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Abstract What deep learning lacks at themoment is the heterogeneous and dynamic
capabilities of the human system. In part, this is because a single architecture is
not currently capable of the level of modeling and representation of the complex
human system. Therefore, a heterogeneous set of pathways from sensory stimu-
lus to cognitive function needs to be developed in a richer computational model.
Herein, we explore the learning of multiple pathways–as different deep neural net-
work architectures–coupled with appropriate data/information fusion. Specifically,
we explore the advantage of data-driven optimization of fusing different deep nets–
GoogleNet, CaffeNet and ResNet–at a per class (neuron) or shared weight (single
data fusion across classes) fashion. In addition, we explore indices that tell us the
importance of each network, how they interact and what aggregation was learned.
Experiments are provided in the context of remote sensing on the UC Merced and
WHU-RS19 data sets. In particular, we show that fusion is the top performer, each
network is needed across the various target classes, and unique aggregations (i.e.,
not common operators) are learned.
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1 Introduction

We humans excel at many robust pattern recognition tasks in which computational
systems can only perform well when limited in scope and constrained in operating
environment. The human visual system is no exception. Humans develop at an early
age a comprehensive visual processing and pattern recognition ability. Our vision
allows us to process our physical environment (navigation) and facilitates many
higher-level cognitive functions such as object classification and entity resolution.
We accomplish this via a complex multistage visual system that begins with basic
lightness and color receptors, then builds upon the perceived edges to derive shapes,
spatial relationships, and eventually to organization of components into objects of
interest – and this is before any higher level cognitive processing.

Deep neural network models follow a similar paradigm conceptually, extracting
first edges and other simple geometric primitives in the lowest levels, then later mid-
level assemblies of these primitives into visual concepts, which are then combined in
higher-level layers as object components (blobs), that are eventually agglomerated
into objects. These visual objects are agglomerated within fully connected neural
layers for eventual classifications, which is an informational (cognitive) output.What
deep architectures lack at the moment is the heterogeneous and dynamic capabilities
of the human system, which is in part because a single architecture is not capable of
the level of modeling and representation of the complex human system. Therefore, a
heterogeneous set of pathways from sensory stimulus to cognitive function needs to
be developed in a richer computational model. The model proposed in this chapter
represents the learning of multiple pathways–as deep neural networks–coupled with
appropriate information fusion.We feel fusion of the cognitive outputs (information)
from multiple heterogeneous models (pathways) is the next step towards robust
computational cognitive processing of visual, and visual-like, sensory data.

In general, computational intelligence (CI) is a branch of mathematics inspired by
nature. Specifically, CI is associated with neural networks (NNs), evolutionary algo-
rithms (EA) and fuzzy set theory (FST). NNs were established in 1943 byMcCulloch
and Pitts [1], FST was established in 1965 by Zadeh [2] and EAs were made popu-
lar by Holland in the early 1970s [3] (but arguably have roots going back as far as
Turing in 1950). The point is, CI has existed in one form or another since the advent
of artificial intelligence (AI). In this chapter, we focus on the intersection of NNs
and FST for pattern recognition. In the last decade, substantial interest and effort
has gone into deep learning (DL), a re-branding of NNs. This shift has forced us to
re-address fundamental questions like; should humans design features (the classical
approach to pattern recognition) or is a machine better at this task? Empirically, DL
has more-or-less unanimously topped the charts in many domains (e.g., natural lan-
guage processing [4, 5], vision [6–10], remote sensing [11–14]). However, while DL
has generated great excitement, much remains to be explored and explained. In this
chapter, we focus on the specific question of how to perform decision-level fusion
of DL networks.
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DL can be viewed as a generalization of the classical pattern recognition pipeline–
e.g., pre-processing, feature extraction (selection and/or reduction), classification and
post-processing. In some settings this is now being called shallow learning because
there are only a few “layers” in the pattern recognition pipeline. In the context of
computer vision, DL can also be decomposed into levels; “low” (e.g., signal/image
analysis via convolution), “mid” and “high” (more AI than signal processing, e.g.,
MLP classification). In the extreme, DL is nothing more than a series of opera-
tions that transform data to decisions. The point is, fusion can (and often does) take
place at different levels in pattern recognition/DL. For example, keeping with the
fusion nomenclature of the Joint Directors of Laboratories (JDL) [15], some fusion
algorithms do signal-in-signal-out (SISO), whereas others do feature-in-feature-out
(FIFO) and decision-in-decision-out (DIDO). If we regard DL as a SIDO process
(e.g., SI = image and DO = class label), then it can be decomposed into its corre-
sponding SISO, SIFO, FIFO, FIDO, DIDO (and combinations therein). In summary,
fusion is not as simple as “cram data into a DL and let it do its thing”.

Herein, we restrict our analysis to deep convolutional neural networks (DCNNs)
[6–10, 16, 17], versus auto encoders (AEs) [18–22], deep belief nets (DBNs) [23,
24], etc., for sake of discussion tractability. The reality is, we still know little-to-
nothing about fundamental DL fusion questions such as; (i) how/where is fusion
currently happening, (ii) based on our current set of neurons/transformations, what
is mathematically expressible and what is not (but should be), (iii) how should we
be performing fusion at different levels, (iv) how do we address heterogeneity with
respect to semantics and/or uncertainty across data/information sources, and (v)
how do we explain what fusion is doing (aka explainable AI (XAI)), to list a few.
Independent of DL, fusion is a complicated topic that often means different things
to different people in different fields (and even within the same field). Fusion is a
wealth of challenges wrapped up into one term. Fusion ranges from data association
(e.g., finding a one-to-one mapping between pixels in one sensor to pixels in another)
to the mathematics of aggregation (specific functions/operators). In general, the idea
of fusion is to obtain a “better” result than if we only used the individual inputs.
However, better is not a well defined concept. In some applications, better might
mean taking a set of inputs and reducing them into a single result that can be more
efficiently or effectively used for visualization. Better could also refer to obtaining
more desirable properties such as higher information content or lower conflict. In
areas like pattern recognition, better often refers to some desirable property likemore
robust and generalizable solutions (e.g., classifiers). Regardless of the task at hand
or the particular application, fusion is a core tool at the heart of numerous modern
scientific thrusts.

