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Abstract Inflammasomes are multiprotein complexes formed and activated after
exposure to pathogenic microbes and host danger signals that control the maturation
and production of IL-1β and IL-18. Their implication in different diseases such as
cardiovascular, neurodegenerative, psychiatric, and metabolic diseases opens a door
to developing new therapeutic perspectives. However, the rapid increase in the
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knowledge about inflammasomes is associated with their involvement in clinical
practice. Two topics open the way to future lines of research: a clinical trial with the
new specific inhibitors and the development of diagnostic tools.

Keywords Inflammasomes · NLRP3 · Clinical medicine · Diagnosis ·
Pharmacological treatment

1.1 Introduction

The aim of medicine and clinical research is to understand the biological processes
of health and the development of tools for the treatment and diagnosis of diseases.
Thus, we need a balance between basic and clinical research in a translational form.
Different examples of this are the development of drugs and diagnostic methods for
the identification of molecular pathways and targets involved in the pathophysiology
of the diseases.

For decades, inflammation has been the focus of researchers’ attention because of
its direct and indirect participation in the pathophysiology of many diseases. From an
immunity viewpoint, after an infection, microorganisms are initially sensed by
pattern-recognition receptors (PRRs) of the innate immune system. These PRRs
are expressed in various immune cells such as macrophages, dendritic cells, epithe-
lial cells, neutrophils, and adaptive immune cells. The Toll-like receptors (TLRs), a
particular type of PRRs, are expressed on the cell membrane surface and can be
activated by different external signals with a pathogen profile known as pathogen-
associated molecular patterns (PAMPs). The PRRs can also be triggered during
sterile inflammatory diseases, in the absence of microbes, by different damaging
profiles, suggesting the crucial role of danger signals that are host-derived, and that
are known as danger-associated molecular patterns (DAMPs). PAMPs and DAMPs
can also trespass on the plasma membrane and trigger intracellular innate immune
receptors directly, for example, via recognition of DNA or RNA in the cytoplasm. In
the loss of homeostasis conditions, some cytosolic innate immune sensors can also
be indirectly activated. Among these sensors are included NOD-like receptors or
nucleotide-binding oligomerization domain-like receptors (NLRs) that possess a
pyrin domain (PYD) or caspase activation and recruitment domain (CARD) in
their N-terminal regions, which have partial homology in man and mouse
(Fig. 1.1a) and which have specific ligands (Fig. 1.1b). Of these, the NLRP3 is the
best described, which are composed of a carboxy-terminal LRR domain, a central
NACHT and NAD domain (NBD), and an amino-terminal PYD (Fig. 1.2a)
(Lamkanfi and Dixit 2014), with a similar structure between humans and the
mouse, both the most studied species with regard to inflammasomes (Fig. 1.2b).
After an assembly stimulus, NLR is associated with the adapter molecule apoptosis-
associated speck-like protein that contains a CARD domain (ASD) in the N-terminal
regions, and the effector protein caspase-1 (Fig. 1.3a), and forms the named
inflammasome complex (Lamkanfi and Dixit 2014). These inflammasome com-
plexes regulate the activation of caspase-1, which in turn regulates the cleavage of
cytokines interleukin-1beta (IL-1β) and interleukin-18 (IL-18). The NLRP3
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inflammasome is the most frequently studied because is activated in response to a
large array of endogenous danger signals, such as extracellular adenosine triphos-
phate (ATP) (Sadatomi et al. 2017), uric acid crystals (MSU) (Braga et al. 2017),
amyloid-β fibrils (Heneka et al. 2013), cholesterol crystals (Duewell et al. 2010), and
reactive oxygen species (ROS) (Abderrazak et al. 2015) (Fig. 1.3b).

Human
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Human Mouse Human Mouse Human HumanMouse MouseHuman Mouse
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NLRP2: Extracellular ATP
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Fig. 1.1 Overview of the NLRP family and domain organization of inflammasomes. The principal
identified components of the NOD-like receptor (NLR) family and ligands. (a) They all contain a
nucleotide-binding domain (NBD) with a NACHT and NAD, carboxy-terminal leucine-rich repeat
(LRR) and may contain either a pyrin domain (PYD) or a caspase activation domain and recruit-
ment domain (CARD) or both. (b) Several of the described ligands of the inflammasome complexes
NLRP1, NLRP2, NLRP3, NLRC4, NLRP6, NLRP7, NLRP10, and NLRP12
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1.2 Clinical Aspect

From a clinical perspective, many researchers have focused their studies on the
inflammasomes because of the variety of molecular patterns they can recognize,
which have been linked to the pathophysiology of various prevalent disorders and
where the inflammasome is shown as a therapeutic target. Spontaneous inflamma-
tory diseases with abnormal inflammasome activation, such as cryopyrin-associated
periodic syndrome (CAPS) are caused by NLRP3 gain-of-function mutations, which
do not require an activating stimulus (Yang and Chiang 2015). Numerous mutations
with gain-of-function have been described in the different subunits of the
inflammasomes, which trigger auto-inflammatory syndromes in the absence of
cognate ligands. Extensive evidence has indicated that NLRP3 inflammasome is
activated in several psychiatric and neurodegenerative disorders such depression
(Alcocer-Gómez et al. 2013), Alzheimer’s disease (Masters and Selkoe 2012),
Parkinson’s disease (Zhou et al. 2016), amyotrophic lateral sclerosis (ALS),
Huntington’s disease, and multiple sclerosis (MS) (Heneka et al. 2014; Glass et al.
2010) and prion diseases (Hafner-Bratkovic et al. 2012) among others. The NLRP3
inflammasome is also up-regulated after myocardial infarction (Ajdukovic 2015)
and recently, NLRP3 and inflammatory cytokines have also been proposed as new
biomarkers of cardiovascular risk (Bullón et al. 2017). The NLRP3 inflammasome
has also been shown to play a role in metabolic diseases such as obesity, diabetes,
gout, and various age-associated diseases (Cordero et al. 2018), and to further the
implication in different diseases, the NLRP3 inflammasome has been proposed as a

PYD NACHT NAD LRR 

A 

HUMAN MOUSE 
PYD-NDB 

LRR 

PYD-NDB 

LRR 

B 

Fig. 1.2 Overview of NLRP3 inflammasome organization. (a) NLRP3 contains a NBD with a
NACHT and NAD, carboxy-terminal LRR, and may contain a PYD. (b) Crystal structure of
NLRP3 in humans and the mouse
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common nexus among several diseases, such as cardiovascular conditions and major
depression (Alcocer-Gómez and Cordero 2017).

1.2.1 Diagnostic Tools

The implication of the different inflammasomes in so many diseases is a clear sign of
its importance in medical practice. However, we need to find clear objectives for its
utility in the development of clinical tools. Because many mutations in different

ATP 
K+

efflux 

Pro-IL-
1
Pro-IL18 

Pro-IL-
1
Pro-IL18 

Active IL-1
Active  IL18 

Active IL-1
Active IL18 

NLR 

Caspase 1 

ASC 

A 

B 

Fig. 1.3 Overview of the NLRP3 inflammasome complex and activation. (a) The NLRP3
inflammasome complex is composed of an NLR, the effector protein caspase-1, and the adapter
molecule apoptosis-associated speck-like protein that contains a CARD (ASC). (b) PAMPs and
DAMPs are thought to activate the NLRP3 inflammasome by reducing intracellular Kþ concen-
trations, cytosolic release of lysosomal cathepsins such as cathepsin B, or by inducing mitochon-
drial damage, which induces the production of ROS
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NLRs have been described and other polymorphisms associated with the predispo-
sition of other diseases such as autoimmune diseases, multiple sclerosis, rheumatoid
arthritis or skin diseases (vitiligo, psoriasis) (Yang and Chiang 2015), we have
evidence for genetic diagnostics.

A great advance of the diagnostic tools is the peripheral determination of meta-
bolic biomarkers. In this context, the discovery of the release of oligomeric NLRP3
inflammasome particles from macrophages (Baroja-Mazo et al. 2014), opens a new
path in the design of diagnostic technology. According to this, different technolog-
ical approaches have been made, such as bioluminescent resonance energy transfer
(BRET), a methodology for monitoring protein interactions, to detect NLRP3
oligomerization in living cells before and during NLRP3 inflammasome activation
(Martín-Sánchez et al. 2016). Recently, an optimized whole blood assay to deter-
mine the expression of different inflammasomes such as NLRP3, NLRC4, and
AIM2 has been shown, in which a reduced sample was used, 140 μl of blood per
well (Grinstein et al. 2017). All these methods provide the first step toward to future
diagnostic methods and contribute to the knowledge of the efficacy of pharmaco-
logical treatments by determination in real time of inflammasome reduction
(Fig. 1.4). This is very important, for example, in treatment-resistant depression.

1.2.2 Pharmacological Treatments

The other area in which inflammasomes are important in clinical practice is phar-
macology. In the last few years, several specific inhibitors of NLRP3 have been

PATIENTS 

CAPS 

Cardiovascular 

Neurodegenerative 

Metabolic 

Aging and age-
related diseases 

Diagnostic 
methods 

Pharmacological 
treatment 

Inflammasomes 
implicated? 

YES? 

NO? 

Inflammasomes 
inhibitors 

IL-1  inhibitors 

Monitoring system on the effectiveness of the 
treatment by measuring inflammasomes 

Fig. 1.4 Overview of the utility of the inflammasomes in clinical practice. Clinical methodology
for evaluating the implication of the inflammasomes in the pathophysiology of patients and
selecting the correct treatment. Then, we will need to monitor the effectiveness of the inhibitors
of the inflammasomes using diagnostic tools
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studied and the efficacy has been demonstrated in different experimental models of
diseases. Recently, a study identified the small molecule MCC950, which prevents
the formation of the NLRP3 inflammasome complex, and in parallel, the ketone
metabolite β-hydroxybutyrate as a specific inhibitor of the NLRP3 inflammasome
was also investigated (Coll et al. 2015; Youm et al. 2015). Since then, new
compounds have been explored; however, the specific inhibitors have only been
studied in experimental models. Thus, in the near future, new trials in human
diseases with inflammasome inhibitors will show an important clinical field.

1.3 Conclusions

The rapid increase in knowledge about the biology of inflammasomes and their
implications in the pathophysiology of human diseases offers several utilities for
clinical practice, which will lead to a new future in medicine. Next, there will be a
specific inhibitor for treatment in humans and we will have to make a special effort to
develop diagnostic mechanisms.
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Abstract Cardiovascular disease (CVD) is the number one cause of death world-
wide. The pathogenesis of various disease entities that comprise the area of CVD is
complex and multifactorial. Inflammation serves a central role in these complex
aetiologies. The inflammasomes are intracellular protein complexes activated by
danger-associated molecular patterns (DAMPs) present in CVD such as atheroscle-
rosis and myocardial infarction (MI). After a two-step process of priming and
activation, inflammasomes are responsible for the formation of pro-inflammatory
cytokines interleukin-1β and interleukin-18, inducing a signal transduction cascade
resulting in a strong immune response that culminates in disease progression. In the
past few years, increased interest has been raised regarding the inflammasomes in
CVD. Inflammasome activation is thought to be involved in the pathogenesis of
various disease entities such as atherosclerosis, MI and heart failure (HF). Interfer-
ence with inflammasome-mediated signalling could reduce inflammation and atten-
uate the severity of disease. In this chapter we provide an overview of the current
literature available on the role of inflammasome inhibition as a therapeutic interven-
tion and the possible clinical implications for CVD.

Keywords Cardiovascular disease · Inflammasome · Atherosclerosis · Heart
failure · Myocardial infarction · Inflammation

2.1 Cardiovascular Disease and the Inflammasome

Cardiovascular disease (CVD) comprises all disease entities of the heart and blood
vessels. Together they are the primary cause of death worldwide, supporting the
intensive investigation of the mechanisms that play a central role in CVD pathogen-
esis.1 Identification of these mechanisms will enable the development of novel
therapies that can hamper disease progression and decrease the burden on society.

The most abundant disease of the cardiovascular system is the formation of lipid-
rich plaques in the arterial vessel wall, named atherosclerosis. Atherosclerosis can
occur anywhere in the human body, yet it often develops at certain locations, such as
the carotid and coronary arteries. It becomes clinically manifest when a stable plaque
is significant enough to decrease blood flow or when a vulnerable plaque ruptures,
thereby inducing thrombus formation leading to vessel occlusion. This results in
ischemia of the tissue downstream of the occluded blood vessel. In the heart this
leads to myocardial infarction (MI) and possibly heart failure (HF). Occlusion of
vessels in the brain will lead to stroke. Apart from these organs, peripheral artery
disease can result in ischemic damage to other parts of the body.

Inflammasomes are pattern recognition receptors (PRRs) that are formed in
response to a multitude of stimuli. Inflammasome-based signalling seems to play a
crucial role during the development of atherosclerosis and acute infarction of the
heart. The most frequently studied inflammasome in CVD is the NLRP3

1http://www.who.int/mediacentre/factsheets/fs317/en
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inflammasome, composed of NLRP3 (nod-like receptor protein 3) an adaptor protein
ASC (Apoptosis-associated speck-like protein containing a CARD), and the prote-
ase caspase-1. The activation of this multimeric complex initiates downstream
responses including the maturation of the pro-inflammatory cytokines interleukin-
1β (IL-1β) and interleukin-18 (IL-18) and inflammation-related cell death named
pyroptosis (Tschopp et al. 2003; van Hout et al. 2016). Apart from atherosclerosis
and acute MI, the role of the inflammasome in other inflammation-driven cardio-
vascular disease entities has been established. With regard to the heart, the most
import diseases are affecting the heart muscle (cardiomyopathies) or involve inflam-
mation of the myocardium (myocarditis) or pericardium (pericarditis). Concerning
the blood vessels, the most important pathologies are dilation of the aorta (aortic
aneurysm) and inflammation of the vessel wall (vasculitis).

In the current chapter, we will elaborate on the role of the inflammasome in CVD,
especially focussing on atherosclerosis (leading to coronary artery disease), and its
major consequence (MI). Additionally we will discuss the role of the inflammasome
in HF and the less prevalent myocarditis and pericarditis, finishing with the evidence
of inflammasome signalling in non-atherosclerotic vascular disease.

2.2 The Inflammasome in Atherosclerosis

2.2.1 Inflammation and Atherosclerosis

Atherosclerosis is the main cause of ischemic heart disease and stroke. It is charac-
terized by the gradual development of lipid-rich plaques in the vessel wall. Lipopro-
teins, such as low-density lipoproteins (LDL), passively diffuse through the
endothelial layer into the intima of the vessel wall (Lusis 2000). In the vessel wall,
a complex set of biochemical reactions results in the oxidation of LDL. This
so-called oxidized LDL, or oxLDL, serves as a pro-inflammatory mediator.
OxLDL stimulates endothelial cells to produce pro-inflammatory molecules and
increases the expression of adhesion factors on their cell surface (such as intercellular
adhesion molecule (ICAM) and vascular cell adhesion molecule 1 (VCAM-1)) to
attract monocytes and lymphocytes to the vessel wall. Adhered monocytes transmi-
grate into the intima, differentiate into macrophages and phagocytose oxLDL,
thereby forming foam cells. In contrast to LDL, high-density lipoprotein (HDL) is
protective against atherosclerosis by removing cholesterol and inhibiting lipoprotein
oxidation. The continuous accumulation of oxLDL particles and the phagocytosis of
these particles by macrophages through scavenger receptors like CD36 lead to the
formation of an early atherosclerotic plaque or fatty streak. From this stage onwards,
the plaque progresses, as more immune cells infiltrate, smooth muscle cells (SMC)
start to proliferate and calcium depositions take place (Lusis 2000).

Inflammation is the driving force behind the progression from a simple fatty
streak to a complex, instable atherosclerotic plaque. The accumulated macrophages
and lymphocytes produce inflammatory cytokines, such as TNFα, IL-1β, IL-6 and
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IFNγ, inducing a positive feedback loop by attracting more circulating cells to the
newly formed plaque. SMCs migrate from the media of the vessel wall to the surface
of the plaque and start to form a fibrous cap. SMCs secrete fibrous extracellular
matrix (ECM) further enhancing plaque growth, which eventually leads to expansion
of the plaque into the vessel lumen (Libby and Hansson 2015). When the size of the
plaque increases, blood vessels start to infiltrate the plaque to enable central oxy-
genation. However, this neovascularization leads to frequent intraplaque
haemorrhage, thereby damaging and destabilizing the plaque. Moreover, since
adequate blood supply fails, central necrosis of the plaque occurs. The local pro-
duction of cytokines results in thinning of the fibrous cap, further destabilizing the
plaque, making it prone to rupture. When the plaque ruptures, acute lumen occlusion
due to thrombus formation occurs, leading to clinical complications such as MI. The
pathogenesis of plaque formation is not only supported by experimental studies but
also by observational data in which human vulnerable plaques generally have an
increased number of inflammatory cells, a large necrotic core and a thin fibrous cap.
Furthermore, plaque instability is associated with more intraplaque haemorrhage and
more calcifications (Lusis 2000; Janoudi et al. 2016).

As outlined above, the key processes that drive the formation of atherosclerosis
are inflammation on the one hand and lipid metabolism on the other (Gistera and
Hansson 2017). Recently, many studies have shown that the inflammasome may
serve as a central signalling structure in these processes and may be the link between
cholesterol metabolism and immune activation (Janoudi et al. 2016). The expression,
activation and role of the inflammasome in the pathogenesis of atherosclerosis are
described below. In addition, inhibition of the inflammasome in preclinical and
clinical studies is discussed.

2.2.2 Inflammasome Expression in Atherosclerosis

Many studies have shown that NLRP3 inflammasome activity is increased in
atherosclerosis and that the level of activation correlates with the severity of disease.
The inflammasome components (NLRP3, ASC, caspase-1) and its downstream
effector molecules (IL-1β and IL-18) are present in human atherosclerotic lesions,
with increased expression levels compared to healthy arteries (Paramel Varghese
et al. 2016; Mallat et al. 2001). Vulnerable plaques (characterized by erosions,
bleeding or ulcers) also show increased expression of the inflammasome
(on histology and mRNA level) compared to morphologically stable plaques (Shi
et al. 2015). The same is seen in symptomatic plaques, expressing higher IL-18
mRNA levels compared to asymptomatic plaques (Mallat et al. 2001). The
inflammasome is localized in different areas of the human atherosclerotic plaque.
IL-1β, IL-18 and the IL-18 receptors are mainly localized in macrophage-rich
regions (Folco et al. 2014), and the IL-18 receptor is also expressed in endothelial
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cells (Mallat et al. 2001). In circulating human peripheral blood mononuclear cells
(PBMCs), NLRP3 protein levels correlate with the severity of coronary artery
disease (on coronary angiography assessed by SYNTAX scores) and with clinical
risk scores (GRACE score) (Afrasyab et al. 2016). Apart from local expression in the
vessel wall and in circulating mononuclear cells, the levels of NLRP3, IL-1β and
IL-18 (mRNA) in subcutaneous adipose tissue also correlate with and are indepen-
dent predictors of the severity of coronary atherosclerosis (GEMINI and SYNTAX
scores) (Bando et al. 2015).

2.2.3 Inflammasome Activators in Atherosclerosis

As mentioned, the inflammasome is considered an important link between lipid
metabolism and inflammation (Janoudi et al. 2016). In the setting of atherosclerosis,
multiple players in lipid metabolism are able to induce inflammasome activation.
Cholesterol crystals, oxLDL and oxHDL can all activate the inflammasome and
induce the secretion of IL-1β and IL-18 in human monocytes and macrophages
in vitro (L’Homme et al. 2013; Thacker et al. 2016; Bleda et al. 2016; Xiao et al.
2013). OxLDL is recognized by CD36 receptors on recruited monocytes, leading
through lysosomal pathways to NLRP3 inflammasome activation (Chen et al. 2014).
In LPS-primed human monocytes, saturated fatty acids can also induce the release of
IL-1β, whereas unsaturated fatty acids cannot (L’Homme et al. 2013). In contrast,
HDL is able to suppress inflammasome activity in response to cholesterol crystals in
human monocyte-derived macrophages (Thacker et al. 2016). Like monocytes,
endothelial cells in vitro also show NLRP1 inflammasome activation after stimula-
tion with plasma from patients with high triglyceride and cholesterol levels (Bleda
et al. 2016).

Apart from lipid metabolism, other mechanisms are thought to be involved in
inflammasome activation in atherosclerosis. Hypoxia, generally present in athero-
sclerotic plaques, is able to increase NLRP3 expression in human macrophages and
limit degradation of pro-IL-1β, thereby prolonging its half-life (Folco et al. 2014).
Atheroprone oscillatory shear blood flow is also able to induce NLRP3
inflammasome activation in endothelial cells. This is thought to happen via sterol
regulatory element-binding protein 2 (SREBP2) (Xiao et al. 2013; Chen et al. 2014).
The process of autophagy (controlled intracellular degradation of cell content) is
often dysfunctional in atherosclerotic plaques. Mice lacking ATG5 (a protein impor-
tant for autophagy) in macrophages showed decreased autophagy, resulting in an
increased inflammasome activation and plaque size. Caspase-1 inhibition in these
autophagy-deficient ATG5�/� macrophages reduced the IL-1β response. These
results indicate that just like lipid products, hypoxia and oscillatory flow, dysfunc-
tional autophagy can lead to inflammasome activation in atherosclerotic plaques
(Razani et al. 2012).
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2.2.4 The Inflammasome in the Pathogenesis
of Atherosclerosis

Apart from associative evidence in human atherosclerotic plaques, most research on
the role of the inflammasome in atherosclerosis is performed in knock-out mouse
models to establish a causative role for the inflammasome. Widely used mouse
models include LDLr�/� and ApoE�/�mice. Both mice develop atherosclerosis in
a matter of weeks on a high-fat diet. The advantage of the ApoE�/� model is that
complex vascular lesions also develop on a normal diet, but a high-fat diet results in
more rapid lesion development with more foam cells present in the plaque. A
downside of the ApoE�/� mice model is that ApoE has pleiotropic effects apart
from plasma lipid levels. For instance, ApoE is described to have a function in
macrophages and adrenal cells. The advantage of the LDLr�/�mice is that the LDL
receptor does not have multiple functions as described for ApoE. However, on a
normal diet, limited lesion development occurs in the LDLr�/� mice (Getz and
Reardon 2015).

In LDLr�/� mice on a high-cholesterol diet, haematopoietic deletion of NLRP3,
ASC or IL-1a/IL-β resulted in markedly decreased atherosclerosis and a reduction of
inflammasome-dependent IL-18 levels (Duewell et al. 2010). Haematopoietic dele-
tion of caspase-1/11 in LDLr�/� mice also resulted in a strong reduction in
atherosclerotic plaque size with a reduced necrotic core (Hendrikx et al. 2015).
Earlier studies in ApoE�/� mice indicated that IL-1 plays a role in fatty streak
formation (Elhage et al. 1998; Kirii et al. 2003). In addition, the role of IL-18 was
established in atherosclerosis development in ApoE�/�mice. ApoE�/� IL-18�/�
double knock-out mice showed reduced IFN-γ responses and increased α-smooth
muscle actin+ (αSMA) SMCs, indicating a more stable plaque phenotype. Surpris-
ingly, the serum cholesterol and triglyceride levels were higher in the IL-18-deficient
mice (Elhage et al. 2003; Whitman et al. 2002). ApoE�/� caspase-1�/� mice or
ApoE�/� mice in which the NLRP3 gene was silenced also showed smaller
atherosclerotic plaque areas compared to ApoE�/� alone, with less
pro-inflammatory cytokine production (such as IL-1β) and reduced macrophage
numbers in the plaque. Silencing of NLRP3 increased SMCs and collagen, leading
to a more stabilized plaque phenotype (Zheng et al. 2014). In contrast, Usui et al.
showed that in ApoE�/� caspase-1�/� mice, the amount of vascular SMCs in the
plaques was reduced (Usui et al. 2012). Surprisingly, a study by Menu et al. was
unable to show a difference in plaque progression, stability or infiltration of macro-
phages in ApoE�/� NLRP3�/� and ApoE�/� ASC�/� and ApoE�/� caspase-
1�/� double-deficient mice compared to ApoE�/� (Menu et al. 2011). The reason
for this discrepancy is unclear; the only difference with the study by Usui et al.
(2012) is the amount of cholesterol (0.15% or 1.25%) the food pellets contained.
Mice deficient in the P2X7 receptor (ApoE�/� P2X7r�/� mice), a receptor
involved in activation of the NLRP3 inflammasome, showed less aortic atheroscle-
rosis compared to ApoE�/� mice (Peng et al. 2015; Hansson and Klareskog 2011;
Stachon et al. 2017). Apart from LDLr�/� and ApoE�/� models of atherosclero-
sis, the role of the inflammasome was also studied in a model of vascular injury and
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neointima formation. This study showed that bone marrow-derived ASC is critical
for neointima formation after vascular injury (Yajima et al. 2008).

These in vivo mice data support a role for the inflammasome and its downstream
molecules IL-1β and IL-18 in the development of atherosclerosis. Different cell
types, such as macrophages, SMCs and endothelial cells are proposed to be involved
in this proatherogenic role of the inflammasome. Macrophages show reduced migra-
tory capacity and increased susceptibility to lipid deposition after NLRP3
inflammasome activation in vitro; this can facilitate retention in the arterial wall
and foam cell formation (Li et al. 2014). In vitro stimulation of SMCs with IL-1β
induces VCAM-1 and monocyte chemoattractant protein-1 (MCP-1) expression and
can in this way facilitate the recruitment of inflammatory cells to the atherosclerotic
lesions (Wang et al. 1995). Inflammasome activation in SMCs can also lead to
calcifications, a process involved in plaque progression (Wen et al. 2013). As
mentioned before, endothelial cells can activate the inflammasome upon atheroprone
oscillatory shear flow. This activation of the innate immune response can result in
endothelial dysfunction, an important first step of atherogenesis (Xiao et al. 2013).
Figure 2.1 summarizes the role of the inflammasome in atherosclerosis development.

Fig. 2.1 Inflammasome activation in the pathogenesis of atherosclerotic plaque development.
Low-density lipoprotein (LDL) migrates through the endothelial layer into the intima of the vessel
wall, where it is oxidized, forming oxLDL. OxLDL and oscillatory blood flow activate the NLRP3
inflammasome in endothelial cells (the latter through sterol regulatory element-binding protein
(SREBP2)), stimulating the expression of the adhesion molecules ICAM and VCAM-1. This
facilitates monocyte adherence and migration to the intima of the vessel. OxLDL, cholesterol
crystals and saturated fatty acids again induce NLRP3 inflammasome activation in macrophages
present in the vessel wall. This results in the formation of foam cells and the production of IL-1β and
IL-18. This results in local inflammation, inducing SMC migration and the formation of a fibrous
cap. Activation of the inflammasome in SMCs, macrophages and endothelial cells initiates a vicious
circle of endothelial dysfunction, monocyte recruitment and more foam cell formation, leading to
the formation of a hypoxic, necrotic lipid core, intraplaque haemorrhage and eventual thinning of
the fibrous cap, making the plaque prone to rupture
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2.2.5 Inflammasome Inhibition in Atherosclerosis

Since genetic mouse models suggest a role for the inflammasome in the develop-
ment of atherosclerosis, various inflammasome inhibitors for the prevention and
treatment of atherosclerosis have been proposed. Injection of an anti-IL-1β mono-
clonal antibody in ApoE�/� mice inhibited the formation of atherosclerotic lesions
and is associated with lower plasma non-HDL/HDL cholesterol ratios (Bhaskar et al.
2011). The most specific NLRP3 inflammasome inhibitor described today, MCC950
(Coll et al. 2015), has been tested in an ageing mouse model of atherosclerosis. Mice
with TET2�/� bone marrow (causing somatic mutations in haematopoietic cells
representing ageing) on an LDLr�/� background showed increased levels of
inflammasome activity compared to LDLr�/� on a high-fat diet alone. The
NLRP3 inflammasome inhibitor MCC950 significantly reduced atherosclerotic
plaque size by 50% in the TET2�/� LDLr�/� mice compared to saline. In the
LDLr�/� mice alone, a nonstatistically significant 20% reduction of plaque size by
MCC950 was witnessed (Fuster et al. 2017). DPP-4 inhibitors, widely used in the
treatment of patients with type-2 diabetes, can suppress NLRP3 activation and IL-1β
release in a human monocyte cell line. LDLr�/� mice treated for 12 weeks with a
DPP-4 inhibitor showed markedly decreased aortic plaque size with a reduced
plaque macrophage content. Furthermore, DPP-4 inhibition in atherosclerosis led
to reduced proliferation of vascular smooth muscle cells, inflammatory reaction,
improved endothelial function and reduced thrombogenesis (Dai et al. 2014; Shah
et al. 2011). Another compound that influences inflammasome activity is the plant-
derived compound arglabation. Arglabation is able to attenuate atherosclerosis in
ApoE�/� mice compared to untreated animals. Apart from NLRP3 inflammasome
inhibition, a possible mechanism of action of arglabation is reducing plasma cho-
lesterol and triglyceride levels (Abderrazak et al. 2015).

2.2.6 Clinical Trials

No clinical trials have been performed that specifically inhibit the inflammasome in
human atherosclerosis. However, a major clinical trial on inhibition of IL-1β, one of
the downstream effector molecules of the inflammasome, has recently produced very
interesting results. The CANTOS (The Canakinumab Antiinflammatory Thrombosis
Outcome Study) trial showed that the IL-1β antibody canakinumab in patients with
stable coronary artery disease led to a significant lower rate of recurrent cardiovascular
events than placebo. This double-blinded randomized trial enrolled 10,061 patients
with coronary artery disease. Patients with elevated high-sensitive C-reactive protein
(CRP) (>2 mg/L), despite contemporary secondary prevention, were included.
CANTOS proves the hypothesis that after sufficient lipid lowering, there remains a
‘residual inflammatory risk’ and shows for the first time that targeting inflammatory
processes in patients with cardiovascular disease significantly improves outcome
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(Ridker et al. 2017). Blocking IL-1β is not the same as inflammasome inhibition.
Direct inflammasome inhibition can theoretically prevent a broader range of potentially
pathologic processes such as IL-18 signalling and pyropotosis. Moreover, IL-1beta
signalling is not completely abolished by inflammasome inhibition, thereby presum-
ably reducing severe infections, which were major adverse events in CANTOS.

Colchicine was also tested for its effects on recurrence rates in MI patients.
Colchicine is a drug long known for its effectiveness in gout. Apart from other
mechanisms, colchicine has shown to exert its effects through upstream inhibition of
the NLRP3 inflammasome, thereby reducing the secretion of IL-1β and IL-18
(Martinon et al. 2006). In this trial, low-dose colchicine (LoDoCo) was tested in
patients with stable coronary artery disease. The LoDoCo trial showed a strong
effect of colchicine on the primary composite endpoint of acute coronary syndrome,
out-of-hospital cardiac arrest or ischemic stroke (Nidorf et al. 2013). These promis-
ing effects of colchicine will be validated in a large, multicentre, double-blind
LoDoCo2 trial which is currently being conducted.

2.2.7 Conclusion

Numerous animal and human studies show associative evidence for the
inflammasome and the formation and severity of atherosclerosis. Mechanistic exper-
iments have identified, e.g. oxidized lipid products and cholesterol crystals as the
inducers of inflammasome activation in macrophages, leading to foam cell formation
and IL-1β and IL-18 production. This results in a pro-inflammatory milieu that
induces a vicious circle of endothelial dysfunction, recruitment of more inflamma-
tory cells and additional foam cell formation.

Mouse models of atherosclerosis have established a key role for inflammasome
activation in plaque development. These findings have led to clinical testing with the
anti-IL-1β antibody canakinumab in patients with stable coronary artery disease in
the CANTOS trial. This large phase III clinical trial showed for the first time that
targeting inflammatory processes in patients with atherosclerosis significantly
improves outcome and sets the stage for future trials specifically targeting the
inflammasome in the setting of cardiovascular disease.

2.3 The Inflammasome in Myocardial Infarction and Heart
Failure

2.3.1 From Myocardial Infarction to Heart Failure

Myocardial infarction (MI) is a major consequence of progressive atherosclerosis.
MI occurs when an instable atherosclerotic plaque ruptures. This enables clot
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formation, leading to sudden coronary artery occlusion, thereby hampering nutrients
and oxygen delivery to the myocardium. In turn, this results in irreversible ischemic
cell death and life-threatening deterioration of cardiac function. The primary treat-
ment for MI should be immediate to confine as much damage as possible. Therapies
have evolved rapidly in the past few decades from conservative approaches to
minimally invasive low-risk percutaneous coronary interventions.

The ultimate treatment goal is to salvage viable myocardium from ischemic
damage by re-establishing coronary perfusion (reperfusion) as soon as possible,
thereby limiting infarct size and preserving cardiac function. It has been unequivo-
cally proven that this rapid reperfusion is very beneficial to patients and reduces
mortality (Steg et al. 2012). Paradoxically, a large body of evidence suggest that
reperfusion itself can also damage viable myocardium (Vander Heide and
Steenbergen 2013). Among other mechanisms, the damage induced by ischemia
and reperfusion (ischemia-reperfusion injury or IRI) in the heart is due to activation
of an exaggerated inflammatory reaction.

This acute phase of reperfusion injury (minutes to hours) is followed by a more
chronic phase (days to weeks), in which the heart adapts to the loss of contractile
function. A collagen-based scar is formed, and alteration of regional contractility,
pressure and volume leads to geometric adaptations of the left ventricle. This process
is termed adverse cardiac remodelling and is a major risk factor for the development
of HF.

The syndrome of HF results from various structural and functional impairments
of the cardiac muscle. Not only MI but also different aetiologies like hypertension,
infections and genetic causes can lead to persistent cardiac damage and subsequent
HF. The disease remains a major cause of morbidity and mortality, and despite
improvements in therapy, overall prognosis continues to be poor (mortality rates
approaching 50% in 5 years) (Braunwald 2015).

2.3.2 Inflammation as a Key Process

The post-MI inflammatory response is to some extent essential since the irreversibly
damaged myocardium should be replaced by a strong collagen-based scar to prevent
cardiac muscle rupture. However, inflammation after MI also results in additional
cardiomyocyte death and further deterioration of cardiac function in the acute
(minutes to hours), subacute (days to weeks) and chronic (weeks to months or
years) phase after MI (van der Laan et al. 2012a, b; Maekawa et al. 2002; Takahashi
et al. 2008).

Following cardiac ischemia, intracellular molecules such as ATP, mitochondrial
DNA and high levels of potassium are released from the damaged cardiomyocytes.
Reperfusion amplifies this effect, and as a result, these molecules are swiftly released
into the systemic circulation. These so-called danger molecules or danger-associated
molecular patterns (DAMPs) can be recognized by certain PRRs. These PRRs then
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induce a pro-inflammatory state by activation of intranuclear transcription factors
leading to activation of cytokines.

The activation of PRRs results in the induction of a pro-inflammatory state and
the subsequent influx of circulating leucocytes. These circulating cells, of which
neutrophils and monocytes are the first responders, cause injury to endothelial cells
due to the excretion of reactive oxygen species (ROS), cytokines and proteases
(Vinten-Johansen 2004). This will lead to the expression of cell adhesion molecules
by endothelial cells, enabling the transmigration of circulating leucocytes, into the
damaged myocardium. Here these inflammatory cells generate more ROS and pro-
teases resulting into tissue breakdown and cellular clearance, thereby directly con-
tributing to myocardial IRI (Arslan et al. 2011). Additionally, neutrophils produce
matrix metalloproteinases (MMPs) that degrade the intermyocyte collagen struts
thereby destabilizing the ventricular wall. This leads to infarct expansion, a process
that is known to occur within hours from initial myocyte injury (Fig. 2.2) (Sutton and
Sharpe 2000).

Fig. 2.2 Schematic overview of the occurrence of infarct extension after MI. Due to ischaemia-
reperfusion injury, the infarct becomes larger according to a wave-front principle, with early
subendocardial involvement and progression towards a transmural infarction. Due to ischaemia-
reperfusion, DAMPs are released from the damaged myocardium and enter the systemic circulation
(a). Here they activate circulating leucocytes, which subsequently transmigrate out of the circula-
tion into the damaged tissue (b). Once resided, these inflammatory cells cause damage, thereby
inducing infarct enlargement (c). (d) Histological sample of infarct tissue containing neutrophils in
porcine myocardium 72 h after ischaemia-reperfusion injury (van Hout et al. 2016)
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Depending on the size and location of the infarct, the loss of contractile myocar-
dium leads to an alteration of ventricular pressure and increased wall stress. The
increased wall stress again results in DAMP release and chronic low-grade inflam-
mation. This gradually induces cardiomyocyte slippage in the left ventricle.
Together with infarct expansion, this leads to further left ventricular wall thinning
and progressive dilatation within the first days to weeks after MI. This process,
referred to as adverse cardiac remodelling, initiates systemic neurohormonal adap-
tations and eventually culminates in HF (Sutton and Sharpe 2000; Heusch et al.
2014).

As in cardiac IRI and adverse cardiac remodelling, different chronic HF animal
models indicate a role for the innate immune system in the pathophysiology of
HF. In this phase of cardiac disease, DAMPs also play a central role and modulate
interstitial cardiac fibrosis, cardiomyocyte apoptosis and hypertrophy. Low-grade
chronic inflammation is present in HF, and pro-inflammatory cytokines (such as
TNFα, IL-6, IL-1β, CRP) are increased in patients, and their levels relate to HF
severity and prognosis (Hofmann and Frantz 2013; Butts et al. 2015).

The exaggerated inflammatory response after MI thus enhances acute IRI and is
associated with an increased risk of adverse remodelling, HF and a worse prognosis.
As outlined above, the activation of PRRs by DAMPs plays a central role in both
these processes. Among these PRRs, the inflammasomes, of which the NLRP3
inflammasome has been studied in most detail, are thought to play a crucial role in
MI. Inflammasome-based signalling involves a two-step process by which it is first
primed (e.g. through Toll-like receptor (TLR) activation). This leads to the formation
of inactive NLRP3 and IL-1β. The second activation step results in the formation of
the inflammasome by adherence of the NLRP3 protein to ASC and caspase-1.
Cleavage of caspase-1 then results in the formation of active IL-1β and IL-18.
Importantly, triggering of the inflammasome alone in the heart is insufficient to
induce cardiac dysfunction in mice in the absence of priming. Inflammasome
formation in the heart is thus dependent on this priming signal and a subsequent
separate triggering signal to activate the inflammasome (Toldo et al. 2015).

The evidence that the (NLRP3) inflammasome plays such a central role in the
inflammatory reaction in MI, adverse remodelling and HF is generally derived from
the observation that (1) different inflammasome components are upregulated, (2) the
absence or inhibition of the inflammasome leads to damage reduction or (3) the
effector molecules (IL-1β and IL-18) play a role in the pathogenesis of MI and
HF. These three observations will be discussed here in more detail.

2.3.3 Inflammasome Upregulation in Myocardial Infarction
and Heart Failure

The first direct evidence implicating the NLRP3 inflammasome as a key component
in post-MI inflammation was provided by Kawaguchi et al. (2011). The investigators
observed an upregulation of the inflammasome component ASC in human cardiac
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tissue after MI. This was confirmed in a murine model of IRI. Importantly, both
ASC�/� and caspase-1�/� mice subjected to 30 min of IR of the left coronary
artery had smaller infarcts as a percentage of the area at risk at 48 h of reperfusion
compared to wild-type mice. These hearts also showed less neutrophil and macro-
phage infiltration. Chimer experiments pointed to an upregulation of the
inflammasome in both cardiac resident cells (fibroblast) and circulating cells, equally
contributing to myocardial IRI.

In the same year, Mezzaroma et al. also provided strong evidence on the role of
the NLRP3 inflammasome in MI (Mezzaroma et al. 2011). This study revealed
increased inflammasome activation in isolated mouse cardiomyocytes when exposed
to either ischemic conditions or a combination of the TLR primer LPS and ATP, a
P2X7 receptor activator. The investigators also observed a significantly increased
expression of ASC in mice subjected to permanent coronary artery ligation. ASC
activation was upregulated in cardiomyocytes, as well as cardiac fibroblast and
infiltrated leucocytes, both after 3 and 7 days following MI.

It was revealed that, although cardiomyocytes do not secrete IL-1β or IL-18, the
NLRP3 inflammasome is most certainly activated in this cell type. Instead of
cytokine secretion, in cardiomyocytes, the activation of the NLRP3 inflammasome
directly leads to pyroptosis (Mezzaroma et al. 2011). These experiments showed that
the key role of the inflammasome in MI is not only due to an indirect effect, which is
the secretion of the pro-inflammatory cytokines IL-1β or IL-18, but also directly on
the viable myocardium by inducing cell death (Fig. 2.3).

Fig. 2.3 Simplified schematic overview of inflammasome activation after myocardial infarction.
Ischaemia results in the release of DAMPs that activate PRRs (e.g. Toll-like receptors (TLRs)) and
induce nuclear migration of NF-κβ, resulting in priming of the inflammasome and production of
pro-IL-1β. The inflammasome is then activated, for example, by activation of the P2X7 receptor or
reactive oxygen species (ROS) production after mitochondrial damage. This leads to the release of
active forms of IL-1β and IL-18 and pyroptosis. Figure is adapted from (van Hout et al. 2016)
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In addition to these data, clinical evidence indicates that certain polymorphisms in
the NLRP3 gene protect against the development of MI, especially in women
(Varghese et al. 2013). Another murine study showed that NLRP3�/� hearts
were not susceptible to ischemic preconditioning, while wild-type and interestingly
also ASC�/� hearts did show an infarct size reduction tested ex vivo in murine
hearts (Zuurbier et al. 2012), indicating that the NLRP3 protein may be essential in
cardioprotection. Moreover, when subjected to ex vivo global IR, NLRP3�/� hearts
also show a preservation of cardiac function compared to ASC�/� hearts subjected
to the same conditions (Sandanger et al. 2013). Interestingly, these data are contra-
dictory with studies that showed that a lack of ASC was protective in mice subjected
to MI.

Importantly, also negative results on the role of the NLRP3 inflammasome have
been reported. In a closed-chest murine model of IR, NLRP3�/�mice did not show
a reduction in infarct size compared to wild-type mice, possibly indicating that the
NLRP3 inflammasome fulfils a role in the subacute and not acute time frame after MI
(Jong et al. 2014). In extension to these findings, one study also reported larger
infarcts as percentage of the area at risk in NLRP3�/� mice subjected to MI
compared to wild-type or ASC�/� mice after both 3 and 24 h (Sandanger et al.
2016). These observations suggest a complex role for the inflammasome and its
different components (NLRP3, ASC, caspase-1). It has been postulated that espe-
cially NLRP3 may have inflammasome-dependent and inflammasome-independent
effects (Mezzaroma et al. 2014). These results also imply that the role of the
inflammasome in MI is greatly dependent on the animal model and experimental
conditions.

The NLRP3 inflammasome also plays a role in adverse remodelling and HF. The
NLRP3 inflammasome enhanced fibrosis through increased expression in infiltrated
M1 macrophages, a subset of macrophages that is believed to be the driving force
behind the development of fibrosis (Liu et al. 2015). Increased methylation of the
intron region of the ASC gene in PBMCs from HF patients was negatively associ-
ated with IL-1β levels and with an increased peak VO2 during exercise testing, a
surrogate marker for cardiac performance (Butts et al. 2017).

Already a decade ago, the role of caspase-1 was described in HF. Caspase-1
mRNA is upregulated in left ventricular myocardium of murine and human failing
hearts. Transgenic mice that overexpress cardiac caspase-1 result in cardiomyocyte
hypertrophy and fibrosis. With increasing age, these mice show cardiac dilatation
and develop HF. Caspase-1-deficient mice displayed improved survival, less hyper-
trophy and cell death compared to wild-type mice after permanent ligation of the left
anterior descending coronary artery (LAD) but show a similar infarct size (Merkle
et al. 2007).

2.3.4 Inhibition of the Inflammasome

Apart from observational data, mechanistic experiments and studies with knock-out
mice, important evidence for the role of the NLRP3 inflammasome in MI, also come
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from the pharmacological inhibition of inflammasome formation in preclinical MI
models. Mice subjected to permanent coronary artery ligation showed a marked
infarct size reduction when pretreated with silencing RNA for either NLRP3 or the
P2X7 receptor that, after activation by ATP, opens a cation channel allowing for
potassium efflux that can lead to NLRP3 inflammasome activation in MI
(Mezzaroma et al. 2011). Similar results were obtained when a pharmacological
inhibitor of P2X7 was administered.

A newly developed small-molecule inhibitor named 16,673-34-0 has also shown
to decrease infarct size in a pretreatment mouse model of permanent coronary artery
ligation (Marchetti et al. 2014). These findings were later confirmed in both a
permanent ligation and IR model of MI (Marchetti et al. 2015). Importantly a recent
study revealed that when administering this compound up to 1 h after reperfusion, it
could still effectively decrease the infarct size in a murine model of 30-min transient
coronary artery occlusion. This effect could be detected no sooner than 24 h,
suggesting that NLRP3 inflammasome inhibition in the first hours is not sufficient
to render a clinically significant effect (Toldo et al. 2016).

Recent evidence has also revealed that reperfusion therapy with recombinant
human relaxin-2 (serelaxin) reduces infarct size in a murine model of IRI through
inhibition of the NLRP3 inflammasome (Valle Raleigh et al. 2017). Interestingly,
also L5-LDL, an electronegative LDL particle that is increased in patients suffering
from MI, is able to activate the NLRP3 inflammasome and could therefore be a
clinically relevant DAMP of the inflammasome in acute MI (Yang et al. 2017).
Moreover colchicine administered to mice undergoing permanent coronary artery
ligation leads to a reduction in inflammasome expression as well as infarct size
compared to these parameters in control animals (Fujisue et al. 2017). In addition, in
patients with an acute coronary syndrome, colchicine is able to inhibit the production
of IL-1β and IL-18 (Martinez et al. 2015).

Calcineurin-transgenic (CNTg) mice develop progressive cardiac dysfunction.
NLRP3�/� CNTg double-deficient mice show improved cardiac function assessed
by fractional shortening compared to CNTg mice, indicating a role for the
inflammasome in this HF model. IL-1 receptor antagonism for 2 weeks in CNTg
mice resulted in significantly reduced left ventricular dilatation and an improved FS
compared to saline. Mononuclear cell infiltrate was reduced in the treated mice, but
no changes were observed at the level of hypertrophy (Bracey et al. 2013).

To translate these findings to a clinical application, a study with a highly
translational pig model of MI with a clinically feasible treatment protocol has
recently been performed. In this study pigs were subjected to a 75-min transient
coronary artery occlusion. The selective NLRP3 inflammasome inhibitor MCC950
showed a dose-dependent effect on both infarct size and cardiac function. Moreover,
this resulted in decreased inflammasome expression and a reduction of cardiac
inflammation (van Hout et al. 2017).
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2.3.5 Targeting the Downstream Cytokines IL-1β and IL-18

Activation of the NLRP3 inflammasome leads to the formation and subsequent
release of active IL-1β and IL-18. The role of het NLRP3 inflammasome in cardiac
IRI and adverse remodelling could therefore not only be determined by direct
inhibition of the inflammasome but also through interference with signalling of
both these cytokines.

2.3.5.1 Interleukin-1β

IL-1β is thought to play a central role in post-MI inflammation (Frangogiannis
2015). Interference with IL-1β signalling by genetic deletion of the IL-1 receptor
(IL-1R1) protected against both cardiac IR and permanent ligation in mice (Bujak
et al. 2008; Abbate et al. 2011). Overexpression of the naturally occurring IL-1R
antagonist also resulted in a preservation of cardiac function, and deletion of this
antagonist culminates in deterioration of cardiac function in mice (Abbate et al.
2011; Suzuki et al. 2001). Moreover, administration of the IL-1 receptor blocker
anakinra resulted in enhanced cardiac performance and reduced cardiomyocyte
apoptosis, presumably independent of infarct size (Abbate et al. 2008; Salloum
et al. 2009). Additionally, pretreatment with anakinra also led to infarct size reduc-
tion in a mouse model of MI (Feng et al. 2010).

After the development of anakinra, another IL-1 inhibitor was developed,
consisting of the IL-1 receptor, the IL-1 receptor-associated protein and the Fc
fragment of an immunoglobulin (Van Tassell et al. 2010). This recombinant protein,
named the ‘IL-1 trap’ (rilonacept), showed to have beneficial effects on remodelling
in a mouse model of MI. These data suggest that the role of IL-1β is pivotal, since it
not only deteriorates cardiac function through directly decreasing cardiac contrac-
tility but also through the enhancement of myocardial infarct size.

Importantly, by blocking the IL-receptor, IL-1α signalling is also hampered, so
part of the effect that was seen in these studies could be due to interference with
signalling of this IL-1 isoform (Van Tassell et al. 2013a, 2015). To further investi-
gate this, several IL-1β antibodies have been developed, enabling identification of
the specific role of IL-1β in cardiac remodelling. The first study on an antibody
directed at IL-1β reported impaired healing of the heart and favoured cardiac rupture
in a permanent MI model (Hwang et al. 2001). Since studies that investigated
inference with combined IL-1β and IL-1α signalling showed opposite results, it
was suggested that selective IL-1β blockade would induce adverse effects. Recently,
more thoroughly characterized antibodies, specially developed for in vivo use, were
tested. In both of these studies, beneficial effects were seen in mice subjected to MI
and treated with these compounds (Toldo et al. 2013; Abbate et al. 2010a). The
adverse effects seen in the first study were therefore believed to be caused by
pleiotropic effects of the antibody.
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Since anakinra has been registered for clinical usage in rheumatoid arthritis,
off-target testing of these compounds was feasible, and clinical evidence on the
role of IL-1β in the healing process of MI is also available. Two pilot studies
(VCU-ART and VCU-ART2) have been performed (Abbate et al. 2010b, 2013).
Both of these studies included ST-segment elevation MI patients that were clinically
stable and had undergone percutaneous coronary intervention with successful reper-
fusion. Patients were treated with anakinra and were followed up for 3 months.
Although no significant results were seen regarding major adverse cardiac events,
the anakinra-treated patients did show lower levels of CRP at 72 h and were less
likely to develop new-onset HF. Although not significant when corrected for base-
line differences, a trend towards improved left ventricular geometry was also seen in
these patients. Future phase III trials should further investigate if anakinra is effec-
tive in MI patients.

In HF patients, IL-1β also seems to play an important role. In patients with
idiopathic dilated cardiomyopathy, plasma Il-1β levels correlate with left ventricular
mass and severity of mitral valve regurgitation. In these patients, IL-1β is also a
predictor of outcome (death or cardiac transplantation) (Aleksova et al. 2017). From
mice models we know that IL-1β negatively influences myocardial contractility.
Injection of IL-1β (3 μg/kg) in healthy mice reduces cardiac function measured by
left ventricular fractional shortening (LVFS) already at 4 h after injection. Stressing
these mice with β-receptor stimulation (using isoproterenol), an impaired contractile
reserve with a right shift of the dose-response curve was revealed. After stopping
IL-1β injections, LVFS returned to baseline levels. This indicates that IL-1β is able
to induce a reversible contractile dysfunction (Van Tassell et al. 2013b). Two pilot
studies investigated the effect of anakinra on cardiopulmonary exercise testing
performance in patients with HF with a reduced ejection fraction (HFrEF) (Van
Tassell et al. 2012) and in patients with HF with a preserved ejection fraction
(HFpEF) (Van Tassell et al. 2014). In both HF groups, anakinra led to an improve-
ment of peak oxygen consumption (VO2) and resulted in a reduction of CRP. The
improved aerobic exercise capacity in these patients by anakinra could be predicted
by baseline exercise capacity and not by baseline CRP or BNP (Canada et al. 2014).

2.3.5.2 Interleukin-18

Similar to IL-1β, IL-18 is also secreted after activation of the (NLRP3)
inflammasome as a result of caspase-1 cleavage. Unlike IL-1β, however, the inactive
precursor of IL-18 is not formed through cellular priming (e.g. by TLR activation)
but is abundantly present in inactivated cells of almost every cell type. Also similar
to IL-1β, the activity of IL-18 is balanced by its counterpart, the IL-18-binding
protein (Dinarello et al. 2013). Inflammation caused by the downstream effects of
both IL-1β and IL-18 therefore not only depends on inflammasome activation but
also on the balance between these cytokines and their naturally occurring antagonists
(Dinarello and van der Meer 2013).
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Several experimental studies have been performed, showing that blocking IL-18
signalling is protective in cardiac injury. Administration of IL-18 inmice results in left
ventricular hypertrophy and increased collagen formation, both predictors of long-
term cardiac failure (Platis et al. 2008; Woldbaek et al. 2005). In another study, mice
infused with the well-characterized danger molecule lipopolysaccharide showed a
depressed cardiac function. When IL-18 signalling was neutralized in this study,
animals showed a preserved cardiac function, presumably through decreased release
and expression of TNFα and adhesion molecules (Raeburn et al. 2002).

Interestingly, IL-18 and IL-1β not only enhance myocardial damage and suppress
cardiac function separately but also work in a synergistic way (Toldo et al. 2014a). In
these experiments, mice lacking IL-18 did not show decreased cardiac contractility
when treated with recombinant IL-1β, whereas the control group did. Importantly,
downstream IL-6-mediated signalling was not affected in this study. This suggests
that IL-18 is essential for IL-1β-mediated reduced contractility, but not for IL-1-
β-mediated inflammation, the two processes by which these cytokines directly and
indirectly induce cardiac dysfunction. Inflammasome inhibition could therefore be
more effective than blocking either one of these cytokines by both directly preserv-
ing cardiac contractility as well as attenuation of the inflammatory response.

Human studies also show evidence for an important role of IL-18 in relationship
to cardiac damage and contractility. HF patients have elevated levels of IL-18, and a
correlation between these levels and mortality exists (Mallat et al. 2004). Experi-
ments with ex vivo human atrial muscle strips revealed increased contractility and
increased intracellular tissue creatine kinase when IL-18-binding protein was added
to the perfusate after inducing cardiac ischaemia (Pomerantz et al. 2001). In a large
cohort of 1229 patients with a median follow-up of almost 4 years, levels of plasma
IL-18 correlated with future cardiac events and mortality (Blankenberg et al. 2002).

2.4 Inflammasome in Myocarditis

Myocarditis is characterized by an acute or chronic inflammatory response of the
heart to environmental (such as viruses) or endogenous triggers (such as autoim-
mune myocarditis). The pathogenesis of myocarditis varies per trigger. In virus-
mediated myocarditis, within hours after viral entry in the cardiomyocyte, type
1 interferon is produced leading to myocyte cell death. The second phase evolves
after hours to days, involving activation of innate immune responses, including the
inflammasome. The inflammatory response in myocarditis can rapidly escalate into
an auto-inflammatory cycle, leading to chronic autoantigen-driven inflammation.
This can progress in dilated cardiomyopathy and HF (Heymans et al. 2016).

2.4.1 Inflammasome Activation in Myocarditis

Endomyocardial biopsies from patients with acute lymphocytic myocarditis or
myocarditis diagnosed in post-mortem samples showed signs of inflammasome
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activation by ASC aggregation in leucocytes, cardiomyocytes, fibroblasts and endo-
thelial cells, whereas in control samples, these aggregates were absent. The number
of inflammasome-activated cells was higher in patients presenting with severe HF
(NYHA III–IV compared to I–II) and in patients with no recovery of LVEF after
6 months (Toldo et al. 2014b). In vitro experiments with cardiomyocytes exposed to
Coxsackie B (CVB3) virus (a well-known trigger for myocarditis) reveal an
upregulation of inflammasome activity. In a mouse model of CVB3-induced viral
myocarditis, levels of ASC, caspase-1 and IL-1β were upregulated in cardiac tissue.
Importantly, IL-1β production correlated positively with myocarditis severity (Wang
et al. 2014).

2.4.2 Inflammasome Inhibition in Myocarditis

CVB3-induced viral myocarditis mice treated with a caspase-1 inhibitor
(Ac-YVAD-CHO) or an IL-1β blocking antibody showed less severe myocarditis
expressed by creatine kinase levels and increased cardiac LVEF compared to
placebo (Wang et al. 2014). In humans only case reports of inflammasome pathway
inhibition by IL-1β blockade using anakinra have been described in fulminant, viral
myocarditis. Standard clinical management for these patients includes mechanical
support, but no specific treatments are available. A patient with fulminant myocar-
ditis that developed severe biventricular dysfunction with systemic inflammation
leading to cardiogenic shock received anakinra. Already 24 h after initiation of
anakinra (100 mg/day), clinical improvement was witnessed with fever reduction,
lowering of infection parameters and improvement of LVEF (Cavalli et al. 2017;
Noji 2016). Another report describes a similar case with fulminant myocarditis
treated with anakinra; within 4 days of treatment, clinical improvement and weaning
from mechanical support were achieved (Cavalli et al. 2016). These case reports
might indicate that IL-1 blockade is effective for the treatment of fulminant myo-
carditis, although further confirmation in the setting of clinical trials is needed. No
reports on the role of the inflammasome in autoimmune myocarditis are available.

2.5 Inflammasome in Pericarditis

Pericarditis is inflammation of the pericardium. Most cases (80–90%) are thought to
be idiopathic, although unidentified viral infection may to some extent be responsi-
ble. Among severe complications is recurrent pericarditis. Recurrent pericarditis
affects up to 30% of patients after a first episode of acute pericarditis and is a
difficult clinical problem. The cause of recurrent pericarditis is unknown but appears
to be autoimmune mediated. The primary treatment for pericarditis is colchicine as
an adjunctive therapy to NSAIDs. One of the working mechanisms of colchicine is
through upstream inhibition of the NLRP3 inflammasome (Stack et al. 2015).
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Colchicine effectively reduces recurrence rates in patients with recurrent pericarditis
or acute pericarditis (Alabed et al. 2014). However, there are patients with recurrent
pericarditis with colchicine resistance and corticosteroid dependence. In these
patients, the effect of anakinra was studied in two small clinical trials. These
preliminary reports appear promising. However, further larger randomized con-
trolled trials are required (Baskar et al. 2016; Brucato et al. 2016).

2.6 The Inflammasome in Abdominal Aortic Aneurysms

Abdominal aortic aneurysms (AAA) are permanent and localized aortic dilations
that mainly develop below the renal arteries. Often the aneurysms remain asymp-
tomatic and undiagnosed, but with increasing size, the risk of rupture dramatically
increases. Histological features include chronic medial and adventitial inflammatory
cell infiltration (neutrophils, T- and B-cells, macrophages, mast cells, NK cells) and
elastin degeneration. Chronic inflammation is a driving force in the pathogenesis of
AAA, resulting in progressive remodelling and deterioration of the aortic wall
(Libby and Hansson 2015; Shimizu et al. 2006). The inflammasome is thought to
play a role in these inflammatory pathways. This is suggested by increased plasma
IL-1β levels in AAA patients compared to controls (Wu et al. 2016). Immunohisto-
chemistry also revealed higher expression of NLRP3, ASC, caspase-1 and caspase-5
and AIM2 in AAA compared to control aortas (Dihlmann et al. 2014; Wu et al.
2017). In PBMCs isolated from AAA patients, caspase-1 and IL-1β mRNA levels
were also increased compared to controls. These differences were especially pro-
nounced in males with AAA and not present in females. In contrast, PBMC AIM2,
NLRP3 and ASC mRNA levels did not differ between AAA patients and controls
(Wu et al. 2016).

The structural integrity of the aortic wall depends on vascular smooth muscle
cells (SMCs) and the extracellular matrix. SMC contractile dysfunction is thought to
play a role in aortic aneurysm and dissection development. Stressing SMCs leads to
tropomyosin and myosin heavy chain degradation. Caspase-1 is able to cleave these
contractile proteins. Reduction of inflammasome activity (by siRNA or pharmaco-
logical inhibition) prevents the degradation of tropomyosin and myosin heavy chain
in SMCs in vitro. These findings indicate that the inflammasome might be involved
in SMC dysfunction.

In vivo mice models are available to study the role of the inflammasome in AAA.
Mice on a high-fat diet receiving angiotensin II (AngII) infusion develop aortic
aneurysms and dissections. In these aortic lesions, inflammasome activity is
increased compared to healthy arteries. AngII infusion in NLRP3�/� and
caspase-1�/� mice resulted in a preserved aortic structure and reduced aortic
enlargement and dissection development compared to the WT phenotype
(Wu et al. 2017). The same reduction was seen in AngII-infused double knock-out
Apoe�/�NLRP3�/�, Apoe�/� ASC�/� and Apoe�/�casp-1�/� mice, com-
pared to Apoe�/� alone. One of the possible mechanisms may be inhibition of
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mitochondria-derived ROS that is stimulated by AngII infusion in the
inflammasome-deficient animals (Usui et al. 2015). In aortic rings from these
aneurysm-developing mice, the contractile response to phenylephrine is reduced.
NLRP3�/� and caspase-1�/� aortic rings showed preserved contractile response
to phenylephrine (Wu et al. 2017). In another mice model of AAA development
(by perivascular calcium phosphate treatment), lentiviral silencing of NLRP3
resulted in a smaller diameter of the aorta compared to empty virus (Sun et al. 2015).

2.7 The Inflammasome in Vasculitis

Vasculitides are heterogeneous clinical entities all characterized by inflammation of
the vessel wall. In most cases, the cause of vasculitis is unknown, but often
autoimmune processes are thought to play a role. Therapy depends on the specific
type of vasculitis but most of the time includes immune suppression. The different
types of vasculitis are grouped by size of the affected blood vessels: large, medium
or small. The role of the inflammasome is described in a subset of vasculitides and
will be summarized below (Ramirez et al. 2014).

2.7.1 Giant-Cell Arteritis

Giant-cell arteritis (GCA) is a chronic systemic vasculitis affecting large- and
medium-sized arteries. It is the most predominant vasculitis in Western countries
mainly affecting females. Pro-inflammatory cytokines play a major role in the
pathogenesis of GCA, and the inflammasome may be involved in this complex
polygenic disease. IL-1β and IL-18 are expressed in temporal arteries from patients
with GCA (Hernandez-Rodriguez et al. 2004; Blain et al. 2002), but IL-18 expres-
sion does not correlate with clinical manifestations or haematological parameters
(Shahriar Nabili et al. 2008). IL-18 gene polymorphisms (rs1946518) have been
described to be associated with GCA susceptibility, but again not with clinical
manifestations (Palomino-Morales et al. 2010). Also NLRP1 gene polymorphisms
(rs8182352) are associated with biopsy-proven GCA (Serrano et al. 2013).

2.7.2 Kawasaki Disease

Kawasaki disease (KD), a medium-sized vessel vasculitis, is the most common cause
of acute vasculitis in children. It is the main cause of acquired heart disease affecting
mainly children below the age of 5. The disease characterizes itself by coronary
arteritis with inflammatory cell infiltration and extracellular matrix distraction.
Consequences of KD are coronary artery aneurysms, MI and sudden cardiac
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death. Standard therapy includes intravenous immunoglobulins, but up to a third of
patients fail to respond to therapy. These children are at increased risk for develop-
ment of coronary abnormalities. The cause of KD is unknown, but abnormal
immune responses to infectious agents could be involved in the pathophysiology.
Many cytokines and chemokines are elevated during the acute phase of the disease,
including IL-1β (Takahashi et al. 2014). Peripheral blood mononuclear cells
(PBMCs) from KD patients spontaneously release IL-1β in greater levels compared
to healthy controls (Suzuki et al. 1996). Higher IL-1β release is seen in patients that
failed to respond to standard therapy with intravenous immunoglobulins and in
patients that develop coronary artery abnormalities (Leung et al. 1989).

Genetic data show that polymorphisms in the IL-1β gene that are related to
increased IL-1β production are associated with intravenous immunoglobulin resis-
tance (Weng et al. 2010). In patients unresponsive to immunoglobulins, transcript
abundance for IL-1 pathway genes is found to be higher compared to responsive KD
patients (Fury et al. 2010). To study the causative role of the inflammasome in KD,
mice models are used. A frequently used model is the lactobacillus casei cell wall
extract (LCWE)-induced model of coronary arteritis. A single injection of LCWE
reproducibly induces proximal coronary arteritis with histopathologic characteristics
very similar to the coronary arteritis observed in human KD (Lehman et al. 1985). In
this model, IL-1β increased in an inflammasome-dependent manner. NLRP3�/�,
caspase-1�/�, IL-1β�/� and IL-1R�/� mice were all protected from LCWE-
induced vasculitis and coronary arthritis and showed less vascular inflammation
(Lee et al. 2012, 2015). LCWE injection induced NLRP3 activity in endothelial cells
and in CD11+ macrophages in the vascular lesions, resulting in increased caspase-1
activity and IL-1β production (Chen et al. 2015). Experiments with chimeric mice
showed that stromal IL-1β signalling is required for LCWE-induced vasculitis and
coronary arteritis and that IL-1 signalling is not required in haematopoietic cells (Lee
et al. 2015). In LCWE-induced vasculitis, anakinra (IL-1R antagonist) was able to
block development of coronary lesions and myocarditis (Lee et al. 2012). Quercetin,
an antioxidant (found in fruits, vegetables and nuts), was able to inhibit both the
NLRP3 and AIM2 inflammasome by preventing ASC oligomerization. Intraperito-
neal injection with quercetin for 7 days following LCWE injection reduced coronary
arteritis and aneurysm formation. Quercetin inhibited local caspase-1 activity in
vascular lesions resulting in less intimal and myofibroblast proliferation (Domiciano
et al. 2017).

2.7.3 Inflammasome in Behçet

Behçet’s syndrome is a systemic inflammatory disorder with multiple disease man-
ifestations including vasculitis, affecting both small and large vessels. In Behçet
patients with vascular involvement, IL-1β production after whole blood LPS stim-
ulation was significantly increased compared to healthy controls and to patients
without vascular involvement (Yuksel et al. 2014). For the treatment of Behçet’s,
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anakinra and canakinumab have proven to be safe and efficacious in refractory
Behçet’s disease, strengthening the hypothesis that Behçet’s may be considered an
IL-1-mediated disease (Emmi et al. 2016).
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Abstract Neuroinflammation is a common pathological feature in almost all neu-
rological diseases and is a response triggered as a consequence of the chronic
activation of the innate immune response in the CNS against a variety of stimuli,
including infection, traumatic brain injury, toxic metabolites, aggregated proteins, or
autoimmunity. Crucial mediators of this neurinflammatory process are the intracel-
lular protein complexes known as inflammasomes which can be triggered by path-
ogens as well as pathogen-associated molecular patterns (PAMPs) and damage-
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associated molecular patterns (DAMPs). However, chronic inflammasome activa-
tion can eventually result in cellular death and tissue damage, leading to the release
of DAMPs that can reactivate the inflammasome, thereby propagating a vicious
cycle of inflammation. The primary cells involved in CNS inflammasome activation
are the immunocompetent microglia and the infiltrating macrophages into the CNS.
However, astrocytes and neurons also express inflammasomes, and the understand-
ing of how they are engaged in the pathogenesis of a variety of neurological diseases
is crucial to develop effective therapeutic approaches for CNS pathologies that are
propagated by chronic inflammasome activation. This chapter covers the activation
mechanisms of relevant inflammasomes in the brain and summarizes their roles in
the pathogenesis and progression of different neurological conditions.

Keywords Neuroinflammation · Neurodegeneration · NLRP3 · Inflammasome ·
Microglia · IL-1β · ASC

3.1 Introduction

Inflammation of the central nervous system (CNS) or neuroinflammation is a
common underlying pathological feature of most neurological disorders. Chronic
neuroinflammation is evident in progressive neurodegenerative diseases like
Alzheimer’s and Parkinson’s disease (Heneka et al. 2014) and in autoimmune
disorders such as multiple sclerosis (Barclay and Shinohara 2017).
Neuroinflammation is also present in psychiatric illnesses such as depression
(Alcocer-Gomez et al. 2014) and a consequence of direct damage to the CNS in
the form of brain injuries such as stroke (Barrington et al. 2017) or traumatic brain
injury (Wallisch et al. 2017). Innate immune activation is also evident as an acute
response against viral or bacterial infections in the CNS (Klein et al. 2017). The
neuroinflammatory process is a response to a variety of pathogenic signals, and its
primary role is to maintain homeostasis in the brain conferring neuroprotection and
promoting remyelination and even axonal regeneration (Wee Yong 2010). Never-
theless, the delicate balance between the benefit and harm that is conferred by
activation of the innate immune system is directly related to length, reactivation,
and spread of the inflammatory response. This mechanism of defense in the innate
immune response occurs through pattern recognition receptors (PRRs) that can
recognize infections through pathogen-specific proteins (PAMPs) and internal cel-
lular disturbances through damage-associated proteins (DAMPs) (Kigerl et al.
2014). Primarily expressed in the CNS by glial cells (microglia and astrocytes)
and also in neurons, these receptors can be located on extracellular membranes or
within the cytosol such as the NOD-like receptors (NLRs). NLR activation leads to
the oligomerization of cytosolic protein complex known as inflammasomes that
regulate the activation of caspase-1 (Martinon et al. 2002). This active caspase
cleaves the precursor forms of the pro-inflammatory cytokines of the IL-1 family,
IL-1β, IL-18, and IL-33, into their active forms that exert their biological effects. The
expression and release of the IL-1 family cytokines in the normal brain is normally at
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low levels and is dramatically upregulated in response to local or systemic disease
and injury (Rothwell and Luheshi 2000). In the CNS, multiple cell types express
receptors for IL-1β and IL-18 making them particularly sensitive to these cytokines.
(Allan et al. 2005; Alboni et al. 2010). The primary role of the inflammasome
activation in the healthy brain is to limit and clear any pathogenic or metaboloic dam-
age, but when this activation becomes persistent, it entails other associated process
that can propagate and spread the inflammatory response. These include pyroptotic
cell death and the release of ASC specks, NLRP3, and DAMPs that can propagate
the inflammatory response leading to tissue damage (Franklin et al. 2014; Baroja-
Mazo et al. 2014).

Recent advances in our understanding of inflammasome triggers and activation
mechanisms in the CNS, as well as its regulation by endogenous inhibitors such as
dopamine and the ketone body β-hydroxybutyrate (Youm et al. 2015) could have
therapeutic applications for CNS diseases. Indeed, the development of highly spe-
cific NLRP3 inhibitors such as MCC950 (Coll et al. 2015) and caspase-1/ICE
inhibitors have opened up an exciting new area of translational research with the
potential for disease modification and therapeutic targeting of progressive neurode-
generative diseases (Lipinska et al. 2014; Boxer et al. 2010; Ross et al. 2007).

3.2 Inflammasomes in the Healthy Brain

Until recently, the CNS was considered an immune-privileged site, protected by the
blood-brain barrier (BBB), creating an isolated environment between the CNS and
the peripheral immune system (Carson et al. 2006). However, the recent paradigm
shifts in our understanding has revealed the far-reaching scope and intricate commu-
nication between the innate immune response in the CNS and the peripheral immune
system in maintaining brain homeostasis (Louveau et al. 2015a, b). The immuno-
competent microglia are primarily responsible for sensing a broad range of exoge-
nous pathogenic stimuli, such as fungal, bacterial, and viral components, or
endogenous such as aggregated and misfolded proteins, extracellular ATP, and
reactive oxygen species (ROS) among others (Walsh et al. 2014). The microglia
express and can activate NLRC4 and NLRP3 inflammasomes, the best characterized
of which is NLRP3, considered in the recent years as a key pathway in the
development of neuroinflammation and neurodegeneration (Song et al. 2017).
NLRP3 activation requires two signals: the first is a priming step (such as TLR4
activation) which drives the transcription and translation of inflammasome compo-
nents including IL-1β, caspase-1, NLRP3, and ASC. A secondary signal or activa-
tion step (i.e., pathogen infiltration or aggregated proteins) is then required to trigger
the formation of the inflammasome complex (NRLP3-ASC-caspase-1) leading to
cluster-dependent caspase-1 activation and the cleavage and release of IL1-β (Guo
et al. 2015). There is believed to be an association of this pro-inflammatory pheno-
type or M1-like microglia with the expression of IL-1β, IL-6, IL-18, tumor necrosis
factor-α (TNFα), the production of superoxide, reactive oxygen species (ROS), and
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nitric oxide (NO), and an impaired phagocytic capacity (Tang and Le 2016). The
microglia also expresses NLRC4 a key sensor for bacterial infection, sensing
bacterial flagellin related with the cause of meningitis in the CNS (Wu et al.
2010). Unlike NLRP3, NLRC4 can be activated without the ASC adapter protein
(Latz et al. 2013), and bacterial activation can lead to a dual recruitment of NLRC4
and NLRP3 to the same macromolecular complex (Man et al. 2014). In contrast, in
the healthy brain, the microglia interact with the neighboring neurons, remodeling
synapses and secreting soluble neurotrophic factors, such as brain-derived
neurotrophic factor (BDNF) and transforming growing factor-β (TGF-β). Microglial
cells in the healthy brain are involved in regulation of synaptic strength, neuronal
pruning, protease secretion to maintain extracellular matrices, and building and
maintaining proper neuronal network functions and phagocytic activity to remove
accumulating cell debris and misfolded proteins to maintain brain homeostasis
(Fig. 3.1) (Waisman et al. 2015). This neuroprotective phenotype or M2-like is
associated with the production of anti-inflammatory cytokines such as IL-4, IL-13,
and IL-10 (Kabba et al. 2018). The balance between microglial phenotypes (M1/M2)
depends on the disease stage and severity, and the type of response may determine
whether microglial activation can be beneficial or leads to chronic
neuroinflammation (Fig. 3.1) (Tang and Le 2016). The astrocytes also play a
significant role in the brain homeostasis, including regulating neurotransmitter and
growth factor release, forming the BBB, and regulating the immune response (Dong
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Fig. 3.1 Overview of inflammasome activation in neurological diseases. Microglial
inflammasomes can be chronically activated in progressive neurodegenerative diseases such as
Alzheimer and Parkinson’s disease where they drive neuropathology (1). Inflammasome activation
has also been documented in autoimmune diseases such as Multiple Sclerosis where it contributes to
T cell dysregulation and nerve damage (2). Emerging evidence also indicates a pathogenic role for
inflammasome activation in Traumatic Brain Injury (TBI) and stroke (3), as well as CNS infection
by bacteria and viruses (4). The pathological contributions of systemic versus CNS inflammasome
activation remains to be determined in these diseases and is an active area of research
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and Benveniste 2001). The role of astrocytes in innate immunity is crucial; these
cells express an array of receptors including Toll-like receptors (TLR), double-
stranded RNA-dependent protein kinase, scavenger receptors, components of the
complement system, and NOD-like receptors like NLRP3 (Farina et al. 2007;
Johann et al. 2015). Recently, it was shown that human astrocytes also express
NLRP2 inflammasome (Minkiewicz et al. 2013). ATP can activate the
inflammasome forming a multiprotein complex with ASC and caspase-1 and also
interacts with the P2X7 receptor and pannexin 1 channel, leading to the release of
IL-1β (Minkiewicz et al. 2013). Furthermore, increasing evidence has shown the
expression of inflammasome-forming NLRs in non-myeloid cells such as neurons;
the most characterized and implicated in some pathologies is NRLP1 (Kaushal et al.
2015). Human NLRP1 is unique compared to the rest of the inflammasomes due to
the complexity of its domain structure, possessing two interaction domains, an
N-terminal PYD and a C-terminal CARD, and interestingly the adaptor protein
ASC is not necessary for activating the pathway, but it might enhance NLRP1
activation (Faustin et al. 2007). Furthermore, cerebral pericytes express
inflammasomes, and Toll-like receptors, which are involved in controlling key
neurovascular functions and BBB permeability and peripheral leukocyte trafficking
(Nyul-Toth et al. 2017). Emerging evidence suggests that inflammasomes could
have previously unknown roles in normal brain function beyond neuronal protection
and maintaining homeostasis. It can therefore be expected that new roles for the
various inflammasome components will emerge as these pathways are studied in
more detail in the context of the central nervous system.

3.3 Inflammasomes in Neurodegenerative Diseases

There is extensive accumulating evidence for the pathogenic role of chronic
inflammasome activation in propagating neuroinflammation, a key underlying fea-
ture of neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease
(Heneka 2017; Mao et al. 2017). Despite the different factors and mediators that can
trigger inflammasome activation in this sterile environment, aging is a common
factor in most progressive neurodegenerative diseases (Wyss-Coray 2016). Recent
studies correlate microglia and enhanced sensitivity to inflammatory stimuli with
aging, demonstrating in senescence-accelerated mice a “primed microglial” pheno-
type, characterized by increased production of pro-inflammatory cytokines and
ROS, leading to elevated basal inflammasome activation that can influence
neurodegeneration in more elderly populations (Luo et al. 2010; Spittau 2017).
Furthermore, it has recently been demonstrated that the expression of specific
inflammasome gene modules can accurately classify older populations in two
groups, one with constitutive expression of IL-1β and the other without this expres-
sion, showing a correlation in the first group with an increased mortality and related
inflammatory disease state, a common hallmark of neurodegenerative diseases
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(Furman et al. 2017). We describe below, the role of the inflammasome and their
therapeutic approaches in these two most common neurodegenerative diseases.

3.3.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is the most prevalent chronic and progressive neurode-
generative disease. The first symptoms are short-term memory loss and worsen over
time leading to progressive cognitive impairment and dementia in 70% of the cases
(Tarawneh and Holtzman 2012). Currently, there are no treatments to stop the
progression of the disease, only to ameliorate some symptoms (Yiannopoulou and
Papageorgiou 2013). The primary hallmark of the development of AD is the
deposition of amyloid β (Aβ) aggregates in the hippocampus (Friedrich et al.
2010), correlated with a chronic activation of the innate immune system and
microglial activation (Doens and Fernandez 2014). The microglia can bind soluble
Aβ oligomers and fibrils via cell-surface receptors including CD14, CD36, CD47,
and TLRs among others (Bamberger et al. 2003). In AD, NLRP3 inflammasome
activation proceeds via phagosomal disruption or cell surface K+ channels (Salminen
et al. 2009). Increasing evidence from AD mouse models such as APP/PS1 trans-
genic model and clinical studies have shown the relationship between innate
immune mechanisms and neurodegenerative process involving the persistent acti-
vation of NLRP3 in microglia and peripheral macrophages and NLRP1
inflammasome in neurons (Saresella et al. 2016). NLRP3 activation has been
shown to enhance AD pathology and may be involved in synaptic dysfunction,
cognitive impairments, and the restriction of microglial clearance functions (Heneka
et al. 2013). Aβ fibrils can activate NLRP3 in mouse microglia, and higher levels of
active caspase-1 and IL-1β in the brains of patients with AD and APP/PS1 mice have
been detected compared to healthy patients and wild-type (WT) control mice.
Furthermore, there is a protective phenotype in caspase-1 or NLRP3 knockout
(KO) in terms of spatial memory impairments and loss of hippocampal neurons,
associated with behavioral disturbances present in AD, showing a neuroprotective
M2-like phenotype (Heneka et al. 2013; Heneka 2017). In neurons NLRP1 levels are
upregulated in APP/PS1 mice, and in vitro results have shown that silencing NLRP1
reduces Aβ-induced neuronal pyroptotic cell death, positioning NLRP1 activation in
neurons as a new factor relevant to neurodegeneration in AD (Tan et al. 2014;
Kaushal et al. 2015). Recently the NLRC4 inflammasome was shown to
be upregulated in AD brains; it has been shown that NLRC4 can be activated in
response to fatty acid palmitate in astrocytes (Kaushal et al. 2015); this is correlated
with a higher fatty acid content in AD brains compared with healthy brains (Cutler
et al. 2004). Based on these results, introducing pharmacologic treatments targeting
the NLRP3 inflammasome at different levels in the pathway may have beneficial
effects in patients with AD (White et al. 2017). The first successful study targeting
NLRP3 pharmacologically in a transgenic mouse model of AD was recently
published (Daniels et al. 2016). This study has shown that several clinically
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approved and widely used nonsteroidal anti-inflammatory drugs (NSAIDs) of the
fenamate class are efficient and selective inhibitors of the NLRP3 inflammasome via
reversible blockade of volume-regulated anion channel (VRAC) in the plasma
membrane of macrophages. Inhibiting cognitive impairments in 3 � TgAD trans-
genic mice (Daniels et al. 2016), this treatment completely abated AD-related
neuroinflammation with reduced levels of microglial activation and IL-1β expression
compared to WT mice, opening an exciting new translational field to repurposition
these drugs as Alzheimer’s disease therapeutics (Venegas et al. 2017). A potentially
key paradigm shift in our understanding of inflammasome pathology in driving AD
is that microglial ASC specks can cross-seed amyloid-β during the course of the
disease and thereby contribute to the spread of amyloid-β pathology.

3.3.2 Parkinson’s Disease

Parkinson’s disease (PD) is the most prevalent synucleinopathy and the second most
common neurodegenerative disorder worldwide after AD (Mhyre et al. 2012). PD is
a chronic neurodegenerative disease of the CNS, and its pathological hallmark is a
profound loss of nigrostriatal dopaminergic neurons that is preceded by the accu-
mulation and spread of characteristic Lewy bodies, consisting primarily of misfolded
fibrillar α-synuclein (Syn) (Obeso et al. 2010). There is a correlation between lack of
dopamine in the CNS with debilitating motor symptoms including tremor, rigidity,
and slowness of the movements and in advanced-stage dementia (Lotharius and
Brundin 2002). The current treatments target the symptoms but similar to AD do not
stop the progression of the disease due to the lack of treatments to prevent chronic
neuroinflammation that leads to neurodegeneration (Schapira et al. 2006). In recent
years, accumulating evidence suggests that the innate immune system specifically
NLRP3 is involved in the prominent neuroinflammatory response observed in PD
(Codolo et al. 2013; Walsh et al. 2014; Guo et al. 2015; Mao et al. 2017). It has been
shown that Syn fibrils can activate NLRP3 inflammasome in macrophages and
microglia, acting as an endogenous trigger of the inflammasome in PD (Codolo
et al. 2013; Guo et al. 2015; Gustot et al. 2015). The mechanism of Syn activation of
NLRP3 is not fully elucidated, but recent evidence suggests that it could be through
microglial endocytosis and subsequent lysosomal cathepsin B release (Zhou et al.
2016) and deficiency of caspase-1, significantly inhibited Syn-induced microglia
activation, and IL-1β production in vitro (Zhou et al. 2016). Clinical studies have
found higher levels of IL-1β and an upregulation of NLRP3 in PD patients (Zhou
et al. 2016; Zhang et al. 2016). Additionally, it has been demonstrated that dopamine
can inhibit systemic NLRP3 activation through dopamine D1 receptor (DDR1) via a
second messenger cyclic adenosine monophosphate (cAMP), which binds to
NLRP3 and promote its ubiquitination and degradation via the E3 ubiquitin ligase
MARCH7 (Yan et al. 2015), suggesting an important novel endogenous regulatory
role for dopamine that correlates with an increased NLRP3 activation in PD patients
who inevitably have reduced levels of dopamine over the course of the disease.
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Although the etiology of PD is unknown, pesticide exposure is well recognized as an
environmental risk factor to acquire this disease (Hancock et al. 2008). In fact
chronic infusion of the pesticide, rotenone, has been used as a rodent model of
PD, since this model reproduces many relevant features of the disease (Panov et al.
2005). In this model it has also been demonstrated that microglial NLRP3
inflammasome can be activated by rotenone exposure (Liang et al. 2015). Microglial
NLRP3 can be activated with rotenone via the ROS/c-abl/NLRP3 signaling path-
way, affecting the auto-lysosomal system. In this study it was demonstrated that
targeting oxidative stress-induced c-Abl activation in the microglia can diminish
microglial activation associated with neurodegeneration in PD (Lawana et al. 2017).
The effect of rotenone also was observed in neurons in an animal model showing that
pathological pesticide exposure could activate neuronal inflammasome in the
substantia nigra and promote the expression of NLRP3, ASC, and caspase-1 and
the secretion of IL-1β and IL-18 in a dose- and time-dependent manner (Zhang et al.
2016). Moreover, inflammasome activation components were detected in cerebro-
spinal fluid of PD patients, showing that cyclin-dependent kinase 5 (Cdk5) is
necessary for NLRP3 activation in neurons and its pharmacological inhibition with
roscovitine a Cdk5 inhibitor or Cdk5-targeted deletion could efficiently block
neuronal inflammasome activation in 1,2,3,6-methyl-phenyl-tetrahydropyridine
(MPTP) and Syn transgenic mouse PD models (Zhang et al. 2016). Besides, a
central component of the inflammasome, caspase-1, causes truncation and aggrega-
tion of Syn, and this was recently demonstrated in a neuronal cell model of PD,
dmeonstrating another potentially pathogenic role of the NLRP3 inflammasome in
PD etiology (Wang et al. 2016). NLRP3 upregulation also was observed in a rat
model of PD, the 6-hydroxydopamine (6-OHDA) model, showing high levels of
mRNA and protein expression of NLRP3 components in the 6-OHDA injected side.
In this study, microinjections of different doses of caspase-1 inhibitor (Ac-YVAD-
CMK) in the striatum were performed. This treatment showed an inhibition of the
mRNA and protein expression of NLRP3 components and an improvement in the
rotational behavior and the number of dopamine neurons in the substantia nigra,
indicating that NLRP3 inflammasome participates in the pathogenesis of PD and
downstream inhibition of the inflammasome can alleviate the occurrence of PD
symptoms (Mao et al. 2017). Astrocytes also play an important role in
neurodegeneration, regulating ROS production through uncoupling protein
2 (UCP2), maintaining the proper levels of oxidative stress in the brain (Lu et al.
2014). It has been shown that UCP2 knockout mice exhibit exacerbated dopaminer-
gic neuron loss in MPTP mouse model, with NLRP3 inflammasome activation in
astrocytes (Lu et al. 2014). Moreover, targeting NLRP3 to inhibit the inflammatory
process also has been approached with gene therapy. In a recent study, it was shown
that NLRP3 is a target gene of microRNA-7 (miR-7) and microglial transfection
with miR-7 produces an inhibition of microglial NLRP3 inflammasome activation,
whereas anti-miR-7 aggravated inflammasome activation in vitro (Zhou et al. 2016).
Also, this was demonstrated in vivo with stereotaxic injections of miR-7 into mouse
striatum, decreasing dopaminergic neuron loss accompanied by the amelioration of
microglial activation in MPTP mouse model (Zhou et al. 2016). Collectively, these
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exciting new findings place NLRP3 inflammasome as a central pathway in the
progression of the neuroinflammatory process in PD and an attractive disease-
modifying therapeutic target.

