
Chapter 3
Calibration of Fractional Fuzzy
Controllers by Using the Social-Spider
Method

Fuzzy controllers (FCs) based on integer concepts have proved their interesting
capacities in several engineering domains. The fact that dynamic processes can be
more precisely modeled by using fractional systems has generated a great interest in
considering the design of FCs under fractional principles. In the design of fractional
FCs, the parameter adjustment operation is converted into a multidimensional
optimization task where fractional orders, and controller parameters, are assumed as
decision elements. In the design of fractional FCs, the complexity of the opti-
mization problem produces multi-modal error surfaces which are significantly hard
to solve. Several metaheuristic algorithms have been successfully used to identify
the optimal elements of fractional FCs. But, most of them present a big weakness
since they usually get sub-optimal solutions as a result of their improper balance
between exploitation and exploration in their search process. This chapter analyses
the optimal parameter calibration of fractional FCs. To determine the best elements,
the approach employs the Social Spider Optimization (SSO) algorithm, which is
based on the simulation of the cooperative operation of social-spiders. In SSO,
candidate solutions represent a group of spiders, which interact with each other by
considering the biological concepts of the spider colony. Different to most of the
metaheuristic algorithms, the approach explicitly avoids the concentration of
solutions in the promising positions, eliminating critical defects such as the pre-
mature convergence and the deficient balance of exploration–exploitation.

3.1 Introduction

A fractional order model is a system that is characterized by a fractional differential
equation containing derivatives of non-integer order. In fractional calculus, the
integration and the differentiation operators are generalized into a non-integer order
element, where is a fractional number and a and t symbolize the operator limits
[1, 2]. Several dynamic systems can be more accurately described and controlled by
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fractional models in comparison to integer order schemes. For this reason, in the
last decade, the fractional order controllers [3–5] have attracted the interests of
several research communities.

A fractional-order controller incorporates an integrator of order and a differen-
tiator of order. The superior performance of such controllers with regard to con-
ventional PIDs has been widely demonstrated in the literature [6].

On the other hand, fuzzy logic [7] provides an alternative method to design
controllers through the use of heuristic information. Remarkably, such heuristic
information may come from a human-operator who directly manipulates the pro-
cess. In the fuzzy logic methodology, a human operator defines a set of rules on
how to control a process, then incorporated it into a fuzzy controller that emulates
the decision-making process of the operator [8].

Fractional fuzzy controllers (FFCs) are the results of the combination of con-
ventional fuzzy controllers and fractional operators. Under such combination, FFCs
exhibit better results than conventional FCs for an extensive variety of dynamical
systems. This capacity is attributed to the additional flexibility offered by the
inclusion of the fractional parameters.

Parameter calibration is an important step to implement applications with FFCs.
This procedure is long and time consuming, since it is commonly conducted
through trial and error. Therefore, the problem of parameter estimation in FFCs can
be handled by evolutionary optimization methods. In general, they have demon-
strated to deliver interesting results in terms of accuracy and robustness [5]. In these
methods, an individual is represented by a candidate parameter set, which sym-
bolizes the configuration of a determined fractional fuzzy controller. Just as the
evolution process unfolds, a set of evolutionary operators is applied in order to
produce better individuals. The quality of each candidate solution is evaluated
through an objective function whose final result represents the performance of the
parameter set in terms of the produced error. Some examples of such approaches
being applied to the identification of fractional order systems have involved
methods such as Genetic Algorithms (GA) [5], Particle Swarm Optimization
(PSO) [9], Harmony Search (HS) [10], Gravitational Search Algorithm (GSA) [11]
and Cuckoo Search (CS) [12]. Although such algorithms present interesting results,
they have exhibited an important limitation: they frequently obtained sub-optimal
solutions as a consequence of the limited balance between exploration and
exploitation in their search strategies. Such limitation is associated to the evolu-
tionary operators that have been employed to modify individual positions. In such
algorithms, during their operation, the position of each individual for the next
iteration is updated, producing an attraction towards the position of the best particle
seen so far or towards other promising individuals. Therefore, as the algorithm
evolves, such behaviors cause that the entire population concentrate rapidly around
the best particles, favoring the premature convergence and damaging the appro-
priate exploration of the search space [13, 14].

