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Abstract. At Crypto’10, Agrawal et al. proposed a lattice-based selec-
tively secure Hierarchical Identity-based Encryption (HIBE) scheme
(ABB10b) with small ciphertext on the condition that λ (the length of
identity at each level) is small in the standard model. In this paper, we
present another lattice-based selectively secure HIBE scheme with depth

d, using a gadget matrix G′ ∈ Z
n×n�logb q�
q with enough large b = 2d to

replace the matrix B ∈ Z
n×m
q in the HIBE scheme proposed by Agrawal

et al. at Eurocrypt’10. In our HIBE scheme, not only the size of cipher-
text at level � is O( d+�

λd
) larger than the size in ABB10b and at least O(�)

smaller than the sizes in the previous HIBE schemes except ABB10b, but
also the size of the master public key is at least O(d) times smaller than
the previous schemes.

Keywords: Lattices · Hierarchical identity-based encryption
Selectively secure · Compact public parameters

1 Introduction

Hierarchical identity-based encryption (HIBE) proposed by Horwitz et al.
[7,8] is an extension of identity-based encryption (IBE)[12], in which arbitrary
string can be as the public key. In a HIBE scheme, an identity at level k of the
hierarchy tree is provided with a private key from its parent identity and also
can delegate private keys to its descendant identities, but cannot decrypt the
message intended for other identities.

HIBE from Lattices: The first lattice-based HIBE scheme based on the Learn-
ing with Errors (LWE) problem [11] proposed by Cash et al. [5], using the basis
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delegation technique for lattices. Agrawal et al. [1] proposed SampleLeft and
SampleRight algorithms, then extended them and obtained another basis dele-
gation technique, with which they constructed an efficient HIBE scheme with
selective security in the standard model. However, the above basis delegation
techniques will increase the dimension of lattice involved, as well as the size of
ciphertext. Later, Agrawal et al. [2] proposed a different delegation mechanism,
called “in place” delegation technique, which preserves the dimension of lattices.
With this technique, they constructed two HIBE schemes with and without ran-
dom oracles, and the dimension of lattices involved for all nodes in the hierarchy
remained unchanged. Nevertheless, as they said in [2], the construction in the
standard model was competitive with previous schemes in [1,5] only when the
bits of identity (|idi| = λ) at level i in the hierarchy is small, e.g., λ = 1 at each
level. Furthermore, as the length of identity increases, e.g., λ = n, the sizes of
ciphertext, private key and master public key will be worse than the parameters
in [1]. With the “in place” delegation technique, Fang et al. also utilized the
Learning with Rounding (LWR) assumption [3,4] over small modulus to con-
struct HIBE schemes. Thus, they possess the same restrictions as [2]. Micciancio
and Peikert [10] introduced the notion of G-trapdoor for lattices and proposed an
efficient trapdoor delegation for lattices. With this technique, they can decrease
the public key and ciphertext by 4 factors and the size of the delegated trapdoor
grows only linearly with the dimension of lattices in the hierarchy, rather than
quadratically in [1], but the ciphertext will be increased by nk log q bits node by
node.

1.1 Our Contributions and Techniques

We apply a gadget matrix G′ ∈ Z
n×nk
q defined in [10] into the basis delega-

tion technique in [1] to construct a selectively secure HIBE scheme with small
parameter based on the LWE problem in the standard model, where k = �logb q�,
b = 2d and d is the maximum depth of the HIBE scheme.

The public parameter in our HIBE scheme needs to contain one matrix of
the same dimension as G′ (i.e., about n logb q) and the size of ciphertext is
n logb q log q ≈ 1

d · n log2 q for each level of the hierarchy. However, we obtain
this improvement at the cost of increasing the size of private key. Thus, the
parameters in our HIBE are the trade-off of the sizes of the public parameter
and private keys. Next, we compare our scheme with the previous schemes in
following Table 1.

