
Chapter 5
Identification of Fractional Chaotic
Systems by Using the Locust Search
Algorithm

Parameter estimation of fractional chaotic models has drawn the interests of dif-
ferent research communities due to its multiple applications. In the estimation
process, the task is converted into a multi-dimensional optimization problem. Under
this approach, the fractional elements, as well as functional factors of the chaotic
model are assumed as decision variables. Many methods based on metaheuristic
concepts have been successfully employed to identify the parameters of
fractional-order chaotic models. Nevertheless, most of them present a significant
weakness, they usually reach sub-optimal solutions as a consequence of an incor-
rect balance between exploration and exploitation in their search procedures. This
chapter analyses the way in which metaheuristic algorithms can be applied for
parameter identification of chaotic systems. To identify the parameters, the chapter
explores the use of the metaheuristic method called Locust Search (LS) which is
based on the operation of swarms of locusts. Contrary to the most of existent
metaheuristic algorithms, it explicitly discourages the clustering of individuals in
the promising positions, eliminating the significant defects such as the premature
convergence to sub-optimal solutions and the limited exploration–exploitation
balance.

5.1 Introduction

A fractional order model is a system that is characterized by a fractional differential
equation containing derivatives of non-integer order. Several engineering problems,
such as transmission lines [1], electrical circuits [2] and control systems [3], can be
more accurately described by fractional differential equations than integer order
schemes. For this reason, in the last decade, the fractional order systems [4–8] have
attracted the interests of several research communities.

System identification is a practical way to model a fractional order system.
However, because the mathematical interpretation of fractional calculus is lightly
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distinct to integer calculus, it is difficult to model real fractional order systems
directly based on analytic mechanisms [9]. For classical integer order system, once
the maximum order of the system has been defined, the parameters of the model can
be identified directly. However, for a fractional order system, because identification
requires the choice of the fractional order of the operators, and the systematic
parameters, the identification process of such systems is more complex than that of
the integer order models [10]. Under such conditions, most of the classical iden-
tification methods cannot directly applied to identification of a fractional order
systems [11].

The problem of estimating the parameters of fractional order systems has been
commonly solved through the use of deterministic methods such as non-linear
optimization techniques [12], input output frequency contents [13] or operational
matrix [14]. These methods have been exhaustively analyzed and represents the
most consolidated available tools. The interested reader in such approaches can be
referred to [15] for a recent survey on the state-of-the-art.

As an alternative to classical techniques, the problem of identification in frac-
tional order systems has also been handled through evolutionary methods. In
general, they have demonstrated, under several circumstances, to deliver better
results than those based on deterministic approaches in terms of accuracy and
robustness [16]. Under these methods, an individual is represented by a candidate
model. Just as the evolution process unfolds, a set of evolutionary operators are
applied in order to produce better individuals. The quality of each candidate
solution is evaluated through an objective function whose final result represents the
affinity between the estimated model and the actual one. Some examples of these
approaches used in the identification of fractional order systems involve methods
such as Genetic Algorithms (GA) [17], Artificial Bee Colony (ABC) [18],
Differential Evolution (DE) [19] and Particle Swarm Optimization (PSO) [20].
Although these algorithms present interesting results, they have an important lim-
itation: They frequently obtain sub-optimal solutions as a consequence of the
limited balance between exploration and exploitation in their search strategies. This
limitation is associated to their evolutionary operators employed to modify the
individual positions. In such algorithms, during their operation, the position of each
individual for the next iteration is updated producing an attraction towards the
position of the best particle seen so-far or towards other promising individuals.
Therefore, as the algorithm evolves, such behaviors cause that the entire population
rapidly concentrates around the best particles, favoring the premature convergence
and damaging the appropriate exploration of the search space [21, 22].

This chapter presents an algorithm for parameter identification of fractional-order
chaotic systems. In order to determine the parameters, the method uses a novel
evolutionary method called Locust Search (LS) [23–25] which is based on the
behavior of swarms of locusts. In the LS algorithm, individuals emulate a group of
locusts which interact to each other based on the biological laws of the cooperative
swarm. The algorithm considers two different behaviors: solitary and social.
Depending on the behavior, each individual is conducted by a set of evolutionary
operators which mimics different cooperative conducts that are typically found in
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the swarm. Different to most of existent evolutionary algorithms, the behavioral
model in the LS approach explicitly avoids the concentration of individuals in the
current best positions. Such fact allows to avoid critical flaws such as the premature
convergence to sub-optimal solutions and the incorrect exploration–exploitation
balance. Numerical simulations have been conducted on the fractional-Order Van
der Pol oscillator to show the effectiveness of the scheme.

