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Obesity and Stress: 
The Melanocortin Connection
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The role of the melanocortin system in energy 
homeostasis, feeding behavior, and metabolism 
has been a focus of intense study since its discov-
ery in 1979 (Crine et  al. 1979). The ability of 
melanocortins to suppress feeding and increase 
energy expenditure has made melanocortin 
receptors (MCRs) a major target of anti-obesity 
drugs in development (Fani et al. 2014). In addi-
tion, the melanocortin system’s influence on cir-
culating glucose levels suggests it could also be 
targeted to treat obesity-related type 2 diabetes 
(Morgan et al. 2015; Parton et al. 2007). While 
very promising in theory, problematic side effects 
have plagued pharmaceutical trials for such med-
ications, preventing FDA approval (Ericson et al. 
2017). These adverse effects are due to other sys-
temic and central functions of the melanocortin 
system. To understand and overcome these chal-
lenges, a more comprehensive understanding is 
needed of the role melanocortin peptides play 
and how they perform their diverse functions.

The melanocortin system can coordinate a 
wide variety of behavioral and physiological 
responses to internal and environmental cues. 
The number of known roles that melanocortins 
play continues to proliferate, ranging from the 
control of adrenal function, pain, and inflam-
mation to surprising behavioral outputs such as 

grooming. As we will see, an organism’s need 
to respond to stressors may be the most use-
ful context for understanding the actions of 
this system. The ability to rank-order threats is 
critical to survival. Melanocortins play a criti-
cal role in enabling “fight or flight” responses 
to immediate danger. Later, endogenous opi-
oids, AgRP/NPY circuitry, and other systems 
permit animals to focus on recovery, obtaining 
food to restore energy reserves, and activities of 
lesser importance. The interplay between these 
systems allows the animal to deal successfully 
with most stressors and return to physiological 
equilibrium.

This chapter will review the variety of roles 
played by melanocortins in the response to stress 
using insights from evolutionary development to 
understand their integration. Finally, we will dis-
cuss the lessons for obesity prevention and treat-
ment arising from a holistic view of the actions of 
melanocortins.

11.1	 �The Melanocortin System: 
Proopiomelanocortin

Melanocortin peptides are generated from the 
polypeptide proopiomelanocortin (POMC) via 
successive posttranslational cleavage events. 
POMC is abundantly expressed in the pituitary 
and hypothalamus but also in other sites; its pro-
cessing varies between tissues (Chen et al. 1986; 
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Smith and Funder 1988; Mechanick et al. 1992; 
Forman and Bagasra 1992; Hummel and Zuhlke 
1994; Ottaviani et al. 1997; Tsatmali et al. 2000; 
Iqbal et  al. 2010; Alam et  al. 2012). Generally, 
POMC is cleaved to form β-LPH and pro-ACTH, 
which prohormone convertase (PC)1/3 cleaves to 
form ACTH1–39. ACTH1–39 is the main product 
of corticotrophs in the pituitary, but in the hypo-
thalamus, PC2 cleaves it to form ACTH1–17. 
Carboxypeptidase E (CPE) then removes the 
C-terminal basic residues to produce ACTH1–13. 
The C-terminus of ACTH1–13 is then amidated 
by peptidyl α-amidating monooxygenase (PAM) 
to create ACTH(1–3)NH2, also known as desace-
tyl α-MSH. In humans, an additional N-terminal 
cleavage site results in production of β-MSH, γ 
–MSH, and α-MSH (Pritchard et al. 2002). PC2 
also cleaves β-LPH to form the endogenous opi-
oid β-endorphin1–31. This posttranslational pro-
cessing of the POMC preprohormone has been 
remarkably well conserved (Vallarino et al. 2012).

The genetic sequence for POMC appears 
across many species, from the earliest vertebrates 
such as lampreys to mammals. All the sequences 
have shown the same structural organization, 
suggesting that POMC was present in common 
ancestors 5–700 million years ago (Heinig et al. 
1995). In the sea lamprey, separate genes named 
proopiocortin (POC) and proopiomelanotropin 
(POM) produce ACTH and MSH, respectively. 
Even invertebrates such as the leech have POMC-
related sequences possessing over 80% homology 
in its melanocortin domain (Duvaux-Miret and 
Capron 1992; Salzet et  al. 1997; Stefano et  al. 
1999). Indeed, tetrapods, mussel, and leech have 
the same sequentially arranged hormonal 
segments of this gene (Kawauchi and Sower 
2006). It appears that α-, β-, and γ-MSH arose 
during the early evolution of invertebrates from 
intramolecular duplication of an ancestral MSH.

In the rodent brain, there are two recognized 
neuronal populations expressing POMC, 
although low levels of POMC mRNA have been 
reported in other CNS regions (Zhou et al. 2013). 
The largest population resides in the arcuate 
nucleus of the hypothalamus (ARC) and 
co-expresses the cocaine amphetamine-related 
transcript (CART) peptide (Elias et al. 1998). A 

second smaller population is located in the brain 
stem, in the nucleus of the solitary tract (NTS) 
(Khachaturian et al. 1986).

The melanocortin receptor family is unique in 
having its activity regulated by both agonists and 
antagonists. Two naturally occurring antagonists 
to MCRs exist, agouti and AgRP. Mice express 
agouti protein primarily in the skin where it 
influences pigmentation (Bultman et  al. 1992). 
The human homolog, agouti signaling protein 
(ASIP), may also regulate pigmentation (Voisey 
et al. 2003). ASIP expression has been found in 
the skin and other tissues including the heart, 
ovary, testis, foreskin, adipose tissue, liver, and 
kidney (Wilson et al. 1995).

AgRP was discovered based on its sequence 
homology to agouti (Ollmann et al. 1997; Shutter 
et al. 1997). In contrast to that protein, AgRP is 
mainly expressed in the adrenal gland and arcuate 
nucleus of the hypothalamus (ARC). AgRP-
producing neurons co-express two generally 
inhibitory neurotransmitters: neuropeptide Y 
(NPY) (Broberger et al. 1998; Hahn et al. 1998) 
and γ-aminobutyric acid (GABA) (Wu and 
Palmiter 2011). POMC neurons receive direct 
input from these NPY/AgRP neurons (Cowley 
et al. 2001; Atasoy et al. 2012; Tong et al. 2008; 
Smith et al. 2007) and other neurons inhibited by 
AgRP (Corander et  al. 2011; Tolle and Low 
2008). The mammalian central melanocortin 
system is defined as the neurons expressing 
POMC, AgRP neurons, which antagonize the 
effects of POMC neurons, and the downstream 
CNS circuits they collectively influence via 
MCRs.

As detailed below, POMC and AgRP neurons 
send and receive projections from many CNS 
regions (Broberger et al. 1998; Tsou et al. 1986; 
Palkovits et al. 1987; Zheng et al. 2005a; Haskell-
Luevano et al. 1999; Bagnol et al. 1999; Schwartz 
2000; Odonohue and Dorsa 1982; Cone 2005; 
Rinaman 2010; Magoul et al. 1993). ARC POMC 
neurons project most heavily throughout the 
hypothalamus, including to the anterior 
hypothalamus, medial preoptic area, medial 
preoptic nucleus (MPON), lateral hypothalamus, 
dorsomedial hypothalamus (DMH), ventromedial 
hypothalamic nucleus (VMH), paraventricular 

S. Singhal and J. W. Hill



273

nucleus of the hypothalamus (PVH), 
parasubthalamic nucleus (PSThN), and the 
posterior hypothalamus (PH). Projections to the 
forebrain target the bed nucleus of the stria 
terminalis (BNST), lateral septum (LS), nucleus 
of the diagonal band, medial amygdala (MeA), 
and the nucleus accumbens (NAc). In the brain 
stem, the periaqueductal gray (PAG), superior 
colliculus, deep mesencephalic nucleus, NTS, 
medial lemniscus, substantia nigra, dorsal raphe, 
and locus coeruleus receive projections. Finally, 
the spinal cord also receives input from ARC 
POMC neurons.

Overall, ARC POMC and AgRP neurons have 
similar connectivity. However, AgRP neuron 
projections appear to be sparser, with fewer 
synapses. This population projects heavily to 
areas from which it receives the most incoming 
connections. Robust projections exist to the PVH, 
DMH, LH, MPON, septal areas of the anterior 
commissure, paraventricular nucleus of the 
thalamus, and the LS. These neurons also send 
axons to the BNST, the organum vasculosum of 
the lamina terminalis, and the perifornical 
nucleus. One might expect that AgRP release 
directly opposes melanocortins released at these 
sites, but the microcircuitry involves a complex 
summation of both inputs. In the PVH, AgRP 
synapses contact cell bodies, while POMC 
synapses contact distal dendrites (Atasoy et  al. 
2012; Bouyer and Simerly 2013). Areas of 
volume release of AgRP and POMC, however, 
are likely to overlap. Finally, AgRP projections 
are notably absent to the brain stem, hippocampus, 
amygdala, corpus striatum, and olfactory cortical 
tract, all of which have dense POMC innervation 
(Palkovits et al. 1987; Bagnol et al. 1999; Watson 
et  al. 1978; Jacobowitz and Odonohue 1978; 
Nilaver et al. 1979; Joseph et al. 1983).

POMC fibers of the NTS have less widespread 
connections, projecting sparsely to the PVH and 
PSThN, but more strongly within the brain stem. 
Targeted regions include the subcoeruleus 
nucleus, parvicellular reticular nucleus, 
medullary reticular nucleus (both dorsal and 
ventral), magnocellular reticular nucleus, pontine 
reticular nucleus, intermediate reticular nucleus, 
supratrigeminal nucleus, and the lateral 

parabrachial nucleus. Interestingly, ARC and 
NTS POMC neurons have reciprocal projections 
to each other.

11.2	 �Melanocortin Receptors

Five MCRs have been identified in humans, 
named in the order they were cloned: MC1R, 
MC2R, MC3R, MC4R, and MC5R (Girardet and 
Butler 2014). The MCRs coevolved with the 
POMC gene early in chordate evolution. During 
the multiplication of the chordates, genome 
duplications occurred that resulted in the ancestral 
MCR differentiating into an MC1/2 receptor 
precursor and an MC3/4 receptor precursor. (The 
origin of the MC5R is still debated (Cortes et al. 
2014)). Evidence suggests that all MCRs 
responded to ACTH (and MSH) and caused 
release of glucocorticoids. For example, a 
primitive CRH-ACTH-corticosterone axis exists 
in the jawless hagfish (Amano et al. 2016).

Comparisons of the elephant shark, Japanese 
sting ray, and bony fish suggest that the MC2R 
gradually lost its ability to act without the 
melanocortin receptor 2 accessory protein 
(MRAP1) (Takahashi et al. 2016; Reinick et al. 
2012). However, once paired with MRAP1, 
MC2R became the most efficient ACTH receptor, 
allowing the other MCRs to develop differing 
affinities to melanocortins and differing 
expression levels in tissues (Schiöth et al. 2005; 
Dores et  al. 2014). These processes allowed 
unique roles for MCRs to develop without 
disturbing glucocorticoid production (Cone 
2006; Kobayashi et  al. 2012). In the lamprey, 
MCRs appear in the skin, liver, heart, and skeletal 
muscle, but not in the brain (Young 1935; Eddy 
and Strahan 1968). Some cartilaginous fish, 
which arose 450 million years ago, express 
α-MSH and β-endorphin in the brain and 
melanocortin (MC) receptors in the hypothalamus, 
brain stem, and telencephalon (Vallarino et  al. 
1988, 1989; Chiba 2001; Klovins et  al. 2004). 
These findings suggest the period when POMC 
products ceased to act in the periphery alone and 
became neurotransmitters or neuromodulators. In 
mammals, melanocortins acting through MC3R 
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and MC4Rs in the hypothalamus, telencephalon, 
brain stem, and olfactory bulb came to reinforce 
the endocrine control of stress hormones (Liang 
et al. 2013; Haitina et al. 2007).

While MRAP1 is strongly expressed in the 
adrenal, gonadal, and adipose tissue, a related 
protein named MRAP2 is highly expressed in the 
hypothalamus, including the PVN (Chan et  al. 
2009). Interestingly, MRAP2 interacts with other 
MCRs in mammals. MRAP2 knockout mice and 
humans with MRAP2 mutations display severe 
obesity, changes in cholesterol metabolism, and 
Sim1 deficiency without hyperphagia or reduced 
energy expenditure (Novoselova et al. 2016; Asai 
et  al. 2013). These effects suggest MC4Rs and 
other hypothalamic receptors interact with the 
MRAP2 protein (Clark and Chan 2017).

In humans, the MC1R melanocyte receptor 
regulates melanogenesis and pigmentation of the 
skin and hair. Upon activation, this receptor 
functions by promoting eumelanin and 
downregulating pheomelanin (Cone 2006). Sun 
sensitivity and risk of skin cancer increase with 
mutations in the MC1R gene (Rees 2000). Many 
immune cells also express MC1R, suggesting 
that the MC1R also has an anti-inflammatory role 
(Catania et al. 2010).

The ACTH receptor, MC2R, is primarily 
expressed in the adrenal cortex (Mountjoy et al. 
1992). The major role of MC2R is to regulate 
steroidogenesis in the adrenal gland. Gene 
mutations of MC2R contribute to 25% of familial 
glucocorticoid deficiency cases, a rare autosomal 
recessive disorder. MC2R knockout mice (Chida 
et al. 2007) share characteristics of these patients, 
including severe glucocorticoid deficiency and 
failure of the adrenal gland to respond to ACTH 
(Thistlethwaite et  al. 1975; Chung et  al. 2008; 
Clark and Weber 1998). Human skin cells 
(Slominski et  al. 1996) and mouse adipocytes 
(Norman et al. 2003; Boston and Cone 1996; Cho 
et al. 2005; Moller et al. 2011) express the MC2R 
receptor, suggesting it may have a role in lipolysis 
regulation (Boston 1999). In adipocytes, ACTH 
and α-MSH are strong inhibitors of expression of 
the adipokine leptin (Norman et al. 2003).

