
Pinus radiata (D. Don) Somatic
Embryogenesis

Itziar A. Montalbán and Paloma Moncaleán

1 Introduction

Radiata pine (Pinus radiata D. Don) is one of the most widely planted exotic pine
species in rainfall environments of the Southern hemisphere (Yan et al. 2006). Its
fast growth has stimulated an exhaustive study of wood production, and the
development of breeding programs (Espinel et al. 1995; Codesido and
Fernández-López 2009). Although utility of in vitro organogenesis has been proven
for clonal propagation of this species (Aitken-Christie et al. 1985), a limitation of
this method is the high cost of the process for mass production commercially. Other
systems to achieve in vitro propagation of Pinus radiata adult trees have been
developed (Montalbán et al. 2013), but changes in the attributes of resulting plants
have sometimes been observed and rejuvenation of the material has been transitory
under in vitro conditions. Somatic embryogenesis (SE) has been the most important
development for plant tissue culture, not only for mass propagation but also for
enabling the implementation of biotechnological tools that can be used to increase
the productivity and wood quality of plantation forestry. Therefore, many efforts
have been made in the last years to develop and optimize SE systems that can be
used in the breeding programs.

Somatic embryogenesis in P. radiata was first described by Smith et al. (1994)
followed by improved protocols of different aspects of SE such as initiation
(Hargreaves et al. 2009; Montalbán et al. 2012), maturation (Montalbán et al.
2010), cryopreservation (Hargreaves et al. 2002) and expression of genes (Aquea
and Arce-Johnson 2008; García-Mendiguren et al. 2015). Modifications of the
tissue culture media are likely to influence the success of SE initiation (Montalbán
et al. 2012). However, few studies have focused on the impact of temperature
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(Kvaalen and Johnsen 2007). It is known that modifications in water availability,
either by solute-imposed water stress or by physical restriction, will impact the
development of embryonal masses (EMs) (Klimaszewska et al. 2000). Although the
effect of different concentrations of gellan gum at maturation has been studied
(Teyssier et al. 2011; Morel et al. 2014), the combination of different temperatures
and water availability has not been previously tested at the initial stages of SE in
conifers. As reviewed by Von Aderkas and Bonga (2000) and Neilson et al. (2010),
it is clear that stress has the potential to induce or improve embryogenesis in species
that have been considered recalcitrant.

Long periods of proliferation of the EMs can produce losses by contamination,
somaclonal variation, or a decrease in their ability to generate embryos together
with the high maintenance costs (Breton et al. 2006). One way to overcome this
bottleneck is the cryopreservation of EMs; EMs are kept in liquid nitrogen because
these low temperatures induce the synthesis of proteins that favours the conser-
vation and subsequent viability of the EMs (Kong and von Aderkas 2011).
However, this method presents some drawbacks such as: it is a complex technique
comprising several stages (Gale et al. 2007); – it is an expensive process from the
economic and technical point of view (Bomal and Tremblay 2000); it is necessary
the presence of cryoprotectants that prevent the formation of ice crystals (Salaj et al.
2012); the most popular cryoprotectant is DMSO but is toxic (Arakawa et al. 1990)
and may be the cause of genetic and epigenetic changes in tissues (Krajnakova et al.
2011). Nowadays, efficient and reproducible protocols for EMs cryopreservation
have been described in Pinaceae (Lelu-Walter et al. 2008). However, cryopreser-
vation of somatic embryos (Se) has been achieved for periods less than one month
(Barra-Jiménez et al. 2015) in Quercus species, which does not guarantee long-term
storage. Preliminary studies on P. radiata and other conifers (Hargreaves et al.
2004; Kong and Von Aderkas 2011), suggest that it is possible to develop simple
alternative cryopreservation of Se at low temperatures maintaining their viability in
the future.

An improved protocol for initiation of EMs, proliferation, somatic embryo
maturation and germination as well as low temperature Se storage are presented in
this chapter. Furthermore, recent studies focused on SE optimization in Pinus ra-
diata are shown.

2 Initiation of Embryogenic Tissue

Cone collection and embryo stage assessment One-year-old green female cones,
enclosing immature zygotic embryos of Pinus radiata at the precotyledonary stage
(Montalbán et al. 2012), are collected and stored at 4 °C until processing. Cones are
usually processed within one week, although they can be stored for more than one
month with no detriment in SE initiation rates (Montalbán et al. 2015).
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Seed sterilization Intact cones are sprayed with 70% (v/v) ethanol, split into
quarters and all immature seeds dissected. Then, immature seeds are surface ster-
ilized in H2O2 10% (v/v) plus two drops of Tween 20® for 8 min and then rinsed
three times under sterile distilled H2O in sterile conditions in the laminar flow unit.
Seed coats are removed and whole megagametophytes containing immature
embryos are excised out aseptically and placed horizontally onto the medium
(Fig. 1).

