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Abstract
The thermal evolution of plutonic and metamorphic
rocks in the upper crust may be revealed using
fission-track (FT) analyses and other low-temperature
thermochronologic methods. The segment of pressure–
temperature–time–deformation (P-T-t-D) rock paths
potentially constrained by FT data corresponds to the
lower greenschist facies, prehnite–pumpellyite, and zeo-
lite facies of metamorphic rocks and also includes regions
where diagenetic alteration occurs. When plutonic and
metamorphic rocks are exhumed, thermal perturbations
caused by fluid alteration, and crystallisation below
relevant closure/annealing temperatures at relatively
shallow crustal depths, may preclude a simplistic inter-
pretation of thermochronologic ages in terms of mono-
tonic cooling. However, FT ages and track-length
measurements provide kinetic data that allow interpreta-
tion of T-t paths, even in cases where assumptions based
on bulk closure temperatures are violated. We show that
geologically well-constrained sampling strategies, and
application of multiple thermochronologic methods on
cogenetic minerals from plutonic and metamorphic rocks,
may provide the most promising means to document the
timing, rates, and mechanisms of crustal processes. Case
studies are presented for: (1) (ultra)high-pressure (U)HP
metamorphic terranes (e.g., Papua New Guinea, Western
Alps, Western Gneiss Region, Dabie–Sulu), (2) an
extensional orogen (Transantarctic Mountains), (3) a
compressional orogen (Pyrenees), and (4) a transpres-
sional plate boundary zone (Alpine fault zone, New
Zealand).

13.1 Introduction

Plutonic and metamorphic rocks form at depth beneath the
Earth’s surface. Plutonic rocks crystallise at depth from
magmas (i.e., silicate melts). Prior to crystallising, magmas
transport heat and mass by flow at temperatures and pres-
sures that depend upon the magma’s bulk composition.
Crystallisation involves both nucleation and crystal growth
processes, with rates dependent upon the temperature–time
(T-t) history. In contrast, metamorphic rocks form by
solid-state crystallisation of protoliths (igneous, metamor-
phic or sedimentary rocks) that have been subjected to
changes in temperatures and pressures. Metamorphic min-
erals and their textures change primarily in response to
temperature that together with available fluids drive meta-
morphic reactions. The result is that original mineral
assemblages may be transformed to more stable assemblages
at new pressure and temperature conditions.

Major perturbations of crustal geothermal gradients are
required to form igneous and metamorphic rocks, so it
cannot be assumed a priori that these rocks achieved equi-
librium as a result of steady-state conditions (e.g., Spear
1993). In active plate boundary zones, where most igneous
and metamorphic rocks form, geothermal gradients are
spatially complex and change as plate boundaries evolve.
Transient geothermal gradients result from heat sources
(e.g., intruding magmas, exothermic reactions) and heat
sinks (subducting slabs, endothermic reactions). For exam-
ple, at divergent plate boundaries rising asthenosphere cau-
ses decompression melting, which results in steepening of
the geothermal gradient and high-temperature metamor-
phism of the country rock. At convergent plate boundaries,
subducting cold lithosphere leads to high-P/low-T metamor-
phism and results in low geothermal gradients relative to
steady-state geothermal gradients (Fig. 13.1a). If active
deformation is associated with rapid exhumation, geothermal
gradients are likely to change due to heat advection as rocks
move rapidly from depth towards the surface. Our ability to
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constrain crustal exhumation histories of plutonic and
metamorphic rocks largely depends on our understanding of
the dynamic thermal reference frame used to interpret ther-
mochronologic data (see Chap. 8, Malusà and Fitzgerald
2018a) and an understanding of the range of chemical and
physical processes that can potentially affect plutonic and
metamorphic rocks during exhumation.

This chapter discusses the final exhumation paths of
plutonic and metamorphic rocks, as they make their way to
the surface, and the importance of using FT ther-
mochronology to constrain and quantify the timescales,
rates, and mechanisms of crustal motion on geologic time-
scales. It is written from a “rock exhumation trajectory”
perspective, following plutonic and metamorphic rocks from
deep crustal levels where constraints on exhumation are
generally obtained using high-temperature thermochrono-
logic techniques and petrologic data, towards shallow crustal
levels where low-temperature thermochronologic techniques
are applicable. There are many common assumptions asso-
ciated with techniques used to constrain exhumation from
deep crustal levels as compared to those used to constrain
exhumation from shallow crustal levels. However, important
differences exist, such as the role of mineral (re)crystallisa-
tion in the deep crust versus the influence of topography on
isotherms at shallow crustal levels. We present case studies
from different tectonic settings to illustrate how FT ther-
mochronology on minerals from metamorphic and plutonic
rocks can be interpreted within a geologic framework. Our
synthesis takes into account potential complications due to
processes (e.g., heat advection, hydrothermal alteration) that
may affect rocks during crustal exhumation.

13.2 Thermochronologic Data Interpretation
of Plutonic and Metamorphic Rocks

13.2.1 An Integrated Approach to P-T-t-D Path
Determination

Mineral assemblages and textures preserved in plutonic and
metamorphic rocks provide a record of changing pressure
(P), temperature (T), and deformation (D) during transit from
depth to the surface. Mineral assemblages and textures are a
function of bulk rock compositions, rheology, volatile con-
tents, and P-T conditions. Principles of physical chemistry
and phase equilibria applied to natural rocks and synthetic
materials by experimentalists and thermodynamic modellers
allow petrologists to assess P-T conditions (e.g., Spear 1993;
Powell and Holland 2010; Sawyer et al. 2011). A rock’s P-
T path can be constructed by connecting regions in P-
T space where the stability of mineral assemblages, com-
positions, or changes in compositions (e.g., in the case of
zoned minerals), and their textures, are known (e.g., Spear

Fig. 13.1 a Depth–temperature diagram showing examples of P-
T paths for metamorphic rocks (in blue) (after Philpotts and Ague
2009): 1, Franciscan Complex (Ernst 1988); 2, Western Alps (Ernst
1988); 3, Dora-Maira (Rubatto and Hermann 2001); 4 and 5, central
Massachusetts (Tracy and Robinson 1980); 6, Adirondacks, NY
(Bohlen et al. 1985); 7 and 8, upper and lower units of the Tauern
window, Eastern Alps (Selverstone et al. 1984; Selverstone and Spear
1985). Note that the lowest temperature parts of all P-T paths are not
constrained. Blue box indicates P-T space relevant for constraining
histories using FT thermochronology. Metamorphic facies (in red):
AM, amphibolite; BS, blueschist; ECL, eclogite; GR, granulite; GS,
greenschist; PRH-PMP, prehnite–pumpellyite. Reaction curves for
Al2SiO5, wet and dry solidi indicated by light blue dotted lines. b T-t-
depth space for rock P-T-t paths corresponding to very low grade and
diagenetic conditions. P(depth)-T conditions are determined from fluid
inclusions (lines of constant density for the H2O system, in g/cm3, after
Goldstein and Reynolds 1994). The hypothetical T-t path includes ZFT
and AFT with partial annealing zones (PAZ) indicated. The dashed line
on the left-hand panel shows an example of a P(depth)-t path associated
with shallow crustal exhumation mechanisms
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1993). Reactions used to quantify metamorphic pressures
and temperatures typically occur diachronously, and radio-
metric dating techniques can be applied to minerals to
determine the ages associated with segments of the P-T paths
(Fig. 13.1a). Thermobarometric data provided by petrologic
analysis and T-t information provided by thermochronology
can be integrated to define P-T-t paths that shed light on
geologic processes controlling crustal rock exhumation (e.g.,
Baldwin and Harrison 1992; Duchêne et al. 1997; Malusà
et al. 2011; Baldwin 1996).

Accessory phases have proven especially useful for
linking isotopic ages to petrologic and textural information
(e.g., Kohn 2016). Most radiometric data (Rb–Sr, 40Ar/39Ar,
U–Pb, Sm–Nd, Lu–Hf) can be interpreted with respect to
mineral (re)crystallisation to infer the timing and rates of
crustal processes such as metamorphism and ductile defor-
mation. Field, macro-, micro-, and nano-structural analysis
provide the structural context required for correlating min-
eral assemblages from different outcrops and to add rheo-
logic constraints in the construction of P-T-t-D paths. In the
low-temperature range—corresponding to the lower green-
schist, prehnite–pumpellyite, and zeolite facies of meta-
morphic rocks and including diagenesis—time constraints
provided by FT thermochronology are particularly useful to
define the final portion of the exhumation path (Fig. 13.1b)
(e.g., Malusà et al. 2006). However, many published
exhumation paths do not incorporate data that allow paths to
be extended to the lowest temperature ranges (Fig. 13.1a). In
such cases, information, potentially provided by full inte-
gration of petrologic and thermochronologic data sets,
remains unexploited.

