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Preface

Since the inception of fuzzy sets, fuzzy pattern recognition, including its method-
ology, algorithms, and applications, has been at the center of the developments
of the technology of fuzzy sets. One can refer here to the seminal paper entitled
Abstraction and pattern classification authored by Bellman, Kalaba, and Zadeh,
which has opened uncharted research areas and offered a new attractive insight into
the principles of pattern classification. As of now, pattern recognition augmented by
the methodology and algorithms of fuzzy sets has established itself as a mature,
well-developed research discipline with a variety of advanced applications. Pattern
recognition comes with a great deal of challenges, exhibits a continuous paradigm
shift (quite often dictated by new applications), and becomes vividly manifested
through a growing diversity of areas of its usage. All of those call for substantial
enhancements of the existing fundamentals or the formation of new paradigms.

Computational Intelligence (CI) with its impressive armamentarium of
methodologies and tools is positioned in a unique way to address the growing needs
of pattern recognition. As a matter of fact, this can be accomplished in several
tangible ways realized both at the methodological and algorithmic level. There are
at least five dominant manifestations of CI in the realm of pattern recognition. They
are associated with: (i) coping with a large volume of data and their diversity,
(ii) setting a suitable level of abstraction, (iii) dealing with a distributed nature of
data along with associated requirements of privacy and security, (iv) building
efficient feature spaces, and (v) building interpretable findings of classification at a
suitable level of abstraction.

The key objective of the proposed volume is to provide the community with a
comprehensive and up-to-date treatise in the area of pattern recognition and com-
putational intelligence. It covers a spectrum of methodological and algorithmic
issues, discusses implementations and case studies, identifies the best design
practices, and assesses business models and practices of pattern recognition in
industry, health care, administration, and business. The collection of contributions
forming the edited volume offers the reader a representative view at the progress
and accomplishments of the area with a timely, in-depth, and comprehensive
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material on the conceptually appealing and practically sound methodology and
practices of CI-based pattern recognition.

The book engages a wealth of methods of CI, brings new concepts, architectures
and practice of fuzzy sets, neurocomputing, and biologically inspired optimization.
The chapters cover a wealth of ideas, algorithms, and applications and are a tes-
timony to the synergistic linkages within the CI area and CI and pattern recognition.

Given the leading theme of this undertaking, the book is aimed at a broad
audience of researchers and practitioners. Thanks to the nature of the material being
covered and the way the main threads have been organized, the volume will appeal
to the well-established communities including those active in various disciplines in
which pattern recognition plays a central role and serves as an efficient vehicle to
produce solutions to numerous classification problems and augments solutions
constructed with the aid of the “standard” methodology and algorithms of pattern
recognition.

With the required prerequisites covered, the book caters to the broad
readership. Those involved in operations research, management, various branches
of engineering, sciences, data science, medicine, and bioinformatics will benefit
from the exposure to the subject matter.

We would like to take this opportunity to express our sincere thanks to the
contributors to the volume for sharing results of their advanced, far-reaching, and
original research, and delivering their views at the rapidly expanding areas of
fundamental and applied research. The reviewers deserve our thanks for their
constructive and timely input. We greatly appreciate a continuous support and
encouragement coming from the Editor-in-Chief, Prof. Janusz Kacprzyk whose
leadership and vision has helped us arrive at the successful completion of this
project. The editorial staff at Springer has done a meticulous job and working with
them was a pleasant experience.

We hope that the readers will find this volume interesting and the variety of ideas
put forward in this volume will become instrumental in fostering the progress in
research, education, and numerous practical endeavors in the CI-oriented pattern
recognition.

Edmonton, Canada Witold Pedrycz
Taipei, Taiwan Shyi-Ming Chen
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Fuzzy Choquet Integration of Deep
Convolutional Neural Networks
for Remote Sensing

Derek T. Anderson, Grant J. Scott, Muhammad Aminul Islam,
Bryce Murray and Richard Marcum

Abstract What deep learning lacks at themoment is the heterogeneous and dynamic
capabilities of the human system. In part, this is because a single architecture is
not currently capable of the level of modeling and representation of the complex
human system. Therefore, a heterogeneous set of pathways from sensory stimu-
lus to cognitive function needs to be developed in a richer computational model.
Herein, we explore the learning of multiple pathways–as different deep neural net-
work architectures–coupled with appropriate data/information fusion. Specifically,
we explore the advantage of data-driven optimization of fusing different deep nets–
GoogleNet, CaffeNet and ResNet–at a per class (neuron) or shared weight (single
data fusion across classes) fashion. In addition, we explore indices that tell us the
importance of each network, how they interact and what aggregation was learned.
Experiments are provided in the context of remote sensing on the UC Merced and
WHU-RS19 data sets. In particular, we show that fusion is the top performer, each
network is needed across the various target classes, and unique aggregations (i.e.,
not common operators) are learned.
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2 D. T. Anderson et al.

1 Introduction

We humans excel at many robust pattern recognition tasks in which computational
systems can only perform well when limited in scope and constrained in operating
environment. The human visual system is no exception. Humans develop at an early
age a comprehensive visual processing and pattern recognition ability. Our vision
allows us to process our physical environment (navigation) and facilitates many
higher-level cognitive functions such as object classification and entity resolution.
We accomplish this via a complex multistage visual system that begins with basic
lightness and color receptors, then builds upon the perceived edges to derive shapes,
spatial relationships, and eventually to organization of components into objects of
interest – and this is before any higher level cognitive processing.

Deep neural network models follow a similar paradigm conceptually, extracting
first edges and other simple geometric primitives in the lowest levels, then later mid-
level assemblies of these primitives into visual concepts, which are then combined in
higher-level layers as object components (blobs), that are eventually agglomerated
into objects. These visual objects are agglomerated within fully connected neural
layers for eventual classifications, which is an informational (cognitive) output.What
deep architectures lack at the moment is the heterogeneous and dynamic capabilities
of the human system, which is in part because a single architecture is not capable of
the level of modeling and representation of the complex human system. Therefore, a
heterogeneous set of pathways from sensory stimulus to cognitive function needs to
be developed in a richer computational model. The model proposed in this chapter
represents the learning of multiple pathways–as deep neural networks–coupled with
appropriate information fusion.We feel fusion of the cognitive outputs (information)
from multiple heterogeneous models (pathways) is the next step towards robust
computational cognitive processing of visual, and visual-like, sensory data.

In general, computational intelligence (CI) is a branch of mathematics inspired by
nature. Specifically, CI is associated with neural networks (NNs), evolutionary algo-
rithms (EA) and fuzzy set theory (FST). NNs were established in 1943 byMcCulloch
and Pitts [1], FST was established in 1965 by Zadeh [2] and EAs were made popu-
lar by Holland in the early 1970s [3] (but arguably have roots going back as far as
Turing in 1950). The point is, CI has existed in one form or another since the advent
of artificial intelligence (AI). In this chapter, we focus on the intersection of NNs
and FST for pattern recognition. In the last decade, substantial interest and effort
has gone into deep learning (DL), a re-branding of NNs. This shift has forced us to
re-address fundamental questions like; should humans design features (the classical
approach to pattern recognition) or is a machine better at this task? Empirically, DL
has more-or-less unanimously topped the charts in many domains (e.g., natural lan-
guage processing [4, 5], vision [6–10], remote sensing [11–14]). However, while DL
has generated great excitement, much remains to be explored and explained. In this
chapter, we focus on the specific question of how to perform decision-level fusion
of DL networks.
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DL can be viewed as a generalization of the classical pattern recognition pipeline–
e.g., pre-processing, feature extraction (selection and/or reduction), classification and
post-processing. In some settings this is now being called shallow learning because
there are only a few “layers” in the pattern recognition pipeline. In the context of
computer vision, DL can also be decomposed into levels; “low” (e.g., signal/image
analysis via convolution), “mid” and “high” (more AI than signal processing, e.g.,
MLP classification). In the extreme, DL is nothing more than a series of opera-
tions that transform data to decisions. The point is, fusion can (and often does) take
place at different levels in pattern recognition/DL. For example, keeping with the
fusion nomenclature of the Joint Directors of Laboratories (JDL) [15], some fusion
algorithms do signal-in-signal-out (SISO), whereas others do feature-in-feature-out
(FIFO) and decision-in-decision-out (DIDO). If we regard DL as a SIDO process
(e.g., SI = image and DO = class label), then it can be decomposed into its corre-
sponding SISO, SIFO, FIFO, FIDO, DIDO (and combinations therein). In summary,
fusion is not as simple as “cram data into a DL and let it do its thing”.

Herein, we restrict our analysis to deep convolutional neural networks (DCNNs)
[6–10, 16, 17], versus auto encoders (AEs) [18–22], deep belief nets (DBNs) [23,
24], etc., for sake of discussion tractability. The reality is, we still know little-to-
nothing about fundamental DL fusion questions such as; (i) how/where is fusion
currently happening, (ii) based on our current set of neurons/transformations, what
is mathematically expressible and what is not (but should be), (iii) how should we
be performing fusion at different levels, (iv) how do we address heterogeneity with
respect to semantics and/or uncertainty across data/information sources, and (v)
how do we explain what fusion is doing (aka explainable AI (XAI)), to list a few.
Independent of DL, fusion is a complicated topic that often means different things
to different people in different fields (and even within the same field). Fusion is a
wealth of challenges wrapped up into one term. Fusion ranges from data association
(e.g., finding a one-to-one mapping between pixels in one sensor to pixels in another)
to the mathematics of aggregation (specific functions/operators). In general, the idea
of fusion is to obtain a “better” result than if we only used the individual inputs.
However, better is not a well defined concept. In some applications, better might
mean taking a set of inputs and reducing them into a single result that can be more
efficiently or effectively used for visualization. Better could also refer to obtaining
more desirable properties such as higher information content or lower conflict. In
areas like pattern recognition, better often refers to some desirable property likemore
robust and generalizable solutions (e.g., classifiers). Regardless of the task at hand
or the particular application, fusion is a core tool at the heart of numerous modern
scientific thrusts.

In this chapter, we make the following contributions. First, we discuss two
approaches for heterogeneous DCNN architecture fusion; density-based imputation
and full Choquet integral (ChI) learning (per neuron and “shared weight”). Second,
we outline indices for introspection and information theoretic indices to understand
the capacity and integral (moving us closer to a so-called XAI solution versus black
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box solution). Third, we demonstrate and analyze these ideas on remotely sensed
data. Last, we provide open source code at www.derektanderson.com/FuzzyLibrary
and www.github.com/scottgs/fi_library.

2 Deep Convolutional Neural Networks

To date, the AE [18–20], CNN [6–10, 16, 17], DBN [23, 24] and recurrent NNs
(RNNs) [25, 26] are the most mainstreamDLs. However, other DL approaches exist,
e.g., deep inference nets ([27] Verma et al. Takagi-Sugeno-Kang deep net), deconvo-
lution CNNs (specifically transpose matrix convolution) [28–30] and morphological
shared weight neural networks [31, 32]. Herein, we focus on the CNN, which is by
far the most employed and often the highest performer. With respect to the CNN, a
number of architectures have been explored to date, e.g., AlexNet [7], GoogLeNet
[17], VGGNet [33] and their derivatives. These architectures can be downloaded
and extended (training, evaluation, visualization) via open source libraries like Ten-
sorFlow [34], CaffeNet [35], and MatConvNet [36]. The fundamental challenges
of which architecture, how deep versus wide, hyperparameter tuning, what neuron
types, how to transfer a DL from one domain to another (transfer learning [37]), and
other questions are unanswered. Also, numerous challenges exist; e.g., lack of train-
ing data volume (and variety), class imbalance, dimensionality (spatial, temporal and
spectral), explainable DL (what did the DL learn, versus a black box), to name a few.
While DL has sparked a revolution in computer vision, pattern recognition and AI in
general, an overwhelming number of theoretical and applied questions remain ripe
for exploration.

In general, most CNNs consist of combinations of the following operations (see
Fig. 1). First, let the input to the system, O0, be a three dimensional data cube of size
N0 × M0 × D0; where N0 and M0 are spatial dimensions and D0 is the temporal
or spectral dimensionality (e.g., RGB imagery has D0 = 3). (Convolution) The
backbone of a CNN is filtering via convolution. Filtering can take a number of
meanings, e.g., enhancement, denoising or detection. Convolution specifics include
factors like (i) stride (spatial and/or spectral/temporal “jumps”) and (ii) padding (if
no padding is used then the spatial dimension shrinks). (Pooling) Pooling is often
applied to reduce spatial dimensionality–and combat challenges related to affine
variation, noise, etc. Most often, average and max pooling are used. (Activation)
Nonlinearity is also typically applied, in the formof a function like hyperbolic tangent
(tanh), sigmoid, or ReLU (ReLU (x) = max(0, x)). (Training Techniques) In order
to combat factors like sensitivity to parameter selection and overtraining, methods
like dropout [38], regularization [39] and/or batch normalization [40] (addresses
internal covariate shift and vanishing gradients) are often used. Beyond architecture,
there are factors like GPU acceleration [41], training (e.g., stochastic gradient decent
(SGD) [42], SGD with momentum [43, 44], AdaGrad [45], RMSProp [46] and
ADAM [47]). The reader can refer to [39] for additional mathematical and algorithm

www.derektanderson.com/FuzzyLibrary
www.github.com/scottgs/fi_library.
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Fig. 1 Example CNN. Input is a 3D cube (x-y spatial, z spectral), green layers consist of subset of
convolution (morphology, etc.), pooling (average, max, etc.), batch normalization (or other method
to mitigate overfitting, vanishing gradients, internal covariate shift, etc.) and nonlinear function
(e.g., ReLU activation). The output of the green layers are typically fed to a MLP and optional
post-processing steps (e.g., soft max normalization)

details related to CNNs. The reader can also refer to [48] for a recent survey of DL
in remote sensing (theory, applications and open challenges).

The idea of FST in NNs is not new. The reader can refer to the work of Pal and
Mitra [49] for neuro-fuzzy pattern recognition. Pal, Mitra, and others (e.g., Keller
and the fuzzy perceptron [50]), explored a variety of topics such as fuzzy min-max
networks, fuzzy MLPs, and fuzzy Kohonen networks. In terms of aggregation, a few
FST works have been explored to date. In 1992 [51], Yager put forth the ordered
weighted average (OWA) [52]–which technically is a linear combination of order
statistics (LCOS) since the weights are real-valued numbers (versus sets)–neuron.
In 1995, Sung-Bae utilized the OWA for NN aggregation (at the decision/output
level) [53]. In 1995, Sung-Bae et al. also explored the fuzzy integral, the Sugeno
fuzzy integral not Sugeno’s fuzzy ChI, for NN aggregation [54]. Specifically, they
used the Sugeno λ-fuzzy measure (FM) and the densities were derived using their
respective accuracy rates on training data. In 2017 [55], we (Scott et al.) used the
Sugeno and ChIs for DCNN fusion. Specifically, Scott et al. used transfer learning to
adapt GoogLeNet, AlexNet and ResNet50 from camera imagery to remote sensing
imagery. Scott then applied different aggregations–fuzzy integral, voting, arrogance,
and weighted sum–to these DCNNs. Scott’s fusion was based on the Sugeno λ FM
and the densities were (i) set to the normalized classifier accuracies and (ii) a GA
learned the densities (which led to higher performance).
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3 Fuzzy Measure and Fuzzy Integrals

TheChI has been successfully demonstrated in numerous applications; e.g., explosive
hazard detection [56–58], computer vision [59], pattern recognition [60–64], remote
sensing [65], multi-criteria decision making [66, 67], forensic anthropology [68–
70], control [71], multiple kernel learning [56, 72–75], multiple instance learning
[76], ontologies [77], missing data [78], and most relevant to the current chapter, DL
[55]. The ChI is a nonlinear aggregation function that is parameterized by the FM
(aka capacity). Countless mathematical variations of the fuzzy integral have been put
forward for different reasons; e.g., address different types (i.e., real-valued, interval-
valued, set-valued) of uncertainty in the integrand and/or measure, limit the number
of input interactions for tractability, etc. Herein, we focus on and succinctly review
just the real-valued discrete (finite X ) ChI for DCNN fusion.

3.1 Discrete (Finite X) Fuzzy Measure

Let X = {x1, x2, . . . , xN } be N sources, e.g., experts, sensors, or in the case of
this chapter, DCNNs. The first action we face is how to assign “worth/utility” to
different subsets of DCNNs. For example, the well-known backbone of calculus on
real-valued domains is the Lebesgue measure; which coincides with length, area and
hypervolume. However, when X is a discrete domain, e.g., set of DCNNs, what is
the corresponding “measure”? In [59], Keller et al. first investigated the idea of using
the fuzzy integral for pattern recognition. A FM is a function, μ, on the power set of
X , 2X , which satisfies (1) (boundary condition) μ(∅) = 0 (often μ(X) = 11) and (2)
(monotonicity) if A, B ⊆ X and A ⊆ B, then μ(A) ≤ μ(B).

3.2 Discrete (Finite X) Fuzzy Integral

The FM models important “interactions” (e.g., subjective worth, statistical correla-
tion, etc.) between different source subsets. The input provided by our sources is
{h({x1}), h({x2}), . . . , h({xN })}. The fuzzy integral is a way to combine the inte-
grand (h) information relative to the FM (μ). Let h({xi }) ∈ �≥0 be the data from
source i . The discrete (finite X ) Sugeno FI is2

1If μ(X) < 1, properties like idempotency and boundedness are not guaranteed.
2Due to the maximum (t-conorm) andminimum operators (t-norm), the Sugeno FI does not actually
generate any possible number between the minimum and maximum of the inputs. Instead, it selects
one of the FM or input values, i.e., at most one of 2N + N values.
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∫
S
h ◦ μ = Sμ(h) =

N∨
i=1

(
h({xπ(i)}) ∧ μ(Ai )

)
, (1)

where π is the permutation h({xπ(1)}) ≥ h({xπ(2)}), . . . ,≥ h({xπ(N )}), Ai = {xπ(1),

. . . , xπ(i)} and μ(A0) = 0. The discrete (finite X ) ChI is3

∫
C
h ◦ μ = Cμ(h) =

N∑
i=1

h({xπ(i)})
[
μ(Ai ) − μ(Ai−1)

]
. (2)

Since the ChI is a parametric aggregation function, once the FM is determined the
ChI turns into a specific operator. For example: if μ(A) = 1,∀A ∈ 2X \ ∅, the ChI
becomes the maximum operator; if μ(A) = 0,∀A ∈ 2X \ X , we recover the mini-
mum; and if μ(A) = |A|

N , we recover the mean. Each of these cases can be viewed as
constraints or simplifications on the FM (and therefore the ChI). In general, the dis-
crete ChI has N ! unique input sortings and each yields a linear convex sum operator.

3.3 Data-Driven Optimization

The first challenge we must confront is, where do we get the FM (μ) from? One
option is to have an expert specify it. However, this is not practical (assuming the
expert could even meaningfully assign values to the interactions) as the number of
inputs (e.g., DLs) increases. Another option is we can specify or try to learn the worth
of just the singletons (the densities). From there, a number of formulas can be used to
impute (fill in) the missing variable values. Popular approaches include the Sugeno
λ-FM and the S-Decomposable FM [79]. However, while convenient, most often we
do not obtain the desired values for variables that we need. With respect to pattern
recognition, the focus of this chapter, another route is to learn it from data. Next,
we review one way to learn the FM, and therefore the ChI, in the context of DIDO
for DL. However, the reader can refer to [80] for an efficient learning method with
only data-supported variables and [81] for a review of alternative FM/ChI learning
methods.

We quickly summarize one way to learn the full FM/ChI (see [82] for full mathe-
matical explanation). Let O = {h j , y j }, j = 1, 2, . . . , M , be M training examples;
where h j is the j-th instance with data from N inputs and y j is the ground-truth for
h j . The sum of squared error for training dataset O is

3The ChI is used frequently for various reasons; e.g., it is differentiable [62], for an additive (prob-
ability) measure it recovers the Lebesgue integral, it yields a wider spectrum of values between the
minimum and maximum (versus the discrete and relatively small number of values that the Sugeno
FI selects from), etc.
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E(O,u) =
M∑
j=1

e j =
M∑
j=1

(cTj u − y j )
2 = ||Du − y||22, (3)

where u = [μ({x1}), . . . ,μ({xN }),μ({x1, x2}),μ({x1, x3}), . . . ,μ(X)] (lexico-
graphic vector of size 2N − 1), c j holds the coefficients of u for observation h j ,
e.g., for N = 3 and h({x2}) ≥ h({x1}) ≥ h({x3}),

c = [0, h({x2}) − h({x1}), 0, h({x1}) − h({x3}), 0, 0, h({x3})] ,

D = [c1 c2 . . . cM ]T (full dataset), y = [y1 y2 . . . yM ]T , and || · ||2 is norm-2
operation, u. The regularized SSE optimization problem is

min
u

f (u) = ||Du − y||2 + βv(u), (4)

where β ∈ �≥0 (regularization constant, which balances the “cost” (or penalty) of
obtaining minimum function error relative to our desire to have minimal model
complexity) and v(u) is an index of model complexity (e.g., k-additive and Mobius,
Gini-Simpson, �p-norm, etc. [83]), subject to the FM boundary and monotonicity
conditions (see [82] for how to pack the constraints into a linear algebra expression),
which can be solved via quadratic programming. Full code (including how to build
C) can be found at www.derektanderson.com/FuzzyLibrary and www.github.com/
scottgs/fi_library.

3.4 Explainable AI (XAI) Fusion

It is one thing to train a network and another to understand it! In this subsection,
we highlight FM and ChI indices for the purpose of explainable AI (XAI).4 XAI is
an attempt to explain the inner operations of pattern recognition for purposes like
describing it to others for domain knowledge transfer, trust, etc. The Shapley index
addresses the importance or worth of each input (aka DL),

�μ(i) =
∑

K⊆X\{i}
ζX,1(K ) (μ(K ∪ {i}) − μ(K )) , (5)

where ζX,1(K ) = (|X |−|K |−1)!|K |!
|X |! , K ⊆ X\{i} denotes all proper subsets from X

that do not include source i . The Shapley value ofμ is the vector�μ =(�μ(1),. . .,�μ

(N ))t and
∑N

i=1 �μ(i) = 1. The Shapley index can be interpreted as the average
amount of contribution of source i across all coalitions. The next index informs us

4Go to www.derektanderson.com/FuzzyLibrary and www.github.com/scottgs/fi_library.

www.derektanderson.com/FuzzyLibrary
www.github.com/scottgs/fi_library
www.github.com/scottgs/fi_library
www.derektanderson.com/FuzzyLibrary
www.github.com/scottgs/fi_library
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about how two inputs interact with one another (aka what advantage is there in com-
bining DLs). The interaction index (Murofushi and Soneda [84]) between i and j
is

Iμ(i, j) =
∑

K⊆X\{i, j}
ζX,2(K )(μ(K ∪ {i, j}) − μ(K ∪ {i}) − μ(K ∪ { j}) + μ(K )),

(6)

where ζX,2(K ) = (|X |−|K |−2)!|K |!
(|X |−1)! , Iμ(i, j) ∈ [−1, 1],∀i, j ∈ {1, 2, . . . , N }. A value

of 1 (respectively, −1) represents the maximum complementary (respective redun-
dancy) between i and j . Refer to [85] for further details about the interaction index,
its connections to game theory and interpretations. Grabisch later extended the inter-
action index to the general case of any coalition [86],

Iμ(A) =
∑

K⊆X\A
ζX,3(K , A)

∑
C⊆A

(−1)|A\C |μ(C ∪ K ), i = 1, . . . , N , (7)

where ζX,3(K , A) = (|X |−|K |−|A|)!|K |!
(|X |−|A|+1)! . Equation (7) is a generalization of both the

Shapley index and Murofushi and Soneda’s interaction index as �μ(i) corresponds
with Iμ({i}) and Iμ(i, j) with Iμ({i, j}).

The above indices are focused strictly on the FM. A different fundamental type
of question is what “type” of aggregation is the ChI performing? Answering this
question helps us understand how the DL information is being combined (e.g., in an
optimistic, pessimistic, expected value like fashion, etc.). In [87], we established an
index (D1) to measure the degree to which a given FM/ChI is an maximum operator.
In the following, we discuss the FM in terms of its underlying lattice structure.
Let “layer k” (measure defined on sets of cardinality k) be denoted by L(k), e.g.,

L(1) = {μ({x1}),μ({x2}),μ({x3})} for N = 3. Next, let W = [ 1
N ,...,1]∑N
i=1

i
N

be weights

(penalty or costs) for each layer and

D1(μ) =
1∑

k=1

W(k)

2
(T1 + T4) +

[
N∑

k=2

W(k)

3
(T1 + T2 + T4)

]
, (8)

T1 = 1 −
(∑

I∈L(k) μ(I )
|L(k)|

)
, T2 =

(∑
I∈L(i) μ(I )
|L(k)| −

∑
J∈L(k−1) μ(J )

|L(k−1)|
)
, T3 =

∑
I∈L(k) μ(I )
|L(k)|

and T4 =
∑

I∈L(k)(μ(I )−T3)2

|L(k)|−1 . A value of D1 = 0 means the ChI is the maximum opera-
tor. The distance of a learned capacity to a minimum operator (D2), mean (D3) and

LCOS (D4), forW2 =
[
1,..., 1

N−1

]
∑N−1

i=1
i

N−1

, is

D2(μ) =
1∑

k=1

W2(k)

2
(T3 + T4) +

[
N−1∑
k=2

W2(i)

3
(T3 + T2 + T4)

]
, (9)
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D3(μ) = 1

2N − 2

N−1∑
k=1

∑
I∈L(k)

∣∣∣∣μ(I ) − k

N

∣∣∣∣, (10)

D4(μ) = 1

N − 1

N−1∑
k=1

√
T4. (11)

4 DCNN Fusion Based on Fuzzy Integration

The focus of this chapter is fusing different state-of-the-art DCNN architectures.
However, the procedures outlined are applicable to other neural inputs (see Fig. 2).

4.1 DCNN Architectures Used for Fusion

The first NN used herein for fusion is CaffeNet [35], which is a derivative of AlexNet
with similar structure, except that the order of pooling andnormalization is reversed to

spatial

spectral/temporal

CNN 1
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CNN 3
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Fig. 2 Illustration of DIDO DCNN fusion. Note, many possibilities exist; e.g., variations in archi-
tecture, pre-conditioning/transforms (e.g., conversion to frequency analysis versus spatial domain,
band selection or grouping, etc.), training data, etc. Next, neuron mapping/association is required
followed by aggregation. Herein, a different fusion operator is learned per output neuron (versus
shared fusions/weights)
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reduce learnable parameters. CaffeNet contains five convolutional feature extraction
steps and three fully connected layers for classification. Classification is performed
with two fully connected inner product layers and a final soft-max layer for the
network output. The output of soft-max layer is effectively a classification vector.
CaffeNet represents the most simple and shallow of our DL investigated herein.

GoogLeNet [17] is a much deeper NN than CaffeNet–it has 27 parameterized
layers. Because of this network depth, GoogLeNet has three classification outputs at
various stages of the network to facilitate error back propagation. GoogLeNet’s novel
inception layer processes the input with max-pooling, 1×1, 3×3, and 5×5 convolu-
tions simultaneously in a feature extraction step, and the outputs are concatenated as
the layer output to achieve a multi-scale feature extraction. Using multiple convolu-
tions at each stage follows the intuition that features from different kernel scales can
be extracted and processed at the same time, thereby extracting multi-scale visual
features. GoogLeNet is from a family of networks commonly referred to as inception
networks.

ResNet [88] is a collection of DCNN architectures inspired by VGGNet [33]. In
both ResNet and VGGNet, the primary kernels used to construct the convolution
layers are 3×3. The architecture design incorporates the following rules to govern
their structure. First, if the output of the feature map is the same, then the same
number of 3×3 convolutional layers will be used. Second, if the output of the feature
map is halved, then it will use twice as many 3×3 convolutional kernels The ResNet
architectures employ residual connections that bypass two ormore convolution layers
at a time, allowing error to better propagate backward through the network. These are
commonly referred to as residual networks, and here the ResNet50 and ResNet101
architectures are used within our experimental design. These networks have 50 and
101 feature extraction steps, respectively.

4.2 Transfer Learning, Neuron Association and Conditioning

If we design a set of custom DCNNs then it is trivial to ensure a bijection (one-to-
one and onto) output neuron mapping. However, if existing community pretrained
DCNNs (GoogLeNet, AlexNet, etc.) are leveraged–a task encountered frequently in
practice–then this is not guaranteed. One way to resolve the one-to-one mapping task
is to replace and retrain the DCNN classification layers per the labels for the task at
hand. This is a type of transfer learning that keeps the feature layers intact. In [89],
we (i) replaced and retrained the classification layers and we also (ii) updated the
featureweights (e.g., convolution layers). Thus,we built customclassifiers for remote
sensing of aerial imagery based on a network initialized by ground-perspective RGB
imagery. In addition, data augmentation via rotation and image flipping was applied
as well. However, we remark that other avenues exist; e.g., one could manually
resolve the mapping or use an automated method based on an ontology. Regardless,
usingmultiple custom or pretrained networks of different architectures raises another
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question; are the outputs numerically (e.g., all in [0, 1]) and semantically “to scale”
(e.g., does a (e.g., a = 0.5) in domain i map to a in the other domains). One way
to mitigate this issue in practice is to add a soft max normalization (aka normalized
exponent function) layer after the raw neuronal output layer. For example, if η is
the soft max output for neuron o j then the soft max function is η(o j ) = eo j∑N

n=1 e
on
.

Thereby, we bound the domain of input for the subsequent fusion layer of our pattern
recognition system, ensure the data across networks and neurons is well conditioned.

4.3 Imputation: λ-FM ChI

The first fusion approach explored here is to exploit our knowledge about the perfor-
mance of the individual DCNNs on training data [54, 55]. A classical approach to
obtaining the remaining 2N − 2 − N FM values (beyond the densities) is the Sugeno
λ-measure. For sets A, B ⊆ X , such that A ∩ B = φ,

μλ(A ∪ B) = μλ(A) + μλ(B) + λμλ(A)μλ(B), (12)

for some λ > −1. In particular, Sugeno showed that λ can be found by solving

λ + 1 =
N∏
i=1

(1 + λμ(xi )),λ > −1, (13)

where there exists exactly one real solution such that λ > −1. Some advantages of
the Sugeno λ-measure include its simplicity, the N densities can be more tractable to
acquire, fewer number of parameters can help address overfitting (versus using the
full 2N variables), and it is a probability measure when λ = 0. However, there is no
guarantee in practice that the values that it imputes are what we actually need. Sim-
ply speaking, more information or a different imputation formula may be required;
e.g., the S-Decomposable imputation formula, μ(A) = ∨

i∈A(μ(xi )) (where
∨

is a t-conorm). Algorithm (1) describes how to use the Sugeno λ-measure to fuse a
set of pretrained DLs based on individual performance for density.

Algorithm 1 λ-FM Based Imputation of ChI from Pre-Trained DCNNs

INPUT: DLi - N DCNNs (B neurons each); Ō - labeled training data
1. Run each DCNN on Ō , get overall accuries (OA); ab,i ∈ [0, 1] (i.e., performance of DL i on
class b)
2. Assign the i th density its corresponding OA; i.e., μλb (xi ) = ab,i
3. Find λb (using {μλb ({x1}), ...,μλb ({xN })}) for Sugeno λ-FM (solve Eq. (13))
4. Recursively calculate μλb (A), ∀A ∈ 2X \ {{x1}, ..., {xN }}, using the densities and λb (Eq. (12))
OUTPUT: B full fuzzy measures - {μλ1 , ...,μλB }
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4.4 Optimization Approach: Learning the Full ChI

As stated in Sect. 4.3, there is no guarantee that imputation from densities results in
the input interactions that we desire (and thus results in an appropriate aggregation
operator). Algorithm (2) shows how to use quadratic programming for acquisition
of the full FM for DIDO fusion of DCNNs (Algorithm (3) is how to learn a single
“shared” FM to be applied to all neurons). Thus, training data is directly used to learn
these crucial interactions–which means better selection of appropriate aggregation
operator. However, as we discuss in [80], this process can lead to a big boost in
performance but it is not without flaw. Specifically, in [80] we show that training data
only typically supports a subset of FM variables. In return, we put forth an extended
optimization of the ChI by (1) identifying which variables are supported by data, (2)
optimizing just those variables and then (3) looking at imputation methods to infer
the value of data unsupported variables based on application specific criteria. We do
not have space to go into depth about the extension here, the reader can refer to [80]
for full details.

Algorithm 2 Learn a Full FM/ChI Per Class for a Set of Pre-Trained DCNNs
INPUT: DLi - N DCNNs (B neurons each); Ō - training data; β - regularization
1. Per class/output neuron (b), run each instance (1 ≤ j ≤ |Ō|) through each DCNN (i); get hbj (xi )
terms
2. Per neuron (b), construct the individual Db from the hbj (xi ) terms
3. Run B independent QPs (on the Db respectively); yielding {μ1, ...,μB}
OUTPUT: B full fuzzy measures - {μ1, ...,μB}

Algorithm 3 Learn a Single “Shared Weight” Full FM/ChI for Pre-Trained DCNNs

INPUT: DLi - N DCNNs (B neurons each); Ō - training data; β - regularization
1. Per class/output neuron (b), run each instance (1 ≤ j ≤ |Ō|) through each DCNN (i); get hbj (xi )
terms
2. Per neuron (b), construct the individual Db from the hbj (xi ) terms

3. Use QP to solve
(||D1u − y1||22 + ... + ||DBu − yB||22 + βv(u)

)
; yields μ

OUTPUT: Full fuzzy measure - μ

5 Experiments

In this chapter, two benchmark remote sensing datasets suitable for classification
tasks of objects or land-cover/land-use are used. Remote sensing data represents
a significant pattern recognition challenge. As can be seen in Figs. 3 and 9 below,
the variability and complexity of overhead imagery is immense. The visual cues
exist at multiple levels: fine-scale (e.g. airplane shapes, vehicle presence, etc.) to
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Fig. 3 Sample image chips from the 21 class UCM benchmark dataset, each 256×256 pixels
approximately 0.3m ground sampling distance (GSD) spatial resolution. Classes in left-to-right,
top-down order: 1 agricultural, 2 airplane, 3 baseball diamond, 4 beach, 5 buildings, 6 chaparral,
7 dense residential, 8 forest, 9 freeway, 10 golf course, 11 harbor, 12 intersection, 13 medium
residential, 14 mobile home park, 15 overpass, 16 parking lot, 17 river, 18 runway, 19 sparse
residential, 20 storage tanks, and 21 tennis court. In Sect. 5.1, neuron indices are used instead of
text descriptions for sake of compactness

large-scale (e.g., road way configurations in overpasses versus intersections versus
freeway). In fact the entire field of photo-interpretation revolves around developing
human expertise in this pattern recognition task. For each of the datasets herein
DCNNs were trained using the techniques in [89], including transfer learning and
data augmentation via rotation and flipping. The trained DCNNs are then used in
a locked state, i.e., no further learning happens in DL during the fusion stage. The
training of the DCNNs are done in five-fold, cross validation manner; such that we
have 5 sets of 80% training and 20% testing for both datasets. Per DCNN fold,
three-fold CV fusion is used (due to limited data).

5.1 UC Merced (UCM) Dataset

The UCMerced (UCM) benchmark dataset [90, 91] has been used in a wide range of
remote sensing research, including prior work in classification of objects and land-
cover such as [55, 89, 92]. Figure3 shows exemplar image chips from each class of
the UCM dataset. The dataset includes 21 classes that are a mix of objects (airplane,
baseball diamond, etc.) and landcover (beach, chaparral, etc.). We see that some
classes, e.g., harbor and parking lot, are complex compositions of sub-entities (boats
and vehicles); while others are general structural patterns of shapes (e.g., intersection
and baseball diamonds).

Table1 is the result of fusion on the UCM dataset. First, we see that aggregation
outperforms no aggregation (i.e., the individual DCNNs) in four out of five folds.
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Table 1 Fusion results for the UCM dataset
Method

ChI Per
Neuron

ChI
Shared

SLFM
Shared CNet GNet

RNet
50

RNet
101 Max Avg Min

Fold 1 0.979 0.977 0.984 0.957 0.957 0.985 0.973 0.978 0.981 0.976
Fold 2 0.991 0.994 0.993 0.964 0.983 0.978 0.988 0.993 0.994 0.993
Fold 3 0.994 0.990 0.996 0.971 0.985 0.992 0.988 0.996 0.996 0.998
Fold 4 0.992 0.996 0.996 0.988 0.980 0.983 0.988 0.996 0.992 0.998
Fold 5 0.989 0.985 0.989 0.976 0.973 0.983 0.980 0.989 0.989 0.986
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Fig. 4 Color coded matrix showing the distances obtained using the four reported indices of
introspection (D1(μ) to D4(μ)) relative to the learned full ChI per neuron on fold 1 of the UCM
dataset. y-axis is the neuron index (see Fig. 3) and x-axis is the distance measure. Neurons two, four
and six are OWA operators (but not min, max or mean like)

Second, we see that min, max and average (basic aggregation operators) do well in
comparison to the ChI. However, these three operators are specific instances of the
ChI, which informs us that there are challenges with variety and thus generalizability
of this particular data set (otherwise they should have been selected). Next, it is
interesting to see that the shared weight fusion solutions do as well as they do. It is
our suspicion–something to be explored in future work–that a shared FM for the ChI
helps combat overfitting. It is also our suspicion–again, subject of future work–that
while the Sugeno λ-FM would not be our first choice, it might also help combat
overfitting as it has just N parameters versus the otherwise 2N − 1. However, the
performance of the individual DCNNs (which were used as the densities) are so
high that ultimately this forces the Sugeno λ-FM to more-or-less be the maximum
operator.
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Fold 1: Lattice for neuron 1
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Fig. 5 Example of two full FMs for the a first and b fourth neuron in fold 1 of the UCM dataset.
“Layer” l (from bottom to top) in the image denotes FM variables with cardinally l. Thus, layer
0 (bottom node) is the empty set, the next layer is the singletons, top is μ(X), etc. Each variable
is presented in lexicographic order, i.e., layer 2 is {x1, x2}, {x1, x3}, {x1, x4}, {x2, x3}, {x2, x4}
and {x3, x4}. The nodes are also drawn size-wise proportional to their value (a minimum size and
maximum was specified to make them still show up for 0 valued variables). In addition, the “paths”
drawn indicate the visitation frequency (the brighter the line, the higher the visitation) for the test data
in fold 1. Furthermore, the fourth neuron learned anOWAwith weights (0.067, 0.433, 0.43, 0.07)t–
a trimmed mean operator. Conversely, neuron one is more complex to decode. It does not reduce
into a single compact description like an OWA. However, we can view it in terms of the N ! walks
(possible sorts). Since the h({x1}) ≥ h({x2}) ≥ h({x3}) ≥ h({x4}) is encountered frequently, we
decode and analyze its weights. The linear convex sumweights for the ChI of this walk (sorting) are
(0.027, 0.473, 0.45, 0.05) respectively. Thus, it is a weighted average of GoogLeNet and ResNet50.
This analytic process can be repeated for the other N ! − 1 walks if desired

Next, Fig. 4 gives us a feel for what type of aggregation strategy is being used for
the 21 classes. Again, the max, min and mean are all OWAs, so we can start first with
analyzing column four. There are three neurons (2, 4 and 6–i.e., airplane, beach and
chaparral) that learned an OWA. The other neurons have learned something more
unique, which helps justify the inclusion of the ChI versus say a simpler operator (see
Fig. 5(a)). At that, none of the learned OWAs are that similar to our extreme markers
of max (a t-conorm or union like operator), min (a t-conorm or intersection like
operator) or average (an expected value like operator). For example, Fig. 5(b) shows
one of these OWA operators, which breaks down into a trimmed mean operator.

Last, Fig. 6 shows the FM and Shapley values. While it is more-or-less impossible
to read individual values in these plots, they show that there is no consensus in values
nor importance of DCNNs. Meaning, different output neurons (classes) appears to
use these different DCNNs in different ways. Furthermore, Fig. 7 shows the corre-
sponding interaction index values. These values also reinforce the complex interplay
and back-and-forth exchange of complementary, independent and redundant infor-
mation between DCNNs across output neurons (classes). In total, the combination of



Fuzzy Choquet Integration of Deep Convolutional Neural Networks … 17

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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Fig. 6 Learned full ChI per neuron on fold 1 of the UCM dataset. a Plot of the 24 − 1 binary
encoded FM variables, i.e., for N = 3 the order is (x1, x2, x12, x3, x13, x23, x123, x4, x14, x24,
x124, x34, x134, x234, x1234). This plot shows the agreement/disagreement of variable values
across the 21 neurons. If all neurons required the same fusion then each x-axis location would have a
single convergent set of circles (FM variable values). However, we can see that each x-axis location
(FM variable) has for the most part significant variation (outside the CaffeNet density). b Plot of the
4 neuron Shapley index values across the 21 neurons. Again, this plot shows the variety of values
learned.With respect to individual output neurons, some NNs could be eliminated. However, across
the 21 neurons, no NN can be eliminated (we would expect to see approximately all zero values for
that Shapley if so)

analysis of underlying aggregation function, importance of individual DCNNs and
their pair-wise interaction behavior help the claim that performance appears to be
improving due to diversity in the way these DCNNs operate. This is in line with our
intuition about these DCNNs based on the ways their architectures were created.

Last, Fig. 8 shows example images missed by our fusion approach. As the reader
can visually verify, these examples are extreme and represent incorrectly labeled or
fundamentally ambiguous labels. We would not expect fusion to be able to fix this
type of problem. At that, it is hard to say that the DCNNs should have got these, as
a human might just as well mistaken them.

5.2 WHU-RS19 (RSD) Dataset

The WHU-RS19 (RSD) dataset is composed of 600×600 pixel, JPEG compressed
images [93]. This class includes 19 classes, and approximately 50 chips per class.
This imagery was screen scrapped from Google Earth, and therefore they are of
variable spatial resolutions. Figure9 shows exemplar image chips from each class of
the RSD benchmark dataset. Similar to the UCM dataset, this dataset is a mixture
of landcover and objects within the image chips. Table2 shows the result of fusion,
Fig. 10 are the indices of introspection, Fig. 11 are example lattices, Fig. 12 are the FM
and the Shapley indices and Fig. 13 are example interaction indices. Overall, we see
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Fig. 7 Interaction index values for the learned full ChI per neuron on fold 1 of the UCM dataset.
Index 1 isCaffeNet, 2 isGoogLeNet, 3 isResNet50 and4 isResNet101.Consider neuron 1.CaffeNet
has positive interactions (complementary information) with the other three NNs (0.37, 0.34 and 0.3
respectively). On the other hand, GoogLeNet has negative interaction values (redundancy) with the
ResNet NNs (–0.19 and –0.1 respectively). The two ResNet NNs have a negative interaction index
of –0.12. Also, in neuron 7, CaffeNet has approximately a zero interaction index with the other NNs
(independence), whereas GoogLeNet has a value of –0.29 with ResNet50 and a positive interaction
value of 0.22 with ResNet101. Last, ResNet50 and ResNet101 have a large negative interaction
index of –0.72 with each other
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Misclassified Image Other images from correct class Predicted Exemplar

(a) Dense Residential Mobile Home Park

(b) Intersection Overpass

(c) Medium Residential Dense Residential

(d) Golf Course Forest

(e) Dense Residential Medium Residential

Fig. 8 Five images missed by the fusion framework; a dense residential misclassified as mobile
home park, b (incorrectly labeled) intersection misclassified as overpass (correct label), c medium
residential misclassified as dense residential, d (incorrectly labeled) golf course misclassified as
forest, and e dense residential misclassified as medium residential
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Fig. 9 Sample image chips from the 19 class RSD benchmark dataset, each 600×600 pixels of
various spatial resolution. Classes in left-to-right, top-down order: 1 airport, 2 beach, 3 bridge, 4
commercial area, 5 desert, 6 farmland, 7 football field, 8 forest, 9 industrial area, 10 meadow, 11
mountain, 12 park, 13 parking lot, 14 pond, 15 port, 16 railway station, 17 residential area, 18
river, and 19 viaduct. In Sect. 5.2, neuron indices are used instead of text descriptions for sake of
compactness

Table 2 Fusion results for the RSD dataset
Method

ChI Per
Neuron

ChI
Shared

SLFM
Shared CNet GNet RNet50 Max Avg Min

Fold 1 0.989 0.991 0.991 0.982 0.977 0.988 0.991 0.991 0.991
Fold 2 0.992 0.984 0.992 0.978 0.994 0.989 0.987 0.992 0.987
Fold 3 0.984 0.992 0.979 0.955 0.988 0.966 0.979 0.979 0.979
Fold4 0.983 0.983 0.983 0.983 0.960 0.971 0.983 0.988 0.987
Fold 5 0.998 1.00 1.00 0.977 0.994 0.994 1.00 1.00 1.00

the same general trend (as the UCM dataset). Namely, (i) aggregation outperforms
no aggregation in general and (ii) there are challenges with variety (and therefore
generalizability) in the RSD data set as well.
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Fig. 10 Color coded matrix showing the distances obtained using the four reported indices of
introspection (D1(μ) to D4(μ)) relative to the learned full ChI per neuron on fold 1 of the RSD
dataset. y-axis is the neuron index (see Fig. 9) and x-axis is the distance measure
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0.24 0.24 0.24

0.76 0.76 0.76

1
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Fig. 11 Example FMs for fold 1 of the RSD dataset. Neuron three is for all intents and purposes
a binary FM (see [94] for a formal characterization of binary FMs, the resultant FI and efficient
ways of representing and learning such a function). For binary FMs, the Sugeno FI and the ChI
are mathematically equivalent [94]. The FI is acting like a “dynamic maximum operator” with
respect to FM variables that have a value one–or conversely a “dynamic minimum” with respect
to zero valued FM variables. For example, if h({x1}) ≥ h({x2}) ≥ h({x3}) (aka CaffeNet is more
confident than GoogLeNet followed by ResNet) then we take the output of GoogLeNet. However,
if h({x2}) (GoogLeNet) is the most confident then we take its input. This reasoning can be followed
to get similar stories for the other N ! − 2 walks. Another interesting observation of neuron 3, versus
neuron 5, is a slightly more diverse visitation (walk) pattern
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Fig. 12 Binary encoded 23 − 1 FMvariables and the 3 Shapley index values for the nineteen output
neurons in the RSD dataset. As demonstrated in the UCM dataset, great variability exists in FM
variable and Shapley values for these nineteen output neurons

6 Conclusion and Future Work

In summary, this chapter outlined a data-driven method for optimizing Choquet
integral-based fusion of heterogeneous deep convolutional neural networks for pat-
tern recognition in remotely sensed data. To the best of our knowledge, no one
has previously learned the full fuzzy Choquet integral for fusing neural networks,
just density-based fuzzy measures. This chapter brought together state-of-the-art
advancements in two important parts of computational intelligence; fuzzy set theory
and neural networks. Specifically, CaffeNet, GoogLeNet, ResNet50 and ResNet101
were fused at the per-output-neuron and with respect to a single “shared weight”
solution. In a strive for explainable AI, versus black box solutions, different indices
of introspection of the Choquet integral and information theoretic indices of the
fuzzy measure were highlighted for analysis of the final deep learning solution.
These indices showed us that there does appear to be diversity in these different het-
erogeneous DCNNs. Two benchmark remote sensing datasets were used, UCM and
RSD, and our fused results showed improvement over the individual deep learners.
However, this data set and DCNNs were saturated and therefore limited data (both
volume and variety) existed for training fusion. Last, analysis of mislabeled imagery
from fusion revealed incorrectly labeled data and ambiguous image chips that would
lead to a human mislabeling imagery.

While encouraging, more research (theory and application) is needed. In future
work, we will migrate our Choquet integral solution into a strictly neural represen-
tation for optimization and speed. Furthermore, we will move away from DIDO
and explore fusion neurons at various layers in the network. We will also investi-
gate what types of neural inputs should be fed to DIDO fusion; e.g., combinations of
deep and shallow, different convolutionmap scales, etc. Futureworkwill also include
simultaneously learning the DCNNs and our fusion operators (they are learned inde-
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Fig. 13 Interaction index values for nineteen outputs in the RSD dataset. Index 1 is CaffeNet, 2 is
GoogLeNet and 3 is ResNet50

pendently herein). Last, we will look to use our explainable AI methods to make
improvements to the fusion and DCNNs, manually as well as possibly using them
directly computationally to promote diversity and/or aid in the design of our net-
works.
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Abstract Learning machines for pattern recognition, such as neural networks or
support vector machines, are usually conceived to process real–valued vectors with
predefined dimensionality even if, in many real–world applications, relevant infor-
mation is inherently organized into entities and relationships between them. Instead,
Graph Neural Networks (GNNs) can directly process structured data, guaranteeing
universal approximation of many practically useful functions on graphs. GNNs, that
do not strictly meet the definition of deep architectures, are based on the unfolding
mechanism during learning, that, in practice, yields networks that have the same
depth of the data structures they process. However, GNNs may be hindered by the
long–term dependency problem, i.e. the difficulty in taking into account information
coming from peripheral nodes within graphs — due to the local nature of the pro-
cedures for updating the state and the weights. To overcome this limitation, GNNs
may be cascaded to form layered architectures, called Layered GNNs (LGNNs).
Each GNN in the cascade is trained based on the original graph “enriched” with
the information computed by the previous layer, to implement a sort of incremental
learning framework, able to take into account progressively further information. The
applicability of LGNNs will be illustrated both with respect to a classical problem
in graph–theory and to pattern recognition problems in bioinformatics.
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1 Introduction

The formal representation of objects is a key issue in pattern recognition problems.
Actually there are two fundamental ways for implementing a pattern recognition sys-
tem, namely using statistical or structural approaches. In the statistical framework,
objects are described by feature vectors, whereas structural approaches exploit sym-
bolic data structures, such as strings, trees, or graphs. Both approaches show pros and
cons. If, in fact, evaluating the similarity between two entities is easily defined in vec-
torial spaces, and can be efficiently obtained, nevertheless this representation is not
suited to explicitly describe relationships between the different subparts of objects.
On the other hand, graphs can easily describe relations among subparts of complex
data, but with a significant increase in computational complexity. For instance, the
problem of evaluating the identity of two feature vectors has a linear complexity
(w.r.t. the vector dimension), whereas testing the isomorphism between graphs is
just an exponential problem [1].

Anyway, in several pattern recognition applications, data can actually be suitably
represented in form of structures, f.i. in image processing [2] and bioinformatics [3].
Indeed, for these applications, information is inherently represented by atomic enti-
ties, sharing some common properties and dependent on each other, as described by
relationships that encode their mutual influence and interactions. Contextual, hierar-
chical or causal connections between parts of a given pattern provide crucial infor-
mation. The intrinsic subsymbolic nature of these tasks prevents a natural representa-
tion of data by vectors, since the feature extraction procedure is problem–dependent,
heuristic, computationally expensive, and may also produce loss of information. The
way in which structured data should be processed can neither be simply related to the
“symbolic” information (normally collected in labels, describing the atomic entities)
nor to the “subsymbolic” organization of entities. Hence, the processing scheme
for these pattern representations should be designed in order to take into account
both the entity labels and their relationships. In particular, when dealing with pat-
terns encoded as general graphs, we may consider graph–focused and node–focused
applications. In the graph–focused framework, the decision to be taken is related to
the entire structure, while for node–focused problems, an output is expected for each
node in the graph. For instance, a chemical compound can be modeled by a graph G,
where nodes represent atoms or small molecules, whereas edges describe covalent
bonds. The problem of estimating the probability that a molecule is mutagenic, i.e.
may induce a particular disease [4], is graph–focused, since it is a property of the
compound as a whole, not of a specific atom. Instead, the prediction of secondary
structure elements and disordered regions (or loops) in proteins [5] is configured as
a node–focused task. In computer vision, images can be modeled by Region Adja-
cency Graphs (RAGs) [6], with labeled nodes denoting homogeneous regions (from
the visual point of view) and arcs defining their adjacency relationship. In this con-
text, the localization and detection of an object is a node–focused task [7], while
image classification is graph–focused [8].
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Since the late ’90s, different neural network models for processing graphs have
been proposed, both for supervised and unsupervised tasks [9]. In Recursive Neu-
ral Networks (RNNs) [10], subsymbolic and symbolic information collected within
graphs, and respectively related to the topological organization of nodes and to their
labels, is encoded into a set of state variables, associated with each node. The states
are updated dynamically following the graph topology, and used to calculate the
outputs. RNN models are only able to process directed positional acyclic graphs
(DPAGs) and are normally used to address graph–focused problems. Instead, Graph
Neural Networks (GNNs) [11] process input data encoded as general labeled graphs.
GNNs are trained based on a supervised learning algorithm that incorporates, into the
error function, a criterion aimed at enforcing a contractive dynamics, to stabilize the
learning procedure also for cyclic input graphs. Moreover, GNNs are able to natu-
rally model both node–focused and graph–focused functions. Therefore, GNNs have
recently been applied to many forefront applications. In particular, in bioinformat-
ics, GNNs were employed for modelling quantitative structure–activity relationship
problems, i.e. for the prediction of the mutagenicity and of the biodegradability of
molecules [12]. Besides, GNNs were successfully exploited for object localization
in images [13] and, with respect to web applications, for page ranking [14], sentence
extraction [15], and document clustering and classification [16].

Unfortunately, all recursive models are plagued by the long–term dependency
pathology, i.e. they struggle in processing deep structures, because of the local
nature of the learning procedure. Actually, the error contribution, which vanishes
during backpropagation, prevents a sensible update of the weights and, therefore, of
the states, related to far nodes. In fact, practical issues are detected when dynamic
neural network models are expected to learn tasks in which the relevant events in the
input/output sequence span long intervals or, equivalently in the case of graphs, the
dependencies involve nodes connected by a “long” path in the graph structure. This
concept has been theoretically formalized in [17] in the case of recurrent networks,
proving that the system is unable to latch temporal information robustly, since the
gradient contribution due to information t time steps away vanishes as t increases. It
is worth noting that the long–term dependency problem conflicts with the idea that
deep networks, composed of a large number of layers, are necessary to cope with
complex applications, being able to implement, with a reduced number of neurons,
functions that cannot be realized with shallow architectures [18]. In fact, control-
ling the number of resources (in terms of neurons) needed to solve a given problem
means also stemming the exponential growth in computational complexity (both in
space and in time) of the learning procedure. In this perspective, many recent studies
have been focused on how to train networks layer by layer, mixing unsupervised and
supervised algorithms [19].

In this chapter, we describe a stacked architecture, referred to as Layered GNN
(LGNN), that is composed of a cascade of GNNs, each of which takes in input the
original graph and the information computed by the previous GNN in the cascade.
LGNNs, that can be properly defined as deep architectures, are trained layer by layer,
exploiting the provided targets and training each network in the cascade to correct
the solution computed by the previous one. Basically, each GNN is expected to focus



32 M. Bianchini et al.

only on those patterns that were misclassified by the previous GNNs in the hierarchy,
thus implementing a kind of incremental learning, that is progressively enriched by
taking into account information from further nodes.

An experimental evaluation is reported, based on synthetic and real–world
datasets. Synthetic data are used as a benchmark for a central task in graph the-
ory, i.e. finding cliques — fully connected subgraphs — inside graphs. Instead,
publicly available datasets come from the bioinformatic field and are related to the
prediction of the secondary structure of proteins, and to the classification of chemi-
cal compounds with respect to mutagenicity. The reported results are promising and
guarantee a significantly improved accuracy with respect to standard GNNs. Finally,
as a pattern recognition application of the clique search problem, we describe how to
model the protein surface in order to identify the onset of transient pockets — typ-
ically involved in protein–protein and protein–drug interactions — for drug design.
Indeed, transient pockets are cavities that can appear and disappear on a protein
surface, often containing active sites where pharmaceutical agents can be anchored.
Standardmethods for protein 3D structure prediction are unable to identify and local-
ize transient pockets, due to their short persistence and complex pattern, whereas
connectionist models seem to capture sufficient information in the vicinity of the
putative pocket to predict its appearance (dimension and duration). In particular, in
drug discovery, it often happens that several molecules of apparently unrelated struc-
tures are active on the same drug target. In fact, if the interatomic distances among a
subset of atoms in a drug match the distances among a similar–sized subset in a sec-
ond drug, a putative shared pharmacophore exists, which guarantees the interaction
of both drugs with the target. Constructing a complete edge–weighted graph repre-
senting each drug (with atoms as vertices and edge weights that stand for interatomic
distances), the problem of interest is reformulated as that of finding the Maximum
Common Subgraph (MCS) between them, where the MCS is defined as the largest
subset of atom pairs that have matching distances. To solve the MCS problem, cou-
ples of protein graphs are first converted to correspondence graphs, identifying all
graph–to–graph pairs of elements with matching distances, on which the applica-
tion of a clique–detection algorithm efficiently identifies the MCS. Recently, the
described approach has been also extended to the identification of complementary
surfaces on proteins, a core task within the problem of computational docking of
biomolecules.

The chapter is organized as follows. Section2 presents the GNN model with a
detailed explanation of the related learning procedure, while Sect. 3 describes the
Layered GNNs, showing some possible design choices for this architecture. Some
applications of LGNNs to pattern recognition problems are illustrated in Sect. 4,
together with some experimental results. Finally, conclusions and future works are
reported in Sect. 5.



Deep Neural Networks for Structured Data 33

2 Graph Neural Networks

Complex patterns can be described by a structured representation encoded as a graph.
In fact, graphs allow us to represent data as a set of atomic parts, the nodes, and
binary relationships among them, the arcs or edges. For instance, an image can be
represented as a set of regions. Each region corresponds to a node of the graph and
the edge connecting two nodes may encode that the two corresponding regions are
adjacent. In this case, the relationship between the two linked entities is symmetric
and the corresponding link will not be oriented (usually in this case the term edge
is used). Other type of relationships (for instance inclusion between two regions)
may be asymmetrical and the corresponding link will be oriented (the term arc is
preferable in this case).

GraphNeural Networks (GNNs) provide a computational scheme able to compute
a node–focused function on a given graph. In particular, the output of the computation
is, generally, a set of real valued vectors attached to the nodes of the input graph.
For pattern recognition applications, like for instance classification, where the graph
represents the object to be processed, a single output can be assigned to the graph
by selecting a node, in order to implement a function τ (G, v) from the graph G to a
vector in IRr , given the node v in G. The function implemented by the GNN depends
on parameters, the weights, that can be adapted by a supervised learning procedure.

2.1 Graphs

A graph is defined as a pair G = (V, E), being V the set of nodes and E ⊆ V × V
the set of edges. An edge is denoted by the pair of connected nodes as (u, v), where
u, v ∈ V . If the graph is undirected the order of the two nodes in the pair is not
considered, whereas for directed graphs the pair defines an arc where the first node
is the source and the second node the destination of the link.

The pair (V, E) describes the pattern by representing its parts and its structure
through the connection topology. The representation can be completed by adding
attributes to each part (node) and, eventually, to the relationships (arcs or edges).
For instance, when a node stands for a region in an image, perceptual or geometrical
features of the region, such as its average color, extension, perimeter, etc., can be
stored as attributes of the node. If an edge stands for the adjacency relationship,
its attributes may correspond to the relative distance of the barycenters of the two
regions, the relative orientation of the two shapes and so on [7]. The attributes attached
to each node or edge/arc are referred to as a label. We can assume that the same label
space L is used for all the nodes. In the following, we will consider only the case of
graphs without labeled edges/arcs, but the definitions and computational models can
be easily extended by introducing the edge/arc label space [20]. Since we examine
neural network models to process graphs, we assume that the attributes are encoded
as real values such that the label is a real vector, i.e.L(v) ∈ L ⊂ IRq . A labeled graph
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is defined as a triple GL = (V, E,L), being L : V → L the node labeling function
that allows us to retrieve the label L(v) ∈ L of the node v ∈ GL . To simplify the
notation, the label of node v will be directly referred to as lv ∈ IRq .

Given a graph, we can define several properties that depend on the topology of its
connections. In particular, in the following, we will consider the neighbourhood of
a given node v as the set of nodes directly connected to it. Formally it can be defined
as ne[v] = {u ∈ V |(u, v) ∈ E ∨ (v, u) ∈ E}. For undirected graphs there is no need
to distinguish between the pairs (u, v) and (v, u), whereas for directed graphs the
concept of neighbourhood considers both incoming and outgoing arcs. In fact, in this
latter case, the parents of a node v are defined as pa[v] = {u ∈ V |(u, v) ∈ E} and
the children of v as ch[v] = {u ∈ V |(v, u) ∈ E}. In this case, ne[v] = ch[v]⋃ pa[v]
holds. In the definition of the GNN processing scheme we will refer to the general
concept of neighbours of a node as described before, without making any distinction
between directed or undirected graphs, to simplify the presentation. In practice, the
GNN architecture can be designed to implement a different processing to incoming
arcs with respect to the outgoing ones [20]. Finally, we define the node degree as the
cardinality of its neighbourhood |ne[v]|.

2.2 Graph Neural Networks

The computation of the GNN is performed locally at each node by means of a
state vector xv ∈ IRs , that stores a hidden representation which depends on the node
and its context in the graph. In fact, the state is computed for each node through a
diffusionmechanismbased on the graph topology, that allows us to locally encode the
information concerning both the graph structure and the node labels. The encoding
is performed by a learnable function that can be tuned to extract the relevant features
to obtain the desired processing. The state variables xv, v ∈ V , are additional labels
stored into the graph nodes that represent the state of the computation. Thus, the
GNN model can be thought as a set of identical computational units that calculate
a local state for each node, based on the states of its neighbours and on its label
and links (see Fig. 1). The computational scheme is obtained by exploiting a state
transition function f that models how xv is obtained given the context of v. Its
arguments are the label lv of node v, the states and the labels of the neighbours,
xne[v] and lne[v] respectively. The transition function will also depend on a vector of
parameters θ f ∈ IRp, that are adapted during the learning process. Hence, the state
update equations can be formally expressed as

xv = f (lv, xne[v], lne[v]|θ f ) . (1)

The state transition function f can be realized by an Artificial Neural Network
(ANN). The network will have an appropriate architecture to deal with a variable
number of arguments (i.e. inputs), since the degree of each node v can be different.
Apart from this requirement, that will be clarified in the following showing a possible



Deep Neural Networks for Structured Data 35

Fig. 1 Local state
computation with the GNN
state transition function

implementation, the number of outputs will be equal to the state space dimension s
and the network architecture will be defined by the choice of the type and number of
neurons, the number of layers, etc., as for the classical ANNs. The parameter vector
θ f will collect all the neural network connection weights. In this processing scheme,
the same function (i.e. the same weight vector) is exploited for all the nodes of the
input graph.

Given the state transition function and an input graph G, the state computation
yields a vector assigned to each node v in G. By ordering the nodes, we can stack all
the node variables into a single global vector x ∈ IRs|V |. Similarly, all the node labels
define the vector l ∈ IRq|V |. Given this notation, the global computation carried out
on the input graph is described by the equation

x = F(x, l|θ f ) , (2)

being F the global transition function, whose entries result from stacking the tran-
sition functions f applied to each node v, with an appropriate projection of the two
vectors x and l to yield the variables related to the neighbourhood of v. The vector
of the learnable parameters is still θ f , since all the local instances of the transition
function share the same weights.

The result of the state computation is the vector x that satisfies Eq. (2), that is a
system of non–linear equations in the variable x. This equation can have multiple
solutions, but we are interested only in those cases when the solution is unique. This
requirement can be satisfied if the function F is a contraction map with respect to
the variable x. In this case, Eq. (2) has a unique solution by the Banach Fixed Point
Theorem [21]. The condition, that guarantees the function F to be a contraction map,
requires the existence of a valueμ,μ ∈ [0, 1), forwhich ‖F(x, l|θ f ) − F(y, l|θ f )‖ ≤
μ‖x − y‖, for any x and y. This condition can eventually be forced in the learning
process.
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TheBanachTheoremdefines also the procedure to compute the solution of Eq. (2).
In fact, the fixed point can be obtained by an iterative process of state update with
the equation

x(t + 1) = F(x(t), l|θ f ) , (3)

being x(t) the state value at iteration t . The sequence defined by the recurrent equa-
tion (3) converges to the fixed point when F is a contraction map. The iterative
computation is performed locally at each node by applying the state function as

xv(t + 1) = f (lv, xne[v](t), lne[v]|θ f ) , (4)

until the states converge to the solution. Notice that the final state is dependent on
the input graph. The node labels are explicitly considered as an input of the compu-
tation, whereas the graph topology is implicitly exploited by the diffusion process
among neighbour nodes in the graph. In fact, the computation is performed by a set
of computational units, connected with the same topology of the edges in the input
graph. When processing different graphs, the same units are arranged in a different
structure, yielding different encodings. This computational structure constitutes the
encoding network (see Fig. 2). This network is obtained by replicating the compu-
tational unit f for each node and by connecting the units using the same topology
of the edges. The same transition function yields different encoding networks when
applied to different input graphs.

Fig. 2 The encoding and the output networks (b) when processing an input graph (a). The graph
neural network, realizing f (. . . , θ f ) and g(·, θg), is replicated on the input graph nodes and its
weights, θ f and θg , are shared among all the replicas
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The output vector ov ∈ IRm is computed at each node v, depending on its label
and state. The local output function g is exploited at each node after the computation
of the fixed point for the state vector. g is parametrized by a vector of adaptable
parameters θg, that can be adjusted during the learning process. For each node v the
output is calculated as

ov = g(xv, lv|θg) . (5)

Figure2 depicts the output computation as obtained after the state encoding step.
To implement a graph–focused function, τ (G), the output is considered only for
a predefined node having specific properties [20]. As shown in Fig. 2, the Graph
Neural Network is defined by the functions f and g.

The function g can be realized by a feedforward neural network with s + q inputs
and m outputs, without any other restriction on the network architecture. The param-
eter vector θg collects the neural network connection weights.

The model for the state transition function f depends on the properties of the
considered graphs. For positional graphs with bounded degree, i.e. graphs in which
the edges connected to a node have a predefined order, the function f has a predefined
maximum number of arguments and there is a given correspondence between each
argument and an edge attached to the node.Hence, f can be realized by a feedforward
neural network with s outputs and a fixed number of inputs. If dM is the maximum
node degree, the number of inputs will be q + dM(q + s). For nodes having a degree
d < dM some arguments will not be available and a specific nil vector can be
exploited to encode the label or the state corresponding to the missing edges (f.i.
a vector with all 0s can be used as nil). This approach is feasible when dM is
sufficiently small and the variability of the node degree in the input graphs is not too
high. If the graphs are non–positional, f can be realized with a model that makes it
independent of the neighbourhood size and of the edge order. In this case, the state
update function can be implemented as

xv(t + 1) =
∑

u∈ne[v]
h(lv, xu(t), lu |θh) . (6)

The function h computes the contribution of each node u in the neighbourhood
of v and all the contributions are summed up yielding the independence from the
edge order and number. Two different implementations (linear and neural) for the
function h in Eq. (6) have been proposed in [11, 20]. For neural GNNs, the function
h is implemented by a feedforward neural network with 2q + s inputs and s outputs.
However, this solution may not produce a contraction map for any value of θh . In this
case, the learning objective can be defined as to include a cost term that penalizes
mappings that are not contractions.
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2.3 The GNN Learning Procedure

We consider a supervised learning scheme in which a supervisor provides a set of
examples with a target value for the network output. In this case, each example
consists of a graph and a target value for one or more of its nodes. Formally, the
learning set is defined as

Le = {
(G p, vpj , tpj )| G p ∈ G, p = 1, . . . , P,

vpj ∈ VG p , tpj ∈ IRm, j = 1, . . . , n p
}
,

(7)

where G is the set of graphs provided as examples. For the input graph G p, the
supervisor may provide a set of target vectors tpj , j = 1, . . . , n p, for a subset SG p =
{
vpj ∈ VG p , j = 1, . . . , n p

}
. For graph–focused tasks, the supervision is given only

for one node and a single target is provided for each graph in G. The learning process
corresponds to the minimization of an objective function that penalizes the error of
the GNN response with respect to the given targets. Usually, the quadratic loss is
exploited, defined as

E(θ|Le) = 1

P

P∑

p=1

e(θ|G p) = 1

2P

P∑

p=1

∑

vpj ∈SG p

||tpj − ovpj (θ|G p)||22 , (8)

where θ = [θ′
f θ

′
g]′ collects the parameters of the encoding and the output functions.

When the transition and output functions, f and g, are differentiable with respect to
θ, the loss E(θ|Le) is a differentiable function and it can be minimized by gradient
descent. In fact, it can be proven (see Theorem 1 in [11]) that, when F(x, l|θ f ) is
a contraction mapping, the loss E(θ|Le) depends on its unique fixed point that is a
continuous and continuously differentiable function of the parameters θ f .

If the model, selected for the state transition function f , is not guaranteed to
implement a contraction for any value of the parameters θ f , the learning objective
must include a term to penalize non–contractive behaviours. The penalty term is
obtained from the gradient of the function F as

p(θ f ) = βL

(∥
∥
∥
∥
∂F(x, l|θ f )

∂x

∥
∥
∥
∥

)

, (9)

where β is the weight of the penalty term, L(y) is usually the hinge max(0, y − μ),
able to penalize values of y greater than the target contraction constant μ ∈ [0, 1)
(see [11] for more details). Given the objective function of Eq. (8), with eventually
the addition of the penalty in Eq. (9), for each graph G p ∈ G, the gradient of the loss
with respect to the parameters θ is computed by the following procedure.

1. State computation. Starting from the initial state x(0|G p), the state transition
function

x(t + 1|G p) = F(x(t |G p), lG p |θ f )
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is iterated until the condition ‖x(T |G p) − x(T − 1|G p)‖ < ε is verified at the
iteration T , where ε > 0.

2. Error evaluation. The output network g(xvpj (T |G p), lvpj |θg) is used to compute
the outputs at the supervised nodes vpj ∈ SG p and the partial loss e(θ|G p) of
Eq. (8) is accumulated.

3. Error backpropagation and gradient computation. The value of the partial gradi-
ent ∇θe(θ|G p) is computed by error backprogation on the output and encoding
networks, and the computed value is accumulated to yield the total gradient, as
∇θ E(θ|Le) = 1

P

∑P
p=1 ∇θe(θ|G p).

After processing all the graphs inLe, the total gradient∇θ E(θ|Le) can be exploited
to update the GNN weights using a gradient descent rule as, for instance,

θk+1 = θk − ηk+1∇θ E(θ|Le)|θ=θk , (10)

where k is the learning epoch, the gradient of E(θ|Le) is computed for θ = θk and
ηk+1 is the learning rate. An adaptive learning rate scheme can be possibly employed
in the learning process. The initial weights θ0 are usually set to small random values
(f.i. sampled using a uniform distribution with mean 0). The learning process can
be stopped after a given maximum number of epochs, when the loss is below a
predefined value, or when the gradient norm is below a threshold.

The error backprogationon the encodingnetwork follows a scheme that is obtained
by combining Backpropagation Through Structure and Backpropagation Through
Time [22]. In fact, the relaxation process, applied for T steps to compute the state
fixed point, corresponds to a layered unfolding network having T layers, where
each layer is a replica of the function F(x(t |G p), lG p |θ f ) for a given time step
t = 1, . . . , T . The output of layer t is the input for layer t + 1, such that their units
are interconnected by the state variables x(t). The resulting unfolding network of
Fig. 3 has a multilayer structure, where the connection topology between adjacent
layers is determined by the edges in the input graph. The replicas of the function F
in the unfolding network share the same parameters θ f . Finally, the state units of
layer T are connected to the output functions to compute the GNN outputs.

Fig. 3 The unfolding network obtained when computing the state on an input graph G p
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The unfolding network represents an efficient schema for the computation of
the gradient of the loss function with respect to the GNN parameters θ. In fact,
the original Backpropagation algorithm for feed–forward neural networks can be
directly exploited on the unfolding network (see [20] for more details).

3 Layered Graph Neural Networks

The computation performed by GNNs can be layered to yield a deep processing
architecture [23]. Given an input graph G in the learning set, we can add GNN layers
such that each new layer exploits the original graph and the computation performed
by the GNN of the previous layer. Formally, the GNN of layer k, N k , will process
a graph Gk−1 having the same topology of G = G0, i.e. V k−1 = V and Ek−1 = E ,
but enriched labels assigned to the nodes. In particular, three different cases can be
considered for layers k = 2, . . . , K , being K the number of layers:

1. the node labels in Gk−1 are obtained by concatenating the original labels inG with
the outputs computed by the previous GNN layer, i.e., lk−1

v = [lv, ok−1
v ] ∈ IRq+m ,

where lv ∈ IRq is the label of node v in G and ok−1
v ∈ IRm is the output of the

GNN N k−1 on node v;
2. the node labels in Gk−1 are the concatenation of the original labels with the node

states computed by the GNN in the previous layer, i.e., lk−1
v = [lv, xk−1

v ] ∈ IRq+s ,
where xk−1

v ∈ IRs is the state for node v computed by N k−1;
3. the node labels in Gk−1 are obtained by adding both the outputs and the states

computed by the GNN in the previous layer to the original labels, i.e., lk−1
v =

[lv, xk−1
v , ok−1

v ].
The first layer k = 1 will process the original graph. The resulting computational
scheme is depicted in Fig. 4. The outputs of the Layered GNN (LGNN) are the
output values computed by the last GNN layer N K .

For instance, let us assume that the input G represents the region adjacency graph
(RAG) of an image, i.e. a graph where nodes stand for homogeneous regions of the
image and edges denote their adjacency relationships. Moreover, let us assume that
the goal of the application is that of classifying the regions, i.e. the nodes, according
to the class of the object they represent. In such a case, the first GNN takes in
input a RAG G and produces a preliminary classification of the nodes. The resulting
classification (and/or the states of the GNN, as described in points 1–3) is added to
the labels of the RAG G in order to construct the graph G1. Then, the second GNN
is fed by G1 and the procedure is repeated for all the layers of the LGNN.

The LGNN is trained by adding one layer after the other, until the last one. When
training layer k, the weights of the GNNs in the previous layers can be kept fixed
or can be fine tuned, as it happens in deep learning frameworks. Each network is
trained using the original targets and the graphs constructed by the previous layer, as
described before. The targets of each supervised node v in Gk−1 are equal to original
targets, i.e. tk−1

v = tv .
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Fig. 4 The Layered GNN processing scheme

The layer–by–layer training proceduremakes the learning feasible, reducing prob-
lems caused by the gradient vanishing effect due both to the network depth and to
the long–term dependency impact on the graph. Each layer develops its expertise
exploiting the supervisions provided in the learning set. The stacking of the layers
allows the upper levels to take advantage of the knowledge already extracted in the
previous layers, as it happens in other cascade neural architectures, following in some
sense a boosting scheme. Basically, the added layers can focus their processing only
to correct the errors made by previous layers. This processing scheme can reduce
the long–term dependency problem, i.e. the difficulty in learning dependencies that
involve nodes far from each other in the graph (distance is in terms of the shortest
path through the graph edges). In fact, for a given layer k, the state xk

v and the output
ok
v are able to summarize information up to a certain distance in the neighbourhood
of node v. The GNN in the following layer will be actually able to exploit the infor-
mation related to a larger neighbourhood since the nodes in ne[v] contain additional
information on their context in the added input components.

4 Applications to Pattern Recognition

We used an artificial dataset and two real–life benchmarks to test the LGNN model.
In particular we decided to test on: clique localization, classification of mutagenic
molecules and protein secondary structure prediction.

4.1 Dataset Descriptions

The clique localization problem Given an undirected graph G = (V, E), a clique
of size k can be defined as a complete subgraph of k nodes (see Fig. 5). The clique
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Fig. 5 An example of a
clique in a graph: the gray
nodes (A, B, C, D, F, G) are
part of the maximum clique,
while the white node (E) is
out of the identified subgraph

localization can be identified as a particular instance of the subgraph localization
task. Maximum clique identification in a graph is NP hard [24] and it has been
widely addressed in the computer science literature. This is due to the fact that the
applications of maximum clique algorithms are widely spread among various disci-
plines since cliques are associated with important network properties. For example,
in chemistry, bioinformatics and computational biology, clique detection is exploited
to identify similarities amongmolecules, and, in particular, for drug database screen-
ing [25]. Another important application of clique searching is for protein structure
comparison. The understanding of such structure is in fact vital for the identification
of protein functionalities and for the study of protein interactions [26].

Clique–detection methods are also used for clustering gene expression data [27].
With most of the recent DNA sequencing technologies, the task of finding interesting
patterns in longDNA strings is one of themost challenging. In [27], this problemwas
approached by implementing a parallel algorithm for Maximum Clique detection.
Other interesting applications of maximum clique localization are related to other
fields. For instance, in social network analysis, cliques correspond to communities,
while in the World Wide Web they represent web clusters that share common topics
[28]. In [29], a new method for studying and defining overlapping communities was
proposed, by defining universal network features and showing their application to
the case of protein–protein interaction and web community detection.

The dataset used in our experiments is made of 1, 000 random graphs having 20
nodes, containing a clique of size 5. TheGNNwas trained to approximate the function
defined by τ (G, v) = 1 if v belongs to a clique, and τ (G, v) = −1, otherwise. This
problem setting was inspired by similar experiments described in [30].

The Mutagenesis problem The study of mutagenic compounds is a well known
chemistry and biological challenge. Such compounds may be the cause of cancers
and damages to DNA strand molecules [4] as well as they can be responsible for
ageing, evolution and human genetic diseases [31]. Therefore the study of muta-
genic compounds is of particular interest for pharmaceutical industries, to identify
molecules that potentially have a mutagenic activity.

The dataset [4] collects data for 230 nitroaromatic compounds. Such compounds
are commonly used as intermediate subproducts of industrial chemical reactions. In
this case, the objective is to learn how to predictmutagenicmolecules.Many different
types of information are included in the dataset, for example the structure of the atom
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Fig. 6 Mutagenicity
classification. The
computation is
graph–focused: the
mutagenicity of the molecule
is computed at node H

bonds and the chemical properties of the molecules. The graphical representation of
the compound was designed to encode the bond structure. In particular, the nodes
represent the atoms and the edges represent the bonds between them.

Each node is labeled using the information on the chemical properties. The label
is a 13 dimensional vector, and it is constituted by features regarding the single atom
and also by 4 global features [4]. The single atom features represent the charge of the
atom and a one–hot representation of the atom type. The global features, on the other
hand, represent the lowest unoccupied molecule orbital, the water/octanol partition
coefficient and two precoded structural attributes. Moreover, we decided to adopt
the following convention: in each graph, a single node is supervised. This has been
chosen to be the first atom of the original dataset (see Fig. 6). The output is 1 in the
case of a mutagenic molecule and −1 in the opposite case.

Secondary protein structure prediction Predicting the protein structure from the
amino acid sequence is considered a fundamental task in molecular biology. The
high throughput of large scale genome sequencing makes available a huge amount
of sequence data, that can be exploited by the most recent machine learning and
statistical tools to obtain reliable prediction models for protein secondary structures.
Helixes, strands and coils are considered themost typical secondary structure regions.
The knowledge of the secondary structure is particularly important, as it can be used
for the tertiary structure prediction. This last one is of particular interest, as it defines
the 3D amino acid positioning and, therefore, determines the functionality of the
protein itself.

Secondary structure prediction can be easily modeled as a classification problem
by using a graphical structure. Amino acids can be represented as nodes, whereas
edges stand for peptide bonds. In this way, we can encode the protein primary struc-
ture. The final objective becomes therefore to predict one of the three categories
mentioned before, which the amino acid belongs to.

This task can be faced with GNNs learning a function τ (G, v) that associates
the class of the region containing the amino acid corresponding to the node v in the
protein represented by the graph G.
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The dataset is composed by 2171 proteins and 344, 653 amino acids [32]. As
before, we store the amino acid available features as a 20 dimensional vector, that
represents the one–hot encoding of the type of amino acid. A three–dimensional
vector is the target associated to each node, and this contains information regarding
the one–hot encoding of the three classes, i.e. helix, coil or strand.

4.2 Experimental Settings

The baseGNNmodel used in the experiments is realized as follows.We implemented
the transition function f and the output function g as a static networkwith three layers
(where one is a hidden layer). In particular, we used a linear activation function in
the output layer and a hyperbolic tangent function as activation for the hidden layer.
The number of hidden units for f and g networks are 5, with a 2–dimensional
state. We initialized the GNN weights randomly, in the range [−0.1, 0.1]. For each
experiment, we split the dataset into three parts: training, test, and validation. The
clique localization training set has 600 graphs, while the validation and the test
contain 200 examples each. We used a 10–fold cross validation strategy for splitting
the mutagenesis dataset and a 5–fold cross validation procedure for the secondary
protein structure prediction. This was done accordingly to the papers in which the
datasets were originally used.

By a trial–and–error procedure, we chose 2000, 500 and 1000 as the number
of training epochs for the clique localization, the mutagenesis and the secondary
protein structure prediction, respectively. The network generalization performance
was calculated every 10 epochs on the validation set. Then, the network yielding the
best validation error was evaluated on the test set.

We exploited the Resilient BackPropagation (RPROP) algorithm for the learning
procedure, setting its parameters to standard values [33]. We report the standard
deviation and the average accuracy on five repetitions of each experiment. For the
case of the clique localization task, we rebuilt the dataset and reinitialized theweights
at each repetition. For real–world benchmarks, instead, weights were recomputed for
every fold. More precisely, the reported results consist in the macro–average and the
macro–standard deviation.

4.3 Experimental Results

Figure7 shows the results achieved on the clique localization problem. The plots cor-
respond to the three LGNN architectures: propagation of the previous layer output
(first column), of the previous layer state (second column), and of the previous layer
state and output (third column). In the plots, points represent the average accura-
cies, while vertical bars represent their standard deviations. These results have been
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Fig. 7 Results for the clique localization problem. The plots report the average accuracy and the
standard deviation (vertical bars). Each column shows the results for the three different LGNN
configurations, based on the addition to the labels of the previous layer outputs, of the previous
layer state and of both of them

obtained by varying the number of layers of the LGNN. The result for a standard
GNN architecture with only one layer is reported as the first value.

The accuracy increases with the number of layers, as Fig. 7 shows. This is par-
ticularly clear when the first layer is added, but it appears of less impact when more
layers are added to the architecture. In particular, in this case, we can actually observe
an oscillation of the results. Moreover, the effect is more evident when propagating
the GNN outputs rather than the states. An interesting fact is that using states seems
to have an effect on yielding larger variances. Actually, even if, in theory, the state
contains the information to reproduce the outputs, however the richness of the state
configurations may confuse the learning algorithm, preventing it to extract the infor-
mation relevant for the specific task. However, overall, we can say that the proposed
multilayer architecture always performs better than the standard GNN for all the
considered cases.

The average accuracy and the standard deviation for the LGNN in the case of the
mutagenesis and the secondary protein structure benchmarks are shown in Fig. 8, in
the first and in the second row, respectively. We only report the results in the case
in which the node label is enriched by the previous layer output, since this config-
uration was shown to yield the best results in the case of the artificial dataset. For
the secondary protein structure benchmark, the trend of the accuracy with respect to
the number of layers has a similar behaviour to that observed for the clique dataset.
The results for the mutagenesis dataset, instead, show a larger variance for the test
set. Even though the average accuracy improves, the variance is too large to con-
sider such an improvement statistically significant. Overfitting issues may cause the
larger variance, as a comparison of test and training sets suggests. In particular, the
dimension of the mutagenesis dataset is small and this can generate problems in the
generalization. This is a well known issue in machine learning: when the number of
layers increases, the architecture is able to approximate a larger set of functions, but if
the training set is not statistically significant with respect to the real data distribution,
the generalization capabilities of the model may be hindered. We also performed
experiments with a single layer GNN and an increased number of states and hidden
neurons in order to understand if the performance improvements for LGNNs were
actually due to the fact that we are using a larger set of parameters. We evaluated
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Fig. 8 Average accuracy and standard deviation (vertical bars) on the mutagenesis (first row) and
on the secondary protein structure (second row) benchmarks. The first and the second column show
the results on the training and the test set, respectively

GNNS with 5, 15, 25, 35 hidden nodes, in the output and in the transition networks,
and with state dimensions varying in {2, 5, 10, 15}. In Table1, we show the best per-
formance achieved together with the best configuration. These results show that the
same performance of an LGNN architecture cannot be obtained only by increasing
the number of parameters in a shallow GNN. Moreover, in the case of an LGNN
architecture, the amount of computational resources needed by a k–layered architec-
ture is smaller than those required in the case of a GNN, if we consider the case of a
GNN with k times more parameters or state variables. In fact, we can prove that the
computational time in GNNs is quadratic w.r.t. the state dimension [11].

A comparison with the state–of–the–art on the considered benchmarks was not
a main goal of this evaluation. Nevertheless, it is worth mentioning that the mean
accuracy obtained by LGNNs on the mutagenesis dataset (83.47%) is not far from
the best accuracy reported in literature (88%) [34].

For what concerns the secondary protein structure prediction, the LGNN perfor-
mance is 10% smaller than the one achieved by Porter [32]. However these two
results are not directly comparable. In fact, Porter exploits also a pre– and a post–
processing methodology, that was not applied in the reported experiments, due to
time and resource constraints. The classifier used in Porter is based on recursive neu-
ral networks (RNNs). GNNs and LGNNs are an extension of RNNs and, therefore,
we expect that, by applying the Porter pre– and post–processing procedures, similar
or better results can be achieved.
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Table 1 Accuracy for the best configuration of a single layerGNNwhenvarying the state dimension
and the number of hidden nodes, both for transition and output networks.

