®

Check for
updates

ROLA: A New Distributed Transaction
Protocol and Its Formal Analysis

Si Liu!®)®, Peter Csaba Olveczky?®, Keshav Santhanam!®, Qi Wang!®,
Indranil Gupta!®, and José Meseguer!

L University of Illinois, Urbana-Champaign, USA
siliu3@illinois.edu
2 University of Oslo, Oslo, Norway

Abstract. Designers of distributed database systems face the choice
between stronger consistency guarantees and better performance. A num-
ber of applications only require read atomicity (RA) and prevention of
lost updates (PLU). Existing distributed database systems that meet
these requirements also provide additional stronger consistency guaran-
tees (such as causal consistency), and therefore incur lower performance.
In this paper we define a new distributed transaction protocol, ROLA,
that targets applications where only RA and PLU are needed. We for-
mally model ROLA in Maude. We then perform model checking to ana-
lyze both the correctness and the performance of ROLA. For correctness,
we use standard model checking to analyze ROLA’s satisfaction of RA
and PLU. To analyze performance we: (a) use statistical model checking
to analyze key performance properties; and (b) compare these perfor-
mance results with those obtained by analyzing in Maude the well-known
protocol Walter. Our results show that ROLA outperforms Walter.

1 Introduction

Distributed transaction protocols are complex distributed systems whose design
is quite challenging because: (i) validating correctness is very hard to achieve by
testing alone; (ii) the high performance requirements needed in many applica-
tions are hard to measure before implementation; and (iii) there is an unavoidable
tension between the degree of consistency needed for the intended applications
and the high performance required of the transaction protocol for such applica-
tions: balancing well these two requirements is essential.

In this work, we present our results on how to use formal modeling and
analysis as early as possible in the design process to arrive at a mature design of a
new distributed transaction protocol, called ROLA, meeting specific correctness
and performance requirements before such a protocol is implemented. In this
way, the above-mentioned design challenges (i)—(iii) can be adequately met. We
also show how using this formal design approach it is relatively easy to compare
ROLA with other existing transaction protocols.

© The Author(s) 2018
A. Russo and A. Schiirr (Eds.): FASE 2018, LNCS 10802, pp. 77-93, 2018.
https://doi.org/10.1007/978-3-319-89363-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_5&domain=pdf
http://orcid.org/0000-0003-3578-7432
http://orcid.org/0000-0002-0708-3721
http://orcid.org/0000-0001-5939-7944
http://orcid.org/0000-0002-7517-8888
http://orcid.org/0000-0002-9372-5937
http://orcid.org/0000-0003-4779-3848

78 S. Liu et al.

ROLA in a Nutshell. Different applications require negotiating the consis-
tency vs. performance trade-offs in different ways. The key issue is the applica-
tion’s required degree of comsistency, and how to meet such requirements with
high performance. Cerone et al. [4] survey a hierarchy of consistency models for
distributed transaction protocols including (in increasing order of strength):

— read atomicity (RA): either all or none of a distributed transaction’s updates
are visible to another transaction (that is, there are no “fractured reads”);

— causal consistency (CC): if transaction T is causally dependent on transaction
T1, then if another transaction sees the updates by 75, it must also see the
updates of T; (e.g., if A posts something on a social media, and C sees B’s
comment on A’s post, then C' must also see A’s original post);

— parallel snapshot isolation (PSI): like CC but without lost updates;

— and so on, all the way up to the well-known serializability guarantees.

A key property of transaction protocols is the prevention of lost updates
(PLU). The weakest consistency model in [4] satisfying both RA and PLU is PSI.
However, PSI, and the well-known protocol Walter [20] implementing PSI, also
guarantee CC. Cerone et al. conjecture that a system guaranteeing RA and PLU
without guaranteeing CC should be useful, but up to now we are not aware of any
such protocol. The point of ROLA is exactly to fill this gap: guaranteeing RA and
PLU, but not CC. Two key questions are then: (a) are there applications needing
high performance where RA plus PLU provide a sufficient degree of consistency?
and (b) can a new design meeting RA plus PLU outperform existing designs,
like Walter, meeting PSI?

Regarding question (a), an example of a transaction that requires RA and
PLU but not CC is the “becoming friends” transaction on social media. Bailis
et al. [3] point out that RA is crucial for this operation: If Edinson and Neymar
become friends, then Unai should not see a fractured read where Edinson is a
friend of Neymar, but Neymar is not a friend of Edinson. An implementation of
“becoming friends” must obviously guarantee PLU: the new friendship between
Edinson and Neymar should not be lost. Finally, CC could be sacrificed for the
sake of performance: Assume that Dani is a friend of Neymar. When Edinson
becomes Neymar’s friend, he sees that Dani is Neymar’s friend, and therefore
also becomes friend with Dani. The second friendship therefore causally depends
on the first one. However, it does not seem crucial that others are aware of this
causality: If Unai sees that Edinson and Dani are friends, then it is not necessary
that he knows that (this happened because) Edinson and Neymar are friends.

Regarding question (b), Sect. 6 shows that ROLA clearly outperforms Walter
in all performance requirements for all read/write transaction rates.