13.2.2 Processes, Timescales, and Rates

If it can be demonstrated that rocks cooled monotonically
from high to low temperatures, and minerals represent
equilibrium assemblages, application of geothermometers
and thermochronometers with equilibration temperatures
equal to isotopic closure temperatures (Tc) can be simply
applied (e.g., Hodges 1991). However, petrologic evidence,
such as mineral inclusion suites, mineral zoning patterns,
and microstructures often reveals that equilibrium has not
been achieved during exhumation, rendering ther-
mochronologic interpretations based on simple Tc models
invalid. During transit to the surface, most minerals in plu-
tonic and metamorphic rocks only partially retain their
radiogenic daughter nuclides, either due to metamorphic (re)
crystallisation which is often accompanied by deformation
or due to diffusive loss of radiogenic daughter products.
Therefore, knowledge of the minerals’ petrogenesis provides
constraints on rate-limiting daughter product loss mecha-
nisms (e.g., volume diffusion, dissolution/precipitation,

syn-kinematic recrystallisation) and aids in thermochrono-
logic data interpretation. Because apatite FT (AFT) ther-
mochronology is usually interpreted with respect
to temperatures less than *120 °C, and zircon FT
(ZFT) thermochronology less than *300 °C, taking into
account (re)crystallisation of minerals within these temper-
ature ranges is often neglected in AFT and ZFT ther-
mochronologic data interpretation. However, metamorphic
rims can form on pre-existing zircons at temperatures as low
as *250 °C (e.g., Rasmussen 2005; Hay and Dempster
2009) complicating isotopic data interpretation on zircons
with demonstrable growth zones (Zirakparvar et al. 2014).
Especially in cases where FT data are integrated with U–Pb
ages, zircon petrogenesis must be known to ensure accurate
geologic interpretations are made.

Distinguishing between the timing of mineral and rock
formation, and cooling related to exhumation, is particularly
important for the analysis of plutonic and metamorphic
rocks. Timescales for magmatic cooling may range over
orders of magnitude, from millions of years (e.g., in the case
of slowly cooled batholiths) to <100,000 years (e.g., Petford
et al. 2000). Modelled timescales of regional metamorphism
during continent–continent collision (e.g., England and
Thompson 1984) are orders of magnitude greater than
timescales derived from garnet growth zones based on dif-
fusion modelling (e.g., Dachs and Proyer 2002; Ague and
Baxter 2007; Spear 2014) and from numerical modelling of
thermochronologic data (e.g., Camacho et al. 2005; Viete
et al. 2011). Short-lived orogenic events (<1 Myr; Dewey
2005) may result in rapid rock exhumation at rates compa-
rable to plate tectonic rates (i.e., cm/year; e.g., Zeitler et al.
1993; Rubatto and Hermann 2001; Baldwin et al. 2004).

13.2.3 Approaches Used to Determine Rock
Exhumation Rates

Two approaches have commonly been used to determine
exhumation rates from thermochronologic data (e.g., Purdy and
Jager 1976; Blythe 1998; McDougall and Harrison 1999 and
references therein). These are generally known as the multiple
method and age–elevation approaches (see Chap. 10, Malusà
and Fitzgerald 2018b). The first approach utilises multiple
thermochronologic methods applied to minerals from the same
sample. Cooling rates are calculated using differences in bulk
Tc divided by the difference in apparent ages corresponding to
the minerals analysed. Cooling rates are then converted to
exhumation rates assuming a geothermal gradient. This bulk
closure temperature approach—interpolation of T-t points
obtained from analyses and assuming a nominal Tc (Dodson
1973)—has many built-in assumptions which are usually vio-
lated when considering the exhumation of metamorphic and
plutonic rocks (e.g., Harrison and Zeitler 2005). Assumptions

13 Crustal Exhumation of Plutonic and Metamorphic Rocks … 237



made when using this approach include: (a) diffusion is the loss
mechanism operative over geologic time, (b) kinetic parameters
are known, and (c) geothermal gradients remained constant
and/or are known during the time period investigated.

The second common approach involves age determina-
tion on a suite of samples collected over a large elevation
range (i.e., “vertical profiles”; see Chap. 9; Fitzgerald and
Malusà 2018). The simple interpretation of the slope on an
age–elevation profile is that it represents an apparent
exhumation rate. However, due to advection of isotherms
and topographic effects, the slope on an age–elevation pro-
file typically provides an overestimate of the exhumation
rate (e.g., Gleadow and Brown 2000; Braun 2002; Hunt-
ington et al. 2007). In some cases, the age–elevation profile
may reveal an exhumed partial annealing zone (PAZ) or
partial retention zone (PRZ). In these cases, a distinctive
break in slope is interpreted to mark the base of a former
PAZ/PRZ, and the slope below the break in slope marks an
increase in cooling rate, usually associated with an increase
in exhumation rate (see Chap. 9; Fitzgerald and Malusà
2018). In AFT thermochronology, ages and track-length
distributions are used to determine thermal histories and
cooling rates (see Chap. 3; Ketcham 2018). Modelled AFT
thermal histories can be extended to higher temperatures
through integration of modelled 40Ar/39Ar step heat data on
cogenetic K-feldspar (e.g., Lovera et al. 2002; see examples
below).

13.3 Application of FT Thermochronology
to the Exhumation of (U)HP Terranes

Blueschist and eclogite-facies metamorphic rocks form when
lithosphere is subducted faster than it can thermally equili-
brate, and isotherms are depressed leading to characteristic
high-P/T geothermal gradients (Fig. 13.1a). The discovery
of coesite (the high-pressure SiO2 polymorph) in
eclogite-facies metamorphic rocks (Chopin 1984; Smith
1984) led to development of the field of UHP metamorphism
(e.g., Coleman and Wang 1995; Hacker 2006; Gilotti 2013).
Evidence of UHP metamorphism has been documented in
more than twenty terranes, in regions of present or former
plate convergence (e.g., Guillot et al. 2009; Liou et al. 2009).
It is now accepted that UHP rocks form when oceanic and
continental lithosphere is subducted to mantle depths, as
confirmed by geophysical evidence (Zhao et al. 2015; Kuf-
ner et al. 2016). However, there is no consensus concerning
how UHP rocks are exhumed from mantle depths to the
surface (e.g., Malusà et al. 2015; Ducea 2016 and references
therein).

Low-temperature thermochronology usually constrains
rock exhumation from shallow crustal levels. Since the final
stage of (U)HP exhumation may occur tens or hundreds of

millions of years after the main exhumation phase (i.e., from
mantle depths), low-temperature thermochronologic ages
may not necessarily be interpreted relative to the timing of
(U)HP exhumation, especially in the case of pre-Cenozoic
UHP terranes (Fig. 13.2b). We emphasise that the timing of
final exhumation within the subduction channel, as con-
strained by FT data, is essential for an accurate tectonic
interpretation of petrologic and thermochronologic data from
subduction complexes. Depending upon the paleogeother-
mal gradients, AFT ages may correspond to the timing of
cooling and exhumation from depths ranging from *15 km
(e.g., in the case of syn-subduction exhumation with gradi-
ents of 10 °C/km) to *4 km (e.g., in the case of
post-subduction exhumation with gradients of *30 °C/km).
Independent constraints on paleogeothermal gradients (see
Chap. 8, Malusà and Fitzgerald 2018a, b) are thus crucial for
a reliable analysis of (U)HP rock exhumation. FT ther-
mochronology may also be used to determine when different
lithologic units (e.g., comprising a tectonic mélange) are
amalgamated to form a composite terrane. Below, we sum-
marise low-temperature constraints on (U)HP terranes and
explain why these data are essential to assess timing, rates,
and mechanisms of final (U)HP rock exhumation.

13.3.1 Cenozoic (U)HP Terranes

Eastern Papua New Guinea (PNG) and the Western Alps are
among the best-studied examples of Cenozoic (U)HP ter-
ranes. The PNG (U)HP terrane is exhuming in a region of
active rifting within the obliquely convergent Australian–
Woodlark plate boundary zone (Baldwin et al. 2004, 2008).
Domes of high-grade migmatitic gneisses (e.g., Davies and
Warren 1988; Gordon et al. 2012), comprised of protoliths
derived largely from Australian continental crust (Zirakpar-
var et al. 2012), are separated from oceanic lithospheric
fragments by mylonitic shear-zone carapace (e.g., Hill et al.
1992; Little et al. 2007). Seismically active normal faults
flank the domes (e.g., Abers et al. 2016) and are interpreted
to have formed within an accretionary wedge along the
former subduction thrust now marked by serpentinite (e.g.,
Baldwin et al. 2012). The location of intermediate depth
earthquakes in proximity to exhumed coesite eclogite (Abers
et al. 2016) suggests that rock exhumation from UHP depths
may be ongoing. The timing of UHP metamorphism in
eastern PNG (*7–8 Ma) is based on concordant ages
obtained on cogenetic minerals from coesite eclogite using
three methods: in situ zircon ion probe U–Pb (Monteleone
et al. 2007), garnet Lu–Hf (Zirakparvar et al. 2011), and
phengite 40Ar/39Ar (Baldwin and Das 2015). Most meta-
morphic zircon growth occurred during exhumation (Mon-
teleone et al. 2007; Gordon et al. 2012; Zirakparvar et al.
2014) as confirmed by zircon petrologic models (Kohn et al.

238 S. L. Baldwin et al.



1

3

2

200 800°C400 600

Temperature (°C)

time (Ma)

BS

GR

EC

GS
AM

0

50 100 150 200 250 300 350 4000

Pr
es

su
re

 (G
Pa

)

0

AbJd+Qtz

Qtz
Coe

UHP
conditions

1

3

2

Pr
es

su
re

 (G
Pa

)

0

100

0

25

75

D
ep

th
 (k

m
)

200 800°C400 6000 200 800°C400 6000

100

0

25

75

D
ep

th
 (k

m
)

Temperature

Synconvergent
exhumation

Erosion
tECtFT < tAM 

Unconstrained
mechanism

tECtFT << tAM 

Divergence between
upper plate and slab

No erosion

tECtFT tAM 

?
?

