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ETAPS Foreword

Welcome to the proceedings of ETAPS 2018! After a somewhat coldish ETAPS 2017
in Uppsala in the north, ETAPS this year took place in Thessaloniki, Greece. I am
happy to announce that this is the first ETAPS with gold open access proceedings. This
means that all papers are accessible by anyone for free.

ETAPS 2018 was the 21st instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Com-
mittee. The conferences cover various aspects of software systems, ranging from
theoretical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security. Organizing
these conferences in a coherent, highly synchronized conference program facilitates
participation in an exciting event, offering attendees the possibility to meet many
researchers working in different directions in the field, and to easily attend talks of
different conferences. Before and after the main conference, numerous satellite work-
shops take place and attract many researchers from all over the globe.

ETAPS 2018 received 479 submissions in total, 144 of which were accepted,
yielding an overall acceptance rate of 30%. I thank all the authors for their interest in
ETAPS, all the reviewers for their peer reviewing efforts, the PC members for their
contributions, and in particular the PC (co-)chairs for their hard work in running this
entire intensive process. Last but not least, my congratulations to all authors of the
accepted papers!

ETAPS 2018 was enriched by the unifying invited speaker Martin Abadi (Google
Brain, USA) and the conference-specific invited speakers (FASE) Pamela Zave (AT &
T Labs, USA), (POST) Benjamin C. Pierce (University of Pennsylvania, USA), and
(ESOP) Derek Dreyer (Max Planck Institute for Software Systems, Germany). Invited
tutorials were provided by Armin Biere (Johannes Kepler University, Linz, Austria) on
modern SAT solving and Fabio Somenzi (University of Colorado, Boulder, USA) on
hardware verification. My sincere thanks to all these speakers for their inspiring and
interesting talks!

ETAPS 2018 took place in Thessaloniki, Greece, and was organised by the
Department of Informatics of the Aristotle University of Thessaloniki. The university
was founded in 1925 and currently has around 75,000 students; it is the largest uni-
versity in Greece. ETAPS 2018 was further supported by the following associations
and societies: ETAPS e.V., EATCS (European Association for Theoretical Computer
Science), EAPLS (European Association for Programming Languages and Systems),
and EASST (European Association of Software Science and Technology). The local
organization team consisted of Panagiotis Katsaros (general chair), loannis Stamelos,
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Lefteris Angelis, George Rahonis, Nick Bassiliades, Alexander Chatzigeorgiou, Ezio
Bartocci, Simon Bliudze, Emmanouela Stachtiari, Kyriakos Georgiadis, and Petros
Stratis (EasyConferences).

The overall planning for ETAPS is the main responsibility of the Steering Com-
mittee, and in particular of its Executive Board. The ETAPS Steering Committee
consists of an Executive Board and representatives of the individual ETAPS confer-
ences, as well as representatives of EATCS, EAPLS, and EASST. The Executive
Board consists of Gilles Barthe (Madrid), Holger Hermanns (Saarbriicken), Joost-Pieter
Katoen (chair, Aachen and Twente), Gerald Liittgen (Bamberg), Vladimiro Sassone
(Southampton), Tarmo Uustalu (Tallinn), and Lenore Zuck (Chicago). Other members
of the Steering Committee are: Wil van der Aalst (Aachen), Parosh Abdulla (Uppsala),
Amal Ahmed (Boston), Christel Baier (Dresden), Lujo Bauer (Pittsburgh), Dirk Beyer
(Munich), Mikolaj Bojanczyk (Warsaw), Luis Caires (Lisbon), Jurriaan Hage
(Utrecht), Rainer Hihnle (Darmstadt), Reiko Heckel (Leicester), Marieke Huisman
(Twente), Panagiotis Katsaros (Thessaloniki), Ralf Kiisters (Stuttgart), Ugo Dal Lago
(Bologna), Kim G. Larsen (Aalborg), Matteo Maffei (Vienna), Tiziana Margaria
(Limerick), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Andrew M. Pitts (Cambridge), Alessandra Russo (London), Dave Sands (Gdoteborg),
Don Sannella (Edinburgh), Andy Schiirr (Darmstadt), Alex Simpson (Ljubljana),
Gabriele Taentzer (Marburg), Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas
Vojnar (Brno), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendees, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2018. Finally, a big thanks to Panagiotis and his local orga-
nization team for all their enormous efforts that led to a fantastic ETAPS in
Thessaloniki!

February 2018 Joost-Pieter Katoen



Preface

This book contains the proceedings of FASE 2018, the 21th International Conference
on Fundamental Approaches to Software Engineering, held in Thessaloniki, Greece, in
April 2018, as part of the annual European Joint Conferences on Theory and Practice of
Software (ETAPS 2018).

As usual for FASE, the contributions combine the development of conceptual and
methodological advances with their formal foundations, tool support, and evaluation on
realistic or pragmatic cases. As a result, the volume contains regular research papers
that cover a wide range of topics, such as program and system analysis, model
transformations, configuration and synthesis, graph modeling and transformation,
software product lines, test selection, as well as learning and inference. We hope that
the community will find this volume engaging and worth reading.

The contributions included have been carefully selected. For the third time, FASE
used a double-blind review process, as the past two years’ experiments were considered
valuable by authors and worth the additional effort of anonymizing the papers. We
received 77 abstract submissions from 24 different countries, from which 63 full-paper
submissions materialized. All papers were reviewed by three experts in the field, and
after intense discussion, only 19 were accepted, giving an acceptance rate of 30%.

We thank the ETAPS 2018 general chair Katsaros Panagiotis, the ETAPS orga-
nizers, loannis Stamelos, Lefteris Angelis, and George Rahonis, the ETAPS publicity
chairs, Ezio Bartocci and Simon Bliudze, as well as the ETAPS SC chair, Joost-Pieter
Katoen, for their support during the whole process. We thank all the authors for their
hard work and willingness to contribute. Last but not least, we thank all the Program
Committee members and external reviewers, who invested time and effort in the
selection process to ensure the scientific quality of the program.

February 2018 Alessandra Russo
Andy Schiirr
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A Formal Framework for Incremental
Model Slicing

Gabriele Taentzer!®, Timo Kehrer?®, Christopher Pietsch3®)®,
and Udo Kelter3

! Philipps-Universitit Marburg, Marburg, Germany
2 Humboldt-Universitit zu Berlin, Berlin, Germany
3 University of Siegen, Siegen, Germany
cpietsch@informatik.uni-siegen.de

Abstract. Program slicing is a technique which can determine the sim-
plest program possible that maintains the meaning of the original pro-
gram w.r.t. a slicing criterion. The concept of slicing has been transferred
to models, in particular to statecharts. In addition to the classical use
cases of slicing adopted from the field of program understanding, model
slicing is also motivated by specifying submodels of interest to be fur-
ther processed more efficiently, thus dealing with scalability issues when
working with very large models. Slices are often updated throughout spe-
cific software development tasks. Such a slice update can be performed
by creating the new slice from scratch or by incrementally updating the
existing slice. In this paper, we present a formal framework for defining
model slicers that support incremental slice updates. This framework
abstracts from the behavior of concrete slicers as well as from the concrete
model modification approach. It forms a guideline for defining incremen-
tal model slicers independent of the underlying slicer’s semantics. Incre-
mental slice updates are shown to be equivalent to non-incremental ones.
Furthermore, we present a framework instantiation based on the concept
of edit scripts defining application sequences of model transformation
rules. We implemented two concrete model slicers for this instantiation
based on the Eclipse Modeling Framework.

1 Introduction

Program slicing as introduced by Weiser [1] is a technique which determines
those parts of a program (the slice) which may affect the values of a set of
(user-)selected variables at a specific point (the slicing criterion). Since the sem-
inal work of Weiser, which calculates a slice by utilizing static data and control
flow analysis and which primarily focuses on assisting developers in debugging,
a plethora of program slicing techniques addressing a broad range of use cases
have been proposed [2].

With the advent of Model-Driven Engineering (MDE) [3], models rather than
source code play the role of primary software development artifacts. Similar use

© The Author(s) 2018
A. Russo and A. Schiirr (Eds.): FASE 2018, LNCS 10802, pp. 3-20, 2018.
https://doi.org/10.1007 /978-3-319-89363-1_1
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cases as known from program slicing must be supported for model slicing [4-6]. In
addition to classical use cases adopted from the field of program understanding,
model slicing is often motivated by scalability issues when working with very
large models |7, 8], which has often been mentioned as one of the biggest obstacles
in applying MDE in practice [9,10]. Modeling frameworks such as the Eclipse
Modeling Framework (EMF) and widely-used model management tools do not
scale beyond a few tens of thousands of model elements [11], while large-scale
industrial models are considerably larger [12]. As a consequence, such models
cannot even be edited in standard model editors. Thus, the extraction of editable
submodels from a larger model is the only viable solution to support an efficient
yet independent editing of huge monolithic models [8]. Further example scenarios
in which model slices may be constructed for the sake of efficiency include model
checkers, test suite generators, etc., in order to reduce runtimes and memory
consumption.

Slice criteria are often modified during software development tasks. This
leads to corresponding slice updates (also called slice adaptations in [8]). During
a debugging session, e.g., the slicing criterion might need to be modified in order
to closer inspect different debugging hypotheses. The independent editing of
submodels is another example of this. Here, a slice created for an initial slicing
criterion can turn out to be inappropriate, most typically because additional
model elements are desired or because the slice is still too large. These slice
update scenarios have in common that the original slicing criterion is modified
and that the existing slice must be updated w.r.t. the new slicing criterion.

Model slicing is faced with two challenging requirements which do not exist or
which are of minor importance for traditional program slicers. First, the increas-
ing importance and prevalence of domain-specific modeling languages (DSMLs)
as well as a considerable number of different use cases lead to a huge number of
different concrete slicers, examples will be presented in Sect. 2. Thus, methods
for developing model slicers should abstract from a slicer’s concrete behavior
(and thus from concrete modeling languages) as far as possible. Ideally, model
slicers should be generic in the sense that the behavior of a slicer is adapt-
able with moderate configuration effort [7]. Second, rather than creating a new
slice from scratch for a modified slicing criterion, slices must often be updated
incrementally. This is indispensable for all use cases where slices are edited by
developers since otherwise these slice edits would be blindly overwritten [8]. In
addition, incremental slice updating is a desirable feature when it is more effi-
cient than creating the slice from scratch. To date, both requirements have been
insufficiently addressed in the literature.

In this paper, we present a fundamental methodology for developing model
slicers which abstract from the behavior of a concrete slicer and which support
incremental model slicing. To be independent of a concrete DSML and use cases,
we restrict ourselves to static slicing in order to support both executable and
non-executable models. We make the following contributions:

1. A formal framework for incremental model slicing which can function as a
guideline for defining adaptable and incremental model slicers (s. Sect. 3).
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This framework is based on graph-based models and model modifications and
abstracts from the behavior of concrete slicers as well as from the concrete
model modification approach. Within this framework we show that incremen-
tal slice updates are equivalent to non-incremental ones.

2. An instantiation of this formal framework where incremental model slicers
are specified by model patches. Two concrete model slicers.

2 DMotivating Example

In this section we introduce a running example to illustrate two use cases of

model slicing and to motivate incremental slice updates.
Figure 1 shows an excerpt of the system model of the Barbados Car Crash

Crisis Management System (bCMS) [13]. It describes the operations of a police
and a fire department in case of a crisis situation.

Police P b Fire
Car ] bCMmS Sy 1 Truck
-position : Position -position : Position
— - | 1|-fscSystem -
1..* |-policeCar PSC System FSC System 56 itermct -fireTruck |1..
manage interact__-| ?IC -routeAgreement : Boolean -routeAgreement : Boolean 1 manage
1 [-ps -ps|1 -closeAgreement : Boolean -closeAgreement : Boolean 1| fs -fs |1
PS coordinator -noMoreRoutesLeftToBeProposed : Boolean +reportReasonsTimeout() FS coordinator
+receiveF ScoordinatorCall() +treqComFSC() +comTimeout() +receivePScoordinatorCall()
+receiveF ScoordinatorCredentials() | [+callF Scoordinator() +reqComPSC() +receivePScoordinatorCredentials()
+receiveF ScrisisDetails() +authFSC() +callPScoordinator() +receivePScrisisDetails()
+online() +sendPScoordinatorCredentials() +authPSC() online()
+sendPSCrisisDetails() +sendF ScoordinatorCredentials()
+crisisDetailsFSC() +sendF SCrisisDetails()
+reportReasonsTimeout() +crisisDetailsPSC()
+comTimeout()

PSCSystem

)

reqComFSC Idle ExchangingCrisisDetails
|:|

callF Scoordinator

lauthFSC m sendPSCrisisDetails m

[ S11.0 |AUthFSCy ooy ) sendPScoordinatorCredentials S$21.0 crisisDetailsFSC 5211

Fig. 1. Excerpt of the system model of the bCMS case study [13].

The system is modeled from different viewpoints. The class diagram mod-
els the key entities and their relationships from a static point of view. A
police station coordinator (PS coordinator) and a fire station coordinator (FS
coordinator) are responsible for coordinating and synchronizing the activities
on the police and fire station during a crisis. The interaction of both coordinators
is managed by the respective system classes PSC System and FSC System which
contain several operations for, e.g., establishing the communication between the
coordinators and exchanging crisis details. The state machine diagram models
the dynamic view of the class PSC System, i.e., its runtime behavior, for send-
ing and receiving authorization credentials and crisis details to and from a FSC
System. Initially, the PSC System is in the state Idle. The establishment of the
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communication can be triggered by calling the operation callFScoordinator or
reqComFSC. In the composite state Authorising the system waits for exchang-
ing the credentials of the PS and FS coordinator by calling the operation
sendPScoordinatorCredentials and authFSC, or vice versa. On entering the
composite state ExchangingCrisisDetails, details can be sent by the opera-
tion call sendPSCrisisDetails or details can be received by the operation call
crisisDetailsFSC.

Model Slicing. Model slicers are used to find parts of interest in a given model
M. These parts of M are specified by a slicing criterion, which is basically a set
of model elements or, more formally, a submodel C of M. A slicer extends C'
with further model elements of M according to the purpose of the slicer.

We illustrate this with two use cases. Use case A is known as backward slicing
in state-based models [4]. Given a set of states C in a statechart M as slicing
criterion, the slicer determines all model elements which may have an effect
on states in C. For instance, using S.1.0.1 (s. gray state in Fig.1) as slicing
criterion, the slicer recursively determines all incoming transitions and their
sources, e.g., the transition with the event sendPScoordinatorCredentials and
its source state S.1.0.0, until an initial state is reached.

The complete backward slice is indicated by the blue elements in the lower
part of Fig. 1. The example shows that our general notion of a slicing criterion
may be restricted by concrete model slicers. In this use case, the slicing criterion
must not be an arbitrary submodel of a given larger model, but a very specific
one, i.e., a set of states.

Use case B is the extraction of editable models as presented in [8]. Here,
the slicing criterion C' is given by a set of requested model elements of M. The
purpose of this slicer is to find a submodel which is editable and which includes
all requested model elements. For example, if we use the blue elements in the
lower part of Fig. 1 as slicing criterion, the model slice also contains the orange
elements in the upper part of Fig. 1, namely three operations, because events of
a transitions in a statechart represent operations in the class diagram, and the
class containing these operations.

Slice Update. The slicing criterion might be updated during a development
task in order to obtain an updated slice. It is often desirable to update the
slice rather than creating the new slice from scratch, e.g., because this is more
efficient. Let us assume in use case A that the slicing criterion changes from
S$.1.0.1 to S.1.1.1. The resulting model slice only differs in the contained
regions of the composite state Authorising. The upper region and its contained
elements would be removed, while the lower region and its contained elements
would be added. Next we could use the updated model slice from use case A as
slicing criterion in use case B. In the related resulting model slice, the opera-
tion sendPScoordinatorCredentials would then be replaced by the operation
authFSC.
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3 Formal Framework

We have seen in the motivating example that model slicers can differ consider-
ably in their intended purpose. The formal framework we present in the following
defines the fundamental concepts for model slicing and slice updates. This frame-
work uses graph-based models and model modifications [14]. It shall serve as a
guideline how to define model slicers that support incremental slice updates.

3.1 Models as Graphs

Considering models, especially visual models, their concrete syntax is distin-
guished from their abstract one. In Fig. 1, a UML model is shown in its concrete
representation. In the following, we will reason about their underlying structure,
i.e., their abstract syntax, which can be considered as graph. The abstract syntax
of a modeling language is usually defined by a meta-model which contains the
type information about nodes and edges as well as additional constraints. We
assume that a meta-model is formalized by an attributed graph; model graphs
are defined as attributed graphs being typed over the meta-model. This typing
can be characterized by an attributed graph morphism [15]. In addition, graph
constraints [16] may be used to specify additional requirements. Due to space
limitations, we do not formalize constraints in this paper.

Definition 1 (Typed model graph and morphism). Given two attributed
graphs M and MM, called model and meta- model the typed model (graph) of
M s defined as MT (M, typeM) with type : M — MM being an attributed
graph morphism, called typing morphism!. Given two typed models M and N,
an attributed graph morphism f : M — N is called typed model morphism if
typeN o f = typeM

M . type : M — MM MM
Y ,_; "Class ‘ ‘StateMachine‘
~ /
_______________ ™ e class!
Sm————— stateMachine
ainer Ny ,/(‘ K4 . ownedOperation, g
PSCSystem:Glasst-" \ | Operation
~ S ~
subvertex _subv,enex ___________ BN | \\ callEvent P,
:Pseudostate | “T[s.1.0.1:8tate] 9358 "7mm=-J0s ‘T_. [ e S
- _---‘ _______ on  source, subvertex™}
iti ‘Vertex !
target|

/

i ’
< | |state
Pseudostate State—‘

N
N
source | transition|target] source [transition | farget ~~ """ T T T T T ~< ~_ -
R . R e - !
H :Transition ownedOperation : ERREE

s 'sendPScoordinatorCredentials L/ )
‘L :Operation _t"’/

Fig. 2. Excerpt of a typed model graph.

Ezample 1 (Typed model graph). The left-hand side of Fig.2 shows the model
graph of an excerpt from the model depicted in Fig.1. The model graph is

! In the following, we usually omit the adjective “attributed”.
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typed over the meta-model depicted on the right-hand side of Fig. 2. It shows a
simplified excerpt of the UML meta-model. Every node (and edge) of the model
graph is mapped onto a node or edge of the type graph by the graph morphism
type : M — MM.

Typed models and morphisms as defined above form the category AGraphs g
in [15]. It has various properties since it is an adhesive HLR category using a class
M of injective graph morphisms with isomorphic data mapping, it has pushouts
and pullbacks where at least one morphism is in M. These constructions can
be considered as generalized union and intersection of models being defined
component-wise on nodes and edges such that they are structure-compatible.
These constructions are used to define the formal framework.

3.2 Model Modifications

If we do not want to go into any details of model transformation approaches,
the temporal change of models is roughly specified by model modifications. Each
model modification describes the original model, an intermediate one after hav-
ing performed all intended element deletions, and the resulting model after hav-
ing performed all element additions.

Definition 2 (Model modification). Given two models M; and M, a
(direct) model modification My = My is a span of injective morphisms

m m
M, &< My =2 M.

1. Two model modifications My &M, 2 My and M, &2 Mog T3 Ms;
are concatenated to model modification M, Z8 0. B3] M with (mq3,ms33)
being the pullback of mia and mas (intersecting My and Mas).

2. Given two direct model modifications m : M, S M, 22 M, and p: P Ll
p, 22 P5, p can be embedded into m, written e : p — m, if there are
injective morphisms (also called embeddings) e; : Py — My, es : Py — My,
and eq : Py — Moy with ey o py = mq oeg and e 0 pg = Mo 0 €.

3. A sequence My = My, = ... => M, of direct model modifications is called
model modification and is denoted by My = M,,.

4. There are five special kinds of model modifications:

(a) Model modification M M nr MMONT s called identical.

(b) Model modification ) «— ) — @ is called empty.

(¢) Model modification § «— () — M is called model creation.
(d) Model modification M «— O — @ is called model deletion.

