
Jeremy Gibbons
Perdita Stevens (Eds.)

Tu
to

ria
l

LN
CS

 9
71

5

International Summer School
Oxford, UK, July 25–29, 2016
Tutorial Lectures

Bidirectional
Transformations

 123

Lecture Notes in Computer Science 9715

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

Jeremy Gibbons • Perdita Stevens (Eds.)

Bidirectional
Transformations
International Summer School
Oxford, UK, July 25–29, 2016
Tutorial Lectures

123

Editors
Jeremy Gibbons
University of Oxford
Oxford
UK

Perdita Stevens
University of Edinburgh
Edinburgh
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-79107-4 ISBN 978-3-319-79108-1 (eBook)
https://doi.org/10.1007/978-3-319-79108-1

Library of Congress Control Number: 2018937394

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-8426-9917
http://orcid.org/0000-0002-3975-7612

Preface

“Bidirectional transformations” (BX) are a means of maintaining consistency between
multiple information sources: When one source is edited, the others may need updating
to restore consistency. BX have applications in databases, user interface design,
model-driven development, and many other domains.

This volume represents the lecture notes from the Summer School on Bidirectional
Transformations, held at Lady Margaret Hall in Oxford during July 25–26, 2016. The
school was one of the final activities on the project “A Theory of Least Change for
Bidirectional Transformations”, running at the University of Oxford and the University
of Edinburgh from 2013 to 2017 and funded by the UK Engineering and Physical
Sciences Research Council (grant numbers EP/K020919/1 and EP/K020218/1).

http://www.cs.ox.ac.uk/projects/tlcbx/
http://groups.inf.ed.ac.uk/bx/

The summer school was aimed at graduate students and researchers in BX and
related areas. It played host to lectures from five external experts in BX, book-ended by
some additional lectures from the TLCBX project team on the results obtained during
the project. Lecture notes on all six topics are included here:

– The chapter “Introduction to Bidirectional Transformations” by the TLCBX team
(Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna, and Perdita
Stevens) sets the scene, introducing general notions of BX (including the
view-update problem, the relational perspective via consistency restoration, vari-
eties of lens, and triple graph grammars), in order to establish a common foundation
for and highlight some differences in approach between the chapters that follow. It
also briefly presents some of the results from the project: on effectful lenses and the
entangled state monad; on complement structures as witnesses to consistency,
including the use of dependent types (with witnesses more specifically to proofs of
consistency); and on the least change principle.

– “Triple Graph Grammars” (TGGs) provide a rule-based means of specifying a
consistency relation over two graph languages. TGG rules are direction agnostic,
describing the simultaneous creation of pairs of consistent graphs in both languages.
Correspondences between elements in the different languages are thereby repre-
sented explicitly as a third “correspondence graph”. Many useful tools can be
derived automatically from a TGG including an instance generator, consistent for-
ward and backward transformations, and incrementally working synchronizers,
which are able to realize forward and backward change propagation without
incurring unnecessary information loss. Anthony Anjorin’s chapter “An Introduction
to Triple Graph Grammars as an Implementation of the Delta-Lens Framework”
introduces TGGs as a pragmatic implementation of the “symmetric delta lens”
framework proposed by Diskin et al.

– Martin Hofmann’s chapter “Modular Edit Lenses” presents symmetric edit lenses,
as developed in a series of papers by David Wagner, Benjamin Pierce, and himself.
Symmetric lenses form a general framework for the modular construction of bidi-
rectional synchronizers, and generalize the popular lens framework of Foster and
Pierce to a symmetric setting. The chapter describes both the state-based and the
edit-based (or delta-based) versions, and concludes with an extended illustration
involving tree-structured data. The main focus is on edit lenses, and the categorical
combinators which allow for their modular construction. The chapter serves as a
reading guide to the original series of papers.

– “Putback-based” bidirectional programming is an approach that allows the pro-
grammer to specify a bidirectional transformation by writing only the “putback”
component; the unique corresponding forwards transformation is derived from this
for free. A key distinguishing feature of putback-based bidirectional programming
is its full control over the bidirectional behaviour, which is important for specifying
one’s intentions for a bidirectional transformation without any ambiguity. The
chapter “Principles and Practice of Bidirectional Programming in BiGUL” by
Zhenjiang Hu and Hsiang-Shang Ko introduces the authors’ putback-based bidi-
rectional programming language BiGUL. They explain the principles of the lan-
guage, and show how to develop various kinds of bidirectional transformation in it.

– Richard Paige expounds the view that bidirectional transformations are artifacts that
can (and probably should) be engineered, following a suitable lifecycle. In his
chapter “Engineering Bidirectional Transformations,” he considers the different
phases of such a BX engineering lifecycle, explores ways in which the require-
ments, architectures, designs and implementations of BX can be specified, and
discusses what support can be used to help verify or validate such artifacts.

In addition, Mike Johnson lectured on “Mathematical Foundations of Bidirectional
Transformations”, but for personal reasons was not able to supply a chapter for this
volume. His lectures were based on his papers with Bob Rosebrugh, including
“Algebras and Update Strategies” (doi 10.3217/jucs-016-05-0729), “Fibrations and
Universal View Updatability” (doi 10.1016/j.tcs.2007.06.004), and a series of papers in
the annual BX Workshop, starting with “Lens Put–Put Laws: Monotonic and Mixed”
(in Volume 49 of Electronic Communications of the EASST).

The chapters were reviewed by the lecturers, each chapter getting one review from
one of the other invited lecturers and one from a member of the TLCBX team. In
addition, some participants in the summer school—Jonathan DiLorenzo, Valdemar
Graciano Neto, and Seyyed Shah—each reviewed a chapter.

We would like to express our thanks to EPSRC for funding the project, including
the summer school itself; and to Karen Barnes in the Department of Computer Science
at Oxford and Gemma Sheppard at Lady Margaret Hall for their help in running the
school. We also wish to thank the participants at the school, whose enthusiasm made
worthwhile the effort of organizing the event; special thanks go to the participants who
volunteered to review one of these chapters. And of course, it couldn’t have happened
without the generous contributions of time and energy from the invited lecturers.

Finally, we thank Sigrid Rosen and Steffen Jost of Ludwig-Maximilians-Universität
München for helping to obtain files and permissions relating to Martin Hofmann’s

VI Preface

chapter. Martin died while walking on the mountain Nikko Shirane in Japan, in January
2018 while we were finalizing this volume. BX was only one of many fields of
computer science where Martin made important contributions; it is sad that he did not
survive to make even more. Far sadder, though, is the loss of someone whose kindness
and positivity improved any occasion, scientific or social, where he was present. We
will miss him, and our hearts go out to his wife Annette and his three children. We
dedicate this volume to his memory.

February 2018 Jeremy Gibbons
Perdita Stevens

Preface VII

Contents

Introduction to Bidirectional Transformations . 1
Faris Abou-Saleh, James Cheney, Jeremy Gibbons,
James McKinna, and Perdita Stevens

An Introduction to Triple Graph Grammars as an Implementation
of the Delta-Lens Framework . 29

Anthony Anjorin

Modular Edit Lenses . 73
Martin Hofmann

Principles and Practice of Bidirectional Programming in BiGUL 100
Zhenjiang Hu and Hsiang-Shang Ko

Engineering Bidirectional Transformations . 151
Richard F. Paige

Author Index . 189

Introduction to Bidirectional
Transformations

Faris Abou-Saleh1, James Cheney2 , Jeremy Gibbons1(B) ,
James McKinna2, and Perdita Stevens2

1 Department of Computer Science, University of Oxford, Oxford, UK
{faris.abou-saleh,jeremy.gibbons}@cs.ox.ac.uk

2 School of Informatics, University of Edinburgh, Edinburgh, UK
{james.cheney,james.mckinna,perdita.stevens}@ed.ac.uk

Abstract. Bidirectional transformations (BX) serve to maintain con-
sistency between different representations of related and often overlap-
ping information, translating changes in one representation to the oth-
ers. We present a brief introduction to the field, in order to provide some
common background to the remainder of this volume, which constitutes
the lecture notes from the Summer School on Bidirectional Transforma-
tions, held in Oxford in July 2016 as one of the closing activities of the
UK EPSRC-funded project A Theory of Least Change for Bidirectional
Transformations.

1 Introduction

Many tasks and problems in software engineering revolve around maintaining
consistency between different representations of abstractly ‘the same’ underly-
ing data in some system. Stable states of the system can be modelled by a
relation, characterizing which states of the components of the system are con-
sidered ‘consistent’. More interestingly, one also needs to resolve inconsistencies,
modifying the states of one or more components in order to restore the system
as a whole to a consistent compound state. In the general case, the compound
system consists of multiple components; in this chapter, we will restrict attention
to the simpler binary case, with just two components.

One may solve these problems from first principles, by providing separate
programs that check for consistency, and that restore consistency in each possible
direction—three programs, in the binary case. However, this approach is wasteful
of effort, and presents a software maintenance challenge, because essentially the
same information—the consistency relation—is duplicated in each of the separate
programs. (Of course, redundancy might have some benefits too.) Bidirectional
transformations (BX) attempt to eliminate the duplication, by arranging matters
so that a single specification of the relationship between components may serve
simultaneously to determine the consistency check and the various consistency
restorers.

The history of BX may be traced back at least to the work of Bancilhon and
Spyratos [8] in the 1980s on what has become called the view–update problem
c© Springer International Publishing AG, part of Springer Nature 2018
J. Gibbons and P. Stevens (Eds.): Bidirectional Transformations, LNCS 9715, pp. 1–28, 2018.
https://doi.org/10.1007/978-3-319-79108-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79108-1_1&domain=pdf
http://orcid.org/0000-0002-1307-9286
http://orcid.org/0000-0002-8426-9917
http://orcid.org/0000-0002-3975-7612

2 F. Abou-Saleh et al.

in databases. We say more about this motivating scenario in Sect. 2.2; but in
a nutshell, a complex database may provide a simplified view of a subset of
the source data, and a user may reasonably want to specify an update of the
source data in terms of the view. A richer variation of a similar need arises
in model-driven development, when developers independently modify simpler
projections of a composite system model, and expect their local modifications
to be reflected in the shared composite. This particular variation has motivated
two decades of work by Schürr and colleagues on triple-graph grammars [55],
which provide grammars for consistent pairs of graphs linked by collections of
triples; we discuss this approach in Sect. 3.4. More recently, Pierce and others [26]
have spearheaded a fruitful line of work on lenses, programming abstractions for
data references supporting ‘get’ and ‘put’ operations; we discuss this approach
in more detail in Sect. 3.2.

This volume represents the lecture notes from a Summer School on Bidi-
rectional Transformations, held in Oxford in July 2016 as one of the closing
activities of the UK EPSRC-funded project A Theory of Least Change for Bidi-
rectional Transformations (TLCBX). Our particular focus in the project was to
investigate the so-called principle of least change, first identified by Meertens
[44,45]. One of the primary axioms that BX should satisfy formalises the idea
that ‘if nothing needs to change (because the overall system is already consis-
tent), then nothing should be changed’. But if something does need to change,
because consistency must be restored, then this axiom does not constrain the
behaviour of the BX at all. There may be many different ways of restoring con-
sistency, some better than others from the points of view of the users of the BX.
A least-change principle attempts to formalise the intuitive idea that the BX
should not change more than is necessary. However, providing a formal prop-
erty that captures this intuition turns out to be a knottier problem than at first
appears; we discuss it in Sect. 4.2.

The purpose of this chapter is to provide a brief introduction to the BX
landscape, sufficient to allow the first-time visitor to find their way around the
rest of this volume. In Sect. 2, we describe a number of motivating scenarios
for BX. In Sect. 3, we sketch some of the main approaches that have been used
to model and implement BX. Finally, in Sect. 4, we summarize some of the
contributions made in the course of the TLCBX project: the entangled state
monad, steps towards formalizing a principle of least change, and the fact that
BX are proof-relevant bisimulations. In all cases, our aim is more to provide
signposts to the important highlights than to present a complete study; we give
appropriate references to the primary literature, where more details may be
found. Complementary introductions to the field may be found in the Grace
report [21], the report on a Dagstuhl seminar [32], and a chapter in the lecture
notes from the Summer School on Generic and Indexed Programming [27].

Introduction to Bidirectional Transformations 3

2 Scenarios

2.1 Data Conversions

A very simple degenerate class of BX arises between two data sources when each
maintains a faithful record of the whole overall state. The overall system may
then be thought of as mere data conversion between different formats. Crucially,
when one side is updated, the other may simply be discarded and recreated from
scratch, with no loss of information.