The Social Spider Optimization (SSO) algorithm [15] is a recent evolutionary
computation method that is inspired on the emulation of the collaborative behavior
of social-spiders. In SSO, solutions imitate a set of spiders, which cooperate to each
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other based on the natural laws of the cooperative colony. Unlike the most popular
evolutionary algorithms such as GA [16], PSO [17], HS [18], GSA [19] and CS
[20], it explicitly evades the concentration of individuals in the best positions,
avoiding critical flaws such as the premature convergence to sub-optimal solutions
and the limited balance of exploration–exploitation. Such characteristics have
motivated the use of SSO to solve an extensive variety of engineering applications
such as energy theft detection [21], machine learning [22], electromagnetics [23],
image processing [24] and integer programming problems [25].

This chapter presents a method for the optimal parameter calibration of fractional
FCs based on the SSO algorithm. Under this approach, the calibration process is
transformed into a multidimensional optimization problem where fractional orders,
as well as controller parameters of the fuzzy system, are considered as a candidate
solution to the calibration task. In the method, the SSO algorithm searches the entire
parameter space while an objective function evaluates the performance of each
parameter set. Conducted by the values of such objective function, the group of
candidate solutions are evolved through the SSO algorithm so that the optimal
solution can be found. Experimental evidence shows the effectiveness and
robustness of the method for calibrating fractional FCs. A comparison with similar
methods such as the Genetic Algorithms (GA), the Particle Swarm Optimization
(PSO), the Harmony Search (HS), the Gravitational Search Algorithm (GSA) and
the Cuckoo Search (CS) on different dynamical systems has been incorporated to
demonstrate the performance of this approach. Conclusions of the experimental
comparison are validated through statistical tests that properly support the
discussion.

The Chapter is organized as follows: Sect. 3.2 introduces the concepts of frac-
tional order systems; Sect. 3.3 describes the fractional fuzzy controller used in the
calibration; Sect. 3.4 presents the characteristics of SSO; Sect. 3.5 formulates the
parameter calibration problem; Sect. 3.6 shows the experimental results while some
final conclusions are discussed in Sect. 3.7.

3.2 Fractional-Order Models

Dynamical fractional-order systems are modeled by using differential equations,
which involve non-integer integral and/or derivative operators [26, 27]. Since these
operators produce irrational continuous transfer functions, or infinite dimensional
discrete transfer functions, fractional models are normally studied through simu-
lation tools instead of analytical methods [5, 28–33]. The remainder of this section
provides a background of the fundamental aspects of the fractional calculus, and the
discrete integer-order approximations of fractional order operators that are used in
this paper.
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3.2.1 Fractional Calculus

Fractional calculus is a generalization of integration and differentiation to the
non-integer order fundamental operator. The differential-integral operator, denoted
by aDa

t , takes both the fractional derivative and the fractional integral into a single
expression defined as:

aD
a
t ¼

da
dta ; a[ 0;
1; a ¼ 0;Rt

a
ðdsÞa; a\0:

8>><
>>: ð3:1Þ

where a and t represent the operation bounds, whereas a 2 <. The commonly used
definitions for fractional derivatives are the Grünwald-Letnikov, Riemann-Liouville
[34] and Caputo [35]. According to the Grünwald-Letnikov approximation, the
fractional-order derivative of order a is defined as follows:

Da
t f ðtÞ ¼ lim

h!0

1
ha
X1
j¼0

�1ð Þ j a
j

� �
f ðt � jhÞ ð3:2Þ

In the numerical calculation of fractional-order derivatives, the explicit numer-
ical approximation of the a-th derivative at the points kh; ðk ¼ 1; 2; . . .Þ maintains
the following form [36]:

ðk�Mm=hÞD
a
tk f ðtÞ � h�a

Xk
j¼0

�1ð Þ j a
j

� �
f ðtk � jÞ ð3:3Þ

where Mm is the memory length tk ¼ kh, h is the time step and �1ð Þ j a
j

� �
are the

binomial coefficients. For their calculation, we can use the following expression:

cðaÞ0 ¼ 1; cðaÞj ¼ 1� 1þ a
j

� �
cðaÞj�1 ð3:4Þ

Then, the general numerical solution of the fractional differential equation is
defined as follows:

yðtkÞ ¼ f ðyðtkÞ; tkÞha �
Xk
j¼1

cðaÞj yðtk�jÞ ð3:5Þ
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3.2.2 Approximation of Fractional Operators

