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Abstract
Apatite fission-track (AFT) and zircon fission-track
(ZFT) data along with other low-temperature ther-
mochronologic data are widely used in the fields of
structural geology and tectonics to determine the
timing/duration of events, the amount of exhumation in
mountain belts, rates of slip on faults, and the geometries
of fault networks. In this chapter, I review applications of
AFT and ZFT data in extensional tectonic settings.
Examples of data sets and interpretations are summarized
from the Cenozoic-Recent North American Basin and
Range Province. These data constrain displacements of
normal faults, rates of slip on faults, paleogeothermal
gradients, and the original dip of low-angle normal faults.

11.1 Introduction

Fission-track (FT) data on apatite and zircon (AFT and ZFT,
respectively) are important tools for structural geology and
tectonics, as was recognized from the earliest studies in
mountain belts (Wagner and Reimer 1972). These
low-temperature thermochronometers have been widely
used to constrain the magnitude and timing of faulting in the
brittle upper crust through displaced age–elevation profiles,
and the rates of displacement of crust being exhumed
through closure temperature (Tc) isotherms by faulting and
erosion. The direct application of FT thermochronology in
structural geology is more common for extensional or
transtensional tectonic settings where cooling is a result of
“tectonic” exhumation along with erosion (e.g., Fitzgerald
et al. 1991; Foster et al. 1991). There are, however, many
excellent examples of FT data being applied to thrust and

fold belt systems (e.g., O’Sullivan et al. 1993; McQuarrie
et al. 2008; Espurt et al. 2011; Mora et al. 2014) to determine
when particular thrusts or thrust systems were active. When
thrusting forms topographic relief and induces rapid erosion
and cooling, the FT data constrain the timing of thrusting
(e.g., Metcalf et al. 2009). The delay in time between
thrusting and erosion in some orogenic belts, however, limits
direct measurement of fault parameters from cooling ages
in many shortening systems. This chapter is, therefore,
focused on examples from rifts, fault blocks, and meta-
morphic core complexes, particularly in environments where
tectonic exhumation usually dominates over erosion.

11.2 Faulted Partial Annealing Zone
(PAZ) Profiles to Constrain Fault
Geometry

In regions lacking traditional sedimentary or volcanic
stratigraphic markers, geologic structure and fault block
geometry may be constrained using relative displacements of
a reference AFT or ZFT age/track length relief profile, if
regional consistency in the profile is established (e.g.,
Gleadow and Fitzgerald 1987; Brown 1991; Fitzgerald
1992; Foster and Gleadow 1992; Foster et al. 1993; Stockli
et al. 2003). Reference profiles are constructed by measuring
FT ages and track lengths from samples collected over a
wide range of elevations in steep mountainous terrain or
from drill holes. Paleo-PAZ inflection(s) in the FT age–el-
evation profile and steep gradients in the reference profile
reveal the upper crustal thermal history of an area (e.g.,
Foster and Gleadow 1993) and form the basis for a
pseudo-stratigraphy (Brown 1991) (see also Chap. 10,
Malusà and Fitzgerald 2018a, b). Vertical offsets in the
reference profile are due to normal faulting and block tilting
that has occurred after the PAZ profile was formed in an
originally stable region. An AFT age and mean track length
stratigraphy can be viewed as being composed of layers of
crust with similar (to within ±10–20 °C) thermal histories
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for temperatures below *100–120 °C prior to faulting
(Brown 1991). Vertical offsets between reference age–ele-
vation profiles that are beyond two-sigma errors are used to
constrain displacements on faults; sample traverses perpen-
dicular to structural trends may elucidate block tilting and
horizontal displacement. This approach is generally able to
detect faults with displacements of the order of hundreds of
meters or more and is most applicable to regions that had
been geologically stable and slowly eroded for timescales
of >107 year prior to extension (Brown et al. 1994).
A comprehensive review of AFT PAZ profiles is given in
Chap. 9, (Fitzgerald and Malusà 2018).

