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Abstract. Spectrum based fault localisation determines how suspicious
a line of code is with respect to being faulty as a function of a given test
suite. Outstanding problems include identifying properties that the test
suite should satisfy in order to improve fault localisation effectiveness
subject to a given measure, and developing methods that generate these
test suites efficiently.

We address these problems as follows. First, when single bug optimal
measures are being used with a single-fault program, we identify a formal
property that the test suite should satisfy in order to optimise fault local-
isation. Second, we introduce a new method which generates test data
that satisfies this property. Finally, we empirically demonstrate the util-
ity of our implementation at fault localisation on sv-comp benchmarks
and the tcas program, demonstrating that test suites can be generated
in almost a second with a fault identified after inspecting under 1% of
the program.

Keywords: Software quality · Spectrum based fault localisation
Debugging

1 Introduction

Faulty software is estimated to cost 60 billion dollars to the US economy per
year [1] and has been single-handedly responsible for major newsworthy catas-
trophes1. This problem is exacerbated by the fact that debugging (defined as
the process of finding and rectifying a fault) is complex and time consuming –
estimated to consume 50–60% of the time a programmer spends in the main-
tenance and development cycle [2]. Consequently, the development of effective
and efficient methods for software fault localisation has the potential to greatly
reduce costs, wasted programmer time and the possibility of catastrophe.

In this paper, we advance the state of the art in lightweight fault localisation
by building on research in spectrum-based fault localisation (sbfl). sbfl is one
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A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 246–263, 2018.
https://doi.org/10.1007/978-3-319-89363-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_14&domain=pdf
http://orcid.org/0000-0001-6084-0042
http://orcid.org/0000-0002-1893-6259
http://orcid.org/0000-0002-6681-5283
https://www.newscientist.com/gallery/software-faults/


Optimising SBFL for Single Fault Programs Using Specifications 247

of the most prominent areas of software fault localisation research, estimated to
make up 35% of published work in the field to date [3], and has been demon-
strated to be efficient and effective at finding faults [4–12]. The effectiveness relies
on two factors, (1) the quality of the measure used to identify the lines of code
that are suspected to be faulty, and (2) the quality of the test suite used. Most
research in the field has been focussed on finding improved measures [4–12], but
there is a growing literature on how to improve the quality of test suites [13–20].
An outstanding problem in this field is to identify the properties that test suites
should satisfy to improve fault localisation.

To address this problem, we focus our attention on improving the quality of
test suites for the purposes of fault localisation on single-fault programs. Pro-
grams with a single fault are of special interest, as a recent study demonstrates
that 82% of faulty programs could be repaired with a “single fix” [21], and that
“when software is being developed, bugs arise one-at-a-time and therefore can be
considered as single-faulted scenarios”, suggesting that methods optimised for
use with single-fault programs would be most helpful in practice. Accordingly,
the contributions of this paper are as follows.

1. We identify a formal property that a test suite must satisfy in order to be
optimal for fault localisation on a single-fault program when a single-fault
optimal sbfl measure is being used.

2. We provide a novel algorithm which generates data that is formally shown to
satisfy this property.

3. We integrate this algorithm into an implementation which leverages model
checkers to generate small test suites, and empirically demonstrate its prac-
tical utility at fault localisation on our benchmarks.

The rest of this paper is organized as follows. In Sect. 2, we present the formal
preliminaries for sbfl and our approach. In Sect. 3, we motivate and describe
a property of single-fault optimality. In Sect. 4, we present an algorithm which
generates data for a given faulty program, and prove that the data generated sat-
isfies the property of single fault optimality, and in Sect. 5 discuss implementation
details. In Sect. 6 we present our experimental results where we demonstrate the
utility of an implementation of our algorithm on our benchmarks, and in Sect. 7
we present related work.

2 Preliminaries

In this section we formally present the preliminaries for understanding our fault
localisation approach. In particular, we describe probands, proband models, and
sbfl.

2.1 Probands

Following the terminology in Steimann et al. [22], a proband is a faulty program
together with its test suite, and can be used for evaluating the performance of
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Fig. 1. minmax.c Fig. 2. Coverage matrix

a given fault localization method. A faulty program is a program that fails to
always satisfy a specification, which is a property expressible in some formal
language and describes the intended behaviour of some part of the program
under test (put). When a specification fails to be satisfied for a given execution
(i.e., an error occurs), it is assumed there exists some (incorrectly written) lines
of code in the program which was the cause of the error, identified as a fault
(aka bug).

Example 1. An example of a faulty c program is given in Fig. 1 (minmax.c, taken
from Groce et al. [23]), and we shall use it as our running example throughout
this paper. There are some executions of the program in which the assertion
statement least <= most is violated, and thus the program fails to always sat-
isfy the specification. The fault in this example is labelled C4, which should be
an assignment to least instead of most.