State dim. Num. hiddens Accuracy

Clique Loc. 10 10 97.75

Mutagenesis 2 5 83.47

Secondary Struct. 15 5 60.53

4.4 Transient Pocket Prediction

In the last few years, there has been an increasing interest in developing algorithms
for finding transient pockets on the protein 3D surface. Transient pockets are cavities
that can appear and disappear on a protein surface due to the protein dynamics.
As common pockets, transient pockets can contain active sites, useful for chemical
interactions with ad hoc ligands. Protein–protein and protein–ligand interfaces are
in fact of particular interest for pharmaceutical companies, since the identification
of new disease pathways leads also to the development and identification of new
drug compounds [35]. The geometrical similarity between the protein surface in
the vicinity of the active site and the target molecule gives an important insight to
establish how good is a putative pocket to act as an anchorage for a specific drug.

Severalmethodologies and algorithms have been applied to this task. For example,
the Q–site finder [36] is a method used to identify pockets which are unable to acco-
modate a particular compound, due to potentially conflicting geometries or because
of their small size. Other interesting and widely used softwares are LIGSITECSC
and LIGSITE, that take into account the information regarding the protein surface
in the vicinity of the pocket to establish its usability [37]. On the other hand, Pock-
etPicker [35] is a grid–based approach used for the prediction of the presence of a
binding site inside the pocket. PocketPicker has been successfully applied to a set of
protein–ligand complexes and an extensive evaluation was carried out to establish
the quality of the protein binding site prediction.

Nevertheless, standard methods for protein structure prediction do not allow to
efficiently and affordably localize transient pockets due to their short persistence
and complex pattern, whereas connectionist models for structures seem to capture
sufficient information in the vicinity of the putative pocket to predict its appear-
ance, dimension and duration. In particular, in drug discovery, it often happens
that many molecules of apparently unrelated structures are active on the same drug
target. In this case, constructing a complete edge–weighted graph for describing
drugs — with atoms as vertices and edge weights that stand for interatomic dis-
tances —means finding the Maximum Common Subgraph between them, on which
a clique–detection algorithm can be efficiently applied [38]. Recently, the described
approach has been also extended to the case of the identification of complemen-
tary protein surfaces. This is particularly important for biomolecules docking. In
[39], a graph kernel method is presented for the prediction of DNA–binding sites
with proteins. Labeled graphs are used to model the local structure of the two
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macromolecules, searching for possible similarities. Finally, in [40], surface local
motifs, that are frequently observed in a specific protein group, are extracted, to
establish — via common subgraph matching — if they are able to accommodate
similar molecules.

AlsoGNNs and,more specifically, LGNNs, can be used to predict both the appear-
ance and the dimension of pockets and, thanks to the incremental learning procedure,
implemented by the cascade of networks, they are also able to take into account infor-
mation not strictly related to the neighbourhood of the pocket, allowing to predict in
advance, with respect to molecular dynamics models, the formation of a new pocket.
Preliminary experimental results actually show both a good accuracy and a big time
gain compared with classical simulations of molecular dynamics.

5 Conclusions

Graphs are commonly adopted as abstract representations for complex data, including
DNA sequences, protein structures, documents, text, and images. In pattern recogni-
tion problems, graphs have been used since the early ’70s, when they were employed
for classifying visual patterns, especially in structural methods. In these approaches,
objects are considered as constituted by “basic entities” (i.e. parts of the object
homogeneous with respect to some visual features) related to each other. Under this
assumption, node labels are descriptors of the parts, whereas edges encode rela-
tionships among them. The use of a pattern representation based on graphs implies
reformulating all the standard tasks of a recognition system in terms of these data
structures, such as classification, that in many approaches requires the comparison
between an input and a set of prototypes, and learning, that consists in the process
of creating a model for a set of classes given a set of known samples.

To this aim, in the present chapter, we have presented Graph Neural Networks
(GNNs) and, in particular, a composite, deep architecture, referred to as Layered
GNN (LGNN). In this model, each layer is an expert, implemented by a GNN, that
solves the given task exploiting the original data and the computation provided by the
previous layers. Intuitively, training the cascaded architecture layer by layer can help
in summarizing, within the state of each node, the information related to gradually
increasing neighbourhoods. Such an intuition, i.e. that the LGNNs can deal with and
reduce the long–term dependency problem, when processing large structures, was
experimentally investigated on both artificial and real–world data.

Nevertheless, the strategy, proposed to extend the basic GNNmodel, is just one of
a set of potential alternatives, aimed at recursively learning deep structures. In fact,
when the problem to be solved can be naturally partitioned into subtasks, each of them
can be addressed separately, gaining partial solutions that can be subsequently used
to move towards the overall solution. An example of such a situation is represented
by the clique localization problem: a node v, not belonging to an N–clique, is not
certainly part of a clique of dimension N − 1; instead, a node that belongs to an N–
clique can possibly belong also to an (N + 1)–clique. Of course, this decomposition
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strategy is a less general approach to efficient learning in GNNs, but a preliminary
experimental evaluation reports significant performance improvements whenever
it is applicable. Another possibility for learning large structured data consists in
decomposing the procedure into two steps, first solving a classification task given the
graph labels— based on standard classifiers—, and then exploiting this information
to enrich the original labels, keeping intact the graph topology. Even in this case,
preliminary results show improved performances w.r.t. the original GNN model.
Finally, different combinations of these methods may be considered as the object of
future research.
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Abstract Computational intelligence and pattern recognition techniques are gaining
more and more attention as the main computing tools in bioinformatics applications.
This is due to the fact that biology by definition, deals with complex systems and that
computational intelligence can be considered as an effective approach when facing
the general problem of complex systems modelling. Moreover, most data available
on shared databases are represented by sequences and graphs, thus demanding the
definition of meaningful dissimilarity measures between patterns, which are often
non-metric in nature. Especially in such cases, evolutive and fully automatic machine
learning systems are mandatory for dealing with parametric dissimilarity measures
and/or for performing suitable feature selection. Besides other approaches, such as
kernel methods and embedding in dissimilarity spaces, granular computing is a very
promising framework not only for designing effective data-drivenmodelling systems
able to determine automatically the correct representation (abstraction) level, but
also for giving to field-experts (biologists) the possibility to investigate information
granules (frequent substructures) that have been discovered by the machine learning
system as the most relevant for the problem at hand. We expect that many important
discoveries in biology and medicine in the next future will be determined by an
increasingly stronger integration between the ongoing research efforts of natural
sciences and modern inductive modelling tools based on computational intelligence,
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1 Introduction

1.1 Bioinformatics, Computational Intelligence and Pattern
Recognition

The word ‘bioinformatics’ took different meanings since its introduction around
forty years ago [17]. The definition of an autonomous ‘bioinformatics’ field started
with the need to efficiently analyse and store increasing amounts of sequence data.
Consequently, in the first years of the application of computational science in biology,
bioinformatics was mainly devoted to technical and instrumental problems with no
relation at allwith the core of biological sciences.Computational scientistswere hired
to give a service to biologists because ‘theywere able to playwith computers’ in away
not too dissimilar of any laboratory technician taking care of a spectrophotometer
properly working.

It isworth noting that the relationbetweenbiology and statisticalmethodology (the
first root of pattern recognition approaches in life sciences) started with completely
different premises. From the beginning of their relation, in the first years of the last
century, biology and statistics interacted on a peer-to-peer basis and many statistical
tools were developed in the core of biological community (e.g. Ronald Fisher, one of
the fathers of modern statistics, was a geneticist and he developed linear regression
in the frame of human genetics and evolution studies [65, 84, 95]).

During the years, the relation of biology with bioinformatics became something
more than a purely occasional affair and approachedv the ‘true-love wedding’ level
of the one-hundred years lasting relation between biology and statistics. Notwith-
standing that, the term ‘bioinformatics’ is still largely prevalent with respect to other
terms lexically more suited for describing the growing maturity of Biology and
Computational Intelligence relation, such as ‘computational biology’ and ‘systems
biology’.

Besides the terminology, pattern recognition and computational intelligence tech-
niques are nowadays gaining attention from the bioinformatics community [43,
71]. Many machine learning problems that can be instantiated in both biology and
medicine are defined on domains in which each entry of the database at hand is a data
structure far more complex than a plain real-valued feature vector, such as sequences,
graphs, images or often evenmore complex structures arising from the concatenation
of different data types (unconventional, structured data).Dealingwith such structured
domains usually demands to be able to define custom and meaningful (dis)similarity
measures between elements in such unconventional domains, relying on sequence
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and graph matching techniques. Specifically, networks (graphs) are nowadays the
most powerful approaches to describe the complexity behind biological systems.

In fact, the application of computationally intensive methods to biological prob-
lems became strictly intermingled with the actual frontiers of biomedicine and went
well beyond the biological polymers sequence analysis, directly tackling the archety-
pal form of biological objects from protein science to ecology: complex networks,
interpreted as simplified, yet powerful, representations of complex systems.

Complex systems are everywhere in nature, as well as in most artificial systems
designed and built bymankind (telecommunications and energy distribution systems,
as instances). Complex systems are by far more frequent than ‘simple’ ones, which
are the true outliers in our world. However, a precise definition of what should be
a ‘complex system’ is still a disputable issue. This challenge is due to the fact that
complex systems are nowadays a research topic faced by many different scientific
areas, such as mathematics, biology, physics, chemistry and engineering, each one
bringing its own point of view, concepts and terms into the discussion. Since 1995,
when John Horgan published his famous paper entitled “From Complexity to Per-
plexity” [36] evidencing the lack of a shared and precise definition about complex
systems, the debate is still well alive. However, most authors agree in considering
the following characteristics as necessary conditions to consider a given system as
‘complex’:

• The system is composed by many mutually interactive elements
• Elements behaviour is characterised by nonlinear dynamics
• The graph representing the causal relationships between elements contains loops

Elements are usually defined as atomic entities at the semantic level chosen for sys-
tem description. For example, proteins can be considered as atomic entities in the
network of chemical reactions in a biological cell; neurons are the basic constituents
of the brain, when focusing on purely computational issues; each individual can be
considered as an atomic entity in an ecosystemor in a social network. These examples
of complex systems underline a property frequently found in such systems, concern-
ing the fact the usually complexity arises in the form of a hierarchical organisation,
as nested Systems of Systems. From this last point of view, it is possible to consider
causal relations between elements belonging to different levels in the hierarchical
organisation. When the network of these relations contains a loop, sometimes it is
referred to as ‘strange loop’, i.e. a causal loop between different levels of the hierar-
chy [35]. This property is strongly related with the emergence of the most interesting
behaviours of a given Systems of Systems, when considered as a whole.

In a fundamental paper appeared in 1948 entitled “Science and Complexity”
[92], WarrenWeaver, one of the fathers of modern information science together with
Claude Shannon, proposed a tri-partition of science styles.

Scientific themes can be sub-divided into:

1. Problems of simplicity
2. Problems of disorganised complexity
3. Problems of organised complexity
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The first class (simplicity) roughly corresponds to problems that can be solved in
terms of differential equations. These ‘simple problems’ are the ones allowing for a
high degree of abstraction (e.g. a planet could be considered an abstract dimensionless
‘material point’ for sketching general gravitational laws on the pure basis of its mass
and distance from the sun).

Problems belonging to the second class (disorganised complexity) allow for a
higher degree of generalisation than first class problems without losing in precision.
These problems imply a somewhat opposite style of reasoning: the efficiency does
not stem from the possibility to get an efficient abstract description of the involved
players, but from totally discarding such ‘atomic’ knowledge in favour of very coarse
grain macroscopic descriptors corresponding to gross averages on a transfinite num-
ber of atomic elements. This is the case of thermodynamic parameters (e.g. pressure,
volume, temperature, etc.). The two above mentioned approaches have drastic limi-
tations of their applicability range: class 1 needs the presence of very few involved
players interacting in a stable way with a practically null boundary conditions effect,
whereas class 2 needs very large numbers of particles with only negligible interac-
tions among them.

Problems of organised complexity (class 3) arise in all those situations in which
many (even if not-so-many as in class 2) elements are involved with non-negligible
interactions among them. This is the ‘middle kingdom’ of complexity, where biolog-
ical systems live and where computational intelligence and pattern recognition can
‘make the difference’.

Network (or graph) is the archetype of organised complexity: a set of nodes (e.g.
genes, brain areas, animal species) are each other connected by mutual correlations
(edges). The wiring architecture of these graphs can vary in both space and time and
it is of utmost importance to get quantitative similarities and differences among them.
When graphs are adopted to represent only topological information concerning a set
of objects and their relations, the network approach can roughly be described as the
answer to the question “what can we derive from the sole knowledge of the wiring
diagram of a system?” [28, 58].

The most crucial questions at the frontiers of biomedical sciences demands a
reliable answer to the above question. Fields (just to name a few) that are increasing
their formalisation in terms of network representations are: neuroscience at both
clinical and basic research level [11, 68], biochemistry [5], cancer research [94],
structural biology [46], ecology [27].

Moreover, when dealing with fully labelled graphs (where both nodes and edges
are associated with possibly structured data), a fundamental topic is how to define
proper dissimilarity measure between pairs of such patterns (the graph matching
problem [47]).

Modelling a complex system is a matter of identifying the correct level of abstrac-
tion, which usually means to extract a hierarchy of information granules, searching
for the level of the hierarchy better related to the semantic of the problem at hand. At
any level, information granules are nodes of a network, so that the granulation process
must deal with the problem of searching for frequent substructures in labelled graphs
which, in turn, means to define algorithms able to automatically identify suitable
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dissimilarity measures in graph spaces. To this aim granular computing techniques
are nowadays a promising tool.

Keeping this general frame inmind, in order to fix clear boundaries to this Chapter,
a general definition of computational intelligence and pattern recognition is sketched
in the following.

1.2 Theoretical Background and Definitions

Computational Intelligence, formerly known as Soft Computing thanks to the seminal
work [96], is a set of data processing techniques tolerant to imprecisions, uncertainty,
partial truth and approximation (in the data and/or models), aimed to provide robust
and low-cost solutions and to achieve tractability when dealing with complexity.
Such toolbox includes mostly biologically-inspired algorithms, usually exploiting
inductive reasoning (i.e. based on generative logic inferences, such as analogy and
induction) [13]. Basically, in this toolbox it is possible to find:

• Artificial Neural Networks
• Fuzzy Logic and Neuro-Fuzzy Systems
• Evolutionary Computation and derivative-free optimisation metaheuristics, such
as genetic algorithms and swarm intelligence

Such a (heterogeneous) set of computational tools are usually combined to design
powerful data-driven modelling systems. Being able to synthesise a (predictive)
model of a given (physical or even abstract) process P is a fundamental topic in
all natural sciences, as well as in engineering.

Before the pervasive widespread of digital computing devices, modellingwas per-
formed ‘by hand’, mostly relying on field-experts (analytical modelling), consisting
in identifying meaningful quantities and relations among them and finally writing
a system of integro-differential equations as the final output. This implies a clear
understanding of the process at hand to be modelled.

However, when a meaningful sampling S of the process P to be modelled is
available, a second approach (data-driven modelling) consists in writing an algo-
rithm (often suitable to be run on a Von Neumann computing architecture) able to
automatically synthesise a model M of P according to some predefined optimality
criteria. This modelling approach is nowadays usually referred to asMachine Learn-
ing. The design and development of such learning systems is basically an engineering
problem.

A formal machine learning definition has been given in [59], where the author
considers machine learning as the following, well-posed problem:

A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E .

More broadly, machine learning can be defined as a (set of ) complex intelligent
processing system(s), usually defined by means of adaptive learning algorithms,
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able to act without being explicitly programmed or, in other words, able to learn
from data and experience.

Pattern recognition techniques fall under the machine learning umbrella, focus-
ing on classification of objects in a given number of categories (classes). Indeed,
pattern recognition includes a wide range of techniques employed to solve (properly
said) classification problems and clustering problems. Broadly, pattern recognition
techniques can generally be divided into two main families: supervised and unsuper-
vised learning, both of which fall under the aforementioned data-driven modelling
paradigm.

For a more formal definition, let us consider an orientated process P : X → Y
where X is the input space (domain) and Y is the output space (codomain). More-
over, let 〈x; y〉 be a generic input-output sample drawn from P , i.e. y = P(x). In
supervised learning, a finite set S of input-output observations drawn from P are
supposed to be known. Common supervised learning tasks can be divided into two
families, depending on the output space nature: classification and function approx-
imation. In classification, outputs take values from a set of categorical labels, each
of which correspond to a given problem-related class (e.g. “sick” or “healthy” in
a predictive diagnosis/medicine problem). Conversely, in function approximation
(such as regression, interpolation, extrapolation, fitting) outputs take values usually
in the real field. Formally, in the former case, Y is a discrete label set where it is not
possible to establish any total ordering between its elements, whereas, in the latter
case, Y can be considered as a normed space.

In unsupervised learning there are no output classes or labels and regularities have
to be discovered by considering mutual relations between elements drawn from the
input space only. One of the mostly acclaimed unsupervised learning approaches
relies on data clustering [37]. Aim of a clustering algorithm is to discover groups
(clusters) of patterns in such a way that similar pattern will fall into the same cluster,
whereas dissimilar pattern will fall into different clusters. Formally, let S be a sam-
pling of a non-orientated process P and let c be the number of clusters, constrained
to 2 ≤ c ≤ |S|. Aim of a clustering algorithm is to assign to every x ∈ X an integer
h ∈ [1, c] starting from the set of c clusters induced over S.

In both of these cases, the goal of a learningmachine is to build a predictive model
from observations, aiming to discover the underlying model structure. Moreover,
learning machines must be able to generalise their discrimination capabilities to
previously unseen patterns or, in plain terms, they must be able to assign a label
(either a class label or a cluster label) to patterns not belonging to S.

For the sake of completeness, it is worth stressing that clustering and classification
algorithms might as well co-operate and shall not be considered as two diametrically
opposed techniques. For classification purposes, a rather common approach relies on
clustering labelled data without considering their respective labels, then assigning a
label to each cluster by considering, for example, the most frequent label amongst
the patterns belonging to the cluster itself. Finally, each new pattern is classified
according to the nearest cluster’s label. An example of such workflow can be found
in [21, 22].
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1.3 Chapter Scope

Aim of this Chapter is to review and discuss major issues when dealing with pat-
tern recognition problems in non-metric spaces, namely input spaces for which a
(dis)similarity measure might not be metric. As a case study, bioinformatics and
computational biology-related problems will be investigated, since in these fields
not only pattern recognition has emerged as a breakthrough discipline, but it is also
very common to find structured data such as graphs or sequences which lie in non-
metric spaces (see Sect. 1). Moreover, biological processes are excellent examples
of complex systems, strongly suggesting the use of granular computing techniques
for facing the challenging problem of (data-driven) model synthesis.

In Sect. 2 the data-driven modelling steps at the basis of pattern recognition prob-
lems will be described in detail, with particular emphasis on classification and clus-
tering, underlying the role of computational intelligence techniques in designing
pattern recognition systems.

Section3 will regard non-metric spaces, remarking some examples of bioinfor-
matics and computational biology-related problems inwhich structured data are com-
monly used. Moreover, some important issues when dealing with pattern recognition
in non-metric spaces and possible solutions, including information granulation-based
techniques, will be discussed.

In Sect. 4 some real case studies of bioinformatics/computational biology prob-
lems faced by means of pattern recognition techniques design to work in structured
and non-metric domains will be summarised.

Finally, Sect. 5will drawsomeconclusions, stressingmajor advantages of granular
computing-based techniques over more ‘traditional’ approaches.

2 Machine Learning Systems Design

In conventional machine learning, a pattern is defined by a set of measures related
to the original object to be represented, arranged in an array. Each entry (feature)
is usually a real-valued variable. When a metric dissimilarity measure is implicitly
or explicitly fixed in order to compare a pair of such simple data structures, usu-
ally it is referred to as a feature vector. The multi-dimensional space spanned by
feature vectors forms the feature space. A well-defined feature space is able to facil-
itate the modelling process. For example, in the classification (supervised) case a
well-designed feature space yields simpler decision surfaces in terms of structural
complexity (smooth and regular).

Let us consider a plain supervised pattern recognition (classification) problem, as
an instance of the more general machine data-driven modelling paradigm. Recalling
Sect. 1.2, aim of a classification system is to assign an input pattern (represented by
its feature vector) to one amongst the class labels defining the problem at hand.
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Fig. 1 A simplified pattern recognition system workflow

In Fig. 1, the main steps in order to build a classification system are summarised.
First, real-world data, belonging to a generic (and possibly abstract) space X are
casted into a proper data structure S, processable by a computational device, by
means of a representation function f which must ad-hoc be chosen for the problem
at hand.

From structured data S, a given number m of (usually numerical) features is
extracted, thus casting data in S towards Rm (the aforementioned feature space).

The two following blocks are not mandatory, but they have been added for the
sake of completeness and in order to take into account inevitable uncertainties in
data collection and processing. The first block is in charge of data normalisation and
cleaning: the former task is sometimes crucial in order to facilitate the classification
algorithm under particular circumstances1; the latter deals with missing and noisy
data. An intuitive data cleaning task is, for example, outliers’ removal.2 Conversely,
the Feature Selection block allows to select a significant subset of the previously
generated features; indeed, as a general rule, the feature vector should be small, yet
informative,3 in order to avoid undesired phenomena such as overfitting and/or the
so-called curse of dimensionality. Further, it is recommended to get rid of unreliable
features and correlations with existing features. At the end of this selection stage,
feature vectors will lie in a (possibly) reduced features space R

n , where n ≤ m.
Finally, the set of feature vectors will be used in order to train the classification
system, with the final goal of estimating the correct label (identified, for the sake of
ease, as an instance of a nominal value set L in Fig. 1) for any input vector.

For a better understanding of Fig. 1 and all of its steps, let us consider a real-world,
Bioinformatics-related scenario, where X corresponds to the protein space (i.e. the
set of real macromolecules). Let us suppose to represent proteins as graphs (cf.
Sect. 3.1), then f is an (hypothetical) function which must convert macromolecules
into graphs (S). Fortunately, at least from amachine learning point of view,molecular

1For example, let us consider a classification/clustering algorithm driven by the Euclidean distance.
A common problem with the Euclidean distance is that features spanning a wider range of values
have more influence in the resulting distance measure, therefore normalising all attributes in the
same range (usually [0, 1] or [−1,+1]) ensures fair contribution from all attributes, regardless of
their original range.
2In Statistics, outliers are “anomalous data” that for a given dissimilarity measure lie far away from
most observations.
3Non sunt multiplicanda entia sine necessitate (Entities are not to be multiplied without necessity),
commonly known as “TheOckham’s Razor” Criterion (William ofOckham, circa 1287–1347). This
criterion states that among a set of predicting models sharing the same performances, the simplest
one (i.e. the one with the simplest decision surfaces) should be preferred. It is for sure one of the
fundamental axioms for thoughtful and practical data-driven modelling.
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biology helps: 3-dimensional protein structures, mainly gathered by crystallography,
are available in online databases (e.g. ProteinDataBank [7]), therefore it is rather easy
to build graph-based protein representations, either labelled or unlabelled on nodes
and/or edges. The Features Generation block is in charge of extracting numerical
features from graphs in S (cf. Sect. 3.2.1) which, after possible further processing,
will be directly fed into the classification/clustering system.

The training phase for a classification system is a rather delicate task and it needs
a separate discussion. Indeed, thanks to the training phase, the classification system
learns how to map and discriminate input patterns according to their class labels.
In other words, it learns the decision surfaces (decision regions boundaries) which
separates patterns corresponding to different classes.

A usual procedure for measuring in a fair way the generalisation capability of a
classification model consists in splitting the entire available dataset into two non-
overlapping subsets, namely the Training Set and the Test Set. Specifically, as far
as classification tasks are concerned, one shall figure both Training and Test Sets
as composed by 〈x; y〉 pairs (see Sect. 1.2). The classification system, driven by a
training algorithm which strictly depends on the chosen model (e.g. Support Vector
Machine, Artificial Neural Network, K -Nearest Neighbours), will use the Training
Set in order to learn the input-output mapping. The Test Set will then be used on such
trainedmodel,without further adaptive changes, in order to compute its performances
(e.g. percentage of correctly classified patterns). For a thoughtful modelling, the two
sets (albeit distinct) should satisfactorily represent the same statistical properties of
the process to be modelled.

This double-split procedure, however, is not effective since every training algo-
rithm depends on a set of parameters,4 which must be tuned with the ultimate goal of
maximising the generalisation capability of the synthesised model. In order to find
the optimal set of hyperparameters (i.e. model selection) a three-split procedure is
usually employed: the whole dataset is split into three non-overlapping parts, namely
Training Set, Validation Set and Test Set. The training algorithm, driven by the set of
hyperparameters Γ , will again exploit the Training Set and its performances will be
evaluated on the Validation Set. The parameters Γ will be tuned in order to maximise
the performances on the Validation Set and once the optimal Γ � has been found, the
final performances will be evaluated on the Test Set.

In literature, several ways to perform the aforementioned search for Γ � have
been proposed, amongst which grid search, random search [6] and evolutionary
optimisation-based techniques emerge (see Sect. 2.1).

When dealing with unsupervised learning, the scheme reported in Fig. 1 does not
change significantly, apart from the rightmost block. Indeed, rather than feature a
Classification algorithm, a Clustering algorithmmust be placed instead. A clustering
algorithm is in charge of returning groups of data (clusters) according to a given
(dis)similarity measure and to a predefined objective function.

In literature, three main families of clustering algorithms can be found, which
mainly differ for their objective function (i.e. according to which criterion clusters

4Also known as hyperparameters in the Machine Learning terminology.
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should be discovered): partitional clustering (e.g. k-means [51, 52], k-medians [10],
k-medoids [39]), which split the dataset into k non-overlapping partitions; hierarchi-
cal clustering (e.g. BIRCH [97], CURE [32]), where clusters are found by building
a dendrogram in either top-down or bottom-up approach; density-based clustering
(e.g. DBSCAN [24], OPTICS [3]), which detect clusters as the most dense regions
of the dataset.

Clustering algorithms do need some parameters tuning as well. Selecting their
respective optimal value(s) can be done according to some internal validation mea-
sures, such as the Silhouette [74] or the Davies-Bouldin Index [19]. Both manual
or fully automatic tuning by means of evolutionary optimisation techniques can be
employed in unsupervised learning as well.

2.1 Evolutive and Fully Automatic Approaches

Evolutionary optimisation metaheuristics such as genetic algorithms [30], particle
swarm optimisation [40], ant colony optimisation [16] and simulated annealing [41],
are one of the main topics under the Computational Intelligence umbrella (Sect. 1.2).
Such metaheuristics are well suited when the objective function to be optimised is
not known in closed-form and gradient-basedmethods turn to be unfeasible.5 Indeed,
the decision boundary which separates two or more classes in a classification prob-
lem is determined thanks to a sampling of the boundary itself, namely the set of
patterns which compose the dataset at hand, along with their respective class labels.
As introduced in Sect. 2, they are often used in order to automatise the hyperparam-
eters’ tuning for classification and/or clustering algorithms. Further, they can help
in conducting the feature selection phase (see Fig. 1). Indeed, one might ask which
is the most relevant set of features in order to maximise the classification and/or
clustering performances. To this end, evolutionary optimisation metaheuristics play
a huge role.

Let us consider a genetic algorithm as an example. One can consider the genetic
code to have the form [Γ,w] where Γ , as in Sect. 2, is a set of hyperparameters for
the clustering/classification algorithm at hand, whereas w is an m-length real valued
vector which tunes the (dis)similarity measure, core of the algorithm itself.

As far as classification tasks are concerned, a typical workflow might consist
in letting each individual in the evolving population to be considered for training
the classification model on the Training Set using both the hyperparameters and
the (dis)similarity weights specified by its genetic code. The classification model’s
performance will later be evaluated on the Validation Set and such performance
will serve as (part of) the fitness function.6 Trivially, at the end of the evolutionary

5That is why evolutionary optimisation metaheuristics fall within the derivative-free methods.
6A common choice for a genetic algorithm fitness function takes into account both the model
performance and its structural complexity. Specifically, whilst the former should be maximised, the
latter should be minimised in order to avoid overfitting (cf. the Ockham’s Razor Criterion).
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stage, the best individual will be the one which maximises the performances on
the Validation Set and its final performances will be evaluated on the Test Set. An
example of such workflow can be found in [55] for classification algorithms and in
[21, 22] for re-adaptation of clustering algorithms for classification purposes.

When dealing with clustering algorithms, the overall workflow does not change
significantly. However, each individual will process the entire dataset according to
the parameters stored in its genetic code and, similarly, since the performances cannot
rely on any ground-truth labels, other internal validation measures should be used
as the fitness function. An overview of clustering with evolutionary-driven feature
selection can be found in [1].

It is worth stressing that, in both cases, the resulting best individual’s genetic
code contains the set of hyperparameters Γ � which, along with the weights vector,
maximise the algorithm’s performances. Specifically, the latter deserves some further
notes: if one considers w ∈ [0, 1]m , such vector acts as a feature selector, where 0’s
correspond to features which will not be considered in the (dis)similarity measure,
and 1’s correspond to features which, conversely, will be considered. The subset of
n elements for which w is not-null can be seen as the reduced features space.

3 Dealing with Non-metric Spaces

So far, the design of a pattern recognition system has been described in its standard
and most common form, where patterns are represented by means of real-valued
vectors. In these cases, any Minkowski-based (e.g. Euclidean) distances can be good
and straightforward candidates. Moreover, such (dis)similarity measures are metric.

Formally, a dissimilarity measure d defined on a generic space S is a function
d : S × S → R satisfying the following properties:

1.
∃d0 ∈ R such that − ∞ < d0 ≤ d(x, y) < ∞ (1)

2.
d(x, x) = d0 (2)

3.
d(x, y) = d(y, x) (3)

for any two objects x, y ∈ S. If, alongside Eqs. (1)–(3), d satisfies the following two
properties

1.
d(x, y) = d0 if and only if x = y (4)

2.
d(x, z) ≤ d(x, y) + d(y, z) (5)

for any three objects x, y, z ∈ S, then d is said to be metric.
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Similarly, inS it is possible to define a similaritymeasure s : S × S → Rwhether
it satisfies the following properties:

1.
∃s0 ∈ R such that − ∞ < s(x, y) ≤ s0 < ∞ (6)

2.
s(x, x) = s0 (7)

3.
s(x, y) = s(y, x) (8)

for any two objects x, y ∈ S. If, alongside Eqs. (6)–(8), s satisfies the following two
properties

1.
s(x, y) = s0 if and only if x = y (9)

2.
s(x, y) · s(y, z) ≤ (s(x, y) + s(y, z)) · s(x, z) (10)

for any three objects x, y, z ∈ S, then s is said to be metric.
Moreover, it is possible to prove that:

Theorem 1 If d is a metric dissimilarity measure with d(x, y) > 0, ∀x, y ∈ S, then
s = a/d is a metric similarity measure for a > 0.

Theorem 2 If d is a metric dissimilarity measure, let dmax be the maximum pairwise
distance between elements in S, then s = dmax − d is a metric similarity measure.

The above two theorems demonstrate that, under particular circumstances, one can
easily ‘switch’ between (metric) similarity and dissimilaritymeasures in a given input
space. Indeed, dissimilarity measures quantify the degree of separation, whereas
similarity measures estimate the complementary notion of closeness.7

3.1 Examples of Structured Data in Bioinformatics
and Computational Biology

Dealing with non-metric spaces is a common issue when unconventional (structured)
data, such as graphs or sequences, are considered as the input domain.

As introduced in Sect. 1, especially in bioinformatics and computational biology,
patterns are usually described by means of data structures more complex than plain
real-valued feature vectors: some common examples include proteins, DNA and
RNA, metabolic pathways and brain connectivity networks.

7That is why in most of the Chapter, unless explicitly specified, the generic term (dis)similaritywill
be used.
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Indeed, DNA and RNA transcripts are usually described as sequences of 4 pos-
sible nucleotides: adenine (A), cytosine (C), thymine (T), guanine (G) for DNA and
adenine (A), cytosine (C), uracil (U), guanine (G) for RNA.

Proteins can be described by both sequences and graphs. The former representa-
tion is more straightforward: a protein is encoded in genes (DNA sequence) which is
transcribed into pre-messenger RNA (RNA sequence). The RNA transcript is loaded
into the ribosome which reads three nucleotides at the time (codons) and converts
each triplet into one of the 20 amino-acids. It is clear that there exist up to three
sequence-based protein representations, which mainly differ from their alphabet
(4 nucleotides vs. 20 amino-acids) and their length (nucleotide-based sequences
are three times longer than amino-acid-based ones). The protein representation as a
sequence of amino-acids is also known as primary structure.

Graph representations result from a biological step forward in protein biosynthe-
sis. Indeed, when the protein leaves the ribosome, a process called protein folding
starts, during which the protein folds on itself, leading to a unique three-dimensional
structure (also known as the tertiary structure). Protein Contact Networks [23] are
an example of graph-based protein representation [29], where nodes correspond to
amino-acids and edges between any two nodes exist whether their Euclidean distance
falls within a given range, typically [4, 8]Å (e.g. [44–46, 54, 55]). The lower bound is
usually considered in order to discard trivial backbone first-order neighbour contacts
(i.e. sequence proximity), whereas the upper bound is usually defined by taking into
account the peptide bonds geometry; indeed, 8Å roughly correspond to two peptide
bond lengths or, equivalently, to two Van der Waals radii between residues’ alpha-
carbon atoms. In their original formulation, Protein Contact Networks are undirected
graphs with no labels on nodes and edges: information regarding the type of amino-
acid and their respective proximities are deliberately discarded in order to focus on
proteins’ topological structure and their complex nature.

Metabolic pathways are mainly described by graphs as they can be seen as pro-
tein networks and chemical networks. In the former, nodes correspond to proteins,
whereas links correspond to physical (protein-protein interaction) and/or functional
relations between them. In the latter, links correspond to chemical reactions (catal-
ysed by specific enzymes) transforming the nodes (organic molecules produced – or
used – in the metabolic processes) at their extremities into one another.

To our knowledge, the brain is probably the most complex circuit in the Universe,
a complex system of nested subsystems, usually modelled as a network, since its
functions strictly depend on the anatomical and functional wiring of billions of
neurons [11, 31, 75, 88].

While in the case of brain networks based on the anatomical links between parts
of the brains (macroscopic scale) or between single neurons in a small brain portion
(microscopic scale) it is possible to rely on the assumption of a certain degree of
invariance in time,8 this is not the case as for functional brain networks (e.g. related
to areas metabolic activity correlations observed by Nuclear Magnetic Resonance

8Indeed, the anatomical structure changes in the order of months/years depending on the age of
subjects.
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(NMR) or Positron Emission Tomography (PET)) that modify their wiring patterns
on very short time scales [25, 81, 83].

Spontaneous neuronal activity in resting state depends on dynamic communica-
tion between brain regions allowing both local segregation and long-distance inte-
gration of neuronal processes. Several functional networks in which temporally or
spatially coherent connections exist [18]. These networks have been identified in
healthy subjects by functional Magnetic Resonance Imaging (fMRI) and by PET,
respectively. Both these techniques deal with the quantification of metabolic rate
correlation across different brain areas. Specifically, fMRI measures as ‘marker’ the
variation of the amount of blood flowing across brain areas (coupledwithmetabolism
by the dynamics between oxidised and reduced haemoglobin) [26], whereas PET
focuses on the different metabolic rate of glucose (the most important energy source
for brain cells) across different brain areas [79].

Both fMRI and PET techniques define a brain connectivity network in correlative
terms: two nodes i, j of the network are linked by an edge if the metabolic rates
of nodes i and j are each other correlated (given the quantitative character of the
measures used by Pearson correlation coefficient metrics).

3.2 Pattern Recognition in Non-metric Spaces

When dealing with complex data structures such as graphs or sequences, the scheme
from Fig. 1 should be revisited since patterns cannot be directly described by means
of real-valued vectors.

In literature, three major approaches can be found [49, 50]:

1. directly working in the input data structure space, by defining ad-hoc (dis)
similarity measures

2. by means of kernel transformations and kernel machines
3. by defining an embedding function from the input space to real-valued vectors

These approaches are summarised in Fig. 2 and, along with the ‘classical’ Feature
Generation procedure, will be discussed separately.

3.2.1 Classical Processing Chain by Feature Generation

Recalling Sect. 2, given a generic and possibly non-metric input space S, the most
straightforward approach consists in defining amapping functionφ : S → R

n specif-
ically designed for the input space at hand. In this section, three examples of mapping
function suitable for dealing with graphs will be described. Moreover, the additional
challenge of dealing with patterns of different size in S will be discussed. For the
sake of argument, let us consider graphs representing proteins since, notably, proteins
have different sizes both in terms of primary and tertiary structures, meaning that
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Fig. 2 Overview of possible approaches for pattern recognition in non-metric spaces

their amino-acids sequences and, by extension, their folded 3-dimensional structures
have different size.

In [46, 54, 55] a mapping function based on graphs spectra has been proposed.
Specifically, each graph has been described by means of its normalised spectrum, i.e.
the set of eigenvalues evaluated from its corresponding normalised Laplacian matrix
[38]. Such eigenvalues lie in range [0, 2], making such approach suitable for com-
paring graphs with different sizes. However, the number of eigenvalues composing
the spectrum equals the number of nodes in the graph and, in order to overcome this
problem, it is possible to estimate the spectral density by means of a kernel density
estimator [63]. In this way, the distance between any two graphs can be evaluated
by integrating the squared difference between their respective spectral densities all
over the [0, 2] range. This evaluation can be performed also in the discrete domain
by sampling a finite number (n) of points from such spectral densities (being the
support domain equal for all graphs, regardless of their respective sizes). In such
finite domain, the distance between two graphs can be evaluated as the considered
distance (e.g. Euclidean) between their respective sets of samples.

In [45] a feature-engineering based approach has been employed in order to predict
proteins’ solubility starting from their topological structures. Several features have
beenmanually selected such as the number of nodes and edges, the number of protein
chains, some centrality measures (e.g. closeness and degree) and some physical
characteristics (e.g. heat trace, energy). The union of these features forms the feature
vector for a given graph.

Other feature extraction procedure(s) can rely on a rather novel field known as
Topological Data Analysis [12, 91]. Topological Data Analysis consists in a set
of techniques in order to extract information from data starting from topological
information by means of dimensionality reduction, manifold estimation and persis-
tent homology in order to study how components lying in a given multidimensional
space are connected (e.g. in terms of loops and multidimensional surfaces). This
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can be done by starting either by so-called point clouds9 or by explicitly providing
a similarity matrix (cf. the Kernel Methods paragraph). Albeit this field has very
solid and rigorous foundations (from algebraic topology to pure mathematics), there
are very few ‘numerical’ features which can be extracted, mainly the sequence of
Betti numbers. Formally, the i th Betti number corresponds to the rank of the i th
homology group. In plain terms, the i th Betti number corresponds to the number of
i-dimensional ‘holes’ in a topological surface. For example, let us consider a three-
dimensional graph, its first threeBetti numbers have the following interpretations: the
0-th Betti number corresponds to the number of connected components in the graph;
the 1-st Betti number corresponds to the number of 1-dimensional holes (e.g. circular
holes); the 2-nd Betti number corresponds to the number of 2-dimensional holes (e.g.
cavities). If the multidimensional space under analysis has a finite dimension, the
Betti numbers vanish after the spatial dimension (e.g. the number of 4-dimensional
holes in a 3-dimensional space is always equal to zero). Whether the Betti numbers
can be an effective mapping function for pattern recognition purposes it still an open
question.

3.2.2 Ad-Hoc Dissimilarities in the Input Space

One of the mostly acclaimed ad-hoc (dis)similarity measures for structured data are
the so-called edit distances, according to which the distance between two objects is
given by theminimumnumber of atomic edit operations (usually insertions, deletions
and substitutions of elements in the sequence) needed to transform the first object into
the second object. As regards strings, the Levenshtein distance [42] is the seminal
example of an edit distance, which can be seen as a generalised Hamming distance10

[33].
The same approach can be used to define dissimilarity measures between graphs

as well, leading to the Graph Edit Distances [47, 60], which inherit the idea at the
basis of the Levenshtein distance, defining atomic edit operations in both the sets
of nodes and edges. In many pattern recognition applications defined in sequences
domains theDynamicTimeWarping [76] can be adopted,where the sequence support
is explicitly related with time. Specifically, by applying a non-linear distortion on
the support independent variable (time), it returns the optimal correspondence (i.e.
similarity) between two sequences.

Amongst these methods, the Levenshtein/Hamming distances are well-known to
be metric; the same might not be true for Graph Edit Distances (as they might violate
the symmetry property – cf. Eqs. (3) and (8)) and Dynamic Time Warping (as it

9A finite set of points equipped with a notion of distance in a finite multidimensional space.
10According to which the distance between two strings of equal length is given by the number of
mismatches.
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might violate the triangle inequality – cf. Eqs. (5) and (10)). Also, edit distances are
not recommended if patterns have a high dimension variability as deletion/insertion
costs can easily prevail over substitution costs.

On the plus side, however, methods based on ad-hoc (dis)similarity measures
notably work in cases where the pattern recognition system does not need to define an
algebraic structure on the input space. For example, let us consider a clustering task to
be performed directly into a non-metric space with an a-priori chosen (dis)similarity
measure. Algorithms such as k-means or k-medians cannot be considered as good
candidates since the former needs to evaluate the component-wise mean amongst
the pattern in a given cluster in order to evaluate its representative, whereas the latter
needs to evaluate the component-wise median. Therefore, the need to define a mean-
ingful algebraic structure emergeswhich, however, turns into a non-sense as concerns
non-metric input spaces. Suitable clustering algorithm candidates for dealing with
non-metric spaces are k-medoids, as discussed in [56], and BSAS [85], since they
do rely on (dis)similarity measures only in order to form clusters and to update their
representatives. Similarly, as far as classification algorithms are concerned, a good
candidate is the K -Nearest Neighbour, since it classifies patterns according to their
respective distances rather than defining operators such as the inner product, manda-
tory in Artificial Neural Networks, or Support Vector Machines, whether equipped
with an ad-hoc kernel transformation (see the Kernel Methods paragraph).

Kernel Methods

Typically, kernel methods can safely be employed whether the input space has an
underlying Euclidean geometry, since they are based on inner products. Given a pair
of patterns x, y ∈ R

n , their inner product is given by:

〈x, y〉 = x · y =
n∑

i=1

xi · yi (11)

Further, let us consider the instances matrix for the dataset at hand, X ∈ R
NP×n ,

namely a matrix where each row corresponds to a given pattern. Let NP indicate the
number of patterns. It is possible to define the kernel matrix11 as

Ki, j = 〈xi , x j 〉 (12)

or, in batch fashion

K = X · XT (13)

11Also known as the Gram Matrix, after Danish mathematician Jørgen Pedersen Gram.
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More in general, let k be a symmetric and positive semi-definite kernel function from
the input space at hand S towards R, i.e. k : S × S → R such that:

k(xi , x j ) = k(x j , xi ) ∀xi , x j ∈ X (14)
NP∑

i=1

NP∑

j=1

ci c j k(xi , x j ) ∀ci , c j ∈ R,∀xi , x j ∈ X (15)

As in the inner product case, starting from k(xi , x j ) one can easily evaluate theKernel
Matrix as

Ki, j = k(xi , x j ) (16)

and if K is a positive semi-definite kernel matrix, then k is a positive semi-definite
kernel function. One of the most intriguing property of kernel methods relies in the
so-called kernel trick [77]: kernel of the form (14)–(15) are also known asMercer’s
kernels since they satisfy the Mercer’s theorem [57]; they can be seen as the inner
product evaluation on a (possibly) infinite-dimensional and usually unknown Hilbert
space H. The kernel trick is usually defined by means of the following, seminal
equation:

k(xi , x j ) = 〈ψ(xi ), ψ(x j )〉H (17)

where ψ : S → H is the implicit and usually unknown mapping function.
Several positive semi-definite functions commonly used as kernels include the

linear, exponential, radial basis function and polynomial [77, 78], which are usually
employed in kernel machines, such as (non-linear) Support Vector Machines.

However, inmany cases, defining the kernel functionmight not be easy, especially
when dealing with non-metric spaces. Regardless of the nature of the input space, it
is possible to evaluate the similarity matrix (cf. Sect. 3) S ∈ R

NP×NP where

Si, j = s(xi , x j ) (18)

If s is a metric similarity measure, it is possible to directly use S as the kernel matrix,
as suggested in [15], or include similarities in widely-known kernel functions (e.g.
radial basis function), as suggested in [77].

Conversely, if the (dis)similarity measure is not metric, two mainstream
approaches can be followed. The former relies on moving the pattern recognition
problem towards a dissimilarity space (as explained in the next paragraph), the latter
relies on ‘modifying’ the similarity matrix in order to be a valid kernel matrix (i.e.
satisfying Mercer’s theorem) [14, 15, 89].

Embedding Functions and Information Granulation

Embedding functions can be seen as particular cases of mapping functions as defined
in the Classical processing chain by Feature Generation paragraph. Indeed, while
both of them aim at moving the problem from a generic input space S towards
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R
n , embedding functions, at least in this context, do rely on other patterns or on

substructures extracted from the dataset at hand in order to build such mapping.
A first example of embedding consists in moving the pattern recognition problem

into a dissimilarity space [66].
In turn, dissimilarity representations can follow two further approaches:

1. Each pattern is described by its own row12 from the similarity matrix S (cf. the
Kernel Methods paragraph); that is, each pattern is described by the distance(s)
vector with respect to other patterns (including self-distance)

2. Each pattern is described by the distance(s) vector with respect to a given number
of representatives drawn from the input space at hand. Certainly, the selection
of such representatives is a crucial task since a) they must well-characterise the
decision boundary between patterns in the input space and b) there should be few
of those since the number of representatives has a major impact on the model
complexity. Representatives selection heuristics range from class-aware random
selections to clustering procedures directly in the input space [48] (cf. theAd-hoc
Dissimilarities in the Input Space paragraph).

Regardless of which of the two methods is employed, a dissimilarity space can
be equipped with algebraic structures and operators, such as the inner product, in
order to be suitable with traditional kernel methods [48]. But, more in general, since
patterns are now casted in RNP (former case) or RR (latter case – where R indicates
the number of representatives), any “standard” pattern recognition algorithm can be
used.

In order to introduce the embedding by means of substructures, let us introduce
widely known embedding functions for sequences. Since sequences are finite col-
lections of objects drawn from a finite alphabet (cf. RNA/DNA sequences or pro-
teins’ primary structure, Sect. 3.1) one of the most intuitive approaches relies on
histograms. Indeed, a sequence can effectively be described as the number of occur-
rences of any alphabet symbol within the sequence itself. For ‘simple’ sequences
such as nucleotides or amino-acids sequences, histograms defined as above suffice.
For example, in [90] a double experiment has been proposed in order to classify
proteins starting from their primary structure according to their physiological role;
in a first experiment, each protein is described by the number of occurrences of each
amino-acidwithin the primary structure and, in a second experiment, such histogram-
based representation has been extended to triplets of amino-acids in order to take
into account also information about proximity and ordering. Further, in [53], the
histogram-based representation considers pairs of amino-acids whose distance along
the protein backbone is within a minimum and maximum value, a-priori defined.

For more complex sequences such as sentences or entire text documents, bag-of-
words and word-count models have been proposed, where the alphabet is composed
by the set of unique words in the sentence or document. ‘Complex sequences’ such

12If the similarity measure at hand is not symmetric, patterns’ distance vectors as taken by rows or
columns will be different. In order to overcome this problem, one can ‘force’ a similarity measure
to be symmetric by considering S := (S + ST )/2 (e.g. [14]).
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as sentences or entire text documents are rather rare (if non-existent altogether)
in bioinformatics as such, but bag-of-words models, along with statistical and/or
machine learning techniques, have been successfully employed for health analysis
and forecasting (e.g. [82] for anastomosis leakage detection, [93] for diabetes-related
notes in electronic health records).

In the last years, granular computing [4] emerged as a novel and promising infor-
mation processing paradigm. In granular computing, atomic quantities known as
information granules have to be extracted in order to be further studied and anal-
ysed, for gathering useful knowledge and insights from data, but finding the adequate
level of abstraction for the problem at hand might be a challenging task. Along with
symbolic histograms, granular computing can play the role of a promising data-driven
framework which can simultaneously deal with embedding functions in non-metric
spaces andknowledge discovery. In [8, 9, 69, 72] have beenproposed fully automated
data-driven and granular computing-based classification systems both for graphs and
sequences. These systems are composed by four mainmacroblocks: motifs extractor,
granulator, embedder and classifier.

The motifs extractor is in charge of extracting, according to some heuristics (pos-
sibly exhaustively), substructures (i.e. subgraphs/subsequences) from the dataset at
hand.

The set of motifs is then forwarded to the granulator which runs a clustering algo-
rithm on it, relying on a suitable inexact matching procedure (i.e. on a given dissim-
ilarity measure in the substructures space), yielding a set of frequent sub-structures
(clusters), whose representatives can be considered as candidate information gran-
ules (symbols). It is worth stressing that the clustering algorithm works in the input
space since motifs are frequent substructures, and that free-clustering algorithms
such as BSAS should be preferred, in order to automatically return a suitable num-
ber of clusters, avoiding to set it is advance. Further, since the input space might not
be metric, a suitable cluster’s representative is the medoid (or MinSoD) [20, 56].

The set of information granules are the main input for the embedder block which,
according to the symbolic histograms approach, maps each pattern into an integer-
valued vector. Specifically, each pattern is represented as the number of occurrences
of each information granulewithin the pattern itself. The embedder, therefore, returns
a set of vectors which can feed any standard pattern recognition algorithm for clas-
sification or clustering purposes.

The whole cascade is driven by a genetic algorithm, following the workflow
as described in Sect. 2.1, in order to maximise the classifier’s performances. The
genetic algorithm acts as an orchestrator, and is in charge of optimising the final
classifier synthesis, accomplishing two tasks: under an algorithmic point of view,
it automatically tunes the clustering algorithm and possible (dis)similarity measure
parameters, maximising the classifier’s performances and selecting the subset of
information granules better related with the classification task at hand (cf. Feature
Selection block in Fig. 1); under a knowledge discovery point of view, since it returns
the (sub)optimal set of information granules for the problem at hand.

The latter deserves some further observations. It is clear that embracing a gran-
ular computing/symbolic histograms approach is more computationally expensive
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than any other technique discussed so far. Indeed, the embedding procedure requires
a clustering phase, searching for candidate granules. Even for small datasets, an
exhaustive approach for the extractor might be unfeasible (since its complexity is
combinatorial with respect to the pattern size and the substructure order), and it must
be replaced by a stochastic approach (random subsampling).Moreover, when dealing
with sequences or graphs, the (dis)similarity measure adopted by the core cluster-
ing procedure is by far more computationally demanding with respect to Euclidian
distance performed on plain real-valued vectors. Furthermore, the selection of the
most informative information granules, as well as of the best (dis)similarity measure
parameters, demands additional computational burden by the evolutionary optimi-
sation, since for every candidate solution it is needed to launch a full classification
model synthesis procedure (for example a Support Vector Machine) in order to eval-
uate its fitness, computed as the performance of the classifier on the Validation Set
(cf. Sect. 2.1). For these reasons, the symbolic histograms approach is practically fea-
sible only when relying on parallel/distributed computing software/hardware envi-
ronments.

But, on the plus side, granular computing-based techniques unleash an invaluable
potential thanks to information granules. Indeed, if the training procedure yields a
classification model with satisfying performances, able to correctly discriminate the
input patterns for the problem at hand, the resulting information granules subset
brings useful knowledge on the problem at hand, since information granules are at
the basis of the embedding feature space. Information granules selected by the evo-
lutionary optimisation are therefore responsible for the final definition of decision
surfaces in that space and, consequently, they can show useful information that can
be exploited by field-experts. This is the main advantage of granular computing tech-
niques with respect to competitive approaches: extracting automatically meaningful
information granules is useful both under an algorithmic point of view and under the
application field point of view (biology, in this case).

As amore concrete example, let us consider ametabolic pathways problem,where
metabolic pathways are described by graphs as in Sect. 3.1. One of the information
granules might be the citric acid cycle.13 The Krebs cycle (in network terms, a motif
with a set of nodes lined to form a closed loop) is driven by oxygen and therefore
it might be a key granule in order to discriminate between aerobic and anaerobic
organisms. For this example a well-known chemical reaction has been considered,
but the opposite might also happen: indeed, information granules can pose questions
other than confirm statements: why these information granules are considered as
significant for the discrimination/classification problem at hand?

13Also known as the Krebs cycle.
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4 Case Studies and Applications

In most of the cases introduced in Sect. 3.1, it is almost impossible to project the
analysed objects into a proper metric space spanned by a shared set of descrip-
tors without considering some global features (e.g. classical network invariants like
degree, characteristic length, closeness centrality, etc.) and thus losing a considerable
part of information linked to ‘who-is-connected-with-whom’. On the contrary, such
information can be easily recovered projecting the objects into a non-metric space
defined by motifs and/or frequent substructures (Sect. 3.2.2).

The need of a non-metric approach is evident in many biologically relevant cases.
This need not necessarily derive by the lack of a common feature space, but it
is motivated by the importance to individuate particular motifs endowed with a
meaningful semantics.

In the field of protein sequence analysis this is the case of the identification of
‘natively unfolded’ tracts. This is a particularly intriguing problem in structural biol-
ogy [87]. Until the end of last century, the general view of structure/function relation
in protein molecules was apparently straightforward (cf. Sect. 3.1): protein primary
structures correspond to the amino-acid residues linear ordering along the sequence.
The primary structure determines both the mutual position of nearby (secondary
structure) and distant along the sequence amino-acid residues (tertiary structure).
The specific 3-dimensional arrangement of the protein molecule in turn determines
its physiological role [70]. This view was questioned some years ago [87] by the
discovery of ‘natively unfolded’ proteins that are molecules that do not have a defi-
nite 3-dimensional structure but that, on the contrary, remain in a random coil state
until they interact with some partners (e.g. other proteins) and, after the binding,
assume a specific 3-dimensional configuration. The same natively unfolded pro-
tein (and thus with only one specific sequence) can assume completely different
3-dimensional structures (and functions) depending on the different partners it inter-
acts with. All the vital functions of a cell are managed by the creation of aggregates
of different proteins generating a sort of nano-machine performing a specialised task
(e.g. energy production, biosynthesis, immune response, DNA repair and duplica-
tion, etc.), where natively unfolded proteins are the ‘hubs’ of such protein-protein
interaction networks, given their ability to change structure ‘on demand’ and thus to
participate to different nano-machines (protein aggregations) [80]. Besides proteins
that are natively unfolded in their entirety, all the proteins do have (smaller or longer)
tracts that are natively unfolded corresponding to their interaction sites. If the goal
is to modify the behaviour of a protein aggregate for a therapeutic intervention (e.g.
by a drug binding to the protein molecule) it is of utmost importance to recognise
such natively unfolded parts of the molecule from their sequence.

This is a very challenging task for classical machine learning approaches, due to
the following reasons:

1. The context dependence of the problem: the same subsequence can be natively
unfolded in protein A and perfectly folded in protein B due the general properties
of the entire protein molecule [67]
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2. The ambiguous character of the definition of ‘unfolding’: many of the so-called
unfolded proteins (or tracts) could be only highly flexible systems that have only
one preferred fold without structuring on-demand [34]

3. The dependence on the chemico-physical micro-environment the protein expe-
riences (i.e. pH, molecular crowding, etc.) deciding the disordered/ordered con-
dition [34]

4. The highly variable length of the disordered patterns [34]

This is why (even if never defining explicitly in these terms) all the tentative solutions
of the problem used non-metrics approaches that in turn allowed to both select some
‘relatively context independent unfolded motifs’ and individuating some regularities
in these motifs [73].

A somewhat related problem is to predict the relative solubility in water of protein
molecules.Again, there exist a similar context dependences of the disordered/ordered
case and, in [44], the problem was approached by considering several different rep-
resentations. The protein folding problem has interested biologists for many years:
if the native protein structure is ‘encoded’ in its primary structure, is it possible
to predict its folded state? Relative solubility in water is the major feature for pro-
teins’ folding propensity. However, some proteins spontaneously fold, whereas other
proteins need so-called chaperones14 in order to fold correctly.

Recall from Sect. 3.1 that a protein can be described in different ways by either
taking into account its primary or tertiary structure; therefore in [44] a subset of the
Escherichia Coli proteome has been considered in three different representations: the
plain primary structure; an ‘extended’ Protein Contact Network representation (cf.
Sect. 3.1) where labels exist on both nodes and edges (nodes labels correspond to one
of the 20 amino-acids, edges labels correspond to the Euclidean distance between
the two vertices at their extremities); a serialised version of the graph-representation,
where each vertex is associate with a 3-dimensional real-valued vector derived from
the graph transition matrix. The goal was to predict the relative water solubility of
each protein in vitro (i.e. without the help of chaperones). Given that water solubility
encompasses the ability to reach of a correctly folded structure, this prediction task
can be considered as an explorative study in the chemico-physical drivers of folding
process.

The different representations allowed us to grasp different aspects of ‘relative
folding propensity’ of proteins, being the extended Protein Contact Network the
most promising representation.

The impossibility to design a data set on a shared feature space (and consequently
the need of non-metric approaches) is evident in neuroscience in the case of com-
paring different brain connectivity networks [88]. Recall from Sect. 3.1, both fMRI
and PET outputs are images of the brain: a quantitative value is attached to each
voxel corresponding to the entity of metabolism activity in that location. The voxels
are in the order of tens of thousands and their actual quantitative value is not rele-

14Protein molecules driving the folding of other protein systems.
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vant per-se15: what differentiates healthy and pathological subjects is the degree of
organisation (correlation among areas) of the system. The selective breakdown of
intrinsic brain networks during the progression from the healthy state to mild cog-
nitive impairment to Alzheimer’s disease has been observed using both fMRI and
PET. Using the single voxels as nodes can be highly misleading in the comparison of
images across patients: not only their high number produces networks very difficult
to analyse but the pairing of the voxels across different subjects (i.e. to recognise that
the j-th voxel of patient A corresponds to the j-th voxel of patient B) is virtually
impossible. To solve the problem anatomical knowledge is considered: the physi-
cian segments the brain image into ROIs (Region of Interest) correspondent to the
well-known anatomical areas of the brain (e.g. hippocampus, amygdala, cerebellum,
etc.) that all patients do have, so ROIs become the nodes and edges correspond to
the scoring of a strong correlation between pairs of ROIs.

Alzheimer’s disease risk scales with the progressive disruption of ‘long range’
correlations in favour of ‘small scale’ correlation between nearby areas [62]. This
implies that for discriminating different risk levels it is not possible to rely on shared
‘global correlation measures’ on the brain, nor on the focusing on ‘specific relations’
between key areas because they can be very different across different patients, while
maintaining the above described pattern of ‘decrease in long range and increase in
small range correlations’. This situation is solved by non-metric approaches, inwhich
different brain connectivity networks are compared on the basis of the dynamics of
‘attachment’-‘detachment’ from the giant component of the network (the bulk of
connected ROIs) on a subject by subject basis [61].

In the case of brain connectivity studies, computational intelligence is having a
great expansion and the search for suitable context-dependent metrics for comparing
different conditions is highly debated in both clinical and basic research communities.

5 Conclusions and Future Directions

In synthesis, we can surely affirm that non-metric approaches rely on a sufficiently
stable and reliable theoretical basis implemented on very efficient algorithms. On
the other hand, the ‘biological side’ generates an ever-increasing amount of data
amenable to be faced by computational intelligence approaches. The crucial point
(deciding for the success/failure of the particular application) is the choice of a rep-
resentation located at the most ‘fruitful’ level of biological organisation. The search
for the scale maximising ‘non-trivial determinism’ is a crucial issue in applied statis-
tics [64] and roughly corresponds to the search of the level where the number (and
strength) of correlations between the different pieces of information (e.g. different
descriptors) reaches a maximum.

15Indeed, the absolute entity of metabolic rate can vary for a lot of reasons going from anatomical
differences among patients to their actual nutrition state.
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Convesely to the classical reductionist tenet, this level (in the case of organised
complexity [92]) is seldom located at the most detailed scale of analysis (e.g. single
patients in epidemiological studies, single genes, primary structures of proteins,
single pixels of an NMR or PET image of the brain, etc.) that in the great majority
of cases are dominated by noise [86].

The search for the optimal representation (see the protein solubility case described
in Sect. 4) asks for a conscious (and knowledge oriented) decision about the repre-
sentation level to adopt (e.g. sequence-graph-labelled graph). This choice can only
be a mixture of theory and data-driven choices, and thus asks for a real interaction of
data scientists and biologists. For this interaction to be fruitful, both the communities
must develop a similar language and share at least the basic principles of both the
fields.

We think that, beside some ‘bombastic exaggerations’ on the ‘death of science’
to be substituted by a purely data-driven theoretically blind approach [2], the future
will be characterised by an increasingly stronger integration between computational
intelligence and pattern recognition techniques, and the different application fields.
Indeed, computational intelligence techniques rely on data-driven modelling (see
Sect. 2), which particularly suits problems where the process to be modelled – or at
the heart of the problem itself – is unknown or hard to determine in closed-form (e.g.
by analytical modelling).

As far as biology (and related fields) are concerned, computational intelligence
and pattern recognition can be seen as usefulmethodological tools in order to perform
“in-vitro experiments” and formulate hypotheses to be, if needed, further investigated
by means of proper laboratory equipment by field-experts.

In this Chapter, we reviewed and discussed the major challenges and related
modus-operandi when dealing with non-metric input spaces in computational intel-
ligence and pattern recognition. By considering bioinformatics and computational
biology as application fields, we explored several case studies in which data are
conveniently represented by means of complex structures.

We stress that, amongst the threemainmacro-techniques for solving pattern recog-
nition in non-metric spaces (Sect. 3.2), granular computing seems to be the most
appealing in terms of results interpretability and knowledge discovery. Indeed, the
automatically extracted information granules are the oneswhichmaximize the classi-
fication performances, therefore the most informative and significant for the problem
at hand. The set of information granules which, recall, is a set of motifs (i.e. recurrent
substructures) can be analysed by field-experts in order to check whether they have
some biological soundness and, possibly, boost further research, not only in granular
computing and computational intelligence as such, but also in the proper application
field in which such techniques have been employed.
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Multi-classifier-Systems: Architectures,
Algorithms and Applications

Peter Bellmann, Patrick Thiam and Friedhelm Schwenker

Abstract In this work multi-classifier-systems (MCS) are discussed. Several fixed
and trainable aggregation rules are presented. The most famous examples of MCS,
namely bagging and boosting, are explained. Diversity between the base classifiers is
a crucial point in order to build accurate MCS. Several criteria to measure diversity
in MCS are defined and a motivation for diversity measures, based on the base
classifiers’ outputs is given. A case study on pain intensity estimation, based on
physiological data streams, is conducted. Within the framework of the case study,
different MCS and fusion approaches are evaluated. The case study is conducted
on two different data sets, with four and five pain levels respectively, which were
induced to the test persons under strictly controlled conditions. The aim of the case
study is to implement an automatic pain intensity application system and analyse its
effectiveness.

Keywords Pain intensity estimation · Decision fusion · Bagging · Boosting
Random forests · Diversity

1 Introduction

Classification is a huge part of pattern recognition and constitutes an every day
phenomenon. Vehicle owners, for example, have to identify (classify) their parking
cars before using them. Usually they don’t need the licence number for that. It is
enough to take a look at other characteristics (features), like the car’s brand, colour
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and/or the shape, or more specific things, like rims or tinted windows. Identifying
one’s own car is one of the easiest imaginable daily issues. But there are several
tasks, which are too time-consuming or too complex to solve without computational
intelligence.Examples for these kinds of tasks includefingerprint- orDNA-matching.
Intelligent software can also be applied as an additional supporter for human beings
in classification tasks, such as in lie detection.

Classification per se is the last step of a processing chain in supervised pattern
recognition. The first step is the data acquisition, i.e. the reading and recording of
data from one or several sensors. Step number two would be some pre-processing,
like removing noise or outliers, for example. The third step is usually the feature
extraction, which can be done manually based on experts’ knowledge or automat-
ically with deep learning architectures. Feature extraction is then usually followed
by step four, the post-processing. Post-processing could consist of standardisation,
feature reduction, etc. The final step of the processing chain is then the classification.

The first sub-step of classification is to choose an adequate classifier for the given
task. There exists a huge variety of different classifiers, for example linear discrimi-
nant classifiers [1], k-nearest-neighbour classifiers [2], decision trees [3] and artificial
neural networks [4]. Even if one finds the best type of classifiers for the given task,
one would not build just one single classifier, since a single classifier might not be
able to learn an appropriate decision boundary for the given classification task, or
perform unexpectedly bad on unseen data. Thus, it is common to use multi-classifier-
systems (MCS) [5–10], i.e. a set of classifiers. Once one has fixed the type(s) of the
classifiers to use, the size of the MCS, i.e. the number of classifiers, has to be chosen.
After fixing the type(s) and amount of classifiers there are still two crucial design
steps to be undertaken. First, one has to choose an aggregation rule for the set of
classifiers, which depends on the classifiers’ output types. Second, one has to deter-
mine the fusion architecture of the MCS. As the data is usually recorded by several
sensors, one has to specify at which level and in what way the extracted features
from the different data streams have to be merged.

The design of an MCS itself constitutes an essential step. In the ideal case one
would like to get a set of classifiers, which are always correct, and take one of it for the
whole task. But this is an unrealistic scenario, especially in real world applications.
Therefore, the aim is to build an MCS with classifiers which complete each other
as good as possible. This means one would like to have classifiers which, first, are
as accurate as possible (in regard to their generalisation ability), and second, make
different errors. More precisely, one would like to have a set of classifiers, which
have a certain level of diversity. Diversity in MCS has been studied over the last
years. There is a plethora of approaches to define diversity [11]. The explicit use of
diversity measures inMCS can help to improve the performance in classification and
related fields [12].

The latter three examples of the here aforementioned classification tasks
(fingerprint-, DNA-matching and lie detection) have one common characteristic,
which is the fact that the signals used for the classification task are biometric. One
challenging field of application, that deals with biometric signals, is affective com-
puting [13–18] (e.g. emotion or pain recognition). Pain recognition is an important
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field in e-health, since there are people who are not able to express their health con-
dition in the correct way, or not at all. This applies, for example, to newborn babies,
infants, comatose patients, or people with Alzheimer’s or other mental diseases. The
implementation of an automatic pain recognition system, based on multiple input
channels, would help to improve the condition of people, affected by the aforemen-
tioned problem of not being able to express their state of health.

The remainder of this work is structured as follows. In Sect. 2, we will list and
explain themain reasons for the use of anMCS instead of a single classifier. Section3
provides common approaches for the combination of classifiers. In Sect. 4,we explain
the main methods for creatingMCS. Section5 summarises the different fusion archi-
tectures ofMCS. In Sect. 6,we discuss diversity inMCS.Different diversitymeasures
are presented and adequate optimisation methods are introduced. Section7 presents
our case study, which deals with pain intensity estimation. Finally, in Sect. 8 we
conclude the paper.

2 Motivation for Multi-classifier-Systems

Using an MCS instead of a single classifier increases the complexity of a classifi-
cation task. Not only one, but a set of classifiers has to be build, trained and stored.
And an additional aggregation rule has to be applied. This all is linked to a higher
memory usage and a longer running time during the training and operational phase
in comparison to a single classifier. Despite the arising difficulty, it is still common to
use MCS in classification tasks, since the resulting advantages of an MCS outweigh
the aforementioned drawbacks. Dietterich [19] and Polikar [20] suggest different
reasons for the use of an MCS instead of a single classifier. In the following, we
point out two of the most important ones.

2.1 Computational Motivation

The main goal of each classification task is to learn an underlying decision boundary
of the given data which separate points from different classes. The general idea of the
divide-and-conquer approach is to divide one complex problem into several easier
tasks.

Regarding classification tasks, two problems can arise. First, the underlying deci-
sion boundaries might be quite difficult to learn by the given training algorithm. One
might get classifiers whose decision boundaries represent local optima. Second, the
underlying decision boundaries of the given data might lie outside the given classifier
space.

For example, a single linear classifier can’t solve a linearly non-separable problem,
but by using a set of linear classifiers with an appropriate aggregation rule, we might
get a possible solution. Figure1 shows a basic example for this issue.
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Fig. 1 Linearly non-separable two-dimensional two-class problem that can not be solved by a
linear classifier, but it can be solved by multiplying the outputs of two linear classifiers (parallel to
the axis)

2.2 Statistical Motivation

Given a data set one can divide the set in a training and a validation set. We can
build several classifiers and compute their training and validation errors. But the
generalization ability can only be estimated, for example by the hold-out or cross-
validation methods. It is not guaranteed that classifiers with similar generalization
approximationswill perform similarly in the test case. By using anMCSof classifiers,
we avoid the risk of taking one single classifierwhichmight performpoorly on unseen
data.

2.3 Basic Results for Single Classifier Versus MCS

In the following we see the results for a single classifier against an MCS of seven
classifiers for the most common combination approaches, namely bagging, boosting
and random forests, which will be explained in Sect. 4.1. The data sets used in Table1
constitute pain intensity estimation tasks, whereby the Pain1 data set represents a
5-class problem, and both Pain2L and Pain2R data sets represent a 4-class problem
each. More information will be provided in Sect. 7.1.

Table1 shows that using an MCS of already a small amount of classifiers can
improve the results significantly. However, it is important to mention that the use
of an MCS does not guarantee an improvement over one single classifier or its best
member. But empirical studies on this topic prove the effectiveness of MCS.
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Table 1 Comparison of one single decision tree classifier against an MCS of 7 decision tree
classifiers. EveryMCS is significantly better than the single classifier and its best member in regard
to the Wilcoxon signed rank test with a significance level of p < 0.05. Exceptions are: the bagging
MCS is not significantly better than the single classifier on Pain2-Left, but still significantly better
than its best member; the boosting MCS is obviously worse than its best member on Pain2-Left.
The table shows the mean classification accuracies and standard deviations in % in a leave-one-
subject-out setting for the recorded biopotentials. The random performance accuracy for Pain1 is
20%, whereas the random performance accuracy for Pain2-Left and Pain2-Right is 25% each, since
Pain1 represents a 5-class classification task while Pain2 is a 4-class classification task

Dataset Single Bagging Boosting Random Forests

MCS Best MCS Best MCS Best

Pain1 31.17 ±
8.18

34.32 ±
8.98

29.79 ±
7.48

33.30 ±
5.96

33.08 ±
5.80

33.70 ±
8.46

29.44 ±
7.70

Pain2L 35.35 ±
5.04

37.42 ±
7.74

34.28 ±
5.88

39.35 ±
6.11

39.39 ±
5.90

38.65 ±
7.09

34.87 ±
6.33

Pain2R 34.83 ±
6.78

37.95 ±
8.29

34.65 ±
6.29

40.39 ±
6.83

40.19 ±
6.87

37.78 ±
7.90

34.35 ±
5.78

3 Aggregating Classifiers

Once one has built a set of classifiers, it is indispensable to choose an aggregation
rule to form the final MCS decision from the individual classifiers’ outputs. There
exists a variety of different combination rules for classifiers, which can be grouped in
trainable and fixed groups or in regard to the used types of the base classifier’ outputs.
We stick to the first separation. Xu et al. [21] suggest to differentiate between the
following types of classifier outputs:

• Label Outputs: Given an input x to the classifier, the classifier computes a class
label as the output.

• Continuous Outputs: Here it is assumed that the classifiers are able to produce
a vector of class memberships for each class, for instance with values between 0
and 1. One could also call this kind of outputs fuzzy outputs.

Xu et al. [21] also list an additional type of outputs, the so-called rank outputs, where
the classifier produces an ordered (sub)set of the label setΩ . Hereby, the first element
corresponds to the class with the highest probability to be the true class. This kind
of outputs can directly be gained from the continuous outputs by ordering the class
with the highest support in the first place, the class with the second highest support
in the second place, and so on.

Based on the notations defined in [22], we denote the size of anMCS by L and the
base classifiers by Di. Thus, for a given input x ∈ X ⊂ R

d , d ∈ N, the label output
of the base classifier i is denoted by Di(x). Whereas the continuous output of the
base classifier i is denoted by di(x) = (di,1(x), . . . , di,c(x)), where c is the number
of class labels from the label set Ω = {ω1, . . . ,ωc}. The MCS support for the class
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ωj is denoted by μj. In each case the MCS chooses the label ωk as the final decision
if

k = c
argmax

j=1
μj(x) .

3.1 Fixed Combination Rules

Fixed combination rules don’t need extra training. Once a set of classifiers has been
trained, the classifiers’ outputs can be directly combined.

(Weighted) Majority Vote

Probably one of the most intuitive combination methods is the majority vote. Let
x ∈ R

d be a data point and v(x) ∈ ΩL be the vector with the label outputs from each
classifier, i.e. v(x) := {D1(x), . . . ,DL(x)}. The majority vote is defined as

D(x) = mode v(x) .

In case of a draw, one can choose a class randomly among the winners, thus we may
assume that the mode operator yields a unique result.

We can also weight the votes of each classifier. Let b ∈ R
L be the weight vector

for the MCS. The weighted majority vote is then given as

D(x) = c
argmax

j=1

L∑

i=1
Di(x)=ωj

bi .

The weights of the classifiers can be determined by computing the training or valida-
tion error. Usually one would take the validation error, since the classifiers’ training
accuracies tend to be too optimistic and could lead to overfitting. However, in cases,
when there is only a small set of training data available, one might take the training
error into consideration. When each classifier is trained on a different subset of the
training set, one might also take the training error, or the error on the points, which
were unseen by the individual classifiers during the training phase (this kind of error
is called out-of-bag error in the bagging approach).

Algebraic Combiners

One easy way to merge classifiers is to take their outputs and simply combine them
by using some algebraic function,

μj(x) = F(d1,j, . . . , dL,j) .

In the following, some existing examples for F are listed.



Multi-classifier-Systems: Architectures, Algorithms and Applications 89

Product Rule:

μj(x) =
L∏

i=1

di,j(x) .

Generalized Mean:

μj(x,α) =
(
1

L

L∑

i=1

di,j(x)
α

)1/α

,

with the special cases minimum and maximum for α → ∓∞, the geometric mean
and the harmonic mean for α → 0 and α → −1 respectively, and the arithmetic
mean for α = 1.

The most common rules are the maximum rule and the arithmetic mean rule. One
could also take measures derived from order statistics, like the median, a trimmed
mean, or any other algebraic function.

The mean rule is also known as the sum rule, since the maximal sum corresponds
to the maximal mean value. In the case of label outputs one can regard the continuous
output of each classifier as a binary vector di(x) ⊂ {0, 1}c ∀1 ≤ i ≤ L,∀x ∈ X , where
just one entry is equal to one. Taking the mean rule for these kind of vectors leads to
the majority vote.

Kittler et al. [23] and Tax et al. [24] conclude that the sum rule is robust and the
most resilient one to estimation errors compared to the min, max, product, median
and the majority vote rule.

Borda Count

Concerning the original Borda count [25], each classifier creates a rank order of the
classes. Let c be the number of classes, then the first ranked one gets c − 1 votes,
the second placed one gets c − 2 votes and the ith placed one c − i votes. The last
ranked one gets 0 votes. The votes of each classifier are added for each class and the
class with the most votes is defined as the winner.

The Borda count method can be varied by changing the amount of votes given to
each candidate or by changing the number of candidates that will receive votes from
each classifier. Different variations of Borda count are used all over the world, for
example in some political elections, for granting sports awards or in other competi-
tions, like the Eurovision Song Contest.

3.2 Trainable Combination Rules

In contrast to the fixed aggregation rules, trainable combination methods require an
extra training before the MCS can be used for the classification task.
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Behaviour Knowledge Space Method

The behaviour knowledge space (BKS) method [26] creates a look-up table during
the training phase. For each training data point the MCS produces a combination of
the classifiers’ label outputs. For each combination one has to note the true class of
the data point. The look-up table consists of the occurred combinations, each with
the class label with the highest appearance.

For example, let’s assume we use three classifiers for a two-class problem and
the combination (D1(x),D2(x),D3(x)) = (ω1,ω2,ω1) occurred for 10 data points
during the training phase. If the majority of these 10 data points had the true class
labelω1, then every point which leads to the same output combinationwill be labelled
as ω1, otherwise as ω2.

If there is a draw, then a random choice has to be taken. In the case that one
combination does not appear during the training phase, one can stick to the simple
majority vote.

Decision Templates

The idea of the decision templates method is based on the so-called decision profiles,
introduced by Kuncheva [27]. The decision profile is a matrix with all the vector
outputs of the whole MCS:

DP(x) =
⎡

⎢⎣
d1,1(x) . . . d1,j(x) . . . d1,c(x)

...
...

...
...

...

dL,1(x) . . . dL,j(x) . . . dL,c(x)

⎤

⎥⎦ ∈ R
L×c .

The idea of the decision templates method is to save the typical decision profile for
each class ωj. Such a profile is called decision templateDTj and is simply the average
among all data points from one class,

DTj = 1

Nj

∑

x∈X
l(x)=ωj

DP(x) ,

whereby l(x) denotes the true label of x and Nj the number of objects with true class
label ωj. To label an input data point x, one has to compare DP(x) with all DTj by
using a similarity measure S,

μj(x) = S(DP(x),DTj) .

Sample x is then labelled as the class with the highest similarity. Thus, this method
represents a 1-NN classifier, where the prototypes are the decision templates and
each data point first has to be transferred to its decision profile before finding its
most similar (nearest) neighbour. Extensions of the decision templates approach
have been introduced in [28].
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Pseudo-Inverse

The Pseudo-Inverse [29] aggregation rule consists of a least-squares linear map-
ping obtained by computing the Pseudo-Inverse of the base classifiers horizontally
concatenated outputs

D = [D1 . . .DL] , with Di =
⎡

⎢⎣
di (x1)

...

di (xm)

⎤

⎥⎦ ∀i ∈ {1, . . . ,L} ,

where m ∈ N is the size of the training set and multiplying it with the corresponding
class labels Z :

M = lim
α→∞DT

(
DDT + αI

)−1
Z .

The mapping is subsequently applied to the base classifiers’ outputs of an unseen
sample and the assigned label corresponds to the class with the highest estimated
score. Relations between the Pseudo-Inverse solution, sum rule and decision tem-
plates are discussed in [30].

3.3 Classifier Selection

Regarding classifier selection [31] the combination method has a selecting rule that
can be fixed or learned during the training process. By applying the rule one chooses
one or more classifiers for making the final decision for a given input. Classifier
selection approaches can be grouped in two categories.

Dynamic Selection:

Given an input sample x. Consider the training or validation set. For each classifier
determine

• the k nearest neighbours to x; or
• the k nearest neighbours to x, which are labelled to the same class as x by the
classifier.

Then compute the accuracy among the k neighbours to choose which classifiers have
to make the final decision. As in the usual k-NN classification, one can also take the
distances to the neighbours into account.

Predefined Selection Regions:

Given a set of classifiers. One can cluster the training or validation set and compute
the accuracy of each classifier for every cluster or train the classifiers separately on
the clusters. Given an input sample x, one has first to find the cluster of x. Then, one
can choose the best classifier(s) assigned to that cluster to label x.
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Fig. 2 A two-dimensional
classification task where
three classifiers (represented
by specific colours) are used.
The colours of each data
point show which classifier
labels the sample correctly.
The dashed curves separate
the feature space into three
regions
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Regarding Fig. 2, a possible selector could choose the classifier which is repre-
sented by the blue colour to classify samples from region R1, the one represented by
the green colour for samples from region R2 and data points which lie in region R3

by the classifier represented by yellow. One famous classifier selection method is the
mixture of experts [32] which was originally constructed for neural networks.

4 Designing a Multi-classifier-System

Building an MCS is not a straight forward procedure. By training each classifier on
the whole data set, one might get a set of classifiers which are quite similar, or in the
worst case, all identical. This contradicts the main idea of the MCS approach. One
needs to apply intelligent techniques to build an appropriate MCS. Two of the most
popular methods for creating MCS are boosting and bagging with its variants. The
main ideas of these methods will be explained in the following subsections.

4.1 Bagging, Random Subspace Method and Random Forests

Bagging: Breiman introduced the bagging method [33] as an acronym for bootstrap
aggregating. The idea of bagging is the building of the MCS by using different
training sets. For each classifier one draws a certain amount of training data with
replacement.

Random Subspace Method: The random subspace method [34] is equivalent to
bagging. But instead of drawing a random subspace of the training set one draws a
random subspace of the feature space for each classifier.
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Bagging/Random Subspace Method/Random Forests (Training)

Input: Training set X ⊂ R
d, number of classifiers L.

1. Initialization: D = ∅.
2. FOR k = 1, . . . , L

– Determine training data Sk for classifier Dk:
• Draw a subset Sk ⊂ X (Bagging); OR
• Set Sk = X and draw a subset of the feature space s.t.

Sk ⊂ R
p with p ≤ d (Random Subspace Method); OR

• Draw a subset Sk ⊂ X and take a subset of the feature space s.t.
Sk ⊂ R

p with p ≤ d (Random Forests).
– Train classifier Dk on Sk and add it to the MCS, i.e. D = D ∪ {Dk}.

Output: MCS D.

Fig. 3 Training of bagging, the random subspace method and random forests

Random Forests: Random forests [35] is the combination of bagging and the
random subspace method. It is constructed for decision trees. Additionally, one can
also vary the parameters of each tree, i.e. minimum leaf size, impurity measure, and
so on.

The training phase for each of these methods is shown in Fig. 3 with the notations
from [22]. It is proposed to use decision trees and take the majority vote for the
final decision. But one could also take a different combination method and choose
different classifiers to build the MCS. One of the main advantages of these methods
is that each classifier can be created independently, thus the building of the MCS can
be parallelised.

4.2 Boosting

The idea of boosting is to add the classifiers sequentially. Like in bagging, one uses
a subset of the training data for each classifier. At the beginning, the samples of the
individual training set are selected according to uniform distribution. At the end of
each step, after a classifier is build, the distribution is updated. The probability to
draw data points, that have been misclassified so far, increases. Boosting was created
for two-class problems. In the original version one trained three classifiers, and built
the final decision via majority voting.

AdaBoost [36], acronym for adaptive boosting, is a generalisation of the boosting
method. It was also created for two-class problems. The generalisation was made for
the number of classifiers. One of the most famous versions for multi-class problems
is AdaBoost.M1. Its training phase is explained in Fig. 4, also with the notations from
[22].
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AdaBoost.M1 (Training)

Input: Training set X ⊂ R
d, number of classifiers L.

1. Initialization: D = ∅, ω1 ∈ [0, 1]N , N
j=1 ω1

j = 1.
2. FOR k = 1, . . . , L

– Draw a subset Sk ⊂ X in regard to the distribution of ωk and train Dk.
– Compute the weighted MCS error

k =
N

j=1

ωk
j ljk,

whereby, ljk = 1, if Dk misclassifies xj and 0 otherwise.
– If k = 0 or k ≥ 0.5, discard Dk, set ωk

j to 1
N

and continue.
– Else compute

βk = k

1 − k
, with k ∈ (0, 0.5).

– Update the weights

ωk+1
j =

ωk
j β1−l

j
k

N
i=1 ωk

j β1−l
j
i

, j = 1, . . . , N.

Output: MCS D and the weights β1, . . . βL.

Fig. 4 Training of the AdaBoost.M1 method

Once one trained the MCS D = {D1, . . . ,DL} with the corresponding weights
β1, . . . βL, one can compute the support for class ωi by

μi(x) =
∑

Dk (x)=ωi

ln

(
1

βk

)
.

The class with the highest support defines the label for x.
Further variants of boosting are AdaBoost.M2 [36], LogitBoost [37],MultiBoost-

ing [38], AveBoost [39] and AdaBoost-VC [40].

5 Fusion Architectures

Once an MCS is build and an aggregation rule determined, one has to design the
MCS architecture. Usually, classification tasks make use of data recorded from dif-
ferent sources, especially in real world applications. After the features are extracted
from the different data streams, one has to merge them. There exist different fusion
architectures. The two main approaches are the early and late fusion. But one can
also combine both approaches to get the hybrid fusion. In the following, the fusion
architectures are discussed.
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Fig. 5 Fusion Architectures.
Top: Early Fusion. Middle:
Late Fusion. Bottom:
Hybrid Fusion. AR stands
for aggregation rule
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• Early Fusion: Early fusion is the most straightforward approach. One takes the
features and merges them to one vector for each data point.

• Late Fusion: In the late fusion approach the feature space is divided naturally
(based on the sources of the data streams, e.g. audio, video, etc.) or artificially
into several subspaces. For each subspace, one trains a classifier or an MCS and
aggregates their outputs for the final decision.

• Hybrid Fusion: The hybrid fusion approach is a combination of the early and late
fusion.

Figure5 shows the differences between the three fusion methods.
Both main fusion architectures have their benefits and disadvantages. Regarding

early fusion, one does not need an extra layer for the aggregation of the classifier
systems, which is needed in the late fusion approach.

In case that some data from one or more of the data streams are missing, one
has to compensate this problem in the early fusion approach by taking the average,
median or taking the values from the nearest neighbours of the given data. In the case
of the late fusion approach, one can just leave the MCS out, which are responsible
for the missing data streams. This can be a comfortable solution for on-line classifi-
cation tasks. Table2 summarises the main benefits and disadvantages of both fusion
approaches.