11.3 Kenya and Anza Rifts Example of Fault
Geometry

The plot in Fig. 11.1a shows a reference AFT age–elevation
profile for basement rocks exposed east and west of the Kenya
Rift in central Kenya (Foster and Gleadow 1993, 1996). The
reference profile is composed of data from samples collected
from steep mountain fronts at intervals of <100 m. The filled
boxes are data from the Cherangani Hills, a range west of the
Kenya Rift that reaches elevations of >3000 m, and the
remaining data are from the Mathews Range and Karisia
Hills, which are east of the Kenya Rift (Foster and Gleadow
1996). The samples from the Karisia Hills are elevated 1100
m to reconstruct displacement due to Cenozoic faulting
(Foster and Gleadow 1992). The reference profile exhibits
three segments where the age–elevation relationship is linear
with a rather steep slope (and long track lengths for the lowest
segment). These are separated by two preserved PAZ inter-
vals, which were established before periods of more rapid
erosion at about 120 Ma and about 65 Ma. A similar age–
elevation relationship is found throughout Kenya and Tan-
zania, establishing the regional nature of the FT stratigraphy
(e.g., Foster and Gleadow 1996; Noble et al. 1997; Spiegel
et al. 2007; Toores Acosta et al. 2015).

Figure 11.1b shows a plot of the topography along an
east–west section at 1˚10′N latitude. The section crosses the
Miocene-Recent Kenya Rift and the Cretaceous–Paleogene
Anza Rift. The variation in AFT age with elevation in the
mountain ranges, and with distance along the traverses
between the ranges, is superimposed on the topographic
section from the reference stratigraphy in the inset box. The
three segments with steep slopes (and consistent mean track
lengths), and the two paleo-PAZs in Fig. 11.1a, define five
FT stratigraphic markers. Offsets in segments of the refer-
ence profile indicate the presence of faults with displace-
ments estimated by restoring the formerly continuous layers.
The FT stratigraphy also reveals the tilt direction for the
footwall blocks bounded by the normal faults, which in this

case is consistent across the section. These data suggest that
the normal faults were related to extension that formed the
Anza Rift, and that the modern East Africa Rift, in Kenya, is
superimposed on structures related to previous rifting. In this
example, the AFT stratigraphy reveals the broad structural
framework of the basement areas east and west of the Kenya
Rift where traditional stratigraphic markers are lacking. It is
important to note that the small-scale structure may be sig-
nificantly more complex than shown in Fig. 11.1b, because
the resolution of the FT data reveals only structures with
displacements of the order of hundreds of meters.

11.4 Normal Fault Slip Rates

Low-temperature thermochronometers are an effective way
to determine the rate of slip on normal faults, which is a key
parameter for understanding the development of fault sys-
tems, particularly low-angle normal faults bounding meta-
morphic core complexes (e.g., Foster et al. 1993; John and
Foster 1993; Foster and John 1999; Wells et al. 2000;
Campbell-Stone et al. 2000; Carter et al. 2004, 2006; Stockli
2005; Brichau et al. 2006; Fitzgerald et al. 2009). Lateral
gradients in apparent age along strike in the displacement
direction of normal faults are related to the progressive
quenching of footwall rocks as they moved through the PAZ
(or the partial retention zone—PRZ) for the ther-
mochronometer (Fig. 11.2), as long as the footwall was
below (at higher temperature) the base of the PAZ before
slip occurred (Foster et al. 2010). The inverse of the slope on
a plot of apparent age versus distance in the slip direction
reveals the slip rate. For accurate slip rate estimates, the Tc
isotherm for the thermochronometer must have remained
approximately horizontal or fixed during the interval of slip
revealed by the data (Ketcham 1996; Ehlers et al. 2003).
This assumption was investigated for low-angle normal
faults using 2-D conductive cooling models by Ketcham
(1996) and found to be reasonable with a few million years
after the onset of extension, because the isotherms reach a
steady-state position by that time. Before the first few mil-
lion years, the isotherms advance along the detachment
surface causing uncertainties in the slip rate (Ketcham 1996).
Advection of isotherms will result in an underestimate of the
slip rate (Ehlers et al. 2001; Fitzgerald et al. 2009). The
thermochronometric data alone give time-averaged slip rates
on timescales of about a million years and do not rule out
significantly faster or slower rates of detachment slip over
shorter timescales. Ehlers et al. (2003) showed that com-
bining low-temperature thermochronologic data, along with
thermal–kinematic modeling of the evolving isotherms,
revealed changes in slip rate on the steeply dipping (45°–
60°) Wasatch normal fault.