Basal medium preparation Initiation of embryogenic tissue is usually carried out
on EDM basal medium (Walter et al. 2005, Table 1) at 23 °C. The initiation
medium contains 30 g L−1 sucrose, 4.5 µM 2,4-dichlorophenoxyacetic acid
(2,4-D), 2.7 µM benzyladenine (BA) and 3 g L−1 gelrite®. The pH is adjusted to
5.7, and the medium is sterilized at 121 °C for 20 min. After autoclaving,

Fig. 1 Initiation of
embryonal masses from Pinus
radiata megagametophytes
cultured at 23 °C on EDM
(Walter et al. 2005), bar
0.2 cm

Table 1 Constituents of
Pinus radiata in vitro culture
medium including salt
components and organic
additives. Note that hormonal
supplements, carbohydrate
source, activated charcoal or
agar concentrations are
specified in the text according
to culture stage

Component EDM LP m

Inorganic salts Concentration mg L−1

KNO3 1431 1800

MgSO4 � 7H2O 400 440

KH2PO4 675

CaCL2 � 2H2O 25

Ca(NO3)2 � 4H2O 835

NH4NO3 400

NaNO3 310

NH4H2PO4 225

KCl

MnSO4 � 4H2O 3.6 1
(continued)
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filter-sterilized solutions (pH 5.7) of the following amino acids are added to par-
tially cooled medium prior to dispensing into Petri dishes (90 � 9 � 20 mm):
550 mg L−1 L-glutamine, 525 mg L−1 asparagine, 175 mg L−1 arginine, 19.75 mg
L−1 L-citrulline, 19 mg L−1 L-ornithine, 13.75 mg L−1 L-lysine, 10 mg L−1

L-alanine and 8.75 mg L−1 L-proline.

Culture conditions and incubations period
Cultures were maintained in the dark at 22 ± 1 °C for 4–8 weeks.

3 Embryonal Masses Evaluation

After 4–8 weeks on initiation medium, the number of initiated embryonal masses
(3–5 mm in diameter) per Petri dish are evaluated.

4 Embryogenic Tissue Proliferation

Proliferating tissues are separated from the megagametophytes and subcultured to
proliferation medium every 2 weeks. Initiation and proliferation medium only differ
in the concentration of Gelrite®, being 3 g L−1 for the first and 4.5 g L−1 for the
second. Following four periods of subculturing, actively growing embryogenic
tissues are recorded as established cell lines (ECLs). Proliferation is carried out in
darkness.

Table 1 (continued) Component EDM LP m

H3BO3 8 6.2

ZnSO4 � 7H2O 25 8.6

KI 1 0.08

CuSO4 � 5H2O 2.4 0.025

Na2MoO4 � H2O 0.2 0.25

CoCl2 � 6H2O 0.2 0.025

FeSO4 � 7H2O 30 30

Na2EDTA � 2H2O 40 40

Vitamins

Thiamine � HCl 5 0.1

Nicotinic acid 5 0.5

Pyridoxine � HCl 0.5 0.5

Myo-inositol 1000 100
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5 Somatic Embryo Maturation

The EMs are suspended in EDM (Table 1) broth (lacking growth regulators) and
shaken vigorously by hand for several seconds. A 5 mL aliquot containing 80–
90 mg of embryonal fresh mass is transferred to filter paper (Whatman no.2) in a
Büchner funnel. A vacuum is applied for 10 s, and the filter paper with the attached
tissue is transferred to maturation medium (Montalbán et al. 2010). The maturation
medium contained the salt formulation of EDM (Table 1), 9 g L−1 gellan gum,
60 µM abscisic acid, 60 g L−1 sucrose and the amino acid mixture used for the
initiation and maintenance of the EMs. Maturation is carried out in darkness.

6 Somatic Embryo Germination

After 15 weeks, Se (Fig. 2) are transferred to germination medium. This medium
contains half-strength macronutrients LPm (Quoirin and Lepoivre 1977, as modi-
fied by Aitken-Christie et al. 1988) (Table 1) with 2 g L−1 of activated charcoal and
9.5 Difco agar. Petri dishes are tilted at a 45º angle with embryonic root caps
pointing downwards and incubated under dim light for 7 days. Cultures are then
maintained at a 16-h photoperiod at 100 µmol m−2 s−1 using cool white fluorescent
tubes (TFL 58 W/33; Philips, France). Plantlets (Fig. 3) are subcultured onto fresh
germination medium every 6 weeks. The whole in vitro SE process is carried out at
23 °C.

Fig. 2 Maturation of Pinus radiata somatic embryos cultured at 23 °C on EDM (Walter et al.
2005), bar 1.1 cm
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7 Somatic Plantlet Acclimatization

After 14–16 weeks on the germination medium, the plantlets are transferred to
sterile peat:perlite (2:1) and acclimatized in a greenhouse where the humidity is
progressively decreased from 99 to 70% during the first month.