As in Sect. 2, some basic results for the data sets described in Sect. 7.1, are given
in Table3 to show the effectiveness of the fusion approaches.
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Table 2 Main benefits and disadvantages of the early and late fusion architectures

Approach + −
Early No additional aggregation rule Complexity due to high dimensionality

dealing with missing data

Late Missing data can be left out Additional aggregation rule

Table 3 Comparison of one single decision tree classifier against bagged late fusionMCS of 7
and 7× 7 decision tree classifiers. Every 7 × 7MCS is significantly better than the single classifier
in regard to the Wilcoxon signed rank test with a significance level of p < 0.05. To mention is, the
MCS with 7 classifiers is significantly worse than the single classifier on the Pain1 data set. The
table shows the mean accuracies and standard deviations in % for the leave-one-subject-out setting
for the biopotentials of the given data sets. The random performance accuracy for Pain1 is 20%,
whereas the random performance accuracy for Pain2-Left and Pain2-Right is 25% each

Data Set Single Late fusion 7
classifiers

Late fusion 7 × 7
classifiers

Pain1 31.17 ± 8.18 28.89 ± 7.93 33.61 ± 9.44

Pain2-Left 35.35 ± 5.04 35.54 ± 5.46 38.91 ± 7.44

Pain2-Right 34.83 ± 6.78 34.70 ± 6.35 39.45 ± 7.68

6 Diversity

Methods like bagging and boosting were constructed to create MCS that are some-
how diverse. But what does diversity among classifiers mean? One could say that
classifiers with different accuracies on the same sets are diverse. However, two clas-
sifiers with a similar or even the same accuracy might make different errors. This
banal observation is the motivation to apply so-called pruning methods, whereby a
largeMCS is decreased or a smallMCS is increased until a certain size or an optimal
MCS, in relation to the classification performance, is found. The removing/adding
step in the pruning process is done by using an evaluation measure, which consists
of a specific diversity measure or a combination of diversity and accuracy measures.
There are many approaches to measure the diversity of an MCS explicitly. Usually
the measures are separated into two groups, pairwise and non-pairwise measures. In
the following we will list some of the most intuitive measures of each group and add
an additional category of diversity measures, which are defined for label outputs of
classifiers.

6.1 Pairwise Measures

Let M be a diversity measure. With Mi,j we denote the diversity value for the pair
of classifiers (Di,Dj). The diversity value of the whole MCS is then computed for
all pairwise measures as
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Table 4 Table with the variables used for defining pairwise diversity measures

a + b + c + d = 1 Dj correct Dj wrong

Di correct a b

Di wrong c d

M = 2

L(L − 1)

L−1∑

i=1

L∑

j=i+1

Mi,j .

Most of the pairwise measures are based on Table4.
Two simple and quite intuitive pairwise measures are defined as follows:

• Disagreement Measure. The disagreement measure is the probability that two
classifiers disagree:

Mi,j = b + c . (1)

• Double-Fault Measure. The double-fault measure is the probability that both
classifiers make an incorrect decision:

Mi,j = d . (2)

A higher value in (1) means higher diversity, while a higher value in (2) means lower
diversity. Further pairwisemeasures are, for example, the Q-statistic [41], correlation
and product-moment correlation [42].

6.2 Non-pairwise Measures

The non-pairwise measures compute the diversity value by using the whole MCS at
once. Let Y (x) be the number of classifiers that classify instance x correctly, i.e.

Y (x) :=
L∑

i=1

1{Di(x)=l(x)}(x) .

The Entropy Measure:

The entropy measure is based on the thought that for an object x ∈ X the MCS has
the highest diversity if 	L/2
 votes are correct and the other L − 	L/2
 votes are
wrong. Based on this, the entropy measure [43] is defined as

E = 1

N

1

L − �L/2�
∑

x∈X
min{Y (x),L − Y (x)} .
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Measurement of Interrater Agreement:

Let p̄ denote the mean accuracy of the classifiers, then the interrater agreement is
defined as

κ = 1 −
1
L

∑
x∈X Y (x)(L − Y (x))

N (L − 1)p̄(1 − p̄)
.

Kuncheva and Whitaker [11] have shown that the interrater agreement is a multiple
of the disagreement measure, i.e.

κ = 1 −
(

1

2p̄(1 − p̄)
× disagreement value of the MCS

)
.

This is an interesting observation, since the interrater agreement is a non-pairwise
measure. Further non-pairwise measures are, for example, the measure of difficulty
[44], the Kohavi-Wolpert Variance [45], the generalised diversity and the coincident
failure diversity [46]. Kuncheva [22] calls the variety of measures the diversity of
diversity.

6.3 Measures for Label Outputs

Most of the diversity measures are defined for the artificial correct-false-output of
the classifiers, based on Table4. Kuncheva calls this kind of outputs the oracle output
[22]. In the following, we introduce an example to justifywhy itmight be better to use
the classifiers’ label outputs to compute diversity, in regard to multi-class problems.

Motivation

Let’s consider a three class problem (c = 3) with the class labels Ω = {1, 2, 3}
and a set of five elements X = {x1, . . . , x5}. Furthermore, let D1, . . . ,D4 be four
classifiers which are combined to two different MCS, D1 = {D1,D2,D3} and D2 =
{D1,D2,D4}. Let the true and the guessed labels be given as follows, in Table5.

Considering all diversity measures based on the correct-false-output (see Table4)
the MCS D1 and D2 will be regarded as equally diverse. But intuitively one would
say that MCSD2 is more diverse than MCSD1, since classifiers D2 and D3 produce
exactly the same outputs on the given data setX , whereas the classifiers ofD2 produce
all different outputs on four out of five samples.

Disagreement and Double-Fault

According to [47], the disagreement measure can be naturally extended for the label
outputs of classifiers. The disagreement measure for two classifiers is then defined
as the probability that the classifiers provide different label outputs. In this sense,
we naturally extend the double-fault measure for the classifiers’ label outputs. The
double-fault measure of two classifiers is then the probability that the two classifiers
make the same mistakes.
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Table 5 Motivational example for the use of diversity measures, based on the classifiers’
label outputs. The MCS D1 (rows 1 to 8) contains two classifiers which provide exactly the same
outputs on all of the given samples. The MCS D2 (rows 9 to 16) consists of three classifiers which
provide all different outputs on all of the given samples, except for x2. However, in regard to the
correct-false-outputs, both MCS are considered the same

MCS D1 x1 x2 x3 x4 x5

l(xj) 1 1 2 2 3

D1(xj) 1 2 2 2 3

D2(xj) 2 2 1 1 2

D3(xj) 2 2 1 1 2

1{D1(xj)=l(xj)} 1 0 1 1 1

1{D2(xj)=l(xj)} 0 0 0 0 0

1{D3(xj)=l(xj)} 0 0 0 0 0

MCS D2 x1 x2 x3 x4 x5

l(xj) 1 1 2 2 3

D1(xj) 1 2 2 2 3

D2(xj) 2 2 1 1 2

D4(xj) 3 2 3 3 1

1{D1(xj)=l(xj)} 1 0 1 1 1

1{D2(xj)=l(xj)} 0 0 0 0 0

1{D4(xj)=l(xj)} 0 0 0 0 0

• Disagreement measure for classifiers’ label outputs:

Mlab
i,j = 1

|X |
∑

x∈X
1{Di(x)=Dj(x)}(x) .

• Double-Fault measure for classifiers’ label outputs:

Mlab
i,j = |{x ∈ X : Di(x) = Dj(x), Di(x) = l(x)}|

|X | .

Further measures for label outputs are, for example, the Rényi and Shannon entropy
[47]. Considering theMCSD1 andD2 we can compute the proposedmeasure values.
If we had computed the disagreement and double-fault values using the correct-false-
outputs of the classifiers than the values would be the same for bothMCS,D1 andD2.
But using the measures for the label outputs we get the result that MCS D2 is more
diverse than MCS D1 and does less similar mistakes (see Table6). This observation
is obviously true.

Therefore, the benefits of using diversity measures for label outputs are:

• We get a deeper differentiation by using label outputs instead of the correct-false-
outputs for multi-class problems.
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Table 6 Diversity values for label outputs for the MCS D1 and D2

D1 D2

Disagreement Measure 8
15

12
15

Double-Fault Measure 7
15

3
15

• Usually, we don’t need a labelled set for computing the diversity, whichmeans that
we can even use artificial data to compute the diversity among a set of classifiers.

Exception for the second bullet point is the double-fault measure.

6.4 Pruning

One way to make use of the diversity measures are the so-called MCS pruning
methods [48]. There are two main groups of pruning methods.

• Backward Elimination: One creates an MCS and gradually removes classifiers
by using a given measure.

• Forward Selection: One starts with an empty set and gradually adds classifiers
by using a given measure.

The measure can be an accuracy measure, any diversity measure or a combination
of both. Applying the backward elimination, one can also first build the MCS, then
create subsets of the MCS with similar classifiers in regard to a diversity measure,
and finally perform the pruning algorithm for each subset separately. Figure6 shows
one step of the backward elimination pruning.

By using a pairwise diversity measureMwe propose to save computational effort
by calculating the diversity matrix DM (M),

One Step Backward Elimination Pruning

Input: MCS D = {D1, . . . , DL}, evaluation measure E .
1. Define

– Dj := D \ {Dj}
– Ej evaluation value for Dj

2. FOR k = 1, . . . , L
– Remove Dk from D just for step k.
– Compute Ek.

Output: Dj∗ s.t. Ej∗ is the optimum value among all Ej .

Fig. 6 One step of the backward elimination pruning in the general form
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DM (M) =

⎡

⎢⎢⎢⎣

0 M1,2 · · · · · · M1,L

0 0 M2,3 · · · M2,L
...

...
...

. . .
...

0 0 · · · 0 0

⎤

⎥⎥⎥⎦ ∈ R
L×L .

To compute the diversity value for the whole MCS one has to sum up each element
of DM (M) and divide it by the number of pairs. To compute the diversity value
after removing classifier Dk from the MCS D one can just cancel row k and column
k inDM (M) and do the same calculation for the corresponding number of classifier
pairs. The main reasons for applying pruning methods are

1. A smaller MCS needs less memory and computational time for classification.
2. By taking a subset of the original MCS one tries to increase the accuracy.

To increase accuracy one should not try to build the MCS as diverse as possible.
Figure7 shows the relationship of accuracy versus both disagreement measures.
Obviously the most diverse MCS are not the most accurate ones. To compute the
results in Fig. 7 we used the Pain1 data set (see Sect. 7.1). Furthermore, to induce a
range, inwhich the accuracy values vary significantly, we applied the following steps.
First, we partitioned the data set into a relatively huge training set and a relatively
small test set. The training set was used to design the MCS, whereby the test set was
used to calculate the accuracy, and the diversity values as well. Then, we gradually

0.5 0.55 0.6 0.65
0.375

0.38

0.385

0.39

0.395

D
is

ag
re

em
en

t

Disagreement measure for the correct-false-outputs

0.5 0.55 0.6 0.65
MCS Accuracy

0.47

0.48

0.49

0.5

D
is

ag
re

em
en

t

Disagreement measure for label outputs

Fig. 7 MCS accuracy versus both disagreement measures on one of the skin conductance level
channels of the Pain1 data set with the classes Ω = {T0,T2,TT }. The MCS with the highest accu-
racies are not the most diverse ones. The points form a parabolic shape
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changed the ratio of both sets and repeated our experiments, until the training set
became relatively small and the test set relatively huge.

Brown and Kuncheva [49] have shown that by using the disagreement measure -
based on the correct-false-outputs - for two-class problems, the MCS majority vote
error can be decomposed in three parts, the average individual loss of the classifiers
and two diversity terms. One of the diversity terms decreases the MCS error (“good”
diversity) and the other diversity term increases the MCS error (“bad” diversity).

7 Case Study: Pain Intensity Estimation

Aswementioned in the introduction, there are several reasons why an automatic pain
recognition system would be useful. To take this thought one step further, it might
be necessary to be able to estimate different levels of pain, to determine the right
therapy for the affected patients, for example. Since pain is a subjective experience in
the first place, we will ignore data, which is extracted from video and audio signals.
Some people may screamwhen they experience pain, others stay quiet - some people
may heavily shake, others remain mainly motionless. Also the recordings of video
and audio data can be well-interpreted by human experts. Therefore, the subject of
our case study is pain intensity estimation based on biophysiological data. In the first
place, we will give a short description of the used data sets, then explain the feature
extraction, list some related work on the proposed data sets and finally present the
results, followed by a short discussion.

7.1 BioVid Heat Pain Database and SenseEmotion Database

In our case study we use the BioVid Heat Pain Database [50] and the SenseEmotion
Database [51] that have been collected at Ulm University. These data sets were
specifically recorded for the research field of automatic pain intensity estimation.

The data sets consist of 87 (44 male, 43 female) and 40 (20 male, 20 female) par-
ticipants, respectively. A thermode was attached to one of the participants’ forearms.
In a controlled environment, the participants were subjected to several levels of pain
stimuli elicited through the thermode. The pain free baseline temperature was 32 ◦C
(T0) for all participants. The different pain levels were calibrated for each participant
individually. Therefore, one raised the temperature slowly to define two thresholds.
First, one determined the temperature TP (pain threshold), when the person felt a
change from heat to pain. Then, the temperature TT (tolerance threshold) was deter-
mined, when the person felt that the pain was barely manageable (The maximum
allowed temperature was set to 50.5 ◦C). Then the interval [TP,TT ] was partitioned
in three and two sections of equal size for the BioVid Heat Pain Database and the
SenseEmotion Database respectively.
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Fig. 8 An example for the
stimulation and recovering
phase for one participant for
the BioVid Heat Pain
Database. In the
SenseEmotion Database
there is only one
intermediate temperature
between TP and TT
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Table 7 Characteristics of both data sets, namely BioVid Heat Pain Database (Pain1) and
SenseEmotion Database (Pain2)

Differences between the both data sets Pain1 Pain2

Number of participants 87 (44 m, 43 f) 40 (20 m, 20 f)

Number of classes 5 (T0, . . . ,T4) 4 (T0, . . . ,T3)

Number of samples per class for each person 20 30

ECG/EMG/SCL/Video � �
Audio/RSP − �

Each participant was stimulated with all the pain levels 20 and 30 times in a
randomized order for theBioVidHeat PainDatabase and the SenseEmotionDatabase
respectively. The pain level was held for 4 s each time. Between two pain stimuli
there was a break for a random time of 8−12 s (see Fig. 8). During the experimental
sessions different video and audio signals were recorded. The physiological data
streams consisted of the skin conductance level (SCL), electrocardiography (ECG),
electromyography (EMG) and respiration (RSP).

The SenseEmotion Database was also recorded for an emotion recognition task.
But since our case study deals with automatic pain intensity recognitionwewill focus
on the experimental part regarding pain stimulation. The reader is referred to [51] to
get the full data set description. Furthermore, the experiments on the SenseEmotion
Database were carried out twice for each participant. Once for the right forearm and
once for the left forearm. We will denote the BioVid Heat Pain Database by Pain1
and the two parts of the SenseEmotion Database by Pain2-Left and Pain2-Right.
Table7 summarizes the main differences between the data sets.

7.2 Related Work on both BioVid Heat Pain Database and
SenseEmotion Database

Based on the given data sets, several studies have been conducted. Kächele et al.
[52] studied different fusion approaches for the video and biopotential features of
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the BioVid Heat Pain Database, for the following person independent (leave-one-
subject-out cross-validation setting), binary classification tasks: (T0,T1), (T0,T4),
(T1,T2), (T2,T3), (T3,T4) and (T1,T4). Furthermore, Kächele et al. [53] also exam-
ined different experiments, based uniquely on the biopotentials of the BioVid Heat
Pain Database. Thereby, the best performance for the person independent task was
reached for (T0,T4), i.e. the task T0 versus T4, with an average accuracy of 85.7%.

Kessler et al. [54] proposed to include remote Photoplethysmography features
from the video channels for the pain intensity estimation on the SenseEmotion
Database. This approach was used in [55] by Kessler et al. Thereby, for the per-
son independent task T0 versus T3, the fusion of video and biopotential features
led to an average accuracy of 71.10% and 71.85%, on the left and right forearm
respectively.

Thiam et al. [56] proposed a personalised pain level recognition on the Sense-
Emotion Database for the task T0 versus T3, based uniquely on video features. In
[57] Thiam et al. combined audio and video features of the SenseEmotion Database
in both person dependent and person independent scenarios. The following binary
classification tasks have been conducted: (T0,T1), (T0,T2) and (T0,T3). For the
person independent setting, the best performance was reached for the task T0 versus
T3, with an average accuracy of 65.89 and 66.76%, on the left and right forearm
respectively. By combining all available modalities (audio, video and biopotentials)
Thiam et al. [58] reached an average accuracy of 82 and 83%, on the left and right
forearm respectively for the task T0 versus T3, in a person independent setting.

7.3 Feature Extraction of the Biopotentials

Prior to the classification experiments, a finite set of descriptors specific to each
modality and characterising typical responses of the autonomic nervous system to
external stimuli was extracted. The autonomic nervous system regulates visceral
activities such as heart rate, respiratory rate, perspiration andmuscle activities during
periods of stress and emergency [59]. These descriptors are subsequently used as fea-
tures for each specific modality during the classification experiments. The recorded
modalities were first individually pre-processed using a wide range of signal filter-
ing and smoothing techniques (low- and bandpass filtering, Gaussian filtering, signal
detrending). This pre-processing step is necessary in order to substantially reduce
the amount of noise and artefacts within the signals resulting from the sensibility of
the sensors used to perform the recordings, combined with several sources of noise
such as unconstrained body motion or progressive detachment of electrodes from the
skin during data acquisition.

Subsequently, statistical descriptors from both the temporal domain (mean signal
value, standard deviation, maxima, minima, skewness, kurtosis) and the frequency
domain (Fourier coefficients, bandwidth, central frequency, mean frequency) were
extracted. Additional descriptors based on entropy (shannon entropy, fuzzy entropy,
sample entropy) and the signal amplitude (waveform length, modified mean value of



Multi-classifier-Systems: Architectures, Algorithms and Applications 105

the absolute value of the signal) were also extracted. Furthermore, typical descriptors
from the ECG signal were extracted based on the differences between consecutive
heart beats and the detected PQRST waves (root mean sum of squared differences,
amplitudes of P, Q, R, S and T wavelets) [53, 60]. Finally, additional statistical
descriptors were extracted from both tonic and phasic components of the SCL sig-
nal. A total of 194 features were extracted from the BioVid Heat Pain Database,
while a total of 335 features were extracted from the SenseEmotion Database. After
removing unusable features, i.e. ones that contained NaN (Not-a-Number) values or
that were constant for all data points, the bio-physiological feature set specific to the
SenseEmotion Database was reduced to 307 features.

7.4 Results

In our case study we did several experiments on person independent pain inten-
sity estimation. For each of the proposed data sets from Sect. 7.1 we did a cross-
validation, whereby in each step the data of one person was used as the test set and
the remaining data as the training set (leave-one-subject-out setting). We repeated
the cross-validation for the methods bagging, boosting and random forests. For each
method we computed the accuracies for each single modality and the three different
fusion approaches, explained in Sect. 5. We used decision trees as base classifiers.
Furthermore, we used the mean as the aggregation rule for both, the late and hybrid
fusion approach. In the late fusion approach we trained one MCS for each channel,
in the hybrid fusion approach one MCS for each modality. Each MCS consisted
of 200 and 300 decision trees for the Pain1 and Pain2 data sets respectively. As
shown in Table7, Pain1 is a 5-class classification task, whereas the Pain2 data sets
represent a 4-class classification task each. All of the experiments were conducted
with the built-in functions in MATLAB. The parameter setting was left to default.
Tables8, 9 and 10 show the mean accuracies and standard deviations of the evaluated
cross-validations on the three proposed data sets respectively.

The boosting results on the Pain2-Right data set (see Table10) and the basic
boosting results from Table1 for the early fusion lead to one interesting observation
regarding the number of classifiers, which are summarized in Table11. FromTable11
we can see that the increase of theMCS size from 7 to 300 base classifiers could only
slightly improve themean accuracy. In contrast, themedian accuracy even decreased,
and the standard deviation increased.

Regarding Table11, it might lead to better results by creatingMCS of smaller size,
when using the boosting method. Since the boosting method is choosing the training
samples selectively in each step, it might lead to overfitting by taking too many
samples from one single or a specific group of test persons. Furthermore, the late and
hybrid fusion approaches might perform better by using a different aggregation rule,
for example a trainable one, like the Pseudo-Inverse proposed in Sect. 3.2. From the
Tables8, 9 and 10 we get the following observations:



106 P. Bellmann et al.

Table 8 Comparison between single modalities and fusion approaches on Pain1. Bagging
and random forests are both significantly better compared to the boosting method for each fusion
approach in regard to theWilcoxon signed rank testwith a significance level ofp < 0.05. For bagging
and random forests the late fusion approach is significantlyworse than the other two approaches. The
table shows the mean accuracies and standard deviations in % for the leave-one-subject-out setting
for the Pain1 data set. The best performing method is represented in bold numbers. The figures
in brackets denote the number of channels per data stream. The random performance accuracy for
Pain1 is 20%, since it represents a 5-class classification task

Pain1 Single Modalities Fusion Approaches

Method EMG (1) ECG (3) SCL (3) Late Hybrid Early

Bagging 23.91 ±
6.82

26.30 ±
8.11

38.46 ±
11.21

37.08 ±
10.77

38.69 ±
10.83

39.34±
10.21

Boosting 24.17 ±
6.12

24.16 ±
7.51

35.90 ±
7.43

35.63 ±
7.28

35.94±
7.78

35.74 ±
7.19

RF 23.85 ±
7.15

26.52 ±
8.57

38.40 ±
10.90

37.51 ±
11.06

38.25 ±
11.11

39.09±
10.85

Table 9 Comparison between singlemodalities and fusion approaches on Pain2-Left. Only for
the boosting method one of the fusion approaches outperforms the SCLmodality. But it’s still worse
than the mean accuracy of the bagged SCL single modality. The table shows the mean accuracies
and standard deviations in % for the leave-one-subject-out setting for the Pain2-Left data set. The
best performing method is represented in bold numbers. The figures in brackets denote the number
of channels per data stream. The random performance accuracy for Pain2-Left is 25%, since it
represents a 4-class classification task

Pain2-Left Single Modalities Fusion Approaches

Method RSP (1) ECG (2) SCL (3) Late Hybrid Early

Bagging 33.16 ±
7.09

33.34 ±
7.11

43.50±
8.65

41.96 ±
8.85

42.27 ±
8.68

43.03 ±
8.51

Boosting 33.03 ±
7.52

33.25 ±
6.24

42.17 ±
7.93

41.88 ±
8.16

42.75±
7.85

42.31 ±
8.08

RF 33.81 ±
7.08

32.56 ±
8.27

42.72±
8.64

42.08 ±
8.95

41.31 ±
7.57

42.09 ±
8.79

• The SCL is the best single modality. The accuracy results are significantly better,
compared to the other single modalities.

• The SCL modality leads to the best results twice, both times on the Pain2-Left
data set.

• The hybrid fusion approach led to the best results on all of the three data sets when
using the boosting method.

• The bagging method led to the best overall results on all of the three data sets.

Figure9 shows some of the presented results in detail.
Tables8, 9 and 10 show the mean accuracies, which are all below 50% and exhibit

relatively high standard deviations. Figure10 presents the individual accuracies for
some of the proposed methods. From Fig. 10 we can observe:
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Table 10 Comparison between single modalities and fusion approaches on Pain2-Right. For
each method all fusion approaches outperform the best single modality (SCL). The boosting hybrid
approach is significantly better than the boosting SCL single modality in regard to the Wilcoxon
signed rank test with a significance level of p < 0.05, but it’s not significantly better than the
bagged SCL single modality. The table shows the mean accuracies and standard deviations in %
for the leave-one-subject-out setting for the Pain2-Right data set. The best performing method is
represented in bold numbers. The figures in brackets denote the number of channels per data stream.
The randomperformance accuracy for Pain2-Right is 25%, since it represents a 4-class classification
task

Pain2-Right Single Modalities Fusion Approaches

Method RSP (1) ECG (2) SCL (3) Late Hybrid Early

Bagging 34.23 ±
6.79

33.82 ±
8.71

42.26 ±
9.85

43.16±
8.16

42.15 ±
7.96

42.34 ±
8.83

Boosting 33.13 ±
7.20

33.49 ±
7.65

40.68 ±
8.14

41.90 ±
8.08

42.74±
8.88

40.81 ±
8.14

RF 33.07 ±
7.73

33.78 ±
8.23

41.79 ±
9.82

42.51±
8.10

42.24 ±
8.51

41.89 ±
8.65

Table 11 Comparison of the number of classifiers for the boosting method in the early fusion
approach evaluated on the Pain2-Right data set. The table shows the accuracies and standard
deviations in % for the leave-one-subject-out setting

Number of classifiers Mean Median

L = 7 40.39 ± 6.83 41.84

L = 300 40.81 ± 8.14 41.20
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Fig. 9 Boxplots of accuracies of different methods. The dots denote the mean values. Left: The
early fusion is the best approach regarding the median and mean value. Right: The Hybrid fusion
approach is significantly better than the best single modality (SCL) in regard to theWilcoxon signed
rank test with a significance level of p < 0.05
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Fig. 10 Individual accuracies for the leave-one-subject-out setting with the early fusion approach.
Accuracy is denoted by acc, whereas accR indicates the chance level of random guessing. Top
(Pain1): In the bagging approach there are 44 out of 87 test persons with an accuracy above 2 · accR.
In the random forests approach there are 43 out of 87 test persons with an accuracy above 2 · accR.
The test persons with the IDs 43 and 67 are in both approaches below the chance level accR.Bottom
(Pain2): There are 8 and 9 out of 40 test persons with accuracies above 2 · accR, on Pain2-Left and
Pain2-Right respectively. There is also not even one test person below the chance level accR

• The automatic person independent pain intensity estimation (leave-one-subject-
out setting) seems to work better for a subset of the test persons, but unfortunately
not for all.

• Especially in the Pain1 data set there seem to be at least two test persons, which
don’t fit to the rest of the set at all.

7.5 Discussion

In our case studywedealtwith person independent pain intensity estimation.Thereby,
we focused on the physiological data streams of the BioVid Heat Pain Database and
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the SenseEmotion Database. The bagging method performed best on all of the three
data sets.

The EMG is the worst performing modality. The ECG and RSP modalities lead
to similar accuracy results, which lie between the results obtained from the EMG
and SCL channels. The SCL is a very strong modality to measure pain. From the
experiments we can conclude that the skin conductance is correlated to the temper-
ature stimuli experienced by the test persons. However the information gained from
the SCL modality might be only relevant for the pain scenario, in which the pain
is induced by heat. Anyway, the results seem not to be reliable enough for a real
world application. At this stage, it seems to be reasonable, to simplify the task of the
estimation of different pain intensity levels to the distinction between no pain and
(strongly experienced) pain, at least for the person independent scenario. An other
approach is to train an additional selecting rule, which finds similar test persons
and restricts the training data in regard to each test person, to improve accuracy, as
proposed in [53].

To show the effectiveness of the different fusion approaches one could repeat
the experiments with all available modalities, including audio and video features.
Furthermore, one could compare the accuracies obtained by using single modalities
against all fusion approaches without taking the SCL channels into account.

It also might be useful to repeat the experiments with fixed temperature levels
for all test persons. The individual calibration of the stimulation temperatures might
have possibly led to a multi-class problem, where each temperature level represents
an own class.

8 Conclusion

In this paper we summarised the main aspects of MCS. First, we reflected the main
reasons for the use of an MCS and added some basic results to substantiate the effec-
tiveness of the MCS approach. Therefore, we showed that already a small amount of
classifiers significantly increases the classification performance in regard to the accu-
racy reached by a single classifier. Then, we described some existing combination
methods for classifiers and MCS building approaches to show the variety of MCS
designs. We continued by summarising the main fusion architectures, namely early,
late and hybrid fusion and pointed out their essential differences, advantages and
drawbacks. Every combination of all the three fusion architectures was each com-
bined with the bagging, boosting and random forests approach in our experiments.
The bagging method led to the best overall classification results on our proposed data
sets in regard to accuracy.

In the second part of the paperwe explained themeaning of diversity in the context
of MCS. We proposed a short list of existing diversity measures and introduced an
example why it might be useful to stick to the classifier’s label outputs when dealing
with diversity. In this sense we naturally extended the existing double-fault measure
to the classifier’s label outputs. Then, we discussed the main application of diversity
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measures, the MCS pruning. We added another basic result, which underpins that
diversity can also be detrimental to the performance of an MCS.

The last part of this paper includes a case study on pain intensity estimation,
which is important in the field of e-health. First, we described the BioVid Heat Pain
Database and the SenseEmotion Database. We continued with an explanation of
the implemented feature extraction of the biopotentials of the proposed data sets.
Our experiments show that the implementation of different fusion architectures is
useful and is able to lead to an overall accuracy improvement most of the times.
Unfortunately, it is not possible to undertake one of the presented pruning methods
to achieve higher classification accuracies. The complexity of the proposed data sets is
obviously quite high, especially for the leave-one-subject-out setting. To undertake
effective pruning steps one needs a suitable pruning set (validation set), which is
similar to the test set. This constitutes the main problem, since the test persons
seem to differ significantly, concerning the recorded data. Therefore, to improve the
automatic pain intensity estimation for a person independent setting it is necessary
to propose new concepts. One possible approach, which was mentioned in Sect. 7.5,
is to train the MCS on an appropriate subset of the training data for each test set.
Therefore, one has to find test persons which are similar to the test person represented
by the test data. The similarity can be calculated in regard to some meta information
(test persons’ gender, age, etc.) or machine learning based techniques (Euclidean
distance, Hausdorff distance, etc.).
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Abstract Graded multi-label classification (GMLC) is a supervised machine learn-
ing taskwhere the association between each data and a label has amembership degree
from an ordinal scale of membership degrees: for example, an odorous molecule can
be associated to the graded subset of odors {strongmusc, moderate animal} based on
the ordinal scale of odor intensity: {very weak, weak, moderate, strong, very strong},
and a movie can be associated to the graded subset of labels {action � � ��, suspense
��, humour ��} based on the ordinal scale of one-to-five star rating. The aim inGMLC
is to build a predictive model called classifier, in order to predict the graded set of
labels based on descriptive attributes of data. For example, predicting the graded set
of molecule odors based on molecular properties such as the molecular structure and
weight. Or predicting the graded set of genres for a movie based on the synopsis and
the main actors. An interesting challenge in GMLC is learning label relations and
exploiting them to enhance the prediction performance of classifiers. A label relation
can be a dependency relation: for example, movies containing a lot of ‘action’ often
contains also some ‘suspense’. Another type of label relations is preference relations:
for example, it is preferred to associate a movie containing a lot of movements to
the label ‘action’ than to the label ‘humour’. The limitation of existing approaches
is that they can either learn dependency relations or preference relations. This work
reviews state of the art GMLC approaches, and introduces a new GMLC approach
that can learn both dependency and preference label relations. Experiments on real
datasets show that the new approach outperforms baseline approaches according the
used prediction evaluation measures.
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1 Introduction

One of the most fundamental human cognitive skills is pattern recognition. For
example, given a set of categories such as ‘happy’, ‘sad’, and ‘angry’, a human
is able to label music records with the given categories depending on the emotion
expressed by each music record. Even without a given set of categories, a human is
still able to regroup the given set of recordedmusics depending on his perception. For
example, long music records can be grouped and separated from the group of short
music records. Music records using violin as the main instrument can be grouped
and separated from music records using guitar or piano as the main instrument.

The challenge of transferring the ability of pattern recognition tomachines belongs
to an area of artificial intelligence called machine learning. Machine learning can be
unsupervised in case a set of unlabelled data described by features is given, and the
machine learns to regroup data into clusters so that feature values of data in the same
cluster are similar, and feature values of data from different clusters are dissimilar.
This task of unsupervised machine learning is called clustering. Machine learning
can be supervised in case a set of labelled data described with a set of features is
given, and themachine learns to label unlabelled data by extracting from labelled data
the features discriminating labels. This supervised machine learning task is called
classification.

Single label classification is the case where each instance is associated to exactly
one label froma set of available labels. Binary classification is the casewhere there are
only two available labels. Multi-class classification is the case where there are more
than two available labels. Multi-class ordinal classification is the case where the set
of available labels is ordered [1]. Multi-label classification (MLC) is the case where
each instance can be associated to a subset of labels instead of a single label [2]. The
task of MLC is handled either by extending single label classification approaches, or
by exploiting existing single label classifiers after transforming multi-label instances
to single label instances [3]. Fuzzy classification is aMLC task where the association
between an instance and a label has a membership degree ranging between 0 and 1.
Graded multi-label classification (GMLC) is different from fuzzy classification by
the fact that membership degrees are from an ordinal scale of membership grades
instead of being necessarily in the range [0, 1] [4, 5].

The GMLC task is handled either by transforming it into a set of MLC subtasks,
then labels associated to eachmembership degree are predicted, or by transforming it
into a set of ordinal classification subtasks, then the membership degree correspond-
ing to each label is predicted. TheMLC and the ordinal classification subtasks can be
decomposed to a set of binary classification subtasks. The advantage of transform-
ing the GMLC task is to benefit from existing binary classifiers instead of modifying
their algorithms to handle graded multi-label instances.
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Learning label relations and exploiting them to improve the prediction quality is
an interesting task that has been addressed in MLC [6, 7]. GMLC can benefit from
MLC strategies of learning label relations since GMLC can be transformed into a
set of MLC subtasks. There are two main types of label relations in MLC:

• preference relations where the decision is the preferred label to be associated to
an instance among a pair of labels. For example, in case of a movie containing a
lot of movements, the label ‘action’ is preferred over the label ‘humour’.

• dependency relations where the decision to associate a label to an instance depends
on whether the instance is associated to another label or not. For example the
decision to associate a movie to the label ‘suspense’ can be supported by the fact
that the movie is strongly associated to the label ‘action’.

The problem of label dependencies is that a prediction error for a label may be
propagated to another label depending on it: for example, a classifier using the rule:
an image associated to the label ‘beach’ should be also associated to the label ‘ocean’,
may predict the label ‘beach’ for an image that is not really associated to the label
‘beach’, and then the prediction of the label ‘ocean’ may also be wrong.

Label dependencies can help to output coherent prediction, however, they may
also cause prediction error propagation. An interesting challenge in learning label
dependencies is to learn an optimal set of label dependencies minimizing the risk of
error propagation.

Another challenging task in learning label dependencies is handling the problemof
cyclic dependencies. Indeed, a multi-label classifier cannot output a set of associated
labels in case there are for example two labels where the prediction of each label
depends on the outputted prediction of the other label. Most of existing approaches
allow learning only a subset of label dependencies to avoid cyclic dependencies. The
drawback of this type of approaches is that a restriction is forced on allowed label
relations before the learning stage. Therefore, some label dependencies cannot be
learned, and there may be no label dependency to discover in the subset of allowed
relations.

Approaches that can learn label dependencies are called binary relevance based
approaches, and approaches that can learn label preferences are called pairwise based
approaches. State of the art approaches can either learn label preference or label
dependency relations [8]. This work introduces a new approach to overcome the
above limitations based on two main ideas:

• the first idea is to allow learning label relations without any restriction, then some
dependencies may be removed or replaced in order to reduce the risk of error
propagation or to eliminate a cyclic dependency.

• the second idea is to combine a binary relevance based approach and a pairwise
based approach in order to benefit fromboth label dependency and label preference
relations.

Experiments are conducted on real multi-label (ML) and graded multi-label
(GML) datasets. The aim is to confirm that allowing learning different types of label
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relations without a restriction before the learning phase can improve the predictive
performance of classifiers.

In this work, state of the art classification approaches are reviewed in Sect. 2.
Transformation approaches of ordinal classification approaches to a set of binary
classification subtasks are reviewed in Sect. 2.1. Transformation approaches of MLC
to a set of binary classification subtasks are reviewed in Sect. 2.2. GMLC transfor-
mation approaches to a set of MLC subtasks or to a set of ordinal classification
subtasks are reviewed in Sect. 2.3. The GMLC task can be transformed to a set of
binary classification subtasks by combining transformation approaches in Sect. 2.
The new proposed approach that allows learning both label dependency and label
preference relations is presented in Sect. 3. Experiments on real datasets comparing
our new proposed approach to state of the art MLC approaches are presented in
Sect. 4. Experiments on real GML datasets comparing some extensions of our new
proposed approach to existing GMLC approaches are presented in Sect. 5.

2 State of the Art

2.1 Single Label Classification

Let A = {aj}1≤j≤p be a set of descriptive attributes. Let C = {cl}1≤l≤k be a set of
labels. Let X = {xi}1≤i≤n be a set of instances. Each instance xi ∈ a1 × · · · × ap is
described by a vector of attribute values xi = (xi,1, . . . , xi,p), and it is associated to
a label yi ∈ C. Let λ : X → C be a function that outputs for each instance xi ∈ X
the true associated label λ(xi) = yi. The function λ is called a training function. The
single label classification task is to learn from the training set X and the training
function λ a classifier H : a1 × · · · × ap → C that predicts for any given
instance x ∈ a1 × · · · × ap the associated label H (x).

Some classifiers such as decision trees [9] are adapted to multi-class classification
(k > 2), however, there are classifiers such as support vector machines [10] that
are adapted only to binary classification (k = 2). The advantage of transforming
multi-class classification to binary classification is to benefit from all existing binary
classifiers.

The three main transformation approaches of multi-class classification to binary
classification are presented in the following.

2.1.1 One Vs All Approach

The One Vs All approach (OVA) builds a multi-class classifier H based on k binary
classifiers {Hl}1≤l≤k [11]. The training set of a classifier Hl is the set X , how-
ever, the training function λ is replaced by the function λl : X → {0, 1} that out-
puts 1 for an instance associated to the label cl , and outputs 0 otherwise. Each
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classifier Hl : a1 × · · · × ap → {0, 1} predicts whether a given instance
x ∈ a1 × · · · × ap should be associated to the label cl (Hl(x) = 1) or not
(Hl(x) = 0). The predicted labelwith the highest confidence is outputted by themulti-
class classifier: H (x) = cl where ∀l′ �= l: Conf (Hl(x) = 1) ≥ Conf (Hl′(x) = 1).

2.1.2 One Vs One Approach

TheOneVsOne approach (OVO) builds amulti-class classifierH based on
k(k − 1)

2
binary classifiers {Hl,l′ }1≤l<l′≤k [12]. The training function λ does not change for a
classifier Hl,l′ : λl,l′ = λ, however, the training set of a classifier Hl,l′ is a subset of X
that contains only instances associated either to the label cl or to the label cl′ : Xl,l′ =
{xi ∈ X , yi = cl or yi = cl′ }. Each classifier Hl,l′ : a1 × · · · × ap → {cl, cl′ }
predicts for a given instance x ∈ a1 × · · · × ap whether it is preferred to associate it to
the label cl or to the label cl′ . The most preferred label by the classifiers {Hl,l′ }1≤l<l′≤k

is predicted by the multi-class classifier: H (x) = cl where ∀l′ �= l:
|{He,f ,He,f (x) = cl}1≤e<f ≤k | ≥ |{He,f ,He,f (x) = cl′ }1≤e<f ≤k |.

2.1.3 Ordinal Classification Transformation Approach

Ordinal classification is the case where labels are ordered c1 < · · · < ck . A simple
approach to handle this case is to build an ordinal classifier H based on k − 1 binary
classifiers {Hl}2≤l≤k [1]. The training set of a classifier Hl does not change Xl = X ,
however, the training function λ is replaced by the function λl : X → {0, 1} that
outputs for an instance xi whether it is associated to a label cl′ ≥ cl (λl(xi) = 1)
or not (λl(xi) = 0). Each classifier Hl should output the corresponding probability
to its prediction. The probability that a given instance x ∈ a1 × · · · × ap is
associated to a label cl (y = cl) is given by the following:

• Pr(y = c1) = 1 − Pr(y ≥ c2) = 1 − Pr(H2(x) = 1)
• Pr(y = ck) = Pr(y ≥ ck) = Pr(Hk(x) = 1)
• ∀l ∈ [[2, k − 1]]:
Pr(y = cl) = Pr(y ≥ cl) − Pr(y ≥ cl+1) = Pr(Hl(x) = 1) − Pr(Hl+1

(x) = 1)

The ordinal classifier H predicts the label having the highest corresponding proba-
bility: H (x) = cl where ∀l′ �= l: Pr(y = cl) ≥ Pr(y = cl′).

2.2 Multi-label Classification

The difference between single label classification and MLC is that each instance
xi ∈ X is associated to a subset of labels from C instead of a single label: yi ∈ P(C)



120 K. Laghmari et al.

(P(C) is the set of all subsets of labels inC). The training function λ : X → P(C)

outputs the subset of associated labels to a given instance xi: λ(xi) = yi. The
aim in MLC is to learn from the training set X and the training function λ a
classifier H : a1 × · · · × ap → P(C) that predicts for any given instance
x ∈ a1 × · · · × ap the associated subset of labels H (x). In this work, we are
interested also to learning and exploiting label relations in order to output coherent
predictions [13, 14].

A strategy of handling the MLC task is to adapt single label classifiers to the
case of multi-label data [15–17]. The drawback of this strategy is that to modify the
approach of learning label relations the classifier itself should be modified.

Another strategy of handling the MLC task is to transform multi-label data to
single label data in order to exploit existing single label classifiers. The three main
categories of transformation based approaches are presented in the following.

2.2.1 Label Set Category

The key idea of label set category of approaches is to treat each different subset of
labels yi ∈ P(C) as a single new label [18]. The set of new labels C can contain at
most n distinct labels C = {Cl}1≤l≤n in case all subsets of labels yi, i ∈ [[1, n]] are
different.

Let LS : X → C be the label mapping function that outputs for each instance
xi ∈ X the corresponding new label LS(xi) ∈ C . Let LS−1 : C → X be a function
that outputs for a given new label Cl ∈ C one instance xi ∈ X so that: LS−1(Cl) = xi
and LS(xi) = Cl .

A single label classifier h : a1 × · · · × ap → C is trained using the training set X
and the training function LS. The multi-label classifier H predicts a subset of labels
for a given instance x by converting back the outputted new label h(x) to a subset of
original labels H (x) = λ(LS−1(h(x))).

The drawback of the label set category of transformation approaches is that two
different subsets of labelswith some common labels are considered as different labels
in the transformed problem. Therefore, label relations between labels from different
subsets cannot be learned.

2.2.2 Binary Relevance Category

Binary relevance category of approaches is based on the idea of the OVA transfor-
mation approach (Sect. 2.1.1). The Binary Relevance approach (BR), which is the
baseline approach in this category, builds a multi-label classifier H based on a set of
k binary classifiersH = {Hl}1≤l≤k [8]. Each classifierHl : a1 × · · · × ap →
{0, 1} predicts for a given instance x the relevance of the label cl (whether x
should be associated to cl : Hl(x) = 1, or not: Hl(x) = 0). The multi-label clas-
sifier H outputs for a given instance x all labels predicted as relevant for x:
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H (x) = {cl ∈ C, Hl(x) = 1}. The drawback of the BR approach is that label
relations cannot be learned.

The Classifier Chains approach (CC) [19] allows learning label dependen-
cies by considering relevancies of labels as additional descriptive attributes. Let
rl : X → {0, 1} be the relevance function of the label cl given by:

rl(xi) = 1 if cl ∈ yi, and rl(xi) = 0 otherwise.
The training set X is extended for each classifier Hl, l ≥ 2 as follows:
Xl = {(xi,1, . . . , xi,p, r1(xi), . . . , rl−1(xi)}1≤i≤n. The training set for the classifier

H1 is not extended: X1 = X . To output a prediction for a given instance x, the binary
classifier H1 predicts the relevance of c1 to x. Then the instance x is extended by
H1(x): (xi,1, . . . , xi,p,H1(x)). The classifier H2 predicts the relevance of c2 to x con-
sidering the predicted relevance by H1. Indeed, each classifier Hl, l ≥ 2 outputs a
prediction considering the extended instance x by predictions of all previous clas-
sifiers: x = (xi,1, . . . , xi,p,H1(x), . . . ,Hl−1(x)). The drawback of the CC approach
is that label dependencies that can be learned depend on the initial order of labels.
Indeed, a classifier Hl is not allowed to depend on the outputted prediction of a
classifier Hl′ , l′ > l.

The CC approach can be extended by allowing each classifier Hl, l ∈ [[1, k]] to
depend on all other classifiers. This is done by extending the training set for each
binary classifier Hl as follow:

• X1 = {(xi,1, . . . , xi,p, r2(xi), . . . , rk(xi)}1≤i≤n

• Xk = {(xi,1, . . . , xi,p, r1(xi), . . . , rk−1(xi)}1≤i≤n

• ∀l ∈ [[2, k − 1]]: Xl = {(xi,1, . . . , xi,p, r1(xi), . . . , rl−1(xi), rl+1(xi), . . . ,
rk(xi)}1≤i≤n

This approach is referred in the following as the Full Binary Relevance approach
(FBR). Note that the fact of allowing label dependencies for a classifier Hl does not
mean necessarily that Hl should depend on any other classifier. Indeed, the learned
classifier Hl can be eventually independent.

Let D→ : H → P(H ) be the function that outputs for a classifier Hl ∈ H the
set of classifiers on which it depends.

Let D← : H → P(H ) be the function that outputs for a classifier Hl ∈ H the
set of classifiers depending on it.

At the prediction phase for a given instance x, each classifier Hl should output
its prediction only after predictions of all classifiers D→(Hl) on which Hl depends
are collected. The problem is that in CC approach the prediction order of classi-
fiers is known before, while in the FBR approach the prediction order can not be
known before building the classifiers. The drawback of the FBR approach is that the
prediction order cannot be selected in case of a cyclic dependency:

For example a cyclic dependency may be caused by the fact that two classifiers
depend on each other: ∃ l, l′ ∈ [[1, k]] : Hl′ ∈ D→(Hl) & Hl ∈ D→(Hl′). There-
fore, it is not possible for any classifier of Hl and Hl′ to output its prediction because
the prediction of the other classifier is needed. The FBR approach is not a complete
MLC approach because it does not give a solution for cyclic dependencies, however
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it is the base approach of other MLC approaches handling the problem of cyclic
dependencies.

The approach of Aggregating Independent and Dependent classifiers (AID) [20]
combines the FBR and the BR approaches to overcome the problem of the prediction
order in the FBR approach. The idea of the AID approach is to build a set of k binary
classifiers {hl}1≤l≤k as in the BR approach, and another set of k binary classifiers
{Hl}1≤l≤k as in the FBR approach. At the prediction phase for a given instance x,
classifiers of the BR approach output their predictions to extend the instance x:
(x1, . . . , xp, h1(x), . . . , hk(x)). Then each classifier Hl of the FBR approach outputs
its prediction based on the extended instance x instead of the outputted predictions
of other classifiers {Hl′ }l′ �=l . The multi-label classifier H outputs the predicted set
of labels as follows: H (x) = {cl,Hl(x) = 1}. The drawback of this approach is that
the prediction H (x) is not necessarily coherent with learned label dependencies by
classifiers of the FBR approach. The following example illustrates this remark:

• the classifierH2 outputs 1 only if the label c1 is not associated to the given instance
x

• the instance x is not associated to c1 according to the classifier h1, therefore c2 is
predicted for the instance x

• the instance x is associated to c1 according to the classifier H1

In this example, both labels c1 and c2 are predicted by the AID approach which is
not a coherent prediction considering the dependency learned by the classifier H2.

An approach has been recently proposed to ensure coherent predictions with
learned label dependencies without forcing a prediction order before the learning
phase [21]. The idea is to learn a set of k initial classifiers H = {hl}1≤l≤k as in the
FBRapproach.Then cyclic dependencies are eliminated by replacing someclassifiers
based on threemeasures called Pre-selection, Selection, and Interest of chaining (PSI
measures). The obtained set of final classifiers H = {Hl}1≤l≤k does not contain any
cyclic dependency.

Let MaxD→ : P(H ) → P(H ) be the function that outputs for a given set of
classifiersH ′ ⊆ H the subset of classifiersH ′′ ⊆ H ′ depending on the largest
number of classifiers:

• ∀hl ∈ H ′′,∀hl′ ∈ H ′ − H ′′: |D→(hl)| > |D→(hl′)|
• ∀hl, hl′ ∈ H ′′: |D→(hl)| = |D→(hl′)|
Let MaxD← : P(H ) → P(H ) be the function that outputs for a given set of
classifiers H ′ ⊆ H the subset of classifiers H ′′ ⊆ H ′ on which depend the
largest number of classifiers:

• ∀hl ∈ H ′′,∀hl′ ∈ H ′ − H ′′: |D←(hl)| > |D←(hl′)|
• ∀hl, hl′ ∈ H ′′: |D←(hl)| = |D←(hl′)|
The PSI measures work as follows:

• the pre-selectionmeasureP : H → {0, 1} splits the set of initial classifiers to a set
of candidate classifiers to be replaced {hl ∈ H ,P(hl) = 1}, and a set of classifiers
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that can be moved to the set of final classifiers {hl ∈ H ,P(hl) = 0}. The pre-
selection measure that pre-selects dependent classifiers that may be involved in
cyclic dependencies can be given as: P(hl) = 1 if D→(hl) �= ∅, and P(hl) = 0
otherwise. All non pre-selected classifiers are removed fromH and added toH. A
classifier that remains inH and does not depend on another classifier that remains
inH is considered independent using the pre-selection measure P. Therefore, the
pre-selection measure is applied iteratively to move classifiers from H until the
remaining classifiers in H are all pre-selected. The remaining classifiers in H
using this strategy are involved in cyclic dependencies.

• the selection measure S : P(H ) → H selects one initial classifier hl to be
replaced by a final classifier Hl from a set of candidate classifiers
{hl ∈ H , P(hl) = 1}. A classifier hl on which depend the largest number of
classifiers hl ∈ MaxD←(H ) can be selected to be replaced and removed from
H in order to help making independent the largest number of classifiers. In case
there are more than one classifier hl ∈ MaxD←(H ), the classifier hl depending
on the largest number of classifiers hl ∈ MaxD→(MaxD←(H )) can be selected
to reduce the risk of prediction error propagation by replacing the classifier having
the largest number of dependencies. A selection measure that outputs exactly one
classifier can be given as follows: S(H ) = hl where:

– hl ∈ MaxD→(MaxD←(H ))

– ∀hl′ ∈ MaxD→(MaxD←(H )) − {hl}: l′ > l

• the interest of chaining measure I : H → {0, 1} selects the final classifiers
{H ∈ H, I(Hl) = 1} on which the classifier Hl can depend to replace the
selected classifier hl . The interest of chaining measure can be given as: ∀Hl ∈ H:
I(Hl) = 1 in order to allow learning the maximum of label dependencies that are
not cyclic. Indeed, the order of adding classifiers to the set of final classifiers H is
the prediction order of classifiers {Hl}1≤l≤k . The new classifier Hl replacing hl is
then added toH, and the initial classifier hl is removed fromH . Some remaining
classifiers in H may appear independent after removing hl according to the pre-
selection measure P. Hence, the pre-selection measure is applied iteratively to
move all independent classifiers from H to H.

The pre-selection, the selection, and the interest of chaining measures are applied
iteratively until the set of final classifiers is completed |H| = k and the set of initial
classifiers becomes empty H = ∅. This approach based on the three PSI measures
is called PSI. It allows learning different set of label dependencies according to the
given PSI measures [21].

2.2.3 Pairwise Comparisons Category

Pairwise comparisons category of MLC transformation approaches is based on the
OVO transformation approach (Sect. 2.1.2). The Ranking by Pairwise Comparisons
approach (RPC) is the baseline approach in this category. It builds a multi-label
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classifier H based on a set of
k(k − 1)

2
binary classifiersH = {Hl,l′ }1≤l<l′≤k [22].

Each classifier Hl,l′ : a1 × · · · × ap → {cl, cl′ } predicts for a given instance x
the preferred label among cl and cl′ to be associated to the instance x. The training set
for the classifier Hl,l′ is a subset of X containing only instances associated to exactly
one of the labels cl or cl′ :

Xl,l′ = {xi ∈ X , (cl ∈ yi & cl′ /∈ yi)or(cl /∈ yi & cl′ ∈ yi)}.
Let VH ,cl : a1 × · · · × ap → [[0, |H | − 1]] be the function that outputs for

a given instance x the number of times the label cl was preferred by the binary
classifiers inH : VH ,cl (x) = |{Hl′,l′′ ∈ H ,Hl′,l′′(x) = cl}l′=lorl′′=l |.

In order output a multi-label prediction for a given instance x, a threshold
v ∈ [[0, |H | − 1]] can be used to output labels preferred more times than the
threshold value: H (x) = {cl ∈ C, VH ,cl (x) ≥ v}.

The Calibrated Label Ranking approach (CLR) is an extension of the RPC
approach that allows to output a multi-label prediction using a virtual label instead of
a threshold value [23]. The CLR approach learns k more binary classifiers {Hl,0}1≤l≤k

than the RPC approach. Each classifier Hl,0 predicts the relevance of the label cl to a
given instance x. The training set is transformed for the classifierHl,0 so that instances
not associated to cl are considered as associated to a virtual label c0. In order to output
a multi-label prediction for a given instance x, the set of labels is ordered according
to the number of times each label is preferred. Then all labels that are preferred more
times than the virtual label are predicted: H (x) = {cl ∈ C,VH ,cl (x) ≥ VH ,c0(x)}.

2.3 Graded Multi-label Classification

The difference between MLC and GMLC is that in GMLC an ordinal scale of mem-
bership degrees is given: M = {m1 < · · · < ms}. For each membership degree
mg the function λmg : X → P(C) outputs for an instance xi ∈ X the set of labels
associated to xi with the membership degree mg . For each label cl ∈ C the function
μcl : X → M outputs for an instance xi ∈ X the corresponding membership degree
to the label cl . Each instance xi ∈ X is associated to a vector yi ∈ Mk of k mem-
bership degrees: yi = (μc1(xi), . . . , μck (xi)) = (μcl (xi))1≤l≤k . The training function
μ : X → Mk is given by: μ(xi) = (μcl (xi))1≤l≤k . The task of GMLC is to learn
from the training set X and the training functionμ a classifierH : a1 × · · · ap → Mk

that outputs for a given instance x the corresponding vector of membership degrees
H (x) ∈ Mk .

The task of GMLC can be decomposed either into a set of ordinal classification
subtasks, or into a set of MLC subtasks, or into a set of binary classification sub-
tasks. The three main categories of decomposition approaches of the GMLC task are
detailed in the following.
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2.3.1 Vertical Decomposition Category of GMLC Approaches

The idea of the vertical decomposition (VD) is to build a GML classifier H based
on a set of k classifiers {Hcl }1≤l≤k [4]. Each classifier Hcl : a1 × · · · × ap → M pre-
dicts the membership grade of the label cl . The VD category is similar to the binary
relevance category of MLC transformation based approaches (Sect. 2.2.2). The dif-
ference is that each classifier Hcl in MLC is a binary classifier Hcl (x) ∈ {0, 1}, while
in theVD task each classifierHcl is an ordinal classifierHcl (x) ∈ {m1 < · · · < ms}
(Sect. 2.1.3). The GML classifier H outputs a prediction for a given instance
x ∈ a1 × . . . × ap as follows: H (x) = (Hcl (x))1≤l≤k .

The advantage of theVD is that the generated ordinal classification subtasks can be
handled by any ordinal classifier, and the strategy of generating ordinal classification
subtasks can be combined with any transformation approach in the binary relevance
category (Sect. 2.2.2):

• the approach referred asVertical_BR combines the vertical decompositionwith the
Binary Relevance approach. Therefore each learned classifier Hcl is independent.

• the approach referred as Vertical_CC combines the vertical decomposition with
the Classifier Chains approach. Therefore each learned classifier Hcl is allowed to
depend on classifiers {Hcl′ }1≤l′<l≤k .

• the approach referred as Vertical_PSI combines the vertical decomposition with
the PSI approach. Therefore each learned classifier Hcl is allowed initially to
depend on all other classifiers {Hcl′ }l′ �=l . Then in case of a cyclic dependency some
classifiers may be rebuilt considering a restricted set of allowed dependencies.

2.3.2 Horizontal Decomposition Category of GMLC Approaches

The idea of the horizontal decomposition (HD) is to build a GML classifier H based
on a set of s − 1 classifiers {h≥mg }2≤g≤s [4]. Each classifier

h≥mg : a1 × · · · × ap → P(C) predicts for a given instance x the set of labels
that are associated to the instance x with a membership degree mg′ at least equals
to mg: mg′ ≥ mg . The classifier h≥m1 is ignored because m1 is the lowest available
membership grade, therefore h≥m1(x) = {cl}1≤l≤k . The idea of building a classifier
h≥mg for each membership degree mg ≥ m2 is taken from the idea of decomposing
an ordinal classification task into a set of binary classification subtasks (Sect. 2.1.3).
The difference is that each classifier h≥mg in the ordinal classification is a binary
classifier h≥mg (x) ∈ {0, 1}, while in the HD task each classifier h≥mg is a multi-label
classifier h≥mg (x) ⊆ C. For the HD approach, each label cl may be predicted for
a given instance x by multiple classifiers h≥mg ,mg ≥ m2. Therefore, an aggregation
function Hcl that outputs a final membership degree for the label cl by combining
predictions of classifiers {h≥mg }2≤g≤s is needed. Hcl can be given as the function that
outputs the highest membership grade corresponding to a classifier h≥mg that predicts
the label cl : Hcl (x) = mg where:

• cl ∈ h≥mg (x)
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• ∀mg′ > mg: cl /∈ h≥mg′ (x)

The GML classifier H outputs a prediction for a given instance x as follows:
H (x) = (Hcl (x))1≤l≤k . The advantage of the HD is that the strategy of generat-

ing MLC subtasks can be combined with any ordinal classification transformation
approach, and the generated MLC subtasks can be handled by any existing multi-
label classifier. The drawback of the HD is that a classifier h≥mg may ignore the
output of all other classifiers {h≥mg }2≤g≤s:

For example, letM = {m1,m2,m3,m4} be the set of membership grades. The fact
that for a given instance x the label cl is not predicted by the classifiers h≥m3 and h≥m2

means that the membership degree of cl is not ≥ m2 and it is not ≥ m3. However, if
the label cl is predicted by the classifier h≥m4 the outputted membership degree for
cl is m4. The predictions of classifiers h≥m3 and h≥m2 are not considered in this case.

TheHorizontal CalibratedLabelRanking approach (Horizontal_CLR) [24] solves
each generated MLC task by the horizontal decomposition using the CLR approach
(Sect. 2.2.3). The Horizontal_CLR approach introduces a set of virtual labels

W = {wg}2≤g≤s, and a set of virtual membership degrees V = {vg}2≤g≤s. Each
virtual label wg has a fixed membership degree vg for any given instance

x ∈ a1 × · · · × ap. The position of virtual membership grades in regards to
the original membership grades is given as follows:

M ∪ V = {m1 < v2 < m2 < v3 · · · < ms−1 < vs < ms}. Each multi-

label classifier h≥mg is built as in the CLR approach using a set of
k(k + 1)

2
binary

classifiersH≥mg = {h≥mg ,cl ,cl′ }1≤l<l′≤k ∪ {h≥mg ,cl ,wg }1≤l≤k .
The training set of a classifier h≥mg ,cl ,cl′ contains only instances that are associ-

ated with a membership degree mg′ ≥ mg either to the label cl or to the label cl′ :
X≥mg ,cl ,cl′ =

{xi ∈ X , (μcl (xi) ≥ mg) & (μcl′ (xi) < mg)}∪
{xi ∈ X , (μcl (xi) < mg) & (μcl′ (xi) ≥ mg)}.
Let μ≥mg ,cl ,cl′ : X≥mg ,cl ,cl′ → {cl, cl′ } be the training function given by
μ≥ mg ,cl ,cl′ (xi) = cl if μcl (xi) > μcl′ (xi), and μ≥mg ,cl ,cl′ (xi) = cl′ otherwise.
Each classifier h≥mg ,cl ,cl′ learns from the training set X≥mg ,cl ,cl′ and the training

function μ≥mg ,cl ,cl′ . The classifier h≥mg ,cl ,cl′ predicts for any given instance x the
preferred label among the labels cl and cl′ to be associated to x with a membership
degree at least equals to mg .

The training set of each classifier h≥mg ,cl ,wg is not modified: X≥mg ,cl ,wg = X . The
corresponding training function μ≥mg ,cl ,wg : X → {cl,wg} is given by: μ≥mg ,cl ,wg =
cl if μcl (xi) > vg , and μ≥mg ,cl ,wg (xi) = wg otherwise.

For a given instance x, the multi-label classifier h≥mg collects predictions of all
binary classifiers inH≥mg . Then the classifier h≥mg outputs the set of labels that are
preferred more times than the virtual label wg .

The Horizontal_CLR approach adapts the CLR transformation approach to the
GMLC task using multiple calibration labels, however it does not provide an alter-
native to the used strategy by the horizontal decomposition to aggregate predictions
of classifiers {h≥mg }2≤g≤s.
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The Full Calibrated Label Ranking approach (Full_CLR) [24] extends the Hori-
zontal_CLRapproach inorder to overcome theproblemof classifiers {h≥mg }2≤g≤s that
may ignore the outputted predictions of each other. The Full_CLR approach builds
(k + s − 1)(k + s − 2)

2
preference classifiersH = {hcl ,cl′ }1≤l<l′≤k ∪ {hcl ,wg }1≤l≤k

2≤g≤s

∪ {hwg ,wg′ }2≤g<g′≤s to predict the label having the highest membership degree among
a pair of labels

(α, β) ∈ C ∪ W × C ∪ W . The training set for a preference classi-
fier hα,β where α, β ∈ C ∪ W is given by: Xα,β = {xi ∈ X , μα(xi) �= μβ(xi)}. The
corresponding training function μα,β : Xα,β → {α, β} is given by: μα,β(xi) = α if
μα(xi) > μβ(xi), and μα,β(xi) = β otherwise.

To output a prediction for a given instance x, labels C ∪ W are ordered according
to the number of times each label is preferred. The aggregation function Hcl that
outputs for a given instance x the membership degree corresponding to the label cl
is given by: Hcl (x) = mg where

• VH ,cl (x) ≥ VH ,wg (x)
• ∀g′ ∈ [[g + 1, s]]: VH ,cl (x) < VH ,wg′ (x)

The GML classifier H outputs a prediction for the instance x as follows:
H (x) = (Hcl (x))1≤l≤k . The advantage of the Full_CLR approach is that predictions
of all preference classifiers are aggregated to output a total order for labels. The draw-
back of the Full_CLR approach is that preference classifiers ignore the difference
between membership degrees of labels:

For example, a label cl with a membership degree m4 is preferred over a label
cl′ with a membership degree m3 and over a label cl′′ with a membership degree
m2. Therefore there is no difference between the preference of cl over cl′ and the
preference of cl over cl′′ .

The Joined Calibrated Label Ranking approach (Joined_CLR) [24] combines the
Horizontal_CLR and the Full_CLR to overcome the limitations of both approaches.
The main ideas off the Joined_CLR are as follows:

• build a set of preference classifiers H =
⋃

2≤g≤s

H≥mg as in the Horizontal_CLR

approach so that the difference between membership degrees is considered
• output predictions as in the Full_CLR approach so that predictions of classifiers
inH are not ignored.

The problem of combining the previous two ideas is that there are k(s − 1) prefer-
ence classifiers for each label cl ∈ C, while there are only k preference classifiers
for each label wg ∈ W . The joined_CLR solves this problem by adding a set of pref-
erence classifiers {h≥mg ,cl ,wg′ } 1≤l≤k

g′∈[[2,s]]−{g}
∪ {h≥mg ,wg′ ,wg′′ }2≤g′<g′′≤s for all membership

gradesmg, g ∈ [[2, s]]. The classifiers {h≥mg,cl ,wg′ } 1≤l≤k
g′∈[[2,s]]−{g}

are learned as the classifiers

{h≥mg ,cl ,wg }1≤l≤k in the Horizontal_CLR approach. Classifiers {h≥mg ,wg′ ,wg′′ }2≤g′<g′′≤s

do not need to be trained. Indeed, each classifier h≥mg ,wg′ ,wg′′ outputs the label wg′′

as the preferred label because it has the highest membership grade. Considering the
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added classifiers, each label cl and each labelwg can have at most (k + s − 2)(s − 1)
votes.

2.3.3 Complete Decomposition Category of GMLC Approaches

The idea of the complete decomposition (CD) is to build a GML classifier H
based on a set of k (s − 1) binary classifiers {h≥mg ,cl }2≤g≤s

1≤l≤k

[4]. Each classifier

h≥mg ,cl : a1 × · · · × ap → {0, 1} predicts for a given instance x whether the
label cl has a membership grade mg′ ≥ mg or not. The complete reduction is equiv-
alent to a vertical decomposition where each ordinal classifier Hcl is built based on
a set of binary classifiers {h≥mg ,cl }2≤g≤s (Sect. 2.1.3). The complete decomposition
is equivalent also to an horizontal decomposition where each multi-label classifier
h≥mg is solved using the binary relevance approach: {h≥mg ,cl }1≤l≤k . The Complete
decomposition can be combined with other learning strategies to allow learning label
relations

• the approach referred as Complete_BR combines the complete decomposition
with the Binary Relevance approach. Therefore each learned classifier h≥mg ,cl is
independent.

• the approach referred as Complete_PSI combines the complete decomposition
with the PSI approach. Therefore each learned classifier h≥mg ,cl is allowed to
depend initially on all other classifiers, then in case of a cyclic dependency some
classifiers may be rebuilt.

The drawback of the vertical decomposition and the complete decomposition is
that preferences between labels cannot be learned. The advantage of the horizontal
decomposition is that any MLC approach can be used to solve the generated MLC
subtasks, however, existing MLC approaches can learn either label dependency or
label preference relations.

3 A New Approach to Learning both Label Dependency
and Label Preference Relations

Our idea to allow learning both label dependencies and label preferences in GMLC is
to use an horizontal decomposition, and solve each generated MLC subtask using a
newMLC approach combining a MLC approach from the binary relevance category
to learn label dependencies (Sect. 2.2.2), and a MLC approach from the pairwise
comparisons category to learn label preferences (Sect. 2.2.3).

In thiswork, two combining strategies are introduced: one using theCLRapproach
and the other using the RPC approach as the base pairwise comparisons approach.
Both strategies are combined with the PSI approach because it has the advan-
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tage of learning different label dependencies according to the given PSI measures
(Sect. 2.2.2) [25].

The first combining strategy called CLR_PSI builds
k(k + 1)

2
binary classifiers

{Hl,l′ }1≤l<l′≤k ∪ {Hl,0}1≤l≤k and outputs the predicted set of labels as in the CLR
approach (Sect. 2.2.3). The difference is that classifiers {Hl,0}1≤l≤k that predict the
preference between labels cl ∈ C and the virtual label c0 are built using additional
attributes as in the PSI approach (Sect. 2.2.2).

In order to learn dependencies between classifiers, there should be enough com-
mon instances between classifiers at the training step. The problem of preference
classifiers {Hl,l′ }1≤l<l′≤k is that each classifier Hl,l′ learns from its one subset of
instances. Therefore there may be only few or no common instances at all between
the preference classifiers. This explains why only classifiers {Hl,0}1≤l≤k are built
using the PSI approach.

The second combining strategy called Stacked_RPC_PSI answers the challenge
of learning label dependencies based on preference classifiers {Hl,l′ }1≤l<l′≤k .

The Stacked_RPC_PSI approach builds
k(k − 1)

2
binary classifiers as in the RPC

approach. Then each preference classifier Hl,l′ predicts the preferred label for all
training instances xi ∈ X . The Stacked_RPC_PSI adds a set of k classifiers {Hl}1≤l≤k

as in the PSI approach. The difference is that each classifier Hl is allowed to depend
on preference classifiers {Hl,l′ }1≤l<l′≤k by extending the training set X using the
outputted predictions of the preference classifiers:

X ′ = {(xi,1, . . . , xi,p,H1,2(xi),H1,3(xi), . . . ,Hk−1,k(xi))}1≤i≤n. The Stacked_
RPC_PSI approach outputs a prediction for a given instance x by collecting predic-
tions from classifiers of the RPC approach, then from classifiers of the PSI approach.

The Stacked_RPC_PSI approach outputs the set of labels outputted by the PSI
approach.

3.1 The CLR_PSI Approach on a Multi-label Dataset
Example

Let X = {xi}1≤i≤10 be the training set in Table1. Each instance xi is described using
two attributes a1 and a2, and it can be associated to one or more labels from a set of
3 available labels C = {c1, c2, c3}.

The dataset in Table1 is extended according to the CLR_PSI approach as shown in
Table2. Each preference classifierHl,l′ , 1 ≤ l < l′ ≤ 3 learns to predict the preferred
label between cl and cl′ (the added attribute cl#cl′ in Table2) based on the descriptive
attributes {a1, a2}. The attribute cl#cl′ is called a target attribute for the classifierHl,l′ .
Instances that are not considered by the classifier Hl,l′ are marked with an empty-set
symbol ∅ for the target attribute cl#cl′ (Table2).

Each preference classifier Hl,0, l ∈ [[1, 3]] learns to predict the preferred label
between cl and the virtual label c0 based on an extended descriptive attribute set



130 K. Laghmari et al.

Table 1 Multi-label dataset example

Instances a1 a2 Labels

x1 20 30 {c2, c3}
x2 35 35 {c2, c3}
x3 15 40 {c2, }
x4 20 50 {c2}
x5 30 45 {c1, c2}
x6 35 30 {c1, c2}
x7 10 40 {c1, c2}
x8 15 45 {c1, c3}
x9 25 55 {c1, c3}
x10 30 60 {c1, c3}

Table 2 Dataset extension for the CLR_PSI approach

Instances a1 a2 c1#c2 c1#c3 c2#c3 c1#c0 c2#c0 c3#c0

x1 20 30 c2 c3 ∅ c0 c2 c3
x2 35 35 c2 c3 ∅ c0 c2 c3
x3 15 40 c2 ∅ c2 c0 c2 c0
x4 20 50 c2 ∅ c2 c0 c2 c0
x5 30 45 ∅ c1 c2 c1 c2 c0
x6 35 30 ∅ c1 c2 c1 c2 c0
x7 10 40 ∅ c1 c2 c1 c2 c0
x8 15 45 c1 ∅ c3 c1 c0 c3
x9 25 55 c1 ∅ c3 c1 c0 c3
x10 30 60 c1 ∅ c3 c1 c0 c3

{a1, a2} ∪ {cl′ }l′ �=l . Then in case of a cyclic dependency, some classifiers may be
rebuilt depending on the given PSI measures.

In the following, decision trees [9] without pruning are used as the base binary
classifiers. ClassifiersH1,2,H1,3, andH2,3 are learned as in theCLRapproach (Figs. 1,
2 and 3).

The root node in the decision treeH1,2 contains 3 instances associated to the label
c1, and 4 instances associated to the label c2 (Fig. 1). For instances with a value
xi,2 ≤ 40 the label c2 is predicted (Fig. 1).

The initial set of classifiers H = {h1,0, h2,0, h3,0} is built as in the PSI approach
(Figs. 4, 5 and 6). The decision tree h1,0 contains a node c2#c0 and a node c3#c0
(Fig. 4), therefore h1,0 depends on the output of decision trees h2,0 and h3,0. The deci-
sion tree h2,0 contains only descriptive attribute nodes (Fig. 5), hence it’s independent.
The decision tree h3,0 contains a node c1#c0 and a node c2#c0 (Fig. 6), therefore h3,0
depends on the output of decision trees h1,0 and h2,0. There is a cyclic dependency
between decision trees h1,0 and h3,0 because they depend on each other. Figure7
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Fig. 1 The binary classifier
H1,2 learned by the
CLR_PSI approach

Fig. 2 The binary classifier
H1,3 learned by the
CLR_PSI approach



132 K. Laghmari et al.

Fig. 3 The binary classifier
H2,3 learned by the
CLR_PSI approach

Fig. 4 The binary classifier
h1,0 learned by the CLR_PSI
approach
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Fig. 5 The binary classifier
h2,0 learned by the CLR_PSI
approach

Fig. 6 The binary classifier
h3,0 learned by the CLR_PSI
approach

Fig. 7 Initial dependency
structure of classifiers
learned by the CLR_PSI
approach
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presents the dependency structure of the initial set of classifiers {h1,0, h2,0, h3,0}. An
arrow from a classifier hl,0 to another classifier hl′,0 indicates that hl′,0 depends on
hl,0.

In the following, the PSI measures presented in Sect. 2.2.2 are considered.
The classifier h2,0 is independent, hence it is not pre-selected (P(h2,0) = 0). h2,0

is moved from the set of initial classifiers:H = {h1,0, h3,0} to the set of final classi-
fiers:H = {h2,0} (H2,0 = h2,0). The remaining classifiers h1,0 and h3,0 are dependent,
therefore they are pre-selected (P(h1,0) = P(h3,0) = 1). h1,0 and h3,0 depend only on
each other after moving h2,0 fromH . The selection measure S selects the classifier
with the lowest index in this case because h1,0 and h3,0 have the same number of
depending and dependent classifiers: S(H ) = h1,0.

The interest of chainingmeasure allows the classifierH1,0 replacing h1,0 to depend
on all classifiers in H. Hence, the new classifier H1,0 is learned considering the
extended attribute set {a1, a2} ∪ {c2#c0} (Fig. 8). The classifier h1,0 is removed from
H : H = {h3,0}, and the classifier H1,0 is added to H: H = {H2,0,H1,0}.

The classifier h3,0 is considered independent after moving h2,0 and h1,0 from
H . Hence h3,0 is not pre-selected: P(h3,0) = 0. h3,0 is then moved from H to H:
H = ∅, and H = {H2,0,H1,0, h3,0} (H3,0 = h3,0). The obtained final dependency
structure does not contain any cyclic dependency (Fig. 9).

Note that attributes for the training set of the classifier H2,0 are extended to the
set {a1, a2} ∪ {c1#c0, c3#c0}. However, the learned classifier H2,0 is independent.
The drawback of most of existing approaches compared to the PSI approach is that
an assumption is made on the dependency structure before the learning phase: For
example, in the CC approach, H1,0 cannot depend on any other classifier. However,
in the PSI approach a dependency ofH1,0 onH2,0 is discovered (Fig. 8). The classifier
H2,0 in the CC approach is allowed to depend only on the classifier H1,0, however,
no dependency is discovered after building the classifier H2,0 (Fig. 5).

3.2 The Stacked_RPC_PSI Approach on a Multi-label
Dataset Example

The initial training set X and the PSI measures described in Sect. 3.1 are considered
to build the Stacked_RPC_PSI multi-label classifier.

Classifiers {Hl,l′ }1≤l<l′≤3 in the Stacked_RPC_PSI approach are built as in the
CLR_PSI approach (Figs. 1, 2 and 3). Then they are used to output predictions

and extend all instances xi ∈ X (Table3). Values for each added attribute Hl,l′ , 1 ≤
l < l′ ≤ 3 in Table3 are the predictions outputted by the classifier Hl,l′ .

Classifiers {Hl}1≤l≤3 in the Stacked_RPC_PSI approach are built using the PSI
approach and considering the extended training set in Table3. The initial classifiers
{hl}1≤l≤3 learned by the PSI approach are independent, hence they become the final
classifiers (Figs. 10, 11 and 12).

The classifier H3 learned by the Stacked_RPC_PSI approach (Fig. 12) depends
on two label preferences. Indeed, the classifier H3 predicts the relevancy of the label
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Fig. 8 The new binary
classifier H1,0 learned by the
CLR_PSI approach

Fig. 9 Final dependency
structure of classifiers
learned by the CLR_PSI
approach

c3 to a given instance x based on the predicted preferences between labels c1 and c2
by the classifier H1,2, and between labels c2 and c3 by the classifier H2,3.

The learned dependency structure by the Stacked_RPC_PSI approach considering
all classifiers {Hl,l′ }1≤l<l′≤3 ∪ {Hl}1≤l≤3 is illustrated in Fig. 13.
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Table 3 Extended dataset using predictions of classifiers {H1,2,H1,3,H2,3}
Instances a1 a2 H1,2 H1,3 H2,3 c1 c2 c3

x1 20 30 c2 c3 c2 0 1 1

x2 35 35 c2 c3 c2 0 1 1

x3 15 40 c2 c1 c2 0 1 0

x4 20 50 c2 c1 c2 0 1 0

x5 30 45 c1 c1 c2 1 1 0

x6 35 30 c2 c1 c2 1 1 0

x7 10 40 c2 c1 c2 1 1 0

x8 15 45 c1 c1 c3 1 0 1

x9 25 55 c1 c1 c3 1 0 1

x10 30 60 c1 c1 c3 1 0 1

Fig. 10 The binary classifier
h1 learned by the
Stacked_RPC_PSI approach

Fig. 11 The binary classifier
h2 learned by the
Stacked_RPC_PSI approach
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Fig. 12 The binary classifier
h3 learned by the
Stacked_RPC_PSI approach

Fig. 13 The learned
dependency structure by the
Stacked_RPC_PSI approach

3.3 GMLC Decompositions on a Dataset Example

Let X = {xi}1≤i≤10 be the set of training instances in Table4. Each instance xi ∈ X is
described by a set of descriptive attributes {a1, a2}, and it is associated to each label
from C = {c1, c2, c3} with a membership grade from M = {m1 < m2 < m3} =
{1 < 2 < 3}. A set of calibration labels W = {w2,w3} and a set of virtual mem-
bership grades V = {v2 < v3} are introduced so that:

• w2 has a fixed membership grade v2, and w3 had a fixed membership grade v3
• M ∪ V = {m1 < v2 < m2 < v3 < m3}
In Table4, v2 corresponds to the value 1.5 and v3 corresponds to the value 2.5. The
attribute w2 is denotes by ‘@1.5’ and the attribute w3 is denoted by ‘@2.5’.

The Horizontal_CLR approach builds a set of (|M | − 1)(
|C|(|C| + 1)

2
) = 12

preference classifiers to predict values for target attributes illustrated in Table5:
For example, the attribute denoted by ‘≥ 2|c1#c2’ is the target attribute for the

preference classifier that predicts which label of c1 and c2 is preferred to be associ-
ated to a given instance with a membership grade mg ≥ 2.
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Table 4 Example of GML data with multiple calibration labels: 3 membership grades, 3 labels, 2
calibration labels

Instances a1 a2 c1 c2 c3 @1.5 @2.5

x1 20 30 1 2 1 1.5 2.5

x2 35 35 1 2 2 1.5 2.5

x3 15 40 2 2 3 1.5 2.5

x4 20 50 2 3 3 1.5 2.5

x5 30 45 3 3 2 1.5 2.5

x6 35 30 3 3 1 1.5 2.5

x7 10 40 1 1 1 1.5 2.5

x8 15 45 1 1 2 1.5 2.5

x9 25 55 2 1 3 1.5 2.5

x10 30 60 2 1 3 1.5 2.5

The Full_CLR approach builds a set of
(|C| + |M | − 1)(|C| + |M | − 2)

2
= 10

preference classifiers to predict values for target attributes illustrated in Table6.
The Joined_CLR approach builds a set of

(|M | − 1)
(|C| + |M | − 1)(|C| + |M | − 2)

2
= 20 preference classifiers to pre-

dict values for target attributes illustrated in Table5 and in Table7.
The CLR_PSI approach can be used to solve the GMLC task as follows:

• a pairwise decomposition such as Horizontal_CLR, Full_CLR, or Joined_CLR is
used to build the GML classifier based on a set of preference classifiers.

• classifiers that predict the preference between a label and a calibration label are
built using all training instances. Hence, the PSI approach can be applied to learn
dependency relations between those classifiers.

• the remaining classifiers and the prediction strategy of the base pairwise decom-
position approach are not modified.

The corresponding combined approaches are called Horizontal_CLR_PSI,
Full_CLR_PSI, and Joined_CLR_PSI.

The Stacked_RPC_PSI approach can be used to solve the GMLC task as follows:

• a pairwise decomposition such as Horizontal_CLR, Full_CLR, or Joined_CLR is
used to build the GML classifier based on preference classifiers.

• classifiers that predict the preference between a label and a calibration label are
removed: only classifiers generated by the RPC approach are kept.

• the remaining preference classifiers are built, then their predictions for the training
set of instances are collected to extend training instances.
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Table 5 Generated target attributes by the Horizontal_CLR approach

Instances ≥ 2|c1#c2 ≥ 2|c1#c3 ≥
2|c1#@1.5

≥ 2|c2#c3 ≥
2|c2#@1.5

≥
2|c3#@1.5

x1 c2 ∅ @1.5 c2 c2 @1.5

x2 c2 c3 @1.5 ∅ c2 c3
x3 ∅ ∅ c1 ∅ c2 c3
x4 ∅ ∅ c1 ∅ c2 c3
x5 ∅ ∅ c1 ∅ c2 c3
x6 ∅ c1 c1 c2 c2 @1.5

x7 ∅ ∅ @1.5 ∅ @1.5 @1.5

x8 ∅ c3 @1.5 c3 @1.5 c3
x9 c1 ∅ c1 c3 @1.5 c3
x10 c1 ∅ c1 c3 @1.5 c3
Instances ≥ 3|c1#c2 ≥ 3|c1#c3 ≥

3|c1#@2.5
≥ 3|c2#c3 ≥

3|c2#@2.5
≥
3|c3#@2.5

x1 ∅ ∅ @2.5 ∅ @2.5 @2.5

x2 ∅ ∅ @2.5 ∅ @2.5 @2.5

x3 ∅ c3 @2.5 c3 @2.5 c3
x4 c2 c3 @2.5 ∅ c2 c3
x5 ∅ c1 c1 c2 c2 @2.5

x6 ∅ c1 c1 c2 c2 @2.5

x7 ∅ ∅ @2.5 ∅ @2.5 @2.5

x8 ∅ ∅ @2.5 ∅ @2.5 @2.5

x9 ∅ c3 @2.5 c3 @2.5 c3
x10 ∅ c3 @2.5 c3 @2.5 c3

• The PSI approach is used to learn dependencies between a set of ordinal classi-
fiers trained using the extended instances. Each ordinal classifier learns to predict
the membership grade of a specific label based on the outputted predictions of
preference classifiers.

• The original prediction strategy of the base GMLC pairwise decomposition is not
applied. Indeed, the outputted corresponding membership degree to a label is the
one predicted by the PSI approach.

The corresponding combined approaches are called Horizontal_Stacked_RPC_PSI,
Full_Stacked_RPC_PSI, and Joined_Stacked_RPC_PSI.



140 K. Laghmari et al.

Ta
bl
e
6

G
en
er
at
ed

ta
rg
et
at
tr
ib
ut
es

by
th
e
Fu

ll_
C
L
R
ap
pr
oa
ch

In
st
an
ce
s

c 1
#c

2
c 1
#c

3
c 1
#@

1.
5

c 1
#@

2.
5

c 2
#c

3
c 2
#@

1.
5

c 2
#@

2.
5

c 3
#@

1.
5

c 3
#@

2.
5

@
1.
5#
@
2.
5

x 1
c 2

∅
@
1.
5

@
2.
5

c 2
c 2

@
2.
5

@
1.
5

@
2.
5

@
2.
5

x 2
c 2

c 3
@
1.
5

@
2.
5

∅
c 2

@
2.
5

c 3
@
2.
5

@
2.
5

x 3
∅

c 3
c 1

@
2.
5

c 3
c 2

@
2.
5

c 3
c 3

@
2.
5

x 4
c 2

c 3
c 1

@
2.
5

∅
c 2

c 2
c 3

c 3
@
2.
5

x 5
∅

c 1
c 1

c 1
c 2

c 2
c 2

c 3
@
2.
5

@
2.
5

x 6
∅

c 1
c 1

c 1
c 2

c 2
c 2

@
1.
5

@
2.
5

@
2.
5

x 7
∅

∅
@
1.
5

@
2.
5

∅
@
1.
5

@
2.
5

@
1.
5

@
2.
5

@
2.
5

x 8
∅

c 3
@
1.
5

@
2.
5

c 3
@
1.
5

@
2.
5

c 3
@
2.
5

@
2.
5

x 9
c 1

c 3
c 1

@
2.
5

c 3
@
1.
5

@
2.
5

c 3
c 3

@
2.
5

x 1
0

c 1
c 3

c 1
@
2.
5

c 3
@
1.
5

@
2.
5

c 3
c 3

@
2.
5



Learning Label Dependency and Label Preference Relations … 141

Ta
bl
e
7

G
en
er
at
ed

ta
rg
et

at
tr
ib
ut
es

by
th
e
Jo
in
ed
_C

L
R

ap
pr
oa
ch

th
at

ar
e
no

t
ge
ne
ra
te
d
by

th
e
H
or
iz
on

ta
l_
C
L
R

ap
pr
oa
ch
:
(a
ll
H
or
iz
on

ta
l_
C
L
R

ge
ne
ra
te
d

at
tr
ib
ut
es

ar
e
al
so

ge
ne
ra
te
d
by

th
e
Fu

ll_
C
L
R
)

In
st
an
ce
s

≥
2|c

1
#@

2.
5

≥
2|c

2
#@

2.
5

≥
2|c

3
#@

2.
5

≥
2|@

1.
5#
@
2.
5

≥
3|c

1
#@

1.
5

≥
3|c

2
#@

1.
5

≥
3|c

3
#@

1.
5

≥
3|@

1.
5#
@
2.
5

x 1
@
2.
5

c 2
@
2.
5

@
2.
5

@
1.
5

@
1.
5

@
1.
5

@
2.
5

x 2
@
2.
5

c 2
c 3

@
2.
5

@
1.
5

@
1.
5

@
1.
5

@
2.
5

x 3
c 1

c 2
c 3

@
2.
5

@
1.
5

@
1.
5

c 3
@
2.
5

x 4
c 1

c 2
c 3

@
2.
5

@
1.
5

c 2
c 3

@
2.
5

x 5
c 1

c 2
c 3

@
2.
5

c 1
c 2

@
1.
5

@
2.
5

x 6
c 1

c 2
@
2.
5

@
2.
5

c 1
c 2

@
1.
5

@
2.
5

x 7
@
2.
5

@
2.
5

@
2.
5

@
2.
5

@
1.
5

@
1.
5

@
1.
5

@
2.
5

x 8
@
2.
5

@
2.
5

c 3
@
2.
5

@
1.
5

@
1.
5

@
1.
5

@
2.
5

x 9
c 1

@
2.
5

c 3
@
2.
5

@
1.
5

@
1.
5

c 3
@
2.
5

x 1
0

c 1
@
2.
5

c 3
@
2.
5

@
1.
5

@
1.
5

c 3
@
2.
5



142 K. Laghmari et al.

4 Experiments on Multi-label Datasets

4.1 Measures to Describe Multi-label Datasets

The multi-label dataset complexity can be quantified using three main measures [8]:

• the label cardinality which quantifies the average number of labels over all
instances:

LC = 1

n

n∑

i=1

|yi|.
• the label density which quantifies the ratio of label cardinality to the number of
labels:

LD = 1

n

n∑

i=1

|yi|
k

= LC

k
.