212 D. A. Foster



11.5 Bullard Detachment Example
to Constrain Slip Rates

The Bullard detachment is a large-scale, low-angle normal
fault that separates footwall rocks of the Miocene
Buckskin-Rawhide and Harcuvar metamorphic core com-
plexes in Arizona, USA (Spencer and Reynolds 1991; Scott
et al. 1998). Spencer and Reynolds (1991) estimated about
90 km of displacement for this detachment system based on
reconstructing distinctive sedimentary and plutonic units in
the hanging wall and footwall. Figure 11.3 is a plot of the
variation of AFT age with distance in the slip direction for
Buckskin-Rawhide and Harcuvar metamorphic core com-
plex footwall rocks, immediately beneath the projection of
the detachment (Foster et al. 1993). The inverse slope of the
Buckskin-Rawhide core complex data suggests a detachment
fault slip rate of 7.7 ± 3.6 km/Myr (±2 sigma). Regressions
of the slip rate and two-sigma errors, for these and other slip
rates, were calculated using methods of York (1969) for

non-correlated errors, considering two-sigma errors in age
and sample location/projection. For the regressions of the
AFT data, in those cases where the number of data points is
relatively small the two-sigma errors are considered to
approximate the uncertainties.

All of the samples from the Buckskin-Rawhide footwall
give cooling ages at least 5 or 6 million years younger than
the onset of extension and have long mean track lengths,
indicating rapid cooling. A value of 6.5 ± 3.0 km/Myr for
slip rate along that detachment is given by results from the
adjacent Harcuvar Mountains core complex. The trend in the
Harcuvar Mountains is influenced by one relatively precise
AFT age of about 21 Ma from the structurally shallowest
sample. Removing this one sample, because of the possi-
bility it may have cooled before the depth of the 110 °C
isotherm was stationary (e.g., Ketcham 1996), gives a slip
rate of 7.7 ± 3.1 km/Myr. As expected, this rate is similar to
that from the Buckskin Mountains because both footwalls
were unroofed from beneath the same detachment system
(Spencer and Reynolds 1991).
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Fig. 11.1 a Composite AFT age
versus elevation regional profile
for central Kenya (after Foster
and Gleadow 1996). This age–
elevation profile establishes an
AFT stratigraphy, which is used
to reconstruct offsets on normal
faults and constrain tilting of fault
blocks. b Offsets of the regional
AFT age–elevation profile show
the gross framework of normal
faults that bound the basement
mountain ranges in central Kenya
(after Foster and Gleadow 1996).
Without the FT data, it would not
be possible to determine the
regional-scale normal faults or
block tilting related to the Anza
Rift, because no regional
sedimentary or volcanic
stratigraphy exists within the
areas where mainly Precambrian
basement rocks are exposed
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Spencer and Reynolds (1991) independently estimated an
extension rate of 8–9 km/Myr along the Buckskin-Rawhide
detachment, based on the amount of slip (*90 km) that had
occurred between 23 and 25 Ma (when syn-extensional
basins started to form) and about 15 Ma (when the lower
plate rocks cooled >100 °C). The timing of initial exposure
of footwall rocks at the southwestern and northeastern ends
of the Buckskin-Rawhide core complex, based on distinctive
clasts in conglomerates, also indicates a slip rate
of *7 km/Myr for this fault (Scott et al. 1998).

The relatively large errors for the Miocene AFT ages
result in significant two-sigma errors for slip rate examples
in Fig. 11.3. Carter et al. (2004) and Singleton et al. (2014)
showed that a more precise measurement of slip rate of this
fault could be constrained using (U-Th)/He data. Although
the results of these two studies are not in agreement on the
slip rate (for reasons listed below), they are within error of
the values in Fig. 11.3. Displacement rates for other normal
faults in the Basin and Range using FT data referenced in
this section range from <1 km/Myr to >10 km/Myr.