The chapter is organized as follows. In Sect. 5.2, the concepts of fractional
calculus are introduced. Section 5.3 gives a description for the Locust Search
algorithm. Section 5.4 gives a brief description of the fractional-order Van der Pol
Oscillator. Section 5.5 formulates the parameter estimation problem. Section 5.6
shows the experimental results. Finally some conclusions are discussed in Sect. 5.7.

5.2 Fractional Calculus

Fractional calculus is a generalization of integration and differentiation to
non-integer order fundamental operator. The differential-integral operator, denoted
by aD

q
t takes both the fractional derivative and the fractional integral in a single

expression which is defined as:

aD
q
t ¼

dq
dtq ; q[ 0;
1; q ¼ 0;Rt

a
ðdsÞq; q\0:

8>><
>>: ð5:1Þ

where a and t represents the operation bounds whereas q 2 <. The commonly used
definitions for fractional derivatives are the Grünwald-Letnikov, Riemann-Liouville
[7] and Caputo [26]. According to the Grünwald-Letnikov approximation, the
fractional-order derivative of order q is defined as follows:

Dq
t f ðtÞ ¼ lim

h!0

1
hq

X1
j¼0

�1ð Þ j q
j

� �
f ðt � jhÞ ð5:2Þ

In the numerical calculation of fractional-order derivatives, the explicit numer-
ical approximation of the qth derivative at the points kh; ðk ¼ 1; 2; . . .Þ maintains
the following form [27]:

ðk�Lm=hÞD
q
tk f ðtÞ � h�q

Xk
j¼0

�1ð Þ j q
j

� �
f ðtk � jÞ ð5:3Þ

where Lm is the memory length tk ¼ kh, h, is the time step and �1ð Þ j q
j

� �
are the

binomial coefficients. For their calculation we can use the following expression:
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cðqÞ0 ¼ 1; cðqÞj ¼ 1� 1þ q
j

� �
cðqÞj�1 ð5:4Þ

Then, the general numerical solution of the fractional differential equation is
defined as follows:

yðtkÞ ¼ f ðyðtkÞ; tkÞhq �
Xk
j¼1

cðqÞj yðtk�jÞ ð5:5Þ

5.3 Locust Search (LS) Algorithm

In the operation of LS [23], a population Lk(flk1; lk2; . . .; lkNg) of N locusts (indi-
viduals) is processed from the initial stage (k = 0) to a total gen number iterations
(k = gen). Each individual lki (i 2 1; . . .;N½ �) symbolizes an n-dimensional vector

lki;1; l
k
i;2; . . .; l

k
i;n

n o
where each dimension represents a domain variable of the opti-

mization problem to be solved. The set of variables represents the valid search

space S ¼ lki 2 R
n lbd � lki;d � ubd
���n o

, where lbd and ubd represents the lower and

upper bounds for the d dimension, respectively. The quality of each element lki
(candidate solution) is evaluated by using the objective function f lki

� �
. In LS, at

each iteration consists of two operators: (A) solitary and (B) social.

5.3.1 Solitary Operation (A)

In the solitary operation, a new location pi(i 2 1; . . .;N½ �) is generated by modifying
the current element location lki with a change of position Dli pi ¼ lki þDli

� �
. Dli is

the result of the individual interactions experimented by lki as a consequence of its
biological behavior. Such interactions are pairwise computed among lki and the
other N − 1 individuals in the swarm. Therefore, the final force exerted between lkj
and lki is computed by considering the following model:

smij ¼ qðlki ; lkj Þ � sðrijÞ � dij þ randð1;�1Þ ð5:6Þ

where dij ¼ ðlkj � lki Þ=rij is the unit-vector, pointing from lki to lkj . Furthermore, rand
(1, −1) is an number randomly produced between 1 and −1. The factor sðrijÞ
represents the social relation between lkj and lki , which is calculated as follows:
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sðrijÞ ¼ F � e�rij=L � e�rij ð5:7Þ