?

Papua New Guinea
Dora-Maira (W Alps)

Lepontine dome (Alps) 
Tso Morari (Himalaya)

Western gneiss region
Maksyutov (Urals)
Dabie-Sulu (China)

tEC

tAM
tFT

tEC

tAM
tFT

tEC

tAM

tFT

tECtFT < tAM tECtFT << tAM tECtFT tAM 

t2

t2

t1

time

t2

t2

t1

FT FT

t3 (FT)

t3 (FT)

cl
os

ur
e 

te
m

pe
ra

tu
re

FT

Incorrect
P-t path

(a)

(b)

(d)

(c)

(i) (ii) (iii)

Fig. 13.2 a Schematic P-T plots for selected UHP terranes, with
colours corresponding to terranes indicated: Papua New Guinea
(Baldwin and Das 2015), Dora-Maira (Chopin et al. 1991; Gebauer
et al. 1997; Rubatto and Hermann 2001), Lepontine (Becker 1993;
Gebauer 1996; Brouwer et al. 2004; Nagel 2008), Tso Morari (de
Sigoyer et al. 2000; Schlup et al. 2003), Western Gneiss Region
(Rohrman et al. 1995; Carswell et al. 2003; Kzienzyk et al. 2014),
Maksyutov (Lennykh et al. 1995; Leech and Stockli 2000), Dabie–
Sulu (Reiners et al. 2003; Hu et al. 2006; Liou et al. 2009); tFT
indicates age constraints based on FT analysis. Timing of amphibolite
facies metamorphism (tAM), timing of eclogite-facies metamorphism
(tEC) based on U–Pb, 40Ar/39Ar, and Lu–Hf isotopic data. b Schematic
P-t paths of UHP terranes to illustrate differences in the length of time
associated with final exhumation to the surface relative to the timing of
UHP metamorphism. c Upper panel: schematic P-T paths (shown in
black) illustrate the importance of having geobarometric constraints
associated with exhumation paths. The timing of peak UHP conditions
(t1), retrograde overprint (t2 and t2′), and final exhumation (t3(FT))

based on FT analyses. t2′ is the age recorded by a mineral at low P
conditions as a result of a late syn-kinematic recrystallisation event
(e.g., a late greenschist facies foliation marked by micas) or of a
localised thermal event (e.g., due to hydrothermal fluids). Lower panel:
this shows how it is possible to obtain an incorrect P-t path if the
timing of a retrograde overprint t2’ (e.g., late zircon growth or mica
recrystallisation) is incorrectly identified. d Schematic cross sections
illustrating possible mechanisms for UHP exhumation related to:
(i) divergence between the upper plate and the subducting slab leading
to rapid rock exhumation within the forearc; erosional exhumation
plays a minor role during exhumation. FT ages close to the timing of
amphibolite facies retrogression and peak eclogite-facies conditions are
predicted. (ii) Syn-convergent exhumation where erosional processes
play a significant role in the exhumation of rocks within the forearc. FT
ages are less than the timing of amphibolite facies retrogression and
peak eclogite-facies conditions. (iii) Exhumation mechanisms are
undetermined for cases in which FT ages are significantly younger than
isotopic ages associated with (U)HP metamorphism
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2015). An AFT age of 0.6 ± 0.2 Ma (2r) was obtained
from the coesite locality (Baldwin et al. 1993) and provides
constraints on the lowest temperature portions of the P-T-t-
D path. In general, AFT ages are challenging to obtain in
these rocks, due to low apatite abundances in some rock
types, low [U], and a few tracks. In eastern PNG, confined
tracks are very rare, but have been imaged using heavy ion
implantation to provide etchant pathways (see Chap. 2;
Kohn et al. 2018). AFT ages are often close to zero, with
high errors and a few track-length distributions to model, but
the data are geologically meaningful and interpretable
(Fitzgerald et al. 2015). Depth estimates based on preser-
vation of coesite, together with the timing of UHP meta-
morphism and AFT data, indicate that average minimum
exhumation rates are >1 cm/year (Baldwin et al. 1993, 2004,
2008; Hill and Baldwin 1993; Monteleone et al. 2007). (U)
HP exhumation models for eastern PNG remain a topic of
debate (e.g., Ellis et al. 2011; Petersen and Buck 2015), but
final exposure of (U)HP rocks at the surface was likely
facilitated by microplate rotation (Webb et al. 2008) and
consequent divergence between the oceanic upper plate and
the subducting slab (Fig. 13.2d). This kinematic scenario
would have favoured the rise, from >90 km depths, of
buoyant, low density, migmatitic gneisses containing mafic
eclogite, via ductile flow within the subduction channel
(Malusà et al. 2015, Liao et al. 2018).

The role of FT thermochronology in understanding the
mechanisms of (U)HP rock exhumation is even more
important in the case of the Western Alps, where (U)HP
rocks have resided at shallow crustal levels during the past
30 Myr. The Western Alps formed as a result of Cretaceous
to Paleogene subduction of the Tethyan oceanic lithosphere
and of the adjoining European continental margin beneath
the Adriatic microplate (Lardeaux et al. 2006; Zhao et al.
2015). UHP rocks are now exposed in a 20–25 km wide
metamorphic belt that includes eclogitised continental crust
(e.g., the Dora-Maira unit; Chopin et al. 1991) and
metaophiolites (e.g., Frezzotti et al. 2011). The exhumation
paths of these units are well constrained by petrologic and
thermochronologic data (see Malusà et al. 2011 for a syn-
thesis). Peak metamorphism at P = 2.8–3.5 GPa and
T = 700–750 °C (e.g., Schertl et al. 1991; Compagnoni et al.
1995) is dated to 40–35 Ma using U–Pb ion probe analyses
on zircon rims and titanite, and Sm–Nd isochron analyses
(e.g., Gebauer et al. 1997; Rubatto et al. 1998; Amato et al.
1999; Rubatto and Hermann 2001). Subsequent exhumation
took place at rates faster than subduction rates (Malusà et al.
2015) (Fig. 13.2b). Apatite FT and (U–Th)/He (AHe) data
(e.g., Malusà et al. 2005; Beucher et al. 2012) provide
constraints on the final part of the (U)HP exhumation path,
attesting to rapid exhumation close to the surface by the

early Oligocene, as confirmed by the biostratigraphic age of
sedimentary rocks locally overlying the Western Alps
eclogites (Vannucci et al. 1997).

The Western Alps example, like eastern PNG, thus
illustrates the short duration between the timing of peak (U)
HP metamorphism and subsequent exhumation to the
Earth’s surface. In this case, exhumation also occurred
during the same subduction cycle that produced the (U)HP
rocks, likely a result of divergent motion between the
Adriatic upper plate and the European slab (Malusà et al.
2011; Solarino et al. 2018; Liao et al. 2018, Fig. 13.2d). In
contrast, the Lepontine dome of the Central Alps records
slower crustal exhumation (Brouwer et al. 2004; Nagel
2008), similar to the exhumational record provided by the
Tso Morari eclogites in the Himalaya (de Sigoyer et al.
2000; Schlup et al. 2003). The exhumation path of the
Lepontine dome is consistent with predictions of
syn-convergent exhumation numerical models (e.g., Yamato
et al. 2008; Jamieson and Beaumont 2013). The integration
of thermochronologic and petrologic data sets thus reveals
along-strike differences in exhumation patterns and mecha-
nisms preserved in the Alpine orogenic rock record.

13.3.2 Pre-Cenozoic (U)HP Terranes

In the case of pre-Cenozoic (U)HP terranes such as the
Dabie–Sulu of eastern China (e.g., Liou et al. 2009), the
Maksyutov Massif of Russia (e.g., Lennykh et al. 1995), and
the Western Gneiss (U)HP terrane of Norway (e.g., Carswell
et al. 2003), FT data are even more essential to distinguish
the timing and mechanisms of exhumation. This is because
FT data permit assessment of whether or not final exhuma-
tion occurred during the same subduction cycle that pro-
duced the (U)HP rocks (e.g., Rohrman et al. 1995; Leech
and Stockli 2000; Reiners et al. 2003; Hu et al. 2006;
Kzienzyk et al. 2014). In the Western Gneiss (U)HP terrane,
geochronologic data (Lu–Hf, Sm–Nd, Rb–Sr, U–Pb) have
been interpreted to date the timing of (U)HP metamor-
phism *430–400 Ma (Carswell et al. 2003; DesOrmeau
et al. 2015). Together with thermobarometric constraints, a
two-stage exhumation history for the Norwegian (U)HP
terrane has been proposed. Initial exhumation, from mantle
depths to lower crustal depths, was followed by stalling of
the terrane at depths where mineral assemblages were
overprinted during high-temperature amphibolite facies
metamorphism (Walsh and Hacker 2004). Extensional pro-
cesses are inferred to have led to the final exhumation to the
surface. Presently, the Western Gneiss terrane is an elevated
passive margin (see Chap. 20, Wildman et al. 2018). By
quantifying contributions from crustal isostasy and dynamic
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topography to the present-day topography, Pedersen et al.
(2016) propose that high topography existed since the
Caledonian orogeny (i.e., *490–390 Ma). However, there
are regional variations in Jurassic to Cretaceous AFT ages
that vary as a function of elevation (Rohrman et al. 1995).
Such long durations, between the timing of UHP metamor-
phism and ages recorded by AFT, indicate that final
exhumation is not related to the same subduction cycle that
formed the Western Gneiss terrane (Fig. 13.2b). Without
better certainty regarding linkages between the higher and
lower pressure segments of rock exhumation paths, the
mechanism responsible for UHP exhumation during, or
shortly after, the Caledonian subduction cycle still remains
largely unconstrained.