From Table 1, the advantages of our HIBE scheme are:

1. The size of the master public key in [1,10] is reduced by a factor of O(d);
2. The sizes of the ciphertext and lattice dimension at level � are d

d+� · � = O(�)
times smaller than the sizes in [1,10] and d+�

d < 2 times larger than the sizes
in [2] on the condition that λ = 1. In particular, the parameters in ABB10b
except the private key are competitive with our HIBE scheme only when
λ = 1.
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Table 1. Comparison of Lattice-based selective-id secure HIBE schemes in the standard
model. In this table, d is the maximum depth of HIBE schemes and � be the depth of
the identity in query. |ct| denotes the size of ciphertext at level �. |mpk| denotes the the
size of the master public key in scheme. |SKid | denotes the size of the private key ar
level �. Error rate (1/α) denotes the security of LWE problem. The last columns denotes
the lattice dimension involved at level �. In order to compare the HIBE schemes, we
let λ be the number of bits in each component of the identity.

Schemes |ct| |mpk| |SKid | Error rate 1/α Lattice
dimension

[5] Õ(λ�nd2) Õ(λn2d3) Õ(λ2�3n2d2) Õ(dd(λn)d/2) Õ(λ�nd)

[1] Õ(�nd2) Õ(n2d3) Õ(�3n2d2) Õ(ddnd/2) Õ(�nd)

[2] Õ(λ2nd2) Õ(λ3n2d3) Õ(λ3�n2d2) Õ((λdn)λd+d/2) Õ(λnd)

[10] Õ(�nd2) Õ(n2d3) Õ(�n2d2) Õ(ddnd/2) Õ(�nd)

Our HIBE Õ(nd(d+�)) Õ(n2d2) Õ(( d
log n

+�)n2(d+�)2) Õ((4d)d/2nd/2) Õ(n(d+�))

And the disadvantages of our scheme are

1. The size of the private key at level � is d+� log n
� log n · (d+�

d )2 = O( d
� log n + 1) times

larger than [10] and the maximum ratio can reach to O( d
log n + 1)when � = 1.

2. The error rate 1/α is lightly smaller than the sizes in [1,10] when d > 4.

Analysis: Before explaining why this modification works, let us firstly describe
the reason that the sizes of ciphertexts in [1,10] increase as mentioned above.
In [1], the identity-based encryption matrix for identity id = (id1, · · · , id�) ∈
({0, 1}λ)� is

Fid = [A|A1 + H(id1)B| · · · |A� + H(id�)B] ∈ Z
n×(�+1)m
q

where A,A1, · · · ,A�,B ∈ Z
n×m
q and m = O(n log q). The difference in [10] is

that the matrix B is replaced by a gadget matrix G ∈ Z
n×nk
q , that is,

Fid = [A|A1 + H(id1)G| · · · |A� + H(id�)G|A�+1] ∈ Z
n×(m+(�+1)nk)
q

where A ∈ Z
n×m
q , A1, · · · ,A� ∈ Z

n×�k
q and k = �log q�. Obviously, the cipher-

text in [1,10] will increase m = O(n log q) and k = n�log q� elements in Zq to
each level in the hierarchy, respectively.

The size of the public parameters of the HIBE scheme in [10] is

(m + dnk)n log q = (O(n log q) + dnk)n log q = (O(1) + d) · n2 log2 q

where d is the maximum depth of the HIBE scheme and O(1) here satisfies
O(1) ≥ 2 is a small constant. That is, the parameter d plays the important role
on the size of the public parameters.

The straight modification is to replace B and G with another matrix, which
has a short basis as trapdoor but with smaller columns. We know that the gadget
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matrix G has special structure that can be simply modified. The widely used
version of G is defined as

G = gt ⊗ In ∈ Z
n×nk
q

where gt = (1, 2, · · · , 2k−1) and k = �log q�. Lattice Λ⊥(G) has a short basis
S and ‖S̃‖ ≤ √

