
Studies in Computational Intelligence 775

Erik Cuevas · Daniel Zaldívar
Marco Pérez-Cisneros

Advances in
Metaheuristics
Algorithms:
Methods and
Applications

Studies in Computational Intelligence

Volume 775

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092

Erik Cuevas • Daniel Zaldívar
Marco Pérez-Cisneros

Advances in Metaheuristics
Algorithms: Methods
and Applications

123

Erik Cuevas
CUCEI
Universidad de Guadalajara
Guadalajara
Mexico

Daniel Zaldívar
CUCEI
Universidad de Guadalajara
Guadalajara
Mexico

Marco Pérez-Cisneros
CUCEI
Universidad de Guadalajara
Guadalajara
Mexico

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-89308-2 ISBN 978-3-319-89309-9 (eBook)
https://doi.org/10.1007/978-3-319-89309-9

Library of Congress Control Number: 2018937339

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

Currently, researchers, engineers, and practitioners have faced problems of
increasing complexity in several specialized areas. Some examples include
mechanical design, image processing, and control processes. Such problems can be
stated as optimization formulations. Under these circumstances, an objective
function is defined to evaluate the quality of each candidate solution composed
of the problem parameters. Then, an optimization method is used to find the can-
didate solution that minimizes/maximizes the objective function.

Metaheuristics is one of the most important emerging technologies of recent
times for optimization proposes. Over the last years, there has been exponential
growth of research activity in this field. Despite the fact that metaheuristics itself
has not been precisely defined, it has become a standard term that encompasses
several stochastic, population-based, and system-inspired approaches.

Metaheuristic methods use as inspiration our scientific understanding of bio-
logical, natural, or social systems, which at some level of abstraction can be rep-
resented as optimization processes. They intend to serve as general-purpose
easy-to-use optimization techniques capable of reaching globally optimal or at least
nearly optimal solutions. In their operation, searcher agents emulate a group of
biological or social entities which interact with each other based on specialized
operators that model a determined biological or social behavior. These operators are
applied to a population of candidate solutions (individuals) that are evaluated with
respect to an objective function. Thus, in the optimization process, individual
positions are successively attracted to the optimal solution of the system to be
solved.

Due to their robustness, metaheuristic techniques are well-suited options for
industrial and real-world tasks. They do not need gradient information and they can
operate on each kind of parameter space (continuous, discrete, combinatorial, or
even mixed variants). Essentially, the credibility of metaheuristic algorithms relies
on their ability to solve difficult, real-world problems with the minimal amount of
human interaction.

v

There exist several features that clearly appear in most of the metaheuristic
approaches, such as the use of diversification to force the exploration of regions
of the search space, rarely visited until now, and the use of intensification or
exploitation, to investigate thoroughly some promising regions. Another interesting
feature is the use of memory to store the best solutions encountered.

Numerous books have been published tacking in account any of the most widely
known metaheuristic methods, namely, simulated annealing, tabu search, evolu-
tionary algorithms, ant colony algorithms, particle swarm optimization, or differ-
ential evolution, but attempts to consider the discussion of new alternative
approaches are always scarce.

The excessive publication of developments based on the simple modification of
popular metaheuristic methods present an important disadvantage: They avoid the
opportunity to discover new techniques and procedures which can be useful to
solve problems formulated by the academic and industrial communities. In the last
years, several promising metaheuristic methods that consider very interesting
concepts and operators have been introduced. However, they seem to have been
completely overlooked in the literature, in favor of the idea of modifying,
hybridizing, or restructuring popular metaheuristic approaches.

Most of the new metaheuristic algorithms present promising results.
Nevertheless, they are still in their initial stage. To grow and attain their complete
potential, new metaheuristic methods must be applied in a great variety of problems
and contexts, so that they do not only perform well in their reported sets of opti-
mization problems, but also in new complex formulations. The only way to
accomplish this is making possible the transmission and presentation of these
methods in different technical areas as optimization tools. In general, once a sci-
entific, engineering, or practitioner recognizes a problem as a particular instance of
a more generic class, he/she can select one of the different metaheuristic algorithms
that guarantee an expected optimization performance. Unfortunately, the set of
options are concentrated in algorithms whose popularity and high proliferation are
better than the new developments.

The goal of this book is to present advances that discuss new alternative
metaheuristic developments which have proved to be effective in their application
to several complex problems. The book considers different new metaheuristic
methods and their practical applications. This structure is important to us, because
we recognize this methodology as the best way to assist researchers, lecturers,
engineers, and practitioners in the solution of their own optimization problems.

This book has been structured so that each chapter can be read independently
from the others. Chapter 1 describes metaheuristic methods. This chapter concen-
trates on elementary concepts of stochastic search. Readers that are familiar with
metaheuristic algorithms may wish to skip this chapter.

In Chap. 2, a swarm algorithm, namely the Social Spider Optimization (SSO), is
analyzed for solving optimization tasks. The SSO algorithm is based on the sim-
ulation of the cooperative behavior of social spiders. In SSO, individuals emulate a
group of spiders which interact with each other based on the biological laws of the
cooperative colony. Different to the most metaheuristic algorithms, SSO considers

vi Preface

two different search agents (spiders): males and females. Depending on the gender,
each individual is conducted by a set of different evolutionary operators which
mimic the different cooperative behaviors assumed in the colony. To illustrate the
proficiency and robustness of the SSO, it is compared to other well-known evo-
lutionary methods.

Chapter 3 considers an algorithm for the optimal parameter calibration of frac-
tional fuzzy controllers. In order to determine the best parameters, the method uses
the Social Spider Optimization (SSO), which is inspired by the emulation of the
collaborative behavior of social spiders. Unlike most of the existing metaheuristic
algorithms, the method explicitly evades the concentration of individuals in the best
positions, avoiding critical flaws such as the premature convergence to suboptimal
solutions and the limited balance of exploration–exploitation. Several numerical
simulations are conducted on different plants to show the effectiveness of this
scheme.

In Chap. 4, the Locust Search (LS) is examined for solving some optimization
tasks. The LS algorithm is based on the behavioral modeling of swarms of locusts.
In LS, individuals represent a group of locusts which interact with each other based
on the biological laws of the cooperative swarm. The algorithm considers two
different behaviors: solitary and social. Depending on the behavior, each individual
is conducted by a set of evolutionary operators which mimics different cooperative
conducts that are typically found in the swarm. Different to most of existent swarm
algorithms, the behavioral model in the LS approach explicitly avoids the con-
centration of individuals in the current best positions. Such fact allows not only to
emulate in a better realistic way the cooperative behavior of the locust colony but
also to incorporate a computational mechanism to avoid critical flaws that are
commonly present in the popular Particle Swarm Optimization (PSO) and
Differential Evolution (DE), such as the premature convergence and the incorrect
exploration–exploitation balance. In order to illustrate the proficiency and robust-
ness of the LS approach, its performance is compared to other well-known evo-
lutionary methods. The comparison examines several standard benchmark functions
which are commonly considered in the literature.

Chapter 5 presents an algorithm for parameter identification of fractional-order
chaotic systems. In order to determine the parameters, the proposed method uses the
metaheuristic algorithm called Locust Search (LS) which is based on the behavior
of swarms of locusts. Different to the most of existent evolutionary algorithms, it
explicitly avoids the concentration of individuals in the best positions, avoiding
critical flaws such as the premature convergence to suboptimal solutions and the
limited exploration–exploitation balance. Numerical simulations have been con-
ducted on the fractional-order Van der Pol oscillator to show the effectiveness of the
proposed scheme.

In Chap. 6, the States of Matter Search (SMS) is analyzed. The SMS algorithm is
based on the modeling of the states of matter phenomenon. In SMS, individuals
emulate molecules which interact with each other by using evolutionary operations
based on the physical principles of the thermal energy motion mechanism. The

Preface vii

algorithm is devised considering each state of matter one different exploration–
exploitation ratio. In SMS, the evolutionary process is divided into three phases
which emulate the three states of matter: gas, liquid, and solid. In each state, the
evolving elements exhibit different movement capacities. Beginning from the gas
state (pure exploration), the algorithm modifies the intensities of exploration and
exploitation until the solid state (pure exploitation) is reached. As a result, the
approach can substantially improve the balance between exploration–exploitation,
yet preserving the good search capabilities of an EC method. To illustrate the
proficiency and robustness of the proposed algorithm, it was compared with other
well-known evolutionary methods including recent variants that incorporate
diversity preservation schemas.

Although the States of Matter Search (SMS) is highly effective in locating single
global optimum, it fails in providing multiple solutions within a single execution. In
Chap. 7, a new multimodal optimization algorithm called the Multimodal States of
Matter Search (MSMS) is introduced. Under MSMS, the original SMS is enhanced
with new multimodal characteristics by means of (1) the definition of a memory
mechanism to efficiently register promising local optima according to their fitness
values and the distance to other probable high-quality solutions; (2) the modifica-
tion of the original SMS optimization strategy to accelerate the detection of new
local minima; and (3) the inclusion of a depuration procedure at the end of each
state to eliminate duplicated memory elements. The performance of the proposed
approach is compared to several state-of-the-art multimodal optimization algo-
rithms considering a benchmark suite of 14 multimodal problems. The results
confirm that the proposed method achieves the best balance over its counterparts
regarding accuracy and computational cost.

Finally, Chap. 8 presents a methodology to implement human-knowledge-based
optimization strategies. In the scheme, a Takagi–Sugeno fuzzy inference system is
used to reproduce a specific search strategy generated by a human expert.
Therefore, the number of rules and its configuration only depend on the expert
experience without considering any learning rule process. Under these conditions,
each fuzzy rule represents an expert observation that models the conditions under
which candidate solutions are modified in order to reach the optimal location. To
exhibit the performance and robustness of the proposed method, a comparison to
other well-known optimization methods is conducted. The comparison considers
several standard benchmark functions which are typically found in scientific liter-
ature. The results suggest a high performance of the proposed methodology.

This book has been structured from a teaching viewpoint. Therefore, the material
is essentially directed for undergraduate and postgraduate students of Science,
Engineering, or Computational Mathematics. It can be appropriate for courses such
as artificial intelligence, evolutionary computation, computational intelligence, etc.
Likewise, the material can be useful for researches from the evolutionary compu-
tation and artificial intelligence communities. An important propose of the book is
to bridge the gap between evolutionary optimization techniques and complex
engineering applications. Therefore, researchers, who are familiar with popular

viii Preface

evolutionary computation approaches, will appreciate that the techniques discussed
are beyond simple optimization tools since they have been adapted to solve sig-
nificant problems that commonly arise on several engineering domains. On the
other hand, students of the evolutionary computation community can prospect new
research niches for their future work as master or Ph.D. thesis.

Guadalajara, Mexico Erik Cuevas
February 2018 Daniel Zaldívar

Marco Pérez-Cisneros

Preface ix

Contents

1 Introduction . 1
1.1 Definition of an Optimization Problem . 1
1.2 Classical Optimization . 2
1.3 Metaheuristic Computation Methods . 5

1.3.1 Structure of a Metaheuristic Computation Algorithm 6
References . 7

2 The Metaheuristic Algorithm of the Social-Spider 9
2.1 Introduction . 9
2.2 Biological Concepts . 11
2.3 The SSO Algorithm . 13

2.3.1 Fitness Assignation . 14
2.3.2 Modeling of the Vibrations Through the Communal

Web . 14
2.3.3 Initializing the Population . 15
2.3.4 Cooperative Operators . 16
2.3.5 Mating Operator . 18
2.3.6 Computational Procedure . 20
2.3.7 Discussion About the SSO Algorithm 22

2.4 Experimental Results . 23
2.4.1 Performance Comparison to Other Metaheuristic

Algorithms . 24
2.5 Conclusions . 28
References . 32

xi

3 Calibration of Fractional Fuzzy Controllers by Using
the Social-Spider Method . 35
3.1 Introduction . 35
3.2 Fractional-Order Models . 37

3.2.1 Fractional Calculus . 38
3.2.2 Approximation of Fractional Operators 39

3.3 Fuzzy Controller . 39
3.4 Social Spider Optimization (SSO) . 41
3.5 Problem Formulation . 43
3.6 Numerical Simulations . 45

3.6.1 Results Over High-Order Plants ðG1ðsÞÞ 46
3.6.2 Results Over Non-minimum Systems ðG2ðsÞÞ 48
3.6.3 Results Over Fractional Systems ðG3ðsÞÞ 50

3.7 Conclusions . 52
References . 53

4 The Metaheuristic Algorithm of the Locust-Search 57
4.1 Introduction . 57
4.2 Biological Fundamentals . 59

4.2.1 Solitary Phase . 60
4.2.2 Social Phase . 62

4.3 The Locust Search (LS) Algorithm . 62
4.3.1 Solitary Operation (A) . 63
4.3.2 Social Operation (B) . 66
4.3.3 Complete LS Algorithm . 68
4.3.4 Discussion About the LS Algorithm 69

4.4 Experimental Results . 70
4.5 Conclusions . 73
References . 74

5 Identification of Fractional Chaotic Systems by Using
the Locust Search Algorithm . 77
5.1 Introduction . 77
5.2 Fractional Calculus . 79
5.3 Locust Search (LS) Algorithm . 80

5.3.1 Solitary Operation (A) . 80
5.3.2 Social Operation (B) . 82

5.4 Fractional-Order van der Pol Oscillator . 83
5.5 Problem Formulation . 84
5.6 Experimental Results . 85
5.7 Conclusions . 89
References . 90

xii Contents

6 The States of Matter Search (SMS) . 93
6.1 Introduction . 93
6.2 States of Matter . 96
6.3 Fitness Approximation Method . 97

6.3.1 Definition of Operators . 97
6.3.2 SMS Algorithm . 100

6.4 Experimental Results . 104
6.4.1 Performance Comparison to Other Meta-Heuristic

Algorithms . 105
6.5 Conclusions . 111
References . 115

7 Multimodal States of Matter Search . 119
7.1 Introduction . 119
7.2 Original States of Matter Search (SMS) . 123

7.2.1 Definition of Operators . 124
7.2.2 General Procedure . 126
7.2.3 Parameter Analysis . 126
7.2.4 Parameter Tuning Results . 128

7.3 The Multi-modal States of Matter Search (MSMS) 130
7.3.1 Memory Mechanism . 130
7.3.2 Modification of the Original SMS Search Strategy 136
7.3.3 Depuration Procedure . 138
7.3.4 Discussion About the MSMS Algorithm 141

7.4 Experimental Results . 142
7.4.1 Experimental Methodology . 142
7.4.2 Comparing MSMS Performance for Fixed Functions

(Low Dimensional) . 144
7.4.3 Comparing MSMS Performance for Composition

Functions (High Dimensional) . 149
7.4.4 Diversity and Exploration . 150
7.4.5 Computational Effort . 153

7.5 Conclusions . 156
References . 162

8 Metaheuristic Algorithms Based on Fuzzy Logic 167
8.1 Introduction . 167
8.2 Fuzzy Logic and Reasoning Models . 170

8.2.1 Fuzzy Logic Concepts . 170
8.2.2 The Takagi-Sugeno (TS) Fuzzy Model 171

Contents xiii

8.3 The Analyzed Methodology . 173
8.3.1 Optimization Strategy . 173
8.3.2 Computational Procedure . 179

8.4 Discussion About the Methodology . 180
8.4.1 Optimization Algorithm . 180
8.4.2 Modeling Characteristics . 181

8.5 Experimental Results . 181
8.5.1 Performance Evaluation with Regard to Its Own Tuning

Parameters . 182
8.5.2 Comparison with Other Optimization Approaches 190

8.6 Conclusions . 210
References . 216

xiv Contents

Chapter 1
Introduction

This chapter provides a basic introduction to optimization methods, defining their
main characteristics. This chapter provides a basic introduction to optimization
methods, defining their main characteristics. The main objective of this chapter is to
present to metaheuristic methods as alternative approaches for solving optimization
problems. The study of the optimization methods is conducted in such a way that it
is clear the necessity of using metaheuristic methods for the solution of engineering
problems.

1.1 Definition of an Optimization Problem

The vast majority of image processing and pattern recognition algorithms use some
form of optimization, as they intend to find some solution which is “best” according
to some criterion. From a general perspective, an optimization problem is a situation
that requires to decide for a choice from a set of possible alternatives in order to
reach a predefined/required benefit at minimal costs [1].

Consider a public transportation system of a city, for example. Here the system
has to find the “best” route to a destination location. In order to rate alternative
solutions and eventually find out which solution is “best,” a suitable criterion has to
be applied. A reasonable criterion could be the distance of the routes. We then
would expect the optimization algorithm to select the route of shortest distance as a
solution. Observe, however, that other criteria are possible, which might lead to
different “optimal” solutions, e.g., number of transfers, ticket price or the time it
takes to travel the route leading to the fastest route as a solution.

Mathematically speaking, optimization can be described as follows: Given a
function f : S ! R which is called the objective function, find the argument which
minimizes f:

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_1&domain=pdf

x� ¼ arg min
x2S

f ðxÞ ð1:1Þ

S defines the so-called solution set, which is the set of all possible solutions for the
optimization problem. Sometimes, the unknown(s) x are referred to design vari-
ables. The function f describes the optimization criterion, i.e., enables us to cal-
culate a quantity which indicates the “quality” of a particular x.

In our example, S is composed by the subway trajectories and bus lines, etc.,
stored in the database of the system, x is the route the system has to find, and the
optimization criterion f(x) (which measures the quality of a possible solution) could
calculate the ticket price or distance to the destination (or a combination of both),
depending on our preferences.

Sometimes there also exist one or more additional constraints which the solution
x� has to satisfy. In that case we talk about constrained optimization (opposed to
unconstrained optimization if no such constraint exists). As a summary, an opti-
mization problem has the following components:

• One or more design variables x for which a solution has to be found
• An objective function f(x) describing the optimization criterion
• A solution set S specifying the set of possible solutions x
• (optional) one or more constraints on x.

In order to be of practical use, an optimization algorithm has to find a solution in
a reasonable amount of time with reasonable accuracy. Apart from the performance
of the algorithm employed, this also depends on the problem at hand itself. If we
can hope for a numerical solution, we say that the problem is well-posed. For
assessing whether an optimization problem is well-posed, the following conditions
must be fulfilled:

1. A solution exists.
2. There is only one solution to the problem, i.e., the solution is unique.
3. The relationship between the solution and the initial conditions is such that

small perturbations of the initial conditions result in only small variations of x�.

1.2 Classical Optimization

Once a task has been transformed into an objective function minimization problem,
the next step is to choose an appropriate optimizer. Optimization algorithms can be
divided in two groups: derivative-based and derivative-free [2].

In general, f(x) may have a nonlinear form respect to the adjustable parameter
x. Due to the complexity of f ð�Þ, in classical methods, it is often used an iterative
algorithm to explore the input space effectively. In iterative descent methods, the
next point xkþ 1 is determined by a step down from the current point xk in a
direction vector d:

2 1 Introduction

xkþ 1 ¼ xk þ ad; ð1:2Þ

where a is a positive step size regulating to what extent to proceed in that direction.
When the direction d in Eq. 1.1 is determined on the basis of the gradient (g) of the
objective function f ð�Þ, such methods are known as gradient-based techniques.

The method of steepest descent is one of the oldest techniques for optimizing a
given function. This technique represents the basis for many derivative-based
methods. Under such a method, the Eq. 1.3 becomes the well-known gradient
formula:

xkþ 1 ¼ xk � a gðf ðxÞÞ; ð1:3Þ

However, classical derivative-based optimization can be effective as long the
objective function fulfills two requirements:

– The objective function must be two-times differentiable.
– The objective function must be uni-modal, i.e., have a single minimum.

A simple example of a differentiable and uni-modal objective function is

f ðx1; x2Þ ¼ 10� e� x21 þ 3�x22ð Þ ð1:4Þ

Figure 1.1 shows the function defined in Eq. 1.4.
Unfortunately, under such circumstances, classical methodsare only applicable

for a few types of optimization problems. For combinatorial optimization, there is
no definition of differentiation.

Furthermore, there are many reasons why an objective function might not be
differentiable. For example, the “floor” operation in Eq. 1.5 quantizes the function
in Eq. 1.4, transforming Fig. 1.1 into the stepped shape seen in Fig. 1.2. At each
step’s edge, the objective function is non-differentiable:

−1

−0.5

0

0.5

1

−1
−0.5

0
0.5

1
9

9.2

9.4

9.6

9.8

10

f (x1, x2)

x2

x1

Fig. 1.1 Uni-modal objective function

1.2 Classical Optimization 3

f ðx1; x2Þ ¼ floor 10� e� x21 þ 3�x22ð Þ� �
ð1:5Þ

Even in differentiable objective functions, gradient-based methods might not
work. Let us consider the minimization of the Griewank function as an example.

minimize f ðx1; x2Þ ¼ x21 þ x22
4000 � cosðx1Þ cos x2ffiffi

2
p

� �
þ 1

subject to
�30� x1 � 30
�30� x2 � 30

ð1:6Þ

From the optimization problem formulated in Eq. 1.6, it is quite easy to
understand that the global optimal solution is x1 ¼ x2 ¼ 0. Figure 1.3 visualizes the
function defined in Eq. 1.6. According to Fig. 1.3, the objective function has many
local optimal solutions (multimodal) so that the gradient methods with a randomly
generated initial solution will converge to one of them with a large probability.

Considering the limitations of gradient-based methods, image processing and
pattern recognition problems make difficult their integration with classical opti-
mization methods. Instead, some other techniques which do not make assumptions
and which can be applied to wide range of problems are required [3].

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

2

4

6

8

10

x2
x1

f (x1,x 2)

Fig. 1.2 A
non-differentiable, quantized,
uni-modal function

2.5

2

1.5

0.5

0
30

3020
2010

100
0-10 -10-20 -20-30 -30

1

x2
x1

f (x1,x 2)

Fig. 1.3 The Griewank
multi-modal function

4 1 Introduction

1.3 Metaheuristic Computation Methods

Metaheuristic computation (EC) [4] methods are derivative-free procedures, which
do not require that the objective function must be neither two-times differentiable
nor uni-modal. Therefore, metaheuristic methods as global optimization algorithms
can deal with non-convex, nonlinear, and multimodal problems subject to linear or
nonlinear constraints with continuous or discrete decision variables.

The field of EC has a rich history. With the development of computational
devices and demands of industrial processes, the necessity to solve some opti-
mization problems arose despite the fact that there was not sufficient prior
knowledge (hypotheses) on the optimization problem for the application of a
classical method. In fact, in the majority of image processing and pattern recog-
nition cases, the problems are highly nonlinear, or characterized by a noisy fitness,
or without an explicit analytical expression as the objective function might be the
result of an experimental or simulation process. In this context, the metaheuristic
methods have been proposed as optimization alternatives.

An EC technique is a general method for solving optimization problems. It uses
an objective function in an abstract and efficient manner, typically without utilizing
deeper insights into its mathematical properties. metaheuristic methods do not
require hypotheses on the optimization problem nor any kind of prior knowledge on
the objective function. The treatment of objective functions as “black boxes” [5] is
the most prominent and attractive feature of metaheuristic methods.

Metaheuristic methods obtain knowledge about the structure of an optimization
problem by utilizing information obtained from the possible solutions (i.e., candi-
date solutions) evaluated in the past. This knowledge is used to construct new
candidate solutions which are likely to have a better quality.

Recently, several metaheuristic methods have been proposed with interesting
results. Such approaches uses as inspiration our scientific understanding of bio-
logical, natural or social systems, which at some level of abstraction can be rep-
resented as optimization processes [6]. These methods include the social behavior
of bird flocking and fish schooling such as the Particle Swarm Optimization
(PSO) algorithm [7], the cooperative behavior of bee colonies such as the Artificial
Bee Colony (ABC) technique [8], the improvisation process that occurs when a
musician searches for a better state of harmony such as the Harmony Search
(HS) [9], the emulation of the bat behavior such as the Bat Algorithm (BA) method
[10], the mating behavior of firefly insects such as the Firefly (FF) method [11],
the social-spider behavior such as the Social Spider Optimization (SSO) [12], the
simulation of the animal behavior in a group such as the Collective Animal
Behavior [13], the emulation of immunological systems as the clonal selection
algorithm (CSA) [14], the simulation of the electromagnetism phenomenon as the
electromagnetism-Like algorithm [15], and the emulation of the differential and
conventional evolution in species such as the Differential Evolution (DE) [16] and
Genetic Algorithms (GA) [17], respectively.

1.3 Metaheuristic Computation Methods 5

1.3.1 Structure of a Metaheuristic Computation Algorithm

From a conventional point of view, an EC method is an algorithm that simulates at
some level of abstraction a biological, natural or social system. To be more specific,
a standard EC algorithm includes:

1. One or more populations of candidate solutions are considered.
2. These populations change dynamically due to the production of new solutions.
3. A fitness function reflects the ability of a solution to survive and reproduce.
4. Several operators are employed in order to explore an exploit appropriately the

space of solutions.

The metaheuristic methodology suggest that, on average, candidate solutions
improve their fitness over generations (i.e., their capability of solving the opti-
mization problem). A simulation of the evolution process based on a set of can-
didate solutions whose fitness is properly correlated to the objective function to
optimize will, on average, lead to an improvement of their fitness and thus steer the
simulated population towards the global solution.

Most of the optimization methods have been designed to solve the problem of
finding a global solution of a nonlinear optimization problem with box constraints
in the following form:

maximize f ðxÞ; x ¼ x1; . . .; xdð Þ 2 R
d

subject to x 2 X
ð1:7Þ

where f : Rd ! R is a nonlinear function whereas X ¼ x 2 R
d lij

� � xi � ui; i ¼
1; . . .; d:g is a bounded feasible search space, constrained by the lower lið Þ and
upper uið Þ limits.

In order to solve the problem formulated in Eq. 1.6, in an Metaheuristic com-
putation method, a population pk pk1; p

k
2; . . .; p

k
N

� �� �
of N candidate solutions

(individuals) evolves from the initial point (k = 0) to a total gen number iterations
(k = gen). In its initial point, the algorithm begins by initializing the set of
N candidate solutions with values that are randomly and uniformly distributed
between the pre-specified lower lið Þ and upper uið Þ limits. In each iteration, a set of
metaheuristic operators are applied over the population Pk to build the new pop-
ulation Pkþ 1. Each candidate solution pki i 2 1; . . .;N½ �ð Þ represents a d-dimen-

sional vector pki;1; p
k
i;2; . . .; p

k
i;d

n o
where each dimension corresponds to a decision

variable of the optimization problem at hand. The quality of each candidate solution
pki is evaluated by using an objective function f pki

� �
whose final result represents

the fitness value of pki . During the evolution process, the best candidate solution
g g1; g2; . . .; gdð Þ seen so-far is preserved considering that it represents the best
available solution. Figure 1.4 presents a graphical representation of a basic cycle of
a metaheuristic method.

6 1 Introduction

References

1. Akay, B., Karaboga, D.: A survey on the applications of artificial bee colony in signal, image,
and video processing. SIViP 9(4), 967–990 (2015)

2. Yang, X.-S.: Engineering Optimization. Wiley, USA (2010)
3. Treiber, M.A.: Optimization for Computer Vision: An Introduction to Core Concepts and

Methods. Springer, Berlin (2013)
4. Simon, D.: Evolutionary Optimization Algorithms. Wiley, USA (2013)
5. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual

comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003). https://doi.org/10.1145/
937503.937505

6. Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for partitional
clustering. Swarm Evol. Comput. 16, 1–18 (2014)

7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

8. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University
(2005)

9. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulations 76, 60–68 (2001)

10. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Cruz, C., González, J.,
Krasnogor, G.T.N., Pelta, D.A. (eds.) Nature Inspired Cooperative Strategies for Optimization
(NISCO 2010), Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Berlin
(2010)

11. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms:
Foundations and Applications, SAGA 2009. Lecture Notes in Computer Sciences, vol. 5792,
pp. 169–178 (2009)

12. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384
(2013)

Fig. 1.4 The basic cycle of a metaheuristic method

References 7

http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1145/937503.937505

13. Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An algorithm for
global optimization inspired by collective animal behaviour. Discrete Dyn. Nat. Soc. art. no.
638275 (2012)

14. de Castro, L.N., von Zuben, F.J.: Learning and optimization using the clonal selection
principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

15. Birbil, Ş.I., Fang, S.C.: An electromagnetism-like mechanism for global optimization. J. Glob.
Optim. 25(1), 263–282 (2003)

16. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95–012. ICSI, Berkeley, CA
(1995)

17. Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning.
Addison-Wesley, Boston (1989)

8 1 Introduction

Chapter 2
The Metaheuristic Algorithm
of the Social-Spider

Metaheuristic is a computer science field which emulates the cooperative behavior
of natural systems such as insects or animals. Many methods resulting from these
models have been suggested to solve several complex optimization problems. In
this chapter, a metaheuristic approach known as the Social Spider Optimization
(SSO) is analyzed for solving optimization problems. The SSO method considers
the simulation of the collective operation of social-spiders. In SSO, candidate
solutions represent a set of spiders which interacts among them based on the natural
laws of the colony. The algorithm examines two different kinds of search agents
(spiders): males and females. According to the gender, each element is conducted
by a set of different operations which imitate different behaviors that are commonly
observed in the colony.

2.1 Introduction

The collective intelligent behavior of insect or animal groups in nature such as
flocks of birds, colonies of ants, schools of fish, swarms of bees and termites have
attracted the attention of researchers. The aggregative conduct of insects or animals
is known as swarm behavior. Entomologists have studied this collective phe-
nomenon to model biological groups in nature while engineers have applied these
models as a framework for solving complex real-world problems. This branch of
artificial intelligence which deals with the collective behavior of elements through
complex interaction of individuals with no supervision is frequently addressed as
swarm intelligence. Bonabeau defined swarm intelligence as ‘‘any attempt to design
algorithms or distributed problem solving devices inspired by the collective
behavior of the social insect colonies and other animal societies” [1]. Swarm
intelligence has some advantages such as scalability, fault tolerance, adaptation,
speed, modularity, autonomy and parallelism [2].

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_2&domain=pdf

The key components of swarm intelligence are self-organization and labor
division. In a self-organizing system, each of the covered units responds to local
stimuli individually and may act together to accomplish a global task, via a labor
separation which avoids a centralized supervision. The entire system can thus
efficiently adapt to internal and external changes.

Several metaheuristic algorithms have been developed by a combination of
deterministic rules and randomness, mimicking the behavior of insect or animal
groups in nature. Such methods include the social behavior of bird flocking and fish
schooling such as the Particle Swarm Optimization (PSO) algorithm [3], the
cooperative behavior of bee colonies such as the Artificial Bee Colony
(ABC) technique [4], the social foraging behavior of bacteria such as the Bacterial
Foraging Optimization Algorithm (BFOA) [5], the simulation of the herding
behavior of krill individuals such as the Krill Herd (KH) method [6], the mating
behavior of firefly insects such as the Firefly (FF) method [7] and the emulation of
the lifestyle of cuckoo birds such as the Cuckoo Optimization Algorithm
(COA) [8].

In particular, insect colonies and animal groups provide a rich set of metaphors
for designing metaheuristic optimization algorithms. Such cooperative entities are
complex systems that are composed by individuals with different cooperative-tasks
where each member tends to reproduce specialized behaviors depending on its
gender [9]. However, most of metaheuristic algorithms model individuals as unisex
entities that perform virtually the same behavior. Under such circumstances, algo-
rithms waste the possibility of adding new and selective operators as a result of
considering individuals with different characteristics such as sex, task-responsibility,
etc. These operators could incorporate computational mechanisms to improve sev-
eral important algorithm characteristics including population diversity and searching
capacities.

Although PSO and ABC are the most popular metaheuristic algorithms for
solving complex optimization problems, they present serious flaws such as pre-
mature convergence and difficulty to overcome local minima [10, 11]. The cause for
such problems is associated to the operators that modify individual positions. In
such algorithms, during their evolution, the position of each agent for the next
iteration is updated yielding an attraction towards the position of the best particle
seen so-far (in case of PSO) or towards other randomly chosen individuals (in case
of ABC). As the algorithm evolves, those behaviors cause that the entire population
concentrates around the best particle or diverges without control. It does favors the
premature convergence or damage the exploration–exploitation balance [12, 13].

The interesting and exotic collective behavior of social insects have fascinated
and attracted researchers for many years. The collaborative swarming behavior
observed in these groups provides survival advantages, where insect aggregations
of relatively simple and “unintelligent” individuals can accomplish very complex
tasks using only limited local information and simple rules of behavior [14].
Social-spiders are a representative example of social insects [15]. A social-spider is
a spider species whose members maintain a set of complex cooperative behaviors
[16]. Whereas most spiders are solitary and even aggressive toward other members

10 2 The Metaheuristic Algorithm of the Social-Spider

of their own species, social-spiders show a tendency to live in groups, forming
long-lasting aggregations often referred to as colonies [17]. In a social-spider col-
ony, each member, depending on its gender, executes a variety of tasks such as
predation, mating, web design, and social interaction [17, 18]. The web it is an
important part of the colony because it is not only used as a common environment
for all members, but also as a communication channel among them [19] Therefore,
important information (such as trapped prays or mating possibilities) is transmitted
by small vibrations through the web. Such information, considered as a local
knowledge, is employed by each member to conduct its own cooperative behavior,
influencing simultaneously the social regulation of the colony [20].

In this chapter, a metaheuristic algorithm, called the Social Spider Optimization
(SSO) is analyzed for solving optimization tasks. The SSO algorithm is based on
the simulation of the cooperative behavior of social-spiders. In this algorithm,
individuals emulate a group of spiders which interact to each other based on the
biological laws of the cooperative colony. The algorithm considers two different
search agents (spiders): males and females. Depending on gender, each individual is
conducted by a set of different evolutionary operators which mimic different
cooperative behaviors that are typical in a colony. Different to most of existent
metaheuristic algorithms, in the approach, each individual is modeled considering
two genders. Such fact allows not only to emulate in a better realistic way the
cooperative behavior of the colony, but also to incorporate computational mecha-
nisms to avoid critical flaws commonly present in the popular PSO and ABC
algorithms, such as the premature convergence and the incorrect exploration–ex-
ploitation balance. In order to illustrate the proficiency and robustness of the
approach, it is compared to other well-known evolutionary methods. The com-
parison examines several standard benchmark functions which are commonly
considered in the literature. The results show a high performance of the method for
searching a global optimum in several benchmark functions.

This chapter is organized as follows. In Sect. 2.2, we introduce basic biological
aspects of the algorithm. In Sect. 2.3, the novel SSO algorithm and its character-
istics are both described. Section 2.4 presents the experimental results and the
comparative study. Finally, in Sect. 2.5, conclusions are drawn.

2.2 Biological Concepts

Social insect societies are complex cooperative systems that self-organize within a
set of constraints. Cooperative groups are better at manipulating and exploiting their
environment, defending resources and brood, and allowing task specialization
among group members [21, 22]. A social insect colony functions as an integrated
unit that not only possesses the ability to operate at a distributed manner, but also to
undertake enormous construction of global projects [23]. It is important to
acknowledge that global order in social insects can arise as a result of internal
interactions among members.

2.1 Introduction 11

A few species of spiders have been documented exhibiting a degree of social
behavior [15]. The behavior of spiders can be generalized into two basic forms:
solitary spiders and social spiders [17]. This classification is made based on the
level of cooperative behavior that they exhibit [18]. In one side, solitary spiders
create and maintain their own web while live in scarce contact to other individuals
of the same species. In contrast, social spiders form colonies that remain together
over a communal web with close spatial relationship to other group members [19].

A social spider colony is composed of two fundamental components: its
members and the communal web. Members are divided into two different cate-
gories: males and females. An interesting characteristic of social-spiders is the
highly female-biased population. Some studies suggest that the number of male
spiders barely reaches the 30% of the total colony members [17, 24]. In the colony,
each member, depending on its gender, cooperate in different activities such as
building and maintaining the communal web, prey capturing, mating and social
contact [20]. Interactions among members are either direct or indirect [25]. Direct
interactions imply body contact or the exchange of fluids such as mating. For
indirect interactions, the communal web is used as a “medium of communication”
which conveys important information that is available to each colony member [19].
This information encoded as small vibrations is a critical aspect for the collective
coordination among members [20]. Vibrations are employed by the colony mem-
bers to decode several messages such as the size of the trapped preys, characteristics
of the neighboring members, etc. The intensity of such vibrations depend on the
weight and distance of the spiders that have produced them.

In spite of the complexity, all the cooperative global patterns in the colony level
are generated as a result of internal interactions among colony members [26]. Such
internal interactions involve a set of simple behavioral rules followed by each spider
in the colony. Behavioral rules are divided into two different classes: social inter-
action (cooperative behavior) and mating [27].

As a social insect, spiders perform cooperative interaction with other colony
members. The way in which this behavior takes place depends on the spider gender.
Female spiders which show a major tendency to socialize present an attraction or
dislike over others, irrespectively of gender [17]. For a particular female spider,
such attraction or dislike is commonly developed over other spiders according to
their vibrations which are emitted over the communal web and represent strong
colony members [20]. Since the vibrations depend on the weight and distance of the
members which provoke them, stronger vibrations are produced either by big
spiders or neighboring members [19]. The bigger a spider is, the better it is con-
sidered as a colony member. The final decision of attraction or dislike over a
determined member is taken according to an internal state which is influenced by
several factors such as reproduction cycle, curiosity and other random phenomena
[20].

Different to female spiders, the behavior of male members is
reproductive-oriented [28]. Male spiders recognize themselves as a subgroup of
alpha males which dominate the colony resources. Therefore, the male population is
divided into two classes: dominant and non-dominant male spiders [28]. Dominant

12 2 The Metaheuristic Algorithm of the Social-Spider

male spiders have better fitness characteristics (normally size) in comparison to
non-dominant. In a typical behavior, dominant males are attracted to the closest
female spider in the communal web. In contrast, non-dominant male spiders tend to
concentrate upon the center of the male population as a strategy to take advantage
of the resources wasted by dominant males [29].

Mating is an important operation that no only assures the colony survival, but also
allows the information exchange among members. Mating in a social-spider colony
is performed by dominant males and female members [30]. Under such circum-
stances, when a dominant male spider locates one or more female members within a
specific range, it mates with all the females in order to produce offspring [31].

2.3 The SSO Algorithm

In this chapter, the operational principles from the social-spider colony have been
used as guidelines for developing a new metaheuristic optimization algorithm.
The SSO assumes that entire search space is a communal web, where all the
social-spiders interact to each other. In the approach, each solution within the search
space represents a spider position in the communal web. Every spider receives a
weight according to the fitness value of the solution that is symbolized by the
social-spider. The algorithm models two different search agents (spiders): males and
females. Depending on gender, each individual is conducted by a set of different
evolutionary operators which mimic different cooperative behaviors that are com-
monly assumed within the colony.

An interesting characteristic of social-spiders is the highly female-biased pop-
ulations. In order to emulate this fact, the algorithm starts by defining the number of
female and male spiders that will be characterized as individuals in the search
space. The number of females Nf is randomly selected within the range of 65–90%
of the entire population N. Therefore, Nf is calculated by the following equation:

Nf ¼ floor 0:9� rand � 0:25ð Þ � N½ � ð2:1Þ

where rand is a random number between [0,1] whereas floorð�Þ maps a real number
to an integer number. The number of male spiders Nm is computed as the com-
plement between N and Nf . It is calculated as follows:

Nm ¼ N � Nf ð2:2Þ

Therefore, the complete population S, composed by N elements, is divided in two
sub-groups F and M. The Group F assembles the set of female individuals F ¼
f1; f2; . . .; fNf

� �
whereas M groups the male members M ¼ m1;m2; . . .;mNmf gð Þ,

where S ¼ F[M S ¼ s1; s2; . . .; sNf gð Þ, such that S ¼ s1 ¼ f1; s2 ¼ f2; . . .;f
sNf ¼ fNf ; sNf þ 1 ¼ m1; sNf þ 2 ¼ m2; . . .; sN ¼ mNmg.

2.2 Biological Concepts 13

2.3.1 Fitness Assignation

In the biological metaphor, the spider size is the characteristic that evaluates the
individual capacity to perform better over its assigned tasks. In the approach, every
individual (spider) receives a weight wi which represents the solution quality that
corresponds to the spider i (irrespective of gender) of the population S. In order to
calculate the weight of every spider the next equation is used:

wi ¼ JðsiÞ � worstS
bestS � worstS

ð2:3Þ

where JðsiÞ is the fitness value obtained by the evaluation of the spider position si
with regard to the objective function Jð�Þ. The values worstS and bestS are defined
as follows (considering a maximization problem):

bestS ¼ max
k2 1;2;...;Nf g

Jðskð Þð Þ andworstS ¼ min
k2 1;2;...;Nf g

Jðskð Þð Þ ð2:4Þ

2.3.2 Modeling of the Vibrations Through the Communal
Web

The communal web is used as a mechanism to transmit information among the
colony members. This information is encoded as small vibrations that are critical
for the collective coordination of all individuals in the population. The vibrations
depend on the weight and distance of the spider which has generated them. Since
the distance is relative to the individual that provokes the vibrations and the
member who detects them, members located near to the individual that provokes
the vibrations, perceive stronger vibrations in comparison with members located in
distant positions. In order to reproduce this process, the vibrations perceived by the
individual i as a result of the information transmitted by the member j are modeled
according to the following equation:

Vibi;j ¼ wj � e�d2i;j ð2:5Þ

where the di;j is the Euclidian distance between the spiders i and j, such that
di;j ¼ si � sj

�� ��.
Although it is virtually possible to compute perceived-vibrations by considering

any pair of individuals, three special relationships are considered within the SSO
approach:

14 2 The Metaheuristic Algorithm of the Social-Spider

1. Vibrations Vibci are perceived by the individual i sið Þ as a result of the infor-
mation transmitted by the member c scð Þ who is an individual that has two
important characteristics: it is the nearest member to i and possesses a higher
weight in comparison to iðwc [wiÞ.

Vibci ¼ wc � e�d2i;c ð2:6Þ

2. The vibrations Vibbi perceived by the individual i as a result of the information
transmitted by the member b sbð Þ, with b being the individual holding the best
weight (best fitness value) of the entire population S, such that
wb ¼ max

k2 1;2;...;Nf g
ðwkÞ.

Vibbi ¼ wb � e�d2i;b ð2:7Þ

3. The vibrations Vibfi perceived by the individual i sið Þ as a result of the infor-
mation transmitted by the member f sf

� �
, with f being the nearest female

individual to i.

Vibfi ¼ wf � e�d2i;f ð2:8Þ

Figure 2.1 shows the configuration of each special relationship: (a) Vibci,
(b) Vibbi and (c) Vibfi.

2.3.3 Initializing the Population

Like other evolutionary algorithms, the SSO is an iterative process whose first step
is to randomly initialize the entire population (female and male). The algorithm
begins by initializing the set S of N spider positions. Each spider position, f i or mi,
is a n-dimensional vector containing the parameter values to be optimized. Such
values are randomly and uniformly distributed between the pre-specified lower
initial parameter bound plowj and the upper initial parameter bound phighj , just as it
described by the following expressions:

f 0i;j ¼ plowj þ rand ð0; 1Þ � phighj � plowj

� �
m0

k;j ¼ plowj þ rand ð0; 1Þ � phighj � plowj

� �
i ¼ 1; 2; . . .; Nf ; j ¼ 1; 2; . . .; n k ¼ 1; 2; . . .; Nm; j ¼ 1; 2; . . .; n

ð2:9Þ

where j, i and k are the parameter and individual indexes respectively whereas zero
signals the initial population. The function rand(0,1) generates a random number
between 0 and 1. Hence, fi;j is the j-th parameter of the i-th female spider position.

2.3 The SSO Algorithm 15

2.3.4 Cooperative Operators

Female cooperative operator

Social-spiders perform cooperative interaction over other colony members. The
way in which this behavior takes place depends on the spider gender. Female
spiders present an attraction or dislike over others irrespective of gender. For a
particular female spider, such attraction or dislike is commonly developed over
other spiders according to their vibrations which are emitted over the communal
web. Since vibrations depend on the weight and distance of the members which
have originated them, strong vibrations are produced either by big spiders or other
neighboring members lying nearby the individual which is perceiving them. The
final decision of attraction or dislike over a determined member is taken considering
an internal state which is influenced by several factors such as reproduction cycle,
curiosity and other random phenomena.

Fig. 2.1 Configuration of each special relation: a Vibci, b Vibbi and c Vibfi

16 2 The Metaheuristic Algorithm of the Social-Spider

In order to emulate the cooperative behavior of the female spider, a new operator
is defined. The operator considers the position change of the female spider i at each
iteration. Such position change, which can be of attraction or repulsion, is computed
as a combination of three different elements. The first one involves the change in
regard to the nearest member to i that holds a higher weight and produces the
vibration Vibci. The second one considers the change regarding the best individual
of the entire population S who produces the vibration Vibbi. Finally, the third one
incorporates a random movement.

Since the final movement of attraction or repulsion depends on several random
phenomena, the selection is modeled as a stochastic decision. For this operation, a
uniform random number rm is generated within the range [0,1]. If rm is smaller than
a threshold PF, an attraction movement is generated; otherwise, a repulsion
movement is produced. Therefore, such operator can be modeled as follows:

fkþ 1
i ¼ fki þ a � Vibci � sc � fki

� �þ b � Vibbi � sb � fki
� �þ d � rand� 1

2

� �
with probabilityPF

fki � a � Vibci � sc � fki
� �� b � Vibbi � sb � fki

� �þ d � rand� 1
2

� �
with probability 1� PF

	

ð2:10Þ

where a, b, d and rand are random numbers between [0,1] whereas k represents the
iteration number. The individual sc and sb represent the nearest member to i that
holds a higher weight and the best individual of the entire population S,
respectively.

Under this operation, each particle presents a movement which combines the past
position that holds the attraction or repulsion vector over the local best element sc and
the global best individual sb seen so-far. This particular type of interaction avoids the
quick concentration of particles at only one point and encourages each particle to
search around the local candidate region within its neighborhood scð Þ, rather than
interacting to a particle sbð Þ in a distant region of the domain. The use of this scheme
has two advantages. First, it prevents the particles from moving towards the global
best position, making the algorithm less susceptible to premature convergence.
Second, it encourages particles to explore their own neighborhood thoroughly before
converging towards the global best position. Therefore, it provides the algorithmwith
global search ability and enhances the exploitative behavior of the approach.

Male cooperative operator

According to the biological behavior of the social-spider, male population is
divided into two classes: dominant and non-dominant male spiders. Dominant male
spiders have better fitness characteristics (usually regarding the size) in comparison
to non-dominant. Dominant males are attracted to the closest female spider in the
communal web. In contrast, non-dominant male spiders tend to concentrate in the
center of the male population as a strategy to take advantage of resources that are
wasted by dominant males.

For emulating such cooperative behavior, the male members are divided into two
different groups (dominant members D and non-dominant members ND) according

2.3 The SSO Algorithm 17

to their position with regard to the median member. Male members, with a weight
value above the median value within the male population, are considered the
dominant individuals D. On the other hand, those under the median value are
labeled as non-dominant ND males. In order to implement such computation, the
male populationM M ¼ m1;m2; . . .;mNmf gð Þ is arranged according to their weight
value in decreasing order. Thus, the individual whose weight wNf þm is located in
the middle is considered the median male member. Since indexes of the male
population M in regard to the entire population S are increased by the number of
female members Nf , the median weight is indexed by Nf þm. According to this,
change of positions for the male spider can be modeled as follows:

mkþ 1
i ¼

mk
i þ a � Vibfi � sf �mk

i

� �þ d � rand� 1
2

� �
if wNf þ i [wNf þm

mk
i þ a �

PNm

h¼1
mk

h�wNf þ hPNm

h¼1
wNf þ h

�mk
i

 �
if wNf þ i �wNf þm

8<
: ;

ð2:11Þ

where the individual sf represents the nearest female individual to the male member
i whereas

PNm
h¼1 m

k
h � wNf þ h=

PNm
h¼1 wNf þ h

� �
correspond to the weighted mean of

the male population M.
By using this operator, two different behaviors are produced. First, the set D of

particles is attracted to others in order to provoke mating. Such behavior allows
incorporating diversity into the population. Second, the set ND of particles is
attracted to the weighted mean of the male population M. This fact is used to
partially control the search process according to the average performance of a
sub-group of the population. Such mechanism acts as a filter which avoids that very
good individuals or extremely bad individuals influence the search process.

2.3.5 Mating Operator

Mating in a social-spider colony is performed by dominant males and the female
members. Under such circumstances, when a dominant male mg spider g 2 Dð Þ
locates a set Eg of female members within a specific range r (range of mating), it
mates, forming a new brood snew which is generated considering all the elements of
the set Tg that, in turn, has been generated by the union Eg [mg. It is important to
emphasize that if the set Eg is empty, the mating operation is canceled. The range
r is defined as a radius which depends on the size of the search space. Such radius
r is computed according to the following model:

r ¼
Pn

j¼1 phighj � plowj

� �
2 � n ð2:12Þ

18 2 The Metaheuristic Algorithm of the Social-Spider

In the mating process, the weight of each involved spider (elements of Tg)
defines the probability of influence for each individual into the new brood. The
spiders holding a heavier weight are more likely to influence the new product, while
elements with lighter weight have a lower probability. The influence probability Psi
of each member is assigned by the roulette method, which is defined as follows:

Psi ¼ wiP
j2Tk wj

; ð2:13Þ

where i 2 Tg.
Once the new spider is formed, it is compared to the new spider candidate snew

holding the worst spider swo of the colony, according to their weight values (where
wwo ¼ minl2 1;2;...;Nf g wlð Þ). If the new spider is better than the worst spider, the worst
spider is replaced by the new one. Otherwise, the new spider is discarded and the
population does not suffer changes. In case of replacement, the new spider assumes
the gender and index from the replaced spider. Such fact assures that the entire
population S maintains the original rate between female and male members.

In order to demonstrate the mating operation, Fig. 2.2a illustrates a simple
optimization problem. As an example, it is assumed a population S of eight different

Fig. 2.2 Example of the mating operation: a optimization problem, b initial configuration before
mating and c configuration after the mating operation

2.3 The SSO Algorithm 19

2-dimensional members (N = 8), five females Nf ¼ 5
� �

and three males Nm ¼ 3ð Þ.
Figure 2.2b shows the initial configuration of the proposed example with three
different female members f2 s2ð Þ; f3 s3ð Þ and f4 s4ð Þ constituting the set E2 which is
located inside of the influence range r of a dominant male m2 s7ð Þ. Then, the new
candidate spider snew is generated from the elements f2,f3, f4 and m2 which con-
stitute the set T2. Therefore, the value of the first decision variable snew;1 for the new
spider is chosen by means of the roulette mechanism considering the values already
existing from the set f2;1; f3;1; f4;1;m2;1

� �
. The value of the second decision variable

snew;2 is also chosen in the same manner. Table 2.1 shows the data for constructing
the new spider through the roulette method. Once the new spider snew is formed, its
weight wnew is calculated. As snew is better than the worst member f1 that is present
in the population S, f1 is replaced by snew. Therefore, snew assumes the same gender
and index from f1. Figure 2.2c shows the configuration of S after the mating
process.

Under this operation, new generated particles locally exploit the search space
inside the mating range in order to find better individuals.

2.3.6 Computational Procedure

The computational procedure for the algorithm can be summarized as follows:>

Step 1: Considering N as the total number of n-dimensional
colony members, define the number of male Nm and
females Nf spiders in the entire population S

Nf ¼ floor 0:9� rand � 0:25ð Þ � N½ � andNm ¼ N � Nf ,
where rand is a random number between [0,1] whereas
floorð�Þ maps a real number to an integer number

Step 2: Initialize randomly the female F ¼ f1; f2; . . .; fNf

� �� �
and male M ¼ m1;m2; . . .;mNmf gð Þ members (where
S ¼ s1 ¼ f1; s2 ¼ f2; . . .; sNf ¼ fNf ;

�
sNf þ 1 ¼ m1; sNf þ 2 ¼ m2; . . .; sN ¼ mNmg

and calculate the radius of mating

r ¼
Pn

j¼1
phighj �plowjð Þ
2�n

for (i = 1; i\Nf þ 1; i++)

for (j = 1; j < n + 1; j++)

f 0i;j ¼ plowj þ randð0; 1Þ � phighj � plowj

� �
end for

end for

for (k = 1; k\Nm þ 1; k++)

for (j = 1; j < n + 1; j++)
(continued)

20 2 The Metaheuristic Algorithm of the Social-Spider

(continued)

m0
k;j ¼ plowj þ rand � phighj � plowj

� �
end for

end for

Step 3: Calculate the weight of every spider of S (Sect. 2.3.1)

for (i = 1, i < N + 1; i++)

wi ¼ JðsiÞ�worstS
bestS�worstS

where bestS ¼ max
k2 1;2;...;Nf g

ðJðskÞÞ
and worstS ¼ min

k2 1;2;...;Nf g
ðJðskÞÞ

end for

Step 4: Move female spiders according to the female cooperative
operator (Sect. 2.3.4)

for (i = 1; i\Nf þ 1; i++)

Calculate Vibci and Vibbi (Sect. 2.3.2)

If (rm\PF); where rm 2 randð0; 1Þ
fkþ 1
i ¼ fki þ a � Vibci � sc � fki

� �þb � Vibbi
� sb � fki
� �þ d � rand� 1

2

 �
else if

fkþ 1
i ¼ fki � a � Vibci � sc � fki

� �� b � Vibbi
� sb � fki
� �þ d � rand� 1

2

 �
end if

end for

Step 5: Move the male spiders according to the male
cooperative operator (Sect. 2.3.4)

Find the median male individual wNf þm
� �

from M

for (i = 1; i\Nm þ 1; i++)

Calculate Vibfi (Sect. 2.3.2)

If wNf þ i [wNf þm
� �

mkþ 1
i ¼ mk

i þ a � Vibfi � sf �mk
i

� �þ d � rand� 1
2

� �
Else if

mkþ 1
i ¼ mk

i þ a �
PNm

h¼1
mk

h �wNf þ hPNm

h¼1
wNf þ h

�mk
i

 �
end if

end for

Step 6: Perform the mating operation (Sect. 2.3.5)

for (i = 1; i\Nm þ 1; i++)

If mi 2 Dð Þ
Find Ei

If (Ei is not empty)

Form snew using the roulette method
(continued)

2.3 The SSO Algorithm 21

2.3.7 Discussion About the SSO Algorithm

Evolutionary algorithms (EA) have been widely employed for solving complex
optimization problems. These methods are found to be more powerful than conven-
tional methods based on formal logics or mathematical programming [32]. In an EA
algorithm, search agents have to decide whether to explore unknown search positions
or to exploit already tested positions in order to improve their solution quality. Pure
exploration degrades the precision of the evolutionary process but increases its
capacity to find new potential solutions. On the other hand, pure exploitation allows
refining existent solutions but adversely drives the process to local optimal solutions.
Therefore, the ability of an EA to find a global optimal solutions depends on its
capacity to find a good balance between the exploitation of found-so-far elements and
the exploration of the search space [33]. So far, the exploration–exploitation dilemma
has been an unsolved issue within the framework of evolutionary algorithms.

EA defines individuals with the same property, performing virtually the same
behavior. Under these circumstances, algorithms waste the possibility to add new

Table 2.1 Data for constructing the new spider snew through the roulette method

Spider Position
iw iPs Roulette

1s 1f (–1.9,0.3) 0.00 –

2s 2f (1.4,1.1) 0.57 0.22

3s 3f (1.5,0.2) 0.42 0.16

4s 4f (0.4,1.0) 1.00 0.39

5s 5f (1.0,–1.5) 0.78

6s 1m (–1.3,–1.9) 0.28

7s 2m (0.9,0.7) 0.57 0.22

8s 3m (0.8,–2.6) 0.42

news (0.9,1.1) 1.00

–

–

–

–

(continued)

If wnew [wwoð Þ
swo ¼ snew
end if

end if

end if

end for

Step 7: If the stop criteria is met, the process is finished;
otherwise, go back to Step 3

22 2 The Metaheuristic Algorithm of the Social-Spider

and selective operators as a result of considering individuals with different char-
acteristics. These operators could incorporate computational mechanisms to
improve several important algorithm characteristics such as population diversity or
searching capacities.

On the other hand, PSO and ABC are the most popular metaheuristic algorithms
for solving complex optimization problems. However, they present serious flaws
such as premature convergence and difficulty to overcome local minima [10, 11].
Such problems arise from operators that modify individual positions. In such
algorithms, the position of each agent in the next iteration is updated yielding an
attraction towards the position of the best particle seen so-far (in case of PSO) or
any other randomly chosen individual (in case of ABC). Such behaviors produce
that the entire population concentrates around the best particle or diverges without
control as the algorithm evolves, either favoring the premature convergence or
damaging the exploration–exploitation balance [12, 13].

Different to other EA, at SSO each individual is modeled considering the gender.
Such fact allows incorporating computational mechanisms to avoid critical flaws
such as premature convergence and incorrect exploration–exploitation balance
commonly present in both, the PSO and the ABC algorithm. From an optimization
point of view, the use of the social-spider behavior as a metaphor introduces
interesting concepts in EA: the fact of dividing the entire population into different
search-agent categories and the employment of specialized operators that are
applied selectively to each of them. By using this framework, it is possible to
improve the balance between exploitation and exploration, yet preserving the same
population, i.e. individuals who have achieved efficient exploration (female spiders)
and individuals that verify extensive exploitation (male spiders). Furthermore, the
social-spider behavior mechanism introduces an interesting computational scheme
with three important particularities: first, individuals are separately processed
according to their characteristics. Second, operators share the same communication
mechanism allowing the employment of important information of the evolutionary
process to modify the influence of each operator. Third, although operators modify
the position of only an individual type, they use global information (positions of all
individual types) in order to perform such modification. Figure 2.3 presents a
schematic representation of the algorithm-data-flow. According to Fig. 2.3, the
female cooperative and male cooperative operators process only female or male
individuals, respectively. However, the mating operator modifies both individual
types.

2.4 Experimental Results

A comprehensive set of 19 functions, which have been collected from Refs. [34–40],
has been used to test the performance of the SSO approach. Table 2.4 in the
Appendix presents the benchmark functions used in our experimental study. In the
table, n indicates the function dimension, f ðx�Þ the optimum value of the function, x�

2.3 The SSO Algorithm 23

the optimum position and S the search space (subset of Rn). A detailed description of
each function is given in the Appendix.

2.4.1 Performance Comparison to Other Metaheuristic
Algorithms

We have applied the SSO algorithm to 19 functions whose results have been
compared to those produced by the Particle Swarm Optimization (PSO) method [3]
and the Artificial Bee Colony (ABC) algorithm [4]. These are considered as the
most popular metaheuristic algorithms for many optimization applications. In all
comparisons, the population has been set to 50 individuals. The maximum iteration
number for all functions has been set to 1000. Such stop criterion has been selected
to maintain compatibility to similar works reported in the literature [41, 42].

The parameter setting for each algorithm in the comparison is described as
follows:

1. PSO: The parameters are set to c1 ¼ 2 and c2 ¼ 2; besides, the weight factor
decreases linearly from 0.9 to 0.2 [3].

2. ABC: The algorithm has been implemented using the guidelines provided by its
own reference [4], using the parameter limit = 100.

3. SSO: Once it has been determined experimentally, the parameter PF has been
set to 0.7. It is kept for all experiments in this section.

The experiment compares the SSO to other algorithms such as PSO and ABC.
The results for 30 runs are reported in Table 2.2 considering the following per-
formance indexes: the Average Best-so-far (AB) solution, the Median Best-so-far
(MB) and the Standard Deviation (SD) of best-so-far solution. The best outcome for

Fig. 2.3 Schematic representation of the SSO algorithm-data-flow

24 2 The Metaheuristic Algorithm of the Social-Spider

Table 2.2 Minimization results of benchmark functions of Table 2.4 with n = 30

SSO ABC PSO

f1 xð Þ AB 1.96E−03 2.90E−03 1.00E+03

MB 2.81E−03 1.50E−03 2.08E−09
SD 9.96E−04 1.44E−03 3.05E+03

f2 xð Þ AB 1.37E−02 1.35E−01 5.17E+01

MB 1.34E−02 1.05E−01 5.00E+01

SD 3.11E−03 8.01E−02 2.02E+01

f3 xð Þ AB 4.27E−02 1.13E+00 8.63E+04

MB 3.49E−02 6.11E−01 8.00E+04

SD 3.11E−02 1.57E+00 5.56E+04

f4 xð Þ AB 5.40E−02 5.82E+01 1.47E+01

MB 5.43E−02 5.92E+01 1.51E+01

SD 1.01E−02 7.02E+00 3.13E+00

f5 xð Þ AB 1.14E+02 1.38E+02 3.34E+04

MB 5.86E+01 1.32E+02 4.03E+02

SD 3.90E+01 1.55E+02 4.38E+04

f6 xð Þ AB 2.68E−03 4.06E−03 1.00E+03

MB 2.68E−03 3.74E−03 1.66E−09
SD 6.05E−04 2.98E−03 3.06E+03

f7 xð Þ AB 1.20E+01 1.21E+01 1.50E+01

MB 1.20E+01 1.23E+01 1.37E+01

SD 5.76E−01 9.00E−01 4.75E+00

f8 xð Þ AB 2.14E+00 3.60E+00 3.12E+04

MB 3.64E+00 8.04E−01 2.08E+02

SD 1.26E+00 3.54E+00 5.74E+04

f9 xð Þ AB 6.92E−05 1.44E−04 2.47E+00

MB 6.80E−05 8.09E−05 9.09E−01

SD 4.02E−05 1.69E−04 3.27E+00

f10 xð Þ AB 4.44E−04 1.10E−01 6.93E+02

MB 4.05E−04 4.97E−02 5.50E+02

SD 2.90E−04 1.98E−01 6.48E+02

f11 xð Þ AB 6.81E+01 3.12E+02 4.11E+02

MB 6.12E+01 3.13E+02 4.31E+02

SD 3.00E+01 4.31E+01 1.56E+02

f12 xð Þ AB 5.39E−05 1.18E−04 4.27E+07

MB 5.40E−05 1.05E−04 1.04E−01

SD 1.84E−05 8.88E−05 9.70E+07

f13 xð Þ AB 1.76E−03 1.87E−03 5.74E−01

MB 1.12E−03 1.69E−03 1.08E−05

SD 6.75E−04 1.47E−03 2.36E+00
(continued)

2.4 Experimental Results 25

each function is boldfaced. According to this table, SSO delivers better results than
PSO and ABC for all functions. In particular, the test remarks the largest difference
in performance which is directly related to a better trade-off between exploration
and exploitation. Figure 2.4 presents the evolution curves for PSO, ABC and the
SSO algorithm considering as examples the functions f1, f3, f5, f10, f15 and f19 from
the experimental set. Among them, the rate of convergence of SSO is the fastest,
which finds the best solution in less of 400 iterations on average while the other
three algorithms need much more iterations. A non-parametric statistical signifi-
cance proof known as the Wilcoxon’s rank sum test for independent samples [43,
44] has been conducted over the “average best-so-far” (AB) data of Table 2.2, with
an 5% significance level. Table 2.3 reports the p-values produced by Wilcoxon’s
test for the pair-wise comparison of the “average best so-far” of two groups. Such
groups are constituted by SSO versus PSO and SSO versus ABC. As a null
hypothesis, it is assumed that there is no significant difference between mean values
of the two algorithms. The alternative hypothesis considers a significant difference
between the “average best-so-far” values of both approaches. All p-values reported
in Table 2.3 are less than 0.05 (5% significance level) which is a strong evidence
against the null hypothesis. Therefore, such evidence indicates that SSO results are
statistically significant and it has not occurred by coincidence (i.e. due to common
noise contained in the process).

Table 2.2 (continued)

SSO ABC PSO

f14 xð Þ AB −9.36E+02 −9.69E+02 −9.63E+02

MB −9.36E+02 −9.60E+02 −9.92E+02

SD 1.61E+01 6.55E+01 6.66E+01

f15 xð Þ AB 8.59E+00 2.64E+01 1.35E+02

MB 8.78E+00 2.24E+01 1.36E+02

SD 1.11E+00 1.06E+01 3.73E+01

f16 xð Þ AB 1.36E−02 6.53E−01 1.14E+01

MB 1.39E−02 6.39E−01 1.43E+01

SD 2.36E−03 3.09E−01 8.86E+00

f17 xð Þ AB 3.29E−03 5.22E−02 1.20E+01

MB 3.21E−03 4.60E−02 1.35E−02

SD 5.49E−04 3.42E−02 3.12E+01

f18 xð Þ AB 1.87E+00 2.13E+00 1.26E+03

MB 1.61E+00 2.14E+00 5.67E+02

SD 1.20E+00 1.22E+00 1.12E+03

f19 xð Þ AB 2.74E−01 4.14E+00 1.53E+00

MB 3.00E−01 4.10E+00 5.50E−01

SD 5.17E−02 4.69E−01 2.94E+00

Maximum number of iterations = 1000
Bold data represents the best values

26 2 The Metaheuristic Algorithm of the Social-Spider

0 200 400 600 800 1000
0

1

2

3

4

5

6

7
x 10

4

Iteration(s)

F
itn

es
s

V
al

ue

PSO

ABC

SSO

0 200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10 x 105

Iteration(s)

F
itn

es
s

V
al

ue

PSO
ABC
SSO

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3 x 10 8

Iteration(s)

F
itn

es
s

V
al

ue

PSO
ABC
SSO

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iteration(s)

F
itn

es
s

V
al

ue

PSO

ABC

SSO

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

400

450

Iteration(s)

F
itn

es
s

V
al

ue

PSO
ABC
SSO

0 200 400 600 800 1000
0

5

10

15

20

25

30

Iteration(s)

F
itn

es
s

V
al

ue

PSO
ABC
SSO

PSO

ABC

SSO

PSO

ABC

SSO

PSO

ABC

SSO

PSO

ABC

SSO

PSO

ABC

SSO

(a) (b)

(d)(c)

(e) (f)

Fig. 2.4 Evolution curves for PSO, ABC and the SSO algorithm considering as examples the
functions a f1, b f3, c f5, d f10, e f15 and f f19 from the experimental set

2.4 Experimental Results 27

2.5 Conclusions

In this chapter, a novel metaheuristic algorithm called the Social Spider
Optimization (SSO) has been proposed for solving optimization tasks. The SSO
algorithm is based on the simulation of the cooperative behavior of social-spiders
whose individuals emulate a group of spiders which interact to each other based on
the biological laws of a cooperative colony. The algorithm considers two different
search agents (spiders): male and female. Depending on gender, each individual is
conducted by a set of different evolutionary operators which mimic different
cooperative behaviors within the colony.