Consider the example of an address book application, illustrated in Fig. 1.
The application maintains a collection of address cards; the graphical user inter-
face of the application mediates between a textual representation of the cards
and a more accessible pictorial representation. A card is typically edited via the
pictorial representation, but stored on disc or exported in the textual represen-
tation. When the pictorial representation is edited and saved, the old textual
representation is overwritten with a new one; conversely, if the textual represen-
tation is updated and reloaded, the old pictorial representation is replaced with
a new one.

Naive approaches for designing graphical applications such as the address
book entail two unidirectional transformations: a parser, which reads the textual
representation and constructs the view ; and a pretty printer, which writes the
content of the view back to the textual representation. Higher-level form abstrac-
tions such as XForms [14], Windows Presentation Foundation [46], and Formlets
[20] more or less successfully allow the application developer to express in one
place the correspondence between the textual representation and its graphical
layout.

Fig. 1. Data conversion: (a) vCard format and (b) an address book application

4 F. Abou-Saleh et al.

2.2 View–Update

The primary historical precedent for the study of BX is the work starting with
Bancilhon and Spyratos [8] already cited above, on the view–update problem in
databases. Consider the three database tables shown in Fig. 2: two source tables
Staff and Projects, and a View table generated from them by the query

SELECT Name, Room, Role
FROM Staff, Projects
WHERE Name = Person
AND Code = "Plum"

The view–update problem is to translate an edit on the View table back to
appropriate updates on the source tables Staff and Projects. Of course, the
problem is not in general well posed; there may be multiple translations that
would work (if one deletes Sam from View, should that entail moving Sam from
the Plum project to Pear in Projects, or removing Sam from all projects?), or
none (if one introduces a new person in View, what should their salary be in
Staff ?). There is a wealth of work on identifying and implementing the cases
that do make sense [22].

Fig. 2. The view–update problem: source tables (a) and (b), and a view (c)

2.3 Model-Driven Development

Model-driven development is fertile ground for BX, revolving as it does around
models from different perspectives of a composite system design. Multiple devel-
opers, or the same developer wearing multiple hats, wish to work on individual
models, focussing on the concerns at hand and ignoring those that are temporar-
ily irrelevant. Having made some edits to one model, the other models should
be updated to restore consistency.

Consider for example the issue of object–relational mapping (ORM). This
is typically used when an application with business logic written in an object-
oriented language should manipulate a data layer stored in a relational database.
Rather than manually reading data from and writing it to the database, it is
preferable to use some kind of tool support that allows the developer abstractly to
specify the relationship between the two layers, with the actual transformations
back and forth being generated from this specification. There are a small number

Introduction to Bidirectional Transformations 5

of well-understood ORM strategies [5], and also a good understanding of the
challenges of ORM [48].

Figure 3(a) presents two meta-models. The left-hand metamodel states that
classes have attributes, classes are in a super-/sub-class relationship, and
attributes are in a next/previous relationship—the idea (not entirely captured
in the metamodel) being that classes are grouped into single-inheritance hier-
archies, and that the attributes of a class are linearly ordered. The right-hand
metamodel states more simply that a table similarly has a sequence of columns.
Figure 3(b) presents a class model, conforming to the class metamodel, with four
classes arranged into two hierarchies. Figure 3(c) presents a table model, con-
forming to the table metamodel, following the ‘one table per hierarchy’ ORM
strategy: one table named A corresponds to the hierarchy rooted at class A,
the other table named D corresponds to the isolated class D . Note that neither
model is definitive: the class model contains names for subclasses, which are
lost in the table model; and the table model records a linear ordering on all the
attributes in a hierarchy, which is only partially maintained in the class model.
(This example is inspired by Schürr and Klar [56], and documented in the BX
Examples Repository [7] that was established as an early step in the TLCBX
project [18]; it will be revisited in Sect. 3.4.)

Fig. 3. (a) Two metamodels, (b) a class model, and (c) a table model

2.4 Composers

Composers [61] is a classical simple BX example that has been used by various
authors over the years [12,59] to illustrate BX concepts. In this example, there
are two sets of models

M = {Name × Dates × Nationality}
N = [Name × Nationality]

of a collection of musical composers. A model m : M is a set of triples, record-
ing the name, dates of birth and death, and nationality of each composer;

6 F. Abou-Saleh et al.

a model n :N is a sequence of pairs, recording only names and nationalities,
but in some order. Models m and n are consistent if they have the same set of
Name × Nationality pairs; for example:

m = {(“Jean Sibelius”, 1865–1957, Finnish),
(“Aaron Copland”, 1910–1990, American),
(“Benjamin Britten”, 1913–1976, English)}

n = [(“Benjamin Britten”, English),
(“Aaron Copland”, American),
(“Jean Sibelius”, Finnish)]

Again, neither model is definitive (model M lacks the ordering, whereas model N
lacks the dates). Consequently, there is a variety of ways of restoring consistency:
from M to N , one needs to worry about the ordering, and from N to M , one
needs to worry about the dates.

3 Approaches

3.1 Relational

Stevens [59,60] has pioneered a simple relational model of BX, in order to
focus on the essence of the relationships between the model spaces and con-
sistency restoration. According to this approach, a BX between model sets
M ,N is a triple (R,

−→
R ,

←−
R) consisting of a consistency relation R ⊆ M × N ,

a forwards consistency restorer
−→
R :M × N → N , and a backwards consistency

restorer
←−
R :M × N → M . We may write (R,

−→
R ,

←−
R) :M −�−� N . The idea is that

given possibly inconsistent models m ′,n (arising perhaps from an originally con-
sistent pair m,n in which m has been edited to m ′), forwards consistency restora-
tion yields n ′ =

−→
R (m ′,n) such that R(m ′,n ′) holds; and symmetrically, given

m,n ′, backwards consistency restoration yields m ′ =
←−
R(m,n ′) such that again

R(m ′,n ′) holds.
(To be complete, one ought also consider a distinguished ‘no information’

model in each model set, which is used as an argument to the consistency restor-
ers when one model must be created ab initio from the other. But for simplicity,
we will not discuss this further.)

We say that the BX is correct if consistency is indeed restored by the con-
sistency restorers:

∀m ′,n. R (m ′,
−→
R (m ′,n))

∀m,n ′. R (
←−
R(m,n ′),n ′)

and hippocratic (‘do no harm’) if restoration does nothing when the models are
already consistent:

∀m,n. R(m,n) ⇒ −→
R (m,n) = n

∀m,n. R(m,n) ⇒ ←−
R(m,n) = m

Introduction to Bidirectional Transformations 7

In addition, the BX is history-ignorant (rather a strong condition) if

∀m,m ′,n.
−→
R (m,

−→
R (m ′,n)) =

−→
R (m,n)

∀m,n,n ′.
←−
R(

←−
R(m,n ′),n) =

←−
R(m,n)

—informally, a later consistency restoration completely overwrites an earlier one.
To illustrate, the Composers example from Sect. 2.4 would be represented by

the model sets

M = {Name × Dates × Nationality }
N = [Name × Nationality]

as before. The consistency relation R would be such that R(m,n) holds pre-
cisely when the set of name–nationality pairs obtained by projecting away all
the dates in m coincides with the set of name–nationality pairs obtained by tak-
ing the elements of the list n. For

−→
R (m,n) to be correct, the elements of the

list produced are completely determined, but not the ordering, nor multiplicity
in the case that there are two triples in m that share name and nationality.
For the forwards restorer to be hippocratic, it suffices that the name–nationality
pairs present in both m and n are returned in the same order as in n, with
additional pairs placed anywhere. Conversely, for

←−
R(m,n) to be correct, the

names and nationalities in the set produced are completely determined; for it to
be hippocratic, it suffices for the name–nationality pairs in common retain the
dates recorded in m, and any additional entries may have arbitrary dates. But
it is hard to make the restorers history-ignorant; informally, this entails recon-
structing discarded information. For example, with states m,n as in Sect. 2.4,
and m ′,n ′ the corresponding states with Copland missing:

m′ = {(“Jean Sibelius”, 1865–1957, Finnish),
(“Benjamin Britten”, 1913–1976, English)}

n′ = [(“Benjamin Britten”, English),
(“Jean Sibelius”, Finnish)]

then for correctness’ sake,
−→
R (m ′,n) must be a list omitting Copland, such as

n ′; and so
−→
R (m,n ′) must restore Copland to the list, in the same position as it

was in n, without having access to that information. Conversely,
←−
R(m,n ′) must

be a set omitting Copland, such as m ′; and
←−
R(m ′,n ′) must somehow restore

Copland’s dates, without having access to those dates.

3.2 Lenses

BX notions were brought to the attention of the programming languages commu-
nity principally through a series of papers [9,12,13,26,30,31] by Pierce et al. on
lenses. An asymmetric lens (get , put) :S −�−� V from source S to view V consists
of two functions

8 F. Abou-Saleh et al.

get : S → V
put : S × V → S

The idea is that get s projects a view from source s, and put (s, v ′) restores a
modified view v ′ into existing source s. The lens can be seen as a reference to a
V component ‘inside’ an S composite. It is ‘asymmetric’ because the source S
is primary, determining the secondary view V (via the get function), but in
general the view does not determine the source. (The full story involves also a
create :V → S function, analogous to the ‘no information’ models in the rela-
tional approach.)

A simple example is given by projection from pairs: when S = A × B and
V = A, with get (a, b) = a extracting the first component of the pair, and
put ((a, b), a ′) = (a ′, b) updating the first component.

The lens is well-behaved if it satisfies

∀s, v . put (s, get s) = s (GetPut)
∀s, v . get (put (s, v)) = v (PutGet)

Informally, if one gets view v = get s from source s then immediately puts it
back again, s does not change; and having put view v into source s, it is indeed
faithfully stored there, and will be retrieved by a subsequent get .

It is instructive to compare this approach with the relational one from
Sect. 3.1. The consistency relationship R being maintained is

R(s, v) ⇔ (get s = v)

Forwards consistency restoration
−→
R :S × V → V is trivial,

−→
R (s, v) = get s,

because the source completely determines the view; backwards consistency
restoration

←−
R = put : S × V → S is just the put function. Property (GetPut)

is analogous to hippocracy (when reconciling view v = get s with source s
with which it is already consistent, do nothing); property (PutGet) is analogous
to correctness (having reconciled s with v , the state is consistent).

A well-behaved asymmetric lens is very well-behaved if in addition it satisfies

∀s, v , v ′. put (put (s, v), v ′) = put (s, v ′) (PutPut)

Informally, having put view v into source s, immediately putting another
view v ′ will completely overwrite v , so that the net effect is the same as simply
having put v ′ in the first place. The projection lens above is very well-behaved;
indeed, it is a folklore result that any very well-behaved lens S −�−� V induces an
isomorphism S � V × C for some complement type C that is not touched by
the put function—hence the term ‘constant complement ’ [8] is sometimes used.

It is this constant complement consequence that makes very well-behavedness
or history ignorance such a strong property. For example, consider a simplified,
asymmetric version of the Composers example from Sect. 2.4, with both state
spaces being lists:

Introduction to Bidirectional Transformations 9

M = [Name × Dates × Nationality]
N = [Name × Nationality]

so that M determines N , via a get function that projects away the dates. It
is straightforward to define put to yield a well-behaved lens; but there is no
definition of put that yields a very well-behaved lens, because the source type
M does not factorize perfectly into N × C for any complement type C .

Hofmann et al. [30] introduced a symmetric variation of lenses, whereby lens
(putr , putl) : A −�−�C B between A and B with complements C consists of a pair
of functions

putr : A × C → B × C
putl : B × C → A × C

Now neither A nor B determines the other; neither is definitive. Think of C
as a record of the information in A that is missing from B , together with the
information in B that is missing from A, so that A × C determines B and B × C
determines A. One might simply take the complement to be C = A × B , but
usually the point of the exercise is that A and B have some information in
common, and this common information need not be represented also in C .

