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Abstract Damage-associated molecular patterns (DAMPs) or alarmins are endog-
enous danger signals that are derived from damaged cells and extracellular matrix
degradation, capable of triggering innate immune response to promote tissue damage
repair. Hemolytic or hemorrhagic episodes are often associated with inflammation,
even when infectious agents are absent, suggesting that damaged red blood cells
(RBCs) release DAMPs.

Hemoglobin (Hb) composes 96% of the dry weight of RBCs; therefore upon
hemolysis, tremendous amounts of Hb are released into the extracellular milieu. Hb
oxidation occurs outside the protective environment of RBCs, leading to the forma-
tion of different Hb oxidation products and heme. Heme acts as a prototypic DAMP
participating in toll-like receptor as well as intracellular nucleotide-binding oligo-
merization domain-like receptor signaling. Oxidized Hb forms also possess some
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inflammatory actions independently of their heme releasing capability. Non-Hb-
derived DAMPs such as ATP, interleukin-33, heat shock protein 70, as well as RBC
membrane-derived microparticles might also contribute to the innate immune
response triggered by hemolysis/hemorrhage.

In this chapter we will discuss the inflammatory properties of RBC-derived
DAMPs with a particular focus on Hb derivatives, as well as therapeutic potential
of the endogenous Hb and heme-binding proteins haptoglobin and hemopexin in the
prevention of hemolysis/hemorrhage-associated inflammation.

Keywords Hemoglobin · Red blood cells · Inflammasome · DAMPs · Hemolysis ·
Hemorrhage

Abbreviations

ASC Apoptosis-associated speck-like protein containing a caspase
recruitment domain

ATP Adenosine triphosphate
CO Carbon monoxide
Cys Cysteine
DAMPs Damage-associated molecular patterns
FerrylHb Ferrylhemoglobin
Hb Hemoglobin
HO-1 Heme oxygenase-1
H2O2 Hydrogen-peroxide
Hp Haptoglobin
Hsp Heat shock protein
Hx Hemopexin
ICAM-1 Intracellular adhesion molecule-1
ICH Intracerebral hemorrhage
IL Interleukin
LPS Lipopolysaccharide
MetHb Met(ferric) hemoglobin
Mhem macrophage Hemorrhage-associated macrophage
MPs Microparticles
MyD88 Myeloid differentiation primary response gene 88
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB Nuclear factor kappa B
NLR NOD-like receptor
NLRP3 NLR family pyrin domain containing 3
NOD Nucleotide-binding oligomerization domain
NRF2 Nuclear factor erythroid 2-related factor 2
PAMPs Pathogen-associated molecular patterns
PPIX Protoporphyrin IX
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RBC red blood cell
P2X7 P2X purinoceptor 7
TLR Toll-like receptor
ROS Reactive oxygen species
TNF-α Tumor necrosis factor-alpha
TRIF TIR-domain-containing adapter-inducing interferon-β
Tyr Tyrosine
VCAM-1 Vascular cell adhesion molecule-1

9.1 Introduction

Damage-associated molecular patterns (DAMPs) or alarmins are endogenous danger
signals that are derived from damaged cells and extracellular matrix degradation
capable of triggering and/or exacerbating innate immune responses to promote tissue
damage repair (Matzinger 1994). Hemolytic or hemorrhagic episodes are often
associated with inflammation even when infectious agents are absent (Arruda et al.
2005), suggesting that damaged red blood cells (RBCs) release DAMPs (Mendonca
et al. 2016).

The far most abundant protein in mature RBCs is hemoglobin (Hb) that composes
96% of the dry weight of RBCs; therefore upon hemolysis, tremendous amounts of
Hb are released into the extracellular milieu. Once outside the protective environ-
ment of RBCs, Hb is prone to oxidation, in which process different Hb oxidation
products form with diverse biological activities toward immune and nonimmune
cells. Heme, the prosthetic group of Hb, is promptly released from oxidized Hb
species and is the most studied RBC-derived alarmin (Soares and Bozza 2016).
Heme is a strong prooxidant and is involved in toll-like receptor (TLR) as well as
intracellular nucleotide-binding oligomerization domain (NOD)-like receptor (NLR)
signaling [reviewed in Dutra and Bozza (2014), Soares and Bozza (2016)]. Besides
heme, oxidized Hb forms also possess some inflammatory actions independently of
their heme releasing capability [reviewed in Jeney et al. (2014)]. Non-Hb-derived
DAMPs such as adenosine triphosphate (ATP), interleukin (IL)-33, heat shock
protein (Hsp) 70, as well as RBC membrane-derived microparticles (MPs) might
also contribute to the innate immune response triggered by hemolysis/hemorrhage.

