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Abstract Computational intelligence and pattern recognition techniques are gaining
more and more attention as the main computing tools in bioinformatics applications.
This is due to the fact that biology by definition, deals with complex systems and that
computational intelligence can be considered as an effective approach when facing
the general problem of complex systems modelling. Moreover, most data available
on shared databases are represented by sequences and graphs, thus demanding the
definition of meaningful dissimilarity measures between patterns, which are often
non-metric in nature. Especially in such cases, evolutive and fully automatic machine
learning systems are mandatory for dealing with parametric dissimilarity measures
and/or for performing suitable feature selection. Besides other approaches, such as
kernel methods and embedding in dissimilarity spaces, granular computing is a very
promising framework not only for designing effective data-drivenmodelling systems
able to determine automatically the correct representation (abstraction) level, but
also for giving to field-experts (biologists) the possibility to investigate information
granules (frequent substructures) that have been discovered by the machine learning
system as the most relevant for the problem at hand. We expect that many important
discoveries in biology and medicine in the next future will be determined by an
increasingly stronger integration between the ongoing research efforts of natural
sciences and modern inductive modelling tools based on computational intelligence,
pattern recognition and granular computing techniques.
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1 Introduction

1.1 Bioinformatics, Computational Intelligence and Pattern
Recognition

The word ‘bioinformatics’ took different meanings since its introduction around
forty years ago [17]. The definition of an autonomous ‘bioinformatics’ field started
with the need to efficiently analyse and store increasing amounts of sequence data.
Consequently, in the first years of the application of computational science in biology,
bioinformatics was mainly devoted to technical and instrumental problems with no
relation at allwith the core of biological sciences.Computational scientistswere hired
to give a service to biologists because ‘theywere able to playwith computers’ in away
not too dissimilar of any laboratory technician taking care of a spectrophotometer
properly working.

It isworth noting that the relationbetweenbiology and statisticalmethodology (the
first root of pattern recognition approaches in life sciences) started with completely
different premises. From the beginning of their relation, in the first years of the last
century, biology and statistics interacted on a peer-to-peer basis and many statistical
tools were developed in the core of biological community (e.g. Ronald Fisher, one of
the fathers of modern statistics, was a geneticist and he developed linear regression
in the frame of human genetics and evolution studies [65, 84, 95]).

During the years, the relation of biology with bioinformatics became something
more than a purely occasional affair and approachedv the ‘true-love wedding’ level
of the one-hundred years lasting relation between biology and statistics. Notwith-
standing that, the term ‘bioinformatics’ is still largely prevalent with respect to other
terms lexically more suited for describing the growing maturity of Biology and
Computational Intelligence relation, such as ‘computational biology’ and ‘systems
biology’.

Besides the terminology, pattern recognition and computational intelligence tech-
niques are nowadays gaining attention from the bioinformatics community [43,
71]. Many machine learning problems that can be instantiated in both biology and
medicine are defined on domains in which each entry of the database at hand is a data
structure far more complex than a plain real-valued feature vector, such as sequences,
graphs, images or often evenmore complex structures arising from the concatenation
of different data types (unconventional, structured data).Dealingwith such structured
domains usually demands to be able to define custom and meaningful (dis)similarity
measures between elements in such unconventional domains, relying on sequence
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and graph matching techniques. Specifically, networks (graphs) are nowadays the
most powerful approaches to describe the complexity behind biological systems.

In fact, the application of computationally intensive methods to biological prob-
lems became strictly intermingled with the actual frontiers of biomedicine and went
well beyond the biological polymers sequence analysis, directly tackling the archety-
pal form of biological objects from protein science to ecology: complex networks,
interpreted as simplified, yet powerful, representations of complex systems.

Complex systems are everywhere in nature, as well as in most artificial systems
designed and built bymankind (telecommunications and energy distribution systems,
as instances). Complex systems are by far more frequent than ‘simple’ ones, which
are the true outliers in our world. However, a precise definition of what should be
a ‘complex system’ is still a disputable issue. This challenge is due to the fact that
complex systems are nowadays a research topic faced by many different scientific
areas, such as mathematics, biology, physics, chemistry and engineering, each one
bringing its own point of view, concepts and terms into the discussion. Since 1995,
when John Horgan published his famous paper entitled “From Complexity to Per-
plexity” [36] evidencing the lack of a shared and precise definition about complex
systems, the debate is still well alive. However, most authors agree in considering
the following characteristics as necessary conditions to consider a given system as
‘complex’:

• The system is composed by many mutually interactive elements
• Elements behaviour is characterised by nonlinear dynamics
• The graph representing the causal relationships between elements contains loops

Elements are usually defined as atomic entities at the semantic level chosen for sys-
tem description. For example, proteins can be considered as atomic entities in the
network of chemical reactions in a biological cell; neurons are the basic constituents
of the brain, when focusing on purely computational issues; each individual can be
considered as an atomic entity in an ecosystemor in a social network. These examples
of complex systems underline a property frequently found in such systems, concern-
ing the fact the usually complexity arises in the form of a hierarchical organisation,
as nested Systems of Systems. From this last point of view, it is possible to consider
causal relations between elements belonging to different levels in the hierarchical
organisation. When the network of these relations contains a loop, sometimes it is
referred to as ‘strange loop’, i.e. a causal loop between different levels of the hierar-
chy [35]. This property is strongly related with the emergence of the most interesting
behaviours of a given Systems of Systems, when considered as a whole.

In a fundamental paper appeared in 1948 entitled “Science and Complexity”
[92], WarrenWeaver, one of the fathers of modern information science together with
Claude Shannon, proposed a tri-partition of science styles.

Scientific themes can be sub-divided into:

1. Problems of simplicity
2. Problems of disorganised complexity
3. Problems of organised complexity
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The first class (simplicity) roughly corresponds to problems that can be solved in
terms of differential equations. These ‘simple problems’ are the ones allowing for a
high degree of abstraction (e.g. a planet could be considered an abstract dimensionless
‘material point’ for sketching general gravitational laws on the pure basis of its mass
and distance from the sun).

Problems belonging to the second class (disorganised complexity) allow for a
higher degree of generalisation than first class problems without losing in precision.
These problems imply a somewhat opposite style of reasoning: the efficiency does
not stem from the possibility to get an efficient abstract description of the involved
players, but from totally discarding such ‘atomic’ knowledge in favour of very coarse
grain macroscopic descriptors corresponding to gross averages on a transfinite num-
ber of atomic elements. This is the case of thermodynamic parameters (e.g. pressure,
volume, temperature, etc.). The two above mentioned approaches have drastic limi-
tations of their applicability range: class 1 needs the presence of very few involved
players interacting in a stable way with a practically null boundary conditions effect,
whereas class 2 needs very large numbers of particles with only negligible interac-
tions among them.

Problems of organised complexity (class 3) arise in all those situations in which
many (even if not-so-many as in class 2) elements are involved with non-negligible
interactions among them. This is the ‘middle kingdom’ of complexity, where biolog-
ical systems live and where computational intelligence and pattern recognition can
‘make the difference’.

Network (or graph) is the archetype of organised complexity: a set of nodes (e.g.
genes, brain areas, animal species) are each other connected by mutual correlations
(edges). The wiring architecture of these graphs can vary in both space and time and
it is of utmost importance to get quantitative similarities and differences among them.
When graphs are adopted to represent only topological information concerning a set
of objects and their relations, the network approach can roughly be described as the
answer to the question “what can we derive from the sole knowledge of the wiring
diagram of a system?” [28, 58].

The most crucial questions at the frontiers of biomedical sciences demands a
reliable answer to the above question. Fields (just to name a few) that are increasing
their formalisation in terms of network representations are: neuroscience at both
clinical and basic research level [11, 68], biochemistry [5], cancer research [94],
structural biology [46], ecology [27].

Moreover, when dealing with fully labelled graphs (where both nodes and edges
are associated with possibly structured data), a fundamental topic is how to define
proper dissimilarity measure between pairs of such patterns (the graph matching
problem [47]).

Modelling a complex system is a matter of identifying the correct level of abstrac-
tion, which usually means to extract a hierarchy of information granules, searching
for the level of the hierarchy better related to the semantic of the problem at hand. At
any level, information granules are nodes of a network, so that the granulation process
must deal with the problem of searching for frequent substructures in labelled graphs
which, in turn, means to define algorithms able to automatically identify suitable
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dissimilarity measures in graph spaces. To this aim granular computing techniques
are nowadays a promising tool.

Keeping this general frame inmind, in order to fix clear boundaries to this Chapter,
a general definition of computational intelligence and pattern recognition is sketched
in the following.

1.2 Theoretical Background and Definitions

Computational Intelligence, formerly known as Soft Computing thanks to the seminal
work [96], is a set of data processing techniques tolerant to imprecisions, uncertainty,
partial truth and approximation (in the data and/or models), aimed to provide robust
and low-cost solutions and to achieve tractability when dealing with complexity.
Such toolbox includes mostly biologically-inspired algorithms, usually exploiting
inductive reasoning (i.e. based on generative logic inferences, such as analogy and
induction) [13]. Basically, in this toolbox it is possible to find:

• Artificial Neural Networks
• Fuzzy Logic and Neuro-Fuzzy Systems
• Evolutionary Computation and derivative-free optimisation metaheuristics, such
as genetic algorithms and swarm intelligence

Such a (heterogeneous) set of computational tools are usually combined to design
powerful data-driven modelling systems. Being able to synthesise a (predictive)
model of a given (physical or even abstract) process P is a fundamental topic in
all natural sciences, as well as in engineering.

Before the pervasive widespread of digital computing devices, modellingwas per-
formed ‘by hand’, mostly relying on field-experts (analytical modelling), consisting
in identifying meaningful quantities and relations among them and finally writing
a system of integro-differential equations as the final output. This implies a clear
understanding of the process at hand to be modelled.

However, when a meaningful sampling S of the process P to be modelled is
available, a second approach (data-driven modelling) consists in writing an algo-
rithm (often suitable to be run on a Von Neumann computing architecture) able to
automatically synthesise a model M of P according to some predefined optimality
criteria. This modelling approach is nowadays usually referred to asMachine Learn-
ing. The design and development of such learning systems is basically an engineering
problem.

A formal machine learning definition has been given in [59], where the author
considers machine learning as the following, well-posed problem:

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E .

More broadly, machine learning can be defined as a (set of ) complex intelligent
processing system(s), usually defined by means of adaptive learning algorithms,
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able to act without being explicitly programmed or, in other words, able to learn
from data and experience.

Pattern recognition techniques fall under the machine learning umbrella, focus-
ing on classification of objects in a given number of categories (classes). Indeed,
pattern recognition includes a wide range of techniques employed to solve (properly
said) classification problems and clustering problems. Broadly, pattern recognition
techniques can generally be divided into two main families: supervised and unsuper-
vised learning, both of which fall under the aforementioned data-driven modelling
paradigm.

For a more formal definition, let us consider an orientated process P : X → Y
where X is the input space (domain) and Y is the output space (codomain). More-
over, let 〈x; y〉 be a generic input-output sample drawn from P , i.e. y = P(x). In
supervised learning, a finite set S of input-output observations drawn from P are
supposed to be known. Common supervised learning tasks can be divided into two
families, depending on the output space nature: classification and function approx-
imation. In classification, outputs take values from a set of categorical labels, each
of which correspond to a given problem-related class (e.g. “sick” or “healthy” in
a predictive diagnosis/medicine problem). Conversely, in function approximation
(such as regression, interpolation, extrapolation, fitting) outputs take values usually
in the real field. Formally, in the former case, Y is a discrete label set where it is not
possible to establish any total ordering between its elements, whereas, in the latter
case, Y can be considered as a normed space.

In unsupervised learning there are no output classes or labels and regularities have
to be discovered by considering mutual relations between elements drawn from the
input space only. One of the mostly acclaimed unsupervised learning approaches
relies on data clustering [37]. Aim of a clustering algorithm is to discover groups
(clusters) of patterns in such a way that similar pattern will fall into the same cluster,
whereas dissimilar pattern will fall into different clusters. Formally, let S be a sam-
pling of a non-orientated process P and let c be the number of clusters, constrained
to 2 ≤ c ≤ |S|. Aim of a clustering algorithm is to assign to every x ∈ X an integer
h ∈ [1, c] starting from the set of c clusters induced over S.

In both of these cases, the goal of a learningmachine is to build a predictive model
from observations, aiming to discover the underlying model structure. Moreover,
learning machines must be able to generalise their discrimination capabilities to
previously unseen patterns or, in plain terms, they must be able to assign a label
(either a class label or a cluster label) to patterns not belonging to S.

For the sake of completeness, it is worth stressing that clustering and classification
algorithms might as well co-operate and shall not be considered as two diametrically
opposed techniques. For classification purposes, a rather common approach relies on
clustering labelled data without considering their respective labels, then assigning a
label to each cluster by considering, for example, the most frequent label amongst
the patterns belonging to the cluster itself. Finally, each new pattern is classified
according to the nearest cluster’s label. An example of such workflow can be found
in [21, 22].
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1.3 Chapter Scope

Aim of this Chapter is to review and discuss major issues when dealing with pat-
tern recognition problems in non-metric spaces, namely input spaces for which a
(dis)similarity measure might not be metric. As a case study, bioinformatics and
computational biology-related problems will be investigated, since in these fields
not only pattern recognition has emerged as a breakthrough discipline, but it is also
very common to find structured data such as graphs or sequences which lie in non-
metric spaces (see Sect. 1). Moreover, biological processes are excellent examples
of complex systems, strongly suggesting the use of granular computing techniques
for facing the challenging problem of (data-driven) model synthesis.

In Sect. 2 the data-driven modelling steps at the basis of pattern recognition prob-
lems will be described in detail, with particular emphasis on classification and clus-
tering, underlying the role of computational intelligence techniques in designing
pattern recognition systems.

Section3 will regard non-metric spaces, remarking some examples of bioinfor-
matics and computational biology-related problems inwhich structured data are com-
monly used. Moreover, some important issues when dealing with pattern recognition
in non-metric spaces and possible solutions, including information granulation-based
techniques, will be discussed.

In Sect. 4 some real case studies of bioinformatics/computational biology prob-
lems faced by means of pattern recognition techniques design to work in structured
and non-metric domains will be summarised.

Finally, Sect. 5will drawsomeconclusions, stressingmajor advantages of granular
computing-based techniques over more ‘traditional’ approaches.

2 Machine Learning Systems Design

In conventional machine learning, a pattern is defined by a set of measures related
to the original object to be represented, arranged in an array. Each entry (feature)
is usually a real-valued variable. When a metric dissimilarity measure is implicitly
or explicitly fixed in order to compare a pair of such simple data structures, usu-
ally it is referred to as a feature vector. The multi-dimensional space spanned by
feature vectors forms the feature space. A well-defined feature space is able to facil-
itate the modelling process. For example, in the classification (supervised) case a
well-designed feature space yields simpler decision surfaces in terms of structural
complexity (smooth and regular).

Let us consider a plain supervised pattern recognition (classification) problem, as
an instance of the more general machine data-driven modelling paradigm. Recalling
Sect. 1.2, aim of a classification system is to assign an input pattern (represented by
its feature vector) to one amongst the class labels defining the problem at hand.
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Fig. 1 A simplified pattern recognition system workflow

In Fig. 1, the main steps in order to build a classification system are summarised.
First, real-world data, belonging to a generic (and possibly abstract) space X are
casted into a proper data structure S, processable by a computational device, by
means of a representation function f which must ad-hoc be chosen for the problem
at hand.

From structured data S, a given number m of (usually numerical) features is
extracted, thus casting data in S towards Rm (the aforementioned feature space).

The two following blocks are not mandatory, but they have been added for the
sake of completeness and in order to take into account inevitable uncertainties in
data collection and processing. The first block is in charge of data normalisation and
cleaning: the former task is sometimes crucial in order to facilitate the classification
algorithm under particular circumstances1; the latter deals with missing and noisy
data. An intuitive data cleaning task is, for example, outliers’ removal.2 Conversely,
the Feature Selection block allows to select a significant subset of the previously
generated features; indeed, as a general rule, the feature vector should be small, yet
informative,3 in order to avoid undesired phenomena such as overfitting and/or the
so-called curse of dimensionality. Further, it is recommended to get rid of unreliable
features and correlations with existing features. At the end of this selection stage,
feature vectors will lie in a (possibly) reduced features space R

n , where n ≤ m.
Finally, the set of feature vectors will be used in order to train the classification
system, with the final goal of estimating the correct label (identified, for the sake of
ease, as an instance of a nominal value set L in Fig. 1) for any input vector.

For a better understanding of Fig. 1 and all of its steps, let us consider a real-world,
Bioinformatics-related scenario, where X corresponds to the protein space (i.e. the
set of real macromolecules). Let us suppose to represent proteins as graphs (cf.
Sect. 3.1), then f is an (hypothetical) function which must convert macromolecules
into graphs (S). Fortunately, at least from amachine learning point of view,molecular

1For example, let us consider a classification/clustering algorithm driven by the Euclidean distance.
A common problem with the Euclidean distance is that features spanning a wider range of values
have more influence in the resulting distance measure, therefore normalising all attributes in the
same range (usually [0, 1] or [−1,+1]) ensures fair contribution from all attributes, regardless of
their original range.
2In Statistics, outliers are “anomalous data” that for a given dissimilarity measure lie far away from
most observations.
3Non sunt multiplicanda entia sine necessitate (Entities are not to be multiplied without necessity),
commonly known as “TheOckham’s Razor” Criterion (William ofOckham, circa 1287–1347). This
criterion states that among a set of predicting models sharing the same performances, the simplest
one (i.e. the one with the simplest decision surfaces) should be preferred. It is for sure one of the
fundamental axioms for thoughtful and practical data-driven modelling.
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biology helps: 3-dimensional protein structures, mainly gathered by crystallography,
are available in online databases (e.g. ProteinDataBank [7]), therefore it is rather easy
to build graph-based protein representations, either labelled or unlabelled on nodes
and/or edges. The Features Generation block is in charge of extracting numerical
features from graphs in S (cf. Sect. 3.2.1) which, after possible further processing,
will be directly fed into the classification/clustering system.

The training phase for a classification system is a rather delicate task and it needs
a separate discussion. Indeed, thanks to the training phase, the classification system
learns how to map and discriminate input patterns according to their class labels.
In other words, it learns the decision surfaces (decision regions boundaries) which
separates patterns corresponding to different classes.

A usual procedure for measuring in a fair way the generalisation capability of a
classification model consists in splitting the entire available dataset into two non-
overlapping subsets, namely the Training Set and the Test Set. Specifically, as far
as classification tasks are concerned, one shall figure both Training and Test Sets
as composed by 〈x; y〉 pairs (see Sect. 1.2). The classification system, driven by a
training algorithm which strictly depends on the chosen model (e.g. Support Vector
Machine, Artificial Neural Network, K -Nearest Neighbours), will use the Training
Set in order to learn the input-output mapping. The Test Set will then be used on such
trainedmodel,without further adaptive changes, in order to compute its performances
(e.g. percentage of correctly classified patterns). For a thoughtful modelling, the two
sets (albeit distinct) should satisfactorily represent the same statistical properties of
the process to be modelled.

This double-split procedure, however, is not effective since every training algo-
rithm depends on a set of parameters,4 which must be tuned with the ultimate goal of
maximising the generalisation capability of the synthesised model. In order to find
the optimal set of hyperparameters (i.e. model selection) a three-split procedure is
usually employed: the whole dataset is split into three non-overlapping parts, namely
Training Set, Validation Set and Test Set. The training algorithm, driven by the set of
hyperparameters Γ , will again exploit the Training Set and its performances will be
evaluated on the Validation Set. The parameters Γ will be tuned in order to maximise
the performances on the Validation Set and once the optimal Γ � has been found, the
final performances will be evaluated on the Test Set.

In literature, several ways to perform the aforementioned search for Γ � have
been proposed, amongst which grid search, random search [6] and evolutionary
optimisation-based techniques emerge (see Sect. 2.1).

When dealing with unsupervised learning, the scheme reported in Fig. 1 does not
change significantly, apart from the rightmost block. Indeed, rather than feature a
Classification algorithm, a Clustering algorithmmust be placed instead. A clustering
algorithm is in charge of returning groups of data (clusters) according to a given
(dis)similarity measure and to a predefined objective function.

In literature, three main families of clustering algorithms can be found, which
mainly differ for their objective function (i.e. according to which criterion clusters

4Also known as hyperparameters in the Machine Learning terminology.
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should be discovered): partitional clustering (e.g. k-means [51, 52], k-medians [10],
k-medoids [39]), which split the dataset into k non-overlapping partitions; hierarchi-
cal clustering (e.g. BIRCH [97], CURE [32]), where clusters are found by building
a dendrogram in either top-down or bottom-up approach; density-based clustering
(e.g. DBSCAN [24], OPTICS [3]), which detect clusters as the most dense regions
of the dataset.

Clustering algorithms do need some parameters tuning as well. Selecting their
respective optimal value(s) can be done according to some internal validation mea-
sures, such as the Silhouette [74] or the Davies-Bouldin Index [19]. Both manual
or fully automatic tuning by means of evolutionary optimisation techniques can be
employed in unsupervised learning as well.

2.1 Evolutive and Fully Automatic Approaches

Evolutionary optimisation metaheuristics such as genetic algorithms [30], particle
swarm optimisation [40], ant colony optimisation [16] and simulated annealing [41],
are one of the main topics under the Computational Intelligence umbrella (Sect. 1.2).
Such metaheuristics are well suited when the objective function to be optimised is
not known in closed-form and gradient-basedmethods turn to be unfeasible.5 Indeed,
the decision boundary which separates two or more classes in a classification prob-
lem is determined thanks to a sampling of the boundary itself, namely the set of
patterns which compose the dataset at hand, along with their respective class labels.
As introduced in Sect. 2, they are often used in order to automatise the hyperparam-
eters’ tuning for classification and/or clustering algorithms. Further, they can help
in conducting the feature selection phase (see Fig. 1). Indeed, one might ask which
is the most relevant set of features in order to maximise the classification and/or
clustering performances. To this end, evolutionary optimisation metaheuristics play
a huge role.

Let us consider a genetic algorithm as an example. One can consider the genetic
code to have the form [Γ,w] where Γ , as in Sect. 2, is a set of hyperparameters for
the clustering/classification algorithm at hand, whereas w is an m-length real valued
vector which tunes the (dis)similarity measure, core of the algorithm itself.

As far as classification tasks are concerned, a typical workflow might consist
in letting each individual in the evolving population to be considered for training
the classification model on the Training Set using both the hyperparameters and
the (dis)similarity weights specified by its genetic code. The classification model’s
performance will later be evaluated on the Validation Set and such performance
will serve as (part of) the fitness function.6 Trivially, at the end of the evolutionary

5That is why evolutionary optimisation metaheuristics fall within the derivative-free methods.
6A common choice for a genetic algorithm fitness function takes into account both the model
performance and its structural complexity. Specifically, whilst the former should be maximised, the
latter should be minimised in order to avoid overfitting (cf. the Ockham’s Razor Criterion).
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stage, the best individual will be the one which maximises the performances on
the Validation Set and its final performances will be evaluated on the Test Set. An
example of such workflow can be found in [55] for classification algorithms and in
[21, 22] for re-adaptation of clustering algorithms for classification purposes.

When dealing with clustering algorithms, the overall workflow does not change
significantly. However, each individual will process the entire dataset according to
the parameters stored in its genetic code and, similarly, since the performances cannot
rely on any ground-truth labels, other internal validation measures should be used
as the fitness function. An overview of clustering with evolutionary-driven feature
selection can be found in [1].

It is worth stressing that, in both cases, the resulting best individual’s genetic
code contains the set of hyperparameters Γ � which, along with the weights vector,
maximise the algorithm’s performances. Specifically, the latter deserves some further
notes: if one considers w ∈ [0, 1]m , such vector acts as a feature selector, where 0’s
correspond to features which will not be considered in the (dis)similarity measure,
and 1’s correspond to features which, conversely, will be considered. The subset of
n elements for which w is not-null can be seen as the reduced features space.

3 Dealing with Non-metric Spaces

So far, the design of a pattern recognition system has been described in its standard
and most common form, where patterns are represented by means of real-valued
vectors. In these cases, any Minkowski-based (e.g. Euclidean) distances can be good
and straightforward candidates. Moreover, such (dis)similarity measures are metric.

Formally, a dissimilarity measure d defined on a generic space S is a function
d : S × S → R satisfying the following properties:

1.
∃d0 ∈ R such that − ∞ < d0 ≤ d(x, y) < ∞ (1)

2.
d(x, x) = d0 (2)

3.
d(x, y) = d(y, x) (3)

for any two objects x, y ∈ S. If, alongside Eqs. (1)–(3), d satisfies the following two
properties

1.
d(x, y) = d0 if and only if x = y (4)

2.
d(x, z) ≤ d(x, y) + d(y, z) (5)

for any three objects x, y, z ∈ S, then d is said to be metric.
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Similarly, inS it is possible to define a similaritymeasure s : S × S → Rwhether
it satisfies the following properties:

1.
∃s0 ∈ R such that − ∞ < s(x, y) ≤ s0 < ∞ (6)

2.
s(x, x) = s0 (7)

3.
s(x, y) = s(y, x) (8)

for any two objects x, y ∈ S. If, alongside Eqs. (6)–(8), s satisfies the following two
properties

1.
s(x, y) = s0 if and only if x = y (9)

2.
s(x, y) · s(y, z) ≤ (s(x, y) + s(y, z)) · s(x, z) (10)

for any three objects x, y, z ∈ S, then s is said to be metric.
Moreover, it is possible to prove that:

Theorem 1 If d is a metric dissimilarity measure with d(x, y) > 0, ∀x, y ∈ S, then
s = a/d is a metric similarity measure for a > 0.

Theorem 2 If d is a metric dissimilarity measure, let dmax be the maximum pairwise
distance between elements in S, then s = dmax − d is a metric similarity measure.

The above two theorems demonstrate that, under particular circumstances, one can
easily ‘switch’ between (metric) similarity and dissimilaritymeasures in a given input
space. Indeed, dissimilarity measures quantify the degree of separation, whereas
similarity measures estimate the complementary notion of closeness.7

3.1 Examples of Structured Data in Bioinformatics
and Computational Biology

Dealing with non-metric spaces is a common issue when unconventional (structured)
data, such as graphs or sequences, are considered as the input domain.

As introduced in Sect. 1, especially in bioinformatics and computational biology,
patterns are usually described by means of data structures more complex than plain
real-valued feature vectors: some common examples include proteins, DNA and
RNA, metabolic pathways and brain connectivity networks.

7That is why in most of the Chapter, unless explicitly specified, the generic term (dis)similaritywill
be used.
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Indeed, DNA and RNA transcripts are usually described as sequences of 4 pos-
sible nucleotides: adenine (A), cytosine (C), thymine (T), guanine (G) for DNA and
adenine (A), cytosine (C), uracil (U), guanine (G) for RNA.

Proteins can be described by both sequences and graphs. The former representa-
tion is more straightforward: a protein is encoded in genes (DNA sequence) which is
transcribed into pre-messenger RNA (RNA sequence). The RNA transcript is loaded
into the ribosome which reads three nucleotides at the time (codons) and converts
each triplet into one of the 20 amino-acids. It is clear that there exist up to three
sequence-based protein representations, which mainly differ from their alphabet
(4 nucleotides vs. 20 amino-acids) and their length (nucleotide-based sequences
are three times longer than amino-acid-based ones). The protein representation as a
sequence of amino-acids is also known as primary structure.

Graph representations result from a biological step forward in protein biosynthe-
sis. Indeed, when the protein leaves the ribosome, a process called protein folding
starts, during which the protein folds on itself, leading to a unique three-dimensional
structure (also known as the tertiary structure). Protein Contact Networks [23] are
an example of graph-based protein representation [29], where nodes correspond to
amino-acids and edges between any two nodes exist whether their Euclidean distance
falls within a given range, typically [4, 8]Å (e.g. [44–46, 54, 55]). The lower bound is
usually considered in order to discard trivial backbone first-order neighbour contacts
(i.e. sequence proximity), whereas the upper bound is usually defined by taking into
account the peptide bonds geometry; indeed, 8Å roughly correspond to two peptide
bond lengths or, equivalently, to two Van der Waals radii between residues’ alpha-
carbon atoms. In their original formulation, Protein Contact Networks are undirected
graphs with no labels on nodes and edges: information regarding the type of amino-
acid and their respective proximities are deliberately discarded in order to focus on
proteins’ topological structure and their complex nature.

Metabolic pathways are mainly described by graphs as they can be seen as pro-
tein networks and chemical networks. In the former, nodes correspond to proteins,
whereas links correspond to physical (protein-protein interaction) and/or functional
relations between them. In the latter, links correspond to chemical reactions (catal-
ysed by specific enzymes) transforming the nodes (organic molecules produced – or
used – in the metabolic processes) at their extremities into one another.

To our knowledge, the brain is probably the most complex circuit in the Universe,
a complex system of nested subsystems, usually modelled as a network, since its
functions strictly depend on the anatomical and functional wiring of billions of
neurons [11, 31, 75, 88].

While in the case of brain networks based on the anatomical links between parts
of the brains (macroscopic scale) or between single neurons in a small brain portion
(microscopic scale) it is possible to rely on the assumption of a certain degree of
invariance in time,8 this is not the case as for functional brain networks (e.g. related
to areas metabolic activity correlations observed by Nuclear Magnetic Resonance

8Indeed, the anatomical structure changes in the order of months/years depending on the age of
subjects.
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(NMR) or Positron Emission Tomography (PET)) that modify their wiring patterns
on very short time scales [25, 81, 83].

Spontaneous neuronal activity in resting state depends on dynamic communica-
tion between brain regions allowing both local segregation and long-distance inte-
gration of neuronal processes. Several functional networks in which temporally or
spatially coherent connections exist [18]. These networks have been identified in
healthy subjects by functional Magnetic Resonance Imaging (fMRI) and by PET,
respectively. Both these techniques deal with the quantification of metabolic rate
correlation across different brain areas. Specifically, fMRI measures as ‘marker’ the
variation of the amount of blood flowing across brain areas (coupledwithmetabolism
by the dynamics between oxidised and reduced haemoglobin) [26], whereas PET
focuses on the different metabolic rate of glucose (the most important energy source
for brain cells) across different brain areas [79].

Both fMRI and PET techniques define a brain connectivity network in correlative
terms: two nodes i, j of the network are linked by an edge if the metabolic rates
of nodes i and j are each other correlated (given the quantitative character of the
measures used by Pearson correlation coefficient metrics).

3.2 Pattern Recognition in Non-metric Spaces

When dealing with complex data structures such as graphs or sequences, the scheme
from Fig. 1 should be revisited since patterns cannot be directly described by means
of real-valued vectors.

In literature, three major approaches can be found [49, 50]:

1. directly working in the input data structure space, by defining ad-hoc (dis)
similarity measures

2. by means of kernel transformations and kernel machines
3. by defining an embedding function from the input space to real-valued vectors

These approaches are summarised in Fig. 2 and, along with the ‘classical’ Feature
Generation procedure, will be discussed separately.

3.2.1 Classical Processing Chain by Feature Generation

Recalling Sect. 2, given a generic and possibly non-metric input space S, the most
straightforward approach consists in defining amapping functionφ : S → R

n specif-
ically designed for the input space at hand. In this section, three examples of mapping
function suitable for dealing with graphs will be described. Moreover, the additional
challenge of dealing with patterns of different size in S will be discussed. For the
sake of argument, let us consider graphs representing proteins since, notably, proteins
have different sizes both in terms of primary and tertiary structures, meaning that
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their amino-acids sequences and, by extension, their folded 3-dimensional structures
have different size.

In [46, 54, 55] a mapping function based on graphs spectra has been proposed.
Specifically, each graph has been described by means of its normalised spectrum, i.e.
the set of eigenvalues evaluated from its corresponding normalised Laplacian matrix
[38]. Such eigenvalues lie in range [0, 2], making such approach suitable for com-
paring graphs with different sizes. However, the number of eigenvalues composing
the spectrum equals the number of nodes in the graph and, in order to overcome this
problem, it is possible to estimate the spectral density by means of a kernel density
estimator [63]. In this way, the distance between any two graphs can be evaluated
by integrating the squared difference between their respective spectral densities all
over the [0, 2] range. This evaluation can be performed also in the discrete domain
by sampling a finite number (n) of points from such spectral densities (being the
support domain equal for all graphs, regardless of their respective sizes). In such
finite domain, the distance between two graphs can be evaluated as the considered
distance (e.g. Euclidean) between their respective sets of samples.

In [45] a feature-engineering based approach has been employed in order to predict
proteins’ solubility starting from their topological structures. Several features have
beenmanually selected such as the number of nodes and edges, the number of protein
chains, some centrality measures (e.g. closeness and degree) and some physical
characteristics (e.g. heat trace, energy). The union of these features forms the feature
vector for a given graph.

Other feature extraction procedure(s) can rely on a rather novel field known as
Topological Data Analysis [12, 91]. Topological Data Analysis consists in a set
of techniques in order to extract information from data starting from topological
information by means of dimensionality reduction, manifold estimation and persis-
tent homology in order to study how components lying in a given multidimensional
space are connected (e.g. in terms of loops and multidimensional surfaces). This
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can be done by starting either by so-called point clouds9 or by explicitly providing
a similarity matrix (cf. the Kernel Methods paragraph). Albeit this field has very
solid and rigorous foundations (from algebraic topology to pure mathematics), there
are very few ‘numerical’ features which can be extracted, mainly the sequence of
Betti numbers. Formally, the i th Betti number corresponds to the rank of the i th
homology group. In plain terms, the i th Betti number corresponds to the number of
i-dimensional ‘holes’ in a topological surface. For example, let us consider a three-
dimensional graph, its first threeBetti numbers have the following interpretations: the
0-th Betti number corresponds to the number of connected components in the graph;
the 1-st Betti number corresponds to the number of 1-dimensional holes (e.g. circular
holes); the 2-nd Betti number corresponds to the number of 2-dimensional holes (e.g.
cavities). If the multidimensional space under analysis has a finite dimension, the
Betti numbers vanish after the spatial dimension (e.g. the number of 4-dimensional
holes in a 3-dimensional space is always equal to zero). Whether the Betti numbers
can be an effective mapping function for pattern recognition purposes it still an open
question.

3.2.2 Ad-Hoc Dissimilarities in the Input Space

One of the mostly acclaimed ad-hoc (dis)similarity measures for structured data are
the so-called edit distances, according to which the distance between two objects is
given by theminimumnumber of atomic edit operations (usually insertions, deletions
and substitutions of elements in the sequence) needed to transform the first object into
the second object. As regards strings, the Levenshtein distance [42] is the seminal
example of an edit distance, which can be seen as a generalised Hamming distance10

[33].
The same approach can be used to define dissimilarity measures between graphs

as well, leading to the Graph Edit Distances [47, 60], which inherit the idea at the
basis of the Levenshtein distance, defining atomic edit operations in both the sets
of nodes and edges. In many pattern recognition applications defined in sequences
domains theDynamicTimeWarping [76] can be adopted,where the sequence support
is explicitly related with time. Specifically, by applying a non-linear distortion on
the support independent variable (time), it returns the optimal correspondence (i.e.
similarity) between two sequences.

Amongst these methods, the Levenshtein/Hamming distances are well-known to
be metric; the same might not be true for Graph Edit Distances (as they might violate
the symmetry property – cf. Eqs. (3) and (8)) and Dynamic Time Warping (as it

9A finite set of points equipped with a notion of distance in a finite multidimensional space.
10According to which the distance between two strings of equal length is given by the number of
mismatches.
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might violate the triangle inequality – cf. Eqs. (5) and (10)). Also, edit distances are
not recommended if patterns have a high dimension variability as deletion/insertion
costs can easily prevail over substitution costs.

On the plus side, however, methods based on ad-hoc (dis)similarity measures
notably work in cases where the pattern recognition system does not need to define an
algebraic structure on the input space. For example, let us consider a clustering task to
be performed directly into a non-metric space with an a-priori chosen (dis)similarity
measure. Algorithms such as k-means or k-medians cannot be considered as good
candidates since the former needs to evaluate the component-wise mean amongst
the pattern in a given cluster in order to evaluate its representative, whereas the latter
needs to evaluate the component-wise median. Therefore, the need to define a mean-
ingful algebraic structure emergeswhich, however, turns into a non-sense as concerns
non-metric input spaces. Suitable clustering algorithm candidates for dealing with
non-metric spaces are k-medoids, as discussed in [56], and BSAS [85], since they
do rely on (dis)similarity measures only in order to form clusters and to update their
representatives. Similarly, as far as classification algorithms are concerned, a good
candidate is the K -Nearest Neighbour, since it classifies patterns according to their
respective distances rather than defining operators such as the inner product, manda-
tory in Artificial Neural Networks, or Support Vector Machines, whether equipped
with an ad-hoc kernel transformation (see the Kernel Methods paragraph).

Kernel Methods

Typically, kernel methods can safely be employed whether the input space has an
underlying Euclidean geometry, since they are based on inner products. Given a pair
of patterns x, y ∈ R

n , their inner product is given by:

〈x, y〉 = x · y =
n∑

i=1

xi · yi (11)

Further, let us consider the instances matrix for the dataset at hand, X ∈ R
NP×n ,

namely a matrix where each row corresponds to a given pattern. Let NP indicate the
number of patterns. It is possible to define the kernel matrix11 as

Ki, j = 〈xi , x j 〉 (12)

or, in batch fashion

K = X · XT (13)

11Also known as the Gram Matrix, after Danish mathematician Jørgen Pedersen Gram.
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More in general, let k be a symmetric and positive semi-definite kernel function from
the input space at hand S towards R, i.e. k : S × S → R such that:

k(xi , x j ) = k(x j , xi ) ∀xi , x j ∈ X (14)
NP∑

i=1

NP∑

j=1

ci c j k(xi , x j ) ∀ci , c j ∈ R,∀xi , x j ∈ X (15)

As in the inner product case, starting from k(xi , x j ) one can easily evaluate theKernel
Matrix as

Ki, j = k(xi , x j ) (16)

and if K is a positive semi-definite kernel matrix, then k is a positive semi-definite
kernel function. One of the most intriguing property of kernel methods relies in the
so-called kernel trick [77]: kernel of the form (14)–(15) are also known asMercer’s
kernels since they satisfy the Mercer’s theorem [57]; they can be seen as the inner
product evaluation on a (possibly) infinite-dimensional and usually unknown Hilbert
space H. The kernel trick is usually defined by means of the following, seminal
equation:

k(xi , x j ) = 〈ψ(xi ), ψ(x j )〉H (17)

where ψ : S → H is the implicit and usually unknown mapping function.
Several positive semi-definite functions commonly used as kernels include the

linear, exponential, radial basis function and polynomial [77, 78], which are usually
employed in kernel machines, such as (non-linear) Support Vector Machines.

However, inmany cases, defining the kernel functionmight not be easy, especially
when dealing with non-metric spaces. Regardless of the nature of the input space, it
is possible to evaluate the similarity matrix (cf. Sect. 3) S ∈ R

NP×NP where

Si, j = s(xi , x j ) (18)

If s is a metric similarity measure, it is possible to directly use S as the kernel matrix,
as suggested in [15], or include similarities in widely-known kernel functions (e.g.
radial basis function), as suggested in [77].

Conversely, if the (dis)similarity measure is not metric, two mainstream
approaches can be followed. The former relies on moving the pattern recognition
problem towards a dissimilarity space (as explained in the next paragraph), the latter
relies on ‘modifying’ the similarity matrix in order to be a valid kernel matrix (i.e.
satisfying Mercer’s theorem) [14, 15, 89].

Embedding Functions and Information Granulation

Embedding functions can be seen as particular cases of mapping functions as defined
in the Classical processing chain by Feature Generation paragraph. Indeed, while
both of them aim at moving the problem from a generic input space S towards
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R
n , embedding functions, at least in this context, do rely on other patterns or on

substructures extracted from the dataset at hand in order to build such mapping.
A first example of embedding consists in moving the pattern recognition problem

into a dissimilarity space [66].
In turn, dissimilarity representations can follow two further approaches:

1. Each pattern is described by its own row12 from the similarity matrix S (cf. the
Kernel Methods paragraph); that is, each pattern is described by the distance(s)
vector with respect to other patterns (including self-distance)

2. Each pattern is described by the distance(s) vector with respect to a given number
of representatives drawn from the input space at hand. Certainly, the selection
of such representatives is a crucial task since a) they must well-characterise the
decision boundary between patterns in the input space and b) there should be few
of those since the number of representatives has a major impact on the model
complexity. Representatives selection heuristics range from class-aware random
selections to clustering procedures directly in the input space [48] (cf. theAd-hoc
Dissimilarities in the Input Space paragraph).

Regardless of which of the two methods is employed, a dissimilarity space can
be equipped with algebraic structures and operators, such as the inner product, in
order to be suitable with traditional kernel methods [48]. But, more in general, since
patterns are now casted in RNP (former case) or RR (latter case – where R indicates
the number of representatives), any “standard” pattern recognition algorithm can be
used.

In order to introduce the embedding by means of substructures, let us introduce
widely known embedding functions for sequences. Since sequences are finite col-
lections of objects drawn from a finite alphabet (cf. RNA/DNA sequences or pro-
teins’ primary structure, Sect. 3.1) one of the most intuitive approaches relies on
histograms. Indeed, a sequence can effectively be described as the number of occur-
rences of any alphabet symbol within the sequence itself. For ‘simple’ sequences
such as nucleotides or amino-acids sequences, histograms defined as above suffice.
For example, in [90] a double experiment has been proposed in order to classify
proteins starting from their primary structure according to their physiological role;
in a first experiment, each protein is described by the number of occurrences of each
amino-acidwithin the primary structure and, in a second experiment, such histogram-
based representation has been extended to triplets of amino-acids in order to take
into account also information about proximity and ordering. Further, in [53], the
histogram-based representation considers pairs of amino-acids whose distance along
the protein backbone is within a minimum and maximum value, a-priori defined.

For more complex sequences such as sentences or entire text documents, bag-of-
words and word-count models have been proposed, where the alphabet is composed
by the set of unique words in the sentence or document. ‘Complex sequences’ such

12If the similarity measure at hand is not symmetric, patterns’ distance vectors as taken by rows or
columns will be different. In order to overcome this problem, one can ‘force’ a similarity measure
to be symmetric by considering S := (S + ST )/2 (e.g. [14]).
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as sentences or entire text documents are rather rare (if non-existent altogether)
in bioinformatics as such, but bag-of-words models, along with statistical and/or
machine learning techniques, have been successfully employed for health analysis
and forecasting (e.g. [82] for anastomosis leakage detection, [93] for diabetes-related
notes in electronic health records).

In the last years, granular computing [4] emerged as a novel and promising infor-
mation processing paradigm. In granular computing, atomic quantities known as
information granules have to be extracted in order to be further studied and anal-
ysed, for gathering useful knowledge and insights from data, but finding the adequate
level of abstraction for the problem at hand might be a challenging task. Along with
symbolic histograms, granular computing can play the role of a promising data-driven
framework which can simultaneously deal with embedding functions in non-metric
spaces andknowledge discovery. In [8, 9, 69, 72] have beenproposed fully automated
data-driven and granular computing-based classification systems both for graphs and
sequences. These systems are composed by four mainmacroblocks: motifs extractor,
granulator, embedder and classifier.

The motifs extractor is in charge of extracting, according to some heuristics (pos-
sibly exhaustively), substructures (i.e. subgraphs/subsequences) from the dataset at
hand.

The set of motifs is then forwarded to the granulator which runs a clustering algo-
rithm on it, relying on a suitable inexact matching procedure (i.e. on a given dissim-
ilarity measure in the substructures space), yielding a set of frequent sub-structures
(clusters), whose representatives can be considered as candidate information gran-
ules (symbols). It is worth stressing that the clustering algorithm works in the input
space since motifs are frequent substructures, and that free-clustering algorithms
such as BSAS should be preferred, in order to automatically return a suitable num-
ber of clusters, avoiding to set it is advance. Further, since the input space might not
be metric, a suitable cluster’s representative is the medoid (or MinSoD) [20, 56].

The set of information granules are the main input for the embedder block which,
according to the symbolic histograms approach, maps each pattern into an integer-
valued vector. Specifically, each pattern is represented as the number of occurrences
of each information granulewithin the pattern itself. The embedder, therefore, returns
a set of vectors which can feed any standard pattern recognition algorithm for clas-
sification or clustering purposes.

The whole cascade is driven by a genetic algorithm, following the workflow
as described in Sect. 2.1, in order to maximise the classifier’s performances. The
genetic algorithm acts as an orchestrator, and is in charge of optimising the final
classifier synthesis, accomplishing two tasks: under an algorithmic point of view,
it automatically tunes the clustering algorithm and possible (dis)similarity measure
parameters, maximising the classifier’s performances and selecting the subset of
information granules better related with the classification task at hand (cf. Feature
Selection block in Fig. 1); under a knowledge discovery point of view, since it returns
the (sub)optimal set of information granules for the problem at hand.

The latter deserves some further observations. It is clear that embracing a gran-
ular computing/symbolic histograms approach is more computationally expensive
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than any other technique discussed so far. Indeed, the embedding procedure requires
a clustering phase, searching for candidate granules. Even for small datasets, an
exhaustive approach for the extractor might be unfeasible (since its complexity is
combinatorial with respect to the pattern size and the substructure order), and it must
be replaced by a stochastic approach (random subsampling).Moreover, when dealing
with sequences or graphs, the (dis)similarity measure adopted by the core cluster-
ing procedure is by far more computationally demanding with respect to Euclidian
distance performed on plain real-valued vectors. Furthermore, the selection of the
most informative information granules, as well as of the best (dis)similarity measure
parameters, demands additional computational burden by the evolutionary optimi-
sation, since for every candidate solution it is needed to launch a full classification
model synthesis procedure (for example a Support Vector Machine) in order to eval-
uate its fitness, computed as the performance of the classifier on the Validation Set
(cf. Sect. 2.1). For these reasons, the symbolic histograms approach is practically fea-
sible only when relying on parallel/distributed computing software/hardware envi-
ronments.

But, on the plus side, granular computing-based techniques unleash an invaluable
potential thanks to information granules. Indeed, if the training procedure yields a
classification model with satisfying performances, able to correctly discriminate the
input patterns for the problem at hand, the resulting information granules subset
brings useful knowledge on the problem at hand, since information granules are at
the basis of the embedding feature space. Information granules selected by the evo-
lutionary optimisation are therefore responsible for the final definition of decision
surfaces in that space and, consequently, they can show useful information that can
be exploited by field-experts. This is the main advantage of granular computing tech-
niques with respect to competitive approaches: extracting automatically meaningful
information granules is useful both under an algorithmic point of view and under the
application field point of view (biology, in this case).

As amore concrete example, let us consider ametabolic pathways problem,where
metabolic pathways are described by graphs as in Sect. 3.1. One of the information
granules might be the citric acid cycle.13 The Krebs cycle (in network terms, a motif
with a set of nodes lined to form a closed loop) is driven by oxygen and therefore
it might be a key granule in order to discriminate between aerobic and anaerobic
organisms. For this example a well-known chemical reaction has been considered,
but the opposite might also happen: indeed, information granules can pose questions
other than confirm statements: why these information granules are considered as
significant for the discrimination/classification problem at hand?

13Also known as the Krebs cycle.
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4 Case Studies and Applications

In most of the cases introduced in Sect. 3.1, it is almost impossible to project the
analysed objects into a proper metric space spanned by a shared set of descrip-
tors without considering some global features (e.g. classical network invariants like
degree, characteristic length, closeness centrality, etc.) and thus losing a considerable
part of information linked to ‘who-is-connected-with-whom’. On the contrary, such
information can be easily recovered projecting the objects into a non-metric space
defined by motifs and/or frequent substructures (Sect. 3.2.2).

The need of a non-metric approach is evident in many biologically relevant cases.
This need not necessarily derive by the lack of a common feature space, but it
is motivated by the importance to individuate particular motifs endowed with a
meaningful semantics.

In the field of protein sequence analysis this is the case of the identification of
‘natively unfolded’ tracts. This is a particularly intriguing problem in structural biol-
ogy [87]. Until the end of last century, the general view of structure/function relation
in protein molecules was apparently straightforward (cf. Sect. 3.1): protein primary
structures correspond to the amino-acid residues linear ordering along the sequence.
The primary structure determines both the mutual position of nearby (secondary
structure) and distant along the sequence amino-acid residues (tertiary structure).
The specific 3-dimensional arrangement of the protein molecule in turn determines
its physiological role [70]. This view was questioned some years ago [87] by the
discovery of ‘natively unfolded’ proteins that are molecules that do not have a defi-
nite 3-dimensional structure but that, on the contrary, remain in a random coil state
until they interact with some partners (e.g. other proteins) and, after the binding,
assume a specific 3-dimensional configuration. The same natively unfolded pro-
tein (and thus with only one specific sequence) can assume completely different
3-dimensional structures (and functions) depending on the different partners it inter-
acts with. All the vital functions of a cell are managed by the creation of aggregates
of different proteins generating a sort of nano-machine performing a specialised task
(e.g. energy production, biosynthesis, immune response, DNA repair and duplica-
tion, etc.), where natively unfolded proteins are the ‘hubs’ of such protein-protein
interaction networks, given their ability to change structure ‘on demand’ and thus to
participate to different nano-machines (protein aggregations) [80]. Besides proteins
that are natively unfolded in their entirety, all the proteins do have (smaller or longer)
tracts that are natively unfolded corresponding to their interaction sites. If the goal
is to modify the behaviour of a protein aggregate for a therapeutic intervention (e.g.
by a drug binding to the protein molecule) it is of utmost importance to recognise
such natively unfolded parts of the molecule from their sequence.

This is a very challenging task for classical machine learning approaches, due to
the following reasons:

1. The context dependence of the problem: the same subsequence can be natively
unfolded in protein A and perfectly folded in protein B due the general properties
of the entire protein molecule [67]
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2. The ambiguous character of the definition of ‘unfolding’: many of the so-called
unfolded proteins (or tracts) could be only highly flexible systems that have only
one preferred fold without structuring on-demand [34]

3. The dependence on the chemico-physical micro-environment the protein expe-
riences (i.e. pH, molecular crowding, etc.) deciding the disordered/ordered con-
dition [34]

4. The highly variable length of the disordered patterns [34]

This is why (even if never defining explicitly in these terms) all the tentative solutions
of the problem used non-metrics approaches that in turn allowed to both select some
‘relatively context independent unfolded motifs’ and individuating some regularities
in these motifs [73].

A somewhat related problem is to predict the relative solubility in water of protein
molecules.Again, there exist a similar context dependences of the disordered/ordered
case and, in [44], the problem was approached by considering several different rep-
resentations. The protein folding problem has interested biologists for many years:
if the native protein structure is ‘encoded’ in its primary structure, is it possible
to predict its folded state? Relative solubility in water is the major feature for pro-
teins’ folding propensity. However, some proteins spontaneously fold, whereas other
proteins need so-called chaperones14 in order to fold correctly.

Recall from Sect. 3.1 that a protein can be described in different ways by either
taking into account its primary or tertiary structure; therefore in [44] a subset of the
Escherichia Coli proteome has been considered in three different representations: the
plain primary structure; an ‘extended’ Protein Contact Network representation (cf.
Sect. 3.1) where labels exist on both nodes and edges (nodes labels correspond to one
of the 20 amino-acids, edges labels correspond to the Euclidean distance between
the two vertices at their extremities); a serialised version of the graph-representation,
where each vertex is associate with a 3-dimensional real-valued vector derived from
the graph transition matrix. The goal was to predict the relative water solubility of
each protein in vitro (i.e. without the help of chaperones). Given that water solubility
encompasses the ability to reach of a correctly folded structure, this prediction task
can be considered as an explorative study in the chemico-physical drivers of folding
process.

The different representations allowed us to grasp different aspects of ‘relative
folding propensity’ of proteins, being the extended Protein Contact Network the
most promising representation.

The impossibility to design a data set on a shared feature space (and consequently
the need of non-metric approaches) is evident in neuroscience in the case of com-
paring different brain connectivity networks [88]. Recall from Sect. 3.1, both fMRI
and PET outputs are images of the brain: a quantitative value is attached to each
voxel corresponding to the entity of metabolism activity in that location. The voxels
are in the order of tens of thousands and their actual quantitative value is not rele-

14Protein molecules driving the folding of other protein systems.
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vant per-se15: what differentiates healthy and pathological subjects is the degree of
organisation (correlation among areas) of the system. The selective breakdown of
intrinsic brain networks during the progression from the healthy state to mild cog-
nitive impairment to Alzheimer’s disease has been observed using both fMRI and
PET. Using the single voxels as nodes can be highly misleading in the comparison of
images across patients: not only their high number produces networks very difficult
to analyse but the pairing of the voxels across different subjects (i.e. to recognise that
the j-th voxel of patient A corresponds to the j-th voxel of patient B) is virtually
impossible. To solve the problem anatomical knowledge is considered: the physi-
cian segments the brain image into ROIs (Region of Interest) correspondent to the
well-known anatomical areas of the brain (e.g. hippocampus, amygdala, cerebellum,
etc.) that all patients do have, so ROIs become the nodes and edges correspond to
the scoring of a strong correlation between pairs of ROIs.

Alzheimer’s disease risk scales with the progressive disruption of ‘long range’
correlations in favour of ‘small scale’ correlation between nearby areas [62]. This
implies that for discriminating different risk levels it is not possible to rely on shared
‘global correlation measures’ on the brain, nor on the focusing on ‘specific relations’
between key areas because they can be very different across different patients, while
maintaining the above described pattern of ‘decrease in long range and increase in
small range correlations’. This situation is solved by non-metric approaches, inwhich
different brain connectivity networks are compared on the basis of the dynamics of
‘attachment’-‘detachment’ from the giant component of the network (the bulk of
connected ROIs) on a subject by subject basis [61].

In the case of brain connectivity studies, computational intelligence is having a
great expansion and the search for suitable context-dependent metrics for comparing
different conditions is highly debated in both clinical and basic research communities.

5 Conclusions and Future Directions

In synthesis, we can surely affirm that non-metric approaches rely on a sufficiently
stable and reliable theoretical basis implemented on very efficient algorithms. On
the other hand, the ‘biological side’ generates an ever-increasing amount of data
amenable to be faced by computational intelligence approaches. The crucial point
(deciding for the success/failure of the particular application) is the choice of a rep-
resentation located at the most ‘fruitful’ level of biological organisation. The search
for the scale maximising ‘non-trivial determinism’ is a crucial issue in applied statis-
tics [64] and roughly corresponds to the search of the level where the number (and
strength) of correlations between the different pieces of information (e.g. different
descriptors) reaches a maximum.

15Indeed, the absolute entity of metabolic rate can vary for a lot of reasons going from anatomical
differences among patients to their actual nutrition state.
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Convesely to the classical reductionist tenet, this level (in the case of organised
complexity [92]) is seldom located at the most detailed scale of analysis (e.g. single
patients in epidemiological studies, single genes, primary structures of proteins,
single pixels of an NMR or PET image of the brain, etc.) that in the great majority
of cases are dominated by noise [86].

The search for the optimal representation (see the protein solubility case described
in Sect. 4) asks for a conscious (and knowledge oriented) decision about the repre-
sentation level to adopt (e.g. sequence-graph-labelled graph). This choice can only
be a mixture of theory and data-driven choices, and thus asks for a real interaction of
data scientists and biologists. For this interaction to be fruitful, both the communities
must develop a similar language and share at least the basic principles of both the
fields.

We think that, beside some ‘bombastic exaggerations’ on the ‘death of science’
to be substituted by a purely data-driven theoretically blind approach [2], the future
will be characterised by an increasingly stronger integration between computational
intelligence and pattern recognition techniques, and the different application fields.
Indeed, computational intelligence techniques rely on data-driven modelling (see
Sect. 2), which particularly suits problems where the process to be modelled – or at
the heart of the problem itself – is unknown or hard to determine in closed-form (e.g.
by analytical modelling).

As far as biology (and related fields) are concerned, computational intelligence
and pattern recognition can be seen as usefulmethodological tools in order to perform
“in-vitro experiments” and formulate hypotheses to be, if needed, further investigated
by means of proper laboratory equipment by field-experts.

In this Chapter, we reviewed and discussed the major challenges and related
modus-operandi when dealing with non-metric input spaces in computational intel-
ligence and pattern recognition. By considering bioinformatics and computational
biology as application fields, we explored several case studies in which data are
conveniently represented by means of complex structures.

We stress that, amongst the threemainmacro-techniques for solving pattern recog-
nition in non-metric spaces (Sect. 3.2), granular computing seems to be the most
appealing in terms of results interpretability and knowledge discovery. Indeed, the
automatically extracted information granules are the oneswhichmaximize the classi-
fication performances, therefore the most informative and significant for the problem
at hand. The set of information granules which, recall, is a set of motifs (i.e. recurrent
substructures) can be analysed by field-experts in order to check whether they have
some biological soundness and, possibly, boost further research, not only in granular
computing and computational intelligence as such, but also in the proper application
field in which such techniques have been employed.
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