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PRR Pattern-recognition receptor
RANKL Receptor-activator of NF-κB ligand
RNAi RNA interference
TGF-β Transforming growth factor-β
TLR Toll-like receptor
TNF-α Tumor necrosis factor-α
VEGF Vascular endothelial growth factor

1  Introduction

Musculoskeletal conditions affect millions of people and are the second leading 
cause of disability worldwide [1]. Through orthopedic care, patients can find pain 
relief, increased mobility, and improved quality of life, thus bettering the lives of 
individuals and improving society as a whole. Many orthopedic procedures require 
implants, and advances over the past half-century have allowed for the development 
of biomaterials with both enhanced mechanical and biological function [2]. Despite 
these improvements, many implants do not last forever: up to 15% of total joint 
implants require operative revision within 15 years of initial surgery [3, 4]. With over 
one million Americans undergoing total joint replacement annually, there is a need 
to improve the biological function and longevity of orthopedic biomaterials [5].

It is well known that inflammation is induced by implants and their resulting 
wear particles. On the other hand, early, transient inflammation is essential for 
proper bone formation and osseointegration of the implant [6]. This process is 
mediated through prostaglandins and macrophage-related inflammation, mimick-
ing the natural fracture healing response beginning with acute inflammation and 
resolving into repair and regeneration of peri-implant tissues [7, 8]. However, if 
inflammation continues, the body may mount a foreign body chronic inflammatory 
reaction, leading to enhanced and persisting inflammation, bone resorption, oste-
olysis, and ultimately implant failure [3]. Wear particles produced from the bearing 
surface, modular connections, and motion at the interface of the implant and bone 
can activate the NALP inflammasome, the NF-κB pathway, and toll-like receptors 
(TLR)-2 and TLR-4 depending on the material, size of the particles, and surface 
topology, which are reviewed thoroughly by Cobelli et al., Gibon et al., and Lin 
et al. [4, 9, 10].

Chronic inflammation can arise from aberrant activity of the immune system to 
clear wear particles. If wear debris are too large for macrophages to remove, macro-
phages fuse to form multinucleated foreign body giant cells (FBGCs) [11]. 
Normally, these FBGCs are able to degrade or sequester wear particles, allowing for 
short-lived inflammation, and eventual resolution and repair; however, if the immune 
system is overwhelmed by excessive particles of appropriate size, inflammation per-
sists [10]. This inflammation in conjunction with continued micromotion  propagates 
wear debris formation, macrophage and T cell infiltration, and eventual osteolysis 
[10, 12]. As such, chronic inflammation is a vicious cycle of persistent inflammation, 
implant wear, and bone loss.
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The longevity of an orthopedic implant is dependent upon the implant material, 
operative procedure, and patient-related factors [3]. Precise modulation of inflam-
mation post-operatively has the potential to increase the lifespan of orthopedic 
implants. By integrating our understanding of the cellular and molecular mecha-
nisms underlying prolonged inflammation, it is possible to develop optimized bio-
materials that not only mitigate chronic inflammation, but also enhance 
osseointegration, vascularization, mechanical strength, and long-term healing.