Deleterious effects of extracellular Hb and heme are controlled by haptoglobin
(Hp) and hemopexin (Hx), respectively. These acute phase proteins bind extracel-
lular Hb and heme avidly and facilitate their removal from circulation through
receptor-mediated endocytotic routes. Upon massive intravascular hemolysis, the
scavenging capacities of Hp and Hx are overwhelmed. Along with this notion, Hp-
and Hx-based therapeutic interventions could be beneficial in pathologies associated
with hemolysis/hemorrhage.
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9.1.1 Physiology of RBCs

RBCs are the most prevalent cells in the human body, structurally and functionally
dedicated to transport oxygen and carbon dioxide throughout the organism. RBCs
are formed in the bone marrow from pluripotent hematopoietic stem cells in the
process of erythropoiesis. Differentiation takes place mainly in the bone marrow,
until reticulocytes released into the bloodstream where they mature further 1–2 days
into terminally differentiated RBCs. During differentiation RBCs loose nuclei and
cytoplasmic organelles including mitochondria and ribosomes. The advantage of not
having nuclei in mature RBCs is twofold: first, anucleated cells are more flexible
assuring that they can squeeze through small blood capillaries; second, there is more
space for Hb resulting in increased oxygen-binding capacity. On the other side of
this trade-off, mature anucleated RBCs are unable to divide, and their rescuing
mechanisms are limited. This explains the relatively short life-span (100–120
days) of RBCs in the circulation, and the enormous turnover of making and breaking
RBCs (200 billion RBCs/day).

Circulating RBCs are continuously exposed to high levels of reactive oxygen
species (ROS) of both endogenous and exogenous origin [reviewed in Mohanty
et al. (2014)]. Each ml of blood contains 0.3 g of Hb, and auto-oxidation (Table 9.1,
equation #1) of Hb is the major source of endogenous ROS in RBCs. Besides Hb
auto-oxidation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases
also contribute to endogenous ROS production in RBCs (George et al. 2013). To
cope with this challenge, RBCs are equipped with a highly effective antioxidant
defense system which includes enzymes such as Cu/Zn superoxide dismutase that
convert superoxide anion to hydrogen peroxide (H2O2), catalase, glutathione perox-
idase, and peroxiredoxins which decompose H2O2 to H2O [reviewed in Siems et al.
(2000), Jeney et al. (2013), Mohanty et al. (2014)]. Nonenzymatic low-molecular-
weight scavengers such as glutathione and ascorbic acid also contribute to this

Table 9.1 Oxidative modifications of hemoglobin

Formed species

(1) Hb(Fe2+)O2 ! Hb(Fe3+) + O2
•� Methemoglobin

(2) Hb(Fe2+)O2 + H2O2 ! Hb(Fe4+ ¼ O2�) + H2O + O2 Ferrylhemoglobin

(3) Hb(Fe3+) + H2O2 ! Hb•+(Fe4+ ¼ O2�) + H2O Ferrylhemoglobin globin radical

(4) Hb(Fe4+ ¼ O2�) + 2H+ ! Hb•+(Fe3+) + H2O Methemoglobin globin radical

(5) Hb•+(Fe3+) + Hb•+(Fe3+) ! (Fe3+) +Hb─Hb+(Fe3+) Covalently cross-linked methemoglo-
bin multimer

Routes of hemoglobin oxidation. Auto-oxidation of Hb generates metHb and superoxide anions
(equation 1). H2O2 triggers a two-electron oxidation of Hb leading to the formation of ferryl (Fe4+¼
O2�) Hb (equation 2). The reaction of metHb with H2O2 yields ferrylHb radical (Hb

•+(Fe4+¼O2�))
in which the unpaired electron is associated with the globin or the porphyrin ring (equation 3).
FerrylHb can trigger further production of globin radicals via an intramolecular electron transfer
between the ferryl iron and specific amino acid residues of the globin chains resulting in the
formation of metHb globin radical (equation 4). Termination reactions of globin- and porphyrin-
centered radicals lead to the formation of globin-globin (equation 5) cross-links
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protection. Incomplete neutralization of ROS triggers RBC membrane damage and
subsequent impairment of oxygen delivery to the tissues which eventually leads to
tissue damage and inflammation.

Circulating RBCs lose 20% of their Hb content during their life-span via vesic-
ulation (Willekens et al. 2003). Vesiculation is considered to be a self-protective
mechanism of RBCs via which RBCs release membrane patches containing removal
molecules including phosphatidylserine, immunoglobulin G, and senescent cell
antigens (Willekens et al. 2008). Additionally, RBCs are able to get rid of intracel-
lular inclusions, e.g., Heinz bodies via this mechanism (de Back et al. 2014), thereby
postponing the premature loss of otherwise healthy RBCs from the circulation.
RBC-derived vesicles are rapidly removed from the circulation by the mononuclear
phagocyte system (Willekens et al. 2003).

At the end of their life-span, senescent RBCs are removed from the circulation by
hemophagocyticmacrophages, mainly in the spleen (Bratosin et al. 1998; de Back et al.
2014). AgedRBCs are smaller and denser because of the permanent loss of Hb and cell
membrane via vesiculation and also characterized by decreased metabolic activity
(Piomelli and Seaman 1993). At the terminal stage of RBC aging, “eat me” signals
appear, and “don’t eat me” signals disappear on the surface of senescent RBCs, and
shortly after they are internalized by macrophages [reviewed in de Back et al. (2014)].

Different theories exist about the entity of the removal surface markers of
senescent RBCs [reviewed in de Back et al. (2014)]. Phosphatidylserine, a phos-
pholipid normally found in the inner membrane of RBCs, is a very likely candidate
of being a removal signal, when it appears in the outer membrane of the RBCs (Boas
et al. 1998). Phosphatidylserine is a general marker for apoptotic cells (Fernandez-
Boyanapalli et al. 2009), and although RBCs cannot undergo a classical apoptosis
because of the lack of nucleus and other cellular organelles, evidence suggest that
aged or damaged RBCs can undergo a regulated process called eryptosis that is in
many terms resembles to that of programmed cell death (Lang et al. 2005). Eryptosis
is characterized by cell shrinkage, membrane blebbing, activation of proteases, and
exposition of phosphatidylserine at the outer membrane leaflet of RBCs. Impor-
tantly, the removal of these phosphatidylserine-positive senescent, or terminally
damaged RBCs by macrophages, is a non-inflammatory process and allows efficient
and safe recycling of the RBC components, particularly the heme iron
(Muckenthaler et al. 2017).