Assuming zero initial conditions, the fractional operator is defined in the Laplace
domain as LðaDa

t f ðtÞÞ ¼ saFðsÞ. Several approaches [37–39] have been proposed
for producing discrete versions of continuous operators of type sa. In this chapter,
the Grünwald-Letnikov approximation has been used due to its interesting prop-
erties for generating discrete equivalences [40–43]. Under this method, the dis-
cretization considers the following model:

Daðz�1Þ ¼ 1� z�1

Tc

� �
¼
X1
k¼0

1
Tc

� �a

ð�1Þ a
k

� �
z�k ¼

X1
k¼0

haðkÞz�k; ð3:6Þ

where haðkÞ is the impulse response sequence, whereas Tc represents the sampling
frequency. It has been already demonstrated in the literature [36] that rational
models converge faster than polynomial methods. Consequently, the Padé
approximation approach has been employed to obtain a fractional model from the
impulse response by using the definition provided in Eq. 3.7.

Hðz�1Þ ¼ b0 þ b1z�1 þ � � � þ bmz�m

1þ a1z�1 þ � � � þ anz�n
¼
X1
k¼0

hðkÞz�k; m� n ð3:7Þ

where m, n and the parameters ai and bi are calculated by adjusting the first
m + n + 1 coefficients of haðkÞ.

3.3 Fuzzy Controller

A fuzzy controller (FC) is a nonlinear system produced from empirical rules. Such
empirical information may come from a human operator who directly manipulates
the process. Each rule, just as the natural language, presents an IF-THEN format.
The collection of all rules constitutes the rule base that emulates the
decision-making process of the operator. An important characteristic of one FC is
the partitioning of the control scheme into regions [44]. At each region, the control
strategy can be simply modeled by using a rule that associates the region under
which certain actions are performed. Despite proposing several configurations of
FCs in the literature, the fuzzy fractional PDa þ I has been selected since it presents
interesting characteristics of robustness and stability [5]. In this structure, the
integral error is incorporated to the output of the fuzzy fractional PDa controller.
Under this configuration, the integral action supports the elimination of the final
steady state error.

The controller configuration is shown in Fig. 3.1. In the Figure, E, DE and IE
represents the error, the fractional derivative error and the integral error, respec-
tively. It has four gains Kp;Kd;Ki and Ku to be calibrated, the first three gains
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correspond to the input and the last one to the output. The control action u is a
nonlinear mapping function of E, DE and IE with the following model:

uðkÞ ¼ f ðE;CEÞþ IEð ÞKu

uðkÞ ¼ f Kpe;KdDae
� �þKiIe

� 	 � Ku;
ð3:8Þ

A fuzzy controller consists of three conceptual components: a rule base, which
contains a selection of fuzzy rules; a database, which defines the membership
functions used by the fuzzy rules; and a reasoning mechanism, which performs the
inference procedure. There are two different fuzzy systems: the Mamdani [45] and
the Takagi-Sugeno (TS) [46]. In order to maintain compatibility to similar works
reported in the literature, the rule base and the membership functions are selected
the same as [5, 9]. Under such conditions, Table 3.1 shows the rule base used by
the fuzzy controller to be calibrated. In Table 3.1, NL, NM, NS, ZR, PS, PM and
PL represent the linguistic variables “Negative Large”, “Negative Medium”,
“Negative Small”, “Zero”, “Positive Small”, “Positive Medium” and “Positive
Large”, respectively. Figure 3.2 shows the membership functions that model the
premises and the consequences of each rule. Consequently, a determined rule from
Table 3.1 can be constructed in the following form:

If E isNL andDE isZR then v isNL

e
pK

dK

iK

uK

DD

I

++
v

u

E

DE

IE

Fuzzy
Controller

Fig. 3.1 Fuzzy PDa þ I controller

Table 3.1 Rule base of the controller to be calibrated

E/DE NL NM NS ZR PS PM PL

NL NL NL NL NL NM NS ZR

NM NL NL NL NM NS ZR PS

NS NL NL NM NS ZR PS PM

ZR NL NM NS ZR PS PM PL

PS NM NS ZR PS PM PL PL

PM NS ZR PS PM PL PL PL

PL ZR PS PM PL PL PL PL
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In this rule, the control strategy can be simply modeled as follows: if the error is
“Negative Large” and the error derivate “Zero” then the output is “Negative Large”.
The acting of all rules produces the control strategy which is shown by the non-
linear surface in Fig. 3.2.