In the Dabie–Sulu (U)HP terrane, petrologic and ther-
mochronologic studies reveal that Triassic–Jurassic UHP
metamorphism was followed by Cretaceous plutonism
(Hacker et al. 1998, 2000; Ratschbacher et al. 2000).
Low-temperature thermochronologic data (i.e., 40Ar/39Ar
K-feldspar, AFT, (U–Th)/He on zircon (ZHe), and apatite)
yielded a range of ages spanning more than 115 Myr. These
data were interpreted to result from slow cooling and used to
infer steady-state exhumation rates (0.05–0.07 km/Myr)
(Reiners et al. 2003). Liu et al. (2017) further detail the
complex thermal histories of the Sulu (U)HP terrane and
report AFT and AHe ages as young as 65–40 Ma. As in the
Western Gneiss Region, the long duration between UHP
metamorphism and final cooling of these terranes indicates
that final exhumation was not related to the subduction event
that formed the Dabie–Sulu UHP terrane.

A comparison of P-T-t paths for selected (U)HP terranes
(Fig. 13.2b) suggests that similar exhumation rates from
mantle depths can be inferred, based on slopes of depth–time
plots to crustal levels. The low-temperature histories of (U)
HP rocks revealed by FT thermochronology can be used to
distinguish between tectonic and erosional exhumation
mechanisms in the upper crust (Fig. 13.2d). We caution,
however, that if thermochronologic data linking segments of
P-T-t paths from mid-crustal to shallow crustal depths are
misinterpreted (e.g., based on incorrect assumptions about
the pressure/inferred depth of mineral crystallisation),
exhumation rates may be overestimated (segment t2 − t3 in
Fig. 13.2c). For example, if 40Ar/39Ar white mica ages are
interpreted as “cooling ages” (i.e., t2 in Fig. 13.2c), when in
fact white mica crystallised below its Tc for argon, (i.e., t2′ in
Fig. 13.2c), estimated exhumation rates following mica (re)
crystallisation will be incorrect. Such complications are
more likely in older (U)HP terranes that have experienced a
protracted evolution, with the potential for hydrothermal
alteration in the upper crust.

13.4 Application of FT Thermochronology
to Extensional Orogens: The
Transantarctic Mountains

Plutonic and metamorphic rocks may preserve a record of
deep orogenic processes hundreds of millions of years prior
to their final exhumation to the surface. Therefore,
information provided by classic petrologic and geochrono-
logic approaches while pertinent to an earlier orogenic event
may not be relevant to understanding late-stage
mountain-building events and landscape evolution. The
Transantarctic Mountains (TAM) case study provides an
example of a protracted crustal evolution characterised by
slow cooling, followed by episodic exhumation associated
with rift flank formation during extensional orogenesis.
The *3500-km-long TAM mark the physiographic and
lithospheric divide between East and West Antarctica (Dal-
ziel 1992; Fig. 13.3a). The mountain belt bisects the conti-
nent and is *100–200 km wide, with elevations locally
exceeding 4500 m. The TAM define the western edge of the
Mesozoic–Cenozoic intracontinental West Antarctic Rift
System and the eastern margin of the East Antarctic craton,
thereby providing a geomorphic barrier for the East
Antarctic Ice Sheet. The TAM are related to formation of the
West Antarctic rift and are inferred to represent an erosional
remnant of a collapsed plateau (Bialas et al. 2007), with the
rift flank associated with flexure of strong East Antarctic
lithosphere (e.g., Stern and ten Brink 1989).

The overall geology of the TAM is relatively simple (e.g.,
Elliot 1975). Basement rocks are composed primarily of
Late Proterozoic–Cambrian metamorphic rocks and Cam-
brian–Ordovician granitoids of the Granite Harbour Intru-
sive Suite (Fig. 13.3a). Basement rocks were deformed
during the Cambrian–Ordovician Ross Orogeny that pre-
ceded and accompanied intrusion of granitoids (e.g., Goodge
2007). Following the Ross Orogeny, 16–20 km of rock
exhumation resulted in formation of the low-relief Kukri
Erosion Surface (Gunn and Warren 1962; Capponi et al.
1990). Basement rocks were subsequently unconformably
overlain by Devonian–Triassic glacial, alluvial, and shallow
marine sediments of the Beacon Supergroup (e.g., Barrett
1991). During the Jurassic, extensive basaltic magmatism
(Ferrar large igneous province) occurred along the TAM, as
well as in adjoining parts of Gondwana, South Africa, South
America, and southern Australia (e.g., Elliot 1992; Elliot and
Fleming 2004). Dolerite sills (up to 300 m thick) intruded
both basement and sedimentary cover. Step heat experiments
on feldspars from the sills yielded 40Ar/39Ar ages of 177 Ma
(Heimann et al. 1994). Mafic volcanism (i.e., the Kirkpatrick
Basalt; Elliot 1992) was contemporaneous with dolerite sill

13 Crustal Exhumation of Plutonic and Metamorphic Rocks … 241



Transantarctic Mountains
 schematic cross-section (central TAM)

Metamorphic basement (Cambrian/Precambrian)
Granite Harbour Intrusives (Cambro-Ordovician)
Beacon Supergroup (Devonian-Triassic)
Jurassic Dolerite sills and Basalt flows

A

A'

E-ANT

W-ANT

WARSNVL

SVL

BG

SH SC
TH

AA'
4,000

S.L.

(m)

50 (km) 0

TAM Front

Glacier

“inland” “middle”

TAM

800 km

0 100 200 300 400
Apatite fission track age (Ma)

R
el

at
iv

e 
cr

us
ta

l d
ep

th

Cenozoic exhumation (initiated 55-30 Ma)
 - observed across the TAM Front (strong signal)

Late Cretaceous exhumation (initiated 95-80 Ma) - middle to the inland TAM
(not present at Beardmore Gl. to strong signal at the Scott and Byrd Glaciers)

Samples annealed in the
Jurassic (TAM Front to middle)

Early Cretaceous exhumation (initiated 125-115 Ma)
 - middle to inland TAM (moderate to not present)

D
ee

pe
r

S
ha

llo
w

er

Samples (variably) partially annealed in the Jurassic
     (middle to inland TAM)

Samples not annealed by Jurassic
magmatic event (middle to inland TAM)

Composite AFT age – elevation profile
(central TAM – based on Beardmore Gl. data)

Cooling schematic - multiple methods

0

100

200

300

400

500

600

700

1000 200 300 400 500

Jurassic tholeiitic magmatism
no/partial/complete AFT annealing

Initial Gondwana breakup

Ma

Te
m

pe
ra

tu
re

 (
°C

)

U/Pb zircon

K-feldspar
(40Ar/39Ar)

Biotite 40Ar/39Ar

AFT

Hb 40Ar/39Ar
Ross Orogeny (~500 Ma)
(arc related granites)

Cooling/Exhumation
to form the Kukri
Erosion Surface

Deposition and burial of
Beacon Supergroup sediments

Exhumation related cooling
(Cretaceous, Cenozoic)

AHe
Sample just beneath
erosion surface (middle TAM)

Sample well beneath
erosion surface (TAM Front)

(a)

(b)

(c)

Fig. 13.3 a Map of Antarctica
and schematic cross section (A-A′)
of the TAM in the Shackleton–
Beardmore–Byrd glacier region
showing simplified geology.
Shallowly dipping rocks of the
TAM extend beneath the East
Antarctic Ice Sheet. Normal faults
in the TAM front expose more
deeply exhumed plutonic rocks of
the Cambrian–Ordovician Granite
Harbour Intrusives (modified after
Barrett and Elliot 1973; Lindsay
et al. 1973; Fitzgerald 1994).
Black regions are TAM with
approximate locations indicated:
BG = Beardmore Glacier, NVL
and SVL = northern and southern
Victoria Land, SC = Scott
Glacier, SH = Shackleton Glacier,
TH = Thiel Mountains.
b Schematic composite
temperature–time plot for samples
below the Kukri Erosion Surface
(purple) and from the TAM front
(i.e., at deeper crustal levels; red).
c Composite AFT age—crustal
depth profiles for the central TAM,
Beardmore glacier region
illustrating differential cooling,
and exhumation patterns revealed
by AFT ages. After Fitzgerald
(1994), Fitzgerald and Stump
(1997), and Blythe et al. (2011) for
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emplacement. The present-day outcrop pattern of the TAM
generally reflects its simple tilt block structure dipping
inland (Fig. 13.3a). Outcrops of Kirkpatrick Basalt are lim-
ited to the inland parts of the range, whereas basement
representing deeper crustal levels is exposed primarily along
the coastal sector, extending inland along major outlet gla-
ciers. In a few coastal locations such as Cape Surprise in the
central TAM (Barrett 1965; Miller et al. 2010), Beacon
Supergroup rocks are down-faulted by 3–5 km. Beacon
Supergroup rocks have also been recovered offshore south-
ern Victoria Land at a depth of 825 m below seafloor in the
Cape Roberts drillhole#3 (Cape Roberts Science Team
2000). In most cases, AFT ages on basement rocks were
(i) completely reset as a result of the thermal effects of
Jurassic magmatism (Fig. 13.3b) or (ii) were resident at
depths below the base of the PAZ prior to Cretaceous and
younger exhumation (e.g., Gleadow and Fitzgerald 1987).
However, along the inland flank of the TAM, un-reset or
partially reset AFT ages (Fig. 13.3c) have been documented
(Fitzgerald and Gleadow 1988; Fitzgerald 1994).