Maude-Based Formal Modeling and Analysis. In rewriting logic [16],
distributed systems are specified as rewrite theories. Maude [5] is a high-
performance language implementing rewriting logic and supporting various
model checking analyses. To model time and performance issues, ROLA is spec-
ified in Maude as a probabilistic rewrite theory [1,5]. ROLA’s RA and PLU
requirements are then analyzed by standard model checking, where we disregard

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 79

time issues. To estimate ROLA’s performance, and to compare it with that of
Walter, we have also specified Walter in Maude, and subject the Maude mod-
els of both ROLA and Walter to statistical model checking analysis using the
PVESTA [2] tool.

Main Contributions include: (1) the design, formal modeling, and model
checking analysis of ROLA, a new transaction protocol having useful applications
and meeting RA and PLU consistency properties with competitive performance;
(2) a detailed performance comparison by statistical model checking between
ROLA and the Walter protocol showing that ROLA outperforms Walter in all
such comparisons; (3) to the best of our knowledge the first demonstration that,
by a suitable use of formal methods, a completely new distributed transaction
protocol can be designed and thoroughly analyzed, as well as be compared with
other designs, very early on, before its implementation.

2 Preliminaries

Read-Atomic Multi-Partition (RAMP) Transactions. To deal with ever-
increasing amounts of data, large cloud systems partition their data across multi-
ple data centers. However, guaranteeing strong consistency properties for multi-
partition transactions leads to high latency. Therefore, trade-offs that combine
efficiency with weaker transactional guarantees for such transactions are needed.

In [3], Bailis et al. propose an isolation model, read atomic isolation, and Read
Atomic Multi-Partition (RAMP) transactions, that together provide efficient
multi-partition operations that guarantee read atomicity (RA).

RAMP uses multi-versioning and attaches metadata to each write. Reads use
this metadata to get the correct version. There are three versions of RAMP; in
this paper we build on RAMP-Fast. To guarantee that all partitions perform
a transaction successfully or that none do, RAMP performs two-phase writes
using the two-phase commit protocol (2PC). In the prepare phase, each time-
stamped write is sent to its partition, which adds the write to its local database.!
In the commit phase, each such partition updates an index which contains the
highest-timestamped committed version of each item stored at the partition.

RAMP assumes that there is no data replication: a data item is only stored at
one partition. The timestamps generated by a partition P are unique identifiers
but are sequentially increasing only with respect to P. A partition has access to
methods GET_ALL(! : set of items) and PUT_ALL(W : set of (item, value) pairs).

PUT_ALL uses two-phase commit for each w in W. The first phase initiates
a prepare operation on the partition storing w.item, and the second phase com-
pletes the commit if each write partition agrees to commit. In the first phase, the
client (i.e., the partition executing the transaction) passes a version v : (item,
value, ts,, md) to the partition, where ts, is a timestamp generated for the
transaction and md is metadata containing all other items modified in the same
transaction. Upon receiving this version v, the partition adds it to a set versions.

L RAMP does not consider write-write conflicts, so that writes are always prepared
successfully (which is why RAMP does not prevent lost updates).

80 S. Liu et al.

When a client initiates a GET_ALL operation, then for each i € I the client
will first request the latest version vector stored on the server for . It will then
look at the metadata in the version vector returned by the server, iterating over
each item in the metadata set. If it finds an item in the metadata that has a
later timestamp than the ts, in the returned vector, this means the value for i
is out of date. The client can then request the RA-consistent version of 7.

Rewriting Logic and Maude. In rewriting logic [16] a concurrent system
is specified a as rewrite theory (X, E U A, R), where (X, E U A) is a member-
ship equational logic theory [5], with X an algebraic signature declaring sorts,
subsorts, and function symbols, E a set of conditional equations, and A a set
of equational axioms. It specifies the system’s state space as an algebraic data
type. R is a set of labeled conditional rewrite rules, specifying the system’s local
transitions, of the form [I] : ¢ — ¢’ if cond, where cond is a condition and [is a
label. Such a rule specifies a transition from an instance of ¢ to the corresponding
instance of ¢', provided the condition holds.

Maude [5] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is for-
malized as a multiset of objects and messages. A class C' with attributes att; to
att, of sorts s1 to s, is declared class C | atty : s1, ..., att, : S,. An object
of class C'is modeled as aterm <o : C | atty : vy, ..., att, : v, >, with o its
object identifier, and where the attributes att; to att, have the current values
v1 to vy, respectively. Upon receiving a message, an object can change its state
and/or send messages to other objects. For example, the rewrite rule

rl [1] : m(0,z) <0 :C | a1l : x, a2 : 0’ >
=> <0:Clal:x+2z,a2 :0 > m@’,x + z)

defines a transition where an incoming message m, with parameters 0 and z, is
consumed by the target object 0 of class C, the attribute al is updated to x +
z, and an outgoing message m’ (0’ ,x + z) is generated.

Statistical Model Checking and PVESTA. Probabilistic distributed sys-
tems can be modeled as probabilistic rewrite theories [1] with rules of the form

[[]:t(7) — (7, Y) if cond(¥) with probability y = n(T)

where the term ¢’ has new variables 3 disjoint from the variables Z in the
term t. The concrete values of the new variables 3 in t/(2, %) are chosen
probabilistically according to the probability distribution 7 (7).