• the distinct label combinations which quantifies the number of distinct label sets
associated to instances:
DLC = |{yi}1≤i≤n|.

4.2 Evaluation Measures of Predictions in MLC

The prediction performance can be evaluated using different measures [26]:

• the Hamming-loss measure [27] given by

HL = |yi�H (xi)|
k

, where yi�H (xi) is the symmetric difference between the set

of true associated labels and the set of predicted labels given by:
yi�H (xi) = {cl ∈ yi − H (xi)}1≤l≤k

⋃{cl ∈ H (xi) − yi}1≤l≤k .
The drawback of Hamming-loss measure is that it is too optimistic for datasets
with low label cardinality and density. Indeed, because of low label cardinality
the values {|yi|}1≤i≤n are small. The cardinality of predictions {|H (xi)|}1≤i≤n are
also small since the classifier H learned from the labelled set {(xi, yi)}1≤i≤n. The
symmetric difference yi�H (xi) in that case gives also small values.
Hamming-loss measure in case of low label cardinality combined with low label
density k >> |yi| gives always small error values because the cardinality of the
symmetric difference is too small compared to the number of labels
yi � H (xi) << k.

• the closely relatedHamming scoremeasure [28] is not sensitive to label cardinality
and density. It measures the number of correctly predicted labels divided by the

number of truly associated and predicted labels: CRHS = |yi ∩ H (xi)|
|yi ∪ H (xi)| .
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• the precision quantifies the probability that a predicted label is truly associated to
the instance:

PRECISION = |yi ∩ H (xi)|
|H (xi)| .

• the recall quantifies the probability that a truly associated label is predicted by the
classifier:

RECALL = |yi ∩ H (xi)|
|yi| .

• the Fβ measure [29] combines both precision and recall measures. It is given for
any β > 0 by:

Fβ = (1 + β2)
PRECISION × RECALL

β2 × PRECISION + RECALL
.

More importance is given to precision for β < 1, and more importance is given
to recall for β > 1. The precision and recall are given the same importance for
β = 1.

• the GMEAN measure [30] combines the positive accuracy:

ACC
+ = |{cl, cl ∈ yi & cl ∈ H (xi)}1≤l≤k |

|yi| = RECALL, and the negative accu-

racy:

ACC
− = |{cl, cl /∈ yi & cl /∈ H (xi)}1≤l≤k |

|C − yi| using a geometric mean:

GMEAN = √
ACC+ × ACC− in order to obtain a more reliable measure.

• the exact match is the most strict evaluation measure. It determines whether the
predicted label set is exactly the true label set or not: EM = 1 if yi = H (xi), 0
otherwise.

4.3 Dataset Descriptions

Experiments are conducted on three datasets from different domains described in
Table8. Emotion dataset [31] contains a set of 594 instances. Each instance represents
a song described by 72 attributes and associated to one or more emotions out of
6 classes of emotions {amazed-suprised, happy-pleased, relaxing-calm, quiet-still,
sad-lonely, angry-aggresive}. Scene dataset [32] contains a set of 2407 instances.
Each instance represents an image described by 294 attributes and associated to a
subset of classes from a set of 6 available classes {Beach, Sunset, FallFoliage, Field,
Mountain, Urban}. Yeast dataset [33] contains a set of 2417 instances. Each instance
is a protein described by 103 attributes and associated to one or more localization
sites from a set of 14 localization sites. The aim is to predict the localizations (called
cellular components) of proteins in a yeast cell.
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Table 8 Datasets

Dataset Domain Instances Attributes Labels LC LD DLC

Emotions Music 593 72 6 1.869 0.311 27

Scenes Image 2407 294 6 1.074 0.179 15

Yeast Biology 2417 103 14 4.237 0.303 198

Fig. 14 Category of approaches compared in the experiments

4.4 Experimental Setup

The new introduced approaches CLR_PSI and Stacked_RPC_PSI are compared to
five other MLC transformation based approaches (Fig. 14). All of them use decision
trees [9] as the base single label classifier. In order to avoid over-fitting, a node in a
decision tree becomes a leaf if any condition of the following is met:

• the number of instances is less than 10
• the proportion of instances associated to the majority class is greater than 0.9
• the depth of the node is 20

A 10-fold cross validation experimentation is conducted on each dataset. For
each fold, prediction evaluation measures are computed for all approaches. Results
corresponding to the 10 folds are then averaged for each approach, and the best
results corresponding to each measure are marked with bold characters (Tables9,
10 and 11).

Obtained values for each approach inTables9, 10, and 11 are converted to rankings
(the ranking forHL is reversed because it is ameasure that should beminimized). The
mean ranking considering the three datasets emotions, scenes, and yeast is presented
for each approach in Table12.
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4.5 Discussion

All approaches exploiting label relations outperforms the BR approach that does not
allow learning label relations (Tables9, 10, and 11).

TheCC approach allows learning label relations according to a predefined chained
structure. The PSI approach learns label relations without any restriction. The AID
approach allow learning label relations without any restriction but the prediction is
not necessarily coherent with learned label relations. This explains the fact that CC
and PSI approaches have better results for the EM measure then the AID approach
in emotion, scene and yeast datasets (Tables9, 10 and 11). Indeed, the EM measure
rewards coherent predictions because a prediction is considered correct only if the
predicted label set corresponds exactly to the associated label set.

The drawback of BR, CC, AID, and PSI approaches is that they learn a binary
classifier for each label to predict whether it is associated to an instance or not.
Therefore, the training set of a binary classifier Hl may contains very few instances
associated to the label cl compared to instances not associated to the label cl (asso-
ciated to other labels). Hence, the more available labels has a dataset, the more
classifiers are affected by this class imbalance problem. A binary classifier Hl may
always predicts for any given instance that cl is not associated to that instance. The
advantage of CLR approach is that it learns a binary classifier for each pair of labels
to predict the preferred label between them. Only instances associated to one of the
two labels are considered and the remaining instances are ignored. Hence, the prob-
lem of imbalanced classes is reduced for CLR approach compared to BR, CC, AID,
and PSI approaches. This explains the fact that CLR gives better results for yeast
dataset (Table11) because it has 14 available labels compared to emotion and scene
datasets that have only 6 available labels. The CLR_PSI approach gives good results
for yeast dataset as the CLR approach because they use the same prediction strategy
(Table11). The obtained results for the Stacked_RPC_PSI approach on yeast dataset
are not as good as for the CLR_PSI approach. This is because the Stacked_RPC_PSI
approach uses the PSI approach prediction strategy instead of the CLR prediction
strategy.

Table12 shows that the best results considering the three datasets: emotions,
scenes, and yeast are obtained by the CLR_PSI approach followed by the
Stacked_CLR_PSI approach. This confirms that combining a pairwise classification
approach with a binary relevance approach that allows label relations can improve
the prediction performance in multi-label classification.

5 Experiments on Graded Multi-label Datasets

5.1 Measures to Describe GML Datasets

GML data can be decomposed horizontally to a set of ML data, hence, measures to
describe ML data (Sect. 4.1) can be used to describe each sub MLC problem.
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GML data can be described using specific measures to the GML case [24]:

• the average grade of labels given by AG =
∑

1≤l≤k μcl (xi)

nk• the distribution of grades: the average number of times each membership grade is
used to associate a label to an instance over all labels and instances. It is given by:

DG(mg) = |{(xi, cl) ∈ X × C, μcl (xi) = mg}|
nk

.

5.2 Evaluation Measures of Predictions in GMLC

Prediction evaluationmeasures inMLC (Sect. 4.2) can be used to evaluate eachMLC
task corresponding to a membership grade, then evaluations can be averaged over all
membership grades. Predictions in GMLC can be evaluated using specific measures
to the GML case such as:

• the extended Hamming-loss given for an instance x by:

HL
∗ =

∑

1≤l≤k

|Hcl (x) − μcl (x)|
k|ms − m1|

• the Pairwise Ranking Error measure that outputs for an instance x the average
number of label pairs incorrectly ranked. It is given by:

PRE(x) = 1

k(k − 1)/2
|{(cl, cl′) ∈ C2, (μcl (x) > μcl′ (x) & Hcl (x) < Hcl′ (x))

or(μcl (x) < μcl′ (x) & Hcl (x) > Hcl′ (x))}1≤l<l′≤k |
Note that Hamming-loss HL, extended Hamming-loss HL

∗, and pairwise ranking
errors PRE are all loss functions that should be minimized.

5.3 Dataset Descriptions

Experiments are conducted on two datasets described in Table13:
BelaE dataset [34] contains a set of 1930 instances. Each instance represents a

graduate student described by two attributes: the gender and the age. Each student is
asked to assign an importancedegree to 48properties of its future job. Five importance
degrees ranging from ’completely unimportant’ to ’very important’ are allowed. Due
to the lack of descriptive attributes, only the last 10 job properties are considered
as labels, and the remaining 28 properties are considered as attributes Table13.
The five membership grades are mapped to values in {0, 1, 2, 3, 4} so that the grade
’completely unimportant’ corresponds to the value 0. The averagemembership grade
given to a label in BelaE dataset is AG = 2.66. The distribution of grades over
instances and labels is illustrated in Table13.

The dataset of odors is extracted from a set containing about 3000 odorous
molecules [35]. Each molecule can be associated up to 7 odors ordered by intensity.
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An ordinal scale of 8 membership grades M = [[0, 7]] is used to transform ordered
sets to graded sets. Odors that are not associated to a molecule are given the mem-
bership grade 0, and odors that are strongly associated to a molecule are given the
membership grade 7. The software ‘Dragon’ [36] is used to generate 3839 molec-
ular descriptors by calculating values of physico-chemical properties of odorous
molecules. Molecular descriptors having the same value for more than 0.99 of data
are discarded. Odors that are associated to less than 30 molecules are discarded. The
obtained dataset after this pre-processing and filtering step is illustrated in Table13.
The number of molecules associated to more than 4 odors is low. This explains the
obtained low values {DG(1),DG(2),DG(3)} of the average occurrence of grades
{1, 2, 3} over labels and instances (Table13).

5.4 Experimental Setup

Experiments onGMLdata are conductedusing the sameparameters as in experiments
on ML data (Sect. 4.4) for the PSI measures and the base binary classifiers. The
following approaches are evaluated:

• Vertical_BR and Vertical_PSI approaches as described in Sect. 2.3.1
• Complete_BR and Complete_PSI approaches as described in Sect. 2.3.3
• Horizontal_CLR, Full_CLR, and Joined_CLR approaches as described in
Sect. 2.3.2

• Horizontal_CLR_PSI, Full_CLR_PSI, and Joined_CLR_PSI GMLC approaches
that are based on the new introduced MLC approach CLR_PSI (Sect. 3.3)

• Horizontal_Stacked_CLR_PSI, Full_Stacked_CLR_PSI,
and Joined_Stacked_CLR_PSI GMLC approaches that are based on the new intro-
duced MLC approach Stacked_CLR_PSI (Sect. 3.3)

5.5 Discussion

MLC evaluation measures (Sect. 4.2) are used to evaluate the prediction performance
on BelaE and on Odors datasets for each MLC subtask corresponding to a specific
membership grade. Tables14 and 15 show that all GMLC approaches can predict
labels associated to low membership degrees better than labels associated to high
membership degrees. Evaluations corresponding to grades≥ 1,≥ 2, and≥ 3 are not
illustrated for Odors dataset because they have almost the same values as evaluations
corresponding to the grade ≥ 4. This is explained by the fact that molecules having
more than 4 odors are very rare, therefore grades {7, 6, 5, 4} are more frequent than
grades {3, 2, 1}.

MLC evaluation measures are averaged over all membership grades as illustrated
in Table16 for BelaE dataset, and in Table17 for Odors dataset.

The ordinal relation between membership degrees is ignored in approaches Ver-
tical_BR and Vertical_PSI but not in approaches Complete_BR and Complete_PSI.
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This explains the fact that Complete_BR and Complete_PSI approaches gives lightly
better results on BelaE dataset than Vertical_BR and Vertical_PSI approaches.

The difference between the Vertical and the Complete decompositions is clearer
on Odors dataset because it has 8 available membership grades instead of just 5
as in BelaE dataset. An interesting remark in Odors dataset is that allowing label
dependencies in the complete reduction using the PSI approach does not improve
the prediction performance, but rather the opposite. This is explained by the fact that
there is no separation between the generated binary classifiers as in the Horizontal
decomposition. Therefore The PSI approach may learn some trivial dependencies
such as:

‘The membership grade for the label cl is greater or equals to mg only if the
membership grade for the label cl is greater or equals to mg−1’.

Trivial dependencies are not helpful and they increase the risk of prediction error
propagation.

Each MLC subtask is treated separately in the horizontal decomposition. The
outputted membership degree for a label is the highest membership degree corre-
sponding to a MLC subtask in which that label is predicted. Therefore, the outputted
prediction is wrong if the label is not predicted in the correct MLC subtask. The
Horizontal decomposition outputs good results on BelaE and Odors datasets for
MLC subtasks corresponding to low membership degrees (Tables14 and 15). This is
explained by the fact that wrong predicted membership grades for labels are counted
correct if they still be greater or equals to the membership degree cut of the MLC
subtask. Labels corresponding to the highest membership grade are the most difficult
to predict correctly because only correctly predicted labels are counted correct. The
drawback of the Horizontal decomposition strategy of treating each horizontal prob-
lem separately is that a prediction error in a MLC subtask may not be compensated
by correct predictions of other MLC subtasks.

The outputted prediction by the Full_CLR approach depends on the accumu-
lated votes by all preference classifiers. The advantage of this prediction strategy
is that a prediction error of one classifier can be compensated by a correct predic-
tion of another classifier. The drawback of the Full_CLR is that the difference in
membership grades is not considered when learning preferences. This explains the
fact that the Full_CLR outputs the worst results for both BelaE and Odors datasets
(Tables14 and 15). This explains also the fact that the approach Full_CLR_PSI that
allows learning label relations improves lightly the prediction performance. The
Full_Stacked_RPC_PSI approach that allows learning label relations and predicts
using the PSI approach instead of the voting strategy gives even better results that
the Full_CLR_PSI.

The Joined decomposition includes all preference classifiers generated by the hor-
izontal decomposition, however, the prediction strategy is the same as the Full_CLR
approach. This explains the fact that the joined decomposition gives better results
than the horizontal decomposition for highest membership degrees on both BelaE
and Odors datasets (Tables14 and 15).
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Tables16 and 17 show that combining GMLC decompositions with the PSI
approach does not have a significant effect except for the Full_CLR decomposition.
Indeed, the PSI approach allows learning label relations, however in case descriptive
attributes are sufficient to discriminate data then learning label relations may not be
needed. The drawback of the Full_CLR is that the prediction is based on the accumu-
lated votes of preference classifiers that ignore the difference between membership
degrees. The PSI approach learned labels relations in the Full_CLR decomposition
that could not be learned in the Joined and the horizontal decompositions which do
not ignore the difference between membership degrees. This explains the fact that
the Full_Stacked_CLR_PSI approach outperforms all other approaches for BelaE
dataset (Table16). Combining the Stacked_CLR_PSI approach with the Horizon-
tal decomposition for Odors dataset gave the second best results after the Horizon-
tal_CLR approach (Table17). That means that the the Full_Stacked_CLR_PSI could
not learn enough good dependencies in Odors dataset as in BelaE dataset.

GMLC is a combination of MLC and ordinal classification. The extended Ham-
ming loss HL

∗ and the pairwise error ranking PER measures are used to evaluate
the ordinal aspect in GML predictions (Tables18 and 19).

The difference between BelaE and Odors datasets is that in BelaE dataset labels
can be associated to the same membership degree, and most of them have non-zero
membership degree. This is because labels in BelaE dataset are job properties and
membership grades represent the importance of properties. Therefore it is possible
that multiple job properties have the same importance.

In Odors dataset labels are odors from a set of 30 available odors (Table13),
however, a molecule can be associated to at most 7 odors. Therefore, at least 23 labels
have zero-membership degree for each molecule. Odors are ordered by intensity but
without a given value for the intensity. Thereforemembership grades inOdors dataset
are just a mapping of label order and do not represent odor intensities.

Table 18 Prediction evaluation on BelaE dataset using adapted measures to GMLC

Approach HL
∗

PRE

Vertical_BR 0.18 0.50

Vertical_PSI 0.18 0.50

Complete_BR 0.16 0.48

Complete_PSI 0.17 0.49

Full_CLR 0.23 0.46

Full_CLR_PSI 0.23 0.46

Full_Stacked_RPC_PSI 0.18 0.50

Horizontal_CLR 0.15 0.47

Horizontal_CLR_PSI 0.15 0.47

Horizontal_Stacked_RPC_PSI 0.16 0.47

Joined_CLR 0.24 0.46

Joined_CLR_PSI 0.24 0.47

Joined_Stacked_RPC_PSI 0.18 0.49
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Table 19 Prediction evaluation on odors dataset using adapted measures to GMLC

Approach HL
∗

PRE

Vertical_BR 0.08 0.16

Vertical_PSI 0.08 0.16

Complete_BR 0.08 0.19

Complete_PSI 0.07 0.16

Full_CLR 0.07 0.16

Full_CLR_PSI 0.07 0.15

Full_Stacked_CLR_PSI 0.08 0.17

Horizontal_CLR 0.07 0.15

Horizontal_CLR_PSI 0.07 0.17

Horizontal_Stacked_CLR_PSI 0.07 0.17

Joined_CLR 0.06 0.15

Joined_CLR_PSI 0.07 0.16

Joined_Stacked_CLR_PSI 0.07 0.16

The extended Hamming-loss and the pairwise ranking error for the odors dataset
are low because of the number of labels associated to the zero-membership degree
(Table19).

The Vertical decomposition ignores label ordering, therefore it gives the worst
results of pairwise label ordering for BelaE dataset (Table18). The Complete decom-
position gives lightly better results because it builds a binary classifier for each label
andmembership grade, hence label order is considered to some extent. The Full_CLR
decomposition based approaches output the best pairwise ordering of labels, how-
ever, the difference in membership degrees for incorrectly ordered labels is high
according to the extended Hamming loss measure (Table18).

6 Conclusion

Learning label relations and exploiting them to output coherent predictions is an
interesting challenge in multi-label classification. Transformation based multi-label
classification approaches allow modifying the strategy of learning label relations
withoutmodifying the base classifier. TheCalibrated Label Ranking approach (CLR)
allows learning preference relations between labels by ranking them using pairwise
comparisons (RPC). The PSI approach (PSI) allows learning label dependencies
without any restriction. It is based on three measures called Pre-selection, Selection,
and Interest of chaining. The role of the PSI measures is to eliminate cyclic depen-
dencies by replacing some classifiers based on heuristics. This work introduces the
CLR_PSI and the Stacked_RPC_PSI approaches that combine the CLR and the RPC
approaches with the PSI approach in order to benefit from both label preference and
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label dependency relations. Experiments conducted on three datasets from different
domains show that the best results according to the evaluated measures are obtained
by the CLR_PSI approach followed by the Stacked_RPC_PSI approach. This con-
firms the ideas that combining label dependency and label preference relations can
improve the predictive performance of multi-label classifiers. Graded multi-label
classification is an extension of multi-label classification that allows labels to be
associated to instances with membership degrees from an ordinal scale of member-
ship grades. This work investigates the idea of decomposing the graded multi-label
classification task into a set of multi-label classification subtasks in order to use the
introduced approaches. Experiment on two different datasets show that the intro-
duced approaches can have a significant effect on the prediction performance only in
case label dependencies are learned. The introduced approaches may not learn label
relations in case descriptive attributes are sufficient to discriminate labels. In the
other case, the introduce approaches can improve significantly the predictive perfor-
mance of graded multi-label classifiers, especially the Stacked_RPC_PSI approach
because it forces a different and effective prediction strategy on the gradedmulti-label
classifier. This work can be completed by investigating new learning and prediction
strategies that can be combined to improve the prediction of classifiers. An extensive
comparative study using more evaluation measures and considering other datasets
and approaches is planed for future works.
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Improving Sparse Representation-Based
Classification Using Local Principal
Component Analysis

Chelsea Weaver and Naoki Saito

Abstract Sparse representation-based classification (SRC), proposed byWright et
al., seeks the sparsest decomposition of a test sample over the dictionary of training
samples, with classification to the most-contributing class. Because it assumes test
samples can be written as linear combinations of their same-class training samples,
the success of SRC depends on the size and representativeness of the training set. Our
proposed classification algorithm enlarges the training set by using local principal
component analysis to approximate the basis vectors of the tangent hyperplane of
the class manifold at each training sample. The dictionary in SRC is replaced by
a local dictionary that adapts to the test sample and includes training samples and
their corresponding tangent basis vectors. We use a synthetic data set and three face
databases to demonstrate that this method can achieve higher classification accu-
racy than SRC in cases of sparse sampling, nonlinear class manifolds, and stringent
dimension reduction.

Keywords Sparse representation · Local principal component analysis
Dictionary learning · Classification · Face recognition · Class manifold

1 Introduction

We are concerned with classification, which, in the context of supervised learning,
is the task of assigning labels to unknown samples given the class information of a
training set. It is one of the most important undertakings in pattern recognition and
computational intelligence, with applications including the recognition of handwrit-
ten digits [16] and face recognition [6, 24, 32]. These tasks are often challenging.
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For example, in face recognition, the classification algorithmmust be robust towithin-
class variation in properties such as expression, face/head angle, changes in hair or
makeup, and differences that may occur in the image environment, most notably,
the lighting conditions [24]. Further, in real-world settings, we must be able to han-
dle greatly-deficient training data (i.e., too few or too similar training samples, in
the sense that the given training set is insufficient to generalize the data set’s class
structure) [29], as well as occlusion and noise [32].

In 2009, Wright et al. proposed sparse representation-based classification (SRC)
[32]. SRC was motivated by the recent boom in the use of sparse representation in
signal processing (see, e.g., the work of Candès [4]). The catalyst of these advance-
ments was the discovery that, under certain conditions, the sparsest representation
of a signal using an over-complete set of vectors (often called a dictionary) could
be found by minimizing the �1-norm of the representation coefficient vector [8].
Since the �1-minimization problem is convex, this gave rise to a tractable approach
to obtaining the sparsest solution.

SRC applies this relationship between the minimum �1-norm and the sparsest
solution to classification. The algorithm seeks the sparsest decomposition of a test
sample over the dictionary of training samples via �1-minimization, with classifica-
tion to the class whose corresponding portion of the representation approximates the
test sample with least error. The method assumes that class manifolds are linear sub-
spaces, so that the test sample can be represented using training samples in its ground
truth class. Wright et al. [32] argue that this is precisely the sparsest decomposition
of the test sample over the training set. They make the case that sparsity is critical to
high-dimensional image classification and that, if properly harnessed, it can lead to
superior classification performance, even on highly corrupted or occluded images.
Further, good results can be achieved regardless of the choice of image features that
are used for classification, provided that the number of retained features is large
enough [32]. Though SRC was originally applied to face recognition, similar meth-
ods have been employed in clustering [10], dimension reduction [25], and texture
and handwritten digit classification [36].

The SRC assumption that class manifolds are linear subspaces is often violated;
e.g., facial images that vary in pose and expression are known to lie on nonlinear class
manifolds [12, 26].Additionally, small training set size, one of the primary challenges
in face recognition and classification as a whole, can easily make it impossible to
represent a given test sample using its same-class training samples, even in the
case that the class manifold is linear. However, these reasons alone are not enough
to discount SRC even on such data sets, as demonstrated by Wright et al. [32] in
experiments on the AR face database [21]. AR contains expression and occlusion
variations that suggest the underlying class manifolds are nonlinear, yet SRC often
outperformed SVM (support vector machines) on AR for a wide variety of feature
extraction methods and feature dimensions [32]. To understand how this is possible,
consider that SRC decomposes the test sample over the entire training set, and so
components of the test sample not within the span of its ground truth class’s training
samples may be absorbed by training samples from other classes. A similar fail-safe
occurs when the class manifolds (linear or otherwise) are sparsely sampled.
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The abovediscussion, however, illustrates aweakness inSRC.When the algorithm
relies on “wrong-class” training samples to partially represent or approximate the test
sample, misclassification may ensue, especially when the class manifolds are close
together. In the case where class manifolds are nonlinear and/or sparsely sampled, so
that it is impossible to accurately approximate the test sample using only the training
samples in its ground truth class, this approximation could conceivably be improved
if we were able to increase the sampling density around the test sample, “fleshing
out” its local neighborhood on the (correct) class manifold. This is the motivation
behind this chapter’s proposed classification algorithm.

Our contributions in this chapter are the following:

1. We introduce a classification algorithm that improves SRC by increasing the
accuracy and locality of the approximation of the test sample in terms of its
ground truth class. Our algorithm is designed to increase the training set via
nearby (to the test sample) basis vectors of the hyperplanes approximately tan-
gent to the (unknown) class manifolds. This provides the two-fold benefit of
counter-balancing the potential sparse sampling of class manifolds (especially
in the case that they are nonlinear) and helping to retain more information in few
dimensions when used in conjunction with dimension reduction.

2. We state guidelines for the setting of parameters in this algorithm and analyze
its computational complexity and storage requirements.

3. We demonstrate that our algorithm leads to classification accuracy exceeding
that of traditional SRC and related methods on a synthetic database and three
popular face databases. We thoroughly analyze and explain our experimental
results (e.g., accuracy, runtime, and dictionary size) of the compared algorithms.

4. We illustrate that the tangent hyperplane basis vectors used in our method can
capture sample details lost during principal component analysis in the case of
face recognition.

Note that both SRC and the method we use to compute the tangent hyperplane
basis vectors have previously been proposed. The novelty of the proposed classifi-
cation algorithm lies in a solid theoretical foundation for combining these two ideas.
This motivating foundation is supported empirically—beyond evidence of increased
classification accuracy—in experimental results.1 Further, by providing thorough
guidelines and short-cuts regarding the setting of required parameters, we make it
feasible to apply the resulting algorithm in practice.

This paper is organized as follows: In Sect. 2, we discuss work related to our
proposed method, and we state SRC in detail in Sect. 3. In Sect. 4, we describe our
proposed classification algorithm and discuss its parameters, computational com-
plexity, and storage requirements. We present our experimental results in Sect. 5,
and in Sect. 6, we summarize our findings and discuss avenues of future work.

Setup and Notation. We assume that the input data is represented by vectors in
R

m and that dimension reduction, if used, has already been applied. The training
set, i.e., the matrix whose columns are the data samples with known class labels,

1We are referring to Sect. 5.4.7.
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is denoted by Xtr = [x1, . . . , xNtr ] ∈ R
m×Ntr . The number of classes is denoted by

L ∈ N, and we assume that there areNl training samples in class l, 1 ≤ l ≤ L. Lastly,
we refer to a given test sample by y ∈ R

m.

2 Related Work

The approach of using tangent hyperplanes for pattern recognition is not new. When
the data is assumed to lie on a low-dimensional manifold, local tangent hyperplanes
are a simple and intuitive approach to enhancing the data set and gaining insight into
themanifold structure. Our proposedmethod is verymuch related to tangent distance
classification (TDC) [7, 27, 35], which constructs local tangent hyperplanes of the
classmanifolds, computes the distances between these hyperplanes and the given test
sample, and then classifies the test sample to the class with the closest hyperplane.
We show in Sect. 5 that our proposed method’s integration of tangent hyperplane
basis vectors into the sparse representation framework generally outperforms TDC.

On the other hand, approaches to address the limiting linear subspace assumption
(i.e., the assumption that class manifolds are linear subspaces) in SRC have been
proposed. For example, Ho et al. extended sparse coding and dictionary learning
to general Riemannian manifolds [13]. Admittedly only a first step in meeting their
ultimate objective,Hoet al.’swork requires explicit knowledgeof the classmanifolds.
This is an unsatisfiable condition in many real-world classification problems and is
not a requirement of our proposed algorithm. Alternatively, kernel methods have
been effective in overcoming SRC’s linearity assumption, as nonlinear relationships
in the original space may be linear in kernel space given an appropriate choice of
kernel [37].

Several “local” modifications of SRC implicitly ameliorate the linearity assump-
tion; in collaborative neighbor representation-based classification [30] and locality-
sensitive dictionary learning (LSDL-SRC) [31], for instance, coefficients of the rep-
resentation are constrained by their corresponding training samples’ distances to the
test sample, and so these algorithms need only assume linearity at the local level. Our
proposedmethod is designed to improve not only the locality but also the accuracy of
the approximation of the test sample in terms of its ground truth class. Section5 con-
tains an experimental comparison between our proposed method and LSDL-SRC,
as well as a discussion thereof.

Other classification algorithms have been proposed that are similar to ours in that
they aim to enlarge or otherwise enhance the training set in SRC. Such methods
for face recognition, for example, include the use of virtual images that exploit the
symmetry of the human face, as in both the method of Xu et al. [33] and sample
pair based sparse representation classification [38]. Though visual comparison of
these virtual images and our recovered tangent vectors (see Sect. 5.4.7) could be
informative, our proposed method can be used for general classification.

Additionally, there have been many local modifications to the sparse represen-
tation framework with objectives other than classification. For example, Li et al.’s
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robust structured subspace learning [19] uses the �2,1-norm for sparse feature extrac-
tion, combining high-level semantics with low-level, locality-preserving features. In
the feature selection algorithm clustering-guided sparse structural learning by Li et
al. [18], features are jointly selected using sparse regularization (via the �2,1-norm)
and a non-negative spectral clustering objective. Not only are the selected features
sparse; they also are the most discriminative features in terms of predicting the clus-
ter indicators in both the original space and a lower-dimensional subspace on which
the data is assumed to lie.

3 Sparse Representation-Based Classification

SRC [32] solves the optimization problem

α∗ := arg min
α∈RNtr

‖α‖1, subject to y = Xtrα. (1)

It is assumed that the training samples have been normalized to have �2-norm
equal to 1, so that the representation in Eq. (1) will not be affected by the samples’
magnitudes. The use of the �1-norm in the objective function is designed to approx-
imate the �0-“norm,” i.e., to aim at finding the smallest number of training samples
that can accurately represent the test sample y. It is argued that the nonzero coeffi-
cients in the representation will occur primarily at training samples in the same class,
so that

class_label(y) = arg min
1≤l≤L

∥
∥y − Xtrδl(α

∗)
∥
∥
2 (2)

produces the correct class assignment. Here, δl is the indicator function that acts as the
identity on all coordinates corresponding to samples in class l and sets the remaining
coordinates to zero. In other words, y is assigned to the class whose training samples
contribute the most to the sparsest representation of y over the entire training set.

The reasoning behind this is the following: It is assumed that the class manifolds
are linear subspaces, so that if each class’s training set contains a spanning set of the
corresponding subspace, the test sample can be expressed as a linear combination of
training samples in its ground truth class. If the number of training samples in each
class is small relative to the number of total training samples Ntr , this representation
is naturally sparse [32].

As real-world data is often corrupted by noise, the constrained �1-minimization
problem in Eq. (1) may be replaced with its regularized version

α∗ := arg min
α∈RNtr

{1

2
‖y − Xtrα‖22 + λ‖α‖1

}

. (3)

Here, λ is the trade-off between error in the approximation and the sparsity of the
coefficient vector. We summarize SRC in Algorithm 1.
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Algorithm 1 Sparse Representation-Based Classification (SRC) [32]
Input: Matrix of training samples Xtr ∈ R

m×Ntr ; test sample y ∈ R
m; number of classes L; and

error/sparsity trade-off λ (optional)
Output: The computed class label of y: class_label(y)
1: Normalize each column of Xtr to have �2-norm equal to 1.
2: Use an �1-minimization algorithm to solve either the constrained problem (1) or the regularized

problem (3).
3: for each class l = 1, . . . ,L, do
4: Compute the norm of the class l residual: errl(y) := ∥

∥y − Xtrδl(α
∗)

∥
∥
2.

5: end for
6: Classify the test sample y according to class_label(y) = argmin1≤l≤L{errl(y)}.

Remark 1 We briefly note that, in the case that some classes contain very few sam-
ples, SRC is not a good candidate for oversampling, or using repeated training sam-
ples to even out the class count. This is because the linear span of the training samples
is invariant to the addition of repeat samples and the classification result will be unaf-
fected. Thus there is no obvious solution to dealing with undersampled classes in
SRC.

4 Proposed Algorithm

4.1 Local Principal Component Analysis Sparse
Representation-Based Classification

Our proposed algorithm, local principal component analysis sparse representation-
based classification (LPCA-SRC), is essentially SRC with a modified dictionary.
This dictionary is constructed in two steps: (i) an offline phase, and (ii) an online
phase.

In the offline phase of the algorithm, we generate new training samples as a means
of increasing the sampling density. Instead of the linear subspace assumption in SRC,
we assume that class manifolds are well-approximated by local tangent hyperplanes.
To generate new training samples, we approximate these tangent hyperplanes at
individual training samples using local principal component analysis (local PCA),
and then add the basis vectors of these tangent hyperplanes (after randomly-scaling
and shifting them as described in Step 12 of Algorithm 2 and explained in Sect. 4.3.3)
to the original training set. Naturally, the shifted and scaled tangent hyperplane
basis vectors (hereon referred to as “tangent vectors”) inherit the labels of their
corresponding training samples. The result is an amended dictionary over which a
generic test sample can ideally be decomposed using samples that approximate a
local patch on the correct class manifold. In the case that the class manifolds are
sparsely sampled and/or nonlinear, this allows for a more accurate approximation of
y using training samples (and their computed tangent vectors) from the test sample’s
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ground truth class. Even in the case that class manifolds are linear subspaces, this
technique ideally increases the sampling density around y on its (unknown) class
manifold so that it may be expressed in terms of nearby samples.

In the online phase of LPCA-SRC, this extended training set is “pruned” relative
to the given test sample, increasing computational efficiency and the locality of the
resulting dictionary. Training samples (along with their tangent vectors) are elimi-
nated from the dictionary if their Euclidean distances to the given test sample are
greater than a threshold, and then classification proceeds as in SRC as the test sample
is sparsely decomposed (via �1-minimization) over this local dictionary.

The method in LPCA-SRC has an additional benefit: When SRC is applied to
the classification of high-resolution images (e.g., > O(104) pixels), some method
of dimension reduction is generally necessary to reduce the dimension of the raw
samples, due to the high computational complexity of solving the �1-minimization
problem. Basic dimension reduction methods, such as principal component analysis
(PCA), may result in the loss of class-discriminating details when the PCA feature
dimension is small. In Sect. 5.4.7, we show that the tangent vectors computed in
LPCA-SRC can contain details of the raw images that have been lost in the dimension
reduction process.

Remark 2 This remark serves to draw a distinction between our use of sparse rep-
resentation and local PCA for classification, and our use of (non-local) PCA to
pre-process data samples prior to classification in some of our experiments. Sparse
representation and local PCA can themselves be used (separately) for dimension
reduction; see, for example, the papers of Qiao et al. [25] and Kambhatla and Leen
[14]. We stress that dimension reduction is not the subject of this paper, and in fact
we use neither sparse representation nor local PCA to accomplish this task at any
point. Instead, we focus on classification and in integrating sparse representation
and local PCA towards this purpose. When dimension reduction is used in Sect. 5.4,
we use (non-local) PCA simply as a means of pre-processing the data before image
classification.

We formally state the offline and online portions of our proposed algorithm in
Algorithms 2 and 3, respectively. Obviously, by the definition of “offline phase,” the
tangent vectors need only be computed once for any number of test samples. More
details regarding the user-set parameters d , n and λ are provided in Sects. 4.3.1 and
4.3.2, and an explanation of the pruning parameter r and the tangent vector scaling
factor c (in Step 12 of Algorithm 2) are given in Sect. 4.3.3.

Figure1 illustrates the efficacy of LPCA-SRC’s tangent vectors and pruning
parameter in the sparse representation framework. The figure shows two classes,
represented by the colors red and blue. The training samples in each class are repre-
sented by solid colored circles. There is one test sample y displayed in the figure, a
member of class 2 (blue) and depicted by a solid blue square. Observe that, before the
use of tangent vectors, y is closer to the subspace2 spanned by x(1)

1 and x(1)
2 (which are

2Technically speaking, we are referring to the affine subspace in this illustration; In SRC, instead
the linear subspace is used. We have tweaked the algorithm slightly to be able to demonstrate an
example in low dimension.
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Fig. 1 An example use of LPCA-SRC’s tangent vectors and pruning parameter in the SRC frame-
work. Only training samples and tangent vectors relevant to classification of the test sample y have
been labeled

class 1 training samples) than the subspace spanned by the class 2 training samples
x(2)
1 and x(2)

2 . Thus y would be incorrectly classified by SRC in this scenario.
After the addition of tangent vectors (which are represented by unfilled circles),

in particular, the class 2 tangent vector cu(2,1)
1 + x(2)

1 , y is closest to the subspace
generated by this tangent vector and x(2)

2 . Thus the test sample would be correctly
classified by LPCA-SRC in this scenario.

The use of the pruning parameter r independently avoids the problem of misclas-
sification. If we consider only samples in the local neighborhood of y (contained in
the circle of radius r), the misleading class 1 samples x(1)

1 and x(1)
2 are eliminated

from consideration, leading to the correct classification of y.
Thus these two mechanisms in LPCA-SRC—its use of tangent vectors and its

localizing pruning parameter—make it especially designed to succeed in these cases
of sparse sampling and nonlinear class manifolds in which SRC fails.

4.2 Local Principal Component Analysis

In LPCA-SRC (in particular, Step 5 of Algorithm 2), we use the local PCA technique
of Singer andWu [28] to compute the tangent hyperplane basisU (l,i). We outline our
implementation of their method in Algorithm 4. It computes a basis for the tangent
hyperplane TxiM at a point xi on the manifoldM , where it is assumed that the local
neighborhood of xi onM can bewell-approximated by a tangent hyperplane of some
dimension d < m. A particular strength of Singer and Wu’s method is the weighting
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Fig. 2 An illustration of the tangent plane and the tangent basis vectors u(i)
1 and u(i)

2 at the sample
xi on the manifold M . Here, the intrinsic dimension is d = 2

of neighbors by their Euclidean distances to the point xi, so that closer neighbors
play a more important role in the construction of the local tangent hyperplane.

A simple illustration of the tangent basis vectors found using local PCA is shown
in Fig. 2.

4.3 Remarks on Parameters

In this subsection, we detail the roles of the parameters in LPCA-SRC and suggest
strategies for estimating those that must be determined by the user.

4.3.1 Estimate of Class Manifold Dimension and Number of Neighbors

Recall that d is the estimated dimension of each class manifold and n is the number
of neighbors used in local PCA. Both parameters must be inputted by the user in our
proposed algorithm. The number of samples in the smallest training class, denoted
Nlmin , limits the range of values for d and n that may be used. Specifically,

1 ≤ d ≤ n < Nlmin − 1. (4)

This follows from the fact that each training samplemust have at leastn + 1neighbors
in its own class, with the dimension d of the tangent hyperplane being bounded above
by the number of columns n in the weighted matrix of neighbors Bi. It is important
to observe that when the classes are small (as is often the case in face recognition),
there are few options for the values of d and n per Eq. (4). Thus these parameters
may be efficiently set using cross-validation. This was the method we used to set
d and n in the experiments in Sect. 5. We discuss a recommended cross-validation
procedure in Sect. 4.3.2.
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Algorithm 2 Local PCA Sparse Representation-Based Classification (LPCA-SRC):
OFFLINE PHASE
Input: Xtr = [x1 . . . , xNtr ] ∈ R

m×Ntr ; number of classes L; local PCA parameters d (estimate of
class manifold dimension) and n (number of neighbors)

Output: The normalized extended dictionary D ∈ R
m×(Ntr(d+1)); pruning parameter r

1: Normalize the columns of Xtr to have �2-norm equal to 1.
2: for each class l = 1, . . . ,L do
3: Let X (l) be the set of class l training samples contained in Xtr .
4: for each class l training sample x(l)

i , i = 1, . . . ,Nl do

5: Approximate the tangent hyperplane of the lth class manifold at x(l)
i as follows:

• Use local PCA in Algorithm 4 with set of samples X (l) (the samples in the lth
class), selected sample x(l)

i , and parameters d and n to compute a basis U (l,i) :=
[u(l,i)

1 , . . . ,u(l,i)
d ] of an approximate tangent hyperplane at x(l)

i along class l.

• Store the basis U (l,i) and the quantity r(l)i := ‖x(l)
in+1

− x(l)
i ‖2, the distance between x(l)

i
and its (n + 1)st nearest neighbor in the lth class.

6: end for
7: end for
8: Define the pruning parameter r := median

{

r(l)i | 1 ≤ i ≤ Nl , 1 ≤ l ≤ L
}

.
9: Initialize the extended dictionary D = ∅.
10: for each class l = 1, . . . ,L do
11: for each class l training sample x(l)

i , i = 1, . . . ,Nl do

12: Set c := rγ , γ ∼ unif(0, 1), and form X̃ (l,i) := [

cu(l,i)
1 + x(l)

i , . . . , cu(l,i)
d + x(l)

i , x(l)
i

] ∈
R
m×(d+1)

13: Normalize the columns of X̃ (l,i) to have �2-norm equal to 1 and add it to the extended
dictionary: D = [D, X̃ (l,i)].

14: end for
15: end for

Remark 3 Interestingly, when cross-validation is used to set d , we find empirically
that d is often selected to be smaller than the (expected) true class manifold dimen-
sion. Further, in these cases, increasing d from the selected value (i.e., increasing
the number of tangent vectors used) does not significantly increase classification
accuracy. We expect that the addition of even a small number of tangent vectors
(those indicating the directions of maximum variance on their local manifolds, per
the local PCAalgorithm) is enough to improve the approximation of the test sample in
terms of its ground truth class. Additional tangent vectors are often unneeded. Since
the value of d largely affects LPCA-SRC’s computational complexity and storage
requirements, these observations suggest that when the true manifold dimension is
large, it is better to underestimate it than overestimate it. Further, setting d = 1 can
often produce a good result, hence d = 1 could be used by default.

There are other methods for determining d besides cross-validation and fixing
d = 1. One may use the multiscale SVD algorithm of Little et al. [20] or Ceruti et
al.’s DANCo (Dimensionality from Angle and Norm Concentration [5]). However,
in our experiments in Sect. 5, we set d using cross-validation. See Sect. 4.3.2.
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Algorithm 3 Local PCA Sparse Representation-Based Classification (LPCA-SRC):
ONLINE PHASE
Input: Test sample y ∈ R

m; normalized extended dictionary D; pruning parameter r; estimate of
class manifold dimension d ; error/sparsity trade-off λ (optional)

Output: The computed class label of y: class_label(y).
1: Normalize y to have ‖y‖2 = 1.
2: Initialize the pruned dictionary Dy = ∅ and set Ny = 0 (# of columns of Dy).
3: for each class l = 1, . . . ,L do
4: for each class l training sample x(l)

i , i = 1, . . . ,Nl do

5: if
∥
∥y − x(l)

i

∥
∥
2 ≤ r or

∥
∥y − (−x(l)

i )
∥
∥
2 ≤ r then

6: Add the portion X̃ (l,i) of D corresponding to x(l)
i and its tangent vectors to the pruned

dictionary: Dy = [Dy, X̃ (l,i)]. Assign the columns of X̃ (l,i) class l labels. Update Ny =
Ny + (d + 1).

7: end if
8: end for
9: end for
10: Use an �1-minimization algorithm to compute the solution to the constrained problem

α∗ := arg min
α∈RNy

{‖α‖1 s.t. y = Dyα
}

(4)

or the regularized problem

α∗ := arg min
α∈RNy

{1

2
‖y − Dyα‖22 + λ‖α‖1

}

. (5)

11: for each class l = 1, . . . ,L, do
12: Compute the norm of the class l residual: errl(y) := ∥

∥y − Dyδl(α
∗)

∥
∥
2.

13: end for
14: Classify the test sample y according to class_label(y) = argmin1≤l≤L{errl(y)}.

Remark 4 Certainly, the parameters d and n could vary per class, i.e., d and n
could be replaced with dl and nl , respectively, for l = 1, . . . ,L. In face recognition,
however, if each subject is photographed under similar conditions, e.g., the same
set of lighting configurations, then we expect that the class manifold dimension is
approximately the same for each subject. Further, without some prior knowledge of
the class manifold structure, using distinct d and n for each class may unnecessarily
complicate the setting of parameters in LPCA-SRC.

4.3.2 Using Cross-Validation to Set Multiple Parameters

Ondata sets ofwhichwe have little prior knowledge, it may be necessary to use cross-
validation to set multiple parameters in LPCA-SRC. Since grid search (searching
through all parameter combinations in a brute-force manner) is typically expensive,
we suggest that cross-validation be applied to the parameters n, λ, and d , consec-
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Algorithm 4Local Principal Component Analysis (Local PCA, adapted from Singer
and Wu [28])
Input: Set of samples X ; selected sample xi ∈ X ; dimension of tangent hyperplane d ; number

of neighbors n
Output: The basis U (l,i) of the approximated tangent hyperplane at the point xi
1: Find the n + 1 nearest neighbors (with respect to Euclidean distance) of xi in X \xi . Store the

n nearest neighbors as columns of the matrix Xi := [xi1 , . . . , xin ] and use the (n + 1)st nearest
neighbor to define εPCA := ‖xin+1 − xi‖22.

2: Form the matrix X i by centering the columns of Xi around xi: X i := [xi1 − xi, . . . , xin − xi].
3: Form a diagonal weightmatrixDi based on the distance between each neighbor and xi as follows:

Let

Di(j, j) =
√

K
( ‖xij−xi‖2√

εPCA

)

, j = 1, . . . , n, where K is the Epanechnikov kernel given by

K(u) := (1 − u2)χ [0,1].
4: Form the weighted matrix Bi := X iDi .
5: Find the first d left singular vectors of Bi using singular value decomposition. Denote these

vectors by u(i)
1 , . . . ,u(i)

d .

utively in that order as needed.3 During this process, we recommend holding the
error/sparsity trade-off λ (if used) equal to a small, positive value (e.g., λ = 0.001)
and setting d = 1 until these parameters’ respective values are determined.We justify
and detail this approach below.

Our reasons for suggesting this consecutive cross-validation procedure is the fol-
lowing: During experiments, we found that the LPCA-SRC algorithm can be quite
sensitive to the setting of n, especially when there are many samples in each training
class (since there are many possible values for n). This is expected, as the setting of
n affects both the accuracy of the tangent vectors and the pruning parameter r. In
contrast, LPCA-SRC is empirically fairly robust to the values of λ and d used, and
as mentioned in Remark 3, setting d = 1 can result in quite good performance in
LPCA-SRC, even when the true dimension of the class manifolds is expected to be
larger.

4.3.3 Pruning Parameter

First, we stress that the pruning parameter r is not a user-set parameter. Its value
is automatically computed in the offline phase of LPCA-SRC (Algorithm 2). We
explain this process here.

Recall that we only include a training sample x(l)
i and its tangent vectors in

the pruned dictionary Dy if x(l)
i (or its negative) is in the closed Euclidean ball

Bm(y, r) ⊂ R
m with center y and radius r. Thus r is a parameter that prunes the

extended dictionary D to obtain Dy. A smaller dictionary is good in terms of com-

3If the constrained optimization problem (Eq. (4)) is used, the error/sparsity trade-off λ is not
needed.



Improving Sparse Representation-Based Classification … 177

putational complexity, as the �1-minimization algorithm will run faster. Further, we
can obtain this computational speedup without (theoretically) degrading classifica-
tion accuracy: If±x(l)

i is far from y in terms of Euclidean distance, then it is assumed
that±x(l)

i is not close to y in terms of distance along the class manifold. Thus x(l)
i and

its tangent vectors should not be needed in the �1-minimized approximation of y.
A deeper notion of the parameter r is to view it as a rough estimate of the local

neighborhood radius of the data set. More precisely, r estimates the distance from a
sample within which its classmanifold can bewell-approximated by a tangent hyper-
plane (at that sample). Given Xtr and n, r is automatically computed, as described
in Algorithm 2. In words, we set r to be the median distance between each training
sample and its (n + 1)st nearest neighbor (in the same class), where n, the number
of neighbors in local PCA, is used to implicitly define the local neighborhood. It
follows that r is a robust estimate of the local neighborhood radius, as learned from
the training data.

We verified the effectiveness of this automatically-computed parameter by com-
paring it to the same algorithm but with r set via manual grid search during cross-
validation. Though the latter method sometimes resulted in slightly higher accuracy,
the saved computational expense of the automated setting of r (as described above)
clearly showed it to be an improvement to the overall algorithm.

This also explains our choice for the tangent vector scaling factor c = rγ (in Step
12 of Algorithm 2), where γ ∼ unif(0, 1). Multiplying each tangent hyperplane
basis vector u(l,i)

j , 1 ≤ j ≤ d , by this scalar and then shifting it by its corresponding

training sample x(l)
i helps to ensure that the resulting tangent vector, included in the

dictionary Dy if ±x(l)
i is sufficiently close to y, lies in the local neighborhood of x(l)

i
on the lth class manifold.

Remark 5 If the test sample y is far from the training data, defining r as in Algorithm
2mayproduceDy = ∅, i.e., theremay be no training sampleswithin that distance of y.
Thus to prevent this degenerate case,we use a slightlymodified technique for setting r
in practice. After assigning the median neighborhood radius r1 := median

{

r(l)
i | 1 ≤

i ≤ Nl, 1 ≤ l ≤ L
}

, we define r2 to be the distance between the test sample y and
the closest training sample (up to sign). We then define the pruning parameter r :=
max{r1, r2}. In the (degenerate) case that r = r2, the dictionary consists of the closest
training sample and its tangent vectors, leading to nearest neighbor classification
instead of an algorithm error. However, experimental results indicate that the pruning
parameter r is almost always equal to the median neighborhood radius r1, and so we
leave this “technicality” out of the official algorithm statement to make it easier to
interpret.

4.4 Computational Complexity and Storage Requirements

In this subsection, we compare the computational complexity and storage require-
ments of SRC and our proposed algorithm.
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4.4.1 Computational Complexity of SRC

When the �1-minimization algorithm HOMOTOPY [9] is used, it is easy to see
that the computational complexity of SRC is dominated by this step. This com-
plexity is O(Ntrmκ + m2κ), where κ is the number of HOMOTOPY iterations [34].
HOMOTOPY has been shown to be relatively fast and good for use in robust face
recognition [34]. In our experiments, we use it in all classification methods requiring
�1-minimization.

4.4.2 Computational Complexity of LPCA-SRC

The computational complexity of the offline phase in LPCA-SRC (Algorithm 2) is

O
(

m
L

∑

l=1

N 2
l + Ntrmn

)

, (6)

whereas that of the online phase (Algorithm 3) is

O
(

Ntrm + Ny

d
log

(Ny

d

)

+ Nymκ + m2κ
)

. (7)

Recall that Ny denotes the number of columns in the pruned dictionary Dy. We note
that the offline cost in Eq. (6) is based on the linear nearest neighbor search algorithm
for simplicity; in practice there are faster methods. In our experiments, we used
ATRIA (Advanced Triangle Inequality Algorithm [22]) via the MATLAB TSTOOL
functions nn_prepare and nn_search [23]. The first function prepares the set
of class l training samples X (l) for nearest neighbor search at the onset, with the
intention that subsequent runs of nn_search on this set are faster than simply
doing a search without the preparation function. Other fast nearest neighbor search
algorithms are available, for example, k-d tree [3]. The cost complexity estimates
of these fast nearest neighbor search algorithms are somewhat complicated, and so
we do not use them in Eq. (6). Hence, Eq. (6) could be viewed as the worst-case
scenario.

Offline and online phases combined, the very worst-case computational complex-
ity of LPCA-SRC is O(N 4

tr), which occurs when the second-to-last term in Eq. (7)
dominates: i.e., when (i) Ny ≈ (d + 1)Ntr (no pruning); (ii) m ≈ Ntr (large relative
sample dimension); (iii) very large class manifold dimension estimate d , so that d is
relatively close to Ntr (note that this requires very large Nl for 1 ≤ l ≤ L by Eq. (4),
which implies that L has to be very small); and (iv) κ ≈ m (many HOMOTOPY iter-
ations). For small κ and Nl , 1 ≤ l ≤ L, and when the pruning parameter r results in
smallNy relative toNtr , then the computational complexity reduces to approximately
O(Ntrm).
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4.4.3 Storage Requirements

The primary difference between the storage requirements for LPCA-SRC and SRC
is that the offline phase of LPCA-SRC requires storing the matrix D ∈ R

m×(d+1)Ntr ,
which has a factor of d + 1 as many columns as the matrix of training samples
Xtr ∈ R

m×Ntr stored in SRC. Hence the storage requirements of LPCA-SRC are at
worst (d + 1) times the amount of storage required by SRC.

Though this potentially is a large increase, consider that in applications such as
face recognition, it is expected that the intrinsic class manifold dimension be small,
e.g., 3–5 [17]. Second, as we discussed in Remark 3 in Sect. 4.3.1, it is often sufficient
to take d smaller than the actual intrinsic dimension (e.g., d ∈ {1, 2}) in LPCA-SRC.
This, combined with the assumption that the original training set in SRC is not too
large (so that the �1-minimization problem in SRC can be solved fairly efficiently),
suggests that the additional storage requirements of LPCA-SRC over SRC may not
deter from the use of LPCA-SRC.

5 Experiments

We tested the proposed classification algorithm on one synthetic database and three
popular face databases. For all data sets, we used HOMOTOPY to solve the regular-
ized versions of the �1-minimization problems, i.e., Eq. (3) for SRC and Eq. (5) for
LPCA-SRC, using version 2.0 of the L1 Homotopy toolbox [1].

5.1 Algorithms Compared

We compared LPCA-SRC to the original SRC, SRCpruned (a modification of SRC
whichwe explain shortly), two versions of tangent distance classification (our imple-
mentations are inspired by Yang et al. [35]), locality-sensitive dictionary learning
SRC [31], k-nearest neighbors classification, and k-nearest neighbors classification
over extended dictionary.

• SRCpruned: To test the efficacy of the tangent vectors in the LPCA-SRC dictio-
nary, this modification of SRC prunes the dictionary of original training samples
using the pruning parameter r, as in LPCA-SRC. SRCpruned is exactly LPCA-SRC
without the addition of tangent vectors.

• Tangent distance classification (TDC1 and TDC2): We compared LPCA-SRC
to two versions of tangent distance classification to test the importance of our
algorithm’s sparse representation framework. Both of our implementations begin
by first finding a pruned matrix DTDC

y that is very similar to the dictionary Dy in
LPCA-SRC. In particular, DTDC

y can be found using Algorithm 2 and Steps 1–10
in Algorithm 3, omitting Step 2 in each algorithm. That is, neither the training
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nor test samples are �2-normalized in the TDC methods; compared to the SRC
algorithms, TDC1 and TDC2 are not sensitive to the energy of the samples. We
emphasize that the resultingmatrixDTDC

y contains training samples that are nearby
y, as well as their corresponding tangent vectors.
In TDC1, we then divideDTDC

y into the “subdictionaries”D(l)
y , whereD(l)

y contains
the portion of DTDC

y corresponding to class l. The test sample y is next projected

onto the space spanned by the columns of D(l)
y to produce the vector ŷ(l), and the

final classification is performed using

class_label(y) = arg min
1≤l≤L

∥
∥y − ŷ(l)∥∥

2.

Our second implementation, TDC2, is similar. Instead of dividing DTDC
y accord-

ing to class, however, we split it up according to training sample, obtaining the
subdictionariesD(l,i)

y , whereD(l,i)
y contains the original training sample x(l)

i and its
tangent vectors. It follows that each subdictionary in TDC2 has d + 1 columns.
The given test sample y is next projected onto the space spanned by the columns
of D(l,i)

y to produce ŷ(l)
i , a vector on the (approximate) tangent hyperplane at x(l)

i .
The final classification is performed using

class_label(y) = arg min
1≤l≤L

{

min
1≤i≤Nl

∥
∥y − ŷ(l)

i

∥
∥
2

}

.

• Locality-sensitive dictionary learning SRC (LSDL-SRC): Instead of directly min-
imizing the �1-norm of the coefficient vector, LSDL-SRC replaces the regulariza-
tion term in Eq. (3) of SRC with a term that forces large coefficients to occur only
at dictionary elements that are close (in terms of an exponential distance function)
to the given test sample. LSDL-SRC also includes a separate dictionary learning
phase in which columns of the dictionary are selected from the columns of Xtr . We
note that though the name “LSDL-SRC” contains the term “SRC,” this algorithm
is less related to SRC than our proposed algorithm, LPCA-SRC. See Wei et al.’s
paper [31] for their reasoning behind this name choice. However, the two algo-
rithms do have very similar objectives, and we thought it important to compare
LPCA-SRC and LSDL-SRC in order to validate our alternative approach.

• k-nearest neighbors classification (kNN): The test sample is classified to themost-
represented class from among the nearest (in terms of Euclidean distance) k train-
ing samples (k is odd).

• k-nearest neighbors classification over extended dictionary (kNN-Ext): This is
kNN over the columns of the (full) extended dictionary that includes the original
training samples and their tangent vectors. Samples are not normalized at any
stage.
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5.2 Setting of Parameters

For the synthetic database, we used cross-validation at each instantiation of the
training set to choose the best parameters n, λ, and d in LPCA-SRC. (Though the
true class manifold dimension is known on this database, we cannot always assume
that this is the case.) We optimized the parameters consecutively as described in
Sect. 4.3.2. We used the same approach for the parameter λ in SRC, the parameters
n and λ in SRCpruned, and the parameters n and d in the TDC algorithms. Finally,
we used a similar procedure for the multiple parameters in LSDL-SRC (including
its number of dictionary elements), and we also set k in kNN and kNN-Ext using
cross-validation.

Our approach for the face databases was very similar, though in order to save
computational costs, we set some parameter values according to previously published
works. In particular, we set λ = 0.001 in LPCA-SRC, SRC, and SRCpruned, as was
used in SRC by Waqas et al. [30]. Additionally, we set most of the parameters in
LSDL-SRC to the values used by its authors [31] on the same face databases, though
we again used cross-validation to determine its number of dictionary elements.

5.3 Synthetic Database

This subsection is organized into two parts: We describe the synthetic database in
Sect. 5.3.1, and we present our experimental findings in Sect. 5.3.2. Figures4 and 5
and Table3 show the accuracy and runtime results (as well as related information)
respectively, for different versions of the synthetic database. A thorough discussion
follows. Note that some algorithms from Sect. 5.1 (“Algorithms Compared”) have
been excluded from these reported findings because of their poor performance, as
we explain towards the end of Sect. 5.3.2. We finish this subsection by summarizing
our results on the synthetic database.

5.3.1 Database Description

The following synthetic database is easily visualized, and its class manifolds are
nonlinear (though well-approximated by local tangent planes) with many intersec-
tions. Thus it is ideal for empirically comparing LPCA-SRC and SRC. However,
we stress strongly that the classification results on this database (in Sect. 5.3.2)
are biased towards the proposed method, as the database structure is specifically
designed to illustrate the advantages of LPCA-SRC over SRC. See the results on the
face databases in Sect. 5.4 for an unbiased comparison between LPCA-SRC and the
methods outlined in Sect. 5.1.

In the synthetic database, class manifolds are sinusoidal waves normalized to lie
on S2, with underlying equations given by
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x(t) = cos(t + φ),

y(t) = sin(t + φ),

z(t) = A sin(ωt).

We set ω = 3 and A = 0.5, and we varied φ to obtain L classes. In particular,
we set φ = 2π/(3l) for data in class 1 ≤ l ≤ L = 4. For each training and test set,
we generated the same number N0 = Nl , l = 1, . . . ,L, of samples in each class by
(i) regularly sampling t ∈ [ 0, 2π) to obtain the points p(t) = [x(t), y(t), z(t)]T; (ii)
computing the normalized pointsp(t)/‖p(t)‖2; (iii) appending 50 “noise dimensions”
to obtain vectors in R

53; (iv) adding independent random noise to each coordinate
of each point as drawn from the Gaussian distribution N (0, η2); and lastly (v)
re-normalizing each point to obtain vectors of length m = 53 lying on Sm−1. We
performed classification on the resulting data samples. Note that the reason why we
turned the original R3 problem into a problem in R

53 was because SRC is designed
for high-dimensional classification problems [32] and to make the problem more
challenging.We emphasize that we did not apply anymethod of dimension reduction
to this database.

Figure3 shows the first three coordinates of a realization of the training set of the
synthetic database. Note that the class manifold dimension is the same for each class
and equal to 1. The signal-to-noise ratios (SNRs) are displayed in Table1 forN0 = 25
and various values of noise level η. These results were obtained by averaging the
mean training sample SNR over 100 realizations of the data set.

Fig. 3 A realization of the
first three coordinates of the
synthetic database training
set with N0 = 25 and
η = 0.01. Nodes denote
training samples; colors
denote classes



Improving Sparse Representation-Based Classification … 183

Table 1 Mean training sample signal-to-noise ratio (in decibels) over 100 realizations of the syn-
thetic database with N0 = 25 and various values of noise level η

η = 0.0001 η = 0.001 η = 0.005 η = 0.01 η = 0.015 η = 0.02 η = 0.03 η = 0.05

62.85 42.84 28.86 22.86 19.35 16.89 13.45 9.25

Table 2 Brief descriptions of the parameters relevant to experimental results on the synthetic
database

Algorithm parameters Data set parameters Output parameters

d , n: Local PCA parameters N0: Class size N : Dictionary size

λ: Error/sparsity trade-off η: Noise level t: Time in seconds

r: Pruning parameter (set
automatically)

κ: # of Homotopy iterations

Fig. 4 Box plots of the average classification accuracy (over 100 trials) of competitive algorithms
on the synthetic database with varying training class size N0. We fixed η = 0.001

5.3.2 Experimental Results

We performed experiments on this database, first varying the number of training
samples in each class and then varying the amount of noise. Table2 contains brief
descriptions of the relevant parameters for easy reference; a detailed description of
the output parameters is given later on.

The results are presented in Figs. 4, 5 and Table3; a discussion follows.
Accuracy results for varying class size. Figure4 shows the average classifica-

tion accuracy (over 100 trials) of the competitive algorithms as we varied the number
of training samples in each class. We fixed the noise level η = 0.001. LPCA-SRC
generally had the highest accuracy. On average, LPCA-SRC outperformed SRC by
3.5%, though this advantage slightly decreased as the sampling density increased
and the tangent vectors became less useful, in the sense that there were often already
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Fig. 5 Box plots of the average classification accuracy (over 100 trials) of competitive algorithms
on the synthetic databases with varying noise level η. We fixed N0 = 25

enough nearby training samples in the ground truth class of y to accurately approxi-
mate it without the addition of tangent vectors. SRC and SRCpruned had comparable
accuracy for all tried values of N0, indicating that the pruning parameter r was effec-
tive in removing unnecessary training samples from the SRC dictionary. Further, the
increased accuracy of LPCA-SRC over SRCpruned suggests that the tangent vectors
in LPCA-SRC contributed meaningful class information.

To determine if these results are statistically significant, we performed a Repeated
Measures ANOVA test on the results for LPCA-SRC, SRC, and SRCpruned as well
as a t-test between the results for LPCA-SRC and SRC. The detailed results can be
found in Table9 in Appendix A. In summary, the differences in the accuracies of
LPCA-SRC, SRC, and SRCpruned are statistically significant for all but N0 = 15, as
demonstrated by p-values less than 0.05 for these experiments.

The TDC methods performed relatively poorly for small values of N0. At low
sampling densities, the TDC subdictionaries were poor models of the (local) class
manifolds, leading to approximations of y thatwere often indistinguishable fromeach
other and resulting in poor classification. Both TDCmethods improved significantly
as N0 increased, with TDC2 outperforming TDC1 and in fact becoming comparable
to LPCA-SRC for N0 ≥ 60. We attribute this to the extremely local nature of TDC2:
It considers a single local patch on a class manifold at a time, rather than each class
as a whole. Hence under dense sampling conditions, TDC2 effectively mimicked the
successful use of sparsity in LPCA-SRC.

Accuracy results for varying noise. Figure5 shows the average classification
accuracy (over 100 trials) of the competitive algorithms as we varied the amount of
noise. We fixed N0 = 25. LPCA-SRC had the highest classification accuracy for low
values of η (equivalently, when the SNR was high), outperforming SRC by as much
as nearly 4%. For η ≥ 0.015 (i.e., when the SNR dropped below 20 decibels), LPCA-
SRC lost its advantage over SRC and SRCpruned. This is likely due to noise degrading
the accuracy of the tangent vectors. SRC and SRCpruned had nearly identical accuracy
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for all values of η; again, this illustrates that faraway training samples (as defined by
the pruning parameter r) did not contribute to the �1-minimized approximation of the
test sample, and the increased accuracy of LPCA-SRC over SRCpruned for low noise
values demonstrates the efficacy of the tangent vectors in LPCA-SRC in these cases.
We briefly note that when we vary the noise level for larger values ofN0, the accuracy
of the tangent vectors generally improves. As a result, we see that LPCA-SRC can
tolerate higher values of η before being outperformed by SRC and SRCpruned.

Table10 in Appendix A contains the p-values for rANOVA and related tests on the
accuracy results of LPCA-SRC, SRC, and SRCpruned, as well as the 5% confidence
intervals for the advantage of LPCA-SRC over SRC. These tests concur with the
discussion above;LPCA-SRCoutperformsSRCfor small values ofη, there is no clear
advantage for η ∈ {0.01, 0.015}, and SRC outperforms LPCA-SRC for η ≥ 0.02.

TDC2 outperformed TDC1 for all but the largest values of η, though both algo-
rithms were outperformed by the three SRC methods at this relatively low sampling
density for the reasons discussed previously. For η ≥ 0.03, TDC2 began performing
worse than TDC1.We expect that the local patches represented by the subdictionaries
in TDC2 became poor estimates of the (tangent hyperplanes of the) class manifolds
as the noise increased, resulting in a decrease in classification accuracy.

Runtime results for varying class size. In Table3, we display the runtime-related
information of the competitive algorithms with varying training class size. (We do
not show the runtime results for the case of varying noise; the results for varying
class size are much more revealing.) In particular, we report the average runtime (in
milliseconds), the number of columns in each algorithm’s dictionary (we refer to this
as the “size” of the dictionary, as the sample dimension is fixed), and the number
of HOMOTOPY iterations. These latter variables are denoted N and κ , respectively.
The runtime does not include the time it took to perform cross-validation and is
the total time (averaged over 100 trials) of performing classification on the entire
database. In the case that the algorithm has separate offline and online phases (e.g.,
LPCA-SRC), both phases are included in this total. For the TDC methods, we report
the average subdictionary sizes,4 and for conciseness, we display the results for only
a handful of the values of N0. We use “N/A” to indicate that a particular statistic is
not applicable to the given algorithm.

The dictionary sizes of LPCA-SRC, SRC, and SRCpruned are quite informative.
Recall that LPCA-SRC outperformed SRC and SRCpruned (by more than 3%) for
the shown values of N0. For N0 = 5, the dictionary in LPCA-SRC was larger than
that of the two other methods, adaptively retaining more samples to counter-balance
the low sampling density. At large values of N0, LPCA-SRC took full advantage
of the increased sampling density, stringently pruning the set of training samples
and keeping only those very close to y. Due to the resulting small dictionary, it
had comparable runtime to SRC despite its additional cost of computing tangent
vectors. In contrast, without the addition of tangent vectors, SRCpruned was forced to

4Recall that these subdictionaries are the class-specific portions D(l)
y , 1 ≤ l ≤ L, of the main dic-

tionary DTDC
y . Thus the values of N for TDC1 and TDC2 are much smaller than those for the other

classification methods.
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keep a large number of training samples in its dictionary; the cost of the dictionary
pruning step resulted in SRCpruned running slower than SRC, despite its slightly
smaller dictionary. (We note that one might expect that SRCpruned would always have
a smaller dictionary than LPCA-SRC since it does not include tangent vectors; this
is not the case, as the value of the number-of-neighbors parameter n, and hence the
pruning parameter r, may be different for the two algorithms.)

The TDC methods ran relatively fast, especially for large values of N0. This is
expected, as these algorithms do not require �1-minimization.

Summary. The experimental results on the synthetic database show that LPCA-
SRC can achieve higher classification accuracy than SRC and similar methods when
the class manifolds are sparsely sampled and the SNR is large. In these cases, the
tangent vectors in LPCA-SRC help to “fill out” portions of the class manifolds that
lack training samples.When the sampling density was sufficiently high, however, we
saw that the tangent vectors in LPCA-SRC were less needed to provide an accurate,
local approximation of the test sample, and thus LPCA-SRC offered a smaller advan-
tage over SRC and SRCpruned. Additionally, for higher noise (i.e., low SNR) cases,
the computed tangent vectors were less reliable and the classification performance
consequently deteriorated. With regard to runtime, LPCA-SRC appeared to adapt to
the sampling density of the synthetic database, and though the addition of tangent
vectors initially increased the dictionary size in LPCA-SRC, the online dictionary
pruning step allowed for runtime comparable to SRCwhen the class sizes were large.

5.4 Face Databases

This subsection is organized as follows:

• We first explain our experimental setup. We describe the different face databases
and state the training set sizes in Sect. 5.4.1, and in Sects. 5.4.2 and 5.4.3, we
describe the method of dimension reduction used on the raw samples and our
approach to handling data samples with occlusion, respectively. Section5.4.4 sim-
ply contains Table4, which shows brief descriptions of the relevant parameters on
the face databases for easy reference.

• We separate our classification results into two parts: Sect. 5.4.5 contains our results
on the AR face database, and Sect. 5.4.6 contains our results on the Extended Yale
B and ORL face databases. More precisely, Figs. 6, 7 and Table5 contain the
accuracy and runtime results for two versions of the AR face database; Figs. 8, 9
and Tables6, 7 show the same results for Extended Yale B and ORL. Again, these
databases are described in Sect. 5.4.1. The figures and tables in each section are
followed by a discussion of their results.

• In Sect. 5.4.7, we offer evidence to support our claim that the tangent vectors in
LPCA-SRC can recover discriminative information lost during PCA transforms
to low dimensions. We display the PCA-recovered tangent vectors and compare
them to the original samples (without PCA transform) as well as the recovered
samples (after PCA transform).
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• Lastly, Sect. 5.4.8 contains a summary of our experimental findings on the face
databases.

5.4.1 Database Description

The AR Face Database [21] contains 70 male and 56 female subjects photographed
in two separate sessions held on different days. Each session produced 13 images of
each subject, the first seven with varying lighting conditions and expressions, and the
remaining six images occluded by either sunglasses or scarves under varying lighting
conditions. Images were cropped to 165 × 120 pixels and converted to grayscale. In
our experiments, we selected the first 50 male subjects and first 50 female subjects,
as was done in several papers (e.g., Wright et al. [32]), for a total of 100 classes.
We performed classification on two versions of this database. The first, which we
call “AR-1,” contains the 1400 un-occluded images from both sessions. The second
version, “AR-2,” consists of the images in AR-1 as well as the 600 occluded images
(sunglasses and scarves) from Session 1.

The Extended Yale Face Database B [11] contains 38 classes (subjects) with
about 64 images per class. The subjects were photographed from the front under
various lighting conditions. We used the version of Extended Yale B that contains
manually-aligned, cropped, and resized images of dimension 192 × 168.

The Database of Faces (formerly “The ORL Database of Faces”) [2] contains 40
classes (subjects) with 10 images per class. The subjects were photographed from the
front against dark, homogeneous backgrounds. The sets of images of some subjects
contain varying lighting conditions, expressions, and facial details. Each image in
ORL is initially of 92 × 112 pixels.

Given existing work on the manifold structure of face databases (e.g., that of
Saul and Roweis [26], He et al. [12], and Lee et al. [17]), we make the following
suppositions: Since images in each class inAR-1 andAR-2 have extremevariations in
lighting conditions and differing expressions, the class manifolds of these databases
may be nonlinear. Further, the natural occlusions contained in AR-2 make these
class manifolds highly nonlinear. Alternatively, since the images in each class in
Extended Yale B differ primarily in lighting conditions, the class manifolds may be
nearly linear. Lastly, since the images in some classes in ORL differ in both lighting
conditions and expression, these classmanifoldsmaybenonlinear; however, since the
variations are small, these manifolds may be well-approximated by linear subspaces.

With regard to sampling density, we reiterate that Extended Yale B has large class
sizes compared to AR and ORL. In our experiments, we randomly selected the same
number of samples in each class to use for training, i.e., we set N0 ≡ Nl , 1 ≤ l ≤ L,
where N0 was half the number of samples in each class.5 We used the remaining
samples for testing.

5Since the class sizes vary slightly in Extended Yale B, we set N0 = 32 on this database.
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5.4.2 Dimension Reduction

To perform dimension reduction on the face databases, we used (global) PCA to
transform the raw images to mPCA ∈ {30, 56, 120} dimensions before performing
classification. Similar values for mPCA were used by Wright et al. [32]. For the
remainder of this paper, we will refer to the PCA-compressed versions of the raw
face images as “feature vectors” and mPCA as the “feature dimension.” We note that
the data was not centered (around the origin) in the PCA transform space.

5.4.3 Handling Occlusion

Since AR-2 contains images with occlusion, we considered using the “occlusion
version” of SRC (with analogous modifications to LPCA-SRC and SRCpruned) on
this database. As discussed by Wright et al. [32], this model assumes that y is the
summation of the (unknown) true test sample y0 and an (unknown) sparse error
vector. The resulting modified �1-minimization problem consists of appending the
dictionary of training samples with the identity matrix I ∈ R

m×m and decomposing
y over this augmented dictionary. For more details, see Sect. 3.2 of the SRC paper
[32].

However, the context inwhichWright et al. use the occlusionversionofSRCon the
AR database is critically different than our experimental setup here [32]. In the SRC
paper, the samples with occlusion make up the test set. In our case, both the training
and test set contain samples with and without occlusion. As a consequence, occluded
samples in the training set can be used to express test samples with occlusion, and
on the other hand, the use of the identity matrix to extend the dictionary in SRC
results in too much error allowed in the approximation of un-occluded samples.
Correspondingly, we see much worse classification performance in SRC when we
use its occlusion version on AR-2. Hence, we stick to Algorithm 1 (the original
version of SRC) on all face databases.

5.4.4 Table of Parameters

Table4 contains brief descriptions of the parameters relevant to the face databases.

5.4.5 AR Face Database Results

Accuracy results on AR. Figures6 and 7 display the accuracy results over 10 trials
for the two versions of AR, respectively. LPCA-SRC had substantially higher clas-
sification accuracy than the other methods on both versions of AR with mPCA = 30.
This suggests that the tangent vectors in LPCA-SRC were able to recover important
class information lost in the stringent PCA dimension reduction. AsmPCA increased,
however, themethods SRC, SRCpruned, and LSDL-SRC becamemore competitive, as
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Table 4 Brief descriptions of the parameters relevant to experimental results on the face databases

Algorithm parameters Data set parameters Output parameters

d , n: Local PCA parameters N0: Class size N : Dictionary size

λ: Error/sparsity trade-off mPCA: PCA dimension t: Time in seconds

r: Pruning parameter (set
automatically)

κ: # of Homotopy iterations
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Fig. 6 Box plots of the average classification accuracy (over 10 trials) on the AR-1 face database
for different values of mPCA
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Fig. 7 Box plots of the average classification accuracy (over 10 trials) on the AR-2 face database
for different values of mPCA
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more discriminative informationwas retained in the feature vectors and less needed to
be provided by the LPCA-SRC tangent vectors. SRCpruned had comparable accuracy
to SRC, indicating that, once again, training samples could be removed from the SRC
dictionary using the pruning parameter r without decreasing classification accuracy.
In some cases, the removal of these faraway training samples slightly improved class
discrimination.

To test for statistical significance in the differences between accuracy results, we
performed a Repeated Measures ANOVA test on LPCA-SRC, SRC, SRCpruned, and
LSDL-SRC as well as two t-tests, one between LPCA-SRC and SRC and the other
between LPCA-SRC and LSDL-SRC. The related p-values and confidence intervals
are contained in Table11 in Appendix A. In summary, LPCA-SRC outperforms both
methods in a statistically-significant manner, except for LSDL-SRC when mPCA =
120.

For the most part, the other algorithms performed poorly on AR. The exception
was LSDL-SRC, which had comparable accuracy to LPCA-SRC for mPCA = 120
(slightly outperforming it for AR-1) and beat SRConAR-1 formPCA = 56. However,
LSDL-SRC had lower accuracy than the SRC algorithms for mPCA = 30 on both
versions of this database. In contrast, the TDC methods performed relatively better
for mPCA = 30 than for larger values of mPCA due to their more effective use of
tangent vectors at this small feature dimension. Overall, however, their class-specific
dictionaries were not as effective on this nonlinear, sparsely sampled database as the
multi-class dictionaries of the previously-discussed algorithms. Further, TDC2 often
had notably high standard error, presumably because of its sensitivity to the value
of the manifold dimension estimate d . This could perhaps be mitigated by using
a different cross-validation procedure. Lastly, kNN and kNN-Ext had the lowest
classification accuracies, though kNN-Ext offered a slight improvement over kNN.
Both methods consistently selected k = 1 during cross-validation.

Runtime results on AR. Table5 displays the average runtime and related results
(over 10 trials) of the various classification algorithms for both versions of AR.
Again, the runtime does not include the time it took to perform cross-validation and
is the total time (averaged over 10 trials) of performing classification on the entire
database (offline and online phases both included when applicable). The “dictionary
size” N for kNN and kNN-Ext refers to the average size of the set from which the
k-nearest neighbors are selected (e.g., for kNN, N = Ntr).

The generally large dictionary sizes of LPCA-SRC (and its consequently long
runtimes) indicate that minimal dictionary pruning often occurred. Thus LPCA-SRC
was generally slower than SRC and SRCpruned. However, on AR-2 with mPCA = 30,
LPCA-SRC was able to eliminate many training samples from its dictionary, due
to its effective use of tangent vectors on the (presumably) highly-nonlinear class
manifolds of AR-2. At this low feature dimension, the computed tangent vectors
contained more class discriminative information than nonlocal training samples,
likely allowing for a more accurate—and local—approximation of y on its ground
truth class manifold. LPCA-SRC was faster than SRC and SRCpruned (which kept a
large number of training samples) in this case, and this is impressive, considering
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Table 5 Average runtime in ms (t), dictionary size (N ), and number of HOMOTOPY iterations (κ)
over 10 trials on AR

Algorithm AR-1

mPCA = 30 mPCA = 56 mPCA = 120

t N κ t N κ t N κ

LPCA-SRC 7253 435 61 12496 676 87 19068 795 112

SRC 6114 700 51 8875 700 72 13574 700 99

SRCpruned 3763 231 39 5099 226 49 6897 232 60

TDC1 11816 16 N/A 14239 16 N/A 24296 19 N/A

TDC2 8895 5 N/A 16786 5 N/A 36682 5 N/A

LSDL-SRC 7776 440 N/A 8552 470 N/A 9720 490 N/A

kNN 13 700 N/A 18 700 N/A 29 700 N/A

kNN-Ext 102 2170 N/A 132 2240 N/A 253 2660 N/A

Algorithm AR-2

mPCA = 30 mPCA = 56 mPCA = 120

t N κ t N κ t N κ

LPCA-SRC 10533 478 58 35269 1593 10 56169 1690 151

SRC 11394 1000 58 17674 1000 85 27743 1000 121

SRCpruned 11118 788 54 16631 775 77 24880 767 107

TDC1 20557 25 N/A 27515 26 N/A 43073 26 N/A

TDC2 20930 6 N/A 47571 6 N/A 103796 6 N/A

LSDL-SRC 22698 750 N/A 16337 620 N/A 22191 710 N/A

kNN 15 1000 N/A 21 1000 N/A 37 1000 N/A

kNN-Ext 128 4300 N/A 152 3600 N/A 294 4400 N/A

that LPCA-SRC also outperformed these methods by nearly 4% and more than 2%,
respectively.

Despite not requiring �1-minimization, the TDC methods were often the slowest
algorithms on the AR databases. We suspect that this is largely due to the relatively
large number of classes in AR—recall that both TDC methods must compute least
squares solutions (in TDC2, sometimes many of them) for each class represented
in the pruned dictionary DTDC

y . Further, TDC2 selected a relatively large value of d
during cross-validation (presumably so that its subdictionaries would contain a wider
“snapshot” of the class manifolds), which made it even less efficient. The runtime
of LSDL-SRC, unlike those of most of the other algorithms, was fairly insensitive
to the feature dimension, and as a result, LSDL-SRC was relatively efficient for
mPCA ∈ {56, 120}. However, the expense of its dictionary learning phase formPCA =
30, at which the �1-minimization algorithm in the SRC methods could be solved
efficiently, resulted in LSDL-SRC’s relatively slow runtime. Both kNNmethods ran
significantly faster than all the other methods.



Improving Sparse Representation-Based Classification … 193

30 56 120
0.4

0.5

0.6

0.7

0.8

0.9

m
PCA

LPCA−SRC
SRC
SRC

pruned
TDC1
TDC2
LSDL−SRC
kNN
kNN−Ext

Fig. 8 Box plots of the average classification accuracy (over 10 trials) on the Extended Yale B face
database for different values of mPCA
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Fig. 9 Box plots of the average classification accuracy (over 50 trials) on the ORL face database
for different values of mPCA

5.4.6 Extended Yale Face Database B and Database of Faces (“ORL”)
Results

Accuracy results on Extended Yale B and ORL. Figure8 displays the accuracy
results for Extended Yale B (over 10 trials), and Fig. 9 displays the accuracy results
for ORL (over 50 trials). On Extended Yale B, LPCA-SRC had the highest accuracy
for all mPCA, though as we saw on the AR database, this advantage decreased as
mPCA increased and SRC became more competitive. SRC and SRCpruned had simi-
lar accuracy, indicating that training samples excluded from the dictionary via the
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Table 6 Average runtime in ms (t), dictionary size (N ), and number of HOMOTOPY iterations (κ)
over 10 trials on Extended Yale B

mPCA = 30 mPCA = 56 mPCA = 120

Algorithm t N κ t N κ t N κ

LPCA-SRC 29204 1922 75 72122 3359 120 141966 3785 182

SRC 15584 1216 62 24697 1216 91 41939 1216 137

SRCpruned 15915 1111 61 23813 1112 88 40504 1115 131

TDC1 8098 20 N/A 27620 59 N/A 42828 59 N/A

TDC2 11675 6 N/A 23506 6 N/A 56006 6 N/A

LSDL-SRC 67295 1186 N/A 53031 1003 N/A 38731 821 N/A

kNN 17 1216 N/A 26 1216 N/A 49 1216 N/A

kNN-Ext 172 5350 N/A 251 4742 N/A 443 4864 N/A

Table 7 Average runtime in ms (t), dictionary size (N ), and number of HOMOTOPY iterations (κ)
over 50 trials on ORL

Algorithm mPCA = 30 mPCA = 56 mPCA = 120

t N κ t N κ t N κ

LPCA-SRC 539 59 26 730 72 34 1221 111 50

SRC 854 200 40 1337 200 57 2087 200 81

SRCpruned 254 19 12 343 26 16 530 39 24

TDC1 121 1 N/A 162 1 N/A 344 1 N/A

TDC2 117 3 N/A 233 3 N/A 532 3 N/A

LSDL-SRC 1040 116 N/A 1088 121 N/A 931 102 N/A

kNN 8 200 N/A 8 200 N/A 9 200 N/A

kNN-Ext 25 568 N/A 28 592 N/A 38 568 N/A

pruning parameter r did not provide class information. TDC1 and TDC2 had consis-
tently mediocre performance, neither one outperforming the other over all settings
of mPCA, and LSDL-SRC improved as mPCA increased, analogous to its behavior on
AR. However, LSDL-SRC was outperformed by LPCA-SRC, even formPCA = 120,
suggesting that the improved approximations in LPCA-SRC via its use of tangent
vectors were more effective (even at this high feature dimension) than the procedure
in LSDL-SRC.Along these same lines, the tangent vectors in kNN-Ext offered a con-
siderable improvement over kNN, though once again both methods reported lower
accuracy than all the other algorithms. As on AR, the kNN methods consistently
selected k = 1 during cross-validation.