2  Inflammation and Immunomodulating Strategy

2.1  Innate Immune Response and Macrophages

Cells of the innate immune system, particularly macrophages, are the main inflam-
matory mediators that drive successful implant integration or rejection [13, 14]. 
Macrophages also play a crucial role in tissue maintenance and regulation of 
inflammation [15, 16]. All tissues contain a specific set of macrophages known as 
tissue resident macrophages that remove damaged, senescent, and infected cells to 
maintain tissue homeostasis. These tissue resident macrophages originate from 
circulating, myeloid-derived, monocytes or, in some cases, are distributed among 
tissues during embryonic development and are maintained by local pools of pre-
cursor cells [17]. Macrophages are specialized to effectively phagocytize and 
remove cellular debris, microbes, and foreign substances identified as potentially 
dangerous or pathogenic. These foreign agents are recognized by various families 
of pattern recognition receptors (PRRs) that are expressed on the cell surface, 
endosomes, and cytoplasm of macrophages [18, 19]. Activation of PRRs initiates 
intracellular downstream signaling pathways that activate phagocytosis and can 
lead to the secretion of various cytokines and chemokines. The degree of this 
innate immune response depends on the nature and amount of the activating stim-
uli: phagocytosis of apoptotic cells induces an anti-inflammatory response to 
maintain tissue homeostasis and immune tolerance, while recognition of necrotic 
cells, damaged extracellular matrix, or pathogens initiates a pro-inflammatory 
response [19, 20]. Secreted inflammatory mediators then stimulate further cyto-
kine secretion from other resident cells and recruit more immune cells to the site 
of inflammation. During acute or chronic inflammation, a large number of bone 
marrow-derived monocytes are recruited from the circulation to the inflamed tis-
sues and undergo differentiation to inflammatory or tissue regenerative macro-
phages as guided by the local microenvironment [21].

Following the recognition of threatening agents, macrophages engulf these 
agents to restrict any deleterious effects on adjacent tissues. This phagocytosis 
 process triggers enzymatic degradation of the engulfed material inside macrophages 
in some cases and, in the case of foreign biological structures, leads to antigen pre-
sentation to activate the adaptive immune response. As regulated by macrophages, 
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the immune system thus attempts to efficiently dispose of the harmful substance, 
kill the microbes encountered, and prevent further tissue injury. As an inflammatory 
reaction proceeds and the danger becomes resolved, macrophages begin to promote 
tissue healing and regeneration by secreting extra-cellular matrix precursors, a 
range of growth factors such as vascular endothelial growth factor (VEGF) and 
platelet derived growth factor (PDGF), and anti-inflammatory cytokines [22]. The 
cytokine signaling in the local microenvironment thus coordinates the development 
of an immune response and macrophage function [23].

2.2  Macrophage Polarization

Macrophages are able to undergo functional changes as instructed by the surround-
ing cytokine milieu in tissues [16]. These phagocytes assume a distinct phenotype 
with divergent inflammatory, fibrotic, and regenerative properties necessary for dif-
ferent phases of inflammation and tissue regeneration. Initially, macrophages 
become activated to a pro-inflammatory phenotype following the recognition of a 
stimulating agent by PRRs. The specific factors promoting this classical macro-
phage activation, known as M1 polarization, is comprised of endogenous danger 
signals released from necrotic cells and pathogen-associated molecular patterns 
(PAMPs), such as lipopolysaccharide (LPS), released from various invading micro- 
organisms. Activators with a similar effect also include cytokines, especially, inter-
feron gamma (IFN-γ), granulocyte-monocyte colony stimulating factor (GM-CSF), 
and tumor necrosis factor alpha (TNF-α) [24]. Macrophages with a pro- inflammatory 
phenotype are essential for the early phase of repair, but prolonged inflammation by 
these M1 macrophages exacerbate tissue injury by actively phagocytizing potential 
pathogens, killing intracellular microbes by producing oxygen and nitrogen radi-
cals, and vigorously secreting more inflammatory cytokines and chemokines.

In contrast, alternatively activated macrophages, also known as M2 polarization, 
have tissue regenerative, pro-fibrotic, and anti-inflammatory characteristics. Various 
subsets of this phenotype are induced by a combination of cytokines such as inter-
leukin- 4 (IL-4), IL-10, IL-13, transforming growth factor beta (TGF-β), glucocorti-
coids or macrophage colony-stimulating factor (M-CSF) [25]. For example, 
macrophages treated with IL-4 and IL-13 produce minimal amounts of pro- 
inflammatory cytokines, and their other secretory products stimulate cell growth 
and proliferation as well as collagen formation. Hence, M1 and M2 polarization are 
considered to represent the opposite ends of the continuum of macrophage pheno-
types [16, 26]. Whereas M1 polarized macrophages predominate in a strong pro- 
inflammatory phase at an early stage of an inflammation, M2 polarization gradually 
takes over when the intrusive agents become cleared. The tissue under inflammatory 
signaling likely contains macrophages with mixed phenotypes, and crosstalk 
between these cells enables a proper healing process and the resolution of the 
inflammation.
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2.3  Interaction Between Macrophages and Orthopedic 
Biomaterials