Statistical model checking [18,21] is an attractive formal approach to ana-
lyzing (purely) probabilistic systems. Instead of offering a yes/no answer, it can
verify a property up to a user-specified level of confidence by running Monte-
Carlo simulations of the system model. We then use PVESTA [2], a paralleliza-
tion of the tool VESTA [19], to statistically model check purely probabilistic
systems against properties expressed as QUATEX expressions [1]. The expected
value of a QUATEX expression is iteratively evaluated w.r.t. two parameters «

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 81

and § by sampling, until we obtain a value v so that with (1 —«)100% statistical
confidence, the expected value is in the interval [v — g, v+ %]

3 The ROLA Multi-Partition Transaction Algorithm

Our new algorithm for distributed multi-partition transactions, ROLA, extends
RAMP-Fast. RAMP-Fast guarantees RA, but it does not guarantee PLU since
it allows a write to overwrite conflicting writes: When a partition commits a
write, it only compares the write’s timestamp ¢; with the local latest-committed
timestamp ¢, and updates the latest-committed timestamp with ¢1 or t5. If the
two timestamps are from two conflicting writes, then one of the writes is lost.

ROLA’s key idea to prevent lost updates is to sequentially order writes on the
same key from a partition’s perspective by adding to each partition a data struc-
ture which maps each incoming version to an incremental sequence number. For
write-only transactions the mapping can always be built; for a read-write transac-
tion the mapping can only be built if there has not been a mapping built since the
transaction fetched the value. This can be checked by comparing the last prepared
version’s timestamp’s mapping on the partition with the fetched version’s times-
tamp’s mapping. In this way, ROLA prevents lost updates by allowing versions to
be prepared only if no conflicting prepares occur concurrently.

More specifically, ROLA adds two partition-side data structures: sqn, denot-
ing the local sequence counter, and seq[ts], that maps a timestamp to a local
sequence number. ROLA also changes the data structure of versions in RAMP
from a set to a list. ROLA then adds two methods: the coordinator-side? method
UPDATE(I : set of items, OP : set of operations) and the partition-side method
PREPARE_UPDATE(v : version, tSprev - timestamp) for read-write transactions.
Furthermore, ROLA changes two partition-side methods in RAMP: PREPARE,
besides adding the version to the local store, maps its timestamp to the increased
local sequence number; and COMMIT marks versions as committed and updates
an index containing the highest-sequenced-timestamped committed version of
each item. These two partition-side methods apply to both write-only and read-
write transactions. ROLA invokes RAMP-Fast’s PUT_ALL, GET_ALL and GET
methods (see [3,14]) to deal with read-only and write-only transactions.

ROLA starts a read-write transaction with the UPDATE procedure. It invokes
RAMP-Fast’s GET_ALL method to retrieve the values of the items the client
wants to update, as well as their corresponding timestamps. ROLA writes then
proceed in two phases: a first round of communication places each timestamped
write on its respective partition. The timestamp of each version obtained previ-
ously from the GET_ALL call is also packaged in this prepare message. A second
round of communication marks versions as committed.

At the partition-side, the partition begins the PREPARE_UPDATE routine by
retrieving the last version in its versions list with the same item as the received
version. If such a version is not found, or if the version’s timestamp ts, matches

2 The coordinator, or client, is the partition executing the transaction.

82 S. Liu et al.

Algorithm 1. ROLA

Server-side Data Structures

versions: list of versions (item, value, timestamp ts,, metadata md)
latestCommitli]: last committed timestamp for item

seq[ts]: local sequence number mapped to timestamp ts

sqn: local sequence counter

Server-side Methods
GET same as in RAMP-Fast

5: procedure PREPARE_UPDATE(v : version, ¢Sprey : timestamp)
6: latest «+ last w € versions : w.item = v.item

7 if latest = NULL or tSprev = latest.ts, then

8: sqn «— sqn + 1; seq[v.ts,] < sqn; versions.add(v)

9: return ACK

10: else return latest

11: procedure PREPARE(v : version)
12: sqn «— sqn + 1; seq[v.tsy] < sqn; wversions.add(v)

13: procedure COMMIT(ts. : timestamp)

14: Iis — {w.item | w € versions A w.ts, = tsc}
15: for i € I;s do
16: if seq[tsc] > seq[latestCommit[i]] then latestCommit[i] « ts.

Coordinator-side Methods
PUT_ALL, GET_ALL same as in RAMP-Fast

17: procedure UPDATE(! : set of items, OP : set of operations)

18: ret «— GET,ALL(I); tstz < generate new timestamp

19: parallel-for i € I do

20: tSprev < Tet[i].tsy; v« ret[i].value

21: w « {(item = i, value = op,(v), tsy = tsta, md = (I — {i}))

22: P < PREPARE_UPDATE(wW,tSprev)

23: if p = latest then

24: invoke application logic to, e.g., abort and/or retry the transaction
25: end parallel-for

26: parallel-for server s : s contains an item in I do

27: invoke COMMIT (¢S¢z) on s

28: end parallel-for

the passed-in timestamp %spp,, then the version is deemed prepared. The par-
tition keeps a record of this locally by incrementing a local sequence counter
and mapping the received version’s timestamp ts, to the current value of the
sequence counter. Finally the partition returns an ACK to the client. If tsprey

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 83

does not match the timestamp of the last version in wversions with the same
item, then this latest timestamp is simply returned to the coordinator.

If the coordinator receives an ACK from PREPARE_UPDATE, it immediately
commits the version with the generated timestamp tsy;. If the returned value is
instead a timestamp, the transaction is aborted.

4 A Probabilistic Model of ROLA

This section defines a formal executable probabilistic model of ROLA. The whole
model is given at https://sites.google.com /site/fase18submission/.