Here, rij is the distance between lkj and lki , F represents the strength of attraction
whereas L is the attractive length factor. It is assumed that F < 1 and L > 1 so that
repulsion is stronger in a shorter-scale, while attraction is applied in a weaker and
longer-scale. qðlki ; lkj Þ is a function that calculates the dominance value of the best

element between lkj and lki . In order to operate qðlki ; lkj Þ, all the individuals from

Lk(flk1; lk2; . . .; lkNg) are arranged in terms of their fitness values. Therefore, a rank is
assigned to each element, so that the best individual obtains the rank 0 (zero)
whereas the worst individual receives the rank N − 1. Under such conditions, the
function qðlki ; lkj Þ is defined as follows:

qðlki ; lkj Þ ¼
e� 5�rankðlki Þ=Nð Þ if rankðlki Þ\rankðlkj Þ
e� 5�rankðlkj Þ=Nð Þ if rankðlki Þ[ rankðlkj Þ

(
ð5:8Þ

where rank (a) delivers the rank of the a-element. According to Eq. (5.8), qðlki ; lkj Þ
gives a value within [0,1]. Figure 5.1 shows the behavior of qðlki ; lkj Þ considering

100 elements. In the figure, it is assumed that lki represents one of the 99 individuals
with ranks among 0 and 98 whereas lkj is fixed to the worst individual (rank 99).

Then, the resultant force Smi on each element lki is computed as the superposition
of all of the pairwise interactions exerted on it:

Smi ¼
XN
j ¼ 1
j 6¼ i

smij ð5:9Þ
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Fig. 5.1 Behavior of qðlki ; lkj Þ
considering 100 individuals
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Finally, Dli is assumed similar to the social force experimented by lki as the
superposition of all of the pairwise reciprocal forces. Consequently, Dli is repre-
sented as follows:

Dli ¼ Smi ð5:10Þ

After calculating the new locations P(fp1; p2; . . .; pNg) of the population
Lk(flk1; lk2; . . .; lkNg), the final locations F(ff1; f2; . . .; fNg) must be computed. This
procedure can be summarized by the following formulation (in terms of a mini-
mization problem):

f i ¼ pi if f ðpiÞ\f ðlki Þ
lki otherwise

	
ð5:11Þ

5.3.2 Social Operation (B)

The social operation is a discriminating operation which considers only to a subset
E of the final positions F (where E�F). In the process first is necessary to order
F in terms of their fitness values and collect the individuals in a temporal population
B ¼ b1; b2; . . .; bNf g. The individuals of B are arranged so that the best element is
located in the first position b1 b1;1; b1;2; . . .; b1;n


 �
whereas the worst individual is

situated in the last location bN . Under such conditions, E is composed by the first
g position of B (the best elements). Then, a subspace Cj is defined around each
selected element f j 2 E. The size of Cj depends on the distance ed which is
determined as follows:

ed ¼
Pn

q¼1 ubq � lbq
� �
n

� b ð5:12Þ

where ubq and lbq are the upper and lower limits of the qth dimension, n is the
number of dimensions of the optimization problem, whereas b 2 0;1½ � is a tuning
factor. Therefore, the bounds of Cj are modeled as follows:

ussqj ¼ bj;q þ ed

lssqj ¼ bj;q � ed
ð5:13Þ

where ussqj and lssqj are the upper and lower limits of the q-th-dimension for the
subspace Cj, respectively. Once creating the subspace Cj in the neighborhood of the

element f j 2 E, a set of h new elements ðMh
j ¼ m1

j ;m
2
j ; . . .;m

h
j

n o
Þ are randomly

produced within the limits defined by Eq. 5.13. Considering the h samples, the new
individual lkþ 1

j of the next population Lkþ 1 must be extracted. In order to select
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lkþ 1
j , the best element mbest

j , in terms of fitness value from the h samples (where

mbest
j 2 m1

j ;m
2
j ; . . .;m

h
j

h i
), is examined. If mbest

j is better than f j according to their

fitness values, lkþ 1
j is updated with mbest

j , otherwise the position of f j is assigned to

lkþ 1
j . The elements of F that have not been considered by the procedure ðfw 62 EÞ
transport their corresponding values to Lkþ 1 without variation. The social operation
is used to exploit only favorable solutions. According to the social operation, inside
each subspace Cj, h random samples are produced. Since the number of selected
elements in each subspace is very small (typically h\4), the use of this operator
cannot be considered computational expensive.