5. In fact, a generalized notion of gadget G provided in [10] is
defined as

G = gt ⊗ In ∈ Z
n×nk
q

where gt = (1, b, · · · , bk−1) and k = �logb q�. Then lattice Λ⊥(G′) has a short
basis S′ and ‖S̃′‖ ≤ √

b2 + 1.
If we let b be large enough, then k can be small enough. How small should

be k to choose in the HIBE scheme? What we want is that the item dbk is
approximate n log q. If we set b = 2d, then we have

dnk = dn�logb q� = dn(
1
d

log q + e) = n log q + dne

where e ∈ [−1/2, 1/2) and the modulus q in [1,10] is at least Õ(nd/2) and
log q = O(d · log n) � de. Therefore, we have dnk ≈ n log q and we can imply
that

(m + dnk)n log q = O(n2 log2 q)

When using the gadget matrix G′, the identity-based encryption matrix is
similar with [10]. However, we do not adopt the DelTrap algorithm to delegate
the private key for identities. Because the Gaussian parameter σ� in DelTrap
algorithm requires that σ� ≥ s1(Rid�−1) · ‖ ˜S′‖ω(

√
log n) and then the output

s1(Rid�
) ≤ σ� · √

m will be proportion to ‖ ˜S′‖� = 2�d which could be larger
than q. Therefore, we still utilize the SampleBasisRight algorithm in the security
proof.

The cost of this modification is that the norm of basis increases from
√

5 to√
b2 + 1, which will affect the bound of Gaussian parameter of SampleBasisRight

algorithm in the security of proof. The Gaussian parameter σ� of SampleBasis-
Right algorithm in level � should satisfy

σ� ≥ s1(Rid) · ‖S̃′‖ · ω(
√

log n) for � = 1, · · · , d

It seems that σ� � s1(Rid) · √
5 · ω(

√
log n) = s1(R) · ‖S̃‖ · ω(

√
log n),

which maybe deteriorate the parameters of our HIBE scheme. Fortunately, this
intuition is not true for our scheme.

In the Subsect. 3.2 for the correctness of our scheme, we give the bound that
the Gaussian parameter σ�+1 at level � + 1 should satisfy

σ�+1 ≥ s1(Rid) · ‖S̃′‖ · (m + �nk)
�
2 · ω(log

�
2 (m + �nk))

to meet the conditions of SampleBasisLeft and SampleBasisRight algorithms,
where s1(Rid) ≤ O(

√
m + �nk). Meanwhile, the correctness requires that

α�qω(
√

log n) + α�qσ�(m + �nk)3/2 · ω(
√

log(m + �nk)) ≤ q/5



214 D. Zhang et al.

and the hardness of LWE requires that α�q ≥ 2
√

n.
Without loss of generality, we can set m = 2n log q. Hence, the modulus q

should satisfy

q ≥ √
n · (m + knd)(d+3)/2 · b · ω(log

d
2 (m + knd))

⇒ q ≥ √
n · (2m)d/2 · 2d · ω(log

d
2 (2m))

⇒ q ≥ √
n · (dn log n)d/2 · 2d · ω(log

d
2 (2m))

⇒ q ≥ Õ((4d)d/2 · nd/2)

which is sufficient for our HIBE scheme and lightly smaller than the sizes of q
in [1,10] if d > 4.

Furthermore, we decrease the columns of G from n�log q� to n�logb q� so that
the sizes of ciphertext and the master key increase linearly with n�logb q�, rather
than m in [1] or n�log q� in [10] for each hierarchy and m + �nk < m + dnk <
2m = O(dn log n). This is why the sizes of ciphertext and the master key decrease
by about � and d factors, respectively.

2 Preliminaries

Let n be the security parameter and we use negl(n) to denote an arbitrary
negligible function f(n) where f(n) = o(n−c) for every fixed constant c. We
say that a probability is overwhelming if it is 1 − negl(n). We use poly(n) and
˜O(n) to denote an unspecified function f(n) = O(nc) and f(n) = O(n · logcn)
respectively for some constant c. We use A ≈c(s) B to denote a distribution A is
computationally (statistically) indistinguishable from a distribution B. Let Zq be
a q-ary finite field for a prime q ≥ 2. The s1(R) are called the singular values of
R and s1(R) = maxu ‖Ru‖ = maxu ‖Rtu‖ ≤ ‖R‖, ‖Rt‖, where the maximum

are taken over all unit vectors u. Let a
$←− Zq denote that a is randomly chosen

from Zq.