In this chapter, we make the following contributions. First, we discuss two
approaches for heterogeneous DCNN architecture fusion; density-based imputation
and full Choquet integral (ChI) learning (per neuron and “shared weight”). Second,
we outline indices for introspection and information theoretic indices to understand
the capacity and integral (moving us closer to a so-called XAI solution versus black
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box solution). Third, we demonstrate and analyze these ideas on remotely sensed
data. Last, we provide open source code at www.derektanderson.com/FuzzyLibrary
and www.github.com/scottgs/fi_library.

2 Deep Convolutional Neural Networks

To date, the AE [18–20], CNN [6–10, 16, 17], DBN [23, 24] and recurrent NNs
(RNNs) [25, 26] are the most mainstreamDLs. However, other DL approaches exist,
e.g., deep inference nets ([27] Verma et al. Takagi-Sugeno-Kang deep net), deconvo-
lution CNNs (specifically transpose matrix convolution) [28–30] and morphological
shared weight neural networks [31, 32]. Herein, we focus on the CNN, which is by
far the most employed and often the highest performer. With respect to the CNN, a
number of architectures have been explored to date, e.g., AlexNet [7], GoogLeNet
[17], VGGNet [33] and their derivatives. These architectures can be downloaded
and extended (training, evaluation, visualization) via open source libraries like Ten-
sorFlow [34], CaffeNet [35], and MatConvNet [36]. The fundamental challenges
of which architecture, how deep versus wide, hyperparameter tuning, what neuron
types, how to transfer a DL from one domain to another (transfer learning [37]), and
other questions are unanswered. Also, numerous challenges exist; e.g., lack of train-
ing data volume (and variety), class imbalance, dimensionality (spatial, temporal and
spectral), explainable DL (what did the DL learn, versus a black box), to name a few.
While DL has sparked a revolution in computer vision, pattern recognition and AI in
general, an overwhelming number of theoretical and applied questions remain ripe
for exploration.

In general, most CNNs consist of combinations of the following operations (see
Fig. 1). First, let the input to the system, O0, be a three dimensional data cube of size
N0 × M0 × D0; where N0 and M0 are spatial dimensions and D0 is the temporal
or spectral dimensionality (e.g., RGB imagery has D0 = 3). (Convolution) The
backbone of a CNN is filtering via convolution. Filtering can take a number of
meanings, e.g., enhancement, denoising or detection. Convolution specifics include
factors like (i) stride (spatial and/or spectral/temporal “jumps”) and (ii) padding (if
no padding is used then the spatial dimension shrinks). (Pooling) Pooling is often
applied to reduce spatial dimensionality–and combat challenges related to affine
variation, noise, etc. Most often, average and max pooling are used. (Activation)
Nonlinearity is also typically applied, in the formof a function like hyperbolic tangent
(tanh), sigmoid, or ReLU (ReLU (x) = max(0, x)). (Training Techniques) In order
to combat factors like sensitivity to parameter selection and overtraining, methods
like dropout [38], regularization [39] and/or batch normalization [40] (addresses
internal covariate shift and vanishing gradients) are often used. Beyond architecture,
there are factors like GPU acceleration [41], training (e.g., stochastic gradient decent
(SGD) [42], SGD with momentum [43, 44], AdaGrad [45], RMSProp [46] and
ADAM [47]). The reader can refer to [39] for additional mathematical and algorithm

www.derektanderson.com/FuzzyLibrary
www.github.com/scottgs/fi_library.
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Fig. 1 Example CNN. Input is a 3D cube (x-y spatial, z spectral), green layers consist of subset of
convolution (morphology, etc.), pooling (average, max, etc.), batch normalization (or other method
to mitigate overfitting, vanishing gradients, internal covariate shift, etc.) and nonlinear function
(e.g., ReLU activation). The output of the green layers are typically fed to a MLP and optional
post-processing steps (e.g., soft max normalization)

details related to CNNs. The reader can also refer to [48] for a recent survey of DL
in remote sensing (theory, applications and open challenges).

The idea of FST in NNs is not new. The reader can refer to the work of Pal and
Mitra [49] for neuro-fuzzy pattern recognition. Pal, Mitra, and others (e.g., Keller
and the fuzzy perceptron [50]), explored a variety of topics such as fuzzy min-max
networks, fuzzy MLPs, and fuzzy Kohonen networks. In terms of aggregation, a few
FST works have been explored to date. In 1992 [51], Yager put forth the ordered
weighted average (OWA) [52]–which technically is a linear combination of order
statistics (LCOS) since the weights are real-valued numbers (versus sets)–neuron.
In 1995, Sung-Bae utilized the OWA for NN aggregation (at the decision/output
level) [53]. In 1995, Sung-Bae et al. also explored the fuzzy integral, the Sugeno
fuzzy integral not Sugeno’s fuzzy ChI, for NN aggregation [54]. Specifically, they
used the Sugeno λ-fuzzy measure (FM) and the densities were derived using their
respective accuracy rates on training data. In 2017 [55], we (Scott et al.) used the
Sugeno and ChIs for DCNN fusion. Specifically, Scott et al. used transfer learning to
adapt GoogLeNet, AlexNet and ResNet50 from camera imagery to remote sensing
imagery. Scott then applied different aggregations–fuzzy integral, voting, arrogance,
and weighted sum–to these DCNNs. Scott’s fusion was based on the Sugeno λ FM
and the densities were (i) set to the normalized classifier accuracies and (ii) a GA
learned the densities (which led to higher performance).
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3 Fuzzy Measure and Fuzzy Integrals

