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Abstract
Blood vessels span throughout the body to 
nourish tissue cells and to provide gateways 
for immune surveillance. Endothelial cells 
that line capillaries have the remarkable 
capacity to be quiescent for years but to switch 
rapidly into the activated state once new blood 
vessels need to be formed. In addition, 
endothelial cells generate niches for progenitor 
and tumor cells and provide organ-specific 
paracrine (angiocrine) factors that control 
organ development and regeneration, 
maintenance of homeostasis and tumor pro-
gression. Recent data indicate a pivotal role 
for blood vessels in responding to metabolic 
changes and that endothelial cell metabolism 

is a novel regulator of angiogenesis. The 
Notch pathway is the central signaling mode 
that cooperates with VEGF, WNT, BMP, TGF-
β, angiopoietin signaling and cell metabolism 
to orchestrate angiogenesis, tip/stalk cell 
selection and arteriovenous specification. 
Here, we summarize the current knowledge 
and implications regarding the complex roles 
of Notch signaling during physiological and 
tumor angiogenesis, the dynamic nature of tip/
stalk cell selection in the nascent vessel sprout 
and arteriovenous differentiation. 
Furthermore, we shed light on recent work on 
endothelial cell metabolism, perfusion-
independent angiocrine functions of endothe-
lial cells in organ-specific vascular beds and 
how manipulation of Notch signaling may be 
used to target the tumor vasculature.
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CADASIL	 Cerebral Autosomal dominant 
arteriopathy with subcortical 
infarcts and leukoencephalopathy

DLL	 Delta-like
EC	 Endothelial cell
FGF	 Fibroblast growth factor
FOX	 Forkhead box protein
HES	 Hairy and enhancer of split
HEY	 Hairy/enhancer-of-split related 

with YRPW motif
IL	 Interleukin
NICD	 Notch intracellular domain
NRARP	 Notch-regulated ankyrin repeat-

containing protein
NRP	 Neuropilin
PFKFB3	 6-Phosphofructo-2-kinase
PI3K	 Phosphatidylinositol  

4,5-Bisphosphate 3-kinase
RBPJ	 Recombining binding protein sup-

pressor of hairless
SHH	 Sonic hedgehog
SMAD	 Mothers against decapentaplegic
TGF	 Transforming growth factor
VEGF	 Vascular endothelial growth factor
VEGFR	 Vascular endothelial growth factor 

receptor

1	 �Introduction

The vasculature comprises one of the largest 
organs in mammals. Blood vessels nourish all 
tissues in the body and provide gateways for 
immune surveillance. In addition, vascular cells 
provide organ-specific paracrine factors, also 
termed angiocrine factors, which instruct the 
behavior of neighboring cells. Angiocrine 
signaling is essential for the maintenance of 
homeostasis and metabolism, stem cell 
differentiation, organ regeneration and tumor 
progression (Rafii et al. 2016). The importance of 
the vasculature becomes apparent by studying 
vascular dysfunction, which is the major 
contributor to human mortality. Abnormalities in 
vessel functionality are causative for heart 
infarction, stroke, neurodegenerative diseases, 
dementia, diabetic complications and obesity-
associated disorders, while excessive blood 

vessel formation is a hallmark of cancer, chronic 
inflammation and eye diseases such as wet 
macular degeneration (Folkman 2007). Drugs 
that inhibit blood vessel growth have recently 
become first-line therapies for certain eye and 
tumor diseases (Carmeliet and Jain 2011) .

Blood vessels are formed by endothelial cells 
(ECs), which provide an anti-thrombotic surface, 
and by mural cells (vascular smooth muscle cells 
and pericytes). In mature vessels, ECs are in a 
quiescent state, divide rarely and form barriers 
between blood and surrounding tissues. ECs have 
the remarkable capacity to switch between the 
quiescent and the activated state during injuries, 
hypoxia, inflammation or tissue growth, when the 
formation of new blood vessels is required 
(Potente et al. 2011).

The de novo formation of blood vessels from 
mesodermal-derived endothelial precursor cells 
is called vasculogenesis (Risau and Flamme 
1995). It occurs predominantly during early 
development to generate a primordial vascular 
plexus and the first large vessels such as the dor-
sal aorta. The vascular plexus is further remod-
eled and new vessels are formed from the 
pre-existing ones in a process called angiogenesis 
(Herbert and Stainier 2011). Similarly to new 
branches growing on a tree, angiogenesis occurs 
primarily by sprouting of new branches from 
existing microvessels. Angiogenesis occurs 
throughout life as capillaries grow and regress 
accordingly to functional demands. For example, 
physical exercise stimulates angiogenesis in skel-
etal muscle (Hellsten and Hoier 2014) and expan-
sion of adipose tissue is also associated with the 
formation of new blood vessels (Cao 2010). 
Intussusception (vessel splitting) is another way 
of generating new vessels. During this process 
blood vessels develop transluminal tissue pillars 
which subsequently fuse resulting in new vascu-
lar entities (Makanya et al. 2009). Once the new 
vessels establish nutrient and oxygen supplies 
that meet the metabolic tissue demand, the ECs 
will turn quiescent (Risau 1997).

Notch signaling is of utmost importance for 
vessel morphogenesis and function. Based on a 
series of previously published excellent review 
articles (Blanco and Gerhardt 2013; Carmeliet 
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and Jain 2011; Eilken and Adams 2010; Gridley 
2010; Siekmann et  al. 2013; Potente et  al. 
2011), this chapter will summarize the current 
view about Notch signaling in the vasculature 
with a focus on vessel sprouting, arteriovenous 
differentiation, EC metabolism and tumor 
angiogenesis. We will also highlight recent 
work showing the tight interconnections of the 
Notch pathway with other core signaling path-
ways and its roles for organ-specific angiocrine 
signaling.

