
Chapter 4
The Metaheuristic Algorithm
of the Locust-Search

Metaheuristic is a set of soft computing techniques which considers the design of
intelligent search algorithms based on the analysis of several natural and social
phenomena. Many metaheuristic methods have been suggested to solve a wide
range of complex optimization applications. Even though these schemes have been
designed to satisfy the requirements of general optimization problems, no single
method can solve all problems adequately. Consequently, an enormous amount of
research has been dedicated to producing new optimization methods that attain
better performance indexes. In this chapter, metaheuristic algorithm called Locust
Search (LS) is presented for solving optimization tasks. The LS method considers
the simulation of the behavior presented in swarms of locusts as a metaphor. In the
algorithm, individuals imitate a group of locusts which operate according to the
biological laws of the swarm. The algorithm defines two distinct behaviors: solitary
and social. Depending on the behavior, each element is undergone to a set of
evolutionary operators that emulate the distinct collective behaviors typically pre-
sent in the swarm.

4.1 Introduction

The collective intelligent behavior of insect or animal groups in nature such as
flocks of birds, colonies of ants, schools of fish, swarms of bees and termites have
attracted the attention of researchers. The aggregative conduct of insects or animals
is known as swarm behavior. Even though the single members of swarms are
non-sophisticated individuals, they are able to achieve complex tasks in coopera-
tion. The collective swarm behavior emerges from relatively simple actions or
interactions among the members. Entomologists have studied this collective phe-
nomenon to model biological swarms while engineers have applied these models as
a framework for solving complex real-world problems. The discipline of artificial
intelligence which is concerned with the design of intelligent multi-agent

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_4

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_4&domain=pdf

algorithms by taking inspiration from the collective behavior of social insects or
animals is known as swarm intelligence [1]. Swarm algorithms have several
advantages such as scalability, fault tolerance, adaptation, speed, modularity,
autonomy and parallelism [2].

Several swarm algorithms have been developed by a combination of deter-
ministic rules and randomness, mimicking the behavior of insect or animal groups
in nature. Such methods include the social behavior of bird flocking and fish
schooling such as the Particle Swarm Optimization (PSO) algorithm [3], the
cooperative behavior of bee colonies such as the Artificial Bee Colony
(ABC) technique [4], the social foraging behavior of bacteria such as the Bacterial
Foraging Optimization Algorithm (BFOA) [5], the simulation of the herding
behavior of krill individuals such as the Krill Herd (KH) method [6], the mating
behavior of firefly insects such as the Firefly (FF) method [7] the emulation of the
lifestyle of cuckoo birds such as the Cuckoo Search (CS) [8], the social-spider
behavior such as the Social Spider Optimization (SSO) [9], the simulation of the
animal behavior in a group such as the Collective Animal Behavior [10] and the
emulation of the differential evolution in species such as the Differential Evolution
(DE) [11].

In particular, insect swarms and animal groups provide a rich set of metaphors
for designing swarm optimization algorithms. Such methods are complex systems
composed by individuals that tend to reproduce specialized behaviors [12].
However, most of swarm algorithms and other evolutionary algorithms tend to
exclusively concentrate the individuals in the current best positions. Under such
circumstances, these algorithms seriously limit their search capacities.

Although PSO and DE are the most popular algorithms for solving complex
optimization problems, they present serious flaws such as premature convergence
and difficulty to overcome local minima [13, 14]. The cause for such problems is
associated to the operators that modify individual positions. In such algorithms,
during their evolution, the position of each agent for the next iteration is updated
yielding an attraction towards the position of the best particle seen so-far (in case of
PSO) or towards other promising individuals (in case of DE). As the algorithm
evolves, these behaviors cause that the entire population rapidly concentrates
around the best particles, favoring the premature convergence and damaging the
appropriate exploration of the search space [15, 16].

The interesting and exotic collective behavior of insects have fascinated and
attracted researchers for many years. The intelligent behavior observed in these
groups provides survival advantages, where insect aggregations of relatively simple
and “unintelligent” individuals can accomplish very complex tasks using only
limited local information and simple rules of behavior [17]. Locusts (Schistocerca
gregaria) are a representative example of such collaborative insects [18]. Locust is a
kind of grasshopper that can change reversibly between a solitary and a social
phase, which differ considerably in behavior [19]. The two phases show many
differences including both overall levels of activity and the degree to which locusts
are attracted or repulsed among them [20]. In the solitary phase, locusts avoid
contact each other (locust concentrations). As consequence, they distribute

58 4 The Metaheuristic Algorithm of the Locust-Search

throughout the space, exploring sufficiently the plantation [20]. On other hand, in
the social phase, locusts frantically concentrate around the elements that have
already found good food sources [21]. Under such a behavior, locust attempt to
efficiently find better nutrients by devastating promising areas within the plantation.

In this chapter, the Locust Search (LS) is analyzed for solving optimization
tasks. The LS algorithm is based on the simulation of the behavior presented in
swarms of locusts. In LS, individuals emulate a group of locusts which interact to
each other based on the biological laws of the cooperative swarm. The algorithm
considers two different behaviors: solitary and social. Depending on the behavior,
each individual is conducted by a set of evolutionary operators which mimic the
different cooperative behaviors that are typically found in the swarm. Different to
most of existent swarm algorithms, in LS approach, the modeled behavior explicitly
avoids the concentration of individuals in the current best positions. Such fact
allows not only to emulate in a better realistic way the cooperative behavior of the
locust colony, but also to incorporate a computational mechanism to avoid critical
flaws commonly present in the popular PSO and DE algorithms, such as the pre-
mature convergence and the incorrect exploration–exploitation balance. In order to
illustrate the proficiency and robustness of the LS approach, it is compared to other
well-known evolutionary methods. The comparison examines several standard
benchmark functions which are commonly considered in the literature. The results
show a high performance of the LS method for searching a global optimum in
several benchmark functions.

