
guessed and pile up in a unique peak when the wrong guess may be spread over
a set of shorter peaks. Finally, the pdf transformations of the two resulting accu-
mulators is represented on the right-hand side of Fig. 2 and shows the difference.
It shows that there is an opportunity to distinguish the good from the wrong
candidates.

Given this behavior, the next step is to discriminate the pdf(k,h) related
to the correct key from all other pdf(g,h). To achieve this, different distinguisher
functions may be used combining the partial results obtained for several h values.
For instance, authors in [25] suggested several methods to compare different

1 Here, one byte of the output of AES SubBytes operation was chosen as an example
without loss of generality.

SCATTER: A New Dimension in Side-Channel 141

Fig. 2. Pdf functions for the right and a wrong key guess

distributions. In the context of this article, two functions will be explored using
classical statistical tools in the information technology. Both are giving the best
candidate returning the highest value. The first one makes use of Pearson’s chi-
squared (χ2) statistical test expressing how much a distribution differs from a
general distribution. The general formula is given as follows:

χ2 =
∑

u∈U

(B[u] − E[u])2

E[u]

B[u] being the observed frequency of u and E[u] the expected frequency of u.
The application to scatter takes each pdf(g,h) as the observation and analyze how
much it differs from the expected frequency, expressed as the average distribution
of all pdf(g,h∈H):

χ2
(g,h) =

∑

u∈U

(pdf(g,h)[u] − 1
#H

· ∑

h′∈H

pdf(g,h′)[u])2

1
#H

· ∑

h′∈H

pdf(g,h′)[u]

Doing so, it is expected that the factor reaches the highest value for the
correct key guess.

As the distinguishability may occur for most values of h values, it can be
valuable to combine the information as follows:

scatterχ2(g) =
∏

h∈H

χ2
(g,h)

The second example of distinguisher exploits the Mutual Information (MI)
as introduced in [20]. The difference of entropy remains an appropriate factor,
in spite of the presence of O. The difference of entropy is given by the formula:

MI =
∑

Y

P (Y) ·
∑

X

P (X|Y) · log(P (X|Y)) −
∑

X

P (X) · log(P (X))

Mutual Information can be simply applied to scatter as any individual value
pdf(g,h)[u] represents the probability P (X = u|Y = h). The rest can be trans-

lated as follows: P (Y) = P (Y = h) and P (X = u) =
1

#H
· ∑

h′∈H

pdf(g,h′)[u]

142 H. Thiebeauld et al.

for any arbitrary g as this value yields the same regardless g. The resulting
expression becomes:

scatterMI(g) =
∑

h∈H

P (Y = h) · (∇1(g, h) − ∇2(h))

∇1(g, h) =
∑

u∈U

pdf(g,h)[u] · log(pdf(g,h)[u])

∇2(h) =
∑

u∈U

P (X = u) · log(P (X = u))

In the following sections, results with both distinguishers (χ2 and MI) are
given, showing similar performance.

4 Attack Simulation

Practical validations of scatter were first run on simulated traces. The aim was
twofold: first, to confirm that the technique is valid, even when the leakage is
in minority within the chosen set of point. Doing so, it gives an idea of an
exploitation in case of misalignment or shuffling protections. Second, it allowed
to validate its resilience in the presence of noise.

To do this study, we chose to apply the technique on a variable window of
adjacent points. The window size represents the strength of the misalignment.
Indeed, the unique point of leakage is equally spread over the window. As a result,
the probability of having the leakage at a given time is 1/f for a window size
f . As a result, the maximum number of traces with the leakage point properly
aligned converges to 1/f .

In order to give an order of magnitude, a correlation attack was computed on
the same set of point. Obviously its performance drops with a growing window.
The chosen leakage model is the Hamming weight. Therefore, there was no need
to explore other distinguishers than the Pearson coefficient.

Scatter concerns all algorithms subject to side-channel analyses. AES algo-
rithm was chosen for this study. The simulations for window size is f were
generated following the process:

1. Generate a secret key, the value is kept for checking the validity of the results
but is not exploited for the attack.

2. Generate a 16-byte long random plaintext.
3. Compute and save the output of one SBOX from SubBytes operation during

the first round of AES-128 computation.
4. Generate and save f − 1 random bytes.
5. Convert all values into their Hamming weight.
6. Apply a random Gaussian noise level to simulate non-perfect measurements.
7. Apply countermeasures such as shuffling.
8. Go back to step 2 until enough simulation traces are generated.

SCATTER: A New Dimension in Side-Channel 143

The Gaussian noise was added using the following formula:

Lj = α × HW (data) + β + N (0, σ2) (1)
Oj = α × HW (random data) + β + N (0, σ2) (2)

All points share the same α and β parameters and σ is the standard deviation
of the Gaussian noise applied with a mean set to 0.

The simulations results are averaged over different campaigns in order to
smooth down potential statistical inconsistencies. On following figures, the X-
axis represents in logarithmic scale, the size f of the window of interest for
scatter methods (bottom scale of the trace) and 1/f being the number of traces
aligned at each instant. This is relevant for CPA results (top scale of the trace).
The Y-axis represents the number of traces necessary to extract the key value.
The Y-axis is in normal scale. The score is defined when the correct key value
remains above all guesses for the given key byte. One can notice that the lowest
this number, the most successful the attack.

4.1 In Time Integration: Keep Information

Figures 3a and b illustrate the effectiveness of the techniques with different levels
of Gaussian noise (respectively σ = 0 and σ = 3). All computations were made
using both scatterχ2 and scatterMI distinguishers.

Remarkably, scatter’s outcomes remain solid with a growing window size,
even though it implies the integration of an increasing number of non informative
points (O). In this configuration, scatterMI configuration stays slightly better

100 101 102 103

Window size f (scatter)

scatterχ2

scatterMI

10−310−210−1100

0

50

100

1/f alignment factor (CPA)

#
T
ra
ce
s
(×

10
3
)

CPA

(a) σ = 0

100 101 102 103

,

scatterχ2

scatterMI

10−310−210−1100

0

1,000

2 000

3,000

#
T
ra
ce
s
(×

10
3
)

CPA

(b) σ = 3

Fig. 3. Simulation of the impact of window size parameter f onto CPA and scatter
methods under σ = 0 and σ = 3 noises

144 H. Thiebeauld et al.

than scatterχ2 , but remains comparable. Unsurprisingly, CPA results decrease
significantly (the number of traces needed grows faster) when the shift in time
grows. Indeed, a poor alignment quickly undermines the effectiveness of the
attack.

Depending on the level of noise σ, the number of traces necessary to retrieve
the key changes. However, the general outcome remains similar with scatter
techniques showing valuable results even with large windows. It shows as well
that the technique is sensitive to noise in the same order of magnitude as the
Pearson coefficient.

In case of a fairly good alignment, it is expected the classical technique, such
as CPA or MIA, will give better results. However, these results confirm that
scatter represents a clear benefit when the alignment condition cannot be satis-
factorily fulfilled, due to a poor quality of traces or shuffling countermeasures.

4.2 In Time Integration: Accumulate Information

The previous simulations took into account one single leakage point. With the
integration in time, scatter has the ability to combine different leakage points
in time and consequently take benefit of the information available. And this can
be achieved, even though the respective measurement levels are not identical.

To illustrate this, corresponding simulation traces were generated using the
same methodology. For this purpose, the traces were forged using two set of
points of equal cardinality: f/2, the sets having point parameters equal to
(α1, β1) and (α2, β2) respectively. Compared to the previous analysis, the win-
dow of interest contains two leakage points. Figure 4 captures the corresponding
results computed with a noise σ = 0. In dashed, the outcome of the attacks using
one single leakage point is depicted and, in plain, two leakage points are present
within the window of interest.

100 101 102
0

200

400

Window size f (scatter)

#
T
ra
ce
s

scatterχ2

scatterMI

Fig. 4. Comparison results when integrating one (dashed) vs two points of leakage
(plains)

The outcome of this analysis shows a positive impact of having two leakage
points instead of one. Using either scatterχ2 or scatterMI distinguishers, the
gain is significant. This result could be obviously enhanced in the event of more
leakages.

SCATTER: A New Dimension in Side-Channel 145

4.3 In Time Integration: Face the Shuffling Countermeasure

Shuffling countermeasure has been shown as an efficient way to protect algo-
rithms. This is typically implemented by randomizing the execution order of
independent operations. As an example this works well when executing SBOX
operations during the SubBytes of an AES. In the same vein, any sensitive oper-
ation can be concealed, by hiding it randomly in the middle of fake but similar
operations. Doing this makes the identification of the correct operation diffi-
cult, or even impossible, and prevents the alignment between different execution
traces.

By either integrating the whole area in the trace, or by picking up the small
pieces for each individual operation, scatter has the potential to defeat such pro-
tection. Indeed, fake values are likely independent from the targeted value, and
consequently do not interfere negatively during the discrimination of the right
key guess. Equivalent to random noise, it can be considered that the results
depicted in Fig. 3 remain valid to highlight scatter performances in case of shuf-
fling.

5 A Comparison with Window-Based Techniques

A comparison between scatter and other window-based preprocessing technique,
such as average or FFT was found to be uneasy. Indeed, the latter require some
consistency when choosing the set of points. Typically, a FFT does not make any
sense when picking up points here and there. It deserves to choose a sequence of
points in the trace that are sensible to be translated into the frequency domain.

In order to keep a scientific interest, simulation traces were generated allowing
averaging and FFT techniques to be relevant. No practical comparisons were
made, as the results can vary significantly from one device to the other. Indeed,
average or FFT are subject to limitation dependent on the nature of the signal
and the outcome depends on a lot of parameters, such as the magnitude of the
leakages, the phase of the interfering noise, the number of leaking points, etc. A
proper practical study will then be subject to further works.

The main purpose of the following test was to provide a first level of compari-
son by defining a realistic simulation model and highlight how much the different
techniques perform in that case. To serve this purpose a model with two sets of
parameters was defined. One stating the jitter and the related window size. And
a second describing the leakage model, including the value representation and
the noise.

Different levels of jitter were chosen, more particularly 3, 10, 30 or 50 points.
The maximum jitter value is denoted J and a dedicated set of test was performed
for the given value J . With J defined, sets of traces were generated with (2∗J)−1
points per traces. The right value is located at the same index J −1 for all traces.
A random jitter was simulated by taking J points from an index randomly chosen
between [0, J]. Doing so, the model integrates a jitter J and the information is
always present once within the window of size J .

146 H. Thiebeauld et al.

Regarding the trace profile, the intention was to remain generic and therefore
to cover most of practical cases. The Hamming weight of values was applied with
couples (α, β), with (α, β) defined random in time but remaining the same from
a trace to the other:

Ti,j = αj × HW(xi,j) + βj + N (0, σ2)

with:

– Ti,j , the point j within the trace i
– HW(x) function returning the Hamming weight of the value x
– N (0, σ2) representing a normal random noise factor.

The Gaussian noise has been chosen at σ = 1 representing a fair amount of
noise without being excessive.

Taking into account that a trace is not only made of leakage points, even
unrelated to the targeted variable, α was chosen equal to 0 for 70% of the points,
and α randomly chosen between [2, 6] for the 30% remaining points.

β was chosen randomly between [50, 200] for all points. α and β range of
values were defined with the aim to represent an information fitting an 8-bit
oscilloscope with values staying within the range [0, 255]. The realization of the
noise N (0, σ2) being a real value, data in the traces were truncated to stay within
the range [0, 255].

xi,j are 8-bit values chosen randomly within [0, 255]. The point of interest is
located at the index j = J .

For this study, our choice was to compare scatter with respectively a CPA
average and the Fast Fourier Transformation (FFT) CPA. For a proper compar-
ison, it was important to keep the same window of points for all techniques. The
window remains fix in this set of results. Applying a moving average would not
help the comparison, as the same could be applied to all techniques.

For the CPA average [8], all points within the window were summed together
and the CPA subsequently applied. On the other hand, a FFT was performed
and the CPA applied to the resulting real value. The first point of the FFT was
excluded as the frequency 0 is equivalent to the averaged window and therefore
would give the same result as the CPA average.

The results shown in Figs. 5, 6, 7 and 8 are the outcome of 200 runs with the
same parameters. These runs aim at smoothing down the statistical discrepancy.
The selected jitter levels J have been applied. When the maximum jitter level
was increased, it resulted to get a larger window and therefore required more
traces to get a strong success rate for all techniques. Doing so, the corresponding
impact of the window size could be observed.

For all jitter levels, it can be observed that scatter success rate is higher than
the other techniques after processing of a reasonable amount of traces.

As a result, this case shows that scatter technique represents a value when
jitter and desynchronization could not be fully removed.

SCATTER: A New Dimension in Side-Channel 147

Fig. 5. Comparison with jitter = 3 Fig. 6. Comparison with jitter = 10

Fig. 7. Comparison with jitter = 30 Fig. 8. Comparison with jitter = 50

6 Practical Results

Further testing were performed on a hardware device. This was an unprotected
AES-128 implementation running on an 8-bit AVR micro-controller. Physical
measurements were performed using intentionally a low-end near-field electro-
magnetic probe and a low cost acquisition hardware. The global cost of the
equipment used for this campaign turns around $1 000. The setup was chosen to
represent a real case scenario with poor quality of traces.

The choice was made to acquire traces with an external trigger and no jitter.
AES-128 encryptions were performed with a fixed key and random plaintexts. In
a post processing, the aim was to downgrade the initial alignment with a random
shift in time as previously done on the simulation traces. As it can be observed
on Fig. 9, the traces quality is very poor. Without any signal processing, there is
no easy way to align these traces since no pattern was found exploitable. With a
random shift in time, the model looked realistic to represent an attack scenario
with jittering and no good way to perform the alignment.

Figure 9 shows the processing of one round of AES-128 encryption. The oper-
ations are not visible but it gives an idea of the number of points involved. In a
similar way as the previous testing, scatter’s performance is analyzed with the
integration of a growing number of adjacent points. A random shift in time is
applied to spread the leakage uniformly within the window of interest.

For having a clear view of the integration in time, Fig. 10 illustrates scatter
techniques evolution together with the time representation of the AES encryp-
tion. Looking at this figure, it becomes clear that scatter techniques remains
very efficient when integrating the whole SubBytes operation, including the 16

148 H. Thiebeauld et al.

−50

0

50

−50

0

50

−50

0

50

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

−100

−50

0

50

Time

E
M

em
is
si
on

SBOX SubBytes (16×SBOX) Round

Fig. 9. Near field EM traces from AES-128 execution showing that even synchronized
traces do not share identifiable patterns

SBOXes. This means that any random order execution countermeasure would
have no effect, and the attack results be the same. Furthermore, the technique is
still valid albeit less efficient when integrating the whole round operation. This
gives a lot of latitude for exploring the leakage area with raw window sizes.

As a result, this practical session led to several valuable observations. First
of all, scatter is confirmed to be beneficial when handling raw traces with non
obvious alignment. This can be exploited to characterize the leakages in an
exploration mode or even to break the implementation when a good alignment
could not be performed. Besides, it demonstrates that scatter has the potential
to defeat several countermeasures, such as random executions or shuffling.

7 Impact on Current State-of-the-Art

This new technique appears to be particularly suitable when leakages are present
but remained hard to exploit due to the quality of the traces or the difficulty to
align them together in a proficient way. In that cases, the attack turns out to be
an alternative to capture the leakage and extract the secrets. Furthermore the
technique may be particularly attractive to defeat many shuffling protections,
typically by selecting the same sequence of points from each occurrence.

The success of the attack varies from one device to another and practical
work is still necessary to assess how much scatter represents a clear benefit
compared to other windows techniques, such as the ones using either the Fast
Fourier Transformation as the integration in time.

It is strongly recommended to take into account this new attack when build-
ing a secure implementation. Moreover, the relevance of protections relying
mostly on hiding countermeasures should be questioned.

A mitigation can be found by avoiding any kind of single order leakage. Doing
so, the leakage would remain non exploitable applying the technique in its simple

SCATTER: A New Dimension in Side-Channel 149

102 103 104102 103 104
0

20

40

Window size f (scatter)

#
T
ra
ce
s
(×

10
3
)

scatterχ2

scatterMI

SBOX SubBytes Round

0 1,000 2,000 3,000 4,000 5,000

−100

−50
0

50

Time

E
M

em
is
si
on

SBOX
SubBytes (16×SBOX)

Round

Fig. 10. Practical result of a growing window integration reaching sequentially the size
of a suboperation (SBOX), algorithm step (SubBytes), a round and more

form. However, it is important to notice that higher order attacks are possible.
Our recent work showed that the technique can be successfully extended and
threaten implementations with second order leakages. This is still subject to
work in progress.

8 Conclusion

This article introduces scatter, a new side-channel technique taking benefit of
the integration in time of several data or measurements. On both simulated
and practical cases, the testing results have shown a high effectiveness, partic-
ularly when the set of traces has not been or could not be aligned prior to the
attack. Unlike a large number of existing attacks, the scatter technique is still
able to extract the secret key, even when the traces are non-aligned. As a result,
the technical difficulties related to practical side-channel realizations are signifi-
cantly lowered. This provides new opportunities of attack when alignment is not
possible properly due to the nature of the traces. On the other hand, it makes
the attacks cheaper in terms of equipment cost and expertise level. As a result, it
is very likely that scatter will make practical realizations of side-channels more
affordable.

The technique is generic and consequently concerns all algorithms, both sym-
metrical and asymmetrical. Furthermore, it opens up new exploitation oppor-
tunities, particularly when combining different pieces of information available
during a sensitive algorithm execution. Extensions to higher order attacks are
powerful and were briefly introduced in this article. Representing a new step in

150 H. Thiebeauld et al.

side-channels and bringing a complement to existing techniques, scatter ques-
tions the relevance of many countermeasures, more particularly those aiming at
making the alignment difficult or impossible.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44709-1 26

2. Batina, L., Robshaw, M. (eds.): CHES 2014. LNCS, vol. 8731. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44709-3

3. Belgarric, P., Bhasin, S., Bruneau, N., Danger, J.-L., Debande, N., Guilley, S.,
Heuser, A., Najm, Z., Rioul, O.: Time-frequency analysis for second-order attacks.
IACR Cryptology ePrint Archive 2016:772 (2016)

4. Jun, B., Rohatgi, P.: Is your design leaking keys? Efficient testing for side-channel
leakage. In: RSA Conference (2013)

5. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

8. Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence
of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS,
vol. 1965, pp. 252–263. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-44499-8 20

9. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 25

10. Coron, J.-S.: A new DPA countermeasure based on permutation tables. In: Ostro-
vsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 278–292.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 19

11. Coron, J.-S., Goubin, L.: On Boolean and arithmetic masking against differential
power analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp.
231–237. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 18

12. Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in
embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp.
156–170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-
9 12

13. Debande, N., Souissi, Y., Abdelaziz Elaabid, M., Guilley, S., Danger, J.-L.:
Wavelet transform based pre-processing for side channel analysis. In: 45th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO 2012, Work-
shops Proceedings, Vancouver, BC, Canada, 1–5 December 2012, pp. 32–38. IEEE
Computer Society (2012)

https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/978-3-662-44709-3
https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/3-540-44499-8_20
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-540-85855-3_19
https://doi.org/10.1007/3-540-44499-8_18
https://doi.org/10.1007/978-3-642-04138-9_12
https://doi.org/10.1007/978-3-642-04138-9_12

SCATTER: A New Dimension in Side-Channel 151

14. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)

15. Standaert, F.-X.: How (not) to use Welch’s T-test in side-channel security evalua-
tions (2017)

16. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19574-7 18

17. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 11

18. Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: physical side-
channel key-extraction attacks on PCs. In: Batina and Robshaw [2], pp. 242–260

19. Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acous-
tic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 444–461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44371-2 25

20. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

21. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006). https://doi.org/10.1007/11894063 2

22. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A Testing methodology for side channel
resistance validation. In: NIST Non Invasive Attack Testing Workshop (2011)

23. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

24. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

25. Linge, Y., Dumas, C., Lambert-Lacroix, S.: Using the joint distributions of a cryp-
tographic function in side channel analysis. In: Prouff, E. (ed.) COSADE 2014.
LNCS, vol. 8622, pp. 199–213. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10175-0 14

26. Liu, W., Wu, L., Zhang, X., Wang, A.: Wavelet-based noise reduction in power
analysis attack. In: Tenth International Conference on Computational Intelligence
and Security, Kunming, Yunnan, China, 15–16 November 2014, CIS 2014, pp. 405–
409. IEEE Computer Society (2014)

27. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks. In: Batina and Robshaw [2], pp.
35–54

28. Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-15031-9

29. Messerges, T.S.: Using second-order power analysis to attack DPA resistant soft-
ware. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238–251.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 19

30. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis col-
lision attack. In: Mangard and Standaert [28], pp. 125–139

https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-662-44371-2_25
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/11894063_2
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-10175-0_14
https://doi.org/10.1007/978-3-319-10175-0_14
https://doi.org/10.1007/978-3-642-15031-9
https://doi.org/10.1007/3-540-44499-8_19

152 H. Thiebeauld et al.

31. Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment
method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266–282. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8 17

32. Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA
attacks for masked smart card implementations of block ciphers. In: Pointcheval,
D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192–207. Springer, Heidelberg (2006).
https://doi.org/10.1007/11605805 13

33. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 4

34. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

35. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard
and Standaert [28], pp. 413–427

36. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

37. Tunstall, M., Benoit, O.: Efficient use of random delays in embedded software. In:
Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007.
LNCS, vol. 4462, pp. 27–38. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72354-7 3

38. Tunstall, M., Whitnall, C., Oswald, E.: Masking tables—an underestimated secu-
rity risk. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 425–444. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 22

39. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol.
6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 8

https://doi.org/10.1007/978-3-642-27257-8_17
https://doi.org/10.1007/11605805_13
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-540-72354-7_3
https://doi.org/10.1007/978-3-540-72354-7_3
https://doi.org/10.1007/978-3-662-43933-3_22
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8

Quadrivariate Improved Blind
Side-Channel Analysis on Boolean

Masked AES

Christophe Clavier1(B) , Léo Reynaud1, and Antoine Wurcker2

1 Université de Limoges, XLIM-CNRS, Limoges, France
christophe.clavier@unilim.fr, leo.reynaud@xlim.fr

2 eshard, Martillac, France
antoine.wurcker@eshard.com

Abstract. Previous blind side-channel analysis have been proposed to
recover a block cipher secret key while neither the plaintext nor the
ciphertext is available to the attacker. A recent improvement has been
proposed that deals with several first-order Boolean masking schemes.
Unfortunately the proposed attacks only work if at least two intermedi-
ate states that involve a same key byte are protected by a same mask.
In this paper we describe a quadrivariate analysis which involves a pair
of key bytes and allows to threaten improved Boolean masked imple-
mentations where all masks on inputs of AddRoundKey, SubBytes and
MixColumns (respectively rm, rx and ry) related to a same key byte are
independant.

Our attack comes in two flavors: in a first variant the attacker learns
Hamming distances between pairs of expanded key bytes of his choice
while in the other variant he learns whether two pairs of extended key
bytes share the same unknown Hamming distance. We provide an analy-
sis and simulation results which demonstrate that the ciphering key can
be recovered in both settings.

Keywords: Unknown plaintext · Joint distributions
Maximum likelihood · Boolean masking

1 Introduction

Traditional side-channel analysis on block ciphers [1,4,5] use a divide-and-
conquer strategy where a guess on a subkey (e.g. a key byte) is (in)validated
by correlating in some way a series of leakage measurements (e.g. power con-
sumptions) with a series of corresponding key-dependent intermediate values
that are derived from the guess and from either the plaintext or the ciphertext.

When neither the plaintext nor the ciphertext are available to the attacker
such attacks can not apply anymore. In such so-called blind contexts, one can
only exploit side-channel traces and try to find key dependencies between the
leakages of two or more unknown nor predictable intermediate values. In the case
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 153–167, 2018.
https://doi.org/10.1007/978-3-319-89641-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_9&domain=pdf
http://orcid.org/0000-0002-0767-3684

154 C. Clavier et al.

of the AES block cipher, such key dependency occurs between an input byte of
the AddRoundKey and the corresponding output byte of the subsequent SubBytes
operation. This is exactly this dependency that has been firstly exploited by
Linge et al. [7]. They noticed that the joint distribution of the Hamming weights
of these two intermediate bytes depends on the involved key byte and pro-
posed an attack where an observed experimental distribution built from the
side-channel traces is compared to each 256 theoretical distributions (also called
models). The attacker then selects the key byte value that corresponds to the
model that best fits the empirical distribution. Later Le Bouder [6] proposed to
use the maximum likelihood criterion instead of the distance-based comparison
of distributions. Recently Clavier and Reynaud [3] further improved this attack
by exploiting other kinds of joint distributions and by attacking some Boolean
masked implementations.

Our Contribution. While [3] was the first attempt to defeat a first-order
Boolean masked implementation in the blind context, it is interesting to notice
that information about the key can be retrieved only if the masks that apply
to each component of the considered joint distribution are not independent.
Keeping their notations where m, x and y respectively denote an input byte of the
AddRoundKey and the corresponding input and output bytes of the subsequent
SubBytes, their so-called m-x or m-y attacks1 on protected implementations do
work only if m and x, or m and y, are masked by the same value. This is an
important limitation as a state-of-the-art first-order protected implementation
should usually mask these intermediate bytes by independent random values
which we denote by rm, rx and ry respectively. As noticed by the authors, this
case corresponds to the scheme d of their Fig. 5 which is not impacted by their
attacks.

In this paper we build on [3] and describe an alternative way of exploiting
joint distributions that fills this gap and leads to attacks that apply even when
rm, rx and ry are independent masks. We propose to attack key bytes by pairs
(k, k′) where k and k′ designate any two bytes of the expanded key. This means
that the (m,x, y) and (m′, x′, y′) areas involving k and k′ may be located any-
where in the computation process: at any round, and at any byte index of the
state. For our attack to succeed, we need to assume that k and k′ areas are
masked in the same way, i.e. (rm, rx, ry) = (r′

m, r′
x, r′

y). As a consequence, only
a perfect full wide masking with 160 independent masks triplets can thwart our
proposed attacks. This usually corresponds to quite costly and complex imple-
mentations.

This paper is organized as follows. Section 2 provides a background on blind
side-channel analysis and reminds how the maximum likelihood criterion is used
in Clavier et al. attacks. In Sect. 3 we introduce our combined attacks that target

1 An m-x attack – respectively an m-y or m-x-y attack – is one that is based on
the joint distribution of (HW(m), HW(x)) – respectively on the joint distribution of
(HW(m), HW(y)) or of (HW(m), HW(x), HW(y)). With this notation, Linge’s first
blind side-channel analysis was an m-y attack.

Quadrivariate Improved Blind Side-Channel Analysis 155

pairs of key bytes by exploiting quadrivariate joint distributions. We focus on the
combined m-x attack – which reveals to be more efficient that the m-y one – and
show that it only gives information about the Hamming distance between the
key bytes. We also propose an alternative variant that compares together joint
distributions related to two pairs (k1, k′

1) and (k2, k′
2) but only reveals whether

both Hamming distances are equal or not. As both variants of our m-x attack
only give partial information about the key bytes, Sects. 4 and 5 provide analyses
showing that such partial information is sufficient to recover the ciphering key in
both settings. Finally, Sect. 6 concludes this work and proposes countermeasures
to our attacks.

Remark: The practicality of blind joint distributions analysis has been demon-
strated on real traces in [3,7]. The point of our contribution is not to argue
whether attacks of this kind are easy or difficult to put in practice, but rather
to provide new ideas of joint distributions based attacks that allow to extend
their applicability. As a consequence – and this does not mean that it is an easy
task in practice –, in the sequel we assume that the attacker is able to precisely
locate the relevant points of interest and, if needed, to infer the parameters of
the leakage functions in order to derive Hamming weights. Also, to measure the
effectiveness of our ideas, we only provide simulation-based experimental results.

2 Background on Blind Side-Channel Analysis

The original attack of Linge et al. [7] consists in building the joint distributions of
HW(m) and HW(y) for each value of k. This is done by counting the number of
times every couple (HW(m),HW(y)) occurs when m takes all values uniformly.
Given an experimental distribution one can compare it to each model and select
the one which minimizes a distance-based criterion. They have studied a large
number of distances and proposed the better ones. They also described the so-
called slice method that infers Hamming weights – which follow a binomial law –
from the set of ordered leakages. The great advantage is that this attack can be
applied at any round and that no plaintext nor ciphertext has to be known.

Clavier and Reynaud [3] go further in this way using the maximum likelihood
(ML) criterion instead of distances between distributions. They also introduce
the so-called variance method, which is better suited to the ML criterion, to infer
Hamming weights from leakages. They show that it gives better results than
any distance previously studied and apply their attack on a real device. Then
they investigate the case of masked implementations and show that the joint
distributions of HW(m⊕r) and HW(y⊕r) still depends on the key. Simulations
prove that attacking is still feasible but requires a lot more traces than in the
unmasked case.

They also propose a variant on m and x that only gives the Hamming weight
of k but is much more effective in term of required traces. This is explained
by the typical forms of the distributions2 and the fact that the attacker must

2 In that case, the distributions show linear structures like “walls”.

156 C. Clavier et al.

distinguish between only nine of them. They also point that this m-x variant is
not affected by the masking as the distributions of (HW(m),HW(m ⊕ k)) and
of (HW(m ⊕ r),HW(m ⊕ k ⊕ r)) are the same.

As the maximum likelihood method shows to be more efficient than distance-
based comparison of distributions, let’s remind its principle in the case of a m-y
attack (it is similar for other variants). Given a noisy measurement (hm, hy) of
the Hamming weights, one can evaluate the probability of each key hypothesis
according to this observation by using Bayes’ formula:

Pr(k|(hm, hy)) ∝ Pr((hm, hy)|k) · Pr(k)

When a series of observations is considered, the posterior probability of the
key is computed as the product of the terms Pr((hm, hy)|k), each of them being
evaluated, thanks to the law of total probabilities, by considering all possibilities
for the actual couple (h∗

m, h∗
y) of Hamming weights:

Pr((hm, hy)|k) =
∑

h∗
m,h∗

y

Pr((hm, hy)|(h∗
m, h∗

y)) · Pr((h∗
m, h∗

y)|k)

In this equation the first term of each product is derived from the distributions
of the noises, which are usually taken as Gaussian, while the second term comes
from precomputed models. At the end the attacker selects the key that has the
largest posterior probability.

3 Combined S-Boxes Attacks

As stated in the introduction, basic joint distributions analysis with masking
is not possible when masks rm, rx and ry are independent. However, even in
this case, it may be a common practice – to avoid a too time or memory costly
implementation – to reuse the same mask triplet either from one round to another
and/or from one byte index to another. We thus propose to combine the points
of interest of two areas that involve two key bytes and are protected by a same
triplet. It happens that corresponding quadrivariate – or possibly sextivariate in
the m-x-y case – joint distributions are still dependent on the key bytes, thus
giving information about them.

3.1 Combined m-y Maximum Likelihood Attack

Description. The maximum likelihood combined m-y attack is an adaptation
of the basic one described in [3]. The difference is that instead of building joint
distributions of (HW(m⊕rm),HW(y⊕ry)), which are the same for all k because
of the independence of the masks, we build quadrivariate joint distributions of
(HW(m⊕rm),HW(m′⊕rm),HW(y⊕ry),HW(y′⊕ry)), where y = S(m⊕k) and
y′ = S(m′ ⊕ k′). Building these distributions is done by counting the number of
times each quadruplet of Hamming weights occurs when m, m′, rm and ry all
vary. An interesting property is that these 216 distributions come in classes of

Quadrivariate Improved Blind Side-Channel Analysis 157

28 equivalent distributions that share the same differential k ⊕ k′. An argument
proving this fact is that in the counting process the quadruplets of Hamming
weights for any input (m,m′, rm, ry) when the pair of keys is (k, k′) is exactly
the same than for the input (m ⊕ δ,m′ ⊕ δ, rm ⊕ δ, ry) when the key pair is
(k ⊕ δ, k′ ⊕ δ). This means that the models for (k, k′) and (k ⊕ δ, k′ ⊕ δ) are
identical whatever δ. As a consequence only the differential between the two key
bytes can be recovered by this attack.

Experimental Results. We have simulated the maximum likelihood combined
m-y attack with three different levels of noise, σ ∈ {0.2, 0.5, 1.0}. For each noise
level we averaged the results over 100 runs with randomly generated key pairs.
Figure 1 shows the evolution of the rank of the correct key differential, as well
as the success rate, as a function of the number of traces.

Fig. 1. Rank (left) and success rate (right) of the ML combined m-y attack. Average
over 100 runs for three noise levels σ = 0.2, 0.5 and 1.0.

We notice that except for the smallest noise level σ = 0.2 where good success
rates are obtained after about four millions traces, the combined m-y attack can
hardly retrieve the correct differential.

3.2 Combined m-x Maximum Likelihood Attack

Description. Here, we propose the maximum likelihood combined m-x variant
as a natural extension of the basic m-x attack described in [3]. Instead of building
models that are based on the joint distributions of (HW(m ⊕ rm),HW(x ⊕ rx)),
which are all the same, we combine two key bytes areas and use the joint distri-
butions of (HW(m ⊕ rm),HW(m′ ⊕ rm),HW(x ⊕ rx),HW(x′ ⊕ rx)) generated
by a counting process where m, m′, rm and rx all vary.