Function putr reads the B -relevant part of C and updates the A-relevant
part; dually, putl reads the A-relevant part and updates the B -relevant part.
Thus, putr transfers information from left to right; it takes a modified left-
hand value a ′ : A and a complement (cA, cB) : C , and constructs an updated
right-hand value b′ : B from a ′ and cB , together with an updated complement
(c′

A, cB); and symmetrically for putl , from right to left.
A symmetric lens is well-behaved if it satisfies

∀a, b, c, c′. putr (a, c) = (b, c′) ⇒ putl (b, c′) = (a, c′) (PutRL)
∀a, b, c, c′. putl (b, c) = (a, c′) ⇒ putr (a, c′) = (b, c′) (PutLR)

These conditions induce consistent states (a, c, b) such that putr (a, c) =
(b, c) and putl (b, c) = (a, c). A well-behaved symmetric lens is very well-
behaved if in addition

∀a, a ′, b, c, c′. putr (a, c) = (b, c′) ⇒ putr (a ′, c′) = putr (a ′, c) (PutPutR)
∀a, b, b′, c, c′. putl (b, c) = (a, c′) ⇒ putl (b′, c′) = putl (b′, c) (PutPutL)

(and as before, very well-behavedness is a very strong condition).
An asymmetric lens S −�−� V is effectively a special case S −�−�S V of symmetric

lenses: there is no information in V that is missing from S , so the complement
just can be S , or more efficiently some smaller complement C such that V × C
determines S . The Composers example is not representable as an asymmetric
lens (because neither state space determines the other); but it is representable
as a symmetric lens, with complement C = [Name × Dates × Nationality] that
records both the ordering absent from M and the dates absent from N .

10 F. Abou-Saleh et al.

3.3 Ordered, Delta-Based, Categorical

The problem with put–put laws (history ignorance, very well-behavedness) is
that they demand a strong property about combining two updates into one
update with the same overall effect. As we have seen, this is apparently too
much to expect, at least in the case of combining two arbitrary updates. But
perhaps it is more reasonable for certain special classes of updates?

Hegner [28] took this observation as the inspiration for a more nuanced look
at what he called ordered updates. In this setting, the state spaces have a natural
ordering, and certain updates are monotonic with respect to this ordering. For
example, the states might be states of a database, modelled as sets of tuples,
with the sets ordered by inclusion; insertion of some tuples into the set is mono-
tonic with respect to inclusion. We have seen that combinations of deletions and
insertions tend not to compose well—in particular, deletion of an item entails
deletion also of any complementary information about that item from the sys-
tem, and re-insertion of morally ‘the same’ item requires the complementary
information somehow to be restored, if the net effect is to leave the system as it
was. It is less drastic to insist on the special case that two consecutive insertions
of small sets of tuples is equivalent to one insertion of the union of those sets.

An alternative perspective, argued first by Diskin et al. [23,24], is that the
put–put problem arises from taking a state-based approach to BX (as exemplified
by the relational and lens work described above). In this state-based approach,
the consistency restoration operations are given only old and new states, and
so the restoration process consists of two steps: alignment, to find out what
has changed on one side (not to be confused with the problem of matching up
models from different spaces to identify correspondences, which is also sometimes
called ‘alignment’), and propagation, to translate that change to the other side.
A delta-based approach separates those two tasks; in particular, the input to
consistency restoration is not just a new state a ′, the result of an update, but
the update δ : a 	→ a ′ itself, so the alignment information is provided as an
input to consistency restoration, and no longer needs to be reconstructed during
restoration.

The situation is as illustrated in Fig. 4. Forwards propagation takes an ini-
tially consistent pair of states (a, b) and an update δA : a 	→ a ′ on the A side,
and yields an update δB : b 	→ b′ on the B side and a new consistent pair of
states (a ′, b′). More concretely, one might want to maintain not merely the bare
information that states a, b are consistent, but also the correspondence c : a↔b
that witnesses to their consistency; for example, when the states are sets of
model elements, the correspondence c might be a set of triples, recording which
A-elements are related to which B -elements, and by what relation. Symmet-
rically, backwards propagation takes c : a↔b and δB : b 	→ b′ to δA : a 	→ a ′

and c′ : a ′↔b′. One of the benefits of the delta-based approach is being able
to relax the expectation that one can transit from any state to any other, as is
implicit in the state-based approach.

Johnson et al. have been pioneering a line of work [33–36] to provide a cate-
gorical unification and generalization of the ordered and delta-based approaches.

Introduction to Bidirectional Transformations 11

Fig. 4. Delta-based consistency

In their approach, one represents a state space A and its transitions δ : a 	→ a ′

as a category A. The arrows in the category represent the allowable transitions;
as with the delta-based approach, one need not allow all possible transitions.

The relevant constructions involve the objects |A| of a category A, the set
|A2| of arrows of A, and the comma category G/B for a functor G : A → B,
which has objects (A, β) where A is an object of A and β : G(A) → B is an arrow
of B. It would take us too far out of our way here to present a complete tutorial
in category theory sufficient to provide much intuition for these constructions;
but one would not go far wrong in thinking of the category as a directed graph,
its objects (the states) as vertices in the graph, and its arrows (the allowable
transitions between states) as paths in the graph.

An (asymmetric, delta-) lens (G ,P) : A −�−� B is then a pair in which
G : A → B is a functor, and P : |G/B| → |A2| is a function, taking a pair
(A, β : G(A) → B) to a transition α : A → A′. One should think of the pair
(A, β : G(A) → B) as a transition in B from an initial state G(A) that corre-
sponds to a given state A in A.

The lens is well-behaved if it satisfies the first three of the following four
properties, for all β : G(A) → B and β′ : G(A′) → B ′, and very well-behaved
if it satisfies all four:

– the domain of P(A, β) is A;
– P(A, idG(A)) = idA;
– G(P(A, β)) = β;
– P(A, β′·β) = P(A′, β′)·P(A, β), where A′ is the codomain of P(A, β) and so

G(A′) = B .

The first says that when β : G(A) → B is propagated back by P , it does indeed
yield an allowable A-transition from A; this is a basic requirement for coherence,
when not all transitions are allowed from every state. The second says that the
identity transition in B propagates back to the identity transition in A; this
is analogous to hippocracy. The third says that the B-transition α is faithfully
propagated back to an A transition; this is analogous to correctness. And the
fourth says propagating the composite arrow β′·β is equivalent to propagating
β′ after β. The fourth property is analogous to history-ignorance, although the
term no longer seems adequate; crucially, because one may focus attention only
on certain compatible sets of transitions, it is no longer an unreasonably strong
condition.

One can recover the set-based approach via the codiscrete category, which
has precisely one arrow between any pair of objects, representing the fact that

12 F. Abou-Saleh et al.

a transition is available from any state to any other state. And one can recover
the ordered approach by considering the ordered set as a category, with at most
one arrow between any pair of objects. Symmetric lenses arise from spans of
asymmetric lenses [34]; for example, a symmetric lens between A and B can be
constructed from two asymmetric lenses C −�−� A and C −�−� B from some common
source C representing the ‘union’ of the information provided by A and B.

3.4 Triple-Graph Grammars

The triple-graph grammar approach to BX arose by combining the work of
Rozenberg, Ehrig and others in graph grammars, graph rewriting, and graph
transformations [25,54] with earlier ideas from Pratt on pair grammars [53].
A grammar specifies a language, and can be used both to determine whether
a term is in that language, and also to generate terms from that language.
A pair grammar consists of a pair of grammars, whose rules and non-terminals
are paired in a correspondence that models a translation between the two lan-
guages. Triple-graphs are a special kind of graph, with both ‘object-level’ vertices
and edges as usual, but also labelled ‘meta-level’ edges that link object-level enti-
ties. These labelled meta-level edges are the triples of the name; they provide
the correspondence structure relating two object-level graphs.

Consider the object–relational mapping example from Sect. 2.3 [7]. A class
model and a table model are consistent if there is an appropriate correspondence
relationship between their model elements, as illustrated in Fig. 5. Here, the two
models are as shown in Fig. 3(b, c). The correspondence is given by the set of bro-
ken edges linking the model elements: dotted lines for the CT correspondences
between class and table elements, and dashed lines for the AC correspondences
between attribute and column elements. The triple-graph itself conforms to the
metamodel shown in Fig. 6, which simply consists of the union of the two meta-
models from Fig. 3(a) together with the two correspondence associations.

Fig. 5. Two models, with correspondences

This triple of metamodels could be used to derive a BX as follows. Forwards
transformation takes a class model, analyses it according to the class meta-
model, then uses the associated correspondences to generate a corresponding

Introduction to Bidirectional Transformations 13

Fig. 6. Two metamodels, with correspondences

table model. Conversely, backwards propagation constructs a class model by
analysing a table model.

Experience suggests that although this constraint-based process works in
principle, in practice it is highly non-deterministic, and therefore difficult to
use with predictable results. One therefore works with production rules, as in
traditional grammars, rather than metamodels, in order to gain more control
over the non-determinism. A suitable collection of rules for the object–relational
example is shown in Fig. 7. The idea is that the black items match against
existing model elements, and then the green items labelled with ++ specify which
new model elements are to be introduced; moreover, the elements crossed out in
red are required not to exist for the rule to be applicable (‘negative application
conditions’).

Thus, Rule 1 says that one can introduce a new Class, linked to a new Table;
this starts a new hierarchy. Rule 2 says that when there exists a Class linked
to a particular Table, one may introduce a new Class as a subclass, and link it
to the same Table; this adds a new class to an existing hierarchy. Rule 3 says
that if there is a Class with no Attr , linked to a Table with no Column, then
one may introduce a new Attr for the Class linked to a Column for the Table;
this introduces a first attribute into a hierarchy. Rule 4 says that if there is a
Class with no Attr , linked to a Table that has a Column that is previous to no
other Column, then one may introduce a new Attr for the class and Column
for the Table; this Class will presumably be a subclass of some other Class,
and the existing Columns will correspond to Attrs of other Classes in the same
hierarchy; and by construction, the new Column will be introduced as the last
one in the Table. Finally, Rule 5 says that if there is a Class with an Attr that
is previous to no other Attr , linked to a Table with a Column that is previous to
no other Column, then one may introduce a new Attr for the Class and Column
for the Table; this will be the last attribute in the class and the last column in
the table.

Note how Rules 4 and 5 cut down the non-determinism by ensuring that new
entries for sequences are added at the end of the sequence. However, the process
is not completely deterministic; there is nothing to specify the order in which
class hierarchies are explored, except that parents must precede children, and
nothing to specify the relative ordering of attributes, except that they must agree
with the ordering within an individual class. Moreover, each rule is monotonic,

14 F. Abou-Saleh et al.

Fig. 7. A triple-graph grammar (Color figure online)

creating new elements without deleting anything; this is relevant for turning the
matching process into an efficient graph translation algorithm.

4 Contributions

In this section we summarise the main contributions of our recent research on
bidirectional transformations:

– entangled state monads, which can be used to provide a principled foundation
for bidirectional transformations with effects [1],

– steps towards formalizing a principle of least change, and
– the fact that BX are proof-relevant bisimulations.

4.1 Entangled State and Monadic Bidirectional Transformations

Since the pioneering work of Moggi [47], monads have been explored extensively
to provide semantics for computational effects, such as exceptions, mutable state,

Introduction to Bidirectional Transformations 15

and I/O. Computational effects are a particular challenge in purely functional
programming languages such as Haskell, and the influential work of Wadler and
Peyton Jones [37] has led the Haskell community to use monads extensively to
separate pure ‘functions’ from ‘commands’ that may read or write mutable state,
behave nondeterministically, or interact with the outside world. In this section,
we summarize recent results showing that bidirectional transformations can be
considered as a form of computational effect and formalized using monads. We
will not give a complete review or explanation of monads here, but instead refer
to existing tutorials on Haskell programming with monads [11,63].

We will briefly review the State monad. The state monad captures the idea
of a mutable state of a given type S .

data State σ α = State {runState :: σ → (α, σ)}

A computation in the state monad State S A is a function that takes the initial
value s :: S and produces a result a :: A together with a (possibly) updated state
s ′ :: S .

The basic monadic operations return and >>= (pronounced ‘bind’) can be
defined easily for the state monad:

return a = State (λs → (a, s))
m >>= f = State (λs → let (a, s ′) = runState m s in runState (f a) s ′)

Here, the return operation is a stateful computation that returns a pure value,
while m >>= f sequentially composes a stateful computation m :: State S A with
a function f :: A → State S B , passing the value returned by m to f . In addi-
tion, we frequently use the following definition for convenience, to sequentially
compose computations with no value dependency:

m >> n = m >>= \ → n

The two additional primitive operations which the state monad provides are
the ability to read the state (and use it as part of some other computation),
and to write to the state, replacing the old state value with a new one. These
operations are often called get and set . (These operations should not be confused
with the get and put operations of lenses, although, as discussed below, they are
related.)

get ::State σ σ
get = State (λs → (s, s))
set :: σ → State σ ()
set s ′ = State (λs → ((), s ′))

One can easily verify that these operations satisfy a number of equations:

get >>= λs1 → get >>= λs2 → k s1 s2 = get >>= λs → k s s (GetGet)
set s >> get = set s >> return s (SetGet)

16 F. Abou-Saleh et al.

get >>= set = return () (GetSet)
set s1 >> set s2 = set s2 (SetSet)

The first equation says that get has no side-effect on the state, so doing two gets
in sequence is the same as doing one and reusing the value twice. The second
equation says that set s changes the state to s, so that subsequent gets see that
value. The third says that setting the state to its current value has no effect. The
final equation says that if multiple sets are performed in sequence, the overall
effect is just that of the last one.