2	 �Notch Signaling 
in Endothelial Cells

Canonical Notch signaling requires the interac-
tion of membrane-bound Notch ligands on the 
signal-sending cell with Notch receptors on the 
signal-receiving cell to trigger proteolytic cleav-
ages of the Notch receptors. γ-secretase releases 
the active Notch intracellular domain (NICD) 
from the cell membrane, which translocates to 
the nucleus, binds to the transcription factor 
Rbpj [also known as CSL, CBF1, Su(H) or 
Lag2] and activates gene expression (Kopan and 
Ilagan 2009). In principle, expression of the 
Notch ligands Dll1, Dll4, Jag1 and Jag2 and the 
Notch receptors Notch1 and Notch4 on ECs has 
been reported (Hofmann and Luisa Iruela-
Arispe 2007). However, one needs to keep in 
mind that the individual endothelial expression 
patterns are quite variable in different vascular 
beds (e.g. Notch signaling is much higher in 
arterial than venous ECs), and are depending on 
the developmental state. Compared to the nor-
mal, quiescent vasculature in tissues of the 
adult, the expression of Notch ligands is typi-
cally stronger in tumor blood vessels (Patel 
et al. 2005; Lu et al. 2007; Jubb et al. 2012; Gale 
et al. 2004; Mailhos et al. 2001; Scehnet et al. 
2007). Prototypical Notch1 target genes in ECs 
are Hey1, Hey2, Hes1, Nrarp, EphrinB2, but 
also the Notch ligand-encoding gene Dll4 (Dou 
et  al. 2008; Fischer et  al. 2004; Taylor et  al. 
2002; Liu et al. 2006; Krebs et al. 2001; Phng 
et al. 2009; Lawson et al. 2002; Ridgway et al. 
2006; Lobov et al. 2007; Iso et al. 2006; Patel 

et al. 2005). The latter is quite unusual and sug-
gests a positive Dll4-Notch1 feedback loop in 
ECs (Diez et  al. 2007; Lanner et  al. 2013). 
Notch ligands are also cleaved by the γ-secretase 
and their intracellular domain enters the nucleus. 
However, no functional role for a potential 
“Notch reverse signaling” during angiogenesis 
could be detected (Liebler et al. 2012; Redeker 
et al. 2013).

Gene targeting studies in mice revealed that 
deletion of Dll4 (Duarte et al. 2004; Krebs et al. 
2004; Gale et al. 2004), Jag1 (Xue et al. 1999), 
Notch1 (Huppert et al. 2000; Krebs et al. 2000; 
Limbourg et  al. 2005), Notch1/Notch4 (Krebs 
et  al. 2000), the Notch S2 cleavage enzyme 
Adam10 (Glomski et  al. 2011), components of 
the γ-secretase complex (Herreman et  al. 1999; 
Li et  al. 2003), Rbpj (Krebs et  al. 2004), 
Hey1/Hey2 (Kokubo et  al. 2005; Fischer et  al. 
2004), or a constitutive endothelium-specific 
expression of activated alleles for Notch1 (Krebs 
et al. 2010) or Notch4 (Uyttendaele et al. 2001) 
lead to embryonic lethality with severe vascular 
remodeling abnormalities and defects in 
arteriovenous specification. Besides embryonic 
development, Notch signaling coordinates 
vascular remodeling also in the adult (Limbourg 
et al. 2007; Takeshita et al. 2007). Interestingly, 
the loss of a single Dll4 allele already results in 
severe angiogenesis defects (Duarte et al. 2004; 
Gale et  al. 2004; Krebs et  al. 2004). Dll4 and 
Vegf-a belong to the very few genes, of which 
heterozygosity results in a lethal embryonic 
phenotype.

One could assume that endothelial Notch 
ligands act in a redundant manner. However, it 
was shown that they play distinct roles in blood 
vessel morphogenesis and do not act redundantly 
(Preuße et al. 2015). Expression of Dll1 on ECs 
begins later than that of Dll4 during fetal mouse 
development. While Dll4 is needed to establish 
arterial cell fate (see below), Dll1 is required for 
maintenance of arterial cell fate (Sörensen et al. 
2009). On the other hand, Jag1 can even 
antagonize Dll4/Notch1 signaling in ECs during 
tip/stalk cell selection depending on the 
glycosylation pattern of Notch1 receptor 
(Benedito et al. 2009).
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3	 �Sprouting Angiogenesis

The outgrowth of a new vessel branch is stimu-
lated by proangiogenic growth factors, which are 
released during hypoxia, inflammation, nutrient 
starvation or from oncogene-transformed cells. 
These shift the balance between proangiogenic 
(e.g. VEGF, FGF) and antiangiogenic (e.g. end-
ostatin, angiostatin, tumstatin, soluble VEGFR1) 
factors towards a proangiogenic outcome, an 
event termed the “angiogenic switch” (Folkman 
1995; Folkman 2007). The most important pro-
angiogenic protein is vascular endothelial growth 
factor (VEGF-A; hereafter called VEGF). The 
complex signaling biology of VEGF family 
members [VEGF-A, -B, -C, −D, −E and placenta 
growth factor (PlGF)] and VEGF-A splice iso-
forms has been reviewed elsewhere (Simons 
et al. 2016). Deletion of Vegf or its receptors in 
mice leads to embryonic death as consequence of 
abnormal vascular development (Fong et  al. 
1995; Dumont et al. 1998; Shalaby et al. 1995; 
Carmeliet et al. 1996; Ferrara et al. 1996). In the 
postnatal mouse retina, a Vegf gradient is gener-
ated by the already existing astrocyte network 
that serves as a guiding scaffold for the develop-
ing blood vessels (Ruhrberg et al. 2002; Gerhardt 
et al. 2003).

Angiogenesis is induced by VEGF, which 
signals through VEGFR2 and VEGFR3 to acti-
vate quiescent ECs. Activated ECs protrude filo-
podia, secrete matrix metalloproteinases to 
degrade the basement membrane and become 
invasive (Arroyo and Iruela-Arispe 2010). The 
breakdown of basement membrane is in particu-
lar mediated by EC podosome rosettes (Seano 
et  al. 2014). Podosomes are specialized actin-
based structures that degrade extracellular matrix 
and promote invasive cell migration (Murphy 
and Courtneidge 2011). The formation of EC 
podosomes is controlled by VEGF and Notch 
signaling (Spuul et al. 2016). Furthermore, stim-
ulated ECs release angiopoietin-2 leading to 
detachment of pericytes. This further allows ECs 
to invade the surrounding tissue (Augustin et al. 
2009). During invasion ECs usually remain con-
nected to the vessel network (Blanco and 
Gerhardt 2013).

