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Abstract. Bidirectional transformations, like software, need to be care-
fully engineered in order to provide guarantees about their correctness,
completeness, acceptability and usability. This paper summarises a col-
lection of lectures pertaining to engineering bidirectional transforma-
tions using Model-Driven Engineering techniques and technologies. It
focuses on stages of a typical engineering lifecycle, starting with require-
ments and progressing to implementation and verification. It summarises
Model-Driven Engineering approaches to capturing requirements, archi-
tectures and designs for bidirectional transformations, and suggests an
approach for verification as well. It concludes by describing some chal-
lenges for future research into engineering bidirectional transformations.

1 Introduction

This paper constitutes the notes for a set of lectures on a collection of techniques
and tools that can be used for engineering bidirectional transformations (BX).
The motivation for these lectures is our view that transformations in general –
and BX in the specific – are like other software systems: they are designed to
be executed on a machine, are complicated (they involve many components that
interact in a variety of ways), are in some cases complex (they exhibit behaviour
that cannot be directly predicted from the behaviour of the individual parts),
and are difficult to build correctly. As such, like software, transformations should
be engineered by following a rigorous process. The advantages of doing so are
the same as for software, including:

– Repeatability: by following a process, we potentially make it easier for others
to repeat our work, or to reduce the amount of effort required to build a
similar system in the future.

– Review and Scale: by decomposing a large engineering problem into stages, we
potentially make it easier to audit and validate the results of each stage, and
to solve larger problems than we would be able to if we treated the problem
monolithically.

– Automation: by following a process we have greater opportunities to automate
parts of it, e.g., generation of code or documents.

– Training: by following and documenting a rigorous engineering process we
may make it easier to train others.
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BX are special kinds of transformations with, in our opinion, complicated exe-
cution semantics. As such, BX may especially benefit from following a repeat-
able, reviewable, scalable, automated process with training/guidance, for their
development.

1.1 BX as Software

The assumption that we are making in the preceding is that BX are software
systems. A software system is an executable artefact: given a specification of
software (e.g., in a programming language or suitable modelling language), its
expected outputs can be produced by executing the specification on a suitable
machine (e.g., a server, a virtual machine, a simulator). A BX is an executable
artefact: assuming that the BX is expressed in a suitable programming language
or modelling language (and we review some of the key state of the art in Sect. 2)
then its expected outputs can be produced by executing the BX on a suitable
machine.

Like software, BX must satisfy functional and non-functional requirements,
can (and probably should) be designed, and can exhibit unacceptable behaviour
– that is, BX can contain faults, which may lead to failures. As we will see,
depending on the technologies used to represent and specify BX, different types
of failures may arise (e.g., inconsistencies) and different techniques may be used
to verify the BX to help ensure that faults are caught during engineering. As we
become increasingly ambitious in our attempts to solve complex problems using
BX, our need for rigorous engineering techniques for BX construction will only
increase.

1.2 Scope

There are numerous techniques and approaches that can be used to build and
engineer BX; in Sect. 2 we will consider some of these. However, the focus of
this paper will be on Model-Driven Engineering (MDE) techniques. Many of the
techniques that we present in later sections can be used both with and without
MDE tools, and if there are particular aspects that depend specifically on MDE,
we will point these out where such a dependence isn’t clear.

1.3 Background

Before we commence with the technical content of this paper, we provide some
basic definitions and terminology, in order that the paper remain reasonably
self-contained.

As mentioned, we are focusing on Model-Driven Engineering techniques for
engineering BX. The key concepts of MDE are as follows.

– MDE involves the semi-automated construction and manipulation of models,
which are structured, machine-implemented specifications of phenomena of
interest. Models are meant to be processable by automated tools, and capture
static and dynamic characteristics of systems.
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– Models in MDE are structured ; this structure can be defined in a number of
ways, primarily via metamodels, which are specifications of abstract syntax
(you can think of a metamodel as the definition of the abstract syntax of a
language).
A model is said to conform to a metamodel. Related approaches to defining
the structure of models include schemas (e.g., XML), type rules and con-
straints. Many of these approaches define structure using graphs or graph-like
concepts. As such, models themselves are often (but not exclusively) graphs.
This is a key distinction between MDE (and so-called modelware approaches
to engineering), and grammar-based (or grammarware) approaches.

– Models are typically specified alongside a set of constraints that capture well-
formedness rules that cannot normally be specified with a metamodel. For
example, a metamodel might be used to express that a model may include
containers, and that containers may be nested (e.g., packages in UML). But
a metamodel – which captures abstract syntax – will not normally express
that containers have unique names. This can be expressed by a separate
constraint, which is normally packaged up with the metamodel or models. If
a model conforms to a metamodel, it must also normally be checked against
any constraints, in order to establish that it is well formed.

– Standard technologies exist for capturing models, metamodels and constraints
in the MDE world. The de facto standard technology used for metamodelling
is Ecore (a part of the Eclipse Modelling Framework (EMF)). For constraints,
engineers typically use the Object Constraint Language (OCL), which also has
an official Eclipse implementation. There are other languages and technologies
available as well for metamodelling and for expressing constraints.

– Models by themselves typically encapsulate business value, but are also meant
to be processed by automated tools. These tools implement a variety of oper-
ations applicable to models, including the aforementioned transformations,
but also comparisons, merging, migration, matching and others.

Transformations are a key operation in MDE, and have been the subject of
widespread study (e.g., see recent proceedings of the long-running conference
on model transformation [1]). Numerous classifications and surveys have been
published on transformations in general, and BX in the specific. Four common
categories of transformations in MDE are:

– Unidirectional transformations, from a source model to a target model. Such
transformations are usually implemented in terms of metamodels, and are
typically used when the source and target metamodel are linguistically simi-
lar, e.g., between different dialects of UML, or from an object-oriented model
to a relational database model. Unidirectional transformations typically are
written in one of three styles: purely declarative, operational, and hybrid (i.e.,
a mixture of operational and declaration parts). In our experience, many com-
plicated transformations are very difficult to express in a purely declarative
style. As such, hybrid transformation languages (such as ATL [2] and ETL
[3]) tend to see the most use in industrial practice.
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– Update-in-place transformations, which specify modifications made to one
and only one model. Update-in-place transformations can be specified using
languages suitable for unidirectional transformations, or specialist languages
such as EWL [4].

– Model-to-text (sometimes called model-to-grammar) transformations, where
the source/input to the transformation is a model, but the output no longer
conforms to a metamodel, e.g., free-form text or text conforming to a gram-
mar. Model-to-text transformations are used in order to step outside of the
modelware technical space and move to the grammarware technical space. An
example scenario for use of model-to-text transformation is code generation.

– Bidirectional transformations, which is the subject of the next section.

Transformations (and other operations on models) have side-effects. This
includes purely declarative transformations. The side-effect in question is the
production of traceability information, i.e., so-called trace-links, which relate
source and target model elements. Trace-links can be generated automatically by
transformation tools (such as Epsilon or ATL) and they can be stored for later
audit and analysis. Trace-links are important in the context of transformations
and BX as they provide (a) the basis for verification and validation of trans-
formations; and (b) the connection to the theory behind BX, specifically delta
lenses (in particular, delta lenses are a sound theory for trace models, encoded
in an algebraic form [5]).

1.4 Structure

We start with a brief review of the state-of-the-art in engineering BX with MDE,
focusing firstly on BX scenarios of use in MDE, followed by an overview of
MDE languages, tools and techniques for supporting BX. The remainder of the
paper considers different aspects of a BX engineering lifecycle, starting with an
overview of techniques for requirements engineering for BX, focusing on require-
ments specification and requirements analysis. We then move to an overview of
techniques for architecture and design of BX, including a small selection of rel-
evant design patterns. Finally, we briefly consider one approach for verification
of BX, which applies to a specific approach to BX implementation and design.
The paper concludes with a discussion on future challenges and perspectives on
engineering of BX.