The MC5R receptor, the newest member of 
this receptor family, has the most diverse 

expression pattern of all the MCRs (Chen et al. 
1997). It is involved with exocrine gland 
secretion, immunomodulation in B and T cells, 
and adipocyte cytokine release (Chen et al. 1997; 
Zhang et al. 2011; Lee and Taylor 2011; Taylor 
and Lee 2010; Taylor and Namba 2001; Buggy 
1998; Jun et  al. 2010). It also alters fatty acid 
oxidation control in skeletal muscle, enhances 
lipolysis, and suppresses fatty acid reesterification 
(Moller et  al. 2011; An et  al. 2007; Rodrigues 
et  al. 2013). Recently, the MC5R has been 
implicated in regulating glucose uptake by 
skeletal muscle and thermogenesis (Enriori et al. 
2016). These results suggest that MC5R agonists 
may offer a new target for obesity treatment in 
the periphery.

The primary regulators of energy homeosta-
sis, MC3R and MC4R, are called neural MCRs 
due to their high expression in the CNS (Mountjoy 
2010). Both receptors interact with melanocortins 
and are antagonized by AgRP. MC3Rs have an 
expression pattern limited primarily to 
hypothalamic and limbic structures, with highest 
expression in the ARC, VMH, ventral tegmental 
area (VTA), and the medial habenula (MHb) 
(Rosellirehfuss et  al. 1993). MC3Rs promote 
body weight regulation and sensitize NPY/AgRP 
neurons to the metabolic state of the animal 
(Butler et  al. 2017). Indeed, fasted Mc3r−/− 
mice fail to increase lipolysis or activate the HPA 
axis (Renquist et  al. 2012). MC3Rs also have 
roles in the periphery. MC3Rs expressed on 
macrophages have anti-inflammatory immune 
functions (Getting et  al. 1999a; Getting et  al. 
1999b). Renal MC3Rs promote urinary excretion 
of sodium, reducing blood pressure on high 
sodium diets (Mayan et al. 1996; Ni et al. 2003, 
2006; Chandramohan et al. 2009).

MC4Rs play critical roles in metabolic regula-
tion, pain, and reproduction, including erectile 
function and sexual behavior in both sexes 
(Starowicz and Przewlocka 2003; Starowicz 
et  al. 2009; Pfaus et  al. 2004; Martin and 
MacIntyre 2004; Wikberg and Mutulis 2008). 
MC4Rs have a wide distribution in the CNS, 
existing in over one hundred brain nuclei. MC4Rs 
are most concentrated in the brain stem and the 
hypothalamus. Importantly, MC4Rs are found in 
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neurons of the PVH that produce corticotrophin-
releasing hormone (CRH), oxytocin, and 
thyrotropin-releasing hormone (TRH) (Liu et al. 
2003; Lu et al. 2003). Preganglionic neurons in 
the intermediolateral cell column (IML) of the 
spinal cord also show MC4R expression and 
receive direct inputs from POMC fibers (Elias 
et al. 1998).

The MCR family is a member of the G-protein-
coupled receptor (GPCR) superfamily that 
maintains a high level of constitutive activity 
(Srinivasan et al. 2004). These receptors generally 
couple to Gαs proteins, which activate adenylate 
cyclase, increase intracellular cyclic 
3′,5′-adenosine monophosphate (cAMP), and 
activate protein kinase A (PKA). These signaling 
molecules can increase neuronal excitability, 
facilitate neurotransmitter release, regulate how 
neurons integrate synaptic input, and alter 
synaptic strength and connectivity (Grueter et al. 
2012; Kreitzer and Malenka 2008; Russo et  al. 
2010). That melanocortins can alter synaptic 
strength has implications for their downstream 
functions, including their influence on body 
weight and reward pathways (Caruso et al. 2014). 
However, under continuous stimulation, the 
MC4R undergoes desensitization and 
internalization (Shinyama et al. 2003).

AgRP inhibits the basal activity of MC3Rs 
(Tao et al. 2010) and MC4Rs (Haskell-Luevano 
and Monck 2001; Nijenhuis et  al. 2001) and 
acts as a competitive antagonist that prevents the 
binding of melanocortins. In contrast to α-MSH, 
AgRP stimulates the coupling of the MC4R 
receptor to the Gαi/o subunit, which inhibits 
adenylate cyclase and decreases intracellular 
cAMP levels (Büch et al. 2009; Fu and van den 
Pol 2008). Recently, it has also been shown that 
AgRP can hyperpolarize neurons by binding to 
MC4R and opening Kir7.1, an inwardly rectify-
ing potassium channel, independently of its inhi-
bition of α-MSH binding (Ghamari-Langroudi 
et al. 2015).

The MC3R appears to be the only melanocor-
tin receptor expressed by ARC POMC neurons 
(Bagnol et al. 1999; Jegou et al. 2000; Mounien 
et  al. 2005). In contrast, AgRP/NPY neurons 
express both MC3Rs and MC4Rs (Bagnol et al. 

1999; Mounien et  al. 2005). The activation of 
MCRs on AgRP neurons may allow these neu-
rons to sense the level of POMC activity and 
regulate AgRP release in a short feedback loop. 
In addition, MC3R activation of AgRP neu-
rons increases their release of inhibitory neu-
rotransmitters onto POMC neurons and POMC 
projection sites (Cowley et  al. 2001). Indeed, 
electrophysiological, immunohistochemical, and 
behavioral evidence shows activation of MC3Rs 
diminishes POMC neuronal activity and sup-
presses POMC mRNA expression (Cowley et al. 
2001; Lee et al. 2008; Marks et al. 2006). More 
research is needed to understand the role of these 
regulatory mechanisms.

11.3	 �Beta-Endorphin

The production of an opioid peptide, β-endorphin, 
from the POMC gene adds complexity to this 
neuronal system. In all chordates, POMC encodes 
a core melanocortin sequence and a core opioid 
sequence for β-endorphin. β-endorphin1–31 is the 
sole opioid sequence encoded in the POMC gene 
in humans and rodents, although some ancient 
species process it into smaller opioids (Takahashi 
et al. 1995, 2001, 2006; Shoureshi et al. 2007). 
Further cleavage of β-endorphin1–31 by PC2 and 
CPE to form β-endorphin1–27 and β-endorphin1–26 
abolishes its ability to bind to opioid receptors. 
This effect shifts the balance in favor of MSH-
related actions (Wardlaw 2011).

In many, but not all cases, melanocortins and 
endorphins produce opposing physiological and 
behavioral effects that ensure a coordinated and 
balanced response to changing environmental 
demands and stressors (Table 11.1, modified from 
(Bertolini and Ferrari 1982)). The result is a form 
of functional reciprocity. For instance, melano-
cortins upregulate attention and pain sensitiv-
ity, promoting arousal and adaptation to external 
challenges, while simultaneous release of opi-
oids favor de-arousal and shifting to self-directed 
behavior (Bertolini and Ferrari 1982; De Wied 
and Jolles 1982; Sandman and Kastin 1981).

The primordial role of opioids is the control 
of protective reactions. Even in protozoa, opiate 
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Table 11.1  A comparison of the effects of opioids and melanocortins

Function Melanocortins Opioids
HPA and stress 
response

Physiological stress 
response

↑ ACTH, cortisone/corticosterone ↓ CRH release
↓ Development of stress 
adaptation
↑ Suppression of HPA axis
 � Anti-stress via kappa 

receptor pathway
Shock
 � Hypotensive, 

hypovolemia

↓ ↑

Stress-induced anxious/
depressive behavior

↑
 � Via MC4R
 � MC4R KO and 

antagonists = reduced anxiety/
depression behaviors

↓
 � Attenuates anxious 

behaviors
 � Reduced 

hypercorticosterone 
response

CNS actions CNS activity
 � Neuronal firing
 � Adenylate cyclase/

cAMP
 � Ca2+ uptake at 

synapse

↑ ↓

Neurotransmitter release
 � Norepinephrine 

(stress)
 � Dopamine (behavior)
 � Acetylcholine 

(immunity)

↑ ↓

Neurotransmitter 
turnover
 � Serotonin (behavior-

depression anxiety)

↓ ↑

 � POMC neurons ↓
 � Autoinhibition via MC3R
 � Inhibition via MC3R/AgRP/NPY 

pathway

↓/↑
↓ At high concentration
Presynaptic via low sensitivity 
receptor on POMC neurons
↑ At low concentration
Via disinhibition
Postsynaptic via high 
sensitivity receptor near 
GABA synapses

 � Glial expression  � Express MCRs N/A
Pain Pain threshold ↓

 � Increase hypersensitivity
 � Antagonize opioid-induced 

analgesia
 � Reduce opioid tolerance
 � *MC4R antagonism synergizes 

with opioid pain reduction

↑

(continued)
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ligands suppress a protective contractile response 
and reduce growth and motility (Dyakonova 
2001; Zagon and Mclaughlin 1992), although 
the receptors responsible for such actions are 
unclear (Lesouhaitier et  al. 2009; Stefano and 
Kream 2008). In invertebrates like mollusks 
and arthropods, many functions of opioids (e.g., 
stress-induced analgesia, deactivating immune 
responses, and regulation of feeding, mating, 
and social behavior) resemble those in verte-
brate species (Dyakonova 2001). A single ances-
tral opioid receptor duplicated itself twice early 
in vertebrate evolution to create the four known 
opioid receptor types (Sundstrom et  al. 2010; 
Larhammar et al. 2009). The addition of an opi-
oid sequence to the POMC gene likely occurred 
around this time (Duvaux-Miret and Capron 
1992; Salzet et al. 1997; Stefano et al. 1999).

Opioid receptors are found throughout the 
central and peripheral nervous system and the 

immune system (Stein and Machelska 2011; 
Zollner and Stein 2007). These receptors use the 
Gi/o signaling cascade; so, like AgRP and in 
opposition to melanocortins, opioid receptors 
inhibit adenylate cyclase activity and lower 
cAMP levels (Collier 1980; Tao 2010; Rene et al. 
1998). β-endorphin binds to mu (μ), delta (δ), and 
kappa (κ) opioid receptors, with highest affinity 
for mu and δ types (Katritch et  al. 2013; Cox 
2013). Opioids may interact with ion channels as 
well (Luscher and Slesinger 2010; Tedford and 
Zamponi 2006).

β-endorphin regulates POMC neuronal 
activity and gene transcription through a com-
plex feedback mechanism. Hyperpolarization 
of POMC neurons occurs when hypothalamic 
explants are treated with opioid agonists (Kelly 
et  al. 1990), while antagonists increase secre-
tion of both β-endorphin and γ-MSH (Jaffe et al. 
1994; Nikolarakis et al. 1987). By binding to the 

Table 11.1  (continued)

Function Melanocortins Opioids
Immunity and 
inflammation

Inflammation (general) ↓
 � Anti-inflammatory
 � Immune suppressive
 � Central immune modulation (via 

vagus nerve-cholinergic AND 
glucocorticoid release)

 � Neuroprotective

↓
 � Anti-inflammatory
 � Immune suppressive

Temperature regulation ↓
Antipyretic

↑

Neuroinflammation ↓ Neuroinflammation
↓ Excitotoxicity

N/A

Neuroprotection ↑ Via
 � Oligodendrocyte development
 � Activate astrocyte-/microglia-

mediated protection

N/A

Immune cell expression MCR expressed on:
Macrophages, B and T lymphocytes

N/A

Behavior Arousal ↑ ↓
Attention ↑ ↓
Motivation ↑ ↓
Learning/memory ↑ ↓
Yawning/stretching ↑ ↓
Grooming ↑ Induces all components ↑

 � Increase/instigate duration
 � Prolong sensitivity of 

grooming
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μ-opioid receptors they express, β-endorphin 
inhibits POMC activity and gene expres-
sion (Kelly et  al. 1990; Zheng et  al. 2005b; 
Markowitz et  al. 1992; Pennock and Hentges 
2011). This mechanism serves as a form of 
autoinhibition of POMC neurons (Bouret et  al. 
1999). In addition, opioid receptors exist on the 
numerous GABAergic terminals that synapse 
onto POMC neurons. The sensitivity to opi-
oids is much greater at the presynaptic μ-opioid 
receptors than the postsynaptic μ-opioid recep-
tors (Pennock and Hentges 2011). So, at low 
concentrations, β-endorphin may inhibit the pre-
synaptic release of GABA, disinhibiting POMC 
neurons (Pennock and Hentges 2011, 2016). The 
interplay between these mechanisms likely pro-
vides fine-tuning of melanocortin and endorphin 
release by POMC neurons.

Optogenetic experiments suggest that the dif-
ferential release of β-endorphin and α-MSH may 
be key to POMC neuronal actions (Yang et  al. 
2011; Aponte et al. 2011). Under default condi-
tions, AgRP inhibits POMC neuron activity to 
promote feeding in mice. However, if leptin 
release by adipocytes rises in response to a long-
term energy surplus, POMC neurons release 
β-endorphin, shutting off this inhibitory circuit. 
At the same time, activation of POMC neurons 
reduces food intake in an MCR-dependent 
manner. So, by simultaneously releasing 
melanopeptides and opioid peptides in variable 
ratios, the POMC system may respond to 
physiological or external changes with a variety 
of tailored responses.