8 Abiotic Stress: A Way to Improve the Somatic
Embryogenesis Process

In order to evaluate the effect of different physical and chemical conditions on
radiata pine SE and to identify what initial stage of SE has the greatest impact on
the success of embryogenesis, initiation was carried out in following the same
methodology described in Sect. 2. Different concentrations of gellan gum were
added prior to autoclaving to increase or reduce water availability in the medium (2,
3 or 4 g L−1 Gelrite®), and the explants were stored at 18, 23 or 28 °C (Fig. 4). In
summary, nine different treatments were applied.

Fig. 3 Germination of Pinus radiata somatic embryos cultured at 23 °C on half-strength
macronutrients LP (Quoirin and Lepoivre 1977, as modified by Aitken-Christie et al. 1988), bar
1.4 cm
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Statistically significant differences in the percentage of initiation among tem-
peratures and gellan gum concentrations were found (García-Mendiguren et al.
2016).

When considering temperature alone, initiation percentages in explants induced
at 28 °C were significantly lower (4%) than those induced at 18 or 23 °C (17–13%,
respectively). With respect to gellan gum, megagametophytes cultured on medium
containing 4 g L−1 gellan gum showed significantly higher initiation (16%) in
comparison to those cultured at 2 and 3 g L−1), which showed initiation values of
9% and 10%, respectively.

At the proliferation stage, statistically significant differences were identified only
between temperatures (28 °C resulted in a significantly higher proliferation per-
centage (65%) when compared to explants initiated at 18 and 23 °C (35%).
Regarding the number of Se per gram of EM, statistically significant differences
were observed among initiation temperatures. ECLs initiated at 28 °C produced a
significantly higher number of Se (486 Se g−1 EM) than those initiated at 23 °C
(319 Se g−1 EM) (García-Mendiguren et al. 2016). Our results suggest that the
initial conditions of the process positively impact the number of embryos produced
several months later. Temperature presumably exerts a selective pressure in the
early stages of embryogenesis and results in lower initiation rates but higher rates of
proliferation and maturation (Fehér 2015). Although the different gellan gum
concentrations tested show significant differences in water availability, this did not
induce significant differences in the number of Se produced.

In summary, we observe a marked effect of initiation conditions on Se pro-
duction, showing differences when that conditions are applied several months
before. In light of the conclusions obtained in this study, initiation at 18 °C and 4 g
L−1 gellan gum can be used to enhance the number of ECLs and thus enhance
diversity within clonal plantations. On the other hand, incubation at 28 °C and the

INITIATION PROLIFERATION MATURATION

2 gL
-1

3 gL
-1

4 gL
-1

2 gL
-1

3 gL-1

4 gL-1

2 gL-1

3 gL
-1

4 gL
-1

4.5 gL
-1

9 gL
-1

Fig. 4 Scheme of the experimental design, cultures were stored at initiation at three different
temperatures: 18 °C (circle), 23 °C (square) or 28 °C (hexagon) and at three different agar
concentrations (inside circles, squares and hexagons). The rest of the process was carried out under
standard conditions
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addition of 2 g L−1 gellan gum at initiation increase the efficiency of the process
and result in a larger number of clones from a selected cross in a genetic
improvement program.

9 New Methods for Storing Pinus radiata Genetic
Resources

P. radiata Se are placed onto a sterile Whatman filter (nº 2) and the filter laid on
Petri dishes containing EDM (Table 1) (Walter et al. 2005) supplemented with
60 g L−1 sucrose and 9 g L−1 Gelrite®; after autoclaving the amino acid mixture of

Fig. 5 Pinus radiata somatic embryos after 12 months of storage at 4 °C, bar 0.4 cm

Fig. 6 Germination of Pinus radiata somatic embryos after 12 months of storage at 4 °C, bar
0.8 cm
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the EDM medium (Table 1) is added. The Petri dishes are sealed with parafilm and
can be stored at 4 °C for 1 year (Fig. 5). The percentage of germination is not
affected by storage, improving the rates obtained in Se not conserved in cold (85%)
(Fig. 6).

10 Research Prospects

Forestry productivity can be increased via the planting of high-value trees. Clonal
propagation by somatic embryogenesis has the ability to enhance this amplification
process and capture the benefits of breeding programs (Pullman et al. 2005) and it
should be implemented with other technologies as cryopreservation of the em-
bryonal masses (Park 2002) and/or somatic embryos. Our future researches activ-
ities are focused on corroborate the following hypotheses:

– Extreme environmental conditions during the early stages of somatic embryo-
genesis in Pinus spp. determine the adaptative characteristics of the somatic
plants produced.

– The adaptive characteristics of the somatic plants of P. radiata are translated
into differences in biochemical, molecular and physiological quantifiable char-
acteristics, which could be used as early indicators of stress tolerance.

– The EMs and Se of P. radiata can be stored at 4, −20 and −80 °C minimizing
the costs and use of cryoprotectans.
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