Tissue injury caused by surgical insertion of an orthopedic implant initially acti-
vates the immune system, but with time, the implant itself mediates inflammation as 
a foreign body [27]. The initial recognition of a biomaterial and the tissue trauma 
caused by the implantation is primarily performed by resident macrophages, which 
subsequently become activated to a pro-inflammatory phenotype and initiate an 
inflammatory response. Since many orthopedic implants, such as joint replace-
ments, are generally designed for permanent tissue and bone integration, they are 
biologically non-degradable, and might provide a constant stimulus for macrophage 
activation. In particular, the release of particulate materials of a phagocytosable size 
(<10 μm in diameter) has proven to provide a constant stimulus for inflammatory 
macrophage activation; these phagocytosable particles have been shown to induce 
endosomal damage with subsequent activation of intracellular danger sensing 
mechanisms [28, 29]. A prolonged presence of M1 macrophages leads to an 
increased inflammatory status, fibrosis, and granulomatous tissue around the 
implant—a condition called the chronic foreign body reaction [11, 30].

The long-lasting inflammatory events at the bone-implant interface have been 
observed to significantly affect the bone repair process and cause implant failures 
via osteolysis [31, 32]. At the cellular level, pro-inflammatory mediators such as 
TNF-α favor bone resorption over bone formation by increasing the production of 
Receptor Activator of NF-κB Ligand (RANKL) and decreasing the production of 
osteoprotegerin (OPG) resulting in an altered RANKL/OPG ratio [33]. RANKL 
efficiently stimulates the activation and proliferation of osteoclast precursors 
whereas OPG acts as a decoy receptor inhibiting RANKL signaling. Sustained 
inflammation thus drives osteoclast formation and ultimately failure of the implant.

As implant-mediated inflammation closely involves adverse tissue reactions and 
bone regeneration, novel approaches for biomaterial engineering are being devel-
oped: a new generation of orthopedic biomaterials should be able to modulate the 
immune environment in order to favor osseointegration of the implant [34]. This 
immunomodulating strategy aims to extend the lifespan of the implant by minimiz-
ing the destructive and maximizing the regenerative effects of the immune response 
induced by the implant.

2.4  Modulation of Macrophage-Mediated Pro-Inflammatory 
Response

Macrophages are a prime target for immunomodulation in the application of ortho-
pedic biomaterials. This is not only because these cells play an essential role in 
initiating and regulating the implant-mediated immune responses, but also because 
of their considerable heterogeneity and plasticity enable the modulation of their 
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function [16, 30]. Methods controlling macrophage activation could discourage 
increases in the pro-inflammatory signaling, avoid excess fibrosis, and prevent bone 
loss around the implants. Thus, new therapeutic interventions are being pursued 
with the purpose of controlling chronic inflammation associated with implant mate-
rials by modulating macrophage polarization and thus their secretory products. 
Whereas continuous M1 activation impairs integration of the implant, signals that 
suppress the pro-inflammatory effects and support M2 polarization have emerged as 
an attractive means to facilitate implant integration [35, 36].

Several different strategies for macrophage-targeted immunomodulation around 
implants have been developed (Fig. 1) [37]. Since the degree of an implant- mediated 
immune reaction depends on the biomaterial characteristics, beneficial effects on 
macrophage function and implant integration may be achieved by modifying the 
physical and chemical properties of the biomaterial. For instance, the specific sur-
face structure of the implant material and the amount of wear products  accumulating 
in the surrounding tissues are important variables that determine the type of macro-
phage activation. Surface topography of the implant can be optimized for porosity, 
roughness, hydrophilicity, and the ability to produce wear particles in order to 
decrease initial monocyte adhesion and activation [34]. These micro- and nanoscale 
material characteristics largely determine the folding of absorbed proteins on the 
implant and consequent presentation of bioactive sites for macrophages. Moreover, 
TGF-β and PDGF directly modulate macrophage function and chemotaxis during 