We recall that the basic m-x attack can distinguish between only 9 different
models that correspond to the Hamming weight of the key byte. Likewise, the
combined m-x attack can distinguish between only 9 different models that cor-
respond to the Hamming distance between k and k′. To prove this we make two
observations: (i) the same argument as for the combined m-y attack also applies

158 C. Clavier et al.

here, from which we infer that the models are invariant by any transformation
(k, k′) �→ (k ⊕ δ, k′ ⊕ δ), (ii) as the only operation between m and x is a XOR
and we are considering observations which are Hamming weights, it is also the
case that the models are invariant by any transformation (k, k′) �→ (π(k), π(k′))
where π is any bit permutation of a byte. Combining these two observations, we
conclude that two key pairs having the same Hamming distance will also share
the same model.

One may wonder whether retrieving only Hamming distances between pairs
of key bytes suffices to recover the ciphering key. Section 4 analyses the point
and answers positively to this question.

Experimental Results. We have simulated the maximum likelihood combined
m-x attack with three noise levels σ ∈ {0.5, 1.0, 2.0}. Success rates averaged over
1000 runs are given on Fig. 2. One can notice that the combined m-x attack is
quite more efficient than the m-y one. Indeed, it works pretty well with only
100 000 traces when σ = 1.0 and even with less than 10 000 traces for σ = 0.5.

We have noticed an interesting behavior of the combined m-x attack when
one focuses on the incorrect Hamming distances that most strongly challenge the
correct one. It happens that two different behaviors occur whether the noise level
is small or high. This is illustrated by Fig. 3 which gives for a small (left part,
σ = 0.5) and a higher (right part, σ = 1.0) noise levels the log of the probability
(relative to the highest one) of each Hamming distance (the correct one is 3). For
a small noise the most challenging Hamming distances are separated by 2 from
the correct one, respecting its parity. On the contrary, for a higher noise level the
most challenging Hamming distances are the closest ones, separated by 1 from
the correct one. We observe same results when the correct Hamming distance is
different from 3. We thus have a parity-driven behavior for small noises, and a
proximity-driven behavior for higher ones.

3.3 Collision-Based Combined m-x Attack

Section 3.2 proposes a combined m-x attack based on the maximum likelihood
criterion. As explained in [3], in order to apply the ML method the attacker
must convert leakages into real-valued Hamming weights beforehand. This is
usually done by inverting the leakage function which necessitates to estimate
the parameters α and β of the linear leakage model. In some cases, this may
be a difficult task resulting in roughly estimated parameters that may cause the
attack to give bad results or even totally fail. Apart from a difficult estimation
of α and β, another problem arises when the leakage is not a linear function of
the Hamming weight of the data.

To deal with such difficult cases, we propose a collision-based variant of the
combined m-x attack. In the sequel we do not need the attacker to invert the
leakage function. We even do not assume that it is linear. However we make
the assumption that both leakage functions Lm and Lx related to the manipu-
lations of m and x respectively are the same from one key byte area to another.

Quadrivariate Improved Blind Side-Channel Analysis 159

Fig. 2. Success rate for the ML combined m-x attack. Average over 1000 runs for three
noise levels σ = 0.5, 1.0 and 2.0.

Fig. 3. Probability of the different Hamming distances in cases of a small (left, σ = 0.5)
and a higher (right, σ = 1.0) noise levels.

If this property holds then the joint distributions can be compared directly in
the leakages domain rather than in the Hamming weights domain.

Precisely, given a pair of key bytes (k1, k′
1), one can build the empirical

quadrivariate joint distribution of (Lm(m1),Lm(m′
1),Lx(x1),Lx(x′

1)). This joint
distribution of leakages is as well characterized by HD(k1, k′

1) than may be the
corresponding joint distribution of Hamming weights. Then, one can also build
the empirical joint distribution of leakages (Lm(m2),Lm(m′

2),Lx(x2),Lx(x′
2))

related to another pair of key bytes (k2, k′
2). Comparing both distributions

together should reveal whether HD(k1, k′
1) = HD(k2, k′

2), without knowing the
Hamming distance value itself.

We did not simulate this collision-based combined m-x attack, but we think
that, provided that the attacker is able to determine a threshold value on the dis-
tance between both distributions that allows him to decide between collision and
non-collision cases, then this kind of attack should reveal identities of Hamming

160 C. Clavier et al.

distances between key byte pairs. While this seems to be a even less informative
knowledge than Hamming distances revealed by the ML combined m-x attack
of Sect. 3.2, we study in Sect. 5 how to exploit it and conclude that it is also
sufficient to recover the ciphering key.

4 Key Recovery Based on Hamming Distances Values

Section 3.2 gives ability to an attacker to retrieve Hamming distances between
some key bytes. In this section, we describe how to use such, potentially partially
obtained, information to recover the AES main key. We consider in simulations
that the information used is recovered without error3.

The blind attacker scenario might be applied different ways, leading to dif-
ferent constraints on number of remaining valid key candidates. In the usual sce-
nario, the protocol might be designed to not be delivering plaintext or ciphertext
or both to attacker so that he can not brute force even a small list of key candi-
dates. This is why we will try in the sequel to reduce the number of remaining
candidates to 1. Beside, other relaxed configurations can be considered as some
implementation might, for a cost reduction consideration, over-protect only outer
rounds and not the inner rounds of an algorithm. In that case, the attacker may
have access to plaintext/ciphertext pairs, allowing him to brute force a remain-
ing key list, while he can still be considered as blind for the inner unprotected
rounds since he can not predict their inputs/outputs.

We make the use of guess-compute-and-backtrack strategies to recover the
main key from a partial information on the expanded key bytes. For example
such methods were used in [2,8] to recover AES main key from partial knowledge
of Hamming weight of expanded key bytes. This consists in considering guesses
of expanded key byte value, computing other key bytes that are related by the
known equations of the AES key schedule process and backtrack in case an
obtained information about those key bytes is not respected. It gives the attacker
a list of keys compatible with observations, potentially reduced to only one key.

Our simulation process consist in: (i) take a random key, (ii) record the
Hamming distances related to the model of attacker considered, (iii) explore the
solution tree with guided guess-compute-and-backtrack method and finally, (iv)
count how many keys are given as output. We always checked that the correct
key actually belongs to the remaining candidates list. Simulation results are
given for a single 3, 5 GHz core and use less than 1 MiB of RAM memory.

We consider two constraint masking schemes. A first one, with 3×11 bytes of
mask entropy, is studied in Sect. 4.1 and corresponds to a mask triplet (rm, rx, ry)
that is the same for all key bytes of a same round, but different from one round to
another. Then, in Sect. 4.2 we study the 3 × 16-byte entropy dual scheme where
all mask triplets of a same round are different from each others, but they are
reused for all rounds. Note that the 3 × 1-byte entropy simple masking scheme

3 Later, we show how to detect small errors. Once detected erroneous Hamming dis-
tances can simply be ignored.

Quadrivariate Improved Blind Side-Channel Analysis 161

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

⊕r0

Round 0

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

⊕r1

Round 1

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

⊕r2

Round 2

. . .

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

⊕r10

Round 10

Fig. 4. Positions of the 11 independent mask triplets on the expanded key.

where all mask triplets are the same can be easily broken: there always remains
only one valid solution, and it is retrieved in a fraction of second.

4.1 3 × 11-Byte Entropy Masking Scheme

The 11 independent mask triplets scenario corresponds to attacking an imple-
mentation refreshing mask triplets between each round computation. Figure 4
highlights, in grey levels, the key byte areas that share the same mask triplets.
Note that on this figure, ri is actually a shortcut referring to the mask triplet
(rm, rx, ry)i used around Ki

4.
In this section we show results of simulations of key recovery attempt that can

be achieved by an attacker. Several configurations of attacker are considered, all
relying on the ability to retrieve Hamming distances between key bytes belonging
to the same round. Distances between key bytes from different round keys cannot
be recovered here.

Full Information. First we consider an attacker that achieves to recover the
maximum of information, i.e. the 120 Hamming distances between the 16 bytes
of a round key and for each round key, leading to 11×120 = 1320 distances. The
exploration strategy follows: each key byte guessed allows to apply a constraint
on other bytes of the same round key as the Hamming distances between them
are known. This reduces the number of candidate for those bytes. When several
bytes of a round key are guessed, it allows to compute (no guess needed this
time) some of the key bytes from other rounds. As Hamming distance between
each pair of key byte from the same round are known, it can be used as a control
to stop the exploration as soon as an inconsistency is detected. The guessing
order strategies to create a raise of the number of constraints as soon as possible
plays a important role to limit the growth of the candidate tree, this question
is discussed in [2,8]. Using all information available, the guess phase takes less
than 1 s on the 1 000 random cases considered and always gives the correct key
as unique solution.

4 Or only the mask couple (rm, rx)10 for K10.

162 C. Clavier et al.

One Key Information. As gathering Hamming distance might be a demand-
ing task, we consider here an attacker that retrieves the Hamming distances into
only one round key. One can remark that it can be any round key as candidates
for the main key can be easily derived from candidates for any round key. Table 1
gives the results of 1 000 simulations, the number of key candidates remaining
after the exploration and the average execution time.

Table 1. Results of exploration using one round key Hamming distances information

Number of
remaining keys

Average time of
execution (s)

Encountered
case /1 000

5 160 960 36.0 1

10 321 920 80.4 997

20 643 840 108.5 2

In almost all cases (99.7%) the number of keys compatibles with the Ham-
ming distance observation is 10 321 920 and this list needs 80.4 s to be established.

Several Keys Information. In order to further reduce the number of valid
candidates we now consider an attacker that is able to use another arbitrary
round key. Due to the key schedule relations, the list of candidates for one round
key can easily generate a list of candidates for any other. Then, this list can be
checked against the new Hamming distance constraints. This additive operation
takes a negligible time. Table 2 shows that in most cases (78.4%), the correct
key remains as unique candidate.

Table 2. Results of exploration using Hamming distances information inferred from
two round keys.

Number of remaining keys 1 2 3 4 6 8 12

Encountered case/1 000 784 189 1 17 7 1 1

Time Exploration Optimization. Attacker may explore faster than gener-
ating list of millions of candidates from only one key in case information of a
second key is available. As keys are related, guessing bytes from the first key in
an appropriate order allows to start to compute part of the second key in use and
then apply constraints sooner. The list of remaining candidates is not modified
but the exploration tree has branches cut off earlier leading to smaller execution
time for research. Indeed, the average exploration time falls from ∼80 s to less
than one second in case where two consecutive keys are used.

Quadrivariate Improved Blind Side-Channel Analysis 163

Detection of Erroneous Hamming Distances. In our simulations of the
combined m-x attack with σ = 1.0 we have noticed that when the Hamming
distance was not correctly determined, the error was only of ±1 bit (proximity-
driven behavior). As a result, if the number of incorrectly determined distances
is not too large, one can detect them based on the parity consistency that must
hold within any key byte triangle. Indeed for any three bytes it must be the
case that the three Hamming distances that relate them together do not all
have the same parity. For instance, it may be the case that HD(k1, k2) = 5,
HD(k2, k3) = 7 and HD(k3, k1) = 4 but it can not be the case that they are
equal to 5, 7 and 3. Before launching the tree exploration for compatible keys,
one can perform a sanity check by verifying the parity property for any triangle
of key bytes. Once an inconsistent triangle is detected, one can easily identify
and eliminate its incorrect edge. Indeed an incorrect edge would still violate the
parity property when associated with other opposite vertices.

Classes of Solutions. One can remark in Table 1 that the 3 different number
of remaining keys are precisely related by a factor of 2:

20 643 840 = 2 × 10 321 920 = 4 × 5 160 960

The most common figure (10 321 920) can be explained. For each valid key
candidate, any key that has a same XOR difference on all its bytes is also
a solution. Moreover, any bit permutation π applied onto all bytes of a valid
candidate gives another valid candidate. We thus have equivalence classes of
256 × 8! = 10 321 920 solutions. The case of 5 160 960 remaining candidates
occurs when two bits are equals on all the 16 bytes of the key candidate, in that
case the number of possible permutations is reduced by a factor 2. The case
of 20 643 840 remaining candidates occurs when two keys are solutions of the
Hamming distance constraints but without being related by any XOR difference
nor permutation of bits. One then has two independent classes of solutions.

4.2 3 × 16-Byte Entropy Masking Scheme

Figure 5 highlights, in grey levels, the key bytes that share the same mask triplet
in the case of 3 × 16-byte entropy masking scheme.

⊕r3

⊕r2

⊕r1

⊕r0

⊕r7

⊕r6

⊕r5

⊕r4

⊕r11

⊕r10

⊕r9

⊕r8

⊕r15

⊕r14

⊕r13

⊕r12

Round 0

⊕r3

⊕r2

⊕r1

⊕r0

⊕r7

⊕r6

⊕r5

⊕r4

⊕r11

⊕r10

⊕r9

⊕r8

⊕r15

⊕r14

⊕r13

⊕r12

Round 1

⊕r3

⊕r2

⊕r1

⊕r0

⊕r7

⊕r6

⊕r5

⊕r4

⊕r11

⊕r10

⊕r9

⊕r8

⊕r15

⊕r14

⊕r13

⊕r12

Round 2

. . .

⊕r3

⊕r2

⊕r1

⊕r0

⊕r7

⊕r6

⊕r5

⊕r4

⊕r11

⊕r10

⊕r9

⊕r8

⊕r15

⊕r14

⊕r13

⊕r12

Round 10

Fig. 5. Positions of the 16 independent mask triplets on the expanded key.

164 C. Clavier et al.

The main difference between those two masking scheme is that we have 16
sets of Hamming distances between 11 bytes (16 × 55 = 880 relations) instead
of 11 sets of Hamming distances between 16 bytes (1320 relations) for previous
scheme. Using all the information was well enough to retrieve the correct key as
sole candidate on our 1, 000 random simulations. But, the fact that the distances
relate less bytes at a time alters the tree growth limitation and leads to an average
execution time of 31 s compared to less than one second for the other scheme.

Considering one set of 11 related bytes, guessing one value applies a constraint
on other bytes of the set by the Hamming distances that relates them. The
difference with previous scheme is that those bytes are not in the same round
key and do not lead to candidates for one round key. Nevertheless, the known
key schedule equations that relate bytes of the expanded key allow an attacker
to infer other key bytes from the one guessed. From one set of 11 bytes, one
infers candidates for 66 out of the 176 expanded key bytes. A second set that
combines well with the first one gives candidates for the whole expanded key.

5 Key Recovery Based on Hamming Distances Collisions

In this section we show how to handle the configuration where an attacker can
only recover Boolean information of equality of Hamming distances between key
bytes. We focus on the 3×11-byte entropy masking scheme, detailed in Sect. 4.1,
as results for the other masking scheme are similar.

5.1 Hamming Distance Classes

Given Boolean information of Hamming distance equalities, one can separate the
set of all pairs of key bytes pairs for which the information is known, into classes
of identical (but unknown) distances. In the ideal case, all 1320 unknown Ham-
ming distances can be separated in nine classes, one for each possible Hamming
distance, without knowing which class corresponds to which distance.

Brute Force. Brute force can be considered with 9! = 362 880 possible valu-
ations of the classes. Each valuation leads to a configuration where Hamming
distances are known, allowing to apply the key recovery methods depicted in
Sect. 4. This high number of combinations might be still feasible, depending on
the attacker available information, but greatly raises the processing time.

Classes Recognition. A huge reduction of the number of classes valuations
consists in classes recognition. As Hamming distances do not appear with same
theoretical frequencies, one can sort the classes according to their cardinals.
This should identify the classes, except for pairs of classes 0 and 8, as well as
1 and 7, 2 and 6, and 3 and 5, which can not be distinguished. Only the class
of Hamming distance 4 is directly recognizable as the one the most represented.

Quadrivariate Improved Blind Side-Channel Analysis 165

Once classes are recognized, it remains merely 16 classes – coming from 4 pairwise
permutations – that can not be differentiated.

Such recognition is reliable when enough information is used. Table 3 gives
simulated percentage of correct classes recognition as defined above with increas-
ing number of round key information used simultaneously.

Table 3. Percentage of correct class recognition as a function of the number of round
key information used.

Number of round keys information used 1 2 3 4 . . . 11

Percentage of correct class recognition 47.4 74.8 86.0 91.5 . . . 99.9

Class Recognition Simulation Results. When the class recognition is suc-
cessful, one has to perform 16 key recovery attacks with known Hamming dis-
tances like in Sect. 4.

Let’s consider an attacker taking the collision information from two consec-
utive round keys. The class recognition is then correct in 74.8% of cases, and
the processing time to generate all valid keys is about 6 s on average. It may
happen that some of the 15 wrong valuations that have to be considered lead
to some incorrect but valid keys. Table 4 shows the equivalent results of Table 2
where Hamming distances were known. While the results are slightly degraded
due to these extra potential false positives, a unique key is still identified in the
majority of cases.

Table 4. Results of exploration using two round key information considering the 16
classes valuations.

Number of remaining keys 1 2 3 4 6 8 12

Encountered case/1 000 648 293 1 47 8 2 1

As the execution time is reasonable, cases where classes are not correctly rec-
ognized (here 25.2%) can also be considered. Such situation might be detected as
giving no valid solution. As the error in the class recognition might be small, one
can try to permute sets with close cardinals in order to find the right valuation.

6 Conclusion

We have presented new ways to perform blind side-channel analysis in the pres-
ence of Boolean masking. These combined variants, which simultaneously target
two areas around two key bytes (not necessarily at the same round), allow to

166 C. Clavier et al.

recover key information even when the three masks that apply to m, x and y
are independent. This is a major and significant improvement upon single key
byte attacks developed in [3].

The maximum likelihood based combined m-y attack recovers the XOR dif-
ferential between the key bytes but we have observed that it is not that much
efficient. On the contrary, its m-x counterpart is much more efficient but can
only recover the Hamming distance between the key bytes. We also envisaged
an other m-x variant, based on comparison of leakage distributions, which recov-
ers even less information – only whether the Hamming distances between two
key bytes pairs are equal – but presents the advantage that the attacker does
not need to infer Hamming weights from leakages5.

Since both variants of our combined m-x attack give a very partial informa-
tion about the key material, we have studied whether an attacker could never-
theless recover the ciphering key by repeatedly applying those attacks on several
key bytes pairs. We demonstrated by simulations that the answer to this ques-
tion is positive in both masking schemes we considered, and that the attacker
does not need to recover the relevant information from all key bytes pairs, but
typically from those related to any two successive rounds.

We have also discussed about possible detection of errors on the estimated
Hamming distances. We argued that it is easy to detect (a not too large number
of) errors of ±1 bit, and observed that these errors are the first to occur with
the proximity-driven behavior of higher noise.

As it is important for the developer of secured applications to protect against
our attacks, we suggest two non exclusive kinds of countermeasures: (i) a com-
plete full masking of any intermediate value by independent masks, and (ii) any
measure that spoils the time alignment (random delays, shuffling,. . .) and makes
harder for the attacker to identify the points of interests on each trace.

References

1. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

2. Clavier, C., Marion, D., Wurcker, A.: Simple power analysis on AES key expansion
revisited. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 279–
297. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3 16

3. Clavier, C., Reynaud, L.: Improved blind side-channel analysis by exploitation of
joint distributions of leakages. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 24–44. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66787-4 2

4. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

5 The leakage function does not even need to be a linear function of the Hamming
weights. Though it must be the same in the target areas of all key bytes.

https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-662-44709-3_16
https://doi.org/10.1007/978-3-319-66787-4_2
https://doi.org/10.1007/978-3-319-66787-4_2
https://doi.org/10.1007/978-3-540-85053-3_27

Quadrivariate Improved Blind Side-Channel Analysis 167

5. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 25

6. Le Bouder, H.: Un formalisme unifiant les attaques physiques sur circuits cryp-
tographiques et son exploitation afin de comparer et rechercher de nouvelles
attaques. Ph.D. thesis, École Nationale Supérieure des Mines de Saint-Étienne
(2014)

7. Linge, Y., Dumas, C., Lambert-Lacroix, S.: Using the joint distributions of a crypto-
graphic function in side channel analysis. In: Prouff, E. (ed.) COSADE 2014. LNCS,
vol. 8622, pp. 199–213. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10175-0 14

8. VanLaven, J., Brehob, M., Compton, K.J.: A computationally feasible SPA attack
on AES VIA optimized search. In: Sasaki, R., Qing, S., Okamoto, E., Yoshiura,
H. (eds.) SEC 2005. IAICT, vol. 181, pp. 577–588. Springer, Boston, MA (2005).
https://doi.org/10.1007/0-387-25660-1 38

https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-319-10175-0_14
https://doi.org/10.1007/978-3-319-10175-0_14
https://doi.org/10.1007/0-387-25660-1_38

Differential Power Analysis of XMSS
and SPHINCS

Matthias J. Kannwischer1,2, Aymeric Genêt3,4, Denis Butin1(B),
Juliane Krämer1, and Johannes Buchmann1

1 TU Darmstadt, Darmstadt, Germany
{dbutin,jkraemer,buchmann}@cdc.informatik.tu-darmstadt.de

2 University of Surrey, Guildford, UK
m.j.kannwischer@surrey.ac.uk
3 EPFL, Lausanne, Switzerland

aymeric.genet@epfl.ch, aymeric.genet@nagra.com
4 Kudelski Group, Cheseaux-sur-Lausanne, Switzerland

Abstract. Quantum computing threatens conventional public-key cryp-
tography. In response, standards bodies such as NIST increasingly
focus on post-quantum cryptography. In particular, hash-based signa-
ture schemes are notable candidates for deployment. No rigorous side-
channel analysis of hash-based signature schemes has been conducted
so far. This work bridges this gap. We analyse the stateful hash-based
signature schemes XMSS and XMSSMT , which are currently undergoing
standardisation at IETF, as well as SPHINCS—the only practical state-
less hash-based scheme. While timing and simple power analysis attacks
are unpromising, we show that the differential power analysis resistance
of XMSS can be reduced to the differential power analysis resistance of
the underlying pseudorandom number generator. This first systematic
analysis helps to further increase confidence in XMSS, supporting cur-
rent standardisation efforts. Furthermore, we show that at least a 32-bit
chunk of the SPHINCS secret key can be recovered using a differen-
tial power analysis attack due to its stateless construction. We present
novel differential power analyses on a SHA-2-based pseudorandom num-
ber generator for XMSS and a BLAKE-256-based pseudorandom func-
tion for SPHINCS-256 in the Hamming weight model. The first attack
is not threatening current versions of XMSS, unless a customised pseu-
dorandom number generator is used. The second one compromises the
security of a hardware implementation of SPHINCS-256. Our analysis is
supported by a power simulator implementation of SHA-2 for XMSS and
a hardware implementation of BLAKE for SPHINCS. We also provide
recommendations for XMSS implementers.

Keywords: Post-quantum cryptography · Hash-based signatures
DPA

c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 168–188, 2018.
https://doi.org/10.1007/978-3-319-89641-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_10&domain=pdf

Differential Power Analysis of XMSS and SPHINCS 169

1 Introduction

Due to the wide applicability of Shor’s algorithm [29], conventional public-key
cryptography (e.g., RSA, DSA, and ECDSA) is vulnerable to attacks using quan-
tum computers. Some cryptographic schemes, known as post-quantum [7], are
believed to remain safe in the presence of quantum computers. Post-quantum
cryptography was already introduced in the 70s, but not deployed at that
time. Engineering progress in quantum computing [21] is creating a new sense
of urgency. Current standardisation efforts—for instance at NIST [27] and
IETF [14]—signal a shift towards real-world use [8]. It is therefore important
to further analyse the security of candidate schemes.

In particular, the side-channel resistance of hash-based signature (HBS)
schemes has not been evaluated systematically so far. HBS schemes rely on
the security of an underlying hash function, and use a binary hash tree struc-
ture. While these schemes are conjectured to be “naturally” side-channel resis-
tant [14], a deeper look is desirable to uncover potential weaknesses and increase
confidence in them. We provide a side-channel analysis (SCA) of two prominent
HBS schemes: XMSS (including its variant XMSSMT) and SPHINCS. We chose
them because XMSS is being standardised, SPHINCS is the only practical state-
less HBS scheme (see Sect. 2 for an explanation of statefulness), and both are
recommended by the PQCRYPTO EU project [28].

1.1 Related Work

The side-channel resistance of HBS schemes is rarely addressed. Eisenbarth
et al. [11] investigate the side-channel leakage of a customised Merkle-based HBS
scheme. Leakage experiments using an AES-based hash function are performed.
XMSS is not directly analysed, and only a brief SCA is provided.

For other categories of post-quantum cryptography, SCAs are mainly avail-
able for implementations of lattice-based and code-based schemes. In particu-
lar, the NTRUEncrypt [20,30] and McEliece [22] schemes have been thoroughly
examined. Several differential power analysis (DPA) attacks have been proposed
on hash-based message authentication codes (HMACs) based upon SHA-2 [2,23]
and SHA-3 [32,33]. However, none of them directly applies to HBS.

We only address purely passive attacks. The fault attack vulnerability of
SPHINCS was recently analysed by Castelnovi et al. [9].

1.2 Outline

The remainder of the paper is organised as follows. We start by recalling basics
about the schemes under consideration and the more elementary schemes they
rely upon: W-OTS+, XMSS, XMSSMT , and SPHINCS (Sect. 2). We next analyse
the side-channel resistance of XMSS and XMSSMT (Sect. 3) and describe a DPA
on a SHA-2-based pseudorandom number generator (PRNG) which applies to
both schemes. SPHINCS-256 is then analysed in the same respect (Sect. 4); we
introduce a novel DPA on a BLAKE-256-based pseudorandom function (PRF).

170 M. J. Kannwischer et al.

Impact analyses and discussions of implications for implementers appear in both
main sections. We then conclude (Sect. 5).

2 XMSS, XMSSMT and SPHINCS

In HBS schemes, many one-time signature key pairs are combined into a single
structure, using a binary hash tree. Numerous improvements upon seminal con-
structions by Lamport [19] and Merkle [25] have culminated in modern schemes
such as XMSS [4], its hierarchical variant XMSSMT [15] and SPHINCS [3].

These are the schemes analysed in this paper; in particular, for XMSS and
XMSSMT , we examine the recently proposed IETF standard [14]. XMSS has
minimal security requirements, since it only requires a second-preimage resistant
hash function for its security. XMSS and XMSSMT are stateful : after signing,
the secret key is updated. If this update is not carried out properly, the security
of the cryptographic scheme degrades or vanishes. As a result, extra care is
required [24]. Stateful hash-based signature schemes are particularly suited to
the use case of software update authentication, where signing frequency is low.
SPHINCS is conveniently stateless, but its signatures are significantly larger and
speed also suffers.

We start by recalling a one-time signature scheme which is typically not used
on its own, but constitutes a cornerstone of these three schemes: W-OTS+ [13].
Due to space limitations, we only describe parts of the schemes relevant for
SCA. Self-contained algorithm descriptions and security proofs can be found in
the original papers.

2.1 W-OTS+

W-OTS+ improves upon the W-OTS [10]. It is parametrised by the Winternitz
parameter w = 2ω, which enables a time/space trade-off. Large values of w yield
small keys and signatures, but slow down the scheme. Given a keyed hash function
fk : {0, 1}n × {0, 1}n → {0, 1}n, W-OTS+ defines the chaining function ci

k:

c0k(x, r) = x, ci
k(x, r) = fk(ci−1

k (x, r) ⊕ ri), r = (r1, . . . , rj), j > i.

We recall the W-OTS+ key generation and signature generation algorithms,
which involve secret information and are, thus, relevant for SCA.

W-OTS+ Key Generation. Given the security parameter n and length �, the
secret key X = (x0, . . . , x�−1) ∈R {0, 1}n×�, the randomisation bitmasks r =
(r1, . . . , rw−1) ∈R {0, 1}n×w−1 and the key k ∈R {0, 1}n are chosen uniformly at
random. The public key Y is computed from X by applying ck (w − 1) times:

Y = (y0, . . . , y�−1) ∈ {0, 1}n×�, yi = cw−1
k (xi, r), 0 ≤ i < �.

The secret key is X and the public key is (Y, r, k). To compress the public key,
r and k can also be replaced by an n-bit seed to generate r and k pseudorandomly.

Differential Power Analysis of XMSS and SPHINCS 171

W-OTS+ Signature Generation. Given the secret key X and the digest D ∈
{0, 1}n of a message M , the digest D is divided into �1 blocks of ω bits each:
D = b�−1 || . . . || b�−�1 . Using D, a checksum C = b�2−1 || . . . || b0 is calculated.
The blocks b�−1, . . . , b0 are then used to calculate the signature:

σW -OTS+ =
(
c
b�−1
k (x�−1, r), . . . , cb1

k (x1, r), cb0
k (x0, r)

)
.

2.2 XMSS

XMSS is a stateful digital signature scheme built upon the one-time signature
scheme W-OTS (or its optimised version W-OTS+) as a building block. XMSS
was introduced by Buchmann et al. in 2011 [4]; it is EU-CMA secure, forward-
secure and efficient.

Given the security parameter n, XMSS requires a cryptographic hash func-
tion h : {0, 1}2n → {0, 1}n. Denoting H the XMSS tree height, up to 2H messages
can be signed, using as many W-OTS+ key pairs.

XMSS Key Generation. Given H, the key generation algorithm first gener-
ates 2H W-OTS+ key pairs (skW-OTS+,i,pkW-OTS+,i), where 0 ≤ i < 2H . The
W-OTS+ public keys are then used to construct an XMSS tree. The inner nodes
of the XMSS tree are computed as

vh[j] = h ((vh−1[2j] ⊕ bl,h) || (vh−1[2j + 1] ⊕ br,h)) ,

where bl,h and br,h are public randomisation elements derived from a public seed
using a PRNG. Each leaf of the XMSS v0[i] (0 ≤ i < 2H) tree is derived from the
corresponding W-OTS+ public keys using another XMSS tree, which is called
L-tree. An L-tree compresses an n× � bit public key to a single n bit value using
the same construction for the inner nodes. Since � is not a power of 2 in general,
the rightmost leaves of the L-tree are lifted up to form a binary tree.

The XMSS public key is the root of the XMSS tree vh[0] and the public
seed required to generate the randomisation elements in W-OTS+, the XMSS
tree, and the L-trees. The XMSS secret key is comprised of all W-OTS+ secret
keys skW-OTS+ and the index s of the next unused leaf (initially s = 0). Since
storing all W-OTS+ secret keys results in an enormous key (2H · � · n bits), it is
recommended to use a PRNG to generate them and just store the n-bit seed.

XMSS Signature Generation. Given the secret key (skW-OTS+ , s) and the digest
D ∈ {0, 1}n of a message M , XMSS first computes the W-OTS+ signature
σW-OTS+ for M using skW-OTS+,s. It is imperative to increment s in the XMSS
secret key to ensure that this one-time key pair is not used again in subsequent
signature generations. In addition to pkW-OTS+,s, the verifier requires several
nodes of the XMSS tree to reconstruct the root of the hash tree. This is achieved
by appending the authentication path As = (a0, . . . , ah−1) to the signature,
which contains one node in each layer of the hash tree. The ah are either left or
right neighbours of the nodes in the path from v0[s] to vh[0]:

172 M. J. Kannwischer et al.

ah =

{
vh[s/2h − 1], if �s/2h� ≡ 1 (mod 2)
vh[s/2h + 1], if �s/2h� ≡ 0 (mod 2).

The XMSS signature is, thus, σ = (s, σW-OTS+ ,pkW-OTS+,s, As).

2.3 XMSSMT

While optimised implementations of XMSS provide sufficient performance during
signature generation and signature verification, key generation is slow for high
trees, e.g., H > 20. Since this is problematic in some use cases, an extension of
XMSS was proposed using multiple layers of XMSS trees. This tree chaining idea
was initially used in the CMSS scheme [6]. Combined with improved distributed
signature generation, it resulted in the XMSSMT scheme [15]. It is also specified
in the Internet-Draft by Hülsing et al. [14].

A hyper-tree is used. Its upper layers are used to sign the roots of the lay-
ers below, and only the lowest layer is used to actually sign messages. Thus,
an XMSSMT hyper-tree consists of T ≥ 2 layers of XMSS trees with heights
H0, . . . , HT−1, where H0 is the height of the trees at the lowest level. The
Internet-Draft further restricts the heights to be equal, i.e., H0 = H1 = · · · =
HT−1. The W-OTS+ key pairs corresponding to the leaves of layer i are used to
sign the roots of the trees on layer i− 1. The root of layer T − 1 is the XMSSMT

public key. Using XMSSMT is especially sensible if a large number of messages
is to be signed. In that case, the use of a PRNG is recommended. Otherwise, the
required storage and slow random number generation outweigh the performance
gain of XMSSMT .

2.4 SPHINCS

In 2014, Bernstein et al. introduced SPHINCS [3], a practical stateless HBS
scheme. SPHINCS uses components as XMSSMT , but includes a layer of few-
times signatures named HORST beneath the extended Merkle multi-trees, whose
instances are pseudorandomly selected to sign messages.