This chapter is organized as follows. In Sect. 4.2, we introduce basic biological
aspects and models of the algorithm. In Sect. 4.3, the novel LS algorithm and its
characteristics are both described. Section 4.4 presents the experimental results and
the comparative study. Finally, in Sect. 4.5, conclusions are drawn.

4.2 Biological Fundamentals

Social insect societies are complex cooperative systems that self-organize within a
set of constraints. Cooperative groups are better at manipulating and exploiting their
environment, defending resources and brood, and allowing task specialization
among group members [22, 23]. A social insect colony functions as an integrated
unit that not only possesses the ability to operate at a distributed manner, but also to
undertake enormous construction of global projects [24]. It is important to
acknowledge that global order in insects can arise as a result of internal interactions
among members.

Locusts are a kind of grasshoppers that exhibit two opposite behavioral phases,
solitary and social (gregarious). Individuals in the solitary phase avoid contact each
other (locust concentrations). As consequence, they distribute throughout the space,
exploring sufficiently the plantation [20]. In contrast, locusts in the gregarious phase
form several concentrations. These concentrations may contain up to 1010 members,
cover cross-sectional areas of up to 10 km2, and travel up to 10 km per day for a

4.1 Introduction 59

period of days or weeks as they feed causing devastating crop loss [25]. The
mechanism for the switch from the solitary phase to the gregarious phase is com-
plex, and has been a subject of significant biological inquiry. A set of factors
recently has been implicated, including geometry of the vegetation landscape and
the olfactory stimulus [26].

Only few works [20, 21] that mathematically model the locust behavior have
been published. In such approaches, it is developed two different minimal models
with the goal of reproducing the macroscopic structure and motion of a group of
locusts. Since the method proposed in [20] models the behavior of each locust in
the group, it is used to explain the algorithm LS in this chapter.

4.2.1 Solitary Phase

In this section, it is described the way in which the position of each locust is
modified as a consequence of its behavior under the solitary phase. Considering that
xki represents the current position of the ith locust in a group of N different elements,
the new position xkþ 1

i is calculated by using the following model:

xkþ 1
i ¼ xki þDxi; ð4:1Þ

where Dxi corresponds to the change of position experimented by xki as a conse-
quence of its social interaction with all the other elements in the group.

Two locusts in the solitary phase exert forces on each other according to basic
biological principles of attraction and repulsion (see, e.g., [20]). Repulsion operates
very strongly over a short length scale in order to avoid concentrations. Attraction is
weaker, and operates over a longer length scale, providing the social force neces-
sary for maintaining the cohesion in the group. Therefore, it is modeled the strength
of these social forces using the function:

sðrÞ ¼ F � e�r=L � e�r ð4:2Þ

Here, r is a distance, F describes the strength of attraction, and L is the typical
attractive length scale. We have scaled the time and space coordinates so that the
repulsive strength and length scale are unity. We assume that F < 1 and L > 1 so
that repulsion is stronger and shorter-scale, and attraction in weaker and
longer-scale. This is typical for social organisms [21]. The social force exerted by
locust j on locust i is:

sij ¼ sðrijÞ � dij; ð4:3Þ

60 4 The Metaheuristic Algorithm of the Locust-Search

where rij ¼ xj � xi
�� �� is the distance between the two locusts and dij ¼ ðxj � xiÞ=rij

is the unit vector pointing from xi to xj. The total social force on each locust can be
modeled as the superposition of all of the pairwise interactions:

Si ¼
XN
j¼ 1
j 6¼ i

sij; ð4:4Þ

The change of position Dxi is modeled as the total social force experimented by
xki as the superposition of all of the pairwise interactions. Therefore, Dxi is defined
as follows:

Dxi ¼ Si; ð4:5Þ

In order to illustrate the behavioral model under the solitary phase, Fig. 4.1
presents an example. It is assumed a population of three different members (N = 3)
which adopt a determined configuration in the current iteration k. As a consequence
of the social forces, each element suffers an attraction or repulsion to other elements
depending on the distance among them. Such forces are represented by
s12; s13; s21; s23; s31; s32. Since x1 and x2 are too close, the social forces s12 and s13
present a repulsive nature. On the other hand, as the distances x1 � x3j j and
x2 � x3j j are quite long, the social forces s13; s23; s31 and s32 between x1 $ x3 and
x2 $ x3 are from the attractive nature. Therefore, the change of position Dx1 is
computed as the resultant between s12 and s13 Dx1 ¼ s12þ s13ð Þ. The values Dx2
and Dx3 of the locusts x1 and x2 are also calculated accordingly.

In addition to the presented model [20], some studies [27–29] suggest that the
social force sij is also affected by the dominance of the involved individuals xi and

1x

3x

12s

21s
13s

31s

23s

32s

2x

2S

1S

3S

Fig. 4.1 Behavioral model under the solitary phase

4.2 Biological Fundamentals 61

xj in the pairwise process. Dominance is a property that relatively qualifies the
capacity of an individual to survive, in relation to other elements in a
group. Dominance in locust is determined for several characteristics such as size,
chemical emissions, location with regard to food sources, etc. Under such cir-
cumstances, the social force is magnified or weakened depending on the most
dominant individual involved in the repulsion-attraction process.

