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Abstract
The highly conserved Notch signal transduc-
tion pathway orchestrates fundamental cellu-
lar processes including, differentiation, 
proliferation, and apoptosis during embryonic 
development and in the adult organism. 
Dysregulated Notch signaling underlies the 
etiology of a variety of human diseases, such 
as certain types of cancers, developmental dis-
orders and cardiovascular disease. Ligand 
binding induces proteolytic cleavage of the 
Notch receptor and nuclear translocation of 
the Notch intracellular domain (NICD), which 
forms a ternary complex with the transcription 
factor CSL and the coactivator MAML to 
upregulate transcription of Notch target genes. 
The DNA-binding protein CSL is the cen-
trepiece of transcriptional regulation in the 
Notch pathway, acting as a molecular hub for 
interactions with either corepressors or coacti-
vators to repress or activate, respectively, tran-
scription. Here we review previous 

structure-function studies of CSL-associated 
coregulator complexes and discuss the molec-
ular insights gleaned from this research. We 
discuss the functional consequences of both 
activating and repressing binding partners 
using the same interaction platforms on 
CSL. We also emphasize that although there 
has been a significant uptick in structural 
information over the past decade, it is still 
under debate how the molecular switch from 
repression to activation mediated by CSL 
occurs at Notch target genes and whether it 
will be possible to manipulate these transcrip-
tion complexes therapeutically in the future.
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CBP/CREBBP	 C-Adenosine Mono Phosphate 
Responsive Element (cAMP-
RE)-Binding protein (CREB)-
Binding Protein; KAT3A

EP300	 E1A Binding Protein P300, 
KAT3B

PCAF	 P300/CBP-Associated Factor; 
KAT2B

GCN5	 General Control Of AmiNo 
Acid Synthesis Protein 5-Like 
2; KAT2A

CDK8	 Cyclin-Dependent Kinase 8
SCF	 S-Phase Kinase Associated 

Protein1/Cullin/F-Box Protein
SEL10	 Suppressor and/or Enhancer of 

abnormal cell LINeage-12 
(Lin-12)-10

FBWX7	 F-Box and WD Repeat Domain 
containing 7

SIRT-1	 Sirtuin-1
CARM1	 C o a c t i v a t o r - A s s o c i a t e d 

Arginine Methyltransferase1
PRMT4	 Protein Arginine 

N-MethylTransferase 4
CTBP	 C-Terminal Binding Protein
CTIP	 CTBP Interacting Protein
KYOT2/FHL1	 Four and a Half LIM domains 1
NCoR	 Nuclear Receptor CoRepressor
SMRT	 Silencing Mediator For 

Retinoid And Thyroid 
Hormone Receptors

SHARP	 SMRT/HDAC1-Associated 
Repressor Protein

SPEN	 SPlit ENds family transcrip-
tional repressor

LID	 Little Imaginal Disks
KDM5A	 Lysine(K) Demethylase 5A
CIR	 Corepressor Interacting with 

RBPJ
SKIP	 Sloan-KetterIng-retroviral 

oncogene (SKI) -Interacting 
Protein

L3MBTL3	 Lethal(3)Malignant Brain 
Tumor-Like Protein 3

RITA1	 RBPJ Interacting and Tubulin 
Associated 1

EBNA2	 Epstein-Barr Virus Nuclear 
Antigen 2

NFAT	 Nuclear Factor of Activated 
T-cells

NF-κB1	 Nuclear Factor κB1
POFUT1	 Protein O-Fucosyltransferase 1
Fringe	 Beta-1,3-N-Acetylglucosamin

yltransferase

1	 �Introduction

The Notch signaling pathway is evolutionary con-
served in metazoan organisms and represents a 
short-range cell-to-cell communication mecha-
nism. A fly mutant with “notches” in its wing ends 
served as an eponym for the gene responsible for 
this particular phenotype (Morgan 1917). In 1985 
the Notch gene was first cloned in Drosophila 
melanogaster and was found to encode a putative 
type I transmembrane protein with an extracellular 
region, a single transmembrane domain, and an 
intracellular region (Wharton et al. 1985). Further 
studies in Drosophila showed that the NOTCH 
protein serves as a receptor for two specific 
ligands, SERRATE and DELTA, which are also 
type I transmembrane proteins (Struhl and Adachi 
1998; Artavanis-Tsakonas et  al. 1999). During 
embryonic development and in the adult organism, 
Notch signaling affects and regulates stem cell 
maintenance, cell fate decisions, and cell lineage 
identity, as well as cell proliferation, differentia-
tion and apoptosis (Borggrefe and Oswald 2009). 
These different outcomes of Notch signaling seem 
to be highly dependent on cellular context (Bray 
2016). Although Notch signaling has pleiotropic 
functions, the pathway itself, which is devoid of 
second messengers and enzyme cascades, is 
mechanistically very simple.