3.4 Social Spider Optimization (SSO)

The social spider optimization (SSO) algorithm [15] is an evolutionary computation
method that emulates the cooperative behavior of spiders within a communal
colony. SSO has been designed to find the global solution of a nonlinear opti-
mization problem with box constraints in the form:

minimize f ðxÞ x ¼ ðx1; . . .; xdÞ 2 R
d

subject to x 2 X
ð3:9Þ

where f : Rd ! R is a nonlinear function whereas X ¼
x 2 R

d


lh � xh � uh; h ¼ 1; . . .; d

� �
is a bounded feasible space, constrained by the

lower ðlhÞ and upper ðuhÞ limits.
SSO utilizes a population S of N candidate solutions to solve the problem

formulated in Eq. 3.1. Each candidate solution represents a spider position whereas
the general web symbolizes the search space X. In SSO, the spider population S is
classified into two categories: males (M) and females (F). In order to simulate a real
spider colony, in SSO, the number Nf of females F is randomly selected within a
range of 65–90% of the entire population S, whereas the rest Nm is considered as
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Fig. 3.2 Control surface
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male individuals ðNm ¼ N � Nf Þ. Under such conditions, the Group F assembles
the set of female individuals ðF ¼ ff1; f2; . . .; fNf gÞ whereas M groups the male
members ðM ¼ fm1;m2; . . .;mNmgÞ, where S ¼ F[M ðS ¼ s1; s2; . . .; sNf gÞ,
such that S ¼ s1 ¼ f1; s2 ¼ f2; . . .; sNf ¼ fNf ; sNf þ 1 ¼ m1; sNf þ 2 ¼ m2; . . .;

�
sN ¼ mNmg.

In the approach, each spider i maintain a weight wi according to its solution
quality. Therefore, wi is calculated as follows:

wi ¼ fitnessi � worst
best � worst

ð3:10Þ

where fitnessi represents the fitness value produced by the evaluation of the i-th
spider’s position, i 2 1; . . .;N. best and worst symbolize the best fitness value and
worst fitness value of the whole population S, respectively.

In the optimization process, the main mechanism of SSO is the information
exchange, which it is simulated trough vibrations produced in the communal web.
The vibration that a spider i perceives from a spider j is modeled with the following
expression:

Vi;j ¼ wje
d2i;j ð3:11Þ

where wj represents the weight of the spider j and d2i;j the distance between both
spiders. It is considered that each spider i is only able to perceive three types of
vibrations Vi;c, Vi;b and Vi;f .

Vi;c is the vibration transmitted by the nearest individual c with a higher weight
with regard to iðwc [wiÞ. Vi;b represents the vibration emitted by best element of
the entire population S. Finally, Vi;f considers the vibration produced by the nearest
female spider. This vibration type is only applicable if i is a male individual.

In the operation of SSO, a population of N spiders is processed from the initial
stage (k = 0) to a determined number gen of iterations ðk ¼ genÞ. Each individual
depending on its gender is conducted by a set of different evolutionary operators.
Therefore, in case of the female members, a new position fkþ 1

i is generated by
modifying the current element location fki . The modification is randomly controlled
by using a probability factor PF. Consequently, the movement is produced in
relation to other spiders according their vibrations, which are transmitted trough the
communal web:

fkþ 1
i ¼ fki þ a � Vi;c � ðsc � fki Þþ b � Vi;b � ðsb � fki Þþ d � ðrand� 1

2Þ with probability PF
fki � a � Vi;c � ðsc � fki Þ � b � Vi;b � ðsb � fki Þþ d � ðrand� 1

2Þ with probability1� PF



ð3:12Þ

here a, b, d and rand represent random numbers between [0,1] whereas k is the
iteration number. The individuals sc and sb symbolize the nearest member to i that
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maintains a higher weight and the best element of the complete population S,
respectively.

On the other hand, male spider members are classified into two types:
non-dominant (ND) and dominant (D). The dominant group D is composed by the
half of the male individuals whose fitness values are better with regard to the
complete male set. Consequently, the non-dominant (ND) category collects the rest
of the male elements. In the optimization process, male members are operated
according to the following model:

mkþ 1
i ¼

mk
i þ a � Vi;f � ðsf �mk

i Þþ d � ðrand� 1
2Þ if mk

i 2 D

mk
i þ a �

P
h2ND

mk
h�whP

h2ND
wh

�mk
i

 !
if mk

i 2 ND

8><
>: ð3:13Þ

where sf symbolizes the nearest female element to the male individual i.
The final operation in SSO is mating. It is performed between dominant males

and the female individuals. Under this operation, a new individual snew is produced
by the combination of a dominant male mg and other female members within a
specific range r. The weight of each involved element defines the probability of
influence of each spider into snew. The elements with heavier weights are more
likely to influence the new individual snew. Once snew is generated, it is compared
with the worst element of the colony. If snew is better than the worst spider, the
worst spider is replaced by snew. Otherwise, snew is discarded. Figure 3.3 illustrates
the operations of the optimization process performed by the SSO algorithm. More
details can be found in [15].