The example in Fig. 11.3 appears relatively clear with the
exception of the relatively large errors. There are notable
examples in the literature where AFT and/or other
low-temperature thermochronologic data from normal fault
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Fig. 11.2 Example showing the exhumation of a zircon PAZ by slip
on a low-angle normal fault system (after Foster and John 1999; Wells
et al. 2000; Stockli 2005; Foster et al. 2010). The upper diagram shows
the zircon PAZ at depth before extension, with the future locations of
the normal fault system. The filled boxes represent sample locations
above, within, and below the PAZ. The gray circles represent potential
sample locations in a future tilted crustal section bounded by normal
faults. The middle plot shows the exhumation of the PRZ and crust
beneath the zircon PAZ by displacement on a low-angle normal fault.
The lower plot shows the distribution of ZFT ages along the trace of the
detachment in the direction of slip 10 million years after extension. The
samples that were above the zircon PAZ (ZPAZ) reveal cooling ages
older than the time of extension, those that were within the ZPAZ give
mixed ages that progressively get younger with depth, the samples that
were beneath the ZPAZ at deeper depths show a gradual decrease in
age with distance, the inverse of which gives the slip rate on the fault.
A similar concept also applies to other thermochronologic systems with
different PAZ or PRZ temperature intervals
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systems are much more complicated and reasonable esti-
mates of slip rate are not possible to constrain. Many
detachment faults are composite structures that form from
the merger of discrete segments active at different times
(e.g., Lister and Davis 1989). This occurs when fault seg-
ments are transferred from the footwall to the hanging wall,
or from the hanging wall to the footwall, and where sec-
ondary breakaway zones develop (e.g., Lister and Davis
1989). Data sets from composite detachments may show
overlapping segments or repeated age/distance relationships
parallel to the slip direction (e.g., Pease et al. 1999;
Campbell-Stone et al. 2000; Stockli et al. 2006; Fitzgerald
et al. 2009; Singleton et al. 2014) that need to be assessed
separately. Hydrothermal flow within active normal fault
systems may result in rapid quenching of the footwall or
heating along the detachment (e.g., Morrison and Anderson
1998). The data quality from some detachments is poor due
to low uranium concentration, numerous fluid inclusions,
and other factors which may mean the slip rate cannot be
constrained (e.g., Fitzgerald et al. 1993). Finally, the foot-
walls of some normal fault systems are too deeply eroded
and/or folded by isostatic rebound to project sample loca-
tions to the level of the former fault surface (e.g., Foster and
Raza 2002).

11.6 Paleogeothermal Gradient

An elusive, but important parameter, for understanding
extensional tectonics is the value of the geothermal gradient
before extension started. Knowing the geothermal gradient
prior to the onset of extension is important for elucidating
processes that drive extension in a particular region. Active
or passive extension processes, and those driven by mag-
matism or thermal weakening of the lithosphere, are partly
related to different geothermal gradients. Elevated geother-
mal gradients commonly accompany extension due to
mantle upwelling and decompression melting. Gradients
prior to extension, however, are often much different and
relate to a previous tectonic regime, but are invaluable for
calculating the paleodepths of Tc isotherms before
exhumation.

There are several examples where FT studies from tilted
fault blocks have yielded information about the geothermal
gradient prior to extension (Foster et al. 1991; Fitzgerald
et al. 1991, 2009; Howard and Foster 1996; Stockli et al.
2003; see also Chap 9, Fitzgerald and Malusà 2018). Pale-
ogeothermal gradient data may then be used to determine,
for example, the amount of exhumation that has taken place
in metamorphic core complexes and the original dip of
faults. Samples collected along traverses from tilted crustal
sections (thick fault blocks) parallel to the movement
direction of normal faults reveal thermal histories from

increasingly deeper paleodepths. Paleoisotherms are identi-
fied at the depth where isotopic systems recording
pre-extension cooling ages, at shallow depths, give way, at
deeper levels, to cooling ages that mark rapid exhumation
during extension. The transition where the age–depth curve
forms a break-in slope and intersects the age versus pale-
odepth curve at the time that extension started represents the
base of an exhumed PAZ (Fitzgerald et al. 1991; Howard
and Foster 1996). A geothermal gradient may be calculated
when two paleoisotherms are revealed by thermochronologic
data (see Chap. 8, Malusà and Fitzgerald 2018a, b), or one
paleoisotherm combined with the location of an unconfor-
mity with known depth beneath the surface.

In the Basin and Range Province, examples of this
method include studies of the Gold Butte fault block in Utah
(Fitzgerald et al. 1991, 2009; Reiners et al. 2000; Bernet
2009; Karlstrom et al. 2010), the Grayback fault block in
Arizona (Howard and Foster 1996), and the White Moun-
tains fault block in California/Nevada (Stockli et al. 2003).
In each of these cases, the depth below an unconformity (of
known depth) for the PAZ for AFT and ZFT (or PRZ for
(U-Th)/He ages) is relatively well constrained. The depth of
the base of an exhumed PAZ/PRZ relating to the depth of a
particular geotherm (e.g., 110° for base of the apatite PAZ)
within a relatively intact fault block then allows the calcu-
lation of the paleogeothermal gradient.