Following Jurassic tholeiitic magmatism, and prior to
Late Cenozoic alkaline volcanism of the McMurdo Volcanic
Group (LeMasurier and Thomson 1990), a *160 Myr gap
in the onshore geologic record of the TAM exists. Coring of
sedimentary basins in the Ross Sea recovered sediment as
old as Upper Eocene (Barrett 1996; Cape Roberts Science
Team 2000). However, because no core older than Upper
Eocene has been recovered from adjacent sedimentary
basins, and the onshore geologic record is missing, studies of
the uplift and exhumation history of the TAM have relied
primarily on the application of thermochronology, largely
AFT thermochronology on basement granitoids (e.g., Glea-
dow and Fitzgerald 1987). More recently, detrital ther-
mochronology on drill core from the West Antarctic rift
provides additional contributions to our understanding of the
TAM exhumation history (e.g., Zattin et al. 2012).

13.4.1 Sampling Strategy, Data,
and Interpretation

The TAM front (Barrett 1979) is marked by a major normal
fault zone, extending *20–30 km inland from the coast and
resulting in 2–5 km of displacement down to the coast
(Fitzgerald 2002). The amount of exhumation decreases
inland as inferred from the geological outcrop pattern and
overall architecture of the TAM (Fig. 13.3a). The level of
exhumation, combined with spectacular outcrops of Ross
Orogen granites, often rich in accessory minerals, means that
AFT has proven to be the best method to constrain the
exhumation history of the TAM (Fig. 13.3b). The sampling
strategy involved collecting granitic samples over significant
relief across the range. AFT data revealed multiple exhumed

PAZs, defined by breaks in slope (see Chap. 9, Fitzgerald
and Malusà 2018) in age–elevation profiles across the
mountains. These data were interpreted to indicate periods of
exhumation separated by periods of relative thermal and
tectonic stability, i.e., episodic exhumation (Gleadow and
Fitzgerald 1987; Fitzgerald and Gleadow 1990; Stump and
Fitzgerald 1992). Samples above the break in slope contain
shorter confined mean track lengths with larger standard
deviations, a result of prolonged durations spent in the PAZ
where track lengths are partially annealed (i.e., shortened).
As the amount of exhumation decreases inland across the
TAM (and the elevation of the range increases), AFT ages
become older. The timing of the breaks in slope, repre-
senting the base of exhumed PAZs, also becomes older
inland as the amount of exhumation decreases. These data
reveal the timing, amount, and rate of rock exhumation in
the TAM (e.g., Gleadow and Fitzgerald 1987; Fitzgerald and
Gleadow 1990; Fitzgerald, 1992, 1994, 2002; Stump and
Fitzgerald 1992; Balestrieri et al. 1994, 1997; Gleadow et al.
1984; Fitzgerald and Stump 1997; Lisker 2002; Miller et al.
2010). Exhumation rates, determined from the slope of age–
elevation profiles below the break in slope, indicate rates
typically <200 m/Myr. Because exhumation is so slow, heat
is transported primarily via conduction, and advection has
not modified the slope of the profile (e.g., Brown and
Summerfield 1997). While there are many caveats to take
into account when using the slope of an age–elevation
profile to constrain the exhumation rate (e.g., Braun 2002,
see also Chap. 9, Fitzgerald and Malusà 2018), corrections
for topographic effects in the TAM are likely to be minimal
(e.g., Fitzgerald et al. 2006).

The age trends and exhumation history are dependent on
the location of a sample (or age profile) along the TAM, as
well as its location across the range (Fig. 13.3c). Late
Jurassic exhumation revealed in the Thiel Mountains, and
well inland of the present-day rift flank (Fitzgerald and
Baldwin 2007) is in general followed by periods of Early
and Late Cretaceous exhumation. The major period of
exhumation accompanying rock uplift that formed the TAM
began in the Early Cenozoic (Gleadow and Fitzgerald 1987;
Fitzgerald and Gleadow 1988; Fitzgerald 1992, 2002), but
periods of more rapid exhumation in the Oligocene and
Early Miocene have also been documented. The onset of
early Cenozoic exhumation is variable along the TAM,
younging from north to south: *55 Ma in northern Victoria
Land and southern Victoria Land, *50 Ma in the Beard-
more Glacier area and the Shackleton Glacier, and *45 Ma
in the Scott Glacier region. In places, an inland-younging
trend of AFT ages is also apparent (e.g., in the Shackleton
Glacier; Miller et al. 2010; in southern Victoria Land;
Fitzgerald 2002). This inland-younging trend is interpreted
to result from escarpment retreat at a rate of *2 km/Myr,
with the retreat rate apparently slowing
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dramatically *10 Myr following onset of early Cenozoic
exhumation (Miller et al. 2010). Exhumation rates also vary
across the TAM, decreasing inland as the overall amount of
rock uplift decreases.

13.4.2 Comparison with Other
Thermochronologic Data Sets,
and Tectonic Implications

Application of multiple thermochronologic methods on
cogenetic minerals has confirmed that AFT data and inverse
thermal models, on samples collected over varying eleva-
tions, provide the most information on the formation of the
TAM. For example, 40Ar/39Ar data on K-feldspars from the
Thiel Mountains (Fitzgerald and Baldwin 2007) yield Pale-
ozoic ages which are significantly younger than granitoid
crystallisation ages (Fig. 13.3b). The 40Ar/39Ar K-feldspar
data are interpreted to date the timing of cooling associated
with erosional exhumation that led to the formation of the
Kukri Erosion Surface. In the Ferrar Glacier region of
southern Victoria Land, AHe single grain ages on an age–
elevation profile collected in granitic rocks yielded consid-
erable intrasample variation that could be correlated with
cooling rate, but in combination with AFT data indicated
episodes of exhumation in the Cretaceous and Eocene
(Fitzgerald et al. 2006). Detrital geochronology from glacial
deposits yields Paleozoic and Mesozoic ages, with variable
ZHe (480–70 Ma) and AHe (200–70 Ma) ages (Welke et al.
2016). Detrital data from drillholes offshore southern Vic-
toria Land (Zattin et al. 2012; Olivetti et al. 2013) support
the onshore AFT interpretations but also add information
about provenance and younger exhumation events to the
south along the TAM.

To summarise, AFT thermochronology successfully
reveals the timing and patterns of Late Jurassic, Early Cre-
taceous, Late Cretaceous, and Cenozoic exhumation events
in the TAM. These studies confirmed that erosional
exhumation that formed the Kukri peneplain was not the
mechanism responsible for the formation and landscape
evolution of the TAM. Instead, episodic exhumation can be
related to regional tectonic events including:

• Jurassic rifting and accompanying widespread basaltic
magmatism (Ferrar large igneous province) that variably
reset AFT ages;

• Plateau collapse and the initial break-up between Aus-
tralia and Antarctica in the Early Cretaceous;

• Extension between East and West Antarctica in the Late
Cretaceous accommodated on low-angle extensional
faults (in the Ross Embayment and Marie Byrd Land);

• Southwards propagation of a seafloor spreading rift tip,
from the Adare Trough into continental crust underlying

the western Ross Sea in the Early Cenozoic (e.g.,
Fitzgerald and Baldwin 1997; Fitzgerald 2002; Bialas
et al. 2007).

13.5 Application of FT Thermochronology
to Compressional Orogens: The
Pyrenees

Thermal histories of plutonic and metamorphic rocks infer-
red from compressional orogens are often complicated (e.g.,
Dunlap et al. 1995; ter Voorde et al. 2004; Lock and Willett
al. 2008; Metcalf et al. 2009). This is because thrusting does
not exhume rocks, thrust burial may reset or partially reset
thermochronologic systems, and rocks may undergo multi-
ple periods of cooling and exhumation. Thrusting may also
be in-sequence or out-of-sequence. Thus, a full under-
standing of the geologic and structural evolution is usually
required before optimal sampling strategies can be devel-
oped. In this case study of the central Pyrenees, we illustrate
how integration and modelling of thermochronologic data on
cogenetic minerals from plutonic rocks collected in vertical
profiles reveal a geologic evolution spanning 300 Myr. The
results are interpreted with respect to magma crystallisation
and cooling, exhumation, burial, heating during thrusting,
burial and final exhumation (re-excavation) to the surface.