4.2.2 Social Phase

In this phase, locusts frantically concentrate around the elements that have already
found good food sources. Under such a behavior, locust attempt to efficiently find
better nutrients by devastating promising areas within the plantation.

In order to simulate the social phase, to each locust xi of the group, it is asso-
ciated a food quality index Fqi. This index reflex the quality of the food source
where xi is located.

Under this behavioral model, it is first ranked the N elements of the group
according to their food quality indexes. Afterward, the b elements with the best
food quality indexes are selected b� Nð Þ. Considering a concentration radius Rc

created around each selected element, a set of c new locusts is randomly generated
inside Rc. As a result, most of the locusts will be concentrated around the best
b elements. Figure 4.2 shows a simple example of behavioral model under the
social phase. In the example, it is assumed a configuration of eight locust (N = 8),
as it is illustrated in Fig. 4.2a. In the Figure, it is also presented the food quality
index for each locust. A food quality index near to one indicates a better food
source. Therefore, considering b = 2, the final configuration after the social phase,
it is presented in Fig. 4.2b.

4.3 The Locust Search (LS) Algorithm

In this chapter, the behavioral principles from a swarm of locusts have been used as
guidelines for developing a new swarm optimization algorithm. The LS assumes
that entire search space is a plantation, where all the locusts interact to each other. In
the LS approach, each solution within the search space represents a locust position
in the plantation. Every locust receives a food quality index according to the fitness
value of the solution that is symbolized by the locust. The algorithm implements
two different behaviors: solitary and social. Depending on the behavior, each
individual is conducted by a set of evolutionary operators which mimic the different
cooperative behaviors that are typically found in the swarm.

From the implementation point of view, in the LS operation, a population
Lk flk1; lk2; . . .; lkNg

� �
of N locusts (individuals) is evolved from the initial point

62 4 The Metaheuristic Algorithm of the Locust-Search

(k = 0) to a total gen number iterations k ¼ genð Þ. Each locust lki i 2 1; . . .;N½ �ð Þ
represents an n-dimensional vector lki;1; l

k
i;2; . . .; l

k
i;n

n o
where each dimension cor-

responds to a decision variable of the optimization problem to be solved. The set of
decision variables constitutes the feasible search space S ¼ lki 2 R

n lbd �j�
lki;d � ubdg, where lbd and ubd corresponds to the lower and upper bounds for the

dimension d, respectively. The food quality index associated to each locust lki
(candidate solution) is evaluated by using an objective function f lki

� �
whose final

result represents the fitness value of lki . In LS, each iteration of the evolution process
consists of two operators: (A) solitary and (B) social. Beginning by the solitary
stage, the set of locusts is operated in order to sufficiently explore the search space.
Then, during the social operation, existent solutions are refined within a determined
neighborhood (exploitation).

4.3.1 Solitary Operation (A)

One of the most interesting features of the LS method is the use of the solitary
operator to modify the current locust positions. Under this approach, locusts are
displaced as a consequence of the social forces produced by the positional relations
among the elements of the swarm. Therefore, near individuals tend to repel with
each other, avoiding the concentration of elements in regions. On the other hand,
distant individuals tend to attract with each other, maintaining the cohesion of the
swarm. Different to the original model [20], in the proposed operator, social forces

(a) (b)

1 0.2Fq =3 0.1Fq =

2 0.3Fq =

4 0.9Fq =

5 0.2Fq =

6 1.0Fq =

7 0.3Fq =

8 0.4Fq =

cR

1

2

3

4

5

6

7

8

4

6

1

5 3

2

78

Fig. 4.2 Behavioral model under the social phase. a Initial configuration and food quality
indexes, b final configuration after the operation of the social phase

4.3 The Locust Search (LS) Algorithm 63

are also magnified or weakened depending on the best fitness value (the most
dominant) of the individuals involved in the repulsion-attraction process.

In the solitary operation, a new position pi i 2 1; . . .;N½ �ð Þ is produced by per-
turbing the current locust position lki with a change of position Dli pi ¼ lki þDli

� �
.

The change of position Dli is the result of the social interactions experimented by lki
as a consequence of its repulsion-attraction behavioral model. Such social inter-
actions are pairwise computed among lki and the other N − 1 individuals in the
swarm. In the original model, social forces are calculated by using Eq. 4.3.
However, in the LS method, it is modified to include the best fitness value (the most
dominant) of the individuals involved in the repulsion-attraction process. Therefore,
the social force exerted between lkj and lki is calculated by using the following new
model:

smij ¼ qðlki ; lkj Þ � sðrijÞ � dijþ randð1;�1Þ; ð4:6Þ

where sðrijÞ is the social force strength defined in Eq. 4.2 and dij ¼ ðlkj � lki Þ=rij is
the unit vector pointing from lki to lkj . Besides, rand(1, −1) is a number randomly
generated between 1 and −1.

qðlki ; lkj Þ is the dominance function that calculates the dominance value of the

most dominant individual from lkj and lki . In order to operate qðlki ; lkj Þ, all the indi-

viduals from Lk flk1; lk2; . . .; lkNg
� �

are ranked according to their fitness values. The
ranks are assigned so that the best individual receives the rank 0 (zero) whereas the
worst individual obtains the rank N − 1. Therefore, the function qðlki ; lkj Þ is defined
as follows:

qðlki ; lkj Þ ¼
e� 5�rankðlki Þ=Nð Þ if rankðlki Þ\rankðlkj Þ
e� 5�rankðlkj Þ=Nð Þ if rankðlki Þ[rankðlkj Þ

(
; ð4:7Þ

where the function rank(a) delivers the rank of the a-individual. According to
Eq. 4.7, qðlki ; lkj Þ gives as a result a value within the interval (1,0).