The nascent sprout contains two different cell 
phenotypes: tip and stalk cells (Fig.  1). The 
leading tip cell is characterized by its position, its 
long and dynamic filopodia and its pro-invasive 
and migratory behavior (Gerhardt et  al. 2003), 
but also its highly glycolytic metabolic activity 
(De Bock et al. 2013). Similar to axonal growth 
cones, tip cells integrate attractive and repellent 
guidance cues (e.g. Semaphorin, Netrin, VEGF 
or Slit proteins) to define the route in which the 
new sprout grows (Adams and Eichmann 2010). 
Guidance is facilitated by actin-rich filopodia on 
the tip cells, whose formation is driven by VEGF 
via RhoGTPase signaling. Interestingly, filopodia 
are not absolutely necessary for migration of ECs 
as lamellipodia can partially compensate for their 
function (Phng et al. 2013). It was reported that 
there can be two cells that extend filopodia and 
have significant overlap in space and time at the 
tip of angiogenic sprouts (Pelton et  al. 2014). 
This surprising observation challenges the model 
of a single EC at the sprout tip. The trailing stalk 
cells are proliferative, less migratory than tip 
cells and form the nascent vascular lumen 
(Gerhardt et al. 2003). Furthermore, tip and stalk 
cells possess distinct gene expression profiles 
(e.g. higher expression of Dll4, Vegfr2, Vegfr3, 
Pdgfb, Unc5b, Cxcr4, Nidogen-2, Esm1, 
Angiopoietin-2, Apelin in tip cells) (Del Toro 
et al. 2010; Blanco and Gerhardt 2013). For cell 
proliferation, stalk cells have to generate biomass 
(nucleotides, protein, lipids). Therefore, cell 
metabolism differs between tip and stalk cells 
(see 3.4). Stalk cells produce extracellular matrix 
and recruit pericytes that attach to the new vessel 
sprout (Fig. 1). ECs in new vessel loops that are 
well covered by mural cells and have again 
become quiescent were named “phalanx cells” 
(Mazzone et al. 2009).

3.1	 �VEGF and Notch Signaling 
Control Tip/Stalk Cell 
Selection

The ability of ECs to lead a nascent sprout is 
strongly dependent on their VEGF receptor 
expression profile and their competence to 
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respond to VEGF (Jakobsson et  al. 2010; 
Gerhardt et  al. 2003). While tip cells are 
characterized by high expression levels of Vegfr2 
and also Vegfr3 (Tammela et al. 2008; Tammela 
et  al. 2011; Zarkada et  al. 2015; Blanco and 
Gerhardt 2013), the role of the Vegfr1, which acts 
as a VEGF trap, is less clear (Siekmann et  al. 
2013). In zebrafish, Notch-driven Vegfr1 
expression acts as a negative regulator of tip cell 
differentiation (Krueger et al. 2011) and neuronal-
derived soluble Vegfr1 is critical for guiding the 
direction of vessel growth (Wild et al. 2017).

VEGF signaling acts upstream of the Notch 
pathway and induces Dll4 expression (Lawson 
et  al. 2002; Ridgway et  al. 2006; Lobov et  al. 
2007; Patel et  al. 2005). It has been suggested 

that Vegf acts via the PI3K pathway activating the 
Forkhead family transcription factors Foxc1 and 
Foxc2, which then bind to a Dll4 enhancer 
element, or alternatively via the disassembly of a 
repressor complex at the Dll4 promoter (Seo 
et  al. 2006; Hayashi and Kume 2008). 
Subsequently, Dll4 binds and signals to Notch1 
receptors on adjacent ECs. The Notch-induced 
transcription factors Hey1 and Hey2 decrease 
expression of Vegfr2/3 and thereby reduce 
responsiveness to VEGF.  Such cells will most 
likely behave as stalk cells (Blanco and Gerhardt 
2013). Therefore the nascent sprout is guided by 
a tip cell with high Dll4 expression and low 
Notch signaling activity followed by stalk cells 
with high Notch signaling output (Fig. 2).

Stalk cells:
Proliferation

Lumen formation
Extracellular matrix 

production
Biomass generation

High Notch signaling activity
Low VEGF signaling activity

Basement membrane PericyteQuiescent endothelial cell

Tip/stalk cell competition

Tip cell:
Leads new vessel sprout

Numerous filopodia
Integration of guidance cues

Invasion and Migration 
High ATP production

High VEGF signaling activity
Low Notch signaling activity

Fig. 1  Model of tip/stalk cell phenotypes. The leading tip 
cell protrudes many filopodia and guides the new vessel 
sprout towards the VEGF gradient. Tip cells are highly 
invasive and migratory and require high ATP amounts, 
which are predominantly generated by glycolysis. The 

trailing stalk cells proliferate and form a new vessel 
lumen. The newly formed vessel sprout gets covered by 
extracellular matrix proteins and by pericytes. However, 
this is a dynamic process and stalk cells battle for the tip 
position to take over the lead
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Studies with genetic or pharmacologic inhibi-
tion of Notch signaling underlined the impor-
tance of this pathway during sprouting 
angiogenesis and tip/stalk cell selection. Notch 
inhibition leads to the formation of excessive tip 
cell numbers and vessel branches, a process 
called hypersprouting (Noguera-Troise et  al. 
2007; Ridgway et  al. 2006; Hellström et  al. 
2007; Lobov et al. 2007; Siekmann and Lawson 
2007; Suchting et al. 2007; Sainson et al. 2005; 
Leslie et  al. 2007). Accordingly, ECs with low 
Notch signaling activity dominate at the tip cell 
position, whereas Notch-active ECs are mostly 
excluded (Jakobsson et al. 2010; Hellström et al. 
2007; Siekmann and Lawson 2007; Benedito 
et al. 2009).

Dll4/Notch1 is the most important ligand and 
receptor pair in coordinating angiogenesis. 
However, the situation is more complex. For 
example, stalk cells also express few Dll4 ligands 
on their membrane and this could potentially lead 
to signaling back to Notch receptors on tip cells. 

This is antagonized by the Notch ligand Jag1, 
which is strongly expressed on stalk cells 
(Hofmann and Luisa Iruela-Arispe 2007; 
Benedito et  al. 2009) and inhibits Dll4/Notch1 
signaling. Thereby, Jag1 antagonizes signaling 
from the stalk back to the tip cell (Benedito et al. 
2009) and it may also prevent Notch over-
activation in the stalk cell plexus.