5.4 Fractional-Order van der Pol Oscillator

The Van der Pol Oscillator model has been extensively studied as a complex
example of non-linear system. It provides important models for a wide range of
dynamic behaviors for several engineering applications [28, 29]. The classical
integer-order Van der Pol Oscillator is described by a second-order non-linear
differential equation as follows:

_y1
_y2

� 

¼ 0 1

�1 �eðy21ðtÞ � 1Þ
� 


y1
y2

� 

; ð5:14Þ

where e is a control parameter that reflects the nonlinearity degree of the system. On
the other hand, the fractional-order Van der Pol Oscillator model of order q is
defined by the following formulation [30]:

0D
q1
t y1ðtÞ ¼ y2ðtÞ;

0D
q2
t y2ðtÞ ¼ �y1ðtÞ � eðy21ðtÞ � 1Þy2ðtÞ: ð5:15Þ

Considering the Grünwald-Letnikov approximation (see Eq. 5.5), the numerical
solution for the fractional-order Van der Pol Oscillator is given by:

y1ðtkÞ ¼ y2ðtk�1Þhq1 �
Xk
j¼1

cðq1Þj y1ðtk�jÞ;

y2ðtkÞ ¼ ð�y1ðtkÞ � eðy21ðtkÞ � 1Þy2ðtk�1ÞÞhq2 �
Xk
j¼1

cðq2Þj y2ðtk�jÞ:
ð5:16Þ
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5.5 Problem Formulation

In this approach, the identification process is considered as a multidimensional
optimization problem. In the optimization process, the parameters of a new
fractional-order chaotic system FOCE are determined by using the LS method from
the operation of the original fractional-order chaotic system FOCO. The idea is that
FOCE presents the best possible parametric affinity with FOCO. Under such cir-
cumstances, the original fractional-order chaotic system FOCO can be defined as
follows:

aD
q
t Y ¼ FðY;Y0; hÞ; ð5:17Þ

where Y ¼ ½y1; y2; . . .; ym�T denotes the state vector of the system, Y0 symbolizes
the initial state vector, h ¼ ½h1; h2; . . .; hm�T represents the original systematic
parameter set, q ¼ ½q1; q2; . . .; qm�T for 0\qi\1 ði 2 ½1; . . .;m�Þ corresponds to the
fractional derivative orders and F is a generic non-linear function. On the other
hand, the estimated fractional-order chaotic system FOCE can be modeled as
follows:

aD
q̂
t Ŷ ¼ FðŶ;Y0; ĥÞ; ð5:18Þ

where Ŷ, ĥ and q̂ denotes the estimated state system, the estimated systematic
parameter vector and the estimated fractional orders, respectively.

Since the goal is that FOCE presents the best possible parametric affinity with
FOCO, the problem can be approached as an optimization problem described by the
following formulation:

�h; �q ¼ arg min
ðŶ;q̂Þ2X

ðJðh; qÞÞ; ð5:19Þ

where �h; �q denotes the best possible parametric values obtained by the optimization
process, X symbolizes the search space admitted for parameters (Ŷ and q̂) whereas
J represents the objective function that evaluates the parametric affinity between
FOCO and FOCE. This affinity can be computed as follows:

Jðh; qÞ ¼ 1
M

XM
k¼1

ðYðkÞ � ŶðkÞÞ2; ð5:20Þ

where YðkÞ and ~YðkÞ represent the state values produced by the original and
estimated systems, respectively. On the other hand, k denotes the sampling time
point and M represents the length of data used for parameter estimation. According
to the optimization problem formulated in Eq. (5.19), the parameter identification
can be achieved by searching suitable values of Ŷ and q̂ within the searching space
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Ω, such that the objective function has been minimized. Figure 5.2 shows the
graphic representation of the identification process. Since the fractional-order Van
der Pol oscillator has been chosen to test the performance of the approach, the
fractional-order system maintain two different fractional derivative orders q ¼
½q1; q2�T (m = 2) and one systematic parameter e.