2 State of the Art

This section addresses some of the important state of the art in MDE approaches
to BX, focusing on three specific elements: important BX scenarios that have
been identified in the literature; important languages that have been influential
in research in BX – in this case, we focus on QVT; and important tools that
implement aspects of BX and that are based on MDE technology. We do not
consider non-MDE approaches to BX in this brief review, and we also exclude
TGG approaches because these are covered in detail by Anjorin’s chapter [6] in
this volume.
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2.1 BX Scenarios

A number of recurring scenarios of use for BX have appeared in the MDE liter-
ature. Many of the MDE tools and languages that we discuss in the sequel have
been designed to address these scenarios.

1. Round-trip engineering, i.e., generating code from models, modifying the code
by hand, and then regenerating the models to reflect changes made in the
code. A BX approach would, conceptually, aim to apply the principle of least
change and minimise the number of modifications necessary to the original
model, instead of regenerating the entire model after each change. Research in
MDE related to incremental transformation is also addressing this scenario.

2. Collaborative modelling, wherein multiple stakeholders are editing the same
model simultaneously. In practice, what often happens is that each stake-
holder has a local copy (or view) of the source model, and their changes are
reflected back on the master/source copy at specified points of time.

3. Synchronisation, e.g., synchronising documents and code, like assurance cases
and source code. This is related to round-trip engineering but synchronisation
can involve model management operations other than transformations.

4. Reflection, for example, reflecting the results of some kind of analysis on a
source model. A concrete instance of this was investigated in the MADES
project1 where a UML MARTE model was transformed into a variety of
formal models (UPPAAL, TRIO) to support analysis, and some of the results
of the analysis were reflected in the MARTE models. This is an interesting
example of a BX as the backwards transformation is generating a view of the
target model which needs to be synchronised with the source model.

2.2 Standard MDE Languages for BX: QVT

While there are tools and approaches, based on MDE technology (like Eclipse
EMF) for supporting BX, most of these approaches are strongly influenced by
a significant standardised language for transformation: the OMG’s Query, View
and Transformations (QVT) standard [7]. QVT is a family of languages that
were first envisaged in 2002 upon issue of an OMG request for proposals to
support aspects of the OMG’s Model-Driven Architecture standard. A number
of replies were received, and the first version was submitted and approved in
2005. The most recent version, QVT 1.3, was released in June 2016.

QVT, as mentioned, is a family of languages. These languages are meant
to support transformation and querying of MOF models; transformations and
queries can be used in turn to generate views. The basic architecture of QVT
is illustrated in Fig. 1. The QVT architecture builds on other OMG languages,
particularly MOF but also the Object Constraint Language (OCL), from which
QVT acquires its expression and collection manipulation facilities.

The Relations language provides mechanisms for the declarative specification
of the relationships between MOF models. It supports in turn complex object
1 http://www.mades-project.org/.

http://www.mades-project.org/
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Fig. 1. QVT architecture [7]

pattern matching, and implicitly creates trace classes and their instances to
record what occurred during the execution of a transformation. Assertions can
also be made; for instance, relations can assert that other relations also hold
between particular model elements matched by their patterns. As illustrated in
the figure, the intention is that Relations specifications can be translated in to
the QVT Core language, along with a set of trace models, which in total provide
a formal semantics for QVT Relations. Though this is the intention of Relations,
it has been shown – e.g., by Stevens [8] – that there are programs that can be
expressed in Relations that cannot be translated to Core.

QVT Core, by contrast, is a small yet expressive language that only supports
pattern matching over a flat set of variables by evaluating conditions over those
variables against a set of models. It is intended to be semantically equivalent to
QVT Relations, but equivalent QVT Relations programs are liable to be more
concise than the QVT Core programs.

The Operational Mappings (sometimes called QVT Operations, or QVT-o)
is an operational model transformation language that extends Relations with
imperative constructs. Of all the QVT languages, it is QVT-o that has received
the most use and attention.

The abstract syntax of the Relations language is illustrated in Fig. 2. The
abstract syntax can be interpreted as follows: a QVT Relations program contains
a set of rules which are relations. Relations are made up of patterns, and are
applied to a set of typed model parameters. In particular, these relations can
be interpreted in forward and backwards directions – that is, Relations is a BX
language by design.

An example of the concrete syntax of Relations is shown in Listing 1.1. This
example gives a relation that is part of the classic object-relational mapping, in
this case used to map persistent classes in an object oriented program to a table.
The example includes three parts: a domain (a set of patterns which defines the
variables and constraints that model elements bound to those variables must sat-
isfy – i.e., the bindings for the relation); the when clause (the conditions under
which the relation must hold); and the where clause (the condition that must be
satisfied by all model elements participating in the relation). The interpretation
of when-clauses in the Eclipse QVT implementation is that these are precondi-
tions, and where-clause are postconditions. Both of these clauses may contain
arbitrary OCL expressions.
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Fig. 2. QVT Relations abstract syntax

In this particular example, the domain clauses establish which model ele-
ments in a UML and a RDBMS model are of interest (they satisfy the predicate
part of the domain clauses), and the when and where clauses are defined else-
where by other relations.

The BX capabilities of QVT can also be illustrated by an example from QVT
Core. Figure 3 illustrates an example of a single mapping rule in QVT Core. This
is a checking example, which is used to check that particular patterns are satisfied
by models. Once again, this is an example involving relations between a UML
class model and a database model. The top part of the diagram (labelled Class
to Table) defines the c2t relation, which relates a class to a table. The bottom
pattern is evaluated using variable values of a valid binding (a valid pair of class
and table) from the top pattern. In effect, the top part of the mapping rule
defines a guard which restricts the scope of the bottom part of the rule.

relation ClassToTable /* map persistent class to table */

{

domain uml c:Class {

namespace = p:Package {},

kind = ’Persistent ’,

name = cn

}

domain rdbms t: Table {

schema = s:Schema {},
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name = cn,

column = cl:Column {

name = cn + ’_tid ’,

type = ’NUMBER ’},

primaryKey = k:PrimaryKey {

name = cn + ’_pk ’,

column = cl }

}

when {

PackageToSchema(p,s);

}

where {

AttributeToColumn(c,t);

}

}

Listing 1.1. An example of QVT Relations

Fig. 3. QVT Core: mapping rule example

The mapping rule is directionless; it can be executed either way, i.e., checking
a database table against a UML class, or checking a UML class against a database
table.

The QVT standard is currently being further developed, both through the
OMG standardisation efforts, but also through work on Eclipse QVT, an imple-
mentation of the different QVT languages. We briefly discuss the status of Eclipse
QVT, and other MDE tools for BX, in the next subsection.

2.3 Tools

In this section we briefly outline some of the key tools, based on MDE technolo-
gies and principles, that either support or claim to support BX. As mentioned
earlier, we exclude approaches based on triple graph grammars as these are cov-
ered elsewhere.
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Medini. Medini2 claims to be a reasonably complete implementation of QVT
Relations, but is currently unsupported. It is an EMF based transformation
engine but also has a non-commercial licensed editor and debugger. While it
uses the QVT Relations syntax, it intentionally departs from the semantics of
the OMG standard (e.g., how it supports deletion of elements, that it does
not provide a checkonly mode). As such, we prefer not to label Medini as an
implementation of QVT, but as a tool that is inspired by QVT.