As mentioned in Sect. 2, statistical model checking assumes that the system
is fully probabilistic; that is, has no unquantified nondeterminism. We follow the
techniques in [6] to obtain such a model. The key idea is that message delays are
sampled probabilistically from dense/continuous time intervals. The probability
that two messages will have the same delay is therefore 0. If events only take
place when a message arrives, then two events will not happen at the same time,
and therefore unquantified nondeterminism is eliminated.

We are also interested in correctness analysis of a model that captures all
possible behaviors from a given initial configuration. We obtain such a nonde-
terministic untimed model, that can be subjected to standard model checking
analysis, by just removing all message delays from our probabilistic timed model.

4.1 Probabilistic Sampling

Nodes send messages of the form [A, rcvr <-msg], where A is the message
delay, rcor is the recipient, and msg is the message content. When time A has
elapsed, this message becomes a ripe message {1, rcor <- msg}, where T is the
“current global time” (used for analysis purposes only).

To sample message delays from different distributions, we use the follow-
ing functionality provided by Maude: The function random, where random (k)
returns the k-th pseudo-random number as a number between 0 and 232 — 1,
and the built-in constant counter with an (implicit) rewrite rule counter =>
N:Nat. The first time counter is rewritten, it rewrites to 0, the next time it
rewrites to 1, and so on. Therefore, each time random(counter) rewrites, it
rewrites to the next random number. Since Maude does not rewrite counter
when it appears in the condition of a rewrite rule, we encode a probabilistic
rewrite rule (@) — t/(2,y) if cond(Z) with probability ¥ := m(7) in
Maude as the rule t(7) — t/(Z, sample(n(Z))) if cond(Z'). The following
operator sampleLogNormal is used to sample a value from a lognormal distribu-
tion with mean MEAN and standard deviation SD:

op sampleLogNormal : Float Float -> [Float]
eq sampleLogNormal (MEAN,SD) = exp(MEAN + SD * sampleNormal)

op sampleNormal : -> [Float] . op sampleNormal : Float -> [Float]
eq sampleNormal = sampleNormal(float(random(counter) / 4294967296))
eq sampleNormal (RAND) = sqrt(- 2.0 * log(RAND)) * cos(2.0 * pi * RAND)

https://sites.google.com/site/fase18submission/

84 S. Liu et al.

random(counter) /4294967296 rewrites to a different “random” number
between 0 and 1 each time it is rewritten, and this is used to define the sampling
function. For example, the message delay rd to a remote site can be sampled
from a lognormal distribution with mean 3 and standard deviation 2 as follows:

eq rd = sampleLogNormal(3.0, 2.0)

4.2 Data Types, Classes, and Messages

We formalize ROLA in an object-oriented style, where the state consists of a
number of partition objects, each modeling a partition of the database, and a
number of messages traveling between the objects. A transaction is formalized as
an object which resides inside the partition object that executes the transaction.

Data Types. A version is a timestamped version of a data item (or key) and is
modeled as a 4-tuple version(key, value, timestamp, metadata). A timestamp
is modeled as a pair ts(addr, sqn) consisting of a partition’s identifier addr and
a local sequence number sqgn. Metadata are modeled as a set of keys, denoting,
for each key, the other keys that are written in the same transaction.

The sort OperationList represents lists of read and write operations as terms
such as (x := read k1) (y := read k2) write(kl,x+y), where LocalVar
denotes the “local variable” that stores the value of the key read by the operation,
and Expression is an expression involving the transaction’s local variables:

op write : Key Expression -> Operation [ctor]
op _:=read_ : LocalVar Key -> Operation [ctor]
pr LIST{Operation} * (sort List{Operation} to OperationList)

Classes. A transaction is modeled as an object of the following class Txn:

class Txn | operations : OperationList, readSet : Versions,
localVars : LocalVars, latest : KeyTimestamps .

The operations attribute denotes the transaction’s operations. The readSet
attribute denotes the versions read by the read operations. localVars maps the
transaction’s local variables to their current values. latest stores the local view
as a mapping from keys to their respective latest committed timestamps.

A partition (or site) stores parts of the database, and executes the trans-
actions for which it is the coordinator/server. A partition is formalized as an
object instance of the following class Partition:

class Partition | datastore : Versioms, sqn : Nat,
gotTxns : Objectlist, executing : Object,
committed : Objectlist, aborted : ObjectList,
tsSgn : TimestampSqn, latestCommit : KeyTimestamps,
votes : Vote, voteSites : TxnAddrSet,

1stGetSites : TxnAddrSet, 2ndGetSites : TxnAddrSet,
commitSites : TxnAddrSet .

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 85

The datastore attribute represents the partition’s local database as a list of ver-
sions for each key stored at the partition. The attribute latestCommit maps to
each key the timestamp of its last committed version. tsSqn maps each version’s
timestamp to a local sequence number sqn. The attributes gotTxns, executing,
committed and aborted denote the transaction(s) which are, respectively, wait-
ing to be executed, currently executing, committed, and aborted.

The attribute votes stores the votes in the two-phase commit. The remaining
attributes denote the partitions from which the executing partition is awaiting
votes, committed acks, first-round get replies, and second-round get replies.