The state monad is a concrete example of a more abstract idea: we can
axiomatize the idea of a ‘monad with state S ’ purely in terms of the operations
and equations they should satisfy [52]. We say that a monad M has a state
interface (getS , setS) of type S if it supports these two operations, satisfying the
laws (GetGet), (SetGet), (GetSet), and (SetSet).

Furthermore, we can consider a single monad M that provides two state
interfaces (getA, setA) and (getB , setB) of (possibly) different types A and B . In
addition to the above laws that say how getA and setA interact in isolation and
likewise for getB and setB , we should consider interactions between the two pairs
of operations. One natural expectation is that getA and getB should commute:

getA >>= λa → getB >>= λb → k a b
= getB >>= λb → getA >>= λa → k a b (GetComm)

Another natural expectation one might have is that the two states are indepen-
dent: that is, updating A has no effect on B and vice versa.

setA a >> setB b = setB b >> setA a (SetASetB)
setA a >> getB = getB >>= λb → setA a >> return b (SetAGetB)
setB b >> getA = getA >>= λa → setB b >> return a (SetBGetA)

If all of these properties hold, then M essentially provides separate copies of A
and B , just as if implemented by storing a pair (A,B) and defining get and set
operations that read or update the first or second element of the pair respectively.

Our interest in such monads in the context of bidirectional transformations
arises from omitting some of the above laws, to allow interference between the
two states. If such interference is allowed, we call the state monad entangled
(by a very loose analogy with entangled states in quantum systems). We will
show that several forms of bidirectional transformation can be defined in terms
of entangled state monads.

A monadic BX between A and B is a monad M equipped with state interfaces
(getA, setA) and (getB , setB) satisfying the laws (GetGet), (SetGet), (GetSet) for
A and for B , and also law (GetComm) about their interaction. We say that M is
very well-behaved if in addition the laws (SetSet) hold. We write bx : A −�−�M B ,
and think of bx as a record with four fields getA bx , setA bx , getB bx , setB bx . for
the four operations.

Figure 8 illustrates the interface of a monadic BX; we visualize M as a box
containing an ‘entangled pair’ of A and B values, written A �� B . The arrows

Introduction to Bidirectional Transformations 17

indicate that the getA, getB operations allow us to inspect the current value of A
or B respectively, while setA and setB allow us to set the new value of one side,
with possible side-effects on the other side.

Fig. 8. Monadic BX on sources A, B over monad M

Lenses as entangled state monads. Well-behaved lenses can be viewed as
transforming one “mutable state” to another, in the following sense. Given a
plain lens (get , put) : S −�−� V , we can define operations as follows:

getV ::State S V
getV = getS >>= λs → return (get s)
setV ::V → State S ()
setV v = getS >>= λs → set (put (s, v))

where getS ::State S S and putS ::S → State S () are the get and set operations
of State S . That is, getV gets the source state and applies the get operation
of the lens, while setV gets the old source state, uses put to compute the new
source state, and sets that. Moreover, it is readily verified that these operations
form a monadic BX relating S and V . When the lens (get , put) is very well-
behaved, the resulting monadic BX is also, and it can be shown that it induces
a monad morphism from State V to State S that preserves the get and put
operations. (This observation is due to Shkaravska; it is further discussed and
applied in [57].)

Given a symmetric lens (in the sense of Hofmann et al. [30]), we can view
the putr :: (A,C) → (B ,C) and putl :: (B ,C) → (A,C) operations as operations
in the state monad, where the state is the complement type C , as follows:

putr ′ ::A → State C B
putr ′ a = State (λc → putr (a, c))
putl ′ ::B → State C A
putl ′ b = State (λc → putl (b, c))

We could translate the laws for symmetric lenses into laws for the
above State operations. Instead, however, we show how to construct an
entangled-state monadic BX from a symmetric lens. We take M to be
State S where S = {(A,B ,C) | putr (A,C) = (B ,C)} (which is equal to
{(A,B ,C) | putl (B ,C) = (A,C)} thanks to the symmetric lens laws). Then
the get and set operations are as follows:

18 F. Abou-Saleh et al.

getA ::State S A
getA = State (λ(a, b, c) → (a, (a, b, c)))
setA ::A → State C ()
setA a ′ = State (λ(a, b, c) → let (b′, c′) = putr (a, c) in ((), (a ′, b′, c′)))

and symmetrically for getB , setB .
All of these observations extend to the case of (symmetric) lenses that are

very well-behaved. In that case, the monadic BX satisfy the (SetSet) laws, that
is, they are very well-behaved.

Bidirectional transformations with effects. As noted earlier, monads are
used to model (and, in Haskell, to program with) side-effects in a pure setting.
This means that the get and set operations associated with an entangled-state
monadic BX might have other effects besides reading from or updating (part of)
the state. For example, monadic BX can also capture ‘nondeterministic bidirec-
tional transformations’ [19], which give a set of possible consistent models for
the user to choose among when restoring consistency.

One complication that arises if we consider monadic BX over arbitrary mon-
ads is how to compose them. This is straightforward in the concrete case of
transformations based on state monads State S , but given two monadic BX of
types A −�−�M B and B −�−�N C , where M and N are different monads, it is not
obvious how to form their composition, in part because it is not always clear
how to combine two monads M ,N . Even if we consider monadic BX over the
same base monad M , it is not clear how to define the composition if we do not
know anything about the structure of M . Instead, we have shown how to define
composition for the special case of monads of the form

data StateT τ σ α = StateT {runStateT :: σ → τ (α, σ)}
StateT is a standard construction called the state monad transformer [38]. Intu-
itively, StateT M S is a monad which can behave as M and in addition provides
a state S (separate from the capabilities of M). We also make an additional
assumption: the getA and getB operations are assumed to read from S but have
no other effects. That is, we assume that these operations are of the following
forms:

getA = StateT {λs → return (readA s, s)}
getB = StateT {λs → return (readB s, s)}

for suitable functions readA ::S → A and readB ::S → B . The intuition for this
assumption is that when we are composing monadic BX, the two components
need to communicate across the shared interface in order to implement the set
operations for the composition. If we do not have a side-effect-free way to access
the current state then it is not clear how to define composition so that the
monadic BX laws are preserved.

Concretely, given two monadic BX bx 1 : A −�−�M1
B and bx 2 : B −�−�M2

C
over monads M1 = StateT M S1 and M2 = StateT M S2 respectively, we can
define their composition over StateT M (S1,S2) as follows:

Introduction to Bidirectional Transformations 19

getA = get >>= λ(s1, s2) → return (readA s1)
setA a = get >>= λ(s1, s2) →

runStateT (setA bx 1 a) s1 >>= λ((), s ′
1) →

runStateT (setB bx 2 (readB bx 1 s ′
1)) s2 >>= λ((), s ′

2) →
set (s ′

1, s
′
2)

and symmetrically for getC and setC . Intuitively, getA applies read to the first
component of the state, while setA first applies setA bx 1 to the first compo-
nent, then applies setB bx 2 to the second component using the new B value
of the updated state s ′

1. Finally, both components of the state are updated.
Technically, this construction is not guaranteed to be correct for arbitrary ini-
tial state pairs, so we impose a further constraint that state pairs s1, s2 are
always compatible, in the sense that readB bx 1 s1 = readB bx 2 s2. So the com-
position is actually defined as an monadic BX over StateT (S1 �� S2), where
(S1 �� S2 = {(s1, s2) | readB bx 1 s1 = readB bx 2 s2}. Roughly speaking, the rea-
son why we impose the constraint that get operations are side-effect free is to
ensure that this state space is well-defined. However, it is not clear that this
restriction is really necessary.

Although the entangled state monad formalism is appealing in one sense, the
difficulties with defining composition in the general case have motivated consid-
eration of other approaches. One approach is to augment the classical notion of
(asymmetric) ‘lens’ to allow for the possibility of monadic effects during consis-
tency restoration [2]. Another possibility is to consider (symmetric) bidirectional
transformations from a coalgebraic perspective, which also naturally extends to
allow for the possibility of monadic effects [3,4]. Interestingly, though these two
approaches seem superficially different, one can connect them by viewing coal-
gebraic BX (or equivalently monadic BX) as spans of monadic lenses. Others
such as Pacheco et al. [51] have also considered BX with monadic effects, and [2]
discusses and compares the proposals to date.

There are a number of open questions. For example, it would be interesting to
find a way to define composition for arbitrary entangled-state monadic BX, for
which the get operations can have side-effects, or to establish that composition
requires StateT structure. There are also unresolved questions regarding the
right definition(s) of equivalence of monadic BX or spans of monadic lenses [4].
Finally, it would also be interesting to extend monadic BX to generalize delta-
lenses [23,24] or edit lenses [31].

4.2 Least Change

In this section we briefly introduce the ideas behind principles of Least Change
for BX; for a fuller discussion, we refer the reader to our paper [17].

The purpose of separating information into separate models or views is to
manage information overload: we want to present a human with just the infor-
mation they need, in order to apply their expertise most effectively.

When we use a BX to maintain consistency between the model used by a
human and other information that they do not typically wish to see, there is a

20 F. Abou-Saleh et al.

risk that we confuse the human. If their model changes as a result of changes
elsewhere, their work may be disrupted.

To some extent this is inevitable. It raises, however, a very important ques-
tion: how can we keep the disruption to a minimum? Intuitively, our BX should
not change more than it has to in order to restore consistency between the
information our expert sees and everything else.

Meertens, who called BX “constraint maintainers”, formulated this as
follows [44]:

The action taken by the maintainer of a constraint after a violation should
change no more than is needed to restore the constraint.

Sometimes, what this means is clear. If we accept this formulation it implies,
for example, the hippocraticness property introduced in Sect. 3.1; if there is no
need to change anything in order to restore consistency, then the BX should
not change anything. In considering examples, we often find similarly clear cases
where we feel that the BX should not change information which is irrelevant to
restoring consistency. In the Composers examples of Sect. 2.4, when a composer is
added or deleted, we do not expect the dates of a different composer to change,
even though they could change arbitrarily without affecting consistency. The
BX’s job is only to restore consistency: it must not change the models beyond
what it necessary to do this, even if there might be an argument that a further
change was an improvement. (For example, we do not accept that a BX relating
a UML model to Java code should reformat the Java code, or that the Composers
BX should correct an error in the dates of a composer.)

Going beyond this is tricky. The first problem we encounter is that there may
be different ways to measure the size of a change, and hence, to judge which way
of restoring consistency involves the least change. We illustrate this by way of
an example used at the summer school by Zhenjiang Hu. Suppose we have a
BX that relates rectangles, given by their width and height (w, h), with their
heights h. We start with a four by four square (4, 4), consistently related with
its height, 4. Now the height is changed to 2. What should a BX that obeys a
least change principle do? Should it leave the width alone and change the square
to a rectangle (4, 2)? Or should it leave the shape of the rectangle alone, and
change the square to a smaller square (2, 2)? Or perhaps it should minimise
change to the perimeter of the rectangle, replacing the (4, 4) square by a (6, 2)
rectangle? We see that we have not specified how the size of a change is measured:
does the “distance” between two rectangles depend on their width and height
independently, for example, or does it depend on the rectangle’s shape? This
problem can be addressed by making the dependency on the way of measuring
change explicit, leading to a notion we call metric least change, which has been
explored and implemented by Macedo and Cunha [40].

Definition. A bx R : M ↔ N is metric-least, with respect to given metrics dM ,
dN on M and N , if for all m ∈ M and for all n, n′ ∈ N , we have

R(m,n′) ⇒ dN (n, n′) ≥ dN (n,
−→
R (m,n))

and dually.

Introduction to Bidirectional Transformations 21

Unfortunately, as the rectangle example illustrates, there may not be a canon-
ical metric on a space of models. This is a problem in real life too, not only in
artificial examples. A user of a modelling tool has an intuitive idea that the
distance between two models corresponds to the length of time it would take
to edit one model into the other. Different tools provide different capabilities,
and hence different times, so we could expect difficulty if we tried to define a
standard metric on, say, the space of UML models.

We could assume that this problem could be overcome if necessary, but there
are other drawbacks to the metric least change approach. The most fundamental
is that, even if there is a clear understanding that one change that could restore
consistency is smaller than another, it is not necessarily sensible for the BX
to apply the smaller change. The ModelTests example from the Bx Examples
Repository [58] illustrates. We refer the reader to the repository for details, but in
brief: if a consistency condition applies only to model elements with a particular
stereotype, then removing the stereotype may be a consistency-restoring change
that is tiny according to the user’s intuitive metric, and yet not be desirable
behaviour of a BX.