3.2	 �Crosstalk Between Notch 
and Other Signaling Pathways 
to Control Tip/Stalk Cell 
Selection

Numerous additional molecules influence tip or 
stalk cell fate selection through interactions with 
Notch signaling. In brief, WNT/β-catenin 
signaling promotes transcription of Dll4 by 
binding to an enhancer element (Corada et  al. 
2010) or through protein interaction of β-catenin 
with Rbpj (Yamamizu et al. 2010). Furthermore, 

VEGF

VEGFR2/3

DLL4

NOTCH1

VEGFR2/3

p21

NRARP

WNT

SMAD6

NRP1 PFKFB3

Proliferation

Glycolysis
BMP2/6
signaling Tip cell behavior

VEGF 
responsiveness

Fig. 2  Core signaling pathways during tip/stalk cell 
selection. VEGF induces tip cell behavior and expression 
of the Notch ligand DLL4. This leads to NOTCH1 activa-
tion in adjacent cells which adopt the stalk cell phenotype. 
In stalk cells, Notch signaling represses expression of tip 
cell-enriched genes like VEGFR2/3 and thereby suppress 
responsiveness to the pro-angiogenic VEGF. Notch inhib-
its expression of PFKFB3, an activator of glycolysis, 

which is required to adopt the tip cell phenotype. 
Moreover, Notch inhibits proliferation via inhibition of 
p21 but this is counteracted via WNT signaling since stalk 
cells need to proliferate. In addition, Notch activates 
expression of the inhibitory SMAD6 proteins to counter-
act pro-angiogenic BMP2/6 signaling. Notch inhibits 
NRP1 expression, which suppresses the stalk cell pheno-
type by limiting SMAD2/3 activation
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WNT signaling induces expression of the tran-
scription factor Sox17, which can activate Notch 
signaling and promote expression of tip cell-
enriched genes (Lee et  al. 2014; Corada et  al. 
2013). On the other hand, Sox17 expression is 
repressed by Notch signaling in stalk cells (Lee 
et al. 2014). It was demonstrated, that the mRNA 
level of Sox17 is not altered by Notch whereas 
the protein level of Sox17 is. This shows that 
Sox17 is post-transcriptionally regulated by the 
Notch pathway. Taken together this indicates that 
through a negative feedback loop, hypersprouting 
is prevented. Similarly, Notch and WNT signaling 
are linked via Nrarp to control the stability of 
new vessels. Notch induces Nrarp expression, 
which in turn limits Notch signaling and promotes 
WNT signaling in stalk cells (Phng et al. 2009).

The competence of ECs to become a tip cell is 
also influenced by bone morphogenetic proteins 
(BMPs) and TGF-β signaling. Bmp9 signals 
through Alk1 in stalk cells to induce Smad1/5/8 
phosphorylation. These Smads synergize with 
activated Notch receptors to induce expression of 
Notch targets Hey1 and Hey2, which inhibit 
VEGF receptor expression (Larrivée et al. 2012; 
Moya et  al. 2012). This is further promoted by 
Smad1/5-mediated induction of Id proteins which 
augment Hes1 protein levels (Moya et al. 2012). 
However, the roles of BMP signaling for tip/stalk 
selection and angiogenesis are not fully defined 
yet and still controversial. Very recently, it was 
reported that Notch promotes expression of the 
inhibitory Smad6 protein and thereby limits the 
responsiveness of stalk cells towards the proan-
giogenic Bmp2 and Bmp6 (Mouillesseaux et al. 
2016). Lastly, it was reported that the stalk cell 
phenotype has to be actively repressed to allow tip 
cell formation. Neuropilin-1 (Nrp1) plays a key 
role in suppressing the stalk cell phenotype 
through limiting Smad2/3 activation. Nrp1 pro-
motes tip cell behavior and the formation of filo-
podia (Fantin et  al. 2013; Fantin et  al. 2015). 
Notch downregulates Nrp1 expression and thus 
promotes stalk cell behavior (Aspalter et  al. 
2015).

The Notch-dependent acquisition of the stalk 
cell phenotype also requires the phosphatase Pten 
(Serra et al. 2015). Furthermore, Dll4 expression 

in tip cells is regulated via laminin/integrin 
signaling (Stenzel et al. 2011). Besides crosstalk 
of Notch signaling with other signaling pathways, 
direct protein-protein interactions influence tip-
stalk-cell selection. Synaptojanin-2-binding 
protein (Synj2bp) stabilizes Delta-like protein 
expression in stalk cells to allow continuous 
Notch signaling within the stalk cell plexus and 
to prevent formation of ectopic vessel branches 
(Adam et al. 2013).

3.3	 �The Dynamic Nature of Tip/
Stalk Cell Differentiation

EC tip and stalk cell specification does not repre-
sent permanent cell fate decisions but rather 
dynamic fluctuations in cell phenotypes (Blanco 
and Gerhardt 2013). The Gerhardt laboratory has 
shown that stalk cells compete in a highly 
dynamic manner for the tip position leading to 
frequent exchange of the tip cells (Jakobsson 
et al. 2010). Such EC shuffling occurs every few 
hours (Ubezio et al. 2016). Mechanistically, the 
VEGF-Dll4/Notch feedback system drives the 
competition for the tip/stalk cell selection. This is 
facilitated by the oscillatory output strength of 
Notch signaling (Kageyama et al. 2007). As such, 
the expression of Dll4 fluctuates in individual 
ECs within sprouting vessels (Ubezio et  al. 
2016). Therefore, one can assume that 
concomitantly the levels of Vegfrs, Dll4 and 
Notch target genes change constantly as ECs 
interact with each other. As a result, the 
competence of acting as a tip cell changes 
constantly, certain stalk cells are relieved from tip 
cell inhibition and overtake the lead position 
(Blanco and Gerhardt 2013). This leads to a 
dynamic position shuffle in the growing sprout.

The tip cell competence concept is further 
strengthened by the finding that the continual flux 
in Notch signaling output strength in individual 
ECs results in differential VE-cadherin turnover 
to generate spatial differentials in cell-cell adhe-
sions and polarized junctional protrusions. These 
permanent switches between active and inactive 
cell junctions allow EC rearrangements during 
sprout elongation (Bentley et al. 2014).
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3.4	 �Control of Angiogenesis 
by Metabolism

The vasculature contributes to systemic metabo-
lism control. On the one hand the endothelium 
controls the shuttling of nutrients from blood to 
tissue cells in an organ-specific manner (Robciuc 
et al. 2016; Jais et al. 2016; Hagberg et al. 2010; 
Corvera and Gealekman 2014) and therefore 
plays a critical, but poorly understood role, for 
organ homeostasis. On the other hand, metabo-
lism controls angiogenesis. For example, the 
expansion of adipose tissue requires angiogene-
sis, which is stimulated by proangiogenic factors 
released from adipocytes (Corvera and Gealekman 
2014). ECs contain metabolic sensors and their 
effectors (Sirtuins, mTOR, Pgc1α, Lkb1, Ampk, 
Foxos and Sirt1) (Potente and Carmeliet 2017) 
and respond to alteration in nutrient supply. To 
understand how cellular metabolism affects 
angiogenesis, one needs to consider how ECs 
generate ATP. Research from the Carmeliet labo-
ratory revealed that ECs are very glycolytic and 
produce the majority of ATP by metabolizing glu-
cose into lactate rather than by oxidative phos-
phorylation, even if plenty of oxygen is available 
(De Bock et al. 2013). As such, ECs behave simi-
lar to cancer cells, which consume high amount of 
glucose for aerobic glycolysis (Schulze and Harris 
2012). Although much less ATP is gained com-
pared to oxidative phosphorylation, glycolysis 
has the advantage of generating ATP in a very 
rapid manner and glycolysis allows energy pro-
duction in hypoxic areas, into which angiogenic 
ECs need to migrate (Potente and Carmeliet 
2017).