(e) My &2 M Y M, is called inverse modification to My <= My =2 M.,

In a direct model modification, model M, characterizes an intermediate
model where all deletion actions have been performed but nothing has been
added yet. To this end, M is the intersection of M; and Mos.
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Authorising:State

state
container region

container

container
container

Authorising

subvertex _transition subvertex

’S.1.0.0:State SOUrCe | Transition |@9¢![g 1 0.1: State

‘target
:Transition |[12'9¢t|S1.0.2: State sourc? :Transition

:Transition

tranM \ subvertex transition
(a) model (b) model graph

Fig. 3. Excerpt of a model modification

Ezample 2 (Direct model modification). Figure3 shows a model modification
using our running example. While Fig. 3(a) focuses on the concrete model syn-
tax, Fig.3(b) shows the changing abstract syntax graph. Figure3(a) depicts
an excerpt of the composite state Authorising. The red transition is deleted
while the green state and transitions are created. The model modification
m o My &5 My 22 M, is illustrated in Fig.3(b). The red elements represent
the set of nodes (and edges) M; \ m1(M;) to be deleted. The set My \ mo(My)
describing the nodes (and edges) to be created is illustrated by the green ele-
ments. All other nodes (and edges) represent the intermediate model M.

The double pushout approach to graph transformation [15] is a special kind
of model modification:

Definition 3 (Rule application). Given a model G and a model modification

i L K- R, called rule, with injective morphism m : L — G, called
match, the rule application G =, ,,, H is defined by the following two pushouts:

Model H is constructed in two passes: (1)

i K " D :=G\m(L\I(K)), i.e., erase all model

m (PO1) (PO2) |’ elements that are to be deleted; (2) H :=

DuUm/(R\ r(K)) such that a new copy of

G D H all model elements that are to be created is
added.

Note that the first pushout above exists if G\ m(L\1(K)) does not yield dangling
edges [15]. It is obvious that the result of a rule application G =, H is a direct

model modification G <2 D LH.

3.3 Model Slicing

In general, a model slice is an interesting part of a model comprising a given
slicing criterion. It is up to a concrete slicing definition to specify which model
parts are of interest.
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Definition 4 (Model slice). Given a model M and a slicing criterion C' with
a morphism ¢ : C — M. A model slice S = Slice(M, c) is a model S such that
there are two morphisms m : S — M and e : C — S with moe = c.

Note that each model slice S = Slice(M,c) induces a model modification
cieo s

state

state_| Authorising: State

target

subvertex | subvertex|

: A s -Psel $.1.1.1:State
source |transition target| |sol |0n target source| |source source| transition) target | [source transition target
:Transition Transmon | :Transition :Transition :Transition :Transition
trigger| trigger trigger trigger
:Trigger :Trigger :Trigger
callEvent

callEvent ‘ callEvent ‘

n "
container
tainer

target

Idle State

sendPScoordinato! ] reqComFSC authFSC |callEvent
:Operation Operatlon | :Operation :0p i
ownedOperation ownedOperation| ownedOperation lownedOperation

class class;

class _[pSCSystem:Class 2258

Fig. 4. Excerpt of two model slices

Ezample 8 (Model slice). Figure4 depicts an excerpt of the model graph of
M depicted in Fig.1 and the two slices Spoer = Slice(M, cpack) and Seqir =
Slice(M, ceqit). Spack is the backward slice as informally described in Sect. 2.
Chack = {8.1.0.1} is the first slice criterion. The embedding cpack (Chack) is rep-
resented by the gray-filled element while embedding myqek (Spack) is represented
by the blue-bordered elements. Model epgck (Chack ) is illustrated by the gray-filled
state having a blue border and Spack \ €pack (Chack) by the green-filled elements
having a blue border.

Let Spack be the slicing criterion for the slice Segit, i.€. Ceqit = Shack and
Cedit(Cedit) = Mpack (Sback ) Sedst 18 the extracted editable submodel introduced
in Sect. 2 by use case B. Its embedding meq;t (Seqst) is represented by the blue and
orange-bordered elements. Model e,q;t(Ceqst) is illustrated by the blue-bordered
elements and Segit \ €cait(Cedit) by the green-filled elements having an orange
border.

3.4 Incremental Slice Update

Throughout working with a model slice, it might happen that the slice crite-
rion has to be modified. The update of the corresponding model slice can be
performed incrementally. Actually, modifying slice criteria can happen rather
frequently in practice by, e.g., editing independent submodels of a large model
in cooperative work.
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Definition 5 (Slice update construction). Given a model slice 51 =

Slice(M,C; — M) and a direct model modification ¢ = C; «—— Cs — Cbs,
slice So = Slice(M,Cy — M) can be constructed as follows:

id
1. Given slice S1 we deduce the model modification Cq & Ci1 =5 Sy and take
id
its inverse modification: Sy &0 e .

2. Then we take the given model modification c for the slice criterion.

8. And finally we take the model modification Cy <— Co =2 Sy induced by slice
Sa.

All model modifications are concatenated yielding the direct model modification
S, L2 0, 222 Sy called slice update construction (see also Fig. 6).

Ezample 4 (Slice update example). Figure5 illustrates a slice update construc-
tion with Seg;r = Slice(M, Cegit — M) being the extracted submodel of our pre-

Cedit

vious example illustrated by the red-dashed box. The modification ¢ : Cegiy <=
C Cediy .qit' Of the slicing criterion is depicted by the gray-filled elements. The
red-bordered elements represent the set Cs\ cegit(Ceqit) of elements removed from
the slicing criterion. The green-bordered elements form the set Cy \ cegit (Ceair’)
of elements added to the slicing criterion. Seq;r = Slice(M,Cegir — M) is
the extracted submodel represented by the green-dashed box. Consequently, the
slice is updated by deleting all elements in Seg;t \ €edit (Ceqit (Cs)), represented by
the red-bordered and red- and white-filled elements, and adding all elements in
Sedit’ \€edit' (Ceaitr (Cs)), represented by the green-bordered and green- and white-
filled elements. Note that the white-filled elements are removed and added again.
This motivated us to consider incremental slice updates defined below.

____ containey] iner ! target

subvertex

. 1
1
.|:Pseudostate $.1.0.0: State 1.0.1: .
arget
source [ransiton| tar ot \i"me'mj.targm-' sour}ﬂ mme
:Ti i 1 ‘ T

1
1

1 1
1 1
1 1
1 1
1 1
1 callEvent| 1
1 [ " N 1
1 1
1 1
1 1
1 1
1 T
1 ]

source|  transition target | |source ansifion | target
:Transition :Transition

trigger] trigger trigger

:Trigger, :Trigger :Trigger
callEvent] callEvent]
[catlF i reqComFSC|1  [authFSC |calEvent
:0) ‘ :Operati | :0) i :0) i

ownedOperation

ownedOperation ownedOperaltion lownedOperation
class class !
dass [pgc y -Class [o%/25% :

Fig. 5. Excerpt of an (incremental) slice update.
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Definition 6 (Incremental slice update). Given M and C; — M as in
Definition 4 as well as a direct model modification C, <~ Cy =2 Cs, model
slice 81 = Slice(M,Cy — M) is incrementally updated to model slice Sy =
Slice(M,Cy — M) yielding a direct model modification Sy S8, 228, called
incremental slice update from Sy to Sa, with s1 and sy being the pullback of
my :S1 — M and mgy : So — M (see also Fig. 6).

Ezample 5 (Incremental slice update example). Given Seqir and Seqi of our
previous example. Furthermore, given the model modification Seg;¢ Gedit S, Sediy
Seaitr Whereby S is isomorphic to the intersection of Seg;+ and Seqir in M,
ie. mg : Ss — Megit(Sedit) N Medit' (Sedir) With mg being an isomorphism due
to the pullback construction. S is illustrated by the elements contained in the
intersection of the red- and green-dashed box in Fig. 5. In contrast to the slice
update construction of the previous example the white-filled elements are not

affected by the incremental slice update.

Ideally, the slice update construction in
Definition 5 should not yield a different
update than the incremental one. However,
this is not the case in general since the incre-
2,9, mental update keeps as many model ele-
ments as possible in contrast to the update
m2 construction in Definition 5 In any case,
both update constructions should be com-
patible with each other, i.e., should be in an
embedding relation, as stated on the follow-
Fig. 6. Incremental slice update ing proposition.

Cyp= = Cs = »Co

e es en

S
Sl‘ 1

»

¢
!
|
|
|
M
!
!
my ms :
|
A\

M

Proposition 1 (Compatibility of slice update constructions). Given M
and Cy as in Definition 4 as well as a direct model modification C; <~ Cy =
Cy, the model modification resulting from the slice update construction in Def-
inition 5 can be embedded into the incremental slice update from Sy to Ss (see
also Fig. 6).

Proof idea: Given an incremental slice update S; <= S, —2 S5, it is the
pullback of my : S; — M and msy : S5 — M. The slice update construction
yields my1 o e; o ¢y = mg 0 e 0 c3. Due to pullback properties there is a unique
embedding e : Cy — S with s;0oe=-ej0c; and sy 0e = ey 0 ¢y.2

4 Instantiation of the Formal Framework

In this section, we present an instantiation of our formal framework which is
inspired by the model slicing tool introduced in [8]. The basic idea of the app-
roach is to create and incrementally update model slices by calculating and
applying a special form of model patches, introduced and referred to as edit
script in [17].

2 This proof idea can be elaborated to a full proof in a straight forward manner.
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4.1 Edit Scripts as Refinements of Model Modifications

An edit script Apr, =, specifies how to transform a model M; into a model
Ms in a stepwise manner. Technically, this is a data structure which comprises
a set of rule applications, partially ordered by an acyclic dependency graph. Its
nodes are rule applications and its edges are dependencies between them [17].
Models are represented as typed graphs as in Definition 1, rule applications
are defined as in Definition 3. Hence, the semantics of an edit script is a set
of rule application sequences taking all possible orderings of rule applications
into account. Each sequence can be condensed into the application of one rule
following the concurrent rule construction in, e.g., [15]. Hence, an edit script
A= M, induces a set of model modifications of the form M; L M, 22 M.

Given two models M; and Ms as well as a set R of transformation rules for
this type of models, edit scripts are calculated in two basic steps [17]:

First, the corresponding elements in M; and M, are calculated using a model
matcher [18]. A basic requirement is that such a matching can be formally rep-
resented as a (partial) injective morphism ¢ : My — Ms. If so, the matching

morphism c¢ yields a unique model modification m : My = M, 2 M, (up to
isomorphism) with mo = ¢|s,. This means that M, always has to be a graph.

Second, an edit script is derived. Elementary model changes can be directly
derived from a model matching; elements in M; and M, which are not involved
in a correspondence can be considered as deleted and added, respectively [19].
The approach presented in [17] partitions the set of elementary changes such that
each partition represents the application of a transformation rule of the given
set R of transformation rules [20], and subsequently calculates the dependencies
between these rule applications [17], yielding an edit script Ay, = as, . Sequences
of rule applications of an edit script do not contain transient effects [17], i.e.,
pairs of change actions which cancel out each other (such as creating and later
deleting one and the same element). Thus, no change actions are factored out
by an edit script.

4.2 Model Slicing Through Slice-Creating Edit Scripts

Edit scripts are also used to construct new model slices. Given a model M and
a slicing criterion C', a slice-creating edit script A.— g is calculated which, when
applied to the empty model ¢, yields the resulting slice S. The basic idea to
construct A g is to consider the model M as created by an edit script Ac— s
applied to the empty model e and to identify a sub-script of A. s which (at
least) creates all elements of C. The slice creating edit script A._. g consists of
the subgraph of the dependency graph of the model-creating edit script A.— s
containing (i) all nodes which create at least one model element in C, and (ii) all
required nodes and connecting edges according to the transitive closure of the
“required” relation, which is implied by dependencies between rule applications.

Since the construction of edit scripts depends on a given set R of transfor-
mation rules, a basic applicability condition is that all possible models and all
possible slices can be created by rules available in R. Given that this condition is
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satisfied, model slicing through slice-creating edit scripts indeed behaves accord-
ing to Definition 4, i.e., a slice S = Slice(M,C — M) is obtained by applying
Ac g to the empty model: The resulting slice S is a submodel of M and a super-
model of C. As we will see in Sect. 5, the behavior of a concrete model slicer and
thus its intended purpose is configured by the transformation rule set R.

4.3 Incremental Slicing Through Slice-Updating Edit Scripts

To incrementally update a slice S; = Slice(M,C; — M) to become slice Sy =
Slice(M,Cy — M), we show that the approach presented in [8] constructs a
slice-updating edit script Ag, - s, which, if applied to the current slice S, yields
S5 in an incremental way.

Similar to the construction of slice-creating edit scripts, the basic idea is to
consider the model M as model-creating edit script Ac— ps. The slice-updating
edit script must delete all elements in the set S; \ Sy from the current slice Sy,
while adding all model elements in S \ S7. It is constructed as follows: Let Pg,
and Pg, be the sets of rule applications which create all the elements in S and
So, respectively. Next, the sets Py, and P,gq of rule applications in A._ s are
determined with Py..,, = Ps, \ Ps, and P,qq = Ps, \ Ps,. Finally, the resulting
edit script Ag, =g, contains (1) the rule applications in set P,4q, with the same
dependencies as in A, ps, and (2) for each rule application in Py, its inverse
rule application with reversed dependencies as in A js. By construction, there
cannot be dependencies between rule applications in both sets, so they can be
executed in arbitrary order.

In addition to the completeness of the set R of transformation rules for a
given modeling language (s. Sect.4.2), a second applicability condition is that,
for each rule r in R, there must be an inverse rule v~ which reverts the effect
of r. Given that these conditions are satisfied and a slice-updating edit script
Ag, s, can be created, its application to S; indeed behaves according to the
incremental slice update as in Definition 6. This is so because, by construction,
none of the model elements in the intersection of S; and S in M is deleted by
the edit script Ag,—s,. Consequently, none of the elements in the intersection
of Cy and Cy in M, which is a subset of S; N S5, is deleted.

4.4 Implementation

The framework instantiation has been implemented using a set of standard MDE
technologies on top of the widely used Eclipse Modeling Framework (EMF),
which employs an object-oriented implementation of graph-based models in
which nodes and edges are represented as objects and references, respectively.
Edit scripts are calculated using the model differencing framework SiLift [21],
which uses EMF Compare [22] in order to determine the corresponding elements
in a pair of models being compared with each other. A matching determined by
EMF Compare fulfills the requirements presented in Sect. 4.1 since EMF Com-
pare (a) delivers 1:1-correspondences between elements, thus yielding an injective
mapping, and (b) implicitly matches edges if their respective source and target
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nodes are matched and if they have the same type (because EMF does not sup-
port parallel edges of the same type in general), thus yielding an edge-preserving
mapping. Finally, transformation rules are implemented using the model trans-
formation language and framework Henshin [23,24] which is based on graph
transformation concepts.

5 Solving the Motivating Examples

In this section, we outline the configurations of two concrete model slicers which
are based on the framework instantiation presented in Sect.4, and which are
capable of solving the motivating examples introduced in Sect. 2. Each of these
slicers is configured by a set of Henshin transformation rules which are used for
the calculation of model-creating, and thus for the construction of slice-creating
and slice-updating, edit scripts. The complete rule sets can be found at the
accompanying website of this paper [25].

5.1 A State-Based Model Slicer

Two of the creation rules which are used to configure a state-based model slicer
as described in our first example of Sect.2 are shown in Fig.7. The rules are
depicted in an integrated form: the left- and right-hand sides of a rule are merged
into a unified model graph following the visual syntax of the Henshin model
transformation language [23].

= Rule createStateWithTransition(tgt_Name, r, src)
|=) Rule createPseud. P , r:Region) |
«preserve» | g
«preserve» r:Region «create»
HResiam container
«create» -
. ) «create»
«create» «create» contalne%\ Itlfa‘r:;\ttfon subvertex
subvertex container - create» =
«preserve» | «create» «create «create»
«create» src:Vertex |<SOUrCe i Transition | tar9et gt State
p:Pseudostate = name=tgt_Name

Fig. 7. Subset of the creation rules for configuring a state-based model slicer

Most of the creation rules
are of a similar form as
the creation rule createPseu-
dostate, which simply creates
a pseudostate and connects
it with an existing container.
The key idea of this slicer
configuration, however, is the
special creation rule creat-
eStateWithTransition, which
creates a state together with Fig. 8. Slice-creating edit script.
an incoming transition in a
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single step. To support the incremental updating of slices, for each creation
rule an inverse deletion rule is included in the overall set of transformation rules.
Parts of the resulting model-creating edit script using these rules are shown in
Fig.8. For example, rule application p3 creates the state Idle in the top-level
region of the state machine PSCSystem, together with an incoming transition
having the initial state of the state machine, created by rule application p2, as
source state. Thus, p3 depends on p2 since the initial state must be created first.
Similar dependency relationships arise for the creation of other states which are
created together with an incoming transition.

The effect of this configuration on the behavior of the model slicer is as follows
(illustrated here for the creation of a new slice): If state S.1.0.1 is selected as
slicing criterion, as in our motivating example, rule application p7 is included
in the slice-creating edit script since it creates that state. Implicitly, all rule
applications on which p7 transitively depends on, i.e., all rule applications pl
to p6, are also included in the slice-creating edit script. Consequently, the slice
resulting from applying the slice-creating edit script to an empty model creates
a submodel of the state machine of Fig. 1 which contains a transition path from
its initial state to state S.1.0.1, according to the desired behavior of the slicer.

A current limitation of our solution is that, for each state s of the slicing
criterion, only a single transition path from the initial state to state s is sliced.
This path is determined non-deterministically from the set of all possible paths
from the initial state to state s. To overcome this limitation, rule schemes com-
prising a kernel rule and a set of multi-rules (see, e.g., [26,27]) would have to
be supported by our approach. Then, a rule scheme for creating a state with an
arbitrary number of incoming transitions could be included in the configuration
of our slicer, which in turn leads to the desired effect during model slicing. We
leave such a support for rule schemes for future work.

5.2 A Slicer for Extracting Editable Submodels

In general, editable models adhere to a basic form of consistency which we assume
to be defined by the effective meta-model of a given model editor [28]. The basic
idea of configuring a model slicer for extracting editable submodels, adopted
from [8], is that all creation and deletion rules preserve this level of consistency.
Given an effective meta-model, such a rule set can be generated using the app-
roach presented in [28] and its EMF-/UML-based implementation [29,30].

In our motivating example of Sect. 2, for instance, a consistency-preserving
creation rule createTrigger creates an element of type Trigger and immediately
connects it to an already existing operation of a class. The operation serves
as the callEvent of this trigger and needs to be created first, which leads to
a dependency in a model-creating edit script. Thus, if a trigger is included in
the slicing criterion, the operation serving as callEvent of that trigger will be
implicitly included in the resulting slice since it is created by the slice-creating
edit script.
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6 Related Work

A large number of model slicers has been developed. Most of them work only
with one specific type of models, notably state machines [4] and other types of
behavioral models such as MATLAB/Simulink block diagrams [5]. Other sup-
ported model types include UML class diagrams [31], architectural models [32] or
system models defined using the SysML modeling language [33]. None of these
approaches can be transferred to other (domain-specific) modeling languages,
and they do not abstract from concrete slicing specifications.

The only well-known more generally usable technique which is adaptable to
a given modeling language and slicing specification is Kompren [7]. In contrast
to our formal framework, however, Kompren does not abstract from the con-
crete model modification approach and implementation technologies. It offers
a domain-specific language based on the Kermeta model transformation lan-
guage [34] to specify the behavior of a model slicer, and a generator which gen-
erates a fully functioning model slicer from such a specification. When Kompren
is used in the so-called active mode, slices are incrementally updated when the
input model changes, according to the principle of incremental model transfor-
mation [35]. In our approach, slices are incrementally updated when the slicing
criterion is modified. As long as endogenous model transformations for con-
structing slices are used only, Kompren could be easily extended to become an
instantiation of our formal framework.

Incremental slicing has also been addressed in [36], however, using a notion
of incrementality which fundamentally differs from ours. The technique has been
developed in the context of testing model-based delta-oriented software product
lines [37]. Rather than incrementally updating an existing slice, the approach
incrementally processes the product space of a product line, where each “product”
is specified by a state machine model. As in software regression testing, the goal
is to obtain retest information by utilizing differences between state machine
slices obtained from different products.

In a broader sense, related work can be found in the area of model splitting
and model decomposition. The technique presented in [38] aims at splitting a
model into submodels according to linguistic heuristics and using information
retrieval techniques. The model decomposition approach presented in [39] consid-
ers models as graphs and first determines strongly connected graph components
from which the space of possible decompositions is derived in a second step.
Both approaches are different from ours in that they produce a partitioning of
an input model instead of a single slice. None of them supports the incremental
updating of a model partitioning.