TheChI has been successfully demonstrated in numerous applications; e.g., explosive
hazard detection [56–58], computer vision [59], pattern recognition [60–64], remote
sensing [65], multi-criteria decision making [66, 67], forensic anthropology [68–
70], control [71], multiple kernel learning [56, 72–75], multiple instance learning
[76], ontologies [77], missing data [78], and most relevant to the current chapter, DL
[55]. The ChI is a nonlinear aggregation function that is parameterized by the FM
(aka capacity). Countless mathematical variations of the fuzzy integral have been put
forward for different reasons; e.g., address different types (i.e., real-valued, interval-
valued, set-valued) of uncertainty in the integrand and/or measure, limit the number
of input interactions for tractability, etc. Herein, we focus on and succinctly review
just the real-valued discrete (finite X ) ChI for DCNN fusion.

3.1 Discrete (Finite X) Fuzzy Measure

Let X = {x1, x2, . . . , xN } be N sources, e.g., experts, sensors, or in the case of
this chapter, DCNNs. The first action we face is how to assign “worth/utility” to
different subsets of DCNNs. For example, the well-known backbone of calculus on
real-valued domains is the Lebesgue measure; which coincides with length, area and
hypervolume. However, when X is a discrete domain, e.g., set of DCNNs, what is
the corresponding “measure”? In [59], Keller et al. first investigated the idea of using
the fuzzy integral for pattern recognition. A FM is a function, μ, on the power set of
X , 2X , which satisfies (1) (boundary condition) μ(∅) = 0 (often μ(X) = 11) and (2)
(monotonicity) if A, B ⊆ X and A ⊆ B, then μ(A) ≤ μ(B).

3.2 Discrete (Finite X) Fuzzy Integral

The FM models important “interactions” (e.g., subjective worth, statistical correla-
tion, etc.) between different source subsets. The input provided by our sources is
{h({x1}), h({x2}), . . . , h({xN })}. The fuzzy integral is a way to combine the inte-
grand (h) information relative to the FM (μ). Let h({xi }) ∈ �≥0 be the data from
source i . The discrete (finite X ) Sugeno FI is2

1If μ(X) < 1, properties like idempotency and boundedness are not guaranteed.
2Due to the maximum (t-conorm) andminimum operators (t-norm), the Sugeno FI does not actually
generate any possible number between the minimum and maximum of the inputs. Instead, it selects
one of the FM or input values, i.e., at most one of 2N + N values.
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∫
S
h ◦ μ = Sμ(h) =

N∨
i=1

(
h({xπ(i)}) ∧ μ(Ai )

)
, (1)

where π is the permutation h({xπ(1)}) ≥ h({xπ(2)}), . . . ,≥ h({xπ(N )}), Ai = {xπ(1),

. . . , xπ(i)} and μ(A0) = 0. The discrete (finite X ) ChI is3

∫
C
h ◦ μ = Cμ(h) =

N∑
i=1

h({xπ(i)})
[
μ(Ai ) − μ(Ai−1)

]
. (2)

Since the ChI is a parametric aggregation function, once the FM is determined the
ChI turns into a specific operator. For example: if μ(A) = 1,∀A ∈ 2X \ ∅, the ChI
becomes the maximum operator; if μ(A) = 0,∀A ∈ 2X \ X , we recover the mini-
mum; and if μ(A) = |A|

N , we recover the mean. Each of these cases can be viewed as
constraints or simplifications on the FM (and therefore the ChI). In general, the dis-
crete ChI has N ! unique input sortings and each yields a linear convex sum operator.

3.3 Data-Driven Optimization

The first challenge we must confront is, where do we get the FM (μ) from? One
option is to have an expert specify it. However, this is not practical (assuming the
expert could even meaningfully assign values to the interactions) as the number of
inputs (e.g., DLs) increases. Another option is we can specify or try to learn the worth
of just the singletons (the densities). From there, a number of formulas can be used to
impute (fill in) the missing variable values. Popular approaches include the Sugeno
λ-FM and the S-Decomposable FM [79]. However, while convenient, most often we
do not obtain the desired values for variables that we need. With respect to pattern
recognition, the focus of this chapter, another route is to learn it from data. Next,
we review one way to learn the FM, and therefore the ChI, in the context of DIDO
for DL. However, the reader can refer to [80] for an efficient learning method with
only data-supported variables and [81] for a review of alternative FM/ChI learning
methods.

We quickly summarize one way to learn the full FM/ChI (see [82] for full mathe-
matical explanation). Let O = {h j , y j }, j = 1, 2, . . . , M , be M training examples;
where h j is the j-th instance with data from N inputs and y j is the ground-truth for
h j . The sum of squared error for training dataset O is

3The ChI is used frequently for various reasons; e.g., it is differentiable [62], for an additive (prob-
ability) measure it recovers the Lebesgue integral, it yields a wider spectrum of values between the
minimum and maximum (versus the discrete and relatively small number of values that the Sugeno
FI selects from), etc.
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E(O,u) =
M∑
j=1

e j =
M∑
j=1

(cTj u − y j )
2 = ||Du − y||22, (3)

where u = [μ({x1}), . . . ,μ({xN }),μ({x1, x2}),μ({x1, x3}), . . . ,μ(X)] (lexico-
graphic vector of size 2N − 1), c j holds the coefficients of u for observation h j ,
e.g., for N = 3 and h({x2}) ≥ h({x1}) ≥ h({x3}),

c = [0, h({x2}) − h({x1}), 0, h({x1}) − h({x3}), 0, 0, h({x3})] ,

D = [c1 c2 . . . cM ]T (full dataset), y = [y1 y2 . . . yM ]T , and || · ||2 is norm-2
operation, u. The regularized SSE optimization problem is

min
u

f (u) = ||Du − y||2 + βv(u), (4)

where β ∈ �≥0 (regularization constant, which balances the “cost” (or penalty) of
obtaining minimum function error relative to our desire to have minimal model
complexity) and v(u) is an index of model complexity (e.g., k-additive and Mobius,
Gini-Simpson, �p-norm, etc. [83]), subject to the FM boundary and monotonicity
conditions (see [82] for how to pack the constraints into a linear algebra expression),
which can be solved via quadratic programming. Full code (including how to build
C) can be found at www.derektanderson.com/FuzzyLibrary and www.github.com/
scottgs/fi_library.

