
Antoine Joux
Abderrahmane Nitaj
Tajjeeddine Rachidi (Eds.)

 123

LN
CS

 1
08

31

10th International Conference on Cryptology in Africa
Marrakesh, Morocco, May 7–9, 2018
Proceedings

Progress in Cryptology –
AFRICACRYPT 2018

Lecture Notes in Computer Science 10831

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Antoine Joux • Abderrahmane Nitaj
Tajjeeddine Rachidi (Eds.)

Progress in Cryptology –

AFRICACRYPT 2018
10th International Conference on Cryptology in Africa
Marrakesh, Morocco, May 7–9, 2018
Proceedings

123

Editors
Antoine Joux
Fondation Partenariale de Sorbonne
Université

Paris
France

Abderrahmane Nitaj
Université de Caen
Caen
France

Tajjeeddine Rachidi
Al Akhawayn University
Ifrane
Morocco

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-89338-9 ISBN 978-3-319-89339-6 (eBook)
https://doi.org/10.1007/978-3-319-89339-6

Library of Congress Control Number: 2018937402

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

AFRICACRYPT 2018, the 10th International Conference on the Theory and
Application of Cryptographic Techniques in Africa, took place in Marrakesh, Morocco,
May 7–9, 2018. The conference was organized by Al Akhawayn University in Ifrane in
cooperation with the International Association for Cryptologic Research (IACR).

The conference received a total of 54 submissions. Each submission was anon-
ymized for the reviewing process and was assigned to three reviewers out of the 41
Program Committee members.

The Program Committee, aided by reports from 37 external reviewers, produced
a total of 156 reviews. After highly interactive discussions and careful deliberation, the
Program Committee selected 19 papers for presentation. The authors of accepted
papers were given a week to prepare final versions of their papers for these proceed-
ings. The revised versions of these papers are included in these proceedings and
classified into two topics: symmetric cryptography and asymmetric cryptography.

The program was completed with two invited talks by Joan Daemen from Radboud
University in Nijmegen, The Netherlands, and STMicroelectronics; and by Léo Ducas
from CWI, Amsterdam, The Netherlands. We are very grateful to them for accepting
our invitation.

We would like to thank all authors who submitted papers. The submissions came
from: Australia, Austria, Belgium, Brazil, Canada, China, France, Germany, India,
Iran, Japan, Morocco, Norway, Portugal, Romania, Senegal, Singapore, Sweden,
Switzerland, Taiwan, The Netherlands, UAE, UK, and USA. We regret that the
Program Committee rejected some very good papers. We know that this can be very
disappointing. We sincerely hope that these works, eventually, get the attention they
deserve elsewhere.

We are deeply grateful to the Program Committee and to the external reviewers for
their hard work, enthusiasm, and conscientious efforts to ensure that each paper
received a thorough and fair review.

We would also like to thank Springer for agreeing to an accelerated schedule for
printing these proceedings, the EasyChair team for allowing us to use their platform,
and Al Akhawayn University in Ifrane for supporting the conference.

We also thank the local Organizing Committee for their commitment and hard work
to make the conference an enjoyable experience. We also thank Driss Ouaouicha and
Kevin Smith, respectively, President and Dean of the School of Science and Engi-
neering at Al Akhawayn University, for their financial and unconditional moral sup-
port. We extend our gratitude to the conference sponsors S2M Morocco for financially
supporting the conference.

Last but not least, we thank everyone else, speakers, session chairs, and rump
session chairs for their contribution to the program of Africacrypt 2018.

Finally, we wish to thank the participants and presenters. They all made Africacrypt
2018 a highly recognized forum for researchers to interact and share their works and
knowledge with their peers, for the overall growth and development of cryptology
research in the world and in Africa in particular.

May 2018 Antoine Joux
Abderrahmane Nitaj
Tajjeeddine Rachidi

VI Preface

Organization

Africacrypt 2018 was organized by Al Akhawayn University in Ifrane, Morocco.

General Chair

Tajjeeddine Rachidi Al Akhawayn University in Ifrane, Morocco

Program Chairs

Antoine Joux Fondation Partenariale de Sorbonne Université, IMJ-PRG,
Paris, France

Abderrahmane Nitaj University of Caen Normandie, France
Tajjeeddine Rachidi Al Akhawayn University in Ifrane, Morocco

Organizing Committee

Latifa El Mortaji (Chair) Al Akhawayn University, Ifrane, Morocco
Bouchra Saad Al Akhawayn University, Ifrane, Morocco

Program Committee

Elena Andreeva Katholieke Universiteit Leuven, Belgium
Hatem M. Bahig Ain Shams University, Cairo, Egypt
Magali Bardet University of Rouen, France
Hussain Benazza University of Meknes, Morocco
Colin Boyd Norwegian University of Science and Technology,

Norway
Dario Catalano Università di Catania, Italy
Xing Chaoping Nanyang Technological University, Singapore
Sherman S. M. Chow The Chinese University of Hong Kong, SAR China
Nicolas Courtois University College London, UK
Luca De Feo University de Versaille – Saint-Quentin-en-Yvelines,

France
Milena Djukanovic University of Montenegro
Nadia El Mrabet SAS - CGCP - EMSE, France
Pierre-Alain Fouque University of Rennes, France
Aline Gouget Gemalto, France
Gottfried Herold ENS Lyon, France
Javier Herranz Universitat Politècnica de Catalunya, Spain
Hieuphan Duong University of Limoges, France
Sorina Ionica Université de Picardie, France

Tetsu Iwata Nagoya University, Japan
Antoine Joux Fondation Partenariale de Sorbonne Université, IMJ-PRG,

Paris, France
Juliane Kramer TU Darmstadt, Germany
Fabien Laguillaumie University of Lyon I/LIP, France
Tancrède Lepoint SRI International, USA
Abderrahmane Nitaj University of Caen Normandie, France
Ayoub Otmani University of Rouen Normandie, France
Elizabeth A. Quaglia Royal Holloway, University of London, UK
Tajjeeddine Rachidi Al Akhawayn University in Ifrane, Morocco
Adeline Roux-Langlois CNRS-IRISA, France
Magdy Saeb Arab Academy for Science, Technology Institute Maritime

Transport, Alexandria, Egypt
Rei Safavi-Naini University of Calgary, Canada
Palash Sarkar Indian Statistical Institute, India
Alessandra Scafuro North Carolina State University, Raleigh, USA
Peter Schwabe Radboud University Nijmegen, The Netherlands
Djiby Sow University of Dakar, Senegal
Pontelimon Stanica Naval Postgraduate School, Monterey, USA
Noah

Stephens-Davidowitz
New York University, USA

Willy Susilo University of Wollongong, Australia
Joseph Tonien University of Wollongong, Australia
Damien Vergnaud Sorbonne Université, Paris, France
Vanessa Vitse University of Grenoble, France
Amr M. Youssef Concordia University, Canada

Additional Reviewers

Luca Nizzardo
Michael Walter
Ashley Fraser
Karim Bigou
Guilherme Perin
Sepideh Avizheh
Hisham Galal
Mamun Akand
Sebati Ghosh
Yongjun Zhao
Mohamed Tolba
Pauline Bert

Sumit Pandey
Nicolas Gama
Mohamed Elsheikh
Marine Minier
Antoine Loiseau
Viet Cuong Trinh
Peter Spacek
Julien Eynard
Kerem Varici
Valentin Suder
Begül Bilgin
Joan Daemen

Subhadip Singha
Olivier Sanders
Khoa Nguyen
Fabrice Mouhartem
Pierre Karpman
Matteo Scarlata
Thomas De Cnudde
Paul Germouty
Brice Minaud
Sabyasachi Karati

VIII Organization

Invited Speakers

Joan Daemen Radboud University in Nijmegen, The Netherlands,
and STMicroelectronics

Léo Ducas CWI, Amsterdam, The Netherlands

Sponsoring Institutions

Al Akhawayn University in Ifrane, Morocco
Société Maghrébine de Monétique (S2M), Morocco, http://www.s2m.ma

Organization IX

Contents

Symmetric Cryptography

A Complete Characterization of Plateaued Boolean Functions in Terms
of Their Cayley Graphs . 3

Constanza Riera, Patrick Solé, and Pantelimon Stănică

Chameleon-Hashes with Dual Long-Term Trapdoors
and Their Applications. 11

Stephan Krenn, Henrich C. Pöhls, Kai Samelin,
and Daniel Slamanig

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 33
Kaiyan Zheng, Peng Wang, and Dingfeng Ye

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count . . . 51
Dylan Toh, Jacob Teo, Khoongming Khoo, and Siang Meng Sim

Two Simple Composition Theorems with H-coefficients 72
Jacques Patarin

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 87
Yu Sasaki

SCA-Resistance for AES: How Cheap Can We Go? 107
Ricardo Chaves, Łukasz Chmielewski, Francesco Regazzoni,
and Lejla Batina

Cryptanalysis of 1-Round KECCAK . 124
Rajendra Kumar, Mahesh Sreekumar Rajasree,
and Hoda AlKhzaimi

Asymmetric Cryptography

Performing Computations on Hierarchically Shared Secrets 141
Giulia Traverso, Denise Demirel, and Johannes Buchmann

Development of a Dual Version of DeepBKZ and Its Application
to Solving the LWE Challenge . 162

Masaya Yasuda, Junpei Yamaguchi, Michiko Ooka,
and Satoshi Nakamura

Unified Formulas for Some Deterministic Almost-Injective Encodings
into Hyperelliptic Curves . 183

Michel Seck and Nafissatou Diarra

HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption
with Error Correction. 203

Daniel J. Bernstein, Leon Groot Bruinderink, Tanja Lange,
and Lorenz Panny

Large FHE Gates from Tensored Homomorphic Accumulator. 217
Guillaume Bonnoron, Léo Ducas, and Max Fillinger

Two-Face: New Public Key Multivariate Schemes 252
Gilles Macario-Rat and Jacques Patarin

Cryptanalysis of RSA Variants with Modified Euler Quotient 266
Mengce Zheng, Noboru Kunihiro, and Honggang Hu

Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption
and CCA-Secure KEM . 282

Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy,
and Frederik Vercauteren

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA. . . 306
Niels Samwel and Lejla Batina

Authentication with Weaker Trust Assumptions for Voting Systems 322
Elizabeth A. Quaglia and Ben Smyth

Shorter Double-Authentication Preventing Signatures
for Small Address Spaces. 344

Bertram Poettering

Author Index . 363

XII Contents

Symmetric Cryptography

A Complete Characterization
of Plateaued Boolean Functions in Terms

of Their Cayley Graphs

Constanza Riera1, Patrick Solé2, and Pantelimon Stănică3(B)

1 Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, 5020 Bergen, Norway

csr@hvl.no
2 CNRS/LAGA, University of Paris 8, 2 rue de la Liberté, 93 526 Saint-Denis, France

patrick.sole@telecom-paristech.fr
3 Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA

93943, USA
pstanica@nps.edu

Abstract. In this paper we find a complete characterization of
plateaued Boolean functions in terms of the associated Cayley graphs.
Precisely, we show that a Boolean function f is s-plateaued (of weight
= 2(n+s−2)/2) if and only if the associated Cayley graph is a complete
bipartite graph between the support of f and its complement (hence the
graph is strongly regular of parameters e = 0, d = 2(n+s−2)/2). More-
over, a Boolean function f is s-plateaued (of weight �= 2(n+s−2)/2) if and
only if the associated Cayley graph is strongly 3-walk-regular (and also
strongly �-walk-regular, for all odd � ≥ 3) with some explicitly given
parameters.

Keywords: Plateaued Boolean functions · Cayley graphs
Strongly regular · Walk regular

1 Introduction

Boolean functions are very important objects in cryptography, coding theory,
and communications, and have connections with many areas of discrete mathe-
matics [4,5]. In particular bent functions, which offer optimal resistance to lin-
ear cryptanalysis, when used in symmetric cryptosystems, have been extensively
studied [12,14]. They were shown in [1,2] to be connected to strongly regular
graphs. This connection occurs through the Cayley graph with generator set the
support of the Boolean function (denoted by Ωf below). Namely, having two
nonzero components in the Walsh-Hadamard spectrum translates at the Cay-
ley graph level as having three eigenvalues. This link is often referred to as the
Bernasconi-Codenotti correspondence.

In this paper, we extend this connection by relating semibent and, in gen-
eral, plateaued functions with a special class of walk-regular graphs. Plateaued
c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 3–10, 2018.
https://doi.org/10.1007/978-3-319-89339-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_1&domain=pdf
http://orcid.org/0000-0002-8622-7120

4 C. Riera et al.

Boolean functions are characterized as having three values in their Walsh-
Hadamard spectrum [11]. Their corresponding Cayley graphs belong to a special
class of regular graphs with either three or four eigenvalues in their spectrum.
The three eigenvalue case is dealt with by the strong regularity and the four
eigenvalues case corresponds to the strongly t-walk-regular graphs introduced
by Fiol and Garriga [8]. The special case of four eigenvalues of these graphs was
studied in particular in [7].

The material is organized as follows. The next section compiles the necessary
notions and definitions on Boolean functions and graph spectra. Section 3 derives
the main characterization result of the paper.

2 Preliminaries

2.1 Boolean Functions

Let F2 be the finite field with two elements and Z be the ring of integers. For any
n ∈ Z

+, the set of positive integers, let [n] = {1, . . . , n}. The Cartesian product
of n copies of F2 is F

n
2 = {x = (x1, . . . , xn) : xi ∈ F2, i ∈ [n]} which is an n-

dimensional vector space over F2, which we will denote by Vn. We will denote
by ⊕, respectively, +, the operations on F

n
2 , respectively, Z. For any n ∈ Z

+, a
function F : Vn → F2 is said to be a Boolean function in n variables. The set of
all Boolean functions will be denoted by Bn. A Boolean function can be regarded
as a multivariate polynomial over F2, called the algebraic normal form (ANF)

f(x1, . . . , xn) = a0 ⊕
∑

1≤i≤n

aixi ⊕
∑

1≤i<j≤n

aijxixj ⊕ · · · ⊕ a12...nx1x2 . . . xn,

where the coefficients a0, ai, aij , . . . , a12...n ∈ F2. The maximum number of
variables in a monomial is called the (algebraic) degree.

For a Boolean function f ∈ Bn, we define its sign function f̂ by f̂(x) =
(−1)f(x). For u = (u1, . . . , un), x = (x1, . . . , xn), we let u ·x =

∑n
i=1 uixi be the

regular scalar (inner) product on Vn. For a binary string s, we let s̄ denote the
binary complement of s. The (Hamming) weight of a binary string s, denoted by
wt(s), is the number of nonzero bits in s.

We order F
n
2 lexicographically, and denote v0 = (0, . . . , 0, 0), v1 =

(0, . . . , 0, 1), v2n−1 = (1, . . . , 1, 1). The truth table of a Boolean function f ∈ Bn

is the binary string of length 2n, [f(v0), f(v1), . . . , f(v2n−1)] (we will often omit
the commas). The (Hamming) weight of a function f is the cardinality of the
support Ωf = {x : f(x) = 1}, that is, is the weight of its truth table. We define
the Fourier transform of f by

Wf (u) =
∑

x∈Vn

f(x)(−1)u·x,

and the Walsh-Hadamard transform of f by

Wf̂ (u) =
∑

x∈Vn

(−1)f(x)(−1)u·x.

A Complete Characterization of Plateaued Boolean Functions 5

A function f for which |Wf̂ (u)| = 2n/2 for all u ∈ Vn is called a bent function [13].
Further recall that f ∈ Bn is called plateaued if |Wf̂ (u)| ∈ {0, 2(n+s)/2} for all
u ∈ Vn for a fixed integer s depending on f (we also call f then s-plateaued). If
s = 1 (n must then be odd), or s = 2 (n must then be even), we call f semibent.
For more on Boolean functions (bent, semibent, plateaued, etc.), the reader can
consult [3–5,12] and the references therein.

2.2 A Short Primer on Strong Regularity and Walk Regularity

A graph is regular of degree r (or r-regular) if every vertex has degree r, where
the degree of a vertex is defined as the number of edges incident to it. We say
that an r-regular graph G with v vertices is a strongly regular graph (srg) with
parameters (v, r, e, d) if there exist nonnegative integers e, d such that for all
vertices u,v the number of vertices adjacent to both u,v is e, (resp. d), if u,v
are adjacent, (resp. nonadjacent). See [6] for further properties of these graphs.

For a Boolean function f on Vn, we define the Cayley graph of f to be the
graph Gf = (Vn, Ef) whose vertex set is Vn, and whose set of edges is defined
by

Ef = {(w,u) ∈ Vn × Vn : f(w ⊕ u) = 1}.

The adjacency matrix Af is the matrix whose entries are Ai,j = f(i ⊕ j)
(where i is the binary representation as an n-bit vector of the index i). It is
simple to prove that Af has the dyadic property: Ai,j = Ai+2k−1,j+2k−1 . One
can derive from its definition that Gf is a regular graph of degree wt(f) = |Ωf |
(see [6, Chap. 3] for further definitions and properties of these graphs).

Given a graph, Gf , and its adjacency matrix, A, the spectrum Spec(Gf) is the
set of eigenvalues of A (called also the eigenvalues of Gf). We assume throughout
that Gf is connected (in fact, one can show that all connected components of
Gf are isomorphic) [1,6].

It is known (see [6, pp. 194–195]) that a connected r-regular graph is strongly
regular if and only if it has exactly three distinct eigenvalues λ0 = r, λ1, λ2 (so
e = r+λ1λ2+λ1+λ2, d = r+λ1λ2). Bent functions exactly correspond to those
strongly regular graphs with e = d (Bernasconi-Codenotti correspondence).

The following result is known [6, Theorem 3.32, p. 103] (the second part
follows from a counting argument and is also well known).

Proposition 1. If A is the adjacency matrix of a strongly r-regular graph of
parameters e, d and |V | = v, then

A2 = (e − d)A + (r − d)I + dJ,

where J is the all 1 matrix. Further, r(r − e − 1) = d(v − r − 1).

The distance in the graph Γ = (V,E) between two vertices x, y ∈ V , denoted
by d(x, y), is given by the length of the shortest path between x and y. The
diameter of a graph is D = maxx,y∈V d(x, y). A connected graph is called
distance-regular of parameters (ci, ai, bi) (called intersection numbers), if, for

6 C. Riera et al.

all 0 ≤ i ≤ D, and for all vertices x, y with d(x, y) = i, among the neighbors
of y, there are ci that are at distance i − 1 from x, ai at distance i, and bi at
distance i + 1 (thus Γ is regular of degree r = b0).

Fiol and Garriga [8] introduced t-walk-regular graphs as a generalization of
both distance-regular and walk-regular graphs. We call a graph Γ = (V,E) a
t-walk-regular (assuming Γ has its diameter at least t) if the number of walks of
every given length � between two vertices x, y ∈ V depends only on the distance
between x, y, provided it is ≤ t. In [7], van Dam and Omidi generalized this
concept and called Γ a strongly �-walk-regular with parameters (σ�, μ�, ν�) if
there are σ�, μ�, ν� walks of length � between every two adjacent, every two non-
adjacent, and every two identical vertices, respectively. Certainly, every strongly
regular graph of parameters (v, r, e, d) is a strongly 2-walk-regular graph with
parameters (e, d, r).

Similarly to Proposition 1, the adjacency matrix A of a strongly �-walk-
regular graph will satisfy the following property.

Proposition 2 ([7]). Let � > 1, and A be the adjacency matrix of a graph Γ .
Then Γ is a strongly �-walk-regular with parameters (σ�, μ�, ν�) if and only if

A� + (μ� − σ�)A + (μ� − ν�)I = μ�J.

3 Plateaued Boolean Functions

In general, the spectrum of the Cayley graph of an s-plateaued Boolean function
f : F

n
2 → F2 will be 4-valued, and therefore the graph will not be strongly

regular (see [5, Theorem 9.7]). This can be easily deduced from the fact that, if
the Walsh-Hadamard transform of a Boolean function takes values in {0,±k}
(for s-plateaued functions, k = 2(n+s)/2), then the Fourier transform of f takes
values in {wt(f), 0,±k

2} (recall that the Fourier transform of f gives the graph
spectrum of the corresponding Cayley graph), as the following argument shows.

By [5, Eq. (2.15)],

Wf (w) = 2n−1δ(w) − 1
2
Wf̂ (w),

where δ is the Kronecker delta. Note that, for w = 0,Wf (0) = wt(f). By
Parseval’s identity (see [5]), 22n =

∑

w∈Fn
2

|Wf̂ (w)|2, the multiplicity of ±k is 22n

k2 .

Hence, the multiplicity of these eigenvalues will be (assuming wt(f) �= k
2 ; the

other case follows easily):

(i) If f is balanced, then Wf̂ (0) = 0, while Wf (0) = wt(f). Then, the multi-

plicity of λ1 = wt(f) is 1, the multiplicity of λ3 = 0 is 2n − 22n

k2 − 1, while the
multiplicities of λ2, λ4 = ±k

2 will sum to 22n

k2 .
(ii) If f is not balanced, then Wf̂ (0) = ±k, while Wf (0) = wt(f). Then, the

multiplicity of λ1 = wt(f) is 1, the multiplicity of 0 is 2n − 22n

k2 , while the
multiplicities of ±k

2 will sum to 22n

k2 − 1.

A Complete Characterization of Plateaued Boolean Functions 7

Example: n = 3, f = x1x2 ⊕ x1x3 ⊕ x2x3, which is semibent, since Wf̂ (w) =
(0 4 4 0 4 0 0 − 4))T . We compute that Wf (w) = (4 − 2 − 2 0 − 2 0 0 2)T ,
which is 4-valued.

Certainly, if f is semibent, the multiplicities are more precisely known
(see [11], for example). For instance, if n is odd (without loss of generality,
we assume that f(0) = 0), the multiplicities of the spectra coefficients of f̂ are

value multiplicity

0 2n−1

2(n+1)/2 2n−2 + 2(n−3)/2

−2(n+1)/2 2n−2 − 2(n−3)/2.

We show in Fig. 1 the Cayley graph of a semibent function.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Fig. 1. Cayley graph associated to the semibent f(x) = x1x2 ⊕ x3x4 ⊕ x1x4x5 ⊕
x2x3x5 ⊕ x3x4x5

3.1 s-Plateaued Boolean Functions f with wt(f) = 2(n+s−2)/2

Theorem 1. If f : Fn
2 → F2 is s-plateaued and wt(f) = 2(n+s−2)/2, then Gf (if

connected) is the complete bipartite graph between the vectors in Ωf and vectors
in F

n
2 \Ωf (if disconnected, it is a union of complete bipartite graphs). Moreover,

Gf is a strongly regular graph with (e, d) =
(
0, 2(n+s−2)/2

)
.

8 C. Riera et al.

Proof. We know that the Walsh-Hadamard spectra of f̂ in this case is
{0,±2(n+s)/2} and therefore, the spectra of f is also 3-valued, that is,
{wt(f), 0,±2(n+s−2)/2} = {0,±2(n+s−2)/2}, and thus, the Cayley graph of f
in this case is strongly regular. Now, from [6], we know that if Gf has three
distinct eigenvalues λ0 = wt(f) > λ1 = 0 > λ2 = −λ0, then Gf is the complete
bipartite graph between the nodes in Ωf and nodes in F

n
2 \ Ωf .

Since the eigenvalues of the strongly regular graph Gf of f can be expressed
in terms of the parameters e, d, namely

λ0 = wt(f), λ1,2 =
1
2

(
e − d ±

√
(e − d)2 − 4(d − wt(f))

)
,

or equivalently, e = r + λ1λ2 + λ1 + λ2, d = r + λ1λ2, and given the Walsh-
Hadamard spectra of f , the last claim follows. ��

3.2 General s-Plateaued Boolean Functions

We now assume that f is s-plateaued and wt(f) �= 2(n+s−2)/2, and, therefore,
the spectrum of Gf is 4-valued. It is known (see [10]) that if G is connected
and regular with four distinct eigenvalues, then G is walk-regular. In fact, in our
case a result much stronger is true (see our theorem below). We will need the
following two propositions (we slightly change notations, to be consistent).

Proposition 3 (van Dam and Omidi [7, Proposition 4.1]). Let Γ be a con-
nected regular graph with four distinct eigenvalues r > λ2 > λ3 > λ4. Then Γ is
strongly 3-walk-regular if and only if λ2 + λ3 + λ4 = 0.

Proposition 4 (van Dam and Omidi [7, Proposition 3.1]). A connected
r-regular graph Γ on v vertices is strongly �-walk-regular with parameters
(σ�, μ�, ν�) if and only if all eigenvalues except r are roots of the equation

x� + (μ� − σ�)x + μ� − ν� = 0,

and r satisfies
r� + (μ� − σ�)r + μ� − ν� = μ�v.

In our main theorem of this section we show the counterpart for the Bernasconi-
Codenotti equivalence in the case of plateaued functions.

Theorem 2. Let f : Fn
2 → F2 be a Boolean function, and assume that Gf is

connected, and that r := wt(f) �= 2(n+s−2)/2. Then, f is s-plateaued (with 4-
valued spectra for f) if and only if Gf is strongly 3-walk-regular of parameters
(σ, μ, ν) = (2−nr3+2n+s−2−2s−2r, 2−nr3−2s−2r, 2−nr3−2s−2r) (hence μ = ν).

Proof. We first assume that f is s-plateaued and so, its spectra is {0,±2(n+s)/2}.
Consequently, the spectra of Gf is 4-valued (since r := wt(f) �= 2(n+s−2)/2),
namely {r = wt(f), λ2 := 2(n+s−2)/2, λ3 := 0, λ4 := −2(n+s−2)/2}. The fact that
Gf is strongly 3-walk-regular follows from Proposition 3, since λ2 + λ3 + λ4 = 0,

A Complete Characterization of Plateaued Boolean Functions 9

which certainly happens for our graphs. Moreover, the parameters (σ, μ, ν) (we
removed, for convenience, the subscripts � = 3) can be found using Proposition 4
as solutions to the diophantine system (recall that in our case v = 2n and
r = wt(f))

0 = 23(n+s−2)/2 + (μ − σ)2(n+s−2)/2 + μ − ν,

0 = −23(n+s−2)/2 − (μ − σ)2(n+s−2)/2 + μ − ν,

μ 2n = r3 + (μ − σ)r + μ − ν,

namely, (σ, μ, ν) = (2−nr3 + 2n+s−2 − 2s−2r, 2−nr3 − 2s−2r, 2−nr3 − 2s−2r).
Conversely, assuming Gf is a 3-walk-regular graph with the above parame-

ters, then the eigenvalues λ2 > λ3 > λ4 will satisfy the equation

x3 + (μ − σ)x + μ − ν = 0,

which will render the roots, λ2 = 2(n+s−2)/2, λ3 = 0, λ4 = −2(n+s−2)/2. The
claim is shown. ��
Remark 1. Using a result of Godsil [9] one can easily show (under mild con-
ditions – thus removing strongly regular ones, for example) that the graphs
corresponding to plateaued functions are not distance-regular.

In fact, from [7] we know that the graph with four distinct eigenvalues is
�-walk-regular for any odd � ≥ 3, but in our case we can show a lot more, by
finding the involved parameters precisely.

Theorem 3. If A is the adjacency matrix of the Cayley graph corresponding to
an s-plateaued with 4-valued spectra (of f), then Gf is strongly �-walk-regular
for any odd � of parameters (σ�, μ�, ν�), where � = 2t + 1, σ� = μ 2(n+s−2)t−r2t

2n+s−2−r2 +

2(n+s−2)t, μ� = ν� = μ 2(n+s−2)t−r2t

2n+s−2−r2 . Further, the following identity holds, for all
t ≥ 1,

A2t+1 = 2(n+s−2)tA + μ
2(n+s−2)t − r2t

2n+s−2 − r2
J,

where (σ, μ, ν) = (2−nr3 + 2n+s−2 − 2s−2r, 2−nr3 − 2s−2r, 2−nr3 − 2s−2r).

Proof. From our Theorem 2, we know that

A3 = (σ − μ)A + μJ,

since we know that μ = ν. We will show our result by induction, and so, for
simplicity we label x1 := σ −μ = 2n+s−2, y1 := μ = 2−nr3 − 2s−2r. Assume now
that

A2t+1 = xtA + ytJ. (1)

First, observe that, since our graph is regular of degree r, then AJ = rJ , and
more general, AkJ = rkJ . Multiplying (1) by A2, we get

A2t+3 = xtA
3 + ytA

2J

= xt(x1A + y1J) + ytr
2J

= xtx1A + (xty1 + ytr
2)J,

10 C. Riera et al.

and consequently, we get the recurrences

xt+1 = xtx1

yt+1 = xty1 + ytr
2.

Solving the system, we get xt+1 = xt+1
1 = (σ − μ)t+1 = 2(n+s−2)(t+1) and

yt+1 = y1
xt+1
1 − r2(t+1)

x1 − r2
= μ

2(n+s−2)(t+1) − r2(t+1)

2n+s−2 − r2
, and our claim is shown. ��

References

1. Bernasconi, A., Codenotti, B.: Spectral analysis of Boolean functions as a graph
eigenvalue problem. IEEE Trans. Comput. 48(3), 345–351 (1999)

2. Bernasconi, A., Codenotti, B., VanderKam, J.M.: A characterization of bent func-
tions in terms of strongly regular graphs. IEEE Trans. Comput. 50(9), 984–985
(2001)

3. Budaghyan, L.: Construction and Analysis of Cryptographic Functions. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-319-12991-4

4. Carlet, C.: Boolean models and methods in mathematics, computer science, and
engineering. In: Hammer, P., Crama, Y. (eds.) Boolean Functions for Cryptography
and Error Correcting Codes, pp. 257–397. Cambridge University Press, Cambridge
(2010)

5. Cusick, T.W., Stănică, P.: Cryptographic Boolean Functions and Applications, 2nd
edn. Academic Press, San Diego (2017). 1st edn. (2009)

6. Cvetkovic, D.M., Doob, M., Sachs, H.: Spectra of Graphs. Academic Press, New
York (1979)

7. van Dam, E.R., Omidi, G.R.: Strongly walk-regular graphs. J. Comb. Theory Ser.
A 120, 803–810 (2013)

8. Fiol, M.A., Garriga, E.: Spectral and geometric properties of k-walk-regular graphs.
Electron. Notes Discrete Math. 29, 333–337 (2007)

9. Godsil, C.D.: Bounding the diameter of distance-regular graphs. Combinatorica
8(4), 333–343 (1988)

10. Huang, X., Huang, Q.: On regular graphs with four distinct eigenvalues. Linear
Algebra Appl. 512, 219–233 (2017)

11. Mesnager, S.: On semi-bent functions and related plateaued functions over the
Galois field F2n . In: Koç, Ç.K. (ed.) Open Problems in Mathematics and Com-
putational Science, pp. 243–273. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10683-0 11

12. Mesnager, S.: Bent Functions: Fundamentals and Results. Springer, New York
(2016). https://doi.org/10.1007/978-3-319-32595-8

13. Rothaus, O.S.: On bent functions. J. Comb. Theory Ser. A 20, 300–305 (1976)
14. Tokareva, N.: Bent Functions, Results and Applications to Cryptography. Aca-

demic Press, San Diego (2015)

https://doi.org/10.1007/978-3-319-12991-4
https://doi.org/10.1007/978-3-319-10683-0_11
https://doi.org/10.1007/978-3-319-10683-0_11
https://doi.org/10.1007/978-3-319-32595-8

Chameleon-Hashes with Dual Long-Term
Trapdoors and Their Applications

Stephan Krenn1(B), Henrich C. Pöhls2, Kai Samelin3, and Daniel Slamanig1

1 AIT Austrian Institute of Technology GmbH, Vienna, Austria
{stephan.krenn,daniel.slamanig}@ait.ac.at

2 ISL & Chair of IT-Security, University of Passau, Passau, Germany
hp@sec.uni-passau.de

3 TU Darmstadt, Darmstadt, Germany
ks@sec.uni-passau.de

Abstract. A chameleon-hash behaves likes a standard collision-
resistant hash function for outsiders. If, however, a trapdoor is known,
arbitrary collisions can be found. Chameleon-hashes with ephemeral
trapdoors (CHET; Camenisch et al., PKC 17) allow prohibiting that the
holder of the long-term trapdoor can find collisions by introducing a sec-
ond, ephemeral, trapdoor. However, this ephemeral trapdoor is required
to be chosen freshly for each hash.

We extend these ideas and introduce the notion of chameleon-hashes
with dual long-term trapdoors (CHDLTT). Here, the second trapdoor
is not chosen freshly for each new hash; Rather, the hashing party can
decide if it wants to generate a fresh second trapdoor or use an existing
one. This primitive generalizes CHETs, extends their applicability and
enables some appealing new use-cases, including three-party sanitizable
signatures, group-level selectively revocable signatures and break-the-
glass signatures. We present two provably secure constructions and an
implementation which demonstrates that this extended primitive is effi-
cient enough for use in practice.

1 Introduction

Standard chameleon-hashes have proven to be useful in very different areas such
as on/offline signatures [28,33,56], (tightly) secure signatures [14,43,50], but
also sanitizable signature [2,17,22,40] and identity-based encryption [58]. They
are also useful in context of trapdoor-commitments, direct anonymous attesta-
tion, Σ-protocols and distributed hashing [1,10,16]. Recently, they have been
extended to have ephemeral trapdoors, which allow one to find collisions if, and

The project leading to this work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 644962
prismacloud and No 321310 percy.
K. Samelin—This work was done while the third author was also at IBM Research –
Zurich.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 11–32, 2018.
https://doi.org/10.1007/978-3-319-89339-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_2&domain=pdf

12 S. Krenn et al.

only if, two trapdoors at the same time are known [22]. One of those trapdoors
is long-term, while the second one is chosen freshly for each new hash.

The first application of these so called CHETs were invisible sanitizable sig-
natures [7,22]. In this primitive, a semi-trusted third party, named the sanitizer
having its own key pair, can modify signer-chosen admissible parts of a signed
message to arbitrary bit-strings [2,17]. The derived signatures still verify, while
an outsider cannot decide which parts are actually modifiable. However, the
current formalization of those chameleon-hashes inherently requires that the
ephemeral trapdoor is chosen freshly for each new hash. Thus, for each gener-
ated hash, the hashing party can decide if, and when, the holder of the long-term
trapdoor can find collisions. This requirement, however, is quite restricting and
once it is lifted, several new interesting use-cases are possible.

Motivation and Contribution. We introduce chameleon-hashes with dual
long-term trapdoors (CHDLTT). In this primitive, the second trapdoor no longer
needs to be freshly generated on every hash computation, but can be re-used in
several hash computations. This has several advantages over CHETs as defined
by Camenisch et al. [22]. For example, our definitions allow that the trapdoors
can be generated in advance (and thus can, e.g., be registered at a PKI before
usage), re-used multiple times (which adds flexibility and saves computational
costs) and are inherently independent of any other hashing keys created. In other
words, releasing the second trapdoor allows the holder of the long-term secret
to find collisions for all hashes created using the corresponding second public
hashing key that corresponds to the trapdoor. Thus, our new primitive strictly
generalizes CHETs: using a fresh trapdoor for each generated hash within our
extended definition of CHDLTT resembles the behavior of a CHET.

We introduce a suitable framework, along with corresponding security def-
initions and two provably secure constructions. The first construction is based
on standard collision-resistant chameleon-hashes, while the second one is based
on the one-more RSA-Assumption. To demonstrate the usefulness of our new
primitive, we show how one can construct three-party sanitizable signatures. In
this new primitive, a signer -designated third party can decide if, and when, the
sanitizer is able to sanitize the admissible parts of messages. This new primitive
enables several new use-cases for sanitizable signatures scheme. For example,
consider the following scenario, where “standard” sanitizable signatures [2] are
not sufficient. Assume a supply chain, where the delivery person needs to claim
that it delivered the goods as instructed by the sender, while also the recipi-
ent needs to vouch for the correct delivery at time of successful reception. In
standard sanitizable signature schemes, either a fresh signature is generated at
delivery, which is approved by the recipient, or vice versa. However, in this case,
the sender has no control what is actually signed. Our extended primitives allows
to tackle this problem: the sender can sign what has been commissioned, while
the delivery person can approve that it has successfully delivered the goods, if,
and only if, the recipient allows the delivery man to do this, i.e., by releasing an
additional trapdoor. To some extend, this resembles “four-eyes”-signatures [12],

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 13

but in a more sophisticated manner, as in our case also damaged goods can be
reported within the same report, e.g., using special blocks of the message.

Additional application scenarios include group-level selectively revocable sig-
natures and break-the-glass signatures. Revocable signatures have already been
mentioned by Camenisch et al. [22] as a potential additional application scenario,
while break-the-glass signatures are a new concept. Moreover, our evaluation
shows that the primitive is practically efficient. Summarized, our work leads to
some new interesting applications of chameleon-hashes, which may give rise to
new use-cases which have not been considered yet.

Related Work and State-of-the-Art. Chameleon-hashes were introduced by
Krawczyk and Rabin [46], based on the work done by Brassard et al. [16]. Later,
they have been ported to the identity-based setting, i.e., ID-based chameleon-
hash functions, where the holder of some master secret key can extract new
secret keys for new identities [4,6,55,57]. However, most of the schemes presented
suffer from the key-exposure problem [5,27,46]. Key-exposure means that seeing
a single collision in the hash allows to find further collisions by extracting the
corresponding trapdoor, i.e., the secret key.1 This problem was addressed by the
introduction of “key-exposure free” chameleon-hashes [5,26,27,38,39,55], which
prohibit extracting the secret key if a collision was seen. This also includes
combinations of both techniques [29]. Such schemes allow for re-using secret
key-material. However, the definition of collision-resistance is defined w.r.t. some
additional label L.2 This label L is used to define a “collision-domain”, i.e., such
hashes do not prohibit that once a collision is made public for a label L, an
adversary cannot produce additional collisions w.r.t. that label L. We stress
that our framework does not require such a label, i.e., it is collision-resistant
in the “usual” sense. Brzuska et al. also proposed a formal framework for tag-
based chameleon-hashes secure under random-tagging attacks, i.e., they add an
additional random tag to the input of the hashing algorithm [17]. We stress
that all of the mentioned approaches are orthogonal to our primitive, as in our
case two keys at the same time are required. Camenisch et al. presented a new
type of chameleon-hash, where the hashing party can prohibit that the holder
of the long-term secret can find collisions by adding a second, i.e., ephemeral,
trapdoor [22], which is chosen freshly for each new hash. Their work can be seen
as the starting point for our work. Additional related work is discussed when
presenting the applications of our new primitive.

2 Preliminaries

Let us give our notation and assumptions first. Additional standard formal secu-
rity definitions are given in the full version of this paper.

1 In the case of identity-based chameleon-hashes w.r.t. to some identity.
2 Also referred to as nonce or tag.

14 S. Krenn et al.

Notation. λ ∈ N denotes our security parameter. All algorithms implicitly take
1λ as an additional input. We write a ← A(x) if a is assigned to the output of
algorithm A with input x. An algorithm is efficient if it runs in probabilistic
polynomial time (ppt) in the length of its input. All algorithms are ppt, if not
explicitly mentioned otherwise. Most algorithms may return a special error sym-
bol ⊥ /∈ {0, 1}∗, denoting an exception. Returning output ends an algorithm.
If S is a set, we write a ← S to denote that a is chosen uniformly at random
from S. For a list we require that there is an injective, and efficiently reversible,
encoding, mapping the list to {0, 1}∗. In the definitions, we speak of a general
message space M to be as generic as possible. For our instantiations, however,
we let the message space M be {0, 1}∗ to reduce unhelpful boilerplate notation.
A function ν : N → R≥0 is negligible, if it vanishes faster than every inverse
polynomial, i.e., ∀k ∈ N, ∃n0 ∈ N such that ν(n) ≤ n−k, ∀n > n0. Moreover,
we require that one can derive a public key from the private key. This is not
explicitly checked. This can be achieved by appending the randomness used to
generate the key pair to the secret key.

The One-More-RSA-Assumption [9]. Let (n, e, d, p, q) ← RSA(1λ) be an
RSA-key generator returning an RSA modulus n = pq, where p and q are random
distinct primes, e > 1 an integer co-prime to ϕ(n), and d ≡ e−1 mod ϕ(n). The
one-more-RSA-assumption associated to RSA is provided an inversion oracle I,
which inverts any element x ∈ Z

∗
n w.r.t. e, and a challenge oracle C, which at

each call returns a random element yi ∈ Z
∗
n. An adversary wins if, given n and

e, it is able to invert more elements received by C than is makes calls to I. The
corresponding assumption states that for every ppt adversary A there exists a
negligible function ν such that:

Pr[(n, p, q, e, d) ← RSA(1λ),X ← A(n, e)C(n),I(d,n,·) :
more values returned by C are inverted than queries to I] ≤ ν(λ)

Here, X is the set of inverted challenges.
We require that e is larger than any possible n w.r.t. λ and that it is prime.

Re-stating the assumption with this condition is straightforward. In this case,
it is also required that e is drawn independently from p, q, or n (and d is then
calculated from e, and not vice versa). This can, e.g., be achieved by demanding
that e is drawn uniformly from [n′ + 1, . . . , 2n′] ∩ {p | p is prime}, where n′ is
the largest RSA modulus possible w.r.t. to λ. The details are left to the concrete
instantiation of RSA.

Chameleon-Hashes. The given framework is the one by Camenisch et al. [22].

Definition 1. A chameleon-hash CH consists of five algorithms (PGen,KGen,
Hash,Ver,Adap), such that:

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 15

PGen. It outputs the public parameters of the scheme:

ppch ← PGen(1λ)

We assume that ppch is an implicit input to all other algorithms.
KGen. On input ppch, it outputs the private and public key of the scheme:

(skch, pkch) ← KGen(ppch)

Hash. It gets as input a public key pkch and a message m to hash. It outputs a
hash h and some randomness r: (h, r) ← Hash(pkch,m).3

Ver. This deterministic algorithm gets as input the public key pkch, a message
m, randomness r and a hash h. It outputs a decision d ∈ {0, 1} indicating
whether (d = 1) or not (d = 0) the hash h is valid:

d ← Ver(pkch,m, r, h)

Adap. On input of secret key skch, the message m, the randomness r, hash h and
a new message m′, it outputs new randomness r′:

r′ ← Adap(skch,m,m′, r, h)

The standard correctness definition is given in the full version of this paper.

Indistinguishability. Indistinguishability requires that r does not reveal if it was
obtained through Hash or Adap. The messages are chosen by the adversary.

Definition 2 (Indistinguishability). A chameleon-hash CH is indistinguish-
able, if for any ppt adversary A there exists a negligible function ν such that∣
∣
∣Pr[IndCHA (λ) = 1] − 1

2

∣
∣
∣ ≤ ν(λ) . The corresponding experiment is depicted in

Fig. 1.

Collision Resistance. Collision resistance says, that even if an adversary has
access to an adapt oracle, it cannot find any collisions for messages other than
the ones queried to the adapt oracle. Note, this is a stronger definition than
key-exposure freeness [5,27], as key-exposure freeness does not guarantee that
for a given collision no additional ones can be found [26].

Definition 3 (Collision-Resistance). A chameleon-hash CH is collision-res-
istant, if for any ppt adversary A there exists a negligible function ν such that
Pr[CollResCHA (1λ) = 1] ≤ ν(λ). The corresponding experiment is depicted in
Fig. 2.

Uniqueness. Uniqueness requires that it is hard to come up with two different
randomnesses for the same message m∗ such that the hashes are equal, for the
same adversarially chosen pk∗.
3 The randomness r is also sometimes called “check value” [3].

16 S. Krenn et al.

Fig. 1. Indistinguishability Fig. 2. Collision resistance

Fig. 3. Uniqueness

Definition 4 (Uniqueness). A chameleon-hash CH is unique, if for any ppt
adversary A there exists a negligible function ν such that Pr[UniquenessCHA (1λ) =
1] ≤ ν(λ). The corresponding experiment is depicted in Fig. 3.

Definition 5 (Secure Chameleon-Hashes). A chameleon-hash CH is secure,
if it is correct, indistinguishable, and collision-resistant.

It depends on the concrete use-case, if CH needs to be unique.

3 CHs with Dual Long-Term Trapdoors

As already mentioned, a chameleon-hash with dual long-term trapdoors
(CHDLTT) allows to prevent the holder of some long-term trapdoor skchret from
finding collisions, as long as no additional second trapdoor std is known. This
additional trapdoor can can be re-used for multiple hash generation, but may
also be chosen freshly. This, e.g., allows to generate trapdoors in advance and to
make one of the trapdoors public beforehand. Clearly, providing or withholding
the second trapdoor information corresponding to the public part ptd of the sec-
ond trapdoor thus allows to decide if finding a collision is possible for the holder
of the long-term trapdoor. Due to this new possibility, we need to introduce a
new framework, given subsequently, which is also accompanied by suitable secu-
rity definitions. This framework is inspired by, and compatible to, the one given
by Camenisch et al. [22] and it can be seen as a generalization of their ideas.

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 17

Definition 6 (CHDLTT). A chameleon-hash with dual long-term trapdoors
CHDLLT is a tuple (PGen,KGen,TDGen,Hash,Ver,Adap), such that:

PGen. It outputs the public parameters:

ppchret ← PGen(1λ)

which are input to all other algorithms, which we sometimes may not make
explicit for notational convenience.

KGen. On input ppchret, it outputs the long-term private and public key of the
scheme:

(skchret, pkchret) ← KGen(ppchret)

TDGen. It outputs a private and public trapdoor pair:

(std, ptd) ← TDGen(ppchret)

Hash. It gets as input a public key pkchret, ptd and a message m to hash. It
outputs a hash h and randomness r:

(h, r) ← Hash(pkchret, ptd,m)

Ver. It gets as input the public key pkchret, ptd, a message m, a hash h and
randomness r. It outputs a decision bit d ∈ {0, 1}, indicating whether the
given hash is correct:

d ← Ver(pkchret, ptd,m, r, h)

Adap. It gets as input skchret, the old message m, the old randomness r, the
new message m′, the hash h and the trapdoor information std. It outputs new
randomness:

r′ ← Adap(skchret,m,m′, r, h, std)

Correctness is straightforward and is defined in the full version of this paper.
We also require some security guarantees, which we introduce next.

Indistinguishability. Indistinguishability requires that the randomnesses r does
not reveal if it was obtained through Hash or Adap. In other words, an outsider
cannot decide whether a message is the original one or not. Note, however, that
both secrets are generated honestly, i.e., for adversarially generated keys no secu-
rity guarantees are given. Moreover, only one trapdoor pair is generated; security
for multiple trapdoor information pairs can be shown for any indistinguishable
CHDLTT using a simple hybrid argument.

Definition 7 (Indistinguishability). A CHDLTT is indistinguishable, if for
every ppt adversary A there exists a negligible function ν such that
∣
∣ Pr[IndCHDLTT

A (λ) = 1]− 1
2

∣
∣ ≤ ν(λ) . The corresponding experiment is depicted in

Fig. 4.

18 S. Krenn et al.

Fig. 4. Indistinguishability Fig. 5. Uniquessness

Public Collision Resistance. Public collision resistance requires that, even if an
adversary has access to an Adap oracle, it cannot find any collisions by itself,
even if it can chose ptd. Clearly, the collision must be fresh, i.e., must not be
produced using the Adap oracle.

Definition 8 (Public Collision-Resistance). A CHDLTT is publicly collision-
resistant, if for any ppt adversary A there exists a negligible function ν such
that Pr[PublicCollResCHDLTT

A (1λ) = 1] ≤ ν(λ). The corresponding experiment is
depicted in Fig. 6.

Private Collision-Resistance. Private collision-resistance requires that even the
holder of the secret key skchret cannot find collisions as long as std is unknown,
even if it can request collisions for different pks. This catches the idea that the
hashes for a given ptd may be equivocated for different pkchrets. This is formalized
by a honest adaption oracle which returns collisions for other key pairs. Hence,
A’s goal is to return an actual collision for a public key pk∗, for an honestly
generated ptd, for which it did not see a collision generated by the oracle, but
for an arbitrary skchret.

Definition 9 (Private Collision-Resistance). A CHDLTT is privately
collision-resistant, if for any ppt adversary A there exists a negligible function
ν such that Pr[PrivateCollResCHDLTT

A (1λ) = 1] ≤ ν(λ). The corresponding experi-
ment is depicted in Fig. 7.

Uniqueness. Uniquess requires that even if the adversary can generate the public
key and the corresponding public trapdoor, it cannot find two different random-
nesses for the same hash and message such that both are valid.

Definition 10 (Uniqueness). A CHDLTT is unique, if for any ppt adversary
A there exists a negligible function ν such that Pr[UniquenessCHDLTT

A (1λ) = 1] ≤
ν(λ). The corresponding experiment is depicted in Fig. 5.

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 19

Fig. 6. Public collision-resistance Fig. 7. Private collision-resistance

Definition 11 (Secure CHDLTT). We call a CHDLTT secure, if it is correct,
indistinguishable, publicly collision-resistant and privately collision-resistant.

As for CHs, it depends on the concrete use-case, if uniqueness is required.

4 Constructions

We first show how to bootstrap a CHDLTT scheme in a black-box fashion from
any given existing secure chameleon-hash CH, inspired by the ideas given by
Camenisch et al. [22] who also proposed a suitable chameleon-hash CH based on
the ideas by Brzuska et al. [17]. We then present a direct construction in the
hidden order group setting based on the one-more RSA-Assumption.

Black-Box Construction. We now present a black-box construction from any
existing chameleon-hash CH. Namely, we show how one can achieve our goals
by combining two instances of a secure chameleon-hash CH. However, instead
of hashing the messages alone, one also requires to hash the public keys pkchret
and ptd in question to achieve our strengthened definitions. This is described in
detail in Construction 1.

Theorem 1. If CH is secure (and unique), then Construction 1 is a secure (and
unique) CHDLTT.

We sketch the proof below. The detailed proof of Theorem 1 is given in the
full version of this paper.

Proof (Sketch). Indistinguishability follows from the indistinguishability of the
underlying chameleon-hashes. If an adversary can find a collision (either for
public and private collision-resistance), than either h1 or h2 must be a fresh

20 S. Krenn et al.

PGen(1λ). Return ppchret ← CH.PGen(1λ).
KGen(ppchret). Return (skchret, pkchret) ← CH.KGen(ppchret).
TDGen(ppchret). Return (std, ptd) ← CH.KGen(ppchret).

Hash(pkchret, ptd, m). Let (h1, r1) ← CH.Hash(pkchret, (pkchret, ptd, m)) and (h2, r2) ←
CH.Hash(ptd, (pkchret, ptd, m)). Return ((h1, h2), (r1, r2)).

Ver(pkchret, ptd, m, r, h). Let b1 ← CH.Ver(pkchret, (pkchret, ptd, m), r1, h1) and b2 ←
CH.Ver(ptd, (pkchret, ptd, m), r2, h2). If b1 = 0 ∨ b2 = 0, return 0. Return 1.

Adap(skchret, m, m′, r, h, std). If 0 = Ver(pkch, m, r, h), return ⊥. Compute r′
1 ←

CH.Adap(skchret, (pkchret, ptd, m), (pkchret, ptd, m
′), r1, h1), and r′

2 ← CH.Adap(std,
(pkchret, ptd, m), (pkchret, ptd, m

′), r2, h2). Return (r′
1, r

′
2).

Construction 1: Black-box construction of CHDLTT

collision, which can easily be extracted. The need to also hash the public keys
comes from the fact that the adversary is, in our model, allowed to choose the
trapdoor. For uniqueness, the adversary must find two randomness values for
the same hash and message. Thus, the randomness for either h1 or h2 must be
non-unique.

It remains to show if we can also directly construct a CHDLTT, which we
answer to the affirmative subsequently.

A Direct Construction. We now present a direct construction, based on the
one-more RSA-Assumption. It is inspired by ideas due to Brzuska et al. [17],
Pöhls et al. [52] and Camenisch et al. [22], enriched with the trick to also hash
the public keys, as introduced in our first construction.

In our construction (illustrated in Construction 2), the public trapdoor ptd
is an additional RSA-modulus n′. Thus, only if the factorization of n′ = p′q′,
contained in std, and n = pq, which is the secret key skch, is known, a collision
can be produced. We assume that the bit-length of n and n′ is the same, which
is implicitly given by the security parameter λ. Furthermore, we assume that an
algorithm aborts if a modulus is too large for the given security parameter. We
note that the condition on the size of e also implies gcd(ϕ(nn′), e) = 1, which
makes the construction a bit more efficient than the solution by Camenisch
et al. [22] which require e > n3. Let Hn : {0, 1}∗ → Z

∗
n, where n ∈ N, denote a

random oracle.

Theorem 2. If the one-more RSA-Assumption holds, then Construction 2 is a
secure CHDLTT in the random-oracle model.

We sketch the proof below; the full proof is given in the full version of this paper.

Proof (Sketch). Indistinguishability follows from the fact that a random oracle
behaves as a function, while RSA defines a permutation with the restrictions
given and the values are distributed uniformly in Z

∗
nn′ . If an adversary can find

a collision (either for public or private collision-resistance), than a reduction can
extract an eth root of one of the moduli, while uniqueness follows from the same
fact used for indistinguishability.

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 21

PGen(1λ). Call RSA with the restriction that e is larger than any possible n w.r.t λ
and e prime. Return e.

KGen(ppchret). Generate two primes p and q using RSA(1λ). Set skch ← (p, q). Let
n ← pq. Set pkch ← n. Return (skchret, pkchret).

TDGen(ppchret). Generate two primes p′ and q′ using RSA(1λ). Set std ← (p′, q′), n′ ←
p′q′, and ptd ← n′. If gcd(n, n′) �= 1, start over. Return (std, ptd).

Hash(pkchret, ptd, m). Draw r ← Z
∗
nn′ . Let g ← Hnn′(m, n, n′) and h ← gre mod nn′.

Return (h, r).
Ver(pkchret, ptd, m, r, h). Return ⊥, if r /∈ Z

∗
nn′ . Let g ← Hnn′(m, n, n′) and h′ ←

gre mod nn′. Return 1, if h = h′. Return 0.
Adap(skchret, m, m′, r, h, std). Check that n′ = p′q′, where p′ and q′ are taken from std.

If this is not the case, return ⊥. If Ver(pkch, m, r, h) = 0, return ⊥. Let d s.t.
de ≡ 1 mod ϕ(nn′), g ← Hnn′(m, n, n′), h ← gre mod nn′, g′ ← Hnn′(m′, n, n′)
and r′ ← (h(g′−1))d mod nn′. Return r′.

Construction 2: CHDLTT from the one-more RSA-Assumption

Fig. 8. Key generation algorithm runtime in ms

5 Evaluation

To demonstrate the practicality of our schemes, we have implemented them in
Java. We implemented both CHDLTT construction, whereas for the first we use
the standard RSA-based chameleon-hash as the underlying primitive. All RSA-
moduli have a fixed bit-length of 2, 048 Bit (with balanced primes). Likewise, e
has 2, 050 Bit. The random oracles were implemented using SHA-512 in standard
counter-mode [11,23,37].

The measurements were performed on a Lenovo W530 with an Intel i7-
3470QM@2.70 GHz, and 16 GiB of RAM. No performance optimization such
as CRT were implemented and the computation is performed by a single thread.
The reason for this choice is to obtain a lower bound of the runtime and any
additional optimization will only speed up the calculation. The overall results
are depicted in Figs. 8, 9, Tables 1 and 2. In the figure and tables the algorithms
of Construction 1 have no subscript, while the algorithms of Construction 2 are

22 S. Krenn et al.

Fig. 9. Other algorithms’ runtime in ms

Table 1. Percentiles for key generation
in ms

KGen KGen2 TDGen TDGen2
Min. 45 43 45 43

25% 107 112 111 109

Med. 164 168 164 163

75% 239 240 238 243

90% 331 319 320 329

95% 383 374 368 390

Max. 525 505 533 553

Avg. 186 186 184 187

SD 99.34 96.00 95.50 101.30

Table 2. Percentiles for the other algorithms
in ms

Hash Hash2 Ver Ver2 Adap Adap2
Min. 20 37 20 37 53 121

25% 22 39 22 38 70 125

Med. 23 40 23 39 75 130

75% 28 43 27 43 85 139

90% 35 49 33 49 106 154

95% 45 54 43 54 138 164

Max. 137 107 153 91 399 258

Avg. 27 42 27 42 85 135

SD 12.75 6.73 12.36 6.21 35.32 14.93

sub-scripted with “2”. 1, 000 runs were taken. Parameter generation is omitted,
as this is a one-time setup, i.e., drawing a random prime.

As demonstrated by the runtime measurements, both primitives can be con-
sidered practical. The lion’s share is finding suitable primes during key genera-
tion. All exponentiations within the algorithms only have a negligible overhead,
as seen by the runtime. However, as key generation only needs to be done once,
this seems to be acceptable, even with realistic security parameters and rather
expensive RSA-based primitives.

6 Application: Three-Party Sanitizable Signatures 3SSS

We now present applications of our CHDLTTs. The first are three-party sanitiz-
able signatures. Sanitizable signatures (SSS) allow a signer to determine which
blocks m[i] of a message m = (m[1],m[2], . . . ,m[i], . . . ,m[�]) are admissible. Any
such admissible block can be changed to an arbitrary bitstring m[i]′ ∈ {0, 1}∗,
where i ∈ {1, 2, . . . , �}, by a semi-trusted party named the sanitizer, if it had
received an additional secret. In a nutshell, sanitization of a message m results in
an altered message m′ = (m[1]′,m[2]′, . . . ,m[i]′, . . . ,m[�]′), where m[i] = m[i]′

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 23

for every non-admissible block, and also a signature σ′, which verifies for m′

under the original public key. Sanitizable signatures enforce that either a block
cannot be altered at all, or only by a semi-trusted third party. In a 3SSS, the
signer additionally appoints a third party which needs to provide its secret key
before the sanitizer can alter certain blocks.

Related Work and State-of-the-Art for SSS. Sanitizable signatures have
been introduced by Ateniese et al. [2]. Most of the current security properties
were formalized by Brzuska et al. [17]. Later on, extensions such as (strong)
unlinkability [19,21,36] and non-interactive public accountability [20,21] were
introduced. Additional extensions such as limiting the sanitizer to certain val-
ues [24,32,45,54], multi-sanitizer and multi-signer environments [18,21,25], as
well as sanitization of signed encrypted data [30,34] have been considered. They
have also been used as a tool to make other primitives accountable [53] and to
construct other primitives, such as redactable signatures [12,49]. We stress that
all previous work, in contrast to our three-party setting (where two parties are
required for sanitizing at the same time), only the two-party setting is considered
and we refer for more detailed overviews to [13,31].

The Framework for Three-Party Sanitizable Signature Schemes. Sub-
sequently, we introduce the used framework for 3SSSs. The definitions are
inspired by the ones given by Camenisch et al. [22], which are itself based on
existing work [2,17,20,21,40,47]. However, due to our goals, we need to re-define
the framework. Like Camenisch et al., we do not consider “non-interactive pub-
lic accountability” [20,21,44], which allows some external party to decide which
party is accountable, as transparency is mutually exclusive to this property. But
if needed this is very easy to achieve, e.g., by signing the signature again [20].

For brevity, we now set some additional notation. This notation is similar to
existing definitions, to make reading more comfortable [17,22]. For a message
m = (m[1],m[2], . . . ,m[�]), we call m[i] a block, while � ∈ N denotes the number
of blocks in a message m. The variable ADM is a tuple containing the set of
indices of the admissible blocks and the number � of blocks in a message m. We
write ADM(m) = 1, if ADM is valid w.r.t. m, i.e., ADM contains the correct
� and all indices are in m. For example, let ADM = ({1, 2, 4}, 4). Then, m
must contain four blocks, while all but the third will be admissible. If we write
mi ∈ ADM, we mean that mi is admissible. MOD is a set containing pairs
(i,m[i]′) for those blocks that shall be modified, meaning that m[i] is replaced
with m[i]′. We write MOD(ADM) = 1, if MOD is valid w.r.t. ADM, meaning
that the indices to be modified are contained in ADM. To allow a compact
presentation of our construction, we write [X]n,m, with n ≤ m, for the vector
(Xn,Xn+1,Xn+2, . . . , Xm−1,Xm).

Definition 12 (Three-Party Sanitizable Signature). A three-party sani-
tizable signature scheme 3SSS consists of nine ppt algorithms (PGen,KGensig,
KGensan,TGen,Sign,Sanit,Verify,Proof, Judge) such that:

24 S. Krenn et al.

PGen. On input security parameter λ, it generates the public parameters:
pp3SSS ← PGen(1λ). We assume that pp3SSS is implicitly input to all other
algorithms.

KGensig. It takes the public parameters pp3SSS and returns the signer’s private
key and the corresponding public key: (sksig, pksig) ← KGensig(pp3SSS).

KGensan. It takes the public parameters pp3SSS and returns the sanitizer’s private
key and the corresponding public key: (sksan, pksan) ← KGensan(pp3SSS).

TGen. It takes the public parameters pp3SSS, and returns the private and public
trapdoor pair: (tdpriv, tdpub) ← TGen(pp3SSS).

Sign. It takes as input a message m, sksig, pksan, tdpub, as well as a description
ADM of the admissible blocks. If ADM(m) = 0, it returns ⊥. It outputs a
signature: σ ← Sign(m, sksig, pksan, tdpub,ADM).

Sanit. It takes a message m, modification instruction MOD, a signature σ, pksig,
sksan and tdpriv. It outputs m′ together with σ′: (m′, σ′) ← Sanit(m,MOD, σ,
pksig, sksan, tdpriv) where m′ ← MOD(m) is message m modified according to
the modification instruction MOD. If ADM(m′) = 0, this algorithm returns
⊥.

Verify. It takes as input the signature σ for a message m w.r.t. the public keys
pksig, pksan, and tdpub. It outputs a decision d ∈ {1, 0}: d ← Verify(m,σ, pksig,
pksan, tdpub). This algorithm is deterministic.

Proof. It takes as input sksig, a message m, a signature σ, a set of polynomi-
ally many additional message/signature pairs {(mi, σi)}, pksan and tdpub. It
outputs a string π ∈ {0, 1}∗ which can be used by the Judge to decide which
party is accountable given a message/signature pair (m,σ): π ← Proof(sksig,
m, σ, {(mi, σi) | i ∈ N}, pksan, tdpub).

Judge. It takes as input a message m, a signature σ, pksig, pksan, tdpub, as well
as a proof π. Note, this means that once a proof π is generated, the accountable
party can be derived by anyone for that message/signature pair (m,σ). It out-
puts a decision d ∈ {Sig,San,⊥}, indicating whether the message/signature
pair has been created by the signer, or the sanitizer: d ← Judge(m,σ, pksig,
pksan, tdpub, π).

Defining correctness of 3SSS is straightforward and therefore omitted.

Security of 3SSSs. Next, we introduce the security model. It is based on the
work done for sanitizable signatures by Brzuska et al. [17]. However, due to
our goals, we need to modify it significantly. In the security framework (for the
unforgeability definitions), the public trapdoor tdpub is always generated by the
adversary, as the holder of tdpriv should never be able to generate forgeries. This
simplifies our framework significantly, as an adversary generating tdpub has more
power than an adversary only receiving an honestly generated tdpub.

Due to space limitations, we can only sketch the security requirements here.
The formal game-based definitions are given in the full version of this paper.

Unforgeability. This definition requires that an adversary A not having any secret
keys is not able to produce a valid signature σ∗ on a new message m∗. As A has
full oracle access new means that A has not seen the message genuinely being
signed before.

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 25

Immutability. A sanitizer must only be able to sanitize the admissible blocks
defined by ADM. This also prohibits deleting or appending blocks from a given
message m. The adversary is given full oracle access, while it is also allowed to
generate the sanitizer key pair itself.

Immutability2. Even if the signer, and the sanitizer, work together, they must
be not able to generate a valid sanitization, if std is not known. However, as the
signer can clearly sign whatever it wants (including any ADM), we define this
immutability property such that the adversary cannot generate a proof π∗ that
it sanitized the message, as it should not be able to do so. The adversary also
receives full adaptive oracle access, also for other pks, modeling the case where
for different pks sanitizations where generated.

Privacy. The notion of privacy is related to the indistinguishability of cipher-
texts. The adversary is allowed to input two messages with the same ADM which
are sanitized to the exact same message. The adversary then has to decide which
of the input messages was used to generate the sanitized one. The adversary
receives full adaptive oracle access.

Transparency. Transparency guarantees that the accountable party of a mes-
sage m remains anonymous. This is important if discrimination may follow from
learning that sanitizations have taken place [2,17]. In a nutshell, the adversary
to transparency has to decide whether it sees a freshly computed signature, or
a sanitized one. The adversary has full (but proof-restricted) oracle access.

Signer-Accountability. For signer-accountability, a signer must not be able to
blame a sanitizer if the sanitizer is actually not responsible for a given message.
Hence, the adversary A has to generate a proof π∗ which makes Judge to decide
that the sanitizer is accountable, if it is not for a message m∗ output by A. Here,
the adversary gains access to all oracles related to sanitizing.

Sanitizer-Accountability. Sanitizer-accountability requires that the sanitizer can-
not blame the signer for a message/signature pair not created by the signer. In
particular, the adversary has to make Proof generate a proof π which makes
Judge decide that for a given (m∗, σ∗) generated by A the signer is accountable,
while it is not. Thus, the adversary A gains access to all signer-related oracles,
while ptd can always be derived from std by assumption.

Unlinkability. In line with Camenisch et al. [22], we do not consider unlinkabil-
ity [19,21,36,48] in our construction, as it seems to be very hard to achieve with
the underlying construction paradigm.

Definition 13 (Secure 3SSS). An 3SSS secure, if it is correct, private, trans-
parent, unforgeable, immutable, immutable 2, sanitizer-accountable and signer-
accountable.

Additional Building Blocks. For the construction, we require PRGs, PRFs
and digital signatures (Σs). The formal definitions are given in the full version
of this paper.

26 S. Krenn et al.

Construction. Subsequently, we present the construction of 3SSS. The under-
lying construction paradigm is an augmented version of the one by Brzuska et
al. [17]. In a nutshell, each admissible block is hashed using a CHDLTT. Then,
the hashes (along with the non-admissible blocks) are signed to achieve account-
ability. Note, however, that the used CHDLTT is not required to be unique.

PGen(1λ): Let ppchret ← PGen(1λ). Return pp3SSS = ppchret.
KGensig(pp3SSS): Let (skΣ , pkΣ) ← KGenΣ(1λ). Pick a key for a PRF, i.e., κ ←

KGenprf(1
λ). Return ((κ, skΣ), pkΣ).

KGensan(pp3SSS): Let (skchret, pkchret) ← KGen(ppchret). Return (skchret, pkchret).
TGen(pp3SSS): Let (std, ptd) ← TDGen(ppchret). Return (std, ptd).

Sign(m, sksig, pksan, tdpub, ADM): If ADM(m) = 0, return ⊥. Draw x ← {0, 1}λ. Let
x′ ← Evalprf(κ, x). Let τ ← Evalprg(x

′). For each block i ∈ ADM, do (hi, ri) ←
Hash(pkchret, tdpub, (i, m[i], pksig, tdpub)). For each block i /∈ ADM, let hi ← m[i],
and r ← ∅. Let (h0, r0) ← Hash(pkchret, (0, m, x, �, τ, [h]1,�, pksig, tdpub)). Sign
σ ← SignΣ(skΣ , ([h]0,�, �, pksig, pksan, ADM, x, tdpub)). Return (σ′, ([h]0,�, ADM, �,
x, τ, [r]0,�)).

Verify(m, σ, pksig, pksan, tdpub): For each block i ∈ ADM, let bi ← Ver(pkchret, tdpub,
(i, m[i], pksig, tdpub), ri, hi). Let b0 ← Ver(pkchret, tdpub, (0, m, x, �, τ, [h]1,�, pksig,
tdpub), ri, hi). If any bi = 0, return 0. Return VerifyΣ(pkΣ , ([h]0,�, , �, pksig, pksan,
ADM, x, tdpub), σ′).

Sanit(m, MOD, σ, pksig, sksan, tdpriv): Run b ← Verify(m, σ, pksig, pksan, tdpub). If b =
0, return ⊥. If MOD(ADM) = 0, return ⊥. For each (i, m[i]) ∈ MOD, let
r′

i ← Adap(skchret, (i, m[i], pksig, tdpub), (i, m
′[i], pksig, tdpub), ri, hi, std). Otherwise,

let r′
i ← ri. Draw τ ′ ← {0, 1}2λ. Let r′

0 ← Adap(skchret, (0, m, x, �, τ, [h]1,�, pksig,
tdpub), (0, m′, x, �, τ ′, [h]1,�, pksig, std), r0, h0, std). Return (σ′, ([h]0,�, ADM, �, x, τ ′,
[r′]0,�)).

Proof(sksig, m, σ, {(mi, σi) | i ∈ N}, pksan, tdpub): Return ⊥, if 0 = Verify(m, σ, pksig,
pksan, tdpub). Verify each signature in the list, i.e., run di ← Verify(mi, σi, pksig,
pksan, tdpub). If for any di = 0, return ⊥. Go through the list of (mi, σi),
and find a (non-trivial) colliding tuple of the chameleon-hash with (m, σ), i.e.,
h0 = h′

0, where also 1 = Ver(pksan, (0, m, x, �, τ, [h]1,�, pksig, tdpub), r0, h0), and
1 = Ver(pksan, (0, m′, x, �, τ ′, [h]1,�, pksig, tdpub), r

′
0, h

′
0) for some different tag τ ′ or

message m′. Let this signature/message pair be (σ′, m′) ∈ {(mi, σi) | i ∈ N}.
Return π = ((σ′, m′),PRF(κ, x)), where x is contained in (σ, m).

Judge(m, σ, pksig, pksan, π, tdpub): Check if π is of the form ((σ′, m′), v) with v ∈ {0, 1}λ.
If not, return Sig. Return ⊥, if 0 = Verify(m′, σ′, pksig, pksan, tdpub), or 0 =
Verify(m, σ, pksig, pksan, tdpub). Let τ ′′ ← PRG.Evalprg(v). If τ ′ �= τ ′′, return Sig,
where τ ′ is taken from (σ′, m′). If we have h0 = h′

0, with a non-trivial colliding
tuple 1 = Ver(pksan, (0, m, x, �, τ, [h]0,�, pksig, tdpub), r0, h0) = Ver(pksan, (0, m′, x, �,
τ ′, [h]0,�, pksig, tdpub), r

′
0, h

′
0), return San. Return Sig.

Construction 3: Secure 3SSS

Theorem 3. If Σ and CHDLTT are secure, while PRF and PRG are both pseudo-
random, then Construction 3 is secure.

We sketch the proof below. The detailed proof of Theorem 3 is given in the full
version of this paper.

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 27

Proof (Sketch). Unforgeability follows from the unforgeability of the underlying
signature scheme and the public collision-resistance of the CHDLTT, as the adver-
sary either needs to find a new signature or a collision in the hash. Immutability
also follows from the unforgeability of the signature scheme, as each fixed block
is signed. Immutability2, however, follows from private collision-resistance, as an
adversary must find a collision for an honestly generated second trapdoor. Pri-
vacy and Transparency follow from the indistinguishability of the CHDLTT and
pseudo-randomness of the PRF and PRG. Signer-accountability follows from the
collision-resistance of the CHDLTT, as the proof must contain a collision which
has never been published. Sanitizer-Accountability, follows from the unforgeabil-
ity of the signature and the pseudo-randomness of PRF (and PRG).

Extensions. Subsequently, we present extensions to our basic scheme. We do
not provide full-fledged formal security frameworks, as they are straightforward
extensions to the one provided. However, these alterations increase the flexibility
to delegate actions and may lead to new application scenarios for this primitive,
and thus deserve to be mentioned.

Always Sanitizable Blocks. In the construction, the sanitizer can only sanitize,
if it knows tdpriv. It may, however, be desirable that the sanitizer can always
sanitize certain blocks, while others need tdpriv. This can easily be achieved
by using a standard chameleon-hash instead of CHDLTT for those blocks. A
formalization is straightforward and thus omitted.

Mixing Admissible Blocks. It may also be desirable that some blocks become
sanitizable if tdpriv is released, and others if other tdprivs are released, i.e., there
is more than one tdpriv for different blocks. Clearly, this can easily be achieved
by using new tdpubs for each new block, perhaps even the same tdpubs for several
blocks. Again, a formalization is straightforward and thus omitted. We did not
implement and measure this scheme, but the additional overhead is essentially
one more single signature and some PRG and PRF evaluations.

7 Additional Applications

This section is devoted to sketch some additional application scenarios of our new
primitive. These use-cases include the already mentioned notion of group-level
selectively revocable signatures and break-glass signatures.

Group-Level Selectively Revocable Signatures. Revoking (single) signatures is a
long-standing open problem [8,15,42]. Using CHDLTT, however, we get one step
closer to a satisfying solution. In particular, one can extend chameleon signa-
tures [46] as follows: Instead of signing the hashed message m using the public
key (of a standard chameleon-hash) of the recipient, one also uses ptd as an
identifier for some group, e.g., an employee’s name, or for a specific task. Then,
to revoke signatures bound to this group, one simply releases std, i.e., makes it

28 S. Krenn et al.

public, just as in a standard PKI where revoked public keys are made public. The
corresponding ptd can be generated in advance by some entity, e.g., a server. All
revoked signatures must then be considered invalid by a verifier, as all recipients
could “fake” (i.e., adapt) arbitrary messages after revocation for that specific
ptd. This is, essentially, the same argumentation as for standard chameleon sig-
natures. Namely, as now any message can be “signed” by anyone4 including the
recipients, the signature loses all cryptographic value as an authentication of
origin.

Break-The-Glass Emergency Signatures. Assume that some employees are not
allowed to sign certain messages under “normal” conditions. Further assume the
messages in question are an order form, or an approval, which requires explicit
interaction with the department’s head. If, however, the department’s head is
not reachable, e.g., due to sickness, but the signature must be generated, a
designated employee may get access to some additional secret which allows to
generate exactly this signature. If, however, this secret is revealed, it must be
traceable that the secret was released, which can be enforced using standard
policies. Our new primitive allows to technically map this workflow as follows:
The employee able to sign a message in emergency generates a key pair for a
standard signature scheme, but hashes an empty message to the corresponding
ptd. The corresponding std can, e.g., be generated at some server within the
same company. The employee can then gain access to std, and can thus sign
any message it wants using Adap. This resembles a more sophisticated version
of blank signatures [41]. This also resembles the emergency modes of access
control, known as ‘Break-Glass’ or ’Break-The-Glass’ (BTG), but for signature
generation, e.g., those found in hospital information systems [35], and the server
can log the distributed std to generate an audit trail of this emergency event.

References

1. Alsouri, S., Dagdelen, Ö., Katzenbeisser, S.: Group-based attestation: enhancing
privacy and management in remote attestation. In: Acquisti, A., Smith, S.W.,
Sadeghi, A.-R. (eds.) Trust 2010. LNCS, vol. 6101, pp. 63–77. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13869-0 5

2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures.
In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/
11555827 10

3. Ateniese, G., Magri, B., Venturi, D., Andrade, E.R.: Redactable blockchain - or -
rewriting history in bitcoin and friends. In: EuroS&P, pp. 111–126 (2017)

4. Ateniese, G., de Medeiros, B.: Identity-based Chameleon hash and applications.
In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 164–180. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27809-2 19

5. Ateniese, G., de Medeiros, B.: On the key exposure problem in Chameleon hashes.
In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 165–179.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9 12

4 Note, there might be corner cases for authorizing everyone as described by Pöhls [51].

https://doi.org/10.1007/978-3-642-13869-0_5
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/978-3-540-27809-2_19
https://doi.org/10.1007/978-3-540-30598-9_12

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 29

6. Bao, F., Deng, R.H., Ding, X., Lai, J., Zhao, Y.: Hierarchical identity-based
Chameleon hash and its applications. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011.
LNCS, vol. 6715, pp. 201–219. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-21554-4 12

7. Beck, M.T., Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Sla-
manig, D.: Practical strongly invisible and strongly accountable sanitizable sig-
natures. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp.
437–452. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 23

8. Beck, M.T., Krenn, S., Preiss, F.-S., Samelin, K.: Practical signing-right revocation.
In: Franz, M., Papadimitratos, P. (eds.) Trust 2016. LNCS, vol. 9824, pp. 21–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45572-3 2

9. Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol.
16(3), 185–215 (2003)

10. Bellare, M., Ristov, T.: A characterization of Chameleon hash functions and new,
efficient designs. J. Cryptol. 27(4), 799–823 (2014)

11. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: CCS, pp. 62–73, New York, NY, USA (1993)

12. Bilzhause, A., Huber, M., Pöhls, H.C., Samelin, K.: Cryptographically enforced
four-eyes principle. In: ARES, pp. 760–767 (2016)

13. Bilzhause, A., Pöhls, H.C., Samelin, K.: Position paper: The past, present, and
future of sanitizable and redactable signatures. In: ARES, pp. 87:1–87:9 (2017)

14. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

15. Boneh, D., Ding, X., Tsudik, G., Wong, C.: A method for fast revocation of public
key certificates and security capabilities. In: USENIX (2001)

16. Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37(2), 156–189 (1988)

17. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 18

18. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Sanitizable signatures: how
to partially delegate control for authenticated data. In: BIOSIG, pp. 117–128 (2009)

19. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
444–461. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 26

20. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI
2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40012-4 12

21. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable
signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI
2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-53997-8 2

22. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.:
Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 152–182. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 6

https://doi.org/10.1007/978-3-642-21554-4_12
https://doi.org/10.1007/978-3-642-21554-4_12
https://doi.org/10.1007/978-3-319-60055-0_23
https://doi.org/10.1007/978-3-319-45572-3_2
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-642-00468-1_18
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-53997-8_2
https://doi.org/10.1007/978-3-642-53997-8_2
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7_6

30 S. Krenn et al.

23. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: how to
sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) SCN 2016.
LNCS, vol. 9841, pp. 353–371. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44618-9 19

24. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11925-5 13

25. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012.
LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31410-0 3

26. Chen, X., Tian, H., Zhang, F., Ding, Y.: Comments and improvements on key-
exposure free chameleon hashing based on factoring. In: Lai, X., Yung, M., Lin, D.
(eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 415–426. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21518-6 29

27. Chen, X., Zhang, F., Kim, K.: Chameleon hashing without key exposure. In: Zhang,
K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 87–98. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30144-8 8

28. Chen, X., Zhang, F., Susilo, W., Mu, Y.: Efficient generic on-line/off-line signatures
without key exposure. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521,
pp. 18–30. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-
5 2

29. Chen, X., Zhang, F., Susilo, W., Tian, H., Li, J., Kim, K.: Identity-based
Chameleon hash scheme without key exposure. In: Steinfeld, R., Hawkes, P. (eds.)
ACISP 2010. LNCS, vol. 6168, pp. 200–215. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-14081-5 13

30. Damg̊ard, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing infor-
mation flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 21

31. Demirel, D., Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D., Traverso, G.: PRIS-
MACLOUD D4.4: overview of functional and malleable signature schemes. Tech-
nical report, H2020 Prismacloud (2015). www.prismacloud.eu

32. Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures
and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji,
A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26059-4 25

33. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996)

34. Fehr, V., Fischlin, M.: Sanitizable signcryption: sanitization over encrypted data
(full version). IACR Cryptology ePrint Archive, Report 2015/765 (2015)

35. Ferreira, A., Cruz-Correia, R., Antunes, L., Farinha, P., Oliveira-Palhares, E.,
Chadwick, D.W., Costa-Pereira, A.: How to break access control in a controlled
manner. In: 19th IEEE Symposium on Computer-Based Medical Systems (CBMS
2006), pp. 847–854 (2006)

36. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 12

https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-319-44618-9_19
https://doi.org/10.1007/978-3-642-11925-5_13
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-642-21518-6_29
https://doi.org/10.1007/978-3-540-30144-8_8
https://doi.org/10.1007/978-3-540-72738-5_2
https://doi.org/10.1007/978-3-540-72738-5_2
https://doi.org/10.1007/978-3-642-14081-5_13
https://doi.org/10.1007/978-3-642-14081-5_13
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-662-53644-5_21
www.prismacloud.eu
https://doi.org/10.1007/978-3-319-26059-4_25
https://doi.org/10.1007/978-3-662-49384-7_12

Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications 31

37. Frädrich, C., Pöhls, H.C., Popp, W., Rakotondravony, N., Samelin, K.: Integrity
and authenticity protection with selective disclosure control in the cloud & IoT.
In: Lam, K.Y., Chi, C.H., Qing, S. (eds.) ICICS. LNCS, pp. 197–213. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50011-9 16

38. Gao, W., Li, F., Wang, X.: Chameleon hash without key exposure based on Schnorr
signature. Comput. Stand. Interfaces 31(2), 282–285 (2009)

39. Gao, W., Wang, X., Xie, D.: Chameleon hashes without key exposure based on
factoring. J. Comput. Sci. Technol. 22(1), 109–113 (2007)

40. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6 21

41. Hanser, C., Slamanig, D.: Blank digital signatures. In: ASIACCS (2013)
42. Hanzlik, L., Kuty�lowski, M., Yung, M.: Hard invalidation of electronic signatures.

In: Lopez, J., Wu, Y. (eds.) ISPEC 2015. LNCS, vol. 9065, pp. 421–436. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-17533-1 29

43. Hohenberger, S., Waters, B.: Short and stateless signatures from the RSA assump-
tion. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 654–670. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 38

44. Höhne, F., Pöhls, H.C., Samelin, K.: Rechtsfolgen editierbarer signaturen. Daten-
schutz Datensicherheit 36(7), 485–491 (2012)

45. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006).
https://doi.org/10.1007/11927587 28

46. Krawczyk, H., Rabin, T.: Chameleon hashing and signatures. In: NDSS (2000)
47. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures.

In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA -2015. LNCS, vol. 9481, pp. 100–117. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29883-2 7

48. Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures
without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 363–380. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45744-4 18

49. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between
redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova,
N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04897-0 8

50. Mohassel, P.: One-time signatures and Chameleon hash functions. In: Biryukov, A.,
Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 302–319. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7 21

51. Pöhls, H.C.: Contingency revisited: secure construction and legal implications
of verifiably weak integrity. In: Fernández-Gago, C., Martinelli, F., Pearson, S.,
Agudo, I. (eds.) IFIPTM 2013. IAICT, vol. 401, pp. 136–150. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38323-6 10

52. Pöhls, H.C., Peters, S., Samelin, K., Posegga, J., de Meer, H.: Malleable signatures
for resource constrained platforms. In: Cavallaro, L., Gollmann, D. (eds.) WISTP
2013. LNCS, vol. 7886, pp. 18–33. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38530-8 2

53. Pöhls, H.C., Samelin, K.: Accountable redactable signatures. In: ARES (2015)

https://doi.org/10.1007/978-3-319-50011-9_16
https://doi.org/10.1007/978-3-642-21518-6_21
https://doi.org/10.1007/978-3-319-17533-1_29
https://doi.org/10.1007/978-3-642-03356-8_38
https://doi.org/10.1007/11927587_28
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-319-45744-4_18
https://doi.org/10.1007/978-3-319-04897-0_8
https://doi.org/10.1007/978-3-642-19574-7_21
https://doi.org/10.1007/978-3-642-38323-6_10
https://doi.org/10.1007/978-3-642-38530-8_2
https://doi.org/10.1007/978-3-642-38530-8_2

32 S. Krenn et al.

54. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature —
performance, mixing properties, and revisiting the property of transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4 10

55. Ren, Q., Mu, Y., Susilo, W.: Mitigating Phishing by a new ID-based Chameleon
hash without key exposure. In: AusCERT, pp. 1–13 (2007)

56. Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J.
(ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 21

57. Zhang, F., Safavi-naini, R., Susilo, W.: Id-based chameleon hashes from bilinear
pairings. IACR Cryptol. ePrint Archive 2003, 208 (2003)

58. Zhang, R.: Tweaking TBE/IBE to PKE transforms with Chameleon hash func-
tions. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 323–339.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 21

https://doi.org/10.1007/978-3-642-21554-4_10
https://doi.org/10.1007/3-540-44647-8_21
https://doi.org/10.1007/978-3-540-72738-5_21

Ubiquitous Weak-Key Classes
of BRW-Polynomial Function

Kaiyan Zheng1,2,3, Peng Wang1,2,3(B), and Dingfeng Ye1,2,3

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
zhengkaiyan@iie.ac.cn, {wp,ydf}@is.ac.cn

2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100093, China

3 School of Cyber Security, University of Chinese Academic Science,
Beijing 100049, China

Abstract. BRW-polynomial function is suggested as a preferred alter-
native of polynomial function, owing to its high efficiency and seem-
ingly non-existent weak keys. In this paper we investigate the weak-key
issue of BRW-polynomial function as well as BRW-instantiated crypto-
graphic schemes. Though, in BRW-polynomial evaluation, the relation-
ship between coefficients and input blocks is indistinct, we give out a
recursive algorithm to compute another (2v+1 − 1)-block message, for
any given (2v+1 − 1)-block message, such that their output-differential
through BRW-polynomial evaluation, equals any given s-degree polyno-
mial, where v ≥ �log2(s + 1)�. With such algorithm, we illustrate that
any non-empty key subset is a weak-key class in BRW-polynomial func-
tion. Moreover any key subset of BRW-polynomial function, consisting
of at least 2 keys, is a weak-key class in BRW-instantiated cryptographic
schemes like the Wegman-Carter scheme, the UHF-then-PRF scheme,
DCT, etc. Especially in the AE scheme DCT, its confidentiality, as well as
its integrity, collapses totally, when using weak keys of BRW-polynomial
function, which are ubiquitous.

Keywords: Weak key · Polynomial evaluation hash
BRW-polynomial · DCT · Message authentication code
Authenticated encryption

1 Introduction

Universal Hash Function. Universal hash functions (short as UHFs) were
firstly introduced by Carter and Wegman [8,37], and have become common
components in numerous cryptographic constructions, like message authen-
tication code (short as MAC) schemes [7,11,13,13], tweakable enciphering
schemes [10,19,35] and authenticated encryption (short as AE) schemes [3,21],

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 33–50, 2018.
https://doi.org/10.1007/978-3-319-89339-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_3&domain=pdf

34 K. Zheng et al.

etc. A UHF is a keyed function. Compared with other primitives like pseudo-
random permutations (short as PRPs) and pseudorandom functions (short as
PRFs), UHFs have no strength of pseudorandomness. The only requirement
is some simple combinatorial properties, which makes UHFs high-performance
but brittle and vulnerable to weak-key analyses [1,14,25,27,39] and related-key
attacks [34,36].

Weak-Key Analysis. Handschuh and Preneel [14] initiated the study of the
weak-key issue of UHFs, as they pointed out that “in symmetric cryptology,
a class of keys is called a weak-key class if for the members of that class the
algorithm behaves in an unexpected way and if it is easy to detect whether a
particular unknown key belongs to this class. Moreover, if a weak-key class is
of size C, one requires that identifying that a key belongs to this class requires
testing fewer than C keys by exhaustive search and fewer than C verification
queries.” Following such definition, they investigated several weak-key classes of
UHFs in MACs. Later on the weak-key analyses of UHFs mainly focused on a
specific UHF, i.e. polynomial function.

Polynomial Function. Polynomial function, which evaluates a polynomial in
the key with the data blocks as coefficients, is one of the most widely used
UHFs [4,5,10,15,17,20,35]. However the weak-key issue of polynomial function
in cryptographic schemes such as MACs was extensively studied and was found
unavoidable, especially in the example of GCM/GMAC which uses polynomial
function in its authentication component. Saarrinen [27] found that the keys of
polynomial function satisfying Kt = K formed a weak-key class in GCM. Procter
and Cid [25] found that any subset W is a weak-key class in GCM and GMAC,
if |W| ≥ 3 or |W| ≥ 2 and 0 ∈ W, exploiting the so-called forgery polynomial
q(K) = ΣH∈W(K −H). Zhu et al. [39] pointed out that any subset W consisting
of at least 2 keys is a weak-key class. Sun et al. [34] applied the above results to
tweakable enciphering schemes based on polynomial function. Abdelraheem et
al. [1] further proposed twisted polynomials from Ore rings to construct sparse
forgery polynomials, which greatly facilitate key recovery attacks.

The weak-key issue casts shadow on the further application of polynomial
function. For example, during the CAESAR competition, due to the weak-key
issue of polynomial function in the AE scheme POET [2], the designers [3]
decided to abandon the polynomial-function-based POET and retain the four-
round-AES-based version.

BRW-Polynomial Function. Bernstein [6] proposed a variant of polynomial
function, after the work of Rabin and Winograd [26], which is named as BRW
(short for Bernstein-Rabin-Winograd) in [28]. BRW-polynomial function per-
forms more highly-efficient than polynomial function, as it decreases nearly a half
of multiplications in polynomial evaluation. BRW-polynomial function is widely-
used in lots of cryptographic schemes, including authentication schemes [6,30],
tweakable enciphering schemes [9,28,29], authenticated encryption schemes [12],
etc.

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 35

Furthermore, unlike the case of polynomial function, the weak-key issue
of BRW-polynomial function seems avoidable. By now, no weak-key prob-
lem of BRW-polynomial function has been found [12,14], which makes BRW-
polynomial function an ideal UHF candidate in cryptographic schemes to allevi-
ate the threat of weak keys. For example, the designers of DCT, a deterministic
authenticated encryption scheme [12], suggested using BRW-polynomial func-
tion to instantiate its UHF to avoid the weak-key issue.

Our Contributions. This work investigates the weak-key problem of BRW-
polynomial function and BRW-instantiated schemes. Unlike polynomial func-
tion, in BRW-polynomial evaluation, the relationship between coefficients and
input blocks is indistinct owing to its recursive definition. Nevertheless we give
out a recursive algorithm -SumBRWpoly- which, for any given (2v+1 − 1)-block
message M and any given s-degree polynomial q(K) = Q0K

s+Q1K
s−1+· · ·+Qs

that v ≥ �log2(s+1)�, computes another (2v+1 −1)-block message M ′ such that
BRWK(M ′) = BRWK(M) + q(K).

With SumBRWpoly, we illustrate that any s-key subset W =
{H0, · · · ,Hs−1} is a weak-key class of BRW-polynomial function. Moreover sim-
ilar to the case of polynomial function, any W, as long as s ≥ 2, is also a weak-
key class in BRW-instantiated schemes, even when padding rules are taken into
consideration, which negates the suggestion of substituting BRW-polynomial
function for polynomial function to mitigate the weak-key threat.

For example, when instantiating with BRW-polynomial, both the Wegman-
Carter scheme and the UHF-then-PRF scheme suffer the forgery attack if the
UHF key falls into W, and it is easy to detect if the unknown UHF key belongs
to W. Furthermore, the BRW-instantiated DCT, a deterministic AE scheme,
suffers both the distinguishing attack and the forgery attack once its UHF key is
in W, implying that the confidentiality, as well as the integrity, of DCT totally
collapses when using weak keys of BRW-polynomial, which are ubiquitous.

The remaining of the paper is structured as following: after reviewing the
weak-key problem of polynomial-based MACs in Sect. 2, SumBRWpoly is illus-
trated in Sect. 3, together with ubiquitous weak keys of BRW-polynomial and
BRW-instantiated MACs. Section 4 discuss weak-key classes of DCT, and Sect. 5
makes a simple conclusion of this work.

2 Preliminaries

2.1 Notations

For a finite set S, let x
$←− S denote selecting an element x uniformly at random

from the set S and #S denote the number of members in S. Let |s| represent
the bit length of s. For b ∈ {0, 1}, bm denotes m bits of b. Let ‖ denote the
concatenation of two bit-strings, and ⇐⇒ means if and only if. For a function
H : K × D → R where K is a key space, we often write H(K,M) as HK(M),
where (K,M) ∈ K × D. Without loss of generality, most of operations, such
as additions, multiplications, in the remaining are defined over the finite filed

36 K. Zheng et al.

GF(2n). M = M0 · · · Mm−1 is a m-block message where Mi ∈ GF(2n) for i =
0, · · · ,m − 1.

2.2 Universal Hash Functions

Two commonly-used UHFs are almost-universal (AU) hash function and almost-
XOR-universal (AXU) hash function. Both UHFs satisfy some simple combina-
torial properties for any two different inputs.

For AU hash function, the output-collision probability of any two different
inputs is negligible.

Definition 1 (AU [32]). H : K ×D → R is an ε-almost-universal (ε-AU) hash
function, if for any M,M ′ ∈ D, M �= M ′,

Pr[K $←−K : HK(M) = HK(M ′)]=
#{K ∈K :HK(M)=HK(M ′)}

#K ≤ ε.

When ε is negligible we say that H is AU. Generally, ε = max
M �=M ′

Pr[K $←− K :

HK(M) = HK(M ′)].

For AXU hash function, the output-differential distribution of any two dif-
ferent inputs is almost uniform.

Definition 2 (AXU [33]). Let (R,+) be an abelian group where the addition
is exclusive-OR (XOR). H : K × D → R is an ε-almost-xor-universal (ε-AXU),
if for any M,M ′ ∈ D, M �= M ′, and any C ∈ R,

Pr[K $←−K :HK(M)+HK(M ′)=C]=
#{K ∈K :HK(M)+HK(M ′)=C}

#K ≤ε.

When ε is negligible we say that H is AXU. Generally, ε = max
M �=M ′,C

Pr[K $←− K :

HK(M) + HK(M ′) = C].

Clearly, if H is ε-AXU, it is also ε-AU, for ε-AU is a special case of ε-AXU
when C = 0.

2.3 UHF-Based MACs

One popular design of UHF-based MACs is to firstly compress the variable-
length input message into a fixed-length digest by a UHF and secondly encrypt it
into a tag. For example, the Wegman-Carter scheme [18,31,37] masks the digest
with the keystream of a block-cipher, while the UHF-then-PRF scheme [31] maps
the digest into a tag by a PRF.

More specifically, let H : K × D → R be a UHF and E : K′ × R → R be a
secure block-cipher. Two common UHF-based MACs are as following:

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 37

– The Wegman-Carter scheme WC : (K × K′)×N ×D → R, for M ∈ D, N ∈ N
and K

$←− K,K ′ $←− K′,

WCK,K′(N,M) = EK′(N) + HK(M).

– The UHF-Then-PRF scheme UTP : (K × K′) × D → R, for M ∈ D and

K
$←− K,K ′ $←− K′,

UTPK,K′(M) = EK′(HK(M)).

In the Wegman-Carter scheme, N denotes a non-repeated Nonce which is
required fresh in each computation.

The Security of MACs. Without loss of generality, assuming that the key
is uniform-randomly chosen, i.e. K

$←− K,K ′ $←− K′, the MAC scheme O often
consists of two algorithms: (let O ∈ {WC,UTP})

– Tag-generation T O: When O = WC, on the input (N,M) where N is non-
repeated nonce, calculate T = WCK,K′(N,M); otherwise on the input M ,
calculate T = UTPK,K′(M). Return T .

– Verification VO: When O = WC, on the input (N,M, T), compute T ′ =
WCK,K′(N,M); otherwise on the input (M,T) compute T ′ = UTPK,K′(M).
If T ′ = T , return 1; else return 0.

During the communication between two parties who have shared a secret
key (K,K ′), the sender generates tags of his messages by the tag-generation
algorithm T O and transmits the message-tag pairs, while the receiver validates
the received message-tag pairs when the verification algorithm VO returns 1.

The security goal of MACs is to resist the forgery attack. More specifically,
any adversary who has access to both the tag-generation oracle T O and the
verification oracle VO, is said to have made a successful forgery, once it outputs
a new message-tag pair, i.e. a triple (N,M, T) when O = WC or a duplet (M,T)
when O = UTP, which is not produced by T O but is validated by VO.

It has been proved that the Wegman-Carter scheme is secure if H is an AXU
and E is a PRP [18], and that the UHF-then-PRF scheme is secure if H is an
AU and E is a PRP [31].

2.4 Weak Keys of Polynomial Function and Polynomial-Based
MACs

Polynomial Function. Polynomial function is defined as

PolyK(M) = M0K
m−1 + M1K

m−2 + · · · + Mm−1

where K ∈ GF(2n), M = M0M1 · · · Mm−1, Mi ∈ GF(2n) for i = 0, 1, · · · ,m − 1.
Obviously PolyK(M) determines a polynomial in GF(2n)[K].

It is easy to deduce that PolyK(·) is a (m−1)/2n-AU, and that K ·PolyK(·)
is a m/2n-AXU. Because for any distinct M,M ′ and any C ∈ GF(2n), the

38 K. Zheng et al.

equation PolyK(M ′) = PolyK(M) has at most (m − 1) roots in GF(2n), while
the equation K · PolyK(M) + K · PolyK(M ′) = C has at most m roots.

Weak-Key Classes of Poly and Poly-Based MACs. Unfortunately, the
weak-key issue of polynomial function is unavoidable. As shown in [25,34,39],
any subset W, as long as |W| ≥ 2, is a weak-key class of polynomial function in
GCM and GMAC, both Poly-based schemes. We just give it a brief explanation
in the following, and more details refer to [14,25,34,39].

For any key subset W = {H0,H1, · · · ,Hs−1} that s ≥ 2, define

q(K) = (K − H0)(K − H1) · · · (K − Hs−1) = Q0K
s + Q1K

s−1 + · · · + Qs,

where Q0 = 1. It is obvious that

K ∈ W ⇐⇒ q(K) = 0. (1)

In polynomial function, each coefficient corresponds exactly each input block,
and it is easy to find message pairs whose output-differential after polynomial
evaluating equals q(K). Specifically, for arbitrary m-block M that m > s, com-
pute

PolyK(M) + q(K) = M ′
0K

m−1 + M ′
1K

m−2 + · · · + M ′
m−1,

K · PolyK(M) + q(K) = K ·
(
M ′′

0 Km−1 + M ′′
1 Km−2 + · · · + M ′′

m−1

)
+ Qs.

Let M ′ = M ′
0M

′
1 · · · M ′

m−1 and M ′′ = M ′′
0 M ′′

1 · · · M ′′
m−1, and by (1),

K ∈ W ⇐⇒ PolyK(M) = PolyK(M ′), (2)
K ∈ W ⇐⇒ K · PolyK(M) = K · PolyK(M ′′) + Qs. (3)

By (2) (3), it is trivial that Pr
[
K

$←− W : PolyK(M) = PolyK(M ′)
]

= 1 and

Pr
[
K

$←− W : K · PolyK(M) = K · PolyK(M ′′) + Qs

]
= 1, which implies that

the AU property of PolyK(·), as well as the AXU property of K · PolyK(·),
totally disappears in the key subset W.

Furthermore, once the key of Poly falls into W, the security of Poly-based
schemes also collapses, and it is easy to detect whether the unknown key of
Poly belongs to W. Thus W (|W| ≥ 2) is a weak-key class of Poly in Poly-
based schemes. Take two common Poly-based MACs, i.e. UTP and WC, as
examples, that is, UTPK,K′(M) = EK′(PolyK(M)), and WCK,K′(N,M) =
EK′(N) + K · PolyK(M). Since EK′ is a PRP, according to (2) (3), it is easy to
deduce that

K ∈ W ⇐⇒ UTPK,K′(M) = UTPK,K′(M ′), (4)
K ∈ W ⇐⇒ WCK,K′(N,M) = WCK,K′(N,M ′′) + Qs, (5)

which means that (1) when K ∈ W, neither UTP nor WC can resist the forgery
attack, and (2) by verifying if the UTP tags between M and M ′ or the WC tags
between (N,M) and (N,M ′′) are equal, it is able to detect if K belongs to W.

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 39

From above, it is crucial that, for arbitrary key subset W, it is easy to find
message pairs whose output-differential after polynomial evaluating equals q(K),
the so-called forgery polynomial defined by W. To deal with variable-length
inputs in real applications, inputs to polynomial function are padded firstly.
However even when padding rules are taken into consideration, such message
pairs are easy to find, and examples include GCM and GMAC [1,25,27,39].

3 Weak Keys of BRW-Polynomial Function
and BRW-Instantiated MACs

3.1 The Description of BRW-Polynomial Function

BRW-polynomial function [6,23] is defined recursively, just as follows:

– BRWK(ε) = 0n;
– BRWK(M0) = M0;
– BRWK(M0M1) = M0K + M1;
– BRWK(M0M1M2) = (M0 + K)(M1 + K2) + M2;
– BRWK(M0· · ·Mm−1)=BRWK(M0· · ·Mt−2)(Kt+Mt−1)+BRWK(Mt· · ·Mm−1)

for t ∈ {4, 8, 16, 32, · · · } and t ≤ m < 2t (i.e. t = 2�log2 m�);

where ε is an empty string, K ∈ GF(2n),Mi ∈ GF(2n) for i = 0, · · · ,m − 1.
When m ≥ 3, let t = 2�log2 m�, BRWK(·) is a monic polynomial with the degree
of (2t − 1). And it is easy to conclude that BRWK(·) is (2t − 1)/2n-AU and
K · BRWK(·) is 2t/2n-AXU [28].

Unlike the case of polynomial function, in BRW-polynomial evaluation, each
input block may affect multiple coefficients in the meantime, and its difficult to
track the coefficients after modifying input blocks. However, even though the
relationship between input blocks and coefficients is not so obvious as that in
polynomial function, there are efficient methods to find message pairs whose
output-differential after BRW-polynomial evaluating equals some given polyno-
mial, and BRW-polynomial function suffers the same weak-key issue as polyno-
mial function.

In the following, we firstly give out a recursive algorithm, SumBRWpoly
in Algorithm 1, which finds another new (2v+1 − 1)-block message for any
given (2v+1 − 1)-block message such that their output-differential after BRW-
polynomial evaluating equals any given s-degree polynomial, where v ≥ �log2(s+
1)�. Secondly, we study the weak-key problem of BRW-polynomial function and
BRW-instantiated MACs, i.e. BRW -based UTP and WC, with the recursive
algorithm.

3.2 The Description of SumBRWpoly

Given any s-degree polynomial q(K) = Q0K
s + Q1K

s−1 + · · · + Qs and any
m-block message M that m = 2v+1 − 1 and v ≥ �log2(s + 1)�, SumBRWpoly,
exploiting the observations about the BRW-polynomial evaluation of the specific

40 K. Zheng et al.

(2v+1 − 1)-block inputs, computes another new m-block message M ′ such that
BRWK(M ′) is exactly the sum of BRWK(M) and q(K).

In this section, we first introduce the observations about the BRW-
polynomial evaluation of (2v+1 − 1)-block inputs, and then explain how
SumBRWpoly works, where v ≥ 2.

BRW-Polynomial Evaluation of (2v+1 −1)-Block Inputs. When v ≥ 2, let
m = 2v+1 − 1 and t = 2�log2(m)� = 2v. To an m-block message M ,

BRWK(M0· · ·Mt−2Mt−1Mt· · ·M2t−2) =
BRWK(M0· · ·Mt−2) ·Kt + Mt−1 ·BRWK(M0· · ·Mt−2) + BRWK(Mt· · ·M2t−2),

and the observations exploited in SumBRWpoly are as following:

(1) BRWK(M) is a monic polynomial with the degree of (2t − 1), i.e. m or
2v+1 − 1;

(2) Both BRWK(M0· · ·Mt−2) and BRWK(Mt· · ·M2t−2) are monic polynomials
with the degree of (t − 1), i.e. (2v − 1), and thus the coefficient of Kt−1 is
(Mt−1 + 1);

(3) The last (t − 1) blocks of M , i.e. Mt · · · M2t−2, only affect the terms with a
degree lower than (t − 1);

(4) Only the first (t − 1) blocks of M , i.e. M0 · · · Mt−2, affect the terms with a
degree greater than t.

(5) The last block of M , i.e. M2t−2, only affects the constant term, and the
constant term in BRWK(M0· · ·Mt−2) (if any) turns out to be the coefficient
of Kt.

Note that when v = 0, 1 and m = 1, 3 respectively, the evaluation of BRWK(M)
is simple.

How SumBRWpoly Works. The description of SumBRWpoly is shown in Algo-
rithm1. It is required that m > s. Otherwise there is no such m-block message
pair M,M ′ satisfying BRWK(M ′) = BRWK(M)+q(K) since both BRWK(M ′)
and BRWK(M) are monic polynomials with the degree of m. By 2v+1 − 1 > s,
let v ≥ �log2(s + 1)� for simplicity. Besides, m is often expected to be as small
as possible to make the attacks efficient. For any s, the shortest messages dealt
by SumBRWpoly is mmin = 2�log2(s+1)�+1 − 1, i.e. s < mmin ≤ (2s + 1).

When s = 0. Note that when s = 0, W = ∅, which is actually insignificant, and
this case is given to complete the recursive algorithm. And v = 0 is included
in this case. Let q(K) = Q0 that Q0 ∈ GF(2n). To be simple, let M ′

m−1 =
Mm−1 + Q0, as the last block of the (2v+1 − 1)-block message only affect the
constant term in BRW-polynomial evaluation for v ≥ 0.

When v = 1 and s = 1, 2. In this case, the specific message that SumBRWpoly
processes is of 3 blocks, i.e m = 3. According to

{
BRWK(M ′

0M
′
1M

′
2) = K3 + M ′

0K
2 + M ′

1K + M ′
0M

′
1 + M ′

2

BRWK(M0M1M2) = K3 + M0K
2 + M1K + M0M1 + M2

,

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 41

Algorithm 1. The description of SumBRWpoly

Input: q(K) = Q0K
s + Q1K

s−1 +· · ·+ Qs, M = M0· · ·Mm−1, where
m = 2v+1 − 1 and v ≥ �log2(s + 1)�.

Output: M ′ = M ′
0· · ·M ′

m−1.
if s = 0 then

M ′
0· · ·M ′

m−2 = M0· · ·Mm−2;
M ′

m−1 = Mm−1 + Qs;

else
v = �log2 m�;
t = 2v;
if v = 1 then

if s = 1 then
M ′

0 = M0;
M ′

1 = M1 + Q0;
M ′

2 = M2 + Q1 + M0Q0;

if s = 2 then
M ′

0 = M0 + Q0;
M ′

1 = M1 + Q1;
M ′

2 = M2 + Q2 + M0Q1 + M1Q0 + Q0Q1;

else
if s < t − 1 then

M ′
0· · ·M ′

t−1 = M0· · ·Mt−1;
M ′

t · · ·M ′
2t−2 = SumBRWpoly(q(K), Mt· · ·M2t−2);

if s ≥ t − 1 then
if s ≥ t then

q1(K) =
∑s−t

i=0 Qs−t−iK
i;

M ′
0· · ·M ′

t−2 = SumBRWpoly (q1(K), M0· · ·Mt−2);

else
q1(K) = ε;
M ′

0· · ·M ′
t−2 = M0· · ·Mt−2;

M ′
t−1 = Mt−1 + Qs−t+1;

q2(K) =
∑t−2

i=0 Qs−iK
i + Qs−t+1 · (

BRWK(M0· · ·Mt−2) + Kt−1
)

+
(Mt−1 + Qs−t+1) · q1(K);
M ′

t · · ·M ′
2t−2 = SumBRWpoly (q2(K), Mt· · ·M2t−2);

return M ′

it is easy to define M ′ satisfying BRWK(M ′) = BRWK(M)+ q(K) for s = 1, 2.
One simple way to define M ′ is given in Algorithm 1.

When v ≥ 2. In this case, SumBRWpoly runs in a recursive way by exploit-
ing the observations about the BRW-polynomial evaluation of (2v+1 − 1)-block
inputs. Let t = 2v (see Algorithm 1).

If s < t − 1, because the last (t − 1) input blocks only affect the terms
with the degree lower than (t − 1) in BRW-polynomial evaluation, to be simple,
SumBRWpoly(q(K),M) keeps the first t blocks of M ′ the same as that of M ,

42 K. Zheng et al.

and computes the remaining (t − 1) blocks of M ′ by making a recursive call of
SumBRWpoly(q(K),Mt · · · M2t−2). That is,

SumBRWpoly (q(K),M) = M0 · · ·Mt−1‖SumBRWpoly (q(K),Mt· · ·M2t−2) .

Note that in this specific case s < t−1 and v ≥ �log2(s+1)�, thus v−1 ≥ �log2(s+
1)� which means that the recursive call of SumBRWpoly(q(K),Mt · · · M2t−2) is
reasonable.

However when s ≥ t − 1, the problem is a bit complex. Rewrite the terms of
q(K) into three parts as following:

q(K) =
(
Q0K

s + · · · + Qs−tK
t
)

+ Qs−t+1K
t−1 +

(
Qs−t+2K

t−2 + · · · + Qs

)

= q1(K) · Kt + Qs−t+1K
t−1 +

(
Qs−t+2K

t−2 + · · · + Qs

)
, (6)

where when s ≥ t, q1(K) = Q0K
s−t+Q1K

s−t−1+· · ·+Qs−t, and when s = t−1,
q1(K) = ε.

When s ≥ t, because only the first (t−1) input blocks affect the terms whose
degree is greater than t in BRW-polynomial evaluation, SumBRWpoly(q(K),M)
first calls SumBRWpoly(q1(K),M0· · ·Mt−2) to computes M ′

0· · ·M ′
t−2. The recur-

sive call is reasonable, since M0· · ·Mt−2 is a (2(v−1)+1 − 1)-block input and
the relationship between (v − 1) and the degree of q1(K), i.e. (s − t), satis-
fies the requirement of SumBRWpoly. Due to the property of floor number,
(s + 1) ≤ 22�log2(s+1)�−1 + 2�log2(s+1)�−1 for s ≥ 1, and

s − t + 1 = s − 2v + 1 ≤ s + 1 − 2�log2(s+1)� ≤ 2�log2(s+1)�−1.

Since v −1 ≥ �log2(s+1)�−1, it is easy to deduce that v −1 ≥ �log2(s− t+1)�.
Otherwise when s = t − 1, since q1(K) = ε, let M ′

0· · ·M ′
t−2 = M0· · ·Mt−2.

After that SumBRWpoly figures out how q1(K) affects the remaining lower-
degree terms. Moreover let M ′

t−1 = Mt−1 + Qs−t+1, and then

BRWK(M ′
0· · ·M ′

t−2) ·
(
Kt + M ′

t−1

)
(7)

= (BRWK(M0· · ·Mt−2) + q1(K)) ·
(
Kt + Mt−1 + Qs−t+1

)

= BRWK(M0· · ·Mt−2) ·
(
Kt + Mt−1

)
+ q1(K) · Kt

+ (Mt−1 + Qs−t+1) · q1(K) + Qs−t+1 · BRWK(M0· · ·Mt−2)
= BRWK(M0· · ·Mt−2) ·

(
Kt + Mt−1

)
+ q1(K) · Kt + Qs−t+1K

t−1

+ (Mt−1 + Qs−t+1) · q1(K) + Qs−t+1 ·
(
BRWK(M0· · ·Mt−2) + Kt−1

)
.

To deal with the lower-degree terms, by (6) (7), let

q2(K) =Qs−t+2K
t−2 + · · · + Qs

+ (Mt−1 + Qs−t+1) · q1(K) + Qs−t+1 ·
(
BRWK(M0· · ·Mt−2) + Kt−1

)
,

and the degree of q2(K) is either smaller than (t − 1) or equal to that of q1(K),
and thus satisfies the requirement to call SumBRWpoly(q2(K),Mt· · ·M2t−2).

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 43

That is, the remaining blocks M ′
t · · ·M ′

2t−2 can be computed by making
another recursive call of SumBRWpoly(q2(K),Mt· · ·M2t−2), and then

BRWK(M ′
t · · ·M ′

2t−2) = BRWK(Mt· · ·M2t−2) + q2(K). (8)

Therefore when s ≥ t − 1, by (7) (8),

BRWK(M ′
0· · ·M ′

t−2M
′
t−1M

′
t · · ·M ′

2t−2)
= BRWK(M ′

0· · ·M ′
t−2) ·

(
Kt + M ′

t−1

)
+ BRWK(M ′

t · · ·M ′
2t−2)

= BRWK(M0· · ·M t−2) ·
(
Kt + Mt−1

)
+ BRWK(Mt· · ·M2t−2)

+q1(K) · Kt + Qs−t+1K
t−1 + q2(K)

+ (Mt−1 + Qs−t+1) · q1(K) + Qs−t+1 ·
(
BRWK(M0· · ·Mt−2) + Kt−1

)

= BRWK(M0· · ·Mt−2Mt−1Mt· · ·M2t−2) + q(K).

3.3 Weak Keys of BRW-Polynomial in MACs

Weak keys in BRW-polynomial function are found ubiquitous, which also threats
BRW-based schemes. In this section, we explain how a key subset of BRW-
polynomial function turns out to be a weak-key class, and then briefly discuss
the weak-key issue of BRW-instantiated MACs.

For any key subset W = {H0,H1, · · · ,Hs−1} that s ≥ 1, define

q(K) = (K − H0)(K − H1) · · · (K − Hs−1) = Q0K
s + Q1K

s−1 + · · · + Qs

where Q0 = 1, similarly. Moreover let q(K) = Q0K
s−1 + Q1K

s−2 + · · · + Qs−1

and then q(K) = K · q(K) + Qs.
Choose arbitrary m-block message M where m = 2v+1 −1 and v = �log2(s+

1)�, i.e. s < m ≤ (2s + 1). Compute M ′ and M ′′ by calling SumBRWpoly, that
is M ′ = SumBRWpoly (q(K),M) and M ′′ = SumBRWpoly (q(K),M). By

BRWK(M ′) = BRWK(M) + q(K),
K · BRWK(M ′′) = K · BRWK(M) + K · q(K),

it is obvious that

K ∈ W ⇐⇒ BRWK(M ′) = BRWK(M), (9)
K ∈ W ⇐⇒ K · BRWK(M ′′) = K · BRWK(M) + Qs. (10)

Thus the AU property of BRWK(·), as well as the AXU property of K·BRWK(·),
totally disappears in W, as Pr

[
K

$←− W : BRWK(M) = BRWK(M ′)
]

= 1 and

Pr
[
K

$←− W : K · BRWK(M) = K · BRWK(M ′′) + Qs

]
= 1.