A further problem with metric least change is that, in a sense formalised and
proved in our paper [17], computing metric least change is NP hard. Another
is that the composition of (lens-like) metric least change BX is not necessarily
metric least. Let us look further.

Beyond metric least change: least surprise. When people cooperate, each
working on their own model and applying a BX periodically to restore con-
sistency, they will most likely have negotiated a way of working that involves
applying the BX often enough that neither does a lot of outdated work, but
not so often as to be destabilising. Hidden behind this idea is the assumption
that the behaviour of the BX is predictable in that a sufficiently small change
to one model will cause only a small change to the other. This idea is formalised
in mathematical analysis as continuity. In our paper [17] we consider several
variants of continuity, the most promising of which is Hölder continuity.

Other ideas. Several ideas may repay further study. We may consider not
only changes to the models whose consistency is being maintained, but also to
certain sets of auxiliary information, such as the witness structures that help to
demonstrate consistency.

Finally, exploiting the observation that, even in our tricky examples, there
tend to be many situations in which it is clear what a BX should do, we may
envisage a BX tool that goes beep. This tool knows its own limitations. From some
states of the world (e.g. some pairs (m,n) of models that fall into a particular
subspace pair) it knows how to restore consistency in an unsurprising way. If
asked to, it will do so silently. From other states of the world, it doesn’t know
what to do, or isn’t confident about it, so it will beep. The user may want to
check, perhaps even amend, what the tool did; or the tool may have given up
and done nothing. In this way, the human user’s effort may be saved for the
situations that are hard to automate.

22 F. Abou-Saleh et al.

4.3 Dependently Typed BX

Proof-relevance. The basic picture of a consistency relation R ⊆ M × N
and two consistency restorers

−→
R : M × N → N and

←−
R : M × N → M from

Sect. 3.1 leaves implicit the underlying notion of update, relying on a scenario
in which inputs to

−→
R or

←−
R reflect an updated value in the M , respectively N ,

argument. We now consider proof-relevant interpretations, via the established
identification of propositions as types in dependent type theory: both updates
and (proofs of) consistency are represented by families of types, with:

– ∂A
a a′ , representing those updates (edits) δ which transform a : A into a ′ : A,

symbolically δ : a 	→ a ′; similarly for ∂B
b b′ ; for classical state-based for-

malisms such as asymmetric lenses, take ∂A
a a′ to be the trivial singleton family,

inhabited everywhere by a dummy witness to each state update a 	→ a ′;
– Ra b , representing witnesses r to the proposition ‘R(a, b)’; such families R may

be seen as generalising the notion of lens complement [43] (itself generalis-
ing view-update “with constant complement” [8]; for lenses, the consistency
relation is implicit, but recoverable as the graph relation of the get operation).

As well as dependent types themselves (corresponding set-theoretically to
indexed families of sets), the ‘propositions-as-types’ correspondence, where type
inhabitants correspond to proofs (witnesses, as above) of the corresponding
proposition, crucially extends to embrace:

– existential quantification, via the ‘Σ-type’ Σx :X Y , where Y is a family
indexed over X , whose inhabitants are pairs (x , y) such that x : X and
y : Y (x); the familiar Cartesian product X × Y arises as an instance of
Σx :X Y for the constant family Y over X . Iterated Σ-types are inhabited
by nested pairs; but in the interests of readability, we suppress nested paren-
theses in favour of tuple notation.

– universal quantification, via the ‘Π-type’ Πx :X Y , where Y is a family
indexed over X , whose inhabitants are functions f such that x : X implies
f x : Y (x); λ-abstraction provides a way to construct such functions in
canonical form; similarly to the above, we treat iterated λ-abstraction and
application in the usual way. Implication between propositions, given the
usual function space X ⇒ Y , arises as an instance of Πx :X Y for the con-
stant family Y over X .

– equality, as a distinguished relation/type family, satisfying a strong inten-
sional form of the Leibniz property.

For a detailed treatment of this interpretation, as a basis for constructive math-
ematics and functional programming, we refer the interested reader to standard
texts [39,49].

The above set-up, of proof-relevant consistency relations and dependent type
families of updates, is interpretable in the bicategory [10] Rel of (proof-relevant)
relations: in type theory, with 0-cells given by types A,B ; with 1-cells given by
relations R, identity and composition given by the identity type, and relational

Introduction to Bidirectional Transformations 23

composition (R ⊗ S)a c =def Σb :B Ra b × Sb c ; and with 2-cells the proof-relevant
inclusions R ⊆p S =def p : Πa :A,b :B Ra b ⇒ Sa b .

Space forbids a detailed discussion of bicategories, but the reader may gain
some intuition for them by regarding them as a common generalisation of the
‘ordinary’ set-theoretic structure of composition and inclusion on relations, and
that of monoidal categories, just as ‘ordinary’ categories may be regarded as a
common generalisation of the theory of composition of set-theoretic functions,
and that of preorders on the one hand, and monoids on the other.

BX are bisimulations. Now, forward consistency restoration specifies that:
given R-consistent a, b (witnessed by r), and an A-update δ : a 	→ a ′, there
should exist a B -update δ′ : b 	→ b′, together with a new witness r ′ to the
R-consistency of a ′, b′ (and vice versa in the backward direction). That is to say,
for each pair a ′, b, forward consistency restoration transforms the triple (a, δ, r)
to the triple (b′, r , δ′), where we consider those triples as inhabiting the types
Σa :A ∂A

a a′ × Ra b , respectively Σb′ :B Ra′ b′ × ∂B
b b′ , using Σ-types to package up

the existential quantifications.
In terms of proof-relevant inclusions, we thus have (with ∂A◦

the opposite
relation to ∂A) characterised the forward and backward restoration functions as
having the following types:

∂A◦ ⊗ R ⊆−→
R

R ⊗ ∂B◦
∂B◦ ⊗ R ⊆←−

R
R ⊗ ∂A◦

These two inclusions encode algebraically the usual diagrammatic properties
defining a bisimulation between two labelled transition systems, thus (very com-
pactly!) justifying the slogan [41] that the forward and backward transformations
witness R as a proof-relevant bisimulation between the model spaces A,B , with
updates ∂A, ∂B defining the transitions between model states. We write:

R =def (R,
−→
R ,

←−
R) : A −�−�R B

where A =def (A, ∂A) and B =def (B , ∂B).

Why bicategories? The above structure yields a further bicategory Bisim,
with 0-cells given by the model spaces A, 1-cells given by BX as proof-relevant
bisimulations R : A −�−�R B, and 2-cells given by proof-relevant equivalences1

R ⊆p R′ ⊆q R between the underlying consistency relations R,R′.

1 The reader troubled by the apparent lack of generality implied by equivalences
between consistency relations may wonder whether a richer class of 2-cells might
fit with this analysis. Certainly, the choice of equivalences is sufficient to consider
all the constructions and coherence conditions necessary for the definition of a bicate-
gory. Moreover, the need for consistency restoration functions to go ‘back-and-forth’,
restoring the same consistency relation R (at least up to extensional equivalence),
seems to make our choice also necessary.

24 F. Abou-Saleh et al.

There is a (forgetful) homomorphism of bicategories between Bisim and Rel:
on 0-cells, it forgets the update structure; on 1-cells, it maps a BX R to its
underlying consistency relation R; and on 2-cells, an equivalence (p, q) maps to p.

This homomorphism depends on a definition of composition ⊗ between BX
(that is, between bisimulations) that is new, as far as we are aware, but which
generalises existing definitions of lens composition:

R ⊗ S =def (R ⊗ S ,
−→
R ⊗ −→

S ,
←−
R ⊗ ←−

S) : A −�−�R⊗S C

with (
−→
R ⊗ −→

S) (a ′, δa , (b, r , s)) = (c′, (b′, r ′, s ′), δc) where the actions of
−→
R ,

−→
S

on the relevant iterated Σ-types are given by (b′, r ′, δb) =def
−→
R (a ′, δa , r) and

(c′, s ′, δc) =def
−→
S (b′, δb , s). The corresponding definitions for

←−
R ⊗ ←−

S are simi-
lar, but omitted for brevity.

Now, one might ask, why all this machinery? At least from a structural
perspective, we now believe we have a satisfactory compositional account of BX.
One criticism of Meertens’ original framework for consistency maintenance is
that his restorers, and their underlying consistency relations, do not naturally
compose. The purpose of the above constructions is to build in enough structure,
at the model plus update plus witness level, to ensure that composition is not
only well-defined, but also that the projection from Bisim down to mere relations
Rel preserves structure. That is, in essence, that the composition of consistency
relations should itself be the consistency relation of the composite BX.

Additional properties. Familiar BX properties correspond to additional def-
initions of structure on model spaces, and to strong, intensional constraints on
the interaction between consistency restoration and such structure. We take as a
good sign of the robustness of our definitions that such additional structure gives
rise to full sub-bicategories of Bisim; that is, the definitions of composition, etc.
remain unchanged, but we can further prove that they preserve the additional
structure.

For example, hippocracticness in this setting corresponds to model spaces
having the structure of reflexive graphs, and to consistency restoration preserving
such structure on-the-nose. That is, we have distinguished ‘identity’ updates
ιa : ∂A

a a for each model space, such that
−→
R (a, ιa , r) = (b, ιb , r), and similarly

for
←−
R. Moreover, given R and S both hippocratic, then we can show that so too

is R ⊗ S.
Similarly, we may consider history ignorance for BX, by considering addi-

tional structure of composition of updates, and its strict preservation under
consistency restoration. Such BX, too, are closed under ⊗. The combination of
hippocraticness and history ignorance, together with proofs of the corresponding
equational laws, thus amounts to considering model spaces as fully-fledged cat-
egories. So history ignorance, in this generalised setting, might more neutrally
be described as the property of being compositional for updates.

Dependently-typed programming languages such as Agda [50] or Idris [15]
offer a natural home for such proof-relevant constructions, with dependent types

Introduction to Bidirectional Transformations 25

as strong, machine-checkable, correctness specifications: we can, for example,
give a type-theoretic characterisation of the alignment problem in the BX liter-
ature [9,24], exhibiting its type as that of a (heuristic) search problem: to (for-
ward) align a ′ : A with b : B is to compute an inhabitant of Σa :A ∂A

a a′ × Ra b .

Discussion. Our generalisation shares some of the same underlying machinery
as Diskin et al.’s symmetric delta lenses [24], where model spaces are given as
categories, but much of the bicategorical structure of Bisim, and relationships
to other settings which we describe here, is new.

In particular, Hofmann, Pierce and Wagner’s symmetric edit lenses [29,31]
are an instance of our framework: their ‘stateful monoid homomorphisms’, where
defined, can be precisely captured by the more refined dependent types of our
consistency restoration functions

−→
R ,

←−
R; while their ‘consistency relation’ K

exactly corresponds to a consistency relation in our terms given by the depen-
dent type family Ra b =def {c ∈ C | (a, c, b) ∈ K}. Indeed, by insisting on edit
monoid structure, and consistency restoration as a ‘stateful monoid homomor-
phism’, Hofmann et al. build in precisely the additional properties of hippocrat-
icness and compositionality for edits sketched above.

The reflexive graph structure necessary for hippocraticness has close con-
nections to that explored by Cai et al. in the theory of static differentiation of
functions [16].

The sketch above of our type-theoretical and (bi-)categorical approach is nec-
essarily brief; we defer a longer treatment in full detail to further publications. We
nevertheless hope that the reader might glimpse, at least, a unifying mathemati-
cal basis for (all?) existing BX formalisms, as well as a starting point for compar-
ison with existing work in the related area of version control systems and patch
theory [6,62], where type-theoretic ideas have also proved fruitful. We further
conjecture that interpretations of our constructions in other (enriched) categor-
ical settings may shed light on (geo-)metric accounts of consistency restoration,
in terms of a ‘differential geometry of consistency restoration’ [42].