3.4 Explainable AI (XAI) Fusion

It is one thing to train a network and another to understand it! In this subsection,
we highlight FM and ChI indices for the purpose of explainable AI (XAI).4 XAI is
an attempt to explain the inner operations of pattern recognition for purposes like
describing it to others for domain knowledge transfer, trust, etc. The Shapley index
addresses the importance or worth of each input (aka DL),

�μ(i) =
∑

K⊆X\{i}
ζX,1(K ) (μ(K ∪ {i}) − μ(K )) , (5)

where ζX,1(K ) = (|X |−|K |−1)!|K |!
|X |! , K ⊆ X\{i} denotes all proper subsets from X

that do not include source i . The Shapley value ofμ is the vector�μ =(�μ(1),. . .,�μ

(N ))t and
∑N

i=1 �μ(i) = 1. The Shapley index can be interpreted as the average
amount of contribution of source i across all coalitions. The next index informs us

4Go to www.derektanderson.com/FuzzyLibrary and www.github.com/scottgs/fi_library.

www.derektanderson.com/FuzzyLibrary
www.github.com/scottgs/fi_library
www.github.com/scottgs/fi_library
www.derektanderson.com/FuzzyLibrary
www.github.com/scottgs/fi_library
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about how two inputs interact with one another (aka what advantage is there in com-
bining DLs). The interaction index (Murofushi and Soneda [84]) between i and j
is

Iμ(i, j) =
∑

K⊆X\{i, j}
ζX,2(K )(μ(K ∪ {i, j}) − μ(K ∪ {i}) − μ(K ∪ { j}) + μ(K )),

(6)

where ζX,2(K ) = (|X |−|K |−2)!|K |!
(|X |−1)! , Iμ(i, j) ∈ [−1, 1],∀i, j ∈ {1, 2, . . . , N }. A value

of 1 (respectively, −1) represents the maximum complementary (respective redun-
dancy) between i and j . Refer to [85] for further details about the interaction index,
its connections to game theory and interpretations. Grabisch later extended the inter-
action index to the general case of any coalition [86],

Iμ(A) =
∑

K⊆X\A
ζX,3(K , A)

∑
C⊆A

(−1)|A\C |μ(C ∪ K ), i = 1, . . . , N , (7)

where ζX,3(K , A) = (|X |−|K |−|A|)!|K |!
(|X |−|A|+1)! . Equation (7) is a generalization of both the

Shapley index and Murofushi and Soneda’s interaction index as �μ(i) corresponds
with Iμ({i}) and Iμ(i, j) with Iμ({i, j}).

The above indices are focused strictly on the FM. A different fundamental type
of question is what “type” of aggregation is the ChI performing? Answering this
question helps us understand how the DL information is being combined (e.g., in an
optimistic, pessimistic, expected value like fashion, etc.). In [87], we established an
index (D1) to measure the degree to which a given FM/ChI is an maximum operator.
In the following, we discuss the FM in terms of its underlying lattice structure.
Let “layer k” (measure defined on sets of cardinality k) be denoted by L(k), e.g.,

L(1) = {μ({x1}),μ({x2}),μ({x3})} for N = 3. Next, let W = [ 1
N ,...,1]∑N
i=1

i
N

be weights

(penalty or costs) for each layer and

D1(μ) =
1∑

k=1

W(k)

2
(T1 + T4) +

[
N∑

k=2

W(k)

3
(T1 + T2 + T4)

]
, (8)

T1 = 1 −
(∑

I∈L(k) μ(I )
|L(k)|

)
, T2 =

(∑
I∈L(i) μ(I )
|L(k)| −

∑
J∈L(k−1) μ(J )

|L(k−1)|
)
, T3 =

∑
I∈L(k) μ(I )
|L(k)|

and T4 =
∑

I∈L(k)(μ(I )−T3)2

|L(k)|−1 . A value of D1 = 0 means the ChI is the maximum opera-
tor. The distance of a learned capacity to a minimum operator (D2), mean (D3) and

LCOS (D4), forW2 =
[
1,..., 1

N−1

]
∑N−1

i=1
i

N−1

, is

D2(μ) =
1∑

k=1

W2(k)

2
(T3 + T4) +

[
N−1∑
k=2

W2(i)

3
(T3 + T2 + T4)

]
, (9)
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D3(μ) = 1

2N − 2

N−1∑
k=1

∑
I∈L(k)

∣∣∣∣μ(I ) − k

N

∣∣∣∣, (10)

D4(μ) = 1

N − 1

N−1∑
k=1

√
T4. (11)

4 DCNN Fusion Based on Fuzzy Integration

The focus of this chapter is fusing different state-of-the-art DCNN architectures.
However, the procedures outlined are applicable to other neural inputs (see Fig. 2).

