
21st International Conference, FASE 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018, Proceedings

Fundamental Approaches
to Software EngineeringLN

CS
 1

08
02

AR
Co

SS
Alessandra Russo
Andy Schürr (Eds.)

Lecture Notes in Computer Science 10802

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science
Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany
Benjamin C. Pierce, University of Pennsylvania, USA
Bernhard Steffen, University of Dortmund, Germany
Deng Xiaotie, City University of Hong Kong
Jeannette M. Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

Alessandra Russo • Andy Schürr (Eds.)

Fundamental Approaches
to Software Engineering
21st International Conference, FASE 2018
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2018
Thessaloniki, Greece, April 14–20, 2018
Proceedings

Editors
Alessandra Russo
Imperial College London
London
UK

Andy Schürr
TU Darmstadt
Darmstadt
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-89362-4 ISBN 978-3-319-89363-1 (eBook)
https://doi.org/10.1007/978-3-319-89363-1

Library of Congress Control Number: 2018937400

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© The Editor(s) (if applicable) and The Author(s) 2018. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes were made.
The images or other third party material in this book are included in the book’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-3318-8711
http://orcid.org/0000-0001-8100-1109

ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT &
T Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75,000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), Ioannis Stamelos,

Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbrücken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Lüttgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Küsters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Göteborg),
Don Sannella (Edinburgh), Andy Schürr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen

VI ETAPS Foreword

Preface

This book contains the proceedings of FASE 2018, the 21th International Conference
on Fundamental Approaches to Software Engineering, held in Thessaloniki, Greece, in
April 2018, as part of the annual European Joint Conferences on Theory and Practice of
Software (ETAPS 2018).

As usual for FASE, the contributions combine the development of conceptual and
methodological advances with their formal foundations, tool support, and evaluation on
realistic or pragmatic cases. As a result, the volume contains regular research papers
that cover a wide range of topics, such as program and system analysis, model
transformations, configuration and synthesis, graph modeling and transformation,
software product lines, test selection, as well as learning and inference. We hope that
the community will find this volume engaging and worth reading.

The contributions included have been carefully selected. For the third time, FASE
used a double-blind review process, as the past two years’ experiments were considered
valuable by authors and worth the additional effort of anonymizing the papers. We
received 77 abstract submissions from 24 different countries, from which 63 full-paper
submissions materialized. All papers were reviewed by three experts in the field, and
after intense discussion, only 19 were accepted, giving an acceptance rate of 30%.

We thank the ETAPS 2018 general chair Katsaros Panagiotis, the ETAPS orga-
nizers, Ioannis Stamelos, Lefteris Angelis, and George Rahonis, the ETAPS publicity
chairs, Ezio Bartocci and Simon Bliudze, as well as the ETAPS SC chair, Joost-Pieter
Katoen, for their support during the whole process. We thank all the authors for their
hard work and willingness to contribute. Last but not least, we thank all the Program
Committee members and external reviewers, who invested time and effort in the
selection process to ensure the scientific quality of the program.

February 2018 Alessandra Russo
Andy Schürr

Organization

Program Committee

Ruth Breu Universität Innsbruck, Austria
Yuanfang Cai Drexel University, USA
Sagar Chaki Carnegie Mellon University, USA
Hana Chockler King’s College London, UK
Ewen Denney NASA Ames, USA
Stefania Gnesi ISTI-CNR, Italy
Dilian Gurov Royal Institute of Technology (KTH), Sweden
Zhenjiang Hu National Institute for Informatics, Japan
Reiner Hähnle Darmstadt University of Technology, Germany
Valerie Issarny Inria, France
Einar Broch Johnsen University of Oslo, Norway
Gerti Kappel Vienna University of Technology, Austria
Ekkart Kindler Technical University of Denmark, Denmark
Kim Mens Université catholique de Louvain, Belgium
Fernando Orejas Universitat Politècnica de Catalunya, Spain
Fabrizio Pastore University of Luxembourg, Luxembourg
Arend Rensink Universiteit Twente, The Netherlands
Leila Ribeiro Universidade Federal do Rio Grande do Sul, Brazil
Julia Rubin The University of British Columbia, USA
Bernhard Rumpe RWTH Aachen, Germany
Alessandra Russo Imperial College London, UK
Rick Salay University of Toronto, Canada
Ina Schaefer Technische Universität Braunschweig, Germany
Andy Schürr Darmstadt University of Technology, Germany
Marjan Sirjani Reykjavik University, Iceland
Wil Van der Aalst RWTH Aachen, Germany
Daniel Varro Budapest University of Technology and Economics,

Hungary
Virginie Wiels ONERA/DTIM, France
Yingfei Xiong Peking University, China
Didar Zowghi University of Technology Sydney, Australia

Additional Reviewers

Adam, Kai
Ahmed, Khaled E.
Alrajeh, Dalal
Auer, Florian
Basile, Davide
Bergmann, Gábor
Bill, Robert
Bubel, Richard
Búr, Márton
Chen, Yifan
Cicchetti, Antonio
de Vink, Erik
Dulay, Naranker
Feng, Qiong
Guimaraes, Everton
Haeusler, Martin
Haglund, Jonas
Haubrich, Olga
Herda, Mihai
Hillemacher, Steffen
Huber, Michael
Jafari, Ali
Jiang, Jiajun
Johansen, Christian
Joosten, Sebastiaan
Kamburjan, Eduard
Kautz, Oliver
Khamespanah, Ehsan
Knüppel, Alexander
Laurent, Nicolas
Leblebici, Erhan
Liang, Jingjing
Lindner, Andreas
Lity, Sascha

Lochau, Malte
Markthaler, Matthias
Mauro, Jacopo
Melgratti, Hernan
Micskei, Zoltan
Mohaqeqi, Morteza
Mousavi, Mohamad
Nesic, Damir
Nieke, Michael
Pun, Ka I.
Saake, Gunter
Sauerwein, Clemens
Schlatte, Rudolf
Schuster, Sven
Seidl, Martina
Semeráth, Oszkár
Shaver, Chris
Shumeiko, Igor
Steffen, Martin
Steinebach, Martin
Steinhöfel, Dominic
Stolz, Volker
Tapia Tarifa, Silvia Lizeth
Ter Beek, Maurice H.
Tiezzi, Francesco
Varga, Simon
Wally, Bernhard
Wang, Bo
Weckesser, Markus
Whiteside, Iain
Wimmer, Manuel
Wolny, Sabine
Xiao, Lu
Yue, Ruru

X Organization

Contents

Model-Based Software Development

A Formal Framework for Incremental Model Slicing 3
Gabriele Taentzer, Timo Kehrer, Christopher Pietsch, and Udo Kelter

Multiple Model Synchronization with Multiary Delta Lenses 21
Zinovy Diskin, Harald König, and Mark Lawford

Controlling the Attack Surface of Object-Oriented Refactorings 38
Sebastian Ruland, Géza Kulcsár, Erhan Leblebici, Sven Peldszus,
and Malte Lochau

Effective Analysis of Attack Trees: A Model-Driven Approach. 56
Rajesh Kumar, Stefano Schivo, Enno Ruijters, Buǧra Mehmet Yildiz,
David Huistra, Jacco Brandt, Arend Rensink, and Mariëlle Stoelinga

Distributed Program and System Analysis

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis . . . 77
Si Liu, Peter Csaba Ölveczky, Keshav Santhanam, Qi Wang,
Indranil Gupta, and José Meseguer

A Process Network Model for Reactive Streaming Software
with Deterministic Task Parallelism. 94

Fotios Gioulekas, Peter Poplavko, Panagiotis Katsaros,
Saddek Bensalem, and Pedro Palomo

Distributed Graph Queries for Runtime Monitoring
of Cyber-Physical Systems . 111

Márton Búr, Gábor Szilágyi, András Vörös,
and Dániel Varró

EventHandler-Based Analysis Framework for Web Apps
Using Dynamically Collected States . 129

Joonyoung Park, Kwangwon Sun, and Sukyoung Ryu

Software Design and Verification

Hierarchical Specification and Verification of Architectural
Design Patterns. 149

Diego Marmsoler

Supporting Verification-Driven Incremental Distributed Design
of Components . 169

Claudio Menghi, Paola Spoletini, Marsha Chechik, and Carlo Ghezzi

Summarizing Software API Usage Examples
Using Clustering Techniques . 189

Nikolaos Katirtzis, Themistoklis Diamantopoulos, and Charles Sutton

Fast Computation of Arbitrary Control Dependencies 207
Jean-Christophe Léchenet, Nikolai Kosmatov, and Pascale Le Gall

Specification and Program Testing

Iterative Generation of Diverse Models for Testing Specifications
of DSL Tools . 227

Oszkár Semeráth and Dániel Varró

Optimising Spectrum Based Fault Localisation for Single Fault Programs
Using Specifications . 246

David Landsberg, Youcheng Sun, and Daniel Kroening

TCM: Test Case Mutation to Improve Crash Detection in Android 264
Yavuz Koroglu and Alper Sen

CRETE: A Versatile Binary-Level Concolic Testing Framework 281
Bo Chen, Christopher Havlicek, Zhenkun Yang, Kai Cong,
Raghudeep Kannavara, and Fei Xie

Family-Based Software Development

Abstract Family-Based Model Checking Using Modal Featured Transition
Systems: Preservation of CTLH . 301

Aleksandar S. Dimovski

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 319
Marsha Chechik, Ioanna Stavropoulou, Cynthia Disenfeld,
and Julia Rubin

Taming Multi-Variability of Software Product Line Transformations 337
Daniel Strüber, Sven Peldzsus, and Jan Jürjens

Author Index . 357

XII Contents

Model-Based Software Development

A Formal Framework for Incremental
Model Slicing

Gabriele Taentzer1 , Timo Kehrer2 , Christopher Pietsch3(B) ,
and Udo Kelter3

1 Philipps-Universität Marburg, Marburg, Germany
2 Humboldt-Universität zu Berlin, Berlin, Germany

3 University of Siegen, Siegen, Germany
cpietsch@informatik.uni-siegen.de

Abstract. Program slicing is a technique which can determine the sim-
plest program possible that maintains the meaning of the original pro-
gram w.r.t. a slicing criterion. The concept of slicing has been transferred
to models, in particular to statecharts. In addition to the classical use
cases of slicing adopted from the field of program understanding, model
slicing is also motivated by specifying submodels of interest to be fur-
ther processed more efficiently, thus dealing with scalability issues when
working with very large models. Slices are often updated throughout spe-
cific software development tasks. Such a slice update can be performed
by creating the new slice from scratch or by incrementally updating the
existing slice. In this paper, we present a formal framework for defining
model slicers that support incremental slice updates. This framework
abstracts from the behavior of concrete slicers as well as from the concrete
model modification approach. It forms a guideline for defining incremen-
tal model slicers independent of the underlying slicer’s semantics. Incre-
mental slice updates are shown to be equivalent to non-incremental ones.
Furthermore, we present a framework instantiation based on the concept
of edit scripts defining application sequences of model transformation
rules. We implemented two concrete model slicers for this instantiation
based on the Eclipse Modeling Framework.

1 Introduction

Program slicing as introduced by Weiser [1] is a technique which determines
those parts of a program (the slice) which may affect the values of a set of
(user-)selected variables at a specific point (the slicing criterion). Since the sem-
inal work of Weiser, which calculates a slice by utilizing static data and control
flow analysis and which primarily focuses on assisting developers in debugging,
a plethora of program slicing techniques addressing a broad range of use cases
have been proposed [2].

With the advent of Model-Driven Engineering (MDE) [3], models rather than
source code play the role of primary software development artifacts. Similar use
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-319-89363-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_1&domain=pdf
http://orcid.org/0000-0002-3975-5238
http://orcid.org/0000-0002-2582-5557
http://orcid.org/0000-0002-3413-0810
http://orcid.org/0000-0003-2052-4912

4 G. Taentzer et al.

cases as known from program slicing must be supported for model slicing [4–6]. In
addition to classical use cases adopted from the field of program understanding,
model slicing is often motivated by scalability issues when working with very
large models [7,8], which has often been mentioned as one of the biggest obstacles
in applying MDE in practice [9,10]. Modeling frameworks such as the Eclipse
Modeling Framework (EMF) and widely-used model management tools do not
scale beyond a few tens of thousands of model elements [11], while large-scale
industrial models are considerably larger [12]. As a consequence, such models
cannot even be edited in standard model editors. Thus, the extraction of editable
submodels from a larger model is the only viable solution to support an efficient
yet independent editing of huge monolithic models [8]. Further example scenarios
in which model slices may be constructed for the sake of efficiency include model
checkers, test suite generators, etc., in order to reduce runtimes and memory
consumption.

Slice criteria are often modified during software development tasks. This
leads to corresponding slice updates (also called slice adaptations in [8]). During
a debugging session, e.g., the slicing criterion might need to be modified in order
to closer inspect different debugging hypotheses. The independent editing of
submodels is another example of this. Here, a slice created for an initial slicing
criterion can turn out to be inappropriate, most typically because additional
model elements are desired or because the slice is still too large. These slice
update scenarios have in common that the original slicing criterion is modified
and that the existing slice must be updated w.r.t. the new slicing criterion.

Model slicing is faced with two challenging requirements which do not exist or
which are of minor importance for traditional program slicers. First, the increas-
ing importance and prevalence of domain-specific modeling languages (DSMLs)
as well as a considerable number of different use cases lead to a huge number of
different concrete slicers, examples will be presented in Sect. 2. Thus, methods
for developing model slicers should abstract from a slicer’s concrete behavior
(and thus from concrete modeling languages) as far as possible. Ideally, model
slicers should be generic in the sense that the behavior of a slicer is adapt-
able with moderate configuration effort [7]. Second, rather than creating a new
slice from scratch for a modified slicing criterion, slices must often be updated
incrementally. This is indispensable for all use cases where slices are edited by
developers since otherwise these slice edits would be blindly overwritten [8]. In
addition, incremental slice updating is a desirable feature when it is more effi-
cient than creating the slice from scratch. To date, both requirements have been
insufficiently addressed in the literature.

In this paper, we present a fundamental methodology for developing model
slicers which abstract from the behavior of a concrete slicer and which support
incremental model slicing. To be independent of a concrete DSML and use cases,
we restrict ourselves to static slicing in order to support both executable and
non-executable models. We make the following contributions:

1. A formal framework for incremental model slicing which can function as a
guideline for defining adaptable and incremental model slicers (s. Sect. 3).

A Formal Framework for Incremental Model Slicing 5

This framework is based on graph-based models and model modifications and
abstracts from the behavior of concrete slicers as well as from the concrete
model modification approach. Within this framework we show that incremen-
tal slice updates are equivalent to non-incremental ones.

2. An instantiation of this formal framework where incremental model slicers
are specified by model patches. Two concrete model slicers.

2 Motivating Example

In this section we introduce a running example to illustrate two use cases of
model slicing and to motivate incremental slice updates.

Figure 1 shows an excerpt of the system model of the Barbados Car Crash
Crisis Management System (bCMS) [13]. It describes the operations of a police
and a fire department in case of a crisis situation.

Fig. 1. Excerpt of the system model of the bCMS case study [13].

The system is modeled from different viewpoints. The class diagram mod-
els the key entities and their relationships from a static point of view. A
police station coordinator (PS coordinator) and a fire station coordinator (FS
coordinator) are responsible for coordinating and synchronizing the activities
on the police and fire station during a crisis. The interaction of both coordinators
is managed by the respective system classes PSC System and FSC System which
contain several operations for, e.g., establishing the communication between the
coordinators and exchanging crisis details. The state machine diagram models
the dynamic view of the class PSC System, i.e., its runtime behavior, for send-
ing and receiving authorization credentials and crisis details to and from a FSC
System. Initially, the PSC System is in the state Idle. The establishment of the

6 G. Taentzer et al.

communication can be triggered by calling the operation callFScoordinator or
reqComFSC. In the composite state Authorising the system waits for exchang-
ing the credentials of the PS and FS coordinator by calling the operation
sendPScoordinatorCredentials and authFSC, or vice versa. On entering the
composite state ExchangingCrisisDetails, details can be sent by the opera-
tion call sendPSCrisisDetails or details can be received by the operation call
crisisDetailsFSC.

Model Slicing. Model slicers are used to find parts of interest in a given model
M . These parts of M are specified by a slicing criterion, which is basically a set
of model elements or, more formally, a submodel C of M . A slicer extends C
with further model elements of M according to the purpose of the slicer.

We illustrate this with two use cases. Use case A is known as backward slicing
in state-based models [4]. Given a set of states C in a statechart M as slicing
criterion, the slicer determines all model elements which may have an effect
on states in C. For instance, using S.1.0.1 (s. gray state in Fig. 1) as slicing
criterion, the slicer recursively determines all incoming transitions and their
sources, e.g., the transition with the event sendPScoordinatorCredentials and
its source state S.1.0.0, until an initial state is reached.

The complete backward slice is indicated by the blue elements in the lower
part of Fig. 1. The example shows that our general notion of a slicing criterion
may be restricted by concrete model slicers. In this use case, the slicing criterion
must not be an arbitrary submodel of a given larger model, but a very specific
one, i.e., a set of states.

Use case B is the extraction of editable models as presented in [8]. Here,
the slicing criterion C is given by a set of requested model elements of M . The
purpose of this slicer is to find a submodel which is editable and which includes
all requested model elements. For example, if we use the blue elements in the
lower part of Fig. 1 as slicing criterion, the model slice also contains the orange
elements in the upper part of Fig. 1, namely three operations, because events of
a transitions in a statechart represent operations in the class diagram, and the
class containing these operations.

Slice Update. The slicing criterion might be updated during a development
task in order to obtain an updated slice. It is often desirable to update the
slice rather than creating the new slice from scratch, e.g., because this is more
efficient. Let us assume in use case A that the slicing criterion changes from
S.1.0.1 to S.1.1.1. The resulting model slice only differs in the contained
regions of the composite state Authorising. The upper region and its contained
elements would be removed, while the lower region and its contained elements
would be added. Next we could use the updated model slice from use case A as
slicing criterion in use case B. In the related resulting model slice, the opera-
tion sendPScoordinatorCredentials would then be replaced by the operation
authFSC.

A Formal Framework for Incremental Model Slicing 7

3 Formal Framework

We have seen in the motivating example that model slicers can differ consider-
ably in their intended purpose. The formal framework we present in the following
defines the fundamental concepts for model slicing and slice updates. This frame-
work uses graph-based models and model modifications [14]. It shall serve as a
guideline how to define model slicers that support incremental slice updates.

3.1 Models as Graphs

Considering models, especially visual models, their concrete syntax is distin-
guished from their abstract one. In Fig. 1, a UML model is shown in its concrete
representation. In the following, we will reason about their underlying structure,
i.e., their abstract syntax, which can be considered as graph. The abstract syntax
of a modeling language is usually defined by a meta-model which contains the
type information about nodes and edges as well as additional constraints. We
assume that a meta-model is formalized by an attributed graph; model graphs
are defined as attributed graphs being typed over the meta-model. This typing
can be characterized by an attributed graph morphism [15]. In addition, graph
constraints [16] may be used to specify additional requirements. Due to space
limitations, we do not formalize constraints in this paper.

Definition 1 (Typed model graph and morphism). Given two attributed
graphs M and MM , called model and meta-model, the typed model (graph) of
M is defined as MT = (M, typeM) with typeM : M → MM being an attributed
graph morphism, called typing morphism1. Given two typed models M and N ,
an attributed graph morphism f : M → N is called typed model morphism if
typeN ◦ f = typeM .

Fig. 2. Excerpt of a typed model graph.

Example 1 (Typed model graph). The left-hand side of Fig. 2 shows the model
graph of an excerpt from the model depicted in Fig. 1. The model graph is

1 In the following, we usually omit the adjective “attributed”.

8 G. Taentzer et al.

typed over the meta-model depicted on the right-hand side of Fig. 2. It shows a
simplified excerpt of the UML meta-model. Every node (and edge) of the model
graph is mapped onto a node or edge of the type graph by the graph morphism
type : M → MM .

Typed models and morphisms as defined above form the category AGraphsATG

in [15]. It has various properties since it is an adhesive HLR category using a class
M of injective graph morphisms with isomorphic data mapping, it has pushouts
and pullbacks where at least one morphism is in M. These constructions can
be considered as generalized union and intersection of models being defined
component-wise on nodes and edges such that they are structure-compatible.
These constructions are used to define the formal framework.

3.2 Model Modifications

If we do not want to go into any details of model transformation approaches,
the temporal change of models is roughly specified by model modifications. Each
model modification describes the original model, an intermediate one after hav-
ing performed all intended element deletions, and the resulting model after hav-
ing performed all element additions.

Definition 2 (Model modification). Given two models M1 and M2, a
(direct) model modification M1 =⇒ M2 is a span of injective morphisms
M1

m1←− Ms
m2−→ M2.

1. Two model modifications M1
m11←− M12

m12−→ M2 and M2
m22←− M23

m23−→ M3

are concatenated to model modification M1
m13←− M13

m33−→ M3 with (m13,m33)
being the pullback of m12 and m22 (intersecting M12 and M23).

2. Given two direct model modifications m : M1
m1←− Ms

m2−→ M2 and p : P1
p1←−

Ps
p2−→ P2, p can be embedded into m, written e : p → m, if there are

injective morphisms (also called embeddings) e1 : P1 → M1, es : Ps → Ms,
and e2 : P2 → M2 with e1 ◦ p1 = m1 ◦ es and e2 ◦ p2 = m2 ◦ es.

3. A sequence M0 =⇒ M1 =⇒ . . . =⇒ Mn of direct model modifications is called
model modification and is denoted by M0

∗=⇒ Mn.
4. There are five special kinds of model modifications:

(a) Model modification M
idM←− M

idM−→ M is called identical.
(b) Model modification ∅ ←− ∅ −→ ∅ is called empty.
(c) Model modification ∅ ←− ∅ −→ M is called model creation.
(d) Model modification M ←− ∅ −→ ∅ is called model deletion.
(e) M2

m2←− Ms
m1−→ M1 is called inverse modification to M1

m1←− Ms
m2−→ M2.

In a direct model modification, model Ms characterizes an intermediate
model where all deletion actions have been performed but nothing has been
added yet. To this end, Ms is the intersection of M1 and M2.

A Formal Framework for Incremental Model Slicing 9

Fig. 3. Excerpt of a model modification

Example 2 (Direct model modification). Figure 3 shows a model modification
using our running example. While Fig. 3(a) focuses on the concrete model syn-
tax, Fig. 3(b) shows the changing abstract syntax graph. Figure 3(a) depicts
an excerpt of the composite state Authorising. The red transition is deleted
while the green state and transitions are created. The model modification
m : M1

m1←− Ms
m2−→ M2 is illustrated in Fig. 3(b). The red elements represent

the set of nodes (and edges) M1 \ m1(Ms) to be deleted. The set M2 \ m2(Ms)
describing the nodes (and edges) to be created is illustrated by the green ele-
ments. All other nodes (and edges) represent the intermediate model Ms.

The double pushout approach to graph transformation [15] is a special kind
of model modification:

Definition 3 (Rule application). Given a model G and a model modification
r : L

l←− K
r−→ R, called rule, with injective morphism m : L → G, called

match, the rule application G =⇒r,m H is defined by the following two pushouts:

L K R

G D H

(PO1) (PO2)m m′

Model H is constructed in two passes: (1)
D := G \ m(L \ l(K)), i.e., erase all model
elements that are to be deleted; (2) H :=
D ∪ m′(R \ r(K)) such that a new copy of
all model elements that are to be created is
added.

Note that the first pushout above exists if G\m(L\l(K)) does not yield dangling
edges [15]. It is obvious that the result of a rule application G =⇒r H is a direct
model modification G

g←− D
h−→ H.

3.3 Model Slicing

In general, a model slice is an interesting part of a model comprising a given
slicing criterion. It is up to a concrete slicing definition to specify which model
parts are of interest.

10 G. Taentzer et al.

Definition 4 (Model slice). Given a model M and a slicing criterion C with
a morphism c : C → M . A model slice S = Slice(M, c) is a model S such that
there are two morphisms m : S → M and e : C → S with m ◦ e = c.

Note that each model slice S = Slice(M, c) induces a model modification
C

idC←− C
e−→ S.

Fig. 4. Excerpt of two model slices

Example 3 (Model slice). Figure 4 depicts an excerpt of the model graph of
M depicted in Fig. 1 and the two slices Sback = Slice(M, cback) and Sedit =
Slice(M, cedit). Sback is the backward slice as informally described in Sect. 2.
Cback = {S.1.0.1} is the first slice criterion. The embedding cback(Cback) is rep-
resented by the gray-filled element while embedding mback(Sback) is represented
by the blue-bordered elements. Model eback(Cback) is illustrated by the gray-filled
state having a blue border and Sback \ eback(Cback) by the green-filled elements
having a blue border.

Let Sback be the slicing criterion for the slice Sedit, i.e. Cedit = Sback and
cedit(Cedit) = mback(Sback). Sedit is the extracted editable submodel introduced
in Sect. 2 by use case B. Its embedding medit(Sedit) is represented by the blue and
orange-bordered elements. Model eedit(Cedit) is illustrated by the blue-bordered
elements and Sedit \ eedit(Cedit) by the green-filled elements having an orange
border.

3.4 Incremental Slice Update

Throughout working with a model slice, it might happen that the slice crite-
rion has to be modified. The update of the corresponding model slice can be
performed incrementally. Actually, modifying slice criteria can happen rather
frequently in practice by, e.g., editing independent submodels of a large model
in cooperative work.

A Formal Framework for Incremental Model Slicing 11

Definition 5 (Slice update construction). Given a model slice S1 =
Slice(M,C1 → M) and a direct model modification c = C1

c1←− Cs
c2−→ C2,

slice S2 = Slice(M,C2 → M) can be constructed as follows:

1. Given slice S1 we deduce the model modification C1

idC1←− C1
e1−→ S1 and take

its inverse modification: S1
e1←− C1

idC1−→ C1.
2. Then we take the given model modification c for the slice criterion.

3. And finally we take the model modification C2

idC2←− C2
e2−→ S2 induced by slice

S2.

All model modifications are concatenated yielding the direct model modification
S1

e1◦c1←− Cs
e2◦c2−→ S2 called slice update construction (see also Fig. 6).

Example 4 (Slice update example). Figure 5 illustrates a slice update construc-
tion with Sedit = Slice(M,Cedit → M) being the extracted submodel of our pre-
vious example illustrated by the red-dashed box. The modification c : Cedit

cedit←−
Cs

cedit′−→ Cedit′ of the slicing criterion is depicted by the gray-filled elements. The
red-bordered elements represent the set Cs\cedit(Cedit) of elements removed from
the slicing criterion. The green-bordered elements form the set Cs \ cedit′(Cedit′)
of elements added to the slicing criterion. Sedit′ = Slice(M,Cedit′ → M) is
the extracted submodel represented by the green-dashed box. Consequently, the
slice is updated by deleting all elements in Sedit \eedit(cedit(Cs)), represented by
the red-bordered and red- and white-filled elements, and adding all elements in
Sedit′ \eedit′(cedit′(Cs)), represented by the green-bordered and green- and white-
filled elements. Note that the white-filled elements are removed and added again.
This motivated us to consider incremental slice updates defined below.

Fig. 5. Excerpt of an (incremental) slice update.

12 G. Taentzer et al.

Definition 6 (Incremental slice update). Given M and C1 → M1 as in
Definition 4 as well as a direct model modification C1

c1←− Cs
c2−→ C2, model

slice S1 = Slice(M,C1 → M) is incrementally updated to model slice S2 =
Slice(M,C2 → M) yielding a direct model modification S1

s1←− Ss
s2−→ S2, called

incremental slice update from S1 to S2, with s1 and s2 being the pullback of
m1 : S1 → M and m2 : S2 → M (see also Fig. 6).

Example 5 (Incremental slice update example). Given Sedit and Sedit′ of our
previous example. Furthermore, given the model modification Sedit

sedit←− Ss
sedit′−→

Sedit′ whereby Ss is isomorphic to the intersection of Sedit and Sedit′ in M ,
i.e. ms : Ss → medit(Sedit) ∩ medit′(Sedit′) with ms being an isomorphism due
to the pullback construction. Ss is illustrated by the elements contained in the
intersection of the red- and green-dashed box in Fig. 5. In contrast to the slice
update construction of the previous example the white-filled elements are not
affected by the incremental slice update.

C1 Cs C2

S1 Ss S2

M

c1 c2

s1 s2

e1 es

ms

e2

m1 m2

Fig. 6. Incremental slice update

Ideally, the slice update construction in
Definition 5 should not yield a different
update than the incremental one. However,
this is not the case in general since the incre-
mental update keeps as many model ele-
ments as possible in contrast to the update
construction in Definition 5 In any case,
both update constructions should be com-
patible with each other, i.e., should be in an
embedding relation, as stated on the follow-
ing proposition.

Proposition 1 (Compatibility of slice update constructions). Given M

and C1 as in Definition 4 as well as a direct model modification C1
c1←− Cs

c2−→
C2, the model modification resulting from the slice update construction in Def-
inition 5 can be embedded into the incremental slice update from S1 to S2 (see
also Fig. 6).

Proof idea: Given an incremental slice update S1
s1←− Ss

s2−→ S2, it is the
pullback of m1 : S1 → M and m2 : S2 → M . The slice update construction
yields m1 ◦ e1 ◦ c1 = m2 ◦ e2 ◦ c2. Due to pullback properties there is a unique
embedding e : Cs → Ss with s1 ◦ e = e1 ◦ c1 and s2 ◦ e = e2 ◦ c2.2

4 Instantiation of the Formal Framework

In this section, we present an instantiation of our formal framework which is
inspired by the model slicing tool introduced in [8]. The basic idea of the app-
roach is to create and incrementally update model slices by calculating and
applying a special form of model patches, introduced and referred to as edit
script in [17].
2 This proof idea can be elaborated to a full proof in a straight forward manner.

A Formal Framework for Incremental Model Slicing 13

4.1 Edit Scripts as Refinements of Model Modifications

An edit script ΔM1⇒M2 specifies how to transform a model M1 into a model
M2 in a stepwise manner. Technically, this is a data structure which comprises
a set of rule applications, partially ordered by an acyclic dependency graph. Its
nodes are rule applications and its edges are dependencies between them [17].
Models are represented as typed graphs as in Definition 1, rule applications
are defined as in Definition 3. Hence, the semantics of an edit script is a set
of rule application sequences taking all possible orderings of rule applications
into account. Each sequence can be condensed into the application of one rule
following the concurrent rule construction in, e.g., [15]. Hence, an edit script
ΔM1⇒M2 induces a set of model modifications of the form M1

m1←− Ms
m2−→ M2.

Given two models M1 and M2 as well as a set R of transformation rules for
this type of models, edit scripts are calculated in two basic steps [17]:

First, the corresponding elements in M1 and M2 are calculated using a model
matcher [18]. A basic requirement is that such a matching can be formally rep-
resented as a (partial) injective morphism c : M1 → M2. If so, the matching
morphism c yields a unique model modification m : M1

⊇←− Ms
m2−→ M2 (up to

isomorphism) with m2 = c|Ms
. This means that Ms always has to be a graph.

Second, an edit script is derived. Elementary model changes can be directly
derived from a model matching; elements in M1 and M2 which are not involved
in a correspondence can be considered as deleted and added, respectively [19].
The approach presented in [17] partitions the set of elementary changes such that
each partition represents the application of a transformation rule of the given
set R of transformation rules [20], and subsequently calculates the dependencies
between these rule applications [17], yielding an edit script ΔM1⇒M2 . Sequences
of rule applications of an edit script do not contain transient effects [17], i.e.,
pairs of change actions which cancel out each other (such as creating and later
deleting one and the same element). Thus, no change actions are factored out
by an edit script.

4.2 Model Slicing Through Slice-Creating Edit Scripts

Edit scripts are also used to construct new model slices. Given a model M and
a slicing criterion C, a slice-creating edit script Δε⇒S is calculated which, when
applied to the empty model ε, yields the resulting slice S. The basic idea to
construct Δε⇒S is to consider the model M as created by an edit script Δε⇒M

applied to the empty model ε and to identify a sub-script of Δε⇒M which (at
least) creates all elements of C. The slice creating edit script Δε⇒S consists of
the subgraph of the dependency graph of the model-creating edit script Δε⇒M

containing (i) all nodes which create at least one model element in C, and (ii) all
required nodes and connecting edges according to the transitive closure of the
“required” relation, which is implied by dependencies between rule applications.

Since the construction of edit scripts depends on a given set R of transfor-
mation rules, a basic applicability condition is that all possible models and all
possible slices can be created by rules available in R. Given that this condition is

14 G. Taentzer et al.

satisfied, model slicing through slice-creating edit scripts indeed behaves accord-
ing to Definition 4, i.e., a slice S = Slice(M,C → M) is obtained by applying
Δε⇒S to the empty model: The resulting slice S is a submodel of M and a super-
model of C. As we will see in Sect. 5, the behavior of a concrete model slicer and
thus its intended purpose is configured by the transformation rule set R.

4.3 Incremental Slicing Through Slice-Updating Edit Scripts

To incrementally update a slice S1 = Slice(M,C1 → M) to become slice S2 =
Slice(M,C2 → M), we show that the approach presented in [8] constructs a
slice-updating edit script ΔS1⇒S2 which, if applied to the current slice S1, yields
S2 in an incremental way.

Similar to the construction of slice-creating edit scripts, the basic idea is to
consider the model M as model-creating edit script Δε⇒M . The slice-updating
edit script must delete all elements in the set S1 \ S2 from the current slice S1,
while adding all model elements in S2 \ S1. It is constructed as follows: Let PS1

and PS2 be the sets of rule applications which create all the elements in S1 and
S2, respectively. Next, the sets Prem and Padd of rule applications in Δε⇒M are
determined with Prem = PS1 \ PS2 and Padd = PS2 \ PS1 . Finally, the resulting
edit script ΔS1⇒S2 contains (1) the rule applications in set Padd, with the same
dependencies as in Δε⇒M , and (2) for each rule application in Prem, its inverse
rule application with reversed dependencies as in Δε⇒M . By construction, there
cannot be dependencies between rule applications in both sets, so they can be
executed in arbitrary order.

In addition to the completeness of the set R of transformation rules for a
given modeling language (s. Sect. 4.2), a second applicability condition is that,
for each rule r in R, there must be an inverse rule r−1 which reverts the effect
of r. Given that these conditions are satisfied and a slice-updating edit script
ΔS1⇒S2 can be created, its application to S1 indeed behaves according to the
incremental slice update as in Definition 6. This is so because, by construction,
none of the model elements in the intersection of S1 and S2 in M is deleted by
the edit script ΔS1⇒S2 . Consequently, none of the elements in the intersection
of C1 and C2 in M , which is a subset of S1 ∩ S2, is deleted.

4.4 Implementation

The framework instantiation has been implemented using a set of standard MDE
technologies on top of the widely used Eclipse Modeling Framework (EMF),
which employs an object-oriented implementation of graph-based models in
which nodes and edges are represented as objects and references, respectively.
Edit scripts are calculated using the model differencing framework SiLift [21],
which uses EMF Compare [22] in order to determine the corresponding elements
in a pair of models being compared with each other. A matching determined by
EMF Compare fulfills the requirements presented in Sect. 4.1 since EMF Com-
pare (a) delivers 1:1-correspondences between elements, thus yielding an injective
mapping, and (b) implicitly matches edges if their respective source and target

A Formal Framework for Incremental Model Slicing 15

nodes are matched and if they have the same type (because EMF does not sup-
port parallel edges of the same type in general), thus yielding an edge-preserving
mapping. Finally, transformation rules are implemented using the model trans-
formation language and framework Henshin [23,24] which is based on graph
transformation concepts.

5 Solving the Motivating Examples

In this section, we outline the configurations of two concrete model slicers which
are based on the framework instantiation presented in Sect. 4, and which are
capable of solving the motivating examples introduced in Sect. 2. Each of these
slicers is configured by a set of Henshin transformation rules which are used for
the calculation of model-creating, and thus for the construction of slice-creating
and slice-updating, edit scripts. The complete rule sets can be found at the
accompanying website of this paper [25].

5.1 A State-Based Model Slicer

Two of the creation rules which are used to configure a state-based model slicer
as described in our first example of Sect. 2 are shown in Fig. 7. The rules are
depicted in an integrated form: the left- and right-hand sides of a rule are merged
into a unified model graph following the visual syntax of the Henshin model
transformation language [23].

Fig. 7. Subset of the creation rules for configuring a state-based model slicer

Fig. 8. Slice-creating edit script.

Most of the creation rules
are of a similar form as
the creation rule createPseu-
dostate, which simply creates
a pseudostate and connects
it with an existing container.
The key idea of this slicer
configuration, however, is the
special creation rule creat-
eStateWithTransition, which
creates a state together with
an incoming transition in a

16 G. Taentzer et al.

single step. To support the incremental updating of slices, for each creation
rule an inverse deletion rule is included in the overall set of transformation rules.
Parts of the resulting model-creating edit script using these rules are shown in
Fig. 8. For example, rule application p3 creates the state Idle in the top-level
region of the state machine PSCSystem, together with an incoming transition
having the initial state of the state machine, created by rule application p2, as
source state. Thus, p3 depends on p2 since the initial state must be created first.
Similar dependency relationships arise for the creation of other states which are
created together with an incoming transition.

The effect of this configuration on the behavior of the model slicer is as follows
(illustrated here for the creation of a new slice): If state S.1.0.1 is selected as
slicing criterion, as in our motivating example, rule application p7 is included
in the slice-creating edit script since it creates that state. Implicitly, all rule
applications on which p7 transitively depends on, i.e., all rule applications p1
to p6, are also included in the slice-creating edit script. Consequently, the slice
resulting from applying the slice-creating edit script to an empty model creates
a submodel of the state machine of Fig. 1 which contains a transition path from
its initial state to state S.1.0.1, according to the desired behavior of the slicer.

A current limitation of our solution is that, for each state s of the slicing
criterion, only a single transition path from the initial state to state s is sliced.
This path is determined non-deterministically from the set of all possible paths
from the initial state to state s. To overcome this limitation, rule schemes com-
prising a kernel rule and a set of multi-rules (see, e.g., [26,27]) would have to
be supported by our approach. Then, a rule scheme for creating a state with an
arbitrary number of incoming transitions could be included in the configuration
of our slicer, which in turn leads to the desired effect during model slicing. We
leave such a support for rule schemes for future work.

5.2 A Slicer for Extracting Editable Submodels

In general, editable models adhere to a basic form of consistency which we assume
to be defined by the effective meta-model of a given model editor [28]. The basic
idea of configuring a model slicer for extracting editable submodels, adopted
from [8], is that all creation and deletion rules preserve this level of consistency.
Given an effective meta-model, such a rule set can be generated using the app-
roach presented in [28] and its EMF-/UML-based implementation [29,30].

In our motivating example of Sect. 2, for instance, a consistency-preserving
creation rule createTrigger creates an element of type Trigger and immediately
connects it to an already existing operation of a class. The operation serves
as the callEvent of this trigger and needs to be created first, which leads to
a dependency in a model-creating edit script. Thus, if a trigger is included in
the slicing criterion, the operation serving as callEvent of that trigger will be
implicitly included in the resulting slice since it is created by the slice-creating
edit script.

A Formal Framework for Incremental Model Slicing 17

6 Related Work

A large number of model slicers has been developed. Most of them work only
with one specific type of models, notably state machines [4] and other types of
behavioral models such as MATLAB/Simulink block diagrams [5]. Other sup-
ported model types include UML class diagrams [31], architectural models [32] or
system models defined using the SysML modeling language [33]. None of these
approaches can be transferred to other (domain-specific) modeling languages,
and they do not abstract from concrete slicing specifications.

The only well-known more generally usable technique which is adaptable to
a given modeling language and slicing specification is Kompren [7]. In contrast
to our formal framework, however, Kompren does not abstract from the con-
crete model modification approach and implementation technologies. It offers
a domain-specific language based on the Kermeta model transformation lan-
guage [34] to specify the behavior of a model slicer, and a generator which gen-
erates a fully functioning model slicer from such a specification. When Kompren
is used in the so-called active mode, slices are incrementally updated when the
input model changes, according to the principle of incremental model transfor-
mation [35]. In our approach, slices are incrementally updated when the slicing
criterion is modified. As long as endogenous model transformations for con-
structing slices are used only, Kompren could be easily extended to become an
instantiation of our formal framework.

Incremental slicing has also been addressed in [36], however, using a notion
of incrementality which fundamentally differs from ours. The technique has been
developed in the context of testing model-based delta-oriented software product
lines [37]. Rather than incrementally updating an existing slice, the approach
incrementally processes the product space of a product line, where each “product”
is specified by a state machine model. As in software regression testing, the goal
is to obtain retest information by utilizing differences between state machine
slices obtained from different products.

In a broader sense, related work can be found in the area of model splitting
and model decomposition. The technique presented in [38] aims at splitting a
model into submodels according to linguistic heuristics and using information
retrieval techniques. The model decomposition approach presented in [39] consid-
ers models as graphs and first determines strongly connected graph components
from which the space of possible decompositions is derived in a second step.
Both approaches are different from ours in that they produce a partitioning of
an input model instead of a single slice. None of them supports the incremental
updating of a model partitioning.

7 Conclusion

We presented a formal framework for defining model slicers that support incre-
mental slice updates based on a general concept of model modifications. Incre-
mental slice updates were shown to be equivalent to non-incremental ones. Fur-
thermore, we presented a framework instantiation based on the concept of edit

18 G. Taentzer et al.

scripts defining application sequences of model transformation rules. This instan-
tiation was implemented by two concrete model slicers based on the Eclipse
Modeling Framework and the model differencing framework SiLift.

As future work, we plan to investigate incremental updates of both the under-
lying model and the slicing criterion. It is also worthwhile to examine the extent
to which further concrete model slicers fit into our formal framework of incre-
mental model slicing. For our own instantiation of this framework, we plan to
cover further model transformation features such as rule schemes and applica-
tion conditions, which will make the configuration of concrete model slicers more
flexible and enable us to support further use cases and purposes.

Acknowledgments. This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593: Design For Future -
Managed Software Evolution.

References

1. Weiser, M.: Program slicing. In: Proceedings of ICSE 1981. IEEE Press (1981)
2. Xu, B., Qian, J., Zhang, X., Wu, Z., Chen, L.: A brief survey of program slicing.

ACM SIGSOFT Softw. Eng. Notes 30(2), 1–36 (2005)
3. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in prac-

tice. Synth. Lect. Softw. Eng. 1(1), 1–182 (2012)
4. Androutsopoulos, K., Clark, D., Harman, M., Krinke, J., Tratt, L.: State-based

model slicing: A survey. ACM Comput. Surv. 45(4), 36 (2013). https://doi.org/
10.1145/2501654.2501667. Article 53

5. Gerlitz, T., Kowalewski, S.: Flow sensitive slicing for matlab/simulink models. In:
Proceedings of WICSA 2016. IEEE (2016)

6. Samuel, P., Mall, R.: A novel test case design technique using dynamic slicing of
UML sequence diagrams. e-Informatica 2(1), 71–92 (2008)

7. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Kompren: modeling and
generating model slicers. SoSyM 14(1), 321–337 (2015)

8. Pietsch, C., Ohrndorf, M., Kelter, U., Kehrer, T.: Incrementally slicing editable
submodels. In: Proceedings of ASE 2017. IEEE Press (2017)

9. Baker, P., Loh, S., Weil, F.: Model-driven engineering in a large industrial context—
Motorola case study. In: Briand, L., Williams, C. (eds.) MODELS 2005. LNCS,
vol. 3713, pp. 476–491. Springer, Heidelberg (2005). https://doi.org/10.1007/
11557432_36

10. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assessment
of MDE in industry. In: Proceedings of ICSE 2011. IEEE (2011)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The grand challenge of scalability for
model driven engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol.
5421, pp. 48–53. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01648-6_5

12. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: Proceedings of BigMDE @
STAF 2013. ACM (2013)

13. Capozucca, A., Cheng, B., Guelfi, N., Istoan, P.: OO-SPL modelling of the focused
case study. In: Proceedings of CMA @ MoDELS 2011 (2011)

https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1145/2501654.2501667
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/978-3-642-01648-6_5
https://doi.org/10.1007/978-3-642-01648-6_5

A Formal Framework for Incremental Model Slicing 19

14. Taentzer, G., Ermel, C., Langer, P., Wimmer, M.: Conflict detection for model
versioning based on graph modifications. In: Ehrig, H., Rensink, A., Rozenberg, G.,
Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 171–186. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15928-2_12

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. Springer, Heidelberg (2006). https://doi.org/10.1007/3-
540-31188-2

16. Habel, A., Pennemann, K.: Correctness of high-level transformation systems rela-
tive to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

17. Kehrer, T., Kelter, U., Taentzer, G.: Consistency-preserving edit scripts in model
versioning. In: Proceedings of ASE 2013. IEEE (2013)

18. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for
model matching: an analysis of approaches to support model differencing. In: Pro-
ceedings of CVSM @ ICSE 2009. IEEE (2009)

19. Kehrer, T., Kelter, U., Pietsch, P., Schmidt, M.: Adaptability of model comparison
tools. In: Proceedings of ASE 2011. ACM (2012)

20. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lifting
of model differences in the context of model versioning. In: Proceedings of ASE
2011. IEEE (2011)

21. Kehrer, T., Kelter, U., Ohrndorf, M., Sollbach, T.: Understanding model evolution
through semantically lifting model differences with SiLift. In: Proceedings of ICSM
2012. IEEE Computer Society (2012)

22. Brun, C., Pierantonio, A.: Model differences in the eclipse modeling framework.
UPGRADE Eur. J. Inform. Prof. 9(2), 29–34 (2008)

23. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2_9

24. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy,
M.: Henshin: a usability-focused framework for EMF model transformation devel-
opment. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp.
196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61470-0_12

25. Taentzer, G., Kehrer, T., Pietsch, C., Kelter, U.: Accompanying website for this
paper (2017). http://pi.informatik.uni-siegen.de/projects/SiLift/fase2018/

26. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. I. World Scientific Publishing Co., Inc., River
Edge (1997)

27. Biermann, E., Ermel, C., Taentzer, G.: Lifting parallel graph transformation con-
cepts to model transformation based on the eclipse modeling framework. Electron.
Commun. EASST 26 (2010)

28. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically deriving the spec-
ification of model editing operations from meta-models. In: Van Van Gorp, P.,
Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp. 173–188. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42064-6_12

29. Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of consistency-preserving
edit operations for MDE tools. In: Proceedings of Demos @ MoDELS 2014. CEUR
Workshop Proceedings, vol. 1255 (2014)

30. Kehrer, T., Rindt, M., Pietsch, P., Kelter, U.: Generating edit operations for pro-
filed UML models. In: Proceedings ME @ MoDELS 2013. CEUR Workshop Pro-
ceedings, vol. 1090 (2013)

https://doi.org/10.1007/978-3-642-15928-2_12
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-319-61470-0_12
http://pi.informatik.uni-siegen.de/projects/SiLift/fase2018/
https://doi.org/10.1007/978-3-319-42064-6_12

20 G. Taentzer et al.

31. Kagdi, H., Maletic, J.I., Sutton, A.: Context-free slicing of UML class models. In:
Proceedings of ICSM 2005. IEEE (2005)

32. Lallchandani, J.T., Mall, R.: A dynamic slicing technique for UML architectural
models. IEEE Trans. Softw. Eng. 37(6), 737–771 (2011)

33. Nejati, S., Sabetzadeh, M., Falessi, D., Briand, L., Coq, T.: A SysML-based app-
roach to traceability management and design slicing in support of safety certifica-
tion: framework, tool support, and case studies. Inf. Softw. Technol. 54(6), 569–590
(2012)

34. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with
Kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2009. LNCS, vol. 6491, pp. 201–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18023-1_5

35. Etzlstorfer, J., Kusel, A., Kapsammer, E., Langer, P., Retschitzegger, W., Schoen-
boeck, J., Schwinger, W., Wimmer, M.: A survey on incremental model trans-
formation approaches. In: Pierantonio, A., Schätz, B. (eds.) Proceedings of the
Workshop on Models and Evolution. CEUR Workshop Proceedings, vol. 1090, pp.
4–13 (2013)

36. Lity, S., Morbach, T., Thüm, T., Schaefer, I.: Applying incremental model slicing
to product-line regression testing. In: Kapitsaki, G.M., Santana de Almeida, E.
(eds.) ICSR 2016. LNCS, vol. 9679, pp. 3–19. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-35122-3_1

37. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6_6

38. Struber, D., Rubin, J., Taentzer, G., Chechik, M.: Splitting models using infor-
mation retrieval and model crawling techniques. In: Gnesi, S., Rensink, A. (eds.)
FASE 2014. LNCS, vol. 8411, pp. 47–62. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-642-54804-8_4

39. Ma, Q., Kelsen, P., Glodt, C.: A generic model decomposition technique and its
application to the eclipse modeling framework. SoSyM 14(2), 921–952 (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-319-35122-3_1
https://doi.org/10.1007/978-3-319-35122-3_1
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-54804-8_4
https://doi.org/10.1007/978-3-642-54804-8_4
http://creativecommons.org/licenses/by/4.0/

Multiple Model Synchronization
with Multiary Delta Lenses

Zinovy Diskin1(B) , Harald König2 , and Mark Lawford1

1 McMaster University, Hamilton, Canada
{diskinz,lawford}@mcmaster.ca

2 University of Applied Sciences FHDW Hannover, Hannover, Germany
harald.koenig@fhdw.de

Abstract. Multiple (more than 2) model synchronization is ubiquitous
and important for MDE, but its theoretical underpinning gained much
less attention than the binary case. Specifically, the latter was extensively
studied by the bx community in the framework of algebraic models for
update propagation called lenses. Now we make a step to restore the bal-
ance and propose a notion of multiary delta lens. Besides multiarity, our
lenses feature reflective updates, when consistency restoration requires
some amendment of the update that violated consistency. We emphasize
the importance of various ways of lens composition for practical appli-
cations of the framework, and prove several composition results.

1 Introduction

Modelling normally results in a set of inter-related models presenting different
views of the system. If one of the models changes and their joint consistency
is violated, the related models should also be changed to restore consistency.
This task is obviously of paramount importance for MDE, but its theoretical
underpinning is inherently difficult and reliable practical solutions are rare. There
are working solutions for file synchronization in systems like Git, but they are
not applicable in the UML/EMF world of diagrammatic models. For the latter,
much work has been done for the binary case (synchronizing two models) by the
bidirectional transformation community (bx) [15], specifically, in the framework
of so called delta lenses [3], but the multiary case (the number of models to be
synchronized is n ≥ 2) gained much less attention—cf. the energetic call to the
community in a recent Stevens’ paper [16].

The context underlying bx is model transformation, in which one model in
the pair is considered as a transform of the other even though updates are prop-
agated in both directions (so called round-tripping). Once we go beyond n = 2,
we at once switch to a more general context of models inter-relations beyond
model-to-model transformations. Such situations have been studied in the con-
text of multiview system consistency, but rarely in the context of an accurate
formal basis for update propagation. The present paper can be seen as an adap-
tation of the (delta) lens-based update propagation framework for the multiview
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 21–37, 2018.
https://doi.org/10.1007/978-3-319-89363-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_2&domain=pdf
http://orcid.org/0000-0001-8025-4630
http://orcid.org/0000-0001-6304-6311
http://orcid.org/0000-0003-3161-2176

22 Z. Diskin et al.

consistency problem. We will call it multi-directional update propagation or mx
following the bx-pattern. Our contributions to mx are as follows.

We show with a simple example (Sect. 2) an important special feature of mx:
consistency restoration may require not only update propagation to other mod-
els but the very update created inconsistency should itself be amended (even
for the case of a two-view system!); thus, update propagation should, in general,
be reflective. Moreover, if even consistency can be restored without a reflective
amendment, there are cases when such reflection is still reasonable. It means
that Hippocraticness [15]—a major requirement for the classical bx, may have
less weight in the mx world. In Sect. 3, we provide a formal definition of multi-
ary (symmetric) lenses with reflection, and define (Sect. 4) several operations of
such lens composition producing complex lenses from simple ones. Specifically,
we show how n-ary lenses can be composed from n-tuples of asymmetric binary
lenses (Theorems 1 and 2), thus giving a partial solution to the challenging issue
of building mx synchronization via bx discussed by Stevens in [16]. We consider
lens composition results important for practical application of the framework. If
the tool builder has implemented a library of elementary synchronization mod-
ules based on lenses and, hence, ensuring basic laws for change propagation, then
a complex module assembled from elementary lenses will automatically be a lens
and thus also enjoys the basic laws.

2 Example

We will consider a simple example motivating our framework. Many formal con-
structs below will be illustrated with the example (or its fragments) and referred
to as Running example.

Fig. 1. Multi-metamodel in UML

2.1 A Multimodel to Play With

Suppose two data sources, whose schemas (we say metamodels) are shown in
Fig. 1 as class diagrams M1 and M2 that record employment. The first source is
interested in employment of people living in downtown, the second one is focused
on software companies and their recently graduated employees. In general, pop-
ulation of classes Person and Company in the two sources can be different – they
can even be disjoint, but if a recently graduated downtowner works for a software
company, her appearance in both databases is very likely. Now suppose there is

Multiple Model Synchronization with Multiary Delta Lenses 23

an agency investigating traffic problems, which maintains its own data on com-
muting between addresses (see schema M3) computable by an obvious relational
join over M1 and M2. In addition, the agency supervises consistency of the two
sources and requires that if they both know a person p and a company c, then
they must agree on the employment record (p, c): it is either stored by both or
by neither of the sources. For this synchronization, it is assumed that persons
and companies are globally identified by their names. Thus, a triple of data sets
(we will say models) A1, A2, A3, instantiating the respective metamodels, can
be either consistent (if the constraints described above are satisfied) or inconsis-
tent (if they aren’t). In the latter case, we normally want to change some or all
models to restore consistency. We will call a collection of models to be kept in
sync a multimodel.

To talk about constraints for multimodels, we need an accurate notation.
If A is a model instantiating metamodel M and X is a class in M, we write
XA for the set of objects instantiating X in A. Similarly, if r : X1 ↔ X2 is
an association in M, we write rA for the corresponding binary relation over
XA

1 × XA
2 . For example, Fig. 2 presents a simple model A1 instantiating M1 with

PersonA1 = {p1, p
′
1}, CompanyA1 = {c1}, empl-erA1 = {(p1, c1)}, and similarly

for attributes, e.g.,

livesA1 = {(p1, a1), (p′
1, a1)} ⊂ PersonA1 ×Addr

(livesA1 and also nameA1 are assumed to be functions and Addr is the (model-
independent) set of all possible addresses). The triple (A1, A2, A3) is a (state of a)
multimodel over the multimetamodel (M1,M2,M3), and we say it is consistent if
the two constraints specified below are satisfied. Constraint (C1) specifies mutual
consistency of models A1 and A2 in the sense described above; constraint (C2)
specifies consistency between the agency’s view of data and the two data sources:

(C1) if p ∈ PersonA1 ∩ PersonA2 and c ∈ CompanyA1 ∩ CompanyA2

then (p, c) ∈ empl-erA1 iff (c, p) ∈ empl-eeA2

(C2)
(
livesA1

)−1

�

(
empl-erA1 ∪ (empl-eeA2)−1

)
� locatedA2 ⊆ CommuteA3

where −1 refers to the inverse relations and � denotes relational join (composi-
tion); using subsetting rather than equality in (C2) assumes that there are other
data sources the agency can use. Note that constraint (C1) inter-relates two
component models of the multimodel, while (C2) involves all three components
and forces synchronization to be 3-ary.

It is easy to see that multimodel A1,2,3 in Fig. 2 is “two-times” inconsis-
tent: (C1) is violated as both A1 and A2 know Mary and IBM, and (IBM,
Mary)∈ empl-eeA2 but (Mary, IBM) /∈ empl-erA1 ; (C2) is violated as A1 and A2

show a commuting pair (a1, a15) not recorded in A3. We will discuss consis-
tency restoration in the next subsection, but first we need to discuss an impor-
tant part of the multimodel – traceability or correspondence mappings – held
implicit so far.

24 Z. Diskin et al.

Fig. 2. A(n inconsistent) multimodel A† over the multi-metamodel in Fig. 1

Indeed, classes PersonA1 and PersonA2 are interrelated by a correspon-
dence relation linking persons with the same name, and similarly for Company.
These correspondence links (we will write corr-links) may be implicit as they can
always be restored. More important is to maintain corr-links between CommuteA3

and empl-erA1 ∪empl-eeA2 . Indeed, class Commute together with its two attributes
can be seen as a relation, and this relation can be instantiated by a multirelation
as people living at the same address can work for companies located at the same
address. If some of such Commute-objects is deleted, and this delete is to be prop-
agated to models A1,2, we need corr-links to know which employment links are to
be deleted. Hence, it makes sense to establish such links when objects are added to
CommuteA3 , and use them later for deletion propagation.

Importantly, for given models A1,2,3, there may be several different correspon-
dence mappings: the same Commute-object can correspond to different commute-
links over A1 and A2. In fact, multiplicity of possible corr-specifications is a
general story that can only be avoided if absolutely reliable keys are available,
e.g., if we suppose that persons and companies can always be uniquely identified
by names, then corrs between these classes are unique. But if keys (e.g., per-
son names) are not absolutely reliable, we need a separate procedure of model
matching or alignment that has to establish whether objects p′

1 ∈ PersonA1 and
p′
2 ∈ PersonA2 both named Mary represent the same real world object. Con-

straints we declared above implicitly involve corr-links, e.g., formula for (C1)
is a syntactic sugar for the following formal statement: if there are corr-links
p = (p1, p2) and c = (c1, c2) with pi ∈PersonAi , ci ∈ CompanyAi (i = 1, 2) then
the following holds: (p1, c1) ∈ empl-erA1 iff (c2, p2) ∈ empl-eeA2 . A precise formal
account of this discussion can be found in [10].

Thus, a multimodel is actually a tuple A = (A1, A2, A3, R) where R is a col-
lection of correspondence relations over sets involved. This R is implicit in Fig. 2
since in this very special case it can be restored. Consistency of a multimodel is
a property of the entire 4-tuple A rather than its 3-tuple carrier (A1, A2, A3).

2.2 Synchronization via Update Propagation

There are several ways to restore consistency of the multimodel in Fig. 2 w.r.t. con-
straint (C1). We may delete Mary from A1, or delete its employment with IBM
from A2, or even delete IBM from A2. We can also change Mary’s employment

Multiple Model Synchronization with Multiary Delta Lenses 25

from IBM to Google, which will restore (C1) as A1 does not know Google. Simi-
larly, we can delete John’s record from A1 and then Mary’s employment with IBM
in A2 would not violate (C1). As the number of constraints and the elements they
involve increase, the number of consistency restoration variants grows fast.

The range of possibilities can be essentially decreased if we take into account the
history of creating inconsistency and consider not only an inconsistent state A† but
update u: A → A† that created it (assuming that A is consistent). For example,
suppose that initially model A1 contained record (Mary, IBM) (and A3 contained
(a1, a15)-commute), and the inconsistency appears after Mary’s employment with
IBM was deleted in A1. Then it’s reasonable to restore consistency by deleting this
employment record in A2 too; we say that deletion was propagated from A1 to A2

(where we assume that initially A3 contained the commute (a1, a15)). If the incon-
sistency appears after adding (IBM, Mary)-employment to A2, then it’s reasonable
to restore consistency by adding such a record to A1. Although propagating dele-
tions/additions to deletions/additions is typical, there are non-monotonic cases
too. Let us assume that Mary and John are spouses (they live at the same address),
and that IBM follows an exotic policy prohibiting spouses to work together. Then
we can interpret addition of (IBM, Mary)-record to A2 as swapping of the family
member working for IBM, and then (John, IBM) is to be deleted from A1.

Now let’s consider how updates to and from model A3 may be propagated.
As mentioned above, traceability/correspondence links play a crucial role here.
If additions to A1 or A2 or both create a new commute, the latter has to be
added to A3 (together with its corr-links) due to constraint (C2). In contrast, if
a new commute is added to A3, we change nothing in A1,2 as (C2) only requires
inclusion. If a commute is deleted from A3, and it is traced to a correspond-
ing employment in empl-erA1 ∪ empl-eeA2 , then this employment is deleted. (Of
course, there are other ways to remove a commute derivable over A1 and A2.)
Finally, if a commute-generating employment in empl-erA1 ∪empl-eeA2 is deleted,
the respective commute in A3 is deleted too. Clearly, many of the propagation
policies above although formally correct, may contradict the real world changes
and hence should be corrected, but this is a common problem of a majority of
automatic synchronization approaches, which have to make guesses in order to
resolve non-determinism inherent in consistency restoration.

2.3 Reflective Update Propagation

An important feature of update propagation scenarios above is that consistency
could be restored without changing the model whose update caused inconsis-
tency. However, this is not always desirable. Suppose again that violation of
constraint (C1) in multimodel in Fig. 2 was caused by adding a new person
Mary to A1, e.g., as a result of Mary’s moving to downtown. Now both models
know both Mary and IBM, and thus either employment record (Mary, IBM) is to
be added to A1, or record (IBM, Mary) is to be removed from A2. Either of the
variants is possible, but in our context, adding (Mary, IBM) to A1 seems more
likely and less specific than deletion (IBM, Mary) from A2. Indeed, if Mary has
just moved to downtown, the data source A1 simply may not have completed

26 Z. Diskin et al.

her record yet. Deletion (IBM, Mary) from A2 seems to be a different event
unless there are strong causal dependencies between moving to downtown and
working for IBM. Thus, an update policy that would keep A2 unchanged but
amend addition of Mary to A1 with further automatic adding her employment
for IBM (as per model A2) seems reasonable. This means that updates can be
reflectively propagated (we also say self-propagated).

Of course, self-propagation does not necessarily mean non-propagation to
other directions. Consider the following case: model A1 initially only contains
(John, IBM) record and is consistent with A2 shown in Fig. 2. Then record (Mary,
Google) was added to A1, which thus became inconsistent with A2. To restore
consistency, (Mary, Google) is to be added to A2 (the update is propagated
from A1 to A2) and (Mary, IBM) is to be added to A1 as discussed above (i.e.,
addition of (Mary, Google) is amended or self-propagated).

Fig. 3. Update propagation pattern

A general schema of update propa-
gation including reflection is shown in
Fig. 3. We begin with a consistent multi-
model (A1...An, R)1 one of which mem-
bers is updated ui: Ai → A′

i. The
propagation operation, based on a priori
defined propagation policies as sketched
above, produces:

(a) updates on all other models u′
j : Aj →

A′′
j , 1 ≤ j �= i ≤ n;

(b) a reflective update u′
i: A′

i → A′′
i ;

(c) a new correspondence specification
R′′ such that the updated multimodel
(A′′

1 ...A′′
n, R′′) is consistent.

To distinguish given data from those produced by the operation, the former
are shown with framed nodes and solid lines in Fig. 3 while the latter are non-
framed and dashed. Below we introduce an algebraic model encompassing several
operations and algebraic laws formally modelling situations considered so far.

3 Multidirectional Update Propagation and Delta Lenses

A delta-based mathematical model for bx is well-known under the name of delta
lenses; below we will say just lens. There are two main variants: asymmetric
lenses, when one model is a view of the other and hence does not have any private
information, and symmetric lenses, when both sides have their private data not
visible on the other side [2,3,6]. In this section we will develop a framework for
generalizing the idea for any n ≥ 2 and including reflective updates.

1 Here we first abbreviate (A1, . . . , An) by (A1...An), and then write (A1...An, R) for
((A1...An), R). We will apply this style in other similar cases, and write, e.g., i ∈ 1...n
for i ∈ {1, ..., n} (this will also be written as i ≤ n).

Multiple Model Synchronization with Multiary Delta Lenses 27

3.1 Background: Graphs and Categories

We reproduce well-known definitions to fix our notation. A (directed multi-)graph
G consists of a set G• of nodes and a set G� of arrows equipped with two
functions s, t: G� → G• that give arrow a its source s(a) and target t(a) nodes.
We write a: N → N ′ if s(a) = N and t(a) = N ′, and a: N → _ or a: _ → N ′

if only one of this conditions is given. Correspondingly, expressions G�(N,N ′),
G�(N,_), G�(_, N ′) denote sets of, resp., all arrows from N to N ′, all arrows
from N , and all arrows into N ′.

A (small) category is a graph, whose arrows are associatively composable
and every node has a special identity loop, which is the unit of the composition.
In more detail, given two consecutive arrows a1: _ → N and a2: N → _, we
denote the composed arrow by a1; a2. The identity loop of node N is denoted
by idN , and equations a1; idN = a1 and idN ; a2 = a2 are to hold. A functor is
a mapping of nodes and arrows from one category to another, which respects
sources and targets. Having a tuple of categories (A1...An), their product is a
category A1 ×...×An whose objects are tuples (A1...An) ∈ A•

1 ×...×A•
n, and

arrows from (A1...An) to (A′
1...A

′
n) are tuples of arrows (u1...un) with ui: Ai →

A′
i for all i ∈ 1...n.

3.2 Model Spaces and Correspondences

Basically, a model space is a category, whose nodes are called model states or just
models, and arrows are (directed) deltas or updates. For an arrow u: A → A′,
we treat A as the state of the model before update u, A′ as the state after the
update, and u as an update specification. Structurally, it is a specification of
correspondences between A and A′. Operationally, it is an edit sequence (edit
log) that changed A to A′. The formalism does not prescribe what updates are,
but assumes that they form a category, i.e., there may be different updates from
state A to state A′; updates are composable; and idle updates idA: A → A (doing
nothing) are the units of the composition.

In addition, we require every model space A to be endowed with a family
(K��

A)A∈A• of binary relations K��
A ⊂ A�(_, A)×A�(A,_) indexed by objects

of A, and specifying non-conflicting or compatible consecutive updates. Intu-
itively, an update u into A is compatible with update u′ from A, if u′ does
not revert/undo anything done by u, e.g., it does not delete/create objects cre-
ated/deleted by u, or re-modify attributes modified by u (see [14] for a detailed
discussion). Formally, we only require (u, idA)∈K��

A and (idA, u′)∈K��
A for all

A ∈ A•, u∈A�(_, A) and u′∈A�(A,_).

Definition 1 (Model spaces). A model space is a pair A = (|A|,K��
A) with

|A| a category (the carrier) of models and updates and K��
A a family as specified

above. A model space functor from A to B is a functor F : |A| → |B|, such
that (u, u′)∈K��

A implies (F (u), F (u′))∈K��
B . We will denote model spaces and

their carriers by the same symbol and often omit explicit mentioning of K��. �

28 Z. Diskin et al.

In the sequel, we will work with families of model spaces indexed by a finite
set I, whose elements can be seen as space names. To simplify notation, we
will assume that I = {1, . . . , n} although ordering will not play any role in our
framework. Given a tuple of model spaces A1, . . . ,An, we will refer to objects
and arrows of the product category A1 × · · · ×An as model tuples and update
tuples or, sometimes, as discrete multimodels/multiupdates.

Definition 2 (Multispace/Multimodels). Let n ≥ 2 be a natural number.

(i) An n-ary multimodel space or just an n-ary multispace A is given by a
family of model spaces ∂A = (A1, . . . ,An) called the boundary of A, and a
set A� of elements called corrs along with a family of functions (∂i: A� →
A•

i)i≤n providing every corr R with its boundary ∂R = (∂1R . . . ∂nR), i.e.,
a tuple of models taken from the multispace boundary one model per space.
Intuitively, a corr is understood as a consistent correspondence specifica-
tion interrelating models from its boundary (and for this paper, all corrs are
assumed consistent).
Given a model tuple (A1...An), we write A�(A1...An) for the set of all corrs
R with ∂R = (A1...An); we call models Ai feet of R. Respectively, spaces Ai

are feet of A and we write ∂iA for Ai.
(ii) An (aligned consistent) multimodel over a multispace A is a model tuple

(A1...An) along with a corr R ∈ A�(A1...An) relating the models. A
multimodel update u: (A1...An, R) → (A′

1...A
′
n, R′) is a tuple of updates

(u1: A1 → A′
1, . . . , un: An → A′

n). �
Note that any corr R uniquely defines a multimodel via the corr’s boundary

function ∂. We will also need to identify the set of all corrs for some fixed A ∈ A•
i

for a given i: A�
i (A,_) def=

{ ∣∣∣ R ∈ A�
}

∂iR = A.
The Running example of Sect. 2 gives rise to a 3-ary multimodel space. For

i ≤ 3, space Ai consists of all models instantiating metamodel Mi in Fig. 1
and their updates. To get a consistent multimodel (A1A2A3, R) from that one
shown in Fig. 2, we can add to A1 an empl-er-link connecting Mary to IBM,
add to A3 a commute with from = a1 and to = a15, and form a corr-set R =
{(p′

1, p
′
2), (c1, c

′
2)} (all other corr-links are derivable from this data).

3.3 Update Propagation and Multiary (Delta) Lenses

Update policies described in Sect. 2 can be extended to cover propagation of all
updates ui, i ∈ 1...3 according to the pattern in Fig. 3. This is a non-trivial task,
but after it is accomplished, we have the following synchronization structure.

Definition 3 (Symmetric lenses). An n-ary symmetric lens is a pair � =
(A, ppg) with A an n-ary multispace called the carrier of �, and (ppgi)i≤n an
n-tuple of operations of the following arities. Operation ppgi takes a corr R (in
fact, a multimodel) with boundary ∂R = (A1...An), and an update ui: Ai → A′

i

as its input, and returns

Multiple Model Synchronization with Multiary Delta Lenses 29

(a) an (n − 1)-tuple of updates u′
j : Aj → A′′

j with 1 ≤ j �= i ≤ n;
(b) a reflective update u′

i: A′
i → A′′

i also called an amendment of ui,
(c) a new consistent corr R′′ ∈ A�(A′′

1 ...A′′
n).

In fact, operations ppgi complete a local update ui to an entire multimodel update
with components (u′

j)j �=i and ui;u′
i (see Fig. 3). �

Notation. If the first argument R of operation ppgi is fixed, the corresponding
family of unary operations (whose only argument is ui) will be denoted by ppgR

i .
By taking the jth component of the multi-element result, we obtain single-valued
unary operations ppgR

ij producing, resp. updates u′
j = ppgR

ij(ui): A′
j → A′′

j . Note
that A′

j = Aj for all j �= i (see clause (a) of the definition) while ppgR
ii is the

reflective update (b). We also have operation ppgR
i� returning a new consistent

corr R′′ = ppgR
i�(ui) according to (c).

Definition 4 (Closed updates). Given a lens � = (A, ppg) and a corr R ∈
A�(A1...An), we call an update ui: Ai → A′

i R-closed, if ppgR
ii(ui) = idA′

i
. An

update is �-closed if it is R-closed for all R. Lens � is called non-reflective at foot
Ai, if all updates in A�

i are �-closed. �
For the Running example, update propagation policies described in Sect. 2

give rise to a lens non-reflective at space A3.

Definition 5 (Well-behavedness). A lens � = (A, ppg) is called well-behaved
(wb) if the following laws hold for all i ≤ n, Ai ∈ A•

i , R ∈ A�
i (Ai,_) and

ui: Ai → A′
i, cf. Fig. 3.

(Stability)i ∀j ∈ {1...n} : ppgR
ij(idAi

) = idAj
and ppgR

i�(idAi
) = R

(Reflect1)i (ui, u
′
i) ∈ K��

A′
i

(Reflect2)i ∀j �= i : ppgR
ij(ui;u′

i) = ppgR
ij(ui)

(Reflect3)i ppgR
ii(ui;u′

i) = idA′′
i

where u′
i = ppgR

ii(ui) as in Definition 3. �
Stability says that lenses do nothing voluntarily. Reflect1 says that amendment

works towards “completion” rather than “undoing”, and Reflect2-3 are idempo-
tency conditions to ensure the completion indeed done.

Definition 6 (Invertibility). A wb lens is called (weakly) invertible, if it
satisfies the following law for any i, update ui: Ai → A′

i and R ∈ A�
i (Ai,_):

(Invert)i for all j �= i: ppgR
ij(ppg

R
ji(ppg

R
ij(ui))) = ppgR

ij(ui) �
This law deals with “round-tripping”: operation ppgR

ji applied to update uj =
ppgR

ij(ui) results in update ûi equivalent to ui in the sense that ppgR
ij(ûi) =

ppgR
ij(ui) (see [3] for a motivating discussion).

Example 1 (Identity Lens �(nA)). Let A be an arbitrary model space. It gener-
ates an n-ary lens �(nA) as follows: The carrier A has n identical model spaces:
Ai = A for all i ∈ {1, .., n}, it has A� = A•, and boundary functions are
identities. All updates are propagated to themselves (hence the name of �(nA)).
Obviously, �(nA) is a wb, invertible lens non-reflective at all its feet. �

30 Z. Diskin et al.

4 Compositionality of Update Propagation: Playing Lego
with Lenses

We study how lenses can be composed. Parallel constructions are easy to manage
and excluded from the paper to save space (they can be found in the long ver-
sion [1, Sect. 4.1]). More challenging are sequential constructs, in which different
lenses share some of their feet, and updates propagated by one lens are taken
and propagated further by one or several other lenses. In Sect. 4.1, we consider
a rich example of such—star composition of lenses. In Sect. 4.2, we study how
(symmetric) lenses can be assembled from asymmetric ones.

Since we now work with several lenses, we need a notation for lens’ compo-
nents. Given a lens � = (A, ppg), we write �� def= A� for its set of corrs. Feet
are written ∂�

i (i-th boundary space) and ∂�
i R for the i-th boundary of a corr

R ∈ ��. Propagation operations of the lens � are denoted by �.ppgR
ij , �.ppgR

i�.

4.1 Star Composition

Fig. 4. Running example via lenses

Running Example Continued. Dia-
gram in Fig. 4 presents a refinement of
our example, which explicitly includes
relational storage models B1,2 for the
two data sources. We assume that object
models A1,2 are simple projective views
of databases B1,2: data in Ai are copied
from Bi without any transformation,
while additional tables and attributes
that Bi-data may have are excluded
from the view Ai; the traceability map-
pings Ri : Ai ↔ Bi are thus embeddings.
We further assume that synchronization of bases Bi and their views Ai is real-
ized by simple constant-complement lenses bi, i = 1, 2 (see, e.g., [9]). Finally,
let k be a lens synchronizing models A1, A2, A3 as described in Sect. 2, and
R ∈ k �(A1, A2, A3) be a corr for some A3 not shown in the figure.

Consider the following update propagation scenario. Suppose that at some
moment we have consistency (R1, R,R2) of all five models, and then B1 is
updated with u1: B1 → B′

1 that, say, adds to B1 a record of Mary working for
Google as discussed in Sect. 2. Consistency is restored with a four-step propaga-
tion procedure shown by double-arrows labeled by x : y with x the step number
and y the lens doing the propagation. Step 1: lens b1 propagates update u1 to
v′
1 that adds (Mary, Google) to view A1 with no amendment to u1 as v′

1 is just
a projection of u1, thus, B′

1 = B′′
1 . Note also the updated traceability mapping

R′
1 : B′

1 ↔ A′
1. Step 2: lens k propagates v′

1 to v′′
2 that adds (Google, Mary)

to A2, and amends v′
1 with v′′

1 that adds (Mary, IBM) to A′
1; a new consistent

corr R′′ is also computed. Step 3: lens b2 propagates v′′
2 to u′′′

2 that adds Mary’s
employment by Google to B2 with, perhaps, some other specific relational stor-
age changes not visible in A2. We assume no amendment to v′′

2 as otherwise

Multiple Model Synchronization with Multiary Delta Lenses 31

access to relational storage would amend application data, and thus we have
a consistent corr R′′′

2 as shown. Step 4: lens b1 maps update v′′
1 (see above

in Step 2) backward to u′′′
1 that adds (Mary, IBM) to B′

1 so that B′′′
1 includes

both (Mary, Google) and (Mary, IBM) and a respective consistent corr R′′′
1 is

provided. There is no amendment for v′′
1 by the same reason as in Step 3.

Thus, all five models in the bottom line of Fig. 4 (A′′
3 is not shown) are

mutually consistent and all show that Mary is employed by IBM and Google.
Synchronization is restored, and we can consider the entire scenario as propaga-
tion of u1 to u′′′

2 and its amendment with u′′′
1 so that finally we have a consis-

tent corr (R′′′
1 , R′′, R′′′

2) interrelating B′′′
1 , A′′

3 , B′′′
2 . Amendment u′′′

1 is compatible
with u1 as nothing is undone and condition (u1, u

′′′
1) ∈ K��

B′
1

holds; the other two
equations required by Reflect2-3 for the pair (u1, u

′′′
1) also hold. For our simple

projection views, these conditions will hold for other updates too, and we have
a well-behaved propagation from B1 to B2 (and trivially to A3). Similarly, we
have a wb propagation from B2 to B1 and A3. Propagation from A3 to B1,2 is
non-reflective and done in two steps: first lens k works, then lenses bi work as
described above (and updates produced by k are bi-closed). Thus, we have built
a wb ternary lens synchronizing spaces B1,B2 and A3 by joining lenses b1 and
b2 to the central lens k .

•
• ==

1
⇒ • ==

2
⇒ •

3 ⇒ •
4⇒

• 3
⇒4 ⇒

Discussion. Reflection is a crucial aspect of lens
composition. The inset figure describes the scenario
above as a transition system and shows that Steps
3 and 4 can go concurrently. It is the non-trivial
amendment created in Step 2 that causes the neces-
sity of Step 4, otherwise Step 3 would finish consis-
tency restoration (with Step 4 being an idle transition). On the other hand, if
update v′′

2 in Fig. 4 would not be closed for lens b2, we’d have yet another con-
current step complicating the scenario. Fortunately for our example with simple
projective views, Step 4 is simple and provides a non-conflicting amendment, but
the case of more complex views beyond the constant-complement class needs care
and investigation. Below we specify a simple situation of lens composition with
reflection a priori excluded, and leave more complex cases for future work.

Fig. 5. Star composition

Formal Definition. Suppose we have an n-
ary lens k = (A, ppg), and for every i ≤ n, a
binary lens bi = (Ai,Bi, bi.ppg), with the first
model space Ai being the ith model space of k
(see Fig. 5, where k is depicted in the center and
bi are shown as ellipses adjoint to k ’s feet). We
also assume the following Junction conditions:
For any i ≤ n, all updates propagated to Ai by
lens bi are k -closed, and all updates propagated
to Ai by lens k are bi-closed.

32 Z. Diskin et al.

Below we will write a corr Ri ∈ b�
i (Ai, Bi) as Ri : Ai ↔ Bi, and the sixtu-

ple of operations bi.ppg
Ri as the family

(
bi.ppg

Ri
xy | x ∈ {A,B}, y ∈ {A,B, �})

.
Likewise we write ∂bi

x with x ∈ {A,B} for the boundary functions of lenses bi.
The above configuration gives rise to the following n-ary lens �. The carrier is

the tuple of model spaces B1...Bn and corrs are tuples (R,R1...Rn) with R ∈ k �

and Ri ∈ b�
i , such that ∂k

i R = ∂bi
ARi for all i ∈ 1..n. Moreover, we define

∂�
i (R,R1...Rn)

def= ∂bi
BRi (see Fig. 5). Operations are defined as compositions of

consecutive lens’ executions as described below (we will use the dot notation for
operation application and write x.op for op(x), where x is an argument).

Given a model tuple (B1...Bn) ∈ B1 ×...×Bn, a corr (R,R1...Rn), and
update vi: Bi → B′

i in B�
i , we define, first for j �= i,

vi. �.ppg
(R,R1...Rn)
ij

def= vi.(bi.ppg
Ri

BA).(k .ppgR
ij).(bj .ppg

Rj

AB),

and vi. �.ppg
(R,R1...Rn)
ii

def= vi. bi.ppg
Ri

BB for j = i. Note that all internal
amendments to ui = vi.(bi.ppg

Ri

BA) produced by k , and to u′
j = ui.(k .ppgR

ij)
produced by bj , are identities due to the Junction conditions. This allows
us to set corrs properly and finish propagation with the three steps above:
vi. �.ppg

(R,R1...Rn)
i�

def= (R′, R′
1...R

′
n) where R′ = ui. k .ppgR

i�, R′
j = u′

j . bj .ppg
Rj

A�

for j �= i, and R′
i = vi. bi.ppg

Ri

B�. We thus have a lens � denoted by k �(b1, . . . , bn).
�

Theorem 1 (Star Composition). Given a star configuration of lenses as
above, if lens k fulfills Stability, all lenses bi are wb, and Junction conditions
hold, then the composed lens k �(b1, . . . , bn) defined above is wb, too.

Proof. Laws Stability and Reflect1 for the composed lens are straightforward.
Reflect2-3 also follow immediately, since the first step of the above propagation
procedure already enjoys idempotency by Reflect2-3 for bi. �

4.2 Assembling n-ary Lenses from Binary Lenses

This section shows how to assemble n-ary (symmetric) lenses from binary asym-
metric lenses modelling view computation [2]. As the latter is a typical bx,
the well-behavedness of asymmetric lenses has important distinctions from well-
behavedness of general (symmetric mx-tailored) lenses.

Definition 7 (Asymmetric Lens, cf. [2]). An asymmetric lens (a-lens) is a
tuple b� = (A,B, get, put) with A a model space called the (abstract) view, B
a model space called the base, get : A ← B a functor (read “get the view”), and
put a family of operations

(
putB | B ∈ B•)

(read “put the view update back”) of
the following arity. Provided with a view update v: get(B) → A′ at the input,
operation putB outputs a base update putBb (v) = u′: B → B′′ and a reflected
view update putBv (v) = v′: A′ → A′′ such that A′′ = get(B′′). A view update
v: get(B) → A′ is called closed if putBv (v) = idA′ . �

Multiple Model Synchronization with Multiary Delta Lenses 33

The following is a specialization of Definition 5.

Definition 8 (Well-behavedness). An a-lens is well-behaved (wb) if it sat-
isfies the following laws for all B ∈ B• and v: get(B) → A′

(Stability) putBb (idget(B)) = idB

(Reflect0) putBv (v) �= idA′ implies A′ �= get(X) for all X ∈ B•

(Reflect1) (v, v′) ∈ K��
A′

(Reflect2) putBb (v; put
B
v (v)) = putBb (v)

(PutGet) v; putBv (v) = get(putBb (v)) �
In contrast to the general lens case, a wb a-lens features Reflect0—a sort of
self-Hippocraticness important for bx. Another distinction is inclusion of a
strong invertibility law PutGet into the definition of well-behavedness: Put-
Get together with Reflect2 provide (weak) invertibility: putBb (get(put

B
b (v))) =

putBb (v). Reflect3 is omitted as it is implied by Reflect0 and PutGet.
Any a-lens b� = (A,B, get, put) gives rise to a binary symmetric lens b. Its

carrier consists of model spaces A and B. Furthermore b� = B• with boundary
mappings defined as follows: for R ∈ b� = B•, ∂b

AR = get(R) and ∂b
BR = R.

Thus, the set of corrs b�(A,B) is {B} if A = get(B), and is empty otherwise.
For a corr B, we need to define six operations b.ppgB

__. If v: A → A′ is a view
update, then ppgB

AB(v) = putBb (v) : B → B′′, ppgB
AA(v) = putBv (v) : A′ → A′′,

and ppgB
A�(v) = B′′. The condition A′′ = get(B′′) for b� means that B′′ is again

a consistent corr with the desired boundaries. For a base update u: B → B′ and
corr B, ppgB

BA(u) = get(u), ppgB
BB(u) = idB′ , and ppgB

B�(u) = B′. Functoriality
of get yields consistency of B′.

Lemma 1. Let b� be a wb a-lens and b the corresponding symmetric lens. Then
all base updates of b are closed, and b is wb and invertible.

Proof. Base updates are closed by the definition of ppgBB. Well-behavedness
follows from wb-ness of b�. Invertibility has to be proved in two directions:
ppgBA; ppgAB; ppgBA = ppgBA follows from (PutGet) and (Reflect0), the other
direction follows from (PutGet) and (Reflect2), see the remark after Definition 8. �

Theorem 2 (Lenses from Spans). An n-ary span of wb a-lenses b�
i =

(Ai,B, geti, puti), i = 1..n with common base B of all b�
i gives rise to a wb

(symmetric) lens denoted by Σn
i=1b

�
i .

Proof. An n-ary span of a-lenses b�
i (all of them interpreted as symmetric lenses

bi as explained above) is a construct equivalent to the star-composition of Def-
inition 4.1.3, in which lens k = �(nB) (cf. Example 1) and peripheral lenses are
lenses bi. The junction condition is satisfied as all base updates are bi-closed for
all i by Lemma 1, and also trivially closed for any identity lens. The theorem
thus follows from Theorem 1. Note that a corr in (Σn

i=1b
�
i)� is nothing but a

single model B ∈ B• with boundaries being the respective geti-images. �

34 Z. Diskin et al.

The theorem shows that combining a-lenses in this way yields an n-ary sym-
metric lens, whose properties can automatically be inferred from the binary
a-lenses.

Running example. Figure 6 shows a metamodel M+ obtained by merging the
three metamodels M1,2,3 from Fig. 1 without loss and duplication of information.
In addition, for persons and companies, the identifiers of model spaces, in which
a given person or company occurs, can be traced back via attribute “spaces”
(Commute-objects are known to appear in space A3 and hence do not need such
an attribute). As shown in [10], any consistent multimodel (A1...An, R) can be
merged into a comprehensive model A+ instantiating M+. Let B be the space
of such together with their comprehensive updates u+: A+ → A′+.

Fig. 6. Merged metamodel

For a given i ≤ 3, we can define the fol-
lowing a-lens b�

i = (Ai,B, geti, puti): geti takes
update u+ as above and outputs its restriction
to the model containing only objects recorded
in space Ai. Operation puti takes an update
vi: Ai → A′

i and first propagates it to all direc-
tions as discussed in Sect. 2, then merges these
propagated local updates into a comprehensive
B-update between comprehensive models. This yields a span of a-lenses that
implements the same synchronization behaviour as the symmetric lens discussed
in Sect. 2.

From lenses to spans. There is also a backward transformation of (symmetric)
lenses to spans of a-lenses. Let � = (A, ppg) be a wb lens. It gives rise to the
following span of wb a-lenses ��

i = (∂i(A),B, geti, puti) where space B is built
from consistent multimodels and their updates, and functors geti : B → Ai are
projection functors. Given B = (A1...An, R) and update ui: Ai → A′

i, let

putBib(ui)
def= (u′

1, .., u
′
i−1, (ui;u′

i), u
′
i+1, .., u

′
n): (A1...An, R) → (A′′

1 ...A′′
n, R′′)

where u′
j

def= ppgR
ij(ui) (all j) and R′′ = ppgR

i�(ui). Finally, putBiv(vi)
def=

ppgR
ii(ui). Validity of Stability, Reflect0-2, PutGet directly follows from the above

definitions.
An open question is whether the span-to-lens transformation in Theorem 2

and the lens-to-span transformation described above are mutually inverse. The
results for the binary case in [8] show that this is only the case modulo cer-
tain equivalence relations. These equivalences may be different for our reflective
multiary lenses, and we leave this important question for future research.

5 Related Work

For state-based lenses, the work closest in spirit is Stevens’ paper [16]. Her and
our goals are similar, but the technical realisations are different even besides
the state- vs. delta-based opposition. Stevens works with restorers, which take

Multiple Model Synchronization with Multiary Delta Lenses 35

a multimodel (in the state-based setting, just a tuple of models) presumably
inconsistent, and restores consistency by changing some models in the tuple while
keeping other models (from the authority set) unchanged. In contrast, lenses take
a consistent multimodel and updates, and return a consistent multimodel and
updates. Also, update amendments are not considered in [16] – models in the
authority set are intact.

Another distinction is how the multiary vs. binary issue is treated. Stevens
provides several results for decomposing an n-ary relation A� into binary rela-
tions A�

ij ⊆ Ai ×Aj between the components. For us, a relation is a span, i.e., a
set A� endowed with an n-tuple of projections ∂i: A� → Ai uniquely identify-
ing elements in A�. Thus, while Stevens considers “binarisation” of a relation R
over its boundary A1...An, we “binarise” it via the corresponding span (the UML
would call it reification). Our (de)composition results demonstrate advantages
of the span view. Discussion of several other works in the state-based world,
notably by Macedo et al. [12] can be found in [16].

Compositionality as a fundamental principle for building synchronization
tools was proposed by Pierce and his coauthors, and realized for several types of
binary lenses in [4,6,7]. In the delta-lens world, a fundamental theory of equiva-
lence of symmetric lenses and spans of a-lenses (for the binary case) is developed
by Johnson and Rosebrugh [8], but they do not consider reflective updates. The
PutGetPut law has been discussed (in a different context of state-based asym-
metric injective editing) in several early bx work from Tokyo, e.g., [13]. A notion
close to our update compatibility was proposed by Orejas et al in [14]. We are not
aware of multiary update propagation work in the delta-lens world. Considering
amendment and its laws in the delta lens setting is also new.

In [11], Königs and Schürr introduced multigraph grammars (MGGs) as
a multiary version of well-known triple graph grammar (TGG). Their multi-
domain-integration rules specify how all involved graphs evolve simultaneously.
The idea of an additional correspondence graph is close to our consistent corrs.
However, their scenarios are specialized towards (1) directed graphs, (2) MOF-
compliant artifacts like QVT, and (3) the global consistency view on a multi-
model rather than update propagation.

6 Conclusions and Future Work

We have considered multiple model synchronization via multi-directional update
propagation, and argued that reflective propagation to the model whose change
originated inconsistency is a reasonable feature of the scenario. We presented a
mathematical framework for such synchronization based on a multiary general-
isation of binary symmetric delta lenses introduced earlier in [3], and enriched
it with reflective propagation. Our lens composition results make the framework
interesting for practical applications, but so far it has an essential limitation:
we consider consistency violation caused by only one model change, and thus
consistency is restored by propagating only one update, while in practice we
often deal with several models changing concurrently. If these updates are in

36 Z. Diskin et al.

conflict, consistency restoration needs conflict resolution, and hence an essential
development of the framework.

There are also several open issues for the non-concurrent case considered in
the paper (and its future concurrent generalisation). First, our pool of lens com-
position constructs is far incomplete (because of both space limitations and the
necessity of further research). We need to enrich it with (i) sequential composi-
tion of (reflective) a-lenses so that a category of a-lenses could be built, and (ii)
a relational composition of symmetric lenses sharing several of their feet (similar
to relational join). It is also important to investigate composition with weaker
junction conditions than we considered. Another important issue is invertibility,
which nicely fits in some but not all of our results, which shows the necessity of
further investigation. It is a sign that we do not well understand the nature of
invertibility. We conjecture that while invertibility is essential for bx, its role for
mx may be less important. The (in)famous PutPut law is also awaiting its explo-
ration in the case of multiary reflective propagation. And the last but not the
least is the (in)famous PutPut law: how well our update propagation operations
are compatible with update composition is a very important issue to explore.
Finally, paper [5] shows how binary delta lenses can be implemented with TGG,
and we expect that MGG could play a similar role for multiary delta lenses.

References

1. Diskin, Z., König, H., Lawford, M.: Multiple model synchronization with multiary
delta lenses. Technical report. McMaster Centre for Software Certification,
McSCert-2017-10-01, McMaster University (2017). http://www.mcscert.ca/
projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-
with-Multiary-Delta-Lenses-ZD.pdf

2. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. J. Object Technol. 10(6), 1–25 (2011)

3. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: the symmetric case. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–
318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8_22

4. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combi-
nators for bi-directional tree transformations: a linguistic approach to the view
update problem. In: Palsberg, J., Abadi, M. (eds.) Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2005, 12–14 January 2005, Long Beach, California, USA, pp. 233–246. ACM (2005).
https://doi.org/10.1145/1040305.1040325

5. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Cor-
rectness of model synchronization based on triple graph grammars. In: Whittle,
J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8_49

6. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Ball, T., Sagiv, M.
(eds.) Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, 26–28 January 2011, Austin, TX, USA,
pp. 371–384. ACM (2011). https://doi.org/10.1145/1926385.1926428

http://www.mcscert.ca/projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-with-Multiary-Delta-Lenses-ZD.pdf
http://www.mcscert.ca/projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-with-Multiary-Delta-Lenses-ZD.pdf
http://www.mcscert.ca/projects/mcscert/wp-content/uploads/2017/10/Multiple-Model-Synchronization-with-Multiary-Delta-Lenses-ZD.pdf
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1145/1040305.1040325
https://doi.org/10.1007/978-3-642-24485-8_49
https://doi.org/10.1145/1926385.1926428

Multiple Model Synchronization with Multiary Delta Lenses 37

7. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.)
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, 22–28 January 2012, Philadelphia, Pennsylvania,
USA, pp. 495–508. ACM (2012). https://doi.org/10.1145/2103656.2103715

8. Johnson, M., Rosebrugh, R.D.: Symmetric delta lenses and spans of asymmetric
delta lenses. J. Object Technol. 16(1), 2:1–2:32 (2017). https://doi.org/10.5381/
jot.2017.16.1.a2

9. Johnson, M., Rosebrugh, R.D., Wood, R.J.: Lenses, fibrations and universal trans-
lations. Math. Struct. Comput. Sci. 22(1), 25–42 (2012). https://doi.org/10.1017/
S0960129511000442

10. König, H., Diskin, Z.: Efficient consistency checking of interrelated models. In:
Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp. 161–178.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61482-3_10

11. Königs, A., Schürr, A.: MDI: a rule-based multi-document and tool integration app-
roach. Softw. Syst. Model. 5(4), 349–368 (2006). https://doi.org/10.1007/s10270-
006-0016-x

12. Macedo, N., Cunha, A., Pacheco, H.: Towards a framework for multidirectional
model transformations. In: Proceedings of the Workshops of the EDBT/ICDT
2014 Joint Conference (EDBT/ICDT 2014), 28 March 2014, Athens, Greece, pp.
71–74 (2014). http://ceur-ws.org/Vol-1133/paper-11.pdf

13. Mu, S.-C., Hu, Z., Takeichi, M.: An algebraic approach to bi-directional updating.
In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 2–20. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30477-7_2

14. Orejas, F., Boronat, A., Ehrig, H., Hermann, F., Schölzel, H.: On propagation-
based concurrent model synchronization. ECEASST 57, 1–19 (2013). http://
journal.ub.tu-berlin.de/eceasst/article/view/871

15. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open
questions. Softw. Syst. Model. 9(1), 7–20 (2010)

16. Stevens, P.: Bidirectional transformations in the large. In: 20th ACM/IEEE Inter-
national Conference on Model Driven Engineering Languages and Systems, MOD-
ELS 2017, 17–22 September 2017, Austin, TX, USA, pp. 1–11 (2017). https://doi.
org/10.1109/MODELS.2017.8

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1145/2103656.2103715
https://doi.org/10.5381/jot.2017.16.1.a2
https://doi.org/10.5381/jot.2017.16.1.a2
https://doi.org/10.1017/S0960129511000442
https://doi.org/10.1017/S0960129511000442
https://doi.org/10.1007/978-3-319-61482-3_10
https://doi.org/10.1007/s10270-006-0016-x
https://doi.org/10.1007/s10270-006-0016-x
http://ceur-ws.org/Vol-1133/paper-11.pdf
https://doi.org/10.1007/978-3-540-30477-7_2
http://journal.ub.tu-berlin.de/eceasst/article/view/871
http://journal.ub.tu-berlin.de/eceasst/article/view/871
https://doi.org/10.1109/MODELS.2017.8
https://doi.org/10.1109/MODELS.2017.8
http://creativecommons.org/licenses/by/4.0/

Controlling the Attack Surface
of Object-Oriented Refactorings

Sebastian Ruland1(B) , Géza Kulcsár1 , Erhan Leblebici1 ,
Sven Peldszus2 , and Malte Lochau1

1 Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
{sebastian.ruland,geza.kulcsar,erhan.leblebici,

malte.lochau}@es.tu-darmstadt.de
2 Institute for Software Technology, University of Koblenz-Landau,

Koblenz, Germany
speldszus@uni-koblenz.de

Abstract. Refactorings constitute an effective means to improve quality
and maintainability of evolving object-oriented programs. Search-based
techniques have shown promising results in finding optimal sequences of
behavior-preserving program transformations that (1) maximize code-
quality metrics and (2) minimize the number of changes. However, the
impact of refactorings on extra-functional properties like security has
received little attention so far. To this end, we propose as a further objec-
tive to minimize the attack surface of programs (i.e., to maximize strict-
ness of declared accessibility of class members). Minimizing the attack
surface naturally competes with applicability of established MoveMethod
refactorings for improving coupling/cohesion metrics. Our tool imple-
mentation is based on an EMF meta-model for Java-like programs and
utilizes MOMoT, a search-based model-transformation framework. Our
experimental results gained from a collection of real-world Java programs
show the impact of attack surface minimization on design-improving
refactorings by using different accessibility-control strategies. We further
compare the results to those of existing refactoring tools.

1 Introduction

The essential activity in designing object-oriented programs is to identify class
candidates and to assign responsibility (i.e., data and operations) to them. An
appropriate solution to this Class-Responsibility-Assignment (CRA) problem, on
the one hand, intuitively reflects the problem domain and, on the other hand,
exhibits acceptable quality measures [4]. In this context, refactoring has become
a key technique for agile software development: productive program-evolution
phases are interleaved with behavior-preserving code transformations for updat-
ing CRA decisions, to proactively maintain, or even improve, code-quality met-
rics [13,29]. Each refactoring pursues a trade-off between two major, and gen-
erally contradicting, objectives: (1) maximizing code-quality metrics, including
fine-grained coupling/cohesion measures as well as coarse-grained anti-pattern
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 38–55, 2018.
https://doi.org/10.1007/978-3-319-89363-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_3&domain=pdf
http://orcid.org/0000-0003-2542-9754
http://orcid.org/0000-0002-5387-8277
http://orcid.org/0000-0002-1815-7511
http://orcid.org/0000-0002-2604-0487
http://orcid.org/0000-0002-8404-753X

Attack Surface of OO Refactorings 39

avoidance, and (2) minimizing the number of changes to preserve the initial pro-
gram design as much as possible [8]. Manual search for refactorings sufficiently
meeting both objectives becomes impracticable already for medium-size pro-
grams, as it requires to find optimal sequences of interdependent code transfor-
mations with complex constraints [10]. The very large search space and multiple
competing objectives make the underlying optimization problem well-suited for
search-based optimization [15] for which various semi-automated approaches for
recommending refactorings have been recently proposed [18,27,28,30,34].

The validity of proposed refactorings is mostly concerned with purely func-
tional behavior preservation [24], whereas their impact on extra-functional prop-
erties like program security has received little attention so far [22]. However,
applying elaborated information-flow metrics for identifying security-preserving
refactorings is computationally too expensive in practice [36]. As an alterna-
tive, we consider attack-surface metrics as a sufficiently reliable, yet easy-to-
compute indicator for preservation of program security [20,41]. Attack surfaces
of programs comprise all conventional ways of entering a software by users/at-
tackers (e.g., invoking API methods or inheriting from super-classes) such that
an unnecessarily large surface increases the danger of exploiting vulnerabilities.
Hence, the goal of a secure program design should be to grant least privileges to
class members to reduce the extent to which data and operations are exposed
to the world [41]. In Java-like languages, accessibility constraints by means of
modifiers public, private and protected provide a built-in low-level mecha-
nism for controlling and restricting information flow within and across classes,
sub-classes and packages [38]. Accessibility constraints introduce compile-time
security barriers protecting trusted system code from untrusted mobile code [19].
As a downside, restricted accessibility privileges naturally obstruct possibilities
for refactorings, as CRA updates (e.g., moving members [34]) may be either
rejected by those constraints, or they require to relax accessibility privileges,
thus increasing the attack surface [35].

In this paper, we present a search-based technique to find optimal sequences
of refactorings for object-oriented Java-like programs, by explicitly taking acces-
sibility constraints into account. To this end, we do not propose novel refac-
toring operations, but rather apply established ones and control their impact
on attack-surface metrics. We focus on MoveMethod refactorings which have
been proven effective for improving CRA metrics [34], in combination with
operations for on-demand strengthening and relaxing of accessibility declara-
tions [38]. As objectives, we consider (O1) elimination of design flaws, partic-
ularly, (O1a) optimization of object-oriented coupling/cohesion metrics [5,6]
and (O1b) avoidance of anti-patterns, namely The Blob, (O2) preservation
of original program design (i.e., minimizing the number of change operations),
and (O3) attack-surface minimization. Our model-based tool implementation,
called GOBLIN, represents individuals (i.e., intermediate refactoring results) as
program-model instances complying to an EMF meta-model for Java-like pro-
grams [33]. Hence, instead of regenerating source code after every single refactor-
ing step, we apply and evaluate sequences of refactoring operations, specified as
model-transformation rules in Henshin [2], on the program model. To this end,

40 S. Ruland et al.

Fig. 1. UML class diagram of MailApp

we apply MOMoT [11], a generic framework for search-based model transfor-
mations. Our experimental evaluation results gained from applying GOBLIN
as well as the recent tools JDeodorant [12] and Code-Imp [27] to a collection
of real-world Java programs provide us with in-depth insights into the subtle
interplay between traditional code-quality metrics and attack-surface metrics.
Our tool and all experiment results are available on the GitHub site of the
project1.

2 Background and Motivation

We first introduce a running example to provide the necessary background and
to motivate the proposed refactoring methodology.

Running Example. We consider a (simplified) e-mail client, called MailApp,
implemented in Java. Figure 1 shows the UML class diagram of MailApp, where
security-critical extensions (in gray) will be described below. We use stereo-
type 〈〈pkg : name〉〉 to annotate classes with package declarations. Central class
MailApp is responsible for handling objects of classes Message and Contact both
encapsulating application data and operations to access those attributes. The
text of a message may be formatted as plain String, or it may be converted into
HTML using method plainToHtml().

Design Flaws in Object-Oriented Programs. The over-centralized architec-
tural design of MailApp, consisting of a predominant controller class (MailApp)
intensively accessing inactive data classes (Message and Contact), is frequently
referred to as The Blob anti-pattern [7]. As a consequence, method plainToHtml()
in class MailApp frequently calls method getPlainText() in class Message across

1 https://github.com/Echtzeitsysteme/goblin.

https://github.com/Echtzeitsysteme/goblin

Attack Surface of OO Refactorings 41

class- and even package-boundaries. The Blob and other design flaws are widely
considered harmful with respect to software quality in general and program main-
tainability in particular [7]. For instance, assume a developer to extend MailApp
by (1) adding further classes SecureMailApp and RsaAdapter for encrypting and
signing messages, and by (2) extending class Contact with public RSA key han-
dling: method findKey() searches for public RSA keys of contacts by repeatedly
calling method findKeyFromServer() with the URL of available key servers. This
program evolution further decays the already flawed design of MailApp as class
SecureMailApp may be considered as a second instance of The Blob anti-pattern:
method encryptMessage() of class SecureMailApp intensively calls method find-
Key() in class Contact. This example illustrates a well-known dilemma of agile
program development in an object-oriented world: Class-Responsibility Assign-
ment decisions may become unbalanced over time, due to unforeseen changes
crosscutting the initial program design [31]. As a result, a majority of object-
oriented design flaws like The Blob anti-pattern is mainly caused by low cohe-
sion/high coupling ratios within/among classes and their members [5,6].

Refactoring of Object-Oriented Programs. Object-oriented refactorings
constitute an emerging and widely used counter-measure against design
flaws [13]. Refactorings impose systematic, semantic-preserving program trans-
formations for continuously improving code-quality measures of evolving source
code. For instance, the MoveMethod refactoring is frequently used to update
CRA decisions after program changes, by moving method implementations
between classes [34]. Applied to our example, a developer may (manually) con-
duct two refactorings, R1 and R2, to counteract the aforementioned design
flaws:

(R1) move method plainToHtml() from class MailApp to class Message, and
(R2) move method encryptMessage() from class SecureMailApp to class Contact.

However, concerning programs of realistic size and complexity, tool support
for (semi-)automated program refactorings becomes more and more inevitable.
The major challenges in finding effective sequences of object-oriented refactoring
operations consists in detecting flawed program parts to be refactored, as well as
in recommending program transformations applied to those parts to obtain an
improved, yet behaviorally equivalent program design. The complicated nature
of the underlying optimization problem stems from several phenomena.