The maximum value of one is reached by qðlki ; lkj Þ when one of the individuals lkj
and lki is the best element of the population Lk in terms of its fitness value. On the
other hand, a value close to zero, it is obtained when both individuals lkj and lki
possess quite bad fitness values. Figure 4.3 shows the behavior of qðlki ; lkj Þ con-
sidering 100 individuals. In the Figure, it is assumed that lki represents one of the 99
individuals with ranks between 0 and 98 whereas lkj is fixed to the element with the
worst fitness value (rank 99).

64 4 The Metaheuristic Algorithm of the Locust-Search

Under the incorporation of qðlki ; lkj Þ in Eq. 4.6, social forces are magnified or
weakened depending on the best fitness value (the most dominant) of the indi-
viduals involved in the repulsion-attraction process.

Finally, the total social force on each individual lki is modeled as the superpo-
sition of all of the pairwise interactions exerted over it:

Smi ¼
XN
j¼ 1
j 6¼ i

smij ; ð4:8Þ

Therefore, the change of position Dli is considered as the total social force
experimented by lki as the superposition of all of the pairwise interactions.
Therefore, Dli is defined as follows:

Dli ¼ Smi ; ð4:9Þ

After calculating the new positions P fp1; p2; . . .; pNgð Þ of the population
Lkðflk1; lk2; . . .; lkNgÞ, the final positions F ff1; f2; . . .; fNgð Þ must be calculated. The
idea is to admit only the changes that guarantee an improvement in the search
strategy. If the fitness value of pi f ðpiÞð Þ is better than lki f ðlki Þ

� �
, then pi is accepted

as the final solution. Otherwise, lki is retained. This procedure can be resumed by the
following statement (considering a minimization problem):

f i ¼ pi if f ðpiÞ\f ðlki Þ
lki otherwise

�
ð4:10Þ

In order to illustrate the performance of the solitary operator, Fig. 4.4 presents a
simple example where the solitary operator is iteratively applied. It is assumed a
population of 50 different members (N = 50) which adopt a concentrated config-
uration as initial condition (Fig. 4.4a). As a consequence of the social forces, the set

Fig. 4.3 Behavior of qðlki ; lkj Þ
considering 100 individuals

4.3 The Locust Search (LS) Algorithm 65

of element tends to distribute through the search space. Examples of different
distributions are shown in Fig. 4.4b–d after applying 25, 50 and 100 different
solitary operations, respectively.

4.3.2 Social Operation (B)

The social procedure represents the exploitation phase of the LS algorithm.
Exploitation is the process of refining existent individuals within a small neigh-
borhood in order to improve their solution quality.

The social procedure is a selective operation which is applied only to a subset E
of the final positions F (where E�FÞ. In the operation first is necessary to sort
F according to their fitness values and store the sorted elements in a temporal
population B ¼ b1; b2; . . .; bNf g. The elements in B are sorted so that the best
individual receives the position b1 whereas the worst individual obtains the location

(a) (b)

(c) (d)

Fig. 4.4 Examples of different distributions. a Initial condition, b distribution after applying 25
operations, c 50 and d 100

66 4 The Metaheuristic Algorithm of the Locust-Search

bN . Therefore, the subset E is integrated by only the first g locations of
B (promising solutions). Under this operation, a subspace Cj is created around each
selected particle f j 2 E. The size of Cj depends on the distance ed which is defined
as follows:

ed ¼
Pn

q¼1 ubq � lbq
� �
n

� b ð4:11Þ

where ubq and lbq are the upper and lower bounds in the qth dimension, n is the
number of dimensions of the optimization problem, whereas b 2 ½0;1� is a tuning
factor. Therefore, the limits of Cj are modeled as follows:

ussqj ¼ bj;qþ ed

lssqj ¼ bj;q � ed
ð4:12Þ

where ussqj and lssqj are the upper and lower bounds of the qth dimension for the
subspace Cj, respectively.

Considering the subspace Cj around each element f j 2 E, a set of h new particles

Mh
j ¼ m1

j ;m
2
j ; . . .;m

h
j

n o� �
are randomly generated inside the bounds defined by

Eq. 4.12. Once the h samples are generated, the individual lkþ 1
j of the next pop-

ulation Lkþ 1 must be created. In order to calculate lkþ 1
j , the best particle mbest

j , in

terms of fitness value from the h samples (where mbest
j 2 m1

j ;m
2
j ; . . .;m

h
j

h i
), is

compared to f j. If mbest
j is better than f j according to their fitness values, lkþ 1

j is

updated with mbest
j , otherwise f j is selected. The elements of F that have not been

processed by the procedure fw 62 Eð Þ transfer their corresponding values to Lkþ 1

with no change.
The social operation is used to exploit only prominent solutions. According to

the propose method, inside each subspace Cj, h random samples are selected. Since
the number of selected samples in each subspace is very small (typically h\4Þ, the
use of this operator reduces substantially the number of fitness function evaluations.