Several mechanisms may underlie this differ-
ential release. Differential enzymatic inactivation 
of α-MSH or β-endorphin can modify the action 
of POMC products (Dutia et  al. 2012). The 
enzymes which process POMC products can alter 
the ratio of various forms of β-endorphin and 
melanocortins in response to different neuronal, 
hormonal, environmental, and pharmacological 
stimuli (Wilkinson and Dorsa 1986; Cangemi 
et  al. 1995; Young et  al. 1993). Also, because 
POMC is posttranslationally processed to ACTH 
and MSH peptides in secretory vesicles, 
packaging of POMC in secretory granules 
controls the extent of POMC cleavage. Alternative 

methods of sorting POMC products may produce 
heterogeneity in secretory granule content 
(Pritchard and White 2007). As hinted at by 
earlier work (Perello et al. 2007, 2008; Petervari 
et  al. 2011; Mercer et  al. 2014), Koch and 
colleagues recently used electron microscopy to 
show that β-endorphin and α-MSH exist in 
separate vesicles within individual neurons of the 
PVH (Koch et  al. 2015). In a third of POMC 
synaptic boutons in the PVH, β-endorphin and 
α-MSH did not overlap. The authors also 
identified hypothalamic UCP2 as being crucial 
for the switch from α-MSH to β-endorphin release 
triggered by endocannabinoids. As we shall see, 
the flexibility inherent in the ability of POMC 
neurons to release either a melanocortin or an 
opioid has large repercussions for the CNS 
response to stress.

11.4	 �The Stress Response: 
Overview

Stress is the experience of coping with a physi-
cal or emotional threat. Common physical 
stressors include visceral or somatic pain, hem-
orrhage, respiratory distress, and inflammation 
from illness or injury. Psychological or emo-
tional stress may result from circumstances the 
individual perceives as negative or threatening, 
such as interpersonal conflict or financial prob-
lems. Afferent sensory information from periph-
eral receptors alert the CNS to physical stressors. 
Forebrain limbic structures like the prefrontal 
cortex (PFC), hippocampus, and amygdala 
receive input about psychogenic and emotional 
stressors (Ulrich-Lai and Herman 2009; Ulrich-
Lai and Ryan 2014). The physical and psycho-
logical signals of the brain stem and limbic 
system converge at the paraventricular nucleus 
of the hypothalamus (PVH). Here, they integrate 
to engage effector mechanisms to regulate the 
body’s physiological response (Ulrich-Lai and 
Herman 2009).

Two systems regulate the stress response. 
First, the sympathetic nervous system (SNS) 
releases the catecholamines epinephrine and 
norepinephrine. Activation of the SNS during 
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acute stress elicits a rapid physiological response 
by two mechanisms: direct innervation of 
peripheral organs and the systemic release of 
catecholamines by the adrenal medulla (Ulrich-
Lai and Herman 2009; Ulrich-Lai and Engeland 
2002). This system mobilizes energetic stores of 
both glucose and free fatty acids, increases 
blood pressure and heart rate, and downregu-
lates physiological processes unnecessary in the 
short term, such as digestion and reproduction 
(Bartness and Song 2007; Yamaguchi 1992). 
Therefore, the sympathetic “fight or flight” sys-
tem (countered by the parasympathetic “rest and 
digest” system) allows fast modulation of energy 
allocation to respond to an immediate threat to 
survival.

The second system regulating the stress 
response, the hypothalamic-pituitary-adrenal 
(HPA) axis, releases glucocorticoids such as 
cortisol. Activation of the HPA axis yields a 
slower, sustained, and amplified physiological 
response to acute stress. The HPA axis becomes 
activated when stress-related internal and external 
sensory input converges on corticotropin-
releasing hormone neurons in the paraventricular 
nucleus of the hypothalamus (PVH) (Dent et al. 
2000; Ma et al. 1997). CRH stimulates synthesis 
and release of melanocortin peptides by the 
anterior pituitary, specifically adrenocorticotropic 
hormone (ACTH) from corticotrophs and MSH 
from melanotrophs (Gagner and Drouin 1985; 
Gagner and Drouin 1987; Eberwine et al. 1987). 
ACTH, produced from POMC, then stimulates 
the adrenal cortex to produce glucocorticoids 
(cortisol in humans or corticosterone in rodents). 
Once released, glucocorticoids mediate many 
systemic and neurological effects. Transcription 
of the POMC gene in corticotrophs undergoes 
feedback repression by glucocorticoids via the 
glucocorticoid receptors (GR) (Gagner and 
Drouin 1985). This negative feedback loop is 
essential for the HPA axis to maintain 
homeostasis. During long-term stress, however, 
the HPA axis can become chronically activated 
(Ulrich-Lai and Herman 2009; Ulrich-Lai and 
Ryan 2014).

CRH also has other mechanisms to trigger a 
stress response. It influences the sympathetic 

stress response by acting on the locus ceruleus, 
adrenal medulla, and the peripheral SNS 
(Valentino et  al. 1993; Brown et  al. 1982). In 
addition, CRH directly affects behavioral states 
of anxiety (Bale and Vale 2004; Reul and 
Holsboer 2002). Many brain areas involved in 
stress perception and response express CRH, 
including the amygdala (Roozendaal et al. 2002; 
Gallagher et  al. 2008; Regev et  al. 2012), 
hippocampus (Lee et al. 1993; Chen et al. 2001, 
2013; Refojo et al. 2011), inferior olive (Chang 
et  al. 1996), locus ceruleus (Valentino and Van 
Bockstaele 2008), bed nucleus of the stria 
terminalis (Dabrowska et  al. 2011), and the 
cortex (De Souza et al. 1986; Behan et al. 1995; 
Gallopin et al. 2006). Central overexpression of 
CRH induces an anxious behavioral phenotype in 
rodents (Dunn and Berridge 1990; Dautzenberg 
et  al. 2004; van Gaalen et  al. 2002), while 
suppressing CRH expression has anxiolytic 
effects under both stressed and unstressed 
conditions (Skutella et  al. 1994a, b). CRH can 
also suppress GnRH release (Sirinathsinghji 
1987; Traslavina and Franci 2012), sleep 
(Romanowski et al. 2010), and appetite (Glowa 
et al. 1992).

The evolution of CRH in chordate ancestors 
played an essential role in the success of 
vertebrates and ultimately mammals and humans 
(Endsin et al. 2017) by permitting a robust stress 
response. In fish, hypothalamic CRH released 
during stress triggers pituitary ACTH release, 
which stimulates the interrenal tissue to secrete 
glucocorticoids. The pituitary-interrenal axis is 
also responsible for other biological processes 
such as metabolism of carbohydrates, amino 
acids, and free fatty acids; mineral balance; 
immune function; and growth (Wendelaar Bonga 
1997). The multiple roles for glucocorticoids in 
this distant relative highlight the relationship 
between energy use and the stress response. The 
stress axis seems to have diverged from the 
reproductive axis around the time of the evolution 
of jawless fish, the most ancient of vertebrates; in 
the lamprey, GnRH and CRH cause release of 
11-deoxycortisol, a putative stress steroid 
(Roberts et  al. 2014). Likewise, GRs diverged 
from estrogen receptors (Thornton 2001). So, the 
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trade-off between stressor survival and fertility 
predates and shaped the development of mamma-
lian systems.

Once the HPA axis is activated, glucocorti-
coids levels rise. Glucocorticoids raise blood 
glucose levels to meet elevated energy needs 
under stressful conditions. To do this, glucocorti-
coids promote gluconeogenesis by increasing 
protein catabolism and lipolysis while decreas-
ing glucose use and insulin sensitivity of adipose 
tissue. At the same time, they suppress the 
immune system and aid metabolism of 
macronutrients. They increase blood pressure by 
promoting the sensitivity of the vasculature to 
epinephrine and norepinephrine (Smart et  al. 
2007; Pavlov and Tracey 2006). Glucocorticoids 
also impair liver sensitivity to growth hormone, 
leading to low levels of circulating insulin-like 
growth factor 1 (IGF-1), which may cause a 
decrease in neural plasticity (Mechanick et  al. 
1992), hippocampal learning (Lutter and Nestler 
2009), neuroprotection, and neuronal 
replacement (Lutter and Nestler 2009; Fletcher 
and Kim 2017).

Glucocorticoids also have a direct impact on 
the brain and spinal cord. Glucocorticoids cross 
the blood-brain barrier and bind to glucocorticoid 
(GR) and mineralocorticoid receptors (MR) on 
both neurons and glial cells. In the brain, MRs 
show high affinity for glucocorticoids (de Kloet 
and Sarabdjitsingh 2008; De Kloet et al. 1998). 
Therefore, they may sense basal glucocorticoid 
levels and mediate physiological responses to 
low glucocorticoid levels (de Kloet et al. 2005). 
In contrast, GR remains unbound at low 
glucocorticoid levels due to its lower binding 
affinity; it therefore mediates responses to 
elevated levels of glucocorticoids (de Kloet et al. 
2005; Reul and Dekloet 1985). The expression 
patterns of these receptors reflect their roles. GR 
is abundantly expressed throughout the brain, 
including in key sites for stress regulation like the 
medial prefrontal cortex (mPFC), hippocampus, 
amygdala, BNST, hypothalamus, and the 
hindbrain (Reul and Dekloet 1986; Meaney et al. 
1985; Fuxe et  al. 1987)). MR expression, in 
contrast, is more limited. Interestingly, MR and 
GR co-localize in several areas important to the 

behavioral response to stress, including the 
hippocampus, amygdala, and the mPFC (Reul 
and Dekloet 1985; Dekloet and Reul 1987).

Alterations of the HPA axis are associated 
with anxiety (Pego et  al. 2010). The chronic 
actions of glucocorticoids in the mPFC increase 
the use of habitual strategies over goal-oriented 
decision-making (Dias-Ferreira et al. 2009). This 
reversion to habitual strategies during chronic 
stress may improve efficiency in predictable 
tasks by creating an instinctual response instead 
of wasting resources on the appraisal process 
(Dias-Ferreira et al. 2009; Schwabe et al. 2013). 
The amygdala underlies anxiety and fear 
responses (Davis et  al. 2010; LeDoux 2012). 
When administered to the central amygdala, 
glucocorticoids enhance anxious behavior in 
rodents (Shepard et al. 2000). Application of GR 
and MR antagonists to the central amygdala 
abolishes this behavior (Myers and Greenwood-
Van Meerveld 2007).

By acting on the hippocampus and amygdala, 
glucocorticoids enhance memory consolidation 
but impair working memory (Barsegyan et  al. 
2010; Roozendaal et  al. 2004; Mizoguchi et  al. 
2000). In the hippocampus, glucocorticoids help 
form emotionally powerful short-term memories 
(de Kloet et  al. 1999; Smeets et  al. 2009) but 
cause memory retrieval disruption for already 
assimilated items (Roozendaal 2002). Chronic 
stress conditions weaken performance on 
hippocampal-dependent tasks (Conrad et  al. 
1996; Kleen et  al. 2006) and cause spatial 
reference memory deficits (Oliveira et al. 2013). 
Glucocorticoids acting in the basolateral 
amygdalar complex (BLA) affect the learning 
and memory of aversive stimuli (Roozendaal 
et al. 1996). They also alter the reconsolidation of 
auditory fear-based conditioning and memory 
consolidation (Jin et al. 2007). These mechanisms 
allow consolidation of emotionally prominent 
events while diminishing input from competing 
information.

Glucocorticoids also have direct actions on 
neuroendocrine functions of the hypothalamus, 
including mimicking the negative feedback 
effects of sex hormones. They inhibit GnRH 
release and may, as a result, impair fertility and 
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delay the onset of puberty during chronic stress 
(Calogero et  al. 1999; Gore et  al. 2006). In 
addition, high glucocorticoid levels directly 
impede male sexual behavior (Rivier and Vale 
1984; Pednekar et  al. 1993; Retana-Marquez 
et  al. 2009). Glucocorticoids also suppress the 
secretion of other hypothalamic hormones, such 
as thyrotropin-releasing hormone (TRH) 
(Brabant et  al. 1987), leading to decreased 
metabolic demands during stress and contributing 
to weight gain.

While excess glucocorticoids are harmful, lev-
els that are too low also lead to physiological dys-
function (de Kloet et  al. 1999; Herman 2013; 
Myers et  al. 2014). The psychological and 
physiological adaptations induced by 
glucocorticoids allow an organism to survive and 
regain normal equilibrium. Specifically, when 
energy availability is low, restriction of growth, 
reproduction, immune processes, and other 
vegetative functions become the “biological cost” 
of adapting to the stressor (Moberg 2000). 
Whether these trade-offs prove to be helpful or 
damaging depends on the organism’s 
environmental context and on how long they last 
(Sinha 2008; McEwen 2007).

11.5	 �Melanocortins 
and the Physiologic Stress 
Response

A unifying function underlying the actions of the 
melanocortin system and its doppelgänger, the 
opioid system, is to produce a suitable response 
to acute stress. Melanocortins promote pain 
sensing, the energy releasing powers of 
glucocorticoids, and anxious behavior while 
inhibiting inflammation so that the individual can 
combat a threat to survival. These functions 
complement those of the ACTH-CORT endocrine 
axis from which the melanocortin system 
evolved. The role that POMC products play in 
this aspect of the stress response is 
under-recognized.

Three main stages to the stress response have 
been identified: alarm, resistance, and 
compensation (Schreck 2000). To handle a 

stressor effectively, the threat must first be 
perceived. This alarm stage involves the induction 
of the secretion of glucocorticoids and 
catecholamines to make energy available for 
resistance strategies, such as fighting or flight. 
During the resistance stage, the organism rations 
energy and attention in such a way that disease 
resistance, reproduction, growth, learning, and 
other functions are impaired. Compensation or 
recovery consists of adaptive changes to restore 
homeostasis and physiological equilibrium.