9.1.2 Hemolysis and Hemorrhage

Numerous pathologies are associated with hemolysis or hemorrhage characterized
by uncontrolled destruction of RBCs. Hemolysis can occur in the vasculature
but also in the extravascular space. Inherited or acquired conditions can cause
hemolysis as listed in Table 9.2. Inherited hemolytic diseases are caused by muta-
tions in genes encoding Hb, RBC membrane components, or certain enzymes in
RBCs. The repertoire of acquired conditions associated with hemolysis is quite wide.
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Auto- and alloimmune reactions, mechanical, physical, or chemical stress, and
diverse infections can trigger substantial RBC lysis. RBCs outside the vasculature
tend to lyse quickly; therefore hemorrhages are also associated with RBC lysis.

9.1.3 The Fate of Extracellular Hemoglobin

Hb is released in large amounts from lysing RBCs. Extracellular Hb exerts diverse
unfavorable vasoactive effects. For example, extracellular Hb scavenges nitric
oxide, an important vasodilator and signaling molecule in the vasculature [reviewed
in Rother et al. (2005)]. Furthermore, once outside the protective environment of
RBCs, Hb tends to oxidize. Auto-oxidation of Hb occurs resulting in metHb
generation meanwhile superoxide anions are formed (Table 9.1, equation 1). Perox-
ides, such as H2O2 or lipid hydroperoxides, induce a two-electron oxidation of Hb
leading to the formation of ferryl (Fe4+ ¼ O2�) Hb (Table 9.1, equation 2), whereas
the reaction of metHb with H2O2 results in ferrylHb radical (Hb•+(Fe4+ ¼ O2�)) in
which the unpaired electron is located at either the globin chain or at the porphyrin
ring (Table 9.1, equation 3) (Harel and Kanner 1988; Patel et al. 1996; Jia et al. 2007;
Alayash et al. 2001). These high-valence iron compounds, i.e., ferrylHb and
ferrylHb radical, are highly reactive intermediates that can decay by several ways

Table 9.2 Causes of hemolysis

Type Cause of hemolysis Example Inflammasome activation

Inherited RBC membrane
abnormalities

Spherocytosis Not reported

Elliptocytosis Not reported

RBC metabolism
abnormalities

G6PD deficiency Not reported

PK deficiency Not reported

Hemoglobinopathies Thalassemias Not reported

Sickle cell disease Yes (Cerqueira et al. 2011)

Acquired Immune mediated
(Autoimmune)

Warm antibody Not reported

Cold antibody Not reported

Immune mediated
(Alloimmune)

Transfusion reaction Controversial (Gibb et al. 2016,
Land 2013)

Hemolytic disease of
the newborn

Not reported

Mechanical, physical or
chemical trauma

Microangiopathies Not reported

Prosthetic heart
valves

Not reported

Burns Yes (Stanojcic et al. 2014)

Heavy metal toxicity Not reported

Drug induced Not reported

Infections Malaria Controversial (Dostert et al.
2009, Reimer et al. 2010)
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(Reeder et al. 2008). FerrylHb induces additional production of globin radicals via
an intramolecular electron transfer between the ferryl iron and specific amino acid
residues of the globin chains such as αTyr-24, αTyr-42, αHis-20, βTyr-35, βTyr-
130, and βCys-93 leading to the formation of metHb globin radical (Table 9.1,
equation 4) (Deterding et al. 2004; Ramirez et al. 2003; Jeney et al. 2013). Termi-
nation reactions of globin- and porphyrin-centered radicals lead to the formation of
globin-globin (Table 9.1, equation 5) or porphyrin-globin crosslinks.

To prevent the deleterious effects of extracellular Hb, efficient mechanisms have
evolved for its removal from the circulation. Hp, an acute-phase protein, is present in
plasma in high amounts (0.41�1.65 mg/ml) with the special recognized function of
capturing cell-free Hb [reviewed in Alayash (2011)]. The formation of the Hp-Hb
complex is virtually irreversible, and Hp binding has multiple beneficial effects. First
of all, Hp binding facilitates the removal of Hb from circulation through the CD163
macrophage scavenger receptor-mediated endocytosis (Kristiansen et al. 2001).
Besides this effect, studies showed that Hb bound to Hp is less prone to H2O2-
mediated oxidation than free Hb (Buehler et al. 2009; Banerjee et al. 2012; Miller
et al. 1997). In fact, the Hb-Hp complex acts as a fairly efficient peroxidase (Kapralov
et al. 2009). Further studies proved that Hp prevents H2O2-induced oxidation of amino
acids in critical regions of Hb chains—i.e., α-Tyr42, β-Tyr145, and β-Cys93—and
polymerization of Hb (Pimenova et al. 2010). The recent determination of the crystal
structure of the porcine Hp-Hb complex revealed that Hb residues known to be prone
to oxidative modifications are buried in the Hp-Hb interface, thereby explaining this
direct protective role of Hp against H2O2-induced oxidation (Andersen et al. 2012).