Besides, once the key of BRW falls into W, the security of the BRW -based
scheme also collapses, and it is easy to detect whether the unknown key of BRW
belongs to W. So W is a weak-key class of BRW in the BRW -based schemes.

Take two BRW-instantiated MACs, i.e. UTP and WC, as examples, any W
is a weak-key class, as long as |W| ≥ 2, because that:

44 K. Zheng et al.

– UTPK,K′(M) = EK′(BRWK(M))
(1) Forgery attack. Make a single tag-generation query of M and get its tag

T . Once K ∈ W, (M ′, T) is a successful forgery, since EK′ is a PRP and
then T = EK′ (BRWK(M)) = EK′ (BRWK(M ′)) according to (9).

(2) Detection. Simply make a tag-generation query of M to get its tag T , and
one more verification query of (M ′, T). If 1 is returned, BRWK(M) =
BRWK(M ′) since EK′ is a PRP, and thus K ∈ W according to (9),
otherwise K /∈ W.

– WCK,K′(N,M) = EK′(N) + K · BRWK(M)
(1) Forgery attack. Make a single tag-generation query of (N,M) and get

its tag T . Once K ∈ W, (N,M ′′, T + Qs) is a successful forgery, since
T + Qs = EK′(N) + K · BRWK(M) + Qs = EK′(N) + K · BRWK(M ′′)
according to (10).

(2) Detection. Make a single tag-generation query of (N,M) to get its T , and
one more verification query of (N,M ′′, T + Qs). If 1 is returned, K ∈ W
according to (10), otherwise K /∈ W.

Both forgery attack and detection given above require at least 1 tag-
generation query and 1 verification query, and to avoid non-sense weak-key
classes, it is required that |W| ≥ 2. In real applications, inputs are often padded
firstly to deal with variable-length inputs. However even when padding rules
are taken into consideration, SumBRWpoly still works by some tricks, such as
the one used in the weak-key discussion of DCT (Sect. 4.2), and more refer
to [1,25,27,39].

4 Weak Keys of BRW-Polynomial in DCT

DCT [12], short for Deterministic Counter in Tweak, is a Beyond-Birthday-
Bound-secure AE scheme, which is constructed from an efficient UHF, a CCA-
secure PRP and a Beyond-Birthday-Bound-secure encryption scheme. Forler et
al., the designers of DCT, suggest instantiating the underlying UHF with BRW-
polynomial function, rather than polynomial function, to avoid the weak-key
issue. However BRW-polynomial function suffers the same weak-key problem,
which can be extended to DCT when instantiating with BRW-polynomial func-
tion.

4.1 A Brief Introduction to DCT

The encryption of DCT takes the input (A,P), where A is the associated data
and P is the plaintext, and outputs the ciphertext C. The decryption of DCT
takes the input (A,C), and outputs the plaintext P if the verification is passed.

The encryption and decryption of DCT are illustrated in Table 1. The block
length is n-bit. Encodeτ (P) puts 0τ on the left of P and then partitions the data
into two part PL‖PR where |PL| = n. E is a block cipher. E is an encryption
scheme and D is its inverse. If the left τ bits of PL are zeroes, Decodeτ (PL, PR)

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 45

Table 1. The encryption and decryption of DCT.

DCT.encK1,K2,K3(A,P)
PL‖PR = Encodeτ (P)
X = HK1(A,PR)
Y = PL +X
CL = EK2(Y)
CR = EK3(CL, PR)
return CL‖CR

DCT.decK1,K2,K3(A,C)
CL‖CR = C
PR = DK3(CL, CR)
X = HK1(A,PR)
Y = E−1

K2
(CL)

PL = Y − X
return Decodeτ (PL, PR)

deletes the zeroes and returns the rest bits of PL‖PR, otherwise Decodeτ returns
⊥ indicating the verification is failed.

In DCT, E is instantiated by the stream-cipher mode CTRT [24]. For sim-
plicity, let CTRT.GenK3(CL, l) be the function that outputs l-bit keystream in
the key K3, and once CL is new, the l-bit keystream looks random at all. And
then {

EK3(CL, PR) = PR + CTRT.GenK3(CL, |PR|)
DK3(CL, CR) = CR + CTRT.GenK3(CL, |CR|)

.

The underlying UHF is defined as

HK1(A,PR) = K1 · BRWK1(pad(A)‖pad(PR)‖L)

where the function pad(X) pads X with the minimal number of trailing zeroes
such that its length after padding are multiples of n, L = len(A)‖len(PR) that
len(X) is an (n/2)-bit variable representing the bit length of X. Note that the
UHF description here is a bit different from the original design in [12], but it
doesn’t affect the weak-key discussion in the following.

4.2 Weak Keys of BRW-Polynomial Function in DCT

When instantiating with BRW-polynomial function, which is suggested by its
designers, DCT suffers the unavoidable weak-key problem, owing to ubiquitous
weak keys of its BRW-polynomial UHF component, and the details are given
out in the following.

AE schemes are designed to provide both the confidentiality of plaintexts
and the integrity of plaintexts and associated data. However when weak keys
are used, at least one of the security goal is broken. For example, GCM, one
of the standardized AE schemes, fails to provide the integrity when using weak
keys of its polynomial-function UHF, which is proved by the forgery attacks
given in [1,14,25,27,39]. Another example is the robust AE scheme AEZ [16],
which, when using weak keys given in [22], fails to offer the confidentiality, as
its ciphertexts can be distinguished from random bits efficiently. As for BRW-
instantiated DCT, both its confidentiality and integrity collapse, when using

46 K. Zheng et al.

weak keys of BRW-polynomial. Besides it is easy to detect if the unknown key
of BRW-polynomial belongs to some weak-key class.

Inherited from BRW-polynomial function, any subset W = {H0,· · ·,Hs−1}
is a weak-key class of DCT, as long as s ≥ 2. That is, once K1 ∈ W, the
confidentiality, as well as the integrity, of DCT collapses totally, and it is easy
to detect whether K1 ∈ W.

Construct Message Pairs. The crux is how to construct distinct message
pairs, say (A,P), (A′, P ′), for any W, satisfying that

K1 ∈ W ⇐⇒ HK1(A
′, P ′

R) = HK1(A,PR).

In the following, we explain how to find such pairs with SumBRWpoly and a
little trick to deal with the padding rule.

For any s-key subset W, let m = 2v+1 − 1 and v = �log2(s + 1)�, i.e. s <
m ≤ (2s + 1). Let A be arbitrary m-block message, i.e. A = M0· · ·Mm−1 where
Mi ∈ {0, 1}n for i = 0, · · · ,m − 1. Let q(K1) = (K1 − H0) · · · (K1 − Hs−1) and
A′ = M ′

0· · ·M ′
m−1 = SumBRWpoly(q(K1),M0· · ·Mm−1), thus

BRWK1(M
′
0· · ·M ′

m−1) = BRWK1(M0· · ·Mm−1) + q(K1). (11)

Besides, let PR = P ′
R = 0n‖U where U ∈

⋃(m−2)n
l=0 {0, 1}l, and

{
pad(A)‖pad(PR)‖L = M0· · ·Mm−1 ‖ 0n‖pad(U)‖L

pad(A′)‖pad(P ′
R)‖L′ = M ′

0· · ·M ′
m−1 ‖ 0n‖pad(U)‖L′ (12)

where L = len(A)‖len(PR), L′ = len(A′)‖len(P ′
R) and L = L′. Obviously,

(m + 2)n ≤| pad(A)‖pad(PR)‖L |≤ 2mn, i.e. at most 2(2s + 2) blocks, and
| pad(A)‖pad(PR)‖L |=| pad(A′)‖pad(P ′

R)‖L |.
Therefore, by (11) (12),

BRWK1(pad(A′)‖pad(P ′
R)‖L′)

= BRWK1(pad(A′)‖pad(P ′
R)‖L)

= BRWK1(M
′
0· · ·M ′

m−1) ·
(
Km+1

1 + 0n
)

+ BRWK1(pad(U)‖L)

= (BRWK1(M0· · ·Mm−1) + q(K1)) ·
(
Km+1

1 + 0n
)

+ BRWK1(pad(U)‖L)

= BRWK1(M0· · ·Mm−1) ·
(
Km+1

1 + 0n
)

+ BRWK1(pad(U)‖L) + q(K1) · Km+1
1

= BRWK1(pad(A)‖pad(PR)‖L) + q(K1) · Km+1
1 ,

and thus
K1 ∈ W

⋃
{0} ⇐⇒ HK1(A

′, P ′
R) = HK1(A,PR). (13)

Moreover, with HK1(A
′, P ′

R) = HK1(A,PR), let P = V ‖PR, P ′ = V ‖P ′
R

where V ∈ {0, 1}n−τ , and thus

C ′
L = CL, (14)

where C ′
L‖C ′

R = DCT.encK1,K2,K3(A
′, P ′), CL‖CR = DCT.encK1,K2,K3(A,P).

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 47

Weak-Key Classes in DCT. For any key subset W of BRW-polynomial func-
tion, with the message pair (A,P), (A′, P ′) that satisfy (13) (14) found, both
confidentiality and integrity of DCT collapse when K1 ∈ W. More specifically,
when K1 ∈ W, the following attacks are successful:

– Distinguishing attack. Make two encryption queries of (A,P), (A′, P ′), and
denote the ciphertexts as CL‖CR, C ′

L‖C ′
R respectively. According to (14),

CL = C ′
L is always true in DCT, while happens with the small probability of

2−n in the random case.
– Forgery attack. Make a single encryption query of (A,P) to get its cipher-

text CL‖CR, and forge the ciphertext of (A′, P ′) as CL‖ (P ′
R + PR + CR),

where PR + CR is the keystream which is produced by the CTRT encryption
component E , i.e. PR + CR = CTRT.GenK3(CL, |PR|).
More specifically, let C ′

L‖C ′
R = DCT.encK1,K2,K3(A

′, P ′). By (14), C ′
L = CL,

and then CTRT.GenK3(C
′
L, |P ′

R|) = CTRT.GenK3(CL, |PR|) since |PR| =
|P ′

R|. Thus C ′
R = P ′

R + CTRT.GenK3(C
′
L, |P ′

R|) = P ′
R + PR + CR.

Moreover it is easy to detect whether K1 ∈ W
⋃

{0}. Simply make two
encryption queries of (A,P), (A′, P ′) and denote the ciphertexts as CL‖CR,
C ′

L‖C ′
R respectively. Once C ′

L = CL, HK1(A
′, P ′

R) = HK1(A,PR) as the block-
cipher E is a PRP, and by (13), K1 ∈ W.

Besides, if K1 = 0, the UHF outputs 0 for arbitrary input, and thus when
0 /∈ W, by 1 more encryption query, it is able to detect either K1 = 0 or
K1 ∈ W. That is, make a encryption query of some input (A′′, P ′′) for any A′′

and P ′′ = V ‖P ′′
R, and observe if its first n-bit ciphertext equals CL.

Thus, any key subset W of BRW-polynomial function that |W| ≥ 2 is a
weak-key class in BRW-instantiated DCT. Again, |W| ≥ 2 is required to avoid
non-sense weak-key classes.

5 Conclusions

This work studies the weak-key problem of BRW-polynomial function and BRW-
instantiated schemes. It is found that weak keys in BRW-polynomial function
are ubiquitous, and that any key subset of BRW-polynomial which consists of
at least 2 keys is a weak-key class in BRW-based cryptographic schemes like the
Wegman-Carter scheme, the UHF-then-PRF scheme, DCT, etc. Similar weak-
key classes also exist in more BRW-instantiated schemes [6,9,28–30]. Although
the weak-key attack seems impossible to break the provable security of these
schemes, the ubiquity of weak keys is a potential security risk.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions. The work of this paper is supported by the
National Key Basic Research Program of China (2014CB340603) and the National
Natural Science Foundation of China (Grants 61472415, 61732021, 61772519).

48 K. Zheng et al.

References

1. Abdelraheem, M.A., Beelen, P., Bogdanov, A., Tischhauser, E.: Twisted polynomi-
als and forgery attacks on GCM. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 762–786. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46800-5 29

2. Abdelraheem, M.A., Bogdanov, A., Tischhauser, E.: Weak-key analysis of poet.
Cryptology ePrint Archive, Report 2014/226 (2014). http://eprint.iacr.org/2014/
226

3. Abed, F., Fluhrer, S., Foley, J., Forler, C., List, E., Lucks, S., McGrew, D., Wenzel,
J.: The POET family of on-line authenticated encryption schemes (2014). http://
competitions.cr.yp.to/caesar-submissions.html

4. Andreeva, E., Bogdanov, A., Lauridsen, M.M., Luykx, A., Mennink, B., Tis-
chhauser, E., Yasuda, K.: AES-COBRA (2014). http://competitions.cr.yp.to/
caesar-submissions.html

5. Bernstein, D.J.: The Poly1305-AES message-authentication code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005). https://doi.org/10.1007/11502760 3

6. Bernstein, D.J.: Polynomial Evaluation and Message Authentication (2011).
http://cr.yp.to/papers.html#pema

7. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: fast and
secure message authentication. In: Wiener [38], pp. 216–233 (1999). https://doi.
org/10.1007/3-540-48405-1 14

8. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

9. Chakraborty, D., Mancillas-López, C.: Double ciphertext mode: a proposal for
secure backup. IJACT 2(3), 271–287 (2012). https://doi.org/10.1504/IJACT.2012.
045588

10. Chakraborty, D., Sarkar, P.: HCH: a new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006). https://doi.org/10.
1007/11941378 21

11. Etzel, M., Patel, S., Ramzan, Z.: SQUARE hash: fast message authenication via
optimized universal hash functions. In: Wiener [38], pp. 234–251 (1999). https://
doi.org/10.1007/3-540-48405-1 15

12. Forler, C., List, E., Lucks, S., Wenzel, J.: Efficient beyond-birthday-bound-secure
deterministic authenticated encryption with minimal stretch. In: Liu, J.K., Stein-
feld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 317–332. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-40367-0 20

13. Halevi, S., Krawczyk, H.: MMH: software message authentication in the Gbit/sec-
ond rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052345

14. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 9

15. Harris, S.: The Enchilada authenticated ciphers (2014). http://competitions.cr.yp.
to/caesar-submissions.html

16. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

https://doi.org/10.1007/978-3-662-46800-5_29
https://doi.org/10.1007/978-3-662-46800-5_29
http://eprint.iacr.org/2014/226
http://eprint.iacr.org/2014/226
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/11502760_3
http://cr.yp.to/papers.html#pema
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1007/3-540-48405-1_14
https://doi.org/10.1504/IJACT.2012.045588
https://doi.org/10.1504/IJACT.2012.045588
https://doi.org/10.1007/11941378_21
https://doi.org/10.1007/11941378_21
https://doi.org/10.1007/3-540-48405-1_15
https://doi.org/10.1007/3-540-48405-1_15
https://doi.org/10.1007/978-3-319-40367-0_20
https://doi.org/10.1007/BFb0052345
https://doi.org/10.1007/978-3-540-85174-5_9
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2

Ubiquitous Weak-Key Classes of BRW-Polynomial Function 49

17. IEEE Std 1619.2-2010: IEEE standard for wide-block encryption for shared storage
media (2011)

18. Krawczyk, H.: LFSR-based hashing and authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48658-5 15

19. McGrew, D.A., Fluhrer, S.R.: The extended codebook (XCB) mode of operation.
IACR Cryptology ePrint Archive 2004, 278 (2004). http://eprint.iacr.org/2004/
278

20. McGrew, D.A., Viega, J.: The Galois/Counter mode of operation (GCM) (2004).
http://csrc.nist.gov/groups/ST/toolkit/BCM/

21. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
mode of operation (full version). IACR Cryptology ePrint Archive 2004, 193 (2004).
http://eprint.iacr.org/2004/193

22. Mennink, B.: Weak keys for AEZ, and the external key padding attack. In: Hand-
schuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 223–237. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52153-4 13

23. Morales-Luna, G.: On formal expressions of BRW-polynomials. IACR Cryptology
ePrint Archive 2013, 3 (2013). http://eprint.iacr.org/2013/003

24. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 2

25. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 287–304.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 15

26. Rabin, M.O., Winograd, S.: Fast evaluation of polynomials by rational preparation.
Commun. Pure Appl. Math. 25(4), 433–458 (1972)

27. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 13

28. Sarkar, P.: Efficient tweakable enciphering schemes from (block-wise) universal
hash functions. IEEE Trans. Inf. Theory 55(10), 4749–4760 (2009). https://doi.
org/10.1109/TIT.2009.2027487

29. Sarkar, P.: Tweakable enciphering schemes using only the encryption function of a
block cipher. Inf. Process. Lett. 111(19), 945–955 (2011). https://doi.org/10.1016/
j.ipl.2011.06.014

30. Sarkar, P.: Modes of operations for encryption and authentication using stream
ciphers supporting an initialisation vector. Crypt. Commun. 6(3), 189–231 (2014).
https://doi.org/10.1007/s12095-013-0097-7

31. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.
IACR Cryptology ePrint Archive 2004, 332 (2004). http://eprint.iacr.org/2004/
332

32. Stinson, D.R.: Universal hashing and authentication codes. In: Feigenbaum, J. (ed.)
CRYPTO 1991. LNCS, vol. 576, pp. 74–85. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 5

33. Stinson, D.R.: On the connections between universal hashing, combinatorial
designs and error-correcting codes. In: Electronic Colloquium on Computational
Complexity (ECCC), vol. 2, no. 52 (1995). http://eccc.hpi-web.de/eccc-reports/
1995/TR95-052/index.html

https://doi.org/10.1007/3-540-48658-5_15
https://doi.org/10.1007/3-540-48658-5_15
http://eprint.iacr.org/2004/278
http://eprint.iacr.org/2004/278
http://csrc.nist.gov/groups/ST/toolkit/BCM/
http://eprint.iacr.org/2004/193
https://doi.org/10.1007/978-3-319-52153-4_13
http://eprint.iacr.org/2013/003
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-53018-4_2
https://doi.org/10.1007/978-3-662-43933-3_15
https://doi.org/10.1007/978-3-642-34047-5_13
https://doi.org/10.1109/TIT.2009.2027487
https://doi.org/10.1109/TIT.2009.2027487
https://doi.org/10.1016/j.ipl.2011.06.014
https://doi.org/10.1016/j.ipl.2011.06.014
https://doi.org/10.1007/s12095-013-0097-7
http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
https://doi.org/10.1007/3-540-46766-1_5
https://doi.org/10.1007/3-540-46766-1_5
http://eccc.hpi-web.de/eccc-reports/1995/TR95-052/index.html
http://eccc.hpi-web.de/eccc-reports/1995/TR95-052/index.html

50 K. Zheng et al.

34. Sun, Z., Wang, P., Zhang, L.: Weak-key and related-key analysis of hash-counter-
hash tweakable enciphering schemes. In: Foo, E., Stebila, D. (eds.) ACISP 2015.
LNCS, vol. 9144, pp. 3–19. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19962-7 1

35. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005). https://doi.org/10.1007/11599548 15

36. Wang, P., Li, Y., Zhang, L., Zheng, K.: Related-key almost universal hash func-
tions: definitions, constructions and applications. In: Peyrin, T. (ed.) FSE 2016.
LNCS, vol. 9783, pp. 514–532. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-52993-5 26

37. Wegman, M.N., Carter, L.: New hash functions and their use in authentication
and set equality. J. Comput. Syst. Sci. 22(3), 265–279 (1981)

38. Wiener, M. (ed.): CRYPTO 1999. LNCS, vol. 1666. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1

39. Zhu, B., Tan, Y., Gong, G.: Revisiting MAC forgeries, weak keys and provable
security of galois/counter mode of operation. In: Abdalla, M., Nita-Rotaru, C.,
Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 20–38. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-02937-5 2

https://doi.org/10.1007/978-3-319-19962-7_1
https://doi.org/10.1007/978-3-319-19962-7_1
https://doi.org/10.1007/11599548_15
https://doi.org/10.1007/978-3-662-52993-5_26
https://doi.org/10.1007/978-3-662-52993-5_26
https://doi.org/10.1007/3-540-48405-1
https://doi.org/10.1007/978-3-319-02937-5_2

Lightweight MDS Serial-Type Matrices
with Minimal Fixed XOR Count

Dylan Toh1, Jacob Teo1, Khoongming Khoo2, and Siang Meng Sim2,3(B)

1 NUS High School of Math and Science, Singapore, Singapore
2 DSO National Laboratories, Singapore, Singapore
kkhoongm@dso.org.sg, ssim011@e.ntu.edu.sg

3 Nanyang Technological University, Singapore, Singapore

Abstract. Many block ciphers and hash functions require the diffusion
property of Maximum Distance Separable (MDS) matrices. Serial matri-
ces with the MDS property obtain a trade-off between area requirement
and clock cycle performance to meet the needs of lightweight cryptogra-
phy. In this paper, we propose a new class of serial-type matrices called
Diagonal-Serial Invertible (DSI) matrices with the sparse property. These
matrices have a fixed XOR count (contributed by the connecting XORs)
which is half that of existing matrices. We prove that for matrices of
order 4, our construction gives the matrix with the lowest possible fixed
XOR cost. We also introduce the Reversible Implementation (RI) prop-
erty, which allows the inverse matrix to be implemented using the similar
hardware resource as the forward matrix, even when the two matrices
have different finite field entries. This allows us to search for serial-type
matrices which are lightweight in both directions by just focusing on the
forward direction. We obtain MDS matrices which outperform existing
lightweight (involutory) matrices.

Keywords: MDS matrix · Serial matrix · Lightweight cryptography
XOR count

1 Introduction

Diffusion [1] is a key property of a secure cipher which refers to the propagation
of changes in the input to the entire output. In many ciphers, the diffusion
property is brought about by a linear diffusion matrix as part of a round function
component. Effectively, a modification of even a single bit in the input results
in drastic changes in the output, providing stronger defence against differential
and linear cryptanalysis attacks. Hence, matrices known as Maximum Distance
Separable (MDS) matrices are commonly used in ciphers [2–5] to maximise the
diffusion ability of the diffusion layer. They have the property that the diffusion
provided is optimal.

S. M. Sim—Supported by the Singapore National Research Foundation Fellowship
2012 (NRF-NRFF2012-06).

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 51–71, 2018.
https://doi.org/10.1007/978-3-319-89339-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_4&domain=pdf

52 D. Toh et al.

However, the guarantee of strong diffusion power often results in a high hard-
ware computation cost. Thus, it is necessary to find lightweight MDS matrices
that can be incorporated into ciphers while minimising hardware requirements
and maximising efficiency. However, due to the size of the search space it is impos-
sible to perform a naive exhaustive search. Thus, various constructions [6–9] have
been studied in order to narrow the search space to obtain lightweight MDS matri-
ces. Other methods have also been proposed to increase overall efficiency.

One example is so-called serial matrices [5], which utilise a trade-off to reduce
hardware requirement while incurring additional time cost. These matrices have
the property that their k-th power is MDS (k-MDS), thus by applying the matrix
k times in a series of k clock cycles, diffusion ability can still be maximised.
[7] proposed the idea of cyclic matrices (generalisation of circulant matrices)
in a serial-based implementation to simulate serial matrix implementation and
to achieve low hardware cost. In both cases, the trade-off area (XOR count)
with throughput (number of clock cycles) is kind of balance and proportional,
reducing the XOR count by a factor of k while increasing the clock cycle by a
factor of k.

Very often, the search for lightweight diffusion matrix focused on the forward
direction and paid little attention to the implementation cost of the inverse
matrix (backward direction). Although there are scenarios like OFB, CFB and
counter mode which only requires the block cipher encryption to be lightweight,
in other cases where both encryption and decryption are required, such matrices
tends to pay more for its inverse matrix. There are other works which attempt
to overcome this problem by considering involution (self-inverse) matrices like
in [6,7,9]. In this case, both the forward and backward direction will cost the
same. However, it often comes with a higher cost because of the involution
restriction.

In this work, we aim to search for new serial-type matrices which outperform
existing lightweight matrices and also have efficient implementation in both for-
ward and backward direction. This will be useful for constrained devices where
lightweight implementation is required but high throughput is not necessary.

Contributions. We propose a new class of serial-type matrices known as
Diagonal-Serial Invertible (DSI) matrices. This matrix is potentially k-MDS
while maintaining a low original weight, which can increase the probability of
finding lightweight matrices possessing the targeted properties. By introducing
the sparse condition for DSI matrices, we actually made a favourable trade-off
between the area and clock cycle; we reduced the XOR count by almost a factor
of 2k at a cost of k clock cycles.

We introduce the concept of Reversible Implementation (RI) property which
allows us to better understand the implementation of serial-type matrices. We
show that its implementation cost for the backward direction can be as low as the
forward direction, giving us the advantage of having efficient implementation for
both forward and backward directions. Because of this RI property, we can focus
our search on lightweight matrices in the forward direction without worrying its
inverse cost or to limit our search to involution matrices.

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 53

Our construction led us to finding new lightweight serial-type matrices, which
are lighter than existing diffusion matrices in serialised implementation.

Lastly, we prove for diffusion matrices of order 4 that our sparse DSI matrices
achieve the lowest possible fixed cost implementation. Meaning that there does
not exist other serial-type matrix construction that would be lighter than our
sparse DSI construction.

Organisation. We give the preliminaries in Sect. 2, introduce our new serial-
type matrix construction and its properties in Sect. 3. Next, we introduce the
concept of the RI property and describe how the implementation cost of a dif-
fusion matrix is evaluated in Sect. 4, and present our search results in Sect. 5.
Finally, we prove optimality for our sparse DSI matrix in Sect. 6 and end with
our conclusion and some thoughts about future work in Sect. 7.

2 Preliminaries

In this section, we give a preliminary overview of concepts and definitions used
in the rest of the paper.

2.1 Finite Fields and MDS Matrices

We denote by GF(2n) the finite field with 2n elements. It is isomorphic to poly-
nomials in GF(2)[X] modulo an irreducible polynomial p(X) of degree n. The
elements of GF(2n) may be written in two ways: in polynomial representation,∑

biX
i or in bitwise representation, bn−1bn−2...b2b1b0, where bi ∈ GF(2). For

example, in GF(28), the 8-bit string 11100001 corresponds to the polynomial
X7 + X6 + X5 + 1, written 0xe1 in hexadecimal.

The addition operation on GF(2n) is simply the bitwise XOR on the coeffi-
cients of the polynomial representation of the elements. The multiplication of two
elements is the modulo p(X) reduction of the product of the polynomial represen-
tations of the two elements. For simplicity, we append the irreducible polynomial
in hexadecimal form to the finite field. For instance, suppose p(X) = X4+X1+1
is the modulo reduction of the product of field elements in GF(24), we denote
the finite field as GF(24)/0x13.

Definition 1 [7]. The branch number of a matrix M of order k over finite
field GF(2n) is the minimum number of nonzero components of the input vector
v and output vector u = M · v as we range over all nonzero v ∈ [GF(2n)]k.

Using matrices with high branch number for the diffusion layer of block
ciphers protect them against differential and linear cryptanalysis (protecting
against the latter requires the transpose of the diffusion matrix instead to have
a high branch number).

Definition 2 [10]. A maximum distance separable (MDS) matrix of order
k is a matrix that attains the optimal branch number k + 1.

54 D. Toh et al.

Fixing the input vector to have only 1 nonzero element, the output vector will
have at best, all its k entries nonzero; therefore the branch number is bounded
above by k + 1.

Definition 3. A matrix of order k is q-MDS if it is MDS when raised to the
q-th power.

Such matrix is also known as recursive MDS matrix, but since we will be
discussing cases where q �= k (see Sect. 6), we chose the notation q-MDS for
clearer indication of the number of iterations.

The following proposition is used to check if a matrix satisfies the MDS
property:

Proposition 1 [11]. A matrix is MDS if and only if its square submatrices are
all nonsingular.

Proposition 2 [7]. For any permutation matrices P and Q, the branch numbers
of these two matrices M and PMQ are the same.

This provides some symmetry in terms of general construction in the later
parts of the paper.

2.2 XOR Count

The way to perceive and estimate the implementation cost of the diffusion layer
has evolved over time. It was a common belief that finite field elements with low
Hamming weight has lower hardware implementation cost. In 2014, the authors
of [12] proposed estimating the implementation cost by counting the number
of XOR gates (denoted as d-XOR [13]) needed to implement the field element
from its multiplication matrix. They also showed that, unlike the common belief,
higher Hamming weight elements may also have low implementation cost. Several
work [6,7,9,14] adopted this metric to estimate the implementation cost of dif-
fusion matrix. An improved metric s-XOR [13], proposed by authors of [13] was
introduced to better gauge the implementation cost in practice. In this paper,
we adopt this new metric to calculate the implementation cost of the diffusion
layer.

Definition 4 [13]. The s-XOR count of an element α in GF (2n)/p(X) (where
p(X) is the generator polynomial), is the minimum number of XOR operations
for implementing the field element multiplication, where the minimum is taken
over all implementation sequences.

Example 1 [13]. Given the finite field GF(23)/0xb, the multiplication of α = 7
seen as (1, 1, 1) ∈ [GF(2)]3 can be computed by:

(1, 1, 1)(b2, b1, b0) = (b2 ⊕ b0, b2 ⊕ b1, b1) ⊕ (b1, b2 ⊕ b0, b2) ⊕ (b2, b1, b0)
= (b1 ⊕ b0, b0, b2 ⊕ b1 ⊕ b0),

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 55

where (b2, b1, b0) is an arbitrary element of GF(23) ∼= (GF(2))3. Expressing the
same computation as a matrix multiplication, it rewrites as

⎡

⎣
0 1 1
0 0 1
1 1 1

⎤

⎦

⎡

⎣
b2
b1
b0

⎤

⎦ =

⎡

⎣
b1 ⊕ b0

b0
b2 ⊕ b1 ⊕ b0

⎤

⎦ .

From the multiplication matrix, we can see that d-XOR(α) = 3 XOR count.
In practice, one can upward-rotate the input vector components, XOR the second
component to the first, followed by XORing the first component to the third to
obtain the same desired output. Therefore, we get s-XOR(α) = 2 < d-XOR(α).

In [13], the authors denoted it as s-XOR(α) to distinguish it from the metric
proposed in [12] which was denoted as d-XOR(α). Since we are adopting this
new metric (s-XOR), we simply use XOR(α) to be concise in this paper. In this
paper, we focus on the finite fields GF(24)/0x13 and GF(28)/0x1c3, where most
of the lightweight diffusion matrices are found.

3 Diagonal-Serial Invertible Matrices

First, let us recall the matrix structure of serial matrices. To distinguish it from
the other serial-type matrices that we studied in this paper, we shall call this
matrix a Linear Feedback Serial (LFS) matrix.

The LFS matrix L = LFS(z0, z1, ..., zk−1) from [5] is of specific interest in
this study. Because LFS(z0, z1, ..., zk−1) corresponds to a Linear Feedback Shift
Register (LFSR) where the feedback taps are given by the last row of the matrix,
hence the name. Properties of the LFS matrices have been investigated in [15],
among which is the lightweight expression of the inverse, L−1. In particular, the
expression of LFS matrix and its inverse are shown below:

Lij =

⎧
⎪⎨

⎪⎩

zj , i = k − 1
1, i + 1 = j

0, otherwise.
L−1
ij =

⎧
⎪⎨

⎪⎩

zj+1
z0

, i = 0, zk = 1
1, i = j + 1
0, otherwise.

From this expression, the authors of [15] concluded that if z0 = 1, then both a
LFS matrix and its inverse has the same finite field entries z1, z2, . . . , zk−1 which
will lead to both matrices requiring the same hardware resource to implement.
We show later in this paper a new technique that allows us to implement LFS
matrix and its inverse with the same hardware resources even when z0 �= 1.

3.1 Diagonal-Serial Invertible (DSI) Matrix

Definition 5. A Diagonal-Serial Invertible (DSI) matrix D = (Dij)
1≤i,j≤k ∈ [GF (2n)]k×k, is determined by 2 vectors, a = (ai)1≤i≤k ∈
[GF (2n)\{0}]k and b = (bi)1≤i≤k−1 ∈ [GF (2n)]k−1, as follows1:

1 The indices starts from 1 for the convenience of latter discussions.

56 D. Toh et al.

Dij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1, i = 1, j = k

ai, i = j + 1
bi, i = j ≤ k − 1
0, otherwise.

The design is motivated by the LFS(z0, z1, ..., zk−1) matrix construction.
Keeping to the structure of a permutation matrix, the underlying intuition is
that pairwise linear combinations of rows will provide a higher diffusion power.
We will first prove some elementary properties of the DSI matrix:

Theorem 1. Every DSI matrix D = DSI(a,b) is invertible.

Proof. We have det(D) = D1k · det(M1k) = a1 · det(M1k) by cofactor expansion
along the rightmost column (where M1k is the matrix formed by removing the
topmost row and rightmost column); M1k is upper triangular thus its deter-
minant is simply the product of its diagonal entries, det(M1k) = a2a3a4 . . . ak.
Therefore det(D) = a1a2a3 . . . ak �= 0 (∀i, ai �= 0) and D is invertible.

To express the q-th power of the general DSI matrix D = DSI(a,b), we view
it as a weighted adjacency matrix to a directed graph with vertices labeled 1 to
k (Dij is the weight of the directed edge from vertex i to vertex j). Then for any
q ∈ N, we have:

(Dq)ij =
∑

length q paths from i to j

(product of all weights along the path)

with the sum taken over all all paths of length q from vertex i to vertex j. In
the above expression, we note that an edge with weight 0 will never contribute
to the sum; therefore edges with weight 0 may be added or removed without
consequence.

For the ease of notation, we denote bk = 0, and
Pi({s1, s2, . . . , s|S|}) =

∑

p1+p2+···+p|S|=i; pj≥0

sp1
1 sp2

2 . . . s
p|S|
|S| ; then we have, for a

general DSI matrix D:

(Dk)ij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pi−j({bt|t ∈ {j, . . . , i}) · ∏

u∈{j−1,...,i}
au, i > j

bki +
k∏

u=1
au, i = j

Pj−i({bt|t ∈ {1, . . . , i} ∪ {j, . . . , k}) · ∏

u∈{1,...,i}∪{j+1,...,k}
au, i < j

(1)
The expressions above are obtained by drawing the associated graph, with

vertices 1 to k arranged anticlockwise in a circle; the edge weighted ai points
clockwise from vertex i to vertex i−1 (mod k), while the edge weighted bi points
from vertex i to itself. For i �= j, a path of length k from vertex i to vertex j must
take the path through the j − i (mod k) clockwise edges i → i − 1 → · · · → j,
while passing through any i − j (mod k) self-pointing edges along the way. A
path of length k from vertex i to itself, on the other hand, may be the one

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 57

passing through all clockwise edges i → i − 1 → · · · → i, or the path obtained
by traversing the self-pointing edge i → i for k times.

The graph also illustrates the symmetry of the matrix; the vertices may
be relabeled 1 through k still in an anticlockwise fashion but starting at an
arbitrary vertex, which will shift the bk = Dkk = 0 element to another element
along the main diagonal of the matrix. Note the similarity with Proposition 2,
taking Q−1 = P = (the permutation matrix corresponding to the permutation
of vertices as described).

Example 2. The DSI matrix D = DSI(a,b) of order 4 is expressed below
together with its associated graph, shown in Fig. 1, of which it is the weighted
adjacency matrix:

D =

⎛

⎜
⎜
⎝

b1 0 0 a1

a2 b2 0 0
0 a3 b3 0
0 0 a4 0

⎞

⎟
⎟
⎠

1

2 3

4a1

a2

a3

a4

b1

b2 b3

Fig. 1. Weighted adjacency graph associated with DSI matrix of order 4

Note that there is no self-pointing edge on vertex 4 because b4 = 0. The
fourth power can thus be expressed as shown below:

D4 =

⎛

⎜
⎜
⎝

b41 + a1a4a3a2 P1({b1, b3, b2})a1a4a3 P2({b1, b3})a1a4 P3({b1})a1

P3({b2, b1})a2 b42 + a2a1a4a3 P1({b2, b1, b3})a2a1a4 P2({b2, b1})a2a1

P2({b3, b2, b1})a3a2 P3({b3, b2})a3 b43 + a3a2a1a4 P1({b3, b2, b1})a3a2a1

P1({b3, b2, b1})a4a3a2 P2({b3, b2})a4a3 P3({b3})a4 a4a3a2a1

⎞

⎟
⎟
⎠.

We also reach the following result:

Theorem 2. Given DSI matrix D of order k, k is the minimum power of D for
all entries to have a nonzero algebraic expression (and thus possibly MDS).

Proof. The shortest path from vertex k to itself is the clockwise path passing
through all vertices, k → k − 1 → k − 2 → · · · → 1 → k, of length k, therefore
(Di)kk = 0 for all i < k. The algebraic expression of all coefficients of Dk have
been evaluated above in (1).

58 D. Toh et al.

3.2 Sparse DSI Matrix

However, for the DSI construction, pairwise linear combination of rows would
generate maximum diffusion power with inherent redundancy! We can possibly
further reduce the number of nonzero entries and consequently lower the fixed
cost, as proposed in the following subclass of DSI matrices:

Definition 6. A DSI matrix D = DSI(a,b) of order k is sparse if b satisfies:{
b2 = b4 = b6 = · · · = bk−2 = 0, if k is even
b2 = b4 = b6 = · · · = bk−3 = 0, if k is odd

Although sparse DSI matrices do have lesser nonzero entries, a natural ques-
tion to ask is whether sparse DSI matrices of order k can potentially be k-MDS.
Extending the result from Theorem2, we have the following corollary.

Corollary 1. Sparse DSI matrices can potentially be k-MDS.

Proof. By Definition 5, all the ai’s are nonzero. For each appearance of Pi(S) in
(1), we want to ensure that there exists nonzero term in the set S. For the case
i > j, S contains at least two consecutive elements bj , bj+1 , of which at least one
term is not set to 0. For the case i < j, S always contains b1 which is nonzero.
Thus each appearance of Pi(S) is a nonzero algebraic expression; therefore the
algebraic expressions of all entries of Dk are still nonzero for a sparse DSI matrix
D.

In fact, if DSI matrix D has 2 consecutive elements bj , bj+1 (with consecutive
indices modulo k) with both equal to 0, it follows from (1) that (Dk)(j+1)j =
Pk−1({bj+1, bj})aj+1 = 0 and Dk cannot possibly be MDS; therefore the sparse
restriction to the general DSI matrix sets the most number of entries in b to 0
while still allowing the possibility of Dk being MDS.

In [16], the authors proposed a new serial-type construction based on Type-II
Generalized Feistel Structure (GFS). Although this matrix type is similar to our
sparse DSI matrix, it is fundamentally different from ours, detailed in Sect. 6.

4 RI Property and Serial-Type Matrices

In this section, we introduce a property called the Reversible Implementation
(RI) which allows us to understand more about the implementation of serial-
type matrices and their inverse. Next, we describe how the implementation cost
of the serial-type matrices and their inverse are computed.

4.1 Reversible Implementation (RI) Property

Definition 7. Given some set of objects S, a function f : Sn → Sn has the
Reversible Implementation (RI) property if there exists a sequence of
transformations whereby each transformation is either a permutation of the n-
tuple components, involution (self-inverse), or the transformation itself has the
RI property. Such sequence of transformations is also called the RI sequence.

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 59

Proposition 3. If a function f has a RI sequence, then there exists an imple-
mentation of the inverse function f−1 that has the same implementation cost as
the RI sequence.

Proof. Given a RI sequence, we construct a sequence of transformations to imple-
ment the inverse function with the same implementation cost as the RI sequence.
First, we reverse the entire sequence of transformations, that is starting from the
last transformation of the RI sequence. If a transformation is some permutation
of the n-tuple components, we implement the inverse permutation on the com-
ponents. Since permutation is simply rewiring of the circuit in hardware, it is
basically free. If a transformation is involution, we apply the exact same trans-
formation with the same implementation cost. If a transformation has the RI
property, it has some RI sequence of its own and we can recursively implement
its inverse with the same implementation cost.

Example 3. The field multiplication of 7 ∈ GF(23)/0xb has the RI property as
we can see from Example 1, the sequence of transformation: upward-rotate the
input vector components, XOR the second component to the first component,
and XOR the first component to the third component. This is an RI sequence
since it consists of permutation and XOR instructions that are involutions. The
inverse of this field multiplication can be implemented as follows: XOR the first
component to the third component, XOR the second component to the first
component, and downward-rotate the input vector components, which has the
same implementation cost of 2 XORs as element 7.

In fact, under the s-XOR metric introduced in [13], we can conveniently
conclude that any nonzero finite field element has the RI property and its inverse
has the same XOR count as itself 2.

It is to note that this RI property is different from a function being involu-
tion. While being involution means the same circuit could be reused for forward
and backward implementation at a cost of some multiplexers, more multiplexers
might be needed to reuse the RI sequence circuit in the reverse order. Instead of
reusing of circuit, our RI property is useful for identifying the implementation
of the inverse requires the similar hardware resources.

4.2 RI Property in Serial-Type Matrices

The sparse matrix structure of serial-type matrices allows us to analyse the
sequence of transformations easily. We illustrate the implementation sequence
of the two serial-type matrices of order 4 in Fig. 2, which can also be generalised
to any order k. One can observe that both LFS and DSI matrices have the RI
property.

Previous, it was believed that LFS matrix has the same implementation cost
for both forward and backward implementation only when z0 = 1 [15]. However,
under the s-XOR metric, field element multiplications have the RI property, the
2 This observation has also been pointed out in [8].

60 D. Toh et al.

(a) Circuit of DSI matrix. (b) Circuit of LFS matrix.

Fig. 2. Circuit of LFS and DSI matrices of order 4.

implementation cost of z0 is actually the same as its inverse z−1
0 . Therefore,

LFS matrix has the same implementation cost for both forward and backward
direction for any nonzero z0.

Similar argument holds for DSI matrix. One can implement the inverse of
DSI matrix by first updating the last component with field multiplication a−1

k ,
which as the same implementation cost as ak. Next, multiply the last component
with bk−1 and XOR it to the second last component. Repeat these process until
the first component. Update the first component with a−1

1 and finally upward-
rotate the components to obtain the final output vector. The entire process has
the same implementation cost as the forward DSI matrix implementation.

4.3 Evaluating the Implementation Cost of Serial-Type Matrices

For round-based MDS matrices, a direct consequence of Proposition 1 is that
all entries have to be nonzero. Thus, the conventional way of estimating the
implementation cost of an MDS matrix over GF(2n) is to take the sum of the
implementation cost of all nonzero field multiplications (so-called the variable
cost), and add (k−1) many n-bit XOR count for each row to generate the output
components (so-called the fixed cost).

Things are a bit different for serial-type q-MDS matrices, there can be zero
entries in the matrix, thus the fixed cost for each row is 1 less than the number
of nonzero entries many n-bit XOR count. For the variable cost, we can apply a
small technique to save some implementation cost of the field multiplication for
some special cases.

Take DSI matrix of order 4 as an example, notice that if b1 = a2, we can
rearrange the order of the field multiplication and the XOR operation so that we
only need to compute one field multiplication and not both b1 and a2 separately,
as shown in Fig. 3a. Thus, we only count the implementation cost of bi when it
is not equal to ai+1.

Similar strategy can be applied to LFS matrices, when there are multiple
zi’s of the same field element, we can first XOR these branches together before
applying a single field multiplication, then XOR to the last component, Fig. 3b

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 61

illustrates an example of LFS matrix of order 4. Therefore, we only need to count
the implementation cost of the distinct zi’s in the last row.

(a) Special case of DSI matrix. (b) Special case of LFS matrix.

Fig. 3. Saving implementation cost for serial-type matrices.

While such trick can be applied to these two serial-type matrices, it is non-
trivial to apply it to other types of matrices like Hadamard or circulant matrices.
Thus, it remains an open question if similar trick can be applied to other matrices
too.

5 Main Results

In this section, we present new serial-type k-MDS matrices which have lower
XOR count than previously known MDS/k-MDS matrices. To obtain lightweight
matrices, we searched through k×k sparse DSI and LFS matrices over the finite
field GF (28) defined by the irreducible polynomial 0x1c3 for 4 ≤ k ≤ 8. To
check if a matrix is k-MDS, we raise the matrix to power of k and recursively
check that each submatrix is non-singular. Once a submatrix is singular, we exit
prematurely and move on to the next candidate. Else, this candidate would be
a k-MDS matrix. Besides searching directly in GF(28), we also use the subfield
construction [12, Sect. 7.2] where we search over GF(24) defined by the irre-
ducible polynomial 0x13, and interleave two copies to obtain a diffusion matrix
with the same branch number over GF(28). The search can be completed rela-
tively fast on a personal laptop from a few minutes when k = 4 to a few hours
when k = 7. The lightweight sparse DSI and LFS k-MDS matrices are denoted
by Dk,n and Lk,n respectively.

We reiterate that we are considering scenario where lightweight implementa-
tion is required but high throughput is not necessary. That is, we do a tradeoff
for lower area at the cost of higher clock cycles. For serial-type matrices, such
tradeoff is natural and the implementation cost is the XOR count of the entire
matrix. For cyclic matrices, for instance circulant/left-circulant matrices, it can
be implemented in a serialized manner by implementing one row of the matrix
and reusing the same row [7]. Although it is non-trivial to implement Hadamard

62 D. Toh et al.

matrices in a serialized manner, we give the benefit of the doubt and assume
that it can be done too. Therefore, we compare these round-based matrices by
the XOR count for one of its row, see Table 1. Note that we are considering only
the implementation cost of the matrix, the cost of multiplexer is out of the scope
of our discussion.

Table 1. XOR count of various serialized matrices

Matrices of order k (over GF (2n)) XOR count

Cyclic
∑

XOR(ci) + (k − 1) · n
Hadamard

∑
XOR(hi) + (k − 1) · n

LFS
∑

zi|∀j<i,zi �=zj
XOR(zi) + (k − 1) · n

Sparse DSI
∑

XOR(ai) +
∑

bi �=ai+1
XOR(bi) + �k/2� · n

Where ci’s (resp. hi’s) are the entries in a row of cyclic (resp. Hadamard) matrix.

For fair comparison, we recalculated the implementation cost of the existing
matrices under the same metric (s-XOR) as ours when possible. In Table 2 (resp.
Table 3), we compare serialized MDS matrices and k-MDS serial-type matrices
of order 4 ≤ k ≤ 8 over GF(24) (resp. GF(28)) in both the forward and back-
ward direction. In particular, we compare the DSI and LFS matrices that we
found with circulant [9], left-circulant [7,8], Hadamard [6] and LFS [5,12,17]
matrices. One may also consider unrolling DSI/LFS matrices to simulate round-
based matrices for comparison with cyclic/Hadamard matrices in a round-based
implementation scenario. That is to implement k copies of DSI/LFS matrices in
series to achieve the MDS property in one clock cycle. The XOR count of all the
matrices would simply be k times of what the tables have shown.

For the entries of the diffusion matrix, some literature considered invertible
binary matrices rather than the finite field elements, for those cases, we indicate
the entry type as GL(n,GF(2)).

5.1 Comparing Matrices Where n = 4

We ran our search on both sparse DSI and LFS k-MDS matrices of order 4 ≤
k ≤ 8 over GF(24)/0x13. The results are summarised in Table 2.

In [17], the authors considered 8-MDS matrix of order 4 to extend their search
for lighter diffusion matrices. Although they obtained LFS matrix with lower
XOR count than other 4-MDS LFS matrices, in serial-based implementation,
the number of clock cycle needed is doubled.

Although we could not find sparse DSI k-MDS matrices of order higher than
4, we would like to point out that this is quite common even for other matrix
types due to the small field size. As we can see in Table 2 that there are lesser
matrices that we can compare as the matrix size increases.

For circulant matrices from [9] and serial-type matrices from [16], the entries
of the matrix are non-singular binary matrices of order n. In [8], the irreducible

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 63

Table 2. Comparison of MDS/k-MDS matrices for n = 4

k Matrix type Field/Ring Forward Backward Reference

4 Hadamard GF(24)/0x13 17 19 [6]

4 Involutory Hadamard GF(24)/0x13 17 17 [6]

4 Involutory circulant GL(4, GF (2)) 17 17 [9]

4 Left-circulant GF(24) 15 − [8]

4 Circulant GL(4, GF (2)) 15 − [9]

4 Left-circulant GF(24)/0x13 15 29 [7]

4 LFS GL(4, GF (2)) 15 - [16]

4 LFS GF(24)/0x13 15 15 [12]

4 8-MDS LFS GF(24)/0x13 13 13 [17]

4 GFS GL(4, GF (2)) 10 - [16]

4 Sparse DSI D4,4 GF(24)/0x13 10 10 This paper

5 IMDS left-circulant GF(24)/0x13 27 27 [7]

5 Left-circulant GF(24) 24 − [8]

5 Left-circulant GF(24)/0x13 20 26 [7]

5 LFS GL(4, GF (2)) 19 - [16]

5 LFS A100 GF(24)/0x13 18 18 [5]

5 LFS L5,4 GF(24)/0x13 18 18 This paper, A100

6 Left-circulant GF(24)/0x13 30 40 [7]

6 LFS A144 GF(24)/0x13 28 28 [5]

6 LFS GL(4, GF (2)) 25 - [16]

6 LFS L6,4 GF(24)/0x13 25 25 This paper

7 LFS A196 GF(24)/0x13 31 31 [5]

7 LFS GL(4, GF (2)) 30 - [16]

7 LFS L7,4 GF(24)/0x13 30 30 This paper

8 Involutory Hadamard GF(24)/0x13 53 53 [6]

8 Hadamard GF(24)/0x13 48 56 [6]

8 LFS A256 GF(24)/0x13 47 47 [5]

8 LFS GF(24)/0x13 41 41 [12]

8 LFS GL(4, GF (2)) 37 - [16]

8 LFS L8,4 GF(24)/0x13 36 36 This paper

polynomial is not defined. Therefore, it is unclear how we can obtain the inverse
of those matrices.

Besides obtaining the same LFS matrix as [5] for k = 5, we found new
lightweight serial-type k-MDS matrices that outperform or match the existing
lightweight matrices. For matrices over GF(24), the room for improvement is
small due to the small field size, one can see larger improvements for matrices
over GF(28) in the next section.

64 D. Toh et al.

Table 3. Comparison of MDS/k-MDS matrices for n = 8

k Matrix type Field/Ring Forward Backward Reference

4 Hadamard [GF(24)/0x13]2 2 × 17 2 × 19 [6]

4 Involutory Hadamard [GF(24)/0x13]2 2 × 17 2 × 17 [6]

4 Involutory circulant GL(8, GF (2)) 33 33 [9]

4 LFS GF(28)/0x11d 33 33 [12]

4 Left-circulant GF(28)/0x1c3 31 75 [7]

4 Left-circulant GF(28) 30 - [8]

4 8-MDS LFS GF(28)/0x1c3 27 27 [17]

4 Circulant GL(8, GF (2)) 27 - [9]

4 LFS GL(8, GF (2)) 27 - [16]

4 Sparse DSI D4,8 GF(28)/0x1c3 22 22 This paper

4 Sparse DSI [D4,4]
2 [GF(24)/0x13]2 2 × 10 2 × 10 This paper

4 GFS GL(8, GF (2)) 18 - [16]

5 IMDS left-circulant GF(28)/0x165 65 65 [7]

5 Left-circulant GF(28)/0x1c3 42 90 [7]

5 Left-circulant GF(28) 40 - [8]

5 LFS GL(8, GF (2)) 35 - [16]

5 Sparse DSI D5,8 GF(28)/0x1c3 31 31 This paper

6 IMDS left-circulant GF(28)/0x165 77 77 [7]

6 LFS A288 GF(28)/0x11b 57 57 [5]

6 Left-circulant GF(28)/0x1c3 55 115 [7]

6 Left-circulant GF(28) 54 - [8]

6 LFS GL(8, GF (2)) 45 - [16]

6 GFS GF(28) ≥42 - [16]

6 Sparse DSI D6,8 GF(28)/0x1c3 31 31 This paper

7 IMDS left-circulant GF(28)/0x139 107 107 [7]

7 Left-circulant GF(28)/0x1c3 66 120 [7]

7 Left-circulant GF(28) 64 - [8]

7 LFS GL(8, GF (2)) 54 - [16]

7 Sparse DSI D7,8 GF(28)/0x1c3 54 54 This paper

8 Involutory Hadamard GF(28)/0x1c3 96 96 [6]

8 Hadamard GF(28)/0x1c3 88 179 [6]

8 Left-circulant GF(28) 82 - [8]

8 Left-circulant GF(28)/0x1c3 80 160 [7]

8 LFS [L8,4]
2 [GF(24)/0x13]2 2 × 36 2 × 36 This paper

8 LFS GL(8, GF (2)) 65 - [16]

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 65

5.2 Comparing Matrices Where n = 8

In addition to running our search on both sparse DSI and LFS k-MDS matrices of
order 4 ≤ k ≤ 8 over GF(28)/0x1c3, we also considered the subfield construction
[12, Sect. 7.2] where we use 2 copies of the serial-type matrices over GF(24)/0x13,
denoted by [·]2, hence doubling the XOR count3. The results are summarised
in Table 3.

Similar to the case n = 4, it is unclear how the inverse of the matrices
from [8,9,16] are obtained. In [17], the authors considered 8-MDS matrix of
order 4 to have lower XOR count. However, in serial-based implementation, this
results in more clock cycles and higher latency compared to other serial-type
matrices.

For 5 ≤ k ≤ 7, we found sparse DSI matrices that outperform existing
lightweight matrices in both forward and backward direction. For k = 6, the
authors of [16] pointed out that there exists 6-MDS GFS matrix over finite field
without giving an actual example, assuming that it can be constructed with
some field element with the lowest possible XOR count of 3, we obtain, at best,
an estimation of XOR count 42.

When k = 8, the search space for sparse DSI and LFS matrices are too large
to cover and we have not found a k-MDS matrix yet. Similar problem was faced
by the authors of [12] when they search for LFS matrices. Nevertheless, we can
construct a competitive candidate matrix from L8,4 using subfield construction.

Although we did not outperform the matrices from [16] for the case k = 4, 8,
it is to note that the choice of matrix entry is different. While it is possible to
search for lightweight DSI matrices over invertible binary matrices, it requires
very different search strategy and it is beyond the scope of our work.

Notice that for non-involution round-based matrices, its inverse could be sig-
nificantly larger. However for serial-type matrices, we do not have such problem
thanks to the RI property. Thus, when the implementation of the backward
direction is required, our matrices are more favourable.

The lightweight sparse DSI and LFS k-MDS matrices, denoted by Dk,n and
Lk,n respectively, found are listed in Table 4.

6 Advantages of Sparse DSI Matrices

In this section, we look at the reasons behind why sparse DSI matrices tend
to yield better results than other matrix types like Hadamard, cyclic and LFS
matrices. In addition, we prove that sparse DSI matrix of order 4 has the lowest
possible fixed XOR count. Since diffusion matrix of order 4 is probably the most
commonly used matrix size for the diffusion layer, sparse DSI matrix is a great
candidate for designing lightweight ciphers.

3 We can multiply the XOR counts of all matrices in Table 2 by 2 to get matrices over
GF(28) but we do not include most of them in Table 3 to prevent congestion. But we
can easily see that the best (sparse DSI) matrices we get directly from GF(28)/0x1c3
do outperform 2 copies of the best matrices over GF(24) for 5 ≤ k ≤ 7.

66 D. Toh et al.

Table 4. Sparse DSI and LFS matrix examples. If the matrix has double digit hex-
adecimal entries, it belongs to GF(28)/0x1c3. If it has single digit hexadecimal entries,
it belongs to GF(24)/0x13.

Order Sparse DSI LFS

4 D4,4 =

⎛
⎜⎜⎜⎜⎝

1 0 0 1

1 0 0 0

0 1 0x9 0

0 0 0x2 0

⎞
⎟⎟⎟⎟⎠

, D4,8 =

⎛
⎜⎜⎜⎜⎝

1 0 0 1

1 0 0 0

0 1 0xe1 0

0 0 0x02 0

⎞
⎟⎟⎟⎟⎠

-

5 D5,8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1

1 0 0 0 0

0 1 0x04 0 0

0 0 1 0x02 0

0 0 0 0x02 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

L5,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0x1 0x2 0x9 0x9 0x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

6 D6,8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1

1 0 0 0 0 0

0 1 0x91 0 0 0

0 0 1 0 0 0

0 0 0 1 0x02 0

0 0 0 0 0x02 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L6,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0x1 0xd 0x9 0x4 0x9 0xd

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

7 D7,8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0x1c 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0x02 0 0 0 0

0 0 0x02 0 0 0 0

0 0 0 1 0xb5 0 0

0 0 0 0 1 0xe1 0

0 0 0 0 0 0xe1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

L7,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0x1 0x2 0x7 0x1 0x1 0x7 0x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8 - L8,4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0x1 0xe 0x2 0xd 0x9 0xd 0x2 0xe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

6.1 Reducing the Fixed XOR Count

The biggest limitation to MDS matrix was the fixed XOR cost. For matrices like
Hadamard or cyclic matrices, a necessary condition for a matrix to be MDS is
not to have any zero entries. This means that for each row of the matrix, there
are up to k finite field multiplications as variable cost (some may be element 1
which is free), and these k components have to be summed together, incurring
a fixed cost of (k − 1) · n XOR count.

While most of the existing work focused on reducing the variable cost by
considering various type of matrix structure, LFS matrix was introduced as a
trade-off between hardware implementation cost and clock cycle. However, the
fixed cost in the last row of the LFS matrix remains the same as we can see from
the following:

Theorem 3. If a LFS matrix is k-MDS, then zi �= 0 for all i.

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 67

Due to space constraint, we leave the proof to the full version4.
This means that the fixed cost of a LFS k-MDS matrix is necessarily (k−1)·n,

similar to the fixed cost of a row of MDS Hadamard or cyclic matrix. However,
we managed to overcome this limitation by using sparse DSI matrix. The funda-
mental reason is that sparse DSI matrix can have lesser connecting XORs than
other existing matrix structures while still be potentially k-MDS.

As we can see from Table 1, the fixed XOR count of a sparse DSI matrix (con-
tributed by the connecting XORs independent of the choice of matrix entries) is
approximately half that of cyclic, Hadamard and LFS matrices. Although there
are more ai and bi entries in a DSI matrix than in a row of the other matrices,
the overall XOR count is greatly compensated by the fact that the fixed XOR
count is halved. This is especially so if we can keep the XOR count of ai and
bi down by choosing them to be 1 or other very lightweight elements. As an
example, the lightest sparse DSI k-MDS matrix we found for n = 8 and k = 6
has a total XOR count of 31, this is already less than the fixed XOR count of
cyclic, Hadamard and LFS matrices which is (6−1) ·8 = 40. Therefore when we
search for lightweight sparse DSI or LFS k-MDS matrices, if we find sparse DSI
k-MDS matrix that has XOR count lesser than the fixed cost of LFS matrices,
we do not have to run our search on LFS matrices in hope for finding lighter
matrices.

In Comparison with GFS Matrix. While it seems that sparse DSI matrix is
similar to GFS matrix proposed in [16], sparse DSI matrix has two advantages
over GFS matrix. Firstly, GFS matrix only exists for even order while our DSI
matrix exists for all sizes, thus we can achieve improvements on some parameters
that was not achievable by GFS matrix. Secondly, the technique mentioned in
Sect. 4.3 could not be applied to GFS matrix due to the nature of its construction,
thus losing the advantage that LFS and DSI matrices have.

6.2 Optimal Serial-Type Matrix of Order 4

It is natural to wonder if it is possible to achieve even lower fixed cost by con-
sidering other serial-type matrix structure. Here, we prove that it is not possible
for serial-type matrices of order 4. Before that, we state some lemmas that are
useful for our proof.

Lemma 1. If diffusion matrix of order k is MDS, then for every component ui

of the output vector u ∈ [GF(2n)]k, it is some linear combination of all the input
components vi’s.

Proof. Suppose there is an output component uy that is a linear combination
of all input components except vx. I.e. uy =

∑k
i=1 ai · vi, where ai ∈ GF (2n)

and ax = 0. An input vector with all components zero except vx nonzero has an
output vector with at most k − 1 nonzero components (since uy is zero), which
contradicts that the diffusion matrix is MDS.

4 https://eprint.iacr.org/2017/1084.

https://eprint.iacr.org/2017/1084

68 D. Toh et al.

Using Lemma 1, we can have the following necessary condition for a serial-
type matrices.

1. A necessary condition for serial-type matrices to be MDS when raised to some
power q is that every output components is some linear combination of all
the input components after q iterations.

The following is a special case of Proposition 2 for serial-type matrices.

Lemma 2. For any permutation matrices P , the branch numbers of these two
matrices M and P−1MP are the same when raised to some power q.

Proof. When raised to the power of q, we have Mq and P−1MqP . By Proposi-
tion 2, they have the same branch number.

For sparse DSI matrices of order 4 over GF (2n), there are 2 rows with 2
nonzero components, meaning there is a fixed cost of 2n XOR count. To achieve
lower fixed cost, one has to consider some serial-type matrix structure with only 1
row with 2 nonzero components, denoted as One XOR Serial (OXS) matrices. In
addition, when raised to the power of q ≤ 8, OXS matrices have to be potentially
MDS5.

In a nutshell, we want to prove the following theorem:

Theorem 4. There does not exist OXS matrix of order 4 that is q-MDS, where
q ≤ 8.

Proof. As seen in Sect. 4.2, serial-type matrices can be described as some bit
permutation followed by an XOR layer. Without loss of generality, we consider
the general circuit structure of OXS matrices as in Fig. 4a.

Among the 4! possible bit permutations, there are only two permutations
that satisfy Condition 1 when q ≤ 8, namely (1 2 3 4)6 and (1 2 4 3). Note that
they are related by permutation P = (3 4), as shown in the following:⎛

⎜
⎜
⎝

b 0 0 a
c 0 0 0
0 d 0 0
0 0 e 0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

∗ 0 ∗ 0
∗ 0 0 0
0 0 0 ∗
0 ∗ 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ ,

where ∗ is nonzero entry.
By Lemma 2, they have the same branch number. Therefore, we only need

to analyse the first permutation, see Fig. 4b for the circuit.
To show that it is not q-MDS where q ≤ 8, we show that there exists some

nonzero input and output vectors pair which has at most 4 nonzero components.
The vectors are expressed in terms of the nonzero entries of the OXS matrix.

5 Given that sparse DSI matrices of order 4 can be 4-MDS, having q > 8 would be a
bad trade-off between area and clock cycle.

6 (1 2 3 4) is a cycle permutation expression, where the component in the 1st position
goes to 2nd position, 2nd to 3rd, 3rd to 4th, and finally the component in the last
position goes to the 1st position.

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 69

(a) General structure of OXS matrix. (b) (1 2 3 4) OXS matrix.

Fig. 4. OXS matrix circuit structure, where P is bit permutation and a, b, c, d, e are
field multiplications.

For q ≤ 7, consider the input vector (0, 1, b−1d, 0)T . The resultant vectors
after each iteration are
⎛

⎜
⎜
⎝

0
1

b−1d
0

⎞

⎟
⎟
⎠ −−→

i=1

⎛

⎜
⎜
⎝

0
0
d

b−1de

⎞

⎟
⎟
⎠ −−→

i=2

⎛

⎜
⎜
⎝

ab−1de
0
0
de

⎞

⎟
⎟
⎠ −−→

i=3

⎛

⎜
⎜
⎝

0
∗
0
0

⎞

⎟
⎟
⎠ −−→

i=4

⎛

⎜
⎜
⎝

0
0
∗
0

⎞

⎟
⎟
⎠ −−→

i=5

⎛

⎜
⎜
⎝

0
0
0
∗

⎞

⎟
⎟
⎠ −−→

i=6

⎛

⎜
⎜
⎝

∗
0
0
0

⎞

⎟
⎟
⎠ −−→

i=7

⎛

⎜
⎜
⎝

∗
∗
0
0

⎞

⎟
⎟
⎠.

By Definition 1, it is not MDS when raised to the power of up to 7.
For q = 8, consider the input vector

(0, a−2b−1c−1d−2e−2 + a−3b3c−2d−3e−3, a−3b2c−2d−2e−3, 0)T .

After 8 iterations, we obtain (0, b−1c, 0, a−1b).
By Definition 1, it is not MDS when raised to the power of 8.

This concludes that our sparse DSI of order 4 has the least fixed XOR count.

7 Conclusion and Future Work

7.1 Conclusion

In this paper, we have proposed a new class of matrices, DSI matrices, and
presented several properties and results of these matrices. We also proposed
a specific form of DSI matrices, in particular sparse DSI matrices, that have a
favourable trade-off of area with throughput (we gain more reduction in hardware
area than the increment in the clock cycle).

Using the newly introduced RI property, we can show that the inverse of
the serial-type matrices can be of the same cost as the forward direction. This is
particularly useful for scenarios where the decryption process is needed as one do
not have to pay more for implementing the backward direction of the diffusion
matrix.

We presented new lightweight sparse DSI and LFS k-MDS matrices that out-
perform existing lightweight matrices. Not only do our matrices perform better

70 D. Toh et al.

in forward direction, we have an advantage in the backward direction where the
implementation cost of our inverse matrix is equally lightweight.

Lastly, we proved that for diffusion matrices of order 4, our sparse DSI matri-
ces has the least fixed XOR count, thus closing the search for lower fixed XOR
count for matrices of order 4.

7.2 Future Work

In the future, we aim to further optimise the search for higher-order sparse DSI
k-MDS matrices. It is still an open problem whether such a matrix exists but if it
does, we think it will be competitive against existing MDS matrix construction
by virtue of having a lower fixed XOR count. Another direction is to search for
DSI matrix with invertible binary matrices as entries, which might yield better
results.

We also aim to find minimal fixed XOR count for serial-type matrix structure
of higher order. We believe that sparse DSI matrices might also be the least fixed
cost serial-type matrices for order larger than 4.

References

1. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

2. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04722-4

3. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita,
T.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and
analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp.
39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3 4

4. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In:
CHES, pp. 326–341 (2011)

5. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 13

6. Sim, S.M., Khoo, K., Oggier, F., Peyrin, T.: Lightweight MDS involution matrices.
Cryptology ePrint Archive, Report 2015/258 (2015). http://eprint.iacr.org/2015/
258

7. Liu, M., Sim, S.M.: Lightweight MDS generalized circulant matrices (full version).
Cryptology ePrint Archive, Report 2016/186 (2016). http://eprint.iacr.org/2016/
186

8. Beierle, C., Kranz, T., Leander, G.: Lightweight multiplication in GF(2n) with
applications to MDS matrices. Cryptology ePrint Archive, Report 2016/119 (2016).
http://eprint.iacr.org/2016/119

9. Li, Y., Wang, M.: On the construction of lightweight circulant involutory MDS
matrices. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 121–139. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 7

https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/3-540-44983-3_4
https://doi.org/10.1007/978-3-642-22792-9_13
http://eprint.iacr.org/2015/258
http://eprint.iacr.org/2015/258
http://eprint.iacr.org/2016/186
http://eprint.iacr.org/2016/186
http://eprint.iacr.org/2016/119
https://doi.org/10.1007/978-3-662-52993-5_7

Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count 71

10. Vaudenay, S.: On the need for multipermutations: cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 286–297. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8 22

11. Mattson Jr., H.F.: The theory of error-correcting codes (F. J. MacWilliams and
N. J. A. Sloane). SIAM Rev. 22(4), 513–519 (1980)

12. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-
optimal SPN structures and components with a fair comparison. Cryptology ePrint
Archive, Report 2014/530 (2014). http://eprint.iacr.org/2014/530

13. Jean, J., Peyrin, T., Sim, S.M.: Optimizing implementations of lightweight building
blocks. Cryptology ePrint Archive, Report 2017/101 (2017). http://eprint.iacr.org/
2017/101

14. Sarkar, S., Syed, H.: Lightweight diffusion layer: importance of toeplitz matrices.
IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016)

15. Gupta, K.C., Ray, I.G.: On constructions of MDS matrices from companion matri-
ces for lightweight cryptography. Cryptology ePrint Archive, Report 2013/056
(2013). http://eprint.iacr.org/2013/056

16. Wu, S., Wang, M., Wu, W.: Recursive diffusion layers for (lightweight) block
ciphers and hash functions. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 355–371. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35999-6 23

17. Sarkar, S., Syed, H., Sadhukhan, R., Mukhopadhyay, D.: Lightweight design choices
for LED-like block ciphers. In: Patra, A., Smart, N.P. (eds.) INDOCRYPT 2017.
LNCS, vol. 10698, pp. 267–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71667-1 14

https://doi.org/10.1007/3-540-60590-8_22
http://eprint.iacr.org/2014/530
http://eprint.iacr.org/2017/101
http://eprint.iacr.org/2017/101
http://eprint.iacr.org/2013/056
https://doi.org/10.1007/978-3-642-35999-6_23
https://doi.org/10.1007/978-3-642-35999-6_23
https://doi.org/10.1007/978-3-319-71667-1_14
https://doi.org/10.1007/978-3-319-71667-1_14

Two Simple Composition Theorems
with H-coefficients

Jacques Patarin(B)

Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, 78035 Versailles, France

jpatarin@club-internet.fr

Abstract. We will present two new and simple theorems that show that
when we compose permutation generators with independent keys, then
the “quality” of CCA security increases. These theorems (Theorems 2
and 5 of this paper) are written in terms of H-coefficients (which are
nothing else, up to some normalization factors, than transition proba-
bilities). Then we will use these theorems on the classical analysis of
Random Feistel Schemes (i.e. Luby-Rackoff constructions) and we will
compare the results with the coupling technique. Finally, we will show
an interesting difference between 5 and 6 Random Feistel Schemes. With
5 rounds on 2n bits → 2n bits, when the number of q queries satis-
fies

√
2n � q � 2n, we have some “holes” in the H-coefficient values,

i.e. some H values are much smaller than the average value of H. This
property for 5 rounds does not exist any more on 6 rounds.

1 Introduction

Security amplification results for block ciphers typically state that cascading
(i.e. composing with independent keys) two, or more, block ciphers gives a new
block cipher that offers better security against some classes of adversaries. One
of the most important composition results is the so-called “two weak make one
strong” theorem. This theorem was first established up to logarithmic terms by
Maurer and Pietrzak [11]. It was later tightened by Maurer et al. [12]. In 2010,
Cogliati et al. have obtained simpler proofs of this result by using the so-called
“H-coefficient technique” (cf. [2]). In this paper, we will prove two new, and
relatively simple, composition theorems: Theorems 2 and 5 of this paper.

These theorems are written directly in term of “H-coefficients”, i.e. in term of
the number of generic keys that send some plaintexts on some ciphertexts. (This
is the same, up to some normalization factors, than transition probabilities).
We will then show how the new theorems can be useful in term of classical
cryptographic security (such as CCA: adaptive chosen plaintext and ciphertext
attack).

We work here in term of information theory for security, i.e. the adversary
can ask only for a limited number q of queries, but the number of his (or her)
computations is not limited. Interestingly, Tessaro has obtained [20] very similar

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 72–86, 2018.
https://doi.org/10.1007/978-3-319-89339-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_5&domain=pdf

Two Simple Composition Theorems with H-coefficients 73

composition results in term of improved security. However, Tessaro works with
complexity theory (instead of information theory), so the results and the proofs
of [20] are in fact very different from the results and the proofs of this paper.
Then we will apply our new theorems on random Feistel schemes, and show an
interesting difference between 5 and 6 rounds.

2 A Simple Mathematical Property

Theorem 1. Let x1, . . . , xn and y1, . . . , yn be real numbers and let α and β be
real numbers, α ≥ 0, β ≥ 0 such that:

• ∑n
i=0 xi = 0.

• ∑n
i=0 yi = 0.

• ∀i, 1 ≤ i ≤ n, xi ≥ −α.
• ∀i, 1 ≤ i ≤ n, yi ≥ −β.

Then:
∑n

i=1 xiyi ≥ −nαβ.

Proof.
n∑

i=1

(xi + α)(yi + β) ≥ 0

n∑

i=1

xiyi + β
n∑

i=1

xi + α
n∑

i=1

yi + nαβ ≥ 0

Now since
∑n

i=1 xi = 0 and
∑n

i=1 yi = 0, we obtain
∑n

i=1 xiyi ≥ −nαβ. ��

3 A Composition Theorem in CCA with H-coefficients

Definition 1. Let G be a permutation generator that generates permutations
from {0, 1}N to {0, 1}N from a set of parameters K. The values of K will be
called “keys”. Let q be an integer (called the “number of queries”). Let a = (ai),
1 ≤ i ≤ q, be q pairwise distinct elements of {0, 1}N , and similarly let b = (bi),
1 ≤ i ≤ q, be q pairwise distinct elements of {0, 1}N . Then, by definition, H(a, b)
denotes the number of keys k ∈ K such that: ∀i, 1 ≤ i ≤ q, Gk(ai) = bi.

Remark 1. The set K that we will use will generally be much larger than usual
sets of cryptographic keys. Then G will be considered as a “generic generator”.

Remark 2. H(a, b) is simply denoted by H when there is no risk of confusion
about the values of a and b, or when we want to speak of all these coefficients
H(a, b).

Definition 2. With the same notations as above, if there exist pairwise distinct
values (ai) and pairwise distinct values (bi), 1 ≤ i ≤ q, such that H(a, b) (for
these a and b) is much smaller than the average value of H, then we say that
there is a “Hole” in the H-coefficient values with q queries.

74 J. Patarin

Theorem 2. Let α1 and α2 be two real numbers. Let G1 and G2 be two permu-
tation generators (with the same key space K) such that:
For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for all
sequences of pairwise distinct elements bi, 1 ≤ i ≤ q, we have: H1 ≥

|K|
2N (2N−1)...(2N−q+1)

(1 − α1) and similarly H2 ≥ |K|
2N (2N−1)...(2N−q+1)

(1 − α2)
where H1 denotes the H coefficient for G1 and H2 the H coefficient for G2.
Then:
If we compose 2 such generators G1 and G2 with random independent keys, for
the composition generator G′ = G2 ◦ G1, we have: for all sequences of pairwise
distinct elements ai, 1 ≤ i ≤ q, and for all sequences of pairwise distinct ele-
ments bi, 1 ≤ i ≤ q, H ′ ≥ |K|2

2N (2N−1)...(2N−q+1)
(1 − α1α2), where H ′ denotes the

H coefficient for G′.

Proof. Let H̃1 (respectively H̃2) denote the mean value of H1 (respectively H2).
We have:

H̃1 = H̃2 =
|K|

2N (2N − 1) . . . (2N − q + 1)
.

Let denote by H̃ ′ the mean value of H for G′ = G2 ◦ G1. We have

H̃ ′ =
|K|2

2N (2N − 1) . . . (2N − q + 1)
.

Let a = (a1, . . . , aq) be q pairwise distinct plaintexts, and b = (b1, . . . , bq) be q
ciphertexts of G′. Let J be the set of all (t1, . . . , tq) pairwise distinct values of
{0, 1}N . We have |J | = 2N (2N − 1) . . . (2N − q + 1). For G′ = G2 ◦ G1, we have:

H(a, b) =
∑

t∈J

H1(a, t)H2(t, b).

We also have
∑

t∈J H1(a, t) = |K| and
∑

t∈J H2(t, b) = |K| since each key sends
a value a to a specific value t. We also have |K| = H̃1 · |J | = H̃2 · |J |. By
hypothesis, we also have:

∀t ∈ J, H1(a, t) ≥ H̃1(1 − α1) and H2(a, t) ≥ H̃2(1 − α2).

∀t ∈ J , let xt = H1(a,t)

H̃1
− 1 and yt = H2(t,b)

H̃2
− 1. ∀t ∈ J , we have xt ≥ −α1, and

yt ≥ −α2,
∑

t∈J xt = 0 and
∑

t∈J yt = 0. Therefore, from Theorem 1, we have∑
t∈J xtyt ≥ −|J |α1α2. For G′ = G2 ◦ G1, we have:

H(a, b) =
∑

t∈J H1(a, t) · H2(t, b)
=

∑
t∈J

(
H̃1xt + H̃1

) (
H̃2yt + H̃2

)

=
∑

t∈J H̃1H̃2xtyt + H̃1H̃2yt + H̃1H̃2xt + H̃1H̃2

≥ −H̃1H̃2|J |α1α2 + |J |H̃1H̃2.

Moreover H̃ ′ = |K|2
|J| = |J |H̃1H̃2. We have proved: H(a, b) ≥ H̃ ′(1 − α1α2) as

claimed.
��

Two Simple Composition Theorems with H-coefficients 75

Theorem 3. (H-coefficient technique, sufficient condition for security against
CCA)

Let α and β be real numbers, α > 0 and β > 0
If: There exists a subset E of ({0, 1}qN)2 such that
(1a) For all (a, b) ∈ E, we have:

H(a, b) ≥ |K|
2Nq

(1 − α)
◦
1

with
◦
1
déf
=

1
(1 − 1

2N
)(1 − 2

2N
) . . . (1 − q−1

2N
)
.

(1b) For all CCA acting on a random permutation f of PN , the probability
that (a, b) ∈ E is ≥ 1 − β where (a, b) denotes here the successive bi = f(ai) or
ai = f−1(bi), 1 ≤ i ≤ q, that will appear.

Then
(2) For every CCA with q queries (i.e. q chosen plaintexts or ciphertexts) we

have: AdvPRP ≤ α + β where AdvPRP denotes the probability to distinguish
G(f1, . . . , fr) when (f1, . . . , fr) ∈R K from a permutation f ∈R PN .

Proof. This theorem is proved in [16,17]. ��
Corollary 1. From Theorem3 (H-coefficients in CCA) with β = 0, we see that
we have: AdvPRP ≤ α1α2 where AdvPRP denotes the advantage in CCA to
distinguish G2◦G1 (when the keys are independently and randomly chosen) from
a permutation f ∈R Pn.

By induction, we see:

Theorem 4. Let q and k be two integers. Let α1, . . . , αk be k real values. Let
G1, . . . , Gk be k permutation generators such that: for all sequences of pairwise
distinct elements ai, and for all sequences of pairwise distinct elements bi, 1 ≤
i ≤ q, we have:

H ≥ |K|
2N (2N − 1) . . . (2N − q + 1)

(1 − αj).

If we compose k such generators G1, . . . , Gk with random and independent keys,
for the composition generator G′ = Gk ◦ . . . ◦ G1, we have: for all sequences of
pairwise distinct elements ai, 1 ≤ i ≤ q and for all sequences of pairwise distinct
elements bi, 1 ≤ i ≤ q, H ≥ |K|

2N (2N−1)...(2N−q+1)
(1 − α1 . . . αk). Therefore, from

Theorem3 with β = 0, we see that we have: AdvPRP ≤ α1 . . . αk.

4 A Composition Theorem to Eliminate a “hole”

J denotes, as above, the set of all q pairwise distinct values of {0, 1}N .

76 J. Patarin

Theorem 5. Let G1 and G2 be two permutation generators with the same key
space K. Let H1 (respectively H2) denotes the H-coefficients for G1 (respectively
G2).

If:

(1) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for all
sequences of pairwise distinct bi ∈ E1, 1 ≤ i ≤ q, we have

H1 ≥ |K|
2N (2N − 1) . . . (2N − q + 1)

(1 − α1)

with |E1| ≥ |J |(1 − ε1).
(2) For all sequences of pairwise distinct elements ai, 1 ≤ i ≤ q, and for all

sequences of pairwise distinct bi ∈ E2, 1 ≤ i ≤ q, we have

H2 ≥ |K|
2N (2N − 1) . . . (2N − q + 1)

(1 − α2)

with |E2| ≥ |J |(1 − ε2).

Then: for the composition generator G−1
2 ◦ G1, for all sequences of pairwise

distinct elements ai, and for all sequences of pairwise distinct bi, we have

H ′ ≥ |K|2
2N (2N − 1) . . . (2N − q + 1)

(1 − ε1 − ε2)(1 − α1)(1 − α2)

where H ′ denotes the H-coefficients for G−1
2 ◦ G1 (we have no hole). Moreover,

if E1 = E2, then

H ′ ≥ |K|2
2N (2N − 1) . . . (2N − q + 1)

(1 − ε1)(1 − α1)(1 − α2)

Proof. For G′ = G−1
2 ◦ G1, we have: H ′(a, b) =

∑
t∈J H1(a, t)H2(t, b), with

∑
t∈J H1(a, t) = |K| and

∑
t∈J H2(t, b) = |K|. Let H̃1 = |K|

|J| , H̃2 = |K|
|J| , and

H̃ ′ = |K|2
|J| = H̃1H̃2|J |. We have: |J | = 2N (2N −1) . . . (2N −q+1). Let P1 = J\E1

and P2 = J \ E2. Then

H ′(a, b) ≥
∑

t∈J\P1\P2

H1(a, t)H2(t, b)

≥
∑

t∈J\P1\P2

H̃1(1 − α1)H̃2(1 − α2)

≥ |J \ P1 \ P2|H̃1(1 − α1)H̃2(1 − α2)

≥ |J |(1 − ε1 − ε2)H̃1(1 − α1)H̃2(1 − α2)

≥ |K|2
|J | (1 − ε1 − ε2)(1 − α1)(1 − α2)

as claimed. ��

Two Simple Composition Theorems with H-coefficients 77

5 Comments About the Composition Theorems

These very simple theorems of composition (Theorems 2 and 5) are not very well
known because the classical theorems of composition (with more difficult proofs)
usually do not consider hypothesis in term of the values on the H coefficients.
(Sometimes, as in [2], H-coefficients are used for the proofs of the Theorems, but
not in the terms of the Theorems). For example, the famous “two weak make one
strong” theorem of Maurer and Pietrzak [9,12] says that if F and G are NCPA
secure (Non Adaptive Chosen Plaintext Attacks), then the composition G−1 ◦F
is CCA secure. This result only holds in the information-theoretic setting, not in
the computational setting (cf. [15,19]). Another example is this theorem of [2]:

Theorem 6. (i.e. [2] Theorem 5 p.17)
Let E,F and G be 3 block ciphers with the same message space M . Denote

εE = AdvNCPA
E (q), εF = AdvNCPA

F (q), εF−1 = AdvNCPA
F−1 (q) and εG−1 =

AdvNCPA
G−1 (q), where q is the number of queries. We have:

AdvCCA
G◦F◦E(q) ≤ εEεF + εEεG−1 + εF−1εG−1 + min {εEεF , εEεG−1 , εF−1εG−1}

Why do we have 3 rounds in this theorem and only 2 rounds in Theorem2 for the
product of the advantages? (Moreover Theorem 6 was also proved by using the
H-coefficient technique [2]). This is because in Theorem 2, we used the additional
property that there are no “holes” in the hypothesis that H is greater than or
equal to the mean value H(1 − ε), i.e. that this property was true for any q
pairwise distinct inputs and q pairwise distinct outputs.

It is also interesting to compare our new Theorem 4 (AdvPRP ≤ α1 . . . αk)
with these theorems of [2]:

Theorem 7. (i.e. [2] Theorem 2 p. 10)
Let E1, . . . , En be n block ciphers with the same message space M. For any
integer q, one has

AdvCCA
En◦···◦E1(q) ≤ 2n−1 max

1≤i≤n

⎛
⎝ ∏

1≤j≤i−1

AdvNCPA
Ej

(q) ×
∏

i+1≤j≤n

AdvNCPA

E−1
j

(q)

⎞
⎠ .

Corollary 2. (i.e. [2] Corollary 1 p.11)
Let E1, . . . , En be n block ciphers with the same message space M. Fix q ≥ 1.
For i = 1, . . . , n, let εi = max{AdvNCPA

Ei
(q),AdvNCPA

E−1
i

(q)}. Then one has

AdvCCA
En◦···◦E1

(q) ≤ 2n−1 max
1≤i≤n

∏

1≤j≤n
j �=i

εj .

We see that with our new Theorem 4, we do not have the coefficient 2n−1, and
also we do not loose one of the n products. Therefore, if all the εi = ε for example,
we will get AdvCCA ≤ εn instead of AdvCCA ≤ 2n−1εn−1. However, in order
to use our new Theorem 4, we need two conditions that were not in Theorem7:
the fact that we have “no hole” and an expression of ε directly in terms of the
H-coefficients instead of AdvCCA. Therefore our Theorems and the theorems
of [2] are both useful.

78 J. Patarin

6 Application to Feistel Ciphers

We denote by Ψk a generic balanced Feistel Cipher with k rounds, i.e. a bal-
anced Feistel cipher from {0, 1}2n to {0, 1}2n with k rounds, where the round
functions are k random functions from {0, 1}n to {0, 1}n. Ψk is also called a
Luby-Rackoff’s construction. We will show here how our new theorems can be
useful for cryptographic security results on Ψk. (However, our new theorems are
also interesting independently of these problems). The generic security prob-
lem has been intensively studied by many authors (for example [3,10,18]) since
Luby and Rackoff major paper [8]. In [10], it was proved that when k → +∞,
we have CCA security on Ψk when the number of queries q satisfies q � 2n, and
some explicit bounds for the Advantage in CCA are given. These bounds were
later improved and at present, the best security bounds are obtained via the
“H-coefficient technique”, or via the coupling technique. These two techniques
are very different and, interestingly, they give slightly different results.

Results with the H-coefficient Technique
A general view of the H-coefficient technique is given in [16,17] with the connec-
tions between these H-coefficients and various cryptographic securities (KPA,
CPA, CCA,. . .). In 2016, in [4], another general H-coefficient theorem for CCA
was proved. Essentially, the idea (of the results of [4]) is that, instead of intro-
ducing some sets E with good or bad properties (as in [17]), a computation
of the mean value (computed with the probability on random permutations) is
introduced. This is called the “Expectation Method” in [4].

In [18], the H-coefficient technique was used to study the security of Ψk. The
main result was that we have CCA security for q � 2n not only when k → ∞,
but already after a finite number of rounds. More precisely, this property occurs
for Ψk when k ≥ 5 and an explicit bound for the Advantage in CCA is given
in [18] for Ψ6. In [1], the H-coefficient technique was used to obtain tight security
bounds on Even-Mansour Cipers. From [18] (Theorem 6 p. 8), we have:

Theorem 8. For all pairwise distinct [Li, Ri], 1 ≤ i ≤ q and for all pairwise
distinct [Si, Ti], 1 ≤ i ≤ q the number H of (f1, f2, f3, f4, f5, f6) ∈ F 6

n such that
∀i, 1 ≤ i ≤ q,

Ψ6(f1, f2, f3, f4, f5, f6)[Li, Ri] = [Si, Ti]

satisfies H ≥ |Fn|6
22nq (1 − α) where α can be chosen α = 8q

2n if q ≤ 2n

67n .

From this and Theorem 3, we obtain:

Theorem 9. When q ≤ 2n

67n ,

AdvCCA(Ψ6) ≤ 8q

2n
+

q2

2 · 22n
.

Two Simple Composition Theorems with H-coefficients 79

Proof.

2N (2N − 1) . . . (2N − q+1) ≥ 2qN

(
1 − 1 + 2 + . . . + (q − 1)

2N

)
≥ 2qN

(
1 − q(q − 1)

2 · 2N

)
.

Therefore, for Ψ6, when q ≤ 2n

67n ,

H ≥ |Fn|6
22n(22n − 1) . . . (22n − q + 1)

(

1 − q2

2 · 22n

) (

1 − 8q

2n

)

where Fn denotes the set of all functions from {0, 1}n to {0, 1}n.

H ≥ |Fn|6
22n(22n − 1) . . . (22n − q + 1)

(

1 − q2

2 · 22n
− 8q

2n

)

.

Now from this and Theorem3 (with β = 0), we obtain:

AdvCCA(Ψ6) ≤ 8q

2n
+

q2

2 · 22n

as claimed.

Results with the Coupling Technique
The coupling technique is a major tool from the theory of Markov chains that
allows to conveniently upper bound the so-called mixing time of a chain, i.e. the
number of steps it takes for the chain, starting from any distribution, to be at
statistical distance at most ε from its stationary distribution. The first use of
coupling in cryptography is due to Mironov [13], who used it to analyse the RC4
stream cipher. It was first applied to (maximally unbalanced) Feistel ciphers by
Morris et al. [14]. This was generalized to other types of Feistel ciphers (including
the balanced Feistel Ψk) by Hoang and Rogaway [3]. Subsequently, the coupling
technique was used to analyze the iterated Even-Mansour Cipher [5], tweakable
block ciphers constructions [6] and Feistel schemes where the round functions
are of the form: x → F (x ⊕ k) where F is a random oracle and k the secret
key [7].
From [3], we have

Theorem 10. With k′ =
 (k−1)
2 �, we have:

AdvNCPA(Ψk) ≤ 2k
′

k′ + 1
· qk

′+1

2k′n

and

AdvCCA(Ψ2k−1) ≤ 2k
′

k′ + 1
· qk

′+1

2k′n .

From Theorem 10, we see that with the coupling technique, we obtain:

80 J. Patarin

NCPA: Ψ3 has security when q � 2n/2

Ψ5 has security when q � 22n/3

Ψ7 has security when q � 23n/4

etc.
CCA: Ψ5 has security when q � 2n/2

Ψ7 has security when q � 22n/3

Ψ9 has security when q � 23n/4

etc.

Therefore, in terms of queries, Theorem2 (from H-coefficient technique) gives a
better bound than Theorem3 (from the coupling technique), since it gives CCA
security for Ψ6 when q � 2n (and therefore for Ψk, for all k ≥ 6). However:

1. The proofs of Theorems 8 and 9 are much more complex than the proof of
Theorem 10.

2. For a fixed value q, the Adv given in Theorem 10 is bounded by term that
can be as small as wanted when k increases, unlike Theorem 2 where Adv is
fixed when q and n are fixed.

Results with Our New Theorems
In a way from our new Theorem 4, we can get “the best of the two worlds”, since
from it and Theorem 8, we obtain:

Theorem 11. For all integer k ≥ 1, when q ≤ 2n

67n , we have:

AdvCCA(Ψ6k) ≤
(

8q

2n
+

q2

2.22n

)k

.

Proof. In the proof of Theorem 9, we have seen that for Ψ6, we have, when
q ≤ 2n

67n ,

H ≥ |Fn|6
22n(22n − 1) . . . (22n − q + 1)

(

1 − 8q

2n
− q2

2.22n

)

.

Therefore, from our new composition Theorem 4, we obtain that for Ψ6k, when
q ≤ 2n

67n ,

H ≥ |Fn|6k
22n(22n − 1) . . . (22n − q + 1)

(

1 −
(

8q

2n
+

q2

2.22n

)k
)

.

Theorem 11 is now obtained from this and Theorem 3 with β = 0.

This is the best bound known at present on Ψk: when q � 2n, it gives CCA
security, and when q and n are fixed such that 8q

2n + q2

2.22n < 1, the bound can be
as small as wanted by increasing k.

Two Simple Composition Theorems with H-coefficients 81

7 Other CCA Bounds on Ψk

Worse Bounds, But Simpler Proofs
When we look at the (difficult) proof of Theorem8 on Ψ6, we see that security
when q � 23n/2 can easily be done. The security when q � 23n/4 is also relatively
easy, and q � 24n/5 is a bit more complex.

Therefore, it is possible to stop the proof at, say, q � 24n/5 and then to use
the coupling technique from Ψ6 (instead of Ψ3) or to use our new Theorem 4 in
order to obtain a security bound. This bound will not be as good as the bound
of Theorem 11, but the proof will be much simpler: we see that we have many
possible trade-offs between the quality of the bounds and the simplicity of the
proofs.

Better Bounds
Our Theorem11 is the best explicit bound known at present on Ψk. However,
it is expected that this bound can still be improved (not in term of queries: the
bound q � 2n already obtained on Ψk is optimal in information complexity,
but this bound can be improved in term of smaller value for AdvCCA). One
way to obtain better bounds would be to analyse Ψ5k instead of Ψ6k. Ψ5 is
CCA secure when q � 2n (cf. [18]), but in Ψ5 (unlike Ψ6), we have “holes” when√

2n � q � 2n (cf. AppendixB of this paper). Therefore, we cannot use our new
composition Theorem 4 on Ψ5k (unlike what we did on Ψ6k). However, Theorem 7
and Corollary 2 of [2] can be used on Ψ5k. Due to the coefficient 2n−1 and to
the fact that we loose one term εi of the product in Theorem7 and Corollary 2
(see Sect. 5) we expect our results on Ψ6k to be better than the results on Ψ5k′

(obtained from Theorem 7) for small values of k and k′. However, for large values
of k and k′, the results on Ψ5k′

should be better. We will not do it in this paper
more precisely since we do not have an explicit bound for CCA security on Ψ5

(but just the fuzzy bound q � 2n). Moreover, in this paper, we study CCA
security of Ψ6 mainly to illustrate our new composition results.

A An Exact Formula for the H-coefficient for
Ψk, 1 ≤ k ≤ 5

The aim of this AppendixA is to prove Theorem 16, i.e. to obtain an exact
formula H for Ψ5. (A similar formula was already mentioned in [18]). We will
need this Theorem 16 in AppendixB.

Definition of Ψk

We recall the definition of the balanced Feistel Schemes, i.e. the classical Feistel
schemes. Let P2n be the set of all permutations from {0, 1}2n to {0, 1}2n. Let
Fn be the set of all functions from {0, 1}n to {0, 1}n. Let L, R, S and T be four
n-bit strings in {0, 1}n. Let Ψ(f1) denotes the permutation of P2n such that:

Ψ(f1)[L,R] = [S, T] def⇔
{

S = R
T = L ⊕ f1(R)

82 J. Patarin

More generally if f1, f2, . . . , fk are k functions of Fn, let Ψk(f1, . . . , fk) denotes
the permutation of P2n such that:

Ψk(f1, . . . , fk) = Ψ(fk) ◦ · · · ◦ Ψ(f2) ◦ Ψ(f1).

The permutation Ψk(f1, . . . , fk) is called a ‘balanced Feistel scheme with k
rounds’ or shortly Ψk. When f1, . . . , fk are randomly and independently cho-
sen in Fn, then Ψk(f1, . . . , fk) is called a ‘random Feistel scheme with k rounds’
or a ‘Luby-Rackoff construction with k rounds’.

Definition 3. Definition of H for Ψk

When [Li, Ri], [Si, Ti], 1 ≤ i ≤ q, is a given sequence of 2q values of {0, 1}2n, we
will denote by Hk(L,R, S, T) or in short by Hk, or simply by H, the number of
k-tuples of functions (f1, . . . fk) of F k

n such that:

∀i, 1 ≤ i ≤ q, Ψk(f1, . . . , fk)[Li, Ri] = [Si, Ti].

We will analyse the properties of these H values in order to obtain our security
results.

Let [Li, Ri], [Si, Ti], 1 ≤ i ≤ q, be a given sequence of 2q values of {0, 1}2n.
Let r be the number of independent equalities Ri = Rj , i �= j, and let s be the
number of independent equalities Si = Sj , i �= j.

Theorem 12. The exact formula for H1 (i.e. for Ψ1) is:

H1 = 0 if (C) is not satisfied,

H1 =
|Fn|
2nq

· 2nr if (C) is satisfied,

where (C) is this set of conditions:

1. ∀i, 1 ≤ i ≤ q, Ri = Si

2. ∀i, j 1 ≤ i ≤ q, 1 ≤ j ≤ q, Ri = Rj ⇒ Ti ⊕ Li = Tj ⊕ Lj.

Proof. For one round, we have Ψ1([Li, Ri]) = [Si, Yi] ⇔ Si = Ri and Ti =
Li ⊕ f1(Ri). Therefore, if (C) is not satisfied, H1 = 0. Now if (C) is satisfied,
then f1 is fixed on exactly q − r points by f1(Ri) = Ti ⊕ Li, and we obtain
Theorem 12 as claimed.

��
Theorem 13. The exact formula for H2 (i.e. for Ψ2) is:

H2 = 0 if (C) is not satisfied,

H2 =
|Fn|2
22nq

· 2n(r+s) if (C) is satisfied,

where (C) is this set of conditions:

Two Simple Composition Theorems with H-coefficients 83

1. ∀i, j 1 ≤ i ≤ q, 1 ≤ j ≤ q, Ri = Rj ⇒ Li ⊕ Lj = Si ⊕ Sj

2. ∀i, j 1 ≤ i ≤ q, 1 ≤ j ≤ q, Si = Sj ⇒ Ri ⊕ Rj = Ti ⊕ Tj.

Proof. For two rounds we have ψ2([Li, Ri]) = [Si, Ti] ⇔ Si = Li ⊕ f1(Ri) and
Ti = Ri ⊕f2(Si). Therefore if (C) is not satisfied, H2 = 0. Now if (C) is satisfied
then (f1, f2) is fixed on exactly 2q − r − s points, and we obtain Theorem13 as
claimed. ��
Definition 4. (Framework for Ψ3)
For 3 rounds, Ψ3, we define a “framework” as a set of equations Xi = Xj.
We will say that two frameworks are equal if they imply exactly the same set of
equations in X.

Theorem 14. The exact formula for H3 (i.e. for Ψ3) is:

H3 =
|Fn|3 · 2n(r+s)

23nq
∑

all frameworks F
that satisfy (F1)

2nx[Number of Xi satisfying (C1)]

where:

– x is the number of independent equalities Xi = Xj for a framework F .
– (F1) : Xi = Xj is in F ⇒ Si ⊕ Sj = Ri ⊕ Rj

(C1) :

⎧
⎨

⎩

Ri = Rj ⇒ Xi ⊕ Xj = Li ⊕ Lj

Si = Sj ⇒ Xi ⊕ Xj = Ti ⊕ Tj

The only equations Xi = Xj , i < j, are exactly those implied by F .

Proof. We write Ψ3 = Ψ ◦ Ψ2 with Ψ2([Li, Ri]) = [Xi, Si] and Ψ([Xi, Si]) =
[Si, Ti]. For Ψ2, we obtain from Theorem 13, 2n(r+x) |Fn|2

22nq solutions when (C1)
is satisfied. For Ψ , we obtain from Theorem 12, 2ns |Fn|

2nq solutions when (C1) is
satisfied. Thus, we obtain Theorem 14 as claimed. ��
Definition 5. (Framework for Ψ4)
For 4 rounds, Ψ4, let us define a “framework” as a set of equations Xi = Xj

or Yi = Yj. We will say that two frameworks are equal if they imply exactly
the same set of equalities in X and Y . For a framework F , we denote by x the
number of independent equalities Xi = Xj, and by y the number of independent
equalities Yi = Yj.

Theorem 15. The exact formula for H4 (i.e. for Ψ4) is:

H4 =
|Fn|4 · 2n(r+s)

24nq
∑

all frameworks F
2n(x+y)[Number of Xi satisfying (C1)]

· [Number of Yi satisfying (C2)]

where

(C1) :

⎧
⎨

⎩

Ri = Rj ⇒ Xi ⊕ Xj = Li ⊕ Lj

Yi = Yj is in F ⇒ Xi ⊕ Xj = Si ⊕ Sj

The only equations Xi = Xj , i < j, are exactly those implied by F .

84 J. Patarin

(C2) :

⎧
⎨

⎩

Si = Sj ⇒ Yi ⊕ Yj = Ti ⊕ Tj

Xi = Xj is in F ⇒ Yi ⊕ Yj = Ri ⊕ Rj

The only equations Yi = Yj , i < j, are exactly those implied by F .

Proof. We write ψ4 = Ψ◦Ψ3 with Ψ3([Li, Ri]) = [Yi, Si] and Ψ([Yi, Si]) = [Si, Ti],
and we sum over all possible Y . Then from Theorems 12 and 14, we obtain
Theorem 15. ��
Definition 6. (Framework for Ψ5)
For 5 rounds, Ψ5, a “framework” is a set of equations Xi = Xj or Yi = Yj,
or Zi = Zj. We will say that two frameworks are equal if they imply exactly
the same set of equalities in X, Y and Z. For a framework F , we denote by x
the number of independent equalities Xi = Xj, by y the number of independent
equalities Yi = Yj, and by z the number of independent equalities Zi = Zj.

Theorem 16. The exact formula for H5 (i.e. for Ψ5) is:

H5 =
|Fn|5 · 2n(r+s)

25nq
∑

all frameworks F
2n(x+y+z)[Number of Xi, Zi satisfying (C1)]

· [Number of Yi satisfying (C2)]

where

(C1) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ri = Rj ⇒ Xi ⊕ Xj = Li ⊕ Lj

Yi = Yj is in F ⇒ Xi ⊕ Xj = Zi ⊕ Zj

Si = Sj ⇒ Zi ⊕ Zj = Ti ⊕ Tj

The only equations Xi = Xj , i < j, are exactly those implied by F .
The only equations Zi = Zj , i < j, are exactly those implied by F .

(C2) :

⎧
⎨

⎩

Xi = Xj is in F ⇒ Yi ⊕ Yj = Ri ⊕ Rj

Zi = Zj is in F ⇒ Yi ⊕ Yj = Si ⊕ Sj

The only equations Yi = Yj , i < j, are exactly those implied by F .

Proof. We write Ψ5 = Ψ ◦ Ψ4 with Ψ4([Li, Ri]) = [Zi, Si] and Ψ([Zi, Si]) =
[Si, Ti], and we sum over all possible Z. Then from Theorems 12 and 15, we
obtain Theorem 16. ��

B “Holes” on Ψ5 when
√

2n � q � 2n

We will present here a “structural” difference between Ψ5 and Ψ6: in Ψ5, we
have “holes” when

√
2n � q � 2n (but not in Ψ6: cf. Theorem 8).

Two Simple Composition Theorems with H-coefficients 85

5 Rounds
For Ψ5, with q � √

2n, we can choose all the Ri with the same value, all the Si

with the same value and the property: ∀i, j, 1 ≤ i ≤ q, 1 ≤ j ≤ q, Ti ⊕ Tj �=
Li⊕Lj . For example, the first n

2 bits of the Li values are always 0 and the last n
2

bits of the Ti values are always 0. Since all the Ri values are equal, then all the
Li values are pairwise distinct (because we want pairwise distinct [Li, Ri]) and
all the Xi values are pairwise distinct (because Ri = Rj ⇒ Xi ⊕ Xj = Li ⊕ Lj .
Similarly, since all the Si values are equal, then all the Ti values are distinct
(because we want pairwise distinct [Si, Ti]) and all the Zi values are pairwise
distinct (because Si = Sj ⇒ Zi ⊕ Zj = Ti ⊕ Tj). Moreover all the Yi values are
also pairwise distinct, because Yi = Yj ⇒ Xi⊕Xj = Zi⊕Zj ⇒ Li⊕Lj = Ti⊕Tj ,
but we always have: Li ⊕ Lj �= Ti ⊕ Tj .
We know (cf. AppendixA, Theorem 16) that the exact formula for H is:

H5 =
|Fn|5 · 2n(r+s)

25nq

∑
all frameworks F

2n(x+y+z)[Number of Xi, Zi satisfying (C1)]

· [Number of Yi satisfying (C2)].

Here we have only one framework (all the Xi are pairwise distinct, Yi pairwise
distinct, Zi pairwise distinct) with r = q − 1, s = q − 1, x = y = z = 0, [Number
of Xi satisfying (C1)] = 2n, [Number of Zi satisfying (C1)] = 2n, and [Number
of Yi satisfying (C2)] = 2n(2n − 1) . . . (2n − q + 1). we obtain:

H5 =
|Fn|5
22nq

·
(

1 − 1
2n

)(

1 − 2
2n

)

. . .

(

1 − q − 1
2n

)

� |Fn|5
22nq

when q � √
2n. However H̃5 = |Fn|5

(2n)(2n−1)...(2n−q+1) � |Fn|5
22nq . Therefore here we

have H5 � H̃5, i.e. a “hole” of length
√

2n.

This result is not in contradiction with the act that Ψ5 is CCA secure when
q � 2n because it is not possible in a CCA attack with q queries to obtain
R1 = R2 = . . . = Rm and S1 = S2 = . . . = Sm with m � √

2n.

References

1. Chen, S., Steinberger, J.: Tight security bounds for key-alternating ciphers. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 327–
350. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5 19

2. Cogliati, B., Patarin, J., Seurin, Y.: Security amplification for the composition of
block ciphers: simpler proofs and new results. In: Joux, A., Youssef, A. (eds.) SAC
2014. LNCS, vol. 8781, pp. 129–146. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13051-4 8

3. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 33

4. Hoang, V.T., Tessaro, S.: Key-alternating ciphers and key-length extension: exact
bounds and multi-user security. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 3–32. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53018-4 1

https://doi.org/10.1007/978-3-642-55220-5_19
https://doi.org/10.1007/978-3-319-13051-4_8
https://doi.org/10.1007/978-3-319-13051-4_8
https://doi.org/10.1007/978-3-642-14623-7_33
https://doi.org/10.1007/978-3-662-53018-4_1
https://doi.org/10.1007/978-3-662-53018-4_1

86 J. Patarin

5. Lampe, R., Patarin, J., Seurin, Y.: An asymptotically tight security analysis of
the iterated Even-Mansour cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 278–295. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 18

6. Lampe, R., Seurin, Y.: Tweakable blockciphers with asymptotically optimal secu-
rity. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 133–151. Springer, Hei-
delberg (2014). https://doi.org/10.1007/978-3-662-43933-3 8

7. Lampe, R., Seurin, Y.: Security analysis of key-alternating Feistel ciphers. In: Cid,
C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 243–264. Springer, Hei-
delberg (2015). https://doi.org/10.1007/978-3-662-46706-0 13

8. Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-
random functions. SIAM J. Comput. 17, 373–386 (1988)

9. Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46035-7 8

10. Maurer, U., Pietrzak, K.: The security of many-round Luby-Rackoff pseudo-
random permutations. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 544–561. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-
9 34

11. Maurer, U., Pietrzak, K.: Composition of random systems: when two weak make
one strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 23

12. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-74143-5 8

13. Mironov, I.: (Not so) random shuffles of RC4. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 304–319. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45708-9 20

14. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain.
In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-03356-8 17

15. Myers, S.: Black-box composition does not imply adaptive security. In: Cachin,
C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 189–206.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3 12

16. Patarin, J.: Étude des Générateurs de Permutations Pseudo-aléatoires basés sur le
schéma du D.E.S., Ph.D., November 1991

17. Patarin, J.: The “coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04159-4 21

18. Patarin, J.: Security of balanced and unbalanced Feistel schemes with linear non
equalities. Cryptology ePrint Archive: Report 2010/293 (2010)

19. Pietrzak, K.: Composition does not imply adaptive security. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 4

20. Tessaro, S.: Security amplification for the cascade of arbitrarily weak PRPs: tight
bounds via the interactive hardcore lemma. In: Ishai, Y. (ed.) TCC 2011. LNCS,
vol. 6597, pp. 37–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19571-6 3

https://doi.org/10.1007/978-3-642-34961-4_18
https://doi.org/10.1007/978-3-642-34961-4_18
https://doi.org/10.1007/978-3-662-43933-3_8
https://doi.org/10.1007/978-3-662-46706-0_13
https://doi.org/10.1007/3-540-46035-7_8
https://doi.org/10.1007/3-540-39200-9_34
https://doi.org/10.1007/3-540-39200-9_34
https://doi.org/10.1007/978-3-540-24638-1_23
https://doi.org/10.1007/978-3-540-74143-5_8
https://doi.org/10.1007/3-540-45708-9_20
https://doi.org/10.1007/3-540-45708-9_20
https://doi.org/10.1007/978-3-642-03356-8_17
https://doi.org/10.1007/978-3-540-24676-3_12
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/11535218_4
https://doi.org/10.1007/11535218_4
https://doi.org/10.1007/978-3-642-19571-6_3
https://doi.org/10.1007/978-3-642-19571-6_3

Improved Related-Tweakey Boomerang
Attacks on Deoxys-BC

Yu Sasaki(B)

NTT Secure Platform Laboratories,
3-9-11, Midori-cho Musashino-shi, Tokyo 180-8585, Japan

sasaki.yu@lab.ntt.co.jp

Abstract. This paper improves previous distinguishers and key recov-
ery attacks against Deoxys-BC that is a core primitive of the authenti-
cated encryption scheme Deoxys, which is one of the remaining candi-
dates in CAESAR. We observe that previous attacks by Cid et al. pub-
lished from ToSC 2017 have a lot of room to be improved. By carefully
optimizing attack procedures, we reduce the complexities of 8- and 9-
round related-tweakey boomerang distinguishers against Deoxys-BC-256
to 228 and 298, respectively, whereas the previous attacks require 274 and
2124, respectively. The distinguishers are then extended to 9-round and
10-round boomerang key-recovery attacks with a complexity 2112 and
2170, respectively, while the previous rectangle attacks require 2118 and
2204, respectively. The optimization techniques used in this paper are
conceptually not new, yet we believe that it is important to know how
much the attacks are optimized by considering the details of the design.

Keywords: CAESAR · Cryptanalysis · Deoxys-BC
Boomerang attack

1 Introduction

Authenticated encryption (AE) schemes are symmetric-key cryptographic algo-
rithms that provide both confidentiality and authenticity of data in a single
primitive. AE schemes offer several advantages when compared with the use of
two separate algorithms. For example, it simplifies security arguments and key
management, which avoids the risk of misuse of the schemes by non-experts of
cryptography. It also offers better efficiency by sharing a part of the computation
for confidentiality and authenticity. In the present time, CAESAR [2] is orga-
nized by the international cryptologic research community to identify a portfolio
of AE schemes that offer advantages over GCM [15].

Deoxys [11] is one of the CAESAR third-round candidates. Its design is based
on the tweakable block cipher Deoxys-BC, which is an AES [19] based tweakable
block cipher using the tweakey framework [10]. Tweakable block ciphers (TBC)
were first introduced and formalized by Liskov et al. [13], and in addition to the
two standard inputs, a plaintext and a key, it takes an additional input called
c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 87–106, 2018.
https://doi.org/10.1007/978-3-319-89339-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_6&domain=pdf

88 Y. Sasaki

a tweak. The Deoxys AE scheme makes use of two versions of the cipher as its
internal primitive: Deoxys-BC-256 and Deoxys-BC-384.

The tweakey framework unifies the vision of key and tweak as the tweakey.
An n-bit block cipher using the framework will take a k-bit key and a t-bit tweak,
and a dedicated tweakey schedule will use the (k + t)-bit tweakey to produce the
n-bit round subtweakeys. This approach allows designers to claim full security of
the tweakable block cipher.

The number of existing public security analysis of the Deoxys-BC is limited.
The designers provided a few analyses [11]. As the cipher uses the AES round
function, with the only differences to AES being the number of rounds (14 for
Deoxys-BC-256 and 16 Deoxys-BC-384) and the tweakey schedule, much of the
analysis leverages the existing analysis of the AES.

The work by Cid et al. [7] recently published from ToSC 2017 is the only
third-party analysis so far. Cid et al. developed automated differential trail search
method using the mixed integer linear programming (MILP) [17] to show that
the lower bound of the number of active S-boxes is higher than the original expec-
tation by the designers in the related-tweakey setting. Cid et al. then constructed
boomerang attacks [20] by combining two short differential trails discovered by
their tool. This leads to 8- and 9-round distinguishers against Deoxys-BC-256
with complexity of 274 and 2124, respectively, and 10- and 11-round distinguishers
against Deoxys-BC-384 with complexity of 244 and 2122, respectively. Those are
further extended to related-tweakey rectangle attacks for recovering key against
9-round and 10-round Deoxys-BC-256 and 12-round and 13-round Deoxys-BC-
384. The summary of the previous attacks are given in Table 1.

We noticed that after the submission of this paper, Mehrdad et al. uploaded
their analysis that studies related-tweakey impossible differential attacks against
Deoxys-BC-256 [16]. One of their focuses is the related-tweak single-key model
that is not covered in this paper but the number of attacked rounds is at most 8.
Under the same (related-tweak related-key) model as ours, their attack reaches
9 rounds with complexity (Time,Data,Memory) = (2118, 2118, 2114).

Our Contributions. In this paper, we present the best cryptanalysis against
Deoxys-BC block cipher in the present time. Our attacks utilize the differential
trails for boomerang-like attacks found by Cid et al. [7]. We observe that the
automated differential trail search in [7] is very optimized, whereas the utiliza-
tion of the detected trails in the attack procedure is not well-optimized, thus
there is a lot of room to be improved. This is perhaps the main innovation of
[7] is the development of new MILP models for automated differential search
method. Yet we think that optimizing the attack complexity is important espe-
cially considering that Deoxys is one of the remaining candidates in CAESAR.
For example, to compare security margin of several designs, known cryptanalytic
results should be optimized as much as possible for all of the designs.

The optimization techniques used in our paper are conceptually not entirely
new, e.g. changing differential trail to truncated differential trail in one of two
pairs in the boomerang quartet, reducing the data complexity by using structure,

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 89

Table 1. Comparison of the Attacks against Deoxys-BC. SK, RK, KR, and dist stand
for single-key, related-key, key-recovery and distinguisher, respectively.

Deoxys-BC-256

Rounds Model Approach Goal Time Data Mem. Size set up Ref.

8/14 SK MitM KR < 2128 − − t = 128, k = 128 [11]
8/14 SK differential KR < 2128 − − t = 128, k = 128 [11]

8/14 RK boomerang dist
274 274 negl. t = 128, k = 128 [7]
228 228 227 t = 128, k = 128 Ours

9/14 RK boomerang dist
2124 2124 negl. t = 128, k = 128 [7]
298 298 217 t = 128, k = 128 Ours

9/14 RK boomerang KR
2118 2117 2117 t = 128, k = 128 [7]
2112 298 217 t = 128, k = 128 Ours

10/14 RK
rectangle

KR
2204 2127.58 2127.58 t < 52, k > 204 [7]

boomerang 2170 2170 217 t < 86, k > 170 Ours
boomerang 2170 298 298 t < 86, k > 170 Ours

Deoxys-BC-384

Rounds Model Approach Goal Time Data Mem. Size set up Ref.