A test suite is a collection of test cases whose result is independent of the
order of their execution, where a test case is an execution of some part of a
program. Each test case is associated with an input vector, where the n-th value
of the vector is assigned to the n-th input of the given program for the purposes
of a test (according to some given method of assigning values in the vector to
inputs in the program). Each test suite is associated with a set of input vectors
which can be used to generate the test cases. A test case fails (or is failing) if it
violates a given specification, and passes (or is passing) otherwise.

Example 2. We give an example of a test case for the running example. The
test case with associated input vector 〈0, 1, 2〉 is an execution in which input1
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is assigned 0, input2 is assigned 1, and input3 is assigned 2, the statements
labeled C1, C2 and C3 are executed, but C4 and C5 are not executed, and the
assertion is not violated at termination, as least and most assume values of 0
and 2 respectively. Accordingly, we may associate a collection of test cases (a test
suite) with a set of input vectors. For the running example the following ten
input vectors are associated with a test suite of ten test cases: 〈1, 0, 2〉, 〈2, 0, 1〉,
〈2, 0, 2〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 0〉, 〈2, 0, 0〉, 〈2, 2, 2〉, 〈1, 2, 0〉, and 〈0, 1, 2〉. Here,
the first three input vectors result in error (and thus their associated test cases
are failing), and the last seven do not (and thus their associated test cases are
passing).

A unit under test uut is a concrete artifact in a program which is a can-
didate for being at fault. Many types of uuts have been defined and used in
the literature, including methods [24], blocks [25,26], branches [16], and state-
ments [27–29]. A uut is said to be covered by a test case just in case that test
case executes the uut. For convenience, it will help to always think of uuts as
being labeled C1, C2, ... etc. in the program itself (as they are in the running
example). Assertion statements are not considered to be uuts, and we assume
that each fault in the program has a corresponding uut.

Example 3. To illustrate some uuts for the running example (Fig. 1), we have cho-
sen the units under test to be the statements labeled in comments marked C1, . . . ,
C5. The assertion is labeled E, which is violated when an error occurs. To illustrate
a proband, the faulty program minmax.c (described in Example 1), and the test
suite associated with the input vectors described in Example 2, together form a
proband.

2.2 Proband Models

In this section we define proband models, which are the principle formal objects
used in sbfl. Informally, a proband model is a mathematical abstraction of a
proband. We assume the existence of a given proband in which the uuts have
already been identified for the faulty program and appropriately labeled C1, . . . ,
Cn, and assume a total of n uuts. We begin as follows.

Definition 1. A set of coverage vectors, denoted by T, is a set {t1, . . . , t|T|} in
which each tk ∈ T is a coverage vector defined tk = 〈ck1 , . . . , ckn+1, k〉, where
– for all 0 < i � n, cki = 1 if the i-th uut is covered by the test case associated

with tk, and 0 otherwise.
– ckn+1 = 1 if the test case associated with tk fails and 0 if it passes.

We also call a set of coverage vectors T the fault localisation data or a dataset.
Intuitively, each coverage vector can be thought of as a mathematical abstraction
of an associated test case which describes which uuts were executed/covered in
that test case. We also use the following additional notation. If the last argument
of a coverage vector in T is the number k it is denoted tk where k uniquely
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identifies a coverage vector in T and the corresponding test case in the associated
test suite. In general, for each tk ∈ T, cki is a coverage variable and gives the
value of the i-th argument in tk. If ckn+1 = 1, then tk is called a failing coverage
vector, and passing otherwise. The set of failing coverage vectors/the event of an
error is denoted E (such that the set of passing vectors is then E). Element ckn+1

is also denoted ek (as it describes whether the error occurred). For convenience,
we may represent the set of coverage vectors T with a coverage matrix, where for
all 0 < i � n and tk ∈ T the cell intersecting the i-th column and k-th row is cki
and represents whether the i-th uut was covered in the test case corresponding
to tk. The cell intersecting the last column and k-th row is ek and represents
whether tk is a failing or passing test case. Fig. 2 is an example coverage matrix.
In practice, given a program and an input vector, one can extract coverage
information from an associated test case using established tools2.

Example 4. For the test suite given in Example 2 we can devise a set of cov-
erage vectors T = {t1, . . . , t10} in which t1 = 〈1, 0, 1, 1, 0, 1, 1〉, t2 = 〈1, 0, 0, 1,
1, 1, 2〉, t3 = 〈1, 0, 0, 1, 0, 1, 3〉, t4 = 〈1, 1, 0, 0, 0, 0, 4〉, t5 = 〈1, 1, 0, 0, 0, 0, 5〉, t6 =
〈1, 0, 0, 0, 1, 0, 6〉, t7 = 〈1, 0, 0, 1, 1, 0, 7〉, t8 = 〈1, 0, 0, 0, 0, 0, 8〉, t9 = 〈1, 1, 0, 0,
1, 0, 9〉, and t10 = 〈1, 1, 1, 0, 0, 0, 10〉. Here, coverage vector tk is associated with
the k-th input vector described in the list in Example 2. To illustrate how input
and coverage vectors relate, we observe that t10 is associated with a test case
with input vector 〈0, 1, 2〉 which executes the statements labeled C1, C2 and C3,
does not execute the statements labeled C4 and C5, and does not result in error.
Consequently c101 = c102 = c103 = 1, and c104 = c105 = e10 = 0, and k = 10 such
that t10 = 〈1, 1, 1, 0, 0, 0, 10〉 (by the definition of coverage vectors). The coverage
matrix representing T is given in Fig. 2.