2.1 Hierarchical IBE

An identity-based encryption (IBE) scheme with the message space M can be
defined by a tuple of PPT algorithms (KeyGen, Extract, Enc, Dec) as below:

– KeyGen(1n) → (mpk,msk): The probabilistic algorithm KeyGen(1n) gener-
ates (mpk,msk), which denotes public key and master key respectively.

– Extract(mpk,msk, id) → SKid : The Extract algorithm uses the master key
to extract a private key SKid corresponding to a given identity id.

– Enc(mpk, id,m) → c: Given a message m ∈ M and an identity id, the
probabilistic algorithm Enc uses the public key mpk to encrypt the message
with respect to the identity id and outputs a ciphertext c.

– Dec(SKid , id, c) → m or⊥: Given a ciphertext c with respect to an identity
id, the deterministic algorithm Dec uses the private key SKid to recover the
message m. When the ciphertext c is invalid, the algorithm outputs ⊥.
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In a HIBE scheme of depth d, there is a fifth algorithm Derive, which takes
as input an identity id = {i1, ..., i�} at depth � ≤ d and the private key SKid�−1

of the parent identity id�−1 = {i1, ..., i�−1} at depth � − 1 > 0 and outputs the
private key Skid for identity id. In such an HIBE scheme, identities are vectors.

For an (H)IBE system described above, the correctness is that: for any mes-
sage m ∈ M, id and (mpk,msk) generated by KeyGen(1n), c is the ciphertext
output by the Enc(mpk, id,m) algorithm, then the Dec(SKid , id, c) will output
m with overwhelming probability.

2.2 Security Definition

HIBE Security. For a HIBE system, besides the requirement of correctness, it
also needs to achieve other security requirements. In the following, we will simply
define selective security and adaptive security for a HIBE system. Let A be any
non-uniform probability polynomial time adversary, the security experiment of
selective security (INDr-sID-CPA) is defined as follows:

– Init: The adversary A is given the maximum hierarchy depth d and announces
a target identity id∗ = {i1, ..., it} of depth t < d.

– KeyGen: The simulator S generates the KeyGen algorithm to generate the
public parameter mpk and master key msk and sends mpk to adversary A.

– Query1: The adversary A makes queries on identity id1, ..., idk, where no one
is a prefix of id∗. The simulator returns the private key Skidi

responding to
each query on identity idi by calling the Extract algorithm.

– Challenge Ciphertext: When the phase of Query1 is over and the adversary A
sends a challenge message m ∈ M to S. The simulator S chooses a random
bit b ∈ {0, 1} and a random c′ from the ciphertext space. If b = 0, then
S generates the challenge ciphertext c∗ by calling Enc(mpk, id∗,m) with
message m; Otherwise, S sends c′ as the challenge ciphertext c∗ to A.

– Query2: The adversary makes additional adaptive private key queries as in
the phase of Query1 and the simulator proceeds as before.

– Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1} and wins if b′ = b.

Definition 1. Let A be a PPT adversary in above INDr-sID-CPA experiment
attacking the HIBE scheme, the advantage of adversary A is defined as

Advindr-sid-cpa
HIBE,A �

∣

∣

∣

∣

Pr[b′ = b] − 1
2

∣

∣

∣

∣

We say an HIBE scheme of depth d is selective secure if for any INDr-sID-CPA
adversaries A there is

Advindr-sid-cpa
HIBE,A ≤ negl(n)
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2.3 The Gadget Matrix G

In this section, we will recall a parity-check matrix G used in [10], where G is
defined as:

G = In ⊗ gt ∈ Z
n×nk, k = �logb q�

where gt = (1, b, b2, ..., bk−1) ∈ Z
k is a special vector, In ∈ Z

n×n is the identity
matrix and ⊗ denotes the tensor product.