ModelMorf. ModelMorf is a proprietary tool from Tata Consulting Services3.
It also claims to faithfully implement the QVT Relations standard, but research
by Stevens [8] shows that it does not fully implement the semantics specified in
the standard. By some measures, it is more faithful than Medini, but it is still
not a full implementation of QVT.

JQVT. jQVT4 is a QVT-like engine that is defined on top of the Java type
system instead of using EMF. In turn, it uses Xbase (a partial programming
language written in Xtext which compiles to Java and includes powerful features
such as closures) instead of OCL for expressions. In essence, jQVT is a Java
embedding of QVT; the jQVT engine generates native Java code from jQVT
scripts. Of note is that it does provide support for bidirectional transformations.
As of early 2016 jQVT was still being maintained.

Echo. Echo5 is an open-source EMF-based tool for model repair and transfor-
mation that exploits the Alloy model finder to determine models that satisfy
relations. It provides an implementation of the QVT Relations syntax, but the
semantics intentionally departs from the OMG specification. Echo is also bidi-
rectional.

JTL. The Janus Transformation Language (JTL)6 is a by-design bidirectional
language with a QVT-like syntax, which propagates changes made in one model
to the other. If a change made to one model makes the second model inconsistent,
an approximation (“closest match”) is calculated using answer set programming.
As such, there can be several solutions to a transformation problem and the
results provided by JTL may need to be constrained further.

Eclipse QVT. Substantial engineering effort is being put into the development
of Eclipse QVT, a project that aims to support the full OMG QVT specification

2 http://projects.ikv.de/qvt/wiki.
3 Archived copy available at https://web.archive.org/web/20120323171429/http://
www.tcs-trddc.com/trddc website/ModelMorf/ModelMorf.htm.

4 https://sourceforge.net/projects/jqvt/.
5 http://haslab.github.io/echo/.
6 http://jtl.di.univaq.it/.

http://projects.ikv.de/qvt/wiki
https://web.archive.org/web/20120323171429/http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
https://web.archive.org/web/20120323171429/http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
https://sourceforge.net/projects/jqvt/
http://haslab.github.io/echo/
http://jtl.di.univaq.it/
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(though with Ecore instead of MOF models). Currently, QVT Operations is well
supported and active as part of the Eclipse M2M project. QVT Relations (in
Eclipse terms, QVT Declarative) and QVT Core are work-in-progress. As work
on these projects is ongoing and their status is changing regularly, we refer the
reader to the Eclipse MMT project website7 for the latest information. As of
this writing, the intention with Eclipse QVT is that the Oxygen release in June
2017 will provide full support for QVT Relations.

Bidirectionalisation. There have been several approaches to so-called bidirec-
tionalisation of transformations. In these approaches, a forward transformation
(from source to target) is written and the backward transformation is calculated
or computed automatically. Examples of this approach include that of Hoisl [9].
The GRoundTram approach of Sasano [10] is another example.

For further details, and a more in-depth classification of MDE approaches
to BX, the interested reader is referred to Hidaka et al.’s excellent survey of
BX [11].

3 Requirements Engineering for BX

In this section we will consider techniques and tools for requirements engineering
for BX. We will motivate the benefits of considering requirements for BX in
general, before discussing some of the general questions to be addressed when
building a BX. These questions will help us motivate a discussion on the general
properties of BX (which may be the source of constraints on requirements for a
BX), as well as examples of functional and non-functional requirements for BX.
This is followed by a broad overview of requirements engineering processes for
BX, which leads in to a discussion on MDE languages suitable for requirements
engineering for BX.

3.1 Motivation

Requirements engineering is the process of identifying, documenting and main-
taining requirements in systems engineering. The typical tasks involved in
requirements engineering are:

– identification: where new requirements to address a problem are clarified
– analysis: where the requirements are assessed to ensure they accurately cap-

ture what is needed for the system under consideration, and conflicts between
stakeholders are resolved

– specification: where the requirements are documented in a precise (but not
necessarily formal) way

– validation: where the requirements are checked to ensure they are consistent
and address stakeholder needs

7 https://projects.eclipse.org/projects/modeling.mmt.

https://projects.eclipse.org/projects/modeling.mmt
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– maintenance: where the requirements are considered for update as the system
under consideration is constructed, deployed and changed.

BX are software systems and as such will benefit from a clear understanding of
requirements; for large or complicated BX, there may be benefits to following a
rigorous requirements engineering process as well. In particular, an understand-
ing of requirements for BX can help in mapping BX problems to tools that are
suitable for implementation (and vice versa). An understanding of requirements
for BX can also help in contrasting different potential solutions in terms of their
tradeoffs in how they satisfy requirements.

3.2 Questions and Properties for BX

A typical first phase of requirements engineering is identification, where engineers
attempt to determine what requirements a software system should exhibit. This
in turn may help determine properties or constraints that the ultimate system
will satisfy. There are numerous ways in which requirements can be identified,
e.g., via stakeholder interview, by reviewing existing similar systems, by follow-
ing questionnaires or checklists, or by using testing techniques to derive require-
ments. Based on Tehrani et al.’s work [12], we suggest some general questions
that could be addressed when constructing a BX, the answers to which could
help derive requirements.

1. What needs to be transformed into what? Alternatively – and declaratively
– what kind of consistency needs to be maintained?

2. What mechanisms can be used for building the BX? (i.e., theory, tools,
techniques)

3. What are the application domains for the BX?
4. What are the specific characteristics of the BX (e.g, what patterns are appro-

priate to use)?
5. What are the quality requirements (e.g., performance) for the BX?
6. What are the success criteria for the BX?

Questions 3, 4 and 6 are possibly the most opaque. Question 3 is designed to help
identify constraints on the scope of use for the BX, e.g., will the BX be used in
developing hard real-time systems, or interactive systems? Question 4 is designed
to help identify functional requirements, e.g., should the BX be parameterised,
should it be interactive? This in turn may help identify suitable patterns that
can be used in specifying or designing the BX. Question 6 is the “stopping
condition”: how will we know if we have successfully solved the BX problem?

BX exhibit various properties (such as least-change, or determinism). When
considering requirements for a BX, there are general properties that may be
of interest, particularly in determining constraints that the ultimate BX must
satisfy. Some examples are:

– Size: is the BX small (e.g., a single reversible refactoring) or large (e.g., a
reversible code generator)?
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– Level of automation: is the BX meant to be fully automated, or involve a
human-in-the-loop?

– Visualisation: how is the BX, the results of executing the BX, and the input
to the BX presented to users?

– Level of industry application: to what extent is the BX to be deployed in an
industrial context?

– Maturity level: should the BX be implemented in a tool? Should the BX be
a theoretical construct?

Understanding the relative importance of these properties will be helpful in
deciding on what theory or tool to choose for defining a BX.

3.3 Functional and Non-functional Requirements

In the classical requirements engineering literature, functional requirements spec-
ify what a system must, could or should provide. Non-functional (or behavioural)
requirements specify criteria against which we can judge the quality of a sys-
tem. In a requirements document, functional and non-functional requirements
are typically presented separately, with suitable tests given that can be used to
assess the coverage and completeness of fulfilment of requirements.

There has been little published research on examples of requirements for
transformations in general, let alone BX, but based on some of [12,13] we can pro-
pose some examples for BX. We start with functional requirements. For simplic-
ity of presentation, we assume that a BX under development is defined between
two models (a source and a target).

– Correctness: a BX that is correct will restore consistency between inconsis-
tent models after its execution. Operationally, when the BX is run in the
forward direction, the target model must be well formed (defined in terms
of conformance to the target metamodel and any corresponding constraints).
Similarly, when the BX is run in the reverse direction, the source model must
be well formed. It is interesting to observe that the terminology used in the
BX community for correctness differs from that used in the requirements
engineering community.