SPHINCS-256. The SPHINCS authors have suggested a standard instantia-
tion for their scheme in [3] that achieves 128 bits of post-quantum security.
This instance is called SPHINCS-256 and requires two secret keys (sk1, sk2) of
32 bytes each. Since SPHINCS-256 is stateless, the hash-based instances within
the scheme are referred to with an addressing scheme. The ith W-OTS+ instance
at the leaf of the jth sub-tree at layer l is addressed with the binary concate-
nation of all these indices, i.e., A(i, j, l) = (l || j || i) where the first 4 most
significant bits refer to layer l, the next 55 bits to sub-tree j, and the last 5 bits
its leaf i.

To sign a given message M , a pseudorandom value R is generated according
to M and sk2. This value represents the selected branch of our hyper-tree, i.e.,
it allows the computation of the HORST instance address AHORST and the

Differential Power Analysis of XMSS and SPHINCS 173

W-OTS+ addresses Al
i at each layer 0 ≤ l < T and for each leaf 0 ≤ i < 2Hi . The

secret seeds of these instances are computed using this address. In SPHINCS-
256, SeedA = BLAKE-256(sk1 || A) where BLAKE-256 is the cryptographic
hash function [1] used as a PRF. When fed to a PRNG, this seed generates the
secret key of the addressed instance.

3 Side-Channel Analysis of XMSS

3.1 Assumptions

To provide a sound analysis of side-channel resistance that is relatively indepen-
dent of the actual implementation, we first assume that the used hash functions
and PRNG suffer no side-channel leakage at all. Obviously, this assumption
does not hold for any real world implementations, but it allows us to separate
the analysis of the schemes (Sects. 3.2–3.4) from the analysis of the hash function
and PRNG (Sect. 3.5). We perform a bottom-up SCA, i.e., we start by analysing
W-OTS+ and then extend the analysis to XMSS and XMSSMT . An extended
version of this analysis is contained in [16].

3.2 W-OTS+

As illustrated in Fig. 1, the only secret data processed inside W-OTS+ are the
secret key parts xi. The used randomisation elements r and keys k are public
values and, thus, are of no interest for an attacker. The xi are only used as input
to the chaining function ck.

se
cr

et
pa

rti
al

ly
 s

ec
re

t
pu

bl
ic

Fig. 1. Parts of W-OTS+ relevant for SCA

174 M. J. Kannwischer et al.

To mount a DPA attack, a function depending upon a part of the secret
key and a known variable input data must be found. At first sight, ci

k(x, r)
seems to be a perfect target for a power analysis attack. For i = 1, the signer
calculates x ⊕ ri, where x is some secret key block and ri is a randomisation
bitmask known to the adversary. However, this function is only called twice:
once during key generation and once during signature generation. This limited
number of executions alone prevents the majority of side-channel attacks due
to measurement noise. Additionally, ri is the same for both evaluations. This
prevents DPA attacks, which rely upon different inputs to the target function.
Also, simple power analysis (SPA) attacks are unable to recover any relevant
portion of the secret key.

3.3 XMSS

We just saw that W-OTS+ barely leaks information via power side-channels.
Since XMSS is built using many W-OTS+ keys, intuitively XMSS provides this
resistance as well. However, one major difference that makes XMSS more vulner-
able than W-OTS+ is that W-OTS+ key generation is called much more often
during authentication path computation.

XMSS
Tree

L-tree

W-OTS+
Public Key

W-OTS+
Secret Key

Seed PRNG

public leakage-agnostic

s

Fig. 2. Parts of XMSS relevant for SCA

Figure 2 summarises the parts of XMSS relevant for SCA. The entire XMSS
tree is public and, thus, leakage-agnostic. Even if leaked entirely, the adversary
does not learn anything secret. This includes the W-OTS+ public keys and the
intermediate values in the L-trees, which are used to compute the XMSS tree
leaves. The relevant parts are shown in the lower part of the figure and include

Differential Power Analysis of XMSS and SPHINCS 175

the seed used for the pseudorandom W-OTS+ secret key generation and the
W-OTS+ secret keys itself.

It was found above that the power leakage resistance of W-OTS+ can mainly
be guaranteed because both the key generation and the signature generation
are only executed once. For an XMSS signature using the W-OTS+ secret key
at index s, the signer first computes the W-OTS+ signature, using skOTS,s,
and then the authentication path for v0[s]. The authentication path calculation
requires that all other v0[i] are computed too. While some nodes of the authenti-
cation path can be reused, some must be recomputed. Assuming the signer does
not reuse nodes at all, we know that, at the time of the signature generation for
index s, the skOTS,s already leaked a few times before.

Assuming the most powerful side-channel adversary [31] who can choose the
leakage function arbitrarily and adaptively change it for each signature gen-
eration, this leads to a leakage of 2H+1 · λ bits, where λ is a bound for the
bits leaked per W-OTS+ key generation and signature generation. Even a small
bound λ trivially breaks the security of XMSS for any reasonable choice of H
and n. However, in practice such an adversary does not exist. When considering
a real-world leakage model, the attack becomes infeasible: During each signature
generation the W-OTS+ chaining function is called with the exact same inputs
to produce the same W-OTS+ public keys. While this is useful for filtering out
noise, which is inevitable in every power analysis attack, the leaked information
is still meagre.

When combining this finding with the assumption that the PRNG and hash
function have no leakage and the findings above, we find that XMSS has the
same leakage as W-OTS+, but the adversary can use the multiple computations
to reduce the noise.

3.4 Applicability to XMSSMT

The conclusions we drew so far can be generalised to XMSSMT , since an
XMSSMT signature generated using a hyper-tree with T layers can be viewed
as T independent XMSS signatures from a side-channel perspective. One major
difference is that the W-OTS+ signature generations on the upper layers are
executed more than once (if no caching is implemented). Intuitively, this seems
to provide more leakage than the single tree variant of XMSS. However, since
no relevant leakage could be identified during W-OTS+ signature generation,
XMSSMT provides similar side-channel resistance.

3.5 Hash Function and PRNG Side-Channel Resistance

So far, we concluded that W-OTS+, XMSS, and XMSSMT provide strong side-
channel resistance, under the assumption that the used hash function and the
PRNG are side-channel resistant. Although the actual fulfilment of this require-
ment is implementation-specific, we now discuss the general side-channel resis-
tance of the used building blocks.

176 M. J. Kannwischer et al.

Hash Function. The used hash function is the only function within W-OTS+

which processes secret data. However, a hash function per se cannot be vul-
nerable or resistant to side-channel attacks, since it can be used in numerous
ways which do not necessarily involve a secret key. In the XMSS Internet-
Draft [14], the keyed hash function fk of W-OTS+ is implemented using either
a hash function of the SHA-2 or SHA-3 function family using the construction
fk(x) = f(0n || k || x), where f is SHA-256, SHA-512, SHAKE-128, or SHAKE-256.
However, the key k is generated from a public seed, while the actual secret data
is x.

Several side-channel attacks, all of which being DPA attacks, have been
proposed on both SHA-2 and SHA-3 hash function in the context of HMACs
[2,23,32,33]. However, they are not applicable to the W-OTS+ chaining function,
since each secret key part is only used with constant randomisation bitmasks
(k and r). Additionally, SPA attacks are unable to recover any significant amount
of secret key bits due to the absence of conditional branches depending upon the
secret key for both SHA-2 and SHA-3. Note that the hash function may be
replaced in future XMSS standards. It is thus imperative to analyse whether the
replacement still provides similar side-channel resistance.

PRNG. The PRNG which may be used for generating the W-OTS+ secret keys
is not specified by the XMSS Internet-Draft [14]. Thus, an implementer may
freely choose a secure PRNG which matches the security parameter n.

For n = 256 and the SHA-2 hash function family, the XMSS Internet-Draft
recommends the use of the following construction to generate a pseudorandom
value for the index i from a seed: SHA-256 (0x000..03 || seed || i). For other
parameters, similar recommended constructions are given.

This construction can be analysed with respect to side-channel attacks build-
ing upon the conclusions for the W-OTS+ chaining function. The non-existence
of conditional branches depending upon the input of the hash function implies
that no SPA can be mounted upon any of the recommended PRNG. However,
all constructions are good candidates for DPA attacks, since the hash functions
are evaluated for the same seed with different indices.

3.6 DPA Attack on SHA-2 PRNG

To the best of our knowledge, only hash function side-channel resistance in the
context of HMAC has been addressed in the literature. We adapt the attack on
a SHA-2 HMAC [2] for the recommended XMSS PRNG. We briefly recall the
attack by Beläıd et al.:

An HMAC for the message m can be computed by applying a hash function
H twice [18]: HMAC(m, k) = H ((k ⊕ opad) || H ((k ⊕ ipad) || m)). The bitmasks
opad and ipad denote constants 0x5c5c . . . 5c and 0x3636 . . . 36. When using a
Merkle-Damg̊ard-based hash function, the key is padded to the block length of
the hash function (e.g., 512 bits for SHA-256), such that each evaluation of H
results in at least 2 evaluations of the compression function cf .

Differential Power Analysis of XMSS and SPHINCS 177

Algorithm 1. SHA-256 compression function cf [26]. Relevant operations for
recovering D(0) are highlighted in blue.
1: Input: IV (256 bit), mi (512 bit)

2: Wt ← m
(t)
i 0 ≤ t ≤ 15

3: Wt ← σ1(Wt−2) + Wt−7 + σ0(Wt−16) + Wt−15 16 ≤ t ≤ 63
4: A ← IV (0); B ← IV (1); C ← IV (2); D ← IV (3);
5: E ← IV (4); F ← IV (5); G ← IV (6); H ← IV (7);
6: for t = 0; t < 64; t + + do
7: T1 ← H + Σ1(E) + Ch(E, F, G) + Kt + Wt

8: T2 ← Σ0(A) + Maj(A, B, C)
9: H ← G; G ← F ; F ← E; E ← D + T1;

10: D ← C; C ← B; B ← A; A ← T1 + T2
11: end for
12: return [IV (0)+A, IV (1)+B, IV (2)+C, IV (3)+D,

IV (4)+E, IV (5)+F, IV (6)+G, IV (7)+H]

The inner hash-evaluation of the HMAC is illustrated in Fig. 3. First, the
compression function cf is called with the masked key (k ⊕ ipad) and the fixed
initialisation vector (IV). Then, for each block in the message m, an additional
call to cf iteratively combines the resulting IV from the previous iteration with
512 bits of the message m. Since the first evaluation only processes the key, but
no variable data, it is not possible to mount a DPA attack on the computations
inside. Instead, Beläıd et al. target the second evaluation of cf , which processes
the first block of m and the result of the first evaluation of cf , denoted by IV1.
The computations inside cf can be used to entirely recover IV1 which is enough
to forge the inner part of the HMAC.

The actual attack is based upon intermediate values inside the SHA-2 com-
pression function cf shown in Algorithm1. For definitions of Ch, Maj, Σ0, Σ1, σ0,
and σ1, see [26]. Let D(i) denote the value of D before iteration t = i, thus
D(0) = IV

(3)
1 . Similarly, T1(i) is the value of T1 that was computed during

iteration t = i − 1. Additionally, let values that are different for each HMAC
generation be denoted by bold letters (e.g., Wt), while values that are the same

0x6a09…

512

256 256
c

512

256

512

…

Attacked Secret Attacked Computation

256

Fig. 3. DPA on SHA-256 HMAC (simplified from [2])

178 M. J. Kannwischer et al.

for all generations are in standard letters (e.g., T1). To attack the HMAC, the
adversary now mounts several DPA attacks building upon each other to recover
A(0), . . . , H(0). These values are enough to forge the hash output of the inner
hash function output for arbitrary message. The outer hash is attacked similarly.

As an illustration, we briefly describe how D(0) can be recovered and refer to
[2] for the full attack. We define δ(1) := H(0) +Σ1(E(0))+Ch(E(0), F (0), G(0))+
K0, i.e., line 7 computes T1(1) ← δ(1) + W0. A DPA can easily recover δ(1),
since δ(1) is fixed and Wt is known and variable. Once the adversary knows δ(1),
they can compute T1(1) for each known word W0. The second DPA attack then
recovers D(0) from E(1) ← D(0) +T1(1) using known values for T1(1). Building
upon the recovered values of T1(1), another 7 DPAs in the first and second
iteration can be used to recover the values of A(0), B(0), C(0), E(0), F (0), G(0)

and H(0) (see [2]).
Application to Hash-Based PRNG: To the best of our knowledge, no power anal-
ysis attack on hash-based PRNG has been presented so far. However, the HMAC
construction above resembles the PRNG suggested by the XMSS Internet-
Draft [14] for the generation of W-OTS+ secret keys. Trying to apply the attack
of Beläıd et al. [2], we notice that the message words W0 and W1, which were
used to mount the DPA attack, are always zero for any reasonable parameter
choice (h ≤ 448). If these known values are fixed, a DPA attack does not work.

The attack can be adapted to useW14 andW15 instead, assuming i < 264. The
adversary is able to recover A(14), . . . , H(14) from the computations in iteration 14
and 15.Although this does not allow to recover IV1, it is still sufficient to recompute
all pseudorandom secret keys, since Wk = 0 for 0 ≤ k ≤ 13 which consequently
means that A(14), . . . , H(14) are the same for all values of i.

For our proof-of-concept, we assume that the PRNG is called for uniformly
random values between 0 and 264 −1. In XMSS it is called for subsequent values
which are no bigger than 220. However, using these parameters, our attack is
unable to recover all bits of A(14), . . . , H(14). We leave the analysis on how much
bits can be recovered for a certain parameter set to future work.

Implementation. To validate that our attack indeed can be used to recover
all W-OTS+ secret keys, we created a proof-of-concept implementation of the
attack. The source code of our implementation is available [17].

Power Simulation. Since an actual hardware implementation of XMSS was not
available, we implemented a power simulator which is capable of creating power
traces in the Hamming weight (HW) leakage model. Since a DPA attack requires
the computation of hypothetical power consumption values for each possible key
hypothesis, our implementation recovers each byte of A(14), . . . , H(14) separately.
At first, we assume that we have a byte-wise leakage of the HW, which allows the
recovery of the key with few traces. However, since this is not realistic, we also
extend this to work with the leakage of the HW per 32-bit word using partial
DPA.

Differential Power Analysis of XMSS and SPHINCS 179

Fig. 4. Maximum PCC of all possible key hypotheses in the 8-bit HW leakage model.
The correct sub-key (34) can be easily detected

Some of the DPA used to attack the PRNG target a 32-bit modular addition
and some target bitwise AND. They require slightly different hypothesis calcula-
tion due to carry handling. For details we refer to our source code [17].

Results. We started evaluating our proposed attack in the 8-bit HW leakage
model. Figure 4 illustrates the maximum correlation values of each possible key
hypothesis for computing the least significant byte of δ(15), i.e., this is a DPA on
a part of a 32-bit modular addition. We use the Pearson correlation coefficient
(PCC) throughout the experiments for this paper. The correct hypothesis results
in a correlation of 1.0, which is significantly higher than any other correlation,
which allows the recovery of the least significant byte of δ(15). Correlation values
when using physically measured traces will be smaller than 1.0 due to noise. The
detection of the correct sub-key will therefore be harder, and, in consequence,
may require more traces. Figure 4 also shows that correlation values are small
(<0.4) for most key candidates and only higher for 16 key candidates in this
experiment. Thus, even if the noise is too high to successfully require the correct
sub-key, it still allows a drastic reduction in the search space which can then be
enumerated to find the correct key.

Next, we wanted to evaluate the success probability of the entire attack,
which includes 9 DPA on 32-bit operation, i.e., 36 DPA when using the 8-bit
HW leakage model. The success rates of the single DPA are not independent
of each other due to two reasons: Firstly, when attacking addition, the higher
significant bytes can only be recovered reliably if the lower significant byte key
guesses are correct, since only then we can correctly calculate the carry bits.
Secondly, the attacked operations depend on each other, e.g., the DPA attack
on D(14) requires that the DPA on δ(15) was successful. Thus, the success rate
of the entire attack is certainly smaller than for each individual DPA.

Figure 5 shows the success rate of the full key recovery attack using different
numbers of traces, where one trace corresponds to an execution of the PRNG
with an uniformly random index between 0 and 264 − 1. When using only T = 8
traces per experiment, the recovery failed for 100% of our trials, whereas using
T = 10 already resulted in a success probability of almost 60%. This further
increased to 93.3% for T = 512. However, we noticed that the DPA on AND

180 M. J. Kannwischer et al.

Fig. 5. Success rate of the full DPA key recovery attack on the vulnerable PRNG in
the 8-bit HW leakage model

operations always failed to recover the key if the sub-key is equal to zero. This
is because for a zero key value the calculated value always has a HW of zero.
Since this is a constant value, no correlation can be found with DPA. However,
this can be detected by the adversary, and they can conjecture that the key
must be zero. We did not implement this optimisation in our proof-of-concept
implementation, thus, since the attacked values are uniformly distributed and
we have a total of 16 DPA on AND, the probability of having all key bytes �= 0
is

(
255
256

)16 ≈ 0.939. Therefore, we conjecture that the best achievable success
rate in this set-up is about 93.9%, no matter how many traces are used. The
actual numbers from these experiments can only provide a lower bound, since
our traces contain no noise. In real-world measurements, the required number of
traces is larger depending on noise.

Partial DPA. So far, we assumed that the implementation leaks the HW of each
byte separately, such that we can mount independent DPA upon them. How-
ever, since SHA-2 only involves 32-bit arithmetic, a byte-wise implementation is
unrealistic. Most implementations will use 32-bit words and, thus, only leak the
HW of the entire words.

Luckily, the strategy can be adapted and still be used to recover each byte
separately using partial DPA [2], although requiring a much higher number of
traces. We integrated this in our proof-of-concept implementation and were able
to reproduce the results of [2].

3.7 Impact

Our proof-of-concept implementation shows that if the SHA-2-based PRNG
(SHA-256 (0x000..03 || seed || i)) is called for indices i which vary in 64 bits,
an adversary is able to recover an intermediate value which allows one to cal-
culate the output of the PRNG for arbitrary indices. Applied to XMSS and
XMSSMT , this allows an adversary to recover all W-OTS+ secret keys which
trivially compromises the security of the scheme.

However, in both schemes, the PRNG is never called for indices larger than
220, which prevents the presented attack. If a different PRNG is used, it may
be vulnerable to our attack with current XMSS parameters. For example, if the

Differential Power Analysis of XMSS and SPHINCS 181

PRNG is modified to SHA-256 (0x000..03 || seed || SHA-256(i)), the inner hash
evaluation results in uniformly random inputs to the outer hash evaluation which
makes our attack practical. This emphasises that if a different PRNG is used,
not only the black-box security needs to be considered, but also its side-channel
resistance.

3.8 Recommendations

Since XMSS is currently being standardised, practical implementations which
need to be protected against power analysis attacks are likely to be created
soon. Our results suggest that the most critical part to protect is the PRNG.
While the proposed XMSS standard leaves open the actual choice of the PRNG,
we showed that the PRNG selection is critical for side-channel resistance. It is
crucial to use a PRNG which is well-studied with respect to side-channel attacks,
like the one recommended by the XMSS Internet-Draft.

We also found that optimised authentication path computation (e.g., using
the BDS algorithm [5]) greatly decreases the side-channel leakage of XMSS
because it minimises the accesses to the secret keys and, consequently, execu-
tions of the PRNG. Although this optimisation is deemed optional by the XMSS
Internet-Draft, every implementation should use it.

Timing attacks were not discussed in this paper, but protecting implementa-
tions against them is also necessary. Since constant time implementations exist
for all used hash functions, PRNGs, and PRFs, protecting XMSS and SPHINCS
against such attacks is straightforward.

4 SPHINCS-256: A DPA on BLAKE

In the previous section, we analysed the side-channel resistance of XMSS and
XMSSMT and presented a DPA attack on a SHA-256-based PRNG which is
used within both XMSS and XMSSMT . To extend the analysis, we evaluate
SPHINCS-256 in the same regard.

SPHINCS relies on XMSSMT , HORST, and a stateless way of addressing hash-
based instances within the scheme. Since the HORST hash tree construction does
not leak anything about its secret key, we can assume this component to be side-
channel resistant. Moreover, XMSSMT can also be assumed secure by the previous
analysis. This leaves us only with the stateless way of computing the PRNG seeds,
which we now analyse. This analysis was initially studied in [12].
SPHINCS-256 PRF. In SPHINCS-256, the W-OTS+ and HORST secret seeds
are generated with BLAKE-256(sk1 || A) where sk1 ∈ {0, 1}256 is the SPHINCS
secret key, A ∈ {0, 1}64 the address of the instance, and BLAKE-256 the hash
function [1]. Recovering sk1 would therefore result in a total security break. We
now present a 6-DPA attack on the BLAKE hash function in the context of
SPHINCS-256 that recovers one 32-bit chunk of the secret key sk1.

182 M. J. Kannwischer et al.

4.1 DPA

The BLAKE-256 compression procedure takes 12 similar rounds during which
the input is mixed. Similarly as in Sect. 3, the goal is to subsequently recover
intermediate values at certain points in the procedure, to eventually recover
one secret chunk. As these values are mixed with variable values early in the
procedure, the DPAs focus on the first two rounds. Within SPHINCS-256, the
first round is summarised in Algorithm2. Here, the values vi for 0 ≤ i < 15 are
initialised with known constant values. A general mixing subroutine Mix involved
in these steps is shown in Algorithm 3. Here, Mi ∈ {0, 1}32 for 0 ≤ i < 15 is a
chunk of the input padded with a constant and known padding. The function
σz(i) is a permutation that depends on the round 0 ≤ z < 12. Again, the values
of Ci for 0 ≤ i < 15 are given constants.

Algorithm 2. Round z = 0 of BLAKE-256 compression algorithm [1].
Input: (s0, . . . , s7)—secret key sk1 split into 8 chunks of 32 bits each
Input: (a0, a1)—address A split into two chunks of 32 bits each

1: Mix(v0, v4, v8, v12; s0, s1)
2: Mix(v1, v5, v9, v13; s2, s3)
3: Mix(v2, v6, v10, v14; s4, s5)
4: Mix(v3, v7, v11, v15; s6, s7)

5: Mix(v0, v5, v10, v15; a0, a1)
6: Mix(v1, v6, v11, v12; 0x80000000, 0x00000000)
7: Mix(v2, v7, v8, v13; 0x00000000, 0x00000001)
8: Mix(v3, v4, v9, v14; 0x00000000, 0x00000140)

Algorithm 3. Mix procedure involved in Algorithm 2.
Input: (va, vb, vc, vd)—intermediate values of 32 bits each
Input: (Mσz(e), Mσz(e+1))—hash function input chunks of 32 bits each

1: va ← (va+vb)+(Mσz(e)⊕Cσz(e+1))
2: vd ← (vd ⊕ va) ≪ 16
3: vc ← vc + vd

4: vb ← (vb ⊕ vc) ≪ 12

5: va ← (va + vb) + (Mσz(e+1) ⊕ Cσz(e))
6: vd ← (vd ⊕ va) ≪ 8
7: vc ← vc + vd

8: vb ← (vb ⊕ vc) ≪ 7

In Algorithm 2, line 5 involves v0, v5, v10, and v15, which all respectively depend
on two constant chunks of sk1, and the address. When the Mix procedure is
unrolled, the operation v0 ← (v0+v5)+(a0⊕C9) at line 1 involves (v0+v5), and
(a0⊕C9): the first half of the address A masked with a constant. By targeting this
addition, we can recover (v0+v5) with a first DPA. Once recovered, the following
values for v5, v10, and v15 can be consecutively recovered with additional DPAs.
Since the rest of the Mix procedure does not involve any other unknown value,
and since these values are not mixed again during round 0, they are, therefore,
all known at the beginning of round 1.

On round 1 of the BLAKE-256 compression algorithm, Mix(v1, v5, v9, v13;
s4, s5) is called. Line 1 in Algorithm 3 for this call involves v5 which has been
recovered from before, and v1 which can be recovered with a fifth DPA. Finally,
a sixth DPA on (v1 + v5)+ (s4 ⊕C5) can recover s4, which consists of one chunk
of 32 bits of the secret key sk1.

Differential Power Analysis of XMSS and SPHINCS 183

Setup and Implementation. The SCA was performed on an Arduino Due micro-
controller, based on the Atmel SAM3X8E Cortex-M3 CPU. Power consumption
was collected by placing a local near-field probe on the chip at the position
shown in Fig. 6. The attack considers the BLAKE-256 reference implementa-
tion [1] with an additional assumption: the addition of (va + vb) at lines 1 and 4
in Algorithm 3 is performed before the rest. This makes the recovery of va or vb

alone harder, but should not affect our results. We provide the code that was
used for evaluating the attack at [17].

Fig. 6. Position of an EM probe on a SAM3X8E Cortex-M3 microcontroller at which
strong EM radiations could be collected

4.2 Real-Device Analysis and Results

To confirm the practicality of the attack, we performed the first two DPAs of our
attack on real traces. We collected t = 10000 different traces of the two targeted
operations, where the secret key sk1 was fixed and the addresses A were drawn
uniformly at random. This number can be obtained by signing around 2000
different messages, as BLAKE-256 is called on 7 different layers with a different
a0 for a single signature. We use the HW leakage model.

We evaluated the relation between the power traces and the guesses on, first,
(v0 + v5), and, then, on v15, using Pearson’s correlation with a partial DPA on

184 M. J. Kannwischer et al.

16 bits, as explained in Sect. 3. The leakages of both the addition and the XOR
operation are shown in Fig. 7. The upper plots show the main correlation peaks
of 1000 guesses on the most significant bits of the targeted value, while the lower
plots show the power consumption average.

Fig. 7. Power traces average and main PCC peaks on the first half of the targeted
values for the addition and XOR operations (t = 10000)

By computing the maximum PCC of the 216 possible values for the most
significant bits of v0 + v5 (in the case of the addition) and v15 (in the case of the
XOR operation) we obtain Fig. 8. In both cases, the candidate with the bigger
correlation factor in absolute value always happens to be the right value. Similar
results were found with the least significant bits, which confirms that the overall
attack can be successfully mounted, as the other DPAs target the same kind of
operations.

4.3 Impact

The described attack recovers s4, the fifth 32-bit chunk of sk1. This makes
the stateless construction of SPHINCS-256 vulnerable to DPA. Recovering this
chunk potentially leads to the recovery of other chunks, but additional investi-
gation is required.

4.4 Countermeasures

In order to mitigate the effect of this attack, we suggest hiding the order of the
Mix procedures. During a BLAKE-256 round, the first four calls—as well as the

Differential Power Analysis of XMSS and SPHINCS 185

Fig. 8. Maximum PCC of all possible hypotheses on the first half of the targeted values.
On the upper plot (addition), the most positively correlated value corresponds to the
correct half of (v0 + v5), while the lower plot (XOR), the most negatively correlated
value corresponds to the correct half of v15

next four—do not depend on each other. Their order can thus be rearranged
randomly. This forces an attacker to synchronise the collected traces, making
the DPAs more complex.

5 Conclusion

In this paper, we analysed the side-channel resistance of two modern HBS
schemes, XMSS and SPHINCS, with a focus on DPA resistance. We presented a
novel DPA vulnerability of a SHA-2-based PRNG for XMSS, as well as an attack
on the BLAKE-256-based PRF used within SPHINCS-256. While the first attack
is not threatening current versions of XMSS, the second one is practical for the
actual parameters of SPHINCS-256.

Besides these two found vulnerabilities, we performed a thorough analysis of
the building blocks of both XMSS and SPHINCS. Our results confirm the con-
jecture that XMSS provides strong protection against differential power analysis
attacks. This further increases the confidence in the security of stateful HBS
schemes, which contributes to a rigorous standardisation process.

186 M. J. Kannwischer et al.

Acknowledgments. We would like to thank Hervé Pelletier and Roman Korkikian
from Kudelski Group for their help and expertise in the practical verification of the DPA
on BLAKE-256. This work has been co-funded by the German Research Foundation
(DFG) as part of project BU 630/28-1, and as part of projects P1 and S6 within the
CRC 1119 CROSSING.

References

1. Aumasson, J.-P., Meier, W., Phan, R.C.-W., Henzen, L.: The Hash Function
BLAKE. Information Security and Cryptography. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44757-4

2. Beläıd, S., Bettale, L., Dottax, E., Genelle, L., Rondepierre, F.: Differential power
analysis of HMAC SHA-2 in the Hamming weight model. In: SECRYPT 2013, pp.
230–241. SciTePress (2013)

3. Bernstein, D.J., et al.: SPHINCS: practical stateless hash-based signatures. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 368–
397. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 15

4. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure sig-
nature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25405-5 8

5. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3 5

6. Buchmann, J., Garćıa, L.C.C., Dahmen, E., Döring, M., Klintsevich, E.: CMSS – an
improved Merkle signature scheme. In: Barua, R., Lange, T. (eds.) INDOCRYPT
2006. LNCS, vol. 4329, pp. 349–363. Springer, Heidelberg (2006). https://doi.org/
10.1007/11941378 25

7. Buchmann, J.A., Lauter, K.E., Mosca, M.: Postquantum cryptography – state of
the art. IEEE Secur. Priv. 15(4), 12–13 (2017)

8. Butin, D.: Hash-based signatures: state of play. IEEE Secur. Priv. 15(4), 37–43
(2017)

9. Castelnovi, L., Martinelli, A., Prest, T.: Grafting trees: a fault attack against
the SPHINCS framework. Cryptology ePrint Archive, Report 2018/102 (2018).
https://eprint.iacr.org/2018/102

10. Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart,
N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer,
Heidelberg (2005). https://doi.org/10.1007/11586821 8

11. Eisenbarth, T., von Maurich, I., Ye, X.: Faster hash-based signatures with bounded
leakage. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol.
8282, pp. 223–243. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43414-7 12

12. Genêt, A.: Hardware attacks against hash-based cryptographic algorithms. Tech-
nical report, École polytechnique fédérale de Lausanne (2017). Master thesis

13. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38553-7 10

https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-46800-5_15
https://doi.org/10.1007/978-3-642-25405-5_8
https://doi.org/10.1007/978-3-540-88403-3_5
https://doi.org/10.1007/11941378_25
https://doi.org/10.1007/11941378_25
https://eprint.iacr.org/2018/102
https://doi.org/10.1007/11586821_8
https://doi.org/10.1007/978-3-662-43414-7_12
https://doi.org/10.1007/978-3-662-43414-7_12
https://doi.org/10.1007/978-3-642-38553-7_10
https://doi.org/10.1007/978-3-642-38553-7_10

Differential Power Analysis of XMSS and SPHINCS 187

14. Hülsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: Internet-draft:
XMSS: extended hash-based signatures (2018). https://datatracker.ietf.org/doc/
draft-irtf-cfrg-xmss-hash-based-signatures/

15. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In:
Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013.
LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40588-4 14

16. Kannwischer, M.J.: Physical attack vulnerability of hash-based signature
schemes. Technical report, Technische Universität Darmstadt (2017), Mas-
ter thesis. https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user upload/
Group CDC/Documents/theses/Matthias Kannwischer.master.pdf

17. Kannwischer, M.J., Genêt, A., Butin, D., Krämer, J., Buchmann, J.: GitHub repos-
itories for DPA code of SHA-256 PRNG and BLAKE-256 PRF. https://github.
com/hbs-sca

18. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message authen-
tication. RFC 2104 (1997). http://www.ietf.org/rfc/rfc2104.txt

19. Lamport, L.: Constructing digital signatures from a one way function. Tech-
nical report, SRI International CSL (1979). https://www.microsoft.com/en-us/
research/publication/constructing-digital-signatures-one-way-function/

20. Lee, M., Song, J.E., Choi, D., Han, D.: Countermeasures against power analysis
attacks for the NTRU public key cryptosystem. IEICE Trans. 93–A(1), 153–163
(2010)

21. Maurand, R., Jehl, X., Kotekar-Patil, D., Corna, A., Bohuslavskyi, H., Laviéville,
R., Hutin, L., Barraud, S., Vinet, M., Sanquer, M., De Franceschi, S.: A CMOS
silicon spin qubit. Nat. Commun. 7, 13575 (2016)

22. von Maurich, I., Güneysu, T.: Towards side-channel resistant implementations
of QC-MDPC McEliece encryption on constrained devices. In: Mosca, M. (ed.)
PQCrypto 2014. LNCS, vol. 8772, pp. 266–282. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-11659-4 16

23. McEvoy, R., Tunstall, M., Murphy, C.C., Marnane, W.P.: Differential power anal-
ysis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M.,
Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77535-5 23

24. McGrew, D., Kampanakis, P., Fluhrer, S., Gazdag, S.-L., Butin, D., Buchmann, J.:
State management for hash-based signatures. In: Chen, L., McGrew, D., Mitchell,
C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 244–260. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-49100-4 11

25. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

26. National Institute of Standards and Technology: FIPS PUB 180-4: Secure hash
standard (2015). http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

27. NIST computer security division: Post-quantum cryptography standardization
– call for proposals announcement (2017). https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/Post-Quantum-Cryptography-Standardization

28. PQCRYPTO Project: Initial recommendations of long-term secure post-quantum
systems (2015). https://pqcrypto.eu.org/docs/initial-recommendations.pdf

29. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-based-signatures/
https://doi.org/10.1007/978-3-642-40588-4_14
https://doi.org/10.1007/978-3-642-40588-4_14
https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/Documents/theses/Matthias_Kannwischer.master.pdf
https://www.cdc.informatik.tu-darmstadt.de/fileadmin/user_upload/Group_CDC/Documents/theses/Matthias_Kannwischer.master.pdf
https://github.com/hbs-sca
https://github.com/hbs-sca
http://www.ietf.org/rfc/rfc2104.txt
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://doi.org/10.1007/978-3-319-11659-4_16
https://doi.org/10.1007/978-3-319-11659-4_16
https://doi.org/10.1007/978-3-540-77535-5_23
https://doi.org/10.1007/978-3-319-49100-4_11
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://pqcrypto.eu.org/docs/initial-recommendations.pdf

188 M. J. Kannwischer et al.

30. Silverman, J.H., Whyte, W.: Timing attacks on NTRUEncrypt via variation in the
number of hash calls. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 208–
224. Springer, Heidelberg (2006). https://doi.org/10.1007/11967668 14

31. Standaert, F., Pereira, O., Yu, Y., Quisquater, J., Yung, M., Oswald, E.: Leakage
resilient cryptography in practice. In: Sadeghi, A.R., Naccache, D. (eds.) Towards
Hardware-Intrinsic Security-Foundations and Practice. Information Security and
Cryptography, pp. 99–134. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14452-3 5

32. Taha, M., Schaumont, P.: Differential power analysis of MAC-Keccak at any key-
length. In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp.
68–82. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41383-4 5

33. Zohner, M., Kasper, M., Stöttinger, M., Huss, S.A.: Side channel analysis of the
SHA-3 finalists. In: DATE 2012, pp. 1012–1017. IEEE (2012)

https://doi.org/10.1007/11967668_14
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-14452-3_5
https://doi.org/10.1007/978-3-642-41383-4_5

Path Leaks of HTTPS Side-Channel
by Cookie Injection

Fuqing Chen1, Haixin Duan1(B), Xiaofeng Zheng1,
Jian Jiang2, and Jianjun Chen1

1 Tsinghua University, Beijing, China
{cfq15,duanhx,zhengxf12,chenjj13}@tsinghua.edu.cn

2 University of California, Berkeley, CA, USA
jiangjian@berkeley.edu

Abstract. The TLS protocol is supposed to provide confidentiality to
communication channel, preventing active and passive network attacks.
However, researchers have presented several side-channel attacks against
TLS protected communications, due to protocol design flaws or imple-
mentation problems. We present a new side-channel attack against
HTTPS (HTTP over TLS) by exploiting cookie injection. Taking advan-
tage of cookie’s weak Same Origin Policy (SOP), an attacker can inject
arbitrary cookies into a victim’s browser if a website is not fully pro-
tected by HTTP Strict Transport Security (HSTS), the injected cookies
can then be used to infer sensitive information of encrypted traffic ini-
tiated by the victim. We show two such side-channel attacks. The first
allows the attacker to identify whether the victim is visiting a known sen-
sitive URL or not. The second is able to reveal the full path of unknown
URLs visited by the victim, exploiting cookie-path matching vulnerabil-
ities in Internet Explorer, Edge, Safari, etc. With experiments, we inves-
tigate several popular cloud storage services and demonstrate that most
of them (including Google Drive and Dropbox) are vulnerable to such
attacks. The issues we discovered in Internet Explorer, Edge and Safari
are also acknowledged by Microsoft (MSRC Case 39133, will be fixed in
future version) and Apple (Case 666783646, has been fixed). Finally, we
discuss potential defense and mitigation against these attacks.