5.6 Experimental Results

To verify the effectiveness and robustness of the approach, the fractional-order Van
der Pol oscillator is chosen to test its performance. The simulations has been
conducted by using MATLAB (Version 7.1, MathWorks, Natick, MA, USA) on an
Intel(R) Core(TM) i7-3470 CPU, 3.2 GHz with 4 GB of RAM. In order to calculate
the objective function, the number of samples is set as 300 and the step size is 0.01.

In this section, the results of the LS algorithm have been compared to those
produced by the Genetic Algorithms (GA) [17], Particle Swarm Optimization
(PSO) method [20], the Differential Evolution (DE) [19], and the LS method. In all
comparisons, the population has been set to 40 (N = 40) individuals. The maximum
iteration number for all functions has been set to 100. Such stop criterion has been
selected to maintain compatibility to similar works reported in the literature [16].

The parameter setting for each of the algorithms in the comparison is described
as follows:

1. GA: The population size has been set to 70, the crossover probability with 0.55,
the mutation probability with 0.10 and number of elite individuals with 2. The
roulette wheel selection and the 1-point crossover are applied.

Fig. 5.2 Evolutionary algorithm for fractional-order system parameter estimation
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1. PSO: In the method, c1 ¼ c2 ¼ 2 whereas the inertia factor (x) is decreased
linearly from 0.9 to 0.2.

2. DE: The DE/Rand/1 scheme has been employed. The parameter settings follow
the instructions suggested in [31]. The crossover probability is CR = 0.9
whereas the weighting factor is F = 0.8.

3. In LS, F and L are set to 0.6 and L, respectively. Similarly, g is fixed to 20 (N/2),
h = 2, b ¼ 0:6 whereas gen and N are set to 1000 and 40, respectively. Once
such parameters have been experimentally determined, they are considered for
all experiments in this section.

In the experiments, the fractional-order Van der Pol Oscillator to be estimated
has been configured such that q1 ¼ 1:2, q2 ¼ 0:8 and e ¼ 1. Similarly, the initial
state has been set to [0.02,−0.2].

The statistical results of the best, the mean and the worst estimated parameters
with the corresponding relative error values over 100 independent runs are shown in
Table 5.1. From Table 5.1, it can be easily seen that the estimated values generated
by the LS algorithm are closer to the actual parameter values, which means that it is
more accurate than the standard GA, PSO and DE algorithms. Likewise, it can also
be clearly found that the relative error values obtained by the LS algorithm are all
smaller than those of the standard GA, PSO and DE algorithms, which can also

Table 5.1 Simulation result of the algorithms GA, PSO, DE and LS

Parameter GA PSO DE LS

BEST e 0.9021 0.9152 0.9632 0.9978
e�1j j
1

0.0979 0.0848 0.0368 0.0022

q1 1.3001 1.2810 1.2210 1.2005
q1�1:2j j
1:2

0.0834 0.0675 0.0175 0.0004

q2 0.8702 0.8871 0.8229 0.8011
q2�0:8j j
0:8

0.0877 0.1088 0.0286 0.0013

WORST e 0.1731 0.1176 0.3732 0.7198
e�1j j
1

0.8269 0.8824 0.6268 0.2802

q1 2.1065 0.3643 1.8532 1.3075
q1�1:2j j
1:2

0.7554 0.6964 0.5443 0.0895

q2 0.1219 1.7643 1.2154 0.9101
q2�0:8j j
0:8

0.8476 1.2053 0.5192 0.1376

MEAN e 1.2131 1.2052 1.1701 1.0186
e�1j j
1

0.2131 0.2052 0.1701 0.0186

q1 0.9032 1.0974 1.3421 1.2654
q1�1:2j j
1:2

0.2473 0.0855 0.1186 0.0545

q2 0.9052 0.7229 0.7832 0.8089
q2�0:8j j
0:8

0.1315 0.0963 0.0210 0.0111
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prove that the LS algorithm has a higher performance in terms of accuracy.
Therefore, the estimated parameters can be closer to the true values than the GA,
PSO and DE algorithms. With this evidence, it can be concluded that the LS
algorithm can more efficiently identify a fractional-order systems than the other
algorithms used in the comparisons. In order to show the proficiency, of the
approach, Fig. 5.3 presents the phase diagrams of the Van der Pol Oscillator by
using the mean estimated parameters for each method.