The following shows an initial state (with some parts replaced by ‘...") with
two partitions, pl and p2, that are coordinators for, respectively, transactions
t1, and t2 and t3. p1 stores the data items x and z, and p2 stores y. Transaction
t1 is the read-only transaction (x1 := read x) (yl := read y), transaction
t2 is a write-only transaction write(y, 3) write(z, 8), while transaction t3
is a read-write transaction on data item x. The states also include a buffer of
messages in transit and the global clock value, and a table which assigns to each
data item the site storing the item. Initially, the value of each item is [0]; the
version’s timestamp is empty (eptTS), and metadata is an empty set.

eq init = { 0.0 | nil}
< tb : Table | table : [sites(x, pl) ;; sites(y,p2) ;; sites(z,pl)] >
< pl : Partition |
gotTxns: < t1 : Txn | operations: ((x1 :=read x) (yl :=read y)),
readSet: empty, latest: empty,
localVars: (x1 [-> [0], y1 |-> [0]) >,
datastore: (version(x, [0], eptTS, empty)
version(z, [0], eptTS, empty)),

sqn: 1, ... >
< p2 : Partition |
gotTxns: < t2 : Txn | operatioms: (write(y, 3) write(z,8)), ... >
< t3 : Txn | operations: ((x1 := read x)
write(x, x1 plus 1)), ... >
datastore: version(y, [0], eptTS, empty), ... > .

Messages. The message prepare (tzn, version, sender) sends a version from a
write-only transaction to its partition, and prepare (txn, version, ts, sender)
does the same thing for other transactions, with s the timestamp of the version
it read. The partition replies with a message prepare-reply ({zn, vote, sender),
where vote tells whether this partition can commit the transaction. A message
commit (tzn, ts, sender) marks the versions with timestamp ts as committed.
get (tzn, key, ts, sender) asks for the highest-timestamped committed version or
a missing version for key by timestamp ts, and responsel (txn, version, sender)
and response2 (tzn, version, sender) respond to first/second-round get requests.

86 S. Liu et al.

4.3 Formalizing ROLA’s Behaviors

This section formalizes the dynamic behaviors of ROLA using rewrite rules,
referring to the corresponding lines in Algorithm 1. We only show 2 of the 15
rewrite rules in our model, and refer to the report [14] for further details.?

Receiving prepare Messages (lines 5-10). When a partition receives a prepare
message for a read-write transaction, the partition first determines whether the
timestamp of the last version (VERSION) in its local version list VS matches
the incoming timestamp TS’ (which is the timestamp of the version read by
the transaction). If so, the incoming version is added to the local store, the
map tsSqn is updated, and a positive reply (true) to the prepare message is
sent (“return ack” in our pseudo-code); otherwise, a negative reply (false, or
“return latest” in the pseudo-code) is sent. Depending on whether the sender
PID’ of the prepare message happens to be PID itself, the reply is equipped
with a local message delay 1d or a remote message delay rd, both of which are
sampled probabilistically from distributions with different parameters:*

crl [receive-prepare-rw]
{T, PID <- prepare(TID, version(K,V, TS, MD), TS’,PID’)}
< PID : Partition | datastore: VS, sqn: SQN, tsSqn: TSSQN, AS’ >
=>
if VERSION == eptVersion or tstamp(VERSION) == TS’
then < PID : Partition | datastore: (VS version(X,V,TS,MD)), sqgn: SQN’,
tsSqn: insert(TS,SQN’,TSSQN), AS’ >
[if PID == PID’ then 1d else rd fi,
PID’ <- prepare-reply(TID, true, PID)]
else < PID : Partition | datastore: VS, sgn: SQN, tsSqn: TSSQN, AS’> >
[if PID == PID’ then 1d else rd fi,
PID’ <- prepare-reply(TID, false, PID)] fi
if SQN’ := SQN + 1 /\ VERSION := latestPrepared(X,VS)

Receiving Negative Replies (lines 23-24). When a site receives a prepare-reply
message with vote false, it aborts the transaction by moving it to the aborted
list, and removes PID’ from the “vote waiting list” for this transaction:

rl [receive-prepare-reply-false-executing]
{T, PID <- prepare-reply(TID, false, PID’)}
< PID : Partition | executing: < TID : Txn | AS >, aborted: TXNS,
voteSites: VSTS addrs(TID, (PID’ , PIDS)), AS’ >
=>
< PID : Partition | executing: noTxn,
aborted: (TXNS ;; <TID : Txn | AS >),
voteSites: VSTS addrs(TID, PIDS), AS’ > .

3 We do not give variable declarations, but follow the convention that variables are
written in (all) capital letters.
4 The variable AS’ denotes the “remaining” attributes in the object.

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 87

5 Correctness Analysis of ROLA

In this section we use reachability analysis to analyze whether ROLA guarantees
read atomicity and prevents lost updates.
For both correctness and performance analysis, we add to the state an object

< m : Monitor | log: log >

which stores crucial information about each transaction. The log is a list of
records record (tid, issueTime, finishTime, reads, writes, committed) , with tid
the transaction’s ID, issue Time its issue time, finishTime its commit/abort time,
reads the versions read, writes the versions written, and committed a flag that
is true if the transaction is committed.