Keywords: Privacy · Side-channel attack · HTTPS
Cloud storage service · Path leaks · Cookie

1 Introduction

Cloud storage services, such as Dropbox or Amazon Cloud Drive, are widely used
because of their convenience to share images or some sensitive content among
friends. Anyone who knows the shared links can get the access to the private
content. In order to protect the owner’s privacy, cloud service providers often
use a hashed-string like path to prevent attackers from enumerating the links.
Additionally, most of shared services are protected by HTTPS, which is assumed
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 189–203, 2018.
https://doi.org/10.1007/978-3-319-89641-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_11&domain=pdf

190 F. Chen et al.

to prevent the traffic from passive monitoring and Man-In-The-Middle (MITM)
attacks against leakage of the content.

However, HTTPS suffers from a variety of side-channel attacks. Attackers can
leverage information leaked by HTTPS traffic, including timing and length of
ciphertext, to recover some secret data believed to be protected by TLS. The first
family of attacks, such as CRIME [13] and BREACH [14], exploit information
leakage in TLS compression to uncover HTTPS secrets (e.g. session cookies and
CSRF tokens). The second family of attacks use traffic analysis with statistical
algorithm to recover user’s browsing privacy [9,10].

In this study, we propose a new HTTPS side-channel attack which can allow
MITM attackers to infer the request path of encrypted traffic by injecting care-
fully crafted cookies. The fundamental problem is that the notion of “origin”
regarding cookies [1] is different from the standard web “origin” [3] - cookies
are not separated between different schemes like HTTP and HTTPS. Therefore,
an MITM attacker can inject cookies from HTTP sessions into HTTPS sessions
and infer the request path of encrypted traffic, by monitoring the size of HTTPS
requests. In practice, this new attack can be realized in such two forms:

1. Known Path Identification. Before a victim’s browser visits a known
HTTPS URL, an MITM attacker intentionally injects a large probe cookie
whose path matches the requested path through HTTP sessions. When the
victim visits the HTTPS URL, the probe cookie would also be included in
an HTTPS request and the size of this HTTPS request is obviously different
from other traffic. On the basis of this trick, the attacker can easily find the
correlations between the TLS record and request-URL, which leads to user
privacy leakage, or even some other attacks (e.g. HTTPS Bicycle [8]).

2. Unknown Path Inference. Moreover, we identify some popular browsers
(including IE, Edge, Safari) vulnerabilities in cookie path-matching. Com-
bined with these vulnerabilities, the attacker can even infer the unknown
request path from HTTPS traffic. We analyze several famous cloud storage
services and demonstrate that most of them (including Google Drive and
Dropbox) are vulnerable to such attacks. The attacker can recover the pri-
vate or selectively shared files stored in cloud storage previously believed to be
protected by HTTPS. We reported these browser vulnerabilities to Microsoft
and Apple, they confirmed our report and planned to fix them in a future
version.

Our study shows that despite encryption, HTTPS side-channel attack with
cookie injection poses a serious threat to user’s security and privacy (e.g., the
share link, thumbnail link, shopping history).

2 Background

2.1 Cookies

Cookies are associated meta-data sent from web server and stored in client
browser for state management [1]. Web servers usually determine the users’ iden-

Path Leaks of HTTPS Side-Channel 191

tification and session status based on cookies they set before. Beside the manda-
tory name and value attributes, a cookie has six optional attributes: Expires
and Max-Age indicating the maximum lifetime of the cookie; Domain and Path
specifying its scope; Secure flag limiting it only transmitted over HTTPS con-
nections, and HttpOnly preventing client side scripts from reading the cookie.

To store the state, the origin server sets a cookie by including a Set-Cookie
header in an HTTP response. In subsequent request headers, the user agent
includes all unexpired cookies whose domains and paths match the requested
URL, excluding those marked as Secure from the inclusion in an HTTP request.

The SOP is an important concept in the web application security model,
guarding the web content being accessed from different origins. An origin is
defined as a combination of scheme, hostname and port number [3]. However,
the security policy for cookies is not as stringent as the classic SOP. Cookies from
different schemes (e.g., HTTP and HTTPS) are not isolated, that is, cookies from
the same domain but different schemes will be stored in the same cookie jar.

2.2 Cookie Path

The Path attribute limits the scope of each cookie to a set of paths [1]. If the
server omits the Path attribute, the user agent will use the “directory” of the
request-URI’s path component as the default value. The user agent will include
the cookie in a HTTP request only if the cookie’s Path attribute matches the
path portion of the request-URI, where the “/” character is used as a directory
separator.

Although seemingly useful for isolating cookies between different paths within
a given host, the path attribute cannot be relied on for security. There is a critical
disconnection between cookies set and read. Both JavaScript in browser and web
servers can set the value for the Name/Domain/Path attributes, but only name-
value pairs are presented to servers. Moreover, the writer can specify arbitrary
value for the Path attribute, not limited by the URL of the writer’s context.

2.3 Path-Match

When a browser requests a URL, it will look up its cookies storage for all
matching cookies. According to RFC 6265, only cookies whose Domain and
Path attributes matched with the request-URL will be included in the request
Header.

Because “/” is interpreted as a directory separator, the cookie-path is a
“block prefix” of request-path. That is, the path string and the URL should be
in divided into blocks separated by “/” and be matched block by block, instead
of character by character. For example, when a browser tries to access https://
www.example.com/share/token/image.jpg and it has two cookies in storage:

cookie: a=1; domain=.example.com; path=/share;
cookie: b=2; domain=.example.com; path=/share/t;

https://www.example.com/share/token/image.jpg
https://www.example.com/share/token/image.jpg

192 F. Chen et al.

Only the first cookie is supposed to be included, because the path of the
requested URL is not the subdirectory of cookie b. So, the request header should
look like:

GET / HTTP/1.1
Cookie: a=1

2.4 Cookie Injection Attack

It is a known vulnerability that cookies can be injected by HTTP response into
subsequent HTTPS request, and from one domain to another related domain.
The root cause is that: the integrity of cookies can’t be protected well by loosely-
defined SOP of cookies. The MITM attackers even temporarily on an HTTP
session can inject the crafted cookies from HTTP into HTTPS and then overwrite
or shadow legitimate cookies, according to [5]. In 2015, Zheng et al. [7] conducted
in-depth and real-world empirical assessment of cookie injection attacks in cookie
practices. Their study showed that most websites are potentially susceptible to
cookie injection attacks by network attackers.

2.5 TLS Leaks Length

The TLS protocol was designed to provide privacy and data integrity between
two communicating applications. However, its specification [2] has an explicit
warning about traffic analysis, because the type and length of a record are not
protected by encryption. Indeed the basic building block of TLS, the TLS Cipher-
text record, transmits the Content type, Version and Length of the record in
clear. The MITM observer could easily reconstruct the length. Many attacks
against TLS exploit the issue of TLS leaking length [10,13,14]. This length leak
is the major ingredient in establishing compression side-channel attacks. In our
study, we use the information of length leaked by TLS for traffic analysis.

3 Attacks

According to the cookie specification [1], cookies lack integrity and are not sep-
arated between different schemes like HTTP and HTTPS. The active MITM
attacker at unsafe networks like open wireless networks, who is able to manipu-
late network traffic, can inject arbitrary cookies from HTTP session into victim’s
browsers, and these cookies will be attached to subsequent HTTPS requests when
the domains and paths of cookies match the request-URL.

Leveraging this feature of cookie, an MITM attacker can inject large crafted
cookies from HTTP sessions and monitor the size of HTTPS requests. If the
cookie path matches the path of an HTTPS request-URL, the size of HTTPS
request will increase obviously, that enables the side-channel attacker to infer
sensitive information of request-URL from encrypted traffic.

Path Leaks of HTTPS Side-Channel 193

We identify two forms of HTTPS side-channel attack. (a) Known path
identification, which allows an attacker to identify whether a victim is visiting
a known HTTPS URL. (b) Unknown path inference, which allows an attacker
to infer an unknown URL included in HTTPS request. We investigate 5 popular
browsers, as shown in Table 1. The first attack works in all browsers, and the
second one works in 3 out of 5 browsers.

Table 1. Assessment of browsers vulnerabilities

Browsers Vulnerable to known path
identification attack?

Vulnerable to unknown path
inference attack?

Chrome Yes No

Firefox Yes No

Safari Yes Yesa

IE Yes Yes

Edge Yes Yes
aSafari before version 10 is vulnerable to unknown path inference attack.

3.1 Known Path Identification

Among some existing attack methods, determining the correlations between the
TLS record and request-URL is a prerequisite for the attack. Guido shows how
an attacker can identify the length of personal data, such as password and GPS
coordinates, after gaining the correlation between login requests and TLS records
by fingerprinting method [8]. Previous studies focused on complex statistical app-
roach for web request identification within HTTPS traffic [9,10]. With the attack
we propose, the correlations can be determined more effectively and accurately.

At first an attacker injects a large size of probe cookie, whose path is care-
fully constructed, into the victim through HTTP. When the victim requests an
HTTPS URL whose path matches the probe cookie Path, this cookie would be
included in the HTTPS request and makes the length of the TLS record corre-
sponding to this request distinctly different from others. Thus, an attacker can
correlate this TLS record with the request-URL.

For example, for request-URL: https://www.example.com/share/token, nor-
mal request header (without probe cookie) is as follows:

GET /share/token HTTP/1.1
Host: www.example.com
User−Agent: Mozilla/5.0 ...
Accept−Encoding: gzip, deflate
Cookie: Session=12345; ID=67890

The attacker injects the probe cookie via HTTP protocol (Fig. 1):

Set−Cookie: probe−cookie=aaa..a−large−cookie..aaa; domain=.example.
com; path=/share/token

https://www.example.com/share/token

194 F. Chen et al.

Fig. 1. Injecting a large cookie into HTTPS session.

The maximum size of one probe cookie can be set to about 4000 bytes. In
practice, the attacker can inject multiple probe cookies for more noticeable traffic
differences. In Sect. 3.3, we investigate the cookie size limitation on client and
server side. When the victim requests the URL again, this cookie will be included
in the request header and submitted to the server. The request header will be
as follows:

GET /share/token HTTP/1.1
Host: www.example.com
User−Agent: Mozilla/5.0 ...
Accept−Encoding: gzip, deflate
Cookie: Session=12345; ID=67890; probe−cookie=aaa..a−large−cookie..aaa;

Thus, the attacker can correlate this large TLS record with the access to https://
www.example.com/share/token.

3.2 Unknown Path Inference

3.2.1 Cookie Path-Match Based on String Prefix
We have mentioned in Sect. 2.3 that cookies should be matched based on “block
prefix”, separated by “/”. However, after in-depth tests we find that some
browsers (IE, Edge, Safari) do not strictly follow the “block prefix” rule. Instead,
these browsers match cookies with URL following “string prefix” rule. For exam-
ple:

URL: https://www.example.com/share/token unknown/image.jpg;
cookie: id = 123; domain=.example.com; path=/share/t;

Since /share/t is not a block prefix of the request-URL /share/to-
ken unknown/, the cookie, id = 123, should not be included in the request header,
according to RFC 6265 [1]. However, the above browsers incorrectly include the
cookie in the request header, which enables the following side-channel attacks.

https://www.example.com/share/token
https://www.example.com/share/token

Path Leaks of HTTPS Side-Channel 195

3.2.2 Inferring Path
Web servers protect user’s privacy through TLS, and some sensitive information
(e.g., private images link, files link, shopping history) are always included in
an HTTPS page. The vulnerability of string prefix can be exploited to infer
these sensitive paths. For example, an HTTPS page (https://www.example.
com) includes a sensitive image, whose path is https://www.example-img.com/
upload/img-unknown.jpg. The string “unknown” in the path always is a hashed
string, which is unknown to others, but the string “/upload/img-” is exposed
and known to the attacker. When the vulnerable browser accesses the fixed
URL https://www.example.com, it also requests the sensitive image. Then the
local cookie whose domain is “example-img.com” and path is a string prefix of
“/upload/img-unknown.jpg” would be sent. So an attacker can take advantage
of the size difference between TLS records caused by probe cookies to guess the
string “unknown” byte by byte, and finally get the complete path.

Algorithm 1 shows the concrete steps. Firstly, the attacker hijacks an HTTP
page and injects a hidden iframe pointing to the fixed URL https://www.
example.com. Then the attacker can force the victim’s browser to send repeated
HTTPS requests by refreshing the iframe. So the attacker can get the max-
imum size of TLS record data of requests per round, and properly set the
base cookie length which denotes the length of cookie being injected in the
algorithm 1. The candidate char comes from an array guessArray[] consisting
of printable characters.

An MITM attacker can inject multiple cookies each time, so it is straightfor-
ward to conduct a binary search on the expected request path, which can improve
attack efficiency. For example, assuming that the prefix of path is “/upload/img-
”, and the guessed characters set is composed of a-z, the attacker can inject
a batch of cookies: /upload/img-a, /upload/img-b, ... /upload/img-m. If the
packetLength >= 2 * base cookie length, the attacker can judge that the right
character is in a-m. This method can greatly improve efficiency.

In order to force victim’s browser to send repeated HTTPS requests, an
attacker may use two methods:

– Hidden iframe. The attacker hijacks a normal HTTP page and injects a
malicious JavaScript code with a hidden iframe pointing to the HTTPS page,
which includes the sensitive path. When the iframe is refreshed by the mali-
cious code, the victim’s browser would send repeated HTTPS requests. Since
the iframe is hidden, the victim will not be aware of the page anomaly.

– Window.open(). After the attacker injects a malicious code into the normal
HTTP page, the target HTTPS page can be opened in a new browser tab by
window.open() method. Obviously, the HTTPS page is the child window of
the normal HTTP page. So the malicious code injected in the HTTP page
can reload the HTTPS page to force the browser to send repeated HTTPS
requests. If the normal HTTP page has opened a page in new tab already,
the attacker also can reuse that page to send repeated HTTPS requests. This
method reduces the concealment of the attack, making it possible for the
victim to perceive.

https://www.example.com
https://www.example.com
https://www.example-img.com/upload/img-unknown.jpg
https://www.example-img.com/upload/img-unknown.jpg
https://www.example.com
https://www.example.com
https://www.example.com

196 F. Chen et al.

Algorithm 1. Unknown path inference.
Input: baseURL=https://www.example-img.com,

targetDomain=“.example-img.com”,
secretPrefix=“/upload/img-”,endString=“.jpg”, base cookie length;

Output: guessedPath;
1: secretString=“”, cookieData=“”;
2: guessArray[]=[a...z, A...Z, 0...9, %, ., !, , -];
3: for i = 0 to base cookie length do
4: cookieData += ′a′;
5: end for
6: Set Cookie A : value = cookieData, path = secretPrefix, domain =

targetDomain;
7: Inject Cookie A to the victim browser;
8: repeat
9: index = 0 ;

10: for index < length(guessArray[]) do
11: guessChar = guessArray[index + +];
12: guessPath = secretPrefix + secretString + guessChar;
13: Set Cookie B : value = cookieData, path = guessPath, domain =

targetDomain;
14: Inject Cookie B and refresh the iframe to send repeated HTTPS requests;
15: repeat
16: Wait for the HTTPS requests data;
17: packetLength = length(TLS record of requests);
18: until packetLength >= base cookie length
19: Delete Cookie B in the victim browser;
20: if packetLength >= 2 ∗ base cookie length then
21: Guess one char successfully, secretString += guessChar;
22: break;
23: end if
24: end for
25: until End(secretString) == endString
26: guessedPath = baseURL + secretPrefix + secretString;
27: return guessedPath;

We have verified the feasibility of such attack in practice. In the experiment,
when we use the hidden iframe and refresh it every 1 s, it usually takes about
10 s to guess one character. In most cases, for the common unknown path whose
length is usually not more than 120, it generally takes us ten minutes to infer
the unknown path successfully. Because the iframe being hidden, the constant
refreshing does not affect the user’s browsing of the web page. But the HTTP
page which injected hidden iframe should remain open during the attack. After
numerous experiments, we found that the length of probe cookie does not affect
the time spent in the attack, as long as it is large enough to make a clear
distinction between TLS records. We usually set the probe cookie length to
about 2000 which works well.

Path Leaks of HTTPS Side-Channel 197

3.2.3 Cloud Storage Leakage
The most harmful scenario applying the above attacks is to infer the private
image files in cloud storage. After files (e.g. photos) are manually or automat-
ically uploaded to the cloud, servers will generate a unique id (like a hashed
string) for each file. While the file is accessed, unique id must be used as part
of the request parameter or request path. Obviously, this hashed string is the
victim of above attacks.

We have investigated 11 popular cloud storage services which have deployed
HTTPS. As a result, 8 of them are vulnerable (see Table 2), in which thumbnail
(a reduced-size version of original image) link or share link of file may be leaked.

Table 2. Assessment of cloud storage leakage

Cloud storage Vulnareble ?

Google drive Y

Google photos Y

iCloud N

Dropbox Y

OneDrive N

Flickr Y

Amazon cloud drive Y

Weiyun (Tencent) Y

Taopan (Alibaba) Y

BaiduPan N

Jianguoyun (Nutstore)a Y
aNutstore is a Dropbox like cloud storage ser-
vice, developed by a Shanghai based company
in China.

Leaking Thumbnail Link
Almost all of the cloud storage services load the thumbnail image file to the main
page. Baidu Cloud and iCloud require additional authentication parameters for
legitimate access to files. Therefore, they are not affected by thumbnail link
leakage. Except Dropbox and OneDrive, all other cloud storage services can leak
thumbnail. Google Drive, Google Photos, Flickr, Amazon Cloud Drive (Fig. 2),
Weiyun, Taopan and Jianguo do not verify the session when private images are
accessed. That means, the attacker can get the private images directly as soon
as the link leaked.

In contrast, both Dropbox and OneDrive deploy HSTS, which intruct
browsers to access their service through HTTPS only [4]. They both check user
session strictly; thus even if the thumbnail link of private file leaks, the attacker
cannot get the private files.

198 F. Chen et al.

Fig. 2. Thumbnail link leakage on Amazon Cloud Drive with no session validation.

Leaking Share Link
Cloud storage services usually offers file sharing service through URL link. Any-
one can access the shared file through a shared link, without logging in cloud
storage services.

Fig. 3. Share link leakage on Dropbox.

That means cloud storage services offering file sharing service will not check
user session. According to our investigation, Google Drive, Google Photos, Drop-
box, Flickr and OneDrive can load shared file link into fixed page. Since Google
Drive, Google Photos, Dropbox (Fig. 3) and Flickr adopt the Hashed-Path, they
are likely vulnerable to information leak attack. OneDrive shares files with the
authentication based on parameters, which can mitigate the threat.

3.2.4 Browsing Privacy Leakage
Making use of the leaked URL of resource file included in the web page, the
attacker can also steal a user’s browsing privacy. Different from private URL
path leakage in Cloud Storage, browsing privacy leakage is associated with the
public URL, so there is no problem of session checking. Following are two attack
scenarios.

Path Leaks of HTTPS Side-Channel 199

Shopping History
After online shopping, users can see the information of historical order on their
account page. The product thumbnails of the historical order may become the
side-channel attacker’s targets, based on which the attacker can know what goods
the victim has bought (Fig. 4).

Fig. 4. The shopping history of amazon user.

Youtube Subscriptions
The subscriptions, watch history and other information of Youtube users are
loaded on the web page in the form of thumbnails (Fig. 5). The side-channel
attacker can also harvest private information by unknown path inference attack.

3.3 Limitation of Cookie Size

A. Browser Side
In fact, the total cookie size sent to the server is limited. We investigated respec-
tively the browser-side and server-side cookie size limit policy. In major browsers,
while single cookie size limitation is not more than 4096 bytes, the cookie count
can be at least more than 50 per domain (Table 3). Theoretically, we can send a
maximum of about 200 K (50 * 4096) bytes of cookie. As shown in the Table 3,

200 F. Chen et al.

Fig. 5. The thumbnail link of subscription of Youtube user.

although Safari does not limit the locally stored cookie count per domain, it
limits the total size of cookie sent to a domain not more than 8 K. Practically we
construct about 4 K probe cookie size is enough for us to observe the difference
of HTTPS traffic.

Table 3. The browser-side cookie limit policy

Browser Max cookie count per domain Max size per cookie

Chrome 180 4096

Firefox 150 4097

Safari No limitation 4096

IE, edge 50 5117

B. Server Side
Cookie request header size is limited stringently in server side (For example, the
apache limits the size of request header not more than 8 K bytes [16]).

Nevertheless, the attack targeting HTTPS requests can infer sensitive infor-
mation from HTTPS requests by cookie injection. The server-side limitation of
cookie request header size has little effect on this attack. In short, we can ignore
the influence of browser-side and server-side cookie size limitation by precisely
conducting probe cookie.

4 Possible Defenses

Side-channel attack against HTTPS by cookie injection is based on statistical
HTTPS traffic analysis. Some existing techniques can help mitigate this threat.

Path Leaks of HTTPS Side-Channel 201

A common tactic for mitigating such threat is to pad packets to uniform sizes.
However, this approach is often inefficient. In 2009, Wright et al. proposed a
novel method for thwarting statistical traffic analysis algorithms by optimally
morphing one class of traffic to look like another class [12]. In 2011, Luo et al.
proposed a novel browser-side system, namely HTTPOS, to prevent information
leaks [11]. However, these measures are inefficient for this new class of side-
channel attack against HTTPS. In this study, we have not developed any efficient
approach to mitigate the known path identification by now, but we propose some
mitigation measures against the unknown path inference.

Fix Vulnerability. What causes that request URL can be inferred byte by
byte is that browsers don’t strictly follow the accordance of path portion of the
request-uri and the cookie’s path attribute. Therefore, fixing this vulnerability
can prevent the side-channel attack. We have reported the vulnerability to the
affected browser vendors: Microsoft’s IE/Edge team and Apple’s Safari team.
Microsoft responded that they are planning to fix this bug in a future release
where they update their cookie path handling code to conform with more modern
standards. Apple responded that this issue has been addressed in the newest
Safari (after version 10). Actually, when we begin study this vulnerability until
last year, all versions of Safari (before version 10) are always vulnerable to this
attack.

URL Rules of Cloud Storage. As described in Sect. 3.2.3, some cloud storage
services don’t implement a strict management on file access permissions. Even
if the user never shares the file, a link can directly lead to the file disclosure as
long as the attackers get it. We think this is another security risk independent of
vulnerabilities disclosed herein, which are worthy of improvement for the relevant
manufacturers. We have reported this issue to the affected cloud storage services
including our advice. But most of them may be not aware of dangers of this issue
or consider the convenience of customers, they think that is working as designed
(The Amazon replied it has fixed this issue).

X-Frame-Options. The X-Frame-Options header can be used to control
whether a page can be placed in an iframe. In attack procedure described in
Sect. 3.2, in order to achieve hidden refreshing, an attacker would be able to
embed the HTTPS page A, including the sensitive URL, into the normal HTTP
page as a hidden iframe. If the response header of the page A contains a security
configuration X-Frame-Options, which limits this page not to be loaded as a
iframe, the page A would not be rendered by the browser and the sensitive URL
included in it could not be requested. Consequently, the probe cookies would
not been sent to the server. Although the attacker can still create a new tab or
reuse a tab to complete the refreshing work, it reduces the concealment of the
attack, making it possible for the victim to perceive.

Cache. If the cache option was set in the response header corresponding to
the URL, attackers could not certainly always trigger request when refreshing
the page A. Therefore, a certain mitigation of the effects of attacks was made.
But the differences in the implementation of browsers cache configuration make

202 F. Chen et al.

it possible for attackers to force browsers to perform network requests through
some tricks. That will be what we want to complete in the next phase of this
research.

5 Related Work

Our work is mainly about side-channel attacks against HTTPS. Side-channel
attacks have been known for decades. A documented attack is dated back to
1943. Among related research, Shuo Chen’s work [6] focused on side-channel leaks
in web applications. Their meticulous research showed that surprisingly detailed
sensitive user data can be reliably inferred from the web traffic of a number
of high-profile, top-of-the-line web applications. There are also many studies
about specific side channel attacks against HTTPS. CRIME, well known attack
proposed by Rizzo and Duong [13], makes use of the size of compressed request
payload as side channel, thus leak sensitive information like cookie by chosen
plaintext attack. Researchers Gluck, Harris and Prado announced a variant of the
CRIME exploit against HTTP compression called BREACH [14], which uncovers
HTTPS secrets by attacking the inbuilt HTTP data compression used by web
servers to reduce network traffic. In contrast, we utilize a different side channel,
the size of TLS request, which is of diversification caused by path injection. We
are also aware of several researches that are related to cookie’s integrity problem.
Barth’s [1] and Zalewski’s [15] work focused on explaining the cause of the cookie
integrity problem. We’ve also had some research about cookie [7], and discovered
some defects of cookie in practices. Cookie overwriting and Cookie shadowing
lead to cookie reflection, online payment or account hijacking, or disclosure of
user privacy. We focus towards cookie path in this paper, and propose security
issues in some aspects.

6 Conclusions

Although the TLS protocol was designed to protect the secrecy and authen-
ticity of a data stream, it is not always an adequate protection of the user’s
privacy, as the traffic information not hidden by TLS still leaks a great deal of
information. The side-channel attackers can leverage information leaked by TLS
traffic to recover secrets believed to be protected by TLS. We have presented a
new class of side-channel attack against HTTPS. Because of the loosely-defined
SOP for cookies, attackers can infer sensitive information of the request path
from HTTPS request by cookie injection attacks. We proposed two forms of this
attack: known path identification, which is a prerequisite for some other attacks,
and unknown path inference that attackers can infer sensitive information of the
request path from HTTPS request. Our work demonstrates that despite encryp-
tion, the vulnerability is realistic and serious threat to user privacy. We also
investigated the challenges in mitigating such a problem. Specially, the vulner-
ability of cookie path matching in IE/Edge/Safari can be mitigated quickly by
patching.

Path Leaks of HTTPS Side-Channel 203

There are more work to be done here. The known path identification attack
can help attackers to get the correlations between TLS record and request URL.
We will further investigate what other attacks can take full advantage of this
favorable condition.

Acknowledgments. This work is supported by CERNET Innovation Project (No.
NGII20160402).

References

1. Barth, A.: HTTP state management mechanism. IETF RFC 6265 (2011). https://
tools.ietf.org/html/rfc6265

2. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
IETF RFC 5246 (2008). https://tools.ietf.org/html/rfc5246

3. Barth, A.: The web origin concept. IETF RFC 6454 (2011). https://tools.ietf.org/
html/rfc6454

4. Hodges, J., Jackson, C., Barth, A.: HTTP strict transport security (HSTS). IETF
RFC 6797 (2012). https://tools.ietf.org/html/rfc6797

5. Johnston, P., Moore, R.: Multiple browser cookie injection vulnerabilities (2004).
http://www.westpoint.ltd.uk/advisories/wp-04-0001.txt

6. Chen, S., Ziqing, M., Yi-Min, W., Ming, Z.: Pretty-bad-proxy: an overlooked adver-
sary in browsers’ HTTPS deployments. In: Proceedings of the 30th IEEE Sym-
posium on Security and Privacy, pp. 347–359. IEEE Computer Society (2009).
https://doi.org/10.1109/SP.2009.12

7. Zheng, X., Jiang, J., Liang, J., Duan, H., Chen, S., Wan, T., Weaver, N.: Cook-
ies lack integrity: real-world implications. In: 24th USENIX Security Symposium,
USENIX Security 2015, Washington, D.C., pp. 707–721 (2015)

8. Vranken, G.: HTTPS bicycle attack (2015). https://guidovranken.wordpress.com/
2015/12/30/https-bicycle-attack/

9. Coull, S.E., Collins, M.P., Monrose, F., Reiter, M.K., Wright, C.V.: On web brows-
ing privacy in anonymized NetFlows. In: 16th USENIX Security Symposium, pp.
339–352 (2007)

10. Danezis, G. Traffic analysis of the HTTP protocol over TLS (2008). http://www.
cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf

11. Luo, X., Zhou, P., Chan, E.W.W., Lee, W., Chang, R.K.C., Perdisci, R.: HTTPOS:
sealing information leaks with browser-side obfuscation of encrypted flows. In:
Proceedings of the Network and Distributed Systems Symposium (NDSS), San
Diego, California, USA (2011)

12. Wright, C.V., Coull, S.E., Monrose, F.: Traffic morphing: an efficient defense
against statistical traffic analysis. In: Proceedings of the Network and Distributed
Systems Symposium (NDSS), pp. 237–250. IEEE (2009)

13. Rizzo, J., Duong, T.: The CRIME attack. In: Ekoparty Security Conference (2012)
14. Gluck, Y., Harris, N., Prado, A.: BREACH: reviving the CRIME attack (2013).

http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030
%20seconds.pdf

15. Zalewski, M.: The Tangled Web: A Guide to Securing Modern Web Applications.
No Starch Press, San Francisco (2012)

16. Apache: apache core features (2017). http://httpd.apache.org/docs/2.4/mod/core.
html#limitrequestfieldsize

https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc6265
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6797
http://www.westpoint.ltd.uk/advisories/wp-04-0001.txt
https://doi.org/10.1109/SP.2009.12
https://guidovranken.wordpress.com/2015/12/30/https-bicycle-attack/
https://guidovranken.wordpress.com/2015/12/30/https-bicycle-attack/
http://www.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
http://www.cs.ucl.ac.uk/staff/G.Danezis/papers/TLSanon.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://breachattack.com/resources/BREACH%20-%20SSL,%20gone%20in%2030%20seconds.pdf
http://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfieldsize
http://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfieldsize

Countermeasures Against Side-Channel
Attacks (2)

Protecting Triple-DES Against DPA

A Practical Application of Domain-Oriented Masking

Pascal Sasdrich1,2 and Michael Hutter1(B)

1 Cryptography Research, 425 Market Street, 11th Floor,
San Francisco, CA 94105, USA

michael.hutter@cryptography.com
2 Horst Görtz Institute for IT-Security,

Ruhr-Universität Bochum, Bochum, Germany
pascal.sasdrich@rub.de

Abstract. Although AES has become the predominant standard for
symmetric block ciphers, T-DES is still widely used especially for elec-
tronic payment and financial solutions. In order to protect small and
embedded devices against power analysis and side-channel attacks in gen-
eral, appropriate countermeasures have to be considered. In this paper,
we present the first practical application of the Domain-Oriented Mask-
ing (DOM) scheme for the T-DES cipher in hardware and provide practi-
cal evaluation results that confirm the security of DOM and our designs.
In particular, using Test Vector Leakage Assessment (TVLA) as evalua-
tion methodology confirms that our first- and second-order secure archi-
tectures do not exhibit detectable leakage using up to 2 billion traces.
This is the first paper that presents a T-DES hardware implementation
using a state of the art provable secure masking technique.