3.4 Inflammasome in CNS Autoimmune Disease: Multiple
Sclerosis

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of
the CNS that is thought to be mediated by myelin-specific autoreactive T cells,
characterized by an increased microglial activation associated with extensive and
chronic neurodegeneration (Compston and Coles 2008). This neuroinflammatory
damage disrupts the proper transmission of the nerve impulse, resulting in a range of
debilitating signs and symptoms including fatigue, ataxia, cognitive impairment, and
depression among others (Bruck 2005). Although the etiology of the disease remains
unknown, several clinical studies have reported the association of the elevated
expression of caspase-1, IL-1β, and IL-18 with the susceptibility, progression, and
severity of MS patients (Losy and Niezgoda 2001; Ming et al. 2002; Huang et al.
2004; Heidary et al. 2014). This finding is linked with an increasing number of
reports that strongly suggest the involvement of NLRP3 inflammasome in the
pathophysiology of MS (Gris et al. 2010; Inoue and Shinohara 2013; Barclay and
Shinohara 2017; Guo et al. 2017). Recent studies have shown that NLRP3 plays a
critical role in the induction and progression of experimental autoimmune enceph-
alomyelitis (EAE), an animal model of MS. This is through direct effects on caspase-
1-dependent cytokines which influence Th1 and Th17 responses (Gris et al. 2010),
showing a protective phenotype in NLRP3 KO mice with EAE, due to a reduction in
the severity of the disease with a significant decrease of the inflammatory infiltrates
including macrophages, dendritic cells, CD4, and CD8+ T cells in the spinal cord and
with a reduction in the destruction of myelin and astrogliosis (Gris et al. 2010).
Additionally, high levels of cytoplasmic caspase-1 in resident oligodendrocytes of
MS lesions have been reported. In this study oligodendrocytes were exposed to a
cytokine challenge, observing a blockage in cell death induction by the caspase-
1inhibitor Z-YVAD-FMK, suggesting that caspase-1 may play a key role in the
inflammatory and pyroptotic processes associated with MS pathogenesis (Ming et al.
2002). Furthermore, evidence in patients with MS suggests that inflammasome
activation occurs during MS progression finding caspase-1 and IL-1β in MS plaques
and an increase of IL-1β and IL-18 in peripheral blood mononuclear cells (PBMCs)
of MS patients (Huang et al. 2004; Inoue and Shinohara 2013). Moreover, pharma-
cological studies with the specific NLRP3 inhibitor, the small molecule MCC950,
were performed investigating the possibility that MCC950 may suppress the T-cell
response that mediates autoimmune diseases (Coll et al. 2015). Pretreatment of EAE
mice with MCC950 delayed the onset and reduced the severity of EAE, with a
reduction in serum concentration of IL-1β and IL-6. Furthermore, analysis of brain
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mononuclear cells from mice culled on day 22 after treatment showed modestly
reduced frequencies of IL-17- and IFN-γ-producing CD3+ T cells in MCC950-
treated mice in comparison with vehicle-treated mice, showing an attenuation in
the severity and progression of the disease, positioning this drug as a potential
therapeutic for NLRP3-associated syndromes including auto-inflammatory and
autoimmune diseases (Coll et al. 2015). Similar results were observed with a novel
small molecule, a hydroxyl sulfonamide analog JC-171, delaying the progression
and severity of EAE in prophylactic and therapeutic settings and blocking IL-1β
production and Th17 response (Guo et al. 2017). Collectively, all these novel
therapeutic approaches suggest that sustained NLRP3 inflammasome activation is
an important mechanism in MS pathophysiology and a potential therapeutic target
for the treatment.

3.5 Inflammasomes in Brain Injury

The leading causes of brain injury related to mortality and morbidity are acute
ischemic stroke and traumatic brain injury (Feigin et al. 2014; Levin and Diaz-
Arrastia 2015). The first is due to an insufficient supply of blood to regions of the
brain producing damage and death of tissue (Donnan et al. 2008). The second, TBI,
is a consequence of a mechanical trauma to the CNS such as head or spinal cord
injury (Ghajar 2000). Both forms of injury result in an acute necrotic and apoptotic
loss of neuronal and some glial populations driven by inflammatory cascades leading
to the overactivation of innate immune responses. Below we describe the role of the
inflammasome activation in stroke and TBI.

3.5.1 Stroke

Stroke is one of the most frequent causes of death and disability worldwide (Donnan
et al. 2008; Kuklina et al. 2012). The most common form is ischemic stroke and is
caused when a blood clot slows or interrupts the normal blood flow to a region of the
brain leading to inflammation and tissue damage (Feigin et al. 2003). Increasing
evidence indicates that NLRP3 inflammasome plays a significant role in the patho-
genesis and progression of stroke (Barrington et al. 2017; Ye et al. 2017). Increased
levels of NLRP3 protein has been found after experimental ischemic stroke, accom-
panied by elevated levels of IL-1β and IL-18 and extensive neuronal and glial cell
death (Lammerding et al. 2016). Preclinical studies in animal models have also
found an increase in NLRP3 and NLRP1 expression and activation in primary
cortical neurons and cerebral tissue under in vitro and in vivo ischemic conditions.
This activation is through NF-κB and MAPK signaling pathways, showing high
levels of IL-1β, IL-18, and caspase-3 triggering neuronal apoptosis (Fann et al.
2018). Furthermore, in the same study, treatment with intravenous immunoglobulin
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(IVIg) was reported to reduce the activation of the NF-κB and MAPK pathways
resulting in decreased expression and activation of NLRP1 and NLRP3 in primary
cortical neurons under ischemic conditions, suggesting that therapeutic interventions
targeting inflammasome activation in neurons may provide new treatments for
ischemic stroke. Moreover, NLRP3 deficiency ameliorated cerebral injury in mice
after ischemic stroke by reducing infarcts and BBB damage through NOX2-
mediated oxidative stress (Yang et al. 2014). Also, the specific selective inhibition
of NLRP3 with MCC950 or with P2X7R antagonist BBG post stroke has shown a
reduction in neuronal apoptosis, infarction volume, and neurological impairment
demonstrating that P2X7R/NLRP3 pathway plays a critical role in caspase-3-depen-
dent neuronal apoptosis after ischemic stroke (Ye et al. 2017). The increase of
caspase-1 expression has also been described in neurons and astrocytes after throm-
boembolic stroke and observed 24 h later in microglia (Abulafia et al. 2009).
Therapeutic caspase-1 inhibition has been evaluated pharmacologically and with
transgenic mice, showing a reduction of brain damage in knockout mice compared
with WT controls after experimental stroke (Friedlander et al. 1997), as well as a
protective effect with the intracerebroventricular administration of the caspase-1
inhibitors Ac-YVAD-cmk or VRT-018858 in experimental stroke models
(Rabuffetti et al. 2000; Ross et al. 2007). Collectively, these findings suggest that
the NLRP3 inflammasome could be a potential novel therapeutic target for stroke.

3.5.2 Traumatic Brain Injury

Traumatic brain injury (TBI), or mechanical trauma to the CNS, results in the
disruption of the cellular microenvironment leading to massive necrotic and apo-
ptotic loss of neuronal and glial populations. This loss is accompanied by an
acute production of ROS and activation of the innate immune system triggering
inflammation with the release of pro-inflammatory cytokines leading to neuron
damage and death (Werner and Engelhard 2007). Growing evidence indicates that
TBI could activate the inflammasome, specifically NLRP3 with increased levels of
ASC, activation of caspase-1, and release of IL-1β and IL-18 in humans and murine
models of TBI (Adamczak et al. 2012; Liu et al. 2013). The first study in human
patients has shown increased levels of NLRP1 and NLRP3 in cerebrospinal fluid
(CFS) after severe TBI in children correlating NLRP3 as a marker of TBI severity
(Adamczak et al. 2012). Also, neuronal NLRP1 constitutes an important component
of the innate immune response after TBI, demonstrated in a rat model neutralizing
ASC with anti-ASC antibodies, showing a reduced caspase-1 activation and
processing of IL-1β resulting in a significant decrease in contusion volume after
injury (de Rivero Vaccari et al. 2009). To study if NLRP3 is involved in the outcome
of TBI, NLRP3 activation was targeted pharmacologically in a rat model of blast-
induced TBI (bTBI) with the administration of propofol. Propofol is a lipid-soluble
intravenous anesthetic, which has been shown to possess therapeutic benefit during
neuroinflammation on various brain injury models, indicating an inhibition of the
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inflammatory response and a reduction in brain injury by inhibiting ROS. This
inhibition leads to a decrease in NLRP3 activation and pro-inflammatory cytokines
release in the cerebral cortex of bTBI rats with an amelioration of cerebral cortex
damage (Ma et al. 2016). Moreover, similar results were obtained with the Chinese
medicine mangiferin, showing a neuroprotective effect in rats treated with
mangiferin in a bTBI model, suppressing the activation and expression of NLRP3
through the inhibition of oxidative stress and pro-inflammatory cytokines production
in the cerebral cortex, alleviating brain damage, and positioning this approach as a
potential therapeutic strategy for bTBI (Fan et al. 2017). Another therapeutic
approach has been achieved, targeting NLRP3 in TBI with the use of omega-3
fatty acids (ω�3 FAs). This treatment prevents NLRP3 mitochondrial localization
and caspase-1 cleavage through G protein-coupled receptor 40 (GPR40) reducing
the release of IL-1β ameliorating neuronal death and behavioral deficits after TBI in
rats (Lin et al. 2017), positioning the innate immune response, specifically NLRP3,
as a major contributor to the neuroinflammatory process that leads to the severity of
TBI and as an important novel therapeutic target for the treatment of this debilitat-
ing neurological disease.

3.6 Inflammasome Activation in CNS Infections

Infections of the CNS can be caused primarily by viruses, bacteria, and fungi as well
as pathogenic prions (Koyuncu et al. 2013; Coureuil et al. 2017; Shi and Mody
2016). Some acute infections can lead to meningitis or encephalitis and have the
potential to contribute to massive acute inflammasome activation. This response
against a particular pathogen can be distinct in the CNS compared to systemic
responses (Walsh et al. 2014). Therefore it is important to understand how the
inflammasome can be distinctly activated in the CNS to develop novel and effective
therapeutic strategies against CNS infections; below we outline the role of the
inflammasomes in bacterial and viral infections in the CNS based on recent
evidence.

3.6.1 Bacterial Infection

Streptococcus pneumoniae is a common cause of bacterial meningitis which occurs
when these bacteria invade the CSF leading to an inflammatory process and brain
damage (Geldhoff et al. 2013). This process is orchestrated by a variety of innate
immune responses, including through acute NLRP3 inflammasome activation. As
recently demonstrated in murine models and human patients, NLRP3 could play an
important role in the pathologic progression of pneumococcal meningitis infection
(Hoegen et al. 2011; Geldhoff et al. 2013). In a murine model of pneumococcal
meningitis, ASC and NLRP3 were shown to be involved in modulating the severity
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of the disease through the release of IL-1β and IL-18. In this study using differen-
tiated human macrophages, THP-1 cells were utilized to confirm that the pneumo-
coccal pore-forming toxin pneumolysin is an essential inducer of IL-1β expression
and inflammasome activation upon pneumococcal challenge, through the release of
ATP, lysosomal destabilization, and cathepsin B activation (Hoegen et al. 2011). In
murine microglia pneumolysin can induce caspase-1-dependent pyroptotic cell death
with NLRP3 being critical for caspase-1 activation during the process, and the
induction of autophagy could transiently protect microglia from pyroptosis boosting
the infective mechanism (Kim et al. 2015). In patients with bacterial meningitis, CSF
levels of IL-1β and IL-18 were correlated with severity of the disease. Inversely in
ASC and NLRP3 KO mice, a decreased systemic inflammatory response and
bacterial outgrowth is observed in blood and brain homogenates compared to WT
mice. Moreover, the NLRP3 deficiency was associated with an increase in cerebral
neutrophil infiltration and cerebral hemorrhages in comparison to WT controls
(Geldhoff et al. 2013). Another common etiological agent of brain abscesses is
Staphylococcus aureus (S. aureus) which is characterized by widespread inflamma-
tion and necrosis. S. aureus also induces NLRP3 inflammasome activation in
microglia in an ATP and cathepsin B-dependent manner, with significantly reduced
IL-1β production in NLRP3 and ASC KO microglia following exposure to S. aureus
(Hanamsagar et al. 2011). Listeria monocytogenes (LM) infection, or listeriosis, is a
common foodborne disease that can lead to severe and potentially fatal cases of
bacteremia and meningitis (Thonnings et al. 2016). Infection with LM can activate
caspase-1 and the processing of IL-1β and IL-18 and pyroptosis through the activa-
tion of multiple inflammasomes such as AIM2, NLRC4, and NLRP3 and collec-
tively orchestrate a robust pro-inflammatory response (Wu et al. 2010).

3.6.2 Viral Infections

Viral infections typically begin in the peripheral tissues and rarely invade the CNS;
however, some viruses can infect the CNS triggering the innate immune response
(Koyuncu et al. 2013). Japanese encephalitis virus (JEV) represents a common cause
of acute viral encephalitis; JEV can invade the CNS and consequently induce acute
neuroinflammation, which is characterized by neurodegeneration, astrogliosis. JEV
infection has recently been linked with microglial NLRP3 activation resulting in the
production of IL-1β and IL-18 (Kaushik et al. 2012). JEV activates NLRP3 through
K+ efflux and ROS production in mouse microglia, and depletion of NLRP3 results
in the reduction of caspase-1 activity and cytokine release (Kaushik et al. 2012).
Another related flavivirus that causes viral encephalitis; West Nile virus (WNV) has
been shown to interact with the innate immune response. In contrast with JEV,
NLRP3 inflammasome activation has shown to be a protective response during
encephalitis caused with WNV. IL-1β production is a key host restriction factor
involved in WNV control, as shown in animals lacking the IL-1 receptor or com-
ponents involved in inflammasome pathway a higher susceptibility to WNV
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pathogenesis. In this study it was demonstrated that IL-1β production is essential for
the development of an effective host immunity against WNV, revealing a novel role
for IL-1β in antiviral action that restricts virus replication in neurons (Ramos et al.
2012). Furthermore, ASC-deficient mice exhibited increased susceptibility to WNV
infection, associated with a reduced survival with enhanced virus replication in the
peripheral tissues and CNS. However, brains from ASC KO mice displayed unre-
strained inflammation, including elevated levels of pro-inflammatory cytokines and
chemokines, correlated with astrogliosis and enhanced infiltration of peripheral
immune cells in the CNS (Kumar et al. 2013). Recently neurological complications
related to Zika virus (ZIKV) infection have emerged as a significant threat to public
health worldwide (Russo et al. 2017). Several studies have identified microglial
nodules, gliosis, neuronal and glial cell degeneration, and necrosis in the brain of
ZIKV-infected infants. This suggests that ZIKV could play a role in these neuro-
logical disorders through neuroinflammation and microglial dysfunction (Tricarico
et al. 2017). ZIKV has been shown to replicate in infective cells causing increased
ROS leading to NLRP3 activation and IL-1β release in the human primary glioblas-
toma cell line U87-MG process that culminates in cell death, implicating
inflammasome as a novel and relevant pathogenic factor in ZIKV infection and
associated neuropathology (Tricarico et al. 2017).

3.7 Concluding Remarks

In the past decade, crucial advances have been made in our understanding of
functional roles of inflammasomes in the healthy CNS and more significantly, in
understading the pathological consequences of chronic inflammasome activation
during neurological disease. Indeed, sustained innate immune activation more
broadly has emerged as a key pathological mechanism during progressive
neurodegeneration. While insufficient activation causes the host to become vulner-
able to PAMPs and DAMPs, on the contrary chronic and sustained inflammasome
activation can drive unfavorable outcomes in almost all progressive neurological
diseases that have been studied (Singhal et al. 2014; Song et al. 2017). The
current understanding of the specific pathological mechanisms driv-
ing inflammasome activation remains insufficient to develop effective therapeutic
strategies for complex and challening CNS diseases with multifactorial
etioligies. Specifically, the mechanisms by which inflammasome activation is ter-
minated and CNS homeostasis is restored remain to be defined. Likewise the
contribution of systemic inflammasome activation to CNS pathology has not been
elucidated. Therefore, a more in-depth understanding of the regulation of this
key pathway in different neurological contexts could lead to novel and more
effective disease-modifying therapeutic strategies that could slow or halt disease
progression and potentially restore homeostasis in the CNS.
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Abstract Inflammasomes are large innate cytoplasmic complexes that play a major
role in promoting inflammation in the lung in response to a range of environmental
and infectious stimuli. Inflammasomes are critical for driving acute innate immune
responses that resolve infection and maintain tissue homeostasis. However,
dysregulated or excessive inflammasome activation can be detrimental. Here, we
discuss the plethora of recent data from clinical studies and small animal disease
models that implicate excessive inflammasome responses in the pathogenesis of a
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number of acute and chronic respiratory inflammatory diseases. Understanding of
the role of inflammasomes in lung disease is of great therapeutic interest.

Keywords Inflammasomes · Lung disease · Inflammation · Disease pathogenesis

4.1 Introduction

The innate immune system plays a pivotal role in restoring homeostasis in the lung
following an insult such as infection, cellular stress or injury. However, excessive or
chronic activation of the immune system can contribute to the development of a
number of inflammatory diseases such as acute respiratory distress syndrome
(ARDS), asthma, cystic fibrosis (CF) and chronic obstructive pulmonary disease
(COPD). Current treatments for such diseases are limited and ineffective, and new
treatments are required to reduce morbidity and mortality. It is of great therapeutic
interest that the mechanisms involved in the progression and persistence of immu-
nopathology in the lung be delineated in greater detail.

Inflammasomes are large innate cytoplasmic complexes that play a major role in
promoting inflammation in the lung, by enzymatically maturating the inactive
pro-inflammatory cytokine precursors, pro-IL-1β and pro-IL-18 into bioactive
IL-1β and IL-18, respectively. Inflammasomes are critical for driving acute innate
immune responses that resolve infection and maintain tissue homeostasis. However,
as discussed in this chapter, there is increasing evidence that excessive
inflammasome activation can lead to lung disease.

4.1.1 Inflammasome Activation in the Lung

The lung is continuously exposed to potentially noxious stimuli, which include
exogenous signals such as microbial (bacteria, viruses) and environmental antigens
(smoke, silica, asbestos, allergens), as well as a plethora of host-derived endogenous
danger signals. Innate immune responses produced within the host recognise these
noxious stimuli through the tightly coordinated activation of a series of extracellular
and cytosolic receptors called pattern recognition receptors (PRRs), which are
widely expressed in both immune (e.g. alveolar macrophage, neutrophils) and
non-immune (e.g. epithelial) cells in the lung (Bals and Hiemstra 2004). PRRs are
classified into several families such as Toll-like receptors (TLRs), absent in mela-
noma 2 (AIM2)-like receptors (ALRs) and nucleotide-binding oligomerisation
domain-containing (NOD)-like receptors (NLRs) (Kawai and Akira 2010; Kersse
2011; Ratsimandresy et al. 2013) (Fig. 4.1). Collectively, PRRs trigger inflammatory
responses following recognition of a diverse range of ligands comprising microbial
motifs called pathogen-associated molecular patterns (PAMPs), or danger-
associated molecular patterns (DAMPs), which can involve endogenous host-
derived signals or exogenous stimulants, such as smoke or silica, as above.
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The most well-characterised PRR families are TLRs, which are transmembrane
proteins associated with host cell surfaces and endosomes, and the cytosolic NLRs and
ALRs (Fritz et al. 2006; Zuo et al. 2015). Signalling by TLRs, with the exception of
TLR3, is dependent on the adaptorMyD88 and downstream activation of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) (Schnare et al. 2000)
(Fig. 4.1).Members of the NLR family, such asNLRP3,NLRC4 (NLRCARDdomain
containing) (De Nardo et al. 2014) and AIM2 (a cytosolic DNA sensor in the ALR
family) (Hornung et al. 2009), form the core of distinct inflammasomes, which are
multiprotein complexes regulating the release of bioactive pro-inflammatory cytokines
IL-1β and IL-18, in a two-step process. The first “priming” step involves the induced
expression of biologically inactive pro-IL-1β and pro-IL-18 precursors, as well as
inflammasome components via a PRR-mediated signal (e.g. lipopolysaccharide
(LPS)-induced activation of TLR4/NF-κB). The second step involves the sensing of
a specific DAMP or PAMP by each NLR or AIM2, leading to the recruitment and
oligomerisation of the key adaptor protein, apoptosis-related speck-like protein
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Fig. 4.1 Schematic of inflammasome responses in the lung. The lung is continuously exposed to
exogenous signals such as microbial (bacteria, viruses) and environmental (smoke, silica, asbestos,
allergens), as well as a plethora of host-derived danger signals. Activation of inflammasomes
NLRP3, NLRC4 and AIM2 requires two signals. Signal 1 involves recognition of PAMPs
(e.g. viral RNA or bacterial LPS) by PRRs such as TLRs and RLRs, inducing the expression of
inflammasome components and pro-IL-1β/18. The second signal activates the inflammasome
complexes NLRP3, NLRC4 or AIM2 in response to DAMPS (e.g. extracellular adenosine triphos-
phate (ATP) and reactive oxygen species (ROS)) or specific PAMPs (e.g. NLRP3, viral
RNA/proteins; NLRC4, bacterial flagellin; AIM2, dsDNA). Inflammasome activation initiates the
processing of pro-IL-1β and pro-IL-18 into their bioactive forms IL-1β and IL-18, by caspase-1
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containing a CARD (ASC, also known as PYCARD), into large filamentous scaffolds
called “specks” (De Nardo et al. 2014; Franklin et al. 2014). These ASC speck
structures then facilitate the subsequent recruitment and activation of caspase-1,
which in turn catalyses the maturation of pro-IL-1β or pro-IL-18 proteins into secreted
bioactive cytokines (Vanaja et al. 2015; Franklin et al. 2014), which potently promote
inflammatory host responses such as neutrophil infiltration and cytokine production
(Latz et al. 2013) (Figs. 4.1 and 4.2). IL-1β and IL-18 mediate their biological effects
following binding to cell surface receptors IL-1R and IL-18R, respectively, activating a
signalling cascade involving NF-κB, p38 and Jun N-terminal kinase (JNK) (Fig. 4.2).

As described above, inflammasome activation depends on the recognition of
PAMPs and DAMPs by PRRs. All cells expressing PRRs immediately identify
PAMP-expressing microbes and act as the front line of host defence against infection
in the lung. The membrane-bound TLRs scan the extracellular milieu and the
endosomal compartment for PAMPs. Bacterial LPS, endotoxins found on the cell
membrane of Gram-negative bacteria, and viral RNA are considered to be major
PAMPs. LPS is specifically recognised by TLR4. Models of LPS-induced inflam-
mation are widely employed to investigate both host responses in the lung and
specific diseases such as acute lung injury (ALI) (Andonegui et al. 2003; Grailer
et al. 2014; Jiang et al. 2016), asthma (Kim et al. 2014; Tran et al. 2012) and
idiopathic pulmonary fibrosis (IPF) (Lasithiotaki et al. 2016). Mouse models in the
above disease settings have shown evidence of neutrophil infiltration, production of
IL-1β and IL-18 and most importantly in NLRP3 inflammasome activation in the
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Fig. 4.2 Biological effects of inflammasome-dependent cytokines IL-1β and IL-18. Following
inflammasome activation, mature IL-1β and IL-18 are secreted and can then bind their cell surface
receptors IL-1R and IL-18R, respectively, which are expressed on a range of cell types. This results
in a signalling cascade involving NF-κB, p38 and JNK, leading to a range of biological outcomes,
such as pro-inflammatory cytokine secretion, neutrophil infiltration and increased vascular perme-
ability, which have been implicated in a range of respiratory diseases
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lung following LPS stimulation (Andonegui et al. 2003; Grailer et al. 2014; Jiang
et al. 2016; Kim et al. 2014; Tran et al. 2012; Lasithiotaki et al. 2016; Tate et al.
2016). In that regard, NLRs located in the cytoplasm of cells are known to directly
respond to a variety of PAMPs, including the bacterial wall components peptido-
glycan, bacterial flagellin, other bacterial toxins and viral proteins (Kersse et al.
2011; Franchi et al. 2006; Pinar et al. 2017). Studies into lung infections have
revealed the important role of NLRP3 as an intracellular sensor for bacterial toxins
from Staphylococcus aureus, Streptococcus pneumoniae, Chlamydia trachomatis
and Haemophilus influenzae in lung diseases such as asthma (Kim et al. 2017) and
cystic fibrosis (CF) (Yonker et al. 2015). NLRC4 can directly activate caspase-1 via
its own CARD domain (unlike NLRP3) and acts as a cytosolic sensor of bacterial
flagellin and type II/IV secretion system bacteria such as Pseudomonas aeruginosa.
NLRC4 is therefore a key modulator of Gram-negative bacterial infection in the
lungs (Cai et al. 2012; Yonker et al. 2015). In addition to these NLR-based
inflammasomes, AIM2 forms an inflammasome by binding directly to the double-
stranded (ds) DNA from numerous cytosolic bacteria and viruses. However, its role
in lung disease is not currently understood (Man et al. 2016).

DAMPs are host-derived biomolecules that alert the immune system to a loss of
homeostasis by activation of PRRs (Matzinger 1994) (Fig. 4.1). DAMPs/danger
molecules can have an endogenous or exogenous origin. Noxious exogenous signals
from infectious (bacteria, viruses) and environmental antigens (smoke, silica, asbestos,
allergens such as house dust mite (HDM)) can damage resident airway epithelial cells
in the lung, which can induce several modes of cell death such as apoptosis
(programmed) and necrosis (unprogrammed), resulting in the release of DAMPs
into the extracellular space (Messner et al. 2012; Kaczmarek et al. 2013). Programmed
cell death, apoptosis, is caspase-dependent, and most of the released DAMPs are
retained within apoptotic bodies for phagocytosis by macrophages (Krysko et al.
2010). However, when these apoptotic bodies are not adequately cleared, their
presence leads to secondary necrosis resulting from the release of DAMPs (Krysko
et al. 2010; Kono and Rock 2008). Necrotic cell death is the most immunogenic form
of cell death and leads to a further massive release of DAMPs (Rubartelli and Lotze
2007). In recent years, it has been reported that exogenous stimuli can induce an
inflammatory mode of airway epithelial cell death independent of executioner caspase
activity in a manner akin to necrosis, and this process has been termed pyroptosis (Dos
Santos et al. 2012). Pyroptosis, in contrast to the immunologically silent programmed
cell death of apoptosis, is dependent on the inflammatory caspase-1 and is
characterised by the rapid loss of plasma membrane integrity, leading to the release
of DAMPs. In addition to release of DAMPs, cell death can also lead to release of
several cytokines and chemokines such as interleukin (IL)-6 and IL-33, which can also
act as DAMPs or danger signals (Hirsiger et al. 2012; Krysko et al. 2012). DAMPs
include dsDNA, ROS, heat shock proteins, ATP and extracellular matrix fragments,
which can potentiate pro-inflammatory reactions in innate immune (e.g. macrophage)
and epithelial cells (Kaczmarek et al. 2013; Kono and Rock 2008; Pouwels et al.
2014). Upon release of ATP into the extracellular space, ATP triggers inflammasome
activation by signalling through P2X7 (purinergic receptors) (Lucattelli et al. 2011) or
changes in ion influx/efflux from cells (such as K+) (Latz 2010). Several experimental
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models have shown that ROS can cause the development of many acute and chronic
airway diseases, including fibrosis, asthma, emphysema, ARDS and bronchial carci-
nogenesis (Birrell and Eltom 2011).

4.1.2 Current Therapies

There are a limited number of specific drugs to block inflammasome activities under
development currently. However, there are numerous preclinical inhibitors/anti-
bodies tested in mouse studies, which show promise against up- and downstream
key activators of inflammasomes in the lung (Figs. 4.1 and 4.2). Here, we will
examine some of these key activators and the efficacy of corresponding preclinical
therapeutics that have been tested against them.

The production of ROS has been suggested to act as an upstream modulator of the
NLRP3 inflammasome. However, ROS inhibitors block the priming step of NLRP3
inflammasome activation by preventing pro-IL-1β synthesis (Bauernfeind et al.
2011), suggesting ROS inhibitors act at the synthesis level, rather than activation
level, of NLRP3. The ROS scavenger N-acetyl cysteine (NAC) is one of the widely
used antioxidants in vitro (Dostert et al. 2008) or in COPD and pulmonary fibrosis
patients (Salve and Atram 2016; Tarrant et al. 2017) to block inflammasome
activation. However NAC must be used at high concentrations to be able to block
inflammasome activities (Bauernfeind et al. 2011). NecroX-5 is a mitochondrial
inhibitor which displays excellent efficacy as an antioxidant focusing on the rela-
tionship between mitochondrial ROS and NLRP3 activation in allergic airway
diseases such as asthma in mouse models (Kim et al. 2014). NLRP3 inflammasome
activation via extracellular ATP acting on the P2X7 receptor signalling has been
seen in lung inflammation and lung diseases (Wang et al. 2015). The P2X7 receptor
antagonist has successfully blocked P2X7/NLRP3 inflammasome pathway resulting
in a significant amelioration of lung injury in mouse models (Wang et al. 2015).
Thus far no P2X7R antagonists are used for treating lung diseases in clinic; however,
the P2X7 receptor antagonist CE-224-535 is currently in clinical trials to treat
arthritis (Arulkumaran et al. 2011). ATP represents a suitable pharmacological target
for the development of new effective therapeutic options in the treatment of
inflammasome-related lung diseases. In that regard, glyburide, a blocker of K+
channels associated with ATP, has shown to inhibit NLRP3 inflammasome activa-
tion and lung inflammation in mouse models of bronchopulmonary dysplasia and
cystic fibrosis (Liao et al. 2015; Buchanan et al. 2013). Modulation of ATP levels
using the ATP-degrading enzyme apyrase is employed as another method to inhibit
ATP-regulated inflammasome activities such as production of IL-1β in pulmonary
fibrosis (Riteau et al. 2010).

Caspase-1 activation is important for NLRs and AIM2 inflammasome activities.
The administration of caspase-1 inhibitors such as Ac-YVAD-CHO and z-WEHD-
fmk has shown to effectively inhibit inflammasome activity by reducing IL-1β
in vivo (Churg et al. 2009, Kim et al. 2017). The caspase-1 inhibitor VX-765 is an
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orally available prodrug, and it reduces the release of IL-1β and IL-18 in patients
with cryopyrin-associated periodic syndromes (Wannamaker et al. 2007), but it is
not used in lung diseases. IL-1β is one of the main downstream modulators of
inflammasome, exerting its inflammatory action by binding to its receptor (IL-1R).
The IL-1R antagonist (IL-1RA) prevents IL-1β binding and signalling through
IL-1R. Anakinra is the recombinant form of naturally found IL-1RA and is widely
used in clinic. However, anakinra is rapidly excreted by the kidney and therefore has
a very short half-life, requiring frequent administration by subcutaneous injections
(daily) which is associated with hepatotoxicity (Dinarello 2010). This antagonist has
been widely used in animal models of asthma, ALI, bronchopulmonary dysplasia
and cystic fibrosis (Jones et al. 2014; Kim et al. 2014; Rimessi et al. 2015; Rudloff
et al. 2017). The fully humanised monoclonal antibodies against IL-1β (IL-1β mAb)
such as canakinumab are also used in an animal model of asthma (Kim et al. 2017)
and small clinical trials of asthma and COPD (Rogliani et al. 2015). However, the
use of IL-1β mAb in lung diseases needs further investigation. There are also
monoclonal antibodies against IL-1R and IL-18 receptor (IL-18R) which block
their IL-1-mediated signal transduction. Even though those have exhibited excellent
safety for patients (Dinarello 2010), those are not as effective in relieving the
symptoms as anakinra in disease settings. However these antibodies have not thus
applied for lung diseases.

Despite the emerging role for the inflammasomes in immunity, no drugs directly
targeting specific inflammasomes, or with pan-inflammasome activity, have yet been
described. MCC950 is a potent selective inhibitor of the NLRP3 inflammasome and
has been successfully used in in vivo models of asthma to block NLRP3 activation.

4.2 Role of Inflammasomes in Respiratory Diseases

4.2.1 Role in Acute Lung Diseases

Acute lung injury (ALI) and its most severe form, acute respiratory distress syn-
drome (ARDS), are major causes of fatal respiratory failure. These diseases often
occur as a result of severe viral and bacterial pneumonia, sepsis, burns or even
oxygen and mechanical ventilator therapy (reviewed in Umbrello et al. 2016).
Increased vascular permeability is a hallmark feature leading to lung oedema and
poor arterial oxygenation. These conditions are characterised by the infiltration of
neutrophils into the lung and the production of inflammatory mediators including
complement activation products, cytokines and chemokines, proteases and oxidants.
Currently, the mortality rate for patients who develop ALI is as high as 60%, and
current treatments involve mechanical ventilatory support and anti-inflammatory
drugs such as corticosteroids.

It is becoming evident that inflammasomes play a role in ALI and ARDS. IL-1β
has been shown to be elevated and biologically active in the lungs of patients early
after the onset of ALI (Olman et al. 2002; Pugin et al. 1996). Elevated levels of
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plasma IL-18 protein (Dolinay et al. 2012; Makabe et al. 2012) were shown to be
associated with long-term poor prognosis in ALI (Makabe et al. 2012). At the
mRNA level, CASP1 and IL-1B and IL-18 were increased in PBMCs from patients
with ARDS (Dolinay et al. 2012). Furthermore, direct effects of IL-1β and IL-18 on
lung vascular permeability and fluid transport, which are altered in ALI, have been
shown. Treating rats with IL-1β and IL-18 and adenoviral overexpression of IL-1β in
mice has been shown to increase vascular permeability in vivo (Ganter et al. 2008;
Leff et al. 1994; Jordan et al. 2001). IL-1β has also been shown to inhibit fluid
transport across the lung epithelium by decreasing the expression of the epithelial
sodium channel alpha subunit (Roux et al. 2005). Collectively, inflammasome
activation and the overproduction of IL-1β and IL-18 may play an important role
in the pathogenesis of ALI/ARDS.

In the mouse model, instillation of LPS into the lung results in pulmonary
oedema, injury, neutrophil infiltration and the production of pro-inflammatory
cytokines including IL-1β and IL-18 (Grailer et al. 2014; Jiang et al. 2016). How-
ever, NLRP3 and caspase-1 knockout mice are protected from LPS-induced ALI
(Grailer et al. 2014; Dolinay et al. 2012; Frank et al. 2008). Grailer et al. also
demonstrated that neutrophil and macrophage depletion reduced IL-1β production
in the lung following LPS instillation (Grailer et al. 2014), indicating these cells are a
major source of this cytokine. Genetic deletion of caspase-1, IL-18 or the IL-1β
receptor (IL-1R1) was also shown to reduce ALI in a mechanical ventilation model
(Frank et al. 2008). Similar results have been seen with anti-IL-1β, anti-IL-18
antibody treatment or administration of recombinant IL-1R antagonist (IL1-Ra) in
an attenuating ventilator model of ALI (Frank et al. 2008; Kuipers et al. 2012; Wu
et al. 2013; Jordan et al. 2001). Furthermore, in a two-hit LPS and mechanical
ventilation model, NLRP3- and caspase-1-deficient mice or those mice treated with
IL-1R antagonist (anakinra) were shown to have diminished IL-1β levels and to be
protected from ALI (Jones et al. 2014). Overall, these studies highlight a role for the
NLRP3 inflammasome, as well as IL-1β and IL-18 in the pathogenesis of LPS and
ventilator-induced ALI mouse models.

The role of inflammasomes in ALI induced by hypoxia or burns is less clear.
Hypoxia-induced ALI is a serious complication of prolonged oxygen therapy, and
mice lacking NLRP3 have been reported to display decreased (Mizushina et al.
2015) as well as increased (Fukumoto et al. 2013) susceptibility to ALI. The latter
study identified that deletion of NLRP3 did not alter IL-1β levels, yet STAT3
responses were abrogated. While increased levels of IL-1β and IL-18 have been
observed following burn injury (Ipaktchi et al. 2006; Rana et al. 2005; Han et al.
2015), studies have not directly examined the role of inflammasomes. In one study,
the NF-κB inhibitor, BAY11-7082, was shown to dampen NLRP3 activation and to
attenuate histological changes and inflammation in burn-induced ALI (Han et al.
2015).

The mechanisms of inflammasome activation during ALI have been examined. In
the LPS instillation model, neutrophils were shown to be a source of extracellular
histones in vivo, which were shown to activate NLRP3 in a caspase-1- and K+
efflux-dependent manner (Grailer et al. 2014). The P2X7 membrane receptor is
activated in response to binding of extracellular ATP, resulting in NLRP3
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inflammasome responses (Moncao-Ribeiro et al. 2011; Kolliputi et al. 2010). A role
for P2X7 in hypoxia- and LPS-induced ALI was identified by genetic deletion of
P2X7 or inhibition of P2X7 with antagonist A438079 treatment, resulting in reduced
IL-1β production and inflammation (Galam et al. 2016; Wang et al. 2015). Reactive
oxygen metabolites are also thought to play a key role in the pathogenesis of
ALI/ARDS. In the presence of ROS, thioredoxin-interacting protein (TXNIP) has
been shown to dissociate from thioredoxin (TRX) and bind to NLRP3, leading to its
activation (Zhou et al. 2010).

4.2.2 Role in Chronic Lung Diseases

4.2.2.1 Asthma

Asthma is a chronic inflammatory respiratory disease characterised by the infiltration
of inflammatory cells (e.g. eosinophils and neutrophils); elevated cytokine levels,
including IL-1β and IL-33; production of immunoglobulin E (IgE); airway
hyperresponsiveness; and mucus hypersecretion (Madouri et al. 2015; Kim et al.
2014; Tran et al. 2012; Leaker et al. 2017). Mild asthma due to allergic airway
inflammation (AAI), typically caused by allergens such as house dust mites (HDM)
or grass pollen, involves CD4+ T helper type 2 (TH2) cells and eosinophils. Severe
steroid-resistant asthma due to nonallergic airway inflammation (NAAI), such as
microbial (viral or bacterial) invasion, is largely neutrophilic and TH1/TH17-depen-
dent (Madouri et al. 2015; Kim et al. 2014, 2017; Tran et al. 2012; McKinley et al.
2008).

IL-1β treatment of mast cells has been shown to increase IgE-mediated TH2
cytokine secretion, suggesting the NLRP3 may play a role in the manifestation of
AAI (Lee et al. 2004; Hultner et al. 2000). In addition, increased levels of NLRP3
and caspase-1 in BAL fluid from asthmatic patients have been observed in compar-
ison with healthy individuals (Kim et al. 2014). These human studies are supported
by similar findings in mouse models of neutrophilic asthma (LPS and ovalbumin
(OVA) treatment) and AAI (OVA treatment alone) (Kim et al. 2014; Tran et al.
2012). Activation of NLRP3 has been observed in airway epithelial cells and
eosinophils in tissue sections from OVA-treated mice, which was shown to be
accompanied by the presence of IL-1β and IL-18 (Tran et al. 2012). LPS-/OVA-
treated mice deficient in NLRP3 and ASC display reduced levels of
pro-inflammatory cytokines IL-1β, IL-5 and IFN-γ, as well as decreased eosinophil
numbers in bronchoalveolar lavage (BAL) following OVA challenge (Kim et al.
2014). Furthermore, genetic absence of IL-1R1 or administration of IL-1R antago-
nist anakinra also reduced eosinophil numbers, suggesting that IL-1β could be the
main contributor to the recruitment of tissue eosinophils in asthma (Kim et al. 2014).
Of note, treatment of mice with the mitochondrial ROS inhibitor NecroX-5 ablated
IL-1β as well as NLRP3 and caspase-1, suggesting that mitochondrial ROS plays a
vital role in the activation of NLRP3 and production of functional IL-1β in allergic
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asthma (Kim et al. 2014). These studies suggest NLRP3 and IL-1β play a multifac-
torial role in the development of asthma.

On the contrary, in the HDM-induced allergic asthma model, the levels of
eosinophils and TH2 pro-inflammatory cytokines IL-1β, IL-33, IL-4 and IL-5 were
increased in BAL fluid of NLRP3-, caspase-1- and ASC-deficient mice following
challenge (Madouri et al. 2015). With the use of gene-deficient mice, NLRP4 was
shown to play no major role. IL-33 is a strong inducer of TH2 cytokines, and IL-33
antagonist treatment was found to reverse the enhanced allergic response in caspase-
1 knockout mice, suggesting a link between IL-33 and caspase-1. The role of
caspase-11 in the HDM model is unclear and warrants further investigation with
regard to the possible involvement of a noncanonical inflammasome pathway.

Alarmingly, steroid treatment is largely ineffective in severe asthma, possibly due
to an impairment in nuclear translocation of glucocorticoid receptor (GR)α, as
evidenced by a reduction of GR staining in the nucleus of PBMCs isolated from
steroid-resistant asthmatic patients (Kim et al. 2017; Matthews et al. 2004). Clini-
cally, mRNA expression of NLRP3, ASC, CASP1 and IL-1B genes in sputum was
found to be increased in neutrophilic compared with eosinophilic asthma (Simpson
et al. 2014). However, increased levels of IL-1β protein in the sputum were also
detected. Recently, Kim et al. demonstrated that increased mRNA expression of
NLRP3 and IL-1B is linked to increased neutrophilic inflammation and decreased
lung function, as well as severe asthma, despite high-dose steroid treatment (Kim
et al. 2017). Using experimental models of Chlamydia trachomatis and
Haemophilus influenzae infection-induced severe steroid-resistant asthma, it was
shown that anti-IL-1β antibody, caspase-1 inhibitor (Ac-YVAD-cho) or NLRP3
inhibitor (MCC950) treatment in vivo suppresses IL-1β production and airway
hyperresponsiveness. Of note, IL-1β has been shown to promote TH17 differentia-
tion and IL-17 production (Chung et al. 2009), which is involved in the development
of steroid-resistant asthma (McKinley et al. 2008). These studies suggest that
regulating NLRP3 responses may be a potential therapy for severe asthma (Kim
et al. 2017).

4.2.2.2 Chronic Obstructive Pulmonary Disease (COPD)

COPD is a chronic inflammatory lung disease that encompasses conditions such as
chronic bronchitis and emphysema and is the third leading cause of death worldwide
(Barnes et al. 2003). The main cause of COPD is cigarette smoke, which triggers
potent immune responses leading to chronic inflammation and then to clinically
significant COPD in up to 20% of smokers (Lokke et al. 2006). Exposure to cigarette
smoke, which contains over 4000 toxins, including LPS, can cause damage to the
lung epithelium resulting in recruitment of macrophages and neutrophils and the
release of many inflammatory mediators involved in COPD, such as ROS, ATP,
chemokines and other growth factors (Valenca et al. 2006; Barbu et al. 2011;
Yoshida and Tuder 2007). In this regard, a growing body of evidence implicates
inflammasomes and their associated mediators (such as IL-1β, IL-33) in alveolar
destruction and small airway obstruction in COPD. Therefore, understanding the
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pathways and mediators of COPD development will lead to better therapeutic
approaches for this debilitating disease, which has no current treatment options.

As discussed above, there is significant crosstalk between the TLR and
inflammasome activation pathways, particularly in the first “priming” step required
for inflammasome activation. While the role of TLRs in COPD development appear
to be protective. This is best evidenced for TLR4, whereby TLR4�/� mice sponta-
neously develop emphysema as a result of excessive oxidant activity (Zhang et al.
2006; Ruwanpura et al. 2013). Furthermore, TLR4 polymorphisms and
downregulated TLR4 expression are observed in lung tissues from emphysematous
smokers (Pace et al. 2011; Ruwanpura et al. 2013). It has shown that the bronchial
epithelial cells express mRNA of TLRs and release CXCL8 and IL-1β in response to
cigarette smoke via TLR9 (Hoppstadter et al. 2010; Akira et al. 2001). Furthermore,
cigarette smoke-induced CXCL8 levels are inhibited by TLR4 antibody, and expo-
sure of bronchial epithelial cells to TLR4 or TLR9 ligands resulted in release of
CXCL8 and IL-1β through ROS and P2X7 activation (Hoppstadter et al. 2010).
Despite these observations, critical functions for TLRs in promoting cigarette
smoke-induced lung inflammation leading to COPD have not been investigated.

Even though a role for inflammasome activation in COPD development is not
well known, there are emerging lines of evidence that inflammasome-associated
mediators (such as ASC, caspase-1, IL-1β and IL-18) are induced in COPD.
Extracellular ATP is upregulated in the airways of COPD (Lommatzsch et al.
2010) and correlates with the decline in lung function (Cicko et al. 2010) and
increased airway infiltration of inflammatory cells. Expression of P2X7 receptor is
also elevated in inflammatory cells (macrophages and neutrophils) in blood from
COPD patients (Lommatzsch et al. 2010) and in a cigarette smoke-induced lung
inflammation mouse model (Lucattelli et al. 2011). ATP activates the NLRP3
inflammasome through the P2X7 receptor (Lucattelli et al. 2011): however, the
role of NLRP3 in the development of COPD is not fully investigated. Despite this
observation, caspase-1 is increased in lung tissues of mice following acute cigarette
smoke exposure (Churg et al. 2009) and COPD patients who are smokers compared
to non-smokers (Eltom et al. 2011). In addition, selective inhibition of caspase-1
using z-WEHD-fmk, a caspase-1 (IL-1-converting enzyme) inhibitor, significantly
reduced inflammatory cells and serum IL-1β in an acute cigarette smoke-induced
model (Churg et al. 2009). Furthermore, inflammasome-associated cytokines IL-1β
and IL-18 are increased in the lungs of COPD patients and cigarette smoke-induced
mouse models of COPD (Kang et al. 2007; Hoshino et al. 2007). Cigarette smoke
induces caspase-1 activity, as well as IL-1β and IL-18 production, both in vitro (lung
epithelial cells) and in vivo (Botelho et al. 2011; Churg et al. 2009; Kang et al. 2007;
Hoshino et al. 2007). Moreover, experimentally induced (i.e. cigarette smoke,
elastase) emphysema mouse models involving mice either lacking the receptors
for IL-1β and IL-18 or treated with an IL-1R antagonist are protected against
emphysema (Couillin et al. 2009). Despite these observations, further studies have
suggested that even though P2X7 receptor activation, IL-1R signalling and caspase-
1 are upregulated in cigarette smoke-induced mouse models of COPD, NLRP3/
caspase-1 cleavage of IL-1β is not required for disease phenotype (Eltom et al. 2011;
Pauwels et al. 2011). In contrast, a study shows that NLRP3-/- mice are protected
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against a cigarette smoke-induced COPD-like phenotype in the lung (Yang et al.
2015).

Collectively, these observations highlight the pressing need for informative
animal models of COPD, in parallel with complementary human studies to elucidate
a causal role for specific inflammasomes in promoting COPD, the identification of
which will not only shed new light on the complex molecular and cellular patho-
genesis of COPD but also pave the way forward for novel therapeutic approaches.

4.2.2.3 Fibrotic Lung Diseases

Idiopathic Pulmonary Fibrosis (IPF)

Pulmonary fibrosis is involved in a broad range of lung disorders characterised by
irreversible destruction of normal lung architecture as well as scarring. This leads to
a progressive decline in lung function and impaired gas exchange causing morbidity
and mortality. The recruitment of fibroblasts and their activation/proliferation lead to
the formation of fibrotic foci and the release of components of the extracellular
matrix. The causes of the majority of cases of pulmonary fibrosis are unknown.
Innate immune responses are known to be impaired in IPF; however, TLR9 activa-
tion is thought to contribute to progression through the differentiation of pulmonary
fibroblasts into myofibroblasts (Kirillov et al. 2015).

Increased levels of IL-1β have been observed in the BAL fluid of IPF patients
(Kitasato et al. 2004; Pan et al. 1996; Zhang et al. 1993; Lasithiotaki et al. 2016).
However, macrophages isolated from the BAL have been shown to have impaired
IL-1β production following LPS/ATP treatment ex vivo (Lasithiotaki et al. 2016). In
line with these results, transcriptome analysis identified expression of ASC, CASP1,
as well as IL-1R1 genes as being significantly downregulated in cultured lung
fibroblasts from IPF patients, in comparison with healthy controls (Plantier et al.
2016). The impact of IL-1β on fibroblasts in vitro is unclear with both pro- and anti-
fibrotic effects being reported (Borthwick 2016; Mia et al. 2014; Furuyama et al.
2008). Alveolar macrophage-derived IL-1β has been shown to play a key role in the
initiation of a fibrotic response by upregulating platelet-derived growth factor
receptor (PDGF-R) (Lindroos et al. 1997). A number of studies have demonstrated
a role for IL-1β in lung fibrosis in vivo in overexpression models or by recombinant
delivery of IL-1β (Kolb et al. 2001; Gasse et al. 2007; Lappalainen et al. 2005). The
role of IL-1β in IPF may be therefore cell type specific.

In the bleomycin-induced mouse model, lung fibrosis and inflammation were
shown to be mediated through IL-1β and IL-1R1/MyD88 signalling (Gasse et al.
2007). It was subsequently identified that this pathway involved IL-17A and IL-23,
which are necessary for TGF-β1 production, collagen deposition and evolution to
fibrosis (Wilson et al. 2010; Gasse et al. 2011). Currently, the role of NLRP3 or other
inflammasome components in IPF is not well understood; however, extracellular
ATP activation of NLRP3 may act as a danger signal during IPF. Riteau et al.
detected significantly elevated levels of ATP in BAL fluid from patients with both
stable and exacerbated IPF (Riteau et al. 2010). Furthermore, instillation of
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bleomycin was found to rapidly increase levels of ATP in the airways of mice. Local
depletion of ATP in wild-type mice with apyrase in treatment or genetic deletion of
the ATP receptor P2X7 was shown to reduce neutrophil infiltration, IL-1β produc-
tion and pulmonary fibrosis in vivo.

Inhibition of NLRP3 and/or IL-1β may therefore provide a therapeutic option for
dampening lung fibrosis. Two drugs approved by the United States FDA,
pirfenidone (Esbriet by Roche) and nintedanib (Ofev by Boehringer Ingelheim),
slow progression of IPF, having been shown to inhibit lung fibrosis in murine
models, with these effects being associated with a reduction in IL-1β levels in lung
tissue (Oku et al. 2008; Wollin et al. 2014).

Cystic Fibrosis (CF)

CF is an autosomal recessive disorder due to mutations in the CFTR gene leading to
an abnormality of chloride channels in mucus and sweat-producing cells. CF patients
experience a vicious cycle of infection, inflammation and tissue damage, which
progressively impacts on pulmonary function with respiratory failure the primary
cause of death (reviewed in Yonker et al. 2015). Pathogens such as Staphylococcus
aureus, Pseudomonas aeruginosa, Haemophilus influenzae and Aspergillus
fumigatus are commonly observed in cystic fibrosis patients. Macrophages and
epithelial cells in the lung recognise such pathogens leading to neutrophil recruit-
ment and production of pro-inflammatory cytokines. A number of inflammatory
pathways have been shown to be dysregulated in CF (reviewed in Cantin et al. 2015;
Yonker et al. 2015). For example, CF bronchial epithelial cells display aberrant PRR
signalling and constitutively elevated NF-κB activity (Venkatakrishnan et al. 2000).

Pathogens such as those associated with CF patients can activate NLRP3 and
NLRC4 inflammasomes. Mice lacking NLRC4 have been shown to be less suscep-
tible to P. aeruginosa infection (Cohen and Prince 2013), suggesting that
dysregulation of the response may be detrimental and there is increasing evidence
that this occurs in CF. Increased levels of IL-1β in the BAL fluid of CF patients
(Bonfield et al. 1995) and polymorphisms in the IL-1B gene are reported to be
associated with disease severity (Levy et al. 2009). Bronchial epithelial cells and
haematopoietic cells have been shown to be a source of IL-1β in CF. Of note, IL-1R
signalling activates pathogenic IL-17A-secreting T cells and thereby modulates the
TH17/regulatory T (Treg) cell balance (Basu et al. 2015), important for the control of
Aspergillus fumigatus colonisation and disease in CF (Iannitti et al. 2013).

In line with the results seen in patients with CF, CFTR�/�mice, which represent a
murine model of CF, have been shown to have increased caspase-1 activity and
production of IL-1β in the lung following A. fumigatus or P. aeruginosa infection
(Iannitti et al. 2016). NLRP3 expression in lung epithelial cells was found to be
higher, while NLRC4 was lower in CFTR�/� mice compared to wild-type controls,
suggesting the latter may be defective. These results lead Iannitti et al. to postulate
that NLRP3 may play a detrimental role in the absence of NLRC4. NLRC4 was
found to induce IL-1RA, which dampens NLRP3 activity and therefore may act as a
negative regulator. Lastly, treatment of CFTR�/� mice with IL-1R antagonist
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anakinra was found to increase survival following P. aeruginosa infection and
reduce bacterial burden. In an additional study, P. aeruginosa infection in CF
epithelial cells was found to induce mitochondrial dysfunction and increase mito-
chondrial Ca2+ uptake, leading to increased NLRP3 responses, which could be
ameliorated with anakinra treatment (Rimessi et al. 2015). These studies suggest a
complex role for NLRP3 and NLRC4 in the pathogenesis of CF that requires further
delineation.

Bronchopulmonary Dysplasia (BPD)

BPD is a chronic lung disease of preterm infants with long-term impact (reviewed in
Davidson and Berkelhamer 2017). BPD is more common in infants of low birth
weight and those who receive mechanical ventilation and oxygen therapy to treat
respiratory distress syndrome. There are currently limited therapeutic options avail-
able for prevention and treatment of this disease, but one such treatment involves
IL-1 receptor antagonist (IL-1RA). The development of BPD is associated with an
inflammatory response, including increased numbers of neutrophils and macro-
phages and elevated levels of IL-1β (Rindfleisch et al. 1996; Watterberg et al.
1994; Kotecha et al. 1996); however, the pathogenic pathways involved are not
well defined.

NLRP3 has been implicated in the development of hypoxia-induced lung injury.
Using a neonatal model, Liao et al. demonstrated that NLRP3 activation is associ-
ated with the development of BPD in murine and primate models (Liao et al. 2015).
Neonatal mice exposed to 85% oxygen were shown to have increased caspase-1
activation and apoptotic cells in the lung, IL-1β secretion and airway inflammation.
Decreased alveolarisation was also a feature, which was not observed in mice
lacking NLRP3. In addition, treatment of hypoxia-exposed neonatal mice with
recombinant IL-1RA reduces inflammation and improves alveolarisation, suggesting
the NLRP3/IL-1R pathway promotes the disease (Nold et al. 2013; Liao et al. 2015;
Rudloff et al. 2017). In line with these results, ventilated preterm baboons were also
found to have increased NLRP3 inflammasome activation and IL-1β/IL-1RA ratio in
tracheal aspirates. Increased levels of IL-1β have also been observed in amniotic and
BAL fluid from infants with BPD (Kotecha et al. 1996; Yoon et al. 1997). Impor-
tantly, overexpression of IL-1β in alveolar epithelial cells has been shown to result in
respiratory insufficiency and postnatal growth abnormality, associated with
increased postnatal mortality of mice (Bry et al. 2007). Overall, the NLRP3/IL-1β
pathway appears to promote inflammation in the development of BPD, and inhibi-
tion of this pathway has been shown to be of therapeutic benefit in preclinical
models.

Inhalation of Pathogenic Pollutants: Asbestosis and Silicosis

Inhalation of pathogenic pollutants such as asbestos and crystalline silica can lead to
the development of chronic lung disease (reviewed in Maeda et al. 2010). For
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example, inhalation of silica and asbestos results in the progressive pulmonary
fibrotic disorders silicosis and asbestosis, respectively. Airborne silica particles are
commonly encountered occupationally in mining, construction, manufacturing and
farming. Asbestosis does not normally manifest for more than 15 years after the
initial exposure. There are currently no effective treatments available. Once inhaled,
silica particles and asbestos fibres are engulfed by macrophages in the lung, which
leads to the induction of inflammation and the development of fibrosis after repeated
exposure.

The NLRP3 inflammasome and IL-1β have been implicated in the development
of asbestosis and silicosis. Alveolar macrophages from patients with asbestosis have
been shown to secrete elevated amounts of IL-1β compared with healthy controls
(Kline et al. 1993). Treatment of LPS-primed macrophages with silica or asbestos
induces ROS production and K+ efflux, leading to caspase-1-dependent NLRP3
activation, as well as IL-1β and IL-18 secretion in vitro (Cassel et al. 2008; Hornung
et al. 2008; Dostert et al. 2008). Silica has also been reported to activate NLRP3 in
human bronchial epithelial cells (Peeters et al. 2013, 2014), and treatment of mice
and rats induces caspase-1 activity and IL-1β production in vivo (Cassel et al. 2008;
Sarih et al. 1993; Peeters et al. 2014). In the murine model of silicosis, inflammation
and collagen deposition was observed in wild-type mice 3 months after treatment:
however, this was reduced in mice lacking NLRP3, ASC or IL-1β (Cassel et al.
2008; Sarih et al. 1993). The infiltration of eosinophils and neutrophils into the
airways, as well as IL-1β, has also been shown to be NLRP3-dependent 9 days
following asbestos treatment (Dostert et al. 2008).

4.2.2.4 Lung Cancer

Lung cancer is strongly associated with chronic lung inflammation triggered by
cigarette smoke, and 80% of all lung cancers occur in patients with a history of
smoking. Investigations into the role of inflammasomes in lung cancer are in their
relatively infancy, with a small volume of literature on the contradictory pro- and
anti-tumorigenic roles for inflammasomes largely limited to in vivo studies on other
cancers. Therefore, there is a clear and urgent need to elucidate a causal role for
inflammasomes in lung cancer development.

While the role of TLRs in lung cancer has been controversial with reports of
opposing pro- and anti-tumorigenic functions (e.g. TLR4) (Wang et al. 2017), the
role of NLR- and AIM2-containing inflammasomes in lung adenocarcinoma devel-
opment is ill-defined. The incidence of tumour development is reduced in mice
lacking NLRP3; caspase-1�/� and IL-1R1�/� mice were also resistant to tumour
development (Chaix et al. 2008). Furthermore, NLRP3 is required for NK-mediated
experimentally induced lung cancer and primary tumour growth, with NK cells
having an indirect effect as they do not express NLRP3 (Chow et al. 2012). Further
indirect evidence for the potential involvement of inflammasomes in lung adenocar-
cinoma has come from observations that the NLRP3 inflammasome can promote the
proliferation and migration of human lung adenocarcinoma cells (e.g. A549) in vitro
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following ATP and LPS stimulation (Wang et al. 2016; Kong et al. 2015). Also,
clinical data have shown that increased mRNA expression of specific inflammasome
components (i.e. AIM2) and production of the inflammasome effector cytokines
IL-1β and IL-18 are associated with disease grading, invasion and chemoresistance
of lung cancer (Kong et al. 2015). However, in light of this paucity of information,
the role of inflammasomes in lung tumorigenesis needs comprehensive and urgent
study.

4.3 Conclusion/Future Directions

Inflammasomes play an important role in mediating inflammation in the lung and are
activated in response to a range of microbial and cellular stress responses. In turn,
inflammasome responses need to be tightly regulated, and excessive activation has
been implicated in the development of a number of respiratory diseases. Here, we
have discussed the recent findings and evidence for a role for inflammasomes, as
well as the potent pro-inflammatory cytokines IL-1β and IL-18, in a number of lung
pathologies. The activation and regulation of inflammasome responses in the lung is
complex. A greater understanding of the molecular subtleties of inflammasome
responses in the context of specific lung diseases is imperative to design improved
and better-targeted treatments. There is also increasing evidence that inflammasome
responses not only occur in myeloid cells, such as alveolar macrophages, but also in
epithelial cells and the contribution of each cell type to the pathogenesis of respira-
tory diseases is not clear. In addition to secretion of IL-1β and IL-18, inflammasome
activation results in pyroptosis, an inflammatory form of cell death, and, currently,
little is known regarding about the role of pyroptosis in lung diseases. A number of
broad-acting antagonists and inhibitors that block different aspects of the
inflammasome pathway (Fig. 4.1) or downstream cytokine signalling (Fig. 4.2)
have been utilised in small animal models of respiratory disease. The development
of cell-targeted therapies that inhibit or blunt pathogenic responses could offer
improved efficacy.
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Abstract Traumatic injury as one of the world’s most relevant but neglected health
concerns results in modulated inflammasome activity, which is closely linked to the
development of post-injury complications. Cytokine-producing capacity of cells is
important for the appropriate immune response to trauma and requires not only
synthesis and transcription of inflammasome components but also their activation.
Unfortunately, the precise role of inflammasome in trauma is still largely unknown.
However, in the following chapter, we provide an overview on the best described
inflammasomes in the various settings of trauma, introducing the recent findings on
the up-to-date best described NLRP inflammasomes and underlying cytokines in the
inflammatory response to trauma.
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5.1 Introduction

Traumatic injury is one of the world’s most relevant but neglected health concerns.
Next to severe injury itself resulting in immediate or early death at the scene or
within few hours, patients may in the later phase following the insult develop
infectious complications (such as sepsis, septic shock, multiple organ dysfunction
syndrome, MODS) causing mortality (Wafaisade et al. 2011; Wutzler et al. 2013;
The global burden of disease 2013; Osuka et al. 2014). Traumatic injury in those
patients, who initially survive beyond the first and early post-injury phase, affects the
immune system homeostasis, thereby promoting an increased susceptibility to
opportunistic infections and complications. Due to tissue injury, the natural dynamic
immune response, which is both pro- and anti-inflammatory, with the aim of
reducing damage, is induced. While the pro-inflammatory response is mainly driven
by the innate immune system and termed systemic inflammatory response syndrome
(SIRS), the anti-inflammatory response is mainly orchestrated by the adaptive
immune system and is called compensatory anti-inflammatory response syndrome
(CARS) (Wutzler et al. 2013; Osuka et al. 2014).

Research on post-traumatic complications had long time assumed a biphasic model
with an initial SIRS followed by CARS. However, since then, the theory of a
simultaneous onset of both SIRS and CARS has gained widespread attention. It
interprets the ongoing processes as the organism’s effort to strike the delicate balance
between a sufficient defense against putative pathogens entering through eventual
wounds on the one hand and on the other hand reducing collateral damage by immune
cells (Adib-Conquy and Cavaillon 2009; Bhan et al. 2016; Reikeras 2010).

5.2 Post-Traumatic Immune Response

SIRS is a common reaction of the organism toward the tissue injury deriving from an
acute trauma (Wutzler et al. 2013; Giannoudis and Pape 2007). It has been charac-
terized as a massive immune reaction, which is extending from the local response to
a spreading systemic activation. Several markers such as the clinically used
C-reactive protein (CRP) and/or procalcitonin (PCT) but pro-inflammatory cyto-
kines including tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and IL-6
as well are applicable for characterizing SIRS (Wutzler et al. 2013; Meisner et al.
2006; Pape et al. 2007). Systemic levels of circulating inflammatory mediators
promote the activation of innate effector cells, e.g., monocytes, macrophages, and
granulocytes. Previous attempts to prevent post-traumatic complications in patients
who were developing SIRS by administering immunosuppressive agents have not
only failed but proved to be detrimental as well (Hotchkiss et al. 2013a, b; Leentjens
et al. 2013). Therefore, research outlook in recent years has refocused on the
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simultaneously beginning CARS (Hotchkiss et al. 2013a, b; Leentjens et al. 2013;
Dinarello 2005). CARS is understood to render the patient susceptible to nosocomial
infections due to his/her “immunosuppressive” state (Adib-Conquy and Cavaillon
2009; Hotchkiss et al. 2013a; Islam et al. 2016; Pfeifer et al. 2009). Numerous
authors assume that CARS represents a shift from a T-helper cell type (Th)1-
mediated to a Th2-mediated immune response, thus affecting the adaptive immune
system more than the innate system (Bhan et al. 2016; Reikeras 2010; Islam et al.
2016; Xiao et al. 2011). Still, the early peak in anti-inflammatory IL-10 levels and
the onset of endotoxin tolerance imply a profound impairment of innate immunity
during CARS as well (Bhan et al. 2016; Hotchkiss et al. 2013a; Wutzler et al. 2009).

Summarized, on a biochemical level a parallel increase in pro- and anti-
inflammatory mediators and antigens characterizes the post-traumatic immune
response. This process is not only activated by foreign nonself material (Janeway
Jr. and Medzhitov 2002) but includes endogenous factors or so-called alarmins
(e.g., high-mobility group box 1, HMGB1; nucleosomes; histones; adenosine
50-triphosphate, ATP; reactive oxygen species, ROS; etc.), which are released
from necrotic or physiologically “stressed” cells and can activate as well as recruit
effector cells of the immune system (Matzinger 2002). Several such endogenous
triggers of the systemic post-traumatic inflammation have been described, how-
ever, their precise role in humans is still unknown (Bianchi 2007; Manson et al.
2012; Zedler and Faist 2006). Pattern recognition receptors (PRRs), of which
notably the membrane-bound Toll-like receptors (TLRs) and cytoplasmic
NOD-like receptors (NLRs), are responsible for the detection of (a) alarmins,
damage-associated molecular pattern molecules (DAMPs) and (b) exogenous anti-
gens (pathogen-associated molecular pattern molecules, PAMPs) (Matzinger
2002).

Monocytes and macrophages are important effector cells and critical regulators in
the post-traumatic response to injury. Human monocytes isolated from trauma
patients exert a decreased capability of releasing pro-inflammatory cytokines such
as TNF-alpha or IL-1beta after a secondary ex vivo in vitro exposure to endotoxin
(lipopolysaccharide, LPS) (Keel et al. 1996; Relja et al. 2015; Spolarics et al. 2003),
a phenomenon that has been described as endotoxin tolerance (Cavaillon and Adib-
Conquy 2006; Cavaillon et al. 2003). Such paralysis of innate effector cells, e.g.,
monocytes to produce pro-inflammatory cytokines in response to LPS in vitro, has
been also found in sepsis, and has therefore fueled research on the similarities
between these two etiologies (Galbraith et al. 2016). Although the exact mechanisms
of endotoxin tolerance remain unclarified, downregulation of expression of a multi-
tude of pro-inflammatory genes and/or TLRs has been observed, comprising several
interleukins as well as genes involved in their release, such as those of inflamma-
some components (Bhan et al. 2016; Xiao et al. 2011; Cavaillon and Adib-Conquy
2006; Dobrovolskaia and Vogel 2002; Lendemans et al. 2007; Mendes et al. 2011).
Inflammasomes are the multiprotein complexes, which mediate the cleavage of
IL-1beta’s and IL-18’s precursors in their respective bioactive forms and are capable
of inducing a specific form of cell death called pyroptosis. Interestingly reduced
inflammasome activation in monocytes early after trauma has been described
(Relja et al. 2015). Meanwhile the immune system after trauma is so-called primed
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due to, e.g., alarmin presentation. This aims to protect the organism from
tissue injury and spreading infection, but, paradoxically, an excessive inflammatory
cascade can develop upon a secondary trigger, e.g., PAMPs (“two-hit” response),
and harm the organism and damage tissues by exaggerating the pro-inflammatory
response. Furthermore, injury-induced inflammasome activation has been described
in several immune cell subsets but primarily macrophages (Osuka et al. 2012). In
their work, the authors propose that inflammasome activation plays a protective role
in the host response to severe injury; nonetheless the data are conflictive (Osuka et al.
2012).

5.3 Inflammasome Biology in Trauma

Because of its activation via PRRs for pathogens or danger signals, the
inflammasome is assumed to represent a common innate immune system recognition
pathway as well (Zedler and Faist 2006; Martinon et al. 2009), which is closely
linked to trauma- or tissue damage-induced inflammatory response. In contrast to
most cytokines, IL-1beta and IL-18 are synthesized in their biologically inactive
precursor forms, pro-IL, which accumulate in the cytosol and become cleaved and
thereby activated within the inflammasome complex (Martinon et al. 2009; Agostini
et al. 2004; Arend et al. 2008; Cerretti et al. 1992; Kwak et al. 2016). The
inflammasome is a multiprotein complex, which via limited proteolysis mediates
conversion of, e.g., inactive pro-caspase-1 to active caspase-1. Activated caspase-1
cleaves pro-IL and, furthermore, induces pyroptosis (Martinon et al. 2002, 2009).
For nearly all inflammasomes, caspase-1 or caspase-5 are obligatory, while
apoptosis-associated speck-like protein containing a caspase activation and recruit-
ment domain (CARD) (ASC) is optional (Martinon et al. 2002; Latz et al. 2013).
Most described inflammasomes contain a nucleotide oligomerization domain
(NOD)-like receptor (NLR) sensor molecule, such as NOD-containing, leucine-
rich repeats (LRR)-containing, and pyrin domain-containing (NLRP), e.g., NLRP1
or NLRP3 (Relja et al. 2015; Martinon et al. 2002; Latz et al. 2013; Proell et al.
2013).

The inflammasome activation, and thereby, e.g., IL-1β release, is dependent on
intracellularly available components, which are required for its assembly (Latz et al.
2013). Thus, the NLR can be seen as the trigger molecules to set off the
inflammasome and the subsequent interleukin secretion, cell lysis, and ultimately
inflammation (Martinon et al. 2009). After receiving an activation signal, e.g.,
ATP-induced activation of P2X7 channels and the efflux of potassium ions, bacterial
peptidoglycans, crystalline material, peptide aggregates, bacterial toxins or reactive
oxygen species, etc., NLR sensor molecule and ASC aggregate and proteolytically
activate pro-caspase-1 to caspase-1 (Martinon et al. 2002; Bauernfeind et al. 2011;
Bauernfeind and Hornung 2013). Activated caspase-1 proteolytically cleaves the
IL-1beta or IL-18 cytokine precursors to their active forms, thereby initiating the
pro-inflammatory response. The NLRs that most commonly constitute inflamma-
somes are NLRP1, NLRP3, and NLRC4, but AIM2-inflammasomes have been
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described as well (de Vasconcelos et al. 2016; Schroder and Tschopp 2010). As for
the activation, no direct link of the NLRs via binding of either PAMPs or DAMPs
could be found; the hypothesis of an indirect activation emerged (Martinon et al.
2009; Muruve et al. 2008). It is commonly assumed that the secretion of IL-1beta
must be “prepared” by a priming stimulus that is usually mediated by TLR, which in
turn activates the NF-kappaB-pathway upregulating on one hand, the Pro-IL-1beta
transcription, as well as, on the other hand, the transcription of inflammasome
components (Dinarello 2009; van de Veerdonk et al. 2011). TLR4, for example,
can be activated by an array of different PAMPs, such as LPS, as well as DAMPs,
such as HMGB1 or HEME (Wegiel et al. 2015). To activate the inflammasome
during a second step, the prevailing theory for a long time was that a potassium
influx after activation of P2X7 would set off the NLR (Dinarello 2009). P2X7 is
commonly activated by binding of ATP (Martinon et al. 2009; Schroder and
Tschopp 2010; Dinarello 2011; Rathinam and Fitzgerald 2016; Vladimer et al.
2013). Concerning this, tissue damage after trauma, but also blood transfusion itself,
can activate P2X7 and lead to the inflammasome activation with subsequent
IL-1beta and IL-18 secretion. Also evidence for activation via reactive oxygen
species has been discussed. Recently, the double-stranded RNA-dependent protein
kinase (PKR) has been identified as a further player of the inflammasome pathway
and has been attributed the capability to activating the inflammasome in its
autophosphorylated state (Vladimer et al. 2013; Lu et al. 2012; Yang et al. 2017).

The data supporting this two-step model of activation are conflictive, since
numerous studies have illustrated that an activation of macrophages and monocytes
can lead to a release of inflammasome-dependent cytokines without a pre-activation
(Relja et al. 2015; Chen and Sun 2013; He et al. 2013; Netea et al. 2009). On the
other hand, it might be hypothesized that at the patient’s admission to the emergency
department, a pre-activation in trauma patients might have already taken place, since
bacterial endotoxin has already crossed the gut-blood barrier in case of massive
blood loss, open wounds, or DAMPs have been released upon tissue damage itself.

Apart from the cleavage of cytokines IL-1beta and IL-18, the inflammasome is
capable of inducing cell lysis. In 2001 adding to apoptosis and necrosis, the new
concept of pyroptosis has been established (Vande Walle and Lamkanfi 2016). It
refers to an orchestrated lysis of the cell, which is initiated by inflammasome
activation and consecutive formation of caspase-1-dependent pores of 1–2 nm
width (Vande Walle and Lamkanfi 2016). Formation of these pores leads to swelling
and lysis of the cell but also to release of intracellular compounds, such as the
cleaved interleukins IL-1beta and IL-18 as well as intracellular molecules, which
outside of the cell membrane potentially act as DAMPs, e.g., HMGB1 or ATP. Thus,
pyroptosis represents a mode of cell death enhancing and spreading with every lysed
cell the immune response. It mainly affects the myeloid lineage with monocytes,
macrophages, and granulocytes but also occurs in epithelial, endothelial cells and
neurons.
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5.3.1 Cytokines in Trauma

Cytokines are effectors or rather messenger molecules of the immune system, which
is activated upon trauma (van Griensven 2014). They are closely associated with the
intensity of the post-traumatic inflammatory response. SIRS and CARS are charac-
terized by the liberation of cytokines, which are recognized as part of the physiologic
response to trauma. Tissue injury after trauma results in depressed cell-mediated
immunity, such as dysfunctions of circulating monocytes or T cells, leading to an
increased risk of infectious complications and unfavorable outcome (Spolarics et al.
2003; Bronkhorst et al. 2015; Kirchhoff et al. 2009; Marik and Flemmer 2012). The
suppression of the local inflammation due to trauma-induced SIRS is meant to favor
the repair and remodel the damaged tissue. However, recent research suggest that
this local immune response counteracts not only with resident cells such as macro-
phages and dendritic cells but also with circulating cells, such as monocytes, thereby
amplifying the post-traumatic immunosuppression (PTI) (Islam et al. 2016). Here,
soluble mediators such as cytokines and chemokines (IL-1beta, IL-6, IL-8, IL-10,
IL-15, monocyte chemoattractant protein-1 (MCP-1), granulocyte colony-
stimulating factor (GCSF), IL-1 receptor antagonist (IL1-RA), eotaxin, IL-4, IL-7,
IL-13, and many others) play decisive roles because they recruit and activate
neutrophils, monocytes, etc. (Islam et al. 2016; Hazeldine et al. 2016). However, it
is important to mention that there are also studies representing controversial findings,
i.e., that the trauma patients, who developed sepsis, have enhanced IL-8 levels in
endotoxin-stimulated whole blood in comparison to healthy donors (Flach et al.
1999). Summarized, the increase of inflammatory mediators may be useful as an
early prognostic or diagnostic marker for post-injury complications.

5.3.1.1 IL-1beta

After severe trauma a shift in the levels of circulating cytokines can be observed.
Within the wide array of cytokines affected by this shift, the two inflammasome-
dependent ones, IL-1beta and IL-18, can be found (Wutzler et al. 2013; van
Griensven 2014). IL-1beta has been described as one of the archetypical
pro-inflammatory cytokines. It possesses the capability to activate an array of
genes that can be related to and remain silent during the absence of inflammation
(Dinarello 2005). It induces, e.g., transcription of inducible nitric oxide synthase
(iNOS), cyclooxygenase-2 (COX2), as well as further pro-inflammatory cytokines,
such as TNF-alpha or IL-6 (Dinarello 2005, 2009, 2011, 2013). After its expression,
the inactive 31 kDa propeptide IL-1beta largely induced via NF-kappaB pathway
has to be cleaved into its bioactive 15 kDa form by caspase-1 (Dinarello 2005). Less
than 20% of IL-1beta’s zymogen get cleaved into the bioactive form, thus making
cleavage by caspase-1 the bottleneck of IL-1beta secretion (Dinarello 2009).
IL-1beta is mainly produced by monocytes, lymphoid cells, dendritic cells, and
natural killer cells. The functional depression of monocytes which is observed in
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patients after trauma is characterized by a diminished production and release of
IL-1beta after exposure to DAMP or PAMP molecules such as LPS (Relja et al.
2015; Kirchhoff et al. 2009). Keeping in mind the PTI, monocytes may play here an
important role. During the trauma response, lack of IL-1beta as one of the key
players in the post-injury inflammatory reaction may potentiate the immunosuppres-
sion and increase the risks for susceptibility to infections and late mortality in critical
illness.

Due to the short in vivo half-life of IL-1beta with approximately 10 minutes, there
are only few studies elaborating serum levels of IL-1beta after trauma. Neither an
increase nor any correlation between post-traumatic IL-1beta levels in serum was
found (Frink et al. 2009; Sperry et al. 2008). Serum levels of IL-1beta differed
significantly between injured patients and controls, although they were not applica-
ble for determining the severity of injury in trauma patients (Alper et al. 2016).
IL-1beta increased in bronchoalveolar lavage fluid (BAL) obtained from trauma
patients with ARDS and is assumed to play a major role in its etiology (Bhatia and
Moochhala 2004). Also studies on promotor polymorphisms provided data on
increased risk for post-traumatic sepsis and multiple organ failure in homozygous
carriers of overexpressing IL-1beta promotor genotypes as compared to those with
underexpressing promotor genotypes (Wen et al. 2010). In order to mirror the post-
traumatic IL-1beta biology, ex vivo in vitro stimulation assays of whole blood or
isolated monocytes with endotoxins are applied. The subsequent assessment of
LPS-stimulated IL-1beta release can be used as indicator of the monocyte activity
(Munoz et al. 1991). Here, the secretion of IL-1beta from isolated monocytes of
traumatized patients has been found to be consistently reduced reaching its nadir at
24 h post-trauma and negatively correlating with the probability of post-traumatic
complications in humans (Relja et al. 2015; Kirchhoff et al. 2009; Ertel et al. 1995).
Regarding the marked pro-inflammatory characteristics of IL-1beta, these findings
support the onset of PTI after trauma. In summary, even mild trauma implicated a
monocyte suppression, which recovered within 2 days (Wutzler et al. 2009). A more
severe injury prolonged this recovery until day 5 after trauma and may contribute to
PTI and concomitant complications. However, in another study, inflammasome
recovery was not even found during the 10 observatory post-injury days in severely
injured trauma patients (Relja et al. 2015). Recently the ability of TLR activation to
induce less IL-1beta production in severely injured trauma intensive care unit
patients compared with control subjects has been shown reduced, although this
difference was not significant there was an obvious trend (Holloway et al. 2016).

Lederer’s group has reported that injury activates the inflammasome pathway in
injury site draining nodes within 2 h. Interestingly, they have shown that blocking
the inflammasome worsened prognosis following injury. While the cytokine profiles
of injured mice with blocked inflammasome activation showed decreased interleukin
IL-1beta levels, IL-6 was markedly increased (Osuka et al. 2012). With regard to
their findings, it is interesting to note that patients who are not able to develop a
febrile response after injury, which is IL-1beta dependent, exert worse outcome as
compared to those patients who do develop a febrile response after trauma
(Mizushima et al. 2009). These findings indicate that an adequate post-injury
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IL-1beta response appears beneficial after trauma. A possible mechanistical and
therapeutical approach has been provided by our group, showing that the IL-1beta
release can be reconstituted in isolated monocytes from trauma patients by recover-
ing the infammasome functionality ex vivo in vitro (Relja et al. 2015).

In an experimental mouse model of spinal cord and brain injury, glial IL-1beta
expression was increased (Impellizzeri et al. 2017). Therapeutical reduction of the
IL-1beta among other pro-inflammatory mediators such as COX2, iNOS, and
TNF-alpha has been associated with significantly decreased glial fibrillary acidic
protein hyper-expression, the nuclear translocation and activation of NF-κB,
suggesting a novel therapy to control neuroinflammatory conditions associated
with spinal cord injury and traumatic brain injury (Impellizzeri et al. 2017). Also
in other studies, the processing and release of IL-1beta has been demonstrated
following traumatic brain injury and was linked to the NLR inflammasome activa-
tion. Yet, similar to other experimental trauma models, there are inconsistencies with
regard to the significance of either IL-1beta expression or depletion, because
although IL-1beta expression was significantly attenuated in the cortex of Nlrp1(�/�)

and Asc(�/�) mice following moderate controlled cortical impact injury, no difference
in motor recovery, cell death, or contusion volume has been observed compared to
wild type animals (Brickler et al. 2016). In a rat model of intracerebral hemorrhage
preventing inflammasome-dependent IL-1beta/IL-18 release using the selective
P2X7R antagonist brilliant blue G (BBG) reduced brain edema and neurological
deficits (Feng et al. 2015).

Summarized, these findings indicate that the role of IL-1beta released by
inflammasome activation is still not fully understood. Interestingly, in the setting
of ischemic brain injury, an elevation of IL-1beta levels was paralleled by an
elevation of gelatinolytic, but not caspase-1 activity in the injured hemisphere.
Moreover, pharmacological inhibition of gelatinases, i.e., matrix metalloproteases
(MMP)-2 and MMP-9, prevented cytokine maturation (Amantea et al. 2016). It is
important to keep in mind that these findings indicate at other mechanisms than
caspase-1, likely involving gelatinases, for the maturation of IL-1beta in that model.

5.3.1.2 IL-18

IL-18 is another inflammasome-regulated pro-inflammatory cytokine, which affects
a more specific set of immune cells including NK, B cells, cytotoxic T cells and Th1
cells, by synergistically inducing together with IL-12 the production of interferon
(IF)-gamma, which in turn can induce the Th1-carried immune response. In the
absence of IL-12, IL-18 induces a Th2-mediated immune response. Thus, it repre-
sents an agent of polarizing the spectrum of the adaptive immune system (Dinarello
2013; Lebel-Binay et al. 2000; Wawrocki et al. 2016). Mainly produced by antigen-
presenting cells, e.g., macrophages and other cells, IL-18 is expressed as a 24 kDa
zymogen, which is processed into its 18 kDa biologically active form. It is assumed
that IL-18 gene is expressed constitutively; however, there are conflicting data
regarding its induction via TLR-dependent pathways (Horstmann et al. 2016).
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Some authors propose HMGB1 to stimulate pro-IL-18 synthesis via NF-κB and p38
MAPK in THP-1 macrophages, while LPS stimulation does not induce the expres-
sion of pro-IL-18 mRNA and protein in human primary peripheral blood mono-
nuclear cells (He et al. 2012; Puren et al. 1999). IL-18 has been associated with a
number of autoinflammatory diseases, including systemic lupus erythematodes,
Crohn’s disease, psoriasis, and graft-versus-host disease (Dinarello 2009; Lebel-
Binay et al. 2000; Boraschi and Dinarello 2006). In a mouse model of sepsis, animals
with deletion or blockade of IL-18 had increased survival rates (Dinarello and
Fantuzzi 2003). Therefore, with regard to trauma, IL-18 as an important mediator
in infectious diseases may be involved in the post-injury inflammatory reaction,
causing susceptibility to infections or even mortality in critically ill patients.

The role of IL-18 in the aftermath of trauma has so far found little attention,
although the implications of this cytokine for a putative shift in the Th spectrum
might be highly relevant for the development of post-injury complications. IL-18 has
been elevated in trauma patients, when compared to healthy controls, and was even
found to allow prediction to the development of MODS, but not clinical outcome
(Heizmann et al. 2008; Mommsen et al. 2009; Roetman et al. 2008). On the other
hand, IL-18 was significantly increased in survivors compared with non-survivors in
multiply injured trauma patients as discussed before. The secretion of IL-18 after
trauma has been shown to be regulated by caspases in healthy subjects, while under
the development of sepsis, secretion of IL-18 might circumvent the necessity for
caspase activation by cleavage via proteinase-3 (Oberholzer et al. 2000).

Interestingly, mechanical ventilation enhanced IL-18 levels in the lung, serum,
and BAL in mice. Similar to abovementioned study, IL-18 neutralization reduced
lung injury in response to mechanical ventilation. In samples from clinical centers,
IL-18 was found elevated in the plasma of patients with acute respiratory distress
syndrome (ARDS) (either sepsis- or trauma-induced ARDS) and was proposed as a
novel biomarker of intensive care unit morbidity and mortality (Dolinay et al. 2012).

Among service members who sustained combat-related injuries, IL-18 was
determined as potential urinary biomarker (Janak et al. 2017). Here, no differences
were found among patients with burns compared to military patients with non-burn
trauma (Janak et al. 2017). Gut barrier disruption is frequently implicated in path-
ogenesis associated with burn and other traumatic injuries. The authors found
markedly increased IL-18 (by ~2.5-fold) in the small intestine epithelial cells one
day after burn injury in mice (Cannon et al. 2016). In the same study, therapeutical
normalization of IL-18 levels has been associated with improved permeability and
intestinal transition. In burn-injured mice, IL-1beta and IL-18 were induced by ATP
or ATP + LPS stimulation by spleen cells (Osuka et al. 2012). In parallel a significant
caspase-1 activation was measured in macrophages and dendritic cells by 4 h after
burn injury and peaked by the first post-injury day. Moreover, a significant caspase-1
activation was found in NK cells, CD4 T cells, and B cells; however, CD8 T cells did
not demonstrate caspase-1 activation post-injury. In this in vivo study the authors
have provided evidence that blocking caspase-1 activation caused significantly
higher mortality in burn-injured mice (Osuka et al. 2012). Interestingly, severe injury
caused by burn injury induces an early, but not late or sustained inflammasome
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activation in a variety of immune cell subsets (Osuka et al. 2012). Thus, the
inflammasome may not play a significant role in the “two-hit response” to injury,
but this remains to be evaluated in further studies. Nonetheless, these data suggest
that possible treatment strategies targeting inflammasome activation pathways could
be protective for injured patients.

Taken together, these findings document that injury induces inflammasome
activation in many immune cell subsets, but primarily in macrophages, and that
inflammasome activation plays a protective role in the host response to severe injury.
Moreover, in most of these studies, the kinetics of injury-induced inflammasome
activation correlated with detectable increases in circulating IL-1β (Osuka et al.
2012). These findings suggest that the inflammasome pathway and its downstream
cytokines play critical roles in the recovery from trauma and may constitute a
promising therapeutic target in trauma patients.

5.3.2 The NLRP1 Inflammasome

The NLRP1-inflammasome was the first inflammasome to be discovered in 2002
(Martinon et al. 2002). Since then researchers interest has waned in favor of NLRP3,
which has been found to be involved in a wide array of inherited pathologies. The
peptide chain of NLRP1 is a sequence of PYD-NACHT-LRR-FIIND-CARD.
Herein the C-terminal CARD as the death fold region provides the possibility to
directly bind and activate caspase-1, while the N-terminal pyrin-rich domain (PYD)
allows the optional recruitment of ASC. The central NACHT domain mediates
oligomerization after activation due to ligand binding to the LRR region (Martinon
et al. 2002, 2009; Schroder and Tschopp 2010; Dagenais et al. 2012). The NLRP1
inflammasome consists of NLRP1 itself and usually caspase-1. Binding of the NLRs
PYD region to ASCs PYD region can recruit the adaptor molecule and hence boost
enzymatic activity. This however is not necessary for the complexes functioning
(Martinon et al. 2002, 2009; Schroder and Tschopp 2010; Dagenais et al. 2012). The
modes of activation of the NLRP1 inflammasome have been unclear for a long time.
An activation via K+-influx has been hypothesized, which is mediated by the
purinergic receptor P2X7 that is usually activated by extracellular ATP, thus a
classical DAMP (Martinon et al. 2002, 2009; Schroder and Tschopp 2010; Dagenais
et al. 2012).