Activated ECs require in particular high gly-
colytic flux for migration and invasion (De Bock 
et al. 2013; Cruys et al. 2016). This is facilitated 
by VEGF and hypoxia signaling that together 
increase the uptake and breakdown of glucose by 
up-regulating glucose transporter type-1 and gly-
colytic enzymes, such as 6-Phosphofructo-2-
kinase (Pfkfb3) and lactate dehydrogenase-A 
(Yeh et  al. 2008; Peters et  al. 2009; Nakazawa 
et al. 2016; De Bock et al. 2013). Even in ECs 
with constitutive Notch1 signaling, which are 
genetically determined to become stalk cells, 
enhanced glycolysis by Pfkfb3 activation induces 

tip cell behavior (De Bock et al. 2013). This indi-
cates that EC metabolism can exert control over 
genetic circuits (Potente and Carmeliet 2017).

In stalk cells, Notch signaling reduces but not 
eliminates the expression of Pfkfb3 and Pfkfbp3-
driven glycolysis, as it is also essential for stalk 
cells (De Bock et al. 2013). Moreover, stalk cells 
must synthesize all cellular components (e.g. 
nucleotides, proteins and lipids) for cell division 
and cell growth. Therefore, ECs also break down 
fatty acids to generate carbons for the de novo 
nucleotide synthesis and not only for energy 
production (Schoors et al. 2015).

It will have to be determined how exactly the 
metabolic status influences the EC genetic 
program and vice versa. Fluctuations of Notch 
and VEGF signaling outputs alter glycolysis rates 
and ATP production in ECs and thereby change 
the fitness of ECs to battle for the tip position 
(Spuul et al. 2016; Potente and Carmeliet 2017; 
De Bock et  al. 2013). The energy status also 
controls the activity of Foxo1 by Sirt1 and the 
latter inhibits Notch signaling through 
deacetylation of the Nicd1 resulting in increased 
angiogenesis (Guarani et  al. 2011). Latest 
research showed that Foxo1 is an essential 
regulator of vascular growth by coupling 
metabolic and proliferative activities in ECs via 
inhibition of Myc, which fuels glycolysis and 
mitochondrial metabolism (Wilhelm et al. 2016). 
In addition, the Notch signaling activity in ECs is 
influenced by plasma glucose levels (Yoon et al. 
2014) and by the presence of certain pro-
inflammatory fatty acids (Briot et  al. 2015). 
Taken together, these reports show that Notch 
signaling integrates angiogenic signaling with 
the metabolic status.

3.5	 �Anastomosis of Vessel Sprouts 
and Remodeling of the New 
Vessel Network

Newly formed sprouts need to connect with other 
sprouts or existing vessels to generate a new 
circulatory loop. Anastomosis is a complex 
process that has not yet been fully resolved (Betz 
et  al. 2016). Tip cells contact other tip cells to 
initiate fusing of two sprouts (Isogai et al. 2003), 
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which is supported by tissue-resident 
macrophages (Tammela et al. 2011; Fantin et al. 
2010; Outtz et  al. 2011). Anastomosis requires 
the formation of new VE-Cadherin-containing 
EC junctions to consolidate the connection 
(Bentley et al. 2014). Such junctions are essential 
for EC polarization and lumen formation. After 
formation of a patent lumen, blood flow 
contributes to stabilize the new vascular loop. 
Increasing oxygen tension decreases VEGF 
production and helps to switch the activated EC 
status into a quiescent one. Further vessel 
maturation includes production of extracellular 
matrix, recruitment of mural cells, remodeling 
into a hierarchical network and the pruning of 
excessive vessel branches (Potente et  al. 2011). 
Notch signaling is critically involved in the 
recruitment and the tight interactions of ECs with 
pericytes and smooth muscle cells (Fouillade 
et  al. 2012). Further research is required to 
elucidate the detailed mechanisms of how Notch 
signaling is involved in vessel pruning.

4	 �Arteriovenous 
Differentiation

After the assembly of the first primitive vessels in 
the embryo or in a growing tissue of the adult 
(e.g. muscle or adipose tissue) a rapid 
differentiation into a hierarchically organized 
network of arteries, capillaries, veins and 
lymphatic vessels occurs. The specification of 
lymphatics has been reviewed elsewhere (Yang 
and Oliver 2014). Arteries transport blood away 
from the heart towards the capillaries. As such, 
arterial vessels are subjected to high blood 
pressure and pulsatile shear stress, whereas veins 
face low-pressure gradients can contain valves to 
prevent backflow and are more distensible than 
arteries (Corada et al. 2014).

Several studies indicated that vascular progen-
itor cells, which form the first large vessels in the 
embryo, are already committed for arterial or 
venous cell fate (Quillien et al. 2014; Kohli et al. 
2013). On the other hand, it was shown that 
venous-fated EphB4-positive ECs migrate away 
from arterial-fated EphrinB2-positive ECs in 
mixed vessels to establish the first artery and vein 

(Lindskog et  al. 2014; Herbert et  al. 2009). 
Subsequently, new branches sprout out of the first 
arteries and veins. Time-lapse movies of zebrafish 
embryos demonstrated that vessel sprouts can 
disconnect from the originating vein and 
reconnect with the adjacent artery (Betz et  al. 
2016). Also tip cells from venous sprouts can 
migrate backwards and incorporate into newly 
formed arteries in mice and fish (Xu et al. 2014). 
This suggests that the arteriovenous cell fate is 
not terminally defined in the early stage of 
development.

4.1	 �Arterial Differentiation

Vascular remodeling can occur in absence of 
blood flow and is largely determined by genetic 
factors whereby the VEGF and Notch pathways 
play key roles. Arterial and venous ECs possess 
specific molecular identities such as EphrinB2 
expression exclusively in arterial and EphB4 
exclusively in venous beds (Wang et al. 1998). 
Notch pathway components are expressed at 
much higher levels in arterial than venous ECs 
(Villa et al. 2001; Claxton and Fruttiger 2004) 
and are major players during embryonic arterial 
differentiation (Gridley 2010; Swift and 
Weinstein 2009). This was demonstrated by 
gene targeting approaches in mouse and zebraf-
ish, which revealed that disruption of the Notch 
pathway does not only lead to impaired vessel 
sprouting but also to poorly formed arterial ves-
sels, loss of arterial markers (e.g. EphrinB2, 
Hey2, Cxcr4, Cx40, Nrp1) and/or ectopic 
expression of venous markers (e.g. EphB4, 
COUP-TFII (Nr2f2), Nrp2) (Lawson et  al. 
2001; Zhong et  al. 2001; Zhong et  al. 2000; 
Fischer et al. 2004; Lawson et al. 2002; Duarte 
et  al. 2004; Krebs et  al. 2004; Sörensen et  al. 
2009).