4.1 DCNN Architectures Used for Fusion

The first NN used herein for fusion is CaffeNet [35], which is a derivative of AlexNet
with similar structure, except that the order of pooling andnormalization is reversed to
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Fig. 2 Illustration of DIDO DCNN fusion. Note, many possibilities exist; e.g., variations in archi-
tecture, pre-conditioning/transforms (e.g., conversion to frequency analysis versus spatial domain,
band selection or grouping, etc.), training data, etc. Next, neuron mapping/association is required
followed by aggregation. Herein, a different fusion operator is learned per output neuron (versus
shared fusions/weights)
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reduce learnable parameters. CaffeNet contains five convolutional feature extraction
steps and three fully connected layers for classification. Classification is performed
with two fully connected inner product layers and a final soft-max layer for the
network output. The output of soft-max layer is effectively a classification vector.
CaffeNet represents the most simple and shallow of our DL investigated herein.

GoogLeNet [17] is a much deeper NN than CaffeNet–it has 27 parameterized
layers. Because of this network depth, GoogLeNet has three classification outputs at
various stages of the network to facilitate error back propagation. GoogLeNet’s novel
inception layer processes the input with max-pooling, 1×1, 3×3, and 5×5 convolu-
tions simultaneously in a feature extraction step, and the outputs are concatenated as
the layer output to achieve a multi-scale feature extraction. Using multiple convolu-
tions at each stage follows the intuition that features from different kernel scales can
be extracted and processed at the same time, thereby extracting multi-scale visual
features. GoogLeNet is from a family of networks commonly referred to as inception
networks.

ResNet [88] is a collection of DCNN architectures inspired by VGGNet [33]. In
both ResNet and VGGNet, the primary kernels used to construct the convolution
layers are 3×3. The architecture design incorporates the following rules to govern
their structure. First, if the output of the feature map is the same, then the same
number of 3×3 convolutional layers will be used. Second, if the output of the feature
map is halved, then it will use twice as many 3×3 convolutional kernels The ResNet
architectures employ residual connections that bypass two ormore convolution layers
at a time, allowing error to better propagate backward through the network. These are
commonly referred to as residual networks, and here the ResNet50 and ResNet101
architectures are used within our experimental design. These networks have 50 and
101 feature extraction steps, respectively.

4.2 Transfer Learning, Neuron Association and Conditioning

If we design a set of custom DCNNs then it is trivial to ensure a bijection (one-to-
one and onto) output neuron mapping. However, if existing community pretrained
DCNNs (GoogLeNet, AlexNet, etc.) are leveraged–a task encountered frequently in
practice–then this is not guaranteed. One way to resolve the one-to-one mapping task
is to replace and retrain the DCNN classification layers per the labels for the task at
hand. This is a type of transfer learning that keeps the feature layers intact. In [89],
we (i) replaced and retrained the classification layers and we also (ii) updated the
featureweights (e.g., convolution layers). Thus,we built customclassifiers for remote
sensing of aerial imagery based on a network initialized by ground-perspective RGB
imagery. In addition, data augmentation via rotation and image flipping was applied
as well. However, we remark that other avenues exist; e.g., one could manually
resolve the mapping or use an automated method based on an ontology. Regardless,
usingmultiple custom or pretrained networks of different architectures raises another
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question; are the outputs numerically (e.g., all in [0, 1]) and semantically “to scale”
(e.g., does a (e.g., a = 0.5) in domain i map to a in the other domains). One way
to mitigate this issue in practice is to add a soft max normalization (aka normalized
exponent function) layer after the raw neuronal output layer. For example, if η is
the soft max output for neuron o j then the soft max function is η(o j ) = eo j∑N

n=1 e
on
.

Thereby, we bound the domain of input for the subsequent fusion layer of our pattern
recognition system, ensure the data across networks and neurons is well conditioned.

4.3 Imputation: λ-FM ChI

The first fusion approach explored here is to exploit our knowledge about the perfor-
mance of the individual DCNNs on training data [54, 55]. A classical approach to
obtaining the remaining 2N − 2 − N FM values (beyond the densities) is the Sugeno
λ-measure. For sets A, B ⊆ X , such that A ∩ B = φ,

μλ(A ∪ B) = μλ(A) + μλ(B) + λμλ(A)μλ(B), (12)

for some λ > −1. In particular, Sugeno showed that λ can be found by solving

λ + 1 =
N∏
i=1

(1 + λμ(xi )),λ > −1, (13)

where there exists exactly one real solution such that λ > −1. Some advantages of
the Sugeno λ-measure include its simplicity, the N densities can be more tractable to
acquire, fewer number of parameters can help address overfitting (versus using the
full 2N variables), and it is a probability measure when λ = 0. However, there is no
guarantee in practice that the values that it imputes are what we actually need. Sim-
ply speaking, more information or a different imputation formula may be required;
e.g., the S-Decomposable imputation formula, μ(A) = ∨

i∈A(μ(xi )) (where
∨

is a t-conorm). Algorithm (1) describes how to use the Sugeno λ-measure to fuse a
set of pretrained DLs based on individual performance for density.

Algorithm 1 λ-FM Based Imputation of ChI from Pre-Trained DCNNs

INPUT: DLi - N DCNNs (B neurons each); Ō - labeled training data
1. Run each DCNN on Ō , get overall accuries (OA); ab,i ∈ [0, 1] (i.e., performance of DL i on
class b)
2. Assign the i th density its corresponding OA; i.e., μλb (xi ) = ab,i
3. Find λb (using {μλb ({x1}), ...,μλb ({xN })}) for Sugeno λ-FM (solve Eq. (13))
4. Recursively calculate μλb (A), ∀A ∈ 2X \ {{x1}, ..., {xN }}, using the densities and λb (Eq. (12))
OUTPUT: B full fuzzy measures - {μλ1 , ...,μλB }
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4.4 Optimization Approach: Learning the Full ChI

As stated in Sect. 4.3, there is no guarantee that imputation from densities results in
the input interactions that we desire (and thus results in an appropriate aggregation
operator). Algorithm (2) shows how to use quadratic programming for acquisition
of the full FM for DIDO fusion of DCNNs (Algorithm (3) is how to learn a single
“shared” FM to be applied to all neurons). Thus, training data is directly used to learn
these crucial interactions–which means better selection of appropriate aggregation
operator. However, as we discuss in [80], this process can lead to a big boost in
performance but it is not without flaw. Specifically, in [80] we show that training data
only typically supports a subset of FM variables. In return, we put forth an extended
optimization of the ChI by (1) identifying which variables are supported by data, (2)
optimizing just those variables and then (3) looking at imputation methods to infer
the value of data unsupported variables based on application specific criteria. We do
not have space to go into depth about the extension here, the reader can refer to [80]
for full details.