– Inconsistency tolerance: the BX should be able to support incomplete or
inconsistent models, e.g., temporarily inconsistent models. This reflects the
practical situation wherein a BX gradually re-establishes consistency over a
sequence of steps.

– Modularity: it should be possible to compose BX into new transformations.
– Traceability: a BX should support the generation of trace-links (sometimes

called a correspondence model) between source and target models, as well as
between the steps of a transformation chain.

– Change propagation: a BX should provide support for propagating changes
from one model to the other model.

– Incrementality: a BX should make it possible to update a model based only
on the changes made to the other model (that is, the parts of the model that
do not change are not used to make changes to the other model).
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– Uniqueness: a BX could support the ability to generate a unique solution to
the problem of ensuring consistency between two models.

– Termination: it should be possible to support the definition of terminating
BX transformation executions.

– Style: a BX should be expressible in a particular style, i.e., declarative, oper-
ational or hybrid.

Note the wording of these requirements; we have used the words must, should
and could to indicate the degree of importance or criticality of each type of
requirement. As this suggests – and as is reinforced by [11] – there is substantial
variability in what BX provide (and also how they are implemented).

Non-functional requirements, recall, specify criteria against which we can
judge the quality of a BX. As is the case for functional requirements for BX,
there is limited research on non-functional requirements. Some examples have
been proposed by [13], and we list a selection here.

– Extensibility : the extent to which the BX can be extended to support new
functional requirements or a change in scope.

– Usability : is the BX judged to be usable by stakeholders?
– Robustness: can the BX manage invalid models (i.e., that do not conform to

the metamodels involved in the BX), or deal with errors in models?
– Interoperability : can the BX be combined and used together with non-BX

tools (e.g., other MDE tools and operations, such as model comparisons or
mergings)?

Clearly, more research on requirements for BX is needed. As our experience
with building BX grows, and our understanding of what constitutes a useful BX
scenario increases, our ability to elaborate sensible functional and non-functional
requirements for BX will improve.

3.4 Requirements Engineering Processes for BX

In this section we outline typical stages of a requirements engineering process for
BX and highlight the key artefacts and stakeholders that will be involved. We
discuss elicitation in some detail, and evaluation briefly. This leads in to the next
section where we give an overview of some of the key specification techniques
that can be used within a requirements engineering process for BX.

Typical requirements engineering literature [14], identifies the following
generic phases in requirements engineering:

– Domain analysis and elicitation: Identify who are your stakeholders. From
these stakeholders, gather information on the system domain and system
requirements.

– Evaluation and negotiation: Identify imprecision, conflicts, omissions and
redundancies in the informal requirements identified in the previous phase.
Resolve these (if possible and appropriate) via negotiation and consultation.
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– Specification: Document the formal requirements in a specification (we will
consider this for BX in more detail later). The specification is often the basis
for a contract between developers and customers.

– Validation and Verification: Check the specification for consistency, complete-
ness and acceptability to stakeholders.

This is generic, applicable to any kind of software or systems engineering.
What might a requirements engineering process for BX look like? Tehrani et al.
[12] propose a process for transformations, which is depicted in Fig. 4.

Fig. 4. A transformation requirements engineering process [12]

(It is worth emphasising that the process shown in Fig. 4 is for transforma-
tions in general, not specifically for BX.) There are some points to note about
the above process.

– The process is generic for the most part, and resembles the steps that are
typically carried out for software systems.

– An interesting aspect is the use of scenarios as a concrete mechanism for
driving the development of a requirements specification. In the context of
BX this suggests that identifying and capturing more (and more detailed)
BX scenarios will be very helpful in improving our understanding of BX
requirements engineering.

– The process distinguishes between local and global requirements, as is often
done in systems engineering. A local requirement may pertain to a particular
transformation component (e.g., that correspondences are defined between
elements of particular types), whereas a global requirement may apply to an
entire transformation (e.g., a performance requirement, that a measure of
complexity is reduced by running a BX, or a safety requirement).

3.5 Elicitation

Elicitation is an important first step in any requirements engineering process.
What techniques might be applicable for BX? Many of the traditional elicitation
techniques appear to be directly applicable to BX problems with little change,



Engineering Bidirectional Transformations 165

as argued by Tehrani et al. [12]. For example, a classic elicitation technique is
observation (an ethnographic method): observing an existing – possibly manual
– BX technique or process could provide sensible requirements for an auto-
mated process. Consider a scenario wherein a BX is to be defined between an
Excel spreadsheet and a SysML requirements diagram8. A manual BX process
between the two might involve (a) making changes to cells in an Excel column;
(b) switching to a SysML editor; and (c) modifying attributes in a SysML class
model. This might indicate to a requirements engineer that there is a sequence
of steps that should be implemented in a BX.

Another technique that can be used for elicitation is the unstructured inter-
view, where open-ended questions are asked about the problem domain or the
current (BX) process. This can be useful for identifying transformation goals,
e.g., “ensure that the source and target models are inconsistent for no more than
10 ms”. In carrying out an unstructured interview regarding a transformation,
Tehrani [12] suggests some generic open-ended questions that may be useful to
consider; we have extended their questions with some of our own, based on our
experience in the MONDO project9.

– Is there a size range for the source and target models? This may suggest to
the engineer the type of infrastructure that may be useful for the project
(e.g., EMF to represent models).

– Does the encoding for the BX matter? For example, for very large scale models
it may be necessary to consider binary formats.

– Are there any assumptions that are made about the source or target models?
For example, are they always available? Are they read-only? Write-only? Are
there confidentiality restrictions?

Along with unstructured interviews there are structured interviews, which
involve asking pre-selected questions about the domain and the BX, perhaps
based around a checklist linked to a requirements pattern catalogue. For exam-
ple, a checklist of questions may be divided into parts, one focusing on questions
related to global functional requirements (e.g., is hippocraticness important, is
semantics preservation important?) and another related to local non-functional
requirements (e.g., should this rule satisfy a specific time bound?).

A final elicitation technique that we mention is scenario-based analysis, where
scenarios are used to capture different requirements transformation processing
cases. The benefit of using scenarios is that they are concrete: scenarios are usu-
ally presented in a concrete scenario language, often supplemented with sketches
of sample models. For example, for BX we might specify a scenario for intro-
ducing or removing a pattern to change an object-oriented design. The forward
transformation scenario could include a concrete example of introducing the
pattern into an existing design.

8 This is a sanitised version of a real problem encountered by the author.
9 http://www.mondo-project.org/.

http://www.mondo-project.org/
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3.6 Evaluation

Once we have elicited requirements for BX through any of the techniques
described previously, we have a set of informal statements of what the BX must
or should provide. These statements may be inconsistent, and ideally we should
be identify this before we formalise the BX requirements in a specification. There
is little to no published research on evaluation techniques for BX requirements.
We may find some inspiration in the general requirements engineering literature.
For example, one approach used for requirements evaluation is prototyping, i.e.,
engineers build a prototype (paper, mock-up, simulation) of a solution in order
to help identify or reconcile inconsistencies. It is unclear whether the expense of
building a BX prototype is less than building a BX in the first place (because, for
example, a BX prototype could be constructed using standard BX tools, or could
be constructed as a paper prototype). Another approach that is sometimes used
is goal-oriented analysis, but it is as of yet unclear how goal-oriented techniques
apply to the definition of BX. There are significant open questions relating to
how we evaluate requirements for BX.