Dll4-mediated Notch signaling induces 
expression of arterial-specific genes (Kim et al. 
2008; Iso et  al. 2006) and suppresses the 
expression of the master regulator of venous 
specification, COUP-TFII (Swift et  al. 2014). 
Dll1 plays a distinct role. Dll1 is expressed 
selectively on fetal mouse arteries and is not 
required for the establishment but for the 
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maintenance of arterial identity and VEGF 
receptor expression (Sörensen et  al. 2009). It 
should be taken into account that blood pressure, 
blood flow dynamics and hypoxia are also 
important for the proper differentiation and the 
maintenance of arteriovenous identity (Le Noble 
et al. 2005; Lanner et al. 2013; Diez et al. 2007).

Once the circulatory system is formed and 
fully functional, the arteriovenous fate needs to 
be actively maintained to prevent the formation 
of arteriovenous shunts. Arteriovenous 
malformations in the brain are an important cause 
of intracerebral hemorrhage in young adults 
(Lawton et al. 2015). Increased NOTCH1 activity 
has been observed in human arteriovenous 
malformations (Murphy et al. 2009; Zhuge et al. 
2009). Based on gene targeting approaches, 
Notch signaling appears to be involved in its 
pathogenesis. Interestingly, both endothelial-
specific inhibition and over-activation of Notch 
signaling can lead to the formation of 
arteriovenous malformations at least in certain 
vascular beds (Trindade et al. 2008; Carlson et al. 
2005; Miniati et  al. 2010; Murphy et  al. 2012; 
Murphy et  al. 2014; Murphy et  al. 2008; Gale 
et al. 2004; Murphy et al. 2009).

Besides maintaining arterio-venous iden-
tity, Notch signaling is required to maintain 
integrity of vascular smooth muscle cells. 
Neomorphic mutations in NOTCH3, which 
often lead to unequal numbers of cysteine 
residues in the extracellular domain, cause 
cerebral autosomal dominant arteriopathy 
with subcortical infarcts and leukoencepha-
lopathy (CADASIL). This leads to degenera-
tion of vascular smooth muscle cells in 
small-sized arteries, changes in brain blood 
perfusion that cause migraine attacks, stroke 
and dementia. Gene targeting experiments 
have shown that mice carrying a CADASIL-
causing Notch3 point mutation displayed 
attenuated myogenic responses and reduced 
caliber of brain arteries as well as impaired 
cerebrovascular autoregulation and func-
tional hyperemia (Chabriat et al. 2009; Joutel 
et al. 2010).

4.2	 �Venous Specification

It was previously believed that venous differenti-
ation is the default differentiation pathway in the 
absence of Notch activation. However, mouse 
knockout studies revealed a pivotal role for the 
transcription factor COUP-TFII, which is exclu-
sively expressed in venous and lymphatic ECs to 
establish venous fate (You et  al. 2005). 
Interestingly, Notch signaling suppresses COUP-
TFII expression, most likely via Hey transcrip-
tional repressors, and thereby allows arterial fate 
specification (Swift et al. 2014). In summary, it 
appears likely that Notch and COUP-TFII repress 
each other to allow the establishment of the arte-
rial or venous gene expression programs, 
respectively.

4.3	 �Upstream Regulators of Notch 
During Arteriovenous 
Differentiation

It still remains unclear what mechanisms act 
upstream of Notch signaling in early phases of 
arteriovenous differentiation. Hypoxia might play 
an important role by inducing DLL4 expression 
(Diez et al. 2007; Patel et al. 2005). In zebrafish, 
Shh and Vegf-a act upstream of Notch to promote 
arterial differentiation. Alternatively, Shh might 
promote arterial differentiation independently of 
VEGF signaling via the calcitonin receptor-like 
receptor (Wilkinson et  al. 2012). In mammals, 
neurons or glial cells release VEGF to support 
arterial differentiation. VEGF signaling via Erk 
induces transcription of Dll4 and arterial-specific 
genes (Deng et  al. 2013; Ren et  al. 2010). 
However, VEGF signaling can also induce Pi3k 
activity, which has an opposite effect on arterial 
morphogenesis (Hong et  al. 2008; Ren et  al. 
2010), indicating that other factors are needed to 
fine-tune VEGF signaling branches. Neuropilin-1, 
which is more abundantly expressed on arterial 
than venous ECs, could be one of these factors as 
it promotes Vegfr2 trafficking and Erk signaling 
(Lanahan et al. 2013).

F. Tetzlaff and A. Fischer



329

Besides VEGF signaling, the expression of 
Dll4 during arterial differentiation is also 
promoted by SoxF transcription factors (Corada 
et al. 2013; Sacilotto et al. 2013), WNT/β-catenin 
signaling (Corada et  al. 2010; Yamamizu et  al. 
2010), angiopoietin-1 (Zhang et al. 2011) and the 
transcription factors Foxc1 and Foxc2 (Seo et al. 
2006; Hayashi and Kume 2008). Lastly, it should 
be noted that also blood flow dynamics induce 
the expression of Notch pathway components 
and other arterial-specific genes in cultured ECs 
(Lehoux and Jones 2016) and endothelial cells in 
mice (Ramasamy et  al. 2016). Furthermore, 
studies using cultured cells have shown that such 
physiologic forces can sensitize the negative 
regulatory region of Notch1 to ADAM-mediated 
cleavage (Gordon et al. 2015). As such, a large 
amount of genetic and environmental factors 
promote EC Notch signaling to enable and 
maintain arterial morphogenesis.

5	 �Organ-Specific Vascular Beds 
and Angiocrine Signaling

A major challenge for the research field will be 
the analysis of organ-specific vascular beds. 
Blood vessel anatomy and function differs 
dramatically between organs and even within the 
same organ (e.g. the fenestrated endothelium in 
kidney glomeruli vs. the continuous endothelium 
in peritubular capillaries). The tightness of 
vessels is adapted to the organ-specific 
requirements with e.g. tight EC connections in 
the central nervous system and gaps (fenestrations) 
in the sinusoidal endothelium of liver, endocrine 
organs or bone marrow (Aird 2007). Little is 
known so far regarding how these differences are 
established during development and maintained 
throughout life. This is, however, of utmost 
importance. For example, treatment of mice with 
tyrosine kinase inhibitors targeting VEGF 
receptors led to pronounced regression of 
fenestrated capillaries, that are typically present 
in endocrine organs and that under normal 
conditions express high levels of Vegfr2/3 
(Kamba et al. 2006). Similar data were obtained 
in pancreatic islets by a genetic approach 

(Lammert et al. 2003), indicating that VEGF acts 
as a survival factor for fenestrated capillaries in 
endocrine organs.