We modify our model by updating the Monitor when needed. For example,
when the coordinator has received all committed messages, the monitor records
the commit time (T) for that transaction, and sets the “committed” flag to true’:

crl [receive-committed]
{T, PID <- committed(TID, PID’)}
< M : Monitor | log: (LOG record(TID, T’, T’’, RS, WS, false) LOG’) >
< PID : Partition | executing: < TID : Txn | AS >,
committed: TXNS, commitSites: CMTS, AS’ >
=>
if CMTS’[TID] == empty --- all "committed" received
then < M : Monitor | log: (LOG record(TID,T’, T,RS, WS, true) LOG’) >
< PID : Partition | executing: noTxn, commitSites: CMTS’,
committed: (TXNS ;; < TID : Txn | AS >, AS’ >
else < M : Monitor | log: (LOG record(TID,T’,T’’,RS, WS, false) LOG’) >
< PID : Partition | executing: < TID : Txn | AS >,
committed: TXNS, commitSites: CMTS’, AS’ > fi
if CMTS’ := remove(TID, PID’, CMTS)

Since ROLA is terminating if a finite number of transactions are issued, we
analyze the different (correctness and performance) properties by inspecting this
monitor object in the final states, when all transactions are finished.

Read Atomicity. A system guarantees RA if it prevents fractured reads, and
also prevents transactions from reading uncommitted, aborted, or intermediate
data [3], where a transaction T; exhibits fractured reads if transaction T; writes
version x,, and y,, T; reads version x,, and version y;, and k < n [3].

We analyze this property by searching for a reachable final state (arrow =>1)
where the property does not hold:

search [1] initConfig =>! C:Config < M:Address : Monitor | log: LOG:Record >
such that fracRead(LOG) or abortedRead(L0OG)

5 The additions to the original rule are written in italics.

88 S. Liu et al.

The function fracRead checks whether there are fractured reads in the execution
log. There is a fractured read if a transaction TID2 reads X and Y, transaction
TID1 writes X and Y, TID2 reads the version TSX of X written by TID1, and reads
a version TSY’ of Y written before TSY (TSY’ < TSY). Since the transactions in
the log are ordered according to start time, TID2 could appear before or after
TID1 in the log. We spell out the case when TID1 comes before TID2:

op fracRead : Record -> Bool .
ceq fracRead(LOG ;
record(TID1,T1,T1’,RS1, (version(X,VX,TSX,MDX), version(Y,VY,TSY,MDY)),true) ; LOG’ ;
record(TID2,T2,T2’, (version(X,VX,TSX,MDX), version(Y,VY’,TSY’,MDY’)), WS2,true) ; LOG’’)
= true if TSY’ < TSY .
ceq fracRead(LOG ; record(TID2, ...) ; LOG’ ; record(TID1, ...) ; LOG’’) = true if TSY’ < TSY.
eq fracRead(LOG) = false [owise] .

The function abortedRead checks whether a transaction TID2 reads a version
TSX that was written by an aborted (flag false) transaction TID1:

op abortedRead : Record -> Bool .
eq abortedRead(LOG ;
record(TID1, T1, T1’, RS1, (version(X,VX,TSX,MDX), VS), false) ; LOG’ ;
record(TID2, T2, T2’, (version(X,VX,TSX,MDX), VS), WS2, true) ; LOG’’) true .
eq abortedRead(LOG ; record(TID2,...) ; LOG’ ; record(TID1,...) ; LOG’’) = true.
eq abortedRead(LOG) = false [owise] .

No Lost Updates. We analyze the PLU property by searching for a final state in
which the monitor shows that an update was lost:

search [1] initConfig =>! C:Config < M:Address : Monitor | log: LOG:Record >
such that 1u(LOG)

The function 1u, described in [14], checks whether there are lost updates in LOG.

We have performed our analysis with 4 different initial states, with up to 8
transactions, 2 data items and 4 partitions, without finding a violation of RA
or PLU. We have also model checked the causal consistency (CC) property with
the same initial states, and found a counterexample showing that ROLA does
not satisfy CC. (This might imply that our initial states are large enough so
that violations of RA or PLU could have been found by model checking.) Each
analysis command took about 30seconds to execute on a 2.9 GHz Intel 4-Core
i7-3520M CPU with 3.7 GB memory.

6 Statistical Model Checking of ROLA and Walter

The weakest consistency model in [4] guaranteeing RA and PLU is PSI, and
the main system providing PSI is Walter [20]. ROLA must therefore outperform
Walter to be an attractive design. To quickly check whether ROLA does so,
we have also modeled Walter—without its data replication features—in Maude
(see [11] and https://sites.google.com/site/fasel8submission/maude-spec), and
use statistical model checking with PVESTA to compare the performance of
ROLA and Walter in terms of throughput and average transaction latency.

https://sites.google.com/site/fase18submission/maude-spec

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 89

Extracting Performance Measures from Executions. PVESTA estimates
the expected (average) value of an expression on a run, up to a desired statistical
confidence. The key to perform statistical model checking is therefore to define a
measure on runs. Using the monitor in Sect. 5 we can define a number of functions
on (states with) such a monitor that extract different performance metrics from
this “system execution log.”

The function throughput computes the number of committed transactions
per time unit. committedNumber computes the number of committed transac-
tions in LOG, and totalRunTime returns the time when all transactions are fin-
ished (i.e., the largest finishTime in LOG):

op throughput : Config -> Float [frozen]
eq throughput(< M : Monitor | log: LOG > REST)
= committedNumber (LOG) / totalRunTime(LOG) .

The function avglLatency computes the average transaction latency by divid-
ing the sum of the latencies of all committed transactions by the number of such
transactions:

op avglatency : Config -> Float [frozen]
eq avglatency(< M : Monitor | log: LOG > REST)
= totalLatency(LOG) / committedNumber (LOG)

where totalLatency computes the sum of all transaction latencies (time
between the issue time and the finish time of a committed transaction).