In order to demonstrate the social operation, a numerical example has been set
by applying the proposed process to a simple function. Such function considers the
interval of �3� d1; d2� 3 whereas the function possesses one global maxima of
value 8.1 at ð0;1:6Þ. Notice that d1 and d2 correspond to the axis coordinates
(commonly x and y). For this example, it is assumed a final position population F of
six 2-dimensional members (N = 6). Figure 4.5 shows the initial configuration of
the proposed example, the black points represents the half of the particles with the
best fitness values (the first three element of B, g = 3) whereas the grey points
f2; f4; f6 62 Eð Þ corresponds to the remaining individuals. From Fig. 4.5, it can be
seen that the social procedure is applied to all black particles f5 ¼ b1; f3 ¼ b2ð and
f1 ¼ b3; f5; f3; f1 2 EÞ yielding two new random particles (h = 2), characterized by

4.3 The Locust Search (LS) Algorithm 67

the white points m1
1;m

2
1;m

1
3;m

2
3;m

1
5 and m2

5 for each black point inside of their
corresponding subspaces C1;C3 and C5. Considering the particle f3 in Fig. 4.5, the
particle m2

3 corresponds to the best particle mbest
3

� �
from the two randomly gen-

erated particles (according to their fitness values) within C3. Therefore, the particle
mbest

3 will substitute f3 in the individual lkþ 1
3 for the next generation, since it holds a

better fitness value than f3 f ðf3Þ\ f ðmbest
3 Þ

� �
.

4.3.3 Complete LS Algorithm

LS is a simple algorithm with only five adjustable parameters: the strength of
attraction F, the attractive length L, number of promising solutions g, the population
size N and the number of generations gen. The operation of LS is divided in three
parts: Initialization, solitary operation and the social process. In the initialization
(k = 0), the first population L0 fl01; l02; . . .; l0Ng

� �
is produced. The values

l0i;1; l
0
i;2; . . .; l

0
i;n

n o
of each individual lki and each dimension d are randomly and

uniformly distributed between the pre-specified lower initial parameter bound lbd
and the upper initial parameter bound ubd .

l0i;j ¼ lbd þ rand � ðubd � lbdÞ; i ¼ 1; 2; . . .;N; d ¼ 1; 2; . . .; n: ð4:13Þ

In the evolution process, the solitary (A) and social (B) operations are iteratively
applied until the number of iterations k ¼ gen has been reached. The complete LS
procedure is illustrated in the Algorithm 1.

−6

−4

−4

−2

−2
−2

−2

−2

0

0

0

0

0

0

0

2

2

2

2

2

2

2

4

4

4

6

6

8

d1

d 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1,1y

1C

4,1y

6,1y

2,1y
3,1y

3C

5,1y

5C

2f

6f

1f

4f

3f

5f

1
1m

2
1m

1
5m

2
5m

2
3m
1
3m

Fig. 4.5 Operation of the social procedure

68 4 The Metaheuristic Algorithm of the Locust-Search

Algorithm 1. Locust Search (LS) algorithm

1: Input: F, L, g, N and gen

2: Initialize L0 (k = 0)

3: until (k = genÞ
5: F SolitaryOperation Lk

� �
Solitary operator (3.1)

6: Lkþ 1 SocialOperation Lk ;F
� �

Social operator (3.2)

8: k = k + 1

7: end until

4.3.4 Discussion About the LS Algorithm

Evolutionary algorithms (EA) have been widely employed for solving complex
optimization problems. These methods are found to be more powerful than con-
ventional methods based on formal logics or mathematical programming [30]. In an
EA algorithm, search agents have to decide whether to explore unknown search
positions or to exploit already tested positions in order to improve their solution
quality. Pure exploration degrades the precision of the evolutionary process but
increases its capacity to find new potentially solutions. On the other hand, pure
exploitation allows refining existent solutions but adversely drives the process to
local optimal solutions. Therefore, the ability of an EA to find a global optimal
solution depends on its capacity to find a good balance between the exploitation of
found-so-far elements and the exploration of the search space [31]. So far, the
exploration–exploitation dilemma has been an unsolved issue within the framework
of evolutionary algorithms.

Most of swarm algorithms and other evolutionary algorithms tend to exclusively
concentrate the individuals in the current best positions. Under such circumstances,
these algorithms seriously limit their exploration–exploitation capacities.

Different to most of existent evolutionary algorithms, in the LS approach, the
modeled behavior explicitly avoids the concentration of individuals in the current
best positions. Such fact allows not only to emulate in a better realistic way the
cooperative behavior of the locust colony, but also to incorporate a computational
mechanism to avoid critical flaws commonly present in the popular PSO and DE
algorithms, such as the premature convergence and the incorrect exploration–
exploitation balance.

In order to detect ellipse shapes, candidate images must be preprocessed first by
the well-known Canny algorithm which yields a single-pixel edge-only image.
Then, the ðxi; yiÞ coordinates for each edge pixel pi are stored inside the edge vector
P ¼ p1; p2; . . .; pNp

� 	
, with Np being the total number of edge pixels.

4.3 The Locust Search (LS) Algorithm 69

4.4 Experimental Results

A comprehensive set of 13 functions, collected from Refs. [32–37], has been used
to test the performance of the LS approach. Tables 4.5 and 4.6 in the Appendix
present the benchmark functions used in our experimental study. Such functions are
classified into two different categories: Unimodal test functions (Table 4.5) and
multimodal test functions (Table 4.6). In these tables, n is the dimension of func-
tion, fopt is the minimum value of the function, and S is a subset of Rn. The optimum
location xopt

� �
for functions in Tables 4.5 and 4.6, are in ½0�n, except for f5; f12; f13

with xopt in ½1�n and f8 in ½420:96�n. A detailed description of optimum locations is
given in Tables 4.5 and 4.6 of the Appendix.