3.5 Problem Formulation

In the design stage of fractional FCs, the parameter calibration process is transformed
into a multidimensional optimization problem where fractional orders, as well as
controller parameters of the fuzzy system, are both considered as decision variables.
Under this approach, the complexity of the optimization problem tends to produce
multimodal error surfaces whose cost functions are significantly difficult to minimize.

This chapter presents an algorithm for the optimal parameter calibration of
fractional FCs. To determine the parameters, the estimation method uses the Social
Spider Optimization (SSO) method. Different to the most of existent evolutionary
algorithms, the method explicitly evades the concentration of individuals in the best
positions, avoiding critical flaws such as the premature convergence to sub-optimal
solutions and the limited balance of exploration–exploitation.

Therefore, the calibration process consists of finding the optimal controller
parameters that present the best possible performance for the regulation of a
dynamical system. Figure 3.4 illustrates the SSO scheme for the parameter cali-
bration process.
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Fig. 3.3 Operations of the optimization process performed by the SSO algorithm

Fig. 3.4 SSO scheme for the parameter calibration process
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Under such conditions, the fractional fuzzy controller parameters
ða;Kp;Kd;Ki;KuÞ represent the dimensions of each candidate solution (spider posi-
tion) for the calibration problem. To evaluate the performance of the fractional fuzzy
controller under each parameter configuration (candidate solution), the Integral Time
Absolute Error (ITAE) [47] criterion has been considered. The ITAE index J
measures the similarity between the closed-loop step response y(t) produced by a
determined parameter configuration ða;Kp;Kd;Ki;KuÞ and the step function r(t).
Therefore, the quality of each candidate solution is evaluated according to the fol-
lowing model:

Jða;Kp;Kd ;Ki;KuÞ ¼
Z1
0

t rðtÞ � yðtÞj j ð3:14Þ

Thereby, the problem of parameter calibration can be defined by the following
optimization formulation:

minimize JðxÞ x ¼ ða;Kp;Kd ;Ki;KuÞ 2 R
5

subject to 0� a� 3
0�Kp � 5
0�Kd � 5
0�Ki � 5
0�Ku � 5

ð3:15Þ

3.6 Numerical Simulations

This section presents the performance of the SSO scheme for the calibration of
fractional FCs considering several dynamical systems. The algorithm is also
evaluated in comparison to other similar approaches that are based on evolutionary
algorithms. To test the performance of the SSO approach, the technique uses a
representative set of three transfer functions that have been previously employed.
Equation 3.4–3.6 present the transfer functions that are used in our simulations.
Such functions involve three different system categories: High-order plants ðG1ðsÞÞ,
non-minimum systems ðG2ðsÞÞ and dynamical fractional systems ðG3ðsÞÞ.

G1ðsÞ ¼ 1
ðsþ 1Þð1þ 0:5sÞð1þ 0:25sÞð1þ 0:125sÞ ð3:16Þ

G2ðsÞ ¼ 1� 5s

ðsþ 1Þ3 ð3:17Þ
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G3ðsÞ ¼ 1
ðs1:5 þ 1Þ ð3:18Þ

In the experiments, we have applied the SSO algorithm to calibrate the fractional
parameters for each dynamical systems, and the results are compared to those
produced by the Genetic Algorithms (GA) [5], Particle Swarm Optimization
(PSO) [9], Harmony Search (HS) [10], Gravitational Search Algorithm (GSA) [11]
and Cuckoo Search (CS) [12]. In the comparison, all methods have been set
according to their own reported guidelines. Such configurations are described as
follows:

1. PSO, parameters c1 ¼ 2; c2 ¼ 2 and weights factors have been set to wmax ¼
0:9; and wmin ¼ 0:4 [17].

2. GA, the crossover probability is 0.55, the mutation probability is 0.10 and
number of elite individuals is 2. Furthermore, the roulette wheel selection and
the 1-point crossover are both applied.