Under conditions of stress, ARC POMC neu-
rons show rapid activation. For example, acute 
restraint and forced-swim treatments in rodents 
cause increased activity of ARC POMC neurons 
projecting to the PVH (Liu et al. 2007). In addi-
tion, rats subjected to foot shock showed 
increased POMC mRNA in the hypothalamus, 
increased CRH mRNA in the amygdala, and 
increased MC4R mRNA in both locations 
(Yamano et al. 2004). Another study found that 
psychological stress increases expression of 
MC4R mRNA in the ARC of rats in a 
glucocorticoid-independent manner (Ryan et al. 
2014). Intracerebroventricular (ICV) injection of 
an MC4R agonist produces a dose-dependent 
increase in renal and lumbar sympathetic nerve 
activity, which is reversed by an MC3R/MC4R 
antagonist (Haynes et  al. 1999). This SNS 
activation exacerbates the response to stress; 
sympathetic innervation of the adrenal cortex 
enhances sensitivity to ACTH, which promotes 
glucocorticoid secretion (Engeland and Arnhold 
2005; Edwards and Jones 1993).

Tonic suppression by neuronal POMC pep-
tides keeps CRH levels within physiological lim-
its. In the hypothalamus, the ARC POMC neuron 
population has abundant synaptic projections to 
PVH CRH neurons (Lu et  al. 2003), many of 
which express MC4R (Lu et  al. 2003; Dhillo 
et al. 2002; Sarkar et al. 2002). A chronic reduc-
tion or absence of hypothalamic POMC leads to 
elevated CRH specifically in the PVH, elevated 
basal but attenuated stress-induced ACTH secre-
tion, and elevated basal plasma corticosterone 
(Smart et al. 2007). Whether suppression of CRH 
levels by POMC peptides occurs via direct 
actions in the PVH remains to be determined. 
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Some evidence suggests β-endorphin suppresses 
CRH levels in vivo as well (Plotsky 1986), but 
selective loss of β-endorphin beginning during 
development does not alter CRH mRNA or glu-
cocorticoid levels (Smart et al. 2007; Rubinstein 
et al. 1996).

α-MSH release by POMC neurons may also 
act via the MC4R to augment CRH release during 
a psychological or physiological challenge. 
Short-term ICV infusion of α-MSH can increase 
CRH expression, ACTH, and corticosterone 
levels after a stressful event (Lu et  al. 2003; 
Dhillo et  al. 2002; Kas et  al. 2005). Loss of 
MC4R signaling prevents stress-induced 
activation of neurons in the PVH and MeA and 
lowers ACTH and corticosterone release (Ryan 
et  al. 2014; Karami Kheirabad et  al. 2015). 
Pharmacological stimulation of MC4R in the 
PVH also increases CRH mRNA expression, 
circulating ACTH, and corticosterone (Lu et al. 
2003; Dhillo et al. 2002). In contrast, the MC3R 
influences the response of the HPA axis to fasting 
but no other stressors (Renquist et al. 2012).

Glucocorticoids, the final products of HPA 
axis activation, regulate the HPA axis through 
negative feedback. They suppress ACTH release 
at the level of the pituitary and CRH synthesis 
and release in the PVH (Lim et al. 2000). ACTH 
may also exert a regional form of feedback 
control of the HPA axis. ACTH suppresses CRH 
expression in the medial amygdala and 
hippocampus, but these effects are not seen in 
the hypothalamus (Brunson et  al. 2001; Wang 
et al. 2012).

Glucocorticoids appear to exert feedback con-
trol of the melanocortin system in a similarly 
region-specific manner (Beaulieu et  al. 1988; 
Wardlaw et  al. 1998). Glucocorticoids 
downregulate POMC gene expression in the 
pituitary (Pritchard et al. 2002; Krude and Gruters 
2000). While most POMC neurons in the ARC 
also contain GR, glucocorticoids seem to 
upregulate POMC gene expression in the 
hypothalamus of rats. ARC POMC gene 
expression falls after adrenalectomy and returns 
to normal after replacing glucocorticoids at 
physiological concentrations (Wardlaw et  al. 
1998; Pelletier 1993). The number of inhibitory 

synaptic inputs onto POMC neuron cell bodies 
also fell in adrenalectomized animals; 
replacement of corticosterone reversed this effect 
(Gyengesi et al. 2010). These mechanisms allow 
regulation of the melanocortin response to stress.

These studies show that melanocortins have 
powerful and integrative effects on both systems 
that mediate classic stress responses, the SAM 
system and the HPA axis. However, stressors 
often involve pain, immune reactions, and 
psychological challenges; melanocortins have a 
foundational role reestablishing homeostatic 
balance in each of these situations as well.

11.6	 �Melanocortins and Immune 
Function

Illness is a classic condition of physiological 
stress. As described below, the melanocortin 
system acts to inhibit inflammatory processes 
both centrally and peripherally. In addition, it 
combats fever and the cardiovascular processes 
related to shock. These functions play an essential 
role in appropriately calibrating the physiological 
response to illness. Indeed, melanocortin agonists 
are an underexploited anti-inflammatory therapy 
that holds great promise for treatment of immune 
disorders (Montero-Melendez 2015).

The systemic effects of melanocortins include 
direct action by circulating or local melanocortins 
on their receptors. The MC1R has an anti-
inflammatory role in a wide variety of immune 
cells (Catania et al. 2004, 2010). In addition, the 
MC5R plays a role in lymphocyte modulation, 
specifically the activation of regulatory T-cell 
lymphocytes in ocular immunity (Taylor and Lee 
2010; Taylor et  al. 2006) and B-lymphocyte 
immunomodulation (Buggy 1998). In adipocytes, 
the MC5R stimulates cytokine secretion (Jun 
et al. 2010).

The central melanocortin system also has sup-
pressive effects on the systemic immune 
response. ICV α-MSH inhibits transcription fac-
tor nuclear factor kappa B (NF-κB) activation at 
peripheral inflammatory sites (Ceriani et  al. 
1994; Ichiyama et al. 1999a; Lipton et al. 1991). 
By directly sensing cytokines at the circumven-
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tricular organs, highly vascularized areas of the 
brain with a leaky blood-brain barrier, the CNS 
can detect peripheral inflammation. The ARC, 
NTS, and dorsal motor nucleus of the vagus 
(DMX) are near circumventricular organs. Acute 
inflammation such as that caused by bacterial 
lipopolysaccharide (LPS) activates TNF-α, 
IL-1β, and IL-6 and induces Pomc expression 
(Kariagina et al. 2004). Under these conditions, 
NF-κB activation directly promotes Pomc tran-
scription independent of STAT3 activation (Shi 
et  al. 2013). (Chronic inflammatory conditions, 
however, can impair the direct activation of 
Pomc promoter (Shi et al. 2013).) The CNS also 
receives information on the systemic inflamma-
tory status via ascending sensory pathways from 
affected tissues through the vagus nerve and pain 
afferent fibers (Goehler et  al. 1997, 2000; 
Watkins et  al. 1995). By promoting glucocorti-
coid release in response to sensory input, the 
melanocortin system suppresses immune 
responses in the periphery (Besedovsky et  al. 
1986; Hu et al. 1991).

If augmented pharmacologically, the anti-
inflammatory effects of α-MSH can counter the 
life-threatening vasodilatory actions of 
endogenous opioids and histamine that are 
massively released during shock (Bernton et al. 
1985; Carmignani et  al. 2005; Chernow et  al. 
1986; Elam et  al. 1984; Schadt 1989; Guarini 
et al. 1997, 2004; Bertolini et al. 1986a, 1986b; 
Giuliani et  al. 2007; Bitto et  al. 2011). 
Melanocortins can reverse this immune response 
by acting on parasympathetic preganglionic 
neurons of the DMV that produce acetylcholine 
and express MC4Rs (Catania et  al. 2004; Sohn 
et  al. 2013). These neurons form part of the 
efferent arm of the cholinergic anti-inflammatory 
pathway (Guarini et  al. 1989; Bertolini et  al. 
2009). The vagus nerve can induce rapid release 
of acetylcholine to inhibit pro-inflammatory 
cytokine release from macrophages in target 
organs (especially in the liver, spleen, 
gastrointestinal tract, and heart) (Guarini et  al. 
2004; Pavlov and Tracey 2006; Tracey 2002, 
2007). The release of anti-inflammatory cytokines 
is unaffected (Borovikova et al. 2000). Bilateral 
injury or dissection of the vagus nerve or 

inhibition of primary afferent nociceptive nerve 
fibers compromises the ability of melanocortins 
to inhibit harmful and unnecessary inflammatory 
responses to hypoxic conditions, such as during 
hemorrhagic shock (Bertolini et al. 1989, 2009).

Melanocortins also combat fever and have a 
broad, suppressive effect on body temperature. 
ICV α-MSH inhibits systemic inflammatory 
reactions, including fever (Delgado Hernandez 
et al. 1999; Murphy et al. 1983). Melanocortins 
reduce body temperature acutely (reaching a 
nadir at 40 minutes) through several mechanisms, 
including reducing brown adipose tissue 
thermogenesis, lessening vasodilation, promoting 
active seeking of a cool environment, reducing 
physical activity, and suppressing compensatory 
shivering (Lute et al. 2014).

Melanocortins also induce stretching and 
yawning (Wessells et  al. 2000, 2003; Vergoni 
et  al. 1998), which we suggest are part of this 
program of body temperature reduction. Strong 
evidence from humans and other warm-blooded 
animals shows that both stretching and yawning 
are part of a coordinated physiological program 
to alter brain and body temperature (Gallup and 
Eldakar 2013; Eguibar et al. 2017). When body 
temperature is both excessive and higher than air 
temperature, yawning and stretching increase to 
allow increased airflow within the mouth and 
around the limbs to cool circulating blood. 
Co-injection of an MC4R antagonist inhibits 
yawning produced by microinjection of ACTH 
into the PVH (Argiolas et  al. 2000), although 
other target areas may also be involved (Argiolas 
et al. 1987). In contrast, opioids suppress yawning 
and stretching; for example, β-endorphin inhibits 
ACTH-induced yawning (Fratta et  al. 1981; 
Vergoni et al. 1989; Himmelsbach 1939; Seevers 
1936; Zharkovsky et  al. 1993). ACTH- and 
α-MSH-induced yawning correspond to an 
increase in the turnover rate of acetylcholine in 
the hippocampus; central cholinergic antagonists 
impede yawns (Ferrari et al. 1963; Fujikawa et al. 
1995; Wood et al. 1978). The circuit underlying 
these behaviors may include α-MSH-activated 
neurons in the PVH that project to medial septum 
cholinergic neurons that, in turn, project to the 
hippocampus (Collins and Eguibar 2010).
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Melanocortins may have direct anti-
inflammatory and neuroprotective actions within 
the brain. For example, in a traumatic brain injury 
mouse model, a single application of α-MSH 
(Hummel and Zuhlke 1994; Ottaviani et al. 1997; 
Tsatmali et  al. 2000) reduced inflammation, 
apoptosis, and brain damage (Schaible et  al. 
2013). Similarly, MC4R activation had anti-
apoptotic effects during cerebral ischemia 
(Giuliani et  al. 2006) and in the hippocampus 
where excitotoxicity induced neuronal cell death 
(Forslin Aronsson et al. 2007).

Evidence suggests that these neuroprotective 
effects may result from melanocortin actions in 
glial cells. Multiple types of glial cells show 
MCR expression. Human microglia express 
MCRs (MC1R, MC3R, MC4R, and MC5R) 
(Lindberg et al. 2005). Melanocortins can directly 
suppress the activation of nuclear factor kappa B 
(NF-κB), tumor necrosis factor-α (TNF-α), and 
inducible nitric oxide synthase (iNOS) expression 
in activated microglia (Catania et  al. 2004; 
Delgado et  al. 1998; Galimberti et  al. 1999). 
Oligodendrocytes, the CNS glial cells responsible 
for myelination, also express MC4R (Arnason 
et al. 2013; Selkirk et al. 2007; Lisak et al. 2016; 
Benjamins et  al. 2014). ACTH1–39 increases 
proliferation, differentiation, and maturation of 
oligodendrocyte progenitor cells. It also reduces 
apoptosis in both progenitor and mature 
oligodendrocytes. At the same time, ACTH1–39 
protects against excitotoxicity and inflammation 
(Lisak et  al. 2016; Benjamins et  al. 2014). In 
multiple sclerosis, ACTH1–39 has been used 
clinically to treat immune system-induced myelin 
damage. Finally, astrocytes express MC4Rs (but 
not MC3Rs) in rats (Selkirk et al. 2007; Caruso 
et  al. 2007). In reaction to hypoxia or other 
stressors, reactive astrocytes produce nitric oxide 
(NO) and pro-inflammatory cytokines and 
chemokines (Dong and Benveniste 2001). MC4R 
activation blocks apoptosis of astrocytes (Giuliani 
et  al. 2006), reduces their secretion of NO and 
prostaglandin G2 (PEG2), and inhibits their 
expression of iNOS and COX-2 (Giuliani et  al. 
2006; Caruso et al. 2007). Although not involved 
in anti-inflammatory responses of α-MSH, the 
MC1R is expressed in astrocytes as well 

(Ichiyama et  al. 1999b). The activation of 
astrocytes plays a role in the pathology of many 
neurodegenerative conditions, so controlling 
astrocyte activation through melanocortin 
receptor activation may be an effective avenue 
for decreasing the severity of such diseases.

11.7	 �Melanocortins and Pain 
Pathways

Pain is a potent stressor. Pain is a noxious sensory 
or emotional experience caused by actual or 
potential tissue damage (Leeson et al. 2014). The 
ability of an organism to sense noxious stimuli is 
essential for preventing physical injury. Afferent 
fibers in the spinal cord carry nociceptive signals 
to higher brain centers through spinothalamic, 
spinobulbar, spinopontine, and 
spinomesencephalic tracts (Al-Chaer 2013; 
Boadas-Vaello et  al. 2016). Sensory-
discriminative signals mediating pain localization 
propagate through the dorsal root of the spinal 
cord to thalamic nuclei and the PAG in the 
midbrain. The brain stem reticular formation, 
thalamus, and hypothalamus contribute the 
affective-motivational components of pain (Ab 
Aziz and Ahmad 2006). At the level of the 
thalamus, third-order neurons that receive both 
sensory and affective information ascend to 
terminate in the somatosensory cortex.