Definition 2. Let T be a non-empty set of coverage vectors, then T’s program
model PM is defined as the sequence 〈C1, . . . , C|PM|〉, where for each Ci ∈ PM,
Ci = {tk ∈ T|cki = 1}.

We often use the notation PMT to denote the program model PM associated
with T. The final component C|PM| is also denoted E (denoting the event of
the error). Each member of a program model is called a program component or
event, and if cki = 1 we say Ci occurred in tk, that tk covers Ci, and say that
Ci is faulty just in case its corresponding uut is faulty. Following the definition
above, each component Ci is the set of vectors in which Ci is covered, and
obey set theoretic relationships. For instance, for all components Ci, Cj ∈ PM,
we have ∀tk ∈ Cj . c

k
i = 1 just in case Cj ⊆ Ci. In general, we assume that E

contains at least one coverage vector and each coverage vector covers at least one
component. Members of E and E are called failing/passing vectors, respectively.

Example 5. We use the running example to illustrate a program model. For
the set of coverage vectors T = {t1, . . . , t10}, we may define a program model

2 For C programs Gcov can be used, available at http://www.gcovr.com.

http://www.gcovr.com
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PM = 〈C1, C2, C3, C4, C5, E〉, where C1 = {t1, . . . , t10}, C2 = {t4, t9, t10}, C3 =
{t1, t5, t10}, C4 = {t1, t2, t3, t7}, C5 = {t2, t6, t7, t9}, E = {t1, t2, t3}. Here, we
may think of C1, . . . , C5 as events which occur just in case a corresponding uut
(lines of code labeled C1, . . . ,C5 respectively) is executed, and E as an event
which occurs just in case the assertion least <= most is violated. C4 is identified
as the faulty component.

Definition 3. For a given proband we define a proband model 〈PM,T〉, con-
sisting of the given faulty program’s program model PM, and an associated test
suite’s set of coverage vectors T.

Finally, we extend our setup to distinguish between samples and populations.
The population test suite for a given program is a test suite consisting of all
possible test cases for the program, a sample test suite is a test suite consisting
of some (but not necessarily all) possible test cases for the program. All test
suites are sample test suites drawn from a given population. Let 〈PM,T〉 be a
given proband model for a given faulty program and sample test suite, we denote
the population vectors, corresponding to the population test suite of the given
faulty program, as T∗ (and E∗ and E

∗
as the population failing and passing

vectors in T∗ respectively). The population program model associated with the
population test suite is denoted PM∗ (aka PM∗

T∗). 〈PM∗,T∗〉 is called the
population proband model. Finally, we extend the use of asterisks to make clear
that the asterisked variable is associated with a given population. Accordingly,
each component in the population program model is also superscripted with a *
to denote that it is a member of PM∗ (e.g. C∗

1 ). Each vector in the population
set of vectors T∗ (e.g., t∗1), and each coverage variable in each vector t∗k ∈ T∗

(e.g., ck∗
1 ).

It is assumed that for a given sample proband model 〈PM,T〉 and its pop-
ulation proband model 〈PM∗,T∗〉, we have T ⊆ T∗. Intuitively, this is because
a sample test suite is drawn from the population. In addition, for each i ∈ N if
Ci ∈ PM and C∗

i ∈ PM∗, then Ci ⊆ C∗
i . Intuitively, this is because if the i-th

uut is executed by a test case in the sample then it is executed by that test case
in the population.

2.3 Spectrum Based Fault Localisation

We first define what a program spectrum is, as it serves as the principle formal
object used in spectrum based fault localization (sbfl).

Definition 4. For each proband model 〈PM,T〉, and each component Ci ∈ PM,
a component’s program spectrum is a vector 〈|Ci∩E|, |Ci∩E|, |Ci∩E|, |Ci∩E|〉.