We have applied the LS algorithm to 13 functions whose results have been
compared to those produced by the Particle Swarm Optimization (PSO) method [3]
and the Differential Evolution (DE) algorithm [11]. These are considered as the
most popular algorithms for many optimization applications. In all comparisons, the
population has been set to 40 (N = 40) individuals. The maximum iteration number
for all functions has been set to 1000. Such stop criterion has been selected to
maintain compatibility to similar works reported in the literature [34, 35].

The parameter settings for each of the algorithms in the comparison are
described as follows:

1. PSO: In the algorithm, c1 ¼ c2 ¼ 2 while the inertia factor (x) is decreasing
linearly from 0.9 to 0.2.

2. DE: The DE/Rand/1 scheme is employed. The parameter settings follow the
instructions in [11]. The crossover probability is CR = 0.9 and the weighting
factor is F = 0.8.

3. In LS, F and L are set to 0.6 and L, respectively. Besides, g is fixed to 20 (N/2)
whereas gen and N are configured to 1000 and 40, respectively. Once these
parameters have been determined experimentally, they are kept for all experi-
ments in this section.

Uni-modal test functions

Functions f1 to f7 are unimodal functions. The results for unimodal functions, over
30 runs, are reported in Table 4.1 considering the following performance indexes:
the average best-so-far solution (ABS), the median of the best solution in the last
iteration (MBS) and the standard deviation (SD). According to this table, LS
provides better results than PSO and DE for all functions. In particular this test
yields the largest difference in performance which is directly related to a better
trade-off between exploration and exploitation produced by LS operators.

A non-parametric statistical significance proof known as the Wilcoxon’s rank
sum test for independent samples [38, 39] has been conducted with an 5% sig-
nificance level, over the “average best-so-far” data of Table 4.1. Table 4.2 reports
the p-values produced by Wilcoxon’s test for the pair-wise comparison of the
“average best so-far” of two groups. Such groups are formed by LS versus PSO and

70 4 The Metaheuristic Algorithm of the Locust-Search

LS versus DE. As a null hypothesis, it is assumed that there is no significant
difference between mean values of the two algorithms. The alternative hypothesis
considers a significant difference between the “average best-so-far” values of both
approaches. All p-values reported in the table are less than 0.05 (5% significance
level) which is a strong evidence against the null hypothesis, indicating that the LS
results are statistically significant and that it has not occurred by coincidence (i.e.
due to the normal noise contained in the process).

Table 4.1 Minimization
result of benchmark functions
in Table 4.5 with n = 30

PSO DE LS

f1 ABS 1:66� 10�1 6:27� 10�3 4:55� 10�4

MBS 0.23 5:85� 10�3 2:02� 10�4

SD 3:79� 10�1 1:68� 10�1 6:98� 10�4

f2 ABS 4:83� 10�1 2:02� 10�1 5:41� 10�3

MBS 0.53 1:96� 10�1 5:15� 10�3

SD 1:59� 10�1 0.66 1:45� 10�2

f3 ABS 2.75 5:72� 10�1 1:61� 10�3

MBS 3.16 6:38� 10�1 1:81� 10�3

SD 1.01 0.15 1:32� 10�3

f4 ABS 1.84 0.11 1:05� 10�2

MBS 1.79 0.10 1:15� 10�2

SD 0.87 0.05 6:63� 10�3

f5 ABS 3.07 2.39 4:11� 10�2

MBS 3.03 2.32 3:65� 10�2

SD 0.42 0.36 2:74� 10�3

f6 ABS 6.36 6.51 5:88� 10�2

MBS 6.19 6.60 5:17� 10�2

SD 0.74 0.87 1:67� 10�2

f7 ABS 6.14 0.12 2:71� 10�2

MBS 2.76 0.14 1:10� 10�2

SD 0.73 0.02 1:18� 10�2

Maximum number of iterations = 1000

Table 4.2 p-values produced
by Wilcoxon’s test comparing
LS versus PSO and DE over
the “average best-so-far”
values from Table 4.1

LS versus PSO DE

f1 1:83� 10�4 1:73� 10�2

f2 3:85� 10�3 1:83� 10�4

f3 1:73� 10�4 6:23� 10�3

f4 2:57� 10�4 5:21� 10�3

f5 4:73� 10�4 1:83� 10�3

f6 6:39� 10�5 2:15� 10�3

f7 1:83� 10�4 2:21� 10�3

4.4 Experimental Results 71

Multimodal test functions

Multimodal functions have many local minima, being the most difficult to optimize.
For multimodal functions, the final results are more important since they reflect the
algorithm’s ability to escape from poor local optima and locate a near-global
optimum. We have done experiments on f8 to f13 where the number of local minima
increases exponentially as the dimension of the function increases. The dimension
of these functions is set to 30. The results are averaged over 30 runs, reporting the
performance indexes in Table 4.3 as follows: the average best-so-far solution
(ABS), the median of the best solution in the last iteration (MBS) and the standard
deviation (SD). Likewise, p-values of the Wilcoxon signed-rank test of 30 inde-
pendent runs are listed in Table 4.4.

Table 4.3 Minimization result of benchmark functions in Table 4.6 with n = 30

PSO DE LS

f8 ABS �6:7� 103 �1:26� 104 �1:26� 104

MBS �5:4� 103 �1:24� 104 �1:23� 104

SD 6:3� 102 3:7� 102 1:1� 102

f9 ABS 14.8 4:01� 10�1 2:49� 10�3

MBS 13.7 2:33� 10�1 3:45� 10�3

SD 1.39 5:1� 10�2 4:8� 10�4

f10 ABS 14.7 4:66� 10�2 2:15� 10�3

MBS 18.3 4:69� 10�2 1:33� 10�3

SD 1.44 1:27� 10�2 3:18� 10�4

f11 ABS 12.01 1.15 1:47� 10�4

MBS 12.32 0.93 3:75� 10�4

SD 3.12 0.06 1:48� 10�5

f12 ABS 6:87� 10�1 3:74� 10�1 5:58� 10�3

MBS 4:66� 10�1 3:45� 10�1 5:10� 10�3

SD 7:07� 10�1 1:55� 10�1 4:18� 10�4

f13 ABS 1:87� 10�1 1:81� 10�2 1:78� 10�2

MBS 1:30� 10�1 1:91� 10�2 1:75� 10�2

SD 5:74� 10�1 1:66� 10�2 1:64� 10�3

Maximum number of iterations = 1000

Table 4.4 p-values produced
by Wilcoxon’s test comparing
LS versus PSO and DE over
the “average best-so-far”
values from Table 4.3

LS versus PSO DE

f8 1:83� 10�4 0.061

f9 1:17� 10�4 2:41� 10�4

f10 1:43� 10�4 3:12� 10�3

f11 6:25� 10�4 1:14� 10�3

f12 2:34� 10�5 7:15� 10�4

f13 4:73� 10�4 0.071

72 4 The Metaheuristic Algorithm of the Locust-Search

For f9; f10; f11 and f12, LS yields a much better solution than the others. However,
for functions f8 and f13, LS produces similar results to DE. The Wilcoxon rank test
results, presented in Table 4.4, show that LS performed better than PSO and DE
considering the four problems f9�f12, whereas, from a statistical viewpoint, there is
not difference in results between LS and DE for f8 and f13.

4.5 Conclusions

In this chapter, the Locust Search (LS) has been analyzed for solving optimization
tasks. The LS algorithm is based on the simulation of the behavior presented in
swarms of locusts. In the LS algorithm, individuals emulate a group of locusts
which interact to each other based on the biological laws of the cooperative swarm.
The algorithm considers two different behaviors: solitary and social. Depending on
the behavior, each individual is conducted by a set of evolutionary operators which
mimic the different cooperative behaviors that are typically found in the swarm.

Different to most of existent evolutionary algorithms, in the LS approach, the
modeled behavior explicitly avoids the concentration of individuals in the current
best positions. Such fact allows not only to emulate in a better realistic way the
cooperative behavior of the locust colony, but also to incorporate a computational
mechanism to avoid critical flaws commonly present in the popular PSO and DE
algorithms, such as the premature convergence and the incorrect exploration–
exploitation balance.

LS has been experimentally tested considering a suite of 13 benchmark func-
tions. The performance of LS has been also compared to the following algorithms:
the Particle Swarm Optimization method (PSO) [3], and the Differential Evolution
(DE) algorithm [11]. Results have confirmed an acceptable performance of the LS
method in terms of the solution quality for all tested benchmark functions.

The LS remarkable performance is associated with two different reasons: (i) the
solitary operator allows a better particle distribution in the search space, increasing
the algorithm’s ability to find the global optima; and (ii) the use of the social
operation, provides of a simple exploitation operator that intensifies the capacity of
finding better solutions during the evolution process.

Appendix: List of Benchmark Functions

In Table 4.5, n is the dimension of function, fopt is the minimum value of the
function, and S is a subset of Rn. The optimum location xopt

� �
for functions in

Table 4.5 is in ½0�n, except for f5 with xopt in ½1�n.
The optimum location xopt

� �
for functions in Table 4.6, are in ½0�n, except for f8

in ½420:96�n and f12�f13 in ½1�n.

4.4 Experimental Results 73

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press Inc, New York (1999)

2. Kassabalidis, I., El-Sharkawi, M.A., Marks II, R.J., Arabshahi, P., Gray, A.A.: Swarm
intelligence for routing in communication networks. In: Global Telecommunications
Conference, GLOBECOM ’01, IEEE, vol. 6, pp. 3613–3617 (2001)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

4. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University
(2005)

Table 4.5 Unimodal test functions

Test function S fopt

f1ðxÞ ¼
Pn

i¼1 x
2
i ½�100;100�n 0

f2ðxÞ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j ½�10;10�n 0

f3ðxÞ ¼
Pn

i¼1
Pi

j¼1 xj
� �2 ½�100;100�n 0

f4ðxÞ ¼ max
i

xij j; 1� i� nf g ½�100;100�n 0

f5ðxÞ ¼
Pn�1

i¼1 100 xiþ 1 � x2i
� �2þ xi � 1ð Þ2

h i ½�30;30�n 0

f6ðxÞ ¼
Pn

i¼1 xiþ 0:5ð Þ2 ½�100;100�n 0

f7ðxÞ ¼
Pn

i¼1 ix
4
i þ randð0; 1Þ ½�1:28;1:28�n 0

Table 4.6 Multimodal test functions

Test function S fopt

f8ðxÞ ¼
Pn

i¼1�xi sin
ffiffiffiffiffiffi
xij j

p� � ½�500;500�n −418.98*n

f9ðxÞ ¼
Pn

i¼1 x2i � 10 cosð2pxiÞþ 10
� � ½�5:12;5:12�n 0

f10ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x

2
i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �þ 20 ½�32;32�n 0

f11ðxÞ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cos

xiffi
i
p

� �
þ 1 ½�600;600�n 0

f12ðxÞ ¼ p
n

10 sinðpy1Þþ
Xn�1

i¼1 ðyi � 1Þ2 1þ 10 sin2ðpyiþ 1Þ
� �n

þðyn � 1Þ2
o
þ

Xn

i¼1 uðxi; 10; 100; 4Þ
yi ¼ 1þ xi þ 1

4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi [a

0 �a\xi\a
kð�xi � aÞm xi\� a

8<
:

