
Chapter 1
Introduction

This chapter provides a basic introduction to optimization methods, defining their
main characteristics. This chapter provides a basic introduction to optimization
methods, defining their main characteristics. The main objective of this chapter is to
present to metaheuristic methods as alternative approaches for solving optimization
problems. The study of the optimization methods is conducted in such a way that it
is clear the necessity of using metaheuristic methods for the solution of engineering
problems.

1.1 Definition of an Optimization Problem

The vast majority of image processing and pattern recognition algorithms use some
form of optimization, as they intend to find some solution which is “best” according
to some criterion. From a general perspective, an optimization problem is a situation
that requires to decide for a choice from a set of possible alternatives in order to
reach a predefined/required benefit at minimal costs [1].

Consider a public transportation system of a city, for example. Here the system
has to find the “best” route to a destination location. In order to rate alternative
solutions and eventually find out which solution is “best,” a suitable criterion has to
be applied. A reasonable criterion could be the distance of the routes. We then
would expect the optimization algorithm to select the route of shortest distance as a
solution. Observe, however, that other criteria are possible, which might lead to
different “optimal” solutions, e.g., number of transfers, ticket price or the time it
takes to travel the route leading to the fastest route as a solution.

Mathematically speaking, optimization can be described as follows: Given a
function f : S ! R which is called the objective function, find the argument which
minimizes f:
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x� ¼ arg min
x2S

f ðxÞ ð1:1Þ

S defines the so-called solution set, which is the set of all possible solutions for the
optimization problem. Sometimes, the unknown(s) x are referred to design vari-
ables. The function f describes the optimization criterion, i.e., enables us to cal-
culate a quantity which indicates the “quality” of a particular x.

In our example, S is composed by the subway trajectories and bus lines, etc.,
stored in the database of the system, x is the route the system has to find, and the
optimization criterion f(x) (which measures the quality of a possible solution) could
calculate the ticket price or distance to the destination (or a combination of both),
depending on our preferences.

Sometimes there also exist one or more additional constraints which the solution
x� has to satisfy. In that case we talk about constrained optimization (opposed to
unconstrained optimization if no such constraint exists). As a summary, an opti-
mization problem has the following components:

• One or more design variables x for which a solution has to be found
• An objective function f(x) describing the optimization criterion
• A solution set S specifying the set of possible solutions x
• (optional) one or more constraints on x.

In order to be of practical use, an optimization algorithm has to find a solution in
a reasonable amount of time with reasonable accuracy. Apart from the performance
of the algorithm employed, this also depends on the problem at hand itself. If we
can hope for a numerical solution, we say that the problem is well-posed. For
assessing whether an optimization problem is well-posed, the following conditions
must be fulfilled:

1. A solution exists.
2. There is only one solution to the problem, i.e., the solution is unique.
3. The relationship between the solution and the initial conditions is such that

small perturbations of the initial conditions result in only small variations of x�.

1.2 Classical Optimization

Once a task has been transformed into an objective function minimization problem,
the next step is to choose an appropriate optimizer. Optimization algorithms can be
divided in two groups: derivative-based and derivative-free [2].

In general, f(x) may have a nonlinear form respect to the adjustable parameter
x. Due to the complexity of f ð�Þ, in classical methods, it is often used an iterative
algorithm to explore the input space effectively. In iterative descent methods, the
next point xkþ 1 is determined by a step down from the current point xk in a
direction vector d:
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xkþ 1 ¼ xk þ ad; ð1:2Þ

where a is a positive step size regulating to what extent to proceed in that direction.
When the direction d in Eq. 1.1 is determined on the basis of the gradient (g) of the
objective function f ð�Þ, such methods are known as gradient-based techniques.

The method of steepest descent is one of the oldest techniques for optimizing a
given function. This technique represents the basis for many derivative-based
methods. Under such a method, the Eq. 1.3 becomes the well-known gradient
formula:

xkþ 1 ¼ xk � a gðf ðxÞÞ; ð1:3Þ

However, classical derivative-based optimization can be effective as long the
objective function fulfills two requirements:

– The objective function must be two-times differentiable.
– The objective function must be uni-modal, i.e., have a single minimum.

A simple example of a differentiable and uni-modal objective function is

f ðx1; x2Þ ¼ 10� e� x21 þ 3�x22ð Þ ð1:4Þ

Figure 1.1 shows the function defined in Eq. 1.4.
Unfortunately, under such circumstances, classical methodsare only applicable

for a few types of optimization problems. For combinatorial optimization, there is
no definition of differentiation.

Furthermore, there are many reasons why an objective function might not be
differentiable. For example, the “floor” operation in Eq. 1.5 quantizes the function
in Eq. 1.4, transforming Fig. 1.1 into the stepped shape seen in Fig. 1.2. At each
step’s edge, the objective function is non-differentiable:

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
9

9.2

9.4

9.6

9.8

10

f (x1, x2)

x2

x1

Fig. 1.1 Uni-modal objective function

1.2 Classical Optimization 3



f ðx1; x2Þ ¼ floor 10� e� x21 þ 3�x22ð Þ� �
ð1:5Þ

Even in differentiable objective functions, gradient-based methods might not
work. Let us consider the minimization of the Griewank function as an example.

minimize f ðx1; x2Þ ¼ x21 þ x22
4000 � cosðx1Þ cos x2ffiffi

2
p

� �
þ 1

subject to
�30� x1 � 30
�30� x2 � 30

ð1:6Þ

From the optimization problem formulated in Eq. 1.6, it is quite easy to
understand that the global optimal solution is x1 ¼ x2 ¼ 0. Figure 1.3 visualizes the
function defined in Eq. 1.6. According to Fig. 1.3, the objective function has many
local optimal solutions (multimodal) so that the gradient methods with a randomly
generated initial solution will converge to one of them with a large probability.

