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Abstract Robotic navigation in GPS-denied environments requires case specific
approaches for controlling a mobile robot to any desired destinations. In general,
a nominal path is created in an environment described by a set of distinct objects,
in other words such obstacles and landmarks. Intelligent voice assistants or digital
assistance devices are increasing their importance in today’s smart home. Especially,
by the help of fast-growing Internet of Things (IoT) applications. These devices are
amassing an ever-growing list of features such as controlling states of connected
smart devices, recording tasks, and responding to queries. Assistive robots are the
perfect complement to smart voice assistants for providing physical manipulation.
A request made by a person can be assigned to the assistive robot by the voice assis-
tant. In this chapter, a new approach for autonomous navigation is presented using
pattern recognition and machine learning techniques such as Convolutional Neural
Networks to identify markers or objects from images and videos. Computational

B. A. Erol (B) · A. Majumdar · J. Lwowski · P. Benavidez (B) · M. Jamshidi
Autonomous Control Engineering (ACE) Laboratories, Department of Electrical
and Computer Engineering, The University of Texas at
San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
e-mail: Berat.Erol@utsa.edu

P. Benavidez
e-mail: Patrick.Benavidez@utsa.edu; p_b_2003@hotmail.com

A. Majumdar
e-mail: abhijit.g.majumdar@gmail.com

J. Lwowski
e-mail: Jonathan.Lwowski@gmail.com

M. Jamshidi
e-mail: Mo.Jamshidi@utsa.edu

B. A. Erol · P. Benavidez · P. Rad
Open Cloud Institute, The University of Texas at San Antonio, San Antonio, TX 78249, USA
e-mail: Peyman.Najafirad@utsa.edu

P. Rad
Department of Information Systems & Cyber Security, The University of Texas at San Antonio,
One UTSA Circle, San Antonio, TX 78249, USA

© Springer International Publishing AG, part of Springer Nature 2018
W. Pedrycz and S.-M. Chen (eds.), Computational Intelligence
for Pattern Recognition, Studies in Computational Intelligence 777,
https://doi.org/10.1007/978-3-319-89629-8_14

369

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89629-8_14&domain=pdf


370 B. A. Erol et al.

intelligence techniques are implemented along with Robot Operating System and
object positioning to navigate towards these objects and markers by using RGB-
depth camera. Multiple potential matching objects detected by the robot with deep
neural network object detectors will be displayed on a screen installed on the assistive
robot to improve and evaluate Human-Robot Interaction (HRI).

Keywords Neural network · Computational intelligence · Simultaneous
localization and mapping (SLAM) · Multi object tracking · Deep convolutional
neural network (DCNN) · Depth camera · Autonomous navigation · Human robot
interaction · Human computer interface · Machine learning · GPS denied
environment · Real time implementation

1 Introduction

Improvements on computational intelligence in parallel with assistive robotics, and
reinforced applications for object identification engines based on visual sensory read-
ings from RGB-D cameras have increased the accuracy of cooperative task assign-
ments in robotics. Moreover, by implementing pattern recognition fundamentals for
object classification, object detection, and computer vision, their impacts on human
robot interactions are becoming more crucial than ever. A visual representation of
the various fields that pattern recognition has played a major contribution along
with their established applications can be seen in Fig. 1. Pattern recognition has
especially contributed to applications of intelligent voice assistants and Internet of
Things devices, such as Amazon’s Echo platforms and Google Home products. This
has led to today’s smart home applications to decrease the difficult necessity of requir-
ing high computational power, and still can handle the task scheduling requirements
easily. These devices are amassing an ever-growing list of features such as control-
ling states of connected smart devices, playing music, managing alarms, recording
tasks, and responding to queries. Potential industrial applications of smart digital
assistants are numerous; however, applications are limited due to the digital-only
nature of the device. On the other hand, more intelligent assistive robots with higher
computational power can loosen this constraint and even make another contribution
by providing physical manipulation. A request made by a person can be assigned to
the assistive robot by the digital assistant; then, the robot performs its duties while
keeping the person updated by verbal feedback. Most of the time the problem lies in
this stage and raises a question. Did the robot understand the request correctly and
do what the user asked them to do in the right way?

Human-Computer Interaction (HCI) focuses on finding answers for how to effi-
ciently design computers with the latest technology that will provide better user
interfaces to make users feel more comfortable with them. As its vision states, HCI
interests not only human users and their benefits from a system of computers, but
also it investigates the way to use integrated hardware and software platforms. The
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goal is to build an interactive relationship between human and machines that are
controlled and observed by computers.

Humanoid robots are a well-studied class of robots with the greatest potential in
the future to assist with activities of advanced work tasks, and even in a household
setting. They are built to perform tasks in a manner that closely follows human form
and functionality. Humanoid robots can observe, interact with, and mimic humans.
Many have capability to recognize voices, faces, geometric shapes, objects, tools,
and environments. They are equipped with very capable sensors, controllers and pro-
cessing power. Two of the main roadblocks to incorporating humanoid robots are
the complexity of robot dynamics and high costs of system components. Hybrids
of humanoids and unmanned ground vehicle robots are a popular solution to reduce
complexity and the cost of such robotic system. Human-robot interaction (HRI) has
increased its importance over the last decades due to the desired conclusion of indus-
trial laws that required higher efficiency and increased productivity. Collaborative
working of humans and robots has led to the development of state-of-the-art appli-
cations and interfaces for multiple purposes, i.e. robotic arms for the automobile
manufacturing lines, unmanned ground vehicles, artificial body parts, and robotic
platforms for surgical operations. Since recent developments in the fieldmake robotic
systems much more reliable and resilient to changes in the environment, the use of
pattern recognition, computational intelligence as a sensory feedbackmechanism for
a HRI system has become more essential.

Intelligent voice assistants are the central hubs of smart home technologies and
are able to perform a variety of tasks. These devices are becoming a must-have
for any smart environment applications by featuring list of functionalities, such as
controlling the smart thermostats, following a scheduled works, managing smart
home observation systems or alarms, and most importantly responding to verbal
user queries. What they cannot do is control objects that are not “smart devices”.
Home-based assistive robots are the perfect candidates for applications requiring
physical manipulation. Steep barriers of cost, limited functionality, and relatively
slow performance are preventing the adoption of robots in the home.

In this chapter, we present applications of a proposed intelligent object detection
and tracking system for improving functionality and performance of home-based
robotic systems. The proposed system is applied to two unique problems: real-time
sensing for manipulation and improved environmental awareness for mapping and
localization.

Real-time sensing and control is an important milestone on the path towards home
based robotic systems. The development of Neural Networks in the past decade
has led to substantial increases in the performance of such intelligent networks.
Neural networks are a group of nodes that are designed to represent neurons in the
brain. These nodes are interconnected and simulate the learning process in the brain.
Neural networks are a type of supervisedmachine learning, which requires the neural
network to be trained using labeled data [1]. Slightly more advanced than neural
networks, convolutional neural networks are more efficient for classifying images
[2]. Convolutional neural networks work by using convolutions with various kernels
to detect different features such as horizontal and vertical edges. The convolutional
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layers are then stacked on top of each other to detect more complicated features. The
final layers of a convolutional neural network are a normal neural network. This is
used to combine the features detected by the convolutional layers together to make
a classification decision.

Using Deep Convolutional Neural Networks for images, on the other hand, has
provided us with trained systems to be able to detect objects of interest with a very
high level of accuracy [2–4]. With faster, real-time tracking algorithms [5], the robot
can have a better understanding of the dynamics of its environment, and act more
responsively, which is desirable in a human-in-the-loop scenario [6, 7]. The benefit
of deep neural networks compared to traditional methods to perform these tasks is
their ability to adapt better to the object of interest and reject unwanted noise. This
makes it ideal for such systems to be incorporated into different environments (e.g.
home, office, factory, etc.) without the need tomodify the algorithm to adapt to enable
detection. Experimental results for tracking objects for manipulation are detailed in
the following sections.

Simultaneous Localization and Mapping (SLAM) is a method in robotics to map
and navigate GPS-denied environments, such as a home. GPS-denied localization
can be a computational constraint for any autonomous navigating task in an unknown
environment. Such environments create a problem for locating objects and perform-
ing automation operations while creating and following its map by sensory readings,
vision sources and etc. This problem requires a system to understand its environ-
ment, identify the objects, and localize them as stated in [8]. Sensor data is mapped
to odometry data to determine the correct placement in a map. Once a map is devel-
oped, a robot can navigate the map and remember where it has gone. Visual SLAM
(VSLAM) is the natural extension with visual inputs from one or more cameras.
Image based feature extraction is the main method used in acquiring sensory data
in VSLAM. In the extraction process, features such as edges and corners from any
object are recorded. In cases of complex, dynamic environments where VSLAMwill
likely be used, landmark selection becomes a difficult problem given a low level of
a priori information on the acquired features. Generated maps will contain transient
features from objects that moved or disappeared from the environment. With new
methods of image classification, namely convolutional neural networks, landmarks
can be selected from the environment based off their known properties. The object
detector and tracker presented in this chapter is used to find appropriate landmarks for
navigation. Preliminary results for the landmark selection process will be presented
in this chapter.

In this chapter, an improved object tracking algorithm is proposed for a home-
basedHRI system.The home-basedHRI systempresented in this chapter has capabil-
ities of voice and object recognition and Internet of things compatibilities. Exchanges
in the system are those associated with the management of tasks in activities of daily
living. The chapter is formatted as follows. Section 2 provides a background on
the related work. Section 3 details the proposed HRI smart home system. Section 4
describes the prototype of the proposed system. Section 5 details the experimental
results with the system components. Finally, Sect. 6 presents the conclusions.
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2 Literature and Related Works

A multi object tracking problem mainly consists of two parts: observation model
and tracking [9]. The object identification and tracking algorithm used in this chapter
uses a convolutional neural network for themodel observation part, and uses that data
with established tracking algorithms with modifications to suite to our application.
Recent developments in object detection using neural networks offers real time per-
formance, which is essential to the application in hand. Networks likeYouOnly Look
Once (YOLO) [10], Single Shot MultiBox Detector (SSD) [11], Faster R-CNN [12],
R-FCN [13], OverFeat [14], such real-time performance optimal for application in
robotics. However, research indicates that the accuracy of such detections reduces
with the increase in detection speed [15].

Once the object to be tracked is determined, it is extracted from the frame, thus
enabling a smaller region of pixels to be fed into the tracking algorithms to iden-
tify the object in future frames. Such tracking, which use feature matching, color
segmentation, edge detection, background subtraction etc. can be performed using
algorithms like Kanade-Lucas-Tomasi Feature Tracker (KLT) [16], Extended Lucas-
Kanade Tracking [17], Online-boosting Tracking [18], Spatio-Temporal Context
Learning [19], Locality Sensitive Histograms [20], TLD: Tracking—Learning—De-
tection [21], CMT: Clustering of Static-Adaptive Correspondences for Deformable
Object Tracking [22], Kernelized Correlation Filters [23]. The performance of these
methods can be compared and evaluated through benchmarking tools [24] to figure
out which one is optimal for one’s application. There are several open source libraries
which integrate several of these algorithms to facilitate their use in an application
like OpenCV [25] and Modular Tracking Framework [26].

Previous relatedwork by the authors of this chapter follows. A framework for nav-
igation and target tracking system for mobile robot was presented using 3D depth
image data and used color image recognition, depth camera data and fuzzy logic to
control and navigate the robot [27]. Design of a testbed for Large-Scale autonomous
system of vehicles was proposed for localization, navigation and control of multiple
networked robotic platforms by using cloud computing in [28]. A real-time cloud-
based VSLAM was provided in [29] with enhancements to reduce processing time
and storage requirements for amobile robot. A visual SLAMbased cooperative map-
ping study with cloud back-end proposed the importance of the object identification
for the mobile navigation and localization [8]. Design and development of a multi-
agent home-based assistive robotic system for the elderly and disabled was provided
in [30–32]. Furthermore, a cloud architecture for large scale systems of autonomous
vehicles was presented in [33]. A foundation for deep neural network control was
provided in [34]. An initial deep vision landmark framework was developed for robot
navigation by Puthussery et al. in [35]. This system utilized the Inception V3 engine
to classify image frames into trained object classes. Themost probable detected class
was recorded along with positional information relative to the robot in a map. After
mapping, objects selected for further inspection were approached by the robot. In
this chapter, we utilize a deep neural network based object detector, which has the
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capability to detect multiple classes per frame with bounding boxes identifying the
detected objects. The use of a real-time object detector greatly improves map reso-
lution, classification throughput, and data acquisition time in the mapping process.

Along with the multi-object tracking algorithms, this chapter also uses unsuper-
vised learning approaches. These unsupervised learning approaches are used for
various functions such as object ownership association. The traditional unsupervised
learning approaches include k-means [36] and fuzzy c-means clustering [37]. How-
ever, in recent years these clustering algorithms have been improved due to some of
the traditionalmethods drawbacks.One suchdrawback is that both k-means and fuzzy
c-means need to know the number of clusters beforehand. In many situations, the
number of clusters are unknown. Many different methods have since been developed
to remove this constraint. For example, Ester et al. developed Density-based spa-
tial clustering of applications with noise (DBSCAN), which groups together closely
packed points [38]. One of the largest advantages of DBSCAN is that it does not
require the a priori knowledge of the number of clusters. Another issue associated
with k-means and fuzzy c-means clustering is that for large numbers of points, the
runtime can be very slow. The typical implementation of k-means has a complexity
of O(N(D+K)), where N is the number of points, D is the number of dimensions,
and K is the number of centroids [39]. Fuzzy c-means is even slower than k-means,
with the typical time complexity of O(NK2D) [40]. Although these algorithms can
run slow with large numbers of points, some advances have been made to improve
this. For example, Kolen and Hutcheson were able to reduce the time complexity
of fuzzy c-means down to O(NKD) by removing the need to store a large matrix
during iterations, which is significantly faster [41]. Arthur et al. reduced the time
complexity of k-means down to O(logK) by initializing the cluster centers by using
points in the dataset that are further away from each other in a probabilistic manner
[39, 42].

3 Proposed System

The proposed system is comprised of components which implement the following
process. An elderly user makes a request to the voice assistant for a retrieval type task
to be completed. In this case, the item to be retrieved is a drink. The task is broken
down into its components: action(s), location(s) and object(s). In this example, a
robot is tasked to inspect an object. On its way to interact with it, various objects are
detected, tracked and mapped. Once candidates for the selected object are detected,
a catalog is created for the user to verify. The user provides input to the robot, or
voice assistant with a camera, via facial expressions to express satisfaction with the
actions of the assistant. Emotion levels are used to select the closest match to the
desired output of the system. The robot then completes the task utilizing its physical
manipulation capabilities.
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3.1 Vision-Based Object Detection and Mapping

Identification and tracking of unique objects requires the following steps. First the
object should be detected and classified. Once detected, the object should be tracked
frame by frame to ensure that duplicate results are not recorded. Estimates of the
objects position are recorded into a map using estimates of the robot pose and prop-
erties of the camera. Further detail on each step is provided below.

3.1.1 Multi-object Detection

Weuse a generalized Convolutional Neural Network (CNN) in our system to perform
multi-object detection using an RGB frame captured by a camera on the robot.
With the recent development and availability of powerful mobile computers with
multi-processing capabilities like the CUDA-cores, we are able to process these
frames in real time speeds, to detect multiple objects in a single forward pass of the
network. This enables us to use CNN for real time applications like SLAM. The
CNN architecture is inspired from open-sourced projects [10–14], the initial layers
of which are pre-trained as object classifiers using available datasets of common
objects [43–45]. The latter layers of such networks are trained to maximize the
Intersection-Over-Union (IOU) of the most likely objects detected in the frame with
the bounding box of these objects, also available as supplement to the datasets. We
extend these algorithms by adding a higher level of abstracted computer intelligence.
For the networks, we use the pre-trained models which are available for most of the
networks

3.1.2 Object Ownership Clustering

Sometimes the user may present the robot with ambiguity such as the task of getting
the user “their” glasses. This can be an ambiguous task because “their” is a pronoun
meaning that the glasses belong to them. “Their” does not provide the robot with
any physical description of the glasses, which could cause a problem if multiple
people wear glasses in the household. Therefore, ownership of objects could be a
very important attribute to consider. For example, if the robot were to see two pairs
of glasses, initially the ownership of each pair is unknown so the robot will have to
ask the user which glasses is “theirs”. Once the robot can determine the ownership of
each pair of glasses, the identifying physical descriptors of the glasses can be saved
into a database. Since it is very likely that the glasses are placed next to other objects
that belong to the owner of the glasses, the robot can assume that the nearby objects
also have a possibility of belonging to the glasses owner. To allow the robot to make
these assumptions, clustering algorithms can be used.

Once the ownership of an item is verified by the robot, the robot can utilize a
clustering algorithm. This algorithmwill cluster objects together based on Euclidean
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Fig. 2 Example scenario of how clustering can be used to solve ambiguity

distance. Any objects that are in the same cluster as the verified objects can be stored
into a database as objects that possibly belong to the owner of the verified object.
Now if the user provides the robot with another ambiguous request, the robot can use
the objects that were in the same cluster as the verified object to solve the ambiguity.
In the same scenario as before, also seen in Fig. 2, if Jill asks the robot to get “her”
cup, and there are multiple pairs of glasses, the robot will not knowwhich cup belong
to Jill. The robot will then ask Jill to verify which cup is hers. Once Jill responds,
the robot will then proceed to get that cup. As the robot is getting the cup, the robot
will cluster the objects near the cup. Since Jill’s chair and monitor are near her cup,
the robot will cluster them into the same cluster as the cup. The robot will then store
the ownership of the chair and monitor as having a high probably of belonging to
Jill. Now the robot brings Jill’s cup back to Jill, and then Jill requests the robot to
get her chair. Normally this would be another ambiguous request, but since the robot
now knows that the chair was near the cup, the chair has a high probability of being
Jill’s. This allows the robot to be able to immediately go and get the chair and bring
it back to Jill. Since there is still a small chance that the chair is not Jill’s chair, the
robot will still verify with Jill to ensure that it is actually her chair. A flowchart of the
algorithm that the robot can use to solve ownership ambiguity can be seen in Fig. 3.

3.1.3 Object Tracking

Though neural network based multi object detector performs very well as an object
tracking neural network, it fails to distinguish betweenmultiple instances of the same
type of object that it is detecting. To identify objects for the purpose of automation,
we need to track an object. This means to be able to distinguish between two similar
objects that might be detected by the multi object detector.

The camera frame will be processed by the multi object detector to provide the
location and classification of objects in the frame, while smaller Region-of Interest
(ROI) will be selected within the frame based on the same location information
to detected features on the object, hence assigning uniqueness to the object. When
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Fig. 3 Flowchart robot will use to solve the ambiguity of requested objects
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needed, feature matching is used to solve the problem of ambiguities when two or
more objects of the same class overlap, or one object goes out of the camera field of
view.

For the purpose of experiments, the number of reliable features to trackmay be set
arbitrarily, and refined to a more experimentally tested decision in the test iterations.
A feature management algorithm is utilized to decide on the actions to take in case
of loss of features mapped and the minimum number of features required to have a
reliable tracking of the object. It is observed that while detecting features of an object,
the count of the features may not suffice the need for reliably distinguishing similar
objects. To overcome this issue, the algorithm guides the robot to move towards a
particular object, once detected, until it has enough features in its feature map. These
features of the object are recorded into the memory of the robot along with a picture
of the object for reference. A library of all the similar objects and their associated
features are stored and then queried with the user to find out which one is of interest.
Once a selection is made by the user, other features may be discarded, while the
features of the selected unambiguous object is used to track the robot back to the
object.

3.1.4 Object Mapping

Positioning of the robot with respect to the environment is important since we need
the robot to find its position back to the user and the detected objects. Similarly
localizing the detected objects with respect to the environment is also important
to plan a path for the robot to maneuver to the object. The kinematic model for
the proposed robot’s locomotion is a combination of a differential drive kinematics
and serial manipulator kinematics. To simplify system development for this current
research, the humanoid torso robot was assumed to remain in a fixed pose.

Mapping of the robot and the environment is performed using a combination of
different sensors on the robot. Every sensor has different kind of error associated
with them. For example, the odometer on the robot is prone to error due to slippage.
To overcome this problem, we use an Extended Kalman Filter (EKF) algorithm to
perform a sensor fusion between the positions obtained from the odometer, Inertial
Measurement Units (IMU), the visual odometry reported by the camera using Simul-
taneous Localization andMapping (SLAM) techniques. The use of Robot Operating
System (ROS) packages enables us to perform such sensor fusion with minimal
effort.

Traditional SLAM algorithms using feature detection are complemented with
using multi object detection as reference points on the map to localize the robot. The
objects detected by the system act as landmarks in the mapping process. Another
EKF is applied to this system to provide a filtered map and localization of the robot.
Mapping of the objects is performed once the objects of interest are detected and
features are selected and stored. The locations of the objects are stored alongside the
features and the picture of the object. With the use of modified neural network based
object tracking, we could hand pick a certain category of objects that may offer more
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remarkable features to distinguish between other features. Since these features are
conglomerated into objects detected by the algorithm, hence the matching process
is less intensive than traditional SLAM, and at the same time provide more error
correction from similar features, which is a large problem in the field of SLAM.

An important part of integrating an HRI into a system is for the robot to learn.
A key way to do this for a task assigned robot is to remember the choice made by
the user. As an implementation example, the first time the robot is asked to locate a
bottle, and the user selects a specific bottle from a list of bottles the robot found, the
specific bottle is stored along with its features, location and a picture for reference
in the robot memory. Later, if the user instructs the robot to find the same object, the
first guess that the robot makes is of the stores bottle in its memory. The user may
want a different bottle and deny the robot, however there is a higher possibility that
the user may want the same object again, which in turn improves the confidence of
the robot with the user, and hence may make the robot more reliable. This is also
useful in saving time for the robot to look for an object that it had already looked for
earlier.

3.1.5 Object Database Creation

This section defines the creation of a virtual database of the objects detected, tracked
andmapped by the robot. As described earlier, various real timemulti-object detector
algorithms may be used to track the current position of an object in the frame of the
image frame, as observed by the robot. Once the presence of N object is confirmed,
each of them are compared to the existing database to find if any of these objects
are already in the library. In order to check if the object being recognized is already
in the library, it takes into consideration various attributes about the detected object
which includes color, features, ownership information, location and last access of
the same object. Such attributes about each recognized object is compared with the
corresponding attributes of all objects in the database, to compute a confidence level
as shown in Fig. 4. This confidence level is then used to determine among three
possible actions to be taken:

• If the object is already present in the database, affirm the presence of the same
object in the image frame and determine if other action need to be performed on
the object, for example pick up the object.

• If the confidence of the same object being present in the database is above a certain
threshold but not high enough, compare to themost probable object in the database
and update the object attributes in the database with the observed attributes.

• In case the confidence of the object being among the ones in the database is lower
than a set threshold, add the object and its corresponding attributes as a new object
in the database.

It should be noted that the attributes are weighted, when evaluating the confidence
levels. This is because, certain attributes may be more reliable than others. For exam-
ple, if the robot detects a bottle in its image frame, being an object that can be moved
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Fig. 4 Object database query, creation and update

since the last observation of the object, we assign a low weight on the location of the
object while determining the confidence of the object being the same bottle in the
database.

On the other hand, the features recorded for the bottle is assigned a higher weight,
since a higher score on feature matching is more accurate indication of the same
object being view by the robot image frame. Since we already define the objects that
the object tracker can recognize, we also pre-define the weights associated with the
different attributes of the corresponding object.

We can hence formulate, Eq. 1, a weighted average confidence level calculation
of a detected object as:

Cn � �W �A
�W � {

wc,w f ,wo,wl ,wt
}
and �A � {

sc, s f , so, sl , st
}T

(1)

where, Cn → Confidence level of object n,
wc,w f ,wo,wl ,wt → Pre-defined weight vector for different attributes: color,

feature matching, ownership, location and last access time, respectfully,
sc, s f , so, sl , st → the attribute scores for color matching, feature matching, own-

ership, location and last access time.

3.1.6 Determining Optimal Action Sequence

One important decision the robot needs to make, is the sequence of the actions to
be taken when multiple commands are requested by the user. This can be difficult
because there are a lot of variables that can be considered. To simplify this process,
we assume that the robot can only retrieve one object at a time, some of the objects
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locations are known, some of the objects locations are unknown, and the user has
placed a higher priority on some objects versus others. To determine the optimal
action sequence, the robot will first receive multiple requests from the user. Using
machine learning algorithms, the robot will to decide whether each request is a low,
medium or high priority request. The robot will sort the actions with known locations
based on the cost calculated using Eq. 2, where C is the cost of the action, DRO is
the distance from the robot to the object, DOU is the distance from the object to the
user, and P is the predicted user’s priority for that action.

C � DRO + DOu

P
Plow < Pmedium < Phigh (2)

If there are not any objects with known locations, the robot will search until it finds
an object. The robot will then proceed to retrieve the first item, while simultaneously
searching for objects with unknown locations. If the robot finds an unknown object,
the robot will rerun the auction algorithm and determine the new optimal action
sequence. If the robot does not find any unknown objects, then the robot will grab
the object and return it to the user while still searching for unknown objects. The
robot will repeat this process until all the actions have been completed. A flowchart
describing this algorithm in a high level can be seen in Fig. 5.

3.1.7 Avoiding an Obstacle in the Environment

Once the robot has decided the optimal sequence of actions to take, the robot needs
to successfully travel to the object to retrieve them. While traveling to the objects,
the robot may encounter obstacles. These obstacles need to be avoided in order to
ensure the safety of the robot and to not cause damage to the household. To avoid
these obstacles, the already onboard camera can be utilized. Using the vision based
obstacle avoidance algorithms such as the reactive vision only slidingmode controller
developed by [46]. The robot can use its front facing camera to avoid obstacles, while
still moving towards the object of interest. The results of the reactive vision based
obstacle avoidance algorithm can be seen in Fig. 6.

4 Prototyping Robotic Smart Home System

4.1 Robotic System Hardware

The assistive robot used in this system is a hybrid of an unmanned ground vehicle
and a humanoid robot, Fig. 7. For the humanoid portion of the hybrid machine, the
humanoid robot torso is used which is a 3D printed open source robot from the
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Fig. 5 Flowchart robot will
use when the user requests
multiple actions

torso up. The humanoid torso was combined with a Kobuki Turtlebot 2 research
platform from YujinRobot later on as summarized in Fig. 8, which is an unmanned
ground vehicle. The Turtlebot2 was selected due to its customizable capability and
open source software. The rover is equipped with a Yujin Robot Kobuki base, a
14.8 V Lithium-Ion battery, and a Hardkernel ODROID XU4 minicomputer. The
ODROIDXU4minicomputer was selected as the embedded computer for the UGVs.
It features a Samsung Exynos 5422 octa-core CPU, 2 GB DDR3 RAM, USB 2.0/3.0
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Fig. 6 Results of the vision based obstacle avoidance algorithm developed by Lwowski et al.

Fig. 7 Preliminary low-cost prototype for hybrid 3D printed mobile assistive robotic system

and a 64 GB eMMC card for storage. A Meanwell DC-DC converter was connected
to the Kobuki’s 12 V 5A output to supply power for the ODROID XU4 (5 V/4A
requirement).

In addition, the rovers come with cliff sensors (left, center, right), wheel drop
sensors (left, right), a single axis gyro and motor overload protection. The hybrid
robotic platform is compatiblewith theRobotOperating System (ROS) by extensions
ofAPIs supplied for both research platforms. To obtain better directional awareness, a
BOSCHBNO055 Inertial Measuring Unit was added to provide absolute orientation
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Fig. 8 Kobuki Turtlebot 2 has been chosen and modified with ASUS Xtion Pro Live RGB-D
camera, powered with ODROID XU4microcontroller and BOSCH BND055 IMU installed

to the system. This IMU integratesmultiple sensors to obtain a stable absolute output:
a triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope and triaxial magnetometer.

The humanoid robot torso has been mounted on the Kobuki Turtlebot 2 robot as
shown in Fig. 9. A camera mounted in the head of humanoid robot torso is used
to detect objects in the environment. Control of the hybrid robot is performed using
ROS. TheKobuki_ROS package handles control of the base robot. A customdesigned
head unit was designed to support addition of a five-inch touchscreen LCD display
(ODROID-VU5), monocular camera, stereo speakers for synthesized auditory feed-
back, and a microphone for obtaining commands from the user.

An overview of the prototype system is provided below in Fig. 10. The smart
home system includes interfaces for voice, vision, cloud-based computation, and
robotic platforms. In this section, preparation of robotic hardware, the HRI, object
detection and tracking algorithms and the control loop are discussed.

4.1.1 Human-Robot Interface

Visual Interface

A software interface was developed for the new humanoid robot torso’s head unit
using pyqt3 for the graphics and ROS for the interface to the data. A ROS software
package ace poppy hri display was developed for this work. Inputs to this package
are the desired target, the robot state, and text to display. A question and answer
game, used in HMI, is implemented by the robot and user of the system. An example
of the HRI is displayed on the humanoid robot torso head unit display in Fig. 11.
The example shows the user request “check the plant” to the robot, a response “is
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Fig. 9 Redesigned prototype of the systemwith the mobile platform and the torso robot is installed
performing object identification and navigation tasks

Fig. 10 System representation included simpleflowchart for IoTdevice andvoice-activated control
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Fig. 11 Question and answer type HRI for a selected cropped output of the database displaying a
plant

this what you wanted me to check?”, and a picture of the item that the robot checked.
Stylistically, the text of the question and answer HRI is like the voice user interface
(VUI) de facto standards used in voice assistants. This was implemented like VUI
as voice is used to provide the robot tasks and is shown in Fig. 10.

Auditory Interface

Auditory commands are provided to the robot using a home voice assistant, in this
case an Amazon Echo Dot. Auditory responses from the robot are generated using a
combination of Linux programs espeak for synthesis of words into a WAV file and
aplay for playing back the WAV file. The option to use a WAV file was selected for a
combination of reasons. Most important of all, espeak tends to connect to the audio
service jack-server slowly or fails intermittently, where aplay plays back the audio
almost instantaneously and consistently. The second reason is to maintain a history
of responses to the user for quality purposes. As a synthesizer, espeak tends to be
limited in its ability to pronounce certain words and people’s names. There is a need
to sometimes break a word into its phonetic components to synthesize it correctly.
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4.2 Object Detection and Tracking

4.2.1 Modification for Compatibility with Video Source

Darknet, the software package for YOLO, was installed on a high-performance desk-
top computer with an Intel i5 and a NVIDIA GTX-1080 with 8 GB of memory. The
desktop computer is the detection engine for the robot platform. The source code for
the neural network was modified to allow connections to the camera feed through
Wi-Fi. The Robot Operating System (ROS) was used to provide Wi-Fi interface to
the camera feed over a protocol similar to TCP called TCPROS. To be compatible
with ROS, use of a branched version of darknet written in C++was necessary. This
software branch contains the modifications necessary to generate a shared library
file libdarknet-cpp-shared.so and arapaho, a C++API to the library. ROS packages
ace_arapaho and ace_arapaho_msgs were developed by the authors to use the ara-
paho API. These packages provide the capability to publish the identified objects
with labels, timestamps, and the relevant region of interest bounds of the image. An
additional input to the package is the object filter list.

Objects in the list are filtered out from the reported identifications. Outputs of the
ace_arapaho ROS node are passed to a feature tracking package, developed by the
authors, called ace_object_tracker. Inputs to this package are parameters from the
motion of the robot, parameters of the camera, and the image ROIs from the multi
object detector. This package develops initial models of the detected objects from
the inputs provided to it. These models are used to uniquely identify the incoming
data as belonging to a unique object.

4.2.2 Feature-Matching Enhanced Object Detector

It is important to note that even though the output of neural network basedmulti object
detectors resemble tracking, it is just a multi-object detection algorithmwhich works
at a very high throughput. Though it is able to detect the location of an object within
the image frame, it does not track objects as individual items. Hence in a frame
with more than one instance of the same type of object, for example two different
bottles, will be tracked as the object bottle, irrespective of their differences. This
ambiguity is problematic in cases where the user wants the system to find a specific
object. To resolve this issue, we combine traditional object tracking methods with
neural network multi object detectors. The system uses multi object detectors to
detect objects in the frame, which are then passed onto feature tracking algorithms.
Features are then selected from within the bounding box provided by the object
detectors for a particular object. These features are then used to identify a specific
object when such ambiguity arise.
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4.2.3 Confidence Gradient Tracking

Another common issue when using such multi object detectors is the lack of reliable
detection in every frame. Since they process every image individually, isolated from
the previous image sequence, it often causes alternating loss and detection of objects
in the scene. Another problem while using such algorithms is the detection of false
positives. We use a method of confidence gradient tracking to overcome both these
issues, to achieve a reliable tracking. Our algorithm uses a complimentary filter to
smoothen the detection confidence level of a particular object being tracked. The
gradient of this filtered confidence level is monitored by the system. While the robot
is moving in a particular direction, if the filtered confidence gradient is positive and
the filtered confidence level builds up to a set threshold of confidence level, the
existence of the object is confirmed. This confirmation of the object in the scene
initiates the feature tracking algorithm, which starts to record features of the object,
while the robot is moving towards the object. The algorithm instructs the robot to
keep moving towards the object until the number of recorded reliable features for the
object matches a pre-defined minimum number. Implementation of the algorithm is
explained in more detail in Sect. 5.

5 Experimental Results

5.1 Processing Rate for Object Detection and Tracking

Initial performance tests were executed with a direct USB 2.0 connection from the
desktop computer to the camera onboard the robot. In this configuration images
are processed at about 27 FPS, which is similar to the camera frame throughput.
Further tests utilized images transmitted over TCPROS on a Wi-Fi IEEE 802.11 N
connection from the robot to the desktop computer. In this configuration, we were
able to process image frames around 5 FPS. The drastic reduction in processing rate
is solely due to the transmission of raw image data over Wi-Fi. Compressed image
streams will be examined in the future to achieve a higher data rate over Wi-Fi.
Selected outputs of this result are displayed in Fig. 12 that show both some correct
and incorrect detections. For a couple examples, a cardboard box is covered in white
paper is labeled a sink, and a large cabinet is classified as a refrigerator. Items that
were detected more reliably (e.g. clocks, bottles, chairs, TV monitors, etc.) were
selected as target objects for the experiment.
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Fig. 12 Selected outputs of YOLO demonstrating correct and incorrect classifications of objects
in an image frame

Fig. 13 Detection confidence analysis with respect to distance to object

5.2 Confidence Gradient Tracking

Figure 13 shows a plot of the raw and filtered confidence level of a chair detected,
as the camera frame moves closer to the chair. As can be observed from the figure,
the raw confidence outputs of a particular object being tracked by the multi object
detector is noisy. However, the filtered data shows a general increasing trend of con-
fidence signifying a true positive detection of the object. To recognize this behavior,
our algorithm differentiates the filtered confidence level. This differential is used to
indicate the increasing or falling nature of the confidence level of a detected object.
However, as observed in Fig. 13, there are regions where the algorithm either fails
to detect the object or the detection is a false positive.

For this reason, certain regions of the differential are negative. On the other hand,
for our algorithm to work, we would want to detect a negative differential slope only
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Fig. 14 Filtered differential of the confidence levels with respect to distance to object

when the object for detection is not in the frame. In order to detect a true positive in
cases where the object is not detected for few frames, we filter the differential plot
as shown in Fig. 14.

If the filtered differential remains positive while the robot is moved towards the
object, a true positive of the detected object is established. The filtered confidence
data is monitored while the robot is moving towards the object to assign a Region
of Interest (ROI) for feature recognition and storage, for matching and identification
later. It should be noted that differentiating the original unfiltered confidence levels
and then filtering them, generates an output which radically alternates between the
positive and negative. This is an expected behavior for a noisy signal.

An example of the differential of the raw confidence levels can be seen in Fig. 15.
However, such differential signal cannot be used to distinguish between false positive
and a true positive, using the previously explained algorithm. As a result, we use a
filtered confidence levels before differentiating the data.

Experimental testswere performedon3different objects—person, chair andbottle
for three instances each. The algorithm described above was implemented in each
case and the results obtained are tabulated in Table 1. Two thresholds were used to
determine a true positive. The first one, set to 50% confidence was used to trigger the
robot to turn towards the object and move towards it. The next threshold of 60% was
used to declare an ROI to start tracking features of the object. The filtered differential
was monitored to make sure that the results are not false positives.
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Fig. 15 Differential of unfiltered confidence levels: Alternates rapidly across zero level

Table 1 Confidence gradient tracking (Threshold (true positive/feature recording) = 50%/60%)

Object tracked Distance from
object with true
positive
affirmation (Feet)

Line of sight
angle offset (º)

Maximum
features matched
for tracking
capability

Tracking
possible?

Bottle 1 12.77 10 730 Yes

Chair 1 20.26 0 382 Yes

Person 1 20.66 5 127 No

Chair 2 17.18 10 312 Yes

Chair 3 18 0 302 Yes

Bottle 2 5.69 5 N/A No

Bottle 3 9.55 0 779 Yes

Person 2 20.94 15 911 Yes

Person 3 14.62 10 630 Yes

6 Conclusions

Robotic navigation in GPS-denied environments highly depended on specific
approaches for locomotion and navigation tasks. Improvements on computational
intelligence tools and pattern recognition approaches, along with reinforced learning
applications for object identification engines based on improved RGB-D cameras,
have increased the accuracy of cooperative multi-tasking assignments in robotics.
Pattern recognition and machine learning techniques, such as Convolutional Neu-
ral Networks to identify markers or objects from images and videos, improved the
performance in the autonomous navigation and localization experiments.
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The use of robotics in the home environment is a very complicated scenario
with lots of problems. In this chapter, many problems such as object detection and
tracking, object ownership, object mapping, object database creation, determining
optimal action sequence, and obstacle avoidance have been addressed. Solving these
problems are one of the necessary steps into creating a robust fully functioning home
robotic assistant that could be used in our everyday lives. In the future, we plan to
integrate all of these decouple systems together, to create a more complete robotic
assistant for the home environment. This robotic assistant could then be tested in
many different situations in order to gather data and improve our algorithms. These
tests would also help us identify new problems that will need to be solved in the
future to make the system even more robust and useful.
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