References

1. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Notions of
bidirectional computation and entangled state monads. In: Hinze, R., Voigtländer,
J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 187–214. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19797-5 9

2. Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Reflections on
monadic lenses. In: Lindley, S., McBride, C., Trinder, P., Sannella, D. (eds.) A List
of Successes That Can Change the World. LNCS, vol. 9600, pp. 1–31. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30936-1 1

3. Abou-Saleh, F., McKinna, J., Gibbons, J.: Coalgebraic aspects of bidirectional
computation. In: BX 2015. CEUR-WS, vol. 1396, pp. 15–30 (2015)

4. Abou-Saleh, F., McKinna, J., Gibbons, J.: Coalgebraic aspects of bidirectional
computation. J. Object Technol. (2017, in press)

https://doi.org/10.1007/978-3-319-19797-5_9
https://doi.org/10.1007/978-3-319-19797-5_9
https://doi.org/10.1007/978-3-319-30936-1_1

26 F. Abou-Saleh et al.

5. Ambler, S.W.: Mapping objects to relational databases: O/R mapping in detail
(1998). http://www.agiledata.org/essays/mappingObjects.html

6. Angiuli, C., Morehouse, E., Licata, D.R., Harper, R.: Homotopical patch theory. In:
International Conference on Functional Programming, pp. 243–256. ACM (2014)

7. Anjorin, A.: Class diagrams to database schemas v0.1. BX Repository. http://bx-
community.wikidot.com/examples:classdiagramstodatabaseschemas. Accessed Jan
2017

8. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557–575 (1981)

9. Barbosa, D.M.J., Cretin, J., Foster, N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: Hudak, P., Weirich, S. (eds.) International
Conference on Functional Programming, pp. 193–204. ACM, New York (2010)

10. Bénabou, J., Davis, R., Dold, A., Isbell, J., MacLane, S., Oberst, U., Roos, J.-
E.: Reports of the Midwest Category Seminar. LNM, vol. 47, pp. 1–77. Springer,
Heidelberg (1967). https://doi.org/10.1007/BFb0074298

11. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45699-6 2

12. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: Principles of Programming Languages (2008)

13. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updat-
able views. In: Principles of Database Systems, pp. 338–347. ACM (2006)

14. Boyer, J.M.: W3C XForms, October 2009. https://www.w3.org/TR/xforms/
15. Brady, E.: Type-Driven Development with Idris. Manning Publications, Shelter

Island (2017)
16. Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for higher-

order languages: incrementalizing λ-calculi by static differentiation. In: Program-
ming Language Design and Implementation, pp. 145–155. ACM (2014)

17. Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: On principles of least change
and least surprise for bidirectional transformations. J. Object Technol. (2017, to
appear)

18. Cheney, J., McKinna, J., Stevens, P., Gibbons, J.: Towards a repository of BX
examples. In: BX Workshop, March 2014

19. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and
change propagating transformation language. In: Malloy, B., Staab, S., van den
Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19440-5 11

20. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: The essence of form abstraction.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 205–220. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89330-1 15

21. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02408-5 19

22. Date, C.J.: View Updating and Relational Theory. O’Reilly, Newton (2012)
23. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model

transformations: the asymmetric case. J. Object Technol. 10(6), 1–25 (2011)
24. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From

state- to delta-based bidirectional model transformations: the symmetric case. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–
318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 22

http://www.agiledata.org/essays/mappingObjects.html
http://bx-community.wikidot.com/examples:classdiagramstodatabaseschemas
http://bx-community.wikidot.com/examples:classdiagramstodatabaseschemas
https://doi.org/10.1007/BFb0074298
https://doi.org/10.1007/3-540-45699-6_2
https://www.w3.org/TR/xforms/
https://doi.org/10.1007/978-3-642-19440-5_11
https://doi.org/10.1007/978-3-540-89330-1_15
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-24485-8_22

Introduction to Bidirectional Transformations 27

25. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook of Graph
Grammars and Computing by Graph Transformation. Applications, Languages
and Tools, vol. 2. World Scientific, Singapore (1999)

26. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: combinators
for bidirectional tree transformations: a linguistic approach to the view update
problem. In: Principles of Programming Languages, pp. 233–246. ACM (2005)

27. Foster, N., Matsuda, K., Voigtländer, J.: Three complementary approaches to bidi-
rectional programming. In: Gibbons, J. (ed.) Generic and Indexed Programming.
LNCS, vol. 7470, pp. 1–46. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-32202-0 1

28. Hegner, S.J.: An order-based theory of updates for closed database views. Ann.
Math. Artif. Intell. 40(1–2), 63–125 (2004)

29. Hofmann, M.: Modular edit lenses. In: Gibbons, J., Stevens, P. (eds.) Summer
School on Bidirectional Transformations. LNCS, vol. 9715, pp. 73–99. Springer,
Cham (2018)

30. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: Ball, T., Sagiv, M.
(eds.) Principles of Programming Languages, pp. 371–384. ACM, New York (2011)

31. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.)
Principles of Programming Languages, pp. 495–508. ACM, New York (2012)

32. Hu, Z., Schürr, A., Stevens, P., Terwilliger, J.F.: Bidirectional transformations “bx”
(Dagstuhl Seminar 11031). Dagstuhl Rep. 1(1), 42–67 (2011)

33. Johnson, M., Rosebrugh, R.D.: Lens put-put laws: monotonic and mixed. In: BX
Workshop (2012). ECEASST 49

34. Johnson, M., Rosebrugh, R.D.: Spans of lenses. In: Terwilliger, J., Hidaka, S.
(eds.) BX Workshop. CEUR Workshop Proceedings, vol. 1133, pp. 112–118 (2014).
CEUR-WS.org

35. Johnson, M., Rosebrugh, R.D.: Unifying set-based, delta-based and edit-based
lenses. In: Anjorin, A., Gibbons, J. (eds.) BX Workshop. CEUR Workshop Pro-
ceedings, vol. 1571, pp. 1–13 (2016). CEUR-WS.org

36. Johnson, M., Rosebrugh, R.D., Wood, R.J.: Lenses, fibrations and universal trans-
lations. Math. Struct. Comput. Sci. 22(1), 25–42 (2012)

37. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Principles
of Programming Languages, pp. 71–84 (1993)

38. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters. In:
Principles of Programming Languages, pp. 333–343 (1995)

39. Luo, Z.: Computation and Reasoning: A Type Theory for Computer Science. Inter-
national Series of Monographs on Computer Science. Oxford University Press,
Oxford (1994)

40. Macedo, N., Cunha, A.: Least-change bidirectional model transformation with
QVT-R and ATL. Softw. Syst. Model. 15(3), 783–810 (2016)

41. McKinna, J.: Bidirectional transformations are proof-relevant bisimulations.
Extended Abstract Presented at ICFP Workshop TyDe, Nara, Japan (2016).
https://www.youtube.com/watch?v=33RYwcIQ7UM

42. McKinna, J.: Bidirectional transformations with deltas: a dependently typed app-
roach (talk proposal). In: Bx Workshop, ETAPS (2016). http://ceur-ws.org/Vol-
1571/paper 11.pdf

43. McKinna, J.: Complements witness consistency. In: Bx Workshop, ETAPS (2016).
http://ceur-ws.org/Vol-1571/paper 10.pdf

44. Meertens, L.: Designing constraint maintainers for user interaction. CWI, Amster-
dam, June 1998. http://www.kestrel.edu/home/people/meertens/pub/dcm.ps

https://doi.org/10.1007/978-3-642-32202-0_1
https://doi.org/10.1007/978-3-642-32202-0_1
https://www.youtube.com/watch?v=33RYwcIQ7UM
http://ceur-ws.org/Vol-1571/paper_11.pdf
http://ceur-ws.org/Vol-1571/paper_11.pdf
http://ceur-ws.org/Vol-1571/paper_10.pdf
http://www.kestrel.edu/home/people/meertens/pub/dcm.ps

28 F. Abou-Saleh et al.

45. Meertens, L.: Designing constraint maintainers for user interaction. In: Mu, S.-
C. (ed.) Third Workshop on Programmable Structured Documents, pp. 1–3. PSD
Laboratory, Tokyo University (2005)

46. Microsoft. Windows Presentation Foundation (2006). https://msdn.microsoft.
com/en-us/library/ms754130.aspx

47. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991)
48. Neward, T.: The Vietnam of computer science, June 2006. http://blogs.tedneward.

com/post/the-vietnam-of-computer-science/
49. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s

Type Theory: An Introduction. International Series of Monographs
on Computer Science, vol. 7. Oxford University Press, Oxford (1990).
https://www.cse.chalmers.se/research/group/logic/book/book.pdf

50. Norell, U.: Dependently typed programming in agda. In: Koopman, P., Plasmei-
jer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 230–266. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04652-0 5

51. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “putback” style bidirec-
tional programming. In: Partial Evaluation and Program Manipulation, pp. 39–50.
ACM (2014)

52. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

53. Pratt, T.W.: Pair grammars, graph languages and string-to-graph translations. J.
Comput. Syst. Sci. 5(6), 560–595 (1971)

54. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)

55. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

56. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-8 28

57. Shkaravska, O.: Side-effect monad, its equational theory and applications (2005).
http://www.ioc.ee/∼tarmo/tsem05/shkaravska1512-slides.pdf

58. Stevens, P.: ModelTests v0.1 in Bx Examples Repository. http://bx-community.
wikidot.com/examples:modeltests. Accessed 6 Feb 2017

59. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open
questions. Softw. Syst. Model. 9(1), 7–20 (2010)

60. Stevens, P.: Observations relating to the equivalences induced on model sets by
bidirectional transformations. In: BX Workshop (2012). ECEASST 49

61. Stevens, P., McKinna, J., Cheney, J.: Composers v0.1. BX Repository. http://bx-
community.wikidot.com/examples:composers. Accessed Jan 2017

62. Swierstra, W., Löh, A.: The semantics of version control. In: Onward!, pp. 43–54
(2014)

63. Wadler, P.: Monads for functional programming. In: Jeuring, J., Meijer, E. (eds.)
AFP 1995. LNCS, vol. 925, pp. 24–52. Springer, Heidelberg (1995). https://doi.
org/10.1007/3-540-59451-5 2

https://msdn.microsoft.com/en-us/library/ms754130.aspx
https://msdn.microsoft.com/en-us/library/ms754130.aspx
http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
https://www.cse.chalmers.se/research/group/logic/book/book.pdf
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-540-87405-8_28
http://www.ioc.ee/~tarmo/tsem05/shkaravska1512-slides.pdf
http://bx-community.wikidot.com/examples:modeltests
http://bx-community.wikidot.com/examples:modeltests
http://bx-community.wikidot.com/examples:composers
http://bx-community.wikidot.com/examples:composers
https://doi.org/10.1007/3-540-59451-5_2
https://doi.org/10.1007/3-540-59451-5_2

An Introduction to Triple Graph
Grammars as an Implementation
of the Delta-Lens Framework

Anthony Anjorin(B)

University of Paderborn, Paderborn, Germany
anthony.anjorin@upb.de

Abstract. Triple Graph Grammars (TGGs) provide a rule-based means
of specifying a consistency relation over two graph languages, with cor-
respondences between elements in the two different languages repre-
sented explicitly as a third “traceability” graph. Many useful tools can be
derived automatically from a TGG including incrementally working syn-
chronisers, which are able to realise forward and backward change prop-
agation without incurring unnecessary information loss. TGGs are typi-
cally introduced based on the algebraic graph transformation framework,
which is not particularly accessible to many members of the bidirectional
transformation (bx) community, who are often more familiar with some
variant of the lens framework as a theoretical foundation for bx.

This chapter, therefore, provides a self-contained, relatively gentle and
tutorial-like introduction to TGGs as a pragmatic implementation of
the symmetric delta-lens (sd-lens) framework proposed by Diskin et al.,
thereby mapping abstract and general terms used in the sd-lens frame-
work such as models and deltas, to concrete realisations in the TGG
framework such as typed graphs and spans of typed graphs.

Keywords: Bidirectional transformation · Triple Graph Grammars
Symmetric delta-lenses

1 Introduction and Motivation

Triple Graph Grammars (TGGs) were first suggested by Schürr [31] as a means
of specifying incremental synchronisers, i.e., derived operational programs that
are able to propagate changes made in one artefact to corresponding changes in
another existing artefact. TGGs follow a “consistency first” approach, meaning
that a user is expected to supply a direction-agnostic definition of a consis-
tency relation, from which everything else required for consistency management
is automatically derived. The style of consistency specification with TGGs gen-
eralises the idea from Pratt [28] of coupling a string grammar and a graph gram-
mar as a pair grammar, which can be used to derive string-to-graph translations.
TGGs are essentially “pair grammars” but (i) are specified uniformly over graph
c© Springer International Publishing AG, part of Springer Nature 2018
J. Gibbons and P. Stevens (Eds.): Bidirectional Transformations, LNCS 9715, pp. 29–72, 2018.
https://doi.org/10.1007/978-3-319-79108-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79108-1_2&domain=pdf
http://orcid.org/0000-0001-6213-6243

30 A. Anjorin

grammars, and (ii) additionally comprise a third, explicit correspondence graph
grammar to capture the pairing of a source and target graph grammar in more
detail. Graph grammars are a generalisation of string grammars and have been
studied intensively in the graph transformation community for over 40 years. The
interested reader is referred to Ehrig et al. [15] for a comprehensive introduction
and overview of the algebraic graph transformation approach.