In contrast to most of existent metaheuristic algorithms, the SSO approach
models each individual considering two genders. Such fact allows not only to
emulate the cooperative behavior of the colony in a realistic way, but also to
incorporate computational mechanisms to avoid critical flaws commonly delivered
by the popular PSO and ABC algorithms, such as the premature convergence and
the incorrect exploration–exploitation balance.

SSO has been experimentally tested considering a suite of 19 benchmark
functions. The performance of SSO has been also compared to the following
metaheuristic algorithms: the Particle Swarm Optimization method (PSO) [16], and
the Artificial Bee Colony (ABC) algorithm [38]. Results have confirmed a

Table 2.3 p-values produced by Wilcoxon’s test comparing SSO versus ABC and SSO versus
PSO, over the “average best-so-far” (AB) values from Table 2.2

Function SSO versus ABC SSO versus PSO

f1 xð Þ 0.041 1.8E−05

f2 xð Þ 0.048 0.059

f3 xð Þ 5.4E−04 6.2E−07

f4 xð Þ 1.4E−07 4.7E−05

f5 xð Þ 0.045 7.1E−07

f6 xð Þ 2.3E−04 5.5E−08

f7 xð Þ 0.048 0.011

f8 xð Þ 0.017 0.043

f9 xð Þ 8.1E−04 2.5E−08

f10 xð Þ 4.6E−06 1.7E−09

f11 xð Þ 9.2E−05 7.8E−06

f12 xð Þ 0.022 1.1E−10

f13 xð Þ 0.048 2.6E−05

f14 xð Þ 0.044 0.049

f15 xð Þ 4.5E−05 7.9E−08

f16 xð Þ 2.8E−05 4.1E−06

f17 xð Þ 7.1E−04 6.2E−10

f18 xð Þ 0.013 8.3E−10

f19 xð Þ 4.9E−05 5.1E−08

28 2 The Metaheuristic Algorithm of the Social-Spider

acceptable performance of the SSO method in terms of the solution quality of the
solution for all tested benchmark functions.

The SSO’s remarkable performance is associated with two different reasons:
(i) their operators allow a better particle distribution in the search space, increasing
the algorithm’s ability to find the global optima; and (ii) the division of the pop-
ulation into different individual types, provides the use of different rates between
exploration and exploitation during the evolution process.

Appendix: List of Benchmark Functions

See Table 2.4.

Appendix: List of Benchmark Functions 29

T
ab

le
2.
4

T
es
t
fu
nc
tio

ns
us
ed

in
th
e
ex
pe
ri
m
en
ta
l
st
ud

y

N
am

e
Fu

nc
tio

n
S

D
im

M
in
im

um

Sp
he
re

f 1
ðx
Þ¼

P n i¼
1
x2 i

�1
00
;1
00

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Sc
hw

ef
el

2.
22

f 2
ðx
Þ¼

P n i¼
1
x ij
jþ
Q n i¼

1
x ij
j

�1
0;
10

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Sc
hw

ef
el

1.
2

f 3
ðx
Þ¼

P n i¼
1

P i j¼
1
x j

�
� 2

�1
00
;1
00

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

F4
f 4

xð
Þ¼

41
8:
98
29
n
þ
P n i¼

1
�x

i
si
n

ffiffiffiffiffiffi x ij
j

p �
�

�
�

�1
00
;1
00

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

R
os
en
br
oc
k

f 5
ðx
Þ¼

P n�
1

i¼
1

10
0ð
x i

þ
1
�
x2 i
Þ2
þ
ðx i

�
1Þ

2
h

i
�3

0;
30

½
�n

n
¼

30
x�

¼
ð1
;.
..
;1
Þ;

fðx
� Þ

¼
0

St
ep

f 6
ðx
Þ¼

P n i¼
1

x i
þ
0:
5

b
c

ð
Þ2

�1
00
;1
00

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Q
ua
rt
ic

f 7
ðx
Þ¼

P n i¼
1
ix

4 i
þ
ra
nd
om

0;
1

ð
Þ

�1
:2
8;
1:
28

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

D
ix
on

an
d
Pr
ic
e

f 8
ðx
Þ¼

x 1
�
1

ð
Þ2
þ
P n i¼

1
i
2x

2 i
�
x i
�1

�
� 2

�1
0;
10

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

L
ev
y

f 9
ðx
Þ¼

0:
1

si
n2

3p
x 1

ð
Þþ

X n i¼
1
x i
�
1

ð
Þ2

1
þ

si
n2

3p
x i
þ
1

ð
Þ

�

n
þ

x n
�
1

ð
Þ2

1
þ

si
n2

2p
x n

ð
Þ

�o þ

X n i¼
1
u
x i
;5
;1
00
;4

ð
Þ;

u
x i
;a
;k
;m

ð
Þ¼

k
x i
�
a

ð
Þm

x i
[

a
0

�a
\
x i
\
a

k
�x

i
�
a

ð
Þm

x i
\

�
a

8 < :

�1
0;
10

½
�n

n
¼

30
x�

¼
ð1
;.
..
;1
Þ;

fðx
� Þ

¼
0

Su
m

of
sq
ua
re
s

f 1
0
ðx
Þ¼

P n i¼
1
ix

2 i
�1

0;
10

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Z
ak
ha
ro
v

f 1
1
xð
Þ¼

P n i¼
1
x2 i

þ
P n i¼

1
0:
5i
x i

�
� 2 þ

P n i¼
1
0:
5i
x i

�
� 4

�5
;1
0

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

(c
on

tin
ue
d)

30 2 The Metaheuristic Algorithm of the Social-Spider

T
ab

le
2.
4

(c
on

tin
ue
d)

N
am

e
Fu

nc
tio

n
S

D
im

M
in
im

um

Pe
na
liz
ed

f 1
2
ðx
Þ¼

p n
10

si
nð
py

1
Þþ

X n
�1 i¼
1
ðy i

�
1Þ

2
1
þ
10

si
n2
ðp
y i

þ
1
Þ

�

n
þ
ðy n

�
1Þ

2
o þ

X n i¼
1
uð
x i
;1
0;
10
0;
4Þ

y i
¼

1
þ

x i
þ
1

ð
Þ

4
u
x i
;a
;k
;m

ð
Þ¼

k
x i
�
a

ð
Þm

0
k
�x

i
�
a

ð
Þm

x i
[

a
�a

�
x i
�
a

x i
\
a

8 < :
�5

0;
50

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Pe
na
liz
ed

2
f 1
3
ðx
Þ¼

0:
1

si
n2
ð3
px

1
Þþ

X n i¼
1
ðx i

�
1Þ

2
1
þ

si
n2
ð3
px

i
þ
1Þ

�

n
þ
ðx n

�
1Þ

2
1
þ

si
n2
ð2
px

n
Þ

�o þ

X n i¼
1
uð
x i
;5
;1
00
;4
Þ

w
he
re

u
x i
;a
;k
;m

ð
Þi
s
th
e
sa
m
e
as

Pe
na
liz
ed

fu
nc
tio

n

�5
0;
50

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Sc
hw

ef
el

f 1
4
ðx
Þ¼

P n i¼
1
�x

i
si
n

ffiffiffiffiffiffi x ij
j

p �
�

�5
00
;5
00

½
�n

n
¼

30
x�

¼
42
0;
..
.;
42
0

ð
Þ;

fðx
� Þ

¼
�4

18
:9
82
9
�
n

R
as
tr
ig
in

f 1
5
ðx
Þ¼

P n i¼
1
x2 i

�
10

co
sð2

px
iÞþ

10

�
�5

:1
2;
5:
12

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

A
ck
le
y

f 1
6
ðx
Þ¼

�2
0
ex
p

�0
:2

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffi
1 n

X n i¼
1
x2 i

r

!

�
ex
p

1 n

X n i¼
1
co
s
2p

x i
ð

Þ

� þ
20

þ
ex
p

�3
2;
32

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

G
ri
ew

an
k

f 1
7
xð
Þ¼

1
40
00

P n i¼
1
x2 i

�
Q n i¼

1
co
s

x i
ffi ip��
þ
1

�6
00
;6
00

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Po
w
el
ll

f 1
8
xð
Þ¼

X n
=
k

i¼
1
x 4

i�
3
þ
10
x 4

i�
2

ð
Þ2
þ
5
x 4

i�
1
�
x 4

i
ð

Þ2

þ
x 4

i�
2
�
x 4

i�
1

ð
Þ4
þ
10

x 4
i�

3
�
x 4

i
ð

Þ4
�4

;5
½

�n
n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Sa
lo
m
on

f 1
9
xð
Þ¼

�
co
s
2p

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

P n i¼
1
x2 i

p
�

� þ
0:
1
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

P n i¼
1
x2 i

þ
1

p
�1

00
;1
00

½
�n

n
¼

30
x�

¼
ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

Appendix: List of Benchmark Functions 31

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press Inc, New York (1999)

2. Kassabalidis, I., El-Sharkawi, M.A., Marks II, R.J., Arabshahi, P., Gray, A.A.: Swarm
intelligence for routing in communication networks. In: Global Telecommunications
Conference, GLOBECOM ’01, IEEE, vol. 6, pp. 3613–3617 (2001)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

4. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University
(2005)

5. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Syst. Mag. 22(3), 52–67 (2002)

6. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm.
Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

7. Yang, X.S: Engineering Optimization: An Introduction with Metaheuristic Applications.
Wiley, USA (2010)

8. Rajabioun, R.: Cuckoo Optimization Algorithm. Appl. Soft Comput. 11, 5508–5518 (2011)
9. Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443

(1998)
10. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based

particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)
11. Wan-li, X., Mei-qing, A.: An efficient and robust artificial bee colony algorithm for numerical

optimization. Comput. Oper. Res. 40, 1256–1265 (2013)
12. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle

swarm optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)
13. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The best-so-far selection in artificial bee

colony algorithm. Appl. Soft Comput. 11, 2888–2901 (2011)
14. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46

(2003)
15. Lubin, T.B.: The evolution of sociality in spiders. In Brockmann, H.J. (ed.) Advances in the

Study of Behavior, vol. 37, pp. 83–145 (2007)
16. Uetz, G.W.: Colonial web-building spiders: balancing the costs and benefits of group-living.

In: Choe, E.J., Crespi, B. (eds.) The Evolution of Social Behavior in Insects and Arachnids,
pp. 458–475. Cambridge University Press, Cambridge (1997)

17. Aviles, L.: Sex-ratio bias and possible group selection in the social spider anelosimus eximius.
Am. Nat. 128(1), 1–12 (1986)

18. Burgess, J.W.: Social spacing strategies in spiders. In: Rovner, P.N. (ed.) Spider
Communication: Mechanisms and Ecological Significance, pp. 317–351. Princeton
University Press, Princeton (1982)

19. Maxence, S.: Social organization of the colonial spider Leucauge sp. in the neotropics:
vertical stratification within colonies. J Arachnology 38, 446–451 (2010)

20. Yip, E.C., Powers, K.S., Avilés, L.: Cooperative capture of large prey solves scaling
challenge faced by spider societies. Proc. Nat. Acad. Sci. U.S.A. 105(33), 11818–11822
(2008)

21. Oster, G., Wilson, E.: Caste and Ecology in the Social Insects. Princeton University Press,
Princeton (1978)

22. Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration. ISBN
0-674-48525-4 (1994)

23. Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, USA. ISBN
0-674-04075-9 (1990)

32 2 The Metaheuristic Algorithm of the Social-Spider

24. Avilés, L.: Causes and consequences of cooperation and permanent-sociality in spiders. In:
Choe, B.C. (ed.) The Evolution of Social Behavior in Insects and Arachnids, pp. 476–498.
Cambridge University Press, Cambridge (1997)

25. Rayor, E.C.: Do social spiders cooperate in predator defense and foraging without a web?
Behav. Ecol. Sociobiol. 65(10), 1935–1945 (2011)

26. Gove, R., Hayworth, M., Chhetri, M., Rueppell, O.: Division of labour and social insect
colony performance in relation to task and mating number under two alternative response
threshold models. Insect. Soc. 56(3), 19–331 (2009)

27. Rypstra, A.L., Prey Size, R.S.: Prey perishability and group foraging in a social spider.
Oecologia 86(1), 25–30 (1991)

28. Pasquet, A.: Cooperation and prey capture efficiency in a social spider, Anelosimus eximius
(Araneae, Theridiidae). Ethology 90, 121–133 (1991)

29. Ulbrich, K., Henschel, J.: Intraspecific competition in a social spider. Ecol. Model. 115(2–3),
243–251 (1999)

30. Jones, T., Riechert, S.: Patterns of reproductive success associated with social structure and
microclimate in a spider system. Anim. Behav. 76(6), 2011–2019 (2008)

31. Damian, O., Andrade, M., Kasumovic, M.: Dynamic population structure and the evolution of
spider mating systems. Adv. Insect Physiol. 41, 65–114 (2011)

32. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2008)
33. Chen, D.B., Zhao, C.X.: Particle swarm optimization with adaptive population size and its

application. Appl. Soft Comput. 9(1), 39–48 (2009)
34. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global

optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1995)
35. Yang, E., Barton, N.H., Arslan, T., Erdogan, A.T.: A novel shifting balance theory-based

approach to optimization of an energy-constrained modulation scheme for wireless sensor
networks. In: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2008,
Hong Kong, China, IEEE, pp. 2749–2756, 1–6 June 2008

36. Duan, X., Wang, G.G., Kang, X., Niu, Q., Naterer, G., Peng, Q.: Performance study of
mode-pursuing sampling method. Eng. Optim. 41(1), 1–21 (2009)

37. Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle swarm
optimization, and evolutionary algorithms on numerical benchmark problems. In: Congress
on Evolutionary Computation, 2004, CEC 2004, vol. 2, pp. 1980–1987, 19–23 June 2004

38. Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study of
differential evolution variants for global optimization. In: Proceedings of the 8th Annual
Conference on Genetic and Evolutionary Computation (GECCO ’06), ACM, New York,
USA, pp. 485–492 (2006)

39. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. App. Math.
Comput. 214(1), 108–132 (2009). ISSN 0096-3003

40. Krishnanand, K.R., Nayak, S.K., Panigrahi, B.K., Rout, P.K.: Comparative study of five
bio-inspired evolutionary optimization techniques. In: World Congress on Nature &
Biologically Inspired Computing, NaBIC, pp. 1231–1236 (2009)

41. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl.
Math. Comput. 185(1), 382–387 (2007)

42. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search
algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

43. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
44. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for

analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005 Special
session on real parameter optimization. J Heurist (2008). https://doi.org/10.1007/s10732-008-
9080-4

References 33

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4

Chapter 3
Calibration of Fractional Fuzzy
Controllers by Using the Social-Spider
Method

Fuzzy controllers (FCs) based on integer concepts have proved their interesting
capacities in several engineering domains. The fact that dynamic processes can be
more precisely modeled by using fractional systems has generated a great interest in
considering the design of FCs under fractional principles. In the design of fractional
FCs, the parameter adjustment operation is converted into a multidimensional
optimization task where fractional orders, and controller parameters, are assumed as
decision elements. In the design of fractional FCs, the complexity of the opti-
mization problem produces multi-modal error surfaces which are significantly hard
to solve. Several metaheuristic algorithms have been successfully used to identify
the optimal elements of fractional FCs. But, most of them present a big weakness
since they usually get sub-optimal solutions as a result of their improper balance
between exploitation and exploration in their search process. This chapter analyses
the optimal parameter calibration of fractional FCs. To determine the best elements,
the approach employs the Social Spider Optimization (SSO) algorithm, which is
based on the simulation of the cooperative operation of social-spiders. In SSO,
candidate solutions represent a group of spiders, which interact with each other by
considering the biological concepts of the spider colony. Different to most of the
metaheuristic algorithms, the approach explicitly avoids the concentration of
solutions in the promising positions, eliminating critical defects such as the pre-
mature convergence and the deficient balance of exploration–exploitation.

3.1 Introduction

A fractional order model is a system that is characterized by a fractional differential
equation containing derivatives of non-integer order. In fractional calculus, the
integration and the differentiation operators are generalized into a non-integer order
element, where is a fractional number and a and t symbolize the operator limits
[1, 2]. Several dynamic systems can be more accurately described and controlled by

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_3&domain=pdf

fractional models in comparison to integer order schemes. For this reason, in the
last decade, the fractional order controllers [3–5] have attracted the interests of
several research communities.

A fractional-order controller incorporates an integrator of order and a differen-
tiator of order. The superior performance of such controllers with regard to con-
ventional PIDs has been widely demonstrated in the literature [6].

On the other hand, fuzzy logic [7] provides an alternative method to design
controllers through the use of heuristic information. Remarkably, such heuristic
information may come from a human-operator who directly manipulates the pro-
cess. In the fuzzy logic methodology, a human operator defines a set of rules on
how to control a process, then incorporated it into a fuzzy controller that emulates
the decision-making process of the operator [8].

Fractional fuzzy controllers (FFCs) are the results of the combination of con-
ventional fuzzy controllers and fractional operators. Under such combination, FFCs
exhibit better results than conventional FCs for an extensive variety of dynamical
systems. This capacity is attributed to the additional flexibility offered by the
inclusion of the fractional parameters.

Parameter calibration is an important step to implement applications with FFCs.
This procedure is long and time consuming, since it is commonly conducted
through trial and error. Therefore, the problem of parameter estimation in FFCs can
be handled by evolutionary optimization methods. In general, they have demon-
strated to deliver interesting results in terms of accuracy and robustness [5]. In these
methods, an individual is represented by a candidate parameter set, which sym-
bolizes the configuration of a determined fractional fuzzy controller. Just as the
evolution process unfolds, a set of evolutionary operators is applied in order to
produce better individuals. The quality of each candidate solution is evaluated
through an objective function whose final result represents the performance of the
parameter set in terms of the produced error. Some examples of such approaches
being applied to the identification of fractional order systems have involved
methods such as Genetic Algorithms (GA) [5], Particle Swarm Optimization
(PSO) [9], Harmony Search (HS) [10], Gravitational Search Algorithm (GSA) [11]
and Cuckoo Search (CS) [12]. Although such algorithms present interesting results,
they have exhibited an important limitation: they frequently obtained sub-optimal
solutions as a consequence of the limited balance between exploration and
exploitation in their search strategies. Such limitation is associated to the evolu-
tionary operators that have been employed to modify individual positions. In such
algorithms, during their operation, the position of each individual for the next
iteration is updated, producing an attraction towards the position of the best particle
seen so far or towards other promising individuals. Therefore, as the algorithm
evolves, such behaviors cause that the entire population concentrate rapidly around
the best particles, favoring the premature convergence and damaging the appro-
priate exploration of the search space [13, 14].

The Social Spider Optimization (SSO) algorithm [15] is a recent evolutionary
computation method that is inspired on the emulation of the collaborative behavior
of social-spiders. In SSO, solutions imitate a set of spiders, which cooperate to each

36 3 Calibration of Fractional Fuzzy Controllers by Using …

other based on the natural laws of the cooperative colony. Unlike the most popular
evolutionary algorithms such as GA [16], PSO [17], HS [18], GSA [19] and CS
[20], it explicitly evades the concentration of individuals in the best positions,
avoiding critical flaws such as the premature convergence to sub-optimal solutions
and the limited balance of exploration–exploitation. Such characteristics have
motivated the use of SSO to solve an extensive variety of engineering applications
such as energy theft detection [21], machine learning [22], electromagnetics [23],
image processing [24] and integer programming problems [25].

This chapter presents a method for the optimal parameter calibration of fractional
FCs based on the SSO algorithm. Under this approach, the calibration process is
transformed into a multidimensional optimization problem where fractional orders,
as well as controller parameters of the fuzzy system, are considered as a candidate
solution to the calibration task. In the method, the SSO algorithm searches the entire
parameter space while an objective function evaluates the performance of each
parameter set. Conducted by the values of such objective function, the group of
candidate solutions are evolved through the SSO algorithm so that the optimal
solution can be found. Experimental evidence shows the effectiveness and
robustness of the method for calibrating fractional FCs. A comparison with similar
methods such as the Genetic Algorithms (GA), the Particle Swarm Optimization
(PSO), the Harmony Search (HS), the Gravitational Search Algorithm (GSA) and
the Cuckoo Search (CS) on different dynamical systems has been incorporated to
demonstrate the performance of this approach. Conclusions of the experimental
comparison are validated through statistical tests that properly support the
discussion.

The Chapter is organized as follows: Sect. 3.2 introduces the concepts of frac-
tional order systems; Sect. 3.3 describes the fractional fuzzy controller used in the
calibration; Sect. 3.4 presents the characteristics of SSO; Sect. 3.5 formulates the
parameter calibration problem; Sect. 3.6 shows the experimental results while some
final conclusions are discussed in Sect. 3.7.

3.2 Fractional-Order Models

Dynamical fractional-order systems are modeled by using differential equations,
which involve non-integer integral and/or derivative operators [26, 27]. Since these
operators produce irrational continuous transfer functions, or infinite dimensional
discrete transfer functions, fractional models are normally studied through simu-
lation tools instead of analytical methods [5, 28–33]. The remainder of this section
provides a background of the fundamental aspects of the fractional calculus, and the
discrete integer-order approximations of fractional order operators that are used in
this paper.

3.1 Introduction 37

3.2.1 Fractional Calculus

Fractional calculus is a generalization of integration and differentiation to the
non-integer order fundamental operator. The differential-integral operator, denoted
by aDa

t , takes both the fractional derivative and the fractional integral into a single
expression defined as:

aD
a
t ¼

da
dta ; a[0;
1; a ¼ 0;Rt

a
ðdsÞa; a\0:

8>><
>>: ð3:1Þ

where a and t represent the operation bounds, whereas a 2 <. The commonly used
definitions for fractional derivatives are the Grünwald-Letnikov, Riemann-Liouville
[34] and Caputo [35]. According to the Grünwald-Letnikov approximation, the
fractional-order derivative of order a is defined as follows:

Da
t f ðtÞ ¼ lim

h!0

1
ha
X1
j¼0

�1ð Þ j a
j

� �
f ðt � jhÞ ð3:2Þ

In the numerical calculation of fractional-order derivatives, the explicit numer-
ical approximation of the a-th derivative at the points kh; ðk ¼ 1; 2; . . .Þ maintains
the following form [36]:

ðk�Mm=hÞD
a
tk f ðtÞ � h�a

Xk
j¼0

�1ð Þ j a
j

� �
f ðtk � jÞ ð3:3Þ

where Mm is the memory length tk ¼ kh, h is the time step and �1ð Þ j a
j

� �
are the

binomial coefficients. For their calculation, we can use the following expression:

cðaÞ0 ¼ 1; cðaÞj ¼ 1� 1þ a
j

� �
cðaÞj�1 ð3:4Þ

Then, the general numerical solution of the fractional differential equation is
defined as follows:

yðtkÞ ¼ f ðyðtkÞ; tkÞha �
Xk
j¼1

cðaÞj yðtk�jÞ ð3:5Þ

38 3 Calibration of Fractional Fuzzy Controllers by Using …

3.2.2 Approximation of Fractional Operators

Assuming zero initial conditions, the fractional operator is defined in the Laplace
domain as LðaDa

t f ðtÞÞ ¼ saFðsÞ. Several approaches [37–39] have been proposed
for producing discrete versions of continuous operators of type sa. In this chapter,
the Grünwald-Letnikov approximation has been used due to its interesting prop-
erties for generating discrete equivalences [40–43]. Under this method, the dis-
cretization considers the following model:

Daðz�1Þ ¼ 1� z�1

Tc

� �
¼
X1
k¼0

1
Tc

� �a

ð�1Þ a
k

� �
z�k ¼

X1
k¼0

haðkÞz�k; ð3:6Þ

where haðkÞ is the impulse response sequence, whereas Tc represents the sampling
frequency. It has been already demonstrated in the literature [36] that rational
models converge faster than polynomial methods. Consequently, the Padé
approximation approach has been employed to obtain a fractional model from the
impulse response by using the definition provided in Eq. 3.7.

Hðz�1Þ ¼ b0 þ b1z�1 þ � � � þ bmz�m

1þ a1z�1 þ � � � þ anz�n
¼
X1
k¼0

hðkÞz�k; m� n ð3:7Þ

where m, n and the parameters ai and bi are calculated by adjusting the first
m + n + 1 coefficients of haðkÞ.

3.3 Fuzzy Controller

A fuzzy controller (FC) is a nonlinear system produced from empirical rules. Such
empirical information may come from a human operator who directly manipulates
the process. Each rule, just as the natural language, presents an IF-THEN format.
The collection of all rules constitutes the rule base that emulates the
decision-making process of the operator. An important characteristic of one FC is
the partitioning of the control scheme into regions [44]. At each region, the control
strategy can be simply modeled by using a rule that associates the region under
which certain actions are performed. Despite proposing several configurations of
FCs in the literature, the fuzzy fractional PDa þ I has been selected since it presents
interesting characteristics of robustness and stability [5]. In this structure, the
integral error is incorporated to the output of the fuzzy fractional PDa controller.
Under this configuration, the integral action supports the elimination of the final
steady state error.

The controller configuration is shown in Fig. 3.1. In the Figure, E, DE and IE
represents the error, the fractional derivative error and the integral error, respec-
tively. It has four gains Kp;Kd;Ki and Ku to be calibrated, the first three gains

3.2 Fractional-Order Models 39

correspond to the input and the last one to the output. The control action u is a
nonlinear mapping function of E, DE and IE with the following model:

uðkÞ ¼ f ðE;CEÞþ IEð ÞKu

uðkÞ ¼ f Kpe;KdDae
� �þKiIe

� 	 � Ku;
ð3:8Þ

A fuzzy controller consists of three conceptual components: a rule base, which
contains a selection of fuzzy rules; a database, which defines the membership
functions used by the fuzzy rules; and a reasoning mechanism, which performs the
inference procedure. There are two different fuzzy systems: the Mamdani [45] and
the Takagi-Sugeno (TS) [46]. In order to maintain compatibility to similar works
reported in the literature, the rule base and the membership functions are selected
the same as [5, 9]. Under such conditions, Table 3.1 shows the rule base used by
the fuzzy controller to be calibrated. In Table 3.1, NL, NM, NS, ZR, PS, PM and
PL represent the linguistic variables “Negative Large”, “Negative Medium”,
“Negative Small”, “Zero”, “Positive Small”, “Positive Medium” and “Positive
Large”, respectively. Figure 3.2 shows the membership functions that model the
premises and the consequences of each rule. Consequently, a determined rule from
Table 3.1 can be constructed in the following form:

If E isNL andDE isZR then v isNL

e
pK

dK

iK

uK

DD

I

++
v

u

E

DE

IE

Fuzzy
Controller

Fig. 3.1 Fuzzy PDa þ I controller

Table 3.1 Rule base of the controller to be calibrated

E/DE NL NM NS ZR PS PM PL

NL NL NL NL NL NM NS ZR

NM NL NL NL NM NS ZR PS

NS NL NL NM NS ZR PS PM

ZR NL NM NS ZR PS PM PL

PS NM NS ZR PS PM PL PL

PM NS ZR PS PM PL PL PL

PL ZR PS PM PL PL PL PL

40 3 Calibration of Fractional Fuzzy Controllers by Using …

In this rule, the control strategy can be simply modeled as follows: if the error is
“Negative Large” and the error derivate “Zero” then the output is “Negative Large”.
The acting of all rules produces the control strategy which is shown by the non-
linear surface in Fig. 3.2.

3.4 Social Spider Optimization (SSO)

The social spider optimization (SSO) algorithm [15] is an evolutionary computation
method that emulates the cooperative behavior of spiders within a communal
colony. SSO has been designed to find the global solution of a nonlinear opti-
mization problem with box constraints in the form:

minimize f ðxÞ x ¼ ðx1; . . .; xdÞ 2 R
d

subject to x 2 X
ð3:9Þ

where f : Rd ! R is a nonlinear function whereas X ¼
x 2 R

d

lh � xh � uh; h ¼ 1; . . .; d

� �
is a bounded feasible space, constrained by the

lower ðlhÞ and upper ðuhÞ limits.
SSO utilizes a population S of N candidate solutions to solve the problem

formulated in Eq. 3.1. Each candidate solution represents a spider position whereas
the general web symbolizes the search space X. In SSO, the spider population S is
classified into two categories: males (M) and females (F). In order to simulate a real
spider colony, in SSO, the number Nf of females F is randomly selected within a
range of 65–90% of the entire population S, whereas the rest Nm is considered as

1 0.5

0.5

0

0

-0.5

-0.5

-1
-1

0
E

CE

V

1

Fig. 3.2 Control surface

3.3 Fuzzy Controller 41

male individuals ðNm ¼ N � Nf Þ. Under such conditions, the Group F assembles
the set of female individuals ðF ¼ ff1; f2; . . .; fNf gÞ whereas M groups the male
members ðM ¼ fm1;m2; . . .;mNmgÞ, where S ¼ F[M ðS ¼ s1; s2; . . .; sNf gÞ,
such that S ¼ s1 ¼ f1; s2 ¼ f2; . . .; sNf ¼ fNf ; sNf þ 1 ¼ m1; sNf þ 2 ¼ m2; . . .;

�
sN ¼ mNmg.

In the approach, each spider i maintain a weight wi according to its solution
quality. Therefore, wi is calculated as follows:

wi ¼ fitnessi � worst
best � worst

ð3:10Þ

where fitnessi represents the fitness value produced by the evaluation of the i-th
spider’s position, i 2 1; . . .;N. best and worst symbolize the best fitness value and
worst fitness value of the whole population S, respectively.

In the optimization process, the main mechanism of SSO is the information
exchange, which it is simulated trough vibrations produced in the communal web.
The vibration that a spider i perceives from a spider j is modeled with the following
expression:

Vi;j ¼ wje
d2i;j ð3:11Þ

where wj represents the weight of the spider j and d2i;j the distance between both
spiders. It is considered that each spider i is only able to perceive three types of
vibrations Vi;c, Vi;b and Vi;f .

Vi;c is the vibration transmitted by the nearest individual c with a higher weight
with regard to iðwc [wiÞ. Vi;b represents the vibration emitted by best element of
the entire population S. Finally, Vi;f considers the vibration produced by the nearest
female spider. This vibration type is only applicable if i is a male individual.

In the operation of SSO, a population of N spiders is processed from the initial
stage (k = 0) to a determined number gen of iterations ðk ¼ genÞ. Each individual
depending on its gender is conducted by a set of different evolutionary operators.
Therefore, in case of the female members, a new position fkþ 1

i is generated by
modifying the current element location fki . The modification is randomly controlled
by using a probability factor PF. Consequently, the movement is produced in
relation to other spiders according their vibrations, which are transmitted trough the
communal web:

fkþ 1
i ¼ fki þ a � Vi;c � ðsc � fki Þþ b � Vi;b � ðsb � fki Þþ d � ðrand� 1

2Þ with probability PF
fki � a � Vi;c � ðsc � fki Þ � b � Vi;b � ðsb � fki Þþ d � ðrand� 1

2Þ with probability1� PF

ð3:12Þ

here a, b, d and rand represent random numbers between [0,1] whereas k is the
iteration number. The individuals sc and sb symbolize the nearest member to i that

42 3 Calibration of Fractional Fuzzy Controllers by Using …

maintains a higher weight and the best element of the complete population S,
respectively.

On the other hand, male spider members are classified into two types:
non-dominant (ND) and dominant (D). The dominant group D is composed by the
half of the male individuals whose fitness values are better with regard to the
complete male set. Consequently, the non-dominant (ND) category collects the rest
of the male elements. In the optimization process, male members are operated
according to the following model:

mkþ 1
i ¼

mk
i þ a � Vi;f � ðsf �mk

i Þþ d � ðrand� 1
2Þ if mk

i 2 D

mk
i þ a �

P
h2ND

mk
h�whP

h2ND
wh

�mk
i

 !
if mk

i 2 ND

8><
>: ð3:13Þ

where sf symbolizes the nearest female element to the male individual i.
The final operation in SSO is mating. It is performed between dominant males

and the female individuals. Under this operation, a new individual snew is produced
by the combination of a dominant male mg and other female members within a
specific range r. The weight of each involved element defines the probability of
influence of each spider into snew. The elements with heavier weights are more
likely to influence the new individual snew. Once snew is generated, it is compared
with the worst element of the colony. If snew is better than the worst spider, the
worst spider is replaced by snew. Otherwise, snew is discarded. Figure 3.3 illustrates
the operations of the optimization process performed by the SSO algorithm. More
details can be found in [15].

3.5 Problem Formulation

In the design stage of fractional FCs, the parameter calibration process is transformed
into a multidimensional optimization problem where fractional orders, as well as
controller parameters of the fuzzy system, are both considered as decision variables.
Under this approach, the complexity of the optimization problem tends to produce
multimodal error surfaces whose cost functions are significantly difficult to minimize.

This chapter presents an algorithm for the optimal parameter calibration of
fractional FCs. To determine the parameters, the estimation method uses the Social
Spider Optimization (SSO) method. Different to the most of existent evolutionary
algorithms, the method explicitly evades the concentration of individuals in the best
positions, avoiding critical flaws such as the premature convergence to sub-optimal
solutions and the limited balance of exploration–exploitation.

Therefore, the calibration process consists of finding the optimal controller
parameters that present the best possible performance for the regulation of a
dynamical system. Figure 3.4 illustrates the SSO scheme for the parameter cali-
bration process.

3.4 Social Spider Optimization (SSO) 43

Fig. 3.3 Operations of the optimization process performed by the SSO algorithm

Fig. 3.4 SSO scheme for the parameter calibration process

44 3 Calibration of Fractional Fuzzy Controllers by Using …

Under such conditions, the fractional fuzzy controller parameters
ða;Kp;Kd;Ki;KuÞ represent the dimensions of each candidate solution (spider posi-
tion) for the calibration problem. To evaluate the performance of the fractional fuzzy
controller under each parameter configuration (candidate solution), the Integral Time
Absolute Error (ITAE) [47] criterion has been considered. The ITAE index J
measures the similarity between the closed-loop step response y(t) produced by a
determined parameter configuration ða;Kp;Kd;Ki;KuÞ and the step function r(t).
Therefore, the quality of each candidate solution is evaluated according to the fol-
lowing model:

Jða;Kp;Kd ;Ki;KuÞ ¼
Z1
0

t rðtÞ � yðtÞj j ð3:14Þ

Thereby, the problem of parameter calibration can be defined by the following
optimization formulation:

minimize JðxÞ x ¼ ða;Kp;Kd ;Ki;KuÞ 2 R
5

subject to 0� a� 3
0�Kp � 5
0�Kd � 5
0�Ki � 5
0�Ku � 5

ð3:15Þ

3.6 Numerical Simulations

This section presents the performance of the SSO scheme for the calibration of
fractional FCs considering several dynamical systems. The algorithm is also
evaluated in comparison to other similar approaches that are based on evolutionary
algorithms. To test the performance of the SSO approach, the technique uses a
representative set of three transfer functions that have been previously employed.
Equation 3.4–3.6 present the transfer functions that are used in our simulations.
Such functions involve three different system categories: High-order plants ðG1ðsÞÞ,
non-minimum systems ðG2ðsÞÞ and dynamical fractional systems ðG3ðsÞÞ.

G1ðsÞ ¼ 1
ðsþ 1Þð1þ 0:5sÞð1þ 0:25sÞð1þ 0:125sÞ ð3:16Þ

G2ðsÞ ¼ 1� 5s

ðsþ 1Þ3 ð3:17Þ

3.5 Problem Formulation 45

G3ðsÞ ¼ 1
ðs1:5 þ 1Þ ð3:18Þ

In the experiments, we have applied the SSO algorithm to calibrate the fractional
parameters for each dynamical systems, and the results are compared to those
produced by the Genetic Algorithms (GA) [5], Particle Swarm Optimization
(PSO) [9], Harmony Search (HS) [10], Gravitational Search Algorithm (GSA) [11]
and Cuckoo Search (CS) [12]. In the comparison, all methods have been set
according to their own reported guidelines. Such configurations are described as
follows:

1. PSO, parameters c1 ¼ 2; c2 ¼ 2 and weights factors have been set to wmax ¼
0:9; and wmin ¼ 0:4 [17].

2. GA, the crossover probability is 0.55, the mutation probability is 0.10 and
number of elite individuals is 2. Furthermore, the roulette wheel selection and
the 1-point crossover are both applied.

3. GSA, From the model Gt ¼ GOe�a t
T , it is considered a ¼ 10, GO ¼ 100 and

T = 100 or T = 500.
4. HS, its parameters are set as follows: the harmony memory consideration rate

HMCR = 0.7, the pitch adjustment rate PAR = 0.3 and the Bandwidth rate
BW = 0.1.

5. CS, its elements are configured such as the discovery rate pa ¼ 0:25 and the
stability index b ¼ 3=2.

6. SSO, the parameter PF has been set to 0.7 following an experimental definition.

The experimental results are divided into three sub-sections. In the first
Sect. (3.6.1), the performance of the SSO algorithm is evaluated with regard to
high-order plants ðG1ðsÞÞ. In the second Sect. (3.6.2), the results for non-minimum
systems ðG2ðsÞÞ are provided and finally, in the third Sect. (3.6.3), the performance
of the calibration scheme over fractional dynamical systems ðG3ðsÞÞ is discussed.

3.6.1 Results Over High-Order Plants ðG1ðsÞÞ

In this experiment, the performance of the SSO calibration scheme is compared to
GA, PSO, HS, GSA and CS, considering the regulation of high-order dynamical
systems ðG1ðsÞÞ. In the simulations, a temporal response from 0 to 10 s has been
considered. In the comparison, all algorithms are operated with a population of 50
individuals (N = 50). To appropriately evaluate the convergence properties of all
calibration methods, the maximum number of generations has been set to (A) 100
iterations and (B) 500 iterations. This stop criterion has been selected to maintain
compatibility to similar works reported in the literature [5, 9, 28]. By selecting such
number of iterations, the experiment aims to test the quality of the produced

46 3 Calibration of Fractional Fuzzy Controllers by Using …

solutions when the operation of each calibration method is limited to a reduced
number of iterations.

All the experimental results in this section consider the analysis of 35 inde-
pendent executions of each algorithm. Table 3.2 presents the calibrated parameters
obtained through each method. Such results consider the best controller parameters
in terms of the produced ITAE values after 100 iterations. On the other hand,
Table 3.3 shows the calibrated parameters considering 500 iterations.

According to Tables 3.2 and 3.3, the SSO scheme provides better performance
than GA, PSO, HS, GSA and CS for both cases. Such differences are directly
related to a better trade-off between exploration and exploitation of the SSO
method. It is also evident that the SSO method produces similar results with 100 or
500 iterations. Therefore, it can be established that SSO maintains better conver-
gence properties than GA, PSO, HS, GSA and CS in the process of parameter
calibration.

Figure 3.5 exhibits the step responses produced by each parameter set, consid-
ering 100 and 500 iterations. The remarkable convergence rate of the SSO algo-
rithm can be observed at Fig. 3.5. According to the graphs, the step responses
produced by the controller parameters that have been defined through SSO, are
practically the same irrespective of the number of iterations. This fact means that
the SSO scheme is able to find an acceptable solution in less than 100 iterations.

Table 3.2 Calibrated parameters for G1ðsÞ produced by each algorithm after 100 iterations

G1ðsÞ Kp Kd Ki Ku a ITAE

PSO 0.3034 0 0.4475 2.9988 0 5281.2115

GA 0.7581 0.3510 0.3038 4.3276 0.8000 926.1352

GSA 1.3387 2.7209 0.5482 1.0545 0.2311 4164.1935

HS 0.7867 0.8128 0.8271 3.6129 0.9319 3562.1834

CS 0.9700 0.3497 0.4054 3.0002 0.9516 916.5816

SSO 0.8100 0.3493 0.2392 4.8235 0.9897 492.2912

Table 3.3 Calibrated parameters for G1ðsÞ produced by each algorithm after 500 iterations

G1ðsÞ Kp Kd Ki Ku a ITAE

PSO 0 0.5061 0.4681 4.0578 0.4629 2900.7502

GA 1.1860 0.3826 0.5204 1.5850 0.9497 974.0881

GSA 1.2000 0.6531 0.9607 2.5442 0.8745 1975.3254

HS 1.3112 0.9450 0.9262 1.2702 0.6075 2776.2160

CS 1.0093 0.4506 0.2611 4.6964 1.0002 464.5376

SSO 1.0386 0.4621 0.2751 4.4147 0.9998 473.7492

3.6 Numerical Simulations 47

3.6.2 Results Over Non-minimum Systems ðG2ðsÞÞ

This section presents the comparison of the SSO calibration scheme with GA, PSO,
HS, GSA and CS, considering the regulation of non-minimum systems ðG2ðsÞÞ.
Non-minimum systems are defined by transfer functions with one or more poles or
zeros in the right half of the s-plane. As a consequence, the response of a
non-minimum system to a step input exhibits an “undershoot”, which indicates that
the output of the dynamical system becomes negative first before changing direc-
tion to positive values.

The experimental simulation runs from 0 to 50 s. All algorithms are operated
with a population of 50 individuals (N = 50), matching with the experiments in
Sect. 3.6.1. Table 3.4 presents the calibrated parameter of each method after 100
iterations, while Table 3.5 exhibits the results for 500 iterations. Both tables show
that the SSO scheme delivers better results than GA, PSO, HS, GSA and CS in

Time (second)

(a)

Time (second)

(b)

0 2 4 6 8 10
0

0.5

1

1.5
Ref

GA

PSO

HS

GSA

CS

SSO

0 2 4 6 8 10
0

0.5

1

1.5
Ref

GA

PSO

HS

GSA

CS

SSO

Fig. 3.5 Step responses after
applying the calibrated
parameters to the high order
plant G1ðsÞ with a 100
iterations, and with b 500
iterations

48 3 Calibration of Fractional Fuzzy Controllers by Using …

terms of the ITAE index. Figure 3.6 presents the step responses produced by each
parameter set, considering 100 and 500 iterations. By analyzing the plot in Fig. 3.6,
it is observed that the step response of the SSO scheme is less sensitive to the
number of iterations than other techniques.

Table 3.4 Calibrated parameters for G2ðsÞ produced by each algorithm after 100 iterations

G2ðsÞ Kp Kd Ki Ku a ITAE

PSO 0.4645 0 0.2378 0.4147 0.0643 50289.0994

GA 0.6061 0.0326 0.3175 0.2909 0.2000 55043.6316

GSA 0.9377 1.8339 0.5020 0.1427 1.0266 101160.6241

HS 2.2838 3.7685 0.1328 0.5324 2.3214 126996.7047

CS 0.9305 1.1329 1.1045 0.0674 0.0222 90962.6199

SSO 0.4668 0.1165 0.2139 0.4642 0.5470 44368.6620

Table 3.5 Calibrated parameters for G2ðsÞ produced by each algorithm after 500 iterations

G2ðsÞ Kp Kd Ki Ku a ITAE

PSO 0.4606 0 0.2027 0.4866 0.0688 46912.4985

GA 1.0449 1.1921 0.8839 0.0903 0.0822 81550.0790

GSA 0.8862 1.3919 0.3746 0.2386 1.9259 63186.5783

HS 1.0362 1.1105 0.5360 0.1389 0.9007 91536.3894

CS 0.0386 0.0059 0.0243 4.0625 0.5516 43565.1588

SSO 0.4537 0.1597 0.2004 0.5124 0.6422 41772.3344

Time (second) Time (second)
0 10 20 30 40 50

-0.5

0

0.5

1

1.5
Ref

GA

PSO

HS

GSA

CS

SSO

0 10 20 30 40 50
-1

-0.5

0

0.5

1

1.5
Ref

GA

PSO

HS

GSA

CS

SSO

(a) (b)

Fig. 3.6 Step responses after applying the calibrated parameters to the high order plant G2ðsÞ with
a 100 iterations, and with b 500 iterations

3.6 Numerical Simulations 49

3.6.3 Results Over Fractional Systems ðG3ðsÞÞ

Unlike high-order plants and non-minimum systems, fractional dynamical systems
produce multimodal error surfaces with different local optima. As a consequence,
fractional fuzzy controllers that regulate their behavior are, in general, more difficult
to calibrate [9]. Under such conditions, the experiment reflects the capacity of each
calibration algorithm to locate the global optimum in presence of several local
optima.

In this experiment, the performance of the SSO calibration scheme is compared
to GA, PSO, HS, GSA and CS, considering the regulation of fractional dynamical
systems ðG3ðsÞÞ. In the simulations, a temporal response from 0 to 3 s is considered.
In the test, all algorithms are operated with a population of 50 individuals (N = 50).

The calibrated parameters are averaged over 30 executions obtaining the values
reported in Tables 3.6 and 3.7. The results exhibit the configuration for each
method with 100 and 500 iterations, respectively. It is evident that the SSO scheme
presents better performance than PSO, HS and GSA independently on the number
of iterations. However, the difference between GA and the SSO approach in terms
of the ITAE index is relatively small for the case of 100 iterations. On the other
hand, in the case of 500 iterations, the performance among the SSO approach, GA
and CS are practically the same. Figure 3.7 presents the step response that is
produced by each parameter set, considering 100 and 500 iterations. Similar to
Sects. 6.1 and 6.2, it is demonstrated (from Fig. 3.7) that the SSO-calibrator obtains
better solutions than GA, HS and PSO yet demanding a lower number of iterations.

Table 3.6 Calibrated parameters for G3ðsÞ produced by each algorithm after 100 iterations

G3ðsÞ Kp Kd Ki Ku a ITAE

PSO 1.331 0 0.6937 5 5 311.4558

GA 1.3329 0.6341 0.6130 5 0.4932 97.7016

GSA 1.0823 0.6463 0.2924 4.0152 0.5802 346.6765

HS 0.7867 0.8128 0.8271 3.6129 0.9319 3562.1834

CS 1.2220 0.6590 0.6647 5 0.4232 105.0266

SSO 1.3173 0.6560 0.5932 4.9797 0.5091 98.5974

Table 3.7 Calibrated parameters for G3ðsÞ produced by each algorithm after 500 iterations

G3ðsÞ Kp Kd Ki Ku a ITAE

PSO 1.0187 1.2010 0.7553 5 0 181.5380

GA 1.3320 0.5599 0.5991 5 0.5631 97.1981

GSA 1.3319 0.7502 0.6689 3.4968 0.5185 152.2198

HS 1.3112 0.9450 0.9262 1.2702 0.6075 2776.2160

CS 1.3325 0.5857 0.5987 4.9999 0.5450 97.0307

SSO 1.3087 0.5883 0.5808 4.9991 0.5642 97.1085

50 3 Calibration of Fractional Fuzzy Controllers by Using …

Finally, in order to stress the importance of the fractional PDa þ I scheme, an
experiment that evaluates the influence of the parameter a in the regulation of G3ðsÞ
is conducted. In the experiment, the fractional PDa þ I controller is operated as an
integer fuzzy controller by setting a ¼ 1. Under such conditions, the rest of the
parameters of PDa þ I ðKp;Kd;Ki;KuÞ are calibrated through the SSO approach
considering the regulation of the fractional system G3ðsÞ. Then, the values a vary
from 0 to 1 while registering the performance of the regulation.

As a result of the optimizationmethod, the following parameter values are obtained:
ðKp;Kd;Ki;KuÞ � ð1:3087; 0:5883; 0:5808; 4:0012Þ with ITAE = 418.8032. After
calibrating the integer fuzzy controller, the values of a are modified from 0 to 1, while
the parameter set remains fixed to ð1:3087; 0:5883; 0:5808; 4:0012Þ. Table 3.8 pre-
sents the results obtained from the experiment. Such values report the regulation
quality ofG3ðsÞ in terms of the ITEAvalues. By analyzingTable 3.8, it is clear that the
regulation quality strongly depends on the selection of the order for a. Particularly in

Time (second)

(a)

Time (second)

(b)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Ref
GA
PSO
HS
GSA
CS
SSO

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5
Ref

GA

PSO

HS

GSA

CS

SSO

Fig. 3.7 Step responses after
applying the calibrated
parameters to the high order
plant G3ðsÞ with a 100
iterations, and with b 500
iterations

3.6 Numerical Simulations 51

this experiment, the best regulation performance is reachedwhen the order of a is set to
0.6. Figure 3.8 presents the influence of a in terms of the regulation quality.

3.7 Conclusions

Due to its multiple applications, the calibration of fractional fuzzy controllers has
attracted the interests of several research communities. In the calibration process,
the parameter estimation is transformed into a multidimensional optimization
problem whose fractional order and the corresponding controller parameters of the

Table 3.8 Regulation
quality of G3ðsÞ in terms of
the ITEA values

a ITAE

0 216.839600

0.1 198.666000

0.2 180.783670

0.3 159.871905

0.4 134.127486

0.5 108.724153

0.6 105.942730
0.7 136.404140

0.8 183.213124

0.9 262.521840

1 418.803215

Bold elements represent the best values

0 0.2 0.4 0.6 0.8 1
100

150

200

250

300

350

400

450

α

IT
A
E

Fig. 3.8 Influence of a in the
regulation quality of G3ðsÞ in
terms of the ITEA values

52 3 Calibration of Fractional Fuzzy Controllers by Using …

fuzzy system are considered as decision variables. Under this approach, the com-
plexity of fractional-order chaotic systems tends to produce multimodal error sur-
faces for which their cost functions are significantly difficult to minimize. Several
algorithms that are based on evolutionary computation principles have been suc-
cessfully applied to calibrate the parameters of fuzzy systems. However, most of
them still have an important limitation since they frequently obtain sub-optimal
results as a consequence of an inappropriate balance between exploration and
exploitation in their search strategies.

This chapter presents a method for the optimal parameter calibration of fractional
FCs that is based on the SSO algorithm. The SSO algorithm is a novel evolutionary
computation method that is inspired on the emulation of the collaborative behavior
of social-spiders. Unlike most of the existing evolutionary algorithms, the method
explicitly evades the concentration of individuals in best positions, avoiding critical
flaws such as the premature convergence to sub-optimal solutions and the limited
balance of exploration–exploitation.

In order to illustrate the proficiency and the robustness of this approach, SSO
scheme has been experimentally evaluated considering three different system cat-
egories: high-order plants, non-minimum systems and dynamical fractional sys-
tems. To assess the performance of the SSO algorithm, it has been compared to
other similar evolutionary approaches such as Genetic Algorithms (GA), Particle
Swarm Optimization (PSO), Harmony Search (HS), Gravitational Search
Algorithm (GSA) and Cuckoo Search (CS). The experiments have demonstrated
that the SSO method outperforms other techniques in terms of solution quality and
convergence.

References

1. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Differentiation
and Integration to Arbitrary Order. Academic Press, New York (1974)

2. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
3. Das, S., Pan, I., Das, S., Gupta, A.: A novel fractional order fuzzy PID controller and its

optimal time domain tuning based on integral performance indices. J. Eng. Appl. Artif. Intell.
25, 430–442 (2012)

4. Delavari, H., Ghaderi, R., Ranjbar, A., Momani, S.: Fuzzy fractional order sliding mode
controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simul. 15(4), 963–978
(2010)

5. Jesus, I.S., Barbosa, R.S.: Genetic optimization of fuzzy fractional PD + I controllers. ISA
Trans. 57, 220–230 (2015)

6. Barbosa, R.S., Jesus, I.S.: A methodology for the design of fuzzy fractional PID controllers.
In: ICINCO 2013—Proceedings of the 10th International Conference on Informatics in
Control, Automation and Robotics, vol. 1, pp. 276–281 (2013)

7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
8. He, Y., Chen, H., He, Z., Zhou, L.: Multi-attribute decision making based on neutral

averaging operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015)
9. Pana, I., Das, S.: Fractional order fuzzy control of hybrid power system with renewable

generation using chaotic PSO. ISA Trans. 62, 19–29 (2016)

3.7 Conclusions 53

10. Roy, G.G., Chakraborty, P., Das, S.: Designing fractional-order PIkDl controller using
differential harmony search algorithm. Int. J. Bio-Inspired Comput. 2(5), 303–309 (2010)

11. Xu, Y., Zhou, J., Xue, X., Fu, W., Zhu, W., Li, C.: An adaptively fast fuzzy fractional order
PID control for pumped storage hydro unit using improved gravitational search algorithm.
Energy Convers. Manage. 111, 67–78 (2016)

12. Sharma, R., Rana, K.P.S., Kumar, V.: Performance analysis of fractional order fuzzy PID
controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 4274–4289 (2014)

13. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197,
701–713 (2009)

14. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary
programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

15. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384
(2013)

16. Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning.
Addison-Wesley, Boston (1989)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

18. Geem, Z.W., Kim, J., Loganathan, G.: Music-inspired optimization algorithm harmony
search. Simulation 76, 60–68 (2001)

19. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf.
Sci. 179, 2232–2248 (2009)

20. Yang, X.S., Deb, S.: Engineering optimization by cuckoo search. Int. J. Math. Model. Numer.
Optim. 1(4), 339–343 (2010)

21. Pereira, D.R., Pazoti, M.A., Pereira, L.A.M., Rodrigues, D., Ramos, C.O., Souza, A.N., Papa,
J.P.: Social-spider optimization-based support vector machines applied for energy theft
detection. Comput. Electr. Eng. 49, 25–38 (2016)

22. Mirjalili, S.Z., Saremi, S., Mirjalili, S.M.: Designing evolutionary feedforward neural
networks using social spider optimization algorithm. Neural Comput. Appl. (8), 1919–1928
(2015)

23. Klein, C.E., Segundo, E.H.V., Mariani, V.C., Coelho, L.D.S.: Modified social-spider
optimization algorithm applied to electromagnetic optimization. IEEE Trans. Magn. 52(3), 2–
10 (2016)

24. Ouadfel, S., Taleb-Ahmed, A.: Social spiders optimization and flower pollination algorithm
for multilevel image thresholding: a performance study. Expert Syst. Appl. 55, 566–584
(2016)

25. Tawhid, M.A., Ali, A.F.: A simplex social spider algorithm for solving integer programming
and minimax problems. Memetic Comput. (In press)

26. Jesus, I., Machado, J.: Application of fractional calculus in the control of heat systems. J. Adv.
Comput. Intell. Intell. Inform. 11(9), 1086–1091 (2007)

27. Machado, J.: Analysis and design of fractional-order digital control systems. SAMS 27, 107–
122 (1997)

28. Liu, L., Pann, F., Xue, D.: Variable-order fuzzy fractional PID controller. ISA Trans. 55, 227–
233 (2015)

29. Shah, P., Agashe, S.: Review of fractional PID controller. Mechatronics 38, 29–41 (2016)
30. El-Khazali, R.: Fractional-order PIkDµ controller design. Comput. Math. Appl. 66, 639–646

(2013)
31. Owolabi, K.M.: Robust and adaptive techniques for numerical simulation of nonlinear partial

differential equations of fractional order. Commun. Nonlinear SCi Numer. Simul. 44, 304–
317 (2017)

32. Hélie, T.: Simulation of fractional-order low-pass filters. IEEE/ACM Trans. Audio Speech
Lang. Process. 22(11), 1636–1647 (2014)

54 3 Calibration of Fractional Fuzzy Controllers by Using …

33. Hwang, C., Leu, J.-F., Tsay, S.-Y.: A note on time-domain simulation of feedback
fractional-order systems. IEEE Trans. Autom. Control 47(4), 625–631 (2002)

34. Podlubny, I.: Fractional Differential Equations. Academic Press, USA (1998)
35. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential

Equations. Wiley, USA (1993)
36. Dorcak, L.: Numerical Models for the Simulation of the Fractional-Order Control Systems,

UEF-04-94,Kosice, Technical Report, November, (1994)
37. Barbosa, R., Machado, J.A., Silva, M.: Time domain design of fractional differintegrators

using least-squares. Signal Process. 86(10), 2567–2581 (2006)
38. Chen, Y.Q., Vinagre, B., Podlubny, I.: Continued fraction expansion to discretize fractional

order derivatives—an expository review. Nonlinear Dyn. 38(1–4), 155–170 (2004)
39. Vinagre Blas, M., Chen, Y., Petráš, I.: Two direct Tustin discretization methods for

fractional-order differentiator/integrator. Frankl. Inst. 340(5), 349–362 (2003)
40. Jacobs, B.A.: A new Grünwald-Letnikov derivative derived from a second-order scheme.

Abstr. Appl. Anal. 2015, Article ID 952057, 9 pages (2015). https://doi.org/10.1155/2015/
952057

41. Scherer, R., Kalla, S.L., Tang, Y., Huang, J.: The Grünwald-Letnikov method for fractional
differential equations. Comput. Math. Appl. 62, 902–917 (2011)

42. Liua, H., Lia, S., Cao, J., Li, G., Alsaedi, A., Alsaadi, F.E.: Adaptive fuzzy prescribed
performance controller design for a class of uncertain fractional-order nonlinear systems with
external disturbances. Neurocomputing (In Press)

43. Bigdeli, N.: The design of a non-minimal state space fractional-order predictive functional
controller for fractional systems of arbitrary order. J. Process Control 29, 45–56 (2015)

44. Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and
approximate fuzzy-logic-controller knowledge bases from examples. Int. J. Approximate
Reasoning 17(4), 369–407 (1997)

45. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and
control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)

46. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller.
Int. J. Man Mach. Stud. 7, 1–13 (1975)

47. Xu, J.-X., Li, C., Hang, C.C.: Tuning of fuzzy PI controllers based on gain/phase margin
specifications and ITAE index. ISA Trans. 35(1), 79–91 (1996)

References 55

http://dx.doi.org/10.1155/2015/952057
http://dx.doi.org/10.1155/2015/952057

Chapter 4
The Metaheuristic Algorithm
of the Locust-Search

Metaheuristic is a set of soft computing techniques which considers the design of
intelligent search algorithms based on the analysis of several natural and social
phenomena. Many metaheuristic methods have been suggested to solve a wide
range of complex optimization applications. Even though these schemes have been
designed to satisfy the requirements of general optimization problems, no single
method can solve all problems adequately. Consequently, an enormous amount of
research has been dedicated to producing new optimization methods that attain
better performance indexes. In this chapter, metaheuristic algorithm called Locust
Search (LS) is presented for solving optimization tasks. The LS method considers
the simulation of the behavior presented in swarms of locusts as a metaphor. In the
algorithm, individuals imitate a group of locusts which operate according to the
biological laws of the swarm. The algorithm defines two distinct behaviors: solitary
and social. Depending on the behavior, each element is undergone to a set of
evolutionary operators that emulate the distinct collective behaviors typically pre-
sent in the swarm.

4.1 Introduction

The collective intelligent behavior of insect or animal groups in nature such as
flocks of birds, colonies of ants, schools of fish, swarms of bees and termites have
attracted the attention of researchers. The aggregative conduct of insects or animals
is known as swarm behavior. Even though the single members of swarms are
non-sophisticated individuals, they are able to achieve complex tasks in coopera-
tion. The collective swarm behavior emerges from relatively simple actions or
interactions among the members. Entomologists have studied this collective phe-
nomenon to model biological swarms while engineers have applied these models as
a framework for solving complex real-world problems. The discipline of artificial
intelligence which is concerned with the design of intelligent multi-agent

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_4

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_4&domain=pdf

algorithms by taking inspiration from the collective behavior of social insects or
animals is known as swarm intelligence [1]. Swarm algorithms have several
advantages such as scalability, fault tolerance, adaptation, speed, modularity,
autonomy and parallelism [2].

Several swarm algorithms have been developed by a combination of deter-
ministic rules and randomness, mimicking the behavior of insect or animal groups
in nature. Such methods include the social behavior of bird flocking and fish
schooling such as the Particle Swarm Optimization (PSO) algorithm [3], the
cooperative behavior of bee colonies such as the Artificial Bee Colony
(ABC) technique [4], the social foraging behavior of bacteria such as the Bacterial
Foraging Optimization Algorithm (BFOA) [5], the simulation of the herding
behavior of krill individuals such as the Krill Herd (KH) method [6], the mating
behavior of firefly insects such as the Firefly (FF) method [7] the emulation of the
lifestyle of cuckoo birds such as the Cuckoo Search (CS) [8], the social-spider
behavior such as the Social Spider Optimization (SSO) [9], the simulation of the
animal behavior in a group such as the Collective Animal Behavior [10] and the
emulation of the differential evolution in species such as the Differential Evolution
(DE) [11].

In particular, insect swarms and animal groups provide a rich set of metaphors
for designing swarm optimization algorithms. Such methods are complex systems
composed by individuals that tend to reproduce specialized behaviors [12].
However, most of swarm algorithms and other evolutionary algorithms tend to
exclusively concentrate the individuals in the current best positions. Under such
circumstances, these algorithms seriously limit their search capacities.

Although PSO and DE are the most popular algorithms for solving complex
optimization problems, they present serious flaws such as premature convergence
and difficulty to overcome local minima [13, 14]. The cause for such problems is
associated to the operators that modify individual positions. In such algorithms,
during their evolution, the position of each agent for the next iteration is updated
yielding an attraction towards the position of the best particle seen so-far (in case of
PSO) or towards other promising individuals (in case of DE). As the algorithm
evolves, these behaviors cause that the entire population rapidly concentrates
around the best particles, favoring the premature convergence and damaging the
appropriate exploration of the search space [15, 16].

The interesting and exotic collective behavior of insects have fascinated and
attracted researchers for many years. The intelligent behavior observed in these
groups provides survival advantages, where insect aggregations of relatively simple
and “unintelligent” individuals can accomplish very complex tasks using only
limited local information and simple rules of behavior [17]. Locusts (Schistocerca
gregaria) are a representative example of such collaborative insects [18]. Locust is a
kind of grasshopper that can change reversibly between a solitary and a social
phase, which differ considerably in behavior [19]. The two phases show many
differences including both overall levels of activity and the degree to which locusts
are attracted or repulsed among them [20]. In the solitary phase, locusts avoid
contact each other (locust concentrations). As consequence, they distribute

58 4 The Metaheuristic Algorithm of the Locust-Search

throughout the space, exploring sufficiently the plantation [20]. On other hand, in
the social phase, locusts frantically concentrate around the elements that have
already found good food sources [21]. Under such a behavior, locust attempt to
efficiently find better nutrients by devastating promising areas within the plantation.

In this chapter, the Locust Search (LS) is analyzed for solving optimization
tasks. The LS algorithm is based on the simulation of the behavior presented in
swarms of locusts. In LS, individuals emulate a group of locusts which interact to
each other based on the biological laws of the cooperative swarm. The algorithm
considers two different behaviors: solitary and social. Depending on the behavior,
each individual is conducted by a set of evolutionary operators which mimic the
different cooperative behaviors that are typically found in the swarm. Different to
most of existent swarm algorithms, in LS approach, the modeled behavior explicitly
avoids the concentration of individuals in the current best positions. Such fact
allows not only to emulate in a better realistic way the cooperative behavior of the
locust colony, but also to incorporate a computational mechanism to avoid critical
flaws commonly present in the popular PSO and DE algorithms, such as the pre-
mature convergence and the incorrect exploration–exploitation balance. In order to
illustrate the proficiency and robustness of the LS approach, it is compared to other
well-known evolutionary methods. The comparison examines several standard
benchmark functions which are commonly considered in the literature. The results
show a high performance of the LS method for searching a global optimum in
several benchmark functions.

This chapter is organized as follows. In Sect. 4.2, we introduce basic biological
aspects and models of the algorithm. In Sect. 4.3, the novel LS algorithm and its
characteristics are both described. Section 4.4 presents the experimental results and
the comparative study. Finally, in Sect. 4.5, conclusions are drawn.

4.2 Biological Fundamentals

Social insect societies are complex cooperative systems that self-organize within a
set of constraints. Cooperative groups are better at manipulating and exploiting their
environment, defending resources and brood, and allowing task specialization
among group members [22, 23]. A social insect colony functions as an integrated
unit that not only possesses the ability to operate at a distributed manner, but also to
undertake enormous construction of global projects [24]. It is important to
acknowledge that global order in insects can arise as a result of internal interactions
among members.

Locusts are a kind of grasshoppers that exhibit two opposite behavioral phases,
solitary and social (gregarious). Individuals in the solitary phase avoid contact each
other (locust concentrations). As consequence, they distribute throughout the space,
exploring sufficiently the plantation [20]. In contrast, locusts in the gregarious phase
form several concentrations. These concentrations may contain up to 1010 members,
cover cross-sectional areas of up to 10 km2, and travel up to 10 km per day for a

4.1 Introduction 59

period of days or weeks as they feed causing devastating crop loss [25]. The
mechanism for the switch from the solitary phase to the gregarious phase is com-
plex, and has been a subject of significant biological inquiry. A set of factors
recently has been implicated, including geometry of the vegetation landscape and
the olfactory stimulus [26].

Only few works [20, 21] that mathematically model the locust behavior have
been published. In such approaches, it is developed two different minimal models
with the goal of reproducing the macroscopic structure and motion of a group of
locusts. Since the method proposed in [20] models the behavior of each locust in
the group, it is used to explain the algorithm LS in this chapter.