Several angiocrine functions have recently 
been described in which ECs control organ 
development and regeneration by secreting e.g. 
growth factors or by providing niches and cell 
surface molecules for hematopoietic stem cells or 
tumor cells (Rafii et al. 2016). Here we focus on 
such examples in which the Notch pathway is 
critically involved.

Work from the Adams laboratory gave fasci-
nating insights on how blood vessels orchestrate 
the formation, function and remodeling of bone 
(Kusumbe et al. 2014). In contrast to other organs, 
active Notch signaling in bone ECs promotes 
blood vessel growth. Furthermore, Notch regu-
lates the angiocrine release of Noggin, which is 
involved in bone growth, mineralization and 
chrondrocyte maturation (Ramasamy et al. 2014). 
It is known that many diseases lead to impaired 
skeletal blood flow. Interestingly, flow-responsive 
genes induce endothelial Notch signaling in bone. 
Therefore, impaired blood flow hampers osteo-
genesis and rejuvenation of bone through impaired 
EC Notch signaling and decreased angiogenesis 
(Ramasamy et al. 2016).

In the liver, Notch1 is important to maintain 
quiescence and morphology of the specialized 
sinusoidal vasculature. Disruption of Notch1 
using the rather tissue-unspecific Mx-Cre line led 
to de-differentiation of sinusoidal ECs, vascular 
remodeling, detachment of mural cells and 
intussusceptive angiogenesis (Dill et  al. 2012; 
Dimova et  al. 2013). In the bone marrow, Jag1 
expression on ECs is important for hematopoietic 
stem cell differentiation (Poulos et al. 2013) and 
niche-forming vessels can be restored by 
activation of EC Notch signaling (Kusumbe et al. 
2016). In the lung, Jag1 expressed on pulmonary 
capillary ECs induces Notch signaling in 
perivascular fibroblasts and thereby enhances 
lung fibrosis (Cao et al. 2016).

Lastly, we want to emphasize that aside from 
their role in angiogenesis, tumor ECs possess 
additional roles. ECs within a solid tumor mass 
are in close contact with tumor cells and many 
immune cells and their released cytokines. As 
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such, tumor ECs often do not form tight barriers 
any more, exhibit altered gene expression 
programs and also actively alter the behavior of 
adjacent cells in the tumor microenvironment. In 
this regard, ECs can provide several membrane-
bound and secreted factors that promote tumor 
progression (Butler et al. 2010). Notch ligands of 
the Delta-like and Jagged families are frequently 
present on tumor ECs and can promote Notch 
signaling in adjacent tumor cells. This increased 
aggressiveness of lymphoma cells (Cao et  al. 
2014), promotes the cancer stem cell phenotype 
(Lu et al. 2013; Zhu et al. 2011), increases tumor 
cell survival (Pedrosa et al. 2015) and facilitates 
metastasis (Sonoshita et al. 2011). Interestingly, 
Notch ligands can also be secreted by tumor cells 
via exosomes and be incorporated in EC 
membranes at distant sites to either activate or 
inhibit Notch signaling (Sharghi-Namini et  al. 
2014; Sheldon et al. 2010). Furthermore, Notch 
activation in ECs can be driven by inflammation 
and this in turn contributes to increased expression 
of leukocyte adhesion molecules (Liu et al. 2012; 
Verginelli et  al. 2014). Work from our group 
showed that sustained NOTCH1 activation in 
ECs leads to senescence, expression of adhesion 
molecules and weakening of cell junctions that 
promote transmigration and homing of circulating 
tumor cells (Wieland et al. 2017).

6	 �Tumor Angiogenesis 
and Notch Targeting Agents

Angiogenesis is a hallmark of cancer (Hanahan 
and Weinberg 2011). The growth of small tumor 
cell clumps into a clinically relevant tumor is 
only possible by the induction of blood vessel 
growth into the tumor mass. Tumor vessels have 
an abnormal structure and often function poorly. 
The endothelial lining contains gaps and 
disorganized cell-cell junction integrity. Also the 
coverage with pericytes is frequently impaired 
making vessels leaky. This increases interstitial 
pressure what impairs the transport of nutrients 
and drugs towards tumor cells. Moreover, 
vascular leakiness facilitates intravasation of 
tumor cells and dissemination (Goel et al. 2011). 
The tumor vasculature lacks a strict hierarchical 

structure, arteriovenous identity is poorly defined, 
vessels have irregular lumen sizes, are often 
tortuous shaped and thin-walled. Both hyper-
vascularized and poorly vascularized tumor areas 
accompany tumor heterogeneity. Irregular vessel 
branches, shunts, blind-ended branches, weak 
vessel contractility and irregular lumen sizes 
together lead to abnormal and very heterogeneous 
perfusion rates. Irregular perfusion impairs 
oxygen, nutrient and drug delivery, thereby 
limiting the efficiency of chemotherapy and 
radiation. Impaired perfusion causes aggravation, 
as hypoxic tumor areas secrete even higher 
amounts of proangiogenic factors leading to the 
formation of even more chaotic vessel structures 
with increased permeability (Carmeliet and Jain 
2011; Potente et al. 2011).

VEGF targeting substances are in clinical use 
but show limited efficiency (Carmeliet and Jain 
2011; Potente et  al. 2011). Anti-VEGF drugs 
inhibit the formation of new vessel sprouts and 
also induce regression of pre-existing tumor 
vessels, in particular immature vessels. It is 
assumed that the mode of action is not starving 
the tumor to death but rather to normalize the 
tumor vasculature by regression of immature 
vessels and maturation of the remaining ones. 
The normalized tumor vasculature is better 
perfused and enables better delivery of cytotoxic 
agents to tumor cells (Goel et  al. 2011). It is 
assumed that many initially sensitive tumors 
develop resistance against VEGF-targeting drugs 
by secretion of other proangiogenic proteins (e.g. 
FGF2, PDFG, PlGF, IL-8, ANG2) and by other 
means of vessel formation (e.g. cooption of 
already existing vessels) (Bergers and Hanahan 
2008). This indicates that better combination 
therapies are required to target the tumor 
vasculature.