3. GSA, From the model Gt ¼ GOe�a t
T , it is considered a ¼ 10, GO ¼ 100 and

T = 100 or T = 500.
4. HS, its parameters are set as follows: the harmony memory consideration rate

HMCR = 0.7, the pitch adjustment rate PAR = 0.3 and the Bandwidth rate
BW = 0.1.

5. CS, its elements are configured such as the discovery rate pa ¼ 0:25 and the
stability index b ¼ 3=2.

6. SSO, the parameter PF has been set to 0.7 following an experimental definition.

The experimental results are divided into three sub-sections. In the first
Sect. (3.6.1), the performance of the SSO algorithm is evaluated with regard to
high-order plants ðG1ðsÞÞ. In the second Sect. (3.6.2), the results for non-minimum
systems ðG2ðsÞÞ are provided and finally, in the third Sect. (3.6.3), the performance
of the calibration scheme over fractional dynamical systems ðG3ðsÞÞ is discussed.

3.6.1 Results Over High-Order Plants ðG1ðsÞÞ

In this experiment, the performance of the SSO calibration scheme is compared to
GA, PSO, HS, GSA and CS, considering the regulation of high-order dynamical
systems ðG1ðsÞÞ. In the simulations, a temporal response from 0 to 10 s has been
considered. In the comparison, all algorithms are operated with a population of 50
individuals (N = 50). To appropriately evaluate the convergence properties of all
calibration methods, the maximum number of generations has been set to (A) 100
iterations and (B) 500 iterations. This stop criterion has been selected to maintain
compatibility to similar works reported in the literature [5, 9, 28]. By selecting such
number of iterations, the experiment aims to test the quality of the produced
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solutions when the operation of each calibration method is limited to a reduced
number of iterations.

All the experimental results in this section consider the analysis of 35 inde-
pendent executions of each algorithm. Table 3.2 presents the calibrated parameters
obtained through each method. Such results consider the best controller parameters
in terms of the produced ITAE values after 100 iterations. On the other hand,
Table 3.3 shows the calibrated parameters considering 500 iterations.

According to Tables 3.2 and 3.3, the SSO scheme provides better performance
than GA, PSO, HS, GSA and CS for both cases. Such differences are directly
related to a better trade-off between exploration and exploitation of the SSO
method. It is also evident that the SSO method produces similar results with 100 or
500 iterations. Therefore, it can be established that SSO maintains better conver-
gence properties than GA, PSO, HS, GSA and CS in the process of parameter
calibration.

Figure 3.5 exhibits the step responses produced by each parameter set, consid-
ering 100 and 500 iterations. The remarkable convergence rate of the SSO algo-
rithm can be observed at Fig. 3.5. According to the graphs, the step responses
produced by the controller parameters that have been defined through SSO, are
practically the same irrespective of the number of iterations. This fact means that
the SSO scheme is able to find an acceptable solution in less than 100 iterations.

Table 3.2 Calibrated parameters for G1ðsÞ produced by each algorithm after 100 iterations

G1ðsÞ Kp Kd Ki Ku a ITAE

PSO 0.3034 0 0.4475 2.9988 0 5281.2115

GA 0.7581 0.3510 0.3038 4.3276 0.8000 926.1352

GSA 1.3387 2.7209 0.5482 1.0545 0.2311 4164.1935

HS 0.7867 0.8128 0.8271 3.6129 0.9319 3562.1834

CS 0.9700 0.3497 0.4054 3.0002 0.9516 916.5816

SSO 0.8100 0.3493 0.2392 4.8235 0.9897 492.2912

Table 3.3 Calibrated parameters for G1ðsÞ produced by each algorithm after 500 iterations

G1ðsÞ Kp Kd Ki Ku a ITAE

PSO 0 0.5061 0.4681 4.0578 0.4629 2900.7502

GA 1.1860 0.3826 0.5204 1.5850 0.9497 974.0881

GSA 1.2000 0.6531 0.9607 2.5442 0.8745 1975.3254

HS 1.3112 0.9450 0.9262 1.2702 0.6075 2776.2160

CS 1.0093 0.4506 0.2611 4.6964 1.0002 464.5376

SSO 1.0386 0.4621 0.2751 4.4147 0.9998 473.7492
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3.6.2 Results Over Non-minimum Systems ðG2ðsÞÞ

This section presents the comparison of the SSO calibration scheme with GA, PSO,
HS, GSA and CS, considering the regulation of non-minimum systems ðG2ðsÞÞ.
Non-minimum systems are defined by transfer functions with one or more poles or
zeros in the right half of the s-plane. As a consequence, the response of a
non-minimum system to a step input exhibits an “undershoot”, which indicates that
the output of the dynamical system becomes negative first before changing direc-
tion to positive values.

The experimental simulation runs from 0 to 50 s. All algorithms are operated
with a population of 50 individuals (N = 50), matching with the experiments in
Sect. 3.6.1. Table 3.4 presents the calibrated parameter of each method after 100
iterations, while Table 3.5 exhibits the results for 500 iterations. Both tables show
that the SSO scheme delivers better results than GA, PSO, HS, GSA and CS in
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Fig. 3.5 Step responses after
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terms of the ITAE index. Figure 3.6 presents the step responses produced by each
parameter set, considering 100 and 500 iterations. By analyzing the plot in Fig. 3.6,
it is observed that the step response of the SSO scheme is less sensitive to the
number of iterations than other techniques.

Table 3.4 Calibrated parameters for G2ðsÞ produced by each algorithm after 100 iterations

G2ðsÞ Kp Kd Ki Ku a ITAE

PSO 0.4645 0 0.2378 0.4147 0.0643 50289.0994

GA 0.6061 0.0326 0.3175 0.2909 0.2000 55043.6316

GSA 0.9377 1.8339 0.5020 0.1427 1.0266 101160.6241

HS 2.2838 3.7685 0.1328 0.5324 2.3214 126996.7047

CS 0.9305 1.1329 1.1045 0.0674 0.0222 90962.6199

SSO 0.4668 0.1165 0.2139 0.4642 0.5470 44368.6620

Table 3.5 Calibrated parameters for G2ðsÞ produced by each algorithm after 500 iterations

G2ðsÞ Kp Kd Ki Ku a ITAE

PSO 0.4606 0 0.2027 0.4866 0.0688 46912.4985

GA 1.0449 1.1921 0.8839 0.0903 0.0822 81550.0790

GSA 0.8862 1.3919 0.3746 0.2386 1.9259 63186.5783

HS 1.0362 1.1105 0.5360 0.1389 0.9007 91536.3894

CS 0.0386 0.0059 0.0243 4.0625 0.5516 43565.1588

SSO 0.4537 0.1597 0.2004 0.5124 0.6422 41772.3344
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Fig. 3.6 Step responses after applying the calibrated parameters to the high order plant G2ðsÞ with
a 100 iterations, and with b 500 iterations
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3.6.3 Results Over Fractional Systems ðG3ðsÞÞ

Unlike high-order plants and non-minimum systems, fractional dynamical systems
produce multimodal error surfaces with different local optima. As a consequence,
fractional fuzzy controllers that regulate their behavior are, in general, more difficult
to calibrate [9]. Under such conditions, the experiment reflects the capacity of each
calibration algorithm to locate the global optimum in presence of several local
optima.

In this experiment, the performance of the SSO calibration scheme is compared
to GA, PSO, HS, GSA and CS, considering the regulation of fractional dynamical
systems ðG3ðsÞÞ. In the simulations, a temporal response from 0 to 3 s is considered.
In the test, all algorithms are operated with a population of 50 individuals (N = 50).

The calibrated parameters are averaged over 30 executions obtaining the values
reported in Tables 3.6 and 3.7. The results exhibit the configuration for each
method with 100 and 500 iterations, respectively. It is evident that the SSO scheme
presents better performance than PSO, HS and GSA independently on the number
of iterations. However, the difference between GA and the SSO approach in terms
of the ITAE index is relatively small for the case of 100 iterations. On the other
hand, in the case of 500 iterations, the performance among the SSO approach, GA
and CS are practically the same. Figure 3.7 presents the step response that is
produced by each parameter set, considering 100 and 500 iterations. Similar to
Sects. 6.1 and 6.2, it is demonstrated (from Fig. 3.7) that the SSO-calibrator obtains
better solutions than GA, HS and PSO yet demanding a lower number of iterations.