Algorithm 2 Learn a Full FM/ChI Per Class for a Set of Pre-Trained DCNNs
INPUT: DLi - N DCNNs (B neurons each); Ō - training data; β - regularization
1. Per class/output neuron (b), run each instance (1 ≤ j ≤ |Ō|) through each DCNN (i); get hbj (xi )
terms
2. Per neuron (b), construct the individual Db from the hbj (xi ) terms
3. Run B independent QPs (on the Db respectively); yielding {μ1, ...,μB}
OUTPUT: B full fuzzy measures - {μ1, ...,μB}

Algorithm 3 Learn a Single “Shared Weight” Full FM/ChI for Pre-Trained DCNNs

INPUT: DLi - N DCNNs (B neurons each); Ō - training data; β - regularization
1. Per class/output neuron (b), run each instance (1 ≤ j ≤ |Ō|) through each DCNN (i); get hbj (xi )
terms
2. Per neuron (b), construct the individual Db from the hbj (xi ) terms

3. Use QP to solve
(||D1u − y1||22 + ... + ||DBu − yB||22 + βv(u)

)
; yields μ

OUTPUT: Full fuzzy measure - μ

5 Experiments

In this chapter, two benchmark remote sensing datasets suitable for classification
tasks of objects or land-cover/land-use are used. Remote sensing data represents
a significant pattern recognition challenge. As can be seen in Figs. 3 and 9 below,
the variability and complexity of overhead imagery is immense. The visual cues
exist at multiple levels: fine-scale (e.g. airplane shapes, vehicle presence, etc.) to
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Fig. 3 Sample image chips from the 21 class UCM benchmark dataset, each 256×256 pixels
approximately 0.3m ground sampling distance (GSD) spatial resolution. Classes in left-to-right,
top-down order: 1 agricultural, 2 airplane, 3 baseball diamond, 4 beach, 5 buildings, 6 chaparral,
7 dense residential, 8 forest, 9 freeway, 10 golf course, 11 harbor, 12 intersection, 13 medium
residential, 14 mobile home park, 15 overpass, 16 parking lot, 17 river, 18 runway, 19 sparse
residential, 20 storage tanks, and 21 tennis court. In Sect. 5.1, neuron indices are used instead of
text descriptions for sake of compactness

large-scale (e.g., road way configurations in overpasses versus intersections versus
freeway). In fact the entire field of photo-interpretation revolves around developing
human expertise in this pattern recognition task. For each of the datasets herein
DCNNs were trained using the techniques in [89], including transfer learning and
data augmentation via rotation and flipping. The trained DCNNs are then used in
a locked state, i.e., no further learning happens in DL during the fusion stage. The
training of the DCNNs are done in five-fold, cross validation manner; such that we
have 5 sets of 80% training and 20% testing for both datasets. Per DCNN fold,
three-fold CV fusion is used (due to limited data).

5.1 UC Merced (UCM) Dataset

The UCMerced (UCM) benchmark dataset [90, 91] has been used in a wide range of
remote sensing research, including prior work in classification of objects and land-
cover such as [55, 89, 92]. Figure3 shows exemplar image chips from each class of
the UCM dataset. The dataset includes 21 classes that are a mix of objects (airplane,
baseball diamond, etc.) and landcover (beach, chaparral, etc.). We see that some
classes, e.g., harbor and parking lot, are complex compositions of sub-entities (boats
and vehicles); while others are general structural patterns of shapes (e.g., intersection
and baseball diamonds).

Table1 is the result of fusion on the UCM dataset. First, we see that aggregation
outperforms no aggregation (i.e., the individual DCNNs) in four out of five folds.



Fuzzy Choquet Integration of Deep Convolutional Neural Networks … 15

Table 1 Fusion results for the UCM dataset
Method

ChI Per
Neuron

ChI
Shared

SLFM
Shared CNet GNet

RNet
50

RNet
101 Max Avg Min

Fold 1 0.979 0.977 0.984 0.957 0.957 0.985 0.973 0.978 0.981 0.976
Fold 2 0.991 0.994 0.993 0.964 0.983 0.978 0.988 0.993 0.994 0.993
Fold 3 0.994 0.990 0.996 0.971 0.985 0.992 0.988 0.996 0.996 0.998
Fold 4 0.992 0.996 0.996 0.988 0.980 0.983 0.988 0.996 0.992 0.998
Fold 5 0.989 0.985 0.989 0.976 0.973 0.983 0.980 0.989 0.989 0.986
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Fig. 4 Color coded matrix showing the distances obtained using the four reported indices of
introspection (D1(μ) to D4(μ)) relative to the learned full ChI per neuron on fold 1 of the UCM
dataset. y-axis is the neuron index (see Fig. 3) and x-axis is the distance measure. Neurons two, four
and six are OWA operators (but not min, max or mean like)