8/16 SK MitM KR < 2256 − − t = 128, k = 256 [11]

10/16 RK boomerang dist
244 244 negl. t = 128, k = 256 [7]
222 222 217 t = 128, k = 256 Ours

11/16 RK boomerang dist
2122 2122 negl. t = 128, k = 256 [7]
2100 2100 217 t = 128, k = 256 Ours

12/16 RK
rectangle

KR
2127 2127 2125 t = 128, k = 256 [7]

boomerang 2148 2148 217 t = 128, k = 256 Ours
boomerang 2148 2100 2100 t = 128, k = 256 Ours

13/16 RK rectangle KR 2270 2127 2144 t < 114, k > 270 [7]

and choosing the best way to append the key-recovery round. However applying
a lot of optimization attempts including failure attempts that cannot be included
in the paper and considering many details of the computation structure require
hard work and significant amount of time. After the careful analysis, the attack
complexity against Deoxys-BC-256 with respect to min(Time,Data,Memory)
is improved by a factor of 226 and 234 for the longest distinguishing and key-
recovery attacks, respectively. The improved complexities are listed in Table 1.

Finally, we provide a discussion toward developing an automated differential
search tool such that the impact of the key recovery attack is taken into account.

Paper Outline. The remaining of this paper is organized as follows. Section 2
describes the specification of Deoxys-BC. Section 3 recalls the previous attacks

90 Y. Sasaki

by Cid et al. Sects. 4 and 5 discuss the improved attacks on Deoxys-BC-256 and
Deoxys-BC-384, respectively. We give a discussion toward an improved differen-
tial search tool and conclude this paper in Sect. 6.

2 Specification of Deoxys-BC

Deoxys-BC-256 and Deoxys-BC-384 are AES-based tweakable block ciphers [11].
Both versions adopt 128-bit block sizes which besides a plaintext P (or a cipher-
text C) and a key K, also take a tweak T . The concatenation of the key and
tweak states is called the tweakey state. For Deoxys-BC-256 the tweakey size is
256 bits, while for Deoxys-BC-384 it is 384 bits. The breakdown of the key and
tweak sizes in the tweakey can be chosen by the user, as long as the key size is
greater or equal to the block size, i.e. 128 bits.

Deoxys-BC is an AES-like design. It transforms the initial plaintext (viewed
as a 4× 4 two-dimension array of bytes) using the AES round function. Deoxys-
BC-256 and Deoxys-BC-384 have 14 and 16 rounds, respectively.

Deoxys-BC Round Function. Similarly to the AES, one round of Deoxys-BC has
the following four transformations applied in the order specified below:

– AddRoundTweakey – XOR the 128-bit round subtweakey to the state.
– SubBytes – Apply the 8-bit AES S-box S to each byte in parallel.
– ShiftRows – Rotate the 4-byte i-th row left by i positions.
– MixColumns – Multiply the state by the 4 × 4 constant MDS matrix of AES.

MixColumns is not omitted in the last round. After the last round, a final
AddRoundTweakey operation is performed to produce the ciphertext.

Fig. 1. Encryption of Deoxys-BC-384.

Definition of Subtweakeys. The tweakey state is composed of the key K and
the tweak T . The tweakey state is divided into 128-bit words denoted by
TK1, TK2, · · · . More precisely, the tweakey state in Deoxys-BC-256 is com-
posed of TK1 and TK2, and the tweakey state in Deoxys-BC-384 is composed
of TK1, TK2, and TK3. Finally, we denote by STKi the 128-bit subtweakey

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 91

that is added to the state at round i during the AddRoundTweakey operation.
For Deoxys-BC-256, a subtweakey is defined as STKi = TK1

i ⊕ TK2
i ⊕ RCi,

whereas for Deoxys-BC-384 it is defined as: STKi = TK1
i ⊕TK2

i ⊕TK3
i ⊕RCi.

The 128-bit words TK1
i , TK2

i , TK3
i are outputs produced by a special tweakey

schedule algorithm, initialised with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-
256 and with TK1

0 = W1, TK2
0 = W2 and TK3

0 = W3 for Deoxys-BC-384. The
tweakey schedule algorithm is defined as

TK1
i+1 = h(TK1

i),

TK2
i+1 = h(LFSR2(TK2

i)),

TK3
i+1 = h(LFSR3(TK3

i)),

where the byte permutation h is defined as
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

numbered by the usual AES byte ordering.
The LFSR2 and LFSR3 functions are simply the application of an LFSR to

each on the 16 bytes of a 128-bit tweakey word. The two LFSRs used are given
in Table 2 (x0 stands for the LSB of the cell).

Table 2. LFSR2 and LFSR3.

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Finally, RCi denotes the key schedule round constants. We omit the details
of constant because it does not impact to the attacks. Encryption of Deoxys-
BC-384 is illustrated in Fig. 1.

3 Previous Attacks on Deoxys-BC

Our attacks are based on the related-tweakey boomerang distinguishers and
related-tweakey rectangle key-recovery attacks by Cid et al. [7]. In this section,
we first briefly recall the framework of the related-tweakey boomerang-like
attacks in Sect. 3.1. Then, in Sect. 3.2, we introduce the attacks by Cid et al. that
are the main target of this paper.

3.1 Brief Introduction of Boomerang Attacks

Boomerang attacks and variants combine short differential trails with high prob-
ability. Here we briefly introduce the framework of the boomerang attack.

92 Y. Sasaki

Boomerang and Rectangle Attacks. Boomerang attack [20] regards the target
cipher as a composition of two sub-ciphers E0 and E1. The first sub-cipher is
supposed to have a differential α → β, and the second one to have a differential
γ → δ, with probabilities p and q, respectively. The basic boomerang attack
requires an adaptive chosen plaintext/ciphertext scenario, and plaintext pairs
result in a right quartet with probability p2q2. The amplified boomerang attack
(also called the rectangle attack) works in a chosen-plaintext scenario and a right
quartet is obtained with probability p2q22−n [12]. Further, it was pointed out
in [3,4] that any value of β and γ is allowed as long as β �= γ. As a result, the
probability of the right quartet is increased to 2−np̂2q̂2, where

p̂ =
√∑

i

Pr2(α −→ βi) and q̂ =
√∑

j

Pr2(γj −→ δ).

Boomerang and rectangle attacks under related-key setting were formulated
in [5]. Let ΔK and ∇K be the key differences for the first and second sub-
ciphers, respectively. The attack needs access to four related-key oracles with
K1 ∈ K, where K is the key space, K2 = K1 ⊕ ΔK, K3 = K1 ⊕ ∇K and
K4 = K1 ⊕ ΔK ⊕ ∇K. In the related-key boomerang attack, paired plaintexts
P1, P2 such that P1⊕P2 = α are queried to K1 encryption oracle and K2 encryp-
tion oracle, and the attacker receives ciphertexts C1 and C2. Then C3 and C4

are calculated by C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and then queried to K3 decryp-
tion oracle and K4 decryption oracle. The resulting plaintext difference P3 ⊕ P4

equals to α with probability p̂2q̂2. The distinguishing game can be described
more formally in an algorithmic form as Algorithm1. The game returns a dis-
tinguishing bit b ∈ {0, 1} that is set to 1 if the oracle is a target algorithm and
0 if the oracle is an ideal permutation. Algorithm1 is (p̂q̂)−2 many iterations of
2 chosen-plaintext and 2 adaptively chosen-ciphertext queries. Hence the attack
complexity is (time, data,memory) = (4 · (p̂q̂)−2, 4 · (p̂q̂)−2, negligible).

Algorithm 1. Basic Procedure of Related-Key Boomerang Distinguishers
Input: α, δ, K1, K2, K3, K4, p̂q̂
Output: b ∈ {0, 1}
1: for i ← 1, 2, . . . , (p̂q̂)−2 do
2: Choose distinct input P1. Set P2 ← P1 ⊕ α.
3: Obtain C1 = EK1(P1) and C2 = EK2(P2) by making encryption queries.
4: Set C3 ← C1 ⊕ δ and C4 ← C2 ⊕ δ.
5: Obtain P3 = DK3(C3) and P4 = DK4(C4) by making decryption queries.
6: if P3 ⊕ P4 = α then
7: return 1
8: end if
9: end for

10: return 0

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 93

In the attacks against full AES-192 and AES-256 [6], Biryukov and
Khovratovich introduced the boomerang switch in order to gain free rounds at
the boundary of two trails. The idea was to optimize the transition between the
sub-trails of E0 and E1 in order to minimize the overall complexity of the dis-
tinguisher. In the previous boomerang and rectangle attacks against Deoxys-BC
by Cid et al. [7], the following two types of switch techniques are exploited.

Ladder switch. A cipher is decomposed into rounds by default. However,
decomposition regarding smaller operations, like columns and bytes, may lead
to better distinguishers.

S-box switch. Suppose E0 ends with an S-box and the output difference of
this S-box is Δ. If the same difference Δ comes from the path of E1, then the
propagation through this S-box is for free in one of the directions.

The theoretical explanation behind those techniques were later formalized as the
sandwich framework [8,9].

3.2 Previous Boomerang and Rectangle Attacks on Deoxys-BC

Cid et al. [7] presented related-tweakey boomerang distinguishers and related-
tweakey rectangle key-recovery attacks against reduced rounds of Deoxys-BC. In
short, Cid et al. [7] developed a new MILP-based differential search method for
related-tweakey boomerang or rectangle attacks. Their tool has the following two
advantages; (1) it takes into account incompatibility of linear relations between
independently chosen subtweakey differences and (2) it optimizes the active-byte
positions by taking into account the gain from the ladder switch technique.

Consequently, Cid et al. found 8- and 9-round related-tweakey boomerang
trails against Deoxys-BC-256 with probability p̂q̂ = 2−36 and 2−61, respectively
and 10- and 11-round trails against Deoxys-BC-384 with probability p̂q̂ = 2−21

and 2−60, respectively. The 8-round trail for Deoxys-BC-256 is presented in
Table 3. In Table 3, the first column show the round number, the second, third,
fourth, and fifth columns are the difference before AddRoundTweakey, the sub-
tweakey difference, the difference before SubBytes and the difference before
MixColumns, respectively. The sixth column is the probability of the total dif-
ferential propagation during SubBytes in each round. The middle two rounds
(rounds 4 and 5) are included in both of E0 and E1 due to the ladder switch
technique. Namely, the boundary of E0 and E1 is defined byte-wise or column-
wise instead of state-wise, thus some part of the state belongs to E0 and the
other part belongs to E1. In round 1, the plaintext should have differences in
5 bytes, and one of them is canceled by the subtweakey difference. Then, each
non-zero difference is converted to the specific output difference with probability
2−6, thus the total probability in round 1 is 2−6×4 = 2−24. The other rounds
can be explained similarly.

The other related-tweakey boomerang trails can be found in Tables 4, 5 and
6 in Appendix A. Note that Cid et al. also showed similar trails for more rounds

94 Y. Sasaki

Table 3. 8-round distinguisher of Deoxys-BC-256

ΔTK1
0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 46

ΔTK2
0 : 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 d1

∇TK1
0 : 00 00 02 00 00 00 00 b3 00 00 00 00 00 00 00 00

∇TK2
0 : 00 00 a8 00 00 00 00 96 00 00 00 00 00 00 00 00

R before ATK ΔSTK before SB before MC pr

1

00 b9 00 00 00 00 00 00 00 b9 00 00 00 35 00 00

2−2400 00 d1 00 00 00 00 00 00 00 d1 00 00 5d 00 00
00 00 00 ab 00 00 00 00 00 00 00 ab 00 01 00 00
61 00 00 97 00 00 00 97 61 00 00 00 00 8c 00 00

2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 e5 00 00 00 e5 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 ca 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00

4

00 00

100 00
00 00

00 00

5

00 00 00 00

100 00 00 00
00 00 00 00
00 00 00 00 00 00 00

6

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 03 00 00 00 03 00 00 00 00 00 00 00 00 00 00
00 6a 00 00 00 6a 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 d5 00 00 00 d5 00 00 00 60 00 00 00

2−1200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 06 00 00 00 06 00 00 00 00 0c

but with much lower probability. Because how to utilize them in the attack is
unclear and we do not use them in this paper, we omit those trails.

As the last remarks, in the boomerang-type attacks, the attackers need to
be very careful about the compatibility of two independently chosen short trails
because such two independent trails may not be connected [18]. Cid et al. did
the experimental verification (sometimes by reducing the number of rounds for

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 95

each trail) to show that the two trails can be connected with the probability
evaluated by them.

4 New Attacks on Deoxys-BC-256

In this section, we improve the distinguisher and key recovery attacks by Cid
et al. [7] against Deoxys-BC-256. Considering that the differential search method
in [7] is fairly optimized, we focus our attention on how to utilize the discovered
boomerang trails rather than finding new trails.

4.1 Improved Boomerang Distinguishers

Truncating the Differential Trail. The boomerang distinguishers in [7] are
the straightforward applications of Algorithm1 to their boomerang trails. As
shown in Tables 3 and 4, the trails have (p̂q̂) = 2−36 and 2−61 for 8 rounds and
9 rounds, respectively, thus the data complexities are 274 and 2124, respectively.
Hereafter, we first discuss the improvement for the 8-round distinguisher, and
will later apply the improvement to 9 rounds.

The first improving point is Step 6 in Algorithm1 that checks the match
between the n-bit computed difference and α. It may be sufficient to match a
part of differences as long as the number of matched bits is sufficient to discard
all the wrong quartets. Recall the first half of the differential trail in the 8-round
distinguisher in Table 3. In the previous attack, the attacker matches 128-bits of
differences of the form

00 00 00 01 b9 00 00 00 00 d1 00 00 00 00 ab 97

at Step 6 in Algorithm1. We now ignore the match of differences for 4 active
bytes before the active S-boxes in the first round, thus only check whether or
not 12 bytes have the following difference.

00 00 00 ∗ ∗ 00 00 00 00 ∗ 00 00 00 00 ∗ 97

Here, 97 in the last byte of the plaintext difference comes from AddRoundTweakey
in the first round, which XORs subtweakey difference 97 to the zero-difference
byte. Hence, we basically check whether S-boxes in 12 bytes are active or inactive.
This saves us the probability of satisfying the differential transition through S-
boxes in the first round, which increases the probability of the distinguisher from
2−72 to 2−48. Hence, with this effort, the complexity of the distinguisher becomes
(time, data,memory) = (250, 250, negligible).

It should be noted that the probability that an ideal permutation satisfies
the property also increases: 2−8×12 = 2−96. Since this is smaller than 2−48, the
8-round distinguisher can work.

96 Y. Sasaki

Structure Technique. The data complexity of the above distinguisher can be
further reduced by constructing the plaintext structure. This requires the use of
additional memory, but the total memory amount is still practical.

In the differential trail in Table 3, we need the 4-byte difference of the fol-
lowing form before the MixColumns in the first round:

00 00 00 00 35 5d 01 8c 00 00 00 00 00 00 00 00

The corresponding plaintext difference does not have to be the one specified in
Table 3 but can be any difference as long as the desired 4-byte difference can be
generated with non-zero probability. Let I35 be a set of differences defined as
follows.

I35 � {Δ ∈ {0, 1}8 | ∃x ∈ {0, 1}8 s.t. S(x) ⊕ S(x ⊕ Δ) = 35}.

The size of I35 is 126. Similarly, I5d, I01 and I8c can be defined and the size of
each set is 126.

To generate the structure, we generate two sets of 232 plaintexts P1 and P2,
where P1 (resp. P2) contains plaintexts to be queried to the oracle with K1

(resp. K2). In each set, all possible values are contained for four active bytes in
the first round and the other 12 bytes are fixed to some specified value. To be
more precise, 12 byte-values ci ∈ {0, 1}8, 0 ≤ i ≤ 15, i �= 3, 4, 9, 14 are fixed, and
all the 232 values are collected in the other 4 bytes. P1 and P2 are defined as
follows. Note that we need to make difference 97 in the last byte to cancel the
first subtweakey difference.

P1 � {c0, c1, c2, ∗ ∗, c5, c6, c7 c8, ∗, c10, c11, c12, c13, ∗, c15},

P2 � {c0, c1, c2, ∗ ∗, c5, c6, c7 c8, ∗, c10, c11, c12, c13, ∗, c15 ⊕ 97}.

To utilize P1 and P2 in the boomerang attack framework, each of the 232

plaintexts in P1 is queried to the encryption oracle with K1, then δ is XORed
to the resulting ciphertext, and finally the generated ciphertext is queried to the
decryption oracle with K3. Namely the attacker performs the following process
and stores the results in P3:

P i
3 ← DK3

(
EK1(P

i
1) ⊕ δ

)
,

where P i
1 for i = 0, 1, · · · , 232 − 1 is each plaintext in P1.

The attacker then computes P i
4 ← DK4

(
EK2(P

i
2) ⊕ δ

)
for each plaintext in

P2, and checks the match of 12-byte difference between P i
4 and P3 (for Step 6

in Algorithm 1) along with another check if 4-byte difference between P i
1 and P i

2

are included in I35, I5d, I01 and I8c.

Time Complexity and Optimization. In the single structure, 4 · 232 queries
are made, thus the data complexity is 234. The number of pairs that can be
made from P1 and P2 is 232∗2 = 264, of which 264 · 126

255

4 ≈ 260 pairs satisfy the

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 97

constraint for P1 and P2 (included in I35, I5d, I01 and I8c) and there should be
260−48 = 212 pairs satisfying the boomerang trail with probability 2−48. This is
sufficient to distinguish 8-round Deoxys-BC-256 from an ideal permutation.

One may note that generating 212 quartets is too much for the attack. Indeed,
the attack works by setting the size of P1 and P2 to 226. Then among 252 possible
pairs, about 252−4−48 = 1 pair will satisfy the boomerang trail. Overall, the data
complexity is 4 ·226 = 228 queries and the time complexity is 228 memory access.
The attacker needs to store 226 plaintexts in P1 and in P3, thus the memory
complexity is 227 plaintexts.

Application to 9-Round Distinguisher. Recall the differential trail for the
9-round distinguisher in Table 4. Differently from the 8-round distinguisher, there
is no active S-box in the first round. Hence, to apply the similar improvement, we
need to change the attack model to the opposite direction i.e. chosen-ciphertext
and adaptively chosen-plaintext attack. Note that Deoxys does not omit Mix-
Columns in the last round but it is well-known that having such linear operation
in the last round does not change the impact of the differential cryptanalysis.
Indeed, the attacker can do analysis by considering MixColumns−1(ΔC) instead
of ΔC in general.

The rest is similar as the 8-round distinguisher, thus we only give a summary.

– By using the truncation of the differential trail, we can avoid the proba-
bility loss of 2−12. Hence, the probability of the boomerang trail becomes
2−122+12 = 2−110. Note that the probability that an ideal permutation pro-
vides a pair with zero difference in 14 bytes is 2−112, which is smaller than
2−110 in the boomerang trail.

– By using the structure, the attacker can define two sets of 216 ciphertexts
C1 and C3. 232 pairs can be generated and 232 · 126

255 ≈ 230 pairs satisfy the
ciphertext difference in the last round.

– After generating 280 structures by changing the constant in 14 bytes of the
ciphertext, the number of pairs reaches 2110, thus the attacker can expect to
find 1 quartet satisfying the boomerang trail. The data complexity is 4∗216 =
218 per structure, thus 298 in total. The time complexity is 298 memory access.
The attacker needs to store 216 ciphertexts in C1 and C2, thus the required
memory amount is 217.

Remarks to Increase Distinguishing Advantage. One may think that the
gap of the probabilities between the actual cipher and an ideal permutation
(2−110 vs 2−112) is too small. We argue that the distinguishing advantage can
be significantly increased with negligible cost.

The idea is after Step 6 of Algorithm 1 is passed, we inject another check
whether the generated pair actually follows the boomerang trail. If so, the dis-
tinguishing game returns b = 1, otherwise it continues the algorithm. Suppose
that a boomerang quartet C1, C2, C3, C4 is generated. The attacker then mod-
ifies C1 and C3 to C ′

1 and C ′
3 so that the two active S-boxes in the last round

98 Y. Sasaki

will not be modified and obtains the corresponding C ′
2 and C ′

4. If C1, C2, C3, C4

follows the trail, the differential transitions through the two S-boxes in the last
round are already satisfied, hence C ′

1, C
′
2, C

′
3, C

′
4 should form another boomerang

quartet with probability 2−110+12 = 2−98. Thus after generating 298 pairs of C ′
1

and C ′
3, the false positive can be eliminated. Note that 298 pairs of C ′

1 and C ′
3

can be generated by using the structure technique, thus the complexity of this
additional check is 282 with the memory of size 217.

4.2 Improved Key Recovery Attacks

Cid et al. [7] discussed related-tweakey rectangle attacks. In [7], they directly
applied the general complexity analysis in [14] for related-tweakey rectangle
attack against SKINNY [1]. Hence, it is of interest to optimize the attack by tak-
ing into account the structure of Deoxys-BC. Indeed, we show that the attack
complexity can be improved by using boomerang attacks instead of rectangle
attacks.

Note that in the 9-round attack, we assume the default setting by the design-
ers in which the 256-bit tweakey consists of 128-bit tweak and 128-bit key.

9-Round Attacks Using 9-Round Distinguisher. Our 9-round attack is
very simple but effective. We do not append extra key-recovery round to the dis-
tinguisher, but recovers the key inside the distinguisher. We first run the 9-round
distinguisher explained in Sect. 4.1 with complexity (Time,Data,Memory) =
(298, 298, 217) to find a quartet of texts satisfying the boomerang trail. Due to
the truncation of the differential trail, we did not pay attention to the output
difference of the active S-boxes in the last round to identify the quartet. We use
those information for key recovery.

As shown in Table 4, the input differences to the two active S-boxes in
the last round are e3 and 0c. The output differences can be computed by
MixColumns−1(ΔC). From the property of the S-box, the actual values in those
S-boxes can be reduced to about 2 choices per byte. Those immediately reveal
2-byte information of the last subkey STK9 converted by inverse MixColumns
and ShiftRows, namely ShiftRows−1 ◦MixColumns−1(STK9). Because we have
2 pairs in a quartet, the 2-byte information of STK9 is uniquely identified.
Because STK9 is an XOR of tweak and key and tweak is known to he attacker,
2-byte information of the master key can be obtained.

The remaining is a simple exhaustive search on the other 14 bytes, which
requires 2112 computations. Thus the total complexity of the 9-round key recov-
ery is (Time,Data,Memory) = (2112, 298, 217).

10-Round Attacks Using 9-Round Distinguisher. In this attack, we
append 1 round to the end of the 9-round distinguisher in Table 4, which is
illustrated in Fig. 2. Note that appending 1-round before the plaintext is hard
because of too many active bytes in the initial state of the 8-round distinguisher.

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 99

Fig. 2. Key recovery for 10-round Deoxys-BC-256. ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ and ‘F’ are
uniquely fixed difference by the boomerang trail and ‘G’ is 3B ⊕ D.

As discussed before, MixColumns in the last round does not have any impact
to the attack. To simplify the discussion, we describe the attack by omitting the
MixColumns in the last round.

In Fig. 2, the upper part is the computations for the first pair (C1 and C3).
We need to ensure the exact difference of the distinguisher’s input (in inverse
direction). After P1 and P3 are obtained, P2 and P4 are generated and encryption
queries are made to obtain C2 and C4, which is illustrated in the bottom half.
Because the output of the distinguisher is truncated, we only know that 2 bytes
are active (and then expanded to 2 columns after MixColumns in round 9).

As clearly illustrated in Fig. 2, the partial computation from the ciphertext to
9 active bytes through AddRoundTweakey−1, ShiftRows−1, SubBytes−1 involves
9 bytes of STK10. By guessing those 9 bytes, we can compute the values of
active bytes at the end of distinguisher from the ciphertext, which is enough to
construct the structure for the remaining 9 rounds. Besides, for each obtained
C2 and C4, we can compute back to the difference of the distinguisher’s output.

In summary, by exhaustively guessing 9 bytes of STK10, we can apply the
9-round distinguisher, which returns a valid boomerang quartet only when the
guess of STK10 is correct. The attack is 272 repetitions of the 9-round distin-
guisher that requires 298 data and time complexities with 217 memory, thus
(Time,Data,Memory) = (2170, 2170, 217).

Note that during 272 iterations of the 9-round distinguisher, 298 queried
data can be reused. (For different guess, only the order to make pairs changes.)
Thus by storing 298 queried data in the memory, the attack complexity can be
(Time,Data,Memory) = (298, 2170, 298).

In both cases, the attack is faster than the exhaustive search only if the key
size in 256-bit tweakey is bigger than 170 bits. Given that the previous attack

100 Y. Sasaki

[7] only works when the key size is bigger than 204 bits, our attack not only
improves the complexity but also extends the attacked parameters.

5 New Attacks on Deoxys-BC-384

10-Round Distinguisher. Recall the previous 10-round distinguisher that uses
the trail in Table 5. The boomerang trail is satisfied with probability 2−42 thus
the previous attack requires 244 queries.

We attack in the chosen-ciphertext and adaptively chosen-plaintext model
to save the probability loss of 2−12 by truncating the trail in the last round.
By constructing the structure for 2 bytes, the data complexity can further be
reduced by a factor of 212−2 = 210. In summary, the 10-round distinguisher can
be improved to (Time,Data,Memory) = (222, 222, 217).

11-Round Distinguisher. Recall the previous 11-round distinguisher that uses
the trail in Table 6. The boomerang trail is satisfied with probability 2−120 thus
the previous attack requires 2122 queries.

We attack in the chosen-ciphertext and adaptively chosen-plaintext model
to save the probability loss of 2−12 by truncating the trail in the last round. By
exploiting the structure for 2 bytes, the 11-round distinguisher can be improved
to (Time,Data,Memory) = (2100, 2100, 217).

12-Round Key Recovery. We append 1 round to the end of 11-round distin-
guisher in Table 6, which is illustrated in Fig. 3. Differently from the 10-round

Fig. 3. Key recovery for 12-round Deoxys-BC-384.

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 101

key recovery attack against Deoxys-BC-256, the appended round only involves
6 bytes of STK12.

Because the attack is the iteration for the 11-round distinguisher for exhaus-
tive guesses of 6 subtweakey bytes in the key-recovery part, the attack complexity
becomes (Time,Data,Memory) = (2148, 2148, 217) or (2148, 2100, 2100).

6 Discussion and Conclusion

Discussion. The following features can be extracted by comparing the attacks
in Sects. 4 and 5.

– Active byte positions at the input and output of the distinguisher significantly
impact to the complexity of the key-recovery. If multiple active bytes locate
in the same column in subsequent MixColumns like Fig. 3 rather than Fig. 2,
the complexity of key recovery is much smaller.

– The attack complexity is reduced if the positions of subtweakey differences
for subsequent AddRoundTweakey overlap with active bytes in the state.

– The existence of probabilistic propagation in the first and the last round of
the distinguisher allows the attacker to optimize the attack. In contrast, it is
hard to exploit probabilistic propagation in middle rounds.

The differential search by Cid et al. [7] did not consider those features and they
found a lot of the best trails with the same score. Developing a new automated
search method considering those features is a promising future research direction,
which may allow us to identify the really best differential trail.

Concluding Remarks. In this paper, we showed how the attacks on Deoxys-
BC can be optimized by considering the design details. Our attacks are based
on the boomerang trails discovered by Cid et al. [7], but the attack proce-
dures are carefully chosen to reduce the complexity. In particular, the improve-
ment is big for Deoxys-BC-256. The complexity improvement with respect to
max(Time,Data,Memory) is from 274 to 228 for the 8-round distinguisher,
from 2124 to 298 for the 9-round distinguisher, from 2118 to 2112 for the 9-round
key recovery, and from 2204 to 2170 for the 10-round key recovery. We believe
that the presented analyses provide better understanding of Deoxys-BC.

102 Y. Sasaki

A Details of Boomerang Trails

Table 4. 9-round distinguisher of Deoxys-BC-256

ΔTK1
0 : 00 7f 00 00 00 ff 00 00 0b 00 f1 00 00 00 00 7c

ΔTK2
0 : 00 cf 00 00 00 3f 00 00 70 00 5e 00 00 00 00 be

∇TK1
0 : 00 00 00 00 00 a1 00 04 00 00 00 00 00 00 00 00

∇TK2
0 : 00 00 00 00 00 bf 00 a8 00 00 00 00 00 00 00 00

R before ATK ΔSTK before SB before MC pr

1

00 00 7b 00 00 00 7b 00 00 00 00 00 00 00 00 00

1b0 c0 00 00 b0 c0 00 00 00 00 00 00 00 00 00 00
00 00 af 00 00 00 af 00 00 00 00 00 00 00 00 00
61 00 00 c2 00 00 00 c2 00 00 00 00 00 00 00 00

2

00 00 00 00 e0 80 00 00 e0 80 00 00 b4 c9 00 00

2−2800 00 00 00 00 4d 00 00 00 4d 00 00 21 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 ea 00 00 00 ea 73 00 00 00

3

63 89 00 00 00 89 00 00 63 00 00 00 8d 00 00 00

2−1485 c9 00 00 85 00 00 00 00 c9 00 00 8c 00 00 00
00 c9 00 00 00 c9 00 00 00 00 00 00 00 00 00 00
00 40 00 00 00 40 00 00 00 00 00 00 00 00 00 00

4

8e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00 00

18e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00 00
01 00 00 00 01 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 80 03 00 00 00 00
00 00 00 00 13 00 00 00 00 00 00 00 00 00
00 00 00 00 00 98 00 00 00 00 00 00 00 00

6

00 00 00 07 00 00

100 00 00 35 00 00
00 00 00 b4 00 00
00 00 00 00 00 00 00 00

5

00 00

100 00 00 00
00 00

00 00

6

00 00 00 00 00 00 00 00 00 00

2−732 00 00 00 32 00 00 2f 00 00
05 00 05 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

106 00 00 00 06 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
71 00 00 00 71 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1200 00 00 00 00 e3 00 00 00 e3 00 00 72 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 0c 00 00 00 0c 00 00 00 00 9d 00

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 103

Table 5. 10-round distinguisher of Deoxys-BC-384. The S-box switch is used in round
6 (lower) for the S-box at position (1,1).

ΔTK1
0 : 00 00 8b 00 / 00 00 00 90 / 90 00 00 00 / 00 1b 00 00

ΔTK2
0 : 00 00 21 00 / 00 00 00 63 / 63 00 00 00 / 00 42 00 00

ΔTK3
0 : 00 00 34 00 / 00 00 00 7d / 7d 00 00 00 / 00 49 00 00

∇TK1
0 : 00 00 00 00 / 00 00 00 6e / 00 00 00 00 / b1 00 00 00

∇TK2
0 : 00 00 00 00 / 00 00 00 42 / 00 00 00 00 / f5 00 00 00

∇TK3
0 : 00 00 00 00 / 00 00 00 b3 / 00 00 00 00 / d3 00 00 00

R before ATK ΔSTK before SB before MC pr

1

00 00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00

2−6a3 00 00 10 00 00 00 10 a3 00 00 00 00 00 00 69
9e 00 00 00 9e 00 00 00 00 00 00 00 00 00 00 00
00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00

2

00 00 00 bb 00 00 00 bb 00 00 00 00 00 00 00 00

100 00 00 d2 00 00 00 d2 00 00 00 00 00 00 00 00
00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00
00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 69 00 00 00 00 00 00 00 00 00

100 00 00 00 00 bb 00 00 00 00 00 00 00 00
00 00 00 00 00 00 d2 00 00 00 00 00 00 00
00 00 00 00 00 00 00 69 00 00 00 00 00 00

6

00 00 00 10 00 00 00 00 00 00

100 00 00 9e 00 00 9e 00 00 00 00
00 00 00 8e 00 00 00 00 00 00
00 00 00 8e 00 00 00 00 00 00

5

00 00

100 00
00 00

00 00

6

00 00 00 00 00 00 00 00

2−600 00 00 9e 68 00 00 00
00 00 00 00 01 00 00 00
00 00 00 00 b9 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

16a 00 00 00 6a 00 00 00 00 00 00 00 00 00 00 00
ba 00 00 00 ba 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−1200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 6a 00 00 00 6a 00 61 00 00
00 00 00 00 ba 00 00 00 ba 00 00 00 00 97 00 00

104 Y. Sasaki

Table 6. 11-round distinguisher of Deoxys-BC-384

ΔTK1
0 : 00 8b 00 00 c4 00 00 00 7a 00 c5 a6 00 00 00 00

ΔTK2
0 : 00 ad 00 00 c4 00 00 00 73 00 21 d8 00 00 00 00

ΔTK3
0 : 00 a3 00 00 9a 00 00 00 3b 00 0d 2e 00 00 00 00

∇TK1
0 : 00 00 02 00 00 00 00 00 d7 00 00 00 00 00 00 00

∇TK2
0 : 00 00 99 00 00 00 00 00 bc 00 00 00 00 00 00 00

∇TK3
0 : 00 00 0c 00 00 00 00 00 f1 00 00 00 00 00 00 00

R before ATK ΔSTK before SB before MC pr

1

00 9a 32 00 00 9a 32 00 00 00 00 00 00 00 00 00

185 00 00 00 85 00 00 00 00 00 00 00 00 00 00 00
00 00 e9 00 00 00 e9 00 00 00 00 00 00 00 00 00
00 00 50 00 00 00 50 00 00 00 00 00 00 00 00 00

2

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−2800 00 00 00 00 00 00 4f 00 00 00 4f 00 00 2a 00
00 00 00 00 f1 7a 00 00 f1 7a 00 00 00 00 15 a6
00 00 00 00 00 57 00 00 00 57 00 00 00 00 6b 00

4

00 00 00 a6 00 00 00 a6 00 00 00 00 00 00 00 00

2−1300 00 00 f1 00 00 00 f1 00 00 00 00 00 00 00 00
00 00 bd 57 00 00 00 57 00 00 bd 00 19 00 00 00
00 00 e9 a6 00 00 e9 00 00 00 00 a6 2b 00 00 00

5

32 00 00 00 32 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
4f 00 00 00 4f 00 00 00 00 00 00 00 00 00 00 00
4f 00 00 00 4f 00 00 00 00 00 00 00 00 00 00 00

6

00 00 00 00 00 00 85 00 00 00 00 00 00

100 00 00 00 00 00 00 b9 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 9a 34 00 00 00 00 00 00

7

00 00 00 08 00 00

100 00 00 00 00 00 00 00
00 00 00 09 00 00
00 00 00 1b 00 00

6

00 cb 00

100 ff 00
00 1a 00
00 00 00 00

7

8d 00 8d 00 00 00 00 00 00 00

2−700 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00
a3 00 00 00 a3 00 00 00 b5 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 c4 00 00 00 c4 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 05 00 00 00 05 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

11

00 00 00 00 00 00 00 05 00 00 00 05 00 00 00 08

2−1200 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 c4 00 00 00 c4 00 00 00 00 00 7f
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Improved Related-Tweakey Boomerang Attacks on Deoxys-BC 105

References

1. Beierle, C., et al.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
123–153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 5

2. Bernstein, D.: CAESAR competition (2013). http://competitions.cr.yp.to/caesar.
html

3. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack – rectangling the
serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

4. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9 1

5. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 30

6. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

7. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of deoxys
and its internal tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2017(3),
73–107 (2017)

8. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on
the KASUMI cryptosystem used in GSM and 3G telephony. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 393–410. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 21

9. Dunkelman, O., Keller, N., Shamir, A.: A practical-time related-key attack on the
KASUMI cryptosystem used in GSM and 3G telephony. J. Cryptol. 27(4), 824–849
(2014)

10. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp.
274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 15

11. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41. Submitted to CAESAR,
October 2016

12. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and Serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 6

13. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45708-9 3

14. Liu, G., Ghosh, M., Ling, S.: Security analysis of SKINNY under related-tweakey
settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017).
https://doi.org/10.13154/tosc.v2017.i3.37-72

15. McGrew, D.A., Viega, J.: The security and performance of the Galois/Counter
Mode (GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30556-9 27

https://doi.org/10.1007/978-3-662-53008-5_5
https://doi.org/10.1007/978-3-662-53008-5_5
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-642-14623-7_21
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/978-3-662-45608-8_15
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.13154/tosc.v2017.i3.37-72
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27

106 Y. Sasaki

16. Mehrdad, A., Moazami, F., Soleimany, H.: Impossible differential cryptanalysis
on Deoxys-BC-256. Cryptology ePrint Archive, Report 2018/048 (2018). https://
eprint.iacr.org/2018/048

17. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In: Wu, C.-K., Yung, M., Lin, D. (eds.)
Inscrypt 2011. LNCS, vol. 7537, pp. 57–76. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34704-7 5

18. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory
57(4), 2517–2521 (2011). https://doi.org/10.1109/TIT.2011.2111091

19. National Institute of Standards and Technology: Federal Information Processing
Standards Publication 197: Advanced Encryption Standard (AES). NIST, Novem-
ber 2001

20. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

https://eprint.iacr.org/2018/048
https://eprint.iacr.org/2018/048
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1109/TIT.2011.2111091
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12

SCA-Resistance for AES: How Cheap
Can We Go?

Ricardo Chaves1(B), �Lukasz Chmielewski2, Francesco Regazzoni3,
and Lejla Batina4

1 INESC-ID, IST, Universidade de Lisboa, Lisbon, Portugal
ricardo.chaves@inesc-id.pt

2 Riscure BV, Delft, The Netherlands
3 ALaRI - University of Lugano, Lugano, Switzerland

4 Digital Security Group - ICIS, Radboud University Nijmegen,
Nijmegen, The Netherlands

Abstract. This paper introduces a novel AES structure capable of
improving the robustness against power analysis attacks while allowing
for a very compact structure with a potentially negligible area and per-
formance impact. The proposed design is based on a low entropy masking
scheme, where half of the time the true value and half of the time the
complemented value are used to mask the power consumption variation.
The obtained experimental results suggest that the area overhead for the
protection against power analysis is as low as 5% LUT increase with a
performance degradation of about 10%. When compared with the state
of the art supported on FPGAs, efficiency improvements above 6 times
and a throughput improvement of at least two times higher are achieved.

1 Introduction

Modern society is strongly dependent on electronic devices. Smart phones and
smart devices pervaded every aspect of our lives, handling a large amount of
private and sensitive information. As these smart devices become increasingly
connected together to form the Internet of Things, they become crucial compo-
nents of our critical infrastructure. To allow the safe deployment and operation
of these devices, designers must rely on secure primitives.

Unfortunately, mathematically strong cryptographic algorithms are not suffi-
cient to guarantee the security of devices when computers are pervasive. Contrary
to few years ago, nowadays target devices are potentially “in the hands” of the
attackers, which can exploit more efficient and effective ways to extract secret
information. The most powerful way to gain access to secret data is to exploit
the weaknesses of the implementation rather than to target the mathematical
structure of the algorithm itself. These attacks are called physical attacks as they
exploit the physical weaknesses of the computing device. One of the most pow-
erful physical attacks is power analysis [11], which exploits the relation between
the power consumed by the device and the data being processed.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 107–123, 2018.
https://doi.org/10.1007/978-3-319-89339-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_7&domain=pdf

108 R. Chaves et al.

Countermeasures against power analysis attacks, were already mentioned in
the seminal work of Kocher et at. [11]. Power analysis attacks infer the secret
key exploiting the dependence between the power consumed by a device and
the data being processed (which, in the case of cryptographic primitives, might
have to be kept secret). To avoid these attacks it is thus necessary to remove
the dependence between the secret data and the power consumed during the
computation.

Countermeasures are usually classified using the approach followed for achiev-
ing the protection. The first approach consists in breaking the link between the
actual data that is processed by the device and the data on which the computa-
tion is performed. It is usually called masking, originally proposed by Messerges
et al. [12] exploiting the principle of secret sharing [3]. It often consist of ran-
domizing the secret data by adding a random value to them. The value has to
be removed at the end of the computation to obtain the correct result. The sec-
ond approach consist in breaking the link between the data computed by the
device and the power consumed by the computations. It is called hiding, and
generally consist in the “hiding” of the power consumed by the computation of
secret data within the power trace. One way to achieve hiding is by flattening
the power consumption of a device: if all the computation consume the same
amount of power, the power consumed will not be dependent on the secret data
any more. Hiding is typically implemented using logic styles more robust against
Side-Channel Attacks (SCA) such as SABL [21], WDDL [22], or MCML [16].

Both approaches have some issues, for instance the early propagation effect
[20], which affect the security of the overall implementation. Additionally, their
overhead in terms of area, performance, complexity of design and power/energy
consumption can be too high for low cost and battery operated devices. As
a result, often, designers have to trade performance and area utilization with
resistance against power analysis attacks.

In this work, we propose a compact implementation of the AES algorithm,
targeting reconfigurable devices, capable of reaching high throughputs while at
the same time improving the robustness against power analysis attacks.

To achieve this result, we consider the use of low entropy masking schemes
[14]. The main idea is to use two representations for each value, such that every
value has the same average power consumption. In this case we consider the
true and the complemented representation of each value. Moreover, we ensure
that, on average, the usage of the true and complemented representations follow
a uniform distribution. In this way, we mask the power consumption variation,
reducing the information that an attacker can obtain, while collecting the several
power traces needed to successful complete the attack. The representation of the
value is controlled by XORing it with the appropriate mask value, randomly
selected and updated at each cycle. While low entropy masking schemes, as the
one herein considered, do not fully protect against SCA, the simplicity of this
approach allows for a compact and high performance AES design. Experimental
results suggest a significantly higher resistance against first order CPA at a
potentially negligible area and performance cost, demonstrating the potential of
the proposed approach.

SCA-Resistance for AES: How Cheap Can We Go? 109

The rest of the paper is organized as follows: Sect. 2 summarizes the state
of the art AES designs and countermeasures implemented using reconfigurable
hardware. Section 3 presents the proposed approach and details the resulting
AES structure. Section 4 reports performance and area figures as well as the
security analysis carried out using a SAKURA-G board as the test platform.

2 Countermeasures Against Power Analysis Attacks

Both approaches, masking and hiding, were proposed and explored for software
and hardware, concentrating in the second case on both ASIC and reconfig-
urable devices. FPGAs have been initially used for prototyping and for low
volume production, as they allow to limit the non recurring engineering costs.
However, state of the art FPGAs have reached a size that is sufficient to fit in a
complex System-on-chip, making them also an attractive platform for large scale
consumer electronics. For this reason, we focus on countermeasures applied to
reconfigurable logic. In the remaining part of this section, we concentrate on
previous research efforts proposing countermeasures to power analysis attacks
suitable for FPGAs.

Initial works proposing hiding for FPGAs attempted to adapt to reconfig-
urable hardware concepts previously proposed for ASIC. One example of this
is dual rail precharge, proposed for ASIC [22]. It consists of gates where the
computation is carried out in two phases: a precharge, where a refreshing wave
is produced, and an evaluation, where both a true and a complemented value
of the same operation are computed. This approach should, in theory, result in
an identical amount of transitions (thus also in the same power consumption)
regardless of the data processed. One of the first works proposing dual rail for
FPGAs is the one of Yu and Schaumont [25]. The authors showed how to imple-
ment WDDL and how to improve its security on FPGA. Higher security was
achieved by duplicating the placed and routed WDDL netlist. However, the area
overhead is significant and the logic style itself suffers from the so called early
propagation effect [20].

A recent improvement on hiding was reported by Wild et al. [23]. The authors
propose GliFreD, a technique aiming at solving the early propagation issue, while
avoiding glitches and mitigating imbalanced routing as well. The approach was
evaluated protecting an implementation of the AES S-box as proposed by Can-
right [2]. The security evaluation shows a reduction in the perceived information.
However, the area overhead is significantly larger: the protected S-box occupies
approximately 30 times more slices, 2 times more LUTs, and 100 times more
flip-flops.

Several masking countermeasures (and a combination of them) were explored
by Güneysu and Moradi [8]. The authors demonstrated, how noise generation,
clock randomization, and memory scrambling can defeat first order differen-
tial power analysis. They reported results on protecting an implementation of
the AES algorithm based on a T-box approach. They further showed that by
combining several countermeasures one can further increase the resistance to

110 R. Chaves et al.

side-channel attacks. However, the area required by the protected version is
approximately 2300 LUTs and 1100 Registers larger than the unprotected core.
Similarly, the throughput is reduced by a factor 3.77. Despite these improve-
ments in regard to the remaining state of the art, the cost of this protection is
still excessively high for meeting the constraints of several applications.

The memory scrambling proposed in that work was further improved by
Sasdrich et al. [19]. The authors propose to update the mask only before each
encryption (keeping the same mask during the whole encryption process). To
avoid information leakage caused by two values consecutively stored in a register
with the same mask, each S-box is surrounded by two registers to interleave the
computation of real data with the computation of dummy values. Reported
results show a significant improvement compared to the previously proposed
scrambling approach of Güneysu and Moradi. However, the area overhead is
still significant and the security of the proposed approach, when using RAM, is
reduced due to internal architecture of the distributed blocks. The design is much
more secure when it is implemented using BRAMs, however the area overhead
and the limitation of using a single mask per encryption still persist.

Regazzoni et al. [17] proposed to exploit the larger size of state of the art
Xilinx FPGAs, which nicely fit look up tables of 8 bit inputs, for implement-
ing a compact AES accelerator. To do so, the authors adapted to reconfigurable
devices a masking scheme largely based on 4 and 8 bit tables, originally designed
to be placed in the memory of micro-controllers [15]. Despite the higher through-
put, area overhead was still considerably high (depending on the size of the dat-
apath, it was reported to be approximately two to three times the size of the
unprotected reference designs).

The concept of low entropy masking, herein considered when limiting the
amount of possible masks, was introduced by Nassar et al. [13]. The authors
present a study on the use of low entropy masking, i.e. using a limited sub-
set of possible mask values. In their proposed approach, each S-box performs
the byte substitution using a specific fixed predefined mask. The randomness
of this approach is in the choice of each S-box at the beginning of the round
computation. These masks (m[i]) are then used in a chaining scheme where
mout[i] = min[i + 1 mod16]. The authors also evaluate the impact of using a
small subset of masks in their solution in terms of leakage, particularly high
order leakage. The limited number of masks allows to obtain a more compact
structure, at a cost of lower protection [24]. However, the performance (34%
slower) and area impact (48% more LUTs) of this solution is still significant [14].

Overall, from the security point of view, the designs proposed so far suggest
resistance up to at least first order attacks. However, they suffer from high area
overhead as well as from relatively limited performance.

3 Proposed Low Entropy Masking

In this section we firstly describe the proposed approach, followed by the descrip-
tion of the resulting AES structure. The implemented AES structure is based

SCA-Resistance for AES: How Cheap Can We Go? 111

on the unprotected T-box AES implementation, with a datapath of 128 bits,
presented in [5], computing a 128 data block each 10 clock cycles.

3.1 Power Consumption Hiding with Low Entropy Masking

The proposed approach strives at obfuscating the relation between the key
dependent data and the power consumption with a low area and performance
impact. Rather than using dedicated logic, such as dual rail logic, which contin-
uously hides the key dependent power consumption, we mask the key dependent
power consumption by using a low entropy masking scheme to influence the
average power consumption value.

This is done by randomly using the value or its complement, i.e. the value 1
can be represented by ‘1’ if not-complemented or by ‘0’ if complemented. Simi-
larly, the value ‘0’ can be ‘0’ (not-complemented) or ‘1’ (complemented). Selec-
tion between complemented and not-complemented is done randomly, following
a uniform distribution of the random values. Ensuring that the complement of
the value is used 50% of the time, the average power consumption will be the
same for both 1 and 0 binary values. Herein, a more pragmatical approach is used
by applying the complement or non-complement at the byte level. To implement
this, low entropy masking is used [13]. In particular, a set of two masks are used
such that the masks are the complement of each other. In this design we consider
the simplest masks, namely “11111111” and “00000000”. With these two mask
values, the hiding is performed by:

Si ⊕ M i = Si ⊕ 11111111 = S̄i, (1)

if the mask status is ‘1’ or:

Si ⊕ M i = Si ⊕ 00000000 = Si, (2)

if the mask status is ‘0’. Si represent byte i of the state and M i the mask
used on that byte. In practice, this correspond to the complemented or non-
complemented value of the value itself. Once more, for the masking to work
properly M i = 11111111, 50% of the time in a random manner.

Unlike the approach proposed in [14] where each S-box implements a specific
mask and, since the S-boxes are addressed by the masked data, two barrel shifters
are required, the proposed approach has almost no overhead other than the
memory needed to store the masked values.

With this solution all S-boxes must be able to perform the computation for
the values affected by any of the used masks. In this particular case, the input is
the value or its complement, depending on the mask status (Min). Independent
of the input mask, the generated output will have a different, random, mask
status (Mout). Note that each byte of the AES 16 byte state has its own random
mask status. In this approach, each S-box receives a different random value, thus
the output of each S-box is masked independently.

In this design, a T-box based implementation is considered. Given this app-
roach and the two considered masks, each T-box must be able to receive the

112 R. Chaves et al.

complemented or non-complemented input value and generate a complemented
or non-complemented output value, according to the input and output mask
status. For this, two random bits are used for each byte of the round value (M i

in

and M i
out). Considering S and T (S) as the unmasked input and output values,

respectively, each T-box needs to be able to compute T (S), T (S̄), T̄ (S), and
T̄ (S̄), as illustrated in Fig. 1. When implemented with lookup tables, this leads
to a 4 times larger lookup table.

Fig. 1. Protected AES main loop.

To assure the correct mask status of the obtained results, one needs to com-
pute the resulting mask status. This is very simple to compute, since the resulting
values are either complemented or not complemented.

In regard to the remaining operations performed to compute the AES algo-
rithm, no additional care needs to be taken, since these operations consist of
linear operations, namely shifts and XOR operations that do not change the
mask status.

The resulting mask status is given by the XOR of the mask status of all the
involved values, as exemplified by the following:

S′
0 ⊕ M0

in = T (S0) ⊕ M0
out ⊕ · · · ⊕ T (S15) ⊕ M15

out. (3)

SCA-Resistance for AES: How Cheap Can We Go? 113

Given the linearity of the XOR operation, the value of the state (S) and the
mask (M) can be computed separately as:

S′
0 = T (S0) ⊕ T (S5) ⊕ T (S10) ⊕ T (S15); (4)

M0
in = M0

out ⊕ M5
out ⊕ M10

out ⊕ M15
out, (5)

where T (S) represents the computation of the T-box operation over one byte of
the state S.

In this way, there are no issues related to the “mask correction” as this is
built into our scheme intrinsically. Figure 1 depicts the resulting round structure
given the proposed masking approach, using a dual port lookup table for the T-
box implementation. With this approach 16 random values per round are needed
in order to define the mask status (M i

out) of the output of each T-box.
The above description only considers the masking during the round compu-

tation. However, the first key addition (performed for each input block before
the round computation itself) also needs to be protected. To protect the first
key addition with the input data, the same masking approach is deployed, where
each input byte is masked (by taking its complement or not), computing:

S′ = Datain ⊕ Min ⊕ Key0; (6)

where Datain represents the 16 bytes of the input block, Key0 represents the
first 16 bytes of the expanded key, and Min represents the 16 random bits of the
first mask status. The resulting structure for this operation is shown at the top
of Fig. 2.

Regarding the conclusion of the block cipher process, the AES algorithm has
the particularity that in the last round the MixColumn operation is not com-
puted. The result is obtained directly through the S-box. Three main solutions
are used to deal with this property. The first is to perform the MixColumn on
a separate logic block, not using T-boxes, and bypassing this operation in the
last round using a multiplexer. This solution tends to result in more complex
and costly structures, particularly on FPGAs. The second solution takes into
account that for encryption the output of the T-box is:

T (S) = 1 × SBOX(S)|| 1 × SBOX(S)|| 2 × SBOX(S)|| 3 × SBOX(S), (7)

where || corresponds to the concatenation of bytes and SBOX(S) corresponds
to the S-box operation over one byte of the state S. Thus, the needed S-box
operation (SBOX(S)) can be obtained directly from T (S). However, when per-
forming the inverse MixColumn operation, in the decryption, the value S−1

BOX(S)
is not outputted. As such, an additional entry in the lookup table is needed in
order to provide the computation of S−1

BOX(S) for the decryption, requiring more
memory space. The third solution recombines the 4 bytes outputted from the
T-box to generate the S-box output [5]. This is possible since the XOR of the
multiplication coefficients of the MixColumn operation results in 1. In the case
of encryption:

1 ⊕ 1 ⊕ 2 ⊕ 3 = 1, (8)

114 R. Chaves et al.

Fig. 2. Protected AES structure.

while in the case of decryption:

9 ⊕ Bh ⊕ Dh ⊕ Eh = 1. (9)

Thus, by XORing the 4 bytes of the T-box, both for encryption and decryption,
the MixColumn operation is annulled. This option avoids the use of additional
memory or a more complex data path to compute the S-box operation sepa-
rately. However, it requires the use of additional XOR operations to compute (8)
and (9).

This last approach is the one herein considered. As such, the output of T-box i
is affected by the Mask M i

out. Thus, the output of the S-box can be computed
by:

S(Si) = T1(Si) ⊕M i
out ⊕ T2(Si) ⊕M i

out ⊕ T3(Si) ⊕M i
out ⊕ T4(Si) ⊕M i

out, (10)

where T1, T2, T3, and T4 correspond to the first, second, third, and forth bytes
outputted by the T-box, as detailed in (8) and (9). However, by performing
this operation over these 4 bytes (all affected by the same mask) results in the
output no longer being affected by the mask. Following this last operation, the

SCA-Resistance for AES: How Cheap Can We Go? 115

final output value (Sout) would be obtained by XORing the S-box output with
the last round key. However, has shown in (10), this computation would no longer
be protected by the mask.

To solve this, the last key addition and the recombination of the T-box output
must be performed together in such a way that the mask is only removed at the
end, ensuring that the final key addition is performed with a masked value. This
can be accomplished by:

(tmpi ⊕ M i
out) = (T2(Si) ⊕ M i

out) ⊕ (T3(Si) ⊕ M i
out) ⊕ (T4(Si) ⊕ M i

out); (11)

Souti = (tmpi ⊕ M i
out) ⊕ (T1(Si) ⊕ M i

out) ⊕ Keylast, (12)

where Keylast corresponds to the last round key. Note that for this approach to
work properly, 3 (or more) input XOR operators must be available.

The resulting structure for the computation of each of the output bytes
(Souti) of the state is depicted at the bottom left side of Fig. 2. With this app-
roach the mask value is automatically removed, without the need to know the
status of the mask (Mout), resulting in a relatively compact structure to remove
the mask and to perform the last round computation.

3.2 FPGA Based Implementation Details

While the proposed structure is technology agnostic, the developed prototype
considered in the following section was implemented on an FPGA based tech-
nology, in particular the Xilinx SPARTAN-6 technology. The more recent Xilinx
FPGAs support 6 input LookUp Tables (LUT) and embedded RAM Blocks
(BRAMs) ranging from 18 to 36 kbits of capacity.

As depicted at the bottom of Fig. 1, the key addition and MixColumn oper-
ation is computed by XORing 5 values, resulting in the next state value (S′).
This entire operation can be mapped into a single LUT (per bit). Identically, the
final round key addition and unmask operation (5 input XOR), depicted at the
bottom left side of Fig. 2, can also be entirely mapped into a single LUT (per
bit), thus assuring that no intermediate unmasked values exists during the key
addition.

The T-box lookup operation is mapped into a BRAM. Considering only
encryption or decryption, the unmasked operation corresponds to an 8 bit input
with a 32 bit output operation. Given this, the total memory requirement (per
T-box) is:

28 × 32 = 8 kbits. (13)

As such, in the proposed approach each T-box needs to compute 4 different
combinations of complemented or non-complemented values (as illustrated in
Fig. 1). A total amount of memory of 32 kbits per T-box is needed. This T-box
can be mapped into a single 36 kbit BRAM (on VIRTEX 5 to 7 devices) or into
two 18 kbit BRAMs on SPARTAN 6 devices. When supporting both encryption
and decryption, twice as much memory is needed, i.e. 64 kbits.

116 R. Chaves et al.

Since the same mask is used for all T-boxes and the fact that the BRAMs
are dual ported, each group of BRAMs is able to compute two T-boxes, one on
each port of the BRAM.

Note that, when mapping one T-box into multiple BRAMs, care should be
taken in order to assure that, for example, T (S) and T̄ (S) do not go into one
BRAM and that T (S̄) and T̄ (S̄) to another BRAM, since this might result
in additional leakage. One should place all combinations into a single BRAM,
having each BRAM output fewer bits of the output result.

4 Experimental Results and Evaluation

In order to properly evaluate the proposed approach, the resulting structure
was implemented on a SAKURA-G platform [9], with a Xilinx SPARTAN-6
LX75 FPGA. The implementation results were obtained using the Xilinx ISE
Design Suite (v14.5) with the design described using VHDL. The presented
implementation results were obtained after P&R using the default parameters
of the tool.

For the required random values, two 16-bit Linear Feedback Shift Regis-
ters (LFSR) are herein used during the SCA evaluation to generate the pseudo
random values, two for each byte. These LFSR are implemented using the poly-
nomials x16 + x14 + x13 + x11 + x1 and x16 + x15 + x13 + x4 + x1, initialized
with the hexadecimal values (A376)h and (7A1B)h, respectively. The state of
each LFSR is used to set the status of the Min mask for the first key addition
and for the round masks Mout. Note that, in a real world implementation, true
random number generators should be used. The results obtained are based on
the LFSR specified above. For the leakage evaluation, the amplified output of
the SAKURA-G board, which is connected to a shunt resistor which in turn
connected in serial to the target FPGA. The power traces are obtained using a
LeCroy WaveRunner 610Zi oscilloscope set at 1 GS/s using the full bandwidth
of the scope.

4.1 Side-Channel Analysis Evaluation

As the implementation proposed in this work only claims security against first
order side channel attacks that exploit the Hamming weight of the SBox output,
we have chosen to analyze the acquired traces through TVLA with chosen input
method [1] aimed at exploiting the SBox Hamming weight model (so-called HW
model). The first group for TVLA contains traces for which all SBox outputs
in round 5 are set to have Hamming weight equal to 0, 1, or 2; the second
group contains traces without any limitations on the SBox outputs. We acquired
200 000 traces for the unprotected implementation (for which the PRNG is
turned off) and 200 000 traces for the protected implementation (for which the
PRNG is turned on).

Figure 3 presents a comparison of t-values for the unprotected and protected
AES implementations for the rounds from 3 to 7; the maximum t-values values

SCA-Resistance for AES: How Cheap Can We Go? 117

are marked. We do not present the results for other rounds since they do not
show leakage (because we fix the SBox hamming weight only in round 5). We
can observe leakage, namely a peak above the 4.5 threshold, for both the unpro-
tected and protected implementations; however, the peak for the unprotected
implementation is 25 times greater than for the protected one1. Therefore, we
can notice a significant security improvement in the protected case.

Fig. 3. t-values for the unprotected (top) and protected (bottom) AES implementa-
tions for the rounds from 3 to 7.

We have also performed a fixed vs. random TVLA analysis [7], but we have
achieved very similar results: the peak for the unprotected implementation is
approximately 30 times greater than for the protected one.

Subsequently, to further analyze the security of our solution we conducted
a second experiment. We have chosen to analyze traces through classical DPA
aimed at exploiting the HW model. Additionally, for sake of completeness, we
aim at exploiting another common model: the SBox input-output Hamming
distance model (i.e., a Hamming weight of the xor of the SBox output and the
SBox input); we call the second model, the HD model. For this analysis 100 000
traces were collected for the unprotected implementation. We have collected 27

1 We can notice that the strongest leakage for the unprotected implementation hap-
pens slightly later than for the protected one, but we do not have an explanation of
this situation.

118 R. Chaves et al.

million traces for the protected implementation. Figure 4 presents the results of
the side channel analysis aimed at recovering all 16 bytes of the key.

As it is visible in the top plot of Fig. 4, when the random generator is turned
off (LFSRs initialized with all zeros), the key entropy is reduced to less than 15

Fig. 4. Key convergence for the unprotected AES implementation for the HW model
(top), key convergence of the protected AES implementation for the HW model (mid-
dle) and the HD model (bottom).

SCA-Resistance for AES: How Cheap Can We Go? 119

bits with 100 000 traces; only 2 out of 16 bytes do not reach the full convergence.
Furthermore, the entropy is reduced to less than 23 bits, which can be efficiently
brute-forced, already with 40 000 traces. We only present the results for the HW
model as the attack using HD does not yield successful results.

When the random generator is active, we cannot reduce the search key space
with 27 million traces, as visible in the key convergence plots in Fig. 4. In both
models the remaining key entropy is approximately 127 bits. Therefore, we con-
clude that it seems to not be possible to mount a classical first order CPA with
the collected 27 million traces. This also confirms that the leakage detected using
TVLA for the protected implementation is most likely caused by the real device
leakage model being non-linear (for example, some SBox output bits might be
leaking in combination). We note that it might be possible to exploit this leak-
age using more complex side channel attacks, like, linear regression analysis [6],
template attacks [4], or attacks on low entropy masking schemes [24]; we leave
that as future work.

We perform the evaluation using Riscure’s Inspector software package2.

4.2 Implementation Results Analysis

In order to evaluate the impact of the proposed solution, in terms of area cost
and performance, the resulting structure is herein compared with the equivalent
unprotected AES structure, proposed in [5], and with the most relevant solution
in the state of the art. To better compare with the state of the art, the proposed
structure was also implemented on a Xilinx VIRTEX-5. The obtained results are
depicted in Table 1.

The implementation results on a SPARTAN-6 suggest that the proposed
structure requires a total of 603 LUTs and 55 Registers and 32 BRAMs, and
is able to run at 110 MHz. Considering as an efficiency metric the achievable
throughput per used LUTs, and achieving an encryption/decryption throughput
of 1.4 Gbps, a efficiency of 2.3 throughput per LUT is achieved by the proposed
solution.

When compared with the unprotected version of the AES structure [5],
requiring 586 LUTs and achieving a throughput of 1.7 Gbps, the proposed pro-
tected solution requires 3% more LUTs, 37 more Registers and 2 to 4 times
the number of BRAMs, depending if decryption is also supported. The extra
LUTs and Registers are mainly due to the two 16-bit LFSR used to generate
the Pseudo Random values. The actual cost of the proposed solution is basically
in the needed extra BRAMs, since the SPARTAN BRAMs are relatively smaller
and in the achievable throughput, being 20% slower. The throughput degrada-
tion is mostly due to the more complex routing, given the higher BRAM usage,
since the datapath is basically the same.

This impact results on an efficiency degradation of 1.23 times. When con-
sidering an implementation supporting only encryption, requiring 16 BRAMs

2 http://www.riscure.com/.

http://www.riscure.com/

120 R. Chaves et al.

Table 1. DPA resistant AES implementations

Device Enc/dec Logic Freq. Throughput Efficiency

LUT BRAMs [MHz] [Mbps] [Mbps/LUT]

[10] XC3S500 n.a. 4888a 0 n.a. n.a. n.a.

[8] SAKURA-G Enc 2888b 16 147 35.4 0.01

[18] SAKURA-G Enc 1284 8 148 68.6 0.05

Ours SAKURA-G Enc 525 16 148 1894 3.6

Ours SAKURA-G Both 603 32 110 1400 2.3

[5] SAKURA-G Both 586 8 136 1740 3

[17] XC5vlx50 Enc 1429 0 100 290 0.2

[17] XC5vlx50 Enc 4772 0 100 1163 0.2

[5] XC5vlx30 Enc 518 8 210 2688 5.2

Ours XC5vlx50 Enc 547 8 187 2393 4.3

Ours XC5vlx50 Both 548 16 157 1843 3.4
aOnly Slice values are presented. The depicted value considers that 1 slice has 4 LUTs
available.
bThe value listed is for the AES core only. It does not include the mask generation
structure.

(twice the original number of BRAMs), a throughput of 1.9 Gbps is
achieved.

When targeting a VIRTEX-5 device, supporting larger BRAMs, and only per-
forming encryption, the resulting structure only requires 8 BRAMs, the same as
in the unprotected implementation. In this particular case, it can be stated that
the proposed solution does not impose any additional BRAM cost. Performance-
wise the implementation supporting only encryption allows to reduce the number
of needed BRAMs and consequently a simpler routing can be achieved, result-
ing on a throughput of 2.4 Gbps, 10% slower than the non protected reference
design.

When compared with the solution proposed in [18], only supporting encryp-
tion, the solution herein proposed requires less than half the number of LUTs
and is able to achieve a 27 times higher throughput. The solution proposed
in [18] requires 8 BRAMs, considering a 64-bit datapath. If the solution pro-
posed in [18] implements a 128-bit datapath, it will also require 16 BRAMs,
one for each SBOX. This is due to the fact that one of the dual ports of each
BRAM needs to be reserved for the mask update. In this case it requires the
same amount of BRAMs as for the solution herein proposed. Note that the
results presented in [18] only consider the cost of the AES core, without the
mask generation hardware, which substantially contributes to higher area costs.

In [17], a structure considering a more traditional approach to masking is
proposed, for a 32 and 128 bit datapath. The authors implemented a masked

SCA-Resistance for AES: How Cheap Can We Go? 121

design for the AES algorithm, which is heavily based on 4 and 8 bit look-up-
tables, targeting the existing LUTs on the state of the art Xilinx FGPAs. With
this approach no BRAMs are required. The obtained results [17] suggest a cost
of 4772 LUTs and 904 Registers, achieving a throughout of 1.2 Gbps. When com-
pared with their reference design [17], this solution imposes a cost of 3 times the
amount of LUTs and achieves a throughput 2.5 times slower. When comparing
the solution herein proposed with this one [17], the proposed solution requires
8 times fewer LUTs and achieves 2 times the throughput. However, the solu-
tion proposed in [17] does not require BRAMs so a direct comparison cannot be
made. Notwithstanding, the structure herein proposed for encryption can have
a almost no area cost and a 10% performance degradation on a VIRTEX-5, in
regard to the reference design, while the structure in [17] imposes a area increase
between 2 to 3 time, in regard to the reference design.

While Altera Stratix-II values were not obtained to compare with the struc-
ture presented in [14], proposing the low entropy masking scheme, it is possible
to evaluate the overhead imposed by each approach. The results presented for the
encryption structure presented in [14] suggest a overhead cost of 48% and 40%
more LUTs and memory blocks, respectively, with a performance degradation of
34%. While the resulting structure supporting encryption on a VIRTEX-5 has
a negligible area and performance impact.

Overall, when compared with the existing state of the art, the proposed solu-
tion suggests an efficiency improvement above 6 times with throughputs above 2
Gbps. Depending on the device and encryption support, the resulting structure
can have a negligible cost increase and a minimum performance degradation.

To allow for further and independent evaluation, the implemented AES core
is available at: http://sips.inesc-id.pt/∼rjfc/cores/AES DPA2018.

5 Conclusion

This paper introduced a novel AES design that improves the robustness against
power analysis attacks by using low entropy masking. In the considered approach,
the computed byte values are represented by either the actual value or by its
complement, masking the average power consumption. The representation of
each AES state byte is controlled by XORing it with the appropriate mask value,
randomly selected and updated at each cycle, both at the input and output of the
T-boxes. While low entropy masking schemes are known for not fully protecting
against SCA, the simplicity of this approach enables an extreme compactness,
reaching an almost negligible area cost, and very high performance.

Experimental results suggest a significantly higher resistance against first
order CPA (suggesting not to be possible to mount a classical first order CPA
with 27 million traces) at a potentially negligible area and performance cost.
When compared with the state of the art, efficiency improvements above 6
times are expected with a throughput of at least two times higher than the
best protected state of the art. When compared with the reference design on
a VIRTEX-5, performing encryption, the obtained results suggest a 5% LUT
increase and 10% performance degradation, which can be considered negligible
and within the tools margin of error.

http://sips.inesc-id.pt/~rjfc/cores/AES_DPA2018

122 R. Chaves et al.

Acknowledgements. This work was partially supported by national funds through
Fundação para a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013
and upon work from COST Action IC1403 CRYPTACUS, supported by COST (Euro-
pean Cooperation in Science and Technology).

References

1. Becker, G., Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G.,
Kouzminov, T., Leiserson, A., Marson, M., Rohatgi, P., Saab, S.: Test vector leak-
age assessment (TVLA) methodology in practice. In: International Cryptographic
Module Conference, vol. 1001, p. 13 (2013)

2. Canright, D.: A very compact S-box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES
2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005). https://doi.org/
10.1007/11545262 32

3. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

5. Chaves, R., Kuzmanov, G., Vassiliadis, S., Sousa, L.: Reconfigurable memory based
AES co-processor. In: 20th International Parallel and Distributed Processing Sym-
posium 2006, IPDPS 2006, pp. 8–pp. IEEE (2006)

6. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side channel attacks
and leakage modeling. J. Cryptograph. Eng. 1(2), 123–144 (2011)

7. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P.: A testing methodology for side-
channel resistance validation (2011)

8. Güneysu, T., Moradi, A.: Generic side-channel countermeasures for reconfigurable
devices. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 33–48.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9 3

9. Guntur, H., Ishii, J., Satoh, A.: Side-channel attack user reference architecture
board SAKURA-G. In: 2014 IEEE 3rd Global Conference on Consumer Electronics
(GCCE), pp. 271–274, October 2014

10. Kaps, J., Velegalati, R.: DPA resistant AES on FPGA using partial DDL. In:
2010 18th IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 273–280. IEEE (2010)

11. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

12. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In:
Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS,
vol. 1978, pp. 150–164. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44706-7 11

13. Nassar, M., Guilley, S., Danger, J.-L.: Formal analysis of the entropy/security
trade-off in first-order masking countermeasures against side-channel attacks. In:
Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp.
22–39. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25578-6 4

https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-23951-9_3
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/978-3-642-25578-6_4

SCA-Resistance for AES: How Cheap Can We Go? 123

14. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: RSM: a small and fast counter-
measure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Design,
Automation and Test in Europe Conference and Exhibition (DATE), pp. 1173–
1178. IEEE (2012)

15. Oswald, E., Schramm, K.: An efficient masking scheme for AES software implemen-
tations. In: Song, J.-S., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786,
pp. 292–305. Springer, Heidelberg (2006). https://doi.org/10.1007/11604938 23

16. Regazzoni, F., Eisenbarth, T., Poschmann, A., Großschädl, J., Gürkaynak, F.K.,
Macchetti, M., Deniz, Z.T., Pozzi, L., Paar, C., Leblebici, Y., Ienne, P.: Evaluating
resistance of MCML technology to power analysis attacks using a simulation-based
methodology. Trans. Comput. Sci. 4, 230–243 (2009)

17. Regazzoni, F., Wang, Y., Standaert, F.X.: FPGA implementations of the AES
masked against power analysis attacks. Proc. COSADE 2011, 56–66 (2011)

18. Sasdrich, P., Mischke, O., Moradi, A., Güneysu, T.: Side-channel protection by ran-
domizing look-up tables on reconfigurable hardware. In: Mangard, S., Poschmann,
A.Y. (eds.) COSADE 2014. LNCS, vol. 9064, pp. 95–107. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21476-4 7

19. Sasdrich, P., Moradi, A., Mischke, O., Güneysu, T.: Achieving side-channel protec-
tion with dynamic logic reconfiguration on modern FPGAs. In: IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington,
DC, USA, 5–7 May 2015, pp. 130–136 (2015)

20. Suzuki, D., Saeki, M.: Security evaluation of DPA countermeasures using dual-
rail pre-charge logic style. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 255–269. Springer, Heidelberg (2006). https://doi.org/10.1007/
11894063 21

21. Tiri, K., Verbauwhede, I.: Securing encryption algorithms against DPA at the logic
level: next generation smart card technology. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 125–136. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 11

22. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: 2004 Design, Automation and Test
in Europe Conference and Exposition (DATE 2004), Paris, France, 16–20 February
2004, pp. 246–251 (2004)

23. Wild, A., Moradi, A., Güneysu, T.: Glifred: glitch-free duplication - towards power-
equalized circuits on FPGAs. IACR Cryptology ePrint Archive 2015, 124 (2015)

24. Ye, X., Eisenbarth, T.: On the vulnerability of low entropy masking schemes.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 44–60.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 4

25. Yu, P., Schaumont, P.: Secure FPGA circuits using controlled placement and rout-
ing. In: Proceedings of the 5th International Conference on Hardware/Software
Codesign and System Synthesis, CODES + ISSS 2007, Salzburg, Austria, 30
September–3 October 2007, pp. 45–50 (2007)

https://doi.org/10.1007/11604938_23
https://doi.org/10.1007/978-3-319-21476-4_7
https://doi.org/10.1007/11894063_21
https://doi.org/10.1007/11894063_21
https://doi.org/10.1007/978-3-540-45238-6_11
https://doi.org/10.1007/978-3-319-08302-5_4

Cryptanalysis of 1-Round KECCAK

Rajendra Kumar1(B), Mahesh Sreekumar Rajasree1, and Hoda AlKhzaimi2

1 Center for Cybersecurity, Indian Institute of Technology Kanpur, Kanpur, India
{rjndr,mahesr}@iitk.ac.in

2 Center for Cyber Security, New York University, Abu Dhabi, Abu Dhabi, UAE
hoda.alkhzaimi@nyu.edu

Abstract. In this paper, we give the first pre-image attack against 1-
round KECCAK-512 hash function, which works for all variants of 1-
round KECCAK. The attack gives a preimage of length less than 1024
bits by solving a system of 384 linear equations. We also give a collision
attack against 1-round KECCAK using similar analysis.

Keywords: Cryptanalysis · KECCAK · SHA-3 · Preimage · Collision

1 Introduction

Hash functions are used in digital signatures, message integrity and authentica-
tion. In 2006, NIST announced the “NIST hash function competition” which
received 64 proposals from around the world. In October 2012, KECCAK
designed by Bertoni et al. [1], was selected as the winner of the competition
and in 2015, it was standardized as a “Secure Hash Algorithm 3” [2].

The KECCAK hash family is based on the sponge construction [3]. Sponge
construction has the property to generate an output of any length and because
of this property, SHA3 standards include two extendable output functions which
are SHAKE128 and SHAKE256. These can also be used as a pseudo-random gen-
erator. Due to its vast applications, a lot of security analysis is being performed
on the KECCAK hash family.

In 2010, Bernstein [4] gave an idea for second preimage of KECCAK variants
and in 2014, Chang et al. [5] improved the time complexity for 1st and 2nd preim-
age attack on 7-round Keccak-224, 8-round Keccak-256/384 and 9-round Keccak-
512. Morawiecki et al. [6] gave a theoretical preimage attack up to 4 rounds of
KECCAK by using a technique called as rotational cryptanalysis. Morawiecki
and Srebrny [7] performed a preimage analysis of round reduced KECCAK by
using toolkit CryptLogVer and SAT solver PrecoSAT. Naya-Plasencia et al. [8]

R. Kumar and M. S. Rajasree—Supported by the Center for Cyber Security, New
York University AbuDhabi and Center for Cybersecurity and Cyber Defence of Crit-
ical Infrastructure, IIT Kanpur.
H. AlKhzaimi—Supported by the Center for Cyber Security, New York University
AbuDhabi.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 124–137, 2018.
https://doi.org/10.1007/978-3-319-89339-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_8&domain=pdf

Cryptanalysis of 1-Round KECCAK 125

gave a preimage attack on 2-round for KECCAK-224 and KECCAK-256 by
using the meet in middle approach. In 2016 Guo et al. [9] gave preimage attack
for 2 round for KECCAK-224, 256, 384 and 512. The complexity of attack [9]
for KECCAK-384 is 2129 and for KECCAK-512 is 2384. They extended this upto
4 round for small hash length. Dinur et al. [10,11] gave a collision attack upto
4 rounds using differential and algebraic techniques, and later improved upto
5 rounds using generalized internal differential [12]. Later Qiao et al. [13] gave
the first collision attack on 5 round of SHAKE-128 by extending the framework
developed by Dinur et al. [10]. By further analysing the KECCAK S-Box, Song
et al. [14] gave the first practical collision attack on 5 round KECCAK-224.
Apart from the above-mentioned attacks, there are several other attacks against
KECCAK.

Our Contribution: In this paper, we give the first practical preimage attack
against 1 round KECCAK-512. The only computation required in this attack is
solving 384 linear equations. It is based on exploiting the degree of freedom in the
equations between hash values and message bits, and converting these equations
to simple assignments of values to message variables. Using this method, we can
find a message of length less than 1024 bits corresponding to every hash value.
Also, the time complexity of this attack is constant.

Organization: The rest of the paper contains the following sections. In Sect. 2,
we briefly describe the structure of KECCAK. In Sect. 3, we show the cryptanal-
ysis of 1 round KECCAK-512. Section 4 contains the implementation results and
description of the collision attack. Section 5 contains conclusion and future works.

2 Structure of KECCAK

KECCAK hash function has 3 parameters: r is the bitrate, c is the capacity
and n is the output length. It is based on sponge construction [3] which uses a
padding function pad, a bitrate parameter r and a permutation function f as
shown in Fig. 1.

2.1 Sponge Construction

The sponge construction has two phases - absorbing and squeezing. The sponge
construction begins by applying the padding function pad on the input string M
which produces M ′ whose length is a multiple of r. M ′ under goes the absorbing
phase as follows.

1. M ′ is split into blocks of r bits namely m1,m2, ...mk.
2. There is an initial string(o0) which is a b bit string initialized to zero.
3. The initial r bits of o0 is XORed with first block m1 and is given as input to

f . The output produced by f is denoted by o1.
4. Similarly, the initial r bits of oi is XORed with the mi+1 and given to f .
5. Finally, the output of the absorbing phase is ok.

126 R. Kumar et al.

Fig. 1. Sponge function [3]

The squeezing phase consists of obtaining the output which can be of any
length. Let n be the required output length such that l = αr + β where β < r.

1. Apply the f function α more times such that ok+i = f(ok+i−1).
2. Let O be the concatenation of the first r bits of each ok+i where 0 ≤ i ≤ α.
3. The output of the sponge construction is the first l bits of O.

In case of SHA-3 hash family, f is a KECCAK-f [1600] permutation, and
the pad function appends 10∗1 to input M . KECCAK-f is a specialization of
KECCAK-p permutation.

KECCAK-f [b] = KECCAK-p[b, 12 + 2γ]

where γ = log2(b/25).

2.2 KECCAK-p Permutation

KECCAK-p permutation is denoted by KECCAK-p[b, nr], where b is length of
input string which is called the width of the permutation, nr is number of rounds
of internal transformation where b ∈ {25, 50, 100, 200, 400, 800, 1600} and nr

being any positive integer. We can define two more quantities w = b/25 and γ =
log2(b/25). For KECCAK-512, the number of rounds of internal transformation
nr is 24 and b = 1600. The b bit input string can be represented as a 5 × 5 × w
3-dimensional array known as state as shown in Fig. 2. A lane in a state S is
denoted by S[x][y] which is the substring S[x][y][0]|S[x][y][1]| . . . |S[x][y][w − 1]
where | is the concatenation function.

The internal transformation consists of 5 step mappings θ, ρ, π, χ and ι which
acts on a state. We give a brief description of each of these step mappings with
A and A′ being the state before and after applying a step mappings.

1. θ:

A′[x][y][z] = A[x][y][z] ⊕ CP [(x + 1) mod 5][(z − 1) mod 64]
⊕ CP [(x − 1) mod 5][z]

Cryptanalysis of 1-Round KECCAK 127

Fig. 2. KECCAK state [15]

where CP [x][z] is the parity of a column, i.e,

CP [x][z] = A[x][0][z] ⊕ A[x][1][z] ⊕ A[x][2][z] ⊕ A[x][3][z] ⊕ A[x][4][z]

2. ρ:
A′[x][y] = A[x][y] << r[x][y]

where << means bitwise rotation towards MSB of the 64-bit word. The values
of r[x][y] are given in the table below.

4 18 2 61 56 14

3 41 45 15 21 8

2 3 10 43 25 39

1 36 44 6 55 20

0 0 1 62 28 27

y\x 0 1 2 3 4

3. π:
A′[y][2x + 3y] = A[x][y]

π interchanges the lanes of the state A.
4. χ:

A′[x][y][z] = A[x][y][z] ⊕ ((A[(x + 1) mod 5][y][z] ⊕ 1)
.A[(x + 2) mod 5][y][z])

χ is the only non-linear operation among the 5 step mappings.
5. ι:

A′[0][0] = A[0][0] ⊕ RCi

where RCi is a constant which depends on i where i is the round number.

128 R. Kumar et al.

3 Cryptanalysis of One-Round KECCAK

In this section, we will cover the analysis of 1 round KECCAK for the different
preimage message size.

3.1 Preliminaries and Notations

In our analysis, we are going to use the following observations of the χ and θ
operation [9]. Considering χ as a row operation, let a0, a1, a2, a3, a4 be the 5
input bits to the χ operation and b0, b1, b2, b3, b4 be the 5 output bits.

Observation 1: In χ operation, if all output bits b0, b1, b2, b3, b4 are known,
then we can exactly determine the input bits a0, a1, a2, a3, a4 using

ai = bi ⊕ (bi+1 ⊕ 1).(bi+2 ⊕ (bi+3 ⊕ 1).bi+4)

Observation 2: In χ operation, if any 3 non-consecutive input bits are known,
then all the output bits can be written as linear combinations of input bits.

Observation 3: In χ operation, given b0, b1, b2 and a3 = 1, we can exactly
determine the values of a0, a1 and a2.

a2 = b2

a1 = b1 ⊕ (b2 ⊕ 1)

a0 = b0 ⊕ (b1 ⊕ b2).b2

Observation 4: Let d0, d1, d2, d3, d4 be the elements of a column. Then, the
parity of column can be fixed to a constant c by choosing for any i ∈ {0, 1, 2, 3, 4}

di = c ⊕ (
j=4⊕

j=1

di+j)

In the rest of the paper, all the message variables and hash values are rep-
resented in the form of lanes (array) of length 64 and we will use + symbol in
place of ⊕. In all the equations and Figures, the value inside the brackets ‘()’
indicates the offset by which the lane is shifted. For example, xi(k) denotes lane
xi rotated by an offset of k, whereas xi[k] denotes the kth bit of lane xi. Every
operation between two lanes are bitwise.

3.2 General Description of the Attack

We now give the generic description of the attack.

1. The given hash value uses the first 8 lanes of a state and we ignore the values
in the rest of the 17 lanes.

Cryptanalysis of 1-Round KECCAK 129

2. Invert the ι operation by XORing the (0, 0) lane with the Round constant
RC.

3. Invert the χ operation by using the above given observations. Let’s call this
state as I.

4. Apply the necessary operations on the message block to reach state I. For
making the operations linear, use the above observations.

5. Check for the dependencies among the linear equations. If they are indepen-
dent, then solve the system of linear equations.

3.3 Analysis of Preimage Attack by Using 1 Message Block

In this section, we are going to show that by using only 1 message block it is
not possible to find the preimage for all the hash values of KECCAK-512. In the
Subsect. 3.4, we will also characterize the hash values whose preimage can be
found by using 1 message block. In KECCAK-512, we have n = 512, c = 1024
and r = 576. So, the hash value occupies 8 lanes and message block is of 9 lanes.
Let A = a0a1a2a3a4a5a6a7a8 be the message block of 576 bit length where each
ai is an array of 64 bits. Figure 3 shows the state after applying θ, ρ and π on
A where di[k] = CP [i − 1][k] + CP [i + 1][k − 1] and CP represents the column
parity.

Suppose H = h0h1h2h3h4h5h6h7 is the 512-bit hash value where each hi

is of 64 bits. We know that we can invert the last row of H and obtain the
exact values of h

′
0, h

′
1, h

′
2, h

′
3 and h

′
4 (shown in Fig. 4) using the formula given in

Sect. 3.1. The same cannot be done for the second last row.

Fig. 3. State after applying θ, ρ, π

130 R. Kumar et al.

Fig. 4. Inverse operation on hash values

By equating the 3rd state of Fig. 3 and 2nd state of Fig. 4, we get the exact
values of d2, d3, d4 and two linear equations

a0 + d0 = h
′
0

a6 + d1 = h
′
1

By applying χ on the 3rd state of Fig. 3, we have the following equations

a3(28) + d3(28) + (d4(20) + 1)d0(3) = h5

d4(20) + (d0(3) + 1)d1(45) = h6

d0(3) + (d1(45) + 1)d2(61) = h7

The 2nd equation is quadratic while the other two are linear. It can be easily
seen that for many cases, there isn’t a solution to this system of equations. For
example, take the case where d4 = h

′
4 = 0 and d2 = h

′
2 = 0. Then,

(d0(3) + 1)d1(45) = h6

d0(3) = h7

The above equations cannot be solved simultaneously if h7 = 1 and h6 = 1.
So, by using only 1 message block we cannot get all possible hash values of
KECCAK-512.

3.4 Preimage Attack

In this section, we give the preimage attack to one round KECCAK-512. This
preimage attack gives a message of length less than 1024 bits, i.e two message
blocks. In each of the following subsection, we describe a preimage attack for one
round KECCAK-512 by considering different settings for the attack and give an
analysis on it. We will be considering h0, ..., h7 as the hash value where each hi

is of length 64 bits.

Cryptanalysis of 1-Round KECCAK 131

Fig. 5. Using one message block and keeping θ as identity

Using One Message Block and Keeping θ as Identity: We first invert
the hash values by applying χ−1 ◦ ι−1. To do this, we make the lanes at (3, 1)
and (4, 1) of the inverted state as 0 (refer Fig. 5). We further invert this state
through π and ρ. e0, ..., e8 is the message block represented in 9 lanes. Since we
are keeping θ as identity, we have only four free lane variables. Also, we must
keep the last bit of the message block as 1 inorder to satisfy the padding rule,
so the last bit of e8(which is equal to e3) should be 1. Therefore, we can assign

e0 = h′
0(0), e3 = h′

5(36), e6 = h′
1(20)

Therefore, we can successfully find the preimage for hash values of the form
h2 = h6 = h7 = 0 and both h0 and h1 can take any arbitary values whereas
h5 can have arbitary values except for a single bit which must be 1 because
h5 = h′

5 = e3(28). Also, h4 must be equal to h0h1 and h3 = h0. Hence for 2191

hash values we can find preimage by using 1 message block and keeping θ as
identity.

Using One Message Block Without Making θ as Identity: We first invert
the hash values by applying χ−1 ◦ ι−1, but this time keeping the lane at (3, 1) as
1. So, now we have h7 = h′

7. In Fig. 6, pi denotes the value added to an element

132 R. Kumar et al.

Fig. 6. Using one message block without making θ as identity

in ith column by the θ function. By comparing the 3rd state in Fig. 6 and the
state obtained by inverting the hash values, we use the following assignments.

e0(0) = h′
0(0) + h′

7(61) because p0(3) = h′
7(0)

e6(44) = h′
1(0) + 1 because p1(45) = 1

e3(28) = h′
5(0) + h′

3(1) because p3(27) = h′
3(0)

Lanes (4,0) and (1,1) are rotations of each other. From 320 linear equations in
320 variables, there are only 319 linearly independent equations. Therefore, for
at most 2383 hash values, we can find the preimage by solving these equations.

Therefore, hash values with h6 = h7(0) ⊕ h4(6) ⊕ h0(6).(h1(6) ⊕ h2(6).
h3(6)) ⊕ 1, we can find the preimage using 1 message block.

Using Two Message Blocks and Making both θ Operation as Identity:
By using the same idea used above, we are going to invert the hash values by
applying ρ−1 ◦ π−1 ◦ χ−1 ◦ ι−1. We are going to make θ operation as identity by
using the 5 lane variables of message block E. So, from second message block we
are left with only 4 free lane variables (Fig. 7).

For the first message block we are using the message block

D = d0, d1, d2, d3, 0, d0, d1, d2, d3

Cryptanalysis of 1-Round KECCAK 133

Fig. 7. Using two message blocks and making both θ operation as identity

Fig. 8. State W

This makes the θ operation identity. Figure 8 represents the state W which is
obtained after applying a KECCAK-p permutation on message block D.

Substituting wi, we get the following equations

h′
0 = d0 + RC0 + e0, h′

1(20) = e6

h′
2(21) = 0, h′

3(43) = 0, h′
4(50) = d2(62)d3(55)

h′
5(36) = e3 + d0, h′

6(44) = 0

h′
7(61) = d1(1), 1 = d0(36)

134 R. Kumar et al.

Fig. 9. By using two message block and keeping only first θ operation as identity

From the above equation, we have to assign d0 = 1 and by using the message
lanes e0, e6, e3, d1, d2 and d3 we can get any values for h′

0, h
′
1, h

′
4, h

′
5, h

′
7. Hence,

for hash values h0, h1, h2, h3, h4, h5, h6, h7 with constraints h3 = h2h0, h4 =
h2 + h0h1, h7 = h6, preimage can be found by using 2 message block and
keeping both the θ operation as identity. So, for total 2320 hash values we can
find preimage by using this analysis.

By Using Two Message Block and Keeping only First θ Operation
as Identity: We make the first θ operation applied to the message block D as
identity. So, we are left with only 4 message lanes d0, d1, d2, d3. After applying a
KECCAK-p permutation on message block D we get the state W which is same
as the one shown above.

For the second message, we are not putting any constraints.
After applying π ◦ ρ ◦ θ over the state W ⊕ E and equating this state to the

state we got after applying χ−1 ◦ ι−1 on the state of the hash value, we get 9
lane equation (576 equation) over the message block D and E (Fig. 9).

h′
0 = e0(0) + d0(0) + RC(0) + p0(0), h′

1 = e6(44) + p1(44)

h′
2 = p2(43), h′

3 = p3(21), h′
4 = d2(12)d3(5) + p4(14)

h′
5 = e3(28) + d0(28) + p3(28), h′

6 = p4(20)

h′
7 = d1(4) + p0(3), 1 = d0(17) + p1(45)

These equations are not linear because the column parities p0 and p3 con-
tains the terms d0(0)d1(44), d1(1)d2(6), and d2(62)d3(55). To make these equa-
tions linear we assigned d0 = 0 and d2 = 0. By this, we also get assignment of
e3, e6 and d3.

e3(28) = h′
5(0) + h′

3(7) because d0 = 0 and h′
3(0) = p3(21)

Cryptanalysis of 1-Round KECCAK 135

e6(44) = h′
1(0) + 1 because d0 = 0 and d0(17) + p1(45) = 1

d3(5) = h′
4(0) + h′

6(6) because d2 = 0 and h′
6 = p4(20)

The remaining linear equation are

h′
0 = e0(0)+RC(0)+ d1(44)+ d3(55)+ e4(0)+ d1(43)+ d3(54)+ e1(63)+ e6(63)

h′
2 = d1(23) + d3(34) + e1(43) + e6(43) + d1(43) + d3(6) + e3(42) + e8(42)

h′
3 = e2(21) + e7(21) + d1(0) + d3(11) + e4(20)

h′
6 = d3(48)+d1(21)+e3(20)+e8(20)+d1(20)+d3(47)+RC(19)+e0(19)+e5(19)

h′
7 = d1(1) + d1(47) + d3(58) + e4(3) + d1(46) + d3(57) + e1(2) + e6(2)

1 = RC(45) + d3(9) + d1(46) + e0(45) + e5(45) + e2(44) + e7(44)

We assign e7 to 0 and assign the last bit of e8 to 1 to satisfy the padding
condition while the rest of the bits of e8 are assigned to 0. This is done so that
the preimage length is minimized. Now we are left with total 384 linear equation
in 384 variables. All of these linear equations are linearly independent. Applying
Gaussian elimination, we can completely find the message block D and E that
gives the required hash value on application of 1 round of KECCAK-512.

4 Results and Extension to Collision Attack

The above preimage attack was implemented in C++ using the NTL library
[16] from Victor Shoup. The code was executed on a laptop with Intel Core
i5-7200 processor and 16 GB RAM giving the preimage in less than 0.005 s. In
the analysis given in Sect. 3.4, if we randomly choose e7 and e8 while also keep
the last bit of e8 as 1, we can get 2127 preimages for the same hash value, thus
giving us a collision attack.

The following tables describe the characterization of the hash values that can
be found using the preimage analysis done in Sect. 3.4 (Table 1).

Table 1. Characterization of hash values

Type of attack Number of hash
values

Characterization of hash
values

1 message block, θ as identity 2191 h2 = h6 = h7 = 0, h5[35] =
1, h4 = h0h1, h3 = h0

1 message block, θ not identity 2447 h6 = h7(0) ⊕ h4(6) ⊕
h0(6).(h1(6) ⊕
h2(6).h3(6)) ⊕ 1

2 message blocks, both θ as identity 2320 h3 = h2.h0, h4 = h2⊕h0.h1,
h7 = h6

2 message blocks, first θ as identity 2512 All possible hash values

136 R. Kumar et al.

5 Conclusion and Future Works

Our approach gives a preimage and collision attack to all the variants of 1 round
KECCAK hash functions. These are currently the fastest attacks known. These
attacks does not pose a threat to the security of 24-round KECCAK. In future,
we need to find whether this idea can be extended to 2 rounds KECCAK-384
and KECCAK-512.

References

1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Sub-
mission to NIST (Round 2) (2009)

2. Dworkin, M.J.: SHA-3 standard: permutation-based hash and extendable-output
functions. Federal Information Processing Standard (NIST FIPS)-202 (2015)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponges
(2011). http://sponge.noekeon.org

4. Bernstein, D.J.: Second preimages for 6 (7?(8??)) rounds of Keccak. NIST mailing
list (2010)

5. Chang, D., Kumar, A., Morawiecki, P., Sanadhya, S.K.: 1st and 2nd preimage
attacks on 7, 8 and 9 rounds of Keccak-224, 256, 384, 512. In: SHA-3 Workshop,
August 2014

6. Morawiecki, P., Pieprzyk, J., Srebrny, M.: Rotational cryptanalysis of round-
reduced Keccak. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 241–262.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 13

7. Morawiecki, P., Srebrny, M.: A sat-based preimage analysis of reduced Keccak hash
functions. Inf. Process. Lett. 113(10–11), 392–397 (2013)

8. Naya-Plasencia, M., Röck, A., Meier, W.: Practical analysis of reduced-round
Keccak. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS,
vol. 7107, pp. 236–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25578-6 18

9. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6 9

10. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-
256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 25

11. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
Keccak. J. Cryptol. 27(2), 183–209 (2014)

12. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of SHA-
3 using generalized internal differentials. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 219–240. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3 12

13. Qiao, K., Song, L., Liu, M., Guo, J.: New collision attacks on round-reduced Kec-
cak. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212,
pp. 216–243. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7 8

http://sponge.noekeon.org
https://doi.org/10.1007/978-3-662-43933-3_13
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-642-25578-6_18
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-642-34047-5_25
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-319-56617-7_8

Cryptanalysis of 1-Round KECCAK 137

14. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0 15

15. Bertoni, G., Daemen, J., Peeters, M., Assche, G.: The Keccak reference (2011).
http://keccak.noekeon.org/keccak-reference-3.0.pdf

16. Shoup, V.: NTL: a library for doing number theory (2001). www.shoup.net/ntl/

https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
http://keccak.noekeon.org/keccak-reference-3.0.pdf
http://www.shoup.net/ntl/

Asymmetric Cryptography

Performing Computations
on Hierarchically Shared Secrets

Giulia Traverso(B), Denise Demirel, and Johannes Buchmann

Technische Universität Darmstadt, Darmstadt, Germany
gtraverso@cdc.informatik.tu-darmstadt.de

Abstract. Hierarchical secret sharing schemes distribute a message to
a set of shareholders with different reconstruction capabilities. In dis-
tributed storage systems, this is an important property because it allows
to grant more reconstruction capability to better performing storage
servers and vice versa. In particular, Tassa’s conjunctive and disjunctive
hierarchical secret sharing schemes are based on Birkhoff interpolation
and perform equally well as Shamir’s threshold secret sharing scheme.
Thus, they are promising candidates for distributed storage systems. A
key requirement is the possibility to perform function evaluations over
shared data. However, practical algorithms supporting this have not been
provided yet with respect to hierarchical secret sharing schemes. Aiming
at closing this gap, in this work, we show how additions and multiplica-
tions of shares can be practically computed using Tassa’s conjunctive and
disjunctive hierarchical secret sharing schemes. Furthermore, we provide
auditing procedures for operations on messages shared hierarchically,
which allow to verify that functions on the shares have been performed
correctly. We close this work with an evaluation of the correctness, secu-
rity, and efficiency of the protocols we propose.

Keywords: Hierarchical secret sharing · Birkhoff interpolation
Verifiable secret sharing · Auditing · Multi-party computation
Distributed storage systems · Cloud computing

1 Introduction

In this work, we provide procedures allowing to evaluate functions on shares that
have been generated by using a hierarchical secret sharing scheme. The primary
focus of this paper is the application of secret sharing to distributed storage sys-
tems [23]. That is, shares of a document are generated and distributed to storage
servers owned by multiple storage providers. Shamir’s threshold secret sharing
scheme [29] and Tassa’s conjunctive and disjunctive hierarchical secret sharing
schemes [31] are viable solutions for distributed storage systems. In particular,
Shamir’s threshold secret sharing scheme generates shares that are all equivalent
in their reconstruction capability. Thus, to protect the confidentiality of data,
the number of storage providers deployed must be larger than the reconstruct-
ing threshold. Otherwise, storage providers would have enough shares to retrieve
c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 141–161, 2018.
https://doi.org/10.1007/978-3-319-89339-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_9&domain=pdf

142 G. Traverso et al.

the data within the storage servers they own. Instead, Tassa’s conjunctive and
disjunctive hierarchical secret sharing schemes generate shares with different
reconstruction capabilities but that have all the same length. This allows for
more flexibility because the reconstruction capability of the storage servers can
be arranged such that no storage provider has enough information to retrieve
the document. Thus, for the same reconstructing threshold, more shares can be
distributed to less storage providers without breaking confidentiality. Clearly, if
users can rely on less storage providers for a given reconstructing threshold, then
this allow for a better trade-off between data protection and storage cost.

This paper shows how to practically compute additions and multiplications
over hierarchically shared data when Tassa’s conjunctive and disjunctive secret
sharing schemes are used. So far solutions to perform operations on shared mes-
sages have only been instantiated for Shamir’s threshold secret sharing schemes
and have been generalized for any linear secret sharing scheme in [10]. Thus, in
this work we fill this gap by introducing procedures allowing to evaluate func-
tions on shares that have been generated using a hierarchical secret sharing
scheme. More precisely, we show how to perform linear operations and multipli-
cations on messages that have been shared and need to be reconstructed using
the Birkhoff interpolation formula. Tassa’s conjunctive and disjunctive hierar-
chical secret sharing schemes are based on Birkhoff interpolation and are linear
schemes. Thus, we adapt to our setting the general procedure for computations
over linear secret sharing schemes introduced in [10]. This is not trivial because
in practice multiplications are split in a preprocessing and an on-line phase which
both have to be adapted to the hierarchical setup. Furthermore, we prove that
these procedures compute the outcome of functions correctly and provide per-
fect secrecy, i.e. only qualified subsets are able to retrieve the input messages
and the result of computations. Moreover, we provide an audit procedure for
computations over messages shared hierarchically. Lastly, we discuss security
and efficiency of the algorithms introduced. The rest of the paper is organized
as follows. First, the related work and the preliminaries are discussed in Sect. 2
and Sect. 3, respectively. Then, our contribution is presented. More precisely,
in Sect. 4 it is shown how to perform operations over messages shared using
Birkhoff interpolation-based hierarchical secret sharing schemes. Furthermore,
it is proven that those procedures compute the outcome of functions correctly
and provide perfect secrecy. Since multiplications on hierarchical shares require
larger changes on the preprocessing phase we detail this process in Sect. 5. In
Sect. 6, it is described how to perform the auditing procedure. Security and effi-
ciency of the proposed protocols are discussed in Sect. 7. Conclusions can be
found in Sect. 8.

2 Related Work

Independently introduced by Shamir [29] and Blakley [4], threshold secret shar-
ing is a cryptographic primitive enabling a dealer to share a message equally
among a set of players, called shareholders. The message can be reconstructed

Performing Computations on Hierarchically Shared Secrets 143

by subsets of a certain amount of shareholders while subsets smaller than the
threshold do not learn any information about the data shared. Shamir’s thresh-
old secret sharing scheme is the best known solution and is based on polynomials
and on Lagrange interpolation. It has been shown in [21] how shares can be peri-
odically refreshed. Based on [12], it has been shown in [19] how to modify the
definition of eligible subsets of shareholders for the reconstruction of the message.
In [25], it has been shown how to add shareholders. Furthermore, it is possible
to perform operations over shared messages [18]. This enables general multi-
party computation, as discussed in [3,8,16]. Furthermore, in [28] it is shown
how to perform an auditing procedure for computations over shared messages,
which is based on the work done in [1] and in [11]. So called hierarchical secret
sharing schemes [14] address scenarios where the shareholders are not equal in
their reconstruction capability. Brickell in [7] and Simmons in [30] presented a
solution where each shareholder receives only one share which is of equal size,
but with different reconstruction capabilities. However, the reconstruction pro-
cess is highly expensive. Ghodosi et al. showed in [17] how to construct efficient
schemes for specific instantiations. Tassa solved these problems by introducing in
[31] two schemes based on polynomials and Birkhoff interpolation (a generaliza-
tion of Lagrange interpolation) for the reconstruction of the message. These are
called conjunctive and disjunctive hierarchical secret sharing schemes, depend-
ing on which subsets of shareholders are eligible to access the shared message.
It has been proven in [32] that Tassa’s conjunctive and disjunctive hierarchical
secret sharing schemes achieve the same flexibility as Shamir’s threshold secret
sharing scheme. More precisely, algorithms based on Birkhoff interpolation have
been designed that allow Tassa’s schemes to add shareholders, to periodically
refresh the shares, and to modify the definition of eligible subsets for the recon-
struction of the message. According to the notion of dynamic secret sharing1

specified in [32], both Shamir’s and Tassa’s secret sharing schemes are dynamic.
The last step to show that hierarchical secret sharing achieves the same func-
tionalities as Shamir’s threshold secret sharing is to prove that Tassa’s schemes
support the same operations over shared messages, i.e. linear combinations and
multiplication. Conditions on the access structure allowing for multiplication
have been investigated in [22]. However, they lead to schemes with either an
increased length of the shares (which is not optimal for our application to dis-
tributed storage systems) or with stronger conditions on the access structure
deviating from the original schemes proposed by Tassa. Furthermore, practical
and ready to be used algorithms for linear operations and multiplications over
Tassa’s conjunctive and disjunctive hierarchical secret sharing schemes and for
performing auditing over such computations were not proposed. And this is what
we provide in this work.

1 Note that this is different from the notion of fully dynamic secret sharing discussed
in [5], where one scheme supports different access structures for different secrets.

144 G. Traverso et al.

3 Preliminaries

Secret sharing schemes are used to share a message m ∈ Fq across a set
S = {s1, . . . , sn} of n shareholders. More precisely, a dealer generates shares
σ1, . . . , σn ∈ Fq of message m and distributes each share σi ∈ Fq to the respective
shareholder si ∈ S. Only specific subsets A ⊂ S of shareholders can reconstruct
the message provided that certain requirements are fulfilled. Instead, subsets
U ⊂ S not fulfilling such requirements cannot reconstruct the message and
get no information about it. These subsets are called authorized and unautho-
rized, respectively. Denoted by P(S) the partition of set S, the access structure
Γ ⊂ P(S) determines both sets, i.e. A ∈ Γ and U /∈ Γ . More formally, secret
sharing is a pair of algorithms (Share,Reconstruct). Algorithm Share takes as
input a message m ∈ Fq and the unique ID i ∈ I of shareholder si ∈ S and
outputs its share σi ∈ Fq, for i = 1, . . . , n. Algorithm Reconstruct takes as input
a subset R ⊂ S and outputs the message m if R ∈ Γ and ⊥ otherwise. Adapt-
ing the definition provided in [2] to the purpose of this paper, in the following
we formalize the notions of correctness and perfect secrecy restricted to ideal
secretsharing schemes, where the length of the message equals the length of the
shares.

Definition 1. Given the set Fq of messages and the set S = {s1, . . . , sn}
of shareholders, the pair of algorithms (Share,Reconstruct) is a secret sharing
scheme realizing access structure Γ ⊂ P(S) if the following two requirements
hold.

(1) Correctness: if shares held by shareholders of an authorized set A ∈ Γ are
given as input to algorithm Reconstruct, then algorithm Reconstruct retrieves
the message m shared during algorithm Share, for every message m ∈ Fq.

(2) Perfect secrecy: if shares held by shareholders of an unauthorized set U /∈ Γ
are given as input to algorithm Reconstruct, then algorithm Reconstruct leaks
no information about the message m shared during algorithm Share, for every
message m ∈ Fq.

Linear threshold secret sharing schemes are amongst the most studied
schemes also due to their usage in practical scenarios. The first (t, n)-threshold
secret sharing scheme is proposed by Shamir in [29] and it is based on interpo-
lation of polynomials. More precisely, a message m is shared using a polynomial
f(x) = a0 +a1x+ · · ·+at−1x

t−1 of degree deg(f(x)) = t−1, where a0 := m and
coefficients a1, . . . , at−1 ∈ Fq are chosen uniformly at random. Algorithm Share
computes share σi ∈ Fq for shareholder si ∈ S as a point on polynomial f(x),
i.e. σi := f(i), where i ∈ I is the ID of shareholder si. Algorithm Reconstruct is
based on Lagrange interpolation of polynomials. Thus, on the one hand, autho-
rized subsets A ⊂ S are composed of t or more shareholders, that is |A| ≥ t.
In fact, when t or more points of polynomial f(x) are collected, it is possible to
correctly interpolate polynomial f(x) and message m is retrieved as f(0) = a0.
On the other hand, unauthorized subsets U ⊂ S are composed of t − 1 or less
shareholders, that is |U | ≤ t − 1. In fact, when only t − 1 or less points are

Performing Computations on Hierarchically Shared Secrets 145

collected, polynomial f(x) cannot be reconstructed and no information about
message m ∈ Fq is leaked.

The so called conjunctive and disjunctive schemes proposed by Tassa in [31]
are the first hierarchical secret sharing schemes based on Birkhoff interpolation of
polynomials. More precisely, shares are either points on a polynomial or points on
one of the derivatives of such polynomial. More precisely, a hierarchy is composed
of levels L0, . . . , L�, where L0 is the highest level, L� the lowest, and � ≤ n. The
cardinality of each level Lh is denoted by nh and each shareholder is assigned
to one level only. In addition, a threshold th is associated with each level Lh,
for h ∈ 0, . . . , �, such that 0 < t0 < · · · < t�. Tassa individuated two types
of access structures, defining, respectively the conjunctive and the disjunctive
hierarchical secret sharing. On the one hand, the conjunctive access structure
determines that a subset A ⊂ S is authorized if, for all levels Lh, it contains
th shareholders assigned to levels equal or higher than Lh, for h = 0, . . . , �. On
the other hand, the disjunctive access structure specifies that a subset A ⊂ S
is authorized if, for at least one level Lh, it contains th shareholders assigned
to levels equal or higher than Lh, for h = 0, . . . , �. In the following, we write
information relating to disjunctive hierarchical secret sharing in brackets. For
conjunctive (disjunctive) hierarchical secret sharing schemes the unique ID of
shareholder si,j ∈ S is a pair (i, j) ∈ I × I, where i = 1, . . . , nh and j := th−1

(j := t� − th), for h = 0, . . . , � with t−1 := 0 and t := t�. The algorithms Share
and Reconstruct of the conjunctive (disjunctive) hierarchical secret sharing are
as follows.

Share. The algorithm takes as input a message m ∈ Fq and generates a polyno-
mial f(x) = a0+a1x+ · · ·+at−1x

t−1 of degree deg(f(x)) = t−1, where a0 := m
(at−1 := m) and the coefficients a1, . . . , at−1 ∈ Fq (a0, . . . , at−2 ∈ Fq) are chosen
uniformly at random. It outputs share σi,j ∈ Fq for shareholder si,j ∈ S com-
puted as σi,j := f j(i), where f j(x) is the j-th derivative of polynomial f(x) and
pair (i, j) ∈ I × I is the unique ID of shareholder si,j ∈ S, for i = 1, . . . , nh and
h = 0, . . . , �.

Reconstruct. The algorithm takes as input a set of shares held by a subset R ⊂ S
of shareholders. If R is unauthorized, i.e. R /∈ Γ , then it outputs ⊥. If R is
authorized, i.e. R ∈ Γ , then it reconstructs polynomial f(x) using Birkhoff
interpolation and outputs m = a0 (m = at−1).

The Birkhoff interpolation problem is a generalization of the Lagrange inter-
polation problem and describes the problem of finding a polynomial f(x) =
a0 + a1x + · · · + at−1x

t−1 satisfying the equalities f j(i) = σi,j . Given an autho-
rized set R ∈ Γ of shareholders for conjunctive (disjunctive) hierarchical secret
sharing schemes, the Birkhoff interpolation problem can be solved as follows.
The interpolation matrix associated to set R is a binary matrix E where entry
ei,j is set to ‘1’ if shareholder si,j participates with share σi,j and ‘0’ other-
wise. Let us denote by I(E) = {(i, j) such that ei,j = 1} the set containing
the entries of E in lexicographic order, i.e. the pair (i, j) precedes the pair
(i′, j′) if and only if i < i′ or i = i′ and j < j′. The elements of I(E) are
denoted by (i1, j1), (i2, j2), . . . , (ir, jr), where r := |R|. Furthermore, we set

146 G. Traverso et al.

ϕ := {φ0, φ1, φ2, . . . , φt−1} = {1, x, x2, . . . , xt} and denote by φj
k the j-the deriva-

tive of φk, for k = 0, . . . , t− 1. Then the matrix A(E,X,ϕ) is defined as follows:

A(E,X,ϕ) =

⎛
⎜⎜⎜⎝

φj1
0 (i1) φj1

1 (i1) φj1
2 (i1) · · · φj1

t−1(i1)
φj2
0 (i2) φj2

1 (i2) φj2
2 (i2) · · · φj2

t−1(i2)
...

...
... · · · ...

φjr

0 (ir) φjr

1 (ir) φjr

2 (ir) · · · φjr

t−1(ir)

⎞
⎟⎟⎟⎠ .

Polynomial f(x) can be reconstructed in distributed fashion by computing

f(x) =
t−1∑
k=0

akxk =
t−1∑
k=0

r∑
l=1

al,kxk,

where al,k := σil,jl
(−1)l−1+k det(Al−1,k(E,X,ϕ))

det(A(E,X,ϕ)) is computed locally by shareholder
sil,jl

∈ R, for l = 1, . . . , r, and matrix Al−1,k(E,X,ϕ) results from matrix
A(E,X,ϕ) by removing the l-th row and the (k + 1)-th column (see [32], The-
orem 1 for a formal proof). Necessary and sufficient requirements for Birkhoff
interpolation problem to have a unique solution can be found in [31]. Examples
of Birkhoff interpolation problems can be found in [26].

4 Operations on Messages Distributed Through
Hierarchical Secret Sharing Schemes

In this section, we prove that Tassa’s conjunctive and disjunctive hierarchical
secret sharing schemes, based on Birkhoff interpolation, allow to perform opera-
tions over shared messages. More precisely, a message can be reconstructed which
is the result of operations performed over previously shared messages. The oper-
ations supported are the sum of messages, the multiplication of a message by a
scalar, and the product of messages.

4.1 Setting

Messages m1,m2 ∈ Fq are distributed to a set S of n shareholders according to
the following assumptions.

(A1) The underlying access structure Γ remains the same for both messages
m1,m2. More precisely, both polynomials f(x) and h(x) used to share m1

and m2, respectively, have the same degree. Furthermore, shareholder si,j

with unique ID (i, j) holds share σi,j(m1) := f j(i) and σi,j(m2) := hj(i).
(A2) The degree t − 1 of polynomials f(x) and h(x) is chosen such that 2t ≤ n,

where n is the total number of shareholders.
(A3) The ID (i, j) of each shareholder si,j ∈ S is chosen such that index i ∈ I is

selected once within the whole hierarchy and such that the corresponding
Birkhoff interpolation problem has a unique solution. The requirements to
achieve this can be found in [31].

Performing Computations on Hierarchically Shared Secrets 147

(A4) The user communicates with the shareholders and the shareholders among
each other using private channels.

(A5) A tamper-proof bulletin board is available to allow exchanging data during
the preprocessing phase of the multiplication procedure. Note that this is
a common assumption for auditable multi-party computation and a more
formal definition can be found in [20].

Let us recall that index j ∈ I of the unique identity ID of shareholder
si,j ∈ S is defined as j := th−1 (j := t� − th), for h = 0, . . . , � and
t−1 := 0 (see Sect. 3). Algorithm Share defined in Sect. 3 is run separately to
share and distribute message m1 and message m2 to the n shareholders of
set S. More precisely, to share message m1, algorithm Share selects a poly-
nomial f(x) = a0 + a1x + · · · + at−1x

t−1, where a0 := m1 (at−1 := m1) and
a1, . . . , at−1 ∈ Fq (a0, . . . , at−2 ∈ Fq) are chosen uniformly at random. It dis-
tributes to each shareholder si,j ∈ S share σi,j(m1) = f j(i). To share message
m2, algorithm Share generates a polynomial h(x) = b0 + b1x + · · · + bt−1x

t−1,
where b0 := m2 (bt−1 := m2) and b1, . . . , bt−1 ∈ Fq (b0, . . . , bt−2 ∈ Fq) are
chosen uniformly at random. It distributes to each shareholder si,j ∈ S share
σi,j(m2) = hj(i). Afterwards, algorithms Linear and Multiply are run by each
shareholder individually to perform linear operations and multiplications on their
shares of messages m1 and m2. Finally, the result m ∈ Fq of these operations on
m1,m2 can be reconstructed by running algorithm Reconstruct defined in Sect. 3
on the shares computed by each shareholder.