On ORL, LPCA-SRC and SRCpruned had comparable accuracy and outperformed
SRC. This indicates that: (i) the pruning parameter r in LPCA-SRC and SRCpruned

was helpful to classification (instead of simply being benign); and (ii) the tangent
vectors computed in LPCA-SRC were not. With regard to (i), it must be the case
that faraway training samples—those in different classes from the test sample—
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contributed significantly to the approximation of the test sample in SRC, negatively
affecting classification performance. This is an example of sparsity not necessarily
leading to locality (as it is relevant to class discrimination), as discussed in the LSDL-
SRCpaper [31].With regard to (ii), we suspect that the tangent vectors in LPCA-SRC
were simply unneeded to improve the classification performance on ORL. Though
the approximations in SRC contained nonzero coefficients at training samples not
in the same class as y—presumably because of the sparse sampling and nonlinear
structure of the class manifolds—many of these wrong-class training samples could
be eliminated simply based on their distance to y. This suggests that ORL’s class
manifolds can be fairly well-separated via Euclidean distance. An additional reason
for (ii) was because the PCA transform to the dimensions specified in this experiment
did not result in a loss of toomuch information, at least compared toARandExtended
Yale B. See Table8 at the end of Sect. 5.4.7 for this comparison.

As we did for the AR face database, we performed statistical analysis on the
reported accuracies for Extended Yale B and ORL. The detailed results are contained
in Table12 in Appendix A. In summary, LPCA-SRC outperforms both SRC and
LSDL-SRCwith 95% confidence in all of these experiments, albeit its lift in accuracy
is sometimes small.

All of the remaining methods performed relatively well on ORL. The accuracies
of TDC1 and TDC2 were similar and comparable to those of SRC. We ascertained
that the success of the TDC methods was not due to their use of tangent vectors
but instead the result of their “per-class” approximations of the test sample. This
approach was very effective on the (presumably) well-separated class manifolds of
ORL. Strikingly, the accuracy of LSDL-SRC was relatively low for mPCA = 120,
opposite to the trend we saw on the previous face databases. The performance of
LSDL-SRC could be improved formPCA = 120 on this database if the samples were
centered (around the origin) after PCA dimension reduction. However, we confirmed
that LDSL-SRCwas still outperformedbyLPCA-SRC in this case (albeit by a smaller
margin), and its performance with centering on the other face databases was much
worse than our reported results. In contrast to the results on Extended Yale B, kNN-
Ext only provided a slight increase in accuracy over kNN, with the tangent vectors
mimicking their unnecessary role in LPCA-SRC on this database. The value k = 1
was consistently selected by both kNN and kNN-Ext during cross-validation.

Runtime results on Extended Yale B and ORL. Tables6 and 7 show the run-
time and related results for the Extended Yale B and ORL experiments, respectively.
LPCA-SRC had much longer runtimes than SRC on Extended Yale B, especially
as mPCA increased. This was due to a combination of large values for d selected
during cross-validation and the tangent vectors’ decreasing efficacy at larger fea-
ture dimensions. However, the dictionary pruning procedure in LPCA-SRC actually
eliminated a large number of training samples for allmPCA; once again, the computed
tangent vectors contained more class-discriminating information than the eliminated
nonlocal training samples, especially at lower feature dimensions for which details
provided by these tangent vectors were especially needed. The linearity of the class
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manifolds of Extended Yale B, combined with this database’s relatively dense sam-
pling, lent itself well to the accurate computation of tangent vectors—part of the
reason why LPCA-SRC used so many of them. Viewing these points as newly-
generated and nearby training samples, LPCA-SRC’s boost in accuracy over SRC
can be viewed as an argument for locality in classification. We note that we might
be able to decrease the value of d in LPCA-SRC while still maintaining an advan-
tage over SRC (see the discussion in Sect. 4.3.1); our cross-validation procedure is
designed to obtain the highest accuracy without regard to computational cost.

On Extended Yale B, the TDC methods ran relatively more quickly (compared to
the other algorithms) than on AR, presumably due to the much smaller number of
classes on this database; both had runtimes typically between those of LPCA-SRC
and SRC.Again, we see that LSDL-SRChad a relatively slow runtime formPCA = 30
and became more competitive as mPCA increased. Though both kNN and kNN-Ext
were very fast, the large “dictionary sizes” in kNN-Ext made this algorithm clearly
the slower of the two methods.

On ORL, LPCA-SRC and SRC had comparable runtimes, a result of rigorous
dictionary pruning in LPCA-SRC. This algorithm and SRCpruned retained roughly
the same number of training samples in their respective dictionaries, and the latter
was notably fast, running in about half the time as SRC. The remaining algorithms
were even more efficient. TDC1 and TDC2 had comparable runtimes, both running
faster than LSDL-SRC. As before, kNN and kNN-Ext had the fastest runtimes; the
former was faster than the latter.

5.4.7 Tangent Vectors and PCA Feature Dimension

In this section, we offer evidence to support our claim that the tangent vectors in
LPCA-SRC can recover discriminative information lost during PCA transforms to
low dimensions. Thus LPCA-SRC can offer a clear advantage over SRC in these
cases, as we saw in experimental results on AR and Extended Yale B.

In Figs. 10, 11 and 12, we display three versions of three example images from
AR-1. The first version is the original image (before PCA dimension reduction), the
second version is the recovered image from PCA dimension reduction to dimension
mPCA = 30, and the third version is the recovered corresponding tangent vector com-
puted in LPCA-SRC. In each case, the tangent vector contains details of the original
image not found in the recovered image, supporting our claim that the tangent vectors
in LPCA-SRC can recover some (but not all) of the information lost in stringent PCA
dimension reduction.

Towards quantifying what we mean by “stringent,” Table8 lists the average
energy6 (over 10 trials) retained in the first mPCA left-singular vectors of the face
database training sets, along with the percent improvement in the accuracy of

6By “energy,” we mean the ratio of the sum of squares of the first mPCA singular values to the sum
of squares of all singular values.
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(a) Original Image (b) Recovered Image (c) Tangent Vector

Fig. 10 The tangent vector does amuchbetter job of displaying facial details conveying “happiness”
than the recovered image. Images b and c were recovered from PCA dimension mPCA = 30

(a) Original Image (b) Recovered Image (c) Tangent Vector

Fig. 11 The tangent vector does a better job of displaying “anger” than the recovered image, most
notably in the subject’s eyes and eyebrows. Images b and c were recovered from PCA dimension
mPCA = 30

LPCA-SRC over that of SRC and SRCpruned. Given that the addition of tangent vec-
tors did not increase classification accuracy onORL,we see a correlation between the
efficacy of tangent vectors in LPCA-SRC and the stringency of the PCA dimension
reduction.
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(a) Original Image (b) Recovered Image (c) Tangent Vector

Fig. 12 The tangent vector shows the subject’s smile better than the recovered image. Images b
and c were recovered from PCA dimension mPCA = 30

Table 8 Average energy retained in PCAdimension reduction (over 10 trials) to various dimensions
mPCA on the face database training sets, as well as the average increase in classification accuracy
of LPCA-SRC over SRC and SRCpruned

Database mPCA = 30 mPCA = 56 mPCA = 120

Energy % Increased
Acc.
SRC /
SRCpruned

Energy % Increased
Acc.
SRC /
SRCpruned

Energy % Increased
Acc.
SRC /
SRCpruned

AR-1 0.4527 3.90/3.86 0.5322 1.87/1.91 0.6522 0.80/0.60

AR-2 0.4137 3.83/2.36 0.4884 1.31/0.63 0.5988 0.62/0.53

Extended
Yale B

0.3954 2.46/2.45 0.4803 1.59/1.59 0.6055 0.77/0.74

ORL 0.5385 1.34/0.05 0.6581 1.26/-0.04 0.8487 1.73/0.03

5.4.8 Summary

The experimental results on face databases show that LPCA-SRC can achieve higher
accuracy than SRC in cases of low sampling and/or nonlinear class manifolds and
small PCA feature dimension. We showed that LPCA-SRC had a significant advan-
tage (in terms ofmean accuracy) over SRCand the other algorithms for the small class
sizes and nonlinear class manifolds of the AR database when the feature dimension
was low. We also showed that LPCA-SRC could improve classification on Extended
Yale B and ORL through its use of tangent vectors to provide a local approximation
of the test sample and its discriminating pruning parameter, respectively.
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The runtime of LPCA-SRC was sometimes much longer than that of SRC,
although this was less often seen for small feature dimensions, at which LPCA-
SRC tended to excel. The size of the dictionary in LPCA-SRC was observed to be
a good predictor of the relationship between the runtimes of LPCA-SRC and SRC,
and this could easily be computed (given estimates of the parameters n and d ) before
deciding between the two methods.

To validate our claim that the tangent vectors in LPCA-SRC can contain infor-
mation lost in stringent PCA dimension reduction, we provided examples from the
AR database. We also compared the energy retained in PCA dimension reduction
with the increase in accuracy in LPCA-SRC over SRC and saw that there was a
correlation.

6 Further Discussion and Future Work

This paper presented a modification of SRC called local principal component anal-
ysis SRC, or “LPCA-SRC.” Through the use of tangent vectors, LPCA-SRC is
designed to increase the sampling density of training sets and thus improve class
discrimination on databases with sparsely sampled and/or nonlinear class manifolds.
The LPCA-SRC algorithm computes basis vectors of approximate tangent hyper-
planes at the training samples in each class and replaces the dictionary of training
samples in SRCwith a local dictionary (that is constructed based on each test sample)
computed from shifted and scaled versions of these vectors and their corresponding
training samples. Using a synthetic database and three face databases, we showed
that LPCA-SRC can regularly achieve higher accuracy than SRC in cases of sparsely
sampled and/or nonlinear class manifolds, low noise, and relatively small PCA fea-
ture dimension.

To address the issue of parameter setting, we recommended a consecutive param-
eter cross-validation procedure and gave detailed guidelines for its use. We also
briefly discussed alternative methods for determining the class manifold dimension
estimate d . It is important to note that in the case of small training sets, e.g., many
face recognition problems, there are few options for the number-of-neighbors param-
eter n—and consequently for d by Eq. (4)—and so these values can easily be set
using cross-validation, as in our experiments. When the training sets are very small
(i.e., Nl = 4 or 5), one could simply set n to its maximum value, i.e., n = Nlmin − 2,
per Eq. (4). On the other hand, simply setting d = 1 may suffice, especially when
minimizing algorithm runtime and/or storage requirements is paramount.

Onedisadvantage of thismethod is its high computational cost and storage require-
ments. SRC is already expensive due to its �1-minimization procedure; in LPCA-
SRC, the computation of tangent vectors is added to the algorithm’s workload. The
size of the dictionary in LPCA-SRC may be larger or smaller than that of SRC,
depending on the LPCA-SRC parameters n and d and the effect of the pruning
parameter r. Thus LPCA-SRC can be slower or faster than SRC. Further, the storage
required by LPCA-SRC is (d + 1) times that of SRC, which may be prohibitive
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when d is large. As mentioned, simple computations based on the training set could
render relative cost and storage estimates of using LPCA-SRC instead of SRC, and
a smaller value of d than that found using cross-validation (e.g., d = 1) may be used
successfully. These estimates can help the user decide between LPCA-SRC and SRC
based on their desired balance between accuracy and computational efficiency.

Additionally, as we saw on the synthetic database, the usefulness of the tangent
vectors in LPCA-SRC decreases as the noise level in the training data increases. This
problem could potentially be alleviated by using the method proposed by Kaslovsky
andMeyer [15] to estimate clean points on themanifolds fromnoisy samples and then
computing the tangent vectors at these points. Note that the case of large training
sample noise was the only case for which we saw LPCA-SRC not obtain higher
accuracy than SRC. Thus LPCA-SRC should be preferred over SRC in low noise
scenarios on either small-scale problems (e.g., the size of ORL) or when achieving
a modest (e.g., 1–4%) boost in accuracy is worth potentially higher computational
cost.

Open questions regarding LPCA-SRC include whether or not the aforementioned
general trends hold for different methods of dimension reduction besides PCA.Addi-
tionally, one could compare the performance of the “group” or “per-class” methods
of the above representation-based algorithms, in which test samples are approxi-
mated using class-specific dictionaries (similarly to as in TDC1). Lastly, one could
gain insight into the role of �1-minimization in SRC by comparing LPCA-SRC and
SRCpruned to versions of these algorithms that replace the �1-norm with the �2-norm,
analogous to the work of Zhang et al. in their collaborative representation-based rep-
resentation model [39]. This is part of our ongoing work, which we hope to report
at a later date.
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A Tests of Statistical Significance

This appendix contains the detailed results for the tests of statistical significance
between the most competitive classification algorithms on the experiments presented
in Sects. 5.3.2, 5.4.5, and 5.4.6.
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Table 9 Tests for statistical significance on the synthetic database for varying N0: p-values in
rAnova, Mauchly, Greenhouse-Geisser, and Huynh-Feldt tests (LPCA-SRC, SRC, and SRCpruned),
and 5% confidence interval of the improvement of LPCA-SRC over SRC

N0 rANOVA Mauchly Greenhouse-
Geisser

Huynh-Feldt 5% Confidence
(LPCA-SRC >

SRC)

5 4.1 × 10−5 0.3598 4.7 × 10−5 4.1 × 10−5 [0.0266, 0.0804]
10 2.0 × 10−9 3.9 × 10−9 1.2 × 10−7 1.0 × 10−7 [0.0276, 0.0604]
15 0.1488 2.3 × 10−10 0.1610 0.1606 [−0.0025, 0.0265]
20 5.8 × 10−10 1.1 × 10−8 3.9 × 10−8 3.3 × 10−8 [0.0244, 0.0526]
25 1.7 × 10−8 1.1 × 10−18 3.3 × 10−6 3.1 × 10−6 [0.0166, 0.0448]
30 2.2 × 10−16 1.1 × 10−13 9.6 × 10−14 7.5 × 10−14 [0.0349, 0.0611]
35 2.2 × 10−16 7.0 × 10−10 4.8 × 10−13 3.6 × 10−13 [0.0309, 0.0540]
40 1.1 × 10−6 5.2 × 10−23 7.1 × 10−5 6.8 × 10−5 [0.0113, 0.0361]
45 2.2 × 10−16 8.6 × 10−8 2.2 × 10−16 6.0 × 10−18 [0.0248, 0.0395]
50 2.2 × 10−16 1.9 × 10−17 2.2 × 10−16 2.0 × 10−31 [0.0331, 0.0439]
55 2.2 × 10−16 1.9 × 10−13 2.2 × 10−16 5.0 × 10−37 [0.0330, 0.0423]
60 2.2 × 10−16 8.4 × 10−5 2.2 × 10−16 3.4 × 10−33 [0.0258, 0.0356]
65 2.2 × 10−16 3.2 × 10−10 2.2 × 10−16 1.0 × 10−41 [0.0285, 0.0356]
70 2.2 × 10−16 3.6 × 10−20 2.2 × 10−16 6.1 × 10−38 [0.0291, 0.0366]
75 2.2 × 10−16 7.8 × 10−23 2.2 × 10−16 1.7 × 10−31 [0.0264, 0.0343]

A.1 Tests of Statistical Significance for Experiments
on the Synthetic Database

Recall that LPCA-SRC, SRC, and SRCpruned were the most competitive algorithms
on the synthetic database experiments presented in Sect. 5.3.2. As evidence that
LPCA-SRC outperformed SRC in a statistically-significant manner, we performed
a Repeated Measures ANOVA test on all three methods as well as a t-test between
the results for LPCA-SRC and SRC. The corresponding p-values and confidence
intervals are contained in Tables9 and 10. The columns of these tables are as follows:
The value of N0 (in the case of varying class size) or η (in the case of varying noise
level) in the experiment, the p-value for Univariate Type III Repeated-Measures
ANOVA Assuming Sphericity, the p-value for Mauchly Tests for Sphericity, the
p-values for Greenhouse-Geisser and Huynh-Feldt Corrections for Departure from
Sphericity, and the 5% confidence interval for a one-sided t-test of the improvement
of LPCA-SRC over SRC. These tests were performed in Rwith the functions Anova
(from the car package) and t.test.

For all but the Mauchly test, a small p-value indicates that we should reject the
null hypothesis, which states that the algorithms have the same average accuracy.
For the Mauchly test, a large p-value indicates that the data obeys the sphericity
assumption; otherwise, the Greenhouse-Geisser or Huynh-Feldt corrections should
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Table 10 Tests for statistical significance on the synthetic database for varying η: p-values in
rAnova, Mauchly, Greenhouse-Geisser, and Huynh-Feldt tests (LPCA-SRC, SRC, and SRCpruned),
and 5% confidence interval of the improvement of LPCA-SRC over SRC

η rANOVA Mauchly Greenhouse-
Geisser

Huynh-Feldt Confidence
(LPCA-SRC > SRC)

0.0001 2.2 × 10−16 8.1 × 10−21 6.4 × 10−14 5.4 × 10−14 [0.0356, 0.0596]
0.001 2.3 × 10−6 9.5 × 10−10 2.9 × 10−5 2.7 × 10−5 [0.0135, 0.0428]
0.005 1.4 × 10−9 5.1 × 10−7 4.6 × 10−8 3.8 × 10−8 [0.0232, 0.0529]
0.01 0.0938 1.3 × 10−21 0.1180 0.1177 [−0.0073, 0.0271]
0.015 0.9044 9.6 × 10−13 0.8325 0.8345 [−0.0147, 0.0110]
0.02 0.0027 2.8 × 10−19 0.0098 0.0096 [−0.0334,−0.0064]
0.03 5.3 × 10−5 9.0 × 10−17 0.0006 0.0006 [−0.0388,−0.0109]
0.05 0.0004 9.0 × 10−9 0.0014 0.0013 [−0.0254,−0.0051]

be used. The confidence intervals can be interpreted as follows:Werewe to repeat this
experiment, we would expect LPCA-SRC to outperform SRC (with the exception
of N0 = 15 and η ≥ 0.01) with the difference in mean accuracies falling within this
confidence interval 95 times out of 100.

A.2 Tests of Statistical Significance for Experiments
on the Face Databases

To test for statistical significance in the differences between algorithm accuracy
on the AR, Extended Yale B, and ORL face databases, we performed Repeated
Measures ANOVA tests on LPCA-SRC, SRC, SRCpruned, and LSDL-SRC as well
as two t-tests on each database, one between LPCA-SRC and SRC and the other
between LPCA-SRC and LSDL-SRC. The related p-values and confidence intervals
are contained in Tables11 and 12. The columns in these tables are as follows: The
name of the database, the PCA dimension mPCA, the p-value for Univariate Type III
Repeated-Measures ANOVA Assuming Sphericity, the p-value for Mauchly Tests
for Sphericity, the p-values for Greenhouse-Geisser andHuynh-Feldt Corrections for
Departure from Sphericity, the 5% confidence interval for a one-sided t-test between
LPCA-SRC and SRC (LPCA-SRC > SRC), and the 5% confidence interval for a
one-sided t-test between LPCA-SRC and LSDL-SRC (LPCA-SRC > LSDL-SRC).
For all but the Mauchly test, a small p-value indicates that we should reject the
null hypothesis, which states that the algorithms have the same average accuracy.
For the Mauchly test, a large p-value indicates that the data obeys the sphericity
assumption; otherwise, the Greenhouse-Geisser or Huynh-Feldt corrections should
be used. These tests were performed in R with the functions Anova (from the car
package) and t.test.
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Robust Constrained Concept
Factorization

Wei Yan and Bob Zhang

Abstract Accurately representing data is a fundamental problem in many pattern
recognition and computational intelligence applications. In this chapter, a robust
constrained concept factorization (RCCF) method is proposed. RCCF allows the
extraction of important information, while simultaneously utilizing prior informa-
tion when it is available, and is noise invariant. To guarantee data samples share
the identical cluster and obtain similar representation in the new laten space, the
proposed method uses a constraint matrix that is embodied into the rudimentary
concept factorization model. The L2,1-norm is used for both the reconstruction func-
tion and the regularization, which allows the proposed model to be insensitive to
outliers. Furthermore, the L2,1-norm regularization assists in the selection of useful
information with joint sparsity. An elegant and efficient iterative updating scheme
is also introduced with convergence and correctness analysis. Experimental results
on commonly used databases in pattern recognition and computational intelligence
demonstrate the effectiveness of RCCF.

Keywords Concept factorization · Dimensionality reduction · Clustering

1 Introduction

Obtaining a suitable representation is a fundamental problem for many research
areas. For example: machine learning [1], data mining [2, 3], signal processing
[4–6], and in particular pattern recognition [7–9], and computational intelligence
[10, 11]. Optimal data representation can boost the performance of a learning task
by revealing the underlying structure with-in a high-dimensional space. Recently,
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matrix factorization based methods, including Singular Value Decomposition (SVD)
[12], Principal Component Analysis (PCA) [13], Vector Quantization (VQ) [14],
Nonnegative Matrix Factorization (NMF) [15–18] and Concept Factorization (CF)
[19–22], have been receiving considerable attention as useful techniques for learning
meaningful representation.

Generally, themain goal of thesemethods is to represent the givenmatrix as a prod-
uct of two ormorematrices. Among them,NMF is superior to PCA, SVD, andVQ for
providing meaningful factorization results. Moreover, NMF yields parts-based and
sparse representation because the nonnegative constraints allow only additive combi-
nations. Regards to the parts-based representation, there are physiological evidences
[23, 24]. However, NMF performs only in original data space. It is an issue about
how to successfully apply NMF in reproducing kernel Hilbert space (RKHS), e.g.,
the transformed data space [20]. Recently, Concept Factorization (CF), an impor-
tant variation of NMF, which uses linear combination of input data to represent the
bases, has been effectively employed in processing real data, such as text and image,
due to the fact that CF inherits all the strengths from NMF. Besides this, CF can
be employed effectively in the transformed space. When using the CF method in
data clustering, each sample is reconstructed as a linear combination of the cluster
centers, and each cluster center is expressed as a linear combination of the samples.
Here, the task of data clustering can be regarded as finding two sets of coefficients.
To further improve the clustering performance of CF, Locally Consistent Concept
Factorization (LCCF) [20] preserves the intrinsic structure information of the data
set by incorporating the manifold structure into the CF model.

Despite its impressive performances, there are three major drawbacks for basic
CF: (1) It is prone to outliers since a few outliers or noisy features with large errors
will play a dominative role in the least square error function. Indeed, in many appli-
cations, data are additionally corrupted and thus data always contains noisy features
or outliers. A potential robust version of CF is needed to deal with these issues.
(2) Basic CF does not always result in sparse representation since there is no con-
straints to manage the sparseness explicitly. That means the representation in the
low-dimensional space may still contain redundant and useless information. Gen-
erally, adding sparsity regularization is one practical method to control the degree
of sparseness in factorization results, but it was designed only for NMF [25, 26].
(3) CF obtains data representation in an unsupervised way. It may not effectively
distinguish the constrained data from the unconstrained data. Especially when the
prior information is collected and CF does not completely use this information. To
bridge this gap, a constrained algorithm, named constrained concept factorization
(CCF) [27] is proposed utilizing prior information as a constraint matrix.

However, there is no such a framework that addresses all these drawbacks simul-
taneously. In this chapter, we propose a robust constrained concept factorization
(RCCF) method, which not only makes good use of the available label informa-
tion, but also addresses noise and learns meaningful information at the same time.
Specifically, we utilized the mixed norm L2,1-norm instead of the F-norm that is
used in basic CF as our loss function, thus improving the robustness of the model
such that this new model can effectively deal with outliers and can be employed in
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pattern recognition and computational intelligence. Then, a constraint matrix, which
contains label information, is embedded into the original CF model to guarantee
data belong to the same cluster obtain the identical representation in the new rep-
resentation space. Hence, the learned representation achieves better distinguishing
abilities. In addition, the L2,1-norm regularization is added in RCCF to obtain sparse
results that help select the most relevant information. For optimizing the new model,
we derive efficient updating rules that are iterative. At the same time, we analyse
the correctness and convergence of the updating rules. Experimental results on three
different data sets have shown the effectiveness of RCCF.

The remainder of this chapter is organized as follows. Section2 proposes the
RCCF framework, followed with its updating rules. Section3 presents the experi-
mental results on three data sets. Finally, we summarize our work.

2 Robust Constrained Concept Factorization (RCCF)

2.1 NMF and CF

Given amatrixV = [v1, v2, . . . , vN ] ∈ R+M×N ,N denotes the number of data points
andM is the length of the vector. For a dimensionality number K , NMF tries to seek
two nonnegative data matrices W ∈ R+M×K and H ∈ R+K×N whose product gives
an approximation to the input data matrix. The objective function of NMF is:

O = ‖V − WH‖2F . (1)

Since (1) is a nonconvex minimization problem, it is unrealistic to get the optimal
solution. However it is convex inW only or H only. Based on this analysis, Lee [15]
proposed the following updating rules:

Wik ← Wik
(VHT)ik

(WHHT)ik
(2)

Hkj ← Hkj
(WTV)kj

(WTWH)kj
. (3)

In regards to the above solutions, if W and H are the solution to (1), WQ and
HQ−1 can also be a solution for any matrix Q, which is positive and diagonal. To
ensure it unique, we normalize the solution. In practice, this can be obtained by:

Wik ← Wik√∑
i W

2
ik

(4)



210 W. Yan and B. Zhang

Hkj ← Hkj

√∑
i

W 2
ik (5)

In [15], Lee gives the proof that the aforementioned updating rules could obtain a
local solution of (1).

Xu and Gong [19] modeled the document clustering problem by using two data
representations. In the first one, the intrinsic semantics (e.g. clusters) can be repre-
sented by related document samples that belong to similar semantics. That is, the
entire samples can be used to construct the cluster, and this combination can is lin-
early. Let Vi denotes the term-frequency vector of sample i, where i = 1, . . . , n,m is
the dimensionality and Rc is the centroid of cluster c, where c = 1, . . . , k. The first
representation can be defined as:

Rc =
∑
i

wicVi (6)

where wic is nonnegative coefficient that represents the coefficient of data point i
relating to cluster c. In the second one, all the clusters can be used to reconstruct the
samples. The corresponding weight denotes the coefficient of overlap between the
related sample and the cluster. The above two representations can be formulated as:

Vi =
∑
c

hicRc (7)

where hic is the coefficient value that gives the coefficient of overlap between the
related sample Vi and the concept cluster Rc. We construct the document matrix
V = [V1, V2, . . . , Vn] ∈ R+m×n with the feature vector of sample i as the ith column.
From (6) and (7) we have

V ≈ VWH (8)

where W = [wjk ] ∈ R+n×k and H = [hjk ] ∈ R+k×n. From Eq. (8), we observe that
it can be considered as a factorization process of input sample matrix X into X, W,
andH. With the factorization results, we can find the cluster which are accomplished
by constructed by XW. The cluster coefficient of each sample is obtained by finding
theH. Thus, we term this process concept factorization (CF). As k � m and k � n,
concept factorization leads to low-dimensional representation of the input matrix.
This means the object function is defined as:

O = ‖V − VWH‖2F (9)

where ‖·‖2F is the Frobenius norm of a matrix. Using the formulation (9), the data
clustering problem can be solved by finding W and H that minimizes the O.
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To minimize (9), the multiplicative updating rules are introduced as [19]:

wnk ← wnk
(KHT)nk

(KWHHT )nk
(10)

hkn ← hkn
(WTK)kn

(WTKWH)kn
. (11)

where K = VTV. It is natural to leverage kernel methods on CF. Therefore, CF can
make use of kernel methods to improve its performance in real applications. More
information can be found in [19].

Concept factorization is an effective tool of data clustering, which is a fundamen-
tal topic in data mining. Data mining is about extracting interesting information from
raw data. Data clustering aims to efficiently separate a given data set into clusters,
which is a kind of key information. Among various clustering methods, concept fac-
torization is widely used since it can provide meaningful clustering results. From the
definition of CF, the cluster is constructed by using the input samples. This combi-
nation is linearly. The cluster construction as well as the new data representation can
be addressed by CF.

2.2 RCCF Model

According to recent semi-supervised algorithms [27–29] a few labeled samples could
be used along with the unlabeled samples to improve learning accuracy of unlabeled
data. Inspired by previous research CCF [27], we assume that the first l data samples
are given label information with c clusters. Then we construct an constraint matrix
C, in which ci,j = 1 if ci belongs to the jth class; Ci,j = 0 otherwise. For example,
given n data points, v1, v2 and v3 come from class I, v4 and v5 belong to class II, v6
is labeled with class III. Base on this illustration, the label indicator matrix C can be
formulated as follows:

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (12)

Based on the indicator matrix C, a label constraint matrixA is defined as follows:

A =
(
Cl×c 0
0 IN−l

)
, (13)
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where IN−l is an identity matrix. The obtained H of input data points in the new
representation space is formulated as H = ZAT . That means if samples vi and vj
come from the identical category, the ith row and the jth row ofA should be identical,
that is hi = hj, which makes sure that document point with the identical class could
obtain the identical low-dimensional representation. Thus, (9) could be reformulated:

min
W≥0,Z≥0

‖V − VWZAT‖2F (14)

However, F-norm is sensitive to outliers and could be unstable because the error
for each sample in the objective function is expressed as squared. The objective
function could be dominated by the large errors. To address this drawback, we utilize
the mixed norm L2,1-norm on the loss function to effectively remove outliers and
noise. According to [30], the definition of L2,1-norm is:

‖U‖2,1 =
M∑
i=1

√√√√
N∑
j=1

U2
ji =

M∑
i=1

‖ui‖2, (15)

where ui is the ith row of U. We rewrite the error function:

‖V − VWH‖2,1 =
N∑
i=1

√√√√
M∑
j=1

(V − VWH)2ji

=
N∑
i=1

‖vi − VWhi‖.
(16)

We can observe that the error for each sample in the new objective function (16) is
not of the form x2, so the large errors because of outliers do not impact the function in
(16) dramatically. By employing the L2,1-norm as measurement of the reconstruction
error, the objective function can be reformulated as

min
W≥0,Z≥0

‖V − VWZAT‖2,1. (17)

Furthermore, the real data usually contains meaningless features, i.e., not all the
features are useful. Although basic CF can lead to sparse results that help extract
meaningful features, it does not always result in such representation. Regarding
this, we use the L2,1-norm regularization term to control row sparsity on the new
representation of data to extract informative features. Generally, the group sparsity
imposing on the representation matrix HT can be represented as follows,

min
H≥0

‖HT‖2,1. (18)



Robust Constrained Concept Factorization 213

As we make H = ZAT , our task is to get the minimum of matrix AZT . Since the
constrained matrix A is given, the task in turn is to find matrix ZT .

By embedding the constrained matrix into basic CF, and imposing the L2,1-norm
on both the regularization and reconstruction function, a new model can be obtained
as follows,

min
W≥0,Z≥0

‖V − VWZAT‖2,1 + α‖ZT‖2,1, (19)

where V ∈ R+M×N , W ∈ R+N×K , Z ∈ R+K×(N−l+c) and A ∈ R+N×(N−l+c). In this
function, there is only one parameter, e.g., the parameter α. This item plays the role
on controlling the sparse regularization.

2.3 Solutions of the RCCF Model

The solutions for the RCCF model via an iterative strategy is given as follows,

Zki ← Zki
(WTVTVD1A)ki

(WTVTVWZATD1A + αD2Z)ki
, (20)

Wnk ← Wnk
(VTVD1AZT )nk

(VTVWZATD1AZT )nk
, (21)

The entries of D1 and D2 are defined as:

(D1)ii = 1

‖Vi − VW(ZAT )i‖
, i = 1, 2 . . . ,N . (22)

(D2)ii = 1

‖(ZT )i‖ , i = 1, 2 . . . ,K . (23)

2.4 RCCF Model Convergence

In this subsection, we give the analysis of the convergence of proposed updating
rules with following two Theorems.

Theorem 1 Obtaining Z utilizing the rule of (20) withW being fixed, the objective
function of (19) is non-increasing,

‖V − VWZt+1AT‖2,1 + α‖(Zt+1)T‖2,1
−‖V − VWZtAT‖2,1 − α‖(Zt)T‖2,1 ≤ 0,

(24)

where t is the number of iteration.
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Theorem 2 Obtaining W utilizing the solution proposed in (21) when Z is fixed,
the objective function of (19) is nonincreasing,

‖V − VWt+1ZAT‖2,1 − ‖V − VWtZAT‖2,1 ≤ 0, (25)

where t represents the number of iteration.

We use the following Lemma1 to prove Theorem1.

Lemma 1 With the solution in (20), we have the following inequation:

Tr((V − VWZt+1AT )D1(V − VWZt+1AT )T )

+ αTr((Zt+1)TD2Zt+1)

≤ Tr((V − VWZtAT )D1(V − VWZtAT )T )

+ αTr((Zt)TD2Zt).

(26)

Proof Following [31], we introduce an auxiliary function approach to help prove
Lemma1. Firstly, we have

J (Z) = Tr((V − VWZAT )D1(V − VWZAT )T )

+ αTr(ZTD2Z).
(27)

Next we re-express (26) as

J (Zt+1) ≤ J (Zt). (28)

Base on (27), the following equation can be obtained

J (Z) = Tr(VD1VT − 2VD1AZTWTVT )

+ Tr(VWZATD1AZTWTVT ) + αTr(ZTD2Z)

≤ Tr(VD1VT − 2VD1AZTWTVT )

+
K∑

k=1

(N−l+c)∑
i=1

(S1H′B1)ki(H2)ki

H′
ki

+
K∑

k=1

(N−l+c)∑
i=1

(S2H′B2)ki(H2)ki

H′
ki

= Tr(VD1VT − 2VD1AZTWTVT )

+
K∑

k=1

(N−l+c)∑
i=1

(WTVTVWZ′ATD1A + αD2Z′)ki(Z2)ki

Z′
ki

= F(Z,Z′),

(29)
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where S1 = WTVTVW, B1 = ATD1A, H = Z, H′ = Z′, B2 = I, and S2 = αD2.
The equality holds in case of Z = Z′. The auxiliary function of J (Z) is F(Z,Z′).

Let
Zt+1 = argmin

Z
F(Z,Zt), (30)

we can get
J (Zt+1) = F(Zt+1,Zt+1) ≤ F(Zt+1,Zt) ≤ J (Zt), (31)

From (31), we can have the provement that J (Zt) is non-increasing.
Let f (Z) = F(Z,Z′), the gradient of f (Z) is

∂f (Z)

∂Zki
= −2(WTVTVD1A)ki

+ 2
(WTVTVWZ′ATD1A + αD2Z′)ki(Z)ki

Z′
ki

.

(32)

The Hessian matrix of f (Z) is

∂2f (Z)

(∂Zki)(∂Zlj)
= 2

(WTVTVWZ′ATD1A + αD2Z′)ki
Z′
ki

δijδkl . (33)

Since f (Z) is convex and the second-order derivatives is semi-positive definite,
we can obtain the solution for f (Z). By letting (32) be zero, we can obtain the update
rule of Z as:

Zki ← Z′
ki

(WTVTVD1A)ki

(WTVTVWZ′ATD1A + αD2Z′)ki
, (34)

Let Zt ← Z′, Zt+1 ← Z, (34), we can obtain the iterative solution of (20). When
we use this strategy to update Z, the objective function of (27) is non-increasing.

Until now, Lemma1 is proved.

Lemma 2 In order to finish the proof of this, we refer to the matrix inequality in
[32]. If matrices S ≥ 0, B ≥ 0, H ≥ 0, the sizes are suitable and B = BT , S = ST ,
we obtain the matrix inequality:

Tr(HTSHB) ≤
∑
ik

(SH′B)
H2

ik

H′
ik

(35)

Lemma 3 According to the solution in (20), the following in-equation holds
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‖V − VWZt+1AT‖2,1 + α‖(Zt+1)T‖2,1
− ‖V − VWZtAT‖2,1 − α‖(Zt)T‖2,1
≤ 1

2
[Tr((V − VWZt+1AT )D1(V − VWZt+1AT )T )

+ αTr((Zt+1)TD2Zt+1)

− Tr((V − VWZtAT )D1(V − VWZtAT )T )

− αTr((Zt)TD2Zt)].

(36)

Proof Lemma3 can be proved with the same method of [33]. Then, we can derive
(36).

With the characteristic of D1 and D2, we have

Tr((V − VWZt+1AT )D1(V − VWZt+1AT )T )

+ αTr((Zt+1)TD2Zt+1)

=
N∑
i=1

‖Vi − VW(Zt+1AT )i‖2(D1)ii

+ α

K∑
i=1

‖(Zt+1
i )T‖2(D2)ii,

(37)

Tr((V − VWZtAT )D1(V − VWZtAT )T )

+ αTr((Zt)TD2Zt)

=
N∑
i=1

‖Vi − VW(ZtAT )i‖2(D1)ii

+ α

K∑
i=1

‖(Zt
i)
T‖2(D2)ii.

(38)

The right-hand side (RHS) of (36) becomes

RHS = 1

2

N∑
i=1

(‖Vi − VW(Zt+1AT )i‖2(D1)ii

− ‖Vi − VW(ZtAT )i‖2(D1)ii)

+ 1

2
α

K∑
i=1

(‖(Zt+1)Ti ‖2(D2)ii − ‖(Zt)Ti ‖2(D2)ii).

(39)
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Combining (22) and (23),

RHS = 1

2

N∑
i=1

(
‖Vi − VW(Zt+1AT )i‖2(D1)ii − 1

(D1)ii

)

+ 1

2
α

K∑
i=1

(‖(Zt+1)Ti ‖2(D2)ii − 1

(D2)ii
).

(40)

The left-hand side (LHS) of (36) becomes

LHS = ‖V − VWZt+1AT‖2,1 + α‖(Zt+1)T‖2,1
− ‖V − VWZtAT‖2,1 − α‖(Zt)T‖2,1

=
N∑
i=1

(‖Vi − VW(Zt+1AT )i‖ − 1

(D1)ii
)

+ α

K∑
i=1

(‖(Zt+1)Ti ‖ − 1

(D2)ii
).

(41)

Therefore, we have

LHS − RHS

=
N∑
i=1

−(D1)ii

2
(‖Vi − VW(Zt+1AT )i‖ − 1

(D1)ii
)2

+
K∑
i=1

−(D2)ii

2
(‖(Zt+1)Ti ‖ − 1

(D2)ii
)2 ≤ 0.

(42)

Until now, the proof of Lemma3 is accomplished.
With the usage of Lemmas1–3, the proof of Theorem1 can be obtained. It means

the objective function of (19) is non-increasing under the solution in (20).
We can take the same strategy to prove the Theorem2, we do not provide details

here.

2.5 Correctness of the RCCF Analysis

In the following,wewill prove that the proposed algorithms is guaranteed to converge
to the Karush-Kuhn-Tucker (KKT) points.

Theorem 3 Using the updating rule in (20), the obtained solution of Z satisfies the
Karush-Kuhn-Tucker condition.
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Proof. The Karush-Kuhn-Tucker condition for Z with the constrains (Z)ki ≥ 0,
k = 1, 2, . . . ,K ; i = 1, 2, . . . , (N − l + c), is

∂J (Z)

∂(Z)ki
(Z)ki = 0,∀k, i. (43)

The derivative is

∂J (Z)

∂(Z)ki
= −2((WTVTV(1 − WZAT )D1A)ki + α(D2Z)ki). (44)

Then, the Karush-Kuhn-Tucker condition for Z is

[−(WTVTVD1A)ki + (WTVTVWZATD1A)ki

+ α(D2Z)ki](Z)ki

= 0,∀k, i.
(45)

If the Z converges under updating rule of (20), the obtained solution Z∗ satisfies

Z∗
ki ← Z∗

ki

(WTVTVD1A)ki

(WTVTVWZ∗ATD1A + αD2Z∗)ki
, (46)

which can be reformulated as

[−(WTVTVD1A)ki + (WTVTVWZ∗ATD1A)ki

+ α(D2Z∗)ki](Z∗)ki
= 0,∀k, i.

(47)

We observe that (47) is the same as (45). This means the learned solution for Z∗
satisfies the Karush-Kuhn-Tucker condition. Until now, we finish the proof.

Theorem 4 With the solution W under the updating rule of (21), the proposed
algorithm converges to the Karush-Kuhn-Tucker points.

In regards to proving Theorem4, we can take the same strategy to finish it.

3 Experimentation

3.1 Description of the Data

We used three data sets in our experiments. There are two face data sets and one
handwritten digits images database. The proposed RCCF method is evaluated on
data clustering. Table1 show details of the selected data sets.
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Table 1 Details of the datasets

Datasets Size Dimentions Classes

Yale 165 1024 15

ORL 400 1024 40

MNIST 1000 784 10

Fig. 1 Yale Faces database

Yale Database.1 The Yale database contains 165 images in gray scale. These images
belong to 15 different people. For each person, there are 11 facial images of size
32 × 32. Each picture is with a different facial expression or configuration. Similar
to [34], all samples are normalized in orientation and scale to ensure that two eyes are
aligned at the same position. Figure1 shows some face images from this database.

ORLDatabase.2 This database contains 400gray scale face images of 40 individuals.
For each individual, images are in different facial expressions or configurations. All
these pictures are collected at different time, varying the lighting. We use the same
way as the Yale data set to preprocess this data set. Figure2 shows some examples
from this database.

MNIST Database.3 The MNIST database contains 10000 images of handwritten
digits from 0 to 9 in gray scale. For each subject, there are 1000 images. We resize

1http://www.face-rec.org/databases/.
2http://www.face-rec.org/databases/.
3http://yann.lecun.com/exdb/mnist/.

http://www.face-rec.org/databases/
http://www.face-rec.org/databases/
http://yann.lecun.com/exdb/mnist/
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Fig. 2 ORL Faces database

Fig. 3 MNIST database

each image to 16 × 16, thus the dimensionality of feature vector is 256. Figure3
provides several example pictures from this data set.
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3.2 Evaluation Metrics

Following [34, 35], the normalized mutual information metric (NMI ) and the accu-
racy (AC) are employed to evaluate the clustering performance. Accuracy reflects the
percentage of correctly predicted cluster number. Given a database with n samples,
ri is cluster information provided by the database, for each sample, let li be cluster
information that we obtain by using different methods. The definition of AC is:

AC =
∑n

i=1 δ(ri,map(li))

n
(48)

where δ(x, y) be set 1 if x = y and δ(x, y) be set 0 if x �= y, and map(li) denotes the
permutation mapping function that maps each cluster label li to the corresponding
label from the data set. We utilize the KM algorithm [36] to obtain the best map.

The normalized mutual information matrix is employed to measure the similarity
of two clusters. Let C be the information of clusters achieved from the ground
truth and C ′ obtained from the proposed algorithm. Its mutual information matrix is
measured as:

MI(C,C ′) =
∑

ci∈C,cj ′∈C ′
p(ci, cj

′) · log p(ci, cj ′)
p(ci) · p(cj ′) , (49)

where p(ci, c′
j) denotes the joint probability that the chosen sample comes from

the cluster ci and p(c′
j) simultaneously. p(ci) and p(c′

j) are the probabilities that a
randomly chosen data comes from the clusters ci and p(c′

j), respectively. In these
experiments, we used the NMI(C,C ′), which gets scores ranging from 0 to 1.

NMI(C,C ′) = MI(C,C ′)
max(H (C),H (C ′))

, (50)

whereH (C) andH (C ′) denote the entropies of C and C ′. NMI equals to 1 when two
selected samples are the same, and it is 0 when these two samples come from two
different clusters.

3.3 Experimental Results

Testing was carried out on the proposed RCCF method in terms of clustering perfor-
mance on three public datasets. At the same time we also make comparisons with
related methods as follow:

1. Traditional KMeans clustering method (KMeans for short).
2. Concept-Factorization-based clustering (CF for short) [19].
3. Constrained concept factorization (CCF for short) [27].
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The former twomethods are unconstrained and the last one is a constrained algorithm.
Experiments are conducted with different cluster numbers K . K takes the value

between 2 and 10. For each data set, K categories are selected randomly. Similar to
[28], 30% of the data points are extracted to construct the training dataset and the rest
for constructing the test dataset. Then,matrix factorizationmethods are used to obtain
low-dimensional representations. The reduced dimensionality is set to be equal to
the cluster number K . Once the new representation is obtained, we utilize KMeans
by choosing cosine distance to the new representation for data clustering. KMeans is
repeated 20 times with various initiations. The result with minimum cost function is
recorded to measure accuracy and mutual information. There is an important tunable
parameter for the proposed method. To make the experimental results persuasive,
we perform grid search in the parameter space for our method and the best results
are recorded. In particular, the search of α from 0.1 to 90 was carried out and we set
α = 20, 10, 20 for the YALE, ORL and MNIST respectively.

The Yale data set clustering results are shown in Table2. Average AC and NMI
versusK can be found in the last row.We can see that RCCF outperforms others most
of the time, especially in terms of AC, while comparing to the second best results,
i.e., average results in terms of AC and NMI for CCF, our algorithm RCCF achieves
3.1 percent and 5.3 percent improvements respectively.

Table3 provides the clustering results for the data set named ORL. In this table it
can be observed that RCCF achieves the best results for most cases. RCCF obtains
the highest results 8/9 times in AC and the highest results 7/9 times in NMI . RCCF
achieves a 3.7 percent improvement in AC and a 3.4 percent improvement in NMI
on average, compared to the next best method (i.e. CCF)

Using MNIST, the details of the clustering results are given in Table4. It can be
observed from the table that the superiority of our method is obvious when K is

Table 2 Clustering methods’ performance on Yale Database

K Accuracy(%) Normalized mutual information(%)

KMeans CF CCF RCCF KMeans CF CCF RCCF

2 73.6 85.0 83.2 88.4 25.9 50.1 46.7 59.3

3 70.3 73.0 80.9 82.1 44.1 48.9 61.1 57.2

4 51.6 62.0 69.8 71.0 32.1 38.0 49.6 55.7

5 46.4 57.3 61.5 67.5 38.2 41.3 47.6 56.6

6 49.09 49.5 61.4 62.3 36.3 37.1 50.2 56.3

7 45.8 48.8 55.5 62.9 39.4 39.5 49.4 56.2

8 44.3 48.3 55.1 57.5 41.0 43.1 49.5 54.3

9 43.8 48.4 55.5 56.3 43.4 45.2 53.1 54.9

10 40.6 43.9 52.2 54.7 40.9 41.8 52.0 55.9

Avg. 52.0 57.4 63.9 67.0 37.9 42.8 51.0 56.3
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Table 3 Clustering methods’ performance on ORL Database

K Accuracy(%) Normalized mutual information(%)

KMeans CF CCF RCCF KMeans CF CCF RCCF

2 95.0 87.1 90.7 93.6 76.1 56.7 64.3 75.6

3 60.0 70.4 80.9 83.8 43.2 49.5 62.9 68.7

4 57.5 61.4 65.4 73.9 47.4 50.0 55.8 63.0

5 63.0 57.7 61.7 63.7 52.7 50.3 55.6 55.9

6 56.7 60.5 61.2 63.1 55.2 59.7 59.4 59.1

7 54.5 57.4 62.9 65.3 58.0 58.4 63.8 64.0

8 53.6 58.5 63.8 67.3 59.3 61.2 65.8 67.4

9 59.9 62.2 63.2 68.3 67.0 65.2 65.9 69.6

10 58.3 55.4 62.0 65.9 65.3 63.3 68.1 68.7

Avg. 62.0 63.4 67.9 71.6 58.3 57.2 62.4 65.8

Table 4 Clustering methods’ performance on MNIST Database

K Accuracy(%) Normalized mutual information(%)

KMeans CF CCF RCCF KMeans CF CCF RCCF

2 90.1 90.1 94.6 98.6 59.9 60.1 73.3 90.6

3 82.2 81.2 82.8 87.0 56.5 54.7 60.0 65.2

4 74.4 70.8 80.9 84.0 53.7 50.9 63.1 69.8

5 67.9 63.2 80.0 86.8 51.5 46.0 62.5 73.7

6 65.9 68.2 77.7 74.6 53.9 52.2 63.1 62.0

7 63.2 61.6 75.1 74.3 53.5 50.2 63.2 61.3

8 57.1 61.2 67.3 68.4 50.9 50.0 57.6 58.0

9 53.9 57.0 67.6 67.6 51.1 48.5 58.5 57.7

10 54.1 53.8 68.9 58.6 50.9 45.8 59.2 50.1

Avg. 67.6 67.4 77.2 77.8 53.5 51.0 62.3 65.4

small. On average, RCCF and CCF have similar performance, however, RCCF still
achieves the best results. When matched with the algorithm that performed second
best (CCF), RCCF obtains a 3.1 percent improvement in NMI ,

4 Conclusion

A robust constrained concept factorization (RCCF) method is proposed in this
chapter. This newmodel learns discriminative results since it fully utilizes the labeled
information with a constraint matrix. In addition, L2,1-norm is applied on both the
reconstruction function and the regularization. The L2,1-norm based reconstruction
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function improves the robustness of RCCF, and the L2,1-norm regularization is used
to select useful information. In order to solve the new model, we have derived an
efficient iterative updating algorithm, along with proofs of convergence. Evaluating
the proposed method on three data sets showed the superiority of the algorithm as
a generalized method in pattern recognition and computational intelligence applica-
tions.

Acknowledgements This work is supported by the Science and Technology Development Fund
(FDCT) of Macao SAR (124/2014/A3) and the National Natural Science Foundation of China
(61602540).
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An Automatic Cycling Performance
Measurement System Based on ANFIS

Andre Vieira Pigatto and Alexandre Balbinot

Abstract Cycling is a sport that has grown widely in the last decades, what has
attracted the attention of research laboratories seeking to understand the factors that
influence the athletes’ performance; most of the researches consider only the power
transmitted to the wheel to analyze the training level of the cyclist. However, recent
studies have shown a weak correlation between the peak power in an indoor test
and the times in a time trial competition. Considering this, the following chapter
describes the development and evaluation of a new approach to cycling performance
measurement, implemented using a three inputAdaptiveNeuro-Fuzzy System, based
on three parameters: the average mechanical power applied by the athlete to the bicy-
cle pedal, the power standard deviation and the effective force bilateral asymmetry
index. Data used to develop and train the system were measured using an experi-
mental force platform based on instrumented load cells with built-in conditioning
circuit and strain gages that measure and acquire the components of the force that is
applied to a road bicycle crank arm during pedaling in real conditions and save them
on a SD card. A randomized block experiment design was performed with fifteen
cyclists to analyze the significance of the scores obtained using the collected data
as input of the ANFIS. ANOVA showed that the subject causes significant variation
on the score. The subjects cycling performance score was then determined using the
ANFIS; the mean score was 24.7 ± 18.7% which was considered a consistent result
taking into account the volunteers cycling experience. The developed system has
shown a promising applicability, since an automatic performance classifier may be a
great tool for coaches to objectively compare the performance level among different
cyclists or to evaluate the progression of the athlete among different trials.
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1 Introduction

Defining the meaning of intelligence is not an easy task; therefore, it still is the
focus of many professional researches. Alfred Binet used to define the essential
activities of the intelligence as to judge well, to comprehend well and to reason well
[1]. In the scope of specialist systems, the intelligence definition is commonly called
computational intelligence, which is a field that applies mathematical-computational
methods to perform tasks in a faster or more efficient way. Among a wide variety of
methods used in the computational intelligence field there are two in particular that
stand out, which are the Fuzzy and Neuro-Fuzzy methods.

The Aristotelian culture uses the bivalent logic to solve problems, which means
that the membership function that represents it can assume only two values: true
or false; zero or one. This approach enables the person to solve most of the daily
basis problems, for example, to decide whether it is raining or not, but it has its
limitations as it does not tolerate values within the limits of zero to one. However,
another approach was introduced by Zadeh [2], the Fuzzy Logic. In a general way,
the Fuzzy Logic can be used to solve daily basis problems but using the multivalence
concept, where it is possible to comprehend and characterize infinite values within
the interval of zero to one. Considering the example of the rain, already presented,
there are infinite definitions that could be used to scale the level of rain, rather than
just determine if it is raining or not, for example we may represent the zero as not
raining, while one represents a storm, and the middle of the scale (0.5) represents a
drizzle; somehow it is just a matter of point of view.

Therefore, after this brief introduction,we present a solution proposal for a cycling
performancemeasurement problemwhere the purely Boolean approachwould not be
able to provide an adequate solution. The proposed solution is an automatic cycling
performance measurement system which uses an Adaptive Neuro Fuzzy System
(ANFIS) to recognize the athlete’s pedaling pattern, based on the forces that are
applied to the pedal, and determine a score that represents the cyclist performance.

In the last two decades, cycling has become one of the most popular sports in
the world; some of the adepts use their bicycle as an eco-friendly vehicle to get
from place to place, others use it as a training method to enhance their aerobic
capacity and a reasonable part of them competes professionally. Considering this,
a lot of researches have focused on the study of the characteristics that directly
impact on the athlete performance as the physiological condition [3, 4], the bicycle
ergonomics and the technique applied during pedaling [4]. One of theways to analyze
the pedaling technique is through the measurement of the components of the forces
that are applied to the bicycle pedal during cycling as it reveals important information
about the athlete’s performance, as the fraction of the resultant force that is effective
(is able to rotate the crank arm), the bilateral asymmetry index, the resultant power
that is supplied to the transmission of the bicycle and other individual pedaling
characteristics [3, 5–7].

The resultant force that is applied to the bicycle pedal can be decomposed into
three components perpendicular among each other and referred to the crank arm,
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Fig. 1 a Pedaling cycle, b Components of force

which are: Perpendicular to the crank arm (the only one that can produce mechanical
torque), Parallel to the crank arm and Lateral, which is perpendicular to the rota-
tion plan of the crank arm [8]. The pedaling cycle can be divided into two phases
[3, 4]: the power phase, which is the part of the cycle where the maximum power is
transferred by the cyclist to the bicycle transmission and the recovery phase, where
the athlete pulls the pedal upwards to reduce the effect of the leg weight on the
movement, in case of a standard pedal is used, or to apply positive effective force,
when a clipless pedal is used. Figure 1a shows the pedaling cycle and Fig. 1b shows
the force measurement components.

From Fig. 1a it is possible to notice that the only force component that is able
to rotate the crank arm is the perpendicular one, of which the maximum value is
reached when the pedal is at a 180° angle as almost all the force exerted by the
cyclist is applied in the perpendicular direction. As the crank arms are connected by
the bottom bracket, each leg is in the opposite phase simultaneously, which implies
that the leg that is in the recovery phase should be pulled up, otherwise it will apply
a negative effective force, decreasing the amount of torque generated per cycle, thus,
affecting the performance of the athlete. As the length of the crank arm and the
perpendicular force applied to the pedal is known, the torque can be determined
[5, 9]; from the torque and the angular speed, it is possible to determine the power
applied to the crank arm, as shown in Eq. (1):

Pout � (2π/60)FeffectiveLC (1)

where Pout is the power output in W, Feffective is the effective force, in Newtons, L is
the crank arm length, in meters, and C is the cadence, in RPM.

From the individual leg force and power measurement, it is possible to analyze the
asymmetry between the inferior members and then help coaches to develop strategies
for training and performance improvement [6, 10]. The bilateral asymmetry index
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(AI) was determined according to [11], considering that the dominant leg (DO) is
the one that applies a higher average resultant force to the bicycle crank arm than the
non-dominant leg (ND), as shown in Eq. (2):

AI (%) � 100

(
FDO − FND

FDO

)
(2)

where AI (%) is the bilateral asymmetry index, FDO is the dominant leg effective
force, in Newtons, and FND is the non-dominant leg effective force.

There are several methods to classify the performance of the cyclist, as the VO2
consumption peaks measurement during a trial with power increments every period
of time to maximum effort; constant power, where the cyclist maintains a specified
mean power to the point of exhaustion [12]; heart rate variability (HRV), combined
with kinematic data from the bicycle [13] and via pedaling profile classification,
considering the position of the foot and the pedal related to the crank arm during
each cycle [14]. However, one of the most usual and effective way of classifying the
athlete’s performance is analyzing the power generated while cycling [12]. A new
approach of cycling performance measurement is introduced in this chapter, which
is a score determined through an Adaptive Neuro Fuzzy Inference System (ANFIS),
applying the theory proposed by [15], developed based on three input parameters to
recognize the pedaling pattern of the athlete: the mean power, the power standard
deviation (STD) and the effective force. The main advantage of this new method
based on ANFIS is that as the score depends on other variables than the power, it may
lead to a better comprehension of the cyclist pedaling technique and the influence of
its characteristics on the overall cycling performance. This approach may be useful
not only to determine which of the pedaling attributes should be improved with
training, based on how much it affects the overall performance, but also to analyze
the effectiveness of the coaching strategy through the quantitative comparison of the
score obtained before and after the strategy that has been applied.

2 Materials and Methods

The hardware of the system used in this study was already developed and may be
seen in more details in [7].

2.1 Hardware Description

The measurement system is a road bicycle crank arm based load cell that deforms
when a force is applied to the bicycle pedal, unbalancing the cemented strain gage
composed Wheatstone bridge. The voltage across the bridge arms is sensed by an
instrumentation amplifier and digitalized using the ADC of an ATMEGA 328P
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Fig. 2 Measurement system block diagram

Fig. 3 3D model of the crankset: a right crank arm up side, b right crank arm down side, c left
crank arm down side and d left crank arm up side and Picture of the Measuring System, e right
crank arm, f left crank arm

micro-controller. The digital signal is then recorded on a SD card through a dat-
alogger connected to the serial port of the micro-controller. Figure 2 shows the block
diagram of the developed system.

Since the system was developed to be used on track, the experimental load cell
was designed to fit a conventional road bike and be ergonomically equivalent to a
commercial crankset but with a compartment to fit all the electronics and strain
gages. The static simulation and experimental loads were determined consider-
ing a cyclist with a body weight of 75 kg, which implied on a maximum load-
ing force or 732.5 N, as the total force applied to the pedal hardly exceeds the
athlete’s weight [16, 17]. Each crank arm was instrumented with 12 strain gages
(HBM 1-LY13-1.5/350), which were positioned according to the tension concentra-
tion areas determined by the static simulation results, forming two load cells of full
Wheatstone bridges, for Perpendicular force measure (Channel 1 and 4), and four
load cells of half bridges, for Lateral (Channel 2 and 5) and Parallel (Channel 3 and
6) force measurement. Figure 3 shows the virtual model of the experimental crank
arms and the whole system assembled.

The signal conditioner of each crank arm is composed by three channels, devel-
oped following the same topology, where each channel is composed by one instru-
mentation amplifier (TI—INA125UA), which provides the voltage reference and
the first voltage gain stage, four independent low noise operational amplifiers (TI
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OPA4227UA), to provide voltage amplification, an offset stage, and a 4th order But-
terworth low-pass filter [18, 19]. Two 3.7 V 850 mAh LiPo batteries are connected
in series for symmetrical power supply. The preliminary voltage gain of each chan-
nel was determined based on the deformation test results and then tuned during the
static calibration experiment, ensuring an output voltage range of 0–5 V; the signal
conditioning circuit was validated with aid of a Tektronix AFG3052 signal generator
and a TDS2001 oscilloscope. To determine the transfer function of each channel, a
static calibration experiment was performed applying load in each direction of the
force measurement components separately and measuring the voltage output of the
respective channel with aid of a Tektronix DMM4050 precision multimeter.

2.2 Data Acquisition and Processing

To acquire and store the output voltage signal of the six channels of the conditioning
circuit, an Arduino Mini Pro development platform is used. The routine developed
digitalizes the analog signals of all the channels using the ADC (10 bits, input range
of 0–5 V) of the ATMEGA 328Pmicro-controller and then stores them on a SD card,
through a datalogger connected to the Arduino’s serial port. The signals are stored
on a text file formatted as a matrix, on which the first column shows the time of the
sample (in ms) and the next 6 columns are the digital value of the voltage of the
six channels’ outputs of the conditioning circuit; a new line is written every 12 ms,
which represents a sampling frequency rate of 83.3 Hz.

All the data acquired during the trials are processed in MATLAB environment;
the developed script reads and imports the log files, converts the digital voltage data
into the force components data, eliminates the offset voltage and generates all the
graphics that show the force, torque, power, cadence and bilateral asymmetry index,
in function of time, to the desired segment of the trial. From individual instantaneous
power and force measurement data, the average power, its standard deviation and
the bilateral asymmetry index, referred to the effective force, are determined for
each trial and for the full experiment; the values are then applied to the inputs of
an Adaptive Neuro Fuzzy Inference system, implemented using the Fuzzy Logic
MATLABToolbox, which determines a score that represents the cyclist performance
on a scale that varies from 0 to 100%.

2.3 Performance Classification

2.3.1 General Fuzzy Methodology

To classify the performance of the subject, a Fuzzy Inference System (FIS) was
developed and implemented inMATLABEnvironment, using the concept introduced
in [2] which defines a fuzzy set as a set or collection of elements with membership
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Fig. 4 General Fuzzy Inference System structure

values comprehended in the interval of 0–1,where, differently from theBoolean logic
(True or False), it can assume any value within this range. The membership value is
characterized by its fuzzyMembership Function (MF), which is modeled in intervals
that represent linguistic expressions, e.g., “the value of the power generated by the
athlete is good”. The FIS used in this study is based on the Takagi-Sugeno Fuzzy
Inference System [20] and can be described as shown in Fig. 4, where the knowledge
basis represents the application background necessary to develop the system.

The Fuzzyfication interface is the first stage of the FIS and is responsible for
the conversion of the scale of input values in the fuzzy scale universe, using the
Membership Function. After the conversion, the crisp input values become a set of
linguistic expressions, e.g. a 300 W power input value, in this specific system, is
defined as an “Excellent” amount of power.

The fuzzy logic is the stage responsible for taking the decision based on a set
of rules previously defined by the expert; it is the stage that simulates the logics
that are regularly used by people on a daily basis. The rules are determined using
the linguistic expressions, e.g. “If Average Power is Poor and Power STD is Poor,
then Performance Index is Poor”. From the rules set and the heuristic inputs, the
fuzzy output is generated using a Strategy (Inference system). This study is based
on Sugeno’s inference system; the fuzzyfied input values are applied to each rule,
using a product implication and applying a sum aggregation, as proposed by [20],
resulting in a fuzzy output value.

Differently from Mamdani’s Defuzzyfication method, Sugeno’s does not have
Membership Functions for the Defuzzyfication stage, instead of that, the application
of each rule results in a fuzzy singleton, i.e. a well defined value that is unity at a
single particular point in the universe of discourse and zero everywhere else. This
system was developed using the linear model [20–22]; the rules were formulated as
in Eq. (3).

(3)IF xj1 IS A
j
1 AND xj2 IS A

j
2 . . . AND xji IS A

j
i THEN zj � pjx

j
1 + qjx

j
2 + · · · + rjx

j
i + sj

where xji are the inputs of the system, Aj
i are the fuzzy sets in the antecedent and zj is

a crisp function in the consequent, i.e. the result of the application of rule j. As seen
in Eq. (3), each rule is represented by a linear function of its inputs, where the output
of the rule is the result of the first order equation. Therefore, the system output for a
set of inputs is the weighted average of all the rules outputs.
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2.3.2 Adaptive Neuro-Fuzzy Inference System

ANFIS is the combination of two computational methods, the Artificial Neural Net-
work (ANN) [23, 24] and theTakagi–Sugeno [20] inference system; a hybrid learning
algorithm [15, 25, 26] is applied to the ANN to synthesize a FIS system. The combi-
nation of the Fuzzy methodology to ANN unifies the FIS advantages of converting
the qualitative aspects of human knowledge into quantitative ones with the ANN
learning capability, resulting in a powerful tool of supervised learning which enables
the user to develop a FIS system in a shorter period of time, as the membership func-
tions are automatically adjusted by the ANN, in addition to reducing the rate of errors
in the determination of rules in fuzzy logic [15]. Figure 5 shows the architecture of
a two inputs ANFIS system.

As shown in Fig. 5, the architecture of the two-input first-order ANFIS model,
with two rules, is composed by five layers, which can be described as follows [27]:

• Layer 1: composed by adaptive nodes, where the output of each node is a degree
of membership value that is given by the MF; it is the layer responsible for the
MF’s parameters adjust.

• Layer 2: composed only by nonadaptive nodes, where each node is responsible
for the multiplication of the incoming signals and for delivering it to the next node,
representing the firing strength of each rule. A T-norm operator is usually applied
to obtain the output layer.

• Layer 3: composed only by nonadaptive nodes; calculates the ratio of the rules’
firing strength.

• Layer 4: composed by adaptive nodes; applies weights to the inputs’ parameters
to determine the values of the consequent function of each rule application.

• Layer 5: composed by fixed nodes to compute the overall output as a summation
of all the incoming signals.

The ANFIS system can be implemented using several programming languages,
however, its development can be generally summarized into three steps [27]: the

Fig. 5 Two inputs ANFIS architecture
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definition of the training and validation data sets, composed by the inputs values
and the desired output for each inputs’ combination, the definition of the system
rules, the training and the validation. During the training phase, each layer of the
ANFIS architecture is determined and the weights of the network are tuned, during
each training epoch, to decrease the error among the desired outputs and the ANFIS
outputs. After that, the validation dataset is used to determine the quality of the
training, through the determination of the average error among the validation dataset
output and the developed system output; then, if the minimum error requirements
are met, the system may be considered ready for use.

2.3.3 Fuzzy Performance Classifier

One of the major advantages of the Fuzzy methodology among a wide variety of
classifiers, such as Random Forest [28], Support Vector Machines [29], Multilayer
Perceptron [30], Naive Bayes [31] and others, is the possibility of converting quali-
tative descriptions, used in daily basis, into quantitative definitions, which may facil-
itate the application of the specialist knowledge to develop the intelligent system
[32, 33]. In the Sports area, most of the definitions used by coaches to evaluate the
athlete’s performance and training are expressed in qualitative terms; as the perfor-
mance usually is based not only on a single variable, but on a set of characteristics,
when developing an automatic classification system, it is desirable to use amethodol-
ogy that enables the specialist to use his ownwords and variables on the development
of the system. Therefore, this research was developed using the ANFIS classifier,
which was developed and implemented in MATLAB Environment. The simplified
structure of the developed Fuzzy system is shown in Fig. 6.

As seen in Fig. 6, the system is composed by three inputs, which are represented
by the left vertical aligned boxes, where the AVG-POWER is the Average Power
input, AVG-ASY is the Average Bilateral Asymmetry index and STD-POWER is
the Power standard deviation. A summarized representation of the developed ANFIS

Fig. 6 Developed fuzzy inference system structure
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architecture is presented inside the dashed line rectangle and the output is represented
by the box denominated Performance Level.

2.3.4 ANFIS Fuzzyfication Interface

The determination of the preliminary values of the input Degrees of Membership
(DM) was made based on previous studies for the Average Power MF input, where it
was considered a maximum average mechanical power of about 300 W for a regular
athlete [5, 9, 10, 17, 34], and for the Bilateral Asymmetry Index [5, 7, 9, 16, 35,
36], as this data have a well-established pattern. The Average Power STDMF values
were defined based on the data acquired during the experimental trials conducted
with the subjects. As the Fuzzyfication stage is responsible for mapping the crisp
input values into the fuzzy values, it is important that the mathematical functions that
compose the DM behave as close as possible to the input data that it represents [37];
the data applied to the input of the system follow a normal distribution, thus the DM
functions chosen to compose de MF were Gaussian, as in Eq. (4), or Sigmoid, as in
Eq. (5). Figure 7 shows the preliminary Membership Functions for all inputs, which
represents the fuzzyfication stage of the system developed before training.

f (x |σ | c) � e
−(−x−c)2

2σ2 (4)

where c is the position of the center of the peak and σ is the standard deviation of
the Gaussian function.

Fig. 7 Fuzzy inputs membership functions



An Automatic Cycling Performance Measurement System … 237

Table 1 Preliminary input degrees of membership parameters

Average power input

Linguistic expression Parameters Function

Excellent α � 200 b � 250 Sigmoid

Good σ � 25.5 c � 167 Gauss

Poor α � 47.0 b � 137 Sigmoid

Average bilateral asymmetry input

Linguistic expression Parameters Function

Good α � 22.0 b � 47.5 Sigmoid

Regular σ � 5.31 c � 47.5 Gauss

Poor α � 47.5 b � 73.0 Sigmoid

Average power STD

Linguistic expression Parameters Function

Excellent α � 17.1 b � 20.5 Sigmoid

Good σ � 1.49 c � 20.5 Gauss

Poor α � 20.5 b � 24.0 Sigmoid

f (x |a| b) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x ≤ a

2
(
x−a
b−a

)2
, a < x ≤ a+b

2

1 − 2
(
x−a
b−a

)2
, a+b

2 < x ≤ b

1, x > b

(5)

where a is the position of the left extreme of the curve and b is the position of the
right extreme of the Sigmoid function.

Analyzing the DM functions shown in Fig. 7 it is possible to notice that each input
Membership Function is composed by three DM functions which map the input crisp
value into the fuzzy value defined by the linguistic expression. Table 1 shows the
input DM parameters in more details.

TheMF parameters shown in Table 1 are the values of the constants of the Eqs. (4)
and (5), which determine the position and limits of each function that composes the
MF.

2.3.5 ANFIS Logic and Defuzzyfication

Since the ANFIS requires a number of rules equals to the number of possible combi-
nations of themembership functions of all the inputs, theANFISLogicwas developed
considering the specialist’s background knowledge and the possible combinations of
the system inputs. The rules set is presented in Table 2, where PWR is the average
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Table 2 ANFIS rules

Rules

1. If PWR is Poor and B.A is Poor and PSTD is Poor then PL is Poor

2. If PWR is Poor and B.A is Poor and PSTD is Good then PL is Poor

3. If PWR is Poor and B.A is Poor and PSTD is Exc. then PL is Poor

4. If PWR is Poor and B.A is Reg. and PSTD is Poor then PL is Poor

5. If PWR is Poor and B.A is Reg. and PSTD is Good then PL is Poor

6. If PWR is Poor and B.A is Reg. and PSTD is Exc. then PL is Poor

7. If PWR is Poor and B.A is Good and PSTD is Poor then PL is Poor

8. If PWR is Poor and B.A is Good and PSTD is Good then PL is Poor

9. If PWR is Poor and B.A is Good and PSTD is Exc. then PL is Poor

10. If PWR is Good and B.A is Poor and PSTD is Poor then PL is Poor

11. If PWR is Good and B.A is Reg. and PSTD is Poor then PL is Poor

12. If PWR is Good and B.A is Good and PSTD is Poor then PL is Poor

13. If PWR is Good and B.A is Poor and PSTD is Good than PL is Reg.

14. If PWR is Good and B.A is Reg. and PSTD is Good then PL is Reg.

15. If PWR is Good and B.A is Good and PSTD is Good then PL is Reg.

16. If PWR is Good and B.A is Poor and PSTD is Exc. then PL is Reg.

17. If PWR is Good and B.A is Reg. and PSTD is Exc. then PL is Good

18. If PWR is Good and B.A is Good and PSTD is Exc. then PL is Good

19. If PWR is Exc. and B.A is Poor and PSTD is Poor then PL is Reg.

20. If PWR is Exc. and B.A is Reg. and PSTD is Poor then PL is Good

21. If PWR is Exc. and B.A is Good and PSTD is Poor then PL is Good

22. If PWR is Exc. and B.A is Poor and PSTD is Good then PL is Good

23. If PWR is Exc. and B.A is Reg. and PSTD is Good then PL is Good

24. If PWR is Exc. and B.A is Good and PSTD is Good then PL is V.G.

25. If PWR is Exc. and B.A is Poor and PSTD is Exc. then PL is V.G.

26. If PWR is Exc. and B.A is Reg. and PSTD is Exc. then PL is Exc.

27. If PWR is Exc. and B.A is Good and PSTD is Exc. then PL is Exc.

power during the trial, B.A is themean bilateral asymmetry index, PSTD is the power
standard deviation and PL is the performance Level.

As seen in Table 2 the rules set is composed by 27 rules, which defines the logic
of the system based on the fuzzyfied value of each input. It is interesting to point
out that although three variables are considered in the determination of the athlete’s
performance, the two most important ones are the power applied to the pedal and
the power std; rules 1–9 logic implies that, regarding the values of the power std
and the bilateral asymmetry, if the power is considered poor, the output is poor.
This is justified by the fact that, notwithstanding the other fuzzyfied input values are
considered good, the performance on track will not be good if the power level is
poor. Furthermore, by the analysis of rules 19–21, it is possible to notice that even
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if the average power level is excellent, if the power std is poor, the output does not
reach high values; this is important because it measures the endurance of the athlete,
which is essential on track. Therefore, the rules were formulated to combine these
three input variables that represent the pedaling characteristics of the athlete in a way
that could measure the athlete’s training level in a more comprehensive way than the
usual techniques based only in the power measurement data.

As the ANFIS is based on Takagi-Sugeno Inference method, the output is the
weighted average of the results obtained by the application of each rule to the inputs.

2.4 Experimental Evaluation

To evaluate the behavior of the developed system, a randomized block experiment
design was performed indoor using a Btwin IN’Ride 300 magnetic-braked ergome-
ter roll. A total of 300 runs (total distance of 273.2 km, measured using a bicycle
speedometer) with a duration of 75 s each were performed by 7 healthy amateur
cyclists, 5 cyclists with at least 2 years of experience and 3 professional cyclists;
each subject made twenty repetitions of the test, of which ten were performed in the
lowest level of magnetic braking (L) and ten in the third level of magnetic braking
(2). The sample was one female and 14 males of 29 ± 5 years, a body mass of
73 ± 9 kg and a height of 1.78 ± 0.07 m. The subjects were instructed to adjust the
bicycle ergonomics to an equivalent configuration as they use on their own bicycle;
the cadence level was freely chosen by each cyclist but the gear was fixed in all tri-
als. An ANOVA test was performed to analyze the significance of the collected data
and the subjects’ performance scores determined by the developed system and the
specialist. From data of the average Power, its STD and the Effective Force bilateral
asymmetry, the performance score of each cyclist was determined using the ANFIS.
In order to respect personal decision and the Declaration of Helsinki of the World
Medical Association, declared consent was obtained from the subjects.

3 Results and Discussion

3.1 Static Calibration Experiment

The static calibration experiment was performed applying known loads to the crank
arm in the direction of each force component, for the same range to which the load
cell will be used in the application,while the voltage output of each channelwas being
measured. Channel’s 1 (Perpendicular force component measurement) as function of
perpendicular force application is shown in Fig. 8. Other channels transfer functions
are presented in Table 3.
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Fig. 8 Voltage output as function of perpendicular force application

Table 3 Load cell voltage output characteristics

Channel Transfer function (mV) Linearity error (%)

1 y � 3.334. force + 2475 0.60

2 y � 8.500. force + 2501 0.19

3 y � 1.766. force + 2517 0.41

4 y � 3.303. force + 2508 0.60

5 y � 8.007. force + 2491 0.20

6 y � 1.922. force + 2502 0.44

From Table 3 data it is possible to point out that the mean sensibility is
3.321 mV/N for perpendicular force measure, 8.251 mV/N for lateral force mea-
sure and 1.844 mV/N for parallel force measure; the linearity error of all channels is
below 0.6%.

Uncertainty analysis was developed using the classical approach, considering the
tolerance of the active and passive components of each channel as an uniform dis-
tributed function with infinite degrees of freedom [38]. Uncertainty for all channels’
sensitivity is below 3.2%.

3.2 Force Components and Power Data

From the force components data acquired during the trials it is possible to analyze the
bilateral asymmetry between the forces that are applied by each leg as the cadence
kept by the cyclist and other patterns referred to the pedaling technique of the athlete.
The instant power produced by the athlete and transmitted to the crank arm is deter-
mined based on the effective force component, the cadence and the crank arm length,
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Fig. 9 Force Components data: a Left Crank arm, b Right Crank arm; Instant Power transmitted
to the crank arm (c)

as shown in Eq. (1) [5, 9]; the bilateral asymmetry index is determined according
to Eq. (2), considering the effective force applied to the crankset by each leg [11].
Figure 9 shows a 4 s duration segment of the data acquired during one of the trials.

Analyzing Fig. 9a, b it is possible to notice the difference between each leg forces
application pattern; the maximum effective force applied by the left leg is 314.97 N,
while the maximum effective force applied by the right leg is 143.70 N, which leads
to a bilateral asymmetry index of 54.4% referred to the peak perpendicular force,
considering this segment of the trial. The average perpendicular force is 92.48 N
applied by the left leg and 45.04 N applied by the right leg, which leads to an
asymmetry index of 51.3% referred to the mean effective force. It is interesting to
point out that the different values found for the bilateral asymmetry index, referred
to the same force component, show that not only the peak of force varies from one
member to another, but also the way the force application is distributed over time,
affecting the average force that is able to generate torque to rotate the crank arm. As
shown in Fig. 9c the peak of power is 363.48W, applied by the left leg and 167.03W
applied by the right leg, while the average resultant power is 154.46 W. As the crank
arms are connected by the bottom bracket in a 180° angle, each leg is in the opposite
phase simultaneously, which implies that a power supplied in the opposite direction
reduces the cyclist efficiency as it will be contrary to the rotation of the crankset; in
Fig. 9c it is noticeable that a peak of −44 W is applied by the left leg and −16 W by
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the right leg, which negatively impacts the resultant power, decreasing the overall
performance of the athlete.

The differences among the patterns of the forces that are applied by each member
may be related to several variables, as the position of the foot in the pedal, the
bicycle ergonomics (saddle height, type of pedal used, and other adjusts) and, most
importantly, the subject’s technique level, which is, in a matter of fact, one of the
reasons for the development of this study, as, knowing the pedaling characteristics
of the athlete may enable the coach to develop training strategies to improve the
cyclist’s technique, leading to a performance improvement.

3.3 Experimental Data

Fromdata of the forces, acquired during the trials, and theEqs. (1) and (2), the average
power, its standard deviation and the bilateral asymmetry indexwere determined. For
each trial, a 60 s duration sample of the data was randomly selected and the variables
that will be used as input of the classification system were calculated. Figure 10
shows the data of the power and bilateral asymmetry index achieved by each subject
during all the trials.

As shown in Fig. 10 it is possible to notice that the average bilateral asymmetry
index and the average power vary significantly among trials, considering the same
subject, and among subjects. This variation may be explained by the fact that the
only controlled factors considered in the experiment design was the subject and the
level of magnetic braking; the subjects were instructed to pedal in the highest speed
that they could keep during all the trials, i.e., they were able to choose their preferred
cadence and speed, leading to high variations of the pedaling characteristics. The
maximum average power transmitted to the crank arm was 288.85 W, achieved by

Fig. 10 Average power and bilateral asymmetry index achieved per subject considering all the
trials
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subject A12 during the first trial, while the minimum average power observed was
38.67 W, reached by subject A6; the mean power workload, considering all the sub-
jects and trials is 137.63 ± 59.60 W, of which 34.82 ± 15.77 W was applied by the
right leg and 103.77 ± 44.40 W was applied by the left leg; the average variation
among trials considering the same subject is 57.72 ± 28.76 W. The maximum aver-
age bilateral asymmetry index value was 83.4%, achieved by subject 5, while the
minimum was 50.43% for subject 10; the average bilateral asymmetry index of the
group, determined considering all the trials and subjects is 67.0 ± 6.2%. The maxi-
mum variation of the average power and bilateral asymmetry observed among trials
considering the same subject was 118.1 W and 17.3%, respectively. Previous studies
realized with six professional and amateur cyclists have shown a bilateral asym-
metry index of about 25% in the beginning of an incremental test, to a work load
corresponding to 90% of the cyclist’s oxygen consumption [36]. Another research
developed with masters’ cyclists showed a bilateral asymmetry index in a range of
10– 60%, with a mean value of 30 ± 8%, for a workload of 100–250 W [10]. All the
data acquired during the trials were analyzed through an ANOVA test which showed
that it is significant.

3.4 ANFIS Evaluation

3.4.1 ANFIS Configuration After Training

The data acquired during the trialswere divided into two datasets: the training dataset,
which represents 70% of the collected data, and the testing dataset, which represents
30% of the data. The ANFIS training was applied using the Hybrid Learning Algo-
rithm [15, 25, 26]; the training process was developed in 300 epochs. The error mea-
surement methodology adopted was the root mean square error (RMSE) [39–41];
the RMSE reached an average value of 0.646 for the training data (210 data pairs)
and 1.09 for the testing data (90 data pairs) while the highest RMSE found was 1.61.
Considering the worst case, a maximum error of 1.61 represents a relative output
error of 1.61% as it is referred to the Score, which can take values from 0 to 100% in
function of the input parameters. Figure 11 shows the ANFIS system output versus
the dataset output, i.e. the expected output in function of the input datasets.

As shown in Fig. 11 the ANFIS output values obtained using the testing data as
input of the system are very close to the targets, which means that the parameters
of the neural network after training was well fitted to the input data, as the ANFIS
output, using the dataset as input, follows the same pattern as the scores determined
by the specialist.

To ensure a proper validation of the system for the full dataset, a K-Fold cross-
validation (K� 10) was developed using the subjects’ data as input of the system; the
full dataset was split into 10 mutually exclusive subsets of equal size, where the trials
that compose each subset were randomly picked. For each iteration of the method,
9 subsets were used for training the model while one was used for testing [42]; the
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Fig. 11 ANFIS output test realized with the training and checking datasets

Fig. 12 ANFIS K-fold cross-validation error results

RMSE was computed in each iteration. Figure 12 shows the RMSE obtained by the
application of the K-Fold cross-validation method.

Analyzing Fig. 12 it is possible to notice that themaximumRMSEobtained for the
checking data was 1.36, while theminimumwas 0.405. From the values of the RMSE
obtained in each iteration of the K-Fold cross-validation, the mean classification
error of the system was determined; the average RMSE is 0.89 ± 0.33. After the
training was applied, the developed system was composed by 78 nodes, 108 linear
parameters and 18 nonlinear parameters. Since the ANFIS is an adaptive system,
its characteristics depend on the training dataset used to determine the weights of
the neural network constants, implying that the input membership functions are not
fixed. Considering this, the final inputs MF, after the training was applied, are shown
in Fig. 13; more details about the functions parameters are presented in Table 4.

From the comparison of Fig. 13 with Fig. 7 it is possible to notice that the main
difference among the preliminary inputs MF and the final ones is the range assumed
by the variables, which is explained by the adaptation of the Neuro-Fuzzy model to
the dataset that were used in the training, i.e. the newMF inputs range is in the same
range as the variables used in the training.

Analyzing Tables 1 and 4 it is possible to point out that all the parameters of the
Membership Functions remained unaltered except for the average bilateral asym-
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Fig. 13 ANFIS final Input Membership Functions

Table 4 ANFIS Final input degrees of membership parameters

Average power input

Linguistic expression Parameters Function

Excellent α � 200 b � 250 Sigmoid

Good σ � 25.5 c � 167 Gauss

Poor α � 47.0 b � 137 Sigmoid

Average bilateral asymmetry input

Linguistic expression Parameters Function

Good α � 22.0 b � 47.5 Sigmoid

Regular σ � 10.6 c � 49.2 Gauss

Poor α � 47.5 b � 73.0 Sigmoid

Average power STD

Linguistic expression Parameters Function

Excellent α � 17.1 b � 20.5 Sigmoid

Good σ � 1.49 c � 20.5 Gauss

Poor α � 20.5 b � 24.0 Sigmoid

metry input, in which the MF parameters that represent the “Regular” linguistic
expression have changed from σ � 5.31 and c � 47.5 to σ � 10.6 and c � 49.2.
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3.4.2 Fuzzy System Evaluation

The purpose of the developed cycling performance classifier is to implement a new
metric that enables the coach to predict the potential results that would be achieved by
the athlete in a real competition based on the results of an indoor trial. To accomplish
that, not only the power transmitted to the bicycle pedal is considered but also its
application uniformity, through the consideration of the power STD and the pedaling
characteristics, through the bilateral asymmetry index. Therefore, the values that
were used as input of the performance classification system were determined based
on the data acquired during the trials and are shown in columns one to four of
Table 5; the scores obtained by each cyclist, using the data as input of the ANFIS,
for the considered trials, are shown in column five. To properly evaluate the quality
of the model prediction, not only the error obtained with the training data should
be considered, but also the ability of the model to predict the output correctly when
different data than the one used in building the model are applied to its inputs [43].
Therefore, the system was tested only with the data that were not used to train the
ANFIS; the values presented in Table 5 represent only 30% of the trials, of which
the average power workload of the group was 123.46± 57.749W, the mean bilateral
asymmetry index was 65.98 ± 5.4% and the average power standard deviation was
8.930 ± 5.495 W.