1 Introduction

Although DES as standard has been replaced with the announcement of AES
in 2001, many applications still rely on T-DES especially in the financial and
electronic payments sector. To this end, T-DES remains an active standard and
is still implemented on many embedded devices. However, since most embed-
ded devices are exposed to physical threats they require additional protection
mechanisms and countermeasures to prevent disclosure of secret and sensitive
information [15].

In recent years, Threshold Implementation (TI) [19] has been proposed as
promising method to protect physical devices and hardware implementations
against side-channel attacks. In particular, it has been applied to many different
ciphers, including but not limited to AES [17] and PRESENT [21].

Throughout the years, many different approaches and optimizations have
been proposed to improve the efficiency of first-order secure TIs, and the orig-
inal concept has been extended to higher-order protections [3]. In particular,

P. Sasdrich—This work was done while the author was at Cryptography Research.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 207–226, 2018.
https://doi.org/10.1007/978-3-319-89641-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_12&domain=pdf

208 P. Sasdrich and M. Hutter

the decomposition of the protected functions into functions with smaller alge-
braic degree has been applied extensively [4,12,18,21]. Unfortunately, these
approaches cannot be used for DES and T-DES due to the classification of the
S-boxes [4] which renders the concept of TI rather inefficient for these ciphers.

Consequently, we decided to apply recent results for so called d+ 1 masking
schemes instead of using the concept of TI. In particular, we use the results of
the Domain-Oriented Masking (DOM) scheme [8] and Unified Masking Algo-
rithm (UMA) [7] in order to provide protection against side-channel attacks for
our designs. The applied techniques are similar to the concepts of Consolidated
Masking Schemes (CMS) [22] and we would expect to obtain similar results as
presented in this paper.

Contribution. In this paper, we present a first practical application of the
recently proposed DOM approach and apply it to the T-DES cipher. We focus
on first- and second-order protection for which DOM is as good as the later
presented UMA masking technique which mainly improves the requirement for
fresh entropy for higher-order secure implementations. Therefore, this is the first
paper that evaluates DOM in a practical side-channel analysis investigation. We
used a Field-Programmable Gate Array (FPGA) platform in our experiments
and confirm robustness of this masking technique in practice. In addition, this
is the first paper that presents a hardware implementation of T-DES that makes
use of a state of the art masking technique that has been recently analyzed using
formal verification in [5]. We finally show that our first- and second order secure
implementations do not exhibit detectable leakage using up to 2 billion power
traces.

We also provide optimized round-based T-DES hardware architectures that
require only 64 and 192 bits of fresh entropy per clock cycle to achieve first- and
second-order protection respectively. Further, we can show that the protection
increases the area only by a factor of about 3 and 8 for our first- and second-order
architecture respectively compared to an unprotected architecture.

Outline. This work is organized as follows: In Sect. 2, we briefly discuss the basic
concept of DOM followed by implementation details and rationales in Sect. 3.
Section 4 provides practical evaluation results using a FPGA-based evaluation
platform and TVLA as evaluation metric. Conclusions are drawn in Sect. 5.

2 Preliminaries

Notations. In the course of this work, we will denote single-bit random variables
using italic lower-case characters, multi-bit vectors by bold lower-case ones, and
shared representations as upper-case characters. Further on, lowering indexes
indicate single elements of a vector while raising indexes denote single elements
of a shared representation. Eventually, functions are denoted using sans serif
fonts and sets using calligraphic ones.

To this end, let us denote x ∈ GF(2m) as a vector of m single-bit elements
〈x1, . . . , xm〉. Given the shared representation X of the vector x using Boolean
masking with s shares as (x1, . . . ,xs) it holds that:

Protecting Triple-DES Against DPA 209

x =
⊕

X =
s⊕

i=1

xi =
s⊕

i=1

〈x i
1, . . . , x

i
m〉.

Related Work. In this section, we briefly discuss relevant work with respect
to hardware implementations of T-DES, side-channel attacks on these designs,
and integration of countermeasures. In particular, since DES and T-DES has been
around for several decades and originally has been designed to provide good
performance in hardware, a wealth of different implementations has been pre-
sented and proposed, e.g., in [13,16,28,29]. However, since AES has been proposed
shortly after the discovery of side-channel attacks, only a small number of pro-
tected implementations has been published by academia [14,25,27] (although it
is likely that many industrial solutions integrating countermeasures exist and
are used in practice). However, in particular the authors of [20] have shown the
impact of breaking real-world solutions that relied on insufficiently protected
T-DES co-processors.

2.1 Domain-Oriented Masking

Over the last two decades, a plethora of different countermeasures has been
introduced in order to prevent or protect information leakage through uninten-
tional side channels of modern embedded devices and digital circuits. Usually,
timing behavior [10], instantaneous power consumption [11], or electro-magnetic
(EM) emanations [1] are considered as the most common physical side channels.
To this end, a lot of research activity and scientific effort continues to develop
appropriate countermeasures that prevent or protect the leakage of sensitive
information and device internals. In this context, Domain-Oriented Masking [8]
has been proposed as a Boolean masking scheme for hardware devices that use a
structured approach of domains in order to provide side-channel protection with
arbitrary protection order.

Basic Concept. Boolean masking follows the principle of secret sharing to
split sensitive intermediate data x into a shared representation X of s random-
ized variables x1, . . . ,xs. Depending on the number of shares, Boolean masking
schemes can provide up to d-th order protection against analysis of statistical
moments using s = d + 1 shares which have to be processed independently.
However, various physical effects (e.g., glitches and parasitic capacitances) can
prevent the correct behavior of the masking scheme and compromise the protec-
tion mechanism.

Rather than the concept of TI [19] that has been introduced in order to
prevent side-channel information leakage through glitches on function level using
s = t× d+ 1 shares (given that t is the algebraic degree of the shared function),
DOM introduces the notion of share domains in order to cope with glitches in
hardware circuits.

Share Domains. Based on the idea of processing each share independently, the
notion of domains has been introduced by Groß et al. in [8]. In particular, each

210 P. Sasdrich and M. Hutter

a2

b2

b1

a1

r

c2

c1

calculation re-sharing integration

domain 1

domain 2

&

&

&

&

(a) DOM-indep

r2
r1

a2

a1

b2
b1

c2
c1

indep

&

&

(b) DOM-dep

Fig. 1. First-order DOM AND gates.

individual share of a sensitive intermediate value is assigned and associated with
a unique domain, i.e., d + 1 domains have to be defined for d-th order protec-
tion. Due to the independence of each share from other domains, security in the
d-probing model [9] can be proven. However, processing of data requires to per-
form certain operations on the shared values. In that sense, DOM distinguishes
between intra-domain and inter-domain operations depending on whether shares
have to cross domain boundaries or not.

Intra-Domain Operations. Each operation that involves only shares from the
same domain, e.g., all linear operations, can be considered as intra-domain opera-
tion. In this case, independence of the shares from other domains is given trivially
making these operations inherently secure in the d-probing model.

Inter-Domain Operations. In contrast, inter-domain operations, as part of non-
linear operations, require certain shares to cross domain boundaries. Hence, as
for all Boolean masking schemes, non-linear operations are the critical part that
requires particular caution during the design phase. In order to retain the secu-
rity for inter-domain operations in the d-probing model, the DOM approach uses
additional fresh entropy in order to re-mask the inter-domain operation results.
In addition, additional register stages prevent the propagation of glitches.

First-Order Secure AND for Two Independent Inputs. The construction
of a first-order secure basic AND gate allows to build arbitrary first-order pro-
tected hardware circuits. In particular, the basic AND gate, as shown in Fig. 1(a),
computes the result of C = A ·B using two inputs A,B in a uniform, randomly
shared representation independent from each other with:

C = A · B = (a1 + a2) · (b1 + b2)

= a1b1 + (a1b2 + r)︸ ︷︷ ︸
c1

+ (r + a2b1) + a2b2︸ ︷︷ ︸
c2

.

To this end, the computation process is divided into two share domains and
performed in three steps: calculation, re-sharing, and integration.

Protecting Triple-DES Against DPA 211

Calculation. The multiplication stage is the first part designed to compute the
required product terms of the shared inputs A,B. In particular, the calcula-
tion stages of the first-order secure 2-input AND gate provides all intra-domain
products (a1b1, a2b2) and inter-domain products (a1b2, a2b1). While intra-
domain products are uncritical from a security perspective, inter-domain prod-
ucts require special care to maintain d-th order security properties in the d-
probing model that is taken in the subsequent re-sharing stage.

Re-sharing. In order to ensure statistical independence of the inter-domain prod-
ucts, fresh entropy is added during the re-sharing phase. The propagation of
glitches and resulting side-channel leakage is prevented using additional regis-
ters to store the re-masked inter-domain products.

Integration. Eventually, the integration stage performs the integration of the
inter-domain products into the domains by recombining them with the intra-
domain products. Note, that the correctness still holds after the integration
since the fresh random bit r has been added to both domains.

First-Order Secure AND for Two Dependent Inputs. In case the sharing
of the inputs cannot be ensured to be independent (e.g., due to some glitches),
the first-order secure AND gate for dependent inputs as shown in Fig. 1(b) has
to be used. In particular, this gate extends the basic DOM-indep gate by re-
sharing one of the inputs using fresh entropy. However, in order to still ensure
correctness of the result, it is necessary to calculate according correction terms
that eventually are added to the output. Note, that this gate also ensures that
all flip-flops only contain freshly randomized intermediate results which also can
avoid leakage due to the distance between values that are overwritten.

Higher-Order Secure 2-Input and Gate. The basic concept of the first-
order secure 2-input AND gate can be easily extended and generalized for arbi-
trary higher-order protected 2-input AND gates. In general, this process only
requires moderate modifications for each stage that we will briefly outline in the
following section. Fortunately, the extension can be performed in an automated
process, allowing to only provide the desired protection order while the required
circuit is generated accordingly.

Calculation. As before, the calculation stage has to provide all necessary intra-
and inter-domain product terms, however, with respect to d+1 domains (in order
to achieve d-th order protection). In particular, each domain has a single intra-
domain product but d inter-domain products giving in total (d + 1)2 product
terms (Fig. 2).

Re-sharing. Again, inter-domain products have to be re-shared with fresh
entropy in order to ensure statistical independence. Further, each random bit
ri has to be unique within each domain, however, it can be re-used across

212 P. Sasdrich and M. Hutter

in
it
ia
l
pe

rm
ut
at
io
n
(I
P
)

pt

32 × s

fin
al

pe
rm

ut
at
io
n
(I
P

−
1
)

ct

32 × s

rk

expansion

S0

4 × s

6 × s

S1

4 × s

6 × s

S2

4 × s

6 × s

S3

4 × s

6 × s

S4

4 × s

6 × s

S5

4 × s

6 × s

S6

4 × s

6 × s

S7

4 × s

6 × s

permutation

Fig. 2. Basic architecture of the protected T-DES design.

different domains (in order to ensure correctness and minimize fresh entropy
requirements). In addition, each re-masked inter-domain product has to be
buffered by an additional flip-flop (FF) to prevent information leakage due to
the propagation of glitches.

Integration. Eventually, the integration stage reduces the number of products
by integrating all inter-domain products into the domains. However, additional
caution is necessary, since information leakage due to glitches should not reveal
more than the intra-domain products.

3 Design Considerations

This section provides details on our protected T-DES architecture and discusses
our design choices, in particular considering the implementation strategy for the
S-box protection. In addition, we provide implementation results for performance
and area utilization for our first-order and second-order protected architectures.

3.1 Protected Architecture of Triple-DES (T-DES)

Internally, our T-DES core implements a round-based DES architecture. Although
DES is a Feistel network with 64-bit block size and only 56-bit keys (excluding
8 parity bits), T-DES artificially extends the effective key size to 112 bits using
three subsequent DES calls. In general, our T-DES architecture supports both,
encryption and decryption, with the standard sequence of operations, i.e., the
second DES call performs an inverted operation (decryption if T-DES encryption
is performed and vice versa). However, due to the Feistel structure of the DES,
we can re-use the same round-based architecture for DES encryption as well as
decryption, inverting the DES operation only depends on the key schedule. More
precisely, since the key update function only involves simple rotation and bit-
wise permutation operations, and the first and last state of the key register are

Protecting Triple-DES Against DPA 213

x3

x2

x1

x0

s0 s1

y

×

× ×

Fig. 3. Secure multiplexer.

identical, this also allows a very efficient computation of round keys in reverse
order by simple rotation to the opposite direction. To this end, we also implement
two additional T-DES modes which perform the same DES operation for all three
calls, i.e., always encrypt during T-DES encryption and otherwise always decrypt.

Round-Based DES Architecture. We opted to implement all 8 different S-
boxes of the Feistel F-function in parallel such that a single DES round is com-
puted in one clock cycles. To this end, an unprotected DES operation could be
executed in 16 clock cycles. However, since the protected AND gates introduce
additional latency due to their incorporated pipeline stages, a single round of our
protected architecture requires 5 clock cycles (i.e., we have 4 additional register
stages) and an entire DES operation is executed in 80 clock cycles. Along with
additional control overhead, e.g., to load the correct keys for each DES operation,
an entire T-DES encryption and decryption requires 244 clock cycles.

Since all permutation and expansion functions of the DES cipher are linear
operations, these can be masked easily using the DOM approach. However, the
different S-boxes are the only non-linear operations of the DES cipher which
require an implementation based on protected AND gates. In the following, we
will discuss and justify our final implementation choice for the S-boxes using
their internal structure for area and entropy optimization.

Key Sharing. In addition, our architecture supports key sharing. If configured,
the key is shared internally in d + 1 shares (one for each domain) using fresh
entropy provided by an internal Pseudo Random Number Generator (PRNG).
Fortunately, the Data Encryption Standard (DES) key schedule can be shared
easily since it only consists of linear operations. To this end, a separate key
register is instantiated for each domain. Instead of adding the round key only
to the first share, one key share then is added in each domain. Hence, in total
this security option only requires some additional registers and XOR-gates but
apart from that can be implemented with minimal overhead.

214 P. Sasdrich and M. Hutter

x5
x4
x3
x2
x1
x0

y3

y2

y1

y0

S

(a) 6× 4 S-boxes

x5
x4
x3
x2
x1

x0

y3

y2

y1

y0

P1

P0

(b) 5× 4 P-boxes

x4
x3
x2
x1

x5
x0

y3

y2

y1

y0

P3

· · ·

P0

(c) 4× 4 P-boxes

x4
x3
x2

x5
x1
x0

y3

y2

y1

y0

P7

· · ·

P0

(d) 3× 4 P-boxes

Fig. 4. Different implementation approaches for the DES 6 × 4 S-boxes.

3.2 First-Order Secure Multiplexer

In general, a single 2 : 1 multiplexer can be implemented using two XOR gates
and a single DOM-and gate based on its Algebraic Normal Form (ANF):

y = x0 + sx0 + sx1
= x0 + s(x0 + x1)

In addition, a single 4 : 1 multiplexer can be represented as three cascaded
multiplexers as shown in Fig. 3, hence requires three DOM-and gates in total.

3.3 Design Space Exploration of the S-Box Structure

In general, we decided to optimize our S-boxes for area and in particular we tried
to reduce the number of DOM-and AND gates which simultaneously results in
smaller amounts of fresh entropy that is required per cycle. On the other hand,
we had only soft constraints on the resulting depth of the logic circuit and on
the overall latency.

One of the most helpful observations is that each S-box structure can be
decomposed in smaller blocks. In particular, each of the original 6 × 4 can be
naturally decomposed into four 4 × 4 permutations and a multiplexer. However,
similar decompositions using 5 × 4 and 3 × 4 permutations are also possible. In
the following, we will discuss and explain these different options including their
benefits and disadvantages regarding our global optimization goal.

In general, each of the decomposition approaches allows to share certain
product terms among the smaller blocks, i.e., the permutations. To this end, we
explored and evaluated the different options in order to find the best choice for
decomposition and final AND gate count.

Single 6×4 S-Box. In a first attempt, designers might decide to implement
each S-box as a single module as shown in Fig. 4(a) realizing the internals of each
S-box according to their ANF. However, since all S-boxes have the maximum
algebraic degree of 5, this leads to a high number of required AND gates. In
particular, assuming the worst case that each product term is present in each
S-box, this would result in

(
6
2

)
= 15 DOM-and gates in order to realize all

Protecting Triple-DES Against DPA 215

possible product terms with two out of the six input bits. Similarly, additional(
6
3

)
= 20 additional DOM-and gates would be necessary to compute all product

terms with 3 input bits (by reusing the product terms with 2 inputs). Eventually,
using

(
6
4

)
= 20 and

(
6
5

)
= 6 additional AND gates, all necessary product terms

can be computed. In total, this approach results in 56 DOM-and gates for each
S-box. Besides, since each DOM-indep gate requires (d+1)·d

2 bits of fresh entropy
this would for instance result in 56 bits of randomness for each S-box per round
for a first-order secure implementation using only DOM-indep gates.

Two 5×4 Permutations. On closer inspection, it becomes obvious that many
product terms are duplicated and could be removed by sharing and re-using
previously computed product terms. To this end, an entire 6 × 4 S-box could
be split into two different and independent 5 × 4 permutations P0 and P1 as
shown in Fig. 4(b). However, both sub-modules share the same inputs x1, . . . , x5
respectively their product terms. Then, only

(
5
2

)
= 10 DOM-and gates are nec-

essary to realize all product terms of two inputs. Similarly, the
(
5
3

)
= 10 and(

5
4

)
= 5 additional gates are required to compute the remaining product terms

of 3 respectively 4 input bits. Eventually, this reduces the number of required
DOM-and gates to 25, however, four additional multiplexer are required to select
the correct result depending on x0. Fortunately, each 2 : 1 multiplexer can be
realized using a single AND gate raising the total number of AND required AND
gates to 29 which still almost halves the AND gate count and requirements for
fresh entropy.

Four 4×4 Permutations. Consequently, dividing the S-boxes into four smaller
permutations with shared inputs is the next approach. Interestingly, this option
reflects the inherent structure of the S-boxes and eventually turns out to be the
best solution and choice. In particular, this approach uses

(
4
2

)
+

(
4
3

)
= 10 DOM-

and gates to compute all shared product terms with two and three inputs. In
addition, another 12 AND gates are necessary to realize the multiplexer stage
that selects the correct result depending on x0 and x5 as shown in Fig. 4(c). In
total, this approach requires only 22 protected AND gates to realize each 6 × 4
S-box.

Eight 3×4 Permutations. In theory, a decomposition into eight 3×4 permu-
tations is also possible which would only require

(
3
2

)
= 3 protected AND gates to

compute all possible combinations of product terms for the three shared inputs.
However, in this approach would require twenty-eight 2 : 1 multiplexers which
would become the dominant part in terms of AND gates, resulting in a final
amount of 31 DOM-and gates. Hence, the previous solution using four 4 × 4
S-boxes turns out to be the most efficient approach in terms of minimizing the
number of protected AND gates that are necessary to implement each S-box.

3.4 Source of Entropy

As a source of entropy for our evaluations, we used a PRNG that is based on
the Keccak-f round function [2]. In particular, we decided to use the Keccak-
f[400] permutation where only 64 bits of the state are output in each clock cycle.

216 P. Sasdrich and M. Hutter

To provide high entropy to our core, we re-seeded the PRNG after each cipher
operation. The seed is generated from a python script that draws randomness
from the underlying Windows operating system.

For first-order protection, only 64 bits of fresh randomness are required for
our implementation. Each T-DES S-Box needs 22 AND gates, however, at most
8 out of the 22 gates are actually active per cycle. This reduces the required
number of fresh random bits to 64 bits per cycle.

As opposed to related work which usually generated entropy from common
block ciphers (AES, PRESENT, etc.), we decided to use a fast permutation function.
This has the advantage that we can generate the required number of random
bits in each clock cycle without any idle cycles or the need of parallel cipher
computations and also without causing too much overhead in area and power.
We also decided to synthesize the PRNG together with our T-DES core, which
is a more practical and realistic scenario than calculating entropy a priori to the
trace acquisition or sending the entropy from a measurement PC.

3.5 Design Optimizations

Depending on the use case, we can apply several optimizations to our design
that allow improvements in terms of area or performance. In the following, we
will discuss a small selection of possible improvements and optimizations. Note,
however, that all optimizations are often highly dependent on the use case and
mostly come with disadvantages in some parts. In general, reduction in area usu-
ally results in performance loss while performance improvement usually requires
additional resources and area. In addition to optimization ideas, we will provide
a short summary and discussion of directions for future work.

Area Reduction. So far, we opted to optimize our implementation, and in
particular the S-boxes, for the total number of the AND gate count, regardless
of the XOR count in the ANF. In that sense, on optimization goal could be to
reduce the XOR count as well by resource sharing and increased logic depth.
Along with reusing the pipeline registers of each AND gate and merging them
with the state registers in order to avoid duplication, this eventually can result
in a smaller but slower circuit (due to increased critical path delays and lower
operation frequencies).

Performance Improvements. Throughout this work, we refrained to imple-
ment dedicated 3-input, 4-input, and 5-input secure AND gates but instead
reused our basic 2-input secure AND gate in a cascaded fashion in order to com-
pute product terms with 3 or more inputs. Certainly, this results in an increased
latency due to additional register stages introduced by each AND gate. Hence,
in order to reduce the latency to three or less clock cycles per round, design-
ers could implement dedicated AND gates for three or more inputs with only a
single cycle of latency but of course at higher area and resource cost. In combi-
nation with the previously mentioned optimization of merging the stage register
with the pipeline registers of the AND gates, this could even allow to reduce the
latency to a single cycle per round but definitely at a higher area demand.

Protecting Triple-DES Against DPA 217

Table 1. Performance results of our T-DES core implementations using GF28 nm.

Corea AND
gate

Area
[kGEs]

Latency
[Cycles]

Entropy
[bits]

Power in mW
[@100 MHz]

Max. Freqb

[MHz]

unprotected - 4.2 52 - 0.065 3,400

1st-order indep 13.8 244 64 0.382 2,100

1st-order dep 22.4 244 192 0.807 2,600

2nd-order indep 26.9 244 192 0.887 2,200

2nd-order dep 39.9 244 384 1.578 2,800
aAll numbers reported do not include numbers for an entropy source/PRNG (see
text for performance numbers of our used PRNG implementation).
bThe maximum frequency of the cores was identified by multiple synthesis runs
with increasing target frequency until a negative slack time was observed.

Directions for Future Work. Originally, DOM was designed to provide pro-
tection for arbitrary orders and hence can be applied in a generic way that scales
efficiently. However, it might be interesting to evaluate different approaches in
order to achieve higher-order protection and security against Side-Channel Anal-
ysis (SCA). In particular, designers might forgo provable security but instead
pursue the notion of practical higher-order security by combining provable first-
order secure implementations with additional hiding countermeasures in order
to increase the random noise. For TI, it has been shown to be efficient and effec-
tive (see [23,24]). In that sense, it might be interesting to find and investigate
how to combine a first-order secure DOM implementation with hiding counter-
measures that will increase the noise during the acquisition phase and hamper
in particular higher-order attacks that are very susceptible for noise. In the end,
this approach might be more efficient and even cheaper than using dedicated
higher-order DOM architectures.

3.6 Implementation Results

In this subsection, we present results of hardware implementations that we syn-
thesized using an ASIC design flow. All designs have been implemented using
Verilog and were compiled using Synopsys Design Compiler K-2015.06-SP3-1.
We used a 28 nm RVT standard cell library from Global Foundry and synthe-
sized all designs with a target frequency of 100 MHz. A two-input NAND gate
in this library has a size of 0.624µm2.

Table 1 shows the results of our implementations. We implemented five
designs: one unprotected T-DES core as a reference, and four DPA-protected
cores. In particular, we designed a first-order and a second-order secure imple-
mentation using only DOM-indep gates. These designs include a full pipeline,
i.e., we also implemented the optional registers after each intra-domain product
term. We also replaced each DOM-indep gate by a DOM-dep gate (for both the
first-order and the second-order secure core).

218 P. Sasdrich and M. Hutter

The results show that our smallest design requires 13.8 kGEs. This is about
a factor of 3 times larger as compared to the unprotected core. Our 2nd-order
secure designs are in general larger but still require less than 40 kGEs.

Power values have been obtained after synthesis without placing and routing
the cells. They therefore serve as rough estimates. Our 1st-order secure imple-
mentation has a power consumption of about 380µW at 100 MHz.

Note that all numbers listed in the table are without key sharing, because in
many applications the key is constant and does not allow classical DPA. Masking
the key schedule is optional and adds about 1 kGEs in area in the 1st-order case
and about 1.8 kGEs in the 2nd-order case. Because of the low area increase, we
recommend also masking the key schedule in order to also protect the cores
against template attacks.

Further note that all numbers listed in the table do not include numbers for
random number generation. We decided to exclude the numbers of our PRNG in
order to provide plain core performance numbers (e.g., if someone wants to use
an own source of entropy) and also to allow a fair comparison with related work
since most works do not consider inclusion. The area requirement of our PRNG
implementation, which provides the required number of random bits per cycle,
depends on whether DOM-indep or DOM-dep gates are used and also depends
on the targeted protection order. It needs 2.6 kGEs for 64-bit entropy, 6.3 kGEs
for 192-bit entropy, and 11.9 kGEs for 384-bit entropy.

Interestingly, it also can be seen that the latency requirements of our pro-
tected cores is independent of the protection order and the type of the secure
AND-gate but only depends on the logical depth, i.e., the stages of consecutive
AND gates.

4 Evaluation

In this section, we describe the used measurement setup and present results of
practical side-channel analysis.

The Measurement Setup. We used a custom-made FPGA platform in order
to perform side-channel analysis of our T-DES cores. The platform features a
Kintex 7 FPGA, a FTDI USB interface, several GIO pins, and a circuit for
power measurements that includes a measurement resistor. The voltage across
that resistor was measured using an 8-bit digital storage oscilloscope from Tek-
tronix (DPO7104). The scope allows to collect power traces which are at most
200 MBytes of size. We set the sampling rate to 500 MS/s and used a bandwidth
of 250 MHz. All the cores that we analyzed were running at 50 MHz. Note that
lowering the target frequency of the cores is usually recommended because it
avoids that signals from a previous clock cycle are ringing into the current clock
cycle which may causes an unintended bivariate leakage. However, this was not
a concern in our experiments as shown in the following evaluation results.

Figure 5 shows a single power trace of one of our protected T-DES cores.

Test Vector Leakage Assessment. During the evaluation process, we kept
the secret key fixed and did not enable key sharing (i.e., key was not masked).

Protecting Triple-DES Against DPA 219

Samples
500 1000 1500 2000 2500

Po
w

er
 c

on
su

m
pt

io
n

80

100

120

140

160

180

Fig. 5. Single power trace that shows
all three DES operations.

Samples
500 1000 1500 2000 2500

t-t
es

t v
al

ue

-100

-50

0

50

100

Fig. 6. FvR t-test result using 10k
traces when PRNG was turned off.

We provided our design with the plaintext already in its shared representation in
order to avoid the detection of leakage related to the inputs. For an evaluation
methodology, we applied the TVLA scheme using the non-specific (Fixed-vs.-
Random) t-test according to [6,26].

More precisely, a fixed plaintext is chosen prior to the measurement. During
the evaluation, the Device Under Test (DUT) arbitrarily processes either a ran-
domly chosen or the fixed plaintext. Certainly, this test methodology helps to
examine if side-channel information leakage can be detected during the opera-
tion of the device. Given the assumption that exploitable leakage should always
be detectable as well, we can conservatively assume that no exploitable leakage
is present in our design if the t-test does not detect any differences in both sets.

In order to improve the efficiency of leakage detection, we decided to not store
the traces on the hard drive. Accessing the hard drive is usually expensive in
terms of measurement performance. Instead, we calculated the t-test statistics
on-the-fly and used a similar approach as it was proposed by Schneider and
Moradi [26]. At a sampling rate of 500 MS/s, we were able to process about
7,000 traces per second. Analyzing 100M traces therefore took us about 4 h
including calculation of the first four statistical moments, which we also did on-
the-fly during the time when the traces got transferred from the scope to the
measurement PC.

Figure 6 shows the result of a Fixed-vs.-Random (FvR) t-test when the
PRNG was turned off (and did generate zero mask values for the implemented
countermeasure). For that test, we used 10,000 traces and obtained t-test sigma
values of up to 80. This test was applied in order to test our measurement setup
and that the device indeed leaks intermediate values when the countermeasure
is disabled.

Analysis Result of the First-Order Protected Core. We evaluated the
robustness of our first-order secure T-DES implementation against 1st, 2nd, and
3rd-order statistical moments. All our tests are based on the univariate setting
(no sampling points have been combined in our attacks) because all shares are
always processed in the same clock cycle and we expect leakage in higher sta-
tistical moments. We also focus our evaluation in this paper on cores using only
DOM-dep gates and mark the evaluation of cores using DOM-indep gates for
future work.

220 P. Sasdrich and M. Hutter

500 1000 1500 2000 2500

t-t
es

t v
al

ue

-5

0

5

500 1000 1500 2000 2500

t-t
es

t v
al

ue

-100

-50

0

50

100

Samples
500 1000 1500 2000 2500

t-t
es

t v
al

ue

-20

-10

0

10

20

Fig. 7. 1st-order secure T-DES implementation (DOM-dep gates): univariate Fixed-vs.-
Random t-test results using 50M traces for 1st (top), 2nd (middle), and 3rd (bottom)-
order statistical moments.

Figure 7 shows the result of a Fixed-vs.-Random t-test using 50 million traces.
It shows that no detectable leakage is observable when evaluating the first sta-
tistical moment (mean). However, we can clearly detect a leakage in the second-
order statistical moment (variance) as expected (due to parallel processing of
masked shares). We also identified leakage when considering the skewness of
the sample distributions. However the t-test value is significantly lower than in
the second-order case which can be explained by the higher impact of noise in
higher-statistical moments.

Analysis Result of the Second-Order Protected Core. We also evaluate
the robustness of our 2nd-order secure T-DES implementation. Figure 8 shows
the result of a Fixed-vs.-Random t-test for all four statistical moments. We
collected 2 billion traces for the analysis. As expected, we can not detect any 1st

or 2nd order leakages during the cipher operation. However, we observed that the
output is starting to leak after 700 million traces (around sample point 2,700).
This leak needs further investigation but in general does not imply a security
concern because it is the output of the cipher operation.

3rd-order leakages are detectable with the largest leak being around 40 sigma.
We observe that the t-test values are in general smaller than the sigma values
obtained for the 1st-order secure T-DES implementation. We also detect 4th-order
leakages which are all below 10 sigma. It is worth to note that in our experiment
the 4th-order leaks become significant after 200 million traces.

Protecting Triple-DES Against DPA 221

500 1000 1500 2000 2500

t-t
es

t v
al

ue
(1

st
 o

rd
er

)

-5

0

5

500 1000 1500 2000 2500

t-t
es

t v
al

ue
(2

nd
 o

rd
er

)

-5

0

5

500 1000 1500 2000 2500

t-t
es

t v
al

ue
(3

rd
 o

rd
er

)

-40
-20

0
20
40

Samples
500 1000 1500 2000 2500

t-t
es

t v
al

ue
(4

th
 o

rd
er

)

-10

0

10

Fig. 8. 2nd-order secure T-DES implementation (DOM-dep gates): univariate Fixed-
vs.-Random t-test results using 2 billion traces for the first four statistical moments.

5 Conclusion

This paper has two main contributions which we summarize here. First, we
investigated the practical application of the DOM countermeasure on an FPGA
platform. In the past, the efficiency of DOM was evaluated on simulated traces
only and the masking technique was not yet tested using practical DPA. Our
results confirm the robustness against 1st- and 2nd-order analyses using up to 2
billion power traces.

Second, the paper is the first to present a T-DES hardware implementation
that is secure in the presence of glitches. There exist several papers describing
and evaluating provable secure masking schemes like Threshold Implementations
(TIs) on AES or PRESENT, for example. However, no state of the art masking
technique was applied and described on T-DES so far.

222 P. Sasdrich and M. Hutter

A Representations of all S-boxes and 4× 4 Permutations

A.1 Algebraic Normal Form for S-Box 1

Permutation P1: y0 = x0x1x3 + x0x2 + x0x3 + x1 + x3
y1 = x0x1 + x0x2x3 + x0x2 + x0x3 + x0 + x1x2x3 + x1x2 + x1x3 + x1 + x2x3 + 1

y2 = x0x1x3 + x0x1 + x0x2 + x1x3 + x2 + x3 + 1

y3 = x0x1x2 + x0 + x1x2x3 + x1x2 + x2x3 + x2 + x3 + 1

Permutation P2: y0 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0 + x1x3 + x1 + x2x3
y1 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0 + x1 + x2 + x3
y2 = x0x1x2 + x0x1x3 + x0x1 + x0 + x1x2 + x1 + x2x3 + x2
y3 = x0x1x2 + x0x1 + x0 + x1x2x3 + x2x3 + x2 + x3

Permutation P3: y0 = x0x1x2 + x0x1 + x0 + x1x2x3 + x1x2 + x2x3 + x2 + x3
y1 = x0x1x3 + x0x1 + x0x2 + x0x3 + x1 + x3
y2 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0 + x1x2x3 + x1x2 + x1x3 + x2x3 + 1

y3 = x0x1x3 + x0x2 + x1x3 + x1 + x2 + x3
Permutation P4: y0 = x0x1 + x0x3 + x0 + x1x3 + x1 + x2 + 1

y1 = x0x1x2 + x0x1x3 + x0x2x3 + x0x2 + x0 + x1x2 + x1 + x2 + x3 + 1

y2 = x0x2 + x0x3 + x1 + x2x3 + 1

y3 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0x3 + x1x2x3 + x2 + x3 + 1

A.2 Algebraic Normal Form for S-Box 2

Permutation P1: y0 = x0x1x3 + x0x2x3 + x0x2 + x1 + x2 + 1

y1 = x0x1x2 + x0x2 + x0 + x1x2 + x1 + x3 + 1

y2 = x0 + x1x3 + x1 + x2x3 + x3 + 1

y3 = x0x1x3 + x0x1 + x0 + x1x3 + x2x3 + x2 + 1

Permutation P2: y0 = x0x1 + x0x2 + x1 + x3 + 1

y1 = x0x1x2 + x0x1x3 + x0x2 + x0x3 + x0 + x1x3 + x1 + x2x3 + x3 + 1

y2 = x0x1x2 + x0x1 + x0 + x1 + x2x3 + x2 + x3
y3 = x0x1x3 + x0x1 + x0 + x1x3 + x2 + x3

Permutation P3: y0 = x0x1x3 + x0x2x3 + x0x3 + x1 + x3
y1 = x0x1 + x0x2x3 + x0x3 + x0 + x1x2x3 + x1x3 + x1 + x2x3 + x2
y2 = x0x1x3 + x0x2x3 + x0 + x1x3 + x1 + x2x3 + x3
y3 = x0 + x1x3 + x2

Permutation P4: y0 = x0x2x3 + x0x2 + x0 + x1x3 + x1 + x2x3 + 1

y1 = x0x1 + x1x2x3 + x1x3 + x1 + x2 + x3
y2 = x0x1x2 + x0x1 + x0 + x1 + x2x3 + x2 + x3 + 1

y3 = x0x1x3 + x0x1 + x0x2 + x0x3 + x1x3 + x2 + 1

A.3 Algebraic Normal Form for S-Box 3

Permutation P1: y0 = x0x1 + x0x2 + x1 + x3
y1=x0x1x2+x0x1x3 + x0x2 + x0x3 + x0 + x1x2x3 + x1x2 + x1x3 + x1 + x2x3+x3+1

y2 = x0x1 + x0x2x3 + x0x2 + x0x3 + x1x2x3 + x1x3 + x2x3 + x2
y3 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0 + x1x2x3 + x1x2 + x1x3 + x2 + x3 + 1

Permutation P2: y0 = x0x1 + x0x2 + x1 + x3 + 1

y1 = x0x1x3 + x0x1 + x0 + x1x3 + x2 + x3
y2 = x0x2 + x1x2x3 + x1 + x2 + x3 + 1

y3 = x0x1x2 + x0x2 + x0 + x1x2x3 + x1x2 + x1x3 + x1 + x2 + x3 + 1

Permutation P3: y0 = x0x2x3 + x0x3 + x0 + x1 + x2x3 + x2 + 1

y1 = x0x1x2 + x0x1x3 + x0x1 + x0 + x1x2 + x2x3 + x3
y2 = x0x1 + x0x2 + x2 + x3 + 1

y3 = x0x2x3 + x0x2 + x0 + x1 + x2x3 + 1

Permutation P4: y0 = x0x2x3 + x0 + x1x2x3 + x2 + x3 + 1

y1 = x0x1x2 + x0x1 + x0 + x1x2 + x1x3 + x2
y2 = x0x1x2 + x0x1 + x0x2 + x1x3 + x1 + x2 + x3
y3 = x0 + x1 + x2x3

Protecting Triple-DES Against DPA 223

A.4 Algebraic Normal Form for S-Box 4

Permutation P1: y0 = x0x1x3 + x0x1 + x0x3 + x1 + x2x3 + x2 + 1

y1 = x0x1x2 + x0x1 + x0 + x1x2x3 + x2 + x3 + 1

y2 = x0x1 + x0x2 + x1x2x3 + x2x3 + x2 + x3 + 1

y3 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0 + x1 + x2x3
Permutation P2: y0 = x0x1x2 + x0x1 + x0 + x1x2x3 + x2 + x3 + 1

y1 = x0x1x3 + x0x1 + x0x3 + x1 + x2x3 + x2
y2 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0 + x1 + x2x3 + 1

y3 = x0x1 + x0x2 + x1x2x3 + x2x3 + x2 + x3 + 1

Permutation P3: y0 = x0x1 + x0x2 + x1x2x3 + x1x3 + x1 + x3
y1 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x1x3 + x1 + x2 + 1

y2 = x0x1x3 + x0x1 + x0 + x1x3 + x2x3 + x2 + x3
y3 = x0x1x2 + x0x2 + x0 + x1x2x3 + x1x2 + x1x3 + x2x3 + 1

Permutation P4: y0 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x1x3 + x1 + x2 + 1

y1 = x0x1 + x0x2 + x1x2x3 + x1x3 + x1 + x3 + 1

y2 = x0x1x2 + x0x2 + x0 + x1x2x3 + x1x2 + x1x3 + x2x3
y3 = x0x1x3 + x0x1 + x0 + x1x3 + x2x3 + x2 + x3

A.5 Algebraic Normal Form for S-Box 5

Permutation P1: y0 = x0x1x2 + x0x1 + x0x2x3 + x0x2 + x0x3 + x1x3 + x2
y1=x0x1x2+x0x1x3+x0x1+x0x2x3+x0x2+x0x3 + x0 + x1x2x3 + x1x2 + x1+x3+1

y2 = x0 + x1x3 + x1 + x2
y3 = x0x1x2 + x0x1x3 + x0x1 + x0 + x1x2 + x1x3 + x3

Permutation P2: y0 = x0x1x3 + x0x1 + x0x2x3 + x0 + x1x2 + x3
y1 = x0x1x3 + x0x1 + x0x2 + x1x3 + x2 + x3 + 1

y2 = x0x1x2 + x0x2 + x0 + x1x2x3 + x1x2 + x1x3 + x1 + x2x3 + 1

y3 = x0x1x3 + x0x1 + x0x2x3 + x1 + x2x3 + x2 + x3 + 1

Permutation P3: y0 = x0x1x3 + x0x2 + x1x2x3 + x1 + x2x3 + x3
y1 = x0x1x3 + x0x2x3 + x0 + x1x3 + x2x3 + x2 + x3
y2 = x0x1x2 + x0x1 + x0 + x1x2x3 + x1x3 + x1 + x2x3 + x2 + 1

y3 = x0x1 + x1x2x3 + x1x2 + x2 + x3
Permutation P4: y0 = x0x2x3 + x0 + x1x2x3 + x1x3 + x1 + x3 + 1

y1 = x0x2x3 + x0x3 + x0 + x1 + x2x3 + x2 + 1

y2 = x0x2 + x1x2x3 + x1x2 + x1 + x2x3 + x3
y3 = x0x1x2 + x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0x3 + x1x2x3 + x2 + x3 + 1

A.6 Algebraic Normal Form for S-Box 6

Permutation P1: y0 = x0x1x2 + x0 + x1x2x3 + x1x2 + x1x3 + x2x3 + x2
y1 = x0x1x3 + x0x2x3 + x0x2 + x1 + x2x3
y2 = x0x1x2 + x0x2 + x0 + x1x3 + x1 + x2 + x3 + 1

y3 = x0x1x2 + x0x1 + x0 + x1x2 + x2x3 + x3 + 1

Permutation P2: y0 = x0x1x3 + x0x1 + x0 + x1x3 + x2x3 + x2
y1 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0x3 + x1 + x2x3 + 1

y2 = x0x1x2 + x0x1x3 + x0x2 + x0 + x1x3 + x1 + x2 + x3
y3 = x0x2 + x1x2x3 + x1 + x2x3 + x2 + x3 + 1

Permutation P3: y0 = x0x1 + x0x2 + x0 + x1x2x3 + x1x3 + x2x3 + x2 + 1

y1 = x0x2x3 + x0 + x1 + x2 + x3
y2 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0 + x1x3 + x1 + x2x3 + x3
y3 = x0x1x2 + x0x1 + x0x2 + x1x2 + x2x3 + x2 + x3 + 1

Permutation P4: y0 = x0x1 + x0x2 + x0 + x2 + x3
y1 = x0x1x3 + x0x2 + x0x3 + x0 + x1 + x3
y2 = x0 + x1x2x3 + x1x3 + x1 + x2 + x3 + 1

y3 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x1x3 + x2 + x3

224 P. Sasdrich and M. Hutter

A.7 Algebraic Normal Form for S-Box 7

Permutation P1: y0 = x0x1x2 + x0x1 + x0 + x1x2 + x2x3 + x2 + x3
y1 = x0x1x3 + x0x1 + x0 + x1 + x2 + x3
y2 = x0 + x1x3 + x1 + x2x3 + x3 + 1

y3 = x0x1x2 + x0 + x1x2x3 + x1x3 + x2x3 + x2
Permutation P2: y0 = x0x1x2 + x0x1x3 + x0x1 + x0 + x1x2 + x1x3 + x2x3 + x2 + x3 + 1

y1 = x0x1x2 + x1x2x3 + x1x2 + x1 + x3
y2 = x0x1x2 + x0x1x3 + x0 + x1x3 + x1 + x2x3 + 1

y3 = x0 + x1x3 + x2 + 1

Permutation P3: y0 = x0x1x2 + x0x1 + x0 + x1x2 + x2x3 + x2 + x3 + 1

y1 = x0x1 + x0x2x3 + x0x2 + x1x3 + x1 + x2x3 + x3
y2 = x0x1x2 + x0 + x1x2x3 + x1x3 + x2x3 + x2
y3 = x0x1x3 + x0x2x3 + x0x2 + x1 + x2 + x3

Permutation P4: y0 = x0x1x3 + x0x3 + x0 + x1 + x2 + x3
y1 = x0x1x3 + x1x3 + x1 + x2 + x3 + 1

y2 = x0 + x1x2x3 + x2 + x3 + 1

y3 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0 + x1 + x3

A.8 Algebraic Normal Form for S-Box 8

Permutation P1: y0 = x0x1x3 + x0x1 + x0 + x1 + x2 + x3 + 1

y1 = x0x1 + x0x2 + x0 + x2 + x3
y2 = x0x1x3 + x0x2 + x0x3 + x0 + x1x3 + x1 + x2x3 + x3 + 1

y3 = x0x1x3 + x0x3 + x0 + x1x2x3 + x1x2 + x1x3 + x2 + 1

Permutation P2: y0 = x0x1x2 + x0x1x3 + x0x1 + x0x2 + x0x3 + x1x2 + x2x3 + x2 + x3 + 1

y1 = x0x1x3 + x0x1 + x0x2 + x0x3 + x0 + x1x2x3 + x1x3 + x2x3 + x2
y2 = x0x1x3 + x0x2 + x0x3 + x0 + x1x3 + x1 + x2x3 + x3
y3 = x0x1x3 + x0x1 + x0 + x1 + x2 + x3

Permutation P3: y0 = x0x1 + x0x2x3 + x0x2 + x1x3 + x1 + x2x3 + x3 + 1

y1 = x0x2x3 + x0x3 + x1 + x2 + x3 + 1

y2 = x0 + x1x2x3 + x1x2 + x2 + x3 + 1

y3 = x0x1x3 + x0x1 + x0x2 + x0x3 + x0 + x1x3 + x2
Permutation P4: y0 = x0x1x2 + x0x2 + x0 + x1x2x3 + x3

y1 = x0x1 + x0 + x1x2x3 + x1x3 + x2x3 + x2 + 1

y2 = x0x2 + x1 + x2 + x3
y3 = x0x1 + x0x2x3 + x0x2 + x1x3 + x1 + x2x3 + x3

References

1. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 19

3. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

4. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N.N., Vitkup, V.: Threshold
implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

5. Faust, S., Grosso, V., Del Pozo, S.M., Paglialonga, C., Standaert, F.-X.: Compos-
able masking schemes in the presence of physical defaults and the robust probing
model. Cryptology ePrint Archive, Report 2017/711 (2017). https://eprint.iacr.
org/2017/711

https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18
https://eprint.iacr.org/2017/711
https://eprint.iacr.org/2017/711

Protecting Triple-DES Against DPA 225

6. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P.: A testing methodology for side-
channel resistance validation. In: NIST Non-invasive Attack Testing Workshop
(2011)

7. Groß, H., Mangard, S.: Reconciling d + 1 masking in hardware and software. In:
Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 115–136.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 6

8. Groß, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

9. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

10. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

12. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-Bit S-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol.
7864, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40026-1 7

13. Leitold, H., Mayerwieser, W., Payer, U., Posch, K.C., Posch, R., Wolkerstorfer, J.:
A 155 Mbps triple-DES network encryptor. In: Koç, Ç.K., Paar, C. (eds.) CHES
2000. LNCS, vol. 1965, pp. 164–174. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44499-8 12

14. Maghrebi, H., Danger, J.-L., Flament, F., Guilley, S., Sauvage, L.: Evaluation of
countermeasure implementations based on Boolean masking to thwart side-channel
attacks. In: International Conference on Signals, Circuits and Systems, SCS 2009,
Jerba, Tunisia, 5–8 November 2009, pp. 1–6 (2009)

15. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing the Secrets
of Smart Cards. Springer, Heidelberg (2007). https://doi.org/10.1007/978-0-387-
38162-6

16. McLoone, M., McCanny, J.V.: High-performance FPGA implementation of DES
using a novel method for implementing the key schedule. IEE Proc.-Circ. Devices
Syst. 150(5), 373–378 (2003)

17. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a
very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20465-4 6

18. Nikova, S., Nikov, V., Rijmen, V.: Decomposition of permutations in a finite field.
IACR Cryptology ePrint Archive 2018:103 (2018)

19. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

20. Oswald, D., Paar, C.: Breaking mifare DESFire MF3ICD40: power analysis and
templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS,
vol. 6917, pp. 207–222. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23951-9 14

https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/3-540-44499-8_12
https://doi.org/10.1007/3-540-44499-8_12
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-23951-9_14
https://doi.org/10.1007/978-3-642-23951-9_14

226 P. Sasdrich and M. Hutter

21. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)

22. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

23. Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application to
tightening threshold implementations. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 263–276. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31301-6 16

24. Sasdrich, P., Moradi, A., Güneysu, T.: Hiding higher-order side-channel leakage.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 131–146. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 8

25. Sauvage, L., Guilley, S., Danger, J.-L., Mathieu, Y., Nassar, M.: Successful attack
on an FPGA-based WDDL DES cryptoprocessor without place and route con-
straints. In: Design, Automation and Test in Europe, DATE 2009, Nice, France,
20–24 April 2009, pp. 640–645 (2009)

26. Schneider, T., Moradi, A.: Leakage assessment methodology - extended version. J.
Cryptogr. Eng. 6(2), 85–99 (2016)

27. Standaert, F.-X., Rouvroy, G., Quisquater, J.-J.: FPGA implementations of the
DES and triple-des masked against power analysis attacks. In: Proceedings of
the 2006 International Conference on Field Programmable Logic and Applications
(FPL), Madrid, Spain, 28–30 August 2006, pp. 1–4 (2006)

28. Trimberger, S., Pang, R., Singh, A.: A 12 Gbps DES encryptor/decryptor core
in an FPGA. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp.
156–163. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8 11

29. Wilcox, D.C., Pierson, L.G., Robertson, P.J., Witzke, E.L., Gass, K.: A DES ASIC
suitable for network encryption at 10 Gbps and beyond. In: Koç, Ç.K., Paar,
C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 37–48. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48059-5 5

https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-319-31301-6_16
https://doi.org/10.1007/978-3-319-31301-6_16
https://doi.org/10.1007/978-3-319-52153-4_8
https://doi.org/10.1007/3-540-44499-8_11
https://doi.org/10.1007/3-540-48059-5_5

Threshold Implementation in Software

Case Study of PRESENT

Pascal Sasdrich(B), René Bock, and Amir Moradi

Horst Görtz Institute for IT-Security, Ruhr-Universität Bochum,
Bochum, Germany

{pascal.sasdrich,rene.bock,amir.moradi}@rub.de

Abstract. Masking is one of the predominantly deployed countermea-
sures in order to prevent side-channel analysis (SCA) attacks. Over the
years, various masking schemes have been proposed. However, the imple-
mentation of Boolean masking schemes has proven to be difficult in par-
ticular for embedded devices due to undisclosed architecture details and
device internals. In this article, we investigate the application of Thresh-
old Implementation (TI) in terms of Boolean masking in software using
the PRESENT cipher as a case study. Since TI has proven to be a proper
solution in order to implement Boolean masking for hardware circuits,
we apply the same concept for software implementations and compare it
to classical first- and second-order Boolean masking schemes. Eventually,
our practical security evaluations reveal that amongst all our considered
implementation variants only the TI can provide first-order security while
all others still exhibit detectable first-order leakage.

Keywords: Side-channel analysis · Boolean masking
Threshold Implementation · t-test · Micro-controller · AVR
PRESENT

1 Introduction

Among the protection schemes against side-channel analysis (SCA) attacks, it
can be dared to say that masking is the best studied countermeasure. Many
different kinds of masking schemes for both software and hardware platforms
have been introduced [1,5,10,13,15,20,25,29,35,37]. Each of them comes with
its own advantages (e.g., simplicity and scalability to high protection orders) and
disadvantages (e.g., high area and time overheads) and some with shortcomings
(see for example [19,27]). Our focus in this work is the realization of Boolean
masking scheme in software implementations.

It is already known that – due to the internal architecture of micro-
processors – masked implementations may still exhibit undesired exploitable
leakage (see [3] as an example). It indeed becomes more problematic when details
of the internal architecture of the underlying commercial micro-processor are
kept secret. For instance, the way the pipeline is built, the shared bus between
ALU and memory together with the fashion in that the masked program code
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 227–244, 2018.
https://doi.org/10.1007/978-3-319-89641-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_13&domain=pdf

228 P. Sasdrich et al.

is written, can impact the leakage of the resulting implementation. As a sim-
ple example, suppose that two Boolean shares (x1,x2) of a secret value x are
consecutively transferred through a bus, that leads to leakage depending on dis-
tance between the shares, i.e., x1 ⊕ x2 = x. The attack reported in [27] follows
the same principle. In this case, the implementation would exhibit first-order
leakage while it is not possible to detect such a flaw by analyzing the program
code without considering the details of the internal architecture.

On the other hand, Threshold Implementation has been introduced as a
proper way to realize Boolean masking in hardware platforms [30]. It provides
a suitable guideline on how to avoid heuristics in masked hardware (see [8,31])
that can provide provable first-order security. In short, in this paper we examine
the efficiency of applying such a scheme on a software implementation. As the
case study, we focus on the PRESENT cipher [7] and an Atmel AVR micro-
controller. We give details of different ways to realize a masked implementation
including first- and second-order classical Boolean masking and the Threshold
Implementation variant. Our investigations are based on the performance figures
(code size and latency) as well as security analysis. More precisely, we present
the result of leakage detection over practical SCA measurements.

Outline. In Sect. 2 we deal with the essential concepts to follow the rest of
the paper including Boolean masking, Threshold Implementation, and possible
ways to apply Threshold Implementation on PRESENT S-box. Section 3 gives
the details of different variants of the masked PRESENT implementations, and
in Sect. 4 the corresponding practical SCA analyses are presented. Finally, we
conclude our research in Sect. 5.

2 Concept

2.1 Notation

We denote single-bit random variables using lower-case characters while we indi-
cate multi-bit vectors by bold ones. Further, we use subscripts for elements within
a vector, bars for shared representations of random variables and superscripts
for elements of a shared representation. Functions are indicated using sans serif
fonts and sets are denoted by calligraphic ones.

Moreover, let us denote any vector x ∈ GF(2m) of m single-bit elements by
〈x1, . . . , xm〉. Then, the shared representation x̄ of a vector x under Boolean
masking with s shares is given as x̄ = (x1, . . . ,xs), where:

x =
s⊕

i=1

x̄ =
s⊕

i=1

xi =
s⊕

i=1

〈xi
1, . . . , x

i
m〉.

2.2 Boolean Masking

During the last two decades, Boolean masking has become the common app-
roach to prevent information leakage of digital devices through physical side

Threshold Implementation in Software 229

channels such as the instantaneous power consumption or electromagnetic radi-
ations. Since sensitive information can be extracted from those physical obser-
vations by means of statistical analysis based on statistical moments of different
orders, Boolean masking uses the concept of secret sharing to split a sensitive
variable x into s shares x1, . . . ,xs such that x = x1 ⊕ . . . ⊕ xs.

In general, Boolean masking can provide protection up to the d-th order
using s = d + 1 shares that have to be processed independently. We should
note that several physical effects, such as glitches or parasitic capacitances, can
affect the security and lever the protection mechanism. Nevertheless, while linear
operations can be applied independently to each share (due to the transparency
of XOR over Boolean masking), all challenges of realizing a Boolean masked
implementation are due to the non-linear functions (S-boxes) involved in any
cryptographic primitive. To this end, masking in software is realized following
two different approaches:

• The S-box is represented by a sequence of operations including a unique (or a
limited number of) non-linear function, e.g., a 2-bit AND gate. Then, based
on the underlying protection order d, the masked (secure) version of such a
unique non-linear function is developed as a gadget. As the final step, the
operations of the S-box are replaced by their secure version. This needs fresh
randomness every time the secure non-linear function (the gadget) is called,
and due to the sequential nature of the algorithm its timing overhead is not
negligible compared to a naive unprotected implementation. The interested
reader is referred to [17,18,37] for a couple of examples.

• Alternatively, the S-box is realized using a randomized look-up table S′ in
terms of

S′(x ⊕ m1 ⊕ . . . ⊕ ms−1) = S(x) ⊕ n1 ⊕ . . . ⊕ ns−1, (1)

with m1, . . . ,ms−1 considered as input masks and n1, . . . ,ns−1 as output
masks. Depending on the S-box size and the number of shares s, it is usually
impossible to precompute and store the masked S-box S′ for all possible masks
(known as Global Look-Up-Table [34]). Therefore, S′ is frequently recomputed
to avoid large memory requirements. Examples include but are not restricted
to [36,38], and [41], where such a construction for AES at arbitrary order is
presented while its flaw has been reported in [11].1

In this work, our focus is on the second approach, i.e., the pre-computed and
randomized look-up table S′, to which we refer as classical Boolean masking.
In case Eq. (1) is implemented as single look-up table, the input and output
masks have to fulfill certain criteria in order to realize a secure Boolean masking
scheme. In particular, input and output masks cannot be the same. Otherwise,
if the masked S-box input x ⊕ m1 ⊕ . . . ⊕ ms−1 is overwritten by the masked
S-box output S(x) ⊕m1 ⊕ . . . ⊕ms−1, the leakage depends on unmasked value
x ⊕ S(x) [27] (see [4] and [26, Chap. 9] as examples where such a flaw exists).

1 Alternatively, there exist other solutions [9,14,15] which make use of the S-box
construction, e.g., GF(28) inversion of AES S-box.

230 P. Sasdrich et al.

Hence, in a conservative manner the output masks have to be independent of
the input masks. However, since this might be impracticable particularly for
higher orders, more practical approaches may use a function to derive the out-
put masks from the input masks but have to ensure the uniformity. More pre-
cisely, if ni∈{1,...,s−1} = f(mi), it must be ensured that ni ⊕mi is uniform over
GF(2m). Otherwise, the above expressed distance (between the S-box input and
output) would not be uniformly masked. We should also refer to low-entropy
masking schemes [5,29] which are designed to enable keeping all masked tables
in memory, i.e., no recomputation and mask update is required, but at the cost of
limited protection [19,24,42]. For example, the Rotating S-box Masking (RSM)
construction introduced in [29] (and used in DPA contest V4.1) makes use of a
reduced 8-bit mask space of 24 elements {m0, . . . ,m15}. This allowed the authors
to precompute all masked S-boxes as S′

i(x⊕mi) = S(x) ⊕mi+1. In means that
the output mask is derived from the input mask as f(mi) = mi+1. As shown
in [27], the distance between the input mask and the output mask mi ⊕ mi+1

is not uniform, hence first-order leakage considering the distance between the
S-box input and output x ⊕ S(x) is detectable.

2.3 Threshold Implementation

As a special case of Boolean masking using multi-party computation, Threshold
Implementation (TI) has been proposed by Nikova et al. [30] as a provable secure
first-order masking scheme for digital circuits even in the presence of glitches.
In this work, we make use of its basic concept in software, which is defined by
the following properties.

Correctness. In order to evaluate any function F(x) = y on the shared repre-
sentation x̄ = (x1, . . . ,xs) with s shares, we can use corresponding component
functions fi∈{1,...,n}(x̄) = yi in order to evaluate F for each output share indi-
vidually but have to ensure correctness, i.e., the result ȳ = (y1, . . . ,yn) has to
be the shared representation of y with n ≥ s.

Non-completeness. Security in the sense of the first-order statistical moment
is achieved using non-complete component functions fi∈{1,...,n}, i.e., each result-
ing share (y1, . . . ,yn) should be independent of at least one input share.

Uniformity. The security of Boolean masking schemes is based on the uniform
distribution of the masks. Supposing that the input of a TI function is uniformly
shared, its output should also be a uniform sharing since it will be used as an
input to another shared function (e.g., next cipher rounds). This means, given
all possible input sharings X = {x̄|⊕s

i=1 x̄ = x}, the set of all possible output
sharings {f1, . . . , fn|x̄ = X} should be uniformly drawn from Y = {ȳ|⊕n

i=1 ȳ =
y} as all possible sharings of y = F(x). Otherwise, the output would be shared
with masks drawn from a biased source, and the first-order security cannot be
guaranteed.

Threshold Implementation in Software 231

2.4 Application to PRESENT Cipher

PRESENT has been designed as Substitution-Permutation Network (SPN) with 31
rounds, a 64-bit block size and either an 80-bit or 128-bit key size. Each round
consists of a key addition, succeeded by a confusion phase which consists of the
same 4-bit S-box that is applied to all 4-bit words of the state in parallel before
the bit permutation layer2 provides diffusion. In particular, the S-box is a non-
linear, cubic, 4-bit function with truth table S : C56B90AD3EF84712. All round
keys are derived from the initial key using bit-wise rotations, addition of round
constants and the application of the S-box. Eventually, a final post-whitening
key addition is performed after the last round.

Table 1. Non-linear function N(m) = n.

m 0 1 2 3 4 5 6 7 8 9 A B C D E F

n E 4 F 9 0 3 D 5 7 8 A 2 B 1 6 C

m ⊕ n E 5 D A 4 6 B 2 F 1 0 9 7 C 8 3

Boolean Masking. Classical first-order Boolean masking uses 2 shares x1,x2

with x1 = x ⊕ m and x2 = m. Due to its small size (4-bit to 4-bit), the entire
masked S-box as an 8-bit to 4-bit look-up table S′(x⊕m,m) = S(x)⊕n can fit
into even a restricted memory. Hence, the recomputation of the masked S-box
when m changes is not required. In this case we need to derive the output mask
n from the input mask m in such a way that the uniformity of m ⊕ n always
holds. An example of such a function, so-called n = N(m) is given in Table 1.
Note that we have derived this table by a search through random bijections
m → N(m).

Threshold Implementation. In several articles, the TI concept has been
applied on the PRESENT S-box leading to first- and second-order uniform TI
constructions. Under the TI definitions, the minimum number of required shares
s depends not only on the desired level of security (order d) but also on the
algebraic degree t of the underlying S-box, i.e., s > t d. Since the PRESENT S-box
is a cubic bijection (t = 3), for first-order security (d = 1) at least s > 3 shares
are required. Therefore, all the reported TI PRESENT designs have followed a
decomposition fashion by representing the S-box by two quadratic bijections as
S = F◦G. This allows to reduce the number of shares to 3 with the cost of adding
a register between the shared functions F and G for hardware implementations.

In the first relevant article [33], the authors have followed a non-systematic
way and provided F and G whose direct sharing3 automatically satisfy the unifor-
mity, i.e., a first-order secure PRESENT S-box. In other works [28,39], the authors
followed the principle explained in [6] and decomposed the S-box into forms like

2 A detailed description and discussion of the permutation layer can be found in the
original article [7].

3 See [30] for the definition and examples for direct sharing.

232 P. Sasdrich et al.

S = A′′ ◦ Q2 ◦ A′ ◦ Q1 ◦ A, (2)

with A,A′, and A′′ being affine transformations, and Q1 and Q2 the identifiers of
quadratic classes whose uniform sharing can be easily achieved by direct sharing.
Since application of affine transformations does not change the uniformity, such
a construction inherently fulfills the uniformity property.

However, since not all 4-bit S-boxes can be decomposed following the con-
cept of Eq. (2), Kutzner et al. proposed the notion of factorization in order to
enable 3-share decomposition for all possible 4-bit permutations [21–23]. Fortu-
nately, the PRESENT S-box belongs to those permutations that natively allow a
decomposition into quadratic terms which enables more efficient designs.

According to [6] the PRESENT S-box belongs to the class C266 which can
be decomposed by quadratic classes4 (Q12,Q12), (Q294,Q299), (Q299,Q294), and
(Q299,Q299) as identifier for (Q1, Q2) in Eq. (2). As an example, the (Q299,Q294)
case has been used in [28] and (Q12,Q12) in [39].

We selected (Q12,Q12) with Q12 :0123456789CDEFAB, A :01AB892345EFCD67,
A′ : 0B835ED61A924FC7, and A′′ : C98D6327AFEB0541. However, since our goal is
to realize such functions (including the component functions of the shared Q12)
by means of look-up tables on software, we represent the S-box as

S = A′′ ◦ Q12 ◦ A︸ ︷︷ ︸
F

◦A−1 ◦ A′ ◦ A′′−1
︸ ︷︷ ︸

A′′′

◦A′′ ◦ Q12 ◦ A︸ ︷︷ ︸
F

. (3)

Hence, it lets us reduce the required look-up tables to F : C905AF8D63EB4127
and A′′′ : 8FDACB9E43160752.

Applying direct sharing on Q12 would lead to a unique component function
fQ12(〈a1, b1, c1, d1〉, 〈a2, b2, c2, d2〉) = 〈e, f, g, h〉 as

e = a1, f = b1 + b2d2 + c2d2 + d2b1 + d2c1 + b2d1 + c2d1,

g = c1 + b2d2 + d2b1 + b2d1, h = d1, (4)

with 〈a1, b1, c1, d1〉 the 4-bit input share x1 (respectively for input share x2),
〈e, f, g, h〉 the 4-bit output share, and a and e the least significant bits. Hence,
the three 4-bit output shares ȳ = (y1,y2,y3) provided by y1 = fQ12(x

2,x3),
y2 = fQ12(x

3,x1) and y3 = fQ12(x
1,x2) make a uniform first-order TI of Q12.

In a software implementation, we can make a look-up table

T(xi,xj) = A′′ (fQ12

(
A

(
xi

)
,A

(
xj

)))
, (5)

which is a component function of the shared function F in Eq.(3). Therefore, in
addition to a 4-bit to 4-bit look-up table A′′′(.) it is sufficient to implement T(., .)
as an 8-bit to 4-bit look-up table to fully realize the TI S-box by 6 times look-ups
through T(., .) and 3 times look-ups through A′′′(.) (see Eq. (3)). As a reference
to our construction, we below list the truth table of T(a, b). Interestingly, the
result is independent of the LSB of input b (see also Eq. (4) which is independent
of a2), hence we only have to store half of the table and can reduce memory
requirements (Table 2).
4 Excluding the quadratic class Q300 whose uniform sharing needs two stages.

Threshold Implementation in Software 233

Table 2. Truth table for T(a, b)

a b

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 c c 2 2 c c c c c c 6 6 8 8 c c

1 9 9 7 7 9 9 9 9 9 9 3 3 d d 9 9

2 e e 0 0 0 0 0 0 a a 0 0 0 0 4 4

3 b b 5 5 5 5 5 5 f f 5 5 5 5 1 1

4 a a a a a a 4 4 e e a a a a 0 0

5 f f f f f f 1 1 b b f f f f 5 5

6 8 8 8 8 6 6 8 8 8 8 c c 2 2 8 8

7 d d d d 3 3 d d d d 9 9 7 7 d d

8 6 6 c c 2 2 6 6 6 6 8 8 6 6 6 6

9 3 3 9 9 7 7 3 3 3 3 d d 3 3 3 3

a 4 4 e e e e a a 0 0 e e e e e e

b 1 1 b b b b f f 5 5 b b b b b b

c 0 0 4 4 4 4 e e 4 4 4 4 4 4 a a

d 5 5 1 1 1 1 b b 1 1 1 1 1 1 f f

e 2 2 6 6 8 8 2 2 2 2 2 2 c c 2 2

f 7 7 3 3 d d 7 7 7 7 7 7 9 9 7 7

Higher-Order Boolean Masking. The above explained TI construction is a
2nd-order Boolean masking. Therefore, ignoring the non-completeness property
of TI (which indeed has been defined considering hardware platforms), we can
realize larger look-up tables hence reducing the latency. To this end we follow
two procedures:

• As a classical 2nd-order Boolean masking we can implement a 12-bit to 12-
bit look-up table which realizes the entire masked S-box. More precisely, we
can build a look-up table T(x1,x2,x3) = (y1,y2,y3) with y1 ⊕ y2 ⊕ y3 =
S(x1 ⊕x2 ⊕x3). In order to ensure the uniformity, we can build such a look-
up table in such a way that it realizes the above-explained TI S-box. In the
following sections, this approach is referred to as “classical 2nd-order Boolean
masking”.

• As an alternative, we can build a 12-bit to 12-bit look-up table T(., ., .) that
implements the shared function F (see Eq. (3)). Hence, by looking-up through
such a table T(., ., .) twice and thrice through the 4-bit to 4-bit look-up table
A′′′, the output of the masked S-box can be computed which also guaran-
tees the uniformity. We refer to this scheme as “classical 2nd-order Boolean
masking with affine transformation”.

234 P. Sasdrich et al.

In addition to the two above-expressed approaches, we consider two other imple-
mentation variants including (i) classical 1st-order Boolean masking and (ii)
Threshold Implementation in our practical experiments presented in the next
sections.

3 Implementation

In this section we introduce the target platform and describe and compare the
performance figures of our implementations.

3.1 Target Platform

As the target platform, we have chosen an Atmel ATmega163 which is an 8-bit
micro-controller with 16KB programmable flash memory and 1024B internal
SRAM. It is constructed of two internal pipeline stages, provides 32 general
purpose 8-bit registers, and uses an 8-bit RISC instruction set that can be pro-
grammed either using C compiler or AVR Assembler. In our experiments, we
opted the micro-controller to operate at a frequency of 4MHz. This choice has
been made to obtain accurate side-channel measurements.

3.2 Pseudo-Code

Below we provide further implementation details on the realization of our con-
sidered implementation variants of Sect. 2. In particular, we want to stress that
all implementations have been realized using AVR Assembler in order to main-
tain maximum control over the executed code and to prevent problems due to
adverse compiler optimizations [3].

In general, all implementations consist of a key schedule routine and a round
function that is sub-divided into key addition, substitution, and permutation
layer. Since we opted to implement a key schedule without shared keys, this
routine is the same for all implementation variants. Moreover, the AddRoundKey
and pLayer are shared among the different variants as well and only the sLayer
routine differs depending on the underlying masking scheme.

In the following, we provide pseudo-codes for all of our implementations and
highlight important aspects and optimizations that have been applied.

Classical 1st-Order Boolean Masking. Algorithm 3.1 outlines our implementation
of the classical Boolean masking scheme presented in Sect. 2.4 using a masked
S-box look-up table S′ and a non-linear mask update function N chosen in accor-
dance with our presented concept. During the design and implementation pro-
cess, we particularly took care of the processing of intermediate values in order
to avoid side-channel leakage due to the distance between two successively pro-
cessed values.

In general, if a masked value x1 = x ⊕ m and its mask x2 = m are pro-
cessed consecutively, internal registers may be overwritten and leak through the

Threshold Implementation in Software 235

Algorithm 3.1. Classical 1st-Order Boolean Masking

Input : x̄ = (x ⊕ m,m) : shared plaintext
k : cipher key

Output: ȳ = (y1,y2) : shared ciphertext

begin
rk ← KeySchedule(k)

for i ← 1 to 31 do
x1 ← x1 ⊕ rk[i]

x̄ ← (S′(x1,x2),N(x2))

x1 ← P(x1)
x2 ← P(x2)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

end

distance of these values, i.e., x1 ⊕ x2 = x. In particular for load and store
instructions of the ATmega163 an internal shadow register is involved in order
to buffer the processed data which then creates a remnant of previous memory
accesses [32]. Since this shadow register is not directly accessible, it can only be
cleared by reading or writing a dummy value (e.g., 0). More precisely, every read
and write operation has to be preceded by such a clear instruction to prevent
leakage due to the distance between the consecutively accessed data. However,
this holds not only for the shadow register but also for every internal register
that is used for holding sensitive data.

Moreover, since the micro-controller has two internal pipeline stages [2], we
have to ensure that a masked value and its corresponding mask are never pro-
cessed consecutively, i.e., they never appear in the same pipeline. In particular
for the substitution layer, this may occur if the two shares are loaded to perform
the table look-up. In order to avoid insertion of unnecessary NOP operations, we
start with loading the entire 64 bits of the first share into eight registers before
we load the next 64 bits of the second share into another eight registers. Still,
we process the last 8-bit chunk of the first share and the first 8-bit chunk of
the second share in the same pipeline. However, since the mask is drawn uni-
formly from a random source, it is unrelated to the first share which is masked
by another random value.

Threshold Implementation. Algorithm 3.2 presents the pseudo-code for our TI
design according to Sect. 2.4, using the decomposition based on Q12 and an affine
transformation A′′′ as described in Eq. (3). As mentioned before, this decompo-
sition improves the efficiency by limiting the number of look-up tables that have
to be stored (one 8-bit to 4-bit and one 4-bit to 4-bit).

236 P. Sasdrich et al.

Algorithm 3.2. Threshold Implementation

Input : x̄ = (x1,x2,x3) : shared plaintext
k : cipher key

Output: ȳ = (y1,y2,y3) : shared ciphertext

begin
rk ← KeySchedule(k)

for i ← 1 to 31 do
x1 ← x1 ⊕ rk[i]

t3 ← T(x1,x2)
t2 ← T(x3,x1)
t1 ← T(x2,x3)

t3 ← A′′′(t3)
t2 ← A′′′(t2)
t1 ← A′′′(t1)

x3 ← T(t1, t2)
x2 ← T(t3, t1)
x1 ← T(t2, t3)

x1 ← P(x1)
x2 ← P(x2)
x3 ← P(x3)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

y3 ← x3

end

Again, processing the shared values has to be done carefully in order to avoid
side-channel leakage due to internal (shadow) registers and the pipeline of the
micro-controller. Fortunately, compared to the classical Boolean masking – due
to its non-completeness property – our TI design always processes only two
shares at once. However, special care has to be taken for the order of processing
the individual shares (for all implementation variants). For instance, starting
with the addition of the round key to the first share x1 and updating this
share using the look-up table T would result in unintentional leakage since both
shares x2 and x3 have to be loaded after x1 has been processed. Due to this, our
implementation starts with updating the third share first before the remaining
shares are processed (see Algorithm 3.2).

Classical 2nd-Order Boolean Masking. This implementation, as presented in
Algorithm 3.3, uses three shares (similar to the TI), but the masked S-box instead
is realized by a single look-up table T(., ., .) as described in Sect. 2.4.

In particular the realization of a 12-bit to 12-bit look-up table on an 8-
bit micro-controller is challenging. On one hand, the 12-bit look-up table will

Threshold Implementation in Software 237

Algorithm 3.3. Classical 2nd-Order Boolean Masking

Input : x̄ = (x1,x2,x3) : shared plaintext
k : cipher key

Output: ȳ = (y1,y2,y3) : shared ciphertext

begin
rk ← KeySchedule(k)

for i ← 1 to 31 do
x1 ← x1 ⊕ rk[i]

x̄ ← T(x1,x2,x3)

x1 ← P(x1)
x2 ← P(x2)
x3 ← P(x3)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

y3 ← x3

end

increase the memory requirements significantly. On the other hand, 12-bit
addresses can be realized easily by combining two 8-bit registers but at the
cost of wasting the four most significant bits. Still, we opted for this approach
in order to reduce the overhead due to additional and more complex control
logic as well as to guarantee a constant-time implementation (i.e., to prevent
data-dependent timings).

Classical 2nd-Order Boolean Masking with Affine Transformation. Eventually,
Algorithm 3.4 extends the classical second-order Boolean masking using an affine
transformation in order to realize the masked S-box. In particular, the table look-
up is done twice and interleaved by applying the affine transformations (see
Eq. (3)). However, this variant still has to face the same challenges as the former
approach. The motivation to include this variant in our analyses is to examine
whether the algebraic degree of the underlying function of the masked look-
up table has any effect on observable SCA leakage. The former implementation
variant is not formed following the TI principles; its look-up tables have only
been extracted from a TI construction hence fulfilling the uniformity. However,
this variant additionally stays with 3 shares per quadratic function.

3.3 Comparison

Table 3 provides a summary and comparison of our implementation variants
in terms of code size, memory usage (SRAM), and performance (clock cycles).
Since all implementations use the same key schedule routine, 256B of the SRAM
usage of all variants are due to the 32 derived round keys and only the remaining
memory usage is implementation-specific.

238 P. Sasdrich et al.

Algorithm 3.4. Classical 2nd-Order Boolean Masking with
Affine Transformation
Input : x̄ = (x1,x2,x3) : shared plaintext

k : cipher key
Output: ȳ = (y1,y2,y3) : shared ciphertext

begin
rk ← KeySchedule(k)

for i ← 1 to 31 do
x1 ← x1 ⊕ rk[i]

x̄ ← T(x1,x2,x3)

x1 ← A′′′(x1)
x2 ← A′′′(x2)
x3 ← A′′′(x3)

x̄ ← T(x1,x2,x3)

x1 ← P(x1)
x2 ← P(x2)
x3 ← P(x3)

end

y1 ← x1 ⊕ rk[32]
y2 ← x2

y3 ← x3

end

The code size of each implementation comprises the key schedule and the
round function including all look-up tables which are stored in the flash mem-
ory. Obviously, the classical 2nd-order Boolean masking schemes have the largest
code due to the 12-bit to 12-bit look-up tables that require complex handling on
an 8-bit micro-controller. Similarly, the TI design has a slightly larger code size
than the classical 1st-order Boolean masking due to its more extensive substitu-
tion layer that has to handle three shares.

Considering the performance, we measured the latency in terms of clock
cycles using the simulator of the Atmel Studio 6.2 environment. In order to
prevent any vulnerabilities against timing attacks, we ensured data-independent
and constant execution time for all of our implementations. Notably, the latency
is particularly dependent on the number of shares and decomposition of the
S-box. Hence, the classical 1st-order Boolean masking scheme has the smallest
latency, since it operates on only two shares and the substitution layer is realized
as a single table look-up. Consequently, the TI design has the highest number
of clock cycles, since it uses three shares and the S-box is realized by six table
look-ups interleaved with three affine transformations.

Threshold Implementation in Software 239

Table 3. Comparison between different implementation variants

Variant Code Memory Time

(Bytes) (Bytes) (Cycles)

Classical 1st-order Boolean masking 1 542 272 53 861

Threshold implementation 1 576 304 165 802

Classical 2nd-order Boolean masking 9 328 280 91 557

Classical 2nd-order Boolean masking with affine 9 448 280 148 012

4 Evaluation

4.1 Measurement Setup

For the SCA evaluations, by means of a digital oscilloscope we measured the
voltage drop over an 1Ω resistor placed at the GND path of the target micro-
controller. During the measurements, the micro-controller was operating at a
low clock frequency of 4 MHz (provided internally), and the traces have been
collected at a sampling rate of 125 MS/s. We have also made use of one of the
I/O pins of the micro-controller to provide a stable and jitter-free signal to trigger
the oscilloscope.

4.2 Non-specific Statistical t-Test

During the entire measurements, we kept the key constant (allowing us to forgo
masking of the key schedule), and provided the input masks externally, i.e., the
random mt have been generated by a PC and in addition to the masked plain-
texts xt are sent to the micro-controller. This way we could easily examine and
ensure the uniform distribution of the masks. As a metric to evaluate the exis-
tence of 1st-order leakage in our implementations, we applied the fixed versus
random t-test [16,40]. In short, a fixed plaintext is selected, and prior to every
measurement a coin is flipped, based on that either the fixed plaintext or a ran-
dom plaintext is given to the micro-controller. Indeed, such a t-test can examine
whether there is a detectable leakage in the measurements without giving any
impression about its exploitability. However, the intuition is that if the leakage is
exploitable, it is also detectable. Therefore, as a conservative condition, if there
is no detectable leakage, no exploitable leakage exists.

4.3 Results

For each of our considered implementation variants we collected 100 000 power
traces following the procedure explained in [40]. In our analyses we focused on
the first cipher round as well as on a 1st-order t-test.

Figure 1 presents the corresponding evaluation results for all four implemen-
tations. Interestingly, it can be seen that the TI design is the only variant which

240 P. Sasdrich et al.

0 0.12 0.36 0.48
-237

0

145

Time [ms]

t

(a) Classical 1st-Order Boolean Masking

0 0.32 0.96 1.28

-4.5

0

4.5

Time [ms]

t

(b) Threshold Implementation

0 0.18 0.54 0.72

-11

0

12

Time [ms]

t

(c) Classical 2nd-Order Boolean Masking

0 0.32 0.96 1.28

-12

0

11

Time [ms]

t

(d) Classical 2nd-Order Boolean Masking with Affine Transformations

Fig. 1. SCA evaluation results based on 1st-order non-specific t-test using 100 000
power traces.

does not exhibit detectable leakage. In all other implementations, either with 2
shares or 3 shares, 1st-order leakage is detectable. We have localized the points
in time where the t statistics exceeds the 4.5 threshold; they are exactly corre-
sponding to the timing of the performed table look-ups.

Threshold Implementation in Software 241

Notably, we observe the 1st-order leakage for both variants of the classical
2nd-order Boolean masking. We should highlight that the only difference between
these two implementations and the TI design is the way the look-up tables are
realized. In these two variants all three shares are present at the input of the
table look-ups while in the TI design at most two shares form the input of every
table look-up. Our intuition is that the observed leakage is due to the unknown
details of the internal architecture of the underlying micro-controller. Similar
to the shadow register which we could identify to buffer data for load and store
operations, further hidden architecture details of the memory bus and unit could
be responsible for the detected leakage. To this end, it seems that the memory
control unit exhibits non-linear leakage depending on the given address during
the table look-ups. Hence, following the non-completeness principle of TI seems
to be a suitable choice which avoids all three shares to appear as an address
for a look-up, since it is hardly possible to get the necessary but missing details
of the architecture. We should emphasize that we have just shown that if all
shares appear at the address of a table look-up, there exists detectable first-order
leakage. On one hand, with the current experiments we cannot comment on the
exploitability of such observed leakages. On the other hand, the very high t-test
statistics for the classical 1st-order Boolean masking shown in Fig. 1(a) induce
the exploitability of the leakage.

5 Conclusion

In this paper, we have investigated the application of Threshold Implementations
for software implementations in order to provide first-order security against side-
channel analysis attacks. In this context, we have developed and implemented a
classical first-order Boolean masking scheme, two second-order Boolean masking
schemes and a first-order TI. In general, our findings show that the classical
Boolean masking schemes (through pre-computed look-up tables) could not be
implemented securely on the chosen AVR micro-controller. More precisely, only
the first-order TI variant does not exhibit detectable first-order leakage using
up to 100 000 power measurements.

In addition to our practical side-channel evaluation, we could efficiently real-
ize the Threshold Implementation in terms of code size and memory require-
ments, eventually implementing the TI variant with 1 576B of code and 304B
of memory which is close to the classical Boolean masking with only two shares.
However, the code size and memory reduction comes at cost of increased latency
results in terms of clock cycles. In particular, the TI requires about 165 k cycles
whereas the first-order classical Boolean masking takes only 53 k clock cycles.
All in all, this work shows that although TI has been proposed for hardware
platforms, the concept can be transferred and applied for software as well in
order to realize first-order secure implementations.

Acknowledgments. The work described in this paper has been supported in part by
the German Federal Ministry of Education and Research BMBF (grant nr. 16KIS0602
VeriSec).

242 P. Sasdrich et al.

References

1. Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against
some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 309–318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44709-1 26

2. Atmel: 8-bit AVR Microcontroller with 16K Bytes In-System Programmable Flash,
Rev. 1142E-02/2003

3. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

4. Bayrak, A.G., Regazzoni, F., Novo, D., Brisk, P., Standaert, F.-X., Ienne, P.: Auto-
matic application of power analysis countermeasures. IEEE Trans. Comput. 64(2),
329–341 (2015)

5. Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: A low-entropy first-degree secure
provable masking scheme for resource-constrained devices. In: Proceedings of
the Workshop on Embedded Systems Security, WESS 2013, Montreal, Quebec,
Canada, 29 September–4 October 2013, pp. 7:1–7:10. ACM (2013)

6. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
implementations of small S-boxes. Crypt. Commun. 7(1), 3–33 (2015)

7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

8. Canright, D., Batina, L.: A very compact “perfectly masked” S-box for AES. In:
Bellovin, S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS,
vol. 5037, pp. 446–459. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-68914-0 27

9. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order mask-
ing schemes for S-boxes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp.
366–384. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-
5 21

10. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

11. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order
masking scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol.
4727, pp. 28–44. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74735-2 3

12. Francillon, A., Rohatgi, P. (eds.): CARDIS 2013. LNCS, vol. 8419. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5

13. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19574-7 18

14. Genelle, L., Prouff, E., Quisquater, M.: Secure multiplicative masking of power
functions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 200–
217. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2 13

https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/3-540-44709-1_26
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-540-74735-2_3
https://doi.org/10.1007/978-3-540-74735-2_3
https://doi.org/10.1007/978-3-319-08302-5
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-13708-2_13

Threshold Implementation in Software 243

15. Genelle, L., Prouff, E., Quisquater, M.: Thwarting higher-order side channel anal-
ysis with additive and multiplicative maskings. In: Preneel, B., Takagi, T. (eds.)
CHES 2011. LNCS, vol. 6917, pp. 240–255. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23951-9 16

16. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel
resistance validation. In: NIST Non-invasive Attack Testing Workshop (2011)

17. Goudarzi, D., Rivain, M.: How fast can higher-order masking be in software? In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 567–
597. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 20

18. Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked S-boxes processing –
a step forward. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 251–266. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 16

19. Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited.
In: Francillon and Rohatgi [12], pp. 33–43

20. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

21. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implemen-
tations for all 4-bit S-boxes. In: Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS,
vol. 8565, pp. 91–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12160-4 6

22. Kutzner, S., Nguyen, P.H., Poschmann, A., Stöttinger, M.: Minimizing S-boxes
in hardware by utilizing linear transformations. In: Pointcheval, D., Vergnaud,
D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 235–250. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06734-6 15

23. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-bit s-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol.
7864, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40026-1 7

24. Kutzner, S., Poschmann, A.: On the security of RSM - presenting 5 first- and
second-order attacks. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp.
299–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0 20

25. Maghrebi, H., Guilley, S., Danger, J.-L.: Leakage squeezing countermeasure against
high-order attacks. In: Ardagna, C.A., Zhou, J. (eds.) WISTP 2011. LNCS, vol.
6633, pp. 208–223. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-21040-2 14

26. Mangard, S., Oswald, E., Popp, T.: Poweranalysis Attacks - Revealing the Secrets
of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-
38162-6

27. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 324–342.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5 20

28. Moradi, A., Wild, A.: Assessment of hiding the higher-order leakages in hardware.
In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 453–474.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 23

29. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Rosenstiel,
W., Thiele, L., (eds.) 2012 Design, Automation and Test in Europe Conference and
Exhibition, DATE 2012, Dresden, Germany, 12–16 March 2012, pp. 1173–1178.
IEEE (2012)

https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-642-23951-9_16
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-06734-6_16
https://doi.org/10.1007/978-3-319-06734-6_16
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-319-12160-4_6
https://doi.org/10.1007/978-3-319-12160-4_6
https://doi.org/10.1007/978-3-319-06734-6_15
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/978-3-319-10175-0_20
https://doi.org/10.1007/978-3-642-21040-2_14
https://doi.org/10.1007/978-3-642-21040-2_14
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-319-07536-5_20
https://doi.org/10.1007/978-3-662-48324-4_23

244 P. Sasdrich et al.

30. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

31. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis
resistant description of the AES S-box. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 413–423. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760 28

32. Papagiannopoulos, K., Veshchikov, N.: Mind the gap: towards secure 1st-order
masking in software. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol. 10348, pp.
282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64647-3 17

33. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)

34. Prouff, E., Rivain, M.: A generic method for secure Sbox implementation. In:
Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77535-5 17

35. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel, B., Takagi, T. (eds.) CHES
2011. LNCS, vol. 6917, pp. 63–78. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 5

36. Rivain, M., Dottax, E., Prouff, E.: Block ciphers implementations provably secure
against second order side channel analysis. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 127–143. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-71039-4 8

37. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

38. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04138-9 13

39. Sasdrich, P., Moradi, A., Güneysu, T.: Affine equivalence and its application to
tightening threshold implementations. In: Dunkelman, O., Keliher, L. (eds.) SAC
2015. LNCS, vol. 9566, pp. 263–276. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31301-6 16

40. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

41. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.)
CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://
doi.org/10.1007/11605805 14

42. Ye, X., Eisenbarth, T.: On the vulnerability of low entropy masking schemes. In:
Francillon and Rohatgi [12], pp. 44–60

https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/978-3-540-77535-5_17
https://doi.org/10.1007/978-3-642-23951-9_5
https://doi.org/10.1007/978-3-642-23951-9_5
https://doi.org/10.1007/978-3-540-71039-4_8
https://doi.org/10.1007/978-3-540-71039-4_8
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-319-31301-6_16
https://doi.org/10.1007/978-3-319-31301-6_16
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14

A First-Order SCA Resistant AES
Without Fresh Randomness

Felix Wegener(B) and Amir Moradi

Horst Görtz Institute for IT Security, Ruhr-Universität Bochum,
Bochum, Germany

{felix.wegener,amir.moradi}@rub.de

Abstract. Since the advent of Differential Power Analysis (DPA) in the
late 1990s protecting embedded devices against Side-Channel Analysis
(SCA) attacks has been a major research effort. Even though many differ-
ent first-order secure masking schemes are available today, when applied
to the AES S-box they all require fresh random bits in every evaluation.
As the quality criteria for generating random numbers on an embedded
device are not well understood, an integrated Random Number Genera-
tor (RNG) can be the weak spot of any protected implementation and
may invalidate an otherwise secure implementation. We present a new
construction based on Threshold Implementations and Changing of the
Guards to realize a first-order secure AES with zero per-round random-
ness. Hence, our design does not need a built-in RNG, thereby enhancing
security and reducing the overhead.

1 Introduction

In 1999 Kocher et al. introduced the extraction of key information from the power
consumption of a hardware device during cryptographic computations [22]. To
break a symmetric cipher, key hypotheses are formed that categories power
traces into groups and a statistical test is performed to estimate the likelihood
of a correct guess. This process is known as Differential Power Analysis (DPA).

To prevent side-channel analysis (SCA) attacks extensive research in counter-
measures has been undertaken [16,18,20,28,30]. A notable protection method
is Threshold Implementation (TI) [25], as it grants provable security against
first-order SCA attacks and can potentially be realized without additional ran-
domness. TI demands three properties to ensure the security of an implemen-
tation: correctness, non-completeness and uniformity. While correctness simply
preserves the validity of the computation, non-completeness ensures that every
intermediate value is independent of secret values even in the presence of glitches.
Uniformity implies that when the input is shared by the masks drawn from a
uniform distribution, the output should be also represented by masks drawn
from a uniform distribution. So far, all first-order protected AES implementa-
tions inject randomness in every round to achieve a uniform masking. Hence,
they require to employ a random number generator on the embedded device in
addition to the creation of the shared plaintext, which is considered to be done
externally before being provided to the cryptographic core.
c© Springer International Publishing AG, part of Springer Nature 2018
J. Fan and B. Gierlichs (Eds.): COSADE 2018, LNCS 10815, pp. 245–262, 2018.
https://doi.org/10.1007/978-3-319-89641-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89641-0_14&domain=pdf

246 F. Wegener and A. Moradi

Related Works

S-box Structure. In 2005 Canright suggested a tower field approach to realize the
GF(28) inversion in the AES S-box by inversions and multiplications in smaller
finite fields [8]. Due to its reduced size compared to a naive implementation
most of the recent first-order secure AES implementations are based on this
S-box design.

Threshold Implementation. Bilgin et al. suggested to mask all multipliers, squar-
ers and inverters in Canright’s construction separately by applying TI with two
to four shares. This approach requires 16 random bits per S-box evaluation to
recombine the different components in a uniform way and occupies an area of
2224 GE in the UMC 180 nm library [4].

Domain-Oriented Masking (DOM). Based on Canright’s construction Groß et al.
presented masked version of all multiplications in GF(22) with a DOM indepen-
dent multiplier to achieve first-order security. The construction consumes 2600
GE in UMC 0.18µm and requires 18 bits of randomness per S-box call [17].

Masking with d+1 Shares. In [10] Cnudde et al. suggested to apply masking with
d + 1 shares [28] to operations in GF(22) to realize the AES S-box in 1872 GE
in the NanGate 45 nm Open Cell Library with 54 bits of randomness per S-box
call. In contrast, Ueno et al. kept the inversion in GF(24) as a single primitive
and applied the same masking scheme, which requires 64 bits of randomness per
S-box call and can be realized in only 1389 GE in TSMC 65 nm standard cells
library [31].

Changing of the Guards. Recently, Daemen [11] showed that uniformity for a
bijective S-box can be easily achieved on the entire S-box layer by injecting some
additional randomness, called guards, into the first S-box. In order to satisfy the
uniformity of the subsequent S-boxes, he introduced a mechanism to make use
of the shares of the former S-box. More precisely, the uniformity is achieved by
remasking, but instead of fresh randomness part of the shared cipher state is
used.

Zero per-Round Randomness. One of the several designs presented by Ghoshal
and De Cnudde in [14] is a four-share AES S-box with zero fresh randomness.
They considered the S-box construction of Boyar and Peralta [6] and replaced
the non-linear gates with their TI variants.

Our Contribution. Obviously, our target in this paper is the same as that
of the four-share design of [14], i.e., no extra randomness per S-box. First, we
demonstrate a first-order leakage of that construction both in theory and with
a practical evaluation. Second, we present an alternative and novel design for
the AES S-box which enables us to reuse the hardware modules hence shrinking
the area. Our approach, which is also a four-share TI design, is based on a

A First-Order SCA Resistant AES Without Fresh Randomness 247

bijective decomposition of the AES S-box allowing us to apply the Changing of
the Guards method to achieve the uniformity. We would like to highlight that
the application of this method is only possible in bijective constructions, and our
design is the first in which the AES S-box is decomposed to bijective functions.
Third, we present a trick in order to employ our four-share S-box in a two-
share AES encryption design without additional randomness. In consequence,
our practically-evaluated first-order secure AES implementation eliminates the
necessity of generating any random bits in hardware as it only requires the
externally shared plaintext and guards, but no fresh randomness. Further, our
design has a comparable size to recent first-order secure implementations.

2 Preliminaries

In this section we introduce relevant definitions and our notation for the rest of
the paper.

Adversary Model. To appropriately model the influence of glitches in a hard-
ware circuit Ishai et al. suggested a d-probing model where the attacker may
probe up to d wires corresponding to the intermediate values of the cipher [20].
As we focus on first-order security the attacker may probe only one wire. Accord-
ing to Duc et al. [12], it is commonly known that this corresponds to an attacker
who only estimates the means (and no higher-order moments) on the recorded
side-channel measurements.

Masking. As this paper exclusively deals with four-share implementations, we
restrict our definitions to four shares for better readability. For a secret value
x ∈ F

n
2 we denote its Boolean sharing into four shares as X = (a, b, c, d) with

the property:
x = a ⊕ b ⊕ c ⊕ d.

We write ∫(x) for the set of all possible Boolean sharings X of x.

Threshold Implementation. In 2006 Nikova et al. introduced TI as a provably
secure masking scheme for hardware platforms [25]. Below, we give an introduc-
tion following our own notation.
Let f : F

n
2 → F

m
2 be a Boolean function. We write that

F : F
4n
2 → F

4m
2 , F(X) =

(
FA (X) ,FB (X) ,FC (X) ,FD (X)

)
,

with F(.) being a first-order TI of f(.) if it fulfills two properties. First, it is
correct, i.e., the summation of all output shares reveals the unshared result of
the computation f(.) on x:

FA (X) ⊕ FB (X) ⊕ FC (X) ⊕ FD (X) = f (x) .

248 F. Wegener and A. Moradi

Second, it must be non-complete, i.e., each component function FA/B/C/D(.)
computing one output share does not depend on all input shares. As an example,

FA (X) = FA (b, c, d) , FB (X) = FB (a, c, d) ,

FC (X) = FC (a, b, d) , FD (X) = FD (a, b, c) .

The latter property ensures the security in the 1-probing model even in the
presence of glitches as probing one output share yields at most three input
shares. In the following, we are going to use a capital letter F to denote the TI of
a function f. If it is clear which shared function we are referring to, we abbreviate
a, b, c, d for its input shares and A,B,C,D for its output shares.

The central theorem underlying TI guarantees that given a sharing of x drawn
equiprobably from all sharings ∫(x), the evaluation of the TI function F(.) does
not cause first-order leakage. As f(.) is not the only non-linear function used in a
cipher, and its output derives other non-linear TI functions (e.g., at next cipher
rounds), we are interested in achieving the equiprobability of output sharings
as well. This can either be achieved by injecting randomness or maintaining the
equiprobability by a clever design of the TI functions F(.). This leads to a third
property: a TI function F(.) is said to be uniform, if – given a uniform input –
all sharings of the output occur with equal probability:

∀x ∈ F
n
2 , ∃cx, ∀X ∈ ∫(x), ∀Y ∈ ∫ (f (x)) ; Pr (F (X) = Y) = cx.

Unfortunately, no uniform TI of the AES S-box is known. If uniformity is vio-
lated, the security proof of TI no longer holds.

Higher-Order Masking. In 2015 De Cnudde et al. extended the TI to higher-order
of protection for AES [9] after Reparaz showed that introducing fresh randomness
is always necessary to achieve multivariate higher-order security [27]. However,
as our focus is zero fresh randomness we limit ourselves to first-order security.

Changing of the Guards. In [11], Daemen questioned the assumption that
uniformity must be achieved in every S-box separately, and instead suggested a
scheme to generate uniformity of the entire S-box layer at once. We illustrate
his scheme for four shares. Let (SA,SB ,SC ,SD) be a non-uniform TI of the
bijective S-box s(.). Furthermore, let the entire non-linear layer consist of parallel
executions of t times the same S-box where we denote the inputs to the i-th
shared S-box as (ai, bi, ci, di), i ∈ {1, . . . , t}. Then Changing of the Guards with
four shares is defined as

Ai = SA(bi, ci, di) ⊕ ci−1 ⊕ di−1, i > 0

Bi = SB(ci, di, ai) ⊕ di−1, i > 0, B0 = ct

Ci = SC(di, ai, bi) ⊕ bi−1, i > 0, C0 = dt

Di = SD(ai, bi, ci) ⊕ bi−1 ⊕ ci−1, i > 0, D0 = bt

A First-Order SCA Resistant AES Without Fresh Randomness 249

As the only source for extra randomness, b0, c0, and d0 need to be provided
beforehand. All further guards are computed from the input of each previous S-
box in the layer as illustrated in Fig. 1, and B0, C0, and D0 provide the guards for
the next S-box layer. More precisely, the relabeling of b2, c2 and d2 as D0, B0 and
C0 is only done to fulfill the formal non-completeness requirement that output
share B does not depend on input share b and so forth. This sharing of the
S-box layer inherits correctness and non-completeness from the TI of s(.) and
in addition achieves uniformity due to the additional guards. A formal proof
of uniformity for an arbitrary number of shares can be found in the original
paper [11].

Fig. 1. Illustration of Changing of the Guards with four shares and two S-boxes.

3 Insecurity of a Construction of [14]

We describe the theoretical background of a flaw in the “TI design with 4 shares
and no randomness” presented in [14] and demonstrate significant leakage in a
practical setting.

Construction. Based on the smallest known unprotected AES S-box represen-
tation by Boyar and Peralta [6], Ghoshal and De Cnudde suggested an allegedly
first-order secure implementation by representing the circuit by only 2-bit XOR
and AND gates, and dividing the circuit into four stages, each of which with
algebraic degree of 2, i.e., quadratic (cp. Fig. 2). They made use of a previously-
known uniform four-share TI of the 2-input AND gate [25], and concluded that
the uniformity of each separate gate is sufficient to achieve the uniformity of
each quadratic stage, and consequently of the entire S-box.

We remind that it is not possible for any function f : F
n
2 → F

m
2 , m > n to

be shared uniformly without introducing fresh randomness. More specifically, a
sharing of f(.) with d input and output shares has the form F : F

n·d
2 → F

m·d
2 . Since

m · d > n · d, this function is not surjective and therefore output shares cannot
be equiprobable. Hence, stages st1 and st3 cannot be shared uniformly as seen in
Fig. 2a. An investigation of the separate building blocks shows that the violation
of uniformity does not stem from a lack of joint uniformity of all components
in a stage, but even the components Q1 and Q3 in Fig. 2b cannot individually
be shared uniformly, because of their higher output dimension. Furthermore, we

250 F. Wegener and A. Moradi

verified computationally that the entire shared S-box (with 4 shares) is not a
bijection over 4 × 8 bits, therefore it is not uniform. Hence, the requirement of
equiprobable input sharing of TI is violated from stage two (st2) on.

Fig. 2. Illustration of the high-level and low-level structure of the S-box used by
Ghoshal and De Cnudde [14]. La and Lb denote linear building blocks, while Q1,
Q2, Q3 and Q4 indicate quadratic functions.

SCA Evaluation. The above-given justification makes indeed the practical
results shown in [14] questionable. This may be due to the parallel use of many
S-boxes which have increased the noise level and led to no detectable leakage. We
re-evaluated the first-order leakage of this construction with only one instance
of the S-box and observed leakage in stages two, three and four in accordance
with our theoretical observations.

For all practical analyses we report in this work, we made use of the
SAKURA-G board [1] (with Spartan-6 FPGA), and collected the power traces at
a sampling rate of 625 MS/s using a digital oscilloscope with 350 MHz bandwidth
by measuring the output of the AC amplifier embedded on the SAKURA-G. The
target FPGA, on which the design is being run and measured, was operating at
the clock frequency of 6 MHz. As the evaluation metric, we applied the common
fixed-versus-random t-test [15] to examine the existence of detectable leakage.
We further followed the procedure suggested in [29] and examined the unifor-
mity of the random values used to initially mask the input. The result of such
an evaluation on the aforementioned four-share S-box of [14] is shown in Fig. 3.

We would like to highlight that in several related works, where the Welch’s
t-test is applied, the probability (to reject the null hypothesis) is not calcu-
lated. Instead, by ignoring the “degree of freedom” the threshold of 4.5 based
on the relation p = 2F (−4.5, v > 1000) < 10−5 is taken, where F (.) stands
for the cumulative student’s t distribution function and v the degree of freedom
(see [29]). Since v can be different at various sample points, we estimated the
probability (so-called p-value) by p = 2F (−|t|, v), and similarly set the threshold
to 10−5.

A First-Order SCA Resistant AES Without Fresh Randomness 251

Fig. 3. Evaluation of the four-share S-box (with no extra randomness) of [14] using 10
million traces.

4 Technique

In the following we illustrate how to decompose the AES S-box into two
independently-shared stages and how to reuse the same hardware for several
operations without introducing leakage or requiring fresh randomness.

Decomposition. The AES S-box consists of an inversion in GF(28) and a
subsequent affine mapping Aff(.). As (GF(28), ·) forms a cyclic group with order
255, we can alternatively represent inversion as x−1 = x254. Following the idea
presented in [24], we show the below observation.

Observation 1. Let f : GF(28) → GF(28) be a monomial f(x) = xk. Then

– the algebraic degree of f(.) is defined by w(k), and
– f(.) is not a bijection for w(k) = 2,

where w(k) stands for the number of ‘1’s in the binary representation of k, i.e.,
Hamming weight.

As the inversion is a bijection, it cannot be decomposed into quadratic mono-
mials. In other words,

� k1, . . . , kn;∀i, w(ki) = 2, x254 =
(((

xk1
).).)kn

.

Hence, we focus on decomposition into cubic monomials

f(x) = xp, g(x) = xq, w(p) = w(q) = 3,
x254 = (xp)q = (xq)p = g ◦ f(x) = f ◦ g(x).

Such a search can be reduced to

∀(p, q), w(p) = w(q) = 3; p · q = 254 mod 255.

252 F. Wegener and A. Moradi

By brute force it follows that all such (p, q) tuples are given as1

(13, 98), (26, 49), (52, 152), (104, 76), (208, 38), (161, 19), (67, 137), (134, 196).

Each tuple yields a decomposition of the AES S-box into two stages

(f (.) , Aff ◦ g (.)) .

As the size of a direct sharing [26] grows with the number of non-linear terms in
the Algebraic Normal Form (ANF) of a function, we compared all monomials in
the ANF of all above tuples. We determined that the ANFs for all tuples contain
all monomials up to third order. Hence, the choice of the specific tuple is not
crucial for area minimization.

As we use the UMC 180 nm standard library for all our ASIC syntheses, we
verified (p, q) = (26, 49) as the smallest choice by synthesizing the corresponding
TI circuit of all above tuples (made by direct sharing).

4.1 S-Box Construction

We construct a first-order TI of the AES S-box by separately applying direct
sharing to the cubic components

f(x) = x26, g(x) = Aff(x49).

A naive construction that realizes the entire S-box in two cycles, would
exhibit a prohibitively large area of more than 20 k GE. Hence, we follow two
serialization methods, originally suggested in [23] for the PRESENT [5] S-box,
to achieve an area reduction. We will refer to these methods as serializing shares
and serializing stages and demonstrate the applicability to the AES S-box.

Serializing Shares. By applying direct sharing, all component functions
become identical as long as we rotate the input shares in the following man-
ner:

FA(X) = F∗(b, c, d), FB(X) = F∗(c, d, a),
FC(X) = F∗(d, a, b), FD(X) = F∗(a, b, c).

This allows us to compute all output shares with the same circuit, denoted as
F∗, one after each other in a sequential manner (see Fig. 4a).

Non-completeness. Special care must be taken in such a serialized architecture
to not violate the non-completeness property. From a high-level point of view
the multiplexer is a combinatorial circuit and should only depend on at most
d− 1 shares, which makes any such a serial design impossible. We overcome this
challenge by

1Obviously, for each (p, q) tuple, (q, p) is also a valid tuple.

A First-Order SCA Resistant AES Without Fresh Randomness 253

– making sure that each select signal is directly derived from a register,
– suggesting a special design that uses Gray Code for the select signals, and
– placing a register right after each multiplexer.

The choice of the Gray Code implies that only one select signal changes at
each state transition. This guarantees the joint leakage of at most two shares
at each clock cycle. As an example, considering Fig. 4b, suppose that the select
signals (s1, s0) = 10 (i.e., the b input is selected). At the next state, the select
signals change to (s1, s0) = 11 leading to selecting the c input. In this state
transition – due to supplying the select signals directly by registers – the combi-
natorial logic relevant to selecting the a and d inputs stay inactive. It holds for
the other transitions a → b, c → d, and d → a. Hence, with respect to Fig. 4c,
the input tuples (b, c, d), (c, d, a), (d, a, b), and (a, b, c) are sequentially selected.

Since the shared function F∗(.) non-linearly combines three input shares,
without having a register at its input, the circuit would potentially exhibit first-
order leakage between the input transitions. By means of such a register, we reset
the input of the shared function F∗(.) to ZERO between each input transition.
In other words, when the exemplary input tuple (b, c, d) is selected and the
corresponding shared output is calculated, at the next clock cycle the input
tuple (c, d, a) is selected and at the same time the input registers of F∗(.) are
reset. At the next clock cycle, the selected tuple is not changed and is stored
by the input registers thereby evaluating the corresponding output share. This
implies 8 clock cycles for the entire computation of the 4 output shares.

In contrast, both original work [23] and the recent suggestion by Gupta
et al. [19], which applies serializing shares to GIFT by using the initial naive
design seen in Fig. 4a, violate the non-completeness.

Serializing Stages. As stated, both stages f(.) and g(.) are cubic functions.
Considering their ANF, we can create a function m(.) that realizes all linear,
quadratic and cubic terms of both f(.) and g(.). Afterwards, by means of two
linear layers which combine (i.e., XOR) the corresponding terms, the specific
functions x → x26 and x → Aff(x49) can be realized.

More specifically, let c1(.), c2(.) be two arbitrary cubic functions over the
same number of bits. Each of them can be decomposed into a common non-
linear layer m(.), followed by an individual linear layer l1(.) (resp. l2(.)) as

c1(x) = l1 ◦ m(x), c2(x) = l2 ◦ m(x).

A serialization of stages can be achieved by connecting the output of m(.) to
both l1(.) and l2(.) and attaching either a multiplexer or registers with different
enable signals to their outputs. In our case, l1(.) is the linear layer belonging to
x → x26 and l2(.) to x → Aff(x49). Note that we represent the four-share version
of these functions by M(.), L1(.), and L2(.).

Putting it Together. Following both serialization methods, we can now
describe the S-box construction in detail (cp. Fig. 5). At the start of the S-
box evaluation the non-completeness register ncR has already been set to ZERO

254 F. Wegener and A. Moradi

Fig. 4. (a) A naive serialization of shares violates non-completeness. The select signals
are not taken from registers and might glitch. The transition from input share b → c
and d → a require both select signals to change. No register stage prevents the function
F∗(.) to combine all shares, (b) illustration of a multiplexer based on Gray Code with
select signals are being directly supplied by registers, (c) illustration of the entire non-
complete share-serial evaluation of function F∗(.).

and the first multiplexer stage selects the lower inputs, i.e., (a, b, c, d). In the
first cycle the non-completeness multiplexers ncM choose the shares (b, c, d) from
the four-byte inputs (a, b, c, d) and the same values are written to the register
gds for later use as guards. In cycle two, L1 ◦ M which corresponds to x → x26

is evaluated, while only the register A1 is enabled to store the result, i.e., one
output share of the application of x → x26 before being XORed with the guards
gdd. Subsequently, at the next clock cycle the ncR register is reset, and at the
same time (c, d, a) is selected by the ncM multiplexers. Analogously, it takes two
cycles to write the results for shares B, C, and D of x → x26 to registers B1, C1,
and D1. After eight cycles, the secure evaluation of x → x26 is complete and the
left-most multiplexer stage selects the upper input. Following the same proce-
dure by resetting the ncR register and evaluating L2 ◦ M the registers A2, . . . , D2
are subsequently set to the value of the shares x → Aff(x49) after achieving uni-
formity by XORing with the guards stored in gds from the previous evaluation
of x → x26. In total, after sixteen cycles the secure evaluation of a shared AES
S-box can be read from A2, . . . , D2 while a reordering of the values in registers
C1, D1, B1 provides the guards for the next S-box evaluation (this corresponds to
the definition given in [11]). We should highlight that all select signals controlling
the multiplexers are derived by dedicated registers.

A First-Order SCA Resistant AES Without Fresh Randomness 255

Fig. 5. Fully-Serial Design of the AES S-box. In one clock cycle three of the four
input shares a, . . . , d are selected by multiplexers to be fed into registers leading to
M(., ., .) which realizes all cubic, quadratic and linear terms. In the first eight cycles
the output of M(., ., .) is processed by L1(.) to realize the first shared function and write
the results to the upper registers A1, . . . , D1. The registers feeding M(., ., .) are reset after
computation of each output share. In the successive eight cycles the same instance of
M(., ., .) is reused and its output is fed into L2(.) to realize the second shared function.
In sum, after sixteen clock cycles a uniform sharing of the AES Sbox is written to the
output registers.

4.2 Full AES

Based on the 8-bit version of the encryption-only design [21], we constructed a
two-share AES implementation (cp. Fig. 6) with one S-box instance, a byte-wise
shift register to hold the state and an unprotected key schedule.

Number of Shares. As our first-order S-box operates on four-shares, it would
be natural to construct a four-share version of AES. However, sharing the entire
AES state with four shares leads to a prohibitive area requirement. This moti-
vated us to develop a heuristic that re-masks the state with itself to generate
four shares from two shares. Our scheme is based on a trivial method to extend
two shares (a0, b0) to four shares (a, b, c, d) by the introduction of two additional
random bytes (r1, r2) via re-masking:

256 F. Wegener and A. Moradi

a = r1, b = r1 ⊕ a0, c = r2, d = r2 ⊕ b0.

Extension. As we want to achieve zero per-round randomness, we chose a share
of locally-independent state bytes as (r1, r2). To determine the independence of
bytes, we remind that MixColumns is the only part of the AES round func-
tion that intermingles multiple bytes. Hence, it is the only cause of dependence
between state bytes. Further, due to the diffusion properties of the AES, the
combination of ShiftRows and MixColumns causes any difference to any single
byte to propagate to all other bytes within only two rounds. In consequence, we
can only aim at finding a heuristic to judge local independence of state bytes. We
chose to look one round into the past and one round into the future to pick the
state bytes that did not originate from the same MixColumns operation and are
not used jointly in the next MixColumns operation. In consequence, we found
that the output of the shift register (given to the S-box) can be masked with the
byte at offset 2 and the byte at offset 9 (cp. Fig. 6) counted against the direction
of the shift register starting from zero. This can easily be verified by iterating
through all 16 states of the shift register, e.g., in the default position, byte a0 is
masked with a8 and b0 is masked with b6 corresponding to columns zero, two and
one in the previous round and columns zero, two and three in the next round.
We have chosen two different positions in the two shares of the state to avoid
undesired unmasking of any byte in the state. Needless to say that the purely
heuristic nature of remasking bytes with locally-independent bytes demands for
an in-depth practical evaluation (cp. Sect. 5).

Reduction. We need to securely reduce the four-share S-box output
(A,B,C,D) to two shares to write it back to the state register. As the S-box
already contains a final register stage for each share A2, . . . , D2 (cp. Fig. 5) we
can directly reduce the four shares to two shares by XORing them without the
need of an additional register stage:

a15 ⇐ A ⊕ B, b15 ⇐ C ⊕ D.

After power-up of the circuit, only for the first AES call a 24-bit random
value should be provided for the guards, and it is the only randomness required
for the circuit. During the operation of the S-box, the guard register is updated,
and no extra randomness will be required. The next AES calls will make use of
the last value stored in the guard register corresponding to the last AES call.

5 Practical Analysis

For the practical analyses we used the same setup of the analysis presented in
Sect. 3. We first investigated a single S-box of our design in a similar way that
we analyzed the Ghoshal and De Cnudde construction, with a difference that we
provided fresh randomness for the guards at the start of each computation of
the S-box. The corresponding results – using 100 million traces – are shown in

A First-Order SCA Resistant AES Without Fresh Randomness 257

Fig. 6. Two-share state of AES operates with a four-share S-box. The guards are
initially provided. The linear layer is omitted for brevity.

Fig. 7, indicating no first-order detectable leakage (p-value < 10−5) and strong
higher-order leakages.

As the next step, we implemented our two-share AES encryption design
with no fresh randomness, and followed the same evaluation procedure. Since
the traces are long compared to the previous experiment, we examined this
design in two parts: 10 million traces covering the first encryption round, and
10 million traces for the last round. Figure 8 presents the results, where no first-
order leakage is detectable.

6 Discussion

Comparison. We synthesized our design by the UMC 180 nm Standard cell
library. Our S-box exhibits a two-fold to three-fold area increase compared to
state-of-the-art first-order secure S-boxes. This in turn leads to an AES that
occupies only several hundred to 1300 GE more than the status-quo (cp. Table 1)
and does not need any fresh randomness. This comes at the cost of a greatly
increased latency (eleven-fold) compared to the state-of-the-art implementations.
Nevertheless, we believe the increase in area and latency to be an acceptable
trade-off to be able to omit the internal generation of random bits completely.
Note that all other implementations need to use either a true- or a pseudo
random number generator (or a combination of them) internally, about whose
area requirements we do not yet have a clear picture. In short, it is not possible
to map the number of required random bits onto a meaningful area requirement
of a corresponding RNG module. Hence, the reduction of required random bits

258 F. Wegener and A. Moradi

Fig. 7. Evaluation of our four-share S-box, using 100 million traces.

Fig. 8. Evaluation of our two-share AES encryption design with no fresh randomness,
using 10 million traces.

is of paramount importance for any masking scheme. For example, there are
several works in the area of masking (e.g., [2,16,18,28]) which tried to reduce
the required randomness.

A First-Order SCA Resistant AES Without Fresh Randomness 259

Table 1. Comparison of state-of-the-art first-order secure AES encryption designs with
our contribution regarding latency, S-box size, total size and randomness per S-box call.

Design Latency
(cycles)

S-box size
(kGE)

AES size
(kGE)

Rand./S-box
(bits)

Bilgin et al. [4] 246 2.2 7.2 16

Gross et al. [18] 246 2.6 6.0 18

Cnudde et al. [10] 276 1.9 6.3 54

Ueno et al. [32] 219 1.4 6.3 64

This work 2804 4.2 7.6 0

Fixing the Construction of [14]. As Changing of the Guards is only applicable
to bijections, we do not see any possibilities to apply it to the design of [14] or
any other design based on the Boyar-Peralta implementation [6] of the AES
S-box. Hence, the only suitable countermeasure to achieve uniformity in the
construction of [14] appears to be the introduction of fresh randomness in each
round.

Distinction from Recent Work. Recently, Gupta et al. [19] independently
introduced a TI of the light-weight block cipher GIFT [3]. They used a masking
method called combined 3-shares to decompose the cubic 4-bit S-box of GIFT
into two quadratic bijections and apply direct-sharing individually. In contrast
to our work, Gupta et al. do not discuss the importance of a special multiplexer
design that prevents the combination of all three shares at a time. Furthermore,
they do not incorporate a register stage after the multiplexers, which again
violates non-completeness. Unfortunately, they do not detect this flaw as their
leakage evaluation consists of failed attacks on a certain power model instead of
a more elaborate leakage detection, e.g., Welsh’s t-test. Further, Božilov et al. [7]
decomposed the PRINCE S-box into two quadratic functions of the same equiv-
alence class and demonstrated a three-share TI design with serialized stages.

7 Conclusion

We introduced the first zero per-round randomness construction of a first-order
secure AES S-box which mitigates the fact that generation of randomness on
embedded systems remains difficult. Further, we introduced a method to extend
two shares to four shares for the evaluation of an S-box using uncorrelated state
bytes and without introducing any fresh randomness. We should emphasize that
we cannot yet provide any proof for the security of such a combination, which led
to competitive size without any requirements on fresh or internal randomness.
Instead, we could just practically confirm its first-order security using an FPGA
prototype while we showed elementary flaws in an earlier design that claimed to
achieve the same property.

260 F. Wegener and A. Moradi

Our S-box masking methodology is universally applicable to bijective S-boxes
and is the first work that achieves non-completeness in a share-serially architec-
ture of AES, which enables a new area vs. latency trade-off.

Acknowledgments. The work described in this paper has been supported in part by
the German Federal Ministry of Education and Research BMBF (grant nr. 16KIS0666
SysKit HW).

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Balasch, J., Faust, S., Gierlichs, B., Paglialonga, C., Standaert, F.-X.: Consolidat-
ing inner product masking. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017,
Part I. LNCS, vol. 10624, pp. 724–754. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-70694-8 25

3. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a
small present - towards reaching the limit of lightweight encryption. In: Fischer
and Homma [13], pp. 321–345

4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-offs for thresh-
old implementations illustrated on AES. IEEE Trans. CAD Integr. Circuits Syst.
34(7), 1188–1200 (2015)

5. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

6. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applica-
tions to cryptology. J. Cryptol. 26(2), 280–312 (2013)

7. Božilov, D., Knežević, M., Nikov, V.: Threshold implementations of prince:
the cost of physical security. In: NIST Lightweight Cryptography Workshop
(2016). https://www.nist.gov/sites/default/files/documents/2016/10/17/bozilov-
paper-lwc2016.pdf

8. Canright, D.: A very compact s-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). https://doi.org/
10.1007/11545262 32

9. De Cnudde, T., Bilgin, B., Reparaz, O., Nikov, V., Nikova, S.: Higher-order thresh-
old implementation of the AES s-box. In: Homma, N., Medwed, M. (eds.) CARDIS
2015. LNCS, vol. 9514, pp. 259–272. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31271-2 16

10. De Cnudde, T., Reparaz, O., Bilgin, B., Nikova, S., Nikov, V., Rijmen, V.: Masking
AES with d+1 shares in hardware. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES
2016. LNCS, vol. 9813, pp. 194–212. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53140-2 10

11. Daemen, J.: Changing of the guards: a simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer and Homma [13], pp. 137–153

12. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks
to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 24

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
https://doi.org/10.1007/978-3-319-70694-8_25
https://doi.org/10.1007/978-3-319-70694-8_25
https://doi.org/10.1007/978-3-540-74735-2_31
https://www.nist.gov/sites/default/files/documents/2016/10/17/bozilov-paper-lwc2016.pdf
https://www.nist.gov/sites/default/files/documents/2016/10/17/bozilov-paper-lwc2016.pdf
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-319-31271-2_16
https://doi.org/10.1007/978-3-319-31271-2_16
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-662-53140-2_10
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24

A First-Order SCA Resistant AES Without Fresh Randomness 261

13. Fischer, W., Homma, N. (eds.): CHES 2017. LNCS, vol. 10529. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4

14. Ghoshal, A., De Cnudde, T.: Several masked implementations of the Boyar-Peralta
AES s-box. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017. LNCS, vol.
10698, pp. 384–402. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71667-1 20

15. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for
side channel resistance validation. In: NIST Non-invasive Attack Testing
Workshop (2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-
workshop/papers/08 Goodwill.pdf

16. Gross, H., Mangard, S.: Reconciling d + 1 masking in hardware and software. In:
Fischer and Homma [13], pp. 115–136

17. Gross, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. IACR Cryptology
ePrint Archive 2016:486 (2016)

18. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

19. Gupta, N., Jati, A., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold
implementations of gift: a trade-off analysis. Cryptology ePrint Archive, Report
2017/1040 (2017). https://eprint.iacr.org/2017/1040

20. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

21. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: a generic technique
for bit-serial implementations of SPN-based primitives - applications to AES,
PRESENT and SKINNY. In: Fischer and Homma [13], pp. 687–707

22. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

23. Kutzner, S., Nguyen, P.H., Poschmann, A., Wang, H.: On 3-share threshold imple-
mentations for 4-Bit s-boxes. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol.
7864, pp. 99–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40026-1 7

24. Moradi, A.: Advances in side-channel security. Habilitation thesis, Ruhr-
Universität Bochum (2016)

25. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

26. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear
functions in the presence of glitches. J. Cryptol. 24(2), 292–321 (2011)

27. Reparaz, O.: A note on the security of higher-order threshold implementations.
IACR Cryptology ePrint Archive 2015:1 (2015)

28. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I.
LNCS, vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 37

https://doi.org/10.1007/978-3-319-66787-4
https://doi.org/10.1007/978-3-319-71667-1_20
https://doi.org/10.1007/978-3-319-71667-1_20
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://eprint.iacr.org/2017/1040
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/978-3-642-40026-1_7
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37

262 F. Wegener and A. Moradi

29. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

30. Trichina, E.: Combinational logic design for AES subbyte transformation on
masked data. IACR Cryptology ePrint Archive 2003:236 (2003)

31. Ueno, R., Homma, N., Aoki, T.: A systematic design of tamper-resistant Galois-
Field arithmetic circuits based on threshold implementation with (d + 1) input
shares. In: 47th IEEE International Symposium on Multiple-Valued Logic, ISMVL
2017, Novi Sad, Serbia, 22–24 May 2017, pp. 136–141. IEEE Computer Society
(2017)

32. Ueno, R., Homma, N., Aoki, T.: Toward more efficient DPA-resistant AES
hardware architecture based on threshold implementation. In: Guilley, S. (ed.)
COSADE 2017. LNCS, vol. 10348, pp. 50–64. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64647-3 4

https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-319-64647-3_4
https://doi.org/10.1007/978-3-319-64647-3_4

Author Index

Aoki, Takafumi 44

Bock, René 227
Buchmann, Johannes 168
Butin, Denis 168

Cao, Weiqiong 101
Chen, Fuqing 189
Chen, Hua 101
Chen, Jianjun 189
Clavier, Christophe 135, 153
Cozzi, Maxime 117

Dinu, Daniel 82
Duan, Haixin 189

Fan, Limin 101
Feng, Jingyi 101

Gagnerot, Georges 135
Galliere, Jean-Marc 117
Genêt, Aymeric 168
Goudarzi, Dahmun 3
Grégoire, Benjamin 23
Großschädl, Johann 82

Homma, Naofumi 44
Hutter, Michael 207

Jiang, Jian 189
Journault, Anthony 3

Kannwischer, Matthias J. 168
Krämer, Juliane 168

Le Corre, Yann 82

Maghrebi, Houssem 61
Maurine, Philippe 117
Moradi, Amir 227, 245

Oshida, Hirokazu 44

Papagiannopoulos, Kostas 23
Prouff, Emmanuel 61

Reynaud, Léo 153
Rivain, Matthieu 3

Sasdrich, Pascal 207, 227
Schwabe, Peter 23
Standaert, François-Xavier 3
Stoffelen, Ko 23

Thiebeauld, Hugues 135

Ueno, Rei 44

Wegener, Felix 245
Wu, Wenling 101
Wurcker, Antoine 135, 153

Zheng, Xiaofeng 189

	Preface
	Organization
	Contents
	Countermeasures Against Side-Channel Attacks (1)
	Secure Multiplication for Bitslice Higher-Order Masking: Optimisation and Comparison
	1 Introduction
	2 Preliminaries
	2.1 Bitsliced Higher-Order Masking
	2.2 Security Notions
	2.3 ARMv7 Architectures

	3 Secure Multiplications
	3.1 ISW: the Standard Probing-Secure Multiplication
	3.2 BDF+: a Bounded-Moment Secure Multiplication
	3.3 BBP+: Towards Optimal Randomness Consumption
	3.4 BPCZ: Towards Security Against Horizontal Attacks

	4 Refresh Masks
	4.1 ISW
	4.2 BDF+ Refresh

	5 Comparisons and Discussion
	5.1 High Level Comparison
	5.2 Implementation-Based Comparison

	References

	Vectorizing Higher-Order Masking
	1 Introduction
	2 Preliminaries
	2.1 Higher-Order Masking of AES
	2.2 Strong Non-interference
	2.3 Bounded Moment Leakage Model
	2.4 Vectorization with NEON

	3 Vectorizing Masking of AES
	3.1 Representing the Masked State
	3.2 Parallel Multiplication and Refreshing
	3.3 SubBytes
	3.4 Linear Layer
	3.5 Performance

	4 Side-Channel Evaluation
	4.1 Measurement Setup
	4.2 Security Order Evaluation
	4.3 Information-Theoretic Evaluation

	5 Conclusion and Outlook
	A NEON Implementations
	A.1 Refreshing, 4 Shares
	A.2 Refreshing, 8 Shares
	A.3 Multiplication, 4 Shares
	A.4 Multiplication, 8 Shares

	References

	On Masked Galois-Field Multiplication for Authenticated Encryption Resistant to Side Channel Analysis
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Brief Description and Notation of AES-GCM
	2.2 Side-Channel Attack on AES-GCM

	3 Masked GHASH
	4 New Attack on Masked GHASH
	5 New Countermeasure
	6 Conclusion
	References

	Tools for Side-Channel Analysis
	On the Use of Independent Component Analysis to Denoise Side-Channel Measurements
	1 Introduction
	2 Independent Component Analysis
	2.1 Notations
	2.2 Overview of ICA
	2.3 ICA Estimation
	2.4 Differences Between ICA, Projection Pursuit, PCA and LDA
	2.5 ICA Methods

	3 Filtering Leakage Using ICA
	3.1 SCA Model vs. ICA Model
	3.2 First Approach to Apply ICA in SCA Context
	3.3 Second Approach to Apply ICA in SCA Context

	4 Practical Experiments
	4.1 Experimental Setup
	4.2 Unprotected AES Implementation on ATMega163
	4.3 Unprotected AES Implementation on FPGA
	4.4 Masked AES Implementation on the ChipWhisperer-Lite Board (ATMega128)

	5 Conclusion and Perspectives
	A Example of Trace Denoising Based on the FastICA Method
	References

	Micro-architectural Power Simulator for Leakage Assessment of Cryptographic Software on ARM Cortex-M3 Processors
	1 Introduction
	2 State of the Art
	3 Cortex-M3 Architecture-Specific Leakages
	3.1 Cortex-M3 Overview
	3.2 Cortex-M3 HDL Analysis
	3.3 Cortex-M3 Pipeline Leakages
	3.4 Guidelines to Reduce Cortex-M3 Pipeline Leakage

	4 Our Simulator: MAPS
	4.1 Features
	4.2 Simulation Flow
	4.3 Validation
	4.4 Limitations
	4.5 Performance

	5 Case Study
	6 Conclusions and Future Work
	References

	Fault Attacks and Hardware Trojans
	Lattice-Based Fault Attacks Against ECMQV
	1 Introduction
	2 Preliminaries
	2.1 ECMQV Authenticated Key Agreement Protocol
	2.2 Lattices

	3 First Lattice-Based Fault Attack Against ECMQV
	3.1 Fault Attack Scenario
	3.2 Fault Attack Against ECMQV
	3.3 Lattice Attack Against ECMQV

	4 Second Lattice-Based Fault Attack Against ECMQV
	4.1 Fault Attack Against ECMQV
	4.2 Lattice Attack Against ECMQV

	5 Feasibility Analysis and Simulation of Attacks
	6 Conclusion
	References

	Thermal Scans for Detecting Hardware Trojans
	1 Introduction
	2 State of the Art
	2.1 Light Emission from Above 0K Bodies
	2.2 DC Measurements
	2.3 Lock-in Thermography

	3 Experimental Set-Up
	4 IC Thermal Characterization
	4.1 Experimental Protocol
	4.2 Electrical Activity Detection by Heat Detection

	5 Trojan Detection
	5.1 Hardware Trojan Characteristics
	5.2 Testchips and Emulation of HTs
	5.3 Detection Methodology
	5.4 Experimental Results

	6 Conclusion
	References

	Side-Channel Analysis Attacks
	SCATTER: A New Dimension in Side-Channel
	1 Introduction
	2 Side-Channel Analysis Practical Issues
	3 Scatter Principle
	4 Attack Simulation
	4.1 In Time Integration: Keep Information
	4.2 In Time Integration: Accumulate Information
	4.3 In Time Integration: Face the Shuffling Countermeasure

	5 A Comparison with Window-Based Techniques
	6 Practical Results
	7 Impact on Current State-of-the-Art
	8 Conclusion
	References

	Quadrivariate Improved Blind Side-Channel Analysis on Boolean Masked AES
	1 Introduction
	2 Background on Blind Side-Channel Analysis
	3 Combined S-Boxes Attacks
	3.1 Combined m-y Maximum Likelihood Attack
	3.2 Combined m-x Maximum Likelihood Attack
	3.3 Collision-Based Combined m-x Attack

	4 Key Recovery Based on Hamming Distances Values
	4.1 311-Byte Entropy Masking Scheme
	4.2 316-Byte Entropy Masking Scheme

	5 Key Recovery Based on Hamming Distances Collisions
	5.1 Hamming Distance Classes

	6 Conclusion
	References

	Differential Power Analysis of XMSS and SPHINCS
	1 Introduction
	1.1 Related Work
	1.2 Outline

	2 XMSS, XMSSMT and SPHINCS
	2.1 W-OTS+
	2.2 XMSS
	2.3 XMSSMT
	2.4 SPHINCS

	3 Side-Channel Analysis of XMSS
	3.1 Assumptions
	3.2 W-OTS+
	3.3 XMSS
	3.4 Applicability to XMSSMT
	3.5 Hash Function and PRNG Side-Channel Resistance
	3.6 DPA Attack on SHA-2 PRNG
	3.7 Impact
	3.8 Recommendations

	4 SPHINCS-256: A DPA on BLAKE
	4.1 DPA
	4.2 Real-Device Analysis and Results
	4.3 Impact
	4.4 Countermeasures

	5 Conclusion
	References

	Path Leaks of HTTPS Side-Channel by Cookie Injection
	1 Introduction
	2 Background
	2.1 Cookies
	2.2 Cookie Path
	2.3 Path-Match
	2.4 Cookie Injection Attack
	2.5 TLS Leaks Length

	3 Attacks
	3.1 Known Path Identification
	3.2 Unknown Path Inference
	3.3 Limitation of Cookie Size

	4 Possible Defenses
	5 Related Work
	6 Conclusions
	References

	Countermeasures Against Side-Channel Attacks (2)
	Protecting Triple-DES Against DPA
	1 Introduction
	2 Preliminaries
	2.1 Domain-Oriented Masking

	3 Design Considerations
	3.1 Protected Architecture of Triple-DES (T-DES)
	3.2 First-Order Secure Multiplexer
	3.3 Design Space Exploration of the S-Box Structure
	3.4 Source of Entropy
	3.5 Design Optimizations
	3.6 Implementation Results

	4 Evaluation
	5 Conclusion
	A Representations of all S-boxes and 4 4 Permutations
	A.1 Algebraic Normal Form for S-Box 1
	A.2 Algebraic Normal Form for S-Box 2
	A.3 Algebraic Normal Form for S-Box 3
	A.4 Algebraic Normal Form for S-Box 4
	A.5 Algebraic Normal Form for S-Box 5
	A.6 Algebraic Normal Form for S-Box 6
	A.7 Algebraic Normal Form for S-Box 7
	A.8 Algebraic Normal Form for S-Box 8

	References

	Threshold Implementation in Software
	1 Introduction
	2 Concept
	2.1 Notation
	2.2 Boolean Masking
	2.3 Threshold Implementation
	2.4 Application to PRESENT Cipher

	3 Implementation
	3.1 Target Platform
	3.2 Pseudo-Code
	3.3 Comparison

	4 Evaluation
	4.1 Measurement Setup
	4.2 Non-specific Statistical t-Test
	4.3 Results

	5 Conclusion
	References

	A First-Order SCA Resistant AES Without Fresh Randomness
	1 Introduction
	2 Preliminaries
	3 Insecurity of a Construction of indocryptspsghoshal
	4 Technique
	4.1 S-Box Construction
	4.2 Full AES

	5 Practical Analysis
	6 Discussion
	7 Conclusion
	References

	Author Index