Five ligands (JAGGED 1 and 2, DELTA-LIKE 
1, 3 and 4) and four NOTCH receptors (Notch1–
4) are present in mammals (Bray 2006; Kovall 
et al. 2017). The Notch receptor contains multi-
ple epidermal growth factor (EGF)-like repeats 
(36 EGF repeats in mammalian NOTCH1), and 
three LNR (LIN1–2/Notch) repeats, which are 
located within the so-called Negative Regulatory 
Region (NRR) in the extracellular domain. The 
intracellular part of the Notch receptor contains 
the RAM (RBPJ-associated molecule) domain 

F. Oswald and R. A. Kovall



281

and seven ankyrin (ANK) repeats, which are fol-
lowed by a trans-activation domain (TAD) and a 
PEST [rich in proline (P), glutamic  acid 
(E), serine (S) and threonine (T) residues] domain 
at its carboxy terminus.

NOTCH receptors undergo multiple cleavage 
events and post-translational modifications dur-
ing their maturation and in response to ligand 
binding (Fig. 1). The first cleavage event (S1) is 
ligand independent and occurs in the trans-golgi 
network by a furin-like convertase (Logeat et al. 
1998) (Fig. 1A). S1 results in two protein frag-
ments, the Notch extracellular domain (NECD) 
and an intracellular fragment that contains the 
transmembrane domain, which are non-
covalently held together and presented as a het-
erodimer at the cell surface. The extracellular 
domains of NOTCH receptors are also modified 
by O-linked glycosylation and fucosylation, 
which can modulate specific ligand-receptor 
interactions, thereby affecting signaling out-
come (Takeuchi and Haltiwanger 2010,  2014; 
Rana and Haltiwanger 2011). These modifica-
tions within the EGF repeats are catalyzed by 
protein O-fucosyltransferase 1 (POFUT1) and 
the fringe glycosyl-transferases RADICAL 
FRINGE (RFNG), LUNATIC FRINGE (LFNG) 
and MANIC FRINGE (MFNG) (Okajima et al. 
2003; Moloney et  al. 2000; Bruckner et  al. 
2000) (Fig. 1A). After ligand binding, a mechan-
ical pulling force is thought to expose a second 
cleavage site (S2) in the NRR due to conforma-
tional changes that occur within the LNR 
domain (Fig.  1B) (Gordon et  al. 2015). This 
ligand dependent cleavage step is catalyzed by 
members of the ADAM (A Disintegrin And 
Metalloprotease) metalloproteases family, 
ADAM10 and ADAM17 (Struhl and Greenwald 
1999; Brou et  al. 2000; Bozkulak and 
Weinmaster 2009). Subsequently, the remaining 
transmembrane NOTCH fragment, also called 
Notch extracellular truncation (NEXT), under-
goes a final cleavage step (S3), which occurs 
within the cellular membrane and is catalyzed 
by the γ-secretase complex (Mumm et al. 2000). 
Cleavage at the S3 site releases the Notch intra-
cellular domain (NICD) from the cell membrane 
(Schroeter et al. 1998) and subsequently NICD 

translocates to the nucleus to activate transcrip-
tion of Notch target genes (Fig. 1C) (Struhl and 
Adachi 1998).

NICD does not bind to DNA itself but rather 
interacts with the DNA binding transcription fac-
tor CSL [for CBF1/RBPJ (C-promoter Binding 
Factor1/ Recombination Binding Protein Jk), 
Su(H) (Suppressor of Hairless), and Lag-1] and 
the transcriptional coactivator MASTERMIND-
LIKE (MAML) to form a DNA-bound transacti-
vation complex (Nam et  al. 2006; Wilson and 
Kovall 2006; Kopan and Ilagan 2009; Kovall and 
Blacklow 2010). The CSL-NICD-MAML trans-
activation complex recruits histone modifying 
coactivators, like CREBBP/EP300 (CREB 
Binding Protein/E1A Binding Protein P300) or 
PCAF (P300/CBP-associated factor, aka KAT2B) 
and GCN5 (General control of amino acid syn-
thesis protein 5, aka KAT2A), together with 
chromatin remodeling complexes to activate 
transcription (Fig.  1D) (Kurooka and Honjo 
2000; Oswald et al. 2001; Wallberg et al. 2002; 
Kadam and Emerson 2003). NICD is a short-
lived protein, as its PEST domain is phosphory-
lated by CYCLINC/CDK8 (Fryer et  al. 2004), 
resulting in its ubiquitilation by the SCF/SEL10/
FBXW7 E3 ubiquitin ligase complex, leading to 
its degradation by the proteasome (Fig.  1E). A 
number of additional post-translational modifica-
tions regulate the activity and stability of NICD, 
e.g. deacetylation by SIRT-1 (silent mating type 
information regulation 2 homolog, aka 
SIRTUIN1) (Guarani et  al. 2011) and methyla-
tion by CARM1 (Coactivator Associated Arginine 
Methyltransferase 1)/PRMT4 (Protein Arginine 
N-Methyltransferase 4) (Hein et al. 2015), which 
regulate the amplitude and duration of the Notch 
response (Wu et  al. 2001; Tsunematsu et  al. 
2004).