Research addressing inflammasomes has made great progress as they play a key
role as gatekeeper of IL-1beta secretion and therefore in endotoxin tolerance as well.
Alterations in NLRP1 gene expression, which were observed and associated with
monocyte deactivation during septic shock, led to the assumption that NLRP1 may
play a key role in the post-traumatic inflammatory response as well (Fahy et al.
2008). Thus, it has been shown that NLRP1 expression was upregulated after
trauma, but interestingly same monocytes isolated from patients failed to increase
NLRP1 expression when confronted with a secondary ex vivo in vitro LPS stimulus
(Relja et al. 2015). In parallel the IL-1beta release upon ex vivo in vitro LPS
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stimulation was reduced as compared to the IL-1beta releasing capacity in both
whole blood and isolated monocytes from healthy volunteers (Relja et al. 2015). In
more severely injured trauma patients, an “inflammasome recovery,” which was
evaluated by IL-1beta release, was not observed until day 5 and may explain the
susceptibility of the included patients to post-traumatic inflammatory complications,
such as sepsis or organ failure. However, the authors did not provide more specific
data on the inflammasome itself. In above discussed study, “inflammasome recov-
ery” was not even achieved within the ten observational days after trauma
(Relja et al. 2015). In monocytes from healthy individuals, LPS-induced IL-1beta
release was associated with enhanced expression of caspase-1 and IL-1beta pre-
cursors as well as slightly enhanced NLRP1 and rather continuous expression of
PYCARD (Relja et al. 2015). A functional inflammasome activation and thereby
IL-1beta release is actually dependent on intracellularly available components,
which are required for the inflammasome assembly (Latz et al. 2013). In contrast
to the NLRP1 inflammasome complex, which is preassembled in unstimulated
neurons or in normal central nervous system, in unstimulated peripheral macro-
phages, NLRP1 components are not preassembled (de Rivero Vaccari et al. 2014)
but rapidly form protein-protein associations upon stimulation by, e.g., muramyl
dipeptide (Hsu et al. 2008). Therefore, it is reasonable that in monocytes from
healthy volunteers, all components which are required and not constitutively avail-
able become expressed upon a PRR stimulus. This mechanism has been confirmed
by increased caspase-1 cleavage in parallel to increased gene expression of NLRP1
components as well as increased IL-1beta release (Relja et al. 2015). With regard to
trauma patients, reduced IL-1beta secretory capacity of monocytes was primarily
associated with the lack of NLRP1 gene expression, while there was no reduced
IL-1beta transcription (Relja et al. 2015). In the same study monocytes from trauma
patients were isolated and transfected with NLRP1 leading to a restoration of
IL-1beta secretion. The abrogated assembly of NLRP1 inflammasome due to
missing certain NLRP1 inflammasome components may be the reason for the
monocytic deactivation after trauma.

Interestingly, there are significant changes in relative copy numbers for the
inflammasome mRNA for caspase-1 regulatory proteins including PYCARD,
NLRP1, and caspase-1 in monocytes from critically ill patients (Fahy et al. 2008).
Moreover, NLRP1 was higher in patients with septic shock who survived to days
7 and 30 and to hospital discharge as compared with non-survivors (Fahy et al.
2008). The authors propose that sepsis-induced suppression of NLRP1 gene may
induce a transient immunosuppression of monocytes, which is actually comparable
to the concept of PTI.

With regard to other trauma injury patterns, traumatic brain injury (TBI) activates
the NLRP1 inflammasome as an important component of the early innate inflam-
matory response to injury. It is important to keep in mind that the NLPR1
inflammasome is preassembled in CNS, and it has been suggested that preassembly
of inflammasome complexes in CNS cells facilitates a rapid triggering of the innate
immune response after CNS trauma. In the CNS, caspase-11 is involved in the
processing of IL-1beta and forms protein-protein interactions with other

5 Traumatic Injury 95



inflammasome proteins as well, but its role remains to be investigated. However,
recent findings indicate that caspase-11 has a role in noncanonical inflammasome
activation after bacterial infections (Vigano and Mortellaro 2013). In the experimen-
tal model of TBI, caspase-1, caspase-11, and expression of the purinergic receptor
P2X7 have been increased at 24 h after TBI (Tomura et al. 2012). IL-1beta
processing has been associated with the activation of caspase-1 and increased levels
of ASC and caspase-11, however, not with increased NLRP1 (de Rivero Vaccari
et al. 2009). Nonetheless, the assembly of the NLRP1 inflammasome complex was
promoted by TBI (de Rivero Vaccari et al. 2009). Decreasing the expression of these
proteins or neutralizing ASC decreased inflammasome signaling in neurons and
reduced the innate immune response to TBI after injury (Tomura et al. 2012; de
Rivero Vaccari et al. 2009). Opposite to the data obtained from severely injured
trauma patients, in TBI patients the data propose that the NLRP1 inflammasome
constitutes an important component of the innate CNS inflammatory response after
TBI and, therefore, may be a novel therapeutic target for reducing the damaging
effects of post-TBI-induced inflammation. Components of the NLRP1
inflammasome in CSF have been found to correlate with clinical outcome after
TBI and thus were proposed as clinical predictors (Adamczak et al. 2012).

Similar findings were reported for spinal cord injury as well (de Rivero Vaccari
et al. 2012; Lin et al. 2016). Recently, conflictive data have shown that although
IL-1beta expression was significantly attenuated in the cortex of Nlrp1(�/�) and
Asc(�/�) mice following TBI, no difference in motor recovery, cell death, or
contusion volume has been observed compared to wild type (Brickler et al.
2016). The models did partly differ in their severity or methodology, and maybe
this caused conflictive suggestions that NLRP1 inflammasome activation does not
significantly contribute to acute neural injury in the murine model of TBI. How-
ever, the importance of NLRP1 in TBI remains to be elucidated in further studies.

It was shown that stress as conveyed by catecholamines can increase IL-1beta
response in monocytes to LPS stimulation (Horstmann et al. 2016; Grisanti et al.
2011). Results regarding changes in the inflammasome pathway give a somewhat
intriguing pattern of inflammasome gene expression. Both LPS and adrenergic
stimulation led to increases in NLRP1 gene expression, with adrenergic stimulation
alone leading to markedly higher NLRP1 gene expression than LPS stimulation
alone (Horstmann et al. 2016). Costimulation resulted in NLRP1 expression levels,
which were not significantly different from controls (Horstmann et al. 2016). This
reflects the observations of NLRP1 expression after trauma with an increase after
stressor exposure but failure to further upregulate, when confronted with the PAMP
(Relja et al. 2015).

Apart from its role in polytrauma and subsequent development of MOF, the
NLRP1 inflammasome was found to cause lung injury mimicking ARDS upon
activation in the mouse model. Since the observed effects were independent of
IL-1beta and absent in Casp�/� mice, it has been assumed that lung tissue damage
was predominantly mediated by pyroptosis of resident lung macrophages, thus
spilling DAMPs such as HMGB1, and not by a cascade of interleukins. Interestingly
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NLRP1�/� mice were protected from these detrimental effects, highlighting the
pivotal role of NLRP1 in lung injury (Kovarova et al. 2012).

5.3.3 The NLRP3 Inflammasome

The NLRP3 monomer consists of a PYD-NACHT-LRR chain. The oligomer com-
plex due to the lack of a CARD region in NLRP3 requires binding of the ASC
adaptor molecule in order to activate caspase-1. Binding of both NLRP3s and ASCs
PYD regions as well as CARD regions of ASC and caspase-1 then allows for the
assembly of the inflammasome (Martinon et al. 2009; Schroder and Tschopp 2010;
Dagenais et al. 2012). The activation of NLRP3 has been a subject of a variety of
hypotheses in the past. The structural differences of agents triggering NLRP3 led
scientists to favor an indirect way of activation against a direct activation. For a long
time, the most popular theory was activation by potassium efflux after activation of
the purinergic receptor P2X7 (Martinon et al. 2009; Schroder and Tschopp 2010;
Dagenais et al. 2012). By now, studies came up with different explanations as how
NLRP3 might be activated. One is the concept of activation by phosphorylation via
PKR (Lu et al. 2012; Yang et al. 2017). Interestingly, excessive ROS may be
crucially involved in the process of regulating the assembly and activation of
NLRP3 inflammasomes (Minutoli et al. 2016). The NLRP3 inflammasome can be
activated by multiple distinct exogenous and endogenous triggers, including uric
acid (Martinon et al. 2006), silica and asbestos (Dostert et al. 2008), bacteria
(Muruve et al. 2008), and toxins (Gurcel et al. 2006), which are known for inducing
the production of short-lived ROS and ROS scavengers. Moreover, ROS can directly
induce NLRP3 activation by promoting the association of thioredoxin-interacting
protein (TXNIP) with NLRP3 (Zhou et al. 2010).

Furthermore, histones have been reported to activate the NLRP3 inflammasome
and are abundantly present in serum after trauma (Allam et al. 2013, 2014).
Activation of the NLRP3 inflammasome with following IL-1beta response due to
hyaluronic acid binding to macrophage CD44 receptor marks the inflammasome’s
role in injury of connective tissue, e.g., musculoskeletal trauma (Yamasaki et al.
2009). Glucocorticoids as neuroendocrine stress signals have been shown in THP
macrophages to induce the transcription of NLRP3, supporting the hypothesis of
glucocorticoids not only keeping homeostasis in reducing general inflammation but
also preparing macrophages for a rapid unfolding of the inflammatory cascade upon
DAMP presentation (Busillo et al. 2011). Stress as conveyed by increased serum
levels of glucocorticoids has been found to lead to a release of HMGB1 from
hippocampal microglia in the rodent model, thus indirectly priming the NLRP3
inflammasome via TLR4 and augmenting the immune response to a physical trauma
by its psychological stressor component (Frank et al. 2015). In rodent in vivo
experiments of tailshock-induced stress, inhibition of caspase-1 using the caspase-
1 inhibitor ac-YVAD-cmk attenuated stress-induced production of IL-1β, IL-18, and
IL-6 in both the circulation and peripheral tissues, highlighting the pivotal role for
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the inflammasome in this process (Maslanik et al. 2013). Genetic variations in
NLRP3 gene influence the IL-1beta response of monocytes when stimulated
ex vivo with LPS and predict the development of sepsis and MODS in trauma
patients (Zhang et al. 2011).

Ischemia is frequently observed in trauma patients suffering from massive blood
loss. Experiments using siRNA have demonstrated that the NLRP3 inflammasome
mediates pro-inflammatory cytokine release and hepatocellular damage in hepatic
ischemia and reperfusion (I/R) (Zhu et al. 2011). Furthermore, ASC/caspase-1/IL-1β
complex modulates HGMB1 release and TLR4-dependent hepatic I/R injury (Kamo
et al. 2013). There are several studies dealing with the process of inflammasome
activation in liver after I/R; however, the cellular processes behind engaging
inflammasome-mediated inflammatory responses and injury after I/R are not yet
understood. It has been demonstrated that serum IL-1β and protein conversion of the
active form increased after reperfusion, peaking at 6 h and then declining again.
Protein expression of cleaved caspase-1, ASC, and NLRP3 increased in response to
I/R injury (Kim et al. 2015). The authors have shown that activation of the NLRP3
inflammasome plays a role in hepatocellular damage induced by I/R (Kim et al.
2015).

Regarding other tissues such as, e.g., the lung after trauma, the lung’s endothelial
cells represent a major source of IL-1beta after trauma and constitute the source of
pyroptosis leading to acute lung injury (ALI) (Xiang et al. 2011; Yang et al. 2016).
Release of IL-1beta, pyroptosis, and subsequent lung injury are mediated by
NLRP3, which can be activated by LPS or by the release of DAMPs, such as
HMGB1 or ROS, due to tissue stress during hemorrhagic shock or ischemia as
described above (Xiang et al. 2011). Another study highlighted the importance of
histones for the development of ALI as well (Grailer et al. 2014). In a mouse model
of ALI, histones appeared in BAL and activated the NLRP3 inflammasome. Elim-
ination of histones also reduced IL-1beta levels in BAL. Furthermore, histone
appearance in BAL seemed to depend on NLRP3 and caspase-1 availability,
suggesting a role of the inflammasome for histone release in ALI and therefore a
positive feedback loop (Grailer et al. 2014).

Severely injured trauma patients are frequently on mechanical ventilation. Lung
damage due the continuous injury caused by mechanical ventilation is assumed to be
mediated by an increase in serum levels of DAMPs, such as ATP and ROS, thus
activating the NLRP3 inflammasome (Hosseinian et al. 2015; Jones et al. 2014;
Kuipers et al. 2012). Interestingly, in one study, NLRP3 activity and IL-beta levels
in BAL after LPS administration and mechanical ventilation seemed to influence
blood oxygen levels in a mouse model but were independent of alveolar leakage and
neutrophil extravasation (Jones et al. 2014). On the other hand, in mice, mechanical
ventilation enhanced IL-18 levels in the lung, serum, and BAL, and IL-18-neutral-
ization by antibody treatment, or genetic deletion of IL-18 or caspase-1, reduced
markedly lung injury (Dolinay et al. 2012). Similarly, in human patients with ARDS
from four clinical centers, inflammasome-related mRNA transcripts (CASP1, IL1B,
and IL18) as well as plasma IL-18 were elevated in peripheral blood (Dolinay et al.
2012). The authors suggest the inflammasome pathway, and its downstream
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cytokines, playing critical roles in ARDS development, and, moreover, IL-18 as a
novel biomarker of intensive care unit morbidity and mortality.

Also, iatrogenic activation of the NLRP3 inflammasome due to blood transfusion
has been hypothesized (Hosseinian et al. 2015). After the initial traumatic injury to
the lungs putatively acting as a first trigger, the efflux of alarmins, such as ATP from
transfusion products, sets off the inflammasome and mediates interleukin release.
The increased levels of interleukin in the pulmonary milieu then lead to inflamma-
tion and cause so-called transfusion-associated lung injury (TRALI) (Land 2013).

The inflammasome-mediated inflammation of pulmonary tissue also marks the
result of burn injury. NLRP3 induction and activation has been found in rats’ lungs
after burn injury, as well as in vitro in alveolar macrophages after they had been
stimulated with serum of rats after burn injury. This in vitro NLRP3 activity could be
reversed by eliminating ROS from the cell medium (Han et al. 2015). Studies of
inflammasome activation upon burn injury have shown an increase in NLRP3
activity in lesioned tissue (Long et al. 2016; Xiao et al. 2016). Rodent in vitro and
in vivo studies attained inhibition of the NRLP3 inflammasome with compounds as
3,4-methylenedioxy-β-nitrostyrene (MNS) or the antimalarial drug artemisinin and
have shown beneficial effects, such as improved wound healing after burn injury and
reduced mortality after burn and sepsis. Insulin resistance because of burns has been
hypothesized to be mediated by NLRP3 inflammasome activation and increase in
IL-1beta secretion as in diabetes mellitus type 2 (Long et al. 2016; Xiao et al. 2016;
Stanojcic et al. 2014).

In a rat model of localized trauma, activation of caspase-1 has been found similar
in both skin and muscle tissue upon injury alone. When followed by cardiac arrest,
however, the activation of caspase-1 and levels of IL-18 were markedly increased in
skin and markedly decreased in muscle tissue, suggesting a differential effect of
cardiac arrest on inflammasome activation in different tissues (Starzl et al. 2015).

There is emerging evidence that NLRP3 is involved in the process of the CNS
disorders development such as ischemic stroke (Yang et al. 2014), Alzheimer’s
disease (Halle et al. 2008), and pneumococcal meningitis (Hoegen et al. 2011). Liu
et al. demonstrated that NLRP3 might play an important role in the inflammatory
response in an experimental model of brain trauma (Liu et al. 2013). Ma et al. and
others as well have shown before that propofol (2, 6-diisopropylphenol), a well-
known lipid-soluble intravenous anesthetic, which is commonly used during sur-
gery, has neuroprotective effects against various forms of brain injury (Ma et al.
2009; Ding et al. 2013). In their recent study, the molecular mechanism, underling
the neuroprotective effect of propofol, was further elucidated. Propofol administra-
tion substantially suppressed the enhanced expression and activation of NLRP3
inflammasome in the cerebral cortex of TBI rats, findings which were associated
with the decreased oxidative stress, cytokine production, and ameliorated cerebral
cortex damage (Ma et al. 2016). The authors provide evidence that overactivation of
NLRP3 inflammasome in the cerebral cortex may be involved in the process of
neuroinflammation during the secondary injury of TBI in rats. The findings of
reduced activation in rat’s cortices in response to propofol mirror the observation
that neuroinflammation after ICH as found in NLRP3 and IL-1beta activation can be
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attenuated by blocking the glutamatergic NMDA receptor. Although the underlying
mechanism for propofol’s mode of action is primarily its agonism on GABAergic
receptors, it seems that an inhibition of neural activity after brain injury goes together
with a reduction in neural tissue inflammation via the NLRP3 inflammasome
(Weng et al. 2015).

In a subarachnoidal hemorrhage model, a beneficial role for the antibiotic mino-
cycline has been found in rats. Here the administration of the compound reduced
expression and activation of the NLRP3 inflammasome. Consequently, cleavage of
caspase-1 as well as pro-IL-1beta was reduced, and brain edema emerging from the
disruption of the blood-brain barrier was attenuated. This finding might warrant
additional research in minocycline’s ability to inhibit the NLRP3 inflammasome
(Li et al. 2016).

5.3.4 The AIM2 Inflammasome

AIM2 is a member of the hemopoietic interferon-inducible nuclear 200 (HIN200)
family of proteins and can form an inflammasome (Burckstummer et al. 2009;
Fernandes-Alnemri et al. 2009; Hornung et al. 2009). It is known to be activated
by viral, bacterial, and host ectopic double-stranded DNA, thereby recognizing
pathogenic DNA or autoimmune reactions to host nucleic acids, but HMGB1 as
well, and subsequently inducing cleavage of pro-caspase-1 and pro-IL-1beta, as well
as pyroptosis (Burckstummer et al. 2009; Fernandes-Alnemri et al. 2009; Hornung
et al. 2009; Miao et al. 2010). AIM2 can associate with ASC and caspase-1 to form a
DNA-responsive inflammasome in, e.g., cortical neurons (Adamczak et al. 2014;
Sun et al. 2017). AIM2 inflammasome contributes with ASC to acute brain injury
independently of NLRP3 in an experimental stroke model (Denes et al. 2015).
Further characterization of the neuronal AIM2 inflammasome will provide important
information that will guide us in the development of therapies to treat inflamma-
somes activated by DNA after injury or viral infections.

As there are no studies regarding AIM2 in experimental trauma or in human
scenario, we concentrate here on a hypoxia model to describe the possible relevance
of AIM2 in trauma setting. Ischemia/reperfusion (I/R) injury, e.g., to the liver caused
by an injurious inflammatory response, occurs after trauma as well. The mechanisms
by which organ damage occurs are still unclear, but the involvement of liver-resident
Kupffer cells (KCs) with their immune-triggering, ROS-producing, and
inflammation-inducing capabilities is indisputable (Wanner et al. 1996). Recently,
the activation of the AIM2 inflammasome in liver in I/R has been uncovered (Kim
et al. 2015). Consistent with earlier studies, I/R caused an increase in serum but also
in cytosolic levels of dsDNA, a ligand of AIM2 (Kim et al. 2015). Both AIM2
protein expression and its interaction with ASC protein were increased after I/R,
suggesting that AIM2, a non-NLR protein, was induced by ROS and may also be
responsible for caspase-1 activation in hepatic I/R (Kim et al. 2015). The authors
have confirmed a crucial role of KCs upon liver damage after I/R, because a
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depletion of KCs with gadolinium chloride markedly decreased AIM2 inflamma-
some expression and activation, as well as the level of caspase-1 protein in F4/80-
positive cells (Kim et al. 2015). However, because the NLRP3 inflammasome has
also affected by the KCs depletion, the sole role of AIM2 after I/R still remains
undefined. However, evidence on beneficial effects of caspase-1 activity has been
provided in rodent models of I/R. Here higher levels of ROS as well as systemic
inflammatory cytokines and liver tissue injury have been observed under caspase-1
knockout. Interestingly a NLRP3 knockout did not alter outcomes, suggesting a
crucial role for the AIM2 inflammasome (Menzel et al. 2011; Sun et al. 2013).

5.3.5 The NLRC4 Inflammasome

There is only one study evaluating the importance of the NLRC4 inflammasome for
trauma-induced inflammatory response and subsequent tissue damage. Recently, in
their PNAS study, Denes et al. have shown that ischemic brain injury was reduced in
ASC�/� and NLRC4�/� mice (Denes et al. 2015). The authors did not observe such
protective effects in mice deficient for the NLRP3. This was the first evidence for
identifying AIM2 and NLRC4 as key drivers of post-traumatic inflammatory
responses and, more interestingly, multiple inflammasomes regulating neuronal
injury (Denes et al. 2015) (Table 5.1).

5.4 Summary

Though there is clear evidence for an important role of inflammasome activation
correlating with the post-traumatic inflammatory response, there is no clear hypo-
thesis if the activation of inflammasomes is rather harmful or beneficial upon trauma.
Moreover, it appears that distinct activity of different inflammasomes in different
tissues may play a dual role in post-traumatic regeneration. However, it is indisput-
able that traumatic injury is closely associated with inflammasome activation and/or
their inhibition due to, e.g., their deranged assembly. Therefore, identifying not only
inflammasomes but also their components, which may be decisive for their func-
tionality, is important therapeutically balancing of the post-injury response. Further-
more, alterations of the inflammasome function appear promising in the setting of
post-traumatic therapies and should be further evaluated in future studies. Especially
the activation of the inflammasome with subsequent increase in secondary damage in
TBI deserves a closer look as evidence suggests that a downregulation on neural
activity also decreases inflammatory activity. Given findings on the damaging effect
of NMDAR-activity in neuroinflammation, studies using the NMDAR-antagonist
and important analgesic ketamine can be potentially promising. Similarly, the
inhibition of P2X7 by BBG or NLRP3 inhibition by MNS could provide new

5 Traumatic Injury 101



T
ab

le
5.
1

O
ve
rv
ie
w

on
so
m
e
tr
au
m
a-
re
le
va
nt

in
fl
am

m
as
om

es

In
fl
am

m
as
om

e/
in
fl
am

m
as
om

e
co
m
po

ne
nt

T
is
su
e/
ce
ll

T
yp

e
S
pe
ci
es

In
vi
vo

,
in

vi
tr
o,

ex
vi
vo

in
vi
tr
o

M
od

el
T
he
ra
py

/in
te
rv
en
tio

n
T
he
ra
py

re
sp
on

se
R
ef
.

N
L
R
P
1

M
on

oc
yt
es

hn
E
x
vi
vo

in
vi
tr
o

T
ra
um

at
ic

in
ju
ry

N
L
R
P
1
tr
an
sf
ec
tio

n
R
es
ta
ur
at
io
n
of

IL
-1
be
ta
re
sp
on

se
R
el
ja

et
al
.

(2
01

5)

C
as
pa
se
-1

L
un

g
m
s

In
vi
vo

M
ec
ha
ni
ca
l

ve
nt
ila
tio

n
C
as
pa
se
-1

K
O

R
ed
uc
ed

lu
ng

in
ju
ry

D
ol
in
ay

et
al
.

(2
01

2)

N
L
R
P
3

L
un

g
m
s

In
vi
vo

L
P
S
-

in
du

ce
d

A
L
I

L
R
12

R
ed
uc
tio

n:
lu
ng

in
fl
am

m
at
io
n,

N
L
R
P
3
ex
pr
es
si
on

,m
or
ta
lit
y

L
iu

et
al
.

(2
01

6)

N
L
R
P
3

B
ra
in

rt
In

vi
vo

bT
B
I

P
ro
po

fo
l

R
ed
uc
tio

n:
N
L
R
P
3
ex
pr
es
si
on

+
ac
tiv

at
io
n,

tis
su
e
in
ju
ry

M
a
et
al
.

(2
01

6)

N
L
R
P
1/
A
S
C

B
ra
in

m
s

In
vi
vo

C
C
l

N
L
R
P
1/
A
S
C
K
O

A
tte
nu

at
io
n
of

IL
-1
be
ta
;n

o
di
ff
er
-

en
ce

in
da
m
ag
e

B
ri
ck
le
r

et
al
.

(2
01

6)

N
L
R
P
3

W
ou

nd
s

rt
In

vi
vo

B
ur
n

3,
4-

M
et
hy

le
ne
di
ox

y-
β-
ni
tr
os
ty
re
ne

R
ed
uc
tio

n:
cy
to
ki
ne

pr
od

uc
tio

n,
ne
ut
ro
ph

il
in
fi
ltr
at
io
n;

ac
ce
le
ra
te
d

w
ou

nd
he
al
in
g

X
ia
o

et
al
.

(2
01

6)

N
L
R
P
3

L
un

g,
he
ar
t

m
s

In
vi
vo

B
ur
n
se
ps
is

A
rt
em

is
in
in

R
ed
uc
tio

n:
cy
to
ki
ne

pr
od

uc
tio

n,
ad
he
si
on

m
ol
ec
ul
e
ex
pr
es
si
on

,n
eu
-

tr
op

hi
l
in
fi
ltr
at
io
n,

m
or
ta
lit
y

L
on

g
et
al
.

(2
01

6)

N
L
R
P
3

B
ra
in

m
s

In
vi
vo

S
A
H

M
el
at
on

in
A
tte
nu

at
io
n
of

N
L
R
P
3-
as
so
ci
at
ed

pr
ot
ei
ns

D
on

g
et
al
.

(2
01

6)

N
L
R
P
3

M
ic
ro
gl
ia

m
s

In
vi
vo

IC
H

N
L
R
P
3
K
O

A
m
el
io
ra
tio

n
of

in
fl
am

m
at
io
n

Y
ua
n

et
al
.

(2
01

5)

102 B. Relja and J.-P. Horstmann



promising treatment options in scenarios, where inflammasome suppression proves
beneficial. Importantly to notice is that only few studies on inflammasomes with
regard to human trauma exist, and, here, a huge gap of knowledge has to be closed in
future.
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Abstract Lung diseases are common and significant causes of illness and death
around the world. Inflammasomes have emerged as an important regulator of lung
diseases. The important role of IL-1 beta and IL-18 in the inflammatory response of
many lung diseases has been elucidated. The cleavage to turn IL-1 beta and IL-18
from their precursors into the active forms is tightly regulated by inflammasomes. In
this chapter, we structurally review current evidence of inflammasome-related com-
ponents in the pathogenesis of acute and chronic lung diseases, focusing on the
“inflammasome-caspase-1-IL-1 beta/IL-18” axis.

Keywords Inflammasomes · Infectious pulmonary diseases · Lung injury ·
Smoking · Chronic obstructive pulmonary disease

6.1 Introduction

In serving its primary function in gas exchange, the lung is constantly exposed to the
outside world and is highly susceptible to all kinds of foreign matters. Lung diseases
are common and significant causes of illness and death around the world. According
to the World Health Organization (WHO) (http://www.who.int/mediacentre/
factsheets/fs310/en/), lower respiratory infections, chronic obstructive pulmonary
disease (COPD), and tuberculosis are among the top 10 causes of death worldwide.
Up to 7.73 million people died of these three diseases, accounting for nearly 14% of
all death in 2015, not to mention other pulmonary diseases. In addition, lower
respiratory infection is the leading cause of death in low-income economies.

The lack of effective treatment for many pulmonary diseases is at least partly due
to our limited understanding of the pathobiology of these diseases. The lung has a
defense mechanism consisting of physical barriers and immune cells against infec-
tion and injury. Upon insult, such as infection or tissue injury, the innate and
adaptive immune system in the lung initiate a series of responses, followed by a
period of normalization to restore homeostasis in the lung. Inflammation is one of the
immediate responses of the innate immune system, in which cytokines constitute a
significant part (Shaikh 2011). Interleukin (IL)-1 beta and its isoform IL-1 alpha are
proinflammatory cytokines that exert pleiotropic effects on a variety of cells and play
a vital role in acute and chronic inflammatory processes (Ren and Torres 2009). IL-1
signal acting through the type 1 receptor IL-1R1, with the help of IL-1 receptor
accessory protein, activates transcription factor nuclear factor-kappa B (NF-kappaB)
and activator protein 1 (AP-1). Binding of IL-1 to type 2 receptor IL-1Ra does not
lead to downstream signaling, and IL-1Ra is therefore considered a decoy receptor.
IL-1 beta has important homeostatic functions under normal circumstances, while its
overproduction is implicated in the pathophysiological changes in diverse disease
states. IL-18 is another member of the IL-1 family. The IL-18 receptor (IL-18R) is a
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heterodimer consisting of IL-18R alpha and beta chains. IL-18 also mediates
responses and activates NF-kappa B and AP-1, resulting in the production of
IFN-gamma, essential for immunity against invading pathogens. In addition, IL-18
can act as a Th2 response inducer in some allergic diseases (Sedimbi et al. 2013).

The important role of IL-1 beta and IL-18 in the inflammatory response of many
diseases has been elucidated. The cleavage to turn IL-1 beta and IL-18 from their
precursors into the active forms is tightly regulated. Over the past decade,
researchers have found that inflammasome is the key component for this process,
therefore, critical for the induction of a proper inflammatory response. The core
sensor protein of inflammasome comes from the nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs) family. All NLR family members are classi-
fied into subfamilies based on the N-terminal domain they contain: NLRAs have
transactivator activation domains (ADs); NLRBs have BIR (baculoviral inhibitor of
apoptosis repeat) domains; NLRCs have CARD (caspase activation/recruitment
domains); and NLRPs have PYD (pyrin domains) (Leissinger et al. 2014). Of
these, at least four NLR members (NLRP1, NLRP3, NLRC4, NLRB1) and absent
in melanoma 2 (AIM2) can form inflammasome complexes with the adaptor protein
apoptosis-associated speck-like protein containing caspase-recruitment domain (ASC)
and pro-caspase-1. Inflammasome formation results in the catalysis and activation of
caspase-1, which in turn catalyzes the cytokine precursors (Lee et al. 2016).

The detailed description of inflammasomes can be found elsewhere in this book.
Normally, inflammasome formation requires a canonical two-step mechanism. Tak-
ing the NLRP3 inflammasome as an example: the first signal (e.g., TLR4 or other
pattern recognition receptors) stimulates NF-kappa B and enhanced the expression
and synthesis of NLRP3. The second signal induced NLRP3 inflammasome assem-
bly. Common signal is provided by P2X purinoreceptor 7 (P2X7R) bond by
adenosine triphosphate (ATP), K+ efflux, lysosome destabilization caused by urate
crystals, DNA and reactive oxygen species (ROS) generated in mitochondria, etc.

The discovery of inflammasome has changed our understanding of the pathogen-
esis of many diseases. Here we structurally summarize current evidence for the
involvement of inflammasome in the pathogenesis of acute and chronic lung dis-
eases, focusing on the “inflammasome-caspase-1-IL-1 beta/IL-18” axis.

6.2 Acute Lung Diseases

6.2.1 Infectious Pulmonary Diseases

Despite sophisticated advances in antibiotics, lung infection remains a significant
cause of morbidity and mortality. As multidrug-resistant bacteria are emerging, it is a
priority to better understand the mechanisms how our immune system combat
pathogens. Researches involving the discussion of inflammasome in infectious
pulmonary diseases are summarized and listed in Table 6.1 according to publish
date. The term “conflicting” in the column of “Contribution” means that not all the
element studied was reported to take effect in a particular article. These terms are
consistent throughout this chapter.
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6.2.1.1 Influenza Virus

IL-1 Signaling Hennet et al. found an early increase of IL-1 alpha and IL-1 beta
peaked between 36 h and 3 days after influenza A virus (IAV) infection in mice
(Hennet et al. 1992). Also, IAV-infected human peripheral macrophages secreted
IL-1 beta and IL-18 (Sareneva et al. 1998). Similar results were found by Pirhonen
et al. with primary human monocytes and differentiated macrophages. Besides,
virus-induced IL-1 beta and IL-18 production was significantly blocked by a specific
caspase-1 inhibitor (Pirhonen et al. 1999).

The role of IL-1 was further manifested. Schmitz et al. investigated the role of the
IL-1R1 signaling during pulmonary antiviral immune responses in Il1r1�/� mice.
They demonstrated reduced inflammatory pathology, decreased activation and
migration of CD4+ T cells, and greatly diminished immunoglobulin (Ig) M
responses in Il1r1�/� mice after influenza virus infection. In contrast, the
activation of cytotoxic T lymphocytes and the IgG and IgA antibody responses
was intact. Notably, the authors found significantly increased mortality in Il1r1�/�

mice after infection (Schmitz et al. 2005).

IL-18 Signaling The role of IL-18 has also been studied in gene knockout mice.
Il18�/�mice inoculated with IAV showed increased mortality with the occurrence of
pathogenic changes including enhanced virus growth, massive inflammatory infil-
tration, and elevated nitric oxide production over the first 3 days after respiratory
challenge (Liu et al. 2004). Thereafter, Denton et al. found that IL-18 deficiency was
associated with delayed virus clearance from the lung and decreased cytokine
production by CD8+ T lymphocytes (Denton et al. 2007).

Inflammasome Activation Thomas et al. showed that in vivo activation of the
NLRP3 inflammasome by IAV RNA controlled the release of IL-1 beta and IL-18
and modulated the extent of lung pathology. Furthermore Nlrp3�/� and Casp1�/�

mice were found more susceptible after IAV infection correlated with decreased cell
recruitment and cytokine/chemokine production (Thomas et al. 2009). The in vivo
role of NLRP3 inflammasome during influenza virus infection was verified around
the same time. Mice lacking Nlrp3, ASC, or caspase-1, but not Nlrc4, exhibited
increased mortality and a reduced immune response after influenza virus infection.
Using poly I:C and ssRNA40 to analogize virus RNA, the authors concluded that
NLRP3 inflammasome could be activated by RNA species dependent on lysosomal
maturation and ROS (Allen et al. 2009).

In contrast to studies in certain cell types, like macrophages and epithelial cells,
Ichinohe et al. found that ASC and caspase-1, but not NLRP3, were required for
CD4+ and CD8+ T cell responses, as well as mucosal IgA secretion and systemic IgG
responses to influenza virus infection. This study provided evidence of the require-
ment for the components of inflammasomes in adaptive immunity to virus infection
in vivo (Ichinohe et al. 2009).

The mechanisms by which influenza virus activates the inflammasome have also
been studied. Ichinohe et al. showed that the influenza virus M2 protein localized to
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the Golgi apparatus dependent on the pH gradient to stimulate the NLRP3
inflammasome in primed macrophages and dendritic cells (Ichinohe et al. 2010).
Increased ATP has been observed in the bronchoalveolar lavage fluid (BALF) of
mice infected with IAV (Wolk et al. 2008), which is usually believed to be a
secondary signal in inflammasome activation and assembly.

Interaction Between Host and Microorganism On the other hand, pathogens
have also evolved strategies to take advantage of inflammasome-related mechanisms
to evade the host immune system. For example, Stasakova et al. reported that several
NS1 mutant viruses induced much more biologically active IL-1 beta and IL-18 than
wild-type viruses, therefore inducing rapid apoptosis in infected macrophages,
which correlated with the enhanced activity of caspase-1 (Stasakova et al. 2005).

6.2.1.2 Mycobacterium

Mycobacterium is a genus of over 150 recognized species, including pathogens
known to cause serious diseases in mammals, like tuberculosis (King et al. 2017).
Mycobacteria are aerobic and normally known as acid fast. The studies about
infection with mycobacteria, in which inflammasome may take a part in were
summarized.

IL-1 Signaling Studies in humans have shown that IL-1 was elevated in monocyte-
derived macrophages stimulated in vitro (Giacomini et al. 2001), in pleural fluid
(Shimokata et al. 1991), in cells obtained from BALF (Law et al. 1996; Tsao et al.
2000), and in granulomas of patients with tuberculosis (Chensue et al. 1992). It was
reported that IL-1 beta production was induced byM. tuberculosis through pathways
involving ERK, p38, and Rip2 after recognition by TLR2/TLR6 and NOD2 recep-
tors (Kleinnijenhuis et al. 2009).

Genetic studies conducted by Bellamy et al. suggested that polymorphisms in
IL-1R1 and possibly IL-1 alpha (but not IL-1 beta) significantly associated with
tuberculosis (Bellamy et al. 1998). However, Wilkinson et al. reported no allele or
genotype in IL-1Ra and IL-1 beta, single or in combination, was associated with an
increased risk of tuberculosis (Wilkinson et al. 1999).

In vivo animal studies using Il1r1�/� and IL-1 beta�/� mice displayed acute
mortality with increased bacterial burden in the lungs, suggesting an important role
for IL-1 beta/IL-1R1 signaling response to Mycobacterium tuberculosis (Mayer-
Barber et al. 2010). Il1r1�/� mice showed defective granuloma formation containing
fewer macrophages and lymphocytes, defective migration of immune cells, and a
decrease in IFN-gamma production in the spleen. These changes were associated
with increased mortality and an enhanced mycobacterial outgrowth in the lungs and
distant organs (Juffermans et al. 2000). IL-l alpha/beta double knockout mice
developed significantly larger granulomas in lungs than wild-type mice after infec-
tion with M. tuberculosis, suggesting a protective role of IL-1 (Yamada et al. 2000).
More precisely, M. tuberculosis infection in Il1r1�/� mice led to a profound defect
of early control of infection with higher bacterial load in the lung and necrotic
pneumonia. While pulmonary CD4+ and CD8+ T cell responses were unaffected
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(Fremond et al. 2007). However, in contrast, Master et al. showed that
M. tuberculosis prevented inflammasome activation and subsequent IL-1 beta
release and zmp1, which encoded a Zn2+ metalloprotease, was responsible (Master
et al. 2008). Besides, Sugawara reported that Il1r1�/� mice developed significantly
larger granulomatous lesions with neutrophil infiltration in the lungs than wild-type
mice did, and IFN-gamma production in spleen cells was lower in Il1r1�/� mice
(Sugawara et al. 2001).

IL-18 Signaling Il18�/� mice developed marked granulomas compared with wild-
type ones after M. tuberculosis infection. The granulomatous lesions could be
inhibited significantly by exogenous recombinant IL-18. The splenic IFN-gamma
levels were also lower in Il18�/� mice (Sugawara et al. 1999). Similarly, Il18�/�

mice were more prone to this infection than wild-type mice, and IFN-gamma
production was significantly attenuated. Consistently, IL-18 transgenic mice were
more resistant to the infection than their littermate mice, and IFN-gamma levels were
increased (Kinjo et al. 2002). However, Fremond et al. reported that unlike IL-1 beta,
IL-18-dependent pathways seemed to be dispensable in response to M. tuberculosis
infection (Fremond et al. 2007).

Inflammasome Activation Mycobacterium tuberculosis activated the NLRP3
inflammasome and induced a strong IL-1 beta response. The mechanism is not yet
fully understood, but it was believed that M. tuberculosis induced inflammasome
activation involving the export of the 6 kDa early secreted antigenic target (ESAT-6)
through a functional protein secretion system ESX-1 (Mishra et al. 2010). The
function of ESX-1 in NLRP3 activation was further confirmed by Dorhoi et al.
They also concluded that although NLRP3 inflammasome was critical for IL-1 beta
secretion in macrophages, Nlrp3�/� mice were not susceptible to M. tuberculosis
infection, due to NLRP3-independent compensatory IL-1 beta production in lung
parenchyma (Dorhoi et al. 2012). Kleinnijenhuis et al. showed that the secretion of
IL-1 beta in macrophage depended on the activation of P2X7R by endogenously
ATP. However, they also suggested that constitutively expressed caspase-1 in
monocyte need not be activated by M. tuberculosis (Kleinnijenhuis et al. 2009).
Kurenuma et al. found that a genomic locus called “region of difference 1” (RD1) in
Mycobacterium tuberculosis was essential for the activation of caspase-1 and sub-
sequent secretion of IL-1 beta and IL-18 in macrophages. The activation was
induced via RD1-dependent K+ efflux independent of P2X7R (Kurenuma et al.
2009). While the above experiments were performed in an acute settings, McElvania
et al. showed that M. tuberculosis induced IL-1 beta secretion in human and mouse
macrophages in vitro, depending on ASC, caspase-1, and NLRP3, but not NLCR4.
In addition, murine ASC protected the host during chronicM. tuberculosis infection,
but the effects of caspase-1 and NLRP3 were dispensible (McElvania Tekippe et al.
2010).

Mycobacterium marinum Mycobacterium marinum possesses virtually all of the
virulence factors associated with M. tuberculosis, including the ESX-1 secretion
system. Koo et al. identified that NLRP3, caspase-1, ASC, but not NLRC4, were
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required for the release of IL-1 beta and IL-18 after M. marinum or M. tuberculosis
infection. Mostly important, they showed that mycobacteria-induced ESX-1-depen-
dent lysosome secretion was essential to release, but not to synthesize IL-1 beta and
IL-18 in vitro (Koo et al. 2008). In vivo study confirmed the function of ESX-1
secretion system in activating NLRP3 inflammasome. However, the activation of
NLRP3 inflammasome did not restrict bacterial growth, indicating a host-
detrimental role of this inflammatory pathway in mycobacterial infection (Carlsson
et al. 2010).

Mycobacterium abscessus Mycobacterium abscessus is one of the common species
that causes disseminated infections in patients with cystic fibrosis. It has been
reported that NLRP3 inflammasome activation contributed to the antimicrobial
responses against M. abscessus in human macrophages, and its activation was
dependent on dectin-1/Syk signaling (Lee et al. 2012).

Mycobacterium kansasii Live intracellular Mycobacterium kansasii has been
reported to trigger the activation of the NLRP3 inflammasome, leading to caspase-
1 activation and IL-1 beta secretion. Furthermore, K+ efflux, lysosomal acidification,
ROS production, and cathepsin B release played a role in this activation process
(Chen et al. 2012).

6.2.1.3 Other Pathogens

Some other pathogens that are common cause of respiratory tract and pulmonary
infections are included in this part.

Streptococcus pneumonia Streptococcus pneumonia is a frequent colonizer in the
upper respiratory tract and a leading cause of infections like pneumonia. McNeela
et al. demonstrated that the activation of NLRP3 inflammasome was required for
S. pneumonia or its virulence factor pneumolysin-mediated enhancement of IL-1
beta secretion in dendritic cells. Furthermore, NLRP3 was required for protective
immunity against respiratory infection with S. pneumonia (McNeela et al. 2010).
Similarly, Witzenrath et al. reported that S. pneumonia expressing hemolytic
pneumolysin also induced NLRP3-dependent IL-1 beta production in human and
murine mononuclear cells. The inflammasome pathway was protective maintaining
the pulmonary microvascular barrier. Additionally, the results showed that
inflammasome was not activated by bacterial mutants lacking pneumolysin, which
could cause invasive disease clinically (Witzenrath et al. 2011).

Staphylococcus aureus Staphylococcal α-hemolysin, an essential virulence factor
of Staphylococcus aureus, has been shown to be required for the promotion of
pneumonia in mouse models. It has long been proven that α-hemolysin could induce
IL-1 beta secretion from human monocytes (Bhakdi et al. 1989). Furthermore,
α-hemolysin can induce K+ efflux in host cells (Jonas et al. 1994). Craven et al.
demonstrated that α-hemolysin activated the NLRP3 inflammasome resulting in the
activation of caspase-1 and secretion of cytokines IL-1 beta and IL-18 in monocyte-
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derived cells from humans and mice. They also reported that α-hemolysin induced
NLRP3-dependent cellular necrosis resulting in the release of endogenous danger-
associated molecular patterns (DAMPs) (Craven et al. 2009). Munoz-Planillo et al.
further concluded that bacterial lipoproteins released by S. aureus were required for
NLRP3 and caspase-1 activation triggered by α- and β-hemolysins. Notably,
caspase-1 activation was independent of ATP and P2X7R (Munoz-Planillo et al.
2009).

Streptococcus pyogenes Harder et al. found that caspase-1 activation and IL-1 beta
secretion were induced by live Streptococcus pyogenes. The toxin streptolysin O,
NLRP3, and ASC were crucial for the process, while exogenous ATP or the P2X7R
was not required (Harder et al. 2009).

Klebsiella pneumoniae NLRP3 inflammasome protected host during infection with
Klebsiella pneumoniae, as inflammatory response decreased and mortality increased
in Nlrp3�/� and Asc�/�, but not Nlrc4�/� mice. NLRP3 activated necrosis and
triggered HMGB1 release in addition to IL-1 beta as well as IL-18 secretion in
macrophages (Willingham et al. 2009). However, NLRC4 has also been found to be
of importance for host survival, bacterial clearance, production of IL-1 beta, as well
as neutrophil-mediated inflammation following pulmonary K. pneumoniae infection.
Exogenous IL-1 beta partially rescued survival and restored neutrophil accumulation
and cytokine/chemokine expression in the lungs of Nlrc4�/� mice. Furthermore,
Il1r1�/� mice displayed a decrease in neutrophilic inflammation after infection (Cai
et al. 2012).

Legionella pneumophila NLRC4 is shown to be important in the recognition,
response, and resolution of infection with flagellated pathogens. Legionella
pneumophila is a flagellated, Gram-negative, facultative intracellular pathogen.
Amer et al. found that Legionella-induced NLRC4-dependent caspase-1 activation
to restrict replication in macrophages (Amer et al. 2006). ASC was found to be
important for caspase-1 activation during L. pneumophila infection. Activation of
caspase-1 via ASC did not require sense of flagellin by NLRC4. Besides, activation
of caspase-1 in macrophages occurred independently of NLRP3 (Case et al. 2009).
Slightly different, Pereira et al. found that NLRC4-dependent growth restriction of
L. pneumophila was fully due to flagellin. In addition, L. pneumophila multiplied
better in Nlrc4�/� mice, and macrophages compared with that in caspase-1 deficient
ones, suggesting a caspase-1-independent downstream of NLRC4 (Pereira et al.
2011b). The importance of flagellin in activating NLRC4 was further tested, as
nonflagellated Legionella bypassed the NLRC4 inflammasome-mediated growth
restriction (Pereira et al. 2011a). The type 4 secretion system was also suggested
to be important for NLRC4- and caspase-1-dependent host response (Silveira and
Zamboni 2010).

Chlamydia pneumonia Studies have shown that in vitro Chlamydia pneumoniae
infection could elicit IL-1 beta and IL-18 secretion (Netea et al. 2000; Kaukoranta-
Tolvanen et al. 1996; Netea et al. 2004; Rupp et al. 2003). Shimada et al. demon-
strated that C. pneumoniae infection in the lung induced NLRP3 inflammasome

122 F. Xu et al.



activation, leading to caspase-1-dependent IL-1 beta secretion. This inflammatory
response was critical for host defense against infection, manifested by delayed
bacterial clearance and increased mortality in caspase1�/� mice, which could be
rescued by recombinant IL-1 beta (Shimada et al. 2011).

Nontypeable Haemophilus influenzae Nontypeable Haemophilus influenzae
(NTHi) is the most common cause for bacterial exacerbations in COPD. Higher
expression of NLRP3 and caspase-1 and a significant induction of IL-1 beta after
NTHi stimulation were detected in a murine macrophage cell line. In addition,
inhibition of caspase-1 in human lung tissue led to a significant reduction of IL-1
beta and IL-18 (Rotta Detto Loria et al. 2013).

Pseudomonas aeruginosa Reiniger et al. found rapid release of IL-1 beta in
response to Pseudomonas aeruginosa. And Il1r�/� mice were susceptible to chronic
P. aeruginosa lung infection (Reiniger et al. 2007). NLRC4 inflammasome was
identified critical for optimal bacterial clearance in an in vivo model of lung infection
with P. aeruginosa. The activation of caspase-1 and secretion of IL-1 beta were
triggered by bacterial flagellin and type 3 secretion system (T3SS) (Franchi et al.
2007). The importance of NLRC4 and T3SS was further manifested by Sutterwala
et al. and Miao et al. (Miao et al. 2008). Sutterwala et al. also reported that the
P. aeruginosa strain expressing the exoenzyme U (ExoU, a T3SS effector) phos-
pholipase was able to suppress caspase-1-mediated cytokine production via NLRC4,
associated with more severe disease (Sutterwala et al. 2007). Pilin, a major compo-
nent of the type 4 bacterial pilus, has also been reported to activate NLRC4
inflammasome via the T3SS in P. aeruginosa infection (Arlehamn and Evans
2011). Activation of NLRC4 may depend not only on T3SS or flagellin but also
on bacterial motility, as caspase-1 activation and IL-1 beta production were reduced
when exposed to nonmotile P. aeruginosa in macrophages and dendritic cells
(Patankar et al. 2013). As an example, the temporal loss of P. aeruginosa motility
has been described during chronic infections in patients with cystic fibrosis (Luzar
et al. 1985; Mahenthiralingam et al. 1994). Recently, Rimessi et al. demonstrated
that flagellin of P. aeruginosa caused mitochondrial perturbation, which regulated
NLRP3 activation and IL-1β and IL-18 processing by mitochondrial Ca2+ in human
bronchial epithelial cells (Rimessi et al. 2015).

Cryptococcus neoformans Recombinant IL-18 enhanced the elimination of live
Cryptococcus neoformans from the lungs, prevented its dissemination to the brain,
and increased the survival rate of infected mice. In addition, administration of
neutralizing anti-IL-18 antibody exacerbated the infection (Kawakami et al. 1997).
They further reported that fungal clearance in the lung was reduced and the levels of
IL-12 and IFN-gamma in the sera were significantly lower in Il18�/� mice
(Kawakami et al. 2000a). IL-12 and IL-18 have been shown to synergistically
increase the fungicidal activity against C. neoformans. A single administration of
either IL-12 or IL-18 was not effective, while their combination significantly
prolonged survival time of infected mice and reduced the fungal growth in lungs
(Qureshi et al. 1999). To discriminate the activity of IL-18 from that of counterpart

6 Inflammasome in the Pathogenesis of Pulmonary Diseases 123



cytokines like IL-12, Kawakami et al. conducted the experiment in IL-12p40�/�

mice. Neutralizing anti-IL-18 antibody almost completely abrogated IFN-gamma
production, and host response in IL-12p40 and IL-18 double knockout mice was
more profoundly impaired than in IL-12p40�/� mice. Moreover, administration of
IL-12 as well as IL-18 significantly restored the host resistance (Kawakami et al.
2000b).

Aspergillus fumigatus The release of IL-1 beta was significantly increased from
monocytes stimulated with hyphal fragments of Aspergillus fumigatus
(Simitsopoulou et al. 2007). Further study found that hyphal fragments induced
NLRP3 inflammasome assembly, caspase-1 activation, and IL-1 beta release from
THP-1 cell line. The activation of NLRP3 required dectin-1/Syk signaling, K+

efflux, and ROS production (Said-Sadier et al. 2010).

6.2.2 Acute Lung Injury (ALI)

Acute respiratory distress syndrome (ARDS) is the acute onset of hypoxemia with
bilateral infiltrates, in the absence of left atrial hypertension. In the 2012 Berlin
definition, ALI was reassigned to be a mild type of ARDS. As it is not a single
disease, we listed in Table 6.2 the studies on ALI of different causes.

IL-1 Signaling IL-1 beta has been found in BALF from patients with ARDS (Pugin
et al. 1996). And it has been previously shown in rats that lung vascular permeability
increases after short-term exposure to IL-1 alpha and IL-1 beta (Leff et al. 1994).
Ganter et al. demonstrated a role for the alphavbeta5 and alphavbeta6 integrins in
mediating IL-1 beta-induced ALI (Ganter et al. 2008).

Inflammasome Activation Our group demonstrated that lipopolysaccharides
(LPS) activated NLRP3, enhanced the release of IL-1 beta, and promoted pyroptosis
in alveolar macrophages. Meanwhile, IL-1 beta upregulated IL-1R1 through an
autocrine mechanism (He et al. 2016). Our group examined the role of the NLRP3
inflammasome in response to hemorrhagic shock in a mouse model of ALI. In our
study, pulmonary endothelial cells were the primary source of IL-1 beta secretion
after hemorrhagic shock. DAMPs (especially HMGB1) activated NADPH oxidase
and caused thioredoxin-interacting protein to associate with NLRP3, leading to
inflammasome activation. Notably, endothelial cells were also targets of IL-1 beta,
which might cause a range of inflammatory molecules and an amplification of
inflammation leading to ALI (Xiang et al. 2011). We further showed that there
existed a negative-feedback regulating the activation of inflammasome. While
activating NLRP3 inflammasome, LPS also induced pyrin expression, which in
turn suppressed the activation of inflammasome in mouse lungs. However, hemor-
rhagic shock suppressed IL-10 and pyrin expression, therefore significantly enhanc-
ing inflammasome activation and IL-1 beta secretion in macrophages and endothelial
cells (Xu et al. 2013).
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Table 6.2 Articles containing discussion of inflammasomes in ALI

ID Species Diseases Design Element Contribution

Leff 1994 Rattus
norvegicus

ALI In vivo, lung IL-1 alpha,
IL-1 beta

Yes

Narimanbekov
1995

Oryctolagus
cuniculus

ALI (mechanical
ventilation)

In vivo, lung IL-1Ra Yes

Pugin 1996 Homo
sapiens

ARDS Ex vivo, BALF IL-1 beta Yes

Tremblay 1997 Rattus
norvegicus

ALI (mechanical
ventilation)

Ex vivo, lung IL-1 beta Yes

Ranieri 1999 Homo
sapiens

ARDS (mechani-
cal ventilation)

Ex vivo, BALF IL-1 beta,
IL-1Ra

Yes

Wrigge 2000 Homo
sapiens

Mechanical
ventilation

Ex vivo, blood IL-1Ra No

Ricard 2001 Rattus
norvegicus

ALI (mechanical
ventilation)

Ex vivo, lung;
in vivo, lung

IL-1 beta No

Rich 2003 Rattus
norvegicus

ALI (mechanical
ventilation)

Ex vivo, BALF ATP Yes

Ma 2005 Rattus
norvegicus
Mus
musculus

ALI (mechanical
ventilation)

Microarray,
lung tissue

IL-1 beta Yes

Lin 2007 Rattus
norvegicus

LPS + mechanical
ventilation

In vivo, lung IL-1 beta Yes

Frank 2008 Rattus
norvegicus
Mus
musculus

ALI (mechanical
ventilation)

In vivo, lung IL-1R1,
IL-1Ra

Yes

Ganter 2008 Mus
musculus

ALI In vivo, lung IL-1 beta Yes

Kolliputi 2010 Mus
musculus

ALI (hyperoxia) In vivo, lung,
BALF; in vitro,
macrophage

NLRP3, K+

efflux,
P2X7R

Yes

Xiang 2011 Mus
musculus

ALI (hemorrhagic
shock)

In vivo, lung;
in vitro, endo-
thelial cells

NLRP3, IL-1
beta, ROS

Yes

Dolinay 2012 Homo sapi-
ens
Mus
musculus

ALI (mechanical
ventilation)

In vivo, lung;
in vitro, blood,
BALF

IL-1 beta,
IL-18,
caspase-1

Yes

Kuipers 2012 Homo sapi-
ens
Mus
musculus

ALI (mechanical
ventilation)

In vivo, lung;
in vitro, BALF

NLRP3,
ASC,
caspase-1,
IL-1 beta,
uric acid

Yes

Fukumoto
2013

Mus
musculus

ALI (hyperoxia) In vivo, lung;
in vitro, BALF

NLRP3, IL-1
beta

Yes

Wu 2013 Mus
musculus

ALI (mechanical
ventilation)

In vitro,
macrophage

NLRP3, IL-1
beta, IL-18,
uric acid,
ROS

Yes

(continued)
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Ventilation-induced lung injury (VILI) is a special type of ALI. Ventilation alone
for a short period does not seem sufficient for mediator release and major lung injury
in normal lungs (Wrigge et al. 2000). However, mechanical ventilation may augment
preexisting lung injury.

IL-1 Signaling A RCT showed that mechanical ventilation caused increased con-
centrations of IL-1 beta and IL-1Ra in BALF of ARDS patients (Ranieri et al. 1999).
In basic research, combined LPS instillation and ventilation synergistically
unregulated the production of IL-1 beta in rat lung tissues (Lin et al. 2007).
Ventilation with a large tidal volume for 2 h induced the released of IL-1 beta in
isolated, unperfused rat lungs with or without LPS injection (Tremblay et al. 1997).
However, Ricard et al. reappraised the cytokine production in both in vivo and
ex vivo ventilated rat lungs and were unable to detect the release of IL-1 beta (Ricard
et al. 2001). In gene expression microarray studies, IL-1 beta has been identified as a
candidate gene in rodent (mouse and rat) VILI models (Ma et al. 2005).

Furthermore, recombinant IL-1Ra significantly lowered the concentration of
albumin and elastase and decreased neutrophil infiltration in a rabbit model of
VILI (Narimanbekov and Rozycki 1995). Similarly, mice deficient in IL1R1 and
rats treated with IL-1Ra showed preserved alveolar barrier function, reduced neu-
trophil recruitment, and decreased epithelial injury and permeability after mechan-
ically ventilation (Frank et al. 2008).

IL-18 Signaling Dolinay et al. reported a critical role of caspase-1 and IL-18 in
VILI. A comprehensive gene expression analysis on peripheral blood from patients
with ARDS and polymerase chain reaction and ELISA were performed. IL-1 beta
and IL-18 transcripts were increased. And human plasma IL-18 levels were corre-
lated with disease severity and mortality in critically ill patients. Besides, mechanical
ventilation enhanced IL-18 levels in the lung, serum, and BALF in mice.

Genetic deletion of IL-18 or caspase-1 or treatment with IL-18 neutralizing
antibody reduced lung injury and inflammation in response to ventilation (Dolinay
et al. 2012).

Inflammasome Activation More directly, Kuipers et al. showed that mRNA levels
of ASC were higher in lung brush samples from patients after 5 h of ventilation. Also,
ventilation increased relative expression of NLRP3 in alveolar macrophages. Besides,

Table 6.2 (continued)

ID Species Diseases Design Element Contribution

Xu 2013 Mus
musculus

ALI (hemorrhagic
shock)

In vivo, lung;
in vitro, endo-
thelial cells,
macrophage

NLRP3, IL-1
beta

Yes

Mizushina
2015

Mus
musculus

ALI (hyperoxia) In vivo, lung,
BALF

NLRP3, IL-1
beta

Yes

He 2016 Mus
musculus

ALI (infection) In vivo, lung;
in vitro,
macrophage

NLRP3, IL-1
beta, IL-1R1

Yes
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mechanical ventilation increased the expression of NLRP3 and ASC, activated
caspase-1, and promoted the release of IL-1 beta in mouse lung. In this process, uric
acid was also released and may serve as the ligand for NLRP3. Additionally, mice
deficient in NLRP3 or treatment with IL-1 receptor antagonist or glibenclamide
displayed less VILI (Kuipers et al. 2012). Using an in vitro model, Wu et al. also
demonstrated that alveolar macrophages subjected to cyclic stretch released uric acid,
which activated the NLRP3 inflammasome, and induced the release of IL-1 beta and
IL-18. They determined that mitochondrial ROS generation was required for NLRP3
activation (Wu et al. 2013). It has long been reported that high-pressure mechanical
ventilation significantly increased ATP release in BALF (Rich et al. 2003).

Another form of ALI associated with ventilation is hyperoxic acute lung injury
(HALI). Kolliputi et al. reported that hyperoxia-induced K+ efflux activated the
NLRP3 inflammasome via the purinergic P2X7R to cause inflammation and HALI
(Kolliputi et al. 2010). Further, they demonstrated that Nlrp3�/� mice had
suppressed inflammatory response in BALF and lung tissue and blunted epithelial
cell apoptosis to HALI (Fukumoto et al. 2013). Notably, Mizushina et al. found that
deficiency in NLRP3 shortened survival under hyperoxic conditions regardless of
diminished inflammatory responses. And this lethality was due to Stat3 signaling
(Mizushina et al. 2015).

6.3 Chronic Lung Diseases

6.3.1 Smoke and Particles Inhalation

6.3.1.1 Cigarette Smoking (CS)

Table 6.3 lists the studies containing discussion of inflammasomes in smoking.

IL-1 Signaling Cytokine regulation in the lung may be altered by smoke exposure.
CS inhalation in smokers (healthy and COPD patients) induced IL-1 beta release in
BALF (Kuschner et al. 1996) and in lung tissue and induced sputum (Pauwels et al.
2011). However, there are also studies reporting a lower level of IL-1 beta in
macrophage from smokers before and after LPS stimulation (Sauty et al. 1994;
Brown et al. 1989). Pauwels et al. demonstrated that pulmonary inflammation after
subacute CS exposure could be significantly attenuated by IL-1R1 knockout or
neutralizing IL-1 alpha or IL-1 beta (Pauwels et al. 2011). TLR4, MyD88, and
IL-1R1 were reported to be involved in the inflammatory response to CS both
in vitro and in vivo. Besides, CS-activated macrophages released IL-1 beta only in
presence of ATP (Doz et al. 2008).

IL-18 Signaling IL-18 signaling has also been demonstrated to be critical
in the response to CS. CS was a potent stimulator of IL-18 and caspases-1. In
addition, CS-induced inflammation was significantly decreased in Il18ra�/� mice
(Kang et al. 2007).
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Inflammasome Activation Direct evidence of inflammasome involvement came
from Eltom et al. They demonstrated that NLRP3 and ASC, but not NLRC4 or
AIM2, were required for CS-induced IL-1 beta and IL-18 release. Besides, mice
deficient in caspase 1/11 had markedly attenuated levels of cytokines and neutrophil
infiltration (Eltom et al. 2014). However, CS-induced inflammation and IL-1 alpha
production were reported to occur independently of the NLRP3-caspase-1 axis
(Pauwels et al. 2011).

Genetic deletion of the P2X7R or using a selective P2X7R inhibitor reduced
CS-induced caspase-1 activation and IL-1 beta release during acute CS exposure
in vivo. They reported that caspase-1 activity were higher in lung tissue from
smokers (Eltom et al. 2011).

6.3.1.2 Inhalation of Particles

Articles containing discussion of inflammasomes in particle inhalation are summa-
rized in Table 6.4.

There are various kinds of particles in industrial and urban life, which can cause
injuries to the lungs and pulmonary diseases.

Table 6.3 Articles containing discussion of inflammasomes in relation to smoking

ID Species Design Element Contribution

Brown
et al. 1989

Homo
sapiens

In vitro, macrophage IL-1 beta No

Sauty
1994

Homo
sapiens

Ex vivo, BALF IL-1 beta No

Kuschner
1996

Homo
sapiens

Ex vivo, BALF IL-1 beta Yes

Kang
2007

Mus
musculus,
Homo
sapiens

In vivo, lung; in vitro,
macrophage

IL-18, IL-18R Yes

Doz 2008 Mus
musculus

In vivo, lung; ex vivo,
BALF; in vitro,
macrophage

TLR4, MyD88, IL-1R1,
IL-1 beta, ATP

Yes

Eltom
2011

Mus
musculus,
Homo
sapiens

In vivo, lung; ex vivo,
lung

P2X7R, caspase-1, IL-1
beta

Yes

Pauwels
2011

Mus
musculus,
Homo
sapiens

In vivo, lung; ex vivo,
sputum

IL-1 alpha, IL-1 beta,
IL-1R1, NLRP3, caspase-
1

Conflicting

Eltom
2014

Mus
musculus

In vivo, lung IL-1 beta, IL-18, NLRP3,
ASC, NLRC4, AIM2,
caspase-1

Yes

CS is closely related to COPD, which will be discussed in Sect. 6.3.2
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Carbon black nanoparticles have been reported to cause caspase-1 activation,
IL-1 beta release, and pyroptosis in alveolar macrophages (Reisetter et al. 2011).

Inorganic materials can trigger NLRP3 response as well. Nano-TiO2 activated
NLRP3 inflammasome and induced IL-1 alpha and beta release in a phagocytosis-
independent manner (Yazdi et al. 2010). Nickel nanoparticles induced transient
increase of IL-1 beta in rats (Morimoto et al. 2010). Hamilton et al. demonstrated
that nickel contamination in multiwalled carbon nanotubules activated NLRP3 via
lysosomal disruption in primary macrophages (Hamilton et al. 2012).

Urban particulate matter has been shown to induce IL-1 beta release in human
primary bronchial epithelial cells (Fujii et al. 2001). Furthermore, NLRP3
inflammasome was required for the production of IL-1 beta in vivo (Hirota et al.
2012). Diesel exhaust particles (DEP) are a major component of the ambient
particulate matter. It was shown that in vitro DEP stimulated IL-1 beta production
in monocytes and macrophages (Pacheco et al. 2001; Yang et al. 1997) and in
epithelial cells (Boland et al. 1999). Il1r1�/� mice and mice treated with IL-1Ra had
reduced inflammation upon DEP exposure. However, the authors concluded that

Table 6.4 Articles containing discussion of inflammasomes in particle inhalation

ID Species Particles Design Element Contribution

Yang
1997

Rattus
norvegicus

Diesel
exhaust
particles

In vitro, macrophage IL-1 beta Yes

Boland
1999

Homo
sapiens

Diesel
exhaust
particles

In vitro, epithelial cell
line

IL-1 beta Yes

Fujii 2001 Homo
sapiens

Particulate
matter

In vitro, epithelial cell IL-1 beta Yes

Pacheco
2001

Homo
sapiens

Diesel
exhaust
particles

In vitro, PBMC IL-1 beta Yes

Morimoto
2010

Rattus
norvegicus

Nickel
nanoparticle

In vivo, lung, BALF IL-1 beta Yes

Yazdi
2010

Homo
sapiens,
Mus
musculus

Nano-tita-
nium
dioxide

In vivo, lung; in vitro,
macrophage, dendritic
cell, keratinocyte

NLRP3, IL-1
alpha, IL-1
beta, IL-1R1

Yes

Provoost
2011

Mus
musculus

Diesel
exhaust
particles

In vivo, lung, BALF IL-1R1,
NLRP3,
Caspase-1

Conflicting

Reisetter
2011

Mus
musculus,
Homo
sapiens

Carbon
black
nanoparticle

In vitro, macrophage Caspase-1,
IL-1 beta

Yes

Hamilton
2012

Mus
musculus

Nickel In vitro, macrophage NLRP3,
lysosome

Yes

Hirota
2012

Mus
musculus

Particulate
matter

In vivo, lung NLRP3, IL-1
beta

Yes
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DEP-initiated inflammation did not depend on NLRP3-caspase-1 pathway (Provoost
et al. 2011).

6.3.2 Chronic Obstructive Pulmonary Disease

Listed in Table 6.5 are the articles containing discussion on inflammasomes in
COPD.

COPD is an important lung and airway disease, and is increasing in incidence,
especially in developing countries. COPD may affect over 200 million people
worldwide (data from WHO). Long-term cigarette smoking is the most important
risk factor that may initiate the disease. The evidence for the involvement of
inflammasome in cigarette smoking has been discussed in previous section.

IL-1 Signaling Acute exposure to smoke elevated IL-1 beta, while 6 months of
exposure did not. Mice deficient in IL-1R or treatment with pan-caspase or caspase-1
inhibitor were protected from inflammatory cell infiltration and matrix breakdown
during acute smoke exposure. After 6 months of exposure, Il1r�/� mice were 65%
protected against emphysema and completely protected against small airway
remodeling (Churg et al. 2009).

IL-18 Signaling Kang et al. demonstrate that IL-18 is present in exaggerated
quantities in the lungs and the serum from patients with COPD (Kang et al. 2007).
The levels of IL-18 in induced sputum of patients with COPD were also found to be
elevated compared with healthy subjects and were inversely correlated with lung
function (% predicted FEV1 and FEV1/FVC ratio) (Rovina et al. 2009).

Furthermore, targeted overexpression of IL-18 in murine lungs resulted in wide-
spread pulmonary inflammation, emphysema, mucus metaplasia, and airway
remodeling through increased pulmonary CD4+, CD8+, CD19+, and NK1.1+ cells

Table 6.5 Articles containing discussion of inflammasomes in COPD

ID Species Design Element Contribution

Kang 2007 Mus musculus,
Homo sapiens

In vivo, lung;
in vitro, macrophage

IL-18, IL-18R Yes

Churg
2009

Mus musculus In vivo, lung IL-1 beta, IL-1R,
IL-18

Yes

Rovina
2009

Homo sapiens Ex vivo, sputum IL-18 Yes

Cicko
2010

Mus musculus In vivo, lung ATP Yes

Kang 2012 Mus musculus In vivo, lung IL-18 Yes

Bartziokas
2014

Homo sapiens Ex vivo, blood Uric acid Yes

Di Stefano
2014

Homo sapiens Ex vivo, bronchial
mucosa, BALF

NLRP3, caspase-1,
IL-1 beta, IL-18

No
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and type 1 cytokine (IFN-gamma), type 2 cytokine (IL-13), and type 17 cytokine
(IL-17A) (Kang et al. 2012).

Inflammasome Activation An increased level of ATP has been found in the lungs
in a mouse model of smoke-induced acute lung inflammation and emphysema, and
the increased ATP level correlated with pulmonary neutrophilia (Cicko et al. 2010).

Serum uric acid levels were higher in patients with more severe airflow limitation
and in those having frequent exacerbations. Besides, high uric acid levels correlated
with 30-day mortality, prolonged hospitalization, and more aggressive medical care
in COPD patients with exacerbations (Bartziokas et al. 2014).

Recently, Di Stefano et al. reported lack of NLRP3 inflammasome activation,
with no differences in caspase-1 activation, IL-1 beta, or IL-18 levels in bronchial
biopsies or in BALF in patients with stable COPD compared with control subjects
(Di Stefano et al. 2014).

6.3.3 Asthma

Asthma is another important lung disease, characterized by allergic reaction. Aller-
gic inflammatory response in asthma is conventionally characterized by the activa-
tion of Th2 pathway. The importance of Th17 response has now been recognized
(Table 6.6).

IL-1 Signaling Serum IL-1beta levels and expression of IL-1 beta in the bronchial
epithelium and submucosal macrophages were higher in patients with asthma
compared with control subjects (Thomas and Chhabra 2003; Sousa et al. 1996). In
asthmatic patients, IL-1 beta concentrations in the sputum (Konno et al. 1996) and
BALF (Broide et al. 1992) of symptomatic patients were significantly higher than
that in asymptomatic subjects. BALF from patients with status asthmaticus had an
elevated inflammatory activity due to the presence of excessive bioactive IL-1 beta
(Tillie-Leblond et al. 1999). Hastie et al. stratified subjects by sputum granulocytes.
Those patients with both increased eosinophils and neutrophils had the lowest lung
function and increased symptoms. In this subset of patients, IL-1 beta level in the
sputum was positively associated with neutrophil counts (Hastie et al. 2010).

In a mouse model, IL-1 beta combined with TNF alpha can contribute to airway
hyperresponsiveness and methacholine-induced bronchoconstriction (Horiba et al.
2011). It was also reported that the ovalbumin-induced airway hypersensitivity
response was significantly reduced in IL-1 alpha/beta-deficient mice whereas pro-
foundly exacerbated in mice deficient in IL-1Ra, suggesting that IL-1 signaling was
required for Th2 response (Nakae et al. 2003). In a model of mild asthma, IL-1R
signaling was reported to be required, as eosinophilic inflammation and goblet cell
hyperplasia were strongly reduced in Il1r1�/� mice. In contrast, the IL-1R was not
required in an allergic model with adjuvant (Schmitz et al. 2003). Wang et al. applied
a recombinant adenovirus expressing human IL-1ra in an ovalbumin-sensitized
murine model of asthma. Single intranasal delivery before airway antigen challenge
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significantly decreased the severity of airway hyperresponsiveness, reduced pulmo-
nary infiltration, and decreased peribronchial inflammation (Wang et al. 2006).

Inflammasome Activation Direct evidence showed that allergic airway inflamma-
tion depended on NLRP3 inflammasome activation, as Th2 lymphocyte activation and
cytokine production were reduced inmice deficient in NLRP3, ASC, or caspase-1. The
critical role of IL-1R1 signaling was also confirmed in mice deficient in IL-1R1, IL-1

Table 6.6 Articles containing discussion of inflammasomes in asthma

ID Species Design Element Contribution

Broide
1992

Homo sapiens Ex vivo, BALF IL-1 beta Yes

Konno
1996

Homo sapiens Ex vivo, sputum IL-1 beta Yes

Sousa
1996

Homo sapiens Ex vivo, bronchial
biopsies

IL-1 beta, IL-1Ra Yes

Tillie-
Leblond
1999

Homo sapiens Ex vivo, BALF IL-1 beta, IL-1Ra Yes

Schmitz
2003

Mus musculus In vivo, lung IL-1R1 Conflicting

Thomas
2003

Homo sapiens Ex vivo, blood IL-1 beta Yes

Wang
2006

Mus musculus In vivo, lung; ex vivo,
BALF

IL-1Ra Yes

Idzko
2007

Homo sapi-
ens, Mus
musculus

Ex vivo, BALF ATP Yes

Hastie
2010

Homo sapiens Ex vivo, sputum IL-1 beta Yes

Ather
2011

Mus musculus In vivo, lung; in vitro,
dendritic cell,
macrophage

NLRP3, ASC, caspase-
1, IL-1 beta

Yes

Besnard
2011

Mus musculus In vivo, lung NLRP3, ASC, caspase-
1, IL-1 alpha, IL-1 beta,
IL-1R

Yes

Horiba
2011

Mus musculus In vivo, lung IL-1 beta Yes

Kool
2011

Homo sapi-
ens, Mus
musculus

In vivo, lung NLRP3, IL-1 beta No

Allen
2012

Mus musculus In vivo, lung NLRP3, IL-1 beta, IL-18 No

Martin
2013

Mus musculus In vivo, lung NLRP3, IL-1R Conflicting

Kim
2014

Homo sapi-
ens, Mus
musculus

In vivo, lung, ex vivo,
BALF; in vitro, epithe-
lial cell

NLRP3, caspase-1, IL-1
beta, ROS

Yes
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beta, and IL-1 alpha (Besnard et al. 2011). Kim et al. recently demonstrated that levels
of NLRP3 and caspase-1 in BALF from the patients with asthma were significantly
higher than that in healthy subjects. Furthermore, suppression of mitochondrial ROS
generation by NecroX-5 attenuated allergic airway inflammation associated with
inhibition of NLRP3 inflammasome and caspase-1 activation in primary tracheal
epithelial cells and mouse lung tissues. In addition, blockade of IL-1 beta substantially
reduced airway inflammation and hyperresponsiveness in asthmatic mice (Kim et al.
2014). It has been shown that gain of function SNPs in human NLRP3 are linked to
food-induced anaphylaxis and aspirin-induced asthma (Hitomi et al. 2009). In multiple
asthmatic models of mixed Th2/Th17 responses, serum amyloid A activated NLRP3
inflammasome to induce IL-1 beta secretion in dendritic cells and macrophages and
promote CD4+ T cells to secrete IL-17A in an IL-1-dependent manner (Ather et al.
2011). Similarly but differently, Martin et al. reported the importance of caspase-1 and
IL-1R, but not NLRP3, for Th17 development in NO2-promoted allergic airway
disease (Martin et al. 2013). Also, Allen et al. determined that the NLRP3
inflammasome was not required in multiple allergic asthma models in mice. Besides,
in all the models, the cytokines IL-1 beta and IL-18 in the lung were below the level of
detection (Allen et al. 2012). And Kool et al. suggested that NLRP3 and IL-1 beta did
not contribute to the Th2 adjuvant effect of uric acid in mice (Kool et al. 2011).

Elevated ATP was found in the BALF of patients with asthma and ovalbumin-
challenged asthmatic mice (Idzko et al. 2007). Consistently, P2X7R was found to be
upregulated in acute and chronic asthmatic airway inflammation in mice and
humans. Mice deficient in P2X7R or treated with specific P2X7R-antagonist had
reduced airway inflammation in asthma models (Muller et al. 2011).

6.3.4 Fibrotic Lung Diseases

6.3.4.1 Idiopathic Pulmonary Fibrosis (IPF)

IPF is a progressive while irreversible disease, with a general poor prognosis. IPF is
characterized by a histologic or radiologic pattern of usual interstitial pneumonia and
progressive fibrosis of lung parenchyma. Bleomycin is a chemotherapeutic drug
used clinically for a variety of human malignancies. However, a high dose of
bleomycin can lead to lethal lung injury and pulmonary fibrosis in human patients,
as well as in rodent models. Therefore rodent models of bleomycin-induced lung
fibrosis have been widely used for the investigation of human IPF. Bleomycin-
induced fibrosis is also discussed in this section. Table 6.7 listed the articles
containing discussion of inflammasomes in IPF.

IL-1 Signaling Pan et al. observed that in IPF patients, cytokine IL-1 beta was
positive in alveolar macrophages and type 2 pneumocytes in acute pulmonary
fibrotic changes, but not in areas of old fibrosis, suggesting that IL-1 beta may
play a role in the initial pulmonary fibrotic responses (Pan et al. 1996). In vitro study
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found that alveolar macrophages from healthy human subjects released IL-1 beta
after bleomycin challenge (Scheule et al. 1992).

With a single base variation at position +2018 of the IL-1Ra gene, there is an
increased risk of developing cryptogenic fibrosing alveolitis (Whyte et al. 2000). Two
other studies examining another polymorphism at intron 2 of the IL-1Ra gene found no
association with increased susceptibility to IPF (Hutyrova et al. 2002; Riha et al. 2004).

Gasse et al. reported that in bleomycin-induced lung inflammation fibrosis
depended on IL-1R1 signaling, as neutralization of IL-1 beta or specific blockage
of IL-1R1 by antibody reduced bleomycin-induced pathology (Gasse et al. 2007).
Overexpression of IL-1 beta for 7–10 days in rats was reported to induce an increase
of TGF-beta in BALF and progressive interstitial fibrogenesis for the next 60 days,
resembling human pulmonary fibrosis (Kolb et al. 2001). IL-1 beta was further
reported sufficient to induce IL-17 production, required for inflammatory response
to bleomycin (Wilson et al. 2010; Gasse et al. 2011).

Table 6.7 Articles containing discussion of inflammasomes in IPF

ID Species Design Element Contribution

Scheule
1992

Homo sapiens In vitro, macrophage IL-1 beta Yes

Pan 1996 Homo sapiens Ex vivo, lung tissue
specimens

IL-1 beta Conflicting

Whyte
2000

Homo sapiens Ex vivo, lung biopsy IL-1Ra Yes

Kolb 2001 Rattus
norvegicus

In vivo, lung; ex vivo,
BALF

IL-1 beta Yes

Kuwano
2001

Mus musculus In vivo, lung Caspase-1 Yes

Hutyrova
2002

Homo sapiens Ex vivo, blood IL-1Ra No

Kitasato
2004

Homo sapiens Ex vivo, lung tissue,
serum, BALF

IL-18, IL-18R alpha Yes

Riha 2004 Homo sapiens Ex vivo, blood IL-1Ra No

Nakatani-
Okuda
2005

Mus musculus In vivo, lung IL-18 Yes

Gasse
2007

Mus musculus In vivo, lung IL-1R1, IL-1 beta, ASC,
IL-18

Conflicting

Gasse
2009

Mus musculus In vivo, lung NLRP3, caspase-1, IL-1
beta, IL-18, uric acid

Conflicting

Hoshino
2009

Homo sapiens,
Mus musculus

Ex vivo, lung tissue;
in vivo, lung, serum

IL-18, IL-18R alpha,
IL-1 beta, caspase-1

Yes

Riteau
et al. 2010

Homo sapiens,
Mus musculus

In vivo, lung; ex vivo,
BALF

ATP, P2X7R, IL-1 beta Yes

Liu 2011 Homo sapiens Ex vivo, serum,
BALF

IL-18 No

Xu 2012 Homo sapiens,
Mus musculus

In vivo, lung, in vitro,
macrophage

NLRP3, caspase-1, Yes
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IL-18 Signaling Kitasato et al. reported elevated levels of IL-18 in the serum and
BALF of patients with IPF and strongly expressed IL-18 and IL-18R alpha in the
fibroblastic foci (Kitasato et al. 2004). Hoshino et al. reported excessive IL-18 and
IL-18R alpha expression in the lungs of patients with bleomycin-induced lung
injury. They also found that intravenous administration of bleomycin induced the
expression of IL-1 beta and IL-18 in the serum and lungs of mice. Moreover, lung
injury, assessed by fibrosis score, hydroxyproline levels, and wet lung weight, was
significantly attenuated in mice deficient in caspase-1, IL-18, or IL-18R alpha
(Hoshino et al. 2009).

However, Liu et al. failed to find an increase in serum and BALF levels of IL-18
in IPF patients (Liu et al. 2011). Il18�/� mice showed much worse lung injuries
after treatment with bleomycin, as assessed by survival rate, histological images, and
leukocyte infiltration. Besides, pretreatment with IL-18 before bleomycin instillation
appeared to be protective in lung injuries (Nakatani-Okuda et al. 2005).

Inflammasome Activation Bleomycin-induced lung injury depended on NLRP3
inflammasome, as mice deficient in NLRP3 or caspase-1 displayed reduced neutro-
phil influx and IL-1 beta production in the lung. It was found that bleomycin-induced
inflammasome activation is mediated by uric acid. Reduction of uric acid levels with
inhibitor or uricase led to a decrease in IL-1 beta production, lung inflammation, and
fibrosis. In addition, bleomycin-induced inflammation was IL-18-independent
(Gasse et al. 2009). It has also been reported that mice lacking ASC had reduced
neutrophil recruitment and a reduction in IL-1 beta production following bleomycin
challenge (Gasse et al. 2007). Another example is from the research of statin.
Numerous case reports suggested that statins could cause various types of interstitial
lung diseases. Statin pretreatment enhances caspase-1-mediated responses in vivo
and in vitro, which could be abolished in macrophages from mice deficient in
NLRP3 (Xu et al. 2012).

The role of caspase-1 in bleomycin-induced lung injury has also been investi-
gated. Kuwano et al. reported that bleomycin enhanced caspase-1 activity in addition
to elevated expression in inflammatory cells. They also demonstrated that a
pan-caspase inhibitor zVAD-FMK was able to attenuate bleomycin-induced lung
injuries (Kuwano et al. 2001)

ATP levels were elevated inBALF frompatientswith IPF and frommice treatedwith
bleomycin. Mice deficient in P2X7R or neutralized against ATP in the airways potently
inhibit bleomycin-induced lung inflammation and remodeling (Riteau et al. 2010).

6.3.4.2 Cystic Fibrosis

Cystic fibrosis is caused by mutations of the cystic fibrosis transmembrane conduc-
tance regulator and is the most common autosomal recessive disorder in western
countries. Patients with cystic fibrosis often experience recurrent and chronic infec-
tions with Pseudomonas aeruginosa, as well as Staphylococcus aureus and
Haemophilus influenzae (discussed in Sect. 1.1.3).
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Grassme et al. demonstrated the activation of caspase-1 and upregulation and
membrane recruitment of ASC in the lungs of CF mice. These activations were
associated with elevated levels of the signaling lipid-derived mediator, ceramide.
Consistently, they also observed a normalization of IL-1 beta in the lungs after
treatment with caspase-1 inhibitors (Grassme et al. 2014).

6.3.4.3 Silicosis

Crystalline silica is very common in occupational and environmental settings.
Prolonged exposure in the workplace may lead to the development of silicosis,
which is irreversible, progressive pulmonary fibrosis. Silica exposure is a high-
priority public health concern. Alveolar macrophages, and their production of IL-1
beta, have been suggested to play a crucial role during the early inflammatory
response after exposure to silica. Table 6.8 lists the articles containing discussion
of inflammasomes in silicosis.

IL-1 Signaling Silica induced a release of IL-1 beta in human alveolar macro-
phages in a caspase-1-dependent manner (Iyer et al. 1996) and in the lungs of silica-
exposed mice (Davis et al. 1998).

A polymorphism in IL-1Ra (+2018), but not IL-1 beta (+3953), was increased in
a population of Caucasian coal miners with silicosis, indicating that this variant may
confer susceptibility to developing silicosis (Yucesoy et al. 2001).

In addition, neutralizing IL-1 beta with monoclonal antibody reduced silica-
induced inflammation and fibrosis by inhibiting mRNA expression of inflammatory
and fibrogenic mediators (TGF beta, collagen I, and fibronectin) and modulating the
Th1/Th2 balance toward a Th2-dominant response (Guo et al. 2013). The anti-
fibrotic effect of inhibiting IL-1 beta was also reported by Piguet et al. where the
administration of recombinant IL-1Ra reduced collagen deposition and the forma-
tion of fibrotic nodules in mice (Piguet et al. 1993). More directly, exposure of mice
deficient in IL-1 beta to silica resulted in reduced lung inflammation, apoptosis, and
significantly smaller silicotic lesions than in wild-type mice over a 12 weeks course
(Srivastava et al. 2002).

Inflammasome Activation Stimulation of macrophages with silica resulted in the
secretion of IL-1 beta and IL-18 in an inflammasome-dependent manner, as macro-
phages deficient in NLRP3, ASC, or caspase-1 all displayed a marked defect in their
ability to secrete cytokines. They also found that activation of the NLRP3
inflammasome by silica required both a K+ efflux and the generation of ROS (Cassel
et al. 2008). Similarly, NLRP3 inflammasome activation was triggered by ROS
generated by NADPH oxidase. In a model of asbestos inhalation, Nalp3�/� mice
showed diminished recruitment of inflammatory cells to the lungs, paralleled by
lower cytokine production (Dostert et al. 2008). Hornung et al. demonstrated that
silica activated caspase-1 and induced the release of mature IL-1 beta in human
PBMCs. IL-1 mediated the neutrophil influx after exposure to silica crystals. The
phagocytosis of silica by macrophages resulted in lysosomal destabilization and
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subsequent rupture releasing proteolytic enzymes, such as cathepsin B into the
cytosol, and the activation of the NLRP3 inflammasome (Hornung et al. 2008). In
a case-control study, Ji et al. found that an SNP in the NLRP3 gene (rs1539019) was
associated with a significant increase in coal workers pneumoconiosis in a Chinese
population. This association was more pronounced in patients with stage I disease
suggesting a potential role for the NLRP3 inflammasome in the development of
silicosis (Ji et al. 2012). NLPR3 activation has also been reported in nonmyeloid
cells. NLRP3 activation, as well as activation of caspase-1, led to maturation and
secretion of IL-1 beta in human bronchial epithelial cell lines and primary human
bronchial epithelial cells (Peeters et al. 2013).