Table 3.6 Calibrated parameters for G3ðsÞ produced by each algorithm after 100 iterations

G3ðsÞ Kp Kd Ki Ku a ITAE

PSO 1.331 0 0.6937 5 5 311.4558

GA 1.3329 0.6341 0.6130 5 0.4932 97.7016

GSA 1.0823 0.6463 0.2924 4.0152 0.5802 346.6765

HS 0.7867 0.8128 0.8271 3.6129 0.9319 3562.1834

CS 1.2220 0.6590 0.6647 5 0.4232 105.0266

SSO 1.3173 0.6560 0.5932 4.9797 0.5091 98.5974

Table 3.7 Calibrated parameters for G3ðsÞ produced by each algorithm after 500 iterations

G3ðsÞ Kp Kd Ki Ku a ITAE

PSO 1.0187 1.2010 0.7553 5 0 181.5380

GA 1.3320 0.5599 0.5991 5 0.5631 97.1981

GSA 1.3319 0.7502 0.6689 3.4968 0.5185 152.2198

HS 1.3112 0.9450 0.9262 1.2702 0.6075 2776.2160

CS 1.3325 0.5857 0.5987 4.9999 0.5450 97.0307

SSO 1.3087 0.5883 0.5808 4.9991 0.5642 97.1085
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Finally, in order to stress the importance of the fractional PDa þ I scheme, an
experiment that evaluates the influence of the parameter a in the regulation of G3ðsÞ
is conducted. In the experiment, the fractional PDa þ I controller is operated as an
integer fuzzy controller by setting a ¼ 1. Under such conditions, the rest of the
parameters of PDa þ I ðKp;Kd;Ki;KuÞ are calibrated through the SSO approach
considering the regulation of the fractional system G3ðsÞ. Then, the values a vary
from 0 to 1 while registering the performance of the regulation.

As a result of the optimizationmethod, the following parameter values are obtained:
ðKp;Kd;Ki;KuÞ � ð1:3087; 0:5883; 0:5808; 4:0012Þ with ITAE = 418.8032. After
calibrating the integer fuzzy controller, the values of a are modified from 0 to 1, while
the parameter set remains fixed to ð1:3087; 0:5883; 0:5808; 4:0012Þ. Table 3.8 pre-
sents the results obtained from the experiment. Such values report the regulation
quality ofG3ðsÞ in terms of the ITEAvalues. By analyzingTable 3.8, it is clear that the
regulation quality strongly depends on the selection of the order for a. Particularly in
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this experiment, the best regulation performance is reachedwhen the order of a is set to
0.6. Figure 3.8 presents the influence of a in terms of the regulation quality.

3.7 Conclusions

Due to its multiple applications, the calibration of fractional fuzzy controllers has
attracted the interests of several research communities. In the calibration process,
the parameter estimation is transformed into a multidimensional optimization
problem whose fractional order and the corresponding controller parameters of the

Table 3.8 Regulation
quality of G3ðsÞ in terms of
the ITEA values

a ITAE

0 216.839600

0.1 198.666000

0.2 180.783670

0.3 159.871905

0.4 134.127486

0.5 108.724153

0.6 105.942730
0.7 136.404140

0.8 183.213124

0.9 262.521840

1 418.803215

Bold elements represent the best values
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Fig. 3.8 Influence of a in the
regulation quality of G3ðsÞ in
terms of the ITEA values

52 3 Calibration of Fractional Fuzzy Controllers by Using …



fuzzy system are considered as decision variables. Under this approach, the com-
plexity of fractional-order chaotic systems tends to produce multimodal error sur-
faces for which their cost functions are significantly difficult to minimize. Several
algorithms that are based on evolutionary computation principles have been suc-
cessfully applied to calibrate the parameters of fuzzy systems. However, most of
them still have an important limitation since they frequently obtain sub-optimal
results as a consequence of an inappropriate balance between exploration and
exploitation in their search strategies.

This chapter presents a method for the optimal parameter calibration of fractional
FCs that is based on the SSO algorithm. The SSO algorithm is a novel evolutionary
computation method that is inspired on the emulation of the collaborative behavior
of social-spiders. Unlike most of the existing evolutionary algorithms, the method
explicitly evades the concentration of individuals in best positions, avoiding critical
flaws such as the premature convergence to sub-optimal solutions and the limited
balance of exploration–exploitation.

In order to illustrate the proficiency and the robustness of this approach, SSO
scheme has been experimentally evaluated considering three different system cat-
egories: high-order plants, non-minimum systems and dynamical fractional sys-
tems. To assess the performance of the SSO algorithm, it has been compared to
other similar evolutionary approaches such as Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), Harmony Search (HS), Gravitational Search
Algorithm (GSA) and Cuckoo Search (CS). The experiments have demonstrated
that the SSO method outperforms other techniques in terms of solution quality and
convergence.
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