The Pyrenees mountains began to form in the Late Cre-
taceous as a result of convergence between the European and
Iberian plates (Fig. 13.4a) (e.g., Munoz 2002). The core of
the range (i.e., the Axial Zone) consists of an antiformal
south-vergent duplex structure, composed of imbricate thrust
sheets of Hercynian basement (Fig. 13.4b). The Axial Zone
is flanked to the north and south by fold-and-thrust belts.
Prior to the onset of convergence in the Late Cretaceous, the
region now occupied by the Pyrenean mountain range was
the site of Triassic and Early Cretaceous rift basins (e.g.,
Puigdefabregas and Souquet 1986). During the Late Creta-
ceous, some of the rift basins and much of the Axial Zone
were below sea level, as indicated by Upper Cenomanian
shallow-water carbonates that grade into deeper marine
sediments and turbidites north of the Axial Zone (Seguret
1972; Berastegui et al. 1990). In the Maastrichtian, the
foreland basins shallowed to tidal conditions and received
continental fluvial sediments sourced by basement rocks.
Initial convergence and crustal thickening were accommo-
dated prior to the development of significant topography
above sea level (McClay et al. 2004). Deformation within
the orogen proceeded from north to south such that thrust
sheets or portions of a thrust sheet (footwall, hanging wall,
proximal to the fault, distal to the fault) preserve different
aspects of the Pyrenean orogenesis. Exhumation in the
Pyrenees is dominantly erosional (e.g., Morris et al. 1998);
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thus, age patterns determined from low-temperature ther-
mochronology (e.g., AFT and AHe) are usually interpreted
with respect to the emergence and erosion of topography,
and/or changes in base level following thrusting. Late
Paleozoic biotite 40Ar/39Ar ages (Fig. 13.4c) document the
timing of crystallisation of Hercynian intrusives, with vari-
able degrees of partial resetting interpreted to result from
Pyrenean orogenesis (e.g., Jolivet et al. 2007). 40Ar/39Ar
K-feldspar age spectra were interpreted to result from argon
loss via volume diffusion due to thrust burial and heating.
Therefore, it is the low-temperature thermochronologic
methods that document the timing and duration of thrusting,
burial, and exhumation during intracontinental convergence.

13.5.1 Multi-method Thermochronology
on Cogenetic Minerals from Vertical
Profiles

In developing a sampling strategy, it is important to first
recognise that the thermal evolution of footwall and hanging
wall rocks within imbricate thrust sheets (e.g., the antiformal
south-vergent duplex structure in the Pyrenees) varies as a
function of position within the thrust system (ter Voorde
et al. 2004; Metcalf et al. 2009). As intracontinental con-
vergence proceeds, rocks at different structural positions will
preserve a record of different maximum and minimum
temperatures during burial due to thrust loading. The thermal
history revealed by thermochronologic analysis of minerals
will therefore vary with structural position (Fig. 13.4b). As
long as displacement rates are sufficiently slow to allow for
conductive thermal equilibration (e.g., Husson and Moretti
2002), the timing and relative magnitude of thermal events
should agree. However, the maximum and minimum tem-
peratures recorded by low-temperature thermochronologic
methods will vary systematically, dependent upon the sam-
ple’s structural position.

Here, we use a thermochronologic study of cogenetic
minerals from granitoid samples, collected over � 1450 m
relief within the Maladeta Pluton of the Pyrenean Axial
Zone, to illustrate how application of AFT, AHe, and
40Ar/39Ar methods reveals the burial and exhumation history
during thrusting and nappe emplacement (Metcalf et al.
2009). The Maladeta Massif lies within the Orri thrust sheet,
presently occupying the immediate footwall of the Gavarnie
Thrust, a major Alpine-age thrust fault (Fig. 13.4b). Biotite
and K-feldspar from the highest elevations of the Maladeta
Pluton (2850 m) in the central Axial Zone yielded maximum
40Ar/39Ar ages of � 280 Ma, close to the age of intrusion
and interpreted to date the timing of rapid cooling during the
Hercynian orogeny (Fig. 13.4c). All 40Ar/39Ar step heat
experiments on K-feldspars yielded disturbed age spectra
(i.e., age gradients), with the degree of partial 40Ar* loss

varying as a function of sample elevation, and consistent
with each sample’s structural position in the footwall of the
Gavarnie Thrust (Metcalf et al. 2009). Thus, the highest
elevation sample experienced the least amount of 40Ar*
partial loss, while the lowest elevation sample experienced
the greatest amount of 40Ar* loss. Minimum 40Ar/39Ar
K-feldspar ages associated with each age spectrum were
interpreted to result from argon loss via volume diffusion
due to thrust burial and heating.

AFT thermochronology on samples from the Maladeta
profile (Fig. 13.4d) yielded ages and track-length distribu-
tions that varied as a function of elevation (Fitzgerald et al.
1999). The upper part of the profile (i.e., samples at highest
elevations; 1945–2850 m) gave concordant AFT ages, with
mean track lengths � 14 lm for confined track-length dis-
tributions. Data from this part of the Maladeta profile were
interpreted to result from rapid cooling due to exhumation
between *35 and *32 Ma at rates of 1–3 km/Myr. The
lower part of the profile (i.e., samples at 1125–1780 m
elevations) yielded younger AFT ages that decrease with
decreasing elevation. These samples were interpreted as
reflecting slower exhumation and partial annealing due to
burial of the southern flank of the Pyrenees by syn-tectonic
conglomerates shed off the eroding Axial Zone thrust sheets
(Coney et al. 1996). The form of the lower part of the age–
elevation profile when interpreted within the geologic
framework implies that there must have been Late Miocene
re-excavation of the syn-tectonic conglomerates that filled
the foreland basin and that were overlying the
fold-and-thrust belt. Fillon and van der Beek (2012) under-
took thermo-kinematic modelling to evaluate various tec-
tonic and geomorphic scenarios using this AFT data as well
as AHe ages from this region (Gibson et al. 2007; Metcalf
et al. 2009). Their best-fit models, started at 40 Ma, indi-
cated there was rapid exhumation between *37 and 30 Ma
at rates of >2.5 km/Myr followed by infilling of topography
by syn-tectonic conglomerates with re-excavation and inci-
sion of the southern Pyrenean wedge beginning *9 Ma.

While AFT and AHe thermochronology are discussed
above constrain thermal histories from � 120 to � 40 °C,
K-feldspar 40Ar/39Ar data and multi-diffusion domain
(MDD) models extend the thermal histories into the higher
temperature range of 350–150 °C (Lovera et al. 1989, 1997,
2002). Assuming that argon retention in nature and argon
loss in the laboratory are controlled by thermally activated
volume diffusion, argon data from step heat experiments can
be inverted to yield continuous cooling histories (Lovera
et al. 2002). Although K-feldspars from the Maladeta Pluton
have experienced a complex geologic history, MDD models
of 40Ar/39Ar K-feldspar data yielded continuous T-t histories
between the higher and lower temperature thermochrono-
logic constraints. The combined K-feldspar MDD, AFT, and
AHe best-fit thermal models for each sample form
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Fillon and van der Beek 2012).
d Simplified AFT age—elevation
profile from the Maladeta Massif
(modified from Fitzgerald et al.
1999, with additional information
from Fillon and van der Beek
2012)
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overlapping thermal history “dovetails” (e.g., PY55 and
PY56; Metcalf et al. 2009; Fig. 13.4c) that are interpreted to
date the timing of imbricate thrusting to form the Axial Zone
antiformal stack. Ages and models obtained using different
techniques are both internally consistent and most impor-
tantly agree with all available geologic observations. For
example, the onset of heating and maximum temperatures, as
indicated by thermal models, correlate with structural posi-
tion and lateral distance from the Gavarnie Thrust and are
also consistent with the geologic history of progressive
burial of the Maladeta Pluton under a south-vergent thrust
sheet (Munoz 2002).

13.5.2 Tectonic Interpretation
and Methodologic Implications

We can summarise the thermochronologic data from the
Maladeta Pluton and integrate it with geologic constraints to
determine evolution of the pluton spanning 300 Myr. The
thermal and geologic history includes magma crystallisation
and cooling during the Hercynian orogeny, followed by
cooling and exhumation to the surface. Mesozoic sediment
deposition led to burial of plutonic rocks. Convergence of
Iberia with Europe during the Alpine orogeny led to
thrusting, heating due to overthrusting, exhumation to the
surface in a number of phases, reburial by syn-tectonic
conglomerates, and then final re-excavation in the Late
Miocene (Fig. 13.4c, d). Following magma crystallisation
at *300 Ma, initial cooling to below *325–400 °C is
recorded by *280 Ma biotite 40Ar/39Ar ages (Metcalf et al.
2009). Subsequent cooling, as plutonic rocks were exhumed
to the surface, is constrained in part by the Late Paleozoic–
Early Mesozoic erosional unconformity preserved in the
northern Maladeta Pluton (Zwart 1979). During the Meso-
zoic, plutonic rocks remained largely below sea level as
shallow marine sediments were deposited. Burial and heat-
ing of the Maladeta Pluton in the footwall of the Gavarnie
Thrust are recorded in both K-feldspar 40Ar/39Ar data and
MDD thermal models, as well as reset Cenozoic AFT ages in
a region that was at the surface in the Late Paleozoic–Early
Mesozoic (Munoz 1992). The onset of erosional exhumation
in the Maladeta at *50 Ma is recorded by K-feldspar
40Ar/39Ar MDD thermal models with accelerated exhuma-
tion from 37 to 30 Ma confirmed by AFT age–elevation
relationships and modelling (Fitzgerald et al. 1999; Metcalf
et al. 2009; Fillon and van der Beek 2012). From *30 Ma
to the present, a decrease in exhumation rate is recorded by
AFT thermal models and age–elevation relationships for
both AFT and AHe data, with subsequent re-excavation of
the southern flank of the Pyrenees beginning at *9 Ma. No
single mineral/method reveals the complete thermal history
that can be interpreted with respect to the timing and

duration of thrusting, burial, and exhumation during intra-
continental convergence. In this case, AFT and AHe data
from both the hanging wall and footwall of the Gavarnie
Thrust only provide minimum age constraints on thrust fault
activity and underestimate the onset of thrust fault activity
by as much as 30 Myr. The complex thermal histories
revealed by multi-method thermochronology on cogenetic
minerals from vertical (age–elevation) profiles also illustrate
that mineral ages from these plutonic samples cannot be
simply interpreted with respect to bulk closure temperatures.
This Pyrenean example illustrates the necessity of combin-
ing multiple techniques as well as thermal modelling to fully
reveal and interpret the geodynamic evolution of intracon-
tinental convergent orogens.