ATP was released by macrophages after exposure to silica. The activation of the
NLRP3 inflammasome relied on purinergic receptors and pannexin/connexin
hemichannels. The use of specific P2X7 receptor inhibitors, or abrogation of ATP
in primed human monocytic cell lines, was able to prevent silica-induced IL-1 beta
production (Riteau et al. 2012). This was further manifested in P2X7R knockout
mice. Inflammatory cell infiltration and collagen deposition, cell apoptosis, and

Table 6.8 Articles containing discussion of inflammasomes in silicosis

ID Species Design Element Contribution

Piguet 1993 Mus musculus In vivo,
lung

IL-1 beta Yes

Iyer 1996 Homo sapiens In vitro,
macrophage

IL-1 beta Yes

Davis 1998 Mus musculus In vivo,
lung

IL-1 beta Yes

Yucesoy
2001

Homo sapiens Ex vivo,
lung tissue

IL-1Ra, IL-1 beta Conflicting

Srivastava
2002

Mus musculus In vivo,
lung

IL-1 beta Yes

Cassel
2008

Mus musculus In vitro,
macrophage

NLRP3, ASC, caspase-1, IL-1
beta, IL-18, K+ efflux, ROS

Yes

Dostert
2008

Homo sapiens,
Mus musculus

In vitro,
macrophage

NLRP3, ASC, caspase-1, IL-1
beta, ROS, NADPH

Yes

Hornung
2008

Homo sapiens,
Mus musculus

In vitro,
macrophage

NLRP3, caspase-1, IL-1 beta,
lysosomal destabilization

Yes

Ji 2012 Homo sapiens Ex vivo,
blood

NLRP3 Yes

Riteau
2012

Homo sapiens,
Mus musculus

In vitro,
macrophage

NLRP3, IL-1 beta, ATP, P2X7R Yes

Guo 2013 Mus musculus In vivo,
lung

IL-1 beta Yes

Peeters
2013

Homo sapiens In vitro,
epithelial
cell

NLRP3, caspase-1, IL-1 beta Yes

Moncao-
Ribeiro
2014

Mus musculus In vitro,
macrophage

IL-1 beta, P2X7R Yes
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NF-κB activation as well as TGF-beta, nitric oxide, ROS, and IL-1 beta secretion
were reduced in knockout mice (Moncao-Ribeiro et al. 2014).

6.3.4.4 Asbestosis

Similar to silicosis, asbestosis often occurs as an occupational disease, particularly in
developing countries. The inhalation of asbestos can also lead to lung cancer,
mesothelioma, and pleural diseases. The articles containing discussion of
inflammasomes in asbestosis are summarized in Table 6.9.

IL-1 Signaling Cells recovered in BALF or alveolar macrophages from patients
with asbestosis were reported to release higher levels of IL-1 beta in comparison
with control groups (Zhang et al. 1993; Perkins et al. 1993). In vivo models also
demonstrated that asbestos exposure can result in enhanced IL-1 beta secretion in
BALF (Haegens et al. 2007).

Inflammasome Activation Hillegass et al. reported that asbestos exposure was
associated with an increase in NLRP3 expression and caspase-1 activation in mesothe-
lial cells, leading to secreted IL-1 beta and IL-18, which could be attenuated by
downregulation of NLRP3. They also reported that asbestos challenge had no signifi-
cant effect on the NLRP1 or AIM2 inflammasomes (Hillegass et al. 2013). Girardelli
et al. reported that in a cohort of Italian patients with asbestos-induced mesothelioma,
SNPs in the NLRP1, but not NLRP3 gene, may be associated with the disease
(Girardelli et al. 2012). Furthermore, Nlrp3�/� mice were reported to have defects in
IL-1 beta secretion and immune cell recruitment following asbestos exposure.However,
NLRP3 was not critical in the chronic development of asbestos-induced mesothelioma,
as a similar incidence of malignant mesothelioma in knockout mice (Chow et al. 2012).

Table 6.9 Articles containing discussion of inflammasome in asbestosis

ID Species Design Element Contribution

Perkins
1993

Homo sapiens In vitro, alveolar
macrophage

IL-1 beta Yes

Zhang
1993

Homo sapiens In vitro, BALF
cells

IL-1 beta Yes

Haegens
2007

Mus musculus In vivo, lung,
BALF

IL-1 beta Yes

Chow
2012

Mus musculus In vivo, lung NLRP3, IL-1 beta Conflicting

Girardelli
2012

Mus musculus In vitro,
macrophage

IL-1 beta, P2X7R Yes

Hillegass
2013

Homo sapiens,
Mus musculus

In vitro, meso-
thelial cells

NLRP3, caspase-1, IL-1 beta,
IL-18, NLRP1, AIM2

Conflicting
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6.3.5 Pulmonary Hypertension

Pulmonary hypertension is characterized by sustained elevation of the pulmonary
arterial pressure (>25 mm Hg). Prolonged high pressure in pulmonary artery system
may lead to right ventricular failure. Table 6.10 lists the studies on inflammasomes in
pulmonary hypertension.

In a mice model, hypoxia exposure caused pulmonary hypertension, including
increased right ventricular systolic pressure and pulmonary vascular remodeling,
along with activation of the NLRP3 inflammasome and caspase-1, as well as IL-1
beta and IL-18 production. These effects could be reversed with a superoxide
dismutase mimetic (Villegas et al. 2013). In another study, Asc�/� mice, but not
Nlrp3�/�, mice were resistant to hypoxia-induced pulmonary hypertension, as
evidenced by no significant changes in levels of caspase-1, IL-18, or IL-1 beta,
reduced right ventricular systolic pressure and reduced pulmonary vascular
remodeling, indicating the possible involvement of alternate inflammasome com-
plexes involving ASC (Cero et al. 2015).

6.4 Conclusion

Inflammasomes have emerged as an important regulator of the innate immune
system and have significantly affected the understanding of the pathogenesis of
many diseases. In this chapter, we reviewed the evidence of inflammasome-related
components in the progression of pulmonary diseases. We can easily appreciate how
the discovery of the inflammasome affects our understanding of the role of IL-1 and
IL-18 signaling in lung disease. Still, in some diseases, the importance of
inflammasomes has not been fully investigated. Besides, NLRP3 inflammasome in
macrophage is currently the most clearly defined type. The potential of other
inflammasomes in nonmyeloid cells needs to be further studied in the process of
injury and recovery in lung diseases.

Table 6.10 Articles containing discussion of inflammasomes in pulmonary hypertension

ID Species Design Element Contribution

Villegas
2013

Mus
musculus

In vivo,
lung

NLRP3, caspase-1, IL-1 beta,
IL-18

Yes

Cero 2015 Mus
musculus

In vivo,
lung

NLRP3, ASC, IL-1 beta, IL-18 Conflicting
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Abstract One of the main steps in the development of the life in the earth is
multicellularity. It enables cell differentiation and the development of morphological
structures within an organism and is an essential factor in how to recognize friendly
cells that are part of the multicellular organism and which foreign organisms can be
harmful. Recognition includes devices such as the major histocompatibility complex
(MHC), and the pattern recognition receptors (PRRs). PRRs are a group of proteins
expressed by cells of the innate immune system that identify two classes of products:
pathogen-associated molecular patterns (PAMPs), related to microbial pathogens,
and damage-associated molecular patterns (DAMPs), associated with cell compo-
nents that are released during cell damage or death. All these activate the
inflammasome, which is a multiprotein oligomer that includes caspase 1, PYCARD,
NALP, and caspase 5 (also known as caspase 11 or ICH-3). It is responsible for
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activation of inflammatory processes and has been shown to induce cell pyroptosis, a
programmed cell death distinct from apoptosis, and promotes the maturation of the
inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18). We review
whether inflammasome is related to diseases that can occur in the oral cavity. The
mouth is always a possible environment for the development of pathological condi-
tions because of the wide variety of microorganisms. Small variations in the equi-
librium of the oral flora can cause disorders that could affect the organism in a
systemic form. We provide data on periodontal disease, candidiasis, herpes virus,
oral cancer, caries, and other oral diseases. There are very few papers that study this
issue; therefore, we need more investigation and publications about inflammatory
molecular processes, and more specifically, related to the inflammasome complex.

Keywords Periodontal diseases · Inflammasome · Oral diseases · Cancer · Caries

7.1 Introduction

Life is the ability to utilize and control energy derived from the sun that distinguishes
every unicellular or multicellular organism. One of the main steps in the develop-
ment of lives on Earth is the multicellularity by which the concept of what an
individual organism is has been redefined and involves the transition from the
microscopic to the macroscopic domain. Multicellularity enables cell differentiation
and development of morphological structures within an organism that require cell–
cell adhesion and intercellular communications to coordinate various activities
(Lyons and Kolter 2015). It is an essential factor in how to recognize friendly cells
that are part of the multicellular organism and which foreign organisms can be
harmful. It is named allorecognition, which is defined as the ability of an individual
organism to distinguish its tissues from those of another. Also, the different levels of
cell development in an organism assume various types of energy consumption, the
production of molecules, and waste disposal. All of them involve the production of
molecules or damaged cellular structures that need to be identified and eliminated.
When the external or internal aggression has been identified, the immune system
starts to work and the host defense system comprising many biological structures
and processes within an organism is activated. Therefore, it is essential for a cell that
is part of a superior multicellular organism to have a device to detect foreign
aggression that eliminates all the harmful molecules or structures. These devices
include the major histocompatibility complex (MHC) and the pattern recognition
receptors (PRRs). The MHC is a type of cell surface protein indispensable for the
acquired immune system to identify foreign molecules in vertebrates that determines
histocompatibility. PRRs are a group of proteins expressed by cells of the innate
immune system that identify two classes of products: pathogen-associated molecular
patterns (PAMPs), related to microbial pathogens, and damage-associated molecular
patterns (DAMPs), associated with cell components that are released during cell
damage or death. These may be on the membrane surface, e.g., Toll-like receptors
(TLRs) and C-type lectin receptors (CLRs), or within the cytoplasm, e.g., NOD-like
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receptors (NLRs) and RIG-I-like receptors. All these activate the inflammasome,
which is a multiprotein oligomer that includes caspase 1, PYCARD, NALP, and
caspase 5 (also known as caspase 11 or ICH-3). It is responsible for activation of
inflammatory processes and has been shown to induce cell pyroptosis, which is a
programmed cell death distinct from apoptosis, and promotes the maturation of the
inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18) (Patel et al.
2017).

If life is energy, the main issue for all organisms is to obtain nutrients to keep the
metabolic process active. In prokaryotic cells, the first step of nutrient intake consists
of a break through the cell membrane with the mechanism of endocytosis. The main
characteristic in the eukaryotic cells is the presence of membrane-bounded organ-
elles that allow the energetic and metabolic advantage offered by the intracellular
digestion of substrates (de Duve 2007). The multicellular organisms need more
energy and have evolved a cell specialization by developing a gastrointestinal
tract. It started as a simple blind sac-like structure and then became more heteroge-
neous, regionalized, and acquired a second opening, with a mouth and an anus
(Soukup et al. 2013). The gastrointestinal tract takes in food, then digests it with the
decomposition of highly insoluble food ingredients into small water-soluble food
molecules, so that they can be absorbed into the blood plasma without any immunity
reaction, and finally expels the remaining waste as feces. The oral cavity is the place
in which the digestive process starts with chewing, salivation, and swallowing.
Therefore, it is essential to keep it healthy and avoid diseases. However, the oral
microbiota is abundant, diverse, and has high a capacity for producing pathological
conditions. Oral diseases are among the most common human diseases. For instance,
periodontal disease can affect up to 90% of the worldwide population and is an
infectious disease related to some systemic conditions, such as cardiovascular
disease and diabetes (Pihlstrom et al. 2005).

Our goal is to review whether the inflammasome is related to diseases that can
occur in the oral cavity.

7.2 Periodontal Disease

Periodontal disease is a chronic inflammatory illness that affects many adults, and it
is characterized by a chronic infection related to Gram-negative anaerobic bacteria in
the dental biofilm. It leads to the irreversible destruction of tissues supporting the
teeth and is clinically detectable by periodontal pockets and alveolar bone loss
(Pihlstrom et al. 2005). Studies report how severe periodontitis affects 5–20% of
adult populations worldwide, and it is one of the preeminent causes of tooth loss in
both developed and developing countries (Pihlstrom et al. 2005; Petersen et al. 2005;
Jin et al. 2011). It has been suggested that over 50% of the European population
suffer from some form of periodontitis and over 10% have severe disease, with
prevalence increasing to 70–85% of the population aged 60–65 years (König et al.
2010).
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In nature, the progression of periodontitis is inflammatory, with the main triggers
of oral inflammation usually residing in the oral microbes and the balance of its
components (Yilmaz and Lee 2015). Within the host’s inflammatory response,
various biochemicals are strongly associated with the severity and progression of
periodontal disease, interleukins (IL-1, IL-18), prostaglandins (PGE2), and matrix
metalloproteinases (MMPs) (Orozco et al. 2006). IL-1β has been found to be
significantly increased in the periodontal tissues and gingival fluid from diseased
sites, compared with healthy sites (Stashenko et al. 1991; Masada et al. 1990). IL-1β
up-regulates MMPs and down-regulates tissue inhibitors of metalloproteinase pro-
duction (Ohshima et al. 1994), and is also a powerful and potent bone-resorbing
cytokine (Schwartz et al. 1997), which suggests that it plays a role in degrading the
extracellular matrix in periodontitis (Bascones-Martínez et al. 2012).

Although inflammasome signaling is becoming well established in the progres-
sion of various diseases, there is intriguingly mounting evidence supporting the
association of the oral microbiome with the same array of conditions (Han andWang
2013). The oral cavity is essentially a diverse ecosystem, harboring vast numbers of
oral microorganisms, and can serve as a reservoir for possible systemic dissemina-
tion of microorganisms or their components and the release of inflammatory signals,
possibly leading to inflammation at distant body sites (Amodini Rajakaruna et al.
2012). With advances in technologies for microbial detection, a diverse group of oral
species has additionally been directly detected in several systemic chronic diseases
(Detert et al. 2010).

Inflammasomes are emerging as chief regulators of the host innate immune
defense system in chronic inflammatory diseases, and their role against microbial
pathogens is becoming critical in controlling and limiting invading microbes. On the
other hand, increasing numbers of microorganisms and their virulence factors are
found to function by targeting inflammasomes and modulating IL-1β and IL-18
processing, which, taken together, could be involved in the development and/or
progression of various inflammatory diseases, including periodontal disease (Davis
et al. 2011; Kim and Jo 2013).

7.2.1 NLRP3 in Periodontitis

Inflammasome complexes appear to assume a pivotal role in periodontal disease and
the inflammasome-associated inflammatory mediators involved in the progression of
the disease have been highlighted by several clinical studies. The relationship
between the interleukin-1 cytokine family and the NLRP3 inflammasome complex
has been revealed by Bostanci et al. (2009). The findings indicated that higher
expression levels of NLRP3 and NLRP2, but not of apoptosis-associated speck-
like protein containing a carboxyl-terminal caspase recruitment domain (ASC), were
detected in gingival tissue samples from patients with three forms of the periodontal
disease (gingivitis, chronic periodontitis [CP], and generalized aggressive periodon-
titis [G-AgP]) compared with healthy subjects. The mRNA expression of NLRP3, its
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putative antagonist NLRP2, its effector molecule ASC, IL-1β, and IL-18 are detected
by quantitative real-time polymerase chain reaction (qPCR) in gingival tissues from
patients with gingivitis, CP, G-AgP, and healthy subjects. The data indicated that
NLRP3 and NLRP2, but not ASC, were significantly expressed at higher levels in
the three forms of the disease compared with healthy subjects. Park et al. (2014) had
similar results in gingival crevicular fluid and gingival tissue samples from perito-
nitis sites compared with healthy sites. Examining the distribution and intensity of
NLRP3, NLRP1, and AIM2 expression in gingival tissues with different types of
periodontitis (patients with chronic and G-AgP compared with healthy subjects) by
qPCR and immunohistochemistry, Xue et al. (2015) found that overall intensity of
NLRP3 expression was significantly higher in CP or G-AgP than in healthy tissue,
more considerably in the periodontal epithelium. NLRP1 was barely expressed in the
samples, whereas absent in melanoma 2 (AIM2) was better represented in the CP
group. In another study, gingival samples from patients with CP, and with CP and
type 2 diabetes mellitus compared with healthy subjects, were analyzed using
immunohistochemistry (Huang et al. 2015). Compared with control subjects,
NLRP3 and IL-1β were significantly up-regulated in the gingival epithelium of
patients with CP and/or type 2 diabetes mellitus, but the authors observed no
differences between groups with periodontitis with or without type 2 diabetes
mellitus. Recently, a study in NLRP3-deficient mice infected with Porphyromonas
gingivalis showed that this bacterial challenge significantly increased the loss of
alveolar bone; gingival expression of pro-IL-1β, pro-IL-18, and receptor activator of
nuclear factor kappa-B ligand; production of IL-1β, IL-6, and IL-18; and caspase-1
activity in peritoneal macrophages of wild-type mice. In contrast, it did not affect
NLRP3-deficient mice. Meanwhile, mRNA expression of OPG in gingival tissue
and peritoneal IL-6 production were significantly higher in NLRP3 knock-out
(KO) mice (Yamaguchi et al. 2017). This evidence suggests that different
inflammasomes, such as NLRP1, NLRP2, NLRP3, and AIM2, and their products
IL-1β and IL-18 are over-expressed in gingival tissues from patients with periodon-
tal diseases compared with healthy controls, confirming that these complexes are
involved in the pathogenesis of periodontitis to different degrees.

Inflammatory and immune mechanisms turned on by infectious agents are crucial
in the development of atherosclerosis. Numerous epidemiological studies have
demonstrated that host immune reactions against persistent infectious pathogens,
including Porphyromonas gingivalis, may promote the development of atheroscle-
rosis (Kurita-Ochiai et al. 2015). In 2015, Yamaguchi et al. challenged orally
spontaneously hyperlipidemic mice with wild-type P. gingivalis significantly
increasing the area of aorta covered with atherosclerotic plaque and alveolar bone
loss, compared with gingipain-null mutant or FimA-deficient mutant strains
(Yamaguchi et al. 2015). The challenge also increased IL-1β, IL-18 and TNF-α
production in peritoneal macrophages, and gingival or aortic gene expression of
NLRP3, pro-IL-1β, pro-IL-18, and pro-caspase-1. In another study performed by
Velsko et al. (2015), the ability of a polymicrobial consortium of P. gingivalis,
Treponema denticola, Tannerella forsythia, and Fusibacterium nucleatum to colo-
nize the periodontium and induce local and systemic inflammatory responses was
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investigated. The author’s observations suggested that polybacterial infection with
periodontal pathogens triggers aortic TLR and inflammasome signaling and
increases aortic oxidative stress.

7.2.2 Porphyromonas gingivalis

Porphyromonas gingivalis is the bacterium most frequently associated with CP and
can be detected in up to 85% of the disease sites (Yang et al. 2004), whereas in
healthy sites, it is rarely found or only in small numbers (Bostanci and Belibasakis
2012). The presence of P. gingivalis in periodontal pockets may be a predictor of
disease progression (van Winkelhoff et al. 2002) and a positive correlation is found
between the quantity of P. gingivalis and pocket depth (Kawada et al. 2004).
P. gingivalis, like all Gram-negative bacterial species, is covered by a lipopolysac-
charide (LPS), which is a component of the outer membrane recognized by the host
that can trigger intracellular signaling events. The affinity of LPS to its PRRs, such
as the TLRs and CD14, enables discernment between commensal and pathogenic
species. The P. gingivalis LPS is a stimulator of proinflammatory responses and
bone resorption, as demonstrated in experimental animal models. Owing to the
importance of this bacterium in periodontal diseases, several in vitro studies have
investigated its effects on different cell populations of the periodontium.

One of the strategies for observing the effects of P. gingivalis on the tissues is to
challenge a certain cell line with live cultures of this bacterium, an approach that
several studies have followed. Bostanci et al. (2009) challenged the human
myelomonocytic cell line, Mono-Mac-6, with P. gingivalis, and observed that
although the untreated cells showed low levels of expression of NLRP3, the infected
cells showed a high concentration of expression of NLRP3, IL-1β, and IL-18
(Yamaguchi et al. 2015). Park et al. in a recent in vitro study, examined the
mechanisms of activation of NLRP3 and IL-1β secretion in a human acute mono-
cytic leukemia cell type (THP-1) differentiated to macrophages. It has been discov-
ered that activation of both NLRP3 and AIM2 is necessary for the secretion of
P. gingivalis-induced caspase-1-dependent IL-1β via TLRs 2 and 4. Some studies
have added DAMPs to their methodology. Yilmaz et al. found that P. gingivalis
down-regulated NLRP3 expression and induced production of pro-IL-1β, but only
promoted the secretion of mature IL-1β upon stimulation with danger signal extra-
cellular ATP in a primary gingival epithelial cell model (Yilmaz et al. 2010).
Moreover, P. gingivalis may induce the production of DAMPs itself. Jun et al.
observed that P. gingivalis induced activation of caspase-1, caspase-4, and induced
pyroptotic cell death in THP-1-derived macrophages, but only at low concentrations.
These results suggest that P. gingivalis might modulate the host immune responses,
in favor of pathogen survival and persistence. P. gingivalis induced the release of
ATP, too, which ultimately leads to caspase-1 activation (Jun et al. 2017).

Another strategy for studying P. gingivalis in vitro has been to use culture
supernatants or the bacterial LPS as PAMPs. Hamedi et al. reported that
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P. gingivalis supernatants differentially regulated IL-1β and IL-18 from human
monocytes. P. gingivalis enhanced IL-1β and IL-18 mRNA expression, the former
being induced earlier, but transiently. IL-18 up-regulation was not affected by heat
inactivation or chemical inhibition of gingipains, whereas both treatments resulted in
a 50% reduction of IL-1β expression. Purified P. gingivalis LPS enhanced both
IL-1β and IL-18 expression. However, only IL-1β, but not IL-18, secretion was
detected and was up-regulated by P. gingivalis. Therefore, cytokines of the IL-1
family may participate via different pathways in the pathogenesis of periodontitis
(Hamedi et al. 2009). Champaiboon et al. (2014) challenged primary human
monocyte-derived macrophages (M1 and M2 macrophages) and human coronary
artery endothelial cells (HCAECs) with P. gingivalis LPS as PAMPs and cholesterol
crystals (CCs) as DAMPs. The authors found a marked release of IL-1β from
LPS-primed M1 and M2 macrophages treated with CCs. On the other hand,
HCAECs showed no release of IL-1β in response to P. gingivalis LPS priming
and treatment with either CCs or extracellular danger molecule ATP. The authors
conclude that the mechanistic role of periodontal infection in inflammasome activa-
tion as a cause of atherosclerotic vascular disease requires further investigation
(Champaiboon et al. 2014).

Some authors have studied strategies to reduce the expression of NLRP3 and its
products. Li et al. induced the production of heme oxygenase-1 (HO-1), a ubiquitous
inducible cellular stress protein and an endogenous cytoprotective enzyme, by hemin
on gingival epithelial cells (GECs) and compared the results when cells were
challenged with LPS, with or without hemin. The cells cultivated with LPS + hemin
demonstrated less NLRP3 formation and overexpression and lower production of
IL-1β, leading to the conclusion that the activation of HO-1 protects LPS-induced
inflammatory damage in GECs and that it may be used as a target for the prevention
and treatment of CP (Li et al. 2014).

Some researchers suggest that P. gingivalis might modulate specific
inflammasome components and successfully colonize and persist in host cells.
Belisakis et al. challenged gingival fibroblasts with a 10-species and a 9-species
biofilm model, the second without P. gingivalis. The authors observed that the
exclusion of P. gingivalis from the biofilm partially rescued NLRP3 and IL-1β
expression, concluding that subgingival biofilms down-regulate NLRP3 and IL-1β
expression, partly because of P. gingivalis (Belibasakis et al. 2013). Another study
by Taxman et al. (2012) performed in an in vitro mouse macrophage model,
demonstrated that P. gingivalis could synergistically regulate the invasion of host
cells by F. nucleatum by inhibiting both F. nucleatum-induced IL-1β and IL-18
processing and F. nucleatum-promoted cell death (Taxman et al. 2012).

P. gingivalis is not an aggressor of the inflammatory response, but rather an
opportunist that can cross-talk with the host and subvert its defense mechanisms.
Using this strategy, P. gingivalis prolongs its survival and becomes established in the
periodontal pocket (Hajishengallis et al. 2011). Preferably, it deregulates the innate
immunity, which may, in turn, impair adaptive immunity (Pathirana et al. 2010).
Major representative examples of these abilities are its capacity to degrade human
defensins (Carlisle et al. 2009), its resistance to oxidative burst killing by
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polymorphonuclear neutrophils (PMNs) (Mydel et al. 2006) and its ability to inhibit
“at will” the production of critical proinflammatory cytokines (Bostanci et al. 2007).

7.2.3 Aggregatibacter actinomycetemcomitans

Aggregatibacter actinomycetemcomitans is a gram-negative capnophilic
coccobacillus, which is commonly isolated from the oral cavity of adolescents and
young adults afflicted by aggressive periodontal disease states (Slots et al. 1980). In
localized juvenile periodontitis, it was described as affecting first molars and then
incisors preferentially (Armitage 1999). A. actinomycetemcomitans possesses dif-
ferent well-studied virulence factors, among which leukotoxin is suggested to play a
significant role in the pathogenicity. Leukotoxin belongs to the repeats-in-toxin
(RTX) family, which is produced by many other Gram-negative pathogens such as
Actinobacillus pleuropneumoniae, Escherichia coli, Bordetella pertussis, and
Mannheimia haemolytica. The toxins of the RTX family selectively kill human
leukocytes by inducing apoptosis and lysis (Kelk et al. 2011).

As with P. gingivalis, some studies have researched the effects of
A. actinomycetemcomitans, using live strains of the bacteria. Zhao et al. infected
human osteoblastic cells with A. actinomycetemcomitans and observed that the
apoptosis of the cells was significantly enhanced. Expression levels of both
NLRP3 and ASC were increased dramatically after exposure to the bacteria. The
secretion of mature IL-1β and IL-18 was extensively induced in infected cells
compared with the non-invasion group (Zhao et al. 2014). In another in vitro
study, leukotoxin and cytolethal distending toxin gene KO mutant strains of
A. actinomycetemcomitans were used to challenge human mononuclear leukocytes.
Only up-regulation of NLRP3, IL-1β, IL-18, and reduction of NLRP6 were
observed, but no other inflammasome components, such as ASC, were affected
(Belibasakis and Johansson 2012).

As for studies using leukotoxin to challenge different cell strains in vitro, Kelk
et al. (2005) tested human macrophages with leukotoxin or LPS from
A. actinomycetemcomitans or LPS from Escherichia coli. Leukotoxin induced
abundant production of IL-1β and caspase 1 compared with controls, proving that
leukotoxin from A. actinomycetemcomitans can trigger inflammatory reactions on
other cells, not only on leucocytes (Kelk et al. 2005).

The common pathway usually described for the induction of IL-1β is through the
NLRP3/caspase-1 pathway, but Okinaga et al. (2015), in an in vitro study on mouse
macrophages, described periodontopathic invasion with A. actinomycetemcomitans
inducing the production of ROS and the release of cathepsin B. Moreover, IL-1β
processing was down-regulated by inhibition of these molecules, but not caspase-1
or NLRP3, suggesting that A. actinomycetemcomitans invasion in mouse macro-
phages might induce IL-1β production, which is dependent upon ROS and
cathepsin B, but not NLRP3/caspase-1 activity (Okinaga et al. 2015).
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Xylitol is a well-known anti-caries and anti-inflammatory agent, but its effect on
the inflammasome had not been researched. Kim et al. (2016) studied the effects of
inflammasome activation, by supplementing xylitol to macrophages infected with
A. actinomycetemcomitans. The authors observed that xylitol inhibited the produc-
tion of IL-1β and AIM2 inflammasome, seen in the control group, by suppressing the
internalization of A. actinomycetemcomitans into cells (Kim et al. 2016). Xylitol
may be used as a therapeutic weapon for the prevention of periodontal inflammation
caused by A. actinomycetemcomitans.

7.2.4 Treponema denticola, Tannerella forsythia,
and Mycoplasma salivarium

Treponema denticola is a spirochete that is identified in several gingivitis cases,
especially its presence in necrotizing ulcer gingivitis, root canal infection, and acute
apical abscesses. T. denticola is a relevant pathogen in periodontal and pulpal
processes, its aggressiveness is due to a diversity of virulence factors, emphasizing
its dentilisin, mobility and its ability to modulate the defensive response of the host
(Dashper et al. 2011). T. forsythia is an anaerobic Gram-negative member of the
Cytophaga-Bacteroides family, which was initially described as Bacteroides
forsythus by Tanner and Stillman (1993) and later reclassified as Tannerella for-
sythia by Sakamoto et al. (2002) based on 16S rRNA phylogenetic analysis.
T. forsythia is associated more frequently and/or at higher levels with various
forms of the disease, including gingivitis and chronic and aggressive periodontitis,
than with health. Several studies have also implicated T. forsythia in the progression
of clinical attachment loss associated with periodontitis (Sharma 2010).

Jun et al. (2008, 2012) in two in vitro studies, described a pathway of how
T. denticola activates the NLRP3 inflammasome through Td92, a protein present
on its surface. The direct interaction of Td92 with the cell membrane integrin α5β1
resulted in ATP release and K+ efflux, which are the main events in NLRP3
activation (Jun et al. 2008, 2012). Jun et al. also studied how macrophages reacted
to the infection with T. denticola and T. forsythia. Both T. denticola and T. forsythia,
induced pyroptotic cell death and the activation of caspase-1 and caspase-4 in
macrophages (Jun et al. 2017).

Mycoplasmas, the smallest self-replicating microorganisms without cell walls,
cause various infectious diseases in humans and animals, such as atypical pneumo-
nia, nongonococcal urethritis, and arthritis. Mycoplasma salivarium is a
non-fermenting species and is part of the human oral microbial flora and inhabits
the level of gums and dental plaque. This microorganism is isolated more frequently
from the periodontal cavity of the subjects with this disease (Engel and Kenny 1970).
The antibody response to this mycoplasma is significantly high in patients compared
with healthy subjects (Watanabe et al. 1986). Mycoplasma salivarium induces the
production of IL-6 and IL-8 in gingival fibroblasts (Shibata et al. 1997).
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Sugiyama et al. (2015) studied the association between M. salivarium and
periodontitis and elucidated the etiological roles of M. salivarium in periodontal
diseases. Their study determined whether M. salivarium can activate the
inflammasome to induce IL-1β production by innate immune cells such as dendritic
cells or macrophages and, if so, what kinds of inflammasomes are activated by
M. salivarium,M. pneumoniae, and their heat-killed cells. The authors observed that
live and heat-killed M. salivarium and M. pneumoniae cells induced the production
of IL-1β by dendritic cells and pyroptosis. Live M. salivarium and M. pneumoniae
lost the ability to induce IL-1β production by macrophages from ASC- and caspase-
1-deficient mice almost completely, but not entirely on macrophages from NLRP3-
deficient mice. These results suggest that live M. salivarium and M. pneumoniae
might be capable of activating several types of inflammasomes including the NLRP3
inflammasome (Sugiyama et al. 2015).

7.3 Other Oral Infectious Diseases

7.3.1 Candidiasis

Humans need to be protected from the damage a huge variety of microorganisms can
cause. When we talk about the fungi kingdom we need to highlight the Candida
family and especially the Candida albicans species. Candida is an ascomycete
(Arendorf and Walker 1979), opportunistic (Repetto et al. 2012), polymorphic
fungi. Fungal infections are becoming increasingly prevalent (Richardson and
Moyes 2015). Candida species are the fourth most common pathogens in nosoco-
mial bloodstream infections in the USA and Europe (Chen et al. 2013). Candida
albicans colonizes in an asymptomatic way 65% of healthy people (Joly and
Sutterwala 2010). Its overgrowth is limited by competing commensal bacteria and
host defense (Tomalka et al. 2011). Alterations in the normal flora cause Candida
overgrowth. It is usually produced by antibiotic treatment or immunocompromised
states such as AIDS, during chemotherapy or following allogenic transplantation
(Joly and Sutterwala 2010). Candida overgrowth results on oropharyngeal candidi-
asis (OPC, also recognized as thrush) or denture stomatitis (Abu-Elteen and
Abu-Alteen 1998).

Candida albicans can grow in several forms: unicellular yeast, pseudo hyphae
and hyphae. Candida is capable of changing the morphological and physical struc-
ture during growth and this development is reversible, which helps to potentiate its
pathogenicity. Multiple forms are often found simultaneously. On the one hand,
Candida as unicellular yeasts is typically associated with widespread dissemination
(commensalism), controlled by neutrophils and macrophages. On the other hand,
growth of pseudohyphae and hyphae is commonly shown in infections of the
mucosal surfaces, controlled by T-cells (Repetto et al. 2012).

There are very few papers that directly relate inflammasome to Candida albicans
and oral diseases, none of them in humans, some in vivo using murine models, and
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others in vitro. The experiments carried out in mice used the same strain. All were
female C57BL/6 mice. The method used to infect the mice was very similar in all the
studies presented. After a brief period with antibiotic coverage, mice were infected
with the fungus. Small scratches were made on the dorsal surface of the tongue,
limited to the stratum corneum (Hise et al. 2009).

In one of the publications the authors compared wild-type (WT) mice with
interleukin 1 (IL-1) receptor-deficient mice (IL-1r1�/�). They studied the effect
of Candida albicans infection depending on the time since inoculation. Mice were
divided into groups according to the moment of the sacrifice. Three, 7, 14, and
21 days after infection the animals were euthanized and scored clinically. Samples
from tongue and kidney were removed to determine local and systemic grades of
infection. Results show how IL-1r1�/� mice had higher levels of local colonization
and systemic dissemination. This group also showed lower survival rates compared
with WT mice. The same findings were observed comparing WT mice with caspase
1 (casp-1)-, NLRP3-, and ASC-deficient mice (Hise et al. 2009).

In another study, the periods of time when the mice were euthanized were the
same as in the study explained above. In this case, WT mice were compared with
NLRP3-, NLRC4-, and ASC-deficient mice. Tongues were removed after sacrifice
and evaluated with a microscope. Comparing two inflammasome complexes of the
NLR family, it is shown how genetic knock-down of a single NLR inflammasome
could have an important effect on the expression of other NLR proteins. NLRC4-
deficient mice responded worst to Candida infection than NLRP3 KO mice
(NLRP3�/�) and WT mice measuring the same parameters described above.
These data reveal that NLRP3 and NLRC4 play different roles in immunity against
Candida, NLRC4 being more important in the last period of the fungal infection
(Tomalka et al. 2011).

It is also important to mention that we have seen a relationship between the results
found from studies that discuss oral and vulvovaginal candidiasis. Similar environ-
mental conditions and characteristics are described. There is a paper where the
authors used mice of the same strain, but in this case, the inoculation was
intravaginal, concentrating their efforts on studying the role of IL-22. It has been
demonstrated that IL-22 controls the process by which NLRP3 recruits neutrophils
and promotes inflammation when it is activated. IL-22 also activates NLRC4 so that
it can produce IL-1 receptor antagonist (IL-1Ra). WT mice were compared with
NLRP3- and NLRC4-deficient mice. Interestingly, NLRP3 inhibition matches
NLRC4 activation. NLRP3 is associated with casp-1 activation, polymorphonuclear
activation, and inflammatory damage in vulvovaginal candidiasis. NLRC4 is
suggested to be part of a process that limits inflammation. Continuing with the
study, they used human samples of vulvovaginal candidiasis to examine results
in vitro. The results found were the same as in the murine model. They conclude that
a lower production of IL-1Ra and IL-22 might be a risk factor for recurrent
vulvovaginal candidiasis (Borghi et al. 2015).

Macrophages from WT in addition to NLRP3- and ASC-deficient mice were
evaluated in the presence of Candida albicans to investigate the NLRP3–ASC–
caspase-1 axis and IL-1β production. An active form of IL-1β was only located in
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supernatants of WT macrophages. The induction and processing of IL-1β are
controlled and mediated by the NLRP3–ASC–caspase1 axis (Hise et al. 2009).

7.3.2 Herpes Virus

Many species of virus can affect the oral tissues. We are going to look for informa-
tion about the herpes virus (HV) family. We can find the herpes simplex virus
(HSV), human cytomegalovirus (HCMV), varicella zoster virus (VZV), and
Epstein–Barr virus (EBV). HSV is the most frequently studied, particularly type
1 (HSV-1). HSV-1 is frequently associated with facial and oral lesions. HSV-2 is
related to genital and neonatal infections. We briefly explained some of the charac-
teristics of HSV-1.

HSV-1 is a ubiquitous (Xu et al. 2006), common and highly contagious pathogen
that infects most people (90%) (Smith and Robinson 2002). It is an icosahedral,
enveloped, nuclear-replicating, double-stranded DNA virus belonging to the neuro-
tropic Alphaherpesvirinae subfamily. Primary infection occurs during childhood and
usually affects the oral mucosa. In most cases, with very few symptoms, making it
very difficult to diagnose correctly at an early stage. A lifelong infection takes place
in the trigeminal ganglia, keeping the virus latent. It periodically activates to a lytic
state producing recurrent lesions at the site of primary infection. HSV can cause fatal
infections such as encephalitis, blindness, or even the death in immunocompromised
patients.

Breast cancer tumor suppressor protein (BRCA1) and interferon inducible protein
16 (IFI16) were studied in human microvascular dermal endothelial cells
(HMVECs) and human fibroblasts. BCRA1 is a DNA damage repair sensor and
transcription regulator. IFI16 is a restriction factor for HCMV and HSV-1 (Johnson
et al. 2014). IFI16 is a sequence-independent nuclear innate sensor recognizing
nuclear replication of herpes virus such as Kaposi’s sarcoma-associated herpes
virus (KSHV), EBV or HSV-1. The recognition takes place in the infected cell
nucleus, then forming an inflammasome complex with ASC and pro-caspase-1
(Johnson et al. 2013). It finally produces IL-1β. BCRA1 works together with the
IFI16 inflammasome, increasing expression levels during de novo KSHV, EBV, and
HSV-1 infection, and in latent KSHV or EBV infection (Dutta et al. 2015a). In a
similar paper, Johnson et al. (2013) demonstrate that IFI16 and NLRP3
inflammasomes were activated by HSV-1 infection, promoting IL-1β maturation.
Although the host immune system responds to the virus, the authors explained that
HSV-1 has evolved defense mechanisms to evade host reaction (Johnson et al.
2013).

The interaction of HVS1 infection with TLR2 is critical, modulating the produc-
tion of proinflammatory cytokines, for example, IL-6. Excessive signaling can cause
too much inflammation and tissue damage (Wang et al. 2012). The balance between
proinflammation and down-regulation mechanisms is important. CD200R1 is a
protein expressed on myeloid and glial cells, which interacts with CD200 expressed
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on neurons, epithelial cells, endothelial cells, and lymphocytes. Their junction
occurs to initiate inhibitory signaling (Mihrshahi and Brown 2010). CD200R1-
deficient mice generated lower levels of IL-1β and IL-6. They are also protected
from intracranial HSV-1 infection, increasing the survival rates (Soberman et al.
2012).

Herpes virus infection causes NLRP3 redistribution to the nucleus. Mice and
human corneal tissues were used to study keratitis and how NLRP3 was expressed
with HSV-1 infection. NLRP3, Casp-1, and IL-1β levels were higher in mice
infected with HSV-1, presenting a partial redistribution of NLRP3 to the nucleus.
The same results were found in human tissues (Wang et al. 2015). In contrast,
Miettinen et al. (2012) published a paper experimenting with human macrophages
in which they affirmed that the inflammasome is not activated in response to HSV-1
infection. HSV-1 infection can activate a wide variety of proteins in the absence of
inflammasome activation (Miettinen et al. 2012).

HSV-1 infection was studied in KO and normal NLRP3 mice in facial infection
and keratitis. Deficient mice had more severe and earlier keratitis, and higher levels
of IL-1β and IL-18 in the early stages of infection. Elevated recruitment of neutro-
phils and elevated levels of CD4+ T cells occurred at advanced stages of infection.
To conclude, the NLRP3 inflammasome plays a specific role against keratitis
pathogenesis and acts as a regulator and a beneficial support (Gimenez et al. 2016).

We finish describing the HV family by speaking of VZV. VZV induces formation
of the NLRP3 inflammasome and consequently the production of IL-1β. This was
shown in human T helper-1 (TH-1) cells, fibroblasts, and melanoma cells. NLRP3
recruitment is independent of AIM2, revealing different pathways. VZV triggers
formation of the NLRP3 inflammasome complex with activated caspase-1 in the
absence of AIM2 (Nour et al. 2011).

7.4 Cancer

Oral cancer is the most common cancer of epithelial origin in the head and neck and
the sixth most common cancer overall. Nowadays, oral cancer represents 3% of all
new cancers diagnosed and this is rapidly increasing (Parkin et al. 2005; Reid et al.
2000). Most oral cancers are oral cavity squamous cell carcinomas (OSCCs). They
are usually locally aggressive with moderate recurrence (Funk et al. 2002). The
5-year survival after treatment (surgery, radiotherapy, and chemotherapy) is only
50% because the diagnosis is often made in the late stages (Siegel et al. 2016; Ferlay
et al. 2015). The most frequent locations are the tongue, buccal area, gingiva, lips,
floor of the mouth, and hard palate. It is important to clarify that most of the cases
start from a potentially malignant disorder that is important to detect and treat as
soon as possible. The continuous exposure of this lesion to carcinogens such as
tobacco, alcohol or chronic inflammation (25% of malignancies are associated with
chronic inflammation and/or infection) (Mantovani et al. 2008) may force it evolve
to malignization by a process called carcinogenesis (Lippman et al. 2005).
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NLRP3 inflammasome was studied in 20 biopsied cases of OSCCs including the
malignant tumor and the adjacent nonpathological tissues. It was revealed that the
expression levels of NLRP3 inflammasome-associated genes (ASC, casp-1, Il-1β ,
and NLRP3) were higher in the tumor tissues, in addition to the protein expression
levels, using immunohistochemical (IHC) techniques. These levels are related to
clinical and pathological characteristics of OSCCs. The authors asked themselves
how these levels could influence the overall survival (OS), disease-specific survival
(DSS), and disease-free survival (DFS), showing that the up-regulation of ASC was
the only independent predictor. Finally, they also added to their paper an experiment
in vitro where they concluded that ASC facilitates migration and invasion of OSCC
cell lines, promoting metastasis (Wu et al. 2016).

There are many publications related to cancer from South Asia, more precisely
Taiwan. One of these papers shows the consequences of a high prevalence of a
traditional custom, such as betel nut chewing. The total number of patients (all of
them men) were divided into four groups: young control, middle-aged control, betel
nut chewing, and oral cancer. An ELISA technique was used to measure cytokines
and hormones: IL-1β, IL-6, IL-15, tumor necrosis factor α (TNF-α), cortisol, and
testosterone in plasma. The results published show elevation of cortisol, lower levels
of IL-1β, Il-15, and TNF-α, and lower testosterone concentrations in the betel nut
chewing group (Hu et al. 2016).

Seven OSCC-related salivary biomarkers of periodontitis were studied in several
groups: smokers, nonsmoker patients, patients without periodontal disease but with
OSCC, and control patients (a total of 105 patients). The only biomarker that showed
significant differences between the OSCC patient group and the rest was S100
calcium binding protein P (S100P) being much higher in the OSCC group. Cyto-
kines that promote inflammation such as IL-1β and Il-8 did not show statistically
differences between the groups (Cheng et al. 2017).

There are several papers that focus on IL-18, particularly the Il-18 polymorphism
�607 A/C. Nilkaeo and Bhuvanath (2006) suggested that IL-18 might be a
proinflammatory cytokine produced by cancer cells. On the one hand, Tsai et al.
(2013) concluded in their paper that the IL-18 �137 G/C gene polymorphism could
be considered an important factor that increases the susceptibility to OSCC, although
they also suggested that it could be proposed as a protective factor for OSCC
progression (Tsai et al. 2013). On the other hand, Eleftherios et al. tell us that
IL-18 �607 A/C polymorphism gene expression is not a contributing factor in
oral carcinogenesis or risk of cancer (Vairaktaris et al. 2007).

Interleukin-18 plays an important role in the regulation of OSCCs, specifically
when it is localized in the tongue. It promotes the growth inhibition of OSCCs and
helps in the regulation of cell apoptosis and gene expression. It could be used in the
future after further investigations as a potential clinical and therapeutic target (Liu
et al. 2012).

Interleukin-1β is also a very well recognized proinflammatory cytokine that can
regulate cancer growth and metastasis in a secondary position. This is possible
because it interacts by controlling the expression of CXCR4, a specific chemokine
that regulates processes in cancer development. It is also suggested that CXCR4 may
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be a link between inflammation and cancer (Sun et al. 2015). In addition, this
cytokine may be used as a marker of malignant transformation in oral leukoplakia,
one of the most frequently studied potentially malignant disorders (Dutta et al.
2015b).

In brief, we have just discussed IL-1β and IL-18, suggesting that an important
relationship might exist among inflammation, the inflammasome, and cancer. High
levels of IL-1β and IL-18 are associated with cancer. Likewise, activation of the
autophagic process or mitochondrial oxidative stress are related to cancer. All this
information is important in continuing to investigate cancer genesis and prognosis
(Zhiyu et al. 2016).

7.5 Caries

Pulp lesions can be caused by many factors. Dental caries is the most prevalent
cause. It is a chronic infectious disease. It provokes the demineralization of the most
superficial tissue the teeth have, the enamel, and the subsequent interior tissue, called
dentin, causing pulp injury (Akira et al. 2006; Bolwell 1999). We are not aware of
the prevalence of dental pulp lesions. Clinically, we can classify them as pulp (dentin
hypersensitivity, pulpitis, and necrosis) and periapical diseases (apical periodontitis
and others with no endodontic etiology) (Moller et al. 1981). Experimental studies
demonstrate that the presence of bacteria is essential for the development and
progression of pulp inflammation (Kakehashi et al. 1965).

Dental pulp reacts to caries infection with inflammation. It has some peculiarities,
such as its location in a hard chamber or the exclusive blood and lymphatic
circulation. These facts make pulp inflammation processes difficult to control and
resolve. Pulpitis is the most common inflammatory disease in mammals. We
describe pulpitis as a nonspecific inflammation of the dental pulp. If it remains
untreated, it can lead to the patient’s death, but it is commonly solved with soft dental
tissue removal and root canal treatment (Akira et al. 2006). Pulpitis occurs when
caries infection has contact with dentine tubules, which are connected to the pulp
tissues (Bortoluci and Medzhitov 2010). The first line of defense the teeth have
against caries progression is the activation of the innate immune system components
located in the pulp (Chang et al. 1998).

Apical periodontitis is also an inflammatory lesion that occurs in the most apical
zone of the teeth because of bacterial infection of endodontic–periodontic origin. It is
characterized by bone resorption in this location (Hong et al. 2004).

The relationship between pulpitis and the presence of the AIM2 inflammasome
was an unknown fact. The authors exposed only the dental pulp of the right
maxillary molars of male Sprague–Dawley rats and compared the levels of expres-
sion of AIM2 in both sides. In the in vitro study they cultivate the cells of the
mandibular incisors of those rats. AIM2 inflammasome expression was higher in
damaged tissues. IL-1β and caspase-1 levels increased whereas AIM2 levels were
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higher. A direct relationship between AIM2 inflammasome and inflammatory pro-
cesses such as pulpitis was affirmed (Wang et al. 2013).

The NLRP3 inflammasome complex has been studied related to pulpitis in
humans. The third molars of 27 people were extracted: 9 of them had no pathological
condition, 9 had reversible pulpitis, and the remaining 9 had irreversible pulpitis.
Dental pulp fibroblasts were cultivated for experimentation. Depending on the grade
of pulpitis, NLRP3 expression varies. Wisdom teeth with irreversible pulpitis
showed significant differences in the levels of IL-1β, caspase-1, and of course,
NLRP3. Only in irreversible pulpitis was caspase-1 present in an active form. In
this study and the one before the analysis of the cells, the same results are revealed as
those seen in the in vivo studies (Jiang et al. 2015).

A similar experiment was reported by Oliveira et al. (2009). Ten healthy wisdom
teeth and another ten with pulpectomies. Pulp fibroblasts were analyzed with or
without stimulation of Escherichia coli LPS. The purpose was to study the role that
IL-1β and IL-8 play in a healthy state and in dental infections. As we assumed before
reading, damaged pulp tissues presented higher levels of IL-1β and IL-8 (Oliveira
et al. 2009).

A very important microorganism is found in infected dental pulp, even after canal
treatment. Enterococcus faecalis plays an important role in inflammasome activa-
tion. Macrophages were infected with this bacterium. The results were that Entero-
coccus faecalis released ATP as a danger signal, making it higher in the extracellular
space, which promoted the activation of the NLRP3 inflammasome, and conse-
quently caspase-1 activation and IL-1β secretion (Yang et al. 2014). Wang et al.
(2016) also studied the role of Enterococcus faecalis in inducing apical periodontitis
in rats and the relationship it has with the NLRP3 inflammasome. Both papers
reached the same results, but this latter experiment also studied the effect of the
lipoteichoic acid (derived from Enterococcus faecalis) on the expression of the
NLRP3 inflammasome, suggesting that it might act as a directly stimulating factor
of this inflammasome complex (Wang et al. 2016).

There are higher levels of proinflammatory cytokines in dental periapical lesions
(granulomas and cysts). The cytokine levels vary depending on the apical lesion size
(larger or smaller than 5 mm) and the symptomatology. Symptomatic lesions
produce higher levels of IL-1β, IL-6, and IL-8. On the one hand, the smaller apical
lesions were related to higher numbers of mononuclear phagocytes; on the other
hand, higher levels of TNF-α, IL-6, and IL-10, in addition to a higher concentration
of CD8+ T cells, were found in large apical lesions (Gazivoda et al. 2009).

On the whole, these papers demonstrate that dental tissue damage is related to
inflammation, the activation of some inflammasome complexes, and the secretion of
proinflammatory cytokines.
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7.6 Other Oral Diseases

Idiopathic burning mouth syndrome (iBMS) is considered by the International
Association for the Study of Pain to be a chronic distinctive nosological entity in
which patients perceive spontaneous burning sensations and/or other dysesthesias
(tingling or itching) (Braud et al. 2013). Normally associated with xerostomia and
dysgeusia (de Moraes et al. 2012). It commonly appears in the lips, hard palate,
tongue and/or other oral mucosal surfaces with no clinical or laboratory signs that
could demonstrate abnormalities (Suh et al. 2009; Kim et al. 2012). Mostly post-
menopausal, stressed women are affected by iBMS, where it can rise up to 12%
(Bergdahl and Bergdahl 1999). The origin and the way in which the pain is produced
in the patient are still unknown (Forssell et al. 2015).

Liquen planus is a chronic inflammatory disease that can affect the mucous
membranes of squamous cell origin and the skin (Qiu et al. 2017). Oral liquen
planus (OLP) affects the oral mucosa, but skin alterations may not always be found.
It appears more frequently in women than in men (Mozaffari et al. 2016). Comparing
clinical characteristics, we can distinguish six types: reticular, papular, plaque-like,
atrophic, erosive, and bullous (Shen et al. 2012). We can also classify them as
non-erosive OLP and erosive OLP subtypes. This subdivision is important to
differentiate the potential risks of malignization (Jun et al. 2008). The prevalence
of OLP lesions is 0.5–2% (Setterfield et al. 2000), increasing if the patient smokes or
has a high consumption of alcohol (Torrente-Castells et al. 2010).

Rare levels of expression of a variety of proinflammatory cytokines have been
found in OLP lesions, and in the serum and saliva of those patients (Lu et al. 2015),
suggesting a direct relationship between inflammation and OLP. The etiology of
OLP is still unknown, but it is clear that immune dysregulation plays a superlative
role (Lodi et al. 2005). Several treatments using different methods have been
proposed. Topical and systemic products such as corticosteroids or immunosuppres-
sants are the first ones most frequently used (Canter et al. 2007).

Kho et al. (2013) studied two different markers associated with the mucosal
defense system, mucin 1 (MUC1) and TLR-2, in patients with iBMS or OLP,
compared with control subjects . MUC1 is the membrane-bound mucin expressed
by the salivary glands and oral epithelial cells (Hori et al. 2007). TLR-2 is an
associated protein expressed in cell membranes that belongs to a family of proteins
called PRRs, which recognize PAMPs. NLRP3 inflammasome needs two signals for
its activation. MUC1 and TLR-2 play important roles during the priming or first
signal. Levels of MUC1 were increased in patients with iBMS in comparison with
patients with OLP or controls. These data may be important for confirming in further
studies that an increase in the levels of subclinical inflammation could be involved in
the intensity and perception of burning symptoms (Lopez-Jornet et al. 2011).
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7.7 Conclusions

The mouth is always a possible environment for developing pathological conditions
owing to the wide variety of microorganisms that exist there. Small variations in the
equilibrium of the oral flora cause disorders that could affect the organism in a
systemic form. Many publications have been written about oral diseases, but very
few of them try to relate this information to the inflammasome complex. Therefore,
further investigation and publications on inflammatory molecular processes are
needed, in particular, those more specifically related to the inflammasome complex.
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Abstract Inflammasomes influence a diverse range of kidney disease, including
acute and chronic kidney diseases, and those mediated by innate and adaptive
immunity. Both IL-18 and in particular IL-1β are validated therapeutic targets in
several kidney diseases. In addition to leukocyte-derived inflammasomes, renal
tissue cells express functional inflammasome components. Furthermore, a range of
endogenous substances that directly activate inflammasomes also mediate kidney
injury. Many of the functional studies have focussed on the NLRP3 inflammasome,
and there is also evidence for the involvement of other inflammasomes in some
conditions. While, at least in some disease, the mechanistic details of the involve-
ment of the inflammasome remain to be elucidated, therapies focussed on
inflammasomes and their products have potential in treating kidney disease in the
future.

Keywords Inflammasome · Glomerulonephritis · Acute kidney injury · Diabetic
nephropathy · Interleukin-1β

The kidney is prone to injury from a range of metabolic, toxic and immunologic
insults. The NLRP3 inflammasome is present in kidney tissue cells as well as
immune cells within the kidney (such as infiltrating and resident mononuclear
phagocytes) and has been implicated in the pathogenesis of a broad spectrum of
kidney diseases. Cellular stress caused by an ischaemic, septic or nephrotoxic insult,
or by albuminuria itself, provokes the release of NLRP3 inflammasome-activating
‘danger signals’, or damage-associated molecular proteins (DAMPs) from cells
(Akcay et al. 2009; Liu et al. 2014). Other substances associated with kidney injury,
such as cholesterol emboli (Duewell et al. 2010) and monosodium urate (Martinon
et al. 2006), can themselves act as a signal for NLRP3-ASC oligomerisation and
inflammasome formation. After activation, the NLRP3 inflammasome promotes
kidney injury via pro-inflammatory cytokines and may also switch on fibrotic
(Vilaysane et al. 2010) and cell death pathways (Shen et al. 2016). Thus, the
NLRP3 inflammasome may be a mechanistic link between processes that have
long been known to cause kidney injury and the injurious inflammatory response
that follows. Inhibition of the NLRP3 inflammasome is protective in several models
of glomerular and tubulointerstitial kidney disease, indicating its potential for
treatment of human disease.

The role of inflammasomes other than NLRP3 in the kidney is less well defined.
The AIM2 inflammasome, activated by double-stranded DNA (Fernandes-Alnemri
et al. 2009), has been shown to have a potential role in hepatitis B-related glomerulo-
nephritis (Du et al. 2013; Zhen et al. 2014) and in experimental lupus (Choubey and
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Panchanathan 2017), although it has not been directly linked to lupus nephritis. The
NLRC4 inflammasome is important in pathogenic IL-1β production in a mouse
model of diabetes mellitus (Yuan et al. 2016). Although bacterial infection has been
linked to some types of glomerulonephritis and is the trigger for the NLRP1 and
NLRC4 inflammasomes, few studies have focussed on a role for these inflamma-
somes in autoimmune kidney disease (Man and Kanneganti 2015).

8.1 Basic Renal Structure and Function

The primary role of the kidney is to filter blood, maintaining levels of electrolytes
such as sodium and potassium and excreting nitrogenous wastes such as urea, excess
body water and electrolytes into the urine. The functional unit of a kidney a nephron,
comprised of a glomerulus, a specialised filter through which blood passes from an
afferent arteriole into capillaries that have evolved to generate an ultrafiltrate that
accumulates in the urinary (Bowman’s) space, and a tubule, through which the
glomerular filtrate passes from the urinary space, with reabsorption of most of the
water and solutes, before being excreted as urine. In healthy humans, kidneys
contain on average approximately 900,000 nephrons, although this number varies
depending on the ethnicity of the population studied and factors associated with the
fetomaternal environment, which influences kidney development (Puelles et al.
2016). Kidneys consist of an outer cortex, inner medulla and renal pelvis. Nephrons
traverse the kidney so that the cortex contains the glomeruli and the medulla contains
tubules formed into pyramids, which facilitate the reabsorption and excretion of
water and electrolytes and the formation of concentrated urine. The apex of pyramids
is comprised of collecting tubules, which drain into calyces that in turn drain into the
renal pelvis and ureter for excretion.

The structure of the glomerulus allows fluid and small solutes to pass from the
bloodstream through the filtration barrier into the urinary space, but large molecules,
including plasma proteins, are largely retained within the microvasculature. The
glomerular tuft is a network of glomerular capillaries, lying on a scaffold of
mesangial cells and extracellular matrix. The glomerular filtration barrier, function-
ing as a charge and size selective molecular sieve, is composed of three layers:
endothelial cells, glomerular basement membrane (GBM) and podocytes
(Haraldsson and Jeansson 2009). Glomerular capillaries are on one side of the
glomerular filtration barrier with the urinary space (Bowman’s space) on the adjacent
side. Glomerular endothelial cells line the capillary lumen and contain fenestrae,
small transcellular ‘holes’ covered with endothelial glycocalyx, which aid filtration.
The glomerular basement membrane is composed of extracellular matrix macromol-
ecules including type IV collagen, laminin and proteoglycans. Podocytes line the
GBM on the side of the urinary space. They are highly specialised epithelial cells
with long, interdigitating foot processes that wrap around the glomerular capillaries
(Brinkkoetter et al. 2013). Damage to any layer of the glomerular filtration barrier
results in a leak of proteins into the urinary space, and proteinuria is thus regarded as
one of the hallmarks of glomerular disease. Kidney diseases may be seen as
primarily due to pathology of an intrinsic kidney cell, i.e. mesangial cells as the
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target of immunologic injury in IgA nephropathy (Tsai et al. 2017), or primarily due
to activation or infiltration of immune cells, such as neutrophils in anti-neutrophil
cytoplasmic autoantibody (ANCA)-associated vasculitis (Falk et al. 1990). How-
ever, the extensive cross talk between different types of cells in the kidney, including
intrinsic kidney cells and leukocytes, means that damage to one cell type usually has
effects on multiple different cells (Kitching and Hutton 2016). A summary of the
function of glomerular cells and some common kidney diseases linked to dysfunc-
tion of each cell type is shown in Table 8.1.

Table 8.1 Key functions and responses of intrinsic glomerular cells

Renal cell
type

Normal function
and features Responses to injury

Examples of
relevant diseases

NLRP3
inflammasome
present

Mesangial
cells

Maintain struc-
tural architecture
of glomerulus
Mesangial matrix
homeostasis
Regulate filtration
surface area
Phagocytose apo-
ptotic cells

Lysis with healthy
remodelling
Apoptosis
Hypertrophy
Proliferation and
matrix expansion
leading to
glomerulosclerosis

IgA nephropathy
Diabetic
nephropathy

Likely

Glomerular
endothelial
cells

Fenestrations and
glycocalyx facili-
tate selective per-
meability and
filtration

Apoptosis
Loss of fenestrations
Widening of cell-cell
junctions,
transcellular holes
Glycocalyx damage;
loss of GAG
synthesis

ANCA-associated
glomerulonephritis
Lupus nephritis
(classes III and IV)
Haemolytic-ure-
mic syndrome
Diabetic
nephropathy

Likely

Podocytes Foot processes
wrap around cap-
illaries
Adherence to
GBM

Apoptosis
Foot process efface-
ment
Detachment from
GBM; podocyte loss

Minimal change
disease
Focal and segmen-
tal
glomerulosclerosis
Diabetic
nephropathy

Likely

Parietal epi-
thelial cells

Line Bowman’s
capsule
Several subsets of
cells likely with
different
functions

Apoptosis
Migration to glo-
merular tuft, produc-
tion ECM proteins
leading to
glomerulosclerosis
Proliferation leading
to crescent and
pseudocrescent
formation

Crescentic glo-
merulonephritis
Focal and segmen-
tal
glomerulosclerosis

Unknown

Adapted from Kitching and Hutton (2016)
ANCA anti-neutrophil cytoplasmic antibody, GAG glycosaminoglycan, GBM glomerular basement
membrane
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8.2 NLRP3 Inflammasome Activation in the Kidney

The NLRP3 inflammasome has primarily been described in myeloid cells, parti-
cularly macrophages and dendritic cells (Martinon et al. 2009) but also neutrophils
(Chen et al. 2016). In inflammatory kidney diseases, leukocyte retention within
glomeruli occurs via specialised adhesion molecules. Immune cells may be involved
in local tissue inflammation or repair or may influence systemic adaptive immunity
which is a key driver of many glomerular diseases (Kitching and Hutton 2016). The
presence of the NLRP3 inflammasome in murine kidney tissue cells has been
demonstrated in several different studies, generally by showing that these cells can
produce IL-1β and IL-18 or by demonstrating co-localisation of inflammasome
components such as NLRP3 with ASC and/or caspase-1 in kidney biopsies. Tubular
epithelial cells, in both mouse and human, express components for NLRP3
inflammasome complex and produce active IL-1β and/or IL-18 (Faust et al. 2002;
Homsi et al. 2006; Lichtnekert et al. 2011; Wang et al. 2015a). While an early
murine in vitro study cast doubt on the presence of the inflammasome in glomerular
endothelial cells, mesangial cells and podocytes (Lichtnekert et al. 2011), subse-
quent studies have shown varying levels of evidence of inflammasome activation in
these cells (Abais et al. 2013; Shahzad et al. 2015; Zhang et al. 2012; Zhou et al.
2010). Human kidney biopsy studies have documented the presence of the
inflammasome in podocytes, mesangial cells, tubular epithelium and intercalated
cells (Chun et al. 2016; Gauer et al. 2007; Shahzad et al. 2015). Selected studies
documenting the presence of the NLRP3 inflammasome in mouse and human
intrinsic glomerular cells are presented in Table 8.2. However, these data should
be interpreted with caution, as the presence of ASC and NLRP3 mRNA or
co-localisation of NLRP3 with ASC/caspase-1 is not in itself robust evidence for
inflammasome activation. Furthermore, ELISAs fail to differentiate between active,
cleaved IL-1β or IL-18 and their pro-cytokine forms. Currently, the ‘gold standard’
readout for inflammasome activation, Western blotting of activated caspase-1, IL-1β
or IL-18, can be technically difficult and may not reflect organ specificity (Ludwig-
Portugall et al. 2016). The presence of the NLRP3 inflammasome in intrinsic kidney
cells is thus still an area of some debate. It may be that NLRP3 inflammasome
expression occurs constitutively in tubular cells, but not in other kidney cells, unless
switched on during specific diseases in a particular cell type. A study that compared
expression of NLRP3 in normal human kidneys, obtained from nephrectomies, and
biopsy samples of patients with IgA nephropathy supports this theory, showing the
presence of inflammasome components in tubular cells of both groups and in
glomerular mesangial cells in patients with IgA nephropathy but not in healthy
kidneys (Chun et al. 2016).

Some authors have viewed the data showing the presence of the NLRP3
inflammasome components in renal cells as being evidence that renal cell-derived,
rather than immune cell-derived, NLRP3 inflammasome activation is the key driver
of pathology in kidney diseases (Chun et al. 2016). Although this may be the case, it
can be difficult to interpret the relative contributions of inflammasome activation in
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Table 8.2 Selected studies showing evidence for inflammasome activation in intrinsic kidney cells

Disease Cells involved
Evidence of inflammasome
activation References

Hyperhomocysteinaemia Podocytes
(cultured)

RT-PCR showed NLRP3, ASC
and caspase-1 mRNA in cul-
tured podocytes
Size exclusion chromatography
determined the presence of
ASC-NLRP3 complexes in
podocyte cultures
Co-localisation of NLRP3 with
ASC or caspase-1 in podocytes
using confocal microscopy and
immunofluorescence
Small amounts of IL-1β from
podocyte cultures by ELISA
(not differentiating active from
pro-IL-1β)

Zhang et al.
(2012)

Primary glomerular
diseases

Podocytes
(human)

NLRP3 and caspase-1
co-localisation in kidney
biopsy of subjects with glo-
merular disease significantly
increased compared to controls.
Caspase-1 co-localised with
podocyte marker synaptopodin

Xiong et al.
(2015)

Lupus nephritis
(MRL-Faslpr mice)

TEC (mouse) IL-18 detected in sera and kid-
ney tissues by ELISA, RT-PCR
and Western blotting. IL-18
production by primary TECs,
detected by RT-PCR, ELISA
and Western blotting

Faust et al.
(2002)

Glycerol-induced AKI TEC (mouse) IHC for IL-1β and IL-18 on
kidney biopsies localised these
to tubules, Western blot on
kidney homogenate to deter-
mine active IL-1β and IL-18

Homsi et al.
(2006)

IgA nephropathy TEC (but not
glomerular
cells) in healthy
human kidneys.
TEC and
mesangial cells
in IgA
nephropathy

Healthy human kidneys stained
with immunoperoxidase or
processed for indirect IF and
confocal microscopy. NLRP3
localised primarily to tubules
with absent glomerular staining
In vitro NLRP3 present in
human proximal tubular cell
but not podocyte culture

Chun et al.
(2016)

Healthy human kidney Tubular
epithelium

IL-18 mRNA and protein
detected by PCR, in situ
hybridization and Western
blotting in normal human kid-
neys. IHC located IL-18 to
nephron segments of the distal
convoluted tubule and to parts
of the collecting duct. Confocal
microscopy for IL-18 was
expressed in intercalated cells

Gauer et al.
(2007)

(continued)
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intrinsic renal cells and immune cells in disease models. For example, one study
inhibited ASC in a kidney-restricted fashion, delivering siRNA via the renal artery,
and showed improvements in proteinuria and glomerular sclerosis (Zhang et al.
2012). However, the conclusion that the inflammasome in intrinsic renal cells was
important in this case is, strictly speaking, not necessarily accurate, as the siRNA
was also delivered to intrarenal immune cells such as the network of intrarenal
mononuclear phagocytes (macrophages and dendritic cells). Bone marrow chimeric
mice, as used in studies of the NLRP3 inflammasome in diabetic nephropathy
(Shahzad et al. 2015) may be useful in this context. NLRP3 inflammasome activa-
tion may have tissue-specific effects in certain conditions. For example, Bakker et al.
used bone marrow chimeric mice to study tubular repair after ischaemia-reperfusion
injury (IRI) and found that intrinsic kidney-derived NLRP3 impaired tubular regen-
eration, whereas leukocyte-associated NLRP3 was associated with tubular apoptosis
(Bakker et al. 2014). To add further complexity, it is likely that different types of
myeloid cells require different triggers for NLRP3 inflammasome activation. For
example, monocytes may respond to purified LPS alone (Netea et al. 2010), and
murine neutrophil inflammasomes are not activated by particulate matter as those of
macrophages are (Chen et al. 2016). It remains to be seen whether there are specific
triggers that cause inflammasome activation in intrinsic kidney cells that differ from
the triggers required by immune cells.

Table 8.2 (continued)

Disease Cells involved
Evidence of inflammasome
activation References

IgA nephropathy Mouse TEC and
mesangial cell
cultures

Immune complexes induced
secretion of IL-1β in cultured
TEC and mesangial cells; IL-1β
produced was much reduced in
NLRP3-deficient TEC and
mesangial cells

Tsai et al.
(2017)

Diabetic nephropathy Mesangial cells
(subject to high
glucose or LPS)

IL-1β, caspase-1 and NLRP3
mRNA and protein detected in
cultured mesangial cells by
RT-PCR and immunoblot

Feng et al.
(2016)

Diabetes Endothelial
cells and
podocytes
(mouse and
human)

Active IL-1β from murine pri-
mary podocyte cultures
detected using ELISA.
Partial co-localisation of
NLRP3 or cleaved caspase-1
with podocytes and glomerular
endothelial cells in histological
sections of diabetic humans or
mice

Shahzad et al.
(2015)

ELISA enzyme-linked immunosorbent assay, RT-PCR reverse transcription–polymerase chain
reaction, IHC immunohistochemistry, TEC tubular epithelial cells
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8.2.1 Other Inflammasomes in the Kidney

Although a role for AIM2 and NLRC4 inflammasomes in the pathogenesis of
several renal diseases has been postulated (Du et al. 2013; Yuan et al. 2016;
Zhen et al. 2014), as yet there is little information on the presence of these
inflammasomes in intrinsic kidney cells.

8.3 How Does Inflammasome Activation Promote Kidney
Injury?

8.3.1 Effects of IL-1β on Leukocytes and Kidney Tissue Cells

The IL-1 receptor (IL-1R) is present on a variety of cell types, including leukocytes
and intrinsic kidney cells. It can be bound by either of the isoforms of IL-1, IL-1α or
IL-1β, both pro-inflammatory cytokines with similar but slightly distinct biological
actions. Pro-fibrotic and inflammatory mediators induced by IL-1/IL-1R interactions
include IL-6, tumour necrosis factor (TNF), prostaglandins, TGF-β and tissue matrix
metalloproteinases (MMPs), highly relevant to a range of kidney diseases (Gabay et al.
2010). Experiments using mice deficient for the IL-1R highlight the important role of
IL-1 in inflammatory cell recruitment to the kidney (although not distinguishing
between the actions of IL-1α and IL-1β); IL-1R-deficient mice are protected from
acute severe glomerulonephritis, IRI and experimental renal fibrosis (Furuichi et al.
2006; Jones et al. 2009; Timoshanko et al. 2004a). IL-1 (which here refers to both IL-1α
and IL-1β) promotes inflammatory cell recruitment both by inducing the expression of
adhesion molecules on endothelial cells and promoting the production of chemokines
by stromal cells (Gabay et al. 2010). IL-1 also plays a role in adaptive immunity, being
important in the differentiation of Th17 cells (Chung et al. 2009).

IL-1 has directly detrimental effects on intrinsic kidney cells. In experimental
rapidly progressive glomerulonephritis, bone marrow chimeric studies showed that
leukocyte-derived IL-1β mediated its injurious effects via IL-1R present on intrinsic
kidney cells (Timoshanko et al. 2004b). IL-1β may play a role in the biological
effects of neutrophil gelatinase-associated lipocalin (NGAL). NGAL, though best
known as a biomarker of kidney injury, has a number of potential biological roles
depending on its iron chelation status. IL-1β is a potent stimulus for NGAL release
from proximal tubular and collecting duct cells (Bonnemaison et al. 2017; Konno
et al. 2016). Tissue matrix metalloproteinases (MMPs) disrupt the extracellular
matrix such as the GBM (but could also limit excessive matrix deposition in
fibrosis). Several MMPs and tissue inhibitors of matrix metalloproteinases
(TIMPs) are secreted by renal cells in response to cytokines, and IL-1β may
contribute to MMP induced tissue injury by augmenting inhibition of endogenous
MMP inhibitor TIMP-1 in the presence of TNF in mesangial cells (Nee et al. 2007).
One study examining the effect of inflammation on lipid metabolism found that
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IL-1β treatment caused cultured human mesangial cells to accumulate cholesterol
esters, which lead to production of reactive oxygen species (ROS) and endoplasmic
reticulum stress (Zhong et al. 2015).

Two mechanisms for inflammasome-mediated podocyte injury have been postu-
lated. The formation of the large intracellular inflammasome complex in podocytes
may lead to podocyte dysfunction by interfering with intracellular signalling (Xiong
et al. 2015; Zhang et al. 2012). IL-1β (either produced by leukocytes or acting in an
autocrine manner) can adversely affect the production of important podocyte pro-
teins such as nephrin (Takano et al. 2007), compromising podocyte structural
integrity and function. Human glomerular endothelial cells use all three forms of
intercellular junctions, tight junctions, adherens junctions and gap junctions, to assist
in the maintenance of glomerular filtration barrier. IL-1β is known to disrupt tight
and adherens junctions: in a study where human glomerular endothelial cells were
treated with IL-1β, cells showed increased permeability and an increase in expres-
sion of VE-cadherin, which may represent a compensatory mechanism against the
disruption of the other inter-endothelial junctions by IL-1β (Du et al. 2015).

8.3.2 Effects of IL-18 on Leukocytes and Kidney Tissue Cells

IL-18 was first characterised as a promoter of IFNγ release and in the presence of
IL-12 or IL-15 enhances development of Th1 cells. However, in the absence of
IL-12 or IL-15, IL-18 has pro-inflammatory actions similar to IL-1 family cytokines
(Novick et al. 2013). IL-18 binds to a specific receptor, IL-18R, resulting in a
signalling cascade leading to the activation of NF-κB and p38 mitogen-activated
protein kinases and the production of downstream pro-inflammatory cytokines
(Bombardieri et al. 2007; Yamamura et al. 2001). IL-18 seems to be particularly
important in neutrophil activation and recruitment to the kidney, where these cells
can then go on to release injurious chemokines, cytokines and ROS (Futosi et al.
2013). IL-18 can also promote the production of pro-inflammatory cytokines by
mesangial cells (Schrijvers et al. 2004). In a murine IRI, bone marrow-derived IL-18
was seen to mediate renal injury and was associated with tubular cell damage and
increased intrarenal neutrophil and macrophage accumulation (Wu et al. 2008).
IL-18 has a local pro-inflammatory and pro-fibrotic role in experimental
Th1-dependent GN (Kitching et al. 2005) and unilateral ureteral obstruction
(UUO), a model of CKD (Bani-Hani et al. 2009).

Although there is little data on the specific effects of IL-18 on glomerular cells,
several studies have focussed on the effect of IL-18 on renal tubular epithelial cells.
Both the STAT-3 (Matsui et al. 2013) and TLR4 (Meldrum et al. 2012) pathways in
tubular epithelial cells are likely to be important in mediating IL-18’s pro-fibrotic
effects in unilateral ureteric obstruction mouse models and in vitro in human tubular
epithelial cells. IL-18 also induces pro-apoptotic signalling via a FasL-dependent
mechanism and may be a significant mediator of tubular cell apoptosis (Zhang et al.
2011).
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8.4 Inflammasomes in Acute Kidney Injury

Acute kidney injury (AKI) is an abrupt decline in renal function resulting in the
retention of nitrogenous waste, commonly associated by oligoanuria and assessed
clinically by serum creatinine and urea measurements. While AKI is often reversible
once the underlying insult is treated, it is a global public health concern associated
with high morbidity, mortality and healthcare costs (Mehta et al. 2015). AKI has
multiple aetiologies, with ischaemic injury to the kidney due to major surgery, sepsis
or exposure to nephrotoxins accounting for many cases. While the aetiologies vary
between patients, acute tubular necrosis (ATN) is a common histological feature of
several forms of AKI, characterised by widespread tubular cell necrosis and the
formation of intratubular casts derived from sloughed cells and cellular debris.
Damaged tubular and endothelial cells release endogenous DAMPs that activate
pattern recognition receptors (PPRs) and initiate innate immune responses. In animal
models of AKI, specific components of necrotic cellular debris such as histones,
heat-shock proteins, biglycan, HMGB1 and hyaluronan are capable of inducing
IL-1β in an NLRP3-dependent manner (Iyer et al. 2009). There is substantial data
supporting the role of the inflammasome in numerous models of AKI including IRI,
cisplatin-induced nephrotoxicity as well as AKI induced by sepsis, contrast medium
and rhabdomyolysis, as summarised in Table 8.3.

8.4.1 Ischaemia-Reperfusion Injury

Renal ischaemia with subsequent reperfusion is a common cause of AKI. In addi-
tion, it is an obligatory component of renal transplantation that when severe, leads to
delayed allograft function. In murine bilateral renal IRI, NLRP3-deficient mice are
functionally protected 24 hours post ischaemia (Iyer et al. 2009), with less intrarenal
IL-1β. This protection is associated with fewer infiltrating neutrophils and less
CXCL1 (a key neutrophil chemoattractant) in the renal interstitium. However,
ASC deficiency shows no protection against early renal dysfunction, although it
did provide partial protection after 5 days, with reduced neutrophil recruitment and
reduced levels of intrarenal CXCL1 and IL-1β. The pathogenicity of NLRP3 in IRI
was confirmed in subsequent studies, but different mechanisms of protection were
reported (Kim et al. 2013; Shigeoka et al. 2010). Shigeoka et al. suggested that
NLRP3 promoted injury in an inflammasome-independent manner: mice deficient in
ASC, caspase-1, IL-1R and IL-18 showed no difference in histological and func-
tional injury 24 hours after ischemia (Shigeoka et al. 2010). However, they observed
significantly less renal tubular apoptosis in absence of NLRP3, suggesting that
NLRP3 mediated renal IRI by promoting tubular apoptosis. Kim et al. again
confirmed a protective effect from IRI in Nlrp3�/� mice but, paradoxically, with
increased caspase-1 activity (Kim et al. 2013), having previously demonstrated that
caspase-1-deficient mice are resistant to IRI. While collectively these studies impli-
cate the NLRP3 inflammasome in pathological acute inflammatory response during
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Table 8.3 The function of inflammasome components in experimental acute kidney injury

Acute kidney
injury model Intervention

Renal
effect

Canonical or
noncanonical
signalling References

Renal ischaemia-reperfusion injury

Nlrp3�/� Protective Both Iyer et al. (2009), Kim et al.
(2013), Shigeoka et al. (2010)

Asc�/� Equivocal Canonical Iyer et al. (2009), Shigeoka
et al. (2010)

Casp1�/� Equivocal ND Melnikov et al. (2001),
Shigeoka et al. (2010)

Il1r�/� Equivocal ND Haq et al. (1998), Shigeoka
et al. (2010)

IL-1RA Protective ND Rusai et al. (2008)

Il18�/� Equivocal ND Shigeoka et al. (2010), Wu
et al. (2008)

IL-18BP-
Tg

Protective ND He et al. (2008), Wu et al.
(2008)

Anti-IL-18
Ab

Protective ND Melnikov et al. (2001)

Cisplatin nephrotoxicity

Nlrp3�/� No
difference

– Kim et al. (2013)

Asc�/� Protective Canonical Chan et al. (2014)

Casp1�/� Protective ND Faubel et al. (2004)

Il18�/� Protective ND Okui et al. (2012)

Il18ra�/� Worse ND Nozaki et al. (2012)

IL-18BP-
Tg

No
difference

– Faubel et al. (2007)

Anti-IL-18
Ab

No
difference

– Faubel et al. (2007)

IL-1RA No
difference

– Faubel et al. (2007)

Sepsis-induced AKI

Nlrp3�/� Protective Canonical Cao et al. (2015)

Caspase-1
inhibitor

Protective Canonical Cao et al. (2015)

Rhabdomyolysis-induced AKI

Nlrp3�/� Protective Noncanonical Komada et al. (2015)

Asc�/� Protective Noncanonical Komada et al. (2015)

Casp1�/� Protective Noncanonical Komada et al. (2015)

Il1b�/� Protective Noncanonical Komada et al. (2015)

Caspase-1
inhibitor

Protective Canonical Homsi et al. (2006)

Contrast medium-induced AKI

Nlrp3�/� Protective ND Shen et al. (2016)

Ab antibody, IL-1RA IL-1 receptor antagonist, IL-18BP-Tg IL-18 binding protein transgenic mice,
ND not determined
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renal ischemia, the contribution of other inflammasome members in renal IRI
remains to be established. As AIM2 binds to cytosolic DNA (Fernandes-Alnemri
et al. 2009; Hornung et al. 2009), and necrotic renal tubular cells have been reported
to release extracellular DNA following renal ischemia (Jansen et al. 2017), the AIM2
inflammasome may be pathogenic in AKI due to IRI.

Both IL-1 and IL-18 have been implicated in the pathogenesis of AKI due to IRI.
The lack of a functional IL-1R limits renal dysfunction in IRI (Haq et al. 1998), and
treatment with anakinra, an IL-1R antagonist (IL-1RA), impairs the inflammatory
response and accelerates renal repair processes (Rusai et al. 2008). In addition to
urinary IL-18 being a biomarker for tubular inflammation and predicting mortality risk
after severe AKI (Coca et al. 2008), IL-18 promotes renal macrophage recruitment,
with deficiency or neutralisation (via antisera or IL-18 binding protein transgenic
mice) protecting mice from IRI (He et al. 2008; Melnikov et al. 2001; Wu et al. 2008).

8.4.2 Cisplatin Nephrotoxicity

Cisplatin is an inorganic platinum-based chemotherapeutic agent widely used in the
treatment of many solid-organ malignancies. However, cisplatin nephrotoxicity is a
common dose-dependent complication with 25–35% of patients being affected after a
single dose of cisplatin treatment (dos Santos et al. 2012). Cisplatin concentrates in the S3
segment of the proximal tubule, where it induces both necrotic and apoptotic cell death,
as well as pro-inflammatory responses (Peres and da Cunha 2013). There are conflicting
data on the role of inflammasome components and products in cisplatin-induced AKI in
mice, caspase-1 activity increases prior to the development of severe renal failure and
Casp1�/� mice are protected (Faubel et al. 2004), with caspase-1 deficiency attenuating
the increased intrarenal IL-1β and IL-18 found in this model (Faubel et al. 2007).
However, although Il18�/� mice are protected from cisplatin nephrotoxicity with
reduced renal dysfunction and accelerated clearance of cisplatin (Okui et al. 2012),
IL-18Rα-deficient mice have increased cisplatin nephrotoxicity (Nozaki et al. 2012).
Furthermore, inhibition of IL-1βwith IL-1RA and IL-18 with the use of IL-18 antiserum
and IL-18BP-Tg mice or combination therapy with IL-1RA and IL-18 antiserum seems
not to be sufficient to prevent cisplatin-induced renal damage inmice (Faubel et al. 2007).

ASC is increased in the kidneys of mice with cisplatin-induced AKI (Kim et al.
2013), and ASC deficiency is protective against cisplatin nephrotoxicity with reduced
renal dysfunction, ATN, and renal IL-1β and IL-17A levels (Chan et al. 2014). NLRP3 is
abundantly present in macrophages and renal proximal tubules of normal mice, there are
conflicting reports as to whether its expression is increased after exposure to cisplatin
in vitro or in vivo and Nlrp3�/� mice are not protected against cisplatin-induced AKI
(Kim et al. 2013; Lee et al. 2015; Zhang et al. 2014). Zhang et al. explored the role of the
purinergic 2X7 receptor (P2X7R) in cisplatin-inducedAKI (Zhang et al. 2014). P2X7R, a
ligand-gated ion channel activated by high concentrations of extracellular ATP, triggers a
strong potassium efflux and subsequent NLRP3 activation (Franceschini et al. 2015).
AlthoughP2X7R is not expressed in renal tissues of controlmice, it is upregulated in renal
tubules after cisplatin administration (Zhang et al. 2014). A selective P2X7R antagonist
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attenuated cisplatin-induced AKI (Zhang et al. 2014). While P2X7R may have other
pro-inflammatory roles, blocking P2X7R also decreased the expression of the NLRP3
inflammasome components and downstream inflammatory cytokines in the kidney,
implicating the P2X7R-NLRP3 axis in cisplatin nephrotoxicity (Zhang et al. 2014).

In addition to mediating NLRP3 inflammasome function, ASC is an adapter
protein for several other inflammasome components including NLRP1, NLRC4 and
AIM2. NLRP1 is reportedly increased in the kidney after cisplatin administration
(Kim et al. 2013). In addition to sensing microbial stimuli, NLRP1 has been reported
to detect reductions in cellular ATP. Given that cisplatin alters intracellular ATP levels
in proximal tubules, it is plausible that NLRP1 participates in cisplatin-induced AKI
(Liao and Mogridge 2013; Miller et al. 2010; Peres and da Cunha 2013). Similarly,
AIM2 may also play an important role in cisplatin-induced AKI, as cisplatin binds to
DNA causing DNA strand breaks in mitochondrial DNA (Miller et al. 2010).

8.4.3 Sepsis-Induced AKI

Sepsis, a systemic inflammatory response to infection, is the most common cause of
AKI (Rossaint and Zarbock 2016). A growing body of evidence suggests that
inflammation, oxidative stress, microvascular dysfunction and tubular epithelial
responses are involved in the pathogenesis of this complex condition (Zarbock
et al. 2014). Several studies have reported on the participation of NLRP3 and its
inflammasome components in sepsis-induced AKI using a cecal ligation and punc-
ture (CLP) model (Cao et al. 2015; Wang et al. 2015b; Zhao et al. 2016). Sepsis-
induced kidney damage is accompanied by an upregulation of intrarenal NLRP3,
ASC and caspase-1 expression and IL-1β and IL-18 in the serum and kidney (Cao
et al. 2015). Inhibiting the inflammasome using Nlrp3�/� mice and a caspase-1
inhibitor attenuated CLP-induced renal dysfunction and limited renal neutrophil
infiltration, ASC and caspase-1 expression and IL-1β and IL-18 level in the serum
and kidney (Cao et al. 2015). Other strategies, including low-dose carbon monoxide
(Wang et al. 2015b) and sirtuin 3 (a NAD+-dependent deacetylase that regulates
mitochondrial function by limiting oxidative stress) (Zhao et al. 2016), also limit
sepsis-induced AKI and downregulates inflammasome components. Collectively
these studies provide insight into the role of the NLRP3 inflammasome in sepsis-
induced AKI, but further research is required to determine the underlying mecha-
nisms that link NLRP3 activation and sepsis-induced kidney damage.

8.4.4 Rhabdomyolysis-Induced AKI

Rhabdomyolysis is caused by muscle damage due to a range of insults, leading to the
release of myoglobin and other intracellular contents. AKI is a common complication
of rhabdomyolysis with up to 50% of patients developing some degree of kidney injury
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(Gois et al. 2016). The released myoglobin is deposited in renal proximal tubular cells
causing inflammation, necrosis and oxidative damage. Inflammasomes have been
implicated in glycerol-induced rodent models of rhabdomyolysis-induced AKI
(RI-AKI) (Komada et al. 2015). Caspase inhibition limits rat RI-AKI (Homsi et al.
2006), and mice deficient in NLRP3, ASC, caspase-1 or IL-1β were protected from
RI-AKI by preventing the initial inflammatory response that mediates renal tubular
damage. Increased renal tubular cell NLRP3 expression initiated inflammatory
responses and apoptotic cell death, independent of IL-1β processing suggesting a
noncanonical role of NLRP3 during this early phase of RI-AKI (Komada et al.
2015). The endogenous danger signal responsible for NLRP3 activation was not
identified in the study, although the heme protein hemin, ferrous and ferric myoglobin,
released into circulation following muscle damage, did not induce NLRP3
inflammasome activation in primary tubular and collecting duct epithelial cells
in vitro (Komada et al. 2015). Uric acid might be the endogenous danger signal
activating the inflammasome cascade in RI-AKI (Gois et al. 2016). Allopurinol, used
clinically to lower serum uric acid levels, attenuated renal dysfunction in rat RI-AKI
and reduced oxidative stress, tubular apoptosis and renal inflammation by inhibiting the
inflammasome cascade with reduced active caspase-1 levels (Gois et al. 2016).