In the absence of an active Notch signal CSL 
acts as a transcriptional repressor (Fig. 1F) (Dou 
et  al. 1994). In Drosophila, the CSL ortholog 
Su(H) recruits the HAIRLESS/CtBP (C-terminal 
Binding Protein)/GROUCHO corepressor com-
plex (Morel et  al. 2001; Barolo et  al. 2002). In 
vertebrates, RBPJ directly interacts with core-
pressor components KYOT2/FHL1 (Taniguchi 
et al. 1998), SHARP (SMRT/HDAC1-associated 
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Fig. 1  Schematic representation of the major molecular 
events during Notch signaling: (A) Posttranslational mod-
ifications of the Notch receptor during maturation in the 
trans-golgi network. The Notch receptor precursor protein 
is cleaved by a furin convertase (S1). Protein fragments 
are non-covalently linked together as a heterodimer. 
Additional modifications are catalyzed by fringe glycosyl-
transferases (FRINGE) and protein O-fucosyltransferase 
1 (POFUT1). (B) Notch receptors and ligands are single 
transmembrane spanning proteins. Ligand binding and its 
endocytosis generate a mechanical pulling force to expose 
the second cleavage site (S2) and processing by ADAM 
family metalloproteases. (C) A further cleavage step (S3) 
is catalyzed by a gamma-secretase containing complex, 

releasing the Notch Intracellular Domain (NICD) that 
translocates to the nucleus. (D) Nuclear NICD interacts 
with the DNA-binding protein CSL and recruits a coacti-
vator complex composed of Mastermind (MAML) and 
additional chromatin modifying factors to activate tran-
scription of Notch target genes (“ON”). (E) 
Phosphorylation by the mediator subunit CYCLINC/
CDK8 and subsequent ubiquitylation by the FBXW7/
SEL10 containing E3 ubiquitin ligase complex lead to 
rapid degradation of NICD by the proteasome (“turn-
over”). (E) In the absence of activated Notch signaling, 
CSL recruits various corepressor complexes to down-
regulate transcription of Notch target genes
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repressor protein)/SPEN (Split Ends), also called 
MINT (Msx2-interacting nuclear target protein) 
(Oswald et  al. 2002; Kuroda et  al. 2003), 
L3MBTL3 [Lethal(3)Malignant Brain Tumor-
Like Protein 3] (Xu et  al. 2017), the H3K4 
demethylase KDM5A [Lysine (K)-Specific 
Demethylase 5A)/LID (Little imaginal discs), 
(Moshkin et al. 2009; Liefke et al. 2010) or other 
cofactors like CIR (CBF1-Associated 
Corepressor) (Hsieh et al. 1999) and SKIP (Ski-
interacting protein) (Zhou et  al. 2000). These 
direct RBPJ binding partners recruit further core-
pressors, such as CtIP (CtBP interacting protein)/
CtBP (Oswald et al. 2005), NCoR(Nuclear recep-
tor corepressor1)/SMRT (silencing mediator for 
retinoid or thyroid-hormone receptors) (Zhou 
and Hayward 2001; Oswald et al. 2016), histone 
modifying enzymes (Xu et al. 2017; Hsieh et al. 
1999; Olave et  al. 1998) or Polycomb complex 
components (Qin et al. 2004; Qin et al. 2005) to 
silence Notch target genes. Therefore, CSL has 
dual roles within the Notch signaling pathway, 
acting either as an activator or repressor of tran-
scription, depending on the status of Notch activ-
ity. As CSL plays a pivotal role in the regulation 
of transcription of Notch target genes, here we 
review the X-ray structures of CSL-mediated 
transcription complexes and what has been 
learned from these structural studies.

2	 �Overall Fold of Transcription 
Factor CSL

CSL proteins are DNA binding proteins that rec-
ognize the consensus sequence –C/tGTGGGAA– 
(Del Bianco et al. 2010; Meng et al. 2005; Tun 
et al. 1994) and regulate transcriptional activation 
and repression of Notch target genes by interact-
ing with coactivators and corepressors, respec-
tively. As originally shown in the X-ray structure 
of LAG-1 bound to DNA (Fig. 2A) (Kovall and 
Hendrickson 2004), all CSL proteins contain a 
conserved structural core that is largely com-
posed of β-strands and consists of three domains: 
NTD (N-terminal domain), BTD (β-trefoil 
domain), and CTD (C-terminal domain). 
Additionally, CSL proteins from different organ-

isms contain poorly conserved N- and C-terminal 
extensions of the structural core that appear 
unstructured by secondary-structure/disorder 
prediction algorithms. In general, the function of 
these regions is not well understood, but in cer-
tain orthologs the N-terminal regions appear to 
play a role in DNA binding and cooperative inter-
actions with other transcription factors 
(Prevorovsky et al. 2011; Neves et al. 2007).