½�50;50�n 0

f13ðxÞ ¼ 0:1 sin2ð3px1Þþ
Xn

i¼1 ðxi � 1Þ2 1þ sin2ð3pxiþ 1Þ� �n
þðxn � 1Þ2 1þ sin2ð2pxnÞ

� �oþXn

i¼1 uðxi; 5; 100; 4Þ

½�50;50�n 0

74 4 The Metaheuristic Algorithm of the Locust-Search

5. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Syst. Mag. 22(3), 52–67 (2002)

6. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm.
Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

7. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications.
Wiley, USA (2010)

8. Yang, X.S., Deb, S.: Proceedings of World Congress on Nature & Biologically Inspired
Computed, pp. 210–214. IEEE Publications, India (2009)

9. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384
(2013)

10. Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An algorithm for
global optimization inspired by collective animal behaviour. Discrete Dyn. Nat. Soc. art. no.
638275 (2012)

11. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95–012. ICSI, Berkeley, CA
(1995)

12. Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443
(1998)

13. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based
particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

14. Tvrdík, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput. 9
(3), 1149–1155 (2009)

15. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle
swarm optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)

16. Gong, W., Fialho, Á., Cai, Z., Li, H.: Adaptive strategy selection in differential evolution for
numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)

17. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46
(2003)

18. Kizaki, S., Katori, M.: A Stochastic lattice model for locust outbreak. Phys. A 266, 339–342
(1999)

19. Rogers, S.M., Cullen, D.A., Anstey, M.L., Burrows, M., Dodgson, T., Matheson, T., Ott, S.
R., Stettin, K., Sword, G.A., Despland, E., Simpson, S.J.: Rapid behavioural gregarization in
the desert locust, Schistocerca gregaria entails synchronous changes in both activity and
attraction to conspecifics. J. Insect Physiol. 65, 9–26 (2014)

20. Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts.
Eur. Phys. J. Special Topics 157, 93–109 (2008)

21. Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics:
behavioral phase change and swarming. PLoS Comput. Biol. 8(8), 1–11

22. Oster, G., Wilson, E.: Caste and Ecology in the Social Insects. N.J. Princeton University
Press, Princeton (1978)

23. Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration (1994).
ISBN 0-674-48525-4

24. Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, USA (1990). ISBN
0-674-04075-9

25. Tanaka, S., Nishide, Y.: Behavioral phase shift in nymphs of the desert locust, Schistocerca
gregaria: special attention to attraction/avoidance behaviors and the role of serotonin. J. Insect
Physiol. 59, 101–112 (2013)

26. Gaten, E., Huston, S.J., Dowse, H.B., Matheson, T.: Solitary and gregarious locusts differ in
circadian rhythmicity of a visual output neuron. J. Biol. Rhythms 27(3), 196–205 (2012)

27. Benaragama, I., Gray, J.R.: Responses of a pair of flying locusts to lateral looming visual
stimuli. J. Comp. Physiol. A. 200(8), 723–738 (2014)

28. Sergeev, M.G.: Distribution patterns of grasshoppers and their kin in the boreal zone.
Psyche J. Entomol. 2011, 9 pages, Article ID 324130 (2011)

References 75

29. Ely, S.O., Njagi, P.G.N., Bashir, M.O., El-Amin, S.E.-T., Hassanali1, A.: Diel behavioral
activity patterns in adult solitarious desert locust, Schistocerca gregaria (Forskål).
Psyche J. Entomol. 2011, Article ID 459315, 9 (2011)

30. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2008)
31. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by

the states of matter that improves the balance between exploration and exploitation. Appl.
Intell. 40(2), 256–272 (2014)

32. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4),
635–672 (2005)

33. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization
of multimodal functions. J. Heuristics 6(2), 191–213 (2000)

34. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for
real-coded genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3), 309–338
(2003)

35. Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global
optimization of multimodal functions. J. Global Optim. 33(2), 235–255 (2005)

36. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with
crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

37. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM
Trans. Math. Softw. 7(1), 17–41 (1981)

38. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
39. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for

analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special
session on real parameter optimization. J. Heurist (2008). https://doi.org/10.1007/s10732-008-
9080-4

76 4 The Metaheuristic Algorithm of the Locust-Search

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4

	4 The Metaheuristic Algorithm of the Locust-Search
	4.1 Introduction
	4.2 Biological Fundamentals
	4.2.1 Solitary Phase
	4.2.2 Social Phase

	4.3 The Locust Search (LS) Algorithm
	4.3.1 Solitary Operation (A)
	4.3.2 Social Operation (B)
	4.3.3 Complete LS Algorithm
	4.3.4 Discussion About the LS Algorithm

	4.4 Experimental Results
	4.5 Conclusions
	Appendix: List of Benchmark Functions
	References