A diffuse, multisynaptic descending pathway 
produces analgesia. It originates from higher 
brain centers, such as the cerebral cortex, 
hypothalamus, and amygdala, and projects to the 
PAG.  From here, projections synapse at the 
rostral ventromedial medulla (RVM) and locus 
ceruleus. They then project down the spinal cord 
and terminate on the initial pain sensing spinal 
dorsal root to inhibit incoming signals (Fardin 
et  al. 1984; Pagano et  al. 2012; Kerman et  al. 
2006). This PAG-RVM system plays a key role in 
pain sensation and modulation. These pathways 
use predominantly catecholaminergic, 
serotonergic, and opioid systems. The PAG was 
the first brain area where activation of an 
endogenous pain inhibition system was described; 
electrical stimulation and opioid injections into 
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the PAG produce analgesia, which is reversible 
by application of naloxone (Reynolds 1969; 
Hosobuchi et al. 1977; Lewis and Gebhart 1977). 
The RVM is the final common relay point in the 
modulation of the descending pain pathway. It 
can both enhance and lessen pain (Heinricher 
et al. 2009).

The melanocortin system can modulate pain 
sensitivity. For example, MC4R signaling 
amplifies neuropathic pain in rats (Vrinten et al. 
2001; Nijenhuis et al. 2003). MC4R expression is 
extensive throughout both ascending and 
descending nociceptive circuits. As well as being 
found in primary afferent neurons, MC4Rs are 
located in the reticular formation, somatosensory 
and motor cortex, PAG, RVM, and dorsal horn of 
the spinal cord (Kishi et al. 2003; Gautron et al. 
2012; Ye et  al. 2014). The MC4R-positive 
neurons of the RVM are 10% catecholaminergic 
and 50–75% serotonergic, suggesting that MC4R 
signaling modulates nociceptive serotonergic 
sympathetic outflow (Pan et al. 2013).

MCRs share a neuroanatomical distribution 
pattern with μ-opioid receptors (Arvidsson et al. 
1995; Kalyuzhny et  al. 1996; Matthes et  al. 
1996). Anatomically, α-MSH and β-endorphin 
are both released in response to painful stimuli at 
the same site (Adan and Gispen 2000). As 
mentioned before, melanocortins and endorphins 
generally produce opposing responses in their 
common targets (Bertolini et al. 1979; Amir and 
Amit 1979). This effect applies in the modulation 
of pain through interaction at the level of the 
brain and spinal cord. For example, ICV injection 
of α-MSH in rodents induces hypersensitivity to 
pain, reversing the analgesia produced by 
endogenous opioids and morphine (Sandman and 
Kastin 1981; Contreras and Takemori 1984; 
Kalange et  al. 2007). MC4R agonists enhance 
hypersensitivity in a neuropathic pain model 
(Starowicz et al. 2002; Vrinten et al. 2000).

Melanocortin antagonists work synergistically 
with opioids, enhancing the analgesic effect 
produced by opioid agonists (Kalange et al. 2007; 
Vrinten et  al. 2000; Ercil et  al. 2005). For 
example, the opioid antagonist naloxone lessened 
the analgesic effects of a melanocortin antagonist 
administered to the spinal theca in a model of 

pain hypersensitivity (Vrinten et al. 2000). Also, 
targeted delivery of an MC4R antagonist to the 
PAG diminished neuropathic hyperalgesia (Chu 
et  al. 2012), to an even greater extent than 
morphine (Starowicz et al. 2002; Chu et al. 2012). 
MC4R and POMC mRNA expression rises in the 
PAG along with heightened sensitivity in a rat 
model of neuropathic pain (Chu et  al. 2012). 
Consistent with this, morphine downregulated 
MC4R mRNA expression in various brain areas, 
including the PAG, NuA, and striatum, in a time-
dependent manner (Alvaro et  al. 1996). This 
response may be, in part, an adaptive mechanism 
of opioids to cause tolerance and dependency. 
MC4R antagonists also prevent opioid tolerance 
when administered to the brain or spinal cord 
(Kalange et  al. 2007; Niu et  al. 2012). In 
morphine-tolerant rats, a single administration of 
melanocortin antagonists restored the analgesic 
potency of morphine (Starowicz et al. 2005). If 
MC4Rs participate in opioid tolerance, they 
make a logical target for its prevention. 
Developing pharmacological treatments targeting 
MCRs may improve pain management by 
preventing tolerance and dependency.

11.8	 �Melanocortins 
and the Behavioral 
Responses to Stress

Along with increasing sensitivity to pain, the 
melanocortin system, and particularly MC4R 
signaling, promotes stress, anxiety, and 
depression-related behaviors. In mice, chronic 
social defeat results in social avoidance 
associated with reduced expression of POMC in 
the hypothalamus (Chuang et  al. 2010). 
Administration of an MC3R/MC4R agonist 
increased this avoidance. Conversely, MC4R-
null mice showed less anxiety and depression 
and more social behaviors (Chuang et al. 2010). 
Similarly, the ICV administration of a selective 
MC4R antagonist to rats before stressful 
restraint reduces depressive behavior (Goyal 
et al. 2006; Chaki and Okubo 2007) and stress-
elicited anorexia (Chaki et  al. 2003; Vergoni 
et  al. 1999a). An intranasal MC4R antagonist, 
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HS014, also prevented anxious and depressive 
behavior in rats (Serova et al. 2013). Further, the 
intranasal MC4R agonist, HS014, led to 
improved resilience in rats after traumatic stress 
(Serova et al. 2013). These behavioral responses 
involve the medial amygdala (MeA), which 
receives ARC POMC projections and expresses 
high levels of MC4R.  Acute restraint activates 
MC4R-expressing neurons in the MeA in rats as 
shown by c-fos induction (Liu et  al. 2013). 
Pharmacological stimulation of MC4Rs in the 
MeA before restraint stress test induced anxiety-
associated behaviors, increased plasma 
corticosterone, and reduced food intake. 
Conversely, MC4R loss or inhibition abolished 
these stress-induced responses (Ryan et  al. 
2014; Liu et al. 2013). Taken together, these data 
show that MC4R signaling in a POMC-MeA 
circuit strongly regulates behavioral responses 
to stress in rodents. Strategies targeting this 
melanocortin pathway could therefore lead to 
treatments in humans suffering from post-
traumatic stress disorders.

Another behavior altered by stress is groom-
ing. Self-grooming is an essential behavior pres-
ent in arthropods, birds, and mammals to care for 
the body surface. In rodents, grooming comprises 
a highly stereotyped sequence of behaviors. It 
begins with licking the paws, then head, body, 
legs, genitals, and tail, interrupted occasionally 
by scratching and whole body shaking (Fentress 
1988; Berridge et al. 2005). Humans also exhibit 
self-grooming behavior (Prokop et  al. 2014; 
Cohen-Mansfield and Jensen 2007). While the 
brain stem initiates self-grooming movements 
and regulates the assembly of the sequential pat-
terning in rodents, control of its sequencing 
requires the basal ganglia, particularly dopami-
nergic inputs to the striatum (Kalueff et al. 2016). 
However, in times of stress, grooming can occur 
at inappropriate times or with inappropriate 
intensity. The amygdala and other limbic regions 
modulate this context-specific behavior (Kalueff 
et al. 2016; Hong et al. 2014; Roeling et al. 1993). 
In rats, stressful conditions result in an excessive, 
aberrant form of grooming that damages the fur 
(Adan et  al. 1999; Mul et  al. 2012; Willemse 
et  al. 1994). Under these conditions, grooming 

loses its precise temporal patterning (Kalueff and 
Tuohimaa 2004, 2005). Aberrant rodent self-
grooming resembles human disorders with 
abnormal self-grooming and other compulsive or 
stereotyped behaviors that do not require sensory 
feedback (Kalueff et al. 2007).

In dogs, rabbits, cats, rats, mice, and monkeys, 
central or cerebrospinal administration of 
melanocortins (or CRH) potently induces 
behavior similar to spontaneous grooming 
(Vergoni et al. 1998; Argiolas et al. 2000; Ferrari 
et al. 1955, 1963; Ferrari 1958; Gessa et al. 1967; 
Aloyo et  al. 1983; Spruijt et  al. 1985; Gispen 
et al. 1975; Dunn 1988; Dunn et al. 1987). The 
MC4R mediates this induced and spontaneous 
grooming behavior (Nijenhuis et al. 2003; Adan 
et  al. 1994, 1999); for example, melanocortin 
peptides did not elicit any grooming response in 
rats deficient for MC4R (Mul et  al. 2012). 
Additionally, administration of an MC4R 
antagonist reverses excessive grooming behavior 
(Adan et al. 1999).

Connections between the hypothalamus, 
amygdala, and mesolimbic reward system may 
allow melanocortins to alter stress-related 
grooming and its patterning (Hong et  al. 2014; 
Roeling et al. 1993; Kruk et al. 1998; Homberg 
et al. 2002). It is known that dopaminergic cell 
bodies in the VTA receive input from GABAergic 
neurons, and ACh input can modulate their activ-
ity. A key study showed that α-MSH administra-
tion stimulates cholinergic neurons in the VTA to 
cause excessive grooming. When a GABA antag-
onist was injected before α-MSH, excessive 
grooming behavior increased (De Barioglio et al. 
1991), suggesting the presynaptic actions of 
GABA can promote these melanocortin effects 
(Sanchez et  al. 2001; Debarioglio et  al. 1991). 
Thus, melanocortins can promote anxiety and 
stress-related behaviors including disordered 
self-care.

Interestingly, opioids also promote grooming 
and lead to excessive and obsessive grooming 
(Willemse et al. 1994; Ayhan and Randrup 1973). 
In addition, opioids like β-endorphin extend 
grooming bouts and prolong sensitivity to the 
grooming-inducing effects of melanocortins 
(Jolles et  al. 1978). α-MSH has no affinity for 
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opiate receptors (Terenius et al. 1975); however, 
naloxone, a high-affinity μ-opioid antagonist, can 
still block α-MSH-induced grooming (Aloyo 
et  al. 1983; Walker et  al. 1982; van Wimersma 
Greidanus et  al. 1986), suggesting α-MSH and 
β-endorphin target similar neural circuits. 
Additional research is needed to understand the 
interaction of melanocortins and opioids in 
grooming circuits. At a conceptual level, since 
opioids ease the ability to cope with stress, 
grooming may also act as a coping mechanism 
through which the organism lessens arousal.

11.9	 �Stress and Body Weight 
Regulation

Melanocortins are intimately involved in the 
effects of stress on body weight. Three 
mechanisms underlie this influence. First, 
stressors induce a sympathetic and HPA axis 
stress response, in which, as we have seen, 
melanocortins play an integral role. Second, food 
stress interacts with hypothalamic circuits that 
include POMC neurons regulating caloric intake 
and expenditure. Finally, physical and 
psychological stressors act on mesolimbic 
dopaminergic pathways that express melanocortin 
receptors to influence hedonic feeding (Lutter 
and Nestler 2009). During acute stress, these 
mechanisms allow melanocortins to suppress 
feeding and promote energy expenditure. 
However, chronic stress can oppose and 
undermine these actions. In addition to these 
topics, two situations deserve special attention: 
the stress of food scarcity and the stress of obesity 
itself. Finally, we will discuss recent progress in 
investigating how sensitivity to melanocortins 
and their downstream effectors can be restored 
when adaptive responses have failed.

11.9.1	 �Food Insecurity and Obesity

Since most threats are difficult to anticipate, 
complex organisms must have a set of responses 
that will be appropriate for any attack, injury, or 
illness an animal is facing. As we have seen, 

melanocortins play a key role in coordinating the 
body’s perception of and response to acute stress 
by releasing stored energy, increasing pain 
sensitivity, increasing anxious behavior, and 
preventing the diversion of resources for 
inflammation and related recuperative processes. 
This array of physiological processes does not 
require the precise nature of the threat to be 
identified. These reactions are generally useful 
regardless of the threat, although they may fail to 
deal adequately with chronic stressors.

Food scarcity, in contrast, is a specific and pre-
dictable threat. It might well have been the first 
stressor encountered by organisms. Coping 
mechanisms for famine predate the development 
of the melanocortin system, the HPA axis, and 
the SNS.  These later systems were later 
incorporated into the overall response for 
preventing starvation.

An organism accustomed to food insecurity 
will often take advantage of temporary abundance 
by maturing and reproducing quickly. When food 
is scarce, two strategies are available: spending 
additional energy to find and digest food or 
suppressing the metabolic rate as much as 
possible to extend life span. These choices are 
dramatically demonstrated by the nematode C. 
elegans, where an insulin-like signaling pathway 
regulates reproduction, life span, and entry into a 
dormant state (Fletcher and Kim 2017; Ren et al. 
1996; Schackwitz et  al. 1996). Specifically, 
insulin, cGMP, and TGF-β pathways signal a 
favorable environment and encourage continued 
growth and reproduction (Riddle et  al. 1981; 
Kenyon et  al. 1993; Vowels and Thomas 1992; 
Gottlieb and Ruvkun 1994). When food is 
limited, young worms assume a nonreproductive 
form specialized for long-term survival instead of 
developing to adulthood (Riddle et  al. 1981). 
Thus, insulin acquired an important role in energy 
allocation and food intake before the development 
of the neuronal melanocortin system.