The NTD and CTD have immunoglobin type 
folds, whereas the BTD has a β-trefoil fold, simi-
lar to fibroblast growth factors and interleukin-1 
(Kovall and Hendrickson 2004). The BTD of 
CSL has an atypical β-trefoil fold, as it is missing 
two of the canonical 12 β-strands that compose 
the classic β-trefoil fold. This results in a large 
exposed hydrophobic pocket on the surface of 
CSL, which is the binding site for many of the 
coregulators that interact with CSL (see below), 
including the RAM domain of NOTCH (Wilson 
and Kovall 2006; Friedmann et al. 2008), FHL1 
(Four and a half LIM domains protein 1) (aka 
KyoT2) (Collins et  al. 2014), RITA1 (RBPJ-
interacting and tubulin-associated protein 1) 
(Tabaja et al. 2017), EBNA2 (Epstein–Barr virus 
nuclear antigen 2) (Johnson et  al. 2010), and 
SPEN (aka MINT or SHARP) (VanderWielen 
et al. 2011). CSL proteins share some structurally 
similarity to the Rel Homology Domain (RHD) 
proteins, such as the transcription factors NF-κB1 
(Nuclear Factor-κB1) and NFAT (Nuclear factor 
of activated T-cells) (Kovall and Hendrickson 
2004). The NTD and CTD of CSL structurally 
align with RHD-N and RHD-C domains, respec-
tively. However, the overall fold of CSL is dis-
tinct from other RHD members in that the BTD 
lies between the RHD-N and RHD-C domains of 
CSL, whereas typical RHD proteins have a 
RHD-N immediately followed by a RHD-C 
domain. Moreover, RHD proteins typically bind 
DNA as homodimers or heterodimers, whereas 
CSL proteins bind DNA as monomers. The NTD 
and BTD of CSL form a continuous electroposi-
tive surface in which to interact with DNA 
(Fig.  2) (Kovall and Hendrickson 2004). Much 
like other RHD proteins, the NTD of CSL inserts 
a β-hairpin loop within the major groove of DNA 
to make both specific and nonspecific contacts, 
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Fig. 2  X-ray structures of unbound CSL and CSL-NICD-
MAML ternary complexes bound to DNA: (A) Left, rib-
bon diagram of LAG-1 bound to DNA (PDBID: 1TTU) 

and right, ribbon diagram of RBPJ bound to DNA(PDBID: 
3IAG). The NTD, BTD, and CTD are colored cyan,  
green, and orange respectively. A β-strand that 
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largely recognizing the second half of its consen-
sus binding site (−GGGAA–). The BTD also 
contributes to DNA binding, in which a β-hairpin 
loop inserts into the minor groove of DNA, mak-
ing both specific and nonspecific contacts to the 
first base steps in the consensus binding site (–
CG–) (Fig. 2).

3	 �The CSL-NICD-MAML 
Activation Complex

An obligatory step to activate transcription of tar-
get genes in response to a Notch signal is the for-
mation of the ternary complex composed of CSL, 
NICD, and a member of the MAML family of 
transcriptional coactivators (MAML1–3 in mam-
mals). The activation complex structures of the 
Caenorhabditis elegans and human orthologous 
proteins have been determined (Fig.  2B) (Nam 
et al. 2006; Wilson and Kovall 2006), and demon-
strate that the RAM domain and ANK repeats of 
NICD bind the BTD and CTD, respectively, of 
CSL. MAML, which adopts a short bent α-helical 
conformation in the complex, forms a tripartite 
interaction with ANK, and the CTD and NTD of 
CSL (Fig. 2B). Similar to the RHD-C domains in 
other proteins, the CTD of CSL functions as a 
protein-protein interaction domain, binding 
MAML and NICD in the activation complex, as 
well as the corepressors SPEN and HAIRLESS 
detailed below (VanderWielen et  al. 2011; Yuan 
et  al. 2016). MAML coactivators are relatively 
large proteins (~1000 residues) that also interact 
with CBP/EP300 and the CDK8 module of the 
Mediator complex to activate transcription 
(Oswald et al. 2001; Wallberg et al. 2002; Fryer 
et al. 2004), but only require a small N-terminal 
domain to form a complex with NICD and CSL 
(Fig.  2B) (Nam et  al. 2006; Wilson and Kovall 
2006; Nam et al. 2003). Interestingly, constructs 

that only correspond to this N-terminal region are 
termed DN-MAML (dominant-negative MAML), 
and expressed in cells, these constructs are potent 
inhibitors of Notch signaling due to the ability of 
DN-MAML to form ternary complexes with 
CSL-NICD, but are unable to recruit CBP/EP300 
and CDK8 to activate transcription (Weng et al. 
2003).

The RAM domain of NICD binds in an 
extended conformation across the BTD of CSL in 
a manner that blankets the exposed hydrophobic 
surface on the BTD (Figs. 2B and 3A) (Wilson 
and Kovall 2006; Choi et  al. 2012). The RAM 
domains of all NOTCH receptors (NOTCH1–4 in 
mammals), as well as a number of other coregu-
lators that bind BTD, have a conserved hydro-
phobic tetrapeptide motif (φWφP), where φ is 
any nonpolar amino acid. In addition to the 
φWφP motif, RAM domains have other con-
served motifs that are important for interacting 
with BTD, including an N-terminal basic region, 
and –HG– and –GF– dipeptide motifs (Johnson 
et  al. 2010; Lubman et  al. 2007). Interestingly, 
other coregulators that bind BTD similarly to 
RAM share some, but not all of these other motifs 
conserved in RAM.  Prior to interacting with 
CSL, RAM is a random coil in solution (Nam 
et al. 2003; Bertagna et al. 2008). While RAM is 
~100 residues in length, only ~20  N-terminal 
residues are required for interacting with the 
BTD of CSL (Wilson and Kovall 2006; Friedmann 
et al. 2008; Choi et al. 2012). The remaining ~80 
residues between the RAM domain and ANK 
repeats of NICD were not resolved in the 
X-structure of the activation complex (Fig. 2B). 
However, this intervening region appears to be 
important for formation of the ternary complex, 
because (1) statistical models suggest that the 
length of RAM has been tuned through evolution 
to optimize the interactions between ANK and 
CTD (Bertagna et al. 2008), and (2) mutation of 