Analyzing the results presented in Table 5, it is possible to notice a clear difference
among the scores obtained by the amateur, themore experienced and the professional
cyclists; subjects 1 to 7, which declared themselves as amateur cyclists, scored values
from 7.5 to 12%, which is considered a poor performance level, using the linguistic

Table 5 Data acquired per subject during all trials and performance scores

Subject Average power
(W)

Power STD (W) Average bilateral
asymmetry (%)

Score (%)

1 97.81 59.11 6.4 11.2

2 68.85 74.01 4.9 7.7

3 72.76 73.24 8.9 7.9

4 82.95 64.12 13.6 8.2

5 108.86 77.49 12.9 13.4

6 63.47 67.21 6.9 7.5

7 85.22 62.10 16.0 8.6

8 123.46 62.10 9.1 28.3

9 133.84 67.35 6.9 29.4

10 135.74 58.34 4.5 34.4

11 154.15 66.93 17.8 29.9

12 207.22 64.24 17.9 34.2

13 223.01 63.01 5.9 59.6

14 230.19 72.03 7.2 62.6

15 217.29 67.18 14.7 53.2
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term defined in the universe of discourse, while the volunteers from 8 to 12, which
declared that they use to cycle on a daily basis, reached values around 28.3–34.4%,
which is considered a regular performance level, thus, the subjects from 13 to 15,
the professional athletes, reached values from 53.2 to 62.6%, which is considered a
very good performance level. Therefore, the scores obtained during the trials were
considered compatible with the experience level declared by the subjects. Taking into
consideration that there were groups of volunteers with significantly different levels
of cycling experience participating on the study, it is considered to be an interesting
result.

The main goal of the developed system is to introduce a new point of view over
the cycling performance measurement that not only considers the average or peak
power reached by the cyclist in an indoor trial to determine the training level of the
athlete, but to develop a method that analyzes the athlete’s pedaling pattern leading
to a more representative result, as it considers the consistency of the cyclist’s tech-
nique and the possibility of improving it. For instance, comparing the score obtained
by subject 12 (34.2) with the one reached by subject 10 (34.4) it is considered that
subject 10 achieved a better performance in the test, however, if the only variable
that was analyzed to determine the performance was the power, subject 12 would be
considered more trained than the other, as the average power applied to the pedal by
subject 12 (207.22 W) is higher than the one applied by subject 10 (135.74 W). This
result is explained by the fact that even though subject 12 applied more power to the
pedal, his power STD (17.9 W) was higher than subject’s 10 (4.5 W). Taking into
consideration that all the trials were developed in the same environmental conditions,
using the same equipment, it is considered that, although subject 12 developed more
power, subject 10 kept it more constant, which may be interpreted as a better perfor-
mance, as it can be related to a higher physiological condition or a better pedaling
technique than the other.

Previous studies conducted with elite sprint cyclists have found that there is no
statistically significant difference between the values of the maximum power and
torque among indoor and outdoor trials [44, 45]. Thus, the correlation between the
peak power (PPO) on a maximal aerobic power indoor test, carried out with aid of
an ergometer, and the PPO on a 16.1 km Time Trial (TT) endurance test outdoor
trial is strong and positive (r � 0.99, P < 0.001), however, the correlation among
the peak power and the TT times is weak (r � 0.46, P < 0.05) [46]. Another study
conducted with adolescent cyclists showed that although the maximal and mean
power measured in an indoor trial and on track are strongly correlated, the power
output results were consistently higher in the laboratory trials [47]. Therefore, it is
noticeable that the peak of power data obtained in an indoor trial is not enough to
classify the athlete’s performance or to predict the results that will be achieved on
track, which corroborates with the conclusion that another pedaling characteristics,
rather than just the power, should be considered to determine the overall performance
score of the athlete. Taking into account that the approach proposed in this study
combines the computational intelligence and the specialist knowledge to determine
the performance score of the cyclist based on the pedaling pattern, it is considered that
it may be a great tool for coaches to objectively compare the performance progression
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of the athlete among trials, before and after the training strategy has been applied,
and for performance analysis among different athletes.

3.4.3 Statistical Analysis

The score and power datawere examined onMinitab 17 Stats tool, which showed that
the data significance can be analyzed through an Analysis of Variance as its residuals
follow a normal distribution and the premise of equal variances is valid [48]. The
behavior of the residuals distribution was visually checked, through its histogram,
and examined using a Ryan-Joiner test, which corroborated the conclusion that it
follows a normal distribution, since RJ � 0.977, for a P-Value > 0.100. Considering
this, the significance of the collected data was analyzed through an ANOVA test,
developed using a 99% confidence interval (F-Table α � 0.01), considering three
controlled factors: the subject, factor A, of 15 levels, the classification methodology,
factor B, of two levels (the score determined by the specialist and the score obtained
through the developed system) and the level of magnetic breaking applied on the
training roll (denominated as gear), factor C, of two levels. ANOVA showed that
the only controlled factors that significantly impact the average power and the score
response variables is the subject (Power F-Value� 601.88, Score F-Value� 209.18,
P-Value � 0.000) and the gear (Power F-Value � 93.71, Score F-Value � 60.09,
P-Value � 0.000), i.e. the data are significant. Since the applied test is a hypothesis
test, whose results show that all the means are equal or at least one mean is different
than the others, it is interesting to apply a multiple means comparison test to analyze
which of the means are significantly different; Fisher’s multiple means comparison
test showed that all means of the score and power are significantly different (F-Table
α � 0.01). Figure 14 shows the main effects plot for the score.

Fig. 14 Main effects plot for Score in function of: a Subject, b Gear and c Method
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Analyzing Fig. 14 (a) it is possible to notice the subject’s influence over the score
values, e.g. while level A1 of the subjects’ controlled factor results in a mean output
value of 9.74%, level A14 results in a mean output of 61.8%, (b) from the gear’s
main effects plot it is possible to view a significant difference between themean score
obtained in levels P1 andP2, (c) from themethod’smain effects plot it is noticeable, as
expected, that the method has no significant influence over the score. As the ANOVA
showed that there is no significant difference among the score values determined by
the specialist and the ones determined by the developed system, using the same data
as input, it is considered that the intelligent systemwas able to recognize the pedaling
patterns shown by the cyclists.

4 Conclusion

The aim of this study was to develop an intelligent automatic system to measure,
analyze and evaluate the pedaling technique of a cyclist based on the forces that are
applied to the bicycle pedal during cycling. To accomplish that, an instrumented load
cell was developed and built from scratch, with mechanical and dimensional charac-
teristics equivalent to a standard crankset used in road cycling competitions, but with
the ability to measure the components of the forces that are applied to the bicycle
pedal with a linearity error under 0.6% and an uncertainty under 3.2% referred to the
sensitivity of the channel. To evaluate the system a randomized block Experiment
was developed; ANOVA showed that all the data acquired during the trials were
significant. Data comparison with results obtained by other studies developed using
similar methods showed consistent similarity among this study results and the ones
found on the literature. To evaluate the cyclist performance an Adaptive Neuro Fuzzy
Inference system was developed and trained with the data acquired during the trials,
previously analyzed by the specialist; after training, the system showed a maximum
average error of 0.65% for the checking data and 1.1% for the training data.

Based on the data acquired during the trials, the average power, its STD and
the bilateral asymmetry index were determined and used as input of the classifying
system; the group reached an average score of 24.7% ± 18.7%. Taking into account
that there were subjects with different levels of training and that the scores reflected
the declared skills of each subject of the group, it was considered that the developed
system showed consistent results. The combination of the forces data, acquired using
the instrumented crankset system, with the score generated by the classification
system, seems to be a powerful tool for helping coaches to evaluate the performance
level of different athletes or the progression of the cyclist among different trials.

From the statistical analysis, itwas shown that theANFISwas able to recognize the
pedaling patterns of the cyclist, as the ANOVA showed that there is no statistically
significant difference among the scores determined by the specialist and the ones
obtained with the developed system, using the same inputs. Analyzing the score
means through the Fisher’s method, it was possible to notice that all the score means
are significantly different among the subjects. Therefore, it was considered that the
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use of a computationalmethod based on Fuzzy to develop the intelligent performance
analysis systemwas essential to apply the knowledge of the specialist, which is based
on linguistic expressions.
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Fuzzy Classifiers Learned Through
SVMs with Application to Specific Object
Detection and Shape Extraction Using an
RGB-D Camera

Chia-Feng Juang and Guo-Cyuan Chen

Abstract In several studies, fuzzy classifiers (FCs) have been shown to achieve
higher generalization ability when learned through support vector machines (SVMs)
compared to learning through neural networks that aim to minimize only the training
error. This chapter introduces the learning of FCs using linear SVMs. Two types
of FCs with zero-order and high-order Takagi-Sugeno (TS)-type consequents are
considered. Given a number of rules, the antecedent parameters in the two FCs are
determined using a self-splitting clustering (SSC) algorithm. Regarding the conse-
quent parameter optimization, this chapter first describes the basic concept of linear
SVMs followed by its application to the learning of the consequent parameters to
endow the FCs with high generalization ability. These two types of FCs are subse-
quently applied to object detection and shape extraction using a red-green-blue-depth
(RGB-D) camera. In this application, after the detection of an object using a color-
feature-based FC, the depth information from the camera is used to extract the shape
of an object. A histogram-based shape feature is proposed for improving the object
detection performance. The performance of the proposed classification approach is
evaluated through the detection of different objects and comparisons with various
object detection approaches.

Keywords Fuzzy classifiers · Support vector machines · Neural fuzzy systems
Object detection · Object shape extraction

1 Introduction

In contrast to other popular machine learning (ML)-based classifiers, such as support
vector machines (SVMs) and neural networks (NNs), fuzzy classifiers (FCs) have the
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potential for model interpretability [1], which helps to bridge the gap between ML
and human understanding. In addition, because of the local mapping property of each
rule, clustering algorithms can be directly employed to determine the structure and
initial antecedent parameters of an FC [2–6]. These unsupervised clustering learning
algorithms help build a good initial FCmodel for subsequent parameter optimization,
which results in small model size and facilitates the quick establishment of a well-
performing model without the collection of a large training data set.

Because of the onerous amount of work that is required to handcraft the optimal
fuzzy rules in an FC,many automatic learning approaches for building FCs have been
proposed. Among the many FC learning approaches, two popular ones are neural
FCs (NFCs) [2–4, 6] and evolutionary FCs (EFCs) [7, 8]. The learning approaches
in both NFCs and EFCs are based on empirical risk error minimization [9]. With
the consideration of structural risk minimization, the learning of FCs using SVMs
has been proposed [5, 10–14]. In this learning approach, SVMs are employed to
find the parameters in an FC based on soft margin minimization [15]. SVMs with
different types of kernels have been proposed for learning FCs. In learning FCs
using Gaussian-kernel-based SVMs [10, 11], a support vector (SV) corresponds to a
zero-order Takagi-Sugeno (TS)-type fuzzy rule, and Gaussian kernels are regarded
as Gaussian membership functions. A new SVM kernel is defined as the product of
a linear kernel and a Gaussian kernel and applied to learn FCs [12]. In this learning
method, an SV corresponds to a first-order TS-type fuzzy rule. In these nonlinear
kernel-based learningmethods, the constructedFCs suffer the problemof largemodel
size due to the large number of SVs. To address this problem, in linear-kernel-based
SVMlearning of FCs [13, 14], clustering algorithms have been proposed to determine
the structure of an FC to build a small FC model size. Linear SVMs are only applied
to optimize the consequent parameters of the constructed FC. This chapter introduces
the use of this learning technique in designing zero-order and high-order TS-type
FCs. The zero-order FC that is learned through the self-splitting clustering (SSC)
algorithm and SVM (FC-SSCSVM) [13] and the high-order FC with SV learning in
expanded high-order consequent space (SFC-SVHC) [14] are described as examples.

This chapter applies the twoFCs FC-SSCSVMandSFC-SVHC to detect a known,
specific object that contains multiple colors with non-homogeneous distributions
in complex backgrounds using a red-green-blue-depth (RGB-D) image that was
obtained using a Kinect camera. Detection primarily consists of two stages: feature
extraction and classification. Table 1 shows different types of features and classifiers
that have been proposed for the object detection task and the method proposed in
this chapter. One category of features consists of those that are extracted from the
edges and/or corners of an object [16–20], such as Haar-like wavelet features [16],
scale-invariant feature transform (SIFT) [17], histogram of oriented gradients (HOG)
[18], and shape information [19, 20]. Another category of features consists of those
that are extracted from the color information of an object, such as color histograms
[21, 22] and a two-phase color feature that is composed of the entropy of the com-
posing color (ECC) and entropies of geometric color distributions (EGCD) [13]. In
contrast to the above two handcrafted feature categories, one popular and powerful
feature extraction method is to use a deep convolutional neural network (DCNN) to
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Table 1 Different types of features and classifiers for the object detection task and the proposed
method
Studies Features Classification

Color Edges/corners Hybrid

Previous work Color histograms
[21, 22],
ECC+EGCD [13]

Haar-like wavelet
[16], SIFT [17],
HOG [18], shape
information [19, 20]

Convolution feature
[23, 24], hand-
crafted+convolution
feature [26]

Cascaded Adaboost
[16], template
matching [17, 19,
21], SVMs [18, 20],
FCs [13, 22], NNs
[23, 24, 26]

Proposed method Hybrid feature:
Stage 1: ECC+EGCD,
Stage 2: Shape contour from depth image

Stage 1: SFC-SVHC
Stage 2:
template matching

automatically extract features [23, 24]. Since different types of features (including
colors and shapes) are extracted, the classification accuracy of this type of feature
is high. For complex classification problems, a huge set of training data is generally
required for the DCNN to achieve good performance. If only a small set of training
data is available, the technique of transfer learning could be employed to improve
classification performance [24, 25]. Most DCNNs suffer from heavy computational
loads. Though specialized hardware, such as graphics processing units, have been
developed to reduce runtime, the resulting implementation costs increase. For these
problems, one promising approach is the combination of the handcrafted features
and the DCNN-based features [26], where the former are responsible for quickly
filtering out uninteresting candidates and the latter for making the final decision.

The contributions of this chapter are threefold. First, this chapter introduces a
unified and systematic way of applying the SSC and linear SVM to respectively
determine the antecedent and consequent parameters of TSK-type FCs with different
orders. The zero-order FC (FC-SSCSVM) [13] and the high-order FC (SFC-SVHC)
[14] are taken as examples of this design approach. Second, this paper applies the
SFC-SVHC to detect objects using the two-phase color feature of the ECC and
EGCD for object detection in color images. This new computer vision application
was not studied in the previous study of the SFC-SVHC [14]. Based on the two-
phase color feature, this chapter studies the performance comparisons of the FC-
SSCSVM and SFC-SVHC in the detection problem. Third, different from the use of
only color features for object detection in [13], this chapter proposes a new method
to extract object shape features from the depth image following the color-based
object detection. A new contour-based shape feature is proposed in this method.
Experimental results verify the effectiveness of this shape extraction method.

This chapter is organized as follows. Section 2 describes the functions in the two
types of FCs and their structure learning. Section 3 describes the basic concept of
linear SVMs followed by the details of their application to learn the consequent
parameters of the two FCs. Section 4 describes the object detection process based
on the two-phase color feature and an FC. Section 5 introduces the shape-based
object detection method. Section 6 presents experimental results and performance
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comparisons of various detection methods. Finally, conclusions are summarized in
Sect. 7.

2 Fuzzy Classifiers and Structure Learning

2.1 Fuzzy Classifiers

This section describes the functions of zero-order and high-order TS-type FCs [13,
14]. The i th rule in the zero-order FC is described as follows [13]:

Rule i : If x1 is Ai1 and, . . . , and xn is Ain then y
′ is ai , (1)

where n is the input feature dimension, Ai j is a fuzzy set, and ai is a crisp value. Using
a Gaussian membership function with center mi j and width σi , the firing strength

μi (
⇀

x) is given as follows:

μi (
⇀

x) �
n∏

j�1

exp

{
(x j − mi j )2

σ 2
i

}
� exp

{
−||⇀

x − ⇀

mi ||2
σ 2
i

}
, (2)

where
⇀

x � [x1, x2, · · · , xn]T and
⇀

mi � [mi1,mi2, · · · ,min]T . The FC output after a
simple defuzzification operation is

y′ �
r∑

i�1

ai · μi (
⇀

x) �
〈

⇀

a,
⇀
μ(

⇀

x)
〉
, (3)

where r is the number of rules, �a � [a1, . . . , ar ], and
⇀
μ(

⇀

x) � [μ1(
⇀

x), . . . , μr (
⇀

x)].
The two-class decision function of the FC is

f (
⇀

x) � sign

(
r∑

i�1

ai · μi (
⇀

x) + b

)
, (4)

where b is a threshold.
The high-order FC expands the rule-mapped space in a first-order TS-type FC

[14]. In a first-order FC, each rule maps an input vector
⇀

x , x j ∈ [−1, 1] to a new

vector
⇀

gi � [μi x0, . . . , μi xn] ∈ R
n+1 with x0 :� 1 in the consequent space. Using
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a trigonometric function transformation, the high-order FC further expands vector
⇀

gi to a new vector ��i , which is given as follows:

(5)

⇀

�i � [μi x0, sin(π μi x0), cos(π μi x0), . . . , μi xn, sin(π μi xn), cos(π μi xn)]

∈ R
3(n+1).

Based on the simple weighted-sum defuzzification function with weighting vector
⇀̂

ai ∈ R
3(n+1) for rule i , the FC output is given as follows:

y′ �
r∑

i�1

〈
⇀̂

ai , ��i (
⇀

x)

〉
�

3rn+1∑

i�1

ai · φi (
⇀

x) �
〈

⇀

a, �φ(⇀

x)
〉
, (6)

where
⇀

a � [a1, . . . , a3rn] and
⇀

φ(
⇀

x) � [φ1(
⇀

x), . . . , φ3rn+1(
⇀

x)]. In two-class classifi-
cation problems, the decision function of the FC is

f (
⇀

x) � sign

(
3rn+1∑

i�1

ai · φi (
⇀

x) + b

)
. (7)

2.2 Structure Learning

The FCs use the self-splitting clustering (SSC) algorithm [13] to find antecedent
parametersmi j and σi in (2). The SSC algorithm starts with one cluster and generates
new clusters using iterative splitting operations. To generate a new cluster from
r̂ existing clusters, the SSC algorithm splits the cluster with the largest variance
(denoted as cluster I ) into two new clusters. The top two input samples having the
shortest Euclidean distances to the center of cluster I are selected to be the initial
centers of the two new clusters. After the splitting process, the k-means algorithm is
applied to identify the new centers of all clusters. The SSC algorithm stops when r̂
is equal to an assigned cluster number r . Finally, mi j and σi are assigned to be the
center and standard deviation of the ith cluster, respectively.

3 Parameter Learning Through Linear Support Vector
Machines

The consequent parameters ai of the two types of FCs are optimized by a linear SVM
to minimize a soft margin. Given N labeled training data (

⇀

xk, yk), yk ∈ {+1,−1 },
the linear SVM aims to find a hyperplane decision function [15]
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f (
⇀

x) � sign

(
⇀

w
T

⇀

x + b

)
(8)

to minimize a soft margin:

Min⇀
w,ξk

1
2

⇀

w
T

⇀

w + C
N∑

k�1
ξk

Subject to yk

(
⇀

w
T

⇀

xk + b

)
≥ 1 − ξk

, (9)

where ξk ≥ 0 is a slack variable and C is a positive coefficient. The optimal decision
function is found to be

f (
⇀

x) � sign

(
N∑

k�1

ykαk <
⇀

x,
⇀

xk > +b

)
, (10)

where the training samples for which αk �� 0 are called SVs. According to [27], the
minimization of the soft margin tends to minimize the bound on the structural risk.
Thus, the obtained decision function should improve the generalization ability.

To apply the linear SVM to find the parameters ai in a zero-order FC, the origi-

nal training data
(

⇀

xk, yk
)
are transformed to

(
⇀
μ(

⇀

xk), yk
)
in the rule-mapped space.

Equation (3) shows the linear relationship between the FC output y′ and the trans-
formed input data ⇀

μ(
⇀

x). According to (9), a soft margin is formulated in terms of the
free parameters ai as follows:

Min⇀
a ,ξk

1
2

⇀

a
T

⇀

a + C
N∑

k�1
ξk

Subject to yk

(
⇀

a
T

⇀
μ(

⇀

xk) + b

)
≥ 1 − ξk

. (11)

According to (10), the optimal decision function of the zero-order FC is [13]:

(12)

f (
⇀

x) � sign

(
N∑

k�1

ykαk <
⇀
μ(

⇀

x), ⇀
μ

(
⇀

xk
)

> +b

)

� sign

(
r∑

i�1

(
N∑

k�1

ykαkμi

(
⇀

xk
))

μi (
⇀

x) + b

)
,

where αk is optimized through the linear SVM. It follows from the equivalence of
(4) and (12) that
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ai �
N∑

k�1

ykαkμi

(
⇀

xk
)

�
N∑

k∈SV s

ykαkμi (
⇀

xk), i � 1, . . . , r. (13)

Similarly, for the high-order FC, the original training data
(

⇀

xk, yk
)
are trans-

formed to

(
⇀

φ(
⇀

xk), yk

)
in the expanded space.According to (10), the optimal decision

function of the high-order FC is written as follows [14]:

(14)

f (
⇀

x) � sign

(
N∑

k�1

ykαk <
⇀

φ(
⇀

x),
⇀

φ(
⇀

xk) > +b

)

� sign

(
r∑

i�1

(
N∑

k�1

ykαkφi

(
⇀

xk
))

φi (
⇀

x) + b

)
,

where αk is optimized through the linear SVM. It follows from the equivalence of
(6) and (14) that

ai �
N∑

k�1

ykαkφi

(
⇀

xk
)

�
N∑

k∈SV s

ykαkφi

(
⇀

xk
)

· i � 1, . . . , 3nr + 1. (15)

4 Color Features for Object Detection

Figure 1 shows the flowchart of the detection process. The FCs are applied to detect
a specific object using the two-phase color feature [13]. An object in a given image
is detected using a scanning window with a size of w1 × w2 pixels and a stride of s
pixels. The multi-scale scan search method with a scale factor of α � 0.8 is applied
to find objects with different sizes. For each scanning window, the first phase uses the
ECC feature to quickly filter out non-objects. The second phase filters the candidates
generated from phase one by using the EGCD and an FC. Extraction of the two
features is briefly described as follows.

4.1 Entropy of the Composing Color (ECC) Feature

The objective of the ECC feature is to extract the information of the composing color
of an object. To this end, the ECC feature is computed from the color histograms of
all the training patterns of an object of interest in the HS space. To obtain the color
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Fig. 1 Flowchart of the object detection process

histograms, the SSC algorithm is applied to partition the HS into Cmax clusters. In
this application, the criterion for determining which cluster should be split is based
on the number of object pixels instead of the variance in each cluster. This criterion
is selected so that the pixels of each object will be evenly distributed among the
clusters to ensure that the color entropy of an object will be greater than that of a
non-object. Figure 2 shows the partition results in a scaled HS space that are obtained
by using the SSC algorithm for the five different objects considered in this chapter.
The blue points in each HS space represent the HS values of all the pixels belonging
to the training objects (i.e., the distribution of the training pixels in the HS space).
The black lines and red points in the HS space represent the boundaries and centers
of different clusters, respectively. The clusters are formed so that the pixels in the
training objects are evenly distributed over the clusters. The determination of the
cluster number Cmax for each object is described in Sect. 6.

For a scanning window, the ECC feature determines the entropy of the color
histograms in the Cmax clusters. This entropy is computed as follows:

HECC � −
Cmax∑

i�1

pihs log2 pihs, (16)
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Can Star Bottle Cup Octagon 

15 clusters 15 clusters 30 clusters 30 clusters 15 clusters 

Fig. 2 HS partition results that were obtained by using the SSC algorithm for different objects.
The blue and red points are the pixels of the object and the cluster centers, respectively

where

pihs � Ti
w1 × w2

, i � 1, . . . ,Cmax. (17)

In this equation, Ti is the count of pixels in cluster Ci . Since the pixels in an object
are expected to be evenly distributed over the clusters, the HECC value of an object
is generally higher than a non-object. For example, Fig. 3 shows the histogram of the
HECC values of some cans and non-cans, where it is observed that the HECC values
of most cans are larger than non-cans. Therefore, a test pattern is regarded as an
object candidate if HECC > θ1, where θ1 is a threshold that is determined according
to a validation set of images.

4.2 Entropies of Geometric Color Distributions (EGCD)
Feature

The objective of the EGCD feature is to extract the information of the geometrical
distributions of the composing colors of an object. To this end, the EGCD feature is
computed based on the entropy of the geometric color histogram of the ith composing
color of an object. A scanning window is divided into N � (w1/s) × (w2/s) non-
overlapping sub-blocks, where the size of each sub-block is s × s pixels. The total
number of pixels in the sub-block k of cluster (color) i is denoted as t ki , where∑N

k�1 t
k
i � Ti . The entropy value Hi

EGCD of the distribution of composing color i is
given as follows:
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Hi
EGCD � −

N∑

k�1

t ki
Ti

log2
t ki
Ti

, i � 1, . . . ,Cmax. (18)

These Cmax EGCD feature values are fed to an FC to filter object candidates.
After the scanning and detection process, the center of the scanning window that

detects an object is recorded. Three 3 × 3 dilation operations are applied to the
recorded centers. A minimum enclosing rectangle (MER) of each connected region
is found. The MERs whose sizes are greater than the training pattern size of the
detected object are regarded as object candidates.

5 Shape Extraction and Shape-Based Detection

5.1 Shape and Feature Extraction

After the color-based detection process, the object candidates are further filtered
using the shape features extracted from the depth image. The object shape extraction
process consists of two phases. The first phase finds the depth value of the object
center. All pixels of the object candidate are mapped to the depth image. Next,
a histogram of these mapped depths is devised. The depth xd with the maximum
histogram value is found to be the depth of the object. Figure 4a shows the detection
of a cup using the color features. Figure 4b shows the pixels of the object candidate.
Figure 4c shows the depth image, where the background regions with a long distance
and the regions not covered by the depth sensor (the lower part) are shown in white.
Figure 4d shows the mapping results of Fig. 4b, c. The depth xd � 204 with the
maximumhistogram value is taken as the depth of the object. To identify the region of
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Fig. 4 aObject color detection result.bObject candidate pixels. cThe depth image.dThemapping
result. e The final detection result and the extracted can shape

Fig. 5 a Center of an object candidate and the four-directional extension from the center. b The
segmented object area. c The smoothed contour. d The distance from the object center to each of
the contour points

the object from the depth image, the depth range is set to xd±Drange, where Drange �
3 is the object depth filtering threshold. The newobject center is recomputed using the
average of the object candidate pixels whose depths are within the range xd ±Drange.
A four-directional extension that starts from the new center is then used to find the
object region. For a pixel of a detected object, the next extension direction stops when
the depth of the pixel in that direction is not within the depth range. The extension
is followed by a morphological opening operation to smooth the shape contour.
Figure 5a shows the center of the object candidate in Fig. 4 and the four-directional
extension. Figure 5b shows the segmented object region that was obtained using the
depth image. Figure 5c shows the smoothed shape contour.

After finding the smoothed contour, the next step is to find the Euclidean distance
Di from the object center (X̄ , Ȳ ) to each contour pixel (xi , yi ), as shown in Fig. 5d.
A low-pass filter is applied to the distance curve and the smoothed distance value is
calculated as follows:

D̄i � 1

25

12∑

j�−12

Di+ j , i � 1, . . . ,m. (19)

Figure 6a shows the contours of different detected objects. Figure 6b shows the
distance curves of the objects. The distance range is evenly divided into 20 bins. The
normalized distance histogram DHu , u � 1, . . . , 20, which counts the total number
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Fig. 6 a Object shape contours. b The distance curves of the objects. c The distance histograms

of distance values that fall into each bin divided by the total number of contour
pixels, is obtained. Figure 6c shows the distance histograms of the objects. The
distance histogram is scale-invariant and rotation-invariant and is therefore suitable
for detecting objects with different scales and orientations.
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5.2 Shape Extraction and Final Object Detection

Based on the normalized distance histogram DHu , the template matching method
is used to filter the object candidates. Twenty templates are collected for different
views of the object. For a test pattern, theminimumdifference between its normalized
distance histogram DHtest

u and the distance-histogram templates DHtemplate, j
u , j �

1, . . . , 20 is determined using the following equation:

Di f f � min
j

(
20∑

u�1

∣∣DHtest
u − DHtemplate, j

u

∣∣
)

. (20)

If Di f f is smaller than a pre-defined threshold T H , then the candidate is regarded
as an object. If the difference between the object and the background depths is small
or the object is tilted, the object shape region extracted from the depth image may be
incorrect. For this reason, if Di f f is greater than T H , then a more complex shape
extraction process is proposed. If Di f f > T H , the depth image is transformed into
an edge imagebyusingCanny edgedetection.The four-directional extension, starting
from the depth-based center, is applied to the edgemap to segment the object, and the
extension continues until the edge is reached. The above shape contour extraction and
matching process is reapplied to the newly segmented region to filter out non-objects.

Figure 7 shows a detection example when Di f f > T H . Figure 7a shows the
detection of a bottle using the color features. Figure 7b shows the depth image, where
the depths of the bottle and the background are close. Figure 7c shows the segmented
region that was obtained using the depth range, where part of the background is
improperly segmented as the object. Figure 7d shows the edge map and the four-
directional extension from the object center on the edge map. Figure 7e shows the
smothered shape contour and region. Figure 7f shows the final detection result.
When multiple candidates are generated from the color-based detection method,
the shape-based detection method helps find the correct one. Figure 8 shows two
examples of this case, where the shape-based detection approach helps successfully
detect the object and find its shape. Instead of a single stage of detection based on
the conjunction of the color and shape features, a two-stage detection method is
proposed in this chapter. In this two-stage method, most non-object regions scanned
by the window are filtered out using the color feature in the first stage, which saves
the time required to extract the shape feature of these non-objects.

6 Experiments

The performances of the two FCs and the object detection system are evaluated
through the detection of five objects: a can, a star, a bottle, a cup, and an octagon.
These objects contain multi-color distributions with different shapes. All of the
images were collected from the Kinect device and are of size 640 × 480 pixels. The
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Fig. 7 a Object color detection result. b Depth image. c The edge map. d The segmented object
shape region that was obtained by using the depth range, where the background is also incorrectly
segmented. e The segmented object region that was obtained by using the edge map. f The final
detection result

Fig. 8 a Original color images and the detected bottle candidates using the color features. b The
depth images. c The correctly detected bottles and the extracted shapes

positive training patterns were collected from different views of an object. The neg-
ative training patterns were randomly selected from backgrounds. Table 2 shows the
details of each experiment. Denote the total number of true objects, correctly detected
objects, and detections as NT , NC , and ND , respectively. The detection performance
is evaluated in terms of detection rate (DR � NC/NT ), precision (PR � NC/ND),
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and DR + PR − 1 [28]. A higher value of DR+PR-1 indicates a better detection
performance.

The sizes of the object pattern, non-object pattern, and scanning window were
identically set to theminimumsize of the objects of interest to be detected in an image.
A larger scanning window than this assignment may miss the objects smaller than
the scanning window. A smaller scanning window than this assignment increases
the detection time. In addition, when the scanning window size is too small, the
features extracted from the low image resolution may perform poorly. Training pat-
terns consist of 200 objects and 100 non-objects. There were 100 test images in each
experiment. Another 100 cross-validation (CV) images were collected for selecting
system parameters, including r , Cmax in the SSC algorithm, the ECC threshold
value, the coefficient C in the linear SVM for FC training, and the threshold T H
of Diff in (20). For the FCs, r was selected from the set {5, 10, 15}. Table 3 shows
the selected number of rules in the FCs in each experiment. The SFC-SVHC used
five rules in all experiments. A larger number of rules in the SFC-SVHC tended to
decrease the detection performance in the CV images mainly due to the overtraining
problem. The results also showed that the FC-SSCSVMused a larger number of rules
than the SFC-SVHC in each experiment, since the former used simpler, lower order
consequent parts than the latter. Four out of the five FC-SSCSVMs in the experiments
used 10 rules. Because of the overtraining problem, the use of the larger number of
15 rules did not show better detection performance in the CV images.

The coefficient C was selected from the set
{
20, 21, . . . , 210

}
. For the HS parti-

tioning problem, Cmax was selected from the set {15, 30, 45}. This chapter set the
threshold T H to 0.38 in all experiments. A higher value of T H means a candidate
has a higher chance of being detected as an object. Thus, this setting will concur-
rently increase the DR and decrease the PR (more false alarms). In contrast, a smaller
value of T H concurrently decreases the DR and increases the PR. Because of the
trade-off between DR and PR, the threshold T H � 0.38 that achieved the maximum
DR+PR-1 in the 100 CV images was selected.

6.1 Detection Performance

For the detection using the color feature from anRGB image, the detected objects and
the ground truths are marked by rectangles. For the detection using the combination
of color and shape features from the RGBD image, the detected objects and the
ground truths are marked by the regions bounded by the object shapes. Table 3
shows the detection performances for the five objects in Experiments 1 to 5 of the
two FCs using only the color features and the combination of the color and shape
features. The results showed that the incorporation of the shape feature improved the
detection performance, with the sole exception of Experiment 1. In this experiment,
the detection rate using both the color and the shape features was only slightly lower
than that using the color feature. In addition, the proposed shape-based method had
the advantage of finding the orientation of the object in this experiment.
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Table 3 Detection performances of the two types of FCs using color and color+ shape features in
Experiments 1 to 5. The highest DR+PR-1 value in each experiment is marked in boldface
Experiments Classifiers #rules Color Color+Shape

DR(%) PR(%) DR+PR
-1

DR(%) PR(%) DR+PR
-1

1 (Can) SFC-
SVHC

5 99 93.4 0.924 96 98.0 0.940

FC-
SSCSVM

10 99 97.1 0.961 96 98.0 0.940

2 (Star) SFC-
SVHC

5 100 65.4 0.654 95 85.6 0.806

FC-
SSCSVM

10 100 60.6 0.606 93 85.3 0.783

3 (Bottle) SFC-
SVHC

5 84 28.7 0.127 89 85.6 0.746

FC-
SSCSVM

10 86 41.4 0.274 91 93.8 0.848

4 (Cup) SFC-
SVHC

5 96 57.8 0.538 89 87.3 0.763

FC-
SSCSVM

15 80 45.5 0.255 85 84.2 0.692

5
(Octagon)

SFC-
SVHC

5 98 88.3 0.863 93 100 0.930

FC-
SSCSVM

10 98 87.5 0.855 92 100 0.920

For the two FCs, the high-order SFC-SVHC outperformed the zero-order FC-
SSCSVM in three of the five experiments on the RGB images when using the same
color features. TheFC-SSCSVMoutperformed theSFC-SVHCon theRGBD images
only in Experiment 1. Regarding the FC structure, the SFC-SVHC used five rules in
all experiments,while theFC-SSCSVMdid not. TheFC-SSCSVMhas been shown to
outperform Gaussian kernel-based SVMs, multilayer perceptron (MLP), and neural
fuzzy classifiers in terms of overall classification performance in object detection
problems using color features [13]. The SFC-SVHC has been shown to outperform
different NFCs, EFCs, and statistical classifiers in terms of overall classification
performance on 20 benchmark classification problems [14]. Therefore, this chapter
focuses only on studying the detection performances of the FC-SSCSVM and SFC-
SVHC in the application examples.

Figure 9 shows the successful detection results for some of the test images in
each experiment using the SFC-SVHC. Figure 10 shows some false alarms and
missed detections, where the latter were mainly caused by excessive or insufficient
illumination. The test images contained objectswith different distances to the camera,
with all distances within the depth sensor range of the Kinect for Windows. In the
experiments, the influence of the distance between the object and the camera was
minor. However, if the object was sufficiently far from the camera such that the size
of the object was smaller than the scanning window, then missed detections may
occur.
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Experiment 1 (can) 

Eeperiment 2 (star) 

Experiment 3 (bottle) 

Experiment 4 (cup) 

Experiment 5 (octagon) 

Fig. 9 Detection results of some of the test images in different experiments

Fig. 10 a–c False alarms and d, e missed detections for some test images

6.2 Comparisons with Other Detection Methods

For comparison, Table 4 shows the detection performances of the proposed SFC-
SVHC-based detection method and four other methods. The first method is a
histogram-based template matching (H-TM)method [21]. Themethod uses the color
histogram feature and template-matching classification.
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Table 4 Detection performances of different methods, where the highest DR+PR-1 value in each
experiment is marked in boldface

Experiments Methods DR(%) PR(%) DR+PR-1

1 (Can) SFC-SVHC 96 98.0 0.940

H-TM 83 51.6 0.346

TFS-SVMPC 98 96.0 0.940

CM 69 4.10 −0.269

SFC-
SVHC+CM

94 88.7 0.827

2 (Star) SFC-SVHC 95 85.6 0.806

H-TM 85 32.0 0.17

TFS-SVMPC 97 50.5 0.475

CM 84 9.6 −0.064

SFC-
SVHC+CM

89 58.2 0.472

3 (Bottle) SFC-SVHC 89 85.6 0.746

H-TM 57 16.2 −0.268

TFS-SVMPC 89 45.9 0.349

CM 49 9.0 −0.42

SFC-
SVHC+CM

74 27.2 0.012

4 (Cup) SFC-SVHC 89 87.3 0.763

H-TM 60 25.1 −0.149

TFS-SVMPC 86 67.7 0.537

CM 50 5.40 −0.446

SFC-
SVHC+CM

87 52.4 0394

5 (Octagon) SFC-SVHC 93 100.0 0.93

H-TM 96 80.0 0.76

TFS-SVMPC 97 55.4 0.524

CM 65 2.4 −0.326

SFC-
SVHC+CM

79 68.1 0.471

The second method consists of two stages [22]. The first stage generates object
candidates by feeding color histograms of a candidate region to a FC. The FC used
is the TS-type fuzzy system learned through an SVM in the principal component
space (TFS-SVMPC). The second stage filters the candidates by feeding the ten-
dimensional HS values fromfive locally partitioned regions to another TFS-SVMPC.

The third method uses the chamfer matching (CM) method [29] to detect an
object using the shape information from a depth image. The Kinect depth image
is transformed into an edge map using the Canny edge detection method. The CM
method is applied to the edge map by minimizing a generalized distance between
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the edges of the map and the edge templates of the object [30]. The matching is
performed on a pyramid of images with the same scene but in different resolutions.

The fourth method combines the color-based SFC-SVHC detection approach and
the CM method. The first phase uses the color-based SFC-SVHC detection method
to generate object candidates. The second phase uses the CM method to filter the
candidates.

Table 4 shows that the SFC-SVHC-based detection method achieved the highest
DR+PR-1 value. The detection performance of directly applying the CM method
to the depth image was poor. When using the same color-based SFC-SVHC method
in phase one, the proposed method outperformed the fourth method, which used the
CM method in phase two. This comparison shows the superiority of the proposed
shape extraction and detection method over the CM method.

Experimental results show that the proposed method generalizes well in the test
images when using only a small set of 300 training images. The DCNN has been
shown to achieve remarkable performance in different image processing problems
when a large set of training data is collected. However, the computational load of
a well-trained DCNN is generally high. As the suggested combination approach in
[26], the proposed method can be combined with a well-trained DCNN in which the
former is responsible for quickly filtering out non-objects and the latter for making
the final decision.

In contrast to the 3D templates that generally suffer from the enormous com-
plexities of 3D shapes in geometric spaces [31], the contour-distance based shape
feature is simple in its implementation. In addition, the above experimental results
show the proposed shape feature is more discriminative than the well-known edge-
based feature. The experiments contain objects in different positions and lighting
conditions to show the robustness of the proposed method to the two factors. The
experiments focus on the detection performance of the images captured from real
environments. Therefore, detection performance for the images with artificial noise
is not studied. For objects with close shapes, the color feature helps discriminate the
right one. When affine transformations or in and/or out plane transformations kick
in, the contours of the objects may be different from those found in ideal viewing
angles in the templates. These shape transformations may cause missed detections
when using the proposed method.

Finally, it is worth noting that the incorporation of principal component space
(PCA) for feature extraction could improve the accuracy of the SVMhyperplane [22].
The technique of PCA or linear discriminant analysis can be introduced into the FC-
SSCSVM and SFC-SVHC for possible improvement of the detection performance.

7 Conclusions

This chapter describes two types of SVM-trained FCs, known as the zero-order FC-
SSCSVM and the high-order SFC-SVHC, and their applications to object detection.
In structure learning, the two FCs use the VSSC algorithm to automatically assign
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proper fuzzy set positions and shapes in the input space. In parameter learning, the
use of the linear SVM helps to determine a set of consequent parameters with high
generalization ability. The primary difference between the two FCs is that the zero-
order TS-type rules used in the FC-SSCSVM makes it more interpretable than the
SFC-SVHC. However, the SFC-SVHC shows better classification performance than
the FC-SSCSVM because of the functional expansion of the rule-mapped space to
a higher-order space. The choice between the FC-SSCSVM and the SFC-SVHC
depends on whether higher interpretability or accuracy of the classification problem
is preferred. In the FC-based object detection applications, in addition to the color
features, object depth and shape extraction using the RGBD camera are introduced.
The contour-distance histogram feature helps improve the detection performance.
Experimental results on the detection of five different objects show the effectiveness
of the FC-based detection method.
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System
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Abstract SpectrumEstimation has emerged as themajor bottleneck for the develop-
ment of advanced technologies (IoT and 5G) that demand for a unperturbed continu-
ous availability of the spectrum resources. Opportunistic dynamic access of spectrum
by unlicensed users when the licensed user is not using the resources is seen as a
solution to the pressing issue of spectrum scarcity. The idea proposed for spectrum
estimation is to model the Cognitive Radio (CR) network as Hidden Markov Model
(HMM). The spectral estimation is done once in a frame. 100 such frames with 3000
slots each is considered for performing the experiment, assuming that the PU activity
is known for a fraction of 3.33% of the slots i.e., for 100 slots. The parameters of
the HMM are estimated by maximizing the generating probability of the sequence
using the Particle Swarm Optimization (PSO). For the typical values of the network
parameters, the experiments are performed and the results are presented. A novel
sum squared error minimization based “Empirical Match” algorithm is proposed for
an improved latent sequence estimation.
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1 Introduction

A fast pace development of wireless technologies such as Internet Of Things and the
emerging 5G technology demand for a continuous availability of spectrum resources
for all its users. However, the major bottleneck is the spectrum scarcity problem that
might be a consequence of either poor throughput of the network due to congestion
or lack of available spectrum resources [5, 8, 9]. The Cognitive Radio technology
aims at improving the spectrum utilization and network throughput by enabling the
unlicensed users (Secondary Users (SU)) to access the resources of the licensed user
(Primary User (PU)) whenever the PU is not utilizing the allocated resources. For an
extensive utilization of the resources, the SUmust learn the behavior or trend of how
the PU is utilizing the resources. Physical spectrum sensing based on energy detection
is performed in-order to know the presence of licensed user. However owing to the
erroneous channel conditions due to external noise and interference from other users,
it is highly possible that the results of physical spectrum sensing are not reliable. The
following cases may arise:

1. If the PU is idle, and the physical spectrum sensing decides that the PU is active -
False alarm, then it will lead to under-utilization of the spectrum resources, since
neither the PU is using the channel nor the SU can make use of the free channel
owing to false detection. This will have an adverse impact on the throughput and
efficiency of the channel.

2. If the PU is busy and the SU senses the channel to be free - Miss detection,
then the PU and the SU will simultaneously attempt to transmit data i.e., channel
contention thereby resulting in congestion.

Hence, the SU cannot rely on the outcome of physical spectrum sensing. A more
accurate estimate of PU activity is needed for opportunistic spectrum access by the
SU to utilize the spectrum resources without leading to congestion in network and
also increasing the network throughput.

2 Problem Formulation

The SU performs the physical spectrum sensing at sensing slots that are uniformly
distributed over time. Let the PU spectrum access be represented by the random
vector S. The outcome of the random vector in each sensing slot can be either 0
(PU is inactive) or 1 (PU is active). The SU performs spectrum sensing based on
energy detection. Let V be a random vector that denotes the outcome of physical
spectrum sensing, the outcome of the random vector will be a binary sequence.
Under ideal conditions the outcome V is same as S. However, in real time the result
of the physical spectrum sensing and the actual PU activity are seldom in coherence.
Hence, the problem under consideration is to estimate the PU activity as accurately
as possible, given the SU observation sequence. The solution to this problem is to
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model the CR network as HMM [1] and extract the hidden network parameters which
will further aid in estimating the PU activity more precisely.

2.1 Hidden Markov Model

The Hidden Markov Models (HMM) belongs to the class of mixture models, where
the latent variables are discrete and belong to a finite set. The HMM consists of two
stochastic processes of which one is hidden - latent. The other stochastic process is
a result of the hidden process and is referred to as observation sequence. The hidden
process in case of HMM is a markov process. A markov process of first order can
be defined as the one in which the next state of the process depends only on the
current state of the process and is independent of all the past history of the process.
As mentioned earlier, the latent states of the HMM form the markov chain of first
order [2, 3].

The latent state of the HMM at nth instant can be represented by a variable Sn that
takes a value from a discrete set of k values and yields an observation Vn , where, k
is the number of distinct states involved in the markov process. The latent process of
the HMM is characterized with the transition probability defined as pi j = P(sn+1 =
j/sn = i), where i, j ∈ k. The observation process is a result of the hidden latent
process that is generated as a result of emission of observations from the latent states.
The emission of the observations depends on the emission probabilities defined as
hi j = P(vn = j/sn = i). Each possible value of latent state is associated with a
prior probability πk = P(s1 = k), such that,

∑
k πk = 1. The transition probabilities

and emission probabilities of a two state HMM can be represented in the form of
tables as in Fig. 1. In the Fig. 1, Si and Sa are the two distinct states in the markov
process, where subscript ′i ′ and ′a′ indicate inactive and active in accordance with
the application in CR network. Similarly, Vi and Va implies the observation result,
where, i and a hold the same meaning.

A HMM can be completely described by a model defined by λ = [π A O],
where, A is a matrix representing all possible transition probabilities between dif-
ferent states and O represents all the possible emission probabilities.

Fig. 1 a Transition probability table. b Observation probability table
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Regarding theproblemof spectrumestimation, the only information availablewith
the SU is the erroneous observation sequence V . The HMM model corresponding
to the CR Spectrum estimation problem is as shown in Fig. 2. Using V , the HMM
model (i.e., λ = [π A O]) is to be estimated. Using the estimated HMM model
parameters, further, the PU activity sequence is to be estimated. Hence, the Spectrum
Estimation problem in hand can be broadly split into two tasks, where the solution
of first problem paves way to solve the second problem.

1. Task 1 To estimate the model λ
2. Task 2 To estimate the hidden PU activity S.

A generalized flow chart illustrating the steps employed for solving spectrum
estimation problem is as in Fig. 3.

Fig. 2 Hidden Markov model of SU in cognitive radio network

Fig. 3 Generalized steps involved in spectrum estimation problem
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3 PSO Based Estimation of Hidden Parameters of Network
- Task 1

The first problem associated with the spectrum estimation is to estimate the hidden
parameters of the network (CRmodeled asHMM). This can be solved conventionally
by using Expectation Maximization (EM) algorithm. The algorithm aims at finding
the solution that maximizes the probability of generation of model.

3.1 Expectation Maximization

The EM algorithm [4] is an iterative algorithm that tries to adjust the model parame-
ters such that the probability of generation of the random vector V , given the model
parameters increases. It provides the Maximum likelihood solution to the problem.
The generation probability of the model can be described by (1)

G = (π0)
1−s1(1 − π0)

s1
i=N−1∏

i=1

psi si+1hsi+1vi+1 (1)

The EM algorithm can be summarized as follows

1. Initialize the model with random parameters
2. Run EM algorithm (Refer Appendix) till convergence (200 iterations)
3. Repeat steps 1 and 2 for 10 times
4. From output in step 3, choose the best solution (model parameters that give

maximum probability of generation) as λest .

However, there are a few drawbacks associated with the EM algorithm

1. The EM algorithm takes large time for convergence, i.e., slow convergence
2. The solution obtained using EM depends on the initialization, a bad initialization

will result in convergence of EM algorithm to a local maxima.

3.2 PSO Based Proposed Technique

The use of CI technique - Particle Swarm Optimization (PSO) can be used to over-
come the disadvantages of conventional EM algorithm. Particle SwarmOptimization
(PSO) is a biologically inspired computational intelligence algorithm. Swarm here
refers to a group of living objects such as a flock of birds, school of fishes etc. Each
bird in the flock is technically referred to as particle in the swarm. The aim of the algo-
rithm is to emulate the biological behavior of birds in theway they inter-communicate
to reach their home(destination). It has been studied that the final decision of the bird
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about the direction in which it has to fly is based on the individual decision of that
bird (Local Decision) and the decision of the flock (Global Decision). The objec-
tive is to minimize the distance of the bird from their current location to their final
destination. Hence in general, PSO is a minimization algorithm. Each particle in the
swarm is a potential solution to the problem [6, 7].

PSO Objective Function

The PSO is modeled to find the solution to HMM that maximizes the probability of
generation of the model. The probability of generation of the model is formulated
in terms of two iteratively updated variables. A forward probability variable F(r, t)
is considered, which takes care of generation of the random sequence V , upto the
r th frame, with the condition that the r th frame gets generated from t th state. The
forward probability variable can be written in a recursive manner as,

• Initialization: F(1, 0) = π0 ∗ P(V1/S1 = 0) and F(1, 1) = π1 ∗ P(V1/S1 = 1)
• Recursive equation

F(r, t = i) = F(r − 1, t = 0) × p0,i × P(Vr/t = i)+
F(r − 1, t = 1) × p1,i × P(Vr/t = i); ∀i = 1 or 0

(2)

• Terminate when r = N (final state/ final slot)

A backward probability vector B(r, t) is used, which governs the generation of
random vector V from (r + 1)th frame to N th frame, under the condition that the
r th frame gets generated from t th state. Backward probability can be written in a
recursive manner as

• Initialization: B(N , 0) = 1 and B(N , 1) = 1
• Recursive equation

B(r, t = i) = B(r + 1, t = 0) × pi,0 × P(Vr+1/t = 0)+
B(r + 1, t = 1) × pi,1 × P(Vr+1/t = 1); ∀i = 1 or 0

(3)

• Terminate when r = 1.

The generation probability of HMM can be written in terms of F(r, t) and B(r, t)
as

G =
1∑

t=0

F(r, t) × B(r, t); r ∈ 1, 2, 3, . . . , N (4)

The objective function of PSO is hence formulated using (4) as J = 1
G .

PSO Algorithm

The outcome of the vector [π0 p10 p01 h10 h01] (hidden parameters) is treated as the
position of the particle. The distance from the destination position is treated as the
objective function J = 1

G . It is noted that the elements of the vector are probabilities
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and hence the range is restricted between 0 to 1. The PSO algorithm is adopted that
minimizes the objective function J is as given below.

1. Initialize the positions of the particles a1, a2, . . . aN . (with the elements of the
vector ranging from 0 to 1).

2. initialize the tentative next positions of the birds b1, b2, . . . bN (with the elements
of the vector ranging from 0 to 1). Compute the corresponding cost function
associated with the corresponding particles as J1, J2, . . . JN .

3. Compute t = argimin Ji .
4. Identify the next set of locations as follows.

ci = |ai + α1 × (bi − ai ) + α2 × (bt − ai )|
if (ci >= 1), ci is randomly chosen with the elements ranging from 0 to 1.

5. Assign ai = ci .
6. Compute the cost function associated with the corresponding particles c1, c2, . . .

cN as K1, K2, . . . KN .
7. If Ji > Ki , then bi = ci else bi = bi .
8. Repeat the steps for finite number of iterations and the best particle’s position

corresponding to the lowest functional value J is declared as the estimated hidden
parameter.

An illustration of how particles move in PSO occurs is as in Fig. 4. In the figure,
the boundary of box is having range from −1 to +1, because, the particle elements
are probabilities that can take a valid value in range 0 to 1. 3 particles are considered.

Fig. 4 Illustration of PSO particle movement
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In the illustration, the triangles represent the initial position of the particles and
the circles represent the tentative next position (local decision) of the particles. The
global decision of the flock (green circle) can be considered as the one that is nearest
to the destination (purple star). For understanding the particle motion in space, let
us consider the maroon color particle (triangle) movement. The particle movement
is governed by a linear combination of the particle’s local decision (maroon circle)
and the flock global decision (green circle). Also, in the box, the portion colored
green is the safe zone which corresponds to a valid probability value and red color
corresponds to the restricted zone - invalid probability values. A case of the linear
combination resulting in the location of the particle’s next position (orange diamond)
in the restricted zone is considered for illustration. In such case, the particle is flipped
back to a position in the safe zone (blue diamond). A case that the particle position
outside the box boundary might also arise. In such a case, the particle is positioned
in a random location within the safe zone and iterations continue.

Since it is assumed that the PU activity is known for first 100 slots out of 3000
slots in a frame, the information is utilized to estimate the parameters of the HMM
parameters. The initialization of PSO is made using the known information.

4 Proposed Technique to Estimate the Outcome of Random
Vectors - Task 2

Empirical Match Algorithm

Estimation of the the outcome of the random vector S given the outcome for the
random vectorV and the estimated hidden parameters λest fromTask 1 is proposed to
be done using the Empirical Match algorithm as described below. For the estimation,
it is assumed that the actual outcome of the random vector S is known for 1/30th
(3.33%) of the sequence. The rest of the 96.67% of the sequence is estimated using
the empirical Match algorithm. The objective of the algorithm is to minimize the
Sum Squared Error (SSE) of the stochastic parameters used for estimating S. The
algorithm of the proposed technique is as follows

1. Trend of transitions in the sequence is assumed to be known for 1/30th of the
sequence (say n slots information is known)

2. For the next outcome of random vector V , i.e., Vn+1, the SSE is calculated con-
sidering the possibility of generation of Vn+1 from Sn+1 = 0 and Sn+1 = 1.

3. The Sn+1 that gives lower value of SSE is considered and the estimated sequence
Sest is updated.

4. Repeat steps 2 and 3 till n = N .

The flow chart of the algorithm is as in Fig. 5. The algorithm tries to track closely the
changes in the parameters while estimating the activity of the PU in every successive
slot, there by providing a reliable estimate of the PU activity.
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Fig. 5 Flowchart illustrating
the empirical match
algorithm

5 Experimental Setup and Results

The spectrum sensing is performed at uniform intervals of times referred to as sensing
slots or just slots. The sensing results (1 or 0 basedwhether the PU is active or inactive
in the slot respectively) in the slots are considered as the outcome of random vector
S. It is assumed that the CR network parameters donot cange over 300000 slots
(Stationary process). For the purpose of experiment, the spectrum sensing data is
arranged into a 100 × 3000matrix. Each row of thematrix is referred to as a frame. It
is assumed that activity of the PU is known for 3.33%of slots per frame, i.e., 100 slots
per frame. HMM model of the CR network is considered and the model parameters
are the set of transition and emission probabilities of the HMM model represented
by the vector λ = [π, p10, p01, h10, h01]. The definition of the elements of the HMM
model is provided in Sect. 2. The elements of vector λ reflects to the PU activity
−[π, p10, p01] and the erroneous channel conditions−[h10, h01]. The PU is assumed
not to change its state within a slot and also it is assumed that the probability that
the PU continues to be active/inactive for some slots continuously, once it becomes
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active/inactive is high i.e., p11 and p00 is high compared to p10 and p01. The choice
of the emission probabilities h01 and h10 is made randomly, a high value of which
indicates bad channel conditions and hence a high probability of error in sensed
sequence and vice-versa.

Estimation of PU Activity Using Conventional and Proposed Techniques

The spectrum estimation is performed using

1. Conventional method Expectation Maximization followed by Empirical match
algorithm

2. Proposed method using PSO followed by Empirical match algorithm.

Experiments were performed for 6 different sets of typical combinations of CR
network parameters (HMM parameters). The performance of the proposed algo-
rithms is compared with the conventional solution. The result is oriented on estimat-
ing the PU activity. The solution obtained using the Proposed CI technique and the
conventional method is compared with the result of the physical spectrum sensing
which clearly illustrates the need for the proposed algorithm. The comparison is
done in terms of percentage of match of the estimated sequence with the actual PU
activity sequence. Also, the percentage of miss detection and false alarm is compared
which is an indication of reduced number of errors in the estimated sequence. The
spectrum estimation was performed using the conventional EM algorithm and the
PSO algorithm followed by empirical match algorithm and results are tabulated in
Table1.

The PSO algorithm with 500 particles was run for 10 iterations and the con-
vergence graph is as shown in Fig. 6. Also an illustration of the HMM parameter
estimation using PSO is shown in Fig. 7 for one set of typical network parameters
(refer to set 1 in Table1). The solution obtained using PSO is compared with the orig-
inal parameters as well as with the initial estimate of parameters using the known

Fig. 6 PSO Convergence
Plot
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Fig. 7 Parameter estimation
using PSO (set 1 in Table1)

Fig. 8 Convergence plot of
empirical match algorithm
(SSE minimization)

information (100 slots). It can be seen that, for all parameters, the PSO solution tries
to converge closer to the original parameter value (Fig. 7).

The Empirical match algorithm is executed once the parameters are estimated
using the PSO algorithm and Expectation maximization. The assumption that the
PU activity is known for 3.33% of slots holds true for empirical match algorithm.
Hence, usingEmpiricalmatch algorithm, the rest 2900 slot activity ofPU is estimated.
Estimation of PU activity in every slot beginning from the 101th slot to the 3000th
slot is done with the objective of reducing the Sum Square Error (SSE) between
the estimated and obtained parameters. The Convergence plot of SSE in Empirical
Match algorithm is as shown in Fig. 8.
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Fig. 9 Illustration of comparison of physical spectrum sensing with the spectrum estimation using
EM and PSO

An illustration of the results of physical spectrum sensing, estimation using EM
followed by empirical match and estimation using PSO followed by empirical match
is shown in Figs. 9 and 10. The figures correspond to the various sets of network
parameters considered for performing the experiments. The figures follow a color
code RGB, where, Red and Blue are used to represent the mismatch between the
estimated sequence and the actual PU activity sequence. Amongst Red and Blue.
Red indicates miss detection and Blue indicates false alarm. The green color is used
to indicate the match which is the main focus of the experiments.
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Fig. 10 Illustration of comparison of physical spectrum sensing with the spectrum estimation using
EM and PSO

6 Conclusion

The chapter proposes a computational intelligence based solution for spectrum esti-
mation in cognitive radio networks. The solution proposed uses the Particle Swarm
Optimization (PSO) followed by the novel Empirical Match algorithm. The futility
of the physical spectrum sensing for opportunistic spectrum access can be overcome
by using the proposed CI based technique. An average improvement of 55.36% over
the physical spectrum sensing is obtained by the use of PSO followed by empirical
match which accounts for additional match of one lakh sixty six thousand slots. This
implies that the SU can better utilize the spectrum, thereby improving the spectrum
utilization and network throughput. The proposed CI based algorithm was compared
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with the conventional solution to the problem using the expectation maximization
followed by empirical match algorithm. It can be seen from Table1 that the CI
based solution to spectrum estimation problem outperforms the convention solution
to problem as well as the physical spectrum sensing method (Energy Detection).

7 Future Scope

The experiments are performed based on the assumption that the PU activity is known
for 3.33% of total time i.e., 100 slots. Scope for further reduction in the amount of
known information can be seen. It is believed that the spectral estimation match can
be improved by increasing the number of states in the HMM.

8 Appendix

Expectation Maximization Algorithm The EM algorithm used in our algorithm is
as follows.

Consider the HMMwith N observations. Let the observation sequence be defined
as V = [

V1V2 . . . VrVr+1 . . . VN
]
, where r is the index variable, r = 1, 2, . . . N .

Also, since the Latent states of the HMM are governed by the PU activity, the
Latent state can be in either of the two states, let the state of the PU be denoted by a
binary variable, ′t ′.

Let F(r, t) denote the forward probability variable and B(r, t) denote the back-
ward probability variable.
F(r,t) means the probability of generating the observation sequence till the r th bit,
with the condition that the r th bit is generated from PU being in t th state. A recursive
formula for forward probability can be written as in Eq.5. The initializations being:
F(1, 0) = π0 ∗ P(V1/S1 = 0) and F(1, 1) = π1 ∗ P(V1/S1 = 1)

F(r, t = i) = F(r − 1, t = 0) × p0,i × P(Vr/t = i)+
F(r − 1, t = 1) × p1,i × P(Vr/t = i); ∀i = 1 or 0

(5)

Similarly, B(r, t) denote the probability of generating the observation sequence from
(r + 1)th bit till end, with the condition that the r th bit is generated from the PU being
in state t . A recursive relation can be developed for finding the backward probability
as in (6). The initializations are B(N , 0) = 1 and B(N , 1) = 1

B(r, t = i) = B(r + 1, t = 0) × pi,0 × P(Vr+1/t = 0)+
B(r + 1, t = 1) × pi,1 × P(Vr+1/t = 1); ∀i = 1 or 0

(6)
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Let M(Vr , t = i) denote the fraction of Vr th bit being generated by the PU in
state t = i , i∈(1,0 ). Then M(Vr , t) can be obtained as

M(Vr , t = i) = F(Vr , t = i) × B(Vr , t = i)

F(Vr , t = 0) × B(Vr , t = 0) + F(Vr , t = 1) × B(Vr , t = 1)
(7)

Let Q(Vr , i, j) denote the fraction of bit Vr being generated as a result of transition
of PU from state i to state j

Q(Vr , t = i) = F(Vr , i) × pi j × P(Vr+1/t = j) × B(Vr+1, j)
∑1

i=0

∑
j=0,1 F(Vr , i) × pi j × P(Vr+1/t = j) × B(Vr+1, j)

(8)
The HMM model parameters can be estimated to maximize the probability of

generation of the observation given the stochastic HMM parameters. The different
stochastic parameters namely, the transition probability, observation probability and
the prior probability can be derived using (7) and (8).
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Computational Intelligence for Pattern
Recognition in EEG Signals

Aunnoy K Mutasim, Rayhan Sardar Tipu, M. Raihanul Bashar,
Md. Kafiul Islam and M. Ashraful Amin

Abstract Electroencephalography (EEG) captures brain signals from Scalp. If
analyzed and patterns are recognized properly this has a high potential application in
medicine, psychology, rehabilitation, and many other areas. However, EEG signals
are inherently noise-prone, and it is not possible for human to see patterns in raw
signals most of the time. Application of appropriate computational intelligence is
must to make sense of the raw EEG signals. Moreover, if the signals are collected by
a consumer grade wireless EEG acquisition device, the amount of interference is ever
more complex to avoid, and it becomes impossible to see any sorts of pattern without
proper use of computational intelligence to discover patterns. The objective of EEG
based Brain-Computer Interface (BCI) systems is to extract specific signature of the
brain activity and to translate them into command signals to control external devices
or understand human brains action mechanism to stimuli. A typical BCI system is
comprised of a Signal Processing module which can be further broken down into
four submodules namely, Pre-processing, Feature Extraction, Feature Selection and
Classification. Computational intelligence is the key to identify and extract features
also to classify or discover discriminating characteristics in signals. In this chapter
we present an overview how computational intelligence is used to discover pat-
terns in brain signals. From our research we conclude that, since EEG signals are
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the outcome of a highly complex non-linear and non-stationary stochastic biologi-
cal process which contain a wide variety of noises both from internal and external
sources; thus, the use of computational intelligence is required at every step of an
EEG-based BCI system starting from removing noises (using advanced signal pro-
cessing techniques such as SWTSD, ICA, EMD, other than traditional filtering by
identifying/exploiting different artifact/noise characteristics/patterns) through fea-
ture extraction and selection (by using unsupervised learning like PCA, SVD, etc.)
and finally to classification (either supervised learning based classifier like SVM,
probabilistic classifier like NB or unsupervised learning based classifiers like neu-
ral networks namely RBF, MLP, DBN, k-NN, etc.). And the usage of appropriate
computational intelligence significantly improves the end results.

Keywords Computational intelligence · Pattern recognition
Electroencephalography (EEG) · Brain-computer interface (BCI) · Stationary
wavelet transform (SWT) · SWTSD · PCA · LDA · SVD · Supervised learning
Neural networks · Deep belief network (DBN) · Convolution neural network
(CNN) · Event related potential (ERP) · Fast Fourier transform (FFT) ·Motor
imagery (MI) · Naïve Bayes (NB) · Support vector machine (SVM) · Video
category classification (VCC)

1 Introduction

Being one of the most natural parts in human-computer interaction (HCI), Brain-
Computer Interfaces (BCIs) have shown great promise for the physically disabled
people or people with severe neuromuscular disorders [1, 2]. According to sev-
eral studies, signals recorded from the brain can become a substitute for any job
that requires muscle control or movement [3]. There are a number of methods,
such as electroencephalography (EEG), functional MRI (fMRI), electrocorticog-
raphy (ECoG), calcium imaging, magnetoencephalography (MEG), functional near-
infrared spectroscopy (fNIRS), etc., using which such brain signals can be captured.

Electroencephalography (Scalp EEG) signals, which are small amounts of elec-
tromagnetic waves emitted by the neurons in the brain [4], are one of the most
popularly used signal acquisition techniques in the existing BCI systems due to their
non-invasiveness, easy to use, reasonable temporal resolution and cost effective-
ness compared to other brain signal recording methods [2]. As far as EEG record-
ings are concerned, the signals are the outcome of a highly complex non-linear
and non-stationary stochastic biological process which contain a wide variety of
noises both from internal and external sources. Thus, the use of computational intel-
ligence is required at every step of an EEG-based BCI system starting from removing
noises (using advanced signal processing techniques such as SWTSD, ICA, EMD,
other than traditional filtering by identifying/exploiting different artifact/noise char-
acteristics/patterns) through feature extraction and selection (by using unsupervised
learning like PCA, SVD, etc.) and finally for classification (either supervised learning
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Table 1 Rhythms and their traits of EEG signal

Rhythm Bandwidth Traits

Delta (δ) [0.5–3] Hz This activity occurs in unconscious, anesthetized or in deep sleep
stage but almost no activity when in wake state

Theta (θ) [4–7] Hz Associated with emotional pressure, deep physical relaxation,
and/or deep meditation

Alpha (α) [8–13] Hz This occurs in rest state. Thinking, blinking, etc. makes alpha
waves disappear

Beta (β) [14–30] Hz Beta waves are generated when a person is receiving sensory
stimulation, attentive or thinking actively

Gamma (γ) [31–50] Hz It is related to perceptual and cognition activity; selective
attention can also trigger this

Fig. 1 The 10–20 international system

based classifier like SVM, probabilistic classifier like NB or unsupervised learning
based classifiers like neural networks namely RBF, MLP, DBN, k-NN, etc.).

EEG signals can be broken down into five main rhythms based on their frequency
range: delta (δ), theta (θ), alpha (α), beta (β) and gamma (γ) [4, 5]. A brief description
of the EEG rhythms and traits are shown in Table 1.

EEG relies on the averaging of the responses of many neurons [6]. It is non-
invasive where signal acquiring electrodes are positioned on the scalp according to
the standard 10–20 international system [7] (see Fig. 1) to ensure reproducibility
among studies.

Every electrode in the 10–20 system has a unique identity that identifies which
lobe and hemisphere of the brain does one particular electrode correspond to. The
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letters F, T, C P, andO stand for frontal, temporal, central, parietal, and occipital lobes
respectively. Right hemisphere electrode positions are referred with even numbers
(between 2 and 8) whereas odd numbers (between 1 and 7) correspond to the left
hemisphere. Electrodes positioned on the midline are referred as a “z” (zero) [8].
This means that each of the electrodes provides information to a particular area of
the brain. However, this highly depends on the accuracy of the electrodes’ placement.

One of the biggest disadvantages of EEG signals is that they are highly suscep-
tible to noise mainly because of its non-invasive nature. These noises, often termed
as artifacts, are influenced by extraneous signals, for example electromyography
(EMG)—electrical signals originating from muscles in the face and scalp instead
of signals originating in the brain [9] and electrooculography (EOG)—noise gener-
ated from eye movements/blinking [10]. Also motion artifact is a major source of
noise in EEG due to physical movement of the subject [11]. Fortunately, there have
been a significant number of researches done to utilize advanced signal processing
techniques to overcome these noises [11–15].

There are several EEG signal acquisition devices typically used by researchers in
the literature [16]. They are g.USBamp [17, 18], g.BSamp [19], and g.BCIsys [20]
made by g.tec in Austria, Cerebus [21–23] made by Black-Rock Microsystems in
USA, SynAmps 2 [24–26] made by Compumedics Neuroscan in Australia, wireless
Emotiv EPOC [27–30] made by Emotiv Systems in USA, BrainNet-36 [31], ANT-
Neuro [32], FlexComp Infiniti encoder [33], etc. In the recent past, a whole new
domain for BCI researchers have opened up thanks to the advent of low-cost, easy to
use portable dry/wet electrode wireless EEG recording devices such as NeuroSky’s
MindWave [34], InteraXon’s Muse [35], Emotiv EPOC [27], etc. which have been
used by researchers in several studies [4, 36–38] as well.

The objective of BCI systems is to extract specific signature of the brain activ-
ity and to translate them into command signals to control external devices (see
Fig. 2) [39]. These features can be P300 evoked potentials, event-related potentials
(ERPs) recorded on the cortex, slow cortical potentials (SCPs), sensorimotor rhythms
acquired from the scalp, neuronal action potentials recorded within the cortex, etc.

Computational Intelligence is mainly involved in the Signal Processing module
in Fig. 2 which can be broken down into four submodules [2]:

• Pre-processing—removal of noises/artifacts from the EEG signals,
• Feature Extraction—extracting features from the EEG signals,
• Feature Selection—selecting only the features that contains most of the informa-
tion and

• Classification—deciding to which group does this set of EEG signals correspond
to.

Researchers often skip the Feature Selection submodule [40–46] because, this step
is only useful when the size or the dimensions of the features extracted by step (ii) is
quite large. Large feature sets correspond to slower execution time making several
BCI systems completely useless, especially online BCI systems. Thus, the Feature
Selection step is used as a dimensionality reduction step to speed up computational
time.



Computational Intelligence for Pattern Recognition in EEG Signals 295

Fig. 2 A general description of a BCI system. The signal processing module can be divided into
four submodules: pre-processing, feature extraction, feature selection and classification

In this chapter, we first present a thorough review of several articles for different
BCI paradigms. Our focus is on algorithms used by researchers for each of the
submodules of the Signal Processing module of a BCI system to solve a particular
problem. Then, we analyze different contemporary algorithms for each submodule
of a Signal Processing module on two datasets we acquired from:

• 19 college-aged young adults using Emotiv EPOC [27] at a sampling frequency
of 128 Hz and

• 19 college-aged young adults using the Muse headband [35] at a sampling fre-
quency of 220 Hz

where each of the participants was shown three different types of videos [47].

2 Use of Computational Intelligence in Different BCI
Applications

Based on brain activity patterns, there are mainly four types of EEG-based BCI
systems [16]—event related desynchronization/synchronization (ERD/ERS) [48],
steady-state visual evoked potential (SSVEP) [2], event-related potential (ERP) [49],
and slow cortical potential (SCP) [50]. Except for SCP, the other three are most
popular among researchers [51–53].

These EEG-based BCI paradigms have led to many BCI applications. Emotion
classification [36, 54–56], cognitive task classification [38, 57], P300 spellers [58–62]
and others [63, 64] as an alternative and augmentative communication (AAC) plat-
form [65], brain-controlled wheelchair [66–69], controlling a robot [70–73], rehabil-
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itation of locked-in patients [74–78], neuro-prosthesis [79–82], gaming [83, 84], etc.
are just a few examples. In this section, we will discuss about different pattern recog-
nition techniques used by researchers for the detection of the three most prominent
brain activity patterns i.e. ERD/ERS, SSVEP and ERP.

2.1 Motor Imagery

One of the most researched domain in ERD/ERS based BCIs are Motor Imagery
(MI) [85–87]. MI corresponds to the imagination of moving a body part (for exam-
ple right/left hand, tongue, both feet, etc.) without actually moving it. Oscillatory
activities can be observed in different locations in the brain’s sensorimotor cortex
for different MI tasks. The objective is to classify such activities to be able to rec-
ognize the underlying MI task performed [88]. To achieve this, researchers in the
past have experimented with various algorithms to improve the efficiency of the sys-
tem as much as possible. A summary of different techniques used by researchers is
presented in Table 2.

Band-pass filtering the EEG data from 0.5 to 30 Hz, Hamedi et al. [40] imple-
mented Integrated EEG (IEEG) and Root Mean Squares (RMS) as feature extraction
algorithms and Radial Basis Function (RBF) Neural Networks and Multilayer Per-
ceptron (MLP) as classifiers for three class (right/left hand and tongue movement)
MI classification. Comparing these algorithms with Support Vector Machine (SVM)
classifier andWillison Amplitude (WAMP) feature extraction algorithm, it was illus-
trated that SVM performs better with regards to accuracy and time taken for training
and WAMP was more suitable than RMS and IEEG.

Chatterjee et al. [89] classified the BCI competition II [94] MI dataset of left and
right-hand movements with the accuracy of 85% and 85.71% for SVM and MLP
respectively. They achieved this result by applying wavelet-based energy-entropy
method as the feature extraction technique and average power-based feature provided
better ROC area than the statistical feature. Their data were filtered using an elliptic
band-pass filter on the range 0.5 to 30 Hz.

An et al. [90] in their paper also used an elliptic band-pass filter to attenuate signals
in the range of 8 to 30Hz and usedNeuroscan software to removeEOGartifacts. They
found that deep belief network (DBN) gives a 4–6% better performance compared
to SVM when DBN was constructed with the combination of Restrict Boltzmann
Machine (RBM), Adaboost algorithm and Contrastive Divergence (CD) for 8 hidden
layers. Number of nodes had no effect, but subject’s concentration and status played
an important part in the performance of the classifier.

In a study [88] on BCI competition IV dataset 2b and competition II dataset III
[94], the authors applied a combination of convolutional neural network (CNN) and
stacked autoencoders (SAE) model and achieved an accuracy of 90.0% whereas the
winner algorithm achieved 89.3% accuracy. According to kappa value, 9% improve-
ment was achieved using this deep learning approach than the BCI competition
winner algorithm.
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Table 2 Summary of algorithms used by researchers for MI-based BCI

Authors Pre-processing Feature
extraction

Feature selection Classifier

Hamedi et al.
[40]

Band-pass filter,
0.5–30 Hz

IEEG, RMS and
WAMP

MLP, RBF
Neural networks
and SVM

Chatterjee et al.
[89]

Elliptic
band-pass filter,
0.5–30 Hz

Wavelet based
energy-entropy
method

Average power
band

SVM and MLP

An et al. [90] Elliptic
band-pass filter,
8–30 Hz

DBN and SVM

Tabar et al. [88] CNN and SAE

Kevric et al. [41] Band-pass filter,
0.05–200 Hz
MSPCA as noise
removal
technique

EMD, DWT and
WPD

k-NN

Hsu et al. [91] Gaussian filter CWT along with
student’s
two-sample
t-statistics

GA SVM

Li et al. [92] Band-pass filter,
0.05–200 Hz

Mean, standard
deviation,
skewness,
maximum,
minimum and
kurtosis

CC-LR

Zhang et al. [93] Band-pass filter
(0.5–100 Hz) and
a 50 Hz notch
filter

CSP SBLFB

Kevric et al. [41] presented a comparison among three feature extraction meth-
ods— Discrete Wavelet Transform (DWT), Wavelet Packet Decomposition (WPD),
and Empirical Mode Decomposition (EMD). The maximum average accuracy of
92.8% was achieved with the combination of Multiscale Principal Component Anal-
ysis (MSPCA) as noise removal technique, higher-order statistical features extracted
from WPD sub-bands and k-nearest neighbour (k-NN) as the classifier. EEG data
were band-pass filtered from 0.05 to 200 Hz.

Hsu et al. [91] classified 10 subjects’ motor imagery data with SVM, genetic
algorithm (GA) as feature selection method and student’s two-sample t-statistics and
continuous wavelet transform (CWT) as feature extraction method. They achieved
an average classification accuracy of 86.7%. Gaussian filter was used in order to
smooth the power spectrum data.

In [92], a modified cross-correlation based logistic regression (CC-LR) algorithm
was used on three statistical feature sets consisting of mean, standard deviation,
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skewness, maximum, minimum and kurtosis as six features for BCI competition III
dataset IVa and IVb [94]. Their algorithms provide better accuracy in three out of
five subjects when compared with eight other known algorithms and the difference
between proposed method accuracy and BCI competition III winner algorithm is
0.3. Digitized data of 1000 Hz was band-pass filtered between 0.05 to 200 Hz with
a 16-bit accuracy.

Zhang et al. [93] achieved 81.7% accuracy (with ±15.1 standard deviation) and
computational timeof less than10 seconds by implementing sparseBayesian learning
of frequency bands (SBLFB). They extracted features via common spatial pattern
(CSP) and achieved better results when this combination was compared with other
proposedmethods implemented on the BCI Competition IV IIb dataset [94]. A band-
pass filter was applied (0.5–100 Hz) with a 50 Hz notch filter.

2.2 Steady State Visual Evoked Potential

When the flickering frequency of the visual stimuli matches the frequency of the
firing frequency of the visual cortex’s neurons, the resulting brain signals are called
Steady State Visual Evoked Potential (SSVEP) [95, 96]. SSVEP is identifiable in the
range 5–60 Hz and is a very useful BCI tool due to its quite low signal to noise ratio
(SNR). SSVEP can easily be identified in EEG signals and therefore it is possible to
classify various kinds of visual stimuli. Researchers in the past have experimented
with various techniques to classify these stimuli with competitive results.

Chen et al. [45] proposed aSSVEP-based single-channelBCI systemusing control
algorithm and fuzzy tracking for amyotrophic lateral sclerosis (ALS) patient. Fuzzy
control algorithm achieved average recognition rate of 96.97% compared to 94.9%
achieved by canonical correlation analysis (CCA). In their proposed BCI system,
they used fast Fourier transform (FFT) as feature extraction algorithm and in the pre-
processing module, to extract data in the range 4–60 Hz, a 2nd-order Butterworth
band-pass filter.

Maronidis et al. [97] proposed the use of Subclass Marginal Fisher Analysis
(SMFA) to detect SSVEP and compared its result with CCA and Multiple Linear
Regression (MLR) for different number of trials and channels. In both the settings,
SMFA achieved better results than the other two algorithms. Authors used a 3rd
degree band-pass Butterworth Infinite Impulse Response (IIR) filter (6–80 Hz) in the
pre-processing module.

Kalaganis et al. [46] experimented with error-related potentials in SSVEP-based
BCI system. Authors implemented Minimum Covariance Determinant (MCD) as
an outlier detection algorithm or to remove noisy data, Common Spatial Patterns
(CSP) as feature extraction technique, SVM, Random Forrest (RF) and Adaboost
as classifiers. In comparison between SVM, RF and Adaboost, RF provides better
average accuracy (0.8187) and recall rate (0.5633).

In the study conducted by Friman et al. [98], the authors achieved an average clas-
sification accuracy of 84%with theminimumenergymethod as classifierwhich takes
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Table 3 Summary of algorithms used by researchers for SSVEP-based BCI
Authors Pre-processing Feature extraction Feature selection Classifier

Chen et al. [45] 2nd-order
Butterworth
band-pass filter, 4–60
Hz

FFT Fuzzy control
algorithm and CCA

Maronidis et al. [97] 3rd degree band-pass
Butterworth IIR
filter, 6–80 Hz

SMFA, CCA and
MLR

Kalaganis et al. [46] MCD CSP SVM, RF and
Adaboost

Friman et al. [98] Autoregressive
model

Minimum energy
method

Carvalho et al. [99] Butterworth
band-pass (5–60 Hz)
and notch filtered
(58–62 Hz)

Bank of filters,
Welch’s method and
short-term Fourier
transform

Incremental wrapper,
Pearson’s method
and Davies-Bouldin
index

LDA, SVM and
ELM

about 4 msec computational time. Autoregressive model was implemented to calcu-
late the noise level in SSVEP signal. In [99], authors compared between three fea-
ture extraction, feature selection and classification techniques for SSVEP-based BCI
system. They implemented bank of filters, Welch’s method and short-term Fourier
transform as feature extraction methods, incremental wrapper, Pearson’s method
and Davies-Bouldin index as feature selection methods and support vector machine
(SVM), linear discriminant analysis (LDA), and extreme learning machine (ELM)
as classifiers on band-pass Butterworth (5–60 Hz) and notch filtered (58–62 Hz)
EEG signal. LDA provides a better classification accuracy with Welch’s method and
incremental wrapper as feature extraction and feature selectionmethods respectively.
Table 3 summarizes the algorithms used by different studies to classify SSVEP from
EEG signals.

2.3 Event Related Potentials

The very small voltages in the brain structure generated due to the occurrence of
certain events or stimuli are known as event-related potentials (ERPs) [100]. These
fluctuations in the brain signal are evoked by and is also time-locked to a motor,
sensory or cognitive event. Among several types of ERPs, namely N100 or N1, N200
or N2, P100 or P1, P200 or P2, etc., the P300 or P3 is the largest ERP component
which gets triggered during an oddball paradigm. This oddball paradigm is one in
which a participant is presented with a series of events which can be classified into
two groups—frequently presented class and a rarely occurring class. The infrequent
event generates a positive deflection (or a P300 peak) in the scalp voltage about 300
msec after stimulus presentation [101].

This P300 ERP has contributed substantially in the development of several EEG-
basedBCI applications. P300Spellers [58–62],BrainPainting [102, 103], controlling
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Table 4 Summary of algorithms used by researchers for ERP-based BCI

Authors Pre-processing Feature
extraction

Feature selection Classifier

Speier et al. [42] Band-pass filter,
0.1–60 Hz

Ordinary
least-squares
regression [108]

SWLDA

Chaurasiya et al.
[106]

8-order
Chebyshev Type
I band-pass filter,
1–10 Hz

Concatenation of
six samples of all
64 channels

Binary
Differential
Evolution

Weighted
ensemble of
SVMs
(WESVM)

Pinegger et al.
[109]

Band-pass filter
between 0.5 and
100 Hz and a
50-Hz notch filter

FFT SWLDA

Li et al. [43, 44] Band-pass filter,
0.01–30 Hz and a
regression
analysis
algorithm to
remove EOG
artifacts

Wavelet
decomposition
and
reconstruction

SVM and BLDA
[43]
SVM ensemble
[44]

Kulasingham
et al. [107]

Butterworth 4th
order band-pass
filter, 1–30 Hz

Filtered 1 second
epochs

SVM ensemble

a virtual environment [104], gaming [105], etc. are just a few examples. For such
applications the proper detection of the P300 peak, like any other pattern recognition
problem involves pre-processing, feature extraction, feature selection, and classifi-
cation.

Typically, band-pass filters are used on raw EEG signals to extract data in the
range 0.1–30 Hz [101]. Although, Speier et al. [42] and Chaurasiya et al. [106]
used substantially different high cut-off frequencies of 60 Hz and 10 Hz respectively
and were able to achieve very good results. Filtered raw EEG data as features are
not uncommon for P300 Spellers [106, 107]. However, sophisticated methods like
ordinary least-squares regression [108] or conventional methods involving wavelet
transforms [43, 44] can also be found in the literature. Feature selection, as discussed
before, are used only when the size of the dataset is quite big and therefore, out of
the articles summarized in Table 4, only one paper used feature selection methods
[106].

Currently, stepwise linear discriminant analysis (SWLDA) and SVM ensembles
are the two classifiers dominating the detection of the P300 wave in the literature
[42, 44, 106, 107, 109]. In [43], the authors experimented with a different classifier,
Bayesian Linear Discriminate Analysis (BLDA), and noted that although increasing
the training set size decreases the difference in results between BLDA and SVM, the
results of SVM in P300-speller with familiar face model by utilizing a small training
set is better than that of BLDA.
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3 An Experiment with State-of-the-Art Algorithms—Video
Category Classification

In this section, we experimented with several state-of-the-art algorithms (discussed
in the previous section) for each of the submodules of the Signal Processing module
of a BCI system (see Sect. 1) on two datasets we acquired using two EEG signal
acquisition devices (Muse headband [35] and Emotiv EPOC [27]) where each of the
participants were shown videos of three different genres. Our objective is to passively
classify which type of video a person is watching from their Scalp EEG signals as
this is the fundamental step of our long-term goal of building a BCI based passive
video recommender system [47]. This data with preliminary code is downloadable
from [110].

3.1 Experimental Setup and Data Acquisition Techniques

EEG Recordings

As previously mentioned, Muse headband by InteraXon [35] and Emotiv EPOC
[27] by Emotiv Systems were used to record electroencephalogram (EEG) data to
create two datasets. These off-the-shelf wireless devices have been used previously
in several studies as well [4, 36–38]. Muse is a dry electrode EEG recording device
with 5 channels (TP9, AF7, AF8 and TP10 with reference channel at FPz) and the
Emotiv EPOC is a wet electrode device with 16 channels (AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8 and AF4 with two reference channels at P3 and P4)
arranged according to the international 10–20 system.Recording sampling frequency
of the Muse and Emotiv EPOC were 220 Hz and 128 Hz respectively and the data
were wirelessly transmitted to a computer via Bluetooth.

Demographics of Subjects

23 (15 males and 8 females) and 44 (32 males and 12 females) college-aged young
adults contributed to dataset 1 (dataset created using theMuse headband) and dataset
2 (dataset created using Emotiv EPOC) respectively. The subjects had no personal
history ofmental or neurological disorders and had either normal or corrected-normal
vision. The whole experiment for each of the subjects were also recorded using a
webcam. We discarded data of 3 male and 1 female subjects from dataset 1 as after
analysing these videos, we identified that one or more artifacts (excessive blinking,
hand or body movements, etc. even after being instructed to move as less as possible)
were excessively present in the signal. For this reason, we also selected 19 subjects
with the same male to female ratio (12 males and 7 females) from dataset 2 as well
to keep the comparisons between the two datasets legitimate.