In mammals, arcuate POMC neurons and 
associated circuits play an essential role in the 
control of food intake (Hill and Faulkner 2017). 
While stimulation of POMC neurons inhibits 
feeding behavior, stimulating AgRP/NPY 
neurons provokes feeding (Aponte et  al. 2011; 
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Zhan et  al. 2013; Krashes et  al. 2011). The 
inhibition of POMC or AgRP/NPY neurons can 
lead to obesity or anorexia, respectively (Yaswen 
et al. 1999; Gropp et al. 2005; Luquet et al. 2005). 
Fasting activates NPY/AgRP neurons and 
suppresses the activity of POMC neurons. 
MC3Rs may reinforce this pattern of neuronal 
activity. MC3R knockout mice show no 
adjustment of circadian corticosterone secretion 
or orexigenic neuropeptide expression to food 
restriction (Girardet et al. 2017). When access to 
food is restricted to a brief window each day, 
MC3Rs are required for binge feeding, 
anticipatory activity, and entrainment to nutrient 
availability (Butler et  al. 2017; Begriche et  al. 
2012; Girardet et al. 2017; Mavrikaki et al. 2016). 
Thus, while MC3Rs in the CNS have a minor 
impact on feeding behavior in mice when food is 
plentiful, they regulate the motivation to feed and 
possibly the discomfort of hunger during food 
restriction (Girardet et al. 2017).

Both POMC and AgRP/NPY neurons can 
sense circulating metabolic factors such as leptin 
and insulin, thought to allow them to regulate 
food intake and energy expenditure appropriately 
(Varela and Horvath 2012). However, the ability 
of insulin to regulate food intake, energy balance, 
and glucose homeostasis may depend primarily 
on its actions in a more ancient set of NPY neu-
rons (only some of which express AgRP) in both 
rodents and fruit flies (Loh et  al. 2017; Konner 
et  al. 2007). If true, insulin sensing by POMC 
neurons may primarily regulate adipose tissue 
lipolysis and prevent hepatic fat storage during 
exposure to high-caloric diets in adult animals 
(Shin et al. 2017). In addition, insulin signaling 
in POMC neurons may reinforce the actions of 
leptin in this neuronal population; both contrib-
ute to systemic insulin sensitivity and the brown-
ing of white fat (Hill et  al. 2010; Dodd et  al. 
2015). This adjustment can occur prenatally or in 
early infancy; hyperinsulinemia influences the 
formation of POMC circuits postnatally, result-
ing in hyperphagia and an obese phenotype in 
adulthood (Vogt et al. 2014).

Leptin, in contrast, took on its role in energy 
balance more recently. C. elegans has no appar-
ent leptin ortholog; instead, it may use products 

of the fat metabolism pathway to regulate feeding 
behavior (Hyun et al. 2016). Although found in 
numerous vertebrate species, leptin appears to 
have evolved its role as an adiposity signal in tet-
rapods (Cui et  al. 2014; Prokop et  al. 2012). 
Mammalian leptin shows particularly high 
sequence conservation (Doyon et  al. 2001), 
which we suggest is due to the critical nature of 
fat depot regulation in warm-blooded animals. 
The development of the arcuate melanocortin 
system and its ability to sense leptin and insulin 
no doubt added robustness and precision to the 
control of body weight and metabolic homeosta-
sis in mammals.

While missing a meal is not an acute threat to 
a healthy individual, food scarcity or insecurity 
acts as a psychological stressor. Fasting increases 
cortisol levels (Nakamura et  al. 2016). Placing 
mice accustomed to high-fat chow on a “diet” of 
low-fat food induced stress, anxiety, depression, 
and high motivation to consume both sucrose 
and fatty food (Sharma et al. 2013; Avena et al. 
2008; Cottone et  al. 2009). Low food security 
combined with plentiful high-calorie, energy-
dense foods causes weight gain in humans to 
increase (Wilde and Peterman 2006). 
Remarkably, just the perception of scarcity in 
resources can increase the desire for calories and 
anxious behavior (Briers and Laporte 2013). As a 
result, many social solutions for addressing food 
insecurity do not reduce and can even increase 
obesity (Leroy et al. 2013; Jones and Frongillo 
2006; Townsend et  al. 2001). These findings 
suggest increased energy intake among those of 
low socioeconomic status may be a fundamental 
response to threats to food security, which 
persists regardless of the actual food supply 
(Dhurandhar 2016).

11.9.2	 �Acute Stress and Body Weight

The stress endocrine axis arose to divert 
energy from nonessential functions to life-sus-
taining energy conservation. Coping with an 
acute stress requires potentially high levels of 
energy expenditure. Under acute stress brought 
about by an imminent threat, HPA axis and 
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sympathetic activation serve to liberate energy 
into the bloodstream for use by the muscles 
and cardiovascular system. Thus, glucocorti-
coid hormones promote gluconeogenesis, 
lipolysis, and insulin resistance to raise circu-
lating levels of glucose and fatty acids acutely 
(Ottosson et al. 2000; Bjorntorp 1996). When 
combined with energy use, these actions result 
in weight loss.

Behavioral changes accompany these hor-
monal effects. Attention and effort cannot be 
expended on restoring energy reserves until the 
immediate danger has passed and the 
compensatory stage begins. So, it is not surprising 
that acute and intense stressors, including illness, 
inhibit feeding (Krahn et al. 1990; Rybkin et al. 
1997). For example, intense emotional stress 
suppresses appetite in humans and laboratory 
rodents (Valles et al. 2000; Laurent et al. 2013; 
De Souza et al. 2000). Anticipatory fear promotes 
hypophagia and anorexia in otherwise hungry 
rats. These effects depend on activity in the 
central amygdala, likely working with the 
ventromedial prefrontal cortex and lateral 
hypothalamic area (Land et al. 2014; Mena et al. 
2013; Petrovich et al. 2009).

Melanocortins are very important for appetite 
suppression under stressful conditions. Using 
double immunolabeling techniques, it has been 
shown that most POMC neurons in the arcuate 
nucleus are glucocorticoid receptor positive 
(Cintra and Bortolotti 1992). Thirty minutes of 
restraint stress activates ARC POMC neurons 
and MC4R expressing neurons in the MeA, 
stimulates the HPA axis, induces anxious 
behavior, and reduces food intake (Ryan et  al. 
2014; Liu et  al. 2013; Baubet et  al. 1994). 
Anorexia and weight loss induced by stress were 
reversed by MC4 receptor blockade (Vergoni 
et  al. 1999b). Similar effects were seen with 
infusion of an MC4R agonist to the MeA, while 
blockade of MC4R in this brain region attenuated 
restraint stress-induced anorectic effects and 
endocrine responses (Liu et al. 2013). Therefore, 
enhanced arcuate melanocortinergic input to the 
MeA during stress may contribute to anorexia 
and HPA axis activation.

Mice subjected to chronic stress, such as 
restraint stress, are also anhedonic as 
demonstrated by a loss of preference for a sucrose 
solution over water (Lim et al. 2012; Nestler and 
Hyman 2010). Reduced activation of D1 medium 
spiny neurons in the nucleus accumbens may 
underlie this effect. The loss of sucrose preference 
requires MC4R activation in NAc D1-MSNs, 
since knockdown of MC4R in the NAc or 
specifically in D1-MSNs prevented this loss (Lim 
et  al. 2012). Therefore, release of α-MSH by 
POMC neurons can suppress activity in 
dopaminergic neurons in the nucleus accumbens 
and lead to the loss of appetite that is associated 
with stress and depression.

POMC neurons may also induce stress-related 
anorexia by acting directly or indirectly on CRH 
neurons. CRH neurons affect food intake (Bale 
et  al. 2002; Menzaghi et  al. 1993); chronic 
administration of CRH into the hypothalamus or 
activation of CRH-2 receptors decreases food 
intake and body weight gain in rats (Tempel and 
Leibowitz 1994; Fekete and Zorrilla 2007). 
Injecting a CRH-2 receptor blocker into the 
BNST attenuated restraint-induced anorexia 
(Ohata and Shibasaki 2011). The effects of CRH 
may be due to it suppressing NPY synthesis and 
release, thus reducing food intake (Tempel and 
Leibowitz 1994; White 1993). Melanocortin-
sensitive MeA neurons project to the vicinity of 
the PVH where projections to CRH neurons can 
influence HPA output (Herman and Morrison 
1996; Cullinan 2000; Miklos and Kovacs 2002). 
In addition, the MeA projects to BNST CRH 
neurons that directly innervate PVN CRH 
neurons (Ohata and Shibasaki 2011; Coolen and 
Wood 1998; Ciccocioppo et  al. 2003). By 
increasing CRH release, melanocortins may 
suppress feeding.

In addition, the effect of glucocorticoids on 
circulating leptin levels may play a role. 
Glucocorticoids can directly increase leptin 
levels (Mostyn et  al. 2001; Zakrzewska et  al. 
1999; Dagogo-Jack et  al. 1997). In normal 
humans, administration of dexamethasone can 
increase plasma leptin almost threefold compared 
to controls (Miell et al. 1996). Similarly, repeated 
injection of dexamethasone for 4  days in rats 
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dramatically increased plasma leptin levels, 
reduced body weight, and suppressed food intake 
(Jahng et  al. 2008). In response to increased 
leptin levels, POMC neuronal activity increases 
to promote satiety; this mechanism may 
contribute to the suppressive effect of acute stress 
on the appetite.

Acute illness is another stressor with suppres-
sive effects on appetite. LPS stimulates insulin 
and leptin secretion in peripheral tissues and 
secretion of other pro-inflammatory cytokines in 
microglial cells and periphery (Grunfeld et  al. 
1996). Altered leptin and cytokine levels during 
an inflammatory challenge suppress food intake 
(Borges et al. 2016a). A recent study found that 
this effect requires activation of the PI3K/Akt 
pathway in hypothalamic neurons (Borges et al. 
2016b). Acute inflammation, like that induced by 
LPS and IL-1β, leads to activation of POMC neu-
rons (Ellacott and Cone 2006), increases expres-
sion of MC4R (Borges et al. 2011), and increases 
POMC expression (Jang et al. 2010; Endo et al. 
2007). MC4R antagonism can prevent LPS-
induced anorexia (Jang et al. 2010; Sartin et al. 
2008; Huang et al. 1999). Interestingly, data from 
pharmacogenetically activated AgRP neurons in 
LPS-treated mice show that AgRP-DREADD 
neuronal activation does not prevent LPS hypo-
phagia in mice (Liu et al. 2016). Thus, leptin acti-
vation of PI3K and Jak-STAT signaling after LPS 
administration may stimulate transcription of 
POMC, which inhibits food intake and promotes 
weight loss (Borges et al. 2016a). Even so, stud-
ies have found no detectable changes in LPS-
induced c-Fos expression in POMC neurons (Liu 
et al. 2016; Gautron et al. 2005). The precise role 
of POMC neurons in LPS-induced hypophagia 
remains inconclusive and further studies are 
warranted.

The mechanism inducing cachexia in longer-
term illnesses, such as cancer (Michalaki et  al. 
2004; Okada et al. 1998; Andersson et al. 2014), 
HIV (Roberts et  al. 2010), heart failure 
(Rauchhaus et  al. 2000; Pan et  al. 2004), and 
COPD (Humbert et  al. 1995), is unclear and 
likely to be multifactorial (Ezeoke and Morley 

2015). In such cases leptin levels drop (Lopez-
Soriano et  al. 1999) and POMC expression 
decreases (Suzuki et  al. 2011; Hashimoto et  al. 
2007; Dwarkasing et al. 2014; Wisse et al. 2003). 
IL-1β activates and depolarizes POMC neurons 
in the ARC, suggesting that this cytokine takes 
part in the hypophagia during these diseases 
(Scarlett et  al. 2007). However, blocking cyto-
kines in the presence of cancer (Arruda et  al. 
2010; Strassmann et  al. 1992; Fujimoto-Ouchi 
et al. 1995; Gelin et al. 1991) or HIV (Ting and 
Koo 2006) only results in a partial, though signifi-
cant, reduction of anorexia-cachexia. AgRP 
inhibits anorexia in mice carrying sarcomas 
(Marks et  al. 2001). In addition, melanocortin 
antagonists increase food intake in several cancer 
models (Tran et al. 2007; Chen et al. 2008; Jiang 
et al. 2007; Markison et al. 2005; Dallmann et al. 
2011; Weyermann et al. 2009; Wisse et al. 2001). 
Furthermore, MC4R knockout mice show no 
decrease in food intake when they carry lung ade-
nocarcinoma (Wisse et al. 2001). In contrast, an 
MC4R antagonist did not restore feeding in rats 
with a methylcholanthrene-induced sarcoma 
(Chance et al. 2003). Therefore, the melanocortin 
system mediates the cachexia produced by some, 
but not all, cancers (Ezeoke and Morley 2015).

11.9.3	 �Chronic Stress and Body 
Weight

The stress that humans encounter on a daily basis 
is generally prolonged and mild, unlike the 
intense stressors that laboratory animals undergo 
to induce appetite suppression. In humans, the 
effect of chronic stress on feeding is highly 
variable. This type of stressor can induce either 
weight gain or anorexia (Oliver et  al. 2000; 
Zellner et al. 2006; Pollard et al. 1995; Adam and 
Epel 2007; Serlachius et  al. 2007). Evidence 
suggests that lean individuals may be more prone 
to weight loss, while overweight individuals tend 
to increase body weight in response to chronic 
stress (Kivimaki et al. 2006). On average, chronic 
psychological life stress induces weight gain 
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(Torres and Nowson 2007); in a meta-analysis of 
13 studies, job strain positively correlated with 
BMI (Nyberg et al. 2012).