Fig. 2  (continued) makes hydrogen bonding interactions 
with all three domains is colored magenta. The DNA is 
colored light pink and light blue. (B) Ribbon diagrams of 
CSL-NICD-MAML ternary complexes bound to DNA for 
Notch components from Caenorhabditis elegans (left, 
PDBID: 2FO1) and humans (right, PDBID: 3V79). CSL 

and MAML are colored green and red, respectively; the 
ANK and RAM domains of NICD are colored blue and 
yellow, respectively; and the DNA is colored light pink 
and light blue. (C) Ribbon diagram of dimeric CSL-
NICD-MAML complexes bound to SPS element. 
Coloring is the same as (B)

CSL-Associated Corepressor and Coactivator Complexes



286

sequence specific elements within this intervening 
region of RAM adversely affect cellular reporter 
assays, suggesting that this region also contrib-
utes to proper transcriptional activation by NICD 
(Sherry et al. 2015).

There are seven ankyrin repeats within the 
ANK domain of NICD, as well as an N-terminal 
capping repeat (Fig.  2B) (Wilson and Kovall 
2006). The folding of the terminal repeats is cou-
pled to forming a complex with CSL and MAML 
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C D
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DNA

RAM

DNA

DNA DNA

NTD

NTD
NTD

BTD

BTD

BTD

CTD

CTD CTD

FHL1

RITA1

Hairless

Fig. 3  X-ray structures of CSL-coregulator complexes: 
(A) Ribbon diagram of the RAM domain of NICD bound 
to LAG-1 and DNA. Coloring is the same as Fig. 2. (B) 
Ribbon diagram of the RBPJ-FHL1 complex bound to 
DNA.  RBPJ-DNA coloring is the same as Fig.  2 and 
FHL1 is colored red. (C) Ribbon diagram of the RBPJ-

RITA1-DNA complex. RBPJ-DNA coloring is the same 
as Fig. 2 and RITA1 is colored red. (D) Ribbon diagram of 
the Su(H)-HAIRLESS-DNA corepressor complex. 
Su(H)-DNA is colored the same as Fig. 2 and HAIRLESS 
is colored yellow
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(Choi et al. 2012). There are several structures of 
the isolated ANK repeats of NICD (Nam et  al. 
2006; Zweifel et al. 2003), which overlay with a 
high degree of correspondence with the ANK 
repeats from the ternary complex structures, sug-
gesting that formation of the CSL-NICD-MAML 
ternary complex does not induce any large con-
formational changes within ANK.  There was a 
large rigid body shift observed in the domains of 
CSL when comparing the unbound structure with 
the activation complex, such that CSL assumed a 
more compact conformation with its BTD and 
CTD moving closer together (Wilson and Kovall 
2006). However, these domain movements were 
only observed in the ternary complex structure 
with the Caenorhabditis elegans orthologous 
proteins. Whether this conformational change is 
organism specific or a general property of the 
activation complex remains to be determined.

In vitro studies using purified recombinant 
proteins have analyzed the interactions that con-
sititute the CSL-NICD-MAML ternary complex 
and suggest that its assembly occurs in a stepwise 
manner (Kovall and Blacklow 2010). The RAM 
domain of NOTCH was originally identified in a 
yeast two-hybrid screen for RBPJ binding part-
ners (Tamura et  al. 1995) and subsequently 
shown to form a high affinity (Kd ~10 nM) inter-
action with the BTD of CSL (Friedmann et  al. 
2008; Lubman et  al. 2007; Del Bianco et  al. 
2008). In the absence of MAML, the ANK 
repeats of NOTCH bind weakly to the CTD of 
CSL (Friedmann et al. 2008; Lubman et al. 2007; 
Del Bianco et al. 2008). Interestingly, the affinity 
of ANK for CTD seems to vary in different 
organisms  – in mammals and nematodes the 
ANK-CTD interaction is very weak and techni-
cally difficult to detect (Friedmann et  al. 2008; 
Lubman et  al. 2007; Del Bianco et  al. 2008), 
whereas the affinity of ANK for CTD in flies is 
stronger and binds with ~0.5  μM affinity 
(Contreras et  al. 2015). Why the strength of 
ANK-CTD interactions varies in different organ-
isms is unclear, but in the case for Drosophila, 
perhaps this is due to competition with the core-
pressor HAIRLESS, which also binds the CTD 
with high affinity (Kd ~1 nM) (Maier et al. 2011). 
MAML does not interact with CSL or NICD 

individually, but binds to the preformed CSL-
NICD binary complex, rigidifying and stabiliz-
ing the ternary complex (Nam et al. 2003; Choi 
et al. 2012). To date, there are no studies that have 
quantitated the affinity of MAML for CSL-
NICD. Taken together, these studies suggest that 
the high affinity RAM interaction for BTD tar-
gets NICD to CSL in the nucleus. The intrisically 
disordered region of RAM ideally positions ANK 
to interact with the CTD, and subsequently, 
MAML binds a groove formed by the CTD and 
ANK (Kovall and Blacklow 2010).