7 Conclusion

We presented a formal framework for defining model slicers that support incre-
mental slice updates based on a general concept of model modifications. Incre-
mental slice updates were shown to be equivalent to non-incremental ones. Fur-
thermore, we presented a framework instantiation based on the concept of edit
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scripts defining application sequences of model transformation rules. This instan-
tiation was implemented by two concrete model slicers based on the Eclipse
Modeling Framework and the model differencing framework SiLift.

As future work, we plan to investigate incremental updates of both the under-
lying model and the slicing criterion. It is also worthwhile to examine the extent
to which further concrete model slicers fit into our formal framework of incre-
mental model slicing. For our own instantiation of this framework, we plan to
cover further model transformation features such as rule schemes and applica-
tion conditions, which will make the configuration of concrete model slicers more
flexible and enable us to support further use cases and purposes.

Acknowledgments. This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP1593: Design For Future -
Managed Software Evolution.
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Abstract. Multiple (more than 2) model synchronization is ubiquitous
and important for MDE, but its theoretical underpinning gained much
less attention than the binary case. Specifically, the latter was extensively
studied by the bx community in the framework of algebraic models for
update propagation called lenses. Now we make a step to restore the bal-
ance and propose a notion of multiary delta lens. Besides multiarity, our
lenses feature reflective updates, when consistency restoration requires
some amendment of the update that violated consistency. We emphasize
the importance of various ways of lens composition for practical appli-
cations of the framework, and prove several composition results.

1 Introduction

Modelling normally results in a set of inter-related models presenting different
views of the system. If one of the models changes and their joint consistency
is violated, the related models should also be changed to restore consistency.
This task is obviously of paramount importance for MDE, but its theoretical
underpinning is inherently difficult and reliable practical solutions are rare. There
are working solutions for file synchronization in systems like Git, but they are
not applicable in the UML/EMF world of diagrammatic models. For the latter,
much work has been done for the binary case (synchronizing two models) by the
bidirectional transformation community (bx) [15], specifically, in the framework
of so called delta lenses [3], but the multiary case (the number of models to be
synchronized is n > 2) gained much less attention—cf. the energetic call to the
community in a recent Stevens’ paper [16].

The context underlying bx is model transformation, in which one model in
the pair is considered as a transform of the other even though updates are prop-
agated in both directions (so called round-tripping). Once we go beyond n = 2,
we at once switch to a more general context of models inter-relations beyond
model-to-model transformations. Such situations have been studied in the con-
text of multiview system consistency, but rarely in the context of an accurate
formal basis for update propagation. The present paper can be seen as an adap-
tation of the (delta) lens-based update propagation framework for the multiview
© The Author(s) 2018
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consistency problem. We will call it multi-directional update propagation or mx
following the bx-pattern. Our contributions to mx are as follows.

We show with a simple example (Sect. 2) an important special feature of mx:
consistency restoration may require not only update propagation to other mod-
els but the very update created inconsistency should itself be amended (even
for the case of a two-view system!); thus, update propagation should, in general,
be reflective. Moreover, if even consistency can be restored without a reflective
amendment, there are cases when such reflection is still reasonable. It means
that Hippocraticness [15]—a major requirement for the classical bx, may have
less weight in the mx world. In Sect. 3, we provide a formal definition of multi-
ary (symmetric) lenses with reflection, and define (Sect. 4) several operations of
such lens composition producing complex lenses from simple ones. Specifically,
we show how n-ary lenses can be composed from n-tuples of asymmetric binary
lenses (Theorems 1 and 2), thus giving a partial solution to the challenging issue
of building mx synchronization via bx discussed by Stevens in [16]. We consider
lens composition results important for practical application of the framework. If
the tool builder has implemented a library of elementary synchronization mod-
ules based on lenses and, hence, ensuring basic laws for change propagation, then
a complex module assembled from elementary lenses will automatically be a lens
and thus also enjoys the basic laws.

2 Example

We will consider a simple example motivating our framework. Many formal con-
structs below will be illustrated with the example (or its fragments) and referred
to as Running example.

Person empler Company Person <empl-ee Company Commute
name:Str "I 'ame:str name:Str name:Str from: Addr
lives: Addr located: Adgf | | LI-AdYr

M, M, M;

Fig. 1. Multi-metamodel in UML

2.1 A Multimodel to Play With

Suppose two data sources, whose schemas (we say metamodels) are shown in
Fig. 1 as class diagrams M; and M that record employment. The first source is
interested in employment of people living in downtown, the second one is focused
on software companies and their recently graduated employees. In general, pop-
ulation of classes Person and Company in the two sources can be different — they
can even be disjoint, but if a recently graduated downtowner works for a software
company, her appearance in both databases is very likely. Now suppose there is
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an agency investigating traffic problems, which maintains its own data on com-
muting between addresses (see schema Mjz) computable by an obvious relational
join over M7 and Ms. In addition, the agency supervises consistency of the two
sources and requires that if they both know a person p and a company c, then
they must agree on the employment record (p, ¢): it is either stored by both or
by neither of the sources. For this synchronization, it is assumed that persons
and companies are globally identified by their names. Thus, a triple of data sets
(we will say models) Ay, Az, Az, instantiating the respective metamodels, can
be either consistent (if the constraints described above are satisfied) or inconsis-
tent (if they aren’t). In the latter case, we normally want to change some or all
models to restore consistency. We will call a collection of models to be kept in
sync a multimodel.

To talk about constraints for multimodels, we need an accurate notation.
If A is a model instantiating metamodel M and X is a class in M, we write
X4 for the set of objects instantiating X in A. Similarly, if r: X; < X, is
an association in M, we write 74 for the corresponding binary relation over
Xf‘ X X;. For example, Fig. 2 presents a simple model A; instantiating M; with
Person'’ = {p1,p}}, Company* = {¢;}, empl-er®t = {(p1,¢1)}, and similarly
for attributes, e.g.,

livest = {(py1,al), (p},al)} C Person”* x Addr

(IivesA1 and also name?! are assumed to be functions and Addr is the (model-
independent) set of all possible addresses). The triple (A1, A, As) is a (state of a)
multimodel over the multimetamodel (M7, Ms, M3), and we say it is consistent if
the two constraints specified below are satisfied. Constraint (C1) specifies mutual
consistency of models A; and A, in the sense described above; constraint (C2)
specifies consistency between the agency’s view of data and the two data sources:

42 and ¢ € Company”' N Company*2

As

if pe Person“* N Person

(C1) then (p, c) € empl-erd iff (c,p) € empl-ee

1 _
(C2) (IivesAl) X <emp|—erA1 U (empl-ee“2) 1) X located*? C Commute™*?

where ~! refers to the inverse relations and X denotes relational join (composi-
tion); using subsetting rather than equality in (C2) assumes that there are other
data sources the agency can use. Note that constraint (C1) inter-relates two
component models of the multimodel, while (C2) involves all three components
and forces synchronization to be 3-ary.

It is easy to see that multimodel A; 23 in Fig.2 is “two-times” inconsis-
tent: (Cl) is violated as both A; and A; know Mary and IBM, and (IBM,
Mary) € empl-ee2 but (Mary, IBM) ¢ empl-er1; (C2) is violated as A; and A
show a commuting pair (al, al5) not recorded in As. We will discuss consis-
tency restoration in the next subsection, but first we need to discuss an impor-
tant part of the multimodel — traceability or correspondence mappings — held
implicit so far.
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pPerson | eMP-er [ -Company po:Person | :empl-ee [, -Company
name =John “Iname=1BM name= Ann name:Google m:Commute
lives = a1 located = a10 from = a5
to=a10
by :Person p,:Person | :€mpl-ee | ¢, :Company
name = Mary name= Mary [ name=IBM A;
lives = a1 Al AZ located=a15

Fig. 2. A(n inconsistent) multimodel A" over the multi-metamodel in Fig. 1

Indeed, classes Person’ and Person”? are interrelated by a correspon-
dence relation linking persons with the same name, and similarly for Company.
These correspondence links (we will write corr-links) may be implicit as they can
always be restored. More important is to maintain corr-links between Commute™?
and empl-er?t Uempl-ee”2. Indeed, class Commute together with its two attributes
can be seen as a relation, and this relation can be instantiated by a multirelation
as people living at the same address can work for companies located at the same
address. If some of such Commute-objects is deleted, and this delete is to be prop-
agated to models A; o, we need corr-links to know which employment links are to
be deleted. Hence, it makes sense to establish such links when objects are added to
CommuteA3, and use them later for deletion propagation.

Importantly, for given models A; > 3, there may be several different correspon-
dence mappings: the same Commute-object can correspond to different commute-
links over A; and As. In fact, multiplicity of possible corr-specifications is a
general story that can only be avoided if absolutely reliable keys are available,
e.g., if we suppose that persons and companies can always be uniquely identified
by names, then corrs between these classes are unique. But if keys (e.g., per-
son names) are not absolutely reliable, we need a separate procedure of model
matching or alignment that has to establish whether objects p} € Person”! and
phy € Person”? both named Mary represent the same real world object. Con-
straints we declared above implicitly involve corr-links, e.g., formula for (C1)
is a syntactic sugar for the following formal statement: if there are corr-links
p = (p1,p2) and ¢ = (c1,c2) with p; € Person?i, ¢; € Company™ (i = 1,2) then
the following holds: (p1,c1) € empl-erdt iff (cz, po) € empl-ee2. A precise formal
account of this discussion can be found in [10].

Thus, a multimodel is actually a tuple A = (A1, A, A3, R) where R is a col-
lection of correspondence relations over sets involved. This R is implicit in Fig. 2
since in this very special case it can be restored. Consistency of a multimodel is
a property of the entire 4-tuple A rather than its 3-tuple carrier (Ay, Az, A3).

2.2 Synchronization via Update Propagation

There are several ways to restore consistency of the multimodel in Fig. 2 w.r.t. con-
straint (C1). We may delete Mary from Aj, or delete its employment with IBM
from As, or even delete IBM from A;. We can also change Mary’s employment
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from IBM to Google, which will restore (C1) as A; does not know Google. Simi-
larly, we can delete John’s record from A; and then Mary’s employment with IBM
in Ay would not violate (C1). As the number of constraints and the elements they
involve increase, the number of consistency restoration variants grows fast.

The range of possibilities can be essentially decreased if we take into account the
history of creating inconsistency and consider not only an inconsistent state A but
update u: A — AT that created it (assuming that A is consistent). For example,
suppose that initially model A; contained record (Mary, IBM) (and A3 contained
(al, alb)-commute), and the inconsistency appears after Mary’s employment with
IBM was deleted in A;. Then it’s reasonable to restore consistency by deleting this
employment record in A, too; we say that deletion was propagated from A; to As
(where we assume that initially A contained the commute (al, al5)). If the incon-
sistency appears after adding (IBM, Mary)-employment to Ag, then it’s reasonable
to restore consistency by adding such a record to A;. Although propagating dele-
tions/additions to deletions/additions is typical, there are non-monotonic cases
too. Let us assume that Mary and John are spouses (they live at the same address),
and that IBM follows an exotic policy prohibiting spouses to work together. Then
we can interpret addition of (IBM, Mary)-record to A as swapping of the family
member working for IBM, and then (John, IBM) is to be deleted from A;.

Now let’s consider how updates to and from model A3 may be propagated.
As mentioned above, traceability /correspondence links play a crucial role here.
If additions to A; or As or both create a new commute, the latter has to be
added to As (together with its corr-links) due to constraint (C2). In contrast, if
a new commute is added to As, we change nothing in A; 5 as (C2) only requires
inclusion. If a commute is deleted from As, and it is traced to a correspond-
ing employment in empl-ert U empl-ee2, then this employment is deleted. (Of
course, there are other ways to remove a commute derivable over A; and As.)
Finally, if a commute-generating employment in empl-er* Uempl-ee?? is deleted,
the respective commute in Ajz is deleted too. Clearly, many of the propagation
policies above although formally correct, may contradict the real world changes
and hence should be corrected, but this is a common problem of a majority of
automatic synchronization approaches, which have to make guesses in order to
resolve non-determinism inherent in consistency restoration.

2.3 Reflective Update Propagation

An important feature of update propagation scenarios above is that consistency
could be restored without changing the model whose update caused inconsis-
tency. However, this is not always desirable. Suppose again that violation of
constraint (C1) in multimodel in Fig.2 was caused by adding a new person
Mary to Ay, e.g., as a result of Mary’s moving to downtown. Now both models
know both Mary and IBM, and thus either employment record (Mary, IBM) is to
be added to A;, or record (IBM, Mary) is to be removed from As. Either of the
variants is possible, but in our context, adding (Mary, IBM) to A; seems more
likely and less specific than deletion (IBM, Mary) from A,. Indeed, if Mary has
just moved to downtown, the data source A; simply may not have completed
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her record yet. Deletion (IBM, Mary) from As seems to be a different event
unless there are strong causal dependencies between moving to downtown and
working for IBM. Thus, an update policy that would keep A unchanged but
amend addition of Mary to A; with further automatic adding her employment
for IBM (as per model As) seems reasonable. This means that updates can be
reflectively propagated (we also say self-propagated).

Of course, self-propagation does not necessarily mean non-propagation to
other directions. Consider the following case: model A; initially only contains
(John, IBM) record and is consistent with A shown in Fig. 2. Then record (Mary,
Google) was added to Ay, which thus became inconsistent with A,. To restore
consistency, (Mary, Google) is to be added to As (the update is propagated
from A; to As) and (Mary, IBM) is to be added to A; as discussed above (i.e.,
addition of (Mary, Google) is amended or self-propagated).

A general schema of update propa-
gation including reflection is shown in
Fig. 3. We begin with a consistent multi-
model (A;...A,, R)! one of which mem-
bers is updated w;: A; — Al The
propagation operation, based on a priori
defined propagation policies as sketched
above, produces:

| (a) updates on all other models u}: A; —
o Al 1<j#i<m
\ T B (b) a reflective update uj: A, — AY;

" - " . .
i T 1 (c) a new correspondence specification
R’ such that the updated multimodel
Fig. 3. Update propagation pattern (AY...Al!, R") is consistent.

To distinguish given data from those produced by the operation, the former
are shown with framed nodes and solid lines in Fig.3 while the latter are non-
framed and dashed. Below we introduce an algebraic model encompassing several
operations and algebraic laws formally modelling situations considered so far.

3 Multidirectional Update Propagation and Delta Lenses

A delta-based mathematical model for bx is well-known under the name of delta
lenses; below we will say just lems. There are two main variants: asymmetric
lenses, when one model is a view of the other and hence does not have any private
information, and symmetric lenses, when both sides have their private data not
visible on the other side [2,3,6]. In this section we will develop a framework for
generalizing the idea for any n > 2 and including reflective updates.

! Here we first abbreviate (A1,..., A,) by (A1...A5), and then write (A;...A,, R) for
((A1...An), R). We will apply this style in other similar cases, and write, e.g., 7 € 1...n
for ¢ € {1,...,n} (this will also be written as ¢ < n).
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3.1 Background: Graphs and Categories

We reproduce well-known definitions to fix our notation. A (directed multi-)graph
G consists of a set G* of nodes and a set G* of arrows equipped with two
functions s, t: G — G* that give arrow a its source s(a) and target t(a) nodes.
We write a: N — N’ if s(a) = N and t(a) = N, and a: N - ora: _— N’
if only one of this conditions is given. Correspondingly, expressions G* (N, N'),
G” (N, ), G*(_,N’) denote sets of, resp., all arrows from N to N’, all arrows
from N, and all arrows into N’.

A (small) category is a graph, whose arrows are associatively composable
and every node has a special identity loop, which is the unit of the composition.
In more detail, given two consecutive arrows a;: _ — N and as: N — | we
denote the composed arrow by ai;as. The identity loop of node N is denoted
by idy, and equations ai;idy = a1 and idy;as = as are to hold. A functor is
a mapping of nodes and arrows from one category to another, which respects
sources and targets. Having a tuple of categories (Aj...A,,), their product is a
category A X...x A, whose objects are tuples (A4;...4,) € A} x..x A? and
arrows from (A;...A,) to (A]...A!)) are tuples of arrows (uj...u,) with u;: A; —
Al for all i € 1...n.

3.2 Model Spaces and Correspondences

Basically, a model space is a category, whose nodes are called model states or just
models, and arrows are (directed) deltas or updates. For an arrow u: A — A’,
we treat A as the state of the model before update u, A’ as the state after the
update, and u as an update specification. Structurally, it is a specification of
correspondences between A and A’. Operationally, it is an edit sequence (edit
log) that changed A to A’. The formalism does not prescribe what updates are,
but assumes that they form a category, i.e., there may be different updates from
state A to state A’; updates are composable; and idle updates id4: A — A (doing
nothing) are the units of the composition.

In addition, we require every model space A to be endowed with a family
(K%”)acae of binary relations K% C A™(_, A) x A¥ (4, _) indexed by objects
of A, and specifying non-conflicting or compatible consecutive updates. Intu-
itively, an update u into A is compatible with update u’ from A, if «' does
not revert/undo anything done by u, e.g., it does not delete/create objects cre-
ated/deleted by u, or re-modify attributes modified by u (see [14] for a detailed
discussion). Formally, we only require (u,id4)eK% and (id4, v )eK%> for all
Ae A% ucA¥(_,A) and v'€eA” (A, ).

Definition 1 (Model spaces). A model space is a pair A = (JA[,K%») with
|A| a category (the carrier) of models and updates and K%» a family as specified
above. A model space functor from A to B is a functor F : |A| — |B|, such
that (u,u') € K% implies (F(u), F(u')) € K% . We will denote model spaces and
their carriers by the same symbol and often omit explicit mentioning of K™ . O
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In the sequel, we will work with families of model spaces indexed by a finite
set I, whose elements can be seen as space names. To simplify notation, we
will assume that I = {1,...,n} although ordering will not play any role in our
framework. Given a tuple of model spaces Aq,..., A, we will refer to objects
and arrows of the product category Aj X ---x A,, as model tuples and update
tuples or, sometimes, as discrete multimodels/multiupdates.

Definition 2 (Multispace/Multimodels). Let n > 2 be a natural number.

(i) An n-ary multimodel space or just an n-ary multispace A is given by a
family of model spaces A = (Ay,...,A,) called the boundary of A, and a
set AX of elements called corrs along with a family of functions (0;: A* -
A?)i<n providing every corr R with its boundary OR = (01R...0,R), t.e.,
a tuple of models taken from the multispace boundary one model per space.
Intuitively, a corr is understood as a consistent correspondence specifica-
tion interrelating models from its boundary (and for this paper, all corrs are
assumed consistent).

Given a model tuple (A,...A,), we write AX (A;...A,) for the set of all corrs
R with OR = (A;1...A;,); we call models A; feet of R. Respectively, spaces A;
are feet of A and we write 8;A for A;.

(i) An (aligned consistent) multimodel over a multispace A is a model tuple
(Ay...A,) along with a corr R € A*(A;..A,) relating the models. A
multimodel update w: (A;...A,,R) — (A}...A,R') is a tuple of updates

nr

(up: Ay — A, ..., upt Ay — AD). O

Note that any corr R uniquely defines a multimodel via the corr’s boundary

function 0. We will also need to identify the set of all corrs for some fixed A € A?

for a given i: AX(A, ) wof { ‘ R e A*}BZ-R: A.

The Running example of Sect.2 gives rise to a 3-ary multimodel space. For
i < 3, space A; consists of all models instantiating metamodel M; in Fig. 1
and their updates. To get a consistent multimodel (A; A2 As, R) from that one
shown in Fig.2, we can add to A; an empl-er-link connecting Mary to IBM,
add to A3z a commute with from = al and to = al5, and form a corr-set R =
{(p},p5), (c1,ch)} (all other corr-links are derivable from this data).

3.3 Update Propagation and Multiary (Delta) Lenses

Update policies described in Sect. 2 can be extended to cover propagation of all
updates u;, ¢ € 1...3 according to the pattern in Fig. 3. This is a non-trivial task,
but after it is accomplished, we have the following synchronization structure.