Chronic stress in humans (Bjorntorp and 
Rosmond 2000; Peeke and Chrousos 1995; 
Wallerius et al. 2003) and rodents (Rebuffescrive 
et  al. 1992) increases glucocorticoid levels, 
adipocyte size, and abdominal fat. Greater 
responsiveness of the HPA axis generally 
correlates with abdominal obesity (Rodriguez 
et al. 2015). In one study, women were subjected 
to three sessions of stressful activities such as 
public speaking, math tests, and visuospatial 
puzzles over the course of 3  days. Unlike lean 
women, the women with the most central fat 
secreted high levels of cortisol on the first day. In 
addition, they failed to show cortisol habituation 
or a drop in cortisol secretion on subsequent days 
once the tests were familiar (Epel et  al. 2000). 
Poverty is also associated higher basal cortisol 
levels and a lack of cortisol habituation (Adler 
et al. 2000; Gruenewald et al. 2006; Hellhammer 
et  al. 1997; Kirschbaum et  al. 1995). These 
findings likely indicate greater exposure to 
repeated challenges in these individuals that 
results in dysregulation of the stress response 
(Adler and Snibbe 2003).

Chronic cortisol exposure promotes the con-
version of preadipocytes to mature adipocytes, 
expanding the adipose tissue and promoting the 
secretion of pro-inflammatory cytokines and 
adipokines (Peckett et  al. 2011; Andrews and 
Walker 1999). These actions contrast with the 
lipolysis induced by acute glucocorticoid release. 
It is possible that GRα mediates the lipolytic 
effects of glucocorticoids, while MR and GRβ 
mediate adipogenesis during chronic 
glucocorticoid exposure (John et  al. 2016). 
Excess glucocorticoid secretion may be amplified 
locally within adipose tissue by the activating 
enzyme 11β HSD1. 11β HSD1 is elevated in the 
adipose tissue of people with morbid obesity and 
metabolic syndrome (Baudrand et  al. 2010; 
Luisella et  al. 2007; Valsamakis et  al. 2004; 
Constantinopoulos et  al. 2015) and normalized 
by bariatric surgery (Methlie et al. 2013; Woods 
et  al. 2015). Despite highly promising animal 

studies (Morton et al. 2004; Tiwari 2010; Morgan 
et al. 2014), inhibitors of 11β-HSD1 in humans 
have shown inconsistent results for treating 
metabolic syndrome in clinical trials (Walker 
et al. 1995; Andrews et al. 2003; Shah et al. 2011; 
Feig et  al. 2011; Rosenstock et  al. 2010). New 
inhibitors with higher specificity for the enzyme 
and a preference for adipose tissue may be 
required before this treatment strategy is viable.

In addition to directly promoting adiposity, 
stressors can lead to alterations in energy intake. 
Chronic life stress leads to increased appetite, 
binge eating, and craving energy-dense foods, 
snacks, and fast foods (Epel et al. 2001; Steptoe 
et al. 1998; Oliver and Wardle 1999; Gluck et al. 
2004). In female rhesus monkeys, social subor-
dinates under social stress eat more when offered 
unlimited access to rich foods than social domi-
nants (Arce et  al. 2010; Michopoulos et  al. 
2012). In rodents, anorexia from restraint stress 
later leads to increased intake of food high in fat 
and sugar (Foster et  al. 2009; la Fleur et  al. 
2005). Likewise, animals stressed by repeated 
mild pinch exhibited hyperphagia of sweet food 
and a large gain in body weight (Pecoraro et al. 
2004). These behaviors are under the control of 
the dopaminergic mesolimbic reward pathways 
and the HPA axis (Dallman et  al. 2006). They 
are used to calm and sooth emotions to recover 
from the recurring stressors (Dallman et  al. 
2006). This strategy is, in fact, effective in reduc-
ing HPA activation (Foster et al. 2009; la Fleur 
et al. 2005; Pecoraro et al. 2004; Ortolani et al. 
2011). Eating often improves mood, reduces irri-
tability, and increases calmness (Gibson 2006). 
The opioid system, which interacts with the 
mesolimbic dopamine pathway, is a key media-
tor of this hedonic feeding; mu-opioid receptors 
mediate the rewarding properties of food and 
some drugs of abuse (Blasio et al. 2014; Zhang 
and Kelley 2000; Nathan and Bullmore 2009). 
So, β-endorphin production by POMC neurons 
may promote the hyperevaluation of palatable 
foods, leading to the loss of control during 
overeating.

Interestingly, a modest amount of sucrose 
intake can reduce behavioral and physiological 

11  Obesity and Stress: The Melanocortin Connection



292

stress responses without leading to obesity. The 
basolateral amygdala, a key reward- and stress-
regulatory brain region, is necessary for sucrose-
induced stress relief and undergoes synaptic 
remodeling following sucrose intake (Ulrich-Lai 
et al. 2010, 2015). Overall, stress reduction occurs 
in rats with voluntary intake of limited amounts 
of sugar or carbohydrates with no increase in 
body weight (Ulrich-Lai et  al. 2015). These 
results suggest that using small amounts of sweet 
treats to reduce stress can align with healthy body 
weight goals (Ulrich-Lai et al. 2010).

Altered CRH levels could mediate some of 
these effects. Stress induces CRH release by cells 
in the PVN as well as the medial amygdala. 
CRH-1 receptor activation increases palatable 
food consumption and binge eating (Koob 2010; 
Parylak et  al. 2011). Indeed, antagonism of 
CRH-1 receptors in socially subordinate female 
rhesus macaques blocks increased palatable food 
consumption (Moore et  al. 2015). Therefore, 
increased CRH-1 signaling induced by stress 
could promote excess food intake. In addition, 
ghrelin, a peptide produced by gastrointestinal 
endocrine cells that induces feeding and anxious 
behavior (Currie et al. 2005; Seoane et al. 2004; 
Kojima et al. 1999), rises in response to stress. In 
animal models, circulating ghrelin levels increase 
in response to social defeat (Lutter et al. 2008), 
restraint stress (Zheng et al. 2009), and chronic 
stress (Ochi et al. 2008). Mice subjected to social 
defeat had increased ghrelin levels and consumed 
more of a high-fat diet (Chuang et  al. 2011). 
Ghrelin appears to increase preference for sweet 
food independent of calorie content since ghrelin 
administration increased consumption of a 
saccharin solution (Disse et al. 2010). Blocking 
or ablating the ghrelin receptor decreases intake 
of palatable food compared to standard chow 
(Egecioglu et al. 2010). Ghrelin directly activates 
AgRP/NPY neurons to stimulate feeding and 
increase inhibitory GABAergic input on POMC 
cells to suppress release of melanocortins (Briggs 
et al. 2010; Andrews et al. 2008; Andrews 2011). 
Peripheral and central ghrelin administration also 
activates CRH neurons (Cabral et  al. 2012; 

Asakawa et al. 2001), which may promote binge 
eating. Thus, increased ghrelin levels may partly 
mediate stress-induced feeding.

Glucocorticoids may also have direct actions 
on food intake. The glucocorticoid receptor is 
widely expressed in the CNS.  It is found in 
reward areas as well as in key appetite regula-
tory regions like the arcuate nucleus, lateral 
hypothalamus, and paraventricular nucleus of 
the hypothalamus (Morimoto et  al. 1996; Reul 
and de Kloet 1986; Aronsson et al. 1988; Cintra 
et al. 1987; McEwen et al. 1986). In contrast, the 
mineralocorticoid receptor in the CNS is mainly 
restricted to the septum, hippocampus, and 
amygdala (Sanchez et al. 2000). Glucocorticoids 
therefore have direct access to brain sites that 
regulate energy metabolism and reward. In 
humans, individuals with a strong cortisol 
response consumed the most food during an 
experimental stress session (Epel et al. 2001). In 
addition, glucocorticoid administration caused 
higher food intake in subjects allowed ad libi-
tum food selection (Tataranni et al. 1996).

Several mechanisms have been suggested for 
how glucocorticoids induce feeding. 
Glucocorticoids could stimulate feeding responses 
by inhibiting CRH release in the hypothalamus 
(Cavagnini et  al. 2000). CRH and related stress 
peptides like urocortin can act through the CRH-2 
receptor to suppress feeding (Stengel and Tache 
2014). However, as noted above, a reduction in 
CRH would also suppress CRH-1 signaling that 
promotes food intake. Alternatively, 
glucocorticoids may directly stimulate feeding 
responses by increasing the release of NPY and/or 
AgRP in the hypothalamus. Glucocorticoids 
increase AgRP and NPY expression (Goto et al. 
2006; Sato et al. 2005). Likewise, adrenalectomy 
decreases NPY levels and corticosterone 
replacement restores them (White et al. 1990). An 
important recent study found that deletion of GR 
on AgRP neurons resulted in leanness on chow 
diet in females and resistance to diet induced 
obesity in both sexes (Shibata et  al. 2016). 
Interestingly, food intake was unchanged, but 
metabolic rate was increased due to brown adipose 
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tissue activity. These results suggest that 
glucocorticoids can promote obesity by acting in 
on AgRP neurons to suppress energy expenditure 
(Shibata et al. 2016). Additional research will be 
needed to fully understand how glucocorticoids 
interact with homeostatic feeding circuits.

11.9.4	 �Obesity-Induced “Stress”

Obesity is increasingly being described as a state 
of “energetic stress.” Overconsumption of a high-
fat, high-sugar diet can in essence serve as a 
physiological challenge (Gibson 2006; Anderson 
et  al. 1987; Barr et  al. 1999; Decastro 1987; 
Deuster et al. 1992; Dube et al. 2005; Fernandez 
et  al. 2003; Lieberman et  al. 1986; Utter et  al. 
1999). Multiple mechanisms allow energetic 
stress to interact with neuroendocrine stress 
response systems, including by impacting the 
sympathetic nervous system and altering the gut 
microbiota (Harrell et  al. 2016). Although 
melanocortins normally suppress energy use for 
inflammation and food seeking to permit a fast 
response to danger, a chronic rise in inflammation 
can undermine the ability of POMC neurons to 
modulate energy use and intake. The result is 
failure of allostasis or homeostatic adaptation.

High-fat diet feeding rapidly activates multi-
ple inflammatory and stress response pathways in 
the hypothalamus (De Souza et al. 2005). High-
fat diet exposure induces hypothalamic inflam-
mation before body weight gain (Thaler et  al. 
2012) and before peripheral tissues like the liver 
develop inflammation (Tolle and Low 2008). For 
example, saturated fats, but not monounsaturated 
fats, induce the TLR4 and MyD88 inflammatory 
signaling cascades within days, compromising 
hypothalamic function (Lee et  al. 2001; 
Kleinridders et al. 2009; Valdearcos et al. 2014). 
A high-calorie diet rapidly stimulates microglial 
reactivity in the mediobasal hypothalamus 
(Thaler et al. 2012; Gao et al. 2014), leading the 
microglia to increase TNF-α production.

These findings suggest that the loss of sensi-
tivity of POMC neurons to signals of adiposity 
caused by inflammation can perpetuate overeat-

ing. These pathways cause neuronal insulin and 
leptin resistance, which leads to the failure of 
anorexigenic melanocortin circuits to suppress 
more feeding. In parallel to the early occurrence 
of inflammation, 3  days of HFD feeding is 
enough to reduce hypothalamic insulin sensitiv-
ity in rodents substantially (Corander et al. 2011). 
Specifically, brain-specific activation of IKKβ 
interrupts central insulin and leptin signaling and 
results in increased food intake and body weight 
gain (Bouyer and Simerly 2013). Activation of 
NF-kB induces expression of suppressor of cyto-
kine signaling 3 (S0CS3), which then inhibits 
neuronal insulin signaling (Bouyer and Simerly 
2013). Pharmacologic inhibition of neuronal 
TLR4 signaling inhibits fatty acid-induced insu-
lin (Schwartz 2000) and leptin resistance (Magoul 
et  al. 1993). In the same way, mice with CNS-
specific ablation of MyD88 resist HFD-induced 
weight gain and deterioration of glucose metabo-
lism (Rinaman 2010).

The ER system further amplifies these HFD-
induced perturbations by activating unfolded 
protein response (UPR) signaling pathways 
(Jacobowitz and Odonohue 1978; Young 1935; 
Eddy and Strahan 1968). ER stress and IKK/
NF-kB promote each other during HFD feeding 
and worsen the energy imbalance underlying 
obesity (Bouyer and Simerly 2013). Central 
induction of ER stress inhibits the ability of leptin 
and insulin to reduce food intake and body weight 
(Vallarino et  al. 1988). Conversely, mice with 
neuron-specific deletion of ER stress activator 
Xbpl show increased leptin resistance and 
adiposity (Young 1935). Constitutive expression 
of Xbpls selectively in POMC neurons represses 
Socs3 and protein tyrosine phosphatase IB 
(PtplB) expression and protects against HFD-
induced obesity (Vallarino et al. 1989). Therefore, 
ER stress and the UPR are potent regulators of 
POMC neurons.

Central inflammatory processes and weight 
gain lead to low-grade activation of the immune 
system throughout the body. Obesity tightly 
correlates with elevations in inflammatory 
factors, such as tumor necrosis factor (TNF)-α 
and interleukin-6 (IL-6) (Hotamisligil et al. 1993; 
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Xu et  al. 2003). Prolonged low-grade systemic 
inflammation results in tissue damage and 
exacerbates disease processes, such as insulin 
resistance. TNF-α and IL-6 inhibit serine 
phosphorylation in the insulin receptor 
substrate-1 (IRS-1), disrupting insulin signaling 
transduction and causing insulin resistance 
(Wellen and Hotamisligil 2005). Low-grade 
inflammation is an independent risk factor for 
heart disease (Hansson 2005) stroke (Corrado 
et  al. 2006), diabetes (Pradhan et  al. 2001; 
Spranger et  al. 2003), and all-cause mortality 
(Ford 2005). For example, chronic inflammation 
that develops within atherosclerotic plaques can 
cause stroke or myocardial infarction by leading 
to plaque rupture (Libby 2002). Age-related 
macular degeneration (Telander 2011) and 
Alzheimer’s disease (Wyss-Coray 2006) and 
osteoarthritis (Sokolove and Lepus 2013) 
associate with innate immune activation and low-
grade inflammation.