3.7 MDE Languages for Requirements Engineering for BX

In this section we move from a mostly abstract discussion on requirements engi-
neering for BX and focus on the more concrete topic of languages that can be
used to support requirements engineering for BX. There has been some work in
this area – i.e., on different MDE languages and tools for specifying transfor-
mation requirements – though there is still very limited experience of specifying
requirements for BX in the specific. Here, we will focus on presenting details of
one approach – transML – which is a family of languages that can be used for
engineering model transformations. transML can, as we will show, be used to
specify different aspects of the requirements for a BX. We will also use transML
in the next section to specify different facets of the architecture and design of
a BX. For an alternative approach to specifying requirements for transforma-
tions, based on mind-maps, the interested reader is referred to the DSL-Maps
approach [15].

transML [16], by way of introduction, is a family of MDE languages to sup-
port the lifecycle of transformation development, from requirements through to
implementation. It is technology agnostic, and can be used with any transforma-
tion implementation language (there is published experience of using transML
with QVT, EOL, ETL and ATL [16]). The overall architecture of transML –
that is, the set of languages and their inter-relationships – is depicted in Fig. 5.
The parts of transML relevant to this section are the Requirements language (at
the top) and the languages to support Analysis (Simple Scenarios and Formal
Specification).

We focus on the requirements language and those languages of transML that
support analysis in this section. The former is used primarily to support the
description of the results of elicitation. The latter are used to support detailed
specification.
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Fig. 5. transML architecture; boxes represent languages (or sets of languages) and
arrows represent dependencies, typically traceability links [16]

To support description of the results of elicitation, transML provides a dia-
grammatic representation of (BX) requirements that is derived from SysML
requirements diagrams. Such representations can be produced using any of the
aforementioned techniques for elicitation. Because transML is an MDE language,
it is defined using metamodels. The transML requirements metamodel is shown
in Fig. 6.

The requirements metamodel is very simple, but defines an expressive
requirements language for BX. The language explicitly supports hierarchical
decomposition of requirements, as well as classification, refinement, and trace-
ability. Of particular note is the ReqSource element, which identifies where
a requirement arises, i.e., in the source of a transformation, the target of
a transformation, or from the transformation itself (it is generated by the
transformation).

We illustrate the requirements metamodel with two examples, the first from
Guerra et al. [16] which shows an example requirements model for a unidi-
rectional transformation (Fig. 7), and the second which shows an example for
a BX (Fig. 8). In both cases, the examples involve transformations from and
between object-oriented and database models. We observe that different con-
crete syntaxes are used in each example. The first concrete syntax is based on
SysML, whereas the second is a box-and-arrow domain-specific requirements
language which makes use of elements of UML (particularly dependencies and
stereotypes).

The top-level requirement (OO2DB Transformation) in Fig. 7 is decom-
posed into the set of requirements below (i.e., No Redefined Attributes, Classes,
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Fig. 6. transML requirements metamodel [16]

Fig. 7. transML requirements model example (SysML-like concrete syntax) [16]

Features). The Features requirement is further decomposed in the last level of the
diagram. Note that derived requirements are also noted, i.e., that the Inherited
Attributes requirement is derived from the Single-Val-Attributes and Multi-Val-
Attributes requirements.

The example in Fig. 8 illustrates a requirements specification for a BX. It has
a similar structure to the previous example for a unidirectional transformation.
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Fig. 8. transML requirements model example (box-and-arrow concrete syntax)

The main difference is in the expression of the individual requirements, which
are expressed in terms of consistency relationships rather than transformation
features.

Both of these examples are informal, in the sense that they rely substantially
on natural language, and are the result of applying elicitation techniques; they
may contain imprecision or inconsistencies, which may be resolved by analy-
sis. transML supports two sets of languages for requirements analysis: a simple
scenario language, and a formal specification language for requirements.

The simple scenario language of transML supports description of concrete
cases for transformation, i.e., how examples are meant to be related by the BX.
transML is applicable to both models or fragments of models, the latter of which
is essential for incremental development and for working with large monolithic
models. An example of a transformation case (i.e., a scenario) for part of an
object-oriented to database BX is shown in Fig. 9.

On the left side of the example is the object-oriented model fragment, consist-
ing of a class with a multi-valued attribute; on the right side is a database model
fragment, consisting of two tables containing columns and foreign keys. This is
an example of a BX scenario involving a class with a multi-valued attribute and
a consistent database model that resolves the multi-valued aspect using a foreign
key (there are other solutions).

The second transML language for requirements analysis supports formal
specification of requirements; it is used to specify what a transformation has
to do. It captures correctness properties and specifies restrictions on the mod-
els involved in the BX (for example, the consistency relations specified in the
BX may only be applicable when the source or target models obey various con-
straints). The transML formal specification language supports all of this via use
of declarative patterns, a concept taken from triple graph grammars. Patterns
express allowed and permitted relations between elements from the involved
models. The pattern language itself is expressive and can include conditions on
attribute values as well as constraints.
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Fig. 9. transML scenario (example case) [16]

The metamodel for the transML formal specification language for require-
ments is depicted in Fig. 10.

Fig. 10. transML formal specification language metamodel [16]

A requirements specification (the Specification element in Fig. 10) is made up
of a number of patterns. A pattern may be a positive or a negative precondition,
which are similar to both the when-clauses of QVT Relations, as well as triple
graph grammar’s negative application conditions. The Constraint Triple Graph
element encodes these clauses, and also include correspondence graphs (which is
effectively traceability information) as well as links to source and target graphs.

An example of a pattern for a BX is shown in Fig. 11.
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Fig. 11. transML example pattern [16]

The example pattern is, once again, taken from the object-oriented to
database BX example that we have used several times before. In this example,
the left side of the diagram is a negative pattern: it checks for the existence of
two classes c and p such that p is an ancestor or c, while both have an attribute
with the same name (X). On the right is a positive pattern: it expresses the
inherited attribute property (in this case, the inherited attribute named X is
mapped into two columns in the database model). More detailed examples of
patterns and specifications can be found in the paper on transML [16].

In the next section we consider the next phases of the BX engineering life-
cycle, focusing on architecture and design; we will explore further aspects of
transML for supporting these phases.

4 Architecture and Design

In this section we motivate and present the flavour of an approach for developing
the architecture and design of a BX, including MDE languages that can be
used to capture detailed designs of BX, as well as techniques for expressing and
applying design patterns for BX. What we present here builds on the techniques
introduced in the last section, where we used transML to capture requirements
for BX. We omit an end-to-end example, instead aiming to focus on touching on
a variety of techniques that can be used to engineer BX solutions.

As discussed earlier, large and complicated BX are similar to large and com-
plicated software systems: they involve many parts (e.g., transformation compo-
nents, rules) with complicated inter-relationships and dependencies. Many BX
have sophisticated behaviour which can be difficult to interpret from their con-
crete syntax. They are also difficult to engineer correctly. Large software systems
are usually not monolithic: they are built as a set of interrelated components.
Arguably, BX should be constructed in the same way.

Nevertheless, architecture for BX – and transformations in general – can be
complicated. Some of the issues are as follows.

– Components: what are appropriate component models for BX? For software
systems we have a reasonable understanding of what a component in a soft-
ware architecture is, how it may be implemented, and how it can be precisely
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combined with other components. Our understanding of components for BX
and transformations in general is underdeveloped. Most transformation lan-
guages offer a notion of a rule, and some languages have a notion of module,
but richer and deeper understanding (e.g., of ports, protocols, and architec-
tural styles) is missing.

– Relationships: what are appropriate relationships that can be defined between
BX components? For software systems we have a comprehensive library of
component connectors (e.g., protocols, buffers, compositions, containments)
that can be deployed; a similar understanding for BX is not yet available.