Besides VEGF, Notch signaling is an interest-
ing target. As in physiological angiogenesis, 
Notch signaling is involved in tumor angiogene-
sis (Noguera-Troise et  al. 2006; Ridgway et  al. 
2006; Lobov et  al. 2007). However, the patho-
logical high VEGF concentrations may disrupt 
oscillatory Notch signaling outputs and thereby 
impair the formation of proper cell junctions and 
promote vessel expansion (Bentley et  al. 2014; 
Ubezio et al. 2016). Dll4 and Jag1 are abundantly 
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expressed on tumor vessels (Patel et al. 2005; Lu 
et  al. 2007; Jubb et  al. 2012; Gale et  al. 2004; 
Mailhos et  al. 2001; Scehnet et  al. 2007) and 
tumor vessels often exhibit strong Notch1 activ-
ity (Fig. 3). By computational modeling, it was 
suggested that the higher production levels of the 
antagonistic ligand Jag1 give rise to a hybrid tip/
stalk phenotype that leads to poorly perfused ves-
sels (Boareto et al. 2015).

Manipulation of EC Notch signaling appears 
to be an attractive target to interfere with tumor 
progression. Notch signaling is often hyperactive 
in cancer cells (in particular in the cancer stem 
cells) and acts as an oncogene in many tumor 
entities. Therefore, Notch inhibition could target 
tumor cells and tumor vessels simultaneously. 
Many academic groups and pharmaceutical com-
panies have developed Notch inhibiting sub-
stances and several ones are in phase I/II trials 
(Andersson and Lendahl 2014). In rodent models, 
blockade of Dll4, Notch1 or γ-secretase leads to 
a non-productive hypersprouting phenotype 
resulting in central tumor necrosis (Noguera-
Troise et al. 2006; Ridgway et al. 2006; Scehnet 
et al. 2007). This may sound paradoxical, but the 
excessive vessel branches generate such a chaotic 
network that dramatically diminishes tumor 
perfusion. Whether this can also be achieved in 
human cancer patients is not clear yet. γ-secretase 
inhibitors, which block the activity of all four 

Notch receptors, have quite profound adverse 
effects (e.g. gastrointestinal toxicity) in clinical 
trials (Andersson and Lendahl 2014) but neutral-
izing antibodies against individual Notch recep-
tors might be able to overcome this (Wu et  al. 
2010). In addition, antibodies targeting individ-
ual Notch ligands have also been developed 
(Andersson and Lendahl 2014). Nevertheless, 
DLL4-neutralizing antibody can also cause 
severe adverse effects (Yan et  al. 2010), e.g. 
development of congestive heart failure was 
observed in clinical phase I studies (Chiorean 
et  al. 2015; Falchook et  al. 2015; Smith et  al. 
2014). It will be important to study the underly-
ing mechanisms to overcome this problem.

As outlined above, it appears to be more rea-
sonable to induce tumor vessel normalization 
instead of tumor vessel regression. A novel 
approach to achieve this might be targeting EC 
metabolism. ECs are highly glycolytic and high 
rates of glucose breakdown are instrumental for 
adopting the tip cell phenotype during sprouting. 
A rather mild inhibition of glycolysis can be 
achieved by targeting its activator Pfkfb3. In 
mouse cancer models, Pfkfb3 inhibition tightened 
the vascular barrier, improved adhesion of peri-
cytes and reduced the pro-inflammatory pheno-
type of tumor ECs that facilitates metastasis 
(Cantelmo et  al. 2016). Another option to 
normalize the tumor vasculature could be the acti-

Fig. 3  Notch signaling 
is active in blood vessels 
of adult and tumor blood 
vessels. Sections of 
normal lung and lung 
adenocarcinoma were 
stained against the 
endothelial marker 
CD34 (brown color) or 
the cleaved NOTCH1 
receptor (NOTCH1-
ICD). Cell nuclei were 
counterstained with 
hematoxylin (blue 
color). Magnification 
400-fold
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vation of EC Notch signaling. As shown by genetic 
approaches in mice, this reduced tumor angiogen-
esis, but increased vessel diameter and improved 
perfusion and oxygenation (Li et al. 2007). Notch 
activation could also help to reduce glycolysis in 
ECs as Notch signaling reduces expression of 
Pfkfb3 (De Bock et  al. 2013). While Notch-
inhibiting substances are in clinical trials, we still 
lack fully validated drugs to activate Notch signal-
ing in a therapeutic manner. The Kitajewski labo-
ratory has generated soluble Notch1 extracellular 
domain proteins fused to IgG-Fc (Notch decoys) 
that bind and inhibit selectively either the stimula-
tory Delta-like or the inhibitory Jagged ligands 
(Funahashi et al. 2008; Kangsamaksin et al. 2015). 
These Notch decoys inhibit sprouting angiogene-
sis and also target pericytes in the vessel wall 
(Klose et  al. 2015; Funahashi et  al. 2008; 
Kangsamaksin et  al. 2015). Future experiments 
will determine whether Notch-activating sub-
stances can be used successfully in combination 
with chemotherapy to better target tumor cells.

7	 �Perspectives

In recent years there has been a significant prog-
ress in the understanding of Notch signaling dur-
ing sprouting angiogenesis. However, much 
remains to be learned. As the tip/stalk cell 
selection is tightly dependent on subtle 
fluctuations in Notch signal output strengths, it is 
necessary to determine multiple genetic and 
environmental factors, such as hemodynamics 
and metabolites that fine-tune ligand expression 
and localization at the cell surface, receptor 
glycosylation, NICD protein stability, nuclear 
NICD complex formation and the dynamic 
control of Notch target gene expression.

Inducible tissue-specific transgene models 
and therapeutic antibodies will be key to 
determine how VEGF and Notch signaling are 
involved in organ-specific angiogenesis, 
maintenance of EC quiescence, as well as barrier 
and transport functions throughout life. There is 
already solid evidence that VEGF does not only 
control blood vessel formation, but also acts as a 
survival factor for ECs (Domigan et al. 2015) and 

non-vascular cells (Mackenzie and Ruhrberg 
2012). Similar to this, basal Dll4/Notch activity 
has been detected in quiescent ECs (Zhang et al. 
2011) and is important to maintain vascular 
integrity and function (Liu et al. 2011; Yan et al. 
2010). Lastly, angiocrine functions of ECs have 
attracted enormous attention (Rafii et al. 2016). It 
will be fascinating to see how ECs control the 
function of parenchymal cells through the 
secretion of signaling molecules or through 
providing membrane-bound factors that 
orchestrate the behavior of its neighboring cells 
in organ-specific vascular beds.
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