8.4.5 Contrast Medium-Induced AKI

With the wide use of iodinated contrast media in radiological procedures for medical
diagnosis and treatment of disease, contrast medium-induced AKI (CI-AKI) has
become the third leading cause of hospital-acquired AKI (Shen et al. 2016). While
the pathogenesis of CI-AKI is not entirely clear, contrast medium seems to have
direct cytotoxic effects on renal tubular cells by inducing apoptosis, the generation of
ROS, and indirectly by hemodynamic effects (Sadat et al. 2015). Shen et al. showed
that the NLRP3 inflammasome mediates CI-AKI through modulating tubular apo-
ptosis both in vitro using a human renal proximal tubular cell line (HK-2 cells) and
experimentally in vivo by administering contrast to mice with a single kidney
unilateral nephrectomy model with the administration of media (Shen et al. 2016).

8.5 The Inflammasome in Crystal Nephropathies

Crystal nephropathies are a number of acute and chronic kidney disorders related to
crystal deposition or formation inside the kidney, most frequently involving the
tubulointerstitium. The kidney is highly susceptible to intrarenal crystal formation or
deposition because of the high concentration of ions and molecules reached in the
tubulointerstitium as a result of glomerular filtration. It is well established that the
NLRP3 inflammasome can be activated by crystalline material via potassium efflux
secondary to lysosomal rupture in phagocytic innate immune cells (Hornung et al.
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2008). Several crystalline substances implicated in kidney disease, including cal-
cium oxalate, monosodium urate, calcium phosphate and cholesterol embolism, are
well-characterised activators of the NLRP3 inflammasome (Hutton et al. 2016).

Calcium oxalate is responsible for kidney stones in approximately 70–80% of
kidney stone patients (Darisipudi and Knauf 2016). Two key studies have shown that
calcium oxalate crystals activate the NLRP3 inflammasome both in AKI (Mulay et al.
2013) and in progressive renal failure (Knauf et al. 2013). Mulay et al. using a mouse
model of crystal nephropathy induced by a high oxalate diet comprehensively showed
that intrarenal inflammation, tubular damage and renal dysfunction were attenuated in
mice lacking ASC and NLRP3 and their downstream mediators MyD88, caspase-1,
IL-1R and IL-18 (Mulay et al. 2013). Calcium oxalate crystals activated renal dendritic
cells to secrete IL-1β in an inflammasome-dependent manner; ATP released due to
calcium oxalate-mediated tubular damage was potentially activating the
inflammasome in this setting (Mulay et al. 2013). Nlrp3�/� mice are also protected
in chronic calcium oxalate-induced renal disease, seen in primary hyperoxaluria and
other crystallopathies (Knauf et al. 2013). A recent microarray study also revealed a
potential role for ROS in activating the NLRP3 inflammasome via thioredoxin-
interacting protein (TXNIP), a crucial protein that plays a role in regulating ROS
production in cells, leading to a robust inflammatory response in the kidneys of rats
with hyperoxaluria and calcium oxalate nephrolithiasis (Joshi et al. 2015).

Adenine overload also induces intrarenal crystal precipitation resulting in tubular
atrophy and renal fibrosis, with a role for inflammasomes. ASC and caspase-1 are
pathogenic in adenine-induced renal inflammation and fibrosis in mice (Correa-
Costa et al. 2011), and the NLRP3-specific inhibitor CP-456773 blocked NLRP3
activation in dendritic cells and downstream IL-1β and IL-18 production, attenuating
renal inflammation and fibrosis in murine crystal nephropathy induced by diets rich
in adenine or oxalate (Ludwig-Portugall et al. 2016). However, delayed treatment,
although reducing intrarenal inflammasome activation and inflammation, did not
reverse renal fibrosis once it was established.

Hyperuricaemia is epidemiologically associated with an increased risk of AKI and
progressive CKD (Iseki et al. 2004; Kaushik and Choo 2016; Obermayr et al. 2008).
Experimental studies implicate a variety of mechanisms by which hyperuricaemia
causes renal disease, including inflammation provoked by monosodium urate crystals
(Isaka et al. 2016). Within the kidney, uric acid preferentially precipitates and forms
monosodium urate crystals in collecting ducts and even tophi in the surrounding
interstitium of the renal medulla (Mulay et al. 2014). In gout, the potential for
monosodium urate crystals to induce the NLRP3 inflammasome is well established
(Martinon et al. 2006). Similar mechanisms are likely to operate in the kidney, where
monosodium urate induces lysosomal rupture when phagocytosed with mitochondrial
damage and ROS production (Emmerson et al. 1990). In vitro studies demonstrate that
soluble uric acid or monosodium urate crystals induce NLRP3 activation via a TLR4-
dependent pathway in both human primary renal proximal tubular epithelial cells and
rat mesangial cells (Hong et al. 2015; Xiao et al. 2015a, b). However, at this stage
functional data linking monosodium urate crystals with NLRP3 inflammasome acti-
vation in animal models of renal disease is lacking.
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Uromodulin is a sticky particle-forming protein secreted exclusively by the thick
ascending limb of the distal tubule (Anders and Schaefer 2014; Leemans et al. 2014).
Due to its adhesive nature, uromodulin coats all particles in the distal tubule
including renal crystals. Distal tubular injury facilitates uromodulin leakage into
the interstitial compartment, where it acts as a DAMP and activates interstitial
dendritic cells in a TLR4- and NLRP3-dependent manner (Darisipudi et al. 2012;
Saemann et al. 2005). The particulate nature of uromodulin favours phagocytosis
and endosomal destabilisation in dendritic cells, activating the NLRP3
inflammasome (Darisipudi et al. 2012).

Cystinosis, a rare autosomal recessive disease caused by mutations in the CTNS
gene, is characterised by the lysosomal accumulation of cystine, leading to the
formation of cystine crystals in multiple organs, including the kidney. Infantile
cystinosis represents the most severe phenotype with progressive renal impairment
and end-stage renal disease (ESRD) that may occur before 10 years of age
(Darisipudi and Knauf 2016). Cystine crystals are endogenous inflammasome-
activating stimuli, implying that the inflammasome plays a role in the pathogenesis
of this disease (Prencipe et al. 2014).

8.6 The Inflammasome in Chronic Kidney Injury
and Disease

Unilateral ureteric ligation (UUO) in rodents is often used to study mechanisms of
renal fibrosis and progressive chronic kidney disease (CKD). Several studies have
employed this model to investigate the role of the inflammasome in the development
of CKD. Biglycan, an extracellular matrix component and an endogenous ligand for
TLR4 and TLR2, acts as a DAMP for NLRP3 inflammasome activation in UUO,
initiating caspase-1-mediated maturation and secretion of IL-1β (Babelova et al.
2009). Vilaysane et al. demonstrated that Nlrp3�/� mice developed less tubular
injury, inflammation and fibrosis after UUO (Vilaysane et al. 2010), a phenotype
associated with reduced caspase-1 activation and IL-1β and IL-18 maturation. Bone
marrow chimeras revealed these effects were mediated by NLRP3 in both
haematopoietic and non-haematopoietic cells, but IL-1β/IL-18 processing in renal
tubular epithelial cells could not be detected, suggesting a noncanonical role for
NLRP3 in tubular cells (Vilaysane et al. 2010). The same group revealed that
NLRP3 promotes pro-fibrotic TGF-β-mediated signalling and Smad2 and Smad3
phosphorylation in renal epithelium independently of forming a caspase-1-activating
inflammasome (Wang et al. 2013). However, the role of the NLRP3 inflammasome
during UUO remains controversial. ASC-deficient mice have significantly reduced
renal inflammatory responses and improved renal injury and fibrosis after UUO
(Komada et al. 2014). Mechanistically, this study found that ATP induces
inflammasome activation in ASC, expressing collecting duct epithelial cells via
P2X-potassium efflux and ROS-dependent pathways in vitro, but this was not
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examined in vivo (Komada et al. 2014). Further studies have suggested roles of
NLRP3 via promoting mitochondrial dysfunction and the subsequent release of
mature IL-1β and IL-18 (Guo et al. 2017), while in UUO, IL-36 signalling may
also activate the NLRP3 inflammasome in both immune cells and renal epithelial
cells (Chi et al. 2017). Despite the discrepancies in mechanism, most studies have
found that NLRP3 signalling promotes injury in UUO. In contrast, at least one study
does not support a pathogenic role for NLRP3 with NLRP3 deficiency resulting in
increased interstitial oedema and vascular leakage, potentially due to reduced
expression of intercellular junction components (Pulskens et al. 2014). Experimental
administration of a number of anti-inflammatory mediators such as milk fat globule-
epidermal growth factor 8 (Brissette et al. 2016), Danggui Buxue Tang (Wang et al.
2016), aliskiren (Wang et al. 2015c) and fluorofenidone (Zheng et al. 2017) all
attenuate experimental renal fibrosis and inflammatory responses after UUO, poten-
tially by inhibiting NLRP3 inflammasome activation. In a cohort of renal biopsies
from patients with nondiabetic kidney disease, renal mRNA levels of NLRP3
correlated with renal functional impairment, further supporting that NLRP3 contri-
butes to the pathogenesis of CKD (Vilaysane et al. 2010).

8.6.1 Diabetic Nephropathy

Diabetic nephropathy (DN) is the leading cause of ESKD worldwide and is increas-
ing in prevalence (Molitch et al. 2015). Albuminuria is an early sign of DN, with in
many, an irreversible decline in renal function subsequently occurring over years.
Unlike Type 1 diabetes mellitus (T1DM), which is an autoimmune disease with
destruction of pancreatic islet cells causing insulinopenia, Type 2 diabetes mellitus
(T2DM) is characterised by insulin resistance, often seen in concert with other
aspects of the metabolic syndrome including obesity, hypertension, hyperlipidaemia
and hyperuricaemia. Obesity and hypertension in themselves cause proteinuria and
hasten progression of diabetic kidney disease and also contribute to an inflammatory
state in which there is aberrant NLRP3 inflammasome activation (Mastrocola et al.
2018). While some processes common to diabetic nephropathy implicate the NLRP3
inflammasome in both Type 1 and Type 2 diabetes, the role of the inflammasome in
T2DM bears special consideration, because of the range of substances that may
function as inflammasome-activating DAMPs in this condition. This section will
focus on the inflammasome in diabetic kidney disease, rather than in diabetes itself
or in other aspects of the metabolic syndrome, which is discussed in this chapter
(metabolic disease).

Histologically, DN is characterised by glomerular hypertrophy, followed by
accumulation of extracellular matrix proteins. Tubular hypertrophy also occurs
early and may progress to interstitial fibrosis and tubular atrophy over time
(Pourghasem et al. 2015). Macrophages are present in the kidneys of diabetic
humans and in rodent models of DN (Chow et al. 2004; Nguyen et al. 2006); the
extent of inflammatory cell infiltrate correlates with the decline in renal function, and
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CCL2 deficiency in mice limited intrarenal macrophage infiltrates and diabetic
nephropathy, suggesting a causative link (Awad et al. 2011; Lim and Tesch 2012).
Thus, although it has been known for some time that sterile inflammation is
associated with progression of DN, the NLRP3 inflammasome as a link between
these two entities has only been explored more recently. Supporting the experi-
mental data detailed below is human data showing that urinary IL-18 and serum
IL-1β levels are elevated in patients with diabetic nephropathy compared to diabetic
patients without albuminuria, and levels correlate closely with the degree of albu-
minuria (Nakamura et al. 2005; Shahzad et al. 2015). Additionally, polymorphisms
in the promoter region of the IL-18 gene may be associated with the development of
diabetic nephropathy in diabetic patients (Elneam et al. 2016).

Various studies have implicated the NLRP3 inflammasome in diabetic nephro-
pathy using mouse models. One of the most comprehensive used both db/db mice,
which develop diabetes in the setting of insulin resistance and obesity (modelling
T2DM), and uninephrectomised mice treated with the pancreatic β-cell toxin
streptozotocin (STZ, modelling T1DM) (Shahzad et al. 2015). While 8-week-old
db/db mice do not have signs of renal disease, the development of albuminuria and
renal histological changes occurs by 12 weeks. Caspase-1 and NLRP3 deficiency
were both protective in the db/db and insulinopenic STZ models. IL-1RA (anakinra)
administered to 8-week-old db/db mice for 12 weeks limited albuminuria and
extracellular matrix accumulation. IL-1RA was also administered to 12-week-old
db/db mice with established renal disease for 8 weeks, resulting in a normalisation of
albuminuria and renal histology. Interestingly, though IL-1RA resulted in weight
loss and improved blood glucose levels only in the db/db mice, it did not affect
metabolic parameters in STZ mice, indicating the renoprotective effect was, at least
partially, independent of the observed metabolic improvements. The lack of protec-
tion seen in irradiated wild-type mice transplanted with Nlrp3�/� or Casp1�/� bone
marrow and the fact that Nlrp3�/� mice transplanted with wild-type bone marrow
remained protected indicate that intrinsic renal cell-derived, rather than immune cell-
derived, NLRP3 inflammasome activation drives disease. Supporting this, NLRP3
inflammasome activation (in the form of co-localisation of cleaved caspase-1 and
NLRP3) was seen both in glomerular endothelial cells and in podocytes of db/db
mice and of diabetic humans. Cleaved IL-1β was upregulated in glucose-stressed
human podocytes and mouse glomerular endothelial cells compared to cells treated
with control substances. This IL-1β production was caspase-1 dependent, indicating
canonical NLRP3 inflammasome activation occurred in these intrinsic renal cells.

8.6.2 NLRP3 Inflammasome-Activating Substances in T2DN

There are a number of exogenous and endogenous substances that are present or
increased in DN that can also activate the NLRP3 inflammasome; multiple studies
have linked a particular inflammasome-activating DAMP to renal disease in T2DM.
Several studies point to mitochondrial ROS as being a likely activator of NLRP3-
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ASC in diabetic nephropathy, including ex vivo studies in human monocytes and
macrophages and db/db mice treated with mitochondrial ROS inhibitor (Mirza et al.
2014; Shahzad et al. 2015). High glucose itself may stimulate the expression of
NLRP3 (Chen et al. 2013). A study by Gao et al. found this occurs due to
hyperglycaemia-induced expression of thioredoxin-interacting protein, which
causes activation of the gp91 (phox) subunit of NADPH oxidase, which then
activates NLRP3 (Gao et al. 2015). Islet amyloid polypeptide, produced in response
to elevated blood glucose by pancreatic islet cells and secreted with insulin, can
activate the NLRP3 inflammasome via disruption of phagolysosomes as well as
cathepsin-B and cathepsin-L (Masters et al. 2010). Hyperuricaemia commonly
occurs in metabolic syndrome, often found in T2DM. Monosodium urate crystals
may act as an inflammasome activator in this situation (Kim et al. 2015). ROS,
which are produced in greater amounts in the adipose tissue of obese compared to
nonobese individuals (Furukawa et al. 2004), and certain fatty acids (L’Homme et al.
2013; Wen et al. 2011) can also act as an NLRP3 inflammasome-activating signal. In
practice, it may be a combination of more than one of these substances that causes
NLRP3 inflammasome activation and inflammation in DN.

8.6.3 NLRC4 in Diabetic Nephropathy

Although most studies have focussed on the role of the NLRP3 inflammasome in this
disease, NLRC4 inflammasome expression was found to be increased in the kidneys
of diabetic humans, and mice deficient in NLRC4 were protected in a STZ model of
diabetes, with decreased intrarenal macrophage accumulation (Yuan et al. 2016).

8.6.4 Inflammasome Blocking Treatments for T2DM

Although IL-1 blockade has shown promise in mouse models of DN (Shahzad et al.
2015), trials in humans have focussed on glycaemic control and other metabolic
effects rather than renal disease (Larsen et al. 2007; Mandrup-Poulsen et al. 2010). A
number of other treatments have been used in mouse models. For example, in an
STZ-induced murine model of diabetic nephropathy, with hyperlipidaemia and
hyperuricaemia, mice were found to express high levels of NLRP3 and downstream
cytokines IL-1β and IL-18. Treatment with allopurinol and quercetin (which have
uric acid and lipid-lowering effects) limited NLRP3-ASC inflammasome activation
and improved renal histology. Extracellular ATP, an endogenous DAMP activating
the inflammasome via the P2X7R, promotes renal interstitial inflammation. Both
apyrase, which consumes extracellular ATP, and compounds targeting the P2X7R
limit glucose stimulated NLRP3 expression and IL-1β and IL-18 release (Chen et al.
2013). Although approaches targeting a specific inflammasome activator are useful
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in mouse models, their effects may be limited in real-world human disease, unless a
unifying inflammasome activator is found.

8.7 Inflammasomes and Glomerulonephritis

Autoimmunity is the predominant pathogenic process underlying most forms of
glomerulonephritis (Holdsworth et al. 2016). Autoantibodies may be directed
against components of the glomerulus, as occurs in membranous nephropathy and
anti-GBM disease. Circulating autoantibodies that target antigens which are not
specific to the kidney, such as double-stranded DNA (dsDNA) in lupus, and
neutrophil components in anti-neutrophil cytoplasmic antibody (ANCA)-associated
vasculitis (AAV), can also cause kidney injury (Suarez-Fueyo et al. 2017). In some
diseases, such as anti-GBM disease, the pathogenic antigen and autoantibody have
been well characterised (Ooi et al. 2017), whereas in others, such as idiopathic
minimal change disease, a circulating factor causing immune-mediated damage is
likely to be present, but is not yet identified (Bierzynska and Saleem 2017).
Although part of the innate immune system, inflammasomes can modulate adaptive
immune responses, contributing to loss of tolerance and autoimmunity, via effects on
T-cell differentiation. Autoreactive CD4+ T cells not only promote autoantibody
production (as T follicular helper cells) but also act as local effectors and are key
players in a number of renal autoimmune diseases, including lupus (Okamoto et al.
2012), anti-GBM disease (Ooi et al. 2013; Salama et al. 2001) and AAV (Ooi et al.
2012). On activation, naïve CD4+ T cells differentiate into functionally distinct
subsets, with characteristic patterns of cytokine secretion. The inflammasome has
effects on CD4+ T-cell fate determination via IL-1β and IL-18. IL-18 is important in
Th1 responses (Novick et al. 2013), whereas IL-1β is essential for Th17 cell
differentiation from naïve T cells (Joosten et al. 2013). As Th1 and Th17 cells
actively participate in experimental models of glomerulonephritis (Summers et al.
2011, 2009), the modulation of adaptive immune responses by the inflammasome
may be important in a number of autoimmune kidney conditions.

8.7.1 Models of Anti-GBM Disease and Immune Complex
Glomerulonephritis

Anti-GBM disease is a rare condition characterised by the deposition of antibodies
targeting the non-collagenous domain of type IV collagen (α3(IV)NC1) within the
GBM, with glomerular linear IgG deposition seen in kidney biopsies. Disease is
mediated by autoreactive T and B cells (Holdsworth et al. 2016) resulting in rapidly
progressive glomerulonephritis and often pulmonary haemorrhage, with ESRD and
often death if left untreated. Mouse models of ‘anti-GBM disease’ usually involve

196 H. L. Hutton et al.



injection of heterologous anti-basement membrane globulin raised in another species
(sometimes called nephrotoxic serum nephritis). These models, which are not
autoimmune, have two phases: the initial (heterologous) phase is the direct effect
of the antibodies binding to the GBM; the second (autologous) phase occurs when
antibodies and T cells are produced that target the heterologous globulin bound to
glomerular capillary walls. While having some value in defining effector responses
in severe glomerular disease, autologous phase ‘anti-GBM disease’ is not autoim-
mune and should not be confused with true autoimmune models of this disease
(Odobasic et al. 2014; Ooi et al. 2014, 2017; Wu et al. 2002).

Endogenous IL-1 and IL-18 are pathogenic in autologous phase ‘anti-GBM’
glomerulonephritis (Kitching et al. 2005; Lan et al. 1993). PX27R is increased in
mesangial cells and glomerular macrophages in murine autologous phase ‘anti-
GBM’ glomerulonephritis and in humans with autoimmune GN (Turner et al.
2007). PX27-deficient mice and mice treated with a PX27 inhibitor were protected
from glomerular injury in autologous phase ‘anti-GBM’ GN (Taylor et al. 2009).
Lichtnekert et al. studied the role of inflammasomes in heterologous phase ‘anti-
GBM GN’ where passive antibody transfer induces leukocyte-mediated injury.
Pro-IL-1β, caspase-1, NLRP3 but not ASC mRNA were induced in kidneys of
mice injected with anti-GBM. NLRC1, NLRP4 and AIM2 mRNA were
undetectable. As in previous studies (Kitching et al. 2005; Lan et al. 1993; Tang
et al. 1994; Timoshanko et al. 2004a), IL-1 and IL-18 were both pathogenic, but
ASC, NLRP3 and caspase-1 deficiency did not protect against disease. While this
study reported that mesangial cells, glomerular endothelial cells and podocytes did
not secrete IL-1β (Lichtnekert et al. 2011), several other studies indicate that
glomerular cells can produce IL-1β (Table 8.2).

8.7.2 Lupus Nephritis

Renal injury in lupus nephritis is mediated by immune complex deposition as well as
other effectors, with the role of innate immune pathways being increasingly
recognised (Bagavant and Fu 2009). Type I interferon is a central mediator in the
pathogenesis of systemic lupus erythematosus (SLE) (Crow 2014), and IL-18, a
strong interferon inducer, is increased in the serum of people with SLE, with IL-18
levels correlating with the presence of lupus nephritis and proteinuria (Calvani et al.
2004). IL-18 deficiency in autoimmune-prone Fas-deficient (MRL-Faslpr) mice
prolonged survival and attenuated renal disease (Kinoshita et al. 2004). Several
inflammasomes have been implicated in the pathogenesis of SLE. Mouse and
human data suggest a role for NLRP3 and AIM2 inflammasomes, and a study of
single-nucleotide polymorphisms in seven inflammasome-related genes found that
polymorphisms in the NLRP1 inflammasome (but not in AIM2 or NLRP3) were
associated with both lupus and the development of lupus nephritis (Pontillo et al.
2012). Intrarenal caspase-1 and NLRP3 are increased in human lupus nephritis
(Kahlenberg et al. 2011). The AIM2 inflammasome, activated by cytosolic DNA,
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is implicated in people with SLE with AIM2 expression correlating with clinical
disease severity (Zhang et al. 2013). In murine lupus induced by apoptotic DNA
immunisation, AIM2 expression was increased in renal macrophages and correlated
with dsDNA levels. Silencing of AIM2 expression limited autoantibody production
and renal disease (Zhang et al. 2013).

In vivo evidence supporting the role of the NLRP3 inflammasome in lupus is
found in pristine-induced murine lupus, in which blockade of caspase-1 was pro-
tective, resulting in a reduction in autoantibodies, glomerulonephritis and inhibition
of the development of the type I IFN response (Kahlenberg and Kaplan 2014).
Conversely, mice with a gain of function mutation in NLRP3 in the pristine-induced
experimental model develop more severe lupus. This phenotype appears to be
related to NLRP3 expression in myeloid cells, because Cre recombinase-mediated
deletion of this mutant from myeloid cells resulted in significant reduction in disease
(Lu et al. 2017). However in the C57BL/6lpr/lpr model of systemic autoimmunity,
both ASC and NLRP3 played a regulatory role, with deficiency of either resulting in
the development of more severe autoimmunity and diseases, potentially via effects
on the SMAD2/SMAD3 signalling pathway (Lech et al. 2015).

Both dsDNA and neutrophil extracellular traps (NETs) can activate the NLRP3
inflammasome in lupus. dsDNA complexes isolated from SLE patients can activate
the NLRP3 inflammasome in human monocytes, in a TLR9- and NF-κB-dependent
manner. Blocking ROS production and potassium efflux significantly reduced IL-1β
production from dsDNA-treated monocytes, indicating the importance of these
processes to NLRP3 activation (Shin et al. 2013). NETs, networks of chromatin
fibres laced with antimicrobial peptides and enzymes that can be extruded from
neutrophils and macrophages, are thought not only to play an important role in host
defence but also in the pathogenesis of a variety of autoimmune diseases
(Kahlenberg et al. 2013; Kessenbrock et al. 2009). Both NETs and IL-37, an
antibacterial protein externalised on NETs, activated the NLRP3 inflammasome in
human and murine macrophages; this NET-mediated activation was enhanced in
macrophages derived from lupus patients (Kahlenberg et al. 2013). Interestingly,
NETosis in macrophages was also promoted by IL-18, potentially leading to a cycle
of NET-induced inflammasome activation (Kahlenberg et al. 2013).

8.7.3 ANCA-Associated Vasculitis

The ANCA-associated vasculitides (AAV) are small vessel vasculitides
characterised by autoantibodies specific for neutrophil granule components,
myeloperoxidase (MPO) and proteinase 3 (PR3), and inflammatory cell infiltration
causing damage to the walls of small- and medium-sized blood vessels. The kidney
is a commonly affected organ. In these diseases, ANCA bind to activated neutro-
phils, causing degranulation and injurious ROS production (Jarrot and Kaplanski
2016). Both IL-18 and IL-1β have been shown to be important in the pathogenesis of
AAV. Neutrophils are usually primed prior to ANCA-mediated activation.
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Traditionally TNF has been used to prime neutrophils ex vivo, but IL-18 primes
neutrophils comparably to TNF (Hewins et al. 2006). Patients with active vasculitis
have increased serum IL-18 levels, and IL-18 is also upregulated in the kidney in
AAV (Hewins et al. 2006; Hultgren et al. 2007). In humans with MPO-AAV
intrarenal IL-1β, TLR4 and NLRP3 expression correlated with the severity of
tubulointerstitial injury (Tashiro et al. 2016). Experimentally, IL-1RA treatment
protected mice from the development of anti-MPO GN in a bone marrow transplant
model of AAV. As mice transplanted with bone marrow deficient in dipeptidyl
peptidase, required for neutrophil serine protease activation, were also protected, it
was proposed that activation of neutrophil IL-1β by serine proteases was more
important than inflammasome-mediated IL-1β activation in this disease (Schreiber
et al. 2012). In further work, phagocyte NADPH oxidase, thought to be involved in
the production of tissue-damaging ROS, was in fact found to downregulate caspase-
1, decreasing inflammasome-dependent IL-1β production and protecting against GN
(Schreiber et al. 2015). Although this may indicate that there are two, independently
acting pathways by which ANCA induces IL-1β production by monocytes, a
neutrophil serine protease pathway and an inflammasome-dependent pathway
(Schreiber et al. 2015), further work would clarify the roles of IL-1β and of specific
inflammasomes in AAV.

8.7.4 IgA Nephropathy

IgA nephropathy is the most common form of primary glomerulonephritis world-
wide and can be diagnosed on renal biopsy by the presence of glomerular IgA
deposits and mesangial cell proliferation. Kidney damage occurs due to glomerular
IgA immune complex deposition promoting innate immune effectors, with subse-
quent T-cell activation and inflammation (Coppo et al. 2010; Rifai 2007). Predicting
the course of IgA nephropathy can be difficult, with severity ranging from it being a
mild, non-progressive disease to it progressing to end-stage renal failure. Clinical
features, including hypertension, proteinuria and a reduced eGFR on presentation
(Barbour and Reich 2012), as well as renal biopsy features including tubulo-
interstitial scarring and glomerulosclerosis (Cook 2007), are associated with risk
of progression. However NLRP3 expression (primarily seen in renal tubular epi-
thelium) also correlated with progression of kidney disease (Chun et al. 2016).
Experimentally IL-1RA-treated mice were protected in experimental IgA nephro-
pathy in which ddY mice spontaneously develop disease (Chen et al. 1997). NLRP3,
caspase-1 and IL-1β levels were significantly increased in a passively induced mouse
model of IgAN; and NLRP3-deficient mice were also protected in a passive model
of IgA nephropathy, with reduced renal macrophage, dendritic cell and T-cell
infiltration, reduced T-cell activation and increased T regulatory cells compared to
wild-type mice (Tsai et al. 2017). The recent comprehensive study by Tsai et al.
demonstrates the role that the NLRP3 inflammasome plays in linking IgA immune
complex deposition and T-cell activation. In in vitro studies, IgA immune complexes
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caused NLRP3-dependent IL-1β production in macrophages and dendritic cells,
with both canonical (involving caspase-1) and noncanonical pathways (involving
caspase-11 in mice, equivalent to caspase-4/5 in humans) being activated. IgA
immune complex-primed bone marrow-derived dendritic cells (BMDCs) from
wild-type mice induced proliferation of CD4+ T cells and their production of
pro-inflammatory cytokines such as IL-17 and IFNγ. T-cell proliferation and cyto-
kine production were greatly reduced when BMDCs from NLRP3-deficient mice
were used. The NLRP3 inflammasome activators in this instance were proposed to
be IgA immune complex-induced mitochondrial ROS and mitochondrial DNA
release into the cytosol. Supporting this, treatment with a mitochondrial ROS
inhibitor reduced NLRP3 expression and IL-1β secretion in IgA immune complex-
activated macrophages. Additionally, IgA immune complexes were shown to induce
NLRP3-dependent IL-1β from primary mesangial cells and renal tubular endothelial
cells, indicating NLRP3 inflammasome activation in these intrinsic kidney cells
(Tsai et al. 2017).

8.7.5 Inflammasomes in Other Glomerular Diseases

NLRP3 expression has been assessed in kidney biopsies of patients with a variety of
nondiabetic kidney diseases with increased NLRP3 and caspase-1 mRNA expres-
sion found in all subgroups of kidney disease (Vilaysane et al. 2010; Xiong et al.
2015). In one of these studies, NLRP3 expression correlated with renal impairment
and glomerular sclerosis on biopsy, a marker of advanced kidney damage (Xiong
et al. 2015), suggesting that NLRP3 might be a common pathway in the progression
of disease. Focal and segmental glomerulosclerosis (FSGS) is a kidney disease that
can occur in a primary, autoimmune form, or in a secondary form as a result of
another insult to the kidney, such as hypertension, obesity or diabetes. Astaxanthin, a
compound which exerts suppressive effects on NLRP3 inflammasome activation as
well as antioxidant effects, was renoprotective in a mouse model of FSGS induced
by Adriamycin (Liu et al. 2015). However, the potential roles of inflammasomes in
FSGS and other glomerular diseases such as membranous nephropathy and minimal
change disease have not yet been defined.

8.8 Conclusions and Future Directions

While there is much still to learn, there is clear evidence that inflammasomes are
relevant to a variety of renal diseases and represent potential therapeutic targets.
Ideally a ‘common pathway’ involved in multiple renal diseases may be identified,
disruption of which can treat a number of human kidney diseases. However, the wide
variety of causes (and therefore mechanisms of disease) imply that detailed studies
of multiple types of kidney disease are likely to be required, with clinical
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observations being backed by mechanistic and functional studies in relevant in vitro
and in vivo models of disease. The advent of more specific inflammasome inhibitors
emphasises the need to understand how different inflammasomes contribute to
disease in preclinical models.
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Chapter 9
Pro-Inflammatory Actions of Red Blood
Cell-Derived DAMPs
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Abstract Damage-associated molecular patterns (DAMPs) or alarmins are endog-
enous danger signals that are derived from damaged cells and extracellular matrix
degradation, capable of triggering innate immune response to promote tissue damage
repair. Hemolytic or hemorrhagic episodes are often associated with inflammation,
even when infectious agents are absent, suggesting that damaged red blood cells
(RBCs) release DAMPs.

Hemoglobin (Hb) composes 96% of the dry weight of RBCs; therefore upon
hemolysis, tremendous amounts of Hb are released into the extracellular milieu. Hb
oxidation occurs outside the protective environment of RBCs, leading to the forma-
tion of different Hb oxidation products and heme. Heme acts as a prototypic DAMP
participating in toll-like receptor as well as intracellular nucleotide-binding oligo-
merization domain-like receptor signaling. Oxidized Hb forms also possess some
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inflammatory actions independently of their heme releasing capability. Non-Hb-
derived DAMPs such as ATP, interleukin-33, heat shock protein 70, as well as RBC
membrane-derived microparticles might also contribute to the innate immune
response triggered by hemolysis/hemorrhage.

In this chapter we will discuss the inflammatory properties of RBC-derived
DAMPs with a particular focus on Hb derivatives, as well as therapeutic potential
of the endogenous Hb and heme-binding proteins haptoglobin and hemopexin in the
prevention of hemolysis/hemorrhage-associated inflammation.

Keywords Hemoglobin · Red blood cells · Inflammasome · DAMPs · Hemolysis ·
Hemorrhage

Abbreviations

ASC Apoptosis-associated speck-like protein containing a caspase
recruitment domain

ATP Adenosine triphosphate
CO Carbon monoxide
Cys Cysteine
DAMPs Damage-associated molecular patterns
FerrylHb Ferrylhemoglobin
Hb Hemoglobin
HO-1 Heme oxygenase-1
H2O2 Hydrogen-peroxide
Hp Haptoglobin
Hsp Heat shock protein
Hx Hemopexin
ICAM-1 Intracellular adhesion molecule-1
ICH Intracerebral hemorrhage
IL Interleukin
LPS Lipopolysaccharide
MetHb Met(ferric) hemoglobin
Mhem macrophage Hemorrhage-associated macrophage
MPs Microparticles
MyD88 Myeloid differentiation primary response gene 88
NADPH Nicotinamide adenine dinucleotide phosphate
NF-κB Nuclear factor kappa B
NLR NOD-like receptor
NLRP3 NLR family pyrin domain containing 3
NOD Nucleotide-binding oligomerization domain
NRF2 Nuclear factor erythroid 2-related factor 2
PAMPs Pathogen-associated molecular patterns
PPIX Protoporphyrin IX
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RBC red blood cell
P2X7 P2X purinoceptor 7
TLR Toll-like receptor
ROS Reactive oxygen species
TNF-α Tumor necrosis factor-alpha
TRIF TIR-domain-containing adapter-inducing interferon-β
Tyr Tyrosine
VCAM-1 Vascular cell adhesion molecule-1

9.1 Introduction

Damage-associated molecular patterns (DAMPs) or alarmins are endogenous danger
signals that are derived from damaged cells and extracellular matrix degradation
capable of triggering and/or exacerbating innate immune responses to promote tissue
damage repair (Matzinger 1994). Hemolytic or hemorrhagic episodes are often
associated with inflammation even when infectious agents are absent (Arruda et al.
2005), suggesting that damaged red blood cells (RBCs) release DAMPs (Mendonca
et al. 2016).

The far most abundant protein in mature RBCs is hemoglobin (Hb) that composes
96% of the dry weight of RBCs; therefore upon hemolysis, tremendous amounts of
Hb are released into the extracellular milieu. Once outside the protective environ-
ment of RBCs, Hb is prone to oxidation, in which process different Hb oxidation
products form with diverse biological activities toward immune and nonimmune
cells. Heme, the prosthetic group of Hb, is promptly released from oxidized Hb
species and is the most studied RBC-derived alarmin (Soares and Bozza 2016).
Heme is a strong prooxidant and is involved in toll-like receptor (TLR) as well as
intracellular nucleotide-binding oligomerization domain (NOD)-like receptor (NLR)
signaling [reviewed in Dutra and Bozza (2014), Soares and Bozza (2016)]. Besides
heme, oxidized Hb forms also possess some inflammatory actions independently of
their heme releasing capability [reviewed in Jeney et al. (2014)]. Non-Hb-derived
DAMPs such as adenosine triphosphate (ATP), interleukin (IL)-33, heat shock
protein (Hsp) 70, as well as RBC membrane-derived microparticles (MPs) might
also contribute to the innate immune response triggered by hemolysis/hemorrhage.

Deleterious effects of extracellular Hb and heme are controlled by haptoglobin
(Hp) and hemopexin (Hx), respectively. These acute phase proteins bind extracel-
lular Hb and heme avidly and facilitate their removal from circulation through
receptor-mediated endocytotic routes. Upon massive intravascular hemolysis, the
scavenging capacities of Hp and Hx are overwhelmed. Along with this notion, Hp-
and Hx-based therapeutic interventions could be beneficial in pathologies associated
with hemolysis/hemorrhage.
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9.1.1 Physiology of RBCs

RBCs are the most prevalent cells in the human body, structurally and functionally
dedicated to transport oxygen and carbon dioxide throughout the organism. RBCs
are formed in the bone marrow from pluripotent hematopoietic stem cells in the
process of erythropoiesis. Differentiation takes place mainly in the bone marrow,
until reticulocytes released into the bloodstream where they mature further 1–2 days
into terminally differentiated RBCs. During differentiation RBCs loose nuclei and
cytoplasmic organelles including mitochondria and ribosomes. The advantage of not
having nuclei in mature RBCs is twofold: first, anucleated cells are more flexible
assuring that they can squeeze through small blood capillaries; second, there is more
space for Hb resulting in increased oxygen-binding capacity. On the other side of
this trade-off, mature anucleated RBCs are unable to divide, and their rescuing
mechanisms are limited. This explains the relatively short life-span (100–120
days) of RBCs in the circulation, and the enormous turnover of making and breaking
RBCs (200 billion RBCs/day).

Circulating RBCs are continuously exposed to high levels of reactive oxygen
species (ROS) of both endogenous and exogenous origin [reviewed in Mohanty
et al. (2014)]. Each ml of blood contains 0.3 g of Hb, and auto-oxidation (Table 9.1,
equation #1) of Hb is the major source of endogenous ROS in RBCs. Besides Hb
auto-oxidation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases
also contribute to endogenous ROS production in RBCs (George et al. 2013). To
cope with this challenge, RBCs are equipped with a highly effective antioxidant
defense system which includes enzymes such as Cu/Zn superoxide dismutase that
convert superoxide anion to hydrogen peroxide (H2O2), catalase, glutathione perox-
idase, and peroxiredoxins which decompose H2O2 to H2O [reviewed in Siems et al.
(2000), Jeney et al. (2013), Mohanty et al. (2014)]. Nonenzymatic low-molecular-
weight scavengers such as glutathione and ascorbic acid also contribute to this

Table 9.1 Oxidative modifications of hemoglobin

Formed species

(1) Hb(Fe2+)O2 ! Hb(Fe3+) + O2
•� Methemoglobin

(2) Hb(Fe2+)O2 + H2O2 ! Hb(Fe4+ ¼ O2�) + H2O + O2 Ferrylhemoglobin

(3) Hb(Fe3+) + H2O2 ! Hb•+(Fe4+ ¼ O2�) + H2O Ferrylhemoglobin globin radical

(4) Hb(Fe4+ ¼ O2�) + 2H+ ! Hb•+(Fe3+) + H2O Methemoglobin globin radical

(5) Hb•+(Fe3+) + Hb•+(Fe3+) ! (Fe3+) +Hb─Hb+(Fe3+) Covalently cross-linked methemoglo-
bin multimer

Routes of hemoglobin oxidation. Auto-oxidation of Hb generates metHb and superoxide anions
(equation 1). H2O2 triggers a two-electron oxidation of Hb leading to the formation of ferryl (Fe4+¼
O2�) Hb (equation 2). The reaction of metHb with H2O2 yields ferrylHb radical (Hb

•+(Fe4+¼O2�))
in which the unpaired electron is associated with the globin or the porphyrin ring (equation 3).
FerrylHb can trigger further production of globin radicals via an intramolecular electron transfer
between the ferryl iron and specific amino acid residues of the globin chains resulting in the
formation of metHb globin radical (equation 4). Termination reactions of globin- and porphyrin-
centered radicals lead to the formation of globin-globin (equation 5) cross-links
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protection. Incomplete neutralization of ROS triggers RBC membrane damage and
subsequent impairment of oxygen delivery to the tissues which eventually leads to
tissue damage and inflammation.

Circulating RBCs lose 20% of their Hb content during their life-span via vesic-
ulation (Willekens et al. 2003). Vesiculation is considered to be a self-protective
mechanism of RBCs via which RBCs release membrane patches containing removal
molecules including phosphatidylserine, immunoglobulin G, and senescent cell
antigens (Willekens et al. 2008). Additionally, RBCs are able to get rid of intracel-
lular inclusions, e.g., Heinz bodies via this mechanism (de Back et al. 2014), thereby
postponing the premature loss of otherwise healthy RBCs from the circulation.
RBC-derived vesicles are rapidly removed from the circulation by the mononuclear
phagocyte system (Willekens et al. 2003).

At the end of their life-span, senescent RBCs are removed from the circulation by
hemophagocyticmacrophages, mainly in the spleen (Bratosin et al. 1998; de Back et al.
2014). AgedRBCs are smaller and denser because of the permanent loss of Hb and cell
membrane via vesiculation and also characterized by decreased metabolic activity
(Piomelli and Seaman 1993). At the terminal stage of RBC aging, “eat me” signals
appear, and “don’t eat me” signals disappear on the surface of senescent RBCs, and
shortly after they are internalized by macrophages [reviewed in de Back et al. (2014)].

Different theories exist about the entity of the removal surface markers of
senescent RBCs [reviewed in de Back et al. (2014)]. Phosphatidylserine, a phos-
pholipid normally found in the inner membrane of RBCs, is a very likely candidate
of being a removal signal, when it appears in the outer membrane of the RBCs (Boas
et al. 1998). Phosphatidylserine is a general marker for apoptotic cells (Fernandez-
Boyanapalli et al. 2009), and although RBCs cannot undergo a classical apoptosis
because of the lack of nucleus and other cellular organelles, evidence suggest that
aged or damaged RBCs can undergo a regulated process called eryptosis that is in
many terms resembles to that of programmed cell death (Lang et al. 2005). Eryptosis
is characterized by cell shrinkage, membrane blebbing, activation of proteases, and
exposition of phosphatidylserine at the outer membrane leaflet of RBCs. Impor-
tantly, the removal of these phosphatidylserine-positive senescent, or terminally
damaged RBCs by macrophages, is a non-inflammatory process and allows efficient
and safe recycling of the RBC components, particularly the heme iron
(Muckenthaler et al. 2017).

9.1.2 Hemolysis and Hemorrhage

Numerous pathologies are associated with hemolysis or hemorrhage characterized
by uncontrolled destruction of RBCs. Hemolysis can occur in the vasculature
but also in the extravascular space. Inherited or acquired conditions can cause
hemolysis as listed in Table 9.2. Inherited hemolytic diseases are caused by muta-
tions in genes encoding Hb, RBC membrane components, or certain enzymes in
RBCs. The repertoire of acquired conditions associated with hemolysis is quite wide.
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Auto- and alloimmune reactions, mechanical, physical, or chemical stress, and
diverse infections can trigger substantial RBC lysis. RBCs outside the vasculature
tend to lyse quickly; therefore hemorrhages are also associated with RBC lysis.

9.1.3 The Fate of Extracellular Hemoglobin

Hb is released in large amounts from lysing RBCs. Extracellular Hb exerts diverse
unfavorable vasoactive effects. For example, extracellular Hb scavenges nitric
oxide, an important vasodilator and signaling molecule in the vasculature [reviewed
in Rother et al. (2005)]. Furthermore, once outside the protective environment of
RBCs, Hb tends to oxidize. Auto-oxidation of Hb occurs resulting in metHb
generation meanwhile superoxide anions are formed (Table 9.1, equation 1). Perox-
ides, such as H2O2 or lipid hydroperoxides, induce a two-electron oxidation of Hb
leading to the formation of ferryl (Fe4+ ¼ O2�) Hb (Table 9.1, equation 2), whereas
the reaction of metHb with H2O2 results in ferrylHb radical (Hb•+(Fe4+ ¼ O2�)) in
which the unpaired electron is located at either the globin chain or at the porphyrin
ring (Table 9.1, equation 3) (Harel and Kanner 1988; Patel et al. 1996; Jia et al. 2007;
Alayash et al. 2001). These high-valence iron compounds, i.e., ferrylHb and
ferrylHb radical, are highly reactive intermediates that can decay by several ways

Table 9.2 Causes of hemolysis

Type Cause of hemolysis Example Inflammasome activation

Inherited RBC membrane
abnormalities

Spherocytosis Not reported

Elliptocytosis Not reported

RBC metabolism
abnormalities

G6PD deficiency Not reported

PK deficiency Not reported

Hemoglobinopathies Thalassemias Not reported

Sickle cell disease Yes (Cerqueira et al. 2011)

Acquired Immune mediated
(Autoimmune)

Warm antibody Not reported

Cold antibody Not reported

Immune mediated
(Alloimmune)

Transfusion reaction Controversial (Gibb et al. 2016,
Land 2013)

Hemolytic disease of
the newborn

Not reported

Mechanical, physical or
chemical trauma

Microangiopathies Not reported

Prosthetic heart
valves

Not reported

Burns Yes (Stanojcic et al. 2014)

Heavy metal toxicity Not reported

Drug induced Not reported

Infections Malaria Controversial (Dostert et al.
2009, Reimer et al. 2010)
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(Reeder et al. 2008). FerrylHb induces additional production of globin radicals via
an intramolecular electron transfer between the ferryl iron and specific amino acid
residues of the globin chains such as αTyr-24, αTyr-42, αHis-20, βTyr-35, βTyr-
130, and βCys-93 leading to the formation of metHb globin radical (Table 9.1,
equation 4) (Deterding et al. 2004; Ramirez et al. 2003; Jeney et al. 2013). Termi-
nation reactions of globin- and porphyrin-centered radicals lead to the formation of
globin-globin (Table 9.1, equation 5) or porphyrin-globin crosslinks.

To prevent the deleterious effects of extracellular Hb, efficient mechanisms have
evolved for its removal from the circulation. Hp, an acute-phase protein, is present in
plasma in high amounts (0.41�1.65 mg/ml) with the special recognized function of
capturing cell-free Hb [reviewed in Alayash (2011)]. The formation of the Hp-Hb
complex is virtually irreversible, and Hp binding has multiple beneficial effects. First
of all, Hp binding facilitates the removal of Hb from circulation through the CD163
macrophage scavenger receptor-mediated endocytosis (Kristiansen et al. 2001).
Besides this effect, studies showed that Hb bound to Hp is less prone to H2O2-
mediated oxidation than free Hb (Buehler et al. 2009; Banerjee et al. 2012; Miller
et al. 1997). In fact, the Hb-Hp complex acts as a fairly efficient peroxidase (Kapralov
et al. 2009). Further studies proved that Hp prevents H2O2-induced oxidation of amino
acids in critical regions of Hb chains—i.e., α-Tyr42, β-Tyr145, and β-Cys93—and
polymerization of Hb (Pimenova et al. 2010). The recent determination of the crystal
structure of the porcine Hp-Hb complex revealed that Hb residues known to be prone
to oxidative modifications are buried in the Hp-Hb interface, thereby explaining this
direct protective role of Hp against H2O2-induced oxidation (Andersen et al. 2012).

Although the Hb/Hp/CD163 system is highly efficient in removing intravascular
free Hb, it has some limitations. Plasma Hp can bind and clear approximately 3 g of
Hb from the circulation which is less than 1% of the total amount of circulating
Hb. In case of pronounced hemolysis, when more than 1% of RBCs disrupt, Hp is
depleted from the circulation in which case free Hb is cleared (rather inefficiently)
via a low-affinity pathway through CD163 (Schaer et al. 2006) and/or by renal
excretion (Schaer et al. 2013; Murray et al. 1961). This latter is accompanied by
generation of free iron and organ damage.

Another limitation of the Hp/CD163 system is that Hp and CD163 have
decreased affinity for structurally altered (e.g., covalently cross-linked) Hb species
that might form upon Hb oxidation. Recent studies have revealed that elimination of
oxidized Hb species via both high-affinity and low-affinity pathways can be severely
compromised (Schaer et al. 2006; Vallelian et al. 2008).

Upon massive hemolysis Hp is consumed, causing accumulation and oxidation of
cell-free Hb that eventually lead to the release of the prosthetic heme group. Hx is an
acute-phase plasma protein that binds heme with the highest affinity of any known
heme-binding proteins (Hrkal et al. 1974). Hx-heme complexes are internalized via
the scavenger receptor LDL receptor-related protein 1/CD91 (Hvidberg et al. 2005)
mainly by hepatocytes and macrophages (Herz and Strickland 2001).

Following internalization of Hb or heme, cells and tissues upregulate heme
oxygenase-1 (HO-1) and ferritin. HO-1 catabolizes free heme into equimolar
amounts of Fe2+, carbon monoxide (CO), and biliverdin (Tenhunen et al. 1968).
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Liberated iron drives the upregulation of ferritin that is the main intracellular iron
storage protein (Eisenstein et al. 1991).

9.1.4 Pro-inflammatory Actions of Hb-Derived Species

Massive intravascular hemolysis or hemorrhage result in the exhaustion of the
endogenous defense system leading to the accumulation of oxidized Hb forms and
free heme in the plasma or in the extravascular space (Pamplona et al. 2007; Larsen
et al. 2010; Nagy et al. 2010). These Hb derivatives, particularly free heme, exert
prooxidant activities [reviewed in Immenschuh et al. (2017), Jeney et al. (2013)].
Moreover, hemolytic or hemorrhagic episodes are often associated with inflamma-
tion even when infectious agents are absent (Arruda et al. 2005). Considerable effort
has been made to define the mediators and the target cells involved in the hemolysis-/
hemorrhage-induced inflammatory response. Accumulating evidence suggest that
Hb-derived oxidized species possess diverse pro-inflammatory actions targeting
different immune and non-immune cells (Table 9.3).

9.1.4.1 Macrophage Activation

Macrophages, the frontline cells of innate immunity, respond to a variety of
pathogen-associated molecular patterns (PAMPs) and DAMPs. Lysis of RBCs
leads to the release of different RBC components that can potentially behave as
DAMPs and induce a sterile inflammatory response dependently of receptors such as
TLRs or NOD-like receptors (Table 9.3).

Accumulating evidence suggests that heme that is released from oxidized Hb
forms modulate macrophage phenotype. Bozza et al. showed that heme triggers
tumor necrosis factor-alpha (TNF-α) secretion by macrophages in a TLR4-
dependent manner (Figueiredo et al. 2007). The activation of TLR4 by heme is
strictly dependent on its coordinated iron and the vinyl groups of the porphyrin ring
(Figueiredo et al. 2007). Sustained exposure of macrophages to free heme triggers
programmed necrosis that is dependent on autocrine production of TNF-α and ROS
(Fortes et al. 2012). The pathogenic role of heme-mediated TLR4 activation was
investigated in a murine model of intracerebral hemorrhage (ICH)-induced neuro-
inflammation. In comparison to wild-type mice, TLR4�/� mice exhibited less
inflammation, reduced cerebral edema, and lower neurological deficit scores,
suggesting that heme-mediated TLR4 activation plays a critical role in
ICH-associated neuro-inflammation (Lin et al. 2012). Gram et al. showed that after
intraventricular hemorrhage, metHb forms and its level correlates to the expression
of TNF-α (Gram et al. 2013). In agreement with this finding, a recent study of Kwon
et al. revealed that metHb is an important endogenous activator of TLR4 that
promotes widespread TLR4-mediated neuro-inflammation upon subarachnoid hem-
orrhage (Kwon et al. 2015).
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Table 9.3 Pro-inflammatory actions of RBC-derived DAMPs

DAMP Major finding References

Heme Heme triggers TLR4-dependent TNF-α secretion in
macrophages

Figueiredo et al. (2007)

Heme Heme-mediated activation of TLR4/MyD88/TRIF
pathway plays a role in intracerebral hemorrhage

Lin et al. (2012)

MetHb MetHb and TNF-α levels correlate in cerebrospinal
fluid after intraventricular hemorrhage

Gram et al. (2013)

MetHb MetHb promotes TLR4-dependent
neuroinflammation upon subarachnoid hemorrhage

Kwon et al. (2015)

Heme Heme induces NLRP3 activation and IL-1β secretion
in LPS-primed macrophages

Dutra et al. (2014)

Heme Heme triggers neutrophil recruitment, ROS produc-
tion and IL-8 expression

Graca-Souza et al. (2002)

FerrylHb FerrylHb triggers neutrophil recruitment in vivo
independently of TLR4 activation

Silva et al. (2009)

Heme Heme induces neutrophil extracellular trap formation Chen et al. (2014)

Heme Heme induces TLR4-dependent endothelial
activation

Belcher et al. (2014)

FerrylHb FerrylHb activates NF-κB, upregulates
pro-inflammatory adhesion molecule expressions,
and disrupts monolayer integrity in endothelial cells

Silva et al. (2009)

ATP ATP activates P2X7 receptors leading to IL-1β
secretion in LPS-primed macrophages

Perregaux et al. (2000)

ATP ATP activates NF-κB, upregulates E-selectin
expression, and induces deterioration of endothelial
barrier function via acting on P2X7 receptors

McClenahan et al. (2009)

ATP ATP induces NLRP3 activation and IL-1β secretion
in LPS- or TNF-primed endothelial cells

Huck et al. (2015),
Champaiboon et al. (2014)

ATP ATP induces microparticle release, ROS formation,
and apoptotic cell death in erythroid progenitor cells
through activation of P2X7 receptors

Constantinescu et al. (2010),
Wang and Sluyter (2013)

ATP ATP triggers eicosanoid release, phosphatidylserine
exposure, and lysis of mature RBCs through activa-
tion of P2X7 receptors

Jiang et al. (2006), Sluyter
et al. (2007a, b)

HSP70 HSP70 activates macrophage IL-12 and E-selectin
production in a TLR2/TLR4-dependent manner

Vabulas et al. (2002)
Tsan and Gao (2004)

RBC
MPs

RBC-derived MPs amplify thrombin-dependent
activation of the complement system

Zecher et al. (2014)

RBC
MPs

RBC-derived MPs enhance coagulation activation van Beers et al. (2008)

RBC
MPs

RBC-derived MPs activate endothelial cells via heme
transfer

Camus et al. (2015)

RBC
MPs

RBC-derived MPs are internalized by myeloid cells
and induce pro-inflammatory cytokine production

Awojoodu et al. (2014)

RBC
MPs

RBC-derived MPs contribute sickle cell disease-
associated vascular dysfunction and cardiovascular
complications

Tantawy et al. (2013b)

RBC
MPs

RBC-derived MPs contribute to transfusion-induced
inflammatory response

Cognasse et al. (2015)
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Activation of the cytosolic NOD-like receptors results in the assembly of a
caspase-1-activating scaffold. Active caspase-1 subsequently cleaves the
pro-inflammatory IL-1 family of cytokines into their bioactive forms, IL-1β and
IL-18, those can trigger pyroptosis, a type of inflammatory cell death [reviewed in
Guo et al. (2015)]. The NLR family pyrin domain containing 3 (NLRP3)
inflammasome, which belongs to the NOD-like receptor family, is the most exten-
sively studied inflammasome, that is formed after the oligomerization of NLRP3,
apoptosis-associated speck-like protein containing a caspase recruitment domain
(ASC), and pro-caspase-1 (Schroder and Tschopp 2010).

Besides PAMPs, the NLRP3 inflammasome is activated in response to a wide
variety of DAMPs including extracellular ATP, crystals of monosodium urate or
cholesterol, β-amyloid fibers, the degradation of extracellular matrix components,
and environmental or industrial particles and nanoparticles (Martinon et al. 2006;
Mariathasan et al. 2006; Duewell et al. 2010; Halle et al. 2008; Babelova et al. 2009;
Yazdi et al. 2010; Hornung et al. 2008).

Recently heme was added to the long list of NLRP3 activating danger signals.
Dutra et al. showed that heme triggers active IL-1β production in lipopolysaccharide
(LPS)-primed macrophages in an NLRP3- and caspase-1-dependent manner (Dutra
et al. 2014). They also investigated the structural requirements of heme-mediated
NLRP3 inflammasome activation. Heme analogs such as protoporphyrin IX (PPIX)
that lacks the central iron atom or metal substitution derivatives such as CoPPIX and
SnPPIX were unable to induce IL-1β secretion in LPS-primed macrophages (Dutra
et al. 2014). Based on these observations, they came to the conclusion that NLRP3
activation by heme is strictly dependent on its coordinated iron, which is in conflict
with the findings of Li et al. who reported that PPIX is as efficient in inducing IL-1β
maturation and secretion as heme (Li et al. 2014).

9.1.4.2 Neutrophil Activation

Polymorphonuclear neutrophils are the first leukocytes migrating from the blood
into injured or infected tissues. Neutrophils kill pathogens via various cytotoxic
mechanisms and clear cellular debris; therefore they play a fundamental role in
innate and adaptive immunity (Rosales et al. 2016). In the recent years, it has become
evident that neutrophils not only sense PAMPs but can recognize and respond to
endogenous DAMPs as well. In line of this notion, heme triggers neutrophil che-
motaxis and activation, characterized by elevated ROS production and increased
expression of the pro-inflammatory cytokine IL-8 (Graca-Souza et al. 2002). Heme-
induced neutrophil recruitment is regulated through signaling pathways that are
characteristic of chemoattractant molecules (Porto et al. 2007) but independent of
TLR4-mediated signaling (Figueiredo et al. 2007). Besides heme, oxidized Hb
(ferrylHb) is a very potent trigger of neutrophil infiltration in mice independently
of TLR4 signaling (Silva et al. 2009). Additionally, Kono et al. showed that PPIX
was as efficient as heme in inducing neutrophil ROS production, pointing out that
this effect is independent of the coordinated iron present in heme (Kono et al. 2013).
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Protoporphyrin ring-induced neutrophil activation was suggested to play a role in
transfusion-related acute lung injury (Kono et al. 2013).

Additionally of ROS generation and the release of microbicidal molecules,
neutrophils can release extracellular traps—a meshwork of chromatin fibers deco-
rated by granular proteins—that represent an important strategy to immobilize and
kill invading microorganisms (Brinkmann et al. 2004). Recently Chen et al. reported
that heme is able to induce the formation of neutrophil extracellular traps and
suggested that this mechanism contributes to vaso-occlusion crises in sickle cell
disease (Chen et al. 2014).

9.1.4.3 Endothelial Cell Activation

Endothelium, the interface between blood and tissue, has a pivotal role in the
inflammatory response mainly through the induction of the leukocyte adhesion cas-
cade to facilitate transmigration of inflammatory cells to the inflamed tissue. Accord-
ingly, inflammatory stimuli, such as IL-1, TNF-α, or LPS, upregulate cellular adhesion
molecules including intracellular adhesion molecule-1 (ICAM-1), vascular cell adhe-
sion molecule-1 (VCAM-1), and E selectin, in endothelial cells (Bevilacqua et al.
1985; Pohlman et al. 1986). Wagener et al. found that exposure of endothelial cells to
heme upregulated the expressions of ICAM-1, VCAM-1, and E selectin, in a similar
manner to that of IL-1, TNF-α, or LPS (Wagener et al. 1997). Recently Belcher et al.
showed that heme activates endothelial cells in a TLR4-dependent manner and that
this heme-mediated TLR4-dependent endothelial activation plays a pathogenic role in
vaso-occlusion in a murine model of sickle cell disease (Belcher et al. 2014).

While searching for other mediators of hemolysis-associated inflammation, Silva
et al. reported that ferrylHb but not native Hb or metHb triggers upregulation of the
pro-inflammatory adhesion molecules ICAM-1, VCAM-1, and E-selectin (Silva
et al. 2009). FerrylHb induced rearrangement of actin cytoskeleton in endothelial
cells leading to the disruption of the endothelial monolayer integrity (Silva et al.
2009). FerrylHb-induced inflammatory response was dependent on actin polymer-
ization and the activation of the c-Jun N-terminal kinase and the p38 mitogen-
activated protein kinase signal transduction pathways (Silva et al. 2009). Silva
et al. showed that induction of endothelial inflammatory response is a unique
property of ferrylHb because neither Hb nor metHb triggered these effects (Silva
et al. 2009). FerrylHb can release its prosthetic heme group (Potor et al. 2013), and
one can ask whether ferrylHb-mediated inflammatory response is mediated by the
released heme. Many lines of evidence suggest that in fact this is not the case. First of
all, metHb, that can also release heme in a similar manner as ferrylHb, does not
induce inflammatory response in endothelial cells (Silva et al. 2009). Second,
ferrylHb-induced inflammatory response is not dependent on TLR4 signaling
(Silva et al. 2009). These results suggest that heme and ferrylHb are two
Hb-derived pro-inflammatory agonists that trigger endothelial activation via differ-
ent signaling mechanisms.
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9.1.5 Cytoprotective and Anti-inflammatory Actions
of Hb-Derived Species

Interestingly enough, besides its prooxidant and pro-inflammatory actions, under
special circumstances heme can induce cytoprotective and anti-inflammatory
responses. These protective mechanisms largely rely on the heme-mediated
upregulation of the HO-1/ferritin system [reviewed in Gozzelino et al. (2010)],
and it mostly relies on the ability of HO-1 to degrade heme into CO, iron, and
biliverdin, in which the latter is promptly converted to bilirubin. The subsequent
upregulation of ferritin is essential to obtain the protective effect, as it can store the
released iron in a catalytically inactive form (Balla et al. 1992). Additionally, the side
products of heme degradation, i.e., bilirubin and CO, exert diverse antioxidant and
anti-inflammatory actions (Gozzelino et al. 2010).

Along with these notions, a subset of macrophages, called hemorrhage-associated
or Mhem macrophages with anti-inflammatory properties, were identified in athero-
sclerotic plaques with intraplaque hemorrhage (Boyle et al. 2009). Mhem macro-
phages are characterized by facilitated iron sequestration assured by elevated
expressions of HO-1 and CD163 and at the same time protection from foam cell
formation secured by induction of genes central to cholesterol efflux (Boyle et al.
2009, 2012). Boyle et al. also showed that Mhem macrophage polarization is driven
by heme and identified two key transcription factors nuclear factor erythroid
2-related factor 2 (NRF2) and activating transcription factor 1 involved in this
process (Boyle et al. 2011, 2012).

Endothelial cells can also benefit from the cytoprotective mechanism provided by
the HO-1/ferritin system. In the early 1990s, Balla et al. showed that a brief exposure
of sublethal concentration of heme made endothelial cells highly resistant to subse-
quent oxidant-mediated killing in which cytoprotection was relied on the
upregulation of the HO-1/ferritin system (Balla et al. 1992). Since that initial
work, many investigations targeted the multifunctional role and therapeutic potential
of HO-1 in the vascular endothelium [reviewed in Calay and Mason (2014)].

9.1.6 Non-Hb-Derived RBC DAMPs

Although Hb is the far more abundant molecule in RBCs, there are other compo-
nents in RBCs that can potentially become DAMPs following RBC lysis. For
example ATP, a universal energy source, is present in RBCs in high concentration
(~1.6 mmol/L). When present in the extracellular milieu, ATP becomes a signaling
molecule that activates P2 receptors in diverse cells (Dubyak 1991). It has been
shown that hypoxia, elevated shear stress, and reduced pH lead to ATP release from
RBCs, although it is still a matter of debate whether it occurs via an active or passive
process. Bergfeld et al. showed that under hypoxic conditions, RBCs release ATP in
a regulated way through the plasma membrane protein band 4.5 (Bergfeld and
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Forrester 1992). Recently Sridharan et al. proposed that pannexin 1, a channel-
forming glycoprotein, is involved in hypoxia-mediated ATP release from RBCs
(Sridharan et al. 2010). Regarding shear stress-induced ATP release, Wan et al.
suggested that mechanosensitive ATP release is triggered by retraction of the
spectrin-actin cytoskeleton network and influenced by membrane viscosity (Wan
et al. 2008). Recently, Piezo1, a mechanically activated cation channel involved in
physiological responses to touch, pressure, and stretch, was shown to regulate
mechanosensitive release of ATP from RBCs via controlling the shear-induced
calcium influx (Cinar et al. 2015). Contrary to the active process, Sikora et al.
reported that hemolysis is the primary mechanism via which RBCs release ATP in
response to hypoxia or mechanical stress (Sikora et al. 2014). Nevertheless,
RBC-derived ATP can activate P2 purinergic receptors on vascular endothelial
cells, resulting in the synthesis of powerful vasodilators such as nitric oxide and
prostaglandins (Burnstock 2017). Via this mechanism RBCs actively participate in
the regulation of microvascular blood flow and contribute to match oxygen delivery
and local needs (Ellsworth et al. 1995).

Besides its vasoactive effects, activation of P2 purinergic receptors by ATP can
trigger inflammatory responses in various immune and nonimmune cells (Idzko et al.
2014). For example, ATP activates P2X purinoceptor 7 (P2X7) and promotes IL-1β
and IL-18 secretion in LPS-primed macrophages (Perregaux et al. 2000). Activation
of P2X7 receptors by ATP on endothelial cells leads to nuclear factor kappa B
(NF-κB) activation and subsequent upregulation of its target genes such as E-selectin
(von Albertini et al. 1998). Extracellular ATP induces deterioration of endothelial
barrier function and may trigger apoptotic cell death (McClenahan et al. 2009). ATP
can induce activation of the NLRP3 inflammasome and subsequent release of low
levels of IL-1β in endothelial cells primed with LPS or TNF-α (Huck et al. 2015;
Champaiboon et al. 2014). Furthermore, both progenitor and mature RBCs express
P2 purinergic receptors, and accumulating evidence suggest that extracellular ATP
exerts various biological effects on these cells (Burnstock 2015; Sluyter 2015). ATP
induces the release of MPs, ROS formation and apoptotic cell death in erythroid
progenitor cells (Chahwala and Cantley 1984; Constantinescu et al. 2010; Wang and
Sluyter 2013). Activation of P2 purinergic receptors in mature RBCs triggers
eicosanoid release and phosphatidylserine exposure and eventually leads to hemo-
lysis (Jiang et al. 2006; Sluyter et al. 2007a, b).

IL-33, the member of the IL-1 cytokine superfamily, is a well-known alarmin that
is released upon stress and contributes to the pathogenesis of diverse inflammatory
diseases through the activation of innate immune cells (Rider et al. 2017). Recently
Wei et al. showed that RBCs contain IL-33 and that IL-33 is released in large
amounts upon RBC lysis (Wei et al. 2015). They found association between plasma
IL-33 levels and the degree of hemolysis in sickle cell disease patients with intra-
vascular hemolysis (Wei et al. 2015). Similar association between plasma IL-33
concentration and hemolysis was reported in patients with autoimmune hemolytic
anemia (Bu et al. 2015). Released IL-33 signals through ST2 receptors and enhances
the functions of diverse lymphoid and myeloid immune cells [reviewed in
Griesenauer and Paczesny (2017)].
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Hsps are ubiquitously expressed proteins exerting diverse protective mechanisms
during cellular stress. For example, both constitutive and inducible forms of the
70 kDa Hsp, Hsc70, and Hsp70, respectively, function as cytosolic chaperons during
erythrocyte maturation. Although the expressions of Hsc70 and Hsp70 decrease
significantly at the terminal stage of erythroid progenitor cell differentiation
(Patterson et al. 2009), they are still present in mature RBCs (Gromov and Celis
1991). Vabulas et al. showed that extracellular Hsp70 activates macrophage IL-12
and E-selectin production via CD14/TLR2 and CD14/TLR4 receptor complex-
mediated signal transduction pathways (Vabulas et al. 2002). However, recent
evidence suggests that the reported cytokine effects of Hsp70 and other Hsps may
be due to the contaminating LPS (Tsan and Gao 2004).

Microparticles (MPs) are small membrane-encapsulated vesicles present in body
fluids. Blood MPs can originate from platelets, RBCs, leukocytes, or endothelial
cells. They are shed from cells in response to cell activation, cell stress, or apoptosis,
and besides the phospholipid bilayer, they contain cytosolic components of their
parental cells. RBCs release MPs during their normal lifetime in which process they
lose a substantial amount of Hb content and surface area (Willekens et al. 2003).
Hemoglobinopathies, characterized by shortened life-span of RBCs, such as sickle
cell disease and thalassemia major, are associated with accelerated formation of
RBC-derived MPs (Tantawy et al. 2013a, b). Interestingly increased levels of
RBC-derived MPs are present in patients with metabolic syndrome (Helal et al.
2011). Recently RBC-derived MPs attracted attention in transfusion medicine as
well. For therapeutic interventions, packed RBCs are stored in the blood bank for up
to 42 days. Storage is associated with diverse morphological and biochemical
alterations of RBCs including reduced integrity of the RBC membrane and the
formation of RBC-derived MPs (Kim-Shapiro et al. 2011; D’Alessandro et al.
2015). RBC-derived MPs exert diverse biological actions. For example,
RBC-derived MPs scavenge nitric oxide (Donadee et al. 2011; Liu et al. 2013)
and amplify systemic inflammation via thrombin-dependent activation of comple-
ment system (Zecher et al. 2014). Moreover, RBC-derived MPs enhance coagulation
activation (van Beers et al. 2008) and are involved in endothelial activation via heme
transfer (Camus et al. 2015). RBC-derived MPs are internalized by myeloid cells and
induce pro-inflammatory cytokine secretion (Awojoodu et al. 2014). These mecha-
nisms contribute significantly to sickle cell disease-associated vascular dysfunction
and cardiovascular complications (Tantawy et al. 2013b) and involved in
transfusion-induced inflammatory responses (Cognasse et al. 2015).

9.1.7 Therapeutic Interventions

Different therapeutic approaches were designed and investigated to limit the patho-
logical consequences of massive hemolysis or hemorrhages. Some strategies are
focusing on limiting the formation or fostering the elimination of RBC-derived
prooxidant and pro-inflammatory molecules. For example, Pamplona et al. showed
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that CO—the product of heme catabolism—suppress the pathogenesis of experi-
mental cerebral malaria. The effect is mediated by the binding of CO to Hb,
preventing Hb oxidation and the generation of free heme, a molecule that plays a
critical role in the pathogenesis of cerebral malaria (Pamplona et al. 2007). Recently
the therapeutic potential of the natural plasma Hb and heme scavenger proteins, Hp
and Hx, have been tested in preclinical animal studies and in small-scale human
studies [reviewed in Schaer et al. (2013), Smith and McCulloh (2015)]. In humans
Hp supplementation prevented hemoglobinuria or the development of acute kidney
injury in a variety of hemolytic conditions [reviewed in Schaer et al. (2013)]. Vinchi
et al. showed that Hx therapy improves cardiovascular function in mouse models of
sickle cell anemia and β-thalassemia by preventing endothelial dysfunction (Vinchi
et al. 2013) and inhibits heme-induced pro-inflammatory phenotypic change of
macrophages in a mouse model of sickle cell disease (Vinchi et al. 2016).

Other therapeutic approaches against hemolysis-/hemorrhage-associated adverse
effects rely on the induction of the natural antioxidant response. For example
upregulation of the NRF2/HO-1 system suppresses the pathogenesis of severe
malaria in mice, a pathology driven by RBC-derived heme (Pamplona et al. 2007;
Ferreira et al. 2008; Seixas et al. 2009; Jeney et al. 2014). The protective mechanism
provided by the NRF2/HO-1 system is very complex and relies on the effective
removal of heme, the cytoprotective and anti-inflammatory actions of heme degra-
dation products (bilirubin and CO), and the upregulation of the iron-sequestering
protein, ferritin (Gozzelino et al. 2010).

9.2 Conclusions

The RBC is usually a blessing but sometimes a curse. It is a blessing, when it
functions properly: circulates throughout the body about 170,000 times during its
lifetime to deliver oxygen and remove carbon dioxide from cells and phagocytosed
unperceivably at the end of its life-span by macrophages, and curse, when it is
involved in pathophysiologic mischief upon hemorrhage or intravascular hemolysis.

Since the dogma breaking “danger model” introduced by Polly Matzinger in 1994
our understanding of how the immune system discriminates between dangerous and
safe by recognition of pathogens or alarmins released by injured or stressed cells,
underwent a fundamental revision. Diverse endogenous DAMPs were identified and
their critical contributions were unquestionably verified in different pathologies. In
the last decade, it became evident that upon hemolysis or hemorrhage RBCs release
DAMPs that can activate immune and nonimmune cells via diverse signaling
mechanisms. A lot of work needs to be done in the future to complete the colorful
picture of RBC-derived DAMPs, their targeted cells, and the mechanisms of their
actions. Fuller understanding of hemolysis/hemorrhage-associated inflammation
could contribute to the development of novel therapeutics intended to interrupt
these pathological events.
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Abstract Many diseases of the gastrointestinal tract have been attributed to chronic
inflammation, and a few have identified the role of inflammasomes in their patho-
genesis. Inflammasomes are a group of protein complexes comprising of several
intracellular proteins that link the sensing of microbial products and metabolic stress
to the proteolytic activation of the proinflammatory cytokines. Recent studies have
implicated activation of several families of NOD-like receptors (NLRs) which are
major components of inflammasomes in the development and exacerbation of many
diseases of human systems. In this chapter, we discuss the role of inflammasomes in
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some of the most prevalent diseases of the gastrointestinal tract and highlight
potential targets for treatment.

Keywords Inflammasome · Gastritis · Gastric cancer · Inflammatory bowel disease ·
Colorectal cancer · Fatty liver disease · Hepatitis · Liver cirrhosis · Hepatocellular
carcinoma · Pancreatitis · Pancreatic cancer

Acute infection or injury to an organ system of the human body often leads to
activation of several inflammatory pathways and signals, followed by a response to
subside and recuperate from the injury. In some cases, the cycle of damage and repair is
recurrent, resulting in a chronic inflammatory state that may affect normal physiology.
Recently, attention has focused on the role of a new group of protein complexes called
inflammasomes in chronic inflammatory diseases. Inflammasomes are composed of
pattern recognition receptors such as NOD-like receptors (NLRs) or absent in mela-
noma 2 (AIM2)-like receptors (ALRs), the adaptor protein ASC, and procaspase-1 (Liu
et al. 2015; Guo et al. 2015). These subunits activate caspase-1, which mediates IL-1β
and IL-18 release and inflammatory cell death called pyroptosis (Guo et al. 2015)
(Fig. 10.1). Inflammasome in the intestine plays an important role in mediating host
defense against infection and maintaining tissue homeostasis beyond immune and
inflammatory responses (Chen and Nunez 2011; Nunes and de Souza 2013; Lei and
Maloy 2016). Inflammasome activation is regulated by the innate immune system in

Fig. 10.1 Schematic representation of the activation and function of inflammasome
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response to a pathogenic signal called pathogen-associated molecular patterns
(PAMPs) or a tissue damage signal called damage-associated molecular patterns
(DAMPs) binding to the surface pattern recognition receptors.

Many diseases have been attributed to chronic inflammation, and a few have
identified the role of inflammasomes in their pathogenesis. In this chapter, we
discuss the role of inflammasomes in some of the most prevalent diseases of the
gastrointestinal tract: gastritis, gastric cancer, inflammatory bowel disease (IBD),
colorectal cancer (CRC), fatty liver disease, hepatitis, liver cirrhosis, hepatocellular
carcinoma (HCC), pancreatitis, and pancreatic cancer.

10.1 Gastritis

Gastritis is one of the most common diseases of the gastrointestinal tract that has
long-term morbidity and mortality effects. Although many etiologies exist,
Helicobacter pylori infection is the most common cause for the chronic inflamma-
tion in the lining of the stomach. With prevalence being as high as 50% in
developing countries, about one-third of the adult population is infected in devel-
oped countries (Eusebi et al. 2014; Suerbaum and Michetti 2002). It is well
documented that H. pylori infection can lead to chronic gastric and duodenal ulcers
and is an important risk factor for gastric adenocarcinoma and mucosa-associated
lymphoid tissue lymphoma (Peek and Blaser 2002).

H. pylori, a gram-negative spiral bacterium that colonizes the gastrointestinal tract,
is the only bacterium to be classified as a class 1 carcinogen by the World Health
Organization (Kusters et al. 2006; Vogiatzi et al. 2007). The organism possesses
virulence factors such as cytotoxin-associated gene A (CagA), vacuolating cytotoxin
A (VacA), outer inflammatory protein A (OipA), duodenal ulcer-promoting gene A
(DupA), and induced by contact with epithelium (IceA), all of which play an important
role in disrupting the host’s innate and adaptive immunity (Shiota et al. 2013).

H. pylori is recognized by the toll-like receptors (TLRs) as a PAMP, and
stimulation of TLRs leads to a cascade of events resulting in the activation of
inflammasome molecules. NLRP3 has been shown to be involved in the pathogen-
esis of gastritis (Semper et al. 2014). The events of inflammasome formation are
similar to those in other diseases in which caspase, IL-1β, and IL-18 play an
important role in the inflammatory process (El-Omar et al. 2000). Gain of function
of IL-1β can lead to increased susceptibility for chronic gastric inflammation, which
in the long term will be a precursor for gastric carcinoma (El-Omar et al. 2000; Fox
et al. 2003). Various pathways have been suggested for inflammasome stimulation.
TLR2 stimulation has been found to be indispensable for the formation of NLRP3,
as deficiency of TLR2 failed to produce caspase and other cytokines (Koch and
Muller 2015). Although other noncanonical pathways such as TRIF, IRF3/7, and
type 1 interferon (IFN) are present, they play a minor role (Rathinam et al. 2012).

Various host factors such as mucus epithelial barrier, acidic pH, β defensins, and
lactoferrin provide the first line of innate immunity. MUC1, a cell surface-associated
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mucin lining the stomach, is a component of the physical barrier that limits the
colonization of organisms such as H. pylori (Bafna et al. 2010). Research studies
have shown that MUC1 has an anti-inflammatory role in H. pylori infection in
addition to being a physical barrier. Ng and Sutton (2016) demonstrated that
MUC1 inhibits NLRP3 formation by suppressing the nuclear factor kappa-light-
chain-enhancer of activated B-cells (NFκB) pathway. Mouse models have shown
that MUC1-deficient mice had severe, rapid progression of H. pylori gastritis in
comparison to the wild-type mice (McGuckin et al. 2007).

Studies have focused onCag pathogenicity island (Cag PAI) and its influence on the
pathogenesis of the disease. Cag PAI is a 40-kb region with 30 prominent coding
regions. It encodes for type 4 secretion system (T4SS), which can inject CagA and other
virulence factors into the host. CagL forms an essential part of the pilus T4SS (Backert
and Tegtmeyer 2017). Kim et al. (2013) indicated that Cag PAI and CagL (not VacA
andCagA) have themost important role in production of IL-1β. Koch andMuller (2015)
showed that there are two other factors specific to H. pylori—lipopolysaccharide (LPS)
and urease—that contribute to production of inflammatory cytokines: LPS/TLR4/
MyD88 through pro IL-1β and urease/TLR4/MyD88 by formation of NLRP3. How-
ever, there are controversies about whether LPS is a strong factor; interestingly, urease,
which is an enzyme that protects the organism against the acidic pH of the stomach, has
proven to be a critical stimulator of NLRP3 (Koch and Muller 2015).

Withaferin A (WA), one of the steroidal lactones (withanolides), has been shown
to have anti-inflammatory and anticancer properties. These withanolides were used
in ancient Ayurvedic medications for treatment of chronic inflammatory diseases
(Maitra et al. 2009; Hahm and Singh 2013). Kim et al. (2015) demonstrated that WA
alleviates procaspase, caspase, and IL-1β induced by H. pylori and inhibits the
NLRP3 activators. This leads to new modalities in the treatment of H. pylori that
is targeting the NLRP3 pathway.

10.2 Gastric Cancer

Gastric cancer is the fifth most common malignancy and the third leading cause of
cancer-related deaths worldwide, accounting for 8.8% of cancer deaths every year
(Liang 2016). Gastric cancer is relatively common in East Asia, Eastern Europe, and
South America, whereas it is rare in North America and most parts of Africa (Karimi
et al. 2014).

H. pylori infection is the strongest known risk factor for gastric cancer (Suh and
Yang 2015). H. pylori-infected individuals develop gastric diseases such as chronic
active gastritis, peptic ulcers, B-cell lymphoma of mucosa-associated lymphoid
tissue, and adenocarcinoma (Kim et al. 2015; Gobert and Wilson 2017). Although
the molecular mechanisms involved in the oncogenesis and progression of gastric
cancer are not yet fully understood, it has been reported that IL-1β induced through
inflammasome activation is associated with the development of gastric cancer after
H. pylori infection (Shigematsu et al. 2013; Kameoka et al. 2016; Yin et al. 2016).
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IL-1β is a proinflammatory cytokine that has various roles in inflammatory injury,
epigenetic changes, bone marrow cell recruitment, and the promotion of angiogen-
esis (Yin et al. 2016). Stomach-specific expression of human IL-1β in transgenic
mice was shown to cause spontaneous gastric inflammation and cancer, which
resulted in recruitment of myeloid-derived suppressor cells to the stomach
(Tu et al. 2008). Another study reported that H. pylori infection induced IL-1β
expression and resulted in severe inflammation in wild-type mice, while recruitment
of neutrophils and macrophages by H. pylori infection was suppressed in IL-1β–/–

mice. Moreover, the number of gastric tumors induced by H. pylori infection was
significantly diminished in IL-1β–/– mice (Shigematsu et al. 2013). Recently, IL-1β
has been shown to increase the expression of cAMP response element-binding
protein and CCAAT/enhancer-binding protein beta through ERK1/2 kinase signal-
ing, causing proliferation of gastric cancer cells both in vitro and in vivo (Resende
et al. 2016). IL-1β also inhibits gastric acid secretion, which leads to gastric atrophy
for gastric cancer development (Sun et al. 2016). It has been reported that IL-1β
polymorphism is associated with increased gastric cancer risk in the presence of
H. pylori infection (Ying et al. 2016).

H. pylori LPS induced pro-IL-1β by TLR4-mediated NFκB activation, whereas
H. pylori urease B subunit induced NLRP3 transcription by TLR2-mediated NFκB
activation (Koch and Muller 2015). In mouse bone marrow-derived dendritic cells
infected withH. pylori, cagPAI was demonstrated to induce production of pro-IL-1β
and NLRP3 via TLR2 and Nod2 (Kim et al. 2013). It was also demonstrated that
infected NOD2–/–, Tlr2–/–, and double-deficient dendritic cells significantly reduced
NLRP3 expression (Kim et al. 2013). Furthermore, it has been reported that IL-1β
production in H. pylori-infected phorbol-12-myristate-13-acetate (PMA)-
differentiated THP-1 cells was dependent on caspase-1 and NLRP3, which required
reactive oxygen species (ROS), extracellular adenosine triphosphate (ATP), K+

efflux, and Ca2+ signaling (Kameoka et al. 2016).
It has been reported that WA inhibited H. pylori-induced IL-1β production by

regulating NFκB and NLRP3 inflammasome activation (Kim et al. 2015). WA
suppressed H. pylori-induced gene expression of pro-IL-1β and NLRP3 in murine
bone marrow-derived dendritic cells and THP-1 cells by inhibiting NFκB activation,
suggesting an inhibition of the priming signal. Furthermore, WA suppressed caspase-1
activation and IL-1β maturation by blocking signal 2 such as ATP, nigericin, and
monosodium urate crystals in LPS-primed murine macrophages, indicating that WA
can inhibit NLRP3 inflammasome directly (Kim et al. 2015). The therapeutic strategy
of targeting inflammasome might be effective for gastric cancer in the future.

10.3 Inflammatory Bowel Disease

IBD occurs due to chronic intestinal inflammation that leads to tissue damage by
uncharacteristic production of proinflammatory molecules by the immune system.
Recent analysis of the pathogenesis of IBD has demonstrated the dysregulation or
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involvement of cytokines, chemokines, inflammasomes, miRNAs, DAMPs, antimi-
crobial peptides, and neuropeptides (Park et al. 2017). An increase in the level of
cytokines produced by innate immune cells and nonimmune cells such as epithelial
and stromal cells is a hallmark of IBD. A significant rise in the level of IL-1β
produced by the lamina propria was seen in ulcerative colitis and Crohn’s disease
(Neurath 2014). The severity of Crohn’s disease was also correlated with an increase
in the inflammasome protein complex (Opipari and Franchi 2015).

In a mouse model of ulcerative colitis, it was demonstrated that Galectin-3
expression increased the production of IL-1β by macrophages and induced activation
of NLRP3 (Simovic Markovic et al. 2016). Analysis of mucosal macrophages and
colonic epithelial cells of IBD patients revealed an increase in the activity of NFκB
(Neurath et al. 1996). A polymorphism in the NLRP3 gene has also been recently
linked to the pathogenesis of IBD. Mice lacking the NLRP3 gene are more prone to
develop experimental colitis (Hirota et al. 2011), and this may be due to the increase in
the intestinal barrier permeability that causes overgrowth of commensal bacteria that
may lead to bacteremia (presence of bacteria in the blood) (Zaki et al. 2010a). This
study supports the protective role of NLRP3 inflammasome in maintaining homeo-
stasis of the commensal species. On the contrary, another study reported that NLRP3
knockout mice also developed a less severe colitis (Bauer et al. 2010), and colonic
tissue produced lower levels of proinflammatory cytokines when induced with dextran
sodium sulfate (DSS) or 2,4,6-trinitrobenzenesulfonic acid (Wang et al. 2016). It has
been suggested that NLRP3-deficient mice have altered intestinal microflora that may
have caused a discrepancy in the results obtained in different lab conditions (Bauer
et al. 2012). The NLRP3 deletion studies have shown a very critical role of NLRP3 in
maintaining gut equilibrium and homeostasis during inflammation.

In addition to the canonical NLRP3 inflammasome activation, a noncanonical
caspase-11-induced NLRP3 inflammasome has been shown to be activated in
response to gram-negative bacteria (Pellegrini et al. 2017). Mice lacking caspase-
11 showed increased susceptibility to DSS-induced colitis, morbidity, tissue dam-
age, and a decreased expression of cytokines IL-18, IL-22, and IL-1α compared to
wild-type counterparts (Williams et al. 2015). Although the data suggest a protective
role of caspase-11-induced NLRP3 inflammasome in experimental colitis, further
studies are needed to establish the molecular connection between caspase-11 and
NLRP3 regulation and bolster this claim.

Patients with mutations in the IL-10R gene spontaneously develop Crohn’s disease
at a very early age, suggesting a significance of IL-10 signaling in the pathogenesis of
Crohn’s disease (Glocker et al. 2009). Similarly, mice lacking the IL-10 gene have
been shown to develop colitis spontaneously under specific pathogen-free conditions.
It was shown that IL10–/– mice had increased expression and activity of NLRP3
inflammasome even before the onset of colitis. The activity of NLRP3 progressively
increased with the severity of the disease, and significant elevation of proinflammatory
cytokines/chemokines was observed. Treatment with the NLRP3 inhibitor glyburide
significantly reversed this pathologic condition. RNA and protein levels of both
NLRP3 and ASCwere significantly increased in the colonic mucosa of IL-10-deficient
mice during the subclinical stage. NOD2 expression is elevated in a later stage of the
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disease, escalating the damage. In the conclusion of the study, it was discussed that
baseline NLRP3 activity is needed for homeostasis, and IL-10 maintains this; how-
ever, in the lack of IL-10, persistent activation of NLRP3 causes inflammation in the
early stages of colitis, which is exacerbated by the increased expression of NOD2,
leading to a complete disease pathology (Liu et al. 2016).