– Interoperability: a key aspect of software architecture is what it provides in
terms of interoperation with external systems. For BX, the question is: how
can a BX be integrated with other components or architectures, e.g., code
generators, verification tools, etc.

We will now present an approach to transformation architecture embodied
in transML and present several small examples of both BX architecture and
unidirectional transformation architecture. We then describe an approach for
detailed design for transformations.

4.1 BX Architecture in transML

In Sect. 3 we introduced the transML approach and explained its support for
requirements specification (including scenarios and formal requirement specifi-
cation). As illustrated in Fig. 5, transML provides support for expressing trans-
formation architectures and designs.

Architecture in transML is embodied in a traditional architectural modelling
approach: an architecture is a set of components and connectors that interact
via directional interfaces. Component types are given in terms of metamodels,
or event types (for supporting event-driven architectures or for events gener-
ated by sensors) or other components (to support higher-order transformations).
The component model is general in the sense that it can be used to represent
transformations, black-box components (e.g., non-transformation or non-MDE
components), or actors (e.g., human users).

The transML metamodel for architectures is illustrated in Fig. 12. It is worth
noting the direction attribute on the Interface element; components of BX may
both generate and receive information via interfaces.

Constraints on interfaces can be used to impose a concept of contract, e.g., to
restrict expected inputs and outputs, but also to support conformance checking.

Figure 13 shows an example of a unidirectional transformation architecture,
using a simple component-based concrete syntax from UML. This example illus-
trates a transformation-centric view, i.e., the components in the architecture are
themselves transformations. This can be contrasted with a type-centric archi-
tecture, shown in Fig. 14, where the components are types (or metamodels). In
both cases, the example architecture is for a chain of transformations between
an object-oriented model and SQL code.
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Fig. 12. transML architecture metamode [16]

Fig. 13. transML architecture example (transformation-centric, undirectional)

Fig. 14. transML architecture example (type-centric, bidirectional)

In the above example, firstly a unidirectional OO2DB transformation is
executed (taking a UML model as input and producing a DB model as out-
put). Then, a normalising update-in-place transformation is executed on the DB
model. Finally, a model-to-text transformation is executed on the DB model,
producing SQL code compliant to a specific grammar.
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The type-centric view represents the individual transformations as relation-
ships between components. We have extended this example to represent bidi-
rectional transformations throughout: i.e., OO2DB, Normalise and GenSchSQL
(the model-to-text transformation) could be executed in either direction. We
could, of course, present the same BX in a transformation-centric style. In this
case, the architecture in Fig. 13 would have bidirectional dependencies on the
relevant input and output models, as depicted in Fig. 15 (in the figure we have
circled the ports and connectors to highlight the bidirectionality of information
flow).

Fig. 15. transML architecture example (transformation-centric, bidirectional)

4.2 Design of BX

The architecture of a software system captures the key components and their
interrelationships. In the case of a BX this includes the connections between
transformation components, the ports through which components communicate,
and restrictions and constraints on that communication. The engineering process
for BX continues with design, which can be broken into two parts: high-level
design, which focuses on capturing what is transformed into what ; and low-level
design, which focuses on capturing how the transformation is to be carried out.
We briefly consider transML support for each aspect.

High-level design of a BX, once again, aims to capture what is transformed
into what. To represent this, transML introduces a mapping diagram, inspired
by triple graph grammars. These capture the mappings between arbitrary model
elements involved in the transformation. However, mappings are not meant to be
used as a implementation model – specifically, they are not meant to be used as
a tracing mechanism to guide the execution of code (this, as we will soon see, is
the purpose of the low-level design features of the transML family of languages).

The transML metamodel for mapping diagrams is illustrated in Fig. 16. Map-
pings have ends which are associated with modelling elements. Navigability is
a property of mappings; BX will involve navigation to both source and target.
Constraints can be attached to mappings in order to define conditions on when
(part of) a mapping can hold.
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Fig. 16. transML mapping diagram metamodel [16]

Fig. 17. transML mapping example [16]

Figure 17 illustrates a mapping, for the OO2DBl BX. On the left of the
diagram is a package containing key modelling elements of an OO model; on
the right, a database model. In the centre are the mappings along with some
informal English text explaining the purpose of each distinct mapping. Note the
navigability of each rule; these can be executed from a DB model to an OO
model, or vice versa.
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Fig. 18. transML mapping example (constraint) [16]

The next example, in Fig. 18, elaborates what is presented in Fig. 17 and
imposes a constraint on the very last mapping, Multi-Val-Att-Top. The con-
straint, expressed in OCL, states that the owner of an attribute cannot have
any parent classes; this is so that multi-valued attributes can be appropriately
flattened into a table.

While high-level design is supported in transML via mapping diagrams, low-
level design – which is where the transition to implementation begins – is sup-
ported by more detailed diagrams. Technically, low-level design could be sup-
ported by using a favourite BX programming language. But it may be preferable
– for reasons of process – to maintain a degree of platform independence while
still focusing on the essential aspects of BX development. As such, transML pro-
vides low-level design languages for capturing the structure of BX rules, control
flow, and blocks. These are encapsulated in two diagrams: the rule structure
diagram and the rule behaviour diagram.

The rule structure diagram (metamodel in Fig. 19) is used to refine a mapping
diagram. A rule in such a diagram can contribute to the implementation of
one or more mappings. Rules themselves may be unidirectional or bidirectional.
Structure diagrams also allow for explicit or implicit (e.g., nondeterministic)
capture of execution flow, via subclasses of the Flow metaclass. In particular,
a set of rules can be placed inside a nondeterministic block, for example, as in
graph transformation programs.

Effectively, rule structure diagrams capture the structure rules, execution flow
and data dependencies. This is illustrated in Fig. 20, which shows a directional
transformation from an object-oriented model to a database model. The struc-
ture in particular is tailored to a representation of rules in the Epsilon Transfor-
mation Language (ETL). There is a top-level rule (Class2Table) that is executed
initially; its execution is followed by a block of rules that execute nondeterministi-
cally; these populate the structure of a database table (i.e., Reference2Column,
SingleValuedAtt2Column, MultiValuedAtt2Table). Note that blocks can be a



Engineering Bidirectional Transformations 177

Fig. 19. transML rule structure diagram metamodel [16]

Fig. 20. transML rule structure diagram example [16]

useful mechanism for design, even if the ultimate implementation language does
not support them (for example, ETL does not support blocks directly).

A second example is shown in Listing 1.2. In this case, a small domain-specific
BX language is used to specify parts of a transformation between trees and
graphs. The transformation is divided into two nondeterministic blocks; these
blocks encapsulate bidirectional rules between elements of one model (e.g., Tree)
and elements of a second model (e.g., Node).

Rule structure diagrams in particular need to take into account the choice
of ultimate implementation language. This is because these diagrams capture
execution flow, which is platform specific. For example, consider ETL: the exe-
cution flow model is such that each rule is executed once at each instance
of input; by comparison, in a graph transformation language, execution is for
“as long as possible”, i.e., until a fix-point is reached. As such, a specific rule



178 R. F. Paige

transformation Tree2Graph {

nondeterministic RuleBlockForward {

bidirectional Tree2Node { ... };

bidirectional TreeEdge2GraphEdge {...};

}

nondeterministic RuleBlockBackward {

bidirectional TreeLabelsfromNodeLabels {...};

bidirectional TreeEdgesfromGraphEdges { ... };

}

}

Listing 1.2. An example of a BX using blocks

structure diagram may be transformed easily to one implementation language,
but not another. The metamodel for rule structures is, in our experience, suffi-
ciently generic to capture a number of transformation implementation languages,
but there may be specific features of specific implementation languages that we
have not considered that are not easily supported.