Informally, |Ci ∩ E| is the number of failing coverage vectors in T that
cover Ci, |Ci ∩ E| is the number of failing coverage vectors in T that do not
cover Ci, |Ci ∩ E| is the number of passing coverage vectors in T that cover Ci,
and |Ci ∩ E| is the number of passing coverage vectors in T that do not cover
Ci. |Ci ∩ E|, |Ci ∩ E|, |Ci ∩ E| and |Ci ∩ E| are often denoted ai

ef , ai
nf , ai

ep, and
ai
np respectively in the literature [4,7–12].
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Example 6. For the proband model of the running example 〈PM,T〉 (where
PM = 〈C1, . . . , C5, E〉 and T is represented by the coverage matrix in Fig. 2),
the spectra for C1, . . .C5, and E are 〈3, 0, 7, 0〉, 〈0, 3, 3, 4〉, 〈1, 2, 2, 5〉, 〈3, 0, 1, 6〉,
〈1, 2, 3, 4〉, and 〈3, 0, 0, 7〉 respectively.

Following Naish et al. [7], we define a suspiciousness measure as follows.

Definition 5. A suspiciousness measure w is a function with signature w :
PM → R, and maps each Ci ∈ PM to a real number as a function of Ci’s
program spectrum 〈|Ci ∩ E|, |Ci ∩ E|, |Ci ∩ E|, |Ci ∩ E|〉, where this number is
called the component’s degree of suspiciousness.

The higher/lower the degree of suspiciousness the more/less suspicious Ci is
assumed to be with respect to being a fault. A property of some sbfl measures
is single-fault optimality [7,30]. Using our notation we can express this property
as follows:

Definition 6. A suspiciousness measure w is single-fault optimal if it satisfies
the following. For every program model PM and every Ci ∈ PM:

1. If E 	⊆ Ci and E ⊆ Cj, then w(Cj) > w(Ci) and
2. if E ⊆ Ci, E ⊆ Cj, |Ci ∩ E| = k and |Cj ∩ E| < k, then w(Cj) > w(Ci).

Under the assumption that there is a single fault in the program, Naish
et al. argue that a measure must have this property to be optimal [7]. Informally,
the first condition demands that uuts covered by all failing test cases are more sus-
picious than anything else. The rationale here is that if there is only one faulty uut
in the program, then it must be executed by all failing test cases (otherwise there
would be some failing test case which executes no fault – which is impossible given
it is assumed that all errors are caused by the execution of some faulty uut) [7,30].
The seconddemands that of twouuts coveredbyall failing test cases, the onewhich
is executed by fewer passing test cases is more suspicious.

An example of a single fault optimal measure is the Naish-I measure w(Ci) =

ai
ef − ai

ep

ai
ep+ai

np+1 [31]. A framework that optimises any given sbfl measure to
being single fault optimal was first given by Naish [31]. For any suspiciousness
measure w scaled from 0 to 1, we can construct the single fault optimised version
for w (written Optw) as follows (here, we use the equivalent formulation of
Landsberg et al. [4]): Optw(Ci) = ai

np + 2 if ai
ef = |E|, and w(Ci) otherwise.

We now describe the established sbfl algorithm [4,7–12]. The method pro-
duces a list of program component indices ordered by suspiciousness, as a func-
tion of set of coverage vectors T (taken from a proband model 〈PM,T〉) and
suspiciousness measure w. As the algorithm is simple, we informally describe
the algorithm in three stages, as follows. First, the program spectrum for each
program component is constructed as a function of T. Second, the indices of
program components are ordered in a suspiciousness list according to decreas-
ing order of suspiciousness. Third, the suspiciousness list is returned to the user,
who will inspect each uut corresponding to each index in the suspiciousness
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list in decreasing order of suspiciousness until a fault is found. We assume that
in the case of ties of suspiciousness, the uut that comes earlier in the code is
investigated first, and assume effectiveness of a sbfl measure on a proband is
measured by the number of non-faulty uuts a user has to investigate before a
fault is found.

Example 7. We illustrate an instance of sbfl using our running minmax.c exam-
ple of Fig. 1, and the Naish-I measure as an example suspiciousness measure.
First, the program spectra (given in Example 6) are constructed as a function
of the given coverage vectors (represented by the coverage matrix of Fig. 2).
Second, the suspiciousness of each program component is computed (here, the
suspiciousness of the five components are 2.125, −0.375, 0.75, 2.875, 0.625 respec-
tively), and the indices of components are ordered according to decreasing order
of suspiciousness. Thus we get the list 〈4, 1, 3, 5, 2〉. Finally, the list is returned
to the user, and the uuts in the program are inspected according to this list in
descending order of suspiciousness until a fault is found. In our running example,
C4 (the fault) is investigated first.

3 A Property of Single-Fault Optimal Data

In this section, we identify a new property for the optimality of a given dataset T
for use in fault localisation. Throughout we make two assumptions: Firstly that
a single bug optimal measure w is being used and secondly that there is a single
bug in a given faulty program (henceforth our two assumptions). Let 〈PM,T〉
be a given sample proband model, then we have the following:

Definition 7. A Property of Single Fault Optimal Data. If T is single
bug optimal, then ∀Ci ∈ PMT. E ⊆ Ci → E∗ ⊆ C∗

i .

If this condition holds, then we say the dataset T (and its associated test
suite) satisfies this property of single fault optimality. Informally, the condition
demands that if a uut is covered by all failing test cases in the sample test suite
then it is covered by all failing test cases in the population. If our two assumptions
hold, we argue it is a desirable that a test suite satisfies this property. This
is because the fault is assumed to be covered by all failing test cases in the
population (similar to the rationale of Naish et al. [7]), and as uuts executed
by all failing test cases in the sample are investigated first when a single fault
optimal measure is being used, it is desirable that uuts not covered by all failing
test cases in the population are less suspicious in order to guarantee the fault
is found earlier. An additional desirable feature of knowing one’s data satisfies
this property, is that we do not have to add any more failing test cases to a test
suite, given it is then impossible to improve fault localization effectiveness by
adding more failing test cases under our two assumptions.
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Algorithm 1. Single-fault optimal data generation algorithm
Data: E, E∗ (pre-condition: E ⊆ E∗ ∧ E �= ∅)

1 repeat

2 T ← choose({t∗k ∈ E∗|∃i ∈ N.∀tj ∈ E.cji = 1 ∧ ck∗
i = 0});

3 E ← E ∪ T ;

4 until T = ∅;
5 return E

4 Algorithm

In this section we present an algorithm which outputs single fault optimal data
for a given faulty program. We assume several preconditions for our algorithm.

– For the given faulty program, at least one uut is executed by all failing
test cases (for C programs this could be a variable initialization in the main
function).

– The population proband model is available (but as we shall see in the next
section, practical implementations will not require this).

– We also assume that E is a mutable set, and shall make use of a choose(X)
subroutine which non-deterministically returns the set of a single a member
of X (if one exists, otherwise it returns the empty set).

The algorithm is formally presented as Algorithm 1. We assume that an
associated sample test suite will also be available as a by-product of the algorithm
in addition to producing the data E. The intuition behind the algorithm is that
failing vectors are iteratively accumulated in a set E one by one, where the
next failing vector added does not cover some component which is covered by
all vectors already in E (the algorithm terminates if no such vector exists). The
resulting set is observed to be single-fault optimal. To illustrate the algorithm
we give the example below. We then give a proof of partial correctness.

Example 8. We assume some population set of failing coverage vectors E∗, which
we may identify with the set {t∗1, t

∗
2, t

∗
3} = {〈1, 0, 1, 1, 0, 1, 1〉, 〈1, 0, 0, 1, 1, 1, 2〉,

〈1, 0, 0, 1, 0, 1, 3〉} described in the coverage matrix of Fig. 2. In reality, the pop-
ulation set of failing coverage vectors for this faulty program is much larger
than this, but this will suffice for our example. The algorithm proceeds as fol-
lows. First, we assume E is a non-empty subset of E∗, and thus may assume
E = {〈1, 0, 1, 1, 0, 1, 1〉}. Now, to evaluate step 2, we first evaluate the set
{t∗k ∈ E∗ | ∃i ∈ N.∀tj ∈ E.cji = 1 ∧ ck∗

i = 0}. Intuitively, this is the set of
failing vectors in the population which do not cover some component which is
covered by all vectors in E. We may find a member of this set as follows. First,
we must evaluate the condition for when E∗ = {t∗1, t

∗
2, t

∗
3}. Given c13 = 1 holds of

t1, and t1 is the only member of E, and given c2∗
3 = 0, we have the conclusion

that t∗2 is a member of the set. Thus, for our example we may assume that choose
returns t∗2 from this set such that T = {t∗2}. So at step 3 the new version of E is
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E = {〈1, 0, 1, 1, 0, 1, 1〉, 〈1, 0, 0, 1, 1, 1, 2〉}. Consequently, on the next iteration of
the loop the set condition will be unsatisfiable – this is because there is no index
to a component i such that both ∀tj ∈ E.cji = 1 holds (i.e., E ⊆ Ci), and also
ck∗
i = 0 holds for some vector t∗k in the population (i.e., not E∗ ⊆ Ci). Thus,
choose will return the empty set, and the algorithm will terminate returning
the dataset E to the user to be used in sbfl. Using the Naish-I measure with
this dataset, we have the result that C1 and C4 are associated with the largest
suspicious score of 2.0. Thus, with single-fault optimal data alone we can find a
fault C4 reasonably effectively in our running example.

Proposition 1. All datasets returned by Algorithm 1 are single-fault optimal.

Proof. We show partial correctness as follows. Let 〈PM∗,T∗〉 be a given pop-
ulation proband model, where E∗ ⊆ T∗ is the population set of failing vectors,
and let E be returned by the algorithm. We must show that for all Ci ∈ PME ,
E ⊆ Ci → E∗ ⊆ C∗

i (by def. of single fault optimality). We prove this by con-
tradiction. Assume there is some Ci ∈ PME (without loss of generality we may
assume i = 1), such that E ⊆ C1 but not E∗ ⊆ C∗

1 . Given we assume E has
been returned by the algorithm, we may assume T = ∅ (step 4), and thus choose
returned ∅ at step 2 (by def. of choose). Accordingly, there is no t∗k ∈ E∗ where
((∀tk ∈ E)cj1 = 1) ∧ ck∗

1 = 0 (by the set condition at step 2). Thus, (∀t∗k ∈ E∗)
((∀tj ∈ E)cj1 = 1) → ck∗

1 = 1. Now, ((∀tj ∈ E) cj1 = 1) just in case E ⊆ C1

(by def. of program models). So, (∀t∗k ∈ E∗), if E ⊆ C1 then ck∗
1 = 1 (by sub-

stitution of equivalents). Equivalently, if E ⊆ C1 then (∀t∗k ∈ E∗) ck∗
1 = 1. Now,

in general it holds that ((∀t∗k ∈ E∗) ck∗
1 = 1) just in case E∗ ⊆ C∗

1 (by def. of
program models). Thus E ⊆ C1 → E∗ ⊆ C∗

1 (by substitution of equivalents).
This contradicts the initial assumption. �

Finally, we informally observe that the maximum size of the E returned is the
number of uuts. In this case E is input to the algorithm with a failing vector that
covers all components, and choose always returns a failing vector that covers 1
fewer uuts than the failing vector covering the fewest uuts already in E (noting
that we assume at least one component will always be covered). The minimum
is one. In this case E is input to the algorithm with a failing vector which covers
some components and the post-condition is already fulfilled. In general, E can
potentially be much smaller than E∗.

5 Implementation

We now discuss our implementation of the algorithm. In practice, we can leverage
model checkers to compute members of E∗ (the population set of failing vectors)
on the fly, where computing E∗ as a pre-condition would usually be intractable.
This can be done by appeal to a SMT solving subroutine, which we describe as
follows. Given a formal model of some code Fcode , a formal specification φ, set of
Booleans which are true just in case a corresponding uut is executed in a given
execution {C1, . . . , Cn}, and a set E ⊆ E∗, we can use a SMT solver to return a
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satisfying assignment by calling SMT(Fcode ∧ ¬φ ∧ ∨
(∀tk∈E)cki =1 Ci = 0), and

then extracting a coverage vector from that assignment. A subroutine which
returns this coverage vector (or the empty set if one does not exist) can act
as a substitute for the choose subroutine in Algorithm 1, and the generation
of a static object E∗ is no longer required as an input to the algorithm. Our
implementation of this is called sfo (single fault optimal data generation tool).

We now discuss extensions of sfo. It is known that adding passing executions
help in sbfl [4,5,7–12], thus to develop amore effective fault localisationprocedure
we developed a second implementation sfop (sfo with passing traces) that runs sfo
and then adds passing test cases. To do this, after running sfo we call a SMT solver
20 times to find up to 20 new passing execution, where on each call if the vector
found has new coverage properties (does not cover all the same uuts as some pass-
ing vector already computed) it is added to a set of passing vectors.

Our implementations of sfo and sfop are integrated into a branch of the
model checker cbmc [32]. Our branch of the tool is available for download at the
URL given in the footnote3. Our implementations, along with generating fault
localisation data, rank uuts by degree of suspiciousness according to the Naish-I
measure and report this fault localisation data to the user.

6 Experimentation

In this section we provide details of evaluation results for the use of sfo and sfop

in fault localisation. The purpose of the experiment is to demonstrate that imple-
mentations of Algorithm 1 can be used to facilitate efficient and effective fault
localisation in practice on small programs (≤2.5kloc). We think generation
of fault localisation information in a few seconds (≤2) is sufficient to demon-
strate practical efficiency, and ranking the fault in the top handful of the most
suspicious lines of code (≤5) on average is sufficient to demonstrate practical
effectiveness. In the remainder of this section we present our experimental setup
(where we describe our scoring system and benchmarks), and our results.

6.1 Setup

For the purposes of comparison, we tested the fault localisation potential of sfo
and sfop against a method named 1f , which performes sbfl when only a single
failing test case was generated by cbmc (and thus uuts covered by the test
case were equally suspicious). We used the following scoring method to evaluate
the effectiveness of each of the methods for each benchmark. We envisage an
engineer who is inspecting each loc in descending order of suspiciousness using
a given strategy (inspecting lines that appear earlier in the code first in the case
of ties). We rank alternative techniques by the number of non-faulty loc that
are investigated until the engineer finds a fault. Finally, we report the average of
these scores for the benchmarks to give us an overall measure of fault localisation
effectiveness.
3 https://github.com/theyoucheng/cbmc.

https://github.com/theyoucheng/cbmc
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We now discuss the benchmarks used in our experiments. In order to per-
form an unbiased experiment to test our techniques on, we imposed that our
benchmarks needed to satisfy the following three properties (aside from being a
C program which cbmc could be used on):

1. Programs must have been created by an independent source, to prevent any
implicit bias caused by creating benchmarks ourselves.