13.6 Application of FT Thermochronology
to Transpressional Plate Boundary
Zones: The Alpine Fault of New Zealand

Continental transform plate boundary zones are charac-
terised by dominantly highly localised strike-slip shear
zones. Their orientation changes as they evolve, and in cases
where plate motion has a significant oblique component,
spectacular mountain ranges may form. In this case study,
we highlight how FT thermochronology has been used to
document the geodynamic evolution of the plate boundary
zone in the South Island of New Zealand. The interpretation
of thermochronologic data in this rapidly evolving dynamic
plate boundary is complicated due to heat advection and
potential (re)crystallisation associated with fluid–rock inter-
action. As new data (i.e., temperature, fluid pressure) from
active plate-bounding faults are obtained (Sutherland et al.
2017), FT data interpretations may require re-evaluation,
particularly in cases where there is evidence for late-stage
fluids that transport heat and may have caused (partial)
annealing of fission tracks.

13.6.1 Tectonic and Geologic Setting

The South Island of New Zealand straddles the
Australian-Pacific plate boundary zone and is actively
undergoing oblique continent–continent convergence (e.g.,
Walcott 1998). In the North Island and north-eastern part of
the South Island, oceanic crust of the Pacific (PAC) plate
subducts westwards beneath the Australian (AUS) plate. In
the south western most part of the South Island, subduction
polarity reverses, and the AUS plate subducts eastwards
beneath the PAC plate. Both subduction systems are linked
by a wide, dextrally transpressional fault zone in the South
Island that has evolved since the latest Oligocene to Early
Miocene (e.g., Cox and Sutherland 2007) with the Alpine
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fault zone marking the continental transform (Fig. 13.5).
While the majority of the plate motion is accommodated on
the Alpine Fault, slip is distributed and accommodated on
faults across the entire South Island, as indicated by active
seismicity and geodetic studies (e.g., Beavan et al. 2007;
Wallace et al. 2006). Both geology and geodesy constrain
the horizontal components of the displacement field,
including velocities, strain and strain rates. Present-day
AUS-PAC relative plate motion indicates that deformation is
broadly partitioned into a strike-slip component of 33–
40 mm/year and a fault-normal compressive component of
8–10 mm/year (Beavan et al. 2007). The Southern Alps, one
of the fastest rising and eroding mountain ranges in the
world, consists of (meta)greywacke that was progressively
thickened to form a crustal monocline within the dextrally
transpressive Alpine fault zone. Geodetic data for the central

portion of the Southern Alps region, corresponding to the
Alpine fault zone and straddling the area of highest topo-
graphic relief (i.e., the Mt. Cook region), indicate surface
vertical uplift rate estimates ranging from 5 to 8 mm/year
(Beavan et al. 2002, 2010; Houlie and Stern 2012), com-
parable to rock uplift rates and exhumation rates derived
from thermochronology, as discussed below.

Basement rocks of the South Island are divided broadly
into a Western Province consisting mainly of granite and
gneiss of AUS plate affinity, and an Eastern Province of
PAC affinity consisting primarily of metamorphosed Per-
mian to Lower Cretaceous Torlesse greywacke and the Haast
Schist Belt comprising the Otago and Alpine schists (e.g.,
Cox and Sutherland 2007). The transpressive AUS-PAC
plate boundary zone is a relatively broad anastomosing
network of high strain zones (e.g., Toy et al. 2008, 2010) in
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which slivers of both hanging wall Alpine Schist (PAC
affinity) and footwall Western Province rocks (AUS affinity)
have been incorporated and heterogeneously deformed.
Details of the early evolution of the modern orogen (i.e., the
Southern Alps of PAC provenance) have yet to be fully
revealed (e.g., Cox and Sutherland 2007). However, appli-
cation of multiple thermochronologic methods on cogenetic
K-feldspar and apatite from rocks of the Western Province
(i.e., of AUS provenance located west of the Alpine Fault)
has demonstrated that the early evolution of the Alpine fault
zone is preserved in the footwall of the Alpine Fault (e.g.,
Batt et al. 2004) (Fig. 13.5, samples WCG-1 and WCG-3).

A steeply dipping metamorphic belt is exposed in the
hanging wall (PAC) of the Alpine Fault where the meta-
morphic grade of Alpine Schist generally increases west-
wards towards the fault, reaching the oligoclase zone of the
amphibolite facies (e.g., Cooper 1972, 1974). Temperatures
and pressures reached by hanging wall greywackes were
inferred assuming metamorphic assemblages achieved
equilibrium (Grapes and Wattanabe 1992), corresponding to
metamorphic mineral isograds (e.g., garnet, biotite; Little
et al. 2005). However, metamorphic mineral(s) crystallised
over a range of P-T conditions, where the availability of
aqueous fluids enhanced reaction rates, triggering new
mineral growth and recrystallisation of protoliths. As (re)
crystallisation continued, complete to partial resetting of
isotopic systematics within the minerals occurred. For
example, zoned Late Cretaceous garnets have rims that
overgrew the Alpine Fault mylonitic foliation (Vry et al.
2004). Fabrics preserve polyphase deformational histories in
Alpine Fault mylonites (Toy et al. 2008), as indicated by
porphyroclastic biotite (inherited from the Alpine Schist)
and neocrystallised biotite within the mylonite zone in the
hanging wall of the Alpine Fault (Toy et al. 2010).

13.6.2 Thermochronologic Data and Geologic
Interpretation

For more than 35 years, thermochronologic studies have
contributed to understanding the AUS-PAC plate boundary
evolution and the landscape evolution of the Southern Alps
(Fig. 13.5). Early studies documented that radiometric ages
vary across the structural trend of the mountains (Sheppard
et al. 1975; Adams 1980; Adams and Gabites 1985; Kamp
et al. 1989; Tippett and Kamp 1993). Thermochronologic
data have commonly been interpreted as ages corresponding
to bulk Tc (e.g., Batt et al. 2000; Little et al. 2005). In the
case of more retentive thermochronologic systems (e.g.,
40Ar/39Ar mineral ages), age variations have also been
suggested to be a result of variable post-metamorphic
cooling involving partial Ar loss during Neogene exhuma-
tion (Adams and Gabites 1985; Chamberlain et al. 1995)

and/or “excess Ar” (Batt et al. 2000). FT ages from the
Alpine Schist are generally interpreted to indicate the timing
of Neogene cooling and exhumation (e.g., Kamp et al. 1989;
Batt et al. 1999). Map compilations have been made that
indicate the amount of exhumation in the Southern Alps
(Tippett and Kamp 1993; Batt et al. 2000). These studies
have interpreted isotopic ages as the timing of exhumation
from below the related closure depth (i.e., the depth at which
the ambient crustal temperature exceeds the respective Tc),
assuming a “pre-uplift geothermal gradient”.

Transects across the central and southern Alpine Fault
(A-A′ and B-B′ in Fig. 13.5) reveal reset AFT and ZFT ages
east of the Alpine Fault with the youngest ages (Middle
Miocene and younger) adjacent to the Alpine Fault (e.g.,
Kamp et al. 1989; Tippett and Kamp 1993; Batt et al. 2000;
Herman et al. 2009; Warren-Smith et al. 2016). With pro-
gressive increase in distance from the Alpine Fault (25–
100 km), AFT and ZFT ages gradually increase from reset to
partially annealed samples and then older (i.e., un-reset)
samples, reaching Early Cenozoic and Mesozoic ages,
respectively. These data have been interpreted to reflect a
higher rock uplift rate and deeper exhumation closer to the
Alpine Fault. The greatest amount of exhumation occurs
within a narrow � 50-km-long segment centred on the
Franz Josef Glacier region where the highest peaks occur. In
the central portion of the Southern Alps (A-A′ in Fig. 13.5),
a narrow zone of reset FT ages has been identified that
coincides with where the fault is steeper, where
back-thrusting has built up topography, and where erosional
exhumation is enhanced. In the central portion, the lower
crustal root is thinner as compared to the southern portion of
the Southern Alps. In the southern segment (B-B′ in
Fig. 13.5), a wider zone of reset FT ages occurs, where the
fault dip is shallower, the deformation zone is wider, and
strain is partitioned over a larger region.