The rule structure diagram treats rules as black boxes, ignoring their
behaviour. As such, concepts such as attribute contribution, object creation,
or link configuration will be ignored. These can all be specified using implemen-
tation languages such as ETL, but transML also provides a diagram for their
specification: the rule behaviour diagram. This allows the behaviour of rules to
be captured using an action language, or declarative graphical pre- and post-
conditions, or object diagrams annotated with operations (similar in a sense to
Catalysis snapshots). An example unidirectional rule behaviour diagram is shown
in Fig. 21. On the left of the figure is a snapshot with annotations indicating cre-
ation of objects. On the right is the ETL program that would correspond to such
a diagram.

Fig. 21. transML rule behaviour diagram example [16]
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It should be noted that while we have broad and quite deep experience of
using transML for engineering unidirectional transformations, we have much less
experience of using it for engineering BX. Using some of the features of transML
for capturing different aspects of BX may be a useful contribution to the BX
community, as they provide platform-independent ways of specifying different
features.

4.3 Design Patterns for BX

In this section we very briefly discuss several design patterns [17] for BX. Design
patterns in general capture recurring design problems (e.g., in object-oriented
design) and their solutions. Solutions generally need to be instantiated for par-
ticular problem concepts. Many different patterns have been developed and cap-
tured in the literature, including some for model transformations. In this section
we present three examples, taken from Lano et al. [18] with some customisation
for our context.

Auxiliary Correspondence Model Pattern. A special kind of model trans-
formation is a merging or weaving, where two or more models are combined into
a single model. This weaving process can be carried out in batch mode or via a
change propagation approach, where changes from the models being combined
can be propagated to others. In doing so, most such transformations make use
of a so-called auxiliary correspondence model. This is a design pattern: the aux-
iliary correspondence model defines auxiliary model elements and associations
that link source and target elements. It can be used to record mappings per-
formed by a BX and to propagate modifications when one model changes. The
benefit of using such a pattern is that it separates concerns: the source and target
models are kept separate from the connections that link their elements. In turn,
these explicit links between source and target model can make it easier to check
correctness and coverage in the transformation. The disadvantage of applying
this pattern is that it requires maintenance of an additional model.

Unique Instantiation Pattern. This pattern focuses on improving the effi-
ciency of transformations. In particular, it is applied to avoid duplicating model
elements in either the source or the target of a BX. In particular, the pattern
imposes a check that an element satisfying specified properties does not exist,
before the element is actually created in the source or target. For example, in a
QVT-Relations transformation that has applied this pattern, new elements will
not be created if there are already elements that satisfy the relations specified;
this is really at the heart of check-before-enforce mode in QVT-Relations. The
benefit of using this pattern is that it can help ensure hippocraticness; the disad-
vantage is the test for existence, which can degrade BX performance. However,
we note that other patterns, e.g., related to indexing [18] – and model indexing
frameworks like Hawk – can help offset this.
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Map Objects Before Links Pattern. This pattern is used to separate the
relation between elements in source and target models from the relations between
links in the models. A particular application of this pattern would be to structure
a transformation wherein model elements are transformed before the relations
between model elements (i.e., nodes before edges). Such an execution flow may
be useful in cases where models may have self-associations or circular dependen-
cies. The benefit of using this pattern is similar to that of the Visitor pattern
[17] in object-oriented design: the specification of the transformation is modular
and processing for a new type of association in a modelling language can be
more easily handled. The disadvantage of using this pattern is that while edges
(relations) are treated modularly, nodes (model elements) may not be, and if a
new feature is added to a language, it may require significant restructuring to
the transformation that has used this pattern.

4.4 Summary

In this section we have discussed different aspects of the architecture and design
of BX, covering abstract architecture for transformations, through high-level
and low-level design, including behaviour of individual transformation rules, as
well as a selection of design patterns that can be used to help increase cohesion
and decrease coupling in our BX. We will next briefly discuss an approach to
verification of BX, focusing on use of mathematical techniques.

5 Verification

In this section we explore a specific approach to verifying bidirectional trans-
formations. The approach we present is intended to be pragmatic, meant to be
used with existing MDE tools and technologies. As such we do not consider
issues such as soundness or completeness, though the mechanisms are present to
prove conjectures related to these properties if so desired.

BX are challenging to implement on account of the inherent complicatedness
(or complexity!) that they must encode. Model transformation languages sup-
porting them often do so with conditions: some require that BX are bijective
(e.g. BOTL [19]), whereas others require users to work with specific formalisms
such as triple graph grammars (e.g. MOFLON [20]). Many modern transforma-
tion languages do not provide any support for BX (e.g. ATL [2]), meaning that
users must express them as two unidirectional transformations. While this seems
a practical workaround, the two transformations may diverge over time – that
is, there are no guarantees that the two unidirectional transformations maintain
the consistency relationship between the models.

A trade-off between the benefit (but complexity) of pure BX languages and
the practicality (but possible incoherence) of unidirectional transformations can
be achieved in Epsilon. Epsilon has languages supporting the specification of
unidirectional transformations in either a rule-based (ETL), update-in-place
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(EWL), or operational (EOL) [21] style. Furthermore, it provides an inter-
model consistency language (EVL [22]) that can be used to express and evaluate
constraints between models. With these languages, BX can be simulated by:
(1) defining pairs of unidirectional transformations for separately updating the
source and target models; and (2) defining inter-model constraints in EVL, the
violation of which will trigger EWL transformations to restore consistency.

Although this process gives us a means of checking consistency and automat-
ically triggering a transformation to restore it, we lack the important guarantee
that BX give us: the compatibility of the transformations. It might be the case
that after the execution of one transformation, the other does not actually restore
consistency, leading to further EVL violations. Thus, how do we check for, and
maintain, compatibility?

We aim to obtain the guarantees of BX without the need for BX languages.
Instead, we can use rigorous proof techniques to verify that faked BX are consis-
tency preserving, and thus indistinguishable to users from true BX. To this end,
we propose to apply techniques from graph transformation verification. Given a
faked BX in Epsilon, we will model the unidirectional transformations as graph
transformation rules, and EVL constraints as nested graph conditions [23]. Then,
by leveraging graph transformation proof calculi [24–26] in a weakest precondi-
tion style, we aim to automatically prove compatibility of the unidirectional
transformations with respect to the EVL constraints.

5.1 Illustration

To illustrate the idea, consider yet again the OO2DB problem. Consistency
between a typical OO and a typical DB model is defined in terms of a cor-
respondence between the data in the models, e.g. every table n corresponds to a
class n, and every column m corresponds to an attribute m. Figure 22 contains
two simple models that are consistent in this sense (we omit the metamodels,
but they are obvious).

:Class
name = "users"

:Attribute
pkey = True
name = "id"

:Attribute
pkey = False

name = "username"

feature feature

:Table
name = "users"

:Column
name = "id"

:Column
name = "username"

pkey column

Fig. 22. Two consistent OO and DB models

Users of the models should be able to create new classes (or tables) whilst
maintaining inter-model consistency. Upon the creation of a new class (resp.
table), a table (resp. class) should be created with the same name to restore
consistency. We can implement such a simple BX in Epsilon with a pair of
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wizard AddClass {

do {

var c: new Class;

c.name = newName;

self.Class.all.first (). contents.add(c);

}}

wizard AddTable {

do {

var table: new Table;

table.name = newName;

self.Table.all.first (). contents.add(table );

}}

Listing 1.3. Example wizards for simulating BX

context OO!Class {

constraint TableExists {

check : DB!Table.all.select(t|t.name = self.name).size() > 0

}}

context DB!Table {

constraint ClassExists {

check : OO!Class.all.select(c|c.name = self.name).size() > 0

}}

Listing 1.4. Inter-model constraints

unidirectional transformations (one for updating the class diagram model, one for
updating the relational database) and a set of EVL constraints. For the former,
we can use the Epsilon Wizard Language (EWL) to define a pair of update-in-
place transformations, AddClass and AddTable (for simplicity, here we assume
the new class/table name newName to be pre-determined and unique, but Epsilon
does support the capturing and sharing of such data between wizards).