Considering the limitations of gradient-based methods, image processing and
pattern recognition problems make difficult their integration with classical opti-
mization methods. Instead, some other techniques which do not make assumptions
and which can be applied to wide range of problems are required [3].
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1.3 Metaheuristic Computation Methods

Metaheuristic computation (EC) [4] methods are derivative-free procedures, which
do not require that the objective function must be neither two-times differentiable
nor uni-modal. Therefore, metaheuristic methods as global optimization algorithms
can deal with non-convex, nonlinear, and multimodal problems subject to linear or
nonlinear constraints with continuous or discrete decision variables.

The field of EC has a rich history. With the development of computational
devices and demands of industrial processes, the necessity to solve some opti-
mization problems arose despite the fact that there was not sufficient prior
knowledge (hypotheses) on the optimization problem for the application of a
classical method. In fact, in the majority of image processing and pattern recog-
nition cases, the problems are highly nonlinear, or characterized by a noisy fitness,
or without an explicit analytical expression as the objective function might be the
result of an experimental or simulation process. In this context, the metaheuristic
methods have been proposed as optimization alternatives.

An EC technique is a general method for solving optimization problems. It uses
an objective function in an abstract and efficient manner, typically without utilizing
deeper insights into its mathematical properties. metaheuristic methods do not
require hypotheses on the optimization problem nor any kind of prior knowledge on
the objective function. The treatment of objective functions as “black boxes” [5] is
the most prominent and attractive feature of metaheuristic methods.

Metaheuristic methods obtain knowledge about the structure of an optimization
problem by utilizing information obtained from the possible solutions (i.e., candi-
date solutions) evaluated in the past. This knowledge is used to construct new
candidate solutions which are likely to have a better quality.

Recently, several metaheuristic methods have been proposed with interesting
results. Such approaches uses as inspiration our scientific understanding of bio-
logical, natural or social systems, which at some level of abstraction can be rep-
resented as optimization processes [6]. These methods include the social behavior
of bird flocking and fish schooling such as the Particle Swarm Optimization
(PSO) algorithm [7], the cooperative behavior of bee colonies such as the Artificial
Bee Colony (ABC) technique [8], the improvisation process that occurs when a
musician searches for a better state of harmony such as the Harmony Search
(HS) [9], the emulation of the bat behavior such as the Bat Algorithm (BA) method
[10], the mating behavior of firefly insects such as the Firefly (FF) method [11],
the social-spider behavior such as the Social Spider Optimization (SSO) [12], the
simulation of the animal behavior in a group such as the Collective Animal
Behavior [13], the emulation of immunological systems as the clonal selection
algorithm (CSA) [14], the simulation of the electromagnetism phenomenon as the
electromagnetism-Like algorithm [15], and the emulation of the differential and
conventional evolution in species such as the Differential Evolution (DE) [16] and
Genetic Algorithms (GA) [17], respectively.
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1.3.1 Structure of a Metaheuristic Computation Algorithm

From a conventional point of view, an EC method is an algorithm that simulates at
some level of abstraction a biological, natural or social system. To be more specific,
a standard EC algorithm includes:

1. One or more populations of candidate solutions are considered.
2. These populations change dynamically due to the production of new solutions.
3. A fitness function reflects the ability of a solution to survive and reproduce.
4. Several operators are employed in order to explore an exploit appropriately the

space of solutions.

The metaheuristic methodology suggest that, on average, candidate solutions
improve their fitness over generations (i.e., their capability of solving the opti-
mization problem). A simulation of the evolution process based on a set of can-
didate solutions whose fitness is properly correlated to the objective function to
optimize will, on average, lead to an improvement of their fitness and thus steer the
simulated population towards the global solution.

Most of the optimization methods have been designed to solve the problem of
finding a global solution of a nonlinear optimization problem with box constraints
in the following form:

maximize f ðxÞ; x ¼ x1; . . .; xdð Þ 2 R
d

subject to x 2 X
ð1:7Þ

where f : Rd ! R is a nonlinear function whereas X ¼ x 2 R
d lij

� � xi � ui; i ¼
1; . . .; d:g is a bounded feasible search space, constrained by the lower lið Þ and
upper uið Þ limits.

In order to solve the problem formulated in Eq. 1.6, in an Metaheuristic com-
putation method, a population pk pk1; p

k
2; . . .; p

k
N

� �� �
of N candidate solutions

(individuals) evolves from the initial point (k = 0) to a total gen number iterations
(k = gen). In its initial point, the algorithm begins by initializing the set of
N candidate solutions with values that are randomly and uniformly distributed
between the pre-specified lower lið Þ and upper uið Þ limits. In each iteration, a set of
metaheuristic operators are applied over the population Pk to build the new pop-
ulation Pkþ 1. Each candidate solution pki i 2 1; . . .;N½ �ð Þ represents a d-dimen-

sional vector pki;1; p
k
i;2; . . .; p

k
i;d

n o
where each dimension corresponds to a decision

variable of the optimization problem at hand. The quality of each candidate solution
pki is evaluated by using an objective function f pki

� �
whose final result represents

the fitness value of pki . During the evolution process, the best candidate solution
g g1; g2; . . .; gdð Þ seen so-far is preserved considering that it represents the best
available solution. Figure 1.4 presents a graphical representation of a basic cycle of
a metaheuristic method.
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