Definition 3 (Symmetric lenses). An n-ary symmetric lens is a pair £ =
(A, ppg) with A an n-ary multispace called the carrier of ¢, and (ppg;)i<n an
n-tuple of operations of the following arities. Operation ppg, takes a corr R (in
fact, a multimodel) with boundary OR = (A;1...A,), and an update u;: A; — A
as its input, and returns
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(a) an (n — 1)-tuple of updates ul Ay — A7 with 1 <j#i<n;
(b) areflective update ul: A, — AY also called an amendment of U,
(c) a new consistent corr R" ¢ A*(A” ALY,

In fact, operations ppg; complete a local update u; to an entire multimodel update
with components (u);xi and u;u; (see Fig. 3). O

Notation. If the first argument R of operation ppg; is fixed, the corresponding
family of unary operations (whose only argument is u;) will be denoted by ppgP.
By taking the jth component of the multi-element result, we obtain single-valued
: R : ! R . Al "
unary operations ppg;; producing, resp. updates u’; = ppg;(u;): A} — A7. Note
that A} = A; for all j # i (see clause (a) of the definition) while ppgk is the
reflective update (b). We also have operation ppg? returning a new consistent
corr R” = ppglt(u;) according to (c).

Definition 4 (Closed updates). Given a lens £ = (A, ppg) and a corr R €
A*(Al...An), we call an update u;: A; — Al R-closed, if ppgh(u;) = ida;. An
update is £-closed if it is R-closed for all R. Lens ¢ is called non-reflective at foot
A, if all updates in AY are {-closed. O

For the Running example, update propagation policies described in Sect. 2
give rise to a lens non-reflective at space Ags.

Definition 5 (Well-behavedness). A lens £ = (A, ppg) is called well-behaved
(wh) if the following laws hold for all i < n, A; € A?, R € AX(A;, ) and
u;: Ay — Al cf. Fig. 3.

(Stability), Vj e {l..n}: ppgfi(ida,) =ida, and ppgfi(ida,) =

(Reflectl), (ui,u}) € K»

(Reflect2),  Vj #i: ppgu i (uis ui) = ppgis (ui)

(Reflect3), ppg“(uz, i) =iday

where u} = ppgl(u;) as in Deﬁmtwn 3. O

Stability says that lenses do nothing voluntarily. Reflectl says that amendment
works towards “completion” rather than “undoing”, and Reflect2-3 are idempo-
tency conditions to ensure the completion indeed done.

Definition 6 (Invertibility). A wb lens is called (weakly) invertible, if it
satisfies the following law for any i, update u;: A; — A} and R € AZ-*(AZ‘, )
(Invert), for all j # i: ppg;}(ppef (Ppe/i(ui))) = ppefs(u:) ul

This law deals with “round-tripping”: operation ppgﬁ applied to update u; =
ppgf}"f(ui) results in update ; equivalent to wu; in the sense that ppgﬁ (u;) =
ppg; (u;) (see [3] for a motivating discussion).

Ezample 1 (Identity Lens £(nA)). Let A be an arbitrary model space. It gener-
ates an n-ary lens £(nA) as follows: The carrier A has n identical model spaces:
A; = A for all ¢ € {1,.,n}, it has A* = A*, and boundary functions are
identities. All updates are propagated to themselves (hence the name of £(nA)).
Obviously, £(nA) is a wb, invertible lens non-reflective at all its feet. O
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4 Compositionality of Update Propagation: Playing Lego
with Lenses

We study how lenses can be composed. Parallel constructions are easy to manage
and excluded from the paper to save space (they can be found in the long ver-
sion [1, Sect. 4.1]). More challenging are sequential constructs, in which different
lenses share some of their feet, and updates propagated by one lens are taken
and propagated further by one or several other lenses. In Sect. 4.1, we consider
a rich example of such—star composition of lenses. In Sect. 4.2, we study how
(symmetric) lenses can be assembled from asymmetric ones.

Since we now work with several lenses, we need a notation for lens’ compo-

nents. Given a lens £ = (\A, ppg), we write £* 4 A* for its set of corrs. Feet
are written 8¢ (i-th boundary space) and &R for the i-th boundary of a corr
R € (*. Propagation operations of the lens ¢ are denoted by Z.ppgﬁ, 0.ppgk.

4.1 Star Composition

Running Example Continued. Dia-

gram in Fig.4 presents a refinement of ﬁ» i 4112»

our example, which explicitly includes

. 1:6 '
relational storage models By, for the wi i = \ ‘
two data sources. We assume that object R . ! . !
. N h B <21 A 2:§ 1" 3~$2 "
models A; o are simple projective views 1 1 U2 u?
of databases Bjo: data in A; are copied  ,,+ 44 \
|

I
. . u =
from B; without any transformation, ! | ¢ !

. o . \ R R \ R \
while additional tables and attributes B! SN Al A 2, 1
that B;-data may have are excluded
from the view A;; the traceability map-
pings R;: A; < B; are thus embeddings.
We further assume that synchronization of bases B; and their views A; is real-
ized by simple constant-complement lenses 6;, i = 1,2 (see, e.g., [9]). Finally,
let £ be a lens synchronizing models Aj, Ay, A3 as described in Sect.2, and
R € k* (A1, As, A3) be a corr for some Az not shown in the figure.

Consider the following update propagation scenario. Suppose that at some
moment we have consistency (Rj, R, Rs) of all five models, and then Bj is
updated with uy: By — Bj that, say, adds to By a record of Mary working for
Google as discussed in Sect. 2. Consistency is restored with a four-step propaga-
tion procedure shown by double-arrows labeled by z : y with x the step number
and y the lens doing the propagation. Step 1: lens 6; propagates update u; to
v} that adds (Mary, Google) to view A; with no amendment to u; as v} is just
a projection of uy, thus, B} = Bf. Note also the updated traceability mapping
R} : By < Al. Step 2: lens K propagates v} to v that adds (Google, Mary)
to Ay, and amends v} with v} that adds (Mary, IBM) to A}; a new consistent
corr R is also computed. Step 3: lens 6, propagates v4 to u}’ that adds Mary’s
employment by Google to By with, perhaps, some other specific relational stor-
age changes not visible in As. We assume no amendment to v} as otherwise

Fig. 4. Running example via lenses
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access to relational storage would amend application data, and thus we have
a consistent corr R)’ as shown. Step 4: lens 6, maps update v{ (see above
in Step 2) backward to u}’ that adds (Mary, IBM) to Bj so that Bf" includes
both (Mary, Google) and (Mary, IBM) and a respective consistent corr R{" is
provided. There is no amendment for v{ by the same reason as in Step 3.
Thus, all five models in the bottom line of Fig.4 (A% is not shown) are
mutually consistent and all show that Mary is employed by IBM and Google.
Synchronization is restored, and we can consider the entire scenario as propaga-
tion of u; to uj’ and its amendment with u}” so that finally we have a consis-
tent corr (RY’, R”, RY)’) interrelating By, Ay, BY’. Amendment u{’ is compatible
with uy as nothing is undone and condition (uy,uf") € KE? holds; the other two

equations required by Reflect2-3 for the pair (u1,u}”) also hold. For our simple

projection views, these conditions will hold for other updates too, and we have
a well-behaved propagation from B to By (and trivially to Asz). Similarly, we
have a wb propagation from By to B; and As. Propagation from As to B s is
non-reflective and done in two steps: first lens kK works, then lenses 6; work as
described above (and updates produced by £ are 6;-closed). Thus, we have built
a wb ternary lens synchronizing spaces By, By and A3 by joining lenses #; and
by to the central lens £.

Discussion. Reflection is a crucial aspect of lens

composition. The inset figure describes the scenario &y * ﬁy
above as a transition system and shows that Steps e — ¢ —— o °
3 and 4 can go concurrently. It is the non-trivial 1 2 7\ 7

amendment created in Step 2 that causes the neces- LI

sity of Step 4, otherwise Step 3 would finish consis-

tency restoration (with Step 4 being an idle transition). On the other hand, if
update v} in Fig.4 would not be closed for lens 62, we’d have yet another con-
current step complicating the scenario. Fortunately for our example with simple
projective views, Step 4 is simple and provides a non-conflicting amendment, but
the case of more complex views beyond the constant-complement class needs care
and investigation. Below we specify a simple situation of lens composition with
reflection a priori excluded, and leave more complex cases for future work.

Formal Definition. Suppose we have an n-

ary lens K = (A, ppg), and for every i < n, a Bl\ﬁ* VBZ
binary lens 4; = (A, By, 6;.ppg), with the first "NA, A/(M
model space A; being the ith model space of K N 2
(see Fig. 5, where K.IS depwfcgd in the7 center and A A3\6
b; are shown as ellipses adjoint to K’s feet). We O X

: ) 2 B~ -
also assume the following Junction conditions: n 3

For any i < n, all updates propagated to A; by
lens b; are K-closed, and all updates propagated Fig. 5. Star composition
to A; by lens k. are b;-closed.
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Below we will write a corr R; € Ei* (4;,B;) as R;: A; < B;, and the sixtu-
ple of operations 6;.ppg™ as the family (éi.ppgfé z € {A,B},yc {A B,*}).
Likewise we write 0% with z € {A, B} for the boundary functions of lenses 4;.

The above configuration gives rise to the following n-ary lens ¢. The carrier is
the tuple of model spaces Bj...B,, and corrs are tuples (R, R;...R,) with R € k*

and R; € 62»* , such that 85R = 82]%,» for all ¢ € 1..n. Moreover, we define

YR, Ry...Ry,) def O R; (see Fig.5). Operations are defined as compositions of

consecutive lens’ executions as described below (we will use the dot notation for
operation application and write x.op for op(x), where z is an argument).

Given a model tuple (Bj...B,) € Bj x..xB,, a corr (R,R;...R,), and
update v;: B; — Bj in BT, we define, first for j # 1,

R,R1...R,,) def ; R;
vi. Lppgl o) g (6. ppglia ) (K-PPEL). (6;.PPEAT);

and vi.Z.ppg(R’Rl"'R") def

i vi.ﬁi.ppgg’ﬁ for j = i. Note that all internal
amendments to u; = vi.(ﬁi.ppggk) produced by K, and to u} = ui.(K.png)
produced by b;, are identities due to the Junction conditions. This allows

us to set corrs properly and finish propagation with the three steps above:

v;. E.ppgz(-f’Rl“'R”) def (R',R}..R!) where R’ = u;. k.ppgk, R, = uj. Ej.ppgij*
for j # 4, and R, = v;. Ei.ppggi. We thus have a lens ¢ denoted by £* (61, ..., by).
O

Theorem 1 (Star Composition). Given a star configuration of lenses as
above, if lens kK fulfills Stability, all lenses b; are wb, and Junction conditions
hold, then the composed lens K* (b1, ..., by,) defined above is wb, too.

Proof. Laws Stability and Reflectl for the composed lens are straightforward.
Reflect2-3 also follow immediately, since the first step of the above propagation
procedure already enjoys idempotency by Reflect2-3 for 4;. O

4.2 Assembling n-ary Lenses from Binary Lenses

This section shows how to assemble n-ary (symmetric) lenses from binary asym-
metric lenses modelling view computation [2]. As the latter is a typical bx,
the well-behavedness of asymmetric lenses has important distinctions from well-
behavedness of general (symmetric mx-tailored) lenses.

Definition 7 (Asymmetric Lens, cf. [2]). An asymmetric lens (a-lens) is a
tuple 6= = (A, B, get, put) with A a model space called the (abstract) view, B
a model space called the base, get: A « B a functor (read “get the view”), and
put a family of operations (putB | B € B') (read “put the view update back”) of
the following arity. Provided with a view update v: get(B) — A’ at the input,
operation put? outputs a base update putf(v) = vt B — B” and a reflected
view update put?(v) = v': A’ — A" such that A" = get(B"). A view update
v: get(B) — A’ is called closed if put?(v) = id . O
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The following is a specialization of Definition 5.

Definition 8 (Well-behavedness). An a-lens is well-behaved (wb) if it sat-
isfies the following laws for all B € B® and v: get(B) — A’
(Stability) puty (idger()) = idp

(Reflect0) putB(v) # ida implies A’ # get(X) for all X € B®

(Reflectl) (v,0") € KR

(Reflect2) put? (v; put? (v)) = put(v)

(PutGet) v; put? (v) = get(put? (v)) O

In contrast to the general lens case, a wb a-lens features Reflect0—a sort of
self-Hippocraticness important for bx. Another distinction is inclusion of a
strong invertibility law PutGet into the definition of well-behavedness: Put-
Get together with Reflect2 provide (weak) invertibility: putf(get(put?(v))) =
put?(v). Reflect3 is omitted as it is implied by Reflect0 and PutGet.

Any a-lens 6~ = (A, B, get, put) gives rise to a binary symmetric lens 6. Its
carrier consists of model spaces A and B. Furthermore 6% = B*® with boundary
mappings defined as follows: for R € 6* = B®, 94 R = get(R) and 05R = R.
Thus, the set of corrs 6* (A, B) is {B} if A = get(B), and is empty otherwise.

For a corr B, we need to define six operations 6.ppg? . If v: A — A’ is a view
update, then ppgRg(v) = putP(v) : B — B”, ppgha(v) = putf(v) : A’ — A",
and ppgX, (v) = B”. The condition A” = get(B") for 6= means that B” is again
a consistent corr with the desired boundaries. For a base update u: B — B’ and
corr B, ppg A (u) = get(u), ppghg(u) = idp/, and ppgh, (u) = B’. Functoriality
of get yields consistency of B’.

Lemma 1. Let 6~ be a wb a-lens and b the corresponding symmetric lens. Then
all base updates of b are closed, and b is wb and invertible.

Proof. Base updates are closed by the definition of ppggg. Well-behavedness
follows from wb-ness of 6. Invertibility has to be proved in two directions:
PPSBA; PPEAB; PPERA = PPEpA follows from (PutGet) and (Reflect0) the other
direction follows from (PutGet) and (Reflect2) see the remark after Definition 8. O

Theorem 2 (Lenses from Spans). An n-ary span of wb a-lenses Ef =
(Ay, B, get;, put;), i = 1.n with common base B of all 6~ gives rise to a wbh
(symmetric) lens denoted by X7 67 .

Proof. An n-ary span of a-lenses Ef (all of them interpreted as symmetric lenses
b; as explained above) is a construct equivalent to the star-composition of Def-
inition 4.1.3, in which lens k£ = £(nB) (cf. Example 1) and peripheral lenses are
lenses ;. The junction condition is satisfied as all base updates are #;-closed for
all ¢ by Lemma 1, and also trivially closed for any identity lens. The theorem
thus follows from Theorem 1. Note that a corr in (X7, 6 )* is nothing but a
single model B € B® with boundaries being the respective get,-images. a



34 7. Diskin et al.

The theorem shows that combining a-lenses in this way yields an n-ary sym-
metric lens, whose properties can automatically be inferred from the binary
a-lenses.

Running example. Figure 6 shows a metamodel M ™ obtained by merging the
three metamodels M; 2 3 from Fig. 1 without loss and duplication of information.
In addition, for persons and companies, the identifiers of model spaces, in which
a given person or company occurs, can be traced back via attribute “spaces”
(Commute-objects are known to appear in space A3 and hence do not need such
an attribute). As shown in [10], any consistent multimodel (A;...A,,, R) can be
merged into a comprehensive model AT instantiating M. Let B be the space
of such together with their comprehensive updates ut: AT — A'T.
For a given ¢ < 3, we can define the fol-

: <
lowing a-lens 5, = (A;, B, get;, put;): get, takes Person empl-er Company
. o St St

update ut as above and outputs its restriction || s add le P |t Addr
. : spaces: int[] spaces: int[]

Fo the model contam.lng only objects recorded r—

in space A,;. Operation put; takes an update from: Addr M

to: Addr

v;: A; — Al and first propagates it to all direc-
tions as discussed in Sect.2, then merges these
propagated local updates into a comprehensive Fig. 6. Merged metamodel
B-update between comprehensive models. This yields a span of a-lenses that
implements the same synchronization behaviour as the symmetric lens discussed
in Sect. 2.

From lenses to spans. There is also a backward transformation of (symmetric)
lenses to spans of a-lenses. Let £ = (A, ppg) be a wb lens. It gives rise to the
following span of wb a-lenses éf = (0:(A), B, get;, put;) where space B is built
from consistent multimodels and their updates, and functors get, : B — A; are
projection functors. Given B = (A;...A,, R) and update u;: 4; — A, let

def
putﬁ,(ui) = (Ul oy q, (g ug), Wiy g, .ty (A Ay, R) — (A LA RY)
d

where u of ppgf}(ui) (all j) and R” = ppgk(u;). Finally, putZ(v;)
ppgl(u;). Validity of Stability, Reflect0-2, PutGet directly follows from the above
definitions.

An open question is whether the span-to-lens transformation in Theorem 2
and the lens-to-span transformation described above are mutually inverse. The
results for the binary case in [8] show that this is only the case modulo cer-
tain equivalence relations. These equivalences may be different for our reflective

multiary lenses, and we leave this important question for future research.

def

5 Related Work

For state-based lenses, the work closest in spirit is Stevens’ paper [16]. Her and
our goals are similar, but the technical realisations are different even besides
the state- vs. delta-based opposition. Stevens works with restorers, which take
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a multimodel (in the state-based setting, just a tuple of models) presumably
inconsistent, and restores consistency by changing some models in the tuple while
keeping other models (from the authority set) unchanged. In contrast, lenses take
a consistent multimodel and updates, and return a consistent multimodel and
updates. Also, update amendments are not considered in [16] — models in the
authority set are intact.

Another distinction is how the multiary vs. binary issue is treated. Stevens
provides several results for decomposing an n-ary relation A* into binary rela-
tions AZ; C A; x A; between the components. For us, a relation is a span, i.e., a
set A* endowed with an n-tuple of projections 9;: A* = A, uniquely identify-
ing elements in ,A*. Thus, while Stevens considers “binarisation” of a relation R
over its boundary A;...A,,, we “binarise” it via the corresponding span (the UML
would call it reification). Our (de)composition results demonstrate advantages
of the span view. Discussion of several other works in the state-based world,
notably by Macedo et al. [12] can be found in [16].

Compositionality as a fundamental principle for building synchronization
tools was proposed by Pierce and his coauthors, and realized for several types of
binary lenses in [4,6,7]. In the delta-lens world, a fundamental theory of equiva-
lence of symmetric lenses and spans of a-lenses (for the binary case) is developed
by Johnson and Rosebrugh [8], but they do not consider reflective updates. The
PutGetPut law has been discussed (in a different context of state-based asym-
metric injective editing) in several early bx work from Tokyo, e.g., [13]. A notion
close to our update compatibility was proposed by Orejas et alin [14]. We are not
aware of multiary update propagation work in the delta-lens world. Considering
amendment and its laws in the delta lens setting is also new.

In [11], Konigs and Schiirr introduced multigraph grammars (MGGs) as
a multiary version of well-known triple graph grammar (TGG). Their multi-
domain-integration rules specify how all involved graphs evolve simultaneously.
The idea of an additional correspondence graph is close to our consistent corrs.
However, their scenarios are specialized towards (1) directed graphs, (2) MOF-
compliant artifacts like QVT, and (3) the global consistency view on a multi-
model rather than update propagation.

6 Conclusions and Future Work

We have considered multiple model synchronization via multi-directional update
propagation, and argued that reflective propagation to the model whose change
originated inconsistency is a reasonable feature of the scenario. We presented a
mathematical framework for such synchronization based on a multiary general-
isation of binary symmetric delta lenses introduced earlier in [3], and enriched
it with reflective propagation. Our lens composition results make the framework
interesting for practical applications, but so far it has an essential limitation:
we consider consistency violation caused by only one model change, and thus
consistency is restored by propagating only one update, while in practice we
often deal with several models changing concurrently. If these updates are in



36 7. Diskin et al.

conflict, consistency restoration needs conflict resolution, and hence an essential
development of the framework.

There are also several open issues for the non-concurrent case considered in
the paper (and its future concurrent generalisation). First, our pool of lens com-
position constructs is far incomplete (because of both space limitations and the
necessity of further research). We need to enrich it with (i) sequential composi-
tion of (reflective) a-lenses so that a category of a-lenses could be built, and (ii)
a relational composition of symmetric lenses sharing several of their feet (similar
to relational join). It is also important to investigate composition with weaker
junction conditions than we considered. Another important issue is invertibility,
which nicely fits in some but not all of our results, which shows the necessity of
further investigation. It is a sign that we do not well understand the nature of
invertibility. We conjecture that while invertibility is essential for bx, its role for
mx may be less important. The (in)famous PutPut law is also awaiting its explo-
ration in the case of multiary reflective propagation. And the last but not the
least is the (in)famous PutPut law: how well our update propagation operations
are compatible with update composition is a very important issue to explore.
Finally, paper [5] shows how binary delta lenses can be implemented with TGG,
and we expect that MGG could play a similar role for multiary delta lenses.
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Abstract. Refactorings constitute an effective means to improve quality
and maintainability of evolving object-oriented programs. Search-based
techniques have shown promising results in finding optimal sequences of
behavior-preserving program transformations that (1) maximize code-
quality metrics and (2) minimize the number of changes. However, the
impact of refactorings on extra-functional properties like security has
received little attention so far. To this end, we propose as a further objec-
tive to minimize the attack surface of programs (i.e., to maximize strict-
ness of declared accessibility of class members). Minimizing the attack
surface naturally competes with applicability of established MoveMethod
refactorings for improving coupling/cohesion metrics. Our tool imple-
mentation is based on an EMF meta-model for Java-like programs and
utilizes MOMOoT, a search-based model-transformation framework. Our
experimental results gained from a collection of real-world Java programs
show the impact of attack surface minimization on design-improving
refactorings by using different accessibility-control strategies. We further
compare the results to those of existing refactoring tools.

1 Introduction

The essential activity in designing object-oriented programs is to identify class
candidates and to assign responsibility (i.e., data and operations) to them. An
appropriate solution to this Class-Responsibility-Assignment (CRA) problem, on
the one hand, intuitively reflects the problem domain and, on the other hand,
exhibits acceptable quality measures [4]. In this context, refactoring has become
a key technique for agile software development: productive program-evolution
phases are interleaved with behavior-preserving code transformations for updat-
ing CRA decisions, to proactively maintain, or even improve, code-quality met-
rics [13,29]. Each refactoring pursues a trade-off between two major, and gen-
erally contradicting, objectives: (1) maximizing code-quality metrics, including
fine-grained coupling/cohesion measures as well as coarse-grained anti-pattern
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avoidance, and (2) minimizing the number of changes to preserve the initial pro-
gram design as much as possible [8]. Manual search for refactorings sufficiently
meeting both objectives becomes impracticable already for medium-size pro-
grams, as it requires to find optimal sequences of interdependent code transfor-
mations with complex constraints [10]. The very large search space and multiple
competing objectives make the underlying optimization problem well-suited for
search-based optimization [15] for which various semi-automated approaches for
recommending refactorings have been recently proposed [18,27,28,30,34].

The validity of proposed refactorings is mostly concerned with purely func-
tional behavior preservation [24], whereas their impact on extra-functional prop-
erties like program security has received little attention so far [22]. However,
applying elaborated information-flow metrics for identifying security-preserving
refactorings is computationally too expensive in practice [36]. As an alterna-
tive, we consider attack-surface metrics as a sufficiently reliable, yet easy-to-
compute indicator for preservation of program security [20,41]. Attack surfaces
of programs comprise all conventional ways of entering a software by users/at-
tackers (e.g., invoking API methods or inheriting from super-classes) such that
an unnecessarily large surface increases the danger of exploiting vulnerabilities.
Hence, the goal of a secure program design should be to grant least privileges to
class members to reduce the extent to which data and operations are exposed
to the world [41]. In Java-like languages, accessibility constraints by means of
modifiers public, private and protected provide a built-in low-level mecha-
nism for controlling and restricting information flow within and across classes,
sub-classes and packages [38]. Accessibility constraints introduce compile-time
security barriers protecting trusted system code from untrusted mobile code [19].
As a downside, restricted accessibility privileges naturally obstruct possibilities
for refactorings, as CRA updates (e.g., moving members [34]) may be either
rejected by those constraints, or they require to relax accessibility privileges,
thus increasing the attack surface [35].

In this paper, we present a search-based technique to find optimal sequences
of refactorings for object-oriented JAvVA-like programs, by explicitly taking acces-
sibility constraints into account. To this end, we do not propose novel refac-
toring operations, but rather apply established ones and control their impact
on attack-surface metrics. We focus on MoveMethod refactorings which have
been proven effective for improving CRA metrics [34], in combination with
operations for on-demand strengthening and relaxing of accessibility declara-
tions [38]. As objectives, we consider (O1) elimination of design flaws, partic-
ularly, (Ola) optimization of object-oriented coupling/cohesion metrics [5,6]
and (O1b) avoidance of anti-patterns, namely The Blob, (02) preservation
of original program design (i.e., minimizing the number of change operations),
and (O3) attack-surface minimization. Our model-based tool implementation,
called GOBLIN, represents individuals (i.e., intermediate refactoring results) as
program-model instances complying to an EMF meta-model for JAva-like pro-
grams [33]. Hence, instead of regenerating source code after every single refactor-
ing step, we apply and evaluate sequences of refactoring operations, specified as
model-transformation rules in HENSHIN [2], on the program model. To this end,
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use {
<<pkg : Control>> <<pkg : Secure>> ¢ rsa <<pkg : Secure>>
MailApp K '_ SecureMailApp 1 RsaAdapter

- cachedKeys : HashMap<String,Key> - ﬁé-e">

+ sendMessage(Contact, Message) + sendN je(Contact, Message) + init()

+ plainToHtml(String) : String - getPrivateKey() : Key + setKey(Key)
+ signMessage(Message) : Message + sign(String) : String
# encryptMessage(String, Contact): String + encrypt(String, Key): String

z = i

i % z ;

v use 0..*I outbox contacts y0..* use v V use

<<pkg : Data>> <<pkg : Data>>
Message Contact
- text : String - address : String
> - sen_der : Stri_ng - name: String

- subject : String + getAddress() : String

+ getPlainText() : String + getName() : String

+ getHtmlIText() : String MG £ Gy

+ getSender() : String + findKeyFromServer(URL) : Key

+ getSubject() : String

Fig. 1. UML class diagram of MAILAPP

we apply MOMOT [11], a generic framework for search-based model transfor-
mations. Our experimental evaluation results gained from applying GOBLIN
as well as the recent tools JDEODORANT [12] and CODE-IMP [27] to a collection
of real-world JAVA programs provide us with in-depth insights into the subtle
interplay between traditional code-quality metrics and attack-surface metrics.
Our tool and all experiment results are available on the GitHub site of the
project!.

2 Background and Motivation

We first introduce a running example to provide the necessary background and
to motivate the proposed refactoring methodology.

Running Example. We consider a (simplified) e-mail client, called MAILAPP,
implemented in JAVA. Figure 1 shows the UML class diagram of MAILAPP, where
security-critical extensions (in gray) will be described below. We use stereo-
type {{pkg : name)) to annotate classes with package declarations. Central class
MailApp is responsible for handling objects of classes Message and Contact both
encapsulating application data and operations to access those attributes. The
text of a message may be formatted as plain String, or it may be converted into
HTML using method plainToHtml().

Design Flaws in Object-Oriented Programs. The over-centralized architec-
tural design of MAILAPP, consisting of a predominant controller class (MailApp)
intensively accessing inactive data classes (Message and Contact), is frequently
referred to as The Blob anti-pattern [7]. As a consequence, method plainToHtml()
in class MailApp frequently calls method getPlainText() in class Message across

! https://github.com /Echtzeitsysteme/goblin.
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class- and even package-boundaries. The Blob and other design flaws are widely
considered harmful with respect to software quality in general and program main-
tainability in particular [7]. For instance, assume a developer to extend MailApp
by (1) adding further classes SecureMailApp and RsaAdapter for encrypting and
signing messages, and by (2) extending class Contact with public RSA key han-
dling: method findKey() searches for public RSA keys of contacts by repeatedly
calling method findKeyFromServer() with the URL of available key servers. This
program evolution further decays the already flawed design of MAILAPP as class
SecureMailApp may be considered as a second instance of The Blob anti-pattern:
method encryptMessage() of class SecureMailApp intensively calls method find-
Key() in class Contact. This example illustrates a well-known dilemma of agile
program development in an object-oriented world: Class-Responsibility Assign-
ment decisions may become unbalanced over time, due to unforeseen changes
crosscutting the initial program design [31]. As a result, a majority of object-
oriented design flaws like The Blob anti-pattern is mainly caused by low cohe-
sion/high coupling ratios within/among classes and their members [5,6].

Refactoring of Object-Oriented Programs. Object-oriented refactorings
constitute an emerging and widely used counter-measure against design
flaws [13]. Refactorings impose systematic, semantic-preserving program trans-
formations for continuously improving code-quality measures of evolving source
code. For instance, the MoveMethod refactoring is frequently used to update
CRA decisions after program changes, by moving method implementations
between classes [34]. Applied to our example, a developer may (manually) con-
duct two refactorings, R1 and R2, to counteract the aforementioned design
flaws:

(R1) move method plainToHtml() from class MailApp to class Message, and
(R2) move method encryptMessage() from class SecureMailApp to class Contact.

However, concerning programs of realistic size and complexity, tool support
for (semi-)automated program refactorings becomes more and more inevitable.
The major challenges in finding effective sequences of object-oriented refactoring
operations consists in detecting flawed program parts to be refactored, as well as
in recommending program transformations applied to those parts to obtain an
improved, yet behaviorally equivalent program design. The complicated nature
of the underlying optimization problem stems from several phenomena.

— Very large search-space due to the combinatorial explosion resulting
from the many possible sequences of (potentially interdependent) refactoring-
operation applications.

— Multiple objectives including various (inherently contradicting) refactoring
goals (e.g., 01-03).

— Many invalid solutions due to (generally very complicated) constraints to
be imposed for ensuring behavior preservation.

Further research especially on the last phenomenon is required to understand
to what extent a refactoring actually alters (in a potentially critical way) the
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original program. For instance, for refactoring R2 to yield a correct result, it
requires to relax declared accessibility constraints: method encryptMessage() has
to become public instead of protected after being moved into class Contact
to remain accessible for method sendMessage, and, conversely, method getPri-
vateKey() has to become public instead of private to remain accessible for
encryptMessage(). Although these small changes do not affect the functionality
of the original program, it may have a negative impact on extra-functional prop-
erties like program security. Therefore, the amount of invalid solutions highly
depends on the interaction between constraints and repair mechanisms.

Attack Surface of Object-Oriented Programs. The attack surface of a pro-
gram comprises all conventional ways of entering a software from outside such
that a larger surface increases the danger of exploiting vulnerabilities (either
unintentionally by some user, or intentionally by an attacker) [20]. Concern-
ing JAvA-like programs in particular, explicit restrictions of accessibility of class
members provide an essential mechanism to control the attack surface. Hence,
refactoring R2 should be definitely blamed as harmful as the enforced relax-
ations of accessibility constraints, especially those of the indeed security-critical
method getPrivateKey(), unnecessarily widen the attack surface of the original
program. In contrast, refactoring R1 should be appreciated as it even narrows
the attack surface by setting method plainToHtml() from public to private.

Challenges. As illustrated by our example, the attack surface of a program is a
crucial, but yet unexplored, factor when searching for reasonable object-oriented
program refactorings. However, if not treated with special care, accessibility con-
straints may seriously obstruct program maintenance by eagerly suppressing any
refactoring opportunity in advance. We therefore pursue a model-based method-
ology for automating the search for optimal sequences of program refactorings by
explicitly taking accessibility constraints into account. We formulate the under-
lying problem as constrained multi-objective optimization problem (MOOP)
incorporating explicit control and minimization of attack-surface metrics. This
framework allows us to facilitate search-based model transformation capabilities
for approximating optimal solutions.

3 Search-Based Program Refactorings
with Attack-Surface Control

We now describe our model-based framework for identifying (presumably) opti-
mal sequences of object-oriented refactoring operations. To explicitly control
(and minimize) the impact of recommended refactorings on the attack surface,
we extend an existing EMF meta-model for representing JAvA-like programs
with accessibility information and respective constraints. Based on this model,
refactoring operations are defined as model-transformation rules which allow
us to apply search-based model-transformation techniques to effectively explore
candidate solutions of the resulting MOOP.
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3.1 Program Model

In the context of model-based program transformation, a program model serves
as unified program representation (1) constituting an appropriate level of
abstraction comprising only (syntactic) program entities being relevant for a
given task, and (2) including additional (static semantic) information required
for a given task [24]. Concerning program models for model-based object-oriented
program refactorings in particular, the corresponding model-transformation
operations are mostly applied at the level of classes and members, whereas more
fine-grained source code details can be neglected. Instead, program elements
are augmented with additional (static semantic) dependencies to other entities
being crucial for refactoring operations to yield correct results [24-26]. Here, we
employ and enhance the program model proposed by Peldszus et al. [33] for auto-
matically detecting structural anti-patterns (cf. O1b) in JAVA programs. Their
incremental detection process also includes evaluation of coupling and cohesion
metrics (cf. Ola), and both metric values and the detected anti-patterns are
added as additional information into the program model.

Control: Secure:
TPackage TPackage
Controller ' ’ Controller
MailApp: SecureMailApp:
Class TClass <sextends>> TClass Class
The Blob l—\—l The Blob
plainToHtmISig: sendMessageSig: encrypth :
TMethodSignature TMethodSignature TMethodSignature
o
Class Class
. plainToHtmIDef: end| Def: Def: encryptMessageDef:
TMethodDefinition TMethodDefinition TMethodDefinition TMethodDefinition
accessibility: public| |accessibility: public ibility: public accessibility: protected
=
,,,,,,, <<call>>
Message: Contact:
TClass TClass
getPlainTextSig: Data: findKeySig: ‘ findKeyFromServerSig;
TMethodSignature TPackage TMethodSignature TMethodSignature
getPlainTextDef: findKeyDef: findKeyFromServerDef:
TMethodDefinition TMethodDefinition TMethodDefinition
accessibility: public accessibility : public \ accessibility : public
zceal> % T <<cal> T cca

Fig. 2. Excerpt of the program-model representation of MailApp

Figure 2 shows an excerpt of the program-model representation for MailApp
including the classes MailApp, Message, SecureMailApp, and Contact together
with a selection of their method definitions. Each program element is repre-
sented by a white rectangle labeled with name : type. The available types
of program entities and possible (syntactic and semantic) dependencies (rep-
resented by arrows) between respective program elements are defined by a
program meta-model, serving as a template for valid program models [26,37].
The program model comprises as first-class entities the classes (type TClass)
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Rule moveMethod(srcClass: TClass, trgClass: TClass, methodSig: TMethodSignature)

sourceClass: targetClass:
TClass TClass { post:
forAll ( m: Members ) :
- ++ m.accessibility >=
methodSig:
TMethodSignature

>< regAcc(m)
Fig. 3. Model-transformation rule for MoveMethod refactoring

together with their members as declared in the program. The representation of
methods is split into signatures (type TMethodSignature) and definitions (type
TMethodDefinition) to capture overloading/overriding dependencies among
method declarations (e.g., overriding of method sendMessage() imposes one
shared method signature, but two different method definitions). Solid arrows
correspond to syntactic dependencies between program elements such as aggrega-
tion (unlabeled) and inheritance (label extends) and relations between method
signatures and their definitions, whereas dashed arrows represent (static) seman-
tic dependencies (e.g., arrows labeled with call denote caller-callee relations
between methods).

Design-Flaw Information. The program model further incorporates informa-
tion gained from design-flaw detection [33], to identify program parts to be refac-
tored. In our example, design-flaw annotations (in gray) are attached to affected
program elements, namely classes Message and Contact constitute data classes
and classes MailApp and SecureMailApp constitute controller classes, which lead
to two instances of the anti-pattern The Blob.

Accessibility Information. To reason about the impact of refactorings on the
attack surface of programs, we extend the program model of Peldszus et al. by
accessibility information. Our extensions include the attribute accessibility
denoting the declared accessibility of entities as shown for method definitions in
Fig.2. In addition, our model comprises package declarations of classes (type
TPackage) to reason about package-dependent accessibility constraints.

3.2 Model-Based Program Refactorings

Based on the program-model representation, refactoring operations by means
of semantic-preserving program transformations can be concisely formalized in
a declarative manner in terms of model-transformation rules [26]. A model-
transformation rule specifies a generic change pattern consisting of a left-hand side
pattern to be matched in an input model for applying the rule, and a right-hand
side replacing the occurrence of the left-hand side to yield an output model. Here,
we focus on (sequences of ) MoveMethod refactorings as it has been shown in recent
research that MoveMethod refactorings are considerably effective in improving
CRA measures in flawed object-oriented program designs [34]. Figure3 shows
a (simplified) rule for MoveMethod refactorings defined on our program meta-
model, using a compact visual notation superimposing the left- and right-hand
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side. The rule takes a source class srcClass, a target class trgClass and a method
signature methodSig as parameters, deletes the containment arrow between source
class and signature (red arrow annotated with --) and creates a new contain-
ment arrow from the target class (green arrow annotated with +4), only if such
an arrow not already exists before rule application. The latter (pre-)condition is
expressed by a forbidden (crossed-out) arrow. For a comprehensive list of all nec-
essary pre-conditions (or, pre-constraints), we refer to [38].

Accessibility Post-constraints. Besides pre-constraints, for refactoring oper-
ations to yield correct results, it must satisfy further post-constraints to be
evaluated after rule application, especially concerning accessibility constraints
as declared in the original program (i.e., member accesses like method calls in
the original program must be preserved after refactoring [24]). As an example,
a (simplified) post-constraint for the MoveMethod rule is shown on the right
of Fig.3 using OCL-like notation. Members refers to the collection of all class
members in the program. The post-constraint utilizes helper-function reqAcc(m)
to compute the required access modifier of class member m and checks whether
the declared accessibility of m is at least as generous as required (based on the
canonical ordering private < default < protected < public) [38].

For instance, if refactoring R2 is applied to MAILAPP, method encryptMes-
sage() violates this post-constraint, as the call from sendMessage() from another
package requires accessibility public, whereas the declared accessibility is
protected. Instead of immediately rejecting refactorings like R2, we introduce
an accessibility-repair operation of the form m.accessibility := reqAcc(m) for each
member violating the post-constraint which therefore causes a relazation of the
attack surface. However, this repair is not always possible as relaxations may
lead to incorrect refactorings altering the original program semantics (e.g., due
to method overriding/overloading [38]). In contrast, refactoring R1 (i.e., mov-
ing plainToHtml() to class Message) satisfies the post-constraint as the required
accessibility of plainToHtml() becomes private, whereas its declared accessibil-
ity is public. In those cases, we may also apply the operation m.accessibility :=
reqAcc(m), now leading to a reduction of the attack surface. Different strategies
for attack-surface reduction will be investigated in Sect. 4.

3.3 Optimization Objectives

We now describe the evaluation of objectives (01)—(03) on the program model,
to serve as fitness values in a search-based setting.

Coupling/Cohesion. Concerning (O1la), coupling and cohesion metrics are
well-established quality measures for CRA decisions in object-oriented program
design [4]. In our program model, coupling (COU) is related to the overall
number of member accesses (e.g., call-arrows) across class boundaries [5], and for
measuring cohesion, we adopt the well-known LCOMS5 metric to quantify lack of
cohesion among members within classes [17]. While there are other metrics which
indicate good CRA decisions, such as Number of Children, these metrics are
not modifiable using MoveMethod refactorings and are therefore not used in



46 S. Ruland et al.

this paper [9]. Consequently, good CRA decisions exhibit low values for both
COU and LCOMS5. Hence, refactorings R1 and R2 both improve values of
COU (i.e., by eliminating inter-class call-arrows) and LCOMS5 (i.e., by moving
methods into classes where they are called).

Anti-patterns. Concerning (O1b), we limit our considerations to occurrences
of The Blob anti-pattern for convenience. We employ the detection-approach of
Peldszus et al. [33] and consider as objective to minimize the number of The Blob
instances (denoted #BLOB). For instance, for the original MailApp program
(white parts in Fig. 1), we have #BLOB = 1, while for the extended version
(white and gray parts), we have #BLOB = 2. Refactoring R1 may help to
remove the first occurrence and R2 potentially removes the second one.

Changes. Concerning (02), real-life studies show that refactoring recommen-
dations to be accepted by users must avoid a too large deviation from the original
design [8]. Here, we consider the number of MoveMethod refactorings (denoted
#REF) to be performed in a recommendation, as a further objective to be
minimized. For example, solely applying R1 results in #REF = 1, whereas a
sequence of R1 followed by R2 most likely imposes more design changes (i.e.,
#REF = 2). In contrast, accessibility-repair operations do not affect the value
#REF, but rather impact objective (O3).

Attack Surface. Concerning (0O3), the guidelines for secure object-oriented
programming encourages developers to grant as least access privileges as possible
to any accessible program element to minimize the attack surface [19]. In our
program model, the attack-surface metric (denoted AS) is measured as

AS — ZmeMembersw(m.accessibility), (1)

where weighting function w : Mod — Ny on the set Mod of accessibility modifiers
may be, for instance, defined as w(private) = 0, w(default) = 1, w(protected)
= 2, w(public) = 3. Hence, a lower value corresponds to a smaller attack surface.
For example, R1 enables an attack-surface reduction by setting plainToHtml() from
public to private which decreases AS by 3. In contrast, R2 involves a repair
step setting encryptMessage() from protected to public which increases AS by 1.
Whether such negative impacts of refactorings on (03) are outweighed by simul-
taneous improvements gained for other objectives depends, among others, on the
actual weighting w applied. For instance, each further modifier public consider-
ably opens the attack surface and should therefore be blamed by a higher weighting
value, as compared to the other modifiers (cf. Sect. 4).

3.4 Search-Based Optimization Process

Our tool for recommending optimized object-oriented refactoring sequences,
called GOBLINZ?, is based on a combination of search-based multi-objective

2 Goblin is supervillain and Head of National Security in the Marvel universe [3]. GOB-
LIN also means Generic Objective-Based Layout Improvements for Non-designs.
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optimization techniques using genetic algorithms and model-transformations on
the basis of the MOMOT framework [11]. Figure 4 shows an overview on GOB-
LIN. First, the input JAVA program is translated into our program model [33].
This original program model together with its objective values for (0O1)—(03)
(i.e., its fitness values) serves as a baseline for evaluating the improvements
obtained by candidate refactorings. The built-in genetic algorithm (NSGA-III)
of MOMOT is initialized by an initial population of a fixed number of indi-
viduals serving as generation 0, where each individual constitutes a sequence
of at least 1 up to a maximum number of MoveMethod rule applications (cf.
Fig.3) to the original program model. Thus, each individual corresponds to a
refactored version of the original program model on which the resulting fitness
values are evaluated. The refactored program model is obtained by applying the
given sequence of refactorings to the original program model. Steps within a
sequence not being applicable to an intermediate model (e.g., due to unsatisfied
pre-conditions) are skipped, whereas steps producing infeasible results (e.g., due
to unsatisfied and non-repairable post-conditions) cause the entire individual to
become invalid (thus being removed from the population).
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Fig. 4. Architecture of the GOBLIN tool

For deriving generation i 4+ 1 from generation ¢, NSGA-III first creates a set
of new individuals using random crossover and mutation operators. As indi-
cated in Fig.4, a crossover splits and recombines two individuals into a new
one, while a mutation generates a new individual by injecting small changes into
an existing one. Afterwards, in the selection phase, individuals from the over-
all population (the original and newly created individuals) are selected into the
next generation, depending on their fitness values. For more details on NSGA-
III, we refer to [15,28]. The search-process terminates when a maximum number
of generations (or, individuals, respectively) has been reached, resulting in a
Pareto-front of non-dominated individuals, each constituting a refactoring rec-
ommendation [11].
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4 Experimental Evaluation

We now present experimental evaluation results gained from applying GOB-
LIN to a collection of JAVA programs. First, to investigate the impact of attack-
surface reduction on the resulting refactoring recommendations, we consider the
following reduction strategies, differing in when to perform attack-surface reduc-
tion during search-space exploration (where step means a refactoring step):

— Strategy 1: A priori reduction. Before the first and after the last step.
— Strategy 2: A posteriori reduction. Only after the last step.
— Strategy 3: Continuous reduction. After every refactoring step.

We are interested in the impact of each strategy on the trade-off between attack-
surface metrics and design-quality metrics (i.e., do the recommended refactor-
ing sequences tend to optimize more the attack surface aspect or the program
design?). We quantify attack-surface impact (ASI) and design impact (DI) of a
refactoring recommendation rr as follows:

AS(rr) — AS(orig)

ASI(rm) = AS(orig)

(2)

~ COU(rr) — COU(orig) A LCOMS5(rr) — LCOM5(orig)
DIm) = ——Coulorg LCOMS (orig) 3)

where orig refers to the original program. Second, we consider the impact of
different weightings w on attack-surface metric AS. As modifier public has a
considerably negative influence on the attack surface, we study the impact of
increasing the penalty for public in w, as compared to the other modifiers. We
are interested especially in whether there exists a threshold for which any design-
improving refactoring would be rejected as security-critical. Finally, we compare
GOBLIN to the recent refactoring tools JDEODORANT and CODE-IMP, which
both do not explicitly consider attack-surface metrics as optimization objective
so far. To summarize, we aim to answer the following research questions:

- (RQ1: Objective Trade-Off) Which attack-surface reduction strategy
offers the best trade-off between attack-surface impact and design impact
when taking the original program as a baseline?

— (RQ2: Weighting of Attack Surface) Which weighting of public in the
attack-surface metric constitutes a critical threshold obstructing any design-
improving refactorings?

- (RQ3: Tool Comparison) Which tool provides the best trade-off between
attack-surface impact and design impact in refactoring recommendations?

4.1 Experiment Setup and Results

We conducted our experiments on an established corpus of real-life open-source
JAVA programs of various size [33,39] as listed in Table1 (with lines of code
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LOC, number of packages #P, number of classes #C' and number of methods
#M). For a compact presentation, we divide the corpus into three program-
size categories (small, mid-sized, large), indicated by horizontal lines in Table 1.
All experiments have been executed on a Windows-Server-2016 machine with a
2.4 GHz quad-core CPU, 32 GB RAM and JRE 1.8. We used the default genetic-
algorithm configuration of MOMoT in all our experiments [11]: termination after
10,000 individual evaluations, population size of 100, and each individual con-
sisting of at most 10 refactorings. We applied the metrics for (01)—(03) (cf.
Sect. 3.3) to compute fitness values. GOBLIN requires 25 min to compute a set
of refactoring recommendations for the smallest program, up to several hours
in the case of large programs, which is acceptable for a search-based (off-line)
optimization approach. We selected a representative set of computed recommen-
dations which were manually checked for program correctness and impact.

For (RQ1), we measured ASI and DI values for two runs of GOBLIN (cf.
Figs.6a, b, ¢, d, e and f). Figures 6a and b (first row, side by side) show a box-
plot for each Strategy (1—3) for small programs of our corpus (#iSj referring
to the program number 7 in Table1 and Strategy j). The box-plots show the
distribution of ASI (Fig. 6a) and DI (Fig. 6b) values for each refactoring recom-
mendation of GOBLIN. The figure-pairs 6¢c—6d and 6e—6f show the same data
for mid-sized and large programs, respectively. For (RQ2), we used Strategy 3
from (RQ2) and varied function w to study different penalties for modifier pub-
lic. Figure5 plots the (minimal) values of ASI and DI depending on w(public)
(from 3 up to 100). Regarding (RQ3), we compare the results of GOBLIN
to those of state-of-the-art refactoring recommender tools, JDEODORANT [12]
and CODE-ImMP [27]. Refactorings proposed by JDEODORANT have as singleton
optimization objective to eliminate specific anti-patterns through heuristic refac-
toring strategies. In particular, JDEODORANT employs ExtractClass [13] to elim-
inate The Blob (also called GodClass), by separating parts from the controller-
class into a freshly created class. Thus, each recommendation of JDEODOR-
ANT subsumes multiple MoveMethod refactorings (into the fresh target class).
In contrast, CODE-IMP pursues a search-based approach, including a variety of

—0.004
Program Version LOC ~ #P #C #M g —0-003
1: QuickUML 2001 2,667 1 19 175
2: JSciCale  2.1.0 5437 3 121 563~ 0002
3: JUnit 38.2 5780 11 105 841 & )
4: Gantt 1.10.2 21,331 28 256 1,925 & —0.001
5: Nutch 0.9 21,437 24 273 1,750 —— min(ASI)
6: Lucene 1.4.3 25472 15 276 1,750 0 -~ - min(DI)
7: logdj 1.2.17 31,429 35 394 3,240
8: JHotDraw 7.6 31,434 24 312 3,781 3 7 10 20 50 0 100

w(public)

Table 1. Evaluation corpus Fig. 5. Minimal ASI and DI values for dif-

ferent weightings of public
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refactoring operations and design-quality metrics. For a comparison to GOB-
LIN, we used the MoveMethod refactoring of CODE-IMP which produces one
sequence of MoveMethod refactorings per run. Figures 6g and h contain compar-
isons of ASI and DI values, respectively, for our corpus (excluding QuiIckUML
due to relatively very high variations). For each program, the upper box-plot
shows the results for GOBLIN and the lower one for JDEODORANT, respectively.
CODE-ImP only successfully produced results for QUICKUML and JUNIT (10
runs each) while terminating without any result for the others.

4.2 Discussion

Concerning (RQ1), Strategy 3 leads to the best attack-surface impact for
small programs (under neglectible execution-time overhead), while even slightly
improving the design impact. Although this clear advantage dissolves for mid-
sized and large programs, it still contributes to a reasonable trade-off, while
attack-surface reductions tend to hamper design improvements as expected. Cal-
culating the Pearson correlation [32] between ASI and DI shows that (1) the
strategy does not influence the correlation and (2) for small programs, GOB-
LIN finds refactorings which are beneficial for both attack surface and program
design.

Concerning (RQ2), Fig. 5 shows that a higher value for w(public) leads to a
better attack-surface impact, as attack-surface-critical refactorings are less likely
to survive throughout generations. The increase in ASI is remarkably steep from
w(public) = 3 to w(public) = 7, but exhibits slow linear growth for higher values.
Regarding the design impact, up to w(public) = 10, the best achieved DI also
grows linearly, but afterwards, no more DI improvements emerge. In higher value
ranges (>70), DI reaches a threshold, and degrades afterwards.

Regarding (RQ3), the The Blob elimination strategy of JDEODORANT nec-
essarily increases attack surfaces, as calls to extracted methods have to access the
new class, thus necessarily increasing accessibility at least up to default. As also
shown in Fig. 6g, there are almost no refactorings proposed by JDEODORANT
with a positive attack-surface impact. Surprisingly, JDEODORANT also achieves
a less beneficial design impact than GOBLIN, with a strong correlation between
ASI and DI. Our unfortunately very limited set of observations for CODE-IMP
shows that, due to the similar search technique, the refactorings found by CODE-
IMP and GOBLIN are quite similar. Nevertheless, due to the different focus of
objectives, CODE-IMP tends to increase attack surfaces. Although, the differ-
ences in metrics definitions forbid any definite conclusions, however, CODE-IMP
does not achieve any design improvements according to our metrics.

To summarize, our experimental results demonstrate that attack-surface
impacts of refactorings clearly deserve more attention in the context of refac-
toring recommendations, revealing a practically relevant trade-off (or, even con-
tradiction) between traditional design-improvement efforts and extra-functional
(particularly, security) aspects. Our experiments further uncover that existing
tools are mostly unaware of attack-surface impacts of recommended refactorings.
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5 Related Work

Automating Design-Flaw Detection and Refactorings. Marinescu pro-
poses a metric-based design-flaw detection approach similar to Peldszus et al.
in [33], which is used in our work. However, both works do not deal with elimi-
nation of detected flaws [21]. In contrast, the DECOR framework also includes
recommendations for eliminating anti-patterns, whereas, in contrast to our work,
those recommendations remain rather atomic and local. More related to our
approach, Fokaefs et al. [12] and Tsantalis et al. [40] consider (semi-)automatic
refactorings to eliminate anti-patterns like The Blob in the tool JDEODORANT.
Nevertheless, they focus on optimizing one single objective and do not consider
multiple, esp. extra-functional, aspects like security metrics as in our approach.

Multi-objective Search-Based Refactorings. O’Keeffe and O Cinnéide use
search-based refactorings in their tool CODE-IMP [28] including various stan-
dard refactoring operations and different quality metrics as objectives [27]. Seng
et al. consider a search-based setting, where, similar to our approach, compound
refactoring recommendations comprise atomic MoveMethod operations. Harman
and Tratt also investigate a Pareto-front of refactoring recommendations includ-
ing various design objectives [16], and more recently, Ouni et al. conducted a
large-scale real-world study on multi-objective search-based refactoring recom-
mendations [30]. However, neither of the approaches investigates the impact of
refactorings on security-relevant metrics as in our approach.

Security- Aware Refactorings. Steimann and Thies were the first to pro-
pose a comprehensive set of accessibility constraints for refactorings covering
full Java [38]. Although their constraints are formally founded, they do not
consider software metrics to quantify the attack surface impact of (sequences
of) refactorings. Alshammari et al. propose an extensive catalogue of software
metrics for evaluating the impact of refactorings on program security of object-
oriented programs [1]. Similarly, Maruyama and Omori propose a technique [22]
and tool [23] for checking if a refactoring operation raises security issues. How-
ever, all these approaches are concerned with security and accessibility con-
straints of specific refactorings, but they do not investigate those aspects in a
multi-objective program optimization setting. The problem of measuring attack
surfaces serving as a metric for evaluating secure object-oriented programming
policies has been investigated by Zoller and Schmolitzky [41] and Manadhata
and Wing [20], respectively. Nevertheless, those and similar metrics have not
yet been utilized as optimization objective for program refactoring. Finally,
Ghaith and O Cinnéide consider a catalogue of security-relevant metrics to rec-
ommend refactorings using CODE-IMP, but they also consider security as single
objective [14].
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6 Conclusion

We presented a search-based approach to recommend sequences of refactor-
ings for object-oriented JAvA-like programs by taking the attack surface as
additional optimization objective into account. Our model-based methodology,
implemented in the tool GOBLIN, utilizes the MOMOT framework including
the genetic algorithm NSGA-III for search-space exploration. Our experimental
results gained from applying GOBLIN to real-world Java programs provides us
with detailed insights into the impact of attack-surface metrics on fitness values
of refactorings and the resulting trade-off with competing design-quality objec-
tives. As a future work, we plan to incorporate additional domain knowledge
about critical code parts to further control security-aware refactorings.
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Abstract. Attack trees (ATs) are a popular formalism for security anal-
ysis, and numerous variations and tools have been developed around
them. These were mostly developed independently, and offer little inter-
operability or ability to combine various AT features.

We present ATTop, a software bridging tool that enables automated
analysis of ATs using a model-driven engineering approach. ATTop ful-
fills two purposes: 1. It facilitates interoperation between several AT
analysis methodologies and resulting tools (e.g., ATE, ATCalc, ADTool
2.0), 2. it can perform a comprehensive analysis of attack trees by trans-
lating them into timed automata and analyzing them using the popular
model checker UPPAAL, and translating the analysis results back to the
original ATs. Technically, our approach uses various metamodels to pro-
vide a unified description of AT variants. Based on these metamodels,
we perform model transformations that allow to apply various analysis
methods to an AT and trace the results back to the AT domain. We illus-
trate our approach on the basis of a case study from the AT literature.

1 Introduction

Formal methods are often employed to support software engineers in particularly
complex tasks: model-based testing, type checking and extended static checking
are typical examples that help in developing better software faster. This paper is
about the reverse direction: showing how software engineering can assist formal
methods in developing complex analysis tools.

More specifically, we reap the benefits of model-driven engineering (MDE)
to design and build a tool for analyzing attack trees (ATs). ATs [25,31] are
a popular formalism for security analysis, allowing convenient modeling and
analysis of complex attack scenarios. ATs have become part of various system
engineering frameworks, such as UMLsec [16] and SysMLsec [27].

Attack trees come in a large number of variations, employing different secu-
rity attributes (e.g., attack time, costs, resources, etc.) as well as modeling con-
structs (e.g., sequential vs. parallel execution of scenarios). Each of these vari-
ations comes with its own tooling; examples include ADTool [12], ATCalc [2],
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and Attack Tree Evaluator [5]. This “jungle of attack trees” seriously hampers
the applicability of ATs, since it is impossible or very difficult to combine dif-
ferent features and tooling. This paper addresses these challenges and presents
ATTop', a software tool that overarches existing tooling in the AT domain.

In particular, the main features of AT Top are (see Fig. 1):

1. A unified input format that encompasses the known AT features. We have
collected these features in one comprehensive metamodel. Following MDE
best practices, this metamodel is extensible to easily accommodate future
needs.

2. Systematic model transformations. Many AT analysis methods are based on

converting the AT into a mathematical model that can be analyzed with exist-
ing formal techniques, such as timed automata [11,23], Bayesian networks
[13], Petri nets [8], etc. An important contribution of our work is to make
these translations more systematic, and therefore more extensible, maintain-
able, reusable, and less error-prone.
To do so, we again refer to the concepts of MDE and deploy model transfor-
mations. We deploy two categories here: so-called horizontal transformations
achieve interoperability between existing tools. Vertical transformations inter-
pret a model via a set of semantic rules to produce a mathematical model to
be analyzed with formal methods.

3. Bringing the results back to the original domain. When a mathematical model
is analyzed, the analysis result is computed in terms of the mathematical
model, and not in terms of the original AT. For example, if AT analysis is
done via model checking, a trace in the underlying model (i.e., transition
system) can be produced to show that, say, the cheapest attack costs $100.
What security practitioners need, however, is a path or attack vector in the
original AT. This interpretation in terms of the original model is achieved by
a vertical model transformation in the inverse direction, from the results as
obtained in the analysis model back into the AT domain.

These features make ATTop a software bridging tool, acting as a bridge
between existing AT languages, and between ATs and formal languages.

Our Contributions. The contributions of this paper include:

a full-fledged tool based on MDE, which allows for high maintainability and

extensibility;

— a unified input format, enabling interoperability between different AT
dialects;

— systematic use of model transformations; which increases reusability while
reducing error likelihood;

— a complete cycle from AT to formal model and back, allowing domain experts

to profit from formal methods without requiring specific knowledge.

Overview of Our Approach. Figurel depicts the general workflow of our
approach. It shows how ATTop acts as a bridge between different languages and

! Available at https://github.com/utwente-fmt/attop.
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formalisms. In particular, thanks to horizontal transformations, AT Top makes it
possible to use ATs described in different formats, both as an input to other tools
and as an input to ATTop itself. In the latter case, vertical transformations are
used in order to deal with UPPAAL as a back-end tool without exposing AT Top’s
users to the formal language of timed automata.

Property of interest (e.g. Attack
cost optimal attack vector) vectorin AT
s * Vertical
ATE < Binary AT Horizontal Transformation
Transformation
ATCalc ¢ AT in Galileo Horizontal ATT Trace
format Transformation op
e Horizontal I
ADTool 2.0 <— AT specified by Transformation
adtree.xsd Vertical Vertical UPPAAL tool
Transformation  Transformation

UPPAAL | |

Timed
query

automata ‘
|

Fig. 1. Overview of our approach, showing the contributions of the paper in the gray
rectangle. Here ATE, ATCalc, ADTool 2.0 are different attack tree analysis tools, each
with its own input format. ATTop allows these tools to be interoperable (horizontal
model transformations, see Sect. 4.1). AT Top also provides a much more comprehensive
AT analysis by automatic translation of attack trees into timed automata and using
UPPAAL as the back-end analysis tool (vertical transformations, see Sect. 4.2).

Related Work. A large number of AT analysis frameworks have been devel-
oped, based on lattice theory [18], timed automata [11,21,23], I/O-IMCs [3,22],
Bayesian networks [13], Petri nets [8], stochastic games [4,15], etc. We refer
to [20] for an overview of AT formalisms. Surprisingly, little effort has been
made to provide a security practitioner with a generic tool that integrates the
benefits of all these analysis tools.

The use of model transformations with UPPAAL was explored in [29] for a
range of different formalisms; the UPPAAL metamodel that was presented there
is the one we use in ATTop. A related approach for fault trees was proposed in
[28]. In [14], the authors manually translate UML sequence diagrams into timed
automata models to analyze timeliness properties of embedded systems. In [1],
the OpenMADS tool is proposed that takes the input of SysML diagrams and
UML/MARTE annotations and automatically translates these into determin-
istic and stochastic Petri nets (DSPNs); however, no model-driven engineering
technique was applied.

Organization of the Paper. In Sect. 2, we describe the background. Section 3
presents the metamodels we use in ATTop, while the model transformations are
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described in Sect. 4. Section 5 describes the features of AT Top, and in Sect. 6 we
show the results of our case study using ATTop. Finally, we conclude the paper
in Sect. 7.

2 Background

2.1 Attack Trees in the Security Domain

Modern enterprises are ever growing complex socio-technical systems comprised
of multiple actors, physical infrastructures, and IT systems. Adversaries can
take advantage of this complexity, by exploiting multiple security vulnerabilities
simultaneously. Risk managers, therefore, need to predict possible attack vec-
tors, in order to combat them. For this purpose, attack trees are a widely-used
formalism to identify, model, and quantify complex attack scenarios.

Attack trees (ATs) were popularized by Schneier through his seminal paper in
[31] and were later formalized by Mauw in [25]. ATs show how different attack
steps combine into a multi-stage attack scenario leading to a security breach.
Due to the intuitive representation of attack scenarios, this formalism has been
used in both academia and industry to model practical case studies such as
ATMs [10], SCADA communication systems [7], etc. Furthermore, the attack
tree formalism has also been advocated in the Security Quality Requirements
Engineering (SQUARE) [26] methodology for security requirements.

Ezample 1. Figure?2 shows an example AT (adapted from [36]) modeling the
compromise of an Internet of Things (IoT) device.

At the top of the tree is the event compromise_IoT_device, which is refined
using gates until we reach the atomic steps where no further refinement is
desired (the leaves of the tree). The top gate in Fig.2 is a SAND (sequential
AND)-gate denoting that, in order for the attack to be successful, the chil-
dren of this gate must be executed sequentially from left to right. In the exam-
ple, the attacker first needs to successfully perform access_home network, then
exploit_software_vulnerability_in_IoT_device, and then runmalicious_
script. The AND-gate at access_home network represents that both
gain_access_to_private networks and get_credentials must be performed,
but these can be performed in any order, possibly in parallel. Similarly,
the OR gate at gain_access_to_private networks denotes that its children
access_LAN and access_WLAN can be attempted in parallel, but only one needs
to succeed for a successful attack.

Traditionally, each leaf of an attack tree is decorated with a single attribute,
e.g., the probability of successfully executing the step, or the cost incurred when
taking this step. The attributes are then combined in the analysis to obtain
metrics, such as the probability or required cost of a successful attack [19].

Over the years, the AT formalism has been enriched both structurally (e.g.,
adding more logical gates, countermeasures, ordering relationships; see [20] for
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compromise_ToT device
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Fig. 2. Attack tree modeling the compromise of an IoT device. Leaves are equipped
with the cost and time required to execute the corresponding step. The parts of the tree
attacked in the cheapest successful attack are indicated by a darker color, with start
and end times for the steps in this cheapest attack denoted in red (times correspond
to the scenario in Fig. 11). (Color figure online)

an overview) and analytically (e.g., multi-attribute analysis, time- and cost-
optimal analysis). This has resulted in a large number of tools (ADTool 2.0 [12],
ATCalc [5], ATE [2], etc.), each with their own analysis technique.

Such a wide range of tools can be useful for a security practitioner to perform
different kinds of analyses of attack trees. However, this requires preparing the
AT for each tool, as each one has its own input format. To overcome the difficulty
of orchestrating all these different tools, we propose one tool—ATTop—to allow
specification of ATs combining features of multiple formalisms and to support
analysis of such ATs by different tools without duplicating it for each tool.

2.2 Model-Driven Engineering

Model-driven engineering (MDE) is a software engineering methodology that
treats models not only as documentation, but also as first-class citizens, to
be directly used in the engineering processes [32]. In MDE, a metamodel (also
referred to as a domain-specific language, DSL) is specified as a model at a more
abstract level to serve as a language for models [33]. A metamodel captures
the concepts of a particular domain with the permitted structure and behav-
ior, to which models must adhere. Typically, metamodels are specified in class
diagram-like structures.

MDE provides interoperability between domains (and tools and technologies
in these domains) via model transformations. The concept of model transfor-
mation is shown in Fig. 3. Model transformations map the elements of a source
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Fig. 3. The concept of model transformation

metamodel to the elements of a target metamodel. This mapping is described as
a transformation definition, using a language specifically designed for this pur-
pose. The transformation engine executes the transformation definition on the
input model and generates an output model.

Adaptation of MDE provides various benefits [30,34,37], specifically:

1. Empowering domain experts with abstraction: With the introduction of meta-
models and related tooling, domain experts can focus on modeling in the
domain; while the technical problems below the modeling level, such as low-
level implementation details are abstracted away from the domain experts.

2. Higher level of reusability: The models, metamodels and the tools based on
them are high-level artifacts that can be reused by many projects targeting
similar domains. Such reuse increases productivity and quality of the final
product since the reused units are maintained and improved continuously.

3. Interoperability: There can be various tools and technologies used in a domain,
each having its own I/O formats. Model transformations provide interoper-
ability between these tools and technologies.

There are a number of tools available for realizing MDE. In this paper, we
have used the Eclipse Modeling Framework (EMF) [35], which is a state-of-the-
art tool developed to this aim. EMF provides the Ecore format for defining the
metamodels and has many plug-ins to support the various functionalities related
to MDE. The model transformations we present in this paper were implemented
using the Epsilon Transformation Language (ETL) [17], which is one of the
domain-specific languages provided by the Epsilon framework. We have chosen
ETL since it is an easy-to-use language and allows users to inherit, import and
reuse other Epsilon modules, which increases reusability. We use Java to select
and execute the ETL transformations.

3 Metamodels for Attack Tree Analysis

ATTop uses three different metamodels to represent the attack tree domain con-
cepts, all defined in the Ecore format. These are shown in Figs. 4, 5 and 6, in a nota-
tion similar to that of UML class diagrams. They show the domain classes and edges
representing associations between classes. Edges denote references (—), contain-
ment (—e ), or supertype (—>) relations. Multiplicities are denoted between square
brackets (e.g., [0..*] for unrestricted multiplicity).



62 R. Kumar et al.

1. The AT metamodel (ATMM), unifies several extensions of the attack tree
formalism including traditional attack trees [25,31], attack-defense trees [18§],
defense trees [6], etc. It consists of two parts: the Structure metamodel and
the Values metamodel. Below we describe the most important design choices
that led to the ATMM:

— The ATMM represents the core, generic concepts of ATs, resulting in a
minimal (and thus clean) metamodel that a domain expert can easily
read, understand and use to create models.

— The ATMM provides a lot of flexibility in specifying the relevant concepts
by using string names and generic values. Concepts such as the Connector
and the Edge are specified as abstract entities with a set of concrete
instances. Therefore, new connectors and edges can easily be added to the
metamodel without breaking existing model instances. The metamodel is
designed to have good support for model operations, such as traversal of
the AT models. From a node, any other node can be reached directly or
indirectly following references.

— The ATMM node and tree attributes offer convenient and generic meth-
ods for supporting the results of analysis tools. This allows us to translate
results from a formal tool back into the AT domain and associate them
to the original AT model (see Sect.4.4).

2. The query metamodel formalizes the security queries to be analyzed over
attack trees. We support both qualitative queries (i.e., properties such as
feasibility of attack) and quantitative queries (i.e., security metrics such as
probability of successful attack, cheapest attack, etc.).

3. The scenario metamodel represents attack scenarios (a.k.a. attack vectors)
consisting of the steps leading to, e.g., the cheapest, fastest, or most damaging
security breaches.

Below we discuss these metamodels in more detail.

1. AT Metamodel (ATMM). The ATMM metamodel is a combination of
two separate metamodels, one representing the attack tree structure (Structure
metamodel, Fig.4 left) and the other representing the attack tree attributes
(Values metamodel, Fig. 4 right). This separation allows us to consider different
attack scenarios modeled via the same attack tree, but decorated with different
attributes. For example, it is easy to define attribute values based on the attacker
type: script kiddie, malicious insider, etc. may be all be interested in the same
asset, but each of them possesses different access privileges and is equipped with
different resources.

Structure Metamodel. The structure model, depicted in Fig. 4 on the left, repre-
sents the structure of the attack tree. Its main class AttackTree contains a set of
one or more Nodes, as indicated by the containment arrow between AttackTree
and Node. One of these nodes is designated as the root of the tree, denoted by
the root reference. Each Node is equipped with an id, used as a reference during
transformation processes. Furthermore, each node has a (possibly empty) list of
its parents and children, which allows to easily traverse the AT. A node may
have a connector, i.e., a gate such as AND, OR, SAND (sequential-AND), etc.
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Fig. 4. The ATMM metamodel separated into the structure and values metamodels.
Some connectors, types, and purposes are omitted for clarity and denoted by ellipses.

In addition to the structure specified by the metamodel, some constraints
can be used to ensure that a model is a valid attack tree. For example, the
tree cannot contain cycles, the nodes must form a connected graph, etc. These
constraints are separately formulated in the Epsilon Validation Language (EVL
[17]). An example of such a constraint is shown in Listing 1.

Values Metamodel. The Values metamodel (Fig.4, right side) describes how
values are attributed to nodes (arrow from Attribute on the right to Node on the
left). Each Attribute contains exactly one Value, which can be of various (basic
or complex) types: For example, RealValue is a type of Value that contains real
(Double) numbers. A Domain groups all those attributes that have the same
Purpose. By separating the purpose of attributes from their data type, we can
use basic data types (integer, boolean, real number) for different purposes: For
example, a real number (RealType) can be used in a Domain named “Maximum
Duration”, where the purpose is a TimePurpose with timeType = MAXIMAL.
A RealType number could also be used in a different Domain, say “Likelihood
of attack” with the purpose to represent a probability (ProbabilityPurpose, not
shown in the diagram). Thanks to the flexibility of this construct, the set of
available domains is easily extensible.

1 context ATMM!AttackTree {

2 constraint OneAndOnlyOneChildWithoutParents {

3 check : ATMM!Node.allInstances.select(n|n.parents.size() == 0).size() = 1

4 and self.root = ATMM!Node.alllnstances.select(n|n.parents.size() == 0).first()
s}

6 }

Listing 1. Constraint specifying that the root node is the only node in an ATMM AT
with no parents.
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2. Query Metamodel. Existing attack tree analysis tools such as ATE,
ATCalc, ADTool 2.0, etc. support only a limited set of queries, lacking the
flexibility to customize one’s own security queries. Using the MDE approach,
we have developed the Query metamodel shown in Fig. 5. This allows a security
practitioner to ask a wide range of qualitative and quantitative metrics over a
wide range of attributes such as cost, time, damage, etc.

Using this metamodel in ATTop, a security practitioner can ask all the secu-
rity queries available in the aforementioned tools. Furthermore, the metamodel
offers a more comprehensive set of security queries where users can tailor their
own security queries. For example, it is possible to ask whether a successful
attack can be carried out within 10 days and without spending more than $900.

OptimalQuery
ExpectedValueQuery ‘ ReachabilityQuery ProbabilityQuery ) )
domain : Domain
domain : Domain ‘ goal : OptimizationGoal
> Query <
F constraints
RelationalOperator
Constraint OptimizationGoal
GREATER operator : RelationalOperator
SMALLER domain : Domain MAXIMUM
EQUAL value : Value MINIMUM

Fig.5. The query metamodel. The types ‘Domain’ and ‘Value’ refer to the classes of
the ATMM metamodel (Fig.4).

The main component of the query metamodel is the element named Query.
A query can be one of the following:

— Reachability, i.e., Is it feasible to reach the top node of an attack tree? Sup-
ported by every tool.

— Probability, i.e., What is the probability that a successful attack occurs? Sup-
ported by every tool.

— ExpectedValue, i.e., What is the expected (average) value of a given quantity
over all possible attacks? Supported by ATTop.

— Optimality, i.e., Which is the attack that is optimal w.r.t. a given attribute
(e.g., time or cost)? Supported by ATE, ADTool 2.0, AT Top.

Furthermore, a query can be framed by combining one of the above query types
with a set of Constraints over the AT attributes. A Constraint is made of a
RelationalOperator, a Value and its Domain. For example, the constraint “within
10 days” is expressed with the SMALLER RelationalOperator, a Value of 10, and
the Domain of “Maximum Duration”.
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3. Scenario Metamodel. ATTop is geared to provide different results: some
of which are numeric, like the probability to execute attack, the maximum cost
to execute an attack, etc. Other results contain qualitative information such as
an attack vector, which is a partially ordered set of basic attack steps resulting
in the compromise of an asset under a given set of constraints (for example,
incurring minimum cost). In order to properly trace back the qualitative output
to the original attack tree, we use the Scenario metamodel (see Fig. 6).

The Scenario metamodel is used to represent attack vectors. In our context,
we consider an attack vector to be a Schedule where there is only one Executor,
which we name “Attacker”. The sequence of Tasks appearing in a Scenario are
then interpreted as the sequence of the attack steps the Attacker needs to carry
out in order to reach their objective. Each attack step is actually a node of the
original AT, and is represented as an Executable whose name corresponds to the
id of the original Node. Timing information contained in each Task describes the
start (startTime) and end (endTime) time points for each attack step. Note that
an attack can start but not end before the objective is reached (multiplicity “1”
for startTime and “0..1” for endTime).

Executable

name : String

executable

Time

Executor | > Schedule

name : String executors executables

executor

startTime [1]

Task

name : String

value : Float

endTime [0..1]

Fig. 6. The Scenario metamodel from [29]. In the context of ATs, all instances of this
metamodel will have only one Executor, the Attacker; Executables represent attack steps
(i.e. Nodes from the AT), while a Scenario is known as an attack vector.

4 Model Transformations

ATTop supports horizontal and vertical model transformations. Figure 7 illus-
trates the difference between these. Horizontal transformations convert one
model into another that conforms to the same metamodel, e.g., a transformation
from one AT analysis tool to another (where the models of both tools are repre-
sented in the ATMM metamodel). Vertical transformations transform a model
into another that conforms to a different metamodel, e.g., the transformation
from an AT into a timed automaton. A key feature of ATTop is that it also
provides vertical transformations in the reverse direction: analysis results (e.g.,
traces produced by UPPAAL) are interpreted in terms of the original attack tree
model.
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4.1 Horizontal Transformations: Unifying Dialects of Attack Trees

One of the goals of applying the model-driven approach is to facilitate interop-
eration between different tools. To this end, we provide transformations to and
from the file formats of ADTool 2.0 [12], Attack Tree Evaluator (ATE) [5], and
ATCalc [2].

Due to the different features supported by the various tools, not all input
formalisms can be converted to any other format preserving all semantics. For
example, AT Calc performs only timing analysis, while ADTool can also perform
cost analysis of untimed attack trees. In such cases, the transformations convert
whatever information is supported by their output format, omitting unsupported
features. As the ATMM metamodel unifies the features of all the listed tools,
transformations into this metamodel are lossless.

Ezample 2. ATE Transformation. The Attack Tree Evaluator [5] tool can only
process binary trees. Using a simple transformation, we can transform any
instance of the ATMM into a binary tree. A simplified version of this trans-
formation, written in ETL, is given in Listing 2. This transformation is based
on a recursive method that traverses the tree. For every node with more than
two children, it nests all but the first child under a new node until no more than
two children remain.

4.2 Vertical Transformations: Analyzing ATs via Timed Automata

Thus far we have described the transformations to and from dedicated tools for
attack trees. In this section we introduce a vertical transformation which we use
in ATTop to translate attack trees into the more general-purpose formalism of
timed automata (TA). Specifically, we provide model transformations to TAs
that can be analyzed by the UPPAAL tool to obtain the wide range of qualitative
and quantitative properties supported by the query metamodel.

Our transformation targets the UPPAAL metamodel described in [29]. It
transforms each element of the attack tree (i.e., each gate and basic attack step)

Attack tree metamodel (ATMM) Uppaal timed
automata metamodel
A A .

i conforms to i conforms to conforms toj

Metamodel

AT specified in

_ : < TN AT specified in B Timed automata

3 lileo f 7 /

3 Galileo orrl:lat Model ADTool 2.0 ( Model models of AT

s (input to the Transformation XML format "\_Transformation elements
ATCalc tool)  —

Horizontal transformation Vertical transformation

Fig. 7. Examples of horizontal and vertical model transformations.
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var structure := AttackTree.all. first ();
structure. Root.NodeToBinary();

operation Node NodeToBinary(){
if (self . Children. size ()>2){
var newNode = new Node();
newNode.Parents.add(self);
structure . Nodes.add(newNode);

© W N O o oA W N =

o
o

var replaceNodes := self.Children.excluding(self. Children. first ());
newNode.Children := replaceNodes;

self . Children.removeAll(replaceNodes);

self. Children.add(newNode);

[
=

[
M)

-
w

}
for(child in self.Children)

child .NodeToBinary();

=
C'S

o
[=N

[
J
[

Listing 2. Transformation of an ATMM attack tree to a binary AT

into a timed automaton. These automata communicate via signals and together
describe the behavior of the entire tree. For example, Fig.8 shows the timed
automaton obtained by transforming an attack step with a deterministic time
to execute of 5 units.

Depending on the features of the x>=5
model and the desired property to be @ completefid) O
analyzed, the output of the transfor- it Active Completed
mation can be analyzed by different
extensions of UPPAAL. For example, Fig.8. Example of a timed automaton
UpPPAAL CORA supports the analysis modeling a basic attack step with a fixed
of cost-optimal queries, such as “What ~time to execute of 5 units.
is the lowest cost an attacker needs to incur in order to complete an attack”,
while UPPAAL-SMC supports statistical model checking, allowing the analysis of
models with stochastic times and probabilistic attack steps with queries such as
“What is the probability that an attacker successfully completes an attack within
one hour”. The advantages of UPPAAL CORA’s exact results come at the cost
of state space explosion, which limits the applicability of this approach for larger
problems. On the other hand, the speed and scalability of the simulation-based
UpPPAAL-SMC are countered by approximated results and the unavailability of
(counter-)example traces.

activate[id]? ==

4.3 Query Transformation: From Domain-Specific to Tool-Specific

ATTop aims to enable the analysis of ATs also by users that are less familiar
with the underlying tools. One challenge for such a user is that every tool has
its own method to specify what property of the AT should be computed.
Section 3 describes our metamodel for expressing a wide range of possible
queries, and we now transform such queries to a tool-specific format. Many tools
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support only a single query (e.g., ATE [5] only supports Pareto curves of cost
vs. probability), in which case no transformation is performed but ATTop only
allows that single query as input.

The UPPAAL tool is an example of a tool supporting many different queries.
After transforming the AT to a timed automaton (cf. Sect.4.2), we transform
the query into the textual formula supported by UPPAAL. The basic form of
this formula is determined by the query type (e.g., a ReachabilityQuery will be
translated as “E<> toplevel.completed”, which asks for the existence of a trace
that reaches the top level event), while constraints add additional terms limiting
the permitted behavior of the model. By using an UPPAAL-specific metamodel
for its query language linked to the TA metamodel, our transformation can easily
refer to the TA elements that correspond to converted AT elements.

4.4 Result Transformation: From Tool-Specific to Domain-Specific

Analyses done with a back-end tool produce results that may only be immedi-
ately understandable to an expert in that tool. An important feature of AT Top
to ease its use by non-experts, is that it provides interpretations of these results
in terms of the original AT.

For example, given an attack tree whose leaves are annotated with (time-
dependent) costs, UPPAAL can produce a trace showing the cheapest way to
reach a security breach (optionally within a specified time bound). This trace
is given in a textual format, with many details that are irrelevant to a security
analyst. It is much easier to understand this scenario when shown in terms of
the attack tree (for example, Fig. 11 is a scenario described by several pages
of UPPAAL output). This is exactly the purpose of having reverse transforma-
tions: UPPAAL’s textual traces are automatically parsed by ATTop, generating
instances of the Trace metamodel described in [29]. To do so, the transformation
from ATMM to UPPAAL retains enough information to trace identifiers in the
UPPAAL model back to the elements of the AT. When parsing the trace, AT Top
extracts only the relevant events (e.g., the starts and ends of attack steps) and
related information (e.g., time). This information is then stored as an instance
of the Scenario metamodel described in Sect. 3.

In the generated Schedule, attack steps are represented as Executables, while
Tasks indicate the start and finish time of each attack step, thus describing the
attack vector. Only one Executor is present in any attack vector produced by
this transformation, and that is the Attacker. An example of such a generated
schedule can be seen in Fig. 11.

5 Tool Support

We have developed the tool ATTop to enable users to easily use the transfor-
mations described in this paper, without requiring knowledge of the underly-
ing techniques or formalisms. ATTop automatically selects which transforma-
tions to apply based on the available inputs and desired outputs. For exam-
ple, if the user provides an ADTool input and requests an UPPAAL output,
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ATTop will automatically ~ 3 —
first execute the transforma-  iputfies ,
tion from ADTool to the |Galileo I:Jtesraﬂ ' . | Browse
ATMM, and then the trans- | Addfile |
formation from ATMM to  Querytpe
UPPAAL. ®) Reachability Probability Optimal Expected cost
Users operate the tool  Censtraints ,
P . Max. cost Max. time
by specifying input files and e :
their corresponding languages,  [ypaaTextResutt |~ [ |
and the desired output files  [uats = ryrr— . '
and languages. ATTop then 323" [ : —
performs a search for the {rspin —_—
shortest sequence of transfor-  [a1A
. . . ATE
mations achieving the desired laDTool |
outputs from the inputs. For  [aTcaic ~

example, Fig.9 shown the

tool’s main screen, where the Fig. 9. Screenshot of ATTop’s main screen, allowing
user has provided an input input file selection, query specification, and output

AT in Galileo format. The selection.

user can now choose between different queries and analysis engines.