The bidirectional transformation (bx) community was formed with the goal
of fostering collaboration and the exchange of ideas between the various, diverse
groups working on all aspects of consistency management [11]. Domains repre-
sented in bx include databases (view update problem, schema evolution), soft-
ware engineering (model synchronisation, conformance checking), and program-
ming language development (bidirectionalisation, coupled transformations).

The desire for a common conceptual bx framework has led to a substantial
amount of work on multiple variants of the so-called lens framework. The inter-
ested reader is referred to Johnson and Rosebrugh [22] for a unifying overview
of various types of lenses. A lens is essentially a pair of forward and backward
synchronisers, together with a formal characterisation of properties that the
pair must possess in order to be “well-behaved”, i.e., exhibit desirable synchro-
nisation behavior (depending on the application scenario and domain) such as
termination, confluence, non-determinism, and compliance with round trip laws.

The standard introduction to and formalization of TGGs precedes the notion
of lenses and is typically presented by and for the graph transformation commu-
nity. While the fundamental work of Ehrig et al. [14] and Schürr [31] is certainly
elegant and in many ways a natural fit for TGGs, at least two pain points can be
identified: Firstly, the bx community appears to have converged more towards
lenses (with all variants) as a common and shared formal framework. This means
that laws are often formulated in a round trip manner, with a focus more on
the synchronisers (the programs or functions performing consistency restora-
tion) and less on the underlying notion of consistency. This makes it difficult
to somehow “transform” the round trip laws to corresponding properties in the
TGG framework. Secondly, most papers on TGGs fix the central notions of a
graph and a graph arrow (morphism) and thread this through all definitions,
results, and constructions. While this typically results in a constructive theory
that can almost be directly implemented, it also requires assumptions that are
intentionally avoided in the lens framework. As a consequence, although the
TGG framework could be instantiated for strings, lists, or trees, this is neither
obvious nor trivial.

To address these challenges and more, there has already been fruitful collab-
oration between research groups working on lenses and TGGs. The joint work
of Diskin, Hermann, and others has led to the symmetric delta lens (sd-lens)
framework [13], and a novel presentation of TGGs as an implementation of the
sd-lens framework [17,18].

This chapter attempts to complement the work of Hermann et al. [17,18]
with a detailed and simplified unification of TGGs and lenses. In the spirit of a
tutorial, the focus of this chapter is more on intuition and understanding, and

BX with TGGs 31

less on challenging technical details that are partly presented in a rather compact
fashion by Hermann et al. [17,18]. The main contribution is to present TGGs
more as a general platform, both formal and practical, for realising various for-
mal bx frameworks, and less as a strict implementation of the sd-lens framework.
Working out all details for the sd-lens framework requires numerous restrictions
to TGGs, which are discussed in full detail by Hermann et al. [17,18]. This might
actually indicate that some extensions of the lens framework are still required
to achieve a perfect match for TGGs. An example for this is non-determinism –
natural for graph transformation and thus TGGs – but excluded in the current
sd-lens framework.

This chapter aims to provide an introduction to TGGs that is especially
accessible to the bx community, taking inspiration from the lenses framework
to provide an alternative perspective on TGGs that fits better to the other
chapters of this book. The primary target audience are thus readers with a
(basic) background in bx (provided by the introductory chapter of this book)
but neither in graph transformation nor TGGs. TGGs are often applied in a
Model-Driven Engineering (MDE) context where the central concept of a model
fits quite well to that of a typed, attributed graph. The simple but illustrative
running example used consequently throughout the chapter will be taken loosely
from the MDE domain and introduced using basic elements from the UML class
and object diagram visual notation. Very basic category theory will be used
throughout the chapter as a uniform, underlying organisational structure, which
is also able to unify and clarify connections between concepts from both the sd-
lens framework and TGGs. While the reader does not require prior knowledge of
category theory to read and understand this chapter, some patience is necessary
to get used to and appreciate the predominantly visual notation and style, as
this might be unusual for the reader.

The rest of the chapter is structured as follows: Sect. 2 handles the data to
be synchronised and operated on. To clarify similarities and differences between
the sd-lens and TGG framework, the discussion is presented on two levels: (i) on
the more abstract level of the sd-lens framework, and (ii) on the level of TGGs,
representing an executable instantiation of the sd-lens framework.

In Sect. 3, TGGs are introduced as a pragmatic specification language for
symmetric delta lenses. Section 4 discusses formal properties and guarantees,
focusing on guaranteeing least change as a current challenge for TGG-based
synchronisation. Section 5 concludes the chapter with a brief overview of related
work and an outlook on future work.

2 Model Spaces and Triple Spaces

As depicted in Fig. 1 using basic UML class diagram notation, we shall start by
reviewing definitions from Diskin et al. [13] for a triple space connecting a source
and target model space with correspondence links (or just corrs). Model spaces
consist of models and deltas, representing all possible states of the artefacts to
be synchronised and all possible updates on these states, respectively.

32 A. Anjorin

TripleSpace

Corr

ModelSpace

Model Deltaconnects
describes
changes

Typed Graph SpanTyped Triple Graph

Fig. 1. Overview of important concepts and relations

Following Hermann et al. [18], we shall then refine these abstract concepts in a
TGG context (depicted in Fig. 1 below the dashed horizontal line) by introducing
typed graphs as models, spans of typed graphs as deltas, and typed triple graphs
as corrs. These concepts are concrete enough to be almost directly mapped to an
implementation framework, which is exactly what is done in most TGG-based
tools [21,26]. To avoid getting lost and ending up not seeing the various different
graphs for the arrows, we shall use very basic concepts from category theory as
a uniform, underlying organisational structure. The most basic of such concepts
is that of a category, consisting of things (objects) and connections (arrows).
We expect to be able to compose arrows in a manner that is independent of the
order in which this is done (associative composition), and to have a unique “idle”
arrow for every object (an identity arrow). This basic structure is formalised by
the following definition (taken from Awodey [8] and Ehrig et al. [15]):

Definition 1 (Category). A category C = (Ob,Arr, ; , id) consists of:

– a class Ob of objects,
– for each pair of objects A,B ∈ Ob, a class Arr(A,B) of arrows,

where f ∈ Arr(A,B) is denoted by f : A → B,
– for all objects A,B,C ∈ Ob, a binary operation (for composing arrows):

; : Arr(A,B) × Arr(B,C) → Arr(A,C),
– for each object A ∈ Ob, an identity arrow idA : A → A,

such that the following conditions hold:

– Associativity: ∀A,B,C,D ∈ Ob. ∀f : A → B, g : B → C, h : C → D.
f ; (g ; h) = (f ; g) ; h.

– Identity: ∀A,B ∈ Ob. ∀f : A → B. (idA ; f = f) ∧ (f ; idB = f).

A useful and familiar category is Sets, consisting of sets as objects and total
functions as arrows. Apart from serving as a concrete example for Definition 1,
we shall also build-up our more complex structures based on Sets.

BX with TGGs 33

Definition 2 (Sets and Total Functions). Sets=(Ob,Arr, ; , id) consists of:

– sets Ob, total functions Arr,
– for A,B,C ∈ Ob, f : A → B, g : B → C, (f ; g) : A → C is defined as

∀x ∈ A. (f ; g)(x) := g(f(x)),
– for A ∈ ObSets, idA : A → A is defined as ∀x ∈ A. idA(x) := x.

Fact 1 (Sets is a Category). Sets according to Definition 2 is a category
according to Definition 1.

Proof (Sketch). Follows directly from associativity of function composition and
the definition of id for Sets (see Awodey [8] for further details).

Now that we have introduced the basic structure of a category, we are ready
to define the first central concept for this chapter, a model space. A model space
is essentially a small category, i.e., a category in which the class of all objects
and class of all arrows are sets. While this is not absolutely relevant for this
chapter, the interested reader is invited to look up Russell’s paradox and find
out why the “set of all sets” cannot be a set and must be a “proper class”.

Thinking in terms of data or artefacts (to be later synchronised with other
artefacts), a model space captures (i) all possible states (let us refer to these as
models) of the artefact we wish to admit, and (ii) how we can transition from one
state of an artefact to another state by applying suitable updates (let us refer to
these transitions as deltas). In addition to the basic categorical structure from
Definition 1, with objects as models and arrows as deltas, we also expect to be
able to invert every delta. These expectations are formalised by the following
definition:

Definition 3 (Model Space). A model space M = (M,Δ, ; , id, inv) is a
category with a set M of objects referred to as models, a set Δ of arrows referred to
as deltas,1 and a total function inv : Δ → Δ, assigning to every delta δ : m → m′

an inverse delta inv(δ) : m′ → m, such that for every identity arrow idm : m →
m ∈ Δ [inv(idm) = idm] and for every arrow δ ∈ Δ [inv(inv(δ)) = δ].

Example. As a running example used consequently throughout this chapter, we
shall investigate a (greatly simplified and thus purposely unrealistic) synchro-
nisation task taken from the domain of medical software (loosely inspired by
Weber et al. [35]). Depicted in Fig. 2, the example is centred around a patient
dashboard application ➊. To address different goals, different abstractions (mod-
els) of this system have been established ➋. These models live in their respective
model spaces (depicted as coloured circles in Fig. 2) describing how they can be
updated. To the left of Fig. 2, a doctor ➌ is interested in patient information,
prescribed medication, and the physician currently assigned to each patient. To
the right of Fig. 2, an expert in charge of logistics ➍ ensures that the hospital
has adequate and uninterrupted supply of medication, and is only interested in
the “dosage plan” of the hospital, i.e., a collection of all current prescriptions.
1 Subscripts on Δ are omitted if all arrows are meant.

34 A. Anjorin

To simplify logistics and allow for optimisation, doctors prescribe medica-
tion only via so-called “generic” names, e.g., Aspirin. The actual brand, e.g.,
Ascriptin, can then be decided by the logistic expert based on the current price
situation or what is already in stock. This means that the model spaces have
both shared and private data: the hospital does not have to (and probably does
not want to!) share information about patients and doctors ➎; analogously the
logistic company wants to be able to change the mapping of generic to brand
medication names in order to optimise the supply process ➏. Both experts, how-
ever, must synchronise on their shared data, comprising the current prescrip-
tions ➐. The challenge here is to propagate changes made in one artefact to the
other artefact automatically, ensuring that shared data is kept consistent, and
that no data is lost when round tripping.

represents
represents

1

2

3 4

5 67

Fig. 2. Our running example from the domain of medical software (Color figure online)

The concept of a model space is abstract in the sense that almost no assump-
tions are made about what models and deltas actually constitute. Depending
on the problem domain and/or technological space, a concrete framework or
tool will of course “instantiate” these concepts appropriately. Models can be
lists, trees, tables, functions, collections of constraints, or graphs. In an MDE
context, in which most TGG tools are used today, a model is often a typed,
attributed graph. To keep all definitions simple, we shall omit details of attribu-
tion and other advanced typing features such as node/edge inheritance, compo-
sition/aggregation, multiplicities and other constraints used to further shape the
model space. The interested reader is referred to Biermann et al. [9] and Ehrig
et al. [15] for further details.

BX with TGGs 35

Depicted in Fig. 3, graphs are shaped from sets (edges and nodes) and set
arrows (connecting edges to their source and target nodes). This induces a cat-
egorical structure with graph arrows as pairs of set arrows, which are structure
preserving, i.e., respect the way edges are connected to nodes in a graph by map-
ping source and target nodes together with edges. Note how one can “zoom” out
from Sets to Graphs by changing the underlying category of the diagram.2

To the right of Fig. 3, the diagram in Graphs depicts graph objects and graph
arrows as atomic entities with hidden internal structure. This is a useful and
powerful abstraction mechanism, which will become even more important when
dealing uniformly with more complex “objects” and “arrows”.

Graphs

G

G′

f

Sets

E′ V ′

E V

fE fV

src

trg

src′

trg′

Fig. 3. Graphs and graph arrows

Typing structure can be introduced by choosing a graph as a type graph, and
then demanding that every well-typed graph have a graph arrow type that maps
its nodes and edges to nodes and edges in the type graph. This induces again
a categorical structure with these “type arrows” as objects and type preserving
graph arrows, i.e., nodes/edges are mapped to nodes/edges of the same type,
as arrows. This is depicted in Fig. 4, demonstrating again the “zooming out”
transition from a diagram in Graphs to a diagram in TGraphs.