2. Programs must have an explicit, formally stated specification that can be
given as an assertion statement in order to apply a model checker.

3. In each program, the faulty code must be clearly identifiable, in order to be
able to measure the quality of fault localisation.

Unfortunately, benchmarks satisfying these conditions are rare. In practice,
benchmarks exist in verification research that satisfy either the second or third
criterion, but rarely both. For instance, the available sir benchmarks satisfy
the third criterion, but not the second4. The software verification competition
(sv-comp) benchmarks satisfy the second criterion, but almost never satisfy the
third5. Furthermore, it is often difficult to obtain benchmarks from authors even
when usable benchmarks do in fact exist. Finally, we have been unable to find
an instance of a C program that was not artificially developed for the purposes
of testing.

The benchmarks are described in Table 1, where we give the benchmark
name, the number of faults in the program, and lines of code (loc). The modified
versions of tcas were made available by Alex Groce via personal correspondence
and were used with the Explain tool in [33]6. The remaining benchmarks were
identified as usable by manual investigation and testing in the repositories of
sv-comp 2013 and 2017. We have made our benchmarks available for download
directly from the link on footnote 4. Faults in sv-comp programs were identified
by comparing them to an associated fault-free version (in tcas the fault was
already identified). A series of continuous lines of code that differed from the
fault free version (usually one line, and rarely up to 5 loc for larger programs)
constituted one fault. loc were counted using the cloc utility.

We give further details about our application of cbmc in this experiment.
For all our benchmarks, we used the smallest unwinding number that enables
the bounded model checker to find a counterexample. These counterexamples
were sliced, which usually results in a large improvement in fault localisation.
For details about unwindings and slicing see the cbmc documentation [34]. In
each benchmark each executable statement (variable initialisations, assignments,
or condition statements) was determined as a uut.

4 http://sir.unl.edu/portal/index.php.
5 Benchmarks can be accessed at https://sv-comp.sosy-lab.org/2018/.
6 For our experiment we activated assertion statement P5a and fault 32c.

http://sir.unl.edu/portal/index.php
https://sv-comp.sosy-lab.org/2018/
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6.2 Results and Discussion

In this section we discuss our experimental results. In Table 1, columns
1f /sfop/sfo give the scores for when the respective method is used. Column
t gives the runtime for cbmc and sfop respectively (we ignore the runtime for
sfo due to negligible difference). |E| and |E| give the number of failing and pass-
ing test cases generated by sfop. The AVG row gives averages column values.
We are primarily interested in comparing the scores of sfop and 1f .

Table 1. Experimental results

# Benchmark Faults loc 1f t sfo sfop t |E| |E|
1 cdaudio simpl1 4 2102 24 1.04 22 13 1.10 3 8

2 floppy simpl3 6 1080 39 0.36 33 8 0.38 3 11

3 s3 clnt 1 1 546 35 3.52 33 3 3.56 2 7

4 kundu2 3 534 63 0.58 63 7 0.60 1 13

5 tcas 1 396 6 0.20 5 5 0.21 2 4

6 rule57 ebda 4 249 9 0.17 9 2 0.18 1 4

7 rule60 list2 1 187 14 0.17 14 8 0.18 1 3

8 merge sort 1 111 1 2.19 1 1 2.32 1 0

9 byte add 1 90 17 0.18 15 0 0.18 3 8

10 alternating list 2 56 1 0.31 1 1 0.32 1 0

11 eureka 01 1 52 7 0.17 7 3 0.26 1 7

12 string 1 43 5 0.17 2 2 0.17 3 3

13 insertion sort 1 25 3 1.05 3 0 4.28 1 3

AVG 2.08 420.85 17.23 0.78 16.00 4.08 1.06 1.77 5.46

We now discuss the results of the three techniques 1f , sfo and sfop. On
average, 1f located a fault after investigating 17.23 lines of code (4.09% of the
program on average). The results here are perhaps better than expected. We
observed that the single failing test case consistently returned good fault locali-
sation potential given the use of slicing by the technique.

We now discuss sfo. On average, sfo located a fault after investigating 16
lines of code (3.8% of the program on average). Thus, the improvement over 1f
is very small. When only one failing test case was available for sfo (i.e. |E| = 1)
we emphasise that the SMT solver could not find any other failing traces which
covered different parts of the program. In such cases, sfo performed the same
as 1f (as expected). However, when there was more than one failing test case
available (i.e. |E| > 1), sfo always made a small improvement. Accordingly, for
benchmarks 1, 2, 3, 5, 9, and 12 the improvements in terms fewer loc examined
are 2, 6, 3, 1, 2, and 3, respectively. An improvement in benchmarks where sfo
generated more than one test case is to be expected, given there was always a
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fault covered by all failing test cases in each program (even in programs with
multiple faults), thus taking advantage of the property of single fault optimal
data. Finally, we conjecture that on programs with more failing test cases avail-
able in the population, and on longer faulty programs, that this improvement
will be larger.

We now discuss sfop. On average, sfop located a fault after investigating
4.08 loc (0.97% of each program on average). Thus, the improvement over
the other techniques is quite large (four times as effective as 1f ). Moreover, this
effectiveness came at very little expense to runtime – sfop had an average runtime
of 1.06 s, which is comparable to the runtime of 1f of 0.78 s. This is despite
the fact that sfop generated over 7 executions on average. We consequently
conclude that implementations of Algorithm 1 can be used to facilitate efficient
and effective fault localisation in practice on small programs.

7 Related Work

The techniques discussed in this paper improve the quality of data usable for
sbfl. We divide the research in this field into the following areas; many other
methods can be potentially combined with our technique.

Test Suite Expansion. One approach to improving test suites is to add more
test cases which satisfy a given criterion. A prominent criterion is that the test
suite has sufficient program coverage, where studies suggest that test suites with
high coverage improve fault localisation [15–17,20]. Other ways to improve test
suites for sbfl are as follows. Li et al. generate test suites for sbfl, considering
failing to passing test case ratio to be more important than number [35]. Zhang
et al. consider cloning failed test cases to improve sbfl [13]. Perez et al. develop a
metric for diagnosing whether a test suite is of sufficient quality for sbfl to take
place [14]. Li et al. consider weighing different test cases differently [36]. Aside
from coverage criteria, methods have been studied which generate test cases
with a minimal distance from a given failed test case [18]. Baudry et al. use
a bacteriological approach in order to generate test suites that simultaneously
facilitate both testing and fault localisation [19]. Concolic execution methods
have been developed to add test cases to a test suite based on their similarity to
an initial failing run [20].

Prominent approaches which leverage model checkers for fault localisation
are as follows. Groce [33] uses integer linear programming to find a passing test
case most similar to a failing one and then compare the difference. Schupman and
Bierre [37] generate short counterexamples for use in fault localisation, where
a short counterexample will usually mean fewer uuts for the user to inspect.
Griesmayer [38] and Birch et al. [39] use model checkers to find failing execu-
tions and then look for whether a given number of changes to values of variables
can be made to make the counterexample disappear. Gopinath et al. [40] com-
pute minimal unsatisfiable cores in a given failing test case, where statements in
the core will be given a higher suspiciousness level in the spectra ranking. Addi-
tionally, when generating a new test, they generate an input whose test case is
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most similar to the initial run in terms of its coverage of the statements. Fey
et al. [41] use SAT solvers to localise faults on hardware with LTL specifications.
In general, experimental scale is limited to a small number of programs in these
studies, and we think our experimental component provides an improvement in
terms of experimental scale (13 programs).

Test Suite Reduction. An alternative approach to expanding a test suite is to
use reduction methods. Recently, many approaches have demonstrated that it is
not necessary for all test cases in a test suite to be used. Rather, one can select
a handful of test cases in order to minimise the number of test cases required for
fault localisation [42,43]. Most approaches are based on a strategy of eliminating
redundant test cases relative to some coverage criterion. The effectiveness of
applying various coverage criteria in test suite reduction is traditionally based
on empirical comparison of two metrics: one which measures the size of the
reduction, and the other which measures how much fault detection is preserved.

Slicing. A prominent approach to improving the quality of test suites involves
the process of slicing test cases. Here, sbfl proceeds as usual except the program
and/or the test cases composing the test suite are sliced (with irrelevant lines
of code/parts of the execution removed). For example, Alves et al. [44] combine
Tarantula along with dynamic slices, Ju et al. [45] use sbfl in combination with
both dynamic and execution slices. Syntactic dynamic slicing is built-in in all
our tested approaches by appeal to the functionalities of cbmc.

To our knowledge, no previous methods generate data which exhibit our
property of single fault optimality.

8 Conclusion

In this paper, we have presented a method to generate single fault optimal data
for use with sbfl. Experimental results on our implementation sfop, which inte-
grates single fault optimal data along with passing test cases, demonstrate that
small optimized fault localisation data can be generated efficiently in practice
(1.06 s on average), and that subsequent fault localization can be performed effec-
tively using this data (investigating 4.06 loc until a fault is found). We envisage
that implementations of the algorithm can be used in two different scenarios.
In the first, the test suite generated can be used in standalone fault localisa-
tion, providing a small and low cost test suite useful for repeating iterations of
simultaneous testing and fault localisation during program development. In the
second, the data generated can be added to any pre-existing data associated
with a test suite, which may be useful at the final testing stage where we may
wish to optimise single fault localisation.

Future work involves finding larger benchmarks to use our implementation
on and developing further properties, and methods for use with programs with
multiple faults. We would also like to combine our technique with existing test
suite generation algorithms in order to experiment how much test suites can be
additionally improved for the purposes of fault localization.
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