Although animal models have shown the relevance and involvement of NLRP3
inflammasome in the pathogenesis of colitis, patient data demonstrating the involve-
ment of inflammasome in ulcerative colitis is still lacking. But in the case of Crohn’s
disease, evidence of increased caspase-1 activity and elevation of IL-1β and IL-18
correlating with disease severity may suggest a role of inflammasome in its patho-
genesis (de Souza and Fiocchi 2016). Further investigation to clearly delineate the
role of NLRP3 inflammasome in the pathophysiology of ulcerative colitis and
Crohn’s disease is currently ongoing.

10.4 Colorectal Cancer

CRC is the third most common cancer and the fourth leading cause of cancer deaths;
with one to two million new cases diagnosed every year (Marmol et al. 2017). The
morbidity of CRC is relatively high in Europe, Oceania, and North America, whereas it
is low in some parts of Asia and Africa (Fan et al. 2016). Many genetic and environ-
mental factors play an important role in the pathogenesis of CRC (Peters et al. 2015).
Chronic inflammation is also a risk factor for CRC and links to tumor growth,
proliferation, and metastasis (Ryan et al. 2014; Janakiram and Rao 2014). In addition,
IBD, ulcerative colitis, and Crohn’s disease are associated with an increased risk of
CRC. It is estimated that 1–6 deaths in patients with ulcerative colitis and 1 of 12 deaths
in patients with Crohn’s disease are caused by CRC (Andersen and Jess 2013).

Several studies of patients with CRC revealed significantly decreased expression
of NLRs and AIM2 in CRC samples compared with normal controls (Liu et al. 2015;
Dihlmann et al. 2014; Choubey 2016). Therefore, inflammasome in CRC is consid-
ered a tumor suppressor that maintains tissue homeostasis against tumorigenesis,
although the molecular mechanisms remain unclear (Liu et al. 2015; Choubey 2016).

It has been reported that Nlrp3–/–, ASC–/–, and caspase-1–/– mice were more
susceptible to DSS-induced colitis as well as azoxymethane/DSS-induced colon
tumorigenesis than wild-type mice (Zaki et al. 2010a; Allen et al. 2010; Dupaul-
Chicoine et al. 2010). Bone marrow reconstitution experiments demonstrated that
NLRP3 activated in the hematopoietic cells, rather than intestinal epithelial cells or
stromal cells, is more important for host protection against tumorigenesis (Allen
et al. 2010).

NLRP6, which is highly expressed in intestinal epithelial cells, also plays a
critical role in protection against colon tumorigenesis (Chen et al. 2011; Wang
et al. 2015). Nlrp6–/– mice treated with azoxymethane/DSS were more susceptible
to colorectal carcinogenesis than wild-type mice, which resulted in increased inflam-
matory responses and decreased IL-18 production within the colon (Chen et al.
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2011). Similar to NLRP3, bone marrow chimera studies showed that NLRP6
activated in hematopoietic cells is critical for mediating protection against colon
tumorigenesis (Chen et al. 2011). Furthermore, NLRP6 is considered to regulate
intestinal microbiota and maintain colonic homeostasis (Wlodarska et al. 2014). In
azoxymethane/DSS treatment, wild-type mice cohoused with Nlrp6–/– mice experi-
enced significantly greater tumorigenesis than singly housed wild-type mice. The
alteration in the microbiota of Nlrp6–/– mice transferred into cohoused wild-type
mice—an effect dependent on local induction of IL-6 secretion, which resulted in
promoting epithelial cell proliferation (Hu et al. 2013). The protective effect of
NLRP3 and NLRP6 is associated with inflammasome-mediated release of IL-18,
which contributes to epithelial barrier repair against intestinal inflammation and
colitis (Oficjalska et al. 2015; Nowarski et al. 2015). Il18–/– and Il18r–/– mice were
more susceptible to DSS-induced colitis and colorectal carcinogenesis than wild-
type mice (Takagi et al. 2003; Salcedo et al. 2010). Further, mice with a deficiency of
Myd88, which resulted in inactivation of IL-18, were also more susceptible to colitis
and tumorigenesis (Salcedo et al. 2010). In addition, administration of exogenous
IL-18 rescued the colitis susceptibility and suppressed colitis-induced tumorigenesis
from inflammasome-deficient mice, indicating that this inflammasome-mediated
cytokine might be an effective treatment strategy against certain cases of CRC
(Karki et al. 2017; Zaki et al. 2010b; Dupaul-Chicoine et al. 2010).

Casp1–/– and Nlrc4–/– mice had significantly increased and more aggressive
tumors than wild-type mice (Hu et al. 2010). Interestingly, there were no differences
in inflammation severity between inflammasome-deficient mice and wild-type mice.
These effects in tumorigenesis were independent of inflammation and were associ-
ated with increased epithelial proliferation and reduced apoptosis of tumor cells.

AIM2 is a sensor of double-stranded DNA and another component of
inflammasome (Choubey 2016; Lasry et al. 2016; Liu et al. 2015). Similar to NLR
inflammasome, AIM2 is believed to mediate a host defense against infection and an
inflammatory response and to regulate tissue homeostasis within the intestine (Liu
et al. 2015; Choubey 2016; Lasry et al. 2016). It has been reported that CRC tissues
reduced AIM2 expression compared with adjacent normal tissues. Furthermore, lack
of AIM2 expression was closely associated with a poor outcome for CRC patients
(Dihlmann et al. 2014). Aim2–/– mice treated with azoxymethane/DSS developed
significantly more colorectal tumors than wild-type mice. However, there was no
difference in the production of inflammasome-associated proinflammatory cytokines
between Aim2–/– mice and wild-type mice (Wilson et al. 2015; Man et al. 2015).
Therefore, AIM2 is believed to protect against colon tumorigenesis by regulating stem
cells proliferation in an inflammasome-independent manner. It has been reported that
AIM2 reduced colon tumorigenesis by inhibiting the activation of Akt, a master
regulator of cellular survival, through interaction with DNA-dependent protein kinases
(Wilson et al. 2015). Another study indicated that AIM2 inhibited expansion of tumor-
initiating stem cells through theWnt pathway (Man et al. 2015). Further, Aim2–/–mice
cohoused with wild-type mice experienced less tumorigenesis than singly housed
Aim2–/– mice, indicating that regulation of genetic and environmental factors might
be essential for CRC treatment (Man et al. 2015).
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10.5 Fatty Liver Disease

Fatty liver disease has been classified into two types: alcoholic liver disease (ALD)
and nonalcoholic fatty liver disease (NAFLD). Overconsumption of alcohol is the
cause of ALD, and the disease progresses from fatty liver to alcoholic steatohepatitis
and eventually cirrhosis. Alcohol-related cirrhosis is the cause of death in 50% of
people with cirrhosis and accounts for 1% of all deaths worldwide (Masarone et al.
2016).

A growing number of reports have suggested that increased gut permeability and
alteration of the gut microbiota are involved in the pathogenesis of both ALD and
NAFLD (Szabo et al. 2010). An increased level of proinflammatory cytokines IL-1β,
tumor necrosis factor (TNF)-α, and IL-8 in serum and liver, along with elevated
expression of NLRP3 and CASP-1 with infiltration of neutrophils, monocytes, and
macrophages, is seen in the liver of patients with ALD (McClain et al. 1986; O’Shea
et al. 2010; Peng et al. 2014). In animal models of ALD, there was upregulation of
inflammasome molecules NLRP3, ASC, procaspase-1, and IL-1β in the liver.
Furthermore, blockade of IL-1R1 or global deficiency of ASC or caspase-1 resulted
in amelioration of ALD (Petrasek et al. 2012; Szabo and Petrasek 2015). It was also
reported that the alcohol-induced hepatocyte death was mediated by the NLRP3
inflammasome (Xiao et al. 2014). It is presumed that alcohol consumption causes
hepatocyte death, alters the gut microbiota, and increases gut permeability, causing
the portal blood to carry microbes into the liver. The PAMPs from the microbes
activate TLR4 (Inokuchi et al. 2011) and through NFκB signaling regulate the
production of pro-IL-1β and pro-IL-18. The second signal for the inflammasome
activation may be uric acid or ATP that may have accumulated due to the change in
metabolism caused by alcohol-induced mitochondrial dysfunctions (Hoek et al.
2002; Petrasek et al. 2015). Alternatively, hepatocyte death also releases DAMPs
such as high-mobility group box protein-1 (HMGB-1) that may also provide the
secondary signal for activation of inflammasomes (Ge et al. 2014). The maturation
of IL-1β by inflammasomes in turn activates the inflammatory signaling pathways in
the Kupffer cells and causes production of TNFα and MCP-1. MCP-1 potentiates the
pathology of the disease, and activation of hepatic stellate cells (HSC) by IL-1β
eventually leads to cirrhosis (Szabo and Petrasek 2015).

NAFLD is the most common chronic liver disease in developed countries
(Bellentani 2017) and in the world, estimated to affect up to 30% of the adult
population and 70% to 80% of obese and diabetic individuals (Chalasani et al.
2012). Nonalcoholic steatohepatitis (NASH) is the second leading etiology of
end-stage liver disease among adults awaiting liver transplantation in the United
States and is projected to become the most common indication for liver transplan-
tation in the next decade (Wong et al. 2015). Furthermore, NASH is an emerging risk
factor for type 2 diabetes, cardiovascular disease, and end-stage kidney disease
(Chalasani et al. 2012; Musso et al. 2014). Despite its high prevalence and high
morbidity, the exact pathogenesis of NASH remains debated.
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The mechanism for the development of NAFLD is complex and multifactorial.
But, just like ALD, it progresses to NASH and then to cirrhosis. The early stage of
NAFLD is characterized by the accumulation of triglyceride in the liver cells, which
is termed hepatic steatosis. During this stage, most patients remain asymptomatic.
However, steatosis can progress to NASH, which has marked inflammation in the
liver cells. NASH can further lead to cirrhosis (inflammation along with marked
fibrosis), end-stage liver disease, and HCC. Though many theories have been
postulated, the factors responsible for the step-by-step progression of the disease
remain undiscovered.

A “two-hit hypothesis” was proposed to explain the pathogenesis of NAFLD/
NASH. The first hit is the accumulation of triglycerides in the liver followed by lipid
peroxidation and oxidative stress (second hit), which turns on the inflammatory cascade
(Namikawa et al. 2006). Some other models propose a “third hit”: oxidative stress-
induced cell death decreases the replication of mature hepatocytes, leading to the
accumulation of an immature, abnormal progenitor cell population, leading to liver
cirrhosis and HCC. Buzzetti et al. explained that the two- or three-hit hypothesis is a
simple theory, while the actual disease process is complex, wherein multiple factors act
synergistically for disease progression. A few of the known factors of this “multiple-hit
hypothesis” are intestinal dysbiosis, increased intestinal permeability, endoplasmic
reticulum stress, mitochondrial dysfunction, gut-liver axis, and defective innate immu-
nity (Buzzetti et al. 2016). While various factors are involved in pathogenesis, the
inflammasome-induced inflammatory cascade is vital in the disease process.

The activation of inflammasome in fatty liver disease is similar to its activation in
any other diseases, with many factors playing a role. In addition to external antigens
like microbes (PAMPs), immune cells are exposed to endogenous sterile stimuli
known as DAMPs, which are released when tissue is injured. There are many
DAMPs, including ATP, uric acid, cholesterol crystals, amyloid, and calcium
pyrophosphate crystals (Chen and Nunez 2010; Warren et al. 2010). The cholesterol
crystals undergo phagocytosis by macrophages, which stimulates the release of
lysosomal protease cathepsin B leading to activation of inflammasome (Latz
2010). While NLRP3 involvement in the pathogenesis of this disease is clear, the
role of AIM2 and NLRP6 involvement is still being examined.

As NLRP3, ASC, and caspase-1 play an important role in the inflammatory
cascade of NASH, various animal models were studied to see the result of gain or
loss of function of these mediators. A high-fat diet was fed to NLRP3 knocked-out
mice, and they were protected from hepatomegaly, steatosis, and cirrhosis, whereas
mice with NLRP3 showed an inflammatory reaction in the liver with fibrosis (Wree
et al. 2014). Similar results were obtained when experiments were performed on
ASC-deficient mice (Dixon et al. 2012, 2013). It is to be noted that specific inhibition
of NLRP3 in Kupffer cells alleviates the inflammatory process in NASH, whereas
generalized NLRP3 inhibition (inclusive of the gut) has proven detrimental by
causing dysbiosis and further stimulating inflammation by portal transmission of
the TLRs from the gut (Henao-Mejia et al. 2012).

All these experiments have paved the way for new treatment options, which are
still in the trial stage. Various strategies have been implemented to prevent
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inflammasome formation, including use of cholesterol-lowering drugs, use of the
xanthine oxidase inhibitor to prevent DAMPs (cholesterol, uric acid), inhibition of
saturated fatty acid-induced TLR activation with ethyl pyruvate, and use of
phenylmethimazole (Ioannou et al. 2015; Xu et al. 2015; Miura et al. 2013). A
few compounds, such as isoliquiritigenin, arglabin, and auranofin, that have been
discovered to inhibit NLRP3 inhibitors and a few caspase inhibitors are undergoing
Phase 2 trials (Honda et al. 2014; Abderrazak et al. 2015; Isakov et al. 2014).
However, since inhibition of inflammasomes occurs in the liver and not in the
intestines, these therapies need to be tissue specific.

Interestingly, the human gut harbors approximately 10–100 trillion microorgan-
isms, mainly bacteria—an amount that greatly exceeds the number of human cells
(Ursell et al. 2012). Gut dysbiosis (altered gut microbiota) has been involved in the
pathogenesis of obesity-related diseases such as metabolic syndrome and NAFLD
(Cox et al. 2014). Early life is a critical period for the growth of normal commensal
bacteria, and various factors such as mode of delivery, breastfeeding, weaning, and
use of antibiotics in newborns can alter the gut flora and predispose an individual to
diseases such as metabolic syndrome and NASH (Reinhardt et al. 2009). The
gut-derived microbial products (LPS) stimulate the TLRs in the intestine, which
are transported to the liver via the portal system. The transported TLRs initiate
inflammasome formation, resulting in the production of proinflammatory and
profibrotic cytokines IL-1, IL-6, and TNF (Than and Newsome 2015; Mencin
et al. 2009; Federico et al. 2016; Friedman 2007; Takaki et al. 2014; Tyrer et al.
2011). Through human descriptive studies, Wigg et al. (2001) demonstrated a
connection between NASH and small intestinal bacterial overgrowth through C14
xylose and lactulose breath test.

Both the multiple-hit and the earlier two-hit hypothesis cite accumulation of fat in
the liver cells as an important initiation step in the disease process. In addition to
insulin resistance, dietary intake is a major contributor in hepatic steatosis. Researchers
have revealed interesting facts about the types of fatty acids and their role in the
disease process. The notorious saturated fatty acids such as palmitic acid are known to
cause hypercholesterolemia and be a major risk factor for atherosclerosis, coronary
artery disease, and stroke. These saturated fatty acids can directly stimulate NLRP3
inflammasome formation and can initiate the process of NASH (Wen et al. 2011; Csak
et al. 2011). Polyunsaturated fatty acids (PUFA) were considered healthy, but inter-
estingly studies have proven that ω-3 PUFAs are anti-inflammatory, whereas ω-6
PUFAs are proinflammatory, with the ability to stimulate inflammasome formation as
well as cytokine production (Wree et al. 2013). Animal models have proven that ω-3
PUFA suppressed the LPS-mediated priming and inhibited the formation of NLRP3
inflammasome (Sui et al. 2016). Further, studies have shown that a high ω-6/ω-3 ratio
diet increases the severity of steatohepatitis. In addition, a diet rich in fructose and
cholesterol can contribute to disease progression. A high-fructose diet increases de
novo lipogenesis and insulin resistance and can stimulate inflammation, thereby
increasing the severity of disease (Abdelmalek et al. 2010).

It is interesting to note that genes play a critical role in the development of NASH
and the progression of its severity. Human genome-wide association studies have
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shown that a variant of patatin-like phospholipase domain containing three genes,
PNPLAr3, rs738409, and I148M, is a strong predictor of NASH and steatosis. In the
future, the detection of these genes can help us identify individuals who are at high
risk for NASH and provide prophylactic care to prevent the onset of the severe
irreversible stage of the disease (Romeo et al. 2008; Sookoian and Pirola 2011;
Abdelmalek et al. 2010).

The role of inflammasome in the pathogenesis of NASH has also been exten-
sively investigated. Methionine-choline-deficient-induced animal models for NASH
were found to have increased activation of AIM2 and NLRP3 via the TLR9-MyD88
pathway (Csak et al. 2014). Upregulation of nlrp3, Asc, and Casp-1 mRNA is seen,
but activation of inflammasome is not detected in early stages of the NAFLD animal
model. Further investigation of the role of inflammasome molecules in the patho-
genesis of ALD and NAFLD is ongoing.

10.6 Hepatitis

Hepatitis refers to inflammation of the liver. This inflammation can be short-lived
(acute hepatitis) or persistent and progressive (chronic hepatitis) (Negash and Gale
2015). Although the most common cause of hepatitis is a viral infection, other
infections, metabolic disorders, or exposure to toxic substances such as alcohol
and drugs can also cause hepatitis (Negash and Gale 2015; Neuman et al. 2017).
There are several types of hepatitis viruses, including hepatitis A (HAV), B (HBV),
C (HCV), D (HDV), and E (HEV) viruses (Dey and Banerjee 2016). HAV, HBV,
and HCV are responsible for most cases of viral hepatitis. HAV is a common cause
of acute hepatitis, while HCV infections tend to establish chronic persistent infec-
tion. Acute HBV infection is effectively controlled in more than 90% of adults,
although it can be chronic persistent after neonatal infection (Shin et al. 2016).
Inflammation caused by these chronic infections leads to an increased risk of liver
cirrhosis and HCC (Alavi et al. 2016).

Reports on the involvement of inflammasome in HAV infection are lacking, and
in-depth study will be required. Inflammatory pathways by hepatitis viruses such as
HBV and HCV involve activation of inflammasomes, leading to caspase-1 activa-
tion and production of IL-1β and IL-18 (Negash and Gale 2015). It has been reported
that HBV and HCV trigger AIM2 and NLRP3 inflammasome activation, respec-
tively (Pan et al. 2016; Farag et al. 2017). The presence of IL-1β during HBV
infection has been proposed to be beneficial for antiviral activity by activation-
induced cytidine deaminase (AID) (Watashi et al. 2013). Moreover, hepatitis B e
antigen (HBeAg) has been shown to inhibit IL-18 activity, and hepatitis B c antigen
(HBcAg) has been shown to induce IL-18 expression (Jegaskanda et al. 2014;
Manigold et al. 2003). Higher levels of AIM2 inflammasome were reported in
patients with acute HBV infection than in those with chronic infection. Moreover,
this inflammasome was also linked with an increase in IL-1β and IL-18, which are
required for viral clearance (Wu et al. 2013). Evaluation of the activity of NLRC4,
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NLRP1, and NLRP3 in chronic HBV infection revealed no significant activity by
these inflammasome molecules (Askari et al. 2016). Chronic HBV infection may be
a result of reduced inflammasome activity resulting in poor antiviral activity. This
may be due to HBeAg preventing activation of NFκB signaling and ROS produc-
tion, thereby preventing the NLRP3 inflammasome activation and IL-1β production
required for viral clearance (Yu et al. 2017). A recent finding revealed the presence
of AIM2 in the cytoplasm of hepatocytes, and upon HBV infection, the expression of
IL-18 was also increased in vitro. Further, it was also shown that patients with
chronic HBV infection had increased expression of AIM2 in hepatocytes compared
with controls. Both AIM2 and IL-18 expression has been correlated with infection
severity and liver injury (Pan et al. 2016).

HCV infection may be sensed by several pattern recognition receptors including
retinoic acid-inducible gene I and TLRs 2, 3, 4, 7, 8, and 9. Stimulation of TLRs by
HCV leads to activation of an IFN response (Saha and Szabo 2014; Heim 2013).
Chronic hepatitis from HCV infection has been characterized by dysregulated
inflammatory cytokine production and impaired T-cell activity (Negash and Gale
2015).

The increase in intrahepatic IL-1β expression has been associated with cirrhosis
in patients with chronic HCV infection (Chattergoon et al. 2014). It has been
identified that macrophages are the major contributors of IL-1β in response to
HCV infection (Negash et al. 2013). An in vitro study showed that human
HCV-infected hepatoma cells produced IL-1β by caspase-1-mediated processing,
and ROS was partially involved in the induction of inflammasome complex
(Burdette et al. 2012). Furthermore, it was also reported that hepatic macrophages
phagocytose HCV and induce inflammasome activity, which results in the produc-
tion of IL-1β. This study also elaborated that compared with Kupffer cells, hepato-
cytes produce much less IL-1β in response to HCV infection (Negash et al. 2013).

Just like IL-1β, IL-18 is also involved in the pathogenesis of HCV. HCV-infected
patients have increased serum levels of IL-18, which has been correlated with liver
damage. It was shown that ROS-mediated NLRP3 inflammasome activation by
HCV RNA in myeloid cells is the cause for increased plasma levels of IL-1β and
IL-18 levels in HCV-infected patients (Chen et al. 2014). The production of IL-18 by
monocytes is required for the activation of NK cells and production of an antiviral
IFNγ response upon HCV infection. However, the monocyte-derived TNFα and NK
cell-derived IFNγ-mediated antiviral response is dampened in patients with chronic
HCV infection (Serti et al. 2014).

HCV infection causes hepatosteatosis by the accumulation of lipid droplets in
infected cells. It has been shown that inflammasome components such as NLRP3,
CARD, and caspase-1 are required for lipid droplet formation. Moreover,
inflammasome activation and caspase-1 activity degrade insulin-induced proteins
and activated sterol regulatory element-binding protein for the upregulation of
lipogenic genes. This study demonstrates a unique role of inflammasome activation
in the pathogenesis of HCV infection (McRae et al. 2016).

HDV infection is the most serious form of viral hepatitis (Grabowski and
Wedemeyer 2010; Alvarado-Mora et al. 2013). HDV infection, which is usually
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concurrent with HBV infection, may result in a rapid progression of hepatitis, which
can usually be attenuated by IFNα therapy (Negash and Gale 2015). The mechanism
of infection and the role of inflammasome in the pathogenesis of this disease need
further investigation. Similarly, the pathogenesis of hepatitis caused by HEV needs
to be further studied to identify the role of inflammasomes in HEV infection.

10.7 Liver Cirrhosis

Cirrhosis is histologically defined as the replacement of the normal architecture of
the liver with regenerating nodules surrounded by fibrous bands. Cirrhosis has
various causes, of which viral hepatitis and alcohol have the highest prevalence.
The Centers for Disease Control and Prevention (2017) reported that HCV is more
common in the United States; 60% to 70% of HCV patients develop chronic liver
disease, and 5% to 20% progress to cirrhosis over 20–30 years. Other conditions that
can lead to cirrhosis are NAFLD, primary biliary cirrhosis, primary sclerosing
cholangitis, hemochromatosis, Wilson’s disease, and alpha 1 antitrypsin deficiency.
Cirrhosis will progress to decompensated liver failure, with complications such as
portal hypertension and HCC. Cirrhosis is also the leading indication for liver
transplantation in the United States (Schuppan and Afdhal 2008). Although the
causes of the disease are well documented, the exact molecular pathway for the
progression from inflammation (hepatitis) to fibrosis (cirrhosis) remains unknown.

Deposition of excess extracellular matrix, type 1 and type 3 collagen is the
hallmark of fibrosis (van Dijk et al. 2015; Tacke and Trautwein 2015). HSC, present
in the perisinusoidal spaces, plays the key role of initiation, activation, and progres-
sion of fibrosis (Josan et al. 2015; Li et al. 2015). Though the primary source of
myofibroblasts and fibroblasts is stellate cells, it is believed that bone marrow-
derived fibroblasts and circulating mesenchymal cells also contribute to this process
(Zhang et al. 2016). Studies have proven the direct role of NLRP3 inflammasome in
HSC activation, enhanced by production of α-smooth muscle actin, fibrogenic
cytokines like transforming growth factor-β, connective tissue growth factor, as
well as extracellular matrix proteins (procollagen 1, TIMP-1) (Watanabe et al.
2009). In addition to NLRP3, ROS and various cytokines produced as a result of
inflammasome formation (most importantly IL-1β and IL-18) play a role in the
conversion of the quiescent HSC to activated HSC (Basaranoglu et al. 2013). In
one study, tissue inhibitors of matrix metalloproteinase (TIMP), which is a marker of
HSC activation, were measured after feeding mice with a choline-deficient amino
acid-defined diet, which induces steatosis followed by fibrosis. Levels of TIMP
increased in wild-type mice, in comparison to a significant decrease in NLRP3
knocked-out mice, thereby proving that a deficiency of NLRP3 protects mice from
fibrosis (Wree et al. 2014).

Cell-to-cell interaction helps create a strong inflammatory microenvironment,
which increases fibrinogenesis (Ford et al. 2015; Coulouarn et al. 2012). Studies
have shown that LPS-stimulated Kupffer cells play a role in fibrogenesis by
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activating the adjacent HSC via inflammasome-mediated cytokine production
(Fallowfield 2011). Jiang et al. (2017) showed that ATP-mediated P2XR stimulation
of inflammasome is another way to stimulate the HSC and further proved that
blockage of P2XR with A438079 inhibits both the stellate cells and deposition of
extracellular matrix. This finding opens the door for new treatment options. It has
been postulated that farnesoid receptor stimulation plays an important role in halting
the disease process. It has also been clinically proven that the farnesoid receptor
agonist obeticholic acid has antifibrotic effects and improves fat-induced cirrhosis
(Neuschwander-Tetri et al. 2015; Khalid et al. 2015).

Through animal models, it has been shown that tetramethylpyrazine, a natural
product, has inhibitory effects over the inflammatory pathway tofibrosis and can disrupt
the NLRP3/caspase-1-mediated production of cytokines IL-1β and IL-18, thereby
ameliorating fibrosis. This study was conducted with platelet-derived growth factor,
which was a potent stimulator of inflammation and fibrogenesis in HSC (Wu et al.
2015). Currently transplant is the only definitive treatment for cirrhosis, and approved
medical interventions are yet to be discovered for this irreversible disease.

10.8 Hepatocellular Carcinoma

HCC is the most common primary malignant tumor of the liver and is the second
leading cause of cancer-related death worldwide (Park et al. 2015). More than 80%
of HCC cases occur in East Asia and sub-Saharan Africa (>20 per 100,000 popu-
lation), whereas South and Central America and Northern Europe have a low
incidence of HCC (<5 per 100,000 population) (Zhu et al. 2016). Most HCC
cases occur in patients with advanced fibrosis and liver cirrhosis, with major risk
factors including chronic infection with HBV, HCV, ALD, and NASH (Sanyal et al.
2010; Sasaki et al. 2017). Although the exact mechanism of the oncogenesis and
progression of HCC is complicated and remains unknown, inflammation is consid-
ered one of the most important factors in HCC development (Bishayee 2014). It has
been reported that inflammation stimulates angiogenesis, DNA damage, and malig-
nant tumor cell growth (Dondeti et al. 2016).

Inflammasomes such as NLRP3, NLRC4, and AIM2 have been shown to play an
important role via inflammatory pathways in HCC (Fan et al. 2014; Sonohara et al.
2017; Ma et al. 2016). One clinical investigation identified that the expression level
of NLRP3 was significantly reduced in the liver tissue of patients with HCC, and the
expression inversely correlated with disease severity (Wei et al. 2014). Expression of
inflammasome was low in normal hepatocytes, but inflammatory events resulted in
upregulation of inflammasome molecules, and significant downregulation was seen
in malignant liver cancer tissues. An initial insult to the hepatocytes causes activa-
tion of inflammatory signals and also induces formation of the inflammasome
complex, which may play a role in the establishment of homeostasis. However, a
chronic inflammatory condition and extensive damage result in fibrosis, and com-
pensatory hepatocyte proliferation and liver regeneration are prone to mutations
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causing dysplasia and tumor development originating from precursor cells lacking
inflammasome. HCC patients with downregulated inflammasome molecules are
prone to advanced clinical stages and may favor HCC progression (Wei et al. 2014).

Similar to NLRP3 (Wei et al. 2014), estrogen receptor (ER)-β has been shown to
be significantly downregulated in liver cancer cells; therefore, the link between ERβ
and NLRP3 inflammasome in liver cancer cells was investigated. This study iden-
tified a strong correlation between ERβ and NLRP3 expression in the liver. The
treatment of HCC cells with 17β-estradiol resulted in inhibition of proliferation,
migration, and the colonizing ability of HCC cells, and this effect was reversed when
NLRP3 inhibitor was added. The study also demonstrated that only pyroptosis and
not apoptosis by NLRP3 inflammasome induced death of HCC cells (Wei et al.
2015). In a contrasting study, it was reported that luteoloside, a naturally occurring
flavonoid, suppresses the proliferation of HCC by inhibiting the expression of
NLRP3 inflammasome and intracellular ROS accumulation (Fan et al. 2014).
Luteoloside was able to significantly inhibit proliferation, migration, invasion, and
metastasis of HCC cells both in vitro and in vivo. Expression of NLRP3
inflammasome, caspase-1, and IL-1βwas significantly downregulated by luteoloside
in HCC cell lines (Fan et al. 2014). The contrasting roles of NLRP3 in the patho-
genesis of HCC may be due to the different models used in these studies.

In a research study investigating the anticancer property of poly(amidoamine)
(PAMAM) dendrimers, it was demonstrated that autophagy, oxidative stress, and
inflammasomes were involved in the cytotoxicity of HCC cell lines. The PAMAM
dendrimers induced activation of inflammasomes in HCC cells and may have played
a role in cytotoxicity (Li et al. 2014). In a recent study examining the gene
expression pattern of noncancerous tissue to determine recurrence of HCC after
surgical resection, NLRP3, NLRC4, and AIM2 were overexpressed in noncancerous
adjacent tissue compared to controls and HCC tissue. High expression of the
inflammasome molecules in the surrounding noncancerous tissue was associated
with poor overall survival after tumor resection (Sonohara et al. 2017). All these
studies suggest that inflammasome components play a critical role in the pathogen-
esis of HCC. However, the contrasting reports demand a thorough analysis of the
role of inflammasome in the development of the disease. Further understanding will
result in proper guidance toward development of therapeutic approaches for HCC.

10.9 Pancreatitis

Acute pancreatitis (AP) is an inflammatory condition of the pancreas, accompanied
by abdominal and back pain and elevations of pancreatic enzymes. It is one of the
most common gastrointestinal diseases, resulting in 275,000 hospital admissions
every year in the United States (Forsmark et al. 2016). The most common causes of
AP are gallstones and excessive alcohol consumption (Greenberg et al. 2016). Based
on severity, AP ranges from a mild self-limited condition to a life-threatening
situation with a high incidence of systemic complications (He et al. 2016). Although
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the molecular mechanisms of AP are still poorly understood, inflammatory cell
infiltration and inflammatory mediators may play a key role (Dong et al. 2016).

Chronic pancreatitis (CP) is a progressive fibroinflammatory disease of the
pancreas that alters its normal structure and functions (Wang et al. 2013). Patients
with CP usually present with severe abdominal pain and exocrine and endocrine
dysfunction (Stram et al. 2016). In the advanced stage of CP, the quality of life of
patients is impaired by intractable pain, malabsorption, and diabetes mellitus
(Duggan et al. 2014). Alcoholic pancreatitis is the leading cause of CP, followed
by idiopathic pancreatitis (Hobbs et al. 2016). It has been reported that NFκB plays a
significant role in the pathogenesis of CP, although the downstream mechanisms
associated with disease progression are not clearly understood (Kanak et al. 2017).

The pathogenesis of AP and CP is still unclear. However, several molecular
mechanisms have been linked to the development of the disease. These include anom-
alous calcium signaling, oxidative stress, an increase in intracellular ROS, NFκB
signaling, endoplasmic reticulum stress, autophagy, and altered intracellular and extra-
cellular pH (Sah et al. 2013). We recently identified that inflammasomes may play a
critical role in the development of CP (Kanak et al. 2017). Earlier reports documented
the involvement of inflammasomes on AP (Hoque et al. 2011; Ren et al. 2014).

AP is initiated by premature activation of digestive enzymes within pancreatic
acinar cells, resulting in self-digestion, cellular inflammation, and damage (Kang
et al. 2016; Dong et al. 2016). Intracellular contents released from damaged cells
serve as DAMPs, including nuclear DNA, mitochondrial DNA, and ATP (Hoque
et al. 2011, 2012). These DAMPs can stimulate TLR4 and TLR9 expressed in
pancreatic macrophages to trigger transcriptional pathways, leading to the activation
of NFκB and pro-IL-1β transcription. DAMPS can also stimulate plasma membrane
purinergic receptor P2X7, cytosolic receptors of NLRs, which mediate IL-1β mat-
uration through inflammasome components (Hoque et al. 2011).

In addition to the NLR family NLRP3 inflammasome, several DAMPs activate
AIM2 inflammasome in peripheral blood mononuclear cells (PBMCs) with AP
(Algaba-Chueca et al. 2017). Production of IL-1β leads to further cytokine produc-
tion, recruitment of immune cells, and pyroptosis (Hoque et al. 2011; Tait et al.
2014). It has been reported that antagonists of TLR9 and P2X7 markedly reduced the
inflammatory response in AP (Hoque et al. 2011; Perez et al. 2015). Using animal
models, it was shown that knocking down key components of the inflammasome
pathway, such as NLRP3, ASC, caspase-1, TLR-9, and purinergic receptor P2X7,
reduced inflammation and IL-1β expression upon administration of cerulein to
induce AP (Hoque et al. 2011).

Previous studies showed that mature IL-18, which is processed by
inflammasomes, is required for the development of pancreatitis (Yuan et al. 2007).
In addition, an increased level of IL-18 was also noted in the serum of patients
suffering from both AP and CP (Hirota et al. 2006; Ueda et al. 2006). The increased
level of IL-18 along with TNFα correlated with the severity of pancreatitis (Endo
et al. 2001). Treatment with inhibitor of caspase-1 maturation drugs resulted in
reduced expression of IL-18 and amelioration of pancreatitis in animal models of
pancreatitis (Zhang et al. 2007).
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HMGB-1 and genomic DNA are DAMPs involved in the activation of
inflammasomes, since these are elevated in patients with AP (Kocsis et al. 2009).
Blocking HMGB-1 using pharmacological inhibitors has been shown to reduce
necrosis and inflammation in animal models of pancreatitis (Sawa et al. 2006).

Acinar cells are the major source of inflammatory mediators during the onset of
pancreatitis. When mice fed with alcohol were treated with LPS, there was an
increase in the inflammatory mediators. It is also suggested that IL-18 and
caspase-1 may contribute to aggravated acinar cell injury in alcohol-induced pan-
creatitis (Gu et al. 2013).

Acute injury to the pancreas caused by cerulein administration was reduced when
lactate was injected in mice. Lactate has been shown to negatively affect TLR4
signaling and also reduce NLRP3 inflammasome activation and IL-1β production
(Hoque et al. 2014). Rat models of cerulein and alcohol-induced pancreatitis had an
increased level of myeloperoxidase that may be responsible for the formation of
ROS. The study also showed upregulation of ASC and increased expression of
caspase-1, which were dampened by treatment with rutin, an anti-inflammatory
flavonoid molecule (Aruna et al. 2014).

Another study showed that NLRP3 is required for developing severe AP upon
cerulein injection to obese mice. Lean mice developed a mild AP compared to the
obese mice. According to the authors, inhibition of NLRP3 using glyburide had no
effect on AP development in lean mice but significantly reduced the severity in obese
mice. It was reasoned that since the mice are obese, there is already some activity of
NLRP3 inflammasome, which is exacerbated by cerulein administration to develop
AP (York et al. 2014).

ROS plays a vital role in the activation of NLRP3 inflammasome, and elimination
of ROS by antioxidants has alleviated inflammasome activity and prevented IL-1β
maturation (Rubartelli 2012). Similarly, the involvement of ROS in the pathogenesis
of AP has been reported, and treatment of mice with hydrogen-rich saline to abolish
ROS activity was investigated. NLRP3 was overexpressed upon cerulein adminis-
tration, and treatment with hydrogen-rich saline reduced ROS and NLRP3 activity
significantly (Ren et al. 2014).

A more recent study demonstrated that receptor for advanced glycation end
products (RAGE) is involved in the activation of AIM2 inflammasome in experi-
mental AP. It was observed that knockout of the AIM2 gene protected mice from
experimental AP. Additionally, mice lacking RAGE did not have a strong inflam-
matory response during induction of experimental AP (Kang et al. 2016). This study
was supported by clinical evidence that showed that patients with new-onset AP
demonstrated increased expression of inflammasome molecules, including AIM2, in
the PBMC. Production of IL-1β and IL-18 by PBMCs was increased in AP patients
compared to healthy controls. AIM2 may be responsible for causing systemic
inflammation, as patients suffering from transient or persistent organ failure due to
AP demonstrated further elevation of AIM2 expression, showing a strong correlation
of AIM2 expression with severity of disease (Algaba-Chueca et al. 2017).

In a recent study from our group, we showed for the first time that inflammasome
may be involved in the pathogenesis of CP (Kanak et al. 2017). We also demonstrated
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that inhibition of NFκB using the small molecule inhibitor WA significantly
downregulated inflammasome genes and reduced the severity of pancreatitis. It is
suggested that due to chronic inflammation, immune cells infiltrating the pancreas are
activated via TLR signaling by binding of DAMPs such as HMGB-1, genomic DNA,
or ATP released by damaged acinar cells (Fig. 10.2). This may result in assembly and
activation of inflammasomes that cause further damage by production of IL-1β and
IL-18. An analytical study showed serum HMGB-1 to be increased in patients with
pancreatitis, with a strong correlation with disease progression (Lin et al. 2015). Upon
cerulein administration, we observed significant upregulation of HMGB-1, which was
inhibited byWA treatment. Messenger RNA levels of key inflammasome components
NLRP3, ASC, IL-1β, and IL-18 were also significantly upregulated, suggesting
increased inflammasome signaling in cerulein-induced CP. WA was able to strongly
inhibit the expression levels of all inflammasome molecules. Given the evidence, it is
believed that the NLRP3 inflammasome may be partly involved in the pathogenesis of
CP, but the extent of involvement needs to be investigated (Kanak et al. 2017). Further
investigation is needed to determine the extent of NLRP3 inflammasome activity
involved in the pathophysiology of CP.

A comparative study of pancreatic cancer, periodontitis, and CP investigated the
polymorphisms in the NLRP3 and NLRP2 inflammasomes. This study revealed that
F359L polymorphism in the NLRP2 inflammasome was higher in CP patients
(Miskiewicz et al. 2015). These studies show evidence of the involvement of
inflammasomes in the pathogenesis of CP, but further investigation may be needed
to evaluate the role of inflammasomes in the development of the disease. These
studies may pave the way for novel therapeutic strategies to treat CP.

10.10 Pancreatic Cancer

Pancreatic cancer represents the fourth leading cause of cancer-related death in the
United States (Ko 2016). The prognosis for patients with pancreatic cancer is
extremely poor, with an overall 5-year survival of only 6% (Yamamoto et al.
2015). The main reason is that pancreatic cancer is an aggressive malignancy and
difficult to diagnose at an early stage. Smoking, positive family history and genetics,
diabetes mellitus, obesity, dietary factors, alcohol use, and physical inactivity are
considered to be risk factors (Ilic and Ilic 2016). Pancreatic cancers are usually
associated with somatic mutation of the KRAS oncogene and inactivation of tumor
suppressor genes such as TP53, CDKN2A, and SMAD4 (Huang et al. 2015).
Although a combination of genetic background and environmental factors is needed
for the development of pancreatic cancer, chronic inflammation such as pancreatitis
is also considered to be a major risk factor (Chang et al. 2016; Zambirinis et al.
2014).

IL-1β, which is often detected in pancreatic cancer, is a proinflammatory cytokine
and has various roles such as cell growth, differentiation, tissue repair, and regula-
tion of immune response (Okamoto et al. 2010). IL-1β is associated with the
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invasiveness, metastasis, and chemoresistance of pancreatic cancer (Okamoto et al.
2010; Muerkoster et al. 2006). Intracellular contents released by dead and dying
tumor cells or present in the tumor microenvironment are considered to activate
NFκB and inflammasome, which induce activation and release of proinflammatory
cytokines (De Monte et al. 2011). A recent study reported that polymorphism in the
NLRP3 gene Q705K is more prevalent in patients with pancreatic cancer
(Miskiewicz et al. 2015). Carbone et al. (2009) reported that increased serum levels
of cytokine IL-18 processed by the inflammasome complexes were associated with
poor survival in patients with pancreatic carcinoma. The authors reported an
increased level of precursor IL-18 with no functional properties, which was pro-
duced and secreted by pancreatic tumors. However, after treatment of pancreatic
cancer cells with 5-fluorouracil, which is a polyadjuvant chemotherapy used to
reduce malignancy, it was shown that mature forms of IL-18 were increased in the
serum of patients as a result of caspase-dependent processing of pro-IL-18 (Carbone
et al. 2005). This study described the involvement of IL-18 but did not address the
mechanism of caspase activity and IL-18 processing. A thorough analysis of the role
of inflammasome in the progression and malignancy of pancreatic cancer is needed.

10.11 Conclusion

Studies over the past decade have highlighted the role of various inflammasomes in
gastrointestinal diseases. Inflammasome-mediated cellular processes are important
during microbial infections and also in regulation of metabolic processes and
immune responses. In most of the gastrointestinal disease including cancer, the
evidence linking the involvement of inflammasomes in disease development
in vivo remains preliminary and awaits further confirmation. It is important to clearly
understand the balance between beneficial and detrimental inflammasome activa-
tion. This knowledge is critical to the development of novel therapeutic strategies
including the development of small molecules that directly target inflammasome
components rather than inhibitors of proinflammatory cytokines.
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Inflammasomes in Bone Diseases
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Abstract Unresolved inflammation is harmful to any tissues in the organism. Bone
in particular is vulnerable to inflammatory assaults because its integrity depends on
the activity of osteoclasts, which arise from myeloid precursors. Osteoclasts are
responsible for bone resorption in normal and disease conditions. Increased
osteolysis is a common feature of inflammatory disorders and a risk factor for
bone fractures. Thus, bone is impacted negatively not only by local and systemic
inflammatory mediators, but also directly, by alterations affecting myelopoiesis and
lineage allocations. Such perturbations are characteristics of dysregulated
inflammasomes, which are key regulators of innate immunity. In this review, we
discuss the role of inflammasomes in bone diseases caused by sterile or non-sterile
inflammation.
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11.1 Introduction

Inflammasomes are multifunctional intracellular protein complexes that protect
against infections upon recognition of microbial structures known as pathogen-
associated molecular patterns (PAMPs). They also restore tissue integrity after
injury upon sensing debris from damaged tissues, signals termed danger-associated
molecular patterns (DAMPs) (Guo et al. 2015; Lukens et al. 2012; Martin 2016;
Schroder and Tschopp 2010). Some receptors such as nucleotide-binding oligomer-
ization domain-like receptors (NLRs, e.g., NLRP3) and absent in melanoma 2-like
receptors (ALRs, e.g., AIM 2) associate with apoptosis-associated speck-like pro-
tein containing a CARD (ASC) upon recognition or sensing of specific PAMPs or
DAMPs. ASC then forms polymers that facilitate the recruitment of pro-caspase-1,
which is converted into active caspase-1 through an ill-defined proximity-enabled
reaction. Prominent caspase-1-mediated responses include maturation of interleukin
(IL)-1β and IL-18 and pyroptosis (Guo et al. 2015). Caspase-1 also processes
several other substrates including glycolytic enzymes (Shao et al. 2007; Wang
et al. 2016), and caspase-7, which subsequently cleaves poly(ADP-ribose)
polymerase 1 (PARP1) (Erener et al. 2012). Inflammasomes are functional in
various cell types, including myeloid cells (Guarda et al. 2011), osteoclasts
(Bonar et al. 2012; Qu et al. 2015; Scianaro et al. 2014; Kim et al. 2017), osteoblasts
(Bonar et al. 2012; McCall et al. 2008), and chondrocytes (Feldmann et al. 2002).
However, the skeletal impact of over-reactive inflammasomes is not well
understood.

Bone is laid down and modeled during development by osteoblasts
(Kronenberg 2003). After development, the amount of bone that is resorbed by
osteoclasts is replenished fully by osteoblasts to maintain homeostasis (Raisz
2005). Perturbation of this balance in inflammatory states causes bone loss
(Novack and Mbalaviele 2016; Walsh and Gravallese 2010; Mbalaviele 2017).
In this book chapter, we review known and potential roles for the inflammasomes
in skeletal diseases characterized by sterile or non-sterile inflammation
(Fig. 11.1).
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11.2 Role of the Inflammasomes in Sterile Osteolysis

11.2.1 The NLRP3 Inflammasome

NLRP3-activating mutations cause cryopyrin-associated periodic syndromes
(CAPS), which are autoinflammatory disorders associated with excessive IL-1β
and IL-18 production, recurrent fever, and urticaria-like rash (de Jesus et al. 2015;
Hoffman and Broderick 2016). Skeletal anomalies including osteopenia,
bone deformities, bulky epiphyses, leg length discrepancy, and short stature are
prominent features of neonatal-onset multisystem inflammatory disease (NOMID),
the most severe manifestation of the CAPS spectrum (de Jesus et al. 2015; Hoffman
and Broderick 2016). Epiphyseal outgrowths in these patients are abnormally
calcified and associated with disorganized and hypocellular growth plates
(Feldmann et al. 2002; Aksentijevich et al. 2002; Zaki et al. 2012; Hill et al.
2007). IL-1β blocking agents (e.g., anakinra, rilonacept, and canakinumab) relieve
inflammatory symptoms, but anakinra, for example, appears to have limited or no
efficacy against skeletal lesions (Anton et al. 2015; Sibley et al. 2012; Neven et al.
2010; Rigante et al. 2011); the causes of drug resistance remain unknown.

Myeloid cell 

Osteoclast

Osteoblasts

Bone

Cytokines, PAMPs, DAMPs

Cytokines
PAMPs
DAMPs

IL-1βRANKL

Pro-IL-1β

Low or high grade inflammation Infection

Fig. 11.1 Inflammasomes and bone resorption. Combined actions of cytokines, PAMPs and
DAMPs produced by inflammation (open arrows) lead to inflammasome activation (arrowheads),
and subsequent IL-1β secretion by myeloid cells (solid arrows), some of which form osteoclasts.
Potential endogenous DAMPs include bone degradation products (not represented).
Inflammasomes can also be activated by gain-of-function mutations independently of PAMPs
and DAMPs. IL-1β in turn stimulates osteoclast differentiation and bone resorption directly and
indirectly through induction of osteoclastogenic factors (e.g., RANKL) by osteoblasts (dashed
arrows). Inflammasome activation also leads to PARP1 degradation (not depicted), a process that
promotes osteoclastogenesis
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Murine models of CAPS, including NOMID, Muckle-Wells syndrome (MWS),
and familial cold autoinflammatory syndrome (FCAS), recapitulate most features of
human disorders (Bonar et al. 2012; Brydges et al. 2009; Meng et al. 2009;
Snouwaert et al. 2016). Skeletal complications, including stunted growth, growth
plate dysplasia, and low bone mass occur in NOMID mice (Bonar et al. 2012;
Snouwaert et al. 2016; Wang et al. 2017). However, inflammasopathies are in
general more severe in rodents than in humans. Nonetheless, studies in mice have
revealed that NOMID-associated osteopenia is caused at least in part by massive
expansion of osteoclast precursors and exuberant osteoclastogenesis (Bonar et al.
2012). While skeletal defects are prevented in Il-1 receptor null NOMID mice
(Wang et al. 2017), human patients are refractory to IL-1 blocking agents as noted
above. Since IL-1 signaling is blocked during development in NOMID mice, it is
tempting to speculate that early diagnosis and treatment with IL-1 drugs before the
onset of growth plate dysplasia may prevent the development of this anomaly in
children.

Chronic recurrent multifocal osteomyelitis (CRMO) is an autoinflammatory
disorder. Components of the NLRP3 inflammasome are expressed in osteoclasts in
bone specimens from CRMO patients (Scianaro et al. 2014), implying that this
inflammasome may exert osteoclast autonomous functions as discussed below.
Levels of anti-inflammatory cytokines (e.g., IL-10) are decreased whereas those of
pro-inflammatory cytokines (e.g., IL-1β, IL-6 and TNF-α) are increased in this
disease, a cytokine imbalance that presumably leads to NLRP3 inflammasome
hyper-activation and exaggerated osteoclastogenesis (Hofmann et al. 2016). Thera-
peutic options include NSAIDs, bisphosphonates, and blockers of TNF-α or IL-1
(Hofmann et al. 2016). Neutrophils in CRMO mice overproduce IL-1β, which
enhances osteoclastogenesis and bone resorption (Cassel et al. 2014; Lukens et al.
2014; Chitu et al. 2012). Caspase-8 and NLRP3 inflammasome-dependent caspase-1
play a redundant role in IL-1β maturation in neutrophils (Cassel et al. 2014; Lukens
et al. 2014; Gurung et al. 2016), implying that selective inhibitors of inflammasomes
may have limited efficacy in the treatment of CRMO.

Postmenopausal osteoporosis is another condition in which levels of IL-1β and
TNF-α are elevated. We find that NLRP3 deficiency attenuates bone loss in a mouse
model of this condition. Our data indicate that bone degradation products released in
this condition of accelerated bone turnover activate the inflammasome (Alippe et al.
2017). We also find that genetic activation of this inflammasome in osteoclasts using
Cre driven by the cathepsin K promoter causes osteopenia in mice, without altering
IL-1β production and osteoclast number (Qu et al. 2015). Increased bone resorption
in mutant cells correlates with cytoskeletal changes (Qu et al. 2015) (Fig. 11.1).
Thus, this inflammasome can cause bone resorption in the absence of high grade
inflammation. Indeed, NLRP3 inflammasome-dependent low grade age-related ster-
ile inflammation is also linked to chronic diseases in mice, including bone loss
(Youm et al. 2013). Inflammasomes are also involved in hyper-multinucleation of
murine osteoclasts caused by purinergic receptor P2X5 signaling (Kim et al. 2017).
On the other hand, a recent report indicates that NLRP12, which also regulates
caspase-1 and nucleates a functional inflammasome (Silveira et al. 2017; Janowski
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and Sutterwala 2016), inhibits osteoclastogenesis through suppression of NF-κB
signaling (Krauss et al. 2015). Thus, various inflammasomes regulate bone metab-
olism. It will be therefore important to determine whether selective pharmacological
inhibition of some of these proteins (Youm et al. 2015; Coll et al. 2015) provides
superior efficacy than IL-1 blocking agents, which are ineffective in reducing the
risk of fractures in osteoporotic patients.

Pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNF-α, are also
upregulated in rheumatoid arthritis (RA) and likely account for the high incidence of
osteoporosis in RA patients as they promote bone resorption while inhibiting bone
formation (Maruotti et al. 2014). The NLRP3 inflammasome pathway is activated in
RA patients (Rosengren et al. 2005), but its role in arthritis development in preclin-
ical models is conflicting. Indeed, NLRP3 and caspase-1 are dispensable for
collagen-induced arthritis and antigen-induced arthritis (Ippagunta et al. 2010;
Kolly et al. 2010), yet NLRP3 deficiency protects joints from destruction in arthritis
induced by A20 ablation (Vande Walle et al. 2014). These inconsistent observations
may reflect redundancy in inflammasome functions. In fact, not only NLRP3 but
also AIM 2 is upregulated in the synovium of IL-10-deficient mice exposed to
antigen-induced arthritis (Greenhill et al. 2014), and osteoclast differentiation from
bone marrow cells isolated from these mutant mice is inhibited by tool compound
inhibitors of NLRP3 and AIM 2 inflammasomes (Greenhill et al. 2014). Moreover,
arthritis induced by DNase II deficiency, which is associated with accrual of self
DNA, is attenuated by AIM 2 ablation (Baum et al. 2015). Thus, several
inflammasomes are involved in joint destruction in inflammatory arthritis, but the
action of the NLRP3 inflammasome in particular appears to be mouse-model
dependent.

11.2.2 The NLRC4 Inflammasome

Sensing bacterial type III and IV secretion systems and flagellin via NLR family
apoptosis inhibitory proteins (NAIPs) has been the only known function of the
NLRC4 inflammasome (Miao et al. 2010; Zhao et al. 2011) until recently when
gain-of-function mutations in NLRC4 were identified in patients. These patients
exhibit elevated serum levels of IL-1β and IL-18 accompanied by recurrent fever
flares, cytopenia, high ferritin levels, hemophagocytosis, and splenomegaly (Canna
et al. 2014; Romberg et al. 2014). This phenotype is reminiscent of the macrophage
activation syndrome (MAS) (Canna and Nigrovic 2016). MAS is a frequent com-
plication of systemic juvenile idiopathic arthritis (sJIA), a disease that interferes with
normal skeletal development and bone mass acquisition (Maruotti et al. 2014;
Bechtold and Simon 2014). Besides glucocorticoids, nonsteroidal anti-inflammatory
drugs (NSAIDs), IL-6, or TNF-α biologics with or without methotrexate, IL-1
blockers are also therapeutic options for sJIA, thus indicating a critical role of the
cytokine in this disease (Tarp et al. 2016). Consistent with the human phenotype,
transgenic mice expressing active NLRC4 mutant produce high levels of IL-1β and
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develop arthritis (Kitamura et al. 2014). Whether NLRC4 can modulate
osteoclastogenesis in a cell autonomous manner remains to be determined.

11.2.3 The Pyrin Inflammasome

Activating mutations in MEFV, which encodes pyrin, cause familial Mediterranean
fever (FMF), an autoinflammatory disease that is associated with excessive produc-
tion of IL-1β, recurrent fever episodes, arthritis, and decreased bone mineral density
(BMD) (Ozen and Bilginer 2014; Ben-Zvi and Livneh 2011). IL-6, IL-8, and IL-12
are also elevated in these patients. Current treatments include oral colchicine and
IL-1 biologics (de Jesus et al. 2015). The efficacy of IL-1 blockers in colchicine-
resistant FMF patients underscores the pathogenic action of this cytokine (Ben-Zvi
et al. 2017). MEFV mice develop severe systemic inflammation, indicating that
pyrin assembles a pro-inflammatory inflammasome (Chae et al. 2011). These mice
are also runted and exhibit massive cartilage and bone erosion. While there are
several mechanisms of decreased BMD in FMF patients, including chronic inflam-
mation and steroid-based therapies, data from MEFV mice suggest that inflamma-
tion drives skeletal manifestations in this disorder.

11.3 Role of the Inflammasomes in Infection-Associated
Osteolysis

Osteolysis is common in infectious diseases such as periodontitis and osteomyelitis.
Indeed, severe bone loss is associated with infection by Porphyromonas gingivalis,
the major oral bacterial species implicated in the pathogenesis of periodontitis and a
potent activator of the NLRP3 and AIM 2 inflammasomes (Bostanci et al. 2009,
2011; Park et al. 2014). Although most studies have examined expression of NLRP3
and cytokines in either whole tissue or macrophage lineage cells, osteoblasts may
also play a role in bone loss. These bone forming cells can be infected by
P. gingivalis and induced to express NLRP3 (Yoshida et al. 2017), presumably
contributing to the elevated IL-1β levels. IL-1β released into the local environment
can synergize with RANKL and other inflammatory cytokines to increase
osteoclastogenesis and thereby destroy alveolar bone (Kassem et al. 2015; Han
et al. 2013; Akiyama et al. 2014). Emphasizing the importance of the inflammasome,
Nlrp3-deficient mice are protected from P. gingivalis-induced alveolar bone loss
(Yamaguchi et al. 2016).

Skeletal infection outside of the oral cavity, known as osteomyelitis, is most
commonly caused by Staphylococcus aureus, a pathogen sensed by the NLRP3 and
NLRC5 inflammasomes (Miller et al. 2007; Munoz-Planillo et al. 2009; Davis et al.
2011). Although much work has been done to understand the activation and
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downstream consequences of inflammasome activation by S. aureus in other con-
texts, this interaction has not been specifically examined in osteomyelitis. Neverthe-
less, it is likely that inflammasome activation in bone plays a role in S. aureus-
associated bone loss, as IL-1β is one of the many cytokines upregulated in this
condition (Yoshii et al. 2002). S. aureus bacterial products including hemolysins,
bacterial lipoproteins, and Panton-Valentine leukocidin all activate NLRP3
(Holzinger et al. 2012). Further studies will be needed to determine the details of
inflammasome activation during bone infection and the implications for disease
progression and bacterial clearance.

11.4 Conclusion

Bone loss is a frequent outcome of various inflammatory conditions, which are
associated with elevated IL-1β levels. While IL-1 blocking agents spare bone from
destruction in various preclinical models, the efficacy of these drugs in human
conditions is not uniform. Since the inflammasomes regulate several inflammatory
pathways, including IL-1β, IL-18, and pyroptosis, inhibition of inflammasomes
should in theory supersede the efficacy of IL-1 blockers, a proposition that will be
tested certainly in the near future. In the meantime, there are still many unresolved
questions regarding inflammasome biology in bone, including: (1) Are
inflammasome actions in bone limited to maturation of IL-1β? (2) What is the
repertoire of functional NLRs and other inflammasome components in bone?
(3) What are the DAMPs that activate the inflammasomes in bone environment in
the absence of infection? (4) Do inflammasomes have autonomous actions in the
osteoblast lineage? The answers to the questions will inform a rationale therapeutic
targeting of inflammasomes for the treatment of inflammatory osteolysis.
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Abstract The current chapter focuses on the role of inflammasome in cancer
prevention and development. Emerging evidence suggested that inflammasome is
closely correlated with elevated levels of IL-1β and IL-18, activation of NF-κB
signaling, enhanced mitochondrial oxidative stress, and activation of autophagic
process in cancer. Meanwhile, inflammasome component NOD-like receptors
(NLRs) are also involved in carcinogenesis and closely correlated to chemoresponse
and prognosis. Although several lines indicated the duplex role of inflammasome in
cancer development, the phenomenon might be attributed to NLR difference, cell
and tissue type, cancer stage, and specific experimental conditions. Designation of
inflammasome targeting strategy has become a novel tool for cancer prevention or
treatment.
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Abbreviations

ALRs AIM-like receptors
AOM-DSS Azoxymethane-dextran sodium sulfate
BIR Baculovirus inhibitor of apoptosis repeat domain
CARD Caspase recruitment and activation domain
CASR Calcium-sensing receptor
DAMPs Danger-associated molecular patterns
EMT Epithelial-mesenchymal transition
ER Endoplasmic reticulum
IL Interleukin
NLRs NOD-like receptors
PAMPs Pathogen-associated molecular patterns
PANX1 Prompts pannexin-1
PRRs Pattern recognition receptors
PYD Pyrin domain
ROS Reactive oxygen species
TLRs Toll-like receptors
TRPM2 Transient receptor potential melastatin 2

12.1 Introduction

Inflammation is recognized as a major hallmark of cancer. As early as 1863,
Rudolph Virchow speculated on a link between cancer and inflammation based on
the observation of leukocyte infiltration in human breast cancer (Balkwill and
Mantovani 2001; R V 1863). It is generally accepted that up to 25% of malignancies
are related to chronic inflammation, chronic infection, or both (Karin 2006; Hussain
and Harris 2007; Mantovani et al. 2008). Numerous studies provide evidence that
chronic inflammation facilitates resistance to growth inhibition, independent
neoangiogenesis, apoptotic evasion, malignant transformation, and metastatic poten-
tial obtainment (Shalapour and Karin 2015). During tumor initiation, oxidative
molecules including reactive oxygen species and reactive nitrogen species induced
by tumor-infiltrating immune cells induce epigenetic alterations in oncogenes or
tumor suppressive genes, thereby promoting carcinogenesis (Reuter et al. 2010;
Khansari et al. 2009; Bartsch and Nair 2006). On the other hand, during tumor
progression and metastasis, cytokines or chemokines secreted by immune cells
lead to an increase in cell survival, motility, and invasiveness, such as epithelial-
mesenchymal transition (EMT) (Coffelt and Cancer 2014; Yang 2010; Cohen et al.
2015). Elucidating the molecular network between inflammation and cancer risk is
of great significance for cancer prevention and treatment.

Once invaded by harmful microbes or foreign particles, germline-encoded pattern
recognition receptors (PRRs) constitute the first line of defense. The PRR
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superfamily includes members of the Toll-like receptors (TLRs), nucleotide-binding
oligomerization domain-containing receptors (NOD-like receptors, NLRs), retinoic -
acid-inducible gene (RIG) I-like RNA helicases, C-type lectins, and AIM-like
receptors (ALRs) (Takeda and Akira 2005; Huysamen and Brown 2009; Yoneyama
and Fujita 2007). The molecular targets of PRRs usually include pathogen-
associated molecular patterns (PAMPs) and danger-associated molecular patterns
(DAMPs). Binding of PAMPs or DAMPs to these receptors leads to an initiation of
the host’s immune response by activation of inflammatory cells and a number of
transcription factors such as NF-κB, STAT, and FOXO (Kono and Rock 2008;
Gross et al. 2011). The multimeric inflammasome complex senses all these processes.

Jurg Tschopp was the first to identify the inflammasome in 2002 (Martinon et al.
2002). Its structure consists of an assembly, either of the NLR proteins, NLRP1,
NLRP3, NLRC4, NLRP6, and NAIP5 or the DNA-sensing complex of AIM2, a
member of the interferon-inducible HIN-200 protein family (Lechtenberg et al.
2014). Activation of inflammasome leads to NLR oligomerization and subsequent
interaction with the adaptor protein ASC and the CARD domain of caspase-1.
Caspase-1, in turn, regulates the maturation of pro-inflammatory cytokines inter-
leukin-1β (IL-1β) and IL-18 or the rapid inflammatory form of cell death called
pyroptosis (Kanneganti 2010; Shin and Brodsky 2015; Rathinam et al. 2012).
Notably, the level of IL-1β and IL-18 was found to be significantly elevated in
various types of malignancies. These cytokines can facilitate pro-carcinogenic
activity by triggering the secretion of VEGF, FGF2, and STAT3 and subsequently
support cancer survival and distant metastasis (Tas et al. 2015; Fabbi et al. 2015;
Kim et al. 2013). Therefore, elucidating the molecular network of inflammasomes
has become a novel strategy for cancer prevention research.

12.2 Inflammasome Cascade Signaling

Compared to TLRs that are usually located on the membrane, NLRs are intracellular
molecules and classified into 22 and 34 isoforms in human and mouse genome,
respectively. The NLRs are characterized by a tripartite structure, consisting of a
carboxy-terminal leucine-rich repeat domain, a central nucleotide-binding oligomer-
ization domain, and a variable N-terminal protein-protein interaction domain, which
can be either a Pyrin domain (PYD), a caspase recruitment and activation domain
(CARD), or a baculovirus inhibitor of apoptosis repeat domain (BIR) (Fig. 12.1)
(Franchi et al. 2009; Siegel 2006). The common NLRs and their functions and
ligands are summarized in Table 12.1. The leucine-rich repeat domain appears to act
as a ligand-sensing component of NLRs; however, the molecular basis of ligand-
binding mechanisms of NLRs is poorly understood (Suarez and Buelvas 2015). The
nucleotide-binding oligomerization domain facilitates recruitment of pro-caspase-1
via interactions between pro-caspase-1 and adaptor protein ASC, which take place in
the CARD domain (de Alba 2009). The PYD domain of ASC interacts with NLRs
and its CARD domain binds directly with pro-caspase-1. Once pro-caspase-1 is
recruited to the inflammasome, it will be cleaved into a p35 and p10 fragments in a
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proximity-induced multimerization manner. The p35 fragment will subsequently be
processed into the CARD and a p20 subunit. The p10 fragment together with two
molecules of p20 will finally form an active caspase-1 enzyme, which converts
pro-IL-1β and pro-IL-18 into their active forms (Fig. 12.2) (Bryan et al. 2009;
Ippagunta et al. 2011). Furthermore, pyroptosis could also be induced following
caspase-1 activation, and its activation is considered to be a critical mechanism
fighting against Gram-negative and Gram-positive bacteria (Miao et al. 2010).

Alternatively, inflammasome could also be activated through a noncanonical
pathway, which involves caspase-11 or caspase-8. Caspase-11 was found to be
necessary for the maturation of IL-1β and IL-18 in enteric bacteria such as
Escherichia coli, Citrobacter rodentium, and Vibrio cholera. After recruitment to
the inflammasome, pro-caspase-11 is cleaved into the p26 subunit and subsequently
interacts with caspase-1 (Kayagaki et al. 2011). Studies show that caspase-8 was
necessary for the inflammasome activation in LPS-primed macrophages and

Fig. 12.1 Schematic representation of the basic structure of individual NLR domain. Human NLRs
were classified into five categories including NLRA, NLRB, NLRC, NLRP, and NLRX. All
22 human NLRs contain a central NACHT domain and a C-terminal ligand-sensing domain
LRR, with the exception of NLRP10. The N-terminal domain of each NLR is specific and
responsible for ascribing different biofunctions. CARD caspase association and recruitment domain,
ATD acidic transactivation domain, FIND function to find domain, PYD pyrin domain, BIR
baculovirus inhibitor of apoptosis repeat domain, LRR leucine-rich repeats, MT targets NLRX1 to
the mitochondria but no sequence homology with traditional mitochondrial targeting sequence has
been reported
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dendritic cells (Gurung and Kanneganti 2015); however, the detailed interaction
mode and mechanisms are poorly understood.

12.3 Regulation of Inflammasome Activation

Given that IL-1β, IL-18, and pyroptotic death response have the potential to damage
the host, tight control of inflammasome activation is of great significance for the
prevention of disease progression. According to the 2-signal model of inflammasome
induction, NF-κB is thought to serve as the first signal that primes NLR and pro-IL-1β
expression (Gross et al. 2011; Rathinam et al. 2012; Hoesel and Schmid 2013).
Constitutive activation of NF-κB is shown in a wide variety of tumor types, such as

Table 12.1 Inflammasome- and non-inflammasome-forming NLRs, functions, and their ligands

NLRs
NLR
family Functions Ligands

NLRP3 NLRP Interacts with caspase-1 and ASC;
activates NF-κB signaling and IL-1β/
IL-18 release

Muramyl dipeptide, LPS, bacterial
and viral DNA/RNA, silica, amy-
loid-β fibrils, extracellular ATP

NLRC4 LRC Interacts with caspase-1, ASC, and
NAIP; elevates NF-κB signaling and
IL-1β/IL-18 release

Flagellin from Salmonella,
Legionella, Listeria, Pseudomonas

NAIP NLRB Formation of NAIP/NLRC4
inflammasome complex

Flagellin from Legionella

NLRP6 NLRP Inflammasome complex formation
with ASC and caspase-1; activates
NF-κB signaling and IL-1β/IL-18
release

Ligands unknown

NLRP1 NLRP Inflammasome complex formation
with ASC and caspase-1

Muramyl dipeptide, Toxoplasma
gondii and Bacillus anthracis lethal
toxin

NLRP12 NLRP Inhibits IRAK1, TRAF3, and NIK;
attenuates both canonical and
noncanonical NF-κB signaling

Ligands unknown

NLRX1 NLRX Inhibits TRAF6 and attenuates
canonical NF-κB signaling

Viral RNA

NLRC3 NLRC Inhibits TRAF6 and attenuates
canonical NF-κB signaling

Ligands unknown

NOD1 NLRC Interacts with RIP2 and recruits
RICK and CARD9

GM-tripeptide
γ-d-Glu-DAP(iEDAP)
d-lactyl-l-Ala-γ-Glu-meso-DAP-
Gly (FK156)
heptanolyl-γ-Glu-meso-DAP-Ala

NOD2 NLRC Recruits RIP2 and activates NF-κB
and MAPK pathways; negatively
regulated by CARD8

Muramyl dipeptide
MurNAc-l-Ala-g-d-Glu-l-Lys
(M-TRlys)
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lymphoma, liver cancer, lung cancer, breast cancer, etc. (Fan et al. 2013; DiDonato
et al. 2012). Besides, NF-κB is activated in response to carcinogenic processes such
as tobacco, stress, obesity, alcohol, infectious agents, irradiation, etc (Fan et al. 2013;
DiDonato et al. 2012). Furthermore, NF-κB controls the expression of the genes
linked with proliferation, invasion, angiogenesis, and metastasis of cancer (Prasad
et al. 2010). Besides, NF-κB activation further upregulates a series of inflammatory
factors, such as TNFα, IL-6, IL-1, and IL-8, which constitute a positive feedback loop
to induce cellular and DNA damage and to promote cell proliferation and trans-
formation (Fan et al. 2013). A previous study also demonstrated that NLRP3 promoter
contains putative NF-κB binding site and NF-κB inhibition resulted in a significant
reduction of NLRP3 expression (Qiao et al. 2012). Meanwhile, mounting evidence
suggested that NLRP3 inflammasome formation is positively associated with NF-κB

Fig. 12.2 Basic mechanisms of activation of the main NLR inflammasome. The recognition of
PAMPs and/or DAMPs leads to NOD domain oligomerization, which in turn facilitates recruitment
of pro-caspase-1 via the CARD domain interactions between pro-caspase-1 and adaptor protein
ASC. Pro-caspase-1 will be then cleaved and converts pro-IL-1β and pro-IL-18 into their active
forms to amplify the inflammatory response. On the other hand, caspase-1 can lead to cell pyro-
ptosis with the consequence of membrane rupture and release of alarmins such as IL-1α and
HMGB1
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activity following drug treatment such as LPS, CPT-11, FGF-21, etc. (Li et al. 2015a;
Liu 2015; Xiang et al. 2015). All these findings implied that the pro-tumorigenic
ability of NF-κB might be attributed to inflammasome activation.

Similar to NF-κB, type I interferon is also important for inflammasome activation.
AIM2 inflammasome activation following F. tularensis infection requires type I
interferon stimuli, whereas macrophages deficient in the type I interferon secretion
result in reduced response of AIM2 inflammasome (Fernandes-Alnemri et al. 2010;
Jones et al. 2010; Henry et al. 2007). Although the precise mechanism of interferon
signaling remains unclear, it has been proposed that type I interferon activates AIM2
inflammasome by generating cytosolic DNA from F. tularensis (Jones et al. 2010;
Henry et al. 2007). However, type I interferon is also reported to inhibit inflamma-
some activation by two distinct mechanisms including the alteration of intracellular
pro-IL-1β concentration and inhibition of caspase-1 activation (Guarda et al. 2011).
The reduction of pro-IL-1β is determined by the capacity of type I interferon to
induce the production of the anti-inflammatory cytokine, IL-10. IL-10 activation by
STAT3 signaling pathway can inhibit the synthesis of pro-IL-1β and pro-IL-1α
(Dickensheets and Donnelly 1997). In addition, type I interferon is capable of
suppressing caspase-1 activity by activation of the transcription factor, STAT1,
subsequently inhibiting NLRP3 and NLRP1 inflammasome (Fig. 12.3) (Detjen
et al. 2001). Both in vitro and in vivo experiments further confirmed that IFN-β
could suppress NLRP3 inflammasome, but the exact molecular mechanism that
guides the preferential targeting of NLRP3 and NLRP1 inflammasome by type I
interferon remains to be identified (Malhotra et al. 2015). These data provide a
duplex role of type I interferon in inflammasome modulation, which might be
dependent on infected organisms or cell type and inflammation status. Besides the
cross talk between cytokines and inflammasomes, recent studies also suggest that the
effector and memory T cells can block the activation of caspase-1 and IL-1β in
macrophages and dendritic cells, mediated by CD40L, OX40L, and RANKL, which
are all members of the TNF superfamily of ligands expressed on activated cells
(Masters et al. 2010; Guarda et al. 2009). Interestingly, although it is recognized that
the T cells only target NLRP1 and NLRP3 inflammasomes, the underlying mole-
cular mechanism of how TNF ligands mediate the inhibition of caspase-1-dependent
production of IL-1β is unknown and needs further investigation.

Evolutionarily, autophagy is a cell-protective mechanism against harmful stress
that facilitates catabolic processes and inhibits anabolic metabolism. Growing evi-
dence indicates that autophagy is a critical process participating in cancer initiation
and metastasis, growth, and drug resistance (Rebecca and Amaravadi 2016; Jiang
et al. 2015). Intriguingly, recent reports have also indicated that autophagy regulates
various aspects of the immune response, such as antigen presentation, cell death, and
cytokine secretion in immune cells (Pan et al. 2016). In autophagy-deficient Atg16�/�

mice, it was observed that the levels of IL-1β and IL-18 were significantly elevated
following LPS treatment. However, the elevated IL-1β and IL-18 expression was not
due to enhanced transcriptional activity, but instead was attributed to over-activation
of caspase-1 (Saitoh et al. 2008). Subsequent mechanistic studies demonstrated that
the augmented caspase-1 activity might be due to the failure of autophagy-deficient
cells to clear damaged mitochondrion (Saitoh et al. 2008). When autophagy is
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inhibited, excessive reactive oxygen species (ROS) will accumulate in the damaged
mitochondrion, resulting in the release of mitochondrion DNA into the cytoplasm
that finally triggers activation of NLRP3 inflammasome (Fig. 12.3) (Zhou et al. 2011;
Nakahira et al. 2011). However, detailed mechanisms accounting for how mitochon-
drial ROS or mitochondrial DNA activates inflammasome are still unclear. Mean-
while, an inflammasome-independent mechanism of autophagy-mediated regulation
of IL-1β expression was recently identified. Autophagosome could degrade pro-IL-
1β, thereby restraining the substrate for caspase-1 processing (Fig. 12.3) (Harris et al.
2011; Crisan et al. 2011). Alternatively, autophagy inhibition could also activate the
transcription of pro-IL-1β in human peripheral blood mononuclear cells (Crisan et al.
2011). Recently, autophagy was reported to affect inflammasome activity by

Fig. 12.3 Main signaling involved in the regulation of inflammasome activation. Type I interferon
signaling triggers the production of IL-10, which in turn acts on cells in an autocrine or paracrine
manner to suppress the intracellular concentration of pro-IL-1β via the stat3 pathway. ROS burst
from damaged mitochondrion could drive activation of inflammasome, but autophagy could block
the accelerated IL-1β/IL-18 production via degrading the damaged mitochondrion and sequestering
intracellular stores of pro-IL-1β and IL-18. Meanwhile, effector and memory T cells could also
suppress inflammasome activation via a cognate mechanism mediated by TNF superfamily and
their receptors
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influencing IL-1β translocation from the endoplasmic reticulum and Golgi apparatus
(Dupont et al. 2011). Lastly, autophagy machinery is believed to participate in
clearing large inflammasome complexes from cells in order to prevent excessive
cell damage by IL-1β and IL-18 (Martins et al. 2015). Therefore, the autophagic
process regulates inflammasome activation at several levels.

12.4 Role of NOD-Like Receptors in Cancer Development

The abnormal activation of inflammasome is linked to various types of human
disease, such as cryopyrinopathies, gout, asbestosis, silicosis, Alzheimer’s disease,
and autoimmune diseases (Lamkanfi et al. 2011; Hoffman and Brydges 2011). To
date, more than 70 inherited mutations have been identified associating with
cryopyrinopathy occurrence, a large majority of which are situated within and
around NLRP3 NACHT domain (Masters et al. 2009; Dowds et al. 2004). These
mutations are therefore believed to induce conformational changes that render
NLRP3 constitutively active, resulting in continuous caspase-1 activation and
release of IL-1β and IL-18 (Dowds et al. 2004). Besides, decreased NLRP3 expres-
sion and reduced IL-1β production have recently been linked with increased sus-
ceptibility to Crohn’s disease in humans (Li et al. 2004; Villani et al. 2009).
Moreover, inflammasome deregulation was also recorded to contribute to the path-
ogenesis of experimental autoimmune encephalomyelitis (Shaw et al. 2010). Signifi-
cantly, accumulating evidence also suggested that NLRs are closely correlated to
cancer occurrence, but conflicting evidence also exists, which might be due to the
dual functions of inflammasomes in promoting carcinogenic inflammation or elim-
inating malignant cells via the pyroptosis death pathway.

12.4.1 NLRP3 Signaling and Its Duplex Role

NLRP3 is the most well-studied member of NLR family. It can be activated by a
wide range of signals including infected pathogens, endogenous or environmental
origins (Sutterwala et al. 2014). Based on current findings, three distinct mechanisms
have been proposed to account for NLRP3 activation, including potassium efflux,
phagolysosomal destabilization, and mitochondrial ROS burst. Various bacterial
pathogens can secrete pore-forming toxins (e.g., nigericin from Streptomyces
hygroscopicus, listeriolysin O from Listeria monocytogenes, pneumolysin from
Streptococcus pneumoniae, alpha-hemolysin from Escherichia coli) and subse-
quently activate the NLRP3 inflammasome by increasing potassium efflux
(Munoz-Planillo et al. 2009; Meixenberger et al. 2010; Kim et al. 2010; Willingham
et al. 2009; Duncan et al. 2009; Allen et al. 2009; Hise et al. 2009). In addition,
bacterial and viral RNA is also reported to be an initial factor contributing to NLRP3
inflammasome assembly (Li et al. 2015b). Moreover, extracellular ATP released
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from phagocytosed dying cells acts on purinergic receptor P2X7 and induces
pannexin-1 (PANX1) channels to promote potassium efflux and results in NLRP3
activation (Mariathasan et al. 2006; Kanneganti et al. 2007; Piccini et al. 2008). On
the other hand, intracellular uptake of crystalline and particulate matters is also
capable of causing lysosomal destabilization and release of cathepsin B, a sensor
of NLRP3 (Cassel et al. 2008; Dostert et al. 2008; Eisenbarth et al. 2008; Halle et al.
2008; Hornung et al. 2008). Lysosome rupture-induced NLRP3 activation was also
observed in cathepsin B-deficient cells, a phenomenon that may be attributed to
potassium efflux (Fig. 12.4) (Dostert et al. 2009).

Fig. 12.4 Simplified mechanisms for NLRP3 inflammasome activation. Three distinct machineries
have been proposed to account for NLRP3 activation, including K+ efflux, phagolysosomal
destabilization, and mitochondrial ROS burst. Extracellular ATP released from dying cells acts
on purinergic receptor P2X7 and prompts pannexin-1 (PANX1) channels to enhance K+ efflux and
result in NLRP3 activation. Meanwhile, PAMPs such as pore-forming toxins are also capable to
facilitate K+ efflux and activate NLRP3 inflammasome. Besides, K+ efflux could be activated by
crystals or particular maters, which enter the cells via endocytosis and trigger NLRP3 inflamma-
some via cathepsin B following lysosome rupture. Finally, intracellular Ca2+ accumulation could
result in mitochondrion damage and lead to ROS burst, which may activate the NLRP3 inflamma-
some either directly or by inducing K+ efflux. Following NLRP3 activation, IL-1β and IL-18 will be
greatly produced and result in inflammation or pyroptotic cell death
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Notably, mitochondrial ROS generation is considered to be one of the most
important mechanisms of NLRP3 activation. Pharmacological inhibition of mito-
chondrial ROS burst has been shown to prevent NLRP3-inflammasome formation
(Cassel et al. 2008; Dostert et al. 2008; Zhong et al. 2013). Although the detailed
molecular mechanisms of ROS-mediated NLRP3 activation remain largely unclear,
calcium influx mediated by the transient receptor potential melastatin 2 (TRPM2)
has been suggested to be a possible reason (Zhong et al. 2013). Extracellular calcium
has been shown to activate the calcium-sensing receptor (CASR) and thus lead to the
release of calcium stores from the endoplasmic reticulum (ER), eventually triggering
the formation of NLRP3 inflammasome (Fig. 12.4) (Lee et al. 2012; Murakami et al.
2012; Rossol et al. 2012). On the other hand, mitochondrial ROS burst is an
upstream event leading to the loss of mitochondrial membrane potential, a pivotal
event in inducing intrinsic apoptosis. Interestingly, overexpression of the
antiapoptotic protein, BCL2, was shown to limit the activation of NLRP3
inflammasome, indicating that apoptosis-regulated proteins might be closely corre-
lated with NLRP3 activation (Bruey et al. 2007; Faustin et al. 2009). More recently,
cIAP1, cIAP2, and XIAP have also been linked with inflammasome activation.
cIAP1 and cIAP2 were found to enhance inflammasome activation by ubiquitinating
and stabilizing caspase-1 and consequently promoting Il-1β release, whereas con-
current inhibition of cIAP1, cIAP2, and XIAP was shown to limit caspase-1 acti-
vation (Hawkins et al. 1996; Labbe et al. 2011; Vince et al. 2012). Overall, these
studies place the mitochondria as a potential player for inflammasome activation.
However, the precise role of mitochondria in mediating NLRP3 inflammasome
formation and subsequent promotion of carcinogenesis awaits clarification.

With regard to pro-tumorigenic ability, NLRP3 polymorphism is shown to be
associated with melanoma susceptibility, colorectal cancer prognosis, and overall
survival of myeloma (Cook et al. 2010). In a Swedish case-control study, NLRP3
variant (rs35829419) was significantly more common in male patients than in
controls (OR, 2.22; CI, 1.27–3.86) and showed strong association with nodular
melanoma (OR, 2.89; CI: 1.33–6.30) (Verma et al. 2012). It has been suggested
that NLRP3 activation could suppress NK and T cell-mediated antitumor actions in a
sarcoma mouse model and metastatic melanoma, whereas the population of
myeloid-derived suppressor cells and Tregs were increased (Chow et al. 2012).
Consistently, NLRP3 silencing resulted in a fivefold reduction in the number of
tumor-associated myeloid-derived suppressor cells found in host mice, and NLRP3
�/� MDSCs were less efficient to reach the tumor site, demonstrating the critical role
of NLRP3 in preventing cancer occurrence by modulating host immunity (van
Deventer et al. 2010). Furthermore, it was found that NLRP3-deficient mice gener-
ated less pulmonary metastasis in an orthotopic transplant mouse model of mam-
mary adenocarcinoma (Ghiringhelli et al. 2009). In addition, chemotherapeutic
agents, gemcitabine and 5-fluorouracil, were shown to activate NLRP3-mediated
inflammasome formation in myeloid-derived suppressor cells, leading to IL-1β
production that is capable of inducing IL-17 secretion from CD4+ T cells and
blunting the anticancer efficacy of chemotherapeutic drugs (Bruchard et al. 2013).
Accordingly, gemcitabine and 5-fluorouracil exert increased antitumor effects when
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tumors were established in NLRP3�/� or caspase-1�/� mice, and NLRP3 activation
by chemotherapeutic drugs is considered to be a positive regulator to promote cancer
growth (Bruchard et al. 2013). All these findings suggest the pro-tumorigenic role of
NLRP3 in cancer development.

Although several lines of evidence have indicated the pro-carcinogenic activities
of NLRP3, its role in cancer development remains controversial. NLRP3�/� mice
were shown to be more susceptible to cancer, and the number of colon polyps in the
AOM-DSS mouse model and the accelerated tumor growth in the carcinogenesis
model was accompanied with drastically low levels of colonic IL-18, suggesting that
NLRP3 may play a protective role against neoplasia formation and IL-18 might be
closely associated with colon cancer initiation (Zaki et al. 2010a; Dupaul-Chicoine
et al. 2010). Of note, IL-18 knockout mice generated more tumors than controls after
administering AOM-DSS (azoxymethane-dextran sodium sulfate), whereas injec-
tion of recombinant IL-18 successfully restrained disease progression, which might
be associated with MyD88-related pathway (Zaki et al. 2010b). Similar anticarcino-
genic role of NLRP3 was also observed in hepatocellular carcinoma. Both mRNA
and protein levels of NLRP3 were significantly downregulated in the hepatic
parenchymal cells derived from liver cancer biopsies compared to noncancerous
samples (Wei et al. 2014). In this context, it is logical to deduce that NLRP3 may
play a duplex role in controlling cancer growth. Thus, on one hand, NLRP3 could
promote tumor cell survival through activation of NF-κB-stat1/3 pathway or by
limiting cytotoxic immune cell infiltration, but on the other, it could suppress
malignant progression by triggering mitochondrial apoptotic pathway or by enhanc-
ing immune cytokine levels in the tumor microenvironment. In addition, the role of
NLRP3 in cancer development might be tissue or cell dependent. For example,
NLRP3 exhibits a protective role for colon cancer, but pro-carcinogenic effects for
gastric and prostate malignancies (Xu et al. 2013). Therefore, a much more com-
prehensive analysis of NLRP3 using conditional knockout models and pharmaco-
logical activators or inhibitors is needed to decode the precise effects of NLRP3 on
cancer development in the future.

12.4.2 Other NLRs in Carcinogenesis

Besides NLRP3, a number of NLRs have also been shown to be associated with
cancer progression. NLRC4 was identified as a downstream transcriptional target of
p53, indicating the tumor suppressive role of NLRC4 (Sadasivam et al. 2005). Mice
lacking NLRC4 had significantly increased tumor numbers and burden compared to
the wild-type controls in the AOM-DSS colon cancer model, but no differences in
inflammation severity were noted, implying that tumor regulation by NLRC4 might
be mostly cell intrinsic and not through downregulation of inflammation (Hu et al.
2011; Hu et al. 2010). Similar to NLRC4, both NLRP6 and NLRP12 were also found
to play a critical role in AOM-DSS tumorigenesis. A significant increase in tumor
number and burden was observed in NLRP6-deficient mice compared to wild-type
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controls after chemical induction. But unlike NLRC4, NLRP6-mediated protection
against tumor formation is attributed to hematopoietic cells rather than intestinal
epithelial cells, because similar numbers of tumor were observed between NLRP6-
deficient mice and irradiated wild-type mice that were transplanted with NLRP6-
deficient bone marrow (Chen et al. 2011; Elinav et al. 2011; Normand et al. 2011).
By contrast, NLRP6-deficient mice that received wild-type bone marrow transplant
were shown to have reduced tumorigenic ability, similar to that of wild-type animals
(Elinav et al. 2011). In addition, genetic profiling of tumors from wild-type and
NLRP6-deficient mice exhibited a significant increase in the number of genes in the
Wnt and Notch signaling cascade from a set of 1,884 genes, supporting a novel role
of NLRP6 in controlling intestinal proliferation (Normand et al. 2011). Of note,
pro-inflammatory cytokines such as TNFα and IL-6 were elevated in the tumor
microenvironment, whereas the level of IL-18 was significantly reduced. Mean-
while, IL-18 silencing in NLRP6-deficient mice has been associated with increased
colon cancer development, indicating the pivotal role of cytokines in mediating the
anticarcinogenic activities of NLRP6 (Chen et al. 2011). Similar to NLRP6,
NLRP12 was also considered to be a tumor suppressive molecule as shown in
ex vivo and in vivo carcinogenic animal models. Mice lacking NLRP12 were
found to be more susceptible to DSS injury, accompanied by increased body weight
loss, enhanced pathology scores coupled with severe inflammatory cell infiltration,
and high levels of cytokine production (Jeru et al. 2008; Arthur et al. 2010; Borghini
et al. 2011). The AOM-DSS mouse model also revealed that NLRP12-deficient mice
had accelerated colon tumor development and progression, which was demonstrated
with over-activation of NF-κB signaling pathway and enhanced gene expression
such as CXCL12 and CXCl13 (Zaki et al. 2011; Allen et al. 2012). Taken together,
the NLRP6/12-mediated protective mechanisms against tumorigenesis provide a
complex network involving interactions between hematopoietic cells, cytokines,
and epithelial cells and further show that experimental validation is needed to
pinpoint the precise signaling transduction mode underlying their anticarcinogenic
effects.

12.4.3 Double-Edged Swords of Pyroptosis

Pyroptosis is a critical self-protection mechanism responding to pathogen invasion
by inducing pro-inflammatory cell death. Unlike apoptosis, pyroptosis is character-
ized by cytoplasmic swelling and early cellular membrane rupture, which happens
following caspase activation, nuclear condensation, and DNA fragmentation
(Bergsbaken et al. 2009). Although the precise mechanisms underlying pyroptosis
induction still remain elusive, the products released from dead cells may limit
malignant cell survival and proliferation by activating the innate immune response.
Increasing evidence validates that dying tumor cells following chemotherapy might
activate the NLRP3 inflammasome of dendritic cells via P2X7 purinergic receptors,
thus priming tumor-specific interferon-γ-producing T lymphocytes to limit cancer
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growth (Zitvogel et al. 2012). Moreover, mice lacking P2X7 or NLRP3 failed to
prime interferon-γ-producing CD8+ T cells after chemotherapy, and anthracycline-
treated breast cancer patients with P2X7 mutation developed metastatic lesions more
rapidly than normal individuals (Ghiringhelli et al. 2009). Notably, a novel thera-
peutic strategy is in development to foster dendritic cell-mediated antitumor immu-
nity via acceleration of pyroptosis of cancer cells by oncolytic viruses (Li et al.
2008). However, several studies have also indicated that pyroptosis might contribute
to tumorigenic ability after inflammasome activation (Masters et al. 2012; Wree et al.
2014). These conflicting findings may be attributed to differences in the redox status
of model cells and specific molecules involved in the process. For example, the
reduced form of HMGB1 released from dying cells could trigger dendritic cells to
induce antitumor immune response, while the oxidized form of HMGB1 would be
unable to activate the immune response (Apetoh et al. 2007; Kazama et al. 2008). In
addition, the role of pyroptosis in cancer development might critically depend on the
cell type. Pyroptosis of immune cells might bring harmful consequences to tumor
immunoediting, while cancer cell pyroptosis would improve anticancer immunity.
Overall, impaired pyroptosis has been considered to be a potential mechanism
linking chronic inflammation to cancer initiation, and pyroptosis targeting is becom-
ing a novel strategy to prevent cancer and improve cancer therapeutic efficacy.

12.5 Conclusions

Remarkable advancements in recent years have greatly increased our understanding
of NLR function and the associated inflammasome in host defense and disease
pathogenesis. NLR-containing inflammasomes are not only important for fighting
against bacteria, fungi, and viruses but also appear to be a critical step in mediating
cancer initiation and progression. Inflammasome activation would create a
pro-inflammatory microenvironment for inducing malignant transformation and
suppress local immunity caused by NK or T cells. In addition, chemotherapeutic
agents were found to activate inflammasome defense, which had positive feedback
to support cancer growth. Notably, inflammasome-related autophagy is also believed
to significantly contribute to cancer drug resistance and metastasis. All these findings
greatly highlight the role of inflammasome as a novel target to prevent and treat
cancer.

Despite mounting evidence listed above suggesting the potential of the
inflammasome as a promising marker for cancer prevention, contrary data also exists
to imply that inflammasome signaling could behave as a kind of anticancer mech-
anism. Mice lacking NLRP3 or NLRC4 show higher susceptibility to colon cancer
following AOM-DSS treatment, and aberrant inflammasome formation leads to
inhibition of tumor suppressor genes such as p53 and over-activation of oncogenes
such as Wnt. What’s more, inflammasome-mediated pyroptosis is also considered to
play a critical role in recruiting dendritic cells to limit cancer growth. Based on the
conflicting evidence, a number of questions remain unanswered. Whether or not
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inflammasome-related carcinogenesis is cell dependent is an important question. A
second question is whether a specific NLR would exhibit different bioactivity
correlating with a cancer stage. Meanwhile, there are 22 NLR members in humans,
and it is unknown how these NLR molecules are activated or how they interact with
each other. The complex network awaits elucidation. There is also a lot of interest to
identify novel ligand-receptor binding molecules, novel signaling pathway, and
novel targets for cancer prevention or therapy. The inflammasome is becoming a
significant research topic in tumor microenvironment field, and there is every
likelihood that it could be developed as important biomarker for cancer diagnosis
or prognosis prediction. Meanwhile, drug discovery targeting inflammasome mod-
ulation is also expected to improve cancer therapeutic efficacy to successfully reduce
cancer risk. Taken together and given the emerging role of inflammasome in cancer
development, understanding its signaling network and pathological significance
might bring novel strategies for malignancy therapy and prevention.
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Abstract The inflammasomes are innate immune system sensors that control the
activation of caspase-1 and induce inflammation in response to infectious microbes
and molecules originating from host proteins, leading to the release of
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pro-inflammatory cytokines, Il1b and IL18, and a particular inflammatory type of
cell death termed pyroptosis. It is broadly considered that chronic inflammation may
be a common link in age-related diseases, aging being the greatest risk factor for the
development of chronic diseases. In this sense, we discuss the role of inflammasomes
in non-infectious inflammation and their interest in aging and age-related diseases.

Keywords Inflammasomes · Aging · Age-related diseases · Chronic inflammatory
diseases

Why does aging occur? Aging constitutes one of the biggest concerns for the human
being and to ask why do we age is to enter the field of evolutionary biology, which is
crucial to understand health and disease (Kirkwood 2005). Nowadays, the challenge
for researchers lies in explaining the reasons for aging instead of the obvious draw-
backs of the natural process. Aging is commonly characterized as a progressive and
generalized impairment of function, resulting in an increased vulnerability to environ-
mental and genetic factors (Ljubuncic and Reznick 2009; Jin 2010; Lipsky and King
2015). Getting older is in fact, a highly medically relevant and enigmatic biological
process, because despite considering increased longevity a remarkable achievement
for humankind, aging is the major risk factor for the development of chronic diseases
and represents an extraordinary financial burden on the health care systems (Leon and
Gustafsson 2016). It is estimated that in 15 years, a large percentage of the population
will be aged 65 or older (North and Sinclair 2012). The aging process is linked to an
accumulation of mutations and genomic instability resulting in a progressive func-
tional and structural decline in multiple organs. Therefore, far from being considered
an illness in itself, aging is the greatest risk factor for the onset of chronic age-related
diseases such as cardiovascular disease, cancer, diabetes, Alzheimer’s disease (AD),
and a tendency to infection (Strowig et al. 2012).

However, and despite the current advances in medicine to date, some questions
concerning the span of human life and health remain. Over the years, various
principles to explain the reasons for aging have been proposed, but the mechanisms
are still unclear, although many of the theories have arisen from the necessity of
explaining how the aging process takes place (Kirkwood 2005).

13.1 The Science of Elderly

Biological aging is initiated from the time of the birth of organisms and refers to a
progressive manifestation of accumulated cellular damage determined by both
genetic and environmental factors. The process of aging is complicated and can be
elucidated by many theories. One of the best-known and most conventional
approaches to date is the mitochondrial free radical theory of aging, nowadays
termed the “oxidative stress theory” (Chandrasekaran et al. 2017). The oxidative
stress hypothesis interprets aging at a molecular level, explaining that aging occurs
because of an imbalance between the production of reactive oxygen species (ROS)
and the capacity of the biological system to repair the outcoming damage, resulting
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in the failure to maintain the mitochondrial integrity and DNA repair (Fig. 13.1).
ROS molecules include superoxide (O2

•�), hydroxyl radical (OH•), hydroperoxyl
radical (HO2

•), nitric oxide (NO•), nitrogen dioxide (NO2
•), and peroxyl (ROO•),

produced either as by-products during the mitochondrial electron transport of aero-
bic respiration or by oxidoreductase enzymes.

Nowadays, several aging mechanisms exist that are widely acknowledged. However,
what is very restricting is that in practice, most research is focused on unique mecha-
nisms of theories that indicate that molecular and cellular lesions hypothesized do occur
as we age, but there are no data that demonstrate the theory itself to be sufficient to
account for age-related disease. Therefore, recent initiatives state that there is a need to
develop a net of aging theories considering the contribution of various mechanisms
together, allowing the interaction of different processes (Kirkwood et al. 2003).

Although many theories could explain the aging process (Chandrasekaran et al.
2017), recent studies have shown that immunological inflammation may be closely
linked to aging. As we age, the adaptive immunity response significantly declines
(Goldberg and Dixit 2015). This concept is known as immunosenescence, where the
innate immunity response is markedly activated, leading to the senescent low-level,
chronic inflammatory phenotype known as “inflammaging.” The concept
“inflammaging” describes the systemic low-grade inflammatory process that contrib-
utes to the development of chronic diseases and degenerative changes during the aging
process. Franceschi et al. (2000) coined the word “inflammaging” in 2000, referring to
a progressive increase in proinflammatory status, a significant characteristic of aging.
This fact can be reflected in diseases where chronic and abnormal inflammation exists
(Franceschi et al. 2000). Age-related inflammation in various organs may lead to a
considerable decline, even in the absence of any disease. For example, chronic
inflammation is simultaneously associated with aging and with age-related diseases,
such as diabetes, atherosclerosis, cancer or neurodegenerative diseases.

It is believed that a systemic increase in inflammation contributes to incremented
disease prevalence and severity during aging (Franceschi and Campisi 2014),
because aging is associated with an increment in IL-18, IL-1b, and IL-6. Notably,
Il-1b and IL-18 are produced after inflammasome-dependent caspase-1 activation,
and interestingly, many of the endogenous signals that have been described as
inflammasome activators are known to accumulate as we age.

Imbalance between production of ROS 

and antioxidant generation  

Accumulation of damage during age, as a 

consequence the imbalance  

Senescence-associated functional decline 

Increase of ROS generation 

Redox control of aging 

Free radical attack on DNA and other 

macromolecules 

Fig. 13.1 Graphic image of the oxidative stress theory of aging. The primary element of this
hypothesis is the increase in oxidant flux and the concomitant failure of antioxidant mechanisms,
causing structural damage to macromolecules that accumulates with age, leading to the typical
decline occurring in the elderly
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13.2 Inflammasomes

13.2.1 Structure and Mechanisms of Activation

The “inflammasome,” a term coined by Schroder and Tschopp in 2010, is a group of
multimeric proteins that assemble in the cytosol when pathogenic microorganisms or
sterile stressors are present, and is also involved in the onset and development of the
inflammatory response. Stimuli related to infection are known as pathogen-
associated molecular patterns (PAMPs); however, those referring to endogenous
cellular stress derived from host proteins, are danger-associated molecular patterns
(DAMPs) (Strowig et al. 2012). The inflammasome assembly culminates in the
activation of caspase-1. Subsequently, active caspase-1 cleavage triggers a signaling
cascade that leads to release of type I interferon (IFN alpha and beta) and
pro-inflammatory cytokines (IL-1b and IL-18), finally inducing an inflammatory
type of cell death termed pyroptosis (de Zoete et al. 2014; Guo et al. 2015).
Dysregulation of inflammasomes has been linked with many autoinflammatory and
autoimmune diseases, including metabolic disorders (type 2 diabetes [T2D] mellitus,
obesity, atherosclerosis) and neurodegenerative diseases (multiple sclerosis, AD,
Parkinson’s disease). Therefore, the current understanding of inflammasome activa-
tion and its involvement in inflammatory pathological conditions have drawn scien-
tific community attention to developing potential therapies targeting inflammasomes
(Youm et al. 2013).

Structurally, inflammasomes consist of an intracellular sensor protein, which
usually is a NOD-like receptor (NLR), the adaptor protein apoptosis-associated
speck-like protein containing a caspase recruitment domain (ASC), and the
proinflammatory caspase-1 precursor (Schroder and Tschopp 2010). The first family
of sensor proteins discovered to form inflammasomes was the nucleotide-binding
domain and leucine-rich repeat-containing receptor, the NLR family consisting of
22 genes in humans and 33 in mice (Ting et al. 2008). NLRs are classified according
to their domain structure. All NLRs, except NLRP10, contain a leucine-rich repeat
(LRR) domain, which is thought to provide the critical structural framework for
molecular interactions, and a signaling domain (Ting et al. 2008) that enables the
recruitment of caspase-1, directly through caspase recruitment domain (CARD)–
CARD interactions, such as NLRC4 inflammasome (Guo et al. 2015) or indirectly,
through a PYRIN domain that is shown to bind to ASC. Apart from the NLR family,
non-NLR proteins can also assemble to conform to inflammasomes and possess an
HIN-200 DNA-binding domain instead of an LRR, such as the AIM2-like receptor
(ALR) family. Then, as mentioned before, upon sensing certain stimuli, NLR or
AIM2 can oligomerize to become a caspase-1-activated scaffold.

The most interesting and relevant question related to the inflammasome field is
connected to the specific signals that lead to the assembly of the different NLRs or
ALRs into active complexes, as the stimuli leading to activation of the different
inflammasomes consist of a wide range of variable and selective activators.

The NLRs share a similar structure consisting of three domains:
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1. A central nucleotide binding oligomerization domain NOD or NACHT.
2. A C-terminal domain LRR present in all members of the family (except for

NLRP10) and believed to be used for PAMPs recognition.
3. An N-terminal domain of recruitment of effector molecules, which determines the

classification of the different NLRs (Fig. 13.2).

Caspase Recruitment Domain (CARD) 

Pyrin Domain (PYD) 
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Unknown N-Terminal Domain 

Domain organization of NLR proteins 

Protein-Protein Interacting Domains 

Nucleotid-binding/Oligomerization Domain 

NACHT- Associated Domain (NAD) 

Function to Find Domain (FIIND) 

Activation Domain (AD) 

NAIP, CIITA, HET-E, TP-1 Domain (NACHT) 

Microbial ligand recognition Domain 

Leucine- Rich Repeat Domain (LRR) 

Hematopoietic Interferon- inducible Nuclear Protein 

with a 200 a.a repeat (HIN200) 

Other Domains 

Caspase Recruitment Domain (CARD)
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Protein-Protein Interacting Domains
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Fig. 13.2 (a) Domain key for inflammasome classification. Inflammasome names are based on the
protein forming the scaffold. NLR proteins are categorized into four subfamilies, depending on the
type of N-terminal domain; the NLRA subfamily refers to the acidic transactivating domain: CIITA.
(b) Classification of different NLR proteins according to their domain structure. From the NLRB
subfamily is for baculovirus inhibitor apoptosis repeats present in NLR family apoptosis-inhibiting
proteins; NLRCs contain a CARD domain: NLRC1, NLRC2, NLRC3, NLRC5, and N-terminal
domain in NLRP subfamily is PYD: NLRP1, NLRP2, NLRP3, NLRP4, NLRP5, NLRP6, NLRP7,
NLRP8, NLRP9, NLRP10, NLRP11, NLRP12, NLRP13, and NLRP14. An additional subfamily
has arisen, NLRX, but its N-terminal domain is still unknown
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13.2.1.1 NLRP1

Martinon et al. discovered the NLRP1 inflammasome in 2002, this inflammasome
being the first to be revealed. Some studies report (Boyden and Dietrich 2006;
Faustin et al. 2007) that there are two natural ligands for its activation: muramyl
dipeptide (MDP), a peptidoglycan fragment from both Gram-positive and -negative
bacteria, and the Bacillus anthracis lethal toxin (Fig. 13.3). Moreover, these activa-
tors are selective, as MDP can activate human NLRP1 inflammasome whereas the
lethal toxin stimulates mouse NLRP1. Genetically, there are some differences
between human and murine NLRP1. Humans have a single NLRP1 gene, whereas
mice have a group of three homologous genes, Nlrp1a, Nlrp1b, Nlrp1c (Fig. 13.2).
The activation of the Nlrp1 inflammasome is not directly through its LRR motif.
Lethal toxin consists of a zinc metalloprotease lethal factor, which is responsible for
Nlrp1b cleavage, and subsequently, this cleavage of Nlrp1 itself will make macro-
phages susceptible to pyroptosis (Levinsohn et al. 2012). However, human NLRP1
binds directly to MDP, inducing a conformational change that allows the binding of
ATP as well. When ATP hydrolysis occurs, NLRP1 oligomerizes, promoting
caspase-1 recruitment and activation (Faustin et al. 2007). It has been reported that
in addition to caspase-1, caspase-5 is also involved in the assembly of the NLRP1
inflammasome complex (Martinon et al. 2002).
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Fig. 13.2 (continued)
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13.2.1.2 NLRP3

The most in depth studied inflammasome complex is the NLRP3, in part because of
its gamut of well-known activators. The NLRP3 inflammasome requires two signals
for activation (Fig. 13.3). The first signal depends on NF-κB activation of NLRP3
(Bauernfeind et al. 2009) and IL-1B (Barker et al. 2011). The second signal consists
of sensing a broad range of PAMPs and stress-associated signals or host-derived
DAMPs to trigger complex assembly. Most of the DAMPs that activate the
inflammasome include ROS (Dostert et al. 2008), ATP (Mariathasan et al. 2006),
uric acid crystals (Martinon et al. 2006), and endogenous host metabolic products
that stimulate caspase-1 cleavage in an NLRP3-dependent mechanism, and, impor-
tantly, are shown to increase during aging (Goldberg and Dixit 2015). NLRP3 is
expressed in myeloid cells (Guarda et al. 2011), including macrophages, which use
PRRs to recognize PAMPs and initiate the inflammatory signal pathway, this
process being crucial to controlling pathogenic propagation.

Inflammasome 

Select activators 

Assembly 

NLRP3 NLRP1 AIM2 NLRC4 (IPAF) 

Microbial- derived 
PAMPs &  

endogenous 
DAMPs  

Bacillus anthracis 
lethal toxin, 

Muramyl 
dipeptide (MDP) 

DS-DNA from 
bacteria, virus or 

the host itself 
Flagellin 

Pro-IL1b 

Caspase-1 

Caspase-1 
Caspase-1 

Caspase-1 

Pro-IL18 

IL-1b 

IL-18 

Fig. 13.3 Examples of oligomerized inflammasome complexes. Models for inflammasome-
selective activation and assembly. NLRs are characterized by a NACHT domain with or without
an N-terminal PYD domain and a variable number of LRRs. AIM2 contains a N-terminal PYD
domain followed by a DNA-binding HIN-200 domain. The PYD domain of NLRP3 and AIM2
recruit the adaptor protein ASC via homotypic binding to its PYD domain, allowing indirect
recruitment of caspase-1 through interaction with the CARD domain. NLRP1 and NLRC4 directly
recruit caspase-1 through a CARD domain. Activation of the inflammasome leads to maturation and
secretion of IL-1β and IL-18 and inflammatory cell death by pyroptosis. AIM2 absent in melanoma
2, ASC adaptor protein apoptosis-associated speck-like protein containing a caspase recruitment
domain CARD caspase recruitment domain, DAMP danger-associated molecular pattern, FIND
domain with function to find, LRR leucine-rich repeat, NACHT nucleotide-binding and oligomer-
ization domain, NLR NOD-like receptor, PAMP pathogen-associated molecular pattern, PYD pyrin
domain
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Several studies have focused on age-related changes in myeloid cells concerning
infection. In general, lipopolysaccharide (LPS) stimulation from an aged host results
in lower tumor necrosis factor (TNF)-alpha and IL-6 secretion compared with adult
macrophages. Although this helps to explain why old hosts exhibit poor control of
bacterial spread and increased susceptibility to bacterial infections, the production of
these cytokines is independent of NLRP3 activation. Nowadays, it is becoming
progressively evident that sterile inflammation, which is inflammation in the absence
of overt infection, is a more consistent contributor to age-related inflammation and
disease. A wide spectrum of sterile particles can stimulate inflammation; some
examples of these particles include silica dioxide, asbestos, cholesterol crystals, or
amyloid-β fibrils (Rock et al. 2010). Moreover, as we age, it has been reported that
the basal elevation of the NLRP3 inflammasome interferes with the specific
up-regulation of caspase-1 that is required for a successful immune response against
infections in mice (Knrone et al. 2013). This fact emphasizes the importance of
maintaining an adequate balance between tissue homeostasis and host defense
during infection.

Although the Nlrp3 inflammasome is the most thoroughly studied NLR, its
complex activation has been shown to be even more complicated with the discovery
of noncanonical inflammasome activation (Kayagaki et al. 2011). Here, the authors
show that caspase-11 (also known as caspase-4) is critical for caspase-1 activation
and IL-1β production in C57BL/6 Casp11 gene-targeted mice macrophages infected
with Escherichia coli, Citrobacter rodentium or Vibrio cholerae, and they also
realized that the published Casp1(�/�) mice lacked both caspase-11 and caspase-
1. Thus, they concluded that Casp11(�/�) macrophages secreted IL-1β, usually in
response to ATP and monosodium urate, indicating that caspase-11 is engaged by a
noncanonical inflammasome.

13.2.1.3 NLRP6 and NLRP12

NLRP6 inflammasome and NLRP12 present several characteristics in common.
NLRP6 is mainly expressed in nonhematopoietic cells. Specifically, NLRP6 is
highly expressed in intestinal epithelial and goblet cells (Wlodarska et al. 2014)
where it is involved in the vital role of maintaining intestinal homeostasis (Hu et al.
2013). Recent studies suggest that NLRP6 might form inflammasome complexes, as
its combined expression with ASC results in caspase-1 activation (Grenier et al.
2002). Both inflammasomes, NLRP6 and NLRP12, seem to maintain intestinal
homeostasis through negative MAPK and NF-κB inflammatory pathway regulation
(Anand and Kanneganti 2013). Moreover, the NLRP12 inflammasome has recently
played a protective role in colitis and colon cancer induced with dextran sulfate
sodium (DSS) and azoxymethane/dextran sulfate sodium (AOM/DSS) respectively
(Zaki et al. 2011). However, the specific and selective activators for these
inflammasomes remain unclear.
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13.2.1.4 NLRC4

The NLRC4 inflammasome is also known as ICE protease activating factor, when
N-terminal domain is a CARD. NLRC4 responds to a more defined range of stimuli
than the NLRP3 inflammasome. Legionella pneumophila, Pseudomonas aeruginosa,
Salmonella typhimurium, and Shigella flexneri are responsible for NLRC4
inflammasome activation (Mariathasan et al. 2004; Amer et al. 2006; Miao et al.
2006, 2008; Lamkanfi et al. 2007; Sutterwala et al. 2007; Suzuki et al. 2007). NLRC4
senses bacterial flagellin and Gram-negative bacterial type III secretory system
(T3SS) that are leaked into the host cell (Miao et al. 2010). These bacterial compo-
nents are directly bound by NLR family apoptosis-inhibiting proteins (NAIPs),
forming complexes in the cytosol. In mice, there several subtypes of NAIP proteins,
whereas in humans only one NAIP protein has been characterized (Fig. 13.2), and it
was discovered to bind T3SS needle protein. Murine NAIP1 binds T3SS needle
protein. However, NAIP2 tends to bind T3SS rod protein, whereas NAIP5 and
NAIP6 bind bacterial flagellin (Kofoed and Vance 2011). NAIPs then interact with
NLRC4, triggering the complex conformation, activating caspase-1 and leading to
the release of pro-inflammatory cytokines and finally, to pyroptosis.

13.2.1.5 NLRC3

The NLRs are cytoplasmic immune sensors that are involved in intestinal homeo-
stasis (Zaki et al. 2010; Allen et al. 2012). NLRC3 (also known as NOD3) is still
insufficiently characterized. Some authors classify NLRC3 as NLRs non-
inflammasome-forming (Sharma and Jha 2016). However, they contribute consid-
erably to inflammatory regulation by regulating inflammation pathways (Ting et al.
2010). Non-inflammasome-forming NLRs modulate NF-κB and other significant
inflammation regulatory pathways, which are crucial in chronic inflammation and
inflammation-induced tumorigenesis (Allen 2014). In fact, some studies have
reported that NLRC3 expression is remarkably reduced in tumors from patients
with colorectal cancer in comparison with healthy tissues (Liu et al. 2015; Karki
et al. 2016). In this study, they investigate the role of NLRC3 in colorectal cancer
using a mouse model of AOM/DSS colitis-induced and colorectal tumorigenesis.
The conclusion is that mice lacking in Nlrc3 are significantly more susceptible to
colitis and colorectal tumorigenesis. NLRC3 is presumably a protector against
colorectal tumors through the inhibition of the mTOR pathway.

13.2.1.6 NLRCX

Another non-inflammasome-forming NLR is NLRCX. Unlike the other NLR pro-
teins mentioned above, it constitutes the first noncytoplasmic NLR protein, and is
localized in the mitochondria (Moore et al. 2008; Xiao and Ting 2012). The Nlrx1
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expression is highest in mitochondria-rich tissues such as muscle and heart. The
main functions of Nlrx1 include negative regulation of anti-viral inflammatory
response via the MAVS-RIG1 signaling pathway or TLR-induced NF-κB signaling
by targeting the TRAF6 and IKK signaling pathway. These data indicate that
NLRX1 attenuates tumorigenesis through the negative regulation of AKT and
NF-κB signaling, although it is a potential target for managing immune response
in inflammation-associated diseases and cancer pathology (Allen et al. 2011). These
results show specific knockdown of Nlrx1, resulting in increased gene expression of
the cytokines TNF-α and IL-6 in response to LPS treatment (Xia et al. 2011).
NLRX1 also plays an important role in regulating the balance between intrinsic
and extrinsic apoptosis in cancer cells. NLRX1 positively regulates apoptosis in
response to intrinsic apoptosis signals, and this may be why the Nlrx1 expression is
down-regulated in cancer cells. Nlrx1�/� mice develop fewer tumors than wild-
type mice in the AOM-induced colorectal cancer murine model (Soares et al. 2014).

13.2.2 AIM2-Like Receptors and RIG-1-Like Receptors

The non-NLR AIM2 has an HIN-200 domain consisting of proteins that contain a
PYRIN domain and the conserved DNA-binding domain hematopoietic
IFN-inducible nuclear protein with 200-amino acids (HIN-200) domain (Schattgen
and Fitzgerald 2011) that can directly bind its cytosolic dsDNA (Fig. 13.3). Besides,
it is also able to form a caspase-1-containing inflammasome. Therefore, these pro-
teins can theoretically bind nucleic acids and recruit ASC to trigger the conformation
of an inflammasome. Indeed, AIM2 can form an inflammasome whose assembly is
stimulated by recognition of cytosolic DNA of bacterial or viral origin (Fernandes-
Alnemri et al. 2010; Jones et al. 2010; Rathinam et al. 2010), or self-DNA from
apoptotic cells (Choubey 2012; Zhang et al. 2013). Recent studies about crystal
structures of AIM2 complexes with DNA have provided an insight into the mech-
anism of AIM2 inflammasome activation (Jin et al. 2012). Binding of DNA to the
HIN-200 domain of AIM2 results in a conformational change and AIM2 oligomer-
ization around the DNA molecule, which then allows the recruitment of ASC and
caspase-1 and inflammasome assembly (Jin et al. 2013).

Additionally, although mice have a wide range of ALRs that includes 13 mem-
bers, humans have three more: IFI16, IFIX, and MNDA, but most of these ALRs
remain insufficiently characterized. However, some murine ALRs were found to
trigger IL-1β production, suggesting that they might form inflammasomes (Brunette
et al. 2012). Activation of IFI16 in CD4 T cells during HIV infection was found to
trigger pyroptosis of T cells (Monroe et al. 2014). Finally, the RIG-I-like receptor
family member, which is best known as an inducer of type I IFN production in
response to recognition of viral RNA, was also shown to form an inflammasome
(Poeck et al. 2010). However, it remains unclear what determines when RIG-I forms
an inflammasome versus when it merely triggers type I IFN production.
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13.3 Inflammasomes in Age-Related Diseases

The role of inflammasomes becomes even more significant in the elderly, as they are
more susceptible to infections owing to the drastic decrease in the immune system.
However, a highly important event takes place during aging, starting with DAMPs
accumulation (Goldberg and Dixit 2015) and the subsequent activation of the
NLRP3 inflammasome due to the stimuli induced by endogenous by-products.
Then, endogenous by-products are recognized by PRRs in macrophages (Schroder
and Tschopp 2010; Medzhitov 2008) to trigger the singular chronic, low-grade
inflammation that occurs during aging (Spadaro et al. 2016). Numerous studies
have reported (Goldberg and Dixit 2015; Ferrucci et al. 2005) that systemic
low-grade inflammation contributes to the onset of chronic diseases and degenera-
tive changes as we age. Chronic inflammation also plays an essential role in the
initiation and progression of metabolic disorders, such as T2D, obesity, gouty
arthritis, and atherosclerosis.

Heart disease, including atherosclerosis, is the leading cause of death in the
elderly (Leon and Gustafsson 2016; North and Sinclair 2012). Cholesterol crystals
(Grebe and Latz 2013) and white blood cells accumulate on the arterial wall, limiting
the flow of oxygen-rich blood to the organs, which can lead to life-threatening
complications such as heart attack and stroke. It has long been suggested, based
on evidence from mouse models (Duewell et al. 2010; Elhage et al. 2003; Mallat
et al. 2001), that IL-18, a product of inflammasome activation, may play a crucial
role in the initiation and progression of atherosclerosis. Furthermore, human athero-
sclerotic plaques have elevated concentrations of IL-18 and IL-18 receptors com-
pared with disease-free arterial tissues. Apolipoprotein E (ApoE) is necessary for a
proper cholesterol metabolism. In ApoE-deficient mice, which spontaneously
develop atherosclerotic lesions, elevated IL-18 levels have been shown to cause
vascular inflammation and enhance the instability of atherosclerotic plaques,
whereas IL-18-deficiency resulted in reduced atherosclerotic lesion size (Tan et al.
2010; De Nooijer et al. 2004). Elevation of low-density lipoprotein and free fatty
acids (FFAs) in human blood due to imbalanced lipid metabolism can induce pro-IL-
1β production through TLRs, providing the first signal for inflammasome activation
(Masters et al. 2011).

Another major global age-related health threat is T2D, resulting in insulin resis-
tance and a chronic inflammatory disease characterized by elevated circulating levels
of TNF, interleukins, and cytokine-like proteins known as adipokines released from
adipose tissue (Donath and Shoelson 2011). IL-1β, in particular, has been strongly
linked to the pathogenesis of T2D by promoting insulin resistance and causing β-cell
functional impairment and apoptosis. In cell culture, IL-1β depresses insulin sensi-
tivity by inducing JNK-dependent serine phosphorylation of insulin receptor
substrate-1, resulting in the disruption of insulin-induced PI3K-Akt signaling in
insulin-targeted cells. At the same time, IL-1β induces the expression of TNF-α
(Wen et al. 2011), which could independently impair insulin signaling (Hotamisligil
et al. 1993). Together with elevated FFAs in circulation because of imbalanced lipid

13 Aging and the Inflammasomes 313



metabolism, IL-1β induces metabolic stressors, such as endoplasmic reticulum stress
and oxidative stress, both of which are involved in the induction of inflammation and
β-cell loss, thereby leading to the pathogenesis of T2D (Robbins et al. 2014; Legrand-
Poels et al. 2014). Furthermore, clinical trials in humans reported that either IL-1
receptor antagonist (IL-1RA) or anti-IL-1β-neutralizing antibody improved control of
glucose levels and β-cell function. Larger-scale clinical trials have been undertaken to
definitively determine the potential of this treatment strategy (Larsen et al. 2007;
Böni-Schnetzler and Donath 2013). Furthermore, neuromodulatory lipids known as
endocannabinoids are lipids that have recently been found to induce NLRP3
inflammasome-dependent IL-1β production by pancreatic-infiltrating macrophages
through the peripheral cannabinoid receptor type 1 (CB1R), resulting in pancreatic
β-cell death in a paracrine manner (Jourdan et al. 2013). Moreover, blockade of
CB1R by an inhibitor delayed the progress of T2D in the Zucker diabetic fatty rat,
which carries a spontaneous mutation of the leptin receptor gene and develops
hyperglycemia progressively with aging accompanied by reduced β-cell apoptosis
and hyperglycemia. This finding implicates CB1R as being a potential therapeutic
target in T2D (Böni-Schnetzler and Donath 2013).

Apart from metabolic alterations, aging also constitutes a primary risk factor for
many neurodegenerative diseases. Recent studies have suggested that misfolded
protein aggregates lead to activation of the NLRP3 inflammasome in two neurode-
generative diseases: AD and amyotrophic lateral sclerosis (Masters and O’Neill
2011; Walsh et al. 2014). AD is a chronic neurodegenerative disease that mainly
affects cognitive functioning and is the most common cause of dementia. Amyloid-β
peptide is regularly formed in brain tissue by cleavage of the amyloid precursor
protein, but it can form prion-like misfolded oligomers in the case of AD (Heneka
et al. 2015). Amyloid-β was the first molecule associated with neurodegenerative
disease models that was found to activate the murine NLRP3 inflammasome,
resulting in IL-1β production (Halle et al. 2008). Fibrillar amyloid-β induces
NLRP3-inflammasome-dependent caspase-1 activation through a mechanism
dependent on endosomal rupture and cathepsin B release in LPS-primed murine
macrophages (Halle et al. 2008). Interestingly, administration of cathepsin B inhib-
itors significantly improved memory deficit and reduced amyloid plaque load in the
brain in the AD mouse model, suggesting a potential therapeutic approach for
Alzheimer’s treatment in which the inflammasome is targeted (Hook et al. 2008).

Parkinson’s disease results in the death of dopamine-generating neurons in the
substantia nigra and the presence of aggregated inclusions mainly composed of
α-synuclein (αSyn) in neurons (Shulman et al. 2011). αSyn can form fibrils with a
cross β-sheet structure, morphologically similar to the amyloid fibrils from AD
(Chiti and Dobson 2006). Recent research has shown that in a Parkinson’s disease
mouse model in which Parkinson’s disease is induced by the loss of nigral dopami-
nergic neurons caused by treatment with neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine, mice lacking Nlrp3 are resistant to developing PD. This provides
in vivo evidence for a visible link between the NLRP3 inflammasome and
Parkinson’s disease (Yan et al. 2015).
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13.4 Conclusions and Future Prospects

It is sufficiently clear that one of the major beneficial roles of the inflammasome is to
sense microbial infection and mediate a rapid plan to host defense through the
immediate secretion of cytokines. These responses are highly effective against
infectious agents. However, inflammasomes can also function as sensors of
nonmicrobial signals (e.g., sterile mediators of membrane damage or cellular stress).
Most of these nonmicrobial triggers of the inflammasome have been studied, mainly
because of their pathological roles in disease, whereas there are few examples of
beneficial effects of inflammasome activation by nonmicrobial triggers.
Inflammasome activation cannot all be considered harmful, and the therapeutic
inhibition of this pathway has to be balanced against its beneficial contribution. As
the mechanistic insight of the inflammasomes increases, opportunities for creating
new therapies for patients with inflammatory diseases are expected to be enhanced
proportionately. It is however possible that the beneficial effects of inflammasome
activation by nonmicrobial triggers have been ignored. It is also notable that almost
all known non-infectious triggers of the inflammasome mediate activation through
NLRP3, which seems to be uniquely able to respond to a wide range of stimuli. So
far it remains unclear whether other NLRs can also sense nonmicrobial signals of
physiological stress, although there remain many NLRs whose respective roles in
host defense are beginning to be understood and described, such as NLRP10
(Eisenbarth et al. 2012), NLRC5 (Cui et al. 2010; Meissner et al. 2010), and
NLRC3 (Schneider et al. 2012; Zhang et al. 2014). With these NLRs, one of the
major obstacles to overcome seems to be identifying the activating signals. For
example, inflammasome activation by pore-forming toxins triggers caspase-1-
dependent activation of membrane repair (Gurcel et al. 2006), and NLRC4 activation
induced by cytosolic delivery of flagellin has been shown to trigger rapid production
of inflammatory lipid mediators in a caspase-1-dependent manner (von Moltke et al.
2012). Furthermore, it is clear that inflammasomes exist in multiple cell types,
including both hematopoietic and nonhematopoietic cells, and play a determinant
role in the onset and development of age-related and chronic inflammatory diseases.
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Abstract Mutations in inflammasome genes are responsible for rare monogenic and
polygenic autoinflammatory diseases. On the other side, genetic polymorphisms in
the same molecules contribute to the development of common multifactorial dis-
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we depicted the current knowledge about inflammasome genetics.
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14.1 Genetics of Inflammasome

Inflammasome is a cytoplasmic multiprotein complex responsible for inflammatory
caspase (viz., caspase-1, caspase-4, and caspase-5) activation. It is assembled after
the activation of cytosolic innate immune receptors by pathogen- or danger-
associated molecular patterns (PAMPs and DAMPs, respectively). Several receptors
belonging to nucleotide-binding domain and leucine-rich repeat containing receptors
(NLRs) or pyrin and HIN domain-containing (PYHIN) receptor families (i.e.,
NLRP1, NLRP3, NLRC4, AIM2, IFI16) are able to assemble, directly or indirectly
through the recruitment of the adaptor protein ASC, the inflammasome and to
activate the caspases, consequent releasing several cellular substrates including the
pro-inflammatory cytokines, interleukin (IL)-1β and IL-18, and the gasdermin D,
responsible for the inflammatory cell death named pyroptosis (Man et al. 2017).

Great attention has been reserved for inflammasome genetics since the discovery
that dominant inherited mutations in the NLRP3 gene, coding for the cryopyrin/
NLRP3 protein, cause a constitutively high production of IL1b. In fact, mutations in
NLRP3 gene are related to autoinflammatory syndromes associated with cryopyrin/
NLRP3 (cryopyrin-associated periodic syndrome, CAPS), namely, familial cold-
induced autoinflammatory syndrome 1 (FCAS1, OMIM:120100), Muckle-Wells
syndrome (MWS, OMIM:191900), and chronic infantile neurologic cutaneous arti-
cular (CINCA) syndrome or neonatal-onset multisystem inflammatory disease
(NOMID, OMIM:607115) (Hoffman et al. 2001; Dodé et al. 2002; Feldmann
et al. 2002; Aksentijevich et al. 2002). Here below we depicted the current knowl-
edge about main genes involved in inflammasome activation.

14.2 NLRP1

The gene codifying for the NLR PYD-containing protein 1 (NLRP1) is localized on
chromosome 17 (17p13.2) and consists of 18 exons. Multiple alternatively spliced
transcript variants encoding distinct isoforms have been found for this gene, but the
biological validity of some variants has not been determined. The longest isoform
(5623 bp, NM_033004.3) codes for a 1473 amino acid protein (NP_127497.1).

NLRP1 presents the typical NLRP subfamily domain architecture consisting of
an N-terminal homotypic interaction domain, the pyrin domain (PYD) (residues:
9–88), a central nucleotide-binding domain (NBD), NACHT domain (residues:
328–497) with ATPase-associated activity (AAA) domain (residues: 327–416),
and a series of leucine-rich repeats (LRRs) (amino acid region 810–988). In addition,
NLRP1 contains two more domains at the C-terminus, namely, function to find
domain (FIIND) (residues: 1100–1354) and another homotypic interaction domain,
the caspase activation and recruitment domain (CARD, residues: 1380–1460)
(Chavarria-Smith et al. 2016) (Fig. 14.1).
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PYD is involved in PYD/PYD interaction with the PYD-CARD adaptor protein
ASC. The NACHT domain is indispensable for ATP-dependent homo- and hetero-
oligomerization of NLRP1. In murine orthologues, NLRP1 is activated via direct
proteolysis in a specific N-terminal linker region between the PYD and NBD
domain, suggesting that also in humans the N-terminal domain is auto-inhibitory
for NLRP1 activity (Chavarria-Smith et al. 2016).

According to its function in Toll-like receptors (TLRs), LRRs are presumably
involved in agonist sensing; however until now no agonist has been demonstrated
that specifically activates NLRP1 in humans (Chavarria-Smith et al. 2016). Bacterial
muramyl dipeptide (MDP) has been shown to activate NLRP1 inflammasome;
however the mechanism remains unclear, with MDP being a known agonist of
another NLR protein, NOD2 (Reubold et al. 2014). The possible interaction between
NLRP1 and NOD2 has been postulated (Hsu et al. 2008). Recently D’Osualdo et al.
described the activation of NLRP1 inflammasome by the endoplasmic reticulum
(ER) stress response (or unfolded protein response), including this receptor among
the sensors for ER perturbation (D’Osualdo et al. 2015).

NLRP1 has also the possibility to directly interact with inflammatory caspases
through its CARD domain (Chavarria-Smith et al. 2016; Martinon et al. 2002),
leading to an active debate about the role of ASC in NLRP1 inflammasome.

The FIIND domain seems to be important for NLRP1 activity, as it contains a
specific auto-proteolytic cleavage site (Ser1213) and a critical residue for autolytic
processing (His1186). The C-terminal cleavage of NLRP1 is necessary and suffi-
cient to NLRP1 inflammasome activity (Finger et al. 2012).

Kummer et al. (2007) demonstrated the expression of NLRP1 protein in the
lymphoid organs (T cells), skin (Langerhans cells), stomach, gut (intraepithelial T

Fig. 14.1 Graphical representation of domain structure for NLRP1, NLRP3, NLRC4, NAIP, pyrin/
MEFV, CARD8, PSTPIP1, and MVK
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lymphocytes), lung (alveolar macrophages), brain (neurons, oligodendrocytes), and
testes (spermatogonia). Moreover, RNA sequencing of human tissues showed a
specific expression of NLRP1 in the lung, prostate, spleen, stomach, thymus, pitu-
itary gland, trachea, and uterus [as shown in public database Ensembl (Zerbino et al.
2018)].

Gain-of-function mutations in the NLRP1 gene cause a nonfebrile syndrome
termed NAIAD (NLRP1-associated autoinflammation with arthritis and
dyskeratosis) (OMIM: #617388) characterized by arthritis, skin hyperplasia,
and/or dyskeratosis, high transitional B-cell level, and elevated systemic levels of
caspase-1 and IL-18 [(Grandemange et al. 2016), Infevers public database (Touitou
et al. 2004)]. Taking into account that several single nucleotide polymorphisms
(SNPs) in NLRP1 were associated with autoimmune disorders, authors are con-
vinced that an autoimmune dysregulation is the key feature of this disorder
(Grandemange et al. 2016).

Moreover, the non-synonymous mutation of Met77Thr in NLRP1 was identified
in a dominant disorder with corneal intraepithelial dyskeratosis (Soler et al. 2013).

Moreover, since 2007, several single nucleotide polymorphisms (SNPs) in
NLRP1 have been associated with complex human diseases (Table 14.1).

The non-synonymous polymorphism rs12150220 (Leu155His) and the promoter
variant rs2670660 were initially associated with autoimmune thyroid disorders in a
genome-wide association study (GWAS) (Jin et al. 2007). The rs12150220 has also
been associated with Addison’s disease (Magitta et al. 2009), while rs2670660 with
generalized vitiligo (Alkhateeb and Qarqaz 2010), systemic lupus erythematosus
(Pontillo et al. 2012a), and inflammatory bowel disease (De Iudicibus et al. 2011). A
haplotype containing both variants has been associated with celiac disease (Pontillo
et al. 2011).

The polymorphism rs11651270 (Met1184Val) has been recently associated with
HPV infection and HPV-related cervical cancer (Pontillo et al. 2016), nodular
melanoma (da Silva et al. 2016), and diabetic kidney disease (Soares et al. 2018).

All these variants possibly lead to augmented gene transcription or protein
function, being localized in promoter region (rs2670660) or in regions that affect
the auto-inhibition of NLRP1 (rs12150220) (Chavarria-Smith et al. 2016) or NLRP1
auto-processing (rs11651270) (Finger et al. 2012), respectively; however their
functional consequence is still unclear.

Levandowski et al. (2013) demonstrated that individuals containing Leu155His-
Val1059Met-Met1184Val are more prone to autoimmune diseases due to an
increased processing of pro-IL1β in peripheral blood mononuclear cells (PBMC).

Other variants were uniquely associated with other diseases as reported in
Table 14.1.
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Table 14.1 Associated studies involving genetic polymorphisms in inflammasome sensors
NLRP1, NLRP3, NLRC4, and MEFV and in the NLRP3 inhibitor CARD8

Gene SNP ID Disease Reference

NLRP1 rs1008588, rs2670660 Generalized vitiligo Jin et al. (2007)

rs12150220,
rs2670660

Autoimmune thyroid
disorders

Jin et al. (2007)

Celiac disease Pontillo et al. (2011)

Generalized vitiligo Jin et al. (2007), Alkhateeb and
Qarqaz (2010), Dwivedi et al.
(2013)

Systemic lupus
erythematosus

Pontillo et al. (2012a)

rs12150220 Addison’s disease Magitta et al. (2009)

Asbestos-associated
mesothelioma

Girardelli et al. (2012)

P. vivaxmalaria (severity) Santos et al. (2016)

Preeclampsia Pontillo et al. (2015)

Type 1 diabetes Soares et al. (2018)

HPV susceptibility Pontillo et al. (2016)

Sporadic malignant
melanoma

da Silva et al. (2016)

Nodular melanoma da Silva et al. (2016)

rs2137722,
rs12150220,
rs2670660

Leprosy susceptibility Pontillo et al. (2013)

rs2137722,
rs34733791,
rs11657747,
rs11651595

Alzheimer’s disease Pontillo et al. (2012c)

rs2670660 Glucocorticoid response
in IBD

De Iudicibus et al. (2011)

rs6502867, rs4790797 Vitiligo-associated auto-
immune disease

Jin et al. (2007)

rs8079034, rs878329 Psoriasis Ekman et al. (2014)

rs81822352 Systemic sclerosis Dieudé et al. (2011)

rs878329 Rheumatoid arthritis Sui et al. (2012)

rs878329 Partial seizures Wang et al. (2017)

NLRP3 rs10159239,
rs4925648, rs4925659

Rheumatoid arthritis Mathews et al. (2014)

rs10754558,
rs4612666

Food-induced anaphy-
laxis and aspirin-induced
asthma

Hitomi et al. (2009)

Gastric cancer Castano-Rodriguez et al. (2015)

rs10754558,
rs10925019

Ulcerative colitis Zhang et al. (2014)

rs10754558,
rs358294199

Celiac disease Pontillo et al. (2010a, 2011)

rs107331113 Psoriasis Carlström et al. (2012)

(continued)
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Table 14.1 (continued)

Gene SNP ID Disease Reference

rs10754558 Acute coronary syndrome Gonzalez-Pacheco et al. (2017)

Anti-TNF response in
patients with rheumatoid
arthritis

Sode et al. (2015)

Coronary artery disease Zhou et al. (2016)

HIV-1 susceptibility Pontillo et al. (2010b, 2012b)

HTLV-1 susceptibility Kamada et al. (2014)

Insulin resistance in T2D Wang et al. (2015)

Ischemic stroke Zhu et al. (2016)

Metabolic syndrome Zhang et al. (2016)

Type 1 diabetes Pontillo et al. (2011)

rs2027432,
rs10754558,
rs35829419

Late-onset Alzheimer’s
disease

Tan et al. (2013)

rs358294199 Colorectal cancer Ungerbäck et al. (2012)

Crohn’s disease Schoultz et al. (2009)

Cytokine profile in the
blood

Sahdo et al. (2013)

Delayed apoptosis of
human neutrophils

Blomgran et al. (2012)

Melanoma Verma et al. (2012a)

Increased IL-1β and
severe inflammation

Kastbom et al. (2008)

Mycobacterium tubercu-
losis growth in
macrophages

Eklund et al. (2014)

Myocardial infarction Verma et al. (2012a)

Pancreatic cancer,
periodontitis

Miskiewicz et al. (2015)

Rheumatoid arthritis Ben Hamad et al. (2012), Jenko
et al. (2016), Kastbom et al.
(2015)

Stroke in rheumatoid
arthritis

Kastbom et al. (2015)

rs3806265 Psoriatic juvenile idio-
pathic arthritis

Day et al. (2008)

rs3806268 Primary gout Deng et al. (2015)

rs4353135 Oligoarticular/
polyarticular JIA

Yang et al. (2014)

rs4612666 Pediatric severe renal
parenchymal infections

Cheng et al. (2015)

CARD8 rs2043211 Abdominal aortic
aneurysms

Roberts et al. (2011)

Ankylosing spondylitis Kastbom et al. (2013)

(continued)
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14.3 NLRP3

The gene codifying for the NLR PYD-containing protein 3 (NLRP3) is localized on
chromosome 1 (1q44) and consists of nine exons spanning through 4470 bp.
According to Ensembl public database (Zerbino et al. 2018), it has eight transcripts
(splice variants) corresponding to six encoded proteins. The longest isoform
(NM_004895.4) codes for a 1036 amino acid protein (NP_001073289.1). Like
NLRP1, also NLRP3 presents the typical NLRP subfamily domain architecture
consisting of an N-terminal pyrin domain (residues: 10–93), a central nucleotide-
binding domain, a NACHT domain with a AAA motif (residues: 220–389), and a
C-terminal series of LRRs (residues: 575–931) (Fig. 14.1).

The pyrin domain is involved in PYD/PYD interaction with the adaptor protein
ASC. The NACHT domain is indispensable for ATP-dependent homo- and hetero-
oligomerization of NLRP3 (Bae and Park 2011; Aksentijevich et al. 2007). More-
over, it has been recently demonstrated that this domain is also involved in NLRP3-
CARD8 interaction leading to inhibition of NLRP3 (Ito et al. 2014). In resting
conditions, LRR domain interacts with NBD, and it is presumably responsible for
NLRP3 auto-inhibition (Aksentijevich et al. 2007).

NLRP3 is activated by a large number of distinct pathogen- or damage-associated
molecular patterns (PAMPs or DAMPs, respectively), and it was postulated that
perturbations in cellular homeostasis could be sensed by NLRP3, through three main
mechanisms: K+ efflux (principally mediated by the ATP-dependent purinergic
receptor P2X7), mitochondrial damage and consequent liberation of reactive oxygen
species (ROS) and other mitochondrial products (i.e., mtDNA, cardiolipin), and
phagolysosomal damage and rupture (cathepsins’ release) (Man et al. 2017).

In “The Human Protein Atlas” public database (Uhlen et al. 2015), NLRP3
protein is reported to be expressed in the blood, bone marrow, and lymph nodes,

Table 14.1 (continued)

Gene SNP ID Disease Reference

Cardiovascular events in
rheumatoid arthritis

Garcia-Bermudez et al. (2013)

Primary gout McKinney et al. (2015), Chen
et al. (2015)

Inflammatory bowel
disease

Yang et al. (2011), Roberts et al.
(2010)

rs7248320 Hepatocellular carcinoma
and cervical cancer

Yin et al. (2015)

NLRC4 rs479333, rs212713 Increase serum levels of
IL-18

Matteini et al. (2014)

MEFV rs224204 Psoriatic juvenile idio-
pathic arthritis

Day et al. (2008)

rs3743930,
rs28940580

Henoch-Schönlein
purpura

Xiong et al. (2017)
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nonkeratinizing epithelia and mucosa, the brain (cerebral cortex, hippocampus), the
thyroid and adrenal glands, and the breast and female and male reproductive
apparatus. It is interesting to notice that in some cells NLRP3 is constitutively
expressed, while in others it needs to be induced by TLR agonists or cytokines,
through the Myd88/NF-kB signaling (Yin et al. 2009).

Since 2011, gain-of-function mutations in NLRP3 gene have been described in
patients affected by rare autosomal dominant autoinflammatory diseases, called
cryopyrin/NLRP3-associated periodic syndrome (CAPS, OMIM: 606416) (Hoff-
man et al. 2001; Dodé et al. 2002; Feldmann et al. 2002; Aksentijevich et al. 2002).
Initially described as three distinct diseases, namely, familial cold-induced
autoinflammatory syndrome 1 (FCAS1, OMIM: 120100), Muckle-Wells syndrome
(MWS, OMIM: 191900), and chronic infantile neurologic cutaneous articular
(CINCA) syndrome or neonatal-onset multisystem inflammatory disease
(NOMID) (OMIM: 607115), nowadays these overlapping inflammatory phenotypes
are considered a spectrum (mild to severe) of the same syndrome (CAPS) due to the
presence of NLRP3 mutations [as largely reviewed in Manthiram et al. (2017)].

CAPS are characterized by IL-1β-mediated systemic inflammation and symptoms
involving the skin, joints, central nervous system (CNS), and eyes (Hoffman et al.
2001; Dodé et al. 2002; Feldmann et al. 2002; Aksentijevich et al. 2002). Patients
present a neutrophil-enriched skin infiltrate (Aksentijevich et al. 2007; Manthiram
et al. 2017) and showed significantly increased IL-17 serum levels as well as a higher
frequency of Th-17 compared to control subjects (Lasiglie et al. 2011).

Until now, about 180 different gain-of-function mutations in NLRP3 have been
identified in CAPS patients, the majority within the central NBD domain (exon 3). In
addition, some mutations within the LRR region (i.e., exon and exon 6) have also
been described [from Infevers public database (Touitou et al. 2004)]. There is no
apparent correlation between mutation position and disease severity, even if more
rare mutations are commonly found in patients with more severe clinical presenta-
tion (Aksentijevich et al. 2007; Manthiram et al. 2017).

Aksentijevich et al. (2007) proposed a pathogenic mechanism for CAPS. In
resting conditions NLRP3 is present in the cytosol in a “close” inactive conforma-
tion, ensured by the LRRs-NBD interaction. Mutations in NBD or LRRs, in turn,
destabilize this inactive state, leading to a constitutively activated NLRP3 protein
(“open” conformation), and to the consequent constitutive inflammasome activation
and increased IL-1β production. Therefore, genetic variants in NLRP3 influence the
threshold of NLRP3 inflammasome activation and disturb a balanced innate immune
response.

Intriguingly, in about 40% of CAPS patients, no mutations have been found in
codifying region of NLRP3 (Aksentijevich et al. 2007; Manthiram et al. 2017). The
presence of genetic variants in the promoter region of NLRP3 has been taken into
account (Anderson et al. 2008), and the effect of additional genetic factors that
initiate or modulate CAPS has been postulated (Caroli et al. 2007). This fact can be
attributed, at least in part, to somatic mosaicism, as observed in 70% of CINCA/
NOMID cases (Tanaka et al. 2011).
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Several gain-of-function SNPs in NLRP3 gene have been associated with the
pathophysiology of multifactorial diseases, as reported in Table 14.1; however the
functional effect on inflammasome activity was demonstrated in few variants.

The missense variant Gln705Lys or Gln703Lys (rs35829419, Q705K or Q703K)
was found to protect against the development of celiac disease (Pontillo et al. 2010a)
and female myocardial infarction (Varghese et al. 2013). On the other hand, this SNP
has been associated with susceptibility to melanoma (Verma et al. 2012a) and
Crohn’s disease (Schoultz et al. 2009). The rs35829419 is a variant with an uncertain
significance localized in the NACHT domain of the NLRP3 gene, first described in
CAPS patient and later found also in healthy individuals and consequently consid-
ered a polymorphism with a low frequency in the general population (5–11%)
(Touitou et al. 2004). Verma et al. (2012b) and Villani et al. (2009) showed that
rs35829419, especially when in combination with the nonsense SNP Cys10*
(rs2043211; C10X) in CARD8, affects NLRP3 activation leading to constitutive
increased production of IL-1β (and IL-18) by human peripheral blood mononuclear
cells (PBMC) or isolated monocytes.

The rs10754558 polymorphism, located in the NLRP3 30-untranslated region
(30UTR), was associated with protection against several infections [i.e., HIV-1
(Pontillo et al. 2010b, 2012b), HTLV-1 (Kamada et al. 2014), tuberculosis (Souza
de Lima et al. 2016)] and autoimmune development (i.e., type 1 diabetes) (Pontillo
et al. 2010a) and with increased susceptibility to develop food allergy (Hitomi et al.
2009) (Table 14.1).

It has been proposed that this variant affects NLRP3 mRNA stability (Hitomi
et al. 2009) interfering with microRNA (miR)-223 binding (Bauernfeind et al. 2012).

14.4 NLRC4

The gene codifying for the NLR CARD-containing protein 4 (NLRC4) is localized
on chromosome 2 (2p22.3) and consists of 12 exons spanning 41 kb. According to
“Ensembl” public database (Zerbino et al. 2018), it has four transcripts (splice
variants) corresponding to four encoded proteins. The longest isoform
(NM_021209.4) encodes for a 1024 amino acid protein (NP_001186067).

NLRC4 presents the typical NLR structure, with the central NBD domain (res-
idues: 163–316) and the C-terminal LRR domain-containing 13 leucine-rich repeats
(residues: 691–1024), but instead of a pyrin domain at the N-terminal (such as for
NLRP1 and NLRP3), it presents a caspase activation and recruitment domain
(CARD) (residues: 1–87) (Vance 2015) (Fig. 14.1).

According to “The Human Protein Atlas” public database (Vance 2015), NLRC4
protein is largely expressed in the appendix, bone marrow, lymph nodes, spleen,
lung, adipose tissue and placenta, and gut epithelium.

As shown for NLRP3, NBD and LRR domains interact for an auto-inhibition
mechanism of NLRC4, stabilizing the NLRC4 inactive (“close”) conformation
(Vance 2015; Canna et al. 2014). The mechanism for NLRC4 activation is still
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under debate; however it was demonstrated that it results from the interaction of the
receptor with another NLR protein, NAIP (neuronal apoptosis inhibitory protein),
which can directly bind to bacterial flagellin (Vance 2015; Kofoed and Vance 2011).
Once activated, NLRC4 recruits inflammatory caspases, directly through CARD/
CARD interaction with adaptor protein ASC, leading to inflammasome activation
and consequent IL-1β and/or IL-18 release, and the eventual induction of pyroptosis
(Vance 2015). The presence of ASC works to increase the efficiency of caspase-1
recruitment and activation and hence enhances IL-1β production (Vance 2015).

Gain-of-function mutations in NLRC4 have been found in patients with the
familial cold autoinflammatory syndrome 4 (FCAS4, OMIM: 616115) (Romberg
et al. 2014) or autoinflammation with infantile enterocolitis (AIFEC/SCAN4,
OMIM: 616050) (Canna et al. 2014; Kitamura et al. 2014), two distinct described
diseases, nowadays considered a unique dominant autoinflammatory syndrome
associated with NLRC4 mutations. Up to now, the majority of reported mutations
[i.e., Val341Ala (Romberg et al. 2014), Thr337Ser (Canna et al. 2014), and
His443Pro (Kitamura et al. 2014)] are localized within the NBD domain (exon 4)
of NLRC4 gene [“Infevers” public database (Touitou et al. 2004)] and result in the
constitutive activation of NLRC4 inflammasome leading to increased IL-1β, but
especially IL-18 release, and abnormal pyroptosis in human monocyte-derived
macrophages (Canna et al. 2014; Khameneh and Mortellaro 2014).

Similarly, to what was proposed for the mutated NLRP3, Romberg et al. (2014)
and Canna et al. (2014) suggested that the described mutations (Val341Ala and
Thr337Ser, respectively) could destabilize the closed/inactive conformation of
NLRC4, either disrupting the LRR/NBD interactions. On the other hand, Kitamura
et al. (Kitamura et al. 2014) proposed that the His443Pro substitution could increase
the binding affinity of the mutated NLRC4 for other NLRC4monomers leading to an
increase NLRC4 oligomerization rate. Anyway, these defects result in constant
oligomerization and constitutive activation of the inflammasome complex (Canna
et al. 2014; Romberg et al. 2014; Kitamura et al. 2014; Khameneh and Mortellaro
2014).

Emphasizing the important role of NLRC4 not only in innate immune cells but
also in intestinal epithelial cells and specifically with regard to IL-18 production, in
AIFEC/SCAN4 patients, the intestinal involvement is prominent (Canna et al. 2014)
compared to other autoinflammatory syndromes, such as NAIAD or CAPS
(Manthiram et al. 2017). Moreover, two polymorphisms localized in the intronic
region of NLRC4 (rs479333 and rs212713) have been associated with serum levels
of IL-18 (Matteini et al. 2014) (Table 14.1). Other study provides evidence for the
functional causality of the NLRC4 SNP rs385076 and IL-18 activation (Zeller et al.
2015) (Table 14.1).
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14.5 MEFV (Pyrin)

The cytosolic innate immune receptor pyrin/marenostrin is codified by MEFV gene,
which is localized on chromosome 16 (16p13.3) and consists of 10 exons
(NM_000243.2). This protein does not belong to NLR or PYHIN inflammasome
receptor families; however due to the presence of a PYD domain, it is able to activate
the inflammasome (Heilig and Broz 2018). Pyrin is a 781 amino acid protein
(NP_000234.1) constituted by an N-terminal PYD domain, a B-box zinc finger
domain, a coiled-coil domain, and a C-terminal B30.2 domain (also known as the
rfp/PRY/SPRY domain) (Fig. 14.1).

RNA sequencing of human tissues showed a specific expression of MEFV in the
blood, spleen, lung, testis, and female reproductive apparatus (Zerbino et al. 2018;
Uhlen et al. 2015).

Mutations in MEFV gene are responsible for familial Mediterranean fever (FMF,
OMIM: 249100), a hereditary recurrent fever and the most prevalent monogenic
autoinflammatory syndrome (about 1–5/10,000 prevalence in general population,
1/200–1/1000 in non-Ashkenazi Jews, Turks, Armenians, and Arabs) (reviewed in
Özen et al. 2017), generally in a recessive pattern of transmission, even if patients
with single mutation in MEFV gene were also recently described, or either with
combined genotypes between mutations in MEFV and in other AID genes such as
TNFRSF1A (as discussed in Touitou 2018). FMF is characterized by recurrent 1-day
to 3-day febrile attacks accompanied by serositis, synovitis, and/or cutaneous
inflammation (Özen et al. 2017). Renal amyloidosis is a common and fatal prognosis
in FMF (Özen et al. 2017; Ben-Chetrit 2003).

Mutations in MEFV have missense or nonsense variations as well as deletions or
splicing defects and are spread out in the entire gene, even if the most frequently
effected is exon 10 (encoding for B30.2 domain of pyrin) (Manthiram et al. 2017;
Özen et al. 2017; Touitou et al. 2004).

The exact role of pyrin has been long debated, and several models for FMF
pathogenesis have been proposed throughout the years. The first model suggested
that pyrin inhibits pro-inflammatory signaling by the sequestration of ASC or
inhibition of the enzymatic activity of caspase-1 via its SPRY domain (Chae et al.
2006), and its loss-of-function could lead to increased inflammasome activation.

An alternative model suggested that pyrin forms a ternary complex with ASC and
pro-caspase, and the formation of this complex leads to caspase-1 autoactivation. As
the majority of FMF mutations are located in the B30.2 domain of pyrin, it has been
suggested that this domain regulates the activity of pyrin (Yu et al. 2007).

More recently it was demonstrated that bacterial modification of host small
GTPAse RhoA activates the assembling of pyrin inflammasome (Heilig and Broz
2018). In a homeostatic state, RhoA induces the phosphorylation of pyrin on its
residues Ser208 and Ser242 through two protein kinases, PKN1 and 2. Once phos-
phorylated, pyrin interacts with the regulatory protein 14-3-3, which inhibits the
recruitment of ASC and the formation of inflammasome. When RhoA is modified by
certain bacterial toxins, pyrin phosphorylation does not occur, 14-3-3 proteins do not
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bind to pyrin, and consequently pyrin inflammasome is activated (Park et al. 2016).
Taking into account these new findings, a novel pathogenic hypothesis has been
made considering that mutated pyrin is less able to bind 14-3-3 proteins leading to a
constitutively activated inflammasome (Park et al. 2016).

14.6 Newly Recognized Inflammasome Regulators:
PSTPIP1, MVK, and LPIN2

The gene codifying for the proline-serine-threonine phosphatase-interacting protein
1 (PSTPIP1) is localized on chromosome 15 (15q24.3) and has 15 exons differently
spliced into four transcripts (Zerbino et al. 2018). The full-length transcript
(NM_001321136.1) codes for a 416 amino acid protein (NP_001308066.1) consti-
tuted by an N-terminal F-BAR (FCH+CC) domain, which plays a role in dimeriza-
tion and membrane phospholipid binding, and a C-terminal SH3 domain, which
mediates the assembly of large multiprotein complexes (Starnes et al. 2014).
PSTPIP1 interacts with actin playing an important role in cytoskeleton organization
(Badour et al. 2003) and with pyrin (Shoham et al. 2003)—through its F-BAR and
SH3 domains—being an upstream regulator of inflammasome.

PSTPIP1 is expressed predominantly in hematopoietic tissues and the lung
(Uhlen et al. 2015).

Missense mutations in F-BAR domain of PSTPIP1were described in patients with
PAPA syndrome (pyogenic arthritis with pyoderma gangrenosum and acne), a rare
genetic disorder characterized by its effects on the skin and joint (Touitou et al. 2004;
Manthiram et al. 2017; Wise et al. 2002). Mutant protein is hyperphosphorylated and
binds avidly to pyrin promoting inflammation (Wise et al. 2002). According to
Yu et al. (2007), mutations either in MEFV or in PSTPIP1 promote the assembly of
pyrin inflammasome.

The hyper-IgD syndrome (HIDS, OMIM: 260920) or mevalonate kinase defi-
ciency (MKD, OMIM: 251170) is a monogenic hereditary periodic fever character-
ized by early-onset repeated episodes of fever, rash, gastrointestinal symptoms, and
oral ulcers (Manthiram et al. 2017). In this disease, biallelic loss-of-function muta-
tions affect the second enzyme of the isoprenoid pathway, the so-called mevalonate
kinase (MVK, 12q24.11) (Touitou et al. 2004), causing a reduced formation of
intermediate and final metabolites (isoprenoids and cholesterol, respectively) and
resulting in the unexpected activation of inflammasome and caspase-1. The first
etiologic evidence was that the lower level of isoprenoids leads to a reduced amount
of protein prenylation especially of the small GTP proteins Rac1 and RhoA geranyl-
geranylation (Kuijk et al. 2008). Two independent studies have linked Rac1 with the
activation of caspase-1. GTP-bound active form of Rac1 activates caspase-1 through
the p21-activated kinase (PAK)-1 (Normand et al. 2009). Decrease of Rac1 geranyl-
geranylation leads to caspase-1 activation through the Rac1/PI3K/PKB pathway
(Kuijk et al. 2008). Finally, according to Park et al. (2016), defect in RhoA
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geranyl-geranylation affects pyrin phosphorylation and inhibited state, leading to a
constitutively activated pyrin inflammasome.

Concluding, Majeed syndrome (OMIM: 609628) is an autoinflammatory disease
characterized by multifocal sterile osteomyelitis, dyserythropoietic anemia, and
neutrophilic skin lesions and was associated with recessive mutations in LPIN2
gene (18p11.31), which encodes lipin 2, an enzyme and transcription factor involved
in lipid metabolism. Recently it has been demonstrated that lipin 2 regulates also
NLRP3 inflammasome by affecting potassium efflux (Lordén et al. 2017),
suggesting that genetic defect in LPIN2 could promote constitutive NLRP3
inflammasome activation. SNPs in LPIN2 were previously associated with obesity
and metabolic diseases (Aulchenko et al. 2007; Meidtner et al. 2014).
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Abstract Modulation of inflammasomes has tremendous therapeutic potential and
is hotly pursued by industry and academia alike. Indeed a growing number of patents
are emerging to protect the intellectual property in valuable compound classes. This
chapter focusses specifically on the suite of small-molecule NLRP3 inflammasome
inhibitors published, as specific modulation of other inflammasomes is not yet well
established. Synthetic molecules, known drugs and natural product NLRP3 modu-
lators will be detailed. Some of the molecular classes discussed have been exten-
sively characterised through cell-based screening, pharmacokinetic profiling and
therapeutic proof of concept animal models. However, many inhibitors lack rigorous
studies and/or have multiple activities of which NLRP3 modulation is only one.
While this is not intended as an exhaustive list, it should give an impression of the
range of structures and strategies that are being used, alongside challenges encoun-
tered, in an effort to exploit the significant therapeutic benefits of targeting
inflammasomes.

Keywords Inflammasome · NLRP3 · Drug discovery · Anti-inflammatory ·
Immunomodulation

15.1 NLRP3 Inflammasome Inhibition

Inflammasome-mediated secretion of interleukin (IL)-1β and IL-18 is emerging as a
key disease driver in a surprisingly wide variety of acquired conditions. These range
from diseases of metabolic dysregulation (e.g. type 2 diabetes, gout, NASH) to T cell-
mediated or organ-specific autoimmune diseases (e.g. multiple sclerosis, psoriasis,
type 1 diabetes, rheumatoid arthritis), to systemic autoimmune disease (e.g. Muckle-
Wells, NOMID, Behcet’s disease, Sjogren’s syndrome, Schnitzler syndrome), to
inflammatory reactions in the skin (e.g. contact hypersensitivity, sunburn), joints
(e.g. rheumatoid arthritis, osteoarthritis, systemic juvenile idiopathic arthritis, adult-
onset Still’s disease, relapsing polychondritis), muscle (e.g. polymyositis), heart
(e.g. post-infarction cardiac remodelling) and brain (e.g. Alzheimer’s and Parkinson’s
disease, multiple sclerosis, depression, ischaemic stroke) (Latz et al. 2013; Schroder
and Tschopp 2010; Dinarello 2010). The therapeutic potential of inflammasome
inhibition, particularly NLRP3 inflammasome, is both exciting and commercially
valuable (Sheridan 2017). There are an ever-increasing number of molecules reported
as inflammasome inhibitors including natural products, synthetic molecules and
known drugs which will be described in this chapter.

Inflammasome inhibitors have commonly been discovered on the basis of phe-
notypic screening, not structure-based drug design, typically using murine bone
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marrow-derived macrophages (BMDM) or THP-1 cell lines with IL-1β as a readout.
These assays involve two steps in activating the inflammasome; Signal 1 is a
priming signal resulting in expression of inflammasome protein components and
the inactive pro-inflammatory cytokines pro-IL-1β and pro-IL-18. This priming
phase occurs via the activation of the transcription factor nuclear factor-κB
(NF-κB) pathway. Pro-IL-18 is constitutively expressed and also increased after
activation (He et al. 2016a). The most commonly used priming signal in cell-based
screening assays is lipopolysaccharide (LPS) where in vivo this would be provided
by similar microbial molecules or endogenous cytokines. Signal 2 is required to
trigger assembly of the inflammasome components to form the protein-processing
platform, resulting in cleavage of pro-caspase-1 to active caspase-1. The active
caspase-1 can then catalyse proteolytic activation of pro-IL-1 and pro-IL-18 to
their active secreted forms. Caspase-1 also triggers pyroptotic cell death via proteo-
lytic cleavage of gasdermin D which migrates to the cell membrane forming pores
(He et al. 2016a). NLRP3 is the most extensively characterised inflammasome and
indeed the most complex due to the plethora of stimuli which initiate activation:
adenosine triphosphate (ATP), nigericin, elevated glucose, saturated free fatty acids,
ceramide, amyloid deposits formed by islet amyloid polypeptide, α-synuclein and
particulates such as crystals of cholesterol, monosodium urate or silica amongst
many others. Other inflammasomes are much more specific with a narrower spec-
trum of activators. In vitro assays commonly use NLRC4 activator Salmonella
typhimurium, AIM2-trigger double-stranded DNA analog Poly(dA:dT) (Coll et al.
2015), and NLRP1 inflammasome activator Bacillus anthracis lethal toxin or
muramyl dipeptide (Chavarria-Smith and Vance 2015).

NLRP3 inflammasome pathway: image by Dr Rebecca C. Coll
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After hit identification through phenotypic testing, it is necessary to interrogate
these compounds carefully to identify their mode of action and specificity. Some of
the inflammasome modulatory compounds described herein are very potent and well
characterised with respect to their effect on inflammasome pathways, while others
are tentative and need much more work. In some cases, particularly in the natural
products field and for reactive small molecules, identified compounds are
non-specific with multiple modes of action, and inflammasome inhibition has been
added to the ever-expanding list. The potency of inflammasome inhibition also needs
to be considered in context. For inhibitors active in the micromolar range, it may not
be realistic to reach these concentrations in vivo thereby hindering translation into
clinical use. If high compound concentrations are required, this could also be
accompanied by significant off target effects and toxicity in vivo.

In this chapter, new synthetic molecules and known drugs, identified as
inflammasome inhibitors, are discussed followed by natural product-based studies.
While this is not intended as an exhaustive list, it should give an impression of the
range of structures and strategies that are being used, alongside challenges encoun-
tered, in an effort to exploit the therapeutic benefits of targeting inflammasomes.

15.2 New Synthetic Molecules and Known Drugs
as Inflammasome Inhibitors

15.2.1 Sulfonylureas

Glyburide (also known as glybenclamide) was developed in the 1960s by
Boehringer Mannheim and Hoechst as an insulin secretagogue treatment for type
2 diabetes (Marble 1971; Ashcroft 2005). However, four independent studies,
between 1997 and 2005, indicated glyburide could also prevent secretion of IL-1β,
in response to LPS and ATP, from murine and human macrophages and also murine
Schwann cells with IC50 in the low μM range (Perregaux et al. 2001; Hamon et al.
1997; Laliberte et al. 1999; Marty et al. 2005). This gave an exciting potential to
repurpose glyburide or its analogs as anti-inflammatory agents. It was not until 2009
that Lamkanfi et al. showed glyburide inhibited activation of NLRP3 inflammasome
and that this accounted for its ability to prevent IL-1β release from murine macro-
phages (Lamkanfi et al. 2009). The drug also had a degree of selectivity as it did not
inhibit NLRC4, NLRP1 or AIM2 inflammasomes (Lamkanfi et al. 2009; Coll et al.
2011). While glyburide clearly had inhibitory activity against NLRP3, it was not
particularly potent, and the ability to gain such high concentrations in vivo is
unlikely. Ten further type 2 diabetes sulfonylurea drugs were tested for their ability
to inhibit NLRP3: seven showed no effect (IC50 > 200 μM), while glimepiride,
glisoxepide and gliquidone gave only very weak inhibition at IC50 75 μM, 73 μM
and 116 μM, respectively (Hill et al. 2017).
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Type 2 diabetes patients have an increased susceptibility to sepsis triggered by
bacterial infection. The benefit of inflammatory response in fighting this infection is
somewhat controversial: some believe the response is essential, while others suggest
modulation is required (Wiersinga and van der Poll 2007). In a clinical study of
sepsis, caused by Burkholderia pseudomallei-induced melioidosis, involving 1160
patients (410 diabetic), those patients taking glyburide showed improved survival,
while metformin- or insulin-treated patients did not (Koh et al. 2011). Glyburide-
treated patients had differential expression of 63 immune-related genes in their
peripheral whole blood leukocytes linking to an anti-inflammatory effect
(Koh et al. 2011). The authors speculated this may be due to NLRP3 inflammasome
inhibition by glyburide, but there are clearly multiple effects and further investi-
gation that would be required.

Pfizer identified an interesting set of potent IL-1β inhibitory sulfonylureas, termed
cytokine release inhibitory drugs or CRIDs, through a phenotypic screen of ion
channel inhibitors (Perregaux et al. 2001). These diarylsulfonylureas were patented
in 1998 (Dombroski and Eggler 1998). Although structure activity relationships
were not specified in the patent, more detailed studies were published on three of
these molecules: CP-412-245, CP-424,174 and CP-456,773 (the latter molecule is
also known as CRID3 or MCC950). This work demonstrated the nanomolar inhi-
bitory activity of these compounds against IL-1β secretion from cells and also
in vivo for CP-424,174 which was dosed orally in mice (ED50 around 15 mg/kg)
(Perregaux et al. 2001). The compounds were relatively selective as secretion of IL-6
and TNFα remained unaffected (Perregaux et al. 2001). Two related molecules,
epoxides CRID1 and 2, were synthesised for use as affinity labels in mode of action
studies identifying glutathione S-transferase (GST) Omega 1-1 (Laliberte et al. 2003)
as a possible target of the CRID molecules; however, Pfizer has since published
studies which dismiss this, leaving the precise mode of action of these molecules
unknown (Primiano et al. 2016).
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At the time of the diarylsulfonylurea IL-1β inhibitor discovery, the field of
inflammasome biology was only just beginning in the laboratory of Jurg Tschopp.
It was therefore many years before the link between these molecules and NLRP3
inflammasome was finally established. Coll et al. (2015) profiled MCC950 to find it
had an IC50 of 7.5 nM against NLRP3 inflammasome, exquisite selectivity over
AIM2, NLRC4 and NLRP1 and no effect on TLR signalling. Efforts were also made
to fully elucidate the mechanism through which NLRP3 inhibition occurred. No
effect was identified on common NLRP3 activating mechanisms such as potassium
ion efflux or calcium ion signalling. MCC950 did not inhibit interactions between
NLRP3 proteins nor with ASC (Coll et al. 2015). Pfizer later added further insight
from results of commercially available off target screens covering 196 different
targets to find little or no inhibition with MCC950 at concentration of 10 μM
simultaneously ruling out putative targets such as SUR1, SUR2a, SUR2b,
caspase-1, SYK, JNK, GPR40 and GPR120 (Primiano et al. 2016). Furthermore
ToxCast/Tox21 data indicate MCC950 had activity in only 18 out of 410 screening
assays, and even where activity was observed the response was weak (AC50 >
20 μM; Emax < 50%) (Primiano et al. 2016). Most recently Jiang et al. (2017)
suggested MCC950 might target chloride efflux to suppress inflammasome acti-
vation based on their observation that this compound could dose dependently inhibit
chloride efflux in NLRP3�/� BMDMs. Some have speculated MCC950 may act on
NEK7 (Van Hauwermeiren and Lamkanfi 2016), a mitotic kinase recently identified
(Schmid-Burgk et al. 2016) to directly interact with the leucine-rich repeat domain of
NLRP3, in a kinase-independent manner. NEK7 is required for inflammasome
assembly (Shi et al. 2016; He et al. 2016b) and it is specific as it is not involved in
NLRC4 or AIM2 activation nor TLR responses. Moreover the roles of NEK7 as
mitotic kinase and NLRP3 regulator are mutually exclusive, i.e. mitosis and NLRP3
inflammasome activation cannot occur simultaneously. While this is a plausible
theory, there is no evidence, to date, that this is the target of MCC950. Despite
intense interest, the precise mode of action and binding site(s) of MCC950 remains
elusive.
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The in vitro ADME studies of MCC950 (Coll et al. 2015) indicated it had
excellent stability to mouse or human liver microsomes, no significant inhibition
of five major cytochrome P450 isoforms (1A2, 2C9, 2C19, 2D6, 3A4) at 10 μM and
did not affect the hERG ion channel (IC50 >30 μM) when tested using an automated
patch-clamp method. The fraction unbound for MCC950 in mouse plasma was
extremely small (Primiano et al. 2016), in keeping with the sulfonylurea drug class
which typically shows high plasma protein binding. Metabolism of MCC950 when
exposed to human liver microsomes identified a single metabolite with much weaker
NLRP3 inhibitory activity than the parent compound (Salla et al. 2016).
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The in vivo pharmacokinetic profile of MCC950, based on a single dose of
3 mg/kg i.v. and 20 mg/kg p.o. in C57BL/6 mice, showed impressive oral bioavail-
ability of 68%, Cmax 25,333 ng/ml, AUC 163,410 ng h/ml and half-life ~3 h (Coll
et al. 2015). In repeat dosing of MCC950 over 5 days at 200 mg/kg p.o., no
accumulation was observed in mouse serum; however, detailed distribution studies
have not been published (Primiano et al. 2016). Levels of IL-1β in vivo after
MCC950 dosing in mice were reduced by 50% at 0.4 mg/kg, 90% at 1.2 mg/kg
and >90% above 4 mg/kg illustrating the in vivo potency of the molecule (Primiano
et al. 2016). Many in vivo disease models have been conducted with oral doses as
high as 200 mg/kg without any noted toxicity concerns. Nevertheless, the com-
pounds inclusion in the ToxCast set should be noted, and details of Pfizer’s clinical
trials on this molecule have not been made publically available. These data could
prove key to future development of the series to benefit human health in a multitude
of disease areas considering the very substantial, and ever-expanding, body of data
on this tool compound.

MCC950 had efficacy and selectivity in a murine model of Muckle-Wells
syndrome (Coll et al. 2015). This model provides perfect proof of concept for any
NLRP3 inflammasome inhibitor as the basis of the disease lies with an activating
mutation in NLRP3. This mutation leads to elevated concentrations of the
pro-inflammatory cytokines IL-1β and IL-18, and, in the murine model, mice die
in the neonatal period (usually< 14 days) due to excessive inflammation. Treatment
with MCC950 extended survival to an impressive 38–45 days (until dosing was
stopped), and correspondingly low levels of IL-1β and IL-18 were measured during
treatment. When treatment was halted, these cytokines increased, and the mice died
within the usual 14-day period. A similar murine model involving an NLRP1-
activating mutation was also investigated; however, MCC950 was ineffective in
this case, as would be expected based on the established selectivity profile of the
compound (Coll et al. 2015).
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Inflammasome inhibition will undoubtedly be beneficial in many diseases, but the
question of whether response to infection would be diminished is an important one.
Murine models where IL-1 signalling is defective lead to elevated risk of developing
an infection. In the case of approved IL-1β-targeted biologics, IL-1β signalling is
entirely blocked, and predisposition to serious infection has been noted (Corporation
2011). Moreover, biologics typically have a long half-life in vivo with canakinumab
only requiring administration twice per month, so full response to infection will take
time to return after dosing is halted (Corporation 2011). Inflammasome inhibitors
have potential to be far more selective, for example, MCC950 blocks only NLRP3-
mediated IL-1β (and IL-18) secretion leaving other inflammasome pathways fully
responsive. Small-molecule inhibitors of these pathways are unlikely to have the
extended half-life of the biologics and should clear from the body quickly when
treatment is stopped. A detailed analysis of the US Food and Drug Administration
Adverse Event Reporting of drugs after market approval indicated use of IL-1β
inhibitors conferred only moderate risk of infection (LaRock et al. 2016). However,
such patients had exceptionally high chance of severe invasive group A Streptococ-
cal infection (GAS), even when compared to other immunomodulatory approaches.
The reasons for this apparent disparity with other infections were investigated
revealing that GAS cleaves pro-IL-1β, independently of NLRP3, through its own
protease SpeB; the subsequent release of IL-1β restricts its invasive capacity
(LaRock et al. 2016). However, in severe GAS infections, SpeB is mutated and
cannot function allowing the infection to progress unabated (LaRock et al. 2016).

Earlier studies on the role of NLRP3 in uropathogenic Escherichia coli infection
showed reference strains CFT073- and UTI89-triggered NLRP3-dependent
pyroptotic cell death in human macrophages (Schaale et al. 2016). In contrast, the
multidrug-resistant sequence type 131 strains EC958 and MS3179 and asymptom-
atic strains 83972 and VR50 did not cause pyroptotic cell death. As with the GAS
studies, it appears some strains of UPEC may have adapted to avoid inflammasome
activation and therefore detection by the host. When the CFT073-induced macro-
phage death was further investigated, significant differences were observed between
the murine and human cells (Schaale et al. 2016). In murine macrophages the IL-1β
release and cell death is completely dependent on NLRP3 and the pore forming toxin
α-haemolysin. In human macrophages, cell death was triggered by an, as yet
unidentified, NLRP3-independent mechanism, and α-haemolysin was not required.
There is clearly a complex interplay between pathogens and the innate immune
system which remains to be untangled.

Fungal pathogens such as Candida albicans does not evade NLRP3 inflamma-
some but uses it to trigger macrophage pyroptosis and therefore escape from the
macrophage into the extracellular milieu where it replicates (Tucey et al. 2016).
Moreover there is an ensuing phase of non-pyroptotic fungal induced macrophage
killing designed to fully eradicate the macrophage population. The endoplasmic
reticulum-mitochondria encounter structure (ERMES) tethering complex is common
to fungi and required to retain the mitochondrial morphology (Tucey et al. 2016). An
mmm1 ERMES mutant showed a 10 h delay in triggering NLRP3-mediated macro-
phage pyroptosis compared to the wild-type strain. The mutation in ERMES led to
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altered mitochondrial morphology, reduced fungal virulence, altered cell wall struc-
ture, stunted hyphal growth and gene expression. After the 10 h period, a pro-
nounced NLRP3 activation was triggered, by an unknown mechanism, but the
liberated fungal pathogen lacked capacity to initiate the non-pyroptotic phase of
macrophage death. In keeping with these discoveries, MCC950 effectively
prevented C. albicans induced macrophage pyroptosis for at least 9 h (Tucey et al.
2016). There appears to be a critical balance between the innate immune response to
infection and the ability of the infectious agent to exploit its defence mechanisms to
persist or even thrive in the host.

The inflammatory response mounted to clear pathogens from the host can lead to
extensive tissue damage and poor prognosis. In a murine study of NLRP3’s role
during influenza A infection, any deficiency in NLRP3 inflammasome early in the
infection whether through genetic mutation or pharmacological inhibition using
MCC950 (5 mg/kg i.n.) led to expedited mortality (Pinar et al. 2017). However if
MCC950 was used at the peak of infection, increased survival rate was observed
with much less severe disease outcomes (Pinar et al. 2017). There is clearly much to
learn about the interplay between infectious agents and the immune response such
that potential to manipulate the system therapeutically can be understood. This is
likely to be particularly difficult where multiple infectious agents are present as they
may exploit host immunity in different ways. Furthermore differences even exist for
various strains of the same pathogen, and these can behave differently depending on
the cell type or host species studied.

Researchers at Trinity College, Dublin, first showed efficacy of MCC950 in
models of inflammatory brain disease (Coll et al. 2015). Multiple sclerosis is a
disease where myelin sheath of nerve cells in the brain and spinal cord is damaged.
In the murine model of multiple sclerosis termed experimental autoimmune
encephalomyelitis (EAE), NLRP3-mediated production of IL-1β and IL-18 has a
critical role in disease induction (Gris et al. 2010). These cytokines, together with
IL-23, drive production of the pro-inflammatory cytokine IL-17 by CD4+ T helper
17 cells and γδ+ T cells (Lalor et al. 2011). Mice with NLRP3 deficiency do not
develop EAE (Gris et al. 2010). Pharmacological inhibition of NLRP3 was tested by
administration of MCC950 (10 mg/kg i.p., on days 0, 1 and 2 then every second day
thereafter) which both delayed EAE and reduced severity of the disease (Coll et al.
2015). In this model MCC950 was present from before disease induction (prophy-
lactic), rather than dosing once disease had been established; however, it did show
promise for treatment of inflammatory brain disease with MCC950.

In Alzheimer’s disease, an association with NLRP3 inflammasome activation in
response to amyloid-β was identified over a decade ago, but specific NLRP3
inhibitors had not been identified (Halle et al. 2008). In the APP/PS1 transgenic
mouse model of Alzheimer’s disease, accelerated deposition of amyloid-β is
observed alongside associated neuroinflammation and impaired cognitive capacity.
MCC950 was administered in this model at 10 mg/kg i.p. every second day for a
period of 3 months with behavioural tests (T-maze and novel object recognition) at
8th and 9th weeks of treatment (Dempsey et al. 2017). Cognitive function improved
significantly accompanied by reduced activation of microglia, while phagocytosis of
amyloid-β was promoted ameliorating amyloid-β pathology. These results are
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impressive, particularly since 98% of all known therapeutics cannot penetrate the
blood-brain barrier.

In the EAE and Alzheimer’s studies, the levels of MCC950 in the brain were not
reported, and peripheral effects may also contribute to the efficacy observed. Early
theories of Heneka et al. (2013) raised the interesting possibility that CNS diseases
(Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis,
Huntington’s disease, Creutzfeldt-Jakob disease) linked with misfolded protein
aggregates (amyloid-β, synuclein, huntingtin, TDP-43, prion protein, etc.) may be
innate immunity disorders, and their protein triggers would be considered compo-
nents of this system. Whether or not this is the case, early studies with MCC950 in
inflammatory disorders of the CNS certainly give potential to investigate application
of this compound and close analogs in other such diseases.

Imiquimod triggers NEK7-dependent NLRP3 inflammasome activation through
inhibition of quinone oxidoreductases NQO2 and mitochondrial complex I leading
to generation of reactive oxygen species (Gross et al. 2016). In a model of
imiquimod-induced mouse ear dermal inflammation, MCC950 (200 mg/kg, p.o.,
bid for 5 days) (Primiano et al. 2016) treatment reduced ear swelling by >40%, and
levels of IL-22, IL-17A and IL-17F were also reduced by approximately 50%. No
topical treatment of MCC950 has yet been published, and it would be interesting to
see if topical administration would be efficacious in this model.

Myelodysplastic syndromes (MDSs) are characterised by defective differentia-
tion of haematopoietic stem cells to form new blood cells in the body. This is a
complex disease but cytokine profile, abundance of the alarmin S100A9 (a known
TLR4 and CD33 agonist) and overexpression of TLRs led to investigations into the
role of the innate immune system in these diseases (Basiorka et al. 2016). As part of
this detailed study, alarmins and reactive oxygen species were found to elicit
pyroptotic cell death, and activate β-catenin, by triggering NLRP3 inflammasome
formation. Inhibition of NLRP3 inflammasome using MCC950, in MDS patient
bone marrow mononuclear cells, prevented pyroptotic death of haematopoietic stem
and progenitor cells and allowed functional haematopoiesis to proceed. This exciting
development provides a new avenue to investigate in treatment of this disease class.

Inflammasomes play a major role in asthma and other inflammatory lung diseases
where noxious stimuli such as allergens, pathogens, smoke, particulates, etc. can
activate the pathway (Pinkerton et al. 2017). Efficacy of MCC950 (200 mg/kg, bid)
was demonstrated in a murine model of allergic asthma triggered by house dust mite
challenge (Primiano et al. 2016). Mice were treated before challenge and after, then
sacrificed at 24 h. Analysis of bronchiolar lavage fluid showed significant reduction
of neutrophil infiltration and normalisation of the small lymphocyte increase
observed. These results were recapitulated in a dexamethasone corticosteroid treat-
ment group. Nine out of thirty-six different inflammatory mediators measured were
increased in response to the house dust mite challenge. Four inflammatory mediators
(CXCL1, CXCL5, CXCL10, CCL7) were reduced by MCC950 treatment while
eight, including those suppressed by MCC950, were suppressed by dexamethasone
(Primiano et al. 2016). While allergic asthma is the most common type of asthma,
between 5 and 20% of asthmatics are refractory to corticosteroid treatment. These
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resistant patents typically have more severe disease, account for >50% of health-
care costs for asthma, and remain without effective treatment (Ito et al. 2006). Severe
steroid-resistant asthma is commonly characterised by increased Th1 and/or Th17
responses and a non-eosinophilic endotype (Green et al. 2002). Substantial increases
in IL-1β expression occurs in this non-eosinophilic asthma compared to mild to
moderate asthma(Wanderer 2009), and this positively correlates with increased
neutrophilic inflammation in these patients (Hastie et al. 2010). MCC950 treatment
was investigated in two murine models of infection-induced (Chlamydia or
Haemophilus) severe steroid-resistant allergic airway disease (Kim et al. 2017).
Disease was first established, then on days 32–34 mice were treated with MCC950
(10 mg/kg i.n., bd), and effects were assessed on day 35. Both mouse models showed
impressive reduction in airway hyper-responsiveness, inflammation and IL-1β
levels. These responses were equivalent to those observed by dexamethasone treat-
ment in steroid-sensitive allergic airway disease. Together these studies open a new
field of investigation for treatment of different asthma subtypes. Future studies will
likely show if other inflammatory lung diseases such as COPD, silicosis and
asbestosis may also be alleviated using inflammasome inhibitors.

NLRP3 inflammasome activation has been observed in obese individuals and is
strongly linked to pathogenesis of metabolic diseases such as type 2 diabetes and
fatty liver disease. MCC950 has been investigated in two murine models of
non-alcoholic steatohepatitis (NASH), the foz/foz “fat aussie” model and the methi-
onine- and choline-deficient diet (MCD) model (Mridha et al. 2017). In the foz/foz
model, mice are fed an atherogenic diet, over 16 weeks, and develop elevated alanine
transaminase and severe steatohepatitis including hepatocyte ballooning, inflamma-
tion and fibrosis. Treatment with MCC950 (20 mg/kg, p.o., qd) from 16 to 24 weeks
provided no benefit to metabolic features of disease (weight gain, plasma insulin,
fasting blood glucose and other markers) which was perhaps surprising based on
prior hypothesis (Henao-Mejia et al. 2012; Wen et al. 2012). However, liver
inflammation was almost completely abrogated showing remarkable reduction in
levels of pro-IL-1β, IL-1β, IL-6 and MCP1 alongside suppressed macrophage and
neutrophil infiltration. The typical markers of liver damage alanine transaminase and
aspartate transaminase were also significantly reduced. One of the most important
findings was the ability of MCC950 to reverse established liver fibrosis. This is
highly significant as liver fibrosis is predictive of disease-specific mortality (Ekstedt
et al. 2015). Results of liver pathology showed a reduction from 64% of mice
categorised with definite NASH to only 18% (Mridha et al. 2017). In the MCD
model, liver fibrosis is normally severe, but treatment with MCC950 (10 mg/kg p.o.,
qd for 5 days, followed by 20 mg/kg p.o. every second day up to 6 weeks) almost
completely protected against development of fibrosis as compared with vehicle-
treated controls. These data indicate MCC950 was effective both therapeutically and
prophylactically in treatment of liver fibrosis.

Fibrosis is problematic in a wide array of crystal-related kidney diseases ulti-
mately leading to renal failure. These crystalline deposits can form naturally, as a
result of metabolic disease, or may be drug induced, and they trigger NLRP3 (Mulay
et al. 2014). Inhibition of NLRP3 by MCC950 (~200 mg/kg, p.o., administered in
chow) in a murine model of crystal nephropathy (Ludwig-Portugall et al. 2016)
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reduced inflammasome activation and associated formation of IL-1β and IL-18.
Critically, the development of fibrosis was prevented; however, in contrast to the
aforementioned NASH study (Mridha et al. 2017), established fibrosis could not be
reversed; therefore early treatment would be recommended. An elegant means to
visualise effects on NLRP3 in vivo was used employing transfer of bone marrow
cells harbouring an inflammasome-specific luciferase reporter (interleukin-1-
β-Gaussia luciferase) into the mice. When inflammasomes were activated, the
special reporter system produced light which was detected in vivo by bioluminescent
imaging (Ludwig-Portugall et al. 2016). This study also investigated the effects of
MCC950 inhibition on the adaptive immune response through ovalbumin challenge
in the crystal nephropathy murine model. No significant difference was observed
between treated and untreated mice as measured by count of ovalbumin-specific
cytotoxic T cells or ovalbumin-specific IgG antibody serum titres. These studies
indicate a promising future for treatment of crystal-induced kidney disease with first
in class NLRP3 inflammasome inhibitors.

Individuals who suffer hypertension typically have high levels of IL-1β and IL-18
where the IL-1β levels show positive correlation with blood pressure (Barbaro et al.
2015; Dalekos et al. 1997; Rabkin 2009). In addition there is significant accompa-
nying inflammatory response and fibrosis in the kidney. Recent murine studies
showed this inflammatory response is NLRP3 mediated (Krishnan et al. 2016).
MCC950 was tested in hypertensive C57BL/6 mice where the hypertension was
induced by the removal of one kidney, implant of a deoxycorticosterone acetate
pellet and 0.9% saline to drink (Krishnan et al. 2016). These hypertensive mice
showed systolic blood pressure increase of �30 mmHg and increased gene expres-
sion in the kidney of inflammasome components: NLRP3, ASC, pro-caspase-1, pro-
IL-1β but not pro-IL-18. Inhibiting inflammasome activity in this salt-based model by
use of mice deficient in inflammasome components (caspase-1�/� or ASC�/�) allevi-
ated inflammation, and significantly reduced fibrosis and hypertension (Krishnan
et al. 2016). More specific pharmacological NLRP3 inhibition using MCC950
(10 mg/kg/day via osmotic pump) also showed these beneficial responses, and
blood pressure was almost normalised; however, effects on fibrosis were unfortu-
nately not assessed. Notably, MCC950 was effective even when administered after
the hypertension had been established (Krishnan et al. 2016). These results raised the
exciting possibility that hypertension may be treated using inflammasome inhibitors.
They also suggest that inflammasome formation in the kidney may be linked with
hypertension in other diseases such as the crystal-related hyperuricemia and gout
where hypertension is commonplace. Indeed efficacy of MCC950 has already been
shown in crystallopathy mouse models (Ludwig-Portugall et al. 2016), but hyper-
tension was not the focus of those studies, and the wider context should be explored
further. Another model of hypertension can be initiated using the vasoconstrictor
angiotensin II. In agreement with the salt-based model already described, ASC�/�

mice had 40% less hypertension, as assessed by blood pressure measurement, in
comparison to wild-type controls. This model used young adult male mice 10–12
weeks old, and unfortunately MCC950 was not examined (Krishnan et al. 2016).
Later studies in this model focussed on aged male mice 23–31 months old where
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inflammation is already established prior to induction of hypertension (Dinh et al.
2017). In these aged mice a much stronger response to angiotensin II was measured
in comparison to young mice attributed to increased expression of the angiotensin
1 receptor (AT1R) while AT2R was suppressed. In the aged mice, the known
NLRP3 activator, reactive oxygen species was significantly increased alongside
renal expression of NLRP3 inflammasome components (NLRP3, caspase-1 and
IL-1β). It was surprising, given the previous data, that MCC950 (10 mg/kg/day via
osmotic pump) was not effective in lowering hypertension in this angiotensin II
model indicating, in this case, the hypertension was not mediated by NLRP3. The
effect of MCC950 on the inflammatory response in this model was not pursued and
would be informative. Availability of MCC950 as a tool compound allows eluci-
dation of NLRP3 involvement in disease beyond that previously gained from
genetically modified animal models. The relevance of this cellular signalling plat-
form can now be understood at various stages of disease and during the ageing
process.

NLRP3 inflammasome is active in cardiac fibroblasts, circulating inflammatory
cells and cardiomyocytes (Grundmann et al. 2011; Takahashi 2014). In myocardial
infarction, an inflammatory response is mounted in order to allow healing, but
elevated IL-1β and IL-18 are linked with increased infarct size, reduced cardiac
contractility and are predictive of heart failure (van Hout et al. 2016). In a clinically
relevant pig model of myocardial infarction, MCC950 was used to study the
therapeutic benefit of NLRP3 inflammasome inhibition (van Hout et al. 2016).
Just prior to the end of a 75 min transluminal occlusion, MCC950 was dosed at
either 3 mg/kg or 6 mg/kg intravenously and repeated daily for 1 week in a
randomised blinded study. MCC950 treatment led to reduced infarct size, improved
left ventricular function, elevated reserve capacity in the myocardium, suppressed
neutrophil infiltration and decreased angiogenesis. The effects observed were dose
dependent with the maximum response given in the 6 mg/kg treatment group.
NLRP3 inhibition in this cardiac model by the sulfonylurea MCC950 was clearly
beneficial. The authors suggest NLRP3 inhibition provides a selective means to
modulate the inflammatory response rather than blocking it completely, allowing
effective tissue repair mechanisms to remain.

The sulfonylurea class of NLRP3 inhibitors are the most extensively studied to
date with impressive results in multiple disease models. This is also generating
significant commercial interest with multiple companies such as Inflazome, IFM,
Nodthera and Jecure all publishing patents in this space.

15.2.2 Dual Action Sulfonylureas

An interesting set of nine hybrid molecules have been synthesised based on known
type 2 diabetes drugs and exploiting the nanomolar NLRP3 inhibitory activity of
MCC950 (CRID3) (Hill et al. 2017).
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These hybrids all show nanomolar potency as NLRP3 inhibitors, and a subset
(hybrids of glyburide, glimepiride, gliquidone, glisoxepide and acetohexamide) also
retained insulin secretory activity of the parent sulfonylurea (Hill et al. 2017).
Results of in vivo studies have not yet been communicated; however, multiple
uses can be envisioned. Pancreatic β-cells are continually depleted as type 2 diabetes
progresses, and therefore sulfonylurea drugs become less efficacious. This pancre-
atic β-cell death has been attributed to NLRP3-mediated IL-1β release, indicating
dual action molecules which can prevent β-cell death while also stimulating insulin
release may prove valuable. There are also a multitude of additional disease com-
plications, such as nephropathy, coronary atherosclerosis, neuroinflammation and
wound healing, and many of these may benefit from the NLRP3 inhibitory effect of
these hybrid molecules.

Glyburide is in clinical trials as an intravenous formulation for treatment of
ischaemic stroke due to its inhibition of SUR1-TRPM4 ion channels which allevi-
ates oedema and haemorrhagic transformation (Sheth et al. 2016). NLRP3 inflamma-
some activation is also evident after haemorrhagic stroke leading to tissue damage
(Yang et al. 2017). The dual action glyburide-MCC950 hybrid may therefore prove
even more efficacious than glyburide in treatment of stroke.
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15.2.3 Sulfonamides

The glyburide synthetic precursor sulfonamide 16673-34-0, more recently called
JC-21, was reported as an NLRP3 inhibitor (Marchetti et al. 2014) effective in murine
models of myocardial infarction and ischaemia reperfusion (Marchetti et al. 2014,
2015; Toldo et al. 2016). However, this was refuted by Hill et al. (2017) who tested
this compound along with sulfonylurea precursors of other type 2 diabetes drugs for
NLRP3 inhibitory activity using LPS-primed murine BMDM stimulated with ATP.
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In order to improve solubility of JC-21, a hydroxysulfonamide analog was
synthesised, JC-171 (Guo et al. 2017). JC-171 showed NLRP3 inhibitory IC50 of 8.45
μM in LPS-primed J774A.1macrophages stimulated with ATP, while in the same assay
JC-21 had IC50 of 3.25 μM. JC-171 appeared more potent when tested in murine
BMDMand did not inhibit secretion of TNF-α or IL-6 indicating a degree of selectivity.
Furthermore, expression of inflammasome protein components was not affected by
JC-171 leading to the assumption that inflammasome activation was inhibited rather
than the priming step. JC-171 (100mg/kg) was effective in suppressing IL-1β in vivo in
mice challenged with LPS. In the murine EAE disease model of multiple sclerosis,
JC-171 (100mg/kg i.p. every second day) gave an impressive delay of disease onset and
reduced symptoms. When dosed therapeutically, after onset of disease in the EAE
model, and compared directly to MCC950, both compounds (10 mg/kg i.p. every
second day) proved equally efficacious in preventing disease progression.

15.2.4 Vinyl Sulfones

SO
O

CN

BAY11-7082

Investigation of different NF-κB inhibitors and their effect on NLRP3
inflammasome inhibition identified the vinyl sulfone small molecule BAY11-7082
as an NLRP3 inhibitor with IC50 of 12 μM (Juliana et al. 2010). Although this
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compound targeted the NF-κB pathway via IKKβ kinase (and thereby modulated
inflammasome priming), it also had an independent activity through inhibition of
inflammasome assembly. This was demonstrated by treatment of LPS-stimulated
bone marrow macrophages with BAY11-7082. Further evidence was gained using
stable NLRP3�/� bone marrow macrophages where NLRP3 was constitutively
expressed without the need for LPS priming. In these cells inflammasome activation
using ATP, nigericin or MSU was blocked by BAY11-7082. In this manner BAY11-
7082 behaved very similarly to parthenolide which was identified in the same study
(and is described in Sect. 15.3.3). However, BAY11-7082 proved to be much more
selective over NLRP1, NLRC4 (Juliana et al. 2010) and AIM2 (Jiang et al. 2017)
inflammasomes and, despite its non-specific cysteine modifying capacity, could not
directly inhibit caspase-1. BAY11-7082 is a Michael acceptor and reacts with
biological nucleophiles glutathione and L-cysteine (Strickson et al. 2013). BAY11-
7082 also reacts with other biological targets such as tyrosine phosphatases and the
ubiquitin system (Strickson et al. 2013).

An interesting study was conducted to characterise the structural elements of
BAY11-7082 needed for this irreversible binding (Juliana et al. 2010). Both priming
in response to LPS and activation in response to ATP were investigated with Bay11-
7082 and its seven structural analogs measuring pro-IL-1β expression and
pro-caspase-1 processing, respectively (Juliana et al. 2010).
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Seven Structural Analogues of BAY11-7082

The bulky t-butyl and iodo of analogs 1 and 2 did not affect inhibition indicating
these were not the sites of nucleophilic attack. As anticipated, the alkene reduction in
analog 3 abrogated activity. Introduction of a chloromethylene in place of nitrile,
analog 4, or simple replacement with hydrogen (analogs 5 and 6) gave weak
retention of NLRP3 inhibitory activity through both priming and activation. These
modifications provided evidence of nucleophilic attack at the C3 position ultimately
resulting in scission of the carbon-sulfur bond. This was facilitated by the electron
withdrawing sulfone group which ultimately acts as a leaving group in p-
toluenesulfonic acid. Reduction of the sulfone, analog 7, therefore caused complete
loss of inhibitory activity. BAY11-7082 inhibited pyroptosome formation and
pyroptotic cell death (Juliana et al. 2010).

BAY11-7082 was tested in a murine model of lupus nephritis, where both NF-κB
and NLRP3 inflammasome activation are dysregulated (Zhao et al. 2013).
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Proteinurea, renal malfunction, cytokine release and neutrophil infiltration were all
suppressed by BAY11-7082 alongside a reduced mortality. In complex diseases
such as systemic lupus erythematosus, multiaction drugs may have an important
role. This feature of BAY11-7082 was also exploited in a rat model of neuropathic
pain using lumbar disc herniation (Zhang et al. 2017). NF-κB was identified as a pain
mediator while also acting to prime NLRP3 inflammasome. Subsequent activation of
the inflammasome perpetuates the inflammatory phenotype. BAY11-7082 was
dosed at 5 mg/kg via i.p. injection three times per week over 4 weeks in the
neuropathic pain model (Zhang et al. 2017). This resulted in statistically significant
reduction of NF-κB, IL-1β and IL-18, and pain was attenuated. Given the reactive
nature of BAY11-7082, it is possible that other effects also contributed to the
positive outcome; nevertheless, this small molecule has an impressive activity
in vivo, and it would be interesting to see if it can cross the blood-brain barrier to
have direct effect in CNS disease models.

NLRP3 activation is triggered in response to burn-induced acute lung injury (Han
et al. 2015). At a cellular level, alveolar macrophages upregulate NLRP3 expression
and activation in response to burn serum, and this can be inhibited by BAY11-7082.
This effect was also observed in vivo where IL-1β and IL-18 levels peak at 24–48 h
post injury (Han et al. 2015). BAY11-7082 3 mg/kg was dosed via i.p. injection
immediately after initiating burn-induced acute lung injury. Approximately two- to
threefold reduction of NLRP3-related inflammatory cytokines and proteins was
achieved along with a reduction in myeloperoxidase. More importantly the histo-
pathologic features of the injury, neutrophil infiltration, oedema, alveolar wall
thickening and haemorrhage, were all reduced.
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15.2.5 β-Nitrostyrenes

3,4-Methylenedioxy-β-nitrostyrene (MNS) was identified from screening 160 kinase
targeted compounds against LPS-primed murine BMDM (He et al. 2014). Such
libraries typically have molecules which target kinase ATP-binding sites, and it was
therefore possible that hits would be identified which could inhibit the ATP-binding
site of NLRP3. MNS, a known Syk kinase inhibitor, was identified with an IC50 of
2 μM (He et al. 2014). Secretion of IL-1β, IL-18 and active caspase-1 formation was
inhibited by MNS but not mRNA levels of inflammasome components. In a similar
manner to BAY11-7082, MNS acts as a Michael acceptor, and the nitrovinyl side
chain is therefore essential for its biological activity as an inhibitor of the NLRP3
pathway. Modification to the benzodioxole ring was tolerated but decreased com-
pound potency. MNS directly targets NLRP3 inflammasome reacting with the
leucine-rich repeat and nucleotide-binding oligomerisation domains while also
targeting the ATP-binding site. Given this reactive nature, it is surprising that
MNS did not inhibit other inflammasomes NLRC4 or AIM2.

A biotinylated probe, based on the active MNS analog, HMNS, successfully
pulled down NLRP3 protein from cell lysate and could also pull down
recombinantly expressed NLRP3 (He et al. 2014). This interaction was abrogated
in the presence of excess HMNS. In contrast, NLRC4 could not be isolated using
biotin-HMNS. Full-length NLRP3 and mutants of pyrin or LRR domain could all be
isolated using biotin-HMNS. Likewise, the NOD and LRR domain could be isolated
whereas the pyrin domain could not. There have not been a large number of in vivo
studies with MNS after its identification as an NLRP3 modulator. One study was
conducted in a rat model of wound healing after burn injury where MNS promoted
healing (Xiao et al. 2016). Nitro-containing compounds and styrenes are not gener-
ally considered drug-like and are well-known toxicophores.

15.2.6 Acrylate Derivatives
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Cocco et al. (2014) observed that inflammasome inhibitors commonly contained
Michael acceptor functionality. They hypothesised this allowed inhibition of the
pathway through reaction with cysteine residues in caspase-1, NLRP3 or other
relevant proteins in the cascade. A library was therefore designed around this
electrophilic pharmacophore with the intent of discovering new irreversible
NLRP3 inhibitors which could be optimised for specificity and minimal toxicity.
In common with other known irreversible NLRP3 inhibitors, many of the new
compounds inhibited caspase-1 and NLRP3 ATPase activity in line with
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expectation. Out of 36 compounds, INF4E and its 2 close structural analogs were
most promising for further work (Cocco et al. 2014).

INF4E and its analogs were not ideal; a degree of cellular cytotoxicity was noted.
Importantly INF4E also irreversibly bound to human serum albumin forming three
covalent adducts which may trigger idiosyncratic adverse reactions in vivo (Cocco
et al. 2016). This lead compound was systematically modified (Cocco et al. 2017)
through removal or substitution of the alcohol moiety, hydrolysis of the ester to the
carboxylic acid, and a small number of compounds also reduced the alkene, thereby
removing the likelihood of covalent mode of action. All compounds were triaged
through assays for Michael acceptor reactivity, cytotoxicity, NLRP3 activity and
pyroptosis to ultimately identify the improved molecule INF39. INF39 has a potency
in the micromolar range; and while a full IC50 was not recorded, a 10 μM concen-
tration reduced IL-1β secretion by around 50% from LPS-primed mouse BMDM.
Unlike INF4E, no activity was observed on caspase-1 showing that INF39 was more
selective. INF39 inhibited NLRP3 ATPase activity by 52% at 100 μM and also gave
partial inhibition of NLRP3 inflammasome priming. Rapid metabolism, via INF39
ester hydrolysis to the carboxylic acid, was found during permeability through rat
intestine (ex vivo) and also during in vitro microsomal stability. Both the acid and
ester are active as NLRP3 inhibitors, and neither were cytotoxic against THP-1 cell
line (MTT assay) up to 100 μM.
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INF39 was highly insoluble and lipophilic, leading to formulation as a suspension
in olive oil for oral dosing in vivo (Cocco et al. 2017). A rat model of
2,4-dinitrobenzenesulfonic acid-induced colitis was investigated where INF39 was
dosed at 12.5, 25 and 50 mg/kg/day for 6 days commencing at induction of colitis
(Cocco et al. 2017). Positive outcomes were observed on body and spleen weight,
colonic length and macroscopic damage, while reduction in levels of IL-1β, TNF-α
and myeloperoxidase was also observed.

Despite early results, which were promising, it is difficult to ascertain the wider
application of INF39 without further study. INF39 pharmacokinetic profile and
distribution, either as the ester prodrug or the acid form, need to be evaluated alongside
more extensive investigation of toxicity profile. Alternative prodrugs or salt forms may
help modulate the solubility issues and facilitate use of this compound in other disease
models where direct administration to the site of action is more challenging.

As an extension of the acrylate containing covalent drug investigation, hybrid
analogs were synthesised and tested for their NLRP3 inhibitory activity (Cocco et al.
2016). The type 2 diabetes sulfonylurea drug glyburide, a weakly NLRP3 active
insulin secretagogue, and its precursor sulfonamide, 16673-34-0, were conjugated to
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the INF39 acrylate warhead. Both hybrids retained Michael acceptor reactivity, were
not cytotoxic at 100 μM to THP-1 cells and did not react with serum albumin.
Inhibition of THP-1 pyroptotic cell death at 10 μM concentration of test compound
was more effective for the 16673-34-0 hybrid at 46% versus 17% for the glyburide
hybrid. While IL-1β release from wild-type mouse BMDM was approximately 50%
at 20 μM concentration of the 16673-34-0 hybrid, the effect was much less in
macrophages bearing NLRP3-activating mutations, typical of NLRP3-specific
genetic diseases such as Muckle-Wells. Inhibition of NLRP3 ATPase activity by
the 16673-34-0 hybrid was not very potent with IC50 of 74 μM.
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15.2.7 Glitazones

In a screening campaign using a proprietary library of bioactive compounds, CY-09
was identified and characterised as an inhibitor of NLRP3 inflammasome (Jiang
et al. 2017). CY-09 is from the glitazone molecular class and contains a Michael
acceptor moiety which might be prone to conjugation with nucleophilic species such
as cysteine side chains. CY-09 blocked IL-1β secretion in response to nigericin, ATP
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and MSU crystals in LPS-primed BMDM with no effect observed in response to
NLRC4 or AIM2 triggers. CY-09 did not disturb the priming phase with levels of
pro-IL-1β and NLRP3 expression unchanged. An interesting set of comparative data
indicated CY-09 was similar in potency to BAY11-072 and the natural products
parthenolide, sulforaphane and isoliquiritigenin, with IC50 in the 5 μM range. CY-09
was however more selective than parthenolide (described in Sect. 15.3.3) or sulfo-
raphane (Sect. 15.3.2) over AIM2 and NLRC4. No effect was observed on chloride
channels, but NLRP3 oligomerisation was inhibited.

Through synthesis of a biotinylated version of CY-09, pull-down experiments
could be conducted using the affinity of streptavidin beads for the biotin tag (Jiang
et al. 2017). The probe was incubated with cell lysates of LPS-primed BMDM then
extracted using streptavidin beads. Using this technique NLRP3 was identified as
attached to the probe and could be removed from the matrix using competition with
non-labelled CY-09, illustrating reversible binding kinetics. NEK7 was not pulled
down in these experiments, and other experiments designed towards alternative
inflammasomes did not pull down those proteins. Direct affinity was also observed
between the biotinylated CY-09 and purified NLRP3, and this was further
characterised by microscale thermophoresis to establish a KD of 500 nM. To more
accurately identify the binding site, the LRR, NACHT and pyrin domains were
studied to find only the NACHT domain bound to CY-09. Mutational studies
showed CY-09 bound to the ATP site of the Walker A motif and prevented
subsequent ATPase activity, oligomerisation and activation of NLRP3.

CY-09 had good pharmacokinetic properties (Jiang et al. 2017) with stability in
plasma and no inhibition of the hERG ion channel up to 10 μM. No potent inhibition
of the five major cytochromes P450 enzymes was found; however, it should be
considered the potency of the compound in vitro is around IC50 5 μM; therefore,
inhibition of CYP1A2 at 18.9, CYP2C9 at 8.18 μM and CYP3A4 at 26 μM may
prove problematic in vivo. Moreover, hERG channel effects should be ascertained at
a higher top concentration to give a more convincing safety margin. CY-09 had an
in vivo half-life of 2.4 h in mice with bioavailability of 72% and AUC of 8232
(h ng)/mL, suitable to determine efficacy in murine models. CY-09 did indeed prove
highly efficacious in models of MSU-induced peritonitis and Muckle-Wells where
both CY-09 and MCC950 were comparable at 40 mg/kg i.p. dose. CY-09 also
showed reversal of metabolic disorder in diabetic mice, but MCC950 was not
included as a comparator in that experiment. CY-09 therefore looks promising as a
lead for further investigation of NLRP3 inhibitors which bind the ATP site.

15.2.8 Edaravone
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Edaravone (Radicava®, Radicut® developed in the 1980s) is now a generic treatment
for ALS (approved in 2015 in Japan and 2017 in the USA) and stroke (approved in
2011) (Administration 2017b; Miyaji et al. 2015). Although the mode of action of
edaravone is largely unknown, it has free radical scavenging and anti-oxidant prop-
erties and is neuroprotective. Edaravone’s reactive oxygen species scavenging ability
blocks NLRP3-mediated IL-1β secretion from amyloid-β-treated microglia (Wang
et al. 2017a). These studies are only preliminary, and much more work would be
needed to fully confirm effects on NLRP3. Edaravone does have side effects includ-
ing skin inflammation, hypersensitivity and gait disturbance (Administration 2017a).

15.2.9 Antidepressants

Major depressive disorder pathogenesis has recently been linked with NLRP3
inflammasome-mediated IL-1β and neuroinflammation and has triggered significant
interest in therapeutic modulation of these pathways (Kaufmann et al. 2017). A
selection of antidepressant drugs in clinical use to treat major depressive disorder
were investigated for their potential effect on NLRP3 inflammasome (Alcocer-
Gomez et al. 2017). This was an interesting study employing a structurally diverse
set of compounds (fluoxetine, paroxetine, mianserin, mirtazapine, venlafaxine,
desvenlafaxine, amitriptyline, imipramine and agomelatine). When tested at 1 μM
concentration on LPS-stimulated THP-1 cell line with ATP as NLRP3
inflammasome trigger, all compounds caused 50–60% reduction in secretion of
IL-1β and IL-18. NLRP3 expression was also reduced. Mirtazapine, fluoxetine and
agomelatine were marginally more potent than the other analogs. In a murine model
of depression, where forced swimming test was used, all mice showed elevation of
IL-1β which was alleviated by the antidepressants (Alcocer-Gomez et al. 2017).
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A cohort of 214 patients (aged 18–60) diagnosed with major depressive disorder
were recruited, and the effect of 9 different antidepressant medications (fluoxetine,
paroxetine, mianserin, mirtazapine, venlafaxine, desvenlafaxine, amitriptyline, imip-
ramine and agomelatine) on NLRP3 inflammasome was examined (Alcocer-Gomez
et al. 2017). In comparison to untreated controls, all treated patients showed reduc-
tion of IL-1β and IL-18 in serum with reduced expression of NLRP3 mRNA in blood
mononuclear cells. Genes typical of autophagy, BECLIN and MAP-LC3, were
significantly upregulated indicating enhanced autophagy pathways may be protec-
tive. Further examination in vitro employed autophagy-deficient mouse embryonic
fibroblast cells, none of the antidepressants inhibited NLRP3 inflammasome path-
ways in these cells. In agreement with this, no increase of LC3B-11 (autophagy
readout) and no reduction of cleaved caspase-1 was observed. The wild-type mouse
embryonic fibroblast cells did show strong inhibition of ATP-triggered NLRP3
pathways in the presence of antidepressants. This was accompanied by the increase
of LC3B-11 and reduction of cleaved caspase-1. Overall, these results have led to the
intriguing possibility that NLRP3 inflammasome could act as a biomarker for
treatment response and therefore aid in drug selection.

15.2.10 Acylhydrazone EMD638683
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EMD638683 is a known inhibitor of serum- and glucocorticoid-inducible kinase 1 and
reported to inhibit NLRP3 inflammasome (Gan et al. 2017). A high dose of
EMD638683 (600 mg/kg/day in chow) administered to mice, alleviated cardiac
inflammation and fibrosis induced by angiotensin II. This was also compared to
MCC950 treatment (10 mg/kg i.p.) which had similar efficacy. Further investigation
of EMD638683 treatment indicated an inhibition of NLRP3 and IL-1β expression as
measured by mRNA alongside a reduction in cleaved caspase-1 and IL-1β in cardiac
tissues of the treated mice. Murine BMDM were used to compare effect of
EMD638683 to NLRP3 siRNA and also MCC950 (alone and also in combination)
on reduction of IL-1β levels, and in each case results were comparable. It should,
however, be noted that EMD638683 has, thus far, only been investigated as a tool
compound in animal studies. EMD638683 is of the acylhydrazone class of compounds
which are commonly regarded in medicinal chemistry as toxicophores. Indeed in an
earlier study EMD638683 triggered increased fluid intake and urination alongside a
marked reduction in body weight (Ackermann et al. 2011). Extensive toxicity profiling
would be required were this compound to be pursued further.
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15.2.11 Benzimidazoles

FC11a-2
N

N

Benzimidazole Fc11a-2 inhibited secretion of IL-1β and IL-18 from LPS-primed
THP-1 cells stimulated with ATP showing an IC50 of around 10 μM (Liu et al. 2013).
However total inhibition of secretion was not observed at the highest tested concen-
tration (30 μM). Further studies indicated Fc11a-2 did not inhibit the priming phase
but interfered with the cleavage of pro-caspase-1 and hence proteolytic processing of
pro- IL-1β and pro-IL-18. In a murine model of dextran sodium sulfate-induced
colitis, Fc11a-2 (10–30 mg/kg, intragastrically) dose-dependent improvement was
evident in body weight, colon length, histopathologic scoring and myeloperoxidase
activity (Liu et al. 2013). Macrophage infiltration and active caspase-1 were simi-
larly reduced alongside a notable decrease in mRNA for IL-1β, IL-18, TNF-α,
IL-17A and IFN-γ. These results prompted further investigation into analogs to
understand the SAR. However, none of the analogs were significantly more potent
than FC-11a-2 which at 10–30 μM showed inhibition of only 40% in the aforemen-
tioned cell-based assay (Pan et al. 2017).

15.2.12 Organoboron NLRP3 Inhibitors
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2-aminoethoxy diphenylborinate (2APB)
acyclic and cyclic forms

Boron is a largely overlooked element in medicinal chemistry and not common in
pharmaceutical drugs with only Velcade and Tavaborole on the market. An inter-
esting series of NLRP3 inhibitors have been both published (Baldwin et al. 2017)
and patented (Brough et al. 2017) based on the boron semimetal scaffold
2-aminoethoxy diphenylborinate (2APB). This parent scaffold is known to disrupt
cellular Ca2+ homeostasis via a variety of mechanisms, and, until recently, this
explained its NLRP3 inhibitory effect. However Kastnelson et al. recently revealed
2APB inflammasome inhibition was independent of its effects on Ca2+ channels
(Katsnelson et al. 2015).

This work prompted a search for similar boron-based NLRP3 inhibitory com-
pounds which were devoid of the Ca2+ modulatory activity. During these studies the
cyclic nature of 2APB was used to search the zinc database for compounds with
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similar pharmacophore and shape; additional boron-containing compounds were
also identified through searches of SciFinder Scholar (Baldwin et al. 2017). Two
of the most potent early hits were BC7 (NLRP3 IC50 1.16 μM) and BC23 (NLRP3
IC50 2.29 μM). During SAR studies the ring oxygen, boron, NH and substituent
CCl3 were all identified as essential to compound activity. The bisphenyl was not
altered, while the remaining two ring substituents could be used to modulate activity.
Compounds NBC6, 18 and 24 had improved potency alongside more attractive
physicochemical properties. The lead compound NBC6 had NLRP3 IC50 0.57 μM,
which was substantially more potent than the parent 2APB (NLRP3 IC50 67 μM).
Gratifyingly no effect was observed on calcium homeostasis in cell-based assays.
NBC6 was well characterised as a specific inhibitor of NLRP3 inflammasome up to
top concentration of 30 μM in murine BMDM or neutrophils. Both canonical and
non-canonical inflammasome pathways could be blocked to prevent IL-1β secretion,
but IL-1α was not affected. NLRC4 or AIM2 inflammasomes were not inhibited by
NBC6 indicating the compound had a degree of specificity across inflammasomes.
Importantly, NBC6 was tested in washout cell-based assays and was identified as an
irreversible inhibitor of NLRP3.
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One murine model of peritonitis was investigated with a close analog of NBC6
called NBC13, reported as easier to formulate but equipotent (Baldwin et al. 2017).
Both wild-type and NLRP3 knockout mice were used, and MCC950 was tested
simultaneously, as a comparator compound. NBC13 did indeed inhibit LPS-induced
IL-1β in vivo but not to the same degree as MCC950. This may be due to issues of
pharmacokinetics, but associated data was not presented. Nevertheless, this series
proves to be an interesting novel compound set which may find future application in
inflammatory disease.

15.2.13 Anthranilic Acid NSAIDs

The widely used fenamate non-steroidal anti-inflammatory drugs (NSAIDs) typi-
cally target COX enzymes, but recent research found these also target NLRP3
(Daniels et al. 2016). Four clinically used fenamates (diclofenac, flufenamic acid,
meclofenamic acid, mefenamic acid) were tested on LPS-primed immortalised
murine BMDM cells. These drugs inhibited IL-1β secretion when the cells were
stimulated with ATP. The most potent inhibitor in this assay was meclofenamic acid
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with an IC50 around 25 μM. The structurally unrelated NSAID ibuprofen had no
effect. Similar result was observed using MSU as NLRP3 activator. Testing of the
fenamates using NLRC4 stimuli S. typhimurium or AIM2 stimuli dsDNA showed
the compounds did not inhibit these inflammasomes and therefore had a degree of
selectivity. The fenamates also inhibited ASC speck formation.
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Investigation into the mode of action showed no evidence of cysteine modifica-
tion. The compounds were also readily washed out of cells reversing the observed
inhibition. Whole-cell patch-clamp testing was used to examine ion currents show-
ing no effect on ATP-induced cation currents. However, inhibition of VRAC was
identified preventing chloride ion transport in a similar manner to known chloride
channel and VRAC inhibitors.

In vivo models of Alzheimer’s disease were conducted using mefenamic acid
(Daniels et al. 2016). The first showed a protective effect with prophylactic treatment
using mefenamic acid (5 mg/kg/day, i.p.) in rats which had been injected
intracerebroventricularly with soluble oligomeric amyloid β1–42. The second thera-
peutic model was investigated using 13–14-month-old 3 � TgAD transgenic mice
where mefenamic acid was delivered continuously (25 mg/kg/day) via osmotic mini
pump (Daniels et al. 2016). The treatment completely reversed neuroinflammation
with concomitant reduction in activated microglia and IL-1β. This finding is exciting
as these drugs are already in clinical use and could be readily repurposed.

15.3 Natural Products as Inflammasome Modulators

15.3.1 β-Hydroxybutyrate

β-Hydroxybutyrate (BHB) is a ketone metabolite increased in response to various
forms of caloric restriction or energy deficiency to provide an alternative fuel source,
it also functions in cell signalling pathways (Newman and Verdin 2014). Under
these conditions there is an anti-inflammatory effect recently linked to the innate
immune response (Youm et al. 2015). Youm et al. showed BHB effectively blocked
K+ efflux, a known NLRP3 inflammasome trigger, while also preventing ASC
polymerisation and speck formation. BHB was effective at blocking activation of
NLRP3 inflammasome with an IC50 ~1 mM, a physiologically relevant concentra-
tion (Youm et al. 2015). A characteristic dose-dependent reduction of IL-1β and
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IL-18 was observed from LPS-primed human monocytes treated with BHB, while
TNF-α levels were unchanged. This selectivity was further illustrated as NLRC4 and
AIM2, and the non-canonical inflammasome pathway was not affected by BHB.
Further investigation of the mode of action is required; current investigations were
not conclusive albeit ruling out AMP-activated protein kinase, reactive oxygen
species, autophagy and glycolytic inhibition. It is interesting to note other ketogenic
species such as acetoacetate and related short chain fatty acids butyrate and acetate
did not recapitulate the effects observed with BHB, and also the chirality of BHB did
not affect its ability to inhibit NLRP3-mediated pathways.
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A murine model of the NLRP3-specific human disease familial cold
autoinflammatory syndrome (NLRP3 (L351P) Cre+) compared ketogenic
(to increase BHB) versus chow diet (Youm et al. 2015). In this model NLRP3 is
activated causing excessive neutrophilia (Brydges et al. 2009). The ketogenic diet
prevented neutrophilia and hyperglycaemia. This prophylactic approach suggested
elevated BHB levels might prove beneficial and widely applicable in the context of
inflammatory disease. To dose BHB in vivo, formulation to extend its half-life was
required and therefore a nanolipogel complex was used. Two published models
indicate promise for BHB in gout, a disease characterised by presence of
monosodium urate crystals which cause macrophage activation and, inflammasome
dependent, neutrophil infiltration resulting in pain and swelling. The first model
administered an intraperitoneal injection of monosodium urate crystals to mice; upon
dosing with the aforementioned nanolipogel formulation of BHB (125 mg/kg i.p.),
levels of circulating IL-1β and influx of neutrophils into the peritoneum were
normalised (Youm et al. 2015). This held significant promise, and a subsequent rat
model was investigated. Ketogenic or chow diet was fed to outbred Sprague-Dawley
rats, injected with MSU crystals in the knee. In agreement with earlier models,
remarkable reduction of inflammatory phenotype and tissue damage was observed in
the ketogenic diet group, and circulating IL-1β levels were not elevated. BHB was
equally effective in both adult and elderly mice; moreover Staphylococcus aureus
infection was not exacerbated by BHB giving early indication that immune response
to infection has not been unduly compromised although this may be pathogen
dependent.

Efficacy of BHB has also been investigated in a rat model of Parkinson’s disease
(Fu et al. 2015) induced by treatment of the right substantia nigra pars compacta with
LPS. BHB was administered continuously via subcutaneous osmotic pump at three
doses (0.4, 0.8, 1.6 mmol/kg/day ¼ 41.6, 83, 166 mg/kg/day) from 3 days prior to
LPS treatment and for 3 weeks posttreatment. Analysis of motor function through
amphetamine-induced rotational behaviour did show a dose-dependent improve-
ment but, however, did not completely alleviate symptoms. Levels of both dopamine
and its metabolite DOPAC showed a dose-dependent increase, while results from
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Western blot and immunohistochemistry analysis also supported a protective effect
of BHB on dopaminergic neurons. Cell-based work, in support of this study,
suggested the effects of BHB were mediated by GPR109A in microglia; however,
this contrasts with the work of Youm et al. (2015) who studied BMDM from
GPR109A competent and deficient mice to conclude BHB mode of action was not
via this receptor.

The most recent murine study of BHB and NLRP3 inflammasome was focussed
on major depressive disorder after elevated IL-1β, IL-6 and TNF-αwere identified as
part of the pathophysiology (Yamanashi et al. 2017). IL-1β was linked to anti-
neurogenic and anhedonic behaviour, and symptoms were ameliorated in response
to IL-1β receptor antagonist, IL-1Ra, or knockout of the IL-1β receptor IL-1RI (Koo
and Duman 2008). In contrast administration of IL-1β arrested the cell cycle via
IL-1RI and activation of the NF-κB pathway, preventing proliferation of hippocam-
pal cells (Koo and Duman 2008). BHB was administered subcutaneously
(250 mg/kg) in mice showing peak brain concentration of around 8 μg/g of hippo-
campus (Yamanashi et al. 2017), which is well below the IC50 of 1 mM, and
although brains were rinsed prior to processing, it was not clear whether these
were fully perfused, so blood may remain in the blood vessels affecting the analyt-
ical results. Administration of BHB in a murine immobilisation stress model gave a
small but statistically significant reduction in levels of IL-1β. However, in a model of
chronic unpredictable stress, no change in IL-1β was found with BHB treatment
(Yamanashi et al. 2017). Examination of the BHB administration method or perhaps
use of ketogenic diet to increase endogenous BHB in the murine model may prove
more conclusive. Indeed, observation of BHB antidepressant effect may not be
mediated via NLRP3, and further study would be required to clarify this point.

15.3.2 Glucosinolate-Derived Isothiocyanates

Glucosinolates are a class of more than 130 bioactive compounds naturally occurring
in all plants of the mustard family. Many plants of this family are referred to as
“superfoods” due to the beneficial biological effects conferred by the glucosinolate
system (Greaney et al. 2016). Upon plant damage, glucosinolates are hydrolysed by
the atypical β-glucosidase “myrosinase”, and usually a subsequent Lössen-type
rearrangement occurs to give the corresponding isothiocyanates (Sturm and Wagner
2017). Isothiocyanates are reactive and in vivo can modify thiol moieties, such as
cysteine side chains, amongst other nucleophilic functional groups. Perhaps unsur-
prisingly, isothiocyanates have numerous biological effects including inhibition of
phase I metabolic enzymes (specifically cytochromes P450), induction of phase II
enzymes and antimicrobial and anticancer properties. Isothiocyanates also have anti-
inflammatory properties typically mediated through the nuclear factor erythroid-
derived 2-like factor 2 (Nrf2) and the anti-oxidant response-element (ARE) path-
ways (Sturm and Wagner 2017).
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Sulforaphane, generated from the glucosinolate glucoraphanin, was studied at the
National Institute for Health in Bethesda for inflammasome inhibitory effects
(Greaney et al. 2016). Multiple inflammasomes were inhibited, NLRP1b, NLRP3,
NAIP5/NLRC4 and AIM2 post-priming, and, despite the presence of a cysteine
residue in the active site, sulforaphane was not a direct inhibitor of caspase-1.
Several pathways were investigated to identify the mode of inhibition including
investigation of the heat-shock response, effects on Nrf2, and tubulin modification,
but these did not reveal a unifying hypothesis, and further work is required.
Nevertheless, sulforaphane (25 mg/kg, i.p. at 0 and 4 h) was tested in an acute
murine (C57BL/6) model of monosodium urate crystal-induced gout (Greaney et al.
2016). In this model NLRP3 inflammasome is typically activated by the crystalline
deposits resulting in release of IL-1β and influx of inflammatory cells. Peritoneal
lavage fluid of sulforaphane MSU-treated mice indicated a significant reduction of
both IL-1β and recruited cell count compared to vehicle MSU-treated controls.
These data are intriguing given the popular consumption of the Cruciferae, including
the Brassica vegetables, in which these parent glucosinolates exist. Evgen Ltd. are
developing Sulforadex®, a synthetic formulation of sulforaphane which successfully
completed phase I clinical trial (Co 19th Nov 2016). One dose of Sulforadex® is
equivalent to consuming 2.5 kg of broccoli. There are reports of testing Sulforadex®

in diseases where NLRP3 inflammasome is implicated such as osteoarthritis, COPD,
AMD, diabetes and cardiovascular disease (Co 19th Nov 2016).

15.3.3 Sesquiterpene Lactones

O O
OParthenolide

Parthenolide is a naturally occurring germacranolide sesquiterpene lactone first
isolated, as a principle active component, from Feverfew and generally found
throughout the Tanacetum genus (Studies in Natural Products Chemistry: Volume
52 Bioactive natural products 2017; Dey et al. 2016). This natural product has been
studied for efficacy against a plethora of different diseases such as
hypoadiponectinemia, infection (bacterial or parasitic), cancers and inflammatory
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conditions (Studies in natural products chemistry: Volume 52 Bioactive natural
products 2017; Dey et al. 2016). Clinical trials as a migraine therapeutic have been
conducted with the natural source, Feverfew (Murphy et al. 1988).

Parthenolide has multiple modes of action and can ablate NLRP3 inflammasome-
mediated cytokine release with an IC50 of 2.6 μM in THP-1 cell line (Li et al. 2015).
Parthenolide inhibits the NF-κB pathway which regulates transcription of NLRP3
inflammasome components in the cell-priming phase (Juliana et al. 2010). The
NF-κB pathway is triggered in response to toll-like receptor activation, commonly
with LPS. NLRP3 Inflammasome assembly can then be activated by a second signal,
such as ATP. In 2010, parthenolide was found to also inhibit the NLRP3
inflammasome assembly step (Juliana et al. 2010). Bone marrow macrophages
were primed with LPS then treated with parthenolide, but no inflammasome assem-
bly could be observed. This experiment showed inhibitory activity of parthenolide
was not restricted to effects on the NF-κB pathway. Further evidence was gained
using stable NLRP3�/� bone marrow macrophages where NLRP3 was constitu-
tively expressed without the need for LPS priming. In these cells inflammasome
activation using ATP, nigericin or MSU was blocked by parthenolide. These
inhibitory effects were recapitulated in NLRP1 and NLRC4 inflammasome-specific
assays. The protein common to these inflammasomes is caspase-1; parthenolide
reacts with the active-site cysteine residue of caspase-1, Cys285, preventing its
proteolytic activation of IL-1β. Parthenolide also modified Cys residues at the
ATP site of NLRP3 preventing ASC pyroptosome assembly and NLRP3
inflammasome formation. The reactivity of parthenolide seems to be responsible
for its inhibitory activity on multiple proteins. Therefore it is interesting to note that
10 μM parthenolide did not inhibit AIM2-dependent caspase-1 activation or related
pyroptotic cell death, so there remains an unexplained degree of selectivity (Coll
et al. 2011).

Unfortunately parthenolide has low aqueous solubility, poor bioavailability and is
sensitive to pH, which is a significant challenge for its use in vivo. These challenges
have led to investigation of analogs with increased bioavailability and aqueous
solubility (Guzman et al. 2007; Shanmugam et al. 2011; D’Anneo et al. 2013;
Yang et al. 2015). Also, the α,β-unsaturated carbonyl “Michael acceptor” function-
ality of sesquiterpene lactones commonly correlates with cytotoxicity particularly if
other alkylating centres are present (Siedle et al. 2004). The parthenolide mode of
action in inflammation depends on these reactive centres, and therefore modification
to alleviate cytotoxicity, while retaining anti-inflammatory effects of NLRP3 inhi-
bition may prove challenging.
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Arglabin is of the guaianolide class and occurs in Artemisia glabella, a type of
wormwood, found only in Kazakhstan (Abderrazak et al. 2016). Recent investiga-
tions have attempted to delineate how arglabin may interact with innate immune
pathways. Although the carbon skeleton is slightly different from parthenolide, a
similar system of reactive functional groups are present: α,β-unsaturated carbonyl,
lactone, epoxide and alkene. The strained lactone ring is particularly susceptible to
nucleophilic attack in vitro and in vivo (Abderrazak et al. 2016). Comparatively little
investigation of mode of action/binding to NLRP3 has been conducted with
arglabin, and this remains to be confirmed. Arglabin inhibited NLRP3
inflammasome in LPS-primed murine BMDM treated with cholesterol crystals,
using IL-1β and IL-18 secretion as readout (Abderrazak et al. 2016). The effect
was exceptionally potent at IC50 ~10 nM. Cholesterol crystals are phagocytosed and
activate NLRP3 after lysosomal rupture of the phagosome. In contrast using ATP to
promote NLRP3 assembly, the effect was much less dramatic; 50 nM arglabin gave
only 20% decrease in IL-1β secretion. Without testing significantly higher concen-
trations of arglabin, in this assay system, an IC50 cannot be determined. There was no
inhibitory effect (up to 50 nM) on NLRP1, AIM2 or NLRC4 inflammasome in
response to their respective activating stimuli (Abderrazak et al. 2016); again testing
higher concentrations of arglabin would be necessary to show true selectivity.
Arglabin induced microtubule-associated protein 1 light chain 3 II (LC3-II) protein
accumulation at autophagosomal membranes, in the presence and absence of
NLRP3 activators, inducing autophagy which the authors indicate increases degra-
dation of NLRP3 and pro-IL-1β. In this regard multiple NLRP3 inflammasome
activators such as silica and MSU should be inhibited by arglabin; however, this
was not tested.

Cholesterol crystals are a common inflammasome trigger in atherosclerosis. The
observed cytokine inhibitory effect of arglabin in response to cholesterol crystals
therefore prompted investigation of in vivo efficacy in ApoE2.Ki mice expressing
human ApoE2 (2/2) (Abderrazak et al. 2015). These mice are predisposed to develop
atherosclerotic plaques particularly when fed an atherogenic diet. A twice daily low
dose of arglabin (2.5 ng/g i.p.) over 13 weeks effectively reduced the plasma levels
of IL-1β by approximately 50%. A 59% reduction of total cholesterol, 42% reduc-
tion in triglycerides and 44% reduction in autoantibodies against oxLDL were
measured relative to vehicle-treated mice. Moreover, a switch in macrophage phe-
notype from pro-inflammatory M1 to the anti-inflammatory M2 was evident in
spleen and arterial lesions. Both aortic sinus and whole aorta en face in arglabin-
treated mice were reduced to the same level as was observed in ApoE2. Ki/NLRP3
�/� mice fed atherogenic diet. No differences were measured in LDL receptor
expression, hepatic steatosis or cholesterol biosynthesis. In an additional study, in
the same murine model, arglabin attenuated plasma levels of glucose (20% reduc-
tion) and insulin (50% reduction) (Abderrazak et al. 2016). Overall, these models
had a positive outcome, but much more work remains to fully delineate the mech-
anisms behind the observations.
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Artemisinin is a sesquiterpene lactone antimalarial drug which occurs naturally in
Artemisia annua (sweet wormwood) and has formed the basis for many similar
analogs (Dai et al. 2017). The drug is generally well tolerated and active in multiple
models of disease (Dai et al. 2017) including inflammatory conditions: post-infarct
myocardial remodelling, EAE murine model of multiple sclerosis and lupus nephri-
tis. One identified mode of action is via inhibition of the NF-κB pathway to modulate
the immune response, as observed in human astrocytoma T67 cells (Aldieri et al.
2003) and also in microglia (Zhu et al. 2012). This mode of action commonly results
in NLRP3 inhibitory activity as recognised in a transgenic mouse (APPswe/PS1dE9)
model of Alzheimer’s disease (Shi et al. 2013). Once daily, administration of
artemisinin (40 mg/kg i.p.) diminished amyloid plaques in the cortex by 48% and
in the hippocampus by 61%. Examining the underlying mechanisms established no
impairment of amyloid-β transport across the blood-brain barrier, but amyloid
precursor peptide cleavage was impaired via inhibition of the required enzyme
β-secretase (BACE1) (Shi et al. 2013). NF-κB expression and translocation to the
nucleus is integral to the expression of BACE1, and this was significantly impaired
by artemisinin. The NLRP3 priming phase also involves NF-κB nuclear transloca-
tion, and accordingly NLRP3 pathways were suppressed alongside a subsequent
reduction in cleaved caspase-1 and IL-1β production. The NLRP3 modulatory
activity of artemisinin was also identified in a murine model of burn sepsis (Long
et al. 2016). The artemisinin class of molecules may find an expanded range of
therapeutic application in the future.

15.3.4 Flavonoids

Flavones are widely distributed throughout the human diet and may contribute to the
health benefits of fruit and vegetable consumption. This molecular class has there-
fore attracted much interest. After consumption, typical peak plasma flavone con-
centrations vary, and isoflavones tend to be more bioavailable, for example, soy
isoflavones (and citrus flavaonones) peaked at 10 μM; however, this is exceptional,
and <1 μM is more common (Higdon et al. 2005). Flavones are poorly absorbed,
extensively metabolised and readily excreted leading to low bioavailability (Higdon
et al. 2005). Moreover, there are numerous effects on cell signalling. In recent years
there have been an increasing number of studies on inflammasome modulation by
flavones in vitro and in vivo. Previous studies of the anti-inflammatory properties of
flavonoids indicated the C2–C3 alkene, and the position of the hydroxyl groups is
important to the anti-inflammatory potency of these compounds.
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The flavonoid liquiritigenin, the closely related chalcone isoliquiritigenin, and a
saponin, glycyrrhizin, were isolated from Glycyrrhiza Uralensis of the licorice plant
family. Both isoliquiritigenin and glycyrrhizin blocked TLR4/MD-2 complex and
also IKK, preventing NF-κB activation and therefore inflammasome priming.
Isoliquiritigenin was more potent than glycyrrhizin and showed selectivity over
AIM2 inflammasome which glycyrrhizin did not. Both compounds inhibit priming
and activation steps required for NLRP3 inflammasome formation. Using murine
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BMDM with inflammasome stimulation (LPS priming followed by ATP, MSU or
nigericin trigger), NLRP3-derived IL-1β secretion was reduced by around 50%, as
compared to vehicle control, by 1–10 μM isoliquiritigenin, while 1 mM glycyrrhizin
was required to elicit the same response. Parthenolide was included as a control in
these assays, showing approximately similar response to isoliquiritigenin and the
related flavonoid liquiritigenin. In contrast, glycosylated forms of either
isoliquiritigenin or liquiritigenin (liquirtin, isoliquirtin, liquirtin etoposide,
isoliquirtin etoposide), also found in G. uralensis, were ineffective. This agrees
with reports that deglycosylation of flavones led to an improvement of anti-
inflammatory activity (Hostetler et al. 2012). Other studies on the anti-inflammatory
effect of isoliquiritigenin found an induction of regulatory T cells in vitro and in vivo
(Guo et al. 2015). In adipose tissues inflammation was suppressed by both
inflammasome-dependent and inflammasome-independent mechanisms (Watanabe
et al. 2016). Therefore, effects of flavones in modulating inflammation are complex
and not purely inflammasome driven.

A related flavonoid, apigenin, commonly found in fruit, vegetables and herbs
such as camomile, has structural similarity to the aforementioned liquiritigenin. It is
perhaps unsurprising that the anti-inflammatory effects on the NLRP3 pathway were
similar, although it is difficult to compare relative potency as these were not
examined in the same cell lines. Apigenin inhibited IL-1β secretion from THP-1
cells with a potency of around 25 μM (Zhang et al. 2014). Both NLRP3 activation
and priming were inhibited by apigenin in THP-1 and J774A.1 cells. Additional
studies, based on results of quantitative real-time PrimePCR array, showed a mul-
tifactorial effect with more than 24 genes upregulated, while TLR4, CCL5, ICAM1
and VACM1 amongst others were downregulated. Notably apigenin prevented an
LPS-induced reduction of anti-inflammatory cytokine IL-10. Apigenin inhibited
activation of NF-κB and prevented ASC speck formation and ultimately caspase-1
maturation. Cytokine mRNA stability was also impaired through modulation of
post-translational processing. Recent research has indicated a likely link between
NLRP3 activation, stress and major depressive disorder (Kaufmann et al. 2017).
Apigenin was tested in vivo to determine efficacy in a rat model of chronic
unpredictable mild stress (Li et al. 2016b). A dose of 20 mg/kg intragastrically
normalised sucrose consumption, indicative of antidepressant effect, improved
behavioural symptoms and reduced microglial activation. Furthermore, oxidative
stress, IL-1β, IL-18 and expression of NLRP3, caspase-1 and ASC proteins were all
significantly reduced to levels close to the vehicle-only group.

Isoliquiritigenin was successfully tested in a rat model of intracerebral
haemorrhage, and attempts were made to elucidate the mechanism of action (Zeng
et al. 2017). There are currently no effective therapeutics for this debilitating
disorder, but anti-inflammatory approaches hold significant promise. NLRP3 knock-
out or inhibition prevents brain damage, while the Nrf2 anti-oxidant pathway can
prevent release of reactive oxygen species, a known NLRP3 inflammasome trigger.
The rat model of collagenase type IV-induced intracerebral haemorrhage was
conducted using three experiments (Zeng et al. 2017). The first experiment used
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5 groups of 36 rats each: sham, vehicle only and isoliquiritigenin 10, 20,
40 mg/kg. The 10 mg/kg group generally showed no significant effect, whereas
20 and 40 mg/kg were efficacious to a similar degree. Behavioural deficits (motor,
sensory, balance and reflex) and histological effects were improved, while
haematoma volume, brain oedema and BBB permeability reduced. The second
experiment was designed to examine the mechanisms of therapeutic effect using
4 groups of 30 rats: sham, intracerebral haemorrhage only, vehicle treated and
isoliquiritigenin 20 mg/kg treated. This experiment confirmed isoliquiritigenin acti-
vated Nrf2 expression and nuclear translocation. The authors speculate that
isoliquiritigenin may alkylate reactive cysteine residues responsible for stress sens-
ing in the Nrf2 partner protein kelchlike ECH-associated protein 1 (Keap1) (Zeng
et al. 2017). Given the reactive nature of these flavonoid molecules, it is possible
they also alkylate proteins of the inflammasome pathway, but this has not been
investigated thus far. Isoliquiritigenin suppressed both the NF-κB pathway and
NLRP3 inflammasome proteins (NLRP3, ASC, pro-caspase-1, pro-IL-1β and
pro-IL-18) (Zeng et al. 2017). In agreement with downregulation of the
inflammasome pathway, the secretion of active IL-1β and IL-18 was significantly
ablated. The third experiment used siRNA for Nrf2 and also co-administration with
isoliquiritigenin. The Nrf2 siRNA group were notably impaired with exacerbation of
all aforementioned measures of brain injury and inflammatory markers. This was
alleviated in the isoliquiritigenin treatment arm (Zeng et al. 2017). This experiment
provided a detailed examination of isoliquiritigenin’s therapeutic potential in this
CNS disorder giving strong evidence on which to base additional studies. The
authors acknowledge several limitations which will need to be addressed and that
they mainly considered inflammasome pathways in these experiments. Also, colla-
genase may itself trigger inflammatory responses.

Isoliquiritigenin (0.5% wt/wt in chow) showed significant promise in models of
adipose tissue inflammation (Honda et al. 2014; Watanabe et al. 2016), typically
observed in type 2 diabetes, where C57BL/6 mice were fed a high-fat diet over a
20-week period (Honda et al. 2014). Serum cholesterol, triglycerides, leptin and
insulin levels were reduced, and an improvement in insulin sensitivity was evident.
Although isoliquiritigenin-treated mice consumed slightly more food, they gained
less weight and hepatic steatosis was alleviated. Considering adipose tissue inflam-
mation, there were significantly less crown-like structures formed around adipo-
cytes, indicative of a reduction in inflammatory cells. Accompanying this, there was
also a reduction in the expression of inflammatory genes TNF-α, IL-6 and MCP-1
and an increase in adiponectin. Looking at modulation of inflammasomes, IL-1β and
caspase-1 production were markedly reduced at the 20-week time point but also at
the much earlier 4-week stage where significant elevation of these components was
observed in the vehicle-only control groups. Isoliquiritigenin had clearly beneficial
effects in this murine obesity model; however, not all of these are due to inhibition of
NLRP3 inflammasome. In similar overnutrition model of NASH, NLRP3 inhibition
by MCC950, did not alleviate hepatic steatosis and had no effect on the metabolic
aspects of disease (Mridha et al. 2017).
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Wogonoside, isolated from the flowering plant Scutellaria baicalensis Georgi
(Chinese skullcap), inhibits IL-1β secretion from LPS-treated THP-1 cells triggered
with ATP with an IC50 around 50 μM (Sun et al. 2015). NF-κB nuclear translocation
and DNA binding was inhibited along with expression of pro-IL-1β and NLRP3. In
addition, active caspase-1 was suppressed which coincided with reduction in
secreted IL-1β. Wogonoside (12.5, 25, 50 mg/kg, intragastrically) suppressed dex-
tran sodium sulfate-induced colitis in a dose-dependent manner (Sun et al. 2015). A
similar dosing level was also investigated in a rat model of spinal cord injury and
reported to alleviate associated inflammation via suppression of NF-κB and inhibi-
tion of NLRP3 inflammasome (Yonglin et al. 2017). Wogonoside (10, 20, 40 mg/kg)
dose dependently increased survival of BALB/c mice in a model of lipopolysaccha-
ride (LPS), and D-galactosamine induced liver injury by activating Nrf2 and
inhibiting NLRP3 in a similar manner to other flavonoids (Gao et al. 2016).

Casticin (vitexicarpin) alleviated LPS-induced acute lung injury; similar to other
flavonoids, the mechanism was attributed to suppression of NF-κB and inhibition of
NLRP3 inflammasome (Wang et al. 2016). Rutin, a disaccharide form of quercetin,
proved to modulate NLRP3 inflammasome in three models of inflammatory disease:
pancreatitis, spinal cord injury and endothelial dysfunction (Wu et al. 2016; Wang
et al. 2017c; Aruna et al. 2014). Quercetin, luteolin and epigallocatechin gallate also
modulated NLRP3 inflammasome in vivo (Wu et al. 2014; Jiang et al. 2016b; Wang
et al. 2013; Fu et al. 2017). Epigallocatechin gallate was additionally reported to
inhibit NLRP1 inflammasome in a study considering melanoma growth (Ellis et al.
2011).

Isorhamnetin and hyperoside (the 3-O-galactoside of quercetin) isolated from
water dropwort (Oenanthe javanica) were tested using LPS-primed murine BMDM
against inflammasome triggers for NLRP3, NLRC4 and AIM2 (Ahn and Lee 2017).
Isorhamnetin attenuated IL-1β, IL-18 and cleaved caspase-1 with NLRP3 (ATP,
nigericin, alum) and AIM2 (dsDNA) triggers, but these were enhanced in the case of
NLRC4 trigger (flagellin). Pro-IL-1β, TNF-α, IL -6 and NLRP3 expression, in
response to LPS, was prevented by isorhamnetin. Hyperoside however, did not
affect the expression of inflammasome proteins; this molecule inhibited the activa-
tion of NLRC4 inflammasome and AIM2 but not NLRP3 inflammasome (Ahn and
Lee 2017). This work raises the possibility that other glycosylated flavones may be
active against AIM2 and NLRC4.

Efficacy of isoliquiritigenin, and its close structural analogs, in various disease
models was undoubtedly due to intriguing multimodal action. In some cases the
molecules were studied mainly for effect on NLRP3 inflammasome and much
remains to be elucidated about the effects on other inflammasome pathways. It is
difficult to compare activity of these molecules across the varied studies. Extensive
metabolism of the flavones (Higdon et al. 2005) has not been taken into account and
it may be that some of the activity observed is due to metabolites. This would be
particularly relevant in the liver and intestine where extensive metabolism of flavo-
noids occurs. It would be interesting to investigate inflammasome inhibitory activity
of the flavone class more fully to understand the preliminary SAR arising from this
series. Even at a cellular level, to test these compounds and their metabolites side by
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side would give an indication of their relative potency on inflammasome pathways.
However, cellular and in vivo conclusions need to be carefully viewed in the context
of bioavailability and likely in vivo concentrations (Cassidy and Minihane 2017).
Given the worldwide human consumption of flavonoid natural sources, this class of
molecules is certainly of interest.

15.3.5 Quinones

O

Thymoquinone

O

Thymoquinone is a component of black cumin seed (Nigella sativa) and commonly
studied as an anticancer phytochemical. As is common with many natural products,
thymoquinone has multiple modes of action and associated biological effects includ-
ing anti-inflammatory and immunomodulatory properties (Khan et al. 2017). In a
study of mouse (B16F10) and human (A375) metastatic melanoma cell migration,
thymoquinone dose dependently retarded migratory ability in both cell lines (Ahmad
et al. 2013). At 40 μM thymoquinone, cell proliferation was ablated; therefore a top
concentration of 20 μM was used. Cell migration of B16F10 cells was increased in
the presence NLRP3 inflammasome stimuli LPS and ATP. Thymoquinone
suppressed NLRP3 inflammasome protein expression and NF-κB activity, while
proteolytic cleavage of caspase-1 and subsequent secretion of IL-1β and IL-18 were
dose dependently reduced. Thymoquinone can function as both an oxidant and anti-
oxidant with some studies suggesting the anti-oxidant activity is prevalent at low
concentrations and oxidant activity is promoted at high concentrations. The anti-
oxidant effect of thymoquinone on NLRP3 inflammasome activity, and cell migra-
tion was explored by testing the cell migration assay in the presence of a reactive
oxygen species inhibitor N-acetyl-L-cysteine. This did decrease cell migration but to
a lesser extent than thymoquinone the authors therefore concluded that
thymoquinone (anti-inflammatory) activity was not purely due to anti-oxidant effect.
While these experiments show thymoquinone did perturb NLRP3 pathways and
retard cell migration, the link between the two is not unequivocal. Thymoquinone
was also examined in vivo for NLRP3 related effects in a murine model of cancer
cell migration. B16F10 cells were injected into the tail, and tumour nodule formation
in the lungs was used as a readout. Treatment with thymoquinone dose dependently
reduced nodules from 15 to 1 (Periyanayagam et al. 2015).

The effect of thymoquinone on pancreatitis has also been investigated with
respect to NLRP3 mediated effects (Periyanayagam et al. 2015). Thymoquinone
administration (100 mg/kg p.o. for 60 days), in a murine model of pancreatic
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inflammation, resulted in a decrease in oxidative stress markers and IL-1β, IL-18 and
TNF-αmRNA levels. Disappointingly, NLRP3 was not measured. Evidence includ-
ing interstitial oedema inflammation and inflammatory cell infiltration, parenchymal
cell necrosis and haemorrhage also indicated improvement of pancreatitis.

15.3.6 Stilbenoids and Close Analogs

OH

Cinnamic acid
O

Cinnamic acid is naturally found in cinnamon and has a Michael acceptor function-
ality commonly found in many synthetic NLRP3 inhibitory molecules (BAY11-
7082, MNS, acrylate derivatives). It would be reasonable to assume cinnamic acid
would have potential to covalently modify proteins on the NLRP3 inflammasome
pathways, but this remains to be proven. Cinnamic acid was tested for efficacy in
LPS-induced endotoxin-poisoned mice (Xu et al. 2017). Neutrophil infiltration was
reduced significantly, alongside reduction of IL-1β, IL-18 and TNF-α in serum.
NLRP3, caspase-1, IL-1β mRNA, protein of NLRP3 and cleaved caspase-1 were
similarly reduced. These data gave early indication that cinnamic acid may have
NLRP3 modulatory effects.

Curcumin

O

HO

H3CO
OH

OH

OCH3

Curcumin is a major bioactive constituent of turmeric which has seen an upsurge
in popularity in the superfoods arena. Like so many natural products, multiple modes
of action have been identified and many disease models studied. One recent study of
the biological mode of action used a murine model of osteoarthritis, where
destabilisation of the medial meniscus (DMM) surgery was used and addressed to
some degree in vivo modulation of inflammasome (Sun et al. 2017). Curcumin
(50 μM, i.p.) retarded disease progression and reduced expression of IL-1β, IFN-γ,
IL-17A, IL-18, TNF-α and VCAM1 mRNA. In LPS-primed THP-1 cells, activated
with ATP, curcumin (10 μM) suppressed IL-1β and TNF-α at both mRNA and
protein level, while cleaved caspase-1 levels were reduced to baseline. An earlier
study found curcumin suppressed the TLR4, MD88, NFκB and P2X7R pathways in
murine macrophages (Kong et al. 2016). Other murine models have also been
reported with investigation of NLRP3 involvement such as chronic kidney disease
(Bugyei-Twum et al. 2016), LPS-induced septic shock (Gong et al. 2015) and
diabetic nephropathy (Lu et al. 2017) amongst others. Whether the reactive Michael
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acceptor functionality is integral to the NLRP3 activity, as it is in many other NLRP3
inhibitory compounds, has not yet been defined.

Resveratrol

HO

OH

OH

Resveratrol is a stilbenoid which commonly occurs in the skin of grapes and other
berries. This polyphenolic compound has been subjected to a plethora of studies
illustrating its bioactivity in a wide range of disease models. However, while
resveratrol is well absorbed (~70%), it has poor oral bioavailability, at just 0.5%,
due to extensive metabolism (Walle et al. 2004). In 2013, a role for resveratrol in
modulation of NLRP3 inflammasome was identified while studying pathways
involved in radiation injury (Fu et al. 2013). Resveratrol activated Sirt1 deacetylase
preventing its activity in transactivation of NF-κB and subsequent effect on NLRP3
transcription (Fu et al. 2013). These effects were also observed in murine microglia
(Sui et al. 2016). Additional studies indicated resveratrol inhibited NLRP3
inflammasome assembly as well as priming. NLRP3 cell-based inhibition for res-
veratrol had an IC50 ~15 μM using J774A.1 macrophages (Chang et al. 2015).
However resveratrol is non-selective as it also inhibits NLRP1 and NLRC4
inflammasomes (Chang et al. 2015). Resveratrol prevented mitochondrial damage
and therefore also averted release of mitochondrial reactive oxygen species and
translocation of mitochondrial DNA into the cytosol (Chang et al. 2015). This
protective mechanism prevented activation of NLRP3. In addition, the autophagy
marker LC3B-11 was increased by resveratrol; this pathway increases degradation of
NLRP3 and pro-IL-1β, hence suppressing NLRP3 inflammasome activity (Chang
et al. 2015). NLRP3 activity has been assessed in vivo using murine models of renal
inflammation (Chang et al. 2015), LPS-induced acute lung injury (Jiang et al.
2016a), adipose tissue inflammation (Li et al. 2016a) and sepsis-associated enceph-
alopathy (Chang et al. 2015; Sui et al. 2016) amongst many others. Efficacy in
human disease has also been tested; indeed 130 clinical trials are listed in
clinicaltrials.gov with 17 of these at phase III.

Rhaponticin
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HO

HO
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OH

OH

Rhaponticin is a glycosylated stilbenoid naturally occurring in rhubarb rhizomes.
The aglycone is closely related to resveratrol and has very similar reported activity as
an activator of Sirt1 (Wei et al. 2017). No investigation has yet been made with this
compound into the mitochondrial protective effects or autophagy. Rhaponticin
(20–100 mg/kg, p.o.) was protective in a dextran sodium sulfate-induced murine
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model of colitis (Wei et al. 2017). These results should be confirmed through cell-
based studies to support the in vivo findings, and establish potency and selectivity.

Salidroside
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O

HO
HO

OH

OH

OH

Salidroside is a glycosylated form of tyrosol which occurs in Rhodiola rosea
(golden root) and is typically regarded as antidepressant and anxiolytic. Recent
studies have shown beneficial effects in diabetic nephropathy (Wang et al. 2017b)
and ventilation induced lung injury (Wang et al. 2017d). Similar to resveratrol and
rhapontin, salidroside is an activator of Sirt1 thereby preventing its activity in
transactivation of NF-κB and subsequent effect on NLRP3 transcription (Wang
et al. 2017d). These results should be confirmed through cell-based studies to
support the in vivo findings and establish potency and selectivity.

15.3.7 Steroids
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Prednisone (10 mg/kg, p.o.), a potent anti-inflammatory drug, in a mouse model of
cuprizone-induced demyelination gave early indications of NLRP3 modulatory
effects (Yu et al. 2017a). Prednisone reduced microglial and astrocyte activation
and protein levels of NLRP3, IL-1β and active caspase-1. Further work is required to
support the in vivo findings, establish potency and selectivity.

15.3.8 Pentacyclic Natural Products
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Senegenin (tenuigenin) is isolated from the traditional Chinese medicinal herb
Polygala tenuifolia known to act as an antidepressant; effects were confirmed in a
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murine model of chronic unpredictable mild stress, and for the first time, these
effects were linked to NLRP3 inhibition (Li et al. 2017). NLRP3-mediated IL-1β
secretion was prevented through inhibition of the NF-κB pathway as determined
through hippocampal phosphorylation levels of NF-κB by Western blot and immu-
nohistochemistry. These early results require further investigation.

Celastrol

O

HO

H

CO2H

Celastrol is isolated from the roots of Tripterygium wilfordii (thunder god vine)
and in 2009 was successfully tested, as an extract, in clinical trials for rheumatoid
arthritis (Goldbach-Mansky et al. 2009). Reports of celastrol’s IL-1β inhibitory
properties prompted investigation into potential NLRP3 inhibitory action in an,
LPS-stimulated, J774A.1 macrophage cell line with ATP as NLRP3 inflammasome
trigger (Xin et al. 2017). IL-1β, IL-18 and TNF-α were all inhibited by celastrol in a
dose-dependent manner, but the effect was not particularly potent with IC50 >50
μM. Levels of NLRP3, caspase-1 p10 and pro-IL-1βwere decreased by celastrol, but
again the effect was not potent. Pyroptotic cell death is typical of NLRP3 activation
and was reduced by celastrol as measured by LDH release assay. Celastrol inhibited
reactive oxygen species, through its well-known anti-oxidant activity, and also
prevented NF-κB activation (Xin et al. 2017). A subsequent study also identified
celastrol as an NLRP3 inhibitor and provided considerably more detail (Yu et al.
2017b). It is interesting to note this study used LPS-primed peritoneal macrophages
stimulated with ATP where the inhibitory effect was much more convincing with
IC50 <125 nM. No effect was observed on TNF-α if celastrol was added after LPS
stimulation. This study also found celastrol could enhance autophagy (which is
known to inhibit NLRP3 inflammasome activation) and prevent ASC
oligomerisation and formation of the NLRP3 complex. Unfortunately, there was
little assessment of compound selectivity in vitro. Promising activity was observed
in vivo in murine models of LPS-induced septic shock where celastrol was admin-
istered at 1 mg/kg i.p. and also in dextran sodium sulfate-induced colitis (compound
dose was not recorded). These results are promising and warrant further
investigation.
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15.3.9 Alkaloids
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Sinomenine (cocculine) is an alkaloid, of similar structure to morphine, isolated from
Sinomenium acutum and traditionally used to treat rheumatism, arthritis and neural-
gia. Sinomenine (10–20 mg/kg i.p.) proved protective in a mouse model of
ischaemic stroke. In this model, a decreased expression of NLRP3 and ASC was
found, while cleaved caspase-1 and IL-1β levels were reduced, along with IL-6,
IL-18 and TNF-α (Qiu et al. 2016). Sinomenine (30 mg/kg) was also efficacious in a
mouse model of traumatic brain injury where efficacy was attributed to activation of
the Nrf2 anti-oxidant response-element pathways known to negatively regulate
NF-κB and NLRP3 inflammasome (Yang et al. 2016). A number of analogs have
been synthesised which were modified in the A ring of sinomenine leaving the
remainder of the molecule unchanged; these proved to be more potent inhibitors of
cellular IL-1β release when tested at 10 μg/mL (Zhao et al. 2015).

15.4 Other Possibilities for Indirect NLRP3 Inhibitors

15.4.1 Kinase Inhibitors as Indirect NLRP3 Inhibitors

Multiple kinases have been identified which regulate NLRP3 inflammasome com-
ponents and hence NLRP3 complex formation (Neumann and Ruland 2013).
Untangling and understanding this inflammasome kinome network is only just
beginning. Given the strong drug discovery efforts in cancer therapy with kinase
inhibitors, there is a promising foundation on which to find advanced leads for
indirectly targeting inflammasomes.

In 2013, Hara et al. (2013) identified Syk and Jnk kinases were important to
NLRP3 inflammasome activation. Syk kinase is thought to phosphorylate ASC, an
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event which is crucial for oligomerisation (Lin et al. 2015). Hara et al. used a
chemical biology approach, where a series of kinase inhibitors were tested to identify
which prevented release of IL-1β. R406, the active form of prodrug fostamatinib,
and BAY61-3606 were Syk kinase inhibitors identified in this study (Hara et al.
2013). Prior to this finding, fostamatinib had already been in clinical development as
a rheumatoid arthritis therapeutic, but trials were terminated after phase IIb where
primary and secondary endpoints were not achieved (Ron Leuty 2013). It is worth
noting the covalent modifier of NLRP3 inflammasome components
3,4-methylenedioxy-β-nitrostyrene is also a known inhibitor of Syk kinase and
inhibits NLRP3 however it is not particularly drug-like (as previously discussed)
(He et al. 2014). Hara also discovered the small molecule AP600125 and peptidic
TAT-JI_TIP Jnk inhibitors were effective inflammasome inhibitors (Hara et al.
2013). Both the Syk and Jnk inhibitor effects were supported through extensive
studies including mutation of active-site residues in each kinase. There are many
other published and commercial Syk and Jnk kinase inhibitors [nilvadipine (Paris
et al. 2014), TAK659 (Liu and Mamorska-Dyga 2017), bentamapimod (Gehringer
et al. 2015), tanzisertib (Gehringer et al. 2015)] which may now be re-examined for
possible effects on inflammasome activity.
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Further kinases have been found that regulate NLRP3 inflammasome assembly:
PKR (Boriushkin et al. 2016; Yim and Williams 2014), Lyn (Shio et al. 2009), BTK
(Ito et al. 2015), TAK1-Jnk (Okada et al. 2014), PI(3)K (Ives et al. 2015), DAPK
(Lai and Chen 2014), IRAK1/4 (Lin et al. 2014; Fernandes-Alnemri et al. 2013) and,
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in 2016, Pyk2 (Chung et al. 2016) and NEK7 (Schmid-Burgk et al. 2016). NEK7 is
particularly intriguing as its catalytic phosphorylation activity is dispensable for its
action on NLRP3. Shi et al. (2016) reported on the NLRP3-NEK7 axis in more detail
showing NEK7 is a selective upstream regulator of NLRP3 inflammasome activa-
tion. NEK7 interacts directly with the leucine-rich repeat domain of NLRP3, in a
kinase-independent manner, and this association is required for inflammasome
assembly. NEK7 is very specific as it is not involved in NLRC4 (another LRR
domain containing inflammasome) or AIM2 (lacks an LRR domain) activation nor
toll-like receptor (TLR) responses. Moreover the roles of NEK7 as mitotic kinase
and NLRP3 regulator are mutually exclusive, i.e. mitosis and NLRP3 inflammasome
activation cannot occur simultaneously. Understanding and disrupting the NEK7-
NLRP3 interaction could give a novel means by which to target NLRP3 activity.
Little is known about how most kinases are interacting with NLRP3, and other
inflammasomes have been even less studied. Through understanding the kinase
networks surrounding these systems, their full potential can be realised and appro-
priate kinase inhibitors may be developed or repurposed as anti-inflammatory drugs.

15.4.2 Caspase Inhibitors

The ultimate goal of the inflammasome is activation of caspase-1 such that cytokine
processing can occur. It is a viable therapeutic strategy to inhibit caspase-1 directly;
indeed there are a significant number of caspase-1-targeted molecules in the
published and patent literature (MacKenzie et al. 2010; Lee et al. 2017). Examples
of these include pralnacasan (VX740), emricasan and VX765. Human caspases
4 and 5 (murine ortholog is caspase-11) are also of significant interest as drug
targets; these directly interact with LPS via their CARD domain to trigger activation
of their protease function (Shi et al. 2014); this is termed the non-canonical
inflammasome pathway. However, despite many years of research, caspase inhibi-
tors have not yet succeeded in the clinic. There are significant challenges beyond
selectivity issues; caspase inhibitors have typically suffered from toxicity and poor
pharmacokinetics, but a keen interest remains, and it is likely a drug will emerge
from this effort, perhaps with the aid of novel methods of delivery (Lee et al. 2017).
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15.4.3 Ion Channels, Reactive Oxygen Species
and Lysosomal Destabilisation

There are a number of studies linking Ca2+ to inflammasome triggering. Interest-
ingly, increase in cellular Ca2+ can trigger NLRP3 activation via an unknown
mechanism; in contrast, blocking calcium channels prevents NLRP3 activation
(Yaron et al. 2015; Rada et al. 2014). This is a possible avenue for therapeutic
intervention where calcium channels could be targeted using known inhibitors such
as nilvadipine (also a known Syk inhibitor).

Lysosomal rupture leads to generation of reactive oxygen species (suggested to
activate NLRP3), activating calcium-dependent ion channels. Calcium-dependent
protein kinases (CaMkII) are also triggered upstream of the TAK1-JNK pathway,
ultimately resulting in NLRP3 activation (Okada et al. 2014). Anti-oxidants and
radical scavengers may prevent the impact of reactive oxygen species in triggering
the inflammasome. There are many dietary examples of anti-oxidants in natural
products as already covered. Lysosomal damage also involves release of protease
cathepsin B, and this is believed to trigger NLRP3 inflammasome. There are
inhibitors of cathepsin B such as E-64 (Terada et al. 2010) or Ca-074 (Terada
et al. 2010) which may provide promising leads as NLRP3 inflammasome inhibitors.
Although it is worth noting, these epoxide-containing compounds are likely to react,
non-specifically, with biological nucleophiles.
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15.5 Conclusions

As the knowledge of inflammasome biology forges ahead, chemists are beginning to
use this to build a substantial pipeline of inhibitory molecules as tools and also as
therapeutics. There are clearly many avenues towards inhibition of inflammasome
activity, and the molecules thus far published tend to exploit more than one. This is
especially true of the natural products and reactive compounds which covalently
modify biological nucleophiles. The most well-characterised NLRP3 inhibitors are
sulfonylureas and the number of publications and patents in this class continually
increase. In contrast, many of the inhibitors described herein require significantly
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more work to characterise their mode of action, increase their potency and optimise
their pharmacokinetic properties before hope of successful translation. That said, the
illustrated preliminary efficacy in models of inflammatory disease gives promise for
the future. The recent success for Novartis with Ilaris (canakinumab), a biologic
which target IL-1β, in meeting the endpoints of the 6-year 10,061 patient CANTOS
trial has further excited the inflammasome field. Indeed a number of established
large pharmaceutical companies and new companies are in active pursuit of
inflammasome inhibitors including Inflazome, IFM Therapeutics, Olatec, Nodthera
and Selvita, and the race to bring molecules to the clinic is well underway.
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