Extended overnutrition perpetuates hypotha-
lamic inflammatory interactions between neu-
rons and non-neuronal cell populations. These 
effects ultimately lead to overeating and further 
weight gain (Jais and Bruning 2017). Persistent 
microglial reactivity and TNF-α production have 
a specific harmful effect on POMC neurons 
(Thaler et al. 2012). Recently it was reported that 
TNF-α released by microglia induces mitochon-
drial stress in POMC neurons; TNF-α acts on 
POMC neurons to promote mitochondrial ATP 
production, cause mitochondrial fusion in neu-
rites, and elevate neuronal excitability and firing 
rates (Yi et  al. 2017). In the long run, these 
actions may disrupt the ability of POMC neurons 
to suppress feeding and increase energy use, 
leading to obesity.

11.10	 �Conclusions

The current obesity crisis is being driven by 
increased consumption of widely available, 
palatable, high-calorie food coupled with 
decreased activity in daily life. The neural 
pathways underlying the motivation for and 
enjoyment of foods high in fat and sugar have 

been well studied (Castro et  al. 2015). These 
include dopaminergic pathways projecting from 
the nucleus accumbens to the ventral tegmental 
area and areas of the NA and ventral pallidum 
sensitive to endogenous opioids. Arcuate POMC 
neurons can influence this system at several lev-
els. POMC neurons innervate key neural nodes 
of the mesocorticolimbic system, including the 
VTA and NAc (Lim et  al. 2012; King and 
Hentges 2011). While β-endorphin has only a 
minor impact on the enjoyment of foods (Mendez 
et  al. 2015), melanocortins like α-MSH can 
influence the motivation to obtain food. Intra-
VTA α-MSH acts through the MC4R to increase 
NAc dopamine levels (Lindblom et al. 2001).

As we have seen, chronic stress increases the 
consumption of certain palatable foods (“comfort 
foods”) in both animals and humans (Pecoraro 
et al. 2004; Dallman et al. 2003; Fairburn 1997). 
It can also precipitate eating disorders like binge 
eating (Cifani et al. 2009; Hagan et al. 2003). In 
fact, binge eating can be induced in rodents with 
a combination of stress and caloric restriction 
(Hagan et  al. 2002; Boggiano and Chandler 
2006). No pharmaceuticals have been approved 
for reducing common forms of emotional eating 
in response to chronic life stress. However, binge 
eating disorder shows improvement when treated 
with amphetamines, which regulate dopamine 
release, as well as off-label antidepressants and 
anti-seizure medications. Developing 
technologies may permit pharmaceuticals that 
specifically target emotional eating to be designed 
in the future (Caruso et al. 2014; Hill and Faulkner 
2017). Until such drugs are available, obesity 
treatment should be individualized using tailored 
strategies to address the type of hedonic eating in 
each patient. For instance, some patients may 
benefit from becoming more selective in the food 
they eat, demanding higher quality and eating 
slowly to enable them to maintain the same 
satisfaction while eating less food (Scarinci 
2004). Learning alternative methods for coping 
with stress (such as exercise, focused breathing, 
progressive muscle relaxation, mediation) may 
assist patients in avoiding stressed-induced 
overeating.
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A wise health professional will also address 
the underlying causes of stress to promote the 
overall well-being of the patient. As previously 
mentioned, this approach is more effective in 
reducing obesity than efforts to improve diets 
directly in at-risk populations. For example, low 
socioeconomic status populations may not use 
exercise facilities made available to them (Giles-
Corti and Donovan 2002). Likewise, giving 
money or food to a low socioeconomic population 
in rural Mexico causes weight gain rather than 
loss (Leroy et al. 2013). Another study found that 
increasing government food vouchers to $2000 
per year had no effect on BMI disparities between 
social strata (Jones and Frongillo 2006). Hoarding 
calories appears to be a psychological mechanism 
to buffer against the stress of low socioeconomic 
status (Dhurandhar 2016). Instead, interventions 
focused on improving socioeconomic 
opportunity, with no focus on nutrition or 
physical activity, may improve rates of obesity 
and diabetes. For example, randomizing families 
to move to a more well-off neighborhood reduced 
average BMI without additional assistance 
(Ludwig et  al. 2011). These data demonstrate 
that, unlike nutrition programs, social 
interventions can reduce obesity. Therefore, 
obese patients with the most stress-filled lives, 
including those in poverty or recovering from 
trauma, require referral to assistance programs 
that focus on the underlying causes of insecurity.

Equilibrium in body weight is described as a 
“set point” of adiposity that the body defends 
against intentional or unintentional weight loss or 
gain. By definition, homeostatic processes cannot 
initiate obesity. However, the homeostatic 
processes suppressing body weight gain seem 
weaker than those preventing drops in body 
weight. Whether this fact is due to beneficial 
effects of storing additional energy in case of 
famine or because modern humans face few 
negative short-term consequences of obesity is 
unclear (Speakman 2008; Sellayah et al. 2014). 
In many individuals, the hedonic drive to 
overconsume in a food environment of easily 
obtainable, palatable, and energy-dense foods 
succeeds in increasing body weight, which the 
homeostatic system then defends against weight 
loss. Increased body weight leads to cellular 

leptin resistance in arcuate circuits regulating 
feeding that diminishes the ability of 
hyperleptinemia to act on the melanocortin 
system to suppress food intake and increase 
energy expenditure (Myers et al. 2010).

Intentional weight loss causes leptin and 
insulin levels to decrease (Rosenbaum and 
Leibel 2014). Interestingly, leptin falls more 
than expected from the magnitude of fat loss 
(Myers et  al. 2010) and remains low if weight 
loss is maintained (Kissileff et al. 2012; Naslund 
et  al. 2000). In response, arcuate melanocortin 
and NPY circuitry increase the drive for food 
and to reduce energy expenditure. In addition, 
circulating levels of the orexigenic hormone 
ghrelin increase while the anorexigenic 
hormones CCK, PYY, and GLP-1 fall (Melby 
et  al. 2017). These changes result in increased 
hunger (Chaput et  al. 2007), food cravings 
(Gilhooly et  al. 2007), and less satiation after 
eating (Cornier et  al. 2004). Weight loss also 
chronically suppresses energy expenditure, 
including resting metabolic rate, the thermic 
effect of food, exercise energy expenditure, and 
non-exercise activity thermogenesis (Kissileff 
et al. 2012; Melby et al. 2017; Fothergill et al. 
2016; Martin et  al. 2007; Byrne et  al. 2012; 
Knuth et  al. 2014). Because of these effects, 
current approaches to substantial weight loss 
maintenance require constant vigilance and 
motivation on the part of the patient (Melby 
et al. 2017). The frequent failure of individuals 
to maintain weight loss discourages patients 
from attempting to lose weight. A method of 
altering the body weight set point would be 
transformative for patient care.

Recently, an important study has made 
advances in understanding the biological basis of 
the set point. Exogenous leptin normally 
suppresses food intake and induces weight loss. 
In obese humans (Zelissen et  al. 2005) and 
animals (Enriori et  al. 2007; Frederich et  al. 
1995), leptin administration fails to have this 
effect, likely as a result of leptin resistance 
induced by chronic exposure to hyperleptinemia 
(Knight et al. 2010; Gamber et al. 2012). Weight 
loss reverses this resistance, allowing leptin to 
assist in the maintenance of weight loss 
(Rosenbaum and Leibel 2014; Chhabra et al. 2016). 
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Similarly, weight-reduced MC4R-null mice 
respond to leptin treatment (Marsh et al. 1999). 
Previous work had shown that mice lacking 
POMC expression develop obesity, hyperlepti-
nemia, and leptin resistance (Bumaschny et  al. 
2012). Interestingly, reducing the weight of these 
mice through food restriction did not restore the 
ability of leptin to inhibit feeding. In other words, 
simply restoring intracellular leptin signaling 
was insufficient to restore the effects of leptin; 
rather, a second defect downstream of the leptin 
receptor exists in these mice. Given that both 
MC4RKO (responsive to leptin when lean) and 
the arc POMCKO mice (not responsive to leptin 
when lean) have no activation of MC4R path-
ways, another receptor responsive to POMC 
products is responsible for conveying leptin 
responsiveness. Chhabra and coworkers next 
examined how to restore leanness to arc 
POMCKO mice. They found that reactivating 
POMC expression after to the establishment of 
obesity did not normalize body weight. However, 
if the mice were first calorie restricted to reduce 
their body weight, POMC reexpression permitted 
them to maintain that weight at a new, lower set 
point (Chhabra et al. 2016). Critically, this nor-
malization could be prevented by inducing hyper-
leptinemia with exogenous leptin. Therefore, 
both hypothalamic leptin sensitivity and Pomc 
gene expression regulate the body weight set 
point. If true, weight loss in the obese patient 
restores the effects of leptin (Rosenbaum and 
Leibel 2014; Chhabra et  al. 2016; Quarta et  al. 
2016) both due to improved intracellular signal-
ing by leptin and also increased activation of a 
receptor for POMC products other than MC4R, 
such as the MC3R or mu-opioid receptor.

Work described in the previous section has led 
to the concept of MC3Rs sensitizing AgRP 
neurons to the metabolic state of the animal and 
regulating hunger (Girardet et  al. 2017). If 
MC3Rs modulate the metabolic “set point” in 
conjunction with leptin, effective leptin signaling 
induced by relatively low levels of leptin needs to 
be synchronized with a normal level of hunger 
and energy expenditure through modulation of 
MC3R action or expression. In theory, this com-
bination can restore a set point in the normal 

body weight range. Therapies targeting melano-
cortin signaling may restore normal body weight 
only when plasma leptin levels are below a criti-
cal threshold. Regular exercise may also heighten 
the brain’s sensitivity to leptin (MacLean et  al. 
2009), suggesting it could also be useful in com-
bination therapy.

Pharmaceuticals targeting the melanocortin 
system hold promise for numerous disorders that 
range from opioid addiction to shock to PTSD. In 
the case of ischemic or neurodegenerative 
disorders, they are already showing exciting 
clinical potential (Arnason et  al. 2013; Leone 
et al. 2013; Spaccapelo et al. 2013). As described 
above, targeting this system to alter the body 
weight set point could also be enormously useful 
for combating rising rates of obesity. This 
potential has led to many preclinical and clinical 
studies investigating how melanocortins can be 
harnessed to stimulate weight loss. Targeting 
melanocortin receptors for the treatment of 
obesity, however, has proven challenging. 
Clinical trial has revealed problematic side 
effects of MCR agonists, including cardiovascular 
actions like tachycardia and elevated arterial 
pressure (Royalty et  al. 2014; Greenfield et  al. 
2009; Girardet and Butler 2014; Skibicka and 
Grill 2009; Kuo et  al. 2003). Indeed, 
melanocortins promote hypertension (Harrell 
et al. 2016); POMC neuron stimulation by leptin 
leads to SNS hyperactivity (da Silva et al. 2013), 
likely via activation of MC4Rs in the VMH (Lim 
et al. 2016). The extensive role of melanocortins 
in the stress response makes these findings 
unsurprising.

A recent MCR agonist that just entered phase 
3 clinical trials for patients with POMC deficiency 
has thus far avoided such side effects. 
Setmelanotide is an eight-amino acid cyclic 
peptide that acts as a full agonist of human 
MC4R.  It binds with ∼10-fold selectivity over 
human MC3R (Fani et al. 2014). Preclinical stud-
ies in obese rhesus macaques indicated subcuta-
neous setmelanotide reduced overall food intake, 
decreased body weight, improved glucose toler-
ance, and did not induce negative cardiac effects 
(Kievit et al. 2013). Phase 1 and 2 studies have 
successfully evaluated the safety, efficacy, toler-

S. Singhal and J. W. Hill



297

ability, pharmacokinetics, and pharmacodynam-
ics of the octapeptide in obese volunteers 
(Ericson et  al. 2017; Chen et  al. 2015; Kuhnen 
et al. 2016). The reason for a lack of cardiovascu-
lar side effects has not been established, but sev-
eral possible explanations exist (Kievit et  al. 
2013). These include (1) differing receptor phar-
macology or mechanism for activating the 
MC4R; (2) higher affinity for the MC3R than 
previous drugs, since MC3R activity may coun-
teract sympathetic stimulation mediated by 
MC4R signaling (Wikberg and Mutulis 2008); or 
(3) lack of penetration by setmelanotide to brain 
regions controlling heart rate and blood pressure. 
Until the cause of the lack of side effects in this 
drug is clear, it will be hard to replicate its suc-
cess. Future techniques that allow targeting of 
MC3R or MC4R receptors in specific brain 
regions such as the VTA may also have clinical 
potential (Vogel et al. 2016).

The evolution of melanocortins from serving 
solely as stress hormones to also serving as 
critical anorexigenic neuropeptides demonstrates 
the opportunistic nature of biology. Yet, this 
system remains profoundly integrated with the 
physiological stress response. This knowledge 
should guide clinical care and pharmaceutical 
development. Overall, a critical need exists for 
studies that focus more broadly on how the CNS 
coordinates behavioral, endocrine, and autonomic 
responses to stressors. Investigating the 
melanocortin system in this light may hold the 
key to future medical advances.

Summative Questions

	1.	 What peripheral actions of melanocortins can 
affect adiposity? Which MC receptors are 
involved?

	2.	 How do glucocorticoids affect behavior?
	3.	 How does α-MSH treat shock?
	4.	 Contrast the effects of melanocortins and 

beta-endorphin on pain.
	5.	 Why are MCs a promising target in the treat-

ment of PTSD?
	6.	 How does the consumption of sweet treats 

interact with stress?
	7.	 What are the most effective treatment options 

for obese patients facing food insecurity?
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