In the three southern Basin and Range examples listed
above, the pre-extension gradients were found to have been
relatively low (� 20 °C/km, e.g., Grayback) or normal
(� 25 °C/km, Gold Butte). This has important implications
for the tectonic setting of the region in Paleogene time.
Relatively, normal paleogeothermal gradients indicate that
magmatism was unlikely to have weakened the crust prior to
extension and even lower geothermal gradients (<20 °C/km)
are more typical of subduction zone settings rather than
orogenic highlands. In the case of the US Cordillera, the
relatively low Paleogene geothermal gradients may be rela-
ted to cooling of the lithosphere over a flat slab segment of
the subducting Farallon Plate (e.g., Dumitru et al. 1991).

11.7 Grayback Fault Block Example
to Constrain Paleogeothermal
Gradients

The Grayback fault block in the Tortilla Mountains, Arizona
(Fig. 11.4), exposes a Proterozoic through Paleocene
granitic crustal section about 12-km thick (Howard and
Foster 1996). The crustal section was tilted eastward during
Oligocene to Miocene extension, which led to the exhuma-
tion of core complexes in the Santa Catalina, Rincon, Tor-
tolita, and Picacho Mountains (Dickinson 1991).
Stratigraphy of the overlying Tertiary rocks indicates that
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tilting of the Grayback block took place between 25 and
16 Ma. The block was titled to near-vertical or a slightly
overturned orientation based on the dip of Proterozoic
Apache Group and diabase dikes that were horizontal prior
to tilting (Howard 1991).

AFT and ZFT ages from the Grayback fault block are
shown in a plot of age against paleodepth (Fig. 11.4b).
The AFT ages decrease westward (deeper paleodepths)
from *83 Ma at the unconformity to a break-in slope
at *24 Ma and *5–6 km depth. Mean track lengths for
samples between 0 and 6 km depth are <13 µm, indicating
relatively slow cooling through the apatite PAZ.
Below *5–6 km depth, the AFT ages decrease from *24–
15 Ma and have long mean track lengths (>14 µm),

indicating more rapid cooling. The ZFT ages also decrease
to the west and become concordant with the initiation of
extension at paleodepths of 12.1–12.3 km.

The break-in slope in the AFT age transect represents the
position of the base of the apatite PAZ (*110 °C) (Gleadow
and Fitzgerald 1987) prior to Tertiary tilting. All of the
apatite samples below the break-in slope were cooled rapidly
from temperatures where tracks were totally annealed, based
on the long mean track lengths. The form of the ZFT age
profile with no Oligocene–Miocene break-in slope suggests
that all of the samples were at or colder than and structurally
above the temperature of total annealing (*220–250 °C for
107 year timescales, e.g., Brandon et al. 1998; Bernet 2009).
However, the fact that the ages of the two deepest samples
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are concordant with, but not younger than, start of tilting
suggests the samples at 12.3 km were at 220 ± 30 °C
at *25 Ma.

Howard and Foster (1996) calculated the paleogeother-
mal gradient for the Grayback block from the difference in

depth of the paleoisotherms at 5.7 ± 0.4 km (110 ± 10 °C)
and 12.15 ± 0.7 km (220 ± 30 °C). This gives a gradient
of 17.1 ± 5.3 °C/km. The errors include values of known
and estimated errors in annealing temperatures and the
projections. A gradient calculated between the surface and

Fig. 11.5 Geological map of the
Chemehuevi Mountains,
California (modified from John
and Foster 1993; Foster and John
1999). The section A–B is the
projection through the southern
part of the footwall in Fig. 11.6.
The thick dashed lines are
paleoisotherms for the southern
and central parts of the footwall to
the Chemehuevi detachment fault
when extension started
at *22 Ma. Paleotemperatures
for sample points constraining the
isotherms were calculated from
thermal histories of the footwall
rocks obtained from 40Ar/39Ar
and FT data, where three to five
minerals with different Tc were
analyzed from each sample. The
isotherms show a gradual increase
in temperature to the northeast in
the known direction of tectonic
transport. Isotherms are not
shown for the northern part of the
footwall, because of
syn-extensional plutons in that
area
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the 110 ± 10 °C isotherm, assuming a surface temperature
of 15 ± 10 °C for the late Oligocene, gives a gradient of
16.7 ± 4.9 °C/km. The mean of these two estimates gives a
paleogeothermal gradient of 17 ± 5 °C/km.