On the AUS (western) side of the plate boundary zone,
temperature–time plots compiled using MDD models based
on 40Ar/39Ar K-feldspar data together with AFT and AHe
data (Batt et al. 2004) are shown for central (WG-3) and
southern sections (WG-1) of the Alpine fault zone
(Fig. 13.5). Also indicated (close to WG-3) are regions east
of the Alpine Fault where 40Ar/39Ar hornblende and biotite
ages are <6 Ma (Chamberlain et al. 1995; Little et al.
2005). Despite complexity in the data, and differences in
presentation of thermochronologic data sets, some com-
parisons can be made for these locations. For example,
gneisses and granites from the AUS side of the central
portion of the fault zone contain K-feldspar that resided for
shorter duration within the argon PRZ as compared to
K-feldspars from the AUS side of the southern segment of
the fault zone (Fig. 13.5). K-feldspar from the southern
segment of the AUS plate preserves more of the pre-20 Ma
history.
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However, considerable scatter in isotopic ages from
adjacent samples using the same mineral/method has ren-
dered interpretation challenging (e.g., Warren-Smith et al.
2016) and also calls into question simple Tc interpretations
and exhumation rate calculations based on assumed tem-
perature to depth conversions. For example, Ring et al.
(2017) used total fusion illite 40Ar/39Ar ages
(1.36 ± 0.27 Ma, 1.18 ± 0.47 Ma), along with ZFT
(0.79 ± 0.11 and 0.81 ± 0.17 Ma) and ZHe ages
(0.35 ± 0.03 and 0.4 ± 0.06 Ma) from fault gouge to
construct a cooling history assuming bulk Tc for each
mineral/method pair. However, illite from fault gouge
directly above the current trace of the Alpine Fault yielded
complex 40Ar/39Ar laser spectra with apparent ages, corre-
sponding to a significant percentage of 39Ar released, within
error of zero. Alternative interpretations, invoking partial
(re)crystallisation and partial loss of radiogenic daughter
products, are possible.

Toy et al. (2010) argue, based on Alpine fault zone
materials now exposed at the surface, that geothermal gra-
dients in the crust above the structural brittle–viscous tran-
sition are *40 °C/km and decrease to *10 °C/km below
the structural brittle–viscous transition. Geothermal gradi-
ents evolved over time and were locally modified due to heat
advection resulting from focused fluid flow, as documented
by temperature and fluid pressure data from the Alpine Fault
(e.g., Sutherland et al. 2017, and references therein). The
Sutherland et al. study measured an average geothermal
gradient of 125 ± 55 °C/km in a borehole drilled in the
hanging wall of the Alpine Fault. Such high temperatures are
sufficient to reset AFTs at relatively shallow depths and
indicate that the present-day AFT PAZ is at a depth of only
400–800 m at this location. Exhumation-related fluid flow
has been used to explain the pairing of seismic and electrical
conductivity anomalies observed in the Southern Alps in
New Zealand (e.g., Jiracek et al. 2007; Stern et al. 2007),
low-frequency earthquake activity (Chamberlain et al.
2014), as well as the formation of abundant vein-infilled
back shears in the Alpine Schist (e.g., Wightman and Little
2007). These results provide further evidence for extensive
hydration in the brittle part of the Alpine Fault, with suffi-
ciently large fluid fluxes capable of advecting heat and ele-
vating thermal gradients on a local scale. Advective heat
flow may also trigger recrystallisation (via dissolution–re-
precipitation), of thermochronologically relevant mineral
phases. Apatite is susceptible to metasomatic (fluid-induced)
alteration over a wide range of pressures and temperatures,
and even surface conditions (Harlov et al. 2005; Harlov
2015). Zircon is also prone to diagenetic and
low-temperature metamorphic growth driven by fluids,
especially in radiation-damaged zones of zircon crystals
(Rubatto 2017). Given sufficient fluid and time, metasoma-
tism is a viable mechanism to reset thermochronometers

(Hay and Dempster 2009). Such petrologic considerations
may help to explain the poor correlations between ther-
mochronologic data and topography, and/or local faults,
correlations that were hampered by imprecise data with poor
reproducibility (e.g., Herman et al. 2009).

Surface uplift rates in the central Southern Alps have
been estimated to range from 5 to 10 mm/yr (Wellman 1979;
Bull and Cooper 1986; Norris and Cooper 2001). Early
estimates of the amount of exhumation using FT data
(Tippett and Kamp 1993; Kamp and Tippett 1993) were
overestimated as compared to mass balance calculations
based on plate convergence (Walcott 1998). It was subse-
quently realised that overestimates of the amount of
exhumation had assumed that rock P-T-t-D paths during
orogenesis were vertical, when in fact rock trajectories had
significant horizontal components (Willett et al. 1993;
Koons 1995; Walcott 1998). The style of orogenesis (see
cross sections in Fig. 13.5) in the Southern Alps meant that
rocks follow paths for long distances (and hence long
durations) parallel or near-parallel to relevant isotherms, as
compared to the distance and durations followed by rock
paths perpendicular to relevant isotherms. In addition, iso-
therms are not everywhere parallel to the surface, and
geothermal gradients evolve with time as heat is advected
upwards towards the Alpine Fault. Rapid exhumation of hot,
tectonically advected rocks along the Alpine Fault has
resulted in transient, localised geothermal gradients
of >125 °C/km in the upper 3–4 km of the crust (Sutherland
et al. 2017).

Additional factors complicate determination of exhuma-
tion rates in the Southern Alps. Firstly, mineral equilibria
modelling indicates that erosional exhumation of greywacke
produces a continual supply of new fluid at temperatures as
low as 400 °C and pressures <2 kbar, corresponding to <7
km depths (Vry et al. 2010). This means that there may be
abundant fluids within the upper crust available to transport
heat (e.g., Toy et al. 2010). Secondly, the presence of fluids
may facilitate (re)crystallisation of micas at temperatures
below their Tc for argon. Micas may therefore recrystallise at
much shallower depths than inferred “closure” depths cal-
culated from assumed Tc and assumed steady-state
geothermal gradients. If crystallisation occurred at shal-
lower depths than those assumed for Tc and steady-state
geothermal gradients, exhumation rates will be overesti-
mated (Fig. 13.2c). Thirdly, microstructures and fluid
inclusion data from the central Alpine fault zone indicate
that quartz veins formed at relatively shallow crustal depths,
with little variation in depths to relevant isotherms inferred
for both hanging wall and fault rocks (Toy et al. 2010). In
zones where thermochronologic data yield Alpine-related
exhumation ages (� 6 Ma in the Southern Alps), geo-
barometry is required to constrain the depth of crystallisation
before exhumation rates can be calculated (Fig. 13.2).
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Regional thermochronologic studies may mask effects due
to localised recrystallisation, for example, due to late-stage
hydrothermal alteration. What is generally lacking in studies on
the Southern Alps is an understanding of rock particle paths
obtained from P-T-t-D analyses on key samples. It is clear,
however, that FT data are crucial to determine the timing of
exhumation and brittle deformation as the Alpine fault zone
evolved within the AUS-PAC plate boundary zone. To sum-
marise, in the active AUS-PAC plate boundary in the South
Island of New Zealand, partitioning of strain, erosion, mass
wasting as well as the orographic effect of the Southern Alps
continues to impact the landscape evolution of the range.
Exhumation-related fluid flow may enhance syn-kinematic
recrystallisation of minerals. Independent geobarometric data,
to constrain the depth of mineral crystallisation, may be
required before mineral ages can be interpreted with respect to
the geodynamic evolution. While a wealth of thermochrono-
logic data exists in the literature, sample sites are often scat-
tered, and simple interpretations based on assumed Tc may not
be valid, especially given abundant evidence for fluid flow, and
documented high geothermal gradients within the active
plate-bounding fault zone.

13.7 Conclusions

Thermochronologic studies of plutonic and metamorphic
rocks contribute quantitative data that provide insight into
deep Earth processes. Successful application of ther-
mochronologic methods to tectonics and geodynamics has
been demonstrated through use of geologically and petro-
logically well-constrained sampling strategies, multiple
methods applied to cogenetic minerals, and modelling using
kinetic parameters to obtain continuous temperature–time
histories. Case studies highlight the importance of FT ther-
mochronology to determine the final exhumation of plutonic
and metamorphic rocks within different tectonic and geo-
dynamic settings:

• In (U)HP metamorphic terranes, the integration of
petrologic data and multiple thermochronologic methods
document prograde, peak, and retrograde P-T-t-D rock
paths. FT thermochronology constrains the timing of
final exhumation, thereby allowing assessment of whe-
ther (U)HP rocks were exhumed to the surface within the
same subduction cycle that produced eclogite-facies
rocks, and the mechanism(s) by which rocks were
exhumed to near-surface P-T conditions.

• In extensional orogens, such as the TAM, AFT ther-
mochronologic studies of samples collected in vertical
profiles, across and along the range, offer the best
approach to constrain the timing and rate of episodic

cooling during rift flank development and landscape
evolution.

• In intraplate collisional orogens, such as the Pyrenees
mountains, best results are provided using a sampling
strategy employing application of multiple
low-temperature thermochronologic methods on coge-
netic samples collected over a large range in elevation.
This approach can constrain the timing of thrusting
during orogenesis and the timing of subsequent
exhumation. Data from age–elevation profiles, forward
and inverse thermal modelling, and thermo-kinematic
modelling are complementary, consistently revealing the
sequence of orogenic events.

• In active transpressive plate boundary zones, such as the
AUS-PAC plate boundary zone, FT thermochronology
provides key constraints on timescales of orogenesis,
geodynamic, and landscape evolution in the Southern
Alps of New Zealand. However, the potential impact of
hydrothermal fluid advection, on the (partial) resetting
and annealing of fission tracks, may require re-evaluation
of some geodynamic interpretations.
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