Fig. 1 Strategies to modulate the innate inflammatory reactions against orthopedic biomaterials. 
1. Optimize biomaterial characteristics, e.g. surface roughness, porosity, and generation of wear 
particles, 2. Delivery of macrophage polarizing cytokines to drive the anti-inflammatory M2 mac-
rophage polarization, 3. Inhibition of pro-inflammatory cytokines such as TNF-α, 4. Blockade of 
the transcription factor NF-κB, 5. Inhibiting chemokines such as CCL2 to suppress monocyte 
recruitment, and 6. Coupling biomaterials with anti-inflammatory and bioactive molecules
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wound healing without a foreign body and may play a similar role in peri-implant 
biology [38]. Implants loaded with these molecules could thus theoretically promote 
tissue and bone regeneration both directly and indirectly.

Incorporation of immunomodulatory agents into the implant constitutes another 
major strategy to modulate innate immune reactions. For example, macrophage- 
mediated inflammation could be controlled by the local release of M2 polarizing 
cytokines IL-4, IL-10, or IL-13 [35]. In particular, IL-4 has shown great potential to 
increase implant integration to bone and mitigate wear particle-induced inflamma-
tion in animal models [39–41]. Delivery of IL-4 alters the function of local M1 
activated macrophages towards an anti-inflammatory M2 phenotype and dramati-
cally reduces the production of pro-inflammatory cytokines. In addition, IL-4 has 
anti-osteoclastogenic effects that might promote osseointegration of the implant. 
IL-10 and IL-13 possess similar immune-regulatory properties. These cytokines 
have been reported to inhibit the expression of pro-inflammatory cytokines in mac-
rophages and drive M2 activation [25]. Several studies that used a murine subcuta-
neous implantation model rather than delivery of wear particles demonstrated that 
the release of IL-4 attracts M2 macrophages and modulates the inflammatory 
response to improve the implant integration [42–44]. Interestedly, sequential deliv-
ery of M1 and M2 polarizing factors mimicking the natural course of tissue regen-
eration enhanced implant vascularization. The anti-inflammatory phenotypic switch 
promoted implant integration also by diminishing the formation of a fibrous capsule 
and increasing the quality of remodeled collagen around the implant. Further stud-
ies are needed to investigate the full potential of M2 polarizing cytokines in ortho-
pedic applications.

In addition to favoring M2 polarization, improved tissue healing around an 
implant could potentially be achieved by directly inhibiting pro-inflammatory sig-
nals. For example, TNF-α, one of the most potent pro-inflammatory cytokines, pro-
motes M1 macrophage polarization, enhances fibrosis, inhibits osteoblast 
differentiation, induces osteoclast formation, and thus mediates osteolysis around 
orthopedic implants [45, 46]. Blocking these effects by anti-TNF-α therapy pro-
vides a means to modulate implant-induced immune responses. Etanercept, a decoy 
receptor for TNF-α, was shown to mitigate wear particle-induced cytokine produc-
tion from macrophages and reduce bone resorption in animals but was not effective 
in a small clinical trial [47, 48]. Similar results were obtained using an antisense 
oligonucleotide targeting to mouse TNF-α mRNA in a murine calvarial model [49]. 
However, blocking the effect of only one pro-inflammatory mediator among the 
complicated signal network may not be enough to prevent osteolysis in the long 
term. The compensatory actions of other pro-inflammatory cytokines, such as IL-1β 
and IL-6, could maintain an inflammatory status in the peri-implant tissue in the 
absence of TNF-α signaling. A combination of locally delivered cytokine inhibitors 
might thus prove to be more effective.

Transcription factor NF-κB serves as another target for immunomodulation in 
the context of implant-mediated immune response [35]. This transcription factor 
functions as a key regulator of multiple inflammatory cytokines and chemokines in 
macrophages, and becomes active as a result of a relevant PRR stimulus [10, 50]. 
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Moreover, NF-κB mediates the RANKL signaling, which is integral for osteoclast 
differentiation and activation. Thus, inhibition of this transcription factor offers an 
intriguing possibility to attenuate the biomaterial-induced inflammation and oste-
olysis. This inhibitory effect has been demonstrated using a decoy oligodeoxynucle-
otide (ODN) that competitively binds NF-κB in vitro and in vivo with polyethylene 
particles as the adverse inflammatory stimulus; the suppression of intracellular sig-
naling in macrophages resulted in less cytokine expression and osteoclast activation 
[51, 52]. NF-κB decoy may also suppress the production of chemokines essential 
for monocyte recruitment.