All the participants signed informed consent forms prior to the study. The 19
selected participants for each of the datasets 1 and 2 had maximum, minimum,
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Table 5 Details of the video clips

No. Video title Genre Year

1 Birds-of-Paradise Project Introduction Calm, Informative 2012

2 Doctor Strange Official Trailer 2 Fictional 2016

3 The Present—Official Emotional 2016

Hint of 
Start

Blank 
Black 

Screen
Video 1

Blank 
Black 

Screen
Video 2

Blank 
Black 

Screen
Video 3

Blank 
Black 

Screen

2 secs 5 secs 68 secs 5 secs 142 secs 5 secs 171 secs 5 secs

Fig. 3 EEG data collection protocol for video category classification from EEG data

average, and standard deviation age of 26, 20, 22.5 and 1.35 and 23, 19, 21.2 and
1.32 respectively and all the 38 participants were right-handed.

Experimental Setup

Three different types of videos were shown to the participants (see Table 5): 1.
Calming and informative, 2. Fictional and 3. Emotional. The criteria of choosing
these three videos can be found in [47]. A five second blank black screen were
shown between each of the three videos and also, at the beginning and at the end
of the whole experiment. To give a hint of start, a message stating “The video will
start in 5 seconds” was shown for two seconds at the very beginning (see Fig. 3).
The compiled experimental video (accessible online in [111]) was of 6 minutes 43
seconds and the total experimental procedure including device setup took about 10
minutes per subject. The stimuli were presented on a 21.5-inch LED monitor with
60 Hz refresh rate.

3.2 Experimental Study and Findings

Algorithms and Methods

In this section, we list out all the algorithms we experimented with for the Pre-
processing, Feature Extraction, Feature Selection, and Classification submodules
of the Signal Processing module of a BCI system to observe the best algorithm
combination that achieves the highest accuracy in predicting the category of video a
person is watching.

Pre-processing: As the three videos presented as stimuli were of different lengths,
to classify without biasness, we selected one minute of raw EEG data from each of
these videos—the part involved with the main story line of the video. The last minute
of the first video states most of the information, one minute in the exact middle of the
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Table 6 Illustration of SWT coefficients in relation to EEG rhythms in different frequency bands
for dataset-1 using MUSE
SWT Coef
(Level = 5, Fs
= 220)

D1 D2 D3 D4 D5 A5

Freq band
(Hz)

55–110 27.5–55 13.75–27.5 6.825–13.75 3.9125–6.825 0–3.9125

EEG rhythm Gamma Beta Alpha Theta Delta

Table 7 Illustration of SWT coefficients in relation to EEG rhythms in different frequency bands
for dataset-2 using Emotiv EPOC

SWT Coef (Level = 4, Fs = 128) D1 D2 D3 D4 A4

Freq band (Hz) 32–64 16–32 8–16 4–8 0–4

EEG rhythm Gamma Beta Alpha Theta Delta

second video comprises of the main climax and/or story and the last minute of the
third video reveals the emotional climax and thus, we selected raw EEG data from
these parts.

After the extraction of these one-minute data, we carried out experiments follow-
ing three different approaches. We did not use any artifact removal techniques in
our first approach, i.e. used raw data. In our second approach, to remove artifacts,
we used Stationary wavelet transform (SWT) based denoising and as our third arti-
fact removal technique we used an extended SWT technique were we first applied
SWT following which we eliminated all data whose absolute difference was above
2 standard deviation from the mean (SWTSD).

SWT-based denoising was chosen in order to correct stereotyped artifacts such as
muscle artifacts (EMG), motion artifacts, blinking and lateral eyemovement artifacts
(EOG). We chose SWT as it is better than DWT (Discrete Wavelet Transform)
because of its transitional invariance (e.g. slight change in signal does not change
the wavelet coefficients much and thus doesn’t introduce much variations in energy
distribution in different wavelet levels) [112]. A 5-level and 4-level SWT with Haar
as mother (aka basis) wavelet has been applied on the EEG signals recorded from
Muse (Fs = 220 Hz) and Emotiv EPOC (Fs = 128 Hz) headbands respectively.
After the application of SWT, the output consists of final approximate coefficients
(a5/a4)which represent distinct low frequencybands and a series of detail coefficients
(d1− d5/d1− d4) which are the values of high frequency bands (see Tables 6 and 7).
To remove artifacts from EEG signal, the updated universal threshold [113, 114] was
applied on different scales of wavelet coefficients. Finally, by applying inverse SWT
with Garrote threshold function as used in [113, 114], the artifact-reduced EEG data
are reassembled using the latest set of wavelet coefficients.

After applying an artifact removal technique, we experimented with two basic
family of filters namely, Finite and Infinite Impulse Response (FIR and IIR) filters
to band-pass filter out EEG signals in the range 5–48 Hz which also removed EOG
artifacts as they are low frequency signals (less than 4 Hz) [115]. In addition, the
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Table 8 Different filters with their design specifications

Filters Type Specifications

FIR i. Least Squares (FLS)
ii. Equiripple (FE)

Order: 256 for dataset 1
Order: 128 for dataset 2

Sample rate: 220 Hz for dataset 1

Sample rate: 128 Hz for dataset 2

Stopband frequency 1: 4 Hz

Passband frequency 1: 5 Hz

Stopband frequency 2: 48 Hz

Passband frequency 2: 50 Hz

IIR iii. Chebyshev II (Stopband ripple) (ICS2)
iv. Chebyshev I (Passband ripple) (ICS1)
v. Elliptic (IE)

Order: Automatic

Sample rate: 220 Hz for dataset 1

Sample rate: 128 Hz for dataset 2

Stopband frequency 1: 4 Hz

Passband frequency 1: 5 Hz

Stopband frequency 2: 48 Hz

Passband frequency 2: 50 Hz

Table 9 List of feature extraction methods with their default parameters

Algorithm DWT FFT PWelch PYAR STFT

Parameters Wav.: db1
Dec.: 5 for
dataset 1
Dec.: 4 for
dataset 2

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2
Order of AR
model: 20

Nfft: 512
Freq. range:
0–110 Hz for
dataset 1
Freq. range:
0–64 Hz for
dataset 2

selected bandwidth of the mentioned filter also inherently removes the power line
interference (i.e. 50 Hz in our recording location) and its harmonics, thus Notch filter
was not used in the preprocessing stage. We designed two FIR filters and three IIR
filters. Table 8 presents their detailed configurations.

Feature Extraction: The objective of this submodule is extracting useful fea-
tures from the filtered EEG data which are to be used by the Classification step.
There exist several feature extraction algorithms among which we selected: Dis-
crete Wavelet Transform (DWT), Fast Fourier Transform (FFT), Welch Spectrum
(PWelch), Yule—AR Spectrum (PYAR) and Short Time Fourier Transform (STFT).
Table 9 presents the parameters chosen for each of these algorithms.
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Feature Selection: Reduction of the dimensions of the features extracted in the
last step can substantially reduce the execution time with pretty less or ignorable
change in classification accuracy. For our problem, we chose two of the most popular
feature selection algorithms—Principal Component Analysis (PCA) and Singular
Value Decomposition (SVD).

Classification: Six very different type of classifiers in design and architecture
were chosen for the classification submodule—Adaboost (AB), Support Vector
Machines (SVMs), Multi-Class Linear Discriminant Analysis (MLDA), Multiple
LinearRegression (MLR),NaïveBayes (NB) andDecisionTrees (MLTREE). Param-
eters for SVM were chosen kernel = linear and C = 1. An ensemble of 100 weak
classifiers were used in Adaboost. The default parameters implemented by the MAT-
LAB’s Statistics and Machine Learning toolbox were used as parameters for all the
other classifiers.

The 10-fold Cross-Validation approach which in our case is also Leave-One-Out
Cross-Validation (LOOCV) was used as an evaluation criterion for classification
accuracy. We implemented the subject-specific approach in which the classifier is
trained and tested using the data of the same subject, i.e. we divided the data of one
subject into 10 epochs (6 second epochs), trained the classifier with 9 of them and
tested with the remaining one and the whole procedure was repeated 10 times.

A computer with 3.4 GHz processor (Intel Core i7) and 16 GBmemory were used
to run all the experiments and they were implemented using the EEG processing
toolbox developed by Oikonomou et al. [116].

Experimental Results and Discussion

Since, it is impossible to report the results of all the combinations of algorithms
(300 combinations for each artifact removal technique, i.e. 900 combinations) we
chose in the previous section, based on our preliminary results, except for the artifact
removal techniques, we selected two top performing algorithms from each of the
submodules. Thus, as filters we selected FLS and ICS1, PYAR and PWelch as feature
extraction techniques, both PCA and SVD as feature selection methods and NB
and SVM as classifiers. Tables 10 and 11, for dataset 1 (data acquired using Muse
headband) and 2 (data acquired usingEmotivEPOC) respectively, presents the results
achieved for each of the combination of algorithms when different artifact removal
techniques were applied for all the channels of Muse (TP9, AF7, AF8 and TP10) and
corresponding closely located channels of Emotiv EPOC (T7, AF3, AF4 and T8).

Artifact Removal Techniques: For dataset 1 (Table 10), an increase of 3.1% in
average accuracy can be observed when SWT (57.8%) was applied compared to the
average accuracy when raw data (54.7%) were used. The mixture of SWT followed
by SD (SWTSD) was able to achieve even better average accuracy of 61.9% with a
difference of 4.1 and 7.2% with SWT and raw data respectively.
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Table 10 Average accuracies for each of the combination of algorithms when different artifact
removal techniques were applied for all the channels of Muse

Table 11 Average accuracies for each of the combination of algorithms when different artifact
removal techniques were applied for 4 channels of Emotiv EPOC which are close correspondence
with the channels of Muse

Similar results can also be observed for dataset 2 (Table 11). Although, the intro-
duction of SWT (46.8%) slightly improved the average classification accuracy com-
pared to raw data (46.2%), SWTSD (52.2%) substantially improved the results by
6.0%.

The results achieved fromEEGdata of both the devices infer the fact that, EEGsig-
nals are highly prone to artifacts and therefore, appropriate usage of artifact removal
technique(s) can significantly improve classification accuracy. For the video cate-
gory classification (VCC) problem, based on our results we can conclude that, our
new method SWTSD performs better than the conventional artifact removal tech-
nique SWT. It is important to note that this does not however infer that SWTSD will
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Table 12 (a) Average accuracies for each of the combination of algorithms for all the channels of
Muse when feature selection techniques were not applied. (b) Average accuracies for each of the
combination of algorithms for 4 channels of Emotiv EPOC when feature selection techniques were
not applied

(a) (b)

perform better than SWT for other types of studies (e.g. MI, SSVEP, ERP, etc.) as
well.

Impacts of usage of Feature Selection Algorithms: Our analysis will now con-
centrate on the results of SWTSD only as it is the better performing artifact removal
technique. Table 12 present the results for dataset 1 and 2 respectively when feature
selection techniques were not used.

As expected, when feature selection techniques were not used, an increase in
average execution time per subject was observed for both the datasets. For dataset
1, the average execution time increased from 4.03 msec to 6.73 msec (increased by
67.0 percent) and for dataset 2, the average execution time almost doubled from 3.03
msec to 5.96 msec (increased by 96.7 percent).

When all the data are used for classification, the classification accuracy is expected
to be higher compared to when feature selection methods are applied before classi-
fication. Although, as per Tables 11 and 12b, this is the case when Emotiv EPOC’s
data were used (average accuracy of 52.2% and 58.9% with and without feature
selection methods respectively), however, slightly different results can be observed
when Muse’s data were used, i.e. average accuracy decreased from 61.9% to 60.3%
when feature selection methods were not used (see Tables 10 and 12a).

This decrease in accuracy forMuse canbe explainedby the differences in sampling
rate of the two devices (128 Hz for Emotiv EPOC and 220 Hz for Muse). The
number of components chosen by the dimensionality reduction algorithms for both
the datasets remained the same and so, feature selection algorithms hadmore options
to choose from for dataset 1 than for dataset 2 and therefore, the number of redundant
features selected for dataset 1 are less as well. Also, the selected features probably
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had less noise compared to the original data and hence, the classification accuracy
improved.

Channel Selection: To identify which channel is most suitable for the VCC problem,
for the sake of simplicity, our analysis will now concentrate on the results when
feature selection algorithms were applied to the datasets (Tables 10 and 11). Average
accuracies of channels TP9 (58.5%) and TP10 (58.1%) of the Muse headband are
very similar with just a 0.4% difference. The results improve even further to 60.6%
when data of channel AF7 were used. A significant increase in average accuracy
can be observed for channel AF8 (70.3%) located at the right dorsolateral prefrontal
cortex. As videos have the potential to evoke working memory in participants, one
possible reason for such an increase of about 10% for this particular channel can be
explained by the findings of [117] where the authors conclude that right dorsolateral
prefrontal cortex is heavily involved with spatial working memory related tasks.
There can be several other explanations for this abrupt increase in average accuracy
which include emotions triggered by different videos in subjects, attentiveness, etc.

Comparing the results with the electrodes T7 (54.6%) and T8 (56.5%) of Emotiv
EPOC, average accuracies were somewhat similar to that of the Muse headband for
the electrodes TP9 (58.5%) and TP10 (58.1%) compared to the electrodes located at
the frontal lobe. First of all, unlike Muse headband, the average accuracies deterio-
rated substantially for the electrodes AF3 (49.7%) and AF4 (47.9%) in comparison
with the electrodes located at the temporal lobe (T7 and T8). Secondly, the difference
between the average accuracies of AF7 (60.6%) and AF3 (49.7%) was 10.9% and
between AF8 (70.3%) and AF4 (47.9%) a huge difference of 22.4% can be observed.

As reported in several studies [118–121], the performance of Emotiv EPOC com-
pared to other EEG signal acquisition devices, is not up to the mark. This might be
because, as per Fakhruzzaman et al. [122], Emotiv EPOC is a not a medical grade
device, i.e. it is a consumer grade device and the all-size all-fit concept of this device
is not so good as it sounds. Other than these reasons, the deterioration in average
accuracy, specifically for the frontal lobe electrodes, can also be explained by the
difference in spatial position of the two electrodes of the devices (Figs. 4 and 5). AF7
and AF8 of the Muse headband is located on the forehead whereas AF3 and AF4 of
Emotiv EPOC is positioned on or above the hairline on the forehead depending on
the size of the forehead of different individuals. This obstruction of hair for channels
AF3 and AF4 makes them much more susceptible to artifacts compared to the chan-
nels AF7 and AF8 which are placed right on top of the skin and therefore, results of
frontal lobe channels of Emotiv EPOC are worse than that of Muse.

Table 13 provides the average accuracies achieved by each of the 16 combinations
of algorithms for all the channels of Emotiv EPOC when SWTSD artifact removal
techniquewas used. From all the results of theMuse headband (Table 10) and Emotiv
EPOC (Table 13) the only channel that exceeded the minimal BCI performance
criteria of 70% [123] was when data of channel AF8 of theMuse headbandwere used
leading us to conclude that this is themost suitable channel and theMuse headband is
the better device for the VCC problem. The highest average classification accuracy
achieved by this channel was 77.7% (4.83 msec average total execution time per
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Fig. 4 AF7 and AF8 channel locations of the Muse headband

Fig. 5 AF3 and AF4 channel locations of Emotiv EPOC

subject) and the combination of algorithms responsible were SWTSD and FLS for
the pre-processing submodule, PYAR for the feature extraction submodule and SVD
and NB for the submodules feature selection and classification respectively. Even
though none of the channels of Emotiv EPOCachieved theminimal BCI performance
criteria of 70% [123], the channel whose results were closest to it was T8with highest
average accuracy of 66.7% (2.96msec average total execution time per subject) when
SWTSD and ICS1, PWelch, PCA and SVM were used.
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Table 13 Average accuracies for each of the combination of algorithms when SWTSD were used
as an artifact removal technique for all the channels of Emotiv EPOC

The results of the channels located at the occipital lobe of Emotiv EPOC were
surprisingly low. Other than the limitations of Emotiv EPOC mentioned before, this
may be because that although exposure of videos triggers visual evoked potential
(VEP) in the brain, other parts of the brain including the prefrontal dorsolateral
cortex are more involved or is activated when such stimuli are presented.

Future Works: There are several areas we can work on in the future to improve our
results. For example, the order of the IIR filters and the dimensions of the feature
selection algorithms are being selected automatically byMATLAB.Optimizing these
parameterswill have an impact on the results.Weused data epochs of 6 secondswhich
is a big epoch size for EEG related studies as the stationarity of the EEG signals with
increasing epoch duration is expected to disappear [124]. This is a very crucial area
which we hope to address in the future.

The relevant frequency bands for MI (7–30 Hz, mu and beta bands) [125], ERP
(< 4 Hz, delta band) [126] and SSVEP (12–18 Hz) [127] based BCIs are well known
by researchers. Analyzing a relevant frequency band for the VCC problem was
beyond the scope of this study. As discussed in our previous work [47], we hope to
target high-frequency gamma oscillations as they are heavily involved in working
memory load related activity [128–130] and in activities requiring cross-modal
sensory processing—perception combined from two separate senses, for example
from sound and sight [131, 132].

One category of Machine Learning algorithms, neural networks, especially Deep
Learning algorithms which is the recent hype among Machine Learning researchers,
was not used in this study. As Deep Learning algorithms compared to conventional
Machine Learning algorithms are performingmuch better in almost all type of studies
including EEG-based BCIs [88, 90], we believe that using such algorithms will
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improve our results substantially. Also, apart from SWT, there exists several other
artifact removal tools in the literature, e.g. Empirical Mode Decomposition (EMD),
Adaptive filtering, Independent Component Analysis (ICA), etc. which we hope to
apply on the VCC study as well [133].

In addition, in this study, we have used a single feature (either PWelch or PYAR)
during feature extraction step. However, features extracted using combination of dif-
ferent statistical and non-statistical features found in time, frequency and wavelet
domain [133] (e.g. standard deviation, variance, entropy, kurtosis, skewness, period-
icity, maximum or minimum power in all three domains, AR features, line length,
NEO, FFT-based features, etc.) with different weights concatenated into a single
feature vector might enhance the classification accuracy significantly, which is also
one of our future works.

4 Conclusion

This chapter attempted to address the existing computational intelligence techniques
for pattern recognition in one of the EEG-based BCI applications, i.e. Video Cate-
gory Classification (VCC) and their accuracies, challenges and suitability for such
application.

Based on results found from experiments on VCC and reports from other studies,
computational intelligence in BCI systems is problem or application specific and
depends on several factors. For example, as reported in the previous section, data
acquired from two different EEG signal acquisition devices (Muse headband and
Emotiv EPOC) for the same experiment resulted in considerably different results.
The correct choice of the relevant frequency band (e.g. SSVEP, 12–18 Hz [127]) also
plays a crucial role in the end results.

In accordance with other studies [36, 134], it is also found that proper usage
and optimization of artifact removal techniques significantly improves classification
accuracies. Similarly, depending on theBCI paradigm and type, appropriate selection
of feature extraction, feature selection and classification algorithms will also have a
positive impact on the results.

We hope and believe that the rapid progress in technology, both hardware (e.g.
better signal acquisition devices, better computer and smart phone hardware, etc.) and
software (better Machine Learning techniques such as Deep Learning, continuous
improvement of artifact removal techniques, etc.), will in the near future improve
the accuracy and feasibility of BCI systems to a level at which these systems can be
deployed in real world scenarios (e.g. online BCIs) resulting in a better lifestyle of
the physically disabled people and also will increase the quality of life for all people
across the world.
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Appendix

Abbreviation Definition

AAC Alternative and Augmentative Communication

AB Adaboost

ALS Amyotrophic lateral sclerosis

BCI Brain-Computer-Interface

BLDA Bayesian Linear Discriminative Analysis

CCA Canonical Correlation Analysis

CC-LR Cross-Correlation based Logistic Regression

CD Contrastive Divergence

CNN Convolution Neural Network

CSP Common Spatial Pattern

CWT Continuous Wavelet Transform

DBN Deep Belief Network

DWT Discrete Wavelet Transform

ECoG Electrocorticography

EEG Electroencephalography

ELM Extreme Learning Machine

EMD Empirical Mode Decomposition

EMG Electromyography

EOG Electrooculography

ERD Event Related Desynchronization

ERP Event Related Potential

ERS Event Related Synchronization

FE FIR Equiripple

FFT Fast Fourier Transform

FIR Finite Impulse Response

FLS FIR Least Squares

fMRI Functional Magnetic Resonance Imaging

fNIRS Functional Near-Infrared Spectroscopy

GA Genetic Algorithm

HCI Human-Computer Interaction

ICA Independent Component Analysis

ICS1 IIR Chebyshev I

ICS2 IIR Chebyshev II

IE IIR Elliptic

IEEG Integrated Electroencephalography



Computational Intelligence for Pattern Recognition in EEG Signals 313

Abbreviation Definition

IIR Infinite Impulse Response

k-NN K- Nearest Neighbor

LDA Linear Discriminant Analysis

LOOCV Leave-One-Out Cross-Validation

MCD Minimum Covariance Determinant

MEG Magnetoencephalography

MI Motor Imagery

MLDA Multi-Class Linear Discriminant Analysis

MLP Multilayer Perceptron

MLR Multiple Linear Regression

MLTREE Decision Tree

MSPCA Multi Scale Principal Component Analysis

NB Naïve Bayes

PCA Principal Component Analysis

PWelch Welch Spectrum

PYAR Yale - AR Spectrum

RBF Radial Basis Function

RBM Restrict Boltzmann Machine

RF Random Forest

RMS Root Mean Squares

ROC Receiver Operating Characteristic

SAE Stacked Autoencoders

SBLFB Sparse Bayesian Learning of Frequency Bands

SCP Slow Cortical Potentials

SMFA Subclass Marginal Fisher Analysis

SNR Signal to Noise Ratio

SSVEP Steady State Visual Evoked Potential

STFT Short Time Fourier Transform

SVD Singular Value Decomposition

SVM Support Vector Machine

SWLDA Stepwise Linear Discriminant Analysis

SWT Stationary Wavelet Transform

SWTSD Stationary Wavelet Transform with Standard Deviation

VCC Video Category Classification

VEP Visual Evoked Potential

WAMP Willison Amplitude

WESVM Weighted Ensemble of SVMs

WPD Wavelet Packet Decomposition
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Neural Network Based Physical Disorder
Recognition for Elderly Health Care

Sriparna Saha and Raktim Das

Abstract This chapter presents a novel approach to recognize fourteen gestures
which would help us recognize muscle and joint pains in human body. The subject
is acknowledged in a twenty joint skeletal form with the help of Microsoft’s Kinect.
In order to extract features from the subject, those twenty body joints are worked on
and ten features in the form of distances and angles are calculated. For recognizing
unknown sample gestures, a neural network with Levenberg-Marquardt learning rule
has been used. The explainedmethodology provides an accuracy of 88.19%,which is
relatively higher than other algorithms previously used in elderly healthcare domain.

Keywords Gesture recognition · Healthcare · Kinect · Neural network

1 Introduction

Gesture is always more effective way to convey ideas across human-to-human and
human-to-computer when verbal language is absent [1]. People use gestures even
while speaking. Conventionally humans and machines communicate using standard
keys/buttons provided for users to input like in case of keyboards, mouse, joystick,
etc. [1]. But these modes of inputs are inefficient and do not serve the purpose in case
of people with disability. In such cases, identifying these gestures can be employed
as inputs to the machines for better human-computer interaction.
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Currently we have the technology to capture a human body in 3-D space. This
can be done with the help of different human motion sensing devices. One example
of this kind of device is the Microsoft’s Kinect sensor [2–4]. Complex body gestures
related to different physical disorders, can be successfully identified using theKinect.
This device uses the inbuilt RGB camera and 3D depth sensor to map the human
body to its skeletal form. Due to the low cost, this device is used widely in many
application areas.

The body gestures taken into account for this chapter are the symptoms due to
the physical disorders for muscle and joint pains shown by elderly persons. General
causes of these disabilities may be from injury, fatigue, and aging. These disorders
go to advanced stage due to negligence, bad habits and aging of the disabled persons.
So the explained home monitoring system can be utilized as an alternative for the
troublesome process of visiting hospitals on a frequent basis [1].

There are various research proposed previously for the purpose of gesture recog-
nition in elderly healthcare domain, where Microsoft Kinect Sensor is used for gath-
ering the gesture related information. Desk jobs demands long working hours in the
same sitting posture, this results in deterioration in the functioning of tendons and
joints of the personsworking. In [5], the authors have touched upon a techniquewhich
will help in recognizing the symptoms of physical disorders at an early stage. Recog-
nising these symptoms involves principal component analysing for linear dimension-
ality reduction and fuzzy c-means algorithm. Another work in [6] describes similar
type of work for young person by calculating Euclidean distances from each frame
and ReliefF algorithm is used to remove space complexity. The classification is done
using fuzzy k-nearest neighbour classifier. Parajuli et al. has put forth a method for
monitoring senior health using Kinect sensor [7]. The authors have approximated
the gestures when elders are likely to fall by measuring gait. The recognition stage
takes the help of support vector machine. In the current social model where a couple
are both out working elderly healthcare is a major concern. To detect the fall of an
elder, ensemble decision tree is being used along with the Kinect sensor in [8]. Yu
et al. has presented an interesting approach to analyze children tantrum behaviour
[9]. The paper exploits medical knowledge and questionnaire based attitude inves-
tigation. For dimensionality reduction, principal component analysis is applied and
Euclidean distance is employed to estimate the proximity between behaviours like
push, shout and attack. Finally k-means clustering is implemented.

In this chapter, we have explained how a real-time home-monitoring system can
be build which is useful in alarming the subjects in case themuscle and joint pains are
noticed using Kinect. Generally, the majority of daily life activities are performed by
elder personswhile sitting on a chair. Thus, fourteen distinct body gestures associated
with muscle and joint pains are taken into account while the subject is sitting on a
chair.After gathering the gestures of the subjects in the formof joint coordinates using
Kinect sensor, those are being worked upon to extract ten features from each gesture.
Next, the classification is carried out using Levenberg-Marquardt optimization based
neural network. In this process, assistance canbeprovided to elderly people from their
homes itself by monitoring their day-to-day activities. Whenever the system detects
any physical disorders by examining the gestural features, an alarm is generated and
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Fig. 1 Kinect sensor

the subject is recommended to do specific exercises based on the recognized disorder.
But if the same disorder occurs persistently in a specific subject for a long time, the
subject is advised to consult with the doctors.

In Sect. 2, a brief introduction to some preliminary ideas is provided. Sections 3
and 4 elaborates about the proposed work and experimental results respectively.
Section 5 concludes the chapter following with Matlab codes in Sect. 6.

2 Preliminary Knowledge

In this section, a brief introduction to Kinect sensor, physical disorders and neural
network are given.

2.1 Microsoft’s Kinect Sensor

Kinect is manufactured by Microsoft mainly for real-time gaming purposes [2–4].
But this sensor has tremendous scope for home monitoring. It looks like a webcam
with one RGB camera, one IR (infra-red) emitter and one IR receiver (Fig. 1). Based
on the data captured, x, y and depth co-ordinates are measured using RGB camera
IR camera respectively (Fig. 2). Based on these two information, human body is
skeletonised into twenty 3D body joints (Fig. 3). This device can record data within
a distance of 1.2–3.5 m [10, 11]. The Kinect sensor can work twenty four hours in
a day and in almost all lighting conditions (except for fluorescent light). Also the
subject’s dress does not affect the recognition process (until he/she is wearing fully
black dress).
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Kinect Sensor Skeleton ImageRGB Image

Fig. 2 RGB image with its corresponding body joints as recognized using Kinect sensor

Fig. 3 Twenty body joints
as captured using Kinect
sensor
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2.2 Considered Muscle and Joint Pains

Though the definition of old age cannot be governed by any hard boundary, but
after consulting with eminent doctors, the subjects with more than 40 years age
are considered as elderly people. From this age, they tend to show some symptoms
related tomuscle and joint pains. If the disorders can be taken care of at an early stage,
the disorders cannot go to an advanced stage. For this chapter, fourteen gestures are
taken into account while the subject is sitting. The descriptions about the disorders
are given in Table 1.

2.3 Neural Network with Levenberg-Marquardt Optimization

The current chapter briefly discusses the feed forward neural network.A feed forward
neural network is made up of three layers namely an input layer, few hidden layers
and an output layer, and a weighted sum of input flows in forward one direction
only (Fig. 4) [1]. Although a number of hidden layers can be used, one hidden layer
with several neurons can fit any input-output mapping [1]. If satisfactory results
are not obtained, the number of neurons present in the hidden layer may change.
Best output from this method is obtained when ten neurons in one hidden layer is
utilised. A mapping between input domain with output domain is attained using
a random combination of weights which is used so that error between target and
output is reduced. Back-propagation algorithm is another model where the weight
adaption happens from the last to first layer (Fig. 5) [1]. Among different weight
adaptation techniques for implementing back propagation algorithm, Levenberg-Ma
rquardt optimization (LM-NN) [12, 13] has been considered as it excels in gradient
descent search and conjugate gradient (or quadratic approximation) methods for
medium-sized problems.

The drawback of gradient descent learning [13] is that it converges very slowly.
This is because it does not take fixed size step towards negative gradient of the error
function, but it adopts minute step size which is roughly fixed times the negative
gradient.

wi+1 � wi − η ∇ E (w) (1)

The result of this is fast convergence in sharp neighbourhood (large gradient) and
dim motion in valley neighbourhood (small gradient) on the error surface (Fig. 6).
The optimization technique can be speeded up by using the curvature information.
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Table 1 The addressed fourteen gestures related to elderly healthcare

Disorder 
name 

Skeleton

Description RGB image Skeletal image
Pain at left 

side
Pain at right 

side
Pain at left 

side
Pain at right 

side

Lumbar 
spondylosis 

The inconvenience to 
joint is caused due to 
degenerative altera-
tion to the lumbar 
spine. The subject 
suffers from pain in 
the lower back posi-
tion. The subject 
massages the lower 
back by her left hand 
in response to the 
pain

Tennis 
elbow 

Tennis elbow is a 
condition which 
affects the tendon 
and causes pain over 
the lateral aspect of 
the elbow due to 
strain of the tedious 
origin 

Plantar 
fasciitis

The person experi-
ences pain in ankle 
due to strain of the 
plantar fascia as seen 
in the image beside

Osteo-
arthritis 

knee 

Joint problem at 
knee, happens due to 
negative implications 
resulting in pain and 
stiffness of the joint

(continued)
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Table 1 (continued)

Cerviacal 
spondylosis 

Negative changes in 
the cervical spine 
leads to the disorder. 
The patient gets 
relief from the pain 
by holding their neck 
and tilting it

Osteo-
arthritis 

hand 

The degenerative 
change of the joints 
at palm and fingers, 
leading to pain and 
stiffness in the hand. 
To relieve the pain, 
patient normally 
massages the painful 
joints in hand with 
the other arm

Frozen 
shoulder 

Degenerative chang-
es in the shoulder 
resulting in pain and 
stiffness leads to the 
disorder

Both the gradient and curvature can be obtained from the second order information
but it is costly for reckoning. Hence, most of the techniques rely on approximating
the gradient by first order derivative and the curvature by function evaluation.

The error surface is described by mean squared error function in (2) where the
mean is done over the input and output pairs.

E (w) � 〈
( f (x ;w) − y)2

〉
(2)

where x is the input vector to the neural net,

w is the weight matrix of the interconnections,
f (.) gives the output vector from the neural net,
y is the target vector for the neural net, and
E(.) is the error which is a function of weights throughout the training phase.
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When E is a quadratic expression, f (.) is a linear model from which the minima
can be directly evaluated without exploring themost exorbitant descent search. Thus,
estimating f (.) as linear, the weight adjustment rule can be a little modified where d
is a derivative and H is an estimate of Hessian matrix [13] obtained by taking mean
of the first order derivative.
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wi+1 � wi − H−1d (3)

However, it may not be correct to treat E as a q all along the error surface except
near the minima. So, Levenberg merged the two algorithms where at first the mini-
mum is loosely acquired by using the gradient descent learning and then the quadratic
approximation is applied to fine-tune the previous result. Here,weights and all param-
eters are arbitrarily initialized, and the output and respective error are evaluated. The
Levenberg proposed optimization rule (4) is then applied. An enhancement in the
error implies the quadratic approximation is running out and so λ is increased to
implement gradient descent. Similarly, when a reduction in error means minimum is
nearby and so, λ is decreased. The weight adaptation continues to iterate until error
is within a dictated limit.

wi+1 � wi − (H + λ I )−1 d (4)

Marquadt noted that gradient descent search [13] dominates when λ is large. So,
the original Levenberg equation was changed to yield the concluding Levenberg-
Marquardt rule (5) where instead of the identity matrix the diagonal of the approxi-
mated Hessian matrix is used.

wi+1 � wi − (H + λ diag [H ])−1 d (5)

3 Proposed Work

The block diagram of the elderly healthcare related gesture recognition scheme is
shown in Fig. 7. Let, G (=14) be the total number of physical disorders considered
here. For recognition of an unknown gesture u, a training dataset is constructed by
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taking gestural data from K different subjects of a specific disorder g, where g ∈[1,
G]. For each kth gesture for k ∈[1, K], F number of total features (α) are extracted.
The meaning of f th feature for f ∈[1, F] is given in Fig. 8, 9. As the Kinect sensor
is able to capture the human body using twenty 3D joint co-ordinates, using this as
the raw information, features are mined which can be used to distinguish between
a normal gesture and a gesture revealing physical disorder. To construct the feature
vector, ten features are extracted as given in Fig. 8, where α can beD and A implying
denotes Euclidean distance and angle features respectively (Fig. 9). The meanings of
the joint names are already provided in Fig. 3. Hence, a 1×F (=10) feature vector
is prepared for every frame captured using Kinect sensor.
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Fig. 9 Features extracted: (a) distance and (b) angle

Table 2 Preparation of training dataset

Dataset number No. of subjects
(male)

No. of subjects
(female)

Age group

Training dataset 1 14 16 21±3 years

2 18 12 27±2 years

3 22 8 33±4 years

Testing dataset 37 43 27±6 years

Figure 7 also pictorially depicts the philosophy of identifying an unknown ges-
ture, which is passed through the feature extraction step. The testing gesture is then
recognized with the help of neural network, already explained in Sect. 2.3.

4 Experimental Results

Three datasets have been prepared for this work, with thirty subjects (K =30) in each
dataset as provided in Table 2. The feature vector corresponding to a gesture of every
particular disease is enlisted in each of the columns of Table 5.1. The numbering of
the gestures in Table 5.1 is same as that in Fig. 5.1. Table 3.

https://doi.org/10.1007/978-3-319-89629-8_5
https://doi.org/10.1007/978-3-319-89629-8_5
https://doi.org/10.1007/978-3-319-89629-8_5
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Table 3 Sample feature vectors from training dataset 1

Features

α1
g,21 α2

g,21 α3
g,21 α4

g,21 α5
g,21 α6

g,21 α7
g,21 α8

g,21 α9
g,21 α10

g,21

For
g=1

0.39 0.52 0.24 133.92 65.51 127.99 127.80 141.27 133.46 143.68

For
g=3

0.29 0.32 0.23 143.80 57.61 127.70 126.16 136.52 136.46 134.10

For
g=5

0.43 0.48 0.30 87.01 139.51 124.71 104.22 164.35 104.17 109.46

For
g=7

0.2353 0.32 0.32 144.34 118.86 108.16 121.66 162.17 107.22 104.85

For
g=9

0.53 0.38 0.27 135.06 27.61 129.03 126.68 129.19 123.09 126.48

For
g=11

0.05 0.40 0.27 80.41 81.59 117.96 118.59 129.46 142.48 132.70

For
g=13

0.34 0.30 0.27 91.19 119.55 126.99 123.65 134.46 127.42 129.33

The explained work is compared with four other well-known techniques for
the performance analysis. The other existing algorithms are ensemble decision tree
(EDT) [8], type-1 fuzzy classifier (T1FS) [14], support vector machine (SVM) [7]
and k-nearest neighbour (kNN) [15]. EDT classifier is based on adaptive boosting
principle by takingmaximum iterations as 100. T1FS algorithmmeasures the support
of the feature vector based on Gaussian membership curves. SVM algorithm uses a
radial basis function kernel whose kernel parameter has a value 1 and the cost value
of 100 is tuned in the classifier. For kNN, the value of k is taken as 5 and Euclidean
distance based similarity measure with majority voting determines the class of the
unknown gesture.

All the stated algorithms aremulticlass in nature except for SVM,which is innately
binary. The performance analysis is carried out based on positive predicted value
(PPV), negative predicted value (NPV), sensitivity, specificity, accuracy, average
error rate (AER) and F1 score (F1 S) as given in (6–12). Here, TP, TN , FP and FN
stand for true positive, true negative, false positive and false negative respectively.
The comparison for each training dataset for all the performance metrics are given in
Figs. 10, 11, 12 From the three figures, it is evident that LMA-NN is the best choice
for physical disorder recognition for elderly healthcare.

PPV � T P

T P + FP
(6)

NPV � T N

T N + FN
(7)

Sensitivity � T P

T P + FN
(8)
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Fig. 10 Comparison of five algorithms for elderly healthcare for training dataset 1
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Fig. 11 Comparison of five algorithms for elderly healthcare for training dataset 2
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Fig. 12 Comparison of five algorithms for elderly healthcare for training dataset 3

Specificity � T N

T N + FP
(9)

Accuracy � T P + T N

T P + T N + FP + FN
(10)

AER � FP + FN

T P + T N + FP + FN
(11)

F1 S � 2 × Precision × Recall

Precision + Recall
(12)

To statistically validate thework using neural network for elderly healthcare, three
tests are considered. The first one is McNemar’s Test. Here, P and Q are the two
competitor algorithms with same training dataset. Again, let n01 is the number of
cases wrongly classified by P but not by Q, and n10 is the number of cases wrongly
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Table 4 Performance analysis using McNemar’s test
Algorithm=Q Algorithm P=LMA-NN

Dataset 1 Dataset 2 Dataset 3

n01 n10 Z Comment n01 n10 Z Comment n01 n10 Z Comment

EDT 314 417 14.23 Reject 421 416 0.01 Accept 471 401 5.45 Reject

T1FS 583 374 45.20 Reject 293 399 15.93 Reject 225 411 53.81 Reject

SVM 513 398 14.26 Reject 351 425 6.86 Reject 297 378 9.48 Reject

kNN 294 408 18.18 Reject 352 427 7.02 Reject 274 380 16.85 Reject

Table 5 Performance analysis using Friedman and Iman-Davenport tests

Algorithms Dataset 1 Dataset 2 Dataset 3 Ra Friedman
Test

χ2 Comment

LMA-NN 1 2 1 1.33 9.71 Reject

EDT 2 1 2 1.33

T1FS 4 4 3 3.67

SVM 3 3 4 3.33

kNN 5 5 5 5.00

classified by Q but not by P. So according to the null hypothesis considering both
classifiers have the same error rate, the McNemar’s statistic Z obeys a χ2 with 1
degree of freedom [16].

Z � (|n01 −n10| − 1)2

n01 + n10
(13)

FromTable 4, it can be observed that the null hypothesis is rejectedwhereZ>3.84,
as 3.84 is the threshold value of the chi square distribution at probability of 0.05.

The next statistical analysis is carried out using Friedman Test. Here, let rba is the
ranking of the Accuracy obtained by the ath algorithm (1≤a≤A) for the bth dataset
(1≤b≤B). The best and worst of all classifiers is given ranks of 1 and B respectively.
Table 5 gives the idea about Friedman rankings [17].

Ra � 1

B

B∑

b�1

rba (14)

χ2 � 12B

A(A + 1)

[
A∑

a�1

R2
a − A(A + 1)2

4

]

(15)

For the current work, B=3 and A=5. In Table 5, the null hypothesis is rejected,
as χ2

F � 9.71 is greater than the threshold value (i.e., 9.49) of the χ2 distribution for
A −1=4 degrees of freedom at probability of 0.05 [18].
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The last analysis is using Iman-Davenport Statistical Test. It is based on F distri-
bution with (A−1) and (A−1)× (B−1) degrees of freedom [17].

F � (B − 1) × χ2

B × (A − 1) − χ2
(16)

It is evident that the null hypothesis is rejected, as F =8.50 is greater than the
critical value (i.e., 5.05) of the F distribution for A −1=4 and (A−1)× (B−1)=8
degrees of freedom at probability of 0.05 [18].

5 Conclusion and Future Work

The elderly healthcare system for homemonitoring is quite a novel and user-friendly
method of recognizing physical disorders related to joint andmuscle pains. The work
is carried out after consulting with several doctors for preparation of the datasets.
There is a closed loop between the subject and theKinect sensor interfacing computer.
Whenever any ambiguity is detected in the normal day-to-day life of the subject,
alarm is generated. If that physical disorder is continued for several hours in a day,
specific exercise videos are shown to the subjects.

Though the work is mainly demonstrated for elderly people, but it is equally
important for young individuals working in multi-national companies. Due to the
sedentary working environments in the offices, certain muscle and joint fatigues are
developed in the employees. If early detection of those physical disorders can be
done, then it will be beneficial for the employees and in turn total company health
will be improved. As Kinect sensor only detects the skeleton of the subject, thus
privacies of the subjects are persevered. The work can be utilised for other areas, like
e-learning of several dances and sign languages and also training in several sports.

Kinect sensor does not require refresh time and can run throughout a day in
most lighting conditions. But only disadvantage of using Kinect sensor is that its
limited range as it uses the IR. In the future, we should delve into several other data
acquisition techniques that can subdue the limitations stated above with introducing
new gestures covering more physical disorders.

6 Matlab Codes

The input file ‘video_1.txt’ contains the twenty body joints 3D information. Here
the feature extraction procedure is demonstrated using following Matlab code.
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Sample Run: TheMatlab code creates the skeletal image and feature vector as given
in Fig. 3 and Fig. 8 correspondingly.
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Recognizing Subtle Micro-facial
Expressions Using Fuzzy Histogram
of Optical Flow Orientations and Feature
Selection Methods

S. L. Happy and Aurobinda Routray

Abstract Micro-expressions are the subtle and short-lived facial deformations that
convey the inner feelings of a person. Automatic recognition of micro-expressions
has potential applications in many areas. However, extraction of the appropriate
feature, for encoding the subtle movements during the micro-expressions, is a very
challenging work. The use of spatial and spatio-temporal features are studied exten-
sively for this problem. However, the face appearance does not change appreciably
during a micro-expression. Moreover, the muscle movements are also very small,
almost indistinguishable. Rather, these changes possess a temporal pattern. We use
the fuzzy histogram of optical flow orientation (FHOFO) features to encode the
temporal patterns associated with facial micro-movements. The FHOFO constructs
fuzzified angular histograms from the facial movement vectors. The feature descrip-
tors of a micro-expression clip usually possess high dimension and suffer from the
curse of dimensionality. To this end, we explore different feature selection meth-
ods to reduce the dimension of the descriptor. Experimentally we found that FHOFO
achieves significant accuracy on the publicly available databases and its performance
is consistently well across the databases.

Keywords Facial micro-expression analysis · Fuzzy histogram · Feature selection

1 Facial Micro-expressions

Communication is an essential part of our lives. In addition to the verbal commu-
nication, we often communicate through nonverbal means, such as signs, gestures,
postures, etc. Sharing information via e-mail or Internet is very popular these days.
We spend a lot of time interacting with digital devices. However, these devices are
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emotionally blind at this moment. They are inefficient at conveying our affective
signals, which are at the heart of successful human relations. To this end, affective
computing is an emerging field of study with its focus to develop systems that can
recognize, interpret, and emulate human affects [1]. Among the various channels that
communicate our emotions, the facial expression is considered to be themost accurate
identifier [2]. The facial expressions can be grouped into two categories based on the
context and the duration they last, namely: micro-expression and macro-expression.

When a person tries to conceal his affective state, the facial muscles move invol-
untarily as the reflex to the emotional state. Such nonverbal leakage of genuine
feelings through subtle facial movements are termed as facial micro-expressions [3].
Deciphering these micro-expressions can help the doctors to indirectly assess the
situation of patients or the police to understand the behavior of people during the
criminal investigation. As it is very difficult to fake these actions, recognizing facial
micro-expressions has many potential applications in the field of criminal inves-
tigation, surveillance, clinical diagnosis, lie detection, etc. However, these micro-
expressions are very subtle and short-lived (between 170 and 500ms [4]) in nature.
Even the trained people can recognize only 47% cases in practical situations [5].
Therefore, there is a great need for automated systems for accurate recognition of
micro-expressions.

On the other hand, themacro-expressions last on the face for 0.5–4s that we easily
notice and understand. Most of the state-of-art facial expression recognition meth-
ods [6, 7] are capable of classifying macro-expressions with significant accuracy on
the public databases. However, limited work has been reported on micro-expression
classification [6]. Literature suggests the use of high frame rate videos to encode
the features of micro-expressions properly. Furthermore, the muscle movements
during the micro-expressions are very subtle and almost unrecognizable to naked
eyes, which increases the complexity of classification task. The subtleties of micro-
expression sequences are demonstrated in Fig. 1. For the convenience of the reader,
we summarized the acronyms used in this article under Table1.

Many spatio-temporal features have been proposed in the literature to encode the
texture as well as the temporal changes of the micro-expressions. However, facial
texture vary from individual to individual and the change in appearance of facial areas
are negligible during a micro-expression. Consequently, only the motion vectors can
be used for micro-expression recognition, while ignoring the texture deformations.
Here the idea is to obtain a descriptor from the motion vectors that can effectively
represent all variations of facial dynamics. Constructing an angular histogram out of
the motion vectors can effectively represent the facial local movements. However,
the facial movement vectors differ a lot depending on the face pose and the camera
angle. Besides, the display of same expression for a particular individual may also
vary from instance to instance based on its intensity and other factors. Instead of
using hard thresholding to obtain the angular histogram, soft assignment of motion
vectors makes the descriptor robust to camera view angle and head poses. Therefore,
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Fig. 1 Example of the frame sequences of micro-expressions in CASME database. The movement
is easier to detect when the video is played at low frame rate

Table 1 Abbreviations and their definitions

Abbreviations Definitions

FACS Facial action coding system

FDM Facial dynamic map

FHOFO Fuzzy histogram of optical flow orientation

FS Fisher score

FSV Feature selection via concave minimization

HOG Histogram of oriented gradient

HOOF Histogram of oriented optical flow

KNN K-nearest neighbor

LBP Local binary pattern

LBP-TOP Local binary pattern from three orthogonal planes

LDA Linear discriminant analysis

LOSO Leave-one-subject-out

LOVO Leave-one-video-out

LS Laplace score

OS Optical strain

PWFP Pair-wise feature proximity

ROI Region of interest

SVM Support vector machine

TIM Temporal interpolation model
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fuzzy membership functions are utilized to assign some values to each histogram
bin. Here the fuzzy is introduced in the design of the feature descriptor followed by
the classification algorithms to carry out micro-expression recognition.

2 Methods for Recognizing Micro-expressions

Classification of micro-expression is performed in two-folds. First, the presence of
micro-expressions needs to be detected from the facial videos. This process of tempo-
ral segmentation is also called as micro-expression spotting or detection. The pres-
ence of a micro-expression in a long video is marked by the starting and the end
frames, also called on-set and off-set frames respectively [8, 9]. Usually, the on-set
frame indicates the beginning of facialmuscle contraction from a neutral state and the
off-set frame indicates the falling back of facial muscles to their usual positions. The
frame at which the micro-expression becomes most intense is called as the apex. The
apex can be any frame between on-set and off-set frames, not necessarily exactly the
middle one between them. Figure2 illustrates the micro-expression spotting process.
These annotations are generally included in the database, with the help from psy-
chologists, for evaluating the automated spotting algorithms. Further, the features are
extracted from the segmented part of the video and used for classification purpose.

Researchers use facial motion vectors, the geometric deformations, and gradient
histogram descriptors for spotting micro-expressions. In [10], the spotting is carried
out by the use of optical strain (OS), which is a method based on the optical flow

Fig. 2 Stages in classifying micro-expressions
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vectors. Optical flow fields describe the movement directions and their strengths,
while OS measures the extent of facial muscle deformations at every pixel location.
Similar attempts were made in [9] to find out the apex frame in the micro-expression
clip for further feature extraction. The peak, on-set, and off-set are detected in [11]
using optical flow field and direction continuity obtained from spatio-temporal inte-
gration of the motion features across variable sized sliding windows.Wang et al. [12]
suggest the use of main directional maximal difference, which is computed using
the optical flow vectors between distance frames, for detecting micro-expressions.
Active shape model and Procrustes analysis are utilized in [13] for spotting micro-
expressions. Polikovsky et al. [14] divided the face into video cubes on the basis of
facial action coding system (FACS) and the motion in each region is described by
the help of 3-D gradient orientation histogram. They successfully distinguished the
onset, apex and offset stages of micro-expressions. Li et al. [15] performed experi-
ments with local binary patterns (LBP) and histogram of optical flow (HOOF), and
found LBP to be more efficient at spotting micro-expressions. The use of histogram
of oriented gradients (HOG) is reported in [16] for detection of micro-expressions.

After spotting the micro-expressions, the representation of micro-expressions is
a challenging task. The recognition performance solely depends upon the discrim-
inating nature of the encoding techniques [6]. The feature extraction techniques
broadly fall into three categories, namely: spatial, temporal, and spatio-temporal.
Each expression can be associated with a unique facial appearance. Thus, the facial
changes, which are also called as spatial features, can be observed in the image
plane. These features represent facial geometry, appearance, deformation etc. The
relative distance of facial components or the presence of wrinkles, furrows are easily
encoded by spatial features, making it a strong candidate for recognizing full-blown
expressions. However, most of them fail to represent the subtle behavior associated
with micro-expressions as the facial appearance does not change appreciably. In
addition to spatial changes, the evolution of facial expressions through time also
possess distinct pattern. The temporal features encode the motion and other changes
as time progresses. The subtlemovements of facial regions during amicro-expression
are easily missed if the temporal change (movement of facial muscles as time pro-
gresses) is not observed very closely [17]. Thus, the key to success in recognizing
micro-expression is the analysis of the temporal dynamics. Some researchers sug-
gest encoding temporal changes, while others report using both spatial and temporal
deformations for accurate representation. The spatio-temporal features combine both
spatial and temporal properties to represent a video sequence.

The spatial features include LBP, Gabor filter, HOG, shape features, the relative
distance between facial components, etc. The eye, eyebrow, and mouth are catego-
rized into several states in [18] based on facial geometry followed by classification
of micro-expressions. The use of Gabor filters is reported to be useful in [19, 20].
Lie detection system developed in [21] uses the relative distance variations between
facial components as features. The facial landmark points are feature tracked and
quantified for micro-expression recognition in [22] based on FACS systems.

Among the temporal features, optical flow based methods are also popular for
encoding micro-expressions. OS [23] is a feature derived from optical flow which
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encodes the rate of change of facial muscle movements during a micro-expression
effectively. Liong et al. [24] used the strength of OS as the weights for other features
for representing facial micro-movements. The main directional mean optical flow
feature is proposed in [25] to efficiently use the optical flow vectors to encode the
movement and spatial information for expression classification. Facial dynamic map
(FDM) [26] characterizes the dynamics of facial muscles by the principal motion
directions of muscle movements.

Many spatio-temporal feature extraction techniques [15, 27, 28] have been pro-
posed in the literature. Among them, the extensions of LBP are the most famous
ones. Volume LBP (VLBP) and LBP from three-orthogonal-planes (LBP-TOP) [29]
are reported to be powerful spatio-temporal descriptors. LBP-TOP considers three
orthogonal planes of a video cube, namely XY-LBP, XT-LBP, and YT-LBP. The
LBP features from each of these planes are concatenated to represent the LBP-
TOP descriptor. These features are extracted from space-time volume from multiple
frames. Computation of VLBP and LBP-TOP are similar to LBP [30], except that the
neighbors from consecutive frames are also included in the computation. Mid-level
features are generated from LBP-TOP and other features in [31]. In [32], the authors
normalized the video cubes and extracted LBP-TOP features in their experiments.
LBP-TOP is used in [33], which achieves significant accuracy. The block-based
features are well-known for preserving both local and global features.

Local phase quantization from three orthogonal planes [34] is reported to attain
superior AU detection. Pyramid of the histogram of oriented gradients with three
orthogonal planes [35] is another feature which achieves better performance in
recognizing expressions. Spatio-temporal local monogenic binary patterns [36] are
reported to have robustness toward illumination variations. Some researchers use
3D gradients [37] as features for representing micro-expressions. Centralized binary
patterns from three orthogonal panels (CBP-TOP) [38] is another extension of LBP
which is reported to achieve high performance in micro-expression recognition.
Spatio-temporal completed local quantization patterns (STCLQP) was proposed in
[27] to encode sign, magnitude, and orientation in a codebook. In [39], dual-cross
patterns (DCP-TOP) and hot wheel patterns (HWP-TOP) are proposed using three
orthogonal planes.

Other than using the feature extraction techniques, some researchers classify
micro-expressions by constructing suitable manifold out of the expression clips.
The videos are considered as third order tensors and discriminative tensor subspace
analysis is used in [40] followed by extreme machine learning for classification pur-
pose. Robust principal component analysis is used on spatio-temporal directional
features in [28] for extracting subtle motion features of micro-expressions. Tensor
independent color space (TICS) [41] considers the color components independent of
each other and uses it as the fourth dimension, thus converting the video clips into
4D tensors. High accuracy of micro-expression recognition is reported using CIELab
and CIELuv color spaces.

Deep learning methods are very successful for object detection and recognition
purposes. Many researchers use these methods because of their ability to learn the
inherent shape and appearance of the object from the training data. However, such
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algorithms need huge training data for tuning the network parameters. As of now,
a few micro-expression databases are available. Moreover, the number of samples
in each database is very less, given the exhausting job of manual annotation of
micro-expressions from long videos. Lack of sufficient data is a hindrance in using
deep learning techniques for micro-expression recognition [42]. Therefore, Patel
et al. [42] used transfer learning from objects and facial expressions. In [43], a
convolutional neural network (CNN) is used to encode the spatial features, which
is further improved by incorporating the temporal characteristic through long short-
term memory (LSTM). However, the use of deep learning to recognize dynamic
features is relatively new. This is an open area of research which can further flourish
for accurate representation of facial dynamics.

Though appearance, geometry and deformation features work well in case of
macro-expression, their performance on micro-expression is questionable. Since the
face undergoes significant visible changes during macro-expressions, these features
encode the prominent facial behavior concerning the expressions. However, facial
changes in micro-expressions are very subtle [24, 25], which may not be captured
using the traditional feature extractors. Consequently, the features describing facial
texture may not be enough and can be ignored for micro-expression recognition. On
the contrary, the low amplitude motion vectors resulting from fine facial movements
can be effective to represent micro-expressions.

The fuzzy histogram of optical flow orientations (FHOFO) feature, explained
in Sect. 3, extracts the motion features effectively from micro-expression clips and
explores the effectiveness of motion patterns during a micro-expression. It is an
extension of histogram of oriented optical flow (HOOF) features [44] especially to
encode the subtle movements of micro-expressions. FHOFO carefully constructs
the angular bins from the motion vector directions based on the fuzzy membership
function. Moreover, duration and magnitude of micro-expression vary a lot from
sample to sample. Therefore, FHOFO uses only the motion direction ignoring the
subtle motion magnitudes.

Micro-expression recognition requires analysis of videos captured at a very high
frame rate. Though creating a subtle expression database is quite difficult due to com-
plex collecting procedures, a few databases are reported in the literature, namely:
SMIC [45], CASME [46], and CASME2 [33]. Recognizing the patterns associated
with micro-expression requires the analysis of spatial as well as temporal changes
of facial regions. Therefore, the feature descriptor usually has high dimensionality.
However, the number of samples available in these databases are quite less. Con-
sequently, the feature space is almost empty [47], and it suffers from the curse of
dimensionality. Thus, care must be taken to improve classification performance.

The presence of redundant or noisy features reduces the performance when the
sample size is low [48]. In such cases, the feature selectionmethod can be effective to
improve the performance of the system. Feature selectionmethods reduce the dimen-
sionality of the descriptor by selecting the optimal subset of features [49]. Reliable
performance for high dimensional data can be achievedwith supervised feature selec-
tion algorithms with a sufficient number of labeled training data [47]. Ideal selection
criteria should evaluate the combinational features to determine the optimal feature
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subset. The feature selection criteria in the literature [47, 50] either use individual
feature based separability or the distance between the points. The feature separability
criteria usually use the between and within class variances. Thus, the attributes in a
descriptor are evaluated based on the statistical analysis or the performance of each
attribute in the classification task. The best performing attributes are then selected
for further processing. We demonstrate the use of different feature selection methods
to evaluate the goodness of features for encoding micro-expressions.

3 Fuzzy Histogram of Optical Flow Orientations (FHOFO)

The rapid and subtle micro-expressions are difficult to observe in naked eyes. As
appreciable facial muscle movements do not happen during micro-expressions, the
movement patterns are more important than the magnitude of motion. Hence, the
magnitude information can be ignored for feature representation.Moreover, the dura-
tion and magnitude of micro-expression vary from sample to sample. Thus, only the
accumulated motion directions into different angular histogram bins can be a crucial
feature descriptor. As can be understood by the terms, FHOFO extracts an angular
histogram out of the motion vectors obtained from optical flow field. It uses only the
motion orientations to construct the histogram.

Optical flow is a widely usedmethod in computer vision for estimating themotion
in a video. The optical flow vector at each pixel location indicates the pixel level dis-
placement between adjacent frames in terms of direction and magnitude. It assumes
the brightness constancy and small continuous motion [51] to estimate the motion
between two frames. Assume that vjx and vjy are the horizontal and vertical veloc-
ity vectors at jth pixel location with intensity Ij. The brightness consistency can be
approximated by,

[
Ijx Ijy

] [
vjx
vjy

]
+ Ijt = 0 (1)

where
[
Ijx Ijy

]
represents the spatial gradients and Ijt is the temporal gradient at the

jth pixel location. Themotionmagnitude and orientation pair
(
ρj, θj

)
can be obtained

from the optical flow vectors by converting the euclidean to polar coordinates, given

by
(
ρj =

√
v2jx + v2jy

)
and

(−π ≤ θj < π
)
.

FHOFO constructs a histogram out of the optical flow orientations as a global
motion descriptor. The conventional way of histogram computation assigns one ele-
ment to one histogram bin. The overall facial muscle movements for an expression
is similar in a broad sense. However, the motion directions of a facial region are not
always in the exact direction for similar expressions. Rather, the directions of facial
muscle movements vary from person to person. Moreover, the motion directions also
change with respect to the camera view angle. Thus, constructing histograms in a
conventional way might not produce the desired feature vector. To avoid these limi-
tations, histogram fuzzification assigns some values to all histogram bins based on a
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Fig. 3 Computation of FHOFO features

membership function. Thus, each motion vector contributes to multiple angular bins.
The illustration of histogram fuzzification is provided in Fig. 3. Using a Gaussian
membership function assures that the contribution is high to the closest neighboring
bins than the far ones. In addition, it considers the circular continuity of angular
histograms at π during fuzzification.

For the computation of FHOFO features, the optical flow vectors with magnitude
more than a certain threshold are utilized, which corresponds to the presence of
considerable movements on face. Given an image I of size N × M , the FHOFO
features, F(I) = [

f1, f2, . . . , fn
]
, can be computed as

fi = f ′
i∑n

k=1 f ′
k

(2)

where

f ′
i =

M ×N∑

j=1

ρ′
jμij, and ρ′

j =
{
1, if ρj > T
0, otherwise

(3)

Here ρ′
j are the pixel locations where the motion magnitude is greater than threshold

T . The contribution of a motion vector at an angle of θj to the ith histogram bin is
decided by the membership function, given by

μij = exp

(
−(

θj − ci
)2

2σ2

)

(4)

where ci is the center of ith histogram bin and σ is the variance of the Gaussian mem-
bership function. Thus, the significant motion vectors are collected into an angular
histogram with soft-assignment of their values into multiple bins. The Gaussian
membership function ensures higher contribution to the close histogram bins than
the distant ones. Further, the contribution toward different histogram bins can be
manipulated using different values of σ. More the value of σ, the motion vectors
contribute to more number of bins of the resulting histogram.
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Fig. 4 The Gaussian membership functions used in fuzzification process

Fuzzy histograms are more informative than the traditional histograms, in case
of representing motion vectors, which is illustrated in Fig. 4. Consider the instance
slightlymore than π/4with a dottedmembership function. This motion vector would
be assigned to the 6th bin in case of hard histogram assignment. However, the facial
movement directions might change slightly from person to person and with different
facial poses. Thus, fuzzy histogramhelps to assign themotion directions intomultiple
bins; thereby close angles contribute to different bins almost equally. The dotted
membership function, hence, contributes equally to both bin 5 and 6. Similarly, the
movement vector falling in 5th bin contributes to surrounding bins forming a smooth
histogram for motion vectors. Moreover, the 8th bin and the 1st bin of the angular
histogram are considered to be connected due to circular continuity. Themembership
function warps at π as −π = π. The contribution of a motion vector in the 8th bin
to both 1st and 8th bin is also illustrated in Fig. 4.

As discussed so far, the fuzzy histogram involves the computation of membership
values for each motion direction to all the histogram bins. The membership values
of each angle to the angular histogram can be computed once and used repeatedly.
However, it is impossible to perform for continuous angular values since θj can be
any real number, and it becomes computationally intensive. Instead, discretization of
angular axis is required. Inspired by [52], we first constructed a fine-histogram with
a sufficient number of bins. Then the fine histograms were assigned to the coarse
ones based on the membership function.

First, the fine histogram was constructed with n′ histogram bins in the range
[−π,π). Here n′ should be sufficiently large to consider the motion directions in an
interval to be the same. The fine-histogram is further mapped to the coarse histogram
using the fuzzymembership functions. In thisway, themappingmatrix for converting
from fine-to-coarse histogram needs to be computed only ones, thereby reducing the
computational burden.

This mapping matrix can be represented by M , where the matrix element mij

represents the membership value or the contribution of jth fine histogram bin to the
ith coarse angular bin. With n number of coarse histogram bins, we can write,
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Fig. 5 A membership matrix (M ) for n′ = 36 and n = 8

Fn×1 = Mn×n′Hn′×1 (5)

Figure5 illustrates a mapping matrix that maps a fine-histogram with 36 bins to a
coarse histogram with 8 bins.

In this way, a fuzzy histogram of the motion directions at all pixel locations with
motion magnitude above threshold T . The histogram, hence obtained, is further
normalized, to sum up to 1. Fuzzy statistics is able to handle the motion vectors
during facial expressions better than crisp histograms, thus producing a smooth his-
togram. Therefore, it improves the facial motion representation and classification
performance.

4 Feature Selection

For a classification problem, feature selection aims to select a subset of highly dis-
criminant features that achieves maximal classification accuracy [47]. It removes the
redundant features, reduces the risk of over-fitting, and improves the time and space
complexity of the data. Thus, the feature selection problem may be formulated as
finding m features out of d dimensions that are capable of discriminating the samples
of different classes.

Given the samples of two classes, SVM determines the optimal discriminating
plane for separating the class samples. Feature selection via concave minimization
(FSV) [53] tries to suppress as many components of the normal vector of the separat-
ing plane, obtained from SVM, with acceptable performance. Apart from FSV, two
widely used filter-based feature selection methods are Fisher Score (FS) and Laplace
Score (LS). These methods compute a score for each feature (attribute) of the data
and select the best set of attributes based on their individual performance.

Given the data points xi ∈ Rn with class labels yi ∈ {1, 2, . . . , c}, the ith attribute
of all the data points can be represented by f i. FS uses an evaluation criterion which
maximizes the between-class variance of the ith attribute (f i) while minimizing its
within-class variance. Thus, the score in FS is given by
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F(f i) =
∑c

k=1 nk(μ
i
k − μi)2

∑c
k=1 nk(σ

i
k)

2
(6)

whereμi is the overall mean of ith feature,μi
k is the ith featuremean of kth class, σi

k is
the ith feature variance of kth class, c is the number of classes, and nk is the number
of samples of kth class. In contrast, LS uses the similarity of the data points for
feature evaluation. Based on the similarity or the closeness of data points, it models
the points on a graph structure to reflect the local geometric properties and seeks for
the feature set that complies the graph. Thus, it finds the feature set that brings the
data points from the same class more closer, while retaining a high global variance.
First it computes the similarity score (Sjk ) between data points xj and xk based on
any distance measure. Further, LS [54] is calculated by,

L(f i) =
∑

j,k(f
ij − f ik)2Sjk

V ar(f i)
(7)

where V ar(·) represents the variance. Usually, Euclidean or Mahalanobis distances
are used for computing the similarity score for graph construction.

ReliefF is a instance based algorithm which selects instances from similar and
dissimilar classes to update the feature weight. It randomly selects an instance (xl)

and determines its two closest instances; one from the same class (near-hit (x+
l )) and

another from dissimilar classes (near-miss (x−
l )). For L number of random sampling,

the score of ith feature is given by

R(f i) = 1

L

m∑

l=1

−(xi
l − x+i

l )2 + (xi
l − x−i

l )2 (8)

Thus, the score of a feature decreases if the feature values are close for similar class
samples than the dissimilar class samples.

Pair-wise feature proximity (PWFP) [55] considers a feature to be ‘good’ if the
samples of the same class are close along this attribute, while the samples from
dissimilar classes are far away. It considers eachpair of points to evaluate this property
iteratively. The PWFP can be interpreted as sorting the distance between individual
attributes of a point pair in ascending order and selecting the first few attributes as
the best ones.

PW FP(f i) =
∣∣∣
pi − qi

pi + qi

∣∣∣ (9)

Here pi can be interpreted as the probability of occurrence of ith attribute among
the first β number of closest attributes for all possible point pairs. Similarly, qi can
be interpreted as the probability of occurrence of ith feature among the farthest β
feature attributes. PWFP has been reported to work well for high dimensional and
low sample size data.



Recognizing Subtle Micro-facial Expressions Using Fuzzy Histogram of Optical … 353

5 Micro-expression Recognition Framework

Face registration and its representation is of paramount importance in automated
expression recognition. Face registration is the process of aligning faces for appro-
priate feature extraction. In [56], we demonstrated the superiority of part-based fea-
ture extraction to the whole face-based holistic features. A number of other literature
[25, 41, 57] also support the idea of extracting features from selective facial areas
to improve accuracy. The best way to recognize micro-expressions is by observing
the subtle changes around the visually distinctive facial landmarks, such as eyes,
mouth corners, etc. In [25], feature extraction was carried out from 36 facial ROIs
from all over the face. However, the subtle changes in micro-expression are mostly
observable around some of the key facial areas [57]. These ROIs can be located
following the occurrence of action units in FACS. Besides, features extracted from
multiple facial ROIs are invariant to the slight variations of face poses for near-frontal
images. Therefore, we located 36 ROIs based on our previous work [58] for feature
extraction. The method proposed in [59] was used for facial landmark detection and
the ROIs were determined with reference to these points.

The facial landmark points were detected in the first frame of the video. Assuming
negligible head movements during a micro-expression, we cropped the face region
from each frame and resized to a resolution of 200 × 200 pixels. Further, temporal
normalization was performed to nullify the effect of variation in micro-expression
duration. We used temporal interpolation model (TIM) [32] to interpolate each video
sequence into the same number of frames. The face ROIs were extracted from each
frame and stacked together to form video cubes. Thus, we obtained 36 video cubes,
one for each facial patch, from a micro-expression sequence. The feature descriptors
were extracted from each video cube of a sequence and concatenated to represent
that sequence. The feature set was further evaluated using different feature selection
techniques, and the best subset of features was used for classification.

The summary of the framework used in our work is shown in Fig. 6. First, the face
is detected and normalized both spatially and temporally through interpolation. The
facial landmarks were detected in the first frame of the sequence, and video cubes
were extracted from each patch region. Features were extracted from each facial
cubes and concatenated.

6 Experiments and Discussion

6.1 Database Description

CASME database: The CASME database [46] contains 197 micro-expressions
clips. Following the methods adopted in [25, 41], they were categorized into positive
(9 samples), negative (54 samples), surprise (21 samples) and ‘others’ (113 samples)
classes.
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Fig. 6 The block-diagram for micro-expression recognition. a Micro-expression frame sequence,
b Facial region normalization (both spatial and temporal), c Localizing active facial patches in the
first frame of the sequence, d Extracting the video cubes from the face patch regions, e Patch-wise
optical flow field computation, f FHOFO feature extraction from each optical flow field, g FHOFO
feature representation from all facial patches and concatenation of features

CASME2database: The CASME2 database [33] contains 256micro-expression
videos. In our experiments, these micro-expression clips were categorized into pos-
itive (32 samples), negative (73 samples), surprise (25 samples), and ‘others’ (126
samples) classes.

In our experiments, we carried out only micro-expression recognition assuming
that the video frames containing micro-expressions are feed to our algorithm. Thus,
the video clips starting from onset to offset of micro-expressions are extracted and
analyzed for both CASME and CASME2. The number of frames for each video clip
is temporally normalized as it varies for each sample.

SMIC Corpus: The high speed (HS) data set is used in our experiments from
Spontaneous Micro- expression Corpus (SMIC) [45]. It contains 164 number of
micro-expression clips. The class labels included in the database are: positive (51
samples), negative (70 samples) and surprise (43 samples).

6.2 Experimental Protocol and Evaluation Criterion

Data preprocessing is essential for performance improvement. We normalized each
micro-expression sequence both spatially and temporally. Some literature suggests
the use of different temporal resolution. Moreover, this value varies from database to
database. However, amicro-expression recognition system should use the same set of
parameters in all cases irrespective of database and duration of sequences. Therefore,
we conducted all the experiments using similar parameters for all databases.
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Given N number of micro-expression sequences, D = {D1,D2, . . . ,DN }, we first
interpolated each video temporally to a certain number of frames. If the videos are
normalized to X frames using TIM, we call it TIM-X . The face was detected, and the
ROI locationswere computed in the first frame of the normalized sequences. The face
ROI was cropped and resized to 200 × 200 from each frame to form a video cube.
This face ROI cube Fi, corresponding to sequence Di, had a size of 200 × 200 × X .
The facial landmarks were detected, and 36 number of active patches were located
on the face. Thus, 36 patch cubes Pi|36i=1 were extracted from each Fi. The feature
extraction was carried out from the volume cuboids from each ROI location and
concatenated afterward.

The uniform LBP-TOP descriptor extracted from one patch cube has the dimen-
sion of 59 ∗ 3 = 177. Thus, the total length of LBP-TOP descriptor for a sequence
was 77 × 36 = 6372 (36 patches). Similarly, the FHOFO feature computed from the
consecutive frames (with TIM-X ) has the dimension (X − 1) ∗ 8. Thus, the length
of FHOFO descriptor was (X − 1) × 8 × 36. We kept all the parameters used for
the ROIs, classifiers, and the feature extraction techniques constant throughout the
experiments with all databases. Since the LBP-TOP and FHOFO features possess
high dimensionality, different feature selection methods, such as FS, LS, FSV, Reli-
efF, and PWFP, were used to reduce the dimensionality. The classifier models were
trained on the feature vectors obtained from all the training videos. We used three
traditional classifiers to access the effectiveness of FHOFO features. We used the K-
nearest neighbor classifier (with K = 3), which performs classification based on the
closest distance of training samples. Also, linear support vector machine (SVM) and
linear discriminant analysis (LDA) were used. The performance of the multi-class
classification is reported by using the macro average of F1-scores [60] along with
the average accuracy score. The F1-score is a more unbiased performance estimator.

The expression recognition performance can b performed using either leave-one-
subject-out (LOSO) or leave-one-video-out (LOVO) cross-validation. In LOSO, one
subject’s data is considered as test set, whereas the rest data is treated as training data.
Thus, this is a subject independent method. Afterwards, this method is repeated for
all other subjects, and the average performance is reported. In LOVO, the model is
trained with all samples except one, which is treated as the test sample. This process
is repeated for all the data. Both LOVO and LOSO cross-validation techniques were
performed in our experiments.

6.3 Parameter Selection

As explained earlier, the duration of micro-expression clips in different databases
varies a lot. Moreover, the videos, in different databases, are recorded at different
frames-per-seconds. All micro-expression clips of a particular class can be assumed
to have similar motion patterns, in spite of the varying duration from onset to offset.
Therefore, temporal normalized is necessary to bring all the clips to sequences of the
same number of frames. To achieve best results, researchers normalized the video
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(a) CASME (b) CASME2

(c) SMIC

Fig. 7 Performance of the FHOFO features for different temporal normalization (TIM-X). The
primary the secondary vertical axes represent the average recognition accuracy and the F1-score
respectively

clips to a different number of frames for different databases. However, we seek for a
universal temporal normalization that will achieve good accuracy in most databases.
Thus, we performed all the experiments under similar parameter settings. To do so,
we first estimated the best set of parameters that would perform well in most cases.

The literature [15, 61–63] suggests normalizing the temporal frame number to
10–20 for best performance in case of SMIC database. However, this number might
not be suitable for other databases. Normalizing all videos from different databases
to a particular number appears practically appealing for a stable operation. Therefore,
we empirically found out the best number for temporal normalization. Figure7 shows
the best accuracies and F1-scores for different TIM-X . It can be observed in Fig. 7
that performance is better with TIM-20 in all databases. Thus, all the video clips
of every database were normalized to a temporal length of 20 frames (TIM-20).
This indicates that the computers can detect micro-expressions even it is captured
in a device with low frame rate, as low as 20 fps. Though it is difficult for us to
detect the micro-expressions at a low frame rate, the features used by computers
are capable of using a low frame rate video to recognize the micro-expressions. Our
claim is supported by the research of Li et al. [15] as they report that the performance
does not improve by increasing the temporal resolution. Other literature [32, 62]
also support the finding that the facial information captured at low frame rate are
adequate for recognizing micro-expressions.
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Table 2 The best performance achieved by FHOFO with LOSO cross-validation and TIM-20

n′ n σ Accuracy F1 score

CASME 48 8 14 67.01 0.5849

CASME2 42 8 12 56.64 0.5248

SMIC 36 6 6 51.83 0.5243

We followed similar procedure and parameter settings in all of our experiments.
To this end, we kept all parameters, such as the ROI size, classifiers settings, FHOFO
parameters, etc., alike for all databases. The effectiveness of FHOFO depends on the
choice of the number of bins in fine and coarse histograms, and the membership
function used for fuzzification purpose. Experimentally, we found that the Gaussian
membership function is suitable for this task. A grid search was carried out in order
to obtain the best set of parameters for FHOFO, i.e., the number of fine and coarse
histogram bin (n′, n) and the variance of Gaussian membership function (σ).

Table2 summarizes the best results obtained in different databases for different
parameter settings. Linear SVM with LOSO cross-validation was used unless oth-
erwise specified. Empirically, we found that stable performance was obtained with
σ = 10 across the databases. Similarly, the number of fine and coarse histogram bins
were decided empirically by varying n′ and n for a fixed value of σ = 10 as shown
in Fig. 8. We observed that performance is better for n′ = 36 for all databases, and
lower value of n seemed to fit for our purpose. Thus, we selected n′ = 36, n = 8,
σ = 10, and T = 0.0002 throughout all our experiments with a trade-off of recog-
nition accuracies across the databases.

Table3 summaries the results obtained with different classifiers and databases for
various feature extraction techniques.

6.4 Performance of FHOFO and Other Methods

The performance of FHOFO is compared with two widely used feature extraction
methods formicro-expression recognition: uniformLBP-TOP andHOOF.Again, the
performance of uniform LBP-TOP depends on the parameter selection. Performing a
series of experiments, we concluded that the optimal set of parameters for LBP-TOP
is the spatial radius of 1 pixel (Rx = Ry = 1) and temporal radius of 3 (Rt = 3). In
addition, we observed that the performance of FHOFO is superior to that of the best
performance of LBP-TOPwith a margin of 10% in CASME2 and 6% in SMIC. Note
that the same parameters were used for FHOFO in our experiments for all databases,
whereas the parameters were varied for LBP-TOP to obtain the best performance.

Table3 summaries the micro-expression classification results obtained with LBP-
TOP (Rx = Ry = 1 and Rt = 3), HOOF (n = 8), and FHOFO (n′ = 36, n = 8).
We can observe that the best performance increased from LBP-TOP to HOOF to
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Fig. 8 The performance of FHOFO with varying n′ and n (constant σ = 10) in different databases

FHOFO in two databases: CASME2 and SMIC. However, in CASME database, the
performance of LBP-TOP was better than HOOF. However, FHOFO achieved the
best performance in CASME with an accuracy of 65.99%. Moreover, the F1 score
has improved significantly with FHOFO features. For example, FHOFO achieved an
F1 score of 0.54 in CASME, which is better from other features at a high margin.
Similar trends can be observed in other databases as well. The performance of linear
SVM was found to be consistently well for all databases.

Considering only the linear SVMclassifier,we canobserve that the performance of
FHOFOis superior to that ofHOOFandLBP-TOP.The improvement canbeobserved
in both average accuracy and F1 score. For example, in case of CASME database,
the accuracy of LBP-TOP (64.46%) and FHOFO (65.99%) are close. However, F1
score has increased from 0.39 to 0.54, which is noteworthy. This can be interpreted
as the failure of LBP-TOP in data imbalance scenario. High accuracy with lower
F1 score conveys that the class with more samples are more accurately classified
compared to the class with less training samples.

Table4 summaries the performance of FHOFO using LOVO cross-validation. As
expected, the performance of LOVO is better than LOSO because of the use of more
number of training samples. The system performance reaches up to 71% in CASME
and 64% in CASME2 with LOVO cross-validation.
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Table 3 LOSO cross-validation results of different feature extraction techniques for different clas-
sifiers

(a) Accuracy with LBP-TOP with Rx = Ry = 1 and Rt = 3

Classifiers CASME CASME2 SMIC

Accuracy
(%)

F1 score Accuracy
(%)

F1 score Accuracy
(%)

F1 score

Linear SVM 64.46 0.3999 46.87 0.3708 41.46 0.4258

3 points
KNN

61.42 0.4588 37.11 0.2731 32.93 0.3401

LDA 58.38 0.3159 44.92 0.3278 43.90 0.4530

(b) Accuracy with HOOF

Classifiers CASME CASME2 SMIC

Accuracy
(%)

F1 score Accuracy
(%)

F1 score Accuracy
(%)

F1 score

Linear SVM 57.87 0.3654 51.17 0.4781 47.56 0.4852

3 points
KNN

41.62 0.2188 52.34 0.4344 35.57 0.3810

LDA 56.35 0.3306 45.70 0.4136 40.85 0.4076

(c) Accuracy with FHOFO

Classifiers CASME CASME2 SMIC

Accuracy
(%)

F1 score Accuracy
(%)

F1 score Accuracy
(%)

F1 score

Linear SVM 65.99 0.5409 55.86 0.5197 51.22 0.5182

3 points
KNN

53.30 0.3663 50.39 0.4088 42.68 0.4427

LDA 56.85 0.3787 49.22 0.4426 48.17 0.4808

Table 4 LOVO cross-validation results with FHOFO features

Classifiers CASME CASME2 SMIC

Accuracy
(%)

F1 score Accuracy
(%)

F1 score Accuracy
(%)

F1 score

Linear SVM 71.57 0.5924 64.06 0.6025 56.10 0.5536

3 points
KNN

57.36 0.4516 55.08 0.4716 50.61 0.5301

LDA 68.02 0.4849 62.50 0.5844 59.15 0.5807
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6.5 Performance of Feature Selection Methods

LBP-TOPwith the parameter set Rx=Ry= 1 and Rt= 3 performed the best [58] for
all databaseswhenusingTIM-20. Similarly, FHOFOperformedwellwith parameters
n′ = 36, n = 8, and σ = 10. Therefore, we used the same set of parameters in our
experiments for respective feature extraction techniques. The recognition accuracies
for different classifiers are shown in Figs. 9, 10, and 11 for CASME, CASME2 and
SMIC databases respectively. It shows the performances of SVM, KNN, and LDA
classifiers on the raw feature set compared to the performance of feature selection
techniques. In case of feature selectionmethods, we selected 3000 number of features
for all databases and used linear SVM for classification purpose.

As can be observed from Fig. 9, the performance of SVM was better than KNN
and LDA. However, the performance improved with the use of feature selection
techniques, such as PWFP, LS, FSV, and ReliefF. In CASME, we observed that
the LBP-TOP features performed better than FHOFO for LDA and KNN classi-
fiers. However, the performance was improved by SVM. In addition, the use of fea-
ture selection methods, such as PWFP and ReliefF, further elevated the recognition
accuracy.

It can be observed in Fig. 10 that the performance of FHOFOwas better than LBP-
TOP in all situations. The performance was further improved with PWFP feature
selection. However, the other feature selection methods performed inferior to the
raw FHOFO descriptor. The loss of information during the feature selection methods
might be the reason behind the performance deterioration. Similar trends can also be
observed in case of SMIC database (Fig. 11).

As observed fromFigs. 9, 10, and 11, the PWFP feature selectionmethod achieved
significant performance among others. Similarly, the overall performance of FHOFO
was better than LBP-TOP. Therefore, the accuracies of a different number of selected
features are reported to strengthen the proposal.

As can be seen in Fig. 12, the performance of PWFP on FHOFO features is stable
for a different number of selected features and across different databases as well.
Although the performances of other methods were close to PWFP in Fig. 12a, it still
had an advantage at higher number of features. Similarly, FSV leaded in CASME2

Fig. 9 The recognition accuracy of various classifiers in CASME database
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Fig. 10 The recognition accuracy of various classifiers in CASME2 database

Fig. 11 The recognition accuracy of various classifiers in SMIC database

database at low number of features (Fig. 12b). However, the number of features
to be selected should not be changed in practical scenarios. Thus, a feature selec-
tion method which works well at different number of selected features is desirable.
Comparing with ReliefF, PWFP increased the performance by 4% on an average.
Although LS and ReliefF performed well in CASME, the performance of PWFP is
stable for all number of selected features.

The performance of different feature selection methods converged in Fig. 12c
(for SMIC) when more number of features were selected. However, the accuracy
gradually decreased. Thus, we can infer using more number of features increased the
noise level. Besides, it is clear from Fig. 12c that FS performed the worst in SMIC.
FSV achieved the best performance when the number of features was minimal.
However, PWFP provided stable performance throughout.

6.6 Comparison with the State-of-Art Methods

In literature, experiments were carried out with a different number of samples and
different numbers of expression categories as well. Moreover, the normalization
methods, classifiers, and cross-validation methods vary from literature to literature.
Therefore, there is no easy way of comparing our results with literature. The results
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(a) CASME

(b) CASME2

(c) SMIC

Fig. 12 The performance of FHOFO descriptors in different databases with varying number of
selected features
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Table 5 Comparison to state-of-the-art in micro-expression recognition

CASME CASME2 SMIC

Wang et al. [64] 41.2 38.4 N/A

Yan et al. [65] 61.88 N/A N/A

Li et al. [45] N/A N/A 48.78

Liong et al. [63] N/A 61.54 52.44

Monogenic Riesz
wavelet [66]

N/A 46.15 N/A

OSW-LBP-TOP [24] N/A N/A 56.09

Eulerian motion
magnification [17]

N/A 51 N/A

TICS [41] 61.86 62.3 N/A

Wang et al. [67] N/A 45.75 55.49

Transfer learning [42] N/A 47.3 53.6

STCLQP [27] 57.31 58.39 64.02

FDM [26] 56.14 45.93 54.88

FHOFO 67.01 56.64 51.83

FHOFO with PWFP 67.24 56.78 52.01

reported in of some literature are provided in Table5 and their performances are
compared with the proposed method.

Wang et al. [64] used five expression classes and obtained an accuracy close to
40% in both CASME and CASME2. However, their performance with 4 class clas-
sification is not reported. Similarly, Huang et al. [27] reported 58.39% accuracy in
CASME2 with five class classification, where as 57.31% accuracy in CASME with
four class classification. However, we have considered four classes in our experi-
ments, thus, comparing the performance of our system directly with these methods
is not appropriate. Instead we can notice that FHOFO method achieved an accuracy
of 67.01% in CASME and 56.64% in CASME2, which are on an average close or
better than othermethods. This confirms that FHOFOextracts suitable discriminative
features from video clips for micro-expression classification.

From Table5, we can observe that the performance of FHOFO with PWFP is
more than 67% in CASME, which is superior to the performance of other meth-
ods. TICS [41] achieved 61.86 and 62.3% in CASME and CASME2 respectively.
Though its performance was better in CASME2, it underperformed for CASME.
In [63], Optical strain features were used along with the weighted version of the
same, which achieved an accuracy of 52.44% in SMIC and 61.54% in CASME2.
Wang et al. [67] used LBP six intersection points and LBP three mean orthogonal
planes for micro-expression recognition. They achieved an accuracy of 45.75 and
55.49% in CASME2 and SMIC respectively. Similarly, FDM [26] characterized the
micro movements and performed well in all datasets. Monogenic Riesz wavelet rep-
resentation [66] with SVM achieved an accuracy of 46.15% in CASME2. Optical
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strain weighted LBP-TOP (OSW-LBP-TOP) features were proposed in [24] which
improved the recognition accuracy to 56.09% in SMIC. As can be observed, the
methods in literature achieved good accuracy in one database while compromis-
ing the accuracy in another. However, the proposed method achieved above average
accuracy in all databases.