4.2.1 Solitary Phase

In this section, it is described the way in which the position of each locust is
modified as a consequence of its behavior under the solitary phase. Considering that
xki represents the current position of the ith locust in a group of N different elements,
the new position xkþ 1

i is calculated by using the following model:

xkþ 1
i ¼ xki þDxi; ð4:1Þ

where Dxi corresponds to the change of position experimented by xki as a conse-
quence of its social interaction with all the other elements in the group.

Two locusts in the solitary phase exert forces on each other according to basic
biological principles of attraction and repulsion (see, e.g., [20]). Repulsion operates
very strongly over a short length scale in order to avoid concentrations. Attraction is
weaker, and operates over a longer length scale, providing the social force neces-
sary for maintaining the cohesion in the group. Therefore, it is modeled the strength
of these social forces using the function:

sðrÞ ¼ F � e�r=L � e�r ð4:2Þ

Here, r is a distance, F describes the strength of attraction, and L is the typical
attractive length scale. We have scaled the time and space coordinates so that the
repulsive strength and length scale are unity. We assume that F < 1 and L > 1 so
that repulsion is stronger and shorter-scale, and attraction in weaker and
longer-scale. This is typical for social organisms [21]. The social force exerted by
locust j on locust i is:

sij ¼ sðrijÞ � dij; ð4:3Þ

60 4 The Metaheuristic Algorithm of the Locust-Search

where rij ¼ xj � xi
�� �� is the distance between the two locusts and dij ¼ ðxj � xiÞ=rij

is the unit vector pointing from xi to xj. The total social force on each locust can be
modeled as the superposition of all of the pairwise interactions:

Si ¼
XN
j¼ 1
j 6¼ i

sij; ð4:4Þ

The change of position Dxi is modeled as the total social force experimented by
xki as the superposition of all of the pairwise interactions. Therefore, Dxi is defined
as follows:

Dxi ¼ Si; ð4:5Þ

In order to illustrate the behavioral model under the solitary phase, Fig. 4.1
presents an example. It is assumed a population of three different members (N = 3)
which adopt a determined configuration in the current iteration k. As a consequence
of the social forces, each element suffers an attraction or repulsion to other elements
depending on the distance among them. Such forces are represented by
s12; s13; s21; s23; s31; s32. Since x1 and x2 are too close, the social forces s12 and s13
present a repulsive nature. On the other hand, as the distances x1 � x3j j and
x2 � x3j j are quite long, the social forces s13; s23; s31 and s32 between x1 $ x3 and
x2 $ x3 are from the attractive nature. Therefore, the change of position Dx1 is
computed as the resultant between s12 and s13 Dx1 ¼ s12þ s13ð Þ. The values Dx2
and Dx3 of the locusts x1 and x2 are also calculated accordingly.

In addition to the presented model [20], some studies [27–29] suggest that the
social force sij is also affected by the dominance of the involved individuals xi and

1x

3x

12s

21s
13s

31s

23s

32s

2x

2S

1S

3S

Fig. 4.1 Behavioral model under the solitary phase

4.2 Biological Fundamentals 61

xj in the pairwise process. Dominance is a property that relatively qualifies the
capacity of an individual to survive, in relation to other elements in a
group. Dominance in locust is determined for several characteristics such as size,
chemical emissions, location with regard to food sources, etc. Under such cir-
cumstances, the social force is magnified or weakened depending on the most
dominant individual involved in the repulsion-attraction process.

4.2.2 Social Phase

In this phase, locusts frantically concentrate around the elements that have already
found good food sources. Under such a behavior, locust attempt to efficiently find
better nutrients by devastating promising areas within the plantation.

In order to simulate the social phase, to each locust xi of the group, it is asso-
ciated a food quality index Fqi. This index reflex the quality of the food source
where xi is located.

Under this behavioral model, it is first ranked the N elements of the group
according to their food quality indexes. Afterward, the b elements with the best
food quality indexes are selected b� Nð Þ. Considering a concentration radius Rc

created around each selected element, a set of c new locusts is randomly generated
inside Rc. As a result, most of the locusts will be concentrated around the best
b elements. Figure 4.2 shows a simple example of behavioral model under the
social phase. In the example, it is assumed a configuration of eight locust (N = 8),
as it is illustrated in Fig. 4.2a. In the Figure, it is also presented the food quality
index for each locust. A food quality index near to one indicates a better food
source. Therefore, considering b = 2, the final configuration after the social phase,
it is presented in Fig. 4.2b.

4.3 The Locust Search (LS) Algorithm

In this chapter, the behavioral principles from a swarm of locusts have been used as
guidelines for developing a new swarm optimization algorithm. The LS assumes
that entire search space is a plantation, where all the locusts interact to each other. In
the LS approach, each solution within the search space represents a locust position
in the plantation. Every locust receives a food quality index according to the fitness
value of the solution that is symbolized by the locust. The algorithm implements
two different behaviors: solitary and social. Depending on the behavior, each
individual is conducted by a set of evolutionary operators which mimic the different
cooperative behaviors that are typically found in the swarm.

From the implementation point of view, in the LS operation, a population
Lk flk1; lk2; . . .; lkNg

� �
of N locusts (individuals) is evolved from the initial point

62 4 The Metaheuristic Algorithm of the Locust-Search

(k = 0) to a total gen number iterations k ¼ genð Þ. Each locust lki i 2 1; . . .;N½ �ð Þ
represents an n-dimensional vector lki;1; l

k
i;2; . . .; l

k
i;n

n o
where each dimension cor-

responds to a decision variable of the optimization problem to be solved. The set of
decision variables constitutes the feasible search space S ¼ lki 2 R

n lbd �j�
lki;d � ubdg, where lbd and ubd corresponds to the lower and upper bounds for the

dimension d, respectively. The food quality index associated to each locust lki
(candidate solution) is evaluated by using an objective function f lki

� �
whose final

result represents the fitness value of lki . In LS, each iteration of the evolution process
consists of two operators: (A) solitary and (B) social. Beginning by the solitary
stage, the set of locusts is operated in order to sufficiently explore the search space.
Then, during the social operation, existent solutions are refined within a determined
neighborhood (exploitation).

4.3.1 Solitary Operation (A)

One of the most interesting features of the LS method is the use of the solitary
operator to modify the current locust positions. Under this approach, locusts are
displaced as a consequence of the social forces produced by the positional relations
among the elements of the swarm. Therefore, near individuals tend to repel with
each other, avoiding the concentration of elements in regions. On the other hand,
distant individuals tend to attract with each other, maintaining the cohesion of the
swarm. Different to the original model [20], in the proposed operator, social forces

(a) (b)

1 0.2Fq =3 0.1Fq =

2 0.3Fq =

4 0.9Fq =

5 0.2Fq =

6 1.0Fq =

7 0.3Fq =

8 0.4Fq =

cR

1

2

3

4

5

6

7

8

4

6

1

5 3

2

78

Fig. 4.2 Behavioral model under the social phase. a Initial configuration and food quality
indexes, b final configuration after the operation of the social phase

4.3 The Locust Search (LS) Algorithm 63

are also magnified or weakened depending on the best fitness value (the most
dominant) of the individuals involved in the repulsion-attraction process.

In the solitary operation, a new position pi i 2 1; . . .;N½ �ð Þ is produced by per-
turbing the current locust position lki with a change of position Dli pi ¼ lki þDli

� �
.

The change of position Dli is the result of the social interactions experimented by lki
as a consequence of its repulsion-attraction behavioral model. Such social inter-
actions are pairwise computed among lki and the other N − 1 individuals in the
swarm. In the original model, social forces are calculated by using Eq. 4.3.
However, in the LS method, it is modified to include the best fitness value (the most
dominant) of the individuals involved in the repulsion-attraction process. Therefore,
the social force exerted between lkj and lki is calculated by using the following new
model:

smij ¼ qðlki ; lkj Þ � sðrijÞ � dijþ randð1;�1Þ; ð4:6Þ

where sðrijÞ is the social force strength defined in Eq. 4.2 and dij ¼ ðlkj � lki Þ=rij is
the unit vector pointing from lki to lkj . Besides, rand(1, −1) is a number randomly
generated between 1 and −1.

qðlki ; lkj Þ is the dominance function that calculates the dominance value of the

most dominant individual from lkj and lki . In order to operate qðlki ; lkj Þ, all the indi-

viduals from Lk flk1; lk2; . . .; lkNg
� �

are ranked according to their fitness values. The
ranks are assigned so that the best individual receives the rank 0 (zero) whereas the
worst individual obtains the rank N − 1. Therefore, the function qðlki ; lkj Þ is defined
as follows:

qðlki ; lkj Þ ¼
e� 5�rankðlki Þ=Nð Þ if rankðlki Þ\rankðlkj Þ
e� 5�rankðlkj Þ=Nð Þ if rankðlki Þ[rankðlkj Þ

(
; ð4:7Þ

where the function rank(a) delivers the rank of the a-individual. According to
Eq. 4.7, qðlki ; lkj Þ gives as a result a value within the interval (1,0).

The maximum value of one is reached by qðlki ; lkj Þ when one of the individuals lkj
and lki is the best element of the population Lk in terms of its fitness value. On the
other hand, a value close to zero, it is obtained when both individuals lkj and lki
possess quite bad fitness values. Figure 4.3 shows the behavior of qðlki ; lkj Þ con-
sidering 100 individuals. In the Figure, it is assumed that lki represents one of the 99
individuals with ranks between 0 and 98 whereas lkj is fixed to the element with the
worst fitness value (rank 99).

64 4 The Metaheuristic Algorithm of the Locust-Search

Under the incorporation of qðlki ; lkj Þ in Eq. 4.6, social forces are magnified or
weakened depending on the best fitness value (the most dominant) of the indi-
viduals involved in the repulsion-attraction process.

Finally, the total social force on each individual lki is modeled as the superpo-
sition of all of the pairwise interactions exerted over it:

Smi ¼
XN
j¼ 1
j 6¼ i

smij ; ð4:8Þ

Therefore, the change of position Dli is considered as the total social force
experimented by lki as the superposition of all of the pairwise interactions.
Therefore, Dli is defined as follows:

Dli ¼ Smi ; ð4:9Þ

After calculating the new positions P fp1; p2; . . .; pNgð Þ of the population
Lkðflk1; lk2; . . .; lkNgÞ, the final positions F ff1; f2; . . .; fNgð Þ must be calculated. The
idea is to admit only the changes that guarantee an improvement in the search
strategy. If the fitness value of pi f ðpiÞð Þ is better than lki f ðlki Þ

� �
, then pi is accepted

as the final solution. Otherwise, lki is retained. This procedure can be resumed by the
following statement (considering a minimization problem):

f i ¼ pi if f ðpiÞ\f ðlki Þ
lki otherwise

�
ð4:10Þ

In order to illustrate the performance of the solitary operator, Fig. 4.4 presents a
simple example where the solitary operator is iteratively applied. It is assumed a
population of 50 different members (N = 50) which adopt a concentrated config-
uration as initial condition (Fig. 4.4a). As a consequence of the social forces, the set

Fig. 4.3 Behavior of qðlki ; lkj Þ
considering 100 individuals

4.3 The Locust Search (LS) Algorithm 65

of element tends to distribute through the search space. Examples of different
distributions are shown in Fig. 4.4b–d after applying 25, 50 and 100 different
solitary operations, respectively.

4.3.2 Social Operation (B)

The social procedure represents the exploitation phase of the LS algorithm.
Exploitation is the process of refining existent individuals within a small neigh-
borhood in order to improve their solution quality.

The social procedure is a selective operation which is applied only to a subset E
of the final positions F (where E�FÞ. In the operation first is necessary to sort
F according to their fitness values and store the sorted elements in a temporal
population B ¼ b1; b2; . . .; bNf g. The elements in B are sorted so that the best
individual receives the position b1 whereas the worst individual obtains the location

(a) (b)

(c) (d)

Fig. 4.4 Examples of different distributions. a Initial condition, b distribution after applying 25
operations, c 50 and d 100

66 4 The Metaheuristic Algorithm of the Locust-Search

bN . Therefore, the subset E is integrated by only the first g locations of
B (promising solutions). Under this operation, a subspace Cj is created around each
selected particle f j 2 E. The size of Cj depends on the distance ed which is defined
as follows:

ed ¼
Pn

q¼1 ubq � lbq
� �
n

� b ð4:11Þ

where ubq and lbq are the upper and lower bounds in the qth dimension, n is the
number of dimensions of the optimization problem, whereas b 2 ½0;1� is a tuning
factor. Therefore, the limits of Cj are modeled as follows:

ussqj ¼ bj;qþ ed

lssqj ¼ bj;q � ed
ð4:12Þ

where ussqj and lssqj are the upper and lower bounds of the qth dimension for the
subspace Cj, respectively.

Considering the subspace Cj around each element f j 2 E, a set of h new particles

Mh
j ¼ m1

j ;m
2
j ; . . .;m

h
j

n o� �
are randomly generated inside the bounds defined by

Eq. 4.12. Once the h samples are generated, the individual lkþ 1
j of the next pop-

ulation Lkþ 1 must be created. In order to calculate lkþ 1
j , the best particle mbest

j , in

terms of fitness value from the h samples (where mbest
j 2 m1

j ;m
2
j ; . . .;m

h
j

h i
), is

compared to f j. If mbest
j is better than f j according to their fitness values, lkþ 1

j is

updated with mbest
j , otherwise f j is selected. The elements of F that have not been

processed by the procedure fw 62 Eð Þ transfer their corresponding values to Lkþ 1

with no change.
The social operation is used to exploit only prominent solutions. According to

the propose method, inside each subspace Cj, h random samples are selected. Since
the number of selected samples in each subspace is very small (typically h\4Þ, the
use of this operator reduces substantially the number of fitness function evaluations.

In order to demonstrate the social operation, a numerical example has been set
by applying the proposed process to a simple function. Such function considers the
interval of �3� d1; d2� 3 whereas the function possesses one global maxima of
value 8.1 at ð0;1:6Þ. Notice that d1 and d2 correspond to the axis coordinates
(commonly x and y). For this example, it is assumed a final position population F of
six 2-dimensional members (N = 6). Figure 4.5 shows the initial configuration of
the proposed example, the black points represents the half of the particles with the
best fitness values (the first three element of B, g = 3) whereas the grey points
f2; f4; f6 62 Eð Þ corresponds to the remaining individuals. From Fig. 4.5, it can be
seen that the social procedure is applied to all black particles f5 ¼ b1; f3 ¼ b2ð and
f1 ¼ b3; f5; f3; f1 2 EÞ yielding two new random particles (h = 2), characterized by

4.3 The Locust Search (LS) Algorithm 67

the white points m1
1;m

2
1;m

1
3;m

2
3;m

1
5 and m2

5 for each black point inside of their
corresponding subspaces C1;C3 and C5. Considering the particle f3 in Fig. 4.5, the
particle m2

3 corresponds to the best particle mbest
3

� �
from the two randomly gen-

erated particles (according to their fitness values) within C3. Therefore, the particle
mbest

3 will substitute f3 in the individual lkþ 1
3 for the next generation, since it holds a

better fitness value than f3 f ðf3Þ\ f ðmbest
3 Þ

� �
.

4.3.3 Complete LS Algorithm

LS is a simple algorithm with only five adjustable parameters: the strength of
attraction F, the attractive length L, number of promising solutions g, the population
size N and the number of generations gen. The operation of LS is divided in three
parts: Initialization, solitary operation and the social process. In the initialization
(k = 0), the first population L0 fl01; l02; . . .; l0Ng

� �
is produced. The values

l0i;1; l
0
i;2; . . .; l

0
i;n

n o
of each individual lki and each dimension d are randomly and

uniformly distributed between the pre-specified lower initial parameter bound lbd
and the upper initial parameter bound ubd .

l0i;j ¼ lbd þ rand � ðubd � lbdÞ; i ¼ 1; 2; . . .;N; d ¼ 1; 2; . . .; n: ð4:13Þ

In the evolution process, the solitary (A) and social (B) operations are iteratively
applied until the number of iterations k ¼ gen has been reached. The complete LS
procedure is illustrated in the Algorithm 1.

−6

−4

−4

−2

−2
−2

−2

−2

0

0

0

0

0

0

0

2

2

2

2

2

2

2

4

4

4

6

6

8

d1

d 2

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

1,1y

1C

4,1y

6,1y

2,1y
3,1y

3C

5,1y

5C

2f

6f

1f

4f

3f

5f

1
1m

2
1m

1
5m

2
5m

2
3m
1
3m

Fig. 4.5 Operation of the social procedure

68 4 The Metaheuristic Algorithm of the Locust-Search

Algorithm 1. Locust Search (LS) algorithm

1: Input: F, L, g, N and gen

2: Initialize L0 (k = 0)

3: until (k = genÞ
5: F SolitaryOperation Lk

� �
Solitary operator (3.1)

6: Lkþ 1 SocialOperation Lk ;F
� �

Social operator (3.2)

8: k = k + 1

7: end until

4.3.4 Discussion About the LS Algorithm

Evolutionary algorithms (EA) have been widely employed for solving complex
optimization problems. These methods are found to be more powerful than con-
ventional methods based on formal logics or mathematical programming [30]. In an
EA algorithm, search agents have to decide whether to explore unknown search
positions or to exploit already tested positions in order to improve their solution
quality. Pure exploration degrades the precision of the evolutionary process but
increases its capacity to find new potentially solutions. On the other hand, pure
exploitation allows refining existent solutions but adversely drives the process to
local optimal solutions. Therefore, the ability of an EA to find a global optimal
solution depends on its capacity to find a good balance between the exploitation of
found-so-far elements and the exploration of the search space [31]. So far, the
exploration–exploitation dilemma has been an unsolved issue within the framework
of evolutionary algorithms.

Most of swarm algorithms and other evolutionary algorithms tend to exclusively
concentrate the individuals in the current best positions. Under such circumstances,
these algorithms seriously limit their exploration–exploitation capacities.

Different to most of existent evolutionary algorithms, in the LS approach, the
modeled behavior explicitly avoids the concentration of individuals in the current
best positions. Such fact allows not only to emulate in a better realistic way the
cooperative behavior of the locust colony, but also to incorporate a computational
mechanism to avoid critical flaws commonly present in the popular PSO and DE
algorithms, such as the premature convergence and the incorrect exploration–
exploitation balance.

In order to detect ellipse shapes, candidate images must be preprocessed first by
the well-known Canny algorithm which yields a single-pixel edge-only image.
Then, the ðxi; yiÞ coordinates for each edge pixel pi are stored inside the edge vector
P ¼ p1; p2; . . .; pNp

� 	
, with Np being the total number of edge pixels.

4.3 The Locust Search (LS) Algorithm 69

4.4 Experimental Results

A comprehensive set of 13 functions, collected from Refs. [32–37], has been used
to test the performance of the LS approach. Tables 4.5 and 4.6 in the Appendix
present the benchmark functions used in our experimental study. Such functions are
classified into two different categories: Unimodal test functions (Table 4.5) and
multimodal test functions (Table 4.6). In these tables, n is the dimension of func-
tion, fopt is the minimum value of the function, and S is a subset of Rn. The optimum
location xopt

� �
for functions in Tables 4.5 and 4.6, are in ½0�n, except for f5; f12; f13

with xopt in ½1�n and f8 in ½420:96�n. A detailed description of optimum locations is
given in Tables 4.5 and 4.6 of the Appendix.

We have applied the LS algorithm to 13 functions whose results have been
compared to those produced by the Particle Swarm Optimization (PSO) method [3]
and the Differential Evolution (DE) algorithm [11]. These are considered as the
most popular algorithms for many optimization applications. In all comparisons, the
population has been set to 40 (N = 40) individuals. The maximum iteration number
for all functions has been set to 1000. Such stop criterion has been selected to
maintain compatibility to similar works reported in the literature [34, 35].

The parameter settings for each of the algorithms in the comparison are
described as follows:

1. PSO: In the algorithm, c1 ¼ c2 ¼ 2 while the inertia factor (x) is decreasing
linearly from 0.9 to 0.2.

2. DE: The DE/Rand/1 scheme is employed. The parameter settings follow the
instructions in [11]. The crossover probability is CR = 0.9 and the weighting
factor is F = 0.8.

3. In LS, F and L are set to 0.6 and L, respectively. Besides, g is fixed to 20 (N/2)
whereas gen and N are configured to 1000 and 40, respectively. Once these
parameters have been determined experimentally, they are kept for all experi-
ments in this section.

Uni-modal test functions

Functions f1 to f7 are unimodal functions. The results for unimodal functions, over
30 runs, are reported in Table 4.1 considering the following performance indexes:
the average best-so-far solution (ABS), the median of the best solution in the last
iteration (MBS) and the standard deviation (SD). According to this table, LS
provides better results than PSO and DE for all functions. In particular this test
yields the largest difference in performance which is directly related to a better
trade-off between exploration and exploitation produced by LS operators.

A non-parametric statistical significance proof known as the Wilcoxon’s rank
sum test for independent samples [38, 39] has been conducted with an 5% sig-
nificance level, over the “average best-so-far” data of Table 4.1. Table 4.2 reports
the p-values produced by Wilcoxon’s test for the pair-wise comparison of the
“average best so-far” of two groups. Such groups are formed by LS versus PSO and

70 4 The Metaheuristic Algorithm of the Locust-Search

LS versus DE. As a null hypothesis, it is assumed that there is no significant
difference between mean values of the two algorithms. The alternative hypothesis
considers a significant difference between the “average best-so-far” values of both
approaches. All p-values reported in the table are less than 0.05 (5% significance
level) which is a strong evidence against the null hypothesis, indicating that the LS
results are statistically significant and that it has not occurred by coincidence (i.e.
due to the normal noise contained in the process).

Table 4.1 Minimization
result of benchmark functions
in Table 4.5 with n = 30

PSO DE LS

f1 ABS 1:66� 10�1 6:27� 10�3 4:55� 10�4

MBS 0.23 5:85� 10�3 2:02� 10�4

SD 3:79� 10�1 1:68� 10�1 6:98� 10�4

f2 ABS 4:83� 10�1 2:02� 10�1 5:41� 10�3

MBS 0.53 1:96� 10�1 5:15� 10�3

SD 1:59� 10�1 0.66 1:45� 10�2

f3 ABS 2.75 5:72� 10�1 1:61� 10�3

MBS 3.16 6:38� 10�1 1:81� 10�3

SD 1.01 0.15 1:32� 10�3

f4 ABS 1.84 0.11 1:05� 10�2

MBS 1.79 0.10 1:15� 10�2

SD 0.87 0.05 6:63� 10�3

f5 ABS 3.07 2.39 4:11� 10�2

MBS 3.03 2.32 3:65� 10�2

SD 0.42 0.36 2:74� 10�3

f6 ABS 6.36 6.51 5:88� 10�2

MBS 6.19 6.60 5:17� 10�2

SD 0.74 0.87 1:67� 10�2

f7 ABS 6.14 0.12 2:71� 10�2

MBS 2.76 0.14 1:10� 10�2

SD 0.73 0.02 1:18� 10�2

Maximum number of iterations = 1000

Table 4.2 p-values produced
by Wilcoxon’s test comparing
LS versus PSO and DE over
the “average best-so-far”
values from Table 4.1

LS versus PSO DE

f1 1:83� 10�4 1:73� 10�2

f2 3:85� 10�3 1:83� 10�4

f3 1:73� 10�4 6:23� 10�3

f4 2:57� 10�4 5:21� 10�3

f5 4:73� 10�4 1:83� 10�3

f6 6:39� 10�5 2:15� 10�3

f7 1:83� 10�4 2:21� 10�3

4.4 Experimental Results 71

Multimodal test functions

Multimodal functions have many local minima, being the most difficult to optimize.
For multimodal functions, the final results are more important since they reflect the
algorithm’s ability to escape from poor local optima and locate a near-global
optimum. We have done experiments on f8 to f13 where the number of local minima
increases exponentially as the dimension of the function increases. The dimension
of these functions is set to 30. The results are averaged over 30 runs, reporting the
performance indexes in Table 4.3 as follows: the average best-so-far solution
(ABS), the median of the best solution in the last iteration (MBS) and the standard
deviation (SD). Likewise, p-values of the Wilcoxon signed-rank test of 30 inde-
pendent runs are listed in Table 4.4.

Table 4.3 Minimization result of benchmark functions in Table 4.6 with n = 30

PSO DE LS

f8 ABS �6:7� 103 �1:26� 104 �1:26� 104

MBS �5:4� 103 �1:24� 104 �1:23� 104

SD 6:3� 102 3:7� 102 1:1� 102

f9 ABS 14.8 4:01� 10�1 2:49� 10�3

MBS 13.7 2:33� 10�1 3:45� 10�3

SD 1.39 5:1� 10�2 4:8� 10�4

f10 ABS 14.7 4:66� 10�2 2:15� 10�3

MBS 18.3 4:69� 10�2 1:33� 10�3

SD 1.44 1:27� 10�2 3:18� 10�4

f11 ABS 12.01 1.15 1:47� 10�4

MBS 12.32 0.93 3:75� 10�4

SD 3.12 0.06 1:48� 10�5

f12 ABS 6:87� 10�1 3:74� 10�1 5:58� 10�3

MBS 4:66� 10�1 3:45� 10�1 5:10� 10�3

SD 7:07� 10�1 1:55� 10�1 4:18� 10�4

f13 ABS 1:87� 10�1 1:81� 10�2 1:78� 10�2

MBS 1:30� 10�1 1:91� 10�2 1:75� 10�2

SD 5:74� 10�1 1:66� 10�2 1:64� 10�3

Maximum number of iterations = 1000

Table 4.4 p-values produced
by Wilcoxon’s test comparing
LS versus PSO and DE over
the “average best-so-far”
values from Table 4.3

LS versus PSO DE

f8 1:83� 10�4 0.061

f9 1:17� 10�4 2:41� 10�4

f10 1:43� 10�4 3:12� 10�3

f11 6:25� 10�4 1:14� 10�3

f12 2:34� 10�5 7:15� 10�4

f13 4:73� 10�4 0.071

72 4 The Metaheuristic Algorithm of the Locust-Search

For f9; f10; f11 and f12, LS yields a much better solution than the others. However,
for functions f8 and f13, LS produces similar results to DE. The Wilcoxon rank test
results, presented in Table 4.4, show that LS performed better than PSO and DE
considering the four problems f9�f12, whereas, from a statistical viewpoint, there is
not difference in results between LS and DE for f8 and f13.

4.5 Conclusions

In this chapter, the Locust Search (LS) has been analyzed for solving optimization
tasks. The LS algorithm is based on the simulation of the behavior presented in
swarms of locusts. In the LS algorithm, individuals emulate a group of locusts
which interact to each other based on the biological laws of the cooperative swarm.
The algorithm considers two different behaviors: solitary and social. Depending on
the behavior, each individual is conducted by a set of evolutionary operators which
mimic the different cooperative behaviors that are typically found in the swarm.

Different to most of existent evolutionary algorithms, in the LS approach, the
modeled behavior explicitly avoids the concentration of individuals in the current
best positions. Such fact allows not only to emulate in a better realistic way the
cooperative behavior of the locust colony, but also to incorporate a computational
mechanism to avoid critical flaws commonly present in the popular PSO and DE
algorithms, such as the premature convergence and the incorrect exploration–
exploitation balance.

LS has been experimentally tested considering a suite of 13 benchmark func-
tions. The performance of LS has been also compared to the following algorithms:
the Particle Swarm Optimization method (PSO) [3], and the Differential Evolution
(DE) algorithm [11]. Results have confirmed an acceptable performance of the LS
method in terms of the solution quality for all tested benchmark functions.

The LS remarkable performance is associated with two different reasons: (i) the
solitary operator allows a better particle distribution in the search space, increasing
the algorithm’s ability to find the global optima; and (ii) the use of the social
operation, provides of a simple exploitation operator that intensifies the capacity of
finding better solutions during the evolution process.

Appendix: List of Benchmark Functions

In Table 4.5, n is the dimension of function, fopt is the minimum value of the
function, and S is a subset of Rn. The optimum location xopt

� �
for functions in

Table 4.5 is in ½0�n, except for f5 with xopt in ½1�n.
The optimum location xopt

� �
for functions in Table 4.6, are in ½0�n, except for f8

in ½420:96�n and f12�f13 in ½1�n.

4.4 Experimental Results 73

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press Inc, New York (1999)

2. Kassabalidis, I., El-Sharkawi, M.A., Marks II, R.J., Arabshahi, P., Gray, A.A.: Swarm
intelligence for routing in communication networks. In: Global Telecommunications
Conference, GLOBECOM ’01, IEEE, vol. 6, pp. 3613–3617 (2001)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

4. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University
(2005)

Table 4.5 Unimodal test functions

Test function S fopt

f1ðxÞ ¼
Pn

i¼1 x
2
i ½�100;100�n 0

f2ðxÞ ¼
Pn

i¼1 xij j þ
Qn

i¼1 xij j ½�10;10�n 0

f3ðxÞ ¼
Pn

i¼1
Pi

j¼1 xj
� �2 ½�100;100�n 0

f4ðxÞ ¼ max
i

xij j; 1� i� nf g ½�100;100�n 0

f5ðxÞ ¼
Pn�1

i¼1 100 xiþ 1 � x2i
� �2þ xi � 1ð Þ2

h i ½�30;30�n 0

f6ðxÞ ¼
Pn

i¼1 xiþ 0:5ð Þ2 ½�100;100�n 0

f7ðxÞ ¼
Pn

i¼1 ix
4
i þ randð0; 1Þ ½�1:28;1:28�n 0

Table 4.6 Multimodal test functions

Test function S fopt

f8ðxÞ ¼
Pn

i¼1�xi sin
ffiffiffiffiffiffi
xij j

p� � ½�500;500�n −418.98*n

f9ðxÞ ¼
Pn

i¼1 x2i � 10 cosð2pxiÞþ 10
� � ½�5:12;5:12�n 0

f10ðxÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x

2
i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �þ 20 ½�32;32�n 0

f11ðxÞ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cos

xiffi
i
p

� �
þ 1 ½�600;600�n 0

f12ðxÞ ¼ p
n

10 sinðpy1Þþ
Xn�1

i¼1 ðyi � 1Þ2 1þ 10 sin2ðpyiþ 1Þ
� �n

þðyn � 1Þ2
o
þ

Xn

i¼1 uðxi; 10; 100; 4Þ
yi ¼ 1þ xi þ 1

4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi [a

0 �a\xi\a
kð�xi � aÞm xi\� a

8<
:

½�50;50�n 0

f13ðxÞ ¼ 0:1 sin2ð3px1Þþ
Xn

i¼1 ðxi � 1Þ2 1þ sin2ð3pxiþ 1Þ� �n
þðxn � 1Þ2 1þ sin2ð2pxnÞ

� �oþXn

i¼1 uðxi; 5; 100; 4Þ

½�50;50�n 0

74 4 The Metaheuristic Algorithm of the Locust-Search

5. Passino, K.M.: Biomimicry of bacterial foraging for distributed optimization and control.
IEEE Control Syst. Mag. 22(3), 52–67 (2002)

6. Hossein, A., Hossein-Alavi, A.: Krill herd: a new bio-inspired optimization algorithm.
Commun. Nonlinear Sci. Numer. Simul. 17, 4831–4845 (2012)

7. Yang, X.S.: Engineering Optimization: An Introduction with Metaheuristic Applications.
Wiley, USA (2010)

8. Yang, X.S., Deb, S.: Proceedings of World Congress on Nature & Biologically Inspired
Computed, pp. 210–214. IEEE Publications, India (2009)

9. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization
algorithm inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384
(2013)

10. Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An algorithm for
global optimization inspired by collective animal behaviour. Discrete Dyn. Nat. Soc. art. no.
638275 (2012)

11. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95–012. ICSI, Berkeley, CA
(1995)

12. Bonabeau, E.: Social insect colonies as complex adaptive systems. Ecosystems 1, 437–443
(1998)

13. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning based
particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

14. Tvrdík, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput. 9
(3), 1149–1155 (2009)

15. Wang, H., Sun, H., Li, C., Rahnamayan, S., Jeng-shyang, P.: Diversity enhanced particle
swarm optimization with neighborhood. Inf. Sci. 223, 119–135 (2013)

16. Gong, W., Fialho, Á., Cai, Z., Li, H.: Adaptive strategy selection in differential evolution for
numerical optimization: an empirical study. Inf. Sci. 181(24), 5364–5386 (2011)

17. Gordon, D.: The organization of work in social insect colonies. Complexity 8(1), 43–46
(2003)

18. Kizaki, S., Katori, M.: A Stochastic lattice model for locust outbreak. Phys. A 266, 339–342
(1999)

19. Rogers, S.M., Cullen, D.A., Anstey, M.L., Burrows, M., Dodgson, T., Matheson, T., Ott, S.
R., Stettin, K., Sword, G.A., Despland, E., Simpson, S.J.: Rapid behavioural gregarization in
the desert locust, Schistocerca gregaria entails synchronous changes in both activity and
attraction to conspecifics. J. Insect Physiol. 65, 9–26 (2014)

20. Topaz, C.M., Bernoff, A.J., Logan, S., Toolson, W.: A model for rolling swarms of locusts.
Eur. Phys. J. Special Topics 157, 93–109 (2008)

21. Topaz, C.M., D’Orsogna, M.R., Edelstein-Keshet, L., Bernoff, A.J.: Locust dynamics:
behavioral phase change and swarming. PLoS Comput. Biol. 8(8), 1–11

22. Oster, G., Wilson, E.: Caste and Ecology in the Social Insects. N.J. Princeton University
Press, Princeton (1978)

23. Hölldobler, B., Wilson, E.O.: Journey to the Ants: A Story of Scientific Exploration (1994).
ISBN 0-674-48525-4

24. Hölldobler, B., Wilson, E.O.: The Ants. Harvard University Press, USA (1990). ISBN
0-674-04075-9

25. Tanaka, S., Nishide, Y.: Behavioral phase shift in nymphs of the desert locust, Schistocerca
gregaria: special attention to attraction/avoidance behaviors and the role of serotonin. J. Insect
Physiol. 59, 101–112 (2013)

26. Gaten, E., Huston, S.J., Dowse, H.B., Matheson, T.: Solitary and gregarious locusts differ in
circadian rhythmicity of a visual output neuron. J. Biol. Rhythms 27(3), 196–205 (2012)

27. Benaragama, I., Gray, J.R.: Responses of a pair of flying locusts to lateral looming visual
stimuli. J. Comp. Physiol. A. 200(8), 723–738 (2014)

28. Sergeev, M.G.: Distribution patterns of grasshoppers and their kin in the boreal zone.
Psyche J. Entomol. 2011, 9 pages, Article ID 324130 (2011)

References 75

29. Ely, S.O., Njagi, P.G.N., Bashir, M.O., El-Amin, S.E.-T., Hassanali1, A.: Diel behavioral
activity patterns in adult solitarious desert locust, Schistocerca gregaria (Forskål).
Psyche J. Entomol. 2011, Article ID 459315, 9 (2011)

30. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press, Beckington (2008)
31. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by

the states of matter that improves the balance between exploration and exploitation. Appl.
Intell. 40(2), 256–272 (2014)

32. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems. J. Global Optim. 31(4),
635–672 (2005)

33. Chelouah, R., Siarry, P.: A continuous genetic algorithm designed for the global optimization
of multimodal functions. J. Heuristics 6(2), 191–213 (2000)

34. Herrera, F., Lozano, M., Sánchez, A.M.: A taxonomy for the crossover operator for
real-coded genetic algorithms: an experimental study. Int. J. Intell. Syst. 18(3), 309–338
(2003)

35. Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global
optimization of multimodal functions. J. Global Optim. 33(2), 235–255 (2005)

36. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with
crossover hill-climbing. Evol. Comput. 12(3), 273–302 (2004)

37. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM
Trans. Math. Softw. 7(1), 17–41 (1981)

38. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
39. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for

analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special
session on real parameter optimization. J. Heurist (2008). https://doi.org/10.1007/s10732-008-
9080-4

76 4 The Metaheuristic Algorithm of the Locust-Search

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4

Chapter 5
Identification of Fractional Chaotic
Systems by Using the Locust Search
Algorithm

Parameter estimation of fractional chaotic models has drawn the interests of dif-
ferent research communities due to its multiple applications. In the estimation
process, the task is converted into a multi-dimensional optimization problem. Under
this approach, the fractional elements, as well as functional factors of the chaotic
model are assumed as decision variables. Many methods based on metaheuristic
concepts have been successfully employed to identify the parameters of
fractional-order chaotic models. Nevertheless, most of them present a significant
weakness, they usually reach sub-optimal solutions as a consequence of an incor-
rect balance between exploration and exploitation in their search procedures. This
chapter analyses the way in which metaheuristic algorithms can be applied for
parameter identification of chaotic systems. To identify the parameters, the chapter
explores the use of the metaheuristic method called Locust Search (LS) which is
based on the operation of swarms of locusts. Contrary to the most of existent
metaheuristic algorithms, it explicitly discourages the clustering of individuals in
the promising positions, eliminating the significant defects such as the premature
convergence to sub-optimal solutions and the limited exploration–exploitation
balance.

5.1 Introduction

A fractional order model is a system that is characterized by a fractional differential
equation containing derivatives of non-integer order. Several engineering problems,
such as transmission lines [1], electrical circuits [2] and control systems [3], can be
more accurately described by fractional differential equations than integer order
schemes. For this reason, in the last decade, the fractional order systems [4–8] have
attracted the interests of several research communities.

System identification is a practical way to model a fractional order system.
However, because the mathematical interpretation of fractional calculus is lightly

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_5&domain=pdf

distinct to integer calculus, it is difficult to model real fractional order systems
directly based on analytic mechanisms [9]. For classical integer order system, once
the maximum order of the system has been defined, the parameters of the model can
be identified directly. However, for a fractional order system, because identification
requires the choice of the fractional order of the operators, and the systematic
parameters, the identification process of such systems is more complex than that of
the integer order models [10]. Under such conditions, most of the classical iden-
tification methods cannot directly applied to identification of a fractional order
systems [11].

The problem of estimating the parameters of fractional order systems has been
commonly solved through the use of deterministic methods such as non-linear
optimization techniques [12], input output frequency contents [13] or operational
matrix [14]. These methods have been exhaustively analyzed and represents the
most consolidated available tools. The interested reader in such approaches can be
referred to [15] for a recent survey on the state-of-the-art.

As an alternative to classical techniques, the problem of identification in frac-
tional order systems has also been handled through evolutionary methods. In
general, they have demonstrated, under several circumstances, to deliver better
results than those based on deterministic approaches in terms of accuracy and
robustness [16]. Under these methods, an individual is represented by a candidate
model. Just as the evolution process unfolds, a set of evolutionary operators are
applied in order to produce better individuals. The quality of each candidate
solution is evaluated through an objective function whose final result represents the
affinity between the estimated model and the actual one. Some examples of these
approaches used in the identification of fractional order systems involve methods
such as Genetic Algorithms (GA) [17], Artificial Bee Colony (ABC) [18],
Differential Evolution (DE) [19] and Particle Swarm Optimization (PSO) [20].
Although these algorithms present interesting results, they have an important lim-
itation: They frequently obtain sub-optimal solutions as a consequence of the
limited balance between exploration and exploitation in their search strategies. This
limitation is associated to their evolutionary operators employed to modify the
individual positions. In such algorithms, during their operation, the position of each
individual for the next iteration is updated producing an attraction towards the
position of the best particle seen so-far or towards other promising individuals.
Therefore, as the algorithm evolves, such behaviors cause that the entire population
rapidly concentrates around the best particles, favoring the premature convergence
and damaging the appropriate exploration of the search space [21, 22].

This chapter presents an algorithm for parameter identification of fractional-order
chaotic systems. In order to determine the parameters, the method uses a novel
evolutionary method called Locust Search (LS) [23–25] which is based on the
behavior of swarms of locusts. In the LS algorithm, individuals emulate a group of
locusts which interact to each other based on the biological laws of the cooperative
swarm. The algorithm considers two different behaviors: solitary and social.
Depending on the behavior, each individual is conducted by a set of evolutionary
operators which mimics different cooperative conducts that are typically found in

78 5 Identification of Fractional Chaotic Systems by Using …

the swarm. Different to most of existent evolutionary algorithms, the behavioral
model in the LS approach explicitly avoids the concentration of individuals in the
current best positions. Such fact allows to avoid critical flaws such as the premature
convergence to sub-optimal solutions and the incorrect exploration–exploitation
balance. Numerical simulations have been conducted on the fractional-Order Van
der Pol oscillator to show the effectiveness of the scheme.

The chapter is organized as follows. In Sect. 5.2, the concepts of fractional
calculus are introduced. Section 5.3 gives a description for the Locust Search
algorithm. Section 5.4 gives a brief description of the fractional-order Van der Pol
Oscillator. Section 5.5 formulates the parameter estimation problem. Section 5.6
shows the experimental results. Finally some conclusions are discussed in Sect. 5.7.

5.2 Fractional Calculus

Fractional calculus is a generalization of integration and differentiation to
non-integer order fundamental operator. The differential-integral operator, denoted
by aD

q
t takes both the fractional derivative and the fractional integral in a single

expression which is defined as:

aD
q
t ¼

dq
dtq ; q[0;
1; q ¼ 0;Rt

a
ðdsÞq; q\0:

8>><
>>: ð5:1Þ

where a and t represents the operation bounds whereas q 2 <. The commonly used
definitions for fractional derivatives are the Grünwald-Letnikov, Riemann-Liouville
[7] and Caputo [26]. According to the Grünwald-Letnikov approximation, the
fractional-order derivative of order q is defined as follows:

Dq
t f ðtÞ ¼ lim

h!0

1
hq

X1
j¼0

�1ð Þ j q
j

� �
f ðt � jhÞ ð5:2Þ

In the numerical calculation of fractional-order derivatives, the explicit numer-
ical approximation of the qth derivative at the points kh; ðk ¼ 1; 2; . . .Þ maintains
the following form [27]:

ðk�Lm=hÞD
q
tk f ðtÞ � h�q

Xk
j¼0

�1ð Þ j q
j

� �
f ðtk � jÞ ð5:3Þ

where Lm is the memory length tk ¼ kh, h, is the time step and �1ð Þ j q
j

� �
are the

binomial coefficients. For their calculation we can use the following expression:

5.1 Introduction 79

cðqÞ0 ¼ 1; cðqÞj ¼ 1� 1þ q
j

� �
cðqÞj�1 ð5:4Þ

Then, the general numerical solution of the fractional differential equation is
defined as follows:

yðtkÞ ¼ f ðyðtkÞ; tkÞhq �
Xk
j¼1

cðqÞj yðtk�jÞ ð5:5Þ

5.3 Locust Search (LS) Algorithm

In the operation of LS [23], a population Lk(flk1; lk2; . . .; lkNg) of N locusts (indi-
viduals) is processed from the initial stage (k = 0) to a total gen number iterations
(k = gen). Each individual lki (i 2 1; . . .;N½ �) symbolizes an n-dimensional vector

lki;1; l
k
i;2; . . .; l

k
i;n

n o
where each dimension represents a domain variable of the opti-

mization problem to be solved. The set of variables represents the valid search

space S ¼ lki 2 R
n lbd � lki;d � ubd
���n o

, where lbd and ubd represents the lower and

upper bounds for the d dimension, respectively. The quality of each element lki
(candidate solution) is evaluated by using the objective function f lki

� �
. In LS, at

each iteration consists of two operators: (A) solitary and (B) social.

5.3.1 Solitary Operation (A)

In the solitary operation, a new location pi(i 2 1; . . .;N½ �) is generated by modifying
the current element location lki with a change of position Dli pi ¼ lki þDli

� �
. Dli is

the result of the individual interactions experimented by lki as a consequence of its
biological behavior. Such interactions are pairwise computed among lki and the
other N − 1 individuals in the swarm. Therefore, the final force exerted between lkj
and lki is computed by considering the following model:

smij ¼ qðlki ; lkj Þ � sðrijÞ � dij þ randð1;�1Þ ð5:6Þ

where dij ¼ ðlkj � lki Þ=rij is the unit-vector, pointing from lki to lkj . Furthermore, rand
(1, −1) is an number randomly produced between 1 and −1. The factor sðrijÞ
represents the social relation between lkj and lki , which is calculated as follows:

80 5 Identification of Fractional Chaotic Systems by Using …

sðrijÞ ¼ F � e�rij=L � e�rij ð5:7Þ

Here, rij is the distance between lkj and lki , F represents the strength of attraction
whereas L is the attractive length factor. It is assumed that F < 1 and L > 1 so that
repulsion is stronger in a shorter-scale, while attraction is applied in a weaker and
longer-scale. qðlki ; lkj Þ is a function that calculates the dominance value of the best

element between lkj and lki . In order to operate qðlki ; lkj Þ, all the individuals from

Lk(flk1; lk2; . . .; lkNg) are arranged in terms of their fitness values. Therefore, a rank is
assigned to each element, so that the best individual obtains the rank 0 (zero)
whereas the worst individual receives the rank N − 1. Under such conditions, the
function qðlki ; lkj Þ is defined as follows:

qðlki ; lkj Þ ¼
e� 5�rankðlki Þ=Nð Þ if rankðlki Þ\rankðlkj Þ
e� 5�rankðlkj Þ=Nð Þ if rankðlki Þ[rankðlkj Þ

(
ð5:8Þ

where rank (a) delivers the rank of the a-element. According to Eq. (5.8), qðlki ; lkj Þ
gives a value within [0,1]. Figure 5.1 shows the behavior of qðlki ; lkj Þ considering

100 elements. In the figure, it is assumed that lki represents one of the 99 individuals
with ranks among 0 and 98 whereas lkj is fixed to the worst individual (rank 99).

Then, the resultant force Smi on each element lki is computed as the superposition
of all of the pairwise interactions exerted on it:

Smi ¼
XN
j ¼ 1
j 6¼ i

smij ð5:9Þ

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

(
,

)
k

k
i

j
l

l

rank()kil

Fig. 5.1 Behavior of qðlki ; lkj Þ
considering 100 individuals

5.3 Locust Search (LS) Algorithm 81

Finally, Dli is assumed similar to the social force experimented by lki as the
superposition of all of the pairwise reciprocal forces. Consequently, Dli is repre-
sented as follows:

Dli ¼ Smi ð5:10Þ

After calculating the new locations P(fp1; p2; . . .; pNg) of the population
Lk(flk1; lk2; . . .; lkNg), the final locations F(ff1; f2; . . .; fNg) must be computed. This
procedure can be summarized by the following formulation (in terms of a mini-
mization problem):

f i ¼ pi if f ðpiÞ\f ðlki Þ
lki otherwise

	
ð5:11Þ

5.3.2 Social Operation (B)

The social operation is a discriminating operation which considers only to a subset
E of the final positions F (where E�F). In the process first is necessary to order
F in terms of their fitness values and collect the individuals in a temporal population
B ¼ b1; b2; . . .; bNf g. The individuals of B are arranged so that the best element is
located in the first position b1 b1;1; b1;2; . . .; b1;n

 �
whereas the worst individual is

situated in the last location bN . Under such conditions, E is composed by the first
g position of B (the best elements). Then, a subspace Cj is defined around each
selected element f j 2 E. The size of Cj depends on the distance ed which is
determined as follows:

ed ¼
Pn

q¼1 ubq � lbq
� �
n

� b ð5:12Þ

where ubq and lbq are the upper and lower limits of the qth dimension, n is the
number of dimensions of the optimization problem, whereas b 2 0;1½ � is a tuning
factor. Therefore, the bounds of Cj are modeled as follows:

ussqj ¼ bj;q þ ed

lssqj ¼ bj;q � ed
ð5:13Þ

where ussqj and lssqj are the upper and lower limits of the q-th-dimension for the
subspace Cj, respectively. Once creating the subspace Cj in the neighborhood of the

element f j 2 E, a set of h new elements ðMh
j ¼ m1

j ;m
2
j ; . . .;m

h
j

n o
Þ are randomly

produced within the limits defined by Eq. 5.13. Considering the h samples, the new
individual lkþ 1

j of the next population Lkþ 1 must be extracted. In order to select

82 5 Identification of Fractional Chaotic Systems by Using …

lkþ 1
j , the best element mbest

j , in terms of fitness value from the h samples (where

mbest
j 2 m1

j ;m
2
j ; . . .;m

h
j

h i
), is examined. If mbest

j is better than f j according to their

fitness values, lkþ 1
j is updated with mbest

j , otherwise the position of f j is assigned to

lkþ 1
j . The elements of F that have not been considered by the procedure ðfw 62 EÞ
transport their corresponding values to Lkþ 1 without variation. The social operation
is used to exploit only favorable solutions. According to the social operation, inside
each subspace Cj, h random samples are produced. Since the number of selected
elements in each subspace is very small (typically h\4), the use of this operator
cannot be considered computational expensive.

5.4 Fractional-Order van der Pol Oscillator

The Van der Pol Oscillator model has been extensively studied as a complex
example of non-linear system. It provides important models for a wide range of
dynamic behaviors for several engineering applications [28, 29]. The classical
integer-order Van der Pol Oscillator is described by a second-order non-linear
differential equation as follows:

_y1
_y2

�

¼ 0 1

�1 �eðy21ðtÞ � 1Þ
�

y1
y2

�

; ð5:14Þ

where e is a control parameter that reflects the nonlinearity degree of the system. On
the other hand, the fractional-order Van der Pol Oscillator model of order q is
defined by the following formulation [30]:

0D
q1
t y1ðtÞ ¼ y2ðtÞ;

0D
q2
t y2ðtÞ ¼ �y1ðtÞ � eðy21ðtÞ � 1Þy2ðtÞ: ð5:15Þ

Considering the Grünwald-Letnikov approximation (see Eq. 5.5), the numerical
solution for the fractional-order Van der Pol Oscillator is given by:

y1ðtkÞ ¼ y2ðtk�1Þhq1 �
Xk
j¼1

cðq1Þj y1ðtk�jÞ;

y2ðtkÞ ¼ ð�y1ðtkÞ � eðy21ðtkÞ � 1Þy2ðtk�1ÞÞhq2 �
Xk
j¼1

cðq2Þj y2ðtk�jÞ:
ð5:16Þ

5.3 Locust Search (LS) Algorithm 83

5.5 Problem Formulation

In this approach, the identification process is considered as a multidimensional
optimization problem. In the optimization process, the parameters of a new
fractional-order chaotic system FOCE are determined by using the LS method from
the operation of the original fractional-order chaotic system FOCO. The idea is that
FOCE presents the best possible parametric affinity with FOCO. Under such cir-
cumstances, the original fractional-order chaotic system FOCO can be defined as
follows:

aD
q
t Y ¼ FðY;Y0; hÞ; ð5:17Þ

where Y ¼ ½y1; y2; . . .; ym�T denotes the state vector of the system, Y0 symbolizes
the initial state vector, h ¼ ½h1; h2; . . .; hm�T represents the original systematic
parameter set, q ¼ ½q1; q2; . . .; qm�T for 0\qi\1 ði 2 ½1; . . .;m�Þ corresponds to the
fractional derivative orders and F is a generic non-linear function. On the other
hand, the estimated fractional-order chaotic system FOCE can be modeled as
follows:

aD
q̂
t Ŷ ¼ FðŶ;Y0; ĥÞ; ð5:18Þ

where Ŷ, ĥ and q̂ denotes the estimated state system, the estimated systematic
parameter vector and the estimated fractional orders, respectively.

Since the goal is that FOCE presents the best possible parametric affinity with
FOCO, the problem can be approached as an optimization problem described by the
following formulation:

�h; �q ¼ arg min
ðŶ;q̂Þ2X

ðJðh; qÞÞ; ð5:19Þ

where �h; �q denotes the best possible parametric values obtained by the optimization
process, X symbolizes the search space admitted for parameters (Ŷ and q̂) whereas
J represents the objective function that evaluates the parametric affinity between
FOCO and FOCE. This affinity can be computed as follows:

Jðh; qÞ ¼ 1
M

XM
k¼1

ðYðkÞ � ŶðkÞÞ2; ð5:20Þ

where YðkÞ and ~YðkÞ represent the state values produced by the original and
estimated systems, respectively. On the other hand, k denotes the sampling time
point and M represents the length of data used for parameter estimation. According
to the optimization problem formulated in Eq. (5.19), the parameter identification
can be achieved by searching suitable values of Ŷ and q̂ within the searching space

84 5 Identification of Fractional Chaotic Systems by Using …

Ω, such that the objective function has been minimized. Figure 5.2 shows the
graphic representation of the identification process. Since the fractional-order Van
der Pol oscillator has been chosen to test the performance of the approach, the
fractional-order system maintain two different fractional derivative orders q ¼
½q1; q2�T (m = 2) and one systematic parameter e.

5.6 Experimental Results

To verify the effectiveness and robustness of the approach, the fractional-order Van
der Pol oscillator is chosen to test its performance. The simulations has been
conducted by using MATLAB (Version 7.1, MathWorks, Natick, MA, USA) on an
Intel(R) Core(TM) i7-3470 CPU, 3.2 GHz with 4 GB of RAM. In order to calculate
the objective function, the number of samples is set as 300 and the step size is 0.01.

In this section, the results of the LS algorithm have been compared to those
produced by the Genetic Algorithms (GA) [17], Particle Swarm Optimization
(PSO) method [20], the Differential Evolution (DE) [19], and the LS method. In all
comparisons, the population has been set to 40 (N = 40) individuals. The maximum
iteration number for all functions has been set to 100. Such stop criterion has been
selected to maintain compatibility to similar works reported in the literature [16].

The parameter setting for each of the algorithms in the comparison is described
as follows:

1. GA: The population size has been set to 70, the crossover probability with 0.55,
the mutation probability with 0.10 and number of elite individuals with 2. The
roulette wheel selection and the 1-point crossover are applied.

Fig. 5.2 Evolutionary algorithm for fractional-order system parameter estimation

5.5 Problem Formulation 85

1. PSO: In the method, c1 ¼ c2 ¼ 2 whereas the inertia factor (x) is decreased
linearly from 0.9 to 0.2.

2. DE: The DE/Rand/1 scheme has been employed. The parameter settings follow
the instructions suggested in [31]. The crossover probability is CR = 0.9
whereas the weighting factor is F = 0.8.

3. In LS, F and L are set to 0.6 and L, respectively. Similarly, g is fixed to 20 (N/2),
h = 2, b ¼ 0:6 whereas gen and N are set to 1000 and 40, respectively. Once
such parameters have been experimentally determined, they are considered for
all experiments in this section.

In the experiments, the fractional-order Van der Pol Oscillator to be estimated
has been configured such that q1 ¼ 1:2, q2 ¼ 0:8 and e ¼ 1. Similarly, the initial
state has been set to [0.02,−0.2].

The statistical results of the best, the mean and the worst estimated parameters
with the corresponding relative error values over 100 independent runs are shown in
Table 5.1. From Table 5.1, it can be easily seen that the estimated values generated
by the LS algorithm are closer to the actual parameter values, which means that it is
more accurate than the standard GA, PSO and DE algorithms. Likewise, it can also
be clearly found that the relative error values obtained by the LS algorithm are all
smaller than those of the standard GA, PSO and DE algorithms, which can also

Table 5.1 Simulation result of the algorithms GA, PSO, DE and LS

Parameter GA PSO DE LS

BEST e 0.9021 0.9152 0.9632 0.9978
e�1j j
1

0.0979 0.0848 0.0368 0.0022

q1 1.3001 1.2810 1.2210 1.2005
q1�1:2j j
1:2

0.0834 0.0675 0.0175 0.0004

q2 0.8702 0.8871 0.8229 0.8011
q2�0:8j j
0:8

0.0877 0.1088 0.0286 0.0013

WORST e 0.1731 0.1176 0.3732 0.7198
e�1j j
1

0.8269 0.8824 0.6268 0.2802

q1 2.1065 0.3643 1.8532 1.3075
q1�1:2j j
1:2

0.7554 0.6964 0.5443 0.0895

q2 0.1219 1.7643 1.2154 0.9101
q2�0:8j j
0:8

0.8476 1.2053 0.5192 0.1376

MEAN e 1.2131 1.2052 1.1701 1.0186
e�1j j
1

0.2131 0.2052 0.1701 0.0186

q1 0.9032 1.0974 1.3421 1.2654
q1�1:2j j
1:2

0.2473 0.0855 0.1186 0.0545

q2 0.9052 0.7229 0.7832 0.8089
q2�0:8j j
0:8

0.1315 0.0963 0.0210 0.0111

86 5 Identification of Fractional Chaotic Systems by Using …

prove that the LS algorithm has a higher performance in terms of accuracy.
Therefore, the estimated parameters can be closer to the true values than the GA,
PSO and DE algorithms. With this evidence, it can be concluded that the LS
algorithm can more efficiently identify a fractional-order systems than the other
algorithms used in the comparisons. In order to show the proficiency, of the
approach, Fig. 5.3 presents the phase diagrams of the Van der Pol Oscillator by
using the mean estimated parameters for each method.

The convergence curves of the parameters and fitness values estimated by the set
of algorithms are shown in Figs. 5.4, 5.5 and 5.6 in a single execution. From
Figs. 5.4, 5.5 and 5.6, it can be clearly observed that convergence processes of the
parameters and fitness values of LS algorithm are better than other algorithms.
Additionally, the estimated parameter values obtained by the LS algorithm fall
faster than the other algorithms.

Furthermore, Table 5.2 shows the average best solution obtained by each
algorithm. The average best solution (ABS) expresses the average value of the best
function evaluations that have been obtained from 100 independent executions.
A non-parametric statistical significance test known as the Wilcoxon’s rank sum
test for independent samples [32, 33] has been conducted with an 5% significance

(b)(a)

(d)(c)

−0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

Y1 (t)

Y
2

(t
)

−1 −0.5 0 0.5 1
−400

−300

−200

−100

0

100

200

300

400

Y1 (t)

Y
2

(t
)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2

−1

0

1

2

3

Y1 (t)

Y
2

(t
)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

Y1 (t)

Y
2

(t
)

Fig. 5.3 Phase diagrams of the Van der Pol oscillator by using the mean estimated parameters for
a GA, b PSO, c DE and d the LS approach

5.6 Experimental Results 87

level, over the “average best-solution” data of Table 5.2. Table 5.3 reports the p-
values produced by Wilcoxon’s test for the pair-wise comparison of the “average
best-solution” of two groups. Such groups are formed by LS versus GA, LS versus
PSO and LS versus DE. As a null hypothesis, it is assumed that there is no
significant difference between mean values of the two algorithms. The alternative
hypothesis considers a significant difference between the “average best-solution”

0 10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

No of Iterations

q
1

GA

PSO

DE

LS

Fig. 5.4 Estimated parameter q1 (fractional order)

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

No of Iterations

q
2

GA

PSO

DE

LS

Fig. 5.5 Estimated parameter q2 (fractional order)

88 5 Identification of Fractional Chaotic Systems by Using …

values of both approaches. All p-values reported in the table are less than 0.05 (5%
significance level) which is a strong evidence against the null hypothesis, indicating
that the LS results are statistically significant and that it has not occurred by
coincidence (i.e. due to the normal noise contained in the process).

5.7 Conclusions

Due to its multiple applications, parameter identification for fractional-order chaotic
systems has attracted the interests of several research communities. In the identi-
fication, the parameter estimation process is transformed into a multidimensional

0 10 20 30 40 50 60 70 80 90 100
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

No of Iterations

ε

GA

PSO

DE

LS

Fig. 5.6 Estimated systematic parameter e

Table 5.2 Average best solution obtained by each algorithm GA, PSO, DE and LS

GA PSO DE LS

0.2251 0.2016 0.0982 0.0126

Table 5.3 p-values produced by Wilcoxon’s test that compares LS versus GA, LS versus PSO
and DE over the “average best-solution” values from Table 5.3

p-values

LS versus GA 0.00021

LS versus PSO 0.00098

LS versus DE 0.00123

5.6 Experimental Results 89

optimization problem where fractional orders, as well as functional parameters of
the chaotic system are considered the decision variables. Under this approach, the
complexity of fractional-order chaotic systems tends to produce multimodal error
surfaces for which their cost functions are significantly difficult to minimize.
Several algorithms based on evolutionary computation principles have been suc-
cessfully applied to identify the parameters of fractional-order chaotic systems.
However, most of them maintain an important limitation, they frequently obtain
sub-optimal results as a consequence of an inappropriate balance between explo-
ration and exploitation in their search strategies.

In this chapter, an algorithm for parameter identification of fractional-order
chaotic systems has been presented. In order to determine the parameters, the
method uses a novel evolutionary method called Locust Search (LS) [R1] which is
based on the behavior of swarms of locusts. In the LS algorithm, individuals
emulate a group of locusts which interact to each other based on the biological laws
of the cooperative swarm. The algorithm considers two different behaviors: solitary
and social. Depending on the behavior, each individual is conducted by a set of
evolutionary operators which mimics different cooperative conducts that are typi-
cally found in the swarm. Different to most of existent evolutionary algorithms, the
behavioral model in the LS approach explicitly avoids the concentration of indi-
viduals in the current best positions. Such fact allows to avoid critical flaws such as
the premature convergence to sub-optimal solutions and the incorrect exploration–
exploitation balance.

In order to test the proficiency and robustness of the presented method, it has
been compared to other algorithms based on evolutionary principles such as GA,
PSO and DE. The comparison examines the identification of the fractional Van der
Pol Oscillator. The results show a high performance of the proposed estimator in
terms of precision and robustness.

References

1. Das, S.: Observation of Fractional Calculus in Physical System Description, pp. 101–156.
Springer, New York (2011)

2. Arena, P., Caponetto, R., Fortuna, L., Porto, D.: Nonlinear Noninteger Order Circuits and
Systems—An Introduction. World Scientific, Singapore (2000)

3. Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order
systems. Math. Probl. Eng. (2013). https://doi.org/10.1155/2013/356215

4. Diethelm, K.: An efficient parallel algorithm for the numerical solution of fractional
differential equations. Fract. Calc. Appl. Anal. 14(3), 475–490 (2011)

5. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl.
265(2), 229–248 (2002)

6. Kilbas, A.A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional
Differential Equations. Elsevier Science, The Netherlands (2006)

7. Podlubny, I.: Fractional Differential Equations. Academic Press, USA (1998)
8. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential

Equations. Wiley, New York (1993)

90 5 Identification of Fractional Chaotic Systems by Using …

http://dx.doi.org/10.1155/2013/356215

9. Hu, W., Yu, Y., Zhang, S.: A hybrid artificial bee colony algorithm for parameter
identification of uncertain fractional-order chaotic systems. Nonlinear Dyn. https://doi.org/10.
1007/s11071-015-2251-6

10. Yu, Y., Li, H.-X., Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic
system. Chaos, Solitons Fractals 42, 1181–1189 (2009)

11. Petras, I.: Fractional-Order Nonlinear Systems, ISBN 978-3-642-18100-9, Springer-Verlag
BerlinHeidelberg (2011)

12. Poinot, T., Trigeassou, J.-C.: Identification of fractional systems using an output error
technique. Nonlinear Dyn. 38, 133–154 (2004)

13. Nazarian, P., Haeri, M., Tavazoei, M.S.: Identifiability of fractional order systems using input
output frequency contents. ISA Trans. 49, 207–214 (2010)

14. Saha, R.S.: On Haar wavelet operational matrix of general order and its application for the
numerical solution of fractional Bagley Torvik equation. Appl. Math. Comput. 218, 5239–
5248 (2012)

15. Kerschen, G., Worden, K., Vakakis, A.F., Golinval, J.C.: Past, present and future of nonlinear
system identification in structural dynamics. Mech. Syst. Signal Process. 20(3), 505–592
(2006)

16. Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of Van der Pol–Duffing
oscillators via particle swarm optimization and differential evolution. Mech. Syst. Signal
Process. 24, 2076–2095 (2010)

17. Zhou, S., Cao, J., Chen, Y.: Genetic algorithm-based identification of fractional-order
systems. Entropy 15, 1624–1642 (2013)

18. Hu, W., Yu, Y., Wang, S.: Parameters estimation of uncertain fractional-order chaotic systems
via a modified artificial bee colony algorithm. Entropy 17, 692–709 (2015). https://doi.org/10.
3390/e17020692

19. Gao, F., Lee, X., Fei, F., Tong, H., Deng, Y., Zhao, H.: Identification time-delayed fractional
order chaos with functional extrema model via differential evolution. Expert Syst. Appl. 41
(4), 1601–1608 (2014)

20. Wu, D., Ma, Z., Li, A., Zhu, Q.: Identification for fractional order rational models based on
particle swarm optimization. Int. J. Comput. Appl. Technol. 41(1/2), 53–59 (2011)

21. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197,
701–713 (2009)

22. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary
programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

23. Cuevas, E., González, A., Fausto, F., Zaldívar, D., Pérez-Cisneros, M.: Multithreshold
segmentation by using an algorithm based on the behavior of locust swarms. Math. Probl.
Eng. 2015, Article ID 805357, 25 pages (2015). https://doi.org/10.1155/2015/805357

24. Cuevas, E., Zaldivar, D., Perez, M.: Automatic segmentation by using an algorithm based on
the behavior of locust swarms. In: Applications of Evolutionary Computation in Image
Processing and Pattern Recognition, Volume 100 of the series Intelligent Systems Reference
Library, pp. 229–269 (2016)

25. Cuevas, E., González, A., Zaldívar, D., Pérez-Cisneros, M.: An optimisation algorithm based
on the behaviour of locust swarms. Int. J. Bio-Inspired Comput. 7(6), 402–407 (2015)

26. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential
Equations. Wiley, USA (1993)

27. Dorcak, L.: Numerical models for the simulation of the fractional-order control systems
(1994)

28. Quaranta, G., Monti, G., Marano, G.C.: Parameters identification of Van der Pol–Duffing
oscillators via particle swarm optimization and differential evolution. Mech. Syst. Signal
Process. 24(7), 2076–2095 (2010)

29. Barbosa, R.S., Machado, J.A.T., Vinagre, B.M., Calderon, A.J.: Analysis of the Van der Pol
oscillator containing derivatives of fractional order. J. Vib. Control 13 (9–10), 1291–1301
(2007)

References 91

http://dx.doi.org/10.1007/s11071-015-2251-6
http://dx.doi.org/10.1007/s11071-015-2251-6
http://dx.doi.org/10.3390/e17020692
http://dx.doi.org/10.3390/e17020692
http://dx.doi.org/10.1155/2015/805357

30. Cartwright, J., Eguiluz, V., Hernandez-Garcia, E., Piro, O.: Dynamics of elastic excitable
media. Int. J. Bifurcat. Chaos 9(11), 2197–2202 (1999)

31. Cuevas, E., Zaldivar, D., Pérez-Cisneros, M., Ramírez-Ortegón, M.: Circle detection using
discrete differential evolution optimization. Pattern Anal. Appl. 14(1), 93–107 (2011)

32. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
33. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for

analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special
session on real parameter optimization. J. Heurist (2008). https://doi.org/10.1007/s10732-008-
9080-4

92 5 Identification of Fractional Chaotic Systems by Using …

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4

Chapter 6
The States of Matter Search (SMS)

The capacity of a metaheuristic method to attain the global optimal solution
maintains an explicit dependency on its potential to find a good balance between
exploitation and exploration of the search strategy. Several works have been
developed with many interesting metaheuristic methods which, at original versions,
introduce operations without considering the exploration–exploitation ratio. In this
chapter, the States of Matter Search (SMS) is analyzed. The SMS method is based
on the emulation of the states of matter concepts. In SMS, candidate solutions
represent molecules which interact among them by employing metaheuristic
operators under the physical laws of the thermal-energy motion phenomena. The
method is designed assuming that each state of matter defines a different explo-
ration–exploitation ratio. The optimization process is subdivided into three stages
which follow the different states of matter: gas, liquid and solid. In each phase,
molecules (individuals) present a different kind of movement. Starting from the gas
phase (only exploration), the method adjusts the rates of exploration and
exploitation until the solid state (only exploitation) is attained. As a result, the
algorithm can considerably enhance the equilibrium between exploration–ex-
ploitation, yet preserving the excellent search aptitudes of a metaheuristic approach.