Generating Initial States. We use an operator init to probabilistically gener-
ate initial states: init (rtz, wtz, rwtx, part, keys, rops, wops, rwops, distr) gener-
ates an initial state with rtx read-only transactions, wtr write-only transactions,
rwtr read-write transactions, part partitions, keys data items, rops operations
per read-only transaction, wops operations per write-only transaction, rwops
operations per read-write transactions, and distr the key access distribution
(the probability that an operation accesses a certain data item). To capture the
fact that some data items may be accessed more frequently than others, we also
use Zipfian distributions in our experiments.

Statistical Model Checking Results. We performed our experiments under
different configurations, with 200 transactions, 2-4 operations per transaction,
up to 200 data items and 50 partitions, with lognormal message delay distribu-
tions, and with uniform and Zipfian data item access distributions.

The plots in Fig.1 show the throughput as a function of the percentage of
read-only transactions, number of partitions, and number of keys (data items),
sometimes with both uniform and Zipfian distributions. The plots show that
ROLA outperforms Walter for all parameter combinations. More partitions gives
ROLA higher throughput (since concurrency increases), as opposed to Walter
(since Walter has to propagate transactions to more partitions to advance the

90 S. Liu et al.

vector timestamp). We only plot the results under uniform key access distribu-
tion, which are consistent with the results using Zipfian distributions.

The plots in Fig. 2 show the average transaction latency as a function of the
same parameters as the plots for throughput. Again, we see that ROLA out-
performs Walter in all settings. In particular, this difference is quite large for
write-heavy workloads; the reason is that Walter incurs more and more overhead
for providing causality, which requires background propagation to advance the
vector timestamp. The latency tends to converge under read-heavy workload
(because reads in both ROLA and Walter can commit locally without certifica-
tion), but ROLA still has noticeable lower latency than Walter.

Workload on 25 Partitions with Uniform Distribution Workload on 100 Keys with Uniform Distribution

14 | ROlA (50 keys) T+ 1.6 FROLA (o ply) F T T]

T
1.4 |- ROLA (30 par) 7~)

)
1 o |-ROLA (100 keys) ¥ B
““| ROLA (200 keys) &~ 1.5 |- ROLA (50 par) = .
1T Walter (50 keys) g | Walter (10 par) s
0.8 [-Walter (100 keys) - — 1" Walter (30 par) -
| Walter (200 keys) ¢ B

["Walter (50 par) ¢

Throughput (txn/time unit)

Throughput (txn/time unit)
o
®

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0
0 10 20 30 40 5 60 70 80 90 100 0 10 20 3 40 5 60 70 8 9 100
Percentage of Read-only Txns Percentage of Read-only Txns
Workload on 25 Partitions with 10% Read-only Txns Workload on 100 Keys with Uniform Distribution
0.45 T T T T T T T
04 + —+ ROLA (90% RO-TXN) =+ Walter (90% RO-TXN)

- A 2 FROLA (50% RO-TXN) ¥ Walter (50% RO-TXN) = =

0.35
0.3

0.25 [~ e

ROLA (10% RO-TXN) B~ Walter (10% RO-TXN) ¥

Throughput (txn/time unit)
)
N
T
n
Throughput (txn/time unit)
o

- 1 A P
0.15 X/X,/—X/—/ =
0.1~ .] 0.5
0.05 - ROLA (uniform) =+ Walter (uniform) = |
’ Py | ROLA (zipf) > | Walter (zipf) | o .) ! i
50 100 150 200 10 20 30 40 50
Number of Keys Number of Partitions

Fig. 1. Throughput comparison under different workload conditions.

Computing the probabilities took 6hours (worst case) on 10 servers, each
with a 64-bit Intel Quad Core Xeon E5530 CPU with 12 GB memory. Each point
in the plots represents the average of three statistical model checking results.

7 Related Work

Maude and PVESTA have been used to model and analyze the correctness and
performance of a number of distributed data stores: the Cassandra key-value
store [12,15], different versions of RAMP [10,13], and Google’s Megastore [7,8].
In contrast to these papers, our paper uses formal methods to develop and
validate an entirely new design, ROLA, for a new consistency model.
Concerning formal methods for distributed data stores, engineers at Amazon
have used TLA+ and its model checker TLC to model and analyze the correct-
ness of key parts of Amazon’s celebrated cloud computing infrastructure [17].

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 91

In contrast to our work, they only use formal methods for correctness analysis;
indeed, one of their complaints is that they cannot use their formal method for
performance estimation. The designers of the TAPIR transaction protocol for
distributed storage systems have also specified and model checked correctness
(but not performance) properties of their design using TLA+ [22].