4.2 Linear Operations

In this section, algorithm Linear is presented, which computes share σi,j(m) ∈ Fq

for shareholder si,j ∈ S, to be used as input for algorithm Reconstruct to retrieve
message m = λ1 · m1 + λ2 · m2, for scalars λ1, λ2 ∈ Fq.

Linear. The algorithm takes as input shares σi,j(m1), σi,j(m2) ∈ Fq held by share-
holder si,j ∈ S, and scalars λ1, λ2 ∈ Fq. It outputs share σi,j(m) := λ1 ·σi,j(m1)
+ λ2 · σi,j(m2) ∈ Fq for shareholder si,j ∈ S.

Theorem 1. The algorithm Linear for conjunctive (disjunctive) hierarchical
secret sharing introduced above computes the shares correctly. More precisely,
on input shares σi,j(m1), σi,j(m2) and scalars λ1, λ2, the shares computed by
Linear reconstruct to message m, where m = λ1 · m1 + λ2 · m2. Furthermore,
perfect secrecy, according to Definition 1, is maintained while performing Linear.

Proof. Let σi,j(m) ∈ Fq be the shares computed by shareholders si,j ∈ R using
algorithm Linear, where R ∈ Γ is an authorized set. To prove correctness, we
have to show that algorithm Reconstruct outputs message m = λ1 · m1 + λ2 · m2

when it takes as input shares σi,j(m) ∈ Fq. More precisely, we have to show
that the shares interpolate to a polynomial p(x) = c0 + c1x + · · · + ct−1x

t−1 of
degree deg(p(x)) = t − 1, where c0 = λ1 · m1 + λ2 · m2(ct−1 = λ1 · m1 + λ2 · m2).

148 G. Traverso et al.

To prove perfect secrecy, we have to show, first, that algorithm Linear computes
shares for message m = λ1 · m1 + λ2 · m2 without leaking information about
the shares for message m1 and message m2. Second, we have to show that any
unauthorized set U /∈ Γ gets no information about m = λ1 ·m1+λ2 ·m2. In order
to do that, we have to show that polynomial p(x) = c0 + c1x + · · · + ct−1x

t−1

can be computed in distributed fashion by each shareholder si,j ∈ R. That is,
correctness and perfect secrecy hold if each shareholder can compute a term
p(i,j),k without leaking information to any other shareholder and such that:

p(x) =
t−1∑
k=0

ckxk =
t−1∑
k=0

∑
si,j∈R

p(i,j),kxk,

where c0 = λ1 · m1 + λ2 · m2(ct−1 = λ1 · m1 + λ2 · m2).

Let us recall that message m1 ∈ Fq is shared using polynomial f(x) =
a0 + a1x + · · · + at−1x

t−1. Due to Birkhoff interpolation resolution formula (see
Sect. 3), coefficient ak of polynomial f(x) can be computed as:

ak =
r∑

l=1

al,k =
r∑

l=1

σl(m1)(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ))

,

for k = 0, . . . , t − 1, where σl(m1), for l = 1, . . . , r, are the shares σi,j(m1) in
lexicographic order ((i, j) precedes the pair (i′, j′) if i < i′ or i = i′ and j < j′).
Similarly, message m2 ∈ Fq is shared through polynomial h(x) = b0 + b1x +
· · ·+ bt−1x

t−1. Due to Birkhoff interpolation resolution formula, coefficient bk of
polynomial h(x) can be computed as:

bk =
r∑

l=1

bl,k =
r∑

l=1

σl(m2)(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ))

,

for k = 0, . . . , t − 1, where σl(m2), for l = 1, . . . , r, are the shares σi,j(m2)
in lexicographic order. Because of the homomorphic property of polynomials,
polynomial p(x) can be computed as the linear combination of polynomial f(x)
and polynomial h(x) with scalars λ1, λ2 ∈ Fq. That is, p(x) = λ1 ·f(x)+λ2 ·h(x).
Therefore,

p(x) =
t−1∑
k=0

λ1 · ak + λ2 · bk =
t−1∑
k=0

r∑
l=1

λ1 · al,k + λ2 · bl,k.

This shows that the terms pl,k = p(i,j),k := λ1 · al,k + λ2 · bl,k computed by the
shareholders si,j ∈ R interpolate to polynomial p(x) and correctness is provided.
Regarding perfect secrecy, the computation of pl,k is performed solely by share-
holder sl ∈ R using the information it has and without leaking al,k nor bl,k.
Thus, no information about shares σl(m1), σl(m2) is leaked. Moreover, being
polynomial p(x) of degree deg(p(x)) = t − 1, the original access structure Γ is

Performing Computations on Hierarchically Shared Secrets 149

maintained: subsets U ⊂ S of shareholders such that U /∈ Γ not only cannot
reconstruct m = λ1 ·m1 +λ2 ·m2, but also do not get any information about m1

nor m2. Thus, perfect secrecy of the underlying conjunctive (disjunctive) hier-
archical secret sharing is still maintained even if algorithm Linear is run and the
shares computed by this algorithm are used as input for algorithm Reconstruct.

4.3 Multiplication

In this section, algorithm Multiply is presented, which computes share σi,j(m)
for shareholder si,j ∈ S. Share σi,j(m) is used as input for algorithm Reconstruct
to retrieve message m = m1 · m2. Algorithm Multiply uses algorithm Linear (see
Sect. 4.2) to compute message m as linear combinations of the shares for message
m1 and message m2. More precisely, it builds on the multiplication algorithm
discussed in [11] and the triplet generation presented in [1], requiring for each
multiplication a preprocessing phase in which the shareholders jointly compute
shares σi,j(α), σi,j(β), σi,j(γ) to messages α, β, γ ∈ Fq such that α · β = γ. Note
that, according to Assumption (A1) in Sect. 4.1, for algorithm Multiply to work
the values α, β, and γ have to be shared according to the access structure Γ .
More details about how to achieve this are provided in Sect. 5.

Multiply. The algorithm selects a triple (α, β, γ) generated during the prepro-
cessing phase and it takes as input shares σi,j(m1), σi,j(m2) ∈ Fq and shares
σi,j(α), σi,j(β), σi,j(γ) ∈ Fq held by shareholder si,j ∈ S. It outputs share
σi,j(m) ∈ Fq for message m = m1 · m2, which is computed performing the
following steps.

First, shareholder si,j computes share σi,j(δ) := σi,j(m1)−σi,j(α) and share
σi,j(ε) := σi,j(m2) − σi,j(β) using algorithm Linear. Second, shareholders from
an authorized set R ∈ Γ run algorithm Reconstruct with shares σi,j(δ), σi,j(ε) as
input to publicly reconstruct values δ, ε using the bulletin board. Third, share-
holder si,j ∈ S computes the share σi,j(m) := σi,j(γ) + ε · σi,j(m1) + δ ·
σi,j(m2) − δε using algorithm Linear.

Theorem 2. The algorithm Multiply for conjunctive (disjunctive) hierarchical
secret sharing introduced above computes the shares correctly. More precisely,
on input shares σi,j(m1), σi,j(m2), the shares computed by Multiply reconstruct
to message m, where m = m1 · m2. Furthermore, perfect secrecy, according to
Definition 1, is maintained while performing Multiply.

Proof. The correctness relies on the correctness of algorithm Linear, presented
in Sect. 4.2. In fact, share σi,j(m) is defined as the linear combination of shares
σi,j(γ), σi,j(m1), σi,j(m2) for messages γ,m1,m2, respectively, and scalars δ, ε.
More precisely, in the first step the scalars δ and ε are computed in distributed
fashion using algorithm Linear, such that δ = m1 − α and ε = m2 − β. After
those values have been reconstructed in the second step, in the third step each
shareholder computes a share to message m by computing σi,j(m) = σi,j(γ) +
ε · σi,j(m1) + δ · σi,j(m2) − δε using algorithm Linear. Therefore, if algorithm

150 G. Traverso et al.

Reconstruct takes as input shares σi,j(m) ∈ Fq held by shareholders si,j ∈ R,
where R ∈ Γ is an authorized set, then it retrieves:

m = γ + ε · m1 + δ · m2 − δε

= γ + (m2 − β) · m1 + (m1 − α) · m2 − (m2 − β)(m1 − α)

= γ + m1 · m2 − β · α

Since α · β = γ this leads to
m = m1 · m2,

showing that algorithm Multiply is correct. Thus, algorithm Reconstruct interpo-
lates to a polynomial p(x) = c0 +c1x+ · · ·+ct−1x

t−1 of degree deg(p(x)) = t−1
and retrieves message m1 · m2 as c0(ct−1). The perfect secrecy of algorithm
Multiply is implied by the perfect secrecy of algorithm Linear (proven in Sect. 4.2)
and by the perfect secrecy of the preprocessing phase, which is discussed in
Sect. 5.

5 Preprocessing Phase

In this section, we introduce the preprocessing phase enabling the multiplication
between two shared messages (see Sect. 4.3). Preprocessing has been common
practice for multi-party computation since it has been introduced by Beaver in
[1], because it lowers the communication complexity of the algorithm Multiply.
More precisely, during the preprocessing phase a triple (α, β, γ) is generated such
that the following conditions hold.

– α · β = γ.
– Assumption (1) of Sect. 4.1 holds, i.e. each shareholder si,j ∈ S with ID

(i, j) ∈ I × I holds shares σi,j(α) := f j
α(i), σi,j(β) := f j

β(i), and σi,j(γ) :=
f j

γ(i), where fα(x), fβ(x), and fγ(x) are the polynomials of degree t−1 sharing
α, β, and γ, respectively.

In [11] it is shown how to generate such triples, but it is assumed that Shamir’s
threshold secret sharing scheme is used. Thus, here we present a preprocessing
phase for Tassa’s conjunctive (disjunctive) hierarchical secret sharing scheme.

PreMult. The algorithm outputs for each shareholder si,j ∈ S a triple of shares
σi,j(α), σi,j(β), σi,j(γ) ∈ Fq, such that for each triple it holds that σi,j(γ) =
σi,j(αβ). This is done in three main steps.

First, each shareholder si,j randomly chooses a pair of shares σi,j(α), σi,j(β),
as shown in AppendixA. Second, shareholders s1, . . . , sr ∈ R from an authorized
set R ∈ Γ compute for each shareholder si,j terms δl,(i,j) and εl,(i,j). Third, using
δl,(i,j) and εl,(i,j) each shareholder si,j ∈ S computes its share σi,j(γ) ∈ Fq.

More precisely, in the second step each shareholder sl ∈ R, for l = 1, . . . , r,
computes the input δl,(i,j) and εl,(i,j) for si,j by performing the following steps.

Performing Computations on Hierarchically Shared Secrets 151

First, shareholder sl ∈ R uses its shares σl(α) and σl(β) and the unique ID
(i, j) of shareholder si,j to compute the values λl,(i,j) and μl,(i,j) defined as:

λl,(i,j) :=σl(α)
t−1∑

k=j−1

k!
(k − j + 1)!

(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ))

ik−j+1

and

μl,(i,j) :=σl(β)
t−1∑

k=j−1

k!
(k − j + 1)!

(−1)l−1+k det(Al−1,k(E,X,ϕ))
det(A(E,X,ϕ))

ik−j+1,

where A(E,X,ϕ) and Al−1,k(E,X,ϕ) are the matrices defined in Sect. 3. Then,
it randomly splits λl,(i,j) and μl,(i,j) into r values, i.e. λl,(i,j) = λ1,l,(i,j) + · · · +
λr,l,(i,j) and μl,(i,j) = μ1,l,(i,j) + · · · + μr,l,(i,j) and sends λm,l,(i,j) and μm,l,(i,j)

to shareholder sm ∈ R, for m = 1, . . . , r and m �= l, using a private channel.
Afterwards, it collects all values λl,m,(i,j) and μl,m,(i,j) received from shareholder
sm ∈ R, for m = 1, . . . , r and m �= l, and computes δl,(i,j) :=

∑r
m=1 λl,m,(i,j)

and εl,(i,j) :=
∑r

m=1 μl,m,(i,j). Finally, it sends δl,(i,j) and εl,(i,j) to shareholder
si,j using a private channel.

In the third step, all shareholders within the set S compute their shares. More
precisely, each shareholder si,j ∈ S computes share σi,j(γ) using the values δl,(i,j)

and εl,(i,j) received from shareholder sl ∈ R, for l = 1, . . . , r, as

σi,j(γ) := σi,j(αβ) =
(r∑

l=1

δl,(i,j)

)
· σi,j(β) + σi,j(α) ·

(r∑
l=1

εl,(i,j)

)
.

Theorem 3. The algorithm PreMult for conjunctive (disjunctive) hierarchical
secret sharing introduced above computes the multiplicative triples correctly. More
precisely, on input the shares σi,j(α) and σi,j(β), the shares computed by algo-
rithm PreMult reconstructs to γ, where γ = αβ. Furthermore, perfect secrecy,
according to Definition 1, is maintained while performing PreMult.

Proof. Let σi,j(αβ) be the share computed by shareholder si,j ∈ R using
algorithm PreMult, where R ∈ Γ is an authorized set. Correctness of algo-
rithm PreMult is provided if the shares held by shareholders in R it out-
puts interpolate to a polynomial p(x) = c0 + c1x + · · · + c2(t−1)x

2(t−1), where
c0 = αβ(c2(t−1) = αβ). Polynomial p(x) is defined as p(x) = fα(x) · fβ(x), given
that α is shared using polynomial fα(x) and β is shared using polynomial fβ(x).
We have to show that, for each share σi,j(γ) computed by algorithm PreMult, it
holds that σi,j(γ) = σi,j(αβ), where σi,j(α) and σi,j(β) were randomly selected
from shareholder si,j . In this case σi,j(γ) can be written as:

σi,j(αβ) = pj(i) = [fα(i) · fβ(i)]j = f j
α(i) · f j−1

β (i) + f j−1
α (i) · f j

β(i).

The terms f j
α(i) and f j

β(i) constitute the random values σi,j(α) and σi,j(β)
selected by shareholder si,j ∈ S. It is left to check that

∑r
l=1 δl,(i,j) and

152 G. Traverso et al.

∑r
l=1 εl,(i,j) correspond to f j−1

α (i) and f j−1
β (i), respectively. From the second

step, we recall that δl,(i,j) =
∑r

m=1 λl,m,(i,j). Thus, it follows that:

r∑
l=1

δl,(i,j) =
r∑

l=1

r∑
m=1

λl,m,(i,j) =
r∑

l=1

f j−1
α,l (i) = f j−1

α (i),

where polynomial f j−1
α,l (x) is the (j − 1)-th derivative of polynomial fα,l(x) =∑t−1

k=0 αl,kxk, where αl,k is the reconstructing term of Birkhoff interpolation for-
mula (see Sect. 3). Note that the last equality of the expression above holds
because the coefficients of fα(x) can be computed in distributed fashion, see
Theorem 2 in [32]. The equality

∑r
l=1 εl,(i,j) = f j−1

β (i) can be shown analogously.
Moreover, since polynomial p(x) = c0 + c1x + · · · + c2(t−1)x

2(t−1) is the product
of polynomials fα(x) and fβ(x), then c0 = a0b0 = αβ(c2(t−1) = at−1bt−1 = αβ).
Thus, correctness holds. To prove perfect secrecy, we have to show that no infor-
mation is leaked when share σi,j(αβ) is generated for shareholder si,j ∈ S.
Regarding the terms

∑r
l=1 δl,(i,j) and

∑r
l=1 εl,(i,j), we have to show that they

do not leak information about shares σl(α) and σl(β) of shareholder sl ∈ R,
respectively. That is the case because shareholder sl ∈ R uses additive secret
sharing [13] to split λl,(i,j) and μl,(i,j) into r random values λm,l,(i,j) and μm,l,(i,j),
respectively. Furthermore, perfect secrecy holds also because index i ∈ I of each
identity ID (i, j) ∈ I × I is used once, as required by Assumption (A3) of
Sect. 4.1. Otherwise, points f j−1

α (i) and f j−1
β (i) might correspond to already

existing shares σi,j−1(α) and σi,j−1(β) for α and β, respectively, already com-
puted for shareholder si,j−1 ∈ S. Moreover, because each share σi,j(γ) is a point
on polynomial p(x) or on one of its derivatives, the underlying conjunctive (dis-
junctive) hierarchical secret sharing scheme ensures that unauthorized subsets
gain no information about α, β, γ.

6 Auditing Procedure for Computations over
Hierarchically Shared Messages

Before presenting the auditing procedure for the algorithms Linear, PreMult,
and Multiply for conjunctive (disjunctive) hierarchical secret sharing schemes we
recall verifiable secret sharing. Verifiable secret sharing was introduced in [9] to
allow shareholders to check the consistency of shares received from the message
dealer. More precisely, audit data are generated that allow the shareholders to
check whether the shares of each authorized subset of shareholders lead to the
same message during the reconstruction algorithm. To provide verifiable secret
sharing usually commitment schemes are used, which come with two properties.
First, bindingness ensures that it is not possible to change the message com-
mitted to. Second, hidingness ensures that no information about the message is
leaked. Furthermore, there are several commitment schemes with homomorphic
properties available, i.e. operations performed on the values committed to can
be transferred to operations performed on the commitments. Verifiable secret

Performing Computations on Hierarchically Shared Secrets 153

sharing uses Feldman commitment [15], which is unconditionally binding and
computationally hiding, or Pedersen commitment [27], which is computationally
binding and unconditionally hiding. In the following, we use Feldmann com-
mitment for the sake of simplicity, but our solutions work with both schemes.
In the following, we recall the definition of Feldman commitment and Pedersen
commitment (in brackets).

Definition 2 ([15,27]). Feldman (Pedersen) commitment scheme is a triple
(Setup,Commit,Open) of the following algorithms.

Setup. It takes as input a security parameter λ and it outputs a prime q, a group
G of order q, and a generator g ∈ G (distinct generators g, h ∈ G).

Commit. It takes as input a message m ∈ Fq (and randomness r ∈ Fq) and it
outputs commitment c = gm (c = gmhr).

Open. It takes as input a commitment c ∈ G, a message m ∈ Fq (and randomness
r ∈ Fq) and it outputs ‘1’ if c = gm (if c = gmhr) and ‘0’ otherwise.

6.1 Auditing Procedure for Conjunctive (Disjunctive) Hierarchical
Secret Sharing Schemes

In this section, we present auditing procedures for computations on messages
shared hierarchically by using Tassa’s conjunctive (disjunctive) hierarchically
secret sharing schemes, based on Birkhoff interpolation. More precisely, first, we
present algorithms Audit.Setup and Audit.Share, which describes the steps to be
performed during the setup phase and after algorithm Share, respectively. Then,
we present algorithm Audit.Linear which is run after algorithm Linear to verify
the correctness of linear operations. Finally, we present algorithms Audit.PreMult
and Audit.Multiply, which allow auditing of multiplications.

Setup and Share. Algorithm Audit.Setup sets up the cryptographic primitives,
i.e. commitment schemes and bilinear maps,2 needed for the auditing procedures.
This can be run by any party. However, the parameters must be made publicly
available for the dealer of the input messages and the auditor running the audit-
ing procedures. Then, to allow operations to be audited, the dealer commits to
messages shared by running Audit.Share.

Audit.Setup. The algorithm takes as input a security parameter λ and it outputs
two large primes p, q such that q|(p−1). It also outputs a generator g of the q-th
order subgroup Fq of F∗

p.

Audit.Share. The dealer of messages m1,m2 ∈ Fq calls algorithm Commit.Share
during algorithm Share and computes commitment c(m1) := gm1 mod p to
message m1 and commitment c(m2) := gm2 mod p to message m2. It publishes
the commitments on the bulletin board.

2 For a formal definition of bilinear maps we refer to [6].

154 G. Traverso et al.

Linear Operations. In the following, algorithm Audit.Linear run by the auditor
to verify the result of linear operations over shared messages is presented. We
assume that either the shareholders or the message dealer published the used
scalars λ1, λ2 ∈ Fq on the bulletin board.

Audit.Linear. The algorithm takes as input the commitments to the input values
c(m1), c(m2) and the scalars λ1, λ2 ∈ Fq from the bulletin board and the claimed
result m. If gm = c(m1)λ1 · c(m2)λ2 it returns ‘1’ and ‘0’ otherwise.

Multiplication. In the following, the auditing procedure for products over
shared messages is presented. More precisely, first algorithm Audit.PreMult is
introduced, which computes commitments to the multiplicative triples generated
during algorithm PreMult of Sect. 5. Second, algorithm Audit.PreMult showing
the auditing procedure for algorithm Multiply is presented.

Note that, algorithm PreMult is performed in distributed fashion by the share-
holders of an authorized set R ∈ Γ . That is, each shareholder si,j ∈ S receives
input from each shareholder contained in R to compute share σi,j(αβ). If one of
the inputs is not valid, then shareholder si,j cannot compute a valid share for
αβ. This also affects the correctness of algorithm Multiply. In the following, it is
explained what audit data have to be generated such that shareholder si,j can
detect inconsistent input sent by other malicious shareholders during algorithm
PreMult of Sect. 5 performing the preprocessing phase.

Audit.PreMult. The algorithm is run by the auditor to verify whether the shares
σi,j(αβ), output of algorithm PreMult, have been computed correctly. The
algorithm takes as input from the bulletin board commitments ck,α, ck,β , for
k = 0, . . . , t−1, to the coefficients of the polynomials fα(x), fβ(x) sharing α and
β, respectively. AppendixB shows how commitments ck,α and ck,β are computed.
Then, each shareholder si,j ∈ S has valid input δl,i,j and εl,i,j , for l = 1, . . . , r,
to compute share σi,j(αβ) if and only if

g
∑r

l=1 δl,i,j ≡
t−1∏

k=j−1

ck,α

k!
(k−j+1)! i

k−j+1

= gf(j−1)
α (i),

and if and only if

g
∑r

l=1 εl,i,j ≡
t−1∏

k=j−1

ck,β

k!
(k−j+1)! i

k−j+1

= gf
(j−1)
β (i).

If one of the both equalities is not satisfied, then it outputs ‘0’ and aborts. Other-
wise, each shareholder si,j ∈ S holding shares σi,j(α), σi,j(β), σi,j(γ) computes
commitments ci,j(α) := gσi,j(α), ci,j(β) := gσi,j(β), and ci,j(γ) := gσi,j(γ) for
σi,j(α), σi,j(β), and σi,j(γ), respectively. It publishes ci,j(α), ci,j(β), and ci,j(γ)
on the bulletin board and outputs ‘1’.

Audit.Multiply. The algorithm takes as input the values δ, ε, the commitments to
the shares of the multiplicative triple, i.e. ci,j(α), ci,j(β), and ci,j(γ), for si,j ∈ S,

Performing Computations on Hierarchically Shared Secrets 155

the commitments to the input values, i.e. c(m1), c(m2), and the claimed result
m. Then, it first audits that the equation αβ = γ was fulfilled and then that m
has been computed correctly performing the following steps.

First, the auditor computes the reconstruction vector (w1, . . . , wr)3 for share-
holders s1, . . . , sr ∈ R, with R ∈ Γ authorized set, which computed the input
for γ during PreMult. Then, it computes the following commitments:

c(α) :=
r∏

l=1

cl(α)wl ; c(β) :=
r∏

l=1

cl(β)wl ; c(γ) :=
r∏

l=1

cl(γ)wl ,

where cl(α), cl(β), cl(γ), for l = 1, . . . , r, are commitments ci,j(α), ci,j(β), ci,j(γ),
respectively, in lexicographic order. The multiplicative triple (α, β, γ) was cor-
rect if and only if e(c(α), c(β)) = e(c(γ), g).4 If the equation does not hold it
outputs ‘0’ and aborts the algorithm. Otherwise, the auditor takes from the bul-
letin board commitments c(m1), c(m2) and the values δ, ε reconstructed during
algorithm Multiply. If it holds that c(α)−1 · c(m1) = gδ and c(β)−1 · c(m1) = gε

and gm = c(γ) · c(m1)ε · c(m2)δ · g−δε it returns ‘1’ and ‘0’ otherwise.

7 Security and Efficiency

Security. We have proven that algorithm Linear of Sect. 4.2, algorithm Multiply
of Sect. 4.3, and algorithm PreMult of Sect. 5 do not compromise the perfect
secrecy and correctness of the underlying conjunctive (disjunctive) hierarchical
secret sharing scheme. The adversary these algorithms can cope with is active, i.e.
not only it knows data private to shareholders (like the passive adversary), but
also it can make them deviate from the protocols. More precisely, assumptions
(A1)–(A4) of Sect. 4.1 set requirements for, respectively, the access structure,
the threshold, the identities of the shareholders, and the channels through which
shareholders communicate. These assumptions together with verifiable secret
sharing ensure that a honest majority of shareholders is able to correctly recon-
struct the message, while maintaining the secrecy of their shares, even if all other
shareholders are corrupted by the adversary and cheat. Assumption (5) prevents
the adversary from tampering the bulletin board and, together with the audit-
ing procedure, ensures correctness when operations on data are performed. As
it is shown in [32], conjunctive (disjunctive) hierarchical secret sharing schemes
support proactive secret sharing [21]. This means that, provided that the shares
are refreshed periodically, our protocols can cope with a mobile adversary, which
is only bounded in the amount of shareholders it can corrupt within a certain
time interval, but not over time. Furthermore, we provide an auditing procedure
in Sect. 6 allowing to detect misbehaviors. The protocols described use Feld-
man commitment, which ensures only computationally hidingness. However, the
3 For conjunctive (disjunctive) hierarchical secret sharing schemes the interpola-

tion vector is composed of the entries wl := (−1)l−1 det(Al−1,0(E,X,ϕ))

det(A(E,X,ϕ))

(
wl :=

(−1)l+t−2 det(Al−1,t−1(E,X,ϕ))

det(A(E,X,ϕ))

)
according to the notation of Sect. 3.

4 Here the definition of bilinear maps is used.

156 G. Traverso et al.

auditing procedure can be easily adapted to Pedersen commitment to achieve
unconditionally hidingness, which preserves even perfect secrecy of the underly-
ing conjunctive (disjunctive) hierarchical secret sharing scheme.

Efficiency. With respect to efficiency, the algorithms Share, Reconstruct, Linear,
Multiply, and PreMult for conjunctive (disjunctive) hierarchical secret sharing
perform equally well as Shamir’s threshold secret sharing. Besides polynomials’
evaluation, algorithm Share requires also to compute up to t − 1 polynomials’
derivatives. However, the additional multiplications due to derivation are bal-
anced by the fewer multiplications needed when evaluating derivatives of poly-
nomials. Algorithm Recostruct is the most expensive algorithm and requires in
both Tassa’s and Shamir’s scheme to perform Gaussian elimination to find a
solution to a system of t linear equations. Algorithm Linear and Multiply require
that the shareholders perform steps very similar to the corresponding algorithms
for Shamir’s secret sharing (see for instance [3,28]). Algorithm PreMult requires
more work with respect to the preprocessing phase compared to Shamir’s thresh-
old secret sharing. In fact, algorithm PreMult is computed in distributed fashion
because additional information is needed to compute the shares. Despite the fact
that only additions and polynomials’ evaluation are performed to compute such
additional information, algorithm PreMult increases the communication cost and
requires secure channels. For Shamir’s threshold secret sharing scheme this addi-
tional information needs not to be computed and the communication complexity
is, thus, lower. For the same reasons, the auditing procedure during the on-
line phase of Tassa’s schemes has computational complexity similar to the one
for Shamir’s scheme while the auditing procedure during the off-line phase is
more expensive. In fact, to perform algorithms Audit.Linear and Audit.Multiply,
the auditor takes steps very similar to the corresponding auditing procedure
for Shamir’s secret sharing schemes, because algorithms Linear and Multiply are
defined similarly. Instead, algorithm Audit.PreMult requires the computation of
commitments in a distributed fashion, which increases the communication and
the computation cost. However, we recall that the preprocessing phase is off-line
and can be performed in advance. Regarding the on-line phase, which is the time
critical phase, the schemes of both Shamir and Tassa perform equally well.

8 Conclusion

In this work, we showed how to practically compute linear operations and mul-
tiplications over shared messages when Tassa’s conjunctive and disjunctive hier-
archical secret sharing schemes are used. Together with the property of modi-
fying the access structure and changing the set of shareholders shown in [32],
we proved that Birkhoff interpolation-based secret sharing schemes allow for
the same functionalities as Shamir’s secret sharing scheme, which is based on
Lagrange interpolation. Furthermore, we showed how to perform the prepro-
cessing phase enabling to reconstruct the product of two shared messages and
provided auditing procedures to check that the operations were performed cor-
rectly. Moreover, the protocols we proposed do not lower the overall security

Performing Computations on Hierarchically Shared Secrets 157

of the underlying conjunctive and disjunctive hierarchical secret sharing scheme
and do not increase in the on-line phase the computation overhead with respect
to the same protocols for Shamir’s secret sharing scheme. From a theoretical
point of view, this result can be inferred from the approach presented in [10],
which shows how secure multi-party computation can be built from linear secret
sharing schemes. From a practical point of view, this result is more interesting
because it shows the exact procedures for achieving secure multi-party computa-
tion specifically for Tassa’s conjunctive and disjunctive secret sharing schemes.
Furthermore, this result impacts the framework of cloud computing and dis-
tributed storage systems. More precisely, the possibility to perform operations
over hierarchically shared messages sets Tassa’s conjunctive and disjunctive hier-
archical secret sharing schemes as promising candidates for distributed storage
systems, where the storage servers are granted with different reconstruction capa-
bilities depending on their performance [24,33]. In fact, Tassa’s conjunctive and
disjunctive hierarchical secret sharing schemes together with the auditing pro-
cedure we presented would allow computations on documents outsourced to the
cloud and stored in distributed fashion.

Acknowledgments. The authors thank Lucas Schabüser and Denis Butin for useful
discussions. This work was in part funded by the European Commission through grant
agreement no. 644962 (PRISMACLOUD). Furthermore, it received funding from the
DFG as part of project S6 within the CRC 1119 CROSSING.

Appendix

A Computation of Shares σi,j(α), σi,j(β)

Algorithm RandShares computes random shares σi,j(α), σi,j(β) reconstructing to
messages α, β, respectively. It is the first step of algorithm PreMult of Sect. 5. We
present RandShares to compute shares σi,j(α) for α, but it can be run analogously
to generate shares σi,j(β) for β.

RandShares. The algorithm takes as input values αi,j ∈ Fq chosen uniformly at
random by shareholders si,j ∈ S. It outputs shares σi,j(α) of message α ∈ Fq for
shareholders si,j ∈ S. To do that, each shareholder si,j ∈ S has to perform the
following steps.

(1) It chooses a secret message αi,j ∈ Fq uniformly at random.
(2) It runs algorithm Share to generate a polynomial fαi,j

(x) of degree t − 1
defined as fαi,j

(x) := a0,(i,j) + a1,(i,j)x + · · · + at−1,(i,j)x
t−1, where

a0,(i,j) = αi,j (at−1,(i,j) = αi,j) and coefficients a1,(i,j), . . . , at−1,(i,j) ∈
Fq (a0,(i,j), . . . , at−2,(i,j) ∈ Fq) are chosen uniformly at random. Shares
σi′,j′(αi,j) for shareholders si′,j′ ∈ S with ID (i′, j′) �= (i, j) are computed as
σi′,j′(αi,j) := f j′

αi,j
(i′). Share σi,j(αi,j) for shareholder si,j itself is computed

as σi,j(αi,j) := f j
αi,j

(i).

158 G. Traverso et al.

(3) It sends shares σi′,j′(αi,j) to shareholders si′,j′ ∈ S with ID (i′, j′) �= (i, j)
using a private channel and keeps share σi,j(αi,j).

(4) It runs algorithm Linear of Sect. 4.2 to compute share σi,j(α) using share
σi,j(αi,j) and all the shares σi,j(αi′,j′) received from shareholders si′,j′ as
σi,j(α) :=

∑
(i′,j′) �=(i,j) σi,j(αi′,j′) + σi,j(αi,j).

In the following, we prove correctness of algorithm RandShares and we show
that perfect secrecy, according to Definition 1, is provided.

Theorem 4. The algorithm RandShares for conjunctive (disjunctive) hierarchi-
cal secret sharing introduced above computes the shares σi,j(α) correctly. More
precisely, on input random secret messages αi,j, the shares computed by algo-
rithm RandShares reconstruct to a common value α. Furthermore, perfect secrecy,
according to Definition 1, is maintained while performing RandShares.

Proof. Let σi,j(α) ∈ Fq be the shares computed using algorithm RandShares
and held by shareholders si,j ∈ R, where R ∈ Γ is an authorized set. To prove
correctness, we have to show that algorithm Reconstruct outputs a message α
when it takes as input shares σi,j(α) held by shareholders of an authorized set
R. This means that correctness holds provided that algorithm Reconstruct can
be successfully run by shareholders of any authorized set. This is implied by
the correctness of algorithm Linear, presented in Sect. 4.2. In fact, each share
σi,j(α) is computed as a sum of shares σi,j(αi′,j′) and share σi,j(αi,j). Thus,
for the homomorphic property of polynomials, shares σi,j(α) is either a point
of polynomial fα(x) := a0,α + a1,αx + · · · + at−1,αxt−1 =

∑
(i,j) fαi,j

(x) or a
point on one of its derivatives, where a0,α =

∑
(i,j) αi,j(at−1,α =

∑
(i,j) αi,j).

Because of the underlying conjunctive (disjunctive) hierarchical secret sharing
scheme, any authorized set R of shareholders can run algorithm Reconstruct over
their shares and retrieve message α :=

∑
(i,j) αi,j . This proves correctness. With

respect to perfect secrecy, the underlying conjunctive (disjunctive) hierarchical
secret sharing scheme guarantees that shares σi,j(α) are computed without leak-
ing information about the secret messages αi,j . Furthermore, this implies that
unauthorized sets of shareholders not only cannot successfully run algorithm
Reconstruct to retrieve α, but also no information about it is gained.

B Computation of Commitments ck,α, ck,β

In this section, algorithm Audit.RandShares is presented, which computes com-
mitments ck,α, ck,β to the coefficients of the polynomials sharing messages
α, β, respectively. Algorithm Audit.RandShares constitutes the first step of algo-
rithm Audit.PreMult of Sect. 6.1. More precisely, commitments ck,α, ck,β , for
k = 0, . . . , t−1, are used to check the validity of terms δl,i,j and εl,i,j for the com-
putation of shares σi,j(αβ). Note that commitments ck,α, ck,β can be correctly
computed provided that an auditing procedure verifying the validity of shares
σi,j(α), σi,j(β) for shareholders si,j is performed, where shares σi,j(α), σi,j(β)
are the output of algorithm RandShares of AppendixA. For consistency with

Performing Computations on Hierarchically Shared Secrets 159

algorithm Audit.PreMult, Feldman commitment is used. However, the algorithm
can be easily adapted to Pedersen commitment. In the following, we present
algorithm Audit.RandShares to compute commitment ck,α, for k = 0, . . . , t − 1.
Algorithm Audit.RandShares can be run analogously to generate commitment
ck,β , for k = 0, . . . , t − 1.

Audit.RandShares. The algorithm is run by an auditor to verify that shares σi,j(α)
was computed correctly. This is performed in the following steps.

(1) Each shareholder si,j ∈ S running algorithm Share to share the secret mes-
sage αi,j ∈ Fq among all other shareholders si′,j′ ∈ S for (i′, j′) �= (i, j)
calls algorithm Commit.Share and computes commitments ck,αi,j

:= gak,(i,j)

mod p, to coefficient ak,(i,j) of polynomial fαi,j
(x), for k = 0, . . . , t − 1. It

publishes the commitments on the bulletin board.
(2) Each shareholder si,j ∈ S has valid input σi,j(αi′,j′), for (i′, j′) �= (i, j), to

compute share σi,j(α) if and only if

gσi,j(αi′,j′) ≡
t−1∏
k=j

ck,αi′,j′
k!

(k−j)! i
k−j

= g
fj

α
i′,j′ (i).

If the above equality is not satisfied, then it outputs ‘0’ and aborts. Other-
wise, it publishes ‘1’ on the bulletin board and Step (3) can be performed.

(3) The auditor uses commitments ck,αi,j
published by shareholders si,j ∈ S

on the bulletin board to compute commitments ck,α :=
∏

(i,j) ck,αi,j
, for

k = 0, . . . , t − 1. It publishes the commitments on the bulletin board.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7 2

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC 1988 (1988)

4. Blakley, G.R., et al.: Safeguarding cryptographic keys. In: Proceedings of the
National Computer Conference (1979)

5. Blundo, C., Cresti, A., De Santis, A., Vaccaro, U.: Fully dynamic secret sharing
schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 110–125.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 10

6. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

7. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle,
J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 468–475. Springer, Heidelberg
(1990). https://doi.org/10.1007/3-540-46885-4 45

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/3-540-48329-2_10
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-46885-4_45

160 G. Traverso et al.

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols.
In: STOC 1988 (1988)

9. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and
achieving simultaneity in the presence of faults (extended abstract). In: FOCS
(1985)

10. Cramer, R., Damg̊ard, I., Maurer, U.: General secure multi-party computation
from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 22

11. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

12. Desmedt, Y., Jajodia, S.: Redistributing secret shares to new access structures and
its applications. Technical report ISSE TR-97-01, George Mason University (1997)

13. Doganay, M.C., Pedersen, T.B., Saygin, Y., Savas, E., Levi, A.: Distributed privacy
preserving k-means clustering with additive secret sharing. In: PAIS (2008)

14. Farràs, O., Padró, C.: Ideal hierarchical secret sharing schemes. In: TCC (2010)
15. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:

28th Annual Symposium on Foundations of Computer Science (1987)
16. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty

computations with applications to threshold cryptography. In: PODC 1998 (1998)
17. Ghodosi, H., Pieprzyk, J., Safavi-Naini, R.: Secret sharing in multilevel and com-

partmented groups. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438,
pp. 367–378. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053748

18. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: STOC 1990 (1990)

19. Gupta, V., Gopinath, K.: G2
its VSR: an information theoretical secure verifiable

secret redistribution protocol for long-term archival storage. In: SISW 2007 (2007)
20. Heather, J., Lundin, D.: The append-only web bulletin board. In: Degano, P.,

Guttman, J., Martinelli, F. (eds.) FAST 2008. LNCS, vol. 5491, pp. 242–256.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01465-9 16

21. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

22. Käsper, E., Nikov, V., Nikova, S.: Strongly multiplicative hierarchical threshold
secret sharing. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 148–168.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10230-1 13

23. Loruenser, T., Happe, A., Slamanig, D.: ARCHISTAR: towards secure and robust
cloud based data sharing. In: CloudCom 2015 (2015)

24. Nojoumian, M., Stinson, D.R.: Social secret sharing in cloud computing using a
new trust function. In: PST 2012 (2012)

25. Nojoumian, M., Stinson, D.R., Grainger, M.: Unconditionally secure social secret
sharing scheme. Inf. Secur. IET 4, 202–211 (2010)

26. Pakniat, N., Eslami, Z., Nojoumian, M.: Ideal social secret sharing using Birkhoff
interpolation method. IACR 2014 (2014)

27. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

28. Schabhüser, L., Demirel, D., Buchmann, J.A.: An unconditionally hiding auditing
procedure for computations over distributed data. In: CNS 2016 (2016)

https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/3-540-45539-6_22
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/BFb0053748
https://doi.org/10.1007/978-3-642-01465-9_16
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/978-3-642-10230-1_13
https://doi.org/10.1007/3-540-46766-1_9

Performing Computations on Hierarchically Shared Secrets 161

29. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
30. Simmons, G.J.: How to (really) share a secret. In: Goldwasser, S. (ed.) CRYPTO

1988. LNCS, vol. 403, pp. 390–448. Springer, New York (1990). https://doi.org/
10.1007/0-387-34799-2 30

31. Tassa, T.: Hierarchical threshold secret sharing. J. Cryptology 20, 237–264 (2007)
32. Traverso, G., Demirel, D., Buchmann, J.: Dynamic and verifiable hierarchical secret

sharing. In: Nascimento, A.C.A., Barreto, P. (eds.) ICITS 2016. LNCS, vol. 10015,
pp. 24–43. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49175-2 2

33. Traverso, G., Demirel, D., Habib, S.M., Buchmann, J.A.: As3: adaptive social secret
sharing for distributed storage systems. In: PST 2016 (2016)

https://doi.org/10.1007/0-387-34799-2_30
https://doi.org/10.1007/0-387-34799-2_30
https://doi.org/10.1007/978-3-319-49175-2_2

Development of a Dual Version
of DeepBKZ and Its Application
to Solving the LWE Challenge

Masaya Yasuda1(B), Junpei Yamaguchi2, Michiko Ooka3,
and Satoshi Nakamura3

1 Institute of Mathematics for Industry, Kyushu University,
744 Motooka Nishi-ku, Fukuoka 819-0395, Japan

yasuda@imi.kyushu-u.ac.jp
2 Graduate School of Mathematics, Kyushu University, Fukuoka, Japan

3 Faculty of Mathematics, Kyushu University, Fukuoka, Japan

Abstract. Lattice basis reduction is a strong tool in cryptanalysis. In
2017, DeepBKZ was proposed as a new variant of BKZ, and it calls
LLL with deep insertions (DeepLLL) as a subroutine alternative to LLL.
In this paper, we develop a dual version of DeepBKZ (which we call
“Dual-DeepBKZ”), to reduce the dual basis of an input basis. For Dual-
DeepBKZ, we develop a dual version of DeepLLL, and then combine
it with the dual enumeration by Micciancio and Walter. It never com-
putes the dual basis of an input basis, and it is as efficient as the pri-
mal DeepBKZ. We also demonstrate that Dual-DeepBKZ solves several
instances in the TU Darmstadt LWE challenge. We use Dual-DeepBKZ
in the bounded distance decoding (BDD) approach for solving an LWE
instance. Our experiments show that Dual-DeepBKZ reduces the cost
of Liu-Nguyen’s BDD enumeration more effectively than BKZ. For the
LWE instance of (n, α) = (40, 0.015) (resp., (n, α) = (60, 0.005)), our
results are about 2.2 times (resp., 4.0 times) faster than Xu et al.’s results,
for which they used BKZ in the fplll library and the BDD enumeration
with extreme pruning while we used linear pruning in our experiments.

Keywords: Lattice basis reduction · Dual lattices
LLL with deep insertions · BKZ · LWE (Learning with Errors)

1 Introduction

The security of lattice-based cryptography relies on the hardness of lattice prob-
lems such as the shortest vector problem (SVP), the closest vector problem
(CVP), and the LWE problem by Regev [19]. From a basis of a lattice L, lattice
basis reduction finds a new basis of L with short and nearly orthogonal basis
vectors. It can be easier to solve lattice problems over a more reduced basis, and
hence it is important to develop strong reduction algorithms for security evalua-
tion of lattice-based cryptography. The most famous reduction is LLL [14], and
c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 162–182, 2018.
https://doi.org/10.1007/978-3-319-89339-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_10&domain=pdf

Development of a Dual Version of DeepBKZ 163

its blockwise generalization is the block Korkine-Zolotarev (BKZ) algorithm by
Schnorr and Euchner [21]. Recently, BKZ 2.0 [7], terminating-BKZ [12], and
progressive-BKZ [2] have been developed as efficient variants of BKZ, and some
of them have been implemented in software. In particular, the fplll library [23]
includes fast implementations of floating-point reduction algorithms including
BKZ 2.0, and it has been often used to solve lattice problems. In 2017, Deep-
BKZ [26] was proposed as a new variant of BKZ, which calls DeepLLL [21] as a
subroutine alternative to LLL. For the SVP challenge [9], DeepBKZ with block-
sizes β ≈ 40 found a number of new solutions (that is, shorter lattice vectors) in
dimensions from 102 to 125 within a few months over a PC (cf., BKZ 2.0 with
β = 75 and 20%-pruning [11] had found short lattice vectors in dimensions from
90 to 112 [7, Sect. 5.2]).

The duality of a lattice helps to develop a new reduction algorithm (see [16]
for dual lattices). For example, the primal-dual reduction [13], the slide reduc-
tion [10], and Self-Dual BKZ [18] make use of the duality. In this paper, we
develop a dual version of DeepBKZ. To develop it, we develop a dual version of
DeepLLL (Dual-DeepLLL), in which we consider a reordered basis given by

σ̂k,�(B) = [b1, . . . ,bk−1,bk+1, . . . ,b�,bk,b�+1, . . . ,bn] (1)

for a basis B = [b1, . . . ,bn] and k ≤ �. This is opposite to the deep insertion in
the primal DeepLLL [21]. By performing the basis transformation B ← σ̂k,�(B)
recursively, we reduce the dual basis D = (B−1)� = [d1, . . . ,dn]. In Dual-
DeepLLL, it requires to recompute the Gram-Schmidt orthogonalization (GSO)
information for the reordered basis σ̂k,�(B). We give an explicit formula to keep
track of the GSO information. This makes Dual-DeepLLL to run practically
like LLL. To develop Dual-DeepBKZ, we combine Dual-DeepLLL with the dual
enumeration by Micciancio and Walter [18, Sect. 7], which finds a short dual
lattice vector. As well as the primal DeepBKZ [26], in Dual-DeepBKZ with
blocksize β, every call of Dual-DeepLLL reduces the total number of calls of
the dual enumeration over local projected blocks B[h,j] for 2 ≤ j ≤ n with
h = max(j − β + 1, 1). For an input basis, Dual-DeepBKZ never computes the
dual basis, and it is as efficient as the primal DeepBKZ [26]. While forward
GSO vectors become shorter in processing of DeepBKZ, backward GSO vectors
b∗

i become longer in processing of Dual-DeepBKZ (equivalently, corresponding
dual-GSO vectors d†

i become shorter).
We demonstrate that Dual-DeepBKZ and DeepBKZ [26] solve several

instances of the LWE challenge [6,9], which have been published since 2016 to
test algorithms for solving the (search-)LWE problem. There are two approaches
for solving the search-LWE problem (see [1,3] for details); the BDD approach and
the embedding approach. The BDD approach requires to solve a particular case
of CVP, and dual HKZ reduction is suitable for solving CVP (e.g., Blömer [4]
improved an algorithm for solving CVP over a dual HKZ reduced basis). Since
Dual-DeepBKZ is a local block version of dual HKZ reduction, we adopt it in the
BDD approach. On the other hand, DeepBKZ is a local block version of primal
HKZ reduction, and it is suitable for the embedding approach. We implement

164 M. Yasuda et al.

both Dual-DeepBKZ and DeepBKZ, and report experimental results on their
running time for solving several LWE instances. In particular, we show some
experimental evidences that Dual-DeepBKZ reduces the cost of Liu-Nguyen’s
BDD enumeration [15] more effectively than BKZ in solving the LWE challenge.

Notation. The symbols Z and R denote the ring of integers and the field of real
numbers, respectively. Throughout this paper, we basically represent all vectors
in column format. For a vector a = (a1, . . . , an)� ∈ R

n, let ‖a‖ denote its
Euclidean norm defined by ‖a‖2 =

∑n
i=1 a2

i . For two vectors a = (a1, . . . , an)�

and b = (b1, . . . , bn)� ∈ R
n, we let 〈a,b〉 denote the inner product

∑n
i=1 aibi.

2 Preliminaries

We briefly review lattices and dual lattices, and the GSO for their bases. We
also present DeepLLL [21] and DeepBKZ [26].

2.1 Lattices and Bases

For a positive integer n, linearly independent vectors b1, . . . ,bn ∈ R
n define the

(full-rank) lattice

L(B) :=

{

n
∑

i=1

xibi : xi ∈ Z for all 1 ≤ i ≤ n

}

of dimension n with basis B = [b1, . . . ,bn] ∈ R
n×n. Every lattice has infinitely

many bases; If B1 and B2 are two bases such that L(B1) = L(B2), there exists a
unimodular matrix V ∈ GLn(Z) satisfying B1 = B2V. For a basis B of a lattice
L, the volume of L is defined as vol(L) = |det (B) | > 0, which is independent
of the choice of bases.

The GSO for a basis B is the orthogonal family B∗ = [b∗
1, . . . ,b

∗
n] ∈ R

n×n,
recursively defined by b∗

1 := b1 and

b∗
i := bi −

i−1
∑

j=1

μi,jb∗
j , μi,j :=

〈bi,b∗
j 〉

‖b∗
j‖2

for 1 ≤ j < i ≤ n. (2)

We note that a basis must be regarded as an ordered set for its GSO. Set U =
(μi,j) ∈ R

n×n, where we set μi,i = 1 for all i and μi,j = 0 for all j > i. Then

B = B∗U� and vol(L) =
n

∏

i=1

‖b∗
i ‖.

For each 2 ≤ � ≤ n, the orthogonal projection from R
n over the orthogonal

supplement of the R-vector space 〈b1, . . . ,b�−1〉R is defined as (we set π1 = id)

π� : Rn → 〈b1, . . . ,b�−1〉⊥
R

= 〈b∗
� , . . . ,b

∗
n〉, π�(x) =

n
∑

i=�

〈x,b∗
i 〉

‖b∗
i ‖2

b∗
i .

Development of a Dual Version of DeepBKZ 165

2.2 Dual Lattices and Dual Bases

The dual of a lattice L is defined as

̂L := {x ∈ spanR(L) : 〈x,y〉 ∈ Z for ∀y ∈ L} ,

where spanR(L) denotes the R-vector space spanned by the vectors of L (that
is, spanR(L) � L ⊗Z R). The dual of a full-rank lattice L = L(B) with basis B
has a basis D =

(

B−1
)�. Write B = [b1, . . . ,bn] and D = [d1, . . . ,dn]. Then

the relation D�B = In is maintained, where In denotes the identity matrix of
size n (that is, 〈di,bj〉 = δij where δij denotes the Kronecker delta). This tells
how the dual basis D changes with respect to changes of the primal basis B.

Now define the GSO for the dual basis D as in case of the primal basis, but
going through the basis vectors in reverse order ; d†

n := dn and

d†
j := dj −

n
∑

i=j+1

μ̂j,id
†
i , μ̂j,i :=

〈dj ,d
†
i 〉

‖d†
i‖2

for 1 ≤ j < i ≤ n. (3)

Set μ̂j,j = 1 for all 1 ≤ j ≤ n. For each 1 ≤ � ≤ n − 1, let

τ� : Rn → 〈d�+1, . . . ,dn〉⊥
R

= 〈d†
1, . . . ,d

†
�〉R, τ�(x) =

�
∑

i=1

〈x,d†
i 〉

‖d†
i‖2

d†
i .

We also let τn = id. For a basis B = [b1, . . . ,bn] and 1 ≤ i ≤ j ≤ n, we denote
by B[i,j] the local projected block basis [πi(bi), πi(bi+1), . . . , πi(bj)]. Then its
dual basis is given by [τj(di), . . . , τj(dj)]. The particular case i = j shows

b∗
i

‖b∗
i ‖

=
d†

i

‖d†
i‖

and ‖b∗
i ‖ · ‖d†

i‖ = 1 (4)

for all 1 ≤ i ≤ n.

2.3 DeepLLL [21]

Schnorr and Euchner [21] proposed DeepLLL, an improvement of LLL [14].
In LLL, only adjacent basis vectors b�−1 and b� can be swapped for a basis
B = [b1, . . . ,bn]. In DeepLLL, non-adjacent basis vectors can be changed; For a
reduction parameter 1

4 < δ < 1, a basis vector b� is inserted between bk−1 and
bk for k < � if the deep exchange condition

‖πk(b�)‖2 < δ‖b∗
k‖2 (5)

is satisfied. In this case, the new GSO vector at the k-th position is given by
πk(b�), strictly shorter than the old GSO vector b∗

k.

Definition 1. For a reduction parameter 1
4 < δ < 1, we say that a basis B =

[b1, . . . ,bn] is δ-DeepLLL-reduced if the following two conditions are satisfied;

166 M. Yasuda et al.

(i) The basis B is size-reduced, namely, |μi,j | < 1/2 for all 1 ≤ j < i ≤ n.
(ii) We have ‖πk(b�)‖2 ≥ δ‖b∗

k‖2 for all 1 ≤ k < � ≤ n (The case � = k + 1 is
just Lovász’ condition [14] between bk and bk+1).

We note that B is said to be δ-LLL-reduced if it satisfies (i) and Lovász’ condi-
tion between bk and bk+1 for 1 ≤ k ≤ n − 1.

Every DeepLLL-reduced basis has a local property; If a basis B is δ-DeepLLL-
reduced, then the local block B[i,j] is also δ-DeepLLL-reduced for all i ≤ j.
Let Sn denote the group of permutations among n elements. For σ ∈ Sn and
B = [b1, . . . ,bn], we let σ(B) := [bσ(1), . . . ,bσ(n)] denote the reordered basis.
For 1 ≤ k < � ≤ n, we define σk,� ∈ Sn as σk,�(i) = i for 1 ≤ i < k or � < i ≤ n,
σk,�(k) = �, and σk,�(i) = i − 1 for k + 1 ≤ i ≤ �. Then

σk,�(B) = [b1, . . . ,bk−1,b�,bk, . . . ,b�−1,b�+1, . . . ,bn],

which is obtained by inserting b� between bk−1 and bk (i.e., a deep insertion).
DeepLLL takes a basis B of a lattice L and a reduction parameter 1

4 < δ < 1
as input, and outputs a δ-DeepLLL-reduced basis of L (see [5, Fig. 5.1] or [8,
Algorithm 2.6.3] for procedures of DeepLLL). In the below, we present the GSO
formula [26, Theorem 1] for the reordered basis σk,�(B), which makes DeepLLL
practical (see [26, Algorithm 4] for their GSO update algorithm):

Theorem 1 ([26]). Let B = [b1, . . . ,bn] be a basis, and B∗ = [b∗
1, . . . ,b

∗
n]

its GSO with coefficients μi,j and Bi = ‖b∗
i ‖2. For 1 ≤ k < � ≤ n, let C =

σk,�(B) = [c1, . . . , cn], and C∗ = [c∗
1, . . . , c

∗
n] its GSO. Then we have c∗

i = b∗
i

for 1 ≤ i ≤ k − 1 and � + 1 ≤ i ≤ n, c∗
k = πk(b�), and

c∗
i =

D
(�)
i

D
(�)
i−1

b∗
i−1 − μ�,i−1Bi−1

D
(�)
i−1

�
∑

h=i

μ�,hb∗
h

for k + 1 ≤ i ≤ �, where set D
(�)
j = ‖πj(b�)‖2 for 1 ≤ j ≤ �. With respect to the

squared lengths Ci = ‖c∗
i ‖2, we have Ck = D

(�)
k and

Ci =
D

(�)
i Bi−1

D
(�)
i−1

for k + 1 ≤ i ≤ �.

2.4 DeepBKZ [26]

For a basis [b1, . . . ,bn] and 1 ≤ j ≤ k ≤ n, we denote by L[j,k] the lattice
spanned by the local block basis B[j,k] of dimension k − j + 1. A basis B is
called (δ, β)-BKZ-reduced [21] with blocksize 2 ≤ β ≤ n and factor 1

4 < δ < 1
if it is δ-LLL-reduced and it satisfies ‖b∗

j‖ = λ1(L[j,k]) for all 1 ≤ j ≤ n with
k = min(j + β − 1, n), where λ1(L) denotes the first successive minimum of a

Development of a Dual Version of DeepBKZ 167

lattice L. We simply call the basis β-BKZ-reduced when δ is unconscious. From
an input basis of a lattice L, BKZ [21, Sect. 6] finds a β-BKZ-reduced basis of
L. For higher blocksizes β, BKZ outputs a more reduced basis than LLL and
DeepLLL in practice (see [10] for their experimental results).

The original BKZ [21] uses LLL as a subroutine to reduce local bases B[j,k]

before enumeration (e.g., see [11] for enumeration) for finding a shortest vector
over L[j,k] (cf., BKZ 2.0 [7], an updated version of BKZ, calls aborted-BKZ with
small blocksizes for local blocks B[j,k] for higher blocksizes β ≥ 50). In contrast,
DeepBKZ [26, Algorithm 3] uses DeepLLL instead of LLL. From a basis of a
lattice L, it finds a DeepBKZ-reduced basis of L, defined as follows:

Definition 2. Let 1
4 < δ < 1 and β ≥ 2. A basis is called (δ, β)-DeepBKZ-

reduced if it is both δ-DeepLLL-reduced and β-BKZ-reduced.

A basis B = [b1, . . . ,bn] of a lattice L is called HKZ-reduced if the following
two conditions are satisfied; (i) The basis B is size-reduced. (ii) We have ‖b∗

i ‖ =
λ1(πi(L)) for all 1 ≤ i ≤ n. The notion of BKZ-reduction is a local block version
of HKZ-reduction (see [16, Definition 7.8] for HKZ-reduction). It is clear that
any HKZ-reduced basis is also (δ, β)-DeepBKZ-reduced for any 1

4 < δ < 1 and
β ≥ 2. Namely, DeepBKZ-reduction is a middle notion between BKZ-reduction
and HKZ-reduction.

3 Development of Dual-DeepBKZ

In this section, we develop Dual-DeepBKZ, a dual version of DeepBKZ [26].

3.1 Dual-DeepLLL

Here we develop Dual-DeepLLL, a dual version of DeepLLL, which we shall
embed into Dual-DeepBKZ as a main subroutine in the next subsection. Let
B = [b1, . . . ,bn] be a basis of a lattice L. For 1 ≤ k < � ≤ n, we define σ̂k,� ∈ Sn

by σ̂k,�(i) = i for 1 ≤ i < k or � < i ≤ n, σ̂k,�(�) = k, and σ̂k,�(i) = i + 1 for
k ≤ i ≤ � − 1 (cf., σk,� ∈ Sn). The reordered basis σ̂k,�(B) is given by (1), in
which the basis vector bk is inserted between b� and b�+1. In this paper, we call
the basis transformation B ← σ̂k,�(B) a dual deep insertion.

GSO Formula. To keep track of the GSO information of a new basis after a
dual deep insertion, we give an explicit formula for the GSO of C = σ̂k,�(B) like
Theorem 1. Let D = [d1, . . . ,dn] be the dual basis of B. Let D′ = [d′

1, . . . ,d
′
n]

denote the basis obtained by changing the order of basis vectors of D reversely
(i.e., d′

i = dn−i+1 for 1 ≤ i ≤ n). Consider the deep insertion σn−�+1,n−k+1

for D′, and set E′ = σn−�+1,n−k+1(D′) = [e′
1, . . . , e

′
n]. In the same manner, let

E = [e1, . . . , en] denote the basis obtained by changing the order of basis vectors

168 M. Yasuda et al.

of E′ reversely. Then E = σ̂k,�(D), and hence E�C = In since D�B = In.
Therefore E is the dual basis of C (this is why we call σ̂k,� a dual deep insertion):

B = [b1, . . . ,bn]
dual deep insertion−−−−−−−−−−−−→ C = σ̂k,�(B) = [c1, . . . , cn]

⏐

⏐

�dual dual

�

⏐

⏐

D = [d1, . . . ,dn] E = [e1, . . . , en] = σ̂k,�(D)
⏐

⏐

�reverse order reverse order

�

⏐

⏐

D′ = [d′
1, . . . ,d

′
n] −−−−−−−−−→

deep insertion
E′ = σn−�+1,n−k+1(D′) = [e′

1, . . . , e
′
n]

We remark that dual GSO process (3) for D (resp., E) coincides with primal
GSO process (2) for D′ (resp., E′) by the reverse order of GSO vectors. By
applying Theorem1 to the pair (D′,E′), we can obtain an explicit GSO formula
for E, and hence for C as follows:

Theorem 2. Let B = [b1, . . . ,bn] be a basis, and B∗ = [b∗
1, . . . ,b

∗
n] its GSO

with coefficients μi,j and Bi = ‖b∗
i ‖2. Let D = (B−1)� = [d1, . . . ,dn] denote

the dual basis of B, and D† = [d†
1, . . . ,d

†
n] its GSO with coefficients μ̂j,i. For

1 ≤ k < � ≤ n, set C = σ̂k,�(B) = [c1, . . . , cn], and let C∗ = [c∗
1, . . . , c

∗
n] denote

its GSO. Then

c∗
j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

b∗
j (1 ≤ j ≤ k − 1 or � + 1 ≤ j ≤ n),

b∗
j+1 − μ̂k,j+1

̂D
(k)
j

j
∑

h=k

μ̂k,h

Bh
b∗

h (k ≤ j ≤ � − 1),

τ�(dk)
̂D
(k)
�

(j = �),

where we set ̂D
(k)
i := ‖τi(dk)‖2 for 1 ≤ k ≤ i ≤ n. For Cj = ‖c∗

j‖2, we have

Cj =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Bj (1 ≤ j ≤ k − 1 or � + 1 ≤ j ≤ n),

̂D
(k)
j+1Bj+1

̂D
(k)
j

(k ≤ j ≤ � − 1),

1
̂D
(k)
�

(j = �).

Proof. Here we prove the formula for Cj = ‖c∗
j‖2 only. By Theorem 1, we have

‖e′∗
n−�+1‖2 = ‖πn−�+1(d′

n−k+1)‖2 and

‖e′∗
n−j+1‖2 =

‖πn−j+1(d′
n−k+1)‖2 · ‖d′∗

n−j‖2
‖πn−j(d′

n−k+1)‖2

Development of a Dual Version of DeepBKZ 169

for k ≤ j ≤ � − 1. By using the notation for D and E, we can rewrite these
equations as ‖e†

�‖2 = ‖τ�(dk)‖2 = ̂D
(k)
� and

‖e†
j‖2 =

‖τj(dk)‖2 · ‖d†
j+1‖2

‖τj+1(dk)‖2 =
̂D
(k)
j · ‖d†

j+1‖2
̂D
(k)
j+1

for k ≤ j ≤ � − 1. By the duality for pairs (B,D) and (C,E), we have Bi =
‖d†

i‖−2 and Ci = ‖e†
i‖−2 from (4) for 1 ≤ i ≤ n. This completes the proof. ��

Computation of μ̂k,j and ̂D
(k)
i In Theorem 2, the dual basis D of B is required

in computing the GSO information of C = σ̂k,�(B). However, computation of
the dual basis is costly since it involves matrix inversion. Here we give a method
to compute μ̂k,j and ̂D

(k)
i without computing the dual basis; By (4), for any

1 ≤ k ≤ i ≤ n, we have

̂D
(k)
i =

i
∑

j=k

μ̂2
k,j‖d†

j‖2 =
i

∑

j=k

μ̂2
k,j

Bj
.

By this, it is sufficient to compute all μ̂k,j to obtain ̂D
(k)
i . It follows from (4) that

μ̂k,j = 〈dk,b∗
j 〉 for any k ≤ j ≤ n. For j = k, we have μ̂k,k = 1 by definition. For

j = k + 1, we have μ̂k,k+1 = 〈dk,bk+1〉 − ∑k
h=1 μk+1,h〈dk,b∗

h〉 = −μk+1,k from
b∗

k+1 = bk+1 − ∑k
h=1 μk+1,hb∗

h and 〈dk,bi〉 = δki (we remark that each b∗
h is

included in the space 〈b1, . . . ,bh〉R). In the same manner, we can compute all
μ̂k,j recursively from the GSO coefficients μi,j of B as μ̂k,k = 1 and

μ̂k,j = −
j−1
∑

h=k

μj,h〈dk,b∗
h〉 = −

j−1
∑

h=k

μj,hμ̂k,h (6)

for k + 1 ≤ j ≤ n.

Algorithm. Here we present a new reduction algorithm using dual deep inser-
tions, which we call “Dual-DeepLLL”. In the following, we define a dual notion
of DeepLLL-reduction:

Definition 3. Given a reduction parameter 1
4 < δ < 1, we say that a basis is

δ-Dual-DeepLLL-reduced if its dual basis is δ-DeepLLL-reduced.

Algorithm 1 is our Dual-DeepLLL. It takes a basis B = [b1, . . . ,bn] of a
lattice L and a reduction parameter 1

4 < δ < 1 as input, and outputs a δ-
Dual-DeepLLL-reduced basis of L. Dual-DeepLLL performs simple unimodular
transformations only over the primal basis B until its dual basis D = [d1, . . . ,dn]
is δ-DeepLLL-reduced. In particular, it involves no matrix inversion, and it is as
efficient as the primal DeepLLL [21]. In the following, we describe several key
procedures in Dual-DeepLLL (we use the same notation as in Theorem 2):

170 M. Yasuda et al.

Algorithm 1. Dual-DeepLLL
Input: A basis B = [b1, . . . ,bn] of a lattice L and a reduction parameter 1

4
< δ < 1

Output: A δ-Dual-DeepLLL-reduced basis B of L

1: Compute B∗ = [b∗
1, . . . ,b∗

n] of B with coefficients μi,j and Bi = ‖b∗
i ‖2 (set μi,i = 1)

2: μ̂n,n = 1 and k ← n − 1 /∗ μ̂j,i are the GSO coefficients of the dual basis D ∗/

3: while k ≥ 1 do

4: μ̂k,k = 1

5: for j = k + 1 to n do

6: μ̂k,j ← −
j−1
∑

h=k

μj,hμ̂k,h and q = �μ̂k,j� /∗ see (6) for computation of μ̂k,j ∗/

7: if q �= 0 then

8: bj ← bj + qbk /∗ size-reduce D = [d1, . . . ,dn] over B ∗/

9: μ̂k,� ← μ̂k,� − qμ̂j,� for j ≤ � ≤ n /∗ update μ̂k,� ∗/

10: μj,h ← μj,h + qμk,h for 1 ≤ h ≤ k /∗ update μj,h ∗/

11: end if

12: end for

13: D ←
n

∑

j=k

μ̂2
k,j

Bj
and � ← n /∗ D = ̂D

(k)
n = ‖τn(dk)‖2 ∗/

14: while � ≥ k + 1 do

15: if B� · D < δ then

16: B ← σ̂k,�(B) and update its GSO /∗ a dual deep insertion ∗/

17: k ← min(�, n − 1) + 1

18: else

19: D ← D −
μ̂2

k,�

B�
and � ← � − 1 /∗ update D = ̂D

(k)
� = ‖τ�(dk)‖2 ∗/

20: end if

21: end while

22: k ← k − 1

23: end while

(a) Dual deep exchange condition: In Dual-DeepLLL, a dual deep insertion σ̂k,�

for B is performed only if B� · ̂D
(k)
� < δ, which we call the dual deep exchange

condition (see Step 15 in Algorithm 1). By (4), this can be rewritten as
‖τ�(dk)‖2 < δ‖d†

�‖2, which is just the deep exchange condition (5) for D.
This implies that the dual basis of any output basis by Dual-DeepLLL sat-
isfies condition (ii) in Definition 1. To the contrary to the original DeepLLL,
the new GSO vector at the �-th position over the primal basis B after a
dual deep insertion is strictly longer than the old GSO vector b∗

� in Dual-
DeepLLL (over the dual basis D, the new dual-GSO vector is strictly shorter
than the old dual-GSO vector d†

� as in DeepLLL).
(b) Size-reducing the dual basis: In Step 8 of Algorithm 1, computation of bj ←

bj + qbk over the primal basis B corresponds to that of dk ← dk − qdj

over the dual basis D with q = �μ̂k,j� since D�B = In is maintained. This
makes the dual basis D size-reduced. By combining this with the argument
in (a), we see that the dual basis of any output basis by Dual-DeepLLL
satisfies both (i) and (ii) in Definition 1 (that is, any output basis is δ-Dual-
DeepLLL-reduced).

Development of a Dual Version of DeepBKZ 171

(c) Efficient GSO update: In Step 16 of Algorithm1, it requires to update certain
GSO information of the primal basis B after every dual deep insertion. From
Theorem 2, we can construct an algorithm to update the GSO information
(see the next subsection). Such algorithm makes Dual-DeepLLL practical.

Remark 1. The insertion restriction technique [21, Comments in Sect. 3] for
DeepLLL can be adopted for Dual-DeepLLL; For a parameter ε > 0 (e.g.,
ε = 20), a dual deep insertion B ← σ̂k,�(B) is performed only in case of either
� ≥ n − ε + 1 or � ≤ k + ε. This restriction accelerates Dual-DeepLLL in perfor-
mance, but the output basis is not guaranteed to be Dual-DeepLLL-reduced.

Efficient GSO Update Algorithm. Here we give an efficient algorithm to
update some GSO information of the reordered basis C = σ̂k,�(B) by a dual
deep insertion. This algorithm can be adopted as a subroutine in Step 16 of
Algorithm 1. We use the same notation as in Theorem 2. For the GSO vectors
C∗ = [c∗

1, . . . , c
∗
n], we let

ξi,j =
〈ci, c∗

j 〉
‖c∗

j‖2
for 1 ≤ j < i ≤ n.

The GSO vectors c∗
j and their squared lengths Cj = ‖c∗

j‖2 are obtained from
Theorem 2. We can also compute the GSO coefficients ξi,j directly as follows:

Proposition 1. The GSO coefficients ξi,j are as follows:

(A) For j = �, we have ξi,� =
�

∑

h=k

μ̂k,hμi,h for � + 1 ≤ i ≤ n.

(B) For k ≤ j ≤ � − 1, we have

ξi,j =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μi+1,j+1
̂D
(k)
j

̂D
(k)
j+1

− μ̂k,j+1

̂D
(k)
j+1Bj+1

j
∑

h=k

μ̂k,hμi+1,h (j + 1 ≤ i ≤ � − 1),

− μ̂k,j+1

̂D
(k)
j+1Bj+1

(i = �),

μi,j+1
̂D
(k)
j

̂D
(k)
j+1

− μ̂k,j+1

̂D
(k)
j+1Bj+1

j
∑

h=k

μ̂k,hμi,h (� + 1 ≤ i ≤ n).

(C) For 1 ≤ j ≤ k − 1, we have ξi,j = μi+1,j for k ≤ i ≤ � − 1 and ξ�,j = μk,j.
(D) For the other indices 1 ≤ j < i ≤ n, we have ξi,j = μi,j.

Proof. It follows from Theorem 2. ��
In Dual-DeepLLL, it is sufficient to update the GSO coefficients ξ�,j and the

squared lengths Cj . In Algorithm 2, we give an algorithm to efficiently update
some GSO information in Dual-DeepLLL. This algorithm is based on results of
Theorem 2 and Proposition 1.

172 M. Yasuda et al.

Algorithm 2. Update of some GSO information in Dual-DeepLLL
Input: Indices 1 ≤ k < � ≤ n, GSO information (μi,j) and Bi = ‖b∗

i ‖2 of a basis B,

and μ̂k,h for k ≤ h ≤ n and ̂D
(k)
i for k ≤ i ≤ n

Output: Updated GSO information (μi,j) and Bi of the new basis B ← σ̂k,�(B)
1: Copy (ξi,j) ← (μi,j)

2: for i = � + 1 to n: ξi,� ←
�

∑

h=k

μ̂k,hμi,h; /∗ by Proposition 1 (A) ∗/

3: /∗ by Proposition 1 (B) ∗/
4: for j = k to � − 1 do

5: for i = j + 1 to � − 1: ξi,j ← μi+1,j+1
̂D
(k)
j

̂D
(k)
j+1

− μ̂k,j+1

̂D
(k)
j+1Bj+1

j
∑

h=k

μ̂k,hμi+1,h;

6: ξ�,j ← − μ̂k,j+1

̂D
(k)
j+1Bj+1

7: for i = � + 1 to n: ξi,j ← μi,j+1
̂D
(k)
j

̂D
(k)
j+1

− μ̂k,j+1

̂D
(k)
j+1Bj+1

j
∑

h=k

μ̂k,hμi,h;

8: end for
9: for j = 1 to k − 1 do

10: for i = k to � − 1: ξi,j ← μi+1,j ; ξ�,j ← μk,j /∗ by Proposition 1 (C) ∗/
11: end for
12: Copy (μi,j) ← (ξi,j)

13: for j = k to � − 1: Bj ←
̂D
(k)
j+1Bj+1

̂D
(k)
j

; B� ← 1

D
(k)
�

/∗ by Theorem 2 ∗/

3.2 Dual-DeepBKZ

We define a dual notion of DeepBKZ-reduction as follows:

Definition 4. For 1
4 < δ < 1 and 2 ≤ β ≤ n, a basis B = [b1, . . . ,bn] is called

(δ, β)-Dual-DeepBKZ-reduced if its dual basis is (δ, β)-DeepBKZ-reduced, that
is, it is both δ-DeepLLL-reduced and β-BKZ-reduced.

Algorithm 3 is our Dual-DeepBKZ. It takes as input a basis B = [b1, . . . ,bn]
of a lattice L, a reduction parameter 1

4 < δ < 1 and a blocksize 2 ≤ β ≤ n.
It outputs a (δ, β)-Dual-DeepBKZ-reduced basis of L. The main components
of Dual-DeepBKZ are Dual-DeepLLL (Algorithm 1) and Dual-Enumeration by
Micciancio and Walter [18, Sect. 7]. In the following, we describe several key
procedures of Dual-DeepBKZ:

(a) Call of Dual-Enumeration: For a search bound A > 0, Dual-Enumeration
enumerates all vectors x = (x1, . . . , xn)� ∈ Z

n over a basis B = [b1, . . . ,bn]
of a lattice L such that it satisfies ‖v‖2 ≤ A for the dual lattice vector v ∈ ̂L

with xi = 〈v,bi〉 for all 1 ≤ i ≤ n (for any z ∈ ̂L, it satisfies 〈z,bi〉 ∈ Z

for all 1 ≤ i ≤ n). In Step 6 of Algorithm3, we call Dual-Enumeration over
the local block B[h,j] for 2 ≤ j ≤ n with h = max(j − β + 1, 1), to find a

Development of a Dual Version of DeepBKZ 173

Algorithm 3. Dual-DeepBKZ
Input: A basis B = [b1, . . . ,bn] of a lattice L and a reduction parameter 1

4
< δ < 1,

and a blocksize 2 ≤ β ≤ n
Output: A (δ, β)-Dual-DeepBKZ-reduced basis B of L
1: B ← Dual-DeepLLL(B, δ) and flag ← 1 /∗ compute μi,� and ‖b∗

i ‖2 ∗/
2: while flag ≥ 1 do
3: flag ← 0
4: for j = n downto 2 do
5: h ← max(j − β + 1, 1)
6: x ← Dual-Enum(μ[h,j], ‖b∗

h‖2, . . . , ‖b∗
j ‖2, A) /∗ over the local block B[h,j],

enumerate all coefficient vectors x = (xh, . . . , xj) ∈ Z
j−h+1 of v ∈ ̂L with

‖τj(v)‖2 ≤ A for a search bound A (e.g., set A = 0.99/‖b∗
j ‖2) ∗/

7: if x �= (0, . . . , 0, 1) then
8: flag ← flag + 1
9: Insert v ∈ ̂L into the dual basis of B at the j-th position to obtain a new

basis B /∗ see [19, Sect. 7] for details ∗/
10: B ← Dual-DeepLLL(B, δ) at stage j
11: end if
12: end for
13: end while

short dual lattice vector v ∈ ̂L satisfying ‖τj(v)‖2 < 1/‖b∗
j‖2, equivalently,

‖τj(v)‖2 < ‖d†
j‖2 by (4) for the dual basis D = [d1, . . . ,dn] of B.

(b) Insertion of dual lattice vectors: In Step 9 of Algorithm 3, we insert such
a short vector v ∈ ̂L into D at the j-th position to obtain a new basis
of L. This is achieved by certain unimodular transformation over a primal
basis [18, Sect. 7]. The dual lattice of the new basis has τj(v) as the j-th
dual-GSO vector, strictly shorter than the old dual-GSO vector d†

j .
(c) Call of Dual-DeepLLL: In Steps 1 and 10 in Algorithm3, we call Dual-

DeepLLL to reduce every local block B[h,j] before Dual-Enumeration. Since
the dual basis [τj(dh), . . . , τj(dj)] of B[h,j] is δ-DeepLLL-reduced, any dual
basis vector di can not be found by Dual-Enumeration over B[h,j] if we set
δ ≈ 1 (we used δ = 0.99 in our experiments). In other words, every short
dual basis vector di is inserted into the dual basis D in Dual-DeepLLL.
Like the primal DeepBKZ [26], this reduces the total number of calls of
Dual-Enumeration.

Remark 2. Dual-DeepBKZ terminates if the dual-GSO vector d†
j is the shortest

over the dual basis of the local block B[h,j] for all 2 ≤ j ≤ n with h = max(j −
β + 1, 1). Hence the dual basis of any output basis by Dual-DeepBKZ is (δ, β)-
DeepBKZ-reduced, that is, the primal basis is (δ, β)-Dual-DeepBKZ-reduced. In
a tour, Dual-DeepBKZ calls Dual-Enumeration over every block B[h,j] backward
from j = n to 2. Hence, in processing of Dual-DeepBKZ, backward dual-GSO
vectors d†

j become shorter, equivalently, backward GSO vectors b∗
j of the primal

basis become longer. Conversely, forward GSO vectors b∗
i become shorter since

vol(L) =
∏n

i=1 ‖b∗
i ‖ is constant (see right-side of Figs. 1 and 2 below).

174 M. Yasuda et al.

4 Application to Solving the LWE Challenge

Since 2016, sample LWE instances have been published in the web page of [9]
to test algorithms that solve the (search-)LWE problem proposed by Regev [19]
(see also [6] for details on the LWE challenge). In this section, we apply both
Dual-DeepBKZ (Algorithm 3) and DeepBKZ [26] for solving the LWE challenge,
and report experimental results on their total running time.

4.1 The LWE Challenge and BDD Strategy

Here we describe the parameter setting of the LWE challenge [6,9], and present
the BDD strategy [1, Sect. 4.2], which is useful to solve the LWE problem.

Parameter Setting of the LWE Challenge. Let n be a security parameter,
q an odd prime modulus parameter, and χ = DZ,σ denote the discrete Gaussian
distribution over Z with mean 0 and standard deviation σ > 0. We let Zq denote
a set of representatives of integers modulo q in the interval (−q/2, q/2), that is,
Zq = Z ∩ (−q/2, q/2) (this notation is not standard in mathematics, but seems
specific in cryptography). The search-LWE problem with limited number m of
LWE samples is to recover a secret vector s ∈ Z

n
q from an LWE instance (A,b),

where A = [a1, . . . ,am] is an n × m matrix over Zq and b = (b1, . . . , bm)� is a
vector of length m over Zq with

b ≡ A�s + e mod q (7)

for an error vector e = (e1, . . . , em)� ∈ Z
m (i.e., it satisfies bi ≡ 〈ai, s〉+ei mod q

for all 1 ≤ i ≤ m). Here all entries of both A and s are uniformly random over
Zq, while every entry of e is sampled from the distribution χ. In the LWE
challenge [6,9], every LWE instance (A,b) is characterized by a pair (n, α) with
40 ≤ n ≤ 120 and 0.005 ≤ α ≤ 0.070 (different from the notation in this
paper, all vectors are represented in row format in the web page of [9]). Each
pair (n, α) determines three parameters m, q, σ; (i) m = n2. (ii) q is the smallest
prime number exceeding m. (iii) σ = αq.

BDD Strategy. This is to regard the search-LWE problem as the BDD prob-
lem [1, Sect. 4.2]. As seen from previous records in the web page of [9], the BDD
strategy seems the most suitable for solving the LWE challenge among a number
of strategies to solve the search-LWE problem (see [1,3] for strategies). Given
an LWE instance (A,b) with parameters q,m, n, let

Λq(A) :=
{

x ∈ Z
m : x ≡ A�z mod q for some z ∈ Z

n
q

}

denote the m-dimensional q-ary lattice (see [17, Sect. 2] for q-ary lattices). We
can regard (A,b) as a BDD instance over Λq(A); We regard b as a target
vector bounded in distance from the lattice vector v := A�s ∈ Λq(A). The

Development of a Dual Version of DeepBKZ 175

BDD strategy is successful if we could find the lattice vector v close to b with
distance ‖b − v‖ equal to ‖e‖, which is bounded by sizes of m and σ (we can
easily recover the secret vector s from v).

There are two approaches in the BDD strategy; (A) The decoding approach
(or the BDD approach) [1, Sect. 5.4] is to find the lattice vector v over Λq(A)
using an approximate-CVP method such as Babai’s nearest plane algorithm (see
Subsect. 4.2 below). (B) The embedding approach [1, Sect. 5.5] reduces the BDD
problem to unique-SVP [16, p. 191] by embedding v as a shortest lattice vector
over a certain lattice (see Subsect. 4.3 below).

4.2 Decoding Approach and Dual-DeepBKZ

Here we adopt Dual-DeepBKZ in the decoding approach of the BDD strategy
for solving the LWE challenge, and show several experimental results.

Procedures. Given an LWE instance (A,b) with parameters q,m, n. For the
n×m matrix A = [a1, . . . ,am], we use only the first d vectors a1, . . . ,ad for d ≤ m
(more generally, we can extract d column vectors freely from A). Suitable d shall
be chosen in our experiments (see Table 1 below). Procedures of the decoding
approach for recovering the secret vector s ∈ Z

n
q are the following three steps:

1. For the sub-matrix Ad = [a1, . . . ,ad] of A, construct a d × (d + n) matrix

C =
(

qId | A�
d

)

.

Note that the columns of C form a system of generators of the d-dimensional
q-ary lattice L := Λq(Ad). Compute a basis B of L by performing Hermite
normal form (HNF) or modified-LLL for C (see [8, Chap. 2] for details).

2. Reduce B by lattice basis reduction.
3. For the sub-vector bd = (b1, . . . , bd)� of b of length d, it satisfies bd ≡

Bz + ed mod q for some z ∈ Z
d, where ed denotes the sub-vector of the

error vector e ∈ Z
m of length d. Then solve the BDD instance (B,bd) over

L = L(B) to recover ed. Since by (7) we have

bd ≡ A�
d s + ed mod q,

we can also recover the secret vector s ∈ Z
n
q from the triple (Ad,bd, ed).

Our Implementation. We implemented the above procedures for solving the
LWE challenge in C++ programs with the NTL library [22]. For Step 1, we
used LLL in the NTL library to obtain a basis B of the lattice L. For Step 2, we
used BKZ FP with blocksize 20 (floating point implementation of BKZ) in the
NTL library as a preprocessing, and then called Dual-DeepBKZ with blocksizes
β ≥ 20 to reduce B. In particular, we used ε = 20 as a parameter of the insertion
restriction for Dual-DeepLLL, a subroutine of Dual-DeepBKZ (see Remark 1 for
the restriction). For Step 3, we adopted Liu-Nguyen’s BDD enumeration [15] for

176 M. Yasuda et al.

the BDD instance (B,bd) to find the error vector ed of length d. For a bounding
function R2

1 ≤ · · · ≤ R2
d, the BDD enumeration finds a lattice vector v ∈ L(B)

satisfying ‖πd+1−k(v − b)‖ ≤ Rk for all 1 ≤ k ≤ d. For two parameters c and p,
we set

R2
i = cR2 · min

{

i + p

d
, 1

}

for 1 ≤ i ≤ d (8)

with R2 = σ2d = (αq)2d, which is linear pruning extended by p. In our experi-
ments, we fixed p = 5 and used c ≈ 1.0 (note that ‖ed‖2 ≈ R2 since every entry
of ed should have been sampled from the distribution χ = DZ,σ).

For our experiments, we implemented Dual-DeepBKZ (Algorithm 3) and the
BDD enumeration [15, Algorithm 4] in C++ programs with help of the NTL
library. In Dual-DeepBKZ, we did not use any pruning technique [11] for Dual-
Enumeration (namely, we used Dual-Enumeration with full enumeration set-
ting). In our implementation, we used the int data type for the lattice basis B,
and the long double for its GSO information. We also used the gcc 6.4.0 compiler
with option O3 -std=c++11. Furthermore, we used a single thread of a 64-bit
PC with Intel Xeon CPU E3-1225 v5@3.30 GHz and 4.0 GB RAM.

Experimental Results. In Table 1, we summarize our experimental results on
the total running time to solve several instances in the LWE challenge [6,9] by
the decoding approach. In our experiments, for α = 0.005, we set d ≈ 3n for
40 ≤ n ≤ 60 to reduce a basis B effectively by Dual-DeepBKZ with blocksizes
up to β ≈ 40 (choice of suitable d depends on lattice basis reduction). For larger
α, we used somewhat larger d than 3n. Furthermore, we raised a blocksize of
Dual-DeepBKZ one by one from 20 up to the β written in Table 1 so that the
error vector ed of length d is included in the range of extended linear pruning (8)
of BDD enumeration for some 1.0 ≤ c ≤ 1.2. In our experiments, we sampled a
number of pseudo error vectors e′

d of length d from the distribution χ = DZ,σ,
and verify whether most of e′

d satisfy ‖πd+1−k(e′
d)‖ ≤ Rk for all 1 ≤ k ≤ d with

bounding function R2
1 ≤ · · · ≤ R2

d given by (8). If so, we estimate that the target
error vector ed would also satisfy the same condition with high probability.

Comparison with [25]. At ACNS 2017, Xu et al. [25] reported their experimental
results on solving almost the same LWE instances as in Table 1 by the decoding
approach. They used BKZ in the fplll library [23] and their parallelized Liu-
Nguyen’s BDD enumeration [15] with extreme pruning. They chose d so that the
running costs of lattice basis reduction and the BDD enumeration are almost
equal in order to minimize the total running cost. In the following, we compare
our results (Table 1) with their results [25, Table 2] for large LWE instances:

(i) For (n, α) = (40, 0.015), they used d = 120, and β = 18 for a blocksize of
BKZ. It took 12 and 10 s respectively for BKZ and the BDD enumeration
with extreme pruning, but it required 819 trials to find the error vector ed

of length d (extreme pruning is very fast, but the probability to find the
desired vector is very low). According to their results [25, Table 2], it took
18403 s ≈ 5.1 h (> (12 + 10) × 819 s) in total for solving this LWE instance

Development of a Dual Version of DeepBKZ 177

Table 1. Total running time to solve several instances in the LWE challenge [6,9] by
the decoding approach (In a preprocessing, we used BKZ FP with blocksize 20 in the
NTL library [22]. We also used Dual-DeepBKZ (Algorithm 3) with blocksizes up to β
to obtain a reduced lattice basis, and the BDD enumeration [15, Algorithm 4] with
extended linear pruning (8) to recover the error vector ed of length d)

n α d BKZ FP Dual-DeepBKZ BDD Enum. Total time

40 0.005 120 6 s 5 s (β = 20) < 0.01 s (c = 1.2) 11 s

0.010 130 9 s 4 s (β = 20) 0.03 s (c = 1.0) 13 s

0.015 140 15 s 8,076 s (β = 37) 240 s (c = 1.0) 8,331 s ≈ 2.3 h

45 0.005 140 13 s 31 s (β = 20) < 0.01 s (c = 1.0) 44 s

0.010 140 14 s 453 s (β = 30) 476 s (c = 1.1) 943 s ≈ 15.7 m

50 0.005 150 18 s 29 s (β = 20) 0.02 s (c = 1.2) 47 s

55 0.005 160 19 s 383 s (β = 28) 1.95 s (c = 1.1) 404 s ≈ 6.7 m

60 0.005 180 34 s 44,394 s (β = 36) 1,001 s (c = 1.1) 45,429 s ≈ 12.6 h

(over a single thread of a desktop with Intel Core i7@3.60 GHz CPU and
32 GB 1600 MHz DDR3 memory). In contrast, we used d = 140, and up to
β = 37 for blocksizes of Dual-DeepBKZ. It took about 15, 8076, and 240 s
respectively for BKZ FP (with blocksize 20), Dual-DeepBKZ and the BDD
enumeration with extended linear pruning (8) for c = 1.0 (cf., c = 0.8 was
used in [25] for efficiency). Since only one trial is required in our case, it took
8, 331 s ≈ 2.3 h in total, about 2.2 times faster than [25].

(ii) For (n, α) = (60, 0.005), Xu et al. [25] used d = 140. It took about 27 and 24
hours respectively for BKZ with blocksize β = 28 and the BDD enumeration
with extreme pruning (they used 720 threads on the Amazon EC2 platform,
but the running time is converted over a single thread). Therefore it took
about 51 h in total for solving this LWE instance. In contrast, we used d =
180, and up to β = 36 for blocksizes of Dual-DeepBKZ. It took 34, 44394, and
1001 s respectively for BKZ FP (with blocksize 20), Dual-DeepBKZ, and the
BDD enumeration with extended linear pruning (8) for c = 1.1 (cf., c = 0.8
was used in [25]). Therefore it took about 45, 429 s ≈ 12.6 h in total, about
4.0 times faster than [25].

Cost of full BDD Enumeration. Here we give experimental evidences that Dual-
DeepBKZ can reduce the BDD enumeration cost more efficiently than BKZ for
LWE instances. The cost of the BDD enumeration over a basis B = [b1, . . . ,bd]
with full enumeration setting R2

1 = · · · = R2
d = R2 is approximately given by

N =
d

∑

k=1

Hk with Hk =
Vk(R)

∏d
i=d+1−k ‖b∗

i ‖
for 1 ≤ k ≤ d, (9)

where Vk(R) denotes the volume of the k-dimensional ball with radius R > 0 [15,
Sect. 4]. In Figs. 1 and 2, we show experimental results on transition of the cost

178 M. Yasuda et al.

(a) Transition of log2(N) (b) GSA (log2 b∗
i for 1 ≤ i ≤ d)

Fig. 1. Transition of log2(N) and GSA by Dual-DeepBKZ and the fplll implementation
of BKZ with blocksizes β ≥ 20 for the basis B = [b1, . . . ,bd] in the decoding approach
for the LWE challenge by (n, α) = (40, 0.015) with d = 140, where N denotes the cost
of full BDD enumeration (9) for squared radius R2 = (αq)2d

(a) Transition of log2(N) (b) GSA (log2 b∗
i for 1 ≤ i ≤ d)

Fig. 2. Same as Fig. 1, but for (n, α) = (60, 0.005) with d = 180

of the full BDD enumeration with R2 = (αq)2d by Dual-DeepBKZ and the fplll
implementation of BKZ for the basis B in the decoding approach for large LWE
instances of (n, α) = (40, 0.015) and (60, 0.005):

– As seen from left-side of Figs. 1 and 2, for the same blocksize β, Dual-
DeepBKZ and the fplll implementation of BKZ might reduce the cost N
by the same degree. However, BKZ requires a huge amount of time even for
small blocksizes β ≈ 25. In other words, Dual-DeepBKZ runs much faster
than BKZ for blocksizes β ≥ 25, and hence Dual-DeepBKZ reduces the cost
N more effectively than BKZ within the same time (since the q-ary lattice

Development of a Dual Version of DeepBKZ 179

Λq(Ad) includes many short lattice vectors of length q, it might take a long
time to run BKZ over the lattice).

– In right-side of Figs. 1 and 2, we present the GSA (Geometric Series Assump-
tion [20]) shape of bases B output by Dual-DeepBKZ and BKZ with differ-
ent blocksizes. As described in Remark 2, backward GSO vectors by Dual-
DeepBKZ are longer than by BKZ (conversely, forward GSO vectors by BKZ
are shorter). We see from the form of (9) that such GSA shape can reduce
the cost N of full BDD enumeration effectively.

4.3 Embedding Approach and DeepBKZ [26]

In this subsection, we adopt DeepBKZ [26] in the embedding approach for solving
the LWE challenge, and show several experimental results. While Dual-DeepBKZ
is useful to reduce the BDD enumeration cost, DeepBKZ is useful to find a short
lattice vector, and it is suitable for the embedding approach.

Procedures. Given an LWE instance (A,b) with parameters q,m, n. For the
n × m matrix A = [a1, . . . ,am], we use only the first d vectors a1, . . . ,ad for
d ≤ m as in the decoding approach (we can extract d column vectors freely from
A). Procedures of the embedding approach are the following two steps:

1. As in Step 1 of the decoding approach, from the sub-matrix Ad = [a1, . . . ,ad]
of A, compute a basis B of the d-dimensional q-ary lattice Λq(Ad). Further-
more, for the sub-vector bd = (b1, . . . , bd)� of b of length d, construct a
(d + 1) × (d + 1) matrix

T =
(

B bd

0d 1

)

,

where let 0d denote the row vector of length d with all entries 0. Let M :=
L(T) be the lattice spanned by the columns of T, and its dimension is d+1.
For the error vector ed of length d, the lattice M includes very short vectors
±w where we set

w :=
(

ed

1

)

≡
(

bd

1

)

−
(

A�
d s
0

)

mod q ∈ Z
d+1
q .

2. Reduce T by lattice basis reduction to find short lattice vectors ±w ∈ M .
Then we can recover ed, and hence s as in Step 3 of the decoding approach.

Our Implementation. For Step 1, we used LLL in the NTL libary to obtain
a basis T of the lattice M . For Step 2, we used BKZ FP with blocksize 20 in
a preprocessing, and called DeepBKZ [26] with blocksizes β ≥ 20 to reduce T.
We implemented DeepBKZ [26, Algorithm 3] in C++ programs. Our implemen-
tation for DeepBKZ is almost the same as in the decoding approach for Dual-
DeepBKZ. In particular, we did not use any pruning [11] for SVP enumeration
over every local block. As in Dual-DeepBKZ, we used the insertion restriction
with parameter ε = 20 for DeepLLL [21], a main subroutine in DeepBKZ.

180 M. Yasuda et al.

Table 2. Total running time to solve the same LWE instances as in Table 1 by the
embedding approach (We used the same d as in Table 1. In a preprocessing, we used
BKZ FP with blocksize 20 in the NTL library [22]. We used DeepBKZ [26] with block-
sizes up to β to find very short lattice vectors ±w ∈ M)

n α d BKZ FP DeepBKZ [26] Total time

40 0.005 120 7 s 1 s (β = 20) 8 s

0.010 130 9 s 13 s (β = 23) 22 s

0.015 140 15 s 74 s (β = 25) 89 s

45 0.005 140 13 s 4 s (β = 20) 17 s

0.010 140 15 s 838 s (β = 28) 853 s ≈ 14.2 m

50 0.005 150 18 s 13 s (β = 22) 31 s

55 0.005 160 19 s 79 s (β = 25) 98 s

60 0.005 180 34 s 2,152 s (β = 26) 2,186 s ≈ 36.4 m

Experimental Results. In Table 2, we summarize our experimental results
on the total running time to solve the same LWE instances as in Table 1 by
the embedding approach. We used the same d as in Table 1 (for such d, lattice
vectors ±w are the shortest over the lattice M). In our experiments, we raised
a blocksize of DeepBKZ one by one from 20 up to the β in Table 2.

(i) For (n, α) = (40, 0.015), we used DeepBKZ with blocksizes up to β = 25.
It took about 15 and 74 s for BKZ FP and DeepBKZ respectively, and only
89 s in total.

(ii) For (n, α) = (60, 0.005), we used DeepBKZ with blocksizes up to β = 26. It
took about 34 and 2152 s for BKZ FP and DeepBKZ respectively, and 2186 s
≈ 36.4 min in total.

Compared to Table 1, the embedding approach (Table 2) is much faster for these
LWE instances. This seems due to the difference of approaches (in our experi-
ments for the decoding approach, DeepBKZ was slower than Dual-DeepBKZ).

Remark 3. In Wang et al. [24] estimated the average and the minimum runtime
of progressive-BKZ [2] in the embedding approach for solving every instance
(n, α) of the LWE challenge with α = 0.005, by extrapolating their experimental
data over Intel Xeon CPU E5-2697 v2@2.70 GHz with 24 cores (over-clocked to
3.50 GHz and hyperthreads to 48 threads);

{

log2(Average Runtime (seconds)) = 0.0153n2 − 1.17n + 27.6,

log2(Minimum Runtime (seconds)) = 0.00584n2 − 0.208n + 2.21,
(10)

which are converted over a single thread [24, Sect. 4 and Fig. 2]. From their
estimates (10) for n = 60, we have 212.48 s on average and 210.754 on minimum.
In contrast, from Table 2, DeepBKZ required 2186 ≈ 211.094 s in our experiments.
This shows that DeepBKZ is as competitive as progressive-BKZ. But for large
n ≥ 65, DeepBKZ required a larger amount of time than progressive-BKZ in our

Development of a Dual Version of DeepBKZ 181

experiments (this might be due to our implementation for such large cases with
lattice dimensions d ≥ 200).

5 Conclusion

In this paper, we have reported experimental results on the total running time
for solving several instances in the LWE challenge [6,9] (see Tables 1 and 2). We
called Dual-DeepBKZ (Algorithm 3) and DeepBKZ [26] in the decoding app-
roach and the embedding approach [1, Sects. 5.4 and 5.5], respectively. Our
results were obtained over a general-purpose 64-bit PC (Intel Xeon CPU E3-
1225 v5@3.30 GHz and 4.0 GB RAM) with non-optimal implementation in C++
programs with the NTL library [22]. We hope that our results would be a bench-
mark to develop new reduction algorithms for solving the LWE problem [19].

Acknowledgments. This work was supported by JST CREST Grant Number
JPMJCR14D6, Japan. This work was also supported by JSPS KAKENHI Grant Num-
ber 16H02830.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015)

2. Aono, Y., Wang, Y., Hayashi, T., Takagi, T.: Improved progressive BKZ
algorithms and their precise cost estimation by sharp simulator. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 789–
819. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 30.
http://www2.nict.go.jp/security/pbkzcode/

3. Bindel, N., Buchmann, J., Göpfert, F., Schmidt, M.: Estimation of the hardness
of the learning with errors problem with a restricted number of samples, IACR
ePrint 2017/140 https://eprint.iacr.org/2017/140 (2017)

4. Blömer, J.: Closest vectors, successive minima, and dual HKZ-bases of lattices. In:
Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp.
248–259. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X 22

5. Bremner, M.R.: Lattice Basis Reduction: An Introduction to the LLL Algorithm
and Its Applications. CRC Press, Boca Raton (2011)

6. Buchmann, J., Büscher, N., Göpfert, F., Katzenbeisser, S., Krämer, J., Micciancio,
D., Siim, S., van Vredendaal, C., Walter, M.: Creating cryptographic challenges
using multi-party computation: the LWE challenge. In: International Workshop on
ASIA Public-Key Cryptography-ASIAPKC 2016, pp. 11–20. ACM (2016)

7. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

8. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics, vol. 138. Springer, Heidelberg (1993). https://doi.org/10.1007/
978-3-662-02945-9

9. T. U. Darmstadt, Lattice Challenge. http://www.latticechallenge.org/svp-
challenge/

https://doi.org/10.1007/978-3-662-49890-3_30
http://www2.nict.go.jp/security/pbkzcode/
https://eprint.iacr.org/2017/140
https://doi.org/10.1007/3-540-45022-X_22
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
http://www.latticechallenge.org/svp-challenge/
http://www.latticechallenge.org/svp-challenge/

182 M. Yasuda et al.

10. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality.
In: Symposium on the Theory of Computing, STOC 2008, pp. 207–216. ACM
(2008)

11. Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 257–278. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 13

12. Hanrot, G., Pujol, X., Stehlé, D.: Analyzing blockwise lattice algorithms using
dynamical systems. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
447–464. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 25

13. Koy, H.: Primal/duale segment-reduktion von Gitterbasen, Lecture Universität
Frankfurt (2000)

14. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

15. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

16. Micciancio D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic
Perspective. Springer Science & Business Media, Heidelberg (2012). https://doi.
org/10.1007/978-1-4615-0897-7

17. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-540-88702-7 5

18. Micciancio, D., Walter, M.: Practical, predictable lattice basis reduction. In: Fis-
chlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 820–849.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 31

19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Symposium on the Theory of Computing, STOC 2005, pp. 84–93. ACM
(2005)

20. Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 145–156. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36494-3 14

21. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms
and solving subset sum problems. Math. Program. 66, 181–199 (1994)

22. Shoup, V.: NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/
23. The FPLLL development team, fplll, a lattice reduction library (2016). https://

github.com/fplll/fplll
24. Wang, Y., Aono, Y., Takagi, T.: An experimental study of Kannan’s embedding

technique for the search LWE problem. In: International Conference on Information
and Communication Security, ICICS 2017 (2017, to appear)

25. Xu, R., Yeo, S.L., Fukushima, K., Takagi, T., Seo, H., Kiyomoto, S., Henricksen,
M.: An experimental study of the BDD approach for the search LWE problem. In:
Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp.
253–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1 13

26. Yamaguchi, J., Yasuda, M.: Explicit formula for Gram-Schmidt vectors in LLL with
deep insertions and its applications. In: Kaczorowski, J., Pieprzyk, J., Pomyka�la, J.
(eds.) NuTMiC 2017. LNCS, vol. 10737, pp. 142–160. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-319-76620-1 9

https://doi.org/10.1007/978-3-642-13190-5_13
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-22792-9_25
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-1-4615-0897-7
https://doi.org/10.1007/978-3-540-88702-7_5
https://doi.org/10.1007/978-3-662-49890-3_31
https://doi.org/10.1007/3-540-36494-3_14
http://www.shoup.net/ntl/
https://github.com/fplll/fplll
https://github.com/fplll/fplll
https://doi.org/10.1007/978-3-319-61204-1_13
https://doi.org/10.1007/978-3-319-76620-1_9

Unified Formulas for Some Deterministic
Almost-Injective Encodings
into Hyperelliptic Curves

Michel Seck(B) and Nafissatou Diarra

Department of Mathematics and Computer Science,
Cheikh Anta Diop University, Dakar, Senegal

{michel.seck,nafissatou.diarra}@ucad.edu.sn

Abstract. Recently, efficient deterministic and invertible encodings on
some hyperelliptic curves in genus 1 and 2 using the technique in Elligator
2 (ACM CCS 2013) have been proposed. We have successfully generalized
their encodings for hyperelliptic curves of genus 3, 4 and 5. We have
found unified formulas (using Mersenne numbers) for the encodings into
the hyperelliptic curves of genus g ≤ 5: Hg : y2 = fg(x) = x(2g+1) +
a(2g−1)x

(2g−1) + a(2g−3)x
(2g−3) + . . . + a1x + a0. We have conjectured

that our method works on arbitrary genus.

Keywords: Deterministic encoding · Injective encoding
Elliptic curves-based cryptography · Hyperelliptic curves · Elligator
Random bit-string

1 Introduction

For the construction of cryptographic protocols or schemes [2,4] in (hyper)elliptic
curves-based cryptography, it is sometimes necessary to be able to represent
a bit-string as a point of an (hyper) elliptic curve [10,12,14]. In Elligator 2
(designed by Bernstein et al.: ACM CCS 2013 [1]), uniform elliptic curves-points
can be represented by uniform random strings of bits. Many authors have studied
the problem of designing deterministic encodings into (hyper) elliptic curves. In
the last decade, many deterministic encodings have been proposed for certain
families of elliptic curves and hyperelliptic curves.

• In 2006, Shallue and van de Woestijne [15] published the first type of encoding
function to ordinary elliptic curves (curves given by an equation of the form E
: y2 = x3 +ax+b). Ulas [16], in 2007, generalized and simplified the encoding
of Shallue and van de Woestijne by encoding in the curves C : y2 = xn+ax+b
and C ′ : y2 = xn + ax2 + bx. They were the first to publish an encoding to a
certain family of hyperelliptic curves in any genus.

• At CRYPTO 2009, Icart [8] defined a deterministic encoding function into the
elliptic curve E : y2 = x3+ax+b over finite fields Fq such that q ≡ 2 mod 3.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 183–202, 2018.
https://doi.org/10.1007/978-3-319-89339-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_11&domain=pdf

184 M. Seck and N. Diarra

Kammerer et al. [9] have introduced in 2010 a series of new encodings based on
same principles as Icart’s function, namely solving curve equations in radicals.
They proposed an encoding into the Hessian curve E : x3+y3+1 = 3dxy, d �=
1 over Fq and the hyperelliptic curve H1,a,b : y2 = (x3 +3ax+2)2 +8bx3 over
Fq with q ≡ 2 mod 3.

• In 2013, Fouque et al. [5] proposed a new, essentially optimal geometric con-
struction for a large class of curves like the hyperelliptic curve Hλ

d : y2 =
λax5 + (c2 + 1/c2)x3 + x over Fq. In the same year, Bernstein et al. [1] pro-
posed two encodings namely Elligator 1 and Elligator 2. In Elligator 1, they
introduced an encoding into the Edwards curve E : y2 + x2 = 1 + dx2y2

over Fq, and in Elligator 2, they proposed an encoding into the curve
E : y2 = x3 + Ax2 + Bx with AB(A2 − 4B) �= 0 over Fq where q = pn, p > 2.

• In 2015, He et al. [7] proposed two deterministic encodings from Fq to gen-
eralized Huff curves. Yu et al. [11], in 2016, also proposed a deterministic
encoding from a finite field Fq to a twisted Edwards curve E when q ≡ 2
mod 3.

• In 2017, at Africacrypt-2017, Seck et al. [3] have proposed three encoding
functions into three different families of hyperelliptic curves by using the
technique in Elligator 2 of Bernstein et al. [1]. They showed that one can use
their encodings to design indifferentiable and deterministic hash functions
into the Jacobian of certain families of hyperelliptic curves using the result
of Farashahi et al. [6].

Contributions: The main results of this paper are based on the work of
Bernstein et al. [1] in Elligator 2 and of Seck et al. [3].

Our first contribution is the construction of four deterministic almost-
injective encoding functions ψi : Ri ⊂ Fq → Hi for i = 1, 3, 4, 5, where:

H1 : y2 = f1(x) = x3 + a1x + a0;

H3 : y2 = f3(x) = x7 + a5x
5 + a3x

3 + a1x + a0;

H4 : y2 = f4(x) = x9 + a7x
7 + a5x

5 + a3x
3 + a1x + a0;

H5 : y2 = f5(x) = x11 + a9x
9 + a7x

7 + a5x
5 + a3x

3 + a1x + a0.

Their almost-injectivity means that any point in the co-domain Hg have exactly
two pre-images (r,−r) in the domain Fq. Note that in case q is a prime, one can
restrict the domain to {0, . . . , (q−1)/2} in order to have an injective encoding for
each Hg. We show that one can invert these encodings under suitable conditions.

Our second contribution is an unified formula of the above encodings. We
design a deterministic almost-injective encoding function ψg : Rg ⊂ Fq → Hg

where g is a nonzero integer less than or equal to five. This encoding generalizes
the encoding in [3] ψ2 : R2 ⊂ Fq → H2 where H2 : y2 = f2(x) = x5 + a3x

3 +
a1x + a0 and our four encoding functions ψi, i = 1, 3, 4, 5.

Note that all these encodings depend on a parameter s that satisfies the sec-
ond degree equation αgs

2+βgs−γg = 0 where αg, βg and γg only depend on the
genus g of the hyperelliptic curve Hg. The main motivation of the construction

Deterministic Encoding into Hyperelliptic Curves 185

of the encoding ψ5 is that after encoding into the hyperelliptic curves Hi for
i = 3, 4, we note that α2 = 3 is prime, α3 = 31 is prime and α4 = 127 is also a
prime integer. We first conjectured that αg is prime for any genus g ≥ 2. Unfor-
tunately α5 = 511 is not prime. We remark that αg = 22g−1 − 1 is a Mersenne
number for g ∈ {1, 2, 3, 4, 5}.

Based on these constructions, we conjectured that our method can be
extended for arbitrary genus g even if for cryptography use in case of Discrete
Logarithm Problem (DLP), one must restrict to g ≤ 4. So our encoding is only
for theoretical interest for g ≥ 5. Therefore the importance of our results lies
more on the theoretical side in case of hyperelliptic curves-based on DLP.

Organization of the paper: This paper is organised as follows.
In Sect. 2: We give some preliminaries such as definition of the square root func-
tion and of a quadratic character in finite fields, and some results from the
encoding into the hyperelliptic curve H2 of genus 2 of Seck et al. [3].
In Sect. 3: We give our new encodings over the hyperelliptic curves Hi, i =
1, 3, 4, 5. We show in this section under what conditions our encodings are invert-
ible.
In Sect. 4: We give a generalization of all encoding functions into the hyperelliptic
curves Hi, i = 1, 2, 3, 4, 5. And we conclude in Sect. 5.
In the Appendix, we give an implementation of our unified encoding using the
Sage computer-algebra system [13].

2 Preliminaries

2.1 Square Root Function

Let Fq be the finite field of q elements with q ≡ 3 mod 4, and set A = F
2
q =

{x2, x ∈ Fq}. Define the square root function
√· on A as follows:

√· : A → Fq : a
→ √
a = a(q+1)/4

Then
√

a is called the principal square root of a. Also note that if q is an
odd prime, one can take

√
A = {0, 1, . . . , (q − 1)/2}.

2.2 Quadratic Character

Fix a prime power q ≡ 3 mod 4. We say that a in the finite field Fq is a quadratic
residue, if a is a square in Fq i.e. if there is m ∈ Fq such that a = m2. One then
defines the quadratic character as follows:

χ(a) =
(

a

q

)
=

⎧⎨
⎩

0, if a = 0 in Fq

1, if a is a nonzero square
−1, if a is not a square.

More generally, χ(a) = a
q−1
2 , χ(am) = χ(a)χ(m), χ(1

a) = χ(a) = 1
χ(a) if

a �= 0. If a is a square then a
q+1
4 is a square root of a, precisely the principal

square root of a and its square is a
q+1
2 = χ(a)a = a. Any square root m of a

satisfies m = χ(m)a
q+1
4 .

186 M. Seck and N. Diarra

2.3 An Almost-Injective Encoding on H2

Let us recall some results of Seck et al. [3] about injective encoding on a class of
hyperelliptic curves of genus 2.

Let Fq be a finite field with char(Fq) = p �= 2, 5, q = pn is an odd prime
power. We assume that q ≡ 7 mod 8, then 2 is a square.

Let s ∈ F
∗
q such that 7s2 + 20s − 100 = 0:

– If p �= 7 and q ≡ 7 mod 8, we have Δs = 3200 = 2 × 42 × 102 which is a

square, then s =
−10 ± 20

√
2

7
.

– If p = 7 and q ≡ 7 mod 8, then s = 5.

Let w ∈ F
∗
q be an arbitrary parameter. Let H2 : y2 = f2(x) = x5 + a3x

3 +

a1x + a0, with a3 = sw2, a1 =
sw4

2
, a0 =

s − 10
10

w5 be an hyperelliptic curve
of genus 2 over Fq with the previous conditions on q. Let u be a parameter such
that χ(u) = −1 and define the set R2 =

{
r ∈ F

∗
q , f2

(
[ur2(−50 − 35s) − 1]

) �= 0
}
.

(Algorithm 3 in [3])
Input: The hyperelliptic curve H2, an element r ∈ R2

Output: A point (x, y) on H2

v := w[ur2(−50 − 35s) − 1];
ε := χ(v5 + a3v

3 + a1v + a0);

x :=
1 + ε

2
v +

1 − ε

2

(
w(−v + w)

v + w

)
;

y := −ε
√

x5 + a3x3 + a1x + a0;
return (x, y).

Algorithm 1. Genus2-Encoding1

Definition 1. (Definition 2 in [3]) In the situation of Algorithm1, the encod-
ing function for the hyperelliptic curve H2 is the function ψ2 : R2 → H2 : r
→
ψ2(r) = (x, y).

Theorem 1. (Theorem 3 in [3]) Algorithm1 computes a deterministic almost-
injective encoding ψ2 : R2 → H2 : r
→ ψ2(r) = (x, y), in time O(log2+◦(1) q),
where Z2 = Fq \ R2 is a subset of Fq of at most 10 elements.

The inverse of the encoding function is given by the following theorem.

Theorem 2. (Theorem 4 in [3]) In the situation of Theorem1 and Definition
1, we have the following.

1. Let (x, y) be a point of the hyperelliptic curve H2, then (x, y) ∈ Im(ψ2) if
and only if uw(x + w)(−50 − 35s) is a nonzero square in Fq .

2. Let (x, y) ∈ Im(ψ2) and define r̄ as follows:
r̄ =

√
x+w

uw(−50−35s) if y /∈
√

F2
q and r̄ =

√
2w

u(x+w)(−50−35s) if y ∈
√

F2
q.

Then r̄ ∈ R2 and ψ1(r̄) = (x, y).

Deterministic Encoding into Hyperelliptic Curves 187

3 New Almost-Injective and Invertible Encodings
into Hyperelliptic Curves

In this section, we propose four almost-injective encoding functions into four
families of hyperelliptic curves H3, H4, H5 and H1 using the approach of Bern-
stein et al. [1] in Elligator 2 for elliptic curves. We use the same approach as
Seck et al. ([3] Sect. 3) in order to find unified formulas of our encodings and
those of Seck et al. [3]. As mentioned in [3], our new encodings have the same
asymptotic complexity, namely O(log2+◦(1) q).
We suppose, in this section, that

– Fq is a finite field with char(Fq) = p and q = pn is an odd prime power. We
assume that q ≡ 7 mod 8, then 2 is a square;

– w ∈ F
�
q is an arbitrary parameter;

– u ∈ Fq is a parameter such that χ(u) = −1.

3.1 An Almost-Injective Encoding in Genus g = 3

In this subsection, we propose an almost-injective encoding into hyperelliptic
curves of genus 3.

Assume that char(Fq) = p �= 2, 3, 7. Let s ∈ F
∗
q such that 31s2+42s−441 = 0:

– If p �= 31 and q ≡ 7 mod 8, we have Δs = 56448 = 27 × 32 × 72 which is a
square, then s = −21±84

√
2

31 .
– If p = 31 and q ≡ 7 mod 8, then s = 21

2 .