Second, we see that min, max and average (basic aggregation operators) do well in
comparison to the ChI. However, these three operators are specific instances of the
ChI, which informs us that there are challenges with variety and thus generalizability
of this particular data set (otherwise they should have been selected). Next, it is
interesting to see that the shared weight fusion solutions do as well as they do. It is
our suspicion–something to be explored in future work–that a shared FM for the ChI
helps combat overfitting. It is also our suspicion–again, subject of future work–that
while the Sugeno λ-FM would not be our first choice, it might also help combat
overfitting as it has just N parameters versus the otherwise 2N − 1. However, the
performance of the individual DCNNs (which were used as the densities) are so
high that ultimately this forces the Sugeno λ-FM to more-or-less be the maximum
operator.
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Fig. 5 Example of two full FMs for the a first and b fourth neuron in fold 1 of the UCM dataset.
“Layer” l (from bottom to top) in the image denotes FM variables with cardinally l. Thus, layer
0 (bottom node) is the empty set, the next layer is the singletons, top is μ(X), etc. Each variable
is presented in lexicographic order, i.e., layer 2 is {x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}
and {x3, x4}. The nodes are also drawn size-wise proportional to their value (a minimum size and
maximum was specified to make them still show up for 0 valued variables). In addition, the “paths”
drawn indicate the visitation frequency (the brighter the line, the higher the visitation) for the test data
in fold 1. Furthermore, the fourth neuron learned anOWAwith weights (0.067, 0.433, 0.43, 0.07)t–
a trimmed mean operator. Conversely, neuron one is more complex to decode. It does not reduce
into a single compact description like an OWA. However, we can view it in terms of the N ! walks
(possible sorts). Since the h({x1}) ≥ h({x2}) ≥ h({x3}) ≥ h({x4}) is encountered frequently, we
decode and analyze its weights. The linear convex sumweights for the ChI of this walk (sorting) are
(0.027, 0.473, 0.45, 0.05) respectively. Thus, it is a weighted average of GoogLeNet and ResNet50.
This analytic process can be repeated for the other N ! − 1 walks if desired

Next, Fig. 4 gives us a feel for what type of aggregation strategy is being used for
the 21 classes. Again, the max, min and mean are all OWAs, so we can start first with
analyzing column four. There are three neurons (2, 4 and 6–i.e., airplane, beach and
chaparral) that learned an OWA. The other neurons have learned something more
unique, which helps justify the inclusion of the ChI versus say a simpler operator (see
Fig. 5(a)). At that, none of the learned OWAs are that similar to our extreme markers
of max (a t-conorm or union like operator), min (a t-conorm or intersection like
operator) or average (an expected value like operator). For example, Fig. 5(b) shows
one of these OWA operators, which breaks down into a trimmed mean operator.

Last, Fig. 6 shows the FM and Shapley values. While it is more-or-less impossible
to read individual values in these plots, they show that there is no consensus in values
nor importance of DCNNs. Meaning, different output neurons (classes) appears to
use these different DCNNs in different ways. Furthermore, Fig. 7 shows the corre-
sponding interaction index values. These values also reinforce the complex interplay
and back-and-forth exchange of complementary, independent and redundant infor-
mation between DCNNs across output neurons (classes). In total, the combination of
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Fig. 6 Learned full ChI per neuron on fold 1 of the UCM dataset. a Plot of the 24 − 1 binary
encoded FM variables, i.e., for N = 3 the order is (x1, x2, x12, x3, x13, x23, x123, x4, x14, x24,
x124, x34, x134, x234, x1234). This plot shows the agreement/disagreement of variable values
across the 21 neurons. If all neurons required the same fusion then each x-axis location would have a
single convergent set of circles (FM variable values). However, we can see that each x-axis location
(FM variable) has for the most part significant variation (outside the CaffeNet density). b Plot of the
4 neuron Shapley index values across the 21 neurons. Again, this plot shows the variety of values
learned.With respect to individual output neurons, some NNs could be eliminated. However, across
the 21 neurons, no NN can be eliminated (we would expect to see approximately all zero values for
that Shapley if so)

analysis of underlying aggregation function, importance of individual DCNNs and
their pair-wise interaction behavior help the claim that performance appears to be
improving due to diversity in the way these DCNNs operate. This is in line with our
intuition about these DCNNs based on the ways their architectures were created.

Last, Fig. 8 shows example images missed by our fusion approach. As the reader
can visually verify, these examples are extreme and represent incorrectly labeled or
fundamentally ambiguous labels. We would not expect fusion to be able to fix this
type of problem. At that, it is hard to say that the DCNNs should have got these, as
a human might just as well mistaken them.

5.2 WHU-RS19 (RSD) Dataset

The WHU-RS19 (RSD) dataset is composed of 600×600 pixel, JPEG compressed
images [93]. This class includes 19 classes, and approximately 50 chips per class.
This imagery was screen scrapped from Google Earth, and therefore they are of
variable spatial resolutions. Figure9 shows exemplar image chips from each class of
the RSD benchmark dataset. Similar to the UCM dataset, this dataset is a mixture
of landcover and objects within the image chips. Table2 shows the result of fusion,
Fig. 10 are the indices of introspection, Fig. 11 are example lattices, Fig. 12 are the FM
and the Shapley indices and Fig. 13 are example interaction indices. Overall, we see
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Fig. 7 Interaction index values for the learned full ChI per neuron on fold 1 of the UCM dataset.
Index 1 isCaffeNet, 2 isGoogLeNet, 3 isResNet50 and4 isResNet101.Consider neuron 1.CaffeNet
has positive interactions (complementary information) with the other three NNs (0.37, 0.34 and 0.3
respectively). On the other hand, GoogLeNet has negative interaction values (redundancy) with the
ResNet NNs (–0.19 and –0.1 respectively). The two ResNet NNs have a negative interaction index
of –0.12. Also, in neuron 7, CaffeNet has approximately a zero interaction index with the other NNs
(independence), whereas GoogLeNet has a value of –0.29 with ResNet50 and a positive interaction
value of 0.22 with ResNet101. Last, ResNet50 and ResNet101 have a large negative interaction
index of –0.72 with each other
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Misclassified Image Other images from correct class Predicted Exemplar