Preventing the continued recruitment of immune cells to the bone-implant inter-
face could mitigate the inflammatory reaction and periprosthetic bone loss and con-
stitutes another strategy for immunomodulation. Indeed, a chemokine directed 
immunomodulatory method was recently established using a mutant C-C motif che-
mokine ligand 2 (CCL2) protein to inhibit CCL2 signaling [53, 54]. Anti-CCL2 
therapy suppressed macrophage recruitment to the implant in a murine model and 
prevented wear particle induced inflammation and bone loss.

Lastly, orthopedic biomaterials can be coupled with anti-inflammatory drugs 
such as glucocorticoids. These drugs elicit an alternative macrophage phenotype 
with an increased ability to recognize and scavenge dying cells. These macrophages 
suppress the production of numerous inflammatory mediators such as pro- 
inflammatory cytokines, chemokines, prostaglandins, leukotrienes, and proteolytic 
enzymes, whereas an enhanced expression of anti-inflammatory cytokine IL-10 has 
been reported. Other bioactive molecules that can also be considered as immuno-
modulatory, include TGF-β, VEGF, and PDGF [27]. These growth factors tightly 
regulate the healing process by targeting fibroblasts and endothelial cells, rather 
than macrophages. Moreover, TGF-β and PDGF directly modulate macrophage 
function and chemotaxis at least during wound healing without a foreign body [38]. 
Implants loaded with these molecules could thus potentially also promote bone 
regeneration and implant integration either directly or indirectly.

3  Sequential Modulation of Inflammatory Response 
for Optimal Bone Regeneration/Osseointegration

3.1  Essential Role of Acute Inflammation in Bone 
Regeneration

Determination of the appropriate timeframe of immunomodulation is critical for 
optimizing their application as orthopedic biomaterials. Acute phase inflammation 
is crucial for proper bone repair after trauma. Impairing early inflammatory condi-
tions in a murine fracture model resulted in diminished stem cell recruitment and 
differentiation, fracture callus formation, and overall bone growth [55–58]. The 
inflammatory phase sparks the repair cascade by initiating angiogenesis, recruiting 
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and stimulating the differentiation of mesenchymal stem cells (MSCs), and encour-
aging extracellular matrix synthesis [59–61].

Specific cytokines appear to be tied to the inflammatory phase of bone repair, 
namely TNF-α and IL-1 [62]. TNF-α and IL-1 are more commonly known for medi-
ating foreign body reactions that can result in impaired tissue function and rejection 
of prosthetic implants [63]. Gerstenfeld et  al. showed that a reduction in TNF-α 
signaling results in improper formation of fracture callus and delayed endochondral 
and intramembranous bone formation [56]. The key difference between pathologi-
cal and therapeutic inflammation is that the latter is highly regulated, both in inten-
sity, duration, and timing to provide a foundation for healing [62].

3.2  Transition of Macrophage Polarization Status for Optimal 
Bone Formation

Macrophage polarization status also plays a critical role in bone regeneration. M1 
macrophages, despite releasing inflammatory cytokines, are highly angiogenic, 
stimulate early mineralization by MSCs, and support overall bone healing [64–67]. 
M2 macrophages, on the other hand, secrete anti-inflammatory cytokines such as 
IL-10 and IL-1Ra and have been associated with enhanced bone formation [68–70]. 
This proves to be a delicate balance that can result in failed bone regeneration if 
tipped too far one way or another. As such, the interplay between M1- and 
M2-dominated microenvironments is one that provides interesting avenues through 
which to pursue new immune-modulatory therapies.