– Very large search-space due to the combinatorial explosion resulting
from the many possible sequences of (potentially interdependent) refactoring-
operation applications.

– Multiple objectives including various (inherently contradicting) refactoring
goals (e.g., O1−O3).

– Many invalid solutions due to (generally very complicated) constraints to
be imposed for ensuring behavior preservation.

Further research especially on the last phenomenon is required to understand
to what extent a refactoring actually alters (in a potentially critical way) the

42 S. Ruland et al.

original program. For instance, for refactoring R2 to yield a correct result, it
requires to relax declared accessibility constraints: method encryptMessage() has
to become public instead of protected after being moved into class Contact
to remain accessible for method sendMessage, and, conversely, method getPri-
vateKey() has to become public instead of private to remain accessible for
encryptMessage(). Although these small changes do not affect the functionality
of the original program, it may have a negative impact on extra-functional prop-
erties like program security. Therefore, the amount of invalid solutions highly
depends on the interaction between constraints and repair mechanisms.

Attack Surface of Object-Oriented Programs. The attack surface of a pro-
gram comprises all conventional ways of entering a software from outside such
that a larger surface increases the danger of exploiting vulnerabilities (either
unintentionally by some user, or intentionally by an attacker) [20]. Concern-
ing Java-like programs in particular, explicit restrictions of accessibility of class
members provide an essential mechanism to control the attack surface. Hence,
refactoring R2 should be definitely blamed as harmful as the enforced relax-
ations of accessibility constraints, especially those of the indeed security-critical
method getPrivateKey(), unnecessarily widen the attack surface of the original
program. In contrast, refactoring R1 should be appreciated as it even narrows
the attack surface by setting method plainToHtml() from public to private.

Challenges. As illustrated by our example, the attack surface of a program is a
crucial, but yet unexplored, factor when searching for reasonable object-oriented
program refactorings. However, if not treated with special care, accessibility con-
straints may seriously obstruct program maintenance by eagerly suppressing any
refactoring opportunity in advance. We therefore pursue a model-based method-
ology for automating the search for optimal sequences of program refactorings by
explicitly taking accessibility constraints into account. We formulate the under-
lying problem as constrained multi-objective optimization problem (MOOP)
incorporating explicit control and minimization of attack-surface metrics. This
framework allows us to facilitate search-based model transformation capabilities
for approximating optimal solutions.

3 Search-Based Program Refactorings
with Attack-Surface Control

We now describe our model-based framework for identifying (presumably) opti-
mal sequences of object-oriented refactoring operations. To explicitly control
(and minimize) the impact of recommended refactorings on the attack surface,
we extend an existing EMF meta-model for representing Java-like programs
with accessibility information and respective constraints. Based on this model,
refactoring operations are defined as model-transformation rules which allow
us to apply search-based model-transformation techniques to effectively explore
candidate solutions of the resulting MOOP.

Attack Surface of OO Refactorings 43

3.1 Program Model

In the context of model-based program transformation, a program model serves
as unified program representation (1) constituting an appropriate level of
abstraction comprising only (syntactic) program entities being relevant for a
given task, and (2) including additional (static semantic) information required
for a given task [24]. Concerning program models for model-based object-oriented
program refactorings in particular, the corresponding model-transformation
operations are mostly applied at the level of classes and members, whereas more
fine-grained source code details can be neglected. Instead, program elements
are augmented with additional (static semantic) dependencies to other entities
being crucial for refactoring operations to yield correct results [24–26]. Here, we
employ and enhance the program model proposed by Peldszus et al. [33] for auto-
matically detecting structural anti-patterns (cf. O1b) in Java programs. Their
incremental detection process also includes evaluation of coupling and cohesion
metrics (cf. O1a), and both metric values and the detected anti-patterns are
added as additional information into the program model.

Fig. 2. Excerpt of the program-model representation of MailApp

Figure 2 shows an excerpt of the program-model representation for MailApp
including the classes MailApp, Message, SecureMailApp, and Contact together
with a selection of their method definitions. Each program element is repre-
sented by a white rectangle labeled with name : type. The available types
of program entities and possible (syntactic and semantic) dependencies (rep-
resented by arrows) between respective program elements are defined by a
program meta-model, serving as a template for valid program models [26,37].
The program model comprises as first-class entities the classes (type TClass)

44 S. Ruland et al.

Fig. 3. Model-transformation rule for MoveMethod refactoring

together with their members as declared in the program. The representation of
methods is split into signatures (type TMethodSignature) and definitions (type
TMethodDefinition) to capture overloading/overriding dependencies among
method declarations (e.g., overriding of method sendMessage() imposes one
shared method signature, but two different method definitions). Solid arrows
correspond to syntactic dependencies between program elements such as aggrega-
tion (unlabeled) and inheritance (label extends) and relations between method
signatures and their definitions, whereas dashed arrows represent (static) seman-
tic dependencies (e.g., arrows labeled with call denote caller-callee relations
between methods).

Design-Flaw Information. The program model further incorporates informa-
tion gained from design-flaw detection [33], to identify program parts to be refac-
tored. In our example, design-flaw annotations (in gray) are attached to affected
program elements, namely classes Message and Contact constitute data classes
and classes MailApp and SecureMailApp constitute controller classes, which lead
to two instances of the anti-pattern The Blob.

Accessibility Information. To reason about the impact of refactorings on the
attack surface of programs, we extend the program model of Peldszus et al. by
accessibility information. Our extensions include the attribute accessibility
denoting the declared accessibility of entities as shown for method definitions in
Fig. 2. In addition, our model comprises package declarations of classes (type
TPackage) to reason about package-dependent accessibility constraints.

3.2 Model-Based Program Refactorings

Based on the program-model representation, refactoring operations by means
of semantic-preserving program transformations can be concisely formalized in
a declarative manner in terms of model-transformation rules [26]. A model-
transformation rule specifies a generic change pattern consisting of a left-hand side
pattern to be matched in an input model for applying the rule, and a right-hand
side replacing the occurrence of the left-hand side to yield an output model. Here,
we focus on (sequences of)MoveMethod refactorings as it has been shown in recent
research that MoveMethod refactorings are considerably effective in improving
CRA measures in flawed object-oriented program designs [34]. Figure 3 shows
a (simplified) rule for MoveMethod refactorings defined on our program meta-
model, using a compact visual notation superimposing the left- and right-hand

Attack Surface of OO Refactorings 45

side. The rule takes a source class srcClass, a target class trgClass and a method
signaturemethodSig as parameters, deletes the containment arrow between source
class and signature (red arrow annotated with --) and creates a new contain-
ment arrow from the target class (green arrow annotated with ++), only if such
an arrow not already exists before rule application. The latter (pre-)condition is
expressed by a forbidden (crossed-out) arrow. For a comprehensive list of all nec-
essary pre-conditions (or, pre-constraints), we refer to [38].

Accessibility Post-constraints. Besides pre-constraints, for refactoring oper-
ations to yield correct results, it must satisfy further post-constraints to be
evaluated after rule application, especially concerning accessibility constraints
as declared in the original program (i.e., member accesses like method calls in
the original program must be preserved after refactoring [24]). As an example,
a (simplified) post-constraint for the MoveMethod rule is shown on the right
of Fig. 3 using OCL-like notation. Members refers to the collection of all class
members in the program. The post-constraint utilizes helper-function reqAcc(m)
to compute the required access modifier of class member m and checks whether
the declared accessibility of m is at least as generous as required (based on the
canonical ordering private < default < protected < public) [38].

For instance, if refactoring R2 is applied to MailApp, method encryptMes-
sage() violates this post-constraint, as the call from sendMessage() from another
package requires accessibility public, whereas the declared accessibility is
protected. Instead of immediately rejecting refactorings like R2, we introduce
an accessibility-repair operation of the form m.accessibility := reqAcc(m) for each
member violating the post-constraint which therefore causes a relaxation of the
attack surface. However, this repair is not always possible as relaxations may
lead to incorrect refactorings altering the original program semantics (e.g., due
to method overriding/overloading [38]). In contrast, refactoring R1 (i.e., mov-
ing plainToHtml() to class Message) satisfies the post-constraint as the required
accessibility of plainToHtml() becomes private, whereas its declared accessibil-
ity is public. In those cases, we may also apply the operation m.accessibility :=
reqAcc(m), now leading to a reduction of the attack surface. Different strategies
for attack-surface reduction will be investigated in Sect. 4.

3.3 Optimization Objectives

We now describe the evaluation of objectives (O1)–(O3) on the program model,
to serve as fitness values in a search-based setting.

Coupling/Cohesion. Concerning (O1a), coupling and cohesion metrics are
well-established quality measures for CRA decisions in object-oriented program
design [4]. In our program model, coupling (COU) is related to the overall
number of member accesses (e.g., call -arrows) across class boundaries [5], and for
measuring cohesion, we adopt the well-known LCOM5 metric to quantify lack of
cohesion among members within classes [17]. While there are other metrics which
indicate good CRA decisions, such as Number of Children, these metrics are
not modifiable using MoveMethod refactorings and are therefore not used in

46 S. Ruland et al.

this paper [9]. Consequently, good CRA decisions exhibit low values for both
COU and LCOM5. Hence, refactorings R1 and R2 both improve values of
COU (i.e., by eliminating inter-class call -arrows) and LCOM5 (i.e., by moving
methods into classes where they are called).

Anti-patterns. Concerning (O1b), we limit our considerations to occurrences
of The Blob anti-pattern for convenience. We employ the detection-approach of
Peldszus et al. [33] and consider as objective to minimize the number of The Blob
instances (denoted #BLOB). For instance, for the original MailApp program
(white parts in Fig. 1), we have #BLOB = 1, while for the extended version
(white and gray parts), we have #BLOB = 2. Refactoring R1 may help to
remove the first occurrence and R2 potentially removes the second one.

Changes. Concerning (O2), real-life studies show that refactoring recommen-
dations to be accepted by users must avoid a too large deviation from the original
design [8]. Here, we consider the number of MoveMethod refactorings (denoted
#REF) to be performed in a recommendation, as a further objective to be
minimized. For example, solely applying R1 results in #REF = 1, whereas a
sequence of R1 followed by R2 most likely imposes more design changes (i.e.,
#REF = 2). In contrast, accessibility-repair operations do not affect the value
#REF, but rather impact objective (O3).

Attack Surface. Concerning (O3), the guidelines for secure object-oriented
programming encourages developers to grant as least access privileges as possible
to any accessible program element to minimize the attack surface [19]. In our
program model, the attack-surface metric (denoted AS) is measured as

AS =
∑

m∈Members
ω(m.accessibility), (1)

where weighting function ω : Mod → N0 on the set Mod of accessibility modifiers
may be, for instance, defined as ω(private) = 0, ω(default) = 1, ω(protected)
= 2, ω(public) = 3. Hence, a lower value corresponds to a smaller attack surface.
For example,R1 enables anattack-surface reductionby setting plainToHtml() from
public to private which decreases AS by 3. In contrast, R2 involves a repair
step setting encryptMessage() from protected to publicwhich increases AS by 1.
Whether such negative impacts of refactorings on (O3) are outweighed by simul-
taneous improvements gained for other objectives depends, among others, on the
actual weighting ω applied. For instance, each further modifier public consider-
ably opens the attack surface and should therefore be blamed by a higher weighting
value, as compared to the other modifiers (cf. Sect. 4).

3.4 Search-Based Optimization Process

Our tool for recommending optimized object-oriented refactoring sequences,
called GOBLIN2, is based on a combination of search-based multi-objective
2 Goblin is supervillain and Head of National Security in the Marvel universe [3]. GOB-

LIN also means Generic Objective-Based Layout Improvements for N on-designs.

Attack Surface of OO Refactorings 47

optimization techniques using genetic algorithms and model-transformations on
the basis of the MOMoT framework [11]. Figure 4 shows an overview on GOB-
LIN. First, the input Java program is translated into our program model [33].
This original program model together with its objective values for (O1)−(O3)
(i.e., its fitness values) serves as a baseline for evaluating the improvements
obtained by candidate refactorings. The built-in genetic algorithm (NSGA-III)
of MOMoT is initialized by an initial population of a fixed number of indi-
viduals serving as generation 0, where each individual constitutes a sequence
of at least 1 up to a maximum number of MoveMethod rule applications (cf.
Fig. 3) to the original program model. Thus, each individual corresponds to a
refactored version of the original program model on which the resulting fitness
values are evaluated. The refactored program model is obtained by applying the
given sequence of refactorings to the original program model. Steps within a
sequence not being applicable to an intermediate model (e.g., due to unsatisfied
pre-conditions) are skipped, whereas steps producing infeasible results (e.g., due
to unsatisfied and non-repairable post-conditions) cause the entire individual to
become invalid (thus being removed from the population).

Fig. 4. Architecture of the GOBLIN tool

For deriving generation i + 1 from generation i, NSGA-III first creates a set
of new individuals using random crossover and mutation operators. As indi-
cated in Fig. 4, a crossover splits and recombines two individuals into a new
one, while a mutation generates a new individual by injecting small changes into
an existing one. Afterwards, in the selection phase, individuals from the over-
all population (the original and newly created individuals) are selected into the
next generation, depending on their fitness values. For more details on NSGA-
III, we refer to [15,28]. The search-process terminates when a maximum number
of generations (or, individuals, respectively) has been reached, resulting in a
Pareto-front of non-dominated individuals, each constituting a refactoring rec-
ommendation [11].

48 S. Ruland et al.

4 Experimental Evaluation

We now present experimental evaluation results gained from applying GOB-
LIN to a collection of Java programs. First, to investigate the impact of attack-
surface reduction on the resulting refactoring recommendations, we consider the
following reduction strategies, differing in when to perform attack-surface reduc-
tion during search-space exploration (where step means a refactoring step):

– Strategy 1: A priori reduction. Before the first and after the last step.
– Strategy 2: A posteriori reduction. Only after the last step.
– Strategy 3: Continuous reduction. After every refactoring step.

We are interested in the impact of each strategy on the trade-off between attack-
surface metrics and design-quality metrics (i.e., do the recommended refactor-
ing sequences tend to optimize more the attack surface aspect or the program
design?). We quantify attack-surface impact (ASI) and design impact (DI) of a
refactoring recommendation rr as follows:

ASI(rr) =
AS(rr) − AS(orig)

AS(orig)
(2)

DI(rr) =
COU(rr) − COU(orig)

COU(orig)
+

LCOM5(rr) − LCOM5(orig)
LCOM5(orig)

(3)

where orig refers to the original program. Second, we consider the impact of
different weightings ω on attack-surface metric AS. As modifier public has a
considerably negative influence on the attack surface, we study the impact of
increasing the penalty for public in ω, as compared to the other modifiers. We
are interested especially in whether there exists a threshold for which any design-
improving refactoring would be rejected as security-critical. Finally, we compare
GOBLIN to the recent refactoring tools JDeodorant and CODe-Imp, which
both do not explicitly consider attack-surface metrics as optimization objective
so far. To summarize, we aim to answer the following research questions:

– (RQ1: Objective Trade-Off) Which attack-surface reduction strategy
offers the best trade-off between attack-surface impact and design impact
when taking the original program as a baseline?

– (RQ2: Weighting of Attack Surface) Which weighting of public in the
attack-surface metric constitutes a critical threshold obstructing any design-
improving refactorings?

– (RQ3: Tool Comparison) Which tool provides the best trade-off between
attack-surface impact and design impact in refactoring recommendations?

4.1 Experiment Setup and Results

We conducted our experiments on an established corpus of real-life open-source
Java programs of various size [33,39] as listed in Table 1 (with lines of code

Attack Surface of OO Refactorings 49

LOC, number of packages #P , number of classes #C and number of methods
#M). For a compact presentation, we divide the corpus into three program-
size categories (small, mid-sized, large), indicated by horizontal lines in Table 1.
All experiments have been executed on a Windows-Server-2016 machine with a
2.4 GHz quad-core CPU, 32 GB RAM and JRE 1.8. We used the default genetic-
algorithm configuration of MOMoT in all our experiments [11]: termination after
10,000 individual evaluations, population size of 100, and each individual con-
sisting of at most 10 refactorings. We applied the metrics for (O1)−(O3) (cf.
Sect. 3.3) to compute fitness values. GOBLIN requires 25 min to compute a set
of refactoring recommendations for the smallest program, up to several hours
in the case of large programs, which is acceptable for a search-based (off-line)
optimization approach. We selected a representative set of computed recommen-
dations which were manually checked for program correctness and impact.

For (RQ1), we measured ASI and DI values for two runs of GOBLIN (cf.
Figs. 6a, b, c, d, e and f). Figures 6a and b (first row, side by side) show a box-
plot for each Strategy (1−3) for small programs of our corpus (#iSj referring
to the program number i in Table 1 and Strategy j). The box-plots show the
distribution of ASI (Fig. 6a) and DI (Fig. 6b) values for each refactoring recom-
mendation of GOBLIN. The figure-pairs 6c−6d and 6e−6f show the same data
for mid-sized and large programs, respectively. For (RQ2), we used Strategy 3
from (RQ2) and varied function ω to study different penalties for modifier pub-
lic. Figure 5 plots the (minimal) values of ASI and DI depending on ω(public)
(from 3 up to 100). Regarding (RQ3), we compare the results of GOBLIN
to those of state-of-the-art refactoring recommender tools, JDeodorant [12]
and CODe-Imp [27]. Refactorings proposed by JDeodorant have as singleton
optimization objective to eliminate specific anti-patterns through heuristic refac-
toring strategies. In particular, JDeodorant employs ExtractClass [13] to elim-
inate The Blob (also called GodClass), by separating parts from the controller-
class into a freshly created class. Thus, each recommendation of JDeodor-
ant subsumes multiple MoveMethod refactorings (into the fresh target class).
In contrast, CODe-Imp pursues a search-based approach, including a variety of

Program Version LOC #P #C #M

1: QuickUML 2001 2,667 1 19 175

2: JSciCalc 2.1.0 5,437 3 121 563

3: JUnit 3.8.2 5,780 11 105 841

4: Gantt 1.10.2 21,331 28 256 1,925

5: Nutch 0.9 21,437 24 273 1,750

6: Lucene 1.4.3 25,472 15 276 1,750

7: log4j 1.2.17 31,429 35 394 3,240

8: JHotDraw 7.6 31,434 24 312 3,781

Table 1. Evaluation corpus

3 7 10 20 50 70 100

0

−0.001

−0.002

−0.003

−0.004

ω(public)

M
in
im

al
Im

pa
ct

min(ASI)
min(DI)

Fig. 5. Minimal ASI and DI values for dif-
ferent weightings of public

50 S. Ruland et al.

−0.1 0 0.1 0.2 0.3

#1S1

#1S2

#1S3

#2S1

#2S2

#2S3

#3S1

#3S2

#3S3

(a) ASI for Small Programs
−0.1 0 0.1 0.2 0.3

#1S1

#1S2

#1S3

#2S1

#2S2

#2S3

#3S1

#3S2

#3S3

(b) DI for Small Programs

−0.01 0 0.01 0.02 0.03

#4S1

#4S2

#4S3

#5S1

#5S2

#5S3

#6S1

#6S2

#6S3

(c) ASI for Mid-Sized Programs
−0.01 0 0.01 0.02 0.03

#4S1

#4S2

#4S3

#5S1

#5S2

#5S3

#6S1

#6S2

#6S3

(d) DI for Mid-Sized Programs

−0.008 −0.004 0 0.004 0.008 0.012

#7S1

#7S2

#7S3

#8S1

#8S2

#8S3

(e) ASI for Large Programs
−0.008 −0.004 0 0.004 0.008 0.012

#7S1

#7S2

#7S3

#8S1

#8S2

#8S3

(f) DI for Large Programs

0 0.01 0.02 0.03 0.04

#2

#3

#4

#5

#6

#7

#8

(g) ASI for GOBLIN and JDeodorant
0 0.01 0.02 0.03 0.04

#2

#3

#4

#5

#6

#7

#8

(h) DI for GOBLIN and JDeodorant

Fig. 6. Measurement results

Attack Surface of OO Refactorings 51

refactoring operations and design-quality metrics. For a comparison to GOB-
LIN, we used the MoveMethod refactoring of CODe-Imp which produces one
sequence of MoveMethod refactorings per run. Figures 6g and h contain compar-
isons of ASI and DI values, respectively, for our corpus (excluding QuickUML
due to relatively very high variations). For each program, the upper box-plot
shows the results for GOBLIN and the lower one for JDeodorant, respectively.
CODe-Imp only successfully produced results for QuickUML and JUnit (10
runs each) while terminating without any result for the others.

4.2 Discussion

Concerning (RQ1), Strategy 3 leads to the best attack-surface impact for
small programs (under neglectible execution-time overhead), while even slightly
improving the design impact. Although this clear advantage dissolves for mid-
sized and large programs, it still contributes to a reasonable trade-off, while
attack-surface reductions tend to hamper design improvements as expected. Cal-
culating the Pearson correlation [32] between ASI and DI shows that (1) the
strategy does not influence the correlation and (2) for small programs, GOB-
LIN finds refactorings which are beneficial for both attack surface and program
design.

Concerning (RQ2), Fig. 5 shows that a higher value for ω(public) leads to a
better attack-surface impact, as attack-surface-critical refactorings are less likely
to survive throughout generations. The increase in ASI is remarkably steep from
ω(public) = 3 to ω(public) = 7, but exhibits slow linear growth for higher values.
Regarding the design impact, up to ω(public) = 10, the best achieved DI also
grows linearly, but afterwards, no more DI improvements emerge. In higher value
ranges (>70), DI reaches a threshold, and degrades afterwards.

Regarding (RQ3), the The Blob elimination strategy of JDeodorant nec-
essarily increases attack surfaces, as calls to extracted methods have to access the
new class, thus necessarily increasing accessibility at least up to default. As also
shown in Fig. 6g, there are almost no refactorings proposed by JDeodorant
with a positive attack-surface impact. Surprisingly, JDeodorant also achieves
a less beneficial design impact than GOBLIN, with a strong correlation between
ASI and DI. Our unfortunately very limited set of observations for CODe-Imp
shows that, due to the similar search technique, the refactorings found by CODe-
Imp and GOBLIN are quite similar. Nevertheless, due to the different focus of
objectives, CODe-Imp tends to increase attack surfaces. Although, the differ-
ences in metrics definitions forbid any definite conclusions, however, CODe-Imp
does not achieve any design improvements according to our metrics.

To summarize, our experimental results demonstrate that attack-surface
impacts of refactorings clearly deserve more attention in the context of refac-
toring recommendations, revealing a practically relevant trade-off (or, even con-
tradiction) between traditional design-improvement efforts and extra-functional
(particularly, security) aspects. Our experiments further uncover that existing
tools are mostly unaware of attack-surface impacts of recommended refactorings.

52 S. Ruland et al.

5 Related Work

Automating Design-Flaw Detection and Refactorings. Marinescu pro-
poses a metric-based design-flaw detection approach similar to Peldszus et al.
in [33], which is used in our work. However, both works do not deal with elimi-
nation of detected flaws [21]. In contrast, the DECOR framework also includes
recommendations for eliminating anti-patterns, whereas, in contrast to our work,
those recommendations remain rather atomic and local. More related to our
approach, Fokaefs et al. [12] and Tsantalis et al. [40] consider (semi-)automatic
refactorings to eliminate anti-patterns like The Blob in the tool JDeodorant.
Nevertheless, they focus on optimizing one single objective and do not consider
multiple, esp. extra-functional, aspects like security metrics as in our approach.

Multi-objective Search-Based Refactorings. O’Keeffe and Ó Cinnéide use
search-based refactorings in their tool CODe-Imp [28] including various stan-
dard refactoring operations and different quality metrics as objectives [27]. Seng
et al. consider a search-based setting, where, similar to our approach, compound
refactoring recommendations comprise atomic MoveMethod operations. Harman
and Tratt also investigate a Pareto-front of refactoring recommendations includ-
ing various design objectives [16], and more recently, Ouni et al. conducted a
large-scale real-world study on multi-objective search-based refactoring recom-
mendations [30]. However, neither of the approaches investigates the impact of
refactorings on security-relevant metrics as in our approach.

Security-Aware Refactorings. Steimann and Thies were the first to pro-
pose a comprehensive set of accessibility constraints for refactorings covering
full Java [38]. Although their constraints are formally founded, they do not
consider software metrics to quantify the attack surface impact of (sequences
of) refactorings. Alshammari et al. propose an extensive catalogue of software
metrics for evaluating the impact of refactorings on program security of object-
oriented programs [1]. Similarly, Maruyama and Omori propose a technique [22]
and tool [23] for checking if a refactoring operation raises security issues. How-
ever, all these approaches are concerned with security and accessibility con-
straints of specific refactorings, but they do not investigate those aspects in a
multi-objective program optimization setting. The problem of measuring attack
surfaces serving as a metric for evaluating secure object-oriented programming
policies has been investigated by Zoller and Schmolitzky [41] and Manadhata
and Wing [20], respectively. Nevertheless, those and similar metrics have not
yet been utilized as optimization objective for program refactoring. Finally,
Ghaith and Ó Cinnéide consider a catalogue of security-relevant metrics to rec-
ommend refactorings using CODe-Imp, but they also consider security as single
objective [14].

Attack Surface of OO Refactorings 53

6 Conclusion

We presented a search-based approach to recommend sequences of refactor-
ings for object-oriented Java-like programs by taking the attack surface as
additional optimization objective into account. Our model-based methodology,
implemented in the tool GOBLIN, utilizes the MOMoT framework including
the genetic algorithm NSGA-III for search-space exploration. Our experimental
results gained from applying GOBLIN to real-world Java programs provides us
with detailed insights into the impact of attack-surface metrics on fitness values
of refactorings and the resulting trade-off with competing design-quality objec-
tives. As a future work, we plan to incorporate additional domain knowledge
about critical code parts to further control security-aware refactorings.

Acknowledgements. This work was partially funded by the Hessian LOEWE ini-
tiative within the Software-Factory 4.0 project as well as by the German Research
Foundation (DFG) in the Priority Programme SPP 1593: Design For Future - Man-
aged Software Evolution (LO 2198/2-1, JU 2734/2-1).

References

1. Alshammari, B., Fidge, C., Corney, D.: Assessing the impact of refactoring on
security-critical object-oriented designs. In: Proceedings of APSEC, pp. 186–195
(2010)

2. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

3. Bendis, B.M.: Secret Invasion, vol. 1-8. Marvel, New York (2009)
4. Bowman, M., Briand, L.C., Labiche, Y.: Solving the class responsibility assignment

problem in object-oriented analysis with multi-objective genetic algorithms. IEEE
Trans. Softw. Eng. 36(6), 817–837 (2010)

5. Briand, L.C., Daly, J.W., Wust, J.K.: A unified framework for coupling measure-
ment in object-oriented systems. IEEE Trans. Softw. Eng. 25(1), 91–121 (1999)

6. Briand, L.C., Daly, J.W., Wüst, J.: A unified framework for cohesion measurement
in object-oriented systems. Empir. Softw. Eng. 3(1), 65–117 (1998)

7. Brown, W.J., Malveau, R.C., McCormick III, H.W., Mowbray, T.J.: AntiPat-
terns: Refactoring Software, Architectures, and Projects in Crisis. Wiley, New York
(1998)

8. Candela, I., Bavota, G., Russo, B., Oliveto, R.: Using cohesion and coupling for
software remodularization: is it enough? ACM Trans. Softw. Eng. Methodol. 25(3),
24:1–24:28 (2016)

9. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE
Trans. Softw. Eng. 20(6), 476–493 (1994)

10. Van Eetvelde, N., Janssens, D.: Extending graph rewriting for refactoring. In:
Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 399–415. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30203-2 28

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-540-30203-2_28
https://doi.org/10.1007/978-3-540-30203-2_28

54 S. Ruland et al.

11. Fleck, M., Troya, J., Wimmer, M.: Search-based model transformations with
MOMoT. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765, pp.
79–87. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42064-6 6

12. Fokaefs, M., Tsantalis, N., Stroulia, E., Chatzigeorgiou, A.: JDeodorant: identifi-
cation and application of extract class refactorings. In: Proceedings of ICSE, pp.
1037–1039 (2011)

13. Fowler, R.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Reading (2000)

14. Ghaith, S., Ó Cinnéide, M.: Improving software security using search-based refac-
toring. In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp.
121–135. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33119-
0 10

15. Harman, M., Mansouri, S.A., Zhang, Y.: Search based software engineering: a
comprehensive analysis and review of trends techniques and applications (2009)

16. Harman, M., Tratt, L.: Pareto optimal search based refactoring at the design level.
In: Proceedings of GECCO, pp. 1106–1113. ACM (2007)

17. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice-
Hall Inc., Upper Saddle River (1996)

18. Kessentini, M., Sahraoui, H., Boukadoum, M., Wimmer, M.: Search-based design
defects detection by example. In: Giannakopoulou, D., Orejas, F. (eds.) FASE
2011. LNCS, vol. 6603, pp. 401–415. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19811-3 28

19. Long, F., Mohindra, D., Seacord, R.C., Sutherland, D.F., Svoboda, D.: The CERT
Oracle Secure Coding Standard for Java. Addison-Wesley Professional, Boston
(2011)

20. Manadhata, P.K., Wing, J.M.: An attack surface metric. IEEE Trans. Softw. Eng.
37(3), 371–386 (2011)

21. Marinescu, R.: Detection strategies: metrics-based rules for detecting design flaws,
pp. 350–359. IEEE (2004)

22. Maruyama, K., Omori, T.: Security-aware refactoring alerting its impact on code
vulnerabilities. In: APSEC, pp. 445–451. IEEE (2008)

23. Maruyama, K., Omori, T.: A security-aware refactoring tool for Java programs.
In: Proceedings of WRT, pp. 22–28. ACM (2011)

24. Mens, T., Demeyer, S., Janssens, D.: Formalising behaviour preserving program
transformations. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 286–301. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45832-8 22

25. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. SOSYM 6(3), 269–285 (2007)

26. Mens, T., Van Eetvelde, N., Demeyer, S., Janssens, D.: Formalizing refactorings
with graph transformations. J. Softw. Evol. Process 17(4), 247–276 (2005)

27. Moghadam, I.H., Ó Cinnéide, M.: Code-Imp: a tool for automated search-based
refactoring. In: Proceedings of WRT, pp. 41–44. ACM (2011)

28. O’Keeffe, M., Ó Cinnéide, M.: Search-based refactoring: an empirical study. J.
Softw. Maint. Evol. Res. Pract. 20(5), 345–364 (2008)

29. Opdyke, W.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, University of
Illinois (1992)

30. Ouni, A., Kessentini, M., Sahraoui, H.A., Inoue, K., Deb, K.: Multi-criteria code
refactoring using search-based software engineering: an industrial case study. ACM
Trans. Softw. Eng. Methodol. 25(3), 23:1–23:53 (2016)

https://doi.org/10.1007/978-3-319-42064-6_6
https://doi.org/10.1007/978-3-642-33119-0_10
https://doi.org/10.1007/978-3-642-33119-0_10
https://doi.org/10.1007/978-3-642-19811-3_28
https://doi.org/10.1007/978-3-642-19811-3_28
https://doi.org/10.1007/3-540-45832-8_22
https://doi.org/10.1007/3-540-45832-8_22

Attack Surface of OO Refactorings 55

31. Parnas, D.L.: Software aging, pp. 279–287. IEEE (1994)
32. Pearson, K.: VII. Mathematical contributions to the theory of evolution.—III.

regression, heredity, and panmixia. Philos. Trans. R. Soc. Lond. Math. Phys. Eng.
Sci. 187, 253–318 (1896)

33. Peldszus, S., Kulcsár, G., Lochau, M., Schulze, S.: Continuous detection of design
flaws in evolving object-oriented programs using incremental multi-pattern match-
ing. In: Proceedings of ASE, pp. 578–589 (2016)

34. Seng, O., Stammel, J., Burkhart, D.: Search-based determination of refactorings
for improving the class structure of object-oriented systems. In: Proceedings of
GECCO, pp. 1909–1916 (2006)

35. Shin, Y., Williams, L.: Is complexity really the enemy of software security? In:
QoP, pp. 47–50 (2008)

36. Smith, S.F., Thober, M.: Refactoring programs to secure information flows, pp.
75–83. ACM (2006)

37. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-
ing, Management. Wiley, Chichester (2006)

38. Steimann, F., Thies, A.: From public to private to absent: refactoring Java pro-
grams under constrained accessibility. In: Drossopoulou, S. (ed.) ECOOP 2009.
LNCS, vol. 5653, pp. 419–443. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03013-0 19

39. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: The Qualitas Corpus: a curated collection of Java code for empirical
studies. In: Asia Pacific Software Engineering Conference, pp. 336–345 (2010)

40. Tsantalis, N., Chatzigeorgiou, A.: Identification of move method refactoring oppor-
tunities. IEEE Trans. Softw. Eng. 35(3), 347–367 (2009)

41. Zoller, C., Schmolitzky, A.: Measuring inappropriate generosity with access modi-
fiers in Java systems. In: Proceedings of IWSM-MENSURA, pp. 43–52 (2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-03013-0_19
https://doi.org/10.1007/978-3-642-03013-0_19
http://creativecommons.org/licenses/by/4.0/

Effective Analysis of Attack Trees:
A Model-Driven Approach

Rajesh Kumar1(B) , Stefano Schivo1 , Enno Ruijters1 ,
Buǧra Mehmet Yildiz1, David Huistra1 , Jacco Brandt1, Arend Rensink1 ,

and Mariëlle Stoelinga1,2

1 Formal Methods and Tools, University of Twente, Enschede, The Netherlands
{r.kumar,s.schivo,e.j.j.ruijters,b.m.yildiz,d.j.huistra,

a.rensink,m.i.a.stoelinga}@utwente.nl, j.h.brandt@student.utwente.nl
2 Department of Software Science, Radboud University, Nijmegen, The Netherlands

Abstract. Attack trees (ATs) are a popular formalism for security anal-
ysis, and numerous variations and tools have been developed around
them. These were mostly developed independently, and offer little inter-
operability or ability to combine various AT features.

We present ATTop, a software bridging tool that enables automated
analysis of ATs using a model-driven engineering approach. ATTop ful-
fills two purposes: 1. It facilitates interoperation between several AT
analysis methodologies and resulting tools (e.g., ATE, ATCalc, ADTool
2.0), 2. it can perform a comprehensive analysis of attack trees by trans-
lating them into timed automata and analyzing them using the popular
model checker Uppaal, and translating the analysis results back to the
original ATs. Technically, our approach uses various metamodels to pro-
vide a unified description of AT variants. Based on these metamodels,
we perform model transformations that allow to apply various analysis
methods to an AT and trace the results back to the AT domain. We illus-
trate our approach on the basis of a case study from the AT literature.

1 Introduction

Formal methods are often employed to support software engineers in particularly
complex tasks: model-based testing, type checking and extended static checking
are typical examples that help in developing better software faster. This paper is
about the reverse direction: showing how software engineering can assist formal
methods in developing complex analysis tools.

More specifically, we reap the benefits of model-driven engineering (MDE)
to design and build a tool for analyzing attack trees (ATs). ATs [25,31] are
a popular formalism for security analysis, allowing convenient modeling and
analysis of complex attack scenarios. ATs have become part of various system
engineering frameworks, such as UMLsec [16] and SysMLsec [27].

Attack trees come in a large number of variations, employing different secu-
rity attributes (e.g., attack time, costs, resources, etc.) as well as modeling con-
structs (e.g., sequential vs. parallel execution of scenarios). Each of these vari-
ations comes with its own tooling; examples include ADTool [12], ATCalc [2],
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 56–73, 2018.
https://doi.org/10.1007/978-3-319-89363-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_4&domain=pdf
http://orcid.org/0000-0002-8151-4673
http://orcid.org/0000-0002-4945-1473
http://orcid.org/0000-0002-5855-5282
http://orcid.org/0000-0002-9921-5604
http://orcid.org/0000-0002-1714-6319
http://orcid.org/0000-0001-6793-8165

Effective Analysis of Attack Trees: A Model-Driven Approach 57

and Attack Tree Evaluator [5]. This “jungle of attack trees” seriously hampers
the applicability of ATs, since it is impossible or very difficult to combine dif-
ferent features and tooling. This paper addresses these challenges and presents
ATTop1, a software tool that overarches existing tooling in the AT domain.

In particular, the main features of ATTop are (see Fig. 1):

1. A unified input format that encompasses the known AT features. We have
collected these features in one comprehensive metamodel. Following MDE
best practices, this metamodel is extensible to easily accommodate future
needs.

2. Systematic model transformations. Many AT analysis methods are based on
converting the AT into a mathematical model that can be analyzed with exist-
ing formal techniques, such as timed automata [11,23], Bayesian networks
[13], Petri nets [8], etc. An important contribution of our work is to make
these translations more systematic, and therefore more extensible, maintain-
able, reusable, and less error-prone.
To do so, we again refer to the concepts of MDE and deploy model transfor-
mations. We deploy two categories here: so-called horizontal transformations
achieve interoperability between existing tools. Vertical transformations inter-
pret a model via a set of semantic rules to produce a mathematical model to
be analyzed with formal methods.

3. Bringing the results back to the original domain. When a mathematical model
is analyzed, the analysis result is computed in terms of the mathematical
model, and not in terms of the original AT. For example, if AT analysis is
done via model checking, a trace in the underlying model (i.e., transition
system) can be produced to show that, say, the cheapest attack costs $100.
What security practitioners need, however, is a path or attack vector in the
original AT. This interpretation in terms of the original model is achieved by
a vertical model transformation in the inverse direction, from the results as
obtained in the analysis model back into the AT domain.

These features make ATTop a software bridging tool, acting as a bridge
between existing AT languages, and between ATs and formal languages.

Our Contributions. The contributions of this paper include:

– a full-fledged tool based on MDE, which allows for high maintainability and
extensibility;

– a unified input format, enabling interoperability between different AT
dialects;

– systematic use of model transformations; which increases reusability while
reducing error likelihood;

– a complete cycle from AT to formal model and back, allowing domain experts
to profit from formal methods without requiring specific knowledge.

Overview of Our Approach. Figure 1 depicts the general workflow of our
approach. It shows how ATTop acts as a bridge between different languages and
1 Available at https://github.com/utwente-fmt/attop.

https://github.com/utwente-fmt/attop

58 R. Kumar et al.

formalisms. In particular, thanks to horizontal transformations, ATTop makes it
possible to use ATs described in different formats, both as an input to other tools
and as an input to ATTop itself. In the latter case, vertical transformations are
used in order to deal with Uppaal as a back-end tool without exposing ATTop’s
users to the formal language of timed automata.

Timed
automata

ATTop

UPPAAL tool

Attack
vector in AT

Property of interest (e
cost optimal attack vector)

ATE Binary AT

ATCalc format

ADTool 2.0 AT specified by
adtree.xsd

Horizontal
Transformation

Horizontal
Transformation

Horizontal
Transformation

UPPAAL
query

Vertical
Transformation

Vertical
Transformation

Trace

Vertical
Transformation

Fig. 1. Overview of our approach, showing the contributions of the paper in the gray
rectangle. Here ATE, ATCalc, ADTool 2.0 are different attack tree analysis tools, each
with its own input format. ATTop allows these tools to be interoperable (horizontal
model transformations, see Sect. 4.1). ATTop also provides a much more comprehensive
AT analysis by automatic translation of attack trees into timed automata and using
Uppaal as the back-end analysis tool (vertical transformations, see Sect. 4.2).

Related Work. A large number of AT analysis frameworks have been devel-
oped, based on lattice theory [18], timed automata [11,21,23], I/O-IMCs [3,22],
Bayesian networks [13], Petri nets [8], stochastic games [4,15], etc. We refer
to [20] for an overview of AT formalisms. Surprisingly, little effort has been
made to provide a security practitioner with a generic tool that integrates the
benefits of all these analysis tools.

The use of model transformations with Uppaal was explored in [29] for a
range of different formalisms; the Uppaal metamodel that was presented there
is the one we use in ATTop. A related approach for fault trees was proposed in
[28]. In [14], the authors manually translate UML sequence diagrams into timed
automata models to analyze timeliness properties of embedded systems. In [1],
the OpenMADS tool is proposed that takes the input of SysML diagrams and
UML/MARTE annotations and automatically translates these into determin-
istic and stochastic Petri nets (DSPNs); however, no model-driven engineering
technique was applied.

Organization of the Paper. In Sect. 2, we describe the background. Section 3
presents the metamodels we use in ATTop, while the model transformations are

Effective Analysis of Attack Trees: A Model-Driven Approach 59

described in Sect. 4. Section 5 describes the features of ATTop, and in Sect. 6 we
show the results of our case study using ATTop. Finally, we conclude the paper
in Sect. 7.

2 Background

2.1 Attack Trees in the Security Domain

Modern enterprises are ever growing complex socio-technical systems comprised
of multiple actors, physical infrastructures, and IT systems. Adversaries can
take advantage of this complexity, by exploiting multiple security vulnerabilities
simultaneously. Risk managers, therefore, need to predict possible attack vec-
tors, in order to combat them. For this purpose, attack trees are a widely-used
formalism to identify, model, and quantify complex attack scenarios.

Attack trees (ATs) were popularized by Schneier through his seminal paper in
[31] and were later formalized by Mauw in [25]. ATs show how different attack
steps combine into a multi-stage attack scenario leading to a security breach.
Due to the intuitive representation of attack scenarios, this formalism has been
used in both academia and industry to model practical case studies such as
ATMs [10], SCADA communication systems [7], etc. Furthermore, the attack
tree formalism has also been advocated in the Security Quality Requirements
Engineering (SQUARE) [26] methodology for security requirements.

Example 1. Figure 2 shows an example AT (adapted from [36]) modeling the
compromise of an Internet of Things (IoT) device.

At the top of the tree is the event compromise IoT device, which is refined
using gates until we reach the atomic steps where no further refinement is
desired (the leaves of the tree). The top gate in Fig. 2 is a SAND (sequential
AND)-gate denoting that, in order for the attack to be successful, the chil-
dren of this gate must be executed sequentially from left to right. In the exam-
ple, the attacker first needs to successfully perform access home network, then
exploit software vulnerability in IoT device, and then run malicious
script. The AND-gate at access home network represents that both
gain access to private networks and get credentials must be performed,
but these can be performed in any order, possibly in parallel. Similarly,
the OR gate at gain access to private networks denotes that its children
access LAN and access WLAN can be attempted in parallel, but only one needs
to succeed for a successful attack.

Traditionally, each leaf of an attack tree is decorated with a single attribute,
e.g., the probability of successfully executing the step, or the cost incurred when
taking this step. The attributes are then combined in the analysis to obtain
metrics, such as the probability or required cost of a successful attack [19].

Over the years, the AT formalism has been enriched both structurally (e.g.,
adding more logical gates, countermeasures, ordering relationships; see [20] for

60 R. Kumar et al.

compromise IoT device

exploit software vulnerability in IoT device

cost = 10 US$, duration = 1 hour

access home network run malicous script

cost = 100 US$
duration = 0.5 hour

gain access to private networksget credentials

cost = 100 US$,
duration = 10 hours

access LAN access WLAN

find LAN access port

cost = 10 US$,
duration = 1 hour

spoof MAC address

cost = 50 US$,
duration = 0.5 hour

find WLAN

cost = 10 US$,
duration = 5 hours

break WPA keys

cost = 100 US$,
duration = 2 hours

0–20–5

0–10

10–11

11–11.5

Fig. 2. Attack tree modeling the compromise of an IoT device. Leaves are equipped
with the cost and time required to execute the corresponding step. The parts of the tree
attacked in the cheapest successful attack are indicated by a darker color, with start
and end times for the steps in this cheapest attack denoted in red (times correspond
to the scenario in Fig. 11). (Color figure online)

an overview) and analytically (e.g., multi-attribute analysis, time- and cost-
optimal analysis). This has resulted in a large number of tools (ADTool 2.0 [12],
ATCalc [5], ATE [2], etc.), each with their own analysis technique.

Such a wide range of tools can be useful for a security practitioner to perform
different kinds of analyses of attack trees. However, this requires preparing the
AT for each tool, as each one has its own input format. To overcome the difficulty
of orchestrating all these different tools, we propose one tool—ATTop—to allow
specification of ATs combining features of multiple formalisms and to support
analysis of such ATs by different tools without duplicating it for each tool.

2.2 Model-Driven Engineering

Model-driven engineering (MDE) is a software engineering methodology that
treats models not only as documentation, but also as first-class citizens, to
be directly used in the engineering processes [32]. In MDE, a metamodel (also
referred to as a domain-specific language, DSL) is specified as a model at a more
abstract level to serve as a language for models [33]. A metamodel captures
the concepts of a particular domain with the permitted structure and behav-
ior, to which models must adhere. Typically, metamodels are specified in class
diagram-like structures.

MDE provides interoperability between domains (and tools and technologies
in these domains) via model transformations. The concept of model transfor-
mation is shown in Fig. 3. Model transformations map the elements of a source

Effective Analysis of Attack Trees: A Model-Driven Approach 61

Model

Target Metamodel

Model

is an
instance of

Source Metamodel Transforma on
Defini on

Transforma on
Engine

executes

maps the
elements of

maps to the
elements of

input output

is an
instance of

Fig. 3. The concept of model transformation

metamodel to the elements of a target metamodel. This mapping is described as
a transformation definition, using a language specifically designed for this pur-
pose. The transformation engine executes the transformation definition on the
input model and generates an output model.

Adaptation of MDE provides various benefits [30,34,37], specifically:

1. Empowering domain experts with abstraction: With the introduction of meta-
models and related tooling, domain experts can focus on modeling in the
domain; while the technical problems below the modeling level, such as low-
level implementation details are abstracted away from the domain experts.

2. Higher level of reusability: The models, metamodels and the tools based on
them are high-level artifacts that can be reused by many projects targeting
similar domains. Such reuse increases productivity and quality of the final
product since the reused units are maintained and improved continuously.

3. Interoperability: There can be various tools and technologies used in a domain,
each having its own I/O formats. Model transformations provide interoper-
ability between these tools and technologies.

There are a number of tools available for realizing MDE. In this paper, we
have used the Eclipse Modeling Framework (EMF) [35], which is a state-of-the-
art tool developed to this aim. EMF provides the Ecore format for defining the
metamodels and has many plug-ins to support the various functionalities related
to MDE. The model transformations we present in this paper were implemented
using the Epsilon Transformation Language (ETL) [17], which is one of the
domain-specific languages provided by the Epsilon framework. We have chosen
ETL since it is an easy-to-use language and allows users to inherit, import and
reuse other Epsilon modules, which increases reusability. We use Java to select
and execute the ETL transformations.

3 Metamodels for Attack Tree Analysis

ATTop uses three different metamodels to represent the attack tree domain con-
cepts, all defined in the Ecore format. These are shown in Figs. 4, 5 and 6, in a nota-
tion similar to that ofUMLclass diagrams.They show thedomain classes and edges
representing associations between classes. Edges denote references (→), contain-
ment (), or supertype () relations.Multiplicities are denoted between square
brackets (e.g., [0..*] for unrestricted multiplicity).

62 R. Kumar et al.

1. The AT metamodel (ATMM), unifies several extensions of the attack tree
formalism including traditional attack trees [25,31], attack-defense trees [18],
defense trees [6], etc. It consists of two parts: the Structure metamodel and
the Values metamodel. Below we describe the most important design choices
that led to the ATMM:

– The ATMM represents the core, generic concepts of ATs, resulting in a
minimal (and thus clean) metamodel that a domain expert can easily
read, understand and use to create models.

– The ATMM provides a lot of flexibility in specifying the relevant concepts
by using string names and generic values. Concepts such as the Connector
and the Edge are specified as abstract entities with a set of concrete
instances. Therefore, new connectors and edges can easily be added to the
metamodel without breaking existing model instances. The metamodel is
designed to have good support for model operations, such as traversal of
the AT models. From a node, any other node can be reached directly or
indirectly following references.

– The ATMM node and tree attributes offer convenient and generic meth-
ods for supporting the results of analysis tools. This allows us to translate
results from a formal tool back into the AT domain and associate them
to the original AT model (see Sect. 4.4).

2. The query metamodel formalizes the security queries to be analyzed over
attack trees. We support both qualitative queries (i.e., properties such as
feasibility of attack) and quantitative queries (i.e., security metrics such as
probability of successful attack, cheapest attack, etc.).

3. The scenario metamodel represents attack scenarios (a.k.a. attack vectors)
consisting of the steps leading to, e.g., the cheapest, fastest, or most damaging
security breaches.

Below we discuss these metamodels in more detail.

1. AT Metamodel (ATMM). The ATMM metamodel is a combination of
two separate metamodels, one representing the attack tree structure (Structure
metamodel, Fig. 4 left) and the other representing the attack tree attributes
(Values metamodel, Fig. 4 right). This separation allows us to consider different
attack scenarios modeled via the same attack tree, but decorated with different
attributes. For example, it is easy to define attribute values based on the attacker
type: script kiddie, malicious insider, etc. may be all be interested in the same
asset, but each of them possesses different access privileges and is equipped with
different resources.

Structure Metamodel. The structure model, depicted in Fig. 4 on the left, repre-
sents the structure of the attack tree. Its main class AttackTree contains a set of
one or more Nodes, as indicated by the containment arrow between AttackTree
and Node. One of these nodes is designated as the root of the tree, denoted by
the root reference. Each Node is equipped with an id, used as a reference during
transformation processes. Furthermore, each node has a (possibly empty) list of
its parents and children, which allows to easily traverse the AT. A node may
have a connector, i.e., a gate such as AND, OR, SAND (sequential-AND), etc.

Effective Analysis of Attack Trees: A Model-Driven Approach 63

Node
id : String

A ackTree

nodes
1..*

root

[0..*] children

[0..*] parents

Connector

[0..1] connector

AND

OR

...

A ribute Domain
name : String

node

Structure Values

a ributes

Value

value
RealValue

value : Double

...
Type

RealType

...

valueType

Purpose

purpose

TimePurpose
meType : TimeType

...
TimeType

MINIMAL
MAXIMAL
...

Fig. 4. The ATMM metamodel separated into the structure and values metamodels.
Some connectors, types, and purposes are omitted for clarity and denoted by ellipses.

In addition to the structure specified by the metamodel, some constraints
can be used to ensure that a model is a valid attack tree. For example, the
tree cannot contain cycles, the nodes must form a connected graph, etc. These
constraints are separately formulated in the Epsilon Validation Language (EVL
[17]). An example of such a constraint is shown in Listing 1.

Values Metamodel. The Values metamodel (Fig. 4, right side) describes how
values are attributed to nodes (arrow from Attribute on the right to Node on the
left). Each Attribute contains exactly one Value, which can be of various (basic
or complex) types: For example, RealValue is a type of Value that contains real
(Double) numbers. A Domain groups all those attributes that have the same
Purpose. By separating the purpose of attributes from their data type, we can
use basic data types (integer, boolean, real number) for different purposes: For
example, a real number (RealType) can be used in a Domain named “Maximum
Duration”, where the purpose is a TimePurpose with timeType = MAXIMAL.
A RealType number could also be used in a different Domain, say “Likelihood
of attack” with the purpose to represent a probability (ProbabilityPurpose, not
shown in the diagram). Thanks to the flexibility of this construct, the set of
available domains is easily extensible.

1 context ATMM!AttackTree {
2 constraint OneAndOnlyOneChildWithoutParents {
3 check : ATMM!Node.allInstances.select(n|n.parents.size() == 0).size() = 1

4 and self.root = ATMM!Node.allInstances.select(n|n.parents.size() == 0).first()

5 }
6 }
Listing 1. Constraint specifying that the root node is the only node in an ATMM AT
with no parents.

64 R. Kumar et al.

2. Query Metamodel. Existing attack tree analysis tools such as ATE,
ATCalc, ADTool 2.0, etc. support only a limited set of queries, lacking the
flexibility to customize one’s own security queries. Using the MDE approach,
we have developed the Query metamodel shown in Fig. 5. This allows a security
practitioner to ask a wide range of qualitative and quantitative metrics over a
wide range of attributes such as cost, time, damage, etc.

Using this metamodel in ATTop, a security practitioner can ask all the secu-
rity queries available in the aforementioned tools. Furthermore, the metamodel
offers a more comprehensive set of security queries where users can tailor their
own security queries. For example, it is possible to ask whether a successful
attack can be carried out within 10 days and without spending more than $900.

Constraint
operator : RelationalOperator
domain : Domain
value : Value

ExpectedValueQuery
domain : Domain

OptimizationGoal
MAXIMUM
MINIMUM

ReachabilityQuery

Query

constraints

ProbabilityQuery
OptimalQuery

domain : Domain
goal : OptimizationGoal

RelationalOperator

GREATER
SMALLER
EQUAL

Fig. 5. The query metamodel. The types ‘Domain’ and ‘Value’ refer to the classes of
the ATMM metamodel (Fig. 4).

The main component of the query metamodel is the element named Query.
A query can be one of the following:

– Reachability, i.e., Is it feasible to reach the top node of an attack tree? Sup-
ported by every tool.

– Probability, i.e., What is the probability that a successful attack occurs? Sup-
ported by every tool.

– ExpectedValue, i.e., What is the expected (average) value of a given quantity
over all possible attacks? Supported by ATTop.

– Optimality, i.e., Which is the attack that is optimal w.r.t. a given attribute
(e.g., time or cost)? Supported by ATE, ADTool 2.0, ATTop.

Furthermore, a query can be framed by combining one of the above query types
with a set of Constraints over the AT attributes. A Constraint is made of a
RelationalOperator, a Value and its Domain. For example, the constraint “within
10 days” is expressed with the SMALLER RelationalOperator, a Value of 10, and
the Domain of “Maximum Duration”.

Effective Analysis of Attack Trees: A Model-Driven Approach 65

3. Scenario Metamodel. ATTop is geared to provide different results: some
of which are numeric, like the probability to execute attack, the maximum cost
to execute an attack, etc. Other results contain qualitative information such as
an attack vector, which is a partially ordered set of basic attack steps resulting
in the compromise of an asset under a given set of constraints (for example,
incurring minimum cost). In order to properly trace back the qualitative output
to the original attack tree, we use the Scenario metamodel (see Fig. 6).

The Scenario metamodel is used to represent attack vectors. In our context,
we consider an attack vector to be a Schedule where there is only one Executor,
which we name “Attacker”. The sequence of Tasks appearing in a Scenario are
then interpreted as the sequence of the attack steps the Attacker needs to carry
out in order to reach their objective. Each attack step is actually a node of the
original AT, and is represented as an Executable whose name corresponds to the
id of the original Node. Timing information contained in each Task describes the
start (startTime) and end (endTime) time points for each attack step. Note that
an attack can start but not end before the objective is reached (multiplicity “1”
for startTime and “0..1” for endTime).

executables

Time

Schedule

Task
name : String

Executor
name : String

Executable
name : String

tasks

executors

executableexecutor

endTime
value : Float

[0..1]

startTime [1]

Fig. 6. The Scenario metamodel from [29]. In the context of ATs, all instances of this
metamodel will have only one Executor, the Attacker; Executables represent attack steps
(i.e. Nodes from the AT), while a Scenario is known as an attack vector.

4 Model Transformations

ATTop supports horizontal and vertical model transformations. Figure 7 illus-
trates the difference between these. Horizontal transformations convert one
model into another that conforms to the same metamodel, e.g., a transformation
from one AT analysis tool to another (where the models of both tools are repre-
sented in the ATMM metamodel). Vertical transformations transform a model
into another that conforms to a different metamodel, e.g., the transformation
from an AT into a timed automaton. A key feature of ATTop is that it also
provides vertical transformations in the reverse direction: analysis results (e.g.,
traces produced by Uppaal) are interpreted in terms of the original attack tree
model.

66 R. Kumar et al.

4.1 Horizontal Transformations: Unifying Dialects of Attack Trees

One of the goals of applying the model-driven approach is to facilitate interop-
eration between different tools. To this end, we provide transformations to and
from the file formats of ADTool 2.0 [12], Attack Tree Evaluator (ATE) [5], and
ATCalc [2].

Due to the different features supported by the various tools, not all input
formalisms can be converted to any other format preserving all semantics. For
example, ATCalc performs only timing analysis, while ADTool can also perform
cost analysis of untimed attack trees. In such cases, the transformations convert
whatever information is supported by their output format, omitting unsupported
features. As the ATMM metamodel unifies the features of all the listed tools,
transformations into this metamodel are lossless.

Example 2. ATE Transformation. The Attack Tree Evaluator [5] tool can only
process binary trees. Using a simple transformation, we can transform any
instance of the ATMM into a binary tree. A simplified version of this trans-
formation, written in ETL, is given in Listing 2. This transformation is based
on a recursive method that traverses the tree. For every node with more than
two children, it nests all but the first child under a new node until no more than
two children remain.

4.2 Vertical Transformations: Analyzing ATs via Timed Automata

Thus far we have described the transformations to and from dedicated tools for
attack trees. In this section we introduce a vertical transformation which we use
in ATTop to translate attack trees into the more general-purpose formalism of
timed automata (TA). Specifically, we provide model transformations to TAs
that can be analyzed by the Uppaal tool to obtain the wide range of qualitative
and quantitative properties supported by the query metamodel.

Our transformation targets the Uppaal metamodel described in [29]. It
transforms each element of the attack tree (i.e., each gate and basic attack step)

M
et

am
od

el

Attack tree metamodel (ATMM)

conforms toconforms to

M
od

el AT specified in
ADTool 2.0
XML format

Model
Transformation

Timed automata
models of AT

elements

Uppaal timed
automata metamodel

AT specified in
Galileo format
(input to the
ATCalc tool)

Model
Transformation

Horizontal transformation Vertical transformation

conforms to

Fig. 7. Examples of horizontal and vertical model transformations.

Effective Analysis of Attack Trees: A Model-Driven Approach 67

1 var structure := AttackTree.all . first ();
2 structure .Root.NodeToBinary();
3

4 operation Node NodeToBinary(){
5 if (self .Children.size()>2){
6 var newNode = new Node();
7 newNode.Parents.add(self);
8 structure .Nodes.add(newNode);
9

10 var replaceNodes := self.Children.excluding(self .Children. first ());
11 newNode.Children := replaceNodes;
12 self .Children.removeAll(replaceNodes);
13 self .Children.add(newNode);
14 }
15 for(child in self .Children)
16 child .NodeToBinary();
17 }

Listing 2. Transformation of an ATMM attack tree to a binary AT

into a timed automaton. These automata communicate via signals and together
describe the behavior of the entire tree. For example, Fig. 8 shows the timed
automaton obtained by transforming an attack step with a deterministic time
to execute of 5 units.

Init Active

x <= 5

Completed

activate[id]?
x >= 5
complete[id]!

Fig. 8. Example of a timed automaton
modeling a basic attack step with a fixed
time to execute of 5 units.

Depending on the features of the
model and the desired property to be
analyzed, the output of the transfor-
mation can be analyzed by different
extensions of Uppaal. For example,
Uppaal CORA supports the analysis
of cost-optimal queries, such as “What
is the lowest cost an attacker needs to incur in order to complete an attack”,
while Uppaal-SMC supports statistical model checking, allowing the analysis of
models with stochastic times and probabilistic attack steps with queries such as
“What is the probability that an attacker successfully completes an attack within
one hour”. The advantages of Uppaal CORA’s exact results come at the cost
of state space explosion, which limits the applicability of this approach for larger
problems. On the other hand, the speed and scalability of the simulation-based
Uppaal-SMC are countered by approximated results and the unavailability of
(counter-)example traces.

4.3 Query Transformation: From Domain-Specific to Tool-Specific

ATTop aims to enable the analysis of ATs also by users that are less familiar
with the underlying tools. One challenge for such a user is that every tool has
its own method to specify what property of the AT should be computed.

Section 3 describes our metamodel for expressing a wide range of possible
queries, and we now transform such queries to a tool-specific format. Many tools

68 R. Kumar et al.

support only a single query (e.g., ATE [5] only supports Pareto curves of cost
vs. probability), in which case no transformation is performed but ATTop only
allows that single query as input.

The Uppaal tool is an example of a tool supporting many different queries.
After transforming the AT to a timed automaton (cf. Sect. 4.2), we transform
the query into the textual formula supported by Uppaal. The basic form of
this formula is determined by the query type (e.g., a ReachabilityQuery will be
translated as “E<> toplevel.completed”, which asks for the existence of a trace
that reaches the top level event), while constraints add additional terms limiting
the permitted behavior of the model. By using an Uppaal-specific metamodel
for its query language linked to the TA metamodel, our transformation can easily
refer to the TA elements that correspond to converted AT elements.

4.4 Result Transformation: From Tool-Specific to Domain-Specific

Analyses done with a back-end tool produce results that may only be immedi-
ately understandable to an expert in that tool. An important feature of ATTop
to ease its use by non-experts, is that it provides interpretations of these results
in terms of the original AT.

For example, given an attack tree whose leaves are annotated with (time-
dependent) costs, Uppaal can produce a trace showing the cheapest way to
reach a security breach (optionally within a specified time bound). This trace
is given in a textual format, with many details that are irrelevant to a security
analyst. It is much easier to understand this scenario when shown in terms of
the attack tree (for example, Fig. 11 is a scenario described by several pages
of Uppaal output). This is exactly the purpose of having reverse transforma-
tions: Uppaal’s textual traces are automatically parsed by ATTop, generating
instances of the Trace metamodel described in [29]. To do so, the transformation
from ATMM to Uppaal retains enough information to trace identifiers in the
Uppaal model back to the elements of the AT. When parsing the trace, ATTop
extracts only the relevant events (e.g., the starts and ends of attack steps) and
related information (e.g., time). This information is then stored as an instance
of the Scenario metamodel described in Sect. 3.

In the generated Schedule, attack steps are represented as Executables, while
Tasks indicate the start and finish time of each attack step, thus describing the
attack vector. Only one Executor is present in any attack vector produced by
this transformation, and that is the Attacker. An example of such a generated
schedule can be seen in Fig. 11.

5 Tool Support

We have developed the tool ATTop to enable users to easily use the transfor-
mations described in this paper, without requiring knowledge of the underly-
ing techniques or formalisms. ATTop automatically selects which transforma-
tions to apply based on the available inputs and desired outputs. For exam-
ple, if the user provides an ADTool input and requests an Uppaal output,

Effective Analysis of Attack Trees: A Model-Driven Approach 69

Fig. 9. Screenshot of ATTop’s main screen, allowing
input file selection, query specification, and output
selection.

ATTop will automatically
first execute the transforma-
tion from ADTool to the
ATMM, and then the trans-
formation from ATMM to
Uppaal.

Users operate the tool
by specifying input files and
their corresponding languages,
and the desired output files
and languages. ATTop then
performs a search for the
shortest sequence of transfor-
mations achieving the desired
outputs from the inputs. For
example, Fig. 9 shown the
tool’s main screen, where the
user has provided an input
AT in Galileo format. The
user can now choose between different queries and analysis engines.

6 Case Study

Fig. 10. ATCalc plot showing proba-
bility of successful attack over time

As a case study we use the example anno-
tated attack tree given in Fig. 2. We apply
ATTop to automatically compute several
qualitative and quantitative security met-
rics. Specifically, we apply a horizontal
transformation to convert the model from
the ATCalc format to that accepted by
ADTool 2.0, and a vertical transformation
to analyze the model using Uppaal.

We specify the AT in the Galileo for-
mat as accepted by ATCalc. Analysis with
ATCalc yields a graph of the probability of
a successful attack over time, as shown in Fig. 10. Next, we would like to deter-
mine the minimal cost of a successful attack, which ATCalc cannot provide.
Therefore, we use ATTop to transform the AT to the ADTool 2.0 format, and
use ADTool 2.0 to compute the minimal cost (yielding $270).

Next, we perform a more comprehensive timing analysis using the vertical
transformation described in Sect. 4.2. We use ATTop to transform the AT to a
timed automaton that can be analyzed using the Uppaal tool. We also transform
a query (OptimalityQuery asking for minimal time) to the corresponding Uppaal
query. Combining these, we obtain a trace for the fastest successful attack, which
ATTop transforms into a scenario in terms of the AT as described in Sect. 4.3.

70 R. Kumar et al.

find_WLAN

break_WPA_keys

get_credentials

exploit_sw_vulnerability

run_malicious_script

0 120 300 600 660 690 Time (min)

Fig. 11. Scenario of fastest attack as computed by Uppaal . The executed steps and
their start–end times are also shown in Fig. 2.

The resulting scenario is shown in Fig. 11. Running the whole process, including
the transformations and the analysis with Uppaal, took 6.5 s on an Intel R©
CoreTM i7 CPU 860 at 2.80 GHz running Ubuntu 16.04 LTS.

7 Conclusions

We have presented a model-driven approach to the analysis of attack trees and a
software bridging tool—ATTop—implementing this approach. We support inter-
operability between different existing analysis tools, as well as our own analysis
using the popular tool Uppaal as a back-end engine.

Formal methods have the advantage of being precise, unambiguous and sys-
tematic. A lot of effort is spent on their correctness proofs. However, these ben-
efits are only reaped if the tools supporting formal analysis are also correct. To
the best of our knowledge, this work is among the first to apply the systematic
approach of MDE to the development of formal analysis tools.

Through model-driven engineering, we have developed the attack tree meta-
model (ATMM) with support for the many extended formalisms of attack trees,
integrating most of the features of such extensions. This unified metamodel pro-
vides a common representation of attack trees, allowing easy transformations
from and to the specific representations of individual tools such as ATCalc [2]
and ADTool [12]. The metamodels for queries and schedules facilitate a user-
friendly interface, obtaining relevant questions and presenting results without
needing expert knowledge of the underlying analysis tool.

We have presented our approach specifically for attack trees, but we believe it
can be equally fruitful for different formalisms and tools as well (e.g. PRISM [24],
STORM [9]) by using different metamodels and model transformations. We thus
expect our approach to be useful in the development of other tools that bridge
specialized domains and formal methods.

Acknowledgments. This research was partially funded by STW and ProRail under
the project ArRangeer (grant 12238), STW, TNO-ESI, Océ and PANalytical under
the project SUMBAT (13859), STW project SEQUOIA (15474), NWO projects BEAT
(612001303) and SamSam (628.005.015), and EU project SUCCESS (102112).

Effective Analysis of Attack Trees: A Model-Driven Approach 71

References

1. Andrade, E.C., Alves, M., Matos, R., Silva, B., Maciel, P.: OpenMADS: an open
source tool for modeling and analysis of distributed systems. In: Bitsch, F., Guio-
chet, J., Kaâniche, M. (eds.) SAFECOMP 2013. LNCS, vol. 8153, pp. 277–284.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40793-2 25

2. Arnold, F., Belinfante, A., Van der Berg, F., Guck, D., Stoelinga, M.: DFTCalc: a
tool for efficient fault tree analysis. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.)
SAFECOMP 2013. LNCS, vol. 8153, pp. 293–301. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40793-2 27

3. Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack
tree modelling. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS,
vol. 9338, pp. 291–299. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24249-1 25

4. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: Computer Security Foundations (CSF), pp. 105–119
(2016). https://doi.org/10.1109/CSF.2016.15

5. Aslanyan, Z.: Attack Tree Evaluator, developed for EU project TREsPASS, Tech-
nical University of Denmark. https://vimeo.com/145070436

6. Bistarelli, S., Fioravanti, F., Peretti, P., Santini, F.: Evaluation of complex security
scenarios using defense trees and economic indexes. J. Exp. Theor. Artif. Intell.
24(2), 161–192 (2012). https://doi.org/10.1080/13623079.2011.587206

7. Byres, E.J., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabili-
ties in SCADA systems. In: Proceedings of Infrastructure Survivability Workshop.
IEEE (2004)

8. Dalton, G.C.I., Mills, R.F., Colombi, J.M., Raines, R.A.: Analyzing attack trees
using generalized stochastic petri nets. In: 2006 IEEE Information Assurance Work-
shop, pp. 116–123, June 2006. https://doi.org/10.1109/IAW.2006.1652085

9. Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

10. Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua,
R.: Using attack-defense trees to analyze threats and countermeasures in an ATM:
a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP,
vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48393-1 24

11. Gadyatskaya, O., Hansen, R.R., Larsen, K.G., Legay, A., Olesen, M.C., Poulsen,
D.B.: Modelling attack-defense trees using timed automata. In: Fränzle, M.,
Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 35–50. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44878-7 3

12. Gadyatskaya, O., Jhawar, R., Kordy, P., Lounis, K., Mauw, S., Trujillo-Rasua,
R.: Attack trees for practical security assessment: ranking of attack scenarios with
ADTool 2.0. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826, pp.
159–162. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4 10

13. Gribaudo, M., Iacono, M., Marrone, S.: Exploiting Bayesian networks for the anal-
ysis of combined attack trees. In: Proceedings of PASM. ENTCS, vol. 310, pp.
91–111 (2015). https://doi.org/10.1016/j.entcs.2014.12.014

https://doi.org/10.1007/978-3-642-40793-2_25
https://doi.org/10.1007/978-3-642-40793-2_27
https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1007/978-3-319-24249-1_25
https://doi.org/10.1109/CSF.2016.15
https://vimeo.com/145070436
https://doi.org/10.1080/13623079.2011.587206
https://doi.org/10.1109/IAW.2006.1652085
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-48393-1_24
https://doi.org/10.1007/978-3-319-44878-7_3
https://doi.org/10.1007/978-3-319-43425-4_10
https://doi.org/10.1016/j.entcs.2014.12.014

72 R. Kumar et al.

14. Hendriks, M., Verhoef, M.: Timed automata based analysis of embedded system
architectures. In: Proceedings of 20th International Conference on Parallel and
Distributed Processing (IPDPS), p. 179. IEEE (2006). https://doi.org/10.1109/
IPDPS.2006.1639422

15. Hermanns, H., Krämer, J., Krčál, J., Stoelinga, M.: The value of attack-defence
diagrams. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp.
163–185. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-
0 9

16. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 32

17. Kolovos, D., Rose, L., Garćıa-Domńguez, A., Paige, R.: The Epsilon Book (2016).
http://www.eclipse.org/epsilon/doc/book

18. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

19. Kordy, B., Mauw, S., Schweitzer, P.: Quantitative questions on attack–defense
trees. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp.
49–64. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5 5

20. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense
modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14,
1–38 (2014). https://doi.org/10.1016/j.cosrev.2014.07.001

21. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: Proceedings of IEEE 18th International Symposium on High Assur-
ance Systems Engineering (HASE), pp. 25–32, January 2017. https://doi.org/10.
1109/HASE.2017.12

22. Kumar, R., Guck, D., Stoelinga, M.: Time dependent analysis with dynamic
counter measure trees. In: Proceedings of 13th Workshop on Quantitative Aspects
of Programming Languages (QAPL) (2015). http://arxiv.org/abs/1510.00050

23. Kumar, R., Ruijters, E., Stoelinga, M.: Quantitative attack tree analysis via priced
timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015.
LNCS, vol. 9268, pp. 156–171. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-22975-1 11

24. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

25. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

26. Mead, N.: SQUARE Process (2013). https://buildsecurityin.us-cert.gov/articles/
best-practices/requirements-engineering/square-process

27. Roudier, Y., Apvrille, L.: SysML-Sec: a model driven approach for designing safe
and secure systems. In: Proceedings of 3rd International Conference on Model-
Driven Engineering and Software Development (MODELSWARD), pp. 655–664
(2015)

28. Ruijters, E., Schivo, S., Stoelinga, M.I.A., Rensink, A.: Uniform analysis of fault
trees through model transformations. In: Proceedings of IEEE 63rd Annual Reli-
ability and Maintainability Symposium (RAMS), January 2017. https://doi.org/
10.1109/RAM.2017.7889759

https://doi.org/10.1109/IPDPS.2006.1639422
https://doi.org/10.1109/IPDPS.2006.1639422
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/978-3-662-49635-0_9
https://doi.org/10.1007/3-540-45800-X_32
http://www.eclipse.org/epsilon/doc/book
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-37682-5_5
https://doi.org/10.1016/j.cosrev.2014.07.001
https://doi.org/10.1109/HASE.2017.12
https://doi.org/10.1109/HASE.2017.12
http://arxiv.org/abs/1510.00050
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-319-22975-1_11
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering/square-process
https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering/square-process
https://doi.org/10.1109/RAM.2017.7889759
https://doi.org/10.1109/RAM.2017.7889759

Effective Analysis of Attack Trees: A Model-Driven Approach 73

29. Schivo, S., Yildiz, B.M., Ruijters, E., Gerking, C., Kumar, R., Dziwok, S., Rensink,
A., Stoelinga, M.: How to efficiently build a front-end tool for UPPAAL: a model-
driven approach. In: Larsen, K.G., Sokolsky, O., Wang, J. (eds.) SETTA 2017.
LNCS, vol. 10606, pp. 319–336. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69483-2 19

30. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer
39(2), 25–31 (2006). https://doi.org/10.1109/MC.2006.58

31. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
32. da Silva, A.R.: Model-driven engineering: a survey supported by the unified con-

ceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015). https://doi.org/
10.1016/j.cl.2015.06.001

33. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Chapter 3: Metamodelling.
In: Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS 2007.
LNCS, vol. 6100, pp. 57–76. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16277-0 3

34. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. Wiley, Chichester (2006)

35. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional, Reading (2009)

36. Steiner, M., Liggesmeyer, P.: Qualitative and quantitative analysis of CFTs taking
security causes into account. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP
2015. LNCS, vol. 9338, pp. 109–120. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24249-1 10

37. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development: Technology, Engineering, Management. Wiley, Chichester (2006)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1007/978-3-319-69483-2_19
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1016/j.cl.2015.06.001
https://doi.org/10.1007/978-3-642-16277-0_3
https://doi.org/10.1007/978-3-642-16277-0_3
https://doi.org/10.1007/978-3-319-24249-1_10
https://doi.org/10.1007/978-3-319-24249-1_10
http://creativecommons.org/licenses/by/4.0/

Distributed Program and System
Analysis

ROLA: A New Distributed Transaction
Protocol and Its Formal Analysis

Si Liu1(B) , Peter Csaba Ölveczky2 , Keshav Santhanam1 , Qi Wang1 ,
Indranil Gupta1 , and José Meseguer1

1 University of Illinois, Urbana-Champaign, USA
siliu3@illinois.edu

2 University of Oslo, Oslo, Norway

Abstract. Designers of distributed database systems face the choice
between stronger consistency guarantees and better performance. A num-
ber of applications only require read atomicity (RA) and prevention of
lost updates (PLU). Existing distributed database systems that meet
these requirements also provide additional stronger consistency guaran-
tees (such as causal consistency), and therefore incur lower performance.
In this paper we define a new distributed transaction protocol, ROLA,
that targets applications where only RA and PLU are needed. We for-
mally model ROLA in Maude. We then perform model checking to ana-
lyze both the correctness and the performance of ROLA. For correctness,
we use standard model checking to analyze ROLA’s satisfaction of RA
and PLU. To analyze performance we: (a) use statistical model checking
to analyze key performance properties; and (b) compare these perfor-
mance results with those obtained by analyzing in Maude the well-known
protocol Walter. Our results show that ROLA outperforms Walter.

1 Introduction

Distributed transaction protocols are complex distributed systems whose design
is quite challenging because: (i) validating correctness is very hard to achieve by
testing alone; (ii) the high performance requirements needed in many applica-
tions are hard to measure before implementation; and (iii) there is an unavoidable
tension between the degree of consistency needed for the intended applications
and the high performance required of the transaction protocol for such applica-
tions: balancing well these two requirements is essential.

In this work, we present our results on how to use formal modeling and
analysis as early as possible in the design process to arrive at a mature design of a
new distributed transaction protocol, called ROLA, meeting specific correctness
and performance requirements before such a protocol is implemented. In this
way, the above-mentioned design challenges (i)–(iii) can be adequately met. We
also show how using this formal design approach it is relatively easy to compare
ROLA with other existing transaction protocols.

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 77–93, 2018.
https://doi.org/10.1007/978-3-319-89363-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_5&domain=pdf
http://orcid.org/0000-0003-3578-7432
http://orcid.org/0000-0002-0708-3721
http://orcid.org/0000-0001-5939-7944
http://orcid.org/0000-0002-7517-8888
http://orcid.org/0000-0002-9372-5937
http://orcid.org/0000-0003-4779-3848

78 S. Liu et al.

ROLA in a Nutshell. Different applications require negotiating the consis-
tency vs. performance trade-offs in different ways. The key issue is the applica-
tion’s required degree of consistency, and how to meet such requirements with
high performance. Cerone et al. [4] survey a hierarchy of consistency models for
distributed transaction protocols including (in increasing order of strength):

– read atomicity (RA): either all or none of a distributed transaction’s updates
are visible to another transaction (that is, there are no “fractured reads”);

– causal consistency (CC): if transaction T2 is causally dependent on transaction
T1, then if another transaction sees the updates by T2, it must also see the
updates of T1 (e.g., if A posts something on a social media, and C sees B’s
comment on A’s post, then C must also see A’s original post);

– parallel snapshot isolation (PSI): like CC but without lost updates;
– and so on, all the way up to the well-known serializability guarantees.

A key property of transaction protocols is the prevention of lost updates
(PLU). The weakest consistency model in [4] satisfying both RA and PLU is PSI.
However, PSI, and the well-known protocol Walter [20] implementing PSI, also
guarantee CC. Cerone et al. conjecture that a system guaranteeing RA and PLU
without guaranteeing CC should be useful, but up to now we are not aware of any
such protocol. The point of ROLA is exactly to fill this gap: guaranteeing RA and
PLU, but not CC. Two key questions are then: (a) are there applications needing
high performance where RA plus PLU provide a sufficient degree of consistency?
and (b) can a new design meeting RA plus PLU outperform existing designs,
like Walter, meeting PSI?

Regarding question (a), an example of a transaction that requires RA and
PLU but not CC is the “becoming friends” transaction on social media. Bailis
et al. [3] point out that RA is crucial for this operation: If Edinson and Neymar
become friends, then Unai should not see a fractured read where Edinson is a
friend of Neymar, but Neymar is not a friend of Edinson. An implementation of
“becoming friends” must obviously guarantee PLU: the new friendship between
Edinson and Neymar should not be lost. Finally, CC could be sacrificed for the
sake of performance: Assume that Dani is a friend of Neymar. When Edinson
becomes Neymar’s friend, he sees that Dani is Neymar’s friend, and therefore
also becomes friend with Dani. The second friendship therefore causally depends
on the first one. However, it does not seem crucial that others are aware of this
causality: If Unai sees that Edinson and Dani are friends, then it is not necessary
that he knows that (this happened because) Edinson and Neymar are friends.

Regarding question (b), Sect. 6 shows that ROLA clearly outperforms Walter
in all performance requirements for all read/write transaction rates.

Maude-Based Formal Modeling and Analysis. In rewriting logic [16],
distributed systems are specified as rewrite theories. Maude [5] is a high-
performance language implementing rewriting logic and supporting various
model checking analyses. To model time and performance issues, ROLA is spec-
ified in Maude as a probabilistic rewrite theory [1,5]. ROLA’s RA and PLU
requirements are then analyzed by standard model checking, where we disregard

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 79

time issues. To estimate ROLA’s performance, and to compare it with that of
Walter, we have also specified Walter in Maude, and subject the Maude mod-
els of both ROLA and Walter to statistical model checking analysis using the
PVeStA [2] tool.

Main Contributions include: (1) the design, formal modeling, and model
checking analysis of ROLA, a new transaction protocol having useful applications
and meeting RA and PLU consistency properties with competitive performance;
(2) a detailed performance comparison by statistical model checking between
ROLA and the Walter protocol showing that ROLA outperforms Walter in all
such comparisons; (3) to the best of our knowledge the first demonstration that,
by a suitable use of formal methods, a completely new distributed transaction
protocol can be designed and thoroughly analyzed, as well as be compared with
other designs, very early on, before its implementation.

2 Preliminaries

Read-Atomic Multi-Partition (RAMP) Transactions. To deal with ever-
increasing amounts of data, large cloud systems partition their data across multi-
ple data centers. However, guaranteeing strong consistency properties for multi-
partition transactions leads to high latency. Therefore, trade-offs that combine
efficiency with weaker transactional guarantees for such transactions are needed.

In [3], Bailis et al. propose an isolation model, read atomic isolation, and Read
Atomic Multi-Partition (RAMP) transactions, that together provide efficient
multi-partition operations that guarantee read atomicity (RA).

RAMP uses multi-versioning and attaches metadata to each write. Reads use
this metadata to get the correct version. There are three versions of RAMP; in
this paper we build on RAMP-Fast. To guarantee that all partitions perform
a transaction successfully or that none do, RAMP performs two-phase writes
using the two-phase commit protocol (2PC). In the prepare phase, each time-
stamped write is sent to its partition, which adds the write to its local database.1

In the commit phase, each such partition updates an index which contains the
highest-timestamped committed version of each item stored at the partition.

RAMP assumes that there is no data replication: a data item is only stored at
one partition. The timestamps generated by a partition P are unique identifiers
but are sequentially increasing only with respect to P . A partition has access to
methods get all(I : set of items) and put all(W : set of 〈item, value〉 pairs).

put all uses two-phase commit for each w in W . The first phase initiates
a prepare operation on the partition storing w.item, and the second phase com-
pletes the commit if each write partition agrees to commit. In the first phase, the
client (i.e., the partition executing the transaction) passes a version v : 〈item,
value, tsv,md〉 to the partition, where tsv is a timestamp generated for the
transaction and md is metadata containing all other items modified in the same
transaction. Upon receiving this version v, the partition adds it to a set versions.

1 RAMP does not consider write-write conflicts, so that writes are always prepared
successfully (which is why RAMP does not prevent lost updates).

80 S. Liu et al.

When a client initiates a get all operation, then for each i ∈ I the client
will first request the latest version vector stored on the server for i. It will then
look at the metadata in the version vector returned by the server, iterating over
each item in the metadata set. If it finds an item in the metadata that has a
later timestamp than the tsv in the returned vector, this means the value for i
is out of date. The client can then request the RA-consistent version of i.

Rewriting Logic and Maude. In rewriting logic [16] a concurrent system
is specified a as rewrite theory (Σ,E ∪ A,R), where (Σ,E ∪ A) is a member-
ship equational logic theory [5], with Σ an algebraic signature declaring sorts,
subsorts, and function symbols, E a set of conditional equations, and A a set
of equational axioms. It specifies the system’s state space as an algebraic data
type. R is a set of labeled conditional rewrite rules, specifying the system’s local
transitions, of the form [l] : t −→ t′ if cond , where cond is a condition and l is a
label. Such a rule specifies a transition from an instance of t to the corresponding
instance of t′, provided the condition holds.

Maude [5] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is for-
malized as a multiset of objects and messages. A class C with attributes att1 to
attn of sorts s1 to sn is declared class C | att1 : s1, . . . , attn : sn. An object
of class C is modeled as a term < o : C | att1 : v1, ..., attn : vn >, with o its
object identifier, and where the attributes att1 to attn have the current values
v1 to vn, respectively. Upon receiving a message, an object can change its state
and/or send messages to other objects. For example, the rewrite rule

rl [l] : m(O,z) < O : C | a1 : x, a2 : O’ >
=> < O : C | a1 : x + z, a2 : O’ > m’(O’,x + z) .

defines a transition where an incoming message m, with parameters O and z, is
consumed by the target object O of class C, the attribute a1 is updated to x +
z, and an outgoing message m’(O’,x + z) is generated.

Statistical Model Checking and PVESTA. Probabilistic distributed sys-
tems can be modeled as probabilistic rewrite theories [1] with rules of the form

[l] : t(−→x) −→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x)

where the term t′ has new variables −→y disjoint from the variables −→x in the
term t. The concrete values of the new variables −→y in t′(−→x ,−→y) are chosen
probabilistically according to the probability distribution π(−→x).

Statistical model checking [18,21] is an attractive formal approach to ana-
lyzing (purely) probabilistic systems. Instead of offering a yes/no answer, it can
verify a property up to a user-specified level of confidence by running Monte-
Carlo simulations of the system model. We then use PVeStA [2], a paralleliza-
tion of the tool VeStA [19], to statistically model check purely probabilistic
systems against properties expressed as QuaTEx expressions [1]. The expected
value of a QuaTEx expression is iteratively evaluated w.r.t. two parameters α

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 81

and δ by sampling, until we obtain a value v so that with (1−α)100% statistical
confidence, the expected value is in the interval [v − δ

2 , v + δ
2].

3 The ROLA Multi-Partition Transaction Algorithm

Our new algorithm for distributed multi-partition transactions, ROLA, extends
RAMP-Fast. RAMP-Fast guarantees RA, but it does not guarantee PLU since
it allows a write to overwrite conflicting writes: When a partition commits a
write, it only compares the write’s timestamp t1 with the local latest-committed
timestamp t2, and updates the latest-committed timestamp with t1 or t2. If the
two timestamps are from two conflicting writes, then one of the writes is lost.

ROLA’s key idea to prevent lost updates is to sequentially order writes on the
same key from a partition’s perspective by adding to each partition a data struc-
ture which maps each incoming version to an incremental sequence number. For
write-only transactions the mapping can always be built; for a read-write transac-
tion the mapping can only be built if there has not been a mapping built since the
transaction fetched the value. This can be checked by comparing the last prepared
version’s timestamp’s mapping on the partition with the fetched version’s times-
tamp’s mapping. In this way, ROLA prevents lost updates by allowing versions to
be prepared only if no conflicting prepares occur concurrently.

More specifically, ROLA adds two partition-side data structures: sqn, denot-
ing the local sequence counter, and seq [ts], that maps a timestamp to a local
sequence number. ROLA also changes the data structure of versions in RAMP
from a set to a list. ROLA then adds two methods: the coordinator-side2 method
update(I : set of items, OP : set of operations) and the partition-side method
prepare update(v : version, tsprev : timestamp) for read-write transactions.
Furthermore, ROLA changes two partition-side methods in RAMP: prepare,
besides adding the version to the local store, maps its timestamp to the increased
local sequence number; and commit marks versions as committed and updates
an index containing the highest-sequenced-timestamped committed version of
each item. These two partition-side methods apply to both write-only and read-
write transactions. ROLA invokes RAMP-Fast’s put all, get all and get
methods (see [3,14]) to deal with read-only and write-only transactions.

ROLA starts a read-write transaction with the update procedure. It invokes
RAMP-Fast’s get all method to retrieve the values of the items the client
wants to update, as well as their corresponding timestamps. ROLA writes then
proceed in two phases: a first round of communication places each timestamped
write on its respective partition. The timestamp of each version obtained previ-
ously from the get all call is also packaged in this prepare message. A second
round of communication marks versions as committed.

At the partition-side, the partition begins the prepare update routine by
retrieving the last version in its versions list with the same item as the received
version. If such a version is not found, or if the version’s timestamp tsv matches

2 The coordinator, or client, is the partition executing the transaction.

82 S. Liu et al.

Algorithm 1. ROLA

Server-side Data Structures
1: versions: list of versions 〈item, value, timestamp tsv, metadata md〉
2: latestCommit [i]: last committed timestamp for item i
3: seq [ts]: local sequence number mapped to timestamp ts
4: sqn: local sequence counter

Server-side Methods
get same as in RAMP-Fast

5: procedure prepare update(v : version, tsprev : timestamp)
6: latest ← last w ∈ versions : w.item = v.item
7: if latest = null or tsprev = latest.tsv then
8: sqn ← sqn + 1; seq [v.tsv] ← sqn; versions.add(v)
9: return ack

10: else return latest

11: procedure prepare(v : version)
12: sqn ← sqn + 1; seq [v.tsv] ← sqn; versions.add(v)

13: procedure commit(tsc : timestamp)
14: Its ← {w.item | w ∈ versions ∧ w.tsv = tsc}
15: for i ∈ Its do
16: if seq[tsc] > seq[latestCommit[i]] then latestCommit[i] ← tsc

Coordinator-side Methods
put all, get all same as in RAMP-Fast

17: procedure update(I : set of items, OP : set of operations)
18: ret ← get all(I); tstx ← generate new timestamp
19: parallel-for i ∈ I do
20: tsprev ← ret [i].tsv; v ← ret [i].value
21: w ← 〈item = i, value = opi(v), tsv = tstx,md = (I − {i})〉
22: p ← prepare update(w,tsprev)
23: if p = latest then
24: invoke application logic to, e.g., abort and/or retry the transaction

25: end parallel-for
26: parallel-for server s : s contains an item in I do
27: invoke commit(tstx) on s
28: end parallel-for

the passed-in timestamp tsprev , then the version is deemed prepared. The par-
tition keeps a record of this locally by incrementing a local sequence counter
and mapping the received version’s timestamp tsv to the current value of the
sequence counter. Finally the partition returns an ack to the client. If tsprev

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 83

does not match the timestamp of the last version in versions with the same
item, then this latest timestamp is simply returned to the coordinator.

If the coordinator receives an ack from prepare update, it immediately
commits the version with the generated timestamp tstx. If the returned value is
instead a timestamp, the transaction is aborted.

4 A Probabilistic Model of ROLA

This section defines a formal executable probabilistic model of ROLA. The whole
model is given at https://sites.google.com/site/fase18submission/.

As mentioned in Sect. 2, statistical model checking assumes that the system
is fully probabilistic; that is, has no unquantified nondeterminism. We follow the
techniques in [6] to obtain such a model. The key idea is that message delays are
sampled probabilistically from dense/continuous time intervals. The probability
that two messages will have the same delay is therefore 0. If events only take
place when a message arrives, then two events will not happen at the same time,
and therefore unquantified nondeterminism is eliminated.

We are also interested in correctness analysis of a model that captures all
possible behaviors from a given initial configuration. We obtain such a nonde-
terministic untimed model, that can be subjected to standard model checking
analysis, by just removing all message delays from our probabilistic timed model.

4.1 Probabilistic Sampling

Nodes send messages of the form [Δ, rcvr <-msg], where Δ is the message
delay, rcvr is the recipient, and msg is the message content. When time Δ has
elapsed, this message becomes a ripe message {T,rcvr <- msg}, where T is the
“current global time” (used for analysis purposes only).

To sample message delays from different distributions, we use the follow-
ing functionality provided by Maude: The function random, where random(k)
returns the k-th pseudo-random number as a number between 0 and 232 − 1,
and the built-in constant counter with an (implicit) rewrite rule counter =>
N:Nat. The first time counter is rewritten, it rewrites to 0, the next time it
rewrites to 1, and so on. Therefore, each time random(counter) rewrites, it
rewrites to the next random number. Since Maude does not rewrite counter
when it appears in the condition of a rewrite rule, we encode a probabilistic
rewrite rule t(−→x) −→ t′(−→x ,−→y) if cond(−→x) with probability −→y := π(−→x) in
Maude as the rule t(−→x) −→ t′(−→x , sample(π(−→x))) if cond(−→x). The following
operator sampleLogNormal is used to sample a value from a lognormal distribu-
tion with mean MEAN and standard deviation SD:

op sampleLogNormal : Float Float -> [Float] .

eq sampleLogNormal(MEAN,SD) = exp(MEAN + SD * sampleNormal) .

op sampleNormal : -> [Float] . op sampleNormal : Float -> [Float] .

eq sampleNormal = sampleNormal(float(random(counter) / 4294967296)) .

eq sampleNormal(RAND) = sqrt(- 2.0 * log(RAND)) * cos(2.0 * pi * RAND) .

https://sites.google.com/site/fase18submission/

84 S. Liu et al.

random(counter)/4294967296 rewrites to a different “random” number
between 0 and 1 each time it is rewritten, and this is used to define the sampling
function. For example, the message delay rd to a remote site can be sampled
from a lognormal distribution with mean 3 and standard deviation 2 as follows:

eq rd = sampleLogNormal(3.0, 2.0) .

4.2 Data Types, Classes, and Messages

We formalize ROLA in an object-oriented style, where the state consists of a
number of partition objects, each modeling a partition of the database, and a
number of messages traveling between the objects. A transaction is formalized as
an object which resides inside the partition object that executes the transaction.

Data Types. A version is a timestamped version of a data item (or key) and is
modeled as a 4-tuple version(key , value, timestamp,metadata). A timestamp
is modeled as a pair ts(addr , sqn) consisting of a partition’s identifier addr and
a local sequence number sqn. Metadata are modeled as a set of keys, denoting,
for each key, the other keys that are written in the same transaction.

The sort OperationList represents lists of read and write operations as terms
such as (x := read k1) (y := read k2) write(k1, x+ y), where LocalVar
denotes the “local variable” that stores the value of the key read by the operation,
and Expression is an expression involving the transaction’s local variables:

op write : Key Expression -> Operation [ctor] .
op _:=read_ : LocalVar Key -> Operation [ctor] .
pr LIST{Operation} * (sort List{Operation} to OperationList) .

Classes. A transaction is modeled as an object of the following class Txn:

class Txn | operations : OperationList, readSet : Versions,

localVars : LocalVars, latest : KeyTimestamps .

The operations attribute denotes the transaction’s operations. The readSet
attribute denotes the versions read by the read operations. localVars maps the
transaction’s local variables to their current values. latest stores the local view
as a mapping from keys to their respective latest committed timestamps.

A partition (or site) stores parts of the database, and executes the trans-
actions for which it is the coordinator/server. A partition is formalized as an
object instance of the following class Partition:

class Partition | datastore : Versions, sqn : Nat,

gotTxns : ObjectList, executing : Object,

committed : ObjectList, aborted : ObjectList,

tsSqn : TimestampSqn, latestCommit : KeyTimestamps,

votes : Vote, voteSites : TxnAddrSet,

1stGetSites : TxnAddrSet, 2ndGetSites : TxnAddrSet,

commitSites : TxnAddrSet .

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 85

The datastore attribute represents the partition’s local database as a list of ver-
sions for each key stored at the partition. The attribute latestCommit maps to
each key the timestamp of its last committed version. tsSqn maps each version’s
timestamp to a local sequence number sqn. The attributes gotTxns, executing,
committed and aborted denote the transaction(s) which are, respectively, wait-
ing to be executed, currently executing, committed, and aborted.

The attribute votes stores the votes in the two-phase commit. The remaining
attributes denote the partitions from which the executing partition is awaiting
votes, committed acks, first-round get replies, and second-round get replies.

The following shows an initial state (with some parts replaced by ‘...’) with
two partitions, p1 and p2, that are coordinators for, respectively, transactions
t1, and t2 and t3. p1 stores the data items x and z, and p2 stores y. Transaction
t1 is the read-only transaction (xl := read x) (yl := read y), transaction
t2 is a write-only transaction write(y, 3) write(z, 8), while transaction t3
is a read-write transaction on data item x. The states also include a buffer of
messages in transit and the global clock value, and a table which assigns to each
data item the site storing the item. Initially, the value of each item is [0]; the
version’s timestamp is empty (eptTS), and metadata is an empty set.

eq init = { 0.0 | nil}

< tb : Table | table : [sites(x, p1) ;; sites(y, p2) ;; sites(z, p1)] >

< p1 : Partition |

gotTxns: < t1 : Txn | operations: ((xl :=read x) (yl :=read y)),

readSet: empty, latest: empty,

localVars: (xl |-> [0], yl |-> [0]) >,

datastore: (version(x, [0], eptTS, empty)

version(z, [0], eptTS, empty)),

sqn: 1, ... >

< p2 : Partition |

gotTxns: < t2 : Txn | operations: (write(y, 3) write(z, 8)), ... >

< t3 : Txn | operations: ((xl := read x)

write(x, xl plus 1)), ... >

datastore: version(y, [0], eptTS, empty), ... > .

Messages. The message prepare(txn, version, sender) sends a version from a
write-only transaction to its partition, and prepare(txn, version, ts, sender)
does the same thing for other transactions, with ts the timestamp of the version
it read. The partition replies with a message prepare-reply(txn, vote, sender),
where vote tells whether this partition can commit the transaction. A message
commit(txn, ts, sender) marks the versions with timestamp ts as committed.
get(txn, key , ts, sender) asks for the highest-timestamped committed version or
a missing version for key by timestamp ts, and response1(txn, version, sender)
and response2(txn, version, sender) respond to first/second-round get requests.

86 S. Liu et al.

4.3 Formalizing ROLA’s Behaviors

This section formalizes the dynamic behaviors of ROLA using rewrite rules,
referring to the corresponding lines in Algorithm 1. We only show 2 of the 15
rewrite rules in our model, and refer to the report [14] for further details.3

Receiving prepare Messages (lines 5–10). When a partition receives a prepare
message for a read-write transaction, the partition first determines whether the
timestamp of the last version (VERSION) in its local version list VS matches
the incoming timestamp TS’ (which is the timestamp of the version read by
the transaction). If so, the incoming version is added to the local store, the
map tsSqn is updated, and a positive reply (true) to the prepare message is
sent (“return ack” in our pseudo-code); otherwise, a negative reply (false, or
“return latest” in the pseudo-code) is sent. Depending on whether the sender
PID’ of the prepare message happens to be PID itself, the reply is equipped
with a local message delay ld or a remote message delay rd, both of which are
sampled probabilistically from distributions with different parameters:4

crl [receive-prepare-rw] :

{T, PID <- prepare(TID, version(K, V, TS, MD), TS’, PID’)}

< PID : Partition | datastore: VS, sqn: SQN, tsSqn: TSSQN, AS’ >

=>

if VERSION == eptVersion or tstamp(VERSION) == TS’

then < PID : Partition | datastore: (VS version(K,V,TS,MD)), sqn: SQN’,

tsSqn: insert(TS,SQN’,TSSQN), AS’ >

[if PID == PID’ then ld else rd fi,

PID’ <- prepare-reply(TID, true, PID)]

else < PID : Partition | datastore: VS, sqn: SQN, tsSqn: TSSQN, AS’ >

[if PID == PID’ then ld else rd fi,

PID’ <- prepare-reply(TID, false, PID)] fi

if SQN’ := SQN + 1 /\ VERSION := latestPrepared(K,VS) .

Receiving Negative Replies (lines 23–24). When a site receives a prepare-reply
message with vote false, it aborts the transaction by moving it to the aborted
list, and removes PID’ from the “vote waiting list” for this transaction:

rl [receive-prepare-reply-false-executing] :

{T, PID <- prepare-reply(TID, false, PID’)}

< PID : Partition | executing: < TID : Txn | AS >, aborted: TXNS,

voteSites: VSTS addrs(TID, (PID’ , PIDS)), AS’ >

=>

< PID : Partition | executing: noTxn,

aborted: (TXNS ;; < TID : Txn | AS >),

voteSites: VSTS addrs(TID, PIDS), AS’ > .

3 We do not give variable declarations, but follow the convention that variables are
written in (all) capital letters.

4 The variable AS’ denotes the “remaining” attributes in the object.

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 87

5 Correctness Analysis of ROLA

In this section we use reachability analysis to analyze whether ROLA guarantees
read atomicity and prevents lost updates.

For both correctness and performance analysis, we add to the state an object

< m : Monitor | log: log >

which stores crucial information about each transaction. The log is a list of
records record(tid , issueTime,finishTime, reads,writes, committed), with tid
the transaction’s ID, issueTime its issue time, finishTime its commit/abort time,
reads the versions read, writes the versions written, and committed a flag that
is true if the transaction is committed.

We modify our model by updating the Monitor when needed. For example,
when the coordinator has received all committed messages, the monitor records
the commit time (T) for that transaction, and sets the “committed” flag to true5:

crl [receive-committed] :

{T, PID <- committed(TID, PID’)}

< M : Monitor | log: (LOG record(TID, T’, T’’, RS, WS, false) LOG’) >

< PID : Partition | executing: < TID : Txn | AS >,

committed: TXNS, commitSites: CMTS, AS’ >

=>

if CMTS’[TID] == empty --- all "committed" received

then < M : Monitor | log: (LOG record(TID, T’, T, RS, WS, true) LOG’) >

< PID : Partition | executing: noTxn, commitSites: CMTS’,

committed: (TXNS ;; < TID : Txn | AS >, AS’ >

else < M : Monitor | log: (LOG record(TID, T’, T’’, RS, WS, false) LOG’) >

< PID : Partition | executing: < TID : Txn | AS >,

committed: TXNS, commitSites: CMTS’, AS’ > fi

if CMTS’ := remove(TID, PID’, CMTS) .

Since ROLA is terminating if a finite number of transactions are issued, we
analyze the different (correctness and performance) properties by inspecting this
monitor object in the final states, when all transactions are finished.

Read Atomicity. A system guarantees RA if it prevents fractured reads, and
also prevents transactions from reading uncommitted, aborted, or intermediate
data [3], where a transaction Tj exhibits fractured reads if transaction Ti writes
version xm and yn, Tj reads version xm and version yk, and k < n [3].

We analyze this property by searching for a reachable final state (arrow =>!)
where the property does not hold:

search [1] initConfig =>! C:Config < M:Address : Monitor | log: LOG:Record >

such that fracRead(LOG) or abortedRead(LOG) .

5 The additions to the original rule are written in italics.

88 S. Liu et al.

The function fracRead checks whether there are fractured reads in the execution
log. There is a fractured read if a transaction TID2 reads X and Y, transaction
TID1 writes X and Y, TID2 reads the version TSX of X written by TID1, and reads
a version TSY’ of Y written before TSY (TSY’ < TSY). Since the transactions in
the log are ordered according to start time, TID2 could appear before or after
TID1 in the log. We spell out the case when TID1 comes before TID2:

op fracRead : Record -> Bool .

ceq fracRead(LOG ;

record(TID1,T1,T1’,RS1, (version(X,VX,TSX,MDX), version(Y,VY,TSY,MDY)),true) ; LOG’ ;

record(TID2,T2,T2’,(version(X,VX,TSX,MDX), version(Y,VY’,TSY’,MDY’)), WS2,true) ; LOG’’)

= true if TSY’ < TSY .

ceq fracRead(LOG ; record(TID2, ...) ; LOG’ ; record(TID1, ...) ; LOG’’) = true if TSY’ < TSY .

eq fracRead(LOG) = false [owise] .

The function abortedRead checks whether a transaction TID2 reads a version
TSX that was written by an aborted (flag false) transaction TID1:

op abortedRead : Record -> Bool .

eq abortedRead(LOG ;

record(TID1, T1, T1’, RS1, (version(X,VX,TSX,MDX), VS), false) ; LOG’ ;

record(TID2, T2, T2’, (version(X,VX,TSX,MDX), VS), WS2, true) ; LOG’’) = true .

eq abortedRead(LOG ; record(TID2,...) ; LOG’ ; record(TID1,...) ; LOG’’) = true.

eq abortedRead(LOG) = false [owise] .

No Lost Updates. We analyze the PLU property by searching for a final state in
which the monitor shows that an update was lost:

search [1] initConfig =>! C:Config < M:Address : Monitor | log: LOG:Record >

such that lu(LOG) .

The function lu, described in [14], checks whether there are lost updates in LOG.
We have performed our analysis with 4 different initial states, with up to 8

transactions, 2 data items and 4 partitions, without finding a violation of RA
or PLU. We have also model checked the causal consistency (CC) property with
the same initial states, and found a counterexample showing that ROLA does
not satisfy CC. (This might imply that our initial states are large enough so
that violations of RA or PLU could have been found by model checking.) Each
analysis command took about 30 seconds to execute on a 2.9 GHz Intel 4-Core
i7-3520M CPU with 3.7 GB memory.

6 Statistical Model Checking of ROLA and Walter

The weakest consistency model in [4] guaranteeing RA and PLU is PSI, and
the main system providing PSI is Walter [20]. ROLA must therefore outperform
Walter to be an attractive design. To quickly check whether ROLA does so,
we have also modeled Walter—without its data replication features—in Maude
(see [11] and https://sites.google.com/site/fase18submission/maude-spec), and
use statistical model checking with PVeStA to compare the performance of
ROLA and Walter in terms of throughput and average transaction latency.

https://sites.google.com/site/fase18submission/maude-spec

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 89

Extracting Performance Measures from Executions. PVeStA estimates
the expected (average) value of an expression on a run, up to a desired statistical
confidence. The key to perform statistical model checking is therefore to define a
measure on runs. Using the monitor in Sect. 5 we can define a number of functions
on (states with) such a monitor that extract different performance metrics from
this “system execution log.”