The convergence curves of the parameters and fitness values estimated by the set
of algorithms are shown in Figs. 5.4, 5.5 and 5.6 in a single execution. From
Figs. 5.4, 5.5 and 5.6, it can be clearly observed that convergence processes of the
parameters and fitness values of LS algorithm are better than other algorithms.
Additionally, the estimated parameter values obtained by the LS algorithm fall
faster than the other algorithms.

Furthermore, Table 5.2 shows the average best solution obtained by each
algorithm. The average best solution (ABS) expresses the average value of the best
function evaluations that have been obtained from 100 independent executions.
A non-parametric statistical significance test known as the Wilcoxon’s rank sum
test for independent samples [32, 33] has been conducted with an 5% significance
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Fig. 5.3 Phase diagrams of the Van der Pol oscillator by using the mean estimated parameters for
a GA, b PSO, c DE and d the LS approach
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level, over the “average best-solution” data of Table 5.2. Table 5.3 reports the p-
values produced by Wilcoxon’s test for the pair-wise comparison of the “average
best-solution” of two groups. Such groups are formed by LS versus GA, LS versus
PSO and LS versus DE. As a null hypothesis, it is assumed that there is no
significant difference between mean values of the two algorithms. The alternative
hypothesis considers a significant difference between the “average best-solution”
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Fig. 5.4 Estimated parameter q1 (fractional order)

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

No of Iterations

q
2

GA

PSO

DE

LS

Fig. 5.5 Estimated parameter q2 (fractional order)
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values of both approaches. All p-values reported in the table are less than 0.05 (5%
significance level) which is a strong evidence against the null hypothesis, indicating
that the LS results are statistically significant and that it has not occurred by
coincidence (i.e. due to the normal noise contained in the process).

5.7 Conclusions

Due to its multiple applications, parameter identification for fractional-order chaotic
systems has attracted the interests of several research communities. In the identi-
fication, the parameter estimation process is transformed into a multidimensional
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Fig. 5.6 Estimated systematic parameter e

Table 5.2 Average best solution obtained by each algorithm GA, PSO, DE and LS

GA PSO DE LS

0.2251 0.2016 0.0982 0.0126

Table 5.3 p-values produced by Wilcoxon’s test that compares LS versus GA, LS versus PSO
and DE over the “average best-solution” values from Table 5.3

p-values

LS versus GA 0.00021

LS versus PSO 0.00098

LS versus DE 0.00123
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optimization problem where fractional orders, as well as functional parameters of
the chaotic system are considered the decision variables. Under this approach, the
complexity of fractional-order chaotic systems tends to produce multimodal error
surfaces for which their cost functions are significantly difficult to minimize.
Several algorithms based on evolutionary computation principles have been suc-
cessfully applied to identify the parameters of fractional-order chaotic systems.
However, most of them maintain an important limitation, they frequently obtain
sub-optimal results as a consequence of an inappropriate balance between explo-
ration and exploitation in their search strategies.

In this chapter, an algorithm for parameter identification of fractional-order
chaotic systems has been presented. In order to determine the parameters, the
method uses a novel evolutionary method called Locust Search (LS) [R1] which is
based on the behavior of swarms of locusts. In the LS algorithm, individuals
emulate a group of locusts which interact to each other based on the biological laws
of the cooperative swarm. The algorithm considers two different behaviors: solitary
and social. Depending on the behavior, each individual is conducted by a set of
evolutionary operators which mimics different cooperative conducts that are typi-
cally found in the swarm. Different to most of existent evolutionary algorithms, the
behavioral model in the LS approach explicitly avoids the concentration of indi-
viduals in the current best positions. Such fact allows to avoid critical flaws such as
the premature convergence to sub-optimal solutions and the incorrect exploration–
exploitation balance.

In order to test the proficiency and robustness of the presented method, it has
been compared to other algorithms based on evolutionary principles such as GA,
PSO and DE. The comparison examines the identification of the fractional Van der
Pol Oscillator. The results show a high performance of the proposed estimator in
terms of precision and robustness.
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