After an injury, the acute inflammatory phase has been shown to last from 3–7 days 
before the anti-inflammatory phase begins to exert its longer-lasting influence [43, 
71, 72]. Proper timing of the transition between the two phases is crucial to optimal 
bone regeneration. Indeed, Loi et al. showed that transition from M1 to M2-like mac-
rophages at 72  hours resulted in significantly increased osteogenesis by MC3T3 
osteoprogenitors in a co-culture model. Further studies exploring the  mechanisms 
and temporal modulation of the M1 to M2 transition are warranted, as this could 
provide a prime early target for improved bone repair and implant integration.

The task of stimulating M1 macrophages to transition to M2 macrophages to 
enhance bone regeneration is one that is currently under investigation. One possible 
method is to utilize a controlled release system to maintain a short period of M1, 
followed by a transition to M2 polarization via cytokines such as IFN-γ, IL-4, and 
IL-10. Kumar et al. reported the development of a multi-domain peptide hydrogel 
that delivered IL-4 and CCL2 in a biphasic manner. This biphasic, sustained deliv-
ery was able to modulate both non-polarized (M0) and M1 macrophages towards an 
M2-like phenotype [73]. Finally, Spiller et al. utilized a decellularized bone scaffold 
to release IFN- γ over the first 3 days of repair, along with release of IL-4 over the 
first 6 days. The bone scaffolds were able to spur polarization towards an M2 phe-
notype in vitro and led to enhanced angiogenesis in an in vivo subcutaneous murine 
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model [43]. The modulation of M1 to M2 is not limited to cytokine release systems; 
Rostam et al. has shown that physical and chemical modifications to biomaterial 
surfaces alone can shift the macrophage polarization towards M1 or M2 [74, 75].

4  Application of Immunomodulating Reagents 
on Orthopedic Biomaterials

The delivery method of various immunomodulating reagents to enhance the perfor-
mance of orthopedic biomaterials is dependent on the physical and biological charac-
teristics of the agent. The therapeutic molecules with different biological features 
including molecular size, hydrophilic/hydrophobic, stability (degradation rate), effec-
tive dose, and the optimal administration time points determine the optimal strategy 
for drug delivery. Different materials used for orthopedic implants can also influence 
the drug delivery efficiency. For example, the absorption of small peptides on the 
metal surface is ineffective compared to the application on a polymeric surface.

Surface coating and drug releasing materials are an interesting strategy to modu-
late the tissue environment surrounding orthopedic implants. The various strategies 
to apply these bioactive coating on orthopedic implants including hydrogel, layer-
by-layer, and immobilization have been summarized comprehensively in other 
reviews [76, 77]. Agarwal et al. summarized strategies to enhance osseointegration 
of orthopedic implants by biomolecules such as growth factors, with similar deliv-
ery methods being potentially applicable for the delivery of immunomodulating 
reagents [78]. In the following section, the immunomodulating candidates are clas-
sified into four categories including: (1) protein, (2) nucleic acid, (3) small mole-
cule, and (4) cell-based therapies (Table  1). The current development of 
administration strategies and the therapeutic effects in the application of orthopedic 
biomaterials are discussed.

Table 1 Delivery strategies for immunomodulating biomolecules

Biomolecules Size Delivery strategies Reference

Protein ~150 kDa 
(large)
15-21 kDa 
(small)
<5 kDa 
(peptide)

Hydrogel, layer-by-layer coating, immobilization, 
controlled release scaffold

[44, 47, 
53, 82]

Nucleic acid 10-15 kDa 
(RNAi, ODN)
>3000 kDa 
(plasmid)

Viral (lentivirus, adenovirus, adeno-associated 
virus, etc.) and non-viral (polymer, liposome, 
chitosan, etc.) vector (can be combined with other 
scaffold such as hydrogels)

[51, 
89–94]

Small 
molecules

<0.9 kDa Conjugation with polymeric carrier, controlled 
release scaffold

[10, 
97–99]

Cell therapy 
(MSC)

~25 μm in 
diameter

Natural or synthetic scaffold, bone/inflammation- 
targeting vehicles

[113, 115, 
116]
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4.1  Protein-Based Biomolecules