The function throughput computes the number of committed transactions
per time unit. committedNumber computes the number of committed transac-
tions in LOG, and totalRunTime returns the time when all transactions are fin-
ished (i.e., the largest finishTime in LOG):

op throughput : Config -> Float [frozen] .

eq throughput(< M : Monitor | log: LOG > REST)

= committedNumber(LOG) / totalRunTime(LOG) .

The function avgLatency computes the average transaction latency by divid-
ing the sum of the latencies of all committed transactions by the number of such
transactions:

op avgLatency : Config -> Float [frozen] .

eq avgLatency(< M : Monitor | log: LOG > REST)

= totalLatency(LOG) / committedNumber(LOG) .

where totalLatency computes the sum of all transaction latencies (time
between the issue time and the finish time of a committed transaction).

Generating Initial States. We use an operator init to probabilistically gener-
ate initial states: init(rtx ,wtx , rwtx , part , keys, rops,wops, rwops, distr) gener-
ates an initial state with rtx read-only transactions, wtx write-only transactions,
rwtx read-write transactions, part partitions, keys data items, rops operations
per read-only transaction, wops operations per write-only transaction, rwops
operations per read-write transactions, and distr the key access distribution
(the probability that an operation accesses a certain data item). To capture the
fact that some data items may be accessed more frequently than others, we also
use Zipfian distributions in our experiments.

Statistical Model Checking Results. We performed our experiments under
different configurations, with 200 transactions, 2–4 operations per transaction,
up to 200 data items and 50 partitions, with lognormal message delay distribu-
tions, and with uniform and Zipfian data item access distributions.

The plots in Fig. 1 show the throughput as a function of the percentage of
read-only transactions, number of partitions, and number of keys (data items),
sometimes with both uniform and Zipfian distributions. The plots show that
ROLA outperforms Walter for all parameter combinations. More partitions gives
ROLA higher throughput (since concurrency increases), as opposed to Walter
(since Walter has to propagate transactions to more partitions to advance the

90 S. Liu et al.

vector timestamp). We only plot the results under uniform key access distribu-
tion, which are consistent with the results using Zipfian distributions.

The plots in Fig. 2 show the average transaction latency as a function of the
same parameters as the plots for throughput. Again, we see that ROLA out-
performs Walter in all settings. In particular, this difference is quite large for
write-heavy workloads; the reason is that Walter incurs more and more overhead
for providing causality, which requires background propagation to advance the
vector timestamp. The latency tends to converge under read-heavy workload
(because reads in both ROLA and Walter can commit locally without certifica-
tion), but ROLA still has noticeable lower latency than Walter.

Fig. 1. Throughput comparison under different workload conditions.

Computing the probabilities took 6 hours (worst case) on 10 servers, each
with a 64-bit Intel Quad Core Xeon E5530 CPU with 12 GB memory. Each point
in the plots represents the average of three statistical model checking results.

7 Related Work

Maude and PVeStA have been used to model and analyze the correctness and
performance of a number of distributed data stores: the Cassandra key-value
store [12,15], different versions of RAMP [10,13], and Google’s Megastore [7,8].
In contrast to these papers, our paper uses formal methods to develop and
validate an entirely new design, ROLA, for a new consistency model.

Concerning formal methods for distributed data stores, engineers at Amazon
have used TLA+ and its model checker TLC to model and analyze the correct-
ness of key parts of Amazon’s celebrated cloud computing infrastructure [17].

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 91

In contrast to our work, they only use formal methods for correctness analysis;
indeed, one of their complaints is that they cannot use their formal method for
performance estimation. The designers of the TAPIR transaction protocol for
distributed storage systems have also specified and model checked correctness
(but not performance) properties of their design using TLA+ [22].

Fig. 2. Average latency comparison across varying workload conditions.

8 Conclusions

We have presented the formal design and analysis of ROLA, a distributed trans-
action protocol that supports a new consistency model not present in the survey
by Cerone et al. [4]. Using formal modeling and both standard and statistical
model checking analyses we have: (i) validated ROLA’s RA and PLU consis-
tency requirements; and (ii) analyzed its performance requirements, showing
that ROLA outperforms Walter in all performance measures.

This work has shown, to the best of our knowledge for the first time, that the
design and validation of a new distributed transaction protocol can be achieved
relatively quickly before its implementation by the use of formal methods. Our
next planned step is to implement ROLA, evaluate it experimentally, and com-
pare the experimental results with the formal analysis ones. In previous work
on existing systems such as Cassandra [9] and RAMP [3], the performance esti-
mates obtained by formal analysis and those obtained by experimenting with
the real system were basically in agreement with each other [10,12]. This con-
firmed the useful predictive power of the formal analyses. Our future research
will investigate the existence of a similar agreement for ROLA.

92 S. Liu et al.

Acknowledgments. We thank Andrea Cerone, Alexey Gotsman, Jatin Ganhotra,
and Rohit Mukerji for helpful early discussions on this work, and the anonymous review-
ers for useful comments. This work was supported in part by the following grants: NSF
CNS 1409416, NSF CNS 1319527, AFOSR/AFRL FA8750-11-2-0084, and a generous
gift from Microsoft.

References

1. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

2. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

3. Bailis, P., Fekete, A., Ghodsi, A., Hellerstein, J.M., Stoica, I.: Scalable atomic
visibility with RAMP transactions. ACM Trans. Database Syst. 41(3), 15:1–15:45
(2016)

4. Cerone, A., Bernardi, G., Gotsman, A.: A framework for transactional consistency
models with atomic visibility. In: CONCUR. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2015)

5. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework: How to Spec-
ify, Program, and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

6. Eckhardt, J., Mühlbauer, T., Meseguer, J., Wirsing, M.: Statistical model checking
for composite actor systems. In: Mart́ı-Oliet, N., Palomino, M. (eds.) WADT 2012.
LNCS, vol. 7841, pp. 143–160. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37635-1 9

7. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore
in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54624-2 25

8. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 12

9. Hewitt, E.: Cassandra: The Definitive Guide. O’Reilly Media, Sebastopol (2010)
10. Liu, S., Ölveczky, P.C., Ganhotra, J., Gupta, I., Meseguer, J.: Exploring design

alternatives for RAMP transactions through statistical model checking. In: Duan,
Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 298–314. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68690-5 18

11. Liu, S., Ölveczky, P.C., Wang, Q., Meseguer, J.: Formal modeling and analysis
of the Walter transactional data store. In: Proceedings of WRLA 2018. LNCS.
Springer (2018, to appear). https://sites.google.com/site/siliunobi/walter

12. Liu, S., Ganhotra, J., Rahman, M., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. Leibniz Trans. Embed.
Syst. 4(1), 03:1–03:26 (2017)

https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-37635-1_9
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-68690-5_18
https://sites.google.com/site/siliunobi/walter

ROLA: A New Distributed Transaction Protocol and Its Formal Analysis 93

13. Liu, S., Ölveczky, P.C., Rahman, M.R., Ganhotra, J., Gupta, I., Meseguer, J.:
Formal modeling and analysis of RAMP transaction systems. In: SAC 2016. ACM
(2016)

14. Liu, S., Ölveczky, P.C., Santhanam, K., Wang, Q., Gupta, I., Meseguer, J.: ROLA:
a new distributed transaction protocol and its formal analysis (2017). https://sites.
google.com/site/fase18submission/tech-report

15. Liu, S., Rahman, M.R., Skeirik, S., Gupta, I., Meseguer, J.: Formal modeling and
analysis of Cassandra in Maude. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 332–347. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11737-9 22

16. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96(1), 73–155 (1992)

17. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

18. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic
systems. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp.
266–280. Springer, Heidelberg (2005). https://doi.org/10.1007/11513988 26

19. Sen, K., Viswanathan, M., Agha, G.A.: VESTA: a statistical model-checker and
analyzer for probabilistic systems. In: QEST 2005. IEEE Computer Society (2005)

20. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: SOSP 2011. ACM (2011)

21. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a
focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

22. Zhang, I., Sharma, N.K., Szekeres, A., Krishnamurthy, A., Ports, D.R.K.: Building
consistent transactions with inconsistent replication. In: Proceedings of Symposium
on Operating Systems Principles, SOSP 2015. ACM (2015)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://sites.google.com/site/fase18submission/tech-report
https://sites.google.com/site/fase18submission/tech-report
https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/978-3-319-11737-9_22
https://doi.org/10.1007/11513988_26
http://creativecommons.org/licenses/by/4.0/

A Process Network Model for Reactive
Streaming Software with Deterministic

Task Parallelism

Fotios Gioulekas1 , Peter Poplavko2 , Panagiotis Katsaros1,5(B) ,
Saddek Bensalem3 , and Pedro Palomo4

1 Aristotle University of Thessaloniki, Thessaloniki, Greece
{gioulekas,katsaros}@csd.auth.gr

2 MentorR©, A Siemens Business, Montbonnot, France
petro.poplavko@siemens.com

3 Université Grenoble Alpes (UGA), VERIMAG, Grenoble, France
Saddek.Bensalem@univ-grenoble-alpes.fr

4 Deimos SpaceR©, Madrid, Spain
pedro.palomo@deimos-space.com

5 Information Technology Institute, Centre of Research and Technology,
Thessaloniki, Greece

Abstract. A formal semantics is introduced for a Process Network
model, which combines streaming and reactive control processing with
task parallelism properties suitable to exploit multi-cores. Applications
that react to environment stimuli are implemented by communicating
sporadic and periodic tasks, programmed independently from an exe-
cution platform. Two functionally equivalent semantics are defined, one
for sequential execution and one real-time. The former ensures functional
determinism by implying precedence constraints between jobs (task exe-
cutions), hence, the program outputs are independent from the task
scheduling. The latter specifies concurrent execution on a real-time plat-
form, guaranteeing all model’s constraints; it has been implemented in
an executable formal specification language. The model’s implementation
runs on multi-core embedded systems, and supports integration of run-
time managers for shared HW/SW resources (e.g. for controlling QoS,
resource interference or power consumption). Finally, a model transfor-
mation approach has been developed, which allowed to port and stat-
ically schedule a real spacecraft on-board application on an industrial
multi-core platform.

Keywords: Process network · Stream processing · Reactive control
Real-time

The research leading to these results has received funding from the European Space
Agency project MoSaTT-CMP, Contract No. 4000111814/14/NL/MH.

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 94–110, 2018.
https://doi.org/10.1007/978-3-319-89363-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_6&domain=pdf
http://orcid.org/0000-0003-0929-4677
http://orcid.org/0000-0002-8363-2008
http://orcid.org/0000-0002-4309-5295
http://orcid.org/0000-0002-5753-2126
http://orcid.org/0000-0001-5393-1667

A PN Model for Reactive Streaming Software 95

1 Introduction

The proliferation of multi-cores in timing-critical embedded systems requires a
programming paradigm that addresses the challenge of ensuring predictable tim-
ing. Two prominent paradigms and a variety of associated languages are widely
used today. For streaming signal processing, synchronous dataflow languages [18]
allow writing programs in the form of directed graphs with nodes for their func-
tions and arcs for the data flows between functions. Such programs can exploit
concurrency when they are deployed to multi-cores [15], while their functions
can be statically scheduled [17] to ensure a predictable timing behavior.

On the other hand, the reactive-control synchronous languages [12] are used
for reactive systems (e.g., flight control systems) expected to react to stimuli
from the environment within strict time bounds. The synchronicity abstraction
eliminates the non-determinism from the interleaving of concurrent behaviors.

The synchronous languages lack appropriate concepts for task parallelism
and timing-predictable scheduling on multiprocessors, whereas the streaming
models do not support reactive behavior. The Fixed Priority Process Network
(FPPN) model of computation has been proposed as a trade-off between stream-
ing and reactive control processing, for task parallel programs. In FPPNs, task
invocations depend on a combination of periodic data availability (similar to
streaming models) and sporadic control events. Static scheduling methods for
FPPNs [20] have demonstrated a predictable timing on multi-cores. A first imple-
mentation of the model [22] in an executable formal specification language called
BIP (Behavior, Interaction, Priority) exists, more specifically in its real-time
dialect [3] extended to tasks [10]. In [21], the FPPN scheduling was studied by
taking into account resource interference; an approach for incrementally plug-
ging online schedulers for HW/SW resource sharing (e.g., for QoS management)
was proposed.

This article presents the first comprehensive FPPN semantics definition, at
two levels: semantics for sequential execution, which ensures functional deter-
minism, and a real-time semantics for concurrent task execution while adhering
to the constraints of the former semantics. Our definition is related to a new
model transformation framework, which enables programming at a high level by
embedding FPPNs into the architecture description, and allows an incremental
refinement in terms of task interactions and scheduling1. Our approach is demon-
strated with a real spacecraft on-board application ported onto the European
Space Agency’s quad-core Next Generation Microprocessor (NGMP).

2 Related Work

Design frameworks for embedded applications, like Ptolemy II [6] and
PeaCE [11], allow designing systems through refining high-level models. They
are based on various models of computation (MoC), but we focus mainly on
those that support task scheduling with timing constraints. Dataflow MoCs that
1 The framework is online at [2].

96 F. Gioulekas et al.

stem from the Kahn Process Networks [16] have been adapted for the timing
constraints of signal processing applications and design frameworks like Comp-
SoC [13] have been introduced; these MoCs do not support reactive behavior and
sporadic tasks as in the FPPN MoC that can be seen as an extension in that
direction. DOL Critical [10] ensures predictable timing, but its functional behav-
ior depends on scheduling. Another timing-aware reactive MoC that does not
guarantee functional determinism is the DPML [4]. The Prelude design frame-
work [5] specifies applications in a synchronous reactive MoC, but due to its
expressive power it is hard to derive scheduling analyses, unless restricting its
semantics. Last but not the least, though the reactive process networks (RPN) [8]
do not support scheduling with timing constraints, they lay an important foun-
dation for combining the streaming and reactive control behaviors. In the FPPN
semantics we reuse an important principle of RPN semantics, namely, perform-
ing the maximal execution run of a dataflow network in response to a control
event.

3 A PN Model for Streaming and Reactive Control

An FPPN model is composed of Processes, Data Channels and Event Generators.

struct SQ_Inititialize
SQ_index = 0;
SQ_length = 200

}

void SQ_PeriodicJob
float x, y; float x, y;
bool x_valid;
if (SQ_index <

XIF_Read
if(x_valid

y = x * x;
y_valid
YIF_Write

}
}

SQ_index++;
}

SQ_Inititialize(){

200;

SQ_PeriodicJob() {

< SQ_length) {
XIF_Read(&x, &x_valid);

x_valid == true) {
y = x * x;
y_valid = true;
YIF_Write(&y);

Fig. 1. Example code for “Square”
process

A Process represents a software subrou-
tine that operates with internal variables
and input/output channels connected to it
through ports. The functional code of the
application is defined in processes, whereas
the necessary middleware elements of the
FPPN are channels, event generators, and
functional priorities, which define a relation
between the processes to ensure deterministic
execution.

An example process is shown in Fig. 1.
This process performs a check on the internal
variables, if the check succeeds then it reads
from the input channel, and, if the value read
is valid (refer to the channel definition below)
its square is computed. The write operation
on an output channel is then performed. A
call to the process subroutine is referred to as
a job. Like the real-time jobs, the subroutine
should have a bounded execution time sub-
ject to WCET (worst-case execution time)
analysis.

An FPPN is defined by two directed graphs. The first is a (possibly cyclic)
graph (P,C), whose nodes P are processes and edges C are channels for pairs
of communicating processes with a dataflow direction, i.e., from the writer to
the reader (there are also external channels interacting with the environment).

A PN Model for Reactive Streaming Software 97

Fig. 2. Example Fixed Priority Process Network

A channel is denoted by a c ∈ C or a pair (p1, p2) of writer and reader. For p1 the
channel is said to be an output and for p2 an input. The second graph (P,FP)
is the functional priority directed acyclic graph (DAG) defining a functional
priority relation between processes. For any two communicating processes we
require,

(p1, p2) ∈ C =⇒ (p1, p2) ∈ FP ∨ (p2, p1) ∈ FP

i.e., a functional priority either follows the direction of dataflow or the opposite.
Given a (p1, p2) ∈ FP, p1 is said to have a higher priority than p2.

The FPPN in Fig. 2, represents an imaginary data processing application,
where the “X” sporadic process generates values, “Square” calculates the square
of the received value and the “Y” periodic process serves as sink for the squared
value. A sporadic event (command from the environment) invokes “X”, which is
annotated by its minimal inter-arrival time. The periodic processes are annotated
by their periods. The two types of non-blocking channels are also illustrated. The
FIFO (or mailbox) has a semantics of a queue. The blackboard remembers the
last written value that can be read multiple times. The arc depicted above the
channels indicates the functional priority relation FP. Additionally, the external
input/output channels are shown. In this example, the dataflow in the channels
go in the opposite direction of the functional priority order. Note that, by analogy
to the scheduling priorities, a convenient method to define priority is to assign
a unique priority index to every process, the smaller the index the higher the
priority. This method is demonstrated in Fig. 2. In this case the minimal required
FP relation would be defined by joining each pair of communicating processes
by an arc going from the higher-priority process to the lower-priority one.

Let us denote by Var the set of all variables. For a variable x or an ordered
set (vector) X of variables we denote by D(x) (resp. D(X)) its domain (or vector
of domains), i.e., the set(s) of values that the variable(s) may take. Valuations of
variables X are shown as X0,X1 . . ., or simply as X, dropping the superscript.
Each variable is assumed to have a unique initial valuation. From the software
point of view, this means that all variables are initialized by a default value.

Var includes all process state variables Xp and the channel state variables
γc. The current valuation of a state variable is often referred to simply as state.

98 F. Gioulekas et al.

For a variable of channel c, an alphabet Σc and a type CT c are defined; a channel
type consists of write ‘operations’ (Wc) and read ‘operations’ (Rc) defined as
functions specifying the variable evolution. Function Wc : D(c) × Σc → D(c)
defines the update after writing a symbol s ∈ Σc to the channel, whereas Rc :
D(c) → D(c)×Σc maps the channel state to a pair (Rc1, Rc2), where Rc1 is the
new channel state and Rc2 is the symbol that is read from the channel. For a
FIFO channel, its state γc is a (initially empty) string and the write operation
left-concatenates symbol s to the string: Wc(γc, s) = s◦γc. For the same channel,
Rc(γc ◦ s) = (γc, s), i.e., we read and remove the last symbol from the string.
The write and read functions are defined for each possible channel state, thus
rendering the channels non-blocking. This is implemented by including ⊥ in
the alphabet, in order to define the read operation when the channel does not
contain any ‘meaningful’ data. Thus, reading from an empty FIFO is defined
by: Rc(ε) = (ε,⊥), where ε denotes an empty string. For blackboard channel, its
state is a (initially empty) string that contains at most one symbol – the last
symbol written to the channel: Wc(γc, s) = s, Rc(γc) = (γc, γc), Rc(ε) = (ε,⊥).

An external channel ’s state is an infinite sequence of samples, i.e., variables
c[1], c[2], c[3], . . . with the same domain. For a sample c[k], k is the sample index.
Though the sequence is infinite, no infinite memory is required, because each
sample can be accessed (as will be shown) within a limited time interval. If c is an
external output, the channel type defines the sample write operation in the form
W ′

c : D′(c) × N+ × Σc → D′(c), where D′(c) is the sample domain, the second
argument is the sample index and the result is the new sample value. For an
external input, we have the sample read operation Rc : D′(c)×N+ → D′(c)×Σc.
The set of outputs is denoted by O and the set of inputs by I.

The program expressions involve variables. Let us call Act the set of all
possible actions that represent operations on variables. An assignment is an
action written as Y := f(X). For the channels, two types of actions are defined,
x!c for writing a variable x, and x?c for reading from the channel, where D(x) =
Σc. For external channels, we have x![k]c, c ∈ O and y?[k]c, c ∈ I, where [k] is
the sample index. Actions are defined by a function Effect : Act × D(Var) →
D(Var), which for every action a states how the new values of all variables
are calculated from their previous values. The actions are assumed to have zero
delay. The physical time is modeled by a special action for waiting until time
stamp τ , w(τ).

An execution trace α ∈ Act∗ is a sequence of actions, e.g.,

α = w(0), x?[1]I1, x := x2, x!c1,w(100), y?c1, O1![2]y

The time stamps in the execution are non-decreasing, and denote the time
until the next time stamp, at which the following actions occur. In the example,
at time 0 we read sample [1] from I1 and we compute its square. Then we write
to channel c1. At time 100, we read from c1 and write the sample [2] to O1.

A process models a subroutine with a set of locations (code line numbers),
variables (data) and operators that define a guard on variables (‘if’ condition),
the action (operator body) and the transfer of control to the next location.

A PN Model for Reactive Streaming Software 99

Definition 1 (Process). Each process p is associated with a deterministic
transition system (�p

0, Lp, Xp, Xp
0, Ip, Op, Ap, Tp), with Lp a set of locations,

�p
0 ∈ Lp an initial location, and Xp the set of state variables with initial val-

ues Xp
0. Ip,Op are (internal and external) input/output channels. Ap is a set

actions with variable assignments for Xp, reads from Ip, and writes to Op. Tp

is transition relation Tp : Lp × Gp × Ap × Lp, where Gp is the set of predicates
(guarding conditions) defined on the variables from Xp.

One execution step (�1,X1, γ1)
g:a→ (�2,X2, γ2) for the valuations X1,X2 of

variables in Xp and the valuations γ1, γ2 of channels in Ip ∪ Op, implies that
there is transition (�1, g, a, �2) ∈ Tp, such that X1 satisfies guarding condition g
(i.e., g(X1) = True) and (X2, γ2) = Effect(a, (X1, γ1)).

Definition 1 prescribes a deterministic transition system: for each location �1
the guarding conditions enable for each possible valuation Xi a single execution
step.

Definition 2 (Process job execution). A job execution (X1, γ1) α−→p

(X2, γ2) is a non-empty sequence of process p execution steps starting and ending
in p’s initial location �0, without intermediate occurrences of �0:

(�0,X1, γ1)
g1:α1→ (�1,X1, γ1) . . .

gn:αn→ (�0,X2, γ2), for n ≥ 1, �i
= �0

From a software point of view, a job execution is seen as a subroutine run
from a caller location that returns control back to the caller. We assume that at
k-th job execution, external channels Ip, Op are read/written at sample index [k].

In an FPPN, there is a one-to-one mapping between every process p and
the respective event generator e that defines the constraints of interaction with
the environment. Every e is associated with (possibly empty) subsets Ie, Oe of
the external input/output (I/O) channels. Those are the external channels that
the process p can access: Ie ⊆ Ip, Oe ⊆ Op. The I/O sets of different event
generators are disjoint, so different processes cannot share external channels.

Every e defines the set of possible sequences of time stamps τk for the ‘event’
of k-th invocation of process p and a relative deadline de ∈ Q+. The intervals
[τk, τk + de] determine when the k-th job execution can occur. This timing con-
straint has two important reasons. First, if the subsets Ie or Oe are not empty
then these intervals should indicate the timing windows when the environment
opens the k-th sample in the external I/O channels for read or write access at the
k-th job execution. Secondly, τk defines the order in which the k-th job should
execute, the earlier it is invoked the earlier it should execute. Concerning the τk

sequences, two event generator types are considered, namely multi-periodic and
sporadic. Both are parameterized by a burst size me and a period Te. Bursts
of me periodic events occur at 0, Te, 2Te, etc. For sporadic events, at most
me events can occur in any half-closed interval of length Te. In the sequel we
associate the attributes of an event generator with the corresponding process,
e.g., Tp and dp.

100 F. Gioulekas et al.

Definition 3 (FPPN). An FPPN is a tuple PN = (P,C,FP, ep, Ie, Oe,
de, Σc,CT c), where P is a set of processes and C ⊆ P × P is a set of inter-
nal channels, with (P,C) defining a (possibly cyclic) directed graph. An acyclic
directed graph (P,FP) is also defined, with FP ⊂ P × P a functional prior-
ity relation (if (p1, p2) ∈ FP, we also write p1 → p2). This relation should be
defined at least for processes accessing the same channel, i.e., (p1, p2) ∈ C⇒p1 →
p2∨p2 → p1. ep maps every process p to a unique event generator, whereas Ie

and Oe map each event generator to (possibly empty) partitions of the global set
of external input channels I and output channels O, resp. de defines the relative
deadline for accessing the I/O channels of generator e, Σc defines alphabets for
internal and external I/O channels and CT c specifies the channel types.

The priority FP defines the order in which two processes are executed when
invoked at the same time. It is not necessarily a transitive relation. For example,
if (p1, p2) ∈ FP, (p2, p3) ∈ FP, and both p1 and p3 get invoked simultaneously
then FP does not imply any execution-order constraint between them unless
p2 is also invoked at the same time. The functional priorities differ from the
scheduling priorities. The former disambiguate the order of read/write accesses
to internal channels, whereas the latter ensure satisfaction of timing constraints.

4 Zero-Delay Semantics for the FPPN Model

The functional determinism requirement prescribes that the data sequences and
time stamps at the outputs are a well-defined function of the data sequences and
time stamps at the inputs. This is ensured by the so-called functional priorities.
In essence, functional priorities control the process job execution order, which
is equivalent to the effect of fixed priorities on a set of tasks under uniprocessor
fixed-priority scheduling with zero task execution times. A distinct feature of the
FPPN model is that priorities are not used directly in scheduling, but rather in
the definition of model’s semantics. From now on, the term ‘task’ will refer to
an FPPN process. Following the usual real-time systems terminology, invoking
a task implies generation of a job which has to be executed before the task’s
deadline. The so-called precedence constraints, i.e., the semantical restrictions
of FPPN job execution order are implied firstly from the time stamps when the
tasks are invoked and secondly from the functional priorities. In this section, we
define these constraints in terms of a sequential order (an execution trace).

The FPPN model requires that all simultaneous process invocations should
be signaled synchronously. This can be realized by introducing a periodic clock
with sufficiently small period (the gcd of all Tp), such that invocations events
can only occur at clock ticks, synchronously. Two variant semantics are then
defined, namely the zero-delay and the real-time semantics.

The zero-delay semantics imposes an ordering of the job executions assuming
that they have zero delay and that they are never postponed to the future. Since
in this case the deadlines are always met even without exploiting parallelism, a
sequential execution of processes is considered for simplicity. The semantics is
defined in terms of the rules for constructing the execution trace of the FPPN for

A PN Model for Reactive Streaming Software 101

a given sequence (t1,P1), (t2,P2) . . . , where t1 < t2 < . . . are time stamps and
Pi is the multiset of processes invoked at time ti. For convenience, we associate
each ‘invoked process’ p in Pi with respective invocation event, ep. The execution
trace has the form:

Trace(PN) = w(t1) ◦ α1 ◦ w(t2) ◦ α2 . . .

where αi is a concatenation of job executions of processes in Pi included in an
order, such that if p1 → p2 then the job(s) of p1 execute earlier than those of p2.

Definition 4 (Configuration). An FPPN configuration (π, γ,P) consists of:

– a process configuration π, a function that assigns to every process a state
π(p) ∈ D(Xp)

– a channel configuration γ, i.e., the states of internal and external channels
– a set of pending events P

Executing one job in a process network:

(π(p), γ) α−→p (X ′, γ′) ∧ ep ∈ P
∧

�p′ : ep′ ∈ P ∧ (p′, p) ∈ FP
(π, γ,P) α−→PN (π{X ′/p}, γ′,P \ {ep})

where π{X ′/p} is obtained from π by replacing the state of p by X ′.
Given a non-empty set of events P invoked at time t, a maximal execution

run of a process network is defined by a sequence of job executions that continues
until the set of pending events is empty.

(π0, γ0,P) α1−→PN (π1, γ1,P \ {ep1}) α2−→PN . . . (π1, γ1, ∅)

(π0, γ0)
w(t)◦α1◦α2◦...�−→ PN (P) (π1, γ1)

Given an initial configuration (π0, γ0) and a sequence (t1,P1), (t2,P2) . . . of
events invoked at times t1 < t2 < . . ., the run of process network is defined by a
sequence of maximal runs that occur at the specified time stamps.

Run(PN) = (π0, γ0) α1

�−→PN (P1) (π1, γ1) α2

�−→PN (P2) . . .

The execution trace of a process network is a projection of the process network
run to actions:

Trace(PN) = α1 ◦ α2 . . .

This trace represents the time stamps (w(t1),w(t2) . . .) and the data process-
ing actions executed at every time stamp. From the effect of these actions it is
possible to determine the sequence of values written to the internal and exter-
nal channels. These values depend on the states of the processes and internal
channels. The concurrent activities – the job executions – that modify each pro-
cess/channel states are deterministic themselves and are ordered relatively to
each other in a way which is completely determined by the time stamps and the
FP relation. Therefore we can make the following claim.

102 F. Gioulekas et al.

Proposition 1 (Functional determinism). The sequences of values written
at all external and internal channels are functionally dependent on the time
stamps of the event generators and on the data samples at the external inputs.

Basically, this property means that the outputs calculated by FPPN depend
only on the event invocation times and the input data sequences, but not on the
scheduling. To exploit task parallelism, in the real-time semantics of Sect. 5 the
sequential order of execution and the zero-delay assumption are relaxed.

5 Real-Time Semantics for the FPPN Model

In the real-time semantics, job executions last for some physical time and can
start concurrently with each other at any time after their invocation. Certain
precedence constraints are respected which for certain jobs impose the same rel-
ative order of execution as in the zero-delay semantics, so that non-deterministic
updates of the states of processes and channels are excluded. To ensure time-
liness, the jobs should complete their execution within the deadline after their
invocation. The semantics specifies the entities for communication, synchroniza-
tion, scheduling and is defined by compilation to an executable formal specifica-
tion language.

Our approach is based on (real-time) ‘BIP’ [3] for modeling networks of
connected timed automata components [24]. We adopt the extension in [10],
which introduces the concept of continuous (asynchronous) automata transi-
tions, which, unlike the default (discrete) transitions take a certain physical
time. Next to support of tasks (via continuous transitions), BIP supports the
urgency in timing constraints, and those are timed-automata features required
for adequate modeling and timing verification of dataflow languages [9]. An
important BIP language feature for implementing the functional code of tasks
is the possibility to specify data actions in imperative programming language
(C/C++).

Figure 3 illustrates how an FPPN process is compiled to a BIP component.
The source code is parsed, searching for primitives that are relevant for the inter-
actions of the process with other components. The relevant primitives are the
reads and writes from/to the data channels. For those primitives the generated
BIP component gets ports, e.g., ‘XIF Read(IN x,IN valid)’, through which the
respective transitions inside the component synchronize and exchange data with
other components. In line with Definition 1, every job execution corresponds
to a sequence of transitions that starts and ends in an initial location. The first
transition in this sequence, ‘Start’, is synchronized with the event generator com-
ponent, which enables this transition only after the process has been invoked.
The event generator shown in Fig. 3 is a simplified variant for periodic tasks
whose deadline is equal to the period. In [22] it is also described how we model
internal channels and give more details on event generator modelling.

To ensure a functional behavior equivalent to zero-delay semantics, the job
executions have to satisfy precedence constraints between subsequent jobs of
the same process, and the jobs of process pairs connected by a channel. In both

A PN Model for Reactive Streaming Software 103

Fig. 3. Compilation of functional code to BIP

cases, the relative execution order of these subsets of jobs is dictated by zero-
delay semantics, whereby the jobs are executed in the invocation order and the
simultaneously invoked jobs follow the functional priority order. In this way, we
ensure deterministic updates in both cases: (i) for the states of processes by
excluding auto-concurrency, and (ii) for the data shared between the processes
by excluding data races on the channels. The precedence constraints for (i) are
satisfied by construction, because BIP components for processes never start a
new job execution until the previous job of the same process has finished. For the
precedence constraints in (ii), an appropriate component is generated for each
pair of communicating processes and plugged incrementally into the network of
BIP components.

Figure 4 shows such a component generated a given pair of processes “A”
and “B”, assuming (A, B) ∈ FP. We saw in Fig. 3 that the evolution of a job
execution goes through three steps: ‘invoke’, ‘start’ and ‘finish’. The component
handles the three steps of both processes in almost symmetrical way, except in
the method that determines whether the job is ready to start: if two jobs are
simultaneously invoked, then first the job of process “A” gets ready and then,
after it has executed, the job of “B” becomes ready. The “Functional Priority”

104 F. Gioulekas et al.

Fig. 4. Imposing precedence order between “A”, “B” (“A”has higher functional priority)

component maintains two job queues2 denoted Qα where α ∈ {A,B} indicates
a process selection. In our notation, α means ‘other than α’, i.e., if α = A then
α = B and if α = B then α = A.

The component receives from the event generator of process ‘α’ at regular
intervals with period δα either ‘Invoke α’ or ‘FalseInvoke α’. In the latter case
(i.e., no invocation), the job in the tail of the queue is ‘pulled’ away3.

2 Queues are implemented by a circular buffer with the following operations:

– Allocate() picks an available (statically allocated) cell and gives reference to it
– Push() push the last allocated cell into the tail
– Pull() undo the push
– Pop() retrieve the data from the head of the queue.

3 Thanks to ‘init α’ and ‘advance α’, the queue tail always contains the next antici-
pated job, which is conservatively marked as non-active until ‘Invoke α’ transition.

A PN Model for Reactive Streaming Software 105

6 Model Transformation Framework

The model-based design philosophy for embedded systems which we follow [14]
is grounded on the evolutionary design using models, which support the gradual
refinement (refined models are more accurate than those refined) and the setting
of real-time attributes that ensure predictable timing. Such a process allows
considering various design scenarios and promotes the late binding to design
decisions. Our approach to refinement is based on incremental component-based
models, where the system is evolved by incrementally plugging new components
and transforming existing ones.

Fig. 5. Evolutionary design of time-critical systems using FPPNs

We propose such a design approach (Fig. 5), in which we take as a starting
point a set of tasks defined by their functional code and real-time attributes
(e.g., periods, deadlines, WCET, job queue capacity). We assume that these
tasks are encapsulated into software-architecture functional blocks, correspond-
ing to FPPN processes. Before being integrated into a single architectural model
they can be compiled and tested separately by functional simulation or by run-
ning on embedded platform.

The high-level architecture description framework of our choice is the TASTE
toolset [14,19], whose front-end tools are based on the AADL (Architecture Anal-
ysis & Design Language) syntax [7]. An architecture model in TASTE consists of
functional blocks – so-called ‘functions’ – which interact with each other via pairs
of interfaces (IF) ‘required IF’/‘provided IF’, where the first performs a proce-
dure call in the second one. In TASTE, the provided interfaces can be explicitly
used for task invocations, i.e., they may get attributes like ‘periodic’/‘sporadic’,
‘deadline’ and ‘period’. The FPPN processes are represented by TASTE ‘func-
tions’ that ‘provide’ such interfaces, implementing job execution of the respective
task in C/C++. Our TASTE-to-BIP framework is available for download at [2].

The first refinement step is plugging the data channels for explicit commu-
nication between the processes. The data channels are also modeled as TASTE
functions, whereas reads and writes are implemented via interfaces. We have

106 F. Gioulekas et al.

Fig. 6. Model and graph transformations for the FPPN semantics

amended the attributes of TASTE functions to reflect the priority index of pro-
cesses and the parameters of FPPN channels, such as capacity of FIFO channels.
The resulting model can be compiled and simulated in TASTE.

The second and final refinement step is scheduling. To schedule on multi-
cores while respecting the real-time semantics of FPPN this step is preceded by
transformation from TASTE architectural model into BIP FPPN model. The
transformation process implements the FPPN-to-BIP ‘compilation’ sketched in
the previous section, and we believe it could be formalized by a set of trans-
formation rules. For example, as illustrated in Fig. 6, one of the rules could say
that if there are two tasks τ1 and τ2 related by FP relation then their respective
BIP components B1 and B2 are connected (via ‘Start’ and ‘Finish’ ports) to a
functional priority component.

The scheduling is done offline, by first deriving a task graph from the archi-
tectural model, taking into account the periods, functional priorities and WCET
of processes. The task graph represents a maximal set of jobs invoked in a hyper-
period and their precedence constraints; it defines the invocation and the dead-
line of jobs relatively to the hyperperiod start time. The task graph derivation
algorithm is detailed in [20].

Definition 5 (Task Graph). A directed acyclic graph T G(J , E) whose nodes
J = {Ji} are jobs defined by tuples Ji = (pi, ki, Ai,Di,Wi), where pi is the
job’s process, ki is the job’s invocation count, Ai ∈ Q≥0 is the invocation time,
Di ∈ Q+ is the absolute deadline and Wi ∈ Q+ is the WCET. The k-th job of
process p is denoted by p[k]. The edges E represent the precedence constraints.

A PN Model for Reactive Streaming Software 107

The task graph is given as input to a static scheduler. The schedule obtained
from the static scheduler is translated into parameters for the online-scheduler
(cf. Fig. 6), which, on top of the functional priority components, further con-
straints the job execution order and timing, with the purpose of ensuring dead-
line satisfaction. The joint application/scheduler BIP model is called System
Model. This model is eventually compiled and linked with the BIP-RTE, which
ensures correct BIP semantics of all components online [23].

7 Case Study: Guidance, Navigation and Control
Application

Our design flow was applied to a Guidance Navigation & Control (GNC) on-
board spacecraft application that was ported onto ESA’s NGMP, more specifi-
cally the quad-core LEON4FT processor [1]. In the space industry, multi-cores
provide a means for integrating more software functions onto a single platform,
which contributes to reducing size, weight, cost, and power consumption. On-
board software has to efficiently utilize the processor resources, while retaining
predictability.

A GNC application affects the movement of the vehicle by reading the
sensors and controlling the actuators. We estimated the WCETs of all tasks,
Wp, by measurements. There are four tasks: the Guidance Navigation Task
(Tp = 500 ms, dp = 500 ms, Wp = 22 ms), the Control Output Task (Tp = 50 ms,
dp = 50 ms, Wp = 3ms) that sends the outputs to the appropriate spacecraft unit,
the Control FM Task (Tp = 50 ms, dp = 50 ms, Wp = 8 ms) which runs the con-
trol and flight management algorithms, and the Data Input Dispatcher Task
(Tp = 50 ms, dp = 50 ms, Wp = 6 ms), which reads, decodes and dispatches data
to the right destination whenever new data from the spacecraft’s sensors are
available. The hyperperiod of the system was therefore 500 ms, and it includes
one execution of the Guidance Navigation Task and ten executions of each other
task, which results in 31 jobs. The Guidance Navigation and Control Output
tasks were invoked with relative time offsets 450 ms and 30 ms, respectively.
Fig. 7 shows the GNC FPPN, where the functional priorities impose precedence
from the numerically smaller FP index (i.e., higher-priority) to the numerically
larger ones, we defined them based on analysis of the specification documents
and the original implementation of task interactions by inter-thread signalling.

The architectural model in TASTE format was automatically transformed
into a BIP model and the task-graph model of the hyperperiod was derived. The
task graph was passed to the static scheduler, which calculated the system load
to be 112% (i.e., at least two cores required, taking into account precedences [20]
and interference [21]) and generated the static schedule.

The BIP model was compiled and linked with the BIP RTE and the executa-
bles were loaded and ran on the LEON4FT board. Figure 8 shows the measured
Gantt chart of a hyper-period (500 ms) plus 100 ms. We label the process execu-
tions as ‘P<id>’, where ‘<id>’ is a numeric process identifier. Label ‘P20’ is an
exception, it indicates the execution of the BIP RTE engine and all discrete-event
controllers – event generators, functional priority controllers, and the online

108 F. Gioulekas et al.

Fig. 7. The GNC FPPN model

Fig. 8. Execution of the GNC application on LEON4FT (in microseconds).

scheduler. Since there are four discrete transitions per one job execution and
31 jobs per hyperperiod, 31 × 4 = 124 discrete transitions are executed by BIP
RTE per hyperperiod. The P20 activities were mapped to Core 0, whereas the
jobs of tasks (P1, P2, P3, P4) were mapped to Core 1 and Core 2. P1 stands
for the Data Input Dispatcher, P2 for the Control FM, P3 for the Control Out-
put and P4 for the Guidance Navigation task. Right after 10 consecutive jobs
of P1, P2, P3 the job on P4 is executed. The job of P4 is delayed due to the
450 ms invocation offset and the least functional priority. Since P3 and P4 do
not communicate via the channels, in our framework (P3, P4) /∈ FP and they
can execute in parallel, which was actually programmed in our static schedule.
Due to more than 100% system load this was necessary for deadline satisfaction.

A PN Model for Reactive Streaming Software 109

8 Conclusion

We presented the formal semantics of the FPPN model, at two levels: zero-delay
semantics with precedence constraints on the job execution order to ensure func-
tional determinism, and real-time semantics for scheduling. The semantics was
implemented by a model transformational framework. Our approach was val-
idated through a spacecraft on-board application running on a multi-core. In
future work we consider it important to improve the efficiency of code gener-
ation, formal proofs of equivalence of the scheduling constraints (like the task
graph) and the generated BIP model. The offline and online schedulers need to
be enhanced to a wider spectrum of online policies and a better awareness of
resource interference.

References

1. GR-CPCI-LEON4-N2X: Quad-core LEON4 next generation microprocessor eval-
uation board. http://www.gaisler.com/index.php/products/boards/gr-cpci-leon4-
n2x

2. Multicore code generation for time-critical applications. http://www-verimag.
imag.fr/Multicore-Time-Critical-Code,470.html

3. Abdellatif, T., Combaz, J., Sifakis, J.: Model-based implementation of real-time
applications. In: EMSOFT 2010 (2010)

4. Chaki, S.,Kyle,D.:DMPL: programming and verifying distributedmixed-synchrony
and mixed-critical software. Technical report, Carnegie Mellon University (2016).
http://www.andrew.cmu.edu/user/schaki/misc/dmpl-extended.pdf

5. Cordovilla, M., Boniol, F., Forget, J., Noulard, E., Pagetti, C.: Developing critical
embedded systems on multicore architectures: the Prelude-SchedMCore toolset.
In: RTNS (2011)

6. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., Xiong, Y.: Taming heterogeneity - the Ptolemy approach. Proc. IEEE
91(1), 127–144 (2003)

7. Feiler, P., Gluch, D., Hudak, J.: The architecture analysis & design language
(AADL): an introduction. Technical report CMU/SEI-2006-TN-011, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2006). http://
resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879

8. Geilen, M., Basten, T.: Reactive process networks. In: EMSOFT 2004, pp. 137–146.
ACM (2004)

9. Ghamarian, A.H.: Timing analysis of synchronous dataflow graphs. Ph.D. thesis,
Eindhoven University of Technology (2008)

10. Giannopoulou, G., Poplavko, P., Socci, D., Huang, P., Stoimenov, N., Bourgos, P.,
Thiele, L., Bozga, M., Bensalem, S., Girbal, S., Faugere, M., Soulat, R., Dinechin,
B.D.d.: DOL-BIP-Critical: a tool chain for rigorous design and implementation of
mixed-criticality multi-core systems. Technical report (2016)

11. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.P.: PeaCE: a hardware-software
codesign environment for multimedia embedded systems. ACM Trans. Des. Autom.
Electron. Syst. 12(3), 24:1–24:25 (2008)

12. Halbwachs, N.: Synchronous Programming of Reactive Systems. Springer, Berlin
(2010). https://doi.org/10.1007/978-1-4757-2231-4

http://www.gaisler.com/index.php/products/boards/gr-cpci-leon4-n2x
http://www.gaisler.com/index.php/products/boards/gr-cpci-leon4-n2x
http://www-verimag.imag.fr/Multicore-Time-Critical-Code,470.html
http://www-verimag.imag.fr/Multicore-Time-Critical-Code,470.html
http://www.andrew.cmu.edu/user/schaki/misc/dmpl-extended.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7879
https://doi.org/10.1007/978-1-4757-2231-4

110 F. Gioulekas et al.

13. Hansson, A., Goossens, K., Bekooij, M., Huisken, J.: CoMPSoC: a template for
composable and predictable multi-processor system on chips. ACM Trans. Des.
Autom. Electron. Syst. (TODAES) 14(1), 2 (2009)

14. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: From the prototype to the final
embedded system using the Ocarina AADL tool suite. ACM Trans. Embed. Com-
put. Syst. 7(4), 42:1–42:25 (2008)

15. Johnston, W.M., Hanna, J.R.P., Millar, R.J.: Advances in dataflow programming
languages. ACM Comput. Surv. 36(1), 1–34 (2004)

16. Kahn, G.: The semantics of a simple language for parallel programming. In:
Rosenfeld, J.L. (ed.) Information Processing 1974: Proceedings of the IFIP
Congress, pp. 471–475. North-Holland, New York (1974)

17. Lee, E.A., Messerschmitt, D.G.: Static scheduling of synchronous data flow pro-
grams for digital signal processing. IEEE Trans. Comput. C–36(1), 24–35 (1987)

18. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

19. Perrotin, M., Conquet, E., Delange, J., Schiele, A., Tsiodras, T.: TASTE: a real-
time software engineering tool-chain overview, status, and future. In: Ober, I.,
Ober, I. (eds.) SDL 2011. LNCS, vol. 7083, pp. 26–37. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25264-8 4

20. Poplavko, P., Socci, D., Bourgos, P., Bensalem, S., Bozga, M.: Models for deter-
ministic execution of real-time multiprocessor applications. In: DATE 2015, pp.
1665–1670. IEEE, March 2015

21. Poplavko, P., Kahil, R., Socci, D., Bensalem, S., Bozga, M.: Mixed-critical systems
design with coarse-grained multi-core interference. In: Margaria, T., Steffen, B.
(eds.) ISoLA 2016. LNCS, vol. 9952, pp. 605–621. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47166-2 42

22. Socci, D., Poplavko, P., Bensalem, S., Bozga, M.: A timed-automata based mid-
dleware for time-critical multicore applications. In: SEUS 2015, pp. 1–8. IEEE
(2015)

23. Triki, A., Combaz, J., Bensalem, S., Sifakis, J.: Model-based implementation of
parallel real-time systems. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS,
vol. 7793, pp. 235–249. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37057-1 18

24. Waez, M.T.B., Dingel, J., Rudie, K.: A survey of timed automata for the develop-
ment of real-time systems. Comput. Sci. Rev. 9, 1–26 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-25264-8_4
https://doi.org/10.1007/978-3-319-47166-2_42
https://doi.org/10.1007/978-3-319-47166-2_42
https://doi.org/10.1007/978-3-642-37057-1_18
https://doi.org/10.1007/978-3-642-37057-1_18
http://creativecommons.org/licenses/by/4.0/

Distributed Graph Queries for Runtime
Monitoring of Cyber-Physical Systems

Márton Búr1,3(B) , Gábor Szilágyi2, András Vörös1,2 ,
and Dániel Varró1,2,3

1 MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary
{bur,vori,varro}@mit.bme.hu

2 Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

3 Department of Electrical and Computer Engineering,
McGill University, Montreal, Canada

Abstract. In safety-critical cyber-physical systems (CPS), a service fail-
ure may result in severe financial loss or damage in human life. Smart
CPSs have complex interaction with their environment which is rarely
known in advance, and they heavily depend on intelligent data process-
ing carried out over a heterogeneous computation platform and provide
autonomous behavior. This complexity makes design time verification
infeasible in practice, and many CPSs need advanced runtime monitoring
techniques to ensure safe operation. While graph queries are a powerful
technique used in many industrial design tools of CPSs, in this paper, we
propose to use them to specify safety properties for runtime monitors on
a high-level of abstraction. Distributed runtime monitoring is carried out
by evaluating graph queries over a distributed runtime model of the sys-
tem which incorporates domain concepts and platform information. We
provide a semantic treatment of distributed graph queries using 3-valued
logic. Our approach is illustrated and an initial evaluation is carried out
using the MoDeS3 educational demonstrator of CPSs.

1 Introduction

A smart and safe cyber-physical system (CPS) [23,30,36] heavily depends on
intelligent data processing carried out over a heterogeneous computation plat-
form to provide autonomous behavior with complex interactions with an envi-
ronment which is rarely known in advance. Such a complexity frequently makes
design time verification be infeasible in practice, thus CPSs need to rely on
run-time verification (RV) techniques to ensure safe operation by monitoring.

Traditionally, RV techniques have evolved from formal methods [24,26],
which provide a high level of precision, but offer a low-level specification lan-
guage (with simple atomic predicates to capture information about the system)
which hinders their use in every day engineering practice. Recent RV approaches
[17] started to exploit rule-based approaches over a richer information model.
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 111–128, 2018.
https://doi.org/10.1007/978-3-319-89363-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_7&domain=pdf
http://orcid.org/0000-0003-2702-6174
http://orcid.org/0000-0001-7617-3563
http://orcid.org/0000-0002-8790-252X

112 M. Búr et al.

In this paper, we aim to address runtime monitoring of distributed systems
from a different perspective by using runtime models (aka models@ runtime
[8,38]) which have been promoted for the assurance of self-adaptive systems in
[10,44]. The idea is that runtime models serve as a rich knowledge base for the
system by capturing the runtime status of the domain, services and platforms
as a graph model, which serves as a common basis for executing various analysis
algorithms. Offering centralized runtime models accessible via the network, the
Kevoree Modeling Framework [28] has been successfully applied in numerous
Internet-of-Things applications over the Java platform. However, the use of such
run-time models for analysis purposes in resource-constrained smart devices or
critical CPS components is problematic due to the lack of control over the actual
deployment of the model elements to the execution units of the platform.

Graph queries have already been applied in various design and analysis tools
for CPSs thanks to their highly expressive declarative language, and their scal-
ability to large industrial models [40]. Distributed graph query evaluation tech-
niques have been proposed in [22,34], but all of these approaches use a cloud-
based execution environment, and the techniques are not directly applicable for
a heterogeneous execution platform with low-memory computation units.

As a novelty in our paper, we specify safety criteria for runtime monitor-
ing by graph queries formulated over runtime models (with domain concepts,
platform elements, and allocation as runtime information) where graph query
results highlight model elements that violate a safety criterion. Graph queries
are evaluated over a distributed runtime model where each model element is
managed by a dedicated computing unit of the platform while relevant contex-
tual information is communicated to neighboring computing units periodically
via asynchronous messages. We provide a semantic description for the distributed
runtime model using 3-valued logic to uniformly capture contextual uncertainty
or message loss. Then we discuss how graph queries can be deployed as a service
to the computing units (i.e., low-memory embedded devices) of the execution
platform of the system in a distributed way, and provide precise semantics of
distributed graph query evaluation over our distributed runtime model. We pro-
vide an initial performance evaluation of our distributed query technique over
the MoDeS3 CPS demonstrator [45], which is an open source educational plat-
form, and also compare its performance to an open graph query benchmark [35].

2 Overview of Distributed Runtime Monitoring

Figure 1 is an overview of distributed runtime monitoring of CPSs deployed over
heterogeneous computing platform using runtime models and graph queries.

Our approach reuses a high-level graph query language [41] for specifying
safety properties of runtime monitors, which language is widely used in various
design tools of CPS [37]. Graph queries can capture safety properties with rich
structural dependencies between system entities which is unprecedented in most
temporal logic formalisms used for runtime monitoring. Similarly, OCL has been
used in [20] for related purposes. While graph queries can be extended to express

Distributed Graph Queries for Runtime Monitoring 113

Fig. 1. Distributed runtime monitoring by graph queries

temporal behavior [11], our current work is restricted to (structural) safety prop-
erties where the violation of a property is expressible by graph queries.

These queries will be evaluated over a runtime model which reflects the cur-
rent state of the monitored system, e.g. data received from different sensors, the
services allocated to computing units, or the health information of computing
infrastructure. In accordance with the models@ runtime paradigm [8,38], observ-
able changes of the real system gets updated—either periodically with a certain
frequency, or in an event-driven way upon certain triggers.

Runtime monitor programs are deployed to a distributed heterogeneous com-
putation platform, which may include various types of computing units ranging
from ultra-low-power microcontroller units, through smart devices to high-end
cloud-based servers. These computation units primarily process the data pro-
vided by sensors and they are able to perform edge- or cloud-based computations
based on the acquired information. The monitoring programs are deployed and
executed on them exactly as the primary services of the system, thus resource
restrictions (CPU, memory) need to be respected during allocation.

Runtime monitors are synthesized by transforming high-level query specifi-
cations into deployable, platform dependent source code for each computation
unit used as part of a monitoring service. The synthesis includes a query opti-
mization step and a code generation step to produce platform-dependent C++
source code ready to be compiled into an executable for the platform. Due to
space restrictions, this component of our framework is not detailed in this paper.

Our system-level monitoring framework is hierarchical and distributed. Mon-
itors may observe the local runtime model of the their own computing unit, and
they can collect information from runtime models of different devices, hence pro-
viding a distributed monitoring architecture. Moreover, one monitor may rely on
information computed by other monitors, thus yielding a hierarchical network.

114 M. Búr et al.

Running Example. We illustrate our runtime monitoring technique in the
context of a CPS demonstrator [45], which is an educational platform of a model
railway system that prevents trains from collision and derailment using safety
monitors. The railway track is equipped with several sensors (cameras, shunt
detectors) capable of sensing trains on a particular segment of a track connected
to some computing units, such as Arduinos, Raspberry Pis, BeagleBone Blacks
(BBB), or a cloud platform. Computing units also serve as actuators to stop
trains on selected segments to guarantee safe operation. For space considerations,
we will only present a small self-contained fragment of the demonstrator.

In Fig. 1, the System Under Monitor is a snapshot of the system where train
tr1 is on segment s4, while tr2 is on s2. The railroad network has a static layout,
but turnouts tu1 and tu2 can change between straight and divergent states. Three
BBB computing units are responsible for monitoring and controlling disjoint
parts of the system. A computing unit may read its local sensors, (e.g. the
occupancy of a segment, or the status of a turnout), collect information from
other units during monitoring, and it can operate actuators accordingly (e.g.
change turnout state) for the designated segment. All this information is reflected
in the (distributed) runtime model which is deployed on the three computing
units and available for the runtime monitors.

3 Towards Distributed Runtime Models

3.1 Runtime Models

Many industrial modeling tools used for engineering CPS [3,31,47] build on the
concepts of domain-specific (modeling) languages (DSLs) where a domain is typ-
ically defined by a metamodel and a set of well-formedness constraints. A meta-
model captures the main concepts in a domain as classes with attributes, their
relations as references, and specifies the basic structure of graph models.

A metamodel can be formalized as a vocabulary Σ = {C1, . . . , Cn1 , A1, . . . ,
An2 , R1, . . . , Rn3} with a unary predicate symbol Ci for each class, a binary predicate
symbol Aj for each attribute, and a binary predicate symbol Rk for each relation.

Example 1. Figure 2 shows a metamodel for the CPS demonstrator with Comput-
ing Units (identified on the network by hostID attribute) which host Domain Ele-
ments and communicate with other Computing Units. A Domain Element is either a
Train orRailroadElementwhere the latter is either aTurnout or aSegment. ATrain is
situated on aRailroad Elementwhich is connected to at most two otherRailroad Ele-
ments. Furthermore, aTurnout refers toRailroad Elements connecting to its straight
and divergent exits. A Train also knows its speed.

Objects, their attributes, and links between them constitute a runtime model
[8,38] of the underlying system in operation. Changes to the system and its
environment are reflected in the runtime model (in an event-driven or time-
triggered way) and operations executed on the runtime model (e.g. setting values
of controllable attributes or relations between objects) are reflected in the system

Distributed Graph Queries for Runtime Monitoring 115

Fig. 2. Metamodel for CPS demonstrator

itself (e.g. by executing scripts or calling services). We assume that this runtime
model is self-descriptive in the sense that it contains information about the
computation platform and the allocation of services to platform elements, which
is a key enabler for self-adaptive systems [10,44].

A runtime model M = 〈DomM , IM 〉 can be formalized as a 2-valued logic
structure over Σ where DomM = ObjM � DataM where ObjM is a finite set of
objects, while DataM is the set of (built-in) data values (integers, strings, etc.).
IM is a 2-valued interpretation of predicate symbols in Σ defined as follows:

– Class predicates: If object op is an instance of class Ci then the 2-valued
interpretation of Ci in M denoted by [[Ci(op)]]

M = 1, otherwise 0.
– Attribute predicates: If there exists an attribute of type Aj in op with value

ar in M then [[Aj(op, ar)]]
M = 1, and otherwise 0.

– Reference predicates: If there is a link of type Rk from op to oq in M then
[[Rk(op, oq)]]

M = 1, otherwise 0.

3.2 Distributed Runtime Models

Our framework addresses decentralized systems where each computing unit peri-
odically communicates a part of its internal state to its neighbors in an update
phase. We abstract from the technical details of communication, but we assume
approximate synchrony [13] between the clocks of computing units, thus all
update messages regarded lost that does not arrive within given timeframe
Tupdate.

As such, a centralized runtime model is not a realistic assumption for mixed
synchronous systems. First, each computing unit has only incomplete knowledge
about the system: it fully observes and controls a fragment of the runtime model
(to enforce the single source of truth principle), while it is unaware of the internal
state of objects hosted by other computing units. Moreover, uncertainty may
arise in the runtime model due to sensing or communication issues.

Semantics of Distributed Runtime Models. We extend the concept of runtime
models to a distributed setting with heterogeneous computing units which peri-
odically communicate certain model elements with each other via messages.
We introduce a semantic representation for distributed runtime models (DRMs)

116 M. Búr et al.

which can abstract from the actual communication semantics (e.g. asynchronous
messages vs. broadcast messages) by (1) evaluating predicates locally at a com-
puting unit with (2) a 3-valued truth evaluation having a third 1/2 value in
case of uncertainty. Each computing unit maintains a set of facts described by
atomic predicates in its local knowledge base wrt. the objects with attributes it
hosts, and references between local objects. Additionally, each computing unit
incorporates predicates describing outgoing references for each object it hosts.

The 3-valued truth evaluation of a predicate P (v1, . . . , vn) on a computing
unit cu is denoted by [[P (v1, . . . , vn)]]@cu. The DRM of the system is constituted
from the truth evaluation of all predicates on all computing units. For the current
paper, we assume the single source of truth principle, i.e. each model element is
always faithfully observed and controlled by its host computing unit, thus the
local truth evaluation of the corresponding predicate P is always 1 or 0. However,
3-valued evaluation could be extended to handle such local uncertainties.

Fig. 3. Distributed runtime model for CPS demonstrator

Example 2. Figure 3 shows a DRM snapshot for the CPS demonstrator (bot-
tom part of Fig. 1). Computing units BBB1–BBB3 manage different parts of the
system, e.g. BBB1 hosts objects s1, s2, tu1 and tr2 and the links between them.
We illustrate the local knowledge bases of computing units.

Since computing unit BBB1 hosts train tr2, thus [[Train(tr2)]]@BBB1 = 1.
However, according to computing module BBB2, [[Train(tr2)]]@BBB2 = 1/2 as
there is no train tr2 hosted on BBB2, but it may exist on a different one.

Similarly, [[ConnectedTo(s1, s7)]]@BBB1 = 1, as BBB1 is the host of s1, the
source of the reference. This meansBBB1 knows that there is a (directed) reference
of type connectedTo from s1 to s7. However, the knowledge base onBBB3may have
uncertain information about this link, thus [[ConnectedTo(s1, s7)]]@BBB3 = 1/2,
i.e. there may be a corresponding link from s1 to s7, but it cannot be deduced using
exclusively the predicates evaluated at BBB3.

4 Distributed Runtime Monitoring

4.1 Graph Queries for Specifying Safety Monitors

To capture the safety properties to be monitored, we rely on the VIATRA Query
Language (VQL) [7]. VIATRA has been intensively used in various design tools

Distributed Graph Queries for Runtime Monitoring 117

of CPSs to provide scalable queries over large system models. The current paper
aims to reuse this declarative graph query language for runtime verification pur-
poses, which is a novel idea. The main benefit is that safety properties can be
captured on a high level of abstraction over the runtime model, which eases the
definition and comprehension of safety monitors for engineers. Moreover, this
specification is free from any platform-specific or deployment details.

The expressiveness of the VQL language converges to first-order logic with
transitive closure, thus it provides a rich language for capturing a variety of com-
plex structural conditions and dependencies. Technically, a graph query captures
the erroneous case, when evaluating the query over a runtime model. Thus any
match (result) of a query highlights a violation of the safety property at runtime.

Example 3. In the railway domain, safety standards prescribe a minimum dis-
tance between trains on track [1,14]. Query closeTrains captures a (simplified)
description of the minimum headway distance to identify violating situations
where trains have only limited space between each other. Technically, one needs
to detect if there are two different trains on two different railroad elements, which
are connected by a third railroad element. Any match of this pattern highlights
track elements where passing trains need to be stopped immediately. Figure 4a
shows the graph query closeTrains in a textual syntax, Fig. 4b displays it as a
graph formula, and Fig. 4c is a graphical illustration as a graph pattern.

Syntax. Formally, a graph pattern (or query) is a first order logic (FOL) for-
mula ϕ(v1, . . . , vn) over variables [42]. A graph pattern ϕ can be inductively
constructed (see Table 1) by using atomic predicates of runtime models C(v),
A(v1, v2), R(v1, v2), C, A, R ∈ Σ, equality between variables v1 = v2, FOL connec-
tives ∨, ∧, quantifiers ∃, ∀, and positive (call) or negative (neg) pattern calls.

Fig. 4. Safety monitoring objective closeTrains specified as graph pattern

118 M. Búr et al.

Table 1. Semantics of graph patterns (predicates)

1. [[C(v)]]MZ IM (C)(Z(v)) 6. [[v1 = v2]]
M
Z 1 iff Z(v1) = Z(v2)

2. [[A(v1, v2)]]
M
Z IM (A)(Z(v1), Z(v2)) 7. [[ϕ1 ∧ ϕ2]]

M
Z min([[ϕ1]]

M
Z , [[ϕ2]]

M
Z)

3. [[R(v1, v2)]]
M
Z IM (R)(Z(v1), Z(v2)) 8. [[ϕ1 ∨ ϕ2]]

M
Z max([[ϕ1]]

M
Z , [[ϕ2]]

M
Z)

4. [[∃v : ϕ]]MZ max{[[ϕ]]MZ,v �→x : x ∈ ObjM} 9. [[¬ϕ]]MZ 1 − [[ϕ]]MZ
5. [[∀v : ϕ]]MZ min{[[ϕ]]MZ,v �→x : x ∈ ObjM}

10. [[call(ϕ(v1, . . . , vn))]]MZ

{
∃Z′ : Z ⊆ Z′ ∧ ∀i∈1..n :

Z′(vc
i) = Z(vi) : [[ϕ(vc

1, . . . , v
c
n)]]MZ′

11. [[neg(ϕ(v1, . . . , vn))]]MZ 1 − [[call(ϕ(v1, . . . , vn))]]MZ

This language enables to specify a hierarchy of runtime monitors as a query
may explicitly use results of other queries (along pattern calls). Furthermore,
distributed evaluation will exploit a spatial hierarchy between computing units.

Semantics. A graph pattern ϕ(v1, . . . , vn) can be evaluated over a (central-
ized) runtime model M (denoted by [[ϕ(v1, . . . , vn)]]MZ) along a variable binding
Z : {v1, . . . , vn} → DomM from variables to objects and data values in M in
accordance with the semantic rules defined in Table 1 [42].

A variable binding Z is called a match if pattern ϕ is evaluated to 1 over M ,
i.e. [[ϕ(v1, . . . , vn)]]MZ = 1. Below, we may use [[ϕ(v1, . . . , vn)]] as a shorthand for
[[ϕ(v1, . . . , vn)]]MZ when M and Z are clear from context. Note that min and max
take the numeric minimum and maximum values of 0, 1/2 and 1 with 0 ≤ 1/2 ≤ 1.

4.2 Execution of Distributed Runtime Monitors

To evaluate graph queries of runtime monitors in a distributed setting, we pro-
pose to deploy queries to the same target platform in a way that is compliant
with the distributed runtime model and the potential resource restrictions of
computation units. If a graph query engine is deployed as a service on a com-
puting unit, it can serve as a local monitor over the runtime model. However,
such local monitors are usable only when all graph nodes traversed and retrieved
during query evaluation are deployed on the same computing unit, which is not
the general case. Therefore, a distributed monitor needs to gather information
from other model fragments and monitors stored at different computing units.

A Query Cycle. Monitoring queries are evaluated over a distributed runtime
model during the query cycle, where individual computing units communicate
with each other asynchronously in accordance with the actor model [18].

– A monitoring service can be initiated (or scheduled) at a designated comput-
ing unit cu by requesting the evaluation of a graph query with at least one
unbound variable denoted as [[ϕ(v1, . . . , vn)]]@cu =?.

– A computing unit attempts to evaluate a query over its local runtime model.

Distributed Graph Queries for Runtime Monitoring 119

– If any links of its local runtime model point to a fragment stored at a neigh-
boring computing unit, or if a subpattern call is initiated, corresponding query
R(v1, v2), call(ϕ) or neg(ϕ) needs to be evaluated at all neighbors cui.

– Such calls to distributed monitors are carried out by sending asynchronous
messages to each other thus graph queries are evaluated in a distributed way
along the computing platform. First, the requester cur sends a message of
the form “[[ϕ(v1, . . . , vn)]]@cup =?”. The provider cup needs to send back a
reply which contains further information about the internal state or previous
monitoring results of the provider which contains all potential matches known
by cup, i.e. all bindings [[ϕ(o1, . . . , on)]]@cup ≥ 1/2 (where we abbreviated the
binding vi → oi into the predicate as a notational shortcut).

– Matches of predicates sent as a reply to a computing unit can be cached.
– Messages may get delayed due to network traffic and they are considered

to be lost by the requester if no reply arrives within a deadline. Such a case
introduces uncertainty in the truth evaluation of predicates, i.e. the requestor
cur stores [[ϕ]]@cup = 1/2 in its cache, if the reply of the provider cup is lost.

– After acquiring truth values of predicates from its neighbors, a computing
unit needs to decide on a single truth value for each predicate evaluated
along different variable bindings. This local decision will be detailed below.

– At the end of the query cycle, each computing unit resets its cache to remove
information acquired within the last cycle.

Example 4. Figure 5 shows the beginning of a query evaluation sequence for
monitor closeTrains initiated at computing unit BBB3. Calls are asynchronous
(cf. actor model), while diagonal lines illustrate the latency of network commu-
nication. Message numbers represent the order between timestamps of messages.

When the query is initiated (message 1, shortly, m1), and the first predicate
Train of the query is sent to the other two computing unit as requests with a
free variable parameter T (m2 and m3). In the reply messages, BBB2 reports
tr1 as an object satisfying the predicate (m4), while BBB1 answers that tr2 is
a suitable binding to T (m5). Next BBB3 is requesting facts about outgoing

Fig. 5. Beginning of distributed query execution for monitor closeTrains

120 M. Búr et al.

references of type On leading from objects tr2 and tr1 to objects stored in BBB1
and BBB2, respectively (m6 and m7). As the answer, each computing unit sends
back facts stating outgoing references from the objects (m8 and m9).

The next message (m10) asks for outgoing references of type ConnectedTo
from object s2. To send a reply, first BBB1 asks BBB2 to ensure that a reference
from s2 to s3 exists, since s3 is hosted by BBB2 (m11). This check adds tolerance
against lost messages during model update. After BBB1 receives the answer from
BBB2 (m12), it replies to BBB3 containing all facts maintained on this node.

Semantics of Distributed Query Evaluation. Each query is initiated at a des-
ignated computing unit which will be responsible for calculating query results
by aggregating the partial results retrieved from its neighbors. This aggregation
has two different dimensions: (1) adding new matches to the result set calculated
by the provider, and (2) making a potential match more precise. While the first
case is a consequence of the distributed runtime model and query evaluation, the
second case is caused by uncertain information caused by message loss/delay.

Fortunately, the 3-valued semantics of graph queries (see Table 1) already
handles the first case: any match reported to the requester by any neighboring
provider will be included in the query results if its truth evaluation is 1 or 1/2.
As such, any potential violation of a safety property will be detected, which may
result in false positive alerts but critical situations would not be missed.

However, the second case necessitates extra care since query matches coming
from different sources (e.g. local cache, reply messages from providers) need to
be fused in a consistent way. This match fusion is carried out at cu as follows:

– If a match is obtained exclusively from the local runtime model of cu, then it
is a certain match, formally [[ϕ(o1, . . . , on)]]@cu = 1.

– If a match is sent as a reply by multiple neighboring computing units cui

(with cui ∈ nbr(cu)), then we take the most certain result at cu, formally,
[[ϕ(o1, . . . , on)]]@cu := max{[[ϕ(o1, . . . , on)]]@cui |cui ∈ nbr(cu)}.

– Otherwise, tuple o1, . . . , on is surely not a match: [[ϕ(o1, . . . , on)]]@cu = 0.

Note that in the second case uses max{} to assign a maximum of 3-valued
logic values wrt. information ordering (which is different from the numerical
maximum used in Table 1). Information ordering is a partial order ({1/2, 0, 1},�)
with 1/2 � 0 and 1/2 � 1. It is worth pointing out that this distributed truth
evaluation is also in line with Sobociński 3-valued logic axioms [33].

Performance Optimizations. Each match sent as a reply to a computing unit
during distributed query evaluation can be cached locally to speed up the re-
evaluation of the same query within the query cycle. This caching of query results
is analogous to memoing in logic programming [46]. Currently, cache invalidation
is triggered at the end of each query cycle by the local physical clock, which we
assume to be (quasi-)synchronous with high precision across the platform.

This memoing approach also enables units to selectively store messages in the
local cache depending on their specific needs. Furthermore, this can incorporate

Distributed Graph Queries for Runtime Monitoring 121

to deploy query services to computing units with limited amount of memory and
prevent memory overflow due to the several messages sent over the network.

A graph query is evaluated according to a search plan [43], which is a list of
predicates ordered in a way that matches of predicates can be found efficiently.
During query evaluation, free variables of the predicates are bound to a value
following the search plan. The evaluation terminates when all matches in the
model are found. An in-depth discussion of query optimization is out of scope
for this paper, but Sect. 5 will provide an initial investigation.

Semantic Guarantees and Limitations. Our construction ensures that (1) the
execution will surely terminate upon reaching the end of the query time win-
dow, potentially yielding uncertain matches, (2) each local model serves as a
single source of truth which cannot be overridden by calls to other computing
units, and (3) matches obtained from multiple computing units will be fused by
preserving information ordering. The over- and under approximation properties
of 3-valued logic show that the truth values fused this way will provide a sound
result (Theorem 1 in [42]). Despite the lack of total consistency, our approach
still has safety guarantees by detecting all potentially unsafe situations.

There are also several assumptions and limitations of our approach. We use
asynchronous communication without broadcast messages. We only assumed
faults of communication links, but not the failures of computing units. We also
excluded the case when computing units maliciously send false information.
Instead of refreshing local caches in each cycle, the runtime model could incorpo-
rate information aging which may enable to handle other sources of uncertainty
(which is currently limited to consequences of message loss). Finally, in case of
longer cycles, the runtime model may no longer provide up-to-date information
at query evaluation time.

Implementation Details. The concepts presented in the paper are implemented
in a prototype software, which has three main components: (i) an EMF-based
tool [39] for data modeling and code generation for the runtime model, (ii) an
Eclipse-based tool for defining and compiling monitoring rules built on top of the
VIATRA framework [41], and (iii) the runtime environment to evaluate queries.

The design tools are dominantly implemented in Java. We used EMF meta-
models for data modeling, but created a code generator to derive lightweight
C++ classes as representations of the runtime model. The query definition envi-
ronment was extended to automatically compile queries into C++ monitors.

The runtime monitoring libraries and the runtime framework is available in
C++. Our choice of C++ is motivated by its low runtime and memory overhead
on almost any type of platforms, ranging from low-energy embedded microcon-
trollers to large-scale cloud environments. Technically, a generic query service
can start query runners for each monitoring objective on each node. While query
runners execute the query-specific search plan generated compile time, the net-
work communication is handled by a query service if needed. To serialize the
data between different nodes, we used the lightweight Protocol Buffers [16].

122 M. Búr et al.

5 Evaluation

We conducted measurements to evaluate and address two research questions:

Q1: How does distributed graph query execution perform compared to executing
the queries on a single computing unit?

Q2: Is query evaluation performance affected by alternative allocation of model
objects to host computing units?

5.1 Measurement Setup

Computation Platform. We used the real distributed (physical) platform of the
CPS demonstrator to answer these research questions (instead of setting up a
virtual environment). It consists of 6 interconnected BBB devices (all running
embedded Debian Jessie with PREEMPT-RT patch) connected to the railway
track itself. This arrangement represents a distributed CPS with several com-
puting units having only limited computation and communication resources. We
used these units to maintain the distributed runtime model, and evaluate mon-
itoring queries. This way we are able to provide a realistic evaluation, however,
due to the fixed number of embedded devices built into the platform, we cannot
evaluate the scalability of the approach wrt. the number of computing units.

CPS Monitoring Benchmark. To assess the distributed runtime verification
framework, we used the MoDeS3 railway CPS demonstrator where multiple
safety properties are monitored. They are all based on important aspects of the
domain, and they have been integrated into the real monitoring components.
Our properties of interest (in increasing complexity of queries) are the following:

– Train locations: gets all trains and the segments on which trains are located.
– Close trains: this pattern is the one introduced in Fig. 4.
– Derailment : detects the train when approaching a turnout, but the turnout

is set to the other direction (causing the train to run off from the track).
– End of siding : detects trains approaching an end of the track.

Since the original runtime model of the CPS demonstrator has only a total of
49 objects, we scaled up the model by replicating the original elements (except
for the computing units). This way we obtained models with 49–43006 objects
and 114–109015 links, having similar structural properties as the original one.

Query Evaluation Benchmark. In order to provide an independent evaluation
for our model query-based monitoring approach, we adapted the open-source
Train Benchmark [35] that aims at comparing query evaluation performance of
various tools. This benchmark defines several queries describing violations of
well-formedness constraints with different complexity over graph models. More-
over, it also provides a model generator to support scalability assessment.

Distributed Graph Queries for Runtime Monitoring 123

5.2 Measurement Results

Execution Times. The query execution times over models deployed to a single
BBB were first measured to obtain a baseline evaluation time of monitoring for
each rule (referred to as local evaluation). Then the execution times of system-
level distributed queries were measured over the platform with 6 BBBs, evalu-
ating two different allocations of objects (standard and alternative evaluations).

In Fig. 6 each result captures the times of 29 consecutive evaluations of queries
excluding the warm-up effect of an initial run which loads the model and cre-
ates necessary auxiliary objects. A query execution starts when a node initiates
evaluation, and terminates when all nodes have finished collecting matches and
sent back their results to the initiator.

Overhead ofDistributedEvaluation. Onthepositive side, the performance of graph
query evaluation on a single unit is comparable to other graph query techniques
reported in [35] for models with over 100 K objects, which shows a certain level
of maturity of our prototype. Furthermore, the CPS demonstrator showed that
distributed query evaluation yielded significantly better result than local-only exe-
cution for the Derailment query on medium size models (with 4K–43K objects
reaching 2.23× – 2.45× average speed-up) and comparable runtime forClose trains
and Train locations queries on these models (with the greatest average difference
being 30 ms across all model sizes). However, distributed query evaluation had
problems forEnd of siding, which is a complex query with negative application con-
ditions,whichprovides cleardirections for future research.Anyhow, theparallelism

Fig. 6. Query evaluations times over different model sizes

124 M. Búr et al.

of even a small execution platform with only 6 computing units could suppress the
communication overheadbetweenunits in case of several distributedqueries,which
is certainly a promising outcome.

Impact of Allocation on Query Evaluation. We synthesized different allocations
of model elements to computing units to investigate the impact of allocation
of model objects on query evaluation. With the CPS demonstrator model in
particular, we chose to allocate all Trains to BBB1, and assigned every other
node stored previously on BBB1 to the rest of the computing units. Similarly,
for the Train Benchmark models, we followed this pattern with selected types,
in addition to experimenting with fully random allocation of objects.

The two right-most columns of Fig. 6a and 6b show results of two alternate
allocations for the same search plan with a peak difference of 2.06× (Derailment)
and 19.92× (Semaphore neighbor) in the two cases. However, both of these allo-
cations were manually optimized to exploit locality of model elements. In case
of random allocations, difference in runtime may reach an order of magnitude1.
Therefore it is worth investigating new allocation strategies and search plans for
distributed queries for future work.

Threats to Validity. The generalizability of our experimental results is limited by
certain factors. First, to measure the performance of our approach, the platform
devices (1) executed only query services and (2) connected to an isolated local
area network via Ethernet. Performance on a real network with a busy chan-
nel would likely have longer delays and message losses thus increasing execution
time. Then we assessed performance using a single query plan synthesized auto-
matically by the VIATRA framework but using heuristics to be deployed for a
single computation unit. We believe that execution times of distributed queries
would likely decrease with a carefully constructed search plan and allocation.

6 Related Work

Runtime Verification Approaches. For continuously evolving and dynamic CPSs,
an upfront design-time formal analysis needs to incorporate and check the robust-
ness of component behavior in a wide range of contexts and families of config-
urations, which is a very complex challenge. Thus consistent system behavior
is frequently ensured by runtime verification (RV) [24], which checks (poten-
tially incomplete) execution traces against formal specifications by synthesizing
verified runtime monitors from provenly correct design models [21,26].

Recent advances in RV (such as MOP [25] or LogFire [17]) promote to capture
specifications by rich logic over quantified and parameterized events (e.g. quanti-
fied event automata [4] and their extensions [12]). Moreover, Havelund proposed
to check such specifications on-the-fly by exploiting rule-based systems based on
the RETE algorithm [17]. However, this technique only incorporates low-level
events; while changes of an underlying data model are not considered as events.
1 See Appendix A for details under http://bit.ly/2op3tdy.

http://bit.ly/2op3tdy

Distributed Graph Queries for Runtime Monitoring 125

Traditional RV approaches use variants of temporal logics to capture the
requirements [6]. Recently, novel combinations of temporal logics with context-
aware behaviour description [15,19] (developed within the R3-COP and R5-COP
FP7 projects) for the runtime verification of autonomous CPS appeared and
provide a rich language to define correctness properties of evolving systems.

Runtime Verification of Distributed Systems. While there are several existing
techniques for runtime verification of sequential programs available, the authors
of [29] claim that much less research was done in this area for distributed systems.
Furthermore, they provide the first sound and complete algorithm for runtime
monitoring of distributed systems based on the 3-valued semantics of LTL.

The recently introduced Brace framework [49] supports RV in distributed
resource-constrained environments by incorporating dedicated units in the sys-
tem to support global evaluation of monitoring goals. There is also focus on
evaluating LTL formulae in a fully distributed manner in [5] for components com-
municating on a synchronous bus in a real-time system. Additionally, machine
learning-based solution for scalable fault detection and diagnosis system is pre-
sented in [2] that builds on correlation between observable system properties.

Distributed Graph Queries. Highly efficient techniques for local-search based [9]
and incremental model queries [40] as part of the VIATRA framework were devel-
oped, which mainly builds on RETE networks as baseline technology. In [34], a
distributed incremental graph query layer deployed over a cloud infrastructure
with numerous optimizations was developed. Distributed graph query evaluation
techniques were reported in [22,27,32], but none of these techniques considered
an execution environment with resource-constrained computation units.

Runtime Models. The models@ runtime paradigm [8] serves as the concep-
tual basis for the Kevoree framework [28] (developed within the HEADS FP7
project). Other recent distributed, data-driven solutions include the Global Data
Plane [48] and executable metamodels at runtime [44]. However, these frame-
works currently offer very limited support for efficiently evaluating queries over
a distributed runtime platform, which is the main focus of our current work.

7 Conclusions

In this paper, we proposed a runtime verification technique for smart and safe
CPSs by using a high-level graph query language to capture safety properties for
runtime monitoring and runtime models as a rich knowledge representation to
capture the current state of the running system. A distributed query evaluation
technique was introduced where none of the computing units has a global view
of the complete system. The approach was implemented and evaluated on the
physical system of MoDeS3 CPS demonstrator. Our first results show that it
scales for medium-size runtime models, and the actual deployment of the query
components to the underlying platform has significant impact on execution time.
In the future, we plan to investigate how to characterize effective search plans
and allocations in the context of distributed queries used for runtime monitoring.

126 M. Búr et al.

Acknowledgements. This paper is partially supported by MTA-BME Lendület
Cyber-Physical Systems Research Group, the NSERC RGPIN-04573-16 project, the
Werner Graupe International Fellowship in Engineering (as part of the MEDA pro-
gram), and the ÚNKP-17-2-I New National Excellence Program of the Ministry of
Human Capacities. We are grateful for Oszkár Semeráth for helping with the seman-
tics of 3-valued logic, Gábor Szárnyas for the help with setting up Train Benchmark,
the contributors of MoDeS3 for setting up the evaluation platform, and the feedback
from anonymous reviewers and Gábor Bergmann.

References

1. Abril, M., et al.: An assessment of railway capacity. Transp. Res. Part E Logist.
Transp. Rev. 44(5), 774–806 (2008)

2. Alippi, C., et al.: Model-free fault detection and isolation in large-scale cyber-
physical systems. IEEE Trans. Emerg. Top. Comput. Intell. 1(1), 61–71 (2017)

3. AUTOSAR Tool Platform: Artop. https://www.artop.org/
4. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified

event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 9

5. Bauer, A., Falcone, Y.: Decentralised LTL monitoring. Formal Methods Syst. Des.
48(1–2), 46–93 (2016)

6. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

7. Bergmann, G., Ujhelyi, Z., Ráth, I., Varró, D.: A graph query language for EMF
models. In: Cabot, J., Visser, E. (eds.) ICMT 2011. LNCS, vol. 6707, pp. 167–182.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21732-6 12

8. Blair, G.S., et al.: Models@run.time. IEEE Comput. 42(10), 22–27 (2009)
9. Búr, M., Ujhelyi, Z., Horváth, Á., Varró, D.: Local search-based pattern matching

features in EMF-IncQuery. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT
2015. LNCS, vol. 9151, pp. 275–282. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21145-9 18

10. Cheng, B.H.C., et al.: Using models at runtime to address assurance for self-
adaptive systems. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.)
Models@run.time. LNCS, vol. 8378, pp. 101–136. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08915-7 4

11. Dávid, I., Ráth, I., Varró, D.: Foundations for streaming model transformations by
complex event processing. Softw. Syst. Model. 17, 1–28 (2016). https://doi.org/
10.1007/s10270-016-0533-1

12. Decker, N., Leucker, M., Thoma, D.: Monitoring modulo theories. Int. J. Softw.
Tools Technol. Transf. 18(2), 205–225 (2015)

13. Desai, A., Seshia, S.A., Qadeer, S., Broman, D., Eidson, J.C.: Approximate syn-
chrony: an abstraction for distributed almost-synchronous systems. In: Kroening,
D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 429–448. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21668-3 25

14. Emery, D.: Headways on high speed lines. In: 9th World Congress on Railway
Research, pp. 22–26 (2011)

15. Gönczy, L., et al.: MDD-based design, configuration, and monitoring of resilient
cyber-physical systems. Trustworthy Cyber-Physical Systems Engineering (2016)

16. Google: Protocol buffers. https://github.com/google/protobuf

https://www.artop.org/
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-21732-6_12
https://doi.org/10.1007/978-3-319-21145-9_18
https://doi.org/10.1007/978-3-319-21145-9_18
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/s10270-016-0533-1
https://doi.org/10.1007/s10270-016-0533-1
https://doi.org/10.1007/978-3-319-21668-3_25
https://github.com/google/protobuf

Distributed Graph Queries for Runtime Monitoring 127

17. Havelund, K.: Rule-based runtime verification revisited. Int. J. Softw. Tools Tech-
nol. Transf. 17(2), 143–170 (2015)

18. Hewitt, C., et al.: A universal modular ACTOR formalism for artificial intelligence.
In: International Joint Conference on Artificial Intelligence, pp. 235–245 (1973)

19. Horányi, G., Micskei, Z., Majzik, I.: Scenario-based automated evaluation of test
traces of autonomous systems. In: DECS workshop at SAFECOMP (2013)

20. Iqbal, M.Z., et al.: Applying UML/MARTE on industrial projects: challenges,
experiences, and guidelines. Softw. Syst. Model. 14(4), 1367–1385 (2015)

21. Joshi, Y., et al.: Runtime verification of LTL on lossy traces. In: Proceedings of
the Symposium on Applied Computing - SAC 2017, pp. 1379–1386. ACM Press
(2017)

22. Krause, C., Tichy, M., Giese, H.: Implementing graph transformations in the bulk
synchronous parallel model. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS,
vol. 8411, pp. 325–339. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54804-8 23

23. Krupitzer, C., et al.: A survey on engineering approaches for self-adaptive systems.
Perv. Mob. Comput. 17, 184–206 (2015)

24. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

25. Meredith, P.O., et al.: An overview of the MOP runtime verification framework.
Int. J. Softw. Tools Technol. Transf. 14(3), 249–289 (2012)

26. Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyber-
physical system models. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 199–214. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 17

27. Mitschke, R., Erdweg, S., Köhler, M., Mezini, M., Salvaneschi, G.: i3QL: Language-
integrated live data views. ACM SIGPLAN Not. 49(10), 417–432 (2014)

28. Morin, B., et al.: Kevoree Modeling Framework (KMF): efficient modeling tech-
niques for runtime use. University of Luxembourg, Technical report (2014)

29. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL spec-
ifications in distributed systems. In: 2015 IEEE International Parallel and Dis-
tributed Processing Symposium, pp. 494–503, May 2015

30. Nielsen, C.B., et al.: Systems of systems engineering: Basic concepts, model-based
techniques, and research directions. ACM Comput. Surv. 48(2), 18 (2015)

31. No Magic: MagicDraw. https://www.nomagic.com/products/magicdraw
32. Peters, M., Brink, C., Sachweh, S., Zündorf, A.: Scaling parallel rule-based reason-

ing. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A.
(eds.) ESWC 2014. LNCS, vol. 8465, pp. 270–285. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07443-6 19

33. Sobociński, B.: Axiomatization of a Partial System of Three-Value Calculus of
Propositions. Institute of Applied Logic (1952)

34. Szárnyas, G., Izsó, B., Ráth, I., Harmath, D., Bergmann, G., Varró, D.: IncQuery-
D: a distributed incremental model query framework in the cloud. In: Dingel,
J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS,
vol. 8767, pp. 653–669. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11653-2 40

35. Szárnyas, G., et al.: The Train Benchmark: cross-technology performance evalu-
ation of continuous model queries. Softw. Syst. Model., 1–29 (2017). https://doi.
org/10.1007/s10270-016-0571-8

36. Sztipanovits, J., et al.: Toward a science of cyber-physical system integration. Proc.
IEEE 100(1), 29–44 (2012)

https://doi.org/10.1007/978-3-642-54804-8_23
https://doi.org/10.1007/978-3-642-54804-8_23
https://doi.org/10.1007/978-3-319-11164-3_17
https://doi.org/10.1007/978-3-319-11164-3_17
https://www.nomagic.com/products/magicdraw
https://doi.org/10.1007/978-3-319-07443-6_19
https://doi.org/10.1007/978-3-319-07443-6_19
https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1007/978-3-319-11653-2_40
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-016-0571-8

128 M. Búr et al.

37. Sztipanovits, J., Bapty, T., Neema, S., Howard, L., Jackson, E.: OpenMETA: a
model- and component-based design tool chain for cyber-physical systems. In:
Bensalem, S., Lakhneck, Y., Legay, A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp.
235–248. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54848-
2 16

38. Szvetits, M., Zdun, U.: Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime. Softw. Syst. Model. 15(1), 31–69
(2013)

39. The Eclipse Project: Eclipse Modeling Framework. http://www.eclipse.org/emf
40. Ujhelyi, Z., et al.: EMF-IncQuery: an integrated development environment for live

model queries. Sci. Comput. Program. 98, 80–99 (2015)
41. Varró, D., et al.: Road to a reactive and incremental model transformation plat-

form: three generations of the VIATRA framework. Softw. Syst. Model 15(3),
609–629 (2016)

42. Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á.: Towards the automated gen-
eration of consistent, diverse, scalable and realistic graph models. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 285–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6 16

43. Varró, G., et al.: An algorithm for generating model-sensitive search plans for
pattern matching on EMF models. Softw. Syst. Model 14(2), 597–621 (2015)

44. Vogel, T., Giese, H.: Model-driven engineering of self-adaptive software with
EUREMA. ACM Trans. Auton. Adapt. Syst. 8(4), 18 (2014)

45. Vörös, A., et al.: MoDeS3: model-based demonstrator for smart and safe cyber-
physical systems. In: NASA Formal Methods Symposium (2018, accepted)

46. Warren, D.S.: Memoing for logic programs. Commun. ACM 35(3), 93–111 (1992)
47. Yakindu Statechart Tools: Yakindu. http://statecharts.org/
48. Zhang, B., et al.: The cloud is not enough: saving IoT from the cloud. In: 7th

USENIX Workshop on Hot Topics in Cloud Computing (2015)
49. Zheng, X., et al.: Efficient and scalable runtime monitoring for cyber-physical sys-

tem. IEEE Syst. J. PP, 1–12 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-54848-2_16
https://doi.org/10.1007/978-3-642-54848-2_16
http://www.eclipse.org/emf
https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1007/978-3-319-75396-6_16
http://statecharts.org/
http://creativecommons.org/licenses/by/4.0/

EventHandler-Based Analysis Framework
for Web Apps Using Dynamically

Collected States

Joonyoung Park1(B) , Kwangwon Sun2 , and Sukyoung Ryu1(B)

1 KAIST, Daejeon, Republic of Korea
{gmb55,sryu.cs}@kaist.ac.kr

2 Samsung Electronics, Seoul, Republic of Korea
kwangwon.sun@samsung.com

Abstract. JavaScript web applications (apps) are prevalent these days,
and quality assurance of web apps gets even more important. Even
though researchers have studied various analysis techniques and software
industries have developed code analyzers for their own code repositories,
statically analyzing web apps in a sound and scalable manner is chal-
lenging. On top of dynamic features of JavaScript, abundant execution
flows triggered by user events make a sound static analysis difficult.

In this paper, we propose a novel EventHandler (EH)-based static
analysis for web apps using dynamically collected state information.
Unlike traditional whole-program analyses, the EH -based analysis inten-
tionally analyzes partial execution flows using concrete user events. Such
analyses surely miss execution flows in the entire program, but they ana-
lyze less infeasible flows reporting less false positives. Moreover, they can
finish analyzing partial flows of web apps that whole-program analyses
often fail to finish analyzing, and produce partial bug reports. Our exper-
imental results show that the EH -based analysis improves the precision
dramatically compared with a state-of-the-art JavaScript whole-program
analyzer, and it can finish analysis of partial execution flows in web apps
that the whole-program analyzer fails to analyze within a timeout.

Keywords: JavaScript · Web applications · Event analysis
Static analysis

1 Introduction

Web applications (apps) written in HTML, CSS, and JavaScript have become
prevalent, and JavaScript is now the 7th most popular programming lan-
guage [22]. Because web apps can run on any platforms and devices that provide
any browsers, they are being used widely. The overall structure of web apps
is specified in HTML, which is represented as a tree structure via Document
Object Model (DOM) APIs. CSS describes visual effects like colors, positions,
and animation of contents of the web app, and JavaScript handles events trig-
gered by user interaction. JavaScript code can change the status of the web app
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 129–145, 2018.
https://doi.org/10.1007/978-3-319-89363-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_8&domain=pdf
http://orcid.org/0000-0001-9368-7347
http://orcid.org/0000-0001-7455-5138
http://orcid.org/0000-0002-0019-9772

130 J. Park et al.

by interoperation with HTML and CSS, load other JavaScript code dynamically,
and access device-specific features via APIs provided by underlying platforms.
JavaScript is the de facto standard language for web programming these days.

To help developers build high-quality web apps, researchers have studied var-
ious analysis techniques and software industries have developed in-house static
analyzers. Static analyzers such as SAFE [12,15], TAJS [2,10], and WALA [19]
analyze JavaScript web apps without concretely executing them, and dynamic
analyzers such as Jalangi [20] utilize concrete values obtained by actually exe-
cuting the apps. Thus, static analysis results aim to cover all the possible execu-
tion flows but they often contain infeasible execution flows, and dynamic anal-
ysis results contain only real execution flows but they often struggle to cover
abundant execution flows. Such different analysis results are meaningful for dif-
ferent purposes: sound static analysis results are critical for verifying absence
of bugs and complete dynamic analysis results are useful for detecting gen-
uine bugs. In order to enhance the quality of their own software, IT companies
develop in-house static analyzers like Infer from Facebook [4] and Tricorder from
Google [18].

However, statically analyzing web apps in a sound and scalable manner is
extremely challenging. Especially because JavaScript, the language that handles
controls of web apps, is totally dynamic, purely static analysis has various limita-
tions. While JavaScript can generate code to execute from string literals during
evaluation, such code is not available for static analyzers before run time. In
addition, dynamically adding and deleting object properties, and treating prop-
erty names as values make statically analyzing them difficult [17]. Moreover,
since execution flows triggered by user events are abundant, statically analyzing
them often incurs analysis performance degradation [16].

Among many challenges in statically analyzing JavaScript web apps, we
focus on analysis of event-driven execution flows in this paper. Most existing
JavaScript static analyzers are focusing on analysis of web apps at loading time
and they over-approximate event-driven execution flows to be sound. In order
to consider all possible event sequences soundly, they abstract the event-driven
semantics in a way that any events can happen in any order. Such a sound
event modeling contains many infeasible event sequences, which lead to unnec-
essary operations computing imprecise analysis results. Thus, the state-of-the-art
JavaScript static analyzers often fail to analyze event flows in web apps.

In this paper, we propose a novel EventHandler -based (EH-based) static anal-
ysis for web apps using dynamically collected state information. First, we present
a new analysis unit, an EH . While traditional static analyzers perform whole-
program analysis covering all possible execution flows, the EH -based analysis
aims to analyze partial execution flows triggered by user events more precisely.
In other words, unlike the whole-program analysis that starts analyzing from
a single entry point of a given program, the EH -based analysis considers each
event function call triggered by a user event as an entry point. Because the
EH -based analysis enables a subset of the entire execution flows to be analyzed
at a time, it can analyze less infeasible execution flows than the whole-program

EventHandler -Based Analysis Framework for Web Apps 131

analysis, which balances soundness and precision. Moreover, since it considers a
smaller set of execution flows, it may finish analysis of web apps that the whole-
program analysis fails to analyze within a reasonable timeout. Second, in order
to analyze each event function call in arbitrary call contexts, we present a hybrid
approach to construct an abstract heap for the event function call. More specifi-
cally, to analyze each event function body, the analyzer should have information
about non-local variables. Thus, for each event function, we construct a conser-
vative abstract initial heap that holds abstract values of non-local variables by
abstraction of dynamically collected states.

We formally present the mechanism as a framework, EHA, parameterized by
a dynamic event generator and a static whole-program analyzer. After describ-
ing the high-level structure of EHA, we present its prototype implementa-
tion, EHAman

SAFE, instantiated with manual event generation and a state-of-the-art
JavaScript static analyzer SAFE. Our experimental results show that EHAman

SAFE

indeed reports less false positives than SAFE, and it can finish analysis of parts
of web apps that SAFE fails to analyze within the timeout of 72 h.

Our paper makes the following contributions:

– We propose EHA, a bug detection framework that performs static analysis
for each event handler as an entry point using an abstraction of dynamically
collected states as an initial heap.

– We present EHAman
SAFE, an instantiation of EHA with manual event generation

and SAFE, which is applicable to real-world web apps.
– We evaluate EHAman

SAFE in terms of analysis coverage and precision.

The remainder of this paper is organized as follows. We first explain the
concrete semantics of event handlers in web apps, describe how existing whole-
program analyzers handle events in a sound but unscalable manner, and present
an overview of our approach using concrete code examples in Sect. 2. We describe
EHA and its prototype implementation in Sect. 3 and Sect. 4, respectively. We
evaluate the EHA instance using real-world web apps in Sect. 5, discuss related
work in Sect. 6, and conclude in Sect. 7 with future work.

2 Analyses of Event Handlers

2.1 Event Handlers in Web Apps

Web apps may receive events from their execution environments like browsers
or from users1. When a web app receives an event, it reacts to the event by
executing JavaScript code registered as a handler (or a listener) of the event.
An event handler consists of three components: an event target, an event type,
and a callback function. An event target may be any DOM object like Element,
window, and XMLHttpRequest. An event type is a string representation of the event
action type such as "load", "click", and "keydown". Finally, a callback function
is a JavaScript function to be executed when its corresponding event occurs.
1 http://www.w3schools.com/js/js events.asp.

http://www.w3schools.com/js/js_events.asp

132 J. Park et al.

Fig. 1. (a) A conservative modeling of event control flows (b) Modeling in TAJS [9]

Users execute web apps by triggering various events, thus we consider
sequences of events triggered by users as user inputs to web apps. During exe-
cution, a set of event handlers that can be executed by a user may vary. First,
because event handlers are dynamically registered to and removed from DOM
objects, executable event handlers for an event change at run time. For example,
when a DOM object has only the following event handler registered:

(A, "click", function f(){ B.addEventListener("click", function g(){}); })

if a user clicks the target A, a new event handler becomes registered, which
makes two handlers executable. Second, changes in DOM states of a web app
also change a set of executable event handlers for an event. For instance, an
event target may be removed from document via DOM API calls, which makes
the detached event target inaccessible from users. Also, events may not be cap-
tured depending on their capturing/bubbling options and CSS style settings of
visibility or display. In addition, it is a common practice to manipulate CSS
styles like the following:

– HTMLElement.style.opacity = 0;

– HTMLElement.style.zIndex = n;

to hide an element such as a button under another element, making it inaccessible
from users. These various features affect event sequences that users can trigger
and event handlers that are executed accordingly.

2.2 Analysis of Event Handlers in Whole-Program Analyzers

Most existing whole-program JavaScript analyzers handle event handlers in a
sound but unscalable manner as illustrated in Fig. 1(a). They first analyze top-
level code that is statically available in a given web app; event handlers may be
registered during the analysis of top-level code. Then, after the “exit block of

EventHandler -Based Analysis Framework for Web Apps 133

top-level code” node, they analyze code initiated by event handlers in any order
as denoted by the “trigger all event handlers” node in any number of times.
According to this modeling of event control flows, all possible event sequences
that occur after loading the top-level code are soundly analyzed. Note that even
though whole-program analyzers use this sound event modeling, the analyzers
themselves may not be sound because of other features like dynamic code gener-
ation. However, because registered event handlers may be removed during eval-
uation and they may be even inaccessible due to some CSS styles as discussed
in Sect. 2.1, the event modeling in Fig. 1(a) may contain too many infeasible
event sequences that are impossible in concrete executions. Analysis with lots of
infeasible event sequences involves unnecessary computation that wastes anal-
ysis time, and often results in imprecise analysis results. Such a conservative
modeling of event control flows indeed reports many false positives [16].

To reduce the amount of infeasible event sequences to analyze, TAJS uses
a refined modeling of event control flows as shown in Fig. 1(b). Among various
event handlers, this modeling distinguishes “load event handlers” and analyzes
them before all the other event handlers. While this modeling is technically
unsound because non-load events may precede load events [15], most web apps
satisfy this modeling in practice. Moreover, because load event handlers often
initialize top-level variables, the event modeling in Fig. 1(a) often produces false
positives by analyzing non-load event functions before load event functions ini-
tialize top-level variables. On the contrary, the TAJS modeling reduces such
false positives by analyzing load event handlers before non-load event handlers.
Although the TAJS modeling distinguishes a load event, the over-approximation
of the other event handler calls still brings analysis precision and scalability
issues.

2.3 Analysis of Event Handlers in EH -Based Analyzers

To alleviate the analysis precision and scalability problem due to event modeling,
we propose the EHA framework, which aims to analyze a subset of execution flows
within a limited time budget to detect bugs in partial execution flows rather
than to analyze all execution flows. EHA presents two key points to achieve the
goal. First, it slices the entire execution flows by using each event handler as an
individual entry point, which amounts to consider a given web app as a collection
of smaller web apps. This slicing brings the effect of breaking the loop structures
in existing event modelings shown in Fig. 1. Second, in order to analyze sliced
event control flows in various contexts, EHA constructs an initial abstract heap
of each entry point that contains necessary information to analyze a given event
control flow by abstracting dynamically collected states. More specifically, EHA
takes two components—a dynamic event generator and a static analyzer—and
collects concrete values of non-local variables of event functions via the dynamic
event generator, and abstracts the collected values using the static analyzer.

Let us compare static, dynamic, and EH -based analyses with an example. We
assume that a top-level code registers three event handlers: l, a, and b where l

134 J. Park et al.

denotes a load event handler, which precedes the others and runs once. In addi-
tion, a and b simulate a pop-up and its close button, respectively. Thus, we can
represent possible event sequences as a regular expression: l(ab)∗a?. For a given
event sequence lababa, Fig. 2 represents the event flows analyzed by each analy-
sis technique. A conservative static analysis contains infeasible event sequences
like the ones starting with a or b, whereas a dynamic analysis covers only short
prefixes out of infinitely many flows. The EH -based analysis slices the web app
into three handler units: l, a, and b. Hence, there is no loop in the event model-
ing; each handler considers every prefix of the given event sequence that ends with
itself. For example, the handler a considers la, laba, and lababa as possible event
sequences. Moreover, instead of abstracting the evaluation result of each sequence
separately and merging them, it first merges the evaluation result of each sequence
just before the handler a—l, lab, and labab—and uses its abstraction as the initial
heap of analyzing a, which analyzes more event flows.

Fig. 2. Event flows analyzed by (a) static, (b) dynamic, and (c) EH -based analyses.

Fig. 3. Overall structure of EHA

EventHandler -Based Analysis Framework for Web Apps 135

3 Technical Details

This section discusses the EHA framework, which composes of five phases as
shown in Fig. 3. Boxes denote modules and ellipses denote data. EHA takes three
inputs: a web app (Web App) to analyze and find bugs in it, and two modules
to use as its components—a dynamic event sequence generator (Event Generator)
and a static analyzer (Static Analyzer). During the first instrumentation phase,
Instrumentor inserts code that dynamically collects states into the input web app.
Then, during the execution phase, the Instrumented Web App runs on a browser
producing Collected States. One of the input module Event Generator repeatedly
receives states of the running web app and sends user events to it during this
phase. In the third unit building phase, Unit Web App Builder constructs a small
Unit Web App for each event handler from Collected States. After analyzing the set
of Unit Web Apps by another input module Static Analyzer in the static analysis
phase, Alarm Aggregator summarizes the resulting set of Bug Reports and generates
a Final Bug Report for the original input Web App in the final alarm aggregation
phase. We now describe each phase in more detail.

Inst (h ≡ <head>) = h.addChildFront(<script src="helper" />)

Inst (function f(· · ·) b) = function f(· · ·){
var envId = getNewEnvId(); var nonlocals = {x′

1:x1 · · · };
pushCallStack(); collectState(nonlocals); b; popCallStack(); }

Inst (return x;) = { var retVal = x; popCallStack(); return retVal; }
Inst (catch(e){ b }) = { popCallStack(); b }
Inst (x = e) = x = e; update(x′,x)
Inst (x ⊕) = x ⊕ ; update(x′,x, ⊕)

Inst (⊕ x) = ⊕ x; update(x′,x)

Fig. 4. Instrumentation rules (partial)

Instrumentation Phase. The first phase instruments a given web app so that the
instrumented web app can record dynamically collected states during execution.
Figure 4 presents the instrumentation rules for the most important cases where
the unary operator ⊕ is either ++ or --. For presentation brevity, we abuse the
notation and write x′ to denote the string representation of a variable name x.
The Inst function converts necessary JavaScript language constructs to others
that perform dynamic logging. For example, for each function declaration of f ,
Inst inserts four statements before the function body and one statement after
the function body to keep track of non-local variables of the function f .