11.8 Dip Angles of Faults Prior to Tilting
and Isostatic Rebound

One of the fundamental parameters in structural recon-
structions of normal and detachment fault systems is the dip
of normal faults, when they were initiated and while they are
active. This information is essential for calculating exten-
sional strain on local and regional scales and is needed to
assess models for the formation of low-angle detachment
faults in the light of apparent contradictions with Anderso-
nian fault mechanics (e.g., John and Foster 1993; Wernicke
1995). Tilting of fault blocks and isostatic rebound com-
monly reduces the dip of faults during and after displacement
(e.g., Wernicke and Axen 1988; Spenser and Reynolds
1991). Reconstructing the original dips of faults that do not
intersect or offset stratigraphic or other geometric indicators
in crystalline rocks is particularly difficult. The controversy
regarding the original dips of low-angle detachment faults
through the seismogenic crust serves as an example of how
difficult it is at times to reconstruct extensional fault systems.
Thermochronology data, including FT data, have con-
tributed greatly to the understanding of normal fault systems
and initial dips of faults (e.g., Foster et al. 1990; John and
Foster 1993; Lee 1995; Foster and John 1999; Pease et al.
1999; Stockli 2005; Fitzgerald et al. 2009).

There are several approaches to constrain fault dips with
thermochronologic data. The calculation requires knowing:
(1) the direction of slip on the fault, (2) the location of at
least two temperatures at a particular time (before or during
faulting) along the fault trace as defined by FT or other
thermochronometers, and (3) either an assumption about the
geothermal gradient or a measure of the paleogeothermal
gradient from a titled hanging-wall crustal section. The
geothermal gradient should be constrained to within about
±10 °C/km for a reasonable estimate of dip (John and Foster
1993; Foster and John 1999; Stockli 2005; Fitzgerald et al.
2009). The variation in paleotemperature along the slip
direction of a detachment fault at a particular time is related
to the dip of the fault provided that: (1) lateral variations in
the thermal gradient (due to voluminous intrusions or
hydrothermal flow in the footwall) can be ruled out, and
(2) that the samples are from below a single fault system.
The second may introduce uncertainty for detachment sys-
tems with secondary breakaway faults that result in greater
extension in down-dip section.

11.9 Chemehuevi Detachment Example
to Constrain Fault Dip

FT and 40Ar/39Ar data from rocks in the footwall of the
Chemehuevi detachment in Southeastern California con-
strain the initiation angle of this regional detachment fault
system (Foster et al. 1990; John and Foster 1993; Foster and
John 1999). Contoured values of mineral cooling age from
biotite (40Ar/39Ar), K-feldspar (40Ar/39Ar), ZFT, AFT, and
titanite FT decrease north eastward in the slip direction and
define the locations of paleoisotherms in the footwall before
and during extension (Fig. 11.5). These thermochronologic
data indicate a moderate paleotemperature field gradient
across the footwall prior to faulting.

At *22 Ma, granitic rocks exposed in the southwestern
and northeastern portions of the footwall were at � 200
and � 400 °C, respectively, and were separated by a dis-
tance of some 23 km along the known slip direction. This
gradual increase in temperature with depth is attributed to
the gentle warping of originally subhorizontal isothermal
surfaces and constrains the exposed part of the Chemehuevi
detachment fault to have had an initial dip of 15° to 30°
using a range of geothermal gradients (Fig. 11.6).
Syn-extensional plutons are not present in the southern part
of the footwall, so the smooth gradient in paleotemperature
is not likely to be due to local variations in the geotherm.
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Fig. 11.6 Plot of calculated paleodepth for samples from the southern
Chemehuevi Mountains projected to a southwest–northeast
cross-section in the direction of slip on the Chemehuevi detachment
fault. Paleodepth for each point is calculated from the temperature of
each sample at 22 Ma, based on the thermochronologic data assuming
three different geothermal gradients. Lines indicate regressions of the
data for each gradient and give regional average initial dips of the
Chemehuevi detachment
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11.10 Conclusions

Many other excellent examples of applications of FT data to
structural geology and tectonics exist in the literature. The
examples summarized in this chapter provide a general
outline for using FT data in normal fault studies. In all cases,
a relatively large data set is needed to reduce uncertainty and
some of the more powerful applications combine FT,
(U-Th)/He, and/or 40Ar/39Ar data from the same samples or
from the same structure.
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