(a) Dense Residential Mobile Home Park

(b) Intersection Overpass

(c) Medium Residential Dense Residential

(d) Golf Course Forest

(e) Dense Residential Medium Residential

Fig. 8 Five images missed by the fusion framework; a dense residential misclassified as mobile
home park, b (incorrectly labeled) intersection misclassified as overpass (correct label), c medium
residential misclassified as dense residential, d (incorrectly labeled) golf course misclassified as
forest, and e dense residential misclassified as medium residential
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Fig. 9 Sample image chips from the 19 class RSD benchmark dataset, each 600×600 pixels of
various spatial resolution. Classes in left-to-right, top-down order: 1 airport, 2 beach, 3 bridge, 4
commercial area, 5 desert, 6 farmland, 7 football field, 8 forest, 9 industrial area, 10 meadow, 11
mountain, 12 park, 13 parking lot, 14 pond, 15 port, 16 railway station, 17 residential area, 18
river, and 19 viaduct. In Sect. 5.2, neuron indices are used instead of text descriptions for sake of
compactness

Table 2 Fusion results for the RSD dataset
Method

ChI Per
Neuron

ChI
Shared

SLFM
Shared CNet GNet RNet50 Max Avg Min

Fold 1 0.989 0.991 0.991 0.982 0.977 0.988 0.991 0.991 0.991
Fold 2 0.992 0.984 0.992 0.978 0.994 0.989 0.987 0.992 0.987
Fold 3 0.984 0.992 0.979 0.955 0.988 0.966 0.979 0.979 0.979
Fold4 0.983 0.983 0.983 0.983 0.960 0.971 0.983 0.988 0.987
Fold 5 0.998 1.00 1.00 0.977 0.994 0.994 1.00 1.00 1.00

the same general trend (as the UCM dataset). Namely, (i) aggregation outperforms
no aggregation in general and (ii) there are challenges with variety (and therefore
generalizability) in the RSD data set as well.
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Fig. 10 Color coded matrix showing the distances obtained using the four reported indices of
introspection (D1(μ) to D4(μ)) relative to the learned full ChI per neuron on fold 1 of the RSD
dataset. y-axis is the neuron index (see Fig. 9) and x-axis is the distance measure
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Fig. 11 Example FMs for fold 1 of the RSD dataset. Neuron three is for all intents and purposes
a binary FM (see [94] for a formal characterization of binary FMs, the resultant FI and efficient
ways of representing and learning such a function). For binary FMs, the Sugeno FI and the ChI
are mathematically equivalent [94]. The FI is acting like a “dynamic maximum operator” with
respect to FM variables that have a value one–or conversely a “dynamic minimum” with respect
to zero valued FM variables. For example, if h({x1}) ≥ h({x2}) ≥ h({x3}) (aka CaffeNet is more
confident than GoogLeNet followed by ResNet) then we take the output of GoogLeNet. However,
if h({x2}) (GoogLeNet) is the most confident then we take its input. This reasoning can be followed
to get similar stories for the other N ! − 2 walks. Another interesting observation of neuron 3, versus
neuron 5, is a slightly more diverse visitation (walk) pattern
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Fig. 12 Binary encoded 23 − 1 FMvariables and the 3 Shapley index values for the nineteen output
neurons in the RSD dataset. As demonstrated in the UCM dataset, great variability exists in FM
variable and Shapley values for these nineteen output neurons

6 Conclusion and Future Work

In summary, this chapter outlined a data-driven method for optimizing Choquet
integral-based fusion of heterogeneous deep convolutional neural networks for pat-
tern recognition in remotely sensed data. To the best of our knowledge, no one
has previously learned the full fuzzy Choquet integral for fusing neural networks,
just density-based fuzzy measures. This chapter brought together state-of-the-art
advancements in two important parts of computational intelligence; fuzzy set theory
and neural networks. Specifically, CaffeNet, GoogLeNet, ResNet50 and ResNet101
were fused at the per-output-neuron and with respect to a single “shared weight”
solution. In a strive for explainable AI, versus black box solutions, different indices
of introspection of the Choquet integral and information theoretic indices of the
fuzzy measure were highlighted for analysis of the final deep learning solution.
These indices showed us that there does appear to be diversity in these different het-
erogeneous DCNNs. Two benchmark remote sensing datasets were used, UCM and
RSD, and our fused results showed improvement over the individual deep learners.
However, this data set and DCNNs were saturated and therefore limited data (both
volume and variety) existed for training fusion. Last, analysis of mislabeled imagery
from fusion revealed incorrectly labeled data and ambiguous image chips that would
lead to a human mislabeling imagery.

While encouraging, more research (theory and application) is needed. In future
work, we will migrate our Choquet integral solution into a strictly neural represen-
tation for optimization and speed. Furthermore, we will move away from DIDO
and explore fusion neurons at various layers in the network. We will also investi-
gate what types of neural inputs should be fed to DIDO fusion; e.g., combinations of
deep and shallow, different convolutionmap scales, etc. Futureworkwill also include
simultaneously learning the DCNNs and our fusion operators (they are learned inde-
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Fig. 13 Interaction index values for nineteen outputs in the RSD dataset. Index 1 is CaffeNet, 2 is
GoogLeNet and 3 is ResNet50

pendently herein). Last, we will look to use our explainable AI methods to make
improvements to the fusion and DCNNs, manually as well as possibly using them
directly computationally to promote diversity and/or aid in the design of our net-
works.
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