4	 �CSL-DNA Binding

CSL proteins bind the consensus sequence –C/
tGTGGGAA– with a modest affinity of ~100 nM 
(Friedmann and Kovall 2010), although some 
known in vivo sites that deviate from the consen-
sus bind considerably weaker (Kd ~1 μM) (Torella 
et  al. 2014). The residues in CSL that contact 
DNA are absolutely conserved and comparative 
binding/structural studies of the mouse, worm, 
and fly orthologs suggest that all CSL proteins 
bind DNA in a similar manner with similar affini-
ties (Kovall and Hendrickson 2004; Friedmann 
and Kovall 2010). This is in contrast to the 
protein-protein interactions that CSL makes with 
coregulators, e.g. the RAM domain of NICD, in 
which the affinities for complex formation can 
vary significantly (>10 fold) (Friedmann et  al. 
2008; Contreras et  al. 2015). As mentioned 
above, the NTD of CSL interacts specifically 
with the major groove of DNA, whereas the BTD 
makes specific contacts in the minor groove 
(Kovall and Blacklow 2010). All CSL structures 
to date show very similar major groove contacts 
made by the NTD; however, in some CSL struc-
tures there is variability in how the BTD contacts 
the minor groove of DNA (Friedmann et al. 2008; 
Yuan et al. 2016; Friedmann and Kovall 2010). 
Specifically, a β-hairpin loop in BTD can assume 
several different conformations to make seem-
ingly equivalent specific and nonspecific interac-
tions with DNA. This may suggest that the BTD 
can assume different conformations to interact 
with DNA depending on the nearby base pairs it 
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contacts, which is consistent with the variability 
observed in the consensus sequence for CSL (Del 
Bianco et al. 2010; Meng et al. 2005; Tun et al. 
1994).

In addition to binding monomeric DNA bind-
ing sites, in some metazoans CSL can also bind 
dimeric sites, which are known as SPS [Su(H) 
Paired Sites or Sequence Paired Sites] (Bailey 
and Posakony 1995). SPS are composed of two 
CSL binding sites arranged in a head-to-head 
arrangement with 15–19 base pairs separating the 
two sites (Nam et al. 2007). A typical SPS con-
tains two CSL consensus-binding sites; however, 
cryptic paired sites have also been identified, in 
which one of the DNA binding sites significantly 
deviates from the consensus and is unable to sup-
port binding of monomeric CSL complexes 
(Arnett et al. 2010). When the Notch pathway is 
activated, two CSL-NICD-MAML can bind an 
SPS in a cooperative manner, whereby modest 
interactions between the ANK repeats of the two 
NICD molecules mediate the cooperativity 
(Fig. 2C). Interestingly, mutations that abrogate 
the cooperative interactions between ANK mole-
cules affect transcription from Notch target genes 
that contain an SPS, but have no effect on targets 
that only contain monomeric sites (Arnett et al. 
2010).

Classical models of Notch transcriptional reg-
ulation posit that CSL is constitutively bound to 
DNA, and corepressors and coactivators are 
exchanged on the DNA (Kao et al. 1998; Hsieh 
and Hayward 1995). However, more recent stud-
ies cast serious doubt on this model and suggest 
that the exchange of CSL-mediated corepressor 
and coactivator complexes is a much more 
dynamic process, and likely occurs in the nucleo-
plasm rather than while CSL is bound to DNA 
(Castel et  al. 2013; Krejci and Bray 2007). 
Previous genome wide studies have shown that 
when the Notch pathway is activated CSL binds 
more sites at target genes than when the pathway 
is inactive (Castel et  al. 2013; Krejci and Bray 
2007; Hass et al. 2016). Although the molecular 
basis of this observation is unknown, generally 
speaking, two possibilities exist: (1) the affinity 
of CSL for DNA increases when bound to NICD 
and MAML and/or other general transcription 

factors; and (2) increased Notch activity or the 
activity of other transcription factors, e.g. pioneer 
factors, change the local chromatin environment, 
making it more accessible for CSL to bind. In 
vitro studies have shown that neither the affinity 
of CSL for DNA changes when it is bound to 
coregulators, such as NICD, FHL1, HAIRLESS, 
SPEN or RITA1, nor does the specificity of CSL 
change when bound to NICD and MAML (Del 
Bianco et al. 2010; Friedmann et al. 2008; Collins 
et  al. 2014; Tabaja et  al. 2017; VanderWielen 
et  al. 2011; Maier et  al. 2011). Albeit these in 
vitro studies have used only constructs that cor-
respond to the structural cores of CSL, NICD, 
and MAML, and have not been performed with 
full-length proteins. Thus, it is an open question 
in the field as to what is the molecular basis that 
underlies the observed increase in CSL binding 
genome wide when Notch is active in cells.