The size of the immunomodulating protein determines the biomaterial coating strat-
egy and release pattern. Large proteins such as antibodies or fusion protein inhibi-
tors (~150 kDa) targeting pro-inflammatory cytokines or the associated receptors 
can be coated with hydrogels with larger pore sizes. Anti-TNFα antibodies conju-
gated with a hyaluronic acid hydrogel was applied to a burn wound and demon-
strated an inhibitory effect on inflammation [79]. Direct treatment of a soluble 
TNFα inhibitor (Etanercept) mitigated wear particle-induced osteolysis [47]. 
However, no significant difference was observed between Etanercept and placebo- 
treated patients with acetabular loosening [48]. The results may be due to the lim-
ited number of patients, or the compensatory effects of other pro-inflammatory 
cytokines.

Small proteins including anti-inflammatory cytokines IL-4, IL-10, and IL-13 
(ranging from 15 to 21 kDa) can be applied via a hydrogel with smaller pore size or 
layer-by-layer coating. A nanometer thickness IL-4 eluting layer-by-layer coated 
polypropylene mesh showed improved implant integration and enhanced M2 mac-
rophage polarization in a subcutaneous implantation murine model [44]. Further 
validation is required to demonstrate the potential to improve osseointegration of 
IL-4 eluting bone implants. Another example of this protein delivery approach dem-
onstrated that titanium rods coated with mutant CCL2 protein (7ND) with a layer- 
by- layer technique mitigated polyethylene wear particle-induced osteolysis in a 
murine femoral infusion model (See Sect. 2.4 for details) [53].

Small peptides with anti-microbial and immunomodulating activity have recently 
been identified [80, 81]. Compared to whole protein biomolecules, a higher concen-
tration of small peptides could be potentially applied onto or within biomaterials 
and thus increase the immunomodulating efficiency [76]. Inhibition of NF-κB 
 activation by a small peptide termed NEMO-binding domain peptide suppressed 
poly(methyl methacrylate) (PMMA) induced osteoclastogenesis and osteolysis in a 
murine calvarial model, yet the modulation of an inflammatory response was not 
characterized [82].

4.2  Nucleic Acid

Gene therapy is mediated through the delivery of nucleic acid-based biomolecules, 
including plasmid DNA, RNA interference (RNAi), micro-RNA, and ODN, to 
express proteins or modulate gene expression in the target cells. Delivery of naked 
nucleic acid is inefficient due to low cell attachment/uptake and rapid nuclease- 
mediated degradation. Therefore, viral and non-viral vectors are utilized to mediate 
the delivery of anti-inflammatory genes or silence pro-inflammatory gene expres-
sion in vivo. Viral vectors are efficient in transducing target gene expression ex vivo 
and thus are effective tools to induce gene expression in cell-based therapy (see 
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Sect. 4.4). In contrast, the immunogenicity and potential cytotoxicity effects of viral 
vectors may limit their direct translational use in vivo. Non-viral vectors, including 
calcium phosphate, liposomes, nano-hydroxyapatite [83], chitosan [84, 85], poly-
ethyleneimine [86], and dendrimer [87], have lower immunogenicity and cytotoxic-
ity but also lower transfection efficiency in  vivo. Raftery et  al. summarized the 
current development of delivering nucleic acid-based biomolecules in orthopedic 
biomaterials [88].

The combination of scaffolds and gene delivery vectors is a highly promising 
strategy for prolonged immunomodulation and controlled released of nucleic acid- 
based biomolecules. Previous studies showed that a combination of collagen or 
poly-lactic-co-glycolic acid (PLGA) scaffolds with viral or non-viral vectors deliv-
ered plasmid DNA or RNAi enhances tissue regeneration [89–94]. The therapeutic 
potential of immunomodulation using this strategy remains to be investigated in 
inflammatory bone disorders. Decoy ODN can be taken up by the cellular receptor 
in a sequence-specific manner [95]. The administration of decoy ODN without 
delivery vectors via local infusion was shown to mitigate orthopedic wear particle- 
induced osteolysis [51].