For the lattice Λ⊥(gt), we have a good basis T as follows, and then S =
In ⊗ T ∈ Z

nk×nk is the basis of Λ⊥(G), that is,

T :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

b q0
−1 b q1

. . . :
b qk−2

−1 qk−1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ Z
k×k,S := I ⊗ T =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

T
T

. . .
T

T

⎤

⎥

⎥

⎥

⎥

⎥

⎦

∈ Z
nk×nk

where q0, ..., qk−1 ∈ [0, b)k is decomposition of q = Σi(bi · qi) with base b.
There are some properties of this gadget matrix G proposed in [10]:

– Short Basis: S is the basis of lattice Λ⊥(G) with ‖S̃‖ ≤ √
b2 + 1.

– Inverting simply: The function gG(s, e) = Gts+ e mod q can be inverted
in quasi-linear time O(n · logcn) for any s ∈ Z

n
q and e ← χm such that

e ∈ P1/2(q · S−t) or e ∈ P1/2(q · S̃−t).

2.4 Some Algorithms

In this subsection, we will recall some algorithms: the trapdoor generation algo-
rithm GenTrap in [10], the preimage sampling algorithms SamplePre with a short
basis in [6] and SampleD with a trapdoor R in [10] and the extensions of preimage
sampling algorithms SampleLeft and SampleRight in [1]. The concrete algorithms
were described as follows.

Lemma 1 ([10]). Let n, q > 2, m = O(n log q) be integers, then there exists a
polynomial time algorithm GenTrap(n,m, q) outputs a vector A ∈ Z

n×m
q and a

matrix TA ∈ Z
m×m, where TA is a basis for Λ⊥(A) such that A is statistically

close to uniform and ‖˜TA‖ = O(
√

n log q).

Lemma 2 ([6]). Let n, q > 2, w > n, m = O(n log q) be integers. Given A ∈
Z

n×m
q , a matrix TA ∈ Z

m×m is a basis for Λ⊥(A), a vector u ∈ Z
n
q and a

Gaussian parameter σ ≥ ‖˜TA‖·ω(
√

log(m + w)), then there exists a polynomial
time algorithm SamplePre(A,u,TA, σ) outputs a vector e ∈ Z

m sampled from a
distribution which is statistically close to DΛ⊥(A),σ,u and satisfies A ∗ e = u.

Lemma 3 ([10]). Let n, q, w > n be integers, m = O(n log q) and k = �logb q�
for 2 < b < q. Given A ∈ Z

n×m
q , R ∈ Z

m×�, A′ = AR + HG ∈ Z
n×nk
q and a

vector u ∈ Z
n
q , a matrix S ∈ Z

nk×nk such that S is a basis for Λ⊥(G) and a
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Gaussian parameter σ ≥ √

s1(R)2 + 1 · ‖˜S‖ ·ω(
√

log(m + nk)), then there exists
a polynomial time algorithm SampleD(A,R,A′,u,S, σ) outputs a vector e ∈
Z

m+kn sampled from a distribution which is statistically close to DΛ⊥([A|A′]),σ,u

and satisfies [A|A′] ∗ e = u.

Lemma 4 ([1,5]). Let n, q > 2, w > n, m = O(n log q) be integers. Given
A ∈ Z

n×m
q , A′ ∈ Z

n×w
q and a vector u ∈ Z

n
q , a matrix TA ∈ Z

m×m is a basis for
Λ⊥(A) and a Gaussian parameter σ ≥ ‖˜TA‖·ω(

√

log(m + w)), then there exists
a polynomial time algorithm SampleLeft(A,A′,u,TA, σ) outputs a vector e ∈
Z

m+w sampled from a distribution which is statistically close to DΛ⊥([A|A′]),σ,u

and satisfies [A|A′] ∗ e = u.