5	 �CSL as a Repressor

Without a doubt CSL, in conjunction with 
NOTCH and MAML, plays an essential role in 
the upregulation of transcription from all Notch 
target genes in all organisms; however, its role as 
a transcriptional repressor is a bit more enig-
matic and may have different roles in different 
organisms. In the model organism D. melano-
gaster, there is overwhelming genetic, cellular/
biochemical, and structural evidence that Su(H) 
(the fly CSL ortholog), when in complex with 
the corepressor HAIRLESS, functions as a tran-
scriptional repressor (Brockmann et  al. 2014; 
Maier 2006). In other organisms, such as mam-
mals and nematodes, the function of CSL as a 
repressor is not as clear. There is compelling bio-
chemical, cellular, and structural data that RBPJ 
(the  mammalian CSL ortholog) interacts with 
the corepressors FHL1, RITA1, SPEN, and 
L3MBTL3 (Taniguchi et al. 1998; Oswald et al. 
2002; Kuroda et al. 2003; Xu et al. 2017; Tabaja 
et  al. 2017; VanderWielen et  al. 2011; Wacker 
et al. 2011). However, there is not a preponder-
ance of genetic data supporting the function of 
RBPJ as a repressor. Nonetheless, there are sev-
eral cellular and genetic studies that suggest loss 
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of RBPJ results in upregulation of transcription 
at some Notch target genes (Castel et al. 2013; 
Hu et  al. 2012; Surendran et  al. 2010). 
Interestingly, loss of RBPJ has been shown in 
vivo to promote tumorigenesis (Kulic et  al. 
2015), suggesting its role as a repressor may be 
important for tumor suppressor functions. While 
its role as a transcriptional repressor in the Notch 
pathway remains to be completely elucidated, 
the emerging picture seems to suggest that CSL 
is required for activation of all target genes, but 
its role as a repressor is important for a subset of 
target genes.

HAIRLESS is the major antagonist of Notch 
signaling in Drosophila and binds Su(H) with 
high affinity via a relative short peptide-like 
sequence (Yuan et al. 2016; Maier et al. 2011). 
HAIRLESS also interacts with the corepressors 
CtBP (C-terminal Binding Protein) and 
GROUCHO in order to function as a transcrip-
tional repressor (Morel et al. 2001; Barolo et al. 
2002; Nagel et al. 2005). Consistent with previ-
ous studies, HAIRLESS binds the CTD of Su(H) 
(Fig. 3D) (Yuan et al. 2016; Maier et al. 2011). 
Unexpectedly, HAIRLESS binding induces a 
large conformational change in the CTD, 
whereby HAIRLESS wedges itself between the 
two β-sheets that compose the Ig fold of the CTD 
(Yuan et  al. 2016). This results in HAIRLESS 
primarily interacting with residues that form the 
hydrophobic core of the CTD rather than surface 
exposed residues (Fig. 3D). This large structural 
change is incompatible with NICD and MAML 
binding (Yuan et  al. 2016). In future studies, it 
will be interesting to see whether other coregula-
tors, such as SPEN, interact with this conserved 
binding pocket on the CTD.

Two other corepressors, FHL1 and RITA1, 
interact with RBPJ via a peptide-like sequence 
that resembles the RAM of NICD (Fig. 3B, C) 
(Taniguchi et al. 1998; Collins et al. 2014; Tabaja 
et al. 2017; Wacker et al. 2011). FHL1 proteins 
are characterized by N-terminal LIM (LIN11, 
ISL-1 & MEC-3) domains, which are protein-
protein interaction motifs thought to interact with 
PRC (Polycomb Repressive Complex), and a 
C-terminal sequence that binds the BTD of RBPJ 
(Fig. 3B) (Qin et al. 2004; Qin et al. 2005). FHL1 

binds RBPJ with high affinity and has a hydro-
phobic tetrapeptide sequence similar to RAM 
(Collins et  al. 2014). However, FHL1 does not 
contain the other motifs in RAM, e.g. N-terminal 
basic residues, and –HG– and –GF–, required for 
high affinity binding of RBPJ. RITA1 also con-
tains a hydrophobic tetrapeptide motif that is 
essential for its interaction with RBPJ and is also 
missing the other motifs in RAM that are required 
for high affinity interactions with RBPJ (Fig. 3C) 
(Tabaja et al. 2017; Wacker et al. 2011). In con-
trast to FHL1, RITA1 only binds RBPJ with 
moderate affinity (~1uM Kd) (Tabaja et al. 2017). 
Additionally, RITA1 has other functional 
domains, such as nuclear import and export 
sequences, and a C-terminal domain that inter-
acts with tubulin, and interestingly, RITA1 
appears to have Notch independent functions out-
side the nucleus (Wacker et al. 2011; Steinhauser 
et al. 2016).