Execution Phase. The execution phase runs an instrumented web app on a
browser using events generated by Event Generator. Because EHA is parameter-
ized by the input Event Generator, it may be an automated testing tool or manual

136 J. Park et al.

efforts. The following definitions formally specify the concepts being used in the
execution phase and the rest of this section:

Execution σ ∈ S
∗ State s ∈ S = P × H ProgramPoint p ∈ P

Heap h ∈ H = A → O Address @x ∈ A Object O = F → V

Field x ∈ F Value V = Vb � A PrimitiveValue Vb

An execution of a web app σ is a sequence of states that are results of evaluation
of the web app code. We omit how states change according to the evaluation of
different language constructs, but focus on which states are collected during exe-
cution. A state s is a pair of a program point p denoting the source location of the
code being evaluated and a heap h denoting a memory status. A heap is a map
from addresses to objects. An address is a unique identifier assigned whenever an
object is created, and an object is a map from fields to values. A field is an object
property name and a value is either a primitive value or an address that denotes
an object. For presentation brevity, we abuse Object to represent Environment as
well, which is a map from variables to values. Then, EHA collects states at event
callback entries during execution:

Collected States(σ) = {s | s ∈ σ s.t. s is at an event callback entry}
the program points of which are function entries and the call stack depths are 1.

Unit Building Phase. As shown in Fig. 3, this phase constructs a set of sliced
unit web apps using dynamically collected states. More specifically, it divides
the collected states into EH units, and then for each EH unit u, it constructs
an initial summary ŝuI that contains merged values about non-local variables
from the states in u. As discussed in Sect. 2.1, an event handler consists of three
components: an event target, an event type, and a callback function. Thus, we
design an EH unit u with an abstract event target φ, an event type τ , and a
program point p:

u ∈ U = AbsEventTarget × EventType × P

φ ∈ AbsEventTarget = DOMTreePosition � A

τ ∈ EventType

While we use the same concrete event types and program points for EH s, we
abstract concrete event targets to maintain a modest number of event targets. We
assume the static analyzer expresses analysis results as summaries. A summary
ŝ is a map from a pair of a program point and a context to an abstract heap:

ŝ ∈ Ŝ = P × Context → Ĥ c ∈ Context

where Context is parameterized by an input static analyzer of EHA.
For each dynamically collected state s = (p, h) with an event target o and

an event type τ both contained in h, Unit Web App Builder calculates an EH unit
u as follows:

u = αs(s) = (αo(o), τ, p)

where αo(o) =
{
DOMTreePosition(o) if o is attached on DOM
o otherwise

EventHandler -Based Analysis Framework for Web Apps 137

where DOMTreePosition(o) represents the DOM tree position of o in terms of
sequences of child indices from the root node of DOM. Then, it constructs an
initial summary for each unit u, ŝuI , as follows:

ŝuI (p, c) =
{

ĥinit
u if p is the global entry point ∧ c = ε

⊥H otherwise

The initial summary maps all pairs of program points and contexts to the heap
bottom ⊥H denoting no information, but it keeps a single map from a pair of the
global entry program point and the empty context ε to the initial abstract heap
ĥinit
u =

⊔
i αh(hi) where si ∈ Collected States ∧ αs(si) = u ∧ si = (pi, hi). The

initial abstract heap for a unit u is a join of all abstraction results of the heaps
in the collected states that are mapped to the same u. The heap abstraction αh

and the abstract heap join
⊔

are parameterized by the input static analyzer.

Static Analysis Phase. Now, the static analysis phase analyzes each sliced unit
web app one by one, and detects any bugs in it. Let us call the static analyzer
that EHA takes as its input SA. Without loss of generality, let us assume that SA
performs a whole-program analysis to compute the analysis result ŝfinal with the
initial summary ŝI by computing the least fixpoint of a semantics transfer func-
tion F̂ : ŝfinal = leastFix λŝ.(ŝI �

̂S F̂ (ŝ)) and then reports alarms for possible
bugs in it. We call an instance of EHA that takes SA as its input static analyzer
EHASA. Then, for each EH unit u, EHASA performs an EH -based analysis to com-
pute its analysis result ŝufinal with the initial summary ŝuI constructed during the
unit building phase by computing the least fixpoint of the same semantics transfer
function F̂ : ŝufinal = leastFix λŝ.(ŝuI �

̂S F̂ (ŝ)). It also reports alarms for possible
bugs in each unit u.

Alarm Aggregation Phase. The final phase combines all bug reports from sliced
unit web apps and constructs a final bug report. Because source locations of bugs
in a bug report from a unit web app are different from those in an original input
web app, Alarm Aggregator resolves such differences. Since a single source location
in the original web app may appear multiple times in differently sliced unit web
apps, Alarm Aggregator also merges bug reports for the same source locations.

4 Implementation

This section describes how we implemented concrete data representation and
each module in dark boxes in Fig. 3 in our prototype implementation.

Instrumentor. The main idea of instrumentor is similar to that of Jalangi [20],
a JavaScript dynamic analysis framework, and we implemented the rules
(partially) shown in Fig. 4. An instrumented web app collects states during exe-
cution by stringifying them and writing them on files. Dynamically collected infor-
mation may be ordinary JavaScript values or built-in objects of JavaScript engines
or browsers, which are often implemented in non-JavaScript, native languages.
Because such built-in values are inaccessible from JavaScript code, we omit their

138 J. Park et al.

values in the collected states. On the contrary, ordinary JavaScript values are
stringified in JSON format. A primitive value is stringified by JSON.stringify and
stored in ValueMap. An object value is stored in two places—its pointer in Storage

and its pointer identifier in ValueMap—and its property values are also recur-
sively stringified and stored in StorageMap. The stringifieddocument, ValueMap, and
StorageMap are written in files at the end of execution, andUnitWeb App Builder con-
verts them to states in the unit building phase.

_handler.apply(_target, _argument); callback function call

var _handler = _obj1;
var _target = _obj2;
var _argument = _obj3; variable declaration/initialization

if (_BoolTop) { _obj3[prop] ; }
else { _obj3[prop] ; } object property initialization

var _obj1 = function _handler(){ }; object declaration

var DOMTokenList = function (){}; modeling code for built-in objects

Fig. 5. Contents in a JavaScript file of a unit web app

Unit Web App Builder. In our prototype implementation, the unit web app
builder parses the collected states as in JSON format and constructs a unit web
app as multiple HTML files and one JavaScript file. A single JavaScript file
contains all the information to build an initial abstract heap as Fig. 5. It con-
tains modeling code for built-in objects on the top, declares objects recorded in
StorageMap and initializes their properties, and then declares and initializes non-
local variables, which are all the information needed to build an initial abstract
heap. At the bottom, the handler function is being called.

Starting from the above 3 variables— handler, target, and arguments—
we can fill in contents of a unit web app using the collected states. For each
variable, we get its value from the collected states and construct a corresponding
JavaScript code. When the value of a variable is a primitive value, create a
corresponding code fragment as a string literal. For an object value, get the
value from StorageMap using its pointer id, and repeat the process for its property
values. For a function object value, repeat the process for its non-local variables.

Alarm Aggregator. The alarm aggregator maintains a mapping between different
source locations and eliminates duplicated alarms. It should map between loca-
tions in the original web app and in sliced unit web apps. Our implementation
keeps track of corresponding AST nodes in different web apps, and utilizes the
information for mapping locations. It identifies duplicated alarms by string com-
parison of their bug messages and locations after mapping the source locations.

EventHandler -Based Analysis Framework for Web Apps 139

5 Experimental Evaluation

In this section, we evaluate EHAman
SAFE, an instantiation of EHA with manual event

generation and SAFE [12], to answer the following research questions:

In the case of providing dynamic events as many as possible,

– RQ1. Full Coverage: How many event flows does the EH -based analysis
cover compared with the whole-program analysis?

– RQ2. Precision: How precise is the EH -based analysis compared with the
whole-program analysis?

– RQ3. Scalability: What is the execution time of each phase in the analyses?
– RQ4. Partial Coverage: How many event flows does the EH -based analysis

cover for timeout analyses?

5.1 Experimental Setup

We studied 8 open-source game web apps [8], which were used in the evaluation
of SAFE. They have various buttons and show event-dependent behaviors. The
first two columns of Table 1 show the names and lines of code of the apps,
respectively. The first four apps do not use any JavaScript libraries, and the
remaining apps use the jQuery library version 2.0.3. They are all cross-platform
apps that can run on Chrome, Chrome-extension, and Tizen environments.

To perform experiments, we instantiated EHA with two inputs. As an
Event Generator input, we chose manual event generation by one undergraduate
researcher who was ignorant of EHA. He was instructed to explore behaviors of
web apps as much as possible, and he could check the number of functions being
called during execution as a guidance. In order to make execution environments
simple enough to reproduce multiple times, we collected dynamic states from
a browser without any cached data. As a Static Analyzer input, we use SAFE

Table 1. Analysis coverage of SAFE and EHAman
SAFE.

App LoC #Analyzed Handler Ftn #Analyzed Ftn Total

(Id) App name Both SAFE

only

EHAman
SAFE

only

Both SAFE

only

EHAman
SAFE

only

(01) HangOnMan 1326 20 0 11 67 3 19 89

(02) MakeAMonster 1405 22 0 5 63 5 7 75

(03) Mancala 1546 28 0 4 67 4 5 76

(04) Rabbit 1403 34 0 2 76 22 2 100

(05) Bubblewrap 7220 - - 8 - - 10 10

(06) CountingBeads 6949 - - 9 - - 11 11

(07) MemoryGameForOlderKids 6955 - - 7 - - 9 9

(08) WordsSwarm 7557 - - 9 - - 48 48

Total 34363 104 0 55 273 34 111 418

140 J. Park et al.

because it can analyze the most JavaScript web apps among existing analyz-
ers via the state-of-the-art DOM tree abstraction [14,15] and it supports a bug
detector [16]. We ran the apps with Chrome on a 2.9 GHz quad-core Intel Core
i7 with 16 GB memory in the execution phase. The other phases are conducted
on Ubuntu 16.04.1 with intel Core i7 and 32 GB memory.

5.2 Answers to RQs

Answer to RQ1. For the analysis coverage, we measured the numbers of analyzed
functions and true positives by SAFE and EHAman

SAFE. Because SAFE could not
analyze 4 apps that use jQuery within the timeout of 72 h, we considered only
the other apps for SAFE.

Table 1 summarizes the result of analyzed functions. The 3rd to the 5th
columns show the numbers of registered event handler functions analyzed by
both, SAFE only, and EHAman

SAFE only, respectively. Similarly, the 6th to the
8th columns show the numbers of functions analyzed by both, SAFE only, and
EHAman

SAFE only, respectively. When we compare only the registered event handler
functions among all the analyzed functions, EHAman

SAFE outperforms SAFE. Even
though SAFE was designed to be sound, it missed some behaviors. Our investi-
gation showed that the causes of the unsoundness were due to incomplete DOM
modeling. For the numbers of analyzed functions, the analyses covered more than
75% of the functions in common. EHAman

SAFE analyzed more functions for the first
3 subjects than SAFE due to missing event registrations caused by incomplete
DOM modeling in SAFE. On the other hand, SAFE analyzed more functions for
the 4th subject because EHAman

SAFE missed flows during the execution phase. We
studied the analysis result of the 4th subject in more detail, and found flows that
resume previously suspended execution by using cached data in a localStorage

object. EHAman
SAFE could not analyze the flows because it does not contain cached

data, while SAFE could use a sound modeling of localStorage. Lastly, EHAman
SAFE

did not miss any true positives that SAFE detected, and EHAman
SAFE could detect

four more true positives in common functions as shown in Table 2, which implies
that EHAman

SAFE analyzed execution flows in those functions that SAFE missed.
We explain Table 2 in more detail in the next answer.

Answer to RQ2. To compare the analysis precision, we measured the numbers
of false positives (FPs) in alarm reports by SAFE and EHAman

SAFE. Note that
true positives (TPs) may not be considered as “bugs” by app developers. For
example, while SAFE reports a warning when the undefined value is implicitly
converted to a number because it is a well-known error-prone pattern, it may be
an intentional behavior of a developer. Thus, TPs denote they are reproducible
in concrete executions while FPs denote it is impossible to reproduce them in
feasible executions. Similarly for RQ1, we compare the analysis precision for four
apps that do not use jQuery.

Tables 2 and 3 categorize alarms in three categories: alarms reported by both
SAFE and EHAman

SAFE, alarms in functions commonly analyzed by both, and alarms
in functions that are analyzed by only one. Table 2 shows numbers of TPs and

EventHandler -Based Analysis Framework for Web Apps 141

Table 2. Alarms reported by SAFE and EHAman
SAFE.

App Id Common alarms Different alarms

Common functions Different functions

SAFE EHAman
SAFE SAFE EHAman

SAFE

#TP #FP #TP #FP #TP #FP #TP #FP #TP #FP

01 1 3 0 10 3 2 0 0 0 2

02 1 2 0 0 1 8 0 5 0 1

03 1 3 0 30 0 6 0 0 0 2

04 3 7 0 1 0 0 0 0 0 0

05 - - - - - - - - 0 1

06 - - - - - - - - 0 3

07 - - - - - - - - 0 1

08 - - - - - - - - 0 1

Total 6 15 0 41 4 16 0 5 0 11

Table 3. False alarms categorized by causes

Cause Common
alarms

Different alarms

Common functions Different functions

SAFE EHAman
SAFE SAFE EHAman

SAFE

Infeasible event flow - 40 - 0 -

ECMAScript 5 1 0 0 0 0

Object join 0 0 3 0 0

Handler unit abstraction - - 3 - 0

Omitted property - - 0 - 2

Absence of DOM model 14 1 10 5 9

Total 15 41 16 5 11

FPs for each app, and Table 3 further categorizes alarms in terms of their causes.
Out of 21 common alarms, 6 are TPs and 15 are FPs. Among 15 common FPs,
14 are due to absence of DOM modeling and 1 is due to the unsupported getter
and setter semantics. For the functions commonly analyzed by both, they may
report different alarms because they are based on different abstract heaps. We
observed that 40 FPs from SAFE are due to the over-approximated event sys-
tem modeling. Especially, the causes of FPs in the 01 and 03 apps are because
top-level variables are initialized when non-load event handler functions are
called, which implies that the event modeling of Fig. 1(b) would have a simi-
lar imprecision problem. On the contrary, EHAman

SAFE reported only 16 FPs mostly
(10 FPs) due to absence of DOM modeling. The remaining three FPs from object
joins and three FPs by handler unit abstraction are due to inherent problems

142 J. Park et al.

of static analysis that merges multiple values losing precision. Finally, for the
functions analyzed by only one analyzer, all the reported alarms are FPs due to
absence of DOM modeling and omitted properties in the EHAman

SAFE implementa-
tion. In short, EHAman

SAFE could partially analyze more subjects than SAFE, and it
improved the analysis precision by finding four TPs and less FPs for commonly
analyzed functions. Especially, its handler unit abstraction produced three FPs
which are considerably fewer than 40 FPs from over-approximated event mod-
eling in SAFE without missing any TPs.

Answer to RQ3. To compare the analysis scalability, we measured the execution
time of each phase for the both analyzers as summarized in Table 4.

Table 4. Execution time (seconds) of each phase for SAFE and EHAman
SAFE

Id SAFE EHAman
SAFE

Total Top-Level Event Loop Execution Unit build Static analysis

Total #Call Ave. Total #EH #TO Ave.

01 375.7 8.9 366.8 465.41 682 0.68 10.0 33038.4 130 9 96.6

02 282.0 8.2 273.8 252.86 135 1.87 6.0 6379.7 33 0 70.4

03 850.2 15.5 834.7 82.70 168 0.49 2.0 7894.1 43 3 68.8

04 1276.6 325.3 951.3 302.36 589 0.51 2.1 16223.9 95 7 54.2

05 ✗ 137.3 ✗ 1713.61 151 11.35 287.2 66238.5 63 55 10.4

06 ✗ 86.9 ✗ 383.08 85 4.51 221.5 17257.1 27 9 146.5

07 ✗ 119.3 ✗ 2836.05 242 11.72 348.2 104583.5 94 87 7.7

08 ✗ 82.4 ✗ 1074.73 146 7.36 1158.5 39506.3 41 32 33.5

Ave. 696.1 98.0 606.6 888.85 275 3.24 254.4 3076.5 66 25 76.0

For SAFE, we measured the time took for analyses of the entire code, top-
level code, and event loops: Total = Top-Level + Event Loop. For four subjects
that do not use any JavaScript libraries, the total analysis took at most 1276.6 s
among which 951.3 s took for analyzing event loops. While SAFE finished ana-
lyzing the top-level code of the other subjects that use jQuery in 137.3 s at the
maximum, it could not finish analyzing their entire code within the time of 72
h (259,200 s).

For EHAman
SAFE, because the maximum execution time of the instrumentation

phase and the alarm aggregation phase are 10.3 s and 4.9 s, respectively, much
smaller than the other phases, the table shows only the other phases. For the
execution phase, we present the overhead to collect states:

EHAman
SAFE (Execution Phase): Total = #Call × Ave.

The 6th column presents the numbers of event handler function calls that Event

Generator executed; each event handler function pauses for 3.24 s on average.
In order to understand the performance overhead due to the instrumentation,
we measured its slowdown effect by replacing all the instrumented helper func-
tions with a function with the empty body. With the Sunspider benchmark,
Jalangi showed x30 slowdown and EHAman

SAFE showed x178 slowdown on average.
We observed that collecting non-local variables for each function incurs much
performance overhead, and more function calls make more overhead.

EventHandler -Based Analysis Framework for Web Apps 143

The unit building phase takes time to generate unit web app code. Our
investigation showed that the time heavily depends on the size of collected data.
For the static analysis phase, we measured the analysis time of unit web apps
except timeout (TO):

EHAman
SAFE (StaticAnalysis Phase):Total=(#EH−#TO)×Ave.+1200×#TO

We analyzed each unit web app with the timeout of 1200 s. While the 02 app
has no timeout, the 07 app has 87 timeouts out of 94 unit web apps. On average,
analysis of 38% (25/66) of the unit web apps was timeout. Note that even for
the first four apps that SAFE finished analysis, EHAman

SAFE had some timeouts.
We conjecture that SAFE finished analysis quickly since it missed some flows
because of unsupported DOM modeling. By contrast, because EHAman

SAFE analyzes
more flows using dynamically collected data, it had several timeouts.

Answer to RQ4. To see how many event flows EHAman
SAFE covers with a limited

time budget, let us consider four apps that SAFE did not finish in 72 h from
Tables 1 and 4. EHAman

SAFE finished 19% (42/225) of the units within the timeout of
1200 s as shown in Table 4, and the average analysis time excluding timeouts was
76.0 s. Because it implies that web apps have event flows that can be analyzed in
about 76 s, it may be meaningful to analyze such simple event flows quickly first
to find bugs in them. Starting with 42 units, EHAman

SAFE covered 78 functions as
shown in Table 1. While SAFE could not provide any bug reports for four apps
using jQuery, EHAman

SAFE reported 6 alarms from the analzyed functions.

6 Related Work

Researchers have studied event dependencies to analyze event flows more pre-
cisely. Madsen et al. [13] proposed event-based call graphs, which extend tra-
ditional call graphs with behaviors of event handlers such as registration and
trigger of events. While they do not consider analysis of DOM state changes and
event capturing/bubbling behaviors, EHA addresses them by utilizing dynami-
cally collected states. Sung et al. [21] introduced DOM event dependency and
exploited it to test JavaScript web apps. Their tool improved the efficiency of
event testing but it has not yet been applied for static analysis of event loops.

Taking advantage of both static analysis and dynamic analysis is not a new
idea [5]. For JavaScript analysis, researches tried to analyze dynamic features
of JavaScript [7] and DOM values of web apps [23,24] precisely. Alimadadi
et al. [1] proposedaDOM-sensitive change impact analysis for JavaScriptwebapps.
JavaScript Blended Analysis Framework (JSBAF) [26] collects dynamic traces of
a given app, specializes dynamic features of JavaScript like eval calls and reflec-
tive property accesses utilizing the collected traces. JSBAF analyzes each trace
separately and combines the results, but EHA abstracts the collected states on
each EH first and then analyzes the units to get generalized contexts. Finally, Ko
et al. [11] proposed a tunable static analysis framework that utilizes a light-weight
pre-analysis. Similarly, our work builds an approximation of selected executions by
constructing an initial abstract heap utilizing dynamic information, which enables
to analyze complex event flows although partially.

144 J. Park et al.

7 Conclusion and Future Work

Because existing JavaScript static analyzers conservatively approximate event-
driven flows, even state-of-the-art analyzers often fail to analyze event flows in
web apps within a timeout of several hours. We present EHA, a bug detection
framework that performs a novel EH -based static analysis using dynamically
collected state information. As a general framework, EHA is parameterized by
a way to generate event sequences and a JavaScript static analyzer. We present
EHAman

SAFE, an instantiation of EHA with manual event generation and the SAFE
JavaScript static analyzer. Our experimental evaluation shows that the EH -
based analysis (EHAman

SAFE) reduced false positives reported by the whole-program
analysis (SAFE) due to its over-approximation of the event system modeling.
Moreover, EHAman

SAFE finished analyzing partial execution flows of the web apps
that SAFE failed to analyze within the timeout of 72 h. We plan to inspect the
soundness issues due to the lack of DOM modeling in whole-program analyzers
with systematic ways via dynamic analyses [3,6,25], and to use an automated
testing tool as a dynamic event generator instead of the manual generation.

Acknowledgment. The research leading to these results has received funding from
National Research Foundation of Korea (NRF) (Grants NRF-2017R1A2B3012020 and
2017M3C4A7068177).

References

1. Alimadadi, S., Mesbah, A., Pattabiraman, K.: Hybrid DOM-sensitive change
impact analysis for JavaScript. In: ECOOP 2015 (2015)

2. Andreasen, E., Møller, A.: Determinacy in static analysis for jQuery. In: OOPSLA
2014 (2014)

3. Andreasen, E.S., Møller, A., Nielsen, B.B.: Systematic approaches for increasing
soundness and precision of static analyzers. In: SOAP 2017 (2017)

4. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K.,
Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17524-9 1

5. Ernst, M.D.: Static and dynamic analysis: synergy and duality. In: PASTE 2004
(2004)

6. Grech, N., Fourtounis, G., Francalanza, A., Smaragdakis, Y.: Heaps don’t lie: coun-
tering unsoundness with heap snapshots. In: OOPSLA 2017 (2017)

7. Guarnieri, S., Livshits, B.: GATEKEEPER: mostly static enforcement of security
and reliability policies for JavasSript code. In: SSYM 2009 (2009)

8. Intel: HTML5 web apps (2017). https://01.org/html5webapps/webapps
9. Jensen, S.H., Madsen, M., Møller, A.: Modeling the HTML DOM and browser API

in static analysis of JavaScript web applications. In: ESEC/FSE 2011 (2011)
10. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,

J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03237-0 17

11. Ko, Y., Lee, H., Dolby, J., Ryu, S.: Practically tunable static analysis framework
for large-scale JavaScript applications. In: ASE 2015 (2015)

https://doi.org/10.1007/978-3-319-17524-9_1
https://01.org/html5webapps/webapps
https://doi.org/10.1007/978-3-642-03237-0_17

EventHandler -Based Analysis Framework for Web Apps 145

12. Lee, H., Won, S., Jin, J., Cho, J., Ryu, S.: SAFE: formal specification and imple-
mentation of a scalable analysis framework for ECMAScript. In: FOOL 2012 (2012)

13. Madsen, M., Tip, F., Lhoták, O.: Static analysis of event-driven Node.js JavaScript
applications. In: OOPSLA 2015 (2015)

14. Park, C., Ryu, S.: Scalable and precise static analysis of JavaScript applications
via loop-sensitivity. In: ECOOP 2015 (2015)

15. Park, C., Won, S., Jin, J., Ryu, S.: Static analysis of JavaScript web applications
in the wild via practical DOM modeling. In: ASE 2015 (2015)

16. Park, J., Lim, I., Ryu, S.: Battles with false positives in static analysis of JavaScript
web applications in the wild. In: ICSE-SEIP 2016 (2016)

17. Richards, G., Lebresne, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior
of JavaScript programs. In: PLDI 2010 (2010)

18. Sadowski, C., Van Gogh, J., Jaspan, C., Söderberg, E., Winter, C.: Tricorder:
building a program analysis ecosystem. In: ICSE 2015 (2015)

19. Schäfer, M., Sridharan, M., Dolby, J., Tip, F.: Dynamic determinacy analysis. In:
PLDI 2013 (2013)

20. Sen, K., Kalasapur, S., Brutch, T., Gibbs, S.: Jalangi: a selective record-replay and
dynamic analysis framework for JavaScript. In: ESEC/FSE 2013 (2013)

21. Sung, C., Kusano, M., Sinha, N., Wang, C.: Static DOM event dependency analysis
for testing web applications. In: FSE 2016 (2016)

22. TIOBE: TIOBE Index for September 2017. http://www.tiobe.com/tiobe-index
23. Tripp, O., Ferrara, P., Pistoia, M.: Hybrid security analysis of web JavaScript code

via dynamic partial evaluation. In: ISSTA 2014 (2014)
24. Tripp, O., Weisman, O.: Hybrid analysis for JavaScript security assessment. In:

ESEC/FSE 2011 (2011)
25. Wang, Y., Zhang, H., Rountev, A.: On the unsoundness of static analysis for

android GUIs. In: SOAP 2016 (2016)
26. Wei, S., Ryder, B.G.: Practical blended taint analysis for JavaScript. In: ISSTA

2013 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://www.tiobe.com/tiobe-index
http://creativecommons.org/licenses/by/4.0/

Software Design and Verification

Hierarchical Specification and Verification
of Architectural Design Patterns

Diego Marmsoler(B)

Technische Universität München, Munich, Germany
diego.marmsoler@tum.de

Abstract. Architectural design patterns capture architectural design
experience and provide abstract solutions to recurring architectural
design problems. Their description is usually expressed informally and it
is not verified whether the proposed specification indeed solves the orig-
inal design problem. As a consequence, an architect cannot fully rely
on the specification when implementing a pattern to solve a certain
problem. To address this issue, we propose an approach for the speci-
fication and verification of architectural design patterns. Our approach
is based on interactive theorem proving and leverages the hierarchical
nature of patterns to foster reuse of verification results. The following
paper presents FACTum, a methodology and corresponding specification
techniques to support the formal specification of patterns. Moreover, it
describes an algorithm to map a given FACTum specification to a cor-
responding Isabelle/HOL theory and shows its soundness. Finally, the
paper demonstrates the approach by verifying versions of three widely
used patterns: the singleton, the publisher-subscriber, and the black-
board pattern.

Keywords: Architectural design patterns
Interactive theorem proving · Dynamic architectures
Algebraic specification · Configuration traces

1 Introduction

Architectural design patterns capture architectural design experience and pro-
vide abstract solutions to recurring architectural design problems. They are an
important concept in software engineering and regarded as one of the major
tools to support an architect in the conceptualization and analysis of software
systems [1]. The importance of patterns resulted in a panoply of pattern descrip-
tions in literature [1–3]. They usually consist of a description of some key archi-
tectural constraints imposed by the pattern, such as involved data types, types
of components, and assertions about the activation/deactivation of components
as well as connections between component ports. These descriptions are usually
highly informal and the claim that they indeed solve a certain design problem
remains unverified. As a consequence, an architect cannot fully rely on a pat-
tern’s specification to solve a design problem faced during the development of a
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 149–168, 2018.
https://doi.org/10.1007/978-3-319-89363-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_9&domain=pdf
http://orcid.org/0000-0003-2859-7673

150 D. Marmsoler

new architecture. Moreover, verified pattern descriptions are a necessary precon-
dition for automatic pattern conformance analyses, since missing assertions in a
pattern’s specification renders their detection impossible. Compared to concrete
architectures, architectural design patterns pose several new challenges to the
specification as well as the verification:

– C1: Axiomatic Specifications. Compared to traditional architectural specifi-
cations, specifications of patterns are usually axiomatic, focusing on a few,
but important properties.

– C2: Dynamic Aspects: Pattern specifications usually involve the specification
of dynamic aspects, such as instantiation of components and reconfiguration
of connections.

– C3: Hierarchical Specifications: Pattern specifications usually build on each
other, i.e., the specification of a pattern may instantiate the specification of
another pattern.

This is why traditional techniques for the specification and verification of con-
crete architectures are not well-suited to be applied for the specification and
verification of patterns.

Therefore, we propose an approach for the formal specification and verifi-
cation of architectural design patterns which is based on interactive theorem
proving [4]. Our approach is built on top of a pre-existing model of dynamic
architectures [5,6] and its formalization in Isabelle/HOL [7] which comes with
a calculus to support reasoning about such architectures [8]. Our approach pro-
vides techniques to specify patterns and corresponding design problems and
allows to map a specification to a corresponding Isabelle/HOL theory [9]. The
theory and the corresponding calculus can then be used to verify that a specifi-
cation indeed solves the design problem the pattern claims to solve.

With this paper, we elaborate on our previous work by providing the follow-
ing contributions: First, we present FACTum, a novel approach for the formal
specification of architecture design patterns. Second, we provide an improved
version of the algorithm to map a given FACTum specification to a correspond-
ing Isabelle/HOL theory and show soundness of the mapping. Third, we demon-
strate the approach by specifying and verifying versions of three architectural
design patterns: the singleton pattern, the publisher subscriber pattern, and the
blackboard pattern.

The remainder of the paper is structured as follows: In Sect. 2, we provide
necessary background on interactive theorem proving and configuration traces
(our model of dynamic architectures). We then describe our approach to specify
patterns in Sect. 3. To this end, we define the notion of (hierarchical) pattern
specification and demonstrate it by specifying three architectural design pat-
terns. In Sect. 4, we first define the semantics of a pattern specification in terms
of configuration traces. Then, we provide an algorithm to map a given speci-
fication to a corresponding Isabelle/HOL theory and show its soundness, i.e.,
that the semantics of a specification is indeed preserved by the algorithm. We
proceed with an overview of related work in Sect. 5 and conclude the paper in
Sect. 6 with a brief discussion about how the approach addresses the challenges
C1–C3 identified above.

Hierarchical Specification and Verification of Architectural Design Patterns 151

2 Background

In the following, we provide some background on which our work is build.

2.1 Interactive Theorem Proving

Interactive theorem proving (ITP) is a semi-automatic approach for the devel-
opment of formal theories. Therefore, a set of proof assistants [4] have been
developed to support a human in the development of formal proofs. Since our
approach is based on Isabelle/HOL [9], in the following we describe some relevant
features about this specific prover.

In general, Isabelle is an LCF-style [10] theorem prover based on Standard
ML. It provides a so-called meta-logic on which different object logics are based.
Isabelle/HOL is one of them, implementing higher-order logic for Isabelle. It
integrates a prover IDE and comes with an extensive library of theories from
various domains. New theories are then developed by defining terms of a certain
type and deriving theorems from these definitions. Data types can be speci-
fied in Isabelle/HOL in terms of freely generated, inductive data type defini-
tions [11]. Axiomatic specification of data types is also supported in terms of
type classes [12]. To support the specification of theories over the data types,
Isabelle/HOL provides tools for inductive definitions and recursive function def-
initions. Moreover, Isabelle/HOL provides a structured proof language called
Isabelle/Isar [13] and a set of logical reasoners to support the verification of the-
orems. Modularization of theories is achieved through the notion of locales [14]
in which an interface is specified in terms of sets of functions (called parameters)
with corresponding assumptions about their behavior. Locales can extend other
locales and may be instantiated by concrete definitions of the corresponding
parameters.

2.2 A Model of Dynamic Architectures

Since architectures implementing an ADP may be dynamic as well (in the sense
that components of a certain type can be instantiated over time), our approach
is based on a model of dynamic architectures. One way to model such architec-
tures is in terms of sets of configuration traces [5,6], i.e., streams [15,16] over
architecture configurations. Thereby, architecture configurations can be thought
of as snapshots of the architecture during execution. Thus, they consist of a set
of (active) components with their ports valuated by messages and connections
between the ports of the components. Moreover, components of a certain type
may be parametrized by a set of messages.

Example 1 (Configuration trace). Assuming that A, . . . , Z and 1, . . . , 9 are mes-
sages. Figure 1 depicts a configuration trace t with corresponding architecture
configurations t(0) = k0, t(1) = k1, and t(2) = k2. Architecture configuration
k1, for example, consists of two active components named c1 and c2. Thereby,
component c1 is parametrized by {A}, has one input port i0 valuated with {8},
and three output ports o0, o1, o2, valuated with {1}, {G}, and {7}. ��

152 D. Marmsoler

c1〈A〉o0{9}
i0{5} o1

{A}

o2 {5}

c2i0{Z}
o0{9} i1

{A}

i2
{8, 4}

c3〈F〉
i0 {X}
o0 {9}i1

{5}

o1

{8, 4}

k0

,

c1〈A〉o0{1}
i0{8} o1

{G}

o2 {7}

c2i0{G}
o0{1} i1

{F}

i2 {8}

k1

,

c1〈A〉o0{2, 4}
i0{6} o1

{K}

o2 {9}

c2i0{3, 9}
o0{2} i1

{W}

i2 {6}

c3〈F〉
i0 {T, B}
o0 {7}i1

{2, 4}

o1

{3, 9}

k2

,

Fig. 1. Configuration trace with its first three architecture configurations.

Note that the model allows components to be valuated by a set of messages,
rather than just a single message, at each point in time. To evaluate the behavior
of a single component, the model comes with an operator Πc(t) to extract the
behavior of a single component c out of a given configuration trace t.

The model of configuration traces is also implemented by a correspond-
ing Isabelle/HOL theory which is available through the archive of formal
proofs [7]. The implementation formalizes a configuration trace as a function
trace = nat → cnf and provides an interface to the model in terms of a locale
“dynamic component”. The locale can be instantiated with components of a
dynamic architecture by providing definitions for two parameters:

– tCMP : id × cnf → cmp: an operator to obtain a component cmp with a
certain identifier id from an architecture configuration cnf , and

– active : id × cnf → bool : a predicate to assert whether a certain component
with identifier id is activated within an architecture configuration cnf .

For each dynamic component instantiating the locale, a set of definitions is
provided to support the specification of its behavior [17]. Moreover, a calculus to
reason about the behavior of the component in a dynamic context is provided [8].

3 Specifying Architectural Design Patterns

In the following, we describe FACTum, an approach to specify architectural
design patterns. Therefore, we first provide a definition of the different parts of a
pattern specification and then we explain each part in more detail. We conclude
the section with an exemplary specification of three patterns: the singleton,
the publisher subscriber, and the blackboard pattern. Thereby, the publisher
component is modeled as an instance of the singleton and the blackboard pattern
is specified as an instance of the publisher subscriber pattern.

Definition 1 (Pattern specification). A pattern specification is a 5-tuple
(VAR,DS , IS ,CT ,AS), consisting of:

Hierarchical Specification and Verification of Architectural Design Patterns 153

– Variables VAR = (V, V ′, C, C ′) with
• data type variables V and so-called rigid data type variables V ′ (variables

with a fixed interpretation during execution) and
• component variables C and rigid component variables C ′.

– A datatype specification DS = (Σ,DA,Gen) with
• a signature Σ = (S, F,B), containing sorts S and function/predicate
symbols F/B for a pattern’s data types,

• a set of data type assertions DA specifying the meaning of the signature
symbols in terms of a set of axioms, and

• a set of generator clauses Gen to construct data types.
– An interface specification IS = (P , tp, IF) with

• a set of ports P and corresponding type function tp : P → S which assigns
a sort to each port,

• a set of interfaces (CP , IP ,OP) ∈ IF with input ports IP ⊆ P and output
ports OP ⊆ P, as well as a set of configuration parameters CP ⊆ P.

– A component type specification (CT if)if∈IF which assigns assertions CT if

about the behavior of a component to each interface if ∈ IF .
– A set of architectural assertions AS, which specify activation and deactivation

of components and connections between the component’s ports.

Since a pattern specification may also instantiate other pattern specifications,
we require that for each instantiated pattern (VAR′,DS ′, IS ′,CT ′,AS ′), the
specification contains an additional port instantiation (ηi′)i′∈IF ′ , with injective
functions ηi′ : CP ′ ∪ IP ′ ∪ OP ′ → CP ∪ IP ∪ OP , such that ηi′(CP ′) ⊆ CP ,
ηi′(IP ′) ⊆ IP , and ηi′(OP ′) ⊆ OP , for some (CP , IP ,OP) ∈ IF . Thereby, we
require that for each (CP ′, IP ′, OP ′) ∈ IF ′ and p′ ∈ CP ′ ∪ IP ′ ∪ OP ′ the cor-
responding data type refines the type of p′, i.e., that tp(ηi′(p′)) refines (tp′(p′)).

In the following, we explain the different parts of a FACTum specification in
more detail.

3.1 Specifying Data Types

The data types involved in a pattern specification can be specified using alge-
braic specification techniques [18,19]. Algebraic specifications usually consist of
two parts: First, a signature Σ = (S, F,B), specifying a set of sorts S and func-
tion/predicate symbols F/B, typed by a list of sorts. In addition, an algebraic
specification provides a set of axioms DA to assign meaning to the symbols of
Σ. These axioms specify the characteristic properties of the data types used
by a pattern specification and are formulated over the symbols of F and B,
respectively. Finally, a data type specification may require that all elements of
the corresponding type are constructed by corresponding constructor terms Gen,
i.e., that each element of the corresponding type is build up from symbols of Gen.

154 D. Marmsoler

3.2 Specifying Interfaces

The specification of interfaces proceeds then in two steps: First, ports are spec-
ified by providing a set of ports P and a corresponding mapping tp : P → S to
specify which types of data may be exchanged through each port. Then, a set
of interfaces (CP , IP ,OP) is specified by declaring input ports IP ⊆ P , output
ports OP ⊆ P , and a set of configuration parameters CP ⊆ P . Thereby, config-
uration parameters are a way to parametrize components of a certain type and
they can be thought of as ports with a predefined value which is fixed for each
component.

Interfaces can then be specified using so-called configuration diagrams con-
sisting of a graphical depiction of the involved interfaces (see Sect. 3.6 for exam-
ples). Thereby, each interface consists of two parts: A name followed by a list of
configuration parameters (enclosed between ‘〈’ and ‘〉’). Input and output ports
are represented by empty and filled circles, respectively.

3.3 Specifying Component Types

Component types are specified by assigning assertions about the input/output
behavior to the interfaces. Thereby, configuration parameters can be used to
distinguish between different components of a certain type.

The assertions are expressed in terms of linear temporal logic equations [20]
formulated over the signature Σ by using port names as free variables. For
example, the term “�(c.p = POS −→ c.o ≥ 1)” denotes an assertion that port
o of component c, for which configuration parameter p has the value POS (for
positive), is guaranteed to be greater or equal to 1 for the whole execution of
the system.

3.4 Specifying Activation and Connection Assertions

Finally, a set of assertions about the activation and deactivation of components
as well as assertions about connections between component ports are specified.
Both types of assertions may be expressed in terms of so called configuration
trace assertions, i.e, linear temporal logic formulæ with special predicates to
denote activation of components and port connections. Thereby, c.p denotes the
valuation of port p of a component c (where ĉ.p denotes that port p of component
c is valuated, at all), ‖c‖ denotes that a component c is currently active, and
c.p � c′.p′ denotes that output port p of component c is connected to input port
p′ of component c′.

3.5 Specifying Pattern Instantiations

As described above, pattern specifications may be built on top of other pat-
tern specifications by instantiating their component types. Such instantiations
can be directly specified in a pattern’s configuration diagram by annotating the

Hierarchical Specification and Verification of Architectural Design Patterns 155

Fig. 2. Specification of the singleton pattern.

Fig. 3. Specification of the publisher subscriber pattern.

corresponding interfaces. To denote that a certain component type t of the spec-
ification is an instance of component type t′ (from the instantiated pattern), we
simply write t : t′ followed by a corresponding port mapping [p′

i, p
′
o �→ pi, po],

which assigns a port of t to each port of t′.

3.6 Example: An Initial Pattern Hierarchy

In the following, we demonstrate the FACTum approach by specifying variants
of three well-known patterns: the singleton pattern, the publisher subscriber
pattern, and the blackboard pattern. Thereby, the publisher component of the
publisher subscriber pattern is modeled as an instance of the singleton, whereas
the blackboard pattern is specified by instantiating the publisher subscriber
pattern.

Singleton. The singleton pattern is a pattern for dynamic architectures in
which, for a certain type of component, it is desired to have only one active
instance at all points in time. Figure 2 depicts a possible specification of the pat-
tern in terms of a configuration diagram and a corresponding activation speci-
fication. Since the pattern is only concerned with activation of components, we
do neither have data types, nor port specifications for that pattern.

156 D. Marmsoler

Interfaces. The interface is specified by the configuration diagram in Fig. 2a: It
consists of a single interface Singleton and does not require any special ports.

Architectural Assertions. Activation assertions are formalized by the specifica-
tion depicted in Fig. 2b: With Eq. 1 we require that there exists a component c
which is always activated and with Eq. 2 we require the component to be unique.
In our version of the singleton, we require that the singleton component is not
allowed to change over time. This is why variable c is declared to be rigid in
Fig. 2b. Indeed, other versions of the singleton are possible in which the single-
ton may change over time.

Publisher Subscriber. We now proceed by specifying a version of the pub-
lisher subscriber pattern. Such patterns are used for architectures in which so-
called subscriber components can subscribe for certain messages from other,
so-called publisher components. Figure 3 depicts a possible specification of the
pattern in terms of a data type specification, port specification, and correspond-
ing configuration diagram.

Data Types. In a publisher subscriber pattern we usually have two types of
messages: subscriptions and unsubscriptions. Figure 3b depicts the correspond-
ing data type specification. Subscriptions are modeled as parametric data types
over two type parameters: a type id for component identifiers and some type evt
denoting events to subscribe for. The data type is freely generated by the con-
structor terms “sub id evt” and “unsub id evt”, meaning that every element
of the type has the form “sub id evt” or “sub id evt”.

Ports. Two port types are specified over these data types by the specification
given in Fig. 3c: a type sb which allows to exchange subscriptions to a specific
event and type nt which allows to exchange messages associated to any event.

Interfaces. The configuration diagram depicted in Fig. 3a depicts the specifica-
tion of the interfaces of the two types of components: An interface Publisher is
defined with an input port sb to receive subscriptions and an output port nt to
send out notifications. Moreover, an interface Subsciber is defined with an input
port nt receiving notifications and an output port sb to send out subscriptions.
As stated in the beginning, we want a publisher to be unique and activated which
is why it is specified as Publisher :Singleton, meaning that it is considered to be
an instance of the Singleton type of the specification of the singleton pattern.

Architectural Assertions. Activation assertions for publisher subscriber architec-
tures are mainly inherited from the singleton pattern: since a publisher is spec-
ified to be a singleton, a publisher component is unique and always activated.
Moreover, two connection assertions for publisher subscriber architectures are
specified in Fig. 4: Eq. (3) requires a publisher’s input port sb to be connected
to the corresponding output port of every active subscriber which sends some

Hierarchical Specification and Verification of Architectural Design Patterns 157

s : Subscriber
p : Publisher
m : msg
E : ℘(evt)
s′ : Subscriber
e : evt

�
(
‖p‖ ∧ ‖s‖ ∧ ŝ.sb −→ p.sb � s.sb

)
�

(
‖s′‖ ∧ ∃E : s′ E ∈ s′.sb ∧ e ∈ E

)
−→

(
‖p‖∧‖s′‖∧(e,m)∈p.nt−→s′.nt�p.nt

) W ‖s′‖∧(∃E : s′ E∈s′.sb∧e∈E)
)))

Fig. 4. Architectural constraints for the blackboard pattern.

message. Equation (4), on the other hand, requires a subscriber’s input port nt
to be connected to the corresponding output port of the publisher, whenever the
latter sends a message for which the subscriber is subscribed.

Blackboard. We conclude our example by specifying a dynamic version of the
blackboard pattern. A blackboard architecture is usually used for the task of
collaborative problem solving, i.e., a set of components work together to solve
an overall, complex problem. Our specification of the pattern is depicted in Fig. 5
and consists of a data type specification, port specification, and corresponding
configuration diagram.

Data Types. Blackboard architectures usually work with problems and solutions
for them. Figure 5b provides a specification of the corresponding data types.
We denote by PROB the set of all problems and by SOL the set of all solutions.
Complex problems consist of subproblems which can be complex themselves. To
solve a problem, its subproblems have to be solved first. Therefore, we assume the
existence of a subproblem relation ≺ ⊆ PROB×PROB. For complex problems, the
details of the relation may not be known in advance. Indeed, one of the benefits of
a blackboard architecture is that a problem can be solved even without knowing
the exact nature of this relation in advance. However, the subproblem relation
has to be well-founded (Eq. (5)) for a problem to be solvable. In particular,
we do not allow for cycles in the transitive closure of ≺. While there may be
different approaches to solve a problem (i.e., several ways to split a problem
into subproblems), we assume, without loss of generality, that the final solution
for a problem is always unique. Thus, we assume the existence of a function
solve : PROB → SOL which assigns the correct solution to each problem. Note,
however, that it is not known in advance how to compute this function and it is
indeed one of the reasons for using this pattern to calculate this function.

158 D. Marmsoler

KS〈pb〉 : Subscriber
[nt, sb �→ rp, cs]

op cs rp ns

BB : Publisher
[sb, nt �→ rp, cs]

op cs rp ns

≺ : PROB × PROB
solve : PROB → SOL

(≺)

rp : PROB × ℘(PROB)
ns cs : PROB × SOL
op prob : PROB

Fig. 5. Specification of the blackboard pattern.

Ports. In Fig. 5c, we specify 4 ports for the pattern:

– rp is used to exchange a problem p ∈ PROB which a knowledge source is able
to solve, together with a set of subproblems P ⊆ PROB the knowledge source
requires to be solved first.

– ns is used to exchange a problem p ∈ PROB solved by a knowledge source,
together with the corresponding solution s ∈ SOL.

– op is used to exchange a set P ⊆ PROB of all the problems which still need to
be solved.

– cs is used to exchange solutions s ∈ SOL for problems p ∈ PROB.

Moreover a configuration parameter prob is specified to parametrize knowledge
source according to the problems p ∈ PROB they can solve.

Interfaces. A blackboard pattern usually involves two types of components:
blackboards and knowledge sources. The corresponding interfaces are specified
by the configuration diagram in Fig. 5a. Since our version of the blackboard pat-
tern is specified to be an instance of the publisher subscriber pattern, we import
the corresponding pattern specification in the header of the diagram. We then
specify two interfaces. The blackboard interface is denoted BB and is declared
to be an instance of a Publisher component in a publisher subscriber pattern. It
consists of two input ports rp and ns to receive required subproblems and new
solutions. Moreover, it specifies two output ports op and cs to communicate cur-
rently open problems and solutions for all currently solved problems. Thereby,
port rp is specified to be an instance of port sb of a publisher and port cs to be
an instance of a publisher’s nt port.

The interface for knowledge sources is denoted KS and is declared to be
an instance of a Subscriber component in a publisher subscriber pattern. Note
that each knowledge source can only solve certain problems, which is why a
knowledge source is parameterized by a problem “prob”. The specification of
ports actually mirrors the corresponding specification of the blackboard inter-
face. Thus, a knowledge source is required to have two input ports op and cs to

Hierarchical Specification and Verification of Architectural Design Patterns 159

p : PROB

P : PROB SET

p′ : PROB

s′ : SOL

�
(
(p′, s′) ∈ ns −→ ♦ (p′, s′) ∈ cs

))
�

(
(p, P) ∈ rp −→ ∀p′ ∈ P : (♦(p′ ∈ op))

))
�

(
p′ ∈ op −→ p′ ∈ op W (p′, solve(p′)) ∈ cs

Fig. 6. Specification of behavior for blackboard components.

receive currently open problems and solutions for all currently solved problems,
and two output ports rp and ns to communicate required subproblems and new
solutions. Thereby, port rp is specified to be an instance of a subscribers nt port
and port cs to be an instance of a subscribers sb port, respectively.

Component Types. A blackboard provides the current state towards solving the
original problem and forwards problems and solutions from knowledge sources.
Figure 6 provides a specification of the blackboard’s behavior in terms of three
behavior assertions:

– If a solution s′ to a subproblem p′ is received on its input port ns, then it is
eventually provided at its output port cs (Eq. 6).

– If, on its input port rp, it gets notified that solutions for some subproblems
P are required in order to solve a certain problem p, these problems are
eventually provided at its output port op (Eq. (7)).

– A problem p′ is provided at its output port op as long as it is not solved
(Eq. (8)).

Note that the last assertion (Eq. (8)) is formulated using a weak until operator
which is defined as follows: γ′ W γ

def= �(γ′) ∨ (γ′ U γ).
A knowledge source receives open problems via op and provides solutions for

other problems via cs. It might contribute to the solution of the original problem
by solving currently open subproblems. Figure 7 provides a specification of the
knowledge sources’s behavior in terms of four behavior assertions:

– If a knowledge source (able to solve a problem pp) requires some subprob-
lems P to be solved in order to solve pp and it gets solutions for all these
subproblems p′ on its input port cs, then it eventually solves pp and provides
the solution on its output port ns (Eq. (9)).

– To solve a problem pp, a knowledge source requires solutions only for smaller
problems p ∈ P (Eq. (10)).

– A knowledge source will eventually communicate its ability to solve an open
problem pp via its output port rp (Eq. (11)).

– A knowledge source does not unsubscribe from receiving solutions for sub-
problems it required until it indeed received these solutions (Eq. (12)).

160 D. Marmsoler

ks = KS〈pp〉
p : PROB

P : ℘(PROB)
p′ : PROB

�
(
∀(pp, P) ∈ rp : (∀p′ ∈ P : ♦(p′, solve(p′)) ∈ cs) −→ ♦(pp, solve(pp)) ∈ ns

))
�

(
∀(pp, P) ∈ rp : ∀p ∈ P : p ≺ pp

)
�

(
pp ∈ op −→ ♦(∃P : (pp, P) ∈ rp)

)
�

(
sub ks P = rp −→ ¬∃P ′ : p ∈ P ′ ∧ unsub ks P ′ = rp W (p, solvep) ∈ cs

))

Fig. 7. Specification of behavior for knowledge source components.

ks : KS〈pp〉
bb : BB
ks′ : KS〈pp〉

�
(
‖ks′‖ ∧ pp ∈ ks′.op −→ ‖ks′‖ W ‖ks′‖ ∧ (pp, solve(pp)) ∈ ks′.ns

))
�

(
‖ks‖ ∧ ‖bb‖ ∧ ̂bb.op −→ ks.op � bb.op

)
�

(
‖bb‖ ∧ ‖ks‖ ∧ ̂ks.ns −→ bb.ns � ks.ns

)

Fig. 8. Specification of activation constraints for blackboard architectures.

Architectural Assertions. Activation constraint for blackboards are mainly inher-
ited from the singleton pattern: since a blackboard is specified to be an instance
of a publisher which is again an instance of a singleton, a blackboard component
is unique and always activated. Activation constraint for knowledge sources are
provided in Fig. 8 by Eq. (13): Whenever a knowledge source (able to solve a
problem pp) gets notified about a request to solve pp, it stays active until pp
is indeed solved. Connection assertions for the blackboard pattern are mainly
inherited from the corresponding specification of the publisher subscriber pat-
tern (for ports rp and cs, respectively). Two additional assertions, however, are
provided in Fig. 8: with Eq. 14 we require input ports op of active blackboard
components to be connected to the corresponding output ports of knowledge
sources and with Eq. 15 we require a similar property for port ns.

4 Verifying Architectural Design Patterns

In the last section we presented FACTum, a methodology and corresponding
techniques to specify architectural design pattern. Thereby, we relied on an intu-
itive understanding of the semantics of the techniques. In the following, we first
provide a more formal definition of the semantics of a FACTum specification.
Then, we describe an algorithm to map a given specification to a corresponding
Isabelle/HOL theory and we show soundness of the algorithm.

Hierarchical Specification and Verification of Architectural Design Patterns 161

4.1 Semantics of Pattern Specifications

The semantics of a pattern specification is given in terms of sets of configuration
traces introduced in Sect. 2.

Definition 2 (Semantics of Pattern Specification). The semantics of a
pattern specification (VAR,DS , IS ,CT ,AS) is given by a 5-tuple (A,P, T , C,
AT), consisting of:

– an algebra A =
(

(As)s∈S , (fA)f∈F , (pA)p∈B

)

for Σ,
– a set of ports P with cardinality greater or equal to the cardinality of P,
– port typing T : P → ℘(M) with M =

⋃

s∈S(As),
– a nonempty set of component identifiers Cif for each component interface

if ∈ CIP
T , and

– an architecture AT ∈ DAC
T ;

such that for all port interpretations δ : P → P (injective mappings which respect
tp and T), variable interpretations ι : V → A and ι′ : V ′ → A, and component
variable interpretations κ : C → C and κ′ : C ′ → C (respecting interface types)
the following conditions hold:

– A is an algebra for the data type specification: A, ι |= DS,
– the projection to the behavior of a component c for every configuration trace

t of the architecture satisfies the corresponding behavior specification: ∀c ∈
C C

T , t ∈ AT : Πc(t)̂ b |= CT c, and
– all configuration traces t of the architecture satisfy the architectural assertions:

∀t ∈ AT : t, ι′, κ′ |= AS.

4.2 Mapping to Isabelle/HOL

Algorithm 1 describes how to systematically transfer a pattern specification to
a corresponding Isabelle/HOL theory. In general, the transformation is done
in 4 main steps: (i) The specified data types are transferred to corresponding
Isabelle/HOL data type specifications (ii) An Isabelle locale is created for the
corresponding pattern which imports other locales for each instantiated pat-
tern. (iii) Specifications of component behavior are added as assumptions. (iv)
Activation and connection assertions are provided as assumptions.

The following soundness criterion guarantees that Algorithm1 indeed pre-
serves the semantics of a pattern specification.

Theorem 1 (Soundness of Algorithm 1). For every pattern specification
PT, and model T of the Isabelle/HOL locale (as specified in [21]) generated by
Algorithm1, there exists a T ′ such that T ′ |= PT (as defined by Definition 2)
and T ′ is isomorphic to T ; and vice versa.

Note that the generated theory is based on Isabelle/HOLs implementation of
configuration traces [7]. Thus, a calculus is instantiated for each component type
which provides a set of rules to reason about the specification of the behavior of
components of that type.

162 D. Marmsoler

Algorithm 1. Mapping a pattern specification to an Isabelle/HOL Theory.
Input: (VAR,DS , IS ,CT ,AS) {pattern specification according to Definition 1}
Output: An Isabelle/HOL theory for the specification
1: create Isabelle/HOL data type specification for DS
2: create Isabelle/HOL locale for the pattern
3: for all Interfaces i = (CP , IP ,OP) ∈ IF do
4: if i instantiates a component of another pattern then
5: import the corresponding locale
6: create instance of ports according to δi
7: else
8: import locale “dynamic component” of theory “Configuration Traces”[8]
9: end if

10: create instance of locale parameters tCMP and active
11: for all configuration parameters p ∈ CP which are not instances do
12: create locale parameter p of type tp(p)
13: create locale assumption “∀x. ∃c. x = p(c)”
14: end for
15: for all ports p ∈ IP ∪ OP which are not instances do
16: create locale parameter p of type tp(p)
17: end for
18: for all behavior assertions b ∈ CT i do
19: create locale assumption for b using def. of theory “Configuration Traces”[8]
20: end for
21: end for
22: for all activation/connection assertions c ∈ AS do
23: create locale assertion for c
24: end for

4.3 Example: Pattern Hierarchy

Algorithm 1 can be used to transfer a given pattern specification to a corre-
sponding Isabelle/HOL theory where it is subject to formal verification. This
is demonstrated by applying it to the specification of the singleton, publisher
subscriber, and blackboard pattern presented in Sect. 3.6. To demonstrate the
verification capabilities, we then proof one characteristic property for each pat-
tern. The corresponding Isabelle/HOL theory files are provided online [22].

Singleton. We first come up with a basic property for singleton components
which ensures that there exists indeed a unique component of the corresponding
type which is always activated:

∃!c : � (‖c‖) . (16)

Publisher Subscriber. Lets now turn to the publisher subscriber pattern.
First of all, remember that the publisher component was specified to be an
instance of the singleton pattern which is why all results from the verification
of the singleton pattern are lifted to the publisher component. Thus, we get

Hierarchical Specification and Verification of Architectural Design Patterns 163

an equivalent result as Eq. (16) for free. Moreover, we can use the additional
assertions imposed by the specification to come up with another property for the
publisher subscriber pattern which guarantees that a subscriber indeed receives
all the messages for which he is subscribed:

�
(

‖c‖ ∧ sub c E ∈ c.sb −→ (17)
(

(e,m) ∈ p.nt ∧ e ∈ E −→ (e,m) ∈ c.sb
)

W (unsub c E′ ∈ c.sb ∧ e ∈ E′)
)

.

Note that the proof of the above property is based on Eq. (16) inherited from the
singleton pattern. Indeed, the hierarchical nature of FACTum allows for reuse
of verification results from instantiated patterns.

Blackboard. Again, the properties verified for singletons (Eq. (16)) as well as
the properties verified for publisher subscriber architectures (Eq. (17)) are inher-
ited for the blackboard specification. In the following, we use these properties
to verify another property for blackboard architectures: A blackboard pattern
guarantees that if for each open (sub-)problem, there exists a knowledge source
which is able to solve the corresponding problem:

�
(

∀p′ ∈ bb′.op : ♦
(

‖ksp′‖
)

)

, (18)

then, it is guaranteed, that the architecture will eventually solve an overall prob-
lem, even if no single knowledge source is able to solve the problem on its own:

�
(

p′ ∈ bb′.rp −→ ♦(p′, solve(p′)) ∈ bb′.cs
)

. (19)

5 Related Work

Related work can be found in three different areas.

Formal Specification of Architectural Styles. Over the last years, several
approaches emerged to support the formal specification of architectural design
patterns. One of the first attempts in this direction was Wright [23] which pro-
vided the possibility to specify architectural styles which is similar to our notion
of architectural design pattern. More recent approaches to specify styles are
based on the BIP framework [24] and provide logics [25] as well as graphical nota-
tion [26] to specify styles. There are, however, two differences of these approaches
to the work presented in this paper: One difference concerns the expressive power
of the specification techniques. While the above approaches focus mainly on the
specification of patterns for static architectures, we allow for the specification of
static as well as dynamic architectures. Another difference arises from the scope
of the work. While the above approaches focus mainly on the specification of
patterns, our focus is more on the verification of such specifications.

164 D. Marmsoler

Verification of Architectural Styles and Patterns. Recently, some approaches
emerged which focus on the verification of architectural styles and patterns.
Kim and Garlan [27], for example, apply the Alloy [28] analyzer to automati-
cally verify architectural styles specified in ACME [29]. A similar approach comes
from Wong et al. [30] which applies Alloy to the verification of architectural
models. Zhang et al. [31] applied model checking techniques to verify architec-
tural styles formulated in Wright#, an extension of Wright. Similarly, Marmsoler
and Degenhardt [32] also apply model checking for the verification of design
patterns. Another approach comes from Wirsing et al. [33] where the authors
apply rewriting logic to specify and verify cloud-based architectures. While all
these approaches focus on the verification of architectures and architectural pat-
terns, they all apply automatic verification techniques. While this has many
advantages, verification is limited to properties subject to automatic verification.
Indeed, with our work we actually complement these approaches by providing
an alternative approach based on, rather than automatic verification techniques.

Interactive Theorem Proving for Software Architectures. Another area of related
work can be found in applications of to software architectures in general. Fensel
and Schnogge [34], for example, apply the KIV interactive theorem prover to ver-
ify concrete architectures in the area of knowledge-based systems. Their work
differs from our work in two main aspects. (i) While they focus on the verifi-
cation of concrete architectures, we propose an approach to verify architectural
patterns. (ii) While they focus on the verification of static architecture, our
approach allows for the verification of dynamic architectures. Thus, we com-
plement their work by providing a more general approach. More recently, some
attempts were made to apply to the verification of architectural connectors. Li
and Sun [35], for example, apply the Coq proof assistant to verify connectors
specified in Reo [36]. With our work we complement their approach since we
focus on the verification of patterns, rather than connectors.

To summarize, to the best of our knowledge, this is the first attempt applying
to the verification of architectural design patterns.

6 Conclusion

With this paper we presented a novel approach for the specification and ver-
ification of architecture design patterns. Therefore, we provide a methodology
and corresponding specification techniques for the specification of patterns in
terms of configuration traces. Then, we describe an algorithm to map a given
specification to a corresponding Isabelle/HOL theory and show soundness of
the algorithm. Our approach can be used to formally specify patterns in a hier-
archical way. Using the algorithm, the specification can then be mapped to a
corresponding Isabelle/HOL theory where the pattern can be verified using a
pre-existing calculus. This is demonstrated by specifying and verifying versions
of three architecture patterns: the singleton, the publisher subscriber, and the
blackboard. Thereby, patterns were specified hierarchical and verification results
for lower level patterns were reused for the verification of higher level patterns.

Hierarchical Specification and Verification of Architectural Design Patterns 165

The proposed approach addresses the challenges for pattern verification iden-
tified in the introduction as follows:

C1 Axiomatic
specifications

C2 Dynamic aspects C3 Hierarchical
specifications

Specification Model-theoretic
semantics

Model of dynamic
architectures

Structured
specifications

Verification Axiomatic reasoning A calculus to
support verification

Import of
verification results

In order to achieve our overall vision of interactive, hierarchical pattern ver-
ification [37], future work is needed in two directions: We are currently working
on an implementation of the approach for the eclipse modeling framework [38]
where a pattern can be specified and a corresponding Isabelle/HOL theory can
be generated using the algorithm presented in the paper. In a second step, we
want to lift the verification to the architecture level, hiding the complexity of an
interactive theorem prover and interpreting its output at the architecture level.

Acknowledgments. We would like to thank Veronika Bauer, Maximilian Junker, and
all the anonymous reviewers of FASE 2018 for their comments and helpful suggestions
on earlier versions of this paper. Parts of the work on which we report in this paper
was funded by the German Federal Ministry of Education and Research (BMBF) under
grant no. 01Is16043A.

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing, Chichester (2009)

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, West Sussex (1996)

3. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline, vol. 1. Prentice Hall, Englewood Cliffs (1996)

4. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.
Springer, Heidelberg (2006). https://doi.org/10.1007/11542384

5. Marmsoler, D., Gleirscher, M.: On activation, connection, and behavior in dynamic
architectures. Sci. Ann. Comput. Sci. 26(2), 187–248 (2016)

6. Marmsoler, D., Gleirscher, M.: Specifying properties of dynamic architectures using
configuration traces. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol.
9965, pp. 235–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4 14

7. Marmsoler, D.: Dynamic architectures. Archive of Formal Proofs, pp. 1–65. Formal
proof development, July 2017

8. Marmsoler, D.: Towards a calculus for dynamic architectures. In: Hung, D., Kapur,
D. (eds.) ICTAC 2017. LNCS, vol. 10580. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67729-3 6

https://doi.org/10.1007/11542384
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-67729-3_6
https://doi.org/10.1007/978-3-319-67729-3_6

166 D. Marmsoler

9. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45949-9

10. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic
of Computation. LNCS, vol. 78. Springer, Heidelberg (1979). https://doi.org/10.
1007/3-540-09724-4

11. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL — lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin,
C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48256-3 3

12. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidelberg
(1997). https://doi.org/10.1007/BFb0028402

13. Wenzel, M.: Isabelle/Isar - a generic framework for human-readable proof docu-
ments. In: From Insight to Proof - Festschrift in Honour of Andrzej Trybulec vol.
10, no. 23, pp. 277–298 (2007)

14. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 34–50. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24849-1 3

15. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

16. Broy, M.: A model of dynamic systems. In: Bensalem, S., Lakhneck, Y., Legay,
A. (eds.) ETAPS 2014. LNCS, vol. 8415, pp. 39–53. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54848-2 3

17. Marmsoler, D.: On the semantics of temporal specifications of component-behavior
for dynamic architectures. In: Eleventh International Symposium on Theoretical
Aspects of Software Engineering. Springer (2017)

18. Broy, M.: Algebraic specification of reactive systems. In: Wirsing, M., Nivat, M.
(eds.) AMAST 1996. LNCS, vol. 1101, pp. 487–503. Springer, Heidelberg (1996).
https://doi.org/10.1007/BFb0014335

19. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science, pp. 675–788. MIT Press, Cambridge (1990)

20. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

21. Wenzel, M., et al.: The Isabelle/Isar reference manual (2004)
22. Marmsoler, D.: Isabelle/HOL theories for the singleton, publisher subscriber, and

blackboard pattern. http://www.marmsoler.com/docs/FASE18
23. Allen, R.J.: A formal approach to software architecture. Technical report, DTIC

Document (1997)
24. Attie, P., Baranov, E., Bliudze, S., Jaber, M., Sifakis, J.: A general framework for

architecture composability. Form. Asp. Comput. 28(2), 207–231 (2016)
25. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Architecture diagrams: a graph-

ical language for architecture style specification. In: Bartoletti, M., Henrio, L.,
Knight, S., Vieira, H.T. (eds.) Proceedings of the 9th Interaction and Concurrency
Experience. ICE 2016, Heraklion, 8–9 June 2016. EPTCS, vol. 223, pp. 83–97
(2016)

26. Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: mod-
elling architecture styles. In: Braga, C., Ölveczky, P.C. (eds.) FACS 2015. LNCS,
vol. 9539, pp. 256–274. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
28934-2 14

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/3-540-48256-3_3
https://doi.org/10.1007/BFb0028402
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/978-3-642-54848-2_3
https://doi.org/10.1007/BFb0014335
https://doi.org/10.1007/978-1-4612-0931-7
http://www.marmsoler.com/docs/FASE18
https://doi.org/10.1007/978-3-319-28934-2_14
https://doi.org/10.1007/978-3-319-28934-2_14

Hierarchical Specification and Verification of Architectural Design Patterns 167

27. Kim, J.S., Garlan, D.: Analyzing architectural styles with alloy. In: Proceedings
of the ISSTA 2006 Workshop on Role of Software Architecture for Testing and
Analysis, pp. 70–80. ACM (2006)

28. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. (TOSEM) 11(2), 256–290 (2002)

29. Garlan, D.: Formal modeling and analysis of software architecture: components,
connectors, and events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS,
vol. 2804, pp. 1–24. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39800-4 1

30. Wong, S., Sun, J., Warren, I., Sun, J.: A scalable approach to multi-style architec-
tural modeling and verification. In: Engineering of Complex Computer Systems,
pp. 25–34. IEEE (2008)

31. Zhang, J., Liu, Y., Sun, J., Dong, J.S., Sun, J.: Model checking software architec-
ture design. In: High-Assurance Systems Engineering, pp. 193–200. IEEE (2012)

32. Marmsoler, D., Degenhardt, S.: Verifying patterns of dynamic architectures using
model checking. In: Proceedings of the International Workshop on Formal Engi-
neering approaches to Software Components and Architectures, FESCA@ETAPS
2017, Uppsala, Sweden, 22 April 2017, pp. 16–30 (2017)

33. Wirsing, M., Eckhardt, J., Mühlbauer, T., Meseguer, J.: Design and analysis of
cloud-based architectures with KLAIM and Maude. In: Durán, F. (ed.) WRLA
2012. LNCS, vol. 7571, pp. 54–82. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34005-5 4

34. Fensel, D., Schnogge, A.: Using KIV to specify and verify architectures of
knowledge-based systems. In: Automated Software Engineering, pp. 71–80,
November 1997

35. Li, Y., Sun, M.: Modeling and analysis of component connectors in Coq. In:
Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 273–290.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7 17

36. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(03), 329–366 (2004)

37. Marmsoler, D.: Towards a theory of architectural styles. In: Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering - FSE 2014, pp. 823–825. ACM Press (2014)

38. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, London (2008)

https://doi.org/10.1007/978-3-540-39800-4_1
https://doi.org/10.1007/978-3-540-39800-4_1
https://doi.org/10.1007/978-3-642-34005-5_4
https://doi.org/10.1007/978-3-642-34005-5_4
https://doi.org/10.1007/978-3-319-07602-7_17

168 D. Marmsoler

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Supporting Verification-Driven
Incremental Distributed Design

of Components

Claudio Menghi1(B) , Paola Spoletini2 , Marsha Chechik3 ,
and Carlo Ghezzi4

1 Chalmers | University of Gothenburg, Gothenburg, Sweden
claudio.menghi@gu.se

2 Kennesaw State University, Marietta, USA
pspoleti@kennesaw.edu

3 University of Toronto, Toronto, Canada
chechik@cs.toronto.edu

4 Politecnico di Milano, Milan, Italy
carlo.ghezzi@polimi.it

Abstract. Software systems are usually formed by multiple components
which interact with one another. In large systems, components them-
selves can be complex systems that need to be decomposed into multiple
sub-components. Hence, system design must follow a systematic app-
roach, based on a recursive decomposition strategy. This paper proposes
a comprehensive verification-driven framework which provides support
for designers during development. The framework supports hierarchi-
cal decomposition of components into sub-components through formal
specification in terms of pre- and post-conditions as well as independent
development, reuse and verification of sub-components.

1 Introduction

Software is usually not a monolithic product: it is often comprised of multiple
components that interact with each other to provide the desired functional-
ity. Components themselves can be complex, requiring their own decomposition
into sub-components. Hence, system design, must follow a systematic approach,
based on a recursive decomposition strategy that yields a modular structure.
A good decomposition and a careful specification should allow components and
sub-components to be developed in isolation by different development teams,
delegated to third parties [32], or reused off-the-shelf.

In this context, guaranteeing correctness of the system under development
becomes particularly challenging because of the intrinsic tension between two
main requirements. On the one hand, to handle complexity, we need to enable
development of sub-components where only a partial view of the system is avail-
able [28]. On the other hand, we must ensure that independently developed and
verified (sub-)components can be composed to guarantee global correctness of
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 169–188, 2018.
https://doi.org/10.1007/978-3-319-89363-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_10&domain=pdf
http://orcid.org/0000-0001-5303-8481
http://orcid.org/0000-0001-7922-4936
http://orcid.org/0000-0002-6301-3517
http://orcid.org/0000-0002-7234-5011

170 C. Menghi et al.

The p&d running example. The p&d system supports furniture purchase and delivery. It uses
two existing web services, which implement furniture-sale and delivery, as well as a component
that implements the user interface. These are modeled by the labeled transition systems shown
in Fig. 1a-1c. The p&d component under design is responsible for interaction with these com-
ponents, which form its execution environment. The overall system must ensure satisfaction of
the properties informally described in Fig. 1d.

1

2

3

pr
od
In
fo
Re
q infoRcvdprodCancel

prodReq

(a) Furniture-sale.

1

2

3

sh
ip
In
fo
Re
q costAndTimeshipCancel

shipReq

(b) Shipping.

1 4

5

2

3

userReq

offerR
cvd

userNack

userAckrespOk
reqCanc

(c) User.

P1: ship and product info are provided only if a request has been received.
P2: when user requests are processed, offers are considered only after users received information about the desired product.
P3: the furniture service is activated only if the user has decided to purchase.
P4: when a user request is cancelled by the p&d system, no user ack precedes the cancellation.

(d) Properties of the p&d system.

Fig. 1. The p&d running example.

the resulting system. Thus, we believe that component development should be
supported by a process that (1) is intrinsically iterative; (2) supports decentral-
ized development; and (3) guarantees correctness at each development stage.

The need for supporting incremental development of components has been
widely recognized. Some approaches [15,37] synthesize a partial model of com-
ponents from properties and scenarios and facilitate an iterative development of
this model through refinement. Others [7,8,10,26,27] provide support for check-
ing and refining partial models, with the goal of preserving correctness when
such systems get refined. However, while these techniques guarantee correctness
at each development stage, they do not address the problem of decentralized
development.

In this paper, we describe a unified framework called FIDDle (a Framework
for Iterative and Distributed Design of components) which supports decentral-
ized top-down development. FIDDle supports a formal specification of global
properties, a decomposition process and specification of component interfaces
by providing a set of tools to guarantee correctness of the different artifacts
produced during the process. The main contribution of the paper is a method
for supporting an iterative and distributed verification-driven component devel-
opment process through a coherent set of tools. Specific novel contributions
are (1) a new formalism, called Interface Partial Labelled Transition System
(IPLTS), for specifying components through a decomposition that encapsulates
sub-components into unspecified black-box states; (2) an approach to specify the
expected behavior of black-box states via pre- and post-conditions expressed in
Fluent Linear Time Temporal Logic; and (3) a notion of component correctness

Supporting Verification-Driven Incremental Distributed Design 171

Design Component

Design Environment

Design Properties

Check Realizability
Check Well-Formedness

Check Model

Check

Design Sub-Component

Environment

Properties

Check Well-Formedness
Check Substitutability Fix

Distribute

Integrate

Fix

Check

Environment

Properties

Synthesize
Sub-Component

Environment

Properties

Re-use Existing
Sub-Component

Compare
& CheckSynthesize

D
is

tr
ib

ut
e

1

3

Integration
Final Component

Development
phase

Designer
 activity

Legend

Output
Automatic
support

Contract
distribution

Component

2

Component
reuse

Fig. 2. Overview of the application of FIDDle for developing a component. Thick-
bordered components are implemented in FIDDle. Thick-dashed bordered components
are currently supported by the theory presented in this paper, but they are still not
fully implemented. Thin-dashed bordered components are not discussed in this work.

and a local verification procedure that guarantees preservation of global properties
once the components are composed.

We illustrate FIDDle using a simple example: the purchase&delivery (p&d)
example [14,29] – see Fig. 1. We evaluate FIDDle on a realistic case study
obtained by reverse-engineering the executive module of the Mars Rover devel-
oped at NASA [12,17,18]. Scalability is evaluated by considering randomly-
generated examples.

Organization. Sect. 2 provides an overview of FIDDle. Section 3 gives the
necessary background. Section 4 presents Interface Partial Labelled Transition
Systems (IPLTS). Section 5 defines a set of algorithms for reasoning on par-
tial components and describes their implementation. Section 6 reports on an
evaluation of the proposed approach. Section 7 compares FIDDle with related
approaches, and Sect. 8 concludes. Proofs for the theorems in the paper can
be found in the Appendix available at http://ksuweb.kennesaw.edu/∼pspoleti/
fase-appendix.pdf; source code and video of the tool and a complete replication
package can be found at https://github.com/claudiomenghi/FIDDLE.

2 Overview

FIDDle is a verification-driven environment supporting incremental and dis-
tributed component development. A high-level view of FIDDle is shown in Fig. 2.
FIDDle allows incrementally developing a component through a set of develop-
ment phases in which the human insight and experience are exploited (rounded
boxes labeled with a designer icon or a recycle symbol, to indicate design or reuse,

http://ksuweb.kennesaw.edu/~pspoleti/fase-appendix.pdf
http://ksuweb.kennesaw.edu/~pspoleti/fase-appendix.pdf
https://github.com/claudiomenghi/FIDDLE

172 C. Menghi et al.

respectively) and phases in which automated support is provided (squared boxes
labeled with a pair of gearwheels). Automatic support allows verifying the cur-
rent state of the design, synthesizing parts of the partial component, or checking
whether the designed sub-component can correctly fit into the original design.
FIDDle development phases are described below.

Creating an Initial Component Design. This phase is identified in Fig. 2
with the symbol 1 . The development team formalizes the properties that this
component has to guarantee and designs an initial, high-level structure of the
component. Designers also formulate properties that the component needs to
ensure. The initial component design is created using a state-based formalism
that can clearly identify parts (called “sub-components” in this paper), rep-
resented as black-box states, whose internal design is delayed to a later stage
or split apart for distributed development by other parties. In the following, we
refer to other states as “regular”. Black-box states are enriched with an interface
that provides information on the universe of events relevant to the black-box.
They are also decorated with via pre- and post-conditions that allow distributed
teams to develop sub-components without the need to know about the rest of
the system. The contract of a black box state consists of its interface and pre-
and post-conditions.

In the p&d example, the environment (assumed as given) in which the
p&d component will be deployed is composed by the furniture-sale component
(Fig. 1a), the shipping component (Fig. 1b) and the user (Fig. 1c). A possible
initial design for the p&d component is shown in Fig. 3c. It contains the regular
states 1 and 3 and black-box states 2 and 4. The initial state is state 1. Whenever
a userReq event is detected, the component moves from the initial state 1 into
the black-box state 2, which represents a sub-component in charge of managing
the user request. An event offerRcvd which indicates that an offer is provided
to the user labels the transition to state 3. The pre- and post- conditions for
black-box states 2 and 4 are shown in Fig. 3b. Events prodInfoReq, infoRcvd,
shipInfoReq and costAndTime can occur while the component is in the black-
box state 2. The pre-condition requires that there is a user request that has not
yet been handled, while the post-condition ensures that the furniture-sale and
the shipping services provided info on the product and on delivery cost and time.
FIDDle supports the developer in checking properties of the initial component
design.

The realizability checker confirms the existence of an integration that com-
pletes the partially specified component and ensures the satisfaction of the prop-
erties of interest. If such a component does not exist, the designer needs to
redesign the partially-specified component. The well-formedness checker verifies
that both the pre- and the post-conditions of black-box states are satisfiable.
Finally, the model checker verifies whether the (partial) component (together
with its contract) guarantees satisfaction of the properties of interest.

In the p&d example, the model checker identifies a problem with the partial
solution sketched in Fig. 3c. No matter how the black-box state 2 is to be defined,
the p&d component cannot satisfy property P4 since every time reqCanc occurs

Supporting Verification-Driven Incremental Distributed Design 173

P1 =(¬((¬F_UserReq)U(F_ShipInfoReq∨ F_ProdInfoReq)))

P2 = (F_UserReq→(¬((¬F_InfoRcvd)U F_OfferRcvd)))

P3 = (F_UsrReq→((¬((¬F_UserAck)W F_ShipReq))

P4 = ((F_UsrReq ∧ ((¬F_UsrReq)U F_ReqCanc))→((¬F_UserAck)U F_ReqCanc))

(a) FLTL formulation of the p&d properties.

State 2

interface { prodInfoReq, infoRcvd, shipInfoReq, costAndTime }
pre (F_UserReq∧ ¬ (F_RespOk ∨ F_ReqCanc))

post (F_InfoRcvd)∧(F_CostAndTime)

State 4

interface { prodReq, shipReq }
pre (F_UserReq→ F_InfoRcvd)

post ((F_ProdReq)∧ (F_ShipReq))

State 5

interface { prodCancel, shipCancel }
pre (F_UserReq→ F_InfoRcvd)

post ((F_ProdCancel)∧ (F_ShipCancel))

(b) Contracts for black-box states of Figs. 3c-3g.

1 4

2

3

use
rRe

q offerRcvd

usrAck
respOk

reqCanc

(c) Partial p&d.

1 4 3

5

2

userReq

offerRcvd

usrAckrespOk

usr
Na

ckreqCanc

(d) Another partial p&d component.

1 2 3 4 5

shipInfoReq costAndTime prodInfoReq infoRcvd

(e) A sub-component for black-box state 2.

1 2 3 4

shipInfoReq costAndTime prodInfoReq

(f) Another sub-component for black-box
state 2.

1 2.1 2.2 2.3 2.4 2.543

5
userReq shipInfoReq costAndTime prodInfoReq infoRcvd

offerRcvd

usrAck respOk

usr
Na

ck
reqCanc

(g) Integration of the sub-component of Fig. 3e and the component of Fig. 3d.

Fig. 3. The p&d running example: artifacts produced by FIDDle.

it is preceded by usrAck. This suggests a re-design of the p&d component, which
may lead to a new model, shown in Fig. 3d. This model includes two regular
states: state 1, in which the component waits for a new user request, and state
3, in which the component has provided the user with an offer and is waiting
for an answer. The user might accept (userAck) or reject (userNack) an offer
and, depending on this choice, either state 4 or 5 is entered. States 2, 4 and
5 are black-box states, to be refined later. The designer also provides pre- and
post-conditions for the black-box states. Pre- and post-conditions of the black-
box state 2 specify that there is a pending user request, and that cost, time and
product information are collected. Pre- and post-conditions of the black-box
state 4 specify that infoRcvd has occurred after the user request, and both a

174 C. Menghi et al.

product and shipping requests are performed. Finally, pre- and post-conditions
of the black-box state 5 specify that infoRcvd has occurred after the user request
and before entering the state, and both the product and the shipping requests
are cancelled when leaving the state. This model is checked using the provided
tools; since it passes all the checks, it can be used in the next phase of the
development.

The design team may choose to refine the component or distribute the devel-
opment of unspecified sub-components (represented by black box states) to other
(internal or external) development teams. In both cases, the sub-component can
be designed by only considering the contract of the corresponding black-box
state. Each team can develop the assigned sub-component or reuse existing com-
ponents.

Sub-component Development. This phase is identified in Fig. 2 with the
symbol 2 . Each team can design the assigned sub-component using any avail-
able technique, including manual design (left side), reusing of existing sub-
components (right side) or synthesizing new ones from the provided specifi-
cations (center). The only constraints are (1) given the stated pre-condition,
the sub-component has to satisfy its post-condition, and (2) the sub-component
should operate in the same environment as the overall partially specified compo-
nent. Sub-component development can itself be an iterative process, but neither
the model of the environment nor the overall properties of the system can be
changed during this process. Otherwise, the resulting sub-component cannot be
automatically integrated into the overall system.

In the p&d example, development of the sub-component for the black-box
state 2 is delegated to an external contractor. Candidate sub-components are
shown in Fig. 3e–f. In the former case, the component requests shipping info
details and waits until the shipping service provides the shipment cost and time.
Then it queries the furniture-sale service to obtain the product info. In the latter
case, the shipping and the furniture services are queried, but the sub-component
does not wait for an answer from the furniture-sale. Since these candidates are
fully defined, the well-formedness check is not needed. Yet, the substitutability
checking confirms that of these, only the sub-component in Fig. 3e satisfies the
post-condition in Fig. 3b.

Sub-component Integration. This phase is identified in Fig. 2 with the sym-
bol 3 . FIDDle guarantees that if each sub-component is developed correctly
w.r.t. the contract of the corresponding black-box state, the component obtained
by integrating the sub-components is also correct. In the p&d example, the sub-
component in Fig. 3e passes the substitutability check and can be a valid imple-
mentation of the black-box state 2 in Fig. 3d. Their integration is showed in
Fig. 3g.

3 Preliminaries

The model of the environment and the properties of interest are expressed using
Labelled Transition Systems and Fluent Linear Time Temporal Logic.

Supporting Verification-Driven Incremental Distributed Design 175

Model of the Environment. Let Act be the universal set of observable events
and let Actτ = Act∪{τ}, where τ denotes an unobservable local event. A Labeled
Transition System (LTS) [20] is a tuple A = 〈Q, q0, αA,Δ〉, where Q is the set
of states, q0 ∈ Q is the initial state, αA ⊆ Act is a finite set of events, and
Δ ⊆ Q × αA ∪ {τ} × Q is the transition relation. The parallel composition
operation is defined as usual (see for example [14]).

Properties. A fluent [33] Fl is a tuple 〈IFl, TFl, InitFl〉, where IFl ⊂ Act, TFl ⊂
Act, IFl ∩ TFl = ∅ and InitFl ∈ {true, false}. A fluent may be true or false. A
fluent is true if it has been initialized by an event i ∈ IFl at an earlier time point
(or if it was initially true, that is, InitFl = true) and has not yet been terminated
by another event t ∈ TFl; otherwise, it is false. For example, consider the LTS
in Fig. 1c and the fluent F ReqPend=〈{userReq}, {respOk, reqCanc}, false 〉.
F ReqPend holds in a trace of the LTS from the moment at which userReq
occurs and until a transition labeled with respOk or reqCanc is fired. In the
following, we use the notation F Event to indicate a fluent that is true when the
event with label event occurs.

An FLTL formula is obtained by composing fluents with standard LTL
operators: (next), (eventually), (always), U (until) and (weak until).
For example, FLTL encodings of the properties P1, P2, P3 and P4 are shown
in Fig. 3a.

Satisfaction of FLTL formulae can be evaluated over finite and infinite traces,
by first constructing and FLTL interpretation of the infinite and finite trace
and then by evaluating the FLTL formulae over this interpretation The FLTL
interpretation of a finite trace is obtained by slightly changing the interpretation
of infinite traces. The evaluation of the FLTL formulae on the finite trace is
obtained by considering the standard interpretation of LTL operator over finite
traces (see [13]). In the following, we assume that Definitions 5 and 4 (available in
the Appendix) are considered to evaluate whether an FLTL formula is satisfied
on finite and infinite traces, respectively.

4 Modeling and Refining Components

This section introduces a novel formalism for modeling and refining components.
We define the notion of a partial LTS and then extend it with pre- and post-
conditions.

Partial LTS. A partial LTS is an LTS where some states are “regular” and
others are “black-box”. Black-box states model portions of the component whose
behavior still has to be specified. Each black-box state is augmented with an
interface that specifies the universe of events that can occur in the black-box. A
Partial LTS (PLTS) is a structure P = 〈A,R,B, σ〉, where: A = 〈Q, q0, αA,Δ〉
is an LTS; Q is the set of states, s.t. Q = R ∪ B and R ∩ B = ∅; R is the set
of regular states; B is the set of black-box states; σ : B → 2αA is the interface.
An LTS is a PLTS where the set of black-box states is empty. The PLTS in
Fig. 3d is defined over the regular states 1 and 3, and the black-box states 2,

176 C. Menghi et al.

4 and 5. The interface specifies that events prodInfoReq, infoRcvd, shipInfoReq
and costAndTime can occur in the black-box state 2.

Definition 1. Given a PLTS P = 〈A,R,B, σ〉 defined over the LTS A =
〈QA, qA

0 , αA,ΔA〉 and an LTS D = 〈QD, qD
0 , αD,ΔD〉, the parallel composition

P ‖ D is an LTS S = 〈QS , qS
0 , αS,ΔS〉 such that QS = QA ×QD; qS

0 = (qA
0 , qD

0);
αS = αA ∪ αD; and the set of transitions ΔS is defined as follows:

– (s,l,s′)∈ΔA

(〈s,t〉,l,〈s′,t〉)∈ΔS , and l ∈ αA \ αD or l = τ ;

– (t,l,t′)∈ΔD

(〈s,t〉,l,〈s,t′〉)∈ΔS , and one of the following is satisfied: (1) l ∈ αD \ αA, (2)
l = τ , or (3) (s ∈ B and l ∈ σ(s));

– (s,l,s′)∈ΔA,(t,l,t′)∈ΔD

(〈s,t〉,l,〈s′,t′〉)∈ΔS and l ∈ αA ∩ αD, l �= τ.

Given P , A, D defined above, the system S = P ‖ D and a state q
of P , we say that a finite trace l0, l1, . . . ln of S reaches q if there exists a
sequence 〈s0, t0〉, l0, 〈s1, t1〉, . . . ln, 〈q, tn+1〉, where for every 0 ≤ i ≤ n, we have
(〈si, ti〉, li, 〈si+1, ti+1〉) ∈ ΔS . For example, considering the PLTS in Fig. 3d and
the LTS in Fig. 1c, the finite trace obtained by performing a userReq event
reaches the black-box state 2 of the PLTS.

Given a finite trace π = l0, l1, . . . ln (or an infinite trace l0, l1, . . .) of S, we
say that its sub-trace li, li+1 . . . lk is inside the black-box state b if one of the
sub-sequences associated with π is in the form 〈b, ti〉, li, 〈b, ti+1〉, . . . , lk, 〈b, tk〉,
where li, li+1, . . . , lk ∈ σ(b). Note that a sub-trace is a finite trace. For example,
considering the parallel composition of the PLTS in Fig. 3d and the LTSs in
Fig. 1c and b, and the finite trace associated with events userReq, shipInfoReq,
offerRcvd, the sub-trace associated with shipInfoReq is inside the black-box state
2. This means that shipInfoReq must occur in the sub-component replacing the
black-box state 2.

Adding Pre- and Post-conditions. The intended behavior of a sub-
component refining a black-box state can be captured using pre- and post-
conditions. The contract for the sub-component associated with a box con-
sists of the box interface and its pre- and post-conditions. Given the univer-
sal set FLTL of the FLTL formulae, an Interface PLTS (IPLTS) I is a struc-
ture 〈A,R,B, σ, pre, post〉, where 〈A,R,B, σ〉 is a PLTS, pre : B → FLTL and
post : B → FLTL.

For each black-box state b, the function pre specifies a constraint that must be
satisfied by all finite traces of P that reach b. For example, the FLTL-expressed
pre-condition for the black-box state 4 of the IPLTS in Fig. 3d requires that
any trace of the composition between the IPLTS and an LTS that reaches the
black-box state 4 provides info on the product to the user after his/her request.

For each black-box state b, the function post specifies a post-condition that
constrains the behavior of the system in any sub-trace performed inside b. For
example, the post-condition of the black-box state 4 of the IPLTS in Fig. 3d
ensures that whenever this IPLTS is composed with an LTS, a product request
and a shipping request are performed by the furniture-sale service while the
system is inside the black-box state.

Supporting Verification-Driven Incremental Distributed Design 177

Given an IPLTS I and an LTS D, the parallel composition S between I
and D is obtained by considering the PLTS P associated with I and the LTS
D as specified in Definition 1. Given an IPLTS I, an LTS D and the parallel
composition S between I and D, trace π of S is valid iff it is infinite and for
every black-box state b, the post-condition post(b) holds in any sub-trace of π
performed inside b.

Definition 2. Given an LTS D, an IPLTS I is well-formed (over D) iff every
valid trace of S = I ‖ D satisfies all the pre-conditions of black-box states of I.

We say that S = I ‖ D satisfies an FLTL property φ if and only if φ is satisfied
by every valid trace of S. In the p&d example, the post-condition (F ProdReq)
∧ (F ShipReq) of the black-box 4 ensures that the parallel composition of the
component in Fig. 3d and its environment satisfies P3.

Sub-components and Their Integration. Integration aims to replace black-
box states of a given IPLTS with the corresponding sub-components. Given an
IPLTS I, one of its black-box states b and its interface σ(b), a sub-component for
b is an IPLTS R defined over the set of events σ(b). One state qR

f of R is defined as
the final state of R. Given a sub-component R, an LTS of its environment E, and
a trace in the form πi;πe such that πi = l0, l1 . . . ln and πe = ln+1, ln+2, . . . lk,
we say that πi;πe is a trace of the parallel composition between R and E if
and only if (1) there exists a sequence q0, l0, q1, l1 . . . ln, qn in the environment
such that for all i, where 0 ≤ i < n, (qi, li, qi+1) is a transition of E; (2) πe

is obtained by R ‖ E considering qn as the initial state for the environment,
(3) πe reaches qR

f . A sub-component is valid if it ensures that the traces of the
parallel composition satisfy its post-conditions. Intuitively, a trace of the parallel
composition between a sub-component R and the environment E is obtained by
concatenating two sub-traces: πi and πe. The sub-trace πi corresponds to a set of
transitions performed by the environment before the sub-component is activated,
while πe is a trace the system generates while it is in the sub-component R.

Definition 3. Given an IPLTS I with a black-box state b, the environment E
and a sub-component R for b, R is a substitutable sub-component iff every trace
πi;πe of the parallel composition between R and E is such that if πi satisfies
pre(b) then πe guarantees post(b).

Intuitively, whenever the sub-component is entered and the pre-condition pre(b)
is satisfied (i.e., the trace πi satisfies pre(b)), then a trace of the parallel com-
position between the sub-component and the environment that reaches the final
state of the sub-component must satisfy the post-condition post(b).

A black-box state of an IPLTS C can be replaced by a substitutable sub-
component R though an integration procedure. The resulting IPLTS C ′ is called
integration. Intuitively, the integration procedure connects every incoming and
outgoing transition of the considered black-box state to the initial and final
state of the substitutable sub-component R, respectively. Integrating the sub-
component R for black-box state 2 in Fig. 3e into the component in Fig. 3d
produces the IPLTS in Fig. 3g. The prefix “2.” is used to identify the states

178 C. Menghi et al.

obtained from R. The contracts of black-box states 4 and 5 are the same as
those in Fig. 3b.

Theorem 1. Given a well-formed IPLTS C and a substitutable sub-component
R for a black-box state b of C, if C satisfies an FLTL property φ, then the
integration C ′ obtained by substituting b with R also satisfies φ.

The sub-component R from Fig. 3e is substitutable; thus, integrating it into
the partial component C shown in Fig. 3g ensures that the resulting integrated
component C ′ preserves properties P1 -P4.

5 Verification Algorithms

In this section, we describe the algorithms for the analysis of partial components,
which we have implemented on top of LTSA [25].

Checking Realizability. Realizability of a property φ is checked via the fol-
lowing procedure. Let E be the environment of the partial component C, and
CB be the LTS resulting from removing all black-box states and their incoming
and outgoing transitions from C. Check CB ‖ E |= φ. If φ is not satisfied,
the component is not realizable: no matter how the black-box states are speci-
fied, there will be a behavior of the system that does not satisfy φ. Otherwise,
compute C ‖ E (as specified in Definition 1) and model-check it against ¬φ.
If the property ¬φ is satisfied, the component is not realizable. Indeed, all the
behaviors of C ‖ E satisfy ¬φ, i.e., there is no behavior that the component can
exhibit to satisfy φ. Otherwise, the component may be realizable. For example,
the realizability checker shows that it is possible to realize a component refining
the one shown in Fig. 3c while satisfying property P2. Specifically, it returns a
trace that ensures that after a userReq event, the offer is provided to the user
(the event offerRcvd) only if the furniture service has confirmed the availability
of the requested product (the event inforRcvd).

Theorem 2. Given a component specified using an IPLTS C, its environment
E, and a property of interest φ, the realizability checker returns “not realizable”
if there is no component C ′ obtained from C by integrating sub-components, s.t.
(C ′ ‖ E) |= φ.

Checking Well-Formedness. Given a partial component C with a black-box
state b annotated with a pre-condition pre(b) and its environment E, the well-
formedness checks whether pre(b) is satisfied in C as follows.

(1) Transform post-conditions into LTSs. Transform every FLTL post-condition
post(bi) of every black-box state bi of C, including b, into an FLTL for-
mula post(bi)′ as specified in [13]. This transformation ensures that the
infinite traces that satisfy post(bi)′ have the form π, {end}ω, where π satis-
fies post(bi). For each black-box state bi, the corresponding post-condition

Supporting Verification-Driven Incremental Distributed Design 179

post(bi)′ is transformed into an equivalent LTS, called LTSbi , using the pro-
cedure in [37]. Since LTSbi has traces in the form π, {end}ω, it has a state
s with an end -labelled self-loop. This self-loop is removed, and s is consid-
ered as final state of LTSbi . All other end -labeled transitions are replaced
by τ -transitions. Each automaton LTSbi contains all the traces that do not
violate the corresponding post-condition.

(2) Integrate the LTSs of all the black-box states bi �= b. For every black-box
state bi �= b, eliminate bi and add LTSbi to C by replacing every incoming
transition of bi with a transition whose destination is the initial state of
LTSbi , and every outgoing transition of bi with a transition whose source
is the final state of LTSbi . This step creates an LTS which encodes all the
traces of the component that do not violate any post-conditions of its black-
box states.

(3) Integrate the LTS of the black-box state b. Integrate LTSb into C together
with two additional states, q1 and q2, calling the resulting model C ′. Replace
every incoming transition of b by a transition with destination q1. Replace
every outgoing transition of b by a transition whose source is the final state
of LTSb. Add a transition labeled with τ from q1 to the initial state of LTSb.
Add a self-loop labeled with an event end to q2. Add a τ -transition from q1
to q2. The obtained LTS C ′ encodes all the valid traces of the system. When
a valid trace reaches the black-box state b, C ′ can enter state q2 from which
only the end -labelled self-loop is available.

(4) Verify. Recall that the precondition pre(b) of b is defined over finite traces,
i.e., those that reach the initial state of the sub-component to be substituted
for b. To use standard verification procedures, we transform pre(b) into an
equivalent formula, pre(b)′, over infinite traces. This transformation, speci-
fied in [13], ensures that every trace of the form π, {end}ω satisfies pre(b)′

iff π satisfies pre(b). By construction in step 3 above, C ′ ‖ E has a valid
trace of this form which is generated when C ‖ E reaches the initial state
of the LTS LTSb associated with the black-box state b of C. To check the
pre-condition, we verify whether C ′ ‖ E |= pre(b)′ using traditional model
checking.

In the p&d example, if we remove the clause F InfoRcvd from the post-
condition of the black-box state 2, the p&d component is not well-formed since
the pre-condition of state 4 is violated. The counterexample shows a trace that
reaches the black-box state 4 in which an event userReq is not followed by infoR-
cvd. Adding F InfoRcvd to the post-condition of state 2 solves the problem.

Theorem 3. Given a partial component C with a black-box state b annotated
with a pre-condition pre(b) and its environment E, the well-formedness procedure
returns true iff the valid traces of C satisfy the pre-condition pre(b).

Model Checking. To check whether C ‖ E satisfies φ, we first construct an LTS
C ′ that generates only valid traces, by plugging into C the LTSs corresponding to
all of its black-box states (as done in steps 1 and 2 of the well-formedness check)
and use a classical FLTL model-checker to verify C ′ ‖ E |= φ. If we consider the

180 C. Menghi et al.

design of Fig. 3d and assume that the black-box state 2 is not associated with
any post-condition, the model checker returns the counterexample userReq,τ ,
offerRcvd for property P2, since the sub-component that will replace the black-
box state 2 is not forced to ask to book the furniture service. Adding the post-
condition in Fig. 3b solves the problem.

Theorem 4. The model checking procedure returns true iff every valid trace of
C ‖ E satisfies φ.

Checking Substitutability. Given the environment E, a component C with
a black-box state b and pre- and post-conditions pre(b) and post(b), and a sub-
component R, this procedure checks whether R can be used in C in place of b.
We first present a procedure assuming that R has no black-box states.

(1) Transform the pre-condition pre(b) into an LTS, called LTSb , using Step (1)
of the well-formedness procedure.

(2) Compute the sequential composition (LTSb.R) between the LTSb and R.
This is done by connecting the final state q1 of LTSb with the initial state
of R by a transition labelled with a fresh event init. Then, the final state
of R is connected to an additional state q2 through a τ -labeled transition.
A self-loop labeled with a fresh event end is added to q2. Performing these
steps ensures that the prefix π of every infinite trace in the form π, {end}ω

is comprised of two parts: π = π1;π2, where π1 satisfies pre(b) and π2 is
generated by the LTS R.

(3) Verify the result. The formula must hold on any trace
that reaches the final state of R, e.g., on any trace of the form π; {end}ω,
where λ′ is the result of applying the finite- to infinite-trace FLTL transfor-
mation [13] to λ. This transformation ensures that π satisfies λ iff a trace of
the form π; {end}ω satisfies λ′. And that, in turn, can be verified by checking
((LTSb.R) ‖ E) |= λ′ using a classical model-checker.

If R contains black-box states, checking R requires performing Steps (1) and
(2) of the well-formedness check before running the substitutability procedure.

In the p&d example, the substitutability checker does not return any coun-
terexample for the sub-component in Fig. 3e. Thus, the post-condition is satisfied
and the sub-component can be integrated in place of the black-box state 2.

Theorem 5. Let a component C with a black-box state b, its pre- and post-
conditions pre(b) and post(b), a sub-component R, and C’s environment E be
given. The substitutability checker returns true, indicating that R can be used in
C in place of b, iff for every trace π = πi;πe of R ‖ E, if πi is the finite prefix
of E satisfying pre(b) and πe is obtained by R ‖ E considering the final state of
πi as the initial state of the environment, then πe satisfies post(b).

6 Evaluation

We aim to answer two questions: RQ.1: How effective is FIDDle w.r.t. support-
ing an iterative, distributed development of correct components? (Sect. 6.1) and
RQ.2: How scalable is the automated part of the proposed approach? (Sect. 6.2).

Supporting Verification-Driven Incremental Distributed Design 181

6.1 Assessing Effectiveness

We simulated development of a complex component and analyzed FIDDle-
provided support along the steps described in Sect. 2.

Experimental Setup. We chose the executive module of the K9 Mars Rover
developed at NASA Ames [12,17,18] and specified using LTSs. The overall size of
the LTS is ∼107 states. The executive module was made by several components:
Executive, ExecCondChecker, ActionExecution and Database. ExecCondChecker
was further decomposed into db-monitor and internal. Each of these components
was associated with a shared variable (exec, conditionList, action and db, respec-
tively) used to communicate with the other components, e.g., the exec variable
was used by ExecCondChecker to communicate with Executive. The access of
each shared variable was regulated through a condition variable and a lock. The
complete model of the Executive component comprised of 11 states, each fur-
ther decomposed as an LTS. The final model of the Executive component was
obtained by replacing these states with the corresponding LTSs. This model had
about 100 states which is a realistic component of a medium size [5,6,24].

We considered two properties: (P1): Executive performed an action only
after a new plan was read from Database; (P2): Executive got the lock over the
condList variable only after obtaining the exec lock.

Creating an Initial Component Design. We considered the existing model (D3)
of the Executive and abstracted portions of the complete model into black-box
states to create two partial components D1 and D2 representing partial designs.
To generate D2 we encapsulated three states that receive plans and prepare for
plan execution into the black-box state Read Plans. To generate D1, we also set
one of the 10 states of the Executive whose corresponding LTS is in charge of
executing a plan, i.e., state ExecuteTaskAction, as a black-box state. By following
this procedure, D3 and D2 can be obtained from D2 and D1, respectively, by
integrating the abstracted sub-components.

We considered the (partial) components D1, D2 and D3 and used FIDDle to
iteratively develop and check their contracts. For D1, the steps were as follows:
(1) The realizability checker confirmed the existence of a model that refined
D1 and satisfied the properties of interest. (2) The model checker returned
a counterexample for both properties of interest. For P1, the model checker
returned a counterexample in which no plan was read and yet an action was
performed. For P2, the counterexample was where Executive got the condList
lock without possessing the exec lock. To guarantee the satisfaction of P1, we
specified a post-condition to the black-box state Read Plans that ensures that
a plan was read. We also added a pre-condition requiring that an action was
not under execution when the black-box state Read Plans was entered. (3) The
well-formedness checker returned a counterexample trace that reached the black-
box state Read Plans while an action was under execution. (4) To ensure well-
formedness, we added a postcondition to the black-box state ExecuteTaskAction
ensuring that an action was not under execution when the system exited the
black-box state. (5) The model checker confirmed that P1 held. (6) To guar-

182 C. Menghi et al.

antee the satisfaction of P2, we added a post-condition to the black-box state
Read Plans ensuring that when the control left the black-box, P2 remained true
and the Executive had the exec lock.

For design D2, the steps were as follows: (1) The realizability checker con-
firmed the existence of a model that refined D2 and satisfied the properties
of interest. (2) We ran the model checker that returned a counterexample for
both properties of interest. (3) We added to the black-box state Read Plans
the same pre- and post-conditions of as those developed for design D1 and ran
the well-formedness and the model checker. (4) The well-formedness checker
confirmed that D2 satisfied the pre-condition of the black-box Read Plans; the
model checker certified the satisfaction of P1 and P2.

Since the model of Executive was complete, we ran only the model checker
to check D3. Properties P1 and P2 were satisfied.

Sub-component Development. We simulated a refinement process in which pre-
and post-conditions were given to third parties for sub-component development.
We considered the sub-components SUB1 and SUB2 containing the portion of
the Executive component abstracted by the black-box states ExecuteTaskAction
and Read Plans, respectively. We run the substitutability checker to verify, affir-
matively, whether SUB1 and SUB2 ensured the post-condition of the black-box
states ExecuteTaskAction and Read Plans given their pre-conditions.

Sub-component Integration. We then plugged in the designed sub-components
into their corresponding black-box states. We integrated each sub-component
into design D1 and used the model checker to verify the resulting (partial)
components w.r.t. properties P1 -P2. The properties were satisfied, as intended.

Results. FIDDle was effective in analyzing partial components and helping
change their design to ensure the satisfaction of the properties of interest.
The experiment confirmed the possibility of distributing the design of sub-
components for the black-box states. As expected, no rework at the integra-
tion level was required, i.e., integration produced components that satisfied the
properties of interest. This confirmed that FIDDle supports verification-driven
iterative and distributed development of components.

Threats to Validity. A threat to construct validity concerns the (manual) con-
struction of intermediate model produced during development by abstracting an
existing component model and the design of the properties to be considered.
However, the intermediate partial designs and the selected properties were based
on original developer comments present in the model. A threat to internal valid-
ity concerns the design of the contracts (pre- and post- conditions and interfaces)
for the black-box states chosen along the process. However, pre- and post- con-
ditions were chosen and designed by consulting property specification patterns
proposed in literature [16]. The fact that a single example has been considered is
a threat to external validity. However, the considered example is a medium-size
complex real case study [6,22,35].