Although the Hb/Hp/CD163 system is highly efficient in removing intravascular
free Hb, it has some limitations. Plasma Hp can bind and clear approximately 3 g of
Hb from the circulation which is less than 1% of the total amount of circulating
Hb. In case of pronounced hemolysis, when more than 1% of RBCs disrupt, Hp is
depleted from the circulation in which case free Hb is cleared (rather inefficiently)
via a low-affinity pathway through CD163 (Schaer et al. 2006) and/or by renal
excretion (Schaer et al. 2013; Murray et al. 1961). This latter is accompanied by
generation of free iron and organ damage.

Another limitation of the Hp/CD163 system is that Hp and CD163 have
decreased affinity for structurally altered (e.g., covalently cross-linked) Hb species
that might form upon Hb oxidation. Recent studies have revealed that elimination of
oxidized Hb species via both high-affinity and low-affinity pathways can be severely
compromised (Schaer et al. 2006; Vallelian et al. 2008).

Upon massive hemolysis Hp is consumed, causing accumulation and oxidation of
cell-free Hb that eventually lead to the release of the prosthetic heme group. Hx is an
acute-phase plasma protein that binds heme with the highest affinity of any known
heme-binding proteins (Hrkal et al. 1974). Hx-heme complexes are internalized via
the scavenger receptor LDL receptor-related protein 1/CD91 (Hvidberg et al. 2005)
mainly by hepatocytes and macrophages (Herz and Strickland 2001).

Following internalization of Hb or heme, cells and tissues upregulate heme
oxygenase-1 (HO-1) and ferritin. HO-1 catabolizes free heme into equimolar
amounts of Fe2+, carbon monoxide (CO), and biliverdin (Tenhunen et al. 1968).
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Liberated iron drives the upregulation of ferritin that is the main intracellular iron
storage protein (Eisenstein et al. 1991).

9.1.4 Pro-inflammatory Actions of Hb-Derived Species

Massive intravascular hemolysis or hemorrhage result in the exhaustion of the
endogenous defense system leading to the accumulation of oxidized Hb forms and
free heme in the plasma or in the extravascular space (Pamplona et al. 2007; Larsen
et al. 2010; Nagy et al. 2010). These Hb derivatives, particularly free heme, exert
prooxidant activities [reviewed in Immenschuh et al. (2017), Jeney et al. (2013)].
Moreover, hemolytic or hemorrhagic episodes are often associated with inflamma-
tion even when infectious agents are absent (Arruda et al. 2005). Considerable effort
has been made to define the mediators and the target cells involved in the hemolysis-/
hemorrhage-induced inflammatory response. Accumulating evidence suggest that
Hb-derived oxidized species possess diverse pro-inflammatory actions targeting
different immune and non-immune cells (Table 9.3).

9.1.4.1 Macrophage Activation

Macrophages, the frontline cells of innate immunity, respond to a variety of
pathogen-associated molecular patterns (PAMPs) and DAMPs. Lysis of RBCs
leads to the release of different RBC components that can potentially behave as
DAMPs and induce a sterile inflammatory response dependently of receptors such as
TLRs or NOD-like receptors (Table 9.3).

Accumulating evidence suggests that heme that is released from oxidized Hb
forms modulate macrophage phenotype. Bozza et al. showed that heme triggers
tumor necrosis factor-alpha (TNF-α) secretion by macrophages in a TLR4-
dependent manner (Figueiredo et al. 2007). The activation of TLR4 by heme is
strictly dependent on its coordinated iron and the vinyl groups of the porphyrin ring
(Figueiredo et al. 2007). Sustained exposure of macrophages to free heme triggers
programmed necrosis that is dependent on autocrine production of TNF-α and ROS
(Fortes et al. 2012). The pathogenic role of heme-mediated TLR4 activation was
investigated in a murine model of intracerebral hemorrhage (ICH)-induced neuro-
inflammation. In comparison to wild-type mice, TLR4�/� mice exhibited less
inflammation, reduced cerebral edema, and lower neurological deficit scores,
suggesting that heme-mediated TLR4 activation plays a critical role in
ICH-associated neuro-inflammation (Lin et al. 2012). Gram et al. showed that after
intraventricular hemorrhage, metHb forms and its level correlates to the expression
of TNF-α (Gram et al. 2013). In agreement with this finding, a recent study of Kwon
et al. revealed that metHb is an important endogenous activator of TLR4 that
promotes widespread TLR4-mediated neuro-inflammation upon subarachnoid hem-
orrhage (Kwon et al. 2015).
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Table 9.3 Pro-inflammatory actions of RBC-derived DAMPs

DAMP Major finding References

Heme Heme triggers TLR4-dependent TNF-α secretion in
macrophages

Figueiredo et al. (2007)

Heme Heme-mediated activation of TLR4/MyD88/TRIF
pathway plays a role in intracerebral hemorrhage

Lin et al. (2012)

MetHb MetHb and TNF-α levels correlate in cerebrospinal
fluid after intraventricular hemorrhage

Gram et al. (2013)

MetHb MetHb promotes TLR4-dependent
neuroinflammation upon subarachnoid hemorrhage

Kwon et al. (2015)