Lemma 5 ([1,9]). Let n, q > 2, w > n, m = O(n log q) be integers. Given
A ∈ Z

n×m
q , R ∈ Z

m×w, B ∈ Z
n×w
q , A′ = AR + B ∈ Z

n×w
q , a vector u ∈ Z

n
q

and a matrix TB ∈ Z
w×w is a basis for Λ⊥(B) and a Gaussian parameter

σ ≥ ‖˜TB‖ · s1(R) · ω(
√

log w), then there exists a polynomial time algorithm
SampleRight(A,R,A′,u,TB, σ) outputs a vector e ∈ Z

m+w sampled from a dis-
tribution which is statistically close to DΛ⊥([A|A′]),σ,u and satisfies [A|A′]∗e=u.

2.5 Trapdoor Delegation Algorithms

In this subsection, we will recall several trapdoor delegation algorithms. The
SampleBasisLeft and SampleBasisRight algorithms were extensions of SampleLeft
and SampleRight in [1]. Micciancio and Peikert [10] introduced another trapdoor
delegation algorithm DelTrap with a trapdoor R. The concrete algorithms are
described as follows.

Lemma 6 ([1]). Let n, q > 2, w > n, m = O(n log q) be integers. Given A ∈
Z

n×m
q , A′ ∈ Z

n×w
q , a matrix TA ∈ Z

m×m is a basis for Λ⊥(A) and a Gaussian
parameter σ ≥ ‖˜TA‖ · ω(

√

log(m + w)), then there exists a polynomial time
algorithm SampleBasisLeft(A,A′,TA, σ) outputs a basis T for lattice Λ⊥([A|A′])
and satisfies ‖˜T‖ ≤ σ

√

(m + w).

Lemma 7 ([1]). Let n, q > 2, m = O(n log q) be integers. Given A ∈ Z
n×m
q

and the identity-based encryption matrix for id = (id1, · · · , id�) is

Fid = [A|AR1 + H(id1)B| · · · |AR� + H(id�)B] ∈ Z
n×(�+1)m
q

Let R� = (R1| · · · |R�) and hid = [H(id1 − id∗
1)B| · · · |H(id� − id∗

� )B] ∈ Z
n×�m
q .

The matrix TB ∈ Z
m×m is a basis for Λ⊥(B) and a Gaussian parameter

σ ≥ ‖˜TB‖ · s1(R�) · ω(
√

log m), then there exists a polynomial time algorithm
SampleBasisRight(A,R�,Fid ,TB, σ) outputs a basis T for lattice Λ⊥(Fid) and
satisfies ‖˜T‖ ≤ σ

√

(� + 1)m.

In our work, we will use the gadget matrix G′ instead of the matrix B
in the SampleBasisRight algorithm and use the algorithm SampleD instead of
SampleRight in the SampleBasisRight algorithm. Because the G′ is rank n and
S′ is a short basis for Λ⊥(G′), we can obtain the following corollary.
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Corollary 1. Let n, q > 2, w > n, m = O(n log q) be integers. Given A ∈ Z
n×m
q

and the identity-based encryption matrix for id = (id1, · · · , id�) is

Fid = [A|AR1 + H(id1 − id∗
1)G

′| · · · |AR� + H(id� − id∗
� )G

′] ∈ Z
m+�nk
q

Let R� = (R1| · · · |R�) and hid = [H(id1 − id∗
1)G

′| · · · |H(id� − id∗
� )G

′] ∈ Z
n×�nk
q .

The matrix S′ ∈ Z
nk×nk is a basis for Λ⊥(G′) and a Gaussian parameter

σ ≥ ‖ ˜S′‖ · s1(R�) · ω(
√

log nk), then there exists a polynomial time algorithm
SampleBasisRight(A,R�,Fid ,S′, σ) outputs a basis T for lattice Λ⊥([A|A′]) and
satisfies ‖˜T‖ ≤ σ

√
m + �nk.