Using the Epsilon Validation Language (EVL), we express inter-model con-
sistency: that for every class n, there exists a table named n (and vice versa).
If one of the constraints is violated, Epsilon can automatically trigger the rele-
vant transformation to attempt to restore consistency. For example, after exe-
cuting the transformation AddClass, the constraint TableExists will be vio-
lated, indicating that the transformation AddTable should be executed to restore
consistency.

This example of a bidirectional transformation, simulated in Epsilon, is a
simple one chosen to illustrate the concepts. Even what appears to be a simple
BX can lead to more interesting (i.e. less symmetric) BX, e.g. manipulating
inheritance in the class model.
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5.2 Checking Compatibility

A critical difference between the simulated BX in the previous section and a true
BX is the absence of guarantees about the compatibility of the transformations:
upon the violation of TableExists, for example, does the execution of AddTable
actually restore consistency? For this simple example, a manual inspection will
confirm that the transformations are indeed compatible. But what about more
intricate BX? And what about BX that evolve and change over time? For the
Epsilon-based approach to be a convincing alternative to a BX language, it is
imperative that the compatibility of the transformations can be checked, and
that this can be done in a simple and automatic way. To this end, we propose
to leverage and adapt some recent developments in the verification of graph
transformations.

Graph transformation is a computation abstraction: the state of a computa-
tion is represented as a graph, and the computational steps as applications of
rules (i.e. akin to string rewriting in Chomsky grammars, but lifted to graphs).
Modelling a problem using graph transformation brings an immediate benefit
in visualisation, but also an important one in terms of semantics: the abstrac-
tion has a well-developed algebraic theory that can be used for formal reasoning.
This has been exploited to facilitate the verification of graph transformation sys-
tems, i.e. calculi for systematically proving specifications about graph properties
before and after any execution of some given rules. In particular, we look to
exploit work by Poskitt and Plump, who developed proof calculi for graph pro-
grams, separately addressing reasoning about programs and properties involving
attribute manipulation [25,26].

Our example BX for the OO2RDBMS problem can be translated into graph
programs and nested conditions, as given in Fig. 23. The programs PS , PT are
the individual rules creating a class or table node labelled newName (here, ∅
denotes the empty graph, indicating that the rules can be applied without first
matching any structure, i.e. unconditionally). The nested condition evl, given on
the right, expresses that for every class (or table) node, there is a table (or class)
node with the same name (note that x, y are variables, and that the numbers
indicate when nodes are the same down the nesting of the formula). Were the
weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) ≡ Wlp(PT ;PS , evl) ≡ evl.

Since evl ⇒ evl is valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and – assuming correctness of the abstractions – the original EWL
transformations are therefore compatible with respect to the EVL constraints.

A key challenge with an approach such as this is what to do when the verifi-
cation step fails, i.e., the implication above does not hold. We are exploring the
use of the GROOVE tool10 to generate counterexamples when verification fails,
via exploring executions of the graph transformation rules.

10 http://groove.sourceforge.net/groove-index.html.

http://groove.sourceforge.net/groove-index.html
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Fig. 23. Our CD2RDBM BX expressed as graph transformation rules and a nested
condition

6 Conclusions and Perspectives

Bidirectional transformations must be engineered, as must unidirectional trans-
formations and other programs that manipulate models in MDE. The state-of-
the-art in engineering BX is piecemeal at the moment: there are some specific
techniques for supporting different engineering phases – such as requirements
engineering or design – but very coarse understanding of efficient and effective
engineering lifecycles, and alternative process models. This paper attempts to
capture some of the current thinking on engineering BX. It summarises some of
the state-of-the-art in BX design and implementation, presents some approaches
for requirements specification and analysis, and suggests some ideas for captur-
ing the architecture of complicated BX, and the detailed design of BX in general.
It also presents some ideas on an approach for verification of BX; this approach
is pragmatic, in the sense that it is meant to be used within an engineering
process and it acknowledges tradeoffs between completeness and soundness.

MDE for BX possesses some sound theory – such as delta lenses – and some
pragmatic, if incomplete, tools (such as Eclipse QVT-Relations) but these are
still siloed: the theory needs to inform the enhancement of tools, and the tools
need to be used to test the corners of the theory. A good example of research
that attempts to link BX theory and practice is that combining triple graph
grammars and delta lenses (e.g., [27]), but more needs to be done. What is
really needed is tools that evidently implement the theory in a systematic and
audited way.

A key challenge in connecting theory with practical tools is the limitations in
our theories of metamodelling. It is questionable whether we have a sound and
complete understanding of a type theory for MDE and metamodelling, but this
would underpin any attempts to link a theory of BX with the pragmatic tools
supporting BX.

We mentioned tools for BX throughout this paper. The standardised tool
in the MDE community is QVT-Relations; the Eclipse implementation is still
under development. QVT-Relations has been criticised for being very complex,
with substantial semantic ambiguity. The development of its Eclipse implemen-
tation is revealing some of these ambiguities, but this will only be convincing
if supported by a sound theory, e.g., delta lenses. However, the gap between
delta lens theory and QVT-Relations is substantial: changing QVT-Relations to
conform with delta lenses may be difficult if not impossible; building a new BX
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that supports delta lens theory is possible, but it would not be QVT-Relations.
It is difficult to see how connections between strong theory and MDE standards
will play out.

It also remains to be seen whether we can develop a rich, compelling set of
industrial scenarios for BX. In our substantial industrial experience of transforma-
tions and MDE, we have had only one precise requirement for a BX (across over 20
industrial projects and 13 years of experience), and that was for the results of var-
ious forms of analysis (e.g., failure analysis, performance analysis) to be reflected
on source models after calculation. It is unclear if such scenarios benefit from the
heavyweight machinery of BX. But it should also be noted that requirements for
BX sometimes emerge as development proceeds and having ways in which trans-
formations can be extended to become bidirectional may be useful.

In Sect. 5 we described an approach to BX that involved specification of inter-
model consistency constraints between two models, and the definition of two
separate but synchronised update-in-place transformations on the two models.
When the constraints were violated and the models became inconsistent, the
transformations would be triggered to re-establish consistency. This approach –
two simple yet unidirectional transformations instead of a single bidirectional
transformation – needs to be clearly related to the BX solution space: when is
it more effective to use versus building a full BX?

Finally, we observe that many transformations developed in practice are oper-
ational (e.g., those written in EOL or subsets of ATL). As well, there are many
model-to-text (or model-to-grammar) transformations that support code gener-
ation scenarios. How do these fit in to the BX space? Are they simply too hard to
consider? Are there scenarios or types of transformations that simple should not
(rather than cannot) be bidirectionalised? As a challenge, consider the EuGE-
Nia tool11 which is a unidirectional model transformation written in EOL, which
automatically generates three models needed by GMF to construct a graphical
editor. These are generated by a transformation that takes as input a single
annotated Ecore model. The transformation is defined entirely operationally, as
we found that it would be too complex to implement using declarative rules (it is
not a mapping transformation). Could EuGENia be turned into a bidirectional
transformation? Our intuition is no (and, more pragmatically, we cannot see
any reason why one would want to do so), but it would be interesting to explore
what, fundamentally, makes an operational or hybrid transformation difficult to
bidirectionalise.
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