Heme Heme induces NLRP3 activation and IL-1β secretion
in LPS-primed macrophages

Dutra et al. (2014)

Heme Heme triggers neutrophil recruitment, ROS produc-
tion and IL-8 expression

Graca-Souza et al. (2002)

FerrylHb FerrylHb triggers neutrophil recruitment in vivo
independently of TLR4 activation

Silva et al. (2009)

Heme Heme induces neutrophil extracellular trap formation Chen et al. (2014)

Heme Heme induces TLR4-dependent endothelial
activation

Belcher et al. (2014)

FerrylHb FerrylHb activates NF-κB, upregulates
pro-inflammatory adhesion molecule expressions,
and disrupts monolayer integrity in endothelial cells

Silva et al. (2009)

ATP ATP activates P2X7 receptors leading to IL-1β
secretion in LPS-primed macrophages

Perregaux et al. (2000)

ATP ATP activates NF-κB, upregulates E-selectin
expression, and induces deterioration of endothelial
barrier function via acting on P2X7 receptors

McClenahan et al. (2009)

ATP ATP induces NLRP3 activation and IL-1β secretion
in LPS- or TNF-primed endothelial cells

Huck et al. (2015),
Champaiboon et al. (2014)

ATP ATP induces microparticle release, ROS formation,
and apoptotic cell death in erythroid progenitor cells
through activation of P2X7 receptors

Constantinescu et al. (2010),
Wang and Sluyter (2013)

ATP ATP triggers eicosanoid release, phosphatidylserine
exposure, and lysis of mature RBCs through activa-
tion of P2X7 receptors

Jiang et al. (2006), Sluyter
et al. (2007a, b)

HSP70 HSP70 activates macrophage IL-12 and E-selectin
production in a TLR2/TLR4-dependent manner

Vabulas et al. (2002)
Tsan and Gao (2004)

RBC
MPs

RBC-derived MPs amplify thrombin-dependent
activation of the complement system

Zecher et al. (2014)

RBC
MPs

RBC-derived MPs enhance coagulation activation van Beers et al. (2008)

RBC
MPs

RBC-derived MPs activate endothelial cells via heme
transfer

Camus et al. (2015)

RBC
MPs

RBC-derived MPs are internalized by myeloid cells
and induce pro-inflammatory cytokine production

Awojoodu et al. (2014)

RBC
MPs

RBC-derived MPs contribute sickle cell disease-
associated vascular dysfunction and cardiovascular
complications

Tantawy et al. (2013b)

RBC
MPs

RBC-derived MPs contribute to transfusion-induced
inflammatory response

Cognasse et al. (2015)
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Activation of the cytosolic NOD-like receptors results in the assembly of a
caspase-1-activating scaffold. Active caspase-1 subsequently cleaves the
pro-inflammatory IL-1 family of cytokines into their bioactive forms, IL-1β and
IL-18, those can trigger pyroptosis, a type of inflammatory cell death [reviewed in
Guo et al. (2015)]. The NLR family pyrin domain containing 3 (NLRP3)
inflammasome, which belongs to the NOD-like receptor family, is the most exten-
sively studied inflammasome, that is formed after the oligomerization of NLRP3,
apoptosis-associated speck-like protein containing a caspase recruitment domain
(ASC), and pro-caspase-1 (Schroder and Tschopp 2010).

Besides PAMPs, the NLRP3 inflammasome is activated in response to a wide
variety of DAMPs including extracellular ATP, crystals of monosodium urate or
cholesterol, β-amyloid fibers, the degradation of extracellular matrix components,
and environmental or industrial particles and nanoparticles (Martinon et al. 2006;
Mariathasan et al. 2006; Duewell et al. 2010; Halle et al. 2008; Babelova et al. 2009;
Yazdi et al. 2010; Hornung et al. 2008).

Recently heme was added to the long list of NLRP3 activating danger signals.
Dutra et al. showed that heme triggers active IL-1β production in lipopolysaccharide
(LPS)-primed macrophages in an NLRP3- and caspase-1-dependent manner (Dutra
et al. 2014). They also investigated the structural requirements of heme-mediated
NLRP3 inflammasome activation. Heme analogs such as protoporphyrin IX (PPIX)
that lacks the central iron atom or metal substitution derivatives such as CoPPIX and
SnPPIX were unable to induce IL-1β secretion in LPS-primed macrophages (Dutra
et al. 2014). Based on these observations, they came to the conclusion that NLRP3
activation by heme is strictly dependent on its coordinated iron, which is in conflict
with the findings of Li et al. who reported that PPIX is as efficient in inducing IL-1β
maturation and secretion as heme (Li et al. 2014).

9.1.4.2 Neutrophil Activation

Polymorphonuclear neutrophils are the first leukocytes migrating from the blood
into injured or infected tissues. Neutrophils kill pathogens via various cytotoxic
mechanisms and clear cellular debris; therefore they play a fundamental role in
innate and adaptive immunity (Rosales et al. 2016). In the recent years, it has become
evident that neutrophils not only sense PAMPs but can recognize and respond to
endogenous DAMPs as well. In line of this notion, heme triggers neutrophil che-
motaxis and activation, characterized by elevated ROS production and increased
expression of the pro-inflammatory cytokine IL-8 (Graca-Souza et al. 2002). Heme-
induced neutrophil recruitment is regulated through signaling pathways that are
characteristic of chemoattractant molecules (Porto et al. 2007) but independent of
TLR4-mediated signaling (Figueiredo et al. 2007). Besides heme, oxidized Hb
(ferrylHb) is a very potent trigger of neutrophil infiltration in mice independently
of TLR4 signaling (Silva et al. 2009). Additionally, Kono et al. showed that PPIX
was as efficient as heme in inducing neutrophil ROS production, pointing out that
this effect is independent of the coordinated iron present in heme (Kono et al. 2013).
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Protoporphyrin ring-induced neutrophil activation was suggested to play a role in
transfusion-related acute lung injury (Kono et al. 2013).

Additionally of ROS generation and the release of microbicidal molecules,
neutrophils can release extracellular traps—a meshwork of chromatin fibers deco-
rated by granular proteins—that represent an important strategy to immobilize and
kill invading microorganisms (Brinkmann et al. 2004). Recently Chen et al. reported
that heme is able to induce the formation of neutrophil extracellular traps and
suggested that this mechanism contributes to vaso-occlusion crises in sickle cell
disease (Chen et al. 2014).

9.1.4.3 Endothelial Cell Activation

Endothelium, the interface between blood and tissue, has a pivotal role in the
inflammatory response mainly through the induction of the leukocyte adhesion cas-
cade to facilitate transmigration of inflammatory cells to the inflamed tissue. Accord-
ingly, inflammatory stimuli, such as IL-1, TNF-α, or LPS, upregulate cellular adhesion
molecules including intracellular adhesion molecule-1 (ICAM-1), vascular cell adhe-
sion molecule-1 (VCAM-1), and E selectin, in endothelial cells (Bevilacqua et al.
1985; Pohlman et al. 1986). Wagener et al. found that exposure of endothelial cells to
heme upregulated the expressions of ICAM-1, VCAM-1, and E selectin, in a similar
manner to that of IL-1, TNF-α, or LPS (Wagener et al. 1997). Recently Belcher et al.
showed that heme activates endothelial cells in a TLR4-dependent manner and that
this heme-mediated TLR4-dependent endothelial activation plays a pathogenic role in
vaso-occlusion in a murine model of sickle cell disease (Belcher et al. 2014).

While searching for other mediators of hemolysis-associated inflammation, Silva
et al. reported that ferrylHb but not native Hb or metHb triggers upregulation of the
pro-inflammatory adhesion molecules ICAM-1, VCAM-1, and E-selectin (Silva
et al. 2009). FerrylHb induced rearrangement of actin cytoskeleton in endothelial
cells leading to the disruption of the endothelial monolayer integrity (Silva et al.
2009). FerrylHb-induced inflammatory response was dependent on actin polymer-
ization and the activation of the c-Jun N-terminal kinase and the p38 mitogen-
activated protein kinase signal transduction pathways (Silva et al. 2009). Silva
et al. showed that induction of endothelial inflammatory response is a unique
property of ferrylHb because neither Hb nor metHb triggered these effects (Silva
et al. 2009). FerrylHb can release its prosthetic heme group (Potor et al. 2013), and
one can ask whether ferrylHb-mediated inflammatory response is mediated by the
released heme. Many lines of evidence suggest that in fact this is not the case. First of
all, metHb, that can also release heme in a similar manner as ferrylHb, does not
induce inflammatory response in endothelial cells (Silva et al. 2009). Second,
ferrylHb-induced inflammatory response is not dependent on TLR4 signaling
(Silva et al. 2009). These results suggest that heme and ferrylHb are two
Hb-derived pro-inflammatory agonists that trigger endothelial activation via differ-
ent signaling mechanisms.
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9.1.5 Cytoprotective and Anti-inflammatory Actions
of Hb-Derived Species

Interestingly enough, besides its prooxidant and pro-inflammatory actions, under
special circumstances heme can induce cytoprotective and anti-inflammatory
responses. These protective mechanisms largely rely on the heme-mediated
upregulation of the HO-1/ferritin system [reviewed in Gozzelino et al. (2010)],
and it mostly relies on the ability of HO-1 to degrade heme into CO, iron, and
biliverdin, in which the latter is promptly converted to bilirubin. The subsequent
upregulation of ferritin is essential to obtain the protective effect, as it can store the
released iron in a catalytically inactive form (Balla et al. 1992). Additionally, the side
products of heme degradation, i.e., bilirubin and CO, exert diverse antioxidant and
anti-inflammatory actions (Gozzelino et al. 2010).

Along with these notions, a subset of macrophages, called hemorrhage-associated
or Mhem macrophages with anti-inflammatory properties, were identified in athero-
sclerotic plaques with intraplaque hemorrhage (Boyle et al. 2009). Mhem macro-
phages are characterized by facilitated iron sequestration assured by elevated
expressions of HO-1 and CD163 and at the same time protection from foam cell
formation secured by induction of genes central to cholesterol efflux (Boyle et al.
2009, 2012). Boyle et al. also showed that Mhem macrophage polarization is driven
by heme and identified two key transcription factors nuclear factor erythroid
2-related factor 2 (NRF2) and activating transcription factor 1 involved in this
process (Boyle et al. 2011, 2012).

Endothelial cells can also benefit from the cytoprotective mechanism provided by
the HO-1/ferritin system. In the early 1990s, Balla et al. showed that a brief exposure
of sublethal concentration of heme made endothelial cells highly resistant to subse-
quent oxidant-mediated killing in which cytoprotection was relied on the
upregulation of the HO-1/ferritin system (Balla et al. 1992). Since that initial
work, many investigations targeted the multifunctional role and therapeutic potential
of HO-1 in the vascular endothelium [reviewed in Calay and Mason (2014)].

9.1.6 Non-Hb-Derived RBC DAMPs

Although Hb is the far more abundant molecule in RBCs, there are other compo-
nents in RBCs that can potentially become DAMPs following RBC lysis. For
example ATP, a universal energy source, is present in RBCs in high concentration
(~1.6 mmol/L). When present in the extracellular milieu, ATP becomes a signaling
molecule that activates P2 receptors in diverse cells (Dubyak 1991). It has been
shown that hypoxia, elevated shear stress, and reduced pH lead to ATP release from
RBCs, although it is still a matter of debate whether it occurs via an active or passive
process. Bergfeld et al. showed that under hypoxic conditions, RBCs release ATP in
a regulated way through the plasma membrane protein band 4.5 (Bergfeld and
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Forrester 1992). Recently Sridharan et al. proposed that pannexin 1, a channel-
forming glycoprotein, is involved in hypoxia-mediated ATP release from RBCs
(Sridharan et al. 2010). Regarding shear stress-induced ATP release, Wan et al.
suggested that mechanosensitive ATP release is triggered by retraction of the
spectrin-actin cytoskeleton network and influenced by membrane viscosity (Wan
et al. 2008). Recently, Piezo1, a mechanically activated cation channel involved in
physiological responses to touch, pressure, and stretch, was shown to regulate
mechanosensitive release of ATP from RBCs via controlling the shear-induced
calcium influx (Cinar et al. 2015). Contrary to the active process, Sikora et al.
reported that hemolysis is the primary mechanism via which RBCs release ATP in
response to hypoxia or mechanical stress (Sikora et al. 2014). Nevertheless,
RBC-derived ATP can activate P2 purinergic receptors on vascular endothelial
cells, resulting in the synthesis of powerful vasodilators such as nitric oxide and
prostaglandins (Burnstock 2017). Via this mechanism RBCs actively participate in
the regulation of microvascular blood flow and contribute to match oxygen delivery
and local needs (Ellsworth et al. 1995).

Besides its vasoactive effects, activation of P2 purinergic receptors by ATP can
trigger inflammatory responses in various immune and nonimmune cells (Idzko et al.
2014). For example, ATP activates P2X purinoceptor 7 (P2X7) and promotes IL-1β
and IL-18 secretion in LPS-primed macrophages (Perregaux et al. 2000). Activation
of P2X7 receptors by ATP on endothelial cells leads to nuclear factor kappa B
(NF-κB) activation and subsequent upregulation of its target genes such as E-selectin
(von Albertini et al. 1998). Extracellular ATP induces deterioration of endothelial
barrier function and may trigger apoptotic cell death (McClenahan et al. 2009). ATP
can induce activation of the NLRP3 inflammasome and subsequent release of low
levels of IL-1β in endothelial cells primed with LPS or TNF-α (Huck et al. 2015;
Champaiboon et al. 2014). Furthermore, both progenitor and mature RBCs express
P2 purinergic receptors, and accumulating evidence suggest that extracellular ATP
exerts various biological effects on these cells (Burnstock 2015; Sluyter 2015). ATP
induces the release of MPs, ROS formation and apoptotic cell death in erythroid
progenitor cells (Chahwala and Cantley 1984; Constantinescu et al. 2010; Wang and
Sluyter 2013). Activation of P2 purinergic receptors in mature RBCs triggers
eicosanoid release and phosphatidylserine exposure and eventually leads to hemo-
lysis (Jiang et al. 2006; Sluyter et al. 2007a, b).

IL-33, the member of the IL-1 cytokine superfamily, is a well-known alarmin that
is released upon stress and contributes to the pathogenesis of diverse inflammatory
diseases through the activation of innate immune cells (Rider et al. 2017). Recently
Wei et al. showed that RBCs contain IL-33 and that IL-33 is released in large
amounts upon RBC lysis (Wei et al. 2015). They found association between plasma
IL-33 levels and the degree of hemolysis in sickle cell disease patients with intra-
vascular hemolysis (Wei et al. 2015). Similar association between plasma IL-33
concentration and hemolysis was reported in patients with autoimmune hemolytic
anemia (Bu et al. 2015). Released IL-33 signals through ST2 receptors and enhances
the functions of diverse lymphoid and myeloid immune cells [reviewed in
Griesenauer and Paczesny (2017)].
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Hsps are ubiquitously expressed proteins exerting diverse protective mechanisms
during cellular stress. For example, both constitutive and inducible forms of the
70 kDa Hsp, Hsc70, and Hsp70, respectively, function as cytosolic chaperons during
erythrocyte maturation. Although the expressions of Hsc70 and Hsp70 decrease
significantly at the terminal stage of erythroid progenitor cell differentiation
(Patterson et al. 2009), they are still present in mature RBCs (Gromov and Celis
1991). Vabulas et al. showed that extracellular Hsp70 activates macrophage IL-12
and E-selectin production via CD14/TLR2 and CD14/TLR4 receptor complex-
mediated signal transduction pathways (Vabulas et al. 2002). However, recent
evidence suggests that the reported cytokine effects of Hsp70 and other Hsps may
be due to the contaminating LPS (Tsan and Gao 2004).

Microparticles (MPs) are small membrane-encapsulated vesicles present in body
fluids. Blood MPs can originate from platelets, RBCs, leukocytes, or endothelial
cells. They are shed from cells in response to cell activation, cell stress, or apoptosis,
and besides the phospholipid bilayer, they contain cytosolic components of their
parental cells. RBCs release MPs during their normal lifetime in which process they
lose a substantial amount of Hb content and surface area (Willekens et al. 2003).
Hemoglobinopathies, characterized by shortened life-span of RBCs, such as sickle
cell disease and thalassemia major, are associated with accelerated formation of
RBC-derived MPs (Tantawy et al. 2013a, b). Interestingly increased levels of
RBC-derived MPs are present in patients with metabolic syndrome (Helal et al.
2011). Recently RBC-derived MPs attracted attention in transfusion medicine as
well. For therapeutic interventions, packed RBCs are stored in the blood bank for up
to 42 days. Storage is associated with diverse morphological and biochemical
alterations of RBCs including reduced integrity of the RBC membrane and the
formation of RBC-derived MPs (Kim-Shapiro et al. 2011; D’Alessandro et al.
2015). RBC-derived MPs exert diverse biological actions. For example,
RBC-derived MPs scavenge nitric oxide (Donadee et al. 2011; Liu et al. 2013)
and amplify systemic inflammation via thrombin-dependent activation of comple-
ment system (Zecher et al. 2014). Moreover, RBC-derived MPs enhance coagulation
activation (van Beers et al. 2008) and are involved in endothelial activation via heme
transfer (Camus et al. 2015). RBC-derived MPs are internalized by myeloid cells and
induce pro-inflammatory cytokine secretion (Awojoodu et al. 2014). These mecha-
nisms contribute significantly to sickle cell disease-associated vascular dysfunction
and cardiovascular complications (Tantawy et al. 2013b) and involved in
transfusion-induced inflammatory responses (Cognasse et al. 2015).

9.1.7 Therapeutic Interventions

Different therapeutic approaches were designed and investigated to limit the patho-
logical consequences of massive hemolysis or hemorrhages. Some strategies are
focusing on limiting the formation or fostering the elimination of RBC-derived
prooxidant and pro-inflammatory molecules. For example, Pamplona et al. showed
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that CO—the product of heme catabolism—suppress the pathogenesis of experi-
mental cerebral malaria. The effect is mediated by the binding of CO to Hb,
preventing Hb oxidation and the generation of free heme, a molecule that plays a
critical role in the pathogenesis of cerebral malaria (Pamplona et al. 2007). Recently
the therapeutic potential of the natural plasma Hb and heme scavenger proteins, Hp
and Hx, have been tested in preclinical animal studies and in small-scale human
studies [reviewed in Schaer et al. (2013), Smith and McCulloh (2015)]. In humans
Hp supplementation prevented hemoglobinuria or the development of acute kidney
injury in a variety of hemolytic conditions [reviewed in Schaer et al. (2013)]. Vinchi
et al. showed that Hx therapy improves cardiovascular function in mouse models of
sickle cell anemia and β-thalassemia by preventing endothelial dysfunction (Vinchi
et al. 2013) and inhibits heme-induced pro-inflammatory phenotypic change of
macrophages in a mouse model of sickle cell disease (Vinchi et al. 2016).

Other therapeutic approaches against hemolysis-/hemorrhage-associated adverse
effects rely on the induction of the natural antioxidant response. For example
upregulation of the NRF2/HO-1 system suppresses the pathogenesis of severe
malaria in mice, a pathology driven by RBC-derived heme (Pamplona et al. 2007;
Ferreira et al. 2008; Seixas et al. 2009; Jeney et al. 2014). The protective mechanism
provided by the NRF2/HO-1 system is very complex and relies on the effective
removal of heme, the cytoprotective and anti-inflammatory actions of heme degra-
dation products (bilirubin and CO), and the upregulation of the iron-sequestering
protein, ferritin (Gozzelino et al. 2010).

9.2 Conclusions

The RBC is usually a blessing but sometimes a curse. It is a blessing, when it
functions properly: circulates throughout the body about 170,000 times during its
lifetime to deliver oxygen and remove carbon dioxide from cells and phagocytosed
unperceivably at the end of its life-span by macrophages, and curse, when it is
involved in pathophysiologic mischief upon hemorrhage or intravascular hemolysis.

Since the dogma breaking “danger model” introduced by Polly Matzinger in 1994
our understanding of how the immune system discriminates between dangerous and
safe by recognition of pathogens or alarmins released by injured or stressed cells,
underwent a fundamental revision. Diverse endogenous DAMPs were identified and
their critical contributions were unquestionably verified in different pathologies. In
the last decade, it became evident that upon hemolysis or hemorrhage RBCs release
DAMPs that can activate immune and nonimmune cells via diverse signaling
mechanisms. A lot of work needs to be done in the future to complete the colorful
picture of RBC-derived DAMPs, their targeted cells, and the mechanisms of their
actions. Fuller understanding of hemolysis/hemorrhage-associated inflammation
could contribute to the development of novel therapeutics intended to interrupt
these pathological events.
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