Proof. When we replace the matrix B with the gadget matrix G′ and set the
Gaussian parameter σ ≥ ‖ ˜S′‖ · s1(R�) · ω(

√
log nk), then output of the algo-

rithms SampleRight and SampleD are the same. Therefore, the SampleBasisRight
algorithm will output the short basis for Fid . ��
Lemma 8 ([10]). Let n, q > 2, m = O(n log q) be integers. Given A ∈ Z

n×m
q

and R ∈ Z
m×nk is a G-trapdoor for A, let A′ = [A|A1] ∈ Z

n×(m+k′)
q , a tag

H ∈ Z
n×n
q and a Gaussian parameter σ ≥ √

s1(R)2 + 1 · s1(
√

ΣG), then there
exists a polynomial time algorithm DelTrap(A,R,A′, σ) outputs a trapdoor R′ ∈
Z

m×k′
q for A′ with tag H′ such that AR′ = H′G′ − A1 and satisfies s1(R′) ≤

σ · O(
√

m +
√

k′), where G′ is set by base b and k′ = �logb q�.

3 Hierarchical IBE with Compact Ciphertext from LWE

In this section, we will introduce our HIBE scheme based on the LWE problem.
In the construction, we will utilize the function defined in [1,10] that encodes
the identities into matrices and satisfies the “unit differences” property: for any
idi �= idj , H(idi)−H(idj) = H(idi − idj) is invertible and H(0) = 0. Moreover,
the parity-check matrix G′ in our construction is defined as G′ = gt ⊗ In ∈
Z

n×nk, where gt = (1, b, b2, ..., bk−1) ∈ Z
k, b = 2d and k = �logb q�. And S′ is a

short basis of lattice Λ⊥(G′) with ‖S̃′‖ ≤ √
b2 + 1.

3.1 The HIBE Construction

– KeyGen(1n, q) → (pk, sk): The algorithm calls (A,TA) $←− GenTrap(n,m, q) to
generate A ∈ Z

n×m
q and a matrix TA is a short basis for lattice Λ⊥(A), then

randomly samples d matrices A1, · · · ,Ad
$←− Z

n×nk
q and a vector u

$←− Z
n
q .

Therefore, the master public key mpk and the master secret key msk are

mpk = (A,A1, · · · ,Ad,u) ∈ Z
n×(m+dnk+1)
q ; msk = TA.

– Derive(mpk, id|id�,SKid) → SKid|id�
: Given the master public key mpk, a

private key SKid for identity id = {id1, · · · , id�−1} at depth � − 1 as inputs,
the algorithm works as follows:
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1. Let Aid = [A1 + H(id1)G′| · · · |A�−1 + H(id�−1)G′] and Fid = [A|Aid ],
then SKid is a short basis for lattice Λ⊥

q (Fid);
2. Let Fid|id�

= [Fid |A� + H(id�)G′];
3. Construct short basis for lattice Λ⊥

q (Fid|id�
) by invoking

S ← SampleBasisLeft(Aid ,A� + H(id�)G′,SKid , σ�)

4. Output SKid|id�
= S as the private key for identity id|id�.

– Encrypt(mpk, id,m) → c: Given the master public key mpk, the identity id
and message m ∈ {0, 1} as inputs, the algorithm works as follows:
1. For identity id = {id1, · · · , id�}, compute

Aid = [A1 + H(id1)G′| · · · |A� + H(id�)G′] ∈ Z
n×�nk
q

and Fid = [A|Aid ] ∈ Z
n×(m+�nk)
q ;

2. Choose a uniformly randomness s
$←− Z

n
q ;

3. Choose a uniformly random matrix R
$←− {−1, 1}m×�nk;

4. Choose (x0,x1) ← DZ,α�q × Dm
Z,α�q, then set xt

2 = xt
1R ∈ Z

�nk
q and

compute
{

c0 = stu + x0 + �q/2� · m
c1 = stFid + [xt

1|xt
2] = st[A|Aid ] + [xt

1|xt
2]

5. Output the ciphertextct = (c0, ct
1) ∈ Zq × Z

m+�nk
q .