6.1 Introduction

Global optimization [1] has delivered applications for many areas of science,
engineering, economics and others, where mathematical modelling is used [2]. In
general, the goal is to find a global optimum for an objective function which is
defined over a given search space. Global optimization algorithms are usually
broadly divided into deterministic and stochastic [3]. Since deterministic methods
only provide a theoretical guarantee of locating a local minimum of the objective
function, they often face great difficulties in solving global optimization problems
[4]. On the other hand, evolutionary algorithms are usually faster in locating a

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_6

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_6&domain=pdf

global optimum [5]. Moreover, stochastic methods adapt easily to black-box for-
mulations and extremely ill-behaved functions, whereas deterministic methods
usually rest on at least some theoretical assumptions about the problem formulation
and its analytical properties (such as Lipschitz continuity) [6].

Evolutionary algorithms, which are considered as members of the stochastic
group, have been developed by a combination of rules and randomness that mimics
several natural phenomena. Such phenomena include evolutionary processes such
as the Evolutionary Algorithm (EA) proposed by Fogel et al. [7], De Jong [8], and
Koza [9], the Genetic Algorithm (GA) proposed by Holland [10] and Goldberg
[11], the Artificial Immune System proposed by De Castro and Von Zuben [12] and
the Differential Evolution Algorithm (DE) proposed by Price and Storn [13]. Some
other methods which are based on physical processes include the Simulated
Annealing proposed by Kirkpatrick et al. [14], the Electromagnetism-like
Algorithm proposed by İlker et al. [15] and the Gravitational Search Algorithm
proposed by Rashedia et al. [16]. Also, there are other methods based on the
animal-behavior phenomena such as the Particle Swarm Optimization
(PSO) algorithm proposed by Kennedy and Eberhart [17] and the Ant Colony
Optimization (ACO) algorithm proposed by Dorigo et al. [18].

Every EA needs to address the issue of exploration–exploitation of the search
space. Exploration is the process of visiting entirely new points of a search space
whilst exploitation is the process of refining those points within the neighborhood
of previously visited locations, in order to improve their solution quality. Pure
exploration degrades the precision of the evolutionary process but increases its
capacity to find new potential solutions. On the other hand, pure exploitation allows
refining existent solutions but adversely driving the process to local optimal solu-
tions. Therefore, the ability of an EA to find a global optimal solution depends on
its capacity to find a good balance between the exploitation of found-so-far ele-
ments and the exploration of the search space [19]. So far, the exploration–ex-
ploitation dilemma has been an unsolved issue within the framework of EA.

Although PSO, DE and GSA are considered the most popular algorithms for
many optimization applications, they fail in finding a balance between exploration
and exploitation [20]; in multimodal functions, they do not explore the whole
region effectively and often suffers premature convergence or loss of diversity. In
order to deal with this problem, several proposals have been suggested in the
literature [21–46]. In most of the approaches, exploration and exploitation is
modified by the proper settings of control parameters that have an influence on the
algorithm’s search capabilities [47]. One common strategy is that EAs should start
with exploration and then gradually change into exploitation [48]. Such a policy can
be easily described with deterministic approaches where the operator that controls
the individual diversity decreases along with the evolution. This is generally cor-
rect, but such a policy tends to face difficulties when solving certain problems with
multimodal functions that hold many optima, since a premature takeover of
exploitation over exploration occurs. Some approaches that use this strategy can be
found in [21–29]. Other works [30–34] use the population size as reference to
change the balance between exploration and exploitation. A larger population size

94 6 The States of Matter Search (SMS)

implies a wider exploration while a smaller population demands a shorter search.
Although this technique delivers an easier way to keep diversity, it often represents
an unsatisfactory solution. An improper handling of large populations might con-
verge to only one point, despite introducing more function evaluations. Recently,
new operators have been added to several traditional evolutionary algorithms in
order to improve their original exploration–exploitation capability. Such operators
diversify particles whenever they concentrate on a local optimum. Some methods
that employ this technique are discussed in [35–46].

Either of these approaches is necessary but not sufficient to tackle the problem of
the exploration–exploitation balance. Modifying the control parameters during the
evolution process without the incorporation of new operators to improve the pop-
ulation diversity, makes the algorithm defenseless against the premature conver-
gence and may result in poor exploratory characteristics of the algorithm [48]. On
the other hand, incorporating new operators without modifying the control
parameters leads to increase the computational cost, weakening the exploitation
process of candidate regions [39]. Therefore, it does seem reasonable to incorporate
both of these approaches into a single algorithm.

In this chapter, a novel nature-inspired algorithm, known as the States of Matter
Search (SMS) is analyzed for solving global optimization problems. The SMS
algorithm is based on the simulation of the states of matter phenomenon. In SMS,
individuals emulate molecules which interact to each other by using evolutionary
operations based on the physical principles of the thermal-energy motion mecha-
nism. Such operations allow the increase of the population diversity and avoid the
concentration of particles within a local minimum. The SMS approach combines
the use of the defined operators with a control strategy that modifies the parameter
setting of each operation during the evolution process. In contrast to other
approaches that enhance traditional EA algorithms by incorporating some proce-
dures for balancing the exploration–exploitation rate, the SMS algorithm naturally
delivers such property as a result of mimicking the states of matter phenomenon.
The algorithm is devised by considering each state of matter at one different
exploration–exploitation ratio. Thus, the evolutionary process is divided into three
stages which emulate the three states of matter: gas, liquid and solid. At each state,
molecules (individuals) exhibit different behaviors. Beginning from the gas state
(pure exploration), the algorithm modifies the intensities of exploration and
exploitation until the solid state (pure exploitation) is reached. As a result, the
approach can substantially improve the balance between exploration–exploitation,
yet preserving the good search capabilities of an evolutionary approach. To illus-
trate the proficiency and robustness of the SMS algorithm, it has been compared to
other well-known evolutionary methods including recent variants that incorporate
diversity preservation schemes. The comparison examines several standard
benchmark functions which are usually employed within the EA field. Experimental
results show that the SMS method achieves good performance over its counterparts
as a consequence of its better exploration–exploitation capability.

This chapter is organized as follows. Section 6.2 introduces basic characteristics
of the three states of matter. In Sect. 6.3, the novel SMS algorithm and its

6.1 Introduction 95

characteristics are both described. Section 6.4 presents experimental results and a
comparative study. Finally, in Sect. 6.5, some conclusions are discussed.

6.2 States of Matter

The matter can take different phases which are commonly known as states.
Traditionally, three states of matter are known: solid, liquid, and gas. The differ-
ences among such states are based on forces which are exerted among particles
composing a material [49].

In the gas phase, molecules present enough kinetic energy so that the effect of
intermolecular forces is small (or zero for an ideal gas), while the typical distance
between neighboring molecules is greater than the molecular size. A gas has no
definite shape or volume, but occupies the entire container in which it is confined.
Figure 6.1a shows the movements exerted by particles in a gas state. The movement
experimented by the molecules represent the maximum permissible displacement
q1 among particles [50]. In a liquid state, intermolecular forces are more restrictive
than those in the gas state. The molecules have enough energy to move relatively to
each other still keeping a mobile structure. Therefore, the shape of a liquid is not
definite but is determined by its container. Figure 6.1b presents a particle move-
ment q2 within a liquid state. Such movement is smaller than those considered by
the gas state but larger than the solid state [51]. In the solid state, particles (or
molecules) are packed together closely with forces among particles being strong
enough so that the particles cannot move freely but only vibrate. As a result, a solid
has a stable, definite shape and a definite volume. Solids can only change their
shape by force, as when they are broken or cut. Figure 6.1c shows a molecule
configuration in a solid state. Under such conditions, particles are able to vibrate
(being perturbed) considering a minimal q3 distance [50].

Fig. 6.1 Different states of matter: a gas, b liquid, and c solid

96 6 The States of Matter Search (SMS)

In this chapter, the States of Matter Search (SMS) is analyzed for solving global
optimization problems. The SMS algorithm is based on the simulation of the states
of matter phenomenon that considers individuals as molecules which interact to
each other by using evolutionary operations based on the physical principles of the
thermal-energy motion mechanism. The algorithm is devised by considering each
state of matter at one different exploration–exploitation ratio. Thus, the evolutionary
process is divided into three stages which emulate the three states of matter: gas,
liquid and solid. In each state, individuals exhibit different behaviors.

6.3 Fitness Approximation Method

6.3.1 Definition of Operators

In the approach, individuals are considered as molecules whose positions on a
multidimensional space are modified as the algorithm evolves. The movement of
such molecules is motivated by the analogy to the motion of thermal-energy.

The velocity and direction of each molecule’s movement are determined by
considering the collision, the attraction forces and the random phenomena experi-
mented by the molecule set [52]. In our approach, such behaviors have been
implemented by defining several operators such as the direction vector, the collision
and the random positions operators, all of which emulate the behavior of actual
physics laws.

The direction vector operator assigns a direction to each molecule in order to
lead the particle movement as the evolution process takes place. On the other side,
the collision operator mimics those collisions that are experimented by molecules as
they interact to each other. A collision is considered when the distance between two
molecules is shorter than a determined proximity distance. The collision operator is
thus implemented by interchanging directions of the involved molecules. In order to
simulate the random behavior of molecules, the SMS algorithm generates random
positions following a probabilistic criterion that considers random locations within
a feasible search space.

The next section presents all operators that are used in the algorithm. Although
such operators are the same for all the states of matter, they are employed over a
different configuration set depending on the particular state under consideration.

Direction vector

The direction vector operator mimics the way in which molecules change their
positions as the evolution process develops. For each n-dimensional molecule pi
from the population P, it is assigned an n-dimensional direction vector di which
stores the vector that controls the particle movement. Initially, all the direction
vectors D ¼ fd1;d2; . . .; dNpg

� �
are randomly chosen within the range of [−1,1].

6.2 States of Matter 97

As the system evolves, molecules experiment several attraction forces. In order
to simulate such forces, the SMS algorithm implements the attraction phenomenon
by moving each molecule towards the best so-far particle. Therefore, the new
direction vector for each molecule is iteratively computed considering the following
model:

dkþ 1
i ¼ dki � 1� k

gen

� �
� 0:5þ ai; ð6:1Þ

where ai represents the attraction unitary vector calculated as
ai ¼ ðpbest � piÞ= pbest � pi

�� ��, being pbest the best individual seen so-far, while pi is
the molecule i of population P. k represents the iteration number whereas gen
involves the total iteration number that constitutes the complete evolution process.

Under this operation, each particle is moved towards a new direction which
combines the past direction, which was initially computed, with the attraction
vector over the best individual seen so-far. It is important to point out that the
relative importance of the past direction decreases as the evolving process advan-
ces. This particular type of interaction avoids the quick concentration of informa-
tion among particles and encourages each particle to search around a local
candidate region in its neighborhood, rather than interacting to a particle lying at
distant region of the domain. The use of this scheme has two advantages: first, it
prevents the particles from moving toward the global best position in early stages of
algorithm and thus makes the algorithm less susceptible to premature convergence;
second, it encourages particles to explore their own neighborhood thoroughly, just
before they converge towards a global best position. Therefore, it provides the
algorithm with local search ability enhancing the exploitative behavior.

In order to calculate the new molecule position, it is necessary to compute the
velocity vi of each molecule by using:

vi ¼ di � vinit ð6:2Þ

being vinit the initial velocity magnitude which is calculated as follows:

vinit ¼
Pn

j¼1 ðbhighj � blowj Þ
n

� b ð6:3Þ

where blowj and bhighj are the low j parameter bound and the upper j parameter bound
respectively, whereas b 2 ½0; 1�.

98 6 The States of Matter Search (SMS)

Then, the new position for each molecule is updated by:

pkþ 1
i;j ¼ pki;j þ vi;j � randð0; 1Þ � q � ðbhighj � blowj Þ ð6:4Þ

where 0:5� q� 1.

Collision

The collision operator mimics the collisions experimented by molecules while they
interact to each other. Collisions are calculated if the distance between two mole-
cules is shorter than a determined proximity value. Therefore, if pi � pq

�� ��\r, a
collision between molecules i and q is assumed; otherwise, there is no collision,
considering i; q 2 1; . . .;Np

� �
such that i 6¼ q. If a collision occurs, the direction

vector for each particle is modified by interchanging their respective direction
vectors as follows:

di ¼ dq and dq ¼ di ð6:5Þ

The collision radius is calculated by:

r ¼
Pn

j¼1 ðbhighj � blowj Þ
n

� a ð6:6Þ

where a 2 ½0;1�.
Under this operator, a spatial region enclosed within the radius r is assigned to

each particle. In case the particle regions collide to each other, the collision operator
acts upon particles by forcing them out of the region. The radio r and the collision
operator provide the ability to control diversity throughout the search process. In
other words, the rate of increase or decrease of diversity is predetermined for each
stage. Unlike other diversity-guided algorithms, it is not necessary to inject
diversity into the population when particles gather around a local optimum because
the diversity will be preserved during the overall search process. The collision
incorporation therefore enhances the exploratory behavior in the SMS approach.

Random positions

In order to simulate the random behavior of molecules, the SMS algorithm gen-
erates random positions following a probabilistic criterion within a feasible search
space.

For this operation, a uniform random number rm is generated within the range
[0,1]. If rm is smaller than a threshold H, a random molecule’s position is generated;
otherwise, the element remains with no change. Therefore such operation can be
modeled as follows:

6.3 Fitness Approximation Method 99

pkþ 1
i;j ¼ blowj þ randð0;1Þ � ðbhighj � blowj Þ with probabilityH

pkþ 1
i;j with probability ð1� HÞ

(

ð6:7Þ

where i 2 1; . . .;Np
� �

and j 2 1; . . .; nf g.
Best Element Updating

Despite this updating operator does not belong to State of Matter metaphor, it is
used to simply store the best so-far solution. In order to update the best molecule
pbest seen so-far, the best found individual from the current k population pbest;k is
compared to the best individual pbest;k�1 of the last generation. If pbest;k is better than
pbest;k�1 according to its fitness value, pbest is updated with pbest;k, otherwise pbest

remains with no change. Therefore, pbest stores the best historical individual found
so-far.

6.3.2 SMS Algorithm

The overall SMS algorithm is composed of three stages corresponding to the three
States of Matter: the gas, the liquid and the solid state. Each stage has its own
behavior. In the first stage (gas state), exploration is intensified whereas in the
second one (liquid state) a mild transition between exploration and exploitation is
executed. Finally, in the third phase (solid state), solutions are refined by empha-
sizing the exploitation process.

General procedure

At each stage, the same operations are implemented. However, depending on which
state is referred, they are employed considering a different parameter configuration.
The general procedure in each state is shown as pseudo-code in Algorithm 1. Such
procedure is composed by five steps and maps the current population Pk to a new
population Pkþ 1. The algorithm receives as input the current population Pk and the
configuration parameters q, b, a, and H, whereas it yields the new population Pkþ 1.

The complete algorithm

The complete algorithm is divided into four different parts. The first corresponds to
the initialization stage, whereas the last three represent the States of Matter. All the
optimization process, which consists of a gen number of iterations, is organized into
three different asymmetric phases, employing 50% of all iterations for the gas state

100 6 The States of Matter Search (SMS)

(exploration), 40% for the liquid state (exploration–exploitation) and 10% for the
solid state (exploitation). The overall process is graphically described by Fig. 6.2.
At each state, the same general procedure (see Algorithm 1) is iteratively used
considering the particular configuration predefined for each State of Matter.
Figure 6.3 shows the data flow for the complete SMS algorithm.

Evolution process

Gas state 50% Liquid state 40% Solid state 10%

Initial
population Solution

Fig. 6.2 Evolution process in the SMS approach

Initialization

Set the parameters for the gas state
[0.8,1]ρ ∈ , 0.8β = , 0.8α = and H=0.9

Is the 90% of
the total iteration

number completed?

0P

qP

Set the parameters for the liquid state
[0.3,0.6]∈ρ , 0.4=β , 0.2=α and H=0.2

Is the 50% of
the total iteration

number completed?

Set the parameters for the solid state
[0,0.1]∈ρ , 0.1=β , 0=α and H=0

Is the 100% of
the total iteration

number completed?

Apply the general
procedure

No

1≤
 q

 ≤
0.

5•
ge

n

Apply the general
procedure

Yes

0.5 gen⋅P

sP

0.
5•

ge
n

<
s≤

0.
9•

ge
n

No Yes

0.9 gen⋅P

Apply the general
procedure

tP

0.
9•

ge
n

<
t≤

ge
n

No

End

Yes

Gas state Liquid state Solid state

Fig. 6.3 Data flow in the complete SMS algorithm

6.3 Fitness Approximation Method 101

102 6 The States of Matter Search (SMS)

Initialization

The algorithm begins by initializing a set P of Np molecules ðP ¼ fp1; p2; . . .;
pNp

gÞ. Each molecule position pi is a n-dimensional vector containing the parameter
values to be optimized. Such values are randomly and uniformly distributed
between the pre-specified lower initial parameter bound blowj and the upper initial

parameter bound bhighj , just as it is described by the following expressions:

p0i;j ¼ blowj þ randð0;1Þ � ðbhighj � blowj Þ j ¼ 1; 2; . . .; n; i ¼ 1; 2; . . .;Np; ð6:8Þ

where j and i, are the parameter and molecule index respectively whereas zero
indicates the initial population. Hence, p j

i is the jth parameter of the ith molecule.

Gas state

In the gas state, molecules experiment severe displacements and collisions. Such
state is characterized by random movements produced by non-modeled molecule
phenomena [52]. Therefore, the q value from the direction vector operator is set to a
value near to one so that the molecules can travel longer distances. Similarly, the
H value representing the random positions operator is also configured to a value
around one, in order to allow the random generation for other molecule positions.
The gas state is the first phase and lasts for the 50% of all iterations which compose
the complete optimization process. The computational procedure for the gas state
can be summarized as follows:

Step 1: Set the parameters q 2 ½0:8;1�, b ¼ 0:8, a ¼ 0:8 and H = 0.9 being
consistent with the gas state.

Step 2: Apply the general procedure which is illustrated in Algorithm 1.
Step 3: If the 50% of the total iteration number is completed ð1� k� 0:5 � genÞ,

then the process continues to the liquid state procedure; otherwise go back
to step 2.

Liquid state

Although molecules currently at the liquid state exhibit restricted motion in com-
parison to the gas state, they still show a higher flexibility with respect to the solid
state. Furthermore, the generation of random positions which are produced by
non-modeled molecule phenomena is scarce [53]. For this reason, the q value from
the direction vector operator is bounded to a value between 0.3 and 0.6. Similarly,
the random position operator H is configured to a value near to cero in order to
allow the random generation of fewer molecule positions. In the liquid state, col-
lisions are also less common than in gas state, so the collision radius, that is
controlled by a, is set to a smaller value in comparison to the gas state. The liquid
state is the second phase and lasts the 40% of all iterations which compose the

6.3 Fitness Approximation Method 103

complete optimization process. The computational procedure for the liquid state can
be summarized as follows:

Step 4: Set the parameters q 2 ½0:3;0:6�, b ¼ 0:4, a ¼ 0:2 and H = 0.2 being
consistent with the liquid state.

Step 5: Apply the general procedure that is defined in Algorithm 1.
Step 6: If the 90% (50% from the gas state and 40% from the liquid state) of the

total iteration number is completed ð0:5 � gen\k� 0:9 � genÞ, then the
process continues to the solid state procedure; otherwise go back to step 5.

Solid state

In the solid state, forces among particles are stronger so that particles cannot move
freely but only vibrate. As a result, effects such as collision and generation of
random positions are not considered [52]. Therefore, the q value of the direction
vector operator is set to a value near to zero indicating that the molecules can only
vibrate around their original positions. The solid state is the third phase and lasts for
the 10% of all iterations which compose the complete optimization process. The
computational procedure for the solid state can be summarized as follows:

Step 7: Set the parameters q 2 ½0:0;0:1� and b ¼ 0:1, a ¼ 0 and H = 0 being
consistent with the solid state.

Step 8: Apply the general procedure that is defined in Algorithm 1.
Step 9: If the 100% of the total iteration number is completed

ð0:9 � gen\k� genÞ, the process is finished; otherwise go back to step 8.

It is important to clarify that the use of this particular configuration (a ¼ 0 and
H = 0) disables the collision and generation of random positions operators which
have been illustrated in the general procedure.

6.4 Experimental Results

A comprehensive set of 24 functions, collected from Refs. [54–61], has been used
to test the performance of the SMS approach. Tables 6.8, 6.9, 6.10 and 6.11 in the
Appendix present the benchmark functions used in our experimental study. Such
functions are classified into four different categories: Unimodal test functions
(Table 6.8), multimodal test functions (Table 6.9), multimodal test functions with
fixed dimensions (Table 6.10) and functions proposed for the GECCO contest
(Table 6.11). In such tables, n indicates the dimension of the function, fopt the
optimum value of the function and S the subset of Rn. The function optimum
position ðxoptÞ for f1, f2, f4, f6, f7f10, f11 and f14 is at xopt ¼ 0½ �n, for f3, f8 and f9 is at
xopt ¼ 1½ �n, for f5 is at xopt ¼ 420:96½ �n, for f18 is at xopt ¼ 0½ �n, for f12 is at xopt ¼
0:0003075½ �n and for f13 is at xopt ¼ �3:32½ �n. In case of functions contained in

104 6 The States of Matter Search (SMS)

Table 6.11, the xopt and fopt values have been set to default values which have been
obtained from the Matlab© implementation for GECCO competitions, as it is
provided in [59]. A detailed description of optimum locations is given in Appendix.

6.4.1 Performance Comparison to Other Meta-Heuristic
Algorithms

We have applied the SMS algorithm to 24 functions whose results have been
compared to those produced by the Gravitational Search Algorithm (GSA) [16], the
Particle Swarm Optimization (PSO) method [17] and the Differential Evolution
(DE) algorithm [13]. These are considered as the most popular algorithms in many
optimization applications. In order to enhance the performance analysis, the PSO
algorithm with a territorial diversity-preserving scheme (TPSO) [39] has also been
added into the comparisons. TPSO is considered a recent PSO variant that incor-
porates a diversity preservation scheme in order to improve the balance between
exploration and exploitation. In all comparisons, the population has been set to 50.
The maximum iteration number for functions in Tables 6.8, 6.9 and 6.11 has been
set to 1000 and for functions in Table 6.10 has been set to 500. Such stop criterion
has been selected to maintain compatibility to similar works reported in the liter-
ature [4, 16].

The parameter setting for each algorithm in the comparison is described as
follows:

1. GSA [16]: The parameters are set to Go ¼ 100 and a ¼ 20; the total number of
iterations is set to 1000 for functions f1 to f11 and 500 for functions f12 to f14. The
total number of individuals is set to 50. Such values are the best parameter set
for this algorithm according to [16].

2. PSO [17]: The parameters are set to c1 ¼ 2 and c2 ¼ 2; besides, the weight
factor decreases linearly from 0.9 to 0.2.

3. DE [13]: The DE/Rand/1 scheme is employed. The crossover probability is set
to CR ¼ 0:9 and the weight factor is set to F ¼ 0:8.

4. TPSO [39]: The parameter a has been set to 0.5. Such value is found to be the
best configuration according to [39]. The algorithm has been tuned according to
the set of values which have been originally proposed by its own reference.

The experimental comparison between metaheuristic algorithms with respect to
SMS has been developed according to the function-type classification as follows:

1. Unimodal test functions (Table 6.8).
2. Multimodal test functions (Table 6.9).
3. Multimodal test functions with fixed dimension (Table 6.10).
4. Test functions from the GECCO contest (Table 6.11).

6.4 Experimental Results 105

Unimodal test functions

This experiment is performed over the functions presented in Table 6.8. The test
compares the SMS to other algorithms such as GSA, PSO, DE and TPSO. The
results for 30 runs are reported in Table 6.1 considering the following performance
indexes: the Average Best-so-far (AB) solution, the Median Best-so-far (MB) and
the Standard Deviation (SD) of best-so-far solution. The best outcome for each
function is boldfaced. According to this table, SMS delivers better results than
GSA, PSO, DE and TPSO for all functions. In particular, the test remarks the
largest difference in performance which is directly related to a better trade-off
between exploration and exploitation. Just as it is illustrated by Fig. 6.4, SMS, DE
and GSA have similar convergence rates at finding the optimal minimal, yet faster
than PSO and TPSO.

A non-parametric statistical significance proof known as the Wilcoxon’s rank
sum test for independent samples [62, 63] has been conducted over the “average
best-so-far” (AB) data of Table 6.1, with an 5% significance level. Table 6.2
reports the p-values produced by Wilcoxon’s test for the pair-wise comparison of
the “average best so-far” of four groups. Such groups are formed by SMS versus
GSA, SMS versus PSO, SMS versus DE and SMS versus TPSO. As a null
hypothesis, it is assumed that there is no significant difference between mean values
of the two algorithms. The alternative hypothesis considers a significant difference
between the “average best-so-far” values of both approaches. All p-values reported
in Table 6.2 are less than 0.05 (5% significance level) which is a strong evidence
against the null hypothesis. Therefore, such evidence indicates that SMS results are
statistically significant and that it has not occurred by coincidence (i.e. due to
common noise contained in the process).

Table 6.1 Minimization result of benchmark functions of Table 6.8 with n = 30

SMS GSA PSO DE TPSO

f1 AB 4.68457E−16 1.3296E−05 0.873813333 0.186584241 0.100341256

MB 4.50542E−16 7.46803E−06 4.48139E−12 0.189737658 0.101347821

SD 1.23694E−16 1.45053E−05 4.705628811 0.039609704 0.002421043

f2 AB 0.033116745 0.173618066 12.83021186 54.85755486 0.103622066

MB 1.02069E−08 0.159932758 12.48059177 54.59915941 0.122230612

SD 0.089017369 0.122230612 3.633980625 4.506836836 0.006498124

f3 AB 19.64056183 32.83253962 33399.69716 46898.34558 21.75247912

MB 26.87914282 27.65055745 565.0810149 43772.19502 28.45741892

SD 11.8115879 19.11361524 43099.34439 15697.6366 14.56258711

f4 AB 8.882513655 9.083435186 15.05362961 12.83391861 13.98432748

MB 9.016816582 9.150769929 13.91301428 12.89762202 14.01237836

SD 0.442124359 0.499181789 4.790792877 0.542197802 1.023476914

Maximum number of iterations = 1000
Bold elements respresent the best values

106 6 The States of Matter Search (SMS)

Multimodal test functions

Multimodal functions represent a good optimization challenge as they possess
many local minima (Table 6.9). In the case of multimodal functions, final results
are very important since they reflect the algorithm’s ability to escape from poor
local optima and to locate a near-global optimum. Experiments using f5 to f11 are
quite relevant as the number of local minima for such functions increases expo-
nentially as their dimensions increase. The dimension of such functions is set to 30.
The results are averaged over 30 runs, reporting the performance index for each
function in Table 6.3 as follows: the Average Best-so-far (AB) solution, the Median
Best-so-far (MB) and the Standard Deviation (SD) best-so-far (the best result for
each function is highlighted). Likewise, p-values of the Wilcoxon signed-rank test
of 30 independent runs are listed in Table 6.4.

In the case of functions f8, f9, f10 and f11, SMS yields much better solutions than
other methods. However, for functions f5, f6 and f7, SMS produces similar results to
GSA and TPSO. The Wilcoxon rank test results, which are presented in Table 6.4,
demonstrate that SMS performed better than GSA, PSO, DE and TPSO considering
four functions f8�f11, whereas, from a statistical viewpoint, there is no difference
between results from SMS, GSA and TPSO for f5, f6 and f7. The progress of the
“average best-so-far” solution over 30 runs for functions f5 and f11 is shown by
Fig. 6.5.

(b)(a)

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar

SMS
GSA
PSO
DE
TPSO

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
x 10

8

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar

SMS
GSA
PSO
DE
TPSO

Fig. 6.4 Convergence rate comparison of GSA, PSO, DE, SMS and TPSO for minimization of
a f1 and b f3 considering n = 30

Table 6.2 p-values produced by Wilcoxon’s test comparing SMS versus PSO, SMS versus GSA,
SMS versus DE and SMS versus TPSO over the “average best-so-far” (AB) values from Table 6.3

SMS versus PSO GSA DE TPSO

f1 3:94� 10�5 7:39� 10�4 1:04� 10�6 4:12� 10�4

f2 5:62� 10�5 4:92� 10�4 2:21� 10�6 3:78� 10�4

f3 6:42� 10�8 7:11� 10�7 1:02� 10�4 1:57� 10�4

f4 1:91� 10�8 7:39� 10�4 1:27� 10�6 4:22� 10�4

6.4 Experimental Results 107

Multimodal test functions with fixed dimensions

In the following experiments, the SMS algorithm is compared to GSA, PSO, DE
and TPSO over a set of multidimensional functions with fixed dimensions which
are widely used in the meta-heuristic literature. The functions used for the exper-
iments are f12, f13 and f14 which are presented in Table 6.10. The results in

Table 6.3 Minimization result of benchmark functions in Table 6.9 with n = 30

SMS GSA PSO DE TPSO

f5 AB 1756.862345 9750.440145 4329.650468 4963.600685 1893.673916

MB 0.070624076 9838.388135 4233.282929 5000.245932 50.23617893

SD 1949.048601 405.1365297 699.7276454 202.2888921 341.2367823

f6 AB 10.95067665 15.18970458 130.5959941 194.6220253 18.56962853

MB 0.007142491 13.9294268 129.4942809 196.1369499 1.234589423

SD 14.38387472 4.508037915 27.87011038 9.659933059 7.764931264

f7 AB 0.000299553 0.000575111 0.19630233 0.98547042 0.002348619

MB 8.67349E−05 0 0.011090373 0.991214493 0.000482084

SD 0.000623992 0.0021752 0.702516846 0.031985616 0.000196428

f8 AB 1.35139E−05 2.792846799 1450.666769 304.6986718 1.753493426

MB 7.14593E−06 2.723230534 0.675050254 51.86661185 1.002364819

SD 2.0728E−05 1.324814757 1708.798785 554.2231579 0.856294537

f9 AB 0.002080591 14.49783478 136.6888694 67251.29956 5.284029512

MB 0.000675275 9.358377669 7.00288E−05 37143.43153 0.934751939

SD 0.003150999 18.02351657 7360.920758 63187.52749 1.023483601

f10 AB 0.003412411 40.59204902 365.7806149 822.087914 9.636393364

MB 0.003164797 39.73690704 359.104488 829.1521586 0.362322274

SD 0.001997493 11.46284891 148.9342039 81.93476435 2.194638533

f11 AB 0.199873346 1.121397135 0.857971914 3.703467688 0.452738336

MB 0.199873346 1.114194975 0.499967033 3.729096071 0.124948295

SD 0.073029674 0.271747312 1.736399225 0.278860779 0.247510642

Maximum number of iterations = 1000
Bold elements represents the best values

Table 6.4 p-values produced by Wilcoxon’s test comparing SMS versus GSA, SMS versus PSO,
SMS versus DE and SMS versus TPSO over the “average best-so-far” (AB) values from Table 6.3

SMS versus GSA PSO DE TPSO

f5 0.087 8:38� 10�4 4:61� 10�4 0.058

f6 0.062 1:92� 10�9 9:97� 10�8 0.012

f7 0.055 4:21� 10�5 3:34� 10�4 0.061

f8 7:74� 10�9 3:68� 10�7 8:12� 10�5 1:07� 10�5

f9 1:12� 10�8 8:80� 10�9 4:02� 10�8 9:21� 10�5

f10 4:72� 10�9 3:92� 10�5 2:20� 10�4 7:41� 10�5

f11 4:72� 10�9 3:92� 10�5 2:20� 10�4 4:05� 10�5

108 6 The States of Matter Search (SMS)

Table 6.5 show that SMS, GSA, PSO, DE and TPSO have similar values in their
performance. The evidence shows how meta-heuristic algorithms maintain a similar
average performance when they face low-dimensional functions [54]. Figure 6.6
presents the convergence rate for the GSA, PSO, DE, SMS and TPSO algorithms
considering functions f12 to f13.

Test functions from the GECCO contest

The experimental set in Table 6.11 includes several representative functions that are
used in the GECCO contest. Using such functions, the SMS algorithm is compared
to GSA, PSO, DE and TPSO. The results have been averaged over 30 runs,
reporting the performance indexes for each algorithm in Table 6.6. Likewise,

(b) (a)

100 200 300 400 500 600 700 800 900 1000
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar

SMS
GSA
PSO
DE
TPSO

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar

SMS
GSA
PSO
DE
TPSO

Fig. 6.5 Convergence rate comparison of PSO, GSA, DE, SMS and TPSO for minimization of
a f5 and b f11 considering n = 30

Table 6.5 Minimization results of benchmark functions in Table 6.10 with n = 30

SMS GSA PSO DE TPSO

f12 AB 0.004361206 0.051274735 0.020521847 0.006247895 0.008147895

MB 0.004419241 0.051059414 0.020803912 0.004361206 0.003454528

SD 0.004078875 0.016617355 0.021677285 8.7338E−15 6.37516E−15

f13 AB −3.862782148 −3.207627571 −3.122812884 −3.200286885 −3.311538343

MB −3.862782148 −3.222983851 −3.198877457 −3.200286885 −3.615938695

SD 2.40793E−15 0.032397257 0.357126056 2.22045E−15 0.128463953

f14 AB 0 0.00060678 1.07786E−11 4.45378E−31 0.036347329

MB 3.82624E−12 0.000606077 0 4.93038E−32 0.002324632

SD 2.93547E−11 0.000179458 0 1.0696E−30 0.032374213

Maximum number of iterations = 500
Bold elements represents the best values

6.4 Experimental Results 109

(b)(a)

0 50 100 150 200 250 300 350 400 450 500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar SMS
GSA
PSO
DE
TPSO

50 100 150 200 250 300 350 400 450 500
−3

−2.5

−2

−1.5

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar

SMS
GSA
PSO
DE
TPSO

Fig. 6.6 Convergence rate comparison of PSO, GSA, DE, SMS and TPSO for minimization of
a f12 and b f13

Table 6.6 Minimization results of benchmark functions in Table 6.11 with n = 30

SMS GSA PSO DE TPSO

f15 AB −25.91760733 57.15411412 134.3191481 183.6659439 −18.63859195

MB −29.92042882 57.38647154 133.1673936 186.723035 −21.73646913

SD 23.85960437 14.20175945 68.4414947 38.0678428 12.54569285

f16 AB −57.89720018 −57.89605386 −40.5715691 −52.92227417 −50.437455071

MB −57.89733814 −57.89616319 −40.00561762 −53.25902658 −52.564574931

SD 0.00077726 0.000841082 4.812411459 1.769678878 1.3446395342

f17 AB 184.7448285 186.1082051 7540.2406 186.6192165 190.43463434

MB 184.7424982 186.0937327 4831.581816 186.6285041 188.43649638

SD 0.180957032 0.149285212 7101.466992 0.208918841 2.4340683134

f18 AB −449.9936552 2015.050538 18201.78495 −435.2972206 −410.37493561

MB −449.994798 1741.613119 18532.32174 −436.0279997 −429.46295713

SD 0.005537064 1389.619208 6325.379751 2.880379023 1.4538493855

f19 AB 1213.421542 22038.7467 30055.82961 43551.34835 1452.4364384

MB −181.0028277 21908.86945 26882.92621 42286.55626 1401.7493617

SD 4050.267293 1770.050492 18048.55578 7505.414378 532.36343411

f20 AB 26975.80614 66771.65533 44221.12187 58821.82993 29453.323822

MB 24061.19301 65172.39992 44733.97226 60484.33588 28635.439023

SD 10128.06919 12351.81976 16401.44428 9191.787618 4653.1269549

f21 AB 6526.690523 23440.26883 23297.93668 26279.82607 7412.5361303

MB 5716.886785 23427.99207 22854.63384 26645.28551 7012.4634613

SD 2670.569217 2778.292017 5157.063617 2726.609286 745.37485621

f22 AB 965.8899213 181742714.4 7385919478 284396.8728 1051.4348595

MB 653.8161313 196616193.9 5789573763 287049.5324 1003.3448944

SD 751.3821374 79542617.71 5799950322 66484.87261 894.43484589

f23 AB 18617.61336 30808.74384 444370.5566 429178.9416 20654.323956

MB 10932.4606 28009.57647 425696.8169 418480.2092 19434.343851

SD 18224.4141 17834.72979 145508.9625 59342.54534 473.45938567

f24 AB 910.002925 997.4123375 1026.555016 917.4176502 1017.3484548

MB 910.0020976 999.1456735 1025.559417 917.3421337 993.34434754

SD 0.004747964 19.08754967 57.01221298 0.456440816 45.343496836

Maximum number of iterations = 1000
Bold elements represents the best values

110 6 The States of Matter Search (SMS)

p-values of the Wilcoxon signed-rank test of 30 independent executions are listed in
Table 6.7. According to results of Table 6.6, it is evident that SMS yields much
better solutions than other methods. The Wilcoxon test results in Table 6.7 provide
information to statistically demonstrate that SMS has performed better than PSO,
GSA, DE and TPSO. Figure 6.7 presents the convergence rate for the GSA, PSO,
DE, SMS and TPSO algorithms, considering functions f17 to f24.

6.5 Conclusions

In this chapter, a novel nature-inspired algorithm called as the States of Matter
Search (SMS) has been introduced. The SMS algorithm is based on the simulation
of the State of Matter phenomenon. In SMS, individuals emulate molecules which

Table 6.7 p-values produced by Wilcoxon’s test that compare SMS versus GSA, SMS versus
PSO, SMS versus DE and SMS versus TPSO, for the “average best-so-far” (AB) values from
Table 6.6

SMS versus GSA PSO DE TPSO

f15 1.7344E−06 1.7344E−06 1.7344E−06 5.2334E−05

f16 9.7110E−05 1.7344E−06 1.7344E−06 3.1181E−05

f17 1.12654E−05 1.7344E−06 1.7344E−06 6.2292E−05

f18 1.7344E−06 1.7344E−06 1.7344E−06 1.8938E−05

f19 1.92092E−06 1.7344E−06 1.7344E−06 9.2757E−05

f20 1.7344E−06 9.7110E−05 2.1264E−06 8.3559E−05

f21 1.7344E−06 1.7344E−06 1.7344E−06 7.6302E−05

f22 1.7344E−06 1.7344E−06 1.7344E−06 6.4821E−05

f23 0.014795424 1.7344E−06 1.7344E−06 8.8351E−05

f24 1.7344E−06 1.7344E−06 1.7344E−06 9.9453E−05

(b)(a)

100 200 300 400 500 600 700 800 900 1000
200

300

400

500

600

700

800

900

1000

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar

SMS
GSA
PSO
DE
TPSO

100 200 300 400 500 600 700 800 900 1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Iteration

A
ve

ra
g

e
b

es
t

so
 f

ar SMS
GSA
PSO
DE
TPSO

Fig. 6.7 Convergence rate comparison of PSO, GSA, DE, SMS and TPSO for minimization of
a f17 and b f24

6.4 Experimental Results 111

interact to each other by using evolutionary operations that are based on physical
principles of the thermal-energy motion mechanism. The algorithm is devised by
considering each state of matter at one different exploration–exploitation ratio. The
evolutionary process is divided into three phases which emulate the three states of
matter: gas, liquid and solid. At each state, molecules (individuals) exhibit different
movement capacities. Beginning from the gas state (pure exploration), the algo-
rithm modifies the intensities of exploration and exploitation until the solid state
(pure exploitation) is reached. As a result, the approach can substantially improve
the balance between exploration–exploitation, yet preserving the good search
capabilities of an EA approach.

SMS has been experimentally tested considering a suite of 24 benchmark func-
tions. The performance of SMS has been also compared to the following evolutionary
algorithms: the Particle Swarm Optimization method (PSO) [17], the Gravitational
Search Algorithm (GSA) [16], the Differential Evolution (DE) algorithm [13] and the
PSO algorithm with a territorial diversity-preserving scheme (TPSO) [39]. Results
have confirmed a high performance of the SMSmethod in terms of the solution quality
for solving most of benchmark functions.

The SMS’s remarkable performance is associated with two different reasons:
(i) the defined operators allow a better particle distribution in the search space,
increasing the algorithm’s ability to find the global optima; and (ii) the division of
the evolution process at different stages, provides different rates between explo-
ration and exploitation during the evolution process. At the beginning, pure
exploration is favored at the gas state, then a mild transition between exploration
and exploitation features during liquid state. Finally, pure exploitation is performed
during the solid state.

Appendix: List of Benchmark Functions

See Tables 6.8, 6.9, 6.10 and 6.11.

Table 6.8 Unimodal test functions

Test function S fopt n

f1 xð Þ ¼ Pn
i¼1 x

2
i �100;100½ �n 0 30

f2 xð Þ ¼ max xij j; 1� i� nf g �100;100½ �n 0 30

f3 xð Þ ¼ Pn�1
i¼1 100 xiþ 1 � x2i

� �2 þ xi � 1ð Þ2
h i �30;30½ �n 0 30

f4 xð Þ ¼ Pn
i¼1 ix

4
i þ randð0; 1Þ �1:28;1:28½ �n 0 30

112 6 The States of Matter Search (SMS)

Table 6.9 Multimodal test functions

Test function S fopt n

f5 xð Þ ¼ 418:9829nþ Pn
i¼1 �xi sin

ffiffiffiffiffiffiffi
xij jp� �� � �500;500½ �n 0 30

f6 xð Þ ¼ P50
i¼1 x2i � 10 cos 2pxið Þþ 10

� � �5:12;5:12½ �n 0 30

f7 xð Þ ¼ 1
4000

Pn
i¼1 x

2
i �

Qn
i¼1 cos

xiffi
i

p

 �

þ 1 �600;600½ �n 0 30

f8ðxÞ ¼ p
n

10 sin ðpy1Þþ
Xn�1

i¼1
ðyi � 1Þ2 1þ 10 sin2ðpyiþ 1Þ

�
þðyn � 1Þ2
n o

þ
Xn

i¼1
uðxi ; 10; 100; 4Þ

yi ¼ 1þ xi þ 1ð Þ
4 u xi; a; k;mð Þ ¼

k xi � að Þm xi [a
0 �a� xi � a

k �xi � að Þm xi\a

8<
:

�50;50½ �n 0 30

f9ðxÞ ¼ 0:1 sin2ð3px1Þþ
Xn

i¼1
ðxi � 1Þ2 1þ sin2ð3pxi þ 1Þ�
þðxn � 1Þ2 1þ sin2ð2pxnÞ

�
n o
þ

Xn

i¼1
uðxi ; 5; 100; 4Þ

where u xi; a; k;mð Þ is the same as f8

�50;50½ �n 0 30

f10 xð Þ ¼ Pn
i¼1 x

2
i þ

Pn
i¼1 0:5ixi

� �2 þ Pn
i¼1 0:5ixi

� �4 �10;10½ �n 0 30

f11 xð Þ ¼ 1� cos 2p xk kð Þþ 0:1 xk k where xk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x
2
j

q �100;100½ �n 0 30

Table 6.10 Multimodal test functions with fixed dimensions

Test function S fopt n

f12 xð Þ ¼ P11
i¼1 ai � xi b2i þ bi x2ð Þ

b2i þ bi x3 þ x4

� �2
a ¼ 0:1957; 0:1947; 0:1735; 0:1600; 0:0844; 0:0627; 0:456; 0:0342; 0:0323; 0:0235; 0:0246½ �
b ¼ 0:25; 0:5; 1; 2; 4; 6; 8; 10; 12; 14; 16½ �

�5;5½ �n 0.00030 4

f13 xð Þ ¼ P4
i¼1 ci exp �P3

j¼1 Aij xj � Pij
� �2
 �

A ¼
10 3 17 3:5 1:7 8
0:05 10 17 0:1 8 14
3 3:5 17 10 17 8
17 8 0:05 10 0:1 14

2
664

3
775

c ¼ 1; 1:2; 3; 3:2½ �

P ¼
0:131 0:169 0:556 0:012 0:828 0:588
0:232 0:413 0:830 0:373 0:100 0:999
0:234 0:141 0:352 0:288 0:304 0:665
0:404 0:882 0:873 0:574 0:109 0:038

2
664

3
775

0;1½ �n −3.32 6

f14 xð Þ ¼ 1:5� x1 1� x2ð Þð Þ2 þ 2:25� x1 1� x2ð Þð Þ2 þ 2:625� x1 1� x2ð Þð Þ2 �4:5;4:5½ �n 0 2

Appendix: List of Benchmark Functions 113

Table 6.11 Set of representative GECCO functions

Test function S n GECCO
classification

f15ðxÞ ¼ 106 � z21 þ
Pn

i¼2 zi þ fopt
z ¼ Tosz x� xoptð Þ
Tosz : Rn ! R

n; for any positive integer n, it maps element-wise
a ¼ ToszðhÞ; a ¼ a1; a2; . . .; anf g, h ¼ h1; h2; . . .; hnf g
ai = sign hið Þ exp K þ 0:049 sin c1Kð Þþ sin c2Kð Þð Þð Þ;
where

K ¼ logðhiÞ if hi 6¼ 0
0 otherwise

;

�
signðhiÞ ¼

�1 if hi\0
0 if hi ¼ 0
1 if hi [0

8<
: ;

c1 ¼ 10 if hi [0
5:5 otherwise

�
and c2 ¼ 7:9 if hi [0

3:1 otherwise

�

�5;5½ �n 30 GECCO2010
Discus
function
f11ðxÞ

f16ðxÞ ¼
ffiPn

i¼1 zij j2þ 4 i�1
n�1

q
þ fopt

z ¼ x� xopt

�5;5½ �n 30 GECCO2010
Different
powers
function
f14ðxÞ

f17ðxÞ ¼ � 1
n

Pn
i¼1 zi sin

ffiffiffiffiffiffi
zij jp� �þ 4:189828872724339þ 100fpen z

100

� �þ fopt
x̂ ¼ 2� 1þ

� � x
ẑ1 ¼ x̂1; ẑiþ 1 ¼ x̂iþ 1 þ 0:25 x̂i � xopti

� �
for i ¼ 1; . . .; n� 1

z ¼ 100 K10 ẑ� xoptð Þþ xopt
� �

fpen : Rn ! R;
a ¼ fpenðhÞ, h ¼ h1; h2; . . .; hnf g
a ¼ 100

Pn
i¼1 max 0; hij j � 5ð Þ2

1þ
� is a n-dimensional vector with elements of −1 or 1 computed
considering equal probability

�5;5½ �n 30 GECCO2010
Schwefel
function
f20ðxÞ

f18ðxÞ ¼
Pn

i¼1 z
2
i � 450

z ¼ x� xopt
�100;100½ �n 30 GECCO2005

Shifted sphere
function
f1ðxÞ

f19ðxÞ ¼
Pn

i¼1

Pi
j¼1 zj

 �2
� 450

z ¼ x� xopt

�100;100½ �n 30 GECCO2005
Shifted
Schwefel’s
problem
f2ðxÞ

f20ðxÞ ¼
Pn

i¼1

Pi
j¼1 zj

 �2
� �

� 1þ 0:4 N 0; 1ð Þj jð Þ � 450

z ¼ x� xopt

�100;100½ �n 30 GECCO2005
Shifted
Schwefel’s
problem 1.2
with noise in
fitness f4ðxÞ

f21ðxÞ ¼ max Ax� bij jf g � 310
A is a n� n matrix, ai;j are integer random numbers in the range
½�500;500�, detðAÞ 6¼ 0
bi ¼ Ai � o
Ai is the ith row of A whereas o is a n� 1 vector whose elements are
random numbers in the range [−100,100]

�100;100½ �n 30 GECCO2005
Schwefel’s
problem 2.6
with global
optimum on
bounds f5ðxÞ

f22ðxÞ ¼
Pn

i¼1 100 z2i � ziþ 1
� �2 þ zi � 1ð Þ2

 �
þ 390

z ¼ x� xopt

�100;100½ �n 30 GECCO2005
Shifted
Rosenbrock’s
function
f6ðxÞ

f23ðxÞ ¼
Pn

i¼1 Ai � Bi xð Þð Þ2 � 460
Ai ¼

Pn
j¼1 ai;j sin aj þ bi;j cos aj

� �
Bi xð Þ ¼ Pn

i¼1 ai;j sin xj þ bi;j cos xj
� �

For i ¼ 1; . . .; n

�p; p½ �n 30 GECCO2005
Schwefel’s
problem 2.13
f12ðxÞ
(continued)

114 6 The States of Matter Search (SMS)

References

1. Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.T.: Dynamic group-based differential evolution
using a self-adaptive strategy for global optimization problems. Appl. Intell. https://doi.org/
10.1007/s10489-012-0393-5

2. Pardalos Panos, M., Romeijn Edwin H., Tuy, H.: Recent developments and trends in global
optimization. J. Comput. Appl. Math. 124, 209–228 (2000)

3. Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in
the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)

4. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl.
Math. Comput. 185(1), 382–387 (2007)

5. Georgieva, A., Jordanov, I.: Global optimization based on novel heuristics, low-discrepancy
sequences and genetic algorithms. Eur. J. Oper. Res. 196, 413–422 (2009)

6. Lera, D., Sergeyev, Y.: Lipschitz and Hölder global optimization using space-filling curves.
Appl. Numer. Math. 60(1–2), 115–129 (2010)

7. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated Evolution.
Wiley, Chichester, UK (1966)

8. De Jong, K.: Analysis of the behavior of a class of genetic adaptive systems. Ph.D. thesis,
University of Michigan, Ann Arbor, MI (1975)

9. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of
computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA
(1990)

10. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI (1975)

11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison
Wesley, Boston, MA (1989)

12. de Castro, L.N., Von Zuben, F.J.: Artificial immune systems: part I—basic theory and
applications. Technical report, TR-DCA 01/99, December 1999

Table 6.11 (continued)

Test function S n GECCO
classification

ai;j and bi;j are integer random numbers in the range [−100,100],
a ¼ a1; a2; . . .; an½ �, aj are random numbers in the range �p;p½ �
f24ðxÞ ¼

P10
i¼1 F̂iðx� xopti Þ=ki

F1�2 xð Þ ¼ Ackley’s function

Fi xð Þ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

Pn
i¼1 x

2
i

q
 �
� exp 1

D

Pn
i¼1 cos 2pxið Þ� �þ 20

F3�4 xð Þ ¼ Rastringin’s function
Fi xð Þ ¼ Pn

i¼1 x2i � 10 cos 2pxið Þþ 10
� �

F5�6 xð Þ ¼ Sphere function
Fi xð Þ ¼ Pn

i¼1 x
2
i

F7�8 xð Þ ¼ Weierstrass function

Fi xð Þ ¼
Xn

i¼1

Xkmax

k¼0
ak cos 2pbk xi þ 0:5ð Þ� ��

 �

� n
Xkmax

k¼0
ak cos 2pbk xi � 0:5ð Þ� ��

F9�10 xð Þ ¼ Griewank’s function

Fi xð Þ ¼ Pn
i¼1

x2i
4000 �

Qn
i¼1 cos

xiffi
i

p

 �

þ 1

F̂iðzÞ ¼ FiðzÞ=Fmax
i . Fmax

i is the maximum value of the particular function i
k ¼ 10

32 ;
5
32 ; 2; 1;

10
100 ;

5
100 ; 20; 10;

10
60 ;

5
60

�

�5;5½ �n 30 GECCO2005
Rotated
version of
hybrid
composition
function
f16ðxÞ

The xopt and fopt values have been set to default values which have been obtained from the Matlab©
implementation for GECCO competitions, as it is provided in [51]

References 115

http://dx.doi.org/10.1007/s10489-012-0393-5
http://dx.doi.org/10.1007/s10489-012-0393-5

13. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95–012, ICSI, Berkeley, Calif
(1995)

14. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220
(4598), 671–680 (1983)

15. İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global
optimization. J. Global Optim. 25, 263–282 (2003)

16. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search
algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

17. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

18. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical
Report No. 91-016, Politecnico di Milano (1991)

19. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197,
701–713 (2009)

20. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary
programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

21. Liu, S.-H., Mernik, M., Bryant, B.: To explore or to exploit: an entropy-driven approach for
evolutionary algorithms. Int. J. Knowl. Based Intell. Eng. Syst. 13(3), 185–206 (2009)

22. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic
algorithms. IEEE Trans. Evol. Comput. 9(3), 126–142 (2005)

23. Fister, I., Mernik, M., Filipič, B.: A hybrid self-adaptive evolutionary algorithm for marker
optimization in the clothing industry. Appl. Soft Comput. 10(2), 409–422 (2010)

24. Gong, W., Cai, Z., Jiang, L.: Enhancing the performance of differential evolution using
orthogonal design method. Appl. Math. Comput. 206(1), 56–69 (2008)

25. Joan-Arinyo, R., Luzon, M.V., Yeguas, E.: Parameter tuning of PBIL and CHC evolutionary
algorithms applied to solve the root identification problem. Appl. Soft Comput. 11(1), 754–
767 (2011)

26. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm
with ensemble of parameters and mutation strategies. Appl. Soft Comput. 11(2), 1679–1696
(2011)

27. Sadegh, M., Reza, M., Palhang, M.: LADPSO: using fuzzy logic to conduct PSO algorithm.
Appl. Intell. 37(2), 290–304 (1012)

28. Yadav, P., Kumar, R., Panda, S.K., Chang, C.S.: An intelligent tuned harmony search
algorithm for optimization. Inf. Sci. 196(1), 47–72 (2012)

29. Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: A modified gravitational search
algorithm for slope stability analysis. Eng. Appl. Artif. Intell. 25(8), 1589–1597 (2012)

30. Koumousis, V., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of
variable population size and reinitialization to enhance performance. IEEE Trans. Evol.
Comput. 10(1), 19–28 (2006)

31. Han, M.-F., Liao, S.-H., Chang, J.-Y., Lin, C.-T.: Dynamic group-based differential evolution
using a self-adaptive strategy for global optimization problems. Appl. Intell. (2012). https://
doi.org/10.1007/s10489-012-0393-5

32. Brest, J., Maučec, M.S.: Population size reduction for the differential evolution algorithm.
Appl. Intell. 29(3), 228–247 (2008)

33. Li, Y., Zeng, X.: Multi-population co-genetic algorithm with double chain-like agents
structure for parallel global numerical optimization. Appl. Intell. 32(3), 292–310 (2010)

34. Paenke, I., Jin, Y., Branke, J.: Balancing population- and individual-level adaptation in
changing environments. Adapt. Behav. 17(2), 153–174 (2009)

35. Araujo, L., Merelo, J.J.: Diversity through multiculturality: assessing migrant choice policies
in an island model. IEEE Trans. Evol. Comput. 15(4), 456–468 (2011)

36. Gao, H., Xu, W.: Particle swarm algorithm with hybrid mutation strategy. Appl. Soft Comput.
11(8), 5129–5142 (2011)

116 6 The States of Matter Search (SMS)

http://dx.doi.org/10.1007/s10489-012-0393-5
http://dx.doi.org/10.1007/s10489-012-0393-5

37. Jia, D., Zheng, G., Khan, M.K. (2011). An effective memetic differential evolution algorithm
based on chaotic local search. Inf. Sci. 181(15), 3175–3187

38. Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in
steady-state genetic algorithms. Inf. Sci. 178(23), 4421–4433 (2008)

39. Ostadmohammadi, B., Mirzabeygi, P., Panahi, M.: An improved PSO algorithm with a
territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm
Evol. Comput. (In Press)

40. Yang, G.-P., Liu, S.-Y., Zhang, J.-K., Feng, Q.-X.: Control and synchronization of chaotic
systems by an improved biogeography-based optimization algorithm. Appl. Intell. https://doi.
org/10.1007/s10489-012-0398-0

41. Hasanzadeh, M., Meybodi, M.R., Ebadzadeh, M.M.: Adaptive cooperative particle swarm
optimizer. Appl. Intell. https://doi.org/10.1007/s10489-012-0420-6

42. Aribarg, T., Supratid, S., Lursinsap, C.: Optimizing the modified fuzzy ant-miner for efficient
medical diagnosis. Appl. Intell. 37(3), 357–376 (2012)

43. Fernandes, C.M., Laredo, J.L.J., Rosa, A.C., Merelo, J.J.: The sandpile mutation genetic
algorithm: an investigation on the working mechanisms of a diversity-oriented and
self-organized mutation operator for non-stationary functions. Appl. Intell. https://doi.org/
10.1007/s10489-012-0413-5

44. Gwak, J., Sim, K.M.: A novel method for coevolving PS-optimizing negotiation strategies
using improved diversity controlling EDAs. Appl. Intell. 38(3), 384–417 (2013)

45. Cheshmehgaz, H.R., Desa, M.I., Wibowo, A.: Effective local evolutionary searches
distributed on an island model solving bi-objective optimization problems. Appl. Intell. 38
(3), 331–356 (2013)

46. Cuevas, E., González, M.: Multi-circle detection on images inspired by collective animal
behavior. Appl. Intell. https://doi.org/10.1007/s10489-012-0396-2

47. Adra, S.F., Fleming, P.J.: Diversity management in evolutionary many-objective optimiza-
tion. IEEE Trans. Evol. Comput. 15(2), 183–195 (2011)

48. Črepineš, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms:
a survey. ACM Comput. Surv. 1(1), 1–33 (2011)

49. Ceruti, G., Rubin, H.: Infodynamics: analogical analysis of states of matter and information.
Inf. Sci. 177, 969–987 (2007)

50. Chowdhury, D., Stauffer, D.: Principles of Equilibrium Statistical Mechanics, 1st edn.
Wiley-VCH, Germany (2000)

51. Betts, D.S., Turner, R.E.: Introductory Statistical Mechanics, 1st edn. Addison Wesley,
Boston (1992)

52. Cengel, Y.A., Boles, M.A.: Thermodynamics: An Engineering Approach, 5th edn.
McGraw-Hill, USA (2005)

53. Bueche, F., Hecht, E.: Schaum’s Outline of College Physics, 11th edn. McGraw-Hill, USA
(2012)

54. Piotrowski, A.P., Napiorkowski, J.J., Kiczko, A.: Differential evolution algorithm with
separated groups for multi-dimensional optimization problems. Eur. J. Oper. Res. 216(1), 33–
46 (2012)

55. Mariani, V.C., Luvizotto, L.G.J., Guerra, F.A., dos Santos Coelho, L.: A hybrid shuffled
complex evolution approach based on differential evolution for unconstrained optimization.
Appl. Math. Comput. 217(12), 5822–5829 (2011)

56. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput.
3(2), 82–102 (1999)

57. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM
Trans. Math. Softw. 7(1), 17–41 (1981)

58. Tsoulos, I.G.: Modifications of real code genetic algorithm for global optimization. Appl.
Math. Comput. 203(2), 598–607 (2008)

59. Black-Box Optimization Benchmarking (BBOB) 2010. In: 2nd GECCO Workshop for
Real-Parameter Optimization. http://coco.gforge.inria.fr/doku.php?id=bbob-2010

References 117

http://dx.doi.org/10.1007/s10489-012-0398-0
http://dx.doi.org/10.1007/s10489-012-0398-0
http://dx.doi.org/10.1007/s10489-012-0420-6
http://dx.doi.org/10.1007/s10489-012-0413-5
http://dx.doi.org/10.1007/s10489-012-0413-5
http://dx.doi.org/10.1007/s10489-012-0396-2
http://coco.gforge.inria.fr/doku.php%3fid%3dbbob-2010

60. Hedar, A.-R., Ali, A.F.: Tabu search with multi-level neighborhood structures for high
dimensional problems. Appl. Intell. 37(2), 189–206 (2012)

61. Vafashoar, R., Meybodi, M.R., Momeni Azandaryani, A.H.: CLA-DE: a hybrid model based
on cellular learning automata for numerical optimization. Appl. Intell. 36(3), 735–748 (2012)

62. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for
analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special
session on real parameter optimization. J. Heurist (2008). https://doi.org/10.1007/s10732-008-
9080-4

63. Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.: A general framework for statistical
performance comparison of evolutionary computation algorithms. Inf. Sci. 178, 2870–2879
(2008)

118 6 The States of Matter Search (SMS)

http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4

Chapter 7
Multimodal States of Matter Search

The idea in multi-modal optimization is to detect multiple global and local optima
as possible in only one run. Identifying several solutions is particularly important
for some problems because the best solution could not be applicable due to different
practical limitations. The States of Matter Search (SMS) is a metaheuristic tech-
nique. Even though SMS is efficient in finding the global optimum, it misses in
providing various solutions by using an only single run. Under this condition, a new
version called the Multi-modal States of Matter Search (MSMS) has been proposed.
In this chapter, the performance of MSMS to optimize multi-modal problems is
analyzed. In MSMS, the original SMS is improved with new multimodal features
such as: (I) a memory model to register high-quality local optima and their distance
to other presumably promising solutions; (II) the alteration of the original SMS
search strategy to quicken the identification of new local minima; and (III) the
addition of a eliminating process at the end of each phase to exclude duplicated
memory individuals.

7.1 Introduction

Optimization is a field with applications in many areas of science, engineering,
economics and others, where mathematical modeling is used [1]. In optimization,
the objective is to identify an acceptable solution to an objective function defined
over a certain domain. Optimization methods are usually broadly divided into
classic and stochastic [2]. Classic techniques present several difficulties in solving
optimization problems [3], since they impose different restrictions to the opti-
mization formulations to be solved. On the other hand, stochastic methods are
usually faster in locating a global optimum [4]. Furthermore, stochastic algorithms
adapt easily to black-box problem definitions and ill-behaved functions, whereas
classical methods require the existence of some technical constraints about the
problem and its analytical properties (such as Lipschitz continuity) [5].

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_7

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_7&domain=pdf

Evolutionary algorithms (EA) symbolize the most prominent members of the
stochastic methods. They are designed considering the combination of deterministic
rules and random process simulating several natural systems. Such systems com-
prise evolutionary phenomena such as the Evolutionary Strategies (ES) proposed by
Fogel et al. [6], Schwefel [7], and Koza [8], the Genetic Algorithm (GA) introduced
by Holland [9] and Goldberg [10], the Artificial Immune System considered by De
Castro and Von Zuben [11] and the Differential Evolution Algorithm
(DE) introduced by Price and Storn [12]. Alternatively to these methods, other
algorithms based on physical phenomena have appeared in the literature. They
consider the Simulated Annealing (SA) introduced by Kirkpatrick et al. [13], the
Electromagnetism-like Algorithm proposed by İlker et al. [14] and the Gravitational
Search Algorithm proposed by Rashedia et al. [15]. Additionally, there exist other
techniques based on the emulation of animal-behavior systems such as the Particle
Swarm Optimization (PSO) algorithm introduced by Kennedy and Eberhart [16]
and the Ant Colony Optimization (ACO) algorithm proposed by Dorigo et al. [17].

Most of the research on EA is concentrated in the localization of only one global
optimum [18]. Despite its best properties, the use of the global optimum as the
solution to an optimization problem can be considered unfeasible or excessively
expensive, restricting their selection in several real-world applications. Hence, in
practice, it is better to detect not only the best solution but also as many local
solutions as possible. In these conditions, one local optimum with a satisfactory
quality and a reasonable cost can be preferred instead of a costly global optimum
that offers only a marginal superior performance [19]. Multimodal optimization is
defined as the process of detecting all the global optima and multiple local optima
for a particular optimization formulation.

Each EA method requires the balance between the exploration and exploitation
of the search space [20]. The process of examining new possible solutions in the
entire search space is known an exploration. In contrast, exploitation is the action of
locally improving already visited solutions within a small region around them. The
use of only exploration deteriorates the accuracy of the optimization process but
enhances its potential to find new promising individuals. On the contrary, the fact of
exclusively using exploitation permits to improve significantly existent solutions.
However, it unfavorably conducts to local optimal solutions.