Compared to other literature, STCLQP [27] performed the best in SMIC database.
On the other hand, Optical strain features in [63] performed the best in CASME2.
Though comparing performances directly is very difficult due to various experi-
mental settings, the proposed method outperformed in CASME database and its
performance is also significant in other databases as well. FHOFO obtained an accu-
racy of 67.24% in CASME and 56.78% in CASME2 with PWFP feature selection
technique. Moreover, the classification accuracy can be improved by further tuning
the classifier parameters. Choosing suitable normalization parameters and FHOFO
parameters may further enhance the performance. However, here the idea is to prove
the consistency of the system performance across the databases. Therefore, we kept
the parameters constant throughout all the experiments with a linear classifier. Thus,
the proposed combination of features followed by the feature selection methods
proved to be a suitable for micro-expression recognition.

7 Conclusion

Recognizing micro-expressions is challenging due to its rapid and subtle nature.
Information from temporal dimension plays a significant role in classifying micro-
expressions. The patterns associated with facial muscle movements can be incorpo-
rated into the feature representation to improve system performance. The FHOFO
feature explained here, is a global motion direction descriptor, constructs an angular
histogramout of the optical field floworientations. It is similar toHOOF featureswith
the soft assignment of weights into neighboring histogram bins. Since the change of
facial appearance is negligible during a micro-expression, hence, FHOFO ignores
the spatial changes. We also discussed the improvement in performance with the use
of feature selection methods. Some feature selection methods performed better com-
pared to KNN and LDA. However, their performance is inferior to the performance
of SVM alone, which can be inferred as a loss of information. The use of PWFP with
SVM appears to be beneficial in classifying micro-expressions.

The work presented here uses the manual annotation data for on-set and off-set
frames to segment the micro-expressions. However, spotting of micro-expression is
still a challenging task. Manual annotation of onset, apex and offset frames, during
the creation of a database, is time-consuming and subjective in nature. Besides, the
databases created in laboratory environments are constrained in terms of facial pose,
illumination variation, self-occlusion, and data acquisition quality. Lack of sufficient
samples with wide variation is a major obstacle in the evaluation of different feature
extraction techniques. Development of a system for fast and reliable in-the-wild
performance is a long-term challenge.
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Researchers reported different feature extraction techniques for classifyingmicro-
expressions. However, a comprehensive analysis of different feature extraction tech-
niques considering all configurations can be beneficial to figure out the strong and
weak points with different features. Feature-level or decision-level fusion of differ-
ent feature extraction techniques is another open area of research. The duration of
micro-expressions varies from sample to sample. Several interpolation techniques
are currently being used to normalize the data both spatially and temporally. Systems
with ability to analyze multi-resolution images are also desirable. The feature dimen-
sionality usually becomes high to encode the subtle changes. In such cases, the feature
selection and dimensionality reduction methods can be investigated extensively to
improve the performance of the system.

The ultimate aim of affective computing is to accurately estimate the human
affects. Imagine a classroom situation where a student can be under any of the
following affective states: frustrated, depressed, angry, bored or confused. All such
states can be identified by interpreting speech, facial expressions, gestures, and other
physiological signals. The future of affective computing is to recognize all possible
human affects from multimodal cues. The integration of affective technologies with
consumer level products is still in its infancy. Development of robust algorithms for
representation and assimilation of information from multiple cues holds the key to
making the science fiction of today, the reality of tomorrow.
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Improved Deep Neural Network Object
Tracking System for Applications in
Home Robotics
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Abstract Robotic navigation in GPS-denied environments requires case specific
approaches for controlling a mobile robot to any desired destinations. In general,
a nominal path is created in an environment described by a set of distinct objects,
in other words such obstacles and landmarks. Intelligent voice assistants or digital
assistance devices are increasing their importance in today’s smart home. Especially,
by the help of fast-growing Internet of Things (IoT) applications. These devices are
amassing an ever-growing list of features such as controlling states of connected
smart devices, recording tasks, and responding to queries. Assistive robots are the
perfect complement to smart voice assistants for providing physical manipulation.
A request made by a person can be assigned to the assistive robot by the voice assis-
tant. In this chapter, a new approach for autonomous navigation is presented using
pattern recognition and machine learning techniques such as Convolutional Neural
Networks to identify markers or objects from images and videos. Computational
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intelligence techniques are implemented along with Robot Operating System and
object positioning to navigate towards these objects and markers by using RGB-
depth camera. Multiple potential matching objects detected by the robot with deep
neural network object detectors will be displayed on a screen installed on the assistive
robot to improve and evaluate Human-Robot Interaction (HRI).

Keywords Neural network · Computational intelligence · Simultaneous
localization and mapping (SLAM) · Multi object tracking · Deep convolutional
neural network (DCNN) · Depth camera · Autonomous navigation · Human robot
interaction · Human computer interface · Machine learning · GPS denied
environment · Real time implementation

1 Introduction

Improvements on computational intelligence in parallel with assistive robotics, and
reinforced applications for object identification engines based on visual sensory read-
ings from RGB-D cameras have increased the accuracy of cooperative task assign-
ments in robotics. Moreover, by implementing pattern recognition fundamentals for
object classification, object detection, and computer vision, their impacts on human
robot interactions are becoming more crucial than ever. A visual representation of
the various fields that pattern recognition has played a major contribution along
with their established applications can be seen in Fig. 1. Pattern recognition has
especially contributed to applications of intelligent voice assistants and Internet of
Things devices, such as Amazon’s Echo platforms and Google Home products. This
has led to today’s smart home applications to decrease the difficult necessity of requir-
ing high computational power, and still can handle the task scheduling requirements
easily. These devices are amassing an ever-growing list of features such as control-
ling states of connected smart devices, playing music, managing alarms, recording
tasks, and responding to queries. Potential industrial applications of smart digital
assistants are numerous; however, applications are limited due to the digital-only
nature of the device. On the other hand, more intelligent assistive robots with higher
computational power can loosen this constraint and even make another contribution
by providing physical manipulation. A request made by a person can be assigned to
the assistive robot by the digital assistant; then, the robot performs its duties while
keeping the person updated by verbal feedback. Most of the time the problem lies in
this stage and raises a question. Did the robot understand the request correctly and
do what the user asked them to do in the right way?

Human-Computer Interaction (HCI) focuses on finding answers for how to effi-
ciently design computers with the latest technology that will provide better user
interfaces to make users feel more comfortable with them. As its vision states, HCI
interests not only human users and their benefits from a system of computers, but
also it investigates the way to use integrated hardware and software platforms. The
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goal is to build an interactive relationship between human and machines that are
controlled and observed by computers.

Humanoid robots are a well-studied class of robots with the greatest potential in
the future to assist with activities of advanced work tasks, and even in a household
setting. They are built to perform tasks in a manner that closely follows human form
and functionality. Humanoid robots can observe, interact with, and mimic humans.
Many have capability to recognize voices, faces, geometric shapes, objects, tools,
and environments. They are equipped with very capable sensors, controllers and pro-
cessing power. Two of the main roadblocks to incorporating humanoid robots are
the complexity of robot dynamics and high costs of system components. Hybrids
of humanoids and unmanned ground vehicle robots are a popular solution to reduce
complexity and the cost of such robotic system. Human-robot interaction (HRI) has
increased its importance over the last decades due to the desired conclusion of indus-
trial laws that required higher efficiency and increased productivity. Collaborative
working of humans and robots has led to the development of state-of-the-art appli-
cations and interfaces for multiple purposes, i.e. robotic arms for the automobile
manufacturing lines, unmanned ground vehicles, artificial body parts, and robotic
platforms for surgical operations. Since recent developments in the fieldmake robotic
systems much more reliable and resilient to changes in the environment, the use of
pattern recognition, computational intelligence as a sensory feedbackmechanism for
a HRI system has become more essential.

Intelligent voice assistants are the central hubs of smart home technologies and
are able to perform a variety of tasks. These devices are becoming a must-have
for any smart environment applications by featuring list of functionalities, such as
controlling the smart thermostats, following a scheduled works, managing smart
home observation systems or alarms, and most importantly responding to verbal
user queries. What they cannot do is control objects that are not “smart devices”.
Home-based assistive robots are the perfect candidates for applications requiring
physical manipulation. Steep barriers of cost, limited functionality, and relatively
slow performance are preventing the adoption of robots in the home.

In this chapter, we present applications of a proposed intelligent object detection
and tracking system for improving functionality and performance of home-based
robotic systems. The proposed system is applied to two unique problems: real-time
sensing for manipulation and improved environmental awareness for mapping and
localization.

Real-time sensing and control is an important milestone on the path towards home
based robotic systems. The development of Neural Networks in the past decade
has led to substantial increases in the performance of such intelligent networks.
Neural networks are a group of nodes that are designed to represent neurons in the
brain. These nodes are interconnected and simulate the learning process in the brain.
Neural networks are a type of supervisedmachine learning, which requires the neural
network to be trained using labeled data [1]. Slightly more advanced than neural
networks, convolutional neural networks are more efficient for classifying images
[2]. Convolutional neural networks work by using convolutions with various kernels
to detect different features such as horizontal and vertical edges. The convolutional
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layers are then stacked on top of each other to detect more complicated features. The
final layers of a convolutional neural network are a normal neural network. This is
used to combine the features detected by the convolutional layers together to make
a classification decision.

Using Deep Convolutional Neural Networks for images, on the other hand, has
provided us with trained systems to be able to detect objects of interest with a very
high level of accuracy [2–4]. With faster, real-time tracking algorithms [5], the robot
can have a better understanding of the dynamics of its environment, and act more
responsively, which is desirable in a human-in-the-loop scenario [6, 7]. The benefit
of deep neural networks compared to traditional methods to perform these tasks is
their ability to adapt better to the object of interest and reject unwanted noise. This
makes it ideal for such systems to be incorporated into different environments (e.g.
home, office, factory, etc.) without the need tomodify the algorithm to adapt to enable
detection. Experimental results for tracking objects for manipulation are detailed in
the following sections.

Simultaneous Localization and Mapping (SLAM) is a method in robotics to map
and navigate GPS-denied environments, such as a home. GPS-denied localization
can be a computational constraint for any autonomous navigating task in an unknown
environment. Such environments create a problem for locating objects and perform-
ing automation operations while creating and following its map by sensory readings,
vision sources and etc. This problem requires a system to understand its environ-
ment, identify the objects, and localize them as stated in [8]. Sensor data is mapped
to odometry data to determine the correct placement in a map. Once a map is devel-
oped, a robot can navigate the map and remember where it has gone. Visual SLAM
(VSLAM) is the natural extension with visual inputs from one or more cameras.
Image based feature extraction is the main method used in acquiring sensory data
in VSLAM. In the extraction process, features such as edges and corners from any
object are recorded. In cases of complex, dynamic environments where VSLAMwill
likely be used, landmark selection becomes a difficult problem given a low level of
a priori information on the acquired features. Generated maps will contain transient
features from objects that moved or disappeared from the environment. With new
methods of image classification, namely convolutional neural networks, landmarks
can be selected from the environment based off their known properties. The object
detector and tracker presented in this chapter is used to find appropriate landmarks for
navigation. Preliminary results for the landmark selection process will be presented
in this chapter.

In this chapter, an improved object tracking algorithm is proposed for a home-
basedHRI system.The home-basedHRI systempresented in this chapter has capabil-
ities of voice and object recognition and Internet of things compatibilities. Exchanges
in the system are those associated with the management of tasks in activities of daily
living. The chapter is formatted as follows. Section 2 provides a background on
the related work. Section 3 details the proposed HRI smart home system. Section 4
describes the prototype of the proposed system. Section 5 details the experimental
results with the system components. Finally, Sect. 6 presents the conclusions.



374 B. A. Erol et al.

2 Literature and Related Works

A multi object tracking problem mainly consists of two parts: observation model
and tracking [9]. The object identification and tracking algorithm used in this chapter
uses a convolutional neural network for themodel observation part, and uses that data
with established tracking algorithms with modifications to suite to our application.
Recent developments in object detection using neural networks offers real time per-
formance, which is essential to the application in hand. Networks likeYouOnly Look
Once (YOLO) [10], Single Shot MultiBox Detector (SSD) [11], Faster R-CNN [12],
R-FCN [13], OverFeat [14], such real-time performance optimal for application in
robotics. However, research indicates that the accuracy of such detections reduces
with the increase in detection speed [15].

Once the object to be tracked is determined, it is extracted from the frame, thus
enabling a smaller region of pixels to be fed into the tracking algorithms to iden-
tify the object in future frames. Such tracking, which use feature matching, color
segmentation, edge detection, background subtraction etc. can be performed using
algorithms like Kanade-Lucas-Tomasi Feature Tracker (KLT) [16], Extended Lucas-
Kanade Tracking [17], Online-boosting Tracking [18], Spatio-Temporal Context
Learning [19], Locality Sensitive Histograms [20], TLD: Tracking—Learning—De-
tection [21], CMT: Clustering of Static-Adaptive Correspondences for Deformable
Object Tracking [22], Kernelized Correlation Filters [23]. The performance of these
methods can be compared and evaluated through benchmarking tools [24] to figure
out which one is optimal for one’s application. There are several open source libraries
which integrate several of these algorithms to facilitate their use in an application
like OpenCV [25] and Modular Tracking Framework [26].

Previous relatedwork by the authors of this chapter follows. A framework for nav-
igation and target tracking system for mobile robot was presented using 3D depth
image data and used color image recognition, depth camera data and fuzzy logic to
control and navigate the robot [27]. Design of a testbed for Large-Scale autonomous
system of vehicles was proposed for localization, navigation and control of multiple
networked robotic platforms by using cloud computing in [28]. A real-time cloud-
based VSLAM was provided in [29] with enhancements to reduce processing time
and storage requirements for amobile robot. A visual SLAMbased cooperative map-
ping study with cloud back-end proposed the importance of the object identification
for the mobile navigation and localization [8]. Design and development of a multi-
agent home-based assistive robotic system for the elderly and disabled was provided
in [30–32]. Furthermore, a cloud architecture for large scale systems of autonomous
vehicles was presented in [33]. A foundation for deep neural network control was
provided in [34]. An initial deep vision landmark framework was developed for robot
navigation by Puthussery et al. in [35]. This system utilized the Inception V3 engine
to classify image frames into trained object classes. Themost probable detected class
was recorded along with positional information relative to the robot in a map. After
mapping, objects selected for further inspection were approached by the robot. In
this chapter, we utilize a deep neural network based object detector, which has the
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capability to detect multiple classes per frame with bounding boxes identifying the
detected objects. The use of a real-time object detector greatly improves map reso-
lution, classification throughput, and data acquisition time in the mapping process.

Along with the multi-object tracking algorithms, this chapter also uses unsuper-
vised learning approaches. These unsupervised learning approaches are used for
various functions such as object ownership association. The traditional unsupervised
learning approaches include k-means [36] and fuzzy c-means clustering [37]. How-
ever, in recent years these clustering algorithms have been improved due to some of
the traditionalmethods drawbacks.One suchdrawback is that both k-means and fuzzy
c-means need to know the number of clusters beforehand. In many situations, the
number of clusters are unknown. Many different methods have since been developed
to remove this constraint. For example, Ester et al. developed Density-based spa-
tial clustering of applications with noise (DBSCAN), which groups together closely
packed points [38]. One of the largest advantages of DBSCAN is that it does not
require the a priori knowledge of the number of clusters. Another issue associated
with k-means and fuzzy c-means clustering is that for large numbers of points, the
runtime can be very slow. The typical implementation of k-means has a complexity
of O(N(D+K)), where N is the number of points, D is the number of dimensions,
and K is the number of centroids [39]. Fuzzy c-means is even slower than k-means,
with the typical time complexity of O(NK2D) [40]. Although these algorithms can
run slow with large numbers of points, some advances have been made to improve
this. For example, Kolen and Hutcheson were able to reduce the time complexity
of fuzzy c-means down to O(NKD) by removing the need to store a large matrix
during iterations, which is significantly faster [41]. Arthur et al. reduced the time
complexity of k-means down to O(logK) by initializing the cluster centers by using
points in the dataset that are further away from each other in a probabilistic manner
[39, 42].

3 Proposed System

The proposed system is comprised of components which implement the following
process. An elderly user makes a request to the voice assistant for a retrieval type task
to be completed. In this case, the item to be retrieved is a drink. The task is broken
down into its components: action(s), location(s) and object(s). In this example, a
robot is tasked to inspect an object. On its way to interact with it, various objects are
detected, tracked and mapped. Once candidates for the selected object are detected,
a catalog is created for the user to verify. The user provides input to the robot, or
voice assistant with a camera, via facial expressions to express satisfaction with the
actions of the assistant. Emotion levels are used to select the closest match to the
desired output of the system. The robot then completes the task utilizing its physical
manipulation capabilities.
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3.1 Vision-Based Object Detection and Mapping

Identification and tracking of unique objects requires the following steps. First the
object should be detected and classified. Once detected, the object should be tracked
frame by frame to ensure that duplicate results are not recorded. Estimates of the
objects position are recorded into a map using estimates of the robot pose and prop-
erties of the camera. Further detail on each step is provided below.

3.1.1 Multi-object Detection

Weuse a generalized Convolutional Neural Network (CNN) in our system to perform
multi-object detection using an RGB frame captured by a camera on the robot.
With the recent development and availability of powerful mobile computers with
multi-processing capabilities like the CUDA-cores, we are able to process these
frames in real time speeds, to detect multiple objects in a single forward pass of the
network. This enables us to use CNN for real time applications like SLAM. The
CNN architecture is inspired from open-sourced projects [10–14], the initial layers
of which are pre-trained as object classifiers using available datasets of common
objects [43–45]. The latter layers of such networks are trained to maximize the
Intersection-Over-Union (IOU) of the most likely objects detected in the frame with
the bounding box of these objects, also available as supplement to the datasets. We
extend these algorithms by adding a higher level of abstracted computer intelligence.
For the networks, we use the pre-trained models which are available for most of the
networks

3.1.2 Object Ownership Clustering

Sometimes the user may present the robot with ambiguity such as the task of getting
the user “their” glasses. This can be an ambiguous task because “their” is a pronoun
meaning that the glasses belong to them. “Their” does not provide the robot with
any physical description of the glasses, which could cause a problem if multiple
people wear glasses in the household. Therefore, ownership of objects could be a
very important attribute to consider. For example, if the robot were to see two pairs
of glasses, initially the ownership of each pair is unknown so the robot will have to
ask the user which glasses is “theirs”. Once the robot can determine the ownership of
each pair of glasses, the identifying physical descriptors of the glasses can be saved
into a database. Since it is very likely that the glasses are placed next to other objects
that belong to the owner of the glasses, the robot can assume that the nearby objects
also have a possibility of belonging to the glasses owner. To allow the robot to make
these assumptions, clustering algorithms can be used.

Once the ownership of an item is verified by the robot, the robot can utilize a
clustering algorithm. This algorithmwill cluster objects together based on Euclidean
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Fig. 2 Example scenario of how clustering can be used to solve ambiguity

distance. Any objects that are in the same cluster as the verified objects can be stored
into a database as objects that possibly belong to the owner of the verified object.
Now if the user provides the robot with another ambiguous request, the robot can use
the objects that were in the same cluster as the verified object to solve the ambiguity.
In the same scenario as before, also seen in Fig. 2, if Jill asks the robot to get “her”
cup, and there are multiple pairs of glasses, the robot will not knowwhich cup belong
to Jill. The robot will then ask Jill to verify which cup is hers. Once Jill responds,
the robot will then proceed to get that cup. As the robot is getting the cup, the robot
will cluster the objects near the cup. Since Jill’s chair and monitor are near her cup,
the robot will cluster them into the same cluster as the cup. The robot will then store
the ownership of the chair and monitor as having a high probably of belonging to
Jill. Now the robot brings Jill’s cup back to Jill, and then Jill requests the robot to
get her chair. Normally this would be another ambiguous request, but since the robot
now knows that the chair was near the cup, the chair has a high probability of being
Jill’s. This allows the robot to be able to immediately go and get the chair and bring
it back to Jill. Since there is still a small chance that the chair is not Jill’s chair, the
robot will still verify with Jill to ensure that it is actually her chair. A flowchart of the
algorithm that the robot can use to solve ownership ambiguity can be seen in Fig. 3.

3.1.3 Object Tracking

Though neural network based multi object detector performs very well as an object
tracking neural network, it fails to distinguish betweenmultiple instances of the same
type of object that it is detecting. To identify objects for the purpose of automation,
we need to track an object. This means to be able to distinguish between two similar
objects that might be detected by the multi object detector.

The camera frame will be processed by the multi object detector to provide the
location and classification of objects in the frame, while smaller Region-of Interest
(ROI) will be selected within the frame based on the same location information
to detected features on the object, hence assigning uniqueness to the object. When
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Fig. 3 Flowchart robot will use to solve the ambiguity of requested objects
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needed, feature matching is used to solve the problem of ambiguities when two or
more objects of the same class overlap, or one object goes out of the camera field of
view.

For the purpose of experiments, the number of reliable features to trackmay be set
arbitrarily, and refined to a more experimentally tested decision in the test iterations.
A feature management algorithm is utilized to decide on the actions to take in case
of loss of features mapped and the minimum number of features required to have a
reliable tracking of the object. It is observed that while detecting features of an object,
the count of the features may not suffice the need for reliably distinguishing similar
objects. To overcome this issue, the algorithm guides the robot to move towards a
particular object, once detected, until it has enough features in its feature map. These
features of the object are recorded into the memory of the robot along with a picture
of the object for reference. A library of all the similar objects and their associated
features are stored and then queried with the user to find out which one is of interest.
Once a selection is made by the user, other features may be discarded, while the
features of the selected unambiguous object is used to track the robot back to the
object.

3.1.4 Object Mapping

Positioning of the robot with respect to the environment is important since we need
the robot to find its position back to the user and the detected objects. Similarly
localizing the detected objects with respect to the environment is also important
to plan a path for the robot to maneuver to the object. The kinematic model for
the proposed robot’s locomotion is a combination of a differential drive kinematics
and serial manipulator kinematics. To simplify system development for this current
research, the humanoid torso robot was assumed to remain in a fixed pose.

Mapping of the robot and the environment is performed using a combination of
different sensors on the robot. Every sensor has different kind of error associated
with them. For example, the odometer on the robot is prone to error due to slippage.
To overcome this problem, we use an Extended Kalman Filter (EKF) algorithm to
perform a sensor fusion between the positions obtained from the odometer, Inertial
Measurement Units (IMU), the visual odometry reported by the camera using Simul-
taneous Localization andMapping (SLAM) techniques. The use of Robot Operating
System (ROS) packages enables us to perform such sensor fusion with minimal
effort.

Traditional SLAM algorithms using feature detection are complemented with
using multi object detection as reference points on the map to localize the robot. The
objects detected by the system act as landmarks in the mapping process. Another
EKF is applied to this system to provide a filtered map and localization of the robot.
Mapping of the objects is performed once the objects of interest are detected and
features are selected and stored. The locations of the objects are stored alongside the
features and the picture of the object. With the use of modified neural network based
object tracking, we could hand pick a certain category of objects that may offer more
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remarkable features to distinguish between other features. Since these features are
conglomerated into objects detected by the algorithm, hence the matching process
is less intensive than traditional SLAM, and at the same time provide more error
correction from similar features, which is a large problem in the field of SLAM.

An important part of integrating an HRI into a system is for the robot to learn.
A key way to do this for a task assigned robot is to remember the choice made by
the user. As an implementation example, the first time the robot is asked to locate a
bottle, and the user selects a specific bottle from a list of bottles the robot found, the
specific bottle is stored along with its features, location and a picture for reference
in the robot memory. Later, if the user instructs the robot to find the same object, the
first guess that the robot makes is of the stores bottle in its memory. The user may
want a different bottle and deny the robot, however there is a higher possibility that
the user may want the same object again, which in turn improves the confidence of
the robot with the user, and hence may make the robot more reliable. This is also
useful in saving time for the robot to look for an object that it had already looked for
earlier.

3.1.5 Object Database Creation

This section defines the creation of a virtual database of the objects detected, tracked
andmapped by the robot. As described earlier, various real timemulti-object detector
algorithms may be used to track the current position of an object in the frame of the
image frame, as observed by the robot. Once the presence of N object is confirmed,
each of them are compared to the existing database to find if any of these objects
are already in the library. In order to check if the object being recognized is already
in the library, it takes into consideration various attributes about the detected object
which includes color, features, ownership information, location and last access of
the same object. Such attributes about each recognized object is compared with the
corresponding attributes of all objects in the database, to compute a confidence level
as shown in Fig. 4. This confidence level is then used to determine among three
possible actions to be taken:

• If the object is already present in the database, affirm the presence of the same
object in the image frame and determine if other action need to be performed on
the object, for example pick up the object.

• If the confidence of the same object being present in the database is above a certain
threshold but not high enough, compare to themost probable object in the database
and update the object attributes in the database with the observed attributes.

• In case the confidence of the object being among the ones in the database is lower
than a set threshold, add the object and its corresponding attributes as a new object
in the database.

It should be noted that the attributes are weighted, when evaluating the confidence
levels. This is because, certain attributes may be more reliable than others. For exam-
ple, if the robot detects a bottle in its image frame, being an object that can be moved
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Fig. 4 Object database query, creation and update

since the last observation of the object, we assign a low weight on the location of the
object while determining the confidence of the object being the same bottle in the
database.

On the other hand, the features recorded for the bottle is assigned a higher weight,
since a higher score on feature matching is more accurate indication of the same
object being view by the robot image frame. Since we already define the objects that
the object tracker can recognize, we also pre-define the weights associated with the
different attributes of the corresponding object.

We can hence formulate, Eq. 1, a weighted average confidence level calculation
of a detected object as:

Cn � �W �A
�W � {

wc,w f ,wo,wl ,wt
}
and �A � {

sc, s f , so, sl , st
}T

(1)

where, Cn → Confidence level of object n,
wc,w f ,wo,wl ,wt → Pre-defined weight vector for different attributes: color,

feature matching, ownership, location and last access time, respectfully,
sc, s f , so, sl , st → the attribute scores for color matching, feature matching, own-

ership, location and last access time.

3.1.6 Determining Optimal Action Sequence

One important decision the robot needs to make, is the sequence of the actions to
be taken when multiple commands are requested by the user. This can be difficult
because there are a lot of variables that can be considered. To simplify this process,
we assume that the robot can only retrieve one object at a time, some of the objects
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locations are known, some of the objects locations are unknown, and the user has
placed a higher priority on some objects versus others. To determine the optimal
action sequence, the robot will first receive multiple requests from the user. Using
machine learning algorithms, the robot will to decide whether each request is a low,
medium or high priority request. The robot will sort the actions with known locations
based on the cost calculated using Eq. 2, where C is the cost of the action, DRO is
the distance from the robot to the object, DOU is the distance from the object to the
user, and P is the predicted user’s priority for that action.

C � DRO + DOu

P
Plow < Pmedium < Phigh (2)

If there are not any objects with known locations, the robot will search until it finds
an object. The robot will then proceed to retrieve the first item, while simultaneously
searching for objects with unknown locations. If the robot finds an unknown object,
the robot will rerun the auction algorithm and determine the new optimal action
sequence. If the robot does not find any unknown objects, then the robot will grab
the object and return it to the user while still searching for unknown objects. The
robot will repeat this process until all the actions have been completed. A flowchart
describing this algorithm in a high level can be seen in Fig. 5.

3.1.7 Avoiding an Obstacle in the Environment

Once the robot has decided the optimal sequence of actions to take, the robot needs
to successfully travel to the object to retrieve them. While traveling to the objects,
the robot may encounter obstacles. These obstacles need to be avoided in order to
ensure the safety of the robot and to not cause damage to the household. To avoid
these obstacles, the already onboard camera can be utilized. Using the vision based
obstacle avoidance algorithms such as the reactive vision only slidingmode controller
developed by [46]. The robot can use its front facing camera to avoid obstacles, while
still moving towards the object of interest. The results of the reactive vision based
obstacle avoidance algorithm can be seen in Fig. 6.

4 Prototyping Robotic Smart Home System

4.1 Robotic System Hardware

The assistive robot used in this system is a hybrid of an unmanned ground vehicle
and a humanoid robot, Fig. 7. For the humanoid portion of the hybrid machine, the
humanoid robot torso is used which is a 3D printed open source robot from the
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Fig. 5 Flowchart robot will
use when the user requests
multiple actions

torso up. The humanoid torso was combined with a Kobuki Turtlebot 2 research
platform from YujinRobot later on as summarized in Fig. 8, which is an unmanned
ground vehicle. The Turtlebot2 was selected due to its customizable capability and
open source software. The rover is equipped with a Yujin Robot Kobuki base, a
14.8 V Lithium-Ion battery, and a Hardkernel ODROID XU4 minicomputer. The
ODROIDXU4minicomputer was selected as the embedded computer for the UGVs.
It features a Samsung Exynos 5422 octa-core CPU, 2 GB DDR3 RAM, USB 2.0/3.0
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Fig. 6 Results of the vision based obstacle avoidance algorithm developed by Lwowski et al.

Fig. 7 Preliminary low-cost prototype for hybrid 3D printed mobile assistive robotic system

and a 64 GB eMMC card for storage. A Meanwell DC-DC converter was connected
to the Kobuki’s 12 V 5A output to supply power for the ODROID XU4 (5 V/4A
requirement).

In addition, the rovers come with cliff sensors (left, center, right), wheel drop
sensors (left, right), a single axis gyro and motor overload protection. The hybrid
robotic platform is compatiblewith theRobotOperating System (ROS) by extensions
ofAPIs supplied for both research platforms. To obtain better directional awareness, a
BOSCHBNO055 Inertial Measuring Unit was added to provide absolute orientation
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Fig. 8 Kobuki Turtlebot 2 has been chosen and modified with ASUS Xtion Pro Live RGB-D
camera, powered with ODROID XU4microcontroller and BOSCH BND055 IMU installed

to the system. This IMU integratesmultiple sensors to obtain a stable absolute output:
a triaxial 14-bit accelerometer, a triaxial 16-bit gyroscope and triaxial magnetometer.

The humanoid robot torso has been mounted on the Kobuki Turtlebot 2 robot as
shown in Fig. 9. A camera mounted in the head of humanoid robot torso is used
to detect objects in the environment. Control of the hybrid robot is performed using
ROS. TheKobuki_ROS package handles control of the base robot. A customdesigned
head unit was designed to support addition of a five-inch touchscreen LCD display
(ODROID-VU5), monocular camera, stereo speakers for synthesized auditory feed-
back, and a microphone for obtaining commands from the user.

An overview of the prototype system is provided below in Fig. 10. The smart
home system includes interfaces for voice, vision, cloud-based computation, and
robotic platforms. In this section, preparation of robotic hardware, the HRI, object
detection and tracking algorithms and the control loop are discussed.

4.1.1 Human-Robot Interface

Visual Interface

A software interface was developed for the new humanoid robot torso’s head unit
using pyqt3 for the graphics and ROS for the interface to the data. A ROS software
package ace poppy hri display was developed for this work. Inputs to this package
are the desired target, the robot state, and text to display. A question and answer
game, used in HMI, is implemented by the robot and user of the system. An example
of the HRI is displayed on the humanoid robot torso head unit display in Fig. 11.
The example shows the user request “check the plant” to the robot, a response “is
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Fig. 9 Redesigned prototype of the systemwith the mobile platform and the torso robot is installed
performing object identification and navigation tasks

Fig. 10 System representation included simpleflowchart for IoTdevice andvoice-activated control
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Fig. 11 Question and answer type HRI for a selected cropped output of the database displaying a
plant

this what you wanted me to check?”, and a picture of the item that the robot checked.
Stylistically, the text of the question and answer HRI is like the voice user interface
(VUI) de facto standards used in voice assistants. This was implemented like VUI
as voice is used to provide the robot tasks and is shown in Fig. 10.

Auditory Interface

Auditory commands are provided to the robot using a home voice assistant, in this
case an Amazon Echo Dot. Auditory responses from the robot are generated using a
combination of Linux programs espeak for synthesis of words into a WAV file and
aplay for playing back the WAV file. The option to use a WAV file was selected for a
combination of reasons. Most important of all, espeak tends to connect to the audio
service jack-server slowly or fails intermittently, where aplay plays back the audio
almost instantaneously and consistently. The second reason is to maintain a history
of responses to the user for quality purposes. As a synthesizer, espeak tends to be
limited in its ability to pronounce certain words and people’s names. There is a need
to sometimes break a word into its phonetic components to synthesize it correctly.
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4.2 Object Detection and Tracking

4.2.1 Modification for Compatibility with Video Source

Darknet, the software package for YOLO, was installed on a high-performance desk-
top computer with an Intel i5 and a NVIDIA GTX-1080 with 8 GB of memory. The
desktop computer is the detection engine for the robot platform. The source code for
the neural network was modified to allow connections to the camera feed through
Wi-Fi. The Robot Operating System (ROS) was used to provide Wi-Fi interface to
the camera feed over a protocol similar to TCP called TCPROS. To be compatible
with ROS, use of a branched version of darknet written in C++was necessary. This
software branch contains the modifications necessary to generate a shared library
file libdarknet-cpp-shared.so and arapaho, a C++API to the library. ROS packages
ace_arapaho and ace_arapaho_msgs were developed by the authors to use the ara-
paho API. These packages provide the capability to publish the identified objects
with labels, timestamps, and the relevant region of interest bounds of the image. An
additional input to the package is the object filter list.

Objects in the list are filtered out from the reported identifications. Outputs of the
ace_arapaho ROS node are passed to a feature tracking package, developed by the
authors, called ace_object_tracker. Inputs to this package are parameters from the
motion of the robot, parameters of the camera, and the image ROIs from the multi
object detector. This package develops initial models of the detected objects from
the inputs provided to it. These models are used to uniquely identify the incoming
data as belonging to a unique object.

4.2.2 Feature-Matching Enhanced Object Detector

It is important to note that even though the output of neural network basedmulti object
detectors resemble tracking, it is just a multi-object detection algorithmwhich works
at a very high throughput. Though it is able to detect the location of an object within
the image frame, it does not track objects as individual items. Hence in a frame
with more than one instance of the same type of object, for example two different
bottles, will be tracked as the object bottle, irrespective of their differences. This
ambiguity is problematic in cases where the user wants the system to find a specific
object. To resolve this issue, we combine traditional object tracking methods with
neural network multi object detectors. The system uses multi object detectors to
detect objects in the frame, which are then passed onto feature tracking algorithms.
Features are then selected from within the bounding box provided by the object
detectors for a particular object. These features are then used to identify a specific
object when such ambiguity arise.
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4.2.3 Confidence Gradient Tracking

Another common issue when using such multi object detectors is the lack of reliable
detection in every frame. Since they process every image individually, isolated from
the previous image sequence, it often causes alternating loss and detection of objects
in the scene. Another problem while using such algorithms is the detection of false
positives. We use a method of confidence gradient tracking to overcome both these
issues, to achieve a reliable tracking. Our algorithm uses a complimentary filter to
smoothen the detection confidence level of a particular object being tracked. The
gradient of this filtered confidence level is monitored by the system. While the robot
is moving in a particular direction, if the filtered confidence gradient is positive and
the filtered confidence level builds up to a set threshold of confidence level, the
existence of the object is confirmed. This confirmation of the object in the scene
initiates the feature tracking algorithm, which starts to record features of the object,
while the robot is moving towards the object. The algorithm instructs the robot to
keep moving towards the object until the number of recorded reliable features for the
object matches a pre-defined minimum number. Implementation of the algorithm is
explained in more detail in Sect. 5.

5 Experimental Results

5.1 Processing Rate for Object Detection and Tracking

Initial performance tests were executed with a direct USB 2.0 connection from the
desktop computer to the camera onboard the robot. In this configuration images
are processed at about 27 FPS, which is similar to the camera frame throughput.
Further tests utilized images transmitted over TCPROS on a Wi-Fi IEEE 802.11 N
connection from the robot to the desktop computer. In this configuration, we were
able to process image frames around 5 FPS. The drastic reduction in processing rate
is solely due to the transmission of raw image data over Wi-Fi. Compressed image
streams will be examined in the future to achieve a higher data rate over Wi-Fi.
Selected outputs of this result are displayed in Fig. 12 that show both some correct
and incorrect detections. For a couple examples, a cardboard box is covered in white
paper is labeled a sink, and a large cabinet is classified as a refrigerator. Items that
were detected more reliably (e.g. clocks, bottles, chairs, TV monitors, etc.) were
selected as target objects for the experiment.
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Fig. 12 Selected outputs of YOLO demonstrating correct and incorrect classifications of objects
in an image frame

Fig. 13 Detection confidence analysis with respect to distance to object

5.2 Confidence Gradient Tracking

Figure 13 shows a plot of the raw and filtered confidence level of a chair detected,
as the camera frame moves closer to the chair. As can be observed from the figure,
the raw confidence outputs of a particular object being tracked by the multi object
detector is noisy. However, the filtered data shows a general increasing trend of con-
fidence signifying a true positive detection of the object. To recognize this behavior,
our algorithm differentiates the filtered confidence level. This differential is used to
indicate the increasing or falling nature of the confidence level of a detected object.
However, as observed in Fig. 13, there are regions where the algorithm either fails
to detect the object or the detection is a false positive.

For this reason, certain regions of the differential are negative. On the other hand,
for our algorithm to work, we would want to detect a negative differential slope only
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Fig. 14 Filtered differential of the confidence levels with respect to distance to object

when the object for detection is not in the frame. In order to detect a true positive in
cases where the object is not detected for few frames, we filter the differential plot
as shown in Fig. 14.

If the filtered differential remains positive while the robot is moved towards the
object, a true positive of the detected object is established. The filtered confidence
data is monitored while the robot is moving towards the object to assign a Region
of Interest (ROI) for feature recognition and storage, for matching and identification
later. It should be noted that differentiating the original unfiltered confidence levels
and then filtering them, generates an output which radically alternates between the
positive and negative. This is an expected behavior for a noisy signal.

An example of the differential of the raw confidence levels can be seen in Fig. 15.
However, such differential signal cannot be used to distinguish between false positive
and a true positive, using the previously explained algorithm. As a result, we use a
filtered confidence levels before differentiating the data.

Experimental testswere performedon3different objects—person, chair andbottle
for three instances each. The algorithm described above was implemented in each
case and the results obtained are tabulated in Table 1. Two thresholds were used to
determine a true positive. The first one, set to 50% confidence was used to trigger the
robot to turn towards the object and move towards it. The next threshold of 60% was
used to declare an ROI to start tracking features of the object. The filtered differential
was monitored to make sure that the results are not false positives.
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Fig. 15 Differential of unfiltered confidence levels: Alternates rapidly across zero level

Table 1 Confidence gradient tracking (Threshold (true positive/feature recording) = 50%/60%)

Object tracked Distance from
object with true
positive
affirmation (Feet)

Line of sight
angle offset (º)

Maximum
features matched
for tracking
capability

Tracking
possible?

Bottle 1 12.77 10 730 Yes

Chair 1 20.26 0 382 Yes

Person 1 20.66 5 127 No

Chair 2 17.18 10 312 Yes

Chair 3 18 0 302 Yes

Bottle 2 5.69 5 N/A No

Bottle 3 9.55 0 779 Yes

Person 2 20.94 15 911 Yes

Person 3 14.62 10 630 Yes

6 Conclusions

Robotic navigation in GPS-denied environments highly depended on specific
approaches for locomotion and navigation tasks. Improvements on computational
intelligence tools and pattern recognition approaches, along with reinforced learning
applications for object identification engines based on improved RGB-D cameras,
have increased the accuracy of cooperative multi-tasking assignments in robotics.
Pattern recognition and machine learning techniques, such as Convolutional Neu-
ral Networks to identify markers or objects from images and videos, improved the
performance in the autonomous navigation and localization experiments.
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The use of robotics in the home environment is a very complicated scenario
with lots of problems. In this chapter, many problems such as object detection and
tracking, object ownership, object mapping, object database creation, determining
optimal action sequence, and obstacle avoidance have been addressed. Solving these
problems are one of the necessary steps into creating a robust fully functioning home
robotic assistant that could be used in our everyday lives. In the future, we plan to
integrate all of these decouple systems together, to create a more complete robotic
assistant for the home environment. This robotic assistant could then be tested in
many different situations in order to gather data and improve our algorithms. These
tests would also help us identify new problems that will need to be solved in the
future to make the system even more robust and useful.
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Low Cost Parkinson’s Disease Early
Detection and Classification Based on
Voice and Electromyography Signal

Farika T. Putri, Mochammad Ariyanto, Wahyu Caesarendra, Rifky Ismail,
Kharisma Agung Pambudi and Elta Diah Pasmanasari

Abstract Parkinson’s disease (PD) is one of the health problems concerning for
elderly population. Manageable symptom is an important thing for Parkinson’s suf-
ferer in order to be independent enough to do daily activities. As a solution to Parkin-
son’s early detectionmethod, this research purpose is to develop a low cost diagnostic
tool for PD which inexpensive yet accurate and easy to use by neurologist, enriching
and giving new insight for neurologist about voice and electromyography (EMG)
signal analysis result. It can be very useful for PD clinical evaluation and spreading
awareness about PD as well as the important of early diagnose to citizen. Parkinson’s
detection method in this research uses pattern recognition method, the first step is
initiatedwith voice andEMGdata acquisition. Second step is feature extraction using
five features for voice and EMG signal. The last step is classification using Adap-
tive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural network (ANN)
methods. The pattern recognition of PD is divided in two sections, the first is for two
class classification, and the second is four stage classification based on Hughes Scale
which commonly used in Indonesia as PD diagnose guideline. Based on the results,
voice method classification has higher accuracy than EMG classification because the
feature for voice is a good feature which can well classified the voice data. Voice
data sampling rate is higher than EMG data sampling rate which means voice data
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recording has more data each second than EMG data. Two class classification has
higher accuracy than four class classification both in ANN and ANFIS. Based on the
four class classification results in both of voice and EMG signals using ANN and
ANFIS, the probable class has the lowest accuracy of all classes.

Keywords Parkinson’s disease · Pattern recognition · Voice · EMG · ANN
ANFIS

1 Introduction

1.1 Parkinson’s Disease (PD)

Parkinson’s Disease (PD) was first described by Dr. James Parkinson in a book
entitled “An Essay on the Shaking Palsy” published in 1817. For several centuries
later known as shaking palsy and in themedical terms known by the name of paralysis
agitans.Alongwith its development later calledParkinson’sDisease to commemorate
the services of Dr. James Parkinson as the first person to explain the disease [1].

Many studies have been done by experts related to PD but until now not yet
known exactly what causes of PD. The Parkinson’s Institute team in California,
USA conducted a study by interviewing 519 PD patients and 511 healthy people
associated with occupational history and exposure to toxins experienced including
pesticides and solvent fluids [2]. The results show that those who work in education,
agriculture, health workers and welders are not directly related to PD. Researchers
found 8.5 percent of PD patients are people who are often exposed to pesticides.
The results of this study proves that there is a relationship between pesticides with
PD, not just fertilizers but other chemicals [2]. The National Institute of Neurological
Disorders and Stroke (NINDS) identifies several possible causes of PD, among others
[3]:

• Premature aging, premature aging of brain cells (neurons) allows one of the causes
of PD

• Oxidative damage, free radicals are very unstable and potentially damaging
molecules produced through normal chemical reactions in the body

• Environmental toxins, both external and internal toxins that can damage the cells
(neurons) of the body

• Genetic influence, 10 to 15 percent of PD patients have close relatives who also
experience PD symptoms

PD shows some symptoms in patients, among others as follows [3, 4]:

• Tremor at rest
Tremor at rest is one of the typical symptoms of PD so that PD is often called
shaking palsy. The shaking that occurs during this break can be seen on the hands,
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arms, legs, jaws and faces. Tremor generally begins from the hand and for the
early stages of tremor occurs on one side of the body only.

• Rigidity
Rigidity is the stiffness that occurs in the limbs. The human muscle basically has
opposite muscle sections. The basic principle of movement is when one muscle is
activated and the opposite muscle is relaxed. Rigidity will occur when the muscles
are moving and the opposite muscles are both in active state because the signals
from the brain are disrupted.

• Bradykinesia
Bradykinesia is taken from the Greek word meaning “slowmotion”. Bradykinesia
can be seen from facial expressions such as masks (hypomimia) and decreased
frequency of eye blinks, delay in moving and decreased fine motor coordination
such as not being able to button clothes or cut meat.

• Gait (walking posture)
The running posture will be slightly disturbed at the beginning. Disturbed walking
posture can be seen from the arm that does not move when the patient is walking.
When walking will experience freezing (silent in place) for a few moments.

• The problem of balance and posture instability
Instability posture makes PD patients have a hunched posture. Impaired balance
and coordination cause PD patients to fall easily and injury.

1.2 Classification of Parkinson’s Disease (PD)

Parkinson’s disease has a stage of development of symptoms. Each stage is measured
on a widely used scale. Several common scales are used to determine the stage of
PD development in patients. UPDRS (Unified Parkinson’s Disease Rating Score),
Hoehn andYahr Scales, and Schwab and England of Daily Living Scales are themost
commonly used scales in PD staging. Each scale reflects the burden of PD disease
and how far the impact of symptoms on the patient. This scale is particularly useful
for defining disease progression as well as appropriate treatments for patients.

The UPDRS scale is the most widely used scale for determining PD stadium in
patients. The UPDRS consists of 44 sections where each section has an assessment
of 0–4. The number 0 indicates that the patient is a healthy person and the number
4 indicates the patient has symptoms of PD [5, 6].

Schwab and England of Daily Living Scales is one of the scales to assess PD
stadium. The scale consists of 100%which patients completely independent and able
to perform all tasks without obstacles, difficulties and slowness. Basically normal to
0% which patients depends entirely [7].

Hoehn and Yahr Scales consists of two, namely Hoehn and Yahr Scales and
Modified Hoehn and Yahr Scales. Hoehn and Yahr Scales are used as guidelines in
determining the stages of PD patients. Hoehn and Yahr Scales consists of stage 1 to
stage 5. Stage 1 is when only the one side of the body affected and Stage 5 when the
patients lying in bed and or wheelchair unless assisted [7]. While Modified Hoehn
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and Yahr Scales consists of Stage 0 to Stage 5 where Stage 0means there is no sign of
disease and Stage 5 means the patients lying in bed and or wheelchair unless assisted
[7].

PD examination in Indonesia is conducted clinically. Dr. Kariadi General Hospital
distinguishes PD into three criteria according to Hughes criteria, as follows [8]:

• Possible
Expressed as possible if there is one of the main symptoms of tremor at rest,
rigidity, bradykinesia and failure of postural reflexes.

• Probable
It is stated probable when there is a combination of twomain symptoms (including
postural reflex failure) or alternatively asymmetric rigidity or asymmetric bradyki-
nesia.

• Definite
It states defitinite if there is a combination of three of the four symptoms or two
symptoms with one symmetrical symptom.

2 Data Acquisition

The first method in pattern recognition is data acquisition. Data acquisition can
be described as the process of physical phenomenon using sensors and computer.
This pattern recognition application on PD detection use two kinds of data acqui-
sition: voice and Electromyography (EMG) data acquisition. The data acquisition
process is conducted in two group of research participants, healthy participants and
PD participants. There are some regulations associated with human data collection.
Ethical clearance and informed consent must be fulfilled before data acquisition
is conducted. Ethical clearance is an ethical appropriation given by research ethic
committee for a research which involving human and animals. Ethical clearance
approval for this research is obtained from Medical faculty, Diponegoro University
in Semarang, Indonesia

2.1 Voice

Voice data acquisition process begins with the recording equipment preparation.
Unidirectional microphone is chosen as part of recording device. Unidirectional
microphone is a microphone which receives voice from one direction. Unidirec-
tional type microphone selection aims to minimize noise from the environment. The
selected recording device is Yamada multifunctional microphone DM-Q6000 and
it can save the voice recorded in mp3 format through external storage like a flash
disk. Figure 1 shows used unidirectional microphone and Yamada multifunctional
recording device. The selected sample rate in this voice acquisition is 44 kHz.
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Fig. 1 Voice recording data acquisition tool. a Unidirectional microphone, and b Yamada multi-
functional microphone DM-Q6000

Parkinson’s patients have distinctive symptoms that are different from healthy
people. In patients with Parkinson’s there is a change of voice that comes out of
the larynx. The change is the hoarseness of the vocal letters [5]. Based on these
considerations, then the procedure data retrieval is done by recording the patient’s
vocal voice and healthy participants [5, 9, 10]. Voice data acquisition procedure is
taken as follows:

• Research participants speak “aaaa ……” with a stable pitch for about 10 s [5, 9,
10]. When talking try positioning the mouth close to the microphone.

• Data retrieval is conducted in six times.

Figure 2 below is a picture of the process of taking voice signals in Parkinson’s
patients and healthy people. The voice signal is saved in .mp3 format. The format is
selected because it can store the voice signal for 44 kHz with less byte and the .mp3
format also can be operated easily in MATLAB environment. Images will be blurred
to protect privacy and patient confidentiality. The example of acquired voice signal
from healthy and study participant with PD can be shown in Fig. 3.
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(a) (b)

Fig. 2 Participants voice data acquisition process, a Healthy participant, b Participant with PD
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Fig. 3 Participant’s voice signals, a Healthy Participant, b Participant with PD

2.2 Electromyography (EMG)

Gait data acquisition is conducted using BITalino EMG sensor. Figure 4 shows the
BITalino plugged kit sensor. BITaino plugged kit consists of data acquisition compo-
nent as main board, sensors consisting of EMG sensors, ECG (electrocardiography),
EDA (electrodermal activity), accelerometer and LUX sensor (luminous sensor), 500
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Fig. 4 BITalino plugged kit

mAh battery, main connection cable, cable pad for EMG sensor and cable pad for
ECG and EDA sensors. The sample rate on BITalino plugged kit that can be selected
is 1, 10, 100 and 1000 Hz.

BITalino plugged kit uses bluetooth 3.0 as wireless interface with a computer and
a maximum capture distance of 10 m. The selected sample rate is 1000 Hz. BITalino
can connect with MATLAB software and open access software: OpenSignals as
data acquisition tool. This study uses OpenSignals as a software for storing the gait
signal data. The most noticeable symptoms in Parkinson’s patients are tremor and
stiffening of the muscles of the limbs. With these considerations then gait signal data
acquisition is conducted as follows [11]:

• TheEMGsensor ismounted on theTibialis Anterior,GastrocnemiusMedialis, and
GastrocnemiusLateralis. InstallationEMGsensor is basedonSENIAMguidelines
[11, 12]. Figure 5 shows the EMG sensor position attachment.

• First data collection task is the study participants sat down and tapped the fingertips
and heels on the floor alternately for 20 s. Data recording is conducted 3 times.

• Second data collection task is participants sitting and raising feet approximately
10 cm from the floor and twisted the ankle for 20 s. Data recording is conducted
3 times.

Figure 6 shows gait data recording with EMG sensors on the study participants.
For the sake of privacy and the participant’s secrecy, the face part is intentionally not
shown. The example of acquired gait signal using EMG signal for healthy and study
participant with PD can be shown in Fig. 7.
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Fig. 5 EMG sensor attachment on Tibialis Anterior (a),Gastrocnemius Medialis (b) andGastroc-
nemius Lateralis (c) [12]

Fig. 6 Participants gait data acquisition process, a Healthy Participant, b Study participant with
PD

3 Feature Calculation

In this study, the pattern recognition in PD staging is conducted using voice and
EMG signal. The previous study [5, 13, 14] used 22 voice features. In this study, 22
voice features are selected into five features as presented in Sect. 3.1. All of the voice
features are calculated in frequency domain. EMG signals use five selected features
as discussed in Sect. 3.2. The EMG features consist of three features in time domain
and two features in frequency domain. In the previous study, the five features of EMG
have high accuracy on finger motion classification in five class pattern recognition
[15].



Low Cost Parkinson’s Disease Early Detection … 405

0 0.5 1 1.5 2
-1

0

1
A

m
pl

itu
de

0 0.5 1 1.5 2
Time (second)

-1

0

1

A
m

pl
itu

de
(a)

(b)

Fig. 7 Participant’s gait signals using EMG, a Healthy Participant, b Participant with PD

3.1 Voice Features

a. Multi-Dimensional Voice Program/MDVP (F0)

F0 is the average value of the fundamental frequency. F0 estimation is impor-
tant for voice signal characterization. Gender and age affect estimated value F0. In
addition to gender and the estimated age of F0 as well influenced by emotional state
while speaking, while talking through phone, incoming voice interference as back-
ground and indication when the speaker is in a state of alcohol. But the factors is only
small and negligible [4]. Some researchers develop algorithms for value estimation
F0 which is called Pitch Detection Algorithm (PDA). Generally the PDA has three
stages of preprocessing, identification possible values of F0 and post-processing [4].
Identification of the algorithm include DYPSA (Dynamic Programming Projected
Phase-Slope Algorithm), PRAAT, SHRP and SWIPE (Sawtooth Waveform Inspired
Pitch Estimator) [4].

b. Local Jitter

Jitter serves to identify disorders and small irregularities which occurs in the
period from cycle to cycle [4]. Equation (1) is the equation for local jitter [16].

Jitter local � jitter (second)

mean period
(1)

where:

Mean period �
∑N

i�1

Ti
N

(second) (2)
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Jitter second �
∑N

i�2 |Ti − Ti−1|
(N − 1)

(second) (3)

Ti = Period interval-i (second)
N = Sum of interval period

c. Period Perturbation Quotient 5 (PPQ5)

PPQ5 is the average value of the difference between the periods at a given interval
with the four closest periods divided by the average period value [16]. Equation (4)
is used to calculate PPQ5 [16].

PPQ5 � Absolute PPQ5 (second)

Mean period (second)
(4)

where:

Absolute PPQ5 �
∑N−2

i�3 |Ti − (Ti−2 + Ti−1 + Ti + Ti+1 + Ti+2)/5|
N − 4

(5)

mean period �
∑N

i�1

Ti
N

(6)

d. Recurrence Period Density Entropy (RPDE)

RPDE is a feature that can be used to determine the period deviation on a repeating
signal [4]. The vocal cords have the ability to maintain vocal stability while oscillat-
ing. In patients with PD there is a larger period deviation than healthy people when
the vocal cords oscillate. The following Eq. (7) is the equation for RPDE.

RPDE �
∑Tmax

i p(i) ln(p(i))

ln(Tmax)
(7)

e. Pitch Period Entropy (PPE)

PPE is a value that describes the subject’s deviation or incompetence in maintain-
ing the stability of the voice tone. PPE is a feature developed by a professor from
MIT named Max A. Little [5].

3.2 EMG Features

a. Integrated EMG (IEMG)
IEMG is one of the EMG signal features that belong to the time domain feature.
IEMG is commonly used as early detection of EMG signal interpretation for
clinical areas [17, 18]. The following Eq. (8) is an equation for the IEMG feature.
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IEMG �
N∑

i�1

|xi| (8)

where:

N = number of EMG data
i = ith EMG data
xi = raw ith of EMG data

b. Mean Absolute Value (MAV)
MAV is one of the EMG signal features that is included in the time domain
feature. MAV is often used to interpret EMG signals. The following Eq. (9) is
the equation for MAV.

MAV � 1

N

N∑

i�1

|xi| (9)

c. Variance of EMG (VAR)
VAR is one of the EMGsignal features that is included in the time domain feature.
VAR is defined as the mean value of the square of the deviation value for the
EMG signal. The following Eq. (10) is the equation for VAR [19].

VAR � 1

N − 1

N∑

i�1

x2i (10)

d. Mean Frequency (MNF)
Mean frequency (MNF) is an average frequency which is computed as sum of
product of the signal power spectrum and the frequency divided by total sum of
the spectrum intensity [20]. It can be calculated as expressed in (11).

MNF �

M∑
j�1

fiPj

M∑
j�1

Pj

(11)

where f j is spectrum frequency at frequency bin j,Pj is the signal power spectrum
at frequency bin j, and M is length of the frequency.

e. Mean Power (MNP)
Mean power is defined as the average value of EMG signal in frequency
domain. It can be expressed as in Eq. (12).

MNP �

M∑
j�1

Pj

M
(12)
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Fig. 8 Commonly used neural network structure

4 Pattern Recognition

4.1 Artificial Neural Network

In this section, the pattern recognition for voice and EMG features is classified using
the neural network as can be shown in Fig. 8. The standard network that is used for
pattern recognition method consists of input layer, hidden layer, and output layer.
The first output neuron in the hidden layer can be expressed as in (13).

a1 � f 1(IWp + b1) (13)

where a1 is output vector in hidden layer, p is an n-length input vector, IW is input
weight matrix, f 1 is transfer function of hidden layer, and b1 is the bias vector of
hidden layer. In the Fig. 8, R indicates the number of elements in input vector, while
S1 and S2 denote the number of neuron in hidden layer and output layer respectively.

The first output neuron in the output layer as expressed in (14)

a2 � f 2(LW (f 1(IWp + b1)) + b2) (14)

where a2 is output vector in output layer, LW is output layer weight matrix, f 2 is
transfer function of the output layer, and b2 is the bias vector of the output layer.
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The Levenberg-Marquardt training algorithm is used in this study. It was designed
to approach second-order training speed without having to compute the Hessian
matrix. As typical training feedforward networks, the performance function of this
training algorithm has the form of a sum of squares, and the Hessian matrix can be
approximated using Eq. (15).

H � J T J (15)

and the gradient can be calculated as

g � J T e (16)

where J is the Jacobian matrix that contains first derivatives of the network errors
with respect to the weights and biases, and e is a vector of network errors.

The Levenberg-Marquardt training algorithm uses Eq. (17) to approximate the
Hessian matrix

xk+1 � xk − [
J T J + μI

]−1
J T e (17)

When the scalar μ is zero, the Eq. (17) uses the approximated Hessian matrix.
When μ is large, this becomes gradient descent with a small step size.

In this research study, Mean Square Error (MSE) is utilized in ANN for classi-
fication. The MSE measures the magnitude of the forecast errors as shown in (18).
Better model will show the smaller values of MSE.

mseerror �
∑

(y1 − y2)2

m
(18)

where y1 is the real output in classification, y2 is the output from ANN classification,
and m is the total number of samples in the classification.

In two class classification of PD, the used ANN has five input features and has two
class classification results for healthy and PD. While In four class classification of
PD, theANNhas five input features and four class classification results usingHughes
scale for healthy, possible, probable, and definite. The training algorithm employs
Levenberg-Marquardt training algorithm. The neural network has one hidden layer
and 25 neurons in hidden layer both in two class and four class classifications. Finally,
the proposedANN’s structure can be presented in Fig. 9. Hyperbolic tangent sigmoid
transfer function is used in hidden layer and soft max transfer function is employed
in output layer.
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Fig. 9 Utilized ANN input and output for PD pattern recognition

Fig. 10 Typical ANFIS architecture with first-order Sugeno fuzzy model

4.2 Adaptive Neuro Fuzzy Inference System

The adaptive neuro-fuzzy inference system (ANFIS) is a kind of neuro-fuzzy classi-
fier method which integrates the neural network’s adaptive capability and the fuzzy
logic qualitative approach [21]. The common rule set with two fuzzy if-then rules
for a first-order Sugeno fuzzy model can be written as follows

Rule 1: If x is A1 and y is B1, then f1=p1x +q1y+r1;
Rule 2: If x is A2 and y is B2, then f2=p2x +q2y+r2;

where p1, p2, q1, q2, r1 and r2 are linear parameters, and A1, A2, B1 and B2 are
nonlinear parameters.

The ANFIS architecture consists of five layers as depicted in Fig. 10. The layers
in ANFIS can be described as follows
Layer 1: All the nodes are adaptive nodes. The output of the ith node in layer 1 is
denoted as Ol,i. The outputs of this layer are the fuzzy membership function of the
inputs that can be expressed as in Eqs. (19) and (20)
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O1,i � μAi(x), for i � 1, 2 (19)

O1,i � μBi(y), for i � 3, 4 (20)

where x (or y) is the input to nodes i and Ai (or Bi–2) generating a linguistic label
coupled with the node. In this study, the membership function for A (or B) can be
any parameterized as a gaussian membership function as written in (21)

μAi(x) � exp

{
−1

2

(x − ci)2

σ 2
i

}
(21)

where (ci, σi) are the parameter set.
Layer 2: This layer perform as a simple multiplier. Each node in this layer calculates
the firing strengths of each rule via multiplying the incoming signals and sends the
product out. The outputs of this layer can be expressed as in (22)

O2,i � wi � μAi(x)μBi(y), i � 3, 4 (22)

Layer 3: The nodes are also fixed nodes, indicate a normalization role to the firing
strengths from the previous layer. The ith node of this layer calculates the ratio of
the ith rule’s firing strength to the sum of all rules’ firing strengths as in (23)

O3,i � w̄i � wi

2∑
i�1

wi

� wi

w1 + w2
i � 1, 2 (23)

Layer 4: This nodes are adaptive nodes. Parameters in layer 4 will be referred to as
consequent parameters. The output of each node in this layer is the product of the
normalized firing strength and a first order polynomial. The output of this layer can
be express in (24)

O4,i � w̄ifi � w̄i(pix + qiy + ri) (24)

where w̄i is a normalized firing strength from layer 3.
Layer 5: There is only single fixed node. This node performs the summation of all
incoming signals from layer 4. The output of layer 5 is summarized as in (25)

O5,1 �
∑

i

w̄ifi �
∑
i
wifi

∑
i
wi

(25)

In this study, the utilized ANFIS structure can be seen in Fig. 11. The structure has
243 rules. The layer 1 uses gaussian membership function. Each of input has three
gaussian membership functions. The layer 4 uses linear output function. For the
training algorithm, hybrid learning is selected. The used Fuzzy operators are product
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Fig. 11 Proposed ANFIS architecture with first-order Sugeno fuzzy model for PD classification

for And method and probabilistic OR for Or method. The selected implication and
aggregation method are minimum and maximum method. Weighted average of all
rule outputs method is used for defuzzification process.

5 Result

All of the involved study participants are PD patients from dr. Kariadi general hos-
pital in Semarang. Eight healthy participants and 15 study participants with PD are
involved in this study. Table 1 shows the list of study participants. There are 23 study
participants who join in the research, 15 participants with PD both male and female
with age range from 39 years old to 80 years old, and 8 healthy participants bothmale
and female with age range from 52 years old to 75 years old. Classification process
in this research used total 126 data for voice signals and 69 data for EMG signals.
Voice and EMG signal data have been collected from 8 healthy participant and 15
people with PD participants. Healthy participants recorded their voice six times per
person. Voice signal have been collected from PD patients consist of 10 patients with
six time recording each, 3 patients with four recording each and 2 patients with 3
recording each. There are different data recording for PD patients because some of
patients struggling to produce their voice to be recorded. EMG signals have been
collected three times each for both healthy and PD participants.

For the convenience and confidentiality of the study participants, the participant
name’s identity is kept secret. Unfortunately, the data acquisition for EMG signals
is less than the data from voice signals because of the condition on the study partic-
ipants with PD. Few PD participants can be acquired using EMG signals depending
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Table 1 List of data capturing study participants

Parkinson participants Healthy participants

Study
participants

Sex Age (years
old)

Status Study
participants

Sex Age (years
old)

S 1 Male 68 Definite S 16 Female 71

S 2 Male 53 Possible S 17 Female 53

S 3 Male 59 Possible S 18 Female 75

S 4 Female 79 Definite S 19 Male 70

S 5 Female 66 Definite S 20 Female 55

S 6 Female 39 Probable S 21 Female 70

S 7 Female 58 Possible S 22 Male 52

S 8 Female 54 Probable S 23 Male 60

S 9 Male 66 Probable

S 10 Male 80 Probable

S 11 Male 76 Probable

S 12 Male 70 Definite

S 13 Male 68 Probable

S 14 Male 68 Definite

S 15 Male 72 Definite

on his/her health condition. The classification results are presented in performance
measures i.e. accuracy, precision, recall, F1 score, and Cohen’s kappa. The resulted
value of Kappa is characterized based on the reference [22].

5.1 Classification Result of Artificial Neural Network Method

Classification using ANNmethod recognizes the terms of training and testing. Train-
ing in ANN is a dataset that serves to adjust the weighting and biases in the ANN
method. Testing in ANN is a dataset that serves to test the final solution to confirm
the strength and toughness of the ANN classifier. The dataset selected for training
and testing process is randomly assigned by the ANN. The dataset is selected based
on a percentage of 70% of the data for training, and 30% for testing. The ANN
classification results for this study consist of training and testing results for two
class classification using voice signals, four class classification using voice signals,
two class classification using EMG signals and four class classification using EMG
signals.
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Table 2 Accuracy of voice
signals for two classes using
ANN in testing

Actual class Classification result

Healthy PD

Healthy 12 5

PD 0 21

Accuracy (%) 70.59 100

Total accuracy (%) 86.84

Table 3 Performance
measures of voice signals for
two classes using ANN in
testing

Performance Values

Accuracy 0.8684

Precision 1

Recall (Sensitivity) 0.7059

F1 score 0.8276

Kappa 0.7262

5.1.1 Classification Results of Voice Signals for Two Classes

The data for training and testing consists of 126 voice record data from healthy and
participants with PD. The data are divided into two sets, 88 for training and 38 for
testing. The data for training and testing are selected randomly. For training data, the
data are divided in two sets i.e. 31 for healthy class and 57 for participants with PD.

Table 2 shows the accuracy of the testing result with the ANN of the voice signal
for two classes. The dataset included in the first and second class is class with healthy
and participants with PD randomly selected 17 and 21 data respectively. Accuracy
testing for healthy and PD is 70.59 and 100%. The overall testing accuracy for the
two classes is 86.84%. The performance measures of the classification results can
be summarized in Table 3. Based on the Table 3, F1 score and Kappa are 0.8276 and
0.7262. Based on the Kappa value, the classifier has substantial agreement.

Table 4 shows the overall accuracy (training and testing) of the ANN classifier
for two classes. The target for the first class of healthy class shows an accuracy of
89.58%. The target class for the second class is the participants with PD showing an
accuracy of 100%. The overall accuracy result is 96.03%. The performancemeasures
of the overall classification can be summarized as in Table 5. It indicates that the
ANN classifier has both high precision and high recall. The resulted Kappa shows
that the classifier has almost perfect agreement.

5.1.2 Classification Results of Voice Signals for Four Classes

In four class classification, the data for training and testing consists of 126 voice
record data from 48 healthy and 78 PD. The overall data are divided into two sets,
88 for training and 38 for testing. For training data, the data is divided in four sets
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Table 4 Accuracy of voice
signals for two classes using
ANN in overall

Target class Classification result

Healthy PD

Healthy 43 5

PD 0 78

Accuracy (%) 89.58 100

Total accuracy (%) 96.03

Table 5 Performance
measures of voice signals for
two classes using ANN in
overall

Performance Values

Accuracy 0.9603

Precision 1

Recall (Sensitivity) 0.8958

F1 score 0.9451

Kappa 0.9141

Table 6 Accuracy of voice signals for four classes using ANN in testing

Actual class Classification Result

Healthy Possible Probable Definite

Healthy 9 1 3 1

Possible 0 1 0 3

Probable 1 4 4 1

Definite 0 3 2 5

Accuracy (%) 64.29 25 40 50

Total accuracy (%) 50

i.e. 34 for healthy, 11 for possible, 20 for probable, and 23 for definite. The data for
training and testing are selected randomly.

Table 6 shows the ANN test results for four class classification of voice signals.
The dataset for testing is divided in four sets i.e. healthy, possible, probable, and
definite randomly selected from 14, 4, 10, and 10 data respectively. The accuracy of
each class is 64.29% for healthy, 25% for possible, 40% for probable, and 50% for
definite. The overall testing accuracy for the four classes is 50%. The performance
measures of classifier in overall can be summarized in Table 7. Based on the resulted
Kappa, the classification result has fair agreement.

Table 8 reveals the ANN classification overall (training and testing) results for
four class classification of voice signals. The overall accuracy of each class is 87.5%
for healthy, 80% for possible, 70% for probable, and 84.85% for definite. The overall
accuracy for the four classes is 81.75%.

The performancemeasures of the overall classification for four class classification
are summarized as in Table 9. Based on the resulted Kappa, it shows that the classifier
has moderate agreement. Healthy class has the highest accuracy of all classes.
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Table 7 Performance measures of voice signals for four classes using ANN in testing

Performance Healthy Possible Probable Definite Total

Accuracy 0.6429 0.2500 0.4000 0.5000 0.5000

Precision 0.9 0.1111 0.4444 0.5000 0.4889

Recall
(Sensitivity)

0.6429 0.2500 0.4000 0.5000 0.4482

F1 score 0.7500 0.1538 0.4211 0.5000 0.4562

Kappa 0.4265 0.6999 0.5805 0.5534 0.2500

Table 8 Accuracy of voice signals for four classes using ANN in overall

Target class Classification result

Healthy Possible Probable Definite

Healthy 42 1 4 1

Possible 0 12 0 3

Probable 2 5 21 2

Definite 0 3 2 28

Accuracy (%) 87.5 80 70 84.85

Total accuracy (%) 81.75

Table 9 Performance measures of voice signals for four classes using ANN in overall

Performance Healthy Possible Probable Definite Total

Accuracy 0.8750 0.8000 0.7000 0.8485 0.8175

Precision 0.9546 0.5714 0.7778 0.8235 0.7818

Recall
(Sensitivity)

0.8750 0.8000 0.7000 0.8485 0.8059

F1 score 0.9130 0.6667 0.7368 0.8358 0.7881

Kappa 0.3039 0.7281 0.5796 0.4981 0.5132

5.1.3 Classification Results of EMG Signals for Two Classes

The data for training and testing consists of 69 EMG signal record data from healthy
and participants with PD. The data are divided into two sets, 48 for training and 21
for testing. The data for training and testing are selected randomly in EMG signal
classification. For training data, the data is divided in two sets i.e. 16 for healthy class
and 32 for participants with PD.

Table 10 shows the accuracy of the testing result of the EMGsignal for two classes.
The dataset in the first and second class is a class with healthy and participants with
PD randomly selected 8 and 13 data respectively from testing data. Accuracy testing
for healthy and PD is 87.5% and 84.62%. The overall testing accuracy for the two
classes usingEMGsignals is 85.71%.The performancemeasures of the classification
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Table 10 Accuracy of EMG
signals for two classes using
ANN in testing

Actual class Classification result

Healthy PD

Healthy 7 1

PD 2 11

Accuracy (%) 87.5 84.62

Total accuracy (%) 85.71

Table 11 Performance
measures of EMG signals for
two classes using ANN in
testing

Performance Values

Accuracy 0.8571

Precision 0.7778

Recall (Sensitivity) 0.8750

F1 score 0.8235

Kappa 0.7042

Table 12 Accuracy of EMG
signals for two classes using
ANN in overall

Target class Classification result

Healthy PD

Healthy 22 2

PD 3 42

Accuracy (%) 91.67 93.33

Total accuracy (%) 92.75

Table 13 Performance
measures of EMG signals for
two classes using ANN in
overall

Performance Values

Accuracy 0.9275

Precision 0.8800

Recall (Sensitivity) 0.9167

F1 score 0.8980

Kappa 0.8418

results in two class classification can be shown in Table 11. Based on the Kappa value
in Table 11, the classifier has substantial agreement.

The overall accuracy (training and testing) of the ANN for two classes can be
shown in Table 12. The overall accuracy for healthy class and participants with
PD is 91.67 and 93.33% respectively. The overall accuracy result is 92.75%. The
performance measures of the overall classification can be summarized in Table 13.
Based on F1 Score, It indicates that the classifier has both high precision and high
recall. The resulted Kappa in overall classification result shows that the classifier has
almost perfect agreement.
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Table 14 Accuracy of EMG signals for four classes using ANN in testing

Target class Classification result

Healthy Possible Probable Definite

Healthy 3 1 1 3

Possible 1 1 0 1

Probable 1 1 0 2

Definite 1 0 1 4

Accuracy (%) 37.5 33.33 0 66.67

Total accuracy (%) 38.1

Table 15 Performance measures of EMG signals for four classes using ANN in testing

Performance Healthy Possible Probable Definite Total

Accuracy 0.3750 0.3333 0 0.6667 0.3810

Precision 0.5000 0.3333 0 0.4000 0.3083

Recall
(Sensitivity)

0.3750 0.3333 0 0.6667 0.3438

F1 score 0.4286 0.3333 NaN 0.5000 NaN

Kappa 0.4762 0.7429 0.7506 0.3950 0.3942

5.1.4 Classification Results of EMG Signals for Four Classes

In four class classification using EMG signals, the data for training and testing con-
sists of 69 voice record data from 24 healthy and 45 participants with PD. The data
are divided into two sets, 48 for training and 21 for testing. For training data, the data
are divided in four sets i.e. 16 for healthy, 6 for possible, 11 for probable, and 15 for
definite. The data for training and testing are selected randomly.

Table 14 shows the ANN classification testing results for four class classification
of EMG signals. The dataset for testing is divided in four sets i.e. healthy, possible,
probable, and definite randomly selected from 8, 3, 4, and 6 data respectively. The
testing accuracy of each class is 37.5% for healthy, 33.33% for possible, 0% for
probable, and 66.67% for definite. The overall testing accuracy for the four classes is
38.1%. The performance measures of classifier in testing are presented in Table 15.
F1 Score has the value of NaN (Not a Number). It indicates that the classifier has
poor precision and poor recall. Based on the resulted Kappa, the classification result
has fair agreement.

The overall accuracy result of the EMG signal classification is shown in Table 16.
The overall accuracy result for theANNclassification is 76.81%.The lowest accuracy
is probable class. The performance measures of classifier in overall are presented
in Table 17. Based on the resulted Kappa, the overall classification result has fair
agreement in four class classification using EMG signals.
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Table 16 Accuracy of EMG signals for four classes using ANN in overall

Target class Classification result

Healthy Possible Probable Definite

Healthy 19 1 1 3

Possible 1 6 0 2

Probable 1 2 9 3

Definite 1 0 1 19

Accuracy (%) 79.17 66.67 60 90.48

Total accuracy (%) 76.81

Table 17 Performance measures of EMG signals for four classes using ANN in overall

Performance Healthy Possible Probable Definite Total

Accuracy 0.7917 0.6667 0.6000 0.9047 0.7681

Precision 0.8636 0.6667 0.8182 0.7037 0.7630

Recall
(Sensitivity)

0.7917 0.6667 0.6000 0.9048 0.7408

F1 score 0.8261 0.6667 0.6923 0.7917 0.7442

Kappa 0.3861 0.7516 0.6464 0.3687 0.3816

5.2 Classification Result of Adaptive Neuro-Fuzzy Inference
System (ANFIS)

The dataset selected for the training and testing process is randomly assigned. The
dataset is selected based on a percentage of about 70% of the data for training, and
about 30% for the testing. ANFIS classification results consist of training and testing
results for two class classification using voice signals, four class classification using
voice signals, two class classification using EMG signals and four class classification
using EMG signals.

5.2.1 Classification Results of Voice Signals for Two Classes

The data for training and testing consists of 126 voice record data from 48 healthy
and 78 with PD. The data are divided into two sets, 88 for training and 38 for testing.
The data for training and testing are selected randomly. For training data, the data
are divided in two sets i.e. 29 for healthy class and 59 for PD. Table 18 shows the
accuracy of the testing result of voice signal for two classes. The dataset in the first
and second class is a class with healthy and participants with PD randomly selected
19 and 19 data respectively. Accuracy testing for healthy and PD is 100% and 100%
respectively. The overall testing accuracy is 100%. The performance measures of the
classification results can be summarized in Table 19. Based on the Table 19, F1 score
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Table 18 Accuracy of voice
signals for two classes using
ANFIS in testing

Actual class Classification result

Healthy PD

Healthy 19 0

PD 0 19

Accuracy (%) 100 100

Total accuracy (%) 100

Table 19 Performance of
voice signals for two classes
using ANFIS in testing

Performance Values

Accuracy 1

Precision 1

Recall (Sensitivity) 1

F1 score 1

Kappa 1

Table 20 Accuracy of voice
signals for two classes using
ANFIS in overall

Actual class Classification result

Healthy PD

Healthy 48 0

PD 0 78

Accuracy (%) 100 100

Total accuracy (%) 100

Table 21 Performance
measures of voice signals for
two classes using ANFIS in
overall

Performance Values

Accuracy 1

Precision 1

Recall (Sensitivity) 1

F1 score 1

Kappa 1

and Kappa are 1 and 1. It indicates that the classification results has best precision
and best recall. Based on the Kappa value, the classifier has perfect agreement.

Table 20 shows the overall accuracy (training and testing) of the ANFIS for two
classes. The overall accuracy of both healthy and PD class is 100%. The overall
accuracy result is 100%. The performance measures of the overall classification can
be summarized as in Table 21. It indicates that the classifier has both best precision
and best recall. The resulted Kappa show that the classifier has perfect agreement in
overall two class classification using voice signals.
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Table 22 Accuracy of voice signals for four classes using ANFIS in testing

Actual class Classification result

Healthy Possible Probable Definite

Healthy 15 0 0 0

Possible 0 1 1 3

Probable 2 2 1 3

Definite 0 0 1 8

Accuracy (%) 100 20 12.5 88.89

Total accuracy (%) 67.57

Table 23 Performance measures of voice signals for four classes using ANFIS in testing

Performance Healthy Possible Probable Definite Total

Accuracy 1 0.200 0.125 0.8889 0.6757

Precision 0.8824 0.3333 0.33 0.5714 0.5301

Recall
(Sensitivity)

1 0.2000 0.125 0.8889 0.5535

F1 score 0.9375 0.2500 0.1818 0.6957 0.5162

Kappa 0.1720 0.8003 0.7305 0.4418 0.1351

5.2.2 Classification Results of Voice Signals for Four Classes

In four class classification using ANFIS, the data for training and testing consist of
126 voice record data from 48 healthy and 78 PD. The data are divided into two sets,
89 for training and 37 for testing. For training data, the data are divided in four sets
i.e. 33 for healthy, 10 for possible, 22 for probable, and 24 for definite. The data for
training and testing are selected randomly.

The classification test result for four class classification using ANFIS of EMG
signals is presented in Table 22. The dataset for testing is divided in four sets i.e.
healthy, possible, probable, and definite randomly selected from 15, 5, 8, and 9 data
respectively. The testing accuracy of each class is 100% for healthy, 20% for possible,
12.5% for probable, and 88.89% for definite. The overall testing accuracy for the
four classes is 67.57%. The performance measures of classifier in testing can be
summarized in Table 23. Based on the resulted Kappa, the classification result has
slight agreement.

Table 24 reveals the classification results in overall (training and testing) for four
class classification of voice signals. The overall accuracy of each class is 100% for
healthy, 73.33% for possible, 76.67% for probable, and 96.97% for definite. The
overall accuracy for the four classes is 90.48%. The performance measures of the
overall classification for four classes can be presented in Table 25. Based on the
resulted Kappa, it shows that the classifier has substantial agreement.



422 F. T. Putri et al.

Table 24 Accuracy of voice signals for four classes using ANFIS in overall

Actual class Classification result

Healthy Possible Probable Definite

Healthy 48 0 0 0

Possible 0 11 1 3

Probable 2 2 23 3

Definite 0 0 1 32

Accuracy (%) 100 73.33 76.67 96.97

Total accuracy (%) 90.48

Table 25 Performance measures of voice signals for four classes using ANFIS in overall

Performance Healthy Possible Probable Definite Total

Accuracy 1 0.7333 0.7667 0.9697 0.9048

Precision 0.9600 0.8462 0.9200 0.8421 0.8921

Recall
(Sensitivity)

1 0.7333 0.7667 0.9697 0.8674

F1 score 0.9796 0.7857 0.8364 0.9014 0.8758

Kappa 0.2320 0.7834 0.5816 0.4564 0.7460

Table 26 Accuracy of EMG
signals for two classes using
ANFIS in overall

Actual class Classification result

Healthy PD

Healthy 2 4

PD 3 10

Accuracy (%) 33.33 76.92

Total accuracy (%) 63.16

5.2.3 Classification Results of EMG Signals for Two Classes

The training and testing data consist of 69 EMG signal data from healthy and PD.
The data are divided into two sets, 50 for training and 19 for testing. For training data,
the data is divided in two sets i.e. 18 for healthy class and 32 for participants with PD.
Table 26 shows the accuracy of testing result of the EMG signals for two classes. The
dataset in the first and second class are a class with healthy and participants with PD
randomly selected 6 and 13 data respectively from testing data. The overall testing
accuracy for the two classes is 63.16%. The performance measures can be shown in
Table 27. Based on the Kappa value, the classifier has slight agreement in testing.

The overall accuracy for two classes is presented in Table 28. The overall accuracy
for healthy class and participants with PD class is 70.83% and 91.11% respectively.
The overall accuracy result is 84.06%. The performance measures of the overall clas-
sification can be summarized inTable 29. The resultedKappa on overall classification
result shows that the classifier has substantial agreement.
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Table 27 Performance
measures of EMG signals for
two classes using ANFIS in
testing

Performance Values

Accuracy 0.6316

Precision 0.4000

Recall (Sensitivity) 0.3333

F1 score 0.3636

Kappa 0.1074

Table 28 Accuracy of EMG
signals for two classes using
ANFIS in overall

Actual class Classification result

Healthy PD

Healthy 17 7

PD 4 41

Accuracy (%) 70.83 91.11

Total accuracy (%) 84.06

Table 29 Performance
measures of EMG signals for
two classes using ANFIS in
overall

Performance Values

Accuracy 0.8406

Precision 0.8095

Recall (Sensitivity) 0.7083

F1 score 0.7556

Kappa 0.6381

5.2.4 Classification Results of EMG Signals for Four Classes

The training and testing data consist of 69 voice record data from 24 healthy and
45 PD. The data are divided into two sets, 47 for training and 22 for testing. For
training data, the data are divided in four sets i.e. 16 for healthy, 6 for possible, 10
for probable, and 15 for definite. Table 30 shows the accuracy of test results for four
class classification of EMG signals. The dataset for testing is divided in four sets
i.e. healthy, possible, probable, and definite randomly selected from 8, 3, 5, and 6
data respectively. The overall testing accuracy for the four classes is 31.82%. The
performance measures of classifier in testing are shown in Table 31. F1 score has
the value of NaN (Not a Number). It indicates that the classifier has poor precision
and poor recall. Based on the Kappa value, the classification result has moderate
agreement.

The overall accuracy result of the EMG signal classification using ANFIS is
presented in Table 32. The overall accuracy result for the ANFIS is 75% for healthy,
66.67% for possible, 40% for probable, and 61.91% for definite. The lowest accuracy
is probable class. The performance measures of classifier in overall can be presented
in Table 33. Based on the Kappa value, the overall classification result has slight
agreement in four class classification using EMG signals.
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Table 30 Accuracy of EMG signals for four classes using ANFIS in testing

Actual class Classification result

Healthy Possible Probable Definite

Healthy 4 1 0 3

Possible 0 2 1 0

Probable 4 0 0 1

Definite 2 3 0 1

Accuracy (%) 50 66.67 0 16.67

Total accuracy (%) 31.82

Table 31 Performance measures of EMG signals for four classes using ANFIS in testing

Performance Healthy Possible Probable Definite Total

Accuracy 0.5000 0.6667 0 0.1667 0.3182

Precision 0.4000 0.3333 0 0.2000 0.2333

Recall
(Sensitivity)

0.5714 0.7895 0.9412 0.7500 0.3333

F1 score 0.4444 0.4444 NaN 0.1818 NaN

Kappa 0.4040 0.6318 0.7479 0.6061 0.4500

Table 32 Accuracy of EMG signals for four classes using ANFIS in overall

Actual class Classification result

Healthy Possible Probable Definite

Healthy 18 1 2 3

Possible 0 6 2 1

Probable 6 2 6 1

Definite 2 6 0 13

Accuracy (%) 75 66.67 40 61.91

Total accuracy (%) 62.32

Table 33 Performance measures of EMG signals for four classes using ANFIS in overall

Performance Healthy Possible Probable Definite Total

Accuracy 0.7500 0.6667 0.4000 0.6191 0.6232

Precision 0.6923 0.4000 0.6000 0.7222 0.6036

Recall
(Sensitivity)

0.7500 0.6667 0.4000 0.6191 0.6089

F1 score 0.7200 0.5000 0.4800 0.6667 0.5917

Kappa 0.3743 0.6812 0.6722 0.4992 0.0048
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6 Conclusion and Future Works

There are some conclusions that can be concluded from the research:

• Two class classification has higher accuracy than four class classification both in
neural network and adaptive fuzzy-inference system.

• Voice method classification has higher accuracy than EMG classification because
the feature for voice is a good feature which can well classified the voice data.
Voice data sampling rate is higher than EMG data sampling rate which means
voice data recording has more data each second than EMG data.

• EMG signal classification has less accuracy because there is a lot of noise in the
EMG Sensor and it has one channel with low sampling rate i.e. 1000 Hz.

• Based on the four class classification results in both of voice and EMG signals
using ANN and ANFIS, the probable class has the lowest accuracy of all.

To increase the accuracy of pattern recognition method, it can be conducted by
using higher sampling rate up to 100 kHz and more channel in EMG sensor. The low
accuracy in four class classifications especially in testing can caused bywrong staging
PD of patient. For example when the PD study participants met the neurologist,
he/she has been diagnosed with staging possible, but when the researcher met the
study participant, the staging of PD become probable or definite when his/her healthy
condition becomeworse.When this study participant’s signal is used, it can givemiss
classification and decrease the accuracy in PD pattern recognition.

Future research can be conducted by adding a new method for PD detection:
hand tremor method. Based on the research, almost all PD participants have a tremor
in their hands as sign of PD symptom. With hand tremor detection method, there
is a hope that this PD detection tool will be very accurate. The accuracy result
between voice, gait EMG and hand tremor can be combined in order to achieve
higher accuracy.
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