4.3  Small Molecules

Small molecule drugs have several advantages in clinical applications including 
the efficient administration and relative low cost for large-scale production. 
Steroids and molecular kinase inhibitors are potent anti-inflammatory small mol-
ecules that could be applied to orthopedic biomaterials. Signal transduction path-
ways including NF-κB and MAP kinase are crucial for the regulation of 
inflammatory responses [50, 96] and periprosthetic osteolysis [10, 97]. Titanium 
particles have induced VEGF expression and increased macrophage chemotactic 
activity in primary human macrophages, which was inhibited by MAPK kinase 
inhibitor PD98059 [98].

A daily injection of N- (2-hydroxypropyl) methacrylamide copolymer- 
dexamethasone conjugate mitigated osteolysis in the murine femur infused with 
PMMA particles [99]. Systemic bone loss was not observed in the conjugated dexa-
methasone injected mice. Several advanced drug-delivery strategies have been 
developed to apply dexamethasone in pre-clinical inflammatory disease models 
[100–102]. An inflammation-targeting hydrogel generated from ascorbyl palmitate 
was developed to deliver dexamethasone in an inflammatory bowel disease model 
[103]. While these drug delivery strategies have shown promise for the treatment of 
inflammatory disorders, the application in orthopedic biomaterials remains to be 
examined.
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4.4  Cell-Based Therapy

MSCs-based therapy has been applied to bone tissue engineering and inflammatory 
disorders. The ability to modulate innate [104, 105] and adaptive immune responses 
[106] further underscored its translational potential to modulate inflammation asso-
ciated with orthopedic biomaterials. Moreover, MSCs can serve as gene expression 
carriers to secrete immunomodulating cytokines such as IL-4 or IL-10 [107, 108]. 
The applications of MSC-based therapy in bone regeneration and immunomodula-
tion are discussed in other reviews [109–111]. The following section focuses on 
scaffold and delivery strategies in MSC-based therapy.

MSC based therapy can be administrated through local implantation or systemic 
delivery. Natural and synthetic scaffolds are crucial for the local administration of 
MSC-based therapy by providing the appropriate mechanical strength and cell via-
bility [112]. Commonly used natural scaffolds in bone tissue engineering include 
collagen hyaluronic acid fibrin and poly(ε-caprolactone)/poly(vinyl alcohol)/
chitosan- associated hybrid scaffolds. However purity issues and poor mechanical 
properties limit the application of natural scaffolds. Synthetic scaffolds including 
PLGA polyglycolic acid (PGA) and poly-l-lactic acid (PLA) enable the precise 
control of mechanical properties and stability of the scaffold to further enhance 
therapeutic efficiency. For example a macroporous and highly flexible gelatin-based 
scaffold with a microribbon-like structure has recently been demonstrated to 
increase MSC proliferation and bone regeneration [113]. However the biocompati-
bility of the synthetic scaffold remains a concern since degradation products could 
initiate inflammatory responses [114]. The systemic delivery of MSCs provides an 
alternative strategy of minimally invasive procedures to patients with orthopedic 
implants. Though MSCs can naturally migrate into inflammatory sites conjugating 
with antibodies targeting bone or inflammation-associated molecules can further 
enhance their homing efficiency [115, 116].

5  Conclusion

Transient acute inflammation is closely associated with successful osseointegration 
and bone regeneration in orthopedic biomaterial implantation. The transition 
between the pro-inflammatory M1 and anti-inflammatory M2 macrophage pheno-
types has been shown to be a key step in bone regeneration. Alternatively, chronic 
inflammatory bone diseases associated with implants often exhibit excessive pro- 
inflammatory macrophage infiltration and the generation of wear particles. The 
combination of bone regenerating scaffolds and controlled drug releasing systems 
has great potential for advancing clinical applications of orthopedic biomaterials for 
a variety of conditions including aseptic loosening, osteonecrosis, and fracture non-
union. Taken together, optimizing the timing and efficacy of the innate immune 
reaction provide a promising approach to harness the inflammatory response for 
therapeutic applications of orthopedic biomaterials.
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