EA perform well for locating a single global optimum but fail to provide multiple
solutions [18]. The process of detecting all the optima in only one execution is
harder than global optimization. Detection and maintenance of multiple solutions
are two fundamental processes in EAs for facing multi-modal optimization prob-
lems, since EAs have been originally conceived to detect only a global solution.
Several techniques that commonly referred to as niching approaches have been
incorporated into the original EAs to make them suitable for solving multimodal
optimization problems [21]. Niching is a method for finding and preserving multiple
stable subpopulations to avoid the convergence in a single point. The main objective
of a niching technique is to conserve the individual diversity. Therefore, most of
the techniques for multimodal optimization are typically based on diversity main-
tenance methods borrowed from other computational or biological domains [22].

120 7 Multimodal States of Matter Search

Several niching methods have been proposed in the literature including crowding
[23], fitness sharing [24], clearing [25] and speciation [26].

The concept of crowding was firstly introduced by De Jong in 1975 [24, 27] to
preserve the diversity of the population. In crowding, each offspring is compared to
other solutions which are randomly extracted from the current population. Then, the
most similar individual is replaced by the offspring that maintains a superior
solution. Several multimodal algorithms have been conceived in the literature
considering the crowding principles. Some examples include different evolutionary
methods such as Differential Evolution (DE) [28, 29], Genetic Algorithms
(GA) [30], Gravitational Search Algorithm (GSA) [31] and Particle Swarm
Optimization (PSO) [32].

Fitness sharing [24] is one of the most well-known methods for producing
subpopulations of similar individuals. Fitness sharing considers that a fitness value
of a determined location needs to be distributed by individuals which occupy
similar positions. Fitness sharing in EAs is implemented by degrading the fitness
value of an individual according to the number of similar individuals present in the
population. The degradation of a fitness value is controlled by two operations: a
similarity function and a sharing model. The similarity function measures the
distance between two individuals in order to evaluate their affinity. The purpose of
the sharing model is to take the similarity between two individuals and return the
degree to which they must degrade their fitness values since they are considered as
the same species. Considering different variants of similarity function and a sharing
model, several multimodal approaches have been suggested including the examples
of the Fitness Sharing Differential Evolution (SDE) [28, 29], the Fitness
Euclidean-distance ratio method [33] and the Information Sharing Artificial Bee
Colony algorithm [34].

Clearing [25], different to fitness sharing, considers the best individuals of the
sub-populations and removes the remaining population members. Under this pro-
cedure, the algorithm first sorts the individuals in descending order on their fitness
values. Then, at each iteration, it picks one individual from the top and removes all
other individuals that hold a worse fitness within a specified clearing radius. This
process will be repeated until all the individuals in the population are either selected
or removed. As a result, clearing eliminates similar individuals and maintains the
diversity among the selected individuals. Depending on the definition of the
clearing radius, new multimodal methods have been introduced; some examples
include the Clearing Procedure (CP) [25] and the Topographical Clearing
Differential Evolution [35].

Speciation-based niching techniques require the partition of the complete pop-
ulation into different sub-populations considered as species. Existing speciation
methods mainly differ in the way they determine whether two individuals are of the
same species. Therefore, they can be divided into distance-based and
topology-based. Distance-based methods rely on the idea that closer individuals are
more likely to be of the same species. Typically, a fixed radius is defined. Under
such conditions, two individuals are identified of the same species if their distance
is below such radius. Some examples of distance-based algorithms consider the

7.1 Introduction 121

Elitist-population strategy (AEGA) [36], the Differential Evolution with
Self-adaptive strategy [37] and the Distance-based PSO [38]. On the other hand,
topology-based methods rely on the intuition that two individuals should be of
different species if there exists a determined location configuration between them on
the fitness landscape. This methodology makes weaker assumptions about the fit-
ness landscape than the distance-based one, and it is able to form species of dif-
ferent sizes and shapes. Some multimodal algorithms of this category include the
Gaussian Classifier-based EA [39], the Ensemble Speciation DE [40] and the
History-based Topological speciation [26].

However, most of the niching methods have difficulties that need to be overcome
before they can be successfully employed for multimodal purposes. Some known
problems involve the setting of some niching parameters, the storage of discovered
solutions during the execution, the high computational cost and the low scalability
when the number of dimensions is high. Another significant problem represents the
fact that such methods are devised for extending the search capacities of popular
EA such as GA, DE and PSO which fail in finding a balance between exploration
and exploitation, mainly for multimodal functions [41]. Furthermore, they do not
explore the whole region effectively and often suffer premature convergence or loss
of diversity.

As alternative to niching approaches, other bio-inspired algorithms with multi-
modal capacities have been devised. These methods consider as fundament our
scientific perception of biological phenomena, which can be abstracted as multi-
modal optimization processes. Some examples of these methods are the Clonal
Selection Algorithm [42] and the Artificial Immune Network (AiNet) [43, 44], the
Collective Animal Behavior algorithm (CAB) [45], the Runner-root method [46],
the Multimodal Gravitational Search algorithm (MGSA) [31] and the Region-Based
Memetic method (RM) [47]. Such approaches employ operators and structures
which support the finding and maintaining of multiple-solutions.

To detect multiple-solutions, multimodal methods demands an adequate level of
exploration of the search space. Under such conditions, most of the local and global
locations can be successfully found [48, 49]. Furthermore, an effective multimodal
optimization method should present not only a good exploration behavior but also a
good exploitative performance. This fact is of particular importance at the end of
the optimization process since it must guarantee the convergence in different optima
of the search space. Therefore, the ability of an EA to find multiple solutions
depends on its capacity to reach an adequate balance between the exploitation of
found-so-far elements and the exploration of the search space [31]. Up to date, the
exploration–exploitation dilemma has been an unsolved issue within the framework
of EA.

Recently, a novel nature-inspired algorithm called the States of Matter Search
(SMS) [50] has been introduced in order to solve complex optimization formula-
tions. The SMS algorithm is based on the natural phenomenon of the states of
matter. In SMS, candidate solutions emulate molecules that interact with each other
by using evolutionary operators extracted from the physical principles of the
thermal-energy motion mechanism. Such operations allow the increase of the

122 7 Multimodal States of Matter Search

population diversity and avoid the concentration of particles (search points) in local
minima. SMS considers the use of evolutionary elements with a control procedure
that adjusts the configuration of each operation during the search strategy. In
general, conventional EA algorithms improve its exploration–exploitation rate by
the incorporation of additional mechanisms. Different to these methods, the SMS
approach permits to adjust the exploration–exploitation compromise as a conse-
quence of its search strategy. In SMS, each state of matter represents a particular
exploration–exploitation degree. Therefore, the complete optimization process is
separated into three periods which emulate the different states of matter: gas, liquid
and solid. For each state transition, molecules (individuals) manifest distinct
behaviors. Starting from the gas state (with only exploration), the method changes
the levels of exploration and exploitation until the last period (solid state with only
exploitation) is attained. As a result, SMS can substantially improve the balance
between exploration–exploitation, increasing its multimodal search capabilities.
These capacities make SMS a suitable approach for solving complex optimization
problems such as template matching in image processing [51] and energy trans-
mission in power systems [52].

This chapter introduces a new multimodal optimization algorithm called the
Multi-modal States of Matter Search (MSMS). The method combines the SMS
approach with a memory system that allows an effective storage of promising local
optima according to their fitness quality and the distance to other potential solu-
tions. The original SMS search strategy is mainly conducted by the best individual
found so-far (global optimum). To increase the speed of local minima detection, the
original evolution process is altered to be controlled by solutions that are included
in the memory system. During each state, molecules (individuals) that exhibit a
good fitness quality are incorporated within the memory. In the storage process,
several individuals could refer to the same local optimum, because of that a
refinement procedure is also included at the end of each state to exclude multiple
memory members. To examine the performance of the MSMS multimodal
approach, it is compared to different state-of-the-art multimodal optimization
methods over a set of 21 multimodal problems. Simulation results confirm that our
strategy is able to maintain a better and more regular performance than its coun-
terparts for most of test problems considering a low computational cost.

The chapter is organized as follows: Sect. 7.2 explains the States of Matter
Search (SMS) while Sect. 7.3 presents the MSMS method. Section 7.4 exposes the
experimental results. Finally, Sect. 7.5 establishes some concluding remarks.

7.2 Original States of Matter Search (SMS)

In general, the matter maintains three phases known as gas, liquid and solid. In each
state, the forces among the molecules control the permissible distance q that the
particles can move with each other. In the gas state, particles can displace a large

7.1 Introduction 123

allowable distance. On the other hand, in the liquid state, this distance is partially
reduced. Finally, in the solid state, only a small movement (i.e. vibration) is
allowed.

In SMS, candidate solutions are considered as molecules whose positions on a
multidimensional space are modified as the algorithm evolves. The movement of
such candidate solutions emulates the physical state transition process experimented
by molecules as a consequence of thermal-energy laws.

7.2.1 Definition of Operators

In the SMS operation, a population Pk (fpk1; pk2; . . .; pkNg) of N molecules (indi-
viduals) is evolved from the initial point (k = 1) to a total gen number iterations
(k = gen). Each molecule pki (i 2 1; . . .;N½ �) represents an n-dimensional vector

pki;1; p
k
i;2; . . .; p

k
i;n

n o
where each dimension corresponds to a decision variable of the

optimization problem to be solved. The quality of each molecule pki (candidate
solution) is evaluated by using an objective function f pki

� �
whose final result

represents the fitness value of pki . As the optimization process evolves, the best
individual pbest seen so-far is conserved, since it represents the current best avail-
able solution. During the evolution process, SMS applies three operators over the
population Pk . In the next paragraphs, such operators are described.

7.2.1.1 Direction Vector

This operator mimics the way in which molecules change their positions according
to the thermic-energy laws. Therefore, for each molecule pki , it is assigned an n-

dimensional direction vector dki (dki ¼ dki;1; d
k
i;2; . . .; d

k
i;n

n o
). Initially, all the direc-

tion vectors are randomly chosen within the range of [−1,1]. As SMS evolves, each
direction vector i is iteratively computed considering the following model:

dkþ 1
i ¼ dki � 1� k

gen

� �
� 0:5þ ai; ð7:1Þ

where ai represents the attraction unitary vector calculated as
ai ¼ ðpbest � pki Þ= pbest � pki

�� ��. Then, in all states (0:0� q� 1), the new position
for each molecule i is updated as follows:

pkþ 1
i;j ¼ pki;j þ vki;j � randð0;1Þ � q � ðbhighj � blowj Þ ð7:2Þ

124 7 Multimodal States of Matter Search

where vki;j represents the velocity at time k for the particle i in its dimension j. It can
be calculated by the following formulation:

vki;j ¼ dki;j �
Pn

j¼1 ðbhighj � blowj Þ
n

� b ð7:3Þ

where blowj and bhighj are the low j parameter bound and the upper j parameter bound
respectively, whereas b 2 ½0;1� is a tuning parameter.

7.2.1.2 Collision Operation

This operation simulates the collisions verified by two molecules pi and pq when
they interact to each other. This operator is considered if the condition
pi � pq
�� ��\r is satisfied, where r represents collision radius. If a collision occurs,
the direction vector for each particle is modified by interchanging their respective
direction vectors as follows:

di ¼ dq and dq ¼ di ð7:4Þ

The collision radius is calculated by:

r ¼
Pn

j¼1 ðbhighj � blowj Þ
n

� a ð7:5Þ

where a 2 ½0;1�.

7.2.1.3 Random Positions

In SMS, the random behavior of molecules is emulated as a reinitialized process. In
the operation, particles are randomly modified considering a probabilistic criterion
dependent on a threshold parameter H 2 ½0;1�. The operator can be formulated as
follows:

pkþ 1
i;j ¼ blowj þ randð0;1Þ � ðbhighj � blowj Þ with probability H

pkþ 1
i;j with probability ð1� HÞ

(
ð7:6Þ

where i 2 1; . . .;Np
� �

and j 2 1; . . .; nf g.

7.2 Original States of Matter Search (SMS) 125

7.2.2 General Procedure

The ability of an EA to find a global optimal solution depends on its capacity to find
a good balance between the exploitation of found-so-far elements and the explo-
ration of new solutions [31]. So far, the exploration–exploitation dilemma has not
been satisfactorily solved within the framework of EA. Under such circumstances,
in order to balance exploration–exploitation, SMS divides the evolution process in
three stages: Gas, liquid and solid. Such states are sequentially applied according to
the following rate 50:40:10, respectively. In each state, the algorithm presents a
different exploration–exploitation ratio. It goes from pure exploration at gas state to
pure exploitation at the solid state, considering an intermediate liquid state where a
combination of both is achieved. The duration of each state proposed by SMS has
been experimentally determined [50] so that its exploration–exploitation equilib-
rium permits to successfully solve most of the optimization problems known in the
literature for testing the performance of an evolutionary computation technique. The
duration of each state can be also modified to alter the exploration–exploitation
rate when a particular optimization problem demands a different exploration–
exploitation proportion [51, 52].

In SMS, the three operators are applied at each state. However, depending on
which state is referred, they are employed considering a different parameter con-
figuration. Table 7.1 presents the parameter setting of each state. More details of
SMS can be seen in [51] and [50].

7.2.3 Parameter Analysis

Under SMS, the optimization process is divided into three stages which represent
different exploration–exploitation behaviors. In order to define a determined
exploration–exploitation behavior for each stage, a proper configuration of the
parameter set is required. The SMS algorithm has been designed considering four
parameters (q, b, a and H) and the duration for each stage. From all these speci-
fications, only q can be manipulated by the user to obtain a particular performance.
The remaining data b, a, H and the duration of each process are set to specific
constants that have been already defined by the original algorithm. Such constants
represent, according to [50], the optimal values which assure the appropriate

Table 7.1 SMS control
parameter settings

State Gas Liquid Solid

q 2 ½0:8;1� 2 ½0:3;0:6� 2 ½0;0:1�
b 0.8 0.4 0.1

a 0.8 0.2 0

H 0.9 0.2 0

k 50% (gen) 40% (gen) 10% (gen)

126 7 Multimodal States of Matter Search

performance of SMS at each stage. Therefore, in this chapter b, a and H and the
duration of each stage are configured according to the specific values proposed by
SMS.

In SMS, new individuals are generated through the modification of already
existent individuals. Under such circumstances, the parameter q regulates the
magnitude of this modification. Considering that q is the only configurable
parameter, it must be adequately calculated in order to obtain the best
possible performance of SMS for a specific optimization context. Since SMS
divides the optimization process in three phases, the identification of q actually
involves the definition of three different parameters: q1 for the gas state, q2 for the
liquid state and q3 for the solid state.

To study the effect of parameters q1, q2 and q3 over the performance of SMS, an
experiment based on Design of Experiments (DoE) [53] has been conducted. DoE
is an efficient methodology for retrieving optimal parameter settings in a way that
the obtained information can be examined to produce valid and objective deduc-
tions. This methodology has been widely adopted by the EA community [54–63]
for parameter tuning of several evolutionary computation algorithms such as
Evolutionary Strategies [64, 65], Genetic Programming [66], Genetic Algorithms
[67, 68], PSO [55], DE [62], ACO [69] and SA [70].

Under the DoE methodology, the process variables or factors (h1; h2; . . .; hP) is
randomly modified in order to observe the effect over the response variable (Y). The
main assumption to apply DoE to EA is the following: the factors of a DoE are the
parameters for an EA whereas the response is defined as the quality of the results of
the EA (e.g. the best fitness value, the average fitness value, or its convergence
ratio).

One important technique in DoE is the Response Surface Modeling (RSM) [55,
67, 68, 71] which permits to find the optimal factors through the maximization of
the response in the process. In RMS, it is common to begin with a model of the
black box type, with multiple discrete or continuous input parameters that can be
adjusted, as well as the measured output response. It is assumed that output
responses are continuous values. Then, experimental data are used to derive an
empirical (approximation) model linking the outputs and inputs. The most common
empirical model considered by RMS is the linear form. This model, considering as
example three factors (h1; h2; h3), is presented in the following equation:

Y ¼ X1h1 þX2h2 þX3h3 þX4h
2
1 þX5h

2
2 þX6h

2
3 þX7h1h2 þX8h1h3 þX9h2h3 þK

ð7:7Þ

where X1; . . .;X9 represent the importance levels corresponding to each parameter
(h1; h2; h3) or parameter combination (h1h2; h1h3; h2h3). K symbolizes an impor-
tance level whose value does not have relation with any parameter. For each
variable from X1; . . .;X9, RSM calculates a statistics p-value that evaluates its
respective significance in the process. If the p-value is greater than 0.05 (for a 95%
of significance), the parameter or parameter combination influence is neglected.

7.2 Original States of Matter Search (SMS) 127

Once obtained Eq. 7.9, it is analyzed, by using calculus, the importance levels
(X1; . . .;X9) which produce that the random variable Y reaches its minimum value.
Therefore, the optimal values of h1; h2 and h3 are obtained by differentiating
(X) with respect to each factor in turn, setting each derivate equal zero ð@Y=@h1 ¼
0; @Y=@h2 ¼ 0; @Y=@h3 ¼ 0Þ and solving the resulting system of equations.
A detailed description of the RSM method and the DoE methodology is provided in
Bartz-Beielstein [55], Petrovski et al. [25].

7.2.4 Parameter Tuning Results

In order to determine the optimal values q̂1, q̂2 and q̂3 of q1, q2 and q3, an
experiment based on DoE methodology has been conducted. The experiment
considers the optimization of the five multimodal functions that are shown in
Table 7.2. In such functions, n represents the dimension of function, fopt is the
minimum value of the function and S is a subset of Rn. The optimum location (xopt)
for the functions fall into ½0�n, except for F5 with xopt falling into ½1�n.

In the experiment, an RSM analysis is independently conducted for each func-
tion. In each RSM application, 100 different executions of SMS over the same
function are considered. At each execution, the parameters q1, q2 and q3 within
their valid intervals (q1 2 ½0:8;1�, q2 2 ½0:3;0:6� and q3 2 ½0:0;0:1�) are randomly
modified in order to observe the effect into the final best fitness value (Y). In the
executions, the maximum number of iterations is set to 1000 whereas the number of
individuals N has been configured to 50. For the sake of space, only the process of
RSM for F5 is presented. Table 7.3 present the RSM results after analyzing the data
produced for the 100 different executions of SMS over function F5. Using such
data, the empirical linear model is built using the following coefficients:

Yf5 ¼ �1:71q1 � 2:08q2 þ � 1:88q3 þ 0:65q21 þ 1:20q22 þ 1:35q23
þ 0:83q1q2 þ 1:16q1q3 þ 1:18q2q3 � 3:41

ð7:8Þ

Since all p-values of the coefficients are less than 0.05, all coefficients must be
considered as significant, appearing in the final expression of Eq. 7.8. By consid-
ering such data, the optimal parameters q̂F5

1 , q̂F5
2 and q̂F5

3 for function F5 are cal-
culated by differentiating (X2) with respect to each parameter in turn, setting each
derivate equal zero ð@YF5=@q1 ¼ 0; @YF5=@q2 ¼ 0; @YF5=@q3 ¼ 0Þ and solving the
resulting system of equations. After achieving the complete procedure, it has been
found that q̂F5

1 ¼ 0:92, q̂F5
2 ¼ 0:51 and q̂F5

3 ¼ 0:078.
The optimal parameters for functions F1–F4 are also computed following the

same procedure for F5. After the definition of the optimal parameters
q̂Fw
z ; z 2 1; 2; 3;w 2 1; . . .; 5

� �
for all functions, the final optimal value of each

parameter q̂z is calculated as the averaged optimal values produced for the five

128 7 Multimodal States of Matter Search

T
ab

le
7.
2

M
ul
tim

od
al

te
st
fu
nc
tio

ns

T
es
t
fu
nc
tio

n
S

f o
pt

F
1
ðx
Þ¼

P n i¼
1
�x

i
si
n

ffiffiffiffiffiffi x ij
j

p �
�

½�
50

0;
50

0�n
−
41

8.
98

*n

F
2
ðx
Þ¼

P n i¼
1
x2 i

�
10

co
sð2

px
iÞþ

10

�
½�

5:
12

;5
:1
2�n

0

F
3
ðx
Þ¼

�2
0
ex
p

�0
:2

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffi
1 n

P n i¼
1
x2 i

q
�

 �
ex
p

1 n

P n i¼
1
co
sð2

px
iÞ

�
� þ

20
½�

32
;3
2�n

0

F
4
ðx
Þ¼

1
40
00

P n i¼
1
x2 i

�
Q n i¼

1
co
s

x i
ffi ip�

þ
1

½�
60

0;
60

0�n
0

F
5
ðx
Þ¼

0:
1

si
n2
ð3
px

1
Þþ

X n i¼
1
ðx i

�
1Þ

2
1
þ

si
n2
ð3
px

i
þ
1Þ

� þ

ðx n
�
1Þ

2
1
þ

si
n2
ð2
px

n
Þ

�

n
o

þ
X n i¼

1
uð
x i
;5
;1
00

;4
Þ

½�
50

;5
0�n

0

7.2 Original States of Matter Search (SMS) 129

functions. Under such conditions, the final parameters are: q̂1 ¼ 0:85, q̂2 ¼ 0:35
and q̂3 ¼ 0:062. Such optimal parameter values are kept for all tests throughout the
chapter.

7.3 The Multi-modal States of Matter Search (MSMS)

In SMS, individuals emulate molecules which jointly interact among them by using
evolutionary operators. The operations have been devised so that they simulate the
phenomenon of the thermal-energy motion. The search strategy considers three
stages: gas, liquid and solid. Each state represents a different exploration–
exploitation association implemented by behavioral changes in the operators.
As a result, SMS can substantially improve the balance between exploration–
exploitation, yielding flexible search capabilities. In spite of such characteristics, the
SMS method fails in providing multiple solutions within a single execution. In the
MSMS approach, the original SMS is adapted to include multimodal capacities.
Specifically, the approach is modified according to the following aspects: (1) the
incorporation of a memory mechanism to efficiently register potential local optima;
(2) the modification of the original SMS search strategy to increase the speed of
detection for new local minima; (3) the inclusion of a depuration procedure at the
end of each state to eliminate duplicated memory elements. Such adaptations are
discussed below.

7.3.1 Memory Mechanism

In the MSMS evolution process, a population Pk (fpk1; pk2; . . .; pkNg) of N molecules
(individuals) is operated from the initial point (k = 1) to a total gen number itera-
tions (k = gen). Each molecule pki (i 2 1; . . .;N½ �) represents an n-dimensional

Table 7.3 RMS results for
function F5

Importance level Coefficient p-value

q1 −1.71 0.012

q2 −2.08 0.010

q3 −1.88 0.008

q21 0.65 0.021

q22 1.20 0.014

q23 1.35 0.006

q1q2 0.83 0.018

q1q3 1.16 0.021

q2q3 1.18 0.011

K −3.41 0.002

130 7 Multimodal States of Matter Search

vector pki;1; p
k
i;2; . . .; p

k
i;n

n o
where each dimension corresponds to a decision variable

of the optimization problem to be solved. The quality of each molecule pki (can-
didate solution) is evaluated by an objective function f pki

� �
whose final result

represents the fitness value of pki . During the evolution process, MSMS maintains
the best pbest;k and the worst pworst;k molecules seen-so-far, such that

pbest;k ¼ argmin
i2 1;2;...;Nf g; a2 1;2;...;kf g

ð f ðpai ÞÞ

pworst;k ¼ arg max
i2 1;2;...;Nf g; a2 1;2;...;kf g

ð f ðpai ÞÞ:
ð7:9Þ

Global and local optima possess two significant properties: (1) they have a
significant good fitness value and (2) they represent the best solutions within a
certain area. Under these conditions, the memory mechanism allows efficiently
registering potential global and local optima during the evolution process, involving
a memory structure M and a storing process. M stores the potential global and local
optima fm1;m2; . . .;mTg during the evolution process, being T the number of
elements so-far that are contained in the memory M. On the other hand, the storage
procedure indicates the rules that the molecules fpk1; pk2; . . .; pkNg must fulfill in
order to be captured as memory elements. The memory mechanism operates in two
stages: initialization and capture.

7.3.1.1 Initialization Phase

This phase is applied only once within the optimization process. Such an operation
is achieved in the first iteration (k = 1) of the evolution process. In the Initialization
phase, the best molecule pB of P1, in terms of its fitness value, is stored in the
memory M (m1 ¼ pB), where pB ¼ argmin

i2 1;2;...;Nf g
ðf ðp1i ÞÞ.

7.3.1.2 Capture Phase

This phase is applied from the second iteration to the last iteration
(k ¼ 2; 3; . . .; gen). At this stage, molecules fpk1; pk2; . . .; pkNg corresponding to
potential global and local optima are efficiently registered as memory elements
fm1;m2; . . .;mTg according to their fitness quality and the distance to other
promising solutions. In the operation, each molecule pki of P

k is tested in order to
evaluate if it must be captured as a memory element. The test considers two rules:
(1) the significant fitness value rule and (2) the non-significant fitness value rule.

7.3 The Multi-modal States of Matter Search (MSMS) 131

Significant fitness value rule

Under this rule, the quality of pki is assessed regarding the worst member mworst

that is included in the memory M, where mworst ¼ arg max
i2 1;2;...;Tf g

ðf ðmiÞÞ, for a mini-

mization formulation. If the fitness value of pki is better than
mworst(f ðpki Þ\ f ðmworstÞ), pki is considered a potential global or local optima. The
next step is to determine whether pki represents a new optimum or it is very similar
to an existent memory element fm1;m2; . . .;mTg. Such a decision is specified by
the evaluation of an acceptance probability function Prðdi;u; sÞ that depends, in one
side, over the distance di;u from pki to the nearest memory element mu, and on the
other side, over the current state s of the evolutionary process (Gas, liquid and
solid). Under Prðdi;u; sÞ, the probability that pki would be part of M increases as the
distance di;u enlarges. Similarly, the probability that pki would be analogous to an
existent memory element fm1;m2; . . .;mTg increases as di;u decreases. On the
other hand, an indicator s that relates a numeric value with a state of matter (s = 1,
gas, s = 2, liquid and s = 3, solid) is gradually modified during the algorithm to
reduce the likelihood of permitting inferior solutions. The idea is that in the
beginning of the evolutionary process (exploration) large distance differences can
be considered while only small distance changes are accepted at the end of the
optimization process.

In order to implement this process, the normalized distance di;q(q 2 ½1; . . .; T�) is
computed from pki to all the elements of the memory M fm1;m2; . . .;mTg. di;q is
calculated as follows:

di;q ¼

ffi
pki;1 � mq;1

bhigh1 � blow1

 !2

þ pki;2 � mq;2

bhigh2 � blow2

 !2

þ � � � þ pki;n � mq;n

bhighn � blown

 !2
vuut ; ð7:10Þ

where fmq;1;mq;2; . . .;mq;ng represent the n components of the memory element mq

whereas bhighj and blowj indicate the low j parameter bound and the upper j parameter
bound (j 2 1; . . .; n½ �), respectively. One important property of the normalized
distance di;q is that its values fall into the interval [0,1].

By using the normalized distances di;q, the nearest memory element mu to pki is
defined, with mu ¼ argmin

j2 1;2;...;Tf g
ðdi;jÞ. Then, the acceptance probability function

Prðdi;u; sÞ is calculated by using the following expression:

Prðdi;u; sÞ ¼ di;u
� �s ð7:11Þ

In order to decide whether pki corresponds to a new optimum or it is very similar
to an existent memory element, a random number r1 is produced inside the range
[0,1] considering a uniform distribution. If r1 is less than Prðdi;u; sÞ, the molecule pki
is included in the memory M as a new optimum. Otherwise, it is considered that pki

132 7 Multimodal States of Matter Search

is close to mu. Therefore, the memory M is updated by the competition between pki
and mu, according to their corresponding fitness values. Therefore, pki would
replace mu in case of f ðpki Þ[f ðmuÞ. In addition, if f ðmuÞ is better than f ðpki Þ, mu

remains with no change. The process of the significant fitness value rule is sum-
marized by the following statement:

M ¼ mT þ 1 ¼ pki with probability Prðdi;u; sÞ
mu ¼ pki if f ðpki Þ\f ðmuÞ with probability 1� Prðdi;u; sÞ

�
ð7:12Þ

To demonstrate the rule of the significant fitness value, Fig. 7.1 shows a simple
minimization problem that involves a two-dimensional function f ðxÞ
x ¼ x1; x2f gð Þ. As an example, it is assumed a population Pk of two different
particles (pk1, p

k
2), a memory with two memory elements (m1,m2) and the execution

of the gas state (s = 1). According to Fig. 7.1, both particles pk1 and pk2 maintain a
better fitness value than m1 which possesses the worst fitness value of the memory
elements. Under such conditions, the rule has to be considered for both particles. In
case of pk1, the first step is to calculate the correspondent distances d1;1 and d1;2. m1

represents the nearest memory element to pk1. Then, the acceptance probability
function Prðd1;1; 1Þ is evaluated by using Eq. 7.13. Since the value of Prðd1;1; 1Þ has
a high value, there exists a great probability that pk1 becomes the next memory
element (m3 ¼ pk1). On the other hand, for pk2, m2 corresponds to the nearest
memory element. As Prðd2;2; 1Þ is very low, there exists a great probability that pk2
competes with m2 for a place within M. In such a case, m2 remains fixed con-
sidering that f ðm2Þ\ f ðpk2Þ.

Non-significant fitness value rule
Under the new rule, local optima with low fitness values are detected. It operates

when f ðpki Þ� f ðmworstÞ. First, to test the particles that could represent local optima
and which must be ignored due to their very low fitness value. Then, if the particle
represent a possible local optimum, its inclusion inside the memory M is explored.

The decision on whether pki corresponds to a local optimum or not is determined
by a probability function E which is based on the relationship between f ðpki Þ and
the so-far valid fitness value interval ð f ðpworst;kÞ � f ðpbest;kÞÞ. Therefore, the
probability function E is defined as follows:

1m

2m1
kp

2
kp

1,2

1,1

2,1

2,2

Fig. 7.1 Graphical
illustration of the significant
fitness value rule process

7.3 The Multi-modal States of Matter Search (MSMS) 133

vðpki ; pbest;k; pworst;kÞ ¼ 1� f ðpki Þ � f ðpbest;kÞ
f ðpworst;kÞ � f ðpbest;kÞ ;

EðvÞ ¼ v 0:5� v� 1

0 0� v\0:5
;

� ð7:13Þ

where pbest;k and pworst;k represent the best and worst molecule seen-so-far,
respectively. To decide the category of pki , a uniform random number r2 is gen-
erated inside the interval [0,1]. If r2 is less than E, the molecule pki is considered as a
new local optimum. Otherwise, it must be ignored. Under E, the so-far valid fitness
value interval ð f ðpworst;kÞ � f ðpbest;kÞÞ is divided into two sections: I and II (see
Fig. 7.2). Considering this division, the function E assigns a valid probability
(greater than zero) only to those molecules that fall into the zone of the best
individuals (part I) in terms of their fitness value. Such a probability value increases
as the quality of the fitness value enlarges. The complete procedure can be reviewed
in the Algorithm 1.

If the particle represent a possible local optimum, its inclusion inside the
memory M is explored. To decide if pki could correspond to a new memory ele-
ment, another procedure that is similar to the significant fitness value rule process is
considered. Therefore, it is calculated the normalized distance di;qðq 2 ½1; . . .; T�Þ
from pki to all the elements of the memory M fm1;m2; . . .;mTg, according to
Eq. 7.12. Afterwards, the nearest distance di;u to pki is determined. Then, by using
Prðdi;u; sÞ (Eq. 7.13), the following rule can be thus applied:

M ¼ mT þ 1 ¼ pki with probability Prðdi;u; sÞ
no change with probability 1� Prðdi;u; sÞ

�
ð7:14Þ

0E

0.5 1E

,
,

(
)

(
)

w
or
st

k
k

tseb
f

f
p

p

I

II

f x()

Fig. 7.2 Effect of the probability function E in a simple example

134 7 Multimodal States of Matter Search

Under this rule, a uniform random number r3 is generated within the range [0, 1].
If r3 is less than Prðdi;u; sÞ, the molecule pki is included in the memory M as a new
optimum. Otherwise, the memory does not change.

Algorithm 1. Non-significant fitness value rule procedure

1: Input: pki ;p
best;k ;pworst;k

2: Calculate vðpki ; pbest;k ; pworst;kÞ ¼ 1� f ðpki Þ�f ðpbest;kÞ
f ðpworst;kÞ�f ðpbest;kÞ

3:
Calculate EðvÞ ¼ v 0:5� v� 1

0 0� v\0:5

�
5: if (rand(0,1)<=E) then
6: pki is considered a local optimum With probability E

7: else
8: pki is ignored With probability 1 − E

9: end if

Fig. 7.3 Optimization process. a Gas state, b liquid state and c solid state. Optimal positions,
molecules (search positions) and memory elements are represented by red, blue and green
triangles, respectively

7.3 The Multi-modal States of Matter Search (MSMS) 135

In order to illustrate the performance of memory M, Fig. 7.3 shows the opti-
mization process, where the elements (candidate solutions) that are contained in the
memory can be seen evolving through the three different states: gas, liquid and
solid. In the figure, a simple multimodal optimization problem is solved, where the
optimal positions, molecules (search positions) and memory elements are repre-
sented by red, blue and green triangles, respectively.

7.3.1.3 Memory Mechanism and Its Similarity with Other EA
Methods

The use of a memory mechanism in a stochastic algorithm has been already
reported in the literature. One example is the Tabu Search (TS) method [72, 73]. It
is a local search algorithm that allows non-improving solutions when a local
optimum is encountered, in the hope that in this way the solution will be improved.
An important component of TS is the memory known as Tabu list which stores the
solutions explored throughout the search process. This information is used during
the search strategy to avoid the selection of previously visited solutions.
Although TS and the MSMS approach consider a memory mechanism to conduct
their search strategies, there exist considerable differences:

TS store solutions located only in a determined neighborhood without consid-
ering their fitness values whereas the MSMS algorithm register solutions that
exhibit a good quality in terms of their fitness values.

TS uses the stored solutions to prevent the return to the most recent visited
solutions in order to avoid cycling. On the other hand, the MSMS multimodal
method considers the memory elements to accelerate the process of local optimal
detection through the attraction of candidate solutions present in the population.

The Tabu list is updated when a new neighboring solution is found. In the
updating process, the new solution is added whereas the oldest is removed. On the
other hand, the memory of the MSMS method is updated always when a new
solution that exhibits a good quality is presented. In contrast to TS, the updating
process does not involve the elimination of any element.

7.3.2 Modification of the Original SMS Search Strategy

In the original SMS, the best element represents the most important part for
conducting the search strategy. In order to accelerate the search process of
promising local minima, in our method, the optimization strategy is modified to be
conducted by the individuals that are included in the memory.

In the SMS method, the search strategy is mainly ruled by the vector direction
operator. Under this operator, for each n-dimensionalmoleculepki from the population
Pk , it is assigned an n-dimensional direction vector dki (Dk ¼ fdk1; dk2; . . .; dkNp

g)

136 7 Multimodal States of Matter Search

which stores the vector that controls the particle movement. Initially, all the direction
vectors (D1 ¼ fd11; d12; . . .; d1Np

g) are randomly chosenwithin the range of [−1,1]. The

new direction vector dkþ 1
i for each molecule pki is iteratively computed (Eq. 7.1)

through a combination between the current direction vector dki and an attraction vector
ai. In the original SMS method, ai is calculated as follows:

ai ¼ ðpbest;k � pki Þ
pbest;k � pkik k ð7:15Þ

By using ai, each particle pki is moved towards the best individual pbest;k seen
so-far. This effect allows incorporating interesting convergence properties to SMS
when the trial considers only one optimum. Nonetheless, this operation cannot be
appropriate for multiple optimum localization. To accelerate the detection of
promising local minima in our method, the attraction vector ai is modified to be
influenced by the members included in the memory M.

Under the new ai, each particle pki is moved towards the nearest memory element
mu to pki . Therefore, the new attraction vector anewi is redefined as follows:

anewi ¼ ðmu � pki Þ
mu � pkik k ð7:16Þ

Figure 7.4 illustrates the differences between the original SMS method and the
modified version for the minimization of a two-dimensional function f ðxÞ
x ¼ x1; x2f gð Þ, assuming a population Pk of five different particles (white points).
Figure 7.4a shows the attraction vectors generated by the original SMS method
among molecules (white points) and the best molecule seen so-far (blue point). On
the other hand, Fig. 7.4b exhibits the attraction vectors produced by the MSMS
approach. According to such vectors, the current molecules of Pk are attracted to the

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

−10

−5

0

x1

x2

f
(x
)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
−10

−5

0

x1

x2

f
(x
)

(a) (b)

Fig. 7.4 Search strategy differences: a the original SMS and b the MSMS approach

7.3 The Multi-modal States of Matter Search (MSMS) 137

nearest memory elements (red points) that are contained in M. This behavior
supports not only an effective multiple-optima encompassing but also a faster
computation.

7.3.3 Depuration Procedure

During the evolution process, the memory M includes multiple individuals
(molecules). Since such elements could represent the same local optimum, a
depuration procedure is incorporated at the end of each state to eliminate similar
memory elements. The inclusion of this procedure allows (a) reducing the com-
putational overhead during each state and (b) improving the search strategy by
maintaining only important memory elements.

Memory elements tend to concentrate around optimal points (good fitness val-
ues) whereas element concentrations are enclosed by areas holding bad fitness
values. The main idea in the depuration process is to determine the distances among
concentrations. Such distances, considered as depuration ratios, are later employed
to delete all elements inside them, except for the best element regarding their fitness
values.

The method used by the depuration procedure to determine the distance between
two concentrations is based on the element comparison. Under this process, the
concentration that corresponds to the best element and the conglomeration of the
nearest optimum in the memory are compared. In the process, the element mbest is
contrasted with the memory member mb that belongs to one of both concentrations
(where mbest ¼ arg min

i2 1;2;...;Tf g
ðf ðmiÞÞ). If the fitness value of the middle point

f ððmbest þmbÞ=2Þ between both members is not as good as f ðmbestÞ and f ðmbÞ,
then the element mb is part of the mbest concentration. But, if f ððmbest þmbÞ=2Þ is
of lower quality than both, the element mb is considered part of the neighbor
concentration. Therefore, if mb and mbest belong to different conglomerators, the
Euclidian distance between mb and mbest can be considered as a depuration ratio. In
order to avoid the involuntary elimination of elements in the nearest concentration,
the depuration ratio DR is lightly shortened. Thus, the depuration ratio r is char-
acterized as follows:

DR ¼ 0:85 � mbest �mb

�� ��; ð7:17Þ

The proposed depuration procedure only considers the depuration ratio r be-
tween the concentration of the best element and the nearest concentration. In order
to determine all ratios, pre-processing and post-processing methods must be
incorporated and iteratively executed.

The pre-processing method, must (1) obtain the best element mbest from the
memory in terms of its fitness value, (2) calculate the distances from mbest to the

138 7 Multimodal States of Matter Search

other memory elements and (3) arrange the distances regarding their magnitude.
This set of tasks allows identifying both concentrations: the one belonging to the
best element and the one belonging to the nearest optimum. These operations must
be completed before the calculation of the depuration ratio DR. Such concentrations
are characterized by the members with the shortest distances to mbest. Once DR has
been calculated, it is important to delete all the elements belonging to the con-
centration of the best element. This task is executed as a post-processing method to
configure the memory for the next step. Therefore, the complete depuration pro-
cedure can be considered as an repetitive process that at each step determines the
distance of the concentration of mbest to the concentration of the nearest optimum.

An especial case can be considered when only one concentration is contained
within the memory. This case can happen because the optimization formulation
presents a single optimum or because all the other concentrations have been already
detected. Under such circumstances, the condition, where f ðmbestÞ and f ðmbÞ are
better than f ððmbest þmbÞ=2Þ, would be never satisfied.

In order to find the distances among concentrations, the depuration procedure
conducts the following procedure:

1. Define two new temporal vectors Z and Y. The vector Z will hold the results of
the iterative operations whereas Y will contain the final memory configuration.
The vector Z is initialized with the elements of M that have been sorted
according to their fitness values, so that the top element corresponds to the best
one. Y is initialized empty.

2. Store the best element z1 of the current Z in Y.
3. Calculate the Euclidian distances D1;j between z1 and the rest of elements from

Z j 2 2; . . .; Zj jf gð Þ, where Zj j represents the number of elements in Z.
4. Sort the distances D1;j according to their magnitude. Therefore, a new index a is

incorporated to each distance Da
1;j, where a indicate the place of D1;j after the

sorting operation (a = 1 represents the shortest distance).
5. Calculate the depuration ratio r:

for q = 1 to Zj j � 1
Obtain the element zj corresponding to the distance Dq

1;j

Compute f ððz1 þ zjÞ=2Þ
if (f ððz1 þ zjÞ=2Þ[f ðz1Þ and f ððz1 þ zjÞ=2Þ[f ðzjÞ)
DR ¼ 0:85 � x1 � xj

�� ��
break
end if

if q = Zj j � 1
There is only one concentration
end if

end for

6. Remove all elements inside DR from Z.

7.3 The Multi-modal States of Matter Search (MSMS) 139

7. Sort the elements of Z according to their fitness values.
8. Stop, if there are even more data conglomerations, otherwise return to step 2.

At the end of the above process, the vector Y will contain the depurated memory
which would be used in the next state of matter computation or as a final result of the
multi-modal problem. In order to illustrate the depuration procedure, Fig. 7.5 shows a
simple minimization problem that involves two different optimal points (concentra-
tions). As an example, it is assumed a memory M with six memory elements whose
positions are shown in Fig. 7.5a.According to the depuration procedure, thefirst stage
is (1) to build the vectorZ and (2) to calculate the corresponding distancesDa

1;j among
the elements. Following such operation, the vector Z and the set of distances are

configured as Z ¼ m5;m1;m3;m4;m6;m2f g and D1
1;2;D

2
1;3;D

3
1;5;D

4
1;4;D

5
1;6

n o
,

respectively. Figure 7.5b shows the configuration ofXwhereas, for sake of easiness,
only two distances D1

1;2, and D3
1;5 have been represented. Then, the depuration ratio

R is calculated. This method is an iterative process that begins with the shortest
distance D1

1;2. The distance D
1
1;2 (see Fig. 7.5c), corresponding to z1 and z2, produces

the evaluation of their medium point u ðz1 þ z2Þ=2ð Þ. Since (f ðuÞ\f ðz1Þ) but
(f ðuÞ[f ðz2Þ), the point z2 is contained in the same concentration as z1.We obtain the
same conclusion for D2

1;3 in case of z3, after observing the point v. For D
3
1;5, the point

(b)(a)

(d)(c)

0 1
0

5

()f x

x

5m
1m

3m

2m

6m
4m

0 1
0

5

()f x

x

3z

1z
2z

5z
4z

6z

1
1,2

3
1,5

0 1
0

5

()f x

x

3z

1z

2z
5z

4z

6z

v u

w

3
1,50.85RD

0 1
0

5

()f x

x

1m

2m

Fig. 7.5 Depuration procedure. a Initial memory configuration, b vector Z and the separations
Da
1;j, c the calculation of the depuration ratio DR and d the final memory configuration

140 7 Multimodal States of Matter Search

w is produced. Since f ðwÞ is worse than f ðz1Þ and f ðz5Þ, the point z5 is considered as
part of the concentration corresponding to the next optimum. The iterative process
ends here, after considering that the same result is produced with D4

1;4 and D
5
1;6, for z4

and for z6 respectively. Therefore, the depuration ratioDR is calculated as the 85% of
the distanceD3

1;5. Once the elements inside ofDR have been removed fromZ, the same
process is applied to the new Z. As a result, the final state of the memory is shown in
Fig. 7.5d.

7.3.4 Discussion About the MSMS Algorithm

In the MSMS approach, the original SMS is adapted to include multimodal
capacities. Specifically, SMS is modified including the following aspects: (1) the
incorporation of a memory mechanism to efficiently register potential local optima;
(2) the modification of the original SMS search strategy to increase the speed of
detection for new local minima; (3) the inclusion of a depuration procedure at the
end of each state to eliminate duplicated memory elements.

From the three new incorporations, the inclusion of the memory and the depu-
ration process represent the systems that provide the multimodal capacities to the
final MSMS approach. On the other hand, the modification of the original SMS
search strategy permits only to accelerate the process of detecting new potential
solutions (global or local optima). Hence, the memory and its depuration could be
considered as the most significant adaptations for including multimodal properties
to a standard EA method.

In MSMS, the final configuration of the memory (its elements) represents the
solution to the multimodal optimization problem. For this reason, the memory must
contain only those solutions considered as the best representative global and local
optima. However, during the search process, the memory stores several individuals
which could represent the same local optimum. Therefore, a depuration procedure
is necessary to eliminate similar memory elements. The depuration process is a
generic procedure and must be applied in order to deliver a reliable set of solutions
for a multimodal optimization problem. Without its incorporation, the memory
would contain a very big set of elements where most of them represents the same
position. Furthermore, under such conditions, the algorithm would increase its
computational overhead as a consequence of the exaggerated number of elements
considered in the computations.

7.3 The Multi-modal States of Matter Search (MSMS) 141

7.4 Experimental Results

An illustrative set of 18 functions have been used to examine the performance of
our approach. They are divided in two sets: Fixed Functions and composition
functions. Fixed functions represent optimization problems formulated in two
dimensions. On the other hand, composite function are multidimensional problems
which are constructed as a weighted aggregation of basic functions. These functions
have been recently used to prove the performance of multimodal algorithms in the
literature [21]. The set of functions used in the experimental study are shown in
Tables 7.10 and 7.11 in the Appendix. Table 7.10 shows the fixed functions which
involve problems from f1 to f14 while Table 7.11 defines the composition functions
that corresponds to problems F1 to F4. In Tables 7.10 and 7.11, n represents the
dimension in which the function is operated, NO characterizes the number of
optima and S is the defined search space.

7.4.1 Experimental Methodology

In the study, five performance elements are compared: the effective peak number
(EPN), the maximum peak ratio (MPR), the distance accuracy (DA), the peak
accuracy (PA) and the computational time (CT). The first four indexes assess the
accuracy of the solution whereas the latter measures the computational effort.

The effective peak number (EPN) defines the number of detected peaks. An
optimum oj is considered as detected if the distance between the identified solution
zj and the optimum oj is less than 0.01 (oj � zj

�� ��\0:01). The maximum peak ratio
(MPR) is employed to evaluate the quality and the number of identified optima. It is
defined as follows:

MPR ¼
Pt

i¼1 f ðziÞPq
j¼1 f ðojÞ

; ð7:18Þ

where t represents the number of detected solutions (identified optima) for the
algorithm under testing and q the number of true optima contained in the function.
The peak accuracy (PA) specifies the total error produced between the identified
solutions and the true optima. Therefore, PA is calculated as follows:

PA ¼
Xq
j¼1

f ðojÞ � f ðzjÞ
�� �� ð7:19Þ

Peak accuracy (PA) may lead to incorrect results, mainly if the peaks are close to
each other or hold an identical height. To eliminate this inconvenience, the distance
accuracy (DA) is employed. DA is computed as PA, but fitness values are

142 7 Multimodal States of Matter Search

interchanged by the Euclidian distance. DA is thus calculated by the following
formulation:

DA ¼
Xq
j¼1

oj � zj
�� �� ð7:20Þ

In order to locate several optima, multimodal optimization algorithms attempt to
conserve the individual diversity. Additional to the other indexes, in this work, the
formulation proposed in [47] has been used to assess the population diversity
provided by each algorithm. Therefore, the diversity at the k iteration is calculated
as follows:

Diversityk¼
PN�1

i¼1

PN
j¼iþ 1 disðpki ; pkj Þ

N � ðN � 1Þ=2 ; ð7:21Þ

where N is the population size, dist represents the Euclidian distance, and pki ; p
k
j are

solutions in the population.
The experiments compare the performance of MSMS against the Crowding

Differential Evolution (CDE) [29], the Fitness Sharing Differential Evolution
(SDE) [28, 29], the Clearing Procedure (CP) [71], the Elitist-population strategy
(AEGA) [36], the Clonal Selection algorithm (CSA) [42], the artificial immune
network (AiNet) [43], the Multimodal Gravitational Search algorithm (MGSA) [31]
and the Region-Based Memetic method (RM) [47].

Since the approach solves real-valued multimodal problems and a fair com-
parison must be assured, we have used for the GA-approaches a consistent real
coding variable representation and uniform operators for crossover and mutation.
The crossover probability Pc = 0.8 and the mutation probability Pm = 0.1 have
been used. We have employed the standard tournament selection operation with a
tournament size = 2 for implementing the Sequential Fitness Sharing, the CP and
the AEGA strategy. The values of the parameters for the AiNet algorithm have been
defined as it is suggested in [43], with the mutation strength b ¼ 100, the sup-
pression threshold rsðaiNetÞ ¼ 0:2 and the update rate d ¼ 40%. Algorithms based
on DE use a scaling element F = 0.5 and a crossover probability pc ¼ 0:9. The
crowding-DE employs a crowding factor CF = 50 and the sharing-DE considers
a ¼ 1:0 with a share radius rshare ¼ 0:1. It is important to point out that the con-
figuration of each method is set according to its reported guidelines. All these
settings represent the best possible performance of the algorithms according to their
own reported references.

In the case of the MSMS algorithm, the parameters are set to q ¼
0:85; 0:35; 0:062½ �; b ¼ 0:8; 0:4; 0:1½ �; a ¼ 0:8; 0:2; 0½ � and H ¼ 0:9; 0:2; 0½ �,
where the first element of each vector corresponds to the gas state configuration, the
second element to the liquid state and the third element to the solid state. Once they
have been all experimentally determined, they are kept for all the test functions
through all experiments.

7.4 Experimental Results 143

To avoid relating the optimization outcomes to the selection of a particular initial
population and to conduct fair conclusions, we perform 50 execution for each test,
starting from several randomly selected points in the search space.

The experimental section have been divided into two groups. The first one
considers the fixed functions, while the second gathers the composition functions.

7.4.2 Comparing MSMS Performance for Fixed Functions
(Low Dimensional)

This section presents the performance comparison for different algorithms solving
the multimodal problems f1–f14 that are shown in Table 7.10. The aim is to
determine whether MSMS is more efficient and effective than other existing
algorithms for finding all multiple optima. All the algorithms employ a population
of 50 elements by using 2:5� 104 function evaluations. This stop criterion has been
decided to keep compatibility with similar works published in the literature.

For the sake of clarity, Tables 7.4 and 7.5 present the summarized performance
results among the algorithms, for functions f1–f7 and f8–f14, respectively. The tables
report the comparison in terms of the effective peak number (EPN), the maximum
peak ratio (MPR), the peak accuracy (PA) and the distance accuracy (DA). The
results are analyzed by considering 50 different executions.

From Table 7.4, according to the EPN index, MSMS always finds better or
equally optimal solutions for the multimodal problems f1–f4. In case of function f1,
the CDE, RM and the MSMS algorithms can find all optima of f1. For function f2,
only CSA, AEGA and AiNet have not been able to detect all the optima values each
time. For function f3, only MSMS can get all optima at each run. In case of function
f4, most of the algorithms cannot get any better results but MSMS which can yet
find most of the optima. For function f5, CDE, CP, CSA and AiNet maintain a
similar performance whereas SDE, AEGA, MGSA, RM and MSMS possess the
best EPN values. In case of f6, almost all methods present a similar performance;
however, only the CDE, CP, MGSA, RM and MSMS algorithms have been able to
detect all optima. For function f7, the MSMS algorithm detects most of the optima
whereas the rest of the methods reach different performance levels. By analyzing
the MPR index in Table 7.4, MSMS has obtained the best score for all the multi-
modal problems. On the other hand, the other approaches present different accu-
racies, with MGSA and RM being the most consistent. In case of the PA index,
MSMS presents the best performance. Since the PA index evaluates the accumu-
lative differences of fitness values, it could drastically change when one or several
peaks are not identified (function f3) or when the function under testing presents
peaks with high values (function f4). For the case of DA, it is clear that the MSMS
algorithm presents the best performance obtaining the shortest distances among the
detected optima. It can be easily deduced from such results that the MSMS algo-
rithm is able to produce better search locations (i.e. a better trade-off between

144 7 Multimodal States of Matter Search

Table 7.4 Results of functions f1–f7 of Table 7.10 with n = 2

Function Algorithm EPN MPR PA DA

f1 CDE 3 (0) 0.9545 (0.0011) 0.1124 (0.0224) 0.1571 (0.0321)

SDE 2.2 (0.51) 0.9001 (0.0842) 1.6492 (1.1231) 0.2341 (0.0851)

CP 2.0 (0.10) 0.8241 (0.1011) 1.8974 (1.2576) 0.3871 (0.0891)

AEGA 2.8 (0.2) 0.9487 (0.0088) 0.1208 (0.4157) 0.2007 (0.0101)

CSA 2.90 (0.18) 0.9111 (0.0470) 1.4308 (1.0287) 0.2025 (0.0062)

AiNet 2.95 (0.15) 0.9051 (0.0885) 1.3685 (1.0118) 0.1802 (0.0097)

MGSA 2.85 (0.2) 0.9187 (0.0047) 0.9987 (1.1287) 0.2187 (0.0259)

RM 3 (0) 0.9687 (0.0982) 0.2157 (0.0322) 0.1118 (0.0913)

MSMS 3 (0) 1 (0) 0.0107 (0.0067) 0.0874 (0.0100)

f2 CDE 12 (0) 1 (0) 0.0227 (0.0217) 0.3174 (0.0667)

SDE 12 (0) 1 (0) 0.0314 (0.0114) 0.4014 (0.0917)

CP 12 (0) 1 (0) 0.0512 (0.0081) 0.3041 (0.0758)

AEGA 11.8 (0.2) 0.9557 (0.0217) 0.1121 (0.0107) 0.4820 (0.0327)

CSA 11.90 (0.12) 0.9214 (0.0201) 0.1298 (0.0461) 0.4541 (0.0308)

AiNet 11.92 (0.21) 0.9311 (0.0101) 0.1002 (0.0360) 0.3961 (0.0400)

MSGA 12 (0) 1 (0) 0.0687 (0.0604) 0.3108 (0.0924)

RM 12 (0) 1 (0) 0.0704 (0.0491) 0.2974 (0.0501)

MSMS 12 (0) 1 (0) 0.0124 (0.0094) 0.1174 (0.0148)

f3 CDE 22.07 (2.11) 0.8421 (0.0741) 143.27 (101.41) 10.657 (5.9841)

SDE 18.82 (1.10) 0.6687 (0.0540) 177.32 (98.32) 15.021 (2.4170)

CP 19.51 (2.52) 0.7008 (0.0981) 160.12 (61.07) 13.216 (1.1434)

AEGA 18.04 (3.51) 0.6271 (0.0740) 180.74 (71.52) 16.010 (1.8791)

CSA 16.80 (1.85) 0.4967 (0.0927) 195.21 (100.2) 18.527 (5.8720)

AiNet 17.66 (2.87) 0.5274 (0.0811) 190.07 (84.52) 17.217 (3.8541)

MSGA 22.74 (2.35) 0.8800 (0.0141) 137.87 (40.41) 9.9140 (2.004)

RM 23.22 (1.27) 0.8841 (0.0124) 120.14 (20.70) 6.0047 (1.0214)

MSMS 25 (0) 1 (0) 10.11 (5.87) 2.0874 (1.4071)

f4 CDE 3.21 (1.20) 0.4824 (0.1017) 384.10 (154.12) 207.074 (81.11)

SDE 3.41 (1.54) 0.5281 (0.1195) 311.17 (171.01) 197.271 (77.21)

CP 3.04 (2.01) 0.4141 (0.0547) 401.27 (95.14) 225.874 (54.04)

AEGA 3.50 (1.18) 0.6004 (0.0967) 195.54 (81.07) 147.574 (23.41)

CSA 3.00 (0.50) 0.4001 (0.0274) 421.07 (100.87) 237.88 (52.07)

AiNet 3.20 (1.05) 0.4800 (0.0195) 391.74 (97.02) 219.42 (36.87)

MSGA 5.04 (1.41) 0.8007 (0.0274) 127.84 (57.04) 100.51 (25.11)

RM 5.88 (1.81) 0.8997 (0.0576) 80.41 (10.87) 79.97 (9.87)

MSMS 6.71 (0.30) 0.9524 (0.0410) 18.98 (9.97) 21.85 (7.96)

f5 CDE 21.07 (3.54) 0.4725 (0.0181) 1.1074 (0.0280) 15.21 (2.007)

SDE 30.87 (1.84) 0.6598 (0.0307) 0.6897 (0.0114) 4.071 (0.8741)

CP 20.90 (1.01) 0.4457 (0.0100) 1.3985 (0.0214) 16.00 (1.087)

AEGA 29.04 (2.84) 0.6400 (0.0201) 0.671 (0.0174) 4.121 (0.984)
(continued)

7.4 Experimental Results 145

exploration and exploitation), in a more effective and efficient way than other
multimodal search methods by using an acceptable number of function evaluations.

On the other hand, according to the EPN values from Table 7.5, we observe that
MSMS can always find more optimal solutions for the multimodal problems f8–f14.
For function f8, only MSMS can find all optima, whereas CP, AEGA, CSA and
AiNet exhibit the worst EPN performance. A set of special cases are the functions
f9–f12 which contain a few prominent optima (with good fitness value); however,
such functions present several optima with bad fitness values. In these functions,
MSMS is able to detect the highest number of optimum points. On the contrary,
most of algorithms are able to find only outstanding solutions. For function f13, four
algorithms (CDE, SDE, CP, MGSA, RM and MSMS) can get all optima for each
execution. In case of function f14, it features numerous optima with different fitness
values. However, MSMS still can find all global optima with an effectiveness rate
of 100%. Regarding to the MPR, MSMS has reached the best score for all the
multimodal problems. On the other hand, the other algorithms show different

Table 7.4 (continued)

Function Algorithm EPN MPR PA DA

CSA 22.99 (3.14) 0.4951 (0.0257) 0.9841 (0.0274) 13.231 (2.874)

AiNet 26.21 (1.06) 0.6287 (0.0291) 0.7181 (0.0171) 6.987 (1.820)

MSGA 31.21 (2.11) 0.7932 (0.0361) 0.6001 (0.0218) 3.887 (0.847)

RM 33.00 (0.50) 0.9101 (0.0521) 0.3002 (0.0101) 3.047 (0.102)

MSMS 35.66 (1.04) 0.9821 (0.0104) 0.2201 (0.0431) 3.005 (0.137)

f6 CDE 6 (0) 0.9612 (0.0221) 0.082 (0.0091) 0.1291 (0.0173)

SDE 5.57 (0.18) 0.9099 (0.0247) 0.092 (0.0042) 0.1342 (0.0194)

CP 6 (0) 0.9589 (0.0221) 0.088 (0.0025) 0.1274 (0.0230)

AEGA 5.0 (0.50) 0.8801 (0.0185) 0.1002 (0.0562) 0.2008 (0.0321)

CSA 4.20 (0.34) 0.8006 (0.0223) 0.2011 (0.0130) 0.2884 (0.0119)

AiNet 5.10 (0.8) 0.8902 (0.0301) 0.0997 (0.0092) 0.1892 (0.0072)

MSGA 6 (0) 0.9906 (0.0129) 0.053 (0.0020) 0.0251 (0.0011)

RM 6 (0) 0.9950 (0.0093) 0.0040 (0.0018) 0.0180 (0.0024)

MSMS 6 (0) 0.9971 (0.0051) 0.0029 (0.0034) 0.0151 (0.0031)

f7 CDE 28.01 (2.41) 0.6076 (0.0131) 2.1007 (0.2311) 338.77 (23.81)

SDE 33.22 (2.65) 0.7001 (0.0248) 1.8842 (0.0862) 247.21 (32.09)

CP 33.50 (3.40) 0.7098 (0.0157) 1.7801 (0.0286) 220.97 (35.22)

AEGA 30.83 (1.90) 0.6797 (0.0156) 2.0121 (0.0430) 290.57 (21.08)

CSA 31.70 (2.20) 0.6811 (0.0500) 1.9107 (0.0742) 280.11 (30.87)

AiNet 34.50 (2.01) 0.7287 (0.0240) 1.5089 (0.0331) 200.81 (50.39)

MSGA 38.90 (2.15) 0.8997 (0.0181) 1.0871 (0.0227) 110.32 (17.32)

RM 42.21 (0.52) 0.9207 (0.0220) 0.7241 (0.0114) 75.35 (10.87)

MSMS 47.10 (0.94) 0.9660 (0.0087) 0.3421 (0.0171) 21.74 (8.61)

Maximum number of function evaluations = 2.5 � 104

146 7 Multimodal States of Matter Search

Table 7.5 Results of functions f8�f14 of Table 7.10 with n = 2

Function Algorithm EPN MPR PA DA

f8 CDE 22.25 (1.31) 0.9303 (0.0165) 4.842 (0.624) 0.8945 (0.0643)

SDE 17.21 (0.85) 0.4298 (0.0184) 21.54 (8.251) 2.327 (0.0571)

CP 8.00 (2.10) 0.2007 (0.0101) 57.01 (10.21) 6.871 (0.1410)

AEGA 14.22 (1.77) 0.3794 (0.0382) 36.11 (8.341) 3.411 (0.1821)

CSA 14.01 (1.07) 0.3002 (0.0102) 40.02 (3.429) 3.6614 (0.3208)

AiNet 16.51 (1.08) 0.4107 (0.0240) 23.01 (6.851) 2.9961 (0.0541)

MSGA 20.32 (1.53) 0.8987 (0.0247) 5.32 (0.1241) 1.212 (0.0215)

RM 23.03 (0.50) 0.9601 (0.0117) 2.872 (0.1740) 0.7454 (0.0171)

MSMS 25 (0) 0.9960 (0.0044) 1.5041 (0.5645) 0.3601 (0.0120)

f9 CDE 2.0 (0.18) 0.7781 (0.0132) 23.443 (2.431) 3.0021 (0.1130)

SDE 2.1 (0.41) 0.8008 (0.0227) 21.104 (3.88) 2.854 (0.6325)

CP 2.2 (0.11) 0.8321 (0.0417) 18.968 (2.395) 2.792 (0.5201)

AEGA 2.0 (0.20) 0.7790 (0.0174) 23.228 (3.871) 3.0337 (0.1960)

CSA 2 (0) 0.7101 (0.0047) 23.337 (7.325) 3.0556 (0.4401)

AiNet 2 (0) 0.7122 (0.0031) 23.578 (3.251) 3.1143 (0.2213)

MSGA 3.5 (0.75) 0.8287 (0.0108) 10.241 (2.231) 1.532 (0.0251)

RM 4.1 (0) 0.9002 (0.0081) 5.214 (0.8721) 0.8874 (0.0047)

MSMS 5 (0) 0.9900 (0.0102) 1.021 (0.773) 0.012 (0.0096)

f10 CDE 4.02 (0.23) 0.7221 (0.0114) 3.421 (0.124) 3.058 (0.1125)

SDE 4.15 (0.21) 0.7822 (0.0297) 3.107 (0.871) 2.781 (0.1270)

CP 4 (1.1) 0.7011 (0.0110) 3.992 (0.987) 3.423 (0.1580)

AEGA 3.3 (0.5) 0.6689 (0.0121) 4.4101 (0.1485) 4.007 (0.2107)

CSA 3.52 (0.26) 0.6804 (0.0551) 4.011 (0.1100) 3.632 (0.2020)

AiNet 4 (0.1) 0.7079 (0.0113) 3.5643 (0.2401) 3.490 (0.1953)

MSGA 6.10 (0.40) 0.8621 (0.0147) 2.247 (0.134) 1.854 (0.2124)

RM 6.92 (0.25) 0.9001 (0.0228) 1.005 (0.020) 1.108 (0.0227)

MSMS 8 (1.1) 0.9800 (0.0501) 0.5871 (0.068) 0.3921 (0.0203)

f11 CDE 10.20 (1.31) 0.8500 (0.0571) 1.897 (0.064) 0.5854 (0.0118)

SDE 10.12 (1.04) 0.8307 (0.0571) 1.972 (0.087) 0.6721 (0.0337)

CP 9.0 (0.81) 0.7521 (0.0741) 2.478 (0.074) 0.6927 (0.0287)

AEGA 8.20 (1.02) 0.6900 (0.0971) 3.897 (0.547) 0.7099 (0.0337)

CSA 8 (0.2) 0.6520 (0.0741) 4.257 (0.347) 0.7387 (0.0138)

AiNet 8 (0.1) 0.6477 (0.0851) 4.472 (0.472) 0.7797 (0.0227)

MSGA 9.3 (0.7) 0.8821 (0.0225) 2.107 (0.055) 0.6854 (0.0115)

RM 10.20 (0.7) 0.9087 (0.0330) 1.880 (0.067) 0.5721 (0.0224)

MSMS 12 (0) 0.9914 (0.0041) 0.5742 (0.088) 0.0897 (0.0114)

f12 CDE 6.33 (1.21) 0.6999 (0.0221) 4.011 (0.101) 5.1041 (0.0411)

SDE 5.21 (1.04) 0.5788 (0.0141) 4.998 (0.174) 5.8841 (0.0112)

CP 6 (0.33) 0.6521 (0.0874) 4.507 (0.957) 5.3197 (0.1421)

AEGA 4 (0.5) 0.4100 (0.0147) 6.387 (0.147) 7.8787 (1.0101)
(continued)

7.4 Experimental Results 147

accuracy levels. A close inspection of Table 7.5 also reveals that the MSMS
approach is able to achieve the smallest PA and DA indexes in relation to all other
techniques. To statistically examine the results of Tables 7.4 and 7.5, a
non-parametric test known as the Wilcoxon analysis [74, 75] has been conducted. It
permits to evaluate the differences between two related methods. The test is per-
formed for the 5% (0.005) significance level over the “effective peak number
(EPN)” data. Table 7.6 reports the p-values generated by Wilcoxon analysis for the
pair-wise comparison among the algorithms. Under such conditions, eight groups
are produced: MSMS versus CDE, MSMS versus SDE, MSMS versus CP, MSMS
versus AEGA, MSMS versus CSA, MSMS versus AiNet, MSMS versus MGSA
and MSMS versus RM. In the Wilcoxon analysis, it is considered as a null
hypothesis that there is no a notable difference between the two methods. On the
other hand, it is admitted as alternative hypothesis that there is an important dif-
ference between both approaches. In order to facilitate the analysis of Table 7.6, the
symbols ▲, ▼, and c are adopted. ▲ indicates that the MSMS method performs

Table 7.5 (continued)

Function Algorithm EPN MPR PA DA

CSA 4 (0.2) 0.3999 (0.0128) 6.177 (0.876) 7.7988 (1.0100)

AiNet 4 (0) 0.4033 (0.0543) 6.022 (0.654) 7.6681 (1.0021)

MSGA 8.4 (1.6) 0.8002 (0.0438) 2.874 (0.067) 3.874 (0.0151)

RM 10.1 (0.8) 0.9032 (0.0239) 1.587 (0.221) 2.148 (0.0150)

MSMS 11.60 (0.51) 0.9890 (0.0101) 0.487 (0.097) 0.891 (0.0177)

f13 CDE 13 (0) 1 (0) 0.012 (0.010) 0.040 (0.0112)

SDE 13 (0) 1 (0) 0.021 (0.008) 0.029 (0.0043)

CP 13 (0) 1 (0) 0.023 (0.007) 0.052 (0.0088)

AEGA 10.22 (0.81) 0.8157 (0.0140) 0.097 (0.008) 0.102 (0.0014)

CSA 8.90 (1.04) 0.7900 (0.0127) 0.128 (0.061) 0.154 (0.0058)

AiNet 10.16 (0.64) 0.8204 (0.0118) 0.108 (0.024) 0.127 (0.0017)

MSGA 13 (0) 1 (0) 0.022 (0.006) 0.038 (0.0006)

RM 13 (0) 1 (0) 0.018 (0.002) 0.033 (0.0009)

MSMS 13 (0) 1 (0) 0.010 (0.003) 0.011 (0.0005)

f14 CDE 3 (0.2) 0.6607 (0.0150) 0.851 (0.075) 162.24 (10.54)

SDE 3.25 (0.4) 0.7000 (0.0224) 0.689 (0.011) 122.31 (11.31)

CP 2.6 (0.5) 0.6102 (0.0129) 1.127 (0.087) 187.01 (21.87)

AEGA 3 (0.1) 0.6647 (0.0150) 0.920 (0.028) 160.11 (21.18)

CSA 3 (0.4) 0.6604 (0.0117) 0.987 (0.012) 165.12 (23.11)

AiNet 3.3 (0.12) 0.7022 (0.0255) 0.627 (0.024) 118.31 (18.11)

MSGA 5.1 (0.3) 0.8002 (0.0033) 0.257 (0.054) 22.571 (4.21)

RM 6 (0.4) 0.9021 (0.0210) 0.1007 (0.043) 15.331 (2.81)

MSMS 8 (0) 0.9974 (0.0061) 0.0814 (0.0010) 9.22 (1.70)

Maximum number of function evaluations = 2.5 � 104

148 7 Multimodal States of Matter Search

significantly better than the tested algorithm on the specified function. ▼ sym-
bolizes that the MSMS algorithm performs worse than the tested algorithm, and c

means that the Wilcoxon rank sum test cannot distinguish between the simulation
results of the MSMS multimodal optimizer and the tested algorithm. The number of
cases that fall in these situations are shown at the bottom of the table.