Let H3 : y2 = f3(x) = x7 + a5x
5 + a3x

3 + a1x + a0, with a5 =
sw2, a1 = sw6

3 , a3 = 5sw4

3 and a0 = s−21
21 w7, be an hyperelliptic curve

of genus 3 over Fq with the previous conditions on q. Define the set R3 ={
r ∈ F

∗
q , f3(w[ur2(−651s − 441) − 1]) �= 0

}
.

Input: The hyperelliptic curve H3, an element r ∈ R3

Output: A point (x, y) on H3

v := w[ur2(−651s − 441) − 1];
ε := χ(v7 + a5v

5 + a3v
3 + a1v + a0);

x :=
1 + ε

2
v +

1 − ε

2

(
w(−v + w)

v + w

)
;

y := −ε
√

x7 + a5x5 + a3x3 + a1x + a0;
return (x, y).

Algorithm 2. Genus3-Encoding2

Definition 2. In the situation of Algorithm2, the encoding function for the
hyperelliptic curve H3 is the function ψ3 : R3 → H3 : r
→ ψ3(r) = (x, y).

Theorem 3. Algorithm2 computes a deterministic almost-injective encoding
ψ3 : R3 → H3 : r
→ ψ3(r) = (x, y), in time O(log2+◦(1) q), where Z3 = Fq \ R3

is a subset of Fq of at most 15 elements.

188 M. Seck and N. Diarra

Proof. 1. f3(v) �= 0 by definition of R3. Therefore ε = χ(v7 + a5v
5 + a3v

3 +
a1v + a0) �= 0.

2. x is well defined since v + w = 0 ⇔ r = 0 and 0 /∈ R3.
3. Let us prove that f3(x) is nonzero square.

– If ε = 1 i.e f3(v) is a nonzero square and x = v then f3(x) is a nonzero
square.

– If ε = −1 then we have x =
(

w(−v+w)
v+w

)
and f3(x) = 1

(v+ω)7

[
ω7(−v +

ω)7 +a5ω
5(−v +ω)5(v +ω)2 +a3ω

3(−v +ω)3(v +ω)4 +a1ω(−v +ω)(v +

ω)6 + a0(v + ω)7
]
. Using a5 = sw2, a1 =

sw6

3
, a3 =

5sw4

3
a0 =

s − 21
21

w7, after some computations, yields, the following: f3(x) =
(−62

21 sw7−2w7)v7+(2sw9−42w9)v5+(10
3 sw11−70w11)v3+(2

3 sw13−14w13)v+ 64
21 sw14

(v+w)7

Define β7 = (−62
21 sw7−2w7), β5 = (2sw9−42w9), β3 = (103 sw11−70w11),

β1 = (23sw13 − 14w13) and β0 = 64
21sw14.

Then f3(x) = β7
(v+w)7

[
v7 + β5

β7
v5 + β3

β7
v3 + β1

β7
v + β0

β7

]
. We have

β5

β7
=

21(2sw9 − 42w9)
−62sw7 − 42w7

=
w2(21s − 441)
(−31s − 21s)

. Since 31s2 + 42s − 441 = 0,

then 21s − 441 = −31s2 − 21s. So
β5

β7
=

w2(−31s2 − 21s)
−3ss − 21

= sw2 = a5.

β3

β7
=

(103 sw11 − 70w11)
(−62

21 sw7 − 2w7)
=

10sw11 − 210w11

3
21 (−62sw7 − 42w7)

= 5
3w4

(
21(2s − 42)
−62s − 42

)
=

5
3w4

(
(21s − 441)
−31s − 21

)
= 5

3w4

(−31s2 − 21
−31s − 21

)
. So

β3

β7
= 5

3sw4 = a5.

β1

β7
=

(23sw13 − 14w13)
(−62

21 sw7 − 2w7)
= 1

3

21(2sw13 − 42w13)
−62sw7 − 42w7

= w6

3

(21s − 441)
−62s − 441

=

w6

3

(−31s2 − 21s)
−31s − 21

= 1
3sw6 = a1.

β0

β7
=

64
21sw14

(−62
21 sw7 − 2w7)

=
64sw7

−62s − 42
=

32sw7

−31s − 21
. We have

31s + 42s − 441 = 0 ⇔ −31s − 42s + 441 = 0
⇔ −31s2 + 630s + 441 = 672s
⇔ (s − 21)(−31s − 21) = 32s ∗ 21

⇔ 32sw7

−31s − 21
=

s − 21
21

w7

So β0
β7

= 32sw7

−31s−21 = s−21
21 w7 = a0.

Deterministic Encoding into Hyperelliptic Curves 189

We prove that f3(x) =
β7

(v + w)7
.f2(v). This implies that χ(f3(x)) =

χ(β7)χ(v + ω)χ(f3(v)) = −χ(β7(v + w)) since f3(v) is a nonzero non-
square. But, we have β7(v + w) = ω7 −31s−21

21

(
wur2(−651s − 441)

)
=

uw8r2(−31s − 21)2 = u
(
rw4(−31s − 21)

)2. Since r �= 0 in R3, then
χ(β7(v + w)) = χ(u) = −1. Hence χ(f3(x)) = 1, therefore f3(x) is a
nonzero square, we deduce that y = −ε

√
f3(x) is well-defined.

�
Theorem 4. In the situation of Theorem3 and Definition 2, we have the fol-
lowing.

1. Let (x, y) be a point of the hyperelliptic curve H3, then (x, y) ∈ Im(ψ3) if
and only if uw(x + w)(−441 − 651s) is a nonzero square in Fq .

2. Let (x, y) ∈ Im(ψ3) and define r̄ as follows:
r̄ =

√
x+w

uw(−441−651s) if y /∈
√

F2
q and r̄ =

√
2w

u(x+w)(−441−651s) if y ∈
√

F2
q.

Then r̄ ∈ R3 and ψ3(r̄) = (x, y).

Proof. 1. – Assume that (x, y) ∈ Im(ψ3).
• If ε = 1 then x = v. Hence x + w = 0 ⇔ v + w = 0 ⇔ r = 0

but we know that 0 /∈ R3. Now, we have uw(x + w)(−441 − 651s) =
uw(v + w)(−441 − 651s) = uw[ur2w(−441 − 651s)](−441 − 651s) =
u2w2r4(−441 − 651s)2.

• If ε = −1 then x = w(−v+w)
v+w , Hence x + w = 0 ⇔ −vw+w2

v+w = −w ⇔
w = 0 but we know that w ∈ F

�
q . Now we have uw(x + w)(−441 −

651s) = uw[w(−v+w)
v+w +w](−441−651s) = uw

v+w (2w2)(−441−651s) =
2w2

r2 , since v + w = uwr2(−441 − 651s) by Theorem 3, 2 is a square
when q ≡ 7 mod 8.

We conclude that uw(x + w)(−441 − 651s) is a nonzero square.
– Conversely assume that uw(x + w)(−441 − 651s) is a nonzero square

in Fq . Let us prove that (x, y) ∈ Im(ψ3). Put r̄ =
√

x+w
uw(−441−651s) if

y /∈
√

F2
q and r̄ =

√
2w

u(x+w)(−441−651s) if y ∈
√

F2
q. By above assumptions

x+w
uw(−441−651s) and 2w

u(x+w)(−441−651s) are well-defined and are nonzero
square, then r̄ is always well-defined.
Now, we are going to prove that r̄ ∈ R3 and (x, y) ∈ Im(ψ3). Define
v̄, ε̄, x̄, ȳ as in Algorithm 2. If y /∈

√
F2

q then r̄ =
√

x+w
uw(−441−651s) =⇒

v̄ = w[ur̄2(−441 − 651s) − 1] = w[x+w
w − 1] = x. So we have ε̄ =

χ(v̄7 + a5v̄
5 + a3v̄

3 + a1v̄ + a0) = χ(f3(v̄)) = 1. Hence x̄ = 1+ε̄
2 v̄ +

1−ε̄
2

(
ω(−v̄+ω)

v̄+ω

)
= v̄ = x and ȳ = −ε̄

√
x7 + a5x5 + a3x3 + a1x + a0 =

−√
x7 + a5x5 + a3x3 + a1x + a0 = y. Now if y ∈

√
F2

q then r̄ =√
2w

u(x+w)(−441−651s) , since v̄ = w[ur̄2(−441 − 651s) − 1] then v̄ = w w−x
x+w .

190 M. Seck and N. Diarra

Now, after some computations, we have: ε̄ = χ(v̄7 + a5v̄
5 + a3v̄

3 + a1v̄ +

a0) = χ
((−62

21 sw7−2w7

(x+ω)7

)
(x7 + a5x

5 + a3x
3 + a1x + a0)

)
= χ

(
2 × 21 ×

w(x + w)(−31s − 21)
)

= χ(w(x + w)(−651s − 441)) = −1 because
uw(x+w)(−441−651s) is a nonzero square and χ(u) = −1. Since ε̄ = −1
then x̄ = ω(−v̄+ω)

v̄+ω = x and ȳ = −ε̄
√

x7 + a5x5 + a3x3 + a1x + a0 =√
x7 + a5x5 + a3x3 + a1x + a0 = y. In both cases we have x̄ = x and

ȳ = y. Since for all v̄, we have v̄7 + a5v̄
5 + a3v̄

3 + a1v̄ + a0 �= 0, then
f3(v̄) �= 0, thus r̄ ∈ R3.

2. Follows from the previous proof.

�

3.2 An Almost-Injective Encoding in Genus g = 4

Similarly to the above subsection, in this subsection, we propose an almost-
injective encoding into hyperelliptic curves of genus 4.
We assume that char(Fq) = p �= 2, 3. Let s ∈ F

∗
q such that 127s2+72s−1296 = 0:

– If p �= 127 and q ≡ 7 mod 8, we have Δs = 663552 = 213 × 34 which is a
square, then s = (−36 ± 288

√
2)/127.

– If p = 127 and q ≡ 7 mod 8, then s = 18.

Let H4 : y2 = f4(x) = x9 + a7x
7 + a5x

5 + a3x
3 + a1x + a0, with a7 = sw2, a5 =

7sw4

2 , a3 = 7sw6

3 , a1 = sw8

4 , a0 = s−36
36 w9 be an hyperelliptic curve of genus 4

over Fq with the previous conditions on q. Define the set
R4 =

{
r ∈ F

∗
q , f4(w[ur2(−2286s − 648) − 1]) �= 0

}
.

Input: The hyperelliptic curve H4, an element r ∈ R4

Output: A point (x, y) on H4

v := w[ur2(−2286s − 648) − 1];
ε := χ(v9 + a7v

7 + a5v
5 + a5v

5 + a3v
3 + a1v + a0);

x :=
1 + ε

2
v +

1 − ε

2

(
w(−v + w)

v + w

)
;

y := −ε
√

x9 + a7x7 + a5x5 + a3x3 + a1x + a0;
return (x, y).

Algorithm 3. Genus4-Encoding3

Definition 3. In the situation of Algorithm3, the encoding function for the
hyperelliptic curve H4 is the function ψ4 : R4 → H4 : r
→ ψ4(r) = (x, y).

Theorem 5. Algorithm3 computes a deterministic almost-injective encoding
ψ4 : R4 → H4 : r
→ ψ4(r) = (x, y), in time O(log2+◦(1) q), where Z4 = Fq \ R4

is a subset of Fq of at most 19 elements.

Proof. 1. f4(v) �= 0 by definition of R4. Therefore ε = χ(v9 + a7v
7 + a5v

5 +
a5v

5 + a3v
3 + a1v + a0) �= 0

2. x is well defined since v + w = 0 ⇔ r = 0 and 0 /∈ R4.

Deterministic Encoding into Hyperelliptic Curves 191

3. Let us prove that f4(x) is nonzero square.
– If ε = 1 i.e f4(v) is a nonzero square and x = v then f4(x) is a nonzero

square.

– If ε = −1 then we have x =
(

w(−v+w)
v+w

)
and f4(x) =

g4(v)
(v + ω)9

with

g4(v) = ω9(−v +ω)9 +a7ω7(−v +ω)7(v +ω)2 +a5ω
5(−v +ω)5(v +ω)4 +

a3ω
3(−v + ω)3(v + ω)6 + a1ω(−v + ω)(v + ω)8 + a0(v + ω)7.

Using a7 = sw2, a1 =
sw8

4
, a3 =

7sw6

3
, a5 =

7sw4

2
a0 =

s − 36
36

w9,
after some computations, yields, the following:

f4(x) =
γ9v

9 + γ7v
7 + γ5v

5 + γ3v
3 + γ1v + γ0

(v + w)9
with γ9 = − 127

18 sw9 −
2w9; γ7 = 2sw11 − 72w11; γ5 = 7sw13 − 252w13; γ3 = 14

3 sw15 −
168w15; γ1 = 1

2sw17 − 18w17 and γ0 = 64
9 sw18.

This implies that f4(x)=
γ9

(v + w)9

(
v9+

γ7
γ9

v7+
γ5
γ9

v5+
γ3
γ9

v3+
γ1
γ9

v+
γ0
γ9

)
.

Now let us prove that
γ7
γ9

= a7,
γ5
γ9

= a5,
γ3
γ9

= a3,
γ1
γ9

= a1 and
γ0
γ9

= a0.

γ7
γ9

=
2sw11 − 72w11

− 127
18 sw9 − 2w9

=
(36s − 1296)w2

−127s − 36
w2. We have 127s2 + 72s −

1296 = 0 ⇔ 36s − 1296 = −127s2 − 36s; this implies that
γ7
γ9

=

(−127s2 − 36s)
−127s − 36

w2 = sw2.
γ5
γ9

=
7sw13 − 252w13

− 127
18 sw9 − 2w9

=
7(18s − 648)
−127s − 36

w4 =

7
2

(36s − 1296)
−127s − 36

w4 = 7
2

−127s2 − 36s

−127s − 36
w4 = 7

2sw4 = a5.

γ3
γ9

=
14
3 sw15 − 168w15

− 127
18 sw9 − 2w9

=
6(14s − 504)
−127s − 36

w6 =
7(12s − 432)
−127s − 36

w6 =

7
3

36s − 1296
−127s − 36

w6 = 7
3

−127s2 − 36s

−127s − 36
= 7

3sw6 = a3.

γ1
γ9

=
1
2sw17 − 18w17

− 127
18 sw9 − 2w9

=
9(s − 36)

−127s − 36
w8 = 1

4

36s − 1296
−127s − 36

w8 =
sw8

4
= a1.

γ0
γ9

=
64
9 sw18

− 127
18 sw9 − 2w9

=
128sw9

−127s − 36
. Now we know that 127s2 + 72s −

1296 = 0, we are going to use this equation to prove that 128s
−127s−36 =

s−36
36 .

127s2 + 72s − 1296 = 0 ⇔ 4608s = −127s2 + 4536s + 1296
⇔ 36 × 128s = (s − 36)(−127s − 36)

⇔ 128s

−127s − 36
=

s − 36
36

So
γ0
γ9

=
128sw9

−127s − 36
=

s − 36
36

w9 = a0.

192 M. Seck and N. Diarra

We prove that f4(x) =
γ9

(v + w)9
.f4(v). This implies that χ(f4(x)) =

χ(γ9)χ(v + ω)χ(f4(v)) = −χ(γ9(v + w)) since f4(v) is a nonzero non-
square. But, we have γ9(v + w) = ω9 −127s−36

18

(
wur2(−2286s − 648)

)
=

uw10r2(−127s − 36)2 = u
(
rw5(−127s − 36)

)2. Since r �= 0 in R4, then
χ(γ9(v + w)) = χ(u) = −1. Hence χ(f4(x)) = 1, therefore f4(x) is a
nonzero square, we deduce that y = −ε

√
f4(x) is well-defined.

�
Theorem 6. In the situation of Theorem5 and Definition 3, we have the fol-
lowing.

1. Let (x, y) be a point of the hyperelliptic curve H4, then (x, y) ∈ Im(ψ4) if
and only if uw(x + w)(−2286s − 648) is a nonzero square in Fq .

2. Let (x, y) ∈ Im(ψ4) and define r̄ as follows:
r̄ =

√
x+w

uw(−2286s−648) if y /∈
√

F2
q and r̄ =

√
2w

u(x+w)(−2286s−648) if y ∈
√

F2
q.

Then r̄ ∈ R4 and ψ4(r̄) = (x, y).

Proof. Similar to the proof of Theorem4.
�

3.3 An Almost-Injective Encoding on Genus g = 5

We propose here an almost-injective encoding into hyperelliptic curves of genus 5.
We assume that char(Fq) = p �= 2, 5, 11. Let s ∈ F

∗
q such that 511s2 +110s−

3025 = 0:

– If p � 511 and q ≡ 7 mod 8, we have Δs = 6195200 = 211 × 52 × 112 which is

a square, then s =
−55 ± 880

√
2

511
.

– If p|511 and q ≡ 7 mod 8, then s = 55
2 .

Let H5 : y2 = f5(x) = x11 + a9x
9 + a7x

7 + a5x
5 + a3x

3 + a1x + a0, with a9 =

sw2, a7 = 6sw4, a5 =
42sw6

5
, a3 = 3sw8, a1 =

sw10

5
and a0 =

s − 55
55

w11,
be an hyperelliptic curve of genus 5 over Fq with the previous conditions on q.
Define the set R5 =

{
r ∈ F

∗
q , f5(w[ur2(−28105s − 3025) − 1]) �= 0

}
.

Input: The hyperelliptic curve H5, an element r ∈ R5

Output: A point (x, y) on H5

v := w[ur2(−28105s − 3025) − 1];
ε := χ(v9 + a9v

9 + a7v
7 + a5v

5v3 + a5v
5 + a1v + a0);

x :=
1 + ε

2
v +

1 − ε

2

(
w(−v + w)

v + w

)
;

y := −ε
√

x11 + a9x9 + a7x7 + a5x5 + a3x3 + a1x + a0;
return (x, y).

Algorithm 4. Genus5-Encoding4

Deterministic Encoding into Hyperelliptic Curves 193

Definition 4. In the situation of Algorithm4, the encoding function for the
hyperelliptic curve H5 is the function ψ5 : R5 → H5 : r
→ ψ5(r) = (x, y).

Theorem 7. Algorithm4 computes a deterministic almost-injective encoding
ψ5 : R5 → H5 : r
→ ψ5(r) = (x, y), in time O(log2+◦(1) q), where Z5 = Fq \ R5

is a subset of Fq of at most 23 elements.

Proof. 1. f5(v) �= 0 by definition of R5. Therefore ε = χ(v9 + a9v
9 + a7v

7 +
a5v

5v3 + a5v
5 + a1v + a0) �= 0

2. x is well defined since v + w = 0 ⇔ r = 0 and 0 /∈ R5

3. Let us prove that f5(x) is nonzero square.
– If ε = 1 i.e f5(v) is a nonzero square and x = v then f5(x) is a nonzero

square.

– If ε = −1 then we have x =
(

w(−v+w)
v+w

)
and f4(x) =

g5(v)
(v + ω)11

. with

g5(v) = ω11(−v + ω)11 + a9ω
9(−v + ω)9(v + ω)2 + a7ω

7(−v + ω)7(v +
ω)4 +a5ω

5(−v +ω)5(v +ω)6 +a3ω
3(−v +ω)3(v +ω)8 +a1ω(−v +ω)(v +

ω)10 + a0(v + ω)11.

Using a9 = sw2, a7 = 6sw4, a5 =
42sw6

5
, a3 = 3sw8, a1 =

sw10

5
, a0 =

s − 55
55

w11, after some computations, yields, the following:

f5(x) =
η11v

11 + η9v
9 + η7v

7 + η5v
5 + η3v

3 + η1v + η0
(v + w)9

with

η11 = − 1022
55 sw11 − 2w11, η9 = 2sw13 − 110w13; η7 = 12sw15 −

660w15; η5 = 84
5 sw17−924w17; η3 = 6sw19−330w19; η1 = 2

5sw21−22w21

and η0 = 1024
55 sw22. The expression of the function f5 becomes:

f5(x) =
η11

(v + w)11
(
v11 + η9

η11
v9 + η7

η11
v7 + η5

η11
v5 + η3

η11
v3 + η1

η11
v + η0

)
.

Now our main goal is to prove that η9
η11

= a9; η7
η11

= a7; η5
η11

= a5; η3
η11

=
a3; η1

η11
= a1 and η0

η11
= a0.

η9
η11

=
2sw13 − 110w13

− 1022
55 sw11 − 2w11

=
55s − 3025
−511s − 55

w2. Now since 511s2 + 110s −
3025 = 0, we have 55s − 3025 = 511s2 − 55s. This implies that
η9
η11

=
−511s2 − 55s

−511s − 55
w2 = sw2 = a9.

η7
η11

=
12sw15 − 660w15

− 1022
55 sw11 − 2w11

=

55(6s − 55)
−511s − 55

w4 =
6(55s − 3025)
−511s − 55

w4 = 6 × −511s2 − 55s

−511s − 55
w4 = 6sw4 = a7.

η5
η11

=
84
5 sw17 − 924w17

− 1022
55 sw11 − 2w11

=
55
5

.
42s − 2310
−511s − 55

w6 =
42
5

.
55s − 3025
−511s − 55

w6 =

42
5

.
−511s2 − 55s

−511s − 55
w6 =

42
5

sw6 = a5.

η3
η11

=
6sw19 − 330w19

− 1022
55 sw11 − 2w11

=
55(3s − 165)
−511s − 55

w8 =
3(55s − 3025)
−511s − 55

w8 = a3.

194 M. Seck and N. Diarra

η1
η11

=
2
5sw21 − 22w21

− 1022
55 sw11 − 2w11

=
55
5

× s − 55
−511s − 210

w10 =
sw10

5
= a1.

η0
η11

=
1024
55 sw22

− 1022
55 sw11 − 2w11

=
512s

−511s − 55
w11.

511s2 + 110s − 3025 = 0 ⇔ 28160s = −511s2 + 28050s + +3025
⇔ 55 × 512s = (s − 55)(−511s − 55)

⇔ 512s

−511s − 55
=

s − 55
55

So
η0
η11

=
512s

−511s − 55
w11 =

s − 55
55

w11 = a0.

We prove that f5(x) =
η11

(v + w)11
.f5(v). This implies that χ(f5(x)) =

χ(η11)χ(v + ω))χ(f5(v)) = −χ(η11(v + w)) since f5(v) is a nonzero
non-square.
But, we have η11(v + w) = η11

−127s−36
18

(
wur2(−28105s − 3025)

)
=

uw10r2(−511s − 55)2 = u
(
rw6(−511s − 55)

)2. Since r �= 0 in R5, then
χ(η11(v + w)) = χ(u) = −1. Hence χ(f5(x)) = 1, therefore f5(x) is a
nonzero square, we deduce that y = −ε

√
f5(x) is well-defined.

�
Theorem 8. In the situation of Theorem7 and Definition 4, we have the fol-
lowing.

1. Let (x, y) be a point of the hyperelliptic curve H5, then (x, y) ∈ Im(ψ5) if
and only if uw(x + w)(−28105s − 3025) is a nonzero square in Fq .

2. Let (x, y) ∈ Im(ψ5) and define r̄ as follows:
r̄ =

√
x+w

uw(−28105s−3025) if y /∈
√

F2
q and r̄ =

√
2w

u(x+w)(−28105s−3025) if y ∈√
F2

q. Then r̄ ∈ R5 and ψ5(r̄) = (x, y).

Proof. Similar to the proof of Theorem4.
�

3.4 Encoding in Genus g = 1 Using Our Technique

In this subsection, we show how one can encode into an elliptic curve given by
E = H1 : y2 = x3 + a1x + a0 over a finite field Fq where q ≡ 7 mod 8 using the
same approach as in the previous subsections.

We assume that char(Fq) = p �= 2, 3. Let s ∈ F
∗
q such that s2 + 6s − 9 =

0. Since q ≡ 7 mod 8, we have Δs = 72 = 23 × 32 which is a square, then
s = −3 ± 3

√
2. Let E = H1 : y2 = f1(x) = x3 + a1x + a0, with a1 = sw2 and

Deterministic Encoding into Hyperelliptic Curves 195

a0 =
s − 3

3
w3, be an elliptic curve over Fq with the previous conditions on q.

Define the set R1 =
{
r ∈ F

∗
q , f1(w[ur2(−3s − 9) − 1]) �= 0

}
.

Input: The elliptic curve E = H1, an element r ∈ R1

Output: A point (x, y) on E
v := w[ur2(−3s − 9) − 1];
ε := χ(v3 + a1v + a0);

x :=
1 + ε

2
v +

1 − ε

2

(
w(−v + w)

v + w

)
;

y := −ε
√

x3 + a1x + a0;
return (x, y).

Algorithm 5. Genus1-Encoding5

Definition 5. In the situation of Algorithm5, the encoding function for the
elliptic curve E is the function ψ1 : R1 → E : r
→ ψ1(r) = (x, y).

Theorem 9. Algorithm5 computes a deterministic almost-injective encoding
ψ1 : R1 → E : r
→ ψ1(r) = (x, y), in time O(log2+◦(1) q), where Z1 = Fq \ R1

is a subset of Fq of at most 9 elements.

Proof. 1. f1(v) �= 0 by definition of R1. Therefore ε = χ(v3 + a1v + a0) �= 0
2. x is well defined since v + w = 0 ⇔ r = 0 and 0 /∈ R1.
3. Let us prove that f1(x) is nonzero square.

– If ε = 1 i.e f1(v) is a nonzero square and x = v then f1(x) is a nonzero
square.

– If ε = −1 then we have x =
(

w(−v+w)
v+w

)
and f1(x) = 1

(v+ω)3

[
ω3(−v +

ω)3 +a1ω(−v +ω)(v +ω)2 +a0(v +ω)3
]
. Using a1 = sw2, a0 =

s − 3
3

w3,

we have f1(x) = (−2sw3/3−2w3)v3+(2sw5−6w5)v+4sw6/3
(v+ω)3

f1(x) = (−2sw3/3−2w3)
(v+ω)3

(
v3 + (2sw5−6w5)

(−2sw3/3−2w3)v + 4sw6/3
(−2sw3/3−2w3)

)
.

We have (2sw5−6w5)
(−2sw3/3−2w3) = 3s−9

−s−3w2 = sw2 = a1 since 3s − 9 = −s2 − 3s

and 4sw6/3
(−2sw3/3−2w3) = s−3

3 w3 = a0 since s2 + 6s − 9 = 0 ⇔ 6s =

−s2 + 9 ⇔ 2s

−s − 3
=

s − 3
3

. We prove that f1(x) = (−2sw3/3−2w3)
(v+ω)3 .f1(v).

This implies that χ(f1(x)) = χ(−2sw3/3 − 2w3)χ(v + ω))χ(f1(v)) =
−χ(w(−3s−9s)(v+w)) since f1(v) is a nonzero non-square. But, we have
w(−3s−9s)(v +w) = w(−3s−9s)(wur2(−3s−9) = uw2r2(−3s−9s)2 =
u (rw(−3s − 9))2. Since r �= 0 in R1, then χ(w(−3s − 9s)(v + w)) =
χ(u) = −1. Hence χ(f1(x)) = 1, therefore f1(x) is a nonzero square, we
deduce that y = −ε

√
f1(x) is well-defined.

�

196 M. Seck and N. Diarra

Remark 1. We emphasize that we construct an encoding function into the elliptic

curve E = H1 : y2 = f1(x) = x3 + a1x + a0 with a1 = sw2 a0 =
s − 3

3
w3 in

order to find unified formulas in genus g ≤ 5 even if the family of these elliptic
curves is small.

Theorem 10. In the situation of Theorem9 and Definition 5, we have the fol-
lowing.

1. Let (x, y) be a point of the elliptic curve E, then (x, y) ∈ Im(ψ1) if and only
if uw(x + w)(−3s − 9) is a nonzero square in Fq .

2. Let (x, y) ∈ Im(ψ1) and define r̄ as follows:
r̄ =

√
x+w

uw(−3s−9) if y /∈
√

F2
q and r̄ =

√
2w

u(x+w)(−3s−9) if y ∈
√

F2
q. Then

r̄ ∈ R1 and ψ1(r̄) = (x, y).

Proof. Similar to the proof of Theorem4.
�

4 Unified Formulas for the Five Encodings

Our main goal in this section is to find some formulas in order to unify the five
Algorithms [1, 2, 3, 4 and 5] and the Theorems [1, 4, 6, 8 and 10] (Tables 1, 2
and 3).

Table 1. Different families of hyperelliptic curves considered in this paper

Genus g Curve

1 H1 = E : y2 = f1(x) = x3 + a1x + a0

2 H2 : y2 = f1(x) = x5 + a3x
3 + a1x + a0

3 H3 : y2 = f2(x) = x7 + a5x
5 + a3x

3 + a1x + a0

4 H4 : y2 = f3(x) = x9 + a7x
7 + a5x

5 + a3x
3 + a1x + a0

5 H5 : y2 = f4(x) = x11 + a9x
9 + a7x

7 + a5x
5 + a3x

3 + a1x + a0

Table 2. The fundamental second degree equation and the different values of v defined
in Algorithms 1, 2, 3, 4 and 5.

Genus g Second degree equation Value of v

1 s2 + 6s − 9 = 0 v = w[ur2(−3s − 9) − 1]

2 7s2 + 20s − 100 = 0 v = w[ur2(−35s − 50) − 1]

3 31s2 + 42s − 441 = 0 v = w[ur2(−651s − 441) − 1]

4 127s2 + 72s − 1296 = 0 v = w[ur2(−2286s − 648) − 1]

5 511s2 + 110s − 3025 = 0 v = w[ur2(−28105s − 3025) − 1]

Deterministic Encoding into Hyperelliptic Curves 197

Remark 2. 1. The parameter s ∈ F
∗
q satisfies the equation αgs

2 + βgs − γg = 0
where αg = 22g−1−1; βg = 2×g×deg(fg) = 4g2+2g and γg = (g×deg(fg))2 =
(2g2 + g)2.

2. Note that αg = 22g−1 − 1 is a Mersenne number and M2 = 3, M3 = 7, M4 =
127 are respectively the second, third and fourth prime Mersenne numbers.

Remark 3. v = v(g) = w[ur2(−mgs − ng) − 1] where

– mg =
1
2

× αg × βg if g is odd and mg =
1
4

× αg × βg if g is even.

– ng = (g × deg(fg))2 = (2g2 + g)2 if the genus g is odd and ng =
1
2

× (g ×
deg(fg))2 =

1
2

× (2g2 + g)2 if g is even.

Table 3. The relationship between the genus g and the values of the coefficients a0,
a1, a(2g−1) and a3 in the different hyperelliptic curves Hg.

Genus g a1 a(2g−1) a0 a3, g ≥ 3

1 sw2

1
sw2 s−3

3
w3 -

2 a1 = sw4

2
sw2 s−10

10
w5 -

3 a1 = sw6

3
sw2 s−21

21
w7 5sw4

3

4 a1 = sw8

4
sw2 s−36

36
w9 7sw6

3

5 a1 = sw10

5
sw2 s−55

55
w11 3sw8 = 9

3
sw8

Remark 4. Note that for any genus g ≤ 5, a0 =

(
s−(2g2+g)

)
(2g2+g) w(2g+1), a1 = sw2g

g ,
a(2g−1) = sw2 and a3 = 2g−1

3 sw2g−2 for g ≥ 3.

4.1 An Almost-Injective Encoding on Hg

Let g ∈ {1, 2, 3, 4, 5}. We assume that char(Fq) = p, p �= 2 and p � (2g2 + g).
Let s ∈ F

∗
q such that αgs

2 + βgs − γg = 0 where αg = 22g−1 − 1; βg = 4g2 + 2g
and γg = (2g2 + g)2. If p|αg then s = γg/βg otherwise p � αg; we have Δs =
β2

g + 4 × αg × γg and then s = (−βg ± √
Δs)/(2 ∗ αg).

Let Hg : y2 = hg(x) = x(2g+1)+a(2g−1)x
(2g−1)+a(2g−3)x

(2g−3)+. . .+a1x+a0

be an hyperelliptic curve of genus g over Fq with the previous conditions on q

where a0 =
(
s−(2g2+g)

)
(2g2+g) w(2g+1), a(2g−1) = sw2, a1 = sw2g

g for g ≥ 1, a3 =

2g−1
3 sw2g−2 for g ≥ 3, a5 =

7sw4

2
if g = 4 and a7 = 6sw4, a5 =

42sw6

5
if

g = 5. Define

– Rg =
{
r ∈ F

∗
q , hg(w[ur2(−mgs − ng) − 1]) �= 0

}
;

198 M. Seck and N. Diarra

– mg = 1
2 × αg × βg if the genus g is odd and mg = 1

4 × αg × βg if g is even
where αg = 22g−1 − 1 and βg = 4g2 + 2g;

– ng = (2g2 + g)2 if g is odd and ng =
1
2

× (2g2 + g)2 if g is even.

The following algorithm generalizes Algorithms 1, 2, 3, 4 and 5.

Input: The hyperelliptic curve Hg, an element r ∈ Rg

Output: A point (x, y) on Hg

v := v(g) = w[ur2(−mgs − ng) − 1];
ε := χ(v(2g+1) + a(2g−1)v

(2g−1) + a(2g−3)v
(2g−3) + . . . + a1v + a0);

x :=
1 + ε

2
v +

1 − ε

2

(
w(−v + w)

v + w

)
;

y := −ε
√

x(2g+1) + a(2g−1)x(2g−1) + a(2g−3)x(2g−3) + . . . + a1x + a0;
return (x, y).

Algorithm 6. Genus-g-Encoding6-Generalization

Definition 6. In the situation of Algorithm6, the encoding function for the
hyperelliptic curve Hg is the function ψg : Rg → Hg : r
→ ψg(r) = (x, y).

Theorem 11. Algorithm6 computes a deterministic almost-injective encoding
ψg : Rg → Hg : r
→ ψg(r) = (x, y), in time O(log2+◦(1) q), where Zg = Fq \ Rg

is a subset of Fq of at most (2g + 1)2 + 1 elements.

Proof. Follows from the Remarks 2, 3 and the Theorems 3, 5, 7, 9.
�
Lemma 1. In the situation of Theorem11 and Definition 6, we have φg(r) =
φg(−r), ∀r ∈ Rg and #(φ−1

g (φg(r))) = 2, ∀r ∈ Rg (where #(f) means the
cardinal of f) .

Proof. Similar to the proof of Lemma 1 in [3].
�
Theorem 12. In the situation of Theorem11 and Definition 6, we have the fol-
lowing.

1. Let (x, y) be a point of the hyperelliptic curve Hg, then (x, y) ∈ Im(ψg) if
and only if uw(x + w)(−ng − mgs) is a nonzero square in Fq.

2. Let (x, y) ∈ Im(ψg) and define r̄ as follows:

r̄ =
√

x+w
uw(−ng−mgs) if y /∈

√
F2

q and r̄ =
√

2w
u(x+w)(−ng−mgs) if y ∈

√
F2

q.

Then r̄ ∈ Rg and ψg(r̄) = (x, y).

Proof. Follows from the Remark 3 and the Theorems 4, 6, 8, 10.
�

4.2 Almost-Injective Encodings on Hg , g ∈ {6, 7, 8, 9}
Using the results in the previous subsection (Subsect. 4.1), we verify that Algo-
rithm6, Definition 6 and Theorems 11 and 12 can be extended to the families of
hyperelliptic curves Hg : y2 = hg(x) = x(2g+1)+a(2g−1)x

(2g−1)+a(2g−3)x
(2g−3)+

. . . + a1x + a0 of genus g ∈ {6, 7, 8, 9} where the coefficients of Hg are given in
the following table (Table 4).

Deterministic Encoding into Hyperelliptic Curves 199

Table 4. Coefficients of Hg, 6 ≤ g ≤ 9

Genus g = 6 a0 =
(s − 78)

78
w13, a1 =

sw12

6
, a3 =

11

3
sw10, a5 =

33

2
sw8, a7 =

22sw6, a9 =
55

6
sw4, a11 = sw2

Genus g = 7 a0 =
(s − 105)

105
w15, a1 =

sw14

7
, a3 =

13

3
sw12, a5 =

143

5
sw10, a7 =

429

7
sw8, a9 =

143

3
sw3, a11 = 13sw4, a13 = sw2

Genus g = 8 a0 =
(s − 136)

136
w17, a1 =

sw16

8
, a3 =

15

3
sw14, a5 =

91

2
sw12, a7 =

143sw10, a9 =
715

4
sw8, a11 = 91sw8, a13 =

35

2
sw4, a15 = sw2

Genus g = 9 a0 =
(s − 171)

171
w19, a1 =

sw18

9
, a3 =

17

3
sw16, a5 = 68sw14, a7 =

884

3
sw12, a9 =

4862

9
sw10, a11 = 442sw8, a13 =

476

3
sw6, a15 =

68

3
sw4, a17 = sw2

5 Conclusion

We have successfully constructed four deterministic almost-injective encodings
φi, i = 1, 3, 4, 5 into four families of hyperelliptic curves H1, H3, H4 and H5 of
genus g = 1, 3, 4, 5 respectively. We have also constructed an unified deterministic
encoding into an hyperelliptic curve of genus g ≤ 5 that generalizes our four
encodings and those of Seck et al. In each case, we have showed in what conditions
one can invert the encoding function. We think that our encoding in genus g ≤ 5
can be extended to any genus.

Appendix: Implementation of Our Unified Encoding
ψg (Subsect. 4.1) Using the Sage Computer-Algebra
System [13] Available on GitHub [17]

class EncodingValidationOfParameters():
def __init__(self, q, u, w, g = 2, s=None):

self.R = FiniteField(q,"a")
self.a = self.R.gen()
self.poly = PolynomialRing(self.R,"x")
self.x = self.poly.gen()
self.q = q
self.u = self.value2Fq(u)
self.w = self.value2Fq(w)
self.s = s
self.g = g # g=genus of the curve
self.alpha_g = 2^(2*g-1)-1
self.beta_g = 4*g^2+2*g
self.gamma_g = (2*g^2+g)^2
self.mg = self.valueOfMg()
self.ng = self.valueOfNg()
#verification of the parameters
self._chekingOfParameters()
self._checkingValueOfTheParameterS()
self.coefs = self.coefficients()

200 M. Seck and N. Diarra

self.f = self.function()
self._chekingIfCurveIsHyperelliptic()

def __repr__(self):
eq = "y^2="+str(self.f)
return "Hyperelliptic curve defined by {} over finite field".format(eq)+""\

+" F_{}/< {} >".format(self.R.characteristic(),
str(self.R.modulus()).replace("x","a"))

def function(self):
g, R = self.g, self.R
t0, tn = [R(self.coefs[0])], [self.x^(2*g+1)]
poly_l = t0+[R(self.coefs[i])*self.x^(2*i-1) for i in range(1, g+1)]+tn
return sum(poly_l)

def valueOfMg(self):
if self.g % 2 == 0: return (1/4)*self.alpha_g*self.beta_g
else : return (1/2)*self.alpha_g*self.beta_g

def valueOfNg(self):
if self.g % 2 == 0: return (1/2)*(2*self.g^2+self.g)^2
else : return (2*self.g^2+self.g)^2

def coefficients(self):
g, s, w, R = self.g, self.s, self.w, self.R
coefs = [(R(s-(2*g^2+g))/R(2*g^2+g))*w^(2*g+1),

(s*w^(2*g))/R(g), R((2*g-1)/3)*s*w^(2*g-2)]
if g >= 3: coefs.append(s*w^2)
if g == 4: coefs.insert(3, R(7/2)*s*w^4)
if g == 5:

coefs.insert(3, R(42/5)*s*w^6)
coefs.insert(4, R(6)*s*w^4)

return coefs[:]
def value2Fq(self, value):

import re
search = re.compile("[a-zA-Z]+")
if isinstance(value, str):

return self.R(eval(search.sub("self.a",value).replace("^","**")))
else: return self.R(value)

def _chekingOfParameters(self):
""" We check if the parameters u,w,g,q satisfy the required conditions
"""
p, g = self.R.characteristic(), self.g
if (p% 2 == 0) or ((2*g^2+g)%p == 0):

raise ValueError("The characteristic of F{}".format(self.q)+""\
+" divise {}".format((2*g^2+g)))

if (self.q%8 != 7):
raise ValueError("q is different to 7 modulo 8".format(self.q))

if self.w.is_zero() or self.u.is_zero(): raise ValueError("w = 0 or u = 0 in Fq ")
if self.u.is_square(): raise ValueError("u is square in Fq")
if self.g not in range(1,6): raise ValueError("The genus g out of range(1,5)")

def _checkingValueOfTheParameterS(self):
p, g = self.R.characteristic(), self.g
alpha_g, beta_g, gamma_g = self.alpha_g, self.beta_g, self.gamma_g
if self.s is None:

if alpha_g % p == 0: self.s = gamma_g/beta_g
else:

delta_s = beta_g^2+4*alpha_g*gamma_g
self.s = self.R((-beta_g+self.R(delta_s).square_root())/(2*alpha_g))

def _chekingIfCurveIsHyperelliptic(self):
""" We check if f(x) doesn’t have a double root"""
solution_f, solution_fprime = self.f.roots(), self.f.derivative().roots()
f_roots = [root[0] for root in solution_f]
fprime_roots = [root[0] for root in solution_fprime]
if (set(f_roots) & set(fprime_roots)) != set():

raise ValueError("The function f={}".format(self.f)+" has double roots")

class EncodingAndInvertGenusg(EncodingValidationOfParameters):
def __init__(self, q, u, w, g=2, s = None):

EncodingValidationOfParameters.__init__(self,q, u, w, g = g, s=s)

Deterministic Encoding into Hyperelliptic Curves 201

def _quadraticCharacter(self, value):
if self.R(value).is_zero(): return 0
elif self.R(value).is_square(): return 1
else: return -1

def valuesNotInDomainOfTheEncoding(self):
R, w, s, u, x = self.R, self.w, self.s, self.u, self.x
roots = self.f(w*(u*x^2*(R(-self.mg)*s+R(-self.ng))+R(-1))).roots()
return set([R(0)]) | set([root[0] for root in roots if root !=[]])

def encode(self, value):
""" The encoding function psi(r)=(x,y)"""
R, w, s, u, poly, a = self.R, self.w, self.s, self.u, self.poly, self.a
r = self.value2Fq(value)
if r in self.valuesNotInDomainOfTheEncoding():

raise ValueError("The encoding function is not defined at r={}".format(r))
v = w*(u*r^2*(R(-self.mg)*s+R(-self.ng))+R(-1))
e = epsilon = self._quadraticCharacter(self.f(v))
x = R((1+e)/2)*v+R((1-e)/2)*R(w*(-v+w)/(v+w))
y = R(-e)*R(self.f(x)).square_root()
return (x,y)

def decode(self, point):
""" The inverse of the encoding function"""
x,y,ng,mg = self.value2Fq(point[0]), self.value2Fq(point[1]), self.ng,self.mg
R, w, s, u, poly, a = self.R, self.w, self.s, self.u, self.poly, self.a
if not (y^2-self.f(x)).is_zero():

raise ValueError("The given value is not a point of the hyperelliptic curve")
if not (u*w*(x+w)*(R(-ng)+R(-mg)*s)).is_square():

raise Exception("u*w*(x+w)*(-ng-mg*s) is not a square in Fq")
r1 = ((x+w)/(u*w*(R(-ng)+R(-mg)*s))).square_root()
r2 = (R(2)*w/(u*(x+w)*(R(-ng)+R(-mg)*s))).square_root()
return "The preimages of ({} , {}) by the encoding function".format(x,y)+""\

+" are equal to ({} , {}) or ({} , {})".format(r1, R(-r1),r2, R(-r2))

#First example
q = 2^521-1
fe = EncodingAndInvertGenusg(q=q,u=3,w=5,g=2); print(fe)
pt = fe.encode(121); print("\n (x,y) = "+str(pt)+"\n")
dc = fe.decode(pt); print("\n"+str(dc)+"\n")
Second example : we change the genus of the curve
ge = EncodingAndInvertGenusg(q=q,u=3,w=5,g=3); print(ge)
pt2 = ge.encode(121); print("\n (x,y) = "+str(pt2)+"\n")
dc2 = ge.decode(pt2); print("\n"+str(dc2)+"\n")

References

1. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Gligor, V., Yung, M.
(eds.) CCS. ACM (2013)

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

3. Seck, M., Boudjou, H., Diarra, N., Khlil, A.Y.O.C.: On indifferentiable hashing
into the Jacobian of hyperelliptic curves of genus 2. In: Joye, M., Nitaj, A. (eds.)
AFRICACRYPT 2017. LNCS, vol. 10239, pp. 205–222. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57339-7 12

4. Choon, J.C., Hee Cheon, J.: An identity-based signature from gap Diffie-Hellman
groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36288-6 2

5. Fouque, P.-A., Joux, A., Tibouchi, M.: Injective encodings to elliptic curves. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 203–218. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39059-3 14

https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-57339-7_12
https://doi.org/10.1007/3-540-36288-6_2
https://doi.org/10.1007/978-3-642-39059-3_14

202 M. Seck and N. Diarra

6. Farashahi, R.R., Fouque, P.A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.: Indif-
ferentiable deterministic hashing to elliptic and hyperelliptic curves. Math. Com-
put. 82(281), 491–512 (2013)

7. He, X., Yu, W., Wang, K.: Hashing into generalized huff curves. In: Lin, D., Wang,
X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589, pp. 22–44. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-38898-4 2

8. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009.
LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-03356-8 18

9. Kammerer, J.G., Lercier, R., Renault, G.: Encoding points on hyperelliptic curves
over finite fields in deterministic polynomial time. CoRR, abs/1005.1454 (2010)

10. Koblitz, N.: Hyperelliptic cryptosystems. J. Cryptol. 1(3), 139–150 (1989)
11. Yu, W., Wang, K., Li, B., He, X., Tian, S.: Deterministic encoding into twisted

Edwards curves. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723,
pp. 285–297. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-
0 18

12. Menezes, A.J., Wu, Y.-H., Zuccherato, R.J.: An elementary introduction to hyper-
elliptic curves. In: Koblitz, N. (ed.) Algebraic Aspects of Cryptography. Algorithms
and Computation in Mathematics, vol. 3, pp. 155–178. Springer, Heidelberg (1998).
https://doi.org/10.1007/978-3-662-03642-6

13. The Sage Developers: SageMath, the Sage Mathematics Software System (Version
7.4) (2017). http://www.sagemath.org

14. Scholten, J., Vercauteren, F.: An introduction to elliptic and hyperelliptic curve
cryptography and the NTRU cryptosystem (2008)

15. Shallue, A., van de Woestijne, C.E.: Construction of rational points on elliptic
curves over finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006.
LNCS, vol. 4076, pp. 510–524. Springer, Heidelberg (2006). https://doi.org/10.
1007/11792086 36

16. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull.
Pol. Acad. Sci. Math. 55(2), 97–104 (2007)

17. Seck, M.: Sage Code for Generalization of Encodings into Hyperelliptic Curves,
February 2018. Available on GitHub at https://gist.github.com/MichelSeck/
50ca60e7ef4acb8196e3af78aa5ef2a1

https://doi.org/10.1007/978-3-319-38898-4_2
https://doi.org/10.1007/978-3-642-03356-8_18
https://doi.org/10.1007/978-3-642-03356-8_18
https://doi.org/10.1007/978-3-319-40367-0_18
https://doi.org/10.1007/978-3-319-40367-0_18
https://doi.org/10.1007/978-3-662-03642-6
http://www.sagemath.org
https://doi.org/10.1007/11792086_36
https://doi.org/10.1007/11792086_36
https://gist.github.com/MichelSeck/50ca60e7ef4acb8196e3af78aa5ef2a1
https://gist.github.com/MichelSeck/50ca60e7ef4acb8196e3af78aa5ef2a1

HILA5 Pindakaas:† On the CCA Security
of Lattice-Based Encryption with Error

Correction

Daniel J. Bernstein1(B), Leon Groot Bruinderink2(B),
Tanja Lange2(B), and Lorenz Panny2(B)

1 Department of Computer Science, University of Illinois at Chicago,
Chicago, IL 60607-7045, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

l.groot.bruinderink@tue.nl, tanja@hyperelliptic.org, lorenz@yx7.cc

Abstract. We show that the NISTPQC submission HILA5 is not secure
against chosen-ciphertext attacks. Specifically, we demonstrate a key-
recovery attack on HILA5 using an active attack on reused keys. The
attack works around the error correction in HILA5. The attack applies to
the HILA5 key-encapsulation mechanism (KEM), and also to the public-
key encryption mechanism (PKE) obtained by NIST’s procedure for
combining the KEM with authenticated encryption. This contradicts the
most natural interpretation of the IND-CCA security claim for HILA5.

Keywords: Post-quantum cryptography · KEM · RLWE
Reaction attack

1 Introduction

HILA5 [13] is a public-key scheme designed by Saarinen and published at SAC
2017. HILA5 was submitted as a “Key Encapsulation Mechanism and Public
Key Encryption Algorithm” [12] to NIST’s call [10] for post-quantum proposals.
HILA5’s design is based on Ring Learning With Errors (RLWE) over NTRU
NTT rings. HILA5 takes the same ring parameters as New Hope [2] and changes
the reconciliation method by which Alice and Bob achieve the same key to get
a much lower chance of decryption failures.

The HILA5 submission [12] states
† “Helaas pindakaas” is a Dutch expression meaning “Oh well, too bad”.
∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/

culture/CultureStatement04.pdf. This work was supported in part by the Com-
mission of the European Communities through the Horizon 2020 program under
project number 645622 (PQCRYPTO), project number 643161 (ECRYPT-NET),
and project number 645421 (ECRYPT-CSA); and by the U.S. National Science
Foundation under grant 1314919. Date of this document: 2018.02.27.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 203–216, 2018.
https://doi.org/10.1007/978-3-319-89339-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_12&domain=pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf

204 D. J. Bernstein, L. Groot Bruinderink, T. Lange, and L. Panny

This design also provides IND-CCA secure KEM-DEM [CS03] public key
encryption if used in conjunction with an appropriate AEAD [Rog02] such
as NIST approved AES256-GCM [FIP01, Dwo07].

In this paper we show that HILA5 is not CCA secure: We compute Alice’s secret
key by sending her multiple encapsulation messages and using her answers to
determine whether her decapsulated shared secret matches a certain guess or
not. Our attack works independently of whether an AEAD is used or not and
despite the error correcting code introduced in HILA5.

We have fully implemented our attack and experimentally verified that it
works with high probability. We use the HILA5 reference implementation for
Alice’s part and also to verify that the retrieved secret key works for decryption.
We use a slightly modified version of the same software for computations on
the attacker’s side; of course the attacker need not follow the computations an
honest party would.

Acknowledgement. We thank Christine van Vredendaal for helpful
discussions.

1.1 Related Work

Ajtai–Dwork [1] and NTRU [7] are the oldest lattice-based encryption systems. In
1999 Hall, Goldberg, and Schneier [6] developed a reaction attack which recovers
the Ajtai–Dwork private key by observing decryption failures for suitably crafted
encryptions to the public key. They wrote “We feel that the existance of these
attacks effectively limits these ciphers to theoretical considerations only. That
is, any implementation of the ciphers will be subject to the attacks we present
and hence not safe.”

Hoffstein and Silverman [8] adapted the attack to NTRU. As a defense, they
suggested modifying NTRU to use the Fujisaki–Okamoto transform [5]. For a
system without decryption failures, this transform turns a CPA-secure system
into a CCA-secure one. At the same time this complicates and slows down the
cryptosystem. For NTRU, the transform turns out to still allow attacks that
exploit occasional decryption failures induced by valid ciphertexts; see [9].

New Hope [2] is a key-encapsulation mechanism (KEM), presented as a key-
exchange protocol. It allows occasional decryption failures for valid ciphertexts,
and explicitly avoids the “changes” that would be required for the Fujisaki–
Okamoto transform. To prevent reaction attacks and other chosen-ciphertext
attacks by a malicious Bob, New Hope requires using ephemeral keys, meaning
keys that change with every execution of the protocol. The New Hope paper
warns that reusing a public key in multiple protocol runs (“key caching”) would
be “disastrous for security”, although it does not describe an attack.

Fluhrer [4] showed the details of how to attack key reuse in a similar key-
exchange protocol. Followup work [3] extended the attack to more key-exchange
protocols.

HILA5 is similar to New Hope, and still does not use the Fujisaki–Okamoto
transform. HILA5 includes an error-correction method that practically elimi-
nates decryption failures for valid ciphertexts. HILA5 does not warn against key

HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption 205

caching: on the contrary, the most natural interpretation of the HILA5 security
claims is that HILA5 is secure against chosen-ciphertext attacks. See Sect. 5. We
published our results in December 2017; as of February 2018, the designer of
HILA5 has not proposed an alternative interpretation of the security claims.

2 Data Flow in the Attack

A KEM is defined by three algorithms. Key generation produces a secret key
and a public key. Encapsulation produces a ciphertext and a session key, given
a public key. Decapsulation produces a session key or failure, given a ciphertext
and a secret key. The HILA5 submission document [12] gives details and reference
code for a particular KEM, the “HILA5 KEM”.

Our attack is a key-recovery attack against the HILA5 KEM: the attacker,
evil Bob, ends up computing the secret key of a target Alice. This secret key
gives the attacker the ability to run the decapsulation algorithm using Alice’s
secret key, and thus the ability to immediately decrypt legitimate ciphertexts
sent by other users to Alice.

Our attack is a chosen-ciphertext attack: evil Bob chooses ciphertexts to
provide to Alice (different from the legitimate ciphertexts), and learns something
from observing the outputs of Alice decapsulating those ciphertexts. Formally,
the attack shows that the HILA5 KEM does not provide IND-CCA2 security.

There are two important ways that the attack does not need the full power
of a CCA2 decapsulation oracle. First, the attack is what is called a “reaction
attack” in [6] or a “sloppy Alice attack” in [14]: evil Bob has a guess for the
output of each decapsulation, and learns whether Alice’s actual decapsulation
output matches this guess. Evil Bob does not need any further information.

Second, evil Bob chooses all of his ciphertexts, and learns the secret key from
Alice’s reactions, before seeing the legitimate ciphertexts to decrypt. Formally,
the attack shows not only that the HILA5 KEM does not provide IND-CCA2
security, but also that it does not provide IND-CCA1 security.

2.1 Hashing the Secret Key Does Not Stop the Attack

One can easily stop key-recovery attacks by defining HILA5Hash as follows.
HILA5Hash key generation computes a uniform random 32-byte string s, and
then runs HILA5 key generation to obtain a public key, hashing s to generate
all randomness used in HILA5 key generation. The HILA5Hash secret key is
s. HILA5Hash encapsulation is the same as HILA5 encapsulation. HILA5Hash
decapsulation reconstructs the HILA5 secret key from s (again running the
HILA5 key-generation algorithm; alternatively, the HILA5 secret key can be
cached), and then runs the HILA5 decapsulation algorithm.

Unless the hash function is easy to invert, a key-recovery attack against
HILA5 does not produce a key-recovery attack against HILA5Hash. However,
this hashing does not prevent the attacker from decrypting legitimate ciphertexts
sent by other users to Alice.

206 D. J. Bernstein, L. Groot Bruinderink, T. Lange, and L. Panny

2.2 AEAD Does Not Stop the Attack

A PKE is defined by three algorithms. Key generation produces a secret key and
a public key, as in a KEM. Encryption produces a ciphertext, given a plaintext
and a public key. Decryption produces a plaintext or failure, given a ciphertext
and a secret key.

The subtitle of the HILA5 submission is “Key Encapsulation Mechanism
(KEM) and Public Key Encryption Algorithm”. The submission document does
not include a definition of a PKE, but NIST had already stated before submission
that it would automatically convert each submitted KEM to a PKE using the
following “standard conversion technique”: “appending to the KEM ciphertext,
an AES-GCM ciphertext of the plaintext message” where the AES-GCM key is
“the symmetric key output by the encapsulate function”. This is the standard
Cramer–Shoup “KEM-DEM” construction, using AES-GCM as the DEM. We
write “HILA5 PKE” for the PKE that NIST will automatically produce in this
way from the HILA5 KEM.1

Breaking the IND-CCA2 security of a KEM does not necessarily imply break-
ing the IND-CCA2 security of a PKE obtained in this way. IND-CCA2 attacks
against the KEM can see session keys produced by decapsulation, whereas IND-
CCA2 attacks against the PKE are merely able to see the result of AES-GCM
decryption using those keys.

However, our attack against the HILA5 KEM is also a key-recovery attack
against the HILA5 PKE. It is important here that the attack is a reaction attack:
what evil Bob needs to know is merely whether a guessed session key is correct.
Starting from this guessed session key, evil Bob produces a valid AES-GCM
ciphertext using this guess as an AES key. If decapsulation in fact produces
this session key then AES-GCM decryption succeeds and produces the plaintext
that evil Bob started with. If decapsulation produces a different session key then
AES-GCM decryption is practically guaranteed to fail (anything else would be
a surprising security flaw in AES-GCM), so evil Bob sees a decryption failure
from the PKE.

To summarize, evil Bob sees decryption failures from the PKE, and learns
from this which guesses were correct, which is the same information that evil Bob
obtains from the KEM. Evil Bob then computes the secret key from this infor-
mation. Consequently, the HILA5 PKE does not provide IND-CCA2 security,
and does not even provide IND-CCA1 security.

2.3 Black Holes Would Stop the Attack

Like other chosen-ciphertext attacks, our attack is inapplicable to scenarios
where the results of decapsulation and decryption are hidden from the attacker.
1 NIST actually deviates slightly from the KEM-DEM construction: it specifies a “ran-

domly generated IV” for AES-GCM, while Cramer and Shoup use a deterministic
DEM. For consistency with the ciphertext sizes mentioned in [12], we actually define
“HILA5 PKE” to be the Cramer–Shoup construction using AES-GCM with an all-
zero IV. Switching to NIST’s construction would expand ciphertext sizes by 12 bytes
using the default IV sizes for AES-GCM, and would not affect our attack.

HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption 207

For example, if ciphertexts are sent to NSA’s public key, and if NSA hides the
results of applying its secret key to those ciphertexts, then an attacker outside
NSA cannot use our attack to compute NSA’s secret key. However, if NSA reacts
to those results in a way that leaks to the attacker which ciphertexts were valid,
then the attacker can compute NSA’s secret key.

2.4 The Fujisaki–Okamoto Transform Would Stop the Attack

We briefly outline a more radical change to HILA5, which we call “HILA5FO”.
HILA5FO ciphertexts are slightly larger than HILA5 ciphertexts, decapsulation
is more complicated, and decapsulation is extrapolated (from reported HILA5
benchmarks) to be several times slower, but HILA5FO would stop our attack.

The idea of the HILA5FO KEM is to reapply the encapsulation algorithm
as part of decapsulation, and check whether the resulting ciphertext is identical
to the received ciphertext. This is not a new idea: it is used in many other
submissions to NIST (with various differences in details), typically with credit
to Fujisaki and Okamoto [5].

HILA5 does not provide any easy way to reconstruct the randomness used
in encapsulation (most importantly Bob’s b), so the HILA5FO KEM computes
this randomness as a hash of a plaintext recovered as part of decapsulation. The
HILA5 KEM does not transmit a plaintext, so the HILA5FO KEM is instead
built from the HILA5 PKE.

Encapsulation in the HILA5FO KEM thus chooses a random plaintext, and
encrypts this plaintext using the HILA5 PKE (the HILA5 KEM producing a
session key for AES-GCM) using a hash of the plaintext to compute all ran-
domness used inside the PKE. Decapsulation applies HILA5 PKE decryption
(HILA5 KEM decapsulation producing a session key for AES-GCM decryption),
and checks that the resulting plaintext produces the same ciphertext.

Deriving a PKE from the HILA5FO KEM would involve two layers of AES-
GCM, which can be compressed to one layer as follows: place 32 bytes of ran-
domness at the beginning of the user-supplied plaintext, and then encrypt this
plaintext using the HILA5 PKE, again using a hash of the plaintext to compute
all randomness used inside the PKE. The overall ciphertext size is the original
plaintext size, plus 32 bytes (the randomness), plus the HILA5 KEM ciphertext
size, plus 16 bytes (the AES-GCM authenticator), i.e., 32 bytes more than the
HILA5 PKE. The main cost in HILA5FO decryption (for short messages) is
reapplying HILA5 KEM encapsulation, which according to [12, Table 1] is five
times slower than HILA5 KEM decapsulation.

3 Preliminaries

This section describes the HILA5 scheme and Fluhrer’s attack on RLWE
schemes.

208 D. J. Bernstein, L. Groot Bruinderink, T. Lange, and L. Panny

3.1 The HILA5 Scheme

We describe the scheme as given in [12, Sect. 4.9] but leave out formatting and
NTT conversions. These are used in the attack implementation to interface with
the reference implementation but do not contribute to the security and hamper
readability.

The major computations take place in the ring R = Zq[x]/(xn + 1), where
n = 1024 and q = 12289. Alice’s secret key is a small, random polynomial a ∈ R,
where small (here and in the following) means that the coefficients are chosen
from a narrow distribution around zero, more precisely the discrete binomial
distribution Ψ16 which has integer values in [−16, 16]. To compute the public
key she picks another small random polynomial e ∈ R and a random g ∈ R and
computes A = ga + e. She publishes (g,A) and keeps a as her secret.

An honest Bob picks two random small polynomials b, e′ ∈ R and computes
B = gb + e′ and y = Ab. Bob sends B to Alice. The second value

y = Ab = (ga + e)b = gab + eb ≈ gab

is very close to what Alice can compute using her secret:

x = aB = a(gb + e′) = gab + e′a ≈ gab,

because a, b, e, e′ are all small.
A simple rounding operation to achieve a shared secret, such as taking the top

bits of each coefficient, will induce differences between Alice’s and Bob’s version
with too high probability. For example, Bob could take k[i] = �2 y[i]/q� and Alice
could take k′[i] = �2x[i]/q�, where we use t[i] to denote the ith coefficient of
polynomial or vector t, but for indices with (gab)[i] ≈ 0 (or q/2) the error-terms
can cause the values to flip to a different bit, i.e., k[i] �= k′[i]. For this rounding
operation, we call elements of {0, q/2} the “edges”, as these are the values for
which it is probable that errors occur.

This is why Bob sends a second vector, a binary reconciliation vector c, to
help Alice recover the same k as Bob. Basically, this means that the scheme
uses two pairs of edges. If y[i] was close to one edge of a certain pair, Bob
will choose the other pair of edges, so that Alice can still successfully recover
the shared secret. In previous work [11], the reconciliation vector achieves a
successful shared secret with high probability, as long as |x[i] − y[i]| < q/8.

HILA5 differs in how these reconciliation bits are computed. For each coeffi-
cient y[i] of y Bob computes k[i] = �2 y[i]/q�, c[i] ≡ �4 y[i]/q� mod 2, and

d[i] =
{

1 if |(y[i] mod �q/4�) − �q/8�| ≤ β
0 otherwise,

where β = 799. He then selects the first 496 positions i for which d[i] = 1 and
restarts with fresh b and e′ if there are fewer. Positions with d[i] = 1 are those for
which it is likely that Alice and Bob recover the same value. In other words, for
these indices the value (gab)[i] is likely to be far away from an edge, thus further

HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption 209

reducing the probability of errors in the shared secret. (Note that the description
suggests to discard some positions if there are more than 496 such positions while
the code deterministically discards the later ones by setting d[j] = 0 for them.)

The encapsulation consists of B, d, c, and an extra part r described below;
here d covers the full n positions while c can be compressed to those positions i
where d[i] = 1.

Alice recovers the k[i] at the selected 496 positions by computing

k′[i] =
⌊
2 (x[i] − c[i] · �q/4� + �q/8� mod q)/q

⌋
.

The HILA5 submission shows that k′[i] = k[i] with probability 1 − 2−36. Let k
(resp. k′) be the 496-bit string given by the concatenation of the k[i] (resp. k′[i]).

The role of r is not well described but the HILA5 design overview says that is
an encrypted encoding of a part of k. It is computed by splitting k as k = m‖z,
where m gets the first 256 bits and z the remaining 240 bits. HILA5 uses a
custom-designed error-correcting code XE5 that corrects at least 5 errors to
compute a 240-bit checksum s of m and then computes r = s ⊕ z, where ⊕
denotes bitwise addition (XOR).

Alice computes k′ = m′‖z′, the checksum s′ on m′, and applies the XE5 error
correction to m′, s′, z′ and r to correct m′ to m.

3.2 Fluhrer’s Attack

The chosen-ciphertext attack on HILA5 that we are going to present is a variant
of the following attack against key reuse in RLWE-based key exchange protocols
presented by Fluhrer in 2016 [4]. This section assumes that Bob computes the
c[i] and k[i] in a way similar to the previous section. The d[i] were added in
HILA5 and will be considered in the next section.

Recall that Alice’s version of the shared secret key is

gab + e′a,

where g is some large public generator element, a and b are Alice’s and Bob’s
small private keys, and e′ is a small noise vector chosen by Bob. This version
of the shared secret differs from Bob’s by some small error, hence they need to
employ a reconciliation mechanism to arrive at the same secret bit string.

The general strategy of an evil Bob is to artificially force one (say, the first)
coefficient of gab to be close to the edge M between the intervals that are mapped
to bits 0 and 1 during reconciliation. An honest user would set the reconciliation
bit c[0] in that case, so Alice would use another mapping that is less likely to
produce an error; but evil Bob does not. Since evil Bob proceeds honestly except
for the first bit, he knows two possibilities for Alice’s key, hence he can query
Alice with one of these guesses and distinguish between 0 and 1 based on her
reaction. If we assume for the moment that evil Bob can choose, hence knows,
(gab)[0], this tells him that (e′a)[0] lies in a certain interval.

After a few queries using binary search with varying values for (gab)[0], evil
Bob knows the exact distance of (e′a)[0] from the edge, and if he sets e′ = 1, this

210 D. J. Bernstein, L. Groot Bruinderink, T. Lange, and L. Panny

distance is nothing but the first coefficient of Alice’s secret key a. Note that in
Fluhrer’s setting the edge M is at zero and he uses b with (gab)[0] = 1, hence evil
Bob can just multiply that b by small distances to obtain a prescribed (gab)[0]
when searching for (e′a)[0]. In our adaptation of the attack to HILA5, this step
is more involved; see Sect. 4.2.

One could apply this method individually to each coefficient to extract Alice’s
full secret key. However, being able to recover the coefficient at one position is
enough: due to the structure of the underlying ring, evil Bob can shift the ith
coefficient of a into the constant term of e′a by setting e′ to −xn−i, i.e., a vector
with one entry of −1 and 0 elsewhere.

We now come back to the assumption made above. Notice that evil Bob
does not a priori know a vector b ∈ R such that (gab)[0] = 1, but he can still
reasonably guess one: Alice’s public key is ga+e for small vectors a and e, hence
if b is a small low-weight vector such that (b · (ga + e))[0] is close to 1, there is
a good chance that in fact (gab)[0] = 1. Thus, while evil Bob does not have a
deterministic method to find an “evil” b, he can still just make educated guesses
based on Alice’s public key until he finds one that works. Finding b ∈ R with
(b · (ga + e))[0] close to 1 is an offline computation using only Alice’s public key;
testing for (gab)[0] = 1 requires interaction with Alice.

There are several follow-ups to Fluhrer’s paper, e.g. the recently posted [3],
but a small and new generalization of Fluhrer’s attack is sufficient to attack
HILA5.

4 Chosen-Ciphertext Attack on HILA5

In this section, we describe how we circumvent the error-correction code and
how to adapt Fluhrer’s attack to the HILA5 case.

4.1 Working Around Error Correction

The HILA5 construction includes XE5 as an error-correcting code that is applied
to the shared secret after decapsulation. Both Alice and Bob compute their
version of a redundancy check, which will help Alice to correct up to 5 errors
in the shared secret. The redundancy part r is divided into ten subcodewords
r = r0, . . . , r9 of variable sizes. For the purpose of the attack, these sizes do not
matter, but we use the same notation Li for the size, as in the HILA5 paper.
This means we can index each ri = r(i,0) . . . r(i,Li−1) for i ∈ {0, . . . , 9}.

Bob first computes his part of the HILA5 encapsulation, i.e., he computes his
version of the shared secret, selects the indices that are safe to use by Alice and
computes the reconciliation vector. The last 240 bits of Bob’s shared secret are
used in XE5 error-correction. From these bits, Bob constructs his redundancy
check r′, and sends this as part of the ciphertext.

Upon receiving Bob’s ciphertext, Alice first computes her part of the HILA5
decapsulation, i.e., she computes her version of the shared secret. Then she

HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption 211

computes her own redundancy check r and computes the distance rΔ with Bob’s
r′ from the ciphertext:

rΔ = r′ ⊕ r

To determine which bits in the shared secret are erroneous, Alice determines a
weight wΔ

k ∈ [0, 10] for each of the 256 bits by the following formula:

wΔ
k = rΔ

0,�k/16� +
9∑

j=1

rΔ
j,k mod Lj

Now, if a single bit k of Alice’s shared secret is flipped, it means wΔ
k = 10 [12,

Lemma 2], and it is therefore detectable and correctable by Alice. Moreover, it is
shown that XE5 corrects bit k as long as wΔ

k ≥ 6 [12, Theorem 1], which means
XE5 can correct at least 5 bits in the shared secret. This means that applying
Fluhrer’s original attack directly to HILA5 will not work, as Fluhrer’s original
attack depends crucially on the attacker’s ability to detect single-bit errors in
Alice’s version of the shared secret. Thus, to apply Fluhrer’s attack, we have to
work around these error-correction abilities.

In the attack described in the next section, we focus on inducing errors only
in the first bit k = 0 of the shared secret. This means the attacker evil Bob
needs to force wΔ

0 to be less than 6, as this means XE5 is no longer capable of
correcting the first bit. However, evil Bob needs to leave the remaining error-
correction in place, otherwise he still does not know if the first bit was the only
flipped bit. In order to do that, evil Bob needs to change his redundancy check
r′ to do exactly that. As wΔ

0 is obtained by summing up the first bits of the
subcodeword distances rΔ

i , he can flip any 5 of the bits labeled r′
(0,0) through

r′
(9,0) to force wΔ

0 < 6. Our attack flips the first 5 of these bits. This means
in the following section we consider the issue of error-correction solved and can
directly apply a modification of Fluhrer’s attack.

4.2 Details of the Attack

This section elaborates evil Bob’s approach to recover Alice’s secret key. As
mentioned before, the general procedure mimics Fluhrer’s attack (Sect. 3.2). The
major steps are:

1. Guess a small low-weight secret b0 such that (gab0)[0] is at the edge M .
2. For each δ ∈ {−16, . . . , 16}, compute bδ such that (gabδ)[0] = M + δ.
3. For each target coefficient of Alice’s secret:

(a) Choose e′ such that (e′a)[0] is the target coefficient.
(b) Perform a binary search using the bδ to recover the target coefficient.

(Alice’s coefficient (gabδ + e′a)[0] maps to a 1 bit iff (−e′a)[0] > δ.)
4. If the results look “bad” after recovering a few coefficients in this way, the

guess for b0 was probably wrong and evil Bob should start over at step 1.

Note that for each oracle query, i.e., for every interaction with Alice, Bob pro-
ceeds honestly except for using specially crafted bδ and e′, setting d0 = c0 = 1,
and flipping a few bits in the error correction as described in Sect. 4.1. We now
explain and analyze the steps above in more detail.

212 D. J. Bernstein, L. Groot Bruinderink, T. Lange, and L. Panny

Forcing Coefficients Near the Edge. In HILA5’s reconciliation mechanism,
there is no edge at zero for any choice of reconciliation bit, hence Fluhrer’s attack
does not apply without modifications. We chose to set the reconciliation bit c0
to 1 and attack the edge at

M = �q/8� = 1536.

To perform the binary search for Alice’s secret coefficients in the attack, we need
to find small low-weight vectors bδ such that

(gabδ)[0] = M + δ

for all δ with |δ| ≤ 16. (As mentioned in Sect. 3.2, Fluhrer’s evil Bob attacked
M = 0, thus he could guess b1 based on Alice’s public key and set bδ = δ · b1.)
One could of course try to guess each bδ individually based on Alice’s public key,
but as we want to get all bδ right at the same time, this has exponentially low
success probability. Instead, we make use of a special property of the M used in
HILA5: The inverse

M−1 mod q = −8

is small.2 Hence, as soon as evil Bob successfully guessed b0, he may simply set

bδ = (1 + δM−1 mod q) · b0.

In our case, we choose b0 with only two non-zero coefficients from {±1}, thus
bδ will have only two non-zero coefficients bounded by 1 + 8δ. This property
is necessary to make sure evil Bob can actually know what Alice’s version of
the shared secret will be (except for the target bit that leaks information): If
the coefficients of bδ are too large, the error eb − e′a between Alice’s and Bob’s
shared secrets becomes too large to recover from and their secrets will mismatch
no matter what the value of the attacked bit is. In theory, with these parameters
we still expect a tiny possibility of unintended errors, but this happens so rarely
that it is not an issue in practice. If it ever does occur, Bob can detect that his
recovered secret key is wrong and simply start over with a new b0.

When evil Bob chooses a random b0 with two non-zero coefficients in {±1}
and with (Ab0)[0] = M , the probability that in fact (gab0)[0] = M holds is just
the probability that two Ψ16-distributed values sum to zero:

32∑
i=0

(
32
i

)
2

/264 ≈ 9.9%,

hence he can expect to find a good b0 after about 10 tries. Since A can be
approximated by a uniformly distributed sequence over Zq, the expected number
of ±1-combinations of two coefficients of A which equal M is(

1024
2

)
· 4/q ≈ 170.

2 Note that this also holds for some other “natural” choices of M as rounded fractions
of q, but it is not automatically true for any conceivable M .

HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption 213

Hence, the probability that evil Bob exhausts this pool of choices without finding
a good b0 is roughly 2−25.

(If this ever happens, then evil Bob can still try a larger interval, i.e., search
for b0 with |(Ab0)[0]−M | ≤ K for some small K. This would in theory work for
a wider range of keys, but the expected number of wrong guesses grows slightly.
One could also choose three non-zero coefficients in b0, although this increases
the chance of unintended errors in Alice’s shared secret. We have not had any
problems with K = 0 in practice.)

Detecting Bad Guesses. After choosing b0 based on Alice’s public key as
described above, evil Bob may just go ahead and try to recover Alice’s secret
key using that b0. If it is correct, he will of course find a sequence that looks like
it was sampled from the Ψ16 distribution. If b0 is bad, say, (gab0)[0] = M +γ for
some small γ �= 0, then

(gabδ)[0] = M + δ + γ − 8δγ,

hence typically (gabδ)[0] is considerably smaller than M if δ > 0 and considerably
larger if δ < 0; in both cases Alice’s secret (e′a)[0] is dominated by δ + γ − 8δγ,
which means the oracle output does not depend on the secret. This implies the
binary search will always converge to 0 or −1 when b0 is bad. (For δ = 0, the
behavior does depend on (e′a)[0] since γ is small, so both cases really occur.) Evil
Bob can detect this failure mode by determining a few coefficients and checking
whether all of them are in {0,−1}. If this is the case, evil Bob simply starts over
with a new b0. The probability that an actual secret key starts with a sequence
of k coefficients from {0,−1} is about 0.27k, hence setting k = 8 reduces the
probability of a false negative to roughly 2−15. There is a small probability of
false positives if evil Bob uses only this heuristic (e.g., when |γ| = 1), but this
can easily can be detected using statistical methods (the recovered sequence will
not be Ψ16-distributed) or by simply testing the obtained secret key in the end
and running the attack again if it failed. In practice the heuristic works fine.

The Number of Queries. Assuming we already have a good b0, the binary
search needs an expected 5 + ε queries to the oracle to recover one coefficient.3

Since evil Bob decides whether he has a good b0 based on the first few coeffi-
cients that he obtains using that b0, he usually wastes a few hundred queries on
guesses for b0 that turn out to be useless: If he looks at the first 8 coefficients
obtained from each b0 as suggested above, this adds expected ≈ 400 queries to
the 5120 needed to recover all the coefficients. In summary, evil Bob will with
overwhelming probability recover Alice’s secret key in less than 6000 queries.

Evil Bob can trade computation for a smaller number of queries: retrieve some
coefficients, and reduce the original lattice problem to low enough dimension to
solve by computation.
3 The ε arises from the fact that Ψ16 samples from 33 > 25 distinct values, but the

extremal values occur so rarely that ε ≈ 2−27.

214 D. J. Bernstein, L. Groot Bruinderink, T. Lange, and L. Panny

4.3 Implementation

We implemented a proof of concept of the attack in Python, reusing portions
of the HILA5 reference implementation via the ctypes library. The only modi-
fications we made to the reference implementation were making some functions
non-static to be able to call them from within Python, and adding extra param-
eters to the encapsulation function (not used by Alice) such that evil Bob can
override his private values b and e′. The complete attack script can be found at
https://helaas.org/hila5-20171218.tar.gz. As expected, we have never observed
the attack script failing to recover Alice’s key. The empirical number of queries
matches the theoretical prediction made above.

5 HILA5 Security Claims

In this section, we discuss our interpretation of security claims made by both
the paper and NIST submission of HILA5, which motivated this paper.

NIST does not require IND-CCA2 security for KEM and PKE submissions.
Instead it requires submissions to say whether they are aiming for IND-CCA2
security or merely for IND-CPA security.

IND-CPA security is adequate in the context of key exchange in TLS, if a new
public key is generated for each TLS session. For example, New Hope [2] appears
to be safe for use in TLS. New Hope does not aim for IND-CCA2 security, and
specifically warns against using a key more than once: “No key caching . . . it is
crucial that both parties use fresh secrets for each instantiation”.

We emphasize that our attack does not break the IND-CPA security of
HILA5. If HILA5 were clearly labeled as aiming merely for IND-CPA security
then our attack would merely be a cautionary note, showing the importance of
not reusing keys.

However, HILA5 went beyond claiming IND-CPA security. There are some
undefined words in the HILA5 security claims, but the most natural interpreta-
tion of the security claims is that the HILA5 PKE provides IND-CCA2 security.
There is certainly a high risk of the claims being interpreted in this way by poten-
tial users. Our attack shows that the HILA5 PKE does not provide IND-CCA2
security.

There is even a risk of users thinking that the HILA5 KEM is being claimed
to provide IND-CCA2 security.4 The HILA5 submission document does not say
that the HILA5 KEM security target is merely IND-CPA. Our attack shows that
the HILA5 KEM does not provide IND-CCA2 security.

We give four quotes from [12] to explain why the HILA5 security claims are
most naturally interpreted as claiming IND-CCA2 security for the HILA5 PKE.
We have not found anything in [12] or [13] indicating a different interpretation.

4 Adam Langley posted an online table of speeds for announced KEMs submitted to
NIST. He wrote “I only want to list CCA-secure KEMs here”. He listed HILA5, and
accepted a correction from the HILA5 author regarding the speed of HILA5. After
the correction, HILA5 had the fastest decapsulation in the entire table.

https://helaas.org/hila5-20171218.tar.gz

HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption 215

[12, Section 1]: The HILA5 KEM can be adopted for public key encryp-
tion in straightforward fashion. We recommend using the AES-256-GCM
AEAD [FIP01, Dwo07] in conjunction with the KEM when public key
encryption functionality is desired.

The details of this “conjunction” are not formally defined. The most natural
interpretation is that this is the HILA5 PKE, using the session key produced by
the HILA5 KEM as the AES-GCM key.

[12, Section 4.1]: NIST requires at least IND-CPA [BDPR98] security from
a KEM scheme (Section 1.6). . . . The design also provides IND-CCA
secure KEM-DEM [CS03] public key encryption if used in conjunction
with an appropriate AEAD [Rog02] such as NIST approved AES256-GCM
[FIP01, Dwo07]. These properties are derived from [Pei14].

This is a claim of IND-CCA security for a PKE. “IND-CCA” in the literature
usually means IND-CCA2, although sometimes it means merely IND-CCA1. The
PKE is not formally defined, but again the most natural interpretation is simply
that the session key produced by the HILA5 KEM is the AES-GCM key used
to encrypt a user-supplied plaintext. Our attack shows that this PKE does not
even provide IND-CCA1 security, let alone IND-CCA2 security.

Our attack does not work against what we call the HILA5FO PKE (see
Sect. 2.4), a more complicated PKE using the Fujisaki–Okamoto transformation.
This transformation is also mentioned in “[Pei14]” as a way to achieve IND-CCA
security. It is conceivable that the HILA5 submission was alluding to a PKE of
this type. However, this interpretation does not appear to be compatible with the
statement “Ciphertext size: 2012 Byte expansion (KEM) + payload + MAC” in
[12, Sect. 6]; the HILA5FO ciphertext size is 32 bytes larger than this.

[12, Section 4.9]: For active security we suggest that K is used as key-
ing material for an AEAD (Authenticated Encryption with Associated
Data) [Rog02] scheme such as AES256-GCM [Dwo07, FIP01] or Keyak
[BDP+16] in order to protect message integrity.

Here “K” is defined as the session key produced by the HILA5 KEM. In the
context of KEMs and PKEs, “active security” is normally interpreted as IND-
CCA2 security, although it might have other interpretations. The authentication
in AES-GCM prevents modifications to the message encrypted by AES-GCM,
but this is not enough to stop active attacks, since it does not protect the under-
lying KEM.

[12, Section 6.1]: HILA5 is essentially drop-in compatible with current pub-
lic key encryption applications. There are no practical usage restrictions.

Security against chosen-ciphertext attacks is essential for a wide range of current
PKE applications, so this would appear to include a claim of CCA security for
the HILA5 PKE. However, our attack retrieves the secret key from the HILA5
PKE.

216 D. J. Bernstein, L. Groot Bruinderink, T. Lange, and L. Panny

References

1. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: STOC, pp. 284–293. ACM (1997)

2. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange -
a new hope. In: USENIX Security Symposium, pp. 327–343. USENIX Association
(2016)

3. Ding, J., Alsayigh, S., Saraswathy, R.V., Fluhrer, S.R., Lin, X.: Leakage of signal
function with reused keys in RLWE key exchange. In: ICC, pp. 1–6. IEEE (2017)

4. Fluhrer, S.R.: Cryptanalysis of ring-LWE based key exchange with key share reuse.
IACR Cryptology ePrint Archive 2016/085 (2016). https://ia.cr/2016/085

5. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 34

6. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726,
pp. 2–12. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-
0 2

7. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

8. Hoffstein, J., Silverman, J.H.: Reaction attacks against the NTRU public key
cryptosystem. NTRU Cryptosystems Technical report 015, version 2 (2000).
https://web.archive.org/web/20000914041434/http://www.ntru.com:80/NTRUF
TPDocsFolder/NTRUTech015.pdf

9. Howgrave-Graham, N., Nguyen, P.Q., Pointcheval, D., Proos, J., Silverman, J.H.,
Singer, A., Whyte, W.: The impact of decryption failures on the security of NTRU
encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 226–246.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 14

10. National Institute of Standards and Technology: Announcing request for nomina-
tions for public-key post-quantum cryptographic algorithms (2016). https://csrc.
nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms

11. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

12. Saarinen, M.-J.O.: HILA5: key encapsulation mechanism (KEM) and pub-
lic key encryption algorithm (2017). Submission to NIST: https://github.com/
mjosaarinen/hila5/blob/master/Supporting Documentation/hila5spec.pdf

13. Saarinen, M.-J.O.: HILA5: on reliability, reconciliation, and error correction for
ring-LWE encryption. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 192–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 10

14. Verheul, E.R., Doumen, J.M., van Tilborg, H.C.A.: Sloppy Alice attacks! Adaptive
chosen ciphertext attacks on the McEliece public-key cryptosystem. In: Blaum, M.,
Farrell, P.G., van Tilborg, H.C.A. (eds.) Information, Coding and Mathematics.
ECS(CIT), vol. 687, pp. 99–119. Springer, Boston (2002). https://doi.org/10.1007/
978-1-4757-3585-7 7

https://ia.cr/2016/085
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/978-3-540-47942-0_2
https://doi.org/10.1007/BFb0054868
https://web.archive.org/web/20000914041434/http://www.ntru.com:80/NTRUFTPDocsFolder/NTRUTech015.pdf
https://web.archive.org/web/20000914041434/http://www.ntru.com:80/NTRUFTPDocsFolder/NTRUTech015.pdf
https://doi.org/10.1007/978-3-540-45146-4_14
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
https://github.com/mjosaarinen/hila5/blob/master/Supporting_Documentation/hila5spec.pdf
https://github.com/mjosaarinen/hila5/blob/master/Supporting_Documentation/hila5spec.pdf
https://doi.org/10.1007/978-3-319-72565-9_10
https://doi.org/10.1007/978-3-319-72565-9_10
https://doi.org/10.1007/978-1-4757-3585-7_7
https://doi.org/10.1007/978-1-4757-3585-7_7

Large FHE Gates from Tensored
Homomorphic Accumulator

Guillaume Bonnoron1(B), Léo Ducas2, and Max Fillinger2

1 Chair of Naval Cyber Defense & Lab-STICC/CID/IRIS, Brest, France
guillaume.bonnoron@telecom-bretagne.eu

2 CWI, Amsterdam, The Netherlands

Abstract. The main bottleneck of all known Fully Homomorphic
Encryption schemes lies in the bootstrapping procedure invented by Gen-
try (STOC’09). The cost of this procedure can be mitigated either using
Homomorphic SIMD techniques, or by performing larger computation
per bootstrapping procedure.

In this work, we propose new techniques allowing to perform more oper-
ations per bootstrapping in FHEW-type schemes (EUROCRYPT’13).
While maintaining the quasi-quadratic Õ(n2) complexity of the whole
cycle, our new scheme allows to evaluate gates with Ω(log n) input bits,
which constitutes a quasi-linear speed-up. Our scheme is also very well
adapted to large threshold gates, natively admitting up to Ω(n) inputs.
This could be helpful for homomorphic evaluation of neural networks.

Our theoretical contribution is backed by a preliminary prototype
implementation, which can perform 6-to-6 bit gates in less than 10 s on
a single core, as well as threshold gates over 63 input bits even faster.

Keywords: Fully Homomorphic Encryption · Large gates
Threshold gates · Ideal lattices

1 Introduction

Since the first scheme of Gentry [1,2] a lot of effort has been made to push Fully
Homomorphic Encryption (FHE) toward practicality. A first line of research
followed the initial approach of Gentry, by bootstrapping FHE from a Some-
what Homomorphic Encryption (SHE) scheme supporting arbitrary circuits of
bounded depth. This bootstrapping step consists in homomorphically evaluat-
ing the decryption procedure, to refresh ciphertexts. After successive theoretical
and practical improvements [3–7], this bootstrapping procedure has been made
feasible in practice, but remains quite expensive, taking several minutes on a
single core. Fortunately, this cost can be mitigated thanks to SIMD techniques,
allowing to perform the same homomorphic computation on several data sets
for the price of one.

G. Bonnoron—Funded and supported by Ecole Navale, IMT Atlantique, Naval
Group and Thales.
L. Ducas is supported by a Veni Innovational Research Grant from NWO under
project number 639.021.645.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 217–251, 2018.
https://doi.org/10.1007/978-3-319-89339-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_13&domain=pdf

218 G. Bonnoron et al.

A second line of FHE schemes arose from the SHE scheme of Gentry-Sahai-
Waters [8]. This SHE scheme supports a different class of functions, includ-
ing branching programs, and this was also proved sufficient to bootstrap it to
FHE via Barrington’s theorem [9,10]. Interestingly, this approach theoretically
allows obtaining FHE from a weaker version of the LWE assumption (namely
the approximation factor decreases from super-polynomial to polynomial). On
the efficiency front, Alperin-Sheriff and Peikert [11] showed how to avoid the
costly use of Barrington’s transformation by implementing the homomorphic
decryption procedure more directly. Then, Ducas and Micciancio [12] adapted
the construction to the ring-setting. Providing parameters and implementation,
they demonstrated this approach to be feasible with a proof of concept scheme
(FHEW): the bootstrapping procedure could be run in under a second on a sin-
gle core. While their parameters allow one binary gate per bootstrapping, they
noted it should be possible in principle to perform slightly larger gates, such
as the add-with-carry gate (3-inputs, 2-outputs). This idea was implemented
in [13].

Further improvements and generalization were proposed in [14,15], leading
to a scheme named TFHE. In particular they contributed two improvements of
the bootstrapping step, accelerating it by a polylog factor. In practice, this leads
to a bootstrapping in less than 0.1 s, allowing the same bootstrapped gates as in
FHEW [12].

FHE from Homomorphic Accumulator. The core idea in FHE schemes from this
second line is to tailor the SHE scheme precisely to the decryption procedure.
Namely, the decryption procedure of an LWE ciphertext c = (a, b) ∈ Z

n+1
q under

key s ∈ Z
n
q for a plaintext space Zt is given by:

m = �t(b − 〈a, s〉)/q� mod t ∈ Zt.

Given the ciphertext c, this procedure can be split into a Zq-linear step Lc :
s �→ b − 〈a, s〉, followed by a non-linear function N : Zq → Zt. Note that one
can embed an arbitrary post-decryption transformation f : Zt �→ Zt by setting
Nf : x �→ f(�tx/q� mod t).

Assume that we have an SHE scheme that precisely supports the class of
functions that can be written as Nf ◦Lc (a notion formalized as a homomorphic
accumulator in [12]), and such that the output is again an LWE ciphertext. Then,
taking t = 4 one can construct an FHE scheme, performing any binary gate g
over encryptions of bits (b1, b2) for each bootstrap operation. Indeed, using the
linearity of LWE ciphertexts, one can compute an encryption of m = b1 + 2b2,
and construct the appropriate function f such that f(m) = g(b1, b2).

In more detail, messages m are encoded as powers of a q-th root of unity Xm.
With such an encoding, the linear step Lc is performed by sequential ciphertext
multiplications. The non-linear part Nf is performed by computing a subset-
sum of the coefficients of the polynomial E = Xm =

∑
eiX

i, by exploiting the
identity f(m) =

∑
f(i)ei.

As the useful computation is provided by the function f : Zt → Zt, a larger
plaintext modulus t allows to perform more computation between each bootstrap

Large FHE Gates from Tensored Homomorphic Accumulator 219

operation. Namely, one can build arbitrary k-bit to 1-bit gates if t ≥ 2k, and,
if we restrict to certain classes of gates, even larger ones (e.g. threshold gates
only require t ≥ k + 1). For most k-to-1 bit functions, this corresponds to a
speed up of Ω(2k/ log k) = Õ(t), according to the classical circuit lower-bound
of Riordan and Shannon [16]. It is therefore worth increasing the size of the
plaintext modulus t in order to perform much more computations per bootstrap
operation.

Parameter Constraints and Efficiency. In the set-up of [12,13,15], the con-
straints for correctness impose asymptotically that t ≤ O(q/n).1 Taking q =
Θ(n), this gives a quasi-quadratic runtime for the whole process, but allows
quite small plaintext size: t ≤ O(1). In practice, this t cannot be made much
larger than 4, maybe up to 6 as done in [13].

Looking more precisely at the complexity of each step, we note an imbal-
ance between the cost of the linear and non-linear steps. Indeed, the linear
part requires Θ̃(n) operations over Rq, while the non-linear part requires only
Θ(log n) such operations.

This Work. We aim to improve the performance of this line of FHE schemes
by increasing the plaintext modulus t. Having remarked the imbalance of the
costs of the linear and non-linear steps, we proceed to increase the cost of the
non-linear step while maintaining the overall quasi-quadratic complexity.

Our approach consists in choosing a ciphertext modulus of the form pq for
co-primes p, q, and to perform the linear-step Lc in a CRT fashion. During this
linear-step, our SHE scheme only works with the rings Rp = Z[X]/(Xp −1) and
Rq = Z[Y]/(Y q − 1) separately, for a cost of Õ(n(p + q)). Then we proceed to a
CRT reconstruction by tensoring the two rings: Rp⊗Rq
 Rpq = Z[Z]/(Zpq−1),
noting that Xa ⊗ Y b = Zaq+pb mod pq. This raises the cost of the non-linear part
to Θ̃(pq). Setting p, q = Θ(n) we maintain the quasi-quadratic complexity, but
reach a larger plaintext-modulus t = Θ(n). This is somehow a reminiscence of
the approach of [11], adapted to the ring-setting.

One (not so) novel technical aspect is that we choose in this work to use
convolution rings Z[X]/(Xp − 1), as in the NTRU schemes [17] rather than
cyclotomic ones. The reason is that we need to use some non-power of 2 roots of
unity to ensure co-primality of p and q. Indeed, if (say) p is prime, the fact that
Xp−1 = −1 − X − · · · − Xp−2 in the p-th cyclotomic ring Z(X)/(Φp(X)) makes
the non-linear step described above quite problematic.2 Yet, we show that the
switch to convolution rings can be done without affecting security, by formalizing
what we call the NTRU trick.3 More precisely, an appropriately defined version
1 More precisely, t ≤ q/

√
n · log 1/pfail, where pfail is the failure probability. In this

paper, we will always aim for exponentially small failure probability.
2 And maybe even impossible due to dimensionality constraints.
3 We wish to clarify that our scheme does not require the NTRU assumption, namely

the assumption that f/g mod q is indistinguishable from random even for small f
and g. Up to the usual circular-security assumption, our scheme is based on a ring-
LWE type of assumption.

220 G. Bonnoron et al.

Fig. 1. Scheme overview.

of Ring-LWE over convolution rings is as secure as the usual cyclotomic version
of Ring-LWE from [18].

Our work also relies on one of the improvements of [15], namely, the use of an
“external multiplication” GSW×LWE → LWE replacing the GSW×GSW → GSW

Large FHE Gates from Tensored Homomorphic Accumulator 221

operation used in [8,11–13], which saves a log factor on time and memory. It turns
out that the trick of [14,15] of implementing a mux-gate, is not compatible with
our circulant ring set-up, but we instead propose to exploit the Galois action for
a similar logarithmic speed-up.

In addition, we propose to use an alternative Gadget matrices based on the
Chinese Remainder Theorem, an idea already presented in [19] for different pur-
poses. We show that such gadgets permit a logarithmic speed-up when dealing
with gadget inversions of tensored ciphertexts; this contribution may find theo-
retical and practical applications in other contexts.

To summarize our theoretical construction, we provide schematics in Fig. 1,
omitting some extra tweaks for practical efficiency that are deferred to
AppendixF. We hope this overview may guide the reader through our paper.

Circular Security. We recall that all the FHE literature, including our work,
relies on (sometimes implicit) circular-security assumptions [2], that may be dif-
ferent from one scheme to the next. Understanding those assumptions is arguably
the most important theoretical question in this field.

One particular property of our scheme is that this circular security assump-
tion can not be avoided even when relaxing the scheme to a leveled FHE
scheme [2]. Indeed, the careful reader may notice that “External Inner-product
in the Exponent” step (ExtExpInner, Sect. 4.3) requires circular encryption.

Instantiation and Implementation. To attest to the feasibility of our approach,
we also provide an instantiation supporting 6-to-6 bit gates, at a security level
of about 100 bits. Its current implementation runs this 6-to-6 bits bootstrapped
gate in about 10 s.

Related Work. Recently Chillotti et al. [20] also proposed the construction of
large homomorphic gates, using a quite different approach. They claim impres-
sive performances, such as a 16-to-8 bit homomorphic gate running in about 2 s.
Admittedly, our current implementation is significantly slower.

Impact. Our implementation should certainly not be understood as publicity for
the practical efficiency of this overall design. It nevertheless serves the purpose
of demonstrating that our new building blocks can be used inside a reasonable
scheme. It is therefore plausible that our contributions are not only of theoretical
interest, but may as well find some use in future practical FHE designs.

Plan. We begin in Sect. 2 with preliminary results and notations. Then we intro-
duce the underlying encryption schemes at hand in Sect. 3. Section 4 presents in
detail the building blocks of the gate, leading to the overall description in Sect. 5.
Finally Sect. 6 reports implementation details and performances.

All proofs are deferred to appendices. Moreover, AppendixF provides several
useful optimization of our scheme for its concrete efficiency.

222 G. Bonnoron et al.

2 Preliminaries

2.1 Subgaussian Random Variables

Definition 1. We say that a real random variable X is subgaussian with param-
eter δ (or δ-subgaussian) if E[X] = 0, and for all t, E[exp(tX)] ≤ exp

(
t2δ2/2

)
.

Subgaussian random variables have the following well known properties (see
[21,22]):

Theorem 1. Let X1 and X2 be subgaussian random variables with parameters
δ1 and δ2, respectively.

– X1 + X2 is (δ1 + δ2)-subgaussian.
– If X1 and X2 are independent, X1 + X2 is

√
δ21 + δ22-subgaussian.

– aX1 is (|a|δ1)-subgaussian.
– Subgaussian tail estimate: P (|X1| ≥ √

2λδ1) ≤ 2 exp(−λ).

Note that [21] also defines non-centered subgaussian variables. However, in
this work, we only consider centered ones, i.e. with E[X] = 0.

2.2 Rings

Our FHE scheme uses circulant convolution rings (or, for short, circulant
rings). Circulant rings of degree d will be denoted with indeterminate T :
Rd = Z[T]/(T d − 1). We fix two distinct odd primes p and q. When speak-
ing specifically of rings Rp, Rq, and Rpq we shall use indeterminates X,Y and
Z, respectively. We write R̃d for the cyclotomic ring Z[T̃]/Φd(T̃) where Φd(T̃) is
the d-th cyclotomic polynomial; if d is prime, Φd(T̃) = 1 + T̃ + T̃ 2 + . . . + T̃ d−1.
We identify a ring element a ∈ Rd with its lowest degree representative
a0 + a1T + . . . + ad−1T

d−1 ∈ Z[T] and call a0, . . . , ad−1 the coefficients of a.
We identify a ∈ Rd/QRd with its lowest degree representative with coefficients
a0, . . . , ad−1 ∈ [−Q/2, Q/2). We define the following norms for ring elements:

Definition 2. Let a ∈ Rd (or Rd/QRd). We define the coefficient norm of a
as ‖a‖ = ‖(a0, . . . , ad−1)‖ =

√∑
a2

i .

Definition 3. Let a ∈ Rd (or Rd/QRd). We define the operator norm of a
as |a| = maxb∈R\{0} ‖ab‖/‖b‖. We expand this notion to vectors x ∈ Rn

d by
maximizing y over Rn \ {0} and replacing the multiplication with the inner
product over Rd.

Definition 4. We define the (normalized) trace function4 as follows: We let
Tr∗

Rd/Z : Rd → Z, a �→ a0. If d is clear from context, we simply write this
function as Tr∗. We let Tr∗

Rpq/Rp
: Rpq → Rp be the linear function defined by

Tr∗
Rpq/Rp

(
Zk

)
=

{
Xk/q if q|k
0 otherwise

4 This is simply a special case of the usual definition of the trace function, but we do
not need the general definition here.

Large FHE Gates from Tensored Homomorphic Accumulator 223

The following property is easy to see:

Lemma 1. Tr∗
Rd/Z and Tr∗

Rpq/Rp
are linear, and Tr∗

Rp/Z ◦Tr∗
Rpq/Rp

= Tr∗
Rpq/Z.

Definition 5. A random variable A ∈ Rd is δ-subgaussian if, for every b ∈
Rd \ {0}, Tr∗(Ab)/‖b‖ is δ-subgaussian.

Finally, we show that if we trace down a subgaussian random variable over
Rpq down to Rp, the result is a subgaussian random variable over Rp.

Lemma 1. Let A be a δ-subgaussian random variable over Rpq. Then
Tr∗

Rpq/Rp
(A) is δ-subgaussian as well.

2.3 Gadgets

Throughout this exposition we use a binary decomposition operation on ring
elements, and the reverse. For simplicity we adopt the notation of gadget vector
and matrix.

Definition 6. The gadget vector gT of size K is set to
(
1 2 22 · · · 2K−1

) ∈ RK
d .

Reciprocally, we define g−T as a function such that, for w ∈ Rn
d , V = g−T (w)

is a (K × n)-matrix whose entries are ring elements with coefficients in {0, 1}
such that gTV = w.

Definition 7. For some integer n ≥ 1, the gadget matrix Gn is defined by
Gn = In+1 ⊗ g ∈ R(n+1)K×(n+1)

d .

GT
n =

⎛

⎜⎜⎜
⎝

1 2 · · · 2K−1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 2 · · · 2K−1 · · · 0 0 · · · 0

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 2 · · · 2K−1

⎞

⎟⎟⎟
⎠

We define G−1
n similarly to g−T : for a ∈ Rn+1

d , we let d = G−1
n (a) ∈ R(n+1)K

d

be the vector whose entries have coefficients in {0, 1} such that dT · G = a. For
convenience we write Gn = G as n is typically clear from context.

2.4 Circulant LWE and Reduction to Ring-LWE

It is well known that the naive decisional version of Ring-LWE is insecure over
circulant rings, simply by exploiting the CRT decomposition. Say that d is prime,
and note that Rd/QRd
 R̃d/QR̃d × Z/QZ if Q is coprime to d, so one may
mount an attack on the Z/QZ part (projecting to this part corresponds to evalu-
ate the polynomial at 1, and therefore maintain smallness of the error). However,
this does not mean that such rings are inherently insecure: the NTRU cryptosys-
tems [17,23] use circulant rings, choosing the secret key and errors that evaluate
to a fixed known value (say 0) at 1.

This suggests a strategy to construct a variant of Ring-LWE over circulant
rings that would be as secure as the cyclotomic Ring-LWE, simply by lifting
all elements x̃ ∈ R̃d/QR̃d to x
 (x̃, 0), yet this reverse CRT operation may
not keep small elements small. In Appendix E.1 we show how to circumvent this
obstacle, and discuss error sampling in practice in AppendixE.2.

224 G. Bonnoron et al.

3 Encryption Schemes

3.1 LWE Encryption

We recall the definition of the most basic LWE symmetric encryption scheme
(see [24–26]). LWE symmetric encryption is parametrized by a dimension n, a
message modulus t ≥ 2, a ciphertext modulus Q = nO(1) and an error distribu-
tion χ. The message space of the scheme is Zt. (Typically, e ← χ satisfies the
condition |e| < Q/2t, and t = 2 is used to encrypt message bits.) The (secret)
key of the encryption scheme is a vector s ∈ Z

n
Q, which may be chosen uniformly

at random, or as a random short vector. The encryption of a message m ∈ Zt

under key s ∈ Z
n
Q is

c = (a, 〈a, s〉 + e + �Q/t� m mod Q) ∈ Z
n+1
Q (1)

where a ← Z
n
Q is chosen uniformly at random. A ciphertext (a, b) is decrypted

by computing
m′ = �t(b − 〈a, s〉)/Q� mod t ∈ Zt. (2)

We write c ∈ LWEt|Q
s (m) to denote that c is an LWE-encryption of m, and

c ∈ LWEt|Q
s (m;E) if c is a random LWE-ciphertext such that c = (a, 〈a, s〉 +

�Q/t� m + e) where e is a subgaussian random variable with parameter E. The
error of c = (a, b) ∈ LWEt|Q

s (m) is err(c) = (b−〈a, s〉−�Q/t� m) mod Q, reduced
modulo Q to the centered interval [−Q/2, Q/2).

Notice that the error err(a, b) depends not just on (a, b), but also on s, Q, t and
m. By the subgaussian tail estimate, if e = err(c) is subgaussian with parameter
E, then |e| <

√
2λE except with probability at most 2 exp(−λ). Thus, if t divides

Q and E ≤ Q/(2t
√

2λ), the decryption procedure recovers the encrypted message
with high probability:

�t(b − 〈a, s〉)/Q� mod t =
⌊

t

Q
·
(

Q

t
m + e

)⌉

=
⌊

m +
t

Q
e

⌉

= m mod t

because t
Q |e| < 1/2 except with probability 2 exp(−λ).

3.2 CLWE and CGSW Encryption Schemes

Below, we describe two encryption schemes, Circulant-LWE and Circulant-GSW
(Circulant variant of [8]), which we need for our homomorphic accumulator (see
Sect. 4). We do not specify any decryption procedures since these are not needed
for the homomorphic accumulator.

Definition 8. We let R, R̃, d, and Q be as in Sect. 2.2. Let t ≥ 2 be the
plaintext modulus. The Circulant-LWE scheme over R consists of the following
algorithms:

– KeyGen: Output a uniformly random element s of R̃.

Large FHE Gates from Tensored Homomorphic Accumulator 225

– Encs(m) for m ∈ R/tR: Let (a, b) be a sample from the Circulant-LWE dis-
tribution over R with secret s and output (a, b′ = b + �Q/t� · m).

We also define an n-dimensional variant of the scheme where the key is s ∈ Rn,
a is a random vector in Rn and the product a · s is replaced by the inner product
over R〈a, s〉 =

∑n
i=1 ai · si.

Lemma 2. If the decisional R̃- LWE problem is hard, then the Circulant-LWE
scheme is CPA-secure for messages of the form m = Xk.

Definition 9. We let R, R̃, d, and Q be as in Sect. 2.2 and G as in Definition 7.
Furthermore, let t ≥ 2 be the plaintext modulus and B an integer ≥ 2, let K be
the smallest integer such that BK ≥ Q.

The Circulant-GSW scheme is described by the following algorithms:

– KeyGen: Sample a uniformly random s from R̃.
– Encs(m) for m ∈ R/tR: Generate a matrix A ∈ R2K×2 where each row is a

sample from the Circulant-LWE distribution with secret s. Output A+�Q/t�·
mG.

We also define a n-dimensional variant of the scheme where A ∈ R(n+1)K×(n+1)

whose rows are samples from the n-dimensional Circulant-LWE and where G1

is replaced by Gn.

Lemma 3. If the decisional R̃- LWE problem is hard, then the Circulant-GSW
scheme is CPA-secure.

Finally, we define the following notations for various ciphertext spaces:

– We write c ∈ RdLWEt|Q
s (m,E) if c = (a,ats +

⌊
Q
t

⌉
m + e) for some

random error vector e that is E-subgaussian. We extend the notation to
C ∈ RdLWEt|Q

s (mT , E) for message m ∈ Rk
t that are vectors, meaning that

the i-th column Ci of C is in RdLWEt|Q
s (mi, E). Furthermore, we write err(c)

for the error term e in c.
– We write C ∈ RdGSW

t|Q
s (m,E) if C = (a,as + e) +

⌊
Q
t

⌉
· mG, and the

components of e are independent E-subgaussian variables. We write err(C)
for the error vector e in C.

4 Homomorphic Operations

Most of the operations presented below are meaningful both in the
ring/circulant-setting or over the integers. We consider the RLWE problem over
rings Rd = Z[X]/(Xd − 1) with d prime and over R = Z (i.e., simply the LWE
problem). However, most of the results presented in this section also hold for
cyclotomic rings. We assume that coefficients of ring elements in R/QR can be
added and multiplied in constant time since, in our implementation, each coeffi-
cient fits into a machine word. Thus, adding two ring elements takes time O(d)
and multiplying them takes time O(d log d) using FFT.

226 G. Bonnoron et al.

4.1 Known Building Blocks

Let us first recall, within our formalism, known building blocks from the liter-
ature. The only novelty is in this section concerns the FunExpExtract function:
while this was already constructed in previous work, in our set-up we will need
to apply a trick from [27] to improve its efficiency.
Linearity.

Key Material: None
Runtime: O(nd) for addition, O(nd log d) for multiplication
Signature:

Add : RdLWEt|Q
s (m; E) × RdLWEt|Q

s (m′; E′)

→ RdLWEt|Q
s

(
m + m′;

√
E2 + E′2

)

x ∈ Rd,Multx : RdLWEt|Q
s (m; E) → RdLWEt|Q

s (xm; |x|E)

(3)

The error term in the result of Add holds when the error terms in the
input ciphertexts are independent. Otherwise, it is E + E′.

The Add operations are computed by simply adding the ciphertexts
component-wise. The Multx operations work by scalar multiplication with x.
Modulus Switching.

Key Material: None
Runtime: O(d)
Signature: ModSwitchQ→Q′

:

RdLWEt|Q
s (m; E) → RdLWEt|Q′

s

(

m;
√

(kE)2 + 1 +
∑

i

|si|2
)

(4)

where s ∈ Rn
d and k = �Q′/t� / �Q/t� ≈ Q′/Q.

The basic idea of modulus switching is to multiply the ciphertext with Q′/Q,
or rather �Q′/t� / �Q/t�. However, since this factor is not necessarily an integer,
we instead use a randomized rounding function [x] = �x� + Br where Br is
a Bernoulli random variable with Pr[Br = 1] = x − �x�. The rounding error
r = [x] − x is subgaussian with parameter 1. Let us write k = �Q′/t� / �Q/t�.
Applying the rounding function component-wise to k · (a, 〈a, s〉 + �Q/t� m + e),
we obtain

(ka+r, k〈a, s〉+�Q′/t� m+ke+r′) = (ka+r, 〈ka+r, s〉+�Q′/t� m+ke+r′−〈r, s〉)

where r is the vector of rounding errors for ka and r′ is the rounding error for
b. Thus, the error term of the modulus-switched ciphertext is ke+ r −〈r, s〉. For
each i, risi is |si|-subgaussian. Since all terms in the sum are independent, the
error parameter is

√
(kE)2 + 1 +

∑
i |si|2.

Large FHE Gates from Tensored Homomorphic Accumulator 227

Remark 1. We only use modulus switching in the following two cases: when the
dimension of the key is n = 1, and for short keys in Z

n, i.e., n-dimensional
keys where |si| ≤ 1. In the first case, the error parameter simplifies to√

(kE)2 + 1 + |s|2, in the second case to
√

(kE)2 + n + 1.

Key switching.

Key Material: S = [Si]i∈[n] where Si ∈ RdLWE
Q|Q
s′ (si · gT ; σ) (Size:

O(nd log2 Q))
Runtime: O(d log dn log Q)
Signature: KeySwitchs→s′

S :

RdLWEt|Q
s (m; E) → RdLWE

t|Q
s′

(
m;

√
E2 + σ2d2nK

)
. (5)

where s ∈ Rn
d , s′ ∈ Rd.

Algorithm 1. KeySwitchs→s′
S (c): Transform an RdLWE ciphertext under key s

into a ciphertext under s′.
Require:

S = [Si]i∈[n] where Si ∈ RdLWE
Q|Q
s′ (si · gT ; σ).

A ciphertext (a, b) ∈ RdLWE
t|Q
s (m; E) for some m ∈ R/tR.

Ensure: A ciphertext c ∈ RdLWE
t|Q
s′

(
m;

√
E2 + σ2d2nK

)
if the error terms in c and

S are independent.

return (0n′ , b) − g−T (a) · S

Lemma 4. Algorithm1 is correct. Furthermore, if e = err(c) and ei = err(Si),
then the error term of the output ciphertext is e +

∑n
i=1 d

T
i ei, where each di is

a vector whose entries have operator norm at most d.

Remark 2. In practice, the choice of the basis decomposition B for the gadget is
important. It allows to trade off key size and running time against error growth.
We use

S =
[
RdLWE1,Q

s′ (Bjsi;σ)
]

i=1...n,j=0...K−1
,with K = �logB Q�

as key material. The key size decreases to O(nn′dK log Q), and the running time
decreases to O(d log dnn′K), while the output error parameter also increases to√

E2 + σ2d2B2nK.

228 G. Bonnoron et al.

External Multiplication.
Key Material: None
Runtime: O(Kd log d)
Signature: ExtMult :

RdLWEt|Q
s (Tm; E) × RdGSW

t|Q
s (Tm′

; E′)

→ RdLWEt|Q
s

(
Tm+m′

;
√

E2 + 2Kd2E′2
)

(6)

for s ∈ R if �Q/t� is invertible modulo Q.

Algorithm 2. ExtMult(c,C): Multiply an RdLWE ciphertext and a RdGSW
ciphertext into a RdLWE ciphertext.

Require: A ciphertext c ∈ RdLWE
t|Q
s (T m; E), and a ciphertext C ∈

RdGSW
t|Q
s (T m′

; E′) with �Q/t� invertible modulo Q.

Ensure: A ciphertext c ∈ RdLWE
t|Q
s

(
T m+m′

;
√

E2 + 2Kd2E′2
)

.

return G−1
(�Q/t�−1 · c) · C

Lemma 5. Algorithm2 is correct. Furthermore, for e = err(c) and e = err(C),
the error term of the output is Xk · e + dTe for some k and a random vector
d ∈ R2K

d independent of e with ‖di‖ ≤ d for every i.

Exponent Function Extraction.

Key Material: A key-switch key S from s(pq) ∈ R3
pq to s′ =

∑p−1
i=0 si+1

Xi ∈ Rp ⊆ Rpq (Size: O(p(q + n)K2)
Runtime: O(pq log(pq)K)
Signature: FunExpExtracts

(pq)→s
F,S :

RpqLWE
t|Q′

s(pq)(Zm; E) → LWEt|Q′
s

(
F (m); |F |

√
E2 + 3σ2p2q2K

)
(7)

for some function F : Zpq → Zt where |F | =
∑

i∈Zpq
|F (i)| and s ∈ Z

p.

Let us first consider the function F0 that maps 0 �→ 1 and k �→ 0 for k �= 0.
If we can extract this function, we can extract any function by first multiplying
the ciphertext with an appropriate polynomial.

This extraction is easily provided by the trace function Tr∗ = Tr∗
Rpq/Z (see

Lemma 1). Indeed, if (a, b) ∈ RpqLWEs(m), then (a,Tr∗(b)) ∈ LWEs(m0), where
a, s ∈ Z

pq are the vectors of coefficients of a and s.
However, this leads to an LWE ciphertext with quadratic dimension pq =

Θ(n2), that must be key-switched to a much smaller dimension Θ(n). Such a

Large FHE Gates from Tensored Homomorphic Accumulator 229

key-switch without any ring structure would require up to Θ̃(n3) running time,
and as much key-material.