6 Case Study

As a case study we use the example anno-
tated attack tree given in Fig. 2. We apply
ATTop to automatically compute several
qualitative and quantitative security met-
rics. Specifically, we apply a horizontal
transformation to convert the model from
the ATCalc format to that accepted by
ADTool 2.0, and a vertical transformation
to analyze the model using UPPAAL.

We specify the AT in the Galileo for-
mat as accepted by ATCalc. Analysis with
ATCalc yields a graph of the probability of
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Fig. 10. AT Calc plot showing proba-
bility of successful attack over time

a successful attack over time, as shown in Fig. 10. Next, we would like to deter-
mine the minimal cost of a successful attack, which ATCalc cannot provide.
Therefore, we use ATTop to transform the AT to the ADTool 2.0 format, and
use ADTool 2.0 to compute the minimal cost (yielding $270).

Next, we perform a more comprehensive timing analysis using the vertical
transformation described in Sect. 4.2. We use ATTop to transform the AT to a
timed automaton that can be analyzed using the UPPAAL tool. We also transform
a query (OptimalityQuery asking for minimal time) to the corresponding UPPAAL
query. Combining these, we obtain a trace for the fastest successful attack, which
ATTop transforms into a scenario in terms of the AT as described in Sect. 4.3.
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Fig. 11. Scenario of fastest attack as computed by UPPAAL . The executed steps and
their start—end times are also shown in Fig. 2.

The resulting scenario is shown in Fig. 11. Running the whole process, including
the transformations and the analysis with UPPAAL, took 6.5s on an Intel®)
Core™ i7 CPU 860 at 2.80 GHz running Ubuntu 16.04 LTS.

7 Conclusions

We have presented a model-driven approach to the analysis of attack trees and a
software bridging tool—AT Top—implementing this approach. We support inter-
operability between different existing analysis tools, as well as our own analysis
using the popular tool UPPAAL as a back-end engine.

Formal methods have the advantage of being precise, unambiguous and sys-
tematic. A lot of effort is spent on their correctness proofs. However, these ben-
efits are only reaped if the tools supporting formal analysis are also correct. To
the best of our knowledge, this work is among the first to apply the systematic
approach of MDE to the development of formal analysis tools.

Through model-driven engineering, we have developed the attack tree meta-
model (ATMM) with support for the many extended formalisms of attack trees,
integrating most of the features of such extensions. This unified metamodel pro-
vides a common representation of attack trees, allowing easy transformations
from and to the specific representations of individual tools such as ATCalc [2]
and ADTool [12]. The metamodels for queries and schedules facilitate a user-
friendly interface, obtaining relevant questions and presenting results without
needing expert knowledge of the underlying analysis tool.

We have presented our approach specifically for attack trees, but we believe it
can be equally fruitful for different formalisms and tools as well (e.g. PRISM [24],
STORM [9]) by using different metamodels and model transformations. We thus
expect our approach to be useful in the development of other tools that bridge
specialized domains and formal methods.
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Abstract. Designers of distributed database systems face the choice
between stronger consistency guarantees and better performance. A num-
ber of applications only require read atomicity (RA) and prevention of
lost updates (PLU). Existing distributed database systems that meet
these requirements also provide additional stronger consistency guaran-
tees (such as causal consistency), and therefore incur lower performance.
In this paper we define a new distributed transaction protocol, ROLA,
that targets applications where only RA and PLU are needed. We for-
mally model ROLA in Maude. We then perform model checking to ana-
lyze both the correctness and the performance of ROLA. For correctness,
we use standard model checking to analyze ROLA’s satisfaction of RA
and PLU. To analyze performance we: (a) use statistical model checking
to analyze key performance properties; and (b) compare these perfor-
mance results with those obtained by analyzing in Maude the well-known
protocol Walter. Our results show that ROLA outperforms Walter.

1 Introduction

Distributed transaction protocols are complex distributed systems whose design
is quite challenging because: (i) validating correctness is very hard to achieve by
testing alone; (ii) the high performance requirements needed in many applica-
tions are hard to measure before implementation; and (iii) there is an unavoidable
tension between the degree of consistency needed for the intended applications
and the high performance required of the transaction protocol for such applica-
tions: balancing well these two requirements is essential.

In this work, we present our results on how to use formal modeling and
analysis as early as possible in the design process to arrive at a mature design of a
new distributed transaction protocol, called ROLA, meeting specific correctness
and performance requirements before such a protocol is implemented. In this
way, the above-mentioned design challenges (i)—(iii) can be adequately met. We
also show how using this formal design approach it is relatively easy to compare
ROLA with other existing transaction protocols.
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ROLA in a Nutshell. Different applications require negotiating the consis-
tency vs. performance trade-offs in different ways. The key issue is the applica-
tion’s required degree of comsistency, and how to meet such requirements with
high performance. Cerone et al. [4] survey a hierarchy of consistency models for
distributed transaction protocols including (in increasing order of strength):

— read atomicity (RA): either all or none of a distributed transaction’s updates
are visible to another transaction (that is, there are no “fractured reads”);

— causal consistency (CC): if transaction T is causally dependent on transaction
T1, then if another transaction sees the updates by 75, it must also see the
updates of T; (e.g., if A posts something on a social media, and C sees B’s
comment on A’s post, then C' must also see A’s original post);

— parallel snapshot isolation (PSI): like CC but without lost updates;

— and so on, all the way up to the well-known serializability guarantees.

A key property of transaction protocols is the prevention of lost updates
(PLU). The weakest consistency model in [4] satisfying both RA and PLU is PSI.
However, PSI, and the well-known protocol Walter [20] implementing PSI, also
guarantee CC. Cerone et al. conjecture that a system guaranteeing RA and PLU
without guaranteeing CC should be useful, but up to now we are not aware of any
such protocol. The point of ROLA is exactly to fill this gap: guaranteeing RA and
PLU, but not CC. Two key questions are then: (a) are there applications needing
high performance where RA plus PLU provide a sufficient degree of consistency?
and (b) can a new design meeting RA plus PLU outperform existing designs,
like Walter, meeting PSI?

Regarding question (a), an example of a transaction that requires RA and
PLU but not CC is the “becoming friends” transaction on social media. Bailis
et al. [3] point out that RA is crucial for this operation: If Edinson and Neymar
become friends, then Unai should not see a fractured read where Edinson is a
friend of Neymar, but Neymar is not a friend of Edinson. An implementation of
“becoming friends” must obviously guarantee PLU: the new friendship between
Edinson and Neymar should not be lost. Finally, CC could be sacrificed for the
sake of performance: Assume that Dani is a friend of Neymar. When Edinson
becomes Neymar’s friend, he sees that Dani is Neymar’s friend, and therefore
also becomes friend with Dani. The second friendship therefore causally depends
on the first one. However, it does not seem crucial that others are aware of this
causality: If Unai sees that Edinson and Dani are friends, then it is not necessary
that he knows that (this happened because) Edinson and Neymar are friends.

Regarding question (b), Sect. 6 shows that ROLA clearly outperforms Walter
in all performance requirements for all read/write transaction rates.

Maude-Based Formal Modeling and Analysis. In rewriting logic [16],
distributed systems are specified as rewrite theories. Maude [5] is a high-
performance language implementing rewriting logic and supporting various
model checking analyses. To model time and performance issues, ROLA is spec-
ified in Maude as a probabilistic rewrite theory [1,5]. ROLA’s RA and PLU
requirements are then analyzed by standard model checking, where we disregard
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time issues. To estimate ROLA’s performance, and to compare it with that of
Walter, we have also specified Walter in Maude, and subject the Maude mod-
els of both ROLA and Walter to statistical model checking analysis using the
PVESTA [2] tool.

Main Contributions include: (1) the design, formal modeling, and model
checking analysis of ROLA, a new transaction protocol having useful applications
and meeting RA and PLU consistency properties with competitive performance;
(2) a detailed performance comparison by statistical model checking between
ROLA and the Walter protocol showing that ROLA outperforms Walter in all
such comparisons; (3) to the best of our knowledge the first demonstration that,
by a suitable use of formal methods, a completely new distributed transaction
protocol can be designed and thoroughly analyzed, as well as be compared with
other designs, very early on, before its implementation.

2 Preliminaries

Read-Atomic Multi-Partition (RAMP) Transactions. To deal with ever-
increasing amounts of data, large cloud systems partition their data across multi-
ple data centers. However, guaranteeing strong consistency properties for multi-
partition transactions leads to high latency. Therefore, trade-offs that combine
efficiency with weaker transactional guarantees for such transactions are needed.

In [3], Bailis et al. propose an isolation model, read atomic isolation, and Read
Atomic Multi-Partition (RAMP) transactions, that together provide efficient
multi-partition operations that guarantee read atomicity (RA).

RAMP uses multi-versioning and attaches metadata to each write. Reads use
this metadata to get the correct version. There are three versions of RAMP; in
this paper we build on RAMP-Fast. To guarantee that all partitions perform
a transaction successfully or that none do, RAMP performs two-phase writes
using the two-phase commit protocol (2PC). In the prepare phase, each time-
stamped write is sent to its partition, which adds the write to its local database.!
In the commit phase, each such partition updates an index which contains the
highest-timestamped committed version of each item stored at the partition.

RAMP assumes that there is no data replication: a data item is only stored at
one partition. The timestamps generated by a partition P are unique identifiers
but are sequentially increasing only with respect to P. A partition has access to
methods GET_ALL(! : set of items) and PUT_ALL(W : set of (item, value) pairs).

PUT_ALL uses two-phase commit for each w in W. The first phase initiates
a prepare operation on the partition storing w.item, and the second phase com-
pletes the commit if each write partition agrees to commit. In the first phase, the
client (i.e., the partition executing the transaction) passes a version v : (item,
value, ts,, md) to the partition, where ts, is a timestamp generated for the
transaction and md is metadata containing all other items modified in the same
transaction. Upon receiving this version v, the partition adds it to a set versions.

L RAMP does not consider write-write conflicts, so that writes are always prepared
successfully (which is why RAMP does not prevent lost updates).



80 S. Liu et al.

When a client initiates a GET_ALL operation, then for each i € I the client
will first request the latest version vector stored on the server for . It will then
look at the metadata in the version vector returned by the server, iterating over
each item in the metadata set. If it finds an item in the metadata that has a
later timestamp than the ts, in the returned vector, this means the value for i
is out of date. The client can then request the RA-consistent version of 7.

Rewriting Logic and Maude. In rewriting logic [16] a concurrent system
is specified a as rewrite theory (X, E U A, R), where (X, E U A) is a member-
ship equational logic theory [5], with X an algebraic signature declaring sorts,
subsorts, and function symbols, E a set of conditional equations, and A a set
of equational axioms. It specifies the system’s state space as an algebraic data
type. R is a set of labeled conditional rewrite rules, specifying the system’s local
transitions, of the form [I] : ¢ — ¢’ if cond, where cond is a condition and [ is a
label. Such a rule specifies a transition from an instance of ¢ to the corresponding
instance of ¢', provided the condition holds.

Maude [5] is a language and tool for specifying, simulating, and model check-
ing rewrite theories. The distributed state of an object-oriented system is for-
malized as a multiset of objects and messages. A class C' with attributes att; to
att, of sorts s1 to s, is declared class C | atty : s1, ..., att, : S,. An object
of class C'is modeled as aterm <o : C | atty : vy, ..., att, : v, >, with o its
object identifier, and where the attributes att; to att, have the current values
v1 to vy, respectively. Upon receiving a message, an object can change its state
and/or send messages to other objects. For example, the rewrite rule

rl [1] : m(0,z) <0 :C | a1l : x, a2 : 0’ >
=> <0:Clal:x+2z,a2 :0 > m@’,x + z)

defines a transition where an incoming message m, with parameters 0 and z, is
consumed by the target object 0 of class C, the attribute al is updated to x +
z, and an outgoing message m’ (0’ ,x + z) is generated.

Statistical Model Checking and PVESTA. Probabilistic distributed sys-
tems can be modeled as probabilistic rewrite theories [1] with rules of the form

[[]:t(7) — (7, Y) if cond(¥) with probability y = n(T)

where the term ¢’ has new variables 3 disjoint from the variables Z in the
term t. The concrete values of the new variables 3 in t/(2, %) are chosen
probabilistically according to the probability distribution 7 (7).

Statistical model checking [18,21] is an attractive formal approach to ana-
lyzing (purely) probabilistic systems. Instead of offering a yes/no answer, it can
verify a property up to a user-specified level of confidence by running Monte-
Carlo simulations of the system model. We then use PVESTA [2], a paralleliza-
tion of the tool VESTA [19], to statistically model check purely probabilistic
systems against properties expressed as QUATEX expressions [1]. The expected
value of a QUATEX expression is iteratively evaluated w.r.t. two parameters «
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and § by sampling, until we obtain a value v so that with (1 —«)100% statistical
confidence, the expected value is in the interval [v — g, v+ %]

3 The ROLA Multi-Partition Transaction Algorithm

Our new algorithm for distributed multi-partition transactions, ROLA, extends
RAMP-Fast. RAMP-Fast guarantees RA, but it does not guarantee PLU since
it allows a write to overwrite conflicting writes: When a partition commits a
write, it only compares the write’s timestamp ¢; with the local latest-committed
timestamp ¢, and updates the latest-committed timestamp with ¢1 or t5. If the
two timestamps are from two conflicting writes, then one of the writes is lost.

ROLA’s key idea to prevent lost updates is to sequentially order writes on the
same key from a partition’s perspective by adding to each partition a data struc-
ture which maps each incoming version to an incremental sequence number. For
write-only transactions the mapping can always be built; for a read-write transac-
tion the mapping can only be built if there has not been a mapping built since the
transaction fetched the value. This can be checked by comparing the last prepared
version’s timestamp’s mapping on the partition with the fetched version’s times-
tamp’s mapping. In this way, ROLA prevents lost updates by allowing versions to
be prepared only if no conflicting prepares occur concurrently.

More specifically, ROLA adds two partition-side data structures: sqn, denot-
ing the local sequence counter, and seq[ts], that maps a timestamp to a local
sequence number. ROLA also changes the data structure of versions in RAMP
from a set to a list. ROLA then adds two methods: the coordinator-side? method
UPDATE(I : set of items, OP : set of operations) and the partition-side method
PREPARE_UPDATE(v : version, tSprev - timestamp) for read-write transactions.
Furthermore, ROLA changes two partition-side methods in RAMP: PREPARE,
besides adding the version to the local store, maps its timestamp to the increased
local sequence number; and COMMIT marks versions as committed and updates
an index containing the highest-sequenced-timestamped committed version of
each item. These two partition-side methods apply to both write-only and read-
write transactions. ROLA invokes RAMP-Fast’s PUT_ALL, GET_ALL and GET
methods (see [3,14]) to deal with read-only and write-only transactions.

ROLA starts a read-write transaction with the UPDATE procedure. It invokes
RAMP-Fast’s GET_ALL method to retrieve the values of the items the client
wants to update, as well as their corresponding timestamps. ROLA writes then
proceed in two phases: a first round of communication places each timestamped
write on its respective partition. The timestamp of each version obtained previ-
ously from the GET_ALL call is also packaged in this prepare message. A second
round of communication marks versions as committed.

At the partition-side, the partition begins the PREPARE_UPDATE routine by
retrieving the last version in its versions list with the same item as the received
version. If such a version is not found, or if the version’s timestamp ts, matches

2 The coordinator, or client, is the partition executing the transaction.
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Algorithm 1. ROLA

Server-side Data Structures

versions: list of versions (item, value, timestamp ts,, metadata md)
latestCommitli]: last committed timestamp for item

seq[ts]: local sequence number mapped to timestamp ts

sqn: local sequence counter

Server-side Methods
GET same as in RAMP-Fast

5: procedure PREPARE_UPDATE(v : version, ¢Sprey : timestamp)
6: latest «+ last w € versions : w.item = v.item

7 if latest = NULL or tSprev = latest.ts, then

8: sqn «— sqn + 1; seq[v.ts,] < sqn; versions.add(v)

9: return ACK

10: else return latest

11: procedure PREPARE(v : version)
12: sqn «— sqn + 1; seq[v.tsy] < sqn; wversions.add(v)

13: procedure COMMIT(ts. : timestamp)

14: Iis — {w.item | w € versions A w.ts, = tsc}
15: for i € I;s do
16: if seq[tsc] > seq[latestCommit[i]] then latestCommit[i] « ts.

Coordinator-side Methods
PUT_ALL, GET_ALL same as in RAMP-Fast

17: procedure UPDATE(! : set of items, OP : set of operations)

18: ret «— GET,ALL(I); tstz < generate new timestamp

19: parallel-for i € I do

20: tSprev < Tet[i].tsy; v« ret[i].value

21: w « {(item = i, value = op,(v), tsy = tsta, md = (I — {i}))

22: P < PREPARE_UPDATE(wW,tSprev)

23: if p = latest then

24: invoke application logic to, e.g., abort and/or retry the transaction
25: end parallel-for

26: parallel-for server s : s contains an item in I do

27: invoke COMMIT (¢S¢z) on s

28: end parallel-for

the passed-in timestamp %spp,, then the version is deemed prepared. The par-
tition keeps a record of this locally by incrementing a local sequence counter
and mapping the received version’s timestamp ts, to the current value of the
sequence counter. Finally the partition returns an ACK to the client. If tsprey
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does not match the timestamp of the last version in wversions with the same
item, then this latest timestamp is simply returned to the coordinator.

If the coordinator receives an ACK from PREPARE_UPDATE, it immediately
commits the version with the generated timestamp tsy;. If the returned value is
instead a timestamp, the transaction is aborted.

4 A Probabilistic Model of ROLA

This section defines a formal executable probabilistic model of ROLA. The whole
model is given at https://sites.google.com /site/fase18submission/.

As mentioned in Sect. 2, statistical model checking assumes that the system
is fully probabilistic; that is, has no unquantified nondeterminism. We follow the
techniques in [6] to obtain such a model. The key idea is that message delays are
sampled probabilistically from dense/continuous time intervals. The probability
that two messages will have the same delay is therefore 0. If events only take
place when a message arrives, then two events will not happen at the same time,
and therefore unquantified nondeterminism is eliminated.

We are also interested in correctness analysis of a model that captures all
possible behaviors from a given initial configuration. We obtain such a nonde-
terministic untimed model, that can be subjected to standard model checking
analysis, by just removing all message delays from our probabilistic timed model.

4.1 Probabilistic Sampling

Nodes send messages of the form [A, rcvr <-msg], where A is the message
delay, rcor is the recipient, and msg is the message content. When time A has
elapsed, this message becomes a ripe message {1, rcor <- msg}, where T is the
“current global time” (used for analysis purposes only).

To sample message delays from different distributions, we use the follow-
ing functionality provided by Maude: The function random, where random (k)
returns the k-th pseudo-random number as a number between 0 and 232 — 1,
and the built-in constant counter with an (implicit) rewrite rule counter =>
N:Nat. The first time counter is rewritten, it rewrites to 0, the next time it
rewrites to 1, and so on. Therefore, each time random(counter) rewrites, it
rewrites to the next random number. Since Maude does not rewrite counter
when it appears in the condition of a rewrite rule, we encode a probabilistic
rewrite rule (@) — t/(2,y) if cond(Z) with probability ¥ := m(7) in
Maude as the rule t(7) — t/(Z, sample(n(Z))) if cond(Z'). The following
operator sampleLogNormal is used to sample a value from a lognormal distribu-
tion with mean MEAN and standard deviation SD:

op sampleLogNormal : Float Float -> [Float]
eq sampleLogNormal (MEAN,SD) = exp(MEAN + SD * sampleNormal)

op sampleNormal : -> [Float] . op sampleNormal : Float -> [Float]
eq sampleNormal = sampleNormal(float(random(counter) / 4294967296))
eq sampleNormal (RAND) = sqrt(- 2.0 * log(RAND)) * cos(2.0 * pi * RAND)
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random(counter) /4294967296 rewrites to a different “random”