According to the results of Table 7.6, most of the p-values are less than 0.05 (5%
significance level) which is contrary to the null hypothesis and indicates that the
MSMS performs better than the other methods. Such data are statistically signifi-
cant and show that they have not occurred by coincidence (i.e. due to the normal
noise existent in the process). From Table 7.6, it is clear that the p-values of
functions f1; f2; f6 and f13 in the groups MSMS versus CDE, MSMS versus SDE,
MSMS versus CP, MSMS versus AEGA, MSMS versus MGSA and MSMS versus
RM are higher than 0.05. Such results reveal that there is not statistically difference
in terms of precision between both methods that have been applied to the afore-
mentioned functions. Contrarily, according to results of Table 7.6, the MSMS
exhibits better EPN indexes with regard to CSA and AiNet over all functions.

7.4.3 Comparing MSMS Performance for Composition
Functions (High Dimensional)

Benchmark test functions are needed to objectively evaluate the efficacy of a new
approach. Different to global search strategies, in multimodal optimization, test
functions must provide a set of global and local optima with their precise local-
ization. Therefore, not any benchmark function can be used for these purposes [21,
76]. Most of the test functions utilized in the literature are relatively simple due to
their low dimensions. To extend the analysis of multimodal techniques, the com-
position functions have been recently proposed [21, 76]. Composition functions are
multidimensional problems which are constructed as a weighted aggregation of
basic functions. As a consequence of this combination, the number of optimal
solutions and their positions are easily attainable.

This section presents the performance comparison for different algorithms
solving the composite functions F1–F4 that are shown in Table 7.11 for n = 30. The
aim is to determine whether MSMS is more efficient and effective than other
existing algorithms for finding all multiple optima. All the algorithms employ a
population 50 individuals by using 5� 104 function evaluations. This stop criterion
has been decided to keep compatibility with similar works published in the
literature.

Table 7.7 presents the summarized performance results among the algorithms,
for functions F1–F4. The tables report the comparison in terms of the effective peak
number (EPN), the maximum peak ratio (MPR), the peak accuracy (PA) and the
distance accuracy (DA). The results are analyzed by considering 50 different exe-
cutions. The goal of multimodal optimizers is to detect as many as possible optima.

7.4 Experimental Results 149

The main objective in this experiment is to determine whether MSMS is more
efficient and effective than other existing algorithms when it faces multidimensional
test functions. In order to statistically analyze the results of Table 7.7, the Wilcoxon
analysis has been conducted. Its results are presented in Table 7.8 for the “effective
peak number (EPN)” index.

After an analysis of Table 7.7, it is clear that the performance of all methods in
high-dimensional functions is worse than those presented in low-dimensional
problems. This fact represents the difficulty of each method for detecting and
maintaining multiple optima under several dimensions. According to Table 7.7, the
MSMS approach provides better performance than CDE, SDE, CP, AEGA, CSA,
AiNet, MGSA and RM in most of the composition functions in terms of the indexes
EPN, MPR, PA and DA. The exception is function F2 where the RM algorithm
present the best performance. From the EPN measure, we observe that MSMS
could always find more optimal solutions for the composition problems F1–F4. For
most of the functions, MSMS can find most of the optima, whereas CDE, SDE, CP,
AEGA, CSA, AiNet and MGSA exhibit the worst EPN performance. On the other
hand, in general, RM maintain an acceptable performance in comparison to the
MSMS method. In terms of number of theMPR index, MSMS has obtained the best
score for most of the composition problems. The rest of the algorithms present
lower accuracy levels. A close inspection of Table 7.7 also reveals that the MSMS
approach is able to achieve the smallest PA and DA indexes in relation to all other
methods.

According to the results of Table 7.8, most of the p-values are less than 0.05 (5%
significance level) which is against the null hypothesis and indicates that the MSMS
performs better than the other methods. In case of function F2, a close inspection of
Table 7.8 shows that the algorithm RM statistically performs better than the MSMS
method. Similarly, in function F3, the Wilcoxon test reveals that there is not sta-
tistically difference in terms of precision between RM and MSMS.

7.4.4 Diversity and Exploration

The process of finding so many optima as possible is known as multimodal
optimization. In order to attain this objective, one important characteristic of a
multimodal optimization algorithm is to conserve the population diversity. This
diversity can be interpreted as the efficiency of the exploration search strategy. In
this section, the exploration capacities of the multimodal methods is analyzed. For
the study, an experiment that evaluates how the population diversity evolves along
the search is conducted.

To evaluate the exploration capacities, the diversity of each proposal is analyzed.
In the experiment, the diversity defined in Eq. 7.21 is calculated and reported
during the optimization of a determined benchmark function. In the comparison, the
composition function F4 is considered. This function has been selected for being
representative of the different behaviors presented in multimodal optimization.

150 7 Multimodal States of Matter Search

Figures 7.6 and 7.7 show the evolution of the diversity under 500 different itera-
tions. In axis x there is the number of evaluations, and in axis y the diversity
measure.

After an analysis of the Figs. 7.6 and 7.7, it is clear that all algorithms begin with
a big diversity as a consequence of their random initialization. As the iterations
increase, the population diversity diminishes. Under such conditions, the MSMS
reaches the best population diversity, since it maintains the higher diversity values.
The RM method is also a method that obtains a good performance in terms of
population diversity, but with values lightly lower than MSMS. The rest of the
algorithms maintain almost the same diversity indexes. The good diversity char-
acteristics of the MSMS algorithm observed in this experiments permit affirm that
the incorporation of the memory endows of interesting exploration capacities.
This fact is a consequence of the high diversity of the solutions contained in the
memory M.

Table 7.6 p-values produced by Wilcoxon’s test comparing MSMS versus CDE, MSMS versus
SDE, MSMS versus CP, MSMS versus AEGA, MSMS versus CSA, MSMS versus AiNet, MSMS
versus MGSA and MSMS versus RM over the “effective peak number (EPN)” values from
Tables 7.4 and 7.5

MSMS
versus

CDE SDE CP AEGA CSA AiNet MGSA RM

f1 0.165c 0.154c 0.148c 0.159c 0.033▲ 0.039▲ 0.168c 0.175c

f2 0.185c 0.178c 0.167c 0.147c 0.051c 0.056c 0.167c 0.191c

f3 0.048▲ 0.011▲ 0.010▲ 0.019▲ 0.015▲ 0.016▲ 0.031▲ 0.041▲
f4 0.006▲ 0.003▲ 0.002▲ 0.004▲ 0.002▲ 0.001▲ 0.039▲ 0.051c

f5 0.014▲ 0.010▲ 0.011▲ 0.008▲ 0.003▲ 0.008▲ 0.024▲ 0.031▲
f6 0.180c 0.163c 0.191c 0.090c 0.038▲ 0.040▲ 0.195c 0.197c

f7 0.006▲ 0.003▲ 0.002▲ 0.003▲ 0.004▲ 0.004▲ 0.011▲ 0.019▲
f8 0.033▲ 0.029▲ 0.002▲ 0.006▲ 0.005▲ 0.008▲ 0.031▲ 0.040▲
f9 0.008▲ 0.012▲ 0.011▲ 0.012▲ 0.006▲ 0.004▲ 0.036▲ 0.042▲
f10 0.017▲ 0.019▲ 0.021▲ 0.020▲ 0.011▲ 0.016▲ 0.026▲ 0.031▲
f11 0.017▲ 0.019▲ 0.011▲ 0.014▲ 0.008▲ 0.004▲ 0.021▲ 0.028▲
f12 0.013▲ 0.015▲ 0.018▲ 0.004▲ 0.011▲ 0.009▲ 0.012▲ 0.039▲
f13 0.207c 0.214c 0.234c 0.087c 0.024▲ 0.016▲ 0.224c 0.254c

f14 0.003▲ 0.006▲ 0.009▲ 0.008▲ 0.007▲ 0.003▲ 0.009▲ 0.011▲
▲ 10 10 10 10 13 13 10 9

c 4 4 4 4 1 1 4 5

▼ 0 0 0 0 0 0 0 0

7.4 Experimental Results 151

Table 7.7 Results of functions f8–f14 of Table 7.10 with n = 30

Function Algorithm EPN MPR PA DA

F1 CDE 3.1 (0.4) 0.5874 (0.0149) 573.295 (89.23) 2.9846 (0.0501)

SDE 2.8 (0.2) 0.5306 (0.0356) 652.217 (56.34) 3.3955 (0.0286)

CP 2.7 (0.5) 0.5116 (0.0274) 678.617 (68.10) 3.5329 (0.0394)

AEGA 3.3 (0.3) 0.6289 (0.0191) 515.632 (76.49) 2.6844 (0.0485)

CSA 2.5 (0.4) 0.4737 (0.0304) 731.278 (53.48) 3.8071 (0.0370)

AiNet 2.2 (0.1) 0.4169 (0.0230) 810.201 (101.21) 4.2180 (0.0514)

MSGA 3.3 (0.3) 0.6253 (0.0117) 520.634 (93.31) 2.7104 (0.0142)

RM 3.9 (0.5) 0.7390 (0.0228) 362.651 (47.91) 1.8880 (0.0231)

MSMS 5.2 (0.7) 0.9754 (0.0123) 120.286 (10.36) 0.1056 (0.0158)

F2 CDE 3.5 (0.2) 0.4547 (0.0154) 628.786 (94.21) 4.0432 (0.1421)

SDE 3.8 (0.3) 0.4937 (0.0221) 700.142 (53.11) 3.7540 (0.1822)

CP 3.2 (0.7) 0.4157 (0.0347) 808.022 (66.27) 4.3323 (0.2150)

AEGA 4.6 (0.8) 0.5976 (0.0187) 556.462 (88.01) 2.9836 (0.3172)

CSA 2.8 (0.6) 0.3638 (0.0235) 875.524 (93.10) 4.7172 (0.2709)

AiNet 2.6 (0.9) 0.3378 (0.0362) 915.730 (80.93) 4.9100 (0.3895)

MSGA 5.7 (0.7) 0.7406 (0.0397) 358.713 (47.30) 1.9233 (0.1206)

RM 7.6 (0.5) 0.9875 (0.0400) 17.700 (4.21) 0.0926 (0.0101)

MSMS 6.8 (0.8) 0.8835 (0.0226) 89.534 (10.24) 0.2638 (0.0961)

F3 CDE 2.1 (0.8) 0.3613 (0.0299) 943.912 (131.40) 5.2739 (0.2711)

SDE 2.5 (0.6) 0.4302 (0.0334) 842.087 (56.67) 4.7049 (0.1801)

CP 2.8 (0.9) 0.4818 (0.0412) 364.92 (69.28) 4.2789 (0.3614)

AEGA 2.6 (0.3) 0.4474 (0.0228) 816.668 (105.74) 4.5629 (0.5101)

CSA 1.8 (0.6) 0.3097 (0.0179) 1020.171 (127.01) 5.7001 (0.4082)

AiNet 2.2 (0.8) 0.3785 (0.0371) 918.492 (87.81) 5.1318 (0.2100)

MSGA 3.6 (0.4) 0.6195 (0.0250) 562.327 (97.33) 3.1418 (0.1001)

RM 5.5 (0.7) 0.9591 (0.0127) 91.6521 (18.24) 0.6007 (0.1187)

MSMS 5.8 (0.3) 0.9781 (0.0214) 82.8079 (10.31) 0.5808 (0.1493)

F4 CDE 2.7 (1.2) 0.3436 (0.0117) 638.615 (87.32) 5.7126 (0.1102)

SDE 2.8 (0.9) 0.3563 (0.0221) 626.259 (68.14) 5.6021 (0.1005)

CP 2.2 (1.5) 0.2799 (0.0340) 700.589 (57.10) 6.2670 (0.1921)

AEGA 3.2 (0.2) 0.4072 (0.0374) 576.738 (39.98) 5.1591 (0.2128)

CSA 2.4 (0.7) 0.3054 (0.0411) 675.780 (87.75) 6.0450 (0.3721)

AiNet 1.8 (0.8) 0.2290 (0.0274) 750.110 (162.10) 6.7100 (0.4101)

MSGA 4.2 (0.6) 0.5344 (0.0313) 452.984 (63.38) 4.0521 (0.1371)

RM 6.1 (0.3) 0.7762 (0.0414) 217.736 (50.81) 1.9477 (0.0980)

MSMS 7.7 (0.4) 0.9799 (0.0127) 59.555 (10.96) 0.1749 (0.0281)

Maximum number of function evaluations = 5 � 104

152 7 Multimodal States of Matter Search

7.4.5 Computational Effort

In this section, the time spent by all methods in the solution of a multimodal
optimization problem is evaluated. Random methods are, in general, complex
pieces of software with several operators and stochastic branches. Therefore, it is
difficult to conduct a complexity analysis from a deterministic perspective.
Therefore, the computational time (CT) is used in order to evaluate the computa-
tional effort. The CT exhibits the CPU time invested by an algorithm when it is
under operation.

In order to assess the computational effort, an experiment is conducted. In the
experiment, the Computational Time (CT) is evaluated and compared for each
algorithm when they operate over the composition functions F1–F4 (high dimen-
sional problems). In the comparison, it is considered that each algorithm reaches
5� 104 function evaluations. All algorithms have been tested in MatLAB by using
a computer with a Pentium-4 2.66-GHZ processor, running Windows 10 operating
system over 8 Gb of memory. Table 7.9 presents the obtained CT values which are
averaged considering 50 independent executions.

According to the CT values exhibited in Table 7.9, the algorithms can be ranked
in the following order AiNet, CSA, CP, SDE, MSMS, MGSA, CDE, AEGA AND
RM. Considering to this list, the MSMS method has approximately the median
performance with regard to rest of the methods. It is only surpass for AiNet, CSA,
CDE and SDE which maintain the worst performance in terms of precision. Under
such conditions, the MSMS shows the best compromise between its computational
time and its accuracy.

The comparative low computational effort of MSMS can be attributed to the
depuration mechanisms. The constant application of the depuration procedure
maintains the memory with the lower number of elements as possible. Under such
conditions, the number of computations such distances and other expensive com-
putational operations are considerably reduced in comparison to other approaches.

Table 7.8 p-values produced by Wilcoxon’s test comparing MSMS versus CDE, MSMS versus
SDE, MSMS versus CP, MSMS versus AEGA, MSMS versus CSA, MSMS versus AiNet, MSMS
versus MGSA and MSMS versus RM over the “effective peak number (EPN)” values from
Table 7.7

MSMS
versus

CDE SDE CP AEGA CSA AiNet MGSA RM

F1 0.0011▲ 0.0037▲ 0.0028▲ 0.0041▲ 0.0057▲ 0.0021▲ 0.0071▲ 0.0098▲

F2 0.0054▲ 0.0064▲ 0.0081▲ 0.0032▲ 0.0017▲ 0.0019▲ 0.0085▲ 0.0091▼

F3 0.0004▲ 0.0008▲ 0.0005▲ 0.0032▲ 0.0007▲ 0.0015▲ 0.0014▲ 0.0612c

F4 0.0021▲ 0.0002▲ 0.0008▲ 0.0020▲ 0.0009▲ 0.0016▲ 0.0031▲ 0.0063▲

▲ 4 4 4 4 4 4 4 2

c 0 0 0 0 0 0 0 1

▼ 0 0 0 0 0 0 0 1

7.4 Experimental Results 153

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

Generations

D
iv
er
si
ty

CDE

0 50 100 150 200 250 300 350 400 450 500
−0.4
−0.2

0
0.2
0.4
0.6
0.8
1

Generations

D
iv
er
si
ty

SDE

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

Generations

D
iv
er
si
ty

CP

0 50 100 150 200 250 300 350 400 450 500
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6

Generations

D
iv
er
si
ty

AEGA

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

Generations

D
iv
er
si
ty

CSA

Fig. 7.6 Population diversity evolution for CDE, SDE, CP, AEGA and CSA

154 7 Multimodal States of Matter Search

0 50 100 150 200 250 300 350 400 450 500
0.2

0.3

0.4

0.5

0.6

0.7

Generations

D
iv
er
si
ty

AiNet

0 50 100 150 200 250 300 350 400 450 5000.2

0.3

0.4

0.5

0.6

0.7

Generations

D
iv
er
si
ty

MGSA

0 50 100 150 200 250 300 350 400 450 500
0.5

0.6

0.7

0.8

0.9

1

Generations

D
iv
er
si
ty

RM

0 50 100 150 200 250 300 350 400 450 500
0.8

0.9

1

1.1

1.2

1.3

Generations

D
iv
er
si
ty

MSMS

Fig. 7.7 Population diversity evolution for AiNet, MGSA, RM and MSMS

Table 7.9 Computational time (CT) values of each algorithm for functions F1–F4

F1 F2 F3 F4 l

CDE 23.658s 24.364s 22.843s 25.021s 23.971s
SDE 19.104s 22.142s 19.350s 23.154s 20.937s
CP 18.534s 20.054s 17.945s 21.271s 19.449s
AEGA 24.857s 25.967s 23.952s 26.310s 24.521s
CSA 12.082s 14.524s 11.296s 15.532s 13.358s
AiNet 11.935s 13.857s 10.533s 14.025s 12.587s
MGSA 22.457s 24.058s 21.735s 25.851s 23.525s
RM 25.634s 27.004s 24.783s 28.364s 26.446s
MSMS 21.085s 22.867s 19.210s 23.932s 21.773s
Bold elements respresent the best values

7.4 Experimental Results 155

7.5 Conclusions

The main objective of multi-modal optimization is to find multiple global and local
optima of a problem in only one single run. Finding multiple solutions to a
multi-modal problem is particularly useful in engineering, as the best solutionmay not
always be the best applicable solution due to various practical restrictions. The States
of Matter Search (SMS) is a metaheuristic optimization technique. Even though SMS
is highly effective in detecting a single global optimum, it fails in providing multiple
solutions within a single execution. This chapter introduces a multimodal optimiza-
tion method called the Multi-modal States of Matter Search (MSMS).

Under the MSMS method, the original SMS is extended with multimodal
capacities considering the following modifications: (1) the integration of a memory
mechanism to effectively store promising local optima with regard to their fitness
values and the separation to other high quality solutions; (2) the alteration of the
standard SMS search strategy to accelerate the detection of new local minima; and
(3) the inclusion of a depuration procedure at the end of each state to eliminate
duplicated memory elements.

MSMS has been experimentally evaluated over a test suite of 18 benchmark
multimodal functions. The performance of MSMS has been compared to other
existing algorithms including the Crowding Differential Evolution (CDE), the
Fitness Sharing Differential Evolution (SDE), the Clearing Procedure (CP),
the Elitist-population Strategy (AEGA), the Clonal Selection Algorithm (CSA), the
Artificial Immune Network (AiNet), the Multimodal Gravitational Search algorithm
(MGSA) and the Region-Based Memetic method (RM). The results indicated that
the MSMS method achieves the best balance over its counterparts, in terms of
accuracy and computational effort.

The MSMS optimization algorithm allows detecting and maintaining multiple
optima for a problem within only one single run. The method possesses two
important advantages. (A) It includes operators which allow a better exploration of
the search space than other EA approaches, increasing the capacity to find multiple
optima. (B) It has the capacity to maintain more and better solutions through the
incorporation of an efficient mechanism of memory. However, the MSMS presents
an important disadvantage: its implementation is in general more complex than most
of the other multimodal algorithms which consider relatively simple operations.

Several research directions could be considered for future work such as
the inclusion of other indexes to evaluate similarity between memory elements, the
consideration of different probability functions to control the stochastic process, the
modification of the evolutionary SMS operators to handle its exploration capacities
and the conversion of the optimization procedure into a multi-objective problem.

Appendix: List of Benchmark Functions

See Tables 7.10 and 7.11.

156 7 Multimodal States of Matter Search

T
ab

le
7.
10

L
ow

di
m
en
si
on

al
te
st
fu
nc
tio

ns
us
ed

in
th
e
ex
pe
ri
m
en
ta
l
st
ud

y

f(
x)

(x
=
{x

1,
x 2
})

S 2
N
O

G
ra
ph

B
ir
d

f 1
xð
Þ¼

si
nð
x 1
Þ�

e
1�

co
s
x 2ð
Þ

ð
Þ2

þ
co
s
x 2ð
Þ�

e
1�

si
n
x 1ð
Þ

ð
Þ2
þ
ðx 1

�
x 2
Þ2

�2
p
;2
p

½
�

3

C
ro
ss

in
tr
ay

f 2
xð
Þ¼

�0
:0
00

1

�
si
n
x 1ð
Þ�

si
n
x 2ð
Þ�

e
10
0�

ffiffiffiffiffiffiffi x2 1
�x

2 2

p
p

� � �
� � �

� � � � � �
� � � � � �þ

1

0 @
1 A0:

1

�1
0;
10

½
�

12

D
eJ
on

gs
5

f 3
xð
Þ¼

0:
00

2
þ
P 2 i¼

�2
P 2 j¼

�2
5
iþ

1
ð

Þþ
jþ

3
þ

x 1
�
16

j
ð

Þ6
þ

x 2
�
16

i
ð

Þ6
�

� �1
(

) �1
�4

0;
40

½
�

25

E
gg

ho
ld
er

f 4
ðx
Þ¼

�
x 2

þ
47

ð
Þs
in

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffi

x 2
þ

x 1 2
þ
47

� � �
� � �

r �
�

�
x 1

si
n

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffiffiffiffi
ffiffiffiffiffi

x 1
þ

x 2 2
þ
47

� � �
� � �

r �
�

�5
12
;5
12

½
�

7

(c
on

tin
ue
d)

Appendix: List of Benchmark Functions 157

T
ab

le
7.
10

(c
on

tin
ue
d)

f(
x)

(x
=
{x

1,
x 2
})

S 2
N
O

G
ra
ph

V
in
ce
nt

f 5
xð
Þ¼

�
P n i¼

1
si
n
10

�l
og

x ið
Þ

ð
Þ

0:
25

;1
0

½
�

36

R
oo

ts

f 6
xð
Þ¼

�
1
þ

ðx 1
þ
x 2
iÞ6

�
1

� � �
� � �

�

 �1

�2
;2

½
�

6

H
ill
y

f 7
ðx
Þ¼

10
e�

x 1j
j

50
1
�
co
s

6

10
03 4
p
x 1j
j3 4

�

�

þ
e�

x 2j
j

25
0
1
�
co
s

6

10
03 4
p
x 2j
j3 4

�

�

 þ

2
e�

b�
x 1

ð
Þ2

þ
b�

x 2
ð

Þ2
50

�
�

2 6 4
3 7 5

w
ith

b
¼

5 6
�1
00

3 4

�

4 3

�1
00
;1
00

½
�

48

(c
on

tin
ue
d)

158 7 Multimodal States of Matter Search

T
ab

le
7.
10

(c
on

tin
ue
d)

f(
x)

(x
=
{x

1,
x 2
})

S 2
N
O

G
ra
ph

R
as
tr
ig
in

f 8
xð
Þ¼

P n i¼
1
x2 i

�
10

co
s
2p

x i
ð

Þ
�5

:1
2;
5:
12

½
�

25

H
im

m
em

lb
la
u

f 9
ðx
Þ¼

�
x2 1

þ
x 2

�
11

�
� 2 �

ðx 1
þ
x2 2

�
7Þ

2
�6

;6
½

�
5

F
ox

ho
le
s

f 1
0
xð
Þ¼

�
P 30 i¼

1

P n j¼
1

x j
�
a i
j

�
� 2 þ

c j
h

i
�

 �1
0;
10

½
�

8

M
ul
ti
m
od

al
F

f 1
1
xð
Þ¼

�
x 1

si
n
4p

x 1
ð

Þ�
x 2

si
n
4p

x 2
þ
p

ð
Þ

ð
Þ

�2
;2

½
�

12

(c
on

tin
ue
d)

Appendix: List of Benchmark Functions 159

T
ab

le
7.
10

(c
on

tin
ue
d)

f(
x)

(x
=
{x

1,
x 2
})

S 2
N
O

G
ra
ph

H
ol
de
r
T
ab

le

f 1
2
xð
Þ¼

�
si
n
x 1ð
Þc
os

x 2ð
Þe

1�
ffiffiffiffiffiffiffiffi x2 1

þ
x2 2

p
p

� � �
� � �

�1
0;
10

½
�

12

R
as
tr
ig
in
_4

9m
f 1
3
xð
Þ¼

P n i¼
1
x2 i

�
18

co
s
2p

x i
ð

Þ
�1

;1
½

�
13

Sc
hw

ef
el

f 1
4
xð
Þ¼

41
8:
98

29
�n

þ
P n i¼

1
�x

i
si
n

ffiffiffiffiffiffi x ij
j

p �
�

�5
00
;5
00

½
�

8

160 7 Multimodal States of Matter Search

Table 7.11 Composite test functions used in the experimental study

Composition functions

Basic functions

Sphere
g1ðxÞ ¼

Pn
i¼1 x

2
i

Griewank’s

g2ðxÞ ¼
Pn

i¼1
x2i

1000 �
Qn

i¼1 cos
xiffi
i

p
�

þ 1

Rastringin’s
g3ðxÞ ¼

Pn
i¼1 ðx2i � 10 cosð2pxiÞþ 10Þ

Weierstrass

g4ðxÞ ¼
Pn

i¼1

Pjmax
j¼0 j

j cosð2 � p � g jðxi þ 0:5ÞÞ
�

� n
Pjmax

j¼0 j
j cosð2 � p � g jð0:5ÞÞ

where j ¼ 0:5, g ¼ 3 and jmax ¼ 20

Expanded Griewank’s and Rosenbrock’s

GðxÞ ¼Pn
i¼1

x2i
1000 �

Qn
i¼1 cos

xiffi
i

p
�

þ 1,

RðxÞ ¼Pn�1
i¼1 ð100ðx2i � xiþ 1Þ2 þðxi � 1ÞÞ,

g5ðxÞ ¼ GðxÞRðxÞ
Construction

A composition function Fi : Sn � R
n ! R is constructed as a weighted

aggregation of h basic functions ui : Sn � R
n ! R (i 2 1; . . .; h). Each basic

function ui(2 g1; g2; g3; g4; g5f g) is shifted to new locations inside the search
space Sn and can be either rotated through a linear transformation matrix or used
as it is. Therefore, a composition function Fi is built with the following model:

FiðxÞ ¼
Ph

i¼1 wi ui x�oi
ki

�

�Mi

�
�

,

where h represents the number of basic functions used in the composition, gi
denotes the i-th basic function, wi is the corresponding weight,
o oi ¼ o1i ; . . .; o

n
i

� �� �
is the new shifted optimum of each ui, Mi is a linear

transformation (rotation) matrix for each ui, and ki is a parameter which is
employed to stretch ðki [1Þ or compress ðki\1Þ each function ui.
The weight wi of each basic function is computed considering the following
formulation:

wi ¼ exp �
Pn

j¼1
ðxj�o j

i Þ
2�n�r2i

� �
,

Then, the weights are recalculated according to:

wi ¼ wi if w1 ¼ maxðw1Þ
wið1�maxðwiÞÞ10 otherwise

�
The parameter ri regulates the coverage range of each basic function gi,
considering a small value of ri, it is produced a narrow coverage range for gi.
Finally, the weights are normalized according to wi ¼ wi=

Ph
j¼1 wj.

Definition of composition functions

Function F1 Function F2

F1 ¼
u1 � u2 g2
u3 � u4 g4
u5 � u6 g1

8<
: F2 ¼

u1 � u2 g3
u3 � u4 g4
u5 � u6 g2
u7 � u8 g1

8>><
>>:

h ¼ 6 h ¼ 8
(continued)

Appendix: List of Benchmark Functions 161

References

1. Panos, P., Edwin, R., Tuy, H.: Recent developments and trends in global optimization.
J. Comput. Appl. Math. 124, 209–228 (2000)

2. Floudas, C., Akrotirianakis, I., Caratzoulas, S., Meyer, C., Kallrath, J.: Global optimization in
the 21st century: advances and challenges. Comput. Chem. Eng. 29(6), 1185–1202 (2005)

3. Ying, J., Ke-Cun, Z., Shao-Jian, Q.: A deterministic global optimization algorithm. Appl.
Math. Comput. 185(1), 382–387 (2007)

4. Georgieva, A., Jordanov, I.: Global optimization based on novel heuristics, low-discrepancy
sequences and genetic algorithms. Eur. J. Oper. Res. 196, 413–422 (2009)

5. Lera, D., Sergeyev, Y.: Lipschitz and Hölder global optimization using space-filling curves.
Appl. Numer. Math. 60(1–2), 115–129 (2010)

6. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution.
John Wiley, Chichester, UK (1966)

7. Schwefel, H.P.: Evolution strategies: a comprehensive introduction. J. Nat. Comput. 1(1),
3–52 (2002)

8. Koza, J.R.: Genetic programming: a paradigm for genetically breeding populations of
computer programs to solve problems. Rep. No. STAN-CS-90–1314. Stanford University,
CA (1990)

9. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press,
Ann Arbor, MI (1975)

10. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison
Wesley, Boston, MA (1989)

11. De Castro, L.N., Von Zuben, F.J.: Artificial immune systems: part I—basic theory and
applications. Technical report, TR-DCA 01/99. December 1999

Table 7.11 (continued)

Sn ¼ ½�5; 5�n Sn ¼ ½�5; 5�n
ri ¼ 1; 8i 2 1; . . .; 6f g ri ¼ 1; 8i 2 1; . . .; 6f g
k ¼ ½1; 1; 8; 8; 1=5; 1=5� k ¼ ½1; 1; 10; 10; 1=10; 1=10; 1=7; 1=7�
Mi ¼ I; 8i 2 1; . . .; 6f g Mi ¼ I; 8i 2 1; . . .; 6f g
NO ¼ 6 NO ¼ 8

Function F3 Function F4

F3 ¼
u1 � u2 g5
u3 � u4 g4
u5 � u6 g2

8<
: F4 ¼

u1 � u2 g3
u3 � u4 g5
u5 � u6 g4
u7 � u8 g2

8>><
>>:

h ¼ 6 h ¼ 8

Sn ¼ ½�5; 5�n Sn ¼ ½�5; 5�n
r ¼ ½1; 1; 2; 2; 2; 2�

k ¼ ½1=4; 1=10; 2; 1; 2; 5�

r ¼ ½1; 1; 1; 1; 1; 2; 2; 2�
k ¼ ½4; 1; 4:1; 1=10; 1=5; 1=10; 1=40�

Mi ¼ I; 8i 2 1; . . .; 6f g Mi ¼ I; 8i 2 1; . . .; 6f g
NO ¼ 6 NO ¼ 8

162 7 Multimodal States of Matter Search

12. Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95–012. ICSI, Berkeley, Calif
(1995)

13. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220
(4598), 671–680 (1983)

14. İlker, B., Birbil, S., Shu-Cherng, F.: An electromagnetism-like mechanism for global
optimization. J. Global Optim. 25, 263–282 (2003)

15. Rashedia, E., Nezamabadi-pour, H., Saryazdi, S.: Filter modeling using gravitational search
algorithm. Eng. Appl. Artif. Intell. 24(1), 117–122 (2011)

16. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

17. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical
Report No. 91-016. Politecnico di Milano (1991)

18. Das, S., Maity, S., Qu, B.Y., Suganthan, P.N.: Real-parameter evolutionary multimodal
optimization—a survey of the state-of-the-art. Swarm Evol. Comput. 1(2), 71–88 (2011)

19. Wong, K.-C., Wu, C.-H., Mok, R.K.P., Peng, C., Zhang, Z.: Evolutionary multimodal
optimization using the principle of locality. Inf. Sci. 194, 138–170 (2012)

20. Tan, K.C., Chiam, S.C., Mamun, A.A., Goh, C.K.: Balancing exploration and exploitation
with adaptive variation for evolutionary multi-objective optimization. Eur. J. Oper. Res. 197,
701–713 (2009)

21. Qu, B.Y., Liang, J.J., Wang, Z.Y., Chen, Q., Suganthan, P.N.: Novel benchmark functions for
continuous multimodal optimization with comparative results. Swarm Evol. Comput. 26,
23–34 (2016)

22. Basak, A., Das, S., Chen-Tan, K.: Multimodal optimization using a biobjective differential
evolution algorithm enhanced with mean distance-based selection. IEEE Trans. Evol.
Comput. 17(5), 666–685 (2013)

23. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Ph.D.
dissertation, University of Michigan, Ann Arbor (1975)

24. Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal function
optimization. In: Proceedings of 2nd International Conference on Genetic Algorithms,
pp. 41–49 (1987)

25. Petrovski, A., Wilson, A., McCall, J.: Statistical analysis of genetic algorithms and inference
about optimal factors. Technical Report 2, SCMS Technical Report 1998/2. School of
Computer and Mathematical Sciences, Faculty of Science and Technology, The Robert
Gordon University, Aberdeen, U.K. (1998)

26. Li, L., Tang, K.: History-based topological speciation for multimodal optimization. IEEE
Trans. Evol. Comput. 19(1), 136–150 (2015)

27. Mengshoel, O.J., Galán, S.F., De Dios, A.: Adaptive generalized crowding for genetic
algorithms. Inf. Sci. 258, 140–159 (2014)

28. Miller, B.L., Shaw, M.J.: Genetic algorithms with dynamic niche sharing for multimodal
function optimization. In: Proceedings of the 3rd IEEE Conference on Evolutionary
Computation, pp. 786–791 (1996)

29. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In:
Congress on Evolutionary Computation, 2004, CEC2004, vol. 2, pp. 1382–1389

30. Chen, C.-H., Liu, T.-K., Chou, J.-H.: A novel crowding genetic algorithm and its applications
to manufacturing robots. IEEE Trans. Ind. Inf. 10(3), 1705–1716 (2014)

31. Yazdani, S., Nezamabadi-pour, H., Kamyab, S.: A gravitational search algorithm for
multimodal optimization. Swarm Evol. Comput. 14, 1–14 (2014)

32. Chang, W.-D.: A modified particle swarm optimization with multiple subpopulations for
multimodal function optimization problems. Appl. Soft Comput. 33, 170–182 (2015)

33. Liang, J.J., Qu, B.Y., Mao, X.B., Niu, B., Wang, D.Y.: Differential evolution based on fitness
Euclidean-distance ratio for multimodal optimization. Neurocomputing 137, 252–260 (2014)

References 163

34. Biswas, S., Das, S., Kundu, S., Patra, G.R.: Utilizing time-linkage property in DOPs: an
information sharing based artificial bee colony algorithm for tracking multiple optima in
uncertain environments. Soft Comput. 18, 1199–1212 (2014)

35. Sacco, W.F., Henderson, N., Rios-Coelho, A.C.: Topographical clearing differential
evolution: a new method to solve multimodal optimization problems. Prog. Nucl. Energy
71, 269–278 (2014)

36. Lianga, Y., Kwong-Sak, L.: Genetic algorithm with adaptive elitist-population strategies for
multimodal function optimization. Appl. Soft Comput. 11, 2017–2034 (2011)

37. Gao, W., Yen, G.G., Liu, S.: A cluster-based differential evolution with self-adaptive strategy
for multimodal optimization. IEEE Trans. Cybern. 44(8), 1314–1327 (2014)

38. Qu, B.Y., Suganthan, P.N., Das, S.: A distance-based locally informed particle swarm model
for multimodal optimization. IEEE Trans. Evol. Comput. 17(3), 387–402 (2013)

39. Dong, W., Zhou, M.: Gaussian classier-based evolutionary strategy for multimodal
optimization. IEEE Trans. Neural Networks Learn. Syst. 25(6), 1200–1216 (2014)

40. Hui, S., Suganthan, P.N.: Ensemble and arithmetic recombination-based speciation differen-
tial evolution for multimodal optimization. IEEE Trans. Cybern. (In press)

41. Chen, G., Low, C.P., Yang, Z.: Preserving and exploiting genetic diversity in evolutionary
programming algorithms. IEEE Trans. Evol. Comput. 13(3), 661–673 (2009)

42. De Castro, L.N., Zuben, F.J.: Learning and optimization using the clonal selection principle.
IEEE Trans. Evol. Comput. 6, 239–251 (2002)

43. De Castro, L.N., Timmis, J.: An artificial immune network for multimodal function
optimization. In: Proceedings of the 2002 IEEE International Conference on Evolutionary
Computation, IEEE Press, New York, Honolulu, Hawaii, pp. 699–704 (2002)

44. Xu, Q., Lei, W., Si, J.: Predication based immune network for multimodal function
optimization. Eng. Appl. Artif. Intell. 23, 495–504 (2010)

45. Cuevas, E., González, M.: An optimization algorithm for multimodal functions inspired by
collective animal behavior. Soft Comput. 17(3), 489–502 (2013)

46. Merrikh-Bayat, F.: The runner-root algorithm: a metaheuristic for solving unimodal and
multimodal optimization problems inspired by runners and roots of plants in nature. Appl.
Soft Comput. 33, 292–303 (2015)

47. Lacroix, B., Molina, D., Herrera, F.: Region-based memetic algorithm with archive for
multimodal optimisation. Inf. Sci. 367–368, 719–746 (2016)

48. Roya, S., Minhazul, S., Das, S., Ghosha, S., Vasilakos, A.V.: A simulated weed colony
system with subregional differential evolution for multimodal optimization. Eng. Optim. 45
(4), 459–481 (2013)

49. Yahyaiea, F., Filizadeh, S.: A surrogate-model based multi-modal optimization algorithm.
Eng. Optim. 43(7), 779–799 (2011)

50. Cuevas, E., Echavarría, A., Ramírez-Ortegón, M.A.: An optimization algorithm inspired by
the states of matter that improves the balance between exploration and exploitation. Appl.
Intell. 40(2), 256–272 (2014)

51. Cuevas, E., Echavarría, A., Zaldívar, D., Pérez-Cisneros, M.: A novel evolutionary algorithm
inspired by the states of matter for template matching. Expert Syst. Appl. 40(16), 6359–6373
(2013)

52. Mohamed, A.-A.A., El-Gaafary, A.A.M., Mohamed, Y.S., Hemeida, A.M.: Multi-objective
states of matter search algorithm for TCSC-based smart controller design. Electr. Power Syst.
Res. 140, 874–885 (2016)

53. Bailey, R.A.: Association Schemes: Designed Experiments, Algebra and Combinatory.
Cambridge University Press, Cambridge (2004)

54. Barr, R.S., Golden, B.L., Kelly, J.P., Resende, M.G., Stewart, W.R.: Designing and reporting
on computational experiments with heuristic methods. J Heuristics 1, 9–32 (1995)

55. Bartz-Beielstein, T.: Experimental research in evolutionary computation—the new experi-
mentalism. In: Natural Computing Series, Springer, Berlin (2006)

164 7 Multimodal States of Matter Search

56. Batista, E., França, E., Borges, M.: Improving the performance of metaheuristics: an approach
combining response surface methodology and racing algorithms. Int. J. Eng. Math. 2015,
Article ID 167031, 9 pages (2015). https://doi.org/10.1155/2015/167031

57. Batista, E., França, E.: Improving the fine-tuning of metaheuristics: an approach combining
design of experiments and racing algorithms. J. Optim. 2017, Article ID 8042436, 7 pages
(2017). https://doi.org/10.1155/2017/8042436

58. Calvet, L., Juan, A., Serrat, C., Ries, J.: A statistical learning based approach for parameter
fine-tuning of metaheuristics. SORT-Stat. Oper. Res. Trans. 40(1), 201–224 (2016)

59. Eiben, A.E., Smit, S.K.: Parameter tuning for configuring and analyzing evolutionary
algorithms. Swarm Evol. Comput. 1, 19–31 (2011)

60. Eiben, A.E., Smit, S.K.: Evolutionary algorithm parameters and methods to tune them. In:
Monfroy, E., Hamadi, Y., Saubion, F. (eds.) Autonomous Search, pp. 15–36. Springer, Berlin
(2012)

61. Karafotias, G., Hoogendoorn, M., Eiben, A.E.: Parameter control in evolutionary algorithms:
trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)

62. Kok, K.Y., Rajendran, P.: Differential-evolution control parameter optimization for unmanned
aerial vehicle path planning. PLoS ONE 11(3), 1–10 (2016)

63. Ugolotti, R., Cagnoni, S.: Analysis of evolutionary algorithms using multi-objective
parameter tuning. In: GECCO ’14 Proceedings of the 2014 Annual Conference on Genetic
and Evolutionary Computation, pp. 1343–1350

64. Kramer, O., Gloger, B., Gobels, A: An experimental analysis of evolution strategies and
particle swarm optimisers using design of experiments. In: GECCO07, pp. 674–681 (2007)

65. Kramer, O.: Evolutionary self-adaptation: a survey of operators and strategy parameters. Evol.
Intell. 3(2), 51–65 (2010)

66. Boari, E., Gisele Pappa, L., Marques, J., Marcos Goncalves, A., Meira, W.: Tuning genetic
programming parameters with factorial designs. In: IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8 (2010)

67. Czarn, A., MacNish, C., Vijayan, K., Turlach, B., Gupta, R.: Statistical exploratory analysis
of genetic algorithms. IEEE Trans. Evol. Comput. 8(4), 405–421 (2004)

68. Petrovski, A., Brownlee, A, McCall, J.: Statistical optimisation and tuning of GA factors. In:
IEEE Congress on Evolutionary Computation, vol. 1, pp. 758–764 (2005)

69. Stodola, P., Mazal, J., Podhorec, M.: Parameter tuning for the ant colony optimization
algorithm used in ISR systems. Int. J. Appl. Math. Inform. 9, 123–126 (2015)

70. Jackson, W., Özcan, E., John, R.: Tuning a simulated annealing metaheuristic for
cross-domain search. In: IEEE Congress on Evolutionary Computation 2017, pp. 5–9,
Donostia-San Sebastian, Spain (2017)

71. Petrowski, A.: A clearing procedure as a niching method for genetic algorithms. In:
Proceedings of the 1996 IEEE International Conference on Evolutionary Computation,
pp. 798–803, IEEE Press, New York, Nagoya, Japan (1996)

72. Glover, F.: Tabu search part 1. ORSA J. Comput. 1(3), 190–206 (1989)
73. Glover, F.: Tabu search part 2. ORSA J. Comput. 1(3), 4–32 (1990)
74. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for

analyzing the evolutionary algorithms’ behaviour: a case study on the CEC ’2005, Special
session on real parameter optimization. J. Heuristics 15(6), 617–644 (2009)

75. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
76. Li, X., Engelbrecht, A., Epitropakis, M.G.: Benchmark functions for CEC ’2013, Special

session and competition on niching methods for multimodal function optimization.
Evolutionary Computation (CEC) (2013)

References 165

http://dx.doi.org/10.1155/2015/167031
http://dx.doi.org/10.1155/2017/8042436

Chapter 8
Metaheuristic Algorithms Based
on Fuzzy Logic

Several systems are extremely complicated to be handled quantitatively. In spite of
this humans undergo them by using simplistic rules that are obtained from their own
experiences. The engineering area that imitates the human reasoning in the use of
imprecise information to generate decisions is fuzzy logic. Different to classical
methods, fuzzy logic involves a distinct option of processing that allows modeling
complex systems using human experience. Recently, many metaheuristic algo-
rithms have been introduced with impressive results. Their operators are based on
emulations of natural or social processes to adjust candidate solutions. In this
chapter, a methodology to implement human-knowledge as a search strategy is
analyzed. In the system, a Takagi-Sugeno inference system is employed to generate
a specific search strategy produced by a human specialist. Hence, the number of
rules and its effect only depend on the expert experience without considering any
learning method. Therefore, each rule describes expert information that models the
circumstances under which individuals are adjusted to attain the optimal location.

8.1 Introduction

There are processes that humans can do much better than deterministic systems or
computers, such as obstacle avoidance while driving or planning a strategy. This
may be due to our unique reasoning capabilities and complex cognitive processing.
Although processes can be complex, humans undertake them by using simple rules
of thumb extracted from their experiences.

Fuzzy logic [1] is a practical alternative for a variety of challenging applications
since it provides a convenient method for constructing systems via the use of
heuristic information. The heuristic information may come from a system-operator
who has directly interacted with the process. In the fuzzy logic design methodology,
this operator is asked to write down a set of rules on how to manipulate the process.
We then incorporate these into a fuzzy system that emulates the decision-making

© Springer International Publishing AG, part of Springer Nature 2018
E. Cuevas et al., Advances in Metaheuristics Algorithms: Methods
and Applications, Studies in Computational Intelligence 775,
https://doi.org/10.1007/978-3-319-89309-9_8

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89309-9_8&domain=pdf

process of the operator [2]. For this reason, the partitioning of the system behavior
into regions is an important characteristic of a fuzzy system [3]. In each region, the
characteristics of the system can be simply modeled using a rule that associates the
region under which certain actions are performed [4]. Typically, a fuzzy model
consists of a rule base, where the information available is transparent and easily
readable. The fuzzy modeling methodology has been largely exploited in several
fields such as pattern recognition [5, 6], control [7, 8] and image processing [9, 10].

Recently, several optimization algorithms based on random principles have been
proposed with interesting results. Such approaches are inspired by our scientific
understanding of biological or social systems, which at some abstraction level can
be represented as optimization processes [11]. These methods mimic the social
behavior of bird flocking and fish schooling in the Particle Swarm Optimization
(PSO) method [12], the cooperative behavior of bee colonies in the Artificial Bee
Colony (ABC) technique [13], the improvisation process that occurs when a
musician searches for a better state of harmony in the Harmony Search (HS) [14],
the attributes of bat behavior in the Bat Algorithm (BAT) method [15], the mating
behavior of firefly insects in the Firefly (FF) method [16], the social behaviors of
spiders in the Social Spider Optimization (SSO) [17], the characteristics of animal
behavior in a group in the Collective Animal Behavior (CAB) [18] and the emu-
lation of the differential and conventional evolution in species in the Differential
Evolution (DE) [19] and Genetic Algorithms (GA) [20], respectively.

On the other hand, the combination of fuzzy systems with metaheuristic algo-
rithms has recently attracted the attention in the Computational Intelligence com-
munity. As a result of this integration, a new class of systems known as
Evolutionary Fuzzy Systems (EFSs) [21, 22] has emerged. These approaches
basically consider the automatic generation and tuning of fuzzy systems through a
learning process based on a metaheuristic method. The EFSs approaches reported in
the literature can be divided into two classes [21, 22]: tuning and learning.

In a tuning approach, a metaheuristic algorithm is applied to modify the
parameters of an existent fuzzy system, without changing its rule base. Some
examples of tuning in EFSs include the calibration of fuzzy controllers [23, 24], the
adaptation of type-2 fuzzy models [25] and the improvement of accuracy in fuzzy
models [26, 27]. In learning, the rule base of a fuzzy system is generated by a
metaheuristic algorithm, so that the final fuzzy system has the capacity to accurately
reproduce the modeled system. There are several examples of learning in EFSs,
which consider different types of problems such as the selection of fuzzy rules with
membership functions [28, 29], rule generation [30, 31] and determination of the
entire fuzzy structure [32–34].

The analyzed method cannot be considered a EFSs approach, since the fuzzy
system, used as optimizer, is not automatically generated or tuned by a learning
procedure. On the contrary, its design is based on expert observations extracted
from the optimization process. Therefore, the number of rules and its configuration
are fixed, remaining static during its operation. Moreover, in a typical EFSs scheme,
a metheuristic algorithm is used to find an optimal base rule for a fuzzy system with
regard to an evaluation function. Different to such approaches, in our method,

168 8 Metaheuristic Algorithms Based on Fuzzy Logic

a fuzzy system is employed to obtain the optimum value of an optimization
problem. Hence, the produced Fuzzy system directly acts as any other metaheuristic
algorithm conducting the optimization strategy implemented in its rules.

A metaheuristic algorithm is conceived as a high-level problem-independent
methodology that consists of a set of guidelines and operations to develop an
optimization strategy. In this chapter, we describe how the fuzzy logic design
methodology can be used to construct algorithms for optimization tasks. As
opposed to “conventional” metaheuristic approaches where the focus is on the
design of optimization operators that emulate a natural or social process, in our
approach we focus on gaining an intuitive understanding of how to conduct an
efficient search strategy to model it directly into a fuzzy system.

Although sometimes unnoticed, it is well understood that human heuristics play
an important role in optimization methods. It must be acknowledged that meta-
heuristic approaches use human heuristics to tune their corresponding parameters or
to select the appropriate algorithm for a certain problem [35]. Under such cir-
cumstances, it is important to ask the following questions: How much of the success
may be assigned to the use of a certain metaheuristic approach? How much should
be attributed to its clever heuristic tuning or selection? Also, if we exploit the use of
human heuristic information throughout the entire design process, can we obtain
higher performance optimization algorithms?

The use of fuzzy logic for the construction of optimization methods presents
several advantages. (A) Generation. “Conventional” metaheuristic approaches
reproduce complex natural or social phenomena. Such a reproduction involves the
numerical modeling of partially-known behaviors and non-characterized operations,
which are sometimes even unknown [36]. Therefore, it is notably complicated to
correctly model even very simple metaphors. On the other hand, fuzzy logic pro-
vides a simple and well-known method for constructing systems via the use of
human knowledge [37]. (B) Transparency. The metaphors used by metaheuristic
approaches lead to algorithms that are difficult to understand from an optimization
perspective. Therefore, the metaphor cannot be directly interpreted as a consistent
search strategy [36]. On the other hand, fuzzy logic generates fully interpretable
models whose content expresses the search strategy as humans can conduct it [38].
(C) Improvement. Once designed, metaheuristic methods maintain the same pro-
cedure to produce candidate solutions. Incorporating changes to improve the quality
of candidate solutions is very complicated and severely damages the conception of
the original metaphor [36]. As human experts interact with an optimization process,
they obtain a better understanding of the correct search strategies that allow finding
the optimal solution. As a result, new rules are obtained so that their inclusion in the
existing rule base improves the quality of the original search strategy. Under the
fuzzy logic methodology, new rules can be easily incorporated to an already
existent system. The addition of such rules allows the capacities of the original
system to be extended [39].

In this chapter, a methodology to implement human-knowledge-based opti-
mization strategies is analyzed. In the scheme, a Takagi-Sugeno Fuzzy inference
system [40] is used to reproduce a specific search strategy generated by a human

8.1 Introduction 169

expert. Therefore, the number of rules and its configuration only depend on the
expert experience without considering any learning rule process. Under these
conditions, each fuzzy rule represents an expert observation that models the con-
ditions under which candidate solutions are modified in order to reach the optimal
location. To exhibit the performance and robustness of the analyzed method, a
comparison to other well-known optimization methods is conducted. The com-
parison considers several standard benchmark functions which are typically found
in the literature of metaheuristic optimization. The results suggest a high perfor-
mance of the analyzed methodology in comparison to existing optimization
strategies.

This chapter is organized as follows: In Sect. 8.2, the basic aspects of fuzzy logic
and the different reasoning models are introduced. In Sect. 8.3, the analyzed
methodology is exposed. Section 8.4 discusses the characteristics of the analyzed
methodology. In Sect. 8.5 the experimental results and the comparative study is
presented. Finally, in Sect. 8.6, conclusions are drawn.

8.2 Fuzzy Logic and Reasoning Models

This section presents an introduction to the main fuzzy logic concepts. The dis-
cussion particularly considers the Takagi-Sugeno Fuzzy inference model [40].

8.2.1 Fuzzy Logic Concepts

A fuzzy set (A) [1] is a generalization of a Crisp or Boolean set, which is defined in
a universe of discourse X. A is a linguistic label which defines the fuzzy set through
the word A. Such a word defines how a human expert perceives the variable X in
relationship to A. The fuzzy set (A) is characterized by a membership function lAðxÞ
which provides a measure of degree of similarity of an element x from X to the
fuzzy set A. It takes values in the interval [0,1], that is:

lAðxÞ : X ! 0;1½ � ð8:1Þ

Therefore, a generic variable xc can be represented using multiple fuzzy sets
Ac
1;A

c
2; . . .;A

c
m

� �
; each one modeled by a membership function

lAc
1
ðxcÞ; lAc

2
ðxcÞ; . . .;lAc

m
ðxcÞ

n o
:

A fuzzy system is a computing model based on the concepts of fuzzy logic. It
includes three conceptual elements: a rule base, which contains a selection of fuzzy
rules; a database, which defines the membership functions used by the fuzzy rules;
and a reasoning mechanism, which performs the inference procedure. There are two
different inference fuzzy systems: Mamdani [41] and Takagi-Sugeno (TS) [40].

170 8 Metaheuristic Algorithms Based on Fuzzy Logic

The central difference between the two inference models is in the consequent
section of the fuzzy systems. In the Mamdani model, all of the structure of the fuzzy
system has linguistic variables and fuzzy sets. However, the consequent section of
the TS model consists of mathematical functions. Different to the Mamdani
structure, the TS model provides computational efficiency and mathematical sim-
plicity in the rules [42]. Therefore, in order to obtain higher modelling accuracy
with fewer rules, the TS fuzzy model is a good candidate that obtains better models
when the rules are described as functional associations defined in several local
behaviors [42, 43]. Since the available knowledge for the design of the fuzzy
system conceived in our approach includes functional, local behaviors, the TS
inference model has been used in this work for the system modeling.

8.2.2 The Takagi-Sugeno (TS) Fuzzy Model

TS fuzzy systems allow us to describe complicated nonlinear systems by decom-
posing the input space into several local behaviors, each of which is represented by
a simple regression model [3].

The main component of a TS fuzzy system is the set of its K fuzzy rules. They
code the human knowledge that explains the performance of the actual process.
Each rule denoted by Ri relates the input variables to a consequence of its occur-
rence. A typical TS fuzzy rule is divided in two parts: Antecedent (I) and conse-
quent (II), which are described as follows:

Ri : IF x1 isA1
p and x2isA

2
q; . . .; and xn is A

n
r

zffl}|ffl{I

Then yi ¼ giðxÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
II

; i ¼ 1; 2; . . .;K

ð8:2Þ

where x ¼ ½x1; x2; . . .; xn�T is the n-dimensional input variable and yi represents the
output rule. gðxÞ is a function which can be modeled by any function as long as it
can appropriately describe the behavior of the system within the fuzzy region
specified by the antecedent of rule i. In Eq. 8.2, p, q and r symbolizes one fuzzy set
which models the behavior of variables x1, x2 and xn, respectively.

8.2.2.1 Antecedent (I)

The antecedent is a logical combination of simple prepositions of the form “xe is
Ae
d”. Such a preposition, modeled by the membership function lAe

d
ðxeÞ; provides a

measure of degree of similarity between xe and the fuzzy set Ae
d . Since the ante-

cedent is concatenated by using the “and” connector, the degree of fulfilment of the
antecedent biðxÞ is calculated using a t-norm operator such as the minimum:

8.2 Fuzzy Logic and Reasoning Models 171

biðxÞ ¼ min lA1
p
ðx1Þ; lA2

q
ðx2Þ; . . .; lAn

r
ðxnÞ

� �
ð8:3Þ

8.2.2.2 Consequent (II)

giðxÞ is a function which can be modeled by any function as long as it can
appropriately describe the behavior of the system within the fuzzy region specified
by the antecedent of rule i.

8.2.2.3 Inference in the TS Model

The global output y of a TS fuzzy system is composed as the concatenation of the
local behaviors, and can be seen as the weighted mean of the consequents:

y ¼
PK

i¼1 biðxÞ � yiPK
i¼1 biðxÞ

ð8:4Þ

where biðxÞ is the degree of fulfillment of the ith rule’s antecedent and yi is the
output of the consequent model of that rule. Figure 8.1 shows the fuzzy reasoning
procedure for a TS fuzzy system with two rules. The example considers two
variables (x1, x2) and only two membership functions (I and II) for each variable.
Now, it should be clear that the spirit of fuzzy logic systems resembles that of
“divide and conquer”. Therefore, the antecedent of a fuzzy rule defines a local fuzzy
region, while the consequent describes the behavior within the region

Rules

R1 : IF x1 is A1
1 and x2 is A2

2 THEN y1 ¼ g1ðxÞ
R2 : IF x1 is A1

2 and x2 is A2
1 THEN y2 ¼ g2ðxÞ

Fig. 8.1 TS fuzzy model

172 8 Metaheuristic Algorithms Based on Fuzzy Logic

8.3 The Analyzed Methodology

Since there is no specific solution for several kinds of complex problems, human
experts often follow a trial-and-error approach to solve them. Under this process,
humans obtain experience as the knowledge gained through the interaction with the
problem. In general, a fuzzy system is a model that emulates the decisions and
behavior of a human that has specialized knowledge and experience in a particular
field. Therefore, a fuzzy system is then presumed to be capable of reproducing the
behavior of a target system. For example, if the target system is a human operator in
charge of a chemical reaction process, then the fuzzy system becomes a fuzzy
controller that can regulate the chemical process. Similarly, if the target system is a
person who is familiar with optimization strategies and decision-making processes,
then the fuzzy inference becomes a fuzzy expert system that can find the optimal
solution to a certain optimization problem, as if the search strategy were conducted
by the human expert. In this chapter we propose a methodology for emulating
human search strategies in an algorithmic structure. In this section, the fuzzy
optimization approach is explained in detail. First, each component of the fuzzy
system is described; then, the complete computational procedure is presented.

Under a given set of circumstances, an expert provides a description of how to
conduct an optimization strategy for finding the optimal solution to a generic
problem using natural language. Then, the objective is to take this “linguistic”
description and model it into a fuzzy system. The linguistic representation given by
the expert is divided into two parts: (A) linguistic variables and (B) rule base
formulation.

(A) Linguistic variables describe the way in which a human expert perceives the
circumstances of a certain variable in terms of its relative values. One example is
the velocity that could be identified as low, moderate and high. (B) Rule base
formulation captures the construction process of a set of IF-THEN associations.
Each association (rule) expresses the conditions under which certain actions are
performed. Typically, a fuzzy model consists of a rule base that maps fuzzy regions
to actions. In this context, the contribution of each rule to the behavior of the fuzzy
system will be different depending on the operating region.

8.3.1 Optimization Strategy

Most of the optimization methods have been designed to solve the problem of
finding a global solution to a nonlinear optimization problem with box constraints
in the following form [44]:

maximize f ðxÞ; x ¼ ðx1; . . .; xnÞ 2 R
n

subject to x 2 X
ð8:5Þ

8.3 The Analyzed Methodology 173

where f : Rn ! R is a nonlinear function whereas X ¼ x 2 R
n li � xi � ui; i ¼jf

1; . . .; ng is a bounded feasible search space, constrained by the lower (li) and upper
(ui) limits.

To solve the optimization problem presented in Eq. 8.5, from a population-based
perspective [45], a set Pkðfpk1; pk2; . . .; pkNgÞ of N candidate solutions (individuals)
evolves from an initial state (k = 0) to a maximum number of generations
(k = Maxgen). In the first step, the algorithm initiates producing the set of
N candidate solutions with values that are uniformly distributed between the
pre-specified lower (li) and upper (ui) limits. In each generation, a group of evo-
lutionary operations are applied over the population Pk to generate the new pop-
ulation Pkþ 1. In the population, an individual pki ði 2 1; . . .;N½ �Þ corresponds to a n-

dimensional vector pki;1; p
k
i;2; . . .; p

k
i;n

n o
where the dimensions represent the decision

variables of the optimization problem to be solved. The quality of a candidate
solution pki is measured through an objective function f pki

� �
whose value corre-

sponds to the fitness value of pki . As the optimization process evolves, the best
individual g ðg1; g2; . . .gnÞ seen so-far is conserved, since it represents the current
best available solution.

In the analyzed approach, an optimization human-strategy is modelled in the rule
base of a TS Fuzzy inference system, so that the implemented fuzzy rules express
the conditions under which candidate solutions from Pk are evolved to new posi-
tions Pkþ 1.

8.3.1.1 Linguistic Variables Characterization (A)

To design a fuzzy system from expert knowledge, it is necessary the characteri-
zation of the linguistic variables and the definition of a rule base. A linguistic
variable is modeled through the use of membership functions. They represent
functions which assign a numerical value to a subjective perception of the variable.
The number and the shape of the membership functions that model a certain lin-
guistic variable depend on the application context [46]. Therefore, in order to
maintain the design of the fuzzy system as simple as possible, we characterize each
linguistic variable by using only two membership functions [47]. One example is
the variable velocity V that could be defined by the membership functions: low ðlLÞ
and high ðlHÞ. Such membership function are mutually exclusive or disjoint.
Therefore, if lL ¼ 0:7, then lH ¼ 0:3. Assuming that the linguistic variable
velocity V has a numerical value inside the interval from 0 to 100 revolutions per
minute (rpm), lL and lH are characterized according to the membership functions
shown in Fig. 8.2.

174 8 Metaheuristic Algorithms Based on Fuzzy Logic

8.3.1.2 Rule Base Formulation (B)

Several optimization strategies can be formulated by using human knowledge. In
this section, a simple search strategy is formulated considering basic observations
of the optimization process. Therefore, the simplest search strategy is to move
candidate solutions to search regions of the space where it is expected to find the
optimal solution. Since the values of the objective function are only known in the
positions determined by the candidate solutions, the locations with the highest
probabilities of representing potential solutions are those located near the best
candidate solution in terms of its fitness value.

Taking this into consideration, a simple search strategy could be formulated by
the following four rules:

1. IF the distance from pki to g is short AND f pki
� �

is good THEN pki is moved towards
(Attraction) g

This rule represents the situation where the candidate solution pki is moved to the best candidate
solution seen so-far g in order to improve its fitness quality. Since the fitness values of pki and
g are good in comparison to other members of Pk , the region between pki and g maintains
promising solutions that could improve g. Therefore, with this movement, it is expected to
explore the unknown region between pki and g. In order to show how each rule performs.
Figure 8.3 shows a simple example which expresses the conditions under which action rules are
executed. In the example, a population Pk of five candidate solutions is considered (see
Fig. 8.3a). In the case of rule 1, as it is exhibited in Fig. 8.3b, the candidate solution pk5 that
fulfills the rule requirements is attracted to g

2. IF the distance from pki to g is short AND f pki
� �

is bad THEN pki is moved away from
(Repulsion) g

In this rule, although the distance between pki and g is short, the evidence shows that there are no
good solutions between them. Therefore, the improvement of pki is searched in the opposite
direction of g. A visual example of this behavior is presented in Fig. 8.3c

3. IF the distance from pki to g is large AND f pki
� �

is good THEN pki is refined

Under this rule, a good candidate solution pki that is far from g is refined by searching within its
neighborhood. The idea is to improve the quality of competitive candidate solutions which have
already been found (exploitation). Such a scenario is presented in Fig. 8.3d where the original
candidate solution pk2 is substituted by a new position pkþ 1

2 which is randomly produced within
the neighborhood of pk2

(continued)

0

1

0 100rpm

L H

Fig. 8.2 Example of
membership functions that
characterize a linguistic
variable

8.3 The Analyzed Methodology 175

(continued)

4. IF the distance from pki to g is large AND f pki
� �

is bad THEN a new position is randomly
chosen

This rule represents the situation in Fig. 8.3e where the candidate solution pk4 is so bad and so far
from g that is better to replace it by other solution (pkþ 1

4) randomly produced within the search
space X

Each of the four rules listed above is a “linguistic rule” which contains only
linguistic information. Since linguistic expressions are not well-defined descriptions
of the values that they represent, linguistic rules are not accurate. They represent
only conceptual ideas about how to achieve a good optimization strategy according
to the human perspective. Under such conditions, it is necessary to define the
meaning of their linguistic descriptions from a computational point of view.

(a)

(c) Rule2(b) Rule1

(e) Rule4(d) Rule3

−3 −2 −1 0 1 2 3

−2

0

2

−5

0

5

x1
x2

f
(x

1
,
x
2
)

pk
3

pk
5

pk
1

pk
2

Pk

pk
4

−3 −2 −1 0 1 2 3

−2

0

2

−5

0

5

x1
x2

f
(x

1
,
x
2
)

g
pk
5

−3 −2 −1 0 1 2 3

−2

0

2

−5

0

5

x1
x2

f
(x

1
,
x
2
)

g

pk
1

Fig. 8.3 Visual example that expresses the conditions under which action rules are executed.
a Current configuration of the candidate solution population Pk , b rule 1, c rule 2, d rule 3 and
e rule 4

176 8 Metaheuristic Algorithms Based on Fuzzy Logic

8.3.1.3 Implementation of the TS Fuzzy System

In this section, we will discuss the implementation of the expert knowledge con-
cerning the optimization process in a TS fuzzy system.

(I) Membership functions and antecedents

In the rules, two different linguistic variables are considered, distance from de
candidate solution pki to the best solution g(Dðpki ; gÞ) and the fitness value of the
candidate solution f pki

� �� �
. Therefore, Dðpki ; gÞ is characterized by two member-

ship functions: short and large (see 8.3.1.1). On the other hand, f pki
� �

is modeled by
the membership functions good and bad. Figure 8.4 shows the fuzzy membership
functions for both linguistic variables.

The distance Dðpki ; gÞ is defined as the Euclidian distance g� pki
		 		. Therefore,

as it is exhibited in Fig. 8.4a, two complementary membership functions define the
relative distance Dðpki ; gÞ : short (S) and large (L). Their support values are 0 and
dmax, where dmax represents the maximum possible distance delimited by the search
space X which is defined as follows:

dmax ¼
ffiXd
s¼1

ðus � lsÞ2
vuut ; ð8:6Þ

where d represents the number of dimensions in the search space X. In the case of
f pki
� �

, two different membership functions define its relative value: bad (B) and
good (G). Their support values are fmin and fmax. These values represent the min-
imum and maximum fitness values seen so-far. Therefore, they can defined as
following:

fmin ¼ min
i2 1;2;...;Nf g
k2 1;2;...;genf g

ðf ðpki ÞÞ and fmax ¼ max
i2 1;2;...;Nf g
k2 1;2;...;genf g

ðf ðpki ÞÞ ð8:7Þ

0

1

0
maxd

S L 1

0
maxf

B G

minf(,)k
iD p g

((,))k
iμ DS p g (())k

iμ fB p (())k
iμ fG p((,))k

iμ DL p g

()kif p

(a) (b)

Fig. 8.4 Membership functions for a distance Dðpki ; gÞ and b for f pki
� �

8.3 The Analyzed Methodology 177

From Eq. 8.7, it is evident that fmax ¼ f gð Þ. If a new minimum or maximum
value of f pki

� �
is detected during the evolution process, it replaces the past values of

fmin or fmax. Figure 8.4b shows the membership functions that describe f pki
� �

.
Considering the membership functions defined in Fig. 8.4, the degree of fulfil-

ment of the antecedent bwðxÞ for each rule w 2 1; 2; 3; 4½ �ð Þ is defined in Table 8.1.

(II) Actions or consequents

Actions or Consequents are functions which can be modeled by any function as
long as it can appropriately describe the desired behavior of the system within the
fuzzy region specified by the antecedent of a rule i i 2 1; 2; 3; 4½ �ð Þ. The conse-
quents of the four rules are modeled by using the following behaviors.

Rule 1. Attraction

Atðpki Þ ¼ fmax � f ðpki Þ
�� �� � g� pki

� � � a1; ð8:8Þ

where a1 represents a tuning factor. Under this rule, the function Atðpki Þ produces a
change of position in the direction of the attraction vector g� pki

� �
. The magnitude

depends on the difference of the fitness values between g and pki .
Rule 2. Repulsion

Repðpki Þ ¼ fmax � f ðpki Þ
�� �� � gþ pki

� � � a2; ð8:9Þ

where a2 represents a tuning factor.
Rule 3. Refining or perturbation.

Ref ðpki Þ ¼ fmax � f ðpki Þ
�� �� � v � c; ð8:10Þ

where v ¼ v1; v2; . . .; vdf g is a random vector where each component represents a
random number between −1 and 1 whereas c represents a tuning factor. In this rule,
the function Ref ðpki Þ generates a random position within the limits specified by
� fmax � f ðpki Þ
�� ��.
Rule 4. Random substitution.

Ranðpki Þ ¼ r; ð8:11Þ

Table 8.1 Degree of
fulfilment of the antecedent
bwðxÞ for each rule
w 2 1; 2; 3; 4½ �ð Þ

Rule Degree of fulfilment bwðxÞ
1 b1ðpki Þ ¼ min lSðDðpki ; gÞÞ;lGðf ðpki ÞÞ

� �
2 b2ðpki Þ ¼ min lSðDðpki ; gÞÞ;lBðf ðpki ÞÞ

� �
3 b3ðpki Þ ¼ min lLðDðpki ; gÞÞ; lGðf ðpki ÞÞ

� �
4 b4ðpki Þ ¼ min lLðDðpki ; gÞÞ; lBðf ðpki ÞÞ

� �

178 8 Metaheuristic Algorithms Based on Fuzzy Logic

where r ¼ r1; r2; . . .; rdf g is a random vector where each component ru represents a
random number between the lower (lu) and upper (uu) limits of the search space X.

(III) Inference of the TS model.

The global change of position Dpki of the TS fuzzy system is composed as the
concatenation of the local behaviors produced by the four rules, and can be seen as
the weighted mean of the consequents:

Dpki ¼
Atðpki Þ � b1ðpki ÞþRepðpki Þ � b2ðpki ÞþRef ðpki Þ � b3ðpki ÞþRanðpki Þ � b4ðpki Þ

b1ðpki Þþ b2ðpki Þþ b3ðpki Þþ b4ðpki Þ
ð8:12Þ

Once Dpki has been calculated, the new position pkþ 1
i is calculated as follows:

pkþ 1
i ¼ pki þDpki ; ð8:13Þ

8.3.2 Computational Procedure

The analyzed algorithm is implemented as an iterative process in which several
operations are executed. Such operations can be summarized in the form of
pseudo-code in Algorithm 1. The Fuzzy method uses as input information the
number of candidate solutions (N), the maximum number of generations (Maxgen),
and the tuning parameters a1, a2, c. Similar to other metaheuristic algorithms, in the
first step (line 2), the algorithm initiates producing the set of N candidate solutions
with values that are uniformly distributed between the pre-specified lower and
upper limits. These candidate solutions represent the first population P0. After
initialization, the best element g in terms of its fitness value is selected (line 3).
Then, for each particle pki its distance to the best value g is calculated (line 6). With
Dðpki ; gÞ and f pki

� �
, the search optimization strategy implemented in the fuzzy

system is applied (lines 7–9). Under such circumstances, the antecedents (line 7)
and consequents (line 8) are computed while the final displacement Dpki is obtained
as a result of the operation performed by the TS model (line 9). Afterwards, the new
position pkþ 1

i is updated (line 10). Once the new population Pkþ 1 is obtained as a
result of the iterative operation of lines 6–10, the best value g is updated (line 12).
This cycle is repeated until the maximum number the iterations Maxgen has been
reached.

8.3 The Analyzed Methodology 179

Algorithm 1. Summarized operations of the Fuzzy method

8.4 Discussion About the Methodology

In this section, several important characteristics of the analyzed algorithm are
discussed. First, in Sect. 8.4.1, interesting operations of the optimization process are
analyzed. Next, in Sect. 8.4.2 the modelling properties of the Fuzzy approach
are highlighted.

8.4.1 Optimization Algorithm

A metaheuristic algorithm is conceived as a high-level problem-independent
methodology that consists of a set of guidelines and operations to develop an
optimization strategy. In the analyzed methodology, a fuzzy system is generated
based on expert observations about the optimization process. The final fuzzy system
then performs various fuzzy logic operations to produce a new candidate solution
pkþ 1
i from the current solution pki . During this process, the following operations are

involved:

180 8 Metaheuristic Algorithms Based on Fuzzy Logic

1. Determination of the degree of membership between the input data (Dðpki ; gÞ;
f pki
� �Þ and the defined fuzzy sets (“short and large” or “good and bad”).

2. Calculation of the degree of relevance for each rule based on the degree of
fulfilment bwðxÞ for each rule w 2 1; 2; 3; 4½ �ð Þ in the antecedent part of the rule.

3. Evaluation of the consequent of each rule: At, Rep, Ref, Ran.
4. Derivation of the new candidate solution pkþ 1

i based on the weighted mean of
the consequent functions, according to the TS model.

Under such circumstances, the generated fuzzy system is applied over all can-
didate solutions from Pk in order to produce the new population Pkþ 1. This pro-
cedure is iteratively executed until a termination criteria has been reached.

8.4.2 Modeling Characteristics

Metaheuristic algorithms are widely employed for solving complex optimization
problems. Such algorithms have been developed by a combination of deterministic
models and randomness, mimicking the behavior of biological or social systems.
Most of the metaheuristic methods divide the individual behavior into several
processes which show no coupling among them [11, 36].

In the analyzed methodology, the produced fuzzy system models a complex
optimization strategy. This modeling is accomplished by a number of fuzzy
IF-THEN rules, each of which describes the local behavior of the model. In par-
ticular, the rules express the conditions under which new positions are explored. In
order to calculate a new candidate solution pkþ 1

i , the consequent actions of all rules
are aggregated. In this way, all the actions are presented in the computation of a
certain solution pkþ 1

i , but with different influence levels. By coupling local
behaviors, fuzzy systems are able to reproduce complex global behaviors. An
interesting example of such modeling characteristics is rule 1 and rule 2. If these
rules are individually analyzed, the attraction and repulsion movements conducted
by the functions are completely deterministic. However, when all rules are con-
sidered, rule 3 and rule 4 add randomness to the final position of pkþ 1

i .

8.5 Experimental Results

An illustrative set of 19 functions has been used to examine the performance of our
approach. These test functions represent the base functions from the latest com-
petition on single objective optimization problems at CEC2015 [48]. Tables 8.17,
8.18 and 8.19 in Appendix show the benchmark functions employed in our
experiments. These functions are ordered into three different classes: Unimodal
(Table 8.17), multimodal (Table 8.18) and Hybrid (Table 8.19) test functions.

8.4 Discussion About the Methodology 181

In the tables, n represents the dimension in which the function is operated, f ðx�Þ
characterizes the optimal value of the function in the position x� and S is the defined
search space.

The main objective of this section is to present the performance of the Fuzzy
algorithm on numeric optimization problems. Moreover, the results of our method
are compared with some popular optimization algorithms by using the complete set
of benchmark functions. The results of the Fuzzy algorithm are verified by a
statistical analysis of the experimental data.

The experimental results are divided into two sub-sections. In the first section,
the performance of the Fuzzy algorithm is evaluated with regard to its tuning
parameters. In the second section, the overall performance of the Fuzzy method is
compared to six popular optimization algorithms based on random principles.

8.5.1 Performance Evaluation with Regard to Its Own
Tuning Parameters

The three parameters of the rules a1, a2 and c affect the expected performance of the
fuzzy optimization algorithm. In this sub-section we analyze the behavior of the
Fuzzy algorithm considering the different settings of these parameters. All exper-
iments have been executed on a Pentium dual-core computer with 2.53-GHz and
4-GB RAM under MATLAB 8.3. For the sake of simplicity, only the functions
from f1 to f14 (unimodal and multimodal) have been considered in the tuning
process. In the simulations, all the functions operate with a dimension n = 30. As an
initial condition, the parameters a1, a2 and c are set to their default values a1 ¼ 1:4,
a2 ¼ 0:05 and c ¼ 0:005. Then, in our analysis, the three parameters are evaluated
one at a time, while the other two parameter remain fixed to their default values. To
minimize the stochastic effect of the algorithm, each benchmark function is exe-
cuted independently a total of 10 times. As a termination criterion, the maximum
number of iterations (Maxgen) is set to 1000. In all simulations, the population size
N is fixed to 50 individuals.

In the first stage, the behavior of the Fuzzy algorithm is analyzed considering
different values for a1. In the analysis, the values of a1 vary from 0.6 to 1.6 whereas
the values of a2 and c remain fixed at 0.05 and 0.005, respectively. In the simu-
lation, the Fuzzy method is executed independently 30 times for each value of a1 on
each benchmark function. The results are registered in Table 8.2. These values
represent the average best fitness values (�f Þ and the standard deviations (rf)
obtained in terms of a certain parameter combination of a1, a2 and c. From
Table 8.2, we can conclude that the fuzzy algorithm with a1 ¼ 1:4 maintains the
best performance on functions f1–f9, and f11. Under this configuration, the algorithm
obtains the best results in 9 out of 14 functions. On the other hand, when the
parameter a1 is set to any other value, the performance of the algorithm is incon-
sistent, producing generally bad results.

182 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
2

E
xp

er
im

en
ta
l
re
su
lts

ob
ta
in
ed

by
th
e
fu
zz
y
al
go

ri
th
m

us
in
g
di
ff
er
en
t
va
lu
es

of
a 1

a 1
0.
6

0.
7

0.
8

0.
9

1
1.
2

1.
3

1.
4

1.
5

1.
6

f 1
� f

6.
95

E
−
55

7.
74

E
−
89

3.
97

E
−
16

7
1.
01

E
−
39

1.
02

E
−
19

3
0.
00

E
+0

0
4.
26

E
−
29

3.
08

E
−
28

1
1.
15

E
−
28

6.
85

E
−
28

r
f

3.
67

E
−
54

4.
24

E
−
88

0.
00

E
+0

0
5.
54

E
−
39

0.
00

E
+0

0
0.
00

E
+0

0
2.
19

E
−
28

0.
00

E
+0

0
3.
41

E
−
28

1.
08

E
−
27

f 2
� f

6.
10

E
−
23

1.
14

E
−
53

1.
12

E
−
12

4
2.
49

E
−
13

9
1.
08

E
−
15

8
7.
16

E
−
22

1.
31

E
−
78

2.
66

E
−
20

7
2.
03

E
−
15

7.
52

E
+0

0

r
f

3.
34

E
−
22

6.
07

E
−
53

4.
81

E
−
12

4
1.
36

E
−
13

8
0.
00

E
+0

0
3.
89

E
−
21

7.
18

E
−
78

0.
00

E
+0

0
4.
31

E
−
15

2.
35

E
+0

1

f 3
� f

4.
69

E
−
10

1.
80

E
−
17

2.
22

E
−
22

3.
23

E
−
22

2.
00

E
−
27

4.
96

E
−
24

4.
11

E
−
27

1.
00

E
−
27

2.
68

E
−
18

1.
93

E
−
11

r
f

1.
62

E
−
09

6.
81

E
−
17

8.
87

E
−
22

1.
64

E
−
21

4.
73

E
−
27

2.
66

E
−
23

9.
21

E
−
27

1.
50

E
−
27

1.
12

E
−
17

5.
52

E
−
11

f 4
� f

1.
55

E
−
23

1.
48

E
−
30

1.
51

E
−
13

0
4.
64

E
−
18

0
2.
84

E
−
11

2
6.
13

E
−
19

2.
00

E
−
18

3
3.
85

E
−
22

0
9.
09

E
−
16

5.
16

E
−
15

r
f

7.
09

E
−
23

8.
12

E
−
30

8.
25

E
−
13

0
0.
00

E
+0

0
1.
56

E
−
11

1
3.
31

E
−
18

0.
00

E
+0

0
0.
00

E
+0

0
2.
76

E
−
15

6.
91

E
−
15

f 5
� f

2.
85

E
+0

1
2.
85

E
+0

1
2.
85

E
+0

1
2.
55

E
+0

1
3.
85

E
+0

1
1.
75

E
+0

1
2.
65

E
+0

1
3.
04

E
−
03

2.
85

E
+0

1
2.
99

E
+0

1

r
f

4.
38

E
−
02

3.
86

E
−
02

3.
87

E
−
02

4.
37

E
−
02

3.
04

E
−
02

3.
72

E
−
02

4.
50

E
−
02

3.
02

E
−
02

4.
58

E
−
02

4.
72

E
−
02

f 6
� f

2.
15

E
−
02

1.
05

E
−
02

1.
19

E
−
02

1.
57

E
−
02

1.
59

E
−
02

1.
67

E
−
02

1.
69

E
−
02

7.
94

E
−
03

1.
98

E
−
02

1.
92

E
−
02

r
f

1.
90

E
−
02

3.
86

E
−
03

1.
13

E
−
02

1.
56

E
−
02

1.
49

E
−
02

1.
37

E
−
02

1.
49

E
−
02

1.
89

E
−
03

1.
80

E
−
02

9.
92

E
−
03

f 7
� f

8.
98

E
−
03

3.
22

E
−
03

2.
22

E
−
03

1.
88

E
−
03

1.
75

E
−
03

2.
07

E
−
03

1.
79

E
−
03

1.
36

E
−
03

1.
59

E
−
03

1.
64

E
−
03

r
f

1.
27

E
−
02

2.
65

E
−
03

2.
17

E
−
03

1.
48

E
−
03

1.
62

E
−
03

2.
26

E
−
03

1.
92

E
−
03

1.
10

E
−
03

1.
45

E
−
03

1.
50

E
−
03

f 8
� f

−
4.
95

E
+0

3
−
6.
12

E
+0

3
−
5.
01

E
+0

4
−
5.
13

E
+0

4
−
4.
96

E
+0

3
−
3.
02

E
+0

3
−
5.
14

E
+0

4
−
5.
58

E
+0

4
−
4.
94

E
+0

3
−
5.
21

E
+0

3

r
f

4.
36

E
+0

2
5.
09

E
+0

2
4.
15

E
+0

2
5.
55

E
+0

2
5.
08

E
+0

2
4.
78

E
+0

2
4.
24

E
+0

2
4.
10

E
+0

2
4.
85

E
+0

2
4.
60

E
+0

2

f 9
� f

6.
20

E
+0

1
2.
91

E
+0

1
1.
70

E
+0

1
1.
57

E
+0

1
5.
94

E
+0

0
5.
21

E
+0

0
5.
86

E
+0

0
4.
76

E
−
01

9.
94

E
+0

0
2.
02

E
+0

1

r
f

6.
08

E
+0

1
5.
32

E
+0

1
4.
17

E
+0

1
4.
27

E
+0

1
3.
17

E
+0

1
2.
77

E
+0

1
2.
90

E
+0

1
2.
38

E
+0

0
3.
77

E
+0

1
5.
22

E
+0

1

f 1
0

� f
8.
70

E
−
15

7.
16

E
−
15

7.
99

E
−
15

9.
18

E
−
15

9.
41

E
−
15

1.
04

E
−
14

1.
19

E
−
14

8.
47

E
−
15

1.
07

E
−
14

1.
38

E
−
14

r
f

5.
39

E
−
15

3.
92

E
−
15

3.
61

E
−
15

2.
53

E
−
15

2.
57

E
−
15

5.
22

E
−
15

6.
00

E
−
15

3.
82

E
−
15

6.
64

E
−
15

7.
83

E
−
15

(c
on

tin
ue
d)

8.5 Experimental Results 183

T
ab

le
8.
2

(c
on

tin
ue
d)

a 1
0.
6

0.
7

0.
8

0.
9

1
1.
2

1.
3

1.
4

1.
5

1.
6

f 1
1

� f
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
3.
46

E
−
05

r
f

0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
1.
32

E
−
04

f 1
2

� f
8.
76

E
−
02

8.
32

E
−
02

8.
42

E
−
02

7.
82

E
−
02

7.
70

E
−
02

8.
73

E
−
02

9.
45

E
−
02

9.
59

E
−
01

3.
84

E
+0

0
6.
49

E
+0

2

r
f

2.
74

E
−
02

3.
35

E
−
02

4.
73

E
−
02

2.
30

E
−
02

1.
80

E
−
02

2.
78

E
−
02

2.
15

E
−
02

3.
26

E
+0

0
8.
79

E
+0

0
2.
65

E
+0

3

f 1
3

� f
2.
88

E
−
01

3.
30

E
−
01

3.
69

E
−
01

3.
77

E
−
01

3.
99

E
−
01

3.
72

E
−
01

4.
27

E
−
01

3.
91

E
−
01

2.
44

E
+0

1
1.
83

E
+0

6

r
f

1.
42

E
−
01

1.
03

E
−
01

1.
63

E
−
01

1.
57

E
−
01

2.
20

E
−
01

1.
16

E
−
01

3.
78

E
−
01

1.
76

E
−
01

9.
67

E
+0

1
1.
00

E
+0

7

f 1
4

� f
−
8.
43

E
+0

2
−
8.
33

E
+0

2
−
8.
31

E
+0

2
−
8.
29

E
+0

2
−
8.
43

E
+0

2
−
8.
97

E
+0

2
−
8.
98

E
+0

2
−
8.
90

E
+0

2
−
8.
86

E
+0

2
−
8.
84

E
+0

2

r
f

1.
14

E
+0

1
9.
37

E
+0

0
1.
06

E
+0

1
1.
12

E
+0

1
1.
68

E
+0

1
2.
54

E
+0

1
2.
19

E
+0

1
1.
80

E
+0

1
2.
13

E
+0

1
2.
48

E
+0

1

B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

184 8 Metaheuristic Algorithms Based on Fuzzy Logic

In the second stage, the performance of the Fuzzy algorithm is evaluated con-
sidering different values for a2. In the experiment, the values of a2 are varied from
0.01 to 0.1 whereas the values of a1 and c remain fixed at 1.4 and 0.005, respec-
tively. The statistical results obtained by the fuzzy algorithm using different values
of a2 are presented in Table 8.3. From Table 8.3, it is clear that our fuzzy opti-
mization algorithm with a2 ¼ 0:05 outperforms the other parameter configurations.
Under this configuration, the algorithm obtains the best results in 8 of the 14
functions. However, if another parameter set is used, it results in a bad performance.

Finally, in the third stage, the performance of the Fuzzy algorithm is evaluated
considering different values for c. In the simulation, the values of c are varied from
0.001 to 0.01 whereas the values of a1 and a2 remain fixed at 1.4 and 0.05,
respectively. Table 8.4 summarizes the results of this experiment. From the infor-
mation provided by Table 8.4, it can be seen that the fuzzy algorithm with c ¼
0:005 obtains the best performance on functions f1, f2, f3, f4, f6, f7, f10, f12 and f13.
However, when the parameter c takes any other value, the performance of the
algorithm is inconsistent. Under this configuration, the algorithm presents the best
possible performance, since it obtains the best indexes in 10 out of 14 functions.

In general, the experimental results shown in Tables 8.2, 8.3 and 8.4 suggest that
a proper combination of the parameter values can improve the performance of the
Fuzzy method and the quality of solutions. In this experiment we can conclude that
the best parameter set is composed by the following values: a1 ¼ 1:4, a2 ¼ 0:05
and c ¼ 0:005.

Once the parameters a1, a2 and c have been experimentally set, it is possible to
analyze their influence in the optimization process. In the search strategy, integrated
in the fuzzy system, a1 modifies the attraction that a promising individual experi-
ments with regard to the best current element in the population. This action aims to
improve the solution quality of the individual, considering that the unexplored
region between the promising solution and the best element could contain a better
solution. On the other hand, a2 adjusts the repulsion to which a low quality indi-
vidual is undergone. This operation intends to enhance the quality of the bad
candidate solution through a movement in opposite direction of the best current
element. This repulsion is considered, since there is evidence that the unexplored
section between the low quality solution and the best current element does not
enclose promising solutions. Finally, c defines the neighborhood around a
promising solution, from which a local search operation is conducted. The objective
of this process is to refine the quality of each solution that initially maintains an
acceptable fitness value.

Considering their magnitude, the values of a1 ¼ 1:4, a2 ¼ 0:05 and c ¼ 0:005
indicate that the attraction procedure is the most important operation in the opti-
mization strategy. This fact confirms that the attraction process represents the most
prolific operation in the fuzzy strategy, since it searches new solutions in the
direction where high fitness values are expected. According to its importance, the
repulsion operation holds the second position. Repulsion produces significant small
modifications of candidate solutions in comparison to the attraction process. This
result indicates that the repulsion process involves an exploration with a higher

8.5 Experimental Results 185

T
ab

le
8.
3

E
xp

er
im

en
ta
l
re
su
lts

ob
ta
in
ed

by
th
e
fu
zz
y
al
go

ri
th
m

us
in
g
di
ff
er
en
t
va
lu
es

of
a 2

a 2
0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
1

f 1
� f

1.
01

E
−
39

3.
25

E
−
28

3.
39

E
−
28

2.
35

E
−
28

5.
18

E
−
49

1.
48

E
−
28

1.
36

E
−
28

2.
61

E
−
28

2.
15

E
−
28

2.
29

E
−
28

r
f

5.
54

E
−
39

9.
09

E
−
28

1.
02

E
−
27

7.
44

E
−
28

2.
34

E
−
48

5.
19

E
−
28

4.
95

E
−
28

8.
03

E
−
28

6.
36

E
−
28

6.
94

E
−
28

f 2
� f

6.
25

E
−
16

3.
61

E
−
16

1.
67

E
−
22

2.
66

E
−
20

7.
16

E
−
22

1.
15

E
−
19

7.
85

E
−
16

3.
29

E
−
17

4.
82

E
−
16

6.
57

E
−
30

r
f

2.
85

E
−
15

1.
97

E
−
15

9.
11

E
−
22

1.
45

E
−
19

3.
89

E
−
21

5.
41

E
−
19

2.
97

E
−
15

1.
53

E
−
16

2.
47

E
−
15

3.
59

E
−
29

f 3
� f

4.
96

E
−
24

9.
65

E
−
27

9.
29

E
−
26

2.
22

E
−
25

1.
97

E
−
27

2.
52

E
−
23

2.
81

E
−
21

4.
94

E
−
22

7.
99

E
−
23

6.
69

E
−
21

r
f

2.
66

E
−
23

3.
49

E
−
26

4.
33

E
−
25

1.
12

E
−
24

2.
02

E
−
27

1.
37

E
−
22

1.
53

E
−
20

2.
64

E
−
21

2.
25

E
−
22

2.
13

E
−
20

f 4
� f

1.
96

E
−
15

1.
20

E
−
15

3.
44

E
−
17

5.
99

E
−
18

3.
08

E
−
29

1.
92

E
−
20

4.
91

E
−
26

6.
13

E
−
19

3.
98

E
−
16

1.
42

E
−
28

r
f

5.
12

E
−
15

4.
45

E
−
15

1.
33

E
−
16

3.
28

E
−
17

1.
69

E
−
28

9.
01

E
−
20

2.
69

E
−
25

3.
31

E
−
18

2.
18

E
−
15

7.
76

E
−
28

f 5
� f

3.
85

E
+0

1
3.
85

E
+0

1
2.
55

E
+0

1
1.
55

E
+0

1
1.
99

E
−
04

1.
85

E
−
01

4.
85

E
−
02

1.
23

E
+0

1
1.
35

E
+0

1
2.
85

E
+0

1

r
f

4.
45

E
−
02

4.
42

E
−
02

4.
38

E
−
02

4.
52

E
−
02

3.
74

E
−
02

5.
02

E
−
02

3.
45

E
−
02

4.
12

E
−
02

5.
02

E
−
02

4.
04

E
−
02

f 6
� f

1.
55

E
−
02

1.
47

E
−
02

2.
11

E
−
02

2.
15

E
−
02

1.
07

E
−
03

1.
73

E
−
02

1.
94

E
−
02

1.
78

E
−
02

2.
35

E
−
01

2.
04

E
−
02

r
f

9.
87

E
−
03

5.
13

E
−
03

2.
10

E
−
02

4.
72

E
−
03

1.
67

E
−
02

6.
85

E
−
03

1.
90

E
−
02

7.
59

E
−
03

1.
17

E
+0

0
2.
21

E
−
02

f 7
� f

1.
03

E
−
03

1.
56

E
−
03

1.
09

E
−
03

1.
42

E
−
03

1.
36

E
−
03

2.
17

E
−
03

1.
88

E
−
03

2.
12

E
−
03

2.
53

E
−
03

2.
55

E
−
03

r
f

8.
62

E
−
04

1.
60

E
−
03

7.
41

E
−
04

1.
07

E
−
03

1.
10

E
−
03

1.
22

E
−
03

1.
56

E
−
03

2.
59

E
−
03

3.
04

E
−
03

2.
10

E
−
03

f 8
� f

−
3.
10

E
+0

3
−
5.
24

E
+0

3
−
2.
17

E
+0

3
−
5.
00

E
+0

3
−
5.
13

E
+0

3
−
5.
01

E
+0

3
−
6.
29

E
+0

3
−
5.
11

E
+0

3
−
5.
24

E
+0

3
−
5.
18

E
+0

3

r
f

5.
08

E
+0

2
4.
49

E
+0

2
4.
65

E
+0

2
3.
83

E
+0

2
4.
77

E
+0

2
3.
68

E
+0

2
5.
35

E
+0

2
4.
36

E
+0

2
5.
03

E
+0

2
4.
41

E
+0

2

f 9
� f

8.
98

E
+0

0
3.
41

E
−
02

5.
91

E
+0

0
9.
16

E
−
02

4.
76

E
−
01

8.
28

E
+0

0
7.
75

E
−
02

4.
07

E
+0

0
1.
64

E
+0

1
5.
83

E
+0

0

r
f

3.
42

E
+0

1
1.
87

E
−
01

3.
14

E
+0

1
2.
81

E
−
01

2.
38

E
+0

0
3.
15

E
+0

1
2.
61

E
−
01

2.
18

E
+0

1
5.
02

E
+0

1
3.
13

E
+0

1

f 1
0

� f
1.
12

E
−
14

1.
01

E
−
14

1.
10

E
−
14

1.
17

E
−
14

8.
47

E
−
15

9.
30

E
−
15

9.
89

E
−
15

1.
21

E
−
14

1.
21

E
−
14

1.
20

E
−
14

r
f

4.
88

E
−
15

3.
82

E
−
15

4.
86

E
−
15

7.
26

E
−
15

3.
44

E
−
15

4.
71

E
−
15

3.
82

E
−
15

6.
19

E
−
15

7.
11

E
−
15

6.
03

E
−
15

(c
on

tin
ue
d)

186 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
3

(c
on

tin
ue
d)

a 2
0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09

0.
1

f 1
1

� f
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0

r
f

0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0

f 1
2

� f
1.
03

E
+0

0
7.
77

E
−
01

9.
55

E
−
02

1.
93

E
+0

0
9.
59

E
−
01

4.
14

E
−
01

1.
17

E
+0

0
1.
26

E
+0

0
1.
60

E
+0

0
6.
41

E
+0

0

r
f

3.
80

E
+0

0
2.
63

E
+0

0
3.
50

E
−
02

4.
30

E
+0

0
3.
26

E
+0

0
1.
75

E
+0

0
3.
56

E
+0

0
4.
41

E
+0

0
4.
70

E
+0

0
2.
28

E
+0

1

f 1
3

� f
3.
54

E
−
01

4.
08

E
−
01

1.
69

E
+0

0
2.
38

E
+0

0
3.
51

E
−
01

4.
20

E
−
01

1.
17

E
+0

0
1.
12

E
+0

0
8.
94

E
−
01

1.
34

E
+0

0

r
f

1.
91

E
−
01

2.
18

E
−
01

5.
25

E
+0

0
7.
65

E
+0

0
1.
76

E
−
01

1.
69

E
−
01

4.
03

E
+0

0
3.
38

E
+0

0
2.
53

E
+0

0
4.
99

E
+0

0

f 1
4

� f
−
8.
85

E
+0

2
−
8.
84

E
+0

2
−
8.
91

E
+0

2
−
8.
88

E
+0

2
−
8.
90

E
+0

2
−
8.
87

E
+0

2
−
8.
82

E
+0

2
−
8.
86

E
+0

2
−
8.
94

E
+0

2
−
8.
82

E
+0

2

r
f

2.
41

E
+0

1
1.
81

E
+0

1
2.
25

E
+0

1
2.
39

E
+0

1
1.
80

E
+0

1
1.
47

E
+0

1
2.
37

E
+0

1
1.
63

E
+0

1
2.
07

E
+0

1
1.
54

E
+0

1

B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

8.5 Experimental Results 187

T
ab

le
8.
4

E
xp

er
im

en
ta
l
re
su
lts

ob
ta
in
ed

by
th
e
fu
zz
y
al
go

ri
th
m

us
in
g
di
ff
er
en
t
va
lu
es

of
c

c
0.
00

1
0.
00

2
0.
00

3
0.
00

4
0.
00

5
0.
00

6
0.
00

7
0.
00

8
0.
00

9
0.
01

f 1
� f

3.
73

E
−
28

5.
52

E
−
29

4.
79

E
−
29

1.
14

E
−
28

1.
01

E
−
39

2.
04

E
−
28

1.
92

E
−
28

1.
20

E
−
28

8.
28

E
−
29

1.
27

E
−
28

r
f

8.
01

E
−
28

2.
74

E
−
28

2.
23

E
−
28

5.
10

E
−
28

5.
54

E
−
39

7.
66

E
−
28

7.
31

E
−
28

4.
91

E
−
28

4.
46

E
−
28

6.
93

E
−
28

f 2
� f

1.
78

E
−
16

5.
62

E
−
16

6.
03

E
−
16

9.
19

E
−
17

5.
26

E
−
35

4.
20

E
−
16

2.
44

E
−
22

7.
16

E
−
22

3.
97

E
−
17

2.
41

E
−
18

r
f

8.
72

E
−
16

2.
14

E
−
15

2.
30

E
−
15

4.
21

E
−
16

2.
88

E
−
34

1.
63

E
−
15

1.
34

E
−
21

3.
89

E
−
21

2.
18

E
−
16

1.
30

E
−
17

f 3
� f

1.
19

E
−
23

5.
91

E
−
25

1.
31

E
−
23

1.
74

E
−
24

2.
35

E
−
25

4.
96

E
−
24

6.
38

E
−
22

1.
91

E
−
23

3.
41

E
−
21

7.
75

E
−
13

r
f

6.
49

E
−
23

2.
61

E
−
24

6.
52

E
−
23

5.
07

E
−
24

8.
29

E
−
25

2.
66

E
−
23

2.
64

E
−
21

1.
04

E
−
22

1.
85

E
−
20

4.
24

E
−
12

f 4
� f

3.
34

E
−
26

9.
36

E
−
16

5.
20

E
−
16

5.
23

E
−
16

6.
13

E
−
19

7.
80

E
−
18

5.
46

E
−
16

6.
14

E
−
16

7.
75

E
−
21

4.
90

E
−
16

r
f

1.
52

E
−
25

3.
79

E
−
15

2.
85

E
−
15

2.
86

E
−
15

3.
31

E
−
18

4.
27

E
−
17

2.
99

E
−
15

2.
37

E
−
15

4.
24

E
−
20

2.
56

E
−
15

f 5
� f

2.
75

E
+0

1
2.
85

E
+0

1
2.
97

E
+0

1
3.
85

E
−
04

1.
45

E
−
01

3.
55

E
−
01

8.
35

E
−
01

1.
23

E
+0

0
2.
78

E
+0

1
2.
85

E
+0

1

r
f

4.
67

E
−
02

4.
29

E
−
02

4.
47

E
−
02

2.
85

E
−
02

4.
38

E
−
02

4.
52

E
−
02

4.
31

E
−
02

3.
96

E
−
02

4.
18

E
−
02

4.
49

E
−
02

f 6
� f

1.
89

E
−
02

1.
93

E
−
02

1.
60

E
−
02

1.
85

E
−
02

1.
54

E
−
02

1.
57

E
−
02

2.
17

E
−
02

2.
06

E
−
02

2.
15

E
−
02

1.
92

E
−
02

r
f

1.
27

E
−
02

1.
50

E
−
02

7.
99

E
−
03

1.
14

E
−
02

5.
55

E
−
03

8.
61

E
−
03

1.
45

E
−
02

1.
91

E
−
02

1.
90

E
−
02

1.
34

E
−
02

f 7
� f

1.
98

E
−
03

1.
76

E
−
03

1.
49

E
−
03

1.
58

E
−
03

1.
32

E
−
03

1.
71

E
−
03

1.
61

E
−
03

1.
95

E
−
03

2.
30

E
−
03

1.
36

E
−
03

r
f

2.
02

E
−
03

1.
62

E
−
03

2.
01

E
−
03

1.
56

E
−
03

1.
03

E
−
03

1.
38

E
−
03

1.
92

E
−
03

2.
03

E
−
03

2.
79

E
−
03

1.
10

E
−
03

f 8
� f

−
5.
11

E
+0

2
−
5.
05

E
+0

3
−
5.
27

E
+0

4
−
5.
19

E
+0

3
−
5.
13

E
+0

4
−
4.
98

E
+0

3
−
5.
05

E
+0

3
−
4.
12

E
+0

2
−
5.
11

E
+0

2
−
4.
98

E
+0

3

r
f

5.
20

E
+0

2
4.
42

E
+0

2
5.
69

E
+0

2
4.
20

E
+0

2
4.
77

E
+0

2
4.
66

E
+0

2
4.
54

E
+0

2
5.
31

E
+0

2
3.
24

E
+0

2
5.
47

E
+0

2

f 9
� f

1.
14

E
−
14

6.
94

E
+0

0
4.
72

E
+0

0
1.
07

E
+0

1
4.
76

E
−
01

6.
13

E
+0

0
8.
69

E
+0

0
2.
16

E
+0

1
7.
27

E
−
02

1.
41

E
+0

1

r
f

2.
75

E
−
14

2.
55

E
+0

1
2.
56

E
+0

1
4.
05

E
+0

1
2.
38

E
+0

0
3.
18

E
+0

1
3.
15

E
+0

1
5.
64

E
+0

1
2.
81

E
−
01

4.
31

E
+0

1

f 1
0

� f
1.
23

E
−
14

8.
70

E
−
15

9.
06

E
−
15

1.
13

E
−
14

1.
04

E
−
14

1.
05

E
−
14

9.
06

E
−
15

1.
26

E
−
14

8.
47

E
−
15

8.
82

E
−
15

r
f

6.
29

E
−
15

3.
29

E
−
15

2.
97

E
−
15

6.
79

E
−
15

2.
97

E
−
15

6.
06

E
−
15

3.
82

E
−
15

6.
47

E
−
15

5.
55

E
−
15

3.
58

E
−
15

(c
on

tin
ue
d)

188 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
4

(c
on

tin
ue
d)

c
0.
00

1
0.
00

2
0.
00

3
0.
00

4
0.
00

5
0.
00

6
0.
00

7
0.
00

8
0.
00

9
0.
01

f 1
1

� f
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
4.
78

E
−
05

0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0

r
f

0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
1.
85

E
−
04

0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0
0.
00

E
+0

0

f 1
2

� f
2.
11

E
+0

0
9.
59

E
−
01

9.
95

E
−
01

7.
95

E
−
01

9.
38

E
−
02

8.
96

E
−
01

5.
60

E
−
01

1.
08

E
+0

0
1.
32

E
−
01

6.
74

E
−
01

r
f

7.
38

E
+0

0
3.
26

E
+0

0
3.
37

E
+0

0
3.
83

E
+0

0
1.
99

E
−
02

3.
17

E
+0

0
2.
48

E
+0

0
3.
73

E
+0

0
1.
76

E
−
01

3.
12

E
+0

0

f 1
3

� f
3.
98

E
−
01

4.
28

E
−
01

4.
12

E
−
01

3.
90

E
−
01

3.
85

E
−
01

1.
06

E
+0

0
3.
91

E
−
01

4.
08

E
−
01

1.
14

E
+0

0
3.
88

E
−
01

r
f

2.
68

E
−
01

2.
24

E
−
01

3.
49

E
−
01

1.
90

E
−
01

1.
51

E
−
01

3.
82

E
+0

0
1.
76

E
−
01

2.
24

E
−
01

4.
12

E
+0

0
2.
08

E
−
01

f 1
4

� f
−
8.
86

E
+0

2
−
8.
82

E
+0

2
−
8.
91

E
+0

2
−
8.
91

E
+0

2
−
8.
90

E
+0

2
−
8.
93

E
+0

2
−
8.
93

E
+0

2
−
8.
97

E
+0

2
−
8.
89

E
+0

2
−
8.
89

E
+0

2

r
f

2.
29

E
+0

1
2.
03

E
+0

1
2.
22

E
+0

1
2.
03

E
+0

1
1.
80

E
+0

1
2.
72

E
+0

1
1.
91

E
+0

1
2.
24

E
+0

1
1.
97

E
+0

1
1.
98

E
+0

1

B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

8.5 Experimental Results 189

uncertainty compared with the attraction movement. This uncertainty is a conse-
quence of the lack of knowledge, if the opposite movement may reach a position
with a better fitness value. The only available evidence is that in direction of the
attraction movement, it is not possible to find promising solutions. Finally, the
small value of c induces a minor vibration for each acceptable candidate solution, in
order to refine its quality in terms of fitness value.

8.5.2 Comparison with Other Optimization Approaches

In this subsection, the Fuzzy method is evaluated in comparison with other popular
optimization algorithms based on evolutionary principles. In the experiments, we
have applied the fuzzy optimization algorithm to the 19 functions from appendix,
and the results are compared to those produced by the Harmony Search
(HS) method [14], the Bat (BAT) algorithm [15], the Differential Evolution
(DE) [19], the Particle Swarm Optimization (PSO) method [12], the Artificial Bee
Colony (ABC) algorithm [13] and the Co-variance Matrix Adaptation Evolution
Strategies (CMA-ES) [49]. These are considered the most popular metaheuristic
algorithms currently in use [50]. In the experiments, the population size N has been
configured to 50 individuals. The operation of the benchmark functions is con-
ducted in 50 and 100 dimensions. In order to eliminate the random effect, each
function is tested for 30 independent runs. In the comparison, a fixed number FN of
function evaluations has been considered as a stop criterion. Therefore, each exe-
cution of a test function consists of FN = 104 � n function evaluations (where
n represents the number of dimensions). This stop criterion has been decided to
keep compatibility with similar works published in the literature [51–54].

For the comparison, all methods have been configured with the parameters,
which according to their reported references reach their best performance. Such
configurations are described as follows:

1. HS [14]: HCMR = 0.7 and PArate = 0.3.
2. BAT [15]: Loudness (A = 2), Pulse Rate (r = 0.9), Frequency minimum

(Qmin ¼ 0) and Frequency maximum (Qmin ¼ 1).
3. DE [19]: CR = 0.5 and F = 0.2.
4. PSO [12]: c1 ¼ 2 and c2 ¼ 2; the weight factor decreases linearly from 0.9 to

0.2.
5. ABC [13]: limit = 50.
6. CMA-ES [47]: The source code has been obtained from the original author [55].

In the experiments, some minor changes have been applied to adapt CMA-ES to
our test functions, but the main body is unaltered.

7. FUZZY: a1 ¼ 1:4, a2 ¼ 0:05 and c ¼ 0:005.

190 8 Metaheuristic Algorithms Based on Fuzzy Logic

Several tests have been conducted for comparing the performance of the fuzzy
algorithm. The experiments have been divided in Unimodal functions (Table 8.17),
Multimodal functions (Table 8.18) and Hybrid functions (Table 8.19).

8.5.2.1 Unimodal Test Functions

In this test, the performance of our fuzzy algorithm is compared with HS, BAT, DE,
PSO, CMA-ES and ABC, considering functions with only one optimum. Such
functions are represented by functions f1 to f7 in Table 8.17. In the test, all functions
have been operated in 50 dimensions (n = 50). The experimental results obtained
from 30 independent executions are presented in Table 8.5. They report the aver-
aged best fitness values (�f Þ and the standard deviations (rf) obtained in the runs.
We have also included the best (fBest) and the worst (fWorst) fitness values obtained
during the total number of executions. The best entries in Table 8.5 are highlighted
in boldface. From Table 8.5, according to the averaged best fitness value (�f) index,
we can conclude that the Fuzzy method performs better than the other algorithms in
functions f1, f3, f4 and f7. In the case of functions f2, f5 and f6, the CMA-ES
algorithm obtains the best results. By contrast, the rest of the algorithms presents
different levels of accuracy, with ABC being the most consistent. These results
indicate that the Fuzzy approach provides better performance than HS, BAT, DE,
PSO and ABC for all functions except for the CMA-ES which delivers similar
results to those produced by the Fuzzy approach. By analyzing the standard
deviation (rf) index in Table 8.5, it becomes clear that the metaheuristic method
which presents the best results also normally obtains the smallest deviations.

To statistically analyze the results of Table 8.5, a non-parametric test known as
the Wilcoxon analysis [56, 57] has been conducted. It allows us to evaluate the
differences between two related methods. The test is performed for the 5% (0.05)
significance level over the “averaged best fitness values (�f)” data. Table 8.6 reports
the p-values generated by Wilcoxon analysis for the pair-wise comparison of the
algorithms. For the analysis, five groups are produced: FUZZY versus HS, FUZZY
versus BAT, FUZZY versus DE, FUZZY versus PSO, FUZZY versus CMA-ES
and FUZZY versus ABC. In the Wilcoxon analysis, it is considered a null
hypothesis that there is no notable difference between the two methods. On the
other hand, it is admitted as an alternative hypothesis that there is an important
difference between the two approaches. In order to facilitate the analysis of
Table 8.6, the symbols ▲, ▼, and ► are adopted. ▲ indicates that the Fuzzy
method performs significantly better than the tested algorithm on the specified
function. ▼ symbolizes that the Fuzzy algorithm performs worse than the tested
algorithm, and ► means that the Wilcoxon rank sum test cannot distinguish
between the simulation results of the fuzzy optimizer and the tested algorithm. The
number of cases that fall in these situations are shown at the bottom of the table.

After an analysis of Table 8.6, it is evident that all p-values in the FUZZY versus
HS, FUZZY versus BAT, FUZZY versus DE, FUZZY versus PSO and FUZZY

8.5 Experimental Results 191

T
ab

le
8.
5

M
in
im

iz
at
io
n
re
su
lts

of
un

im
od

al
fu
nc
tio

ns
of

T
ab
le

8.
17

w
ith

n
=
50

H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 1
� f

87
03

5.
22

35
12

13
88

.0
21

2
61

.1
84

87
61

4.
39

E
+0

3
1.
34

E
−
11

3.
09

E
−
06

2.
30

E
−
29

r
f

52
62

.2
65

32
69

33
.1
29

29
4

16
3.
55

51
75

12
61

.1
91

73
5.
19

38
E
−
12

3.
44

33
E
−
06

1.
17

23
7E

−
28

f B
es
t

76
93

7.
41

3
10

88
07

.8
78

0.
03

70
26

64
1.
65

E
+0

3
5.
69

E
−
12

2.
47

E
−
07

5.
17

E
−
11

4
f W

or
st

95
80

4.
97

47
13

82
24

.1
12

5
87

8.
43

61
03

7.
37

E
+0

3
2.
55

E
−
11

1.
72

E
−
05

6.
42

E
−
28

f 2
� f

1.
37

39
E
+1

4
4.
31

63
6E

+1
7

0.
04

05
70

31
4.
54

E
+0

1
9.
92

E
−
06

1.
39

E
−
03

4.
15

E
−
04

r
f

3.
18

8E
+1

4
1.
53

73
4E

+1
8

0.
09

73
89

28
16

.3
86

19
9

2.
54

73
E
−
06

0.
00

07
11

59
0.
00

22
71

86

f B
es
t

1.
03

89
E
+1

0
16

33
25

90
21

4.
03

E
−
12

2.
61

E
+0

1
5.
87

E
−
06

5.
62

E
−
04

7.
20

E
−
59

f W
or
st

1.
64

E
+1

5
7.
60

E
+1

8
0.
45

34
89

54
9.
75

E
+0

1
1.
44

E
−
05

2.
98

E
−
03

0.
01

24
43

79

f 3
� f

13
04

72
.8
01

29
73

42
.4
21

1
55

98
2.
81

82
1.
57

E
+0

4
2.
89

E
−
03

4.
14

E
+0

4
1.
93

E
−
05

r
f

11
63

9.
28

64
99

04
9.
83

21
3

92
34

.8
59

75
97

34
.9
22

04
0.
00

16
48

04
47

85
.1
82

16
4.
28

43
E
−
05

f B
es
t

10
45

14
.0
12

16
46

28
.0
1

36
10

5.
57

99
4.
23

E
+0

3
9.
88

E
−
04

2.
85

E
+0

4
1.
66

E
−
10

f W
or
st

14
76

59
.6
04

56
39

10
.1
73

7
70

93
8.
42

05
4.
96

E
+0

4
8.
88

E
−
03

4.
84

E
+0

4
0.
00

01
89

91
f 4

� f
80

.1
84

17
08

90
.1
75

64
76

8
25

.8
13

44
55

2.
32

E
+0

1
3.
96

E
−
04

7.
35

E
+0

1
3.
37

E
−
16

r
f

2.
55

95
00

02
1.
86

26
75

44
7

6.
30

76
54

69
3.
51

40
96

94
8.
20

83
E
−
05

3.
60

90
52

31
1.
84

84
E
−
15

f B
es
t

73
.2
79

95
06

86
.1
12

97
61

7
15

.7
89

47
85

1.
73

E
+0

1
2.
57

E
−
04

6.
55

E
+0

1
7.
52

E
−
70

f W
or
st

83
.8
37

51
61

92
.7
80

58
06

1
38

.8
21

04
47

3.
06

E
+0

1
5.
65

E
−
04

7.
90

E
+0

1
1.
01

E
−
14

f 5
� f

10
24

.7
02

57
27

6.
24

38
32

9
52

.5
35

90
64

6.
04

E
+0

2
3.
51

E
−
05

4.
53

E
+0

1
4.
85

E
−
04

r
f

10
0.
93

26
56

45
.1
20

95
64

2
7.
69

85
88

17
19

8.
33

43
21

0.
49

72
32

74
1.
13

62
84

34
0.
03

89
64

2

f B
es
t

78
3.
65

31
34

21
1.
60

01
15

7
47

.1
42

10
71

28
9.
29

99
3

1.
21

E
−
09

42
.1
78

30
81

3.
30

E
−
09

f W
or
st

12
11

.0
85

32
39

9.
16

08
51

1
75

.1
36

24
68

11
26

.3
85

74
3.
06

54
24

9
47

.7
42

22
82

4.
63

23
35

6
(c
on

tin
ue
d)

192 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
5

(c
on

tin
ue
d) H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 6
� f

88
02

7.
42

44
11

96
70

.6
41

2
43

.5
15

52
73

4.
51

E
+0

3
1.
42

E
−
11

4.
15

E
−
06

2.
18

E
−
07

r
f

57
83

.2
15

76
68

18
.7
23

50
3

80
.4
21

75
58

20
36

.7
21

93
5.
53

21
E
−
12

8.
55

88
E
−
06

0.
84

60
72

49

f B
es
t

77
39

4.
50

62
10

59
58

.6
22

4
0.
01

83
27

58
17

05
.4
78

66
5.
88

E
−
12

6.
00

E
−
07

1.
18

51
31

27

f W
or
st

97
76

5.
48

19
13

05
49

.7
36

4
30

6.
09

85
87

13
23

0.
64

39
2.
85

E
−
11

4.
79

E
−
05

5.
18

91
33

74

f 7
� f

19
7.
47

61
74

11
6.
81

96
69

8
0.
08

16
41

58
4.
43

E
+0

1
2.
82

E
−
02

6.
86

E
−
01

3.
43

E
−
04

r
f

28
.8
08

57
3

16
.4
65

42
38

5
0.
12

24
02

89
17

.8
20

05
08

0.
00

49
98

68
0.
14

54
72

66
0.
00

44
79

76

f B
es
t

11
6.
48

35
27

87
.6
45

01
18

6
0.
01

38
75

86
15

.7
69

73
07

0.
02

01
69

4
0.
41

79
85

76
0.
00

01
81

52
f W

or
st

26
3.
23

33
33

15
6.
02

45
90

4
0.
65

35
35

74
85

.5
26

35
5

0.
03

88
83

18
0.
89

57
42

7
0.
02

05
79

15
B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

8.5 Experimental Results 193

versus ABC columns are less than 0.05 (5% significance level) which is a strong
evidence against the null hypothesis and indicates that the Fuzzy method performs
better (▲) than the HS, BAT, DE, PSO and ABC algorithms. This data is statis-
tically significant and shows that it has not occurred by coincidence (i.e. due to the
normal noise contained in the process). In the case of the comparison between
FUZZY and CMA-ES, the FUZZY method maintains a better (▲) performance in
functions f1 and f4. In functions f2, f3, f5, f6 and f7 the CMA-ES presents a similar
performance to the FUZZY method. This fact can be seen from the column FUZZY
versus CMA-ES, where the p-values of functions f2, f3, f5, f6 and f7 are higher than
0.05 (►). These results reveal that there is no statistical difference in terms of
precision between FUZZY and CMA-ES, when they are applied to the afore-
mentioned functions. In general, the results of the Wilcoxon analysis demonstrates
that the Fuzzy algorithm performs better than most of the other methods.

In addition to the experiments in 50 dimensions, we have also conducted a set of
simulations on 100 dimensions to test the scalability of the fuzzy method. In the
analysis, we also employed all the compared algorithms in this test. The simulation
results are presented in Tables 8.7 and 8.8, which report the data produced during
the 30 executions and the Wilcoxon analysis, respectively. According to the
averaged best fitness value (�f) index from Table 8.7, the Fuzzy method performs
better than the other algorithms in functions f1, f2, f3, f4 and f7. In the case of
functions f5 and f6, the CMA-ES algorithm obtains the best results. On the other

Table 8.6 p-values produced by Wilcoxon test comparing FUZZY versus HS, FUZZY versus
BAT, FUZZY versus DE, FUZZY versus PSO, FUZZY versus CMA-ES and FUZZY versus ABC
over the “averaged best fitness values” from Table 8.5

Wilcoxon test for unimodal functions of Table 8.17 with n = 50

FUZZY
versus

HS BAT DE PSO CMA-ES ABC

f1 5.0176E
−07▲

9.4988E
−08▲

7.3648E
−07▲

7.8952E
−05▲

7.234E
−03▲

5.1480E
−04▲

f2 4.0553E
−07▲

2.4620E
−08▲

2.0793E
−03▲

2.0182E
−05▲

0.0937► 3.0415E
−03▲

f3 2.0189E
−08▲

3.7451E
−08▲

1.0492E
−07▲

4.1590E
−05▲

0.0829► 2.7612E
−06▲

f4 3.5470E
−07▲

2.1490E
−08▲

3.4081E
−06▲

2.0121E
−06▲

8.143E
−03▲

4.1680E
−07▲

f5 1.0795E
−08▲

4.0479E
−09▲

2.0354E
−07▲

8.1350E
−09▲

0.1264► 1.2541E
−07▲

f6 6.1769E
−07▲

6.5480E
−08▲

4.5972E
−06▲

2.1594E
−07▲

0.0741► 2.1548E
−03▲

f7 4.3617E
−07▲

1.9235E
−08▲

2.8070E
−04▲

5.4890E
−06▲

0.1031► 1.0430E
−03▲

▲ 7 7 7 7 2 7

▼ 0 0 0 0 0 0

► 0 0 0 0 5 0

194 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
7

M
in
im

iz
at
io
n
re
su
lts

of
un

im
od

al
fu
nc
tio

ns
of

T
ab
le

8.
17

w
ith

n
=
10

0

H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 1
� f

2.
19

E
+0

5
2.
63

E
+0

5
3.
89

E
+0

2
1.
43

E
+0

4
1.
32

E
−
05

2.
45

E
−
02

1.
89

E
−
16

r
f

10
31

1.
77

53
14

20
1.
56

3
32

3.
60

77
39

29
20

.7
81

44
3.
20

95
E
−
06

0.
02

57
50

58
1.
03

58
E
−
15

f B
es
t

1.
74

E
+0

5
2.
30

E
+0

5
1.
26

E
+0

1
9.
64

E
+0

3
8.
00

E
−
06

4.
46

E
−
03

6.
43

E
−
68

f W
or
st

2.
30

E
+0

5
2.
89

E
+0

5
1.
38

E
+0

3
2.
09

E
+0

4
2.
04

E
−
05

1.
26

E
−
01

5.
67

E
−
15

f 2
� f

7.
24

E
+3

7
1.
31

E
+4

5
5.
73

E
−
01

1.
51

E
+0

2
1.
26

E
−
02

9.
28

E
−
02

1.
89

E
−
08

r
f

2.
58

7E
+3

8
6.
90

56
E
+4

5
0.
57

77
55

59
41

.1
23

51
47

0.
00

28
71

31
0.
02

54
53

92
1.
03

44
5E

−
07

f B
es
t

5.
45

E
+3

1
3.
36

E
+3

4
2.
94

E
−
02

9.
05

E
+0

1
8.
91

E
−
03

5.
40

E
−
02

4.
84

E
−
46

f W
or
st

1.
35

E
+3

9
3.
79

E
+4

6
2.
56

E
+0

0
2.
52

E
+0

2
2.
38

E
−
02

0.
18

35
37

71
5.
67

E
−
07

f 3
� f

4.
98

E
+0

5
1.
15

E
+0

6
2.
84

E
+0

5
7.
90

E
+0

4
8.
76

E
−
04

1.
84

E
+0

5
2.
07

E
−
08

r
f

58
46

7.
27

69
31

25
95

.4
37

27
13

2.
99

55
34

17
4.
71

64
0.
77

43
52

1
20

10
8.
58

21
0.
54

89
97

84

f B
es
t

3.
37

E
+0

5
4.
69

E
+0

5
2.
31

E
+0

5
3.
71

E
+0

4
8.
76

E
−
04

1.
27

E
+0

5
3.
94

E
−
09

f W
or
st

61
69

74
.9
94

19
42

09
5.
52

35
65

15
.5
79

16
01

39
.9
54

14
53

62
.5
8

21
99

82
.3
97

2.
25

15
99

01
f 4

� f
9.
01

E
+0

1
9.
46

E
+0

1
4.
05

E
+0

1
2.
81

E
+0

1
2.
16

E
−
06

9.
04

E
+0

1
2.
63

E
−
15

r
f

1.
11

50
88

88
0.
85

95
92

26
6.
84

19
08

92
3.
25

81
79

3
0.
03

98
21

12
1.
82

97
34

7
6.
06

38
E
−
15

f B
es
t

8.
69

E
+0

1
9.
29

E
+0

1
2.
70

E
+0

1
2.
15

E
+0

1
1.
39

E
−
08

8.
37

E
+0

1
1.
24

E
−
67

f W
or
st

9.
16

E
+0

1
9.
62

E
+0

1
5.
55

E
+0

1
3.
40

E
+0

1
2.
91

E
−
01

9.
30

E
+0

1
2.
02

E
−
14

f 5
� f

2.
70

E
+0

3
1.
15

E
+0

3
1.
29

E
+0

2
3.
95

E
+0

3
9.
09

E
−
04

1.
04

E
+0

2
9.
86

E
−
04

r
f

54
0.
83

13
75

88
.3
79

33
64

18
.7
79

95
45

64
1.
93

70
17

1.
45

57
56

83
6.
27

51
18

31
0.
14

58
43

41

f B
es
t

0
98

0.
50

05
76

10
1.
87

36
11

25
71

.7
15

19
1.
32

E
−
05

96
.9
50

89
31

2.
43

E
−
06

f W
or
st

32
47

.1
87

78
13

08
.5
44

56
16

7.
97

34
69

53
16

.7
64

33
94

.8
27

60
69

12
1.
37

16
8

99
.2
03

71
2

(c
on

tin
ue
d)

8.5 Experimental Results 195

T
ab

le
8.
7

(c
on

tin
ue
d) H

S
B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 6
� f

2.
21

E
+0

5
2.
64

E
+0

5
3.
70

E
+0

2
1.
45

E
+0

4
1.
51

E
−
05

1.
92

E
−
02

2.
02

E
−
05

r
f

93
81

.4
81

18
18

21
6.
58

5
28

0.
55

39
73

27
98

.8
90

68
2.
27

04
E
−
06

0.
01

81
63

88
2.
87

41
30

87

f B
es
t

19
88

63
.6
62

22
62

96
.0
05

16
.8
02

33
85

92
43

.4
41

25
1.
10

E
−
05

0.
00

25
07

9
0.
15

E
−
05

f W
or
st

23
53

07
.7
69

28
85

57
.4
83

12
78

.6
68

65
20

95
4.
27

19
1.
94

E
−
05

0.
09

12
01

52
23

.7
43

68
55

f 7
� f

1.
28

E
+0

3
4.
67

E
+0

2
7.
35

E
−
01

4.
85

E
+0

2
7.
03

E
−
02

2.
20

E
+0

0
4.
51

E
−
03

r
f

10
0.
81

17
69

54
.7
94

75
64

0.
58

83
06

51
12

5.
20

15
37

0.
01

04
39

89
0.
36

19
30

03
0.
00

53
58

71

f B
es
t

97
5.
48

01
73

35
1.
38

69
4

0.
08

40
09

38
23

3.
70

27
75

0.
04

68
99

27
1.
43

27
89

53
3.
59

E
−
05

f W
or
st

14
24

.3
51

37
60

9.
12

08
42

2.
38

31
57

57
80

6.
35

06
17

0.
08

98
90

15
2.
98

77
75

44
0.
02

13
57

6
B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

196 8 Metaheuristic Algorithms Based on Fuzzy Logic

hand, the rest of the algorithms present different levels of accuracy. After analyzing
Table 8.7, it is clear that the fuzzy method presents slightly better results than
CMA-ES in 100 dimensions. From Table 8.8, it is evident that all p-values in the
FUZZY versus HS, FUZZY versus BAT, FUZZY versus DE, FUZZY versus PSO
and FUZZY versus ABC columns are less than 0.05, which indicates that the Fuzzy
method performs better than the HS, BAT, DE, PSO and ABC algorithms. In the
case of FUZZY versus CMA-ES, the FUZZY method maintains a better perfor-
mance in functions f1, f2 and f4. In functions f3, f5, f6 and f7 the CMA-ES presents a
similar performance to the FUZZY method. This experiment shows that the more
dimensions there are, the worse the performance of the CMA-ES is.

8.5.2.2 Multimodal Test Functions

Contrary to unimodal functions, multimodal functions include many local optima.
For this cause, they are, in general, more complicated to optimize. In this test the
performance of our algorithm is compared with HS, BAT, DE, PSO, CMA-ES and
ABC regarding multimodal functions. Multimodal functions are represented by
functions from f8 to f14 in Table 8.18, where the number of local minima increases
exponentially as the dimension of the function increases. Under such conditions, the
experiment reflects the ability of each algorithm to find the global optimum in the

Table 8.8 p-values produced by Wilcoxon test comparing FUZZY versus HS, FUZZY versus
BAT, FUZZY versus DE, FUZZY versus PSO, FUZZY versus CMA-ES and FUZZY versus ABC
over the “averaged best fitness values” from Table 8.7

Wilcoxon test for unimodal functions of Table 8.17 with n = 100

FUZZY
versus

HS BAT DE PSO CMA-ES ABC

f1 3.0150E
−08▲

8.0794E
−08▲

6.4901E
−06▲

2.0146E
−07▲

7.9460E
−04▲

4.0168E
−05▲

f2 5.3480E
−11▲

1.1302E
−11▲

7.4985E
−05▲

4.7001E
−06▲

2.4920E
−04▲

8.2940E
−04▲

f3 6.0145E
−07▲

7.0651E
−08▲

4.6782E
−07▲

8.4670E
−06▲

0.0743► 2.3014E
−07▲

f4 1.4920E
−07▲

3.7912E
−07▲

2.0142E
−06▲

1.4972E
−06▲

7.4682E
−04▲

2.1966E
−07▲

f5 8.7942E
−06▲

5.4972E
−06▲

9.4662E
−05▲

2.1580E
−07▲

0.1851► 4.7223E
−05▲

f6 2.7301E
−07▲

4.7920E
−07▲

8.0493E
−05▲

5.7942E
−06▲

0.2451► 1.4901E
−04▲

f7 1.0458E
−07▲

5.4201E
−06▲

2.0051E
−04▲

7.6190E
−06▲

0.0851► 4.610E
−05▲

▲ 7 7 7 7 3 7

▼ 0 0 0 0 0 0

► 0 0 0 0 4 0

8.5 Experimental Results 197

presence of numerous local optima. In the simulations, the functions are operated in
50 dimensions (n = 50). The results, averaged over 30 executions, are reported in
Table 8.9 in terms of the best fitness values (�f) and the standard deviations (rf). The
best results are highlighted in boldface. Likewise, p-values of the Wilcoxon test of
30 independent repetitions are exhibited in Table 8.10. In the case of f8, f10, f11 and
f14, the fuzzy method presents a better performance than HS, BAT, DE, PSO,
CMA-ES and ABC. For functions f12 and f13, the fuzzy approach exhibits a worse
performance compared to CMA-ES. Additionally, in the case of function f9 the
Fuzzy method and ABC maintain the best performance compared to HS, BAT, DE,
PSO and CMA-ES. The rest of the algorithms present different levels of accuracy,
with ABC being the most consistent. In particular, this test yields a large difference
in performance, which is directly related to a better trade-off between exploration
and exploitation produced by the formulated rules of the fuzzy method.