To circumvent this issue, we exploit the intermediate ring, following one of
the tricks of [28]. Namely, we choose a key in Rp, which can also be viewed as an
element of Rpq. Switching to this key, exploiting the structure of Rpq, requires
only Θ̃(pq) = Θ̃(n2) operations. Then, one can trace a down to Rp, and b down
to Z, and obtain the desired result.

Algorithm 3. FunExpExtracts
(pq)→s

F,S : Turn an RpqLWE encryption of Zm into
an LWE encryption of F (m).
Require:

A ciphertext c ∈ RpqLWE
t|Q′

s(pq)(Z
m; E),

A function F : Zpq → Zt,

A key-switch key S from s(pq) to s′ ∈ Rp ⊆ Rpq, where s′ =
∑p−1

i=0 s
(pq)
i+1 Xi.

Ensure: A ciphertext c′ ∈ LWE
t|Q′
s

(
F (m); |F |√E2 + 3σ2p2q2K

)
.

f ← ∑
i∈Zpq

F (i)Z−i mod pq ∈ Rpq

c ← KeySwitchs
(pq)→s′

S (c) � ∈ RpqLWE
t|Q′
s′ (Zm)

c ← Multf (c) � ∈ RpqLWE
t|Q′
s′ (

∑
i∈Zpq

F (i)Zm−i mod pq)

(a, b) ← Tr∗
Rpq/Rp

(c) � ∈ RpLWE
t|Q′
s′ (

∑
i, st q|(m−i) F (i)Xm−i mod pq)

a ← (a0, ap−1, ap−2, . . . , a1)
b ← Tr∗

Rp/Z(b)
return (a, b)

Lemma 6. Algorithm3 is correct and runs in time O(pq log(pq) log Q′).

Remark 3. Note that we could reduce the error parameter in Algorithm 3 by
performing the multiplication before the key-switch. However, doing the key-
switch first allows to amortize the cost of gates with multiple outputs, as we
shall describe in Sect. F.3.

4.2 New Building Blocks

Exponent Multiplication by Galois Conjugation.
Key Material: None
Runtime: O(nd)
Signature: Galoisα :

RdLWEt|Q
s (Tm; E) → RdLWE

t|Q
ψα(s) (Tαm; E) . (8)

where α ∈ Z
∗
d and ψα is the automorphism of Rd defined by T �→ Tα.

230 G. Bonnoron et al.

Given a RdLWE-ciphertext (a, as + �Q/t� Tm + e), by applying ψα component-
wise, we obtain (ψα(a), ψα(a) · ψα(s) + �Q/t� Tαm + ψα(e)). Applying Galoisα

does not change the error parameter because Tr∗(ψα(e)b) = Tr∗(ψα(eψ−1
α (b))) =

Tr∗(eψ−1
α (b)). The running time is O(d) because for x ∈ R, ψα(x) is computed

simply by permuting the coefficients of x. Even if the ciphertext is in FFT rep-
resentation, the runtime remains O(d), as ψα also acts on those representations
by permutation.
Exponent CRT by tensoring.

Key Material: None
Runtime: O(pq)
Signature: ExpCRT:

RpLWEt|Q⊗
sp

(Xmp ; Ep) × RqLWEt|Q⊗
sq

(Y mq ; Eq)

→ RpqLWEt|Q⊗
s

(
Zm;

√
E2

p + E2
q + t

√
2λEpEq

)
(9)

if t · �Q⊗/t� = 1 mod Q⊗, and where m = αmp + βmq is such that mp =
m mod p and mq = m mod q and s = (−ψα(sp) ⊗ ψβ(sq), ψα(sp) ⊗ 1, 1 ⊗
ψβ(sq)).

Note that the condition t·�Q⊗/t� = 1 can be easily satisfied in our bootstrap-
ping scheme because we perform a modulus switch before and after ExpCRT.

Algorithm 4. ExpCRT
(
c(p), c(q)

)

Require: Ciphertexts c(p) ∈ RpLWE
t|Q⊗
sp (Xmp ; Ep) and c(q) ∈ RqLWE

t|Q⊗
sq (Y mq ; Eq).

Ensure: A ciphertext c ∈ RpqLWE
t|Q⊗
s (Zm;

√
E2

p + E2
q + t

√
2λEpEq) except with

probability 2min(p, q) exp(−λ)

(ap, bp) ← Galoisα
(
c(p)

)
� ∈ RpLWE

t|Q⊗
ψα(sp)

(
Xαmp ; Ep

)

(aq, bq) ← Galoisβ
(
c(q)

)
� ∈ RqLWE

t|Q⊗
ψβ(sq)

(
Y βmq ; Eq)

a ← (ap ⊗ aq, ap ⊗ bq, bp ⊗ aq)
return (ta, tbp ⊗ bq)

We will need the following lemma to bound the tensor product of two sub-
gaussian random variables.

Lemma 7. Let A and B be independent subgaussian random variables on Rp

and Rq, respectively, with parameters γ and δ. Then, for every λ ∈ R, A ⊗ B is
subgaussian with parameter

√
2λγδ except with probability 2min(p, q) exp(−λ).5

Lemma 8. Algorithm4 is correct and runs in time Θ(pq).
5 More formally, for some event E with p(E) ≤ 2 min(p, q) exp(−λ), when conditioning

on E, A ⊗ B is subgaussian with parameter
√

2λγδ.

Large FHE Gates from Tensored Homomorphic Accumulator 231

4.3 Evaluating Inner Products in Exponents

This procedure allows evaluation of inner products in exponents with log d times
less homomorphic additions in exponents than in FHEW, also less key material.

As a subroutine, we construct an (External) Multiply-and-Add operation in
the exponent, for a public coefficient α ∈ Z

∗
d. We defer the error analysis of this

step to the Algorithm 6 with
 = 1.

External Multiply-and-Add in the Exponent.

Key Material: Key-switch keys Sα (from ψα(s) to s) and Sβ (from ψβ(s)
to s), where β = α−1 mod d (Size: O(Kd log Q))
Runtime: O(Kd log d)
Signature: ExtExpMultAddα

Sα,Sβ :

RdLWEt|Q
s (Tm′

; E) × RdGSW
t|Q
s (Tm; E′) → RdLWEt|Q

s

(
Tαm+m′

; E′′
)

.

where E′′ =
√

E2 + d2K(4σ2 + E′2).

Algorithm 5. ExtExpMultAddα
Sα,Sβ (c,C)

Require: α ∈ Z
∗
d, with inverse β = α−1 ∈ Z

∗
d

A ψα(s) → s Key-Switching key Sα ∈ RdLWE
Q|Q
s

(
ψα(s) · gT ; σ

)

A ψβ(s) → s Key-Switching key Sβ ∈ RdLWE
Q|Q
s

(
ψβ(s) · gT ; σ

)

A ciphertext c ∈ RdLWE
t|Q
s (T m′

; E). A ciphertext C ∈ RdGSW
t|Q
s (T m; E′)

Ensure: A ciphertext c′ ∈ RdLWE
t|Q
s (T αm+m′

; E′′).

c1 ← Galoisβ(c) � ∈ RdLWE
t|Q
ψβ(s)

(
T βm′)

c2 ← KeySwitch
ψβ(s)→s

Sβ (c1) � ∈ RdLWE
t|Q
s

(
T βm′)

c3 ← ExtMult(C, c2) � ∈ RdLWE
t|Q
s

(
T m+βm′)

c4 ← Galoisα(c3) � ∈ RdLWE
t|Q
ψα(s)

(
T αm+m′)

c5 ← KeySwitch
ψα(s)→s
Sα (c4) � ∈ RdLWE

t|Q
s

(
T αm+m′)

return c5.

Remark 4. A similar speed-up was obtained in [15] using a different technique,
namely a Mux operation. We are unfortunately unable to use it in our cir-
culant set-up, essentially because encryptions of 0 are not allowed: our IND-
CPA-security guarantee (Lemma 2) only applies to encryptions of Xm for some
m ∈ Zd. Yet our technique is more general, precisely, we do not restrict the
secret input vector to have binary coefficients.

By chaining, this allows us to evaluate inner products 〈x,y〉 over Zd in the
exponent, given GSW encryptions RdGSW

t|Q
s (T xi) and a public vector of coef-

ficients y ∈ Z
�
d.

232 G. Bonnoron et al.

External Inner-product in the Exponent.
Key Material: Key-switch keys Sα from ψα(s) to s, for every α ∈ Z

∗
d.

(Size: O(d2 log2 Q))
Runtime: O(lKd log d)
Signature: ExtExpInner y[Sα]α

:

�⊕

i=1

RdGSW
t|Q
s (T xi ; E′) → RdLWEt|Q

s

(
T 〈x,y〉;

√
2K
2d2σ2 + 2K
d2E′2

)
.

(10)

Algorithm 6. ExtExpInner y[Sα]α
([Ci]i∈[l])

Require: A public vector y ∈ Z
�
d

A ψα(s) → s Key-Switching key Sα ∈ RdLWE
Q|Q
s

(
ψα(s) · gT ; σ

)
for each α ∈ Z

∗
d

A ciphertext Ci ∈ RdGSW
t|Q
s (T xi ; E′) for each i ∈ [�]

Ensure: A ciphertext c ∈ RdLWE
t|Q
s

(
T 〈x,y〉;

√
4K�2d2σ2 + 2K�d2E′2

)

c ← (0, T 0) � ∈ RdLWE
t|Q
s (T 0; 0)

for i from 1 to � where yi �= 0 do
α = yi; β = α−1 mod d

c ← ExtExpMultAddα
Sα,Sβ (c,Ci) � ∈ RdLWE

t|Q
s

(
T

∑i
j=1 xjyj , . . .

)

end for
return c

Theorem 9. Algorithm6 is correct and runs in time Θ(lKd log d).

Remark 5. The asymmetry in the error parameter
√

4K
2d2σ2 + 2K
d2E′2 with

2 on the left-hand side and
 on the right is due to the fact that key-switch keys
can be reused in multiple loop iterations. Thus, the error parameter that we state
in Algorithm 6 represents the worst case where we have the same α in every loop
iteration, and α = α−1 mod d. In practice, this will happen very rarely, so we

can expect an error parameter close to
√

K
d2
(
4σ2 + 2E′2).

5 Joining the Building Blocks

In this section, we explain how the building blocks we described in Sect. 4 fit
together to form the homomorphic evaluation and bootstrapping procedure
EvalBootstrap. See Fig. 1 for a schematic overview. We build an algorithm that,
given ciphertexts ci ∈ LWEs(mi;Ein), i ∈ {1, . . . , k} with s ∈ Z

p
Q′ a short vec-

tor (i.e., si ∈ {−1, 0, 1} for all i), a function f : Zt → Zt, and coefficients
γ1, . . . , γk ∈ Zt such that

∑
i |γi| ≤ t, produces c ∈ LWEs(f(m);Eout) where

Large FHE Gates from Tensored Homomorphic Accumulator 233

m =
∑k

i=1 γimi. We do not assume that the error terms in the ci are indepen-
dent of each other, or independent of the key material used by EvalBootstrap: if
an input ci is the result of a previous application of EvalBootstrap, then its error
term is not independent of the error terms in the bootstrapping/evaluation key
material. We use the following parameters for the building blocks:

– n as the security parameter,
– p, q = Θ(n), Q = poly(n), K = �log Q� = O(log n), t = Θ(n) such that

t ≤ √
pq/4,

– λ = Θ(n) such that λ ≤ q as the failure parameter; the decryption and homo-
morphic evaluation procedures should only fail with probability exponentially
small in λ,

– σ as the error parameter used in the key material,
– Q′, Q⊗ = O(Q/

√
n3σ), with t · �Q⊗/t� = 1 mod Q⊗.

For mi ∈ {0, 1}, the algorithm can evaluate arbitrary k-bit gates if t ≥ 2k,
using γi = 2i−1 and an appropriately chosen f . We can compute a threshold
gate if t > k by setting γi = 1 for all i.

Theorem 10. Algorithm7 is correct and runs in time Õ(n2). Moreover, there
exists Q = O(γ′|f |n6.5σ1.5) such that the output of EvalBootstrap can be used
as input for another execution of EvalBootstrap with coefficients γ′

1, . . . , γ
′
k such

that γ′ =
∑

i |γ′
i| (with failure probability exponentially small in n).

6 Implementation

In addition to the formal analysis, we developed a complete implementation of
the scheme. Our objective was to make it efficient and usable. We present below
the key techniques that enable us to evaluate a 6-bit gate in roughly 6.4 s.

6.1 Implementation Details

FFT. The most intensive computations throughout the scheme are the multi-
plications of ring elements. For efficiency this is classically done in the frequency
domain. The cost for a multiplication decreases from Θ(nc) down to Θ(n log n),
where c = log(3) in the case of Karatsuba algorithm for example. Since we are
dealing with circulant ring elements, we may wish to run the FFT operation
in the ring dimension exactly. But our ring dimensions are prime, which is the
worst case for FFT efficiency. We ran some benchmarks and it turned out that
it was much faster to use a bigger dimension (with small prime factors), and
do the polynomial reduction afterwards. Also we do not meet the conditions to
apply NTT (our moduli are not primes), so our choice was to stick with FFT
computations and we use the FFTW library [29] for the forward and backward
transforms.

More challenges arose with FFT computations since our biggest modulus
is Q = 256 and the FFT works with double precision numbers (i.e. 53 bits

234 G. Bonnoron et al.

Algorithm 7. EvalBootstrapf,γ1,...,γk

S (c1, . . . , ck): Homomorphically evaluate a
function and produce a bootstrapped encryption of the result.

Require: ci ∈ LWE
t|Q′
s (mi; Ein), f : Zt → Zt, γi ∈ Zt where γ =

∑ |γi| and γEin ≤ T
for a certain T = Θ(Q/(n2√σ)), and S is the required public key material consisting
of:

– Bootstrapping keys BK
(d)
i ∈ RdLWE

t|Q
s(d)(si mod d; σ) for i = 1, . . . , n and d =

p, q, where |s(d)| = O(n
√

σ)
– Key-switch keys Sd,α from ψα(s) to s for d ∈ {p, q} and α ∈ Z

∗
d

– A key-switch key S from s(pq) to s′ where s(pq) =
(−ψα

(
s(p)

) ⊗
ψβ

(
s(q)

)
, ψα

(
s(p)

) ⊗ 1, 1 ⊗ ψβ

(
s(q)

))
for α = q−1 mod p, and β = p−1 mod q,

and s′ =
∑p−1

i=0 si+1X
i

Ensure: c ∈ LWE
t|Q′
s

(
f
(∑k

i=1 γimi

)
; Eout

)
where Eout = O

(|f |n4.5σ
)
, except with

probability exponentially small in n.

c ← ∑k
i=1 γici � ∈ LWE

t|Q′
s (m; γE

)

c ← ModSwitchQ′→pq(c) � ∈ LWE
t|pq
s (m;

√
r2γ2E2 + (p + 1)2) where

r = �pq/t� / �Q′/t�(
a(p), b(p)

)
← c mod p

(
a(q), b(q)

)
← c mod q

c(p) ← Xb(p) · ExtExpInner−a(p)

[Sp,α]α

([
BK

(p)
i

]
i

)

� ∈ RpLWE
t|Q
s

(
Xb−〈a,s〉 mod p; O

(
n2.5σ

))

c(q) ← Y b(q) · ExtExpInner−a(q)

[Sq,α]α

([
BK

(q)
i

]
i

)

� ∈ RqLWE
t|Q
s

(
Y b−〈a,s〉 mod q; O

(
n2.5σ

))

c(p) ← ModSwitchQ→Q⊗
(
c(p)

)
� ∈ RpLWE

t|Q⊗
s(p)

(
Xb−〈a,s〉 mod p; O

(
n
√

σ
))

c(q) ← ModSwitchQ→Q⊗
(
c(q)

)
� ∈ RqLWE

t|Q⊗
s(q)

(
Y b−〈a,s〉 mod q; O

(
n
√

σ
))

c(pq) ← ExpCRT
(
c(p), c(q)

)
� ∈ RpqLWE

t|Q⊗
s(pq)

(
Zb−〈a,s〉; O

(
n3.5σ

))

c(pq) ← ModSwitchQ⊗→Q′(
c(pq)

)
� ∈ RpqLWE

t|Q′

s(pq)

(
Zb−〈a,s〉; O

(
n3.5σ

))

F ← (x �→ f(�tx/q� mod t)) � F : Zpq → Zt, |F | = |f |pq/t = O(|f |n)

c ← FunExpExtracts
(pq)→s

F,S

(
c(pq)

)
� ∈ LWE

Q′|t
s

(
f(m); O

(|f |n4.5σ
))

return c

mantissa). So we have to split the ring coefficients into two halves of 28 bits
each and apply the FFT transformation on each to prevent rounding errors. We
perform this splitting trick only when needed, i.e. when the ring element is not
small. For example, in ExtMult products of ring element are computed where one
of the operands is the output of a Gadget decomposition. This operand needs
not be split before FFT forward transform because it is very small.

Pre-computations. In order to minimize the evaluation time of the gate, a max-
imum of heavy computations are done in the setup phase. Consequently all keys

Large FHE Gates from Tensored Homomorphic Accumulator 235

materials: bootstrapping keys, key-switching keys, among others, are computed
ahead of time and in FFT domain. Our CirculantRing class allows to transpar-
ently manipulate ring element in FFT or coefficient representation which greatly
contribute to both performance and code readability.

Further Optimization. The implementation has been done in C++11, using its
most convenient and efficient features. For example, all classes are extensively
defined with template parameters (dimension, moduli, basis decomposition...).
This trick allows the computer to know, at compile time, the values of many
variables. The compiler then produces dedicated and highly optimized binaries.

Open-Source. Many efforts have also been made for general availability and
usability. The whole code is documented with Doxygen and many unitary tests
are provided. With under 4,000 lines of code, it remains accessible to whoever
wants to tweak or improve it. The implementation is open-source 6.

At the first start (and only then), heavy computations are performed by the
FFTW components, in order to optimize the FFT for the current computer.

6.2 Parameters

For our first implementation, we targeted a 6-bit input gate. The parameters of
the scheme are as follows:

– For 6 input bits, the plaintext modulus t = 26.
– The ring dimensions p and q are 1439 and 1447, so pq = 2, 077, 892.

Hence the FFT dimensions are dFFT
1 = 3072 = 3 ·210 for Rp,Rq and dFFT

2 =
4, 194, 304 = 222 for Rpq.

– The modulus in ExtExpInner and the LWE are Q,Q′ = 256.
– Errors and secrets are sampled according to Sect. E.2. Secrets are ternary, one

third of the coefficients are set to −1, another to 1 and the rest to 0. Errors
have variance 4.

For ExpCRT we want a small inverse to �Q⊗/t� mod Q⊗. Hence we choose
Q⊗ = (219 − t + 1)2. Finally, for the gadget decomposition we use B = 28 and
K = 7 for ExtExpInner and FunExpExtract and their key material.

We also have extra parameters related an to optimization presented in
AppendixF.1. Namely, we apply an extra KeySwitch over LWE ciphertext to
decrease the length l of the decryption inner-product from l = p = 1439 down
to l = 600. This key-switch happens with modulus Q = 256, error standard
deviation 233, and gadget parameters B = 26, K = 10.

Error Growth and Correctness. To choose the parameters, we simulated the
error growth throughout the gate, using heuristic error propagation assumption,
described in AppendixF.2. This simulation script is provided with the code as
file scripts/parameters.sage. We compared the predicted variance of each
6 https://github.com/gbonnoron/Borogrove.

https://github.com/gbonnoron/Borogrove

236 G. Bonnoron et al.

step to the experimental one, and found them to be corroborated. From the
final variance, and according to a central limit heuristic, we predict a failure
probability of only 2−74 for the above parameter set. In practice we have tested
our scheme hundreds of time on different inputs, and never observed failure.

Security. To estimate the concrete security of our parameter set, we use the
lwe-estimator from Albrecht [30]. All the LWE instances behind our LWE,
RpLWE, RqLWE ciphertexts given as part of the evaluation key offers at least
100 bits of security, according to the estimator as of commit cc5f6e8, which
includes the latest result of [31] for small secrets. Therefore we feel safe to claim
at least 80 bits of security.

6.3 Performances

We run our test on a punchy laptop: Core i7-6500U (2.50 GHz, 4 MB L2 cache),
16 GB RAM with a GNU/Linux Fedora 26 installed on a SSD. The computation
is single-threaded and we got the following timings:

– FFTW wisdom computation (only once per computer): 68 min
– Key pre-processing (once per user key pair): 38 s
– 6-bit input, 1-bit output gate evaluation: 6.4 s

The gate time breaks down into: 0.60 s per ExtExpInner (the two could be run in
parallel), 4.0 s for the KeySwitch in FunExpExtract and only 0.55 s for the output
bit related operations. Consequently, computing another function (1 more output
bit) on the same 6 input bits would add only 0.55 s, and so on. For 6-to-6 bit
gate it yields just above 10 s. On the memory front, we need 9.2 GB of RAM to
store all key materials for the computation.

Optimisations. This first implementation includes only those on ExtExpInner
described in Sect. F.1. Over the total gate evaluation time, 60% (3.8 s) are spent
on FFT forward and backward transforms. The 3.8 s break down into 0.9 sec
for more than 350k FFT in dimension dFFT

1 (Rp and Rq), and 2.9 s for only
around 250 FFT in dimension dFFT

2 for Rpq. We estimate that the optimisations
of AppendixF.4 will bring these 2.9 s down to 1 or 1.5 s at most. This rough
estimate is based on partial implementation, soon to be confirmed after complete
integration. The overall gate time should drop below 6 s and the cost of additional
output bits become negligible.

A Proofs for Section 2 (Preliminaries)

Lemma 1. Let A be a δ-subgaussian random variable over Rpq. Then
Tr∗

Rpq/Rp
(A) is δ-subgaussian as well.

Proof. Let b ∈ Rp. Then, Tr∗
Rp/Z

(
Tr∗

Rpq/Rp
(Ab)

)
/‖b‖ = Tr∗(Ab)/‖b‖ which is

δ-subgaussian by assumption.

Large FHE Gates from Tensored Homomorphic Accumulator 237

B Proofs for Section 3 (Encryption Schemes)

Lemma 2. If the decisional R̃- LWE problem is hard, then the Circulant-LWE
scheme is CPA-secure for messages of the form m = Xk.

Proof. If R̃- LWE is hard, then by Lemma3, the Circulant-LWE distribution
is indistinguishable from the uniform distribution over S2

d,Q. To prove CPA-
security, it suffices to show that, for any k ∈ Z/dZ and u = �Q/t�, we have
Sd,Q+uXk = Sd,Q+u. This then shows that a Circulant-LWE encryption of m =
Xk is indistinguishable from a uniformly random sample from Sd,Q × (Sd,Q +u).
Indeed, Sd,Q + u = {∑d−1

i=0 aiX
i | ∑ ai = u mod Q} = Sd,Q + uXk.

Lemma 3. If the decisional R̃- LWE problem is hard, then the Circulant-GSW
scheme is CPA-secure.

Proof. Let C be a Circulant-GSW ciphertext. Each row of C is of the form
(a, b) + (0, uBim) or (a, b) + (uBim, 0) where m = Xk and (a, b) is a Circulant-
LWE sample, and thus indistinguishable from a random element of S2

d,Q. By the
same argument as in the previous proof, each row of C is indistinguishable from a
uniformly random samble from either (Sd,Q +uBi)×Sd,Q, or Sd,Q ×(Sd,Q +uBi)
where i only depends on the row number, not on m.

C Proofs for Section 4 (Homomorphic Operations)

Lemma 4. Algorithm1 is correct. Furthermore, if e = err(c) and ei = err(Si),
then the error term of the output ciphertext is e +

∑n
i=1 d

T
i ei, where each di is

a vector whose entries have operator norm at most d.

Proof. By definition of g−T , it is easy to see that the error term is e −∑n
i=1 g

−T (ai)ei and each component of g−T (ai) is in Rd/2Rd. Thus, the second
part of the lemma follows. The first part holds because for every i, g−T (ai)ei is
subgaussian with parameter at most

√
Kdσ. If the error terms are independent,

it follows that the error parameter is as stated in the algorithm.

Lemma 5. Algorithm2 is correct. Furthermore, for e = err(c) and e = err(C),
the error term of the output is Xk · e + dTe for some k and a random vector
d ∈ R2K

d independent of e with ‖di‖ ≤ d for every i.

Proof. Write u = �Q/t�, so c = (a, as + e + �Q/t� Tm) and C = (a, 〈a, s〉 + e) +
uTm′

G. Let d = G−1(u−1 · c). We have:

dT · C = dT · (a,as + e) + uTm′
dTG

= (dTa,dTas + dTe) + uu−1Tm′
(

a, as + e +
⌊

Q

t

⌉

Tm

)

=
(

a′, a′s + e′ +
⌊

Q

t

⌉

Tm+m′
)

238 G. Bonnoron et al.

where a′ = dTa+aTm′
and e′ = dTe+eTm′

. Each component of e is independent
and subgaussian with parameter E′, and d is a vector in R2K

d , where each entry
has binary coefficients. Thus, for every i, we have |di| ≤ d. Using the following
Lemma 2, the error parameter follows.

Lemma 2. Let e be a γ-subgaussian variable over Rd and e = (e1, . . . , en) be
a vector of independent δ-subgaussian random variables over Rd. Let d be a
random variable over Rn

d such that |di| ≤ k for all i. If d and e are independent
and e and e are independent, then e + 〈d, e〉 is

√
γ2 + k2nδ2-subgaussian.

We first consider the case where e = 0 and d is a fixed vector instead of
a random variable. For every b ∈ Rd and every i, we have Tr(dieib)/‖b‖ ≤
kTr(ei(dib))/‖dib‖ which is (kδ)-subgaussian. From the independence of the ei,
it follows that Tr(〈d, e〉b)/‖b‖ is (

√
nkδ)-subgaussian.

If d and e are random variables independent of e, it holds for every b ∈ Rd

that

E[exp(tTr(eb + 〈d, e〉b)/‖b‖)]

=
∑

e∗,d∗
P [e = e∗,d = d∗] · E[exp(tTr(eb + 〈d, e〉b)/‖b‖) | e = e∗,d = d∗]

=
∑

e∗,d∗
P [e = e∗,d = d∗] · exp(tTr(e∗b)/‖b‖) · E[exp(tTr(〈d∗, e〉b)/‖b‖)]

≤
∑

e∗,d∗
P [e = e∗,d = d∗] · exp(tTr(e∗b)/‖b‖) · exp

(
t2nk2δ2/2

)

= E[t exp(Tr(eb)/‖b‖)] · exp
(
t2nk2δ2/2

)

≤ exp
(
t2
(
γ2 + nk2δ2

)
/2
)

which concludes the proof.

Lemma 6. Algorithm3 is correct and runs in time O(pq log(pq) log Q′).

Proof. We can compute Tr∗
Rpq/Rp

(x) by examining p coefficients of x, and
Tr∗

Rp/Z(x) is simply the constant term of x. Thus, the runtime is dominated
by the key-switch, which runs in time O(pq log(pq)K). After the multiplication
and key-switch, it holds that

c ∈ RpqLWE
t|Q′

s(pq)

(
∑

i∈Zpq

Zm−i mod pq; |F |
√

E2 + 3σ2p2q2K

)

since |f | ≤ |F |. Using Lemma 1, the linearity of the trace function, and the fact
that s′ ∈ Rp, we conclude that after the trace,

(a, b) ∈ RpLWE
t|Q′

s′

(

Tr∗
Rpq/Rp

(
∑

i∈Zpq

F (i)Zm−i mod pq

)

; |F |
√

E2 + 3σ2p2q2K

)

Large FHE Gates from Tensored Homomorphic Accumulator 239

It holds that

Tr∗(b) = Tr∗(a · s′) + �Q′/t� Tr∗
Rpq/Z

(
∑

i∈Zpq

F (i)Zm−i mod pq

)

+ Tr∗(e)

and by Lemma 1, Tr∗(∑
i∈Zpq

F (i)Zm−i mod pq
)

= F (j) if m = j. Since

Tr∗(as) = a0s0 +
∑p−1

i=1 ap−isi = 〈a, s〉 and Tr∗ does not increase the error
parameter, the correctness of our algorithm follows.

Lemma 7. Let A and B be independent subgaussian random variables on Rp

and Rq, respectively, with parameters γ and δ. Then, for every λ ∈ R, A ⊗ B is
subgaussian with parameter

√
2λγδ except with probability 2min(p, q) exp(−λ).7

Proof. We want to show that for every y ∈ Rpq \ {0}, Tr∗((A ⊗ B)y)/‖y‖ is
subgaussian (except with a small probability). Let y ∈ Rpq \ {0}. We can write
y =

∑q−1
i=0 yi ⊗ Y i. It holds that ‖y‖ =

√∑
i ‖yi‖2. Thus,

Tr∗((A ⊗ B)y)
‖y‖ =

∑

i

Tr∗(Ayi ⊗ BY i)
‖y‖ =

∑

i

Tr∗(Ayi) · Tr∗(BY i)
‖y‖

Let Ei be the event that |Tr∗(Ayi)| ≥ √
2λγ‖yi‖. Applying the subgaussian tail

estimate, we conclude that for each i, p(Ei) ≤ 2 exp(−λ). By the union bound, it
follows that, for E =

⋃
i Ei, p(E) ≤ 2q exp(−λ). We now proceed similarly to the

proof of Lemma 2. For every fixed value a ∈ Rp such that Tr∗(ayi) <
√

2λγ‖yi‖
for all i, we have

∑

i

Tr∗(ayi) · Tr∗(BY i)
‖y‖ =

Tr∗(∑
i BTr∗(ayi)Y i

)

‖y‖

which is subgaussian with parameter
∥
∥
∑

i Tr∗(ayi)Y i
∥
∥ δ

‖y‖ =

√∑
i Tr∗(ayi)2δ

√∑
j ‖yj‖2

<

√
2λγδ

√∑
i ‖yi‖2

√∑
j ‖yj‖2

=
√

2λγδ

We can then use the independence of A and B to conclude that, conditioned on
E, Tr∗((A ⊗ B)y)/‖y‖ is (

√
2λγδ)-subgaussian, as claimed.

Using a similar argument, this time writing y =
∑p−1

i=0 Xi ⊗ yi, it also fol-
lows that Tr∗((A ⊗ B)y)/‖y‖ is (

√
2λγδ)-subgaussian except with probability

2p exp(−λ). This proves our claim.

Lemma 8. Algorithm4 is correct and runs in time Θ(pq).

7 More formally, for some event E with p(E) ≤ 2 min(p, q) exp(−λ), when conditioning
on E, A ⊗ B is subgaussian with parameter

√
2λγδ.

240 G. Bonnoron et al.

Proof. Let m′ = αqmp+βpmq mod pq. It holds that m′ mod p = mp and m′ mod
q = mq. Thus, by the Chinese Remainder Theorem, m′ = m. Let s′

p = ψα(sp)
and s′

q = ψβ(sq). Let us write b′
p = uXαmp + ep and b′

q = Q⊗Y βmq/t + eq. We
have

tbp ⊗ bq = tapsp ⊗ bq + tb′
p ⊗ aqsq + tb′

p ⊗ b′
q

= −taps
′
p ⊗ aqs

′
q + taps

′
p ⊗ b′

q + tbp ⊗ aqs
′
q + tb′

p ⊗ b′
q

and tb′
p ⊗ b′

q = �Q⊗/t� Xαmp ⊗ Y βmq + Xαmp ⊗ eq + ep ⊗ Y βmq + tep ⊗ eq. Since
Xαmp ⊗ Y αmq = Zm, the error term is

epq = Xαmp ⊗ eq + ep ⊗ Y βmq + tep ⊗ eq.

Since ep and eq are independent, the sum of the first two terms is subgaus-

sian with parameter
√

E2
p + E2

q . The third term is subgaussian with parameter

t
√

2λEpEq, except with probability 2min(p, q) exp(−λ) by Lemma 7. In total,

epq is subgaussian with parameter
√

E2
p + E2

q + t
√

2λEpEq except with proba-

bility 2min(p, q) exp(−λ).
Thus, with a = (ap ⊗aq, ap ⊗bq, bp ⊗aq) and s = (−ψα(sp)⊗ψβ(sq), ψα(sp)⊗

1, 1 ⊗ ψβ(sq)) = (−s′
p ⊗ s′

q, s
′
p ⊗ 1, 1 ⊗ s′

q), an easy computation shows that
tbp ⊗ bq − t〈a, s〉 = tb′

p ⊗ b′
q = �Q⊗/t� Zm + epq. The algorithm is correct.

The running time is dominated by the cost of tensoring the ring elements,
which takes time Θ(pq).

Theorem 9. Algorithm6 is correct and runs in time Θ(lKd log d).

Proof. By induction, we prove that the error term of c in the i-th iteration
of the for-loop is of the form e1 + e2 where e1 is (2id

√
Kσ)-subgaussian, and

e2 =
∑i

j=1

〈
d(j), ψyj

(e(j))
〉

with the following properties: e(j) is the error vector

of Cj , and d(j) ∈ R2K
d is a random vector with |d(j)

n | ≤ d that is independent of
e(k) for all k ≥ j.

Clearly, our claim holds prior to the loop (with i = 0) since c has no error
term at this point. Suppose now that the claim holds for i − 1. Let α = yi and
β = α−1 mod d. During the ExtExpMultAdd operation, we first apply a Galois
operation, which results in an error term of ψβ(e1)+ψβ(e2). This is followed by a
key-switch, which, by Lemma 4, changes the error to ψβ(e1)+ψβ(e2)+eks,1 where
eks,1 is independent of e(j) for all j, and subgaussian with parameter

√
Kdσ.

Next comes an ExtMult operation which changes it to Xkψβ(e1) + Xkψβ(e2) +
Xkeks,1 +

〈
d, e(i)

〉
for some k, where e is the error in Ci, and d ∈ R2K

d is a
random vector independent of e(j) for j ≥ i which satisfies |dn| ≤ d for every
n, by Lemma 5. After the second Galois and key-switch, the error term becomes
Xαke1 + Xαke2 + Xαkψα(eks,1) + ψα

(〈
d, e(i)

〉)
+ ψα(eks,2) where eks,2 is again

subgaussian with parameter
√

Kdσ. We can reorder the error terms and write

Xαke1 + Xαkψα(eks,1) + ψα(eks,2)
︸ ︷︷ ︸

e′
1

+Xαke2 + ψα(〈d, e(i)〉)
︸ ︷︷ ︸

e′
2

Large FHE Gates from Tensored Homomorphic Accumulator 241

By the induction hypothesis and since eks,1 and eks,2 are subgaussian with
parameter d

√
Kσ, it follows that e′

1 is (2id
√

Kσ)-subgaussian (because we do
not assume that e1, eks,1 and eks,2 are independent). Finally, it holds that

Xαke2 =
i−1∑

j=1

〈
Xαkd(j), ψyj

(
e(j)

)〉

and thus, setting d′(j) = Xαkd(j) for j < i and d′(i) = ψyi
(d), we have

e′
2 =

∑i
j=1

〈
d′(j), ψyj

(e(j))
〉

which completes the induction step. Finally, by
repeated applications of Lemma 2, we conclude that the error term in the out-
put is subgaussian with parameter

√
4K
2d2σ2 + 2K
d2E′2.

It is easy to see that the algorithm has the claimed runtime by adding up
the runtimes of the algorithms used in ExtExpMultAdd.

D Proofs for Section 5 (Joining the Building Blocks)

Theorem 10. Algorithm7 is correct and runs in time Õ(n2). Moreover, there
exists Q = O(γ′|f |n6.5σ1.5) such that the output of EvalBootstrap can be used
as input for another execution of EvalBootstrap with coefficients γ′

1, . . . , γ
′
k such

that γ′ =
∑

i |γ′
i| (with failure probability exponentially small in n).

Proof. It is straighforward to verify the error parameters for each step in the
comments of the algorithm. There are two steps where failures might occur: the
ExpCRT step, and the FunExpExtract step. The failure probability for ExpCRT
is 2 exp(−λ). FunExpExtract will not fail to extract the value of F , but if the
error term in c is too large, the output might not be an encryption of f(m).
The subgaussian tail estimate guarantees that the failure probability is at most
2 exp(−λ) if

√
r2γ2E2

in + p + 1 ≤ pq/(2t
√

2λ) where r = �pq/t� / �Q′/t�. Since
t ≤ √

pq/4 and λ ≤ q, this condition is satisfied if
√

r2γ2E2
in + p + 1 ≤ √

2p, or
equivalently,

γEin ≤
√

p − 1
r2

︸ ︷︷ ︸
T

= Θ

(√
Q′2

pq2

)

= Θ

(
Q

n2
√

σ

)

The runtime is dominated by ExtExpInner and FunExpExtract, which run
in time O(nKd log d) and O(Kpq log(pq)), respectively. Given our asymptotic
parameter choices, both of those are Õ(n2).

If we want to use outputs of EvalBootstrap as inputs for another execution
of EvalBootstrap, where the absolute values of the coefficients sum up to γ′, we
require that γ′Eout ≤ T . From the asymptotic formulas for Eout and T , it is
easy to see that this inequality can be satisfied by a Q in O(|f |γ′n6.5σ1.5).

242 G. Bonnoron et al.

E More Details on Circulant LWE

E.1 Circulant LWE and Reduction to Ring-LWE

In all this subsection, we assume d to be prime. It is well known that the naive
decisional version of Ring-LWE is insecure over circulant rings, simply by exploit-
ing the CRT decomposition Rd/QRd
 R̃d/QR̃d × Z/QZ when Q is coprime
to d, and mounting an attack on the Z/QZ part (projecting to this part corre-
sponds to evaluating the polynomial at 1, and therefore maintain smallness of
the error). However, this does not mean that such rings are inherently insecure:
The NTRU cryptosystems [17,23] use circulant rings, choosing the secret key
and errors that evaluate to a fixed known value (say 0) at 1.

This suggests a strategy to construct a variant of Ring-LWE over circulant
rings that would be as secure as the cyclotomic Ring-LWE, simply by lifting all
elements x̃ ∈ R̃d/QR̃d to x
 (x̃, 0), yet this reverse CRT operation may not
keep small elements small.

Instead, one can construct such a lift without working modulo Q, in order
to preserve smallness of coefficients (up to some reasonable distortion). We also
note that such a lift should actually start from the co-different ideal R̃∨

d , so as
to match the Ring-LWE instances admitting worst-case hardness proofs [18], yet
a reduction (with some loss on the error parameter) to Ring-LWE without the
co-different was given in [33].

Because 1 − X and Φd(X) are not coprime over Z[X] (their gcd is d, not 1),
we do not have a CRT decomposition of Rd as R̃d × Z. Yet, those polynomials
are coprime over Q[X] which allows to write

Kd = K̃d × Q

where Kd = Q[X]/(Xd − 1) and K̃d = Q[X]/Φd(X).8 We write L the canonical
inclusion map L : K̃d → Kd, which is explicitly given by

L :
d−1∑

i=0

aiX
i �→

d−1∑

i=0

aiX
i − 1

d
(
d−1∑

i=0

ai)(
d−1∑

i=0

Xi).

Note that the above formula can be extended to a Q-linear map Kd → Kd,
viewing K̃d as a subspace of Kd according to the above isomorphism Kd =
K̃d × Q. This extension of L is the projection orthogonal to the all-1 vector in
coefficient representation. Unfortunately the image L(R̃d) is not included in Rd:
the projection does not maintain integrality of coefficients. Yet, one notes that
a small ideal I ⊂ R̃d does have an integer lift: namely, the ideal Ĩ = (1 − X)Rd

satisfies L(Ĩ) ⊂ Rd. Moreover, for a ∈ Ĩ, it holds that
∑

ai = 0, in particular L
preserves sizes of elements of Ĩ.

Also consider the lift L taken modulo Q (assuming Q is coprime to d), simply
replacing 1

d ∈ Q by the inverse of d in Z/QZ, denoted by LQ. Consider a Ring-
LWE sample as defined in [33]: (ã, b̃ = ãs̃ + ẽ) ∈ (R̃/QR̃)2 for small s̃, ẽ ∈ R.

8 While K̃d is a field, Kd is only a ring, but we keep this notation for coherence.

Large FHE Gates from Tensored Homomorphic Accumulator 243

We lift this sample to R/QR:

a = LQ(ã), b = LQ((1 − X)b̃). (11)

We define s = L((1 − X)s̃) and e = L((1 − X)s̃), and it holds that s =
LQ((1 − X)s̃) mod Q and e = LQ((1 − X)ẽ) mod Q since s and e are integral.
Therefore,

b = LQ((1 − X)ã · s̃ + (1 − X)ẽ)
= LQ(ã) · LQ((1 − X)s̃) + LQ((1 − X)ẽ)
= LQ(ã)s + e mod Q

= as + e mod Q

We also note that s, e are still small since the operator norm of 1 − X is less
than 2: these Circulant-LWE samples are useful.

It remains to explain what this transformation does to uniform samples
(ã, b̃) ∈ (R̃/QR̃)2. Assume that Q is coprime to d, it then holds that Q and
(1 − X) are coprimes over the integral ring R̃d. Therefore, the multiplication by
1 − X over (R̃/QR̃) is a bijection, so the sample (ã, (1 − X)b̃) ∈ (R̃/QR̃)2 is
also uniform in (R̃/QR̃)2. Finally, the lift LQ is injective, so the final sample
(a, b) ∈ (R/QR)2 is uniform over (LQ(R̃/QR̃))2. One easily characterizes the
image LQ(R̃/QR̃) of LQ as the set Sd,Q = {∑d−1

i=0 aiX
i | ∑ ai = 0 mod Q} of

elements of R/QR whose coefficients sums to 0 modulo Q.

Lemma 3 (Hardness of Circulant-LWE). Assume that d is prime, and
Q is coprime to d. If it is hard to distinguish samples (ãi, b̃i = ãis̃ + ẽi) ∈
(R̃/QR̃)2 from uniform where ẽi are independent random variables drawn from
a distribution ψ, then the samples (ai = LQ(ãi), bi = LQ((1 − X)b̃i) ∈ S2

d,Q ⊂
(R/QR)2 are also hard to distinguish from uniform samples in S2

d,Q.

E.2 Simpler Error Distribution in CLWE for Practice

In practice, most FHE schemes do not follow precisely the Ring-LWE prob-
lem definition admitting reduction to worst-case problem [18,34]. For example,
HElib [7] uses Ring-LWE with spherical errors in the coefficient embedding, and
very sparse ternary secrets, and ignoring the co-different ideal R∨. The TFHE
scheme [15] also relies on Ring-LWE with ternary secrets, which is not know to
reduce to the regular Ring-LWE. Cutting such corners appears quite crucial to
error growth management and therefore efficiency. We will follow this approach,
and define adjust the distributions as follows.

– we proceed to sample secrets and error isotropically in Sd,Q, while the above
reduction leads to errors with a distortion factor (1−X). This distortion seems
to be an artefact of the proof, as it breaks symmetries: one could choose a
different way of breaking those symmetries by replacing 1 − X by 1 − Xe for
any e coprime to d. Respecting the symmetries seems a better idea in the

244 G. Bonnoron et al.

light of recent analysis [32,36].
This variant could also be proved secure (with a loss of a constant factor
about

√
2 on the size of the error), simply by adding more noise to make it

spherical again, using the convolution lemma of [35], but this would drag us
away from the topic of this paper.

– we choose to use ternary secrets s, which, as in previous schemes leads to
serious performance improvements due to smaller error growth. It has recently
been showed that such choices make lattice attacks somewhat faster [31],
especially when s is very sparse: we will account for this refined analysis
when measuring the concrete security of our proposed parameters.

Sampling of a. We sample a uniform in Rd/(QRd) under the constraint a(1)
mod Q = 0 by choosing all the coefficients ai at random for i ≥ 1, and setting
a0 = −∑

i>0 ai mod Q.

Sampling of s. When d is prime, we sample a a ternary s of density δ = 2/3 by
choosing exactly �δd/2� coefficients set to 1 and �δd/2� coefficients set to −1.
This implies that s(1) = 0, and ‖s‖2 = 2�δd/2�. Indeed, we find it preferable to
fix its length to avoid sampling sparse keys that would be subtentially weaker.

Sampling of e. We wish to sample errors e with variance σ in a way that ensures
e(1) = 0. We set:

e =
σ2d/2∑

i=0

T ai − T bi ,

where the ai’s and bi’s’ are independant uniform exponents modulo d. One note
that this distribution is invariant by permutation over {1, T, . . . , T d−1}: we have
preserved the symmetries of the ring. Note that this procedure would get rather
slow for large σ, yet we won’t exceed σ ≤ 8 in our parameter choices.

Remark 6. The above procedure would not be adapted for composite degree d,
as more care is required to construct a lift as done in Sect. E.1. Yet, while we
will make use of circulant ring Rd with composite degree d = pq, we will never
directly construct ciphertexts over that ring. Indeed, the ciphertext in Rd will
be publicly constructed by tensoring two ciphertexts from Rp and Rq, and are
therefore no easier to decrypt than the original ciphertexts over Rp and Rq.

F Optimizations

In this section, we present some optimization of the scheme for practice. Our
implementation does include the optimizations from Sects. F.1, F.2 and F.3. We
left out the optimization from Sect. F.4, which requires substential modifications
to our code base.

Large FHE Gates from Tensored Homomorphic Accumulator 245

F.1 Accelerating ExtExpInner

Factoring Galois-KeySwitch Sequences. We note that it is possible to factor some
operations when chaining ExtExpMultAddα and ExtExpMultAddα′

, by applying
Galoisαβ′

rather than Galoisα followed by Galoisβ (together with the appropriate
Key Switches), cf. Fig. 2.

Furthermore, if y ∈ Z
�
d contains repeated values, it is possible to re-index

the inner product to make equal values contiguous, and skip useless Galois1

operations. Those tricks also decrease the final error E by constant factors.
Pushing this trick to its limits, if
 is large enough, one could re-index the

inner product so that the αβ′ all belong to a small9 subset Z
∗
d, allowing to

decrease the size of the key material. In combination with the following opti-
mization, this should lead to reduce the overall key-size by a significant factor.

Fig. 2. Optimized ExtExpInner (external inner product in exponent) overview

Decreasing LWE Dimension. In our theoretical scheme, the homomorphic inner
product in exponent operation is done over vectors of length
 = p + 1 where p
is the dimension of the secret in the LWE scheme.

In practice, we remark that this dimension is quite larger than needed for
security, given the amount of noise and the modulus pq of those ciphertexts.
We therefore proceed with an extra LWE key-switch just the combination of
the LWE ciphertexts. In practice it allows to decrease the dimension by a factor
between 2 and 3, which accelerates the ExtExpInner operations by the same fac-
tor. As a small added bonus, it also slightly decreases the error in the ciphertexts
outputted by this function.
9 Of size roughly d/� + 2 assuming the public vector y ∈ Z

�
d is uniformly random.

246 G. Bonnoron et al.

F.2 Heuristic Error Propagation

Our theoretical analysis of the scheme used sub-gaussian analysis [21] to provide
bounds on error propagation that are already significantly better than worst-
case bounds. Yet those bounds are asymptotic, without explicit constants, and
for some operations may not be perfectly tight. As in previous work [12,15],
when it comes to choose practical parameters, we rely on a tighter but heuristic
analysis of error propagation, essentially treating all random variables as inde-
pendent gaussians. More precisely, considering that the critical random variable
for correctness is obtained as the sum of many random variables, we only com-
pute its variance as the sum of the variance of its terms, and treat this final result
as Gaussian in accordance with the central limit theorem (which is formally not
applicable due to potential dependencies).

Linear Operations. For the linear operations Add, Mult and Galois operations,
we use the same Eqs. (3), (8) as in our sub-gaussian analysis, since it is tight in
this case, but apply it to the standard deviation of each variable rather than the
sub-gaussianity parameter.

Modulus Switching. For our analysis, we needed to randomize the rounding
step to ensure sub-gaussianity without resorting to the randomness of the input
ciphertext. Instead, in practice we use deterministic rounding and account for the
randomness of the input ciphertext. Treating the rounding errors as independent
uniform random variables in the interval [−1/2, 1/2] allows to heuristically improve
the error bound (4) down to

ModSwitch : RdLWEt|Q
s (m; E) → RdLWEt|Q′

s

(

m;

√
Q′2

Q2
E2 +

‖s‖2
12

)

(12)

Key Switching, External Multiplication and Inner Product in the Exponent. We
first note that, according to Remark 2, the bounds given by (5) and (6) must
be amended to account for the use of a Gadget matrix in base B rather than
in base 2. Additionally, we note that this bound accounts for the worst output
of G−1. Instead, we treat the output of G−1 as a uniform random vectors with
coordinates uniform in the integer interval IB = {− ⌊

B−1
2

⌋
, . . . ,

⌈
B−1
2

⌉}. Each
such coordinate has variance VB = 1

B

∑
i∈IB

i2 ≈ B2/12.
For our heuristic analysis, we therefore amend (5) to

KeySwitch : RdLWEt|Q
s (m; E) → RdLWE

t|Q
s′

(
m;

√
E2 + σ2dnKVB

)
. (13)

Similarly, (6) is heuristically changed to

ExtMult : RdLWEt|Q
s (Tm; E) × RdGSW

t|Q
s (Tm′

; E′)

→ RdLWEt|Q
s

(
Tm+m′

;
√

E2 + E′2dKVB

)
. (14)

Large FHE Gates from Tensored Homomorphic Accumulator 247

Note that assuming independence decreased the factor d2 to a factor d. Sim-
ilarly, a factor 4
2 can be decreased to 2
, ignoring the potential dependences
discussed in Remark 5. The trick described in Sect. F.1 further decreases this 2

factor to
.

In conclusion, the accumulated error in the error propagation of the whole
ExtExpInner operation (10) is now heuristically given by:

ExtExpInner :
�⊕

i=1

RdGSW
t|Q
s (T xi ; E′) → RdLWEt|Q

s

(
T 〈x,y〉;

√
dK�V (σ2 + E′2)

)
.

(15)

Tensoring. Looking only at the variance of individual coefficient, one may save
the factor

√
2λ in the error propagation of ExpCRT, namely, (9) becomes:

ExpCRT : RpLWEt|Q′
sp

(Xmp ; Ep) × RqLWEt|Q′
sq

(Y mq ; Eq)

→ RpqLWEt|Q′
s

(
Zm;

√
E2

p + E2
q + t2E2

pE2
q

)
. (16)

We could successfully confirm all these heuristic equations by measuring the
actual errors in our implementation.

F.3 Amortising FunExpExtract

The costly steps of the FunExpExtract algorithm consist in computing

c(pq) �→ Tr∗
Rpq/Rp

(f · G−T (c(pq)) · S)

where f represent the function F to extract, S is a Key-Switching Key (See Fig. 1
and Algorithm 7). We note here that the most expensive part of the computation
G−T (c(pq)) · S can be re-used for up to several different f ’s.

This amortization allows to extend our technique so that not only the input
of the function is large, but also its output.

F.4 Accelerating FunExpExtract

As mentioned above, the practical cost of the FunExpExtract step as described
in Sect. 4 is prohibitive. The costly steps consist in the computation of

Tr∗
Rpq/Rp

(f · G−T (x ⊗ y) · S)

where f represent the function F to extract, x, y are the ciphertexts outputted by
ExtExpInner, and S is a Key-Switching Key. Naively, even using precomputations
of f and S, this operation would require 4K + 1 FFT’s in dimension pq: one
forward FFT for each component of G−1(c), and one FFT backward.10 We here
show how to get completly rid of those large FFT’s, requiring only small FFT’s
(dimension p and q) and a few additions of vectors of dimension pq.
10 This is assuming the FFT can handle numbers of bit-size Θ(log(n)). In practice more

FFT at double precision will be needed to avoid numerical errors.

248 G. Bonnoron et al.

FFT of Pure Tensors. To tackle these costly FFT operations, one should first
note that FFT and ⊗ can be commuted. Indeed, one may first rewrite x ⊗ y =
(x⊗1)·(1⊗y), and note that the FFT coefficients of x⊗1 ∈ Rpq are easily derived
from the FFT coefficients of x ∈ Rp by simply repeating the coefficients q times
(and similarly for 1⊗ y). This remark allows us to decrease the naive cost of the
FFT operation over pure tensors from Θ(pq log pq) to Θ(pq + p log p + q log q).

The CRT-Gadget. To provide an asymptotic improvement for gadget inversion
of pure tensors, we need to rely on a different Gadget matrix construction, based
on the Chinese-Remainder Theorem. We describe it over the integers Z, yet it
naturally extends coefficient-wise to any ring Rd.

Consider a modulus Q such that we can write Q =
∏K

i=1 qi where the qi are
small coprime integers. Consider the CRT isomorphism μ : r ∈ ZQ �→ (r mod
q1, . . . , r mod qK), and let g ∈ Z

K
Q be the vector of the Bezout coefficients, i.e.,

the coefficients such that μ−1(x) = xTg mod Q. This gadget also permits to
efficiently find small pre-images. Indeed, define: g−T (x) = (x1, . . . xK) ∈ Z

K

where xi is the representative of x mod qi in the range (−qi/2, qi/2].

Gadget Inversion of Pure Tensors (in FFT Format). This new gadget has the
advantage that gadget inversion is somewhat homomorphic. Let us write � for
the coefficient-wise product of vectors. While in general we have g−T (xy) �=
g−T (x) � g−T (y), it nevertheless holds that

(g−T (x) � g−T (y))g = xy mod Q.

It also hold that g−T (x)�g−T (y) is rather small, namely, its i-th coefficient has
absolute value less than q2i /4. This will allow us, at the cost of increased error
propagation, to swap the gadget-inversion and the tensoring.

More precisely, we define

g−T
⊗ (x, y) = (g−T (x)i ⊗ g−T (y)i)i=1...k,

and note that it is a proper gadget inversion: g−T
⊗ (x, y)g = x ⊗ y mod Q, and

the coefficients of g−T
⊗ (x, y)i are less than q2i /4.

For inputs (x, y) ∈ Rp × Rq One may compute g−T
⊗ (x, y) in FFT format in

time Θ(Kpq+Kp log p+Kq log q), that is in time linear in the size of the output.
Indeed, one may compute each (g−T (x)i,g−T (y)i), convert them to FFT format,
and then only perform the tensoring step using the remark above. In comparison,
the naive algorithm would have cost Θ(Kpq log pq): asymptotically, our new
trick improves the complexity by a logarithmic factor Θ(log pq). The impact in
practice may quite substantial also considering the large hidden constants in
FFT operations.

Tracing Down in the FFT Domain. At last, we note that the trace operation
Tr∗

Rpq/Rp
can also be performed directly in the FFT domain in time Θ(pq) by

summing the appropriate FFT coefficients. The allows to replace the final large
backward FFT (in dimension pq) by a cheap backward FFT in dimension p. The
cost of this step decreases form Θ(pq log pq) down to Θ(pq + p log p).

Large FHE Gates from Tensored Homomorphic Accumulator 249

References

1. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher,
M. (ed.) 41st ACM STOC, Bethesda, MD, USA, 31 May–2 June 2009, pp. 169–178.
ACM Press (2009)

2. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009). crypto.stanford.edu/craig

3. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13013-7 25

4. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: Ostrovsky, R. (ed.) 52nd FOCS, Palm Springs, CA, USA,
22–25 October 2011, pp. 97–106. IEEE Computer Society Press (2011)

5. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29011-4 28

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Goldwasser, S. (ed.) ITCS 2012, Cambridge,
MA, USA, 8–10 January 2012, pp. 309–325. ACM (2012)

7. Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 25

8. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 75–92. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

9. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. In: 18th ACM STOC, Berkeley, CA, USA,
28–30 May 1986, pp. 1–5. ACM Press (1986)

10. Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In: Naor,
M. (ed.) ITCS 2014, Princeton, NJ, USA, 12–14 January 2014, pp. 1–12. ACM
(2014)

11. Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 297–
314. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 17

12. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I.
LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 24

13. Biasse, J.-F., Ruiz, L.: FHEW with efficient multibit bootstrapping. In: Lauter, K.,
Rodŕıguez-Henŕıquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 119–135.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22174-8 7

14. Gama, N., Izabachène, M., Nguyen, P.Q., Xie, X.: Structural lattice reduction: gen-
eralized worst-case to average-case reductions and homomorphic cryptosystems. In:
Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp.
528–558. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-
5 19

https://crypto.stanford.edu/craig/
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-13013-7_25
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-662-46800-5_25
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-662-44371-2_17
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-319-22174-8_7
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1007/978-3-662-49896-5_19

250 G. Bonnoron et al.

15. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 1

16. Riordan, J., Shannon, C.E.: The number of two-terminal series-parallel networks.
Stud. Appl. Math. 21(1–4), 83–93 (1942)

17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

18. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

19. Halevi, S., Halevi, T., Shoup, V., Stephens-Davidowitz, N.: Implementing BP-
obfuscation using graph-induced encoding. Cryptology ePrint Archive, Report
2017/104 (2017). http://eprint.iacr.org/2017/104

20. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Improving TFHE: faster
packed homomorphic operations and efficient circuit bootstrapping. Cryptology
ePrint Archive, Report 2017/430 (2017). http://eprint.iacr.org/2017/430

21. Vershynin, R.: Introduction to the non-asymptotic analysis of random matrices.
In: Eldar, Y., Kutyniok, G. (eds.) Compressed Sensing, Theory and Applications,
pp. 210–268. Cambridge University Press, Cambridge (2012)

22. Rivasplata, O.: Subgaussian Random Variables: An Expository Note (2012).
https://sites.ualberta.ca/∼omarr/publications/subgaussians.pdf

23. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

24. Blum, A., Furst, M., Kearns, M., Lipton, R.J.: Cryptographic primitives based on
hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
278–291. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2 24

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, Baltimore, MA, USA,
22–24 May 2005, pp. 84–93. ACM Press (2005)

26. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

27. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homo-
morphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol.
7485, pp. 19–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32928-9 2

28. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-style homo-
morphic encryption. Cryptology ePrint Archive, Report 2012/240 (2012). http://
eprint.iacr.org/2012/240

29. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc. IEEE
93(2), 216–231 (2005). Special issue on “Program Generation, Optimization, and
Platform Adaptation”

30. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Cryptology ePrint Archive, Report 2015/046 (2015). http://eprint.iacr.org/
2015/046

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-3-642-13190-5_1
http://eprint.iacr.org/2017/104
http://eprint.iacr.org/2017/430
https://sites.ualberta.ca/~omarr/publications/subgaussians.pdf
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-48329-2_24
https://doi.org/10.1007/978-3-642-03356-8_35
https://doi.org/10.1007/978-3-642-32928-9_2
https://doi.org/10.1007/978-3-642-32928-9_2
http://eprint.iacr.org/2012/240
http://eprint.iacr.org/2012/240
http://eprint.iacr.org/2015/046
http://eprint.iacr.org/2015/046

Large FHE Gates from Tensored Homomorphic Accumulator 251

31. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017, Part II. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-56614-6 4

32. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-LWE
revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part I. LNCS,
vol. 9665, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49890-3 6

33. Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M., Buchmann,
J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 3

34. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

35. Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

36. Peikert, C.: How (not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44618-9 22

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-662-49890-3_6
https://doi.org/10.1007/978-3-642-30057-8_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22

Two-Face: New Public Key Multivariate
Schemes

Gilles Macario-Rat1(B) and Jacques Patarin2

1 Orange, Châtillon, France
gilles.macariorat@orange.com

2 Université Versailles Saint-Quentin, Versailles, France
jpatarin@club-internet.fr

Abstract. We present here new multivariate schemes that can be seen
as HFE generalization having a property called ‘Two-Face’. Particularly,
we present five such families of algorithms named ‘Dob’, ‘Simple Pat’,
‘General Pat’, ‘Mac’, and ‘Super Two-Face’. These families have con-
nections between them, some of them are refinements or generalizations
of others. Notably, some of these schemes can be used for public key
encryption, and some for public key signature. We introduce also new
multivariate quadratic permutations that may have interest beyond cryp-
tography.

Keywords: Multivariate cryptography · HFE generalization
New multivariate quadratic permutations
(=new DO permutation polynomials)

1 Introduction, the Two-Face Technique

In the search for post-quantum cryptography, multivariate schemes are still inter-
esting options. Plenty of them have been proposed but unfortunately most of
them were cryptographically broken, such as the Matsumoto Imai scheme C∗ or
its variant SFLASH [1–3]. However, some of these schemes are still valid such
as UOV or HFE with well chosen perturbations [4,5]. At present, it seems more
difficult to build secure multivariate encryption scheme than multivariate signa-
ture schemes. In this paper, we present new families of public key multivariate
schemes for encryption or signature, inspired by HFE.

We first recall here a simple description of the HFE scheme. See [6]. As gener-
ally in the multivariate schemes, the context is a finite field Fq (the ground field)
and one of its extensions Fqn of degree n. A natural isomorphism between F

n
q

(or more precisely Fq[x]/g(x) for any irreducible polynomial g over Fq of degree
n, see [7]) and Fqn allows to consider simultaneously univariate and multivariate
versions of polynomials. The starting point of the HFE scheme is a univariate
polynomial P (a) over Fqn , having the two following main properties.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 252–265, 2018.
https://doi.org/10.1007/978-3-319-89339-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_14&domain=pdf
http://orcid.org/0000-0002-6156-8295

Two-Face 253

(1) Its multivariate version is a set of quadratic multivariate polynomials. This
means that its univariate version has the following form.

P (a) =
∑

i,j

αi,ja
qi+qj +

∑

i

βia
qi + γ.

Such polynomials are sometimes called (extended) Dembowski-Ostrom poly-
nomials [8,9]. In this paper we will call them simply ‘DO’, or will refer to
their multivariate counterparts as ‘quadratic multivariate’ polynomials.

(2) The degree of P (a) in a is small.

From (1), with the help of two more secret affine polynomials S and T , the
product S ◦P ◦T is also DO, so it can be publicly output as a set of multivariate
quadratic equations. Moreover, some “perturbations” can be applied to this set
of equations, in order to increase the security of the HFE obtained. For example,
some of the n equations can be kept secret, this is called the perturbation "−"
(minus). From (2), the solutions in a of the equations P (a) = b can be efficiently
computed.

The so called Two-Face technique we present now, can be seen as a gener-
alization of HFE in the sense that the two previously mentioned properties (1)
and (2) are held by two different but related polynomials. More generally, we are
interested in cases where it is possible to find two equivalent faces of polynomial
equations, having the prescribed properties, thereafter described.

Face (1) E1(a) = b where E1 is DO. Its role is to allow two additional permuta-
tions S and T to hide the inner structure of E1 into a set of quadratic polyno-
mial equations, multivariate version the composition product S◦E1◦T (x) = y.
Unlike in HFE, the degree of E1 is high.

Face (2) E2(a, b) = 0. Its role is to allow the extraction of solutions in a, since
its degree in a is low, even though its degree in b may be high. Conversely,
Face 2 is not DO in a and cannot be used to output multivariate quadratic
equations.

We will explain later on how E1 and E2 are related.
In this article, we will present:

– How to design a multivariate scheme named ‘Dob’ from the Dobbertin poly-
nomial that resist as far as we know, all known attacks by introducing some
“perturbations” in Sect. 2.

– More general “Two-Face” schemes where we use polynomials that are not
necessarily permutations, named ‘Simple Pat’ and ‘General Pat’, in Sects. 3
and 4.

– Two-Face schemes where we use precisely permutation polynomials, named
‘Mac’, in Sect. 5.

– Generalization of the ‘Two-Face’ concept, in Sect. 6.

254 G. Macario-Rat and J. Patarin

2 The “Dob” Schemes

2.1 Dobbertin Permutation

This is the original family from which we imagined the Two-face properties.
Dobbertin in [10] proved that P (x) = x2m+1+x3+x is a permutation polynomial
over F

n
2 for every odd n, where n = 2m − 1. The “Two-face” name comes from

the fact that from the first equation

E1(x) = x2m+1 + x3 + x = y, (1)

we can get a second one:

E2(x, y) = x9 + x6y + x5 + x4y + x3(y2m + y2) + xy2 + y3 = 0. (2)

A proof that we can get (2) from (1) can be obtained by hand easily. Introduce
an intermediate variable z = x2m . Use the fact that since n = 2m − 1, we
get z2

m

= x22m = x2 (implicitly, polynomial computations over Fqn are done
modulo xqn −x). Then eliminate z between the two equations y = xz+x3+x and
y2m = x2z+z3+z. This gives (x4+x2)(x3+x+y)+(x3+x+y)3+x3y2m = 0 and
then (2). We see from (1) that we have a DO polynomial in x. However, its degree
in x is high, which makes difficult to solve the equation in x directly. Nevertheless,
from (2) it is possible to compute x knowing y, by solving a polynomial equation
of degree 9 only.

2.2 Cryptanalysis of the ‘nude Dob’

If we used directly (1) into a ‘nude Dob’ scheme i.e. without any perturbation,
we would get a weak scheme, totally broken by Gröbner basis computation. More
precisely the degree of regularity obtained in a Gröbner basis attack is always
only 3 in the experiments we conducted. (The degree of regularity is the highest
degree that must be used in order to the Gröbner basis computation to succeed).
The reason is most probably related to the fact that from E1(x) = y, one may
derive equations of the kind E(x, y) = 0, linear in x, and of small degree in y.
We have looked for equations of the kind

∑
αixi +

∑
βiyi +

∑
γi,jxiyj = 0 that

may be satisfied by the multivariate version of x and y, that is to say the kind of
equations ‘à la Patarin’ (see [11]) used for the cryptanalysis of the Matsumoto-
Imai C∗ scheme. We founded no such equations, nor equations in degree 2 in y,
valid for the Dobbertin permutations (more precisely for n ≥ 11, in fact some of
them exist for n ≤ 10). However, it is more likely that due to the simple form of
the Dobbertin permutation, such equations with higher degree in y may exist. In
practice, such equations are sufficient to retrieve x from y, since they are linear
in x, and this explains why the ‘Dob’ scheme without perturbation is weak.

However, with adequate perturbations the modified scheme resists so far all
the attacks we know. Precisely, we recommend the perturbations +, +©, −, v©,
described hereafter. They lead to what we call the “Dob” schemes.

Two-Face 255

2.3 Need for Perturbations

HFE is a well studied system. We will call ‘nude HFE’ the scheme with no per-
turbations. Today’s best attacks on ‘nude HFE’ are quasi-polynomial. However,
with some well chosen modifications, HFE seems much more strong. Similarly
for Two-Face that is inspired from HFE, it seems reasonable to recommend a
choice of perturbations that aim to thwart known attacks. Here are the main
ones we would like to recommend.

"+©", circle plus. Let k be a small integer. Let v1, . . . , vk be k secret linear
combinations of x1, . . . , xn. This perturbation +© adds n secret quadratic
combinations of v1, . . . , vk to each variable y1, . . . , yn. This can be removed
when the secret key is known, by an exhaustive search on v1, . . . , vk, at a cost
in qk.

"+", plus. Let k be a small integer. Let q1, . . . , qk be k secret quadratic combi-
nations of x1, . . . , xn. This perturbation + adds n secret linear combinations
of q1, . . . , qk to each variable y1, . . . , yn. This can be removed when the secret
key is known by an exhaustive search on q1, . . . , qk, at a cost in qk.

"−", minus. This is simply the forgetting operator that removes a small
amount of k equations. This perturbation cost almost nothing in signature,
but it has a cost in qk in encryption, this is why it is more often used in
signature.

" v©", circle v. Let k be a small integer. Let v1, . . . , vk be k secret linear com-
binations of x1, . . . , xn. This perturbation v© turns a multiplicative constant
of the variable x in a vector of n random secret linear combinations of the k
variables v1, . . . , vk. This can be removed when the secret key is known, by
an exhaustive search on v1, . . . , vk, at a cost in qk.

Since the introduction of perturbations is critical for the security, these per-
turbations must be considered as an essential part of the design of the scheme.

2.4 “Dob” Encryption Schemes

For the encryption schemes, we suggest the perturbations + and +©. Perturba-
tions + and +© combined thwart the Minrank attack and attacks against the
kernels of the differential equations. See [12,13].

Formally the public polynomial is Pub = S ◦ P ◦ T + H ◦ R + U ◦ L, where

– R is a set of r random quadratic polynomials in n variables;
– H is a set of n random linear polynomials in r variables;
– L is a set of s random linear polynomials in n variables;
– U is a set of n random quadratic polynomials in s variables.

For encryption of a message x of n bits, compute and publish y = Pub(x). For
decryption of a message y of n bits, guess by exhaustive search two vectors p1
and p2 of respectively r and s bits. Solve in x the equation S ◦ P ◦ T (x) =
y − H(p1) − U(p2). Stop when R(x) = p1 and L(x) = p2.

256 G. Macario-Rat and J. Patarin

Example of parameters. For example, the parameters n = 129, r = s = 6
give a very efficient scheme with a security level of 280. Decryption costs 212 root
computations of a 9 degree polynomial. At present we do not know any specific
attack that could defeat it.

2.5 “Dob” Signature Schemes

For the signature schemes, we suggest the perturbation −. Formally the public
polynomial is Pub = (S ◦ P ◦ T)n−r, where (.)n−r are the first n − r equations.
For the signature of a message y of n − r bits, expand the message to n bits in
y∗, solve in x the equation S ◦ P ◦ T (x) = y∗, then publish the message and its
signature (y, x). For the verification of a signed message (y, x) of (n − r, n) bits,
compute and check if y = Pub(x).

We mention that the devastating attack based on a property of the differen-
tial of the central polynomial of SFLASH (see [14]) does not apply in our case.
Indeed, since the Dobertin polynomial holds 2 quadratic monomials instead of
one in the case of SFLASH, then the kernel of the public key has no exploitable
expression. For the same reason, the attack based on another property of the
differential (searching for multiplications) (see [15]) is also ineffective in the Dob-
bertin case.

Example of parameters. The example of parameters n = 257, r = 129 seems
to be a possible implementation for a security level of 2128, and again we do not
know any specific attack that could apply.

Remark 1. In this section, we could have considered the polynomial E1(x) =
x2m+1 + x3 + ax with a �= 1, and then used the perturbation v© on a. However
in this case, E1 is generally not a permutation any more. We have preferred for
‘Dob’ to use other perturbations and keep the permutation property.

3 The (Simple) Pat Polynomial Family

This is the generic family that can be obtained from any suitable polynomial
P using the Two-Face technique and generalizing the ‘Dob’ family. In this case,
the degree n is odd, and as for the ‘Dob’ family and we note n = 2m − 1. The
polynomial P has the particular following form.

E1(x) = P (x) = xqm+1 +
i≤d∑

i=0, i=qj , i=qj+qk

αix
i. (1)

In other words, we have P (x) = xqm+1 + Q(x), where Q is DO ans its degree
is bounded by a small value d. Using the same remark as for the ‘Dob’ family,
we can derive also a second equation by eliminating an intermediate variable
z = xqm between y = P (x) and yqm = P (x)q

m

. The elimination gives

E2(x, y) = xd+q−1(y − Q(x)) +
d∑

i=0

αqm

i xd−i(y − Q(x))i − yqmxd = 0. (2)

Two-Face 257

We can also easily see that the degree in x of this equation is bounded by
max(2d + q − 1, d2).

From this polynomial P of the simple ‘Pat’ family, we can obviously define
in the same way a Two-Face scheme, as with the ‘Dob’ family, using also the
same kind of perturbations. However, since the polynomials of the ‘Pat’ family
are not permutations in general, performance of the secret key is slowed since
computation of roots of a polynomial may retrieve several values, up to the
degree of the polynomial in theory, a small amount in practise, and so stays
attractive. From a security point of view, none of the known attacks apply to
the ‘Pat’ Two-Face schemes, nor the ‘Dob’ family, which is a special case of the
‘Pat’ family, however the bijective property of ‘Dob’ may become the target of
future attacks. Therefore, it is good to have some options as backup.

Here are some examples.

Example 1.

q = 2, d = 5, B(x, z) = xz + x5 + x3

E1(x) = B(x, xqm) = x2m+1 + x5 + x3

E2(x, y) = x25 + x23 + x20y + x13 + x9 + x8y + x7y2 + x6y + x5y4 + x5y2

+ x5y2m + x3y4 + x2y3 + y5

Example 2.

q = 2, d = 6, B(x, z) = xz + x6 + x5

E1(x) = B(x, xqm) = x2m+1 + x6 + x5

E2(x, y) = x36 + x34 + x32 + x31 + x27 + x26 + x25y + x24y2 + x21y + x20y2

+ x13 + x12y4 + x12 + x10y4 + x7y4 + x7y + x6y4 + x6y2m + xy5 + y6

The examples above illustrate how E1 and E2 seem very different, yet related,
since precisely solutions in x of E1(x) = y are by design solutions of E2(x, y) = 0.
The equation E2(x, y) = 0 may have more solutions in x than E1(x) = y but they
can be easily sorted out by simple test. The polynomial E2 has many monomials
with various degrees in x, and its multivariate counterpart has therefore a high
degree. It is then reasonable to think that E2 is useless for an attacker, yet
essential to invert the scheme.

Experimental Results. We did some experiments, see Table 1: ‘d2’ is the
degree in x of E2, ‘dreg’ is the degree of regularity, ‘deg’ is the degree of the
HFE polynomial. It seems that random ‘Simple Pat’ schemes with parameter
d have roughly similar regularity degree as random HFE with parameter d2.
However, more simulations might be required to compare more precisely the two
schemes. Moreover we shall also investigate in the future which factors should
be tuned to increase the degree of regularity.

258 G. Macario-Rat and J. Patarin

Table 1. Comparison ‘Simple Pat’ vs HFE

4 The (General) Pat Polynomial Families

We generalize one step ahead the previous definition by selecting a polynomial
B in two variables over Fqn , say x and z. We choose B to have the special form:

B(x, z) =
i≤d∑

i=0, i=qj , i=qj+qk

αix
i +

i≤d∑

i=qj , i=qj+qk

βiz
i +

i+j≤d∑

i=qk, j=ql

γi,jx
izj

That is, we require that B has an extended ‘Dembowski-Ostrom’ form in two
variables, and its total degree is bounded by d. Again we choose an odd degree n
and set m such that n = 2m−1. Then we define our Face (1) with the polynomial
E1 given by:

E1(x) = B(x, xqm). (1)

Then E1 is by design DO. The special form of B has been chosen in such a
way that we can also mimic the idea of the ‘Dob’ and simple ‘Pat’ family;
that is introduce on purpose an intermediate variable z = xqm . Therefore we
have y = E1(x) = B(x, z). This gives also yqm = B(x, z)q

m

. In this latter, we
can replace each occurrence of xqm by z, and each occurrence of zq

m

by xq.
Formally, this is equivalent to replace z by xqm and x by zq

m−1
. Therefore we

get yqm = B(zq
m−1

, xqm)q
m

. Now, the same idea to get a second equation is to
eliminate z between those two equations. It becomes difficult to get the result by
hand, but the classical tool called ‘Resultant’ or ‘Eliminant’ (see [16,17]) does
perfectly the job on a computer (see ‘Resultant’ on ‘Magma’, [18]). We use the
notation Res for ‘Resultant’. So our second equation is given by:

E2(x, y) = Resz(B(x, z) − y,B(zq
m−1

, xqm)q
m − yqm) = 0. (2)

One of the interests of (2) should be that its degree in x is small, otherwise
it would be useless. It is possible to estimate this degree. Let us consider one
generic monomial xizj of B(x, z), then in B′ = B(zq

m−1
, xqm)q

m

, it becomes
xqjzi. Since the degree of B is bounded by d, then the degree of B′ is bounded
by qd. The theory of resultants gives us that the degree in x of (2), that is
Resz(B(x, z) − y,B′(x, y) − yqm), is bounded by qd2.

Two-Face 259

Example 1.

q = 2 d = 3 n = 2m − 1

z = x2m t = y2m

E1(x) = B(x, z) = x3 + xz + z3

E2(x, y) = x18 + x15 + x12y + x12t + x11 + x9 + x7 + x6y2 + x6t2+

x6t + x5t + x4y + x3y2 + x3t2 + x3t + y3 + y2t + yt2 + t3

Example 2.

q = 2 d = 5 n = 2m − 1

z = x2m t = y2m

E1(x) = B(x, z) = x4z + xz + x + z5

E2(x, y) = x50 + x40t + x35 + x34y + x34 + x33 + x32y + x31 + x30y + x29+

x28y + x28 + x27y + x27 + x26y + x26 + x25y + x25t + x25+

x24yt + x24y + x24t + x23t + x23 + x22yt + x22y + x19y+

x18y2 + x18y + x18 + x17y + x17t + x17 + x16yt + x16y+

x15t2 + x15t + x15 + x14yt2 + x14yt + x14y + x14 + x13y+

x13t2 + x13 + x12yt2 + x11y2 + x11y + x11t2 + x11t+

x10y4 + x10y2 + x10yt2 + x10yt + x10y + x10t4 + x10t+

x9t2 + x8y2t + x8yt2 + x8yt + x8y + x8t2 + x7y2+

x7yt2 + x6t2 + x6t + x5yt2 + x5t3 + x4y2t + x4yt3+

x4t + x3t3 + x3 + x2yt3 + x2y + xt + x + y + t5

4.1 Scheme Construction

We describe how to construct a Two-Face cryptosystem, using the special fam-
ilies we have just introduced. The first step is the selection of the following
parameters: the values of q, n, the polynomial B and two secret affine permuta-
tions of Fn

q , S and T . For the perturbations, we can use "+", "+©", and " v©" as
defined above. Then we have to make public the coordinates of P = S ◦ E1 ◦ T
over Fq as quadratic multivariate polynomials. Then as usual, the public key
can be used either, given x, to compute y such that P (x) = y, or given (x, y),
to check that P (x) = y. The secret key is used, given y, to compute x such that
P (x) = y. To do so, one first uses S to translate the problem into the hidden
space, then uses E2 instead of E1 to find a solution, then uses T to translate the
solution back into the public space. One may argue here that E2 may have sev-
eral solutions. It is sufficient to consider that the number of solutions is bounded
and in practice it is low, and therefore it is possible to enumerate them all and
select the suitable one.

260 G. Macario-Rat and J. Patarin

4.2 Practical Experiments

See Table 2.

Table 2. Comparison ‘General Pat’ vs HFE

5 The Mac Polynomial Family

This is the generalization of the Dobbertin family, and also the specialization of
the general ‘Pat’ families, to special families for which the corresponding poly-
nomial P (x) is specially a permutation polynomial. For these families, we found
that only q = 2p is possible. Indeed, we point out here that such permutation
polynomials families are very sparse and the ones we give here were found by
exhaustive search. Here are four examples of new quadratic permutations. This
is an interesting part of this paper, since new quadratic permutations are difficult
to find and may have interest beyond cryptography.

Example 1.

q = 2 d = 4 n = 2m − 1, n �≡ 0 (mod 3), and n �≡ 0 (mod 5)

z = x2m t = y2m

E1(x) = B(x, z) = x2z2 + x2z + xz

E2(x, y) = x4y2 + x4y + x4t + x3y + x2t + xy + xt + y2 + t2 + t

Example 2.

q = 2 d = 6 n = 2m − 1, n �≡ 0 (mod 7)

z = x2m t = y2m

E1(x) = B(x, z) = x4z2 + x2z + xz

E2(x, y) = x8y + x8t2 + x8t + x7t + x6y + x6t + x5y + x4y + x3y2+

x3y + x2y2 + x2y + xy + y4 + y2 + t

Two-Face 261

Example 3.

q = 2 d = 8 n = 2m − 1, n �≡ 0 (mod 15)

z = x2m t = y2m

E1(x) = B(x, z) = x4z4 + x2z + xz

E2(x, y) = x16y4 + x16y + x16t + x15y + x14y2 + x14y + x13y + x12y2+

x12y + x11t + x10y2 + x10y + x10t + x9y2 + x9t + x8y+

x8t + x7y + x6t2 + x6t + x4y + x4t2 + x4t + x3t + x2y+

x2t2 + x2t + xy + xt2 + y2 + t4 + t

Example 4.

q = 4 d = 5 n = 2m − 1, n �≡ 0 (mod 3)

z = x2m t = y2m

f = generator of F4

E1(x) = B(x, z) = fx5 + x4z + xz4 + f2z5

E2(x, y) = x100 + f2x97 + x80y + fx80t + fx76 + x73 + f2x68y+

x68t + fx60yt + x57yt + f2x54yt + f2x52 + fx51yt + fx49

+ x48yt + f2x45yt + fx42yt + fx40y2t + f2x40yt2+

x39yt + f2x36yt + f2x34y2t + x34yt2 + fx33yt+

f2x32y + x32t + x30yt + x28 + f2x27yt + f2x25+

fx24yt + x21yt + x20y4 + fx20y3t + f2x20y2t2+

x20yt3 + fx20y + fx20t4 + f2x20t + f2x18yt + f2x17y4+

x17y3t + fx17y2t2 + f2x17yt3 + x17t4 + f2x16y2t+

x16yt2 + fx15yt + x10y2t + fx10yt2 + f2x8y4+

x8y3t + fx8y2t2 + f2x8yt3 + x8t4 + fx5y4+

f2x5y3t + x5y2t2 + fx5yt3 + f2x5t4 + y5 + fy4t+

fyt4 + ft5

Remark 1. As for the proven case of Dobbertin’s polynomial family, in the Mac
cases (permutation polynomials), the two faces are equivalent, that is given y,
E1(x) = y and E2(x, y) = 0 have exactly the same solutions in x. This property
was at least observed for the four previous example. A proper generalization of
this result is beyond this article.

Remark 2. Example 3 presents a family of DO permutation polynomials for
q = 4. This opens the possibility of finding other families of DO permutation
polynomials over Fq for q = 2p. This is by sure of cryptographic interest, since
bigger q could lead to smaller public keys, and of mathematical interest as well.

262 G. Macario-Rat and J. Patarin

6 Other Generalizations

6.1 Three or a Few More Blocks, ‘Super Two-Face’

Taking back the idea of the ‘Pat’ schemes, let consider that the variable x is
‘duplicated’ more than twice, a small number of times, three times for instance.
We then consider B(x, z1, z2) a DO polynomial of small degree, in 3 variables.
We can then define E1(x) = B(x, xqm , xq2m). Let suppose that n = 3m − 1. We
have then xqm ◦xqm ◦xqm = xq3m = xq. Therefore, by letting z1 = xqm , z2 = zq

m

1 ,
we have also xq = zq

m

2 . Then by eliminating z1 and z2 in the following system,

B(x, z1, z2) = y

B(zq
2m−1

1 , zq
2m−1

2 , xq2m)q
m

= yqm

B(zq
m−1

2 , xqm , zq
m

1)q
2m

= yq2m

we get similarly E2(x, y) = 0. We call this scheme ‘Super Two-Face’ as it shows
that it can expand the family very largely. By this mean, we also discovered new
DO permutation polynomials. Experiments are still undergoing.

6.2 More Blocks

Ultimately, by using a quadratic polynomial B(x, z1, . . . , zn−1), and the implicit
equations z1 = xq, z2 = zq1 , . . . , zn−1 = zqn−2, x = zqn−1, one can define similarly
E1(x) = B(x, xq, xq2 , . . . , xqn−1

). An open problem is to find possible values of
B such that finding E2 is easy.

7 Conclusion

HFE [6] is one of the main multivariate schemes existing nowadays. In the state
of the art of cryptanalysis, [19–21] ‘nude’ HFE (i.e. without perturbation) has
a “quasi-polynomial” attack. With addition of well chosen perturbations, HFE
seems very efficient (mostly in signature scheme), and no realistic attacks are
known. In this article, we have largely widen the family of public-key schemes
that can be created from multivariate polynomials close to HFE. For this we
have introduced the ‘Two-Face’ concept, that is, we have split the equation of
HFE, into two different but related ones, with separated roles, equations (1)
and (2) in this article. From a cryptographic point of view, this is maybe the
most important point in this article. This enabled us to design many variants
(‘Dob’, ‘Simple Pat’, ‘General Pat’, ‘Mac’, ‘Super Two-Face’...). We have then
tested attacks by Gröbner basis computation on these variants. Unfortunately,
as for HFE, most of these ‘nude Two-Face’ variants (without perturbation) show
a small regularity degree very similar to the behaviour of ‘nude HFE’. However,
we still have many polynomials to test.

Two-Face 263

Nevertheless, as for HFE (and some others generalizations like ‘Intermediate
Field System’ [22]) as soon as some appropriate perturbations are added, the
regularity degree increases and then Gröbner basis attacks don’t work any more.

We have started our study by the Dobbertin permutation polynomial family
and our ‘Dob’ scheme. For cryptographic applications, the permutation prop-
erty is not required and this led us to our ‘Pat’ schemes. Surprisingly, we were
also able to discover new DO permutation polynomials. It led us to the ‘Mac’
schemes, and it seems that even more such polynomials could be found. This
has a mathematical interest per se, because the probability that a random DO
polynomial is a permutation is very small. Moreover, all those new DO permuta-
tion polynomials have like the Dobbertin one a generic form which makes them
infinite families, i.e. for an infinity of values n, a quadratic polynomial with a
given expression that depends on n, is a permutation of F2n .

Permutations present also a cryptographic interest, since it speeds up the
cryptographic computations, as there is only one root to compute. For exam-
ple our scheme ‘Dob’ based on the Dobbertin permutation polynomials seems
currently very efficient and resistant to all known attacks as soon as it includes
perturbations.

We have also looked at the attacks against the Matsumoto-Imai C∗ scheme
and its variant SFLASH [14,15] and explain why they can’t a priori apply to
‘Dob’. In this article we have also suggested some possible realistic parameters
for our schemes.

Acknowledgements. We thank Ludovic Perret and Jean Charles Faugère, INRIA,
for fruitful discussions and help for the experimental computations.

References

1. Gilbert, H., Minier, M.: Cryptanalysis of SFLASH. [36], pp. 288–298 (2002)
2. Fouque, P., Macario-Rat, G., Stern, J.: Key recovery on hidden monomial multi-

variate schemes. [37], pp. 19–30 (2008)
3. Ding, J., Dubois, V., Yang, B., Chen, C.O., Cheng, C.: Could SFLASH be repaired?

IACR Cryptology ePrint Archive 2009, 596 (2009)
4. Faugère, J., Perret, L.: On the security of UOV. IACR Cryptology ePrint Archive

2009, 483 (2009)
5. Hamdi, O., Bouallegue, A., Harari, S.: Hidden field equations cryptosystem per-

formances. In: AICCSA, pp. 308–311. IEEE Computer Society (2006)
6. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):

two new families of asymmetric algorithms. [34], pp. 33–48 (1996)
7. Lidl, R., Niederreiter, H.: Finite Fields. Encyclopedia of Mathematics and its Appli-

cations, 2nd edn. Cambridge University Press, Cambridge (1996)
8. Dembowski, P., Ostrom, T.G.: Planes of order n with collineation groups of order

n2. Math. Z. 103(3), 239–258 (1968)
9. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P.

(ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38616-9 4

https://doi.org/10.1007/978-3-642-38616-9_4

264 G. Macario-Rat and J. Patarin

10. Dobbertin, H.: Almost perfect nonlinear power functions on GF(2n): the Welch
case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999)

11. Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of euro-
crypt’98. Des. Codes Crypt. 20(2), 175–209 (2000)

12. Fouque, P., Granboulan, L., Stern, J.: Differential cryptanalysis for multivariate
schemes. [32], pp. 341–353 (2005)

13. Dubois, V., Granboulan, L., Stern, J.: Cryptanalysis of HFE with internal pertur-
bation. [33]. pp. 249–265 (2007)

14. Bouillaguet, C., Fouque, P.-A., Macario-Rat, G.: Practical key-recovery for all pos-
sible parameters of SFLASH. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011.
LNCS, vol. 7073, pp. 667–685. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25385-0 36

15. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 1

16. Salmon, G.: Lessons Introductory to the Modern Higher Algebra. Elibron Classics
Series. Adegi Graphics LLC, Rye Brook (1999)

17. Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra.
Kluwer Academic Publishers, Norwell (1992)

18. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I: the user
language. J. Symb. Comput. 24(3–4), 235–265 (1997). Computational algebra and
number theory (London, 1993)

19. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 3

20. Bettale, L., Faugère, J.-C., Perret, L.: Cryptanalysis of multivariate and odd-
characteristic HFE variants. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 441–458. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 27

21. Bettale, L., Faugère, J., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants
for odd and even characteristic. IACR Cryptology ePrint Archive 2011, 399 (2011)

22. Billet, O., Patarin, J., Seurin, Y.: Analysis of intermediate field systems. In: First
Conference on Symbolic Computation and Cryptography, Beijing, China, 28–30
April 2008, pp. 110–117 (2008)

23. Goubin, L., Courtois, N.: Cryptanalysis of the TTM cryptosystem. [24], pp. 44–57
(2000)

24. Okamoto, T. (ed.) Advances in Cryptology - ASIACRYPT 2000. LNCS, vol. 1976.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3

25. Zhang, W., Tan, C.H.: A new perturbed Matsumoto-Imai signature scheme. [26],
pp. 43–48 (2014)

26. Emura, K., Hanaoka, G., Zhao, Y. (eds.): Proceedings of the 2nd ACM Workshop
on ASIA Public-Key Cryptography, ASIAPKC 2014, 3 June, 2014, Kyoto, Japan.
ACM (2014)

27. Zhang, W., Tan, C.H.: MI-T-HFE, a new multivariate signature scheme. Cryptol-
ogy ePrint Archive, Report 2015/890 (2015). http://eprint.iacr.org/2015/890

28. Ding, J., Gower, J.E., Schmidt, D., Wolf, C., Yin, Z.: Complexity estimates for
the F4 attack on the perturbed Matsumoto-Imai cryptosystem. [29], pp. 262–277
(2005)

29. Smart, N.P. (ed.): Cryptography and Coding 2005. LNCS, vol. 3796. Springer,
Heidelberg (2005). https://doi.org/10.1007/11586821

https://doi.org/10.1007/978-3-642-25385-0_36
https://doi.org/10.1007/978-3-642-25385-0_36
https://doi.org/10.1007/978-3-540-74143-5_1
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-642-19379-8_27
https://doi.org/10.1007/3-540-44448-3
http://eprint.iacr.org/2015/890
https://doi.org/10.1007/11586821

Two-Face 265

30. Ding, J.: A new variant of the Matsumoto-Imai cryptosystem through perturba-
tion. [31], pp. 305–318 (2004)

31. Bao, F., Deng, R.H., Zhou, J. (eds.): Public Key Cryptography-PKC 2004. LNCS,
vol. 2947. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-
9 22

32. Cramer, R. (ed.): Advances in Cryptology - EUROCRYPT 2005. vol.3494. LNCS,
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 20

33. Okamoto, T., Wang, X. (eds.): Public Key Cryptography - PKC 2007. LNCS, vol.
4450. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 17

34. Maurer, U.M. (ed.): Advances in Cryptology - EUROCRYPT 1996. LNCS, vol.
1070. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 4

35. MacAulay, F.S.: Some formulæ in elimination. Proc. Lond. Math. Soc. s1–35(1),
3–27 (1902)

36. Knudsen, L.R. (ed.): Advances in Cryptology - EUROCRYPT 2002. LNCS, vol.
2332. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7

37. Smart, N.P. (ed.): Advances in Cryptology - EUROCRYPT 2008. LNCS, vol. 4965.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 2

38. Hou, X.d.: Permutation polynomials over finite fields - a survey of recent advances.
Finite Fields Appl. 32(C), 82–119 (2015)

39. Blokhuis, A., Coulter, R.S., Henderson, M., O’Keefe, C.M.: Permutations amongst
the Dembowski-Ostrom polynomials. In: Jungnickel, D., Niederreiter, H. (eds.)
Finite Fields and Applications, pp. 37–42. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-642-56755-1 4

40. Plût, J., Fouque, P., Macario-Rat, G.: Solving the “isomorphism of polynomials
with two secrets” problem for all pairs of quadratic forms. CoRR abs/1406.3163
(2014)

https://doi.org/10.1007/978-3-540-24632-9_22
https://doi.org/10.1007/978-3-540-24632-9_22
https://doi.org/10.1007/11426639_20
https://doi.org/10.1007/978-3-540-71677-8_17
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-46035-7
https://doi.org/10.1007/978-3-540-78967-3_2
https://doi.org/10.1007/978-3-642-56755-1_4
https://doi.org/10.1007/978-3-642-56755-1_4

Cryptanalysis of RSA Variants
with Modified Euler Quotient

Mengce Zheng1(B) , Noboru Kunihiro2, and Honggang Hu1

1 CAS Key Laboratory of Electromagnetic Space Information,
University of Science and Technology of China, Hefei, China

mczheng@mail.ustc.edu.cn, hghu2005@ustc.edu.cn
2 The University of Tokyo, Tokyo, Japan

kunihiro@k.u-tokyo.ac.jp

Abstract. The standard RSA scheme provides the key equation ed ≡ 1
(mod ϕ(N)) for N = pq, where ϕ(N) = (p − 1)(q − 1) is Euler quotient
(or Euler’s totient function), e and d are the public and private keys,
respectively. It has been extended to the following variants with modified
Euler quotient ω(N) = (p2 − 1)(q2 − 1), which in turn indicates the
modified key equation is ed ≡ 1 (mod ω(N)).

– An RSA-type scheme based on singular cubic curves y2 ≡ x3 + bx2

(mod N) for N = pq.
– An extended RSA scheme based on the field of Gaussian integers for

N = PQ, where P , Q are Gaussian primes with p = |P |, q = |Q|.
– A scheme working in quadratic field quotients using Lucas sequences

with an RSA modulus N = pq.
In this paper, we investigate some key-related attacks on such RSA vari-
ants using lattice-based techniques. To be specific, small private key
attack, multiple private keys attack, and partial key exposure attack are
proposed. Furthermore, we provide the first results for multiple private
keys attack and partial key exposure attack when analyzing the RSA
variants with modified Euler quotient.

Keywords: RSA variants · Modified Euler quotient · Lattice
Multiple private keys attack · Partial key exposure attack

1 Introduction

1.1 Background

RSA [30] is currently one of the most widely used public key cryptosystems in
the world. In the case of the standard RSA, a public modulus N is the product
of two large primes p and q of the same bit-size, namely N = pq. The key
equation is ed ≡ 1 (mod ϕ(N)), where ϕ(N) = (p − 1)(q − 1) is Euler quotient
(or Euler’s totient function), (N, e) and (p, q, d) are called the public and private
keys, respectively. In the encryption process, a message string is transformed into
an integer M and then encrypted as C = Me (mod N). The decryption process
c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 266–281, 2018.
https://doi.org/10.1007/978-3-319-89339-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_15&domain=pdf
http://orcid.org/0000-0003-0777-4175

Cryptanalysis of RSA Variants with Modified Euler Quotient 267

computes Cd (mod N). Since e and d are always calculated as exponents in the
encryption and decryption phases, they are called public and private exponents
as well. In the following analyses, we further use α and δ for simplicity, whose
values come from e = Nα and d = N δ.

The standard RSA cryptosystem has been generalized by various approaches
such as modifying its modulus [35], modifying Euler quotient [13,23] and modi-
fying the encryption/decryption process [15,28] for specific purposes. This paper
focuses on the RSA variants with modified Euler quotient ω(N) = (p2−1)(q2−1)
for N = pq. We provide the modified key equation used in such RSA variants,
which shows the relation ed ≡ 1 (mod ω(N)) between ω(N) and two integers e
and d. It can be rewritten as

ed = k(p2 − 1)(q2 − 1) + 1, (1)

where k is an unknown positive integer. In the general cases, we have 0 < α, δ < 2
since 0 < e, d < ω(N) ≈ N2. But, α and δ can be generated to exceed above
range for some security considerations. Next, we briefly introduce three related
schemes. One may refer to [7,13,23] for more details.

The First Variant. This RSA variant was introduced by Kuwakado et al. [23] in
1995. It is based on singular cubic curves with y2 ≡ x3 + bx2 (mod N) for an
RSA modulus N = pq and b ∈ Z/NZ. The public exponent e and the private
exponent d satisfy gcd(e, (p2−1)(q2−1)) = 1 and d ≡ e−1 (mod (p2−1)(q2−1)).
Thus, we have ed = k(p2 − 1)(q2 − 1) + 1 for a positive integer k from the key
generation algorithm.

The Second Variant. This variant was introduced by Elkamchouchi et al. [13] in
2002. It is based on the ring of Gaussian integers Z[i]. A Gaussian integer a + bi
is a complex number for integers a, b and i2 = −1, whose norm is defined by
|a+ bi| =

√
a2 + b2. The RSA cryptosystem can be extended over the domain of

Gaussian integers because of the similar property and arithmetical operations.
Let modulus N be the product of two Gaussian primes P,Q and let e, d be
integers satisfying d ≡ e−1 (mod (|P |2−1)(|Q|2−1)). Note that the key equation
is ed = k(|P |2 − 1)(|Q|2 − 1)+1 for a positive integer k. When denoting |P | and
|Q| by p and q respectively, we have the same modified key equation as derived
in the first variant.

The Third Variant. This variant was introduced by Castagnos [7] in 2007. It is
based on an RSA modulus N = pq and Lucas sequences working in quadratic
field quotients. Let e be an integer satisfying gcd(e, (p2−1)(q2−1)) = 1. Though
the inverse d = e−1 (mod (p2 − 1)(q2 − 1)) does not explicitly appear in this
scheme, we can analyze its security by solving ed = k(p2 − 1)(q2 − 1) + 1 for
small d.

Small Private Key Attack. In 1990, Wiener [40] showed that one can break
the standard RSA scheme when the private key d is less than 1

3N0.25. Wiener’s

268 M. Zheng et al.

attack utilizes the continued fraction approach to deal with the key equation
ed = k(p−1)(q−1)+1. If d is small enough, k/d will be one of the convergents of
the continued fraction expansion of the public rational fraction e/N . Thus, k and
d can be recovered by computing the continued fraction expansion. Furthermore,
[6] presented a new improved attack on RSA based on Wiener’s technique using
continued fraction.

Later in 1999, Boneh and Durfee [3] introduced the small inverse problem
and proposed an improved attack using Coppersmith’s lattice-based techniques
[10] that works for d < N0.292. The aim is to find the small roots of the modular
equation x(y + A) + 1 ≡ 0 (mod e) with known A and e. Herrmann and May
[17] presented an optimized algorithm to solve the same equation using the
linearization technique, which is applied to obtain smaller dimensional lattices.
Though the latter attack does not improve the insecure bound, it simplifies the
lattice construction and reduces the practical consumption.

The small private key attacks on several RSA variants have also been studied
in [31–33]. As for the RSA variants with modified Euler quotient ω(N) = (p2 −
1)(q2 − 1), Bunder et al. [5] proposed an attack using the continued fraction
approach. They showed that when d2e < 2N3 − 18N2, k/d can be found among
the convergents of the continued fraction expansion of e/(N2 − 9

4N + 1). Thus,
the factorization of N , namely p and q can be deduced from k and d. Peng et al.
[27] proposed a better lattice-based attack and improved the insecure bound to
δ < 2 − √

α for α ≥ 1. The attack is reduced to solving small roots (k, p2 + q2)
of the modular equation x(N2 + 1 − y) + 1 ≡ 0 (mod e) using the linearization
technique of [17]. Though Peng et al. gave a refinement on the insecure bound of
the small private exponent, they did not present a complete range of solvable α.

Multiple Private Keys Attack. The security of RSA with multiple key pairs
was first studied by Howgrave-Graham and Seifert [19] in 1999. In this case,
where given n multiple key pairs (e1, d1), . . . , (en, dn) for a common public mod-
ulus N such that eidi ≡ 1 (mod ϕ(N)) for all i = 1, 2, . . . , n, the standard RSA
can be viewed as the special case for n = 1. Similarly, the values of the public
and private keys are estimated as Nα and N δ, respectively.

Later, this attack type was improved by the lattice-based techniques in [1,
36]. The previous works confirm an intuitive inference that RSA becomes more
vulnerable when there are more key pairs. Takayasu and Kunihiro [36] proposed
the best attack so far that works for δ < 1 − √

2/(3n + 1) when given N and
public keys e1, . . . , en ≈ N . If there are even more key pairs, larger secret keys
can be recovered, which indicates that full-size private keys i.e. δ = 1 can be
recovered with infinitely many key pairs.

The multiple private keys attack has been extended to other RSA variants
in several papers like [26,41]. However, to attack the RSA variant with modified
Euler quotient with multiple key pairs is not analyzed before.

Partial Key Exposure Attack. In 1998, Boneh et al. [4] proposed several
attacks on RSA given a fraction of the private key bits with small public exponent

Cryptanalysis of RSA Variants with Modified Euler Quotient 269

e. Their attacks utilized some known most significant bits (MSBs) or some known
least significant bits (LSBs) of the private exponent d. In practice, above par-
tial key information can be captured using side channel attacks, e.g. cold boot
attacks [16] and others [22,29]. Therefore, so-called partial key exposure attack
has gradually become an important part when estimating the security of RSA.

Blömer and May [2] later improved partial key exposure attacks on RSA
using Coppersmith’s lattice-based techniques [10]. They showed that RSA is
also vulnerable to larger public exponent e given some private key exposure. In
2005, Ernst et al. [14] presented several new attacks that work up to full-size
exponents (i.e., e ≈ N or d ≈ N) by three theorems under a common heuristic
assumption. The best-known attack was proposed by Takayasu and Kunihiro
[37,39], which can achieve Boneh and Durfee’s bound [3] of the small private
key attack.

In addition to the partial key exposure attacks on the standard RSA scheme,
this attack type has been extended to other RSA variants in several papers like
[34]. However, the partial key exposure attack on the RSA variant with modified
Euler quotient is not considered before.

1.2 Our Contributions

In this paper, we first derive the crucial modular equation in our analyses from
the modified key Eq. 1. We have ed = k(p2q2 − p2 − q2 + 1) + 1, which can be
rewritten as ed = k

(
(N + 1)2 − (p + q)2

)
+ 1. Thus, we are required to solve

x(y + A) + 1 ≡ 0 (mod e) (2)

for A := (N + 1)2 with small roots x = k and y = −(p + q)2. Note that our
modular equation is slightly different compared with the root y = p2 + q2 used
in [27].

Then we apply the lattice-based techniques [10] to solve the crucial modular
Eq. 2 for some interesting cases. To be specific, we propose three key-related
attacks on the RSA variants with modified Euler quotient. We reproduce the
small private key attack as the result of [27] using the linearization technique
[17] for an accurate range of solvable α.

Proposition 1. Let N = pq be an RSA modulus with two prime factors p, q of
the same bit-size. Let e = Nα be a valid public key and d = N δ be its corre-
sponding private key such that ed ≡ 1 (mod (p2 − 1)(q2 − 1)). Then modulus N
of the RSA variants with modified Euler quotient can be efficiently factored if

δ < 2 − √
α for 1 ≤ α < 4.

We further provide the result of multiple private keys attack on the RSA
variants with modified Euler quotient for the first time.

Proposition 2. Let N = pq be an RSA modulus with two prime factors p, q
of the same bit-size. Let ei = Nα be a valid public key and di = N δ be its

270 M. Zheng et al.

corresponding private key such that eidi ≡ 1 (mod (p2 − 1)(q2 − 1)) for 1 ≤ i ≤
n. Then modulus N of the RSA variants with modified Euler quotient can be
efficiently factored if

δ < 2 −
√

4α

3n + 1
for

4
3n + 1

< α < 3n + 1.

When we have one single key pair, namely n = 1, the condition becomes δ <
2 − √

α, which is identical to that in Proposition 1.
We also show the result of partial key exposure attack on the RSA variants

with modified Euler quotient for the first time.

Proposition 3. Let N = pq be an RSA modulus with two prime factors p, q of
the same bit-size. Let e = Nα be a valid public key and d = N δ be its correspond-
ing private key such that ed ≡ 1 (mod (p2−1)(q2−1)). Given an approximation
d̃ with known MSBs dM = NγM , LSBs dL = NγL and unknown d̂ = N δ−γ (for
γ = γM + γL) such that d = d̃ + d̂L = dMM + d̂L + dL for M := 2(δ−γM) log2 N

and L := 2γL log2 N . Then modulus N of the RSA variants with modified Euler
quotient can be efficiently factored if

δ <
3γ + 7 − 2

√
3α + 3γ + 1

3
.

We summarize our upper bounds with comparative cryptanalytic results on
the standard RSA in Table 1. For simplicity, we set full-size public keys, namely
e ≈ N in standard RSA and e ≈ N2 in RSA variants with ω(N) to show the
respective conditions on δ. More precisely, n indicates the number of given key
pairs in multiple private keys attack and γ (or Nγ) indicates the known key
exposure in partial key exposure attack.

Table 1. Summary of three key-related attacks on RSA and its variant

Standard RSA [30] RSA variants [7,13,23]

Small private key attack δ < 0.292 [3] δ < 0.585

Multiple private keys attack δ < 1 −
√

2
3n+1

[36] δ < 2 −
√

8
3n+1

Partial key exposure attack δ <
γ+2−

√
2−3γ2

2
[37] δ < 3γ+7−2

√
3γ+7

3

1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, we review some facts and
mathematical lemmas of lattice-based attacks. In Sect. 3, we present our small
private key attack in details. In Sect. 4, we propose the multiple private keys
attack on such RSA variants by applying Minkowski sum technique. In Sect. 5,
we propose the partial key exposure attack for such RSA variants. We conclude
the paper in Sect. 6.

Cryptanalysis of RSA Variants with Modified Euler Quotient 271

2 Preliminaries

In this section, we introduce some notions of the lattice-based attacks, which
include the LLL algorithm [24], Howgrave-Graham’s lemma [18], Coppersmith’s
techniques [8,9]. One may refer to [10,25] for more details.

A lattice L spanned by linearly independent vectors b1, . . . , bw in R
n is the

set of their integer linear combinations, which is denoted by L(b1, . . . , bw) =
{∑w

i=1 zibi : zi ∈ Z}. We call (b1, . . . , bw) a basis of L and w is the lattice
dimension. If w = n, then L is called full-rank. In another way, bi’s can be
regarded as row vectors to generate a basis matrix B. The lattice determinant
is defined as det(L) :=

√
det(BBT), where BT is a transpose of B. We have

det(L) = |det(B)| for a full-rank lattice from the definition, which implies that
B is a square matrix. Moreover, the determinant of a triangular basis matrix
can be easily computed as the product of its diagonal entries.

In 1982, Lenstra et al. [24] proposed the so-called LLL algorithm that is
practically used for finding approximately shortest lattice vectors, which plays
an important role in the field of lattice-based cryptanalyses.

Lemma 1. Let L be a lattice with determinant det(L) and vectors in R
n. The

LLL algorithm outputs a reduced basis (v1,v2, . . . ,vw) in polynomial time in
n,w and input length. For 1 ≤ i ≤ w, the reduced vectors vi’s satisfy

‖vi‖ ≤ 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i .

Howgrave-Graham [18] later showed how to judge whether the roots of a
modular equation are also roots over the integers. This reformulation is more
concise and straightforward compared with Coppersmith’s original methods. For
a given n-variate polynomial g(x1, . . . , xn) =

∑
ai1,...,inxi1

1 · · · xin
n , its norm is

defined as ‖g(x1, . . . , xn)‖ :=
√∑ |ai1,...,in |2. We provide the following lemma

and then discuss the combination of Lemmas 1 and 2.

Lemma 2. Let g(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an integer polynomial that is a
sum of at most w monomials. Suppose that

1. g(x′
1, . . . , x

′
n) = 0 (mod R), where |x′

1| < X1, . . ., |x′
n| < Xn, and

2. ‖g(x1X1, . . . , xnXn)‖ < R/
√

w.

Then g(x′
1, . . . , x

′
n) = 0 holds over the integers.

The main idea of the lattice-based attacks is to construct a set of shift poly-
nomials modulo an integer R with the common roots and then reduce them
to several equations over the integers by the LLL algorithm. The basis matrix
consists of the shift polynomials’ coefficient vectors, which come from a given
modular equation. It spans a lattice of dimension w and we use the LLL algo-
rithm to obtain short lattice vectors that correspond to the polynomial forms. If
the norms of the polynomials are sufficiently small, these equations still hold over
the integers. Eventually, we can efficiently extract the common roots by Gröbner

272 M. Zheng et al.

bases computation or resultant computation. Notice that the linearization tech-
nique makes it easier to construct a triangular matrix and hence simplifies the
whole analysis.

The above fundamental lemmas indicate the final condition, which can be
roughly summarized as

det(L) < Rw. (3)

We here do not discuss more how to solve integer polynomial equations since
it makes use of the essential idea of solving modular equations by adding an
auxiliary parameter. See Coron’s reformulations [11,12] for the detail. We should
note that solving multivariate equations is heuristic because the newly derived
polynomials are not guaranteed to be algebraically independent. In this paper,
we assume that the polynomials derived from the reduced vectors of the LLL
algorithm are algebraically independent as discussed in the literature of lattice-
based attacks on RSA and its variants [3,21]. In fact, there are barely works that
contradict this assumption.

3 Small Private Key Attack

In this section, we aim to solve the crucial modular Eq. 2 for sufficient small pri-
vate key d. Applying the linearization technique, we can reproduce the insecure
bound on d for the RSA variants with modified Euler quotient.

In order to find all small roots (x, y) of the bivariate modular equation xy +
Ax+1 ≡ 0 (mod e). We first transform the original polynomial xy+Ax+1 into
Ax + z by letting z := xy + 1. The shift polynomials g[i,j,k](x, y, z) are defined
in the following form for f(x, y, z) := Ax + z,

g[i,j,k](x, y, z) := xiyjfk(x, y, z)es−k = xiyj(Ax + z)kes−k,

where s is a fixed positive integer and i, j, k ∈ N. We denote the set of shift
polynomials by G ∪ H for

G := {g[i,j,k](x, y, z) : (i, j, k) ∈ IG},

H := {g[i,j,k](x, y, z) : (i, j, k) ∈ IH},

where two index sets IG and IH are defined by

IG := {(i, j, k) : j = 0; i = 0, . . . , s; k = 0, . . . , s − i},

IH := {(i, j, k) : i = 0; k = 0, . . . , s; j = 1, . . . , τk},

for a parameter 0 ≤ τ ≤ 1 to be optimized later. It is clear that all the shift
polynomials share the small roots modulo es. The polynomial and monomial
orders ≺ are defined as g[i,j,k] ≺ g[i′,j′,k′] and xiyjzk ≺ xi′

yj′
zk′

, respectively if
(1) i + k < i′ + k′; or (2) i + k = i′ + k′ and k < k′; or (3) i = i′, k = k′ and
j < j′.

We can substitute each occurrence of xy by the term z − 1. The lattice basis
matrix is generated by taking the coefficient vectors of g[i,j,k](xX, yY, zZ) as

Cryptanalysis of RSA Variants with Modified Euler Quotient 273

row vectors, where X,Y and Z denote the upper bounds on the roots (x, y, z).
Additionally, the rows and columns are arranged according to above orders ≺,
which guarantees that the lattice basis matrix is triangular. Table 2 shows a toy
example for two parameters s = 2 and τ = 1, where symbols “–” indicate the
non-zero off-diagonal entries, and f denotes AxX + zZ.

Table 2. A toy example of the lattice basis matrix for s = 2 and τ = 1

1 x z yz x2 xz z2 yz2 y2z2

g[0,0,0] e2 e2

g[1,0,0] xXe2 e2X

g[0,0,1] fe – eZ

g[0,1,1] yY f – – Y Z

g[2,0,0] (xX)2e2 e2X2

g[1,0,1] xXfe – eXZ

g[0,0,2] f2 – – Z2

g[0,1,2] yY f2 – – – – Y Z2

g[0,2,2] (yY)2f2 – – – – – Y 2Z2

Since we have e = Nα and d = N δ, we can figure out X = Nα+δ−2, Y = N
and Z = Nα+δ−1. We are able to compute the determinant det(L) by counting
the numbers of X, Y , Z and e appearing in the diagonal entries respectively,
which signify the contributions of the shift polynomials to det(L). We omit the
rounding of τk since it is negligible in our asymptotic analysis for sufficiently
large s.

We compute the dimension w of the full-rank lattice and the contributions
of the shift polynomials denoted by nX , nY , nZ and ne, respectively.

w =
∑

(i,j,k)∈IG∪IH

1 =
s∑

i=0

s−i∑

k=0

1 +
s∑

k=0

τk∑

j=1

1 =
1 + τ

2
s2 + o(s2),

nX =
∑

(i,j,k)∈IG∪IH

i =
s∑

i=0

s−i∑

k=0

i =
1
6
s3 + o(s3),

nY =
∑

(i,j,k)∈IG∪IH

j =
s∑

k=0

τk∑

j=1

j =
τ2

6
s3 + o(s3),

nZ =
∑

(i,j,k)∈IG∪IH

k =
s∑

i=0

s−i∑

k=0

k +
s∑

k=0

τk∑

j=1

k =
1 + 2τ

6
s3 + o(s3),

ne =
∑

(i,j,k)∈IG∪IH

(s − k) =
s∑

i=0

s−i∑

k=0

(s − k) +
s∑

k=0

τk∑

j=1

(s − k) =
2 + τ

6
s3 + o(s3).

274 M. Zheng et al.

From above rough condition 3 det(L) < Rw for det(L) = XnXY nY ZnZene and
R = es, we have

(α + δ − 2) + τ2 + (1 + 2τ)(α + δ − 1) + (2 + τ)α < 3(1 + τ)α,

when dealing with the exponents and omitting other lower order terms of s. It
can be simplified to

τ2 + (2δ − 2)τ + α + 2δ − 3 < 0.

The value of the left side reaches its minimum by setting τ = 1− δ and then the
inequality becomes

δ2 − 4δ − α + 4 > 0.

Therefore, we obtain the final condition

δ < 2 − √
α.

Note that 0 ≤ τ = 1 − δ ≤ 1 and hence we have 0 ≤ δ ≤ 1. Combining it with
α + δ ≥ 2 and δ < 2 − √

α, we have 1 ≤ α < 4 that is our complete solvable
range of α. Thus, we attain the bound of Proposition 1 as required.

4 Multiple Private Keys Attack

In this section, we propose the multiple private keys attack on the RSA variants
with modified Euler quotient. To specify the analytic situation for given n key
pairs, we define the following general multiple private keys attack scenario.

Let N be the product of two primes p, q of the same bit-size. Let ei = Nα

and di = N δ for 1 ≤ i ≤ n such that eidi ≡ 1 (mod ω(N)), where ω(N) =
(p2 − 1)(q2 − 1). Given N and n key pairs (ei, di) (for 1 ≤ i ≤ n), the goal is to
efficiently factor N .

In this case, we need to solve the simultaneous modular equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(x1, y) : = x1(y + A) + 1 ≡ 0 (mod e1)
f2(x2, y) : = x2(y + A) + 1 ≡ 0 (mod e2)

...
fn(xn, y) : = xn(y + A) + 1 ≡ 0 (mod en)

(4)

for A := (N + 1)2 and the roots (x1, x2, . . . , xn, y) = (k1, k2, . . . , kn,−(p + q)2)
whose values are bounded by X1 = · · · = Xn = Nα+δ−2 and Y = N .

To deal with above simultaneous modular Eq. 4, Aono [1] proposed
Minkowski sum based lattice constructions. We also apply this tool to provide
the generation of the shift polynomials. The underlying shift polynomials are
defined by

g
(k)
ik,jk

(xk, y) := xik−jk
k f jk

k (xk, y)es−jk
k

Cryptanalysis of RSA Variants with Modified Euler Quotient 275

with 0 ≤ jk ≤ ik ≤ s and ik, jk ∈ N for 1 ≤ k ≤ n. It is clear that we have
g
(k)
ik,jk

(xk, y) ≡ 0 (mod es
k) for each k. We define the same Minkowski sum based

shift polynomials as [1] by

gi1,...,in,j(x1, . . . , xn, y) :=
∑

j1+···+jn=j

aj1,...,jng
(1)
i1,j1

g
(2)
i2,j2

· · · g(n)in,jn

for a particular aj1,...,jn such that the corresponding diagonal entry in the basis
matrix is

Xi1
1 · · · Xin

n Y je
s−min{i1,j}
1 · · · es−min{in,j}

n .

Thus, all the shift polynomials share the common roots (x1, x2, . . . , xn, y) =
(k1, . . . , kn,−(p + q)2) modulo (e1 · · · en)s. We consider the shift polynomials
with max{i1, . . . , in} ≤ j. Applying a useful criterion from [36], we compare the
sizes of the diagonal entries with the size of the modulus to choose as many
helpful polynomials as possible. It requires that

Xi1
1 · · · Xin

n Y jes−i1
1 · · · es−in

n ≤ (e1 · · · en)s,

which leads to

(α + δ − 2)
n∑

k=1

ik + j + αns − α
n∑

k=1

ik ≤ αns.

That is j ≤ (2 − δ)
∑n

k=1 ik. Therefore, we select the shift polynomials over the
index set

I := {(i1, . . . , in, j) : 0 ≤ i1, i2, . . . , in ≤ s; 0 ≤ j ≤ (2 − δ)
n∑

k=1

ik}.

The lattice basis matrix is triangular as discussed in [1,36]. We follow a simi-
lar analysis in Sect. 3 (ignoring lower order terms of s) to compute the lattice
dimension

w =
∑

(i1,...,in,j)∈I
1 =

n(2 − δ)
2

sn+1,

and respective contributions of the diagonal entries to the determinant that are
denoted by nXk

, nY and nek
for 1 ≤ k ≤ n,

nX1 = · · · = nXn
=

∑

(i1,...,in,j)∈I
ik =

(3n + 1)(2 − δ)
12

sn+2,

nY =
∑

(i1,...,in,j)∈I
j =

n(3n + 1)(2 − δ)2

24
sn+2,

ne1 = · · · = nen
=

∑

(i1,...,in,j)∈I
(s − min{in, j}) =

2 + (3n − 1)(2 − δ)
12

sn+2.

276 M. Zheng et al.

We can find solutions of the simultaneous modular Eq. 4 if the condition 3 holds,
that is

X
nX1
1 · · · XnXn

n Y nY e
ne1
1 · · · enen

n < (e1 · · · en)sw,

which leads to

2n(3n + 1)(2 − δ)(α + δ − 2) + n(3n + 1)(2 − δ)2 + n(4 − (6n + 2)(2 − δ))α < 0.

It can be reduced to
−(3n + 1)(2 − δ)2 + 4α < 0.

Finally, we derive the condition for the multiple private keys attack scenario

δ < 2 −
√

4α

3n + 1
.

The range of solvable α is determined by 2−
√

4α
3n+1 > 0 and α+2−

√
4α

3n+1 > 2,
which imply

4
3n + 1

< α < 3n + 1

as claimed in Proposition 2.

5 Partial Key Exposure Attack

In this section, we propose the partial key exposure attack on the RSA variants
with modified Euler quotient. To specify the analytic situation for given leakage
of the private key, we define the following general partial key exposure attack
scenario.

Let N be the product of two primes p, q of the same bit-size. Let e = Nα and
d = N δ such that ed ≡ 1 (mod ω(N)), where ω(N) = (p2 − 1)(q2 − 1). Given
N, e and d̃ (i.e. MSBs dM and LSBs dL) that is a known approximation of d
satisfying

d = d̃ + d̂L = dMM + d̂L + dL

for M := 2(δ−γM) log2 N and L := 2γL log2 N , which implies that |d̂| < N δ−γ for
γ := γM + γL, the target is to efficiently factor N .

Recall that the modified key Eq. 1 is ed = k(p2 − 1)(q2 − 1) + 1. Since
d = d̃ + d̂L, we substitute it with its approximation and obtain

e(d̃ + d̂L) = k(p2 − 1)(q2 − 1) + 1.

We now focus on the integer equation

f(x, y, z) := 1 − ed̃ + eLx + y((N + 1)2 + z) (5)

with small roots x = −d̂, y = k and z = −(p + q)2, whose values are bounded
by X = N δ−γ , Y = Nα+δ−2 and Z = N , respectively. If we discover the small
roots of f(x, y, z), we can factor the RSA modulus N .

Cryptanalysis of RSA Variants with Modified Euler Quotient 277

We turn to solving the integer polynomial 5 by applying Jochemsz and May’s
strategy [20]. A similar construction is also described in [39]. We first give the
definition of the auxiliary parameter W := ‖f(xX, yY, zZ)‖∞, namely l∞-norm
of a certain polynomial. For our integer polynomial 5, we have

W = max{|1 − ed̃|, |eLX|, |Y (N + 1)2|, |Y Z|} = Nα+δ.

We set a suitable integer R := WXs−1Y s−1Zs−1+τs (as a modulus) for a fixed
positive integer s and τ ≥ 0 to be optimized later. We then perform a transfor-
mation on the original polynomial 4 by

f ′(x, y, z) := (1 − ed̃)−1f(x, y, z) (mod R).

The shift polynomials gG
[i,j,k](x, y, z) and gH

[i,j,k](x, y, z) are defined in the follow-
ing forms,

gG
[i,j,k](x, y, z) := xiyjzkf ′(x, y, z)Xs−1−iY s−1−jZs−1+τs−k,

gH
[i,j,k](x, y, z) := xiyjzkR,

for i, j, k ∈ N. We denote the set of shift polynomials by G ∪ H, where

G := {gG
[i,j,k](x, y, z) : (i, j, k) ∈ IG},

H := {gH
[i,j,k](x, y, z) : (i, j, k) ∈ IH \ IG},

for two index sets IG and IH defined by

IG := {(i, j, k) : i = 0, . . . , s − 1; j = 0, . . . , s − 1 − i; k = 0, . . . , j + τs},

IH := {(i, j, k) : i = 0, . . . , s; j = 0, . . . , s − i; k = 0, . . . , j + τs}.

It is noticeable that all the shift polynomials share the common roots (x, y, z) =
(−d̂, k,−(p + q)2) modulo R. The polynomial and monomial orders are quite
straightforward as mentioned in [20]. Therefore, we can construct a triangular
basis matrix with diagonal entries Xs−1Y s−1Zs−1+τs for G and XiY jZkR =
WXs−1+iY s−1+jZs−1+τs+k for H. We then follow a similar analysis in Sect. 3
(ignoring lower order terms of s) to compute the lattice dimension

w =
∑

(i,j,k)∈IG

1 +
∑

(i,j,k)∈IH\IG

1 =
1 + 3τ

6
s3.

Recall that the rough condition 3 det(L) < Rw indicates
∏

(i,j,k)∈IG

Xs−1Y s−1Zs−1+τs
∏

(i,j,k)∈IH\IG

WXs−1+iY s−1+jZs−1+τs+k

<
(
WXs−1Y s−1Zs−1+τs

)w
.

278 M. Zheng et al.

Thus, we can find solutions of the integer Eq. 5 when XnXY nY ZnZ < WnW

(ignoring lower order terms of s) for

nX =
∑

(i,j,k)∈IG

(s − 1) +
∑

(i,j,k)∈IH\IG

(s − 1 + i) − (s − 1)w =
1 + 3τ

6
s3,

nY =
∑

(i,j,k)∈IG

(s − 1) +
∑

(i,j,k)∈IH\IG

(s − 1 + j) − (s − 1)w =
2 + 3τ

6
s3,

nZ =
∑

(i,j,k)∈IG

(s − 1 + τs) +
∑

(i,j,k)∈IH\IG

(s − 1 + τs + k) − (s − 1 + τs)w

=
1 + 3τ + 3τ2

6
s3,

nW = w −
∑

(i,j,k)∈IH\IG

1 =
∑

(i,j,k)∈IG

1 =
1 + 3τ

6
s3.

Substituting them for the inequality, we obtain

(1 + 3τ)(δ − γ) + (2 + 3τ)(α + δ − 2) + (1 + 3τ + 3τ2) < (1 + 3τ)(α + δ),

which leads to

3τ2 + (3δ − 3γ − 3)τ + α + 2δ − γ − 3 < 0.

The value of the left side reaches its minimum by setting τ = (1 + γ − δ)/2 and
we have

δ <
3γ + 7 − 2

√
3α + 3γ + 1

3
as claimed in Proposition 3.

It is also possible to apply known bounds given in [20, Appendix B] to solve
an integer polynomial of special forms including our integer polynomial 5. We
provide a useful lemma as follows.

Lemma 3. Let f(x1, x2, x3) = a0+a1x1+x2(a2+x3) ∈ Z[x1, x2, x3] be an inte-
ger polynomial. Suppose that x1, x2, x3 are bounded by X1,X2,X3 respectively,
and W = max{|a0|, |a1|X1, |a2|X2,X2X3}. Then the roots can be found for an
optimized τ ≥ 0 if

X1+3τ
1 X2+3τ

2 X1+3τ+3τ2

3 < W 1+3τ .

We directly apply Lemma 3 with X1 = N δ−γ , X2 = Nα+δ−2, X3 = N and
W = Nα+δ for our attack and have

(1 + 3τ)(δ − γ) + (2 + 3τ)(α + δ − 2) + (1 + 3τ + 3τ2) < (1 + 3τ)(α + δ),

that is equivalent to

3τ2 + (3δ − 3γ − 3)τ + α + 2δ − γ − 3 < 0,

which gives the same result as stated in Proposition 3.

Cryptanalysis of RSA Variants with Modified Euler Quotient 279

6 Concluding Remarks

We study some key-related attacks on the RSA variants with modified Euler
quotient ω(N) = (p2 − 1)(q2 − 1) in this paper. Some interesting cases such
as given more key pairs and given some key exposure are analyzed like previous
works in the literature. We propose the multiple private keys attack that extends
the small private key attack for n key pairs. Since the case of n = 1 corresponds
to the small private key attack, it is a meaningful extension of the latter.

For the partial key exposure attack, a preliminary result is provided assum-
ing we already know some most and least significant bits of the private key.
However, there exist several methods to improve the results for given only the
most significant bits or the least significant bits like [39]. A combined scenario
i.e. partial key exposure attack with multiple key pairs has also been analyzed
in [38]. To generalize partial key exposure attacks with only MSBs, LSBs or
multiple key pairs on the RSA variants with modified Euler quotient remains as
future work.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their valuable comments and suggestions. This work was partially supported by
National Natural Science Foundation of China (Grant Nos. 61522210, 61632013).

References

1. Aono, Y.: Minkowski sum based lattice construction for multivariate simultaneous
Coppersmith’s technique and applications to RSA. In: Boyd, C., Simpson, L. (eds.)
ACISP 2013. LNCS, vol. 7959, pp. 88–103. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39059-3 7

2. Blömer, J., May, A.: New partial key exposure attacks on RSA. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 27–43. Springer, Heidelberg (2003). https://
doi.org/10.1007/978-3-540-45146-4 2

3. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N 0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48910-X 1

4. Boneh, D., Durfee, G., Frankel, Y.: An attack on RSA given a small fraction of the
private key bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514,
pp. 25–34. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49649-1 3

5. Bunder, M., Nitaj, A., Susilo, W., Tonien, J.: A new attack on three variants
of the RSA cryptosystem. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS,
vol. 9723, pp. 258–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40367-0 16

6. Bunder, M., Tonien, J.: New attack on the RSA cryptosystem based on continued
fractions. Malays. J. Math. Sci. 11(S3), 45–57 (2017)

7. Castagnos, G.: An efficient probabilistic public-key cryptosystem over quadratic
fields quotients. Finite Fields Appl. 13(3), 563–576 (2007)

8. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring
with high bits known. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070,
pp. 178–189. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-
9 16

https://doi.org/10.1007/978-3-642-39059-3_7
https://doi.org/10.1007/978-3-642-39059-3_7
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/978-3-540-45146-4_2
https://doi.org/10.1007/3-540-48910-X_1
https://doi.org/10.1007/3-540-49649-1_3
https://doi.org/10.1007/978-3-319-40367-0_16
https://doi.org/10.1007/978-3-319-40367-0_16
https://doi.org/10.1007/3-540-68339-9_16
https://doi.org/10.1007/3-540-68339-9_16

280 M. Zheng et al.

9. Coppersmith, D.: Finding a small root of a univariate modular equation. In:
Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 155–165. Springer,
Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9 14

10. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

11. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations revis-
ited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 492–505. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 29

12. Coron, J.-S.: Finding small roots of bivariate integer polynomial equations: a direct
approach. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 379–394.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 21

13. Elkamchouchi, H., Elshenawy, K., Shaban, H.: Extended RSA cryptosystem and
digital signature schemes in the domain of Gaussian integers. In: ICCS 2002, vol.
1, pp. 91–95. IEEE (2002)

14. Ernst, M., Jochemsz, E., May, A., de Weger, B.: Partial key exposure attacks
on RSA up to full size exponents. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 371–386. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 22

15. Fiat, A.: Batch RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp.
175–185. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0 17

16. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot
attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)

17. Herrmann, M., May, A.: Maximizing small root bounds by linearization and appli-
cations to small secret exponent RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 53–69. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-13013-7 4

18. Howgrave-Graham, N.: Finding small roots of univariate modular equations revis-
ited. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355, pp.
131–142. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024458

19. Howgrave-Graham, N., Seifert, J.-P.: Extending Wiener’s attack in the presence of
many decrypting exponents. CQRE 1999. LNCS, vol. 1740, pp. 153–166. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-46701-7 14

20. Jochemsz, E., May, A.: A strategy for finding roots of multivariate polynomials
with new applications in attacking RSA variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006).
https://doi.org/10.1007/11935230 18

21. Jochemsz, E., May, A.: A polynomial time attack on RSA with private CRT-
exponents smaller than N 0.073. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol.
4622, pp. 395–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-74143-5 22

22. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

23. Kuwakado, H., Koyama, K., Tsuruoka, Y.: New RSA-type scheme based on singular
cubic curves y2 ≡ x3 + bx2 (mod n). IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E78–A(1), 27–33 (1995)

24. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Math. Ann. 261(4), 515–534 (1982)

https://doi.org/10.1007/3-540-68339-9_14
https://doi.org/10.1007/978-3-540-24676-3_29
https://doi.org/10.1007/978-3-540-24676-3_29
https://doi.org/10.1007/978-3-540-74143-5_21
https://doi.org/10.1007/11426639_22
https://doi.org/10.1007/11426639_22
https://doi.org/10.1007/0-387-34805-0_17
https://doi.org/10.1007/978-3-642-13013-7_4
https://doi.org/10.1007/978-3-642-13013-7_4
https://doi.org/10.1007/BFb0024458
https://doi.org/10.1007/3-540-46701-7_14
https://doi.org/10.1007/11935230_18
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/978-3-540-74143-5_22
https://doi.org/10.1007/3-540-68697-5_9

Cryptanalysis of RSA Variants with Modified Euler Quotient 281

25. May, A.: Using LLL-reduction for solving RSA and factorization problems. In:
Nguyen, P.Q., Vallée, B. (eds.) The LLL Algorithm - Survey and Applications.
ISC, pp. 315–348. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
02295-1 10

26. Peng, L., Hu, L., Lu, Y., Sarkar, S., Xu, J., Huang, Z.: Cryptanalysis of vari-
ants of RSA with multiple small secret exponents. In: Biryukov, A., Goyal, V.
(eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 105–123. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26617-6 6

27. Peng, L., Hu, L., Lu, Y., Wei, H.: An improved analysis on three variants of the
RSA cryptosystem. In: Chen, K., Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS,
vol. 10143, pp. 140–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-54705-3 9

28. Quisquater, J.J., Couvreur, C.: Fast decipherment algorithm for RSA public-key
cryptosystem. Electron. Lett. 18(21), 905–907 (1982)

29. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Al-Shaer, E., Jha,
S., Keromytis, A.D. (eds.) ACM CCS 2009, pp. 199–212. ACM Press, Chicago
(2009)

30. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

31. Sarkar, S.: Small secret exponent attack on RSA variant with modulus N = prq.
Des. Codes Cryptogr. 73(2), 383–392 (2014)

32. Sarkar, S.: Revisiting prime power RSA. Discrete Appl. Math. 203, 127–133 (2016)
33. Sarkar, S., Maitra, S.: Cryptanalytic results on ‘Dual CRT’ and ‘Common Prime’

RSA. Des. Codes Cryptogr. 66(1–3), 157–174 (2013)
34. Sarkar, S., Venkateswarlu, A.: Partial key exposure attack on CRT-RSA. In: Meier,

W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 255–264.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2 15

35. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055738

36. Takayasu, A., Kunihiro, N.: Cryptanalysis of RSA with multiple small secret expo-
nents. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 176–191.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08344-5 12

37. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA: achieving the
Boneh-Durfee bound. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781,
pp. 345–362. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13051-
4 21

38. Takayasu, A., Kunihiro, N.: Partial key exposure attacks on RSA with multiple
exponent pairs. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp.
243–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0 15

39. Takayasu, A., Kunihiro, N.: A tool kit for partial key exposure attacks on RSA. In:
Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 58–73. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-52153-4 4

40. Wiener, M.J.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Inf. The-
ory 36(3), 553–558 (1990)

41. Zheng, M., Hu, H.: Cryptanalysis of prime power RSA with two private exponents.
Sci. China Inf. Sci. 58(11), 1–8 (2015)

https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-642-02295-1_10
https://doi.org/10.1007/978-3-319-26617-6_6
https://doi.org/10.1007/978-3-319-54705-3_9
https://doi.org/10.1007/978-3-319-54705-3_9
https://doi.org/10.1007/978-3-319-13039-2_15
https://doi.org/10.1007/BFb0055738
https://doi.org/10.1007/978-3-319-08344-5_12
https://doi.org/10.1007/978-3-319-13051-4_21
https://doi.org/10.1007/978-3-319-13051-4_21
https://doi.org/10.1007/978-3-319-40367-0_15
https://doi.org/10.1007/978-3-319-52153-4_4

Saber: Module-LWR Based Key
Exchange, CPA-Secure Encryption

and CCA-Secure KEM

Jan-Pieter D’Anvers, Angshuman Karmakar(B), Sujoy Sinha Roy,
and Frederik Vercauteren

imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, Bus 2452,
3001 Leuven-Heverlee, Belgium

{janpieter.danvers,angshuman.karmakar,sujoy.sinharoy,
frederik.vercauteren}@esat.kuleuven.be

Abstract. In this paper, we introduce Saber, a package of cryptographic
primitives whose security relies on the hardness of the Module Learning
With Rounding problem (Mod-LWR). We first describe a secure Diffie-
Hellman type key exchange protocol, which is then transformed into an
IND-CPA encryption scheme and finally into an IND-CCA secure key
encapsulation mechanism using a post-quantum version of the Fujisaki-
Okamoto transform. The design goals of this package were simplicity,
efficiency and flexibility resulting in the following choices: all integer
moduli are powers of 2 avoiding modular reduction and rejection sam-
pling entirely; the use of LWR halves the amount of randomness required
compared to LWE-based schemes and reduces bandwidth; the module
structure provides flexibility by reusing one core component for multi-
ple security levels. A constant-time AVX2 optimized software implemen-
tation of the KEM with parameters providing more than 128 bits of
post-quantum security, requires only 101K, 125K and 129K cycles for
key generation, encapsulation and decapsulation respectively on a Dell
laptop with an Intel i7-Haswell processor.

1 Introduction

The threat of quantum computers, which break most widely used public key
cryptographic primitives, has sparked a rising interest in post-quantum cryp-
tography. This is emphasized by organizations such as ETSI and NIST that
are looking towards standardization of post-quantum cryptography [18]. Lattice
based cryptography is one of the most promising candidates that are resilient to
all known quantum attacks. Examples include NTRU based schemes [11,25,37]
and protocols based on the (ring)-Learning With Errors (LWE) problem: Alkim
et al. [4] presented ‘A New Hope’, based on the ring-LWE problem; Bos et al. [17]
introduced an alternative scheme called ‘Frodo’ based solely on LWE, but suffers
from higher bandwidth and computational complexity; Bhattacharya et al. [12]
improved upon the bandwidth of ‘Frodo’, by basing their protocol on LWR

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 282–305, 2018.
https://doi.org/10.1007/978-3-319-89339-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_16&domain=pdf

Saber: Module-LWR Based Key Exchange 283

whilst still avoiding the use of rings; Bos et al. [16] presented a CCA-secure Mod-
LWE based key exchange called ‘Kyber’ which takes the middle road between
‘Frodo’ and ‘a New Hope’ by using modules. Concurrently to our work, Jin et
al. described a generic key exchange for Ring-LWE, Mod-LWE, LWE and LWR
in [29], and Baan et al. [8] described a LWR, Ring-LWR key exchange.

In this paper, we introduce Saber, a suite of cryptographic primitives based
on the Mod-LWR problem. The choices we made for the underlying hard prob-
lem and also the actual parameters of the scheme were motivated by three
design principles: simplicity of the scheme and its implementation, efficiency and
flexibility:

– Learning with Rounding (LWR) [10]: schemes based on (variants of) LWE
require sampling from noise distributions, which needs randomness. Further-
more, the noise is included in public keys and ciphertexts resulting in higher
bandwidth. LWR based schemes naturally reduce the bandwidth while avoid-
ing additional randomness for the noise since it is deterministically obtained.

– Choice of moduli: we choose all integer moduli in the scheme to be powers of
2. This eliminates the need for explicit modular reduction and complicated
sampling routines such as rejection sampling. We also prove that using powers
of two, the keys are unbiased and that there is no need for steps such as
uplifting and randomization or decoding of the exchanged information. These
advantages contribute to the simplicity of our design, and facilitate constant
time implementations. The main disadvantage of using such moduli is that
it excludes the use of the number theoretic transform (NTT) to speed up
polynomial multiplication. We propose the use of a combination of Toom-
Cook and Karatsuba polynomial multiplication to mitigate this disadvantage.

– Modules [16,31]: the module versions of the problems (see Sect. 2) allow to
interpolate between the original pure LWE/LWR problems and their ring
versions, lowering computational complexity and bandwidth compared to
LWE/LWR, while introducing protection against attacks on the ring structure
of Ring-LWE/LWR and flexibility to move to higher security levels without
any need to change the underlying arithmetic.

A high-level constant-time software implementation of Saber is provided and
has been placed in the public domain1 as part of the submission to the NIST
competition. The implementation has been optimized using AVX2 instructions
available in modern Intel processors and uses a combination of Toom-Cook and
Karatsuba polynomial multiplication algorithms.

The remainder of the paper is organised as follows: in Sect. 2 we review the
necessary background; we present a secure Diffie-Hellman type key exchange
scheme in Sect. 3, a CPA secure encryption scheme in Sect. 4 and a CCA secure
key encapsulation mechanism in Sect. 5. A security analysis of the hardness on
the underlying mod-LWR problem is given in Sect. 6.1, based on which three
parameter sets are chosen in Sect. 6.2. Finally, specific implementation choices
that speed up our protocols are discussed in Sect. 7 and our implementation
results are compared with the state of the art in Sect. 8.
1 Source codes available at https://github.com/Angshumank/SABER.

https://github.com/Angshumank/SABER

284 J.-P. D’Anvers et al.

2 Preliminaries

2.1 Notation

We denote with Zq the ring of integers modulo an integer q with representants in
[0, q) and for an integer z, we denote z mod q the reduction of z in [0, q). Rq is the
quotient ring Zq[X]/(Xn +1) with n a fixed power of 2 (we only need n = 256).
For any ring R, Rl×k denotes the ring of l × k-matrices over R. For p | q, the
mod p operator is extended to (matrices over) Rq by applying it coefficient-wise.
Single polynomials are written without markup, vectors are bold lower case and
matrices are denoted with bold upper case. U denotes the uniform distribution
and βμ is a centered binomial distribution with parameter μ and corresponding
standard deviation σ =

√
μ/2. If χ is a probability distribution over a set S,

then x ← χ denotes sampling x ∈ S according to χ. If χ is defined on Zq,
XXX ← χ(Rl×k

q) denotes sampling the matrix XXX ∈ Rl×k
q , where all coefficients of

the entries in XXX are sampled from χ.
We use the part selection function bits(x, i, j) with j ≤ i to access j con-

secutive bits of a positive integer x ending at the i-th index (assuming least
significant bit in the 0-th index), producing an integer in Z2j ; i.e., written in
standard C code the function returns (x � (i − j))&(2j − 1), where � is the
right-shift operator. This is explained in Fig. 1. The part selection function is
extended to polynomials and matrices by applying it coefficient-wise. Finally let
�� denote rounding to the nearest integer, which can be extended to polynomials
and matrices coefficient-wise.

i 0

LSBMSB j

Fig. 1. The bits(x, i, j) operator.

2.2 Cryptographic Definitions

Let KE be a Diffie-Hellman type key exchange protocol between two parties as
illustrated in Protocol 1. KE is called (1 − δ)-correct if after execution of the
protocol Pr[k′ = k] � 1− δ, where the probability is computed over the random
coins used in Protocol 1. KE is called IND-RND secure if it is hard for an
adversary to distinguish the real shared secret from random. More formally, we
define the advantage of an adversary in distinguishing the key k from a uniformly
random key k̂ ← U(K) as follows:

Advind-rnd
KE (A) =

∣∣
∣Pr

[
A(P,A,B, k) = 1

] − Pr
[
A(P,A,B, k̂) = 1

]∣∣
∣ .

A public key encryption scheme consists of a triple of functions PKE =
(KeyGen, Enc, Dec), where KeyGen returns a secret key sk and a public key pk;

Saber: Module-LWR Based Key Exchange 285

Public parameters P

Alice Bob

Choose secret a

Compute A as function of P and a A � Choose secret b

Compute B as function of P and b

� B

k = Derive key from P, a,B k′ = Derive key from P, b,A

Protocol 1: Diffie-Hellman type key exchange protocol

Enc takes a public key pk and a message m ∈ M to produce a ciphertext c ∈ C,
and Dec takes the secret key sk together with ciphertext c to output a message
m′ ∈ M or the symbol ⊥ to denote rejection. The PKE is said to be (1 − δ)-
correct if Pr[Dec(sk, Enc(pk,m)) = m] � 1 − δ, where the probability is taken
over (pk, sk) ← KeyGen and the random coins of Enc. We use the notion of
indistinguishability under chosen plaintext attacks (IND-CPA) and define the
advantage of an adversary A by:

Advind-cpa
enc (A) =

∣∣∣∣∣∣
Pr

⎡

⎣b′ = b :
(pk, sk) ← KeyGen();

(m1,m2) ← AEnc(pk); b ← U({0, 1});
c ← Enc(pk,mb); b′ ← AEnc(pk, c);

⎤

⎦ − 1
2

∣∣∣∣∣∣
.

The weaker notion of one-wayness under chosen plaintext attacks (OW-CPA) is
defined as:

Advow-cpa
enc (A) =

∣∣∣∣∣∣
Pr

⎡

⎣m′ = m :
(pk, sk) ← KeyGen();

m ← M; c ← Enc(pk,m);
m′ ← AEnc(pk, c);

⎤

⎦ − 1
2

∣∣∣∣∣∣
.

A key-encapsulation mechanism KEM = (KeyGen, Encaps, Decaps) is a triple
of probabilistic algorithms, where KeyGen returns a secret key sk and a public
key pk, where Encaps takes a public key pk and produces a ciphertext c and a
key k ∈ K, and where Decaps takes the secret key sk, the public key pk and
ciphertext c to return a key k ∈ K or the symbol ⊥ to denote rejection. The KEM
is said to be (1−δ)-correct if Pr[Decaps(sk, c) = k : (c, k) ← Encaps(pk)] � 1−δ,
where the probability is taken over (pk, sk) ← KeyGen and the random coins of
Encaps. We use the notion of indistinguishability under chosen ciphertext attacks
(IND-CCA) to define the advantage of an adversary A by:

Advind-cca
KEM (A) =

∣∣∣∣
∣∣
Pr

⎡

⎣b′ = b :
(pk, sk) ← KeyGen(); b ← U({0, 1});

(c, d, k0) ← Encaps(pk);
k1 ← K; b′ ← ADecaps(pk, c, d, kb);

⎤

⎦ − 1
2

∣∣∣∣
∣∣

.

The advantage of an adversary A in distinguishing a pseudorandom generator
gen() with seed seedAAA ← U({0, 1}256) from a uniformly random distribution is
defined as follows:

286 J.-P. D’Anvers et al.

Advprg
gen()(A) =

∣
∣∣∣∣∣∣
∣

Pr

[
b′ = 1 :

seedAAA ← U({0, 1}256)
AAA ← gen(seedAAA) ∈ Rl×l

q ; b′ = A(AAA);

]
.

−Pr
[
b′ = 1 : AAA ← U(Rm×l

q); b′ = A(AAA);
]

∣
∣∣∣∣∣∣
∣

(1)

2.3 LWE, LWR and Mod-LWR Problems

The learning with errors (LWE) problem was introduced by Regev [34] and its
decisional version states that it is hard to distinguish uniform random samples
(aaa, u) ← U(Zl×1

q × Zq) from LWE-samples of the form
(
aaa, b = aaaTsss + e

)
∈ Z

l×1
q × Zq , (2)

where the secret vector sss ← βμ(Zl×1
q) is fixed for all samples, aaa ← U(Zl×1

q)
and e ← βμ(Zq) is a small error. A module version of LWE, called Mod-LWE,
was analyzed by Langlois and Stehlé [31] and essentially replaces the ring Zq in
the above samples by a quotient ring of the form Rq with corresponding error
distribution βμ(Rl×1

q). The rank of the module is l and the dimension of the ring
Rq is n. The case l = 1 corresponds to the ring-LWE problem introduced in [32].

The LWR problem was introduced by Banerjee et al. [10] and is a derandom-
ized version of the LWE problem. In contrast to the LWE problem, the “noise”
in the LWR problem is generated deterministically by scaling and rounding coef-
ficients modulo q to modulo p (with p < q). In detail, an LWR sample is given
by (

aaa, b =
⌊p

q
(aaaTsss)

⌉)
∈ Z

l×1
q × Zp (3)

for a fixed sss ← βμ(Zl×1
q) and uniform random aaa ← U(Zl×1

q). The decisional LWR
problem states that is it hard to distinguish samples from the LWR distribution
from that of the uniform distribution. A reduction from the LWE problem to
the LWR problem was given by Banerjee et al. [10], and further improved by
Alwen et al. [6], Bogdanov et al. [15] and, Alperin-Sheriff and Daniel Apon [5].

The security of our protocol relies on the hardness of the module version of
LWR (Mod-LWR), which is a straightforward generalization of Mod-LWE. A
Mod-LWR sample is given by

(
aaa, b =

⌊p

q
(aaaTsss)

⌉)
∈ Rl×1

q × Rp (4)

where the secret sss ← βμ(Rl×1
q) is fixed for all samples and aaa ← U(Rl×1

q).
The advantage of an adversary A in distinguishing m samples from a Mod-

LWR distribution from that of a uniform distribution is defined as follows, where
m, k, μ, q and p are positive integers with q > p:

AdvMod-LWR
m,l,μ,q,p (A) =

∣
∣∣∣∣∣
∣∣∣∣

Pr

(
b′ = 1 :

AAA ← U(Rm×l
q); sss ← βμ(Rl×1

q);
b′ = A(AAA, �(p/q)AAAsss�);

)

−Pr

(
b′ = 1 :

AAA ← U(Rm×l
q); uuu ← U(Rl×1

p);
b′ = A(AAA,uuu);

)

∣
∣∣∣∣∣
∣∣∣∣

. (5)

Saber: Module-LWR Based Key Exchange 287

3 Key Exchange

In Protocol 2 we describe a Diffie-Hellman type key exchange scheme Saber.KE
based on the hardness of Mod-LWR problem. Unlike the Diffie-Hellman key
exchange [22], in our scheme the two communicating parties sometimes fail to
agree on the same key. As in previous works [12,23,33], we can make this failure
probability negligibly small by sending some additional reconciliation data c.

Alice Bob

1 seedAAA ← U({0, 1}256)

2 AAA ← gen(seedAAA) ∈ Rl×l
q

3 sss ← βμ(Rl×1
q) sss′ ← βμ(Rl×1

q)

4 bbb = bits(AAAsss + hhh, εq, εp) ∈ Rl×1
p

bbb, seedAAA� AAA ← gen(seedAAA) ∈ Rl×l
q

5 bbb′ = bits(AAATsss′ + hhh, εq, εp) ∈ Rl×1
p

6 v′ = bbbT bits(sss′, εp, εp) ∈ Rp

7 v = bbb′T bits(sss, εp, εp) ∈ Rp �bbb′, c c = bits(v′ + h1, εp − 1, εt) ∈ Rt

8 k = bits(v − 2εp−εt−1c + h2, εp, 1) k′ = bits(v′ + h1, εp, 1)
9 keyAlice = kdf(k) keyBob = kdf(k′)

Protocol 2: Saber.KE key exchange

All moduli involved in the scheme are chosen to be powers of 2, in particular
we choose q = 2εq , p = 2εp and t = 2εt with εq > εp > (εt+1), so we have 2t | p | q.
In practice, our main parameter set will correspond to the case εq = 13, εp = 10
and εt = 3. The secret vectors sss and sss′ are sampled from βμ(Rl×1

q), with μ < p,
while the matrix AAA ∈ Rl×l

q is sampled using a pseudorandom generator gen()
initialized with seedA. The session key is obtained by feeding the common secret
k = k′ ∈ R2 into a key derivation function kdf(). The algorithm also uses three
constants: a constant vector hhh ∈ Rl×1

q consisting of polynomials all coefficients
of which are set to the constant 2εq−εp−1, a constant polynomial h1 ∈ Rq with
all coefficients equal to 2εq−εp−1, and a constant polynomial h2 ∈ Rq with all
coefficients set equal to (2εp−2 − 2εp−εt−2 + 2εq−εp−1). These constants are used
to mimic rounding operations, which are necessary to reduce failure probability,
while retaining the reduction to the underlying decisional Mod-LWR problem.

Note that the operations bits(sss, εp, εp) in line 6 and bits(sss′, εp, εp) in line 7
simply mean we are considering sss mod p and s′s′s′ mod p as elements in Rp which
is well defined since p | q.

Correctness: Using Saber.KE two communicating parties agree on a common
random key with overwhelming probability. A tight bound on the failure prob-
ability can be obtained using following observations from Bos et al. [17]: the
reconciliation between two integer values vi, v

′
i ∈ Zp is correct if the distance

between vi and v′
i is smaller than p/4(1 − 1/t), and fails if the distance is bigger

288 J.-P. D’Anvers et al.

than p/4(1 + 1/t). In between these values, the probability of success decreases
linearly from 1 to 0. Consequently, a tight bound on the failure probability given
the distribution of Δvi = v′

i − vi can be calculated by adding to Δvi a discrete
uniformly distributed error er ∈ Zp with range [−p/4t, p/4t]. The success prob-
ability of the reconciliation between vi and v′

i then equals Pr[|Δvi + er| < p/4].
Using the above observation we can estimate a bound on the error probability:

Theorem 1. Let AAA be a matrix in Rl×l
q and sss,sss′ two vectors in Rl×1

q sampled
as in Protocol 2. Define eee and eee′ as the rounding errors introduced by scaling
and rounding AAAsss and AAATsss′, i.e. bits(AAAsss+hhh, εq, εp) = p

qAAAsss+eee and bits(AAATsss′ +
hhh, εq, εp) = p

qAAATsss′ + e′e′e′. Let er ∈ Rq be a polynomial with uniformly distributed
coefficients with range [−p/4t, p/4t]. If we set

δ = Pr[||(sss′Teee − eee′Tsss + er) mod p||∞ > p/4]

then after executing the Saber.KE protocol, both communicating parties agree on
a n-bit key with probability 1 − δ.

Proof. The polynomials v′ and v calculated by Bob and Alice respectively in
Protocol 2 are given as: v′ = (p

qsss′TAAAsss + sss′Teee mod p) and v = (p
qsss′TAAAsss + eee′Tsss

mod p). Here, the coefficients of eee,eee′ are the rounding errors and so are in
(−1/2, 1/2]. It can be easily seen that the values calculated by the communi-
cating parties differ by Δv = ||(sss′Teee − eee′Tsss) mod p||. Therefore, Bob and Alice
agree on the same secret if ||Δv+er||∞ ≤ p

4 . Hence, for δ = Pr[||(sss′Teee−eee′Tsss+er)
mod p||∞ > p/4] the Saber.KE protocol is (1 − δ) correct. 	

Similar to Bos et al. [16], a tight upper bound on the value of δ is calculated
using a Python script. To be able to practically compute the distribution of
Δv = v′ − v ∈ Rp, Bos et al. assume independence between the terms sss′Teee and
eee′Tsss, which is not necessarily the case. Analogous to Theorem 5.2 from Jin and
Zhao [29], one could argue that they are independent if conditioned on sss′TAAAsss ≡ a
mod q/p, where a ∈ Rq/p. The recommended parameter set described in Sect. 6.2
yields δ < 2−136.

Unbiased Keys: Since our moduli are powers of 2 and as such non-prime, there
exists (negligibly small) exceptional sets for sss and s′s′s′ such that the common key
is biased. The intuition is that if all coefficients of the polynomials in sss or s′s′s′ are
divisible by a high power of 2, the same property will hold for AAAsss or AAATs′s′s′, and
their scaled versions. The following theorem however shows that outside these
sets, uniformity is attained.

Theorem 2. Let Sbad denote the set of elements in Rl×1
q for which none of the

coefficients w satisfies gcd(w, q)|(q/p) and let S′
bad denote the set of elements in

Rl×1
q for which none of the coefficients w satisfies gcd(w, p)|(p/2). Let sss,sss′ ←

βμ(Rl×1
q) and let AAA ← U(Rl×l

q) and determine k as follows:

1. bbb = bits(AAAsss + hhh, εq, εp)
2. k = bits(bbbT (sss′ mod p) + h1, εp, 1)

Saber: Module-LWR Based Key Exchange 289

For sss /∈ Sbad and sss′ /∈ S′
bad, k is distributed uniformly for AAA ← U(Rl×l

q). This
occurs with a probability Pr[sss /∈ Sbad]Pr[sss′ /∈ S′

bad].

Proof. Note that the multiplication of a uniformly distributed coefficient of AAA,
by a coefficient w of sss, is uniformly distributed in its εp most significant bits if
gcd(w, q)|(q/p), which is equivalent to stating that �pw/q� is invertible in Zp.

The distribution of the coefficients of bbb = bits(AAAsss + hhh, εq, εp) is as follows:
since convolution of any distribution with a uniform distribution in Zp results
again in a uniform distribution in Zp, we need only one term of the summation
step to be uniform in its p most significant bits. Therefore, the coefficients of bbb
will be uniformly distributed if sss /∈ Sbad.

Finally note that the distribution of k′ = bits(bbbT (sss′ mod p) + h1, εp, 1) is
uniform if bbb has a uniform distribution and if sss′ /∈ s′

bad. As above, a multiplication
of a uniformly distributed coefficient of bbb, with a coefficient w′ of sss is uniformly
distributed in its most significant bit if gcd(w′, p)|(p/2). Therefore, k will be
uniform if the coefficients of bbb are uniformly distributed and if sss′ /∈ S′

bad. The
probability of a sampling sss and sss′ so that k has a uniform distribution is thus
Pr[sss /∈ Sbad]Pr[sss′ /∈ S′

bad]. 	

Since in our setting sss,s′s′s′ are sampled from βμ(Rq), the coefficients are small

and thus the only sampleable vector in Sbad and S′
bad is the all zero vector

which occurs with probability 2−1436. In the rest of the paper, we assume that
the secret vectors are not in the vector sets: sss /∈ Sbad and sss′ /∈ S′

bad.

Security: The security of Saber.KE can be reduced to the decisional Mod-LWR
problem as shown by the following theorem.

Theorem 3. For any adversary A, there exist three adversaries B0, B1 and B2

such that Advind-rndSaber.KE(A) � Advprggen()(B0) + Advmod-lwr
l,l,μ,q,p (B1) + Advmod-lwr

l+1,l,μ,q,p(B2),
if q/p � p/(2t).

Proof. The IND-RND security of our key exchange can be expressed as the
probability that an adversary A can distinguish between k and a uniformly
random key k̂ ← U(K), given the public information AAA,bbb,bbb′ and c. The proof
proceeds by a sequence of games Gi, where AdvGi

(A) = |Pr[SA,i] − 1/2|, in
which SA,i is the event that the adversary guesses correctly in game Gi. The
sequence of games is depicted in Fig. 2.

The first game G0 is the original game. In game G1, the public matrix is
no longer generated using the pseudorandom generator gen(), but is sampled
from a uniformly random distribution. An adversary that can distinguish these
two games, can also distinguish the matrix generated through the pseudorandom
generator from a uniformly random matrix, and therefore |Pr[SA,0]−Pr[SA,1]| �
Advprg

gen()(B0).
During the second game G2, the vector bbb is generated uniformly random,

so that (AAA,bbb) is a uniformly distributed sample, in contrast to the first game
G1, where (AAA,bbb) forms a Mod-LWR sample. An adversary that can distinguish

290 J.-P. D’Anvers et al.

Fig. 2. Sequence of games that are used in the proof of Theorem 3

between game G1 and G2 has also solved the decisional Mod-LWR problem on
this sample, and therefore |Pr[SA,1] − Pr[SA,2]| � Advmod-lwr

l,l,μ,q,p (B1).
In game G2, the number of bits dropped in the calculation of bbb′ and c is

εq − εp and εp − εt − 1 respectively, which is reduced to εq − εp in game G3. If we
compare G3 to G2, since (εq − εp) � (εp − εt − 1), the number of dropped bits
is the same or less, and therefore the number of available bits to the adversary
is at least the same. From this we conclude that G2 is at least as hard as G3:
∀A,∃A′ : AdvG2(A) � AdvG3(A

′).
Up to game G3, the coefficients of the inputs for the generation of bbb′ and c

are in Zq and Zp respectively. This is evened up to coefficients in Zq for all of
the calculations in game G4. Using sss′ instead of bits(sss′, εp, εp) does not change
the result of the multiplication because μ < p. Since p | q, generating bbb from
U(Rl×1

q) instead of U(Rl×1
p) makes the advantage of the adversary in Game G4

at least as big as in game G3, as the adversary in Game G4 can easily calculate
the same value for c as in Game G3. Cutting off the last εq − εp bits of v′ does
not change the game since they are not used in the rest of the protocol. Thus
we can state: ∀A′,∃A′′ : AdvG3(A

′) � AdvG4(A
′′).

Saber: Module-LWR Based Key Exchange 291

Algorithm 1. Saber.KeyGen()

1 seedAAA ← U({0, 1}256)

2 AAA ← gen(seedAAA) ∈ Rl×l
q

3 sss ← βμ(Rl×1
q)

4 bbb = bits(AAAsss + hhh, εq, εp) ∈ Rl×1
p

5 return (pk := (bbb, seedAAA), sk := sss)

Analogous to game G2, bbb′ and c are replaced by a uniform random value in
game G5, so that the Mod-LWR samples (AAA,bbb′) and (bbb, v′), which share secret
key sss′, are replaced by uniformly random variables. Therefore, an adversary that
can distinguish between these two games, can solve the corresponding Mod-LWR
decisional problem and thus |Pr[SA′′,4] − Pr[SA′′,5]| � Advmod-lwr

l+1,l,μ,q,p(B2).
In the resulting game G5, the keys are independent of the values bbb, bbb′ and v′.

Moreover, since v′ is uniformly distributed in R
l×1
p , where q is a power of two,

and since k′ is generated as the first bit of v′, k′ is also uniformly distributed, and
therefore Pr[SA′′,5] = 1/2. Working backwards from the probability of success in
game G5 to that in game G0, and using the fact that AdvGi

(A) = |Pr[SA,i]−1/2|,
gives the desired result. 	

4 CPA Secure Encryption

The key exchange scheme of the previous section can be transformed into a CPA
secure public-key encryption scheme Saber.PKE by using a similar transforma-
tion from Diffie-Hellman key exchange to ElGamal encryption, i.e. the messages
sent by Alice now define her public key, and the encryption simply consists of
an XOR with the common (pre)key.

The message space is M ∈ {0, 1}n and a message m ∈ M is represented
as an element in Rq with coefficients in {0, 1}. Algorithms 1 to 3 describe the
public-key encryption scheme Saber.PKE=(KeyGen,Enc,Dec), where the setup
parameters are the same as in the key-exchange scheme described before. If the
optional parameter r is specified while calling Saber.ENC, it is used as a seed
to generate the secret vector sss′.

Security and Correctness: It is easily seen that the security and correctness
of the encryption scheme are equivalent to that of the key exchange introduced
in Sect. 3.

Theorem 4. For any adversary A against Saber.PKE, there exists an adversary
B against Saber.KE such that Advind-cpaSaber.PKE(A) = Advind-rndSaber.KE(B). Furthermore,
Saber.PKE is (1 − δ) correct if and only if Saber.KE is (1 − δ) correct.

Proof. The proof proceeds by showing the equivalence between Saber.PKE and
the combination of Saber.KE with a one time pad of the message m with k′

KE.
Note that the most significant bit of each coefficient of v′ is equal to the corre-
sponding (pre)key bits of k′ in Saber.KE. Therefore, in line 5 of the Algorithm2,

292 J.-P. D’Anvers et al.

Algorithm 2. Saber.Enc(pk = (bbb, seedAAA),m ∈ M; r)

1 AAA ← gen(seedAAA) ∈ Rl×l
q

2 s′s′s′ ← βμ(Rl×1
q)

3 bbb′ = bits(AAATsss′ + hhh, εq, εp) ∈ Rl×1
p

4 v′ = bbbT bits(sss′, εp, εp) ∈ Rp

5 cm = bits(v′ + h1 + 2εp−1m, εp, εt + 1) ∈ R2t

6 return c := (cm, b′b′b′)

Algorithm 3. Saber.Dec(sk = sss, cm, b′b′b′)

1 v = bbb′T bits(sss, εp, εp) ∈ Rp

2 m′ = bits(v − 2εp−εt−1cm + h2, εp, 1) ∈ R2

3 return m′

the addition is essentially a one time pad of the message bits m with the coef-
ficients of the (pre)key k′ in the key exchange scheme (Protocol 2). We can
therefore conclude that the security of our encryption equals the security of our
key exchange scheme for the same parameters. Similarly, it can be seen that
Saber.PKE is correct if the keys k and k′ are equal. Hence, the correctness of
the encryption scheme is equivalent to the correctness of the key exchange in
Protocol 2. 	

5 CCA Secure KEM

The CPA secure encryption scheme can be turned into a CCA secure
KEM Saber.KEM = (Encaps, Decaps) using an appropriate transformation.
Recently, several post-quantum versions [26,28,35,38] of the Fujisaki-Okamoto
transform with corresponding security reductions have been developed. At this
point, the FO�⊥ transformation in [26] with post-quantum reduction from Jiang
et al. [28] gives the tightest reduction for schemes with non-perfect correctness.
However, other transformations could be used to turn Saber.PKE into a CCA
secure KEM.

Saber.KEM is described in detail in Algorithms 4 and 5. The functions
G : {0, 1}∗ → {0, 1}l×n and H : {0, 1}∗ → {0, 1}n are hash functions, z is a secret
random seed used to return a pseudorandom response when the re-encryption
fails, and the Saber.Enc and Saber.Dec functions are from the CPA secure asym-
metric encryption described in Sect. 4.

Correctness: Following Hofheinz et al. [26], Saber.KEM is (1 − δ) correct if
and only if Saber.PKE is (1 − δ) correct, and thus also if and only if Saber.KE
is (1 − δ) correct.

Security: By modeling the hash functions G and H as random oracles, a lower
bound on the CCA security can be proven. We use the security bounds of

Saber: Module-LWR Based Key Exchange 293

Algorithm 4. Saber.Encaps(pk = (bbb, seedAAA))

1 m ← U({0, 1}256)

2 (K̂, r) = G(pk, m)
3 c = Saber.Enc(pk, m; r)

4 K = H(K̂, c)
5 return (c, K)

Algorithm 5. Saber.Decaps(sk = (sss, z), pk = (bbb, seedAAA), c)

1 m′ = Saber.Dec(sss, c)

2 (K̂′, r′) = G(pk, m′)
3 c′ = Saber.Enc(pk, m′; r′)
4 if c = c′ then
5 return K = H(K̂′, c)
6 else
7 return K = H(z, c)

Hofheinz et al. [26], which considers a KEM variant of the Fujisaki-Okamoto
transform that can also handle a small failure probability δ of the encryption
scheme. This failure probability should be cryptographically negligibly small for
the security to hold. Using Theorems 3.2 and 3.4 from [26], we get the follow-
ing theorems for the security and correctness of our KEM in the random oracle
model:

Theorem 5 (ROM, Hofheinz et al. [26]). For a IND-CCA adversary B, making
at most qH and qG queries to respectively the random oracle G and H, and qD

queries to the decryption oracle, there exists an IND-CPA adversary A such that:

Advind-ccaSaber.KEM(B) � 3Advind-cpaSaber.PKE(A) + qGδ +
2qG + qH + 1

2256
.

Jiang et al. [28] also provide a security reduction against a quantum adversary
in the quantum random oracle model from IND-CCA security to OW-CPA secu-
rity. IND-CPA with a sufficiently large message space implies OW-CPA [13,26].
Therefore, we can reduce the IND-CCA security of Saber.KEM to the IND.CPA
security of the underlying public key encryption:

Theorem 6 (QROM, Jiang et al. [28]). For any IND-CCA quantum adversary
B, making at most qH and qG queries to respectively the random quantum oracle
G and H, and qD many (classical) queries to the decryption oracle, there exists
an adversary A such that:

Advind-ccaSaber.KEM(B) � 2qH
1√
2256

+ 4qG
√

δ + 2(qG + qH)
√

Advind-cpaSaber.PKE(A)

294 J.-P. D’Anvers et al.

Multi Target Protection: As described in [16], hashing the public key into
K̂ has two beneficial effects: it makes sure that K depends on the input of both
parties, and it offers multi-target protection. In this scenario, the adversary uses
Grover’s algorithm to precompute an m that has a relatively high failure proba-
bility. Hashing pk into K̂ ensures that an attacker is not able to use precomputed
‘weak’ values of m.

6 Security Analysis and Parameter Selection

6.1 Security Analysis

Our security analysis is similar to the one in ‘a New Hope’ [4]. The hardness of
Mod-LWR is analyzed as an LWE problem, since there are no known attacks
that make use of the Module or LWR structure. A set of l LWR samples given
by with AAA ← U(Rl×l

q) and sss ← βμ(Rl×1
q), can be rewritten as an LWE problem

in the following way:
(
AAA,

⌊p

q
(AAAsss mod q)

⌉
mod p

)
=

(
AAA,

p

q
(AAAsss mod q) + eee mod p

)

We can lift this to a problem modulo q by multiplying by q
p :

q

p
bbb = AAAsss +

q

p
eee mod q ,

where q/peee is the random variable containing the error introduced by the round-
ing operation, of which the coefficients are discrete and nearly uniformly dis-
tributed in (−q/2p, q/2p].

BKW type of attacks [30] and linearization attacks [7] are not feasible, since
the number of samples is at most double the dimension of the lattice. Moreover,
the secret vectors sss and sss′ are dense enough to avoid the sparse secret attack
described by Albrecht [2]. As a result, we end up with two main type of attacks:
the primal and the dual attack, that make use of BKZ lattice reduction [19,36].

Weighted Primal Attack: The primal attack constructs a lattice that has a
unique shortest vector that contains the noise eee and the secret sss. BKZ, with
block dimension b, can be used to find this unique solution. An LWE sample
(AAA,bbb = AAAsss + eee) ∈ Z

m×n
q × Z

m
q can be transformed to the following lattice:

Λ = {vvv ∈ Z
m+n+1 : (AAA|IIIm| − bbb)vvv = 0 mod q}, with dimension d = m + n + 1

and volume qm. The unique shortest vector in this lattice is vvv = (sss,eee, 1), and it
has norm λ ≈√

nσ2
s + mσ2

e . Using heuristic models, the primal attack succeeds
if [4]:

√
nσ2

s + mσ2
e <δ2b−d−1Vol(Λ)

1
d

where: δ = ((πb)
1
d

b

2πe
)

1
2(b−1)

Saber: Module-LWR Based Key Exchange 295

However, the vector vvv = (sss,eee, 1) is unbalanced since ||sssi|| is not necessarily
equal to ||eeei||. In our case, ||sssi|| < ||eeei||, which can be exploited by the lattice
rescaling method described by Bai and Galbraith [9], and further analysed in
[21]. Analogous to [4], the primal attack is successful if the projected norm of
the unique shortest vector on the last b Gram-Schmidt vectors is shorter than
the (d − b)th Gram-Schmidt vector, or:

σs

√
b � δ2b−d−1

(q

α

)m
d

.

Weighted Dual Attack: The dual attack tries to distinguish between an LWE
sample (AAA,bbb = AAAsss+eee) ∈ Z

m×n
q ×Z

m
q and a uniformly random sample by finding

a short vector (vvv,www) in the lattice Λ = {(xxx,yyy) ∈ Z
m × Z

n : AAATxxx = yyy mod q}.
This short vector is used to compute a distinguisher z = vvvbbb. If bbb = AAAsss + eee, we
can write z = vvvAAAsss + vvveee = wwwsss + vvveee, which is small and approximately Gaussian
distributed. If bbb is generated uniformly, z will also be uniform mod q. Since in
our case, ||sssi|| < ||eeei||, we observe that the wwwsss term will be smaller than the
vvveee term. The weighted attack [9,21] optimizes the shortest vector so that these
terms have a similar variance, by considering the weighted lattice Λ′ = {(xxx,yyy′) ∈
Z

m × (α−1
Z)n : (xxx, αyyy′) ∈ Λ mod q}.

Following the strategy of [4], we can calculate the cost of the dual attack. The
statistical distance between a uniformly distributed z and a Gaussian distributed
z is bounded by ε = 4exp(−2π2τ2), where τ = ||uuu||σe/q . Since the key is
hashed, an advantage of ε is not sufficient and must be repeated at least R =
max(1, 1/(20.2075bε2)) times. The cost of the dual attack is thus equal to:

Costdual = CostBKZR = b2cbR, .

6.2 Parameter Selection

We use a python script to choose parameters q, p and t for optimum usage
of communication bandwidth, while achieving a quantum security level of 128
and failure probability 2−128. Additional parameter sets are generated as Light
and Fire versions of the Saber.KEM, a light and paranoid version respectively
(Table 1).

We would like to remark that choosing p and q as primes facilitates the
use of NTT based polynomial multiplications [3,16]. However, rounding from
Rq to Rp introduces significant bias as p � q. Bogdanov et al. [15] proved the
pseudorandomness of the LWR problem for moduli p and q for general lattices
but left it as open problem for the ring version. However by choosing p and q
as a power-of-two, we can be assured of the pseudorandomness, which we also
showed in Sect. 3.

296 J.-P. D’Anvers et al.

Table 1. Security and correctness of Saber.KEM.

Sec cat Fail prob Attack Classical Quantum pk (B) sk (B) Ciphertext (B)

LightSaber-KEM: k = 2, n = 256, q = 213, p = 210, t = 22, μ = 10

1 2−120 Primal 126 115 672 1568 736

Dual 126 115

Saber-KEM: k = 3, n = 256, q = 213, p = 210, t = 23, μ = 8

3 2−136 Primal 199 181 992 2304 1088

Dual 198 180

FireSaber-KEM: k = 4, n = 256, q = 213, p = 210, t = 25, μ = 6

5 2−165 Primal 270 246 1312 3040 1472

Dual 270 245

7 Implementation

In this section, we describe a constant-time software implementation of Saber.
Our implementation is relatively simpler than several existing lattice-based post-
quantum key exchange schemes [4,16,17]. This is primarily due to the underly-
ing LWR problem and our choice of power-of-two moduli. As the LWR problem
inherently introduces errors, Saber can bypass error sampling operations unlike
other LWE-based schemes. Our choice of power-of-two moduli results in faster
arithmetic operations and does not require rejection sampling [4,16] for generat-
ing the random matrix A. In the remaining part of this section we describe the
building blocks that are used to realize an efficient implementation of Saber.

Symmetric Primitives: The hash functions G and H in the CCA-secure Saber-
KEM are implemented using SHA3-512 and SHA3-256 respectively, standardized
in FIPS 202 [1]. For pseudorandom number generation, we use the extendable
output function SHAKE-128 [1]. On parallel platforms, such as Intel processors
that support ‘single instruction multiple data’ (SIMD), one can speedup pseudo-
random number generation by using a vectorized implementation of SHAKE-128
and multiple seed values [16]. We decided to use SHAKE-128 serially to gener-
ate pseudorandom byte string of a required length from a given seed. This is
mainly because of the fact that on majority of resource-constrained platforms
(e.g., billions of IoT devices) SIMD would not be feasible, and hence multiple
execution of SHAKE-128 would worsen performance (time and energy) because
of the costly initialization operation [1] performed in each execution of SHAKE-
128. Note that, it is essential for the correctness of the KEM, that all parties
generate pseudorandomness in the same way.

Secret Polynomial Generation: Saber requires sampling of secret polynomi-
als from an error distribution. Sampling from a centered binomial distribution
can be performed easily [4] in constant time by comparing the Hamming weights
of two random integers of same length. Hence we use a centered binomial distri-
bution βμ with the parameter μ = 8 to sample the secret polynomials.

Saber: Module-LWR Based Key Exchange 297

Matrix A Generation: Since A consists of 9 polynomials, each having 256
13-bit coefficients, we use SHAKE-128 to generate 9 · 256 · 13/8 = 3, 744 pseudo-
random bytes. Next we pack these bytes into the 13-bit coefficients of A. Note
that in our case no additional rejection sampling is required as in Kyber, due
to their use of a prime moduli. The rejection sampling wastes a portion of the
generated pseudorandom bytes.

Polynomial Arithmetic: Our protocols relies heavily on polynomial arith-
metic in the ring Rq with modulus q = 213 and the irreducible polyno-
mial f(x) = x256 + 1. While polynomial addition and subtraction are simple
coefficient-wise addition and subtraction operations, polynomial multiplication
is a costly operation. An optimized polynomial multiplication routine is crucial
for an efficient implementation of Saber. Since q is not a prime, we cannot apply
the Number Theoretic Transform (NTT) unlike the key exchange schemes such
as ‘New Hope’ [4], Kyber [16] etc. The next best alternative is the Karatsuba
method which does not require any special modulus. Hence we use the Karat-
suba polynomial multiplication method in Saber. The Karatsuba polynomial
multiplication has a higher asymptotic complexity of O(nlog2 3). Though we lose
in asymptotic time complexity, we gain in modular arithmetic since modular
reduction comes for free. Furthermore, we found that the Karatsuba polynomial
multiplication method is relatively easier to vectorize in modern Intel processors
that support AVX/AVX2 ‘single instruction multiple data’ (SIMD) instructions.

The Karatsuba multiplication method follows a top-down recursive approach:
a 256-coefficient polynomial multiplication is split into three 128-coefficient poly-
nomial multiplications, next each 128-coefficient polynomial multiplication is
split into three 64-coefficient polynomial multiplications, and so on. After sev-
eral levels of recursive splitting, when the polynomial size becomes small enough,
i.e., reaches a particular threshold, a quadratic-complexity polynomial multipli-
cation such as the School-book method is used to compute the smallest polyno-
mial multiplications. If we set the threshold value to 16, then a 256-coefficient
Karatsuba polynomial multiplication calls the School-book polynomial multipli-
cation routine 81 times.

However, we can improve this by using the Toom-Cook polynomial multipli-
cation. The Toom-Cook method is a generalization of the Karatsuba method and
can be used to split a 256-coefficient polynomial multiplication into seven 64-
coefficient polynomial multiplications. This is called four-way Toom-Cook mul-
tiplication. The smaller multiplications can be computed using the Karatsuba
method as described above. Thus using the four-way Toom-Cook multiplication,
the total number of calls to the School-book multiplication routine reduces to
only 63 for a 256-coefficient polynomial multiplication.

In the Toom-Cook multiplication the choice of the evaluation points affects
the computation time. Following [14], we choose the set of evaluation points to
be {0,±1/2,±1, 2,∞}. In the interpolation phase multiplications and divisions
by scalar constants are performed. Divisions by odd scalars are performed by
computing multiplications by their respective inverses. However, the inverse of
an even divisor does not exist when the modulus is a power of two, which is true

298 J.-P. D’Anvers et al.

for Saber. For an even divisor we compute the division in two steps: first, we
multiply by the inverse of the odd factor, then we compute a true division (i.e.
right shifting) by the power-of-two factor since we know beforehand the division
has to be exact. In the four-way Toom-Cook multiplication, the maximum power-
of-two factor we have is 8, which could result in a loss of precision of 3 bits. Hence,
during the interpolation phase, we allow the intermediate coefficients to grow by
3 bits such that the extra bits can be used to calculate the divisions by 2, 4 and
8. Our choice of modulus q = 213 is especially helpful since we can use 16-bit
data variables (short integers in C) to store the 13-bit coefficients. The steps are
shown in Algorithm6 in AppendixA.

AVX2 Implementation of Polynomial Multiplication: Starting from
Sandy Bridge, Intel provides AVX/AVX2 SIMD instructions that support
computation on 128/256-bit vectors. We utilize this feature to achieve fast
polynomial multiplication inspired by the software implementations of NTRU
Prime [11] and NTRU KEM [27]. In Algorithm 6 the interpolation phase is triv-
ial to vectorize. However, the evaluation phase, where 64-coefficient polynomial
multiplications are performed requires special care to take advantage of vector-
ized instructions. We explain this below.

Assume that we want to compute 16 polynomial multiplications C0 · D0,
C1 ·D1, to C15 ·D15 where each polynomial has 16 coefficients. Also assume that
the polynomials are stored in two AVX2-arrays CAV X and DAV X as shown in
Fig. 3. The i-th coefficients of all Cj (and Dj) polynomials reside in the same
AVX2 vectors. With such an arrangement it is easy to compute the 16 polynomial
multiplications in a batch by multiplying the elements of CAV X and DAV X .
We design the polynomial multiplier routine with the aim to obtain such an
arrangement of coefficients during the threshold School-book multiplications.
This is explained below.

The seven 64-coefficient polynomial multiplications in Algorithm6 require 63
School-book multiplications of 16-coefficient polynomials. Since a 16-coefficient
polynomial fits in an AVX2 vector, the 63 School-book multiplications can be
computed in 4 batches using vectorized instructions. However, the batching is not
trivial to implement. In the Karatsuba recursion, we do not immediately com-
pute a School-book multiplication every time the recursion reaches the threshold
condition. Instead, a lazy approach is adapted. We keep two ‘buckets’ each of
which is an array of 16 AVX2 vectors. These buckets are gradually filled with
the 16-coefficient polynomials that are the multiplicands of the School-book

0
[0]D [0]

1D D [0]
15

[15]D10
[15]D [15]

15D

CAVX [0]

CAVX [15]

DAVX [0]

DAVX [15]

[0]
1

[0]
15

[15]
1 0

[15] [15]
15

0
[0]C C C

CCC

Fig. 3. Arrangement of coefficients for batch polynomial multiplication

Saber: Module-LWR Based Key Exchange 299

multiplications. Once the buckets are full, each of them can be viewed as a
16×16 matrix, containing 256 coefficients. Next we transpose the matrices using
a sequence of AVX2 operations to reach the arrangement as shown in Fig. 3. Now
a batch multiplication is performed. The result is a collection of 31 vectors. This
is again transposed to get the result of each 16-coefficient polynomial multipli-
cation in two vectors. This lazy approach requires a bookkeeping which has a
small overhead.

Table 2. Cycle count of the building blocks used in Saber and Kyber

Scheme Operation Cycles

Saber
AVX2 optimized

Toom-Cook polynomial multiplication 3,439

Sampling secret polynomial vector 13,656

Generating random matrix AAA (serial SHAKE-128) 40,100

Generating random matrix AAA (parallel SHAKE-128)† 25,300

Saber
C

Toom-Cook polynomial multiplication 20,520

Sampling secret polynomial vector 13,656

Generating random matrix AAA 54,707

Kyber
AVX2 + assembly

optimized

NTT 560

Inverse NTT 489

Sampling secret/error polynomial vector 10,545

Generating random matrix AAA (parallel SHAKE-128) 32,601

Kyber
C

NTT 16,431

Inverse NTT 13,098

Sampling secret/error polynomial vector 10,545

Generating random matrix AAA 69,620
†Not used in Saber, see Sect. 7.

8 Results

In Table 3, we compare our software implementation of Saber with software
implementations of other lattice based post-quantum key exchange and encryp-
tion schemes. We compiled the Saber software using gcc-7.1 with optimiza-
tion flags -O3 and measured computation time using a single core of a Intel(R)
Core(TM) i7-6600U processor running at 2.60 GHz with hyper-threading, Turbo-
Boost, and multi-core support disabled on a Dell Latitude E7470 laptop with
Ubuntu 16.04 operating system.

We remark that a totally fair comparison between the listed schemes and
their software implementations is not possible since they are based on different

300 J.-P. D’Anvers et al.

Table 3. Performance and comparison of lattice-based KEMs and public-key encryp-
tion schemes. Cycles for key generation, encapsulation/encryption, and decapsula-
tion/decryption are represented by K, E, and D respectively in the 5th column. Sizes
of secret key (sk), public key (pk) and ciphertext (c) are reported in the last column.
Constant-time implementations are marked with � in the column ct?. Performances
are measured on the platform specified in the beginning of this section if not indicated
otherwise.

Scheme Problem Security ct? Cycles Bytes

Passively secure KEMs

NewHope [4]

AVX2 optimized
Ring-LWE 255 � K: 88,920† sk: 1,792

E: 110,986† pk: 1,824

D: 19,422† c: 2,048

Frodo [17] LWE 130 � K: 2,938,000� sk: 11,280

E: 3,484,000� pk: 11,296

D: 338,000� c: 11,288

CCA-secure KEMs

NTRU Prime [11] NTRU 129 � K: 6,115,384⊗ sk: 1,600

E: 59,600⊗ pk: 1,218

D: 97,452⊗ c: 1,047

NTRU KEM [27]

AVX2 optimized
NTRU 123 � K: 307,914⊥ sk: 1,422

E: 48,646⊥ pk: 1,140

D: 67,338⊥ c: 1,281

spLWE-KEM [20] spLWE 128 ? K: 336,700‡ sk: ?

E: 813,800‡ pk: ?

D: 785,200‡ c: 804

Kyber [16]

AVX2 + assembly
optimized

Module-LWE 161 � K: 92,461 sk: 2400

E: 120,280 pk: 1088

D: 113,718 c: 1152

Kyber [16]

C implementation
Module-LWE 161 � K: 251,856 sk: 2400

E: 336,112 pk: 1088

D: 435,836 c: 1152

Saber

AVX2 optimized
Module-LWR 180 � K: 101,138 sk: 2,304

E: 125,392 pk: 992

D: 129,138 c: 1,088

Saber

C implementation
Module-LWR 180 � K: 190,420 sk: 2,304

E: 279,291 pk: 992

D: 306,346 c: 1,088

CCA-secure public-key encryption schemes

NTRUEncrypt [24] NTRU 159 × K: 1,194,816† sk: 1120

E: 57,440† pk: 1,027

D: 110,604† c: 980

Lizard [21] LWE, LWR 128 × K: 97,573,000† sk: 466,944•

E: 35,050† pk: 2,031,616•

D: 80,840† c: 1,072
†Compiled using gcc-4.9.2 and benchmarked on Intel Core i7-4770K (Haswell) computer
�Benchmarked on a 2.6GHz Intel Xeon E5 (Sandy Bridge) with hyperthreading enabled.
⊗Benchmarked on an Intel Haswell processor.
‡Benchmarked on a Macbook Pro PC with 2.6GHz Intel Core i5.
•Following the explanation provided in [16].
⊥Benchmarked on an Intel i7-Haswell, 3.5GHz processor.

Saber: Module-LWR Based Key Exchange 301

hard problems, offer different levels of post-quantum security, implemented with
different levels of optimizations and benchmarked on different platforms. Never-
theless, it is clear from the table that Saber is highly efficient both in terms of
bandwidth and computation time.

The implementations of Saber and Kyber use similar building blocks namely
polynomial multiplication, generation of random matrix AAA, sampling of small
secret (and error) polynomials and standard symmetric-key primitives for CCA
transformations. In Table 2, we compare the performances of these building
blocks excluding the symmetric-key primitives. Our Toom-Cook multiplication
requires only 3,439 cycles. On the other hand, Kyber uses highly AVX-optimized
NTT for polynomial multiplications. Furthermore, Kyber spends much less
cycles in polynomial multiplications by generating the matrix A in the NTT
domain directly and by keeping the secret polynomials in the NTT domain.

Saber does not require sampling of error polynomials, thus saving in com-
putation time and entropy usage. As already described in Sect. 7 generating the
random matrix A is faster in Saber (when same pseudorandom number generator
is used) since rejection sampling is not performed, resulting in optimal usage of
random numbers. Though in this paper we consider only software implementa-
tion on high-end Intel processors, we would like to remark that random number
generation is very expensive on resource-constrained platforms. When we com-
pare the high-level C implementations of Saber and Kyber, we see that Saber
performs better than Kyber.

Finally note that at the expense of either using larger public keys, or caching
the decompressed matrix AAA, the implementation would run at least 25% faster.

Acknowledgements. This work was supported in part by the Research Council KU
Leuven: C16/15/058. In addition, this work was supported by the European Com-
mission through the Horizon 2020 research and innovation programme under grant
agreement No H2020-ICT-2014-645622 PQCRYPTO, H2020-ICT-2014-644209 HEAT,
Cathedral ERC Advanced Grant 695305 and in part by Flemish Government, by the
Hercules Foundation AKUL/11/19.

A Toom-Cook-4 Polynomial Multiplication

Here we describe the Toom-Cook polynomial multiplication used in our
implementation.

302 J.-P. D’Anvers et al.

Algorithm 6. Toom-Cook Algorithm
Input: Two polynomials A(x) and B(x)of degree n = 256
Output: C(x) = A(x) ∗ b(x)
// Splitting A(x) into four polynomials of size 64

1 A(y) = A3 · y3 + A2 · y2 + A1 · y + A0 where y = x64

// Splitting B(x) into four polynomials of size 64
2 B(y) = B3 · y3 + B2 · y2 + B1 · y + B0

// Evaluation of the polynomials at y = {0, ±1, ± 1
2
, 2, ∞}. These

multiplications are computed using Karatsuba

3 w1 = A(∞) ∗ B(∞) = A3 ∗ B3

4 w2 = A(2) ∗ B(2) = (A0 + 2 · A1 + 4 · A2 + 8 · A3) ∗ (B0 + 2 · B1 + 4 · B2 + 8 · B3)
5 w3 = A(1) ∗ B(1) = (A0 + A1 + A2 + A3) ∗ (B0 + B1 + B2 + B3)
6 w4 = A(−1) ∗ B(−1) = (A0 − A1 + A2 − A3) ∗ (B0 − B1 + B2 − B3)
7 w5 = A(1

2
) ∗ B(1

2
) = (8 · A0 + 4 · A1 + 2 · A2 + A3) ∗ (8 · B0 + 4 · B1 + 2 · B2 + B3)

8 w6 = A(−1
2

)∗B(−1
2

) = (8 ·A0 −4 ·A1 +2 ·A2 −A3)∗ (8 ·B0 −4 ·B1 +2 ·B2 −B3)
9 w7 = A(0) ∗ B(0) = A0 ∗ B0

// Interpolation

10 w2 = w2 + w5

11 w6 = w6 − w5

12 w4 = (w4 − w3)/2
13 w2 = w5 − w1 − 64 · w7

14 w3 = w3 + w4

15 w5 = 2 · w5 − w6

16 w2 = w2 − 65 · w3

17 w3 = w3 − w7 − w1

18 w2 = w2 + 45 · w3

19 w5 = (w5 − 8 · w3)/24
20 w6 = w6 + w2

21 w2 = (w2 + 16 · w4)/18
22 w4 = −(w4 + w2)
23 w6 = (30 · w2 − w6)/60
24 w2 = w2 − w6

25 return w1 · y6 + w2 · y5 + w3 · y4 + w4 · y3 + w5 · y2 + w6 · y + w7;

References

1. National Institute of Standards and Technology: SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions. FIPS PUB 202 (2015)

2. Albrecht, M.R.: On dual lattice attacks against small-secret LWE and parameter
choices in HElib and SEAL. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT
2017. LNCS, vol. 10211, pp. 103–129. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-56614-6 4

3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconcilia-
tion (2016). http://cryptojedi.org/papers/#newhopesimple

4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange
- a new hope. In: USENIX Security 2016 (2016)

https://doi.org/10.1007/978-3-319-56614-6_4
https://doi.org/10.1007/978-3-319-56614-6_4
http://cryptojedi.org/papers/#newhopesimple

Saber: Module-LWR Based Key Exchange 303

5. Alperin-Sheriff, J., Apon, D.: Dimension-preserving reductions from LWE to LWR.
Cryptology ePrint Archive, Report 2016/589 (2016)

6. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 4

7. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

8. Baan, H., Bhattacharaya, S., Garcia-Morchon, O., Rietman, R., Tolhuizen, L.,
Torre-Arce, J.L., Zhang, Z.: Round2: KEM and PKE based on GLWR. Cryptology
ePrint Archive, Report 2017/1183 (2017). https://eprint.iacr.org/2017/1183

9. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary LWE. In: Susilo, W.,
Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 322–337. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08344-5 21

10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

11. Bernstein, D.J., Chuengsatiansup, C., Lange, T., van Vredendaal, C.: NTRU prime:
reducing attack surface at low cost. Cryptology ePrint Archive, Report 2016/461
(2016). http://eprint.iacr.org/2016/461

12. Bhattacharya, S., Garcia-Morchon, O., Rietman, R., Tolhuizen, L.: spKEX: an
optimized lattice-based key exchange. Cryptology ePrint Archive, Report 2017/709
(2017). http://eprint.iacr.org/2017/709

13. Birkett, J., Dent, A.W.: Relations among notions of plaintext awareness. In:
Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 47–64. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 4

14. Bodrato, M., Zanoni, A.: Integer and polynomial multiplication: towards optimal
Toom-Cook matrices. In: ISSAC 2007, pp. 17–24. ACM (2007). http://doi.acm.
org/10.1145/1277548.1277552

15. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of
learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.)
TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49096-9 9

16. Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M.,
Schwabe, P., Stehlé, D.: CRYSTALS - kyber: a CCA-secure module-lattice-based
KEM. Cryptology ePrint Archive, Report 2017/634 (2017). http://eprint.iacr.org/
2017/634

17. Bos, J.W., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure key
exchange from LWE. In: CCS 2016, pp. 1006–1018. ACM (2016). http://doi.acm.
org/10.1145/2976749.2978425

18. Chen, L., Jordan, S.P., Liu, Y.K., Moody, D., Peralta, R.C., Perlner, R.A., Smith-
Tone, D.C.: Report on post-quantum cryptography. In: NIST Internal Report (NIS-
TIR) - 8105 (2016). http://dx.doi.org/10.6028/NIST.IR.8105

19. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-642-22006-7_34
https://eprint.iacr.org/2017/1183
https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
http://eprint.iacr.org/2016/461
http://eprint.iacr.org/2017/709
https://doi.org/10.1007/978-3-540-78440-1_4
http://doi.acm.org/10.1145/1277548.1277552
http://doi.acm.org/10.1145/1277548.1277552
https://doi.org/10.1007/978-3-662-49096-9_9
https://doi.org/10.1007/978-3-662-49096-9_9
http://eprint.iacr.org/2017/634
http://eprint.iacr.org/2017/634
http://doi.acm.org/10.1145/2976749.2978425
http://doi.acm.org/10.1145/2976749.2978425
http://dx.doi.org/10.6028/NIST.IR.8105
https://doi.org/10.1007/978-3-642-25385-0_1

304 J.-P. D’Anvers et al.

20. Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum public-
key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.) ICISC 2016.
LNCS, vol. 10157, pp. 51–74. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-53177-9 3

21. Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! practical post-
quantum public-key encryption from LWE and LWR. Cryptology ePrint Archive,
Report 2016/1126 (2016). http://eprint.iacr.org/2016/1126

22. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

23. Ding, J.: New cryptographic constructions using generalized learning with errors
problem. Cryptology ePrint Archive, Report 2012/387 (2012). http://eprint.iacr.
org/2012/387

24. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing parameters for NTRUEncrypt. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-52153-4 1

25. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

26. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-
Okamoto transformation. Cryptology ePrint Archive, Report 2017/604 (2017).
http://eprint.iacr.org/2017/604

27. Hulsing, A., Rijneveld, J., Schanck, J.M., Schwabe, P.: High-speed key encapsu-
lation from NTRU. Cryptology ePrint Archive, Report 2017/667 (2017). http://
eprint.iacr.org/2017/667

28. Jiang, H., Zhang, Z., Chen, L., Wang, H., Ma, Z.: Post-quantum IND-CCA-secure
KEM without additional hash. Cryptology ePrint Archive, Report 2017/1096
(2017). https://eprint.iacr.org/2017/1096

29. Jin, Z., Zhao, Y.: Optimal key consensus in presence of noise. Cryptology ePrint
Archive, Report 2017/1058 (2017). https://eprint.iacr.org/2017/1058

30. Kirchner, P., Fouque, P.-A.: An improved BKW algorithm for LWE with applica-
tions to cryptography and lattices. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO
2015. LNCS, vol. 9215, pp. 43–62. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-47989-6 3

31. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lat-
tices. Des. Codes Crypt. 75(3), 565–599 (2015). https://doi.org/10.1007/s10623-
014-9938-4

32. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

33. Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto
2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11659-4 12

34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC 2005, pp. 84–93. ACM (2005). http://doi.acm.org/10.1145/1060590.
1060603

35. Saito, T., Xagawa, K., Yamakawa, T.: Tightly-secure key-encapsulation mecha-
nism in the quantum random oracle model. Cryptology ePrint Archive, Report
2017/1005 (2017). https://eprint.iacr.org/2017/1005

https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-53177-9_3
http://eprint.iacr.org/2016/1126
http://eprint.iacr.org/2012/387
http://eprint.iacr.org/2012/387
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/BFb0054868
http://eprint.iacr.org/2017/604
http://eprint.iacr.org/2017/667
http://eprint.iacr.org/2017/667
https://eprint.iacr.org/2017/1096
https://eprint.iacr.org/2017/1058
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/978-3-662-47989-6_3
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-319-11659-4_12
https://doi.org/10.1007/978-3-319-11659-4_12
http://doi.acm.org/10.1145/1060590.1060603
http://doi.acm.org/10.1145/1060590.1060603
https://eprint.iacr.org/2017/1005

Saber: Module-LWR Based Key Exchange 305

36. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994).
https://doi.org/10.1007/BF01581144

37. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal
lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 4

38. Targhi, E.E., Unruh, D.: Post-quantum security of the Fujisaki-Okamoto and
OAEP transforms. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp.
192–216. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-
5 8

https://doi.org/10.1007/BF01581144
https://doi.org/10.1007/978-3-642-20465-4_4
https://doi.org/10.1007/978-3-662-53644-5_8
https://doi.org/10.1007/978-3-662-53644-5_8

Practical Fault Injection on Deterministic
Signatures: The Case of EdDSA

Niels Samwel(B) and Lejla Batina(B)

Digital Security Group, Radboud University, Nijmegen, The Netherlands
{n.samwel,lejla}@cs.ru.nl

Abstract. After recent vulnerabilities of implementations of determin-
istic signatures e.g. EdDSA have been revealed, it became evident that a
secure deployment of those will require additional countermeasures. Nev-
ertheless, this is not a simple task, as we show in this work. We demon-
strate the easiness of fault attacks on EdDSA as implemented in the
lightweight cryptographic library WolfSSL on a 32-bit micro-controller.
We achieve a success rates of almost 100% by voltage glitching and elec-
tromagnetic fault injection. Even after adding certain checks as a coun-
termeasure, the implementation remains vulnerable to fault injection. As
only a single successful fault is needed to recover the key, this kind of
implementation is an easy target for the attackers.

Keywords: ECC · EdDSA · Differential fault attack

1 Introduction

In our daily lives the use of small embedded devices have become prevalent
due to their numerous deployments in transportation, secure payments and e-
health systems, as wearables etc. The accessibility of those devices makes them
a perfect target for a side-channel adversary who is able to collect and process
leakage signals leading to the secret/private data recovery. On top of this, the
protection against this kind of adversary is complicated due to the sparseness of
resources such as area, memory, power/energy budgets etc.

Typical services for the IoT and other embedded devices include authenti-
cation, which sometimes also needs to be performed off-line. One way to enable
strong authentication is to use digital signatures, where Elliptic Curve Cryptog-
raphy (ECC) is still leading the field for lightweight Public-key cryptosystems
(PKC). One of the best known signature algorithms is due to Schnorr [25], which
was introduced for discrete logarithm cryptosystems. Other signature schemes
have been also proposed such as the Digital Signature Algorithm (DSA) [18].
Later this scheme was extended to a scheme called ECDSA [15] that is using
elliptic curves. DSA-like signature schemes require a fresh randomly generated
ephemeral key for each signature.

The ephemeral key used in DSA-like schemes has to be truly random.
Some recent studies showed how real-world system do not always follow this
c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 306–321, 2018.
https://doi.org/10.1007/978-3-319-89339-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_17&domain=pdf

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 307

recommendation [13]. The requirement turns out to be a complex issue, espe-
cially for resource constrained devices that may not have a true random number
generator. Actually, if only a few bits of the ephemeral key are known the private
key can be recovered using a specific lattice-based cryptanalysis [14]. To down-
play the importance of the true randomness of the ephemeral key an alternative
to ECDSA so-called EdDSA was introduced [8]. The selling point of EdDSA
is that the ephemeral key is generated deterministically and the requirement
for cryptographically secure randomness becomes obsolete. However, a recent
side-channel attack on EdDSA has shown that the deterministic feature is not
optimal in practice with the adversary that has an access to the device and is
able measure side-channel signals [24]. Namely, the promoted feature to make
EdDSA deterministic complicates its secure implementation as it makes it a
clinical use case for a first order DPA attack using power or EM leakages.

In addition, fault attacks on deterministic signature schemes also appeared
recently by Ambrose et al. [2] and Romailler and Pelissier [23]. The former
outlines theoretically several scenarios for different fault attacks on deterministic
signatures in contrast to the latter which describes a very special practical attack
on EdDSA that is feasible on an 8-bit platform only.

The work we present in this paper is a generic fault injection attack that
can be applied to a range of platforms and it is using different sources for fault
injection. We demonstrate the pervasiveness of it on a 32-bit micro-controller
targeting EdDSA implementation within the lightweight cryptographic library
WolfSSL. For our attack a single fault during the scalar multiplication algorithm
is required for the full key recovery. We give all the details of the setup where this
semi-invasive attack is done by applying minor changes to the supply voltage or
using electro-magnetic EM signals as the “glitching” sources.

The rest of this paper is organized as follows. First we list related previous
work and specify our contributions. In Sect. 2, we provide background informa-
tion required for the remainder of the paper. Section 3 presents an overview of
the attack and more detailed methodology on voltage fault injection and electro-
magnetic fault injection. Section 4 shows the results of our attack. In Sect. 5, we
discuss several countermeasures against this attack and fault attacks in general.
Section 6 concludes this paper.

1.1 Related Work

In 1997, the first differential fault attack on public key system RSA-CRT was
introduced by Boneh et al. [11]. The authors presented a theoretical concept
together with a possible countermeasure. Later Aumüller et al. [3] show the
feasibility of the attack by applying it in practice and presenting another coun-
termeasure.

Considering other PKC the first differential fault attack on an elliptic curve
cryptosystem was presented by Biehl et al. [10] in 2000. In the scenario they
propose the resulting point is not on the original curve anymore. Hence, as a
consequence they validate the point as a countermeasure.

308 N. Samwel and L. Batina

Barenghi and Pelosi [5] describe several potential fault attacks on EC-based
signature schemes theoretically. In one of the attacks, a fault is introduced during
the computation of the hash function. This value is not public and must be
recovered by brute forcing over all possible values. The authors implemented the
key recovery part and presented their results for this specific scenario.

Recently, a work by Ambrose et al. [2] outlined several differential fault
attacks on deterministic signature schemes. However, the authors present no
practical results.

The first differential fault attack on Ed25519 was published by Romailler and
Pelissier [23]. The authors used the Arduino nano, an 8-bit micro-controller as
their target platform where a signing operation takes over 5 s. They introduced
a fault in the output of a hash function which is not public so the requirement
for the attack is to brute force this value. This issue is complicated with mod-
ern platforms using 32- or 64-bit architectures. Therefore, the attack is not so
practical for other than 8-bit architectures. In our attack, we introduce a fault
during the scalar multiplication which makes it platform-independent.

With the introduction of the Rowhammer attack [17] several papers have
been published on injecting faults using software manipulations. Poddebniak
et al. [21] used the idea to attack deterministic signature schemes. In their work,
they explain how to apply the Rowhammer attack and how to prevent it by
presenting several countermeasures. This attack is very different than our attack
because the impact of Rowhammer is that an invalid signature is generated, while
our attack recovers the relevant part of the key in order to forge a signature.

1.2 Contributions

Here we summarize the main contributions of this paper:

– In this paper we present a conceptually novel and generic differential fault
attack on the deterministic signature scheme Ed25519. We inject the fault in
the scalar multiplication operation that is unrelated to the hash computation,
such that the attacker does not need to brute force the intermediate result.

– The attack is demonstrated on a real-world implementation of Ed25519 from
the lightweight cryptographic library WolfSSL on a 32-bit micro-controller.
This kind of implementation particularly targets low-cost and/or resource-
constrained environments as in the IoT use cases and similar.

– We show that our attack can be effectively executed using voltage glitching
and electromagnetic fault injection.

– We also establish the fact on the necessity of suitable countermeasures as
we show that even the common point validity check countermeasure cannot
counteract the attack.

2 Background

2.1 EdDSA

EdDSA is a known digital signature scheme constructed over so-called Edwards
curves [8]. An instance of EdDSA using Edwards Curve25519 in particular (called

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 309

Ed25519) is used in Signal protocol, Tor, SSL, etc. There is also an ongoing
effort to standardize the scheme, known as RFC 8032. The signature scheme
is a variant of the Schnorr signature algorithm [25] that makes use of Twisted
Edwards Curves. Compared to ECDSA, EdDSA does not need new randomness
for each signature as the ephemeral key is computed deterministically using
the message and the auxiliary key that is part of the private key. The security
depends on the secrecy of the auxiliary key and the private scalar. This does not
create an additional requirement as we need to keep a private key secret anyway.
The security of ECDSA depends heavily of a good quality randomness of the
ephemeral key, which has to be truly random for each signature. This feature
was put forward in promotion of EdDSA as being more side-channel resistant
than ECDSA [8].

In Ed25519, a twisted Edwards curve birationally equivalent to Curve25519
[7] is used. Ed25519 sets several domain parameters of EdDSA such as:

– Finite field Fq, where q = 2255 − 19
– Elliptic curve E(Fq), Curve25519 [7]
– Base point B
– Order of the point B, l
– Hash function H, SHA-512 [22]
– Key length b = 256

For more details on other parameters of Curve25519 and the corresponding
curve equations we refer to Bernstein [7].

Table 1. Notations EdDSA

Name Symbol

Private key k

Private scalar a (first part of H(k))

Auxiliary key b (last part of H(k))

Ephemeral scalar of private key r

To sign a message, the signer has a private key k and message M . Algorithm 1
shows the steps to generate an EdDSA signature.

The first four steps belong to the key setup and are only applied the first time
a private key is used. Notation (x, . . . , y) denotes concatenation of the elements.
We call a the private scalar and b = (h0, h1, . . . , h2b−1) the auxiliary key (see
Table 1). In Step 5 the ephemeral key is deterministically generated.

To verify a signature (R,S) on a message M with public key A a verifier
follows the procedure described in Algorithm2.

310 N. Samwel and L. Batina

Algorithm 1. EdDSA signature generation
Key setup.

1: Hash k such that H(k) = (h0, h1, . . . , h2b−1).
2: a = (h0, . . . , hb−1), interpret as integer in little-endian notation.
3: b = (hb, . . . , h2b−1).
4: Compute public key: A = aB.

Signature generation.
5: Compute ephemeral key: r = H(b,M).
6: Compute ephemeral public key: R = rB.
7: Compute h = H(R,A,M) and convert to integer.
8: Compute: S = (r + ha) mod l.
9: Signature pair: (R,S).

Algorithm 2. EdDSA signature verification
1: Compute h = H(R,A,M) and convert to integer.
2: Check if group equation 8SB = 8R + 8hA in E holds.
3: If group the equation holds, the signature is correct.

2.2 Fault Attacks

Fault attacks are active attacks and aim at exploiting the leakage of sensitive
information due to some irregular conditions i.e. faulty computation. This is
distinctive to side-channel attacks that observe signals while the device under
attack is working “normally”. With fault attacks, an attacker attempts to alter
environmental conditions so the device changes it behavior. One way to accom-
plish this is by “glitching” the device i.e. forcing the changes in the values of
relevant physical parameters outside the prescribed intervals. There are several
approaches to accomplish this as follows:

– Clock fault injection [1]. In this case a glitch is caused by altering the clock
signal. This is typically done with devices that allow the use of an external
clock.

– Voltage fault injection [3]. The attacker can induce this kind of glitch by
adding a short positive or negative spike in the power line.

– Electromagnetic fault injection [27]. A glitch is caused by emitting a short
electromagnetic (EM) pulse towards the device resulting in similar effects as
voltage glitching.

– Optical fault injection [26]. Optical fault injection is more invasive as the
chip typically has to be decapsulated and it often causes permanent damage
to a device.

In this paper we focus on glitches caused by voltage and electromagnetic fault
injection. If a glitch has an effect that alters the behavior of the device such that
it produces a fault, we call this “a successful fault”.

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 311

Fault Model. A fault model describes the kind and the extent of faults an
attacker is able to induce while the device is operating. In this paper our target
platform is a micro-controller with a 32-bit architecture so we assume a fault
model where a glitch can create an error such that the value of a 32-bit word
is modified. This alteration can happen at different stages, for instance when
the value is processed by the CPU or when the value is on the memory bus.
Typically, a glitch could also alter instructions that affect other sensitive values
(e.g. loop counters etc.) or other behavior of the algorithm but our attacks do
not rely on this particular assumption.

Differential Fault Analysis. Differential fault analysis (DFA) is a special
attack based on faults produced during computation. Typically, the attacker
uses the difference between the correct output and one (or more) faulty outputs
to recover secret data. This can lead to the total key recovery like in the case of
Bellcore attacks on the RSA cryptosystem [11] or merely to forging a signature.

3 Methods

3.1 General Attack Principle

In Ed25519, if an attacker is able to cause a glitch in the computation of the
ephemeral public key R = rB, or in the computation of the hash h = H(R,A,M)
where the same message is signed resulting in R′ or h′, he can recover the private
scalar. Independent of which of the two values is faulty, the hash computation
is always faulty as it has R or R′ as an input. For a successful attack, we need a
correct signature and only a single faulty signature to recover the private scalar
a. With private scalar a, a valid signature on any message can be computed as
the value of r is arbitrary. From the correct and a faulty signature, the private
scalar a can be recovered as follows. The attacker obtains a correct signature
(R,S) and a faulty signature (R′, S′) with the following equations:

S = r + ha,

S′ = r + h′a.

If we rewrite this, we obtain the following,

S − ha = S′ − h′a.

And we can extract private scalar a

a =
S − S′

h− h′ (1)

The output of the hash function h is not public so when a fault is injected in
the computation of the hash, an attacker must know or be able to compute hash
h′. It can be brute forced as in [23] where the authors use an 8-bit architecture,

312 N. Samwel and L. Batina

but their attack does not scale so when a more realistic target is used like a 32-
bit or 64-bit architecture, this becomes impractical. Since the ephemeral public
key R is part of the signature (hence known), we aim at causing a glitch in
the computation of the scalar multiplication R = rB. We do not target any
particular single bit (or a group of bits), but a fault in any intermediate value
of the scalar multiplication is sufficient.

For each execution of the signing algorithm there are three possible outcomes.

– Normal
– Inconclusive
– Successful

A normal outcome denotes the case when no fault occurred and the output is as
expected. A successful outcome stands for an induced fault that resulted in the
correct key by applying Eq. (1). An inconclusive outcome has several possibilities:
(i) a fault was induced and a faulty output was produced but the key could not
be recovered, (ii) a fault was induced but no output was produced, and (iii) a
fault was induced but no output was produced and the device stopped working.
At this point the device had to be power cycled to continue the experiment.

3.2 Voltage Fault Injection

We start with finding the lowest VCC (VCC L) for which the target still behaves
“normally”. Next, we under-power the device continuously (VCC F) so that it
still works but faults are introduced, see Table 2 for the settings. Our goal is to
maximize the success rate.

Figure 1 shows a schematic overview of the setup. The PC handles commu-
nication with the target, collects traces from the oscilloscope and controls the
VC Glitcher. The target is powered by the VC Glitcher so it is able to inject
glitches in the power line. The glitch amplifier amplifies the current and with
the current probe we are able to measure the power consumption and see the
effects of the glitch. The oscilloscope and the current probe are only used to
collect an overview trace and determine an offset to induce the glitch. Once a
suitable offset is located, the current probe and oscilloscope are disconnected
and removed from the setup.

Once we identify this offset we try to improve the success rate and we continu-
ously under-power the device by actively inducing faults. To do this we introduce
a glitch after a trigger event occurs. We set a trigger at the start of the scalar
multiplication in the signature generation. To maximize the success rate there
are several parameters to optimize, such as:

– Glitch Voltage (GV),
– Glitch Length (GL),
– Glitch Offset (GO),
– Glitch Repetition (GR).

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 313

Table 2. Settings for voltage fault injection setup.

Name Setting

VCC L 2.3 V

VCC F 2.201 V

Glitch Voltage −0.16 V

Glitch Length 3070 ns

Glitch Offset 1444010 ns

Glitch Repetition 1

PCPC

Oscilloscope

TargetFTDI

Trigger

VC Glitcher

Vcc
Trigger
Reset

Reset line

Glitch Amplifier

In
Out

Current Probe

In +
In -Out

Fig. 1. Voltage fault injection setup

In the experiments we introduce single glitch so we fix the glitch repetition to
1. To optimize those parameters, we did not apply any sophisticated algorithm
such as e.g. [12,20], but we applied random search instead. With the first results
we manually narrowed down the search ranges to find optimal parameters.

3.3 Electromagnetic Fault Injection

Electromagnetic fault injection (EMFI) is an active attack where the attacker
emits a short EM pulse as a glitch from a close distance. If the glitch is strong
enough, it can cause a fault. The EM pulse is emitted using a small coil. Different
coils could have different effects on the size and the polarity of the EM pulse,
but this point is not relevant for our work.

As with voltage fault injection, there exist several parameters to be optimized
for EMFI. Those are also different parameters and the most distinctive ones are
the x and y coordinates corresponding to a location on the chip where the coil
that emits the EM pulse is positioned. Figure 2 shows an overview of the setup.
We use the XY-table to precisely position the EMFI probe on the device. With
the XY-table we are able to automate a systematic scan of the chip’s surface to

314 N. Samwel and L. Batina

PCPC

Oscilloscope

FTDI

Trigger

VC Glitcher

Vcc

Trigger
Reset

Reset line

Glitch Amplifier

In
Out

Current Probe

In +
In -Out

XYZ-Table

Target

Pulse Amplitude
Digital Glitch

Fig. 2. EMFI setup

find a location with the highest success rate of the attack. Below we list all the
parameters we need to optimize.

– x-Coordinate
– y-Coordinate
– Glitch Power (GP)
– Glitch Offset (GO)
– Glitch Repetition (GR)
– Glitch Length (GL)

Again we introduce a single glitch so we fix glitch repetition to 1. The parameter
glitch length is fixed to 40 ns due to the EMFI hardware that we used in the
attack.

4 Experimental Setup and Results

4.1 Setup

The setups for voltage and EM fault injection are very similar. Our tar-
get is a development board containing a Cortex-M4F, more specifically the
STM32F407IG. For our experiments we did not have to decapsulate the chip.
A signing operation of Ed25519 from WolfSSL takes roughly 30 ms on this plat-
form. Electronic devices have capacitors to keep the power at a stable level so
internal or external fluctuations do not influence the behavior of the device.
Since we actually want to cause some fluctuations in the power line to alter the
behavior with voltage FI, we removed most capacitors on the board. With EMFI
we externally cause the fluctuations in the power plane with short EM pulses so
the attack also works without removing the capacitors.

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 315

Current Probe

Target XY-Table

EM-FI
Transient Probe

VC Glitcher

Picoscope

Fig. 3. This figure shows the experimental setup. In the top left corner we see the EM-
FI transient probe and below that the target board which is fixed to the XY-table. In
the center with the blue screen, we see the VC Glitcher under witch is the oscilloscope
and the small block on the right is the current probe. (Color figure online)

We use the VC Glitcher1 to power the board and to cause fluctuations in the
voltage. We also need the Glitch Amplifier as the VC Glitcher does not provide
enough current to power the board.

To generate the EM pulses we use an EMFI Transient Probe that is con-
nected and controller by the VC Glitcher. An xy-table is used to move the
EMFI Transient Probe with high accuracy.

The oscilloscope used to visualize the effect of the voltage fluctuations or
the EM pulses is a Picoscope5203. A current probe measuring those changes is
connected in series with the power line and it is also a part of the setup. Figure 3
shows a picture of our experimental setup.

We attack the software implementation of Ed25519 in WolfSSL version 3.11.0.
Similar implementations can be found in other cryptographic libraries imple-
menting Ed25519. We added a trigger to the code right before the start of the
scalar multiplication. We could also have inserted the trigger before the signa-
ture generations starts as the code runs in constant time, so it would merely
imply the increase in the offset. The attack is also possible without adding a
trigger in the code when using hardware that can generate a trigger based on a
pattern in the signal [6].

4.2 Voltage Fault Injection Results

The first step of the experiment was to continuously under-power the device.
Without introducing glitches we were able to achieve a success rate of 44%.
When we actively tried to induce glitches using the described parameters, we

1 https://www.riscure.com/security-tools/hardware/.

https://www.riscure.com/security-tools/hardware/

316 N. Samwel and L. Batina

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Glitch length (ns)

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

G
lit

ch
 v

ol
ta

ge
 (

V
)

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Glitch offset (ns) 106

-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

G
lit

ch
 v

ol
ta

ge
 (

V
)

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Glitch offset (ns) 106

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

G
lit

ch
 le

ng
th

 (
ns

)

(c)

Fig. 4. Voltage fault injection results, Normal (green), Inconclusive (yellow), Successful
(red). (Color figure online)

were able to increase the success rate to 69.95% using an optimal set of parameter
values we found. We computed the success rates using 10 000 measurements with
those optimal parameters.

To visualize the effects of the glitch parameters, we set the parameters to
a constant value except for two. For those two parameters we selected random
value within a certain range. Figure 4 shows the result of the experiment. In
Fig. 4a, we vary the glitch length and the glitch voltage parameters. It shows
a typical curve of successful glitches as in [12,20]. A selected set of parameters
above the curve means the glitch is not strong enough and the device continues
like nothing happened and a selection of parameters below the curve results in
a glitch that is too strong and the device stops responding. In Fig. 4b and c we

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 317

vary offset with the glitch voltage and glitch length and we see a clear pattern
that corresponds to an iteration in the scalar multiplication. Each figure contains
results of 10 000 measurements.

The results show that inducing exploitable faults is not complicated as even
providing a lower voltage results in a reasonably high success rate.

4.3 Electromagnetic Fault Injection Results

In this experiment we start by scanning the surface of the chip to determine good
positions for a successful fault injection. Figure 5a shows the surface of the chip.

x-axis

y-
ax

is

(a) Target board

(b) Heat map with EMFI results

Fig. 5. This figure shows a picture of the board and it shows which locations are most
effective to inject a glitch.

318 N. Samwel and L. Batina

We divide the x and y-axis up in 100 parts each, resulting in 10 000 positions to
scan. We inject a glitch 20 times on each position where the remaining parameters
are randomized similar as in the previous section. By manually optimizing the
parameters, we were able to achieve a success rate of 99.31%. We did another
surface scan with these fixed parameters, the result is shown in Fig. 5b. The
figure shows a heatmap, where the color denotes the result of a fault. A color
that is a mix between other colors is corresponding to the situations when the
resulting faults were mixed.

To scan the surface we performed a total amount of 200 000 measurements.
With the best parameters choice of paremetrs, we used 10 000 measurements to
compute the success rate.

Since we induce a fault in the scalar multiplication, we expected most result-
ing points would not be on the curve anymore. In WolfSSL there is no check like
this implemented, so we added it ourselves to let the signing operation fail in
case of a fault as a countermeasure. We scanned the surface again with optimal
parameters and as expected not a single fault was successful.

To have a faulty scalar multiplication where the resulting point still is on
the curve, we can modify the scalar itself. However, this is only possible while it
is used within the scalar multiplication as the original scalar r must be used to
compute S that is leading to the key recovery. In the implementation of WolfSSL
(similar in other implementations) the scalar is copied and some computations
are done to alter its representation. This takes roughly 36µs and gives us plenty of
time to emit an EM pulse while the original scalar remains unaltered. Optimizing
the parameters resulted in a success rate of 70.15%. Although the success rate
with the check on the validity of the resulting point is lower, it is still high
enough for the attack to remain practical.

5 Countermeasures

There are several approaches to count fault injection attacks, both in hard-
ware [9,16] and in software [3,4]. Here we discuss some software countermeasures.

A countermeasure is to add redundancy in the implementation. For instance,
in a common countermeasure, the implementation could execute the scalar mul-
tiplication again and at the end compare both results. If they are not identical,
then the fault occurred and the signature should not be released. The signature
could also be verified at the end, if the signature is invalid, do not return the
signature.

However, there is a problem with adding redundancy as a countermeasure
as this introduces a check in the code that an attacker also could try to skip
by injecting a glitch. It also penalizes the performance. Although this adds a
significant amount of difficulty to the attack, an attacker only has to be successful
once to be able to recover the secret key.

Another solution is to add randomness to the scheme. In [23] the authors
propose a countermeasure called “fault infective computations” where 32 random
bytes are used together with different implementations of the hash function for

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 319

each time the hash function is used in the scheme. A second implementation of
the hash function adds to the code size and may not be preferred due to resource
constraints.

In this attack we exploit that ephemeral scalar r is equal in both signatures.
Introducing some randomness in the generation of r counters our attack. New
standards where randomness is introduced in the generation of r are proposed
like XEdDSA and VXEdDSA [19]. In these schemes 64 random bytes are added,
the VXEdDSA scheme also requires several additional scalar multiplications.
In [24], the authors propose a cheap countermeasure that requires only 16 random
bytes that are used in the generation of r. The randomness does not have to be
perfect as with ECDSA as long as the bytes remain unknown to an attacker. On
top of that, the countermeasure also protects the key against differential power
analysis [24]. Signatures generated using this countermeasure are still verifiable
and conformed with the standard.

6 Conclusion

With this paper we improve and generalize previous attacks on Ed25519, using
a realistic target platform and a real-world implementation. We show that our
attack is possible using voltage FI and EM FI with very high success rates. While
we are able to achieve high success rates, close to 100%, we would like to note
that an attacker only needs a single successful fault to recover the key. With
adding redundancy to the implementation, it would remain in agreement with
the standard but still vulnerable to fault injection. To counter fault injection,
the standard should be modified to add some randomness in the generation of
the ephemeral scalar.

Although we attack the implementation of WolfSSL, the attack is extendable
to other implementations of Ed25519 as the issues are with the scheme being
implemented straightforwardly and not a particular implementation itself.

Acknowledgments. This work was supported in part by the Technology Foundation
STW (Projects 13499 TYPHOON and 12624 SIDES) and The Netherlands Organi-
zation for Scientific Research NWO (project ProFIL 628.001.007) and by a project
funded by DarkMatter LLC.

References

1. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When clocks fail:
on critical paths and clock faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny,
J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12510-2 13

2. Ambrose, C., Bos, J.W., Fay, B., Joye, M., Lochter, M., Murray, B.: Differential
attacks on deterministic signatures. Cryptology ePrint Archive, Report 2017/975
(2017). https://eprint.iacr.org/2017/975.pdf

https://doi.org/10.1007/978-3-642-12510-2_13
https://eprint.iacr.org/2017/975.pdf

320 N. Samwel and L. Batina

3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.-P.: Fault attacks on
RSA with CRT: concrete results and practical countermeasures. In: Kaliski, B.S.,
Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 20

4. Barenghi, A., Breveglieri, L., Koren, I., Pelosi, G., Regazzoni, F.: Countermeasures
against fault attacks on software implemented AES. In: Proceedings of the 5th
Workshop on Embedded Systems Security - WESS 2010. ACM Press (2010)

5. Barenghi, A., Pelosi, G.: A note on fault attacks against deterministic signature
schemes (short paper). In: Ogawa, K., Yoshioka, K. (eds.) IWSEC 2016. LNCS,
vol. 9836, pp. 182–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44524-3 11

6. Beckers, A., Balasch, J., Gierlichs, B., Verbauwhede, I.: Design and implementation
of a waveform-matching based triggering system. In: Standaert, F.-X., Oswald,
E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 184–198. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-43283-0 11

7. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

8. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Crypt. Eng. 2(2), 77–89 (2012)

9. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Trans. Comput. 52(4), 492–505 (2003)

10. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6 8

11. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

12. Carpi, R.B., Picek, S., Batina, L., Menarini, F., Jakobovic, D., Golub, M.: Glitch it
if you can: parameter search strategies for successful fault injection. In: Francillon,
A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 236–252. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 16

13. Checkoway, S., Maskiewicz, J., Garman, C., Fried, J., Cohney, S., Green, M.,
Heninger, N., Weinmann, R.P., Rescorla, E., Shacham, H.: A systematic analy-
sis of the Juniper Dual EC incident. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2016, pp. 468–479
(2016). http://doi.acm.org/10.1145/2976749.2978395

14. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature
schemes. Des. Codes Crypt. 23(3), 283–290 (2001). https://doi.org/10.1023/A:
1011214926272

15. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

16. Karpovsky, M., Kulikowski, K., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standard.
In: 2004 International Conference on Dependable Systems and Networks. IEEE
(2004)

17. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J.H., Lee, D., Wilkerson, C., Lai,
K., Mutlu, O.: Flipping bits in memory without accessing them. ACM SIGARCH
Comput. Archit. News 42(3), 361–372 (2014)

https://doi.org/10.1007/3-540-36400-5_20
https://doi.org/10.1007/978-3-319-44524-3_11
https://doi.org/10.1007/978-3-319-44524-3_11
https://doi.org/10.1007/978-3-319-43283-0_11
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/3-540-44598-6_8
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-319-08302-5_16
http://doi.acm.org/10.1145/2976749.2978395
https://doi.org/10.1023/A:1011214926272
https://doi.org/10.1023/A:1011214926272

Practical Fault Injection on Deterministic Signatures: The Case of EdDSA 321

18. Kravitz, D.: Digital signature algorithm. US Patent 5,231,668, 27 July 1993.
https://www.google.com/patents/US5231668

19. Perrin, T.: The XEdDSA and VXEdDSA Signature Schemes (2017). https://signal.
org/docs/specifications/xeddsa/xeddsa.pdf. Accessed 11 Sept 2017

20. Picek, S., Batina, L., Jakobovic, D., Carpi, R.B.: Evolving genetic algorithms for
fault injection attacks. In: 2014 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO). IEEE,
May 2014

21. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking
deterministic signature schemes using fault attacks. Cryptology ePrint Archive,
Report 2017/1014 (2017). http://eprint.iacr.org/2017/1014

22. FIPS PUB 180-4: Secure Hash Standard (SHS). Technical report, NIST, July 2015
23. Romailler, Y., Pelissier, S.: Practical fault attack against the Ed25519 and EdDSA

signature schemes. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC). IEEE, September 2017

24. Samwel, N., Batina, L., Bertoni, G., Daemen, J., Susella, R.: Breaking Ed25519 in
WolfSSL. Cryptology ePrint Archive, Report 2017/985 (2017). http://eprint.iacr.
org/2017/985

25. Schnorr, C.P.: Efficient signature generation by smart cards. J. Crypt. 4(3), 161–
174 (1991). https://doi.org/10.1007/BF00196725

26. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski,
B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 2

27. Velegalati, R., Van Spyk, R., van Woudenberg, J.: Electro magnetic fault injection
in practice. In: International Cryptographic Module Conference (ICMC) (2013)

https://www.google.com/patents/US5231668
https://signal.org/docs/specifications/xeddsa/xeddsa.pdf
https://signal.org/docs/specifications/xeddsa/xeddsa.pdf
http://eprint.iacr.org/2017/1014
http://eprint.iacr.org/2017/985
http://eprint.iacr.org/2017/985
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-36400-5_2

Authentication with Weaker Trust
Assumptions for Voting Systems

Elizabeth A. Quaglia1(B) and Ben Smyth2

1 Information Security Group, Royal Holloway, University of London, Egham, UK
Elizabeth.Quaglia@rhul.ac.uk

2 Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Luxembourg City, Luxembourg

research@bensmyth.com

Abstract. Some voting systems are reliant on external authentication
services. Others use cryptography to implement their own. We combine
digital signatures and non-interactive proofs to derive a generic construc-
tion for voting systems with their own authentication mechanisms, from
systems that rely on external authentication services. We prove that
our construction produces systems satisfying ballot secrecy and election
verifiability, assuming the underlying voting system does. Moreover, we
observe that works based on similar ideas provide neither ballot secrecy
nor election verifiability. Finally, we demonstrate applicability of our
results by applying our construction to the Helios voting system.

1 Introduction

An election is a decision-making procedure to choose representatives [17,22,30].
Choices should be made freely by voters with equal influence, and this must
be ensured by voting systems [24,25,42]. Some voting systems rely on external
authentication services to ensure choices are made by voters. E.g., Helios [2,26]
supports authentication via Facebook, Google and Yahoo using OAuth.1 Other
voting systems use cryptography to implement their own authentication mech-
anisms. E.g., the voting system by Juels et al. uses a combination of encrypted
nonces and plaintext equality tests for authentication [20]. We combine digital
signatures and non-interactive proofs to derive a construction for voting systems
with their own authentication mechanisms from systems that rely on external
service providers. Our construction produces voting systems which require less
trust, since systems built upon cryptography are typically preferable to systems
trusting external service providers.

Many voting systems rely on art, rather than science, to ensure that choices
are made freely by voters with equal influence. Such systems build upon creativ-
ity and skill, rather than scientific foundations, and are typically broken in ways
that compromise free choice, e.g., [16,39,43,44], or permit adversaries to unduly
influence the outcome, e.g., [10,19]. By contrast, we prove that our construction
1 Meyer and Smyth describe the application of OAuth in Helios [23].

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 322–343, 2018.
https://doi.org/10.1007/978-3-319-89339-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_18&domain=pdf
http://orcid.org/0000-0001-5889-7541

Authentication with Weaker Trust Assumptions for Voting Systems 323

produces voting systems that satisfy rigorous and precise security definitions
of ballot secrecy and election verifiability that capture voters voting freely with
equal influence.2

We demonstrate applicability of our construction by deriving voting systems
with their own authentication mechanisms from Helios. Moreover, we compare
those systems to Helios-C [13], a variant of Helios for two-candidate elections in
which ballots are digitally signed. Our comparison reveals some subtle distinc-
tions and we show that Helios-C does not satisfy our security definition, whereas
our construction produces voting systems that do.