The following definition formalises the preceding discussion, introducing
typed graphs (with their corresponding categorical structure) as a concrete
instantiation of the abstract concept of a model. Note that the definition is con-
crete enough to be implemented directly in a standard programming language
(and this is basically what is done for TGG-based tools).

2 The formal diagrams used in this chapter are placed in a frame with a label in the
right-bottom corner denoting how to interpret the objects and arrows in the diagram.
For example, a diagram with label Sets means that objects in the diagram are sets,
and arrows in the diagram are total functions. All other diagrams are informal and
require a diagram-specific legend or extra explanation.

36 A. Anjorin

Ĝ

Ĝ′
f

G

TG

type

G′
type′

f

TGraphsGraphs

Fig. 4. Typed graphs and typed graph arrows

Definition 4 (Models as Typed Graphs). A graph G consists of: (i) A set
E of edges. (ii) A set V of nodes (vertices). (iii) Total functions src : E → V
and trg : E → V , assigning every edge a source and target node, respectively.
A graph arrow f from graph G = (E, V, src, trg) to graph G′ =
(E′, V ′, src′, trg′), denoted as f : G → G′, consists of a pair of total func-
tions fE : E → E′ and fV : V → V ′ such that fE ; src′ = src ; fV and
trg ; fV = fE ; trg′.
A type graph is a distinguished graph TG. A typed graph Ĝ = (G, type) consists
of a graph G, and a graph arrow type : G → TG.
A typed graph arrow f : Ĝ → Ĝ′ is a graph arrow f : G → G′ such that
type = f ; type′, where Ĝ = (G, type), Ĝ′ = (G′, type′).

Example. A source type graph TGS for our running example is depicted in Fig. 5
together with a source typed graph GS . Let us refer to this source “domain” in
the rest of the chapter as MediSoft. For the “internals” of the graphs, a simplified
UML-like syntax for class and object diagrams is used. Nodes are represented
as rectangles, edges as arrows. The internal mapping of typeS is indicated by
denoting the types of nodes in GS as id:Type, where Type is a node in TGS .
Edges in GS are mapped to edges in TGS with the same label (identifiers for
edges are only used if this is absolutely necessary).

According to TGS , a hospital has doctors, patients, and different pharmaceu-
ticals such as Aspirin and Ibuprofen. Doctors can be assigned to patients, and
patients can be prescribed pharmaceuticals. The concrete hospital h in GS has
only one patient p, one doctor d, who is assigned to p, and one pharmaceutical
a (aspirin). Note that p has not been prescribed a.

The following fact ensures that graphs and typed graphs are indeed categories
with objects, arrows, composition, and identity as discussed informally in the
preceding sections.

Fact 2 (Graphs and TGraphs are Categories). Graphs = (Ob,Arr, ; , id)
consisting of:

BX with TGGs 37

Hospital

Doctor

Patient

Aspirin

doctors

patients

patients prescribed

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticalsdoctors

patients

patients

Ibuprofen

pharmaceuticals

pharmaceuticals

prescribed

Graphs

TGS
GS

typeS

Fig. 5. Source type graph and source typed graph

– graphs Ob, graph arrows Arr,
– for G,G′, G′′ ∈ Ob, f = G → G′, g = G′ → G′′ ∈ Arr, ; (f, g) is defined as

f ; g := (fV ; gV , fE ; gE),
– for G = (V,E, src, trg) ∈ Ob, idG : G → G is defined as idG := (idV , idE).

and TGraphs = (Ob,Arr, ; , id) consisting of:

– typed graphs Ob, typed graph arrows Arr,
– ; and id taken from Graphs.

are categories according to Definition 1.

Proof (Sketch). Graphs and TGraphs can be constructed as “comma cate-
gories” of Sets. This not only ensures that they are indeed again categories but
also that they inherit certain properties from Sets, which will be useful later in
the chapter. The reader is referred to Ehrig et al. [15] for further details.

After introducing typed graphs as models, let us now turn to deltas describing
the results of applying a series of updates to a typed graph. To represent a delta
δ : G → G′ between typed graphs G and G′, a so-called span of typed graphs
can be used to record which elements are to be deleted and created. The basic
idea is to establish an additional typed graph G consisting of all elements that
are retained (unchanged) by the delta. Two typed graph arrows can then be
used to embed G in G and G′, representing deletion and creation, respectively.
This is formalised by the following definition:

Definition 5 (Deltas as Spans of Typed Graphs). A span of typed graphs

G
δ−
←− G

δ+

−→ G′ consists of three typed graphs G,G,G′ and two typed graph
arrows δ− : G → G and δ+ : G → G′, where δ− and δ+ are monomorphisms
(injective functions on nodes and edges).

38 A. Anjorin

Such a span can be interpreted as a delta δ : G → G′ (according to Definition 3)
by regarding G as the source of the delta, and G′ as the target of the delta. Edges
(and nodes) in EG(, VG) that are not in the co-domain of δ−

E (, δ−
V) are said to be

“deleted” by the delta, while edges (and nodes) in EG′(, VG′) that are not in the
co-domain of δ+E(, δ+V) are said to be “created” by the delta δ.

Example. A source delta is depicted in Fig. 6 for our running example, repre-
senting the change of a prescription from a (Aspirin) to i (Ibuprofen) for p
(a patient in the hospital). This is represented formally by the depicted span,
where the prescribed edge from p to a is in GS but not in GS (and is therefore
“deleted” by the delta), while the prescribed edge from p to i and i itself as a
new pharmaceutical in the hospital are in G′

S but not in GS (and are therefore
“created” by the delta).

TGraphs

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticalsdoctors

patients

patients
prescribed

GS

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticalsdoctors

patients

patients

GS

δ+Sδ−
S

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticals
doctors

patients

patients

G′
S

i:Ibuprofen

pharmaceuticals

prescribed

Fig. 6. A source delta as a span of typed graphs

To establish model spaces of typed graphs as models and spans of typed
graphs as deltas, we still need to define what composition of deltas means for
spans. This can be done categorically (i.e., in terms of arrows and objects and
not of their internal structure) via generalised notions of union (and intersec-
tion) of objects. Taking the union (intersection) of two objects B and C without
inspecting their contents only makes sense if we additionally know which parts
of B and C are to be regarded as being the same. This extra information is
provided by two arrows embedding the same object A in B and C (embedding
B and C in the same object A), so that the union (intersection) {D, b, d} can be
defined with respect to these two arrows. Note that the concepts of a generalised
union, called a pushout,3 and a generalised intersection, called a pullback,4 are
dual to each other, i.e., are the same up to “flipping all arrows” as can be seen in

3 As d and b can be seen as being derived by “pushing out” a and c along each other.
4 As d and b can be seen as being derived by “pulling back” a and c along each other.

BX with TGGs 39

Fig. 7. This is, however, not directly relevant for this chapter and is not treated
further. The interested reader is referred to Awodey [8] for all details.

A B

C D

D′

a

bc

d x

d′

b′PO

A B

C D

D′

a

bc

d x

d′

b′PB

Fig. 7. Pushouts and pullbacks

The following definition formalises pushouts (and pullbacks) in a declarative
manner, i.e., the pushout (pullback) is characterised precisely via a so-called
universal property (Condition (2) in Definition 6), stating that there exists no
“better” candidate (that also fulfils Condition (1) in Definition 6). Note that the
definition says nothing about how to define, let alone construct, pushouts (and
pullbacks) for concrete categories such as Sets, Graphs, or TGraphs.

Definition 6 (Pushouts and Pullbacks). Let C = (Ob,Arr, ; , id) be a cat-
egory. Given arrows a ∈ Arr : A → B and c ∈ Arr : A → C, a pushout (D, d, b)
over a and c is defined by:

– a pushout object D ∈ Ob, and
– morphisms d : C → D, b : B → D,

where:

1. the “pushout square” commutes, i.e., a; b = c; d, and
2. the following universal property is fulfilled:

∀D′ ∈ Ob ∀ d′ : C → D′ ∀ b′ : B → D′

(a; b′ = c; d′) ⇒ (∃!x : D → D′ [(b;x = b′) ∧ (d;x = d′)]).

The category C is said to have pushouts if pushout (D, d, b) always exists.
Given arrows a ∈ Arr : B → A and c ∈ Arr : C → A, a pullback (D, d, b) over
a and c is defined by:

– a pullback object D ∈ Ob, and
– morphisms d : D → C, b : D → B,

where:

1. the “pullback square” commutes, i.e., b; a = d; c, and
2. the following universal property is fulfilled:

∀D′ ∈ Ob ∀ d′ : D′ → C ∀ b′ : D′ → B
(b′; a = d′; c) ⇒ (∃!x : D′ → D [(x; b = b′) ∧ (x; d = d′)]).

The category C is said to have pullbacks if pullback (D, d, b) always exists.

40 A. Anjorin

The following fact guarantees that we can work with pushouts and pullbacks
in Graphs and TGraphs, as is required in the rest of the chapter.

Fact 3 (Pushouts and Pullbacks in Sets, Graphs and TGraphs). The
categories Sets, Graphs, and TGraphs have pushouts and pullbacks.

Proof (Sketch). The interested reader is referred to, e.g., Ehrig et al. [15] for a
construction of pushouts and pullbacks in Sets, Graphs, and TGraphs.

Example. To provide some intuition for the universal properties in Definition 6,
Fig. 8 depicts a concrete example of a pullback in Sets. All functions a, b, c, and
d map the same letters to themselves in source and target sets, e.g., c(p) = p.
Using the same schema and labels for all sets and functions as in Definition 6,
{D, d, b} is the pullback of a : B → A and c : C → A. By using the “same”
letters in all sets, this example shows why pullbacks in Sets can be intuitively
understood as generalised intersections, i.e., {p} = {a, p} ∩ {p, i}.

A B

C D

D′

a

bc

d x

d′

b′

{a, p, i} {p, i}

{a, p}
{ }

p i

pp

a i

pa

{ }
{p}

πC

πB

≡

×C B

Sets

=

=

=

=

Fig. 8. Pullback construction and intuition for universal property in Sets

Pullbacks in Sets can be constructed by determining the cartesian product
C × B with projections to each set πC and πB , and then taking all entries for
which the inner square commutes: πC ; c = πB ; a. This is the case here for only
the entry (p, p) (highlighted in grey), which is taken to form the final result D
(choosing one of the ps as a representative). The interested reader is referred
to Ehrig et al. [15] for a proof that this construction actually does result in
a pullback. To demonstrate the universal property of the pullback, the empty
set can be taken as D′; The universal properties guarantees the existence of
x : D′ → D (with all required conditions). Conditions (1) and (2) for pullbacks
in Definition 6 characterise the pullback uniquely and can be used in our example
to rule out both C ×B and {} as pullback candidates: C ×B is not the pullback

BX with TGGs 41

because it violates Condition (1), i.e., πC ; c
= πB ; a; {} is not the pullback
because it violates Condition (2) as it is, e.g., impossible to construct a total
function from D to D′ (swapping their roles in Condition (2), the universal
property for pullbacks).

We are now ready to define composition of deltas for spans of typed graphs.
As depicted in Fig. 9, the pullback (think intersection) of the retained typed
graphs G2, G4 is constructed as G6 with respect to the overlapping in G3. The
composed delta can now be formed by composed arrows δ5 ; δ1 and δ6 ; δ4.

PB

G1

G2

G3

G4

G5

G6

δ1
δ2 δ3

δ4

δ5 δ6

TGraphs

Fig. 9. Composition of spans of typed graphs

The following fact applies this idea for composing spans to finally estab-
lish typed graphs and spans of typed graphs as a model space according to
Definition 3.

Fact 4 (Model Space of Typed Graphs and Spans). A set M of typed
graphs over the same type graph TG, together with a set Δ of spans of typed
graphs from M , form a model space (M,Δ, ; , id, inv) with:

– ∀G ∈ M, idG := G
id←− G

id−→ G ∈ Δ(G,G), with id taken from TGraphs,
– delta composition defined as follows:

∀δ = G1
δ1←− G2

δ2−→ G3, δ
′ = G3

δ3←− G4
δ4−→ G5 ∈ Δ.

δ ; δ′ := G1
δ5 ; δ1←− G6

δ6 ; δ4−→ G5 ∈ Δ, where (δ5, δ6, G6) is the pullback of
δ2, δ3,

– ∀ δ = G
δ−
←− G

δ+

−→ G′ ∈ Δ(G,G′), inv(δ) = G′ δ+

←− G
δ−
−→ G ∈ Δ(G′,G).

Proof (Sketch). Associativity of ; can be shown using pullback composition
and decomposition [15], identity follