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Abstract Electroencephalography (EEG) captures brain signals from Scalp. If
analyzed and patterns are recognized properly this has a high potential application in
medicine, psychology, rehabilitation, and many other areas. However, EEG signals
are inherently noise-prone, and it is not possible for human to see patterns in raw
signals most of the time. Application of appropriate computational intelligence is
must to make sense of the raw EEG signals. Moreover, if the signals are collected by
a consumer grade wireless EEG acquisition device, the amount of interference is ever
more complex to avoid, and it becomes impossible to see any sorts of pattern without
proper use of computational intelligence to discover patterns. The objective of EEG
based Brain-Computer Interface (BCI) systems is to extract specific signature of the
brain activity and to translate them into command signals to control external devices
or understand human brains action mechanism to stimuli. A typical BCI system is
comprised of a Signal Processing module which can be further broken down into
four submodules namely, Pre-processing, Feature Extraction, Feature Selection and
Classification. Computational intelligence is the key to identify and extract features
also to classify or discover discriminating characteristics in signals. In this chapter
we present an overview how computational intelligence is used to discover pat-
terns in brain signals. From our research we conclude that, since EEG signals are
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the outcome of a highly complex non-linear and non-stationary stochastic biologi-
cal process which contain a wide variety of noises both from internal and external
sources; thus, the use of computational intelligence is required at every step of an
EEG-based BCI system starting from removing noises (using advanced signal pro-
cessing techniques such as SWTSD, ICA, EMD, other than traditional filtering by
identifying/exploiting different artifact/noise characteristics/patterns) through fea-
ture extraction and selection (by using unsupervised learning like PCA, SVD, etc.)
and finally to classification (either supervised learning based classifier like SVM,
probabilistic classifier like NB or unsupervised learning based classifiers like neu-
ral networks namely RBF, MLP, DBN, k-NN, etc.). And the usage of appropriate
computational intelligence significantly improves the end results.

Keywords Computational intelligence · Pattern recognition
Electroencephalography (EEG) · Brain-computer interface (BCI) · Stationary
wavelet transform (SWT) · SWTSD · PCA · LDA · SVD · Supervised learning
Neural networks · Deep belief network (DBN) · Convolution neural network
(CNN) · Event related potential (ERP) · Fast Fourier transform (FFT) ·Motor
imagery (MI) · Naïve Bayes (NB) · Support vector machine (SVM) · Video
category classification (VCC)

1 Introduction

Being one of the most natural parts in human-computer interaction (HCI), Brain-
Computer Interfaces (BCIs) have shown great promise for the physically disabled
people or people with severe neuromuscular disorders [1, 2]. According to sev-
eral studies, signals recorded from the brain can become a substitute for any job
that requires muscle control or movement [3]. There are a number of methods,
such as electroencephalography (EEG), functional MRI (fMRI), electrocorticog-
raphy (ECoG), calcium imaging, magnetoencephalography (MEG), functional near-
infrared spectroscopy (fNIRS), etc., using which such brain signals can be captured.

Electroencephalography (Scalp EEG) signals, which are small amounts of elec-
tromagnetic waves emitted by the neurons in the brain [4], are one of the most
popularly used signal acquisition techniques in the existing BCI systems due to their
non-invasiveness, easy to use, reasonable temporal resolution and cost effective-
ness compared to other brain signal recording methods [2]. As far as EEG record-
ings are concerned, the signals are the outcome of a highly complex non-linear
and non-stationary stochastic biological process which contain a wide variety of
noises both from internal and external sources. Thus, the use of computational intel-
ligence is required at every step of an EEG-based BCI system starting from removing
noises (using advanced signal processing techniques such as SWTSD, ICA, EMD,
other than traditional filtering by identifying/exploiting different artifact/noise char-
acteristics/patterns) through feature extraction and selection (by using unsupervised
learning like PCA, SVD, etc.) and finally for classification (either supervised learning
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Table 1 Rhythms and their traits of EEG signal

Rhythm Bandwidth Traits

Delta (δ) [0.5–3] Hz This activity occurs in unconscious, anesthetized or in deep sleep
stage but almost no activity when in wake state

Theta (θ) [4–7] Hz Associated with emotional pressure, deep physical relaxation,
and/or deep meditation

Alpha (α) [8–13] Hz This occurs in rest state. Thinking, blinking, etc. makes alpha
waves disappear

Beta (β) [14–30] Hz Beta waves are generated when a person is receiving sensory
stimulation, attentive or thinking actively

Gamma (γ) [31–50] Hz It is related to perceptual and cognition activity; selective
attention can also trigger this

Fig. 1 The 10–20 international system

based classifier like SVM, probabilistic classifier like NB or unsupervised learning
based classifiers like neural networks namely RBF, MLP, DBN, k-NN, etc.).

EEG signals can be broken down into five main rhythms based on their frequency
range: delta (δ), theta (θ), alpha (α), beta (β) and gamma (γ) [4, 5]. A brief description
of the EEG rhythms and traits are shown in Table 1.

EEG relies on the averaging of the responses of many neurons [6]. It is non-
invasive where signal acquiring electrodes are positioned on the scalp according to
the standard 10–20 international system [7] (see Fig. 1) to ensure reproducibility
among studies.

Every electrode in the 10–20 system has a unique identity that identifies which
lobe and hemisphere of the brain does one particular electrode correspond to. The
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letters F, T, C P, andO stand for frontal, temporal, central, parietal, and occipital lobes
respectively. Right hemisphere electrode positions are referred with even numbers
(between 2 and 8) whereas odd numbers (between 1 and 7) correspond to the left
hemisphere. Electrodes positioned on the midline are referred as a “z” (zero) [8].
This means that each of the electrodes provides information to a particular area of
the brain. However, this highly depends on the accuracy of the electrodes’ placement.

One of the biggest disadvantages of EEG signals is that they are highly suscep-
tible to noise mainly because of its non-invasive nature. These noises, often termed
as artifacts, are influenced by extraneous signals, for example electromyography
(EMG)—electrical signals originating from muscles in the face and scalp instead
of signals originating in the brain [9] and electrooculography (EOG)—noise gener-
ated from eye movements/blinking [10]. Also motion artifact is a major source of
noise in EEG due to physical movement of the subject [11]. Fortunately, there have
been a significant number of researches done to utilize advanced signal processing
techniques to overcome these noises [11–15].

There are several EEG signal acquisition devices typically used by researchers in
the literature [16]. They are g.USBamp [17, 18], g.BSamp [19], and g.BCIsys [20]
made by g.tec in Austria, Cerebus [21–23] made by Black-Rock Microsystems in
USA, SynAmps 2 [24–26] made by Compumedics Neuroscan in Australia, wireless
Emotiv EPOC [27–30] made by Emotiv Systems in USA, BrainNet-36 [31], ANT-
Neuro [32], FlexComp Infiniti encoder [33], etc. In the recent past, a whole new
domain for BCI researchers have opened up thanks to the advent of low-cost, easy to
use portable dry/wet electrode wireless EEG recording devices such as NeuroSky’s
MindWave [34], InteraXon’s Muse [35], Emotiv EPOC [27], etc. which have been
used by researchers in several studies [4, 36–38] as well.

The objective of BCI systems is to extract specific signature of the brain activ-
ity and to translate them into command signals to control external devices (see
Fig. 2) [39]. These features can be P300 evoked potentials, event-related potentials
(ERPs) recorded on the cortex, slow cortical potentials (SCPs), sensorimotor rhythms
acquired from the scalp, neuronal action potentials recorded within the cortex, etc.

Computational Intelligence is mainly involved in the Signal Processing module
in Fig. 2 which can be broken down into four submodules [2]:

• Pre-processing—removal of noises/artifacts from the EEG signals,
• Feature Extraction—extracting features from the EEG signals,
• Feature Selection—selecting only the features that contains most of the informa-
tion and

• Classification—deciding to which group does this set of EEG signals correspond
to.

Researchers often skip the Feature Selection submodule [40–46] because, this step
is only useful when the size or the dimensions of the features extracted by step (ii) is
quite large. Large feature sets correspond to slower execution time making several
BCI systems completely useless, especially online BCI systems. Thus, the Feature
Selection step is used as a dimensionality reduction step to speed up computational
time.
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Fig. 2 A general description of a BCI system. The signal processing module can be divided into
four submodules: pre-processing, feature extraction, feature selection and classification

In this chapter, we first present a thorough review of several articles for different
BCI paradigms. Our focus is on algorithms used by researchers for each of the
submodules of the Signal Processing module of a BCI system to solve a particular
problem. Then, we analyze different contemporary algorithms for each submodule
of a Signal Processing module on two datasets we acquired from:

• 19 college-aged young adults using Emotiv EPOC [27] at a sampling frequency
of 128 Hz and

• 19 college-aged young adults using the Muse headband [35] at a sampling fre-
quency of 220 Hz

where each of the participants was shown three different types of videos [47].

2 Use of Computational Intelligence in Different BCI
Applications

Based on brain activity patterns, there are mainly four types of EEG-based BCI
systems [16]—event related desynchronization/synchronization (ERD/ERS) [48],
steady-state visual evoked potential (SSVEP) [2], event-related potential (ERP) [49],
and slow cortical potential (SCP) [50]. Except for SCP, the other three are most
popular among researchers [51–53].

These EEG-based BCI paradigms have led to many BCI applications. Emotion
classification [36, 54–56], cognitive task classification [38, 57], P300 spellers [58–62]
and others [63, 64] as an alternative and augmentative communication (AAC) plat-
form [65], brain-controlled wheelchair [66–69], controlling a robot [70–73], rehabil-
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itation of locked-in patients [74–78], neuro-prosthesis [79–82], gaming [83, 84], etc.
are just a few examples. In this section, we will discuss about different pattern recog-
nition techniques used by researchers for the detection of the three most prominent
brain activity patterns i.e. ERD/ERS, SSVEP and ERP.

2.1 Motor Imagery

One of the most researched domain in ERD/ERS based BCIs are Motor Imagery
(MI) [85–87]. MI corresponds to the imagination of moving a body part (for exam-
ple right/left hand, tongue, both feet, etc.) without actually moving it. Oscillatory
activities can be observed in different locations in the brain’s sensorimotor cortex
for different MI tasks. The objective is to classify such activities to be able to rec-
ognize the underlying MI task performed [88]. To achieve this, researchers in the
past have experimented with various algorithms to improve the efficiency of the sys-
tem as much as possible. A summary of different techniques used by researchers is
presented in Table 2.

Band-pass filtering the EEG data from 0.5 to 30 Hz, Hamedi et al. [40] imple-
mented Integrated EEG (IEEG) and Root Mean Squares (RMS) as feature extraction
algorithms and Radial Basis Function (RBF) Neural Networks and Multilayer Per-
ceptron (MLP) as classifiers for three class (right/left hand and tongue movement)
MI classification. Comparing these algorithms with Support Vector Machine (SVM)
classifier andWillison Amplitude (WAMP) feature extraction algorithm, it was illus-
trated that SVM performs better with regards to accuracy and time taken for training
and WAMP was more suitable than RMS and IEEG.

Chatterjee et al. [89] classified the BCI competition II [94] MI dataset of left and
right-hand movements with the accuracy of 85% and 85.71% for SVM and MLP
respectively. They achieved this result by applying wavelet-based energy-entropy
method as the feature extraction technique and average power-based feature provided
better ROC area than the statistical feature. Their data were filtered using an elliptic
band-pass filter on the range 0.5 to 30 Hz.

An et al. [90] in their paper also used an elliptic band-pass filter to attenuate signals
in the range of 8 to 30Hz and usedNeuroscan software to removeEOGartifacts. They
found that deep belief network (DBN) gives a 4–6% better performance compared
to SVM when DBN was constructed with the combination of Restrict Boltzmann
Machine (RBM), Adaboost algorithm and Contrastive Divergence (CD) for 8 hidden
layers. Number of nodes had no effect, but subject’s concentration and status played
an important part in the performance of the classifier.

In a study [88] on BCI competition IV dataset 2b and competition II dataset III
[94], the authors applied a combination of convolutional neural network (CNN) and
stacked autoencoders (SAE) model and achieved an accuracy of 90.0% whereas the
winner algorithm achieved 89.3% accuracy. According to kappa value, 9% improve-
ment was achieved using this deep learning approach than the BCI competition
winner algorithm.
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Table 2 Summary of algorithms used by researchers for MI-based BCI

Authors Pre-processing Feature
extraction

Feature selection Classifier

Hamedi et al.
[40]

Band-pass filter,
0.5–30 Hz

IEEG, RMS and
WAMP

MLP, RBF
Neural networks
and SVM

Chatterjee et al.
[89]

Elliptic
band-pass filter,
0.5–30 Hz

Wavelet based
energy-entropy
method

Average power
band

SVM and MLP

An et al. [90] Elliptic
band-pass filter,
8–30 Hz

DBN and SVM

Tabar et al. [88] CNN and SAE

Kevric et al. [41] Band-pass filter,
0.05–200 Hz
MSPCA as noise
removal
technique

EMD, DWT and
WPD

k-NN

Hsu et al. [91] Gaussian filter CWT along with
student’s
two-sample
t-statistics

GA SVM

Li et al. [92] Band-pass filter,
0.05–200 Hz

Mean, standard
deviation,
skewness,
maximum,
minimum and
kurtosis

CC-LR

Zhang et al. [93] Band-pass filter
(0.5–100 Hz) and
a 50 Hz notch
filter

CSP SBLFB

Kevric et al. [41] presented a comparison among three feature extraction meth-
ods— Discrete Wavelet Transform (DWT), Wavelet Packet Decomposition (WPD),
and Empirical Mode Decomposition (EMD). The maximum average accuracy of
92.8% was achieved with the combination of Multiscale Principal Component Anal-
ysis (MSPCA) as noise removal technique, higher-order statistical features extracted
from WPD sub-bands and k-nearest neighbour (k-NN) as the classifier. EEG data
were band-pass filtered from 0.05 to 200 Hz.

Hsu et al. [91] classified 10 subjects’ motor imagery data with SVM, genetic
algorithm (GA) as feature selection method and student’s two-sample t-statistics and
continuous wavelet transform (CWT) as feature extraction method. They achieved
an average classification accuracy of 86.7%. Gaussian filter was used in order to
smooth the power spectrum data.

In [92], a modified cross-correlation based logistic regression (CC-LR) algorithm
was used on three statistical feature sets consisting of mean, standard deviation,
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skewness, maximum, minimum and kurtosis as six features for BCI competition III
dataset IVa and IVb [94]. Their algorithms provide better accuracy in three out of
five subjects when compared with eight other known algorithms and the difference
between proposed method accuracy and BCI competition III winner algorithm is
0.3. Digitized data of 1000 Hz was band-pass filtered between 0.05 to 200 Hz with
a 16-bit accuracy.

Zhang et al. [93] achieved 81.7% accuracy (with ±15.1 standard deviation) and
computational timeof less than10 seconds by implementing sparseBayesian learning
of frequency bands (SBLFB). They extracted features via common spatial pattern
(CSP) and achieved better results when this combination was compared with other
proposedmethods implemented on the BCI Competition IV IIb dataset [94]. A band-
pass filter was applied (0.5–100 Hz) with a 50 Hz notch filter.

2.2 Steady State Visual Evoked Potential

When the flickering frequency of the visual stimuli matches the frequency of the
firing frequency of the visual cortex’s neurons, the resulting brain signals are called
Steady State Visual Evoked Potential (SSVEP) [95, 96]. SSVEP is identifiable in the
range 5–60 Hz and is a very useful BCI tool due to its quite low signal to noise ratio
(SNR). SSVEP can easily be identified in EEG signals and therefore it is possible to
classify various kinds of visual stimuli. Researchers in the past have experimented
with various techniques to classify these stimuli with competitive results.

Chen et al. [45] proposed aSSVEP-based single-channelBCI systemusing control
algorithm and fuzzy tracking for amyotrophic lateral sclerosis (ALS) patient. Fuzzy
control algorithm achieved average recognition rate of 96.97% compared to 94.9%
achieved by canonical correlation analysis (CCA). In their proposed BCI system,
they used fast Fourier transform (FFT) as feature extraction algorithm and in the pre-
processing module, to extract data in the range 4–60 Hz, a 2nd-order Butterworth
band-pass filter.

Maronidis et al. [97] proposed the use of Subclass Marginal Fisher Analysis
(SMFA) to detect SSVEP and compared its result with CCA and Multiple Linear
Regression (MLR) for different number of trials and channels. In both the settings,
SMFA achieved better results than the other two algorithms. Authors used a 3rd
degree band-pass Butterworth Infinite Impulse Response (IIR) filter (6–80 Hz) in the
pre-processing module.

Kalaganis et al. [46] experimented with error-related potentials in SSVEP-based
BCI system. Authors implemented Minimum Covariance Determinant (MCD) as
an outlier detection algorithm or to remove noisy data, Common Spatial Patterns
(CSP) as feature extraction technique, SVM, Random Forrest (RF) and Adaboost
as classifiers. In comparison between SVM, RF and Adaboost, RF provides better
average accuracy (0.8187) and recall rate (0.5633).

In the study conducted by Friman et al. [98], the authors achieved an average clas-
sification accuracy of 84%with theminimumenergymethod as classifierwhich takes
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Table 3 Summary of algorithms used by researchers for SSVEP-based BCI
Authors Pre-processing Feature extraction Feature selection Classifier

Chen et al. [45] 2nd-order
Butterworth
band-pass filter, 4–60
Hz

FFT Fuzzy control
algorithm and CCA

Maronidis et al. [97] 3rd degree band-pass
Butterworth IIR
filter, 6–80 Hz

SMFA, CCA and
MLR

Kalaganis et al. [46] MCD CSP SVM, RF and
Adaboost

Friman et al. [98] Autoregressive
model

Minimum energy
method

Carvalho et al. [99] Butterworth
band-pass (5–60 Hz)
and notch filtered
(58–62 Hz)

Bank of filters,
Welch’s method and
short-term Fourier
transform

Incremental wrapper,
Pearson’s method
and Davies-Bouldin
index

LDA, SVM and
ELM

about 4 msec computational time. Autoregressive model was implemented to calcu-
late the noise level in SSVEP signal. In [99], authors compared between three fea-
ture extraction, feature selection and classification techniques for SSVEP-based BCI
system. They implemented bank of filters, Welch’s method and short-term Fourier
transform as feature extraction methods, incremental wrapper, Pearson’s method
and Davies-Bouldin index as feature selection methods and support vector machine
(SVM), linear discriminant analysis (LDA), and extreme learning machine (ELM)
as classifiers on band-pass Butterworth (5–60 Hz) and notch filtered (58–62 Hz)
EEG signal. LDA provides a better classification accuracy with Welch’s method and
incremental wrapper as feature extraction and feature selectionmethods respectively.
Table 3 summarizes the algorithms used by different studies to classify SSVEP from
EEG signals.

2.3 Event Related Potentials

The very small voltages in the brain structure generated due to the occurrence of
certain events or stimuli are known as event-related potentials (ERPs) [100]. These
fluctuations in the brain signal are evoked by and is also time-locked to a motor,
sensory or cognitive event. Among several types of ERPs, namely N100 or N1, N200
or N2, P100 or P1, P200 or P2, etc., the P300 or P3 is the largest ERP component
which gets triggered during an oddball paradigm. This oddball paradigm is one in
which a participant is presented with a series of events which can be classified into
two groups—frequently presented class and a rarely occurring class. The infrequent
event generates a positive deflection (or a P300 peak) in the scalp voltage about 300
msec after stimulus presentation [101].

This P300 ERP has contributed substantially in the development of several EEG-
basedBCI applications. P300Spellers [58–62],BrainPainting [102, 103], controlling
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Table 4 Summary of algorithms used by researchers for ERP-based BCI

Authors Pre-processing Feature
extraction

Feature selection Classifier

Speier et al. [42] Band-pass filter,
0.1–60 Hz

Ordinary
least-squares
regression [108]

SWLDA

Chaurasiya et al.
[106]

8-order
Chebyshev Type
I band-pass filter,
1–10 Hz

Concatenation of
six samples of all
64 channels

Binary
Differential
Evolution

Weighted
ensemble of
SVMs
(WESVM)

Pinegger et al.
[109]

Band-pass filter
between 0.5 and
100 Hz and a
50-Hz notch filter

FFT SWLDA

Li et al. [43, 44] Band-pass filter,
0.01–30 Hz and a
regression
analysis
algorithm to
remove EOG
artifacts

Wavelet
decomposition
and
reconstruction

SVM and BLDA
[43]
SVM ensemble
[44]

Kulasingham
et al. [107]

Butterworth 4th
order band-pass
filter, 1–30 Hz

Filtered 1 second
epochs

SVM ensemble

a virtual environment [104], gaming [105], etc. are just a few examples. For such
applications the proper detection of the P300 peak, like any other pattern recognition
problem involves pre-processing, feature extraction, feature selection, and classifi-
cation.

Typically, band-pass filters are used on raw EEG signals to extract data in the
range 0.1–30 Hz [101]. Although, Speier et al. [42] and Chaurasiya et al. [106]
used substantially different high cut-off frequencies of 60 Hz and 10 Hz respectively
and were able to achieve very good results. Filtered raw EEG data as features are
not uncommon for P300 Spellers [106, 107]. However, sophisticated methods like
ordinary least-squares regression [108] or conventional methods involving wavelet
transforms [43, 44] can also be found in the literature. Feature selection, as discussed
before, are used only when the size of the dataset is quite big and therefore, out of
the articles summarized in Table 4, only one paper used feature selection methods
[106].

Currently, stepwise linear discriminant analysis (SWLDA) and SVM ensembles
are the two classifiers dominating the detection of the P300 wave in the literature
[42, 44, 106, 107, 109]. In [43], the authors experimented with a different classifier,
Bayesian Linear Discriminate Analysis (BLDA), and noted that although increasing
the training set size decreases the difference in results between BLDA and SVM, the
results of SVM in P300-speller with familiar face model by utilizing a small training
set is better than that of BLDA.
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3 An Experiment with State-of-the-Art Algorithms—Video
Category Classification

In this section, we experimented with several state-of-the-art algorithms (discussed
in the previous section) for each of the submodules of the Signal Processing module
of a BCI system (see Sect. 1) on two datasets we acquired using two EEG signal
acquisition devices (Muse headband [35] and Emotiv EPOC [27]) where each of the
participants were shown videos of three different genres. Our objective is to passively
classify which type of video a person is watching from their Scalp EEG signals as
this is the fundamental step of our long-term goal of building a BCI based passive
video recommender system [47]. This data with preliminary code is downloadable
from [110].

3.1 Experimental Setup and Data Acquisition Techniques

EEG Recordings

As previously mentioned, Muse headband by InteraXon [35] and Emotiv EPOC
[27] by Emotiv Systems were used to record electroencephalogram (EEG) data to
create two datasets. These off-the-shelf wireless devices have been used previously
in several studies as well [4, 36–38]. Muse is a dry electrode EEG recording device
with 5 channels (TP9, AF7, AF8 and TP10 with reference channel at FPz) and the
Emotiv EPOC is a wet electrode device with 16 channels (AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 with two reference channels at P3 and P4)
arranged according to the international 10–20 system.Recording sampling frequency
of the Muse and Emotiv EPOC were 220 Hz and 128 Hz respectively and the data
were wirelessly transmitted to a computer via Bluetooth.

Demographics of Subjects

23 (15 males and 8 females) and 44 (32 males and 12 females) college-aged young
adults contributed to dataset 1 (dataset created using theMuse headband) and dataset
2 (dataset created using Emotiv EPOC) respectively. The subjects had no personal
history ofmental or neurological disorders and had either normal or corrected-normal
vision. The whole experiment for each of the subjects were also recorded using a
webcam. We discarded data of 3 male and 1 female subjects from dataset 1 as after
analysing these videos, we identified that one or more artifacts (excessive blinking,
hand or body movements, etc. even after being instructed to move as less as possible)
were excessively present in the signal. For this reason, we also selected 19 subjects
with the same male to female ratio (12 males and 7 females) from dataset 2 as well
to keep the comparisons between the two datasets legitimate.

All the participants signed informed consent forms prior to the study. The 19
selected participants for each of the datasets 1 and 2 had maximum, minimum,
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Table 5 Details of the video clips

No. Video title Genre Year

1 Birds-of-Paradise Project Introduction Calm, Informative 2012

2 Doctor Strange Official Trailer 2 Fictional 2016

3 The Present—Official Emotional 2016

Hint of 
Start

Blank 
Black 

Screen
Video 1

Blank 
Black 

Screen
Video 2

Blank 
Black 

Screen
Video 3

Blank 
Black 

Screen

2 secs 5 secs 68 secs 5 secs 142 secs 5 secs 171 secs 5 secs

Fig. 3 EEG data collection protocol for video category classification from EEG data

average, and standard deviation age of 26, 20, 22.5 and 1.35 and 23, 19, 21.2 and
1.32 respectively and all the 38 participants were right-handed.

Experimental Setup

Three different types of videos were shown to the participants (see Table 5): 1.
Calming and informative, 2. Fictional and 3. Emotional. The criteria of choosing
these three videos can be found in [47]. A five second blank black screen were
shown between each of the three videos and also, at the beginning and at the end
of the whole experiment. To give a hint of start, a message stating “The video will
start in 5 seconds” was shown for two seconds at the very beginning (see Fig. 3).
The compiled experimental video (accessible online in [111]) was of 6 minutes 43
seconds and the total experimental procedure including device setup took about 10
minutes per subject. The stimuli were presented on a 21.5-inch LED monitor with
60 Hz refresh rate.

3.2 Experimental Study and Findings

Algorithms and Methods

In this section, we list out all the algorithms we experimented with for the Pre-
processing, Feature Extraction, Feature Selection, and Classification submodules
of the Signal Processing module of a BCI system to observe the best algorithm
combination that achieves the highest accuracy in predicting the category of video a
person is watching.

Pre-processing: As the three videos presented as stimuli were of different lengths,
to classify without biasness, we selected one minute of raw EEG data from each of
these videos—the part involved with the main story line of the video. The last minute
of the first video states most of the information, one minute in the exact middle of the
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Table 6 Illustration of SWT coefficients in relation to EEG rhythms in different frequency bands
for dataset-1 using MUSE
SWT Coef
(Level = 5, Fs
= 220)

D1 D2 D3 D4 D5 A5

Freq band
(Hz)

55–110 27.5–55 13.75–27.5 6.825–13.75 3.9125–6.825 0–3.9125

EEG rhythm Gamma Beta Alpha Theta Delta

Table 7 Illustration of SWT coefficients in relation to EEG rhythms in different frequency bands
for dataset-2 using Emotiv EPOC

SWT Coef (Level = 4, Fs = 128) D1 D2 D3 D4 A4

Freq band (Hz) 32–64 16–32 8–16 4–8 0–4

EEG rhythm Gamma Beta Alpha Theta Delta

second video comprises of the main climax and/or story and the last minute of the
third video reveals the emotional climax and thus, we selected raw EEG data from
these parts.

After the extraction of these one-minute data, we carried out experiments follow-
ing three different approaches. We did not use any artifact removal techniques in
our first approach, i.e. used raw data. In our second approach, to remove artifacts,
we used Stationary wavelet transform (SWT) based denoising and as our third arti-
fact removal technique we used an extended SWT technique were we first applied
SWT following which we eliminated all data whose absolute difference was above
2 standard deviation from the mean (SWTSD).

SWT-based denoising was chosen in order to correct stereotyped artifacts such as
muscle artifacts (EMG), motion artifacts, blinking and lateral eyemovement artifacts
(EOG). We chose SWT as it is better than DWT (Discrete Wavelet Transform)
because of its transitional invariance (e.g. slight change in signal does not change
the wavelet coefficients much and thus doesn’t introduce much variations in energy
distribution in different wavelet levels) [112]. A 5-level and 4-level SWT with Haar
as mother (aka basis) wavelet has been applied on the EEG signals recorded from
Muse (Fs = 220 Hz) and Emotiv EPOC (Fs = 128 Hz) headbands respectively.
After the application of SWT, the output consists of final approximate coefficients
(a5/a4)which represent distinct low frequencybands and a series of detail coefficients
(d1− d5/d1− d4) which are the values of high frequency bands (see Tables 6 and 7).
To remove artifacts from EEG signal, the updated universal threshold [113, 114] was
applied on different scales of wavelet coefficients. Finally, by applying inverse SWT
with Garrote threshold function as used in [113, 114], the artifact-reduced EEG data
are reassembled using the latest set of wavelet coefficients.

After applying an artifact removal technique, we experimented with two basic
family of filters namely, Finite and Infinite Impulse Response (FIR and IIR) filters
to band-pass filter out EEG signals in the range 5–48 Hz which also removed EOG
artifacts as they are low frequency signals (less than 4 Hz) [115]. In addition, the
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Table 8 Different filters with their design specifications

Filters Type Specifications

FIR i. Least Squares (FLS)
ii. Equiripple (FE)

Order: 256 for dataset 1
Order: 128 for dataset 2

Sample rate: 220 Hz for dataset 1

Sample rate: 128 Hz for dataset 2

Stopband frequency 1: 4 Hz

Passband frequency 1: 5 Hz

Stopband frequency 2: 48 Hz

Passband frequency 2: 50 Hz

IIR iii. Chebyshev II (Stopband ripple) (ICS2)
iv. Chebyshev I (Passband ripple) (ICS1)
v. Elliptic (IE)

Order: Automatic

Sample rate: 220 Hz for dataset 1

Sample rate: 128 Hz for dataset 2

Stopband frequency 1: 4 Hz

Passband frequency 1: 5 Hz

Stopband frequency 2: 48 Hz

Passband frequency 2: 50 Hz

Table 9 List of feature extraction methods with their default parameters

Algorithm DWT FFT PWelch PYAR STFT

Parameters Wav.: db1
Dec.: 5 for
dataset 1
Dec.: 4 for
dataset 2

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2
Order of AR
model: 20

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2

selected bandwidth of the mentioned filter also inherently removes the power line
interference (i.e. 50 Hz in our recording location) and its harmonics, thus Notch filter
was not used in the preprocessing stage. We designed two FIR filters and three IIR
filters. Table 8 presents their detailed configurations.

Feature Extraction: The objective of this submodule is extracting useful fea-
tures from the filtered EEG data which are to be used by the Classification step.
There exist several feature extraction algorithms among which we selected: Dis-
crete Wavelet Transform (DWT), Fast Fourier Transform (FFT), Welch Spectrum
(PWelch), Yule—AR Spectrum (PYAR) and Short Time Fourier Transform (STFT).
Table 9 presents the parameters chosen for each of these algorithms.



Computational Intelligence for Pattern Recognition in EEG Signals 305

Feature Selection: Reduction of the dimensions of the features extracted in the
last step can substantially reduce the execution time with pretty less or ignorable
change in classification accuracy. For our problem, we chose two of the most popular
feature selection algorithms—Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD).

Classification: Six very different type of classifiers in design and architecture
were chosen for the classification submodule—Adaboost (AB), Support Vector
Machines (SVMs), Multi-Class Linear Discriminant Analysis (MLDA), Multiple
LinearRegression (MLR),NaïveBayes (NB) andDecisionTrees (MLTREE). Param-
eters for SVM were chosen kernel = linear and C = 1. An ensemble of 100 weak
classifiers were used in Adaboost. The default parameters implemented by the MAT-
LAB’s Statistics and Machine Learning toolbox were used as parameters for all the
other classifiers.

The 10-fold Cross-Validation approach which in our case is also Leave-One-Out
Cross-Validation (LOOCV) was used as an evaluation criterion for classification
accuracy. We implemented the subject-specific approach in which the classifier is
trained and tested using the data of the same subject, i.e. we divided the data of one
subject into 10 epochs (6 second epochs), trained the classifier with 9 of them and
tested with the remaining one and the whole procedure was repeated 10 times.

A computer with 3.4 GHz processor (Intel Core i7) and 16 GBmemory were used
to run all the experiments and they were implemented using the EEG processing
toolbox developed by Oikonomou et al. [116].

Experimental Results and Discussion

Since, it is impossible to report the results of all the combinations of algorithms
(300 combinations for each artifact removal technique, i.e. 900 combinations) we
chose in the previous section, based on our preliminary results, except for the artifact
removal techniques, we selected two top performing algorithms from each of the
submodules. Thus, as filters we selected FLS and ICS1, PYAR and PWelch as feature
extraction techniques, both PCA and SVD as feature selection methods and NB
and SVM as classifiers. Tables 10 and 11, for dataset 1 (data acquired using Muse
headband) and 2 (data acquired usingEmotivEPOC) respectively, presents the results
achieved for each of the combination of algorithms when different artifact removal
techniques were applied for all the channels of Muse (TP9, AF7, AF8 and TP10) and
corresponding closely located channels of Emotiv EPOC (T7, AF3, AF4 and T8).

Artifact Removal Techniques: For dataset 1 (Table 10), an increase of 3.1% in
average accuracy can be observed when SWT (57.8%) was applied compared to the
average accuracy when raw data (54.7%) were used. The mixture of SWT followed
by SD (SWTSD) was able to achieve even better average accuracy of 61.9% with a
difference of 4.1 and 7.2% with SWT and raw data respectively.
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Table 10 Average accuracies for each of the combination of algorithms when different artifact
removal techniques were applied for all the channels of Muse

Table 11 Average accuracies for each of the combination of algorithms when different artifact
removal techniques were applied for 4 channels of Emotiv EPOC which are close correspondence
with the channels of Muse

Similar results can also be observed for dataset 2 (Table 11). Although, the intro-
duction of SWT (46.8%) slightly improved the average classification accuracy com-
pared to raw data (46.2%), SWTSD (52.2%) substantially improved the results by
6.0%.

The results achieved fromEEGdata of both the devices infer the fact that, EEGsig-
nals are highly prone to artifacts and therefore, appropriate usage of artifact removal
technique(s) can significantly improve classification accuracy. For the video cate-
gory classification (VCC) problem, based on our results we can conclude that, our
new method SWTSD performs better than the conventional artifact removal tech-
nique SWT. It is important to note that this does not however infer that SWTSD will
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Table 12 (a) Average accuracies for each of the combination of algorithms for all the channels of
Muse when feature selection techniques were not applied. (b) Average accuracies for each of the
combination of algorithms for 4 channels of Emotiv EPOC when feature selection techniques were
not applied

(a) (b)

perform better than SWT for other types of studies (e.g. MI, SSVEP, ERP, etc.) as
well.

Impacts of usage of Feature Selection Algorithms: Our analysis will now con-
centrate on the results of SWTSD only as it is the better performing artifact removal
technique. Table 12 present the results for dataset 1 and 2 respectively when feature
selection techniques were not used.

As expected, when feature selection techniques were not used, an increase in
average execution time per subject was observed for both the datasets. For dataset
1, the average execution time increased from 4.03 msec to 6.73 msec (increased by
67.0 percent) and for dataset 2, the average execution time almost doubled from 3.03
msec to 5.96 msec (increased by 96.7 percent).

When all the data are used for classification, the classification accuracy is expected
to be higher compared to when feature selection methods are applied before classi-
fication. Although, as per Tables 11 and 12b, this is the case when Emotiv EPOC’s
data were used (average accuracy of 52.2% and 58.9% with and without feature
selection methods respectively), however, slightly different results can be observed
when Muse’s data were used, i.e. average accuracy decreased from 61.9% to 60.3%
when feature selection methods were not used (see Tables 10 and 12a).

This decrease in accuracy forMuse canbe explainedby the differences in sampling
rate of the two devices (128 Hz for Emotiv EPOC and 220 Hz for Muse). The
number of components chosen by the dimensionality reduction algorithms for both
the datasets remained the same and so, feature selection algorithms hadmore options
to choose from for dataset 1 than for dataset 2 and therefore, the number of redundant
features selected for dataset 1 are less as well. Also, the selected features probably
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had less noise compared to the original data and hence, the classification accuracy
improved.

Channel Selection: To identify which channel is most suitable for the VCC problem,
for the sake of simplicity, our analysis will now concentrate on the results when
feature selection algorithms were applied to the datasets (Tables 10 and 11). Average
accuracies of channels TP9 (58.5%) and TP10 (58.1%) of the Muse headband are
very similar with just a 0.4% difference. The results improve even further to 60.6%
when data of channel AF7 were used. A significant increase in average accuracy
can be observed for channel AF8 (70.3%) located at the right dorsolateral prefrontal
cortex. As videos have the potential to evoke working memory in participants, one
possible reason for such an increase of about 10% for this particular channel can be
explained by the findings of [117] where the authors conclude that right dorsolateral
prefrontal cortex is heavily involved with spatial working memory related tasks.
There can be several other explanations for this abrupt increase in average accuracy
which include emotions triggered by different videos in subjects, attentiveness, etc.

Comparing the results with the electrodes T7 (54.6%) and T8 (56.5%) of Emotiv
EPOC, average accuracies were somewhat similar to that of the Muse headband for
the electrodes TP9 (58.5%) and TP10 (58.1%) compared to the electrodes located at
the frontal lobe. First of all, unlike Muse headband, the average accuracies deterio-
rated substantially for the electrodes AF3 (49.7%) and AF4 (47.9%) in comparison
with the electrodes located at the temporal lobe (T7 and T8). Secondly, the difference
between the average accuracies of AF7 (60.6%) and AF3 (49.7%) was 10.9% and
between AF8 (70.3%) and AF4 (47.9%) a huge difference of 22.4% can be observed.

As reported in several studies [118–121], the performance of Emotiv EPOC com-
pared to other EEG signal acquisition devices, is not up to the mark. This might be
because, as per Fakhruzzaman et al. [122], Emotiv EPOC is a not a medical grade
device, i.e. it is a consumer grade device and the all-size all-fit concept of this device
is not so good as it sounds. Other than these reasons, the deterioration in average
accuracy, specifically for the frontal lobe electrodes, can also be explained by the
difference in spatial position of the two electrodes of the devices (Figs. 4 and 5). AF7
and AF8 of the Muse headband is located on the forehead whereas AF3 and AF4 of
Emotiv EPOC is positioned on or above the hairline on the forehead depending on
the size of the forehead of different individuals. This obstruction of hair for channels
AF3 and AF4 makes them much more susceptible to artifacts compared to the chan-
nels AF7 and AF8 which are placed right on top of the skin and therefore, results of
frontal lobe channels of Emotiv EPOC are worse than that of Muse.

Table 13 provides the average accuracies achieved by each of the 16 combinations
of algorithms for all the channels of Emotiv EPOC when SWTSD artifact removal
techniquewas used. From all the results of theMuse headband (Table 10) and Emotiv
EPOC (Table 13) the only channel that exceeded the minimal BCI performance
criteria of 70% [123] was when data of channel AF8 of theMuse headbandwere used
leading us to conclude that this is themost suitable channel and theMuse headband is
the better device for the VCC problem. The highest average classification accuracy
achieved by this channel was 77.7% (4.83 msec average total execution time per
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Fig. 4 AF7 and AF8 channel locations of the Muse headband

Fig. 5 AF3 and AF4 channel locations of Emotiv EPOC

subject) and the combination of algorithms responsible were SWTSD and FLS for
the pre-processing submodule, PYAR for the feature extraction submodule and SVD
and NB for the submodules feature selection and classification respectively. Even
though none of the channels of Emotiv EPOCachieved theminimal BCI performance
criteria of 70% [123], the channel whose results were closest to it was T8with highest
average accuracy of 66.7% (2.96msec average total execution time per subject) when
SWTSD and ICS1, PWelch, PCA and SVM were used.
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Table 13 Average accuracies for each of the combination of algorithms when SWTSD were used
as an artifact removal technique for all the channels of Emotiv EPOC

The results of the channels located at the occipital lobe of Emotiv EPOC were
surprisingly low. Other than the limitations of Emotiv EPOC mentioned before, this
may be because that although exposure of videos triggers visual evoked potential
(VEP) in the brain, other parts of the brain including the prefrontal dorsolateral
cortex are more involved or is activated when such stimuli are presented.

Future Works: There are several areas we can work on in the future to improve our
results. For example, the order of the IIR filters and the dimensions of the feature
selection algorithms are being selected automatically byMATLAB.Optimizing these
parameterswill have an impact on the results.Weused data epochs of 6 secondswhich
is a big epoch size for EEG related studies as the stationarity of the EEG signals with
increasing epoch duration is expected to disappear [124]. This is a very crucial area
which we hope to address in the future.

The relevant frequency bands for MI (7–30 Hz, mu and beta bands) [125], ERP
(< 4 Hz, delta band) [126] and SSVEP (12–18 Hz) [127] based BCIs are well known
by researchers. Analyzing a relevant frequency band for the VCC problem was
beyond the scope of this study. As discussed in our previous work [47], we hope to
target high-frequency gamma oscillations as they are heavily involved in working
memory load related activity [128–130] and in activities requiring cross-modal
sensory processing—perception combined from two separate senses, for example
from sound and sight [131, 132].

One category of Machine Learning algorithms, neural networks, especially Deep
Learning algorithms which is the recent hype among Machine Learning researchers,
was not used in this study. As Deep Learning algorithms compared to conventional
Machine Learning algorithms are performingmuch better in almost all type of studies
including EEG-based BCIs [88, 90], we believe that using such algorithms will
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improve our results substantially. Also, apart from SWT, there exists several other
artifact removal tools in the literature, e.g. Empirical Mode Decomposition (EMD),
Adaptive filtering, Independent Component Analysis (ICA), etc. which we hope to
apply on the VCC study as well [133].

In addition, in this study, we have used a single feature (either PWelch or PYAR)
during feature extraction step. However, features extracted using combination of dif-
ferent statistical and non-statistical features found in time, frequency and wavelet
domain [133] (e.g. standard deviation, variance, entropy, kurtosis, skewness, period-
icity, maximum or minimum power in all three domains, AR features, line length,
NEO, FFT-based features, etc.) with different weights concatenated into a single
feature vector might enhance the classification accuracy significantly, which is also
one of our future works.

4 Conclusion

This chapter attempted to address the existing computational intelligence techniques
for pattern recognition in one of the EEG-based BCI applications, i.e. Video Cate-
gory Classification (VCC) and their accuracies, challenges and suitability for such
application.

Based on results found from experiments on VCC and reports from other studies,
computational intelligence in BCI systems is problem or application specific and
depends on several factors. For example, as reported in the previous section, data
acquired from two different EEG signal acquisition devices (Muse headband and
Emotiv EPOC) for the same experiment resulted in considerably different results.
The correct choice of the relevant frequency band (e.g. SSVEP, 12–18 Hz [127]) also
plays a crucial role in the end results.

In accordance with other studies [36, 134], it is also found that proper usage
and optimization of artifact removal techniques significantly improves classification
accuracies. Similarly, depending on theBCI paradigm and type, appropriate selection
of feature extraction, feature selection and classification algorithms will also have a
positive impact on the results.

We hope and believe that the rapid progress in technology, both hardware (e.g.
better signal acquisition devices, better computer and smart phone hardware, etc.) and
software (better Machine Learning techniques such as Deep Learning, continuous
improvement of artifact removal techniques, etc.), will in the near future improve
the accuracy and feasibility of BCI systems to a level at which these systems can be
deployed in real world scenarios (e.g. online BCIs) resulting in a better lifestyle of
the physically disabled people and also will increase the quality of life for all people
across the world.
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Appendix

Abbreviation Definition

AAC Alternative and Augmentative Communication

AB Adaboost

ALS Amyotrophic lateral sclerosis

BCI Brain-Computer-Interface

BLDA Bayesian Linear Discriminative Analysis

CCA Canonical Correlation Analysis

CC-LR Cross-Correlation based Logistic Regression

CD Contrastive Divergence

CNN Convolution Neural Network

CSP Common Spatial Pattern

CWT Continuous Wavelet Transform

DBN Deep Belief Network

DWT Discrete Wavelet Transform

ECoG Electrocorticography

EEG Electroencephalography

ELM Extreme Learning Machine

EMD Empirical Mode Decomposition

EMG Electromyography

EOG Electrooculography

ERD Event Related Desynchronization

ERP Event Related Potential

ERS Event Related Synchronization

FE FIR Equiripple

FFT Fast Fourier Transform

FIR Finite Impulse Response

FLS FIR Least Squares

fMRI Functional Magnetic Resonance Imaging

fNIRS Functional Near-Infrared Spectroscopy

GA Genetic Algorithm

HCI Human-Computer Interaction

ICA Independent Component Analysis

ICS1 IIR Chebyshev I

ICS2 IIR Chebyshev II

IE IIR Elliptic

IEEG Integrated Electroencephalography
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Abbreviation Definition

IIR Infinite Impulse Response

k-NN K- Nearest Neighbor

LDA Linear Discriminant Analysis

LOOCV Leave-One-Out Cross-Validation

MCD Minimum Covariance Determinant

MEG Magnetoencephalography

MI Motor Imagery

MLDA Multi-Class Linear Discriminant Analysis

MLP Multilayer Perceptron

MLR Multiple Linear Regression

MLTREE Decision Tree

MSPCA Multi Scale Principal Component Analysis

NB Naïve Bayes

PCA Principal Component Analysis

PWelch Welch Spectrum

PYAR Yale - AR Spectrum

RBF Radial Basis Function

RBM Restrict Boltzmann Machine

RF Random Forest

RMS Root Mean Squares

ROC Receiver Operating Characteristic

SAE Stacked Autoencoders

SBLFB Sparse Bayesian Learning of Frequency Bands

SCP Slow Cortical Potentials

SMFA Subclass Marginal Fisher Analysis

SNR Signal to Noise Ratio

SSVEP Steady State Visual Evoked Potential

STFT Short Time Fourier Transform

SVD Singular Value Decomposition

SVM Support Vector Machine

SWLDA Stepwise Linear Discriminant Analysis

SWT Stationary Wavelet Transform

SWTSD Stationary Wavelet Transform with Standard Deviation

VCC Video Category Classification

VEP Visual Evoked Potential

WAMP Willison Amplitude

WESVM Weighted Ensemble of SVMs

WPD Wavelet Packet Decomposition
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