Structure. Section 2 recalls election scheme syntax. Section 3 presents our con-
struction. Section 4 proves that our construction produces systems satisfying bal-
lot secrecy. Section 5 proves that election verifiability is also satisfied. Section 6
demonstrates the application of our construction to the Helios voting system and
compares the resulting systems to Helios-C. We conclude in Sect. 7. The appen-
dices recall security definitions for voting systems and present proofs. Definitions
of cryptographic primitives and associated security definitions are deferred to an
accompanying technical report [28].

2 Election Scheme Syntax

We recall syntax by Smyth et al. [36] for a class of voting systems that consist
of the following four steps. First, a tallier3 generates a key pair and (optionally)
a registrar generates credentials for voters. Secondly, each voter constructs and
casts a ballot for their vote. These ballots are recorded on a bulletin board.
Thirdly, the tallier tallies the recorded ballots and announces an outcome, i.e., a
distribution of votes. Finally, voters and other interested parties check that the
outcome corresponds to votes expressed in recorded ballots.

Definition 1 (Election scheme [36]). An election scheme with external
authentication is a tuple of efficient algorithms (Setup,Vote,Tally,Verify) and
an election scheme with internal authentication is a tuple of efficient algorithms
(Setup,Register,Vote,Tally,Verify), such that:4

Setup, denoted (pk , sk ,mb,mc) ← Setup(κ), is run by the tallier. Setup takes
a security parameter κ as input and outputs a key pair pk , sk , a maximum
number of ballots mb, and a maximum number of candidates mc.

2 Quaglia and Smyth [27] provide a tutorial-style introduction to definitions of ballot
secrecy and election verifiability, and Smyth [33] provides a technical introduction.

3 Some voting systems permit the tallier’s role to be distributed amongst several tal-
liers. For simplicity, we consider only a single tallier in this paper.

4 Let A(x1, . . . , xn; r) denote the output of probabilistic algorithm A on inputs
x1, . . . , xn and random coins r. Let A(x1, . . . , xn) denote A(x1, . . . , xn; r), where
r is chosen uniformly at random. And let ← denote assignment. Moreover, let 〈x〉
denote an optional input and v[v] denote component v of vector v.

324 E. A. Quaglia and B. Smyth

Register, denoted (pd , d) ← Register(pk , κ), is run by the registrar. It takes as
input the public key pk of the tallier and a security parameter κ, and it
outputs a credential pair (pd , d), where pd is a public credential and d is a
private credential.

Vote, denoted b ← Vote(〈d〉, pk ,nc, v, κ), is run by voters. Vote takes as input a
private credential d (optional), a public key pk , some number of candidates
nc, a voter’s vote v, and a security parameter κ. The vote should be selected
from a sequence 1, . . . ,nc of candidates. Vote outputs a ballot b or error
symbol ⊥.

Tally, denoted (v, pf) ← Tally(sk ,nc, bb, 〈L〉, κ), is run by the tallier. Tally takes
as input a private key sk , some number of candidates nc, a bulletin board
bb, an electoral roll L (optional), and a security parameter κ, where bb is a
set. It outputs an election outcome v and a non-interactive proof pf that the
outcome is correct. An election outcome is a vector v of length nc such that
v[v] indicates the number of votes for candidate v.

Verify, denoted s ← Verify(pk ,nc, bb, 〈L〉,v, pf , κ), is run to audit an election.
It takes as input a public key pk , some number of candidates nc, a bulletin
board bb, an electoral roll L (optional), an election outcome v, a proof pf ,
and a security parameter κ. It outputs a bit s, which is 1 if the election verifies
successfully and 0 otherwise.

Election schemes with internal authentication must always use optional inputs,
whereas election schemes with external authentication must not. Both schemes
must satisfy correctness: there exists a negligible function negl, such that for all
security parameters κ, integers nb and nc, and votes v1, . . . , vnb ∈ {1, . . . ,nc},
it holds that if v is a vector of length nc whose components are all 0, then

Pr[(pk , sk ,mb,mc) ← Setup(κ);
for 1 ≤ i ≤ nb do

(pd i, di) ← Register(pk , κ);
bi ← Vote(〈di〉, pk ,nc, vi, κ);
v[vi] ← v[vi] + 1;

(v′, pf) ← Tally(sk ,nc, {b1, . . . , bnb}, 〈{pd1, . . . , pdnb}〉, κ)
: nb ≤ mb ∧ nc ≤ mc ⇒ v = v′] > 1 − negl(κ),

where algorithm Register is only applied for election scheme with internal authen-
tication and optional inputs are only used for election scheme with internal
authentication.

3 Our Construction

Election schemes with internal authentication can be derived from schemes with
external authentication using a digital signature scheme and a non-interactive
proof system: Each voter publishes a ballot constructed using the underlying
scheme with external authentication, along with a signature on that ballot and

Authentication with Weaker Trust Assumptions for Voting Systems 325

a proof that they constructed both the ballot and the signature. Signatures and
proofs are used to ensure that each tallied vote was cast by an authorised voter.

Our construction is formal described in Definition 3. It is parameterised by
an election scheme with external authentication, a digital signature scheme, and
a non-interactive proof system, derived from an underlying sigma protocol and
a hash function, using the Fiat-Shamir transformation.5 Hence, we denote elec-
tion schemes derived using our construction as Ext2Int(Γ,Ω,Σ,H), where the
underlying election scheme, signature scheme, sigma protocol and hash function
are Γ , Ω, Σ and H, respectively. To ensure our construction produces election
schemes with internal authentication, the non-interactive proof system must be
defined for a suitable relation, and we define such a relation as follows.

Definition 2. Given an election scheme with external authentication Γ =
(Setup,Vote,Tally,Verify) and a digital signature scheme Ω = (GenΩ ,SignΩ ,
VerifyΩ), we define binary relation R(Γ,Ω) over vectors of length 6 and vec-
tors of length 4 such that ((pk , b, σ,nc, κ), (v, r, d , r′)) ∈ R(Γ,Ω) ⇔ b =
Vote(pk ,nc, v, κ; r) ∧ σ = SignΩ(d , b; r′).

Definition 3 (Construction). Suppose Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ)
is an election scheme with external authentication, Ω = (GenΩ ,SignΩ ,VerifyΩ)
is a digital signature scheme, Σ is a sigma protocol for a binary relation
R(Γ,Ω), and H is a hash function. Let FS(Σ,H) = (ProveΣ ,VerifyΣ). We define
Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,Tally,Verify) such that:

– Setup(κ) computes (pk , sk ,mb,mc) ← SetupΓ (κ) and outputs (pk , sk ,
mb,mc).

– Register(pk , κ) computes (pd , d) ← GenΩ(κ) and outputs (pd , (pd , d)).
– Vote(d ′, pk ,nc, v, κ) parses d ′ as (pd , d) and outputs ⊥ if parsing fails, selects

coins r and r′ uniformly at random, computes
b ← VoteΓ (pk ,nc, v, κ; r);
σ ← SignΩ(d , b; r′);
τ ← ProveΣ((pk , b, σ,nc, κ), (v, r, d , r′), κ),

and outputs (pd , b, σ, τ).
– Tally(sk ,nc, bb, L, κ) computes (v, pf) ← TallyΓ (sk , auth(bb, L),nc, κ) and

outputs (v, pf).
– Verify(pk ,nc, bb, L,v, pf , κ) computes s ← VerifyΓ (pk , auth(bb, L),nc,v,
pf , κ) and outputs s.

Set auth(bb, L) = {b | (pd , b, σ, τ) ∈ bb ∧ VerifyΩ(pd , b, σ) = 1 ∧ VerifyΣ

((pk , b,nc, κ), τ, κ) = 1 ∧ pd ∈ L ∧ (pd , b′, σ′, τ ′) �∈ bb \ {(pd , b, σ, τ)} ∧
VerifyΩ(pd , b′, σ′) = 1}.

Our construction uses function auth to ensure tallied ballots are authorised
and to discard ballots submitted under the same credential (i.e., if there is more

5 Let FS(Σ, H) denote the non-interactive proof system derived by application of the
Fiat-Shamir transformation to sigma protocol Σ and hash function H.

326 E. A. Quaglia and B. Smyth

than one ballot submitted with a private credential, then all ballots submit-
ted under that credential are discarded). Since election schemes with internal
authentication must satisfy correctness, the underlying digital signature scheme
must ensure that key pairs are distinct. Hence, correctness of our construction
depends on security of the underlying digital signature scheme, albeit in a tedious
manner. Since we exploit strong unforgeability of the signature scheme for results
in the following sections, we assume the same property here (to ensure key pairs
are distinct). Weaker conditions could be used for generality.

Lemma 1. Let Γ be an election scheme with external authentication, Ω be
a digital signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and
H be a random oracle. Suppose Ω satisfies strong unforgeability. We have
Ext2Int(Γ,Ω,Σ,H) is an election scheme with internal authentication.

The proof of Lemma 1 appears in our companion technical report [28].

4 Our Construction Ensures Ballot Secrecy

We adopt the definition of ballot secrecy for election schemes with external
authentication (Ballot-Secrecy-Ext) by Smyth [32]. That definition appears to
be the most suitable in the literature, because it detects the largest class of
attacks [32, Sect. 7]. In particular, it detects attacks that arise when the adver-
sary controls the bulletin board or the communications channel, whereas other
definitions, e.g., [5–8,11,12,35], fail to detect such attacks. A definition of ballot
secrecy for election schemes with internal authentication (Ballot-Secrecy-Int) can
be derived from Smyth’s definition by a natural, straightforward extension that
takes credentials into account. Both definitions are presented in AppendixA.
The definition of ballot secrecy we recall challenges an adversary, who has access
to the election outcome, to distinguish between ballots.

We can prove that our construction ensures ballot secrecy (a formal
proof of Theorem2 appears in AppendixA), assuming the underlying election
scheme satisfies ballot secrecy and the underlying sigma protocol satisfies special
soundness and special honest verifier zero-knowledge.

Theorem 2. Let Γ be an election scheme with external authentication, Ω be a
digital signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be a
random oracle. Suppose Γ satisfies Ballot-Secrecy-Ext, Σ satisfies special sound-
ness and special honest verifier zero-knowledge, and Ω satisfies strong unforge-
ability. Election scheme with internal authentication Ext2Int(Γ,Ω,Σ,H) satisfies
Ballot-Secrecy-Int.

Proof sketch. Ballot secrecy of election scheme Ext2Int(Γ,Ω,Σ,H) follows from
secrecy of the underlying scheme Γ , because signatures and non-interactive zero-
knowledge proofs do not leak information. (Special soundness and special honest
verifier zero-knowledge ensure proof system FS(Σ,H) is zero-knowledge [7].)

Authentication with Weaker Trust Assumptions for Voting Systems 327

We demonstrate applicability of Theorem2 using a construction for election
schemes from asymmetric encryption.6

Definition 4 (Enc2Vote [29]). Given a perfectly correct asymmetric encryption
scheme Π = (Gen,Enc,Dec) satisfying IND-CPA, election scheme with external
authentication Enc2Vote(Π) is defined as follows:

– Setup(κ) computes (pk , sk) ← Gen(κ) and outputs (pk , sk , poly(κ), |m|).
– Vote(pk ,nc, v, κ) computes b ← Enc(pk , v) and outputs b if 1 ≤ v ≤ nc ≤ |m|

and ⊥ otherwise.
– Tally(sk ,nc, bb, κ) initialises vector v of length nc, computes for b ∈ bb do

v ← Dec(sk , b); if 1 ≤ v ≤ nc then v[v] ← v[v] + 1, and outputs (v, ε).
– Verify(pk ,nc, bb,v, pf , κ) outputs 1.

Algorithm Setup requires poly to be a polynomial function, algorithms Setup and
Vote require m = {1, . . . , |m|} to be the encryption scheme’s plaintext space, and
algorithm Tally requires ε to be a constant symbol.

Intuitively, given a non-malleable asymmetric encryption scheme Π,7

Enc2Vote(Π) derives ballot secrecy from Π until tallying and tallying maintains
ballot secrecy by returning only the number of votes for each candidate.

Proposition 3 ([29,32]). Let Π be an encryption scheme with perfect correct-
ness. If Π satisfies IND-PA0, then election scheme with external authentication
Enc2Vote(Π) satisfies Ballot-Secrecy-Ext.

Hence, by Theorem 2, we have the following result.

Corollary 4. Let Π be an asymmetric encryption scheme with perfect cor-
rectness, Ω be a digital signature scheme, Σ be a sigma protocol for relation
R(Enc2Vote(Π), Ω), and H be a random oracle. Suppose Π satisfies IND-PA0,
Σ satisfies special soundness and special honest verifier zero-knowledge, and
Ω satisfies strong unforgeability. Election scheme with internal authentication
Ext2Int(Enc2Vote(Π), Ω,Σ,H) satisfies Ballot-Secrecy-Int.

Clearly election scheme Enc2Vote does not satisfy universal verifiability, because
it will accept any election outcome.

5 Our Construction Ensures Election Verifiability

We adopt definitions of individual (Exp-IV-Ext) and universal (Exp-UV-Ext) veri-
fiability for election schemes with external authentication from Smyth et al. [36].
We also adopt their definitions of individual (Exp-IV-Int), universal (Exp-UV-Int)

6 We omit a formal definition of asymmetric encryption for brevity.
7 We adopt the formal definition of comparison based non-malleability under chosen

plaintext attack, which coincides with indistinguishability under a parallel chosen-
ciphertext attack (IND-PA0) [3]. We omit formal security definitions for brevity.

328 E. A. Quaglia and B. Smyth

and eligibility (Exp-EV-Int) verifiability for schemes with internal authentication.
Those definitions seem to be the most suitable in the literature, because they
detect the largest class of attacks. In particular, they detect collusion and bias-
ing attacks [36, Sect. 7], whereas other definitions, e.g., [13,20,21], fail to detect
such attacks. The definitions are presented in AppendixB.

The definitions by Smyth, Frink, and Clarkson et al. work as follows: Individ-
ual verifiability challenges the adversary to generate a collision from algorithm
Vote. Universal verifiability challenges the adversary to concoct a scenario in
which either: Verify accepts, but the election outcome is not correct, or Tally
produces an election outcome that Verify rejects. Hence, universal verifiability
requires algorithm Verify to accept if and only if the election outcome is correct.
Finally, eligibility verifiability challenges an adversary, which can corrupt voters,
to generate a valid ballot under a non-corrupt voter’s private credential.

We can prove that our construction ensures election verifiability. Individ-
ual and eligibility verifiability of Ext2Int(Γ,Ω,Σ,H) follow from security of the
underlying signature scheme, and universal verifiability follows from universal
verifiability of the underlying election scheme Γ .

Theorem 5. Let Γ be an election scheme with external authentication, Ω be
a digital signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and
H be a random oracle. Suppose Ω satisfies strong unforgeability, Σ satisfies
special soundness and special honest verifier zero-knowledge, and Γ satisfies
Exp-UV-Ext. Election scheme with internal authentication Ext2Int(Γ,Ω,Σ,H)
satisfies Exp-IV-Int, Exp-EV-Int, and Exp-UV-Int.

Proof sketch. Individual verifiability is satisfied because voters can check that
their signatures appear on the bulletin board. Universal verifiability is satisfied
because the underlying voting scheme does, and the properties of Ω and Σ ensure
only authorised ballots are tallied. And eligibility verifiability is satisfied because
anyone can check that signatures belong to registered voters.

A formal proof of Theorem5 follows immediately from our proofs of individual,
universal and eligibility verifiability, which we defer to AppendixB (Lemmata 10–
12).

We demonstrate applicability of our results for election schemes from nonces.

Definition 5 (Nonce [36]). Election scheme with external authentication Nonce
is defined as follows:

– Setup(κ) outputs (⊥,⊥, p1(κ), p2(κ)), where p1 and p2 may be any polynomial
functions.

– Vote(pk ,nc, v, κ) selects a nonce r uniformly at random from Z2κ and outputs
(r, v).

– Tally(sk ,nc, bb, κ) computes a vector v of length nc, such that v is a tally of
the votes on bb for which the nonce is in Z2κ , and outputs (v,⊥).

– Verify(pk , bb,nc,v, pf , κ) outputs 1 if (v, pf) = Tally(⊥,nc, bb, κ), and 0 oth-
erwise.

Authentication with Weaker Trust Assumptions for Voting Systems 329

Intuitively, election scheme Nonce ensures verifiability because voters can use
their nonce to check that their ballot is recorded (individual verifiability) and
anyone can recompute the election outcome to check that it corresponds to votes
expressed in recorded ballots (universal verifiability).

Proposition 6 ([36]). Election scheme with external authentication Nonce sat-
isfies Exp-IV-Ext and Exp-UV-Ext.

Hence, by Theorem 5, we have the following result.

Corollary 7. Let Ω be a digital signature scheme, Σ be a sigma protocol for
relation R(Nonce, Ω), and H be a random oracle. Suppose Ω satisfies strong
unforgeability and Σ satisfies special soundness and special honest verifier zero-
knowledge. Election scheme with internal authentication Ext2Int(Nonce, Ω,Σ,H)
satisfies Exp-IV-Int, Exp-UV-Int, and Exp-EV-Int.

Clearly election scheme Nonce does not satisfy ballot secrecy.

6 Case Study: A Secret, Verifiable Election Scheme
with Internal Authentication

Helios is an open-source, web-based electronic voting system which has been used
in binding elections. The International Association of Cryptologic Research has
used Helios annually since 2010 to elect board members [4,18], the ACM used
Helios for their 2014 general election [40], the Catholic University of Louvain used
Helios to elect the university president in 2009 [2], and Princeton University has
used Helios since 2009 to elect student governments. Informally, Helios can be
modelled as the following election scheme with external authentication:

Setup generates a key pair for an asymmetric homomorphic encryption scheme,
proves correct key generation in zero-knowledge, and outputs the public key
coupled with the proof.

Vote encrypts the vote, proves correct ciphertext construction and that the vote
is selected from the sequence of candidates (both in zero-knowledge), and
outputs the ciphertext coupled with the proof.

Tally proceeds as follows. First, any ballots on the bulletin board for which proofs
do not hold are discarded. Secondly, the ciphertexts in the remaining ballots
are homomorphically combined, the homomorphic combination is decrypted
to reveal the election outcome, and correctness of decryption is proved in
zero-knowledge. Finally, the election outcome and proof of correct decryption
are output.

Verify recomputes the homomorphic combination, checks the proofs, and outputs
1 if these checks succeed and 0 otherwise.

The original scheme [2] is known to be vulnerable to attacks against ballot
secrecy and verifiability,8 and defences against those attacks have been pro-
posed [7,15,32,35]. We adopt the formal definition of a Helios variant by Smyth
8 Beyond secrecy and verifiability, attacks against eligibility are also known [23,38].

330 E. A. Quaglia and B. Smyth

et al. [36], which adopts non-malleable ballots [32,37] and uses the Fiat–Shamir
transformation with statements in hashes [7] to defend against those attacks.
Henceforth, we write Helios’16 to refer to that formalisation.

Using our construction we derive an election scheme with internal authenti-
cation from Helios’16 and prove privacy and verifiability using our results.

Theorem 8. Let Ω be a digital signature scheme, Σ be a sigma proto-
col for relation R(Helios’16, Ω), and H be a random oracle. Suppose Ω
satisfies strong unforgeability and Σ satisfies special soundness and special
honest verifier zero-knowledge. Election scheme with internal authentication
Ext2Int(Helios’16, Ω,Σ,H) satisfies Ballot-Secrecy-Int, Exp-IV-Int, Exp-UV-Int,
and Exp-EV-Int.

Proof. Helios’16 satisfies Ballot-Secrecy-Ext, Exp-IV-Ext, and Exp-UV-Ext [32,36],
FS(Σ,H) satisfies zero-knowledge [7], and we conclude by Theorems 2 and 5.

Comparison with Helios-C. Schemes derived from Helios using our construction
are similar to Helios-C [13,14]. Indeed, they use ballots that include a Helios
ballot and a signature on that Helios ballot. The schemes derived by our con-
struction also include proofs of correct construction, unlike Helios-C. We will see
that this distinction is crucial to ensure ballot secrecy.

Cortier et al. [13, Sect. 5] analysed Helios-C using the definition of ballot
secrecy by Bernhard et al. [7]. That definition assumes “ballots are recorded-as-
cast, i.e., cast ballots are preserved with integrity through the ballot collection
process” [32, Sect. 7]. Unfortunately, ballot secrecy is not satisfied without this
assumption, because Helios-C uses malleable ballots.

Remark 9. Helios-C does not satisfy Ballot-Secrecy-Int.

Proof sketch. An adversary can observe and block a voter’s ballot,9 extract the
underlying Helios ballot, sign that ballot, and post the ballot and signature on
the bulletin board. The adversary can then exploit the relation between ballots
to recover the voter’s vote from the election outcome. (Cf. [15].)

Ext2Int(Helios’16, Ω,Σ,H) ballots extend non-malleable Helios’16 ballots with
a signature and a proof demonstrating construction of both the embed-
ded Helios’16 ballot and signature, thus, Ext2Int(Helios’16, Ω,Σ,H) uses non-
malleable ballots, so it is not similarly effected.

Beyond secrecy, Smyth et al. [36] have shown that Helios-C does not satisfy
Exp-UV-Int. Hence, we improve upon Helios-C by satisfying Ballot-Secrecy-Ext
and Exp-UV-Int.

Our results can also be applied to the variant of Helios that applies a mixnet to
encrypted votes and decrypts the mixed encrypted votes to reveal the outcome [1,
9], rather than homomorphically combining encrypted votes and decrypting the
homomorphic combination to reveal the outcome. Tsoukalas et al. [41] released
9 Ballot blocking violates the recorded-as-cast assumption used in Cortier et al.’s proof.

Authentication with Weaker Trust Assumptions for Voting Systems 331

Zeus as a fork of Helios spliced with mixnet code to derive an implementation of
that variant, and Yingtong Li released helios-server-mixnet as an extension of
Zeus with threshold asymmetric encryption.10 We could use our construction to
derive an election scheme with internal authentication from the mixnet variant
of Helios and use our privacy and verifiability results to prove security. Since the
ideas remain the same, we do not pursue further details.

7 Conclusion

This work was initiated by a desire to eliminate trust assumptions placed upon
the operators of external authentication services. Cortier et al. made progress
in this direction with Helios-C, which builds upon Helios by signing ballots.
We discovered that Helios-C does not satisfy ballot secrecy in the presence of
an adversary that controls the bulletin board or the communication channel,
and it is known that verifiability is not satisfied either. We realised that prov-
ing correct construction of both the Helios ballot and the signature suffices for
non-malleability. This prompted the design of our construction and led to the
accompanying security proofs that it produces voting systems satisfying bal-
lot secrecy and verifiability. Finally, we demonstrated the applicability of our
results by applying our construction to the Helios voting system. The next step
would be to select a suitable sigma protocol and signature scheme to instantiate
our construction concretely. And an interesting and useful direction for future
work will be to consider, in general, the practical challenges of implementing our
construction efficiently.

Acknowledgements. In the context of [36], Smyth conceived the fundamental ideas
of our construction for election schemes with internal authentication. In addition,
Smyth discovered that Helios-C does not satisfy ballot secrecy, whilst analysing elec-
tion verifiability. Smyth and his co-authors, Frink & Clarkson, decided not to publish
these results. This paper builds upon those unpublished results and we are grateful to
Frink and Clarkson for their part in inspiring this line of work.

A Ballot Privacy: Definitions and Proofs

We recall Smyth’s definition of ballot secrecy for election schemes with exter-
nal authentication (Definition 6), and present a natural, straightforward exten-
sion of that definition to capture ballot secrecy for election schemes with inter-
nal authentication (Definition 7). Our definitions both use predicate balanced
such that balanced(bb,nc, B) holds when: for all votes v ∈ {1, . . . ,nc} we have
|{b | b ∈ bb ∧ ∃v1 . (b, v, v1) ∈ B}| = |{b | b ∈ bb ∧ ∃v0 . (b, v0, v) ∈ B}|. Intu-
itively, the definitions challenge an adversary to determine whether the left-right
oracle produces ballots for “left” or “right” inputs, by giving the adversary the

10 Smyth [34] shows that vulnerabilities in Helios cause vulnerabilities in implementa-
tions of the mixnet variant and proves verifiability is satisfied when a fix is applied.

332 E. A. Quaglia and B. Smyth

oracle’s outputs, as well as the election outcome and tallying proof. The defi-
nitions prevent the adversary from trivially distinguishing ballots by requiring
predicate balanced to hold.

Definition 6 (Ballot-Secrecy-Ext [32]). Let Γ = (Setup,Vote,Tally,Verify) be an
election scheme with external authentication, A be an adversary, κ be a security
parameter, and Ballot-Secrecy-Ext(Γ,A, κ) be the following game.

Ballot-Secrecy-Ext(Γ,A, κ) =
(pk , sk ,mb,mc) ← Setup(κ);
nc ← A(pk , κ);
β ←R {0, 1};B ← ∅;
bb ← AO();
(v, pf) ← Tally(sk ,nc, bb, κ);
g ← A(v, pf);
if g = β ∧ balanced(bb,nc, B) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb then

return 1
else

return 0

Oracle O is defined as follows:11

– O(v0, v1) computes if v0, v1 ∈ {1, . . . ,nc} then b ← Vote(pk ,nc, vβ , κ);B ←
B ∪ {(b, v0, v1)}; return b.

We say Γ satisfies Ballot-Secrecy-Ext, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Ballot-Secrecy-Ext(Γ,A, κ)) ≤ 1

2 + negl(κ).

Definition 7 (Ballot-Secrecy-Int). Let Γ = (Setup,Register,Vote,Tally,Verify)
be an election scheme with internal authentication, A be an adversary, κ be a
security parameter, and Ballot-Secrecy-Int(Γ,A, κ) be the following game.

Ballot-Secrecy-Int(Γ,A, κ) =
(pk , sk ,mb,mc) ← Setup(κ);
nv ← A(pk , κ);
for 1 ≤ i ≤ nv do

(pd i, di) ← Register(pk , κ);
nc ← A(pd1, . . . , pdnv);
β ←R {0, 1};B ← ∅;R ← ∅;
bb ← AO();
(v, pf) ← Tally(sk ,nc, bb, {pd1, . . . , pdnv}, κ);
g ← A(v, pf);
if g = β ∧ balanced(bb,nc, B) ∧ 1 ≤ nc ≤ mc ∧ |bb| ≤ mb then

return 1
else

return 0
Oracle O is defined as follows:
11 Oracles may access game parameters, e.g., pk .

Authentication with Weaker Trust Assumptions for Voting Systems 333

– O(i, v0, v1) computes if v0, v1 ∈ {1, . . . ,nc} ∧ i �∈ R then b ←
Vote(di, pk ,nc, vβ , κ);B ← B ∪ {(b, v0, v1)};R ← R ∪ {i}; return b; and

– O(i) computes if i �∈ R then R ← R ∪ {i}; return di.

We say Γ satisfies Ballot-Secrecy-Int, if for all probabilistic polynomial-time
adversaries A, there exists a negligible function negl, such that for all security
parameters κ, we have Succ(Ballot-Secrecy-Int(Γ,A, κ)) ≤ 1

2 + negl(κ).

Game Ballot-Secrecy-Int extends Ballot-Secrecy-Ext to take credentials into
account. In particular, the challenger constructs nv credentials, where nv is
chosen by the adversary. These credentials are used to construct ballots and for
tallying. Public and private credentials are available to the adversary. Albeit,
the oracle will only reveal a private credential if it has not used it to construct
a ballot. Moreover, the oracle may only use a private credential to construct a
ballot if it has not revealed it nor constructed a previous ballot with it.

Proof of Theorem 2. Suppose Ballot-Secrecy-Int is not satisfied by
Ext2Int(Γ,Ω,Σ,H), i.e., there exists a adversary A such that for
all negligible functions negl there exists a security parameter κ and
Succ(Ballot-Secrecy-Int(Ext2Int(Γ,Ω,Σ,H),A, κ)) ≤ 1

2 + negl(κ). We construct
an adversary B against Γ from A.

Let Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ), Ω = (GenΩ ,SignΩ ,VerifyΩ),
FS(Σ,H) = (ProveΣ ,VerifyΣ) , and Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,
Tally,Verify). By [7, Theorem 1], non-interactive proof system (ProveΣ ,VerifyΣ)
satisfies zero-knowledge, i.e., there exists a simulator for (ProveΣ ,VerifyΣ). Let
S be such a simulator. We define B as follows:

– B(pk , κ) computes nv ← A(pk , κ); for 1 ≤ i ≤ nv do (pd i, di) ←
Register(pk , κ); nc ← A(pd1, . . . , pdnv) and outputs nc.

– B() computes R ← ∅; bb ← AO(); bb ← auth(bb, {pd1, . . . , pdnv}) and
outputs bb, handling oracle calls from A as follows. Given an oracle call
O(i, v0, v1) such that v0, v1 ∈ {1, . . . ,nc} ∧ i �∈ R, adversary B computes
b ← O(v0, v1);σ ← SignΩ(di, b); τ ← S((pk , b, σ,nc, κ), κ);R ← R ∪ {i} and
returns (pd i, b, σ, τ) to A. Moreover, given an oracle call O(i) such that i �∈ R,
adversary B computes R ← R ∪ {i} and returns di to A.

– B(v, pf) computes g ← A(v, pf) and outputs g.

We prove that B wins Ballot-Secrecy-Ext against Γ .
Suppose (pk , sk ,mb,mc) is an output of SetupΓ (κ) and nc is an output of

B(pk , κ). It is trivial to see that B(pk , κ) simulates A’s challenger to A. Let β be
a bit. Suppose bb is an output of B(). Since S is a simulator for (ProveΣ ,VerifyΣ),
we have B() simulates A’s challenger to A. In particular, B() simulates oracle calls
O(i, v0, v1). Indeed, adversary B computes b ← O(v0, v1);σ ← SignΩ(di, b); τ ←
S((pk , b, σ,nc, κ), κ), which, by definition of B’s oracle, is equivalent to b ←
VoteΓ (pk ,nc, vβ , κ);σ ← SignΩ(di, b); τ ← S((pk , b, σ,nc, κ), κ). And A’s ora-
cle computes b ← Vote(di, pk ,nc, vβ , κ), i.e., b ← VoteΓ (pk ,nc, vβ , κ; r);σ ←
SignΩ(di, b; r′); τ ← ProveΣ((pk , b, σ,nc, κ), (vβ , r, di, r

′), κ), where r and r′ are

334 E. A. Quaglia and B. Smyth

coins chosen uniformly at random. Hence, computations of b, σ and τ by B and
A’s oracle are equivalent, with overwhelming probability. Suppose (v, pf) is an
output of TallyΓ (sk , bb,nc, κ) and g is an output of B(v, pf). We have B(v, pf)
simulates A’s challenger to A, because outputs of TallyΓ (sk ′, auth(bb′, L),nc′, κ′)
and Tally(sk ′,nc′, bb′, L, κ′) are indistinguishable for all sk ′, bb′, L, nc′, and κ′.
Indeed, Tally computes (v′, pf ′) ← TallyΓ (sk ′, auth(bb′, L),nc′, κ′) and outputs
(v′, pf ′). Since adversary B simulates A’s challenger, with overwhelming proba-
bility. It follows that B determines β correctly with the same success as A with
overwhelming probability. Hence, B wins Ballot-Secrecy-Ext(Γ,A, κ), with over-
whelming probability, deriving a contradiction and concluding our proof.

B Election Verifiability: Definitions and Proofs

B.1 Individual Verifiability

Definition 8. (Exp-IV-Ext [36]). Let Γ = (Setup,Vote,Tally,Verify) be an elec-
tion scheme with external authentication, A be an adversary, κ be a security
parameter, and Exp-IV-Ext(Γ,A, κ) be the following game.

Exp-IV-Ext(Γ,A, κ) =
(pk ,nc, v, v′) ← A(κ);
b ← Vote(pk ,nc, v, κ);
b′ ← Vote(pk ,nc, v′, κ);
if b = b′ ∧ b �= ⊥ ∧ b′ �= ⊥ then

return 1
else

return 0
We say Γ satisfies Exp-IV-Ext, if for all probabilistic polynomial-time adversaries
A, there exists a negligible function negl, such that for all security parameters
κ, we have Succ(Exp-IV-Ext(Γ,A, κ)) ≤ negl(κ).

Definition 9. (Exp-IV-Int [36]). Let Γ = (Setup,Register,Vote,Tally,Verify) be
an election scheme with external authentication, A be an adversary, κ be a
security parameter, and Exp-IV-Int(Π,A, κ) be the following game.

Exp-IV-Int(Π,A, κ) =
(pk ,nv) ← A(κ);
for 1 ≤ i ≤ nv do (pd i, di) ← Register(pk , κ);
L ← {pd1, . . . , pdnv};
Crpt ← ∅;
(nc, v, v′, i, j) ← AC(L);
b ← Vote(di, pk ,nc, v, κ);
b′ ← Vote(dj , pk ,nc, v′, κ);
if b = b′ ∧ b �= ⊥ ∧ b′ �= ⊥ ∧ i �= j ∧ di �∈ Crpt ∧ dj �∈ Crpt then

return 1
else

return 0

Authentication with Weaker Trust Assumptions for Voting Systems 335

Oracle C is defined such that C(i) computes Crpt ← Crpt ∪ {di} and outputs
di, where 1 ≤ i ≤ nv .

We say Γ satisfies Exp-IV-Int, if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl, such that for all security param-
eters κ, we have Succ(Exp-IV-Int(Π,A, κ)) ≤ negl(κ).

Lemma 10. Let Γ = (Setup,Register,Vote,Tally,Verify) be an election scheme
with external authentication, Ω = (Gen,Sign,Verify) be a digital signature
scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be a hash function.
Suppose Ω satisfies strong unforgeability. We have Ext2Int(Γ,Ω,Σ,H) satisfies
Exp-IV-Int.

Proof. Suppose Ext2Int(Γ,Π,Σ,H) does not satisfy Exp-IV-Int. Hence, there
exists a PPT adversary A, such that for all negligible functions negl, there exists a
security parameter κ and negl(κ) < Succ(Exp-IV-Int(Ext2Int(Γ,Π,Σ,H),A, κ)).
We construct the following adversary B against strong unforgeability from A:

B(pd , κ) =
(pk ,nv) ← A(κ);
i∗ ←R {1, . . . ,nv};
for i ∈ {1, . . . ,nv} \ {i∗} do (pd i, di) ← Register(pk , κ);
(nc, v, v′, j, k) ← AC({pd1, . . . , pd i∗−1, pd , pd i∗+1, . . . , pdnv});
if i∗ = k then

(pd j , b, σ, τ) ← Vote(dj , pk ,nc, v, κ);
return (σ, b);

else if i∗ = j then
(pdk, b, σ, τ) ← Vote(dk, pk ,nc, v′, κ);
return (σ, b);

else
abort;

where C(i) outputs di if i �= i∗ and aborts otherwise. We prove that B wins
strong unforgeability against Ω.

Since adversary B chooses i∗ uniformly at random and independently
of adversary A, and since A is a winning adversary, hence, does not cor-
rupt at least two distinct credentials, we have that B aborts with a prob-
ability upper-bounded by nv−2

nv . Let us consider the probability that B
wins, when there is no abort. Suppose (pd , d) is an output of Gen(κ),
(pk ,nv) is an output of A(κ), and i∗ is chosen uniformly at random from
{1, . . . ,nv}. Further suppose (pd i, di) is an output of Register(pk , κ) for each
i ∈ {1, . . . ,nv} \ {i∗}. It is straightforward to see that B simulates the chal-
lenger and oracle in Exp-IV-Int to A. Suppose (nc, v, v′, j, k) is an output of
AC({pd1, . . . , pd i∗−1, pd , pd i∗+1, . . . , pdnv}). Since A is a winning adversary, out-
puts of Vote(dj , pk ,nc, v, κ) and Vote(dk, pk ,nc, v′, κ) collide with non-negligible
probability. Hence, if i∗ = k, then Vote(dj , pk ,nc, v, κ) outputs (pd j , b, σ, τ) such
that σ is a signature on b with respect to private key di∗ , otherwise (i∗ = j),
Vote(dk, pk ,nc, v′, κ) outputs (pdk, b, σ, τ) such that σ is a signature on b

336 E. A. Quaglia and B. Smyth

with respect to private key di∗ . Thus, Succ(Exp-StrongSign(Γ,B, κ)) is at least
2
nv · Succ(Exp-IV-Int(Ext2Int(Γ,Π,Σ,H),A, κ)), which is non-negligible.

B.2 Universal Verifiability

External authentication. Algorithm Verify is required to accept iff the election
outcome is correct. The notion of a correct outcome is captured using func-
tion correct-outcome, which is defined such that for all pk , nc, bb, κ, �, and
v ∈ {1, . . . ,nc}, we have correct-outcome(pk ,nc, bb, κ)[v] = � iff ∃=�b ∈ bb\{⊥} :
∃r : b = Vote(pk ,nc, v, κ; r),12 and the produced vector is of length nc. Hence,
component v of vector correct-outcome(pk ,nc, bb, κ) equals � iff there exist � bal-
lots on the bulletin board that are votes for candidate v. The function requires
ballots to be interpreted for only one candidate, which can be ensured by injec-
tivity.

The if requirement of universal verifiability is captured by Completeness,
which stipulates that election outcomes produced by algorithm Tally will actu-
ally be accepted by algorithm Verify. And the only if requirement is captured
by Soundness, which challenges an adversary to concoct a scenario in which
algorithm Verify accepts, but the election outcome is not correct.

Definition 10 ([36]). An election scheme with external authentication
(Setup,Vote,Tally,Verify) satisfies Soundness, if the scheme satisfies Injectiv-
ity [36] and for all probabilistic polynomial-time adversaries A, there exists
a negligible function negl, such that for all security parameters κ, we have
Pr[(pk ,nc, bb,v, pf) ← A(κ); return v �= correct-outcome(pk ,nc, bb, κ) ∧
Verify(pk ,nc, bb,v, pf , κ) = 1] ≤ negl(κ).

An election scheme with external authentication satisfies Exp-UV-Ext, if Injec-
tivity, Completeness and Soundness are satisfied, where formal definitions of
Injectivity and Completeness appear in [36].

Internal authentication. Function correct-outcome is now modified to tally
only authorised ballots: let function correct-outcome now be defined such
that for all pk , nc, bb, M , κ, �, and v ∈ {1, . . . ,nc}, we have
correct-outcome(pk ,nc, bb,M, κ)[v] = � iff ∃=�b ∈ authorized(pk ,nc, (bb \
{⊥}),M, κ) : ∃d , r : b = Vote(d , pk ,nc, v, κ; r). A ballot is authorised if it
is constructed with a private credential from M , and that private credential
was not used to construct any other ballot on bb. Let authorized be defined
as follows: authorized(pk ,nc, bb,M, κ) = {b : b ∈ bb ∧ ∃pd , d , v, r : b =
Vote(d , pk ,nc, v, κ; r) ∧ (pd , d) ∈ M ∧ ¬∃b′, v′, r′ : b′ ∈ (bb \ {b}) ∧ b′ =
Vote(d , pk ,nc, v′, κ; r′)}.

12 Function correct-outcome uses a counting quantifier [31] denoted ∃=. Predicate
(∃=�x : P (x)) holds exactly when there are � distinct values for x such that P (x) is
satisfied. Variable x is bound by the quantifier, whereas � is free.

Authentication with Weaker Trust Assumptions for Voting Systems 337

Definition 11 ([36]). An election scheme with internal authentication
(Setup,Register,Vote,Tally,Verify) satisfies Soundness, if the scheme satisfies
Injectivity [36] and for all probabilistic polynomial-time adversaries A, there
exists a negligible function negl, such that for all security parameters κ, we
have Pr[(pk ,nv) ← A(κ); for 1 ≤ i ≤ nv do (pd i, di) ← Register(pk , κ);
L ← {pd1, . . . , pdnv};M ← {(pd1, d1), . . . , (pdnv , dnv)}; (bb,nc,v, pf) ← A(M);
return v �= correct-outcome(pk ,nc, bb,M, κ) ∧ Verify(pk ,nc, bb, L,v, pf , κ)
= 1] ≤ negl(κ).

An election scheme with internal authentication satisfies Exp-UV-Int, if Injectiv-
ity, Completeness and Soundness are satisfied.

Lemma 11. Let Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ) be an election scheme with
external authentication, Ω = (GenΩ ,SignΩ ,VerifyΩ) be a perfectly correct digi-
tal signature scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be
a random oracle. Moreover, let FS(Σ,H) = (ProveΣ ,VerifyΣ). Suppose Γ sat-
isfies Exp-UV-Ext, Ω satisfies strong unforgeabilityand Σ satisfies perfect spe-
cial soundness and special honest verifier zero-knowledge. Election scheme with
internal authentication Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,Tally,Verify)
satisfies Exp-UV-Int.

Proof. We prove that Ext2Int(Γ,Ω,Σ,H) satisfies Injectivity, Completeness and
Soundness: The proofs for Injectivity and Completeness are quite straightforward
and can be found in our technical report [28].

Soundness. We prove that Ext2Int(Γ,Ω,Σ,H) satisfies Soundness by contradic-
tion. Suppose Ext2Int(Γ,Ω,Σ,H) does not satisfy Soundness, i.e., there exists
an adversary A such that for all negligible functions negl there exists a security
parameter κ and the probability defined in Definition 11 is greater than negl(κ).
We use A to construct an adversary B that wins the Soundness game against Γ .

B(κ) =
(pk ,nv) ← A(κ);
for 1 ≤ i ≤ nv do

(pd i, di) ← Register(pk , κ);

L = {pd1, . . . , pdnv};
M ← {(pd1, d1), . . . , (pdnv , dnv)};
(bb,nc,v, pf) ← A(M);
return (pk ,nc, auth(bb, L),v, pf)

We prove that B wins the Soundness game against Γ .
Suppose (pk ,nv) is an output of A(κ) and (pd1, d1), . . . , (pdnv , dnv) are

outputs of Register(pk , κ). Let L = {pd1, . . . , pdnv} and M = {(pd1, d1), . . . ,
(pdnv , dnv)}. Suppose (bb,nc,v, pf) is an output of A(M). Further suppose
(pk ,nc, auth(bb, L),v, pf) is an output of B(κ). Since A is a winning adver-
sary, we have Verify(pk ,nc, bb, L,v, pf , κ) = 1, with non-negligible probabil-
ity. By inspection of algorithm Verify, we have Verify(pk ,nc, bb, L,v, pf , κ) = 1

338 E. A. Quaglia and B. Smyth

implies VerifyΓ (pk , auth(bb, L),nc,v, pf , κ) = 1. Hence, it remains to show v �=
correct-outcome(pk ,nc, auth(bb, L), κ), with probability greater than negl(κ).

By definition of function correct-outcome, we have v is a vector of length nc
such that

correct-outcome(pk ,nc, auth(bb, L), κ)[v] = �

⇔ ∃=�b ∈ auth(bb, L) \ {⊥} : ∃r : b = Vote(pk ,nc, v, κ; r)

Since A is a winning adversary, it suffices to derive

⇔ ∃=�b ∈ authorized(pk ,nc, (bb \ {⊥}),M, κ)
: ∃d , r : b = Vote(d , pk ,nc, v, κ; r) (1)

Let set auth∗(pk ,nc, bb,M, κ) = {b∗|(pd , b∗, σ, τ)∈authorized(pk ,nc, bb,M, κ)}.
To prove (1), it suffices to show auth(bb, L)\{⊥} = auth∗(pk ,nc, bb,M, κ)\{⊥},
since this would imply that correct-outcome is computed on sets of corresponding
ballots in both the external and internal authentication setting.

– auth∗(pk ,nc, bb,M, κ) \ {⊥} ⊆ auth(bb, L) \ {⊥}
If b∗ ∈ auth∗(pk ,nc, bb,M, κ), then b∗ �= ⊥ and there exists b ∈
authorized(pk ,nc, bb,M, κ) such that (i) b ∈ bb; (ii) ∃pd , d , v, r, r′, r′′ :
b = (pd , b∗, σ, τ), b∗ = VoteΓ (pk ,nc, v, κ; r), σ = SignΩ(d , b∗; r′),
and τ = ProveΣ((pk , b∗, σ,nc, κ), (v, r, d , r′), κ; r′′), which – by correct-
ness of Ω and completeness of Σ – implies VerifyΩ(pd , b∗, σ) = 1 and
VerifyΣ((pk , b∗,nc, κ), τ, κ)) = 1; (iii) (pd , d) ∈ M , which implies pd ∈
L by construction; and (iv) ¬∃b′, v′, r, r′, r′′ : b′ ∈ (bb \ {b}) ∧ b′ =
(pd , b∗′

, σ′, τ ′), b∗′
= VoteΓ (pk ,nc, v′, κ; r), σ′ = SignΩ(d , b∗′

; r′), and
τ ′ = ProveΣ((pk , b∗′

, σ′,nc, κ), (v′, r, d , r′), κ; r′′), which, by correctness of
Ω, implies VerifyΩ(pd , b∗′

, σ′) = 1. It follows by (i)–(iv) that b∗ ∈
auth∗(pk ,nc, bb,M, κ) implies b∗ ∈ auth(bb, L) \ {⊥}.

– auth(bb, L) \ {⊥} ⊆ auth∗(pk ,nc, bb,M, κ) \ {⊥}
If b∗ ∈ auth(bb, L) \ {⊥}, then b∗ �= ⊥ such that (i) (pd , b∗, σ, τ) ∈ bb; (ii)
VerifyΩ(pd , b∗, σ) = 1 and VerifyΣ((pk , b∗,nc, κ), τ, κ)) = 1, which – by the
security of Ω and Σ – implies ∃pd , d , v, r, r′, r′′ : b∗ = VoteΓ (pk ,nc, v, κ; r),
σ = SignΩ(d , b∗; r′), and τ = ProveΣ((pk , b∗, σ,nc, κ), (v, r, d , r′), κ; r′′).
Indeed, suppose this is not true, i.e., such values do not exist. Then (b∗, σ)
and ((pk , b∗,nc, κ), τ) could be used by adversaries to break the unforgeabil-
ity property of Ω and the special soundness and special honest verifier zero-
knowledge property of Σ, respectively. Furthermore, we have (iii) pd ∈ L,
which implies (pd , d) ∈ M by construction; and (iv) b′ = (pd , b∗′

, σ′, τ ′) /∈
(bb\{(pd , b∗, σ, τ)})∧VerifyΩ(pd , b∗′

, σ′) = 1, which implies ¬∃b′, v′, r, r′, r′′ :
b′ ∈ (bb \ {b}) ∧ b′ = (pd , b∗′

, σ′, τ ′), b∗′
= VoteΓ (pk ,nc, v′, κ; r), σ′ =

SignΩ(d , b∗′
; r′), and τ ′ = ProveΣ((pk , b∗′

, σ′,nc, κ), (v′, r, d , r′), κ; r′′), as per
definition of authorized , concluding our proof.

Authentication with Weaker Trust Assumptions for Voting Systems 339

B.3 Eligibility Verifiability

Definition 12 (Eligibility verifiability [36]). Let Γ = (Setup,Register,Vote,
Tally,Verify) be an election scheme with internal authentication, A be an adver-
sary, κ be a security parameter, and Exp-EV-Int(Π,A, κ) be the following game.

Exp-EV-Int(Π,A, κ) =
(pk ,nv) ← A(κ);
for 1 ≤ i ≤ nv do (pd i, di) ← Register(pk , κ);
L ← {pd1, . . . , pdnv};
Crpt ← ∅; Rvld ← ∅;
(nc, v, i, b) ← AC,R(L);
if ∃r : b = Vote(di, pk ,nc, v, κ; r) ∧ b �= ⊥ ∧ b �∈ Rvld ∧ di �∈ Crpt then

return 1
else

return 0
Oracle C is the same oracle as in Exp-IV-Int, and oracle R is defined such that
R(i, v,nc) computes b ← Vote(di, pk ,nc, v, k);Rvld ← Rvld ∪{b} and outputs b.

We say Γ satisfies Exp-EV-Int, if for all probabilistic polynomial-time adver-
saries A, there exists a negligible function negl, such that for all security param-
eters κ, we have Succ(Exp-EV-Int(Π,A, κ)) ≤ negl(κ).

Lemma 12. Let Γ = (SetupΓ ,VoteΓ ,TallyΓ ,VerifyΓ) be an election scheme
with external authentication, Ω = (GenΩ ,SignΩ ,VerifyΩ) be a digital signa-
ture scheme, Σ be a sigma protocol for relation R(Γ,Ω), and H be a hash
function. Suppose Σ satisfies special soundness and special honest verifier zero-
knowledge, and Ω satisfies strong unforgeability. Election scheme with internal
authentication Ext2Int(Γ,Ω,Σ,H) = (Setup,Register,Vote,Tally,Verify) satisfies
Exp-EV-Int.

Proof. Suppose Ext2Int(Γ,Ω,Σ,H) does not satisfy Exp-EV-Int, i.e., there exists
an adversary A such that for all negligible functions negl there exists a secu-
rity parameter κ and Succ(Exp-EV-Int(Π,A, κ)) > negl(κ). We construct the
following adversary B against the strong unforgeability of Ω from A.

B(pd , κ) =
(pk ,nv) ← A(κ);
i∗ ←R {1, . . . ,nv};
for i ∈ {1, . . . ,nv} \ {i∗} do (pd i, di) ← Register(pk , κ);
Rvld ← ∅;Crpt ← ∅;
(nc, v, i, b) ← AC,R({pd1, . . . , pd i∗−1, pd , pd i∗+1, . . . , pdnv});
if b[1] = pd then

return (b[1], b[3]);
else

abort;

where oracle calls are handled as follows:

340 E. A. Quaglia and B. Smyth

– C(i) computes Crpt ← Crpt ∪ {di} and returns di if i �= i∗, and aborts
otherwise.

– R(i, v,nc) distinguishes two cases: If i = i∗, then B computes b ←
VoteΓ (pk ,nc, v, κ);σ ← O(b); τ ← S((pk , b, σ,nc, κ), κ), computes Rvld ←
Rvld ∪ {(pd , b, σ, τ)}, and returns (pd , b, σ, τ), where S is a simulator for
FS(Σ,H) that exists by [7, Theorem 1]. Otherwise, B computes b ←
Vote(di, pk ,nc, v, κ), Rvld ← Rvld ∪ {b} and returns b.

We prove that B wins the strong unforgeability game against Ω.
Let κ be a security parameter. Suppose (pd , d) is an output of Gen(κ)

and (pk ,nv) is an output of A(κ). Let i∗ be an integer chosen uni-
formly at random from {1, . . . ,nv}. Suppose (pd i, di) is an output of
Register(pk , κ), for each i ∈ {1, . . . ,nv} \ {i∗}. Let us consider an execution
of A({pd1, . . . , pd i∗−1, pd , pd i∗+1, . . . , pdnv}). Let (nc, v, i, b) be the output of
A. By definition of algorithm Register, it is trivial to see that B simulates A’s
challenger to A. Moreover, B simulates oracle C to A, except when B aborts. Fur-
thermore, B simulates oracle R to A as well. In particular, simulator S produces
proofs that are indistinguishable from proofs constructed by non-interactive
proof system FS(Σ,H).

We denote by Good the event that i = i∗. Now, let us assess B’s probability
not to abort, to determine the success probability of B. Since A is not allowed to
corrupt the credential it finally outputs (as A is a winning adversary, di /∈ Crpt
must hold), a sufficient condition for B not to be asked for the unknown private
credential di is to be lucky when drawing i∗ ← {1, . . . ,nv} at random and have
event Good occurring.

This is the case with probability Pr[Good] = 1
nv since the choice of i∗ is com-

pletely independent of A’s view. Therefore we have Succ(Exp-EV-Int(Π,A, κ)) ≤
nv · Succ(Exp-StrongSign(Ω,B, k)).

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security 2008: 17th
USENIX Security Symposium, pp. 335–348. USENIX Association (2008)

2. Adida, B., Marneffe, O., Pereira, O., Quisquater, J.: Electing a university presi-
dent using open-audit voting: analysis of real-world use of Helios. In: EVT/WOTE
2009: Electronic Voting Technology Workshop/Workshop on Trustworthy Elec-
tions. USENIX Association (2009)

3. Bellare, M., Sahai, A.: Non-malleable encryption: equivalence between two notions,
and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO
1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48405-1 33

4. Benaloh, J., Vaudenay, S., Quisquater, J.: Final report of IACR electronic voting
committee. International Association for Cryptologic Research, September 2010.
https://iacr.org/elections/eVoting/finalReportHelios 2010-09-27.html

https://doi.org/10.1007/3-540-48405-1_33
https://doi.org/10.1007/3-540-48405-1_33
https://iacr.org/elections/eVoting/finalReportHelios_2010-09-27.html

Authentication with Weaker Trust Assumptions for Voting Systems 341

5. Bernhard, D., Cortier, V., Galindo, D., Pereira, O., Warinschi, B.: SoK: a com-
prehensive analysis of game-based ballot privacy definitions. In: S&P 2015: 36th
Security and Privacy Symposium. IEEE Computer Society (2015)

6. Bernhard, D., Cortier, V., Pereira, O., Smyth, B., Warinschi, B.: Adapting Helios
for provable ballot privacy. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS,
vol. 6879, pp. 335–354. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23822-2 19

7. Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34961-4 38

8. Bernhard, D., Pereira, O., Warinschi, B.: On necessary and sufficient conditions for
private Ballot submission. Cryptology ePrint Archive, Report 2012/236 (version
20120430:154117b) (2012)

9. Bulens, P., Giry, D., Pereira, O.: Running mixnet-based elections with Helios. In:
EVT/WOTE 2011: Electronic Voting Technology Workshop/Workshop on Trust-
worthy Elections. USENIX Association (2011)

10. Bundesverfassungsgericht (Germany’s Federal Constitutional Court): Use of vot-
ing computers in 2005 Bundestag election unconstitutional. Press release 19/2009,
March 2009

11. Cortier, V., Galindo, D., Glondu, S., Izabachene, M.: A generic construction for
voting correctness at minimum cost - application to Helios. Cryptology ePrint
Archive, Report 2013/177 (version 20130521:145727) (2013)

12. Cortier, V., Galindo, D., Glondu, S., Izabachene, M.: Distributed elgamal à la ped-
ersen: application to Helios. In: WPES 2013: Workshop on Privacy in the Electronic
Society, pp. 131–142. ACM Press (2013)

13. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios
under weaker trust assumptions. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS
2014 Part II. LNCS, vol. 8713, pp. 327–344. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11212-1 19

14. Cortier, V., Galindo, D., Glondu, S., Izabachène, M.: Election verifiability for Helios
under weaker trust assumptions. Technical report RR-8555, INRIA (2014)

15. Cortier, V., Smyth, B.: Attacking and fixing Helios: an analysis of ballot secrecy. In:
CSF 2011: 24th Computer Security Foundations Symposium, pp. 297–311. IEEE
Computer Society (2011)

16. Gonggrijp, R., Hengeveld, W.J.: Studying the Nedap/Groenendaal ES3B voting
computer: a computer security perspective. In: EVT 2007: Electronic Voting Tech-
nology Workshop. USENIX Association (2007)

17. Gumbel, A.: Steal This Vote: Dirty Elections and the Rotten History of Democracy
in America. Nation Books, New York (2005)

18. Haber, S., Benaloh, J., Halevi, S.: The Helios e-voting demo for the IACR. Interna-
tional Association for Cryptologic Research, May 2010. https://iacr.org/elections/
eVoting/heliosDemo.pdf

19. Jones, D.W., Simons, B.: Broken ballots: will your vote count? CSLI Lecture Notes,
vol. 204. Stanford University, Center for the Study of Language and Information
(2012)

20. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Chaum, D., Jakobsson, M., Rivest, R.L., Ryan, P.Y.A., Benaloh, J., Kutylowski,
M., Adida, B. (eds.) Towards Trustworthy Elections. LNCS, vol. 6000, pp. 37–63.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12980-3 2

https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-23822-2_19
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-319-11212-1_19
https://doi.org/10.1007/978-3-319-11212-1_19
https://iacr.org/elections/eVoting/heliosDemo.pdf
https://iacr.org/elections/eVoting/heliosDemo.pdf
https://doi.org/10.1007/978-3-642-12980-3_2

342 E. A. Quaglia and B. Smyth

21. Kiayias, A., Zacharias, T., Zhang, B.: End-to-end verifiable elections in the stan-
dard model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015 Part II. LNCS,
vol. 9057, pp. 468–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 16

22. Lijphart, A., Grofman, B.: Choosing an Electoral System: Issues and Alternatives.
Praeger, New York (1984)

23. Meyer, M., Smyth, B.: An attack against the Helios election system that exploits
re-voting. arXiv, Report 1612.04099 (2017)

24. Organization for Security and Co-operation in Europe: Document of the Copen-
hagen Meeting of the Conference on the Human Dimension of the CSCE (1990)

25. Organization of American States: American Convention on Human Rights, “Pact
of San Jose, Costa Rica” (1969)

26. Pereira, O.: Internet voting with Helios. In: Real-World Electronic Voting: Design,
Analysis and Deployment, Chap. 11. CRC Press (2016)

27. Quaglia, E.A., Smyth, B.: A short introduction to secrecy and verifiability for
elections. arXiv, Report 1702.03168 (2017)

28. Quaglia, E.A., Smyth, B.: Authentication with weaker trust assumptions for voting
systems (2018). https://bensmyth.com/publications/2018-voting-authentication/

29. Quaglia, E.A., Smyth, B.: Secret, verifiable auctions from elections. Cryptology
ePrint Archive, Report 2015/1204 (2018)

30. Saalfeld, T.: On dogs and whips: recorded votes. In: Döring, H. (ed.) Parliaments
and Majority Rule in Western Europe, Chap. 16. St. Martin’s Press (1995)

31. Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM
Trans. Comput. Logic 6(3), 634–671 (2005)

32. Smyth, B.: Ballot secrecy: security definition, sufficient conditions, and analysis of
Helios. Cryptology ePrint Archive, Report 2015/942 (2018)

33. Smyth, B.: A foundation for secret, verifiable elections (2018). https://bensmyth.
com/publications/2018-secrecy-verifiability-elections-tutorial/

34. Smyth, B.: Verifiability of Helios mixnet. In: Voting 2018: 3rd Workshop on
Advances in Secure Electronic Voting. LNCS, Springer (2018)

35. Smyth, B., Bernhard, D.: Ballot secrecy and ballot independence coincide. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
463–480. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-
6 26

36. Smyth, B., Frink, S., Clarkson, M.R.: Election Verifiability: Cryptographic Defi-
nitions and an Analysis of Helios, Helios-C, and JCJ. Cryptology ePrint Archive,
Report 2015/233 (2017)

37. Smyth, B., Hanatani, Y., Muratani, H.: NM-CPA secure encryption with proofs of
plaintext knowledge. In: Tanaka, K., Suga, Y. (eds.) IWSEC 2015. LNCS, vol. 9241,
pp. 115–134. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22425-1 8

38. Smyth, B., Pironti, A.: Truncating TLS Connections to Violate Beliefs in Web
Applications. In: WOOT 2013: 7th USENIX Workshop on Offensive Technologies.
USENIX Association (2013). First Appeared at Black Hat USA 2013

39. Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine,
M., Halderman, J.A.: Security analysis of the estonian internet voting system. In:
CCS 2014: 21st ACM Conference on Computer and Communications Security, pp.
703–715. ACM Press (2014)

40. Staff, C.: ACM’s 2014 General Election: Please Take This Opportunity to Vote.
Commun. ACM 57(5), 9–17 (2014)

41. Tsoukalas, G., Papadimitriou, K., Louridas, P., Tsanakas, P.: From Helios to Zeus.
J. Elect. Technol. Syst. 1(1), 1–17 (2013)

https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://bensmyth.com/publications/2018-voting-authentication/
https://bensmyth.com/publications/2018-secrecy-verifiability-elections-tutorial/
https://bensmyth.com/publications/2018-secrecy-verifiability-elections-tutorial/
https://doi.org/10.1007/978-3-642-40203-6_26
https://doi.org/10.1007/978-3-642-40203-6_26
https://doi.org/10.1007/978-3-319-22425-1_8

Authentication with Weaker Trust Assumptions for Voting Systems 343

42. United Nations: Universal Declaration of Human Rights (1948)
43. Wolchok, S., Wustrow, E., Halderman, J.A., Prasad, H.K., Kankipati, A.,

Sakhamuri, S.K., Yagati, V., Gonggrijp, R.: Security analysis of India’s electronic
voting machines. In: CCS 2010: 17th ACM Conference on Computer and Commu-
nications Security, pp. 1–14. ACM Press (2010)

44. Wolchok, S., Wustrow, E., Isabel, D., Halderman, J.A.: Attacking the Washing-
ton, D.C. internet voting system. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 114–128. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32946-3 10

https://doi.org/10.1007/978-3-642-32946-3_10
https://doi.org/10.1007/978-3-642-32946-3_10

Shorter Double-Authentication
Preventing Signatures for
Small Address Spaces

Bertram Poettering(B)

Information Security Group, Royal Holloway, University of London, Egham, UK
bertram.poettering@rhul.ac.uk

Abstract. A recent paper by Derler, Ramacher, and Slamanig (IEEE
EuroS&P 2018) constructs double-authentication preventing signatures
(“DAP signatures”, a specific self-enforcement enabled variant of signa-
tures where messages consist of an address and a payload) that have—if
the supported address space is not too large—keys and signatures that
are considerably more compact than those of prior work. We embark
on their approach to restrict attention to small address spaces and con-
struct novel DAP schemes that beat their signature size by a factor of
five and reduce the signing key size from linear to constant (the verifica-
tion key size remains almost the same). We construct our DAP signatures
generically from identification protocols, using a transform similar to but
crucially different from that of Fiat and Shamir. We use random oracles.
We don’t use pairings.

Keywords: Signature schemes · Self-enforcement
Identification protocols · Provable security

1 Introduction

Digital Signatures. Digital signature schemes are a ubiquitous cryptographic
primitive. They are extensively used for message and entity authentication and
find widespread application in real-world protocols. The basic functionality of a
signature scheme is as follows: A signer first runs the key generation algorithm to
create a key pair consisting of a (secret) signing key and a (public) verification
key. The signing key can then be used with the signing algorithm to create
signatures on messages. Such a signature is a short bitstring that serves as an
authenticator for a message: Given an authentic copy of the verification key,
anybody can invoke the verification algorithm together with a message and the
signature to check for the latter’s validity. The output of this algorithm is binary:
either “accept”, interpreted as indicating that the message is authentic in the
sense that it was fed by the signer into its signing algorithm, or “reject”, which
means it is not. Signature schemes were first proposed about four decades ago,

The full version is available in the IACR eprint archive as article 2018/223 [16].

c© Springer International Publishing AG, part of Springer Nature 2018
A. Joux et al. (Eds.): AFRICACRYPT 2018, LNCS 10831, pp. 344–361, 2018.
https://doi.org/10.1007/978-3-319-89339-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89339-6_19&domain=pdf

Shorter Double-Authentication Preventing Signatures 345

and gazillions of constructions are known today. Among the standardized ones,
and these are the fewest, are RSA-PSS, RSA-PKCS#1 v1.5, DSA, ECDSA, and
EdDSA.

Digital Signatures with Self-enforcement. According to the classic understand-
ing of a signature scheme, signers can, in principle, sign any message they want.
Applications, however, might require that specific relations hold between signed
messages. For instance, in a public-key infrastructure (PKI), a certificate author-
ity (CA) is expected not to generate certificates on the same identity for different
public keys (as this could lead to impersonation attacks), and in cryptographic
“currencies” like Bitcoin users shall not double-spend (sign two transactions that
transfer the same coins to different recipients). While a regular signature scheme
offers no means to enforce specific configurations of signed messages, signature
schemes with self-enforcement do. We describe e-cash and double-authentication-
preventing signatures as two examples for the latter.

E-Cash. In electronic cash [6], users can transfer virtual coins to each other,
and they have a guarantee of anonymity: Nobody, including any central issu-
ing authority, can trace their payments. However, if double-spending happens
(this is very explicitly forbidden in e-cash systems) then the spending user’s
anonymity is automatically revoked in that the user can be identified given the
two transactions. This allows for penalizing misbehaving users, for instance by
freezing their account.

Double-Authentication Preventing Signatures. A signature scheme is
double authentication preventing [17], or “has the DAP property”, if messages
consist of an address and a payload field, and the scheme is such that the signer
is penalized if it signs any address twice with different payloads. In this setting
the penalty is more drastic than in the e-cash setting: misbehaving signers don’t
have their anonymity revoked, but instead a verbatim copy of their signing key is
leaked to the public. A natural application is in the PKI setting: If domain names
are used as addresses, and public keys as payloads, then the DAP property means
that the certification authority is penalized if it issues different-key certificates for
the same domain. A different application is related to cryptographic currencies:
users that double-spend make necessarily also their signing key public, i.e., give
everybody access to their funds. Further applications have been proposed in [3,
5,7,17–19], for instance in the context of secure contract signing (and enforcing).

A Brief History of Double-Authentication Preventing Signatures. The first DAP
scheme is by Poettering and Stebila [17,18]. Their construction is in the RSA
setting. More precisely, it builds on the number-theoretic fact that if one has
two square roots of an element modulo a Blum integer, then one also has the
factorization of this number.1 Signatures of the DAP scheme use the factoriza-
tion as signing key, and signatures consist of a vector of square roots of RSA
elements such that the decision about which specific square root is the valid one

1 It is further required that these square roots are not additive inverses of each other.

346 B. Poettering

is a function of the payload. Signing different payloads means releasing different
square roots means revealing the signing key. The signatures of this scheme are
very large: If a 128 bit security level shall be reached then their size is at least
256 times 2048 bit.

A DAP scheme in the DLP setting was proposed by Ruffing et al. [19,
Appendix A], based on Merkle trees based on Chameleon hash functions [13].
The addresses are associated with the leaves of these trees, and signatures con-
sist of vectors of ‘openings’ of the Chameleon hashes leading to the root. While
their signatures are shorter than those of [17,18] (if implemented over elliptic
curves), the signature size is linear in the bit-length of the address space, and
thus still prohibitively large for many applications.

The work by Bellare et al. [3] improves on the work of [17,18] by compressing
DAP signatures, still in the RSA setting and targeting the 128 bit security level,
down to the size of 2048 bit. The trick is to evaluate the square root function
iteratively, instead of in parallel. While this requires more algebraic properties
than [17,18], the Blum integer setting fulfills these. We note that the DAP scheme
of [3] is, so far, the only one with tight reductions.

The work of Boneh et al. [5] constructs DAP signatures based on lattice
assumptions. The focus is on finding a solution for the post-quantum setting,
not to beat the signature size of [3] (which they don’t).

The very recent work of Derler et al. [7] reports the smallest DAP signature
size so far: 1280 bit at the 128 bit security level, in the DLP-setting. Their
scheme, however, can only be used in a restricted setting: As the sizes of signing
and verification keys grow linearly in the cardinality of the address space, the
scheme is not practical unless the latter is small. Note that all prior works (in
particular [3,5,17–19]) support address spaces of exponential size. This drawback
is acknowledged in [7], but the authors also report on specific applications where
a small address space is just naturally occurring. Technically, the scheme of [7]
builds on regular DLP-based signatures like Schnorr and DSA, and achieves the
DAP property by including in each signature a payload-dependent share of the
signing key, created with a secret-sharing scheme such that from any two shares
associated with an address the signing key can be recovered. To show that the
shares are well-formed, i.e., indeed allow for key recovery, the DAP signatures
also contain a corresponding NIZK proof.

Contribution. In this article we embark on the approach of Derler et al. [7]
and study DAP signatures for small address spaces. Also we work in the DLP
setting, and build on (EC)DSA or Schnorr signatures. However, we improve
drastically on signature and key sizes: Our signatures are five times shorter
(namely only 256 bits) and our signing keys are constant size (instead of linear
in the cardinality of the address space). While our and their verification keys are
roughly the same size, our signing and verification times are better.

In a nutshell, our approach is to draw on the special-soundness property of the
identification schemes underlying Schnorr and (EC)DSA signatures, assigning to
each address one particular commitment. As these commitments are included in
the verification key, the size of the latter is linear in the cardinality of the address

Shorter Double-Authentication Preventing Signatures 347

space. Note that this linear blow-up is also the case in [7], but in contrast to their
scheme we do not build on further primitives (e.g., secret sharing), which overall
leads to more robustness, an easier analysis, more compact keys and signatures,
and faster algorithms.

2 Notation

We write Z for the set of integers, and T and F for the Boolean constants true
and false, respectively.

Parts of this article involve the specification of program code. In such code
we use assignment operator ‘←’ when the assigned value results from a constant
expression (including from the output of a deterministic algorithm), and we
write ‘←$’ when the value is either sampled uniformly at random from a finite
set or is the output of a randomized algorithm. For a randomized algorithm A
we write y ←$ A(x1, x2, . . .) to denote the operation of running A with inputs
x1, x2, . . . (and fresh coins) and assigning the output to variable y. Further, we
write [A(x1, x2, . . .)] for the set of values that A outputs with positive probability.

Our security definitions are based on games played between a challenger and
an adversary. These games are expressed using program code and terminate
when the main code block executes a ‘Stop with . . . ’ command; the argument
of the latter is the output of the game. We write Pr[G ⇒ T] or just Pr[G]
for the probability that game G terminates by running into a ‘Stop with T’
instruction. Further, if E is some game-internal event, we similarly write Pr[E]
for the probability that this event occurs. (Note the game is implicit in this
notation.)

We use bracket notation to denote associative arrays (a data structure that
implements a ‘dictionary’). For instance, for an associative array A the instruc-
tion A[7] ← 3 assigns value 3 to memory position 7, and the expression A[2] = 5
tests whether the value at position 2 is equal to 5. Associative arrays can be
indexed with elements from arbitrary sets. We use expressions like A[·] ← x to
indicate that A is initialized with default value x. (That is, for any y, unless A[y]
is explicitly overwritten with a different value, A[y] evaluates to x.) When assign-
ing lists to each other, with ‘ ’ we mark “don’t-care” positions. For instance,
(a,) ← (9, 4) is equivalent to a ← 9 (value 4 is discarded).

3 Signature Schemes and Key Extractability

We first reproduce standard definitions associated with signature schemes, and
then consider a less common property that signature schemes might have: key
extractability.

3.1 Regular Signature Schemes

We recall the definition of digital signatures and their essential security property:
unforgeability.

348 B. Poettering

Digital Signature Schemes. A digital signature scheme (DS) for a message
space M consists of algorithms gen, sgn, vfy together with a signing key space SK,
a verification key space VK, and a signature space S. The key generation algo-
rithm gen outputs a signing key sk ∈ SK and a verification key vk ∈ VK. The
signing algorithm sgn takes a signing key sk ∈ SK and a message m ∈ M, and
outputs a signature σ ∈ S. The verification algorithm vfy takes a verification
key vk ∈ VK, a message m ∈ M, and a (candidate) signature σ ∈ S, and out-
puts either T or F to indicate acceptance or rejection, respectively. A shortcut
notation for these syntactical definitions is

gen → SK × VK SK × M → sgn → S VK × M × S → vfy → {T, F}.

For a verification key vk ∈ VK we denote with V(vk) the set of message-signature
pairs that are valid with respect to vk :

V(vk) := {(m,σ) ∈ M × S : vfy(vk ,m, σ) = T}.

A signature scheme is correct if for all (sk , vk) ∈ [gen] and m ∈ M and σ ∈
[sgn(sk ,m)] we have (m,σ) ∈ V(vk).

Unforgeability. For reference we reproduce the definition of the standard
security notion for signature schemes: (existential) unforgeability (under chosen-
message attacks). For a signature scheme Σ, associate with any adversary F its
forging advantage Advuf

Σ (F) := Pr[UF(F)], where the game is in Fig. 1. Intu-
itively, a signature scheme provides unforgeability if all practical adversaries have
a negligible forging advantage.

Fig. 1. Security experiment UF modeling the unforgeability of signatures. Adversary F
has access to oracle Sign. We write ‘Require C’ for a condition C as an abbreviation
for ‘If not C: Stop with F’.

3.2 Key-Extractable Signature Schemes

We are interested in subclasses of signature schemes where the signing key can
be reconstructed from (valid) signatures on specific message configurations. We
formalize such extractability properties for strictly one-time (SOT) and double-
authentication preventing (DAP) signatures. In a nutshell, a signature scheme
is strictly one-time if the signing key can be recovered from signatures on any

Shorter Double-Authentication Preventing Signatures 349

two different messages, and it is double-authentication preventing if messages
consist of two components, the address and the payload, and the signing key can
be recovered if two messages are signed that have the same address but different
payloads. While the DAP definition was first developed in [17,18] we are not
aware of a prior formalization of the SOT notion.

Key Extractability. Let gen, sgn, vfy,SK,VK,S be the algorithms and spaces
of a digital signature scheme for a message space M. We say that the scheme
is key-extractable if there exists an auxiliary extraction algorithm ext that takes
a verification key vk ∈ VK and two message-signature pairs (m1, σ1), (m2, σ2) ∈
M×S, and outputs either a signing key sk ∈ SK or the failure symbol ⊥ /∈ SK.
A shortcut notation for this syntactical definition is

VK × (M × S) × (M × S) → ext → SK /⊥.

We formulate two notions of correctness (of extraction):

SOT. The signature scheme is strictly one-time if algorithm ext is such that for
all (sk , vk) ∈ [gen] and (m1, σ1), (m2, σ2) ∈ M × S we have

(m1, σ1), (m2, σ2) ∈ V(vk) ∧ m1 �= m2 =⇒ ext(vk ,m1, σ1,m2, σ2) = sk .

DAP. The signature scheme is double-authentication preventing if there exist
an address space A and a payload space P such that M = A × P, and
algorithm ext is such that for all (sk , vk) ∈ [gen] and (m1, σ1), (m2, σ2) ∈
M × S, if we write mi = (ai, pi) and have (m1, σ1), (m2, σ2) ∈ V(vk) then

a1 = a2 ∧ p1 �= p2 =⇒ ext(vk ,m1, σ1,m2, σ2) = sk .

Unforgeability of Strictly One-Time Signatures. In SOT signatures,
everybody getting hold of two valid message-signature pairs can first recover the
signing key and then create signatures on arbitrary messages. For such signa-
ture schemes the standard notion of unforgeability, where two message-signature
pairs are easily obtained through the signing oracle, is thus not meaningful. We
hence formalize a dedicated (weakened) unforgeability notion: For a signature
scheme Σ, associate with any adversary F its (strictly one-time) forging advan-
tage Advsot

Σ (F) := Pr[SOT(F)], where the game is in Fig. 2.2 Note that the only
difference between the UF and SOT games is the added instruction in line 06 of
game SOT which precisely prevents the adversary from posing a second query
to the Sign oracle. Intuitively, a SOT signature scheme provides unforgeability
if all practical adversaries have a negligible forging advantage.

2 Note that the ‘strictness property’ of SOT signatures involves only their functionality
and is not reflected in the game which formalizes precisely the unforgeability of
(regular) one-time signatures. We use the names SOT for the game and sot for the
notion merely to allow for a clear association between functionality and targeted
security notion.

350 B. Poettering

Fig. 2. Security experiment SOT modeling unforgeability for strictly one-time sig-
nature schemes. Adversary F has access to oracle Sign. We write ‘Require C’ for a
condition C as an abbreviation for ‘If not C: Stop with F’.

Unforgeability of Double-Authentication Preventing Signatures.
In DAP signatures, everybody getting hold of two valid message-signature pairs
can create signatures on arbitrary messages if the two messages have the same
address but different payloads. As we did for SOT signatures, also for DAP signa-
tures we use a dedicated unforgeability notion [17,18]: For a signature scheme Σ,
associate with any adversary F its forging advantage Advdap

Σ (F) := Pr[DAP(F)],
where the game is in Fig. 3. In the game, note that we replaced the set L (of
games UF,SOT) that keeps track of signed messages by an associative array
L[·] that manages one such set per address, keeping track of signed payloads.
Intuitively, a DAP signature scheme provides unforgeability if all practical adver-
saries have a negligible forging advantage.

Fig. 3. Security experiment DAP modeling unforgeability for double-authentication
preventing signature schemes. Adversary F has access to oracle Sign. We write
‘Require C’ for a condition C as an abbreviation for ‘If not C: Stop with F’.

4 Constructing DAP Signatures from SOT Signatures

We present a construction of a DAP signature scheme from a SOT signature
scheme that offers exceptional performance but requires that the cardinality
n = |A| of the address space is not too large. The basic idea of our scheme
is to let the DAP key generation algorithm perform n-many SOT key gener-
ations independently of each other, one for each address, and to present the

Shorter Double-Authentication Preventing Signatures 351

resulting set of SOT signing (resp. verification) keys as a single DAP signing
(resp. verification) key. To DAP-sign a message m = (a, p), the SOT signing
key sk [a] corresponding to address a is retrieved and payload p authenticated
with it. The DAP verification algorithm works analogously. Observe that, with-
out further modification, this design is unforgeable (in the DAP sense) but not
key-extractable. Indeed, double-signing, i.e., violating the DAP property, reveals
only one of the required n-many SOT signing keys. We apply two tricks to achieve
full key extractability: (1) Instead of generating the n-many SOT signing keys
independently of each other and with individual random coins, we generate them
deterministically as a function of the address they are associated with, using the
output of a PRF as the coins required for key generation. More precisely, for each
address a we first derive ‘random’ coins as per r ← F (k, a), where F is the PRF
and k its key (that is stored as part of the DAP signing key), and then compute
the SOT key pair corresponding to a as per (sk [a], vk [a]) ← gen〈r〉, where the 〈·〉
notation indicates running an (otherwise randomized) algorithm with explicitly
given coins. Note that this reduces the size of the DAP signing key from linear
(in n) to constant. (2) We include (one-time pad) encryptions of PRF key k in
the DAP verification key such that knowledge of any SOT signing key sk [a] suf-
fices to recover it. More concretely, we embed into the DAP verification key the
set of values k + h(a, sk [a]), for all a ∈ A, where + denotes (in most cases) the
bit-wise XOR operation and h is a random oracle. (This technique is borrowed
from [3].) Overall, as we prove, this is sufficient to achieve key-extractability in
the DAP sense. We give the formal details of our construction in the following.

SOT-to-DAP transform. Let A,P be sets. From a key-extractable signa-
ture scheme Σ for message space P with algorithms gen, sgn, vfy, ext and spaces
SK,VK,S we construct a key-extractable signature scheme Σ′ for message space
M = A×P with algorithms gen′, sgn′, vfy′, ext′ and spaces SK′,VK′,S ′ such that
if the former is strictly one-time then the latter is double-authentication prevent-
ing. As building blocks we employ a pseudorandom function F : K×A → R that
has a commutative group (K,+) as its key space3 and the randomness space R
of algorithm gen as its range, and a hash function h : A × SK → K. Both F
and h will be modeled as random oracles in the security analysis. Let SK′ = K,
VK′ = VK|A| × K|A|, S ′ = S, and implement algorithms gen′, sgn′, vfy′ as speci-
fied in Fig. 4. (Algorithm ext′ is specified in Fig. 5 and discussed below.)

The signature schemes obtained with our transform provide both unforge-
ability and key extractability.

Theorem 1 (DAP unforgeability). Let Σ and Σ′ be the SOT and DAP sig-
nature schemes involved in our construction. If Σ is unforgeable in the SOT
sense then Σ′ is unforgeable in the DAP sense. More precisely, for any adver-
sary F ′ against Σ′ there exist adversaries E ,F against Σ such that in the random
oracle model for F and h we have

Advdap
Σ′ (F ′) ≤ n · Advsot

Σ (F) + qF /|K| + n · qh · Advsot
Σ (E),

3 Consider that same-length bit-strings together with the bit-wise XOR operation form
a commutative group to see that this requirement is easily fulfilled in practice.

352 B. Poettering

Fig. 4. Our SOT-to-DAP transform (main algorithms). The 〈·〉 notation in lines 04
and 11 indicates that gen is (deterministically) invoked on random coins r.

where n = |A| is the cardinality of the address space, qF and qh are the numbers
of queries to F and h, respectively, and K is the key space of the PRF. The
running times of E and F are about that of F ′.

Proof sketch. On first sight the security argument for our construction seems to
be straight-forward: Any valid DAP signature is in fact a valid SOT signature,
so forging the one implies forging the other. Also the DAP signing oracle seems
to be easily simulated with the SOT signing oracle. (The latter processes at most
one query per key, but this is perfectly matched with the one-query-per-address
requirement of DAP unforgeability). The reason why ultimately the proof is not
that easy is that the DAP construction uses the SOT scheme in a non-blackbox
fashion. More precisely, for a reductionist proof to go through, the random coins
of the SOT key generation would need to be freshly drawn right before key
generation, and be forgotten immediately afterwards. This is not necessarily the
case in our construction, as the coins are generated in a specific and reproducible
way, using the PRF. More precisely, as we model the PRF as a random oracle,
the coins are uniform and hidden from the adversary as long as the PRF key k
is not queried by the latter to its F oracle. However, as h-based encryptions of k
are embedded into the verification key, bounding the probability of this event
involves arguing about the probability of reconstructing SOT signing keys, and
such arguments can only be given if the SOT key generation algorithm receives
properly distributed coins, i.e., coins that are drawn uniformly at random. Below
we give a more careful analysis that avoids this circularity by cleverly condition-
ing events on each other.

In the following we refer with EF to the event that the adversary poses a
query with first argument k to its F oracle. We need to bound the probability
that EF occurs to a small value. There are precisely two ways that lead the
adversary to posing such a query: (1) Without any knowledge about k but by
sheer luck: the adversary guesses k ∈ K and hits the right one. As the adversary
can try qF times, the probability for this is bounded by qF /|K|. (2) By making a
more informed guess, i.e., by exploiting obtained knowledge about k. Note that

Shorter Double-Authentication Preventing Signatures 353

the only information available about k are its random oracle based encryptions,
which are information-theoretically hiding up to the point where the adversary
poses a corresponding query to the h oracle. Let Eh be the corresponding event
that the adversary queries oracle h on one of the n-many SOT signing keys.
Instead of deriving individual bounds for Pr[EF] and Pr[Eh], we analyze the
probabilities of two closely related events:

Let E′
F be the event that EF occurs before Eh, including the case that Eh

does not occur at all, and let E′
h be the event that Eh occurs before EF , including

the case that EF does not occur at all. Then, as discussed above, we have
Pr[E′

F] ≤ qF /|K|. Further, as in the E′
h case we can assume perfectly random

coins of SOT key generation, we can bound Pr[E′
h] with the probability of SOT

key recovery, which is in particular bounded by the SOT forging probability. In
particular there exists for each 1 ≤ α ≤ n an adversary Eα such that Pr[E′

h | the
h query happens for address number α] ≤ qhAdvsot

Σ (Eα). By defining adversary E
such that it uniformly picks a value 1 ≤ α ≤ n and then behaves like Eα, we
obtain Pr[E′

h] ≤ nqhAdvsot
Σ (E).

The bounds on E′
F and E′

h can be additively combined as Pr[EF ∨ Eh] =
Pr[E′

F] + Pr[E′
h]. If Eσ denotes the event of a DAP forgery then overall we

have Advdap
Σ′ (F ′) = Pr[Eσ] ≤ Pr[Eσ | ¬EF ∧ ¬Eh] + Pr[EF ∨ Eh]. We already

bounded the second term. For the first term note that ¬EF ∧ ¬Eh means that
the adversary does not exploit the random oracle based encryption of the signing
key. In this case the initially discussed natural reduction works, showing Pr[Eσ |
¬EF ∧ ¬Eh] ≤ nAdvsot

Σ (F), for a forger F that results from the reduction.
By combining the above bounds we obtain the one from the theorem

statement.
�

Theorem 2 (DAP key extractability). Let Σ and Σ′ be the SOT and DAP
signature schemes involved in our construction. If Σ is strictly one-time then Σ′

is double-authentication preventing. More precisely, the algorithm ext′ specified
in Fig. 5 is an extraction algorithm for scheme Σ′ if its building block ext is an
extraction algorithm for scheme Σ.

Fig. 5. SOT-to-DAP transform (extraction algorithm). We write ‘Require C’ for a
condition C as an abbreviation for ‘If not C: Return ⊥’. Note that the condition in
line 05 is always fulfilled.

354 B. Poettering

Proof. The argument is immediate: Having two “colliding” DAP signatures
means having two SOT signatures that are valid under the same verification key
but are on different messages. The DAP extraction algorithm in Fig. 5 applies
the SOT extraction algorithm to this setting to first recover the SOT signing key
and then, by decrypting the corresponding h-based ciphertext, the DAP signing
key.
�

5 Constructing SOT Signatures

We propose the Fixed-Commitment transform that constructs signature schemes
from generic identification (ID) protocols, in a way related to that of the classic
Fiat–Shamir transform [10]. While the latter turns ID schemes into standard
unforgeable signature schemes, the signature schemes obtained with our new
transform are strictly one-time. We first recall details of (three-move) identifica-
tion protocols, then of the Fiat–Shamir transform, and then specify and study
our own construction.

5.1 Three-Move ID Protocols

We recall the definition of an important class of identification protocols and of
the security properties connected to it: special soundness, (honest-verifier) zero-
knowledge, and resilience against key recovery. While we refer to [11,12,14] for
general treatments of ID protocols, our notation is in particular close to that
of [2].

Three-Move ID Protocols. A three-move ID protocol consists of algorithms
G,P1,P2,V, an identification secret key space ISK, an identification public
key space IPK, a commitment space CMT, a challenge space CH, a response
space RSP, and a (prover) state space ST. The key generation algorithm G out-
puts a secret key isk ∈ ISK and a public key ipk ∈ IPK. Algorithms P1 and P2

are for the prover: Algorithm P1 takes a secret key isk ∈ ISK and a public key
ipk ∈ IPK, and outputs a state st ∈ ST and a commitment cmt ∈ CMT. Algo-
rithm P2 takes a state st ∈ ST and a challenge ch ∈ CH, and outputs a response
rsp ∈ RSP. Algorithm V is for the verifier: It takes a public key ipk ∈ IPK,
a commitment cmt ∈ CMT, a challenge ch ∈ CH, and a response rsp ∈ RSP,
and outputs T or F to indicate acceptance or rejection, respectively. A shortcut
notation for these syntactical definitions is

G → ISK × IPK
ISK × IPK → P1 → ST × CMT

ST × CH → P2 → RSP
IPK × CMT × CH × RSP → V → {T, F}
We further write TR = CMT × CH × RSP for the transcript space of the
ID protocol. A three-move ID protocol is correct if for all (isk , ipk) ∈ [G]
and (st , cmt) ∈ [P1(isk , ipk)] and ch ∈ CH and rsp ∈ [P2(st , ch)] we have
V(ipk , cmt , ch, rsp) = T.

Shorter Double-Authentication Preventing Signatures 355

Special soundness. A three-move ID protocol has special soundness if there
exists an extraction algorithm that recovers the identification secret key from
all (valid) same-commitment-different-challenge transcript pairs. Formally, the
notion requires the existence of an algorithm E that takes an identification
public key ipk ∈ IPK and two transcripts T1, T2 ∈ TR and outputs either a
secret key isk ∈ ISK or the failure symbol ⊥ /∈ ISK. For correctness (of extrac-
tion) we require that for all (isk , ipk) ∈ [G] and T1, T2 ∈ TR, if we write Ti =
(cmt i, chi, rspi) and have that V(ipk , cmt1, ch1, rsp1) and V(ipk , cmt2, ch2, rsp2)
evaluate to T, then cmt1 = cmt2 ∧ ch1 �= ch2 implies E(ipk , T1, T2) = isk .

Honest-Verifier Zero-Knowledge. A three-move ID protocol is (perfectly)
honest-verifier zero-knowledge if honestly generated transcripts leak nothing
about the involved secret key material. Formally, the notion requires the exis-
tence of a simulator S that takes a public key ipk ∈ IPK and outputs a transcript
(cmt , ch, rsp) ∈ TR such that for all (isk , ipk) ∈ [G] the distributions

{
(st , cmt) ←$ P1(isk , ipk); ch ←$ CH; rsp ←$ P2(st , ch) : (cmt , ch, rsp)

}

and {
(cmt , ch, rsp) ←$ S(ipk) : (cmt , ch, rsp)

}

are identical.

Resilience against Key Recovery. A three-move ID protocol ID is resilient
against (blind) key recovery attacks if no adversary can reconstruct the iden-
tification secret key from just the identification public key (no sample tran-
scripts are provided). Formally, for all inverters I we define the advantage
Advkr

ID(I) := Pr[(isk , ipk) ←$ G; isk ′ ←$ I(ipk) : isk = isk ′]. Intuitively, an
ID scheme is resilient against key recovery if all practical inverters have a negli-
gible advantage.

5.2 The Fiat–Shamir Transform

A well-known generic construction of a signature scheme from a three-move ID
scheme and a random oracle is by Fiat and Shamir [10]. In a nutshell, for cre-
ating a signature on a message the signer invokes the P1 algorithm to obtain
a fresh commitment, simulates an (honest) verifier by letting the random ora-
cle, on input the commitment and the message, specify a challenge, and finally
invokes the P2 algorithm to obtain a response that completes the transcript.
The signature consists of the commitment and the response. The verification
algorithm recovers the challenge by querying the random oracle and checks for
transcript validity using the V algorithm. For reference we reproduce the details
of this construction in the following.

Fiat–Shamir Transform. Let M be a message space and let G,P1,P2,V be
the algorithms and ISK, IPK,CMT,CH,RSP,ST be the spaces of a three-move
ID protocol. Let H : IPK×CMT×M → CH be a hash function. Then the Fiat–
Shamir transform (FS) converts the ID protocol into a signature scheme Σ:
After letting SK = ISK × IPK, VK = IPK, S = CMT × RSP, the algorithms
gen, sgn, vfy of the scheme are as specified in Fig. 6.

356 B. Poettering

Fig. 6. Signature scheme obtained via the Fiat–Shamir transform.

5.3 The Fixed-Commitment Transform

We propose the Fixed-Commitment transform (FC) as an alternative way of
constructing a signature scheme from a three-move ID protocol. It differs from
the Fiat–Shamir transform in that generating a commitment using the P1 algo-
rithm happens only once and during key generation, instead of during sign-
ing operations. The challenge (of the ID protocol) continues to be a function
of commitment and message. Thus, signatures on different messages share the
same commitment but use different challenges, allowing for the extraction of the
identification secret key via the special soundness property. By using a similar
trick as in our SOT-to-DAP transform (see Sect. 4), i.e., by embedding a ran-
dom oracle based encryption of the remaining signing key components into the
verification key, the signature scheme is rendered strictly one-time. We specify
the details of the FC transform in the following.

Fixed-Commitment Transform. Let M be a message space and let G,P1,
P2,V be the algorithms and ISK, IPK,CMT,CH,RSP,ST be the spaces of a
three-move ID protocol. Assume (ST,+) is a commutative group (see footnote
3). Let H : IPK × CMT × M → CH and h : ISK → ST be hash functions, both
of which will be modeled as random oracles in the security analysis. Then the
Fixed-Commitment transform (FC) converts the ID protocol into a signature
scheme Σ: After letting SK = IPK × ST × CMT, VK = IPK × CMT × ST,
S = RSP, the algorithms gen, sgn, vfy, ext of the scheme are as specified in Fig. 7.

The signature schemes obtained with our transform provide both unforge-
ability and key extractability.

Theorem 3 (SOT unforgeability). Let ID be a three-move ID protocol and let
Σ be the signature scheme obtained from it via the Fixed-Commitment transform.
If ID has special soundness, is honest-verifier zero-knowledge, and is resilient
against key recovery, then Σ is unforgeable in the SOT sense. More precisely,
for any adversary F against Σ there exists an inverter I such that in the random
oracle model for H and h we have

Advsot
Σ (F) ≤ Q · Advkr

ID(I) + (qH)2/|CH|,

where Q = qH + qh and qH , qh are the numbers of queries to random oracles H
and h, respectively. The running time of I is about that of F .

Shorter Double-Authentication Preventing Signatures 357

Fig. 7. SOT signature scheme obtained via the Fixed-Commitment transform. We
write ‘Require C’ for a condition C as an abbreviation for ‘If not C: Return ⊥’. Note
that the condition in line 27 is always fulfilled.

Proof sketch. Consider first the variant of the FC transform that does not embed
encrypted state information in the verification key. With respect to this scheme,
the simulator for game SOT has to provide the adversary with a verification
key, a signature oracle that processes at most one query, and access to random
oracle H. Insist w.l.o.g. that the adversary poses precisely one signing query,
and that before it does so it poses the corresponding query to H. Let m be the
message for which the signature is requested, and let 1 ≤ i ≤ qH be the index
of the corresponding H-query. The simulator proceeds as follows: it generates a
key pair (isk , ipk) with G; it guesses an index 1 ≤ j ≤ qH uniformly at random;
it aborts, with probability 1 − 1/qH , if j �= i; it generates a protocol transcript
(cmt , ch, rsp) using the zero-knowledge simulator; it answers the jth H-query
with challenge ch (all remaining H-queries are answered with uniformly picked
challenges); it invokes the adversary on input the verification key composed
of ipk and cmt . Note that the simulator can properly simulate a signature on
message m, just by releasing rsp. Note further that with probability 1−qH/|CH|,
for the challenge ch∗ corresponding to the forgery output by the adversary we
have ch �= ch∗. As in this situation the special-soundness extraction algorithm is
applicable to recover isk , a natural reduction shows that the forging advantage
is bounded by qHAdvkr

ID(I) + (qH)2/|CH|, for an inverter I.
Consider next the full scheme that includes the encryption in the verification

key. This additional information is completely useless to the adversary up to the

358 B. Poettering

point where it poses a h(isk) query. Each such query can be seen as trying to
break a key recovery challenge against scheme ID. That is, to the above bound
the term qhAdvkr

ID(I) needs to be added. The overall result is the bound claimed
in the theorem statement.
�
Theorem 4 (SOT key extractability). Let ID be a three-move ID protocol
and let Σ be the signature scheme obtained from it via the Fixed-Commitment
transform. If ID has special soundness then Σ is strictly one-time. More pre-
cisely, if H is collision resistant then algorithm ext in Fig. 7 constructs an extrac-
tion algorithm for scheme Σ from the extraction algorithm E of scheme ID.

Proof. The argument is immediate: Having two signatures on different messages
means having two ID protocol transcripts with the same commitment but dif-
ferent challenges (this requires that hash function H be collision resistant, see
line 23 in Fig. 7). Our SOT extraction algorithm applies the special-soundness
extraction algorithm to this setting to first recover the identification secret key,
and then, by decrypting the corresponding h-based ciphertext, the missing com-
ponent of the SOT signing key.
�

6 Putting Things Together: DLP-Based DAP Signatures

The overall goal of this article is to construct a practical DLP-based DAP signa-
ture scheme with short signatures. As in Sect. 4 we constructed DAP signatures
generically from SOT signatures, and in Sect. 5 we constructed SOT signatures
generically from ID schemes, what is missing is the specification of appropriate
DLP-based identification schemes. The classic candidates for this are the schemes
by Schnorr [20] and Okamoto [15]. Both of them provide special soundness and
honest-verifier zero-knowledge, and thus fit into our ID protocol framework. A
less known and less general scheme is the one underlying DSA and ECDSA sig-
natures [1,8] (which can be seen as a variant of Schnorr’s scheme, obfuscated to
avoid intellectual property issues).

In Figs. 8 and 9 we expose how our overall DAP scheme looks like if the three-
move ID protocol is instantiated with the ones underlying Schnorr and (EC)DSA
signatures, respectively. In both cases, targeting the 128 bit security level, we
propose a PRF key length of κ = 128 bit and a group order of 2κ = 256 bit.
Further, for compactness of verification keys, we suggest using elliptic curve
groups. In particular it would be somehow natural to instantiate the Schnorr-
based scheme with the parameters of (Schnorr-based) EdDSA signatures [4] (i.e.,
on Edwards curves) and the (EC)DSA-based scheme with NIST-standardized
curves.4 In both cases the signature size would be 256 bit. No DAP signature

4 That this is “natural” was communicated to us by software engineers. From an
academic perspective the choice of curve should be orthogonal to the choice of
ID scheme. On the other hand, there seems nothing wrong with the proposal, so
we stick to it.

Shorter Double-Authentication Preventing Signatures 359

Fig. 8. DAP signature scheme based on Schnorr signatures, defined in respect to a
cyclic group G = 〈g〉 of prime-order q. We assume hash functions F : {0, 1}κ × A →
Zq × Zq, h : A × Zq × Zq → {0, 1}κ, H : G × G × M → Zq.

Fig. 9. DAP signature scheme based on (EC)DSA signatures (where we use the nota-
tion of the DSA algorithms from [9]). We assume a cyclic group G as in Fig. 8, and
hash functions F : {0, 1}κ × A → Zq × Zq, f : G → Zq, h : A × Zq × Zq → {0, 1}κ,
H : M → Zq. We write ‘Require C’ for a condition C as an abbreviation for ‘If not C:
Return ⊥’.

scheme proposed in the past has that short signatures (so far, the shortest DAP
schemes have 2048 bit [3] and 1280 bit [7] signatures, which we beat by a factor of
8 and 5, respectively), and likely the length is even optimal (in the DLP setting).
The verification keys are considerably less compact, with a size of 640|A| bits.
Note this is only slightly larger than those of [7] which are roughly 512|A| bits
in size.

360 B. Poettering

References

1. Barker, E.B.: FIPS PUB 186–4 – FEDERAL INFORMATION PROCESSING
STANDARDS PUBLICATION Digital Signature Standard (DSS) (2009). https://
dx.doi.org/10.6028/NIST.FIPS.186-4

2. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: a
framework and generic transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 435–464. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53890-6 15

3. Bellare, M., Poettering, B., Stebila, D.: Deterring certificate subversion: efficient
double-authentication-preventing signatures. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 121–151. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 5

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol.
6917, pp. 124–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-23951-9 9

5. Boneh, D., Kim, S., Nikolaenko, V.: Lattice-based DAPS and generalizations: self-
enforcement in signature schemes. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.)
ACNS 2017. LNCS, vol. 10355, pp. 457–477. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-61204-1 23

6. Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S.
(ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, New York (1990).
https://doi.org/10.1007/0-387-34799-2 25

7. Derler, D., Ramacher, S., Slamanig, D.: Short double- and N -times-authentication-
preventing signatures from ECDSA and more. Cryptology ePrint Archive, Report
2017/1203 (2017). To appear in the proceedings of EuroS&P 2018. https://eprint.
iacr.org/2017/1203

8. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA sig-
natures. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S.
(eds.) ACM CCS 2016, Vienna, Austria, 24–28 October 2016, pp. 1651–1662. ACM
Press (2016)

9. Fersch, M., Kiltz, E., Poettering, B.: On the one-per-message unforgeability of
(EC)DSA and its variants. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10678, pp. 519–534. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70503-3 17

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

11. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge Uni-
versity Press, Cambridge (2001)

12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press, Boca Raton (2007)

13. Krawczyk, H., Rabin, T.: Chameleon signatures. In: NDSS 2000, San Diego, CA,
USA, 2–4 February 2000. The Internet Society (2000)

14. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (2001). http://www.cacr.math.uwaterloo.ca/hac/

15. Okamoto, T.: Provably secure and practical identification schemes and correspond-
ing signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp.
31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 3

https://dx.doi.org/10.6028/NIST.FIPS.186-4
https://dx.doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-53890-6_15
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-642-23951-9_9
https://doi.org/10.1007/978-3-319-61204-1_23
https://doi.org/10.1007/978-3-319-61204-1_23
https://doi.org/10.1007/0-387-34799-2_25
https://eprint.iacr.org/2017/1203
https://eprint.iacr.org/2017/1203
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/978-3-319-70503-3_17
https://doi.org/10.1007/3-540-47721-7_12
http://www.cacr.math.uwaterloo.ca/hac/
https://doi.org/10.1007/3-540-48071-4_3

Shorter Double-Authentication Preventing Signatures 361

16. Poettering, B.: Shorter double-authentication preventing signatures for small
address spaces. Cryptology ePrint Archive, Report 2018/223 (2018). https://
eprint.iacr.org/2018/223

17. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 436–453.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 25

18. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. Int. J.
Inf. Sec. 16(1), 1–22 (2017)

19. Ruffing, T., Kate, A., Schröder, D.: Liar, liar, coins on fire!: Penalizing equivocation
by loss of bitcoins. In: Ray, I., Li, N., Kruegel: C. (eds.) ACM CCS 2015, Denver,
CO, USA, 12–16 October 2015, pp. 219–230. ACM Press (2015)

20. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

https://eprint.iacr.org/2018/223
https://eprint.iacr.org/2018/223
https://doi.org/10.1007/978-3-319-11203-9_25
https://doi.org/10.1007/0-387-34805-0_22

Author Index

AlKhzaimi, Hoda 124

Batina, Lejla 107, 306
Bernstein, Daniel J. 203
Bonnoron, Guillaume 217
Buchmann, Johannes 141

Chaves, Ricardo 107
Chmielewski, Łukasz 107

D’Anvers, Jan-Pieter 282
Demirel, Denise 141
Diarra, Nafissatou 183
Ducas, Léo 217

Fillinger, Max 217

Groot Bruinderink, Leon 203

Hu, Honggang 266

Karmakar, Angshuman 282
Khoo, Khoongming 51
Krenn, Stephan 11
Kumar, Rajendra 124
Kunihiro, Noboru 266

Lange, Tanja 203

Macario-Rat, Gilles 252

Nakamura, Satoshi 162

Ooka, Michiko 162

Panny, Lorenz 203
Patarin, Jacques 72, 252

Poettering, Bertram 344
Pöhls, Henrich C. 11

Quaglia, Elizabeth A. 322

Rajasree, Mahesh Sreekumar 124
Regazzoni, Francesco 107
Riera, Constanza 3

Samelin, Kai 11
Samwel, Niels 306
Sasaki, Yu 87
Seck, Michel 183
Sim, Siang Meng 51
Sinha Roy, Sujoy 282
Slamanig, Daniel 11
Smyth, Ben 322
Solé, Patrick 3
Stănică, Pantelimon 3

Teo, Jacob 51
Toh, Dylan 51
Traverso, Giulia 141

Vercauteren, Frederik 282

Wang, Peng 33

Yamaguchi, Junpei 162
Yasuda, Masaya 162
Ye, Dingfeng 33

Zheng, Kaiyan 33
Zheng, Mengce 266

	Preface
	Organization
	Contents
	Symmetric Cryptography
	A Complete Characterization of Plateaued Boolean Functions in Terms of Their Cayley Graphs
	1 Introduction
	2 Preliminaries
	2.1 Boolean Functions
	2.2 A Short Primer on Strong Regularity and Walk Regularity

	3 Plateaued Boolean Functions
	3.1 s-Plateaued Boolean Functions f with wt(f)=2(n+s-2)/2
	3.2 General s-Plateaued Boolean Functions

	References

	Chameleon-Hashes with Dual Long-Term Trapdoors and Their Applications
	1 Introduction
	2 Preliminaries
	3 CHs with Dual Long-Term Trapdoors
	4 Constructions
	5 Evaluation
	6 Application: Three-Party Sanitizable Signatures 3SSS
	7 Additional Applications
	References

	Ubiquitous Weak-Key Classes of BRW-Polynomial Function
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Universal Hash Functions
	2.3 UHF-Based MACs
	2.4 Weak Keys of Polynomial Function and Polynomial-Based MACs

	3 Weak Keys of BRW-Polynomial Function and BRW-Instantiated MACs
	3.1 The Description of BRW-Polynomial Function
	3.2 The Description of SumBRWpoly
	3.3 Weak Keys of BRW-Polynomial in MACs

	4 Weak Keys of BRW-Polynomial in DCT
	4.1 A Brief Introduction to DCT
	4.2 Weak Keys of BRW-Polynomial Function in DCT

	5 Conclusions
	References

	Lightweight MDS Serial-Type Matrices with Minimal Fixed XOR Count
	1 Introduction
	2 Preliminaries
	2.1 Finite Fields and MDS Matrices
	2.2 XOR Count

	3 Diagonal-Serial Invertible Matrices
	3.1 Diagonal-Serial Invertible (DSI) Matrix
	3.2 Sparse DSI Matrix

	4 RI Property and Serial-Type Matrices
	4.1 Reversible Implementation (RI) Property
	4.2 RI Property in Serial-Type Matrices
	4.3 Evaluating the Implementation Cost of Serial-Type Matrices

	5 Main Results
	5.1 Comparing Matrices Where n=4
	5.2 Comparing Matrices Where n=8

	6 Advantages of Sparse DSI Matrices
	6.1 Reducing the Fixed XOR Count
	6.2 Optimal Serial-Type Matrix of Order 4

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	References

	Two Simple Composition Theorems with H-coefficients
	1 Introduction
	2 A Simple Mathematical Property
	3 A Composition Theorem in CCA with H-coefficients
	4 A Composition Theorem to Eliminate a ``hole''
	5 Comments About the Composition Theorems
	6 Application to Feistel Ciphers
	7 Other CCA Bounds on k
	A An Exact Formula for the H-coefficient for k, 1 k 5
	B ``Holes'' on 5 when 2n q 2n
	References

	Improved Related-Tweakey Boomerang Attacks on Deoxys-BC
	1 Introduction
	2 Specification of Deoxys-BC
	3 Previous Attacks on Deoxys-BC
	3.1 Brief Introduction of Boomerang Attacks
	3.2 Previous Boomerang and Rectangle Attacks on Deoxys-BC

	4 New Attacks on Deoxys-BC-256
	4.1 Improved Boomerang Distinguishers
	4.2 Improved Key Recovery Attacks

	5 New Attacks on Deoxys-BC-384
	6 Discussion and Conclusion
	A Details of Boomerang Trails
	References

	SCA-Resistance for AES: How Cheap Can We Go?
	1 Introduction
	2 Countermeasures Against Power Analysis Attacks
	3 Proposed Low Entropy Masking
	3.1 Power Consumption Hiding with Low Entropy Masking
	3.2 FPGA Based Implementation Details

	4 Experimental Results and Evaluation
	4.1 Side-Channel Analysis Evaluation
	4.2 Implementation Results Analysis

	5 Conclusion
	References

	Cryptanalysis of 1-Round KECCAK
	1 Introduction
	2 Structure of KECCAK
	2.1 Sponge Construction
	2.2 KECCAK-p Permutation

	3 Cryptanalysis of One-Round KECCAK
	3.1 Preliminaries and Notations
	3.2 General Description of the Attack
	3.3 Analysis of Preimage Attack by Using 1 Message Block
	3.4 Preimage Attack

	4 Results and Extension to Collision Attack
	5 Conclusion and Future Works
	References

	Asymmetric Cryptography
	Performing Computations on Hierarchically Shared Secrets
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Operations on Messages Distributed Through Hierarchical Secret Sharing Schemes
	4.1 Setting
	4.2 Linear Operations
	4.3 Multiplication

	5 Preprocessing Phase
	6 Auditing Procedure for Computations over Hierarchically Shared Messages
	6.1 Auditing Procedure for Conjunctive (Disjunctive) Hierarchical Secret Sharing Schemes

	7 Security and Efficiency
	8 Conclusion
	A Computation of Shares i,j(), i,j()
	B Computation of Commitments ck,, ck,
	References

	Development of a Dual Version of DeepBKZ and Its Application to Solving the LWE Challenge
	1 Introduction
	2 Preliminaries
	2.1 Lattices and Bases
	2.2 Dual Lattices and Dual Bases
	2.3 DeepLLL SE94
	2.4 DeepBKZ YY17

	3 Development of Dual-DeepBKZ
	3.1 Dual-DeepLLL
	3.2 Dual-DeepBKZ

	4 Application to Solving the LWE Challenge
	4.1 The LWE Challenge and BDD Strategy
	4.2 Decoding Approach and Dual-DeepBKZ
	4.3 Embedding Approach and DeepBKZ YY17

	5 Conclusion
	References

	Unified Formulas for Some Deterministic Almost-Injective Encodings into Hyperelliptic Curves
	1 Introduction
	2 Preliminaries
	2.1 Square Root Function
	2.2 Quadratic Character
	2.3 An Almost-Injective Encoding on H2

	3 New Almost-Injective and Invertible Encodings into Hyperelliptic Curves
	3.1 An Almost-Injective Encoding in Genus g=3
	3.2 An Almost-Injective Encoding in Genus g=4
	3.3 An Almost-Injective Encoding on Genus g=5
	3.4 Encoding in Genus g=1 Using Our Technique

	4 Unified Formulas for the Five Encodings
	4.1 An Almost-Injective Encoding on Hg
	4.2 Almost-Injective Encodings on Hg, g{6,7,8,9}

	5 Conclusion
	References

	HILA5 Pindakaas: On the CCA Security of Lattice-Based Encryption with Error Correction
	1 Introduction
	1.1 Related Work

	2 Data Flow in the Attack
	2.1 Hashing the Secret Key Does Not Stop the Attack
	2.2 AEAD Does Not Stop the Attack
	2.3 Black Holes Would Stop the Attack
	2.4 The Fujisaki–Okamoto Transform Would Stop the Attack

	3 Preliminaries
	3.1 The HILA5 Scheme
	3.2 Fluhrer's Attack

	4 Chosen-Ciphertext Attack on HILA5
	4.1 Working Around Error Correction
	4.2 Details of the Attack
	4.3 Implementation

	5 HILA5 Security Claims
	References

	Large FHE Gates from Tensored Homomorphic Accumulator
	1 Introduction
	2 Preliminaries
	2.1 Subgaussian Random Variables
	2.2 Rings
	2.3 Gadgets
	2.4 Circulant LWE and Reduction to Ring-LWE

	3 Encryption Schemes
	3.1 LWE Encryption
	3.2 CLWE and CGSW Encryption Schemes

	4 Homomorphic Operations
	4.1 Known Building Blocks
	4.2 New Building Blocks
	4.3 Evaluating Inner Products in Exponents

	5 Joining the Building Blocks
	6 Implementation
	6.1 Implementation Details
	6.2 Parameters
	6.3 Performances

	A Proofs for Section 2 (Preliminaries)
	B Proofs for Section 3 (Encryption Schemes)
	C Proofs for Section 4 (Homomorphic Operations)
	D Proofs for Section 5 (Joining the Building Blocks)
	E More Details on Circulant LWE
	E.1 Circulant LWE and Reduction to Ring-LWE
	E.2 Simpler Error Distribution in CLWE for Practice

	F Optimizations
	F.1 Accelerating ExtExpInner
	F.2 Heuristic Error Propagation
	F.3 Amortising FunExpExtract
	F.4 Accelerating FunExpExtract

	References

	Two-Face: New Public Key Multivariate Schemes
	1 Introduction, the Two-Face Technique
	2 The ``Dob'' Schemes
	2.1 Dobbertin Permutation
	2.2 Cryptanalysis of the `nude Dob'
	2.3 Need for Perturbations
	2.4 ``Dob'' Encryption Schemes
	2.5 ``Dob'' Signature Schemes

	3 The (Simple) Pat Polynomial Family
	4 The (General) Pat Polynomial Families
	4.1 Scheme Construction
	4.2 Practical Experiments

	5 The Mac Polynomial Family
	6 Other Generalizations
	6.1 Three or a Few More Blocks, `Super Two-Face'
	6.2 More Blocks

	7 Conclusion
	References

	Cryptanalysis of RSA Variants with Modified Euler Quotient
	1 Introduction
	1.1 Background
	Small Private Key Attack.
	Multiple Private Keys Attack.
	Partial Key Exposure Attack.

	1.2 Our Contributions
	1.3 Organization

	2 Preliminaries
	3 Small Private Key Attack
	4 Multiple Private Keys Attack
	5 Partial Key Exposure Attack
	6 Concluding Remarks
	References

	Saber: Module-LWR Based Key Exchange, CPA-Secure Encryption and CCA-Secure KEM
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Definitions
	2.3 LWE, LWR and Mod-LWR Problems

	3 Key Exchange
	4 CPA Secure Encryption
	5 CCA Secure KEM
	6 Security Analysis and Parameter Selection
	6.1 Security Analysis
	6.2 Parameter Selection

	7 Implementation
	8 Results
	A Toom-Cook-4 Polynomial Multiplication
	References

	Practical Fault Injection on Deterministic Signatures: The Case of EdDSA
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Background
	2.1 EdDSA
	2.2 Fault Attacks

	3 Methods
	3.1 General Attack Principle
	3.2 Voltage Fault Injection
	3.3 Electromagnetic Fault Injection

	4 Experimental Setup and Results
	4.1 Setup
	4.2 Voltage Fault Injection Results
	4.3 Electromagnetic Fault Injection Results

	5 Countermeasures
	6 Conclusion
	References

	Authentication with Weaker Trust Assumptions for Voting Systems
	1 Introduction
	2 Election Scheme Syntax
	3 Our Construction
	4 Our Construction Ensures Ballot Secrecy
	5 Our Construction Ensures Election Verifiability
	6 Case Study: A Secret, Verifiable Election Scheme with Internal Authentication
	7 Conclusion
	A Ballot Privacy: Definitions and Proofs
	B Election Verifiability: Definitions and Proofs
	B.1 Individual Verifiability
	B.2 Universal Verifiability
	B.3 Eligibility Verifiability

	References

	Shorter Double-Authentication Preventing Signatures for Small Address Spaces
	1 Introduction
	2 Notation
	3 Signature Schemes and Key Extractability
	3.1 Regular Signature Schemes
	3.2 Key-Extractable Signature Schemes

	4 Constructing DAP Signatures from SOT Signatures
	5 Constructing SOT Signatures
	5.1 Three-Move ID Protocols
	5.2 The Fiat–Shamir Transform
	5.3 The Fixed-Commitment Transform

	6 Putting Things Together: DLP-Based DAP Signatures
	References

	Author Index