Supporting Verification-Driven Incremental Distributed Design 183

Table 1. Results of experiments E1 and E2.

#CompStates

E1 : (Tw)/(Tm) E2 : (Ts)/(Tm)

#EnvStates 10 50 100 250 500 750 1000 10 50 100 250 500 750 1000

10 1.45 1.26 1.51 1.29 1.42 1.43 1.31 2.20 4.37 2.18 1.50 2.19 1.62 1.62

100 1.15 1.25 1.50 1.08 0.88 1.02 2.33 3.51 4.66 3.61 2.80 3.18 1.96 2.73

1000 1.39 1.23 0.60 1.44 4.90 1.00 2.83 13.98 8.12 3.84 2.64 2.83 2.91 2.00

6.2 Assessing Scalability

We set up two experiments (E1 and E2) comparing performance of the well-
formedness and the substitutability checkers w.r.t. classical model checking as
the size of the partial components under development and their environments
grew. Our experiments were based on a set of randomly-generated models.

E1. To evaluate the well-formedness checker, we generated an LTS model of the
environment and a complete model for the component. We checked the parallel
composition between the component and the environment w.r.t. a property of
interest using a standard model checker. Then, we generated a partial component
by marking one of the states of the complete component as a black-box, defining
pre- and post- conditions for it and ran the well-formedness checker, comparing
performance of the two.

E2. To evaluate the substitutability checker, we generated a complete component
as in the previous experiment. Then, we extracted a sub-component by selecting
half of the component states and the transitions between them. States q0 and
qf were added to the sub-component as the initial and final state, respectively.
State q0 (qf) was connected with all the states of the sub-component that had, in
the original component, at least one incoming (resp., outgoing) transition from
(resp., to) a state that was not added to the sub-component. We defined the pre-
and post-conditions for the sub-component and ran the substitutability checker
comparing its performance with model-checking.

Experimental Setup. We implemented a random model generator to create
LTSs with a specified number of states, transition density (transitions per state)
and number of events. We generated environments with an increasing number
of states: 10, 100 and 1000. We have chosen 10 as a fixed value for the transition
density and 50 as the cardinality of the set of events. We considered components
with 10, 50, 100, 250, 500, 750 and 1000 states. The components were generated
using the same transition density and number of events as in the produced
environment. To produce the partial component, we considered one of the states
of the component obtained previously as a black-box, and randomly selected
25% of the events of the component as the interface of the partial component.
To produce the sub-component, we randomly extracted half of the component
states and the transitions between them.

184 C. Menghi et al.

Properties of Interest, Pre- and Post-conditions. We considered properties
, which corre-

spond to commonly used property patterns [16], and where Q and P are
appropriately defined fluents. We considered K1, K2 and K3 as pre- and post-
conditions for the black-box.

Methodology and Results. We ran each experiment 5 times on a 2 GHz Intel
Core i7, with 8 GB 1600 MHz DDR3 disk. For each combination of values of
the #EnvStates and #ContStates we computed the average between the time
required by the well-formedness checker (Tw) and by the model checker (Tm),
for the experiment E1, and the average between the time required by the sub-
stitutability checker (Ts) and by the model checker (Tm), for the experiment E2
(see Table 1). The results show that the well-formedness and the substitutability
checker scale as the classical model checker.

Threats to Validity. The procedure employed to randomly generate models is
a threat to construct validity. However, the transition density of the components
was chosen based on the Mars Rover example. Furthermore, the number of states
of the sub-component was chosen such that the ratio between the sizes of the
component and the sub-component was approximately the same of the Mars
Rover. The properties considered in the experiment are a threat to internal
validity. However, they were chosen by consulting property specification patterns
proposed in literature [16]. Considering a single black-box state is a threat to
external validity. However, our goal was to evaluate how FIDDle scales with
respect to the component and the environment sizes and not w.r.t. the number
of black-box states and the size of the post-conditions. Considering multiple
black-box states reduces to the case of considering a single black-box with a
more complex post-condition.

7 Related Work

We discuss approaches for developing incrementally correct components.

Modeling Partiality. Modal Transition Systems [21], Partial Kripke Structures
[8], and LTS↑ [17] support the specification of incomplete concurrent systems
and can be used in an iterative development process. Other formalisms, such as
Hierarchical State Machines (HSMs) [4], are used to model sequential processes
via a top-down development process but can only be analyzed when a fully-
specified model is available.

Checking Partial Models. Approaches to analyze partial models (e.g., [8,10])
are not applicable to the problem considered in this paper where missing sub-
components are specified using contracts and their development is distributed
across different development teams. The assumption generation problem for
LTSs [17] is complementary to the one considered in this paper and concerns the
computation of an assumption that describes how the system model interacts
with the environment.

Supporting Verification-Driven Incremental Distributed Design 185

Substitutability Checking. The goal of substitutability checking is to verify
whether a possibly partial sub-component can be plugged into a higher level
structure without affecting its correctness. Problems such as “compositional
reasoning” [1,19,30], “component substitutability” [9], and “hierarchical model
checking” [4] are related to this part of our work. Our work differs because we
first guarantee that the properties of interest are satisfied in the initially-defined
partial component and then check that the provided sub-components can be
plugged into the initial component.

Synthesis. Program synthesis [14,31] aims at computing a model of the system
that satisfies the properties of interest. Moreover, synthesis can be used to gen-
erate assumptions on a system’s environment to make its specification relizable
(e.g., [23]). Sketch [36] supports programmers in describing an initial structure
of the program that can be completed using synthesis techniques, but does not
explicitly consider models. Many techniques for synthesizing components have
been proposed, e.g., [14,37], and a fully automated synthesis of highly non-
trivial components of over 2000 states big is becoming possible [11] for special
cases, by limiting the types of synthesizable goals and using heuristics. However,
such cases might not be applicable in general. Recent work has been done in
the direction of compositional [2,3] and distributed [34] synthesis. We do not
consider our approach to be an alternative to synthesis, but instead a way to
combine synthesis techniques with the human design.

8 Conclusion

We presented a verification-driven methodology, called FIDDle, to support itera-
tive distributed development of components. It enables recursively decomposing
a component into a set of sub-components so that the correctness of the overall
component is ensured. Development of sub-components that satisfy their speci-
fications can then be done independently, via distributed development. We have
evaluated FIDDle on a realistic Mars Rover case study. Scalability was evaluated
using randomly generated examples.

Acknowledgments. Research partly supported from the EU H2020 Research and
Innovation Programme under GA No. 731869 (Co4Robots).

References

1. Alur, R., Henzinger, T.A.: Reactive modules. Formal Meth. Softw. Des. 15(1),
7–48 (1999)

2. Alur, R., Moarref, S., Topcu, U.: Pattern-Based Refinement of Assume-Guarantee
Specifications in Reactive Synthesis. In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 501–516. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0 49

https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_49

186 C. Menghi et al.

3. Alur, R., Moarref, S., Topcu, U.: Compositional synthesis of reactive controllers
for multi-agent systems. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 251–269. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 14

4. Alur, R., Yannakakis, M.: Model checking of hierarchical state machines. ACM
SIGSOFT Softw. Eng. Notes 23(6), 175–188 (1998)

5. Amalfitano, D., Fasolino, A.R., Tramontana, P.: Reverse engineering finite state
machines from rich internet applications. In: Proceedings of the 15th Working
Conference on Reverse Engineering, pp. 69–73 (2008)

6. Bensalem, S., Bozga, M., Krichen, M., Tripakis, S.: Testing conformance of real-
time applications by automatic generation of observer. In: Proceedings of RV,
Electronic Notes in Theoretical Computer Science, pp. 23–43 (2004)

7. Bernasconi, A., Menghi, C., Spoletini, P., Zuck, L.D., Ghezzi, C.: From model
checking to a temporal proof for partial models. In: Cimatti, A., Sirjani, M. (eds.)
SEFM 2017. LNCS, vol. 10469, pp. 54–69. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66197-1 4

8. Bruns, G., Godefroid, P.: Model checking partial state spaces with 3-valued tem-
poral logics. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp.
274–287. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6 25

9. Chaki, S., Clarke, E.M., Sharygina, N., Sinha, N.: Verification of evolving software
via component substitutability analysis. Formal Methods Softw. Des. 32(3), 235–
266 (2008)

10. Chechik, M., Devereux, B., Easterbrook, S., Gurfinkel, A.: Multi-valued symbolic
model-checking. ACM Trans. Softw. Eng. Methodol. 12(4), 371–408 (2003)

11. Ciolek, D., Braberman, V.A., D’Ippolito, N., Uchitel, S.: Technical Report:
Directed Controller Synthesis of Discrete Event Systems. CoRR, abs/1605.09772
(2016)

12. Cobleigh, J.M., Giannakopoulou, D., PĂsĂreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 24

13. De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces:
insensitivity to infiniteness. In: Proceedings of AAAI, pp. 1027–1033 (2014)

14. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, U.: Synthesising non-
anomalous event-based controllers for liveness goals. ACM Tran. Softw. Eng.
Methodol. 22, 9 (2013)

15. D’Ippolito, N., Braberman, V., Piterman, N., Uchitel, S.: Controllability in partial
and uncertain environments. In: Proceedings of ACSD, pp. 52–61. IEEE (2014)

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: Proceedings of FMSP, pp. 7–15. ACM (1998)

17. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proceedings of ASE, pp. 3–12. IEEE (2002)

18. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Component verification with
automatically generated assumptions. J. Autom. Softw. Eng. 12(3), 297–320 (2005)

19. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

20. Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–
384 (1976)

21. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of LICS, pp.
203–210. IEEE (1988)

https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-41540-6_14
https://doi.org/10.1007/978-3-319-66197-1_4
https://doi.org/10.1007/978-3-319-66197-1_4
https://doi.org/10.1007/3-540-48683-6_25
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24

Supporting Verification-Driven Incremental Distributed Design 187

22. Levy, L.S.: Taming the Tiger: Software Engineering and Software Economics.
Springer Books on Professional Computing Series. Springer-Verlag, New York
(1987). https://doi.org/10.1007/978-1-4612-4718-0

23. Li, W., Dworkin, L., Seshia, S.A.: Mining assumptions for synthesis. In: Proceed-
ings of ACM/IEEE MEMPCODE, pp. 43–50 (2011)

24. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: Proceedings of ICSE, pp. 501–510 (2008)

25. Magee, J., Kramer, J.: State Models and Java Programs. Wiley, New York (1999)
26. Menghi, C., Spoletini, P., Ghezzi, C.: Dealing with incompleteness in automata-

based model checking. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 531–550. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 32

27. Menghi, C., Spoletini, P., Ghezzi, C.: Integrating goal model analysis with iterative
design. In: Grünbacher, P., Perini, A. (eds.) REFSQ 2017. LNCS, vol. 10153, pp.
112–128. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54045-0 9

28. Nivoit, J.-B.: Issues in strategic management of large-scale software product line
development. Master’s thesis, MIT, USA (2013)

29. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: Bussler, C., Fensel, D. (eds.) AIMSA 2004.
LNCS (LNAI), vol. 3192, pp. 106–115. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-30106-6 11

30. Pnueli, A.: In transition from global to modular temporal reasoning about pro-
grams. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI
Series, pp. 123–144. Springer-Verlag, New York Inc (1985). https://doi.org/10.
1007/978-3-642-82453-1 5

31. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of
POPL, pp. 179–190. ACM (1989)

32. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for auto-
motive systems: a roadmap. In: Proceedings of FOSE, pp. 55–71. IEEE Computer
Society (2007)

33. Sandewall, E.: Features and Fluents (Vol. 1): The Representation of Knowledge
about Dynamical Systems. Oxford University Press Inc, New York (1995)

34. Sibay, G.E., Uchitel, S., Braberman, V., Kramer, J.: Distribution of modal tran-
sition systems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 403–417. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32759-9 33

35. Software Measurement Services Ltd. “small project”, “medium-size project”, and
“large project”: What do these terms mean? (2004). http://www.totalmetrics.com/
function-points-downloads/Function-Point-Scale-Project-Size.pdf

36. Solar-Lezama, A.: Program synthesis by sketching. Ph.D. thesis. University of Cal-
ifornia, Berkeley (2008)

37. Uchitel, S., Brunet, G., Chechik, M.: Synthesis of partial behavior models from
properties and scenarios. IEEE Trans.Softw. Eng. 35(3), 384–406 (2009)

https://doi.org/10.1007/978-1-4612-4718-0
https://doi.org/10.1007/978-3-319-48989-6_32
https://doi.org/10.1007/978-3-319-48989-6_32
https://doi.org/10.1007/978-3-319-54045-0_9
https://doi.org/10.1007/978-3-540-30106-6_11
https://doi.org/10.1007/978-3-540-30106-6_11
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-82453-1_5
https://doi.org/10.1007/978-3-642-32759-9_33
https://doi.org/10.1007/978-3-642-32759-9_33
http://www.totalmetrics.com/function-points-downloads/Function-Point-Scale-Project-Size.pdf
http://www.totalmetrics.com/function-points-downloads/Function-Point-Scale-Project-Size.pdf

188 C. Menghi et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Summarizing Software API Usage
Examples Using Clustering Techniques

Nikolaos Katirtzis1,2(B) , Themistoklis Diamantopoulos3 ,
and Charles Sutton2

1 Hotels.com, London, UK
nkatirtzis@ed-alumni.net

2 School of Informatics, University of Edinburgh, Edinburgh, UK
csutton@ed.ac.uk

3 Electrical and Computer Engineering Department,
Aristotle University of Thessaloniki, Thessaloniki, Greece

thdiaman@issel.ee.auth.gr

Abstract. As developers often use third-party libraries to facilitate
software development, the lack of proper API documentation for
these libraries undermines their reuse potential. And although several
approaches extract usage examples for libraries, they are usually tied
to specific language implementations, while their produced examples are
often redundant and are not presented as concise and readable snip-
pets. In this work, we propose a novel approach that extracts API
call sequences from client source code and clusters them to produce a
diverse set of source code snippets that effectively covers the target API.
We further construct a summarization algorithm to present concise and
readable snippets to the users. Upon evaluating our system on software
libraries, we indicate that it achieves high coverage in API methods, while
the produced snippets are of high quality and closely match handwritten
examples.

Keywords: API usage mining · Documentation · Source code reuse
Code summarization · Mining software repositories

1 Introduction

Third-party libraries and frameworks are an integral part of current software
systems. Access to the functionality of a library is typically offered by its API,
which may consist of numerous classes and methods. However, as noted by mul-
tiple studies [24,30], APIs often lack proper examples and documentation and,
in general, sufficient explanation on how to be used. Thus, developers often
use general-purpose or specialized code search engines (CSEs), and Question-
Answering (QA) communities, such as Stack Overflow, in order to find possible
API usages. However, the search process in these services can be time consuming
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 189–206, 2018.
https://doi.org/10.1007/978-3-319-89363-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_11&domain=pdf
http://orcid.org/0000-0001-9586-2479
http://orcid.org/0000-0002-0520-7225
http://orcid.org/0000-0002-0041-3820

190 N. Katirtzis et al.

[13], while the source code snippets provided in web sites and QA communities
might be difficult to recognise, ambiguous, or incomplete [28,29].

As a result, several researchers have studied the problem of API usage min-
ing, which can be described as automatically identifying a set of patterns that
characterize how an API is typically used from a corpus of client code [11]. There
are two main types of API mining methods. First are methods that return API
call sequences, using techniques such as frequent sequence mining [31–33], clus-
tering [25,31,33], and probabilistic modeling [9]. Though interesting, API call
sequences do not always describe important information like method arguments
and control flow, and their output cannot be directly included in one’s code.

A second class of approaches automatically produces source code snippets
which, compared to API call sequences, provide more information to the devel-
oper, and are more similar to human-written examples. Methods for mining
snippets, however, tend to rely on detailed semantic analysis, including program
slicing [5,13–15] and symbolic execution [5], which can make them more difficult
to deploy to new languages. Furthermore, certain approaches do not use any
clustering techniques, thus resulting to a redundant and non-diverse set of API
soure code snippets [20], which is not representative as it only uses a few API
methods as noted by Fowkes and Sutton [9]. On the other hand, approaches
that do use clustering techniques are usually limited to their choice of clustering
algorithms [34] and/or use feature sets that are language-specific [13–15].

In this paper, we propose CLAMS (Clustering for API Mining of Snip-
pets), an approach for mining API usage examples that lies between snippet
and sequence mining methods, which ensures lower complexity and thus could
apply more readily to other languages. The basic idea is to cluster a large set
of usage examples based on their API calls, generate summarized versions for
the top snippets of each cluster, and then select the most representative snippet
from each cluster, using a tree edit distance metric on the ASTs. This results in a
diverse set of examples in the form of concise and readable source code snippets.
Our method is entirely data-driven, requiring only syntactic information from
the source code, and so could be easily applied to other programming languages.
We evaluate CLAMS on a set of popular libraries, where we illustrate how its
results are more diverse in terms of API methods than those of other approaches,
and assess to what extent the snippets match human-written examples.

2 Related Work

Several studies have pointed out the importance of API documentation in the
form of examples when investigating API usability [18,22] and API adoption in
cases of highly evolving APIs [16]. Different approaches have thus been presented
to find or create such examples; from systems that search for examples on web
pages [28], to ones that mine such examples from client code located in source
code repositories [5], or even from video tutorials [23]. Mining examples from
client source code has been a typical approach for Source Code-Based Recom-
mendation Systems (SCoReS) [19]. Such methods are distinguished according
to their output which can be either source code snippets or API call sequences.

Summarizing Software API Usage Examples Using Clustering Techniques 191

2.1 Systems that Output API Call Sequences

One of the first systems to mine API usage patterns is MAPO [32] which employs
frequent sequence mining [10] to identify common usage patterns. Although the
latest version of the system outputs the API call sequences along with their asso-
ciated snippets [33], it is still more of a sequence-based approach, as it presents
the code of the client method without performing any summarization, while it
also does not consider the structure of the source code snippets.

Wang et al. [31] argue that MAPO outputs a large number of usage patterns,
many of which are redundant. The authors therefore define scalability, succinct-
ness and high-coverage as the required characteristics of an API miner and
construct UP-Miner, a system that mines probabilistic graphs of API method
calls and extracts more useful patterns than MAPO. However, the presentation
of such graphs can be overwhelming when compared to ranked lists.

Recently, Fowkes and Sutton [9] proposed a method for mining API usage
patterns called PAM, which uses probabilistic machine learning to mine a less
redundant and more representative set of patterns than MAPO or UP-Miner.
This paper also introduced an automated evaluation framework, using handwrit-
ten library usage examples from Github, which we adapt in the present work.

2.2 Systems that Output Source Code Snippets

A typical snippet mining system is eXoaDocs [13–15] that employs slicing tech-
niques to summarize snippets retrieved from online sources into useful documen-
tation examples, which are further organized using clustering techniques. How-
ever, clustering is performed using semantic feature vectors approximated by
the Deckard tool [12], and such features are not straightforward to get extracted
for different programming languages. Furthermore, eXoaDocs only targets usage
examples of single API methods, as its feature vectors do not include information
for mining frequent patterns with multiple API method calls.

APIMiner [20] introduces a summarization algorithm that uses slicing to
preserve only the API-relevant statements of the source code. Further work by
the same authors [4] incorporates association rule techniques, and employs an
improved version of the summarization algorithm, with the aim of resolving
variable types and adding descriptive comments. Yet the system does not cluster
similar examples, while most examples show the usage of a single API method.

Even when slicing is employed in the aforementioned systems, the examples
often contain extraneous statements (i.e. statements that could be removed as
they are not related to the API), as noted by Buse and Weimer [5]. Hence,
the authors introduce a system that synthesizes representative and well-typed
usage examples using path-sensitive data flow analysis, clustering, and pattern
abstraction. The snippets are complete and abstract, including abstract naming
and helpful code, such as try/catch statements. However, the sophistication of
their program analysis makes the system more complex [31], and increases the
required effort for applying it to new programming languages.

192 N. Katirtzis et al.

Allamanis and Sutton [1] present a system for mining syntactic idioms, which
are syntactic patterns that recur frequently and are closely related to snippets,
and thus many of their mined patterns are API snippets. That method is lan-
guage agnostic, as it relies only on ASTs, but uses a sophisticated statistical
method based on Bayesian probabilistic grammars, which limits its scalability.

Although the aforementioned approaches can be effective in certain scenarios,
they also have several drawbacks. First, most systems output API call sequences
or other representations (e.g. call graphs), which may not be as helpful as snip-
pets, both in terms of understanding and from a reuse perspective (e.g. adapting
an example to fit one’s own code). Several of the systems that output snippets
do not group them into clusters and thus they do not provide a diverse set of
usage examples, and even when clustering is employed, the set of features may
not allow extending the approaches in other programming languages. Finally,
certain systems do not provide concise and readable snippets as their source
code summarization capabilities are limited.

In this work, we present a novel API usage mining system, CLAMS, to over-
come the above limitations. CLAMS employs clustering to group similar snippets
and the output examples are subsequently improved using a summarization algo-
rithm. The algorithm performs heuristic transformations, such as variable type
resolution and replacement of literals, while it also removes non-API statements,
in order to output concise and readable snippets. Finally, the snippets are ranked
in descending order of support and given along with comprehensive comments.

3 Methodology

3.1 System Overview

The architecture of the system is shown in Fig. 1. The input for each library is a
set of Client Files and the API of the library. The API Call Extractor generates
a list of API call sequences from each method. The Clustering Preprocessor
computes a distance matrix of the sequences, which is used by the Clustering
Engine to cluster them. After that, the top (most representative) sequences from

Fig. 1. Overview of the proposed system.

Summarizing Software API Usage Examples Using Clustering Techniques 193

each cluster are selected (Clustering Postprocessor). The source code and the
ASTs (from the AST Extractor) of these top snippets are given to the Snippet
Generator that generates a summarized snippet for each of them. Finally, the
Snippet Selector selects a single snippet from each cluster, and the output is
given by the Ranker that ranks the examples in descending order of support.

3.2 Preprocessing Module

The Preprocessing Module receives as input the client source code files and
extracts their ASTs and their API call sequences. The AST Extractor employs
srcML [8] to convert source code to an XML AST format, while the API Call
Extractor extracts the API call sequences using the extractor provided by Fowkes
and Sutton [9] which uses the Eclipse JDT parser to extract method calls using
depth-first AST traversal.

3.3 Clustering Module

We perform clustering at sequence-level, instead of source code-level, this way
considering all useful API information contained in the snippets. As an exam-
ple, the snippets in Figs. 2a and b, would be clustered together by our Clustering
Engine as they contain the same API call sequence. Given the large number and
the diversity of the files, our approach is more effective than a clustering that
would consider the structure of the client code, while such a decision makes the
deployment to new languages easier. Note however that we take into considera-
tion the structure of clustered snippets at a later stage (see Sect. 3.5).

Fig. 2. The sample client code on the left side contains the same API calls with the
client code on the right side, which are encircled in both snippets.

Our clustering methodology involves first generating a distance matrix and
then clustering the sequences using this matrix. The Clustering Preprocessor
uses the Longest Common Subsequence (LCS) between any two sequences in
order to compute their distance and then create the distance matrix. Given two
sequences S1 and S2, their LCS distance is defined as:

LCS dist (S1, S2) = 1 − 2 · |LCS (S1, S2)|
|S1| + |S2| (1)

194 N. Katirtzis et al.

where |S1| and |S2| are the lengths of S1 and S2, and |LCS (S1, S2)| is the length
of their LCS. Given the distance matrix, the Clustering Engine explores the k-
medoids algorithm which is based on the implementation provided by Bauckhage
[3], and the hierarchical version of DBSCAN, known as HDBSCAN [7], which
makes use of the implementation provided by McInnes et al. [17].

The next step is to retrieve the source code associated with the most rep-
resentative sequence of each cluster (Clustering Postprocessor). Given, however,
that each cluster may contain several snippets that are identical with respect to
their sequences, we select multiple snippets for each cluster, this way retaining
source code structure information, which shall be useful for selecting a single
snippet (see Sect. 3.5). Our analysis showed that selecting all possible snippets
did not further improve the results, thus we select n snippets and set n to 5 for
our experiments, as trying higher values would not affect the results.

3.4 Snippet Generator

The Snippet Generator generates a summarized version for the top snippets.
Our summarization method, a static, flow-insensitive, intra-procedural slicing
approach, is presented in Fig. 3. The input (Fig. 3, top left) is the snippet source
code, the list of its invoked API calls and a set of variables defined in its outer
scope (encircled and highlighted in bold respectively).

At first, any comments are removed and literals are replaced by their srcML
type, i.e. string, char, number or boolean (Step 1). In Step 2, the algorithm
creates two lists, one for API and one for non-API statements (highlighted in
bold), based on whether an API method is invoked or not in each statement. Any
control flow statements that include API statements in their code block are also
retained (e.g. the else statement in Fig. 3). In Step 3, the algorithm creates a list
with all the variables that reside in the local scope of the snippet (highlighted
in bold). This is followed by the removal of all non-API statements (Step 4), by
traversing the AST in reverse (bottom-up) order.

In Step 5, the list of declared variables is filtered, and only those used in
the summarized tree are retained (highlighted in bold). Moreover, the algorithm
creates a list with all the variables that are declared in API statements and used
only in non-API statements (encircled). In Step 6, the algorithm adds declara-
tions (encircled) for the variables retrieved in Step 5. Furthermore, descriptive
comments of the form “Do something with variable” (highlighted in bold) are
added for the variables that are declared in API statements and used in non-API
statements (retrieved also in Step 5). Finally, the algorithm adds “Do something”
comments in any empty blocks (highlighted in italics).

Finally, note that our approach is quite simpler than static, syntax preserving
slicing. E.g., static slicing would not remove any of the statements inside the
else block, as the call to the getFromUser API method is assigned to a variable
(userName), which is then used in the assignment of user. Our approach, on the
other hand, performs a single pass over the AST, thus ensuring lower complexity,
which in its turn reduces the overall complexity of our system.

Summarizing Software API Usage Examples Using Clustering Techniques 195

Fig. 3. Example summarization of source code snippet.

3.5 Snippet Selector

The next step is to select a single snippet for each cluster. Given that the selected
snippet has to be the most representative of the cluster, we select the one that
is most similar to the other top snippets. The score between any two snippets is
defined as the tree edit distance between their ASTs, computed using the AP-
TED algorithm [21]. Given this metric, we create a matrix for each cluster, which
contains the distance between any two top snippets of the cluster. Finally, we
select the snippet with the minimum sum of distances in each cluster’s matrix.

3.6 Ranker

We rank the snippets according to the support of their API call sequences, as
in [9]. In specific, if the API call sequence of a snippet is a subsequence of the
sequence of a file in the repository, then we claim that the file supports the snippet.
For example, the snippet with API call sequence [twitter4j.Status.getUser, twit-
ter4j.Status.getText], is supported by a file with sequence [twitter4j.Paging.<init>,

196 N. Katirtzis et al.

twitter4j.Status.getUser, twitter4j.Status.getId, twitter4j.Status.getText, twitter4j.
Status.getUser]. In this way, we compute the support for each snippet and create
a complete ordering. Upon ordering the snippets, the AStyle formatter [2] is also
used to fix the indentation and spacing.

3.7 Deploying to New Languages

Our methodology can be easily applied on different programming languages. The
Preprocessing Module and the Snippet Selector make use of the source code’s
AST, which is straightforward to extract in different languages. The Clustering
Module and the Ranker use API call sequences and not any semantic features
that are language-specific, while our summarization algorithm relies on state-
ments and their control flow, a fundamental concept of imperative languages.
Thus, extending our methodology to additional programming languages requires
only the extraction of the AST of the source code, which can be done using appro-
priate tools (e.g. srcML), and possibly a minor adjustment on our summarization
algorithm to conform to the AST schema extracted from different tools.

4 Evaluation

4.1 Evaluation Framework

We evaluate CLAMS on the APIs (all public methods) of 6 popular Java libraries,
which were selected as they are popular (based on their GitHub stars and forks),
cover various domains, and have handwritten examples to compare our snippets
with. The libraries are shown in Table 1, along with certain statistics concerning
the lines of code of their examples’ directories (Example LOC) and the lines of
code considered from GitHub as using their API methods (Client LOC).

Table 1. Summary of the evaluation dataset.

Project Package Name Client LOC Example LOC

Apache Camel org.apache.camel 141,454 15,256

Drools org.drools 187,809 15,390

Restlet Framework org.restlet 208,395 41,078

Twitter4j twitter4j 96,020 6,560

Project Wonder com.webobjects 375,064 37,181

Apache Wicket org.apache.wicket 564,418 33,025

To further strengthen our hypothesis, we also employ an automated method
for evaluating our system, to allow quantitative comparison of its different vari-
ants. To assess whether the snippets of CLAMS are representative, we look for
“gold standard” examples online, as writing our own examples would be time-
consuming and lead to subjective results.

Summarizing Software API Usage Examples Using Clustering Techniques 197

We focus our evaluation on the 4 research questions of Fig. 4. RQ1 and RQ2
refer to summarization and clustering respectively and will be evaluated with
respect to handwritten examples. For RQ3 we assess the API coverage achieved
by CLAMS versus the ones achieved by the API mining systems MAPO [32,33]
and UP-Miner [31]. RQ4 will determine whether the extra information of source
code snippets when compared to API call sequences is useful to developers.

RQ1: How much more concise, readable, and precise with respect to handwritten
examples are the snippets after summarization?

RQ2: Do more powerful clustering techniques, that cluster similar rather than identi-
cal sequences, lead to snippets that more closely match handwritten examples?

RQ3: Does our tool mine more diverse patterns than other existing approaches?
RQ4: Do snippets match handwritten examples more than API call sequences?

Fig. 4. Research Questions (RQs) to be evaluated.

We consider four configurations for our system: NaiveNoSum, NaiveSum,
KMedoidsSum, and HDBSCANSum. To reveal the effect of clustering sequences,
the first two configurations do not use any clustering and only group identical
sequences together, while the last two use the k-medoids and the HDBSCAN
algorithms, respectively. Also the first configuration (NaiveNoSum) does not
employ our summarizer, while all others do, so that we can measure its effect.

We define metrics to assess the readability, conciseness, and quality of the
returned snippets. For readability, we use the metric defined by Buse and Weimer
[6] which is based on human studies and agrees with a large set of human anno-
tators. Given a Java source code file, the tool provided by Buse and Weimer
[27] outputs a value in the range [0.0, 1.0], where a higher value indicates a
more readable snippet. For conciseness, we use the number of Physical Lines
of Code (PLOCs). Both metrics have already been used for the evaluation of
similar systems [5]. For quality, as a proxy measure we use the similarity of the
set of returned snippets to a set of handwritten examples from the module’s
developers.

We define the similarity of a snippet s given a set of examples E as snippet
precision. First, we define a set Es with all the examples in E that have exactly
the same API calls with snippet s. After that, we compute the similarity of s
with all matching examples e ∈ Es by splitting the code into sets of tokens and
applying set similarity metrics1. Tokenization is performed using a Java code
tokenizer and the tokens are cleaned by removing symbols (e.g. brackets, etc.)
and comments, and by replacing literals (i.e. numbers, etc.) with their respective
types. The precision of s is the maximum of its similarities with all e ∈ Es:
1 Our decision to apply set similarity metrics instead of an edit distance metric is

based on the fact that the latter one is heavily affected and can be easily skewed
by the order of the statements in the source code (e.g. nested levels, etc.), while it
would not provide a fair comparison between snippets and sequences.

198 N. Katirtzis et al.

Prec(s) = maxe∈Es

{ |Ts ∩ Te|
|Ts|

}
(2)

where Ts and Te are the set of tokens of the snippet s and of the example e,
respectively. Finally, if no example has exactly the same API calls as the snippet
(i.e. Es = ∅), then snippet precision is set to zero. Given the snippet precision,
we also define the average snippet precision for n snippets s1, s2, . . . , sn as:

AvgPrec(n) =
1
n

n∑
i=1

Prec(si) (3)

Similarly, average snippet precision at top k can be defined as:

AvgPrec@k =
1
k

k∑
j=1

Prec@j where Prec@j =
1
j

j∑
i=1

Prec(si) (4)

This metric is useful for evaluating our system which outputs ordered results, as
it allows us to illustrate and draw conclusions for precision at different levels.

We also define coverage at k as the number of unique API methods contained
in the top k snippets. This metric has already been defined in a similar manner by
Fowkes and Sutton [9], who claim that a list of patterns with identical methods
would be redundant, non-diverse, and thus not representative of the target API.

Finally, we measure additional information provided in source code snippets
when compared with API call sequences. For each snippet we extract its snippet-
tokens Ts, as defined in (2), and its sequence-tokens Ts

′, which are extracted by
the underlying API call sequence of the snippet, where each token is the name
of an API method. Based on these sets, we define the additional info metric as:

AdditInfo =
1
m

m∑
i=1

maxe∈Es
{|Tsi ∩ Te|}

maxe∈Es
{|Tsi

′ ∩ Te|} (5)

where m is the number of snippets that match to at least one example.

4.2 Evaluation Results

RQ1: How much more concise, readable, and precise with respect to
handwritten examples are the snippets after summarization? We eval-
uate how much reduction in the size of the snippets is achieved by the summa-
rization algorithm, and the effect of summarization on the precision with respect
to handwritten examples. If snippets have high or higher precision after summa-
rization, then this indicates that the tokens removed by summarization are ones
that do not typically appear in handwritten examples, and thus are possibly less
relevant. For this purpose, we use the first two versions of our system, namely the
NaiveSum and the NaiveNoSum versions. Both of them use the naive clustering
technique, where only identical sequences are clustered together. Figures 5a and
b depict the average readability of the snippets mined for each library and the

Summarizing Software API Usage Examples Using Clustering Techniques 199

(a) (b)

Fig. 5. Figures of (a) the average readability, and (b) the average PLOCs of the snip-
pets, for each library, with (NaiveSum) and without (NaiveNoSum) summarization.

average PLOCs, respectively. The readability of the mined snippets is almost
doubled when performing summarization, while the snippets generated by the
NaiveSum version are clearly smaller than those mined by NaiveNoSum. In fact,
the majority of the snippets of NaiveSum contain less than 10 PLOCs, owing
mainly to the non-API statements removal of the algorithm. On average, the
summarization algorithm leads to 40% fewer PLOCS. Thus, we may argue that
the snippets provided by our summarizer are readable and concise.

Apart from readability and conciseness, which are both regarded as highly
desirable features [26], we further assess whether the summarizer produces snip-
pets that closely match handwritten examples. Therefore, we plot the snippet
precision at top k, in Fig. 6a. The plot indicates a downward trend in precision
for both configurations, which is explained by the fact that the snippets of lower
positions are more complex, as they normally contain a large number of API
calls. In any case, it is clear that the version that uses the summarizer mines
more precise snippets than the one not using it, for any value of k. E.g., for
k = 10, the summarizer increases snippet precision from 0.27 to 0.35, indicating
that no useful statements are removed and no irrelevant statements are added.

RQ2: Do more powerful clustering techniques, that cluster similar
rather than identical sequences, lead to snippets that more closely
match handwritten examples? In this experiment we compare NaiveSum,
KMedoidsSum, and HDBSCANSum to assess the effect of applying different
clustering techniques on the snippets. In order for the comparison to be fair, we
use the same number of clusters for both k-medoids and HDBSCAN. Therefore,
we first run HDBSCAN (setting its min cluster size parameter to 2), and then
use the number of clusters generated by the algorithm for k-medoids. After that,
we consider the top k results of the three versions, so that the comparison with
the Naive method (that cannot be tuned) is also fair. Hence, we plot precision
against coverage, in a similar manner to precision versus recall graphs. For this

200 N. Katirtzis et al.

(a) (b)

Fig. 6. Figures of (a) precision at top k, with (NaiveSum) or without (NaiveNoSum)
summarization, and (b) the average interpolated snippet precision versus API coverage
for three system versions (clustering algorithms), using the top 100 mined snippets.

we use the snippet precision at k and coverage at k, while we make use of an
interpolated version of the curve, where the precision value at each point is the
maximum for the corresponding coverage value. Figure 6b depicts the curve for
the top 100 snippets, where the areas under the curves are shaded. Area A2
reveals the additional coverage in API methods achieved by HDBSCANSum,
when compared to NaiveSum (A1), while A3 shows the corresponding additional
coverage of KMedoidsSum, when compared to HDBSCANSum (A2).

NaiveSum achieves slightly better precision than the versions using cluster-
ing, which is expected as most of its top snippets use the same API calls, and
contain only a few API methods. As a consequence, however, its coverage is
quite low, due to the fact that only identical sequences are grouped together.
Given that coverage is considered quite important when mining API usage exam-
ples [31], and that precision among all three configurations is similar, we may
argue that KMedoidsSum and HDBSCANSum produce sufficiently precise and
also more varying results for the developer. The differences between these two
methods are mostly related to the separation among the clusters; the clusters
created by KMedoidsSum are more separated and thus it achieves higher cover-
age, whereas HDBSCANSum has slightly higher precision. To achieve a trade-off
between precision and coverage, we select HDBSCANSum for the last two RQs.

RQ3: Does our tool mine more diverse patterns than other exist-
ing approaches? For this research question, we evaluate the diversity of the
examples of CLAMS to that of two API mining approaches, MAPO [32,33] and
UP-Miner [31], which were deemed most similar to our approach from a mining
perspective (as it also works at sequence level)2. We measure diversity using
the coverage at k. Figure 7a depicts the coverage in API methods for each app-
roach and each library, while Fig. 7b shows the average number of API methods
covered at top k, using the top 100 examples of each approach.

2 Comparing with other tools was also hard, as most are unavailable, such as, e.g., the
eXoaDocs web app (http://exoa.postech.ac.kr/) or the APIMiner website (http://
java.labsoft.dcc.ufmg.br/apimineride/resources/docs/reference/).

http://exoa.postech.ac.kr/
http://java.labsoft.dcc.ufmg.br/apimineride/resources/docs/reference/
http://java.labsoft.dcc.ufmg.br/apimineride/resources/docs/reference/

Summarizing Software API Usage Examples Using Clustering Techniques 201

(a) (b)

Fig. 7. Graphs of the coverage in API methods achieved by CLAMS, MAPO, and UP-
Miner, (a) for each project, and (b) on average, at top k, using the top 100 examples.

The coverage by MAPO and UP-Miner is quite low, which is expected since
both tools perform frequent sequence mining, thus generating several redundant
patterns, a limitation noted also by Fowkes and Sutton [9]. On the other hand,
our system integrates clustering techniques to reduce redundancy which is fur-
ther eliminated by the fact that we select a single snippet from each cluster
(Snippet Selector). Finally, the average coverage trend (Fig. 7b) indicates that
our tool mines more diverse sequences than the other two tools, regardless of
the number of examples.

RQ4: Do source code snippets match handwritten examples more than
API call sequences? Obviously source code snippets contain more tokens than
API call sequences, but the additional tokens might not be useful. Therefore, we
measure specifically whether the additional tokens that appear in snippets rather
than sequences also appear in handwritten examples. Computing the average of
the additional info metric for each library, we find that the average ratio between
snippets-tokens and sequence-tokens, that are shared between snippets and cor-
responding examples, is 2.75. This means that presenting snippets instead of
sequences leads to 2.75 times more information. By further plotting the addi-
tional information of the snippets for each library in Fig. 8, we observe that
snippets almost always provide at least twice as much valuable information.
To further illustrate the contrast between snippets and sequences, we present
an indicative snippet mined by CLAMS in Fig. 9. Note, e.g., how the try/catch
tokens are important, however not included in the sequence tokens.

Finally, we present the top 5 usage examples mined by CLAMS, MAPO and
UP-Miner, in Fig. 10. As one may observe, snippets provide useful information
that is missing from sequences, including identifiers (e.g. String secret), control
flow statements (e.g. if-then-else statements), etc. Moreover, snippets are easier
to integrate into the source code of the developer, and thus facilitate reuse.

202 N. Katirtzis et al.

Fig. 8. Additional information revealed when mining snippets instead of sequences.

Fig. 9. Example snippet matched to handwritten example. Sequence-tokens are encir-
cled and additional snippet-tokens are highlighted in bold.

Fig. 10. Top 5 usage examples mined by (a) CLAMS, (b) MAPO, and (c) UP-Miner.
The API methods for the examples of our system are highlighted.

Summarizing Software API Usage Examples Using Clustering Techniques 203

Interestingly, the snippet ranked second by CLAMS has not been matched to
any handwritten example, although it has high support in the dataset. In fact,
there is no example for the setOauthConsumer method of Twitter4J, which is one
of its most popular methods. This illustrates how CLAMS can also extract snip-
pets beyond those of the examples directory, which are valuable to developers.

5 Threats to Validity

The main threats to validity of our approach involve the choice of the evaluation
metrics and the lack of comparison with snippet-based approaches. Concerning
the metrics, snippet API coverage is typical when comparing API usage mining
approaches. On the other hand, the choice of metrics for measuring snippet
quality is indeed a subjective criterion. To address this threat, we have employed
three metrics, for the conciseness (PLOCs), readability, and quality (similarity to
real examples). Our evaluation indicates that CLAMS is effective on all of these
axes. In addition, as these metrics are applied on snippets, computing them
for sequence-based systems such as MAPO and UP-Miner was not possible.
Finally, to evaluate whether CLAMS can be practically useful when developing
software, we plan to conduct a developer survey. To this end, we have already
performed a preliminary study on a team of 5 Java developers of Hotels.com, the
results of which were encouraging. More details about the study can be found
at https://mast-group.github.io/clams/user-survey/ (omitted here due to space
limitations).

Concerning the comparison with current approaches, we chose to compare
CLAMS against sequence-based approaches (MAPO and UP-Miner), as the min-
ing methodology is actually performed at sequence level. Nevertheless, compar-
ing with snippet-based approaches would also be useful, not only as a proof of
concept but also because it would allow us to comparatively evaluate CLAMS
with regard to the snippet quality metrics mentioned in the previous paragraph.
However, such a comparison was troublesome, as most current tools (including
e.g., eXoaDocs, APIMiner, etc.) are currently unavailable (see RQ3 of Sect. 4.2).
We may however note this comparison as an important point for future work,
while we also choose to upload our code and findings online (https://mast-
group.github.io/clams/) to facilitate future researchers that may face similar
challenges.

6 Conclusion

In this paper we have proposed a novel approach for mining API usage examples
in the form of source code snippets, from client code. Our system uses clustering
techniques, as well as a summarization algorithm to mine useful, concise, and
readable snippets. Our evaluation shows that snippet clustering leads to better
precision versus coverage rate, while the summarization algorithm effectively
increases the readability and decreases the size of the snippets. Finally, our tool
offers diverse snippets that match handwritten examples better than sequences.

https://mast-group.github.io/clams/user-survey/
https://mast-group.github.io/clams/
https://mast-group.github.io/clams/

204 N. Katirtzis et al.

In future work, we plan to extend the approach used to retrieve the top mined
sequences from each cluster. We could use a two-stage clustering approach where,
after clustering the API call sequences, we could further cluster the snippets of
the formed clusters, using a tree edit distance metric. This would allow retrieving
snippets that use the same API call sequence, but differ in their structure.

References

1. Allamanis, M., Sutton, C.: Mining idioms from source code. In: Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pp. 472–483. ACM, New York (2014)

2. Artistic Style 3.0: http://astyle.sourceforge.net/. Accessed Jan 2018
3. Bauckhage, C.: Numpy/scipy Recipes for Data Science: k-Medoids Clustering.

Technical report. University of Bonn (2015)
4. Borges, H.S., Valente, M.T.: Mining usage patterns for the Android API. PeerJ

Comput. Sci. 1, e12 (2015)
5. Buse, R.P.L., Weimer, W.: Synthesizing API usage examples. In: Proceedings of the

34th International Conference on Software Engineering, ICSE 2012, pp. 782–792.
IEEE Press, Piscataway (2012)

6. Buse, R.P., Weimer, W.R.: A metric for software readability. In: Proceedings of
the 2008 International Symposium on Software Testing and Analysis, ISSTA 2008,
pp. 121–130. ACM, New York (2008)

7. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on
hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G.
(eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37456-2 14

8. Collard, M.L., Decker, M.J., Maletic, J.I.: srcML: an infrastructure for the explo-
ration, analysis, and manipulation of source code: a tool demonstration. In: Pro-
ceedings of the 2013 IEEE International Conference on Software Maintenance,
ICSM 2013, pp. 516–519. IEEE Computer Society, Washington, DC (2013)

9. Fowkes, J., Sutton, C.: Parameter-free probabilistic API mining across GitHub. In:
Proceedings of the 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, pp. 254–265. ACM, New York (2016)

10. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, vol. 3, pp.
1–38. Morgan Kaufmann Publishers Inc., San Francisco (2011)

11. Ishag, M.I.M., Park, H.W., Li, D., Ryu, K.H.: Highlighting current issues in API
usage mining to enhance software reusability. In: Proceedings of the 15th Inter-
national Conference on Software Engineering, Parallel and Distributed Systems,
SEPADS 2016, pp. 200–205. WSEAS (2016)

12. Jiang, L., Misherghi, G., Su, Z., Glondu, S.: DECKARD: scalable and accurate
tree-based detection of code clones. In: Proceedings of the 29th International Con-
ference on Software Engineering, ICSE 2007, pp. 96–105. IEEE Computer Society,
Washington, DC (2007)

13. Kim, J., Lee, S., Hwang, S.W., Kim, S.: Adding examples into Java documents.
In: Proceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, ASE 2009, pp. 540–544. IEEE, Washington, DC (2009)

14. Kim, J., Lee, S., Hwang, S.W., Kim, S.: Towards an intelligent code search engine.
In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2010, pp. 1358–1363. AAAI Press (2010)

http://astyle.sourceforge.net/
https://doi.org/10.1007/978-3-642-37456-2_14

Summarizing Software API Usage Examples Using Clustering Techniques 205

15. Kim, J., Lee, S., Hwang, S.W., Kim, S.: Enriching documents with examples: a
corpus mining approach. ACM Trans. Inf. Syst. 31(1), 1:1–1:27 (2013)

16. McDonnell, T., Ray, B., Kim, M.: An empirical study of API stability and adoption
in the android ecosystem. In: Proceedings of the 2013 IEEE International Confer-
ence on Software Maintenance, ICSM 2013, pp. 70–79. IEEE Computer Society,
Washington, DC (2013)

17. McInnes, L., Healy, J., Astels, S.: HDBSCAN: hierarchical density based clustering.
J. Open Source Softw. 2(11), 205 (2017)

18. McLellan, S.G., Roesler, A.W., Tempest, J.T., Spinuzzi, C.I.: Building more usable
APIs. IEEE Softw. 15(3), 78–86 (1998)

19. Mens, K., Lozano, A.: Source code-based recommendation systems. In: Robillard,
M.P., Maalej, W., Walker, R.J., Zimmermann, T. (eds.) Recomm. Syst. Softw.
Eng., pp. 93–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
45135-5 5

20. Montandon, J.E., Borges, H., Felix, D., Valente, M.T.: Documenting APIs with
examples: lessons learned with the APIMiner platform. In: Proceedings of the 20th
Working Conference on Reverse Engineering, WCRE 2013, pp. 401–408 (2013)

21. Pawlik, M., Augsten, N.: Tree edit distance: robust and memory-efficient. Inf. Syst.
56(C), 157–173 (2016)

22. Piccioni, M., Furia, C.A., Meyer, B.: An empirical study of API usability. In: Pro-
ceedings of the 7th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, ESEM 2013, pp. 5–14 (2013)

23. Ponzanelli, L., Bavota, G., Mocci, A., Penta, M.D., Oliveto, R., Russo, B., Haiduc,
S., Lanza, M.: CodeTube: extracting relevant fragments from software development
video tutorials. In: Proceedings of the 38th International Conference on Software
Engineering Companion, ICSE-C 2016, pp. 645–648 (2016)

24. Robillard, M.P.: What makes APIs hard to learn? answers from developers. IEEE
Softw. 26(6), 27–34 (2009)

25. Saied, M.A., Benomar, O., Abdeen, H., Sahraoui, H.: Mining multi-level API usage
patterns. In: 2015 IEEE 22nd International Conference on Software Analysis, Evo-
lution, and Reengineering (SANER), pp. 23–32 (2015)

26. Sillito, J., Maurer, F., Nasehi, S.M., Burns, C.: What makes a good code example?:
a study of programming Q&A in stackoverflow. In: Proceedings of the 2012 IEEE
International Conference on Software Maintenance, ICSM 2012, pp. 25–34. IEEE
Computer Society, Washington, DC (2012)

27. Source Code Readability Metric. http://www.arrestedcomputing.com/readability.
Accessed Jan 2018

28. Stylos, J., Faulring, A., Yang, Z., Myers, B.A.: Improving API documentation using
API usage information. In: Proceedings of the 2009 IEEE Symposium on Visual
Languages and Human-Centric Computing, VLHCC 2009, pp. 119–126 (2009)

29. Subramanian, S., Inozemtseva, L., Holmes, R.: Live API documentation. In: Pro-
ceedings of the 36th International Conference on Software Engineering, ICSE 2014,
pp. 643–652. ACM, New York (2014)

30. Uddin, G., Robillard, M.P.: How API documentation fails. IEEE Softw. 32(4),
68–75 (2015)

31. Wang, J., Dang, Y., Zhang, H., Chen, K., Xie, T., Zhang, D.: Mining succinct and
high-coverage API usage patterns from source code. In: Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR 2013, pp. 319–328.
IEEE Press, Piscataway (2013)

https://doi.org/10.1007/978-3-642-45135-5_5
https://doi.org/10.1007/978-3-642-45135-5_5
http://www.arrestedcomputing.com/readability

206 N. Katirtzis et al.

32. Xie, T., Pei, J.: MAPO: Mining API usages from open source repositories. In:
Proceedings of the 2006 International Workshop on Mining Software Repositories,
MSR 2006, pp. 54–57. ACM, New York (2006)

33. Zhong, H., Xie, T., Zhang, L., Pei, J., Mei, H.: MAPO: mining and recommending
API usage patterns. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
318–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03013-
0 15

34. Zhu, Z., Zou, Y., Xie, B., Jin, Y., Lin, Z., Zhang, L.: Mining API usage examples
from test code. In: Proceedings of the 2014 IEEE International Conference on
Software Maintenance and Evolution, ICSME 2014, pp. 301–310. IEEE Computer
Society, Washington, DC (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-03013-0_15
https://doi.org/10.1007/978-3-642-03013-0_15
http://creativecommons.org/licenses/by/4.0/

Fast Computation of Arbitrary Control
Dependencies

Jean-Christophe Léchenet1,2(B) , Nikolai Kosmatov1 , and Pascale Le Gall2

1 CEA, LIST, Software Reliability Laboratory, PC 174, 91191 Gif-sur-Yvette, France
{jean-christophe.lechenet,nikolai.kosmatov}@cea.fr

2 Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes
CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France

pascale.legall@centralesupelec.fr

Abstract. In 2011, Danicic et al. introduced an elegant generalization
of the notion of control dependence for any directed graph. They also
proposed an algorithm computing the weak control-closure of a subset
of graph vertices and performed a paper-and-pencil proof of its correct-
ness. We have performed its proof in the Coq proof assistant. This paper
also presents a novel, more efficient algorithm to compute weak control-
closure taking benefit of intermediate propagation results of previous iter-
ations in order to accelerate the following ones. This optimization makes
the design and proof of the algorithm more complex and requires subtle
loop invariants. The new algorithm has been formalized and mechan-
ically proven in the Why3 verification tool. Experiments on arbitrary
generated graphs with up to thousands of vertices demonstrate that the
proposed algorithm remains practical for real-life programs and signifi-
cantly outperforms Danicic’s initial technique.

1 Introduction

Context. Control dependence is a fundamental notion in software engineering
and analysis (e.g. [6,12,13,21,22,27]). It reflects structural relationships between
different program statements and is intensively used in many software analysis
techniques and tools, such as compilers, verification tools, test generators, pro-
gram transformation tools, simulators, debuggers, etc. Along with data depen-
dence, it is one of the key notions used in program slicing [25,27], a program
transformation technique allowing to decompose a given program into a simpler
one, called a program slice.

In 2011, Danicic et al. [11] proposed an elegant generalization of the notions of
closure under non-termination insensitive (weak) and non-termination sensitive
(strong) control dependence. They introduced the notions of weak and strong
control-closures, that can be defined on any directed graph, and no longer only
on control flow graphs. They proved that weak and strong control-closures sub-
sume the closures under all forms of control dependence previously known in
the literature. In the present paper, we are interested in the non-termination
insensitive form, i.e. weak control-closure.
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 207–224, 2018.
https://doi.org/10.1007/978-3-319-89363-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_12&domain=pdf
http://orcid.org/0000-0003-0420-2745
http://orcid.org/0000-0003-1557-2813

208 J.-C. Léchenet et al.

Besides the definition of weak control-closure, Danicic et al. also provided
an algorithm computing it for a given set of vertices in a directed graph. This
algorithm was proved by paper-and-pencil. Under the assumption that the given
graph is a CFG (or more generally, that the maximal out-degree of the graph
vertices is bounded), the complexity of the algorithm can be expressed in terms
of the number of vertices n of the graph, and was shown to be O(n3). Danicic
et al. themselves suggested that it should be possible to improve its complexity.
This may explain why this algorithm was not used until now.

Motivation. Danicic et al. introduced basic notions used to define weak control-
closure and to justify the algorithm, and proved a few lemmas about them. While
formalizing these concepts in the Coq proof assistant [5,24], we have discovered
that, strictly speaking, the paper-and-pencil proof of one of them [11, Lemma
53] is inaccurate (a previously proven case is applied while its hypotheses are not
satisfied), whereas the lemma itself is correct. Furthermore, Danicic’s algorithm
does not take advantage of its iterative nature and does not reuse the results of
previous iterations in order to speed up the following ones.

Goals. First, we fully formalize Danicic’s algorithm, its correctness proof and
the underlying concepts in Coq. Our second objective is to design a more effi-
cient algorithm sharing information between iterations to speed up the execution.
Since our new algorithm is carefully optimized and more complex, its correct-
ness proof relies on more subtle arguments than for Danicic’s algorithm. To
deal with them and to avoid any risk of error, we have decided again to use
a mechanized verification tool – this time, the Why3 proof system [1,14] – to
guarantee correctness of the optimized version. Finally, in order to evaluate the
new algorithm with respect to Danicic’s initial technique, we have implemented
both algorithms in OCaml (using OCamlgraph library [9]) and tested them on a
large set of randomly generated graphs with up to thousands of vertices. Experi-
ments demonstrate that the proposed optimized algorithm is applicable to large
graphs (and thus to CFGs of real-life programs) and significantly outperforms
Danicic’s original technique.

Contributions. The contributions of this paper include:

– A formalization of Danicic’s algorithm and proof of its correctness in Coq;
– A new algorithm computing weak control-closure and taking benefit from

preserving some intermediary results between iterations;
– A mechanized correctness proof of this new algorithm in the Why3 tool includ-

ing a formalization of the basic concepts and results of Danicic et al.;
– An implementation of Danicic’s and our algorithms in OCaml, their evalua-

tion on random graphs and a comparison of their execution times.

The Coq, Why3 and OCaml implementations are all available in [17].

Outline. We present our motivation and a running example in Sect. 2. Then,
we recall the definitions of some important concepts introduced by [11] in Sect. 3
and state two important lemmas in Sect. 4. Next, we describe Danicic’s algorithm

Fast Computation of Arbitrary Control Dependencies 209

in Sect. 5 and our algorithm along with a sketch of the proof of its correctness
in Sect. 6. Experiments are presented in Sect. 7. Finally, Sect. 8 presents some
related work and concludes.

2 Motivation and Running Example

This section informally presents weak control-closure using a running example.

u6 u5

u0

u2 u1

u4 u3

Fig. 1. Example graph G0,
with V ′

0 = {u1, u3}

The inputs of our problem are a directed graph
G = (V,E) with set of vertices (or nodes) V and set
of edges E, and a subset of vertices V ′ ⊆ V . The
property of interest of such a subset is called weakly
control-closed in [11] (cf. Definition 3). V ′ is said to
be weakly control-closed if the nodes reachable from
V ′ are V ′-weakly committing (cf. Definition 2), i.e.
always lead the flow to at most one node in V ′.
Since V ′ does not necessarily satisfy this property,
we want to build a superset of V ′ satisfying it, and
more particularly the smallest one, called the weak
control-closure of V ′ in G (cf. Definition 5). For that,
as it will be proved by Lemma 2, we need to add
to V ′ the points of divergence closest to V ′, called
the V ′-weakly deciding vertices, that are reachable from V ′. Formally, vertex u
is V ′-weakly deciding if there exist two non-trivial paths starting from u and
reaching V ′ that have no common vertex except u (cf. Definition 4).

Let us illustrate these ideas on an example graph G0 shown in Fig. 1. V ′
0 =

{u1, u3} is the subset of interest represented with dashed double circles (ui) in
Fig. 1. u5 is reachable from V ′

0 and is not V ′
0 -weakly committing, since it is the

origin of two paths u5, u6, u0, u1 and u5, u6, u0, u2, u3 that can lead the flow to
two different nodes u1 and u3 in V ′

0 . Therefore, V ′
0 is not weakly control-closed.

To build the weak control-closure, we need to add to V ′
0 all V ′

0 -weakly deciding
nodes reachable from V ′

0 . u0 is such a node. Indeed, it is reachable from V ′
0 and

we can build two non-trivial paths u0, u1 and u0, u2, u3 starting from u0, ending
in V ′

0 (respectively in u1 and u3) and sharing no other vertex than u0. Similarly,
nodes u2, u4 and u6 must be added as well. On the contrary, u5 must not be
added, since every non-empty path starting from u5 has u6 as second vertex.
More generally, a node with only one child cannot be a “divergence point closest
to V ′” and must never be added to build the weak control-closure. The weak
control-closure of V ′

0 in G0 is thus {u0, u1, u2, u3, u4, u6}.
To build the closure, Danicic’s algorithm, like the one we propose, does not

directly try to build the two paths sharing only one node. Both algorithms rely
on a concept called observable vertex. Given a vertex u ∈ V , the set of observable
vertices in V ′ from u contains all nodes reachable from u in V ′ without using
edges starting in V ′. The important property about this object is that, as it
will be proved by Lemma 4, if there exists an edge (u, v) ∈ E such that u is
not in V ′, u is reachable from V ′, v can reach V ′ and there exists a vertex w

210 J.-C. Léchenet et al.

Fig. 2. Example graph G0 annotated with observable sets

observable from u but not from v, then u must be added to V ′ to build the
weak control-closure. Figure 2a shows our example graph G0, each node being
annotated with its set of observables in V ′

0 .
(u0, u1) is an edge such that u0 is reachable from V ′

0 , u1 can reach V ′
0 and u3

is an observable vertex from u0 in V ′
0 but not from u1. u0 is thus a node to be

added in the weak control-closure. Likewise, from the edges (u2, u3) and (u4, u3),
we can deduce that u2 and u4 belong to the closure. However, we have seen that
u6 belongs to the closure, but it is not possible to apply the same reasoning
to (u6, u0), (u6, u4) or (u6, u5). We need another technique. As Lemma 3 will
establish, the technique is actually iterative. We can add to the initial V ′

0 the
nodes that we have already detected and apply our technique to this new set V ′′

0 .
The vertices that will be detected this way will also be in the closure of the initial
set V ′

0 . The observable sets w.r.t. to V ′′
0 = V ′

0 ∪{u0, u2, u4} are shown in Fig. 2b.
This time, both edges (u6, u4) and (u6, u0) allow us to add u6 to the closure.
Applying again the technique with the augmented set V ′′′

0 = V ′′
0 ∪ {u6} (cf.

Fig. 2c) does not reveal new vertices. This means that all the nodes have already
been found. We obtain the same set as before for the weak control-closure of V ′

0 ,
i.e. {u0, u1, u2, u3, u4, u6}.

3 Basic Concepts

This section introduces basic definitions and properties needed to define the
notion of weak control-closure. They have been formalized in Coq [17], including
in particular Property 3 whose proof in [11] was inaccurate.

From now on, let G = (V,E) denote a directed graph, and V ′ a subset of

V . We define a path in G in the usual way. We write u
path−−−→ v if there exists a

path from u to v. Let RG(V ′) = {v ∈ V | ∃u ∈ V ′, u
path−−−→ v} be the set of nodes

reachable from V ′. In our example (cf. Fig. 1), u6, u0, u1, u3 is a (4-node) path
in G0, u1 is a trivial one-node path in G0 from u1 to itself, and RG0(V

′
0) = V0.

Fast Computation of Arbitrary Control Dependencies 211

Definition 1 (V ′-disjoint, V ′-path). A path π in G is said to be V ′-disjoint
in G if all the vertices in π but the last one are not in V ′. A V ′-path in G is
a V ′-disjoint path whose last vertex is in V ′. In particular, if u ∈ V ′, the only
V ′-path starting from u is the trivial path u.

We write u
V ′−disjoint−−−−−−−−→ v (resp. u

V ′−path−−−−−−→ v) if there exists a V ′-disjoint path
(resp. a V ′-path) from u to v.

Example. In G0, u3; u2, u3; u0, u1; u0, u2, u3 are V ′
0 -paths and thus V ′

0 -disjoint
paths. u6, u0 is a V ′

0 -disjoint path but not a V ′
0 -path.

Remark 1. Definition 1 and the following ones are slightly different from [11],
where a V ′-path must contain at least two vertices and there is no constraint
on its first vertex, which can be in V ′ or not. Our definitions lead to the same
notion of weak control-closure.

Definition 2 (V ′-weakly committing vertex). A vertex u in G is V ′-weakly
committing if all the V ′-paths from u have the same end point (in V ′). In par-
ticular, any vertex u ∈ V ′ is V ′-weakly committing.

Example. In G0, u1 and u3 are the only V ′
0 -weakly committing nodes.

Definition 3 (Weakly control-closed set). A subset V ′ of V is weakly
control-closed in G if every vertex reachable from V ′ is V ′-weakly committing.

Example. Since in particular u2 is not V ′
0 -weakly committing and reachable from

V ′
0 , V ′

0 is not weakly control-closed in G0. ∅, singletons and the set of all nodes V0

are trivially weakly control-closed. Less trivial weakly control-closed sets include
{u0, u1}, {u4, u5, u6} and {u0, u1, u2, u3, u4, u6}.

Definition 3 characterizes a weakly control-closed set, but does not explain
how to build one. It would be particularly interesting to build the smallest weakly
control-closed set containing a given set V ′. The notion of weakly deciding vertex
will help us to give an explicit expression to that set.

Definition 4 (V ′-weakly deciding vertex). A vertex u is V ′-weakly decid-
ing if there exist at least two non-trivial V ′-paths from u that share no vertex
except u. Let WDG(V ′) denote the set of V ′-weakly deciding vertices in G.

Property 1. If u ∈ V ′, then u /∈ WDG(V ′) (by Definitions 1, 4).

Example. In G0, by Property 1, u1, u3 /∈ WDG0(V
′
0). We have illustrated the

definition for nodes u0 and u5 in Sect. 2. We have WDG0(V
′
0) = {u0, u2, u4, u6}.

Lemma 1 (Characterization of being weakly control-closed). V ′ is
weakly control-closed in G if and only if there is no V ′-weakly deciding vertex in
G reachable from V ′.

212 J.-C. Léchenet et al.

Example. In G0, u2 is reachable from V ′
0 and is V ′

0 -weakly deciding. This gives
another proof that V ′

0 is not weakly control-closed.

Here are two other useful properties of WDG.

Property 2. ∀ V ′
1 , V

′
2 ⊆ V, V ′

1 ⊆ V ′
2 =⇒ WDG(V ′

1) ⊆ V ′
2 ∪ WDG(V ′

2)

Property 3. WDG(V ′ ∪ WDG(V ′)) = ∅.

We can prove that adding to a given set V ′ the V ′-weakly deciding nodes
that are reachable from V ′ gives a weakly control-closed set in G. This set is the
smallest superset of V ′ weakly control-closed in G.

Lemma 2 (Existence of the weak control-closure). Let W = WDG(V ′)∩
RG(V ′) denote the set of vertices in WDG(V ′) that are reachable from V ′. Then
V ′ ∪ W is the smallest weakly control-closed set containing V ′.

Definition 5 (Weak control-closure). We call weak control-closure of V ′,
denoted WCCG(V ′), the smallest weakly control-closed set containing V ′.

Property 4. Let V ′, V ′
1 and V ′

2 be subsets of V . Then

(a) WCCG(V ′) = V ′ ∪ (WDG(V ′) ∩ RG(V ′)) = (V ′ ∪ WDG(V ′)) ∩ RG(V ′).
(b) If V ′

1 ⊆ V ′
2 , then WCCG(V ′

1) ⊆ WCCG(V ′
2).

(c) If V ′ is weakly control-closed, then WCCG(V ′) = V ′.
(d) WCCG(WCCG(V ′)) = WCCG(V ′).

4 Main Lemmas

This section gives two lemmas used to justify both Danicic’s algorithm and ours.

Lemma 3. Let V ′ and W be two subsets of V . If V ′ ⊆ W ⊆ V ′ ∪ WDG(V ′),
then W ∪ WDG(W) = V ′ ∪ WDG(V ′). If moreover V ′ ⊆ W ⊆ WCCG(V ′), then
WCCG(W) = WCCG(V ′).

Proof. Assume V ′ ⊆ W ⊆ V ′ ∪WDG(V ′). Since V ′ ⊆ W , we have by Property 2,
WDG(V ′) ⊆ W ∪ WDG(W). Moreover, W ⊆ V ′ ∪ WDG(V ′), thus WDG(W) ⊆
V ′ ∪ WDG(V ′) ∪ WDG(V ′ ∪ WDG(V ′)) by Property 2, hence WDG(W) ⊆ V ′ ∪
WDG(V ′) by Property 3. These inclusions imply W ∪WDG(W) = V ′∪WDG(V ′).

If now V ′ ⊆ W ⊆ WCCG(V ′), we deduce WCCG(W) = WCCG(V ′) from the
previous result by intersecting with RG(V ′) by Property 4a.
�

Lemma 3 allows to design iterative algorithms to compute the closure. Indeed,
assume that we have a procedure which, for any non-weakly control-closed set
V ′, can return one or more elements of the weak control-closure of V ′ not in
V ′. If we apply such a procedure to V ′ once, we get a set W that satisfies
V ′ ⊆ W ⊆ WCCG(V ′). From Lemma 3, WCCG(W) = WCCG(V ′). To compute
the weak control-closure of V ′, it is thus sufficient to build the weak control-
closure of W . We can apply our procedure again, this time to W , and repetitively

Fast Computation of Arbitrary Control Dependencies 213

on all the successively computed sets. Since each set is a strict superset of the
previous one, this iterative procedure terminates because graph G is finite.

Before stating the second lemma, we introduce a key concept. It is called Θ
in [11]. We use the name “observable” as in [26].

Definition 6 (Observable). Let u ∈ V . The set of observable vertices from u

in V ′, denoted obsG(u, V ′), is the set of vertices u′ in V ′ such that u
V ′−path−−−−−−→ u′.

Remark 2. A vertex u ∈ V ′ is its unique observable: obsG(u, V ′) = {u}.

The concept of observable set was illustrated in Fig. 2 (cf. Sect. 2).

Lemma 4 (Sufficient condition for being V ′-weakly deciding). Let (u, v)
be an edge in G such that u �∈ V ′, v can reach V ′ and there exists a vertex u′ in
V ′ such that u′ ∈ obsG(u, V ′) and u′ �∈ obsG(v, V ′). Then u ∈ WDG(V ′).

Proof. We need to exhibit two V ′-paths from u ending in V ′ that share no vertex
except u. We take the V ′-path from u to u′ as the first one, and a V ′-path
connecting u to V ′ through v as the second one (we construct it by prepending
u to the smallest prefix of the path from v ending in V ′ which is a V ′-path). If
these V ′-paths intersected at a node y different from u, we would have a V ′-path
from v to u′ by concatenating the paths from v to y and from y to u′, which is
contradictory.
�
Example. In G0, obsG0(u0, V

′
0) = {u1, u3} and obsG0(u1, V

′
0) = {u1} (cf. Fig. 2a).

Since u1 is a child of u0, we can apply Lemma 4, and deduce that u0 is V ′
0 -weakly

deciding. obsG0(u5, V
′
0) = {u1, u3} and obsG0(u6, V

′
0) = {u1, u3}. We cannot

apply Lemma 4 to u5, and for good reason, since u5 is not V ′
0 -weakly deciding.

But we cannot apply Lemma 4 to u6 either, since u6 and all its children u0, u4 and
u5 have observable sets {u1, u3} w.r.t. V ′

0 , while u6 is V ′
0 -weakly deciding. This

shows that with Lemma 4, we have a sufficient condition, but not a necessary
one, for proving that a vertex is weakly deciding.

Example. Let us apply Algorithm 1 to our running example G0 (cf. Fig. 1).
Initially, W0 = V ′

0 = {u1, u3}.

1. obsG0(u0,W0) = {u1, u3} and obsG0(u1,W0) = {u1}, therefore (u0, u1) is a
W0-critical edge. Set W1 = {u0, u1, u3}.

2. obsG0(u2,W1) = {u0, u3} and obsG0(u3,W1) = {u3}, therefore (u2, u3) is a
W1-critical edge. Set W2 = {u0, u1, u2, u3}.

3. obsG0(u4,W2) = {u0, u3} and obsG0(u3,W2) = {u3}, therefore (u4, u3) is a
W2-critical edge. Set W3 = {u0, u1, u2, u3, u4}.

4. obsG0(u6,W3) = {u0, u4} and obsG0(u0,W3) = {u0}, therefore (u6, u0) is a
W3-critical edge. Set W4 = {u0, u1, u2, u3, u4, u6}.

5. There is no W4-critical edge. WCCG0(V
′
0) = W4 = {u0, u1, u2, u3, u4, u6}.

214 J.-C. Léchenet et al.

Input: G = (V, E) a directed graph
V ′ ⊆ V

Output: W ⊆ V the weak control-closure of V ′

Ensures: W = WCCG(V ′)
1 begin
2 W ← V ′

3 while there exists a W -critical edge in E do
4 choose such a W -critical edge (u, v)
5 W ← W ∪ {u}
6 end
7 return W

8 end

Algorithm 1. Danicic’s original algorithm for weak control-closure [11]

5 Danicic’s Algorithm

We present here the algorithm described in [11]. This algorithm and a proof of its
correctness have been formalized in Coq [17]. The algorithm is nearly completely
justified by a following lemma (Lemma 5, equivalent to [11, Lemma 60]).

We first need to introduce a new concept, which captures edges that are of
particular interest when searching for weakly deciding vertices. This concept is
taken from [11], where it was not given a name. We call such edges critical edges.

Definition 7 (Critical edge). An edge (u, v) in G is called V ′-critical if:

(1) | obsG(u, V ′)| ≥ 2;
(2) | obsG(v, V ′)| = 1;
(3) u is reachable from V ′ in G.

Example. In G0, (u0, u1), (u2, u3) and (u4, u3) are the V ′
0 -critical edges.

Lemma 5. If V ′ is not weakly control-closed in G, then there exists a V ′-
critical edge (u, v) in G. Moreover, if (u, v) is such a V ′-critical edge, then
u ∈ WDG(V ′) ∩ RG(V ′), therefore u ∈ WCCG(V ′).

Proof. Let x be a vertex in WDG(V ′) reachable from V ′. There exists a V ′-path π
from x ending in x′ ∈ V ′. It follows that | obsG(x, V ′)| ≥ 2 and | obsG(x′, V ′)| = 1.
Let u be the last vertex on π with at least two observable nodes in V ′ and v its
successor on π. Then (u, v) is a V ′-critical edge.

Assume there exists a V ′-critical edge (u, v). Since | obsG(u, V ′)| ≥ 2 and
| obsG(v, V ′)| = 1, u �∈ V ′, v can reach V ′ and there exists u′ in obsG(u, V ′) but
not in obsG(v, V ′). By Lemma 4, u ∈ WDG(V ′) and thus u ∈ WCCG(V ′).
�
Remark 3. We can see in the proof above that we do not need the exact values
2 and 1. We just need strictly more observable vertices for u than for v and at
least one observable for v, to satisfy the hypotheses of Lemma 4.

As described in Sect. 4, we can build an iterative algorithm constructing the
weak control-closure of V ′ by searching for critical edges on the intermediate sets
built successively. This is the idea of Danicic’s algorithm shown as Algorithm 1.

Fast Computation of Arbitrary Control Dependencies 215

Proof of Algorithm 1. To establish the correction of the algorithm, we can prove
that Wi, the value of W before iteration i + 1, satisfies both V ′ ⊆ Wi and
Wi ⊆ WCCG(V ′) for any i by induction. If i = 0, W0 = V ′, and both relations
trivially hold. Let i be a natural number such that V ′ ⊆ Wi, Wi ⊆ WCCG(V ′)
and there exists a Wi-critical edge (u, v). We have Wi+1 = Wi ∪ {u}. V ′ ⊆
Wi+1 is straightforward. By Lemma 5, u ∈ WCCG(Wi). Therefore, by Lemma
3, u ∈ WCCG(V ′), and thus, Wi+1 ⊆ WCCG(V ′). At the end of the algorithm,
there is no W -critical edge, therefore W is weakly control-closed by Lemma 5.
Since V ′ ⊆ W and W ⊆ WCCG(V ′), W = WCCG(V ′) by Lemma 3. Termination
follows from the fact that W strictly increases in the loop and is upper-bounded
by WCCG(V ′).
�

In terms of complexity, [11] shows that, assuming that the degree of each
vertex is at most 2 (and thus that O(|V |) = O(|E|)), the complexity of the
algorithm is O(|V |3). Indeed, the main loop of Algorithm 1 is run at most O(|V |)
times, and each loop body computes obs in O(|V |) for at most O(|V |) edges.

Remark 4. We propose two optimizations for Algorithm 1:

– at each step, consider all critical edges rather than only one;
– use the weaker definition of critical edge suggested in Remark 3.

Example. We can replay Algorithm 1 using the first optimization. This run cor-
responds to the steps shown in Fig. 2. Initially, W0 = V ′

0 = {u1, u3}.

1. (u0, u1), (u2, u3), (u4, u3) are W0-critical edges. Set W1 = {u0, u1, u2, u3, u4}.
2. (u6, u0) is a W1-critical edge. Set W2 = {u0, u1, u2, u3, u4, u6}.
3. There is no W2-critical edge in G0.

The optimized version computes the weak control-closure of V ′
0 in G0 in only 2

iterations instead of 4. This run also demonstrates that the algorithm is neces-
sarily iterative: even when considering all V ′

0 -critical edges in the first step, u6

is not detected before the second step.

6 The Optimized Algorithm

Overview. A potential source of inefficiency in Danicic’s algorithm is the fact
that no information is shared between the iterations. The observable sets are
recomputed at each iteration since the target set changes. This is the reason
why the first optimization proposed in Remark 4 is interesting, because it allows
to work longer on the same set and thus to reuse the observable sets.

We propose now to go even further: to store some information about the
paths in the graph and reuse it in the following iterations. The main idea of
the proposed algorithm is to label each processed node u with a node v ∈ W
observable from u in the resulting set W being progressively constructed by the
algorithm. Labels survive through iterations and can be reused.

Unlike Danicic’s algorithm, ours does not directly compute the weak control-
closure. It actually computes the set W = V ′ ∪WDG(V ′). To obtain the closure

216 J.-C. Léchenet et al.

WCCG(V ′) = W ∩RG(V ′), W is then simply filtered to keep only vertices reach-
able from V ′ (cf. Property 4a).

In addition to speeding up the algorithm, the usage of labels brings another
benefit: for each node of G, its label indicates its observable vertex in W (when
it exists) at the end of the algorithm. Recall that since WDG(W) = ∅ (by
Property 3), each node in the graph has at most one observable vertex in W .

One difficult point with this approach is that the labels of the nodes need to
be refreshed with care at each iteration so that they remain up-to-date. Actually,
our algorithm does not ensure that at each iteration the label of each node is
an observable vertex from this node in W . This state is only ensured at the
beginning and at the end of the algorithm. Meanwhile, some nodes are still in
the worklist and some labels are wrong, but this does not prevent the algorithm
from working.

Informal Description. Our algorithm is given a directed graph G and a subset
of vertices V ′ in G. It manipulates three objects: a set W which is equal to V ′

initially, which grows during the algorithm and which at the end contains the
result, V ′ ∪WDG(V ′); a partial mapping obs associating at most one label obs[u]
to each node u in the graph, this label being a vertex in W reachable from this
node (and which is the observable from u in V ′∪WDG(V ′) at the end); a worklist
L of nodes of the closure not processed yet. Each iteration proceeds as follows.
If the worklist is not empty, a vertex u is extracted from it. All the vertices that
transitively precede vertex u in the graph and that are not hidden by vertices in
W are labeled with u. During the propagation, nodes that are good candidates
to be V ′-weakly deciding are accumulated. After the propagation, we filter them
so that only true V ′-weakly deciding nodes are kept. Each of these vertices is
associated to itself in obs, and is added to W and L. If L is not empty, a new
iteration begins. Otherwise, W is equal to V ′ ∪WDG(V ′) and obs associates each
node in the graph with its observable vertex in the closure (when it exists).

Note that each iteration consists in two steps: a complete backward propa-
gation in the graph, which collects potential V ′-weakly deciding vertices, and a
filtering step. The set of predecessors of the propagated node are thus filtered
twice: once during the propagation and once afterwards. We can try to filter as
much as possible in the first step or, at the opposite, to avoid filtering during
the first step and do all the work in the second step. For the sake of simplicity
of mechanized proof, the version we chose does only simple filtering during the
first step. We accumulate in our candidate V ′-weakly deciding nodes all nodes
that have at least two children and a label different from the one currently
propagated, and we eliminate the false positives in the second step, once the
propagation is done.

Example. Let us use our running example (cf. Fig. 1) to illustrate the algorithm.
The successive steps are represented in Fig. 3. In the different figures, nodes in
W already processed (that is, in W\L) are represented using a solid double circle
(ui), while nodes in W not already processed (that is, still in worklist L) are

represented using a dashed double circle (ui). A label uj next to a node ui

Fast Computation of Arbitrary Control Dependencies 217

u6

u1

u5

u1

u0 u1

u2

u1

u1 u1

u4

u1

u3 u3

(a) After propagation of u1

u6

u3

u5

u3

u0 u0

u2

u3

u1 u1

u4

u3

u3 u3

(b) After propagation of u3

u6

u0

u5

u0

u0 u0

u2

u2

u1 u1

u4

u4

u3 u3

(c) After propagation of u0

u6

u0

u5

u0

u0 u0

u2

u2

u1 u1

u4

u4

u3 u3

(d) After propagation of u2

u6

u6

u5

u4

u0 u0

u2

u2

u1 u1

u4

u4

u3 u3

(e) After propagation of u4

u6

u6

u5

u6

u0 u0

u2

u2

u1 u1

u4

u4

u3 u3

(f) After propagation of u6

Fig. 3. The optimized algorithm applied on G0, where V ′ = {u1, u3}

(ui uj) means that uj is associated to ui, i.e. obs[ui] = uj . Let us detail the
first steps of the algorithm. Initially, W0 = V ′

0 = {u1, u3} (cf. Fig. 1).

1. u1 is selected and is propagated backwards from u1 (cf. Fig. 3a). We find
no candidate, the first iteration is finished, W1 = {u1, u3}.

2. u3 is selected and is propagated backwards from u3 (cf. Fig. 3b). u0, u2, u4

and u6 are candidates, but only u0 is confirmed as a V ′
0 -weakly deciding

node. It is stored in worklist L and its label is set to u0. Now W2 =
{u0, u1, u3}.

3–6. u0, u2, u4 and u6 are processed similarly (cf. Fig. 3c, d, e, f). At the end,
we get W6 = {u0, u1, u2, u3, u4, u6} = V ′

0 ∪ WDG(V ′
0).

As all nodes in W6 are already reachable from V ′
0 , W6 = WCCG(V ′

0).
We can make two remarks on this example. First, as we can see in Fig. 3f,

each node is labeled with its observable in W at the end of the algorithm. Second,
in Fig. 3e, we have the case of a node labeled with an obsolete label, since u5 is
labeled u4 while its only observable node in W is u6.

Detailed Description. Our algorithm is split into three functions:

– confirm is used to check if a given node is V ′-weakly deciding by trying to
find a child with a different label from its own label given as an argument.

218 J.-C. Léchenet et al.

Input: G = (V, E) a directed graph
obs : Map(V, V) associating at most one label to each vertex of G
u, v ∈ V vertices in G

Output: b : bool
Ensures: b = true ⇐⇒ ∃u′, (u, u′) ∈ E ∧ u′ ∈ obs ∧ obs[u′]
= v

Algorithm 2. Contract of confirm (G, obs, u, v)

Input: G = (V, E), W ⊆ V , obs : Map(V, V), u, v ∈ V
Output: obs′, a new version of obs

C ⊆ V containing candidate W -weakly deciding nodes
Requires: (P1) ∀z ∈ V, obs[z] = v ⇐⇒ z = u
Requires: (P2) u ∈ W

Ensures: (Q1) ∀z ∈ V, z
W−path−−−−−→ u =⇒ obs′[z] = v

Ensures: (Q2) ∀z ∈ V, ¬(z
W−path−−−−−→ u) =⇒ obs′[z] = obs[z]

Ensures: (Q3) ∀z ∈ C, z
= u ∧ z
W−path−−−−−→ u

Ensures: (Q4) ∀z ∈ V, z
= u ∧ z
W−path−−−−−→ u ∧ z ∈ obs

∧| succG(z)| > 1 =⇒ z ∈ C
Algorithm 3. Contract of propagate (G,W, obs, u, v)

– propagate takes a vertex and propagates backwards a label over its prede-
cessors. It returns a set of candidate V ′-weakly-deciding nodes.

– main calls propagate on a node of the closure not yet processed, gets can-
didate V ′-weakly deciding nodes, calls confirm to keep only true V ′-weakly
deciding nodes, adds them to the closure and updates their labels, and loops
until no more V ′-weakly deciding nodes are found.

Function Confirm. A call to confirm(G, obs, u, v) takes four arguments: a graph
G, a labeling of graph vertices obs, and two vertices u and v. It returns true if
and only if at least one child u′ of u in G has a label in obs different from v,
which can be written u′ ∈ obs ∧ obs[u′] �= v. This simple function is left abstract
here for lack of space. The Why3 formalization [17] contains a complete proof.
Its contract is given as Algorithm 2.
Function Propagate. A call to propagate(G,W, obs, u, v) takes five arguments: a
graph G, a subset W of nodes of G, a labeling of nodes obs, and two vertices u
and v. It traverses G backwards from u (stopping at nodes in W) and updates
obs so that all predecessors not hidden by vertices in W have label v at the end
of the function. It returns a set of potential V ′-weakly deciding vertices. Again,
this function is left abstract here but is proved in the Why3 development [17].
Its contract is given as Algorithm 3.

propagate requires that, when called, only u is labeled with v (P1) and
that u ∈ W (P2). It ensures that, after the call, all the predecessors of u not
hidden by a vertex in W are labeled v (Q1), the labels of the other nodes are
unchanged (Q2), C contains only predecessors of u but not u itself (Q3), and
all the predecessors that had a label before the call (different from v due to P1)
and that have at least two children are in C (Q4).

Fast Computation of Arbitrary Control Dependencies 219

Input: G = (V, E), a directed graph
V ′ ⊆ V , the input subset

Output: W ⊆ V , the main result
obs : Map(V, V), the final labeling

Variables: L ⊆ V , a worklist of nodes to be treated
C ⊆ V , a set of candidate V ′-weakly deciding vertices
Δ ⊆ V , a set of new V ′-weakly deciding vertices

Ensures: W = V ′ ∪ WDG(V ′)
Ensures: ∀u, v ∈ V, obs[u] = v ⇐⇒ v ∈ obsG(u, W)

1 begin
2 W ← V ′ ; obs|V ′ ← idV ′ ; L ← V ′ // initialization

3 while L
= ∅ do // main loop

// invariant: I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 ∧ I6
// variant: cardinal(L ∪ V \ W)

4 u ← choose(L) ; L ← L \ {u}
5 C ← propagate (G, W, obs, u, u) // propagation

6 Δ ← ∅

7 while C
= ∅ do // filtering

8 v ← choose(C) ; C ← C \ {v}
9 if confirm (G, obs, v, u) = true then Δ ← Δ ∪ {v}

10 end
11 W ← W ∪ Δ ; obs|Δ ← idΔ ; L ← L ∪ Δ // update

12 end
// assert: A1 ∧ A2 ∧ A3 ∧ A4

13 return (W, obs)

14 end

(I1) ∀z ∈ W, obs[z] = z
(I2) ∀y, z ∈ V, obs[y] = z =⇒ z ∈ W
(I3) ∀y, z ∈ V, obs[y] = z ∧ z ∈ L

=⇒ y = z

(I4) ∀y, z ∈ V, obs[y] = z =⇒ y
path−−−→ z

(I5) V ′ ⊆ W ⊆ V ′ ∪ WDG(V ′)

(I6) ∀y, z, z′ ∈ V, y
W−disjoint−−−−−−−−→ z ∧ obs[z] = z′

∧z′
∈ L =⇒ obs[y] = z′

(A1) ∀u, v ∈ V, v ∈ obsG(u, W)
=⇒ obs[u] = v

(A2) WDG(W) = ∅

(A3) V ′ ⊆ W ⊆ V ′ ∪ WDG(V ′)
(A4) W = V ′ ∪ WDG(V ′)

Algorithm 4. Function main with annotations

Function Main. The main function of our algorithm is given as Algorithm 4.
It takes two arguments: a graph G and a subset of vertices V ′. It returns V ′ ∪
WDG(V ′) and a labeling associating to each node its observable vertex in this
set if it exists. It maintains a worklist L of vertices that must be processed. L
is initially set to V ′, and their labels to themselves (line 2). If L is not empty,
a node u is taken from it and propagate(G,W, obs, u, u) is called (lines 3–5). It
returns a set of candidate V ′-weakly deciding nodes (C) that are not added to
W yet. They are first filtered using confirm (lines 6–10). The confirmed nodes
(Δ) are then added to W and to L, and the label of each of them is updated to
itself (line 11). The iterations stop when L is empty (cf. lines 3, 13).

220 J.-C. Léchenet et al.

Proof of the Optimized Algorithm. We opted for Why3 instead of Coq for
this proof to take advantage of Why3’s automation. Indeed, most of the goals
could be discharged in less than a minute using Alt-Ergo, CVC4, Z3 and E.
Some of them still needed to be proved manually in Coq, resulting in 330 lines
of Coq proof. The Why3 development [17] focuses on the proof of the algorithm,
not on the concepts presented in Sects. 3 and 4. Most of the concepts are proved,
one of them is assumed in Why3 but was proved in Coq previously. Due to lack
of space, we detail here only the main invariants necessary to prove main (cf.
Algorithm 4). The proofs of I1, I2, I3, I4 are rather simple. while those of I5 and
I6 are more complex.

I1 states that each node in W has itself as a label. It is true initially for all
nodes in V ′ and is preserved by the updates.

I2 states that all labels are in W . This is true initially since all labels are in
V ′. The preservation is verified, since all updates are realized using labels in W .

I3 states that labels in L have not been already propagated. Given a node y
in L, y is the only node whose label is y. It is true initially since every vertex in
V ′ has itself as a label. After an update, the new nodes obey the same rule, so
I3 is preserved.

I4 states that if label z is associated to a node y then there exists a path
between y and z. Initially, there exist trivial paths from each node in V ′ to itself.
When obs is updated, there exists a W -path, thus in particular a path.

I5 states that W remains between V ′ and V ′∪WDG(V ′) during the execution
of the algorithm. The first part V ′ ⊆ W is easy to prove, because it is true
initially and W is growing. For the second part, we need to prove that after the
filtering, Δ ⊆ WDG(V ′). For that, we will prove that Δ ⊆ WDG(W) thanks
to Lemma 3. Let v be a node in Δ. Since Δ ⊆ C, we know that v �∈ W and
u ∈ obsG(v,W). Moreover, we have confirm(G, obs, v, u) = true, i.e. v has a
child v′ such that v′ ∈ obs, hence v′ can reach W by I4, and obs[v′] �= u, hence
u �∈ obsG(v′,W). We can apply Lemma 4 and deduce that v ∈ WDG(W).

I6 is the most complicated invariant. I6 states that if there is a path between
two vertices y and z that does not intersect W , and z has a label already pro-
cessed, then y and z have the same label. Let us give a sketch of the proof
of preservation of I6 after an iteration of the main loop. Let us note obs′ the

map at the end of the iteration. Let y, z, z′ ∈ V such that y
(W∪Δ)−disjoint−−−−−−−−−−−→ z,

obs′[z] = z′ and z′ �∈ (L \ {u}) ∪ Δ. Let us show that obs′[y] = z′. First, observe
that neither y nor z can be in Δ, otherwise z′ would be in Δ, which would
be contradictory. We examine four cases depending on whether the conditions
z

W−path−−−−−→ u (H1) and y
W−path−−−−−→ u (H2) hold.

– H1 ∧ H2: Both z and y were given the label u during the last iteration, thus
obs′[z] = obs′[y] = u as expected.

– H1 ∧ (¬H2): This case is impossible, since y
(W∪Δ)−disjoint−−−−−−−−−−−→ z.

– (¬H1)∧ (¬H2): Both z and y have the same label as before the iteration. We
can therefore conclude by I6 at the beginning of the iteration.

– (¬H1) ∧ H2: This is the only complicated case. We show that it is contra-
dictory. For that, we introduce v1 as the last vertex on the (W ∪ Δ)-disjoint

Fast Computation of Arbitrary Control Dependencies 221

path connecting y and z which is also the origin of a W -path to u, and v2 as
its successor on this (W ∪ Δ)-disjoint path. We can show that v1 ∈ Δ, which
contradicts the fact that it lives on a (W ∪ Δ)-disjoint path.

We can now prove the assertions A1, A2, A3 and A4 at the end of main. A1 is
a direct consequence of I6 since at the end L = ∅. A1 implies that each vertex u
has at most one observable in W : obs[u] if u ∈ obs. A W -weakly deciding vertex
would have two observables, thus WDG(W) = ∅. A3 is a direct consequence of
I5. A4 can be deduced from A2 and Lemma 3 applied to A3. This proves that at
the end W = V ′ ∪ WDG(V ′). To prove the other post-condition, we must prove
that if there are two nodes u, v such that obs[u] = v, then v ∈ obsG(u,W). By
I4, there is a path from u to v. Let w be the first element in W on this path.
Then u

W−path−−−−−→ w. By A1, obs[u] = w. Thus, w = v and u
W−path−−−−−→ v. This

proves the second post-condition.
�

7 Experiments

0 2,000 4,000 6,000

0

20

40

60

|V |

ti
m
e(
s)

Danicic’s algorithm
Our algorithm

Fig. 4. Danicic’s vs. our algorithm

We have implemented Danicic’s algo-
rithm (additionally improved by the
two optimizations proposed in Remark
4) and ours in OCaml [17] using the
OCamlgraph library [9], taking care to
add a filtering step at the end of our
algorithm to preserve only nodes reach-
able from the initial subset. To be confi-
dent in their correctness, we have tested
both implementations on small exam-
ples w.r.t. a certified but slow Coq-
extracted implementation as an oracle.
We have also carefully checked that the
results returned by both implementa-
tions were the same in all experiments.

We have experimentally evaluated both implementations on thousands of
random graphs with up to thousands of vertices, generated by OCamlgraph. For
every number of vertices between 10 and 1000 (resp. 6500) that is a multiple of
10, we generate 10 graphs with twice as many edges as vertices and randomly
select three vertices to form the initial subset V ′ and run both algorithms (resp.
only our algorithm) on them. Although the initial subsets are small, the result-
ing closures nearly always represent a significant part of the set of vertices of the
graph. To avoid the trivial case, we have discarded the examples where the clo-
sure is restricted to the initial subset itself (where execution time is insignificant),
and computed the average time of the remaining tests. Results are presented in
Fig. 4. Experiments have been performed on an Intel Core i7 4810MQ with 8
cores at 2.80 GHz and 16 GB RAM.

We observe that Danicic’s algorithm explodes for a few hundreds of vertices,
while our algorithm remains efficient for graphs with thousands of nodes.

222 J.-C. Léchenet et al.

8 Related Work and Conclusion

Related Work. The last decades have seen various definitions of control depen-
dence given for larger and larger classes of programs [6,12,13,21,22,27]. To
consider programs with exceptions and potentially infinite loops, Ranganath
et al. [23] and then Amtoft [2] introduced non-termination sensitive and non-
termination insensitive control dependence on arbitrary program structures.
Danicic et al. [11] further generalized control dependence to arbitrary directed
graphs, by defining weak and strong control-closure, which subsume the previ-
ous non-termination insensitive and sensitive control dependence relations. They
also gave a control dependence semantics in terms of projections of paths in the
graph, allowing to define new control dependence relations as long as they are
compatible with it. This elegant framework was reused for slicing extended finite
state machines [3] and probabilistic programs [4]. In both works, an algorithm
computing weak control-closure, working differently from ours, was designed and
integrated in a rather efficient slicing algorithm.

While there exist efficient algorithms to compute the dominator tree in a
graph [8,10,16,19], and even certified ones [15], and thus efficient algorithms
computing control dependence when defined in terms of post-dominance, algo-
rithms in the general case [2,11,23] are at least cubic.

Mechanized verification of control dependence computation was done in for-
malizations of program slicing. Wasserrab [26] formalized language-independent
slicing in Isabelle/HOL, but did not provide an algorithm. Blazy et al. [7] and
our previous work [18] formalized control dependence in Coq, respectively, for
an intermediate language of the CompCert C compiler [20] and on a WHILE
language with possible errors.

Conclusion and Future Work. Danicic et al. claim that weak control-closure
subsumes all other non-termination insensitive variants. It was thus a natural
candidate for mechanized formalization. We used the Coq proof assistant to
formalize it. A certified implementation of the algorithm can be extracted from
the Coq development. During formalization in Coq of the algorithm and its
proof, we have detected an inconsistency in a secondary proof, which highlights
how useful proof assistants are to detect otherwise overlooked cases. To the best
of our knowledge, the present work is the first mechanized formalization of weak
control-closure and of an algorithm to compute it. In addition to formalizing
Danicic’s algorithm in Coq, we have designed, formalized and proved a new
one, that is experimentally shown to be faster than the original one. Short-term
future work includes considering further optimizations. Long-term future work
is to build a verified generic slicer. Indeed, generic control dependence is a first
step towards it. Adding data dependence is the next step in this direction.

Acknowledgements. We thank the anonymous reviewers for helpful suggestions.

Fast Computation of Arbitrary Control Dependencies 223

References

1. Why3, a tool for deductive program verification, GNU LGPL 2.1, development
version, January 2018. http://why3.lri.fr

2. Amtoft, T.: Slicing for modern program structures: a theory for eliminating irrel-
evant loops. Inf. Process. Lett. 106(2), 45–51 (2008)

3. Amtoft, T., Androutsopoulos, K., Clark, D.: Correctness of slicing finite state
machines. Technical report RN/13/22. University College London, December 2013

4. Amtoft, T., Banerjee, A.: A theory of slicing for probabilistic control flow graphs.
In: Jacobs, B., Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 180–196.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49630-5 11

5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-07964-5

6. Bilardi, G., Pingali, K.: Generalized dominance and control dependence. In: PLDI,
pp. 291–300. ACM (1996)

7. Blazy, S., Maroneze, A., Pichardie, D.: Verified validation of program slicing. In:
CPP 2015, pp. 109–117 (2015)

8. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook,
J.: Linear-time algorithms for dominators and other path-evaluation problems.
SIAM J. Comput. 38(4), 1533–1573 (2008)

9. Conchon, S., Filliâtre, J., Signoles, J.: Designing a generic graph library using ML
functors. In: Morazán, M.T. (ed.) Trends in Functional Programming, vol. 8, pp.
124–140. Intellect, Bristol (2007)

10. Cooper, K.D., Harvey, T.J., Kennedy, K.: A simple, fast dominance algorithm.
Softw. Pract. Exp. 4(1–10), 1–8 (2001)

11. Danicic, S., Barraclough, R.W., Harman, M., Howroyd, J., Kiss, Á., Laurence,
M.R.: A unifying theory of control dependence and its application to arbitrary
program structures. Theor. Comput. Sci. 412(49), 6809–6842 (2011)

12. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

13. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

14. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

15. Georgiadis, L., Tarjan, R.E.: Dominator tree certification and divergent spanning
trees. ACM Trans. Algorithms 12(1), 11:1–11:42 (2016)

16. Georgiadis, L., Tarjan, R.E., Werneck, R.F.F.: Finding dominators in practice. J.
Graph Algorithms Appl. 10(1), 69–94 (2006)

17. Léchenet, J.-C.: Formalization of weak control dependence (2018). http://perso.
ecp.fr/∼lechenetjc/control/

18. Léchenet, J.-C., Kosmatov, N., Le Gall, P.: Cut branches before looking for bugs:
sound verification on relaxed slices. In: Stevens, P., W ↪asowski, A. (eds.) FASE
2016. LNCS, vol. 9633, pp. 179–196. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49665-7 11

19. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

20. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

http://why3.lri.fr
https://doi.org/10.1007/978-3-662-49630-5_11
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-642-37036-6_8
http://perso.ecp.fr/~lechenetjc/control/
http://perso.ecp.fr/~lechenetjc/control/
https://doi.org/10.1007/978-3-662-49665-7_11
https://doi.org/10.1007/978-3-662-49665-7_11

224 J.-C. Léchenet et al.

21. Ottenstein, K.J., Ottenstein, L.M.: The program dependence graph in a soft-
ware development environment. In: The First ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments (SDE
1984), pp. 177–184. ACM Press (1984)

22. Podgurski, A., Clarke, L.A.: A formal model of program dependences and its impli-
cations for software testing, debugging, and maintenance. IEEE Trans. Softw. Eng.
16(9), 965–979 (1990)

23. Ranganath, V.P., Amtoft, T., Banerjee, A., Hatcliff, J., Dwyer, M.B.: A new foun-
dation for control dependence and slicing for modern program structures. ACM
Trans. Program. Lang. Syst. 29(5) (2007). Article No. 27

24. The Coq Development Team: The Coq proof assistant, v8.6 (2017). http://coq.
inria.fr/

25. Tip, F.: A survey of program slicing techniques. J. Prog. Lang. 3(3), 121–189 (1995)
26. Wasserrab, D.: From formal semantics to verified slicing: a modular framework

with applications in language based security. Ph.D. thesis, Karlsruhe Inst. of Techn.
(2011)

27. Weiser, M.: Program slicing. In: ICSE 1981 (1981)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://coq.inria.fr/
http://coq.inria.fr/
http://creativecommons.org/licenses/by/4.0/

Specification and Program Testing

Iterative Generation of Diverse Models
for Testing Specifications of DSL Tools

Oszkár Semeráth1,2(B) and Dániel Varró1,2,3

1 MTA-BME Lendület Cyber-Physical Systems Research Group, Budapest, Hungary
{semerath,varro}@mit.bme.hu

2 Department of Measurement and Information Systems,
Budapest University of Technology and Economics, Budapest, Hungary

3 Department of Electrical and Computer Engineering,
McGill University, Montreal, Canada

Abstract. The validation of modeling tools of custom domain-specific
languages (DSLs) frequently relies upon an automatically generated set
of models as a test suite. While many software testing approaches recom-
mend that this test suite should be diverse, model diversity has not been
studied systematically for graph models. In the paper, we propose diver-
sity metrics for models by exploiting neighborhood shapes as abstrac-
tion. Furthermore, we propose an iterative model generation technique
to synthesize a diverse set of models where each model is taken from a dif-
ferent equivalence class as defined by neighborhood shapes. We evaluate
our diversity metrics in the context of mutation testing for an indus-
trial DSL and compare our model generation technique with the popular
model generator Alloy.

1 Introduction

Motivation. Domain-Specific Language (DSL) based modeling tools are gaining
an increasing role in the software development processes. Advanced DSL frame-
works such as Xtext, or Sirius built on top of model management frameworks
such as Eclipse Modeling Framework (EMF) [37] significantly improve produc-
tivity of domain experts by automating the production of rich editor features.

Modelling environments may provide validation for the system under design
from an early stage of development with efficient tool support for checking well-
formedness (WF) constraints and design rules over large model instances of the
DSL using tools like Eclipse OCL [24] or graph queries [41]. Model generation
techniques [16,19,35,39] are able to automatically provide a range of solution
candidates for allocation problems [19], model refactoring or context generation
[21]. Finally, models can be processed by query-based transformations or code
generators to automatically synthesize source code or other artifacts.

The design of complex DSLs tools is a challenging task. As the complexity of
DSL tools increases, special attention is needed to validate the modeling tools
themselves (e.g. for tool qualification purposes) to ensure that WF constraints

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 227–245, 2018.
https://doi.org/10.1007/978-3-319-89363-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_13&domain=pdf
http://orcid.org/0000-0002-3592-5105
http://orcid.org/0000-0002-8790-252X

228 O. Semeráth and D. Varró

and the preconditions of model transformation and code generation functionality
[4,32,35] are correctly implemented in the tool.

Problem Statement. There are many approaches aiming to address the test-
ing of DSL tools (or transformations) [1,6,42] which necessitate the automated
synthesis of graph models to serve as test inputs. Many best practices of testing
(such as equivalence partitioning [26], mutation testing [18]) recommends the
synthesis of diverse graph models where any pairs of models are structurally
different from each other to achieve high coverage or a diverse solution space.

While software diversity is widely studied [5], existing diversity metrics for
graph models are much less elaborate [43]. Model comparison techniques [38]
frequently rely upon the existence of node identifiers, which can easily lead to
many isomorphic models. Moreover, checking graph isomorphism is computa-
tionally very costly. Therefore practical solutions tend to use approximate tech-
niques to achieve certain diversity by random sampling [17], incremental gen-
eration [19,35], or using symmetry breaking predicates [39]. Unlike equivalence
partitions which capture diversity of inputs in a customizable way for testing
traditional software, a similar diversity concept is still missing for graph models.

Contribution. In this paper, we propose diversity metrics to characterize a
single model and a set of models. For that purpose, we innovatively reuse neigh-
borhood graph shapes [28], which provide a fine-grained typing for each object
based on the structure (e.g. incoming and outgoing edges) of its neighborhood.
Moreover, we propose an iterative model generation technique to automatically
synthesize a diverse set of models for a DSL where each model is taken from a
different equivalence class wrt. graph shapes as an equivalence relation.

We evaluate our diversity metrics and model generator in the context of
mutation-based testing [22] of WF constraints in an industrial DSL tool. We
evaluate and compare the mutation score and our diversity metrics of test suites
obtained by (1) an Alloy based model generator (using symmetry breaking pred-
icates to ensure diversity), (2) an iterative graph solver based generator using
neighborhood shapes, and (3) from real models created by humans. Our finding
is that a diverse set of models derived along different neighborhood shapes has
better mutation score. Furthermore, based on a test suite with 4850 models, we
found that high correlation between mutation score and our diversity metrics,
which indicates that our metrics may be good predictors in practice for testing.

Added Value. Up to our best knowledge, our paper is one of the first studies
on (software) model diversity. From a testing perspective, our diversity met-
rics provide a stronger characterization of a test suite of models than traditional
metamodel coverage which is used in many research papers. Furthermore, model
generators using neighborhood graph shapes (that keep models only if they are
surely non-isomorphic) provide increased diversity compared to symmetry break-
ing predicates (which exclude models if they are surely isomorphic).

Iterative Generation of Diverse Models for Testing Specifications 229

2 Preliminaries

Core modeling concepts and testing challenges of DSL tools will be illustrated in
the context of Yakindu Statecharts [46], which is an industrial DSL for developing
reactive, event-driven systems, and supports validation and code generation.

2.1 Metamodels and Instance Models

Metamodels define the main concepts, relations and attributes of a domain to
specify the basic graph structure of models. A simplified metamodel for Yakindu
state machines is illustrated in Fig. 1 using the popular Eclipse Modeling Frame-
work (EMF) [37] is used for domain modeling. A state machine consists of
Regions, which in turn contain states (called Vertexes) and Transitions.
An abstract state Vertex is further refined into RegularStates (like State
or FinalState) and PseudoStates (like Entry, Exit or Choice).

Fig. 1. Metamodel extract from Yakindu state machines

Formally [32,34], a metamodel defines a vocabulary of type and relation sym-
bols Σ = {C1, . . . , Cn, R1, . . . , Rm} where a unary predicate symbol Ci is defined
for each EClass, and a binary predicate symbol Rj is derived for each EReference.
For space considerations, we omit the precise handling of attributes.

An instance model can be represented as a logic structure M = 〈ObjM , IM 〉
where ObjM is the finite set of objects (the size of the model is |M | = |ObjM |),
and IM provides interpretation for all predicate symbols in Σ as follows:

– the interpretation of a unary predicate symbol Ci is defined in accordance with
the types of the EMF model: IM (Ci) : ObjM → {1, 0} An object o ∈ ObjM
is an instance of a class Ci in a model M if IM (Ci)(o) = 1.

– the interpretation of a binary predicate symbol Rj is defined in accordance
withe the links in the EMF model: IM (Rj) : ObjM × ObjM → {1, 0}. There
is a reference Rj between o1, o2 ∈ ObjM in model M if IM (Rj)(o1, o2) = 1.

A metamodel also specifies extra structural constraints (type hierarchy, mul-
tiplicities, etc.) that need to be satisfied in each valid instance model [32].

230 O. Semeráth and D. Varró

Example 1. Figure 2 shows graph representations of three (partial) instance mod-
els. For the sake of clarity, Regions and inverse relations incomingTransitions
and outgoingTransitions are excluded from the diagram. In M1 there are two
States (s1 and s2), which are connected to a loop via Transitions t2 and t3.
The initial state is marked by a Transition t1 from an entry e1 to state s1. M2

describes a similar statechart with three states in loop (s3, s4 and s5 connected
via t5, t6 and t7). Finally, in M3 there are two main differences: there is an incom-
ing Transition t11 to an Entry state (e3), and there is a State s7 that does not
have outgoing transition. While all these M1 and M2 are non-isomorphic, later
we illustrate why they are not diverse.

Fig. 2. Example instance models (as directed graphs)

[[C(v)]]MZ := IM (C)(Z(v)) [[ϕ1 ∧ ϕ2]]MZ := [[ϕ1]]MZ ∧ [[ϕ2]]MZ
[[R(v1, v2)]]MZ := IM (R)(Z(v1), Z(v2)) [[ϕ1 ∨ ϕ2]]MZ := [[ϕ1]]MZ ∨ [[ϕ2]]MZ
[[v1 = v2]]MZ := Z(v1) = Z(v2) [[¬ϕ]]MZ := ¬[[ϕ]]MZ
[[∀v : ϕ]]MZ :=

∧
x∈ObjM

[[ϕ]]MZ,v �→x [[∃v : ϕ]]MZ :=
∨

x∈ObjM
[[ϕ]]MZ,v �→x

Fig. 3. Inductive semantics of graph predicates

2.2 Well-Formedness Constraints as Logic Formulae

In many industrial modeling tools, WF constraints are captured either by OCL
constraints [24] or graph patterns (GP) [41] where the latter captures structural
conditions over an instance model as paths in a graph. To have a unified and
precise handling of evaluating WF constraints, we use a tool-independent logic
representation (which was influenced by [29,32,34]) that covers the key features
of concrete graph pattern languages and a first-order fragment of OCL.

Syntax. A graph predicate is a first order logic predicate ϕ(v1, . . . vn) over
(object) variables which can be inductively constructed by using class and rela-
tion predicates C(v) and R(v1, v2), equality check =, standard first order logic
connectives ¬, ∨, ∧, and quantifiers ∃ and ∀.

Iterative Generation of Diverse Models for Testing Specifications 231

Semantics. A graph predicate ϕ(v1, . . . , vn) can be evaluated on model M along
a variable binding Z : {v1, . . . , vn} → ObjM from variables to objects in M . The
truth value of ϕ can be evaluated over model M along the mapping Z (denoted
by [[ϕ(v1, . . . , vn)]]MZ) in accordance with the semantic rules defined in Fig. 3.

If there is a variable binding Z where the predicate ϕ is evaluated to 1 over
M is often called a patternmatch, formally [[ϕ]]MZ = 1. Otherwise, if there are
no bindings Z to satisfy a predicate, i.e. [[ϕ]]MZ = 0 for all Z, then the predicate
ϕ is evaluated to 0 over M . Graph query engines like [41] can retrieve (one or
all) matches of a graph predicate over a model. When using graph patterns for
validating WF constraints, a match of a pattern usually denotes a violation, thus
the corresponding graph formula needs to capture the erroneous case.

2.3 Motivation: Testing of DSL Tools

A code generator would normally assume that the input models are well-formed,
i.e. all WF constraints are validated prior to calling the code generator. How-
ever, there is no guarantee that the WF constraints actually checked by the
DSL tool are exactly the same as the ones required by the code generator.
For instance, if the validation forgets to check a subclause of a WF constraint,
then runtime errors may occur during code generation. Moreover, the precon-
dition of the transformation rule may also contain errors. For that purpose,
WF constraints and model transformations of DSL tools can be systematically
tested.Alternatively, model validation can be interpreted as a special case of
model transformation, where precondition of the transformation rules are fault
patterns, and the actions place error markers on the model [41].

A popular approach for testing DSL tools is mutation testing [22,36] which
aims to reveal missing or extra predicates by (1) deriving a set of mutants (e.g.
WF constraints in our case) by applying a set of mutation operators. Then (2)
the test suite is executed for both the original and the mutant programs, and (3)
their output are compared. (4) A mutant is killed by a test if different output is
produced for the two cases (i.e. different match set). (5) The mutation score of a
test suite is calculated as the ratio of mutants killed by some tests wrt. the total
number of mutants. A test suite with better mutation score is preferred [18].

Fault Model and Detection. As a fault model, we consider omission faults
in WF constraints of DSL tools where some subconstraints are not actually
checked. In our fault model, a WF constraint is given in a conjunctive normal
form ϕe = ϕ1∧· · ·∧ϕk, all unbound variables are quantified existentially (∃), and
may refer to other predicates specified in the same form. Note that this format
is equivalent to first order logic, and does not reduce the range of supported
graph predicates. We assume that in a faulty predicate (a mutant) the developer
may forget to check one of the predicates ϕi (Constraint Omission, CO), i.e.
ϕe = [ϕ1∧ . . .∧ϕi∧ . . .∧ϕk] is rewritten to ϕf = [ϕ1∧· · ·∧ϕi−1∧ϕi+1∧· · ·∧ϕk],
or may forgot a negation (Negation Omission), i.e. ϕe = [ϕ1∧. . .∧(¬ϕi)∧. . .∧ϕk]
is rewritten to ϕf = [ϕ1 ∧ . . . ∧ ϕi ∧ . . . ∧ ϕk]. Given an instance model M , we
assume that both [[ϕe]]

M and the faulty [[ϕf]]M can be evaluated separately by

232 O. Semeráth and D. Varró

the DSL tool. Now a test model M detects a fault if there is a variable binding
Z, where the two evaluations differ, i.e. [[ϕe]]

M
Z
= [[ϕf]]MZ .

Example 2. Two WF constraints checked by the Yakindu environment can be
captured by graph predicates as follows:

– ϕ : incomingToEntry(E) := ∃T : Entry(E) ∧ target(T,E)
– φ : noOutgoingFromEntry(E) := Entry(E) ∧ ¬(∃T : source(T,E))

According to our fault model, we can derive two mutants for incomingToEntry
as predicates ϕf1 := Entry(E) and ϕf2 := ∃t : target(T,E).

Constraints ϕ and φ are satisfied in model M1 and M2 as the corresponding
graph predicates have no matches, thus [[ϕ]]M1

Z = 0 and [[φ]]M1
Z = 0. As a test

model, both M1 and M2 is able to detect the same omission fault both for ϕf1

as [[ϕf1]]
M1 = 1 (with E �→ e1 and E �→ e2) and similarly ϕf2 (with s1 and s3).

However, M3 is unable to kill mutant ϕf1 as (ϕ had a match E �→ e3 which
remains in ϕf1), but able to detect others.

3 Model Diversity Metrics for Testing DSL Tools

As a general best practice in testing, a good test suite should be diverse, but
the interpretation of diversity may differ. For example, equivalence partitioning
[26] partitions the input space of a program into equivalence classes based on
observable output, and then select the different test cases of a test suite from
different execution classes to achieve a diverse test suite. However, while software
diversity has been studied extensively [5], model diversity is much less covered.

In existing approaches [6,7,9,10,31,42] for testing DSL and transformation
tools, a test suite should provide full metamodel coverage [45], and it should also
guarantee that any pairs of models in the test suite are non-isomorphic [17,39].
In [43], the diversity of a model Mi is defined as the number of (direct) types
used from its MM , i.e. Mi is more diverse than Mj if more types of MM are used
in Mi than in Mj . Furthermore, a model generator Gen deriving a set of models
{Mi} is diverse if there is a designated distance between each pairs of models
Mi and Mj : dist(Mi,Mj) > D, but no concrete distance function is proposed.

Below, we propose diversity metrics for a single model, for pairs of models
and for a set of models based on neighborhood shapes [28], a formal concept
known from the state space exploration of graph transformation systems [27].
Our diversity metrics generalize both metamodel coverage and (graph) isomor-
phism tests, which are derived as two extremes of the proposed metric, and thus
it defines a finer grained equivalence partitioning technique for graph models.

3.1 Neighborhood Shapes of Graphs

A neighborhood Nbhi describes the local properties of an object in a graph model
for a range of size i ∈ N [28]. The neighbourhood of an object o describes all
unary (class) and binary (reference) relations of the objects within the given

Iterative Generation of Diverse Models for Testing Specifications 233

range. Informally, neighbourhoods can be interpreted as richer types, where
the original classes are split into multiple subclasses based on the difference
in the incoming and outgoing references. Formally, neighborhood descriptors are
defined recursively with the set of class and reference symbols Σ:

– For range i = 0, Nbh0 is a subset of class symbols: Nbh0 ⊆ 2{C1,...,Cn}

– A neighbor Ref i for i > 0 is defined by a reference symbol and a neighbor-
hood: Ref i ⊆ {R1, . . . , Rm} × Nbhi−1.

– For a range i > 0 neighborhood Nbhi is defined by a previous neighborhood
and two sets of neighbor descriptors (for incoming and outgoing references
separately): Nbhi ⊆ Nbhi−1 × 2Ref i × 2Ref i .

Shaping function nbhi : ObjM → Nbhi maps each object in a model M to a
neighborhood with range i: (1) if i = 0, then nbh0(o) = {C|[[C(o)]]M = 1}; (2) if
i > 0, then nbhi(o) = 〈nbhi−1(o), in, out〉, where

in = {〈R, n〉|∃o′ ∈ ObjM : [[R(o′, o)]]M ∧ n = nbhi−1(o′)}
out = {〈R, n〉|∃o′ ∈ ObjM : [[R(o, o′)]]M ∧ n = nbhi−1(o′)}

A (graph) shape of a model M for range i (denoted as Si(M)) is a set of
neighborhood descriptors of the model: Si(M) = {x|∃o ∈ ObjM : nbhi(o) = x}.
A shape can be interpreted and illustrated as a as a type graph: after calculating
the neighborhood for each object, each neighborhood is represented as a node in
the graph shape. Moreover, if there exist at least one link between objects in two
different neighborhoods, the corresponding nodes in the shape will be connected
by an edge. We will use the size of a shape |Si(M)| which is the number of shapes
used in M .

Example 3. We illustrate the concept of graph shapes for model M1. For range
0, objects are mapped to class names as neighborhood descriptors:

– nbh0(e) = {Entry, PseudoState, Vertex}
– nbh0(t1) = nbh0(t2) = nbh0(t3) = {Transition}
– nbh0(s1) = nbh0(s2) = {State, RegularState, Vertex}
For range 1, objects with different incoming or outgoing types are further split,
e.g. the neighborhood of t1 is different from that of t2 and t3 as it is connected
to an Entry along a source reference, while the source of t2 and t3 are States.

– nbh1(t1) = 〈{Transition}, ∅, {〈source, {Entry, PseudoState, Vertex}〉,
〈target, {State, RegularState, Vertex}〉

– nbh1(t2) = 〈{Transition}, ∅, {〈source, {State, RegularState, Vertex}〉,
〈target, {State, RegularState, Vertex}〉 = nbh1(t3)

For range 2, each object of M1 would be mapped to a unique element. In
Fig. 4, the neighborhood shapes of models M1, M2, and M3 for range 1, are repre-
sented in a visual notation adapted from [28,29] (without additional annotations
e.g. multiplicities or predicates used for verification purposes). The trace of the

234 O. Semeráth and D. Varró

o nbh1(o)
e1 − 2 n1

e3 n5
s1 − 6 n3

s7 n7
t1, 4, 11 n2

t2, 3, 5 − 8, 10 n4
t9 n6

Fig. 4. Sample neighborhood shapes of M1, M2 and M3

concrete graph nodes to neighbourhood is illustrated on the right. For instance,
e1 and e2 in M1 and M2 Entries are both mapped to the same neighbourhood
n1, while e3 can be distinguished from them as it has incoming reference from
a transition, thus creating a different neighbourhood n5.

Properties of Graph Shapes. The theoretical foundations of graph shapes
[28,29] prove several key semantic properties which are exploited in this paper:

P1 There are only a finite number of graph shapes in a certain range, and a
smaller range reduces the number of graph shapes, i.e. |Si(M)| ≤ |Si+1(M)|.

P2 |Si(Mj)| + |Si(Mk)| ≥ |Si(Mj ∪ Mk)| ≥ |Si(Mj)| and |Si(Mk)|.

3.2 Metrics for Model Diversity

We define two metrics for model diversity based upon neighborhood shapes.
Internal diversity captures the diversity of a single model, i.e. it can be evalu-
ated individually for each and every generated model. As neighborhood shapes
introduce extra subtypes for objects, this model diversity metric measures the
number of neighborhood types used in the model with respect to the size of the
model. External diversity captures the distance between pairs of models. Infor-
mally, this diversity distance between two models will be proportional to the
number of different neighborhoods covered in one model but not the other.

Definition 1 (Internal model diversity). For a range i of neighborhood
shapes for model M , the internal diversity of M is the number of shapes wrt. the
size of the model: dinti (M) = |Si(M)|/|M |.

The range of this internal diversity metric dinti (M) is [0..1], and a model M
with dint1 (M) = 1 (and |M | ≥ |MM |) guarantees full metamodel coverage [45],
i.e. it surely contains all elements from a metamodel as types. As such, it is
an appropriate diversity metric for a model in the sense of [43]. Furthermore,
given a specific range i, the number of potential neighborhood shapes within
that range is finite, but it grows superexponentially. Therefore, for a small range
i, one can derive a model Mj with dinti (Mj) = 1, but for larger models Mk (with
|Mk| > |Mj |) we will likely have dinti (Mj) ≥ dinti (Mk). However, due to the rapid
growth of the number of shapes for increasing range i, for most practical cases,
dinti (Mj) will converge to 1 if Mj is sufficiently diverse.

Iterative Generation of Diverse Models for Testing Specifications 235

Definition 2 (External model diversity). Given a range i of neighborhood
shapes, the external diversity of models Mj and Mk is the number of shapes
contained exclusively in Mj or Mk but not in the other, formally, dexti (Mj ,Mk) =
|Si(Mj) ⊕ Si(Mk)| where ⊕ denotes the symmetric difference of two sets.

External model diversity allows to compare two models. One can show that
this metric is a (pseudo)-distance in the mathematical sense [2], and thus, it can
serve as a diversity metric for a model generator in accordance with [43].

Definition 3 (Pseudo-distance). A function d : M × M → R is called a
(pseudo-)distance, if it satisfies the following properties:

– d is non-negative: d(Mj ,Mk) ≥ 0
– d is symmetric d(Mj ,Mk) = d(Mk,Mj)
– if Mj and Mk are isomorphic, then d(Mj ,Mk) = 0
– triangle inequality: d(Mj ,Ml) ≤ d(Mk,Mj) + d(Mj ,Ml)

Corollary 1. External model diversity dexti (Mj ,Mk) is a (pseudo-)distance
between models Mj and Mk for any i.

During model generation, we will exclude a model Mk if dexti (Mj ,Mk) = 0 for
a previously defined model Mj , but it does not imply that they are isomorphic.
Thus our definition allows to avoid graph isomorphism checks between Mj and
Mk which have high computation complexity. Note that external diversity is
a dual of symmetry breaking predicates [39] used in the Alloy Analyzer where
d(Mj ,Mk) = 0 implies that Mj and Mk are isomorphic (and not vice versa).

Definition 4 (Coverage of model set). Given a range i of neighborhood
shapes and a set of models MS = {M1, . . . ,Mk}, the coverage of this model
set is defined as covi〈MS〉 = |Si(M1) ∪ · · · ∪ Si(Mk)|.

The coverage of a model set is not normalised, but its value monotonously
grows for any range i by adding new models. Thus it corresponds to our expec-
tation that adding a new test case to a test suite should increase its coverage.

Example 4. Let us calculate the different diversity metrics for M1, M2 and M3

of Fig. 2. For range 1, they have the shapes illustrated in Fig. 4. The internal
diversity of those models are dint1 (M1) = 4/6, dint1 (M2) = 4/8 and dint1 (M3) =
6/7, thus M3 is the most diverse model among them. As M1 and M2 has the same
shape, the distance between them is dext1 (M1,M2) = 0. The distance between
M1 and M3 is dext1 (M1,M3) = 4 as M1 has 1 different neighbourhoods (n1), and
M3 has 3 (n5, n6 and n7). The set coverage of M1, M2 and M3 is 7 altogether,
as they have 7 different neighbourhoods (n1 to n7).

4 Iterative Generation of Diverse Models

Now we aim at generating a diverse set of models MS = {M1,M2, . . . ,Mk} for a
given metamodel MM (and potentially, a set of constraints WF). Our approach

236 O. Semeráth and D. Varró

(see Fig. 5) intentionally reuses several components as building blocks obtained
from existing research results aiming to derive consistent graph models. First,
model generation is an iterative process where previous solutions serve as further
constraints [35]. Second, it repeatedly calls a back-end graph solver [33,44] to
automatically derive consistent instance models which satisfy WF .

Fig. 5. Generation of diverse models

As a key conceptual novelty, we enforce the structural diversity of models
during the generation process using neighborhood shapes at different stages.
Most importantly, if the shape Si(Mn) of a new instance model Mn obtained
as a candidate solution is identical to the shape Si(Mj) for a previously derived
model Mj for a predefined (input) neighborhood range i, the solution candidate
is discarded, and iterative generation continues towards a new candidate.

Internally, our tool operates over partial models [30,34] where instance mod-
els are derived along a refinement calculus [43]. The shapes of intermediate (par-
tial) models found during model generation are continuously being computed.
As such, they may help guide the search process of model generation by giving
preference to refine (partial) model candidates that likely result in a different
graph shape. Furthermore, this extra bookkeeping also pays off once a model
candidate is found since comparing two neighborhood shapes is fast (conceptu-
ally similar to lexicographical ordering). However, our concepts could be adapted
to postprocess the output of other (black-box) model generator tools.

Example 5. As an illustration of the iterative generation of diverse models, let us
imagine that model M1 (in Fig. 2) is retrieved first by a model generator. Shape
S2(M1) is then calculated (see Fig. 4), and since there are no other models with
the same shape, M1 is stored as a solution. If the model generator retrieves
M2 as the next solution candidate, it turns out that S2(M2) = S2(M1), thus
M2 is excluded. Next, if model M3 is generated, it will be stored as a solution
since S2(M3)
= S2(M2). Note that we intentionally omitted the internal search
procedure of the model generator to focus on the use of neighborhood shapes.

Finally, it is worth highlighting that graph shapes are conceptually different
from other approaches aiming to achieve diversity. Approaches relying upon
object identifiers (like [38]) may classify two graphs which are isomorphic to
be different. Sampling-based approaches [17] attempt to derive non-isomorphic
models on a statistical basis, but there is no formal guarantee that two models
are non-isomorphic. The Alloy Analyzer [39] uses symmetry breaking predicates

Iterative Generation of Diverse Models for Testing Specifications 237

as sufficient conditions of isomorphism (i.e. two models are surely isomorphic).
Graph shapes provide a necessary condition for isomorphism i.e. if a two non-
isomorphic models have identical shape, one of them is discarded.

5 Evaluation

In this section, we provide an empirical evaluation of our diversity metrics and
model generation technique to address the following research questions:

RQ1: How effective is our technique in creating diverse models for testing?
RQ2: How effective is our technique in creating diverse test suites?
RQ3: Is there correlation between diversity metrics and mutation score?

Target Domain. In order to answer those questions, we executed model gen-
eration campaigns on a DSL extracted from Yakindu Statecharts (as proposed
in [35]). We used the partial metamodel describing the state hierarchy and tran-
sitions of statecharts (illustrated in Fig. 1, containing 12 classes and 6 refer-
ences). Additionally, we formalized 10 WF constraints regulating the transitions
as graph predicates, based on the built-in validation of Yakindu.

For mutation testing, we used a constraint or negation omission operator (CO
and NO) to inject an error to the original WF constraint in every possible way,
which yielded 51 mutants from the original 10 constraints (but some mutants
may never have matches). We checked both the original and mutated versions
of the constraints for each instance model, and a model kills a mutant if there
is a difference in the match set of the two constraints. The mutation score for a
test suite (i.e. a set of models) is the total number of mutants killed that way.

Compared Approaches. Our test input models were taken from three different
sources. First, we generated models with our iterative approach using a graph
solver (GS) with different neighborhoods for ranges r= 1 to r= 3.

Next, we generated models for the same DSL using Alloy [39], a well-known
SAT-based relational model finder. For representing EMF metamodels we used
traditional encoding techniques [8,32]. To enforce model diversity, Alloy was
configured with three different setups for symmetry breaking predicates: s= 0,
s= 10 and s= 20 (default value). For greater values the tool produced the same
set of models. We used the latest 4.2 build for Alloy with the default Sat4j [20]
as back-end solver. All other configuration options were set to default.

Finally, we included 1250 manually created statechart models in our anal-
ysis (marked by Human). The models were created by students as solutions
for similar (but not identical) statechart modeling homework assignments [43]
representing real models which were not prepared for testing purposes.

Measurement Setup. To address RQ1–RQ3, we created a two-step measure-
ment setup. In Step I. a set of instance models is generated with all GS and
Alloy configurations. Each tool in each configuration generated a sequence of
30 instance models produced by subsequent solver calls, and each sequence is
repeated 20 times (so 1800 models are generated for both GS and Alloy). In

238 O. Semeráth and D. Varró

(a) Mutation Score and Internal Diversity (b) External Diversity

Fig. 6. Mutation Scores and Diversity properties of models sets

case of Alloy, we prevented the deterministic run of the solver to enable statisti-
cal analysis. The model generators was to create metamodel-compliant instances
compliant with the structural constraints of Subsect. 2.1 but ignoring the WF
constraints. The target model size is set to 30 objects as Alloy did not scale with
increasing size (the scalability and the details of the back-end solver is reported
in [33]). The size of Human models ranges from 50 to 200 objects.

In Step II., we evaluate and the mutation score for all the models (and for
the entire sequence) by comparing results for the mutant and original predicates
and record which mutant was killed by a model. We also calculate our diversity
metrics for a neighborhood range where no more equivalence classes are produced
by shapes (which turned out to be r = 7 in our case study). We calculated the
internal diversity of each model, the external diversity (distance) between pairs
of models in each model sequence, and the coverage of each model sequence.

RQ1: Measurement Results and Analysis. Figure 6a shows the distribution
of the number of mutants killed by at least one model from a model sequence (left
box plot), and the distribution of internal diversity (right box plot). For killing
mutants, GS was the best performer (regardless of the r range): most models
found 36–41 mutants out of 51. On the other hand, Alloy performance varied
based on the value of symmetry: for s= 0, most models found 9–15 mutants
(with a large number of positive outliers that found several errors). For s= 10,
the average is increased over 20, but the number of positive outliers simulta-
neously dropped. Finally, in default settings (s= 20) Alloy generated similar
models, and found only a low number of mutants. We also measured the effi-
ciency of killing mutants by Human, which was between GS and Alloy. None
of the instance models could find more than 41 mutants, which suggests that
those mutants cannot be detected at all by metamodel-compliant instances.

The right side of Fig. 6a presents the internal diversity of models measured
as shape nodes/graph nodes (for fixpoint range 7). The result are similar: the
diversity was high with low variance in GS with slight differences between ranges.
In case of Alloy, the diversity is similarly affected by the symmetry value:
s= 0 produced low average diversity, but a high number of positive outliers.
With s= 10, the average diversity increased with decreasing number of positive
outliers. And finally, with the default s= 20 value the average diversity was low.
The internal diversity of Human models are between GS and Alloy.

Iterative Generation of Diverse Models for Testing Specifications 239

15

20

25

30

35

40

45

0 5 10 15 20 25 30

M

ut
an

ts
 K

ill
ed

of Models

Alloy;s=0 Alloy;s=10 Alloy;s=20 (def)

GS;r=1 GS;r=2 GS;r=3

(a) Mutation score for model sequence

0

50

100

150

200

0 10 20 30

of

 S
ha

pe
 N

od
es

Alloy;s=0

0

50

100

150

200

0 10 20 30

of

 S
ha

pe
 N

od
es

Alloy;s=10

0

50

100

150

200

0 10 20 30

of

 S
ha

pe
 N

od
es

Alloy;s=20 (def)

0

200

400

600

800

0 10 20 30

of

 S
ha

pe
 N

od
es

Graph Solver;r=1

r0 r1 r2 r3 r4 r5

(b) Model set coverage

Fig. 7. Mutation score and set coverage for model sequences

Figure 6b illustrates the average distance between all model pairs generated
in the same sequence (vertical axis) for range 7. The distribution of external
diversity also shows similar characteristics as Fig. 6a: GS provided high diversity
for all ranges (56 out of the maximum 60), while the diversity between models
generated by Alloy varied based on the symmetry value.

As a summary, our model generation technique consistently outperformed
Alloy wrt. both the diversity metrics and mutation score for individual models.

RQ2: Measurement Results and Analysis. Figure 7a shows the number
of killed mutants (vertical axis) by an increasing set of models (with 1 to 30
elements; horizontal axis) generated by GS or Alloy. The diagram shows the
median of 20 generation runs to exclude the outliers. GS found a large amount of
mutants in the first model, and the number of killed mutants (36–37) increased
to 41 by the 17th model, which after no further mutants were found. Again,
our measurement showed little difference between ranges r= 1, 2 and 3. For
Alloy, the result highly depends on the symmetry value: for s= 0 it found a
large amount of mutants, but the value saturated early. Next, for s= 10, the
first model found significantly less mutants, but the number increased rapidly in
the for the first 5 models, but altogether, less mutants were killed than for s= 0.
Finally, the default configuration (s= 20) found the least number of mutants.

In Fig. 7b, the average coverage of the model sets is calculated (vertical axis)
for increasing model sets (horizontal axis). The neighborhood shapes are cal-
culated for r = 0 to 5, which after no significant difference is shown. Again,
configurations of symmetry breaking predicates resulted in different characteris-
tics for Alloy. However, the number of shape nodes investigated by the test set
was significantly higher in case of GS (791 vs. 200 equivalence classes) regardless
of the range, and it was monotonously increasing by adding new models.

Altogether, both mutation score and equivalence class coverage of a model
sequence was much better for our model generator approach compared to Alloy.

240 O. Semeráth and D. Varró

RQ3: Analysis of Results. Figure 8 illustrates the correlation between muta-
tion score (horizontal axis) and internal diversity (vertical axis) for all generated
and human models in all configurations. Considering all models (1800 Alloy,
1800 GS, 1250 Human), mutation score and internal diversity shows a high
correlation of 0.95 – while the correlation was low (0.12) for only Human.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45

Di
ve

rs
ity

Of Mutants Killed

Alloy;s=0

Alloy;s=10

Alloy;s=20 (def)

GS;r=1

GS;r=2

GS;r=3

Human

Fig. 8. Model diversity and mutation score correlation

Our initial investigation suggests that a high internal diversity will provide
good mutation score, thus our metrics can potentially be good predictors in a
testing context, but we cannot generalize to full statistical correlation.

Threats to Validity and Limitations. We evaluated more than 4850 test
inputs in our measurement, but all models were taken from a single domain
of Yakindu statecharts with a dedicated set of WF constraints. However, our
model generation approach did not use any special property of the metamodel
or the WF constraints, thus we believe that similar results would be obtained for
other domains. For mutation operations, we checked only omission of predicates,
as extra constraints could easily yield infeasible predicates due to inconsistency
with the metamodel, thus further reducing the number of mutants that can be
killed. Finally, although we detected a strong correlation between diversity and
mutation score with our test cases, this result cannot be generalized to statistical
causality, because the generated models were not random samples taken from
the universe of models. Thus additional investigations are needed to justify this
correlation, and we only state that if a model is generated by either GS or Alloy,
a higher diversity means a higher mutation score with high probability.

6 Related Work

Diverse model generation plays a key role in testing model transformations
code generators and complete developement environments [25]. Mutation-based
approaches [1,11,22] take existing models and make random changes on them
by applying mutation rules. A similar random model generator is used for exper-
imentation purposes in [3]. Other automated techniques [7,12] generate models
that only conform to the metamodel. While these techniques scale well for larger
models, there is no guarantee whether the mutated models are well-formed.

Iterative Generation of Diverse Models for Testing Specifications 241

There is a wide set of model generation techniques which provide certain
promises for test effectiveness. White-box approaches [1,6,14,15,31,32] rely on
the implementation of the transformation and dominantly use back-end logic
solvers, which lack scalability when deriving graph models.

Scalability and diversity of solver-based techniques can be improved by iter-
atively calling the underlying solver [19,35]. In each step a partial model is
extended with additional elements as a result of a solver call. Higher diversity is
achieved by avoiding the same partial solutions. As a downside, generation steps
need to be specified manually, and higher diversity can be achieved only if the
models are decomposable into separate well-defined partitions.

Black-box approaches [8,13,15,23] can only exploit the specification of the
language or the transformation, so they frequently rely upon contracts or model
fragments. As a common theme, these techniques may generate a set of simple
models, and while certain diversity can be achieved by using symmetry-breaking
predicates, they fail to scale for larger sizes. In fact, the effective diversity of
models is also questionable since corresponding safety standards prescribe much
stricter test coverage criteria for software certification and tool qualification than
those currently offered by existing model transformation testing approaches.

Based on the logic-based Formula solver, the approach of [17] applies stochas-
tic random sampling of output to achieve a diverse set of generated models by
taking exactly one element from each equivalence class defined by graph isomor-
phism, which can be too restrictive for coverage purposes. Stochastic simulation
is proposed for graph transformation systems in [40], where rule application is
stochastic (and not the properties of models), but fulfillment of WF constraints
can only be assured by a carefully constructed rule set.

7 Conclusion and Future Work

We proposed novel diversity metrics for models based on neighbourhood shapes
[28], which are true generalizations of metamodel coverage and graph isomor-
phism used in many research papers. Moreover, we presented a model generation
technique that to derive structurally diverse models by (i) calculating the shape
of the previous solutions, and (ii) feeding back to an existing generator to avoid
similar instances thus ensuring high diversity between the models. The proposed
generator is available as an open source tool [44].

We evaluated our approach in a mutation testing scenario for Yakindu Stat-
echarts, an industrial DSL tool. We compared the effectiveness (mutation score)
and the diversity metrics of different test suites derived by our approach and
an Alloy-based model generator. Our approach consistently outperformed the
Alloy-based generator for both a single model and the entire test suite. More-
over, we found high (internal) diversity values normally result in high mutation
score, thus highlighting the practical value of the proposed diversity metrics.

Conceptually, our approach can be adapted to an Alloy-based model gener-
ator by adding formulae obtained from previous shapes to the input specifica-
tion. However, our initial investigations revealed that such an approach does not

242 O. Semeráth and D. Varró

scale well with increasing model size. While Alloy has been used as a model gen-
erator for numerous testing scenarios of DSL tools and model transformations
[6,8,35,36,42], our measurements strongly indicate that it is not a justified choice
as (1) Alloy is very sensitive to configurations of symmetry breaking predicates
and (2) the diversity and mutation score of generated models is problematic.

Acknowledgement. This paper is partially supported by the MTA-BME Lendület
Cyber-Physical Systems Research Group, the NSERC RGPIN-04573-16 project and the
UNKP-17-3-III New National Excellence Program of the Ministry of Human Capacities.

References

1. Aranega, V., Mottu, J.-M., Etien, A., Degueule, T., Baudry, B., Dekeyser, J.-L.:
Towards an automation of the mutation analysis dedicated to model transforma-
tion. Softw. Test. Verif. Reliab. 25(5–7), 653–683 (2015)

2. Arkhangel’Skii, A., Fedorchuk, V.: General Topolgy I: Basic Concepts and Con-
structions Dimension Theory, vol. 17. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-61265-7

3. Batot, E., Sahraoui, H.: A generic framework for model-set selection for the unifi-
cation of testing and learning MDE tasks. In: MODELS, pp. 374–384 (2016)

4. Baudry, B., Dinh-Trong, T., Mottu, J.-M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Le Traon, Y.: Model transformation testing challenges. In: Integration
of Model Driven Development and Model Driven Testing (2006)

5. Baudry, B., Monperrus, M., Mony, C., Chauvel, F., Fleurey, F., Clarke, S.: Diver-
sify: ecology-inspired software evolution for diversity emergence. In: Software Main-
tenance, Reengineering and Reverse Engineering, pp. 395–398 (2014)

6. Bordbar, B., Anastasakis, K.: UML2ALLOY: a tool for lightweight modeling of
discrete event systems. In: IADIS AC, pp. 209–216 (2005)

7. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Le Traon, Y.: Metamodel-based test
generation for model transformations: an algorithm and a tool. In: 17th Interna-
tional Symposium on Software Reliability Engineering, pp. 85–94 (2006)

8. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34281-3 16

9. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the formal verification of
UML/OCL models using constraint programming. In: ASE, pp. 547–548 (2007)

10. Cabot, J., Clariso, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: ICSTW, pp. 73–80 (2008)

11. Darabos, A., Pataricza, A., Varró, D.: Towards testing the implementation of graph
transformations. In: GTVMT, ENTCS. Elsevier (2006)

12. Ehrig, K., Küster, J.M., Taentzer, G.: Generating instance models from meta mod-
els. Softw. Syst. Model. 8(4), 479–500 (2009)

13. Fleurey, F., Baudry, B., Muller, P.-A., Le Traon, Y.: Towards dependable model
transformations: qualifying input test data. SoSyM, 8 (2007)

14. González, C.A., Cabot, J.: Test data generation for model transformations com-
bining partition and constraint analysis. In: Di Ruscio, D., Varró, D. (eds.) ICMT
2014. LNCS, vol. 8568, pp. 25–41. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08789-4 3

https://doi.org/10.1007/978-3-642-61265-7
https://doi.org/10.1007/978-3-642-61265-7
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-319-08789-4_3
https://doi.org/10.1007/978-3-319-08789-4_3

Iterative Generation of Diverse Models for Testing Specifications 243

15. Guerra, E., Soeken, M.: Specification-driven model transformation testing. Softw.
Syst. Model. 14(2), 623–644 (2015)

16. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

17. Jackson, E.K., Simko, G., Sztipanovits, J.: Diversely enumerating system-level
architectures. In: International Conference on Embedded Software, p. 11 (2013)

18. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

19. Kang, E., Jackson, E., Schulte, W.: An approach for effective design space explo-
ration. In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010. LNCS, vol.
6662, pp. 33–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
21292-5 3

20. Le Berre, D., Parrain, A.: The sat4j library. J. Satisf. Boolean Model. Comput. 7,
59–64 (2010)

21. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A concept for testing robustness
and safety of the context-aware behaviour of autonomous systems. In: Jezic, G.,
Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012.
LNCS (LNAI), vol. 7327, pp. 504–513. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-30947-2 55

22. Mottu, J.-M., Baudry, B., Le Traon, Y.: Mutation analysis testing for model trans-
formations. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066,
pp. 376–390. Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 28

23. Mottu, J.-M., Simula, S.S., Cadavid, J., Baudry, B.: Discovering model transfor-
mation pre-conditions using automatically generated test models. In: ISSRE, pp.
88–99. IEEE, November 2015

24. The Object Management Group.: Object Constraint Language, v2.0, May 2006
25. Ratiu, D., Voelter, M.: Automated testing of DSL implementations: experiences

from building mbeddr. In: AST@ICSE 2016, pp. 15–21 (2016)
26. Reid, S.C.: An empirical analysis of equivalence partitioning, boundary value anal-

ysis and random testing. In: Software Metrics Symposium, pp. 64–73 (1997)
27. Rensink, A.: Isomorphism checking in GROOVE. ECEASST 1 (2006)
28. Rensink, A., Distefano, D.: Abstract graph transformation. Electron. Notes Theor.

Comput. Sci. 157(1), 39–59 (2006)
29. Reps, T.W., Sagiv, M., Wilhelm, R.: Static program analysis via 3-valued logic.

In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 15–30. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9 2

30. Salay, R., Famelis, M., Chechik, M.: Language independent refinement using partial
modeling. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 224–
239. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 16

31. Schonbock, J., Kappel, G., Wimmer, M., Kusel, A., Retschitzegger, W., Schwinger,
W.: TETRABox - a generic white-box testing framework for model transforma-
tions. In: APSEC, pp. 75–82. IEEE, December 2013

32. Semeráth, O., Barta, Á., Horváth, Á., Szatmári, Z., Varró, D.: Formal validation of
domain-specific languages with derived features and well-formedness constraints.
Softw. Syst. Model. 16(2), 357–392 (2017)

33. Semeráth, O., Nagy, A.S., Varró, D.: A graph solver for the automated generation
of consistent domain-specific models. In: 40th International Conference on Software
Engineering (ICSE 2018), Gothenburg, Sweden. ACM (2018)

https://doi.org/10.1007/978-3-642-21292-5_3
https://doi.org/10.1007/978-3-642-21292-5_3
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/11787044_28
https://doi.org/10.1007/978-3-540-27813-9_2
https://doi.org/10.1007/978-3-642-28872-2_16

244 O. Semeráth and D. Varró

34. Semeráth, O., Varró, D.: Graph constraint evaluation over partial models by con-
straint rewriting. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS,
vol. 10374, pp. 138–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-61473-1 10

35. Semeráth, O., Vörös, A., Varró, D.: Iterative and incremental model generation
by logic solvers. In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol.
9633, pp. 87–103. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49665-7 6

36. Sen, S., Baudry, B., Mottu, J.-M.: Automatic model generation strategies for model
transformation testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 148–
164. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02408-5 11

37. The Eclipse Project.: Eclipse Modeling Framework. https://www.eclipse.org/
modeling/emf/

38. The Eclipse Project.: EMF DiffMerge. http://wiki.eclipse.org/EMF DiffMerge
39. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,

Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

40. Torrini, P., Heckel, R., Ráth, I.: Stochastic simulation of graph transformation
systems. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013, pp.
154–157. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12029-
9 11

41. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,
Z., Varró, D.: EMF-IncQuery: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

42. Vallecillo, A., Gogolla, M., Burgueño, L., Wimmer, M., Hamann, L.: Formal spec-
ification and testing of model transformations. In: Bernardo, M., Cortellessa, V.,
Pierantonio, A. (eds.) SFM 2012. LNCS, vol. 7320, pp. 399–437. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-30982-3 11

43. Varró, D., Semeráth, O., Szárnyas, G., Horváth, Á.: Towards the automated gen-
eration of consistent, diverse, scalable and realistic graph models. In: Heckel, R.,
Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol.
10800, pp. 285–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
75396-6 16

44. Viatra Solver Project (2018). https://github.com/viatra/VIATRA-Generator
45. Wang, J., Kim, S.-K., Carrington, D.: Verifying metamodel coverage of model

transformations. In: Software Engineering Conference, p. 10 (2006)
46. Yakindu Statechart Tools.: Yakindu. http://statecharts.org/

https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/978-3-642-02408-5_11
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://wiki.eclipse.org/EMF_DiffMerge
https://doi.org/10.1007/978-3-540-71209-1_49
https://doi.org/10.1007/978-3-642-12029-9_11
https://doi.org/10.1007/978-3-642-12029-9_11
https://doi.org/10.1007/978-3-642-30982-3_11
https://doi.org/10.1007/978-3-319-75396-6_16
https://doi.org/10.1007/978-3-319-75396-6_16
https://github.com/viatra/VIATRA-Generator
http://statecharts.org/

Iterative Generation of Diverse Models for Testing Specifications 245

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

Optimising Spectrum Based Fault
Localisation for Single Fault Programs

Using Specifications

David Landsberg(B) , Youcheng Sun , and Daniel Kroening

Department of Computer Science, University of Oxford, Oxford, UK
david.landsberg@linacre.ox.ac.uk

Abstract. Spectrum based fault localisation determines how suspicious
a line of code is with respect to being faulty as a function of a given test
suite. Outstanding problems include identifying properties that the test
suite should satisfy in order to improve fault localisation effectiveness
subject to a given measure, and developing methods that generate these
test suites efficiently.

We address these problems as follows. First, when single bug optimal
measures are being used with a single-fault program, we identify a formal
property that the test suite should satisfy in order to optimise fault local-
isation. Second, we introduce a new method which generates test data
that satisfies this property. Finally, we empirically demonstrate the util-
ity of our implementation at fault localisation on sv-comp benchmarks
and the tcas program, demonstrating that test suites can be generated
in almost a second with a fault identified after inspecting under 1% of
the program.

Keywords: Software quality · Spectrum based fault localisation
Debugging

1 Introduction

Faulty software is estimated to cost 60 billion dollars to the US economy per
year [1] and has been single-handedly responsible for major newsworthy catas-
trophes1. This problem is exacerbated by the fact that debugging (defined as
the process of finding and rectifying a fault) is complex and time consuming –
estimated to consume 50–60% of the time a programmer spends in the main-
tenance and development cycle [2]. Consequently, the development of effective
and efficient methods for software fault localisation has the potential to greatly
reduce costs, wasted programmer time and the possibility of catastrophe.

In this paper, we advance the state of the art in lightweight fault localisation
by building on research in spectrum-based fault localisation (sbfl). sbfl is one

This research was supported by the Innovate UK project 113099 SECT-AIR.
1 https://www.newscientist.com/gallery/software-faults/.

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 246–263, 2018.
https://doi.org/10.1007/978-3-319-89363-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_14&domain=pdf
http://orcid.org/0000-0001-6084-0042
http://orcid.org/0000-0002-1893-6259
http://orcid.org/0000-0002-6681-5283
https://www.newscientist.com/gallery/software-faults/

Optimising SBFL for Single Fault Programs Using Specifications 247

of the most prominent areas of software fault localisation research, estimated to
make up 35% of published work in the field to date [3], and has been demon-
strated to be efficient and effective at finding faults [4–12]. The effectiveness relies
on two factors, (1) the quality of the measure used to identify the lines of code
that are suspected to be faulty, and (2) the quality of the test suite used. Most
research in the field has been focussed on finding improved measures [4–12], but
there is a growing literature on how to improve the quality of test suites [13–20].
An outstanding problem in this field is to identify the properties that test suites
should satisfy to improve fault localisation.

To address this problem, we focus our attention on improving the quality of
test suites for the purposes of fault localisation on single-fault programs. Pro-
grams with a single fault are of special interest, as a recent study demonstrates
that 82% of faulty programs could be repaired with a “single fix” [21], and that
“when software is being developed, bugs arise one-at-a-time and therefore can be
considered as single-faulted scenarios”, suggesting that methods optimised for
use with single-fault programs would be most helpful in practice. Accordingly,
the contributions of this paper are as follows.

1. We identify a formal property that a test suite must satisfy in order to be
optimal for fault localisation on a single-fault program when a single-fault
optimal sbfl measure is being used.

2. We provide a novel algorithm which generates data that is formally shown to
satisfy this property.

3. We integrate this algorithm into an implementation which leverages model
checkers to generate small test suites, and empirically demonstrate its prac-
tical utility at fault localisation on our benchmarks.

The rest of this paper is organized as follows. In Sect. 2, we present the formal
preliminaries for sbfl and our approach. In Sect. 3, we motivate and describe
a property of single-fault optimality. In Sect. 4, we present an algorithm which
generates data for a given faulty program, and prove that the data generated sat-
isfies the property of single fault optimality, and in Sect. 5 discuss implementation
details. In Sect. 6 we present our experimental results where we demonstrate the
utility of an implementation of our algorithm on our benchmarks, and in Sect. 7
we present related work.

2 Preliminaries

In this section we formally present the preliminaries for understanding our fault
localisation approach. In particular, we describe probands, proband models, and
sbfl.

2.1 Probands

Following the terminology in Steimann et al. [22], a proband is a faulty program
together with its test suite, and can be used for evaluating the performance of

248 D. Landsberg et al.

Fig. 1. minmax.c Fig. 2. Coverage matrix

a given fault localization method. A faulty program is a program that fails to
always satisfy a specification, which is a property expressible in some formal
language and describes the intended behaviour of some part of the program
under test (put). When a specification fails to be satisfied for a given execution
(i.e., an error occurs), it is assumed there exists some (incorrectly written) lines
of code in the program which was the cause of the error, identified as a fault
(aka bug).

Example 1. An example of a faulty c program is given in Fig. 1 (minmax.c, taken
from Groce et al. [23]), and we shall use it as our running example throughout
this paper. There are some executions of the program in which the assertion
statement least <= most is violated, and thus the program fails to always sat-
isfy the specification. The fault in this example is labelled C4, which should be
an assignment to least instead of most.

A test suite is a collection of test cases whose result is independent of the
order of their execution, where a test case is an execution of some part of a
program. Each test case is associated with an input vector, where the n-th value
of the vector is assigned to the n-th input of the given program for the purposes
of a test (according to some given method of assigning values in the vector to
inputs in the program). Each test suite is associated with a set of input vectors
which can be used to generate the test cases. A test case fails (or is failing) if it
violates a given specification, and passes (or is passing) otherwise.

Example 2. We give an example of a test case for the running example. The
test case with associated input vector 〈0, 1, 2〉 is an execution in which input1

Optimising SBFL for Single Fault Programs Using Specifications 249

is assigned 0, input2 is assigned 1, and input3 is assigned 2, the statements
labeled C1, C2 and C3 are executed, but C4 and C5 are not executed, and the
assertion is not violated at termination, as least and most assume values of 0
and 2 respectively. Accordingly, we may associate a collection of test cases (a test
suite) with a set of input vectors. For the running example the following ten
input vectors are associated with a test suite of ten test cases: 〈1, 0, 2〉, 〈2, 0, 1〉,
〈2, 0, 2〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 0〉, 〈2, 0, 0〉, 〈2, 2, 2〉, 〈1, 2, 0〉, and 〈0, 1, 2〉. Here,
the first three input vectors result in error (and thus their associated test cases
are failing), and the last seven do not (and thus their associated test cases are
passing).

A unit under test uut is a concrete artifact in a program which is a can-
didate for being at fault. Many types of uuts have been defined and used in
the literature, including methods [24], blocks [25,26], branches [16], and state-
ments [27–29]. A uut is said to be covered by a test case just in case that test
case executes the uut. For convenience, it will help to always think of uuts as
being labeled C1, C2, ... etc. in the program itself (as they are in the running
example). Assertion statements are not considered to be uuts, and we assume
that each fault in the program has a corresponding uut.

Example 3. To illustrate some uuts for the running example (Fig. 1), we have cho-
sen the units under test to be the statements labeled in comments marked C1, . . . ,
C5. The assertion is labeled E, which is violated when an error occurs. To illustrate
a proband, the faulty program minmax.c (described in Example 1), and the test
suite associated with the input vectors described in Example 2, together form a
proband.

2.2 Proband Models

In this section we define proband models, which are the principle formal objects
used in sbfl. Informally, a proband model is a mathematical abstraction of a
proband. We assume the existence of a given proband in which the uuts have
already been identified for the faulty program and appropriately labeled C1, . . . ,
Cn, and assume a total of n uuts. We begin as follows.

Definition 1. A set of coverage vectors, denoted by T, is a set {t1, . . . , t|T|} in
which each tk ∈ T is a coverage vector defined tk = 〈ck1 , . . . , ckn+1, k〉, where
– for all 0 < i � n, cki = 1 if the i-th uut is covered by the test case associated

with tk, and 0 otherwise.
– ckn+1 = 1 if the test case associated with tk fails and 0 if it passes.

We also call a set of coverage vectors T the fault localisation data or a dataset.
Intuitively, each coverage vector can be thought of as a mathematical abstraction
of an associated test case which describes which uuts were executed/covered in
that test case. We also use the following additional notation. If the last argument
of a coverage vector in T is the number k it is denoted tk where k uniquely

250 D. Landsberg et al.

identifies a coverage vector in T and the corresponding test case in the associated
test suite. In general, for each tk ∈ T, cki is a coverage variable and gives the
value of the i-th argument in tk. If ckn+1 = 1, then tk is called a failing coverage
vector, and passing otherwise. The set of failing coverage vectors/the event of an
error is denoted E (such that the set of passing vectors is then E). Element ckn+1

is also denoted ek (as it describes whether the error occurred). For convenience,
we may represent the set of coverage vectors T with a coverage matrix, where for
all 0 < i � n and tk ∈ T the cell intersecting the i-th column and k-th row is cki
and represents whether the i-th uut was covered in the test case corresponding
to tk. The cell intersecting the last column and k-th row is ek and represents
whether tk is a failing or passing test case. Fig. 2 is an example coverage matrix.
In practice, given a program and an input vector, one can extract coverage
information from an associated test case using established tools2.

Example 4. For the test suite given in Example 2 we can devise a set of cov-
erage vectors T = {t1, . . . , t10} in which t1 = 〈1, 0, 1, 1, 0, 1, 1〉, t2 = 〈1, 0, 0, 1,
1, 1, 2〉, t3 = 〈1, 0, 0, 1, 0, 1, 3〉, t4 = 〈1, 1, 0, 0, 0, 0, 4〉, t5 = 〈1, 1, 0, 0, 0, 0, 5〉, t6 =
〈1, 0, 0, 0, 1, 0, 6〉, t7 = 〈1, 0, 0, 1, 1, 0, 7〉, t8 = 〈1, 0, 0, 0, 0, 0, 8〉, t9 = 〈1, 1, 0, 0,
1, 0, 9〉, and t10 = 〈1, 1, 1, 0, 0, 0, 10〉. Here, coverage vector tk is associated with
the k-th input vector described in the list in Example 2. To illustrate how input
and coverage vectors relate, we observe that t10 is associated with a test case
with input vector 〈0, 1, 2〉 which executes the statements labeled C1, C2 and C3,
does not execute the statements labeled C4 and C5, and does not result in error.
Consequently c101 = c102 = c103 = 1, and c104 = c105 = e10 = 0, and k = 10 such
that t10 = 〈1, 1, 1, 0, 0, 0, 10〉 (by the definition of coverage vectors). The coverage
matrix representing T is given in Fig. 2.

Definition 2. Let T be a non-empty set of coverage vectors, then T’s program
model PM is defined as the sequence 〈C1, . . . , C|PM|〉, where for each Ci ∈ PM,
Ci = {tk ∈ T|cki = 1}.

We often use the notation PMT to denote the program model PM associated
with T. The final component C|PM| is also denoted E (denoting the event of
the error). Each member of a program model is called a program component or
event, and if cki = 1 we say Ci occurred in tk, that tk covers Ci, and say that
Ci is faulty just in case its corresponding uut is faulty. Following the definition
above, each component Ci is the set of vectors in which Ci is covered, and
obey set theoretic relationships. For instance, for all components Ci, Cj ∈ PM,
we have ∀tk ∈ Cj . c

k
i = 1 just in case Cj ⊆ Ci. In general, we assume that E

contains at least one coverage vector and each coverage vector covers at least one
component. Members of E and E are called failing/passing vectors, respectively.

Example 5. We use the running example to illustrate a program model. For
the set of coverage vectors T = {t1, . . . , t10}, we may define a program model

2 For C programs Gcov can be used, available at http://www.gcovr.com.

http://www.gcovr.com

Optimising SBFL for Single Fault Programs Using Specifications 251

PM = 〈C1, C2, C3, C4, C5, E〉, where C1 = {t1, . . . , t10}, C2 = {t4, t9, t10}, C3 =
{t1, t5, t10}, C4 = {t1, t2, t3, t7}, C5 = {t2, t6, t7, t9}, E = {t1, t2, t3}. Here, we
may think of C1, . . . , C5 as events which occur just in case a corresponding uut
(lines of code labeled C1, . . . ,C5 respectively) is executed, and E as an event
which occurs just in case the assertion least <= most is violated. C4 is identified
as the faulty component.

Definition 3. For a given proband we define a proband model 〈PM,T〉, con-
sisting of the given faulty program’s program model PM, and an associated test
suite’s set of coverage vectors T.

Finally, we extend our setup to distinguish between samples and populations.
The population test suite for a given program is a test suite consisting of all
possible test cases for the program, a sample test suite is a test suite consisting
of some (but not necessarily all) possible test cases for the program. All test
suites are sample test suites drawn from a given population. Let 〈PM,T〉 be a
given proband model for a given faulty program and sample test suite, we denote
the population vectors, corresponding to the population test suite of the given
faulty program, as T∗ (and E∗ and E

∗
as the population failing and passing

vectors in T∗ respectively). The population program model associated with the
population test suite is denoted PM∗ (aka PM∗

T∗). 〈PM∗,T∗〉 is called the
population proband model. Finally, we extend the use of asterisks to make clear
that the asterisked variable is associated with a given population. Accordingly,
each component in the population program model is also superscripted with a *
to denote that it is a member of PM∗ (e.g. C∗

1). Each vector in the population
set of vectors T∗ (e.g., t∗1), and each coverage variable in each vector t∗k ∈ T∗

(e.g., ck∗
1).

It is assumed that for a given sample proband model 〈PM,T〉 and its pop-
ulation proband model 〈PM∗,T∗〉, we have T ⊆ T∗. Intuitively, this is because
a sample test suite is drawn from the population. In addition, for each i ∈ N if
Ci ∈ PM and C∗

i ∈ PM∗, then Ci ⊆ C∗
i . Intuitively, this is because if the i-th

uut is executed by a test case in the sample then it is executed by that test case
in the population.

2.3 Spectrum Based Fault Localisation

We first define what a program spectrum is, as it serves as the principle formal
object used in spectrum based fault localization (sbfl).

Definition 4. For each proband model 〈PM,T〉, and each component Ci ∈ PM,
a component’s program spectrum is a vector 〈|Ci∩E|, |Ci∩E|, |Ci∩E|, |Ci∩E|〉.

Informally, |Ci ∩ E| is the number of failing coverage vectors in T that
cover Ci, |Ci ∩ E| is the number of failing coverage vectors in T that do not
cover Ci, |Ci ∩ E| is the number of passing coverage vectors in T that cover Ci,
and |Ci ∩ E| is the number of passing coverage vectors in T that do not cover
Ci. |Ci ∩ E|, |Ci ∩ E|, |Ci ∩ E| and |Ci ∩ E| are often denoted ai

ef , ai
nf , ai

ep, and
ai
np respectively in the literature [4,7–12].

252 D. Landsberg et al.

Example 6. For the proband model of the running example 〈PM,T〉 (where
PM = 〈C1, . . . , C5, E〉 and T is represented by the coverage matrix in Fig. 2),
the spectra for C1, . . .C5, and E are 〈3, 0, 7, 0〉, 〈0, 3, 3, 4〉, 〈1, 2, 2, 5〉, 〈3, 0, 1, 6〉,
〈1, 2, 3, 4〉, and 〈3, 0, 0, 7〉 respectively.

Following Naish et al. [7], we define a suspiciousness measure as follows.

Definition 5. A suspiciousness measure w is a function with signature w :
PM → R, and maps each Ci ∈ PM to a real number as a function of Ci’s
program spectrum 〈|Ci ∩ E|, |Ci ∩ E|, |Ci ∩ E|, |Ci ∩ E|〉, where this number is
called the component’s degree of suspiciousness.

The higher/lower the degree of suspiciousness the more/less suspicious Ci is
assumed to be with respect to being a fault. A property of some sbfl measures
is single-fault optimality [7,30]. Using our notation we can express this property
as follows:

Definition 6. A suspiciousness measure w is single-fault optimal if it satisfies
the following. For every program model PM and every Ci ∈ PM:

1. If E 	⊆ Ci and E ⊆ Cj, then w(Cj) > w(Ci) and
2. if E ⊆ Ci, E ⊆ Cj, |Ci ∩ E| = k and |Cj ∩ E| < k, then w(Cj) > w(Ci).

Under the assumption that there is a single fault in the program, Naish
et al. argue that a measure must have this property to be optimal [7]. Informally,
the first condition demands that uuts covered by all failing test cases are more sus-
picious than anything else. The rationale here is that if there is only one faulty uut
in the program, then it must be executed by all failing test cases (otherwise there
would be some failing test case which executes no fault – which is impossible given
it is assumed that all errors are caused by the execution of some faulty uut) [7,30].
The seconddemands that of twouuts coveredbyall failing test cases, the onewhich
is executed by fewer passing test cases is more suspicious.

An example of a single fault optimal measure is the Naish-I measure w(Ci) =

ai
ef − ai

ep

ai
ep+ai

np+1 [31]. A framework that optimises any given sbfl measure to
being single fault optimal was first given by Naish [31]. For any suspiciousness
measure w scaled from 0 to 1, we can construct the single fault optimised version
for w (written Optw) as follows (here, we use the equivalent formulation of
Landsberg et al. [4]): Optw(Ci) = ai

np + 2 if ai
ef = |E|, and w(Ci) otherwise.

We now describe the established sbfl algorithm [4,7–12]. The method pro-
duces a list of program component indices ordered by suspiciousness, as a func-
tion of set of coverage vectors T (taken from a proband model 〈PM,T〉) and
suspiciousness measure w. As the algorithm is simple, we informally describe
the algorithm in three stages, as follows. First, the program spectrum for each
program component is constructed as a function of T. Second, the indices of
program components are ordered in a suspiciousness list according to decreas-
ing order of suspiciousness. Third, the suspiciousness list is returned to the user,
who will inspect each uut corresponding to each index in the suspiciousness

Optimising SBFL for Single Fault Programs Using Specifications 253

list in decreasing order of suspiciousness until a fault is found. We assume that
in the case of ties of suspiciousness, the uut that comes earlier in the code is
investigated first, and assume effectiveness of a sbfl measure on a proband is
measured by the number of non-faulty uuts a user has to investigate before a
fault is found.

Example 7. We illustrate an instance of sbfl using our running minmax.c exam-
ple of Fig. 1, and the Naish-I measure as an example suspiciousness measure.
First, the program spectra (given in Example 6) are constructed as a function
of the given coverage vectors (represented by the coverage matrix of Fig. 2).
Second, the suspiciousness of each program component is computed (here, the
suspiciousness of the five components are 2.125, −0.375, 0.75, 2.875, 0.625 respec-
tively), and the indices of components are ordered according to decreasing order
of suspiciousness. Thus we get the list 〈4, 1, 3, 5, 2〉. Finally, the list is returned
to the user, and the uuts in the program are inspected according to this list in
descending order of suspiciousness until a fault is found. In our running example,
C4 (the fault) is investigated first.

3 A Property of Single-Fault Optimal Data

In this section, we identify a new property for the optimality of a given dataset T
for use in fault localisation. Throughout we make two assumptions: Firstly that
a single bug optimal measure w is being used and secondly that there is a single
bug in a given faulty program (henceforth our two assumptions). Let 〈PM,T〉
be a given sample proband model, then we have the following:

Definition 7. A Property of Single Fault Optimal Data. If T is single
bug optimal, then ∀Ci ∈ PMT. E ⊆ Ci → E∗ ⊆ C∗

i .

If this condition holds, then we say the dataset T (and its associated test
suite) satisfies this property of single fault optimality. Informally, the condition
demands that if a uut is covered by all failing test cases in the sample test suite
then it is covered by all failing test cases in the population. If our two assumptions
hold, we argue it is a desirable that a test suite satisfies this property. This
is because the fault is assumed to be covered by all failing test cases in the
population (similar to the rationale of Naish et al. [7]), and as uuts executed
by all failing test cases in the sample are investigated first when a single fault
optimal measure is being used, it is desirable that uuts not covered by all failing
test cases in the population are less suspicious in order to guarantee the fault
is found earlier. An additional desirable feature of knowing one’s data satisfies
this property, is that we do not have to add any more failing test cases to a test
suite, given it is then impossible to improve fault localization effectiveness by
adding more failing test cases under our two assumptions.

254 D. Landsberg et al.

Algorithm 1. Single-fault optimal data generation algorithm
Data: E, E∗ (pre-condition: E ⊆ E∗ ∧ E �= ∅)

1 repeat

2 T ← choose({t∗k ∈ E∗|∃i ∈ N.∀tj ∈ E.cji = 1 ∧ ck∗
i = 0});

3 E ← E ∪ T ;

4 until T = ∅;
5 return E

4 Algorithm

In this section we present an algorithm which outputs single fault optimal data
for a given faulty program. We assume several preconditions for our algorithm.

– For the given faulty program, at least one uut is executed by all failing
test cases (for C programs this could be a variable initialization in the main
function).

– The population proband model is available (but as we shall see in the next
section, practical implementations will not require this).

– We also assume that E is a mutable set, and shall make use of a choose(X)
subroutine which non-deterministically returns the set of a single a member
of X (if one exists, otherwise it returns the empty set).

The algorithm is formally presented as Algorithm 1. We assume that an
associated sample test suite will also be available as a by-product of the algorithm
in addition to producing the data E. The intuition behind the algorithm is that
failing vectors are iteratively accumulated in a set E one by one, where the
next failing vector added does not cover some component which is covered by
all vectors already in E (the algorithm terminates if no such vector exists). The
resulting set is observed to be single-fault optimal. To illustrate the algorithm
we give the example below. We then give a proof of partial correctness.

Example 8. We assume some population set of failing coverage vectors E∗, which
we may identify with the set {t∗1, t

∗
2, t

∗
3} = {〈1, 0, 1, 1, 0, 1, 1〉, 〈1, 0, 0, 1, 1, 1, 2〉,

〈1, 0, 0, 1, 0, 1, 3〉} described in the coverage matrix of Fig. 2. In reality, the pop-
ulation set of failing coverage vectors for this faulty program is much larger
than this, but this will suffice for our example. The algorithm proceeds as fol-
lows. First, we assume E is a non-empty subset of E∗, and thus may assume
E = {〈1, 0, 1, 1, 0, 1, 1〉}. Now, to evaluate step 2, we first evaluate the set
{t∗k ∈ E∗ | ∃i ∈ N.∀tj ∈ E.cji = 1 ∧ ck∗

i = 0}. Intuitively, this is the set of
failing vectors in the population which do not cover some component which is
covered by all vectors in E. We may find a member of this set as follows. First,
we must evaluate the condition for when E∗ = {t∗1, t

∗
2, t

∗
3}. Given c13 = 1 holds of

t1, and t1 is the only member of E, and given c2∗
3 = 0, we have the conclusion

that t∗2 is a member of the set. Thus, for our example we may assume that choose
returns t∗2 from this set such that T = {t∗2}. So at step 3 the new version of E is

Optimising SBFL for Single Fault Programs Using Specifications 255

E = {〈1, 0, 1, 1, 0, 1, 1〉, 〈1, 0, 0, 1, 1, 1, 2〉}. Consequently, on the next iteration of
the loop the set condition will be unsatisfiable – this is because there is no index
to a component i such that both ∀tj ∈ E.cji = 1 holds (i.e., E ⊆ Ci), and also
ck∗
i = 0 holds for some vector t∗k in the population (i.e., not E∗ ⊆ Ci). Thus,
choose will return the empty set, and the algorithm will terminate returning
the dataset E to the user to be used in sbfl. Using the Naish-I measure with
this dataset, we have the result that C1 and C4 are associated with the largest
suspicious score of 2.0. Thus, with single-fault optimal data alone we can find a
fault C4 reasonably effectively in our running example.

Proposition 1. All datasets returned by Algorithm 1 are single-fault optimal.

Proof. We show partial correctness as follows. Let 〈PM∗,T∗〉 be a given pop-
ulation proband model, where E∗ ⊆ T∗ is the population set of failing vectors,
and let E be returned by the algorithm. We must show that for all Ci ∈ PME ,
E ⊆ Ci → E∗ ⊆ C∗

i (by def. of single fault optimality). We prove this by con-
tradiction. Assume there is some Ci ∈ PME (without loss of generality we may
assume i = 1), such that E ⊆ C1 but not E∗ ⊆ C∗

1 . Given we assume E has
been returned by the algorithm, we may assume T = ∅ (step 4), and thus choose
returned ∅ at step 2 (by def. of choose). Accordingly, there is no t∗k ∈ E∗ where
((∀tk ∈ E)cj1 = 1) ∧ ck∗

1 = 0 (by the set condition at step 2). Thus, (∀t∗k ∈ E∗)
((∀tj ∈ E)cj1 = 1) → ck∗

1 = 1. Now, ((∀tj ∈ E) cj1 = 1) just in case E ⊆ C1

(by def. of program models). So, (∀t∗k ∈ E∗), if E ⊆ C1 then ck∗
1 = 1 (by sub-

stitution of equivalents). Equivalently, if E ⊆ C1 then (∀t∗k ∈ E∗) ck∗
1 = 1. Now,

in general it holds that ((∀t∗k ∈ E∗) ck∗
1 = 1) just in case E∗ ⊆ C∗

1 (by def. of
program models). Thus E ⊆ C1 → E∗ ⊆ C∗

1 (by substitution of equivalents).
This contradicts the initial assumption. �

Finally, we informally observe that the maximum size of the E returned is the
number of uuts. In this case E is input to the algorithm with a failing vector that
covers all components, and choose always returns a failing vector that covers 1
fewer uuts than the failing vector covering the fewest uuts already in E (noting
that we assume at least one component will always be covered). The minimum
is one. In this case E is input to the algorithm with a failing vector which covers
some components and the post-condition is already fulfilled. In general, E can
potentially be much smaller than E∗.

5 Implementation

We now discuss our implementation of the algorithm. In practice, we can leverage
model checkers to compute members of E∗ (the population set of failing vectors)
on the fly, where computing E∗ as a pre-condition would usually be intractable.
This can be done by appeal to a SMT solving subroutine, which we describe as
follows. Given a formal model of some code Fcode , a formal specification φ, set of
Booleans which are true just in case a corresponding uut is executed in a given
execution {C1, . . . , Cn}, and a set E ⊆ E∗, we can use a SMT solver to return a

256 D. Landsberg et al.

satisfying assignment by calling SMT(Fcode ∧ ¬φ ∧ ∨
(∀tk∈E)cki =1 Ci = 0), and

then extracting a coverage vector from that assignment. A subroutine which
returns this coverage vector (or the empty set if one does not exist) can act
as a substitute for the choose subroutine in Algorithm 1, and the generation
of a static object E∗ is no longer required as an input to the algorithm. Our
implementation of this is called sfo (single fault optimal data generation tool).

We now discuss extensions of sfo. It is known that adding passing executions
help in sbfl [4,5,7–12], thus to develop amore effective fault localisationprocedure
we developed a second implementation sfop (sfo with passing traces) that runs sfo
and then adds passing test cases. To do this, after running sfo we call a SMT solver
20 times to find up to 20 new passing execution, where on each call if the vector
found has new coverage properties (does not cover all the same uuts as some pass-
ing vector already computed) it is added to a set of passing vectors.

Our implementations of sfo and sfop are integrated into a branch of the
model checker cbmc [32]. Our branch of the tool is available for download at the
URL given in the footnote3. Our implementations, along with generating fault
localisation data, rank uuts by degree of suspiciousness according to the Naish-I
measure and report this fault localisation data to the user.

6 Experimentation

In this section we provide details of evaluation results for the use of sfo and sfop

in fault localisation. The purpose of the experiment is to demonstrate that imple-
mentations of Algorithm 1 can be used to facilitate efficient and effective fault
localisation in practice on small programs (≤2.5kloc). We think generation
of fault localisation information in a few seconds (≤2) is sufficient to demon-
strate practical efficiency, and ranking the fault in the top handful of the most
suspicious lines of code (≤5) on average is sufficient to demonstrate practical
effectiveness. In the remainder of this section we present our experimental setup
(where we describe our scoring system and benchmarks), and our results.

6.1 Setup

For the purposes of comparison, we tested the fault localisation potential of sfo
and sfop against a method named 1f , which performes sbfl when only a single
failing test case was generated by cbmc (and thus uuts covered by the test
case were equally suspicious). We used the following scoring method to evaluate
the effectiveness of each of the methods for each benchmark. We envisage an
engineer who is inspecting each loc in descending order of suspiciousness using
a given strategy (inspecting lines that appear earlier in the code first in the case
of ties). We rank alternative techniques by the number of non-faulty loc that
are investigated until the engineer finds a fault. Finally, we report the average of
these scores for the benchmarks to give us an overall measure of fault localisation
effectiveness.
3 https://github.com/theyoucheng/cbmc.

https://github.com/theyoucheng/cbmc

Optimising SBFL for Single Fault Programs Using Specifications 257

We now discuss the benchmarks used in our experiments. In order to per-
form an unbiased experiment to test our techniques on, we imposed that our
benchmarks needed to satisfy the following three properties (aside from being a
C program which cbmc could be used on):

1. Programs must have been created by an independent source, to prevent any
implicit bias caused by creating benchmarks ourselves.

2. Programs must have an explicit, formally stated specification that can be
given as an assertion statement in order to apply a model checker.

3. In each program, the faulty code must be clearly identifiable, in order to be
able to measure the quality of fault localisation.

Unfortunately, benchmarks satisfying these conditions are rare. In practice,
benchmarks exist in verification research that satisfy either the second or third
criterion, but rarely both. For instance, the available sir benchmarks satisfy
the third criterion, but not the second4. The software verification competition
(sv-comp) benchmarks satisfy the second criterion, but almost never satisfy the
third5. Furthermore, it is often difficult to obtain benchmarks from authors even
when usable benchmarks do in fact exist. Finally, we have been unable to find
an instance of a C program that was not artificially developed for the purposes
of testing.

The benchmarks are described in Table 1, where we give the benchmark
name, the number of faults in the program, and lines of code (loc). The modified
versions of tcas were made available by Alex Groce via personal correspondence
and were used with the Explain tool in [33]6. The remaining benchmarks were
identified as usable by manual investigation and testing in the repositories of
sv-comp 2013 and 2017. We have made our benchmarks available for download
directly from the link on footnote 4. Faults in sv-comp programs were identified
by comparing them to an associated fault-free version (in tcas the fault was
already identified). A series of continuous lines of code that differed from the
fault free version (usually one line, and rarely up to 5 loc for larger programs)
constituted one fault. loc were counted using the cloc utility.

We give further details about our application of cbmc in this experiment.
For all our benchmarks, we used the smallest unwinding number that enables
the bounded model checker to find a counterexample. These counterexamples
were sliced, which usually results in a large improvement in fault localisation.
For details about unwindings and slicing see the cbmc documentation [34]. In
each benchmark each executable statement (variable initialisations, assignments,
or condition statements) was determined as a uut.

4 http://sir.unl.edu/portal/index.php.
5 Benchmarks can be accessed at https://sv-comp.sosy-lab.org/2018/.
6 For our experiment we activated assertion statement P5a and fault 32c.

http://sir.unl.edu/portal/index.php
https://sv-comp.sosy-lab.org/2018/

258 D. Landsberg et al.

6.2 Results and Discussion

In this section we discuss our experimental results. In Table 1, columns
1f /sfop/sfo give the scores for when the respective method is used. Column
t gives the runtime for cbmc and sfop respectively (we ignore the runtime for
sfo due to negligible difference). |E| and |E| give the number of failing and pass-
ing test cases generated by sfop. The AVG row gives averages column values.
We are primarily interested in comparing the scores of sfop and 1f .

Table 1. Experimental results

Benchmark Faults loc 1f t sfo sfop t |E| |E|
1 cdaudio simpl1 4 2102 24 1.04 22 13 1.10 3 8

2 floppy simpl3 6 1080 39 0.36 33 8 0.38 3 11

3 s3 clnt 1 1 546 35 3.52 33 3 3.56 2 7

4 kundu2 3 534 63 0.58 63 7 0.60 1 13

5 tcas 1 396 6 0.20 5 5 0.21 2 4

6 rule57 ebda 4 249 9 0.17 9 2 0.18 1 4

7 rule60 list2 1 187 14 0.17 14 8 0.18 1 3

8 merge sort 1 111 1 2.19 1 1 2.32 1 0

9 byte add 1 90 17 0.18 15 0 0.18 3 8

10 alternating list 2 56 1 0.31 1 1 0.32 1 0

11 eureka 01 1 52 7 0.17 7 3 0.26 1 7

12 string 1 43 5 0.17 2 2 0.17 3 3

13 insertion sort 1 25 3 1.05 3 0 4.28 1 3

AVG 2.08 420.85 17.23 0.78 16.00 4.08 1.06 1.77 5.46

We now discuss the results of the three techniques 1f , sfo and sfop. On
average, 1f located a fault after investigating 17.23 lines of code (4.09% of the
program on average). The results here are perhaps better than expected. We
observed that the single failing test case consistently returned good fault locali-
sation potential given the use of slicing by the technique.

We now discuss sfo. On average, sfo located a fault after investigating 16
lines of code (3.8% of the program on average). Thus, the improvement over 1f
is very small. When only one failing test case was available for sfo (i.e. |E| = 1)
we emphasise that the SMT solver could not find any other failing traces which
covered different parts of the program. In such cases, sfo performed the same
as 1f (as expected). However, when there was more than one failing test case
available (i.e. |E| > 1), sfo always made a small improvement. Accordingly, for
benchmarks 1, 2, 3, 5, 9, and 12 the improvements in terms fewer loc examined
are 2, 6, 3, 1, 2, and 3, respectively. An improvement in benchmarks where sfo
generated more than one test case is to be expected, given there was always a

Optimising SBFL for Single Fault Programs Using Specifications 259

fault covered by all failing test cases in each program (even in programs with
multiple faults), thus taking advantage of the property of single fault optimal
data. Finally, we conjecture that on programs with more failing test cases avail-
able in the population, and on longer faulty programs, that this improvement
will be larger.

We now discuss sfop. On average, sfop located a fault after investigating
4.08 loc (0.97% of each program on average). Thus, the improvement over
the other techniques is quite large (four times as effective as 1f). Moreover, this
effectiveness came at very little expense to runtime – sfop had an average runtime
of 1.06 s, which is comparable to the runtime of 1f of 0.78 s. This is despite
the fact that sfop generated over 7 executions on average. We consequently
conclude that implementations of Algorithm 1 can be used to facilitate efficient
and effective fault localisation in practice on small programs.

7 Related Work

The techniques discussed in this paper improve the quality of data usable for
sbfl. We divide the research in this field into the following areas; many other
methods can be potentially combined with our technique.

Test Suite Expansion. One approach to improving test suites is to add more
test cases which satisfy a given criterion. A prominent criterion is that the test
suite has sufficient program coverage, where studies suggest that test suites with
high coverage improve fault localisation [15–17,20]. Other ways to improve test
suites for sbfl are as follows. Li et al. generate test suites for sbfl, considering
failing to passing test case ratio to be more important than number [35]. Zhang
et al. consider cloning failed test cases to improve sbfl [13]. Perez et al. develop a
metric for diagnosing whether a test suite is of sufficient quality for sbfl to take
place [14]. Li et al. consider weighing different test cases differently [36]. Aside
from coverage criteria, methods have been studied which generate test cases
with a minimal distance from a given failed test case [18]. Baudry et al. use
a bacteriological approach in order to generate test suites that simultaneously
facilitate both testing and fault localisation [19]. Concolic execution methods
have been developed to add test cases to a test suite based on their similarity to
an initial failing run [20].

Prominent approaches which leverage model checkers for fault localisation
are as follows. Groce [33] uses integer linear programming to find a passing test
case most similar to a failing one and then compare the difference. Schupman and
Bierre [37] generate short counterexamples for use in fault localisation, where
a short counterexample will usually mean fewer uuts for the user to inspect.
Griesmayer [38] and Birch et al. [39] use model checkers to find failing execu-
tions and then look for whether a given number of changes to values of variables
can be made to make the counterexample disappear. Gopinath et al. [40] com-
pute minimal unsatisfiable cores in a given failing test case, where statements in
the core will be given a higher suspiciousness level in the spectra ranking. Addi-
tionally, when generating a new test, they generate an input whose test case is

260 D. Landsberg et al.

most similar to the initial run in terms of its coverage of the statements. Fey
et al. [41] use SAT solvers to localise faults on hardware with LTL specifications.
In general, experimental scale is limited to a small number of programs in these
studies, and we think our experimental component provides an improvement in
terms of experimental scale (13 programs).

Test Suite Reduction. An alternative approach to expanding a test suite is to
use reduction methods. Recently, many approaches have demonstrated that it is
not necessary for all test cases in a test suite to be used. Rather, one can select
a handful of test cases in order to minimise the number of test cases required for
fault localisation [42,43]. Most approaches are based on a strategy of eliminating
redundant test cases relative to some coverage criterion. The effectiveness of
applying various coverage criteria in test suite reduction is traditionally based
on empirical comparison of two metrics: one which measures the size of the
reduction, and the other which measures how much fault detection is preserved.

Slicing. A prominent approach to improving the quality of test suites involves
the process of slicing test cases. Here, sbfl proceeds as usual except the program
and/or the test cases composing the test suite are sliced (with irrelevant lines
of code/parts of the execution removed). For example, Alves et al. [44] combine
Tarantula along with dynamic slices, Ju et al. [45] use sbfl in combination with
both dynamic and execution slices. Syntactic dynamic slicing is built-in in all
our tested approaches by appeal to the functionalities of cbmc.

To our knowledge, no previous methods generate data which exhibit our
property of single fault optimality.

8 Conclusion

In this paper, we have presented a method to generate single fault optimal data
for use with sbfl. Experimental results on our implementation sfop, which inte-
grates single fault optimal data along with passing test cases, demonstrate that
small optimized fault localisation data can be generated efficiently in practice
(1.06 s on average), and that subsequent fault localization can be performed effec-
tively using this data (investigating 4.06 loc until a fault is found). We envisage
that implementations of the algorithm can be used in two different scenarios.
In the first, the test suite generated can be used in standalone fault localisa-
tion, providing a small and low cost test suite useful for repeating iterations of
simultaneous testing and fault localisation during program development. In the
second, the data generated can be added to any pre-existing data associated
with a test suite, which may be useful at the final testing stage where we may
wish to optimise single fault localisation.

Future work involves finding larger benchmarks to use our implementation
on and developing further properties, and methods for use with programs with
multiple faults. We would also like to combine our technique with existing test
suite generation algorithms in order to experiment how much test suites can be
additionally improved for the purposes of fault localization.

Optimising SBFL for Single Fault Programs Using Specifications 261

References

1. Zhivich, M., Cunningham, R.K.: The real cost of software errors. IEEE Secur. Priv.
7(2), 87–90 (2009)

2. Collofello, J.S., Woodfield, S.N.: Evaluating the effectiveness of reliability-
assurance techniques. J. Syst. Softw. 9(3), 745–770 (1989)

3. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A survey on software fault
localization. IEEE Trans. Softw. Eng. 42(8), 707–740 (2016)

4. Landsberg, D., Chockler, H., Kroening, D., Lewis, M.: Evaluation of measures for
statistical fault localisation and an optimising scheme. In: Egyed, A., Schaefer,
I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 115–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46675-9 8

5. Landsberg, D., Chockler, H., Kroening, D.: Probabilistic fault localisation. In:
Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 65–81. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-49052-6 5

6. Landsberg, D.: Methods and measures for statistical fault localisation. Ph.D. thesis,
University of Oxford (2016)

7. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software
diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 1–11 (2011)

8. Lucia, L., Lo, D., Jiang, L., Thung, F., Budi, A.: Extended comprehensive study of
association measures for fault localization. J. Softw. Evol. Process 26(2), 172–219
(2014)

9. Wong, W.E., Debroy, V., Gao, R., Li, Y.: The DStar method for effective software
fault localization. IEEE Trans. Reliab. 63(1), 290–308 (2014)

10. Wong, W.E., Debroy, V., Choi, B.: A family of code coverage-based heuristics for
effective fault localization. JSS 83(2), 188–208 (2010)

11. Yoo, S.: Evolving human competitive spectra-based fault localisation techniques.
In: Fraser, G., Teixeira de Souza, J. (eds.) SSBSE 2012. LNCS, vol. 7515, pp. 244–
258. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33119-0 18

12. Kim, J., Park, J., Lee, E.: A new hybrid algorithm for software fault localization.
In: IMCOM, pp. 50:1–50:8. ACM (2015)

13. Zhang, L., Yan, L., Zhang, Z., Zhang, J., Chan, W.K., Zheng, Z.: A theoretical
analysis on cloning the failed test cases to improve spectrum-based fault localiza-
tion. JSS 129, 35–57 (2017)

14. Perez, A., Abreu, R., van Deursen, A.: A test-suite diagnosability metric for
spectrum-based fault localization approaches. In: ICSE (2017)

15. Jiang, B., Chan, W.K., Tse, T.H.: On practical adequate test suites for integrated
test case prioritization and fault localization. In: International Conference on Qual-
ity Software, pp. 21–30 (2011)

16. Santelices, R., Jones, J.A., Yu, Y., Harrold, M.J.: Lightweight fault-localization
using multiple coverage types. In: ICSE, pp. 56–66 (2009)

17. Feldt, R., Poulding, S., Clark, D., Yoo, S.: Test set diameter: quantifying the
diversity of sets of test cases. CoRR, abs/1506.03482 (2015)

18. Jin, W., Orso, A.: F3: fault localization for field failures. In: ISSTA, pp. 213–223
(2013)

19. Baudry, B., Fleurey, F., Le Traon, Y.: Improving test suites for efficient fault
localization. In: ICSE, pp. 82–91. ACM (2006)

20. Artzi, S., Dolby, J., Tip, F., Pistoia, M.: Directed test generation for effective fault
localization. In: ISSTA, pp. 49–60 (2010)

https://doi.org/10.1007/978-3-662-46675-9_8
https://doi.org/10.1007/978-3-319-49052-6_5
https://doi.org/10.1007/978-3-642-33119-0_18

262 D. Landsberg et al.

21. Perez, A., Abreu, R., D’Amorim, M.: Prevalence of single-fault fixes and its impact
on fault localization. In: 2017 ICST, pp. 12–22 (2017)

22. Steimann, F., Frenkel, M., Abreu, R.: Threats to the validity and value of empirical
assessments of the accuracy of coverage-based fault locators. In: ISSTA, pp. 314–
324. ACM (2013)

23. Groce, A.: Error explanation with distance metrics. In: Jensen, K., Podelski, A.
(eds.) TACAS 2004. LNCS, vol. 2988, pp. 108–122. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24730-2 8

24. Steimann, F., Frenkel, M.: Improving coverage-based localization of multiple faults
using algorithms from integer linear programming. In: ISSRE, pp. 121–130, 27–30
November 2012

25. Abreu, R., Zoeteweij, P., van Gemund, A.J.: An evaluation of similarity coefficients
for software fault localization. In: PRDC, pp. 39–46 (2006)

26. DiGiuseppe, N., Jones, J.A.: On the influence of multiple faults on coverage-based
fault localization. In: ISSTA, pp. 210–220. ACM (2011)

27. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist
fault localization. In: Proceedings of the 24th International Conference on Software
Engineering, ICSE 2002, pp. 467–477. ACM (2002)

28. Wong, W.E., Qi, Y.: Effective program debugging based on execution slices and
inter-block data dependency. JSS 79(7), 891–903 (2006)

29. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., Jordan, M.I.: Scalable statistical bug
isolation. SIGPLAN Not. 40(6), 15–26 (2005)

30. Naish, L., Lee, H.J.: Duals in spectral fault localization. In: Australian Conference
on Software Engineering (ASWEC), pp. 51–59. IEEE (2013)

31. Naish, L., Lee, H.J., Ramamohanarao, K.: Spectral debugging: how much better
can we do? In: ACSC, pp. 99–106 (2012)

32. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

33. Groce, A.: Error explanation and fault localization with distance metrics. Ph.D.
thesis, Carnegie Melon (2005)

34. CBMC. http://www.cprover.org/cbmc/
35. Li, N., Wang, R., Tian, Y., Zheng, W.: An effective strategy to build up a balanced

test suite for spectrum-based fault localization. Math. Probl. Eng. 2016, 13 (2016)
36. Li, Y., Liu, C.: Effective fault localization using weighted test cases. J. Soft. 9, 08

(2014)
37. Schuppan, V., Biere, A.: Shortest counterexamples for symbolic model checking of

LTL with past. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol.
3440, pp. 493–509. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31980-1 32

38. Griesmayer, A., Staber, S., Bloem, R.: Fault localization using a model checker.
Softw. Test. Verif. Reliab. 20(2), 149–173 (2010)

39. Birch, G., Fischer, B., Poppleton, M.: Fast test suite-driven model-based fault
localisation with application to pinpointing defects in student programs. Soft. Syst.
Model. (2017)

40. Gopinath, D., Zaeem, R.N., Khurshid, S.: Improving the effectiveness of
spectra-based fault localization using specifications. In: Proceedings of the 27th
IEEE/ACM ASE, pp. 40–49 (2012)

41. Fey, G., Staber, S., Bloem, R., Drechsler, R.: Automatic fault localization for prop-
erty checking. CAD 27(6), 1138–1149 (2008)

https://doi.org/10.1007/978-3-540-24730-2_8
https://doi.org/10.1007/978-3-540-24730-2_15
http://www.cprover.org/cbmc/
https://doi.org/10.1007/978-3-540-31980-1_32
https://doi.org/10.1007/978-3-540-31980-1_32

Optimising SBFL for Single Fault Programs Using Specifications 263

42. Vidacs, L., Beszedes, A., Tengeri, D., Siket, I., Gyimothy, T.: Test suite reduction
for fault detection and localization. In: CSMR-WCRE, pp. 204–213, February 2014

43. Xuan, J., Monperrus, M.: Test case purification for improving fault localization.
In: FSE, FSE 2014, pp. 52–63. ACM (2014)

44. Alves, E., Gligoric, M., Jagannath, V., d’Amorim, M.: Fault-localization using
dynamic slicing and change impact analysis. In: ASE, pp. 520–523 (2011)

45. Xiaolin, J., Jiang, S., Chen, X., Wang, X., Zhang, Y., Cao, H.: HSFal: effective
fault localization using hybrid spectrum of full slices and execution slices. J. Syst.
Softw. 90, 3–17 (2014)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

TCM: Test Case Mutation to Improve
Crash Detection in Android

Yavuz Koroglu(B) and Alper Sen

Department of Computer Engineering, Bogazici University, Istanbul, Turkey
{yavuz.koroglu,alper.sen}@boun.edu.tr

Abstract. GUI testing of mobile applications gradually became a very
important topic in the last decade with the growing mobile application
market. We propose Test Case Mutation (TCM) which mutates existing
test cases to produce richer test cases. These mutated test cases detect
crashes that are not previously detected by existing test cases. TCM dif-
fers from the well-known Mutation Testing (MT) where mutations are
inserted in the source code of an Application Under Test (AUT) to mea-
sure the quality of test cases. Whereas in TCM, we modify existing test
cases and obtain new ones to increase the number of detected crashes.
Android applications take the largest portion of the mobile application
market. Hence, we evaluate TCM on Android by replaying mutated test
cases of randomly selected 100 AUTs from F-Droid benchmarks. We show
that TCM is effective at detecting new crashes in a given time budget.

1 Introduction

As of April 2016, there are over 2.6 billion smartphone users worldwide and
this number is expected to go up [1]. There is an increasing focus on mobile
application testing starting from the last decade in top testing conferences and
journals [2]. Android applications have the largest share in the mobile application
market, where 82.8% of all mobile applications are designed for Android [1].
Therefore, we focus on Android GUI Testing in this paper.

The main idea of TCM is to mutate existing test cases to produce richer
test cases in order to increase the number of detected crashes. We first iden-
tify typical crash patterns that exist in Android applications. Then, we develop
mutation operators based on these crash patterns. Typically mutation operators
are applied to the source code of applications. However, in our work we apply
them to test cases.

Typical crash patterns in Android are Unhandled Exceptions, External
Errors, Resource Unavailability, Semantic Errors, and Network-Based Crashes
[3]. We describe one case study for each crash pattern. We define six novel muta-
tion operators (Loop-Stressing, Pause-Resume, Change Text, Toggle Contextual
State, Remove Delays, and Faster Swipe) and relate them to these five crash
patterns.

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 264–280, 2018.
https://doi.org/10.1007/978-3-319-89363-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_15&domain=pdf
http://orcid.org/0000-0001-9376-0698
http://orcid.org/0000-0002-5508-6484

TCM: Test Case Mutation to Improve Crash Detection in Android 265

AUT

AndroFrame

Test Suite
Minimization

Test Case Mu-
tation (TCM)

AndroFrame

Test Results

Test Results

Generated Test Suite +
AUT Model

Minimized Test Suite

Mutated Test Suite

Fig. 1. TCM overview

We implement TCM on top of AndroFrame
[4], a fully automated Android GUI testing
tool. We give an overview of TCM in Fig. 1.
First, we generate a test suite for the Appli-
cation Under Test (AUT) using AndroFrame.
AndroFrame obtains an AUT Model which is
represented as an Extended Labeled Transi-
tion System (ELTS). We then minimize the
Generated Test Suite using the AUT Model in
order to reduce test execution costs (Test Suite
Minimization). We apply Test Case Muta-
tion (TCM) on the Minimized Test Suite
and obtain a Mutated Test Suite. We use
AndroFrame to execute the Mutated Test
Suite and collect Test Results.

We state our contributions as follows:

1. Test Case Mutation Operators. We define six mutation operators on Android
test cases to uncover new crashes. Our mutation operators are based on typi-
cal Android crash patterns described in the literature [3]. All of the mutation
operators are novel with the exception of changing text inputs. To the best
of our knowledge, ours is the first work to use mutation-based test case gen-
eration to detect different crash patterns in Android.

2. Test Case Mutation (TCM) Algorithm. We describe a novel algorithm to
generate new test cases from existing ones to detect more crashes.

3. Test Suite Minimization Algorithm. We propose a coverage-based minimiza-
tion algorithm to increase the effectiveness of TCM.

4. Case Studies. We relate known Android crash patterns to our mutation oper-
ators using case studies from F-Droid benchmarks.

5. Experiments. We evaluate TCM for crash detection of 100 AUTs down-
loaded from F-Droid benchmarks. We investigate how coverage and number
of detected crashes change with respect to time.

2 Background

In this section, we first describe the basics of the Android GUI to facilitate the
understanding of our paper.

Android GUI is based on activities, events, and crashes. An activity is a
container for a set of GUI components. These GUI components can be seen on the
Android screen. Each GUI component has properties that describe boundaries
of the component in pixels (x1, y1, x2, y2) and how the user can interact with
the component (enabled, clickable, longclickable, scrollable, password). Each GUI
component also has a type property from which we can understand whether
the component accepts text input. A GUI component accepts text input if its
password property is true or its type is EditText.

266 Y. Koroglu and A. Sen

Table 1. List of GUI actions

Non-contextual Param1 Param2 Param3 Param4 Param5

Click x y - - -

Longclick x y - - -

Text x y string - -

Swipe x1 y1 x2 y2 duration

Menu - - - - -

Back - - - - -

Contextual Parameter

Connectivity on/off/toggle

Bluetooth on/off/toggle

Location gps/gps&network/off/toggle

Planemode on/off/toggle

Doze on/off/toggle

Special Param1 Param2 Param3 Param4 Param5

Reinitialize Package Activity - - -

The Android system and the user can interact with GUI components using
events. We divide events in two categories, system events and GUI events
(actions). We show the list of GUI actions that we use in Table 1, which covers
more actions then are typically used in the literature. Note that GUI actions
in Table 1 are possible inputs from the user whereas system events are not.
We group actions into three categories; non-contextual, contextual, and special.
Non-contextual actions correspond to actions that are triggered by user gestures.
Click and longclick take two parameters, x and y coordinates to click on. Text
takes three parameters, x and y for coordinates and string to describe what to
write. Swipe takes five parameters. The first four parameters describe the start-
ing and the ending coordinates. The fifth parameter is used to adjust the speed
of swipe. Menu and back actions have no parameters. These actions just click to
the menu and back buttons of the mobile device, respectively. Contextual actions
correspond to the user changing the contextual state of the AUT. Contextual
state is the concatenation of the global attributes of the mobile device (internet
connectivity, bluetooth, location, planemode, sleeping). The connectivity action
adjusts the internet connectivity of the mobile device (adjusts wifi or mobile
data according to which is available for the mobile device). Bluetooth, location,
and planemode are straightforward. The doze action taps the power button of
the mobile device and puts the device to sleep or wakes it. We use the doze
action to pause and resume the AUT. Our only special action is reinitialize,
which reinstalls and starts an AUT. System events are system generated events,
e.g. battery level, receiving SMS, clock/timer.

TCM: Test Case Mutation to Improve Crash Detection in Android 267

We report a crash whenever a fatal exception is recorded in Android logs
similar to previous work [3,5]. Crashes often result with the AUT terminating
with or without any warning. Some crashes do not visually affect the execution,
but the AUT halts as a result.

We use the Extended Labeled Transition System (ELTS) [6] as a model for
the AUT. Formally, an ELTS M = (V, v0, Z, ω, λ) is a 5-tuple, where

– V is a set of states (vertices),
– v0 ∈ V is the initial state,
– Z is the set of all actions (input alphabet),
– ω : V × V × Z is the state transition relation, and
– λ : V → ℘(Z) is a state labeling function, where ∀v ∈ V, λ(v) ⊆ Z denotes

the set of actions enabled at state v.

We define a GUI state, or simply a state v to be the concatenation of the (1)
package name (a name representing the AUT), (2) activity name, (3) contextual
state, and (4) GUI components.

Each state v has a set of enabled actions λ(v), extracted from its set of GUI
components. We say that a GUI action, or simply an action z ∈ λ(v) is enabled
at state v iff we can deduce that z interacts with at least one GUI component
in v.

A transition is a 3-tuple, (start-state, end-state, action), shortly denoted by
(vs, ve, z). We extend the standard transition and define a delayed transition as
a 4-tuple, (start-state, end-state, action, delay in seconds), shortly denoted by
(vs, ve, z, d). We do this to later change the duration of transitions via mutation.
We define an execution trace, or simply a trace t, as a sequence of delayed transi-
tions. An example trace can be given as t = (v1, v2, z1, d1), (v2, v3, z2, d2), . . . , (vn,
vn+1, zn, dn) where n is the length of the trace.

We say that a trace t is a test case if the first state of the trace is the initial
state v0 (the GUI state when the AUT is started). A test suite TS is a set of test
cases. AndroFrame generates these test suites. Then, TCM applies minimization
and mutation to generate new test suites.

3 Android Crash Patterns and Mutation Operators

In this section, we first describe typical crash patterns for Android applications
based on related work in the literature [3]. We give a list of the crash patterns
in Table 2 and describe them below.

3.1 Android Crash Patterns

C1. Unhandled Exceptions. An AUT may crash due to misuse of libraries
or GUI components, e.g. overuse of a third party library (stressing) may cause
the third party library to crash.

268 Y. Koroglu and A. Sen

C2. External Errors. An AUT may communicate with external applications.
This communication requires either permissions or valid Inter Process Commu-
nication (IPC) for Android. There are three types of IPC in Android; intents,
binders, and shared memory. Intents are used to send messages between appli-
cations. These messages are called bundles. Binders are used to invoke methods
of other applications. An AUT may crash with an external error due to (1) the
AUT attempts to communicate with another application without sufficient per-
missions, (2) the AUT receives an intent with an invalid bundle from another
application, (3) the AUT sends an intent with an invalid bundle and fails to
receive an answer due to a crash in the other application, (4) another applica-
tion uses a binder with illegal arguments, (5) the AUT uses a binder on another
application with illegal arguments and fails to receive the return value due to
a crash in the other application, or (6) shared memory of the AUT is freed by
another application.

Table 2. Relating crash patterns and mutation operators

Crash patterns Mutation operators

C1. Unhandled Exceptions M1, M3, M6

C2. External Errors M1, M4, M5, M6

C3. Resource Unavailability M2, M5

C4. Semantic Errors M3

C5. Network-Based Crashes M4, M5, M6

C3. Resource Unavailability. In Android, an AUT may be paused at any
time by executing an onPause() method. This method is very brief and does
not necessarily afford enough time to perform save operations. The onPause()
method may terminate prematurely if its operations take too much time, causing
a resource unavailability problem that may crash the AUT when it is resumed.
Another problem is that an AUT may use one or more system resources such
as memory and sensor handlers (e.g. orientation) during execution. When the
AUT is paused, it releases system resources. The AUT may crash if it is unable
to allocate these resources back when it is resumed.

C4. Semantic Errors. An AUT may crash if it fails to handle certain inputs
given by the user. For example, AUT may crash instead of generating a warning
if some textbox is left empty, or contains an unexpected text.

C5. Network-Based Crashes. An AUT may connect with remote servers or
peers via bluetooth or wifi. The AUT may crash and terminate if it does not
handle the cases where the server is unreachable, the connectivity is disabled, or
the communicated data causes an error in the AUT.

TCM: Test Case Mutation to Improve Crash Detection in Android 269

3.2 Mutation Operators

We now define the set of Android mutation operators that we developed. We
denote these operators by Δ. We describe these mutation operators, then relate
them to the crash patterns above, and summarize these relations in Table 2.

Definition 1. A mutation operator δ is a function which takes a test case t and
returns a new test case t′. We denote a mutation as t′ = δ(t).

M1. Loop-Stressing (δLS). t′ = δLS(t) reexecutes all looping actions of a test
case t multiple times with d′ second delay. An action zi of a delayed transition
ti = (vi, vi+1, zi, di) in t is looping iff vi+1 = vi. Let tj...k denote the subsequence
of actions between jth and kth indices of test case t, inclusively. Then,

δLS(t) = tls1 · tls2 · . . . · tlsn where tlsi =

⎧
⎨

⎩

ti vi �= vi+1

t′i · t′i · . . . · t′i︸ ︷︷ ︸
m times

vi = vi+1 (1)

Here n is the length of test case t and t′i = (vi, vi+1, zi, d
′). We pick d′ = 1 to avoid

double-click, which may be programmed as a separate action than single click.
We pick m = 9. We have two motivations for choosing m = 9. First, in our case
studies, we did not encounter a crash when m < 9. Second, although we detect
the same crash when m > 9, we want to keep m as small as possible to keep
test cases small. Loop-stressing may lead to an unhandled exception (C1) due to
stressing the third party libraries by invoking them repeatedly. Loop-stressing
may also lead to an external error (C2) if it stresses another application until it
crashes.

M2. Pause-Resume (δPR). t′ = δPR(t) adds two consecutive doze actions
between all transitions of the test case t. Let tpr

i = (vi, doze off, 2)·(vi, doze on, 2).
Then,

δPR(t) = tpr
1 · t1 · tpr

2 · t2 · . . . · tpr
n · tn (2)

Pause-resume may trigger a crash due to resource unavailability (C3).

M3. Change Text (δCT). We assume that existing test cases contain well-
behaving text inputs to explore the AUT as much as possible. To increase the
number of detected crashes, we modify the contents of the texts.

t′ = δCT(t) first picks one random abnormal text manipulation operation and
applies it to a random textentry action of the existing test case t. Abnormal text
manipulation operations can be emptytext, dottext, and longtext where empty-
text deletes the text, dottext enters a singe dot character, and longtext enters a
random string of length >200.

Let zct
i denote a random abnormal text manipulation action where zi is a

text action and dct
i denotes the new delay required to completely execute zct

i .
We define t′ = δCT(t) on test cases as follows:

δCT(t) =
{

t �zi = textentry
t1...i−1 · tct

i · ti+1...n otherwise (3)

270 Y. Koroglu and A. Sen

where n is the length of t and tct
i = (vi, vi+1, z

ct
i , dct

i). An AUT may crash because
the corresponding onTextChange() method of the AUT throws an unhandled
exception (C1). The AUT may also crash if the content of the text is an unex-
pected kind of input, which causes a semantic error later (C3).

M4. Toggle Contextual State (δTCS). Existing test suites typically lack con-
textual actions where the condition of the contextual state is crucial to generate
the crash. Therefore, we introduce contextual state toggling with t′ = δTCS(t)
which is defined as follows.

δTCS(t) = t1 · ttcs
1 · t2 · ttcs

2 · . . . · tn · ttcs
n (4)

where n is the length of test case t and ttcs
i is a contextual action transition

(vi+1, vi+1, z
tcs, d′). ztcs corresponds to a random contextual toggle action. We

pick d′ = 10 s for each contextual action since Android may take a long time
before it stabilizes after the change of contextual state. Toggling the contextual
states of the AUT may result in an external error (C2), or a network-based crash
if the connection failures are not handled correctly (C5).

M5. Remove Delays (δRD). t′ = δRD(t) takes a test case t and sets all of its
delays to 0. When reproduced, the events of t′ will be in the same order with t,
but sent to the AUT at the earliest possible time.

δRD(t) = (v1, v2, z1, 0) · (v2, v3, z2, 0) · . . . · (vn, vn+1, zn, 0) (5)

If the AUT is communicating with another application, removing delays may
cause the requests to crash the other application. If this case is not handled
in the AUT, the AUT crashes due to external errors (C2). If the AUT’s back-
ground process is affected by the GUI actions, removing delays may cause the
background process to crash due to resource unavailability (C3). If the GUI
actions trigger network requests, having no delays may cause a network-based
crash (C5).

M6. Faster Swipe (δFS). t′ = δFS(t) increases the speed of all swipe actions
of a test case t. Let zfs

i denote a faster version of zi, where zi is a swipe action.
Then, we define δFS on test cases with at least one swipe action as follows.

δFS(t) = tfs
1 · tfs

2 · . . . · tfs
n (6)

where n is the length of test case t and

tfs
i =

{
(vi, vi+1, zi, di) zi is NOT a swipe
(vi, vi+1, z

fs
i , di) otherwise

If the information presented by the AUT is downloaded from a network or
another application, swiping too fast may cause a network-based crash (C3) due
to the network being unable to provide the necessary data or an external error
(C2). If the AUT is a game, swiping too fast may cause the AUT to throw an
unhandled exception (C1).

TCM: Test Case Mutation to Improve Crash Detection in Android 271

Algorithm 1. Test Suite Minimization Algorithm
Require:

TS : A test suite for the AUT
M : AUT Model

Ensure:
TS′ : Minimized Test Suite

1: TS′ ← ∅
2: for t ∈ {t : t ∈ TS ∧ t does not crash} do � Iterate over non-crashing test cases
3: if covM (TS′ ∪ {t}) > covω(TS′) then � Take only the test cases that increase coverage
4: t′ ← argmin

i
t1...i s.t. covM (TS′ ∪ {t1...i}) = covM (TS′ ∪ {t}) � Shorten the test case

5: TS′ ← TS′ ∪ {t′} � Add the shortened test case to the Minimized Test Suite
6: end if
7: end for

Algorithm 2. Test Case Mutation (TCM) Algorithm
Require:

TS : A Test Suite
X : Timeout of the New Test Suite
Δ: Set of Mutation Operators

Ensure:
TS′ : New Test Suite

1: TS′ ← {}
2: x ← 0
3: repeat
4: t ← random t ∈ TS � Pick a random test case
5: δ ← random δ ∈ Δ s.t. t 	= δ(t) � Pick a mutation operator that changes the test case
6: t′ ← δ(t) � Apply the mutation operator to the test case
7: TS′ ← TS′ ∪ {t′} � Add the mutated test case to the New Test Suite
8: x ← x +

∑
(vs,ve,z,d)∈t′ d � Calculate the total delay

9: until x > X � Repeat until the total delay is above the given timeout

4 Test Suite Minimization and Test Case Mutation

Before mutating the existing test cases in a test suite TS, we first minimize TS.
In order to minimize a test suite TS, we first define an edge coverage function
covω(TS) over the AUT model M as follows:

covM (TS) =
of unique transitions covered in the AUT Model M by TS

of all transitions in the AUT Model M
(7)

We present our Test Suite Minimization approach in Algorithm 1. We iterate
over all non-crashing test cases of the original test suite TS in line 2. We use
non-crashing test cases in Algorithm 1 because our goal is to generate crashes
from non-crashing via mutation. We check if the test case t increases the edge
coverage in line 3. If t increases the edge coverage, we shorten the test case t from
its end by deleting transitions that are not contributing to the edge coverage and
add the shortened test case t′ to the minimized test suite.

We present our Test Case Mutation approach in Algorithm 2. We pick a
random test case t from given TS in line 4. Then, we pick a random mutation
operator δ that changes t in line 5. We mutate t with δ and add the mutated
test case t′ to TS′ until the total delay of TS′ exceeds the given timeout X.

272 Y. Koroglu and A. Sen

Test Case A
1 v1 reinit 10
2 v1 v2 click 1
3 v2 v1 back 1
4 v1 v2 click 1
5 v2 v1 back 1

Test Case B
1 v1 reinit 8
2 v1 v3 menu 2
3 v3 CRASH menu 1

Test Case C
1 v1 reinit 9
2 v1 v1 back 0
3 v1 v2 click 1
4 v2 v3 click 2
5 v3 CRASH menu 2

Test Case D
1 v1 reinit 15
2 v1 v1 back 0
3 v1 v2 click 2
4 v2 v1 back 1
5 v1 v3 menu 3

(a) Test Cases (b) AUT Model

Mutated 1
1 v1 reinit 15
2 v1 v1 back 1
3 v1 v1 back 1
4 v1 v1 back 1
5 v1 v1 back 1
6 v1 v1 back 1
7 v1 v1 back 1
8 v1 v1 back 1
9 v1 v1 back 1

10 v1 v1 back 1
11 v1 v1 back 0
12 v1 v2 click 2
13 v2 v1 back 1
14 v1 v3 menu 3

Mutated 2
1 v1 reinit 15
2 v1 doze off 2
3 v1 doze on 2
4 v1 v1 back 0
5 v1 doze off 2
6 v1 doze on 2
7 v1 v2 click 2
8 v2 doze off 2
9 v2 doze on 2

10 v2 v1 back 1
11 v1 doze off 2
12 v1 doze on 2
13 v1 v3 menu 3

(c) Mutated Test Cases

Fig. 2. Motivating example (mutations are denoted as bold)

5 Motivating Example

Figures 2a and b show a test suite and an AUT model, respectively. We generate
this test suite and the AUT model by executing AndroFrame for one minute on
an example AUT. We execute AndroFrame for just one minute, because that is
enough to generate test cases for this example. We limit the maximum number
of transitions per test case to five to keep the test cases small in this motivating
example for ease of presentation. The test suite has four test cases; A, B, C, and
D. Each row of test cases describes a delayed transition. The click action has
coordinates, but we abstract this information for the sake of simplicity.

Among the four test cases reported by AndroFrame, we take only the non-
crashing test cases, A and D. In our example, we include D since it increases
the edge coverage and we exclude A since all of A’s transitions are also D’s
transitions, i.e. A is subsumed by D. Then, we attempt to minimize test case
D without reducing the edge coverage. In our example, we don’t remove any
transitions from D because all transitions in D contribute to the edge coverage.
We then generate mutated test cases by randomly applying mutation operators
to D one by one until we reach one minute timeout. Figure 2c shows an example
mutated test suite. Test case Mutated 1 takes D and exercises the back button
for multiple times to stress the loop at state v1. Test case Mutated 2 clicks the
hardware power button twice (doze off, doze on) between each transition. This
operation pauses and resumes the AUT in our test devices. We then execute all
mutated test cases on the AUT. Our example AUT in fact crashes when the loop
on v1 is reexecuted more than eight times and also crashes when the AUT is
paused in state v2. When executed, our mutated test cases reveal these crashes
both at their ninth transition, doubling the number of detected crashes.

TCM: Test Case Mutation to Improve Crash Detection in Android 273

Fig. 3. Number of total distinct crashes detected across time

6 Evaluation

In this section, we evaluate TCM via experiments and case studies. We show
that, through experiments, we improve crash detection. We then show, with
case studies, how we detect crash patterns.

6.1 Experiments

We selected 100 AUTs (excluding the case studies described later) from F-Droid
benchmarks [7] for experiments. To evaluate the improvement in crash detection,
we first execute AndroFrame, Sapienz, PUMA, Monkey, and A3E for 20 min each
on these applications with no mutations enabled on test cases. Then we execute
TCM with 10 min for AndroFrame to generate test cases and 10 min to mutate
the generated test cases and replay them to detect more crashes. AndroFrame
requires the maximum length of a test case as a parameter. We used its default
parameter, 80 transitions maximum per test case.

Figure 3 shows the number of total distinct crashes detected by each tool
across time. Whenever a crash occurs, the Android system logs the resulting
stack trace. We say that two crashes are distinct if stack traces of these crashes
are different.

Our results show that AndroFrame detects more crashes than any other tool
from very early on. TCM detects the same number of crashes with AndroFrame
for the first 10 min (600 s). During that time, AndroFrame detects 15 crashes. In
the last 10 min, TCM detects 14 more crashes whereas AndroFrame detects only
3 more crashes. As a result TCM detects 29 crashes in total whereas AndroFrame
detects 18 crashes in total. As a last note, all other tools including AndroFrame
seem to stabilize after 20 min whereas TCM finds many crashes near timeout.
This shows us that TCM may find even more crashes when timeout is longer.

274 Y. Koroglu and A. Sen

(a) Execution of Test Case t (b) Execution of Test Case t′ = δCT(t)

Fig. 4. An example crash found only by TCM

Overall, TCM finds 14 more crashes than AndroFrame and 17 more crashes than
Sapienz, the best among other tools.

We also investigate how much each mutation operator contributes to the
number of detected crashes. Our observations reveal that M1 (δLS) detects one
crash, M2 (δPR) detects four crashes, M3 (δCT) detects two crashes, M4 (δTCS)
detects two crashes, M5 (δRD) detects four crashes, and M6 (δFS) detects one
crash. These crashes add up to 14, which is the number of crashes detected by
TCM in the last 10 min. This result shows that while all mutation operators
contribute to the crash detection, M2 and M5 have the largest contribution.

We present and explain one crash that is found only by TCM in Fig. 4.
Figure 4a shows an instance where AndroFrame generates and executes a test
case t on the Yahtzee application. Note that t does not lead to a crash, but only
a warning message. Figure 4b shows the instance where TCM mutates t and
executes the mutated test case t′. When t′ is executed, the application crashes
and terminates. We note that this crash was not found by any other tool. Mao
et al. [8] also report that Sapienz and Dynodroid did not find any crashes in this
application.

6.2 Case Studies

In this section, we verify that the aforementioned crash patterns exist via case
studies, one case study for each crash pattern. These studies verify that all of
our crash patterns are observable in Android platform. These case studies help
us develop and fine-tune our mutation operators.

Case Study 1. Figure 5a shows a crashing activity of the SoundBoard appli-
cation included in F-Droid benchmarks. Basically, the coin and tube buttons
activate a third party library, AudioFlinger, to produce sound when tapped.
AndroFrame generates test cases which tap these buttons. These test cases pro-
duce no crashes. Then, we mutate the test cases with TCM. When we apply
loop-stressing (M1) on any of these buttons, AudioFlinger crashes due to overuse.
AudioFlinger produces a fatal exception (C1) in Android logs. This crash does
not cause an abnormal termination, but it causes the AUT to stop functioning
(the AUT stops producing sounds until it is restarted).

TCM: Test Case Mutation to Improve Crash Detection in Android 275

(a) C1 (b) C2 (c) Resource Unavailability (C3) Example

(d) Semantic Error (C4) Example (e) Network-Based Crash (C5) Example

C1: Unhandled Exception (C1) Example

C2: External Error (C2) Example

Fig. 5. Case studies 1–5

Case Study 2. Figure 5b shows a crashing activity of the a2dpVol appli-
cation included in F-Droid benchmarks, where AndroFrame fails to generate
crashing test cases. We mutate these test cases with TCM. When we activate
bluetooth (M4), tapping find devices button produces a crash in the external
android.bluetooth.IBluetooth application due to a missing method (C2) and the
AUT terminates.

Case Study 3. Figure 5c shows a crashing activity of the importcontacts appli-
cation included in F-Droid benchmarks. The AUT handles the case that it fails
to import contacts, as we show in the leftmost screen. Pausing the AUT at this
screen causes the background process to abort and free its allocated memory
(we show the related screen in the middle). However, the paused activity is not
destroyed. If the user tries to resume this activity, the AUT crashes as we show in
the rightmost screen, since the memory was freed before. TCM applies a pause-
resume mutation (M2) and triggers this resource unavailability crash (C3).

Case Study 4. Figure 5d shows a crashing activity of the aCal application
included in F-Droid benchmarks. AndroFrame generates test cases with well-
behaving text inputs. These test cases produce no crashes. Then, we mutate the
test cases with TCM. When we apply change text (M3) on the last text box and
then tap the configure button, this produces a semantic error (C4). The AUT
crashes and terminates.

276 Y. Koroglu and A. Sen

Case Study 5. Figure 5e shows a crashing activity of the Mirrored application
included in F-Droid benchmarks. When wifi is turned off, the AUT goes into
offline mode and does not crash as shown in the leftmost screen. When we toggle
wifi (M4), the AUT retrieves several articles as shown in the middle, but crashes
when it fails to retrieve article contents due to a network-based crash (C5) as
shown in the rightmost screen.

7 Discussion

Although TCM is conceptually applicable to different GUI platforms, e.g. iOS
or a desktop computer, there are three key challenges. First, our crash patterns
are not guaranteed to exist or be observable in different platforms. Second, our
mutation operators may not be applicable to those platforms, e.g. swipe may
not be available as a gesture. Third, either an AUT model may be impossible to
obtain or a replayable test case may be impossible to generate in those platforms.
When all these challenges are addressed, we believe TCM should be applicable
to not just Android, but other platforms as well.

TCM mutates test cases after they are generated. We could apply mutated
inputs immediately during test generation. However, this requires us to alter the
test generation process which may not be possible if a third party test generation
tool is used. Our approach is conceptually applicable to any test generation tool
without altering the test generation tool.

We use an edge coverage criterion to minimize a given test suite. Because
of this the original test suite covers potentially more paths than the minimized
test suite and therefore explores the same edge in different contexts. Without
minimization, test cases in the test suite are too many and too large to generate
enough mutations to observe crashes in given timeout. Therefore, we argue that
by minimizing the test suite we improve the crash detection performance of TCM
at the cost of the test suite’s completeness in terms of a higher coverage criterion
than edge coverage.

Although TCM detects crashes, it does not detect all possible bug patterns.
Qin et al. [9] thoroughly classifies all bugs in Android. According to this classi-
fication, there are two types of bugs in Android, Bohrbugs and Mandelbugs. A
Bohrbug is a bug whose reachability and propagation are simple. A Mandelbug
is a bug whose reachability and propagation are complicated. Qin et al. further
categorize Mandelbugs as Aging Related Bugs (ARB) and Non-Aging Related
Mandelbugs (NAM). Qin et al. also define five subtypes for NAM and six sub-
types for ARB. TCM detects only the first two subtypes of NAM, TIM and SEQ.
TIM and SEQ are the only kinds of bugs which are triggered by user inputs. If
a bug is TIM, the error is caused by the timing of inputs. If a bug is SEQ, the
error is caused by the sequencing of inputs.

We note two key points on the crash patterns of TCM. First, testing tools
we compare TCM with only detect SEQ bugs. TCM introduces the detection
of TIM bugs in addition to SEQ bugs. Second, Azim et al. [3] further divides
SEQ and TIM bugs into six crash patterns. We base our crash patterns on these

TCM: Test Case Mutation to Improve Crash Detection in Android 277

crash patterns. We present both external errors and permission violations as
one crash pattern since permission violations occur as attempts to communicate
with external applications with insufficient permissions. As a result, we obtain
five crash patterns.

We did not encounter any crash patterns other than the five crash patterns
that we describe in Sect. 3. However, it is still possible to observe other crash
patterns with our mutation operators due to emerging crash patterns caused by
the fragmentation and fast development of the Android platform.

Our mutation operators insert multiple transitions to the test case, creating
an issue of locating the fault inducing transition. Given that the mutated test
case detects a crash, fault localization can be achieved using a variant of delta
debugging [10].

We use regular expressions on the Android logs to detect crashes. In the
experiment, we only detected FATAL EXCEPTION labeled errors as done in
previous work [3,5], ignoring Application Not Responding (ANR) and other
errors described by Carino and Andrews [11]. Although we believe that TCM
would still detect more crashes than pure AndroFrame (fatal exception is the
most common crash in Android), we will improve our crash detection procedure
as a future work to give more accurate results.

We randomly selected 100 Android applications from the well-known F-Droid
benchmarks also used by other testing tools [7]. We show that these applications
have similar characteristics with the rest of F-Droid applications in our previous
work.

8 Related Work

Test Case Mutation (TCM) differs from the well-known Mutation Testing (MT)
[12] where mutations are inserted in the source code of an AUT to measure the
quality of existing test cases. Whereas in TCM, we update existing test cases
to increase the number of detected crashes. Oliveria et al. [13] are the first to
suggest using Mutation Testing (MT) for GUIs. Deng et al. [14] define several
source code level mutation operators for Android applications to measure the
quality of existing test suites.

The concept of Test Case Mutation is not new. In Android GUI Testing,
Sapienz [8] and EvoDroid [15] are Android testing tools that use evolution-
ary algorithms, and therefore mutation operators. Sapienz shuffles the orders of
the events, whereas EvoDroid mutates the test case in two ways: (1) EvoDroid
transforms text inputs and (2) EvoDroid either injects, swaps, or removes events.
TCM mutates not only text inputs, but also introduces 5 more novel mutation
operators. Furthermore, Sapienz and EvoDroid use their mutation operators
for both exploration and crash detection whereas we specialize TCM’s muta-
tion operators for crash detection only. In Standard GUI Testing, MuCRASH
[16] uses test case mutation via defining special mutation operators on test
cases, where the operators are defined at the source code level. They use TCM
for crash reproduction, whereas ours is the first work that uses TCM to dis-
cover new crashes. Directed Test Suite Augmentation (DTSA) introduced by

278 Y. Koroglu and A. Sen

Xu et al. in 2010 [17] also mutates existing test cases but for the goal of achiev-
ing a target branch coverage.

We implement TCM on AndroFrame [4]. AndroFrame is one of the state-of-
the-art Android GUI Testing tools. AndroFrame finds more crashes than other
available alternatives in the literature such as A3E and Sapienz. These tools
generate replayable test cases as well. They provide the necessary utilities to
replay their generated test cases. We can mutate these test cases but most of
our mutations won’t be applicable for two reasons. First, A3E and Sapienz do
not learn a model from which we can extract looping actions. Second, A3E
and Sapienz do not support contextual state toggling. Implementing all of our
mutations on top of these tools is possible, but requires a significant amount of
engineering effort. Therefore we implement TCM on top of AndroFrame.

Other black-box testing tools in the literature include A3E [18], SwiftHand
[6], PUMA [19], DynoDroid [20], Sapienz [8], EvoDroid [15], CrashScope [5] and
MobiGUITAR [21]. From these applications, only EvoDroid, CrashScope, and
MobiGUITAR are publicly unavailable.

Monkey is a simple random generation-based fuzz tester for Android. Mon-
key detects the largest number of crashes among other black-box testing tools.
Generation-based fuzz testing is a popular approach in Android GUI Testing,
which basically generates random or unexpected inputs. Fuzzing could be com-
pletely random as in Monkey, or more intelligent by detecting relevant events
as in Dynodroid [20]. TCM can be viewed as a mutation-based fuzz testing
tool, where we modify existing test cases rather than generating test cases from
scratch. TCM can be implemented on top of Monkey or DynoDroid to improve
crash detection of these tools.

Baek and Bae [22] define a comparison criterion for Android GUI states.
AndroFrame uses the maximum comparison level described in this work, which
makes our models as fine-grained as possible for black-box testing.

9 Conclusion

In this study, we developed a novel test case mutation technique that allows us
to increase detection of crashes in Android applications. We defined six muta-
tion operators for GUI test cases and relate them to commonly occurring crash
patterns in Android applications. We obtained test cases through a state-of-the-
art Android GUI testing tool, called AndroFrame. We showed with several case
studies that our mutation operators are able to uncover new crashes.

As a future work, we plan to study a broader set of GUI actions, such as
rotation and doubleclick. We will improve our mutation algorithm by sampling
mutation operators from a probability distribution based on crash rates rather
than a uniform distribution. We will find the most optimal timings for executing
the test generator and TCM, rather than dividing the available time into two
equal halves. We will further investigate Android crash patterns.

TCM: Test Case Mutation to Improve Crash Detection in Android 279

References

1. Piejko, P.: 16 mobile market statistics you should know in 2016 (2016). https://
deviceatlas.com/blog/16-mobile-market-statistics-you-should-know-2016

2. Zein, S., Salleh, N., Grundy, J.: A systematic mapping study of mobile application
testing techniques. J. Syst. Softw. 117, 334–356 (2016)

3. Azim, T., Neamtiu, I., Marvel, L.M.: Towards self-healing smartphone software via
automated patching. In: 29th ACM/IEEE International Conference on Automated
Software Engineering (ASE), pp. 623–628 (2014)

4. Koroglu, Y., Sen, A., Muslu, O., Mete, Y., Ulker, C., Tanriverdi, T., Donmez, Y.:
QBE: QLearning-based exploration of android applications. In: IEEE International
Conference on Software Testing, Verification and Validation (ICST) (2018)

5. Moran, K., Vásquez, M.L., Bernal-Cárdenas, C., Vendome, C., Poshyvanyk, D.:
Automatically discovering, reporting and reproducing android application crashes.
In: IEEE International Conference on Software Testing, Verification and Validation
(ICST), pp. 33–44 (2016)

6. Choi, W., Necula, G., Sen, K.: Guided GUI testing of android apps with minimal
restart and approximate learning. In: ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA),
pp. 623–640 (2013)

7. Gultnieks, C.: F-Droid Benchmarks (2010). https://f-droid.org/
8. Mao, K., Harman, M., Jia, Y.: Sapienz: multi-objective automated testing for

android applications. In: 25th International Symposium on Software Testing and
Analysis (ISSTA), pp. 94–105 (2016)

9. Qin, F., Zheng, Z., Li, X., Qiao, Y., Trivedi, K.S.: An empirical investigation of
fault triggers in android operating system. In: IEEE 22nd Pacific Rim International
Symposium on Dependable Computing (PRDC), pp. 135–144 (2017)

10. Zeller, A.: Yesterday, my program worked. Today, it does not. Why? In: 7th Euro-
pean Software Engineering Conference Held Jointly with the 7th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (ESEC/FSE-7),
pp. 253–267 (1999)

11. Carino, S., Andrews, J.H.: Dynamically testing GUIs using ant colony optimiza-
tion. In: 30th IEEE/ACM International Conference on Automated Software Engi-
neering (ASE), pp. 135–148 (2015)

12. Ammann, P., Offutt, J.: Introduction to Software Testing, 1st edn. Cambridge
University Press, Cambridge (2008)

13. Oliveira, R.A.P., Algroth, E., Gao, Z., Memon, A.: Definition and evaluation of
mutation operators for GUI-level mutation analysis. In: IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW),
pp. 1–10 (2015)

14. Deng, L., Offutt, J., Ammann, P., Mirzaei, N.: Mutation operators for testing
android apps. Inf. Softw. Technol. 81(C), 154–168 (2017)

15. Mahmood, R., Mirzaei, N., Malek, S.: EvoDroid: segmented evolutionary testing of
android apps. In: 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering (FSE), pp. 599–609 (2014)

16. Xuan, J., Xie, X., Monperrus, M.: Crash reproduction via test case mutation:
let existing test cases help. In: 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pp. 910–913 (2015)

17. Xu, Z., Kim, Y., Kim, M., Rothermel, G., Cohen, M.B.: Directed test suite aug-
mentation: techniques and tradeoffs. In: 18th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE), pp. 257–266 (2010)

https://deviceatlas.com/blog/16-mobile-market-statistics-you-should-know-2016
https://deviceatlas.com/blog/16-mobile-market-statistics-you-should-know-2016
https://f-droid.org/

280 Y. Koroglu and A. Sen

18. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic test-
ing of android apps. In: ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages and Applications (OOPSLA), pp. 641–660
(2013)

19. Hao, S., Liu, B., Nath, S., Halfond, W.G., Govindan, R.: PUMA: programmable UI-
automation for large-scale dynamic analysis of mobile apps. In: 12th Annual Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys), pp.
204–217 (2014)

20. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: an input generation system
for android apps. In: 9th Joint Meeting on Foundations of Software Engineering
(ESEC/FSE), pp. 224–234 (2013)

21. Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M.: MobiGU-
ITAR: automated model-based testing of mobile apps. IEEE Softw. 32(5), 53–59
(2015)

22. Baek, Y.M., Bae, D.H.: Automated model-based android GUI testing using multi-
level GUI comparison criteria. In: 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 238–249 (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

CRETE: A Versatile Binary-Level
Concolic Testing Framework

Bo Chen1(B) , Christopher Havlicek2 , Zhenkun Yang2 , Kai Cong2 ,
Raghudeep Kannavara2 , and Fei Xie1

1 Portland State University, Portland, OR 97201, USA
{chenbo,xie}@pdx.edu

2 Intel Corporation, Hillsboro, OR 97124, USA
{christopher.havlicek,zhenkun.yang,kai.cong,

raghudeep.kannavara}@intel.com

Abstract. In this paper, we present crete, a versatile binary-level con-
colic testing framework, which features an open and highly extensible
architecture allowing easy integration of concrete execution frontends
and symbolic execution engine backends. crete’s extensibility is rooted
in its modular design where concrete and symbolic execution is loosely
coupled only through standardized execution traces and test cases. The
standardized execution traces are llvm-based, self-contained, and com-
posable, providing succinct and sufficient information for symbolic execu-
tion engines to reproduce the concrete executions. We have implemented
crete with klee as the symbolic execution engine and multiple con-
crete execution frontends such as qemu and 8051 Emulator. We have
evaluated the effectiveness of crete on GNU Coreutils programs and
TianoCore utility programs for UEFI BIOS. The evaluation of Core-
utils programs shows that crete achieved comparable code coverage
as klee directly analyzing the source code of Coreutils and generally
outperformed angr. The evaluation of TianoCore utility programs found
numerous exploitable bugs that were previously unreported.

1 Introduction

Symbolic execution [1] has become an increasingly important technique for auto-
mated software analysis, e.g., generating test cases, finding bugs, and detecting
security vulnerabilities [2–11]. There have been many recent approaches to sym-
bolic execution [12–22]. Generally speaking, these approaches can be classified
into two categories: online symbolic execution (e.g., BitBlaze [4], klee [5], and
s2e [6]), and concolic execution (a.k.a., offline symbolic execution, e.g., CUTE [2],
DART [3], and SAGE [7]). Online symbolic execution closely couples Symbolic
Execution Engines (see) with the System Under Test (sut) and explore all
possible execution paths of sut online at once. On the other hand, concolic
execution decouples see from the sut through traces, which concretely runs a
single execution path of a sut and then symbolically executes it.

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 281–298, 2018.
https://doi.org/10.1007/978-3-319-89363-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_16&domain=pdf
http://orcid.org/0000-0001-6354-2294
http://orcid.org/0000-0002-8259-0272
http://orcid.org/0000-0001-7567-2870
http://orcid.org/0000-0003-3983-1963
http://orcid.org/0000-0002-0043-9430
http://orcid.org/0000-0002-7324-3287

282 B. Chen et al.

Both online and offline symbolic execution are facing new challenges, as com-
puter software is experiencing an explosive growth, both in complexities and
diversities, ushered in by the proliferation of cloud computing, mobile comput-
ing, and Internet of Things. Two major challenges are: (1) the sut involves many
types of software for different hardware platforms and (2) the sut involves many
components distributed on different machines and as a whole the sut cannot fit
in any see. In this paper, we focus on how to extend concolic execution to sat-
isfy the needs for analyzing emerging software systems. There are two major
observations behind our efforts on extending concolic execution:

– The decoupled architecture of concolic execution provides the flexibility in
integrating new trace-captured frontends for emerging platforms.

– The trace-based nature of concolic testing offers opportunities for selectively
capturing and synthesizing reduced system-level traces for scalable analysis.

We present crete, a versatile binary-level concolic testing framework, which
features an open and highly extensible architecture allowing easy integration of
concrete execution frontends and symbolic execution backends. crete’s exten-
sibility is rooted in its modular design where concrete and symbolic execution is
loosely coupled only through standardized execution traces and test cases. The
standardized execution traces are llvm-based, self-contained, and composable,
providing succinct and sufficient information for see to reproduce the concrete
executions. The crete framework is composed of:

– A crete tracing plugin, which is embedded in the concrete execution
environment, captures binary-level execution traces of the sut, and stores the
traces in a standardized trace format.

– A crete manager, which archives the captured execution traces and test
cases, schedules concrete and symbolic execution, and implements policies for
selecting the traces and test cases to be analyzed and explored next.

– A crete replayer, which is embedded in the symbolic execution environ-
ment, performs concolic execution on captured traces for test case generation.

We have implemented the crete framework on top of qemu [23] and klee,
particularly the tracing plugin for qemu, the replayer for klee, and the man-
ager that coordinates qemu and klee to exchange runtime traces and test cases
and manages the policies for prioritizing runtime traces and test cases. To val-
idate crete extensibility, we have also implemented a tracing plugin for the
8051 emulator [24]. The trace-based architecture of crete has enabled us to
integrate such tracing frontends seamlessly. To demonstrate its effectiveness and
capability, we evaluated crete on GNU Coreutils programs and TianoCore
utility programs for UEFI BIOS, and compared with klee and angr, which are
two state-of-art open-source symbolic executors for automated program analysis
at source-level and binary-level.

The crete framework makes several key contributions:

– Versatile concolic testing. crete provides an open and highly extensible
architecture allowing easy integration of different concrete and symbolic exe-
cution environments, which communicate with each other only by exchanging

CRETE: A Versatile Binary-Level Concolic Testing Framework 283

standardized traces and test cases. This significantly improves applicability
and flexibility of concolic execution to emerging platforms and is amenable to
leveraging new advancements in symbolic execution.

– Standardizing runtime traces. crete defines a standard binary-level trace
format, which is llvm based, self-contained and composable. Such a trace is
captured during concrete execution, representing an execution path of a sut.
It contains succinct and sufficient information for reproducing the execution
path in other program analysis environment, such as for symbolic execution.
Having standardized traces minimizes the need of converting traces for dif-
ferent analysis environment and provides a basis for common trace-related
optimizations.

– Implemented a crete prototype. We have implemented crete with
klee as the see backend and multiple concrete execution frontends such
as qemu and 8051 Emulator. crete achieved comparable code coverage on
Coreutils binaries as klee directly analyzing at source-level and generally
outperformed angr. crete also found 84 distinct and previously-unreported
crashes on widely-used and extensively-tested utility programs for UEFI BIOS
development. We also make crete implementation publicly available to the
community at github.com/SVL-PSU/crete-dev.

2 Related Work

DART [3] and CUTE [2] are both early representative work on concolic testing.
They operate on the source code level. crete further extends concolic testing
and targets close-source binary programs. SAGE [7] is a Microsoft internal con-
colic testing tool that particularly targets at X86 binaries on Windows. crete
is platform agnostic: as long as a trace from concrete execution can be converted
into the llvm-based trace format, it can be analyzed to generate test cases.

klee [5] is a source-level symbolic executor built on the llvm infrastruc-
ture [25] and is capable of generating high-coverage test cases for C programs.
crete adopts klee as its see, and extends it to perform concolic execution
on standardized binary-level traces. s2e [6] provides a framework for develop-
ing tools for analyzing close-source software programs. It augments a Virtual
Machine (vm) with a see and path analyzers. It features a tight coupling of
concrete and symbolic execution. crete takes a loosely coupled approach to
the interaction of concrete and symbolic execution. crete captures complete
execution traces of the sut online and conducts whole trace symbolic analysis
off-line.

BitBlaze [4] is an early representative work on binary analysis for computer
security. It and its follow-up work Mayhem [8] and MergePoint [12] focus on
optimizing the close coupling of concrete and symbolic execution to improve the
effectiveness in detecting exploitable software bugs. crete has a different focus
on providing an open architecture for binary-level concolic testing that enables
flexible integration of various concrete and symbolic execution environments.

angr [14] is an extensible Python framework for binary analysis using
VEX [26] as an intermediate representation (IR). It implemented a number of

http://github.com/SVL-PSU/crete-dev

284 B. Chen et al.

existing analysis techniques and enabled the comparison of different techniques
in a single platform. angr needs to load a sut in its own virtual environment
for analysis, so it has to model the real execution environment for the sut, like
system calls and common library functions. crete, however, performs in-vivo
binary analysis, by analyzing binary-level trace captured from unmodified exe-
cution environment of a sut. Also, angr needs to maintain execution states for
all paths being explored at once, while crete reduces memory usage dramat-
ically by analyzing a sut path by path and separates symbolic execution from
tracing.

Our work is also related to fuzz testing [27]. A popular representative tool for
fuzzing is AFL [28]. Fuzzing is fast and quite effective for bug detection; however,
it can easily get stuck when a specific input, like magic number, is required to
pass a check and explore new paths of a program. Concolic testing guides the
generation of test cases by solving constraints from the source code or binary exe-
cution traces and is quite effective in generating complicated inputs. Therefore,
fuzzing and concolic testing are complementary software testing techniques.

3 Overview

During the design of the crete framework for binary-level concolic testing, we
have identified the following design goals:

– Binary-level In-vivo Analysis. It should require only the binary of the sut
and perform analysis in its real execution environment.

– Extensibility. It should allow easy integration of concrete execution fron-
tends and see backends.

– High Coverage. It should achieve coverage that is not significantly lower
than the coverage attainable by source-level analysis.

– Minimal Changes to Existing Testing Processes. It should simply pro-
vide additional test cases that can be plugged into existing testing processes
without major changes to the testing processes.

To achieve the goals above, we adopts an online/offline approach to concolic
testing in the design of the crete framework:

– Online Tracing. As the sut is concretely executed in a virtual or physical
machine, an online tracing plugin captures the binary-level execution trace
into a trace file.

– Offline Test Generation. An offline see takes the trace as input, injects
symbolic values and generates test cases. The new test cases are in turn applied
to the sut in the concrete execution.

This online tracing and offline test generation process is iterative: it repeats until
all generated test cases are issued or time bounds are reached. We extend this
process to satisfy our design goals as follows.

CRETE: A Versatile Binary-Level Concolic Testing Framework 285

Virtual Machine

CRETE Tracer

OS, Drivers, Libraries

Config file + Target Binary

CRETE Manager

Symbolic Execution Engine

CRETE Replayer

Captured Trace

New Test Case

Selected Trace New Test Cases

CRETE Runner

Fig. 1. crete architecture

– Execution traces of a sut are captured in its unmodified execution envi-
ronment on binary-level. The tracing plugin can be an extension into a vm
(Sect. 4.1), a hardware tracing facility, or a dynamic binary instrumentation
tool, such as PIN [29], and DynamoRIO [30].

– The concrete and symbolic execution environments are decoupled by standard-
ized traces (Sect. 4.2). As long as they can generate and consume standardized
traces, they can work together as a cohesive concolic process.

– Optimization can be explored on both tracing and test case generation, for
example, selective binary-level tracing to improve scalability (Sect. 4.3), and
concolic test generation to reduce test case redundancy (Sect. 4.4). This makes
high-coverage test generation on binary-level possible.

– The tracing plugin is transparent to existing testing processes, as it only col-
lects information. Therefore, no change is made to the testing processes.

4 Design

In this section, we present the design of crete with a vm as the concrete exe-
cution environment. The reason for selecting a vm is that it allows complete
access to the whole system for tracing runtime execution states and is generally
accessible as mature open-source projects.

4.1 crete Architecture

As shown in Fig. 1, crete has four key components: crete Runner, a tiny
helper program executing in the guest OS of the vm, which parses the configu-
ration file and launches the target binary program (tbp) with the configuration
and test cases; crete Tracer, a comprehensive tracing plug-in in the vm, which
captures binary-level traces from the concrete execution of the tbp in the vm;
crete Replayer, an extension of the see, which enables the see to perform
concolic execution on the captured traces and to generate test cases; crete
Manager, a coordinator that integrates the vm and see, which manages run-
time traces captured and test cases generated, coordinates the concrete and
symbolic execution in the vm and the see, and iteratively explores the tbp.

crete takes a tbp and a configuration file as inputs, and outputs generated
test cases along with a report of detected bugs. The manual effort and learning

286 B. Chen et al.

curve to utilize crete are minimal. It makes virtually no difference for users to
setup the testing environment for the tbp in a crete instrumented vm than a
vanilla vm. The configuration file is an interface for users to configure parameters
on testing a tbp, especially specifying the number and size of symbolic command-
line inputs and symbolic files for test case generation.

4.2 Standardized Runtime Trace

To enable the modular and plug-and-play design of crete, a standardized
binary-level runtime trace format is needed. A trace in this format must capture
sufficient information from the concrete execution, so the trace can be faithfully
replayed within the see. In order to integrate a concrete execution environment
to the crete framework, only a plug-in for the environment needs to be devel-
oped, so that the concrete execution trace can be stored in the standard file
format. Similarly, in order to integrate a see into crete, the engine only needs
to be adapted to consume trace files in that format.

We define the standardized runtime trace format based on the llvm assembly
language [31]. The reasons for selecting the llvm instruction sets are: (1) it has
become a de-facto standard for compiler design and program analysis [25,32];
(2) there have been many program analysis tools based on llvm assembly lan-
guage [5,33–35]. A standardized binary-level runtime trace is packed as a self-
contained llvm module that is directly consumable by a llvm interpreter. It
is composed of (1) a set of assembly-level basic blocks in the format of llvm
functions (2) a set of hardware states in the format of llvm global variables
(3) a set of crete-defined helper functions in llvm assembly (4) a main func-
tion in llvm assembly. The set of assembly-level basic blocks is captured from
a concrete execution of a tbp. It is normally translated from another format
(such as qemu-ir) into llvm assembly, and each basic block is packed as a llvm
function. The set of hardware states are runtime states along the execution of
the tbp. It consist of CPU states, memory states and maybe states of other
hardware components, which are packed as llvm global variables. The set of
helper functions are provided by crete to correlate captured hardware states
with captured basic blocks, and open interface to see. The main function rep-
resents the concrete execution path of the tbp. It contains a sequence of calls
to captured basic blocks (llvm functions), and calls to crete-defined helper
functions with appropriate hardware states (llvm global variables).

An example of a standardized runtime trace of crete is listed in Fig. 2. The
first column of this figure is a complete execution path of a program with given
concrete inputs. It is in the format of assembly-level pseudo-code. Assuming the
basic blocks BB_1 and BB_3 are of interest and are captured by crete Tracer,
while other basic blocks are not (see Sect. 4.3 for details). As shown in the second
and third column of the figure, hardware states are captured in two categories,
initial state and side-effects from basic blocks not being captured. As shown
in the forth column of the figure, captured basic blocks are packed as llvm
functions, and captured hardware states are packed as llvm global variables in

CRETE: A Versatile Binary-Level Concolic Testing Framework 287

Fig. 2. Example of standardized runtime trace

the standardized trace. A main function is also added making the trace a self-
contained llvm module. The main function first invokes crete helper functions
to initialize hardware states, then it calls into the first basic block llvm function.
Before it calls into the second basic block llvm function, the main function
invokes crete helper functions to update hardware states. For example, before
calling asm_BB_3, it calls function sync_state to update register r1 and memory
location 0x5678, which are the side effects brought by BB_2.

4.3 Selective Binary-Level Tracing

A major part of a standardized trace is assembly-level basic blocks which are
essentially binary-level instruction sequences representing a concrete execution
of a tbp. It is challenging and also unnecessary to capture the complete execution
of a tbp. First, software binaries can be very complex. If we capture the complete
execution, the trace file can be prohibitively large and difficult for the see to
consume and analyze. Second, as the tbp is executing, it is very common to
invoke many runtime libraries (such as libc) of no interest to testers. Therefore,
an automated way of selecting the code of interest is needed.

crete utilizes Dynamic Taint Analysis (DTA) [36] to achieve selective trac-
ing. The DTA algorithm is a part of crete Tracer. It tracks the propagation of
tainted values, normally specified by users, during the execution of a program.
It works on binary-level and in byte-wise granularity. By utilizing the DTA algo-
rithm, crete Tracer only captures basic blocks that operate on tainted values,
while only capturing side-effects from other basic blocks. For the example trace
in Fig. 2, if the tainted value is from user’s input to the program and is stored
at memory location 0x1234, DTA captures basic block BB_1 and BB_3, because
both of them operate on tainted values, while the other two basic blocks do not
touch tainted values, and are not captured by DTA.

288 B. Chen et al.

crete Tracer captures the initial state of CPU by capturing a copy of the
CPU state before the first interested basic block is executed. The initial CPU
state is normally a set of register values. As shown in Fig. 2, the initial CPU
state is captured before instruction (1). Näively, the initial memory state can
be captured in the same way; however, the typical size of memory makes it
impractical to dump entirely. To minimize the trace size, crete Tracer only
captures the parts of memory that are accessed by the captured read instructions,
like instruction (1) and (9). The memory being touched by the captured write
instructions, like instruction (3) and (11), can be ignored because the state of this
part of the memory has been included in the write instructions and has been
captured. As a result, crete Tracer monitors every memory read instruction
that is of interest, capturing memory as needed on-the-fly. In the example above,
there are two memory read instructions. crete Tracer monitors both of them,
but only keeps the memory state taken from instruction (1) as a part of the
initial state of memory, because instruction (1) and (9) access the same address.

The side effects of hardware states are captured by monitoring uncaptured
write instructions of hardware states. In the example in Fig. 2, instructions (5)
and (6) write CPU registers which cause side effects to the CPU state. crete
Tracer monitors those instructions and keeps the updated register values as part
of the runtime trace. As register r1 is updated twice by two instructions, only
the last update is kept in the runtime trace. Similarly, crete Tracer captures
the side effect of memory at address 0x5678 by monitoring instruction (7).

4.4 Concolic Test Case Generation

While a standardized trace is a self-contained llvm module and can be directly
executed by a llvm interpreter, it opens interfaces to see to inject symbolic
values for test case generation. Normally see injects symbolic values by making
a variable in source code symbolic. From source code level to machine code level,
references of variables by names have become memory accesses by addresses. For
instance, a reference of a concrete input variable of a program becomes a access
of a piece of memory that stores the state of that input variable. crete injects
self-defined helper function, crete_make_concolic, to the captured basic blocks
while capturing trace. This helper function provides the address and size of the
piece of memory for injecting symbolic values, along with a name to offer better
readability for test case generation. By catching this helper function, see can
introduce symbolic values at the right time and right place.

A standardized trace in crete represents only a single path of a tbp as shown
in Fig. 3(a). Test case generation on this trace with näive symbolic execution
by see won’t be effective, as it ignores the single path nature of the trace. As
illustrated in Fig. 3(b), native symbolic replay of crete trace produces execution
states and test cases that are exponential to the number of branches within the
trace. As shown in Fig. 3(c), with concolic replay of crete trace, the see in
crete maintains only one execution state, requiring minimal memory usage,
and generates a more compact set of test cases, whose number is linear to the
number of branches in that trace. For a branch instruction in a captured basic

CRETE: A Versatile Binary-Level Concolic Testing Framework 289

End1End4End3End2End1

Br1 Br1

End2 End5

Start

End

Br1

Br2

True

False

(a)

Start

(b)

True False

False

Br2 Br2

True TrueFalse

Start

(c)

True False

False

Br2

True

Fig. 3. Execution tree of the example trace from Fig. 2: (a) for concrete execution, (b)
for symbolic execution, and (c) for concolic execution.

block, if both of the paths are feasible given the collected constraints so far on
the symbolic values, the see in crete only keeps the execution state of the
path that was taken by the original concrete execution in the vm by adding the
corresponding constraints of this branch instruction, while generating a test case
for the other path by resolving constraints with the negated branch condition.
This generated test case can lead the tbp to a different execution path later
during the concrete execution in the vm.

4.5 Bug and Runtime Vulnerability Detection

crete detects bugs and runtime vulnerabilities in two ways. First, all the native
checks embedded in see are checked during the symbolic replay over the trace
captured from concrete execution. If there is a violation to a check, a bug report
is generated and associated with the test case that is used in the vm to generate
this trace. Second, since crete does not change the native testing process and
simply provides additional test cases that can be applied in the native process,
all the bugs and vulnerability checks that are used in the native process are
effective in detecting bugs and vulnerabilities that can be triggered by the crete
generated test cases. For instance, Valgrind [26] can be utilized to detect memory
related bugs and vulnerabilities along the paths explored by crete test cases.

5 Implementation

To demonstrate the practicality of crete, we have implemented its complete
workflow with qemu [23] as the frontend and klee [5] as the backend respec-
tively. And to demonstrate the extensibility of crete, we have also developed
the tracing plug-in for the 8051 emulator which readily replaces qemu.

crete Tracer for qemu: To give crete the best potential of supporting vari-
ous guest platforms supported by qemu, crete Tracer captures the basic blocks
in the format of qemu-ir. To convert captured basic blocks into standardized

290 B. Chen et al.

trace format, we implemented a qemu-ir to llvm translator based on the x86-
llvm translator of s2e [37]. We offload this translation from the runtime tracing
as a separate offline process to reduce the runtime overhead of crete Tracer.
qemu maintains its own virtual states to emulate physical hardware state of a
guest platform. For example, it utilizes virtual memory state and virtual CPU
state to emulate states of physical memory and CPU. Those virtual states of
qemu are essentially source-level structs. crete Tracer captures hardware states
by monitoring the runtime values of those structs maintained by qemu. qemu
emulates the hardware operations by manipulating those virtual states through
corresponding helper functions defined in qemu. crete Tracer captures the side
effects on those virtual hardware states by monitoring the invocation of those
helper functions. As a result, the initial hardware states being captured are the
runtime values of these qemu structs, and the side effects being captured are
the side effects on those structs from the uncaptured instructions.

crete Replayer for klee: klee takes as input the llvm modules compiled
from C source code. As the crete trace is a self-contained llvm module, crete
Replayer mainly injects symbolic values and achieves concolic test generation.
To inject symbolic values, crete Replayer provides a special function handler
for crete interface function crete_make_concolic. klee is an online symbolic
executor natively, which forks execution states on each feasible branches and
explores all execution paths by maintaining multiple execution states simulta-
neously. To achieve concolic test generation, crete Replayer extends klee to
generate test cases only for feasible branches while not forking states.

crete Tracer for 8051 Emulator: The 8051 emulator executes a 8051 binary
directly by interpreting its instructions sequentially. For each type of instruction,
the emulator provides a helper function. Interpreting an instruction entails call-
ing this function to compute and change the relevant registers and memory
states. The tracing plug-in for the 8051 emulator extends the interpreter. When
the interpreter executes an instruction, an llvm call to its corresponding helper
function is put in the runtime trace. The 8051 instruction-processing helper func-
tions are compiled into llvm and incorporated into the runtime trace serving as
the helper functions that map the captured instructions to the captured runtime
states. The initial runtime state is captured from the 8051 emulator before the
first instruction is executed. The resulting trace is of the same format as that
from qemu and is readily consumable by klee.

6 Evaluation

In this section, we present the evaluation results of crete from its application
to GNU Coreutils [38] and TianoCore utility programs for UEFI BIOS [39].
Those evaluations demonstrate that crete generates effective test cases that
are as effective in achieving high code coverage as the state-of-the-art tools for
automated test case generation, and can detect serious deeply embedded bugs.

CRETE: A Versatile Binary-Level Concolic Testing Framework 291

6.1 GNU Coreutils

Experiment Setup. GNU Coreutils is a package of utilities widely used
in Unix-like systems. The 87 programs from Coreutils (version 6.10) contain
20, 559 lines of code, 988 functions, 14, 450 branches according to lcov [40]. The
program size ranges from 18 to 1, 475 in lines, from 2 to 120 in functions, and from
6 to 1, 272 in branches. It is an often-used benchmark for evaluating automated
program analysis systems, including klee, MergePoint and others [5,12,41]. This
is why we chose it as the benchmark to compare with klee and angr.

crete and angr generates test cases from program binaries without debug
information, while klee requires program source code. To measure and compare
the effectiveness of test cases generated from different systems, we rerun those
tests on the binaries compiled with coverage flag and calculate the code cover-
age with lcov. Note that we only calculate the coverage of the code in GNU
Coreutils itself, and do not compute code coverage of the library code.

We adopted the configuration parameters for those programs from klee’s
experiment instructions1. As specified in the instructions, we ran klee on each
program for one hour with a memory limit of 1GB. We increased the memory
limit to 8GB for the experiment on angr, while using the same timeout of
one hour. crete utilizes a different timeout strategy, which is defined by no
new instructions being covered in a given time-bound. We set the timeout for
crete as 15min in this experiment. This timeout strategy was also used by
DASE [41] for its evaluation on Coreutils. We conduct our experiments on an
Intel Core i7-3770 3.40GHz CPU desktop with 16GB memory running 64-bit
Ubuntu 14.04.5. We built klee from its release v1.3.0 with llvm 3.4, which was
released on November 30, 2016. We built angr from its mainstream on Github
at revision e7df250, which was committed on October 11, 2017. crete uses
Ubuntu 12.04.5 as the guest OS for its vm front-end in our experiments.

Table 1. Comparison of overall and median coverage by klee, angr, and crete on
Coreutils.

Cov. Line (%) Function (%) Branch (%)
klee angr crete klee angr crete klee angr crete

Overall 70.48 66.79 74.32 78.54 79.05 83.00 58.23 54.26 63.18
Median 88.09 81.62 86.60 100 100 100 79.31 70.59 77.57

Comparison with klee and angr. As shown in Table 1, our experiments
demonstrate that crete achieves comparable test coverage to klee and gen-
erally outperforms angr. The major advantage of klee over crete is that it
works on source code with all semantics information available. When the pro-
gram size is small, symbolic execution is capable of exploring all feasible paths

1 http://klee.github.io/docs/coreutils-experiments/.

http://klee.github.io/docs/coreutils-experiments/

292 B. Chen et al.

Table 2. Distribution comparison of coverage achieved by klee, angr, and crete on
Coreutils.

Cov. Line Function Branch
klee angr crete klee angr crete klee angr crete

90–100% 40 24 33 65 60 65 15 16 19
80–90% 15 22 25 12 8 10 27 12 17
70–80% 13 14 10 3 7 5 14 16 25
60–70% 9 12 10 2 4 3 9 15 6
50–60% 5 7 4 1 4 1 8 11 9
40–50% 1 2 3 1 1 2 8 7 6
0–40% 4 6 2 3 3 1 6 10 5

with given resources, such as time and memory. This is why klee can achieve
great code coverage, such as line coverage over 90%, on more programs than
crete, as shown in Table 2. klee requires to maintain execution states for all
paths being explored at once. This limitation becomes bigger when size of pro-
gram gets bigger. What’s more, klee analyzes programs within its own virtual
environment with simplified model of real execution environment. Those models
sometimes offer advantages to klee by reducing the complexity of the tbp, while
sometimes they lead to disadvantages by introducing inaccurate environment.
This is why crete gradually caught up in general as shown in Table 2. Specif-
ically, crete gets higher line coverage on 33 programs, lower on 31 programs,
and the same on other 23 programs. Figure 4(a) shows the coverage differences
of crete over klee on all 87 Coreutils programs. Note that our coverage
results for klee are different from klee’s paper. As discussed and reported
in previous works [12,41], the coverage differences are mainly due to the major
code changes of klee, an architecture change from 32-bit to 64-bit, and whether
manual system call failures are introduced.

angr shares the same limitation as klee requiring to maintain multiple
states and provide models for execution environment, while it shares the disad-
vantage of crete in having no access to semantics information. Moreover, angr
provides models of environment at machine level supporting various platforms,
which is more challenging compared with klee’s model. What’s more, we found
and reported several crashes of angr from this evaluation, which also affects the
result of angr. This is why angr performs worse than both klee and crete in
this experiment. Figure 4(b) shows the coverage differences of crete over angr
on all 87 Coreutils programs. While crete outperformed angr on majority
of the programs, there is one program printf that angr achieved over 40%
better line coverage than crete, as shown in the left most column in Fig. 4(b).
We found the reason is printf uses many string routines from libc to parse
inputs and angr provides effective models for those string routines. Similarly,
klee works much better on printf than crete.

CRETE: A Versatile Binary-Level Concolic Testing Framework 293

Fig. 4. Line coverage difference on Coreutils by crete over klee and angr: positive
values mean crete is better, and negative values mean crete is worse.

Coverage Improvement over Seed Test Case. Since crete is a concolic
testing framework, it needs an initial seed test case to start the test of a tbp.
The goal of this experiment is to show that crete can significantly increase the
coverage achieved by the seed test case that the user provides. To demonstrate
the effectiveness of crete, we set the non-file argument, the content of the input
file and the stdin to zeros as the seed test case. Of course, well-crafted test cases
from the users would be more meaningful and effective to serve as the initial test
cases. Figure 5 shows the coverage improvement of each program. On average,
the initial seed test case covers 17.61% of lines, 29.55% of functions, and 11.11%
of branches. crete improves the line coverage by 56.71%, function coverage
by 53.44%, and branch coverage by 52.14% respectively. The overall coverage
improvement on all 87 Coreutils programs is significant.

Fig. 5. Coverage improvement over seed test case by crete on GNU Coreutils

Bug Detection. In our experiment on Coreutils, crete was able to detect
all three bugs on mkdir, mkfifo, and mknod that were detected by klee. This
demonstrates that crete does not sacrifice bug detection capacity while working
directly on binaries without debug and high-level semantic information.

294 B. Chen et al.

6.2 TianoCore Utilities

Experiment Setup. TianoCore utility programs are part of the open-source
project EDK2 [42], a cross-platform firmware development environment from
Intel. It includes 16 command-line programs used to build BIOS images. The
TianoCore utility programs we evaluated are from its mainstream on Github
at revision 75ce7ef committed on April 19, 2017. According to lcov, the 16
TianoCore utility programs contain 8, 086 lines of code, 209 functions, and 4, 404
branches. Note that we only calculate the coverage of the code for TianoCore
utility programs themselves, and do not compute the coverage of libraries.

The configuration parameters we used on those utility programs are based on
our rough high-level understanding of these programs from their user manuals.
We assigned each program a long argument of 16Bytes, and four short arguments
of 2Bytes, along with a file of 10Kilobytes. We conduct our experiments on the
same platform with the same host and guest OS as we did for the Coreutils
evaluation, and set the timeout also as 15min for each program.

High Coverage Test Generation From Scratch. For all the arguments
and file contents in the parameter configuration, we set their initial value as
binary zeros to serve as the seed test case of crete. Figure 6 shows that crete
delivered high code coverage, above 80% line coverage, on 9 out of 16 programs.
On average, the initial seed test case covers 14.56% of lines, 28.71% of functions,
and 12.38% of branches. crete improves the line coverage by 43.61%, function
coverage by 41.63%, and branch coverage by 44.63% respectively. Some programs
got lower coverage because of: (1) inadequate configuration parameters; (2) error
handling code triggered only by failed system calls; (3) symbolic indices for arrays
and files not well handled by crete.

Fig. 6. Coverage improvement over seed test case by crete on TianoCore utilities

Bug Detection. To further demonstrate crete’s capability in detecting deeply
embedded bugs, we performed a set of evaluations focusing on concolic file with
crete on TianoCore utility programs. From the build process of a tutorial
image, OvmfPkg, from EDK2, we extracted 509 invocations to TianoCore util-
ity programs and the corresponding intermediate files generated, among which
37 unique invocations cover 6 different programs. By taking parameter configu-
rations from those 37 invocations and using their files as seed files, we ran crete
with a timeout of 2h on each setup, in which only files are made symbolic.

CRETE: A Versatile Binary-Level Concolic Testing Framework 295

Table 3. Classified crashes found by crete on Tianocore utilities: 84 unique crashes
from 8 programs

Crash type Count Severity Crashed programs

Stack corruption 1 High (Exploitable) VfrCompile

Heap error 6 High (Exploitable GenFw

Write access violation 23 High (Exploitable) EfiLdrImage, GenFw,
EfiRom, GenFfs

Abort signal 2 Medium (Signs of exploitable) GenFw

Read access violation 45 Low (May not exploitable) GenSec, GenFw, Split,
GenCrc32, VfrCompile

Other access violation 7 Mixed GenFw

Combining experiments on concolic arguments and concolic files, crete
found 84 distinct crashes (by stack hash) from eight TianoCore utility programs.
We used a GDB extension [43] to classify the crashes, which is a popular way
of classifying crashes for AFL users [44]. Table 3 shows that crete found vari-
ous kinds of crashes including many exploitable ones, such as stack corruption,
heap error, and write access violation. There are 8 crashes that are found with
concolic arguments while the other 76 crashes are found with concolic files. We
reported all those crashes to the TianoCore development team. So far, most of
the crashes have been confirmed as real bugs, and ten of them have been fixed.

We now elaborate on a few sample crashes to demonstrate that the bugs
found by crete are significant. VfrCompile crashed with a segmentation fault
due to stack corruption when the input file name is malformed, e.g., '\\.%*a' as
generated by crete. This bug is essentially a format string exploit. VfrCompile
uses function vsprintf() to compose a new string from a format string and
store it in a local array with a fixed size. When the format string is malicious,
like '%*a', function vsprintf() will keep reading from the stack and the local
buffer will be overflowed, hence causing a stack corruption. Note that crete
generated a well-formed prefix for the input, '\\.', which is required to pass a
preprocessing check from VfrCompile, so that the malicious format string can
attack the vulnerable code.

crete also exposed several heap errors on GenFw by generating malformed
input files. GenFw is used to generate a firmware image from an input file. The
input file needs to follow a very precise file format, because GenFw checks the
signature bytes to decide the input file type, uses complex nested structs to parse
different sections of the file, and conducts many checks to ensure the input file
is well-formed. Starting from a seed file of 223 Kilobyte extracted from EDK2’s
build process, crete automatically mutated 29 bytes in the file header. The
mutated bytes introduced a particular combination of file signature and sizes and
offsets of different sections of the file. This combination passed all checks on file
format, and directed GenFw to a vulnerable function which mistakenly replaces
the buffer already allocated for storing the input file with a much smaller buffer.
Follow-up accesses of this malformed buffer caused overflow and heap corruption.

296 B. Chen et al.

7 Conclusions and Future Work

In this paper, we have presented crete, a versatile binary-level concolic testing
framework, which is designed to have an open and highly extensible architecture
allowing easy integration of concrete execution frontends and symbolic execution
backends. At the core of this architecture is a standardized format for binary-
level execution traces, which is llvm-based, self-contained, and composable.
Standardized execution traces are captured by concrete execution frontends,
providing succinct and sufficient information for symbolic execution backends to
reproduce the concrete executions. We have implemented crete with klee as
the symbolic execution engine and multiple concrete execution frontends such
as qemu and 8051 Emulator. The evaluation of Coreutils programs shows
that crete achieved comparable code coverage as klee directly analyzing the
source code of Coreutils and generally outperformed angr. The evaluation of
TianoCore utility programs found numerous exploitable bugs.

We are assembling a suite of 8051 binaries for evaluating crete and will
report the results in the near future. Also as future work, we will develop new
crete tracing plugins, e.g., for concrete execution on physical machines based
on PIN. With these new plugins, we will focus on synthesizing abstract system-
level traces from trace segments captured from binaries executing on various
platforms. Another technical challenge that we plan to address is how to handle
symbolic indices for arrays and files, so code coverage can be further improved.

Acknowledgment. This research received financial supports from National Science
Foundation Grant #: CNS-1422067, Semiconductor Research Corporation Contract #:
2708.001, and gifts from Intel Corporation.

References

1. King, J.C.: Symbolic execution and program testing. Commun. ACM 19, 385–394
(1976)

2. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference (2005)

3. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. In:
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2005) (2005)

4. Song, D., et al.: BitBlaze: a new approach to computer security via binary analysis.
In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS, vol. 5352, pp. 1–25. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89862-7_1

5. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation (OSDI
2008) (2008)

6. Chipounov, V., Kuznetsov, V., Candea, G.: The s2e platform: design, implemen-
tation, and applications. ACM Trans. Comput. Syst. 30, 1–49 (2012)

7. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security testing.
Commun. ACM 10, 1–20 (2012)

https://doi.org/10.1007/978-3-540-89862-7_1

CRETE: A Versatile Binary-Level Concolic Testing Framework 297

8. Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing Mayhem on binary
code. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy (2012)

9. Cadar, C., Sen, K.: Symbolic execution for software testing: three decades later.
Commun. ACM 56, 82–90 (2013)

10. Kuznetsov, V., Kinder, J., Bucur, S., Candea, G.: Efficient state merging in sym-
bolic execution. In: PLDI 2012 (2012)

11. Marinescu, P.D., Cadar, C.: Make test-zesti: a symbolic execution solution for
improving regression testing. In: Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012) (2012)

12. Avgerinos, T., Rebert, A., Cha, S.K., Brumley, D.: Enhancing symbolic execution
with veritesting. In: ICSE 2014 (2014)

13. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.: Auto-
matic exploit generation. Commun. ACM 57, 74–84 (2014)

14. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
et al.: SOK: (state of) the art of war: offensive techniques in binary analysis. In:
IEEE Symposium on Security and Privacy (2016)

15. Stephens, N., Grosen, J., Salls, C., et al.: Driller: augmenting fuzzing through selec-
tive symbolic execution. In: Proceedings of the Network and Distributed System
Security Symposium (2016)

16. Redini, N., Machiry, A., Das, D., Fratantonio, Y., Bianchi, A., Gustafson, E.,
Shoshitaishvili, Y., Kruegel, C., Vigna, G.: Bootstomp: on the security of boot-
loaders in mobile devices. In: 26th USENIX Security Symposium (2017)

17. Palikareva, H., Kuchta, T., Cadar, C.: Shadow of a doubt: testing for divergences
between software versions. In: ICSE 2016 (2016)

18. Palikareva, H., Cadar, C.: Multi-solver support in symbolic execution. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 53–68. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-39799-8_3

19. Bucur, S., Kinder, J., Candea, G.: Prototyping symbolic execution engines for
interpreted languages. In: Proceedings of the 19th International Conference on
Architectural Support for Programming Languages and Operating Systems (2014)

20. Kasikci, B., Zamfir, C., Candea, G.: Automated classification of data races under
both strong and weak memory models. ACM Trans. Program. Lang. Syst. 37, 1–44
(2015)

21. Ramos, D.A., Engler, D.: Under-constrained symbolic execution: correctness check-
ing for real code. In: Proceedings of the 24th USENIX Conference on Security
Symposium (2015)

22. Zheng, H., Li, D., Liang, B., Zeng, X., Zheng, W., Deng, Y., Lam, W., Yang, W.,
Xie, T.: Automated test input generation for android: towards getting there in an
industrial case. In: Proceedings of the 39th International Conference on Software
Engineering: Software Engineering in Practice Track (2017)

23. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the
Annual Conference on USENIX Annual Technical Conference (2005)

24. Kasolik, M.: 8051 emulator. http://emu51.sourceforge.net/
25. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program

analysis & transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization: Feedback-directed and Runtime Optimization
(2004)

26. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary
instrumentation. In: PLDI 2007 (2007)

27. Godefroid, P.: Random testing for security: blackbox vs. whitebox fuzzing. In:
Proceedings of the 2nd International Workshop on Random Testing (2007)

https://doi.org/10.1007/978-3-642-39799-8_3
http://emu51.sourceforge.net/

298 B. Chen et al.

28. AFL: American fuzzy lop. http://lcamtuf.coredump.cx/afl/
29. Luk, C.K., Cohn, R., Muth, R., et al.: Pin: building customized program analysis

tools with dynamic instrumentation. In: PLDI 2005 (2005)
30. Bruening, D., Zhao, Q., Amarasinghe, S.: Transparent dynamic instrumentation.

In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Exe-
cution Environments (2012)

31. Lattner, C., Adve, V.: LLVM language reference manual (2006). http://llvm.org/
docs/LangRef.html

32. Lattner, C.: LLVM and Clang: next generation compiler technology. In: The BSD
Conference (2008)

33. Dhurjati, D., Kowshik, S., Adve, V.: Safecode: enforcing alias analysis for weakly
typed languages. In: PLDI 2006 (2006)

34. Geoffray, N., Thomas, G., Lawall, J., Muller, G., Folliot, B.: VMKit: a substrate
for managed runtime environments. In: Proceedings of the 6th ACM International
Conference on Virtual Execution Environments (2010)

35. Grosser, T., Größlinger, A., Lengauer, C.: Polly-performing polyhedral optimiza-
tions on a low-level intermediate representation. Parall. Process. Lett. 22, 1–28
(2012)

36. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: Proceedings of the IEEE Symposium on Security and Privacy (2010)

37. Chipounov, V., Candea, G.: Dynamically translating x86 to LLVM using QEMU.
Technical report EPFL-TR-149975 (2010)

38. GNU: GNU coreutils - core utilities. https://www.gnu.org/s/coreutils
39. Tianocore: Tianocore. http://www.tianocore.org/
40. Oberparleiter, P.: A graphical front-end for gcc’s coverage testing tool gcov. http://

ltp.sourceforge.net/coverage/lcov.php
41. Wong, E., Zhang, L., Wang, S., Liu, T., Tan, L.: Dase: document-assisted symbolic

execution for improving automated software testing. In: ICSE 2015 (2015)
42. Tianocore: EDK II. https://github.com/tianocore/edk2
43. Foote, J.: The ‘exploitable’ gdb plugin. https://github.com/jfoote/exploitable
44. AFL-Utils: Utilities for automated crash sample processing/analysis. https://

github.com/rc0r/afl-utils

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://lcamtuf.coredump.cx/afl/
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
https://www.gnu.org/s/coreutils
http://www.tianocore.org/
http://ltp.sourceforge.net/coverage/lcov.php
http://ltp.sourceforge.net/coverage/lcov.php
https://github.com/tianocore/edk2
https://github.com/jfoote/exploitable
https://github.com/rc0r/afl-utils
https://github.com/rc0r/afl-utils
http://creativecommons.org/licenses/by/4.0/

Family-Based Software Development

Abstract Family-Based Model Checking
Using Modal Featured Transition
Systems: Preservation of CTL�

Aleksandar S. Dimovski(B)

Faculty of Informatics, Mother Teresa University, Skopje, Republic of Macedonia
aleksandar.dimovski@unt.edu.mk

Abstract. Variational systems allow effective building of many custom
variants by using features (configuration options) to mark the variable
functionality. In many of the applications, their quality assurance and
formal verification are of paramount importance. Family-based model
checking allows simultaneous verification of all variants of a variational
system in a single run by exploiting the commonalities between the vari-
ants. Yet, its computational cost still greatly depends on the number of
variants (often huge).

In this work, we show how to achieve efficient family-based model
checking of CTL� temporal properties using variability abstractions and
off-the-shelf (single-system) tools. We use variability abstractions for
deriving abstract family-based model checking, where the variability
model of a variational system is replaced with an abstract (smaller)
version of it, called modal featured transition system, which preserves
the satisfaction of both universal and existential temporal properties,
as expressible in CTL�. Modal featured transition systems contain
two kinds of transitions, termed may and must transitions, which are
defined by the conservative (over-approximating) abstractions and their
dual (under-approximating) abstractions, respectively. The variability
abstractions can be combined with different partitionings of the set of
variants to infer suitable divide-and-conquer verification plans for the
variational system. We illustrate the practicality of this approach for
several variational systems.

1 Introduction

Variational systems appear in many application areas and for many reasons.
Efficient methods to achieve customization, such as Software Product Line Engi-
neering (SPLE) [8], use features (configuration options) to control presence and
absence of the variable functionality [1]. Family members, called variants of a
variational system, are specified in terms of features selected for that particular
variant. The reuse of code common to multiple variants is maximized. The SPLE
method is particularly popular in the embedded and critical system domain
(e.g. cars, phones). In these domains, a rigorous verification and analysis is very
important. Among the methods included in current practices, model checking [2]
c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 301–318, 2018.
https://doi.org/10.1007/978-3-319-89363-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_17&domain=pdf
http://orcid.org/0000-0002-3601-2631

302 A. S. Dimovski

is a well-studied technique used to establish that temporal logic properties hold
for a system.

Variability and SPLE are major enablers, but also a source of complexity.
Obviously, the size of the configuration space (number of variants) is the lim-
iting factor to the feasibility of any verification technique. Exponentially many
variants can be derived from few configuration options. This problem is referred
to as the configuration space explosion problem. A simple “brute-force” appli-
cation of a single-system model checker to each variant is infeasible for realistic
variational systems, due to the sheer number of variants. This is very ineffective
also because the same execution behavior is checked multiple times, whenever it
is shared by some variants. Another, more efficient, verification technique [5,6]
is based on using compact representations for modelling variational systems,
which incorporate the commonality within the family. We will call these repre-
sentations variability models (or featured transition systems). Each behavior in
a variability model is associated with the set of variants able to produce it. A
specialized family-based model checking algorithm executed on such a model,
checks an execution behavior only once regardless of how many variants include
it. These algorithms model check all variants simultaneously in a single run and
pinpoint the variants that violate properties. Unfortunately, their performance
still heavily depends on the size and complexity of the configuration space of
the analyzed variational system. Moreover, maintaining specialized family-based
tools is also an expensive task.

In order to address these challenges, we propose to use standard, single-
system model checkers with an alternative, externalized way to combat the con-
figuration space explosion. We apply the so-called variability abstractions to a
variability model which is too large to handle (“configuration space explosion”),
producing a more abstract model, which is smaller than the original one. We
abstract from certain aspects of the configuration space, so that many of the con-
figurations (variants) become indistinguishable and can be collapsed into a single
abstract configuration. The abstract model is constructed in such a way that if
some property holds for this abstract model it will also hold for the concrete
model. Our technique extends the scope of existing over-approximating vari-
ability abstractions [14,19] which currently support the verification of universal
properties only (LTL and ∀CTL). Here we construct abstract variability models
which can be used to check arbitrary formulae of CTL�, thus including arbitrary
nested path quantifiers. We use modal featured transition systems (MFTSs) for
representing abstract variability models. MFTSs are featured transition systems
(FTSs) with two kinds of transitions, must and may, expressing behaviours that
necessarily occur (must) or possibly occur (may). We use the standard conser-
vative (over-approximating) abstractions to define may transitions, and their
dual (under-approximating) abstractions to define must transitions. Therefore,
MFTSs perform both over- and under-approximation, admitting both univer-
sal and existential properties to be deduced. Since MFTSs preserve all CTL�

Abstract Family-Based Model Checking Using MFTSs 303

properties, we can verify any such properties on the concrete variability model
(which is given as an FTSs) by verifying these on an abstract MFTS. Any
model checking problem on modal transitions systems (resp., MFTSs) can be
reduced to two traditional model checking problems on standard transition sys-
tems (resp., FTSs). The overall technique relies on partitioning and abstracting
concrete FTSs, until the point we obtain models with so limited variability (or,
no variability) that it is feasible to complete their model checking in the brute-
force fashion using the standard single-system model checkers. Compared to the
family-based model checking, experiments show that the proposed technique
achieves performance gains.

2 Background

In this section, we present the background used in later developments.

Modal Featured Transition Systems. Let F = {A1, . . . , An} be a finite set
of Boolean variables representing the features available in a variational system.
A specific subset of features, k ⊆ F, known as configuration, specifies a variant
(valid product) of a variational system. We assume that only a subset K ⊆ 2F of
configurations are valid. An alternative representation of configurations is based
upon propositional formulae. Each configuration k ∈ K can be represented by a
formula: k(A1) ∧ . . . ∧ k(An), where k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if
Ai /∈ k for 1 ≤ i ≤ n. We will use both representations interchangeably.

We recall the basic definition of a transition system (TS) and a modal tran-
sition system (MTS) that we will use to describe behaviors of single-systems.

Definition 1. A transition system (TS) is a tuple T = (S,Act, trans, I, AP,L),
where S is a set of states; Act is a set of actions; trans ⊆ S×Act×S is a transi-
tion relation; I ⊆ S is a set of initial states; AP is a set of atomic propositions;
and L : S → 2AP is a labelling function specifying which propositions hold in a
state. We write s1

λ−−→s2 whenever (s1, λ, s2) ∈ trans.

An execution (behaviour) of a TS T is an infinite sequence ρ = s0λ1s1λ2 . . .

with s0 ∈ I such that si
λi+1−→ si+1 for all i ≥ 0. The semantics of the TS T ,

denoted as [[T]]TS , is the set of its executions.
MTSs [26] are a generalization of transition systems that allows describ-

ing not just a sum of all behaviors of a system but also an over- and under-
approximation of the system’s behaviors. An MTS is a TS equipped with two
transition relations: must and may. The former (must) is used to specify the
required behavior, while the latter (may) to specify the allowed behavior of a
system.

Definition 2. A modal transition system (MTS) is represented by a tuple M =
(S,Act, transmay, transmust, I, AP,L), where transmay ⊆ S × Act × S describe
may transitions of M; transmust ⊆ S ×Act×S describe must transitions of M,
such that transmust ⊆ transmay.

304 A. S. Dimovski

The intuition behind the inclusion transmust ⊆ transmay is that transitions
that are necessarily true (transmust) are also possibly true (transmay). A may-
execution in M is an execution with all its transitions in transmay; whereas a
must-execution in M is an execution with all its transitions in transmust. We
use [[M]]may

MTS to denote the set of all may-executions in M, whereas [[M]]must
MTS

to denote the set of all must-executions in M.
An FTS describes behavior of a whole family of systems in a superimposed

manner. This means that it combines models of many variants in a single mono-
lithic description, where the transitions are guarded by a presence condition that
identifies the variants they belong to. The presence conditions ψ are drawn from
the set of feature expressions, FeatExp(F), which are propositional logic formulae
over F: ψ ::= true | A ∈ F | ¬ψ | ψ1∧ψ2. The presence condition ψ of a transition
specifies the variants in which the transition is enabled. We write [[ψ]] to denote
the set of variants from K that satisfy ψ, i.e. k ∈ [[ψ]] iff k |= ψ.

Definition 3. A featured transition system (FTS) represents a tuple F =
(S,Act, trans, I, AP,L, F, K, δ), where S,Act, trans, I, AP , and L are defined as
in TS; F is the set of available features; K is a set of valid configurations; and
δ : trans → FeatExp(F) is a total function decorating transitions with presence
conditions (feature expressions).

The projection of an FTS F to a variant k ∈ K, denoted as πk(F), is the TS
(S,Act, trans′, I, AP,L), where trans′ = {t ∈ trans | k |= δ(t)}. We lift the
definition of projection to sets of configurations K

′ ⊆ K, denoted as πK′(F), by
keeping the transitions admitted by at least one of the configurations in K

′. That
is, πK′(F), is the FTS (S,Act, trans′, I, AP,L, F, K′, δ), where trans′ = {t ∈
trans | ∃k ∈ K

′.k |= δ(t)}. The semantics of an FTS F , denoted as [[F]]FTS ,
is the union of behaviours of the projections on all valid variants k ∈ K, i.e.
[[F]]FTS = ∪k∈K[[πk(F)]]TS .

We will use modal featured transition systems (MFTS) for representing
abstractions of FTSs. MFTSs are variability-aware extension of MTSs.

Definition 4. A modal featured transition system (MFTS) represents a
tuple MF = (S,Act, transmay, transmust, I, AP,L, F, K, δmay, δmust), where
transmay and δmay : transmay → FeatExp(F) describe may transitions of
MF ; transmust and δmust : transmust → FeatExp(F) describe must transi-
tions of MF .

The projection of an MFTS MF to a variant k ∈ K, denoted as πk(MF),
is the MTS (S,Act, trans′may, trans′must, I, AP,L), where trans′may = {t ∈
transmay | k |= δmay(t)}, trans′must = {t∈ transmust | k |= δmust(t)}. We define
[[MF]]may

MFTS = ∪k∈K[[πk(MF)]]may
MTS , and [[MF]]must

MFTS = ∪k∈K[[πk(MF)]]must
MTS .

Example 1. Throughout this paper, we will use a beverage vending machine as a
running example [6]. Figure 1 shows the FTS of a VendingMachine family. It
has five features, and each of them is assigned an identifying letter and a color.
The features are: VendingMachine (denoted by letter v, in black), the mandatory
base feature of purchasing a drink, present in all variants; Tea (t, in red), for

Abstract Family-Based Model Checking Using MFTSs 305

1

start

2 3

4 5

6

7 8
pay change/v op en

take / v

so
da

serveSo
da /s

te a/t se
rv
eT

ea

/v /v

/s

/t

fr ee/f

take/ f

take /c

cancel /c

re
tu
rn
/c

Fig. 1. The FTS for VendingMachine.
(Color figure online)

1

start

2 3

5

7 8
pay change open

take

so
da

serveSoda

Fig. 2. π{v,s}(VendingMachine)

serving tea; Soda (s, in green), for serving soda, which is a mandatory feature
present in all variants; CancelPurchase (c, in brown), for canceling a purchase
after a coin is entered; and FreeDrinks (f , in blue) for offering free drinks. Each
transition is labeled by an action followed by a feature expression. For instance,
the transition 1© free/f−−−→ 3© is included in variants where the feature f is enabled.

By combining various features, a number of variants of this VendingMa-
chine can be obtained. Recall that v and s are mandatory features. The set
of valid configurations is thus: K

VM = {{v, s}, {v, s, t}, {v, s, c}, {v, s, t, c}, {v,
s, f}, {v, s, t, f}, {v, s, c, f}, {v, s, t, c, f}}. In Fig. 2 is shown the basic version
of VendingMachine that only serves soda, which is described by the con-
figuration: {v, s} (or, as formula v ∧ s ∧¬t ∧¬c ∧¬f), that is the projection
π{v,s}(VendingMachine). It takes a coin, returns change, serves soda, opens a
compartment so that the customer can take the soda, before closing it again.

Figure 3 shows an MTS. Must transitions are denoted by solid lines, while
may transitions by dashed lines. �

CTL� Properties. Computation Tree Logic� (CTL�) [2] is an expressive tem-
poral logic for specifying system properties, which subsumes both CTL and LTL
logics. CTL� state formulae Φ are generated by the following grammar:

Φ ::= true | a ∈ AP | ¬a | Φ1 ∧ Φ2 | ∀φ | ∃φ, φ ::= Φ | φ1 ∧ φ2 | ©φ | φ1Uφ2

where φ represent CTL� path formulae. Note that the CTL� state formulae Φ
are given in negation normal form (¬ is applied only to atomic propositions).
Given Φ ∈ CTL�, we consider ¬Φ to be the equivalent CTL� formula given in
negation normal form. Other derived temporal operators (path formulae) can be
defined as well by means of syntactic sugar, for instance: ♦φ = trueUφ (φ holds
eventually), and �φ = ¬∀♦¬φ (φ always holds). ∀CTL� and ∃CTL� are subsets
of CTL� where the only allowed path quantifiers are ∀ and ∃, respectively.

We formalise the semantics of CTL� over a TS T . We write [[T]]sTS for the
set of executions that start in state s; ρ[i] = si to denote the i-th state of the
execution ρ; and ρi = siλi+1si+1 . . . for the suffix of ρ starting from its i-th state.

Definition 5. Satisfaction of a state formula Φ in a state s of a TS T , denoted
T , s |= φ, is defined as (T is omitted when clear from context):

306 A. S. Dimovski

(1) s |= a iff a ∈ L(s); s |= ¬a iff a /∈ L(s),
(2) s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2,
(3) s |= ∀φ iff ∀ρ ∈ [[T]]sTS. ρ |= φ; s |= ∃φ iff ∃ρ ∈ [[T]]sTS. ρ |= φ

Satisfaction of a path formula φ for an execution ρ of a TS T , denoted T , ρ |= φ,
is defined as (T is omitted when clear from context):

(4) ρ |= Φ iff ρ[0] |= Φ,
(5) ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2; ρ |= ©φ iff ρ1 |= φ; ρ |= (φ1Uφ2) iff

∃i≥0.
(
ρi |= φ2 ∧ (∀0≤j ≤ i−1. ρj |= φ1)

)

A TS T satisfies a state formula Φ, written T |= Φ, iff ∀s0 ∈ I. s0 |= Φ.

Definition 6. An FTS F satisfies a CTL� formula Φ, written F |= Φ, iff all its
valid variants satisfy the formula: ∀k∈K. πk(F) |= Φ.

The interpretation of CTL� over an MTS M is defined slightly different from
the above Definition 5. In particular, the clause (3) is replaced by:

(3’) s |= ∀φ iff for every may-execution ρ in the state s of M, that is ∀ρ ∈
[[M]]may,s

MTS , it holds ρ |= φ; whereas s |= ∃φ iff there exists a must-execution
ρ in the state s of M, that is ∃ρ ∈ [[M]]must,s

MTS , such that ρ |= φ.

From now on, we implicitly assume this adapted definition when interpreting
CTL� formulae over MTSs and MFTSs.

Example 2. Consider the FTS VendingMachine in Fig. 1. Suppose that the
proposition start holds in the initial state 1©. An example property Φ1 is:
∀�∀♦start, which states that in every state along every execution all possible
continuations will eventually reach the initial state. This formula is in ∀CTL�.
Note that VendingMachine �|= Φ1. For example, if the feature c (Cancel) is
enabled, a counter-example where the state 1© is never reached is: 1© → 3© →
5© → 7© → 3© → The set of violating products is [[c]]={{v, s, c}, {v, s, t, c},
{v, s, c, f}, {v, s, t, c, f}} ⊆ K

VM. However, π[[¬c]](VendingMachine) |= Φ1.
Consider the property Φ2: ∀�∃♦start, which describes a situation where

in every state along every execution there exists a possible continuation that
will eventually reach the start state. This is a CTL� formula, which is neither
in ∀CTL� nor in ∃CTL�. Note that VendingMachine |= Φ2, since even for
variants with the feature c there is a continuation from the state 3© back to 1©.

Consider the ∃CTL� property Φ3: ∃�∃♦start, which states that there exists
an execution such that in every state along it there exists a possible continuation
that will eventually reach the start state. The witnesses are 1© → 2© → 3© →
5© → 7© → 8© → 1© . . . for variants that satisfy ¬c, and 1© → 3© → 5© → 7© →
3© → 4© → 1© . . . for variants with c. �

Abstract Family-Based Model Checking Using MFTSs 307

3 Abstraction of FTSs

We now introduce the variability abstractions which preserve full CTL and its
universal and existential properties. They simplify the configuration space of
an FTSs, by reducing the number of configurations and manipulating presence
conditions of transitions. We start working with Galois connections1 between
Boolean complete lattices of feature expressions, and then induce a notion of
abstraction of FTSs. We define two classes of abstractions. We use the standard
conservative abstractions [14,15] as an instrument to eliminate variability from
the FTS in an over-approximating way, so by adding more executions. We use
the dual abstractions, which can also eliminate variability but through under-
approximating the given FTS, so by dropping executions.

Domains. The Boolean complete lattice of feature expressions (propositional
formulae over F) is: (FeatExp(F)/≡, |=,∨,∧, true, false,¬). The elements of the
domain FeatExp(F)/≡ are equivalence classes of propositional formulae ψ ∈
FeatExp(F) obtained by quotienting by the semantic equivalence ≡. The order-
ing |= is the standard entailment between propositional logics formulae, whereas
the least upper bound and the greatest lower bound are just logical disjunction
and conjunction respectively. Finally, the constant false is the least, true is the
greatest element, and negation is the complement operator.

Conservative Abstractions. The join abstraction, αjoin, merges the control-
flow of all variants, obtaining a single variant that includes all executions occur-
ring in any variant. The information about which transitions are associated with
which variants is lost. Each feature expression ψ is replaced with true if there
exists at least one configuration from K that satisfies ψ. The new abstract set of
features is empty: αjoin(F) = ∅, and the abstract set of valid configurations is a
singleton: αjoin(K) = {true} if K �= ∅. The abstraction and concretization func-
tions between FeatExp(F) and FeatExp(∅), forming a Galois connection [14,15],
are defined as:

αjoin(ψ) =

{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(ψ) =

{
true if ψ is true
∨

k∈2F\K k if ψ is false

The feature ignore abstraction, αfignore
A , introduces an over-approximation by

ignoring a single feature A∈F. It merges the control flow paths that only differ
with regard to A, but keeps the precision with respect to control flow paths that
do not depend on A. The features and configurations of the abstracted model are:
αfignore

A (F) = F\{A}, and αfignore
A (K) = {k[lA �→ true] | k ∈ K}, where lA denotes

a literal of A (either A or ¬A), and k[lA �→ true] is a formula resulting from k by

1 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between complete lattices L (concrete
domain) and M (abstract domain) iff α : L → M and γ : M → L are total functions
that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m) for all l ∈ L, m ∈ M . Here �L and �M are
the pre-order relations for L and M , respectively. We will often simply write (α, γ)
for any such Galois connection.

308 A. S. Dimovski

substituting true for lA. The abstraction and concretization functions between
FeatExp(F) and FeatExp(αfignore

A (F)), forming a Galois connection [14,15], are:

αfignore
A (ψ) = ψ[lA �→ true] γfignore

A (ψ′) = (ψ′ ∧ A) ∨ (ψ′ ∧ ¬A)

where ψ and ψ′ need to be in negation normal form before substitution.

Dual Abstractions. Suppose that 〈FeatExp(F)/≡, |=〉, 〈FeatExp(α(F))/≡, |=〉are
Boolean complete lattices, and 〈FeatExp(F)/≡, |=〉 −−→←−−

α

γ
〈FeatExp(α(F))/≡, |=〉 is

a Galois connection. We define [9]: α̃ = ¬ ◦ α ◦ ¬ and γ̃ = ¬ ◦ γ ◦ ¬ so that

〈FeatExp(F)/≡, 〉 −−→←−−
α̃

γ̃
〈FeatExp(α(F))/≡, 〉 is a Galois connection (or equiva-

lently, 〈FeatExp(α(F))/≡, |=〉 −−→←−−
γ̃

α̃ 〈FeatExp(F)/≡, |=〉). The obtained Galois con-

nections (α̃, γ̃) are called dual (under-approximating) abstractions of (α, γ).
The dual join abstraction, α̃join, merges the control-flow of all variants,

obtaining a single variant that includes only those executions that occur in all
variants. Each feature expression ψ is replaced with true if all configurations from
K satisfy ψ. The abstraction and concretization functions between FeatExp(F)
and FeatExp(∅), forming a Galois connection, are defined as: α̃join = ¬◦αjoin ◦¬
and γ̃join = ¬ ◦ γjoin ◦ ¬, that is:

α̃join(ψ) =

{
true if ∀k ∈ K.k |= ψ

false otherwise
γ̃ join(ψ) =

{∧
k∈2F\K(¬k) if ψ is true

false if ψ is false

The dual feature ignore abstraction, ˜
αfignore

A , introduces an under-
approximation by ignoring the feature A ∈ F, such that the literals of A
(that is, A and ¬A) are replaced with false in feature expressions (given in
negation normal form). The abstraction and concretization functions between
FeatExp(F) and FeatExp(αfignore

A (F)), forming a Galois connection, are defined

as: ˜
αfignore

A = ¬ ◦ αfignore
A ◦ ¬ and ˜

γfignore
A = ¬ ◦ γfignore

A ◦ ¬, that is:

˜
αfignore

A (ψ) = ψ[lA �→ false] ˜
γfignore

A (ψ′) = (ψ′ ∨ ¬A) ∧ (ψ′ ∨ A)

where ψ and ψ′ are in negation normal form.

Abstract MFTS and Preservation of CTL�. Given a Galois connection
(α, γ) defined on the level of feature expressions, we now define the abstrac-
tion of an FTS as an MFTS with two transition relations: one (may) preserving
universal properties, and the other (must) existential properties. The may tran-
sitions describe the behaviour that is possible, but not need be realized in the
variants of the family; whereas the must transitions describe behaviour that has
to be present in any variant of the family.

Definition 7. Given the FTS F = (S,Act, trans, I, AP,L, F, K, δ), we define the
MFTSα(F) = (S,Act, transmay, transmust, I, AP,L, α(F), α(K), δmay, δmust) to
be its abstraction, where δmay(t) = α(δ(t)), δmust(t) = α̃(δ(t)), transmay = {t ∈
trans | δmay(t) �= false}, and transmust = {t ∈ trans | δmust(t) �= false}.

Abstract Family-Based Model Checking Using MFTSs 309

Note that the degree of reduction is determined by the choice of abstraction and
may hence be arbitrary large. In the extreme case of join abstraction, we obtain
an abstract model with no variability in it, that is αjoin(F) is an ordinary MTS.

Example 3. Recall the FTS VendingMachine of Fig. 1 with the set of valid
configurations K

VM (see Example 1). Figure 3 shows αjoin(VendingMachine),
where the allowed (may) part of the behavior includes the transitions that are
associated with the optional features c, f , t in VendingMachine, whereas the
required (must) part includes the transitions associated with the mandatory
features v and s. Note that αjoin(VendingMachine) is an ordinary MTS with
no variability. The MFTS αfignore

{t,f} (π[[v ∧ s]](VendingMachine)) is shown in [12,
Appendix B], see Fig. 8. It has the singleton set of features F = {c} and limited
variability K = {c,¬c}, where the mandatory features v and s are enabled. �

From the MFTS (resp., MTS) MF , we define two FTSs (resp., TSs) MFmay

and MFmust representing the may- and must-components of MF , i.e. its may
and must transitions, respectively. Thus, we have [[MFmay]]FTS = [[MF]]may

MFTS

and [[MFmust]]FTS = [[MF]]must
MFTS .

We now show that the abstraction of an FTS is sound with respect to CTL�.
First, we show two helper lemmas stating that: for any variant k ∈ K that can
execute a behavior, there exists an abstract variant k′ ∈α(K) that executes the
same may-behaviour; and for any abstract variant k′ ∈α(K) that can execute a
must-behavior, there exists a variant k∈K that executes the same behaviour2.

Lemma 1. Let ψ ∈ FeatExp(F), and K be a set of valid configurations over F.

(i) Let k ∈ K and k |= ψ. Then there exists k′ ∈ α(K), such that k′ |= α(ψ).
(ii) Let k′ ∈ α(K) and k′ |= α̃(ψ). Then there exists k ∈ K, such that k |= ψ.

Lemma 2

(i) Let k ∈ K and ρ ∈ [[πk(F)]]TS ⊆ [[F]]FTS. Then there exists k′ ∈ α(K), such
that ρ ∈ [[πk′(α(F))]]may

MTS ⊆ [[α(F)]]may
MFTS is a may-execution in α(F).

(ii) Let k′ ∈ α(K) and ρ ∈ [[πk′(α(F))]]must
MTS ⊆ [[α(F)]]must

MFTS be a must-execution
in α(F). Then there exists k ∈ K, such that ρ ∈ [[πk(F)]]TS ⊆ [[F]]FTS.

As a result, every ∀CTL� (resp., ∃CTL�) property true for the may- (resp.,
must-) component of α(F) is true for F as well. Moreover, the MFTS α(F)
preserves the full CTL�.

Theorem 1 (Preservation results). For any FTS F and (α, γ), we have:

(∀CTL�) For every Φ ∈ ∀CTL�, α(F)may |= Φ =⇒ F |= Φ.
(∃CTL�) For every Φ ∈ ∃CTL�, α(F)must |= Φ =⇒ F |= Φ.
(CTL�) For every Φ ∈ CTL�, α(F) |= Φ =⇒ F |= Φ.

2 Proofs of all lemmas and theorems in this section can be found in [12, Appendix A].

310 A. S. Dimovski

Abstract models are designed to be conservative for the satisfaction of prop-
erties. However, in case of the refutation of a property, a counter-example is
found in the abstract model which may be spurious (introduced due to abstrac-
tion) for some variants and genuine for the others. This can be established by
checking which variants can execute the found counter-example.

1

start

2 3

4 5

6

7 8
pay change open

take

so
da

s erveSoda

tea ser
ve
Tea

free

take

take

cancel

re
tu
rn

Fig. 3. αjoin(VendingMachine).

Let Φ be a CTL� formula which is not in ∀CTL� nor in ∃CTL�, and let MF
be an MFTS. We verify MF |= Φ by checking Φ on two FTSs MFmay and
MFmust, and then we combine the obtained results as specified below.

Theorem 2. For every Φ ∈ CTL� and MFTS MF , we have:

MF |= Φ =

{
true if

(
MFmay |= Φ ∧ MFmust |= Φ

)

false if
(
MFmay �|= Φ ∨ MFmust �|= Φ

)

Therefore, we can check a formula Φ which is not in ∀CTL� nor in ∃CTL� on
α(F) by running a model checker twice, once with the may-component of α(F)
and once with the must-component of α(F). On the other hand, a formula Φ
from ∀CTL� (resp., ∃CTL�) on α(F) is checked by running a model checker only
once with the may-component (resp., must-component) of α(F).

The family-based model checking problem can be reduced to a num-
ber of smaller problems by partitioning the set of variants. Let the subsets
K1, K2, . . . , Kn form a partition of the set K. Then: F |= Φ iff πKi

(F) |= Φ
for all i = 1, . . . , n. By using Theorem 1 (CTL�), we obtain the following result.

Corollary 1. Let K1, K2, . . . , Kn form a partition of K, and (α1,γ1), . . . ,
(αn,γn) be Galois connections. If α1(πK1(F)) |= Φ, . . . , αn(πKn

(F)) |= Φ, then
F |= Φ.

Therefore, in case of suitable partitioning of K and the aggressive αjoin abstrac-
tion, all αjoin(πKi

(F))may and αjoin(πKi
(F))must are ordinary TSs, so the family-

based model checking problem can be solved using existing single-system model
checkers with all the optimizations that these tools may already implement.

Abstract Family-Based Model Checking Using MFTSs 311

Example 4. Consider the properties introduced in Example 2. Using the TS
αjoin(VendingMachine)may we can verify Φ1 = ∀�∀♦start (Theorem 1,
(∀CTL�)). We obtain the counter-example 1© → 3© → 5© → 7© → 3© . . ., which
is genuine for variants satisfying c. Hence, variants from [[c]] violate Φ1. On the
other hand, by verifying that αjoin(π[[¬c]](VendingMachine))may satisfies Φ1,
we can conclude by Theorem 1, (∀CTL�) that variants from [[¬c]] satisfy Φ1.

We can verify Φ2 = ∀�∃♦start by checking may- and must-components of
αjoin(VendingMachine). In particular, we have αjoin(VendingMachine)may

|= Φ2 and αjoin(VendingMachine)must |= Φ2. Thus, using Theorem 1, (CTL�)
and Theorem 2, we have that VendingMachine |= Φ2.

Using αjoin(VendingMachine)must we can verify Φ3 = ∃�∃♦start, by
finding the witness 1© → 2© → 3© → 5© → 7© → 8© → 1© By Theorem 1,
(∃CTL�), we have that VendingMachine |= Φ3. �

4 Implementation

We now describe an implementation of our abstraction-based approach for CTL
model checking of variational systems in the context of the state-of-the-art
NuSMV model checker [3]. Since it is difficult to use FTSs to directly model
very large variational systems, we use a high-level modelling language, called
fNuSMV. Then, we show how to implement projection and variability abstrac-
tions as syntactic transformations of fNuSMV models.

A High-Level Modelling Language. fNuSMV is a feature-oriented extension
of the input language of NuSMV, which was introduced by Plath and Ryan
[28] and subsequently improved by Classen [4]. A NuSMV model consists of a
set of variable declarations and a set of assignments. The variable declarations
define the state space and the assignments define the transition relation of the
finite state machine described by the given model. For each variable, there are
assignments that define its initial value and its value in the next state, which
is given as a function of the variable values in the present state. Modules can
be used to encapsulate and factor out recurring submodels. Consider a basic
NuSMV model shown in Fig. 4a. It consists of a single variable x which is
initialized to 0 and does not change its value. The property (marked by the
keyword SPEC) is “∀♦(x ≥ k)”, where k is a meta-variable that can be replaced
with various natural numbers. For this model, the property holds when k = 0.
In all other cases (for k > 0), a counterexample is reported where x stays 0.

The fNuSMV language [28] is based on superimposition. Features are mod-
elled as self-contained textual units using a new FEATURE construct added to
the NuSMV language. A feature describes the changes to be made to the given
basic NuSMV model. It can introduce new variables into the system (in a section
marked by the keyword INTRODUCE), override the definition of existing variables
in the basic model and change the values of those variables when they are read (in
a section marked by the keyword CHANGE). For example, Fig. 4b shows a FEATURE
construct, called A, which changes the basic model in Fig. 4a. In particular, the
feature A defines a new variable nA initialized to 0. The basic system is changed

312 A. S. Dimovski

in such a way that when the condition “nA = 0” holds then in the next state
the basic system’s variable x is incremented by 1 and in this case (when x is
incremented) nA is set to 1. Otherwise, the basic system is not changed.

Classen [4] shows that fNuSMV and FTS are expressively equivalent. He
[4] also proposes a way of composing fNuSMV features with the basic model
to create a single model in pure NuSMV which describes all valid variants.
The information about the variability and features in the composed model is
recorded in the states. This is a slight deviation from the encoding in FTSs,
where this information is part of the transition relation. However, this encoding
has the advantage of being implementable in NuSMV without drastic changes.
In the composed model each feature becomes a Boolean state variable, which is
non-deterministically initialised and whose value never changes. Thus, the initial
states of the composed model include all possible feature combinations. Every
change performed by a feature is guarded by the corresponding feature variable.

For example, the composition of the basic model and the feature A given
in Figs. 4a and b results in the model shown in Fig. 4c. First, a module, called
features , containing all features (in this case, the single one A) is added to the
system. To each feature (e.g. A) corresponds one variable in this module (e.g.
fA). The main module contains a variable named f of type features , so that
all feature variables can be referenced in it (e.g. f.fA). In the next state, the
variable x is incremented by 1 when the feature A is enabled (fA is TRUE) and
nA is 0. Otherwise (TRUE: can be read as else:), x is not changed. Also, nA is
set to 1 when A is enabled and x is incremented by 1. The property ∀♦(x ≥ 0)
holds for both variants when A is enabled and A is disabled (fA is FALSE).

Fig. 4. NuSMV models.

Abstract Family-Based Model Checking Using MFTSs 313

Transformations. We present the syntactic transformations of fNuSMV mod-
els defined by projection and variability abstractions. Let M represent a model
obtained by composing a basic model with a set of features F. Let M contain
a set of assignments of the form: s(v) := case b1 : e1; . . . bn : en; esac, where
v is a variable, bi is a boolean expression, ei is an expression (for 1 ≤ i ≤ n),
and s(v) is one of v, init(v), or next(v). We denote by [[M]] the FTS for this
model [4].

Let K
′ ⊆ 2F be a set of configurations described by a feature expression ψ′,

i.e. [[ψ′]] = K
′. The projection π[[ψ′]]([[M]]) is obtained by adding the constraint

ψ′ to each bi in the assignments to the state variables.
Let (α, γ) be a Galois connection from Sect. 3. The abstract α(M)may and

α(M)must are obtained by the following rewrites for assignments in M :

α
(
s(v) :=case b1 :e1; . . . bn :en; esac

)may
=s(v) :=caseαm(b1) :e1; . . . α

m(bn) :en; esac

α
(
s(v) :=case b1 :e1; . . . bn :en; esac

)must
=s(v) :=case α̃(b1) :e1; . . . α̃(bn) :en; esac

The functions αm and α̃ copy all basic boolean expressions other than fea-
ture expressions, and recursively calls itself for all sub-expressions of compound
expressions. For αjoin(M)may, we have a single Boolean variable rnd which
is non-deterministically initialized. Then, αm(ψ) = rnd if α(ψ) = true. We
have: α([[M]])may = [[α(M)may]] and α([[M]])must = [[α(M)must]]. For exam-
ple, given the composed model M in Fig. 4c, the abstractions αjoin(M)may and
αjoin(M)must are shown in Figs. 5 and 6, respectively. Note that α̃join(f.fA) =
false, so the first branch of case statements in M is never taken in αjoin(M)must.

Fig. 5. αjoin(M)may Fig. 6. αjoin(M)must

5 Evaluation

We now evaluate our abstraction-based verification technique. First, we show
how variability abstractions can turn a previously infeasible analysis of variabil-
ity model into a feasible one. Second, we show that instead of verifying CTL

314 A. S. Dimovski

properties using the family-based version of NuSMV [7], we can use variabil-
ity abstraction to obtain an abstract variability model (with a low number of
variants) that can be subsequently model checked using the standard version of
NuSMV.

All experiments were executed on a 64-bit Intel�CoreTM i7-4600U CPU run-
ning at 2.10 GHz with 8 GB memory. The implementation, benchmarks, and all
results obtained from our experiments are available from: https://aleksdimovski.
github.io/abstract-ctl.html. For each experiment, we report the time needed to
perform the verification task in seconds. The BDD model checker NuSMV is
run with the parameter -df -dynamic, which ensures that the BDD package
reorders the variables during verification in case the BDD size grows beyond a
certain threshold.

Synthetic Example. As an experiment, we have tested limits of family-based
model checking with extended NuSMV and “brute-force” single-system model
checking with standard NuSMV (where all variants are verified one by one).
We have gradually added variability to the variational model in Fig. 4. This was
done by adding optional features which increase the basic model’s variable x
by the number corresponding to the given feature. For example, the CHANGE
section for the second feature B is: IF (nB = 0) THEN IMPOSE next(x) := x +
2; next(nB) := next(x) = x + 2?1:nB, and the domain of x is 0..3.

We check the assertion ∀♦(x ≥ 0). For |F| = 25 (for which |K| = 225 variants,
and the state space is 232) the family-based NuSMV takes around 77 min to
verify the assertion, whereas for |F| = 26 it has not finished the task within two
hours. The analysis time to check the assertion using “brute force” with standard
NuSMV ascends to almost three years for |F| = 25. On the other hand, if we
apply the variability abstraction αjoin, we are able to verify the same assertion by
only one call to standard NuSMV on the abstracted model in 2.54 s for |F| = 25
and in 2.99 s for |F| = 26.

Elevator. The Elevator, designed by Plath and Ryan [28], contains about
300 LOC and 9 independent features: Antiprunk, Empty, Exec, OpenIfIdle,
Overload, Park, QuickClose, Shuttle, and TTFull, thus yielding 29 = 512
variants. The elevator serves a number of floors (which is five in our case) such
that there is a single platform button on each floor which calls the elevator.
The elevator will always serve all requests in its current direction before it stops
and changes direction. When serving a floor, the elevator door opens and closes
again. The size of the Elevator model is 228 states. On the other hand, the
sizes of αjoin(Elevator)may and αjoin(Elevator)must are 220 and 219 states,
resp.

We consider five properties. The ∀CTL property “Φ1 = ∀� (floor =
2 ∧ liftBut5.pressed ∧ direction = up ⇒ ∀[direction = upUfloor = 5]”
is that, when the elevator is on the second floor with direction up and
the button five is pressed, then the elevator will go up until the fifth floor
is reached. This property is violated by variants for which Overload (the
elevator will refuse to close its doors when it is overloaded) is satisfied.
Given sufficient knowledge of the system and the property, we can tailor

https://aleksdimovski.github.io/abstract-ctl.html
https://aleksdimovski.github.io/abstract-ctl.html

Abstract Family-Based Model Checking Using MFTSs 315

Fig. 7. Verification of Elevator properties using tailored abstractions. We compare
family-based approach vs. abstraction-based approach.

an abstraction for verifying this property more effectively. We call standard
NuSMV to check Φ1 on two models αjoin(π[[Overload]](Elevator))may and
αjoin(π[[¬Overload]](Elevator))may. For the first abstracted projection we obtain
an “abstract” counter-example violating Φ1, whereas the second abstracted pro-
jection satisfies Φ1. Similarly, we can verify that the ∀CTL property “Φ2 =
∀� (floor = 2 ∧ direction = up ⇒ ∀ © (direction = up))” is satisfied only by
variants with enabled Shuttle (the lift will change direction at the first and
last floor). We can successfully verify Φ2 for αjoin(π[[Shuttle]](Elevator))may

and obtain a counter-example for αjoin(π[[¬Shuttle]](Elevator))may. The ∃CTL
property “Φ3 = (OpenIfIdle ∧ ¬QuickClose) =⇒ ∃♦(∃� (door = open))”
is that, there exists an execution such that from some state on the door
stays open. We can invoke the standard NuSMV to verify that Φ3 holds for
αjoin(π[[OpenIfIdle∧¬QuickClose]](Elevator))must. The following two properties are
neither in ∀CTL nor in ∃CTL. The property “Φ4 = ∀� (floor = 1∧idle∧door =
closed =⇒ ∃�(floor = 1 ∧ door = closed))” is that, for any execution globally
if the elevator is on the first floor, idle, and its door is closed, then there is a con-
tinuation where the elevator stays on the first floor with closed door. The satis-
faction of Φ4 can be established by verifying it against both αjoin(Elevator)may

and αjoin(Elevator)must using two calls to standard NuSMV. The property
“Φ5 = Park =⇒ ∀� (floor = 1 ∧ idle =⇒ ∃[idleUfloor = 1])” is satisfied
by all variants with enabled Park (when idle, the elevator returns to the first
floor). We can successfully verify Φ5 by analyzing αjoin(π[[Park]](Elevator))may

and αjoin(π[[Park]](Elevator))must using two calls to standard NuSMV. We can
see in Fig. 7 that abstractions achieve significant speed-ups between 2.5 and 32
times faster than the family-based approach.

6 Related Work and Conclusion

Recently, many family-based techniques that work on the level of variational sys-
tems have been proposed. This includes family-based syntax checking [20,25],
family-based type checking [24], family-based static program analysis [16,17,27],
family-based verification [22,23,29], etc. In the context of family-based model
checking, Classen et al. present FTSs [6] and specifically designed family-based

316 A. S. Dimovski

model checking algorithms for verifying FTSs against LTL [5]. This approach
is extended [4,7] to enable verification of CTL properties using an family-based
version of NuSMV. In order to make this family-based approach more scalable,
the works [15,21] propose applying conservative variability abstractions on FTSs
for deriving abstract family-based model checking of LTL. An automatic abstrac-
tion refinement procedure for family-based model checking is then proposed in
[19]. The application of variability abstractions for verifying real-time variational
systems is described in [18]. The work [11,13] presents an approach for family-
based software model checking of #ifdef-based (second-order) program families
using symbolic game semantics models [10].

To conclude, we have proposed conservative (over-approximating) and their
dual (under-approximating) variability abstractions to derive abstract family-
based model checking that preserves the full CTL�. The evaluation confirms
that interesting properties can be efficiently verified in this way. In this work, we
assume that a suitable abstraction is manually generated before verification. If
we want to make the whole verification procedure automatic, we need to develop
an abstraction and refinement framework for CTL� properties similar to the one
in [19] which is designed for LTL.