– Decrypt(c, id, SKid) → m or ⊥: Given the ciphertext c and the private key
SKid for identity id as input, the algorithm works as follows:
1. Parse ct = (c0, ct

1), if c cannot parse in this way, output ⊥;
2. Compute Aid , Fid as before;
3. Let τ� = σ� ·√m + �nk ·ω(

√

log(m + �nk)) ≥ ‖S̃Kid‖ ·ω(
√

log(m + �nk))
and sample eid ∈ Z

m+�nk as

eid ← SamplePre(Fid ,SKid , τ�,u)

s.t. Fideid = u;
4. Compute w = c0 − c1eid ;
5. Compute and output the message m = � w

q/2� (mod 2).

3.2 Parameters and Correctness

In this subsection, we will describe the requirement of parameters which meets
the correctness and security of the above HIBE scheme, then we will propose a
set of parameters.

Lemma 9 (Correctness). Assume the parameters n,m, q, �, α�, σ�, τ� satisfy
the condition α�qω(

√
log n) + α�qσ�(m + �nk)3/2 · ω(log(m + �nk)) ≤ q/5 with

all but negligible probability, then the Dec algorithm of the above HIBE will have
negligible decryption error.
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Proof. For a valid ciphertext c of message m, the Dec algorithm computes

c0 − ct
1eid = �q

2
�m + x0 − [xt

1|xt
2]eid .

Thus, on the condition that ‖x0 − [xt
1|xt

2]eid‖ ≤ q/5, the Dec algorithm
can recover the message m correctly. Since x0 ← DZ,α�q, we have ‖x0‖ ≤
α�qω(

√
log n) with all but negligible probability. Because R

$←− {−1, 1}m×�nk,
then we have ‖R‖ ≤ O(

√
m + �nk). Since et

id = (et
1,e

t
2) is sampled by

SamplePre(Fid ,SKid , τ�,u), let τ� = σ� · √
m + �nk · ω(

√

log(m + �nk)) ≥
‖S̃Kid‖ · ω(

√

log(m + �nk)), we have ‖eid‖ ≤ τ� · √
m + �nk with overwhelm-

ing probability. In addition, we have ‖e1 + R · e2‖ ≤ ‖e1‖ + ‖R · e2‖ ≤ σ�(m +
�nk)3/2 ·ω(

√

log(m + �nk)). Since x1 ← Dm
Z,α�q, then we have ‖xt

1(e1+R·e2)‖ ≤
‖e1 + R · e2‖ · α�qω(

√
log m) ≤ α�qσ�(m + �nk)3/2 · ω(log(m + �nk)). Therefore,

the error item during the process of decryption is bounded by

‖x0 − [xt
1|xt

2]eid‖ ≤ α�qω(
√

log n) + α�qσ�(m + �nk)3/2 · ω(log(m + �nk))

with all but negligible probability. Under the assumption in the lemma, the
Dec algorithm of the above HIBE will have negligible decryption error. That
completes the proof. ��
To satisfy the requirement of correctness and security, taking n as security
parameter, we set the parameters as

m = O(n log q) = O(dn log n) , q = Õ((4d)d/2nd/2)
σ� = 2d(m+�nk)

�
2 ω(log

�
2 (m + �nk)) , 1/α� = σ�(m + �nk)3/2ω(log(m + �nk))

The parameters The sizes (bits)

mpk (m + dnk + 1)n log q = Õ(d2n2)

SKid at level � (m + �nk)2 log(σ�

√
m + �nk) = Õ(( d

log n
+�) · (d+�)2n2)

ct at level � (m + �nk) log q = Õ(nd(d + �))

Error rate at level � Õ(2dd(�+3)/2n(�+3)/2)

4 Conclusion

In this paper, we introduce a trade off of the sizes of public parameter and
ciphertext and the size of private key in the selective-secure LWE-based HIBE
scheme in the standard model. We obtain this trade-off by adjusting the base of
the gadget matrix G ∈ Z

n×n�logb q�
q defined in [10]. By setting b = 2d, the size

of the master public key and ciphertext at level � can de reduced by a factor
of O(d) and O(�) respectively, at the cost of increasing the size of private key
by a factor of O( d

� log n + 1). And the parameters in ABB10b scheme except the
private key is competitive with our HIBE scheme only when λ = 1.
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