The results of the Wilcoxon analysis, presented in Table 8.10, statistically
demonstrate that the Fuzzy algorithm performs better than HS, DE, BAT, DE and
PSO in all test functions (f8–f14). In the case of the comparison between FUZZY
and CMA-ES, the FUZZY method maintains a better (▲) performance in functions
f8, f9, f10, f11 and f14. On the other hand, in functions f12 and f13 the FUZZY method
presents worse results (▼) than the CMA-ES algorithm. However, according to
Table 8.10, the FUZZY approach obtains a better performance than ABC in all
cases except for function f9, where there is no difference in results between the two.

In addition to the 50-dimension benchmark function tests, we also performed a
series of simulations with 100 dimensions by using the same set of functions in
Table 8.18. The results are presented in Tables 8.11 and 8.12, which report the data
produced during the 30 executions and the Wilcoxon analysis, respectively. In
Table 8.11, it can be seen that the Fuzzy method performs better than HS, BAT,
DE, PSO, CMA-ES and ABC for functions f8, f9, f10, f11 and f13. On the other hand,
the CMA-ES maintains better results than HS, BAT, DE, PSO, ABC and the fuzzy
optimizer for function f12. Likewise, the DE method obtains better indexes than the
other algorithms for function f14. From the Wilcoxon analysis shown in Table 8.12,
the results indicate that the Fuzzy method performs better than the HS, BAT, DE,
PSO and ABC algorithms. In the case of FUZZY versus CMA-ES, the FUZZY
method maintains a better performance in all test functions except in problem f12,
where the CMA-ES produces better results than the FUZZY method. This exper-
iment also shows that the more dimensions there are, the worse the performance of
the CMA-ES is.

8.5.2.3 Hybrid Test Functions

In this test, hybrid functions are employed to test the optimization performance of
the Fuzzy approach. Hybrid functions, shown in Table 8.19, are multimodal
functions with complex behaviors, since they are built from different multimodal
single functions. A detailed implementation of the hybrid functions can be found in

198 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
9

M
in
im

iz
at
io
n
re
su
lts

of
m
ul
tim

od
al

fu
nc
tio

ns
of

T
ab
le

8.
18

w
ith

n
=
50

H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 8
� f

−
54

15
.8
39

05
−
32

70
.2
54

96
7

−
20

23
2.
03

93
−
1.
00

E
+0

4
−
6.
22

E
+0

3
−
1.
94

E
+0

4
−
2.
69

E
+0

5

r f
31

8.
32

60
84

47
4.
29

74
64

4
79

9.
67

05
19

11
39

.7
25

04
57

7.
60

38
27

32
8.
07

47
23

33
81

31
.2
98

f B
es
t

−
61

83
.2
53

06
−
42

53
.0
07

75
1

−
20

83
0.
60

09
−
12

20
7.
27

−
79

10
.1
49

87
−
20

46
0.
02

02
−
16

02
80

2.
18

f W
or
st

−
49

37
.0
16

73
−
25

60
.0
16

95
9

−
16

84
9.
37

89
−
74

17
.2
09

23
−
52

77
.3
61

21
−
18

59
8.
57

18
−
51

86
0.
81

24
f 9

� f
63

7.
31

49
67

37
0.
18

12
31

94
.9
32

16
39

2.
78

E
+0

2
9.
12

E
−
03

6.
43

E
−
06

1.
03

E
−
06

r f
25

.9
07

74
03

31
.0
78

99
56

23
.8
91

39
91

38
.1
96

55
72

8.
31

42
67

2.
34

82
53

49
1.
67

81
69

6

f B
es
t

58
1.
05

54
95

32
1.
39

86
32

49
.5
78

70
92

2.
09

E
+0

2
6.
91

E
−
04

1.
99

89
92

76
0

f W
or
st

68
1.
50

51
55

45
0.
91

96
51

14
3.
66

41
99

37
5.
97

95
07

34
2.
62

18
28

11
.2
27

75
05

31
0.
43

91
2

f 1
0

� f
20

.2
95

07
43

19
.2
99

53
98

1.
04

07
22

29
1.
21

E
+0

1
8.
74

E
−
07

1.
69

E
−
02

1.
40

E
−
14

r f
0.
09

86
62

63
0.
11

14
69

29
0.
69

77
92

78
1.
03

37
65

56
1.
49

21
E
−
07

0.
01

13
61

92
4.
48

9E
−
15

f B
es
t

19
.9
00

31
35

18
.9
74

19
96

0.
00

40
94

4
9.
35

E
+0

0
5.
62

E
−
07

2.
92

E
−
03

7.
99

E
−
15

f W
or
st

20
.4
72

36
7

19
.5
76

83
9

2.
78

93
49

34
1.
38

E
+0

1
1.
18

E
−
06

5.
30

E
−
02

2.
22

E
−
14

f 1
1

� f
78

6.
56

49
93

10
72

.4
06

95
0.
98

72
59

15
4.
05

E
+0

1
9.
87

E
−
10

6.
23

E
−
03

0.
00

E
+0

0

r f
49

.0
19

59
78

70
.0
22

04
65

0.
62

99
87

33
12

.8
39

74
53

4.
82

78
E
−
10

0.
01

15
49

36
0

f B
es
t

65
8.
15

86
23

92
6.
06

20
51

0.
00

10
77

68
14

.1
59

49
78

2.
92

E
−
10

0.
01

50
38

79
0

f W
or
st

86
0.
98

38
23

11
86

.9
31

37
2.
41

53
93

8
64

.7
18

71
95

2.
32

E
−
09

0.
05

33
91

0
f 1
2

� f
55

73
99

40
4

10
29

87
63

22
13

09
.8
71

26
4.
08

E
+0

1
2.
58

E
−
12

3.
67

E
−
07

1.
91

E
−
08

r f
68

32
07

67
.6

15
00

67
29

4
43

19
.4
05

39
27

.0
14

63
75

1.
07

06
E
−
12

4.
18

07
E
−
07

0.
63

13
88

73

f B
es
t

44
41

64
96

4
76

32
29

03
9

0.
20

36
61

13
16

.6
07

08
3

9.
05

E
−
13

2.
14

E
−
08

1.
95

E
−
08

f W
or
st

70
09

61
31

3
12

77
76

79
34

17
50

8.
98

26
13

6.
89

19
08

5.
63

E
−
12

1.
84

E
−
06

19
.8
20

62
83

(c
on

tin
ue
d)

8.5 Experimental Results 199

T
ab

le
8.
9

(c
on

tin
ue
d) H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 1
3

� f
11

63
98

97
72

19
82

18
77

34
29

55
1.
42

97
1.
41

E
+0

5
5.
03

E
−
11

5.
98

E
−
06

9.
06

E
−
09

r f
12

34
21

33
4

29
14

95
99

1
13

74
15

.9
81

18
67

40
.9
94

2.
79

28
E
−
11

7.
50

42
E
−
06

0.
04

39
06

6

f B
es
t

89
88

58
90

3
12

50
15

95
82

4.
37

61
33

56
15

94
.6
38

64
1.
37

E
−
11

5.
06

E
−
07

6.
91

E
−
10

f W
or
st

14
53

64
05

37
25

58
12

80
52

75
46

99
.3

73
54

26
.5
24

1.
38

E
−
10

3.
48

E
−
05

60
.2
60

49
38

f 1
4

� f
−
95

8.
67

96
63

−
10

66
.8
07

79
−
19

37
.1
00

75
−
1.
40

E
+0

3
−
1.
84

E
+0

3
−
1.
32

E
+0

3
−
1.
96

E
+0

3

r f
40

.8
88

50
38

61
.5
79

31
02

13
.1
99

32
9

77
.8
99

27
22

41
.6
06

33
35

29
.4
90

47
45

0.
06

63
39

44

f B
es
t

−
10

60
.2
95

98
−
12

13
.4
64

66
−
19

58
.2
98

81
−
15

27
.6
96

65
−
19

15
.8
98

13
−
13

95
.0
51

18
−
19

58
.3
08

18
f W

or
st

−
89

3.
61

99
64

−
98

8.
87

49
2

−
19

15
.0
97

27
−
12

75
.9
02

92
−
17

32
.1
20

78
−
12

62
.8
21

8
−
19

58
.0
43

05
B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

200 8 Metaheuristic Algorithms Based on Fuzzy Logic

[46]. In the experiments, the performance of our fuzzy algorithm is compared with
HS, BAT, DE, PSO, CMA-ES and ABC, considering functions f15 to f19.

In the first test, all functions have been operated in 50 dimensions (n = 50). The
experimental results obtained from 30 independent executions are presented in
Tables 8.13 and 8.14. In Table 8.13, the indexes �f , rf , fBest and fWorst, obtained
during the total number of executions, are reported. Furthermore, Table 8.14 pre-
sents the statistical Wilcoxon analysis of the averaged best fitness values �f from
Table 8.13.

According to Table 8.13, the Fuzzy approach maintains a superior performance
in comparison to most of the other methods. In the case of f15, f16 and f18, the fuzzy
method performs better than HS, BAT, DE, PSO, CMA-ES and ABC. For function
f19, the fuzzy approach presents a worst performance than CMA-ES or ABC.
However, in functions f16 and f18, the Fuzzy method and ABC maintain a better
performance than HS, BAT, DE, PSO and CMA-ES. For function f17 the FUZZY
method and CMA-ES perform better than other methods. Therefore, the fuzzy
algorithm reaches better �f values in 4 from 5 different functions. This fact confirms
that the fuzzy method is able to produce more accurate solutions than its com-
petitors. From the analysis of rf in Table 8.13, it is clear that our fuzzy method
obtain a better consistency than the other algorithms, since its produced solutions
present a small dispersion. As it can be expected, the only exception is function f19,
where the fuzzy algorithm does not achieve the best performance Additional to such

Table 8.10 p-values produced by Wilcoxon test comparing FUZZY versus HS, FUZZY versus
BAT, FUZZY versus DE, FUZZY versus PSO, FUZZY versus CMA-ES and FUZZY versus ABC
over the “averaged best fitness values” values from Table 8.9

Wilcoxon test for Multimodal functions of Table 8.18 with n = 50

FUZZY
versus

HS BAT DE PSO CMA-ES ABC

f8 7.1350E
−05▲

5.4032E
−05▲

3.4760E
−05▲

1.1452E
−05▲

4.7201E
−06▲

2.4993E
−05▲

f9 4.1640E
−05▲

2.4886E
−05▲

6.1472E
−04▲

2.1235E
−05▲

4.2910E
−04▲

0.0783►

f10 3.1425E
−05▲

3.0183E
−05▲

7.4920E
−04▲

1.4982E
−05▲

3.1157E
−04▲

9.4872E
−04▲

f11 5.4971E
−08▲

9.3345E
−09▲

7.1350E
−04▲

5.3791E
−06▲

8.4973E
−03▲

6.1540E
−03▲

f12 6.4821E
−11▲

8.4038E
−11▲

4.6840E
−08▲

5.2920E
−06▲

7.2365E
−04▼

4.0312E
−03▲

f13 7.9824E
−11▲

9.7930E
−11▲

4.1622E
−10▲

7.4682E
−11▲

9.4003E
−04▼

4.5513E
−05▲

f14 7.1352E
−06▲

4.5821E
−07▲

5.7920E
−04▲

8.1641E
−05▲

9.6401E
−04▲

5.6820E
−05▲

▲ 7 7 7 7 5 6

▼ 0 0 0 0 2 0

► 0 0 0 0 0 1

8.5 Experimental Results 201

T
ab

le
8.
11

M
in
im

iz
at
io
n
re
su
lts

of
m
ul
tim

od
al

fu
nc
tio

ns
fr
om

T
ab
le

8.
18

w
ith

n
=
10

0

H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 8
� f

−
7.
87

E
+0

3
−
4.
47

E
+0

3
−
2.
34

E
+0

4
−
1.
48

E
+0

4
−
8.
66

E
+0

3
−
3.
51

E
+0

4
−
1.
62

E
+0

5

r
f

58
4.
34

00
59

79
9.
31

23
1

39
14

.7
75

61
17

29
.1
59

16
83

1.
54

73
63

55
4.
10

17
41

47
51

4.
29

41

f B
es
t

−
91

41
.8
17

89
−
64

97
.0
10

04
−
32

93
9.
62

4
−
19

36
2.
70

97
−
10

17
7.
53

82
−
36

65
5.
82

71
−
27

29
38

.6
68

f W
or
st

−
66

69
.0
20

42
−
28

58
.3
89

97
−
18

35
8.
94

63
−
12

40
8.
73

77
−
73

75
.4
04

34
−
33

93
9.
94

76
−
87

98
5.
34

3
f 9

� f
1.
44

E
+0

3
9.
12

E
+0

2
3.
98

E
+0

2
7.
49

E
+0

2
2.
37

E
+0

2
6.
49

E
+0

1
4.
00

E
−
05

r
f

41
.4
64

35
2

60
.4
78

56
56

67
.0
53

67
47

67
.5
93

20
69

20
9.
40

31
73

7.
90

87
98

09
0.
00

01
52

07

f B
es
t

12
93

.1
99

18
77

2.
97

87
21

20
5.
20

99
89

63
5.
16

78
62

74
.8
46

63
53

49
.9
92

26
66

0
f W

or
st

15
03

.0
14

7
10

33
.8
04

16
52

2.
50

43
76

86
5.
89

39
44

80
6.
57

66
83

79
.9
13

65
76

0.
00

05
99

4
f 1
0

� f
2.
06

E
+0

1
1.
98

E
+0

1
2.
42

E
+0

0
1.
33

E
+0

1
6.
14

E
−
04

3.
01

E
+0

0
3.
96

E
−
12

r
f

0.
06

05
25

21
0.
08

67
08

19
0.
82

88
20

63
0.
87

76
79

23
9.
62

05
E
−
05

0.
31

15
48

78
2.
15

04
E
−
11

f B
es
t

2.
05

E
+0

1
1.
96

E
+0

1
1.
12

E
+0

0
1.
16

E
+0

1
4.
14

E
−
04

2.
26

E
+0

0
1.
51

E
−
14

f W
or
st

2.
08

E
+0

1
2.
00

E
+0

1
4.
63

E
+0

0
1.
51

E
+0

1
8.
49

E
−
04

3.
59

E
+0

0
1.
18

E
−
10

f 1
1

� f
1.
96

E
+0

3
2.
38

E
+0

3
4.
46

E
+0

0
1.
18

E
+0

2
1.
20

E
−
03

1.
61

E
−
01

0.
00

E
+0

0

r
f

81
.7
17

76
55

13
4.
98

68
06

2.
67

09
66

11
22

.6
37

08
6

0.
00

02
80

91
0.
14

55
34

57
0

f B
es
t

17
73

.6
87

89
20

35
.6
76

23
1.
02

08
61

53
86

.1
90

77
63

0.
00

06
60

65
0.
01

30
91

43
0

f W
or
st

20
83

.8
45

69
25

57
.1
12

79
12

.9
32

62
4

17
0.
76

36
75

2.
25

E
−
03

0.
64

61
73

59
0

f 1
2

� f
1.
88

E
+0

9
2.
55

E
+0

9
4.
85

E
+0

4
2.
06

E
+0

4
2.
20

E
−
06

5.
96

E
−
03

2.
67

E
+0

2

r
f

11
03

07
21

3
24

29
21

09
4

14
02

31
.6
48

50
85

9.
56

82
7.
19

26
E
−
07

0.
01

53
32

06
14

23
.1
41

86

f B
es
t

1.
64

E
+0

9
1.
87

E
+0

9
1.
86

E
+0

0
2.
93

E
+0

1
1.
27

E
−
06

2.
91

E
−
05

4.
21

E
−
01

f W
or
st

20
90

76
47

63
29

66
73

17
22

76
95

82
.3
76

25
14

50
.9
89

4.
07

E
−
06

0.
06

22
91

25
78

01
.3
88

16
(c
on

tin
ue
d)

202 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
11

(c
on

tin
ue
d) H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 1
3

� f
3.
54

E
+0

9
4.
83

E
+0

9
6.
63

E
+0

5
1.
77

E
+0

6
2.
20

E
+0

1
4.
74

E
−
03

4.
71

E
−
05

r
f

25
57

89
66

6
47

72
61

47
0

10
76

15
2.
4

13
73

21
0.
26

33
.1
62

27
41

0.
00

58
26

26
1.
24

73
E
−
05

f B
es
t

29
36

34
77

07
39

98
73

15
04

31
47

.1
64

18
41

75
61

.4
43

9.
98

14
21

44
0.
00

07
55

47
2.
65

E
−
05

f W
or
st

39
28

27
91

53
59

01
11

82
41

46
51

43
7.
83

77
41

05
5.
37

17
6.
31

42
79

0.
02

48
00

97
7.
86

E
−
05

f 1
4

� f
−
1.
57

E
+0

3
−
1.
82

E
+0

3
−
3.
83

E
+0

3
−
2.
46

E
+0

3
−
3.
57

E
+0

3
−
3.
78

E
+0

3
−
2.
30

E
+0

3

r
f

79
.1
69

36
39

76
.7
85

25
89

36
.6
93

04
52

97
.0
30

10
39

59
.5
94

72
11

22
.8
55

84
28

65
.2
81

24
93

f B
es
t

−
17

22
.3
66

81
−
19

45
.1
25

23
−
39

00
.4
97

41
−
26

83
.5
00

44
−
36

76
.2
92

34
−
38

23
.9
50

29
−
24

55
.0
15

58

f W
or
st

−
14

32
.1
78

12
−
16

95
.6
72

79
−
37

40
.6
30

55
−
22

80
.6
76

55
−
33

93
.5
57

96
−
37

24
.2
65

8
−
21

56
.7
40

64

B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

8.5 Experimental Results 203

results, Table 8.13 shows that the Fuzzy method attains the best produced solution
fBest during the 30 independent executions than the other algorithms, except for f19
function. Besides, the worst fitness values fWorst generated by the fuzzy technique
maintain a better solution quality than the other methods excluding function f19. The
case of obtaining the best fBest and fWorst indexes reflexes the remarkable capacity of
the fuzzy method to produce better solutions through use an efficient search
strategy.

Table 8.14 shows the results of the Wilcoxon analysis over the averaged best
fitness values �f from Table 8.13. They indicate that the Fuzzy method performs
better than the HS, BAT, DE and PSO algorithms. In the case of FUZZY versus
CMA-ES, the FUZZY method maintains a better performance in all test functions
except in problem f19, where the CMA-ES produces better results than the FUZZY
method. However, in the comparison between the FUZZY algorithm and ABC,
FUZZY obtains the best results in all test functions except in problems f18 and f16,
where there is no statistical difference between the two methods.

In addition to the test in 50 dimensions, a second set of experiments have also
conducted in 100 dimensions considering the same set of hybrid functions.
Tables 8.15 and 8.16 present the results of the analysis in 100 dimensions. In
Table 8.15, the indexes �f , rf , fBest and fWorst, obtained during the total number of
executions, are reported. On the other hand, Table 8.14 presents the statistical
Wilcoxon analysis of the averaged best fitness values �f from Table 8.15.

Table 8.12 p-values produced by Wilcoxon test comparing FUZZY versus HS, FUZZY versus
BAT, FUZZY versus DE, FUZZY versus PSO, FUZZY versus CMA-ES and FUZZY versus ABC
over the “averaged best fitness values” from Table 8.11

Wilcoxon test for Multimodal functions of Table 8.18 with n = 100

FUZZY
versus

HS BAT DE PSO CMA-ES ABC

f8 8.1340
−05▲

6.4720E
−05▲

4.6920E
−05▲

3.1664E
−05▲

7.1163E
−05▲

3.7920E
−05▲

f9 1.3642E
−07▲

9.4982E
−06▲

7.6012E
−06▲

8.6620E
−06▲

5.4901E
−06▲

3.1362E
−06▲

f10 6.9482E
−07▲

6.3482E
−07▲

3.5698E
−06▲

6.1345E
−06▲

3.1692E
−04▲

3.9302E
−06▲

f11 4.9842E
−07▲

8.1647E
−07▲

7.1352E
−04▲

5.3120E
−06▲

2.0162E
−03▲

9.4867E
−03▲

f12 4.2682E
−08▲

7.6801E
−08▲

8.4672E
−07▲

7.4682E
−07▲

3.0521E
−06▼

1.6428E
−05▲

f13 4.5926E
−09▲

6.4720E
−09▲

6.1680E
−07▲

7.4682E
−08▲

9.1722E
−06▲

7.4682E
−04▲

f14 8.1550E
−05▲

8.9647E
−05▲

6.4923E
−04▼

9.4212E
−03▲

5.4682E
−04▲

6.0125E
−04▲

▲ 7 7 6 7 6 7

▼ 0 0 1 0 1 0

► 0 0 0 0 0 0

204 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
13

M
in
im

iz
at
io
n
re
su
lts

of
hy

br
id

fu
nc
tio

ns
fr
om

T
ab
le

8.
19

w
ith

n
=
50

H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 1
5

� f
7.
99

69
E
+1

3
5.
10

22
E
+2

1
12

.3
50

97
76

9.
64

E
+0

3
6.
36

E
−
06

5.
23

E
−
04

2.
49

E
−
15

r f
1.
38

68
E
+1

4
2.
79

45
E
+2

2
16

.9
15

70
32

51
95

.1
72

9
2.
09

15
E
−
06

0.
00

01
82

66
6.
65

12
E
−
15

f B
es
t

1.
53

09
E
+1

0
8.
19

18
E
+1

2
0.
01

18
96

52
4.
19

E
+0

3
4.
16

E
−
06

2.
68

E
−
04

3.
17

E
−
58

f W
or
st

4.
76

27
E
+1

4
1.
53

E
+2

3
65

.8
10

93
21

2.
50

E
+0

4
1.
48

E
−
05

1.
02

E
−
03

2.
53

E
−
14

f 1
6

� f
27

06
.7
36

44
35

08
.4
19

61
73

.6
99

31
7

5.
99

E
+0

2
5.
88

E
+0

2
4.
91

E
+0

1
4.
90

E
+0

1

r f
10

3.
25

36
45

25
2.
48

39
3

13
.9
15

60
9

11
4.
61

19
79

9.
03

87
47

46
0.
19

97
17

51
0.
00

02
58

06

f B
es
t

24
91

.6
75

9
28

83
.4
60

06
49

.0
00

59
72

39
3.
82

40
01

48
.9
96

44
85

48
.9
98

34
8

48
.9
97

36
91

f W
or
st

28
76

.2
07

57
38

69
.2
12

01
10

3.
69

00
98

87
8.
99

82
32

81
.0
71

77
12

49
.6
85

42
94

48
.9
98

14
62

f 1
7

� f
11

51
15

10
29

21
05

82
26

89
67

40
5.
57

59
3.
13

E
+0

5
5.
40

E
+0

1
8.
96

E
+0

2
5.
40

E
+0

1

r f
11

36
01

25
5

19
02

15
42

5
19

33
21

.3
47

42
14

04
.7
43

0.
00

02
00

18
13

2.
21

27
71

9.
88

57
E
−
05

f B
es
t

90
96

68
21

3
16

37
03

58
71

41
3.
08

83
53

15
52

9.
35

25
53

.9
99

93
08

54
6.
71

05
86

53
.9
99

80
73

f W
or
st

14
28

94
05

01
24

52
56

09
36

93
64

09
.1
63

19
47

95
2.
34

54
.0
00

76
02

11
55

.9
35

1
54

.0
00

17
7

f 1
8

� f
2.
01

55
E
+1

4
3.
34

27
E
+1

9
54

.2
55

75
44

9.
06

E
+0

2
5.
99

E
+0

1
4.
90

E
+0

1
4.
90

E
+0

1

r f
3.
90

73
E
+1

4
1.
83

E
+2

0
10

.4
97

05
65

29
1.
08

26
35

12
.4
08

94
53

0.
01

21
13

73
0

f B
es
t

91
10

61
73

1
3.
27

35
E
+1

3
49

.0
00

24
21

53
0.
60

74
46

49
.0
00

01
16

49
.0
02

10
79

49
f W

or
st

1.
85

E
+1

5
1.
00

E
+2

1
97

.1
23

62
5

15
97

.0
74

8
86

.0
09

95
56

49
.0
60

77
64

49
f 1
9

� f
7.
74

16
E
+1

4
7.
71

74
E
+1

8
−
19

.5
83

33
54

1.
17

E
+0

6
−
1.
44

E
+0

2
−
1.
43

E
+0

2
2.
18

E
+0

1

r f
1.
67

57
E
+1

5
4.
22

01
E
+1

9
11

7.
85

40
19

58
35

86
0.
88

0.
39

73
30

93
0.
29

99
81

67
47

2.
60

80
12

f B
es
t

13
43

48
88

81
1.
93

9E
+1

0
−
14

3.
74

83
94

45
11

.9
18

24
−
14

4.
05

67
23

−
14

3.
60

87
56

−
83

.2
60

91
65

f W
or
st

7.
53

E
+1

5
2.
31

E
+2

0
33

4.
75

37
41

32
05

34
89

.3
−
14

2.
20

82
56

−
14

3.
00

37
25

23
.5
92

36

B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

8.5 Experimental Results 205

Table 8.15 confirms the advantage of the Fuzzy method over HS, BAT, DE,
PSO, CMA-ES and ABC. After analyzing the results, it is clear that the fuzzy
method produces better results than HS, BAT, DE, PSO, CMA-ES and ABC in
functions f15–f18. However, it can be seen that the Fuzzy method performs worse
than CMA-ES and ABC in function f19. Similar to the case of 50 dimensions, in the
experiments of 100 dimensions, the fuzzy algorithm obtains solutions with the
smallest level of dispersion (rf). This consistency is valid for all functions, except
for problem f19, where the CMA-ES obtain the best rf value. Considering the fBest
and fWorst indexes, similar conclusion can be established that in the case of 50
dimensions. In 100 dimension, it is also observed that the fuzzy technique surpass
all algorithms in the production of high quality solutions.

On the other hand, the data obtained from the Wilcoxon analysis (Table 8.16)
demonstrates that the FUZZY method performs better than the other metaheuristic
algorithms in all test functions, except in problem f18, where the CMA-ES and ABC
produce the best results. In the Table 8.16, it is also summarized the results of the
analysis through the symbols ▲, ▼, and ►. The conclusions of the Wilcoxon test
statistically validate the results of Table 8.15. They indicate that the superior per-
formance of the fuzzy method is as a consequence of a better search strategy and
not for random effects.

Table 8.14 p-values produced by Wilcoxon test comparing FUZZY versus HS, FUZZY versus
BAT, FUZZY versus DE, FUZZY versus PSO, FUZZY versus CMA-ES and FUZZY versus ABC
over the “averaged best fitness values” from Table 8.13

Wilcoxon test for Hybrid functions of Table 8.19 with n = 50

FUZZY
versus

HS BAT DE PSO CMA-ES ABC

f15 4.6102E
−10▲

7.6801E
−11▲

8.1253E
−07▲

3.1678E
−09▲

1.3542E
−04▲

5.6932E
−05▲

f16 5.6922E
−08▲

6.4982E
−09▲

6.3142E
−04▲

8.4320E
−05▲

6.4931E
−05▲

0.1560►

f17 8.6523E
−11▲

9.4685E
−11▲

6.3352E
−09▲

7.3477E
−10▲

0.0956► 4.6501
−04▲

f18 3.4962E
−11▲

7.6851E
−12▲

4.6820E
−04▲

5.3102E
−06▲

4.8235E
−04▲

0.1986►

f19 7.6301E
−10▲

9.3114E
−11▲

4.3301E
−07▲

6.0021E
−09▲

6.3315E
−07▼

5.8937E
−07▼

▲ 5 5 5 5 4 3

▼ 0 0 0 0 1 1

► 0 0 0 0 0 1

206 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
15

M
in
im

iz
at
io
n
re
su
lts

of
hy

br
id

fu
nc
tio

ns
fr
om

T
ab
le

8.
19

w
ith

n
=
10

0

H
S

B
A
T

D
E

PS
O

C
M
A
-E
S

A
B
C

FU
Z
Z
Y

f 1
5

� f
1.
07

E
+3

8
1.
45

E
+4

6
1.
67

E
+0

2
3.
58

E
+0

4
8.
48

E
−
03

8.
13

E
−
02

1.
03

E
−
05

r f
2.
66

48
E
+3

8
7.
93

19
E
+4

6
21

2.
77

09
2

19
77

7.
87

98
0.
00

24
85

91
0.
04

14
46

73
5.
64

26
1E

−
05

f B
es
t

1.
88

E
+2

8
1.
31

E
+3

7
5.
17

E
+0

0
1.
58

E
+0

4
5.
99

E
−
03

4.
35

E
−
02

4.
50

E
−
44

f W
or
st

1.
21

E
+3

9
4.
34

E
+4

7
1.
15

E
+0

3
9.
15

E
+0

4
1.
75

E
−
02

2.
66

E
−
01

3.
09

E
−
04

f 1
6

� f
6.
46

E
+0

3
8.
00

E
+0

3
1.
90

E
+0

2
1.
36

E
+0

3
1.
55

E
+0

2
1.
81

E
+0

2
9.
90

E
+0

1

r f
31

6.
89

61
14

42
6.
76

18
23

28
.0
27

38
18

12
9.
05

77
3

18
.1
61

09
4

18
.5
18

55
06

0.
00

18
71

42

f B
es
t

57
53

.6
97

47
71

25
.8
46

23
14

8.
52

17
71

11
16

.8
23

4
12

2.
01

00
95

12
9.
80

72
03

98
.9
95

85
72

f W
or
st

69
97

.6
33

77
89

65
.0
81

63
26

0.
54

21
79

16
81

.5
43

33
18

7.
62

82
18

20
6.
63

42
92

99
.0
05

72
17

f 1
7

� f
3.
57

E
+0

9
5.
03

E
+0

9
6.
85

E
+0

5
2.
10

E
+0

6
5.
95

E
+0

2
3.
72

E
+0

3
1.
09

E
+0

2

r f
25

10
70

99
0

40
15

13
61

9
11

58
36

5.
05

14
26

95
1.
79

84
.3
34

72
45

9.
76

14
56

0.
00

26
80

2

f B
es
t

29
08

49
27

28
40

28
08

18
11

47
67

.4
75

53
42

84
29

.3
23

42
8.
76

17
73

29
73

.3
04

01
10

8.
99

99
7

f W
or
st

39
53

74
25

23
56

05
71

36
16

47
89

38
3.
94

62
74

36
1.
22

78
4.
97

22
89

47
56

.5
40

52
10

9.
01

46
9

f 1
8

� f
3.
30

E
+3

8
5.
29

E
+4

3
1.
33

E
+0

2
2.
09

E
+0

3
1.
49

E
+0

2
3.
34

E
+0

2
1.
08

E
+0

2

r f
1.
20

38
E
+3

9
2.
66

9E
+4

4
20

.7
61

51
51

48
1.
83

94
56

23
.6
85

19
47

90
8.
91

52
77

8.
76

05
96

29

f B
es
t

5.
02

E
+2

9
4.
38

E
+3

4
1.
01

E
+0

2
1.
24

E
+0

3
1.
12

E
+0

2
9.
90

E
+0

1
99

.6
50

71
48

f W
or
st

5.
86

E
+3

9
1.
47

E
+4

5
1.
92

E
+0

2
3.
51

E
+0

3
2.
10

E
+0

2
4.
24

E
+0

3
13

4.
54

50
48

f 1
9

� f
1.
01

E
+3

8
1.
49

E
+4

4
9.
38

E
+0

3
6.
45

E
+0

7
−
2.
94

E
+0

2
−
2.
01

E
+0

2
4.
29

E
+0

7

r f
3.
99

07
E
+3

8
6.
23

88
E
+4

4
40

54
5.
73

03
21

70
95

41
2

0.
55

04
73

99
1.
27

09
72

02
20

01
32

55
8

f B
es
t

4.
34

E
+2

9
1.
43

E
+3

6
−
1.
10

E
+0

2
4.
71

E
+0

4
−
2.
95

E
+0

2
−
29

5.
68

22
1

−
9.
45

E
+0

1

f W
or
st

2.
18

E
+3

9
3.
36

E
+4

5
2.
23

E
+0

5
1.
17

E
+0

9
−
2.
92

E
+0

2
−
28

8.
14

56
24

1.
08

E
+0

9

B
ol
d
el
em

en
ts
re
pr
es
en
t
th
e
be
st
va
lu
es

8.5 Experimental Results 207

8.5.2.4 Convergence Experiments

The comparison of the final fitness value cannot completely describe the searching
performance of an optimization algorithm. Therefore, in this section, a convergence
test on the seven compared algorithms has been conducted. The purpose of this
experiment is to evaluate the velocity with which a compared method reaches the
optimum. In the experiment, the performance of each algorithm is considered over
all functions (f1–f19) from Appendix, operated in 50 dimensions. In order to build
the convergence graphs, we employ the raw simulation data generated in
Sects. 8.5.2.1, 8.5.2.2 and 8.5.2.3. As each function is executed 30 times for each
algorithm, we select the convergence data of the run which represents the median
final result. Figures 8.5, 8.6 and 8.7 show the convergence data of the seven
compared algorithms. Figure 8.5 presents the convergence results for functions f1–
f6, Fig. 8.6 for functions f7–f12 and Fig. 8.7 for functions f13–f19. In the figures, the
x-axis is the elapsed function evaluations, and the y-axis represents the best fitness
values found.

From Fig. 8.5, it is clear that the fuzzy method presents a better convergence
than the other algorithms for functions f1, f2, f4 and f5. However, for function f3 and
f6 the CMA-ES reaches faster an optimal value. After an analysis of Fig. 8.5, we
can say that the Fuzzy method and the CMA-ES algorithm attain the best con-
vergence responses whereas the other techniques maintain slower responses. In
Fig. 8.6, the convergence graphs show that the fuzzy method obtains the best
responses for functions f9, f10 and f11. In function f7, even though the Fuzzy
technique finds in a fat way optimal solutions, the DE algorithm presents the best

Table 8.16 p-values produced by Wilcoxon test comparing FUZZY versus HS, FUZZY versus
BAT, FUZZY versus DE, FUZZY versus PSO, FUZZY versus CMA-ES and FUZZY versus ABC
over the “averaged best fitness values” from Table 8.15

Wilcoxon test for Hybrid functions of Table 8.19 with n = 100

FUZZY
versus

HS BAT DE PSO CMA-ES ABC

f15 8.4682E
−12▲

9.7624E
−12▲

6.4950E
−07▲

7.0012E
−08▲

3.1261E
−04▲

7.6823E
−04▲

f16 7.6332E
−05▲

8.4220E
−05▲

6.5010E
−04▲

2.0035E
−04▲

3.9630E
−04▲

6.0012E
−11▲

f17 5.3422E
−08▲

6.8892E
−08▲

3.3019E
−07▲

9.0394E
−07▲

4.2961E
−04▲

8.6301E
−05▲

f18 4.9302E
−12▲

8.3670E
−12▲

5.6312E
−04▲

3.4621E
−05▲

6.0341E
−04▲

1.3025E
−05▲

f19 6.9210E
−11▲

2.4950E
−12▲

6.3301E
−06▲

2.0182E
−04▲

6.3019E
−07▼

4.1305E
−07▼

▲ 5 5 5 5 4 4

▼ 0 0 0 0 1 1

► 0 0 0 0 0 0

208 8 Metaheuristic Algorithms Based on Fuzzy Logic

convergence result. An interesting case is function f9, where several optimization
methods such as FUZZY, CMA-ES, ABC and DE obtain an acceptable conver-
gence response. In case of function f8, the DE and ABC methods own the best
convergence properties. Finally, in function f12, the CMA-ES attains the fastest
reaction. Finally, in Fig. 8.7, the convergence responses for functions f13–f19 are
presented. In function f13 of Fig. 8.7, the algorithms CMA-ES and ABC obtain the
best responses. In case of function f14, DE and ABC find an optimal solution in a
prompt way than the other optimization techniques. Although for functions f15–f18
the fuzzy algorithm reaches the fastest convergence reaction, the CMA-ES method
maintains a similar response. For function f19, the CMA-ES and ABC own the best
convergence properties.

Therefore, the convergence speed of the fuzzy method in solving unimodal
optimization (f1–f7) problems is faster than HS, BAT, DE, PSO, CMA-ES and
ABC, except in f7, where the CMA-ES reaches the best response. On the other
hand, when solving multimodal optimization problems (f8–f14), the fuzzy algorithm
generally converges as fast as or even faster than the compared algorithms. This
phenomenon can be clearly observed in Figs. 8.6 and 8.7, where the method
generates a similar convergence curve to the others, even in the worst case scenario.
Finally, after analyzing the performance of all algorithms on hybrid functions (f15–
f19), it is clear that the convergence response of the approach is not as fast as
CMA-ES. In fact, the fuzzy and the CMA-ES algorithms present the best con-
vergence properties when they face the optimization of hybrid functions.

8.5.2.5 Computational Complexity

In this section, the computational complexity of all methods is evaluated.
Metaheuristic methods are, in general, complex processes with several random
operations and stochastic sub-routines. Therefore, it is impractical to conduct a
complexity analysis from a deterministic point of view. For that reason, the com-
putational complexity (C) is used in order to evaluate the computational effort of
each algorithm. C exhibits the averaged CPU time invested by an algorithm with
regard to a common time reference, when it is under operation. In order to assess
the computational complexity, the procedure presented in [48] has been conducted.
Under this process, C is obtained through the subsequent method:

1. The time reference T0 is computed. T0 represents the computing time consumed by the
execution of the following standard code:

for j=1:1000000
v=0.55+j
v=v+v; v=v/2; v=v*v; v=sqrt(v); v=exp(v); v=v/(v+2);
end

(continued)

8.5 Experimental Results 209

(continued)

2. Evaluate the computing time T1 for function operation. T1 Expresses the time in which
200,000 runs of function f9 (multimodal) are executed (only the function without
optimization method). In the test, the function f9 is operated with n = 100

3. Calculate the execution time T2 for the optimization algorithm. T2 exhibits the elapsed
time in which 200,000 function evaluations of f9 are executed (here, optimization method
and function are combined)

4. The average time �T2 is computed. First, execute the Step 3 five times. Then, extract their
average value �T2 ¼ ðT1

2 þ T2
2 þ T3

2 þ T4
2 þ T5

2 Þ=5
5. The computational complexity C is obtained as follows: C ¼ ð�T2 � T1Þ=T0

Under this process, the computational complexity (C) values of HS, BAT, DE,
PSO, CMA-ES, ABC, and FUZZY are obtained. Their values correspond to 77.23,
81.51, 51.20, 36.87, 40.77, 70.17 and 40.91, respectively. A smallerC value indicates
that the method is less complex, which allows a faster execution speed under the same
evaluation conditions. An analysis of the experiment results shows that although the
FUZZY algorithm is slightly more complex than PSO and CMA-ES, their compu-
tational complexity (C) values are comparable. Additionally, the three algorithms are
significantly less computationally complex than HS, BAT, DE and ABC.

8.6 Conclusions

Recently, several new metaheuristic algorithms have been proposed with interesting
results. Most of them use operators based on metaphors of natural or social ele-
ments to evolve candidate solutions. Although humans have demonstrated their
potential to solve real-life complex optimization problems, the use of human
knowledge to build optimization algorithms has been less popular than the natural
or social metaphors. In this chapter, a methodology to implement
human-knowledge-based optimization strategies has been presented. Under the
approach, a conducted search strategy is modeled in the rule base of a
Takagi-Sugeno Fuzzy inference system, so that the implemented fuzzy rules
express the conditions under which candidate solutions are evolved during the
optimization process.

All the approaches reported in the literature that integrate Fuzzy logic and
metaheuristic techniques consider the optimization capabilities of the metaheuristic
algorithms for improving the performance of fuzzy systems. In this method, the
approach is completely different. Under this new schema, the Fuzzy system directly
conducts the search strategy during the optimization process. In this chapter our
intent is to propose a methodology for emulating human search strategies in an
algorithmic structure. To the best of our knowledge, this is the first time that a fuzzy
system is used as a metaheuristic algorithm.

The Fuzzy methodology presents three important characteristics: (1) Generation.
Under this methodology, fuzzy logic provides a simple and well-known method for

210 8 Metaheuristic Algorithms Based on Fuzzy Logic

constructing a search strategy via the use of human knowledge. (2) Transparency. It
generates fully interpretable models whose content expresses the search strategy as
humans can conduct it. (3) Improvement. As human experts interact with an opti-
mization process, they obtain a better understanding of successful search strategies
capable of finding optimal solutions. As a result, new rules are added so that their
inclusion in the existing rule base improves the quality of the original search
strategy. Under the Fuzzy methodology, new rules can be easily incorporated to an
already existent system. The addition of such rules allows the capacities of the
original system to be extended.

To demonstrate the ability and robustness of our approach, the fuzzy algorithm
has been experimentally evaluated with a test suite of 19 benchmark functions. To
assess the performance of the fuzzy algorithm, it has been compared to other
popular optimization approaches based on evolutionary principles currently in use.

2f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 10 4
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations ×10 4

10-60

10-40

10-20

100

10 20

1040

F2
(x

)

HS

DE

BAT

ABC

PSO

CMA-ES

FUZZY

3f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 104

10-15

10-10

10-5

100

105

1010

F3
(x

)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

4f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 10 4

10 -80

10 -60

10 -40

10 -20

10 0

10 20

F4
(x

)
HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

5f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations × 10 4

10 -80

10 -60

10 -40

10 -20

10 0

10 20

F4
(x

)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

6f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 10 4

10-30

10-20

10-10

10 0

1010

F6
(x

)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

1f

Fig. 8.5 Convergence test results for functions f1– f6

8.6 Conclusions 211

The results, statistically validated, have confirmed that the Fuzzy algorithm out-
performs its competitors for most of the test functions in terms of its solution
quality and convergence.

7f 8f

9f 10f

11f 12f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 10 4

10 -4

10 -2

10 0

10 2

10 4
F7

(x
)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

Number of function evaluations × 10 4

-2.5

-2

-1.5

-1

-0.5

0

0.5

F8
(x

)

× 10 4

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations × 10 4

0

100

200

300

400

500

600

700

800

F9
(x

)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

Number of function evaluations × 10 4

10 -15

10 -10

10 -5

10 0

10 5

F1
0(

x)
HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations
× 10 4

10 -40

10 -30

10 -20

10 -10

10 0

10 10

F1
2(

x)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Fig. 8.6 Convergence test results for functions f7– f12

212 8 Metaheuristic Algorithms Based on Fuzzy Logic

13f 14f

15f 16f

17f 18f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations × 10 4

10 -30

10 -20

10 -10

10 0

10 10
F1

3(
x)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations × 10 4

-2000
-1800
-1600
-1400
-1200
-1000
-800
-600
-400
-200

0

F1
4(

x)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations × 10 4

10 -20

10 -10

10 0

10 10

10 20

10 30

10 40

F1
5(

x)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Number of function evaluations × 10 4

10 1

10 2

10 3

10 4

F1
6(

x)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 10 4

10 0

10 2

10 4

10 6

10 8

10 10

F1
7(

x)

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 10 4

10 0

10 5

10 10

10 15

F1
8(

x) HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

19f

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Number of function evaluations × 10 4

-400
-200

0
200
400
600
800

F1
9(

x)

10 10

10 20

HS
DE
BAT
ABC
PSO
CMA-ES
FUZZY

Fig. 8.7 Convergence test results for functions f13–f19

8.6 Conclusions 213

Appendix: List of Benchmark Functions

See Tables 8.17, 8.18 and 8.19.

Table 8.17 Unimodal test functions used in the experimental study

Function S Dim Minimum

f1ðxÞ ¼
Pn

i¼1 x
2
i �100;100½ �n n ¼ 50

n ¼ 100
x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

f2ðxÞ ¼
Pn

i¼1 xij j þ Qn
i¼1 xij j �10;10½ �n n ¼ 50

n ¼ 100
x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

f3ðxÞ ¼
Pn

i¼1

Pi
j¼1 xj

� �2 �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

f4ðxÞ ¼ maxi xij j; 1� i� nf g �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

f5ðxÞ ¼
Pn�1

i¼1 100ðxiþ 1 � x2i Þ2 þðxi � 1Þ2
h i �30;30½ �n n ¼ 50

n ¼ 100
x� ¼ ð1; . . .; 1Þ;
f ðx�Þ ¼ 0

f6ðxÞ ¼
Pn

i¼1 xi þ 0:5b cð Þ2 �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

f7ðxÞ ¼
Pn

i¼1 ix
4
i þ random 0;1ð Þ �1:28;1:28½ �n n ¼ 50

n ¼ 100
x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

214 8 Metaheuristic Algorithms Based on Fuzzy Logic

T
ab

le
8.
18

M
ul
tim

od
al

te
st
fu
nc
tio

ns
us
ed

in
th
e
ex
pe
ri
m
en
ta
l
st
ud

y

f 8
ðx
Þ¼

P n i¼
1
�x

i
si
n

ffiffiffiffiffiffi x ij
j

p �
�

�5
00
;5
00

½
�n

n
¼

50
n
¼

10
0

x�
¼

ð4
20
;.
..
;4
20
Þ;

fðx
� Þ

¼
�4

18
:9
82

9
�
n

f 9
ðx
Þ¼

P n i¼
1
x2 i

�
10

co
sð2

px
iÞþ

10
�

�5

:1
2;
5:
12

½
�n

n
¼

50
n
¼

10
0

x�
¼

ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

f 1
0
ðx
Þ¼

�2
0
ex
p

�0
:2

ffiffiffiffiffiffiffiffi
ffiffiffiffiffiffiffiffi

ffiffiffiffiffi
1 n

X n i¼
1
x2 i

r

!

�
ex
p

1 n

X n i¼
1
co
s
2p

x i
ð

Þ
�

� þ
20

þ
ex
p

�3
2;
32

½
�n

n
¼

50
n
¼

10
0

x�
¼

ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

f 1
1
xð
Þ¼

1
40
00

P n i¼
1
x2 i

�
Q n i¼

1
co
s

x i
ffi ip��
þ
1

�6
00
;6
00

½
�n

n
¼

50
n
¼

10
0

x�
¼

ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

f 1
2
ðx
Þ¼

p n
10

si
nð
p
y 1
Þþ

X n
�1 i¼
1
ðy i

�
1Þ

2
1
þ
10

si
n2
ðp
y i

þ
1
Þ

�

n
þ
ðy n

�
1Þ

2
o þ

X n i¼
1
uð
x i
;1
0;
10

0;
4Þ

y i
¼

1
þ

x i
þ
1

ð
Þ

4

u
x i
;a
;k
;m

ð
Þ¼

k
x i
�
a

ð
Þm

0
k
�x

i
�
a

ð
Þm

x i
[

a
�a

�
x i
�
a

x i
\
a

8 < :

�5
0;
50

½
�n

n
¼

50
n
¼

10
0

x�
¼

ð0
;.
..
;0
Þ;

fðx
� Þ

¼
0

f 1
3
ðx
Þ¼

0:
1

si
n2

3p
x 1

ð
Þþ

X n i¼
1
x i
�
1

ð
Þ2

n
1
þ

si
n2

3p
x i
þ
1

ð
Þ

�

 þ

x n
�
1

ð
Þ2

1
þ

si
n2

2p
x n

ð
Þ

�

o

þ
X n i¼

1
u
x i
;5
;1
00
;4

ð
Þ;

u
x i
;a
;k
;m

ð
Þ¼

k
x i
�
a

ð
Þm

x i
[

a
0

�a
\

x i
\

a
k
�x

i
�
a

ð
Þm

x i
\

�
a

8 < :

�1
0;
10

½
�n

n
¼

50
n
¼

10
0

x�
¼

ð1
;.
..
;1
Þ;

fðx
� Þ

¼
0

f 1
4
xðÞ

¼
1 2

P n i¼
1

x4 i
�
16
x2 i

þ
5x

i
�

�
�5

;5
½

�n
n
¼

50
n
¼

10
0

x�
¼

ð�
2:
90
;.
..
;�

2:
90

Þ;
fðx

� Þ
¼

�3
9:
16

59
9
�
n

Appendix: List of Benchmark Functions 215

References

1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
2. He, Y., Chen, H., He, Z., Zhou, L.: Multi-attribute decision making based on neutral

averaging operators for intuitionistic fuzzy information. Appl. Soft Comput. 27, 64–76 (2015)
3. Taur, J., Tao, C.W.: Design and analysis of region-wise linear fuzzy controllers. IEEE Trans.

Syst. Man Cybern. B Cybern. 27(3), 526–532 (1997)
4. Ali, M.I., Shabir, M.: Logic connectives for soft sets and fuzzy soft sets. IEEE Trans. Fuzzy

Syst. 22(6), 1431–1442 (2014)
5. Novák, V., Hurtík, P., Habiballa, H., Štepnička, M.: Recognition of damaged letters based on

mathematical fuzzy logic analysis. J. Appl. Logic 13(2), 94–104 (2015)
6. Papakostas, G.A., Hatzimichailidis, A.G., Kaburlasos, V.G.: Distance and similarity measures

between intuitionistic fuzzy sets: a comparative analysis from a pattern recognition point of
view. Pattern Recogn. Lett. 34(14), 1609–1622 (2013)

7. Wang, X., Fu, M., Ma, H., Yang, Y.: Lateral control of autonomous vehicles based on fuzzy
logic. Control Eng. Pract. 34, 1–17 (2015)

8. Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent
control. Inf. Sci. 279, 615–631 (2014)

9. Raju, G., Nair, M.S.: A fast and efficient color image enhancement method based on
fuzzy-logic and histogram. AEU Int. J. Electron. Commun. 68(3), 237–243 (2014)

10. Zareiforoush, H., Minaei, S., Alizadeh, M.R., Banakar, A.: A hybrid intelligent approach
based on computer vision and fuzzy logic for quality measurement of milled rice.
Measurement 66, 26–34 (2015)

11. Nanda, S.J., Panda, G.: A survey on nature inspired metaheuristic algorithms for partitional
clustering. Swarm Evol. Comput. 16, 1–18 (2014)

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the 1995 IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948, December 1995

13. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical
Report-TR06. Engineering Faculty, Computer Engineering Department, Erciyes University
(2005)

14. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony
search. Simulations 76, 60–68 (2001)

Table 8.19 Hybrid test functions used in the experimental study

Function S Dim Minimum

f15ðxÞ ¼ f1ðxÞþ f2ðxÞþ f9ðxÞ �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ 0

f16ðxÞ ¼ f9ðxÞþ f5ðxÞþ f11ðxÞ �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ n� 1

f17ðxÞ ¼ f3ðxÞþ f5ðxÞþ f10ðxÞþ f13ðxÞ �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ ð1:1� nÞ � 1

f18ðxÞ ¼ f2ðxÞþ f5ðxÞþ f9ðxÞþ f10ðxÞþ f11ðxÞ �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð0; . . .; 0Þ;
f ðx�Þ ¼ n� 1

f19ðxÞ ¼ f1ðxÞþ f2ðxÞþ f8ðxÞþ f10ðxÞþ f12ðxÞ �100;100½ �n n ¼ 50
n ¼ 100

x� ¼ ð1; . . .; 1Þ;
f ðx�Þ ¼ 0

216 8 Metaheuristic Algorithms Based on Fuzzy Logic

15. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Cruz, C., González, J., Krasnogor,
G.T.N., Pelta, D.A. (eds.) Nature Inspired Cooperative Strategies for Optimization (NISCO
2010), Studies in Computational Intelligence, vol. 284, pp. 65–74. Springer, Berlin (2010)

16. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Stochastic Algorithms:
Foundations and Applications, SAGA 2009, Lecture Notes in Computer Sciences, vol. 5792,
pp. 169–178 (2009)

17. Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisneros, M.: A swarm optimization algorithm
inspired in the behavior of the social-spider. Expert Syst. Appl. 40(16), 6374–6384 (2013)

18. Cuevas, E., González, M., Zaldivar, D., Pérez-Cisneros, M., García, G.: An algorithm for
global optimization inspired by collective animal behavior. Discrete Dyn. Nat. Soc. art. no.
638275 (2012)

19. Storn, R., Price, K.: Differential evolution—a simple and efficient adaptive scheme for global
optimisation over continuous spaces. Technical Report TR-95–012. ICSI, Berkeley, CA (1995)

20. Goldberg, D.E.: Genetic Algorithm in Search Optimization and Machine Learning.
Addison-Wesley, USA (1989)

21. Herrera, F.: Genetic fuzzy systems: taxonomy, current research trends and prospects. Evol.
Intell. 1, 27–46 (2008)

22. Fernández, A., López, V., del Jesus, M.J., Herrera, F.: Revisiting evolutionary fuzzy systems:
taxonomy, applications, new trends and challenges. Knowl. Based Syst. 80, 109–121 (2015)

23. Caraveo, C.,Valdez, F., Castillo,O.:Optimization offuzzy controller design using a newbee colony
algorithm with fuzzy dynamic parameter adaptation. Appl. Soft Comput. 43, 131–142 (2016)

24. Castillo, O., Neyoy, H., Soria, J., Melin, P., Valdez, F.: A new approach for dynamic fuzzy
logic parameter tuning in ant colony optimization and its application in fuzzy control of a
mobile robot. Appl. Soft Comput. 28, 150–159 (2015)

25. Olivas, F., Valdez, F., Castillo, O., Melin, P.: Dynamic parameter adaptation in particle
swarm optimization using interval type-2 fuzzy logic. Soft. Comput. 20(3), 1057–1070 (2016)

26. Castillo, O., Ochoa, P., Soria, J.: Differential evolution with fuzzy logic for dynamic
adaptation of parameters in mathematical function optimization. In: Imprecision and
Uncertainty in Information Representation and Processing, pp. 361–374 (2016)

27. Guerrero, M., Castillo, O., García Valdez, M.: Fuzzy dynamic parameters adaptation in the
cuckoo search algorithm using fuzzy logic. In: CEC 2015, pp. 441–448

28. Alcala, R., Gacto, M.J., Herrera, F.: A fast and scalable multiobjective genetic fuzzy system
for linguistic fuzzy modeling in high-dimensional regression problems. IEEE Trans. Fuzzy
Syst. 19(4), 666–681 (2011)

29. Alcala-Fdez, J., Alcala, R., Gacto, M.J., Herrera, F.: Learning the membership function
contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets Syst. 160
(7), 905–921 (2009)

30. Alcala, R., Alcala-Fdez, J., Herrera, F.: A proposal for the genetic lateral tuning of linguistic
fuzzy systems and its interaction with rule selection. IEEE Trans. Fuzzy Syst. 15(4), 616–635
(2007)

31. Alcala-Fdez, J., Alcala, R., Herrera, F.: A fuzzy association rule-based classification model for
high-dimensional problems with genetic rule selection and lateral tuning. IEEE Trans. Fuzzy
Syst. 19(5), 857–872 (2011)

32. Carmona, C.J., Gonzalez, P., del Jesus, M.J., Navio-Acosta, M., Jimenez-Trevino, L.:
Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency
department. Soft. Comput. 15(12), 2435–2448 (2011)

33. Cordon, O.: A historical review of evolutionary learning methods for Mamdani-type fuzzy
rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approximate
Reasoning 52(6), 894–913 (2011)

34. Cruz-Ramirez, M., Hervas-Martinez, C., Sanchez-Monedero, J., Gutierrez, P.A.: Metrics to
guide a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing
135, 21–31 (2014)

35. Lessmann, S., Caserta, M., Arango, I.M.: Tuning metaheuristics: a data mining based
approach for particle swarm optimization. Expert Syst. Appl. 38(10), 12826–12838 (2011)

References 217

36. Sörensen, K.: Metaheuristics—the metaphor exposed. Int. Trans. Oper. Res. 22(1), 3–18
(2015)

37. Omid, M., Lashgari, M., Mobli, H., Alimardani, R., Mohtasebi, S., Hesamifard, R.: Design of
fuzzy logic control system incorporating human expert knowledge for combine harvester.
Expert Syst. Appl. 37(10), 7080–7085 (2010)

38. Fullér, R., Canós Darós, L., Darós, M.J.C.: Transparent fuzzy logic based methods for some
human resource problems. Revista Electrónica de Comunicaciones y Trabajos de ASEPUMA
13, 27–41 (2012)

39. Cordón, O., Herrera, F.: A three-stage evolutionary process for learning descriptive and
approximate fuzzy-logic-controller knowledge bases from examples. Int. J. Approximate
Reasoning 17(4), 369–407 (1997)

40. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and
control. IEEE Trans. Syst. Man Cybern. SMC-15, 116–132 (1985)

41. Mamdani, E., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller.
Int. J. Man Mach. Stud. 7, 1–13 (1975)

42. Bagis, A., Konar, M.: Comparison of Sugeno and Mamdani fuzzy models optimized by
artificial bee colony algorithm for nonlinear system modelling. Trans. Inst. Measur. Control
38(5), 579–592 (2016)

43. Guney, K., Sarikaya, N.: Comparison of mamdani and sugeno fuzzy inference system models
for resonant frequency calculation of rectangular microstrip antennas. Prog. Electromagnet.
Res. B 12, 81–104 (2009)

44. Baldick, R.: Applied Optimization. Cambridge University Press, Cambridge (2006)
45. Simon, D.: Evolutionary Algorithms—Biologically Inspired and Population Based

Approaches to Computer Intelligence. Wiley, USA (2013)
46. Wong, S.Y., Yap, K.S., Yap, H.J., Tan, S.C., Chang, S.W.: On equivalence of FIS and ELM

for interpretable rule-based knowledge representation. IEEE Trans. Neural Networks Learn.
Syst. 27(7), 1417–1430 (2015)

47. Yap, K.S., Wong, S.Y., Tiong, S.K.: Compressing and improving fuzzy rules using genetic
algorithm and its application to fault detection. In: IEEE 18th Conference on Emerging
Technologies & Factory Automation (ETFA), vol. 1, pp. 1–4 (2013)

48. Liang, J.J., Qu, B.-Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the
CEC 2015, Special session and competition on single objective real parameter numerical
optimization. Technical Report 201311. Computational Intelligence Laboratory, Zhengzhou
University, Zhengzhou China and Nanyang Technological University, Singapore (2015)

49. Hansen, N., Ostermeier, A., Gawelczyk, A.: On the adaptation of arbitrary normal mutation
distributions in evolution strategies: the generating set adaptation. In: Proceedings of the 6th
International Conference on Genetic Algorithms, pp. 57–64 (1995)

50. Boussaïda, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237,
82–117 (2013)

51. Yu, J.J.Q., Li, V.O.K.: A social spider algorithm for global optimization. Appl. Soft Comput.
30, 614–627 (2015)

52. Li, M.D., Zhao, H., Weng, X.W., Han, T.: A novel nature-inspired algorithm for optimization:
virus colony search. Adv. Eng. Softw. 92, 65–88 (2016)

53. Han, M., Liu, C., Xing, J.: An evolutionary membrane algorithm for global numerical
optimization problems. Inf. Sci. 276, 219–241 (2014)

54. Meng, Z., Pan, J.-S.: Monkey king evolution: a new memetic evolutionary algorithm and its
application in vehicle fuel consumption optimization. Knowl. Based Syst. 97, 144–157 (2016)

55. https://www.lri.fr/*hansen/cmaesintro.html
56. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)
57. Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for

analyzing the evolutionary algorithms’ behavior: a case study on the CEC ’2005, Special
session on real parameter optimization. J Heurist (2008). https://doi.org/10.1007/s10732-008-
9080-4

218 8 Metaheuristic Algorithms Based on Fuzzy Logic

https://www.lri.fr/%7ehansen/cmaesintro.html
http://dx.doi.org/10.1007/s10732-008-9080-4
http://dx.doi.org/10.1007/s10732-008-9080-4

	Preface
	Contents
	1 Introduction
	1.1 Definition of an Optimization Problem
	1.2 Classical Optimization
	1.3 Metaheuristic Computation Methods
	1.3.1 Structure of a Metaheuristic Computation Algorithm

	References

	2 The Metaheuristic Algorithm of the Social-Spider
	2.1 Introduction
	2.2 Biological Concepts
	2.3 The SSO Algorithm
	2.3.1 Fitness Assignation
	2.3.2 Modeling of the Vibrations Through the Communal Web
	2.3.3 Initializing the Population
	2.3.4 Cooperative Operators
	2.3.5 Mating Operator
	2.3.6 Computational Procedure
	2.3.7 Discussion About the SSO Algorithm

	2.4 Experimental Results
	2.4.1 Performance Comparison to Other Metaheuristic Algorithms

	2.5 Conclusions
	Appendix: List of Benchmark Functions
	References

	3 Calibration of Fractional Fuzzy Controllers by Using the Social-Spider Method
	3.1 Introduction
	3.2 Fractional-Order Models
	3.2.1 Fractional Calculus
	3.2.2 Approximation of Fractional Operators

	3.3 Fuzzy Controller
	3.4 Social Spider Optimization (SSO)
	3.5 Problem Formulation
	3.6 Numerical Simulations
	3.6.1 Results Over High-Order Plants (G_{1} (s))
	3.6.2 Results Over Non-minimum Systems (G_{2} (s))
	3.6.3 Results Over Fractional Systems (G_{3} (s))

	3.7 Conclusions
	References

	4 The Metaheuristic Algorithm of the Locust-Search
	4.1 Introduction
	4.2 Biological Fundamentals
	4.2.1 Solitary Phase
	4.2.2 Social Phase

	4.3 The Locust Search (LS) Algorithm
	4.3.1 Solitary Operation (A)
	4.3.2 Social Operation (B)
	4.3.3 Complete LS Algorithm
	4.3.4 Discussion About the LS Algorithm

	4.4 Experimental Results
	4.5 Conclusions
	Appendix: List of Benchmark Functions
	References

	5 Identification of Fractional Chaotic Systems by Using the Locust Search Algorithm
	5.1 Introduction
	5.2 Fractional Calculus
	5.3 Locust Search (LS) Algorithm
	5.3.1 Solitary Operation (A)
	5.3.2 Social Operation (B)

	5.4 Fractional-Order van der Pol Oscillator
	5.5 Problem Formulation
	5.6 Experimental Results
	5.7 Conclusions
	References

	6 The States of Matter Search (SMS)
	6.1 Introduction
	6.2 States of Matter
	6.3 Fitness Approximation Method
	6.3.1 Definition of Operators
	6.3.2 SMS Algorithm

	6.4 Experimental Results
	6.4.1 Performance Comparison to Other Meta-Heuristic Algorithms

	6.5 Conclusions
	Appendix: List of Benchmark Functions
	References

	7 Multimodal States of Matter Search
	7.1 Introduction
	7.2 Original States of Matter Search (SMS)
	7.2.1 Definition of Operators
	7.2.1.1 Direction Vector
	7.2.1.2 Collision Operation
	7.2.1.3 Random Positions

	7.2.2 General Procedure
	7.2.3 Parameter Analysis
	7.2.4 Parameter Tuning Results

	7.3 The Multi-modal States of Matter Search (MSMS)
	7.3.1 Memory Mechanism
	7.3.1.1 Initialization Phase
	7.3.1.2 Capture Phase
	7.3.1.3 Memory Mechanism and Its Similarity with Other EA Methods

	7.3.2 Modification of the Original SMS Search Strategy
	7.3.3 Depuration Procedure
	7.3.4 Discussion About the MSMS Algorithm

	7.4 Experimental Results
	7.4.1 Experimental Methodology
	7.4.2 Comparing MSMS Performance for Fixed Functions (Low Dimensional)
	7.4.3 Comparing MSMS Performance for Composition Functions (High Dimensional)
	7.4.4 Diversity and Exploration
	7.4.5 Computational Effort

	7.5 Conclusions
	Appendix: List of Benchmark Functions
	References

	8 Metaheuristic Algorithms Based on Fuzzy Logic
	8.1 Introduction
	8.2 Fuzzy Logic and Reasoning Models
	8.2.1 Fuzzy Logic Concepts
	8.2.2 The Takagi-Sugeno (TS) Fuzzy Model
	8.2.2.1 Antecedent (I)
	8.2.2.2 Consequent (II)
	8.2.2.3 Inference in the TS Model

	8.3 The Analyzed Methodology
	8.3.1 Optimization Strategy
	8.3.1.1 Linguistic Variables Characterization (A)
	8.3.1.2 Rule Base Formulation (B)
	8.3.1.3 Implementation of the TS Fuzzy System

	8.3.2 Computational Procedure

	8.4 Discussion About the Methodology
	8.4.1 Optimization Algorithm
	8.4.2 Modeling Characteristics

	8.5 Experimental Results
	8.5.1 Performance Evaluation with Regard to Its Own Tuning Parameters
	8.5.2 Comparison with Other Optimization Approaches
	8.5.2.1 Unimodal Test Functions
	8.5.2.2 Multimodal Test Functions
	8.5.2.3 Hybrid Test Functions
	8.5.2.4 Convergence Experiments
	8.5.2.5 Computational Complexity

	8.6 Conclusions
	Appendix: List of Benchmark Functions
	References