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-37521-7

2. Baier, C., Katoen, J.: Principles of Model Checking. MIT Press, Cambridge,
London (2008)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

4. Classen, A.: CTL model checking for software product lines in NuSMV. Technical
report, P-CS-TR SPLMC-00000002, University of Namur, pp. 1–17 (2011)

5. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.: Model checking
software product lines with SNIP. STTT 14(5), 589–612 (2012). https://doi.org/
10.1007/s10009-012-0234-1

6. Classen, A., Cordy, M., Schobbens, P., Heymans, P., Legay, A., Raskin, J.: Featured
transition systems: foundations for verifying variability-intensive systems and their
application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089
(2013). http://doi.ieeecomputersociety.org/10.1109/TSE.2012.86

7. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking
of software product lines. In: Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, pp. 321–330. ACM (2011). http://doi.acm.org/
10.1145/1985793.1985838

8. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston (2001)

9. Cousot, P.: Partial completeness of abstract fixpoint checking. In: Choueiry, B.Y.,
Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 1–25. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44914-0 1

https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/s10009-012-0234-1
https://doi.org/10.1007/s10009-012-0234-1
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.86
http://doi.acm.org/10.1145/1985793.1985838
http://doi.acm.org/10.1145/1985793.1985838
https://doi.org/10.1007/3-540-44914-0_1

Abstract Family-Based Model Checking Using MFTSs 317

10. Dimovski, A.S.: Program verification using symbolic game semantics. Theor. Com-
put. Sci. 560, 364–379 (2014). https://doi.org/10.1016/j.tcs.2014.01.016

11. Dimovski, A.S.: Symbolic game semantics for model checking program families. In:
Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 19–37. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-32582-8 2

12. Dimovski, A.S.: Abstract family-based model checking using modal featured tran-
sition systems: preservation of CTL� (extended version). CoRR abs/1802.04970
(2018). http://arxiv.org/abs/1802.04970

13. Dimovski, A.S.: Verifying annotated program families using symbolic game seman-
tics. Theor. Comput. Sci. 706, 35–53 (2018). https://doi.org/10.1016/j.tcs.2017.
09.029

14. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., W ↪asowski, A.: Family-based model
checking without a family-based model checker. In: Fischer, B., Geldenhuys, J.
(eds.) SPIN 2015. LNCS, vol. 9232, pp. 282–299. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23404-5 18

15. Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Efficient family-based
model checking via variability abstractions. STTT 19(5), 585–603 (2017). https://
doi.org/10.1007/s10009-016-0425-2

16. Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions: trading
precision for speed in family-based analyses. In: 29th European Conference
on Object-Oriented Programming, ECOOP 2015. LIPIcs, vol. 37, pp. 247–270.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.
4230/LIPIcs.ECOOP.2015.247

17. Dimovski, A.S., Brabrand, C., W ↪asowski, A.: Finding suitable variability
abstractions for family-based analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi,
S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 217–234. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48989-6 14

18. Dimovski, A.S., W ↪asowski, A.: From transition systems to variability models and
from lifted model checking back to UPPAAL. In: Aceto, L., Bacci, G., Bacci, G.,
Ingólfsdóttir, A., Legay, A., Mardare, R. (eds.) Models, Algorithms, Logics and
Tools. LNCS, vol. 10460, pp. 249–268. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63121-9 13

19. Dimovski, A.S., W ↪asowski, A.: Variability-specific abstraction refinement for
family-based model checking. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS,
vol. 10202, pp. 406–423. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54494-5 24

20. Gazzillo, P., Grimm, R.: SuperC: parsing all of C by taming the preprocessor. In:
Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2012, Beijing, China, 11–16 June
2012. pp. 323–334. ACM (2012). http://doi.acm.org/10.1145/2254064.2254103

21. Holzmann, G.J.: The SPIN Model Checker - Primer and Reference Manual.
Addison-Wesley, Boston (2004)

22. Iosif-Lazar, A.F., Al-Sibahi, A.S., Dimovski, A.S., Savolainen, J.E., Sierszecki, K.,
Wasowski, A.: Experiences from designing and validating a software modernization
transformation (E). In: 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015. pp. 597–607 (2015). https://doi.org/10.1109/
ASE.2015.84

23. Iosif-Lazar, A.F., Melo, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Effective
analysis of C programs by rewriting variability. Program. J. 1(1), 1 (2017). https://
doi.org/10.22152/programming-journal.org/2017/1/1

https://doi.org/10.1016/j.tcs.2014.01.016
https://doi.org/10.1007/978-3-319-32582-8_2
http://arxiv.org/abs/1802.04970
https://doi.org/10.1016/j.tcs.2017.09.029
https://doi.org/10.1016/j.tcs.2017.09.029
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/978-3-319-23404-5_18
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.1007/s10009-016-0425-2
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.4230/LIPIcs.ECOOP.2015.247
https://doi.org/10.1007/978-3-319-48989-6_14
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-319-63121-9_13
https://doi.org/10.1007/978-3-662-54494-5_24
https://doi.org/10.1007/978-3-662-54494-5_24
http://doi.acm.org/10.1145/2254064.2254103
https://doi.org/10.1109/ASE.2015.84
https://doi.org/10.1109/ASE.2015.84
https://doi.org/10.22152/programming-journal.org/2017/1/1
https://doi.org/10.22152/programming-journal.org/2017/1/1

318 A. S. Dimovski

24. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based
product lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14:1–14:39 (2012).
http://doi.acm.org/10.1145/2211616.2211617

25. Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.:
Variability-aware parsing in the presence of lexical macros and conditional compi-
lation. In: Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011,
pp. 805–824 (2011). http://doi.acm.org/10.1145/2048066.2048128

26. Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third
Annual Symposium on Logic in Computer Science (LICS 1988), pp. 203–210. IEEE
Computer Society (1988). https://doi.org/10.1109/LICS.1988.5119

27. Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic derivation
of correct variability-aware program analyses. Sci. Comput. Program. 105, 145–170
(2015). https://doi.org/10.1016/j.scico.2015.04.005

28. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001). https://doi.org/10.1016/S0167-6423(00)00018-6

29. von Rhein, A., Thüm, T., Schaefer, I., Liebig, J., Apel, S.: Variability encod-
ing: from compile-time to load-time variability. J. Log. Algebr. Methods Program.
85(1), 125–145 (2016). https://doi.org/10.1016/j.jlamp.2015.06.007

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://doi.acm.org/10.1145/2211616.2211617
http://doi.acm.org/10.1145/2048066.2048128
https://doi.org/10.1109/LICS.1988.5119
https://doi.org/10.1016/j.scico.2015.04.005
https://doi.org/10.1016/S0167-6423(00)00018-6
https://doi.org/10.1016/j.jlamp.2015.06.007
http://creativecommons.org/licenses/by/4.0/

FPH: Efficient Non-commutativity
Analysis of Feature-Based Systems

Marsha Chechik1(B) , Ioanna Stavropoulou1 , Cynthia Disenfeld1 ,
and Julia Rubin2

1 University of Toronto, Toronto, Canada
{chechik,ioanna,disenfeld}@cs.toronto.edu

2 University of British Columbia, Vancouver, Canada
mjulia@ece.ubc.ca

Abstract. Feature-oriented software development (FOSD) is a promis-
ing approach for developing a collection of similar software products
from a shared set of software assets. A well-recognized issue in FOSD is
the analysis of feature interactions: cases where the integration of multi-
ple features would alter the behavior of one or several of them. Existing
approaches to feature interaction detection require a fixed order in which
the features are to be composed but do not provide guidance as to how
to define this order or how to determine a relative order of a newly-
developed feature w.r.t. existing ones. In this paper, we argue that clas-
sic feature non-commutativity analysis, i.e., determining when an order
of composition of features affects properties of interest, can be used to
complement feature interaction detection to help build orders between
features and determine many interactions. To this end, we develop and
evaluate Mr. Feature Potato Head (FPH) – a modular approach to non-
commutativity analysis that does not rely on temporal properties and
applies to systems expressed in Java. Our experiments running FPH on
29 examples show its efficiency and effectiveness.

1 Introduction

Feature-oriented software development (FOSD) [3] is a promising approach for
developing a collection of similar software products from a shared set of software
assets. In this approach, each feature encapsulates a certain unit of functionality
of a product; features are developed and tested independently and then inte-
grated with each other; developed features are then combined in a prescribed
manner to produce the desired set of products. A well-recognized issue in FOSD
is that it is prone to creating feature interactions [2,13,22,28]: cases where inte-
grating multiple features alters the behavior of one or several of them. Not all
interactions are desirable. E.g., the Night Shift feature of the recent iPhone did
not allow the Battery Saver to be enabled (and the interaction was not fixed
for over 2 months, potentially affecting millions of iPhone users). More critically,
in 2010, Toyota had to recall hundreds of thousands of Prius cars due to an

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 319–336, 2018.
https://doi.org/10.1007/978-3-319-89363-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_18&domain=pdf
http://orcid.org/0000-0002-6301-3517
http://orcid.org/0000-0002-8984-2129
http://orcid.org/0000-0003-2244-3737
http://orcid.org/0000-0001-7280-1614

320 M. Chechik et al.

interaction between the regenerative braking system and the hydraulic braking
system that caused 62 crashes and 12 injuries.

Existing approaches for identifying feature interactions either require an
explicit order in which the features are to be composed [6,8,18,19,26] or assume
presence of a “150%” representation which uses an implicit feature order [12,15].
Yet they do not provide guidance on how to define this order, or how to deter-
mine a relative order of a newly-developed feature w.r.t. existing ones.

A classical approach of feature non-commutativity detection, defined by
Plath and Ryan [25], can be used to help build a composition order. The authors
defined non-commutativity as “the presence of a property, the value of which is
different depending on the order of the composition of the features” and pro-
posed a model-checking approach allowing to check available properties on dif-
ferent composition orders. E.g., consider the Elevator System [14,25] consisting
of five features: Empty – to clear the cabin buttons when the elevator is empty;
ExecutiveFloor – to override the value of the variable stop to give priority to the
executive floor (not stopping in the middle); TwoThirdsFull – to override the
value of stop not allowing people to get into the elevator when it is two-thirds
full; Overloaded – to disallow closing of the elevator doors while it is overloaded;
and Weight – to allow the elevator to calculate the weight of the people inside
the cabin. Features TwoThirdsFull and ExecutiveFloor are not commutative
(e.g., a property “the elevator does not stop at other floors when there is a
call from the executive floor” changes value under different composition orders),
whereby Empty and Weight are. Thus, an order between Empty and Weight is
not required, whereas the user needs to determine which of TwoThirdsFull or
ExecutiveFloor should get priority. Thus, feature non-commutativity guarantees
a feature interaction, whereas feature commutativity means that order of compo-
sition does not matter. Both of these outcomes can effectively complement other
feature interaction approaches.

In this paper, we aim to make commutativity analysis practical and appli-
cable to a broad range of modern feature-based systems, so that it can be used
as “the first line of defense” before running other feature interaction detections.
There are three main issues we need to tackle. First of all, to prove that fea-
tures commute requires checking their composition against all properties, and
capturing the complete behavior of features in the form of formal specifications
is an infeasible task. Thus, we aim to make our approach property-independent.
Second, we need to make commutativity analysis scalable and avoid rechecking
the entire system every time a single feature is modified or a new one is added.
Finally, we need to support analysis of systems expressed in modern program-
ming languages such as Java.

In [25], features execute “atomically” in a state-machine representation of the
system, i.e., they make all state changes in one step. However, when systems are
represented in conventional programming languages like Java, feature execution
may take several steps; furthermore, such features are composed sequentially,
using superimposition [5]. Examining properties defined by researchers studying
such systems [6], we note that they do not refer to intermediate states within

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 321

the feature execution, but only to states before or after running the feature,
effectively treating features as atomic. In this paper, we use this notion of atom-
icity to formalize commutativity. The foundation of our technique is the separa-
tion between feature behavior and feature composition and efficiently checking
whether different feature compositions orders leave the system in the same inter-
nal state. Otherwise, a property distinguishing between the orders can be found,
and thus they do not commute. We call the technique and the accompanying
tool Mr. Feature Potato Head (FPH), named after the kids’ toy which can be
composed from interchangeable parts.

In this paper, we show that FPH can perform commutativity analysis in
an efficient and precise manner. It performs a modular checking of pairs of fea-
tures [17], which makes the analysis very scalable: when a feature is modified, the
analysis can focus only on the interactions related to that feature, without need-
ing to consider the entire family. That is, once the initial analysis is completed,
a partial order between the features of the given system can be created and used
for detecting other types of interactions. Any feature added in the future will be
checked against all other features for non-commutativity-related interactions to
define its order among the rest of the features, but the existing order would not
be affected. In this paper, we only focus on the non-commutativity analysis and
consider interaction resolution as being out of scope.
Contributions. This paper makes the following contributions: (1) It defines
commutativity for features expressed in imperative programming languages and
composed via superimposition. (2) It proposes a novel modular representation
for features that distinguishes between feature composition and behavior. (3)
It defines and implements a modular specification-free feature commutativity
analysis that focuses on pairs of features rather than on complete products or
product families. (4) It instantiates this analysis on features expressed in Java.
(5) It shows that the implemented analysis is effective for detecting instances of
non-commutativity as well as proving their absence. (6) It evaluates the efficiency
and scalability of the approach.

The rest of the paper is organized as follows. We provide the necessary back-
ground, fix the notation and define the notion of commutativity in Sect. 2. In
Sect. 3, we describe our iterative tool-supported methodology for detecting fea-
ture non-commutativity for systems expressed in Java. We evaluate the effective-
ness and scalability of our approach in Sect. 4, compare our approach to related
work in Sect. 5 and conclude in Sect. 61.

2 Preliminaries

In this section, we present the basic concepts and definitions and define the
notion of commutativity used throughout this paper.

1 The complete replication package including the tool binary, case studies used in
our experiments and proofs of selected theorems is available at https://github.com/
FeaturePotatoHead/FPH.

https://github.com/FeaturePotatoHead/FPH
https://github.com/FeaturePotatoHead/FPH

322 M. Chechik et al.

Fig. 1. Java code snippet of the feature ExecutiveFloor.

Feature-Oriented Software Development (FOSD). In FOSD, products are
specified by a set of features (configuration). A base system has no features.
While defining the notion of a feature is an active research topic [11], in this
paper we assume that a feature is “a structure that extends and modifies the
structure of a given program in order to satisfy a stakeholder’s requirement, to
implement a design decision and to offer a configuration option” [5].
Superimposition. Superimposition is a feature composition technique that
composes software features by merging their corresponding substructures. Based
on superimposition, Apel et al. [5] propose a composition technique where dif-
ferent components are represented using a uniform and language independent-
structure called a feature structure tree (FST). An FST is a tree T =
〈(Terminal Node) | (Non Terminal Node) (Tree T)+〉, where + denotes “one or
more”. A Non Terminal Node is a tuple 〈name, type〉 which represents a non-leaf
element of T with the respective name and type. A Terminal Node is a tuple
〈name, type, body〉 which represents a leaf element of T . In addition to name and
type, each Terminal Node has body that encapsulates the content of the element,
i.e., the corresponding method implementation or field initializer. A feature is a
tuple f = 〈name, T 〉, where name is a string representing f ’s name and T is an
FST abstractly representing f .

Each feature describes the modifications that need to be made to the base
system, also represented by an FST, to enable the behavior of the feature. While
FSTs are generally language-independent, in this paper we focus on features
defined in a Java-based language. For example, consider the Java code snippet
in Fig. 1, which shows the ExecutiveFloor. This feature makes one of the floors
“an executive one”. If there is a call to or from this floor, it gets priority over any
other call. This feature is written in Java using a special keyword original [5]
(line 9). Under this composition, a call from the new method to every existing
method with the same name is added, in order to preserve the original behavior.
Without original, new methods replace existing ones.

The feature ExecutiveFloor in Fig. 1 is represented by the tuple 〈executive, T 〉,
where T is the FST in Fig. 2. ElevatorSystem is a Non Terminal Node that rep-
resents the ElevatorSystem package with the tuple 〈ElevatorSystem,
package〉, and stopRequestedInDirection is a Terminal Node represented
by 〈stopRequestedInDirection, method, body〉, where body is the content of
the stopRequested-InDirection method in Fig. 1 (lines 8–9). Another Non
Terminal Node is Elevator, whereas executiveFloor, isExecutiveFloor,
isExecutiveFloorCalling and stopRequestedAtCurrentFloor are Terminal.

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 323

Fig. 2. FST representation for the feature ExecutiveFloor.

Fig. 3. Simplified composition of ExecutiveFloor and the base elevator system.

For Java-specified features, Terminal Nodes represent methods, fields, import
statements, modifier lists, as well as extends, implements and throws clauses
whereas directories, files, packages and classes are represented by Non Terminals.
Superimposition Process. Given two FSTs, starting from the root and pro-
ceeding recursively to create a new FST, two nodes are composed when they
share the same name and type and when their parent nodes have been com-
posed. For Terminal Nodes which additionally have a body, if a Node A is com-
posed with a Node B, the body of A is replaced by that of B unless the keyword
original is present in the body of B. In this case, the body of A is replaced by
that of B and the keyword is replaced by A’s body. Since the original keyword
is not used for fields, the body of the initial field is always replaced by that of
the new one.

Figure 3 gives an example of a composition of a simplified ExecutiveFloor
feature with the elevator base system. Terminal Nodes that have been overridden
by the feature are with dashed outline and new fields and methods added by the
feature are shown as shaded nodes. For example, the method stopRequested,
which is part of the base system, is overridden by the feature, whereas the field
executiveFloor, which is only part of the feature, is added to the base system.
Commutativity. We define commutativity w.r.t. properties observable before
or after features finish their execution (as those in [6]). A state of the system
after superimposing a feature is the valuation of each variable (or array, object,
field, etc. [24]) of the base system and each variable (or array, etc.) introduced
by the feature. We also add a new variable inBase which is true iff this state is
not within a method overridden by any feature. In the rest of the paper, we refer
to states where inBase is true as inBase states. A transition of the system is an
execution of a statement, including method calls and return statements [24].

324 M. Chechik et al.

Then we say that two features commute if they preserve valuation of prop-
erties of the form G(inBase =⇒ φ), where φ is a propositional formula defined
over any system state variables. That is, they do not commute if there is at least
one state of the base system which changes depending on the order in which the
features are composed. For example, the property “the elevator does not stop at
other floors when there is a call from the executive floor”, used in Sect. 1 to iden-
tify non-commutativity between features TwoThirdsFull and ExecutiveFloor, is
G(inBase =⇒ ¬(isExecutiveFloorCalling ∧ stopped ∧ floor �=executiveFloor)).

3 Methodology

Our goal is to provide a scalable technique for
determining whether features commute by
establishing whether the two different com-
position orders leave the system in the same
internal state. The workflow of FPH is shown
below. The first step of FPH is to transform
each feature from an FST into an FPH repre-
sentation consisting of a set of fragments. The
base is transformed in the same way as the
individual features. Each fragment is further
split into feature behavior and feature composition – see Sect. 3.1. Afterwards,
we check for non-compositionality. If there do not exist feature fragments that
have shared location of composition, i.e., whose feature composition components
are the same, then the features commute. Otherwise, check the pairs of feature
fragments for behavior preservation, i.e., when the two features are composed in
the same location, the previous behavior is still present and can be executed. If
this check succeeds, we perform the shared variables check – see Sect. 3.2.

3.1 Separating Feature Behavior and Composition

We now formally define the FPH representation of features that separates the
behavior of features and location of their composition and provide transforma-
tion operators between the FPH and the FST representations.

Definition 1. An FPH feature is a tuple 〈name, fragments〉, where name is the
feature name and fragments is the list of feature fragments that comprise the
feature. Let a feature f be given. A Feature Fragment fg is a tuple 〈fb, fc〉, where
fb is a feature behavior defined in Definition 2 and fc is a feature composition
defined in Definition 3.

Definition 2. Feature Behavior fb of a feature fragment fg is a tuple
〈name, type,body,bp, vars〉, where name, type and body represent the name,
type and content, respectively, of the element represented by fg. bp is a boolean
value which is set to true if the feature preserves the original behavior, i.e.,
when the keyword original is present in the body and not within a conditional
statement. vars is a list of variable names read or written within fg.

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 325

Definition 3. Feature composition fc of a feature fragment fg is represented by
〈location〉 which is the path leading to the terminal node represented by fg.

The Separate operator (see Fig. 4a) transforms features from the FST to the
FPH representation by creating a new fragment for each Terminal Node in the
given FST. For the behavior component of the fragment, its name, type and body
attributes come from the respective counterparts of the FST Terminal Node.
The bp field is true if every path within body contains the keyword original;
otherwise, it is false. For the composition component, the location field gets its
value from the unique path to the Terminal Node from the root of the FST. vars
are the parameters of the method and the fields that are used within it.

E.g., consider creating the FPH representation for ExecutiveFloor feature in
Fig. 2. Since there are five Terminal Nodes, five fragments will be created to rep-
resent each node. In the fragment created for the stopRequestedInDirection

node, the information in fb about name, node and type is derived from the infor-
mation stored in the node, fb = 〈stopRequestedInDirection,method, [body]〉,
where body consists of lines 8–9 of Fig. 1. bp is false since the keyword original
is within an if statement and vars consists only of the method parameters since
the method does not use any global fields. After separating, the feature compo-
sition is fc = ElevatorSystem.Elevator.stopRequested-InDirection.

To transform features from FPH back to FST, we define the Join operator.
It takes as input a list of feature fragments and returns an FST (see Fig. 4b).

(a) (b)

(c)

Fig. 4. Algorithms Separate, Join and CheckCommutativity.

326 M. Chechik et al.

It creates a new Terminal Node to be added to the FST for each feature fragment
in the given feature. The name, type and body attributes of the node are filled
using the corresponding fields in the feature behavior component of the fragment.
Then, starting from the root node, for every node in the location path of the
feature composition component, if the node does not exist in the FST, it is
added; otherwise, the next node of the path is examined. The information about
bp and vars is already contained in the body of the Terminal Node and is no
longer considered as a separate field. E.g., joining the ExecutiveFloor feature
that we previously separated yields the FST in Fig. 2, as expected.

Theorem 1. Let n be the number of features in a system. For every feature F
which can be represented as (fb, fc), Join and Separate are inverses of each
other, i.e., Join(Separate(F)) = F and Separate(Join(fb,fc)) = (fb,fc).

3.2 Compositional Analysis of Non-commutativity

We now formally present the algorithm check commutativity, a sequence of
increasingly more precise, and more expensive, static checks to perform non-
commutativity analysis. These are called shared location, behavior preservation
and shared variables – see Fig. 4c. Additionally, we prove soundness and correct-
ness of the FPH methodology, i.e., that our checks guarantee feature commuta-
tivity as defined in Sect. 2.
Check Shared Location. The first check examines whether F1 and F2 have
any fragments that can be composed in the same location (line 3). Clearly, when
F1 and F2 are applied in different places, e.g., they change different methods,
inBase states are the same independently of their order of composition, and
thus the features commute. Otherwise, more precise checks are required. E.g.,
ExecutiveFloor (see Fig. 2) and Empty (see Fig. 5a) do not share methods or
fields and thus can be applied in either order.

Theorem 2. If features F1 and F2 are not activated in the same location, any
inBase state resulting from first composing F1 followed by F2 (denoted F1;F2) is
the same as for F2;F1.

Check Behavior Preservation. Suppose one pair of feature fragments of F1

and F2, say, f1 and f2, can be composed in the same location. Then we examine
whether the original behavior is preserved or overridden (indicated by the fb

(a) (b)

Fig. 5. Two features of the elevator system.

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 327

field of each fragment). If bp of f1 and f2 is true, an additional check for shared
variables is applied. Otherwise, i.e., when bp of either f1 or f2 is false, we report
an interaction. Clearly, this check can introduce false positives because we do not
look at the content of the methods but merely at the presence of the original
keyword. E.g., two methods may happen to perform the exact same operation
and yet not include the original keyword. In this case, we would falsely detect
an interaction2.
Check Shared Variables. If F1 and F2 are activated at different places and
both preserve the original behavior, commutativity of their composition depends
on whether they have shared variables that can be both read and written. This
check aims to detect that. E.g., both features Empty (see Fig. 5a) and Weight (see
Fig. 5b) modify the leaveElevator method and preserve the original behavior.
Since no variables between them are shared, the order of composition does not
affect the execution of the resulting system.

Extracting shared variable information requires not only identifying which
variable is part of each feature behavior, but also running points-to analysis
since aliasing is very common in Java. Moreover, a shared variable might not
appear in the body of the affected method but instead in the body of a method
called by it. Yet existing frameworks for implementing interprocedural points-to
analyses [21] may not correctly identify all variables read and written within
a method. Moreover, even if two features do write to the same location, this
may not manifest a feature interaction. E.g., they may write the same value. For
these reasons, our shared variables check may introduce false positives and false
negatives. We evaluate its precision in Sect. 4.

Theorem 3. Let features F1 and F2 activated at the same place and preserving
the behavior of the base be given. If the variables read and written by each feature
are correctly identified and independent of each other (F1.vars ∩ F2.vars = ∅),
then any inBase state resulting from composing F1;F2 is the same as that of
composing F2;F1.

When two features merely read the same variable, it does not present an inter-
action problem. We handle this case in our implementation (see Sect. 4).

Theorem 4 (Soundness). Given features F1 and F2, if variables read and
written by them are correctly identified, Algorithm in Fig. 4c is sound: when it
outputs Success, F1 and F2 commute.

Complexity. Let |F | be the number of features in the system and let M be the
largest number of fragments that each feature can have. For a pair of feature
fragments, checking shared location and checking behavior preservation are both
done in constant time, so the overall complexity of these steps is O((|F |×M)2).
In the worst case, all features affect the same set of methods and thus the shared
variables check should be run on all of them. Yet, all fragments in a feature are
non-overlapping, and thus the number of these checks is at most |F |2 × M .

2 But this does not happen often – see Sect. 4.

328 M. Chechik et al.

The time to perform a shared variable check, which we denote by SV , can vary
depending on an implementation and can be as expensive as PSPACE-hard.
Thus, the overall complexity of non-commutativity detection is O((|F | × M)2 +
SV × |F |2 × M).

4 Evaluation

In this section, we present an experimental evaluation of FPH, aiming to answer
the following research questions: (RQ1) How effective is FPH in performing
non-commutativity analysis of feature-based systems? (RQ2) How accurate is
FPH’s non-commutativity analysis? (RQ3) How efficient is FPH compared to
state-of-the-art tools for performing non-commutativity analysis? (RQ4) How
well does FPH scale as the number of fragments increases?
Tool Support. We have implemented our methodology (Sect. 3) as follows. The
Separate process is implemented on top of FeatureHouse’s composition operator
in Java. We use the parsing process that was provided in FeatureHouse [4] to
separate features to the FPH representation and added about 200 LOC.

The main process to check commutativity is implemented as a Python script
in about 250 LOC. The first two parts of the commutativity check are directly
implemented in the script. The third one, Check shared variables, requires con-
sidering possible aliases of feature-based Java programs. For this check, we have
implemented a Java program, FPH varsAnalysis, that calls Soot [21] to build the
call graph and analyze each reachable method. FPH varsAnalysis is an interpro-
cedural context insensitive points-to analysis that, given two feature fragments
that superimpose the same method, checks whether a variable of the same type
is written by at least one of them and read or written by the other. Since fea-
ture fragments cannot be compiled by themselves (and thus Soot cannot be used
on them), in order to do alias analysis, our program requires a representation
that consists of the base system and all possible features. This representation
is readily available for systems from the SPLVerifier repository since it uses a
family-based approach to analysis. We generate a similar representation for all
other systems used in our experiments.
Models and Methods. We have applied FPH to 29 case studies written in
Java. In the first five columns of Table 1, we summarize the information about
these systems. The first six have been considered by SPLVerifier [6] – a tool
for checking whether a software product line (SPL) satisfies its feature spec-
ifications. SPLVerifier includes sample-based, product-based and family-based
analyses and assumes that the order in which features should be composed is
provided. The SPLVerifier examples came with specifications given by aspects
woven at base system points, with an exception thrown if the state violates an
expected property. The rest of our case studies are SPLs from the FeatureHouse
repository [4].

We were unable to identify other techniques for analyzing feature commu-
tativity of Java programs. Plath and Ryan [25] and Atlee et al. [8] compare

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 329

different composition orders but handle only state machines. SPLVerifier [6] rep-
resents state of the art in verification of feature-based systems expressed in Java,
but it is not designed to do non-commutativity analysis. In the absence of alter-
native tools, we adapted SPLVerifier to the task of finding non-commutativity
violations to be able to compare with FPH.

We conducted two experiments to evaluate FPH and to answer our research
questions. For the first, we ran SPLVerifier on the first six systems (all properties
that came with them satisfied the pattern in Sect. 2 and thus were appropriate
for commutativity detection) presented in Table 1 to identify non-commutativity
interactions. Since SPLVerifier is designed to check products against a set of spec-
ifications, we have to define what a commutativity check means in this context.
For a pair of features, SPLVerifier would detect a commutativity violation if,
upon composing these features in different orders, the provided property pro-
duces different values. During this check, SPLVerifier considers composition of all
other features of the system in all possible orders and thus can identify two-way,
three-way, etc. feature interactions, if applicable. We measured the time taken
by SPLVerifier and the number of interactions found.

For the second experiment, we checked all 29 systems using FPH to identify
non-commutativity interactions. We measured the number of feature pairs that
required checking for shared variables, the time the analysis took and the preci-
sion of FPH in finding interactions. We were unable to establish ground truth for
non-commutativity analysis in cases where FPH required the shared variables
check due to our tool’s reliance on Soot’s unsound call graph construction [7].
Thus, we measured precision of our analysis by manually analyzing the valid-
ity of every interaction found by FPH. We also calculated SPLVerifier’s relative
recall, i.e., the ratio of non-commutativity-related interactions detected by FPH
that were also detected by SPLVerifier. We did not encounter any interactions
that were detected by SPLVerifier but not by FPH.

When the shared variables check is not necessary, our technique is sound.
In such cases, if we inform the user that two features are commutative, they
certainly are, and there is no need to define an order between them. As shown
below, soundness was affected only for a small number of feature pairs. Moreover,
advances in static analysis techniques may improve our results for those cases in
the future. Our experiments were performed on a 2 GB RAM Virtual machine
within an Intel Core i5 machine dual-core at 1.3 GHz.
Results. Columns 6–10 of Table 1 summarize results of our experiments, includ-
ing, for the first six examples, SPLVerifier’s precision and (relative) recall. “SV
pairs” capture the number of feature pairs for which the shared variables check
was required. A dash in the precision columns means that the measurement was
not meaningful since no interactions were detected. E.g., SPLVerifier does not
detect any non-commutativity interactions for Email, and FPH does not find
any non-commutativity interactions for EPL. FPH found a number of instances
of non-commutativity such as the one between ExecutiveFloor and TwoThirds-
Full in the Elevator System. Only one SV check was required (while checking
Empty and Weight features). Without our technique, the user would need to

330 M. Chechik et al.

Table 1. Overview of case studies.

System LOC # Feat. # Frag. Description # Comm SV FPH SPLV SPLV
Interactions Pairs Precision Precision Rel. Recall

Elevator 799 5 19 Our running example 1 1 1 1 1
Email 938 8 55 Email communication suite 3 9 1 - 0
Minepump 425 6 10 Water pump in mining operation 3 0 1 1 0.67
GPL 2510 17 109 Graph product line 2 38 0.1 - 0
AJStats 15311 19 128 Statistics for AspectJ 26 136 1 - 0
ZipMe 5479 12 229 Zip compression library 5 0 1 - 0
BerkeleyDB 64652 98 2667 Embedded database engine 198 1 1
ChatSystem/Burke 614 7 51 Network client and server 2 14 0.33
ChatSystem/Dreiling 938 5 78 Network client and server 3 0 1
ChatSystem/Becker 651 6 42 Network client and server 5 2 1
ChatSystem/Weiss 931 9 23 Network client and server 4 5 0.75
ChatSystem/Schink 873 6 50 Network client and server 4 1 1
ChatSystem/Rehn 862 6 58 Network client and server 14 2 1
ChatSystem/Thuem 544 7 34 Network client and server 1 2 1
EPL 99 10 22 Arithmetic expression evaluator 0 1 -
GameOfLife 1656 14 154 Computer game 5 0 1
Graph 467 4 26 Graph library 0 6 -
Notepad/Quark 1397 11 106 Text editor 20 21 1
Notepad/Delaware 1654 5 122 Text editor 10 0 1
Notepad/Wellington 1522 3 38 Text editor 0 0 -
Notepad/Svetoslav 1627 5 83 Text editor 0 0 -
Notepad/Wehrman 1716 4 83 Text editor 6 6 1
Notepad/Guimbarda 1586 14 229 Text editor 91 0 1
Notepad/Robison 1404 9 90 Text editor 0 0 -
PKJab 4994 7 99 Chat network client 2 0 1
Raroscope 428 4 18 Compression library 0 0 -
Sudoku 1850 6 103 Computer game 5 4 1
TankWar 3184 19 213 Computer game 71 27 0.97
Violet 9789 87 912 UML model editor 35 28 1

provide order between the five features of the Elevator System, that is, specify 20
(5 × 4) ordering constraints. FPH allows us to conclude that ExecutiveFloor and
TwoThirdsFull do not commute, that Empty and Weight likely commute but this
is not guaranteed, and that all other pairs of features do commute. Thus, only
two feature pairs required further analysis by the user.

The Minepump system did not require the shared variable check at all and
thus FPH analysis for it is sound, and all three of the found interactions were
manually confirmed to be “real” (thus, precision is 1). ChatSystem/Weiss has
nine features which would imply needing to define the order between 72 (9 × 8)
feature pairs. Four non-commutativity cases were found, all using the shared
variables check, but only three were confirmed as “real” via a manual inspection
(thus, precision is 0.75). We conclude that FPH is effective in discovering non-
commutativity violations and proving their absence (RQ1).

We now turn to studying the accuracy of FPH w.r.t. finding non-
commutativity violations (RQ2). From Table 1, we observe that for the Elevator
System, both FPH and SPLVerifier correctly detect a non-commutativity inter-
action. For the Minepump system, SPLVerifier only finds two out of the three
interactions found by FPH (relative recall = 0.67). For the Email system, AJS-
tats, ZipMe, and GPL the specifications available in SPLVerifier do not allow
detecting any of the non-commutativity interactions found by FPH (relative
recall = 0).

GPL was a problematic case for FPH, affecting its precision. The graph algo-
rithms in this example take a set of vertices and create and maintain an internal

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 331

(a) (b)

(c)

Fig. 6. (a) Number of FPH varsAnalysis calls per system; (b) Time spent by
FPH varsAnalysis per system; (c) Percentage of non-commutativity checks where BP
or SV analyses were applied last. (Color figure online)

data structure (e.g., to calculate the vertices involved in the shortest path or in
a strongly connected component). With this data structure, our analysis found
a number of possible shared variables and incorrectly deemed several features as
non-commutative. E.g., the algorithms to find cycles or the shortest path between
two nodes access the same set of vertices but change different fields and thus are
commutative. One way of avoiding such false positives would be to implement
field-sensitive alias analysis. While more precise, it will be significantly slower
than our current shared variables analysis.

For the remaining systems, either FPH’s reported interactions were “real”,
or, in cases where it returned some false positives (ChatSystemBurke, ChatSys-
temWeiss, and TankWar), it had to do with the precision of the alias analysis.
Thus, given SPLVerifier’s set of properties, FPH always exhibited the same or
better precision and recall than SPLVerifier. Moreover, for all but three of the
remaining systems, FPH exhibited perfect precision. We thus conclude that FPH
is very accurate (RQ2).

We now turn to the efficiency of our analysis (RQ3). The time it took to
separate features into behavior and composition was usually under 5 s. The out-
lier was BerkeleyDB, which took about a minute, due to the number of features
and especially fragments (BerkeleyDB has 2667 fragments whereas Violet has
912 and the other systems have at most 229). In general, the time taken by
FPH’s commutativity check was highly influenced by the number of calls to
FPH varsAnalysis. Figure 6a shows the number of calls to FPH varsAnalysis as
the number of features increases. E.g., BerkeleyDB has 98 features and required

332 M. Chechik et al.

only one call to FPH varsAnalysis, while AJStats has 19 features and required
136 of these calls. More features does not necessarily imply needing more of
these checks. E.g., Violet and BerkeleyDB required fewer checks than AJStats,
TankWar, and GPL, and yet they have more features.

Figure 6b shows the overall time spent by FPH varAnalysis per system being
analyzed. NotepadQuark and Violet took more time (resp., 1192 sec. and 1270
sec.) than GPL (1084 sec.) since these systems have calls to Java GUI libraries
(awt and swing), thus resulting in a larger call graph than for GPL. A simi-
lar situation occurred during checking TankWar (1790 sec.) and AJStats (1418
sec.). It took FPH under 200 s in most cases and less than 35 min in the worst
case to analyze non-commutativity (see Fig. 6b). FPH was efficient because
FPH varAnalysis was required for a relatively small fraction of pairs of fea-
ture fragments. We plot this information in Fig. 6c. For each analyzed system, it
shows the percentage of feature fragments for which behavior preservation (BP)
or shared variables (SV) was the last check conducted by FPH (out of the pos-
sible 100%). We omit the systems for which these checks were required for less
than 1% of feature pairs. The figure shows that the calls to FPH varsAnalysis
(to compute SV, in blue) were not required for over 96% of feature pairs.

To check for non-commutativity violations, SPLVerifier needs to check all
possible products which is infeasible in practice. So we set the timeout to one
hour during which SPLVerifier was able to check 110 products for Elevator, 57 for
Email, 151 for Minepump, 3542 for GPL, 2278 for AJStats and 1269 for ZipMe.
For each of these systems, a different check is required for every specification,
thus the same product is checked more than once if more than one specification
exists. Even though GPL, AJStats and ZipMe are larger systems with more fea-
tures, they have fewer properties associated with them and therefore we were
able to check more products within one hour. Thus, to answer RQ3, FPH was
much more efficient than SPLVerifier in performing non-commutativity analysis.
SPLVerifier was only able to analyze products containing the base system and
at most three features before reaching a timeout. Moreover, FPH can guaran-
tee commutativity, while SPLVerifier cannot because of it being based on the
properties given.

Our experiments also allow us to conclude that our technique is highly scal-
able (RQ4). E.g., the percentage of calls to FPH varsAnalysis is shown to be
small and increases only slightly with increase in the number of fragments (see
Fig. 6a and b).
Threats to Validity. Our results may not generalize to other feature-based sys-
tems expressed in Java. We believe we have mitigated this threat by running our
tool on examples provided by FeatureHouse. They include a variety of systems
of different sizes which we consider to be representative of typical Java feature-
based systems. As mentioned earlier, our use of SPLVerifier was not as intended
by its designers. We also had no ground truth when the shared variable check
was required. For those few cases, we calculated SPLVerifier’s relative instead of
actual recall.

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 333

5 Related Work

In this section, we survey related work on modular feature definitions, feature
interaction detection and commutativity-related feature interactions.
Modular Feature Definitions. A number of approaches to modular feature
definitions have been proposed. E.g., the composition language in [8] includes
states in which the feature is to be composed (similar to our fg.location) and the
feature behavior (similar to our fb.body). Other work [4,9,10] uses superimposi-
tion of FSTs to obtain the composed system. In [14,25], new variables are added
or existing ones are changed with particular kind of compositions (either execut-
ing a new behavior when a particular variable is read, or adding a check before a
particular variable is set). These approaches treat the feature behavior together
with its composition specification. Instead, our approach automatically separates
feature definition into the behavioral and the composition part, enabling a more
scalable and efficient analysis.
Feature Interaction Detection. Calder et al. [13] survey approaches for ana-
lyzing feature interactions. Interactions occur because the behavior of one fea-
ture is being affected by others, e.g., by adding non-deterministic choices that
result in conflicting states, by adding infinite loops that affect termination, or
by affecting some assertions that are satisfied by the feature on its own. Check-
ing these properties as well as those discussed in more recent work [8,15,18,19]
requires building the entire SPL. Additionally, all these approaches consider state
machine representations which are not available for most SPLs, and extracting
them from code is non-trivial. SPLLift [12] is a family-based static analysis tool
not directly intended to find interactions. Any change in a feature would require
building the family-based representation again, whereas we conduct modular
checks between features. Spek [26] is a product-based approach that analyzes
whether the different products satisfy provided feature specifications. It does
not check whether the features commute.
Non-commutativity-Related Feature Interactions. [5,8] also looked at
detecting non-commutativity-related feature interactions. [5] presents a feature
algebra and shows why composition (by superimposition) is, in general, not com-
mutative. [8] analyzes feature commutativity by checking for bisimulation, and
the result of the composition is a state machine representing the product. Neither
work reports on a tool or applies to systems expressed in Java.
Aspect-Oriented Approaches. Storzer et al. [27] present a tool prototype
for detecting precedence-related interactions in AspectJ. Technically, this app-
roach is very similar to ours: it (a) detects which advice is activated at the same
place; (b) checks whether the proceed keyword and exceptions are present; and
(c) analyzes read and written variables. Yet, the focus is on aspects, and often
many aspects are required to implement a single feature [23]. This implies that
for m features with an average of n aspects each, the analysis in [27] needs to
make O

(
(m · n)2

)
checks, while our approach requires O (

m2
)

checks. There-
fore, the approach in [27] might be significantly slower than FPH. [1] analyzes

334 M. Chechik et al.

interactions of aspects given by composition filters by checking for simulation
among all the different orderings in which advice with shared joinpoints can
be composed. As the number of advice with shared joinpoints increases, that
approach considers every possible ordering, while we keep the analysis pair-
wise. [16,20] define modular techniques to check properties of aspect-oriented
systems. [16] uses assume-guarantee reasoning to verify and detect interactions
even when aspects can be activated within other aspects. It does not require
an order but does require specifications to detect whether a certain composition
order would not satisfy these. [20] uses the explicit CTL model-checking algo-
rithm to distribute global properties into local properties to be checked for each
aspect. This yields a modular check. In addition to requiring specifications, this
technique assumes AspectJ’s ordering of aspects.

6 Conclusion and Future Work

In this paper, we presented a compositional approach for checking non-
commutativity of features in systems expressed in Java. The method is based on
determining whether pairs of features can write to the same variables and thus
the order in which features are composed to the base system may determine their
valuation. The method is complementary to other feature interaction detection
approaches such as [6,12] in that it helps build an order in which features are
to be composed. When two features commute, they can be composed in any
order. In addition, this method helps detect a number of feature interactions.
The method is implemented in our framework FPH – Mr. Feature Potato Head.
FPH does not require specifying properties of features and does not need to
consider the entire set of software products every time a feature is modified. By
performing an extensive empirical evaluation of FPH, we show that the approach
is highly scalable and effective. In the future, we plan to further evaluate our
technique, handle languages outside of Java and experiment with more precise
methods for determining shared variables.

Acknowledgements. We thank anonymous reviewers for their helpful comments.
This research has been supported by NSERC.

References

1. Aksit, M., Rensink, A., Staijen, T.: A graph-transformation-based simulation app-
roach for analysing aspect interference on shared join points. In: Proceedings of
AOSD 2009, pp. 39–50 (2009)

2. Apel, S., Atlee, J., Baresi, L., Zave, P.: Feature interactions: the next generation
(Dagstuhl Seminar 14281). Dagstuhl Rep. 4(7), 1–24 (2014)

3. Apel, S., Kästner, C.: An overview of feature-oriented software development. J.
Object Technol. 8(5), 49–84 (2009)

4. Apel, S., Kastner, C., Lengauer, C.: FeatureHouse: language-independent, auto-
mated software composition. In: Proceedings of ICSE 2009, pp. 221–231 (2009)

FPH: Efficient Non-commutativity Analysis of Feature-Based Systems 335

5. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebra for features and feature
composition. In: Proceedings of AMAST 2008, pp. 36–50 (2008)

6. Apel, S., Von Rhein, A., Wendler, P., Groslinger, A., Beyer, D.: Strategies for
product-line verification: case studies and experiments. In: Proceedings of ICSE
2013 (2013)

7. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. ACM SIGPLAN Not. 49(6),
259–269 (2014)

8. Atlee, J., Beidu, S., Fahrenberg, U., Legay, A.: Merging features in featured tran-
sition systems. In: Proceedings of MoDeVVa@MODELS 2015, pp. 38–43 (2015)

9. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling step-wise refinement. IEEE TSE
30(6), 355–371 (2004)

10. Beidu, S., Atlee, J., Shaker, P.: Incremental and commutative composition of state-
machine models of features. In: Proceedings of MiSE@ICSE 2015, pp. 13–18 (2015)

11. Berger, T., Lettner, D., Rubin, J., Grünbacher, P., Silva, A., Becker, M., Chechik,
M., Czarnecki, K.: What is a feature?: A qualitative study of features in industrial
software product lines. In: Proceedings of SPLC 2015, pp. 16–25 (2015)

12. Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: SPLLift:
Statically analyzing software product lines in minutes instead of years. In: Proceed-
ings of PLDI 2013, pp. 355–364 (2013)

13. Calder, M., Kolberg, M., Magill, E., Reiff-Marganiec, S.: Feature interaction: A
critical review and considered forecast. Comput. Netw. 41(1), 115–141 (2003)

14. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: Formal seman-
tics, modular specification, and symbolic verification of product-line behaviour.
Sci. Comput. Program. 80, 416–439 (2014)

15. Cordy, M., Classen, A., Schobbens, P.-Y., Heymans, P., Legay, A.: Managing evo-
lution in software product lines: a model-checking perspective. In: Proceedings of
VaMoS 2002, pp. 183–191 (2012)

16. Disenfeld, C., Katz, S.: A closer look at aspect interference and cooperation. In:
Proceedings of AOSD 2012, pp. 107–118. ACM (2012)

17. Fantechi, A., Gnesi, S., Semini, L.: Optimizing feature interaction detection. In:
Petrucci, L., Seceleanu, C., Cavalcanti, A. (eds.) FMICS-AVoCS 2017. LNCS, vol.
10471, pp. 201–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67113-0 13

18. Guelev, D., Ryan, M., Schobbens, P.-Y.: Model-checking the preservation of tem-
poral properties upon feature integration. STTT 9(1), 53–62 (2007)

19. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model composition in
product lines and feature interaction detection using critical pair analysis. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS,
vol. 4735, pp. 151–165. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75209-7 11

20. Krishnamurthi, S., Fisler, K., Greenberg, M.: Verifying aspect advice modularly.
In: ACM SIGSOFT SEN, vol. 29, pp. 137–146. ACM (2004)

21. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Proceedings of CETUS 2011, vol. 15, p. 35
(2011)

22. Liu, J., Batory, D., Nedunuri, S.: Modeling interactions in feature oriented software
designs. In: Proceedings of ICFI 2005 (2005)

https://doi.org/10.1007/978-3-319-67113-0_13
https://doi.org/10.1007/978-3-319-67113-0_13
https://doi.org/10.1007/978-3-540-75209-7_11
https://doi.org/10.1007/978-3-540-75209-7_11

336 M. Chechik et al.

23. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating support for features
in advanced modularization technologies. In: Black, A.P. (ed.) ECOOP 2005.
LNCS, vol. 3586, pp. 169–194. Springer, Heidelberg (2005). https://doi.org/10.
1007/11531142 8

24. Nipkow, T., Von Oheimb, D.: Javalight is type-safe - definitely. In: Proceedings of
PLDI 1998, pp. 161–170. ACM (1998)

25. Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput.
Program. 41(1), 53–84 (2001)

26. Scholz, W., Thüm, T., Apel, S., Lengauer, C.: Automatic detection of feature inter-
actions using the java modeling language: an experience report. In: Proceedings of
SPLC 2011, p. 7 (2011)

27. Storzer, M., Forster, F.: Detecting precedence-related advice interference. In: Pro-
ceedings of ASE 2006, pp. 317–322, September 2006

28. Zave, P.: Feature interactions and formal specifications in telecommunications.
IEEE Comput. 26(8), 20–29 (1993)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/11531142_8
https://doi.org/10.1007/11531142_8
http://creativecommons.org/licenses/by/4.0/

Taming Multi-Variability of Software
Product Line Transformations

Daniel Strüber1(B) , Sven Peldzsus1 , and Jan Jürjens1,2

1 Universität Koblenz-Landau, Koblenz, Germany
{strueber,peldszus,juerjens}@uni-koblenz.de

2 Fraunhofer Institute for Software and Systems Engineering, Dortmund, Germany

Abstract. Software product lines continuously undergo model transfor-
mations, such as refactorings, refinements, and translations. In product
line transformations, the dedicated management of variability can help
to control complexity and to benefit maintenance and performance. How-
ever, since no existing approach is geared for situations in which both
the product line and the transformation specification are affected by
variability, substantial maintenance and performance obstacles remain.
In this paper, we introduce a methodology that addresses such multi-
variability situations. We propose to manage variability in product
lines and rule-based transformations consistently by using annotative
variability mechanisms. We present a staged rule application technique
for applying a variability-intensive transformation to a product line. This
technique enables considerable performance benefits, as it avoids enu-
merating products or rules upfront. We prove the correctness of our
technique and show its ability to improve performance in a software
engineering scenario.

1 Introduction

Software product line engineering [1] enables systematic reuse of software arti-
facts through the explicit management of variability. Representing a software
product line (SPL) in terms of functionality increments called features, and map-
ping these features to development artifacts such as domain models and code
allows to generate custom-tailored products on demand, by retrieving the corre-
sponding artifacts for a given feature selection. Companies such as Bosch, Boe-
ing, and Philips use SPLs to deliver tailor-made products to their customers [2].

Despite these benefits, a growing amount of variability leads to combinatorial
explosions of the product space and, consequently, to severe challenges. Notably,
this applies to software engineering tasks such as refactorings [3], refinements [4],
and evolution steps [5], which, to support systematic management, are often
expressed as model transformations. When applying a given model transforma-
tion to a SPL, a key challenge is to avoid enumerating and considering all possible
products individually. To this end, Salay et al. [6] have proposed an algorithm
that “lifts” regular transformation rules to a whole product line. The algorithm

c© The Author(s) 2018
A. Russo and A. Schürr (Eds.): FASE 2018, LNCS 10802, pp. 337–355, 2018.
https://doi.org/10.1007/978-3-319-89363-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89363-1_19&domain=pdf
http://orcid.org/0000-0002-5969-3521
http://orcid.org/0000-0002-2604-0487
http://orcid.org/0000-0002-8938-0470

338 D. Strüber et al.

transforms the SPL, represented as a variability-annotated domain model, in
such way as if each product had been considered individually.

Yet, in complex transformation scenarios as increasingly found in prac-
tice [7], not only the considered models include variations: The transforma-
tion system can contain variability as well, for example, due to desired optional
behavior of rules, or for rule variants arising from the sheer complexity of the
involved meta-models. While a number of works [8–10] support systematic reuse
to improve maintainability, variability-based model transformation (VB) [11,12]
also aims to improve the performance when a transformation system with many
similar rules is executed. To this end, these rules are represented as a single rule
with variability annotations, called VB rule. During rule applications, a special
VB rule application technique [13] saves redundant effort by considering com-
mon rule parts only once. In summary, for cases where either the model or the
transformation system alone contains variability, solid approaches are available.

However, a more challenging case occurs when a variability-intensive trans-
formation is applied to an SPL. In this multi-variability setting, where both
the input model and the specification of a transformation contain variability,
the existing approaches fall short to deal with the resulting complexity: One
can either consider all rules, so they can be “lifted” to the product line, or
consider all products, so they become amenable to VB model transformation.
Both approaches are undesirable, as they require enumerating an exponentially
growing number of artifacts and, therefore, threaten the feasibility of the trans-
formation.

In this paper, we introduce a methodology for SPL transformations inspired
by the uniformity principle [14], a tenet that suggests to handle variability con-
sistently throughout all software artifacts. We propose to capture variability of
SPLs and transformations using variability-annotated domain models and rules.
Model and rule elements are annotated with presence conditions, specifying the
conditions under which the annotated elements are present. The presence condi-
tions of model and rule elements are specified over two separate sets of features,
representing SPL and rule variability. Annotated domain models and rules can
be created manually using available editor support [15,16], or automatically from
existing products and rules by using merge-refactoring techniques [17,18].

Given an SPL and a VB rule, as shown in Fig. 1, we provide a staged rule
application technique (black arrow) for applying a VB rule to a SPL. In contrast
to the state of the art (shown in gray), enumerating products or rules upfront is
not required. By adopting this technique, existing tools that use transformation
technology, such as refactoring engines, may benefit from improved performance.

Specifically, we make the following contributions:

– We introduce a staged technique for applying a VB rule to an SPL. Our
technique combines core principles of VB rule applications and lifting, while
avoiding their drawbacks w.r.t. enumerating all products or rules upfront.

– We formally prove correctness of this technique by showing its equivalence to
the application of each “flattened” product to each “flattened” rule.

– We present an algorithm for implementing the rule application technique.

Taming Multi-Variability of Software Product Line Transformations 339

Fig. 1. Overview

– We evaluate the usefulness of our technique by studying its performance in a
substantial number of cases within a software engineering scenario.

Our work builds on the underlying framework of algebraic graph transfor-
mation (AGT) [19]. AGT is one of the standard model transformation language
paradigms [20]; in addition, it has recently gained momentum as an analysis
paradigm for other widespread paradigms and languages such as ATL [21]. We
focus on the annotative paradigm to variability. Suitable converters to and from
alternative paradigms, such as the composition-based one [22], may allow our
technique to be used in other cases as well.

The rest of this paper is structured as follows: We motivate and explain our
contribution using a running example in Sect. 2. Section 3 revisits the necessary
background. Section 4 introduces the formalization of our new rule application
technique. The algorithm and its evaluation are presented in Sects. 5 and 6,
respectively. In Sect. 7 we discuss related work, before we conclude in Sect. 8.

2 Running Example

In this section, we introduce SPLs and variability-based model transformation by
example, and motivate and explain our contribution in the light of this example.

Software Product Lines. An SPL represents a collection of models that are
similar, but different to each other. Figure 2 shows a washing machine controller
SPL in an annotative representation, comprising an annotated domain model
and a feature model. The feature model [23] specifies a root feature Wash with
three optional children Heat, Delay, and Dry, where Heat and Delay are mutually
exclusive. The domain model is a statechart diagram specifying the behavior
of the controller SPL based on states Locking, Waiting, Washing, Drying, and
UnLocking with transitions between them. Presence conditions, shown in gray
labels, denote the condition under which an annotated element is present. These
conditions are used to specify variations in the execution behavior.

Concrete products can be obtained from configurations, in which each
optional feature is set to either true or false. A product arises by removing

340 D. Strüber et al.

Locking Wai ng

Washing

Unlocking

Product

[PRESS_DELAYED
_START]/

Heat ∨Delay
Locking

Unlocking

Product line Domain model

Drying

¬Heat[PRESS_START]
/ startWash / startWash

Dry
Dry¬Dry

Wash

Delay Heat Dry

Feature model

[PRESS_
START]/
startWash / startWash

excludes

Washing

entry/tempCheck x

Heat ∨
Delay

Wai ng

exit/heaterOff

Heat ∨
Delay

Heat

Dry

[PRESS_DELAYED_START]
[PRESS_START]
/ heaterOn

Delay
Heat

Heat
Heat ∨
Delay

{Delay=T;Heat=F;Dry=F}

Heat

Fig. 2. Washing machine controller product line and product (adapted from [6]).

those elements whose presence condition evaluates to false in the given con-
figuration. For instance, selecting Delay and deselecting Heat and Dry yields
the product shown in the right of Fig. 2. The SPL has six configurations and
products in total, since Wash is non-optional and Delay excludes Heat.

Variability-Based (VB) Model Transformation. In complex model trans-
formation scenarios, developers often create rules that are similar, but different
to each other. As an example, consider two rules foldEntryActions and foldExi-
tActions (Fig. 3), called A and B in short. These rules express a “fold” refactoring
for statechart diagrams: if a state has two incoming or outgoing transitions with
the same action, these actions are to be replaced by an entry or exit action of
the state. The rules have a left- and a right-hand side (LHS, RHS). The LHS
specifies a pattern to be matched to an input graph, and the difference between
the LHS and the RHS specifies a change to be performed for each match, like
the removing of transition actions, and the adding of exit and entry actions.

Rules A and B are simple; however, in a realistic transformation system, the
number of required rules can grow exponentially with the number of variation
points in the rules. To avoid combinatorial explosion, a set of variability-intensive
rules can be encoded into a single representation using a VB rule [12,18]. A VB
rule consist of a LHS, a RHS, a feature model specifying a set of interrelated
features, and presence conditions annotating LHS and RHS elements with a
condition under which they are present. Individual “flat” rules are obtained via
configuration, i.e., binding each feature to either true or false. In the VB rule
A + B, the feature model specifies a root feature refactor with alternative child
features foldEntry and foldExit. Since exactly one child feature has to be active
at one time, two possible configurations exist. The two rules arising from these
configurations are isomorphic to rules A and B.

Problem Statement. Model transformations such as foldActions are usually
designed for applications to a concrete software product, represented by a single

Taming Multi-Variability of Software Product Line Transformations 341

x1: State

x2: State

/ a

/ a

/ b
/ b

foldEntry
foldEntry

foldExit

foldExit

foldEntry
foldEntry

foldExit
foldExit

x1: State

x2: State

x: State

entry / a
exit / b

foldEntry

foldExit

foldEntry

foldExit foldExit
foldEntry

refactor

foldEntry foldExit

LHS RHS Feature model

Rule A+B: foldAc ons

x1: State

x2: State

x: State

entry / a

LHS RHS

Rule A: foldEntryAc ons

/ a

/ a

/ b

x1: State

x2: State

x1: State

x2: State

x: State

exit / b

LHS RHS

Rule B: foldExitAc ons

/ b
x1: State

x2: State

x: State

x: State x: State

Fig. 3. Two rules and their encoding into a variability-based rule (adapted from [24]).

model. However, in various situations, it is desirable to extend the usage context
to a set of models collected in an SPL. For example, during the batch refactoring
of an SPL, all products should be refactored in a uniform way.

Variability is challenging for model transformation technologies. As illus-
trated in Table 1, products and rules need to be considered in manifold combi-
nations. In our example, without dedicated variability support, the user needs to
specify 6 products and 2 rules individually and trigger a rule application for each
of the 12 combinations. A better strategy is enabled by VB model transforma-
tion: by applying the VB rule A+B, only 6 combinations need to be considered.
Another strategy is to apply rules A and B to the SPL by lifting [6] them, lead-
ing to 2 combinations and the biggest improvement so far. Still, in more complex
cases, all of these strategies are insufficient. Since none of them avoids an expo-
nential growth along the number of optional SPL features (#FP) or optional
rule features (#Fr), the feasibility of the transformation is threatened.

Table 1. Approaches for dealing with multi-variability.

Approach Independent combinations

Example General case

Naive 12 2#FP * 2#Fr

VB transformation [12] 6 2#FP

Lifting [6] 2 2#Fr

Staged application (new) 1 1

342 D. Strüber et al.

1: Match base rule
LHS to domain model

2: Continue
matching for

relevant flat rules

x: State

/ a

/ a

x1: State

x: State

x2: State

Locking Wai ng

Washing

entry/tempCheck

Unlocking

x1: State

x2: State

3: Lift rule
application to P,

accounting for PCs

x: State

entry/a

x1: State

x2: State

Locking Wai ng

Washing

entry/tempCheck
entry/startWash

DryingUnlocking

Rule application
not possible

Input product line P Transformed product line P‘

Drying

Heat

¬Heat

/ startWash
/ startWash

Heat ∨
Delay

Heat

¬Heat
/ startWash

/ startWash

Heat ∨
Delay

Delay

Heat¬Heat ∨¬Delay

Fig. 4. Staged rule application of a VB rule to a product line.

Solution Overview. To address this situation, we propose a staged rule appli-
cation technique for applying a VB rule to an SPL. As shown in Fig. 4, this
technique proceeds in three steps: In step 1, we consider the base rule, that is,
the common portion of rules encoded in the VB rule, and match its LHS to the
full domain model, temporarily ignoring its presence conditions. For example,
considering rule A + B, the LHS of the base rule contains precisely states x1,
x2, and x. A match to the domain model is indicated by dashed arrows. Using
the presence conditions, we determine if the match can be mapped to any spe-
cific product. In step 2, we extend the identified base matches to identify full
matches of the rules encoded in the VB rule. In the example, we would derive
rules A and B; in general, to avoid fully flattening all involved rules, one can
incrementally consider common subrules. An example match is denoted in terms
of dashed lines for the mappings of transitions and actions. In step 3, to perform
rule applications based on identified matches, we use lifting to apply the rule
for which the match was found. Lifting transforms the domain model and its
presence condition in such way as if each product was considered individually.
In the example, only products for the configuration {Delay = true; Heat = false}
are amenable to the foldAction refactoring. Consequently, the new entry action
startWash has the presence condition Delay, and other presence conditions are
adjusted accordingly. Failure to find suitable matches and to fulfill a certain
condition during lifting (discussed later) allows early termination of the process.

Performance-wise, the main benefit of this technique is twofold: First, using
the termination criteria, we can exit the matching process early without con-
sidering specifics of products and rule variants. This is particularly beneficial in
situations where none or only few rules of a larger rule set are applicable most
of the time, which is typically the case, for example, in translators. Second, even
if we have to enumerate some rules in step 2, we do not have to start the match-
ing process from scratch, since we can save redundant effort by extending the
available base matches. Consequently, Table 1 gives the number of independent
combinations (in the sense that rule applications are started from scratch) as 1.

Taming Multi-Variability of Software Product Line Transformations 343

3 Background

We now introduce the necessary prerequisites of our methodology, starting with
the double-pushout approach to algebraic graph transformation [19]. As the
underlying structure, we assume the category of graphs with graph morphisms
(referred to as morphisms from here), although all considerations are likely com-
patible with additional graph features such as typing and attributes.

Definition 1 (Rules and applications). A rule r = (L le←− I ri−→ R) consists
of graphs L, I and R, called left-hand side, interface graph and right-hand side,
respectively, and two injective morphisms le and ri.

Given a rule r, a graph G, and a mor-
phism m : L → G, a rule application
from G to a graph H, written G ⇒r,m H,
arises from the diagram to the right, where
(1) and (2) are pushouts. G, m and H are
called start graph, match, and result graph,
respectively.

L

m

��

I
le��

d

��

ri �� R

m′

��

(1) (2)

G D
g�� h �� H

A rule application exists iff the match m fulfills the gluing condition, which,
in the category of graphs boils down to the dangling condition: all adjacent edges
of a deleted node in m’s image m[L] must have a preimage in L.

Product Lines. Our formalization represents product lines on the semantic
level by considering interrelations between the included graphs. The domain
model is a “maximal” graph of which all products are sub-graphs. The presence-
condition function maps sub-graphs (rather than elements, as done on the syntac-
tic level) to terms in the boolean term algebra over features, written TBOOL(FP).
The set of all sub-graphs of the domain model is written P(MP).

Definition 2 (Product line, configuration, product)

– A product line P = (FP , ΦP ,MP , fP) consists of three parts: a feature model
that consists of a set FP of features, and a set of feature constraints ΦP ⊆
TBOOL(FP), a domain model MP given as a graph, and a set of presence
conditions expressed as a function fP : P(MP) → TBOOL(FP).

– Given a set of features F , a configuration is a total function c : F →
{true, false}. A configuration c satisfies a term t ∈ TBOOL(F) if t evalu-
ates to true when each variable v in t is substituted by c(v). A configuration
c is valid w.r.t. a set of constraints Φ if c satisfies every constraint in Φ.

– Given a product line P = (FP , ΦP ,MP , fP), a product Pc is derived from P
under the valid configuration c if Pc is the union of all those graphs M ′ ⊆ MP

for which fP (M ′) is satisfied by c: Pc =
⋃{M ′ ⊆ MP |c satisfies fP (M ′)

and c is valid w.r.t. ΦP }. The flattening of P is the set Flat(P) of all products
of P : Flat(P) = {Pc|Pc is a product ofP}.

Definition 3 (Lifted rule application). Given a product line P , a rule r,
and a match m : L → MP , a lifted rule application P ⇒↑

r,m Q is a construction

344 D. Strüber et al.

that relates P to a product line Q s.t. FP = FQ, ΦP = ΦQ, and the set of products
Flat(Q) is the same as if r was applied to each product Pi ∈ Flat(P) for which
an inclusion j : m[L] → Pi from the image of m exists.

Salay et al. [6] provide an algorithm for which it is shown that the proper-
ties required in Definition 3 apply. The algorithm extends a rule application to
the domain model by a check that the match can be mapped to at least one
product, and by dedicated presence condition handling during additions and
deletions. A more declarative treatment is offered by Taentzer et al. [25]’s prod-
uct line pushout construction, which is designed to support lifted rule application
as a special case.

Variability-Based Transformation. VB rules are defined similarly to product
lines, with a “maximal” rule instead of a domain model, and a notion of subrules
instead of subgraphs. A subrule is a rule that can be embedded into a larger rule
injectively s.t. the actions of rule elements are preserved [12], e.g., deletions are
mapped to deletions. The set of all subrules of a rule r is written P(r).

Definition 4 (Variability-based (VB) rule). A VB rule ř = (Fř, Φř, rř, fř)
consists of three parts: a feature model that consists of a set Fř of features, and a
set of feature constraints Φř ⊆ TBOOL(Fř), a maximal rule rř being a rule, and
a set of presence conditions expressed as a function fP : P(rř) → TBOOL(Fř).

To later consider the base rule, that is, a maximal subrule of multiple
flat rules, we define the flattening of VB rules in terms of consecutive inter-
section and union constructions, expressed as multi-pullbacks and -pushouts
[12]. The multi-pullback r0 gives the base rule, over which the flat rule arises by
multi-pushout.

Definition 5 (Flat rule). Given a VB
rule ř, for a valid configuration c w.r.t.
Φř, there exists a unique set of n subrules
Sc ⊆ P(rř) s.t. ∀s ∈ P(rř) : s ∈ Sc iff c
satisfies fř(s). Merging these subrules via
multi-pullback and multi-pushout over rř
and r0, respectively, yields a rule rc, called
flat rule induced by c. The flattening of
ř is the set Flat(ř) of all flat rules of ř:
Flat(ř) = {rc|rc is a flat rule of ř}.

L0

����� �� ���
��

I0
����� �� ���

��
let�� rit �� R0

		��� �� ���
��

L1

���
��

��

Li

��
Ln

		���

		

I1
���
��

Ii
��

In
�����

��

R1

���
��

��

Ri

��
Rn

					

		
Lc

��
Ic

lerc�� rirc ��

��
Rc

��
Lř Iř

le�� ri �� Rř

In the example, rř is the rule A+B, ignoring presence conditions. Given the
configuration c = {foldEntry = true, foldExit = false}, the multi-pullback over
each subrule whose presence condition satisfies c yields as the base rule r0 pre-
cisely the part of rule A + B without presence conditions (i.e., only the states).
The resulting flat rule rc is isomorphic to rule A.

As a prerequisite for achieving efficiency during staged application, we revisit
VB rule application. The key idea is that matches of a flat rule are composed
from matches of all of its subrules. By considering the subrules during matching,
we can reuse matches over several rules and identify early-exit opportunities.

Taming Multi-Variability of Software Product Line Transformations 345

Definition 6 (VB match family, VB match, VB rule application)

– Given a variability-based rule ř, a graph G, and a valid configuration c,
there exists a unique set of subrules Sc ⊆ rř s.t. ∀s ∈ P(rř) : s ∈ Sc

iff c satisfies fř(s). A variability-based match family is a family of mor-
phisms (ms : Ls → G)1≤s≤|Sc| s.t. ∀mi,mj with 1 ≤ i, j ≤ |Sc| the following
compatability condition holds: ∀x ∈ dom(mi) ∩ dom(mj) : mi(x) = mj(x).

– Given a variability-based match family (ms) for ř, G,
and c, a variability-based match m̌ is a pair (mc, c)
where the morphism mc : Lc → G is obtained by the
colimit property of Lc. If mc is a match, m̌ is called a
variability-based match.

Li
mi

�� ��

Lj
mj

�� ��
G Lcmc

��

– Given a variability-based match m̌ = (mc, c) for ř and G, the application of
ř at m̌ is the rule application G ⇒rc,mc

H of the flat rule rc to mc.

In the example, a VB match family is obtained: Step 1 collects matches of
the LHS L0. Step 2 reuses these matches to match the flat rules: according to
the compatibility condition, we may extend the matches rather than start from
scratch. The set of VB rule applications for a rule ř to a model G is equivalent
to the set of rule applications of all flat rules in Flat(ř) to G [12, Theorem 2].

4 Multi-variability of Product Line Transformations

A variability-based rule represents a set of similar transformation rules, while a
product line represents a set of similar models. We consider the application of a
variability-based rule to a product line from a formal perspective. Our idea is to
combine two principles of maximality, which, up to now, were considered in isola-
tion: First, by applying a rule to a “maximum” of all products, the rule can be lifted
efficiently to a product line (Definition 3). Second, by reusing matches of a maximal
subrule, several rules can be applied efficiently to a single model (Definition 6).

We study three strategies for applying a variability-based rule ř to a product
line P ; the third one leads to the notion of staged rule application as introduced
in Sect. 2. First, we consider the naive case of flattening ř and P and applying
each rule to each product. Second, we take the two maximality principles into
account to avoid the flattening of ř. Third, we use additional aspects from the
first principle to avoid the flattening of P as well. We show that all strategies
are equivalent in the sense that they change all of P ’s products in the same way.

4.1 Fully Flattened Application

Definition 7 (Fully flattened application). Given the flattening of a prod-
uct line P and the flattening of a rule family ř, the set of fully-flattened rule
applications TransFF (P, ř) arises from applying each rule to each product:

TransFF (P, ř) = {Pi ⇒rc,mc Qi|Pi ∈ Flat(P), rc ∈ Flat(ř),match mc : Lc → Pi}

346 D. Strüber et al.

In the example, there are two rules and six products; however, only for two
products—the ones arising from configurations with Delay = true and Heat
= false—a match, and, therefore, a rule application exists, as we saw in the
earlier description of the example. TransFF (P, ř) comprises the resulting two
rule applications.

4.2 Partially Flattened Application

We now consider a strategy that aims to avoid unflattening the variability-based
rule ř. We use the fact that the rules in ř generally share a maximal, possibly
empty sub-rule r0 that can be embedded into all rules in ř. Moreover, we exploit
the fact that each product has an inclusion into the domain model.

The key idea is as follows: each match of a flat rule to a product includes a
match of r0 into the domain model MP . Absence of such a match implies that
none of the rules in ř has a match, allowing us to stop without considering any
flat rule in its entirety. Such exit point is particularly beneficial if the VB rule
represents a subset of a larger rule set in which only a few rules can be matched
at one time. Conversely, if a match for r0 exists, a rule application arises if the
match can be “rerouted” onto one of the products Pi. In this case, we consider
the flat rules, saving redundant matching effort by reusing the matches of r0.

Fig. 5. Partially flattened rule application.

To reuse matches to the domain model for the products, we introduce the
rerouting of a morphism from its codomain onto another graph G′. We omit
naming the codomain and G′ explicitly where they are clear from the context.

Definition 8 (Rerouted morphism). Let an inclu-
sion i : G′ → G, a morphism m : L → G with
an epi-mono-factorization (e,m′), and a morphism j :
m[L] → G′ be given, s.t. m′ = i ◦ j. The rerouted mor-
phism reroute(m,G′) : L → G′ arises by composition:
reroute(m,G′) = j ◦ e.

G′
i

�� G L
m

��

e����
��
��
��

reroute(m,G)

 ������

m[L]

m′

��

j

����������

Taming Multi-Variability of Software Product Line Transformations 347

Definition 9 (Rerouted variability-based match). Given a graph G, a
variability-based rule ř with a variability-based match m̌ = (mc, c) (Definition 6),
and an inclusion i : G′ → G. If the epi-mono-factorization of mc and a suitable
morphism j exists, a rerouted morphism onto G′ arises (Definition 8). Pairing
this morphism with the configuration c induces the rerouted variability-based
match of m̌c onto G′: reroute(m̌,G′) = (reroute(mc, G

′), c).

In Fig. 5, mc,h is the morphism obtained by rerouting a match mc,t from the
domain model Mp to product Ph. For example, if mc,t is the match indicated
in steps 1 and 2 of Fig. 4, the morphism j and, consequently, mc,h exists only
for products in which all images of the mappings exist as well, e.g., the product
shown in the right of Fig. 2. Note that mc,t is a variability-based match to MP :
In an earlier explanation, we saw that the family (mi,t) forms a variability-based
match family. Therefore, per Definition 9, pairing mc,h with the configuration c
induces a variability-based match to Ph, which can be used as follows.

Variability-based rule application (Definition 6) allows us to save matching
effort by considering shared parts of rules to a graph only once. The following
definition allows us to lift this insight from graphs onto product lines. We show
that the sets of partially and fully flattened rule applications are equivalent.

Definition 10 (Partially flattened application). Given a variability-based
rule ř and a product line P , the set of partially flattened rule applications
TransPF (P, ř) is obtained by rerouting all variability-based matches from the
domain model MP to products in P and collecting all resulting rule applications:

TransPF (P, ř) = {Pi ⇒ř,m̌′ Qi | m̌ = (mc, c) is a VB match of ř to MP ,

Pi ∈ Flat(P), m̌′ = (reroute(mc, Pi), c) is a VB match}
Theorem 1 (Equivalence of fully and partially flattened rule applica-
tions). Given a product line P and a variability-based rule ř, TransFF (P, ř) =
TransPF (P, ř).

Proof idea.1 For every fully flattened (FF) rule application, we can find a corre-
sponding partially flattened (PF) one, and vice versa: Given a FF rule applica-
tion at a match m′, we compose m′ with the product inclusion into the domain
model MP to obtain a match mc into MP . Per Theorem 2 in [12], mc induces
a VB match and rule application. From a diagram chase, we see that m′ is the
morphism arising from rerouting mc onto the product Pi. Consequently, the rule
application is PF. Conversely, a PF variability-based rule application induces a
corresponding FF rule application by its definition.

4.3 Staged Application

The final strategy we consider, staged application, aims to avoid unflattening the
products as well. This can be achieved by employing lifting (Definition 3): Lifting
1 A full proof is provided in the extended version of this paper: http://danielstrueber.

de/publications/SPJ18.pdf.

http://danielstrueber.de/publications/SPJ18.pdf
http://danielstrueber.de/publications/SPJ18.pdf

348 D. Strüber et al.

takes a single rule and applies it to a domain model and its presence conditions
in such a way as if the rule had been applied to each product individually. The
considered rule in our case is a flat rule with a match to the domain model.

Note that we cannot compare the set of staged applications directly to the
set of flattened applications, since it does not live on the product level. We can,
however, compare the obtained sets of products from both sets of applications,
which happens to be the same, thus showing the correctness of our approach.

Definition 11 (Staged application). Given a variability-based rule ř and a
product line P , the set of staged applications TransSt(P, ř) is the set of lifted
rule applications obtained from VB matches to the domain model MP :

TransSt(P, ř) ={P ⇒↑
rc,mc

Q | m̌ = (mc, c) is a VB match of ř to MP }

Corollary 1 (Equivalence of staged and partially flattened rule appli-
cations). Given a product line P and a variability-based rule ř, the sets of
products obtained from TransSt(P, ř) and TransPF (P, ř) are isomorphic.

Proof. Since both sets are defined over the same set of matches of flat rules, the
proof follows straight from the definition of lifting.

5 Algorithm

Algorithm 1. Staged application.
Input : Product line P, VB rule ř
Output: Transformed product line P

1 BMatches := findMatches(ModelP , r0);
2 foreach m ∈ BMatches do
3 Φpc :=

∧ { pc ∈ pcspre };
4 if ΦP ∧ Φpc is SAT then
5 foreach c ∈ configs(ř) do
6 flatRule := rř.removeAll(e |

c � pce);
7 Matches := findMatches(

ModelP , flatRule, m);
8 lift(P, flatRule, Matches);

9 end

10 end

11 end

We present an algorithm for
implementing the staged applica-
tion of a VB rule ř to a product
line P . Following the overview
in Sect. 2 and the treatment in
Sect. 4, the main idea is to pro-
ceed in three steps: First, we
match the base rule of ř to
the domain model, ignoring pres-
ence conditions. Second, we con-
sider individual rules as far as
necessary to obtain matches to
the domain model. Third, based
on the matches, we perform the
actual rule application by using
the lifting algorithm from [6] in a
black-box manner.

Algorithm 1 shows the computation in more detail. In line 1, ř’s base rule r0
is matched to the domain model ModelP , leading to a set of base matches. If
this set is empty, we have reached the first exit criterion and can stop directly.
Otherwise, given a match m, in line 2, we check if at least one product Pi exists
that m can be rerouted onto (Definition 8). To this end, in lines 3–4, we use a SAT
solver to check if there is a valid configuration of P ’s feature model for which all

Taming Multi-Variability of Software Product Line Transformations 349

Table 2. Subject rule set.

Category #Rules #VBRules

Create/Set 274 171

Delete/Unset 164 121

Change/Move 966 212

Total 1404 504

Table 3. Subject product lines.

SPL #Elements #Products

1: InCar 116 54

2: E2E 130 94

3: JSSE 24,077 64

4: Notepad 252 512

5: Mobile 4,069 3,072

6: Lampiro 29,045 5,892

presence conditions of matched elements evaluate to true. In this case, we iterate
over the valid configurations of ř in line 5 (we may proceed more fine-grainedly by
using partial configurations; this optimization is omitted for simplicity). In line
6, a flat rule is obtained by removing all elements from the rule whose presence
condition evaluates to false. We match this rule to the domain model in line 7; to
save redundant effort, we restrict the search to matches that extend the current
base match. Absence of such a match is the second stopping criterion. Otherwise,
we feed the flat rule and the set of matches to lifting in line 8. Handling dangling
conditions is left to lifting; in the positive case, P is transformed afterwards.

For illustration, consider the base match m1 = {Looking, Waiting, Washing}
from Fig. 4. First we calculate Φpc. As none of the states in the domain model
has a presence condition, Φpc is set to true and is identified as satisfiable. Two
valid configurations exist, c1 = {foldEntry = true, foldExit = false} and c2 =
{foldEntry = false, foldExit = true}. Considering c1, the presence condition
foldExit evaluates to false; removing the corresponding elements yield a rule
isomorphic to Rule A in Fig. 3. Match m1 is now extended using this rule, leading
to a match as shown in step 2 of Fig. 4. and then lifted, as discussed in the earlier
explanation of the example. Step 2 is repeated for configuration c2; yet, as no
suitable match in c2 exists, the shown transformation is the only possible one.

This algorithm benefits from the correctness results shown in Sect. 4. Specifi-
cally, it computes staged rule applications as per Definition 11: A configuration c
is determined in line 5, and values for match mc are collected in the set Matches.
Via Corollary 1 and Theorem 1, the effect of the rule application to the products
is the same as if each product had been considered individually.

In terms of performance, two limiting factors are the use of a graph matcher
and a SAT solver; both of them perform an NP-complete task. Still, we expect
practical improvements from our strategy of reusing shared portions of the
involved rules and graphs, and from the availability of efficient SAT solvers that
scale up to millions of variables [26]. This hypothesis is studied in Sect. 6.

350 D. Strüber et al.

6 Evaluation

To evaluate our technique, we implemented it for Henshin [27,28], a graph-based
model transformation language, and applied it to a transformation scenario with
product lines and transformation variability. The goal of our evaluation was to
study if our technique indeed produces the expected performance benefits.

Setup. The transformation is concerned with the detection of applied editing
operations during model differencing [29]. This setting is particularly interesting
for a performance evaluation: Since differencing is a routine software develop-
ment task, low latency of the used tools is a prerequisite for developer effective-
ness. The rule set, called UmlRecog, is tailored to the detection of UML edit
operations. Each rule detects a specific edit operation, such as “move method to
superclass”, based on a pair of model versions and a low-level difference trace.
UmlRecog comprises 1404 rules, which, as shown in Table 2, fall in three main cat-
egories: Create/Set, Change/Move, and Delete/Unset. To study the effect of our
technique on performance, an encoding of the rules into VB rules was required.
We obtained this encoding using RuleMerger [18], a tool for generating VB rules
from classic ones based on clustering and clone detection [30]. We obtained 504
VB rules; each of them representing between 1 and 71 classic rules. UmlRecog is
publicly available as part of a benchmark transformation set [31].

We applied this transformation to the 6 UML-based product lines specified
in Table 3. The product lines came from diverse sources and include manually
designed ones (1–2), and reverse-engineered ones from open-source projects (3–
6). Each product line was available as an UML model annotated with presence
conditions over a feature model. To produce the model version pairs used by
UmlRecog, we automatically simulated development steps by nondeterministi-
cally applying rules from a set of edit rules to the product lines, using the lifting
algorithm to account for presence conditions during the simulated editing step.

Table 4. Execution times (in seconds) of the lifting and the staged approach.

Create/Set Delete/Unset Change/Move Total

Lift Stage Factor Lift Stage Factor Lift Stage Factor Lift Stage Factor

InCar 2.13 0.52 4.1 0.23 0.12 1.9 7.28 0.86 8.5 9.66 1.49 6.5

E2E 1.99 0.82 2.4 0.35 0.32 1.1 7.28 0.95 7.7 9.62 2.12 4.5

JSSE 2.00 0.51 3.9 0.24 0.16 1.5 8.40 3.08 2.7 10.61 3.79 2.8

Notepad 2.05 0.66 3.1 0.26 0.14 1.9 7.01 1.64 4.3 9.38 2.47 3.8

Mobile 2.00 0.55 3.7 0.24 0.13 1.9 8.28 1.62 5.1 10.55 2.26 4.7

Lampiro 2.05 0.64 3.2 0.26 0.15 1.7 8.25 2.58 3.2 10.55 3.29 3.2

As baseline for comparison, we considered the lifted application of each rule
in UmlRecog. An alternative baseline of applying VB rules to the flattened set of
products was not considered: The SPL variability in our setting is much greater

Taming Multi-Variability of Software Product Line Transformations 351

than the rule variability, which implies a high performance penalty when enu-
merating products. Since we currently do not support advanced transformation
features, e.g., negative application conditions and amalgamation, we used vari-
ants of the flat and the VB rules without these concepts. We used a Ubuntu 17.04
system (Oracle JDK 1.8, Intel Core i5-6200U, 8 GB RAM) for all experiments.

Results. Table 4 gives an overview of the results of our experiments. The total
execution times for our technique were between 1.5 and 3.3 s, compared to 9.4
and 10.6 s for lifting, yielding a speedup by factors between 2.8 and 6.5. For both
techniques, all execution times are in the same order of magnitude across product
lines. A possible explanation is that the amount of applicable rules was small:
if the vast majority of rules can be discarded early in the matching process, the
execution time is constant with the number of rules.

The greatest speedups were observed for the Change/Move category, in which
rule variability was the greatest as well, indicated by the ratio between rules
and VB rules in Table 2. This observation is in line with our rationale of reusing
shared matches between rules. Regarding the number of products, a trend regard-
ing better scalability is not apparent, thus demonstrating that lifting is sufficient
for controlling product-line variability. Still, based on the overall results, the
hypothesis that our technique improves performance in situations with signifi-
cant product-line and transformation variability can be confirmed.

Threats to Validity. Regarding external validity, we only considered a limited
set of scenarios, based on six product lines and one large-scale transformation.
We aim to apply our technique to a broader class of cases in the future. The
version pairs were obtained in a synthetic process, arguably one that produces
pessimistic cases. Our treatment so far is also limited to a particular transfor-
mation paradigm, AGT, and one variability paradigm, the annotative one. Still,
AGT and annotative variability are the underlying paradigms of many state-
of-the-art tools. Finally, we did not consider the advanced AGT concepts of
negative application conditions and amalgamation in our evaluation; extending
our technique accordingly is left as future work.

7 Related Work

During an SPL’s lifecycle, not only the domain model, but also the feature
model evolves [32,33]. To support the combined transformation of domain and
feature models, Taentzer et al. [25] propose a unifying formal framework which
generalizes Salay et al.’s notion of lifting [6], yet in a different direction than us:
focusing on combined changes, this approach is not geared for internal variability
of rules; similar rules are considered separately. Both works could be combined
using a rule concept with separate feature models for rule and SPL variability.

Beyond transformations of SPLs, transformations have been used to imple-
ment SPLs. Feature-oriented development [34] supports the implementation of
features as additive changes to a base product. Delta-oriented programming [35]
adds flexibility to this approach: changes are specified using deltas that sup-
port deletions and modifications as well. Impact analysis in an evolving SPL can

352 D. Strüber et al.

be performed by transforming deltas using higher-order deltas that encapsulate
certain evolution operators [5]. For increased flexibility regarding inter-product
reuse, deltas can be combined with traits [36]. Sijtema [8] introduced the concept
of variability rules to develop SPLs using ATL. Conversely, SPL techniques have
been applied to certain problems in transformation development. Xiao et al.
[37] propose to capture variability in the backwards propagation of bidirectional
transformations by turning the left-hand-side model into a SPL. Hussein et al.
[10] present a notion of rule templates for generating groups of similar rules
based on a data provenance model. These works address only one dimension of
variability, either of a SPL or a transformation system.

In the domain of graph transformation reuse, rule refinement [9] and amalga-
mation [38] focus on reuse at the rule level; graph variability is not in their scope.
Rensink and Ghamarian propose a solution for rule and graph decomposition
based a certain accommodation condition, under which the effect of the original
rule application is preserved [39,40]. In our approach, by matching against the
full domain model rather than decomposing it, we trade off compositionality for
the benefit of imposing fewer restrictions on graphs and rules.

8 Conclusion and Future Work

We propose a methodology for software product line transformations in which
not only the input product line, but also the transformation system contains
variability. At the heart of our methodology a staged rule application technique
exploits reuse potential with regard to shared portions of the involved products
and rules. We showed the correctness of our technique and demonstrated its
benefit by applying it to a practical software engineering task.

In the future, we aim to explore further variability dimensions, e.g., meta-
model variability as considered in [41], and to extend our work to advanced
transformation features, such as application conditions. We aim to address addi-
tional variability mechanisms and to perform a broader evaluation.

Acknowledgement. We thank Rick Salay and the anonymous reviewers for their con-
structive feedback. This work was supported by the Deutsche Forschungsgemeinschaft
(DFG), project SecVolution@Run-time, no. 221328183.

References

1. Pohl, K., Boeckle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005). https://doi.
org/10.1007/3-540-28901-1

2. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

3. Schulze, S., Thüm, T., Kuhlemann, M., Saake, G.: Variant-preserving refactoring
in feature-oriented software product lines. In: VaMoS, pp. 73–81 (2012)

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7

Taming Multi-Variability of Software Product Line Transformations 353

4. Borba, P., Teixeira, L., Gheyi, R.: A theory of software product line refinement.
Theor. Comput. Sci. 455, 2–30 (2012)

5. Lity, S., Kowal, M., Schaefer, I.: Higher-order delta modeling for software product
line evolution. In: FOSD, pp. 39–48 (2016)

6. Salay, R., Famelis, M., Rubin, J., Sandro, A.D., Chechik, M.: Lifting model trans-
formations to product lines. In: ICSE, pp. 117–128 (2014)

7. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S.,
De Lara, J., Ráth, I., Varró, D., Tisi, M., et al.: A research roadmap towards
achieving scalability in model driven engineering. In: BigMDE, p. 2. ACM (2013)

8. Sijtema, M.: Introducing variability rules in ATL for managing variability in MDE-
based product lines. In: MtATL 2010, pp. 39–49 (2010)

9. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph gram-
mars using rule refinement. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS,
vol. 8411, pp. 340–354. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54804-8 24

10. Hussein, J., Moreau, L., et al.: A template-based graph transformation system for
the PROV data model. In: GCM (2016)

11. Strüber, D.: Model-driven engineering in the large: refactoring techniques for mod-
els and model transformation systems. Ph.D. dissertation, Philipps-Universität
Marburg (2016)

12. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.:
Variability-based model transformation: formal foundation and application. Formal
Aspects Comput. 30, 133–162 (2017)

13. Strüber, D., Rubin, J., Chechik, M., Taentzer, G.: A variability-based approach
to reusable and efficient model transformations. In: Egyed, A., Schaefer, I. (eds.)
FASE 2015. LNCS, vol. 9033, pp. 283–298. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46675-9 19

14. Kästner, C., Apel, S., Trujillo, S., Kuhlemann, M., Batory, D.: Language-
independent safe decomposition of legacy applications into features, vol. 2. Techni-
cal report, School of Computer Science, University of Magdeburg, Germany (2008)

15. Di Sandro, A., Salay, R., Famelis, M., Kokaly, S., Chechik, M.: MMINT: a graphical
tool for interactive model management. In: P&D@ MoDELS, pp. 16–19 (2015)

16. Strüber, D., Schulz, S.: A tool environment for managing families of model trans-
formation rules. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761,
pp. 89–101. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40530-8 6

17. Rubin, J., Chechik, M.: Combining related products into product lines. In: de
Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 285–300. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 20

18. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.: Rule-
Merger : automatic construction of variability-based model transformation rules.
In: Stevens, P., W ↪asowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 122–140.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49665-7 8

19. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic
Graph Transformation. MTCSAES. Springer, Heidelberg (2006). https://doi.org/
10.1007/3-540-31188-2

20. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Syst. J. 45(3), 621–645 (2006)

21. Richa, E., Borde, E., Pautet, L.: Translation of ATL to AGT and application
to a code generator for Simulink. SoSyM, 1–24 (2017). https://link.springer.com/
article/10.1007/s10270-017-0607-8

https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/978-3-662-46675-9_19
https://doi.org/10.1007/978-3-662-46675-9_19
https://doi.org/10.1007/978-3-319-40530-8_6
https://doi.org/10.1007/978-3-642-28872-2_20
https://doi.org/10.1007/978-3-662-49665-7_8
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-017-0607-8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10270-017-0607-8

354 D. Strüber et al.

22. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
ICSE, pp. 311–320 (2008)

23. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented
domain analysis (FODA) feasibility study. Technical report, Software Engineering
Inst., Carnegie-Mellon Univ., Pittsburgh, PA (1990)

24. Chechik, M., Famelis, M., Salay, R., Strüber, D.: Perspectives of model transfor-
mation reuse. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681,
pp. 28–44. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 3

25. Taentzer, G., Salay, R., Strüber, D., Chechik, M.: Transformations of software
product lines: a generalizing framework based on category theory. In: MODELS,
pp. 101–111. IEEE (2017)

26. Gomes, C.P., Kautz, H., Sabharwal, A., Selman, B.: Satisfiability solvers. In: Foun-
dations of Artificial Intelligence, vol. 3, pp. 89–134 (2008)

27. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

28. Strüber, D., Born, K., Gill, K.D., Groner, R., Kehrer, T., Ohrndorf, M., Tichy,
M.: Henshin: a usability-focused framework for EMF model transformation devel-
opment. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp.
196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61470-0 12

29. Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the semantic lifting
of model differences in the context of model versioning. In: ASE, pp. 163–172.
IEEE Computer Society (2011)

30. Strüber, D., Plöger, J., Acreţoaie, V.: Clone detection for graph-based model trans-
formation languages. In: Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol.
9765, pp. 191–206. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
42064-6 13

31. Strüber, D., Kehrer, T., Arendt, T., Pietsch, C., Reuling, D.: Scalability of model
transformations: position paper and benchmark set. In: Workshop on Scalable
Model Driven Engineering, pp. 21–30 (2016)

32. Thüm, T., Batory, D., Kästner, C.: Reasoning about edits to feature models. In:
ICSE, pp. 254–264 (2009)

33. Bürdek, J., Kehrer, T., Lochau, M., Reuling, D., Kelter, U., Schürr, A.: Reason-
ing about product-line evolution using complex feature model differences. Autom.
Softw. Eng. 23, 687–733 (2015)

34. Trujillo, S., Batory, D., Diaz, O.: Feature oriented model driven development: a
case study for portlets. In: ICSE, pp. 44–53. IEEE Computer Society (2007)

35. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.: Delta-oriented pro-
gramming of software product lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS,
vol. 6287, pp. 77–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15579-6 6

36. Damiani, F., Hähnle, R., Kamburjan, E., Lienhardt, M.: A unified and formal
programming model for deltas and traits. In: Huisman, M., Rubin, J. (eds.) FASE
2017. LNCS, vol. 10202, pp. 424–441. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54494-5 25

37. He, X., Hu, Z., Liu, Y.: Towards variability management in bidirectional model
transformation. In: COMPSAC, vol. 1, pp. 224–233. IEEE (2017)

38. Biermann, E., Ermel, C., Taentzer, G.: Lifting parallel graph transformation con-
cepts to model transformation based on the eclipse modeling framework. Electron.
Commun. EASST 26 (2010)

https://doi.org/10.1007/978-3-319-33693-0_3
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-319-42064-6_13
https://doi.org/10.1007/978-3-319-42064-6_13
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-662-54494-5_25
https://doi.org/10.1007/978-3-662-54494-5_25

Taming Multi-Variability of Software Product Line Transformations 355

39. Rensink, A.: Compositionality in graph transformation. In: Abramsky, S., Gavoille,
C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS,
vol. 6199, pp. 309–320. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14162-1 26

40. Ghamarian, A.H., Rensink, A.: Generalised compositionality in graph transforma-
tion. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2012.
LNCS, vol. 7562, pp. 234–248. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33654-6 16

41. Perrouin, G., Amrani, M., Acher, M., Combemale, B., Legay, A., Schobbens, P.-Y.:
Featured model types: towards systematic reuse in modelling language engineering.
In: MiSE, pp. 1–7. IEEE (2016)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-14162-1_26
https://doi.org/10.1007/978-3-642-14162-1_26
https://doi.org/10.1007/978-3-642-33654-6_16
https://doi.org/10.1007/978-3-642-33654-6_16
http://creativecommons.org/licenses/by/4.0/

Author Index

Bensalem, Saddek 94
Brandt, Jacco 56
Búr, Márton 111

Chechik, Marsha 169, 319
Chen, Bo 281
Cong, Kai 281

Diamantopoulos, Themistoklis 189
Dimovski, Aleksandar S. 301
Disenfeld, Cynthia 319
Diskin, Zinovy 21

Ghezzi, Carlo 169
Gioulekas, Fotios 94
Gupta, Indranil 77

Havlicek, Christopher 281
Huistra, David 56

Jürjens, Jan 337

Kannavara, Raghudeep 281
Katirtzis, Nikolaos 189
Katsaros, Panagiotis 94
Kehrer, Timo 3
Kelter, Udo 3
König, Harald 21
Koroglu, Yavuz 264
Kosmatov, Nikolai 207
Kroening, Daniel 246
Kulcsár, Géza 38
Kumar, Rajesh 56

Landsberg, David 246
Lawford, Mark 21
Le Gall, Pascale 207
Leblebici, Erhan 38
Léchenet, Jean-Christophe 207
Liu, Si 77
Lochau, Malte 38

Marmsoler, Diego 149
Menghi, Claudio 169
Meseguer, José 77

Ölveczky, Peter Csaba 77

Palomo, Pedro 94
Park, Joonyoung 129
Peldszus, Sven 38
Peldzsus, Sven 337
Pietsch, Christopher 3
Poplavko, Peter 94

Rensink, Arend 56
Rubin, Julia 319
Ruijters, Enno 56
Ruland, Sebastian 38
Ryu, Sukyoung 129

Santhanam, Keshav 77
Schivo, Stefano 56
Semeráth, Oszkár 227
Sen, Alper 264
Spoletini, Paola 169
Stavropoulou, Ioanna 319
Stoelinga, Mariëlle 56
Strüber, Daniel 337
Sun, Kwangwon 129
Sun, Youcheng 246
Sutton, Charles 189
Szilágyi, Gábor 111

Taentzer, Gabriele 3

Varró, Dániel 111, 227
Vörös, András 111

Wang, Qi 77

Xie, Fei 281

Yang, Zhenkun 281
Yildiz, Buǧra Mehmet 56

	ETAPS Foreword
	Preface
	Organization
	Contents
	Model-Based Software Development
	A Formal Framework for Incremental Model Slicing
	1 Introduction
	2 Motivating Example
	3 Formal Framework
	3.1 Models as Graphs
	3.2 Model Modifications
	3.3 Model Slicing
	3.4 Incremental Slice Update

	4 Instantiation of the Formal Framework
	4.1 Edit Scripts as Refinements of Model Modifications
	4.2 Model Slicing Through Slice-Creating Edit Scripts
	4.3 Incremental Slicing Through Slice-Updating Edit Scripts
	4.4 Implementation

	5 Solving the Motivating Examples
	5.1 A State-Based Model Slicer
	5.2 A Slicer for Extracting Editable Submodels

	6 Related Work
	7 Conclusion
	References

	Multiple Model Synchronization with Multiary Delta Lenses
	1 Introduction
	2 Example
	2.1 A Multimodel to Play With
	2.2 Synchronization via Update Propagation
	2.3 Reflective Update Propagation

	3 Multidirectional Update Propagation and Delta Lenses
	3.1 Background: Graphs and Categories
	3.2 Model Spaces and Correspondences
	3.3 Update Propagation and Multiary (Delta) Lenses

	4 Compositionality of Update Propagation: Playing Lego with Lenses
	4.1 Star Composition
	4.2 Assembling n-ary Lenses from Binary Lenses

	5 Related Work
	6 Conclusions and Future Work
	References

	Controlling the Attack Surface of Object-Oriented Refactorings
	1 Introduction
	2 Background and Motivation
	3 Search-Based Program Refactorings with Attack-Surface Control
	3.1 Program Model
	3.2 Model-Based Program Refactorings
	3.3 Optimization Objectives
	3.4 Search-Based Optimization Process

	4 Experimental Evaluation
	4.1 Experiment Setup and Results
	4.2 Discussion

	5 Related Work
	6 Conclusion
	References

	Effective Analysis of Attack Trees: A Model-Driven Approach
	1 Introduction
	2 Background
	2.1 Attack Trees in the Security Domain
	2.2 Model-Driven Engineering

	3 Metamodels for Attack Tree Analysis
	4 Model Transformations
	4.1 Horizontal Transformations: Unifying Dialects of Attack Trees
	4.2 Vertical Transformations: Analyzing ATs via Timed Automata
	4.3 Query Transformation: From Domain-Specific to Tool-Specific
	4.4 Result Transformation: From Tool-Specific to Domain-Specific

	5 Tool Support
	6 Case Study
	7 Conclusions
	References

	Distributed Program and System Analysis
	ROLA: A New Distributed Transaction Protocol and Its Formal Analysis
	1 Introduction
	2 Preliminaries
	3 The ROLA Multi-Partition Transaction Algorithm
	4 A Probabilistic Model of ROLA
	4.1 Probabilistic Sampling
	4.2 Data Types, Classes, and Messages
	4.3 Formalizing ROLA's Behaviors

	5 Correctness Analysis of ROLA
	6 Statistical Model Checking of ROLA and Walter
	7 Related Work
	8 Conclusions
	References

	A Process Network Model for Reactive Streaming Software with Deterministic Task Parallelism
	1 Introduction
	2 Related Work
	3 A PN Model for Streaming and Reactive Control
	4 Zero-Delay Semantics for the FPPN Model
	5 Real-Time Semantics for the FPPN Model
	6 Model Transformation Framework
	7 Case Study: Guidance, Navigation and Control Application
	8 Conclusion
	References

	Distributed Graph Queries for Runtime Monitoring of Cyber-Physical Systems
	1 Introduction
	2 Overview of Distributed Runtime Monitoring
	3 Towards Distributed Runtime Models
	3.1 Runtime Models
	3.2 Distributed Runtime Models

	4 Distributed Runtime Monitoring
	4.1 Graph Queries for Specifying Safety Monitors
	4.2 Execution of Distributed Runtime Monitors

	5 Evaluation
	5.1 Measurement Setup
	5.2 Measurement Results

	6 Related Work
	7 Conclusions
	References

	EventHandler-Based Analysis Framework for Web Apps Using Dynamically Collected States
	1 Introduction
	2 Analyses of Event Handlers
	2.1 Event Handlers in Web Apps
	2.2 Analysis of Event Handlers in Whole-Program Analyzers
	2.3 Analysis of Event Handlers in EH-Based Analyzers

	3 Technical Details
	4 Implementation
	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Answers to RQs

	6 Related Work
	7 Conclusion and Future Work
	References

	Software Design and Verification
	Hierarchical Specification and Verification of Architectural Design Patterns
	1 Introduction
	2 Background
	2.1 Interactive Theorem Proving
	2.2 A Model of Dynamic Architectures

	3 Specifying Architectural Design Patterns
	3.1 Specifying Data Types
	3.2 Specifying Interfaces
	3.3 Specifying Component Types
	3.4 Specifying Activation and Connection Assertions
	3.5 Specifying Pattern Instantiations
	3.6 Example: An Initial Pattern Hierarchy

	4 Verifying Architectural Design Patterns
	4.1 Semantics of Pattern Specifications
	4.2 Mapping to Isabelle/HOL
	4.3 Example: Pattern Hierarchy

	5 Related Work
	6 Conclusion
	References

	Supporting Verification-Driven Incremental Distributed Design of Components
	1 Introduction
	2 Overview
	3 Preliminaries
	4 Modeling and Refining Components
	5 Verification Algorithms
	6 Evaluation
	6.1 Assessing Effectiveness
	6.2 Assessing Scalability

	7 Related Work
	8 Conclusion
	References

	Summarizing Software API Usage Examples Using Clustering Techniques
	1 Introduction
	2 Related Work
	2.1 Systems that Output API Call Sequences
	2.2 Systems that Output Source Code Snippets

	3 Methodology
	3.1 System Overview
	3.2 Preprocessing Module
	3.3 Clustering Module
	3.4 Snippet Generator
	3.5 Snippet Selector
	3.6 Ranker
	3.7 Deploying to New Languages

	4 Evaluation
	4.1 Evaluation Framework
	4.2 Evaluation Results

	5 Threats to Validity
	6 Conclusion
	References

	Fast Computation of Arbitrary Control Dependencies
	1 Introduction
	2 Motivation and Running Example
	3 Basic Concepts
	4 Main Lemmas
	5 Danicic's Algorithm
	6 The Optimized Algorithm
	7 Experiments
	8 Related Work and Conclusion
	References

	Specification and Program Testing
	Iterative Generation of Diverse Models for Testing Specifications of DSL Tools
	1 Introduction
	2 Preliminaries
	2.1 Metamodels and Instance Models
	2.2 Well-Formedness Constraints as Logic Formulae
	2.3 Motivation: Testing of DSL Tools

	3 Model Diversity Metrics for Testing DSL Tools
	3.1 Neighborhood Shapes of Graphs
	3.2 Metrics for Model Diversity

	4 Iterative Generation of Diverse Models
	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Optimising Spectrum Based Fault Localisation for Single Fault Programs Using Specifications
	1 Introduction
	2 Preliminaries
	2.1 Probands
	2.2 Proband Models
	2.3 Spectrum Based Fault Localisation

	3 A Property of Single-Fault Optimal Data
	4 Algorithm
	5 Implementation
	6 Experimentation
	6.1 Setup
	6.2 Results and Discussion

	7 Related Work
	8 Conclusion
	References

	TCM: Test Case Mutation to Improve Crash Detection in Android
	1 Introduction
	2 Background
	3 Android Crash Patterns and Mutation Operators
	3.1 Android Crash Patterns
	3.2 Mutation Operators

	4 Test Suite Minimization and Test Case Mutation
	5 Motivating Example
	6 Evaluation
	6.1 Experiments
	6.2 Case Studies

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	CRETE: A Versatile Binary-Level Concolic Testing Framework
	1 Introduction
	2 Related Work
	3 Overview
	4 Design
	4.1 crete Architecture
	4.2 Standardized Runtime Trace
	4.3 Selective Binary-Level Tracing
	4.4 Concolic Test Case Generation
	4.5 Bug and Runtime Vulnerability Detection

	5 Implementation
	6 Evaluation
	6.1 GNU Coreutils
	6.2 TianoCore Utilities

	7 Conclusions and Future Work
	References

	Family-Based Software Development
	Abstract Family-Based Model Checking Using Modal Featured Transition Systems: Preservation of CTL
	1 Introduction
	2 Background
	3 Abstraction of FTSs
	4 Implementation
	5 Evaluation
	6 Related Work and Conclusion
	References

	FPH: Efficient Non-commutativity Analysis of Feature-Based Systems
	1 Introduction
	2 Preliminaries
	3 Methodology
	3.1 Separating Feature Behavior and Composition
	3.2 Compositional Analysis of Non-commutativity

	4 Evaluation
	5 Related Work
	6 Conclusion and Future Work
	References

	Taming Multi-Variability of Software Product Line Transformations
	1 Introduction
	2 Running Example
	3 Background
	4 Multi-variability of Product Line Transformations
	4.1 Fully Flattened Application
	4.2 Partially Flattened Application
	4.3 Staged Application

	5 Algorithm
	6 Evaluation
	7 Related Work
	8 Conclusion and Future Work
	References

	Author Index