Workload on 25 Partitions with Uniform Distribution Workload on 25 Partitions with 90% Read-only Txns
16 T T T T T T T T T 1.4 T T T
g AN ROLA (50 keys) —+ g ., . I a |
H ROLA (100 keys) ¢ | H
E ™ ROLA (200 keys) “E- E 1
o 10 Walter (50 keys)) 0.8 T
) \ \ Walter (100 keys) =2~ | z S A—
g 6 S Walter (200 keys) ¥ _| L ——
5, \ S 04
- \Q&' S ool ROLA (uniform) = Walter (uniform) & _|
< o B < - ROLA (zipf) ¢ Wall ipf
o Eﬁ‘w X i e] o | | FOLA (ziph) | alter (zipf) 7
0 10 20 30 40 50 60 70 80 90 100 50 100 150 200
Percentage of Read-only Txns Number of Keys
Workload on 100 Keys with Zipf Distribution Workload on 100 Keys with Uniform Distribution
14 T T T T T T T T T T T T T T T T
g 12 A g 12 \ ROLA(10par) -+
. X‘x\;\\“ 2 10 ROLA (30 par) > _|
£ 1 \ E ROLA (50 par) &~
T o8 % 8 \N Walter (10 par)
= 7 "\\A < sk Walter (30 par) -
g 0.6 7 g =1 =1 = =%] E \ Walter (50 par) ¥~
5 04 5 4
5 0 3
9 ., [-ROLA (10 par) -+ ROLA (50 par) B Walter (30 par) = _| s , 4
< 7" | ROLA (30 par) %= Walter (10 par) Walter (50 par) ¢ < —_— h i =
0 I 1 Il 1 1 Il Il I ? 0 T I I Il LJ T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Percentage of Read-only Txns Percentage of Read-only Txns

Fig. 2. Average latency comparison across varying workload conditions.

8 Conclusions

We have presented the formal design and analysis of ROLA, a distributed trans-
action protocol that supports a new consistency model not present in the survey
by Cerone et al. [4]. Using formal modeling and both standard and statistical
model checking analyses we have: (i) validated ROLA’s RA and PLU consis-
tency requirements; and (ii) analyzed its performance requirements, showing
that ROLA outperforms Walter in all performance measures.

This work has shown, to the best of our knowledge for the first time, that the
design and validation of a new distributed transaction protocol can be achieved
relatively quickly before its implementation by the use of formal methods. Our
next planned step is to implement ROLA, evaluate it experimentally, and com-
pare the experimental results with the formal analysis ones. In previous work
on existing systems such as Cassandra [9] and RAMP [3], the performance esti-
mates obtained by formal analysis and those obtained by experimenting with
the real system were basically in agreement with each other [10,12]. This con-
firmed the useful predictive power of the formal analyses. Our future research
will investigate the existence of a similar agreement for ROLA.

92

S. Liu et al.

Acknowledgments. We thank Andrea Cerone, Alexey Gotsman, Jatin Ganhotra,
and Rohit Mukerji for helpful early discussions on this work, and the anonymous review-
ers for useful comments. This work was supported in part by the following grants: NSF
CNS 1409416, NSF CNS 1319527, AFOSR/AFRL FA8750-11-2-0084, and a generous
gift from Microsoft.

References

11.

12.

. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language

for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213-239
(2006)

AlTurki, M., Meseguer, J.: PVESTA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Cirstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386—392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2_28

Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. ACM Trans. Database Syst. 41(3), 15:1-15:45
(2016)

. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency

models with atomic visibility. In: CONCUR. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2015)

Clavel, M., Durén, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework: How to Spec-
ify, Program, and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

Eckhardt, J., Miihlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking
for composite actor systems. In: Marti-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 143-160. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37635-1_9

Grov, J., Olveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494-519. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54624-2_25

Grov, J., Olveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaiin, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159-174. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7_12

Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol (2010)

. Liu, S., Olveczky7 P.C., Ganhotra, J., Gupta, 1., Meseguer, J.: Exploring design

alternatives for RAMP transactions through statistical model checking. In: Duan,
Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 298-314. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68690-5_18

Liu, S., Olveczky, P.C., Wang, Q., Meseguer, J.: Formal modeling and analysis
of the Walter transactional data store. In: Proceedings of WRLA 2018. LNCS.
Springer (2018, to appear). https://sites.google.com/site/siliunobi/walter

Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, 1., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Trans. Embed.
Syst. 4(1), 03:1-03:26 (2017)

https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-68690-5_18
https://sites.google.com/site/siliunobi/walter

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 93

Liu, S., Olveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, 1., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: SAC 2016. ACM
(2016)

Liu, S., Olveczky, P.C., Santhanam, K., Wang, Q., Gupta, L., Meseguer, J.: ROLA:
a new distributed transaction protocol and its formal analysis (2017). https://sites.
google.com/site/fasel8submission/tech-report

Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 332-347. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11737-9.22

Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73-155 (1992)

Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66-73
(2015)

Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266-280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988_26

Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: QEST 2005. IEEE Computer Society (2005)
Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP 2011. ACM (2011)

Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368-1409 (2006)
Zhang, 1., Sharma, N.K., Szekeres, A., Krishnamurthy, A., Ports, D.R.K.: Building
consistent transactions with inconsistent replication. In: Proceedings of Symposium
on Operating Systems Principles, SOSP 2015. ACM (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://sites.google.com/site/fase18submission/tech-report
https://sites.google.com/site/fase18submission/tech-report
https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/11513988_26
http://creativecommons.org/licenses/by/4.0/

	ROLA: A New Distributed Transaction Protocol and Its Formal Analysis
	1 Introduction
	2 Preliminaries
	3 The ROLA Multi-Partition Transaction Algorithm
	4 A Probabilistic Model of ROLA
	4.1 Probabilistic Sampling
	4.2 Data Types, Classes, and Messages
	4.3 Formalizing ROLA's Behaviors

	5 Correctness Analysis of ROLA
	6 Statistical Model Checking of ROLA and Walter
	7 Related Work
	8 Conclusions
	References