6	 �Coregulator Competition

An open question in the field is whether corepres-
sors and coactivators compete for binding to CSL 
in the nucleus, or alternatively, are there different 
pools of CSL-mediated transcription complexes 
in the nucleus that are then recruited to different 
Notch target genes. As mentioned previously, the 
classical model of Notch signaling proposes that 
CSL is constitutively bound to DNA, and in the 
absence of a Notch signal, DNA bound CSL-
corepressor complexes actively repress transcrip-
tion from Notch target genes; when Notch 
becomes activated in the cell, NICD translocates 
to the nucleus directly binding CSL, recruiting 
MAML and simultaneously displacing corepres-
sors, thereby activating transcription at these 
sites. Numerous in vitro studies have shown that 
corepressors and coactivators can compete for 
binding to CSL. In pulldown assays from cellular 
extracts it has been shown that overexpression of 
one coregulator can displace the binding of 
another coregulator to CSL (Xu et al. 2017). For 
example, overexpression of NICD in cells can 
outcompete SHARP/SPEN for binding to CSL 
(Oswald et  al. 2002; Kuroda et  al. 2003). 
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Similarly, with purified recombinant proteins it 
has been shown that coregulators can compete 
for binding to CSL (Johnson et  al. 2010; 
VanderWielen et  al. 2011). Another example is 
the competitive binding of NICD and HAIRLESS 
for Su(H) (Maier et al. 2011). In this case, NICD 
is very effective at competing off HAIRLESS 
bound to Su(H) even in the absence of 
MAM. Similar experiments performed with the 
mammalian proteins RBPJ, MAML, NICD, and 
SPEN demonstrate that MAML is required for 
NICD to effectively compete off SPEN binding 
to RBPJ (VanderWielen et al. 2011). While it has 
been shown in vitro that corepressors and coacti-
vators can compete for binding to CSL, it is not 
clear whether this actually occurs in cells under 
normal physiological conditions. Put another 
way, does every NICD molecule have to compete 
with a CSL bound corepressor in order to activate 
transcription or are their free molecules of CSL 
in the nucleus that NICD can easily access, and 
therefore corepressor displacement is an in vitro 
artifact? At the present time it is unclear whether 
one or both of these mechanisms are functioning 
in cells. Certainly, future studies that quantitate 
the number of CSL, corepressor, and NICD mol-
ecules within the cell, coupled with the known in 
vitro affinities of these complexes, will then begin 
to allow for a clearer picture of whether coregula-
tors compete for CSL binding or not.

7	 �Modulation of CSL-Mediated 
Transcription Complexes

Given that numerous corepressors and coactiva-
tors bind to the BTD of CSL raises the question 
as to whether small molecules or biologic 
reagents can be identified that inhibit the binding 
of one, or some, coregulators, but not inhibit 
interactions with all coregulators. On the face of 
it this seems to be an arduous task because of the 
structurally similar manner, in which many 
coregulators bind to the nonpolar surface on the 
BTD of CSL. However, there is some experimen-
tal data that suggests it may be possible to iden-
tify reagents that selectively inhibit one 
coregulator, sparing the binding of others. A 

number of years ago, the Kempkes laboratory, 
using a yeast two-hybrid screen, identified muta-
tions in RBPJ that selectively inhibited binding to 
the RAM domain of NICD or the viral coactiva-
tor EBNA2, but not to both (Fuchs et al. 2001). 
Interestingly, these subtle mutations lie right in 
the middle of the RAM binding site on the 
BTD. More recently, these binding results were 
confirmed by the Barrick laboratory using puri-
fied recombinant proteins and isothermal titration 
calorimetry (Johnson et  al. 2010). Moreover, 
RBPJ binding data from the Kovall laboratory is 
consistent with the Kempkes results, i.e. in some 
cases mutations in the BTD can have drastically 
different impacts on the binding of different 
coregulators (Xu et al. 2017; Collins et al. 2014; 
Tabaja et  al. 2017; Yuan et  al. 2012). Taken 
together, these results raise the exciting prospect 
that it may be possible to identify selective 
reagents that affect either the repression or acti-
vation function of CSL, but not both, which could 
have biomedical applications for human diseases 
that are characterized by either insufficient or 
overactive Notch signaling.

8	 �Summary, Concluding 
Remarks and Open 
Questions

Progress made over the past decade has provided 
amazing insights into the molecular structures of 
the transcriptional components of the Notch sig-
naling pathway. Available structures that contain 
CSL transcription complexes are summarized in 
Table  1.  Structural studies of CSL-associated 
coactivator and corepressor complexes from dif-
ferent species have revealed the intriguing evolu-
tionary conservation of these molecular 
interactions and mechanism, albeit with some 
species-specific differences. We now know that 
many corepressors interact with CSL by “mim-
icking” the RAM domain of NICD and its inter-
actions with the BTD of CSL; however, there 
appear to be significant differences associated 
with their affinities and specificities for CSL. This 
has led to an understanding as to why there is 
competitive binding of NICD and KyoT2 or 
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RITA1 for CSL.  Future studies that seek to 
elucidate the structures of CSL complexes like 
CSL-SHARP and CSL-L3MBTL3 will provide 
additional molecular insights into how CSL func-
tions as a repressor and will further refine our 
knowledge of these transcription factor-switching 
mechanisms. Despite this progress, there are still 
a lot of open questions in the field, for example: 
(I) Do the CSL-associated coactivator and core-
pressor complexes exchange on DNA or are there 
pre-existing complexes in the nucleoplasm or is it 
some combination of both mechanisms? (II) Are 
CSL-corepressor complexes gene-, binding site- 
and cell type-specific, and if so, how are these 
specificities regulated? (III) Does CSL DNA-
binding affinity change when complexed with 
NICD or corepressors? And finally, (IV) will it be 
possible to manipulate CSL specific cofactor 
binding with small molecules or biologics in 
order to modulate the Notch response for clinical 
applications in the future?
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