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Abstract Accurately representing data is a fundamental problem in many pattern
recognition and computational intelligence applications. In this chapter, a robust
constrained concept factorization (RCCF) method is proposed. RCCF allows the
extraction of important information, while simultaneously utilizing prior informa-
tion when it is available, and is noise invariant. To guarantee data samples share
the identical cluster and obtain similar representation in the new laten space, the
proposed method uses a constraint matrix that is embodied into the rudimentary
concept factorization model. The L2,1-norm is used for both the reconstruction func-
tion and the regularization, which allows the proposed model to be insensitive to
outliers. Furthermore, the L2,1-norm regularization assists in the selection of useful
information with joint sparsity. An elegant and efficient iterative updating scheme
is also introduced with convergence and correctness analysis. Experimental results
on commonly used databases in pattern recognition and computational intelligence
demonstrate the effectiveness of RCCF.
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1 Introduction

Obtaining a suitable representation is a fundamental problem for many research
areas. For example: machine learning [1], data mining [2, 3], signal processing
[4–6], and in particular pattern recognition [7–9], and computational intelligence
[10, 11]. Optimal data representation can boost the performance of a learning task
by revealing the underlying structure with-in a high-dimensional space. Recently,
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matrix factorization based methods, including Singular Value Decomposition (SVD)
[12], Principal Component Analysis (PCA) [13], Vector Quantization (VQ) [14],
Nonnegative Matrix Factorization (NMF) [15–18] and Concept Factorization (CF)
[19–22], have been receiving considerable attention as useful techniques for learning
meaningful representation.

Generally, themain goal of thesemethods is to represent the givenmatrix as a prod-
uct of two ormorematrices. Among them,NMF is superior to PCA, SVD, andVQ for
providing meaningful factorization results. Moreover, NMF yields parts-based and
sparse representation because the nonnegative constraints allow only additive combi-
nations. Regards to the parts-based representation, there are physiological evidences
[23, 24]. However, NMF performs only in original data space. It is an issue about
how to successfully apply NMF in reproducing kernel Hilbert space (RKHS), e.g.,
the transformed data space [20]. Recently, Concept Factorization (CF), an impor-
tant variation of NMF, which uses linear combination of input data to represent the
bases, has been effectively employed in processing real data, such as text and image,
due to the fact that CF inherits all the strengths from NMF. Besides this, CF can
be employed effectively in the transformed space. When using the CF method in
data clustering, each sample is reconstructed as a linear combination of the cluster
centers, and each cluster center is expressed as a linear combination of the samples.
Here, the task of data clustering can be regarded as finding two sets of coefficients.
To further improve the clustering performance of CF, Locally Consistent Concept
Factorization (LCCF) [20] preserves the intrinsic structure information of the data
set by incorporating the manifold structure into the CF model.

Despite its impressive performances, there are three major drawbacks for basic
CF: (1) It is prone to outliers since a few outliers or noisy features with large errors
will play a dominative role in the least square error function. Indeed, in many appli-
cations, data are additionally corrupted and thus data always contains noisy features
or outliers. A potential robust version of CF is needed to deal with these issues.
(2) Basic CF does not always result in sparse representation since there is no con-
straints to manage the sparseness explicitly. That means the representation in the
low-dimensional space may still contain redundant and useless information. Gen-
erally, adding sparsity regularization is one practical method to control the degree
of sparseness in factorization results, but it was designed only for NMF [25, 26].
(3) CF obtains data representation in an unsupervised way. It may not effectively
distinguish the constrained data from the unconstrained data. Especially when the
prior information is collected and CF does not completely use this information. To
bridge this gap, a constrained algorithm, named constrained concept factorization
(CCF) [27] is proposed utilizing prior information as a constraint matrix.

However, there is no such a framework that addresses all these drawbacks simul-
taneously. In this chapter, we propose a robust constrained concept factorization
(RCCF) method, which not only makes good use of the available label informa-
tion, but also addresses noise and learns meaningful information at the same time.
Specifically, we utilized the mixed norm L2,1-norm instead of the F-norm that is
used in basic CF as our loss function, thus improving the robustness of the model
such that this new model can effectively deal with outliers and can be employed in
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pattern recognition and computational intelligence. Then, a constraint matrix, which
contains label information, is embedded into the original CF model to guarantee
data belong to the same cluster obtain the identical representation in the new rep-
resentation space. Hence, the learned representation achieves better distinguishing
abilities. In addition, the L2,1-norm regularization is added in RCCF to obtain sparse
results that help select the most relevant information. For optimizing the new model,
we derive efficient updating rules that are iterative. At the same time, we analyse
the correctness and convergence of the updating rules. Experimental results on three
different data sets have shown the effectiveness of RCCF.

The remainder of this chapter is organized as follows. Section2 proposes the
RCCF framework, followed with its updating rules. Section3 presents the experi-
mental results on three data sets. Finally, we summarize our work.

2 Robust Constrained Concept Factorization (RCCF)

2.1 NMF and CF

Given amatrixV = [v1, v2, . . . , vN ] ∈ R+M×N ,N denotes the number of data points
andM is the length of the vector. For a dimensionality number K , NMF tries to seek
two nonnegative data matrices W ∈ R+M×K and H ∈ R+K×N whose product gives
an approximation to the input data matrix. The objective function of NMF is:

O = ‖V − WH‖2F . (1)

Since (1) is a nonconvex minimization problem, it is unrealistic to get the optimal
solution. However it is convex inW only or H only. Based on this analysis, Lee [15]
proposed the following updating rules:

Wik ← Wik
(VHT)ik

(WHHT)ik
(2)

Hkj ← Hkj
(WTV)kj

(WTWH)kj
. (3)

In regards to the above solutions, if W and H are the solution to (1), WQ and
HQ−1 can also be a solution for any matrix Q, which is positive and diagonal. To
ensure it unique, we normalize the solution. In practice, this can be obtained by:

Wik ← Wik√∑
i W

2
ik

(4)
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Hkj ← Hkj

√∑
i

W 2
ik (5)

In [15], Lee gives the proof that the aforementioned updating rules could obtain a
local solution of (1).

Xu and Gong [19] modeled the document clustering problem by using two data
representations. In the first one, the intrinsic semantics (e.g. clusters) can be repre-
sented by related document samples that belong to similar semantics. That is, the
entire samples can be used to construct the cluster, and this combination can is lin-
early. Let Vi denotes the term-frequency vector of sample i, where i = 1, . . . , n,m is
the dimensionality and Rc is the centroid of cluster c, where c = 1, . . . , k. The first
representation can be defined as:

Rc =
∑
i

wicVi (6)

where wic is nonnegative coefficient that represents the coefficient of data point i
relating to cluster c. In the second one, all the clusters can be used to reconstruct the
samples. The corresponding weight denotes the coefficient of overlap between the
related sample and the cluster. The above two representations can be formulated as:

Vi =
∑
c

hicRc (7)

where hic is the coefficient value that gives the coefficient of overlap between the
related sample Vi and the concept cluster Rc. We construct the document matrix
V = [V1, V2, . . . , Vn] ∈ R+m×n with the feature vector of sample i as the ith column.
From (6) and (7) we have

V ≈ VWH (8)

where W = [wjk ] ∈ R+n×k and H = [hjk ] ∈ R+k×n. From Eq. (8), we observe that
it can be considered as a factorization process of input sample matrix X into X, W,
andH. With the factorization results, we can find the cluster which are accomplished
by constructed by XW. The cluster coefficient of each sample is obtained by finding
theH. Thus, we term this process concept factorization (CF). As k � m and k � n,
concept factorization leads to low-dimensional representation of the input matrix.
This means the object function is defined as:

O = ‖V − VWH‖2F (9)

where ‖·‖2F is the Frobenius norm of a matrix. Using the formulation (9), the data
clustering problem can be solved by finding W and H that minimizes the O.
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To minimize (9), the multiplicative updating rules are introduced as [19]:

wnk ← wnk
(KHT)nk

(KWHHT )nk
(10)

hkn ← hkn
(WTK)kn

(WTKWH)kn
. (11)

where K = VTV. It is natural to leverage kernel methods on CF. Therefore, CF can
make use of kernel methods to improve its performance in real applications. More
information can be found in [19].

Concept factorization is an effective tool of data clustering, which is a fundamen-
tal topic in data mining. Data mining is about extracting interesting information from
raw data. Data clustering aims to efficiently separate a given data set into clusters,
which is a kind of key information. Among various clustering methods, concept fac-
torization is widely used since it can provide meaningful clustering results. From the
definition of CF, the cluster is constructed by using the input samples. This combi-
nation is linearly. The cluster construction as well as the new data representation can
be addressed by CF.

2.2 RCCF Model

According to recent semi-supervised algorithms [27–29] a few labeled samples could
be used along with the unlabeled samples to improve learning accuracy of unlabeled
data. Inspired by previous research CCF [27], we assume that the first l data samples
are given label information with c clusters. Then we construct an constraint matrix
C, in which ci,j = 1 if ci belongs to the jth class; Ci,j = 0 otherwise. For example,
given n data points, v1, v2 and v3 come from class I, v4 and v5 belong to class II, v6
is labeled with class III. Base on this illustration, the label indicator matrix C can be
formulated as follows:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)

Based on the indicator matrix C, a label constraint matrixA is defined as follows:

A =
(
Cl×c 0
0 IN−l

)
, (13)
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where IN−l is an identity matrix. The obtained H of input data points in the new
representation space is formulated as H = ZAT . That means if samples vi and vj
come from the identical category, the ith row and the jth row ofA should be identical,
that is hi = hj, which makes sure that document point with the identical class could
obtain the identical low-dimensional representation. Thus, (9) could be reformulated:

min
W≥0,Z≥0

‖V − VWZAT‖2F (14)

However, F-norm is sensitive to outliers and could be unstable because the error
for each sample in the objective function is expressed as squared. The objective
function could be dominated by the large errors. To address this drawback, we utilize
the mixed norm L2,1-norm on the loss function to effectively remove outliers and
noise. According to [30], the definition of L2,1-norm is:

‖U‖2,1 =
M∑
i=1

√√√√
N∑
j=1

U2
ji =

M∑
i=1

‖ui‖2, (15)

where ui is the ith row of U. We rewrite the error function:

‖V − VWH‖2,1 =
N∑
i=1

√√√√
M∑
j=1

(V − VWH)2ji

=
N∑
i=1

‖vi − VWhi‖.
(16)

We can observe that the error for each sample in the new objective function (16) is
not of the form x2, so the large errors because of outliers do not impact the function in
(16) dramatically. By employing the L2,1-norm as measurement of the reconstruction
error, the objective function can be reformulated as

min
W≥0,Z≥0

‖V − VWZAT‖2,1. (17)

Furthermore, the real data usually contains meaningless features, i.e., not all the
features are useful. Although basic CF can lead to sparse results that help extract
meaningful features, it does not always result in such representation. Regarding
this, we use the L2,1-norm regularization term to control row sparsity on the new
representation of data to extract informative features. Generally, the group sparsity
imposing on the representation matrix HT can be represented as follows,

min
H≥0

‖HT‖2,1. (18)



Robust Constrained Concept Factorization 213

As we make H = ZAT , our task is to get the minimum of matrix AZT . Since the
constrained matrix A is given, the task in turn is to find matrix ZT .

By embedding the constrained matrix into basic CF, and imposing the L2,1-norm
on both the regularization and reconstruction function, a new model can be obtained
as follows,

min
W≥0,Z≥0

‖V − VWZAT‖2,1 + α‖ZT‖2,1, (19)

where V ∈ R+M×N , W ∈ R+N×K , Z ∈ R+K×(N−l+c) and A ∈ R+N×(N−l+c). In this
function, there is only one parameter, e.g., the parameter α. This item plays the role
on controlling the sparse regularization.

2.3 Solutions of the RCCF Model

The solutions for the RCCF model via an iterative strategy is given as follows,

Zki ← Zki
(WTVTVD1A)ki

(WTVTVWZATD1A + αD2Z)ki
, (20)

Wnk ← Wnk
(VTVD1AZT )nk

(VTVWZATD1AZT )nk
, (21)

The entries of D1 and D2 are defined as:

(D1)ii = 1

‖Vi − VW(ZAT )i‖
, i = 1, 2 . . . ,N . (22)

(D2)ii = 1

‖(ZT )i‖ , i = 1, 2 . . . ,K . (23)

2.4 RCCF Model Convergence

In this subsection, we give the analysis of the convergence of proposed updating
rules with following two Theorems.

Theorem 1 Obtaining Z utilizing the rule of (20) withW being fixed, the objective
function of (19) is non-increasing,

‖V − VWZt+1AT‖2,1 + α‖(Zt+1)T‖2,1
−‖V − VWZtAT‖2,1 − α‖(Zt)T‖2,1 ≤ 0,

(24)

where t is the number of iteration.
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Theorem 2 Obtaining W utilizing the solution proposed in (21) when Z is fixed,
the objective function of (19) is nonincreasing,

‖V − VWt+1ZAT‖2,1 − ‖V − VWtZAT‖2,1 ≤ 0, (25)

where t represents the number of iteration.

We use the following Lemma1 to prove Theorem1.

Lemma 1 With the solution in (20), we have the following inequation:

Tr((V − VWZt+1AT )D1(V − VWZt+1AT )T )

+ αTr((Zt+1)TD2Zt+1)

≤ Tr((V − VWZtAT )D1(V − VWZtAT )T )

+ αTr((Zt)TD2Zt).

(26)

Proof Following [31], we introduce an auxiliary function approach to help prove
Lemma1. Firstly, we have

J (Z) = Tr((V − VWZAT )D1(V − VWZAT )T )

+ αTr(ZTD2Z).
(27)

Next we re-express (26) as

J (Zt+1) ≤ J (Zt). (28)

Base on (27), the following equation can be obtained

J (Z) = Tr(VD1VT − 2VD1AZTWTVT )

+ Tr(VWZATD1AZTWTVT ) + αTr(ZTD2Z)

≤ Tr(VD1VT − 2VD1AZTWTVT )

+
K∑

k=1

(N−l+c)∑
i=1

(S1H′B1)ki(H2)ki

H′
ki

+
K∑

k=1

(N−l+c)∑
i=1

(S2H′B2)ki(H2)ki

H′
ki

= Tr(VD1VT − 2VD1AZTWTVT )

+
K∑

k=1

(N−l+c)∑
i=1

(WTVTVWZ′ATD1A + αD2Z′)ki(Z2)ki

Z′
ki

= F(Z,Z′),

(29)
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where S1 = WTVTVW, B1 = ATD1A, H = Z, H′ = Z′, B2 = I, and S2 = αD2.
The equality holds in case of Z = Z′. The auxiliary function of J (Z) is F(Z,Z′).

Let
Zt+1 = argmin

Z
F(Z,Zt), (30)

we can get
J (Zt+1) = F(Zt+1,Zt+1) ≤ F(Zt+1,Zt) ≤ J (Zt), (31)

From (31), we can have the provement that J (Zt) is non-increasing.
Let f (Z) = F(Z,Z′), the gradient of f (Z) is

∂f (Z)

∂Zki
= −2(WTVTVD1A)ki

+ 2
(WTVTVWZ′ATD1A + αD2Z′)ki(Z)ki

Z′
ki

.

(32)

The Hessian matrix of f (Z) is

∂2f (Z)

(∂Zki)(∂Zlj)
= 2

(WTVTVWZ′ATD1A + αD2Z′)ki
Z′
ki

δijδkl . (33)

Since f (Z) is convex and the second-order derivatives is semi-positive definite,
we can obtain the solution for f (Z). By letting (32) be zero, we can obtain the update
rule of Z as:

Zki ← Z′
ki

(WTVTVD1A)ki

(WTVTVWZ′ATD1A + αD2Z′)ki
, (34)

Let Zt ← Z′, Zt+1 ← Z, (34), we can obtain the iterative solution of (20). When
we use this strategy to update Z, the objective function of (27) is non-increasing.

Until now, Lemma1 is proved.

Lemma 2 In order to finish the proof of this, we refer to the matrix inequality in
[32]. If matrices S ≥ 0, B ≥ 0, H ≥ 0, the sizes are suitable and B = BT , S = ST ,
we obtain the matrix inequality:

Tr(HTSHB) ≤
∑
ik

(SH′B)
H2

ik

H′
ik

(35)

Lemma 3 According to the solution in (20), the following in-equation holds
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‖V − VWZt+1AT‖2,1 + α‖(Zt+1)T‖2,1
− ‖V − VWZtAT‖2,1 − α‖(Zt)T‖2,1
≤ 1

2
[Tr((V − VWZt+1AT )D1(V − VWZt+1AT )T )

+ αTr((Zt+1)TD2Zt+1)

− Tr((V − VWZtAT )D1(V − VWZtAT )T )

− αTr((Zt)TD2Zt)].

(36)

Proof Lemma3 can be proved with the same method of [33]. Then, we can derive
(36).

With the characteristic of D1 and D2, we have

Tr((V − VWZt+1AT )D1(V − VWZt+1AT )T )

+ αTr((Zt+1)TD2Zt+1)

=
N∑
i=1

‖Vi − VW(Zt+1AT )i‖2(D1)ii

+ α

K∑
i=1

‖(Zt+1
i )T‖2(D2)ii,

(37)

Tr((V − VWZtAT )D1(V − VWZtAT )T )

+ αTr((Zt)TD2Zt)

=
N∑
i=1

‖Vi − VW(ZtAT )i‖2(D1)ii

+ α

K∑
i=1

‖(Zt
i)
T‖2(D2)ii.

(38)

The right-hand side (RHS) of (36) becomes

RHS = 1

2

N∑
i=1

(‖Vi − VW(Zt+1AT )i‖2(D1)ii

− ‖Vi − VW(ZtAT )i‖2(D1)ii)

+ 1

2
α

K∑
i=1

(‖(Zt+1)Ti ‖2(D2)ii − ‖(Zt)Ti ‖2(D2)ii).

(39)
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Combining (22) and (23),

RHS = 1

2

N∑
i=1

(
‖Vi − VW(Zt+1AT )i‖2(D1)ii − 1

(D1)ii

)

+ 1

2
α

K∑
i=1

(‖(Zt+1)Ti ‖2(D2)ii − 1

(D2)ii
).

(40)

The left-hand side (LHS) of (36) becomes

LHS = ‖V − VWZt+1AT‖2,1 + α‖(Zt+1)T‖2,1
− ‖V − VWZtAT‖2,1 − α‖(Zt)T‖2,1

=
N∑
i=1

(‖Vi − VW(Zt+1AT )i‖ − 1

(D1)ii
)

+ α

K∑
i=1

(‖(Zt+1)Ti ‖ − 1

(D2)ii
).

(41)

Therefore, we have

LHS − RHS

=
N∑
i=1

−(D1)ii

2
(‖Vi − VW(Zt+1AT )i‖ − 1

(D1)ii
)2

+
K∑
i=1

−(D2)ii

2
(‖(Zt+1)Ti ‖ − 1

(D2)ii
)2 ≤ 0.

(42)

Until now, the proof of Lemma3 is accomplished.
With the usage of Lemmas1–3, the proof of Theorem1 can be obtained. It means

the objective function of (19) is non-increasing under the solution in (20).
We can take the same strategy to prove the Theorem2, we do not provide details

here.

2.5 Correctness of the RCCF Analysis

In the following,wewill prove that the proposed algorithms is guaranteed to converge
to the Karush-Kuhn-Tucker (KKT) points.

Theorem 3 Using the updating rule in (20), the obtained solution of Z satisfies the
Karush-Kuhn-Tucker condition.
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Proof. The Karush-Kuhn-Tucker condition for Z with the constrains (Z)ki ≥ 0,
k = 1, 2, . . . ,K ; i = 1, 2, . . . , (N − l + c), is

∂J (Z)

∂(Z)ki
(Z)ki = 0,∀k, i. (43)

The derivative is

∂J (Z)

∂(Z)ki
= −2((WTVTV(1 − WZAT )D1A)ki + α(D2Z)ki). (44)

Then, the Karush-Kuhn-Tucker condition for Z is

[−(WTVTVD1A)ki + (WTVTVWZATD1A)ki

+ α(D2Z)ki](Z)ki

= 0,∀k, i.
(45)

If the Z converges under updating rule of (20), the obtained solution Z∗ satisfies

Z∗
ki ← Z∗

ki

(WTVTVD1A)ki

(WTVTVWZ∗ATD1A + αD2Z∗)ki
, (46)

which can be reformulated as

[−(WTVTVD1A)ki + (WTVTVWZ∗ATD1A)ki

+ α(D2Z∗)ki](Z∗)ki
= 0,∀k, i.

(47)

We observe that (47) is the same as (45). This means the learned solution for Z∗
satisfies the Karush-Kuhn-Tucker condition. Until now, we finish the proof.

Theorem 4 With the solution W under the updating rule of (21), the proposed
algorithm converges to the Karush-Kuhn-Tucker points.

In regards to proving Theorem4, we can take the same strategy to finish it.

3 Experimentation

3.1 Description of the Data

We used three data sets in our experiments. There are two face data sets and one
handwritten digits images database. The proposed RCCF method is evaluated on
data clustering. Table1 show details of the selected data sets.
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Table 1 Details of the datasets

Datasets Size Dimentions Classes

Yale 165 1024 15

ORL 400 1024 40

MNIST 1000 784 10

Fig. 1 Yale Faces database

Yale Database.1 The Yale database contains 165 images in gray scale. These images
belong to 15 different people. For each person, there are 11 facial images of size
32 × 32. Each picture is with a different facial expression or configuration. Similar
to [34], all samples are normalized in orientation and scale to ensure that two eyes are
aligned at the same position. Figure1 shows some face images from this database.

ORLDatabase.2 This database contains 400gray scale face images of 40 individuals.
For each individual, images are in different facial expressions or configurations. All
these pictures are collected at different time, varying the lighting. We use the same
way as the Yale data set to preprocess this data set. Figure2 shows some examples
from this database.

MNIST Database.3 The MNIST database contains 10000 images of handwritten
digits from 0 to 9 in gray scale. For each subject, there are 1000 images. We resize

1http://www.face-rec.org/databases/.
2http://www.face-rec.org/databases/.
3http://yann.lecun.com/exdb/mnist/.

http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://yann.lecun.com/exdb/mnist/
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Fig. 2 ORL Faces database

Fig. 3 MNIST database

each image to 16 × 16, thus the dimensionality of feature vector is 256. Figure3
provides several example pictures from this data set.
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3.2 Evaluation Metrics

Following [34, 35], the normalized mutual information metric (NMI ) and the accu-
racy (AC) are employed to evaluate the clustering performance. Accuracy reflects the
percentage of correctly predicted cluster number. Given a database with n samples,
ri is cluster information provided by the database, for each sample, let li be cluster
information that we obtain by using different methods. The definition of AC is:

AC =
∑n

i=1 δ(ri,map(li))

n
(48)

where δ(x, y) be set 1 if x = y and δ(x, y) be set 0 if x �= y, and map(li) denotes the
permutation mapping function that maps each cluster label li to the corresponding
label from the data set. We utilize the KM algorithm [36] to obtain the best map.

The normalized mutual information matrix is employed to measure the similarity
of two clusters. Let C be the information of clusters achieved from the ground
truth and C ′ obtained from the proposed algorithm. Its mutual information matrix is
measured as:

MI(C,C ′) =
∑

ci∈C,cj ′∈C ′
p(ci, cj

′) · log p(ci, cj ′)
p(ci) · p(cj ′) , (49)

where p(ci, c′
j) denotes the joint probability that the chosen sample comes from

the cluster ci and p(c′
j) simultaneously. p(ci) and p(c′

j) are the probabilities that a
randomly chosen data comes from the clusters ci and p(c′

j), respectively. In these
experiments, we used the NMI(C,C ′), which gets scores ranging from 0 to 1.

NMI(C,C ′) = MI(C,C ′)
max(H (C),H (C ′))

, (50)

whereH (C) andH (C ′) denote the entropies of C and C ′. NMI equals to 1 when two
selected samples are the same, and it is 0 when these two samples come from two
different clusters.

3.3 Experimental Results

Testing was carried out on the proposed RCCF method in terms of clustering perfor-
mance on three public datasets. At the same time we also make comparisons with
related methods as follow:

1. Traditional KMeans clustering method (KMeans for short).
2. Concept-Factorization-based clustering (CF for short) [19].
3. Constrained concept factorization (CCF for short) [27].
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The former twomethods are unconstrained and the last one is a constrained algorithm.
Experiments are conducted with different cluster numbers K . K takes the value

between 2 and 10. For each data set, K categories are selected randomly. Similar to
[28], 30% of the data points are extracted to construct the training dataset and the rest
for constructing the test dataset. Then,matrix factorizationmethods are used to obtain
low-dimensional representations. The reduced dimensionality is set to be equal to
the cluster number K . Once the new representation is obtained, we utilize KMeans
by choosing cosine distance to the new representation for data clustering. KMeans is
repeated 20 times with various initiations. The result with minimum cost function is
recorded to measure accuracy and mutual information. There is an important tunable
parameter for the proposed method. To make the experimental results persuasive,
we perform grid search in the parameter space for our method and the best results
are recorded. In particular, the search of α from 0.1 to 90 was carried out and we set
α = 20, 10, 20 for the YALE, ORL and MNIST respectively.

The Yale data set clustering results are shown in Table2. Average AC and NMI
versusK can be found in the last row.We can see that RCCF outperforms others most
of the time, especially in terms of AC, while comparing to the second best results,
i.e., average results in terms of AC and NMI for CCF, our algorithm RCCF achieves
3.1 percent and 5.3 percent improvements respectively.

Table3 provides the clustering results for the data set named ORL. In this table it
can be observed that RCCF achieves the best results for most cases. RCCF obtains
the highest results 8/9 times in AC and the highest results 7/9 times in NMI . RCCF
achieves a 3.7 percent improvement in AC and a 3.4 percent improvement in NMI
on average, compared to the next best method (i.e. CCF)

Using MNIST, the details of the clustering results are given in Table4. It can be
observed from the table that the superiority of our method is obvious when K is

Table 2 Clustering methods’ performance on Yale Database

K Accuracy(%) Normalized mutual information(%)

KMeans CF CCF RCCF KMeans CF CCF RCCF

2 73.6 85.0 83.2 88.4 25.9 50.1 46.7 59.3

3 70.3 73.0 80.9 82.1 44.1 48.9 61.1 57.2

4 51.6 62.0 69.8 71.0 32.1 38.0 49.6 55.7

5 46.4 57.3 61.5 67.5 38.2 41.3 47.6 56.6

6 49.09 49.5 61.4 62.3 36.3 37.1 50.2 56.3

7 45.8 48.8 55.5 62.9 39.4 39.5 49.4 56.2

8 44.3 48.3 55.1 57.5 41.0 43.1 49.5 54.3

9 43.8 48.4 55.5 56.3 43.4 45.2 53.1 54.9

10 40.6 43.9 52.2 54.7 40.9 41.8 52.0 55.9

Avg. 52.0 57.4 63.9 67.0 37.9 42.8 51.0 56.3
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Table 3 Clustering methods’ performance on ORL Database

K Accuracy(%) Normalized mutual information(%)

KMeans CF CCF RCCF KMeans CF CCF RCCF

2 95.0 87.1 90.7 93.6 76.1 56.7 64.3 75.6

3 60.0 70.4 80.9 83.8 43.2 49.5 62.9 68.7

4 57.5 61.4 65.4 73.9 47.4 50.0 55.8 63.0

5 63.0 57.7 61.7 63.7 52.7 50.3 55.6 55.9

6 56.7 60.5 61.2 63.1 55.2 59.7 59.4 59.1

7 54.5 57.4 62.9 65.3 58.0 58.4 63.8 64.0

8 53.6 58.5 63.8 67.3 59.3 61.2 65.8 67.4

9 59.9 62.2 63.2 68.3 67.0 65.2 65.9 69.6

10 58.3 55.4 62.0 65.9 65.3 63.3 68.1 68.7

Avg. 62.0 63.4 67.9 71.6 58.3 57.2 62.4 65.8

Table 4 Clustering methods’ performance on MNIST Database

K Accuracy(%) Normalized mutual information(%)

KMeans CF CCF RCCF KMeans CF CCF RCCF

2 90.1 90.1 94.6 98.6 59.9 60.1 73.3 90.6

3 82.2 81.2 82.8 87.0 56.5 54.7 60.0 65.2

4 74.4 70.8 80.9 84.0 53.7 50.9 63.1 69.8

5 67.9 63.2 80.0 86.8 51.5 46.0 62.5 73.7

6 65.9 68.2 77.7 74.6 53.9 52.2 63.1 62.0

7 63.2 61.6 75.1 74.3 53.5 50.2 63.2 61.3

8 57.1 61.2 67.3 68.4 50.9 50.0 57.6 58.0

9 53.9 57.0 67.6 67.6 51.1 48.5 58.5 57.7

10 54.1 53.8 68.9 58.6 50.9 45.8 59.2 50.1

Avg. 67.6 67.4 77.2 77.8 53.5 51.0 62.3 65.4

small. On average, RCCF and CCF have similar performance, however, RCCF still
achieves the best results. When matched with the algorithm that performed second
best (CCF), RCCF obtains a 3.1 percent improvement in NMI ,

4 Conclusion

A robust constrained concept factorization (RCCF) method is proposed in this
chapter. This newmodel learns discriminative results since it fully utilizes the labeled
information with a constraint matrix. In addition, L2,1-norm is applied on both the
reconstruction function and the regularization. The L2,1-norm based reconstruction
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function improves the robustness of RCCF, and the L2,1-norm regularization is used
to select useful information. In order to solve the new model, we have derived an
efficient iterative updating algorithm, along with proofs of convergence. Evaluating
the proposed method on three data sets showed the superiority of the algorithm as
a generalized method in pattern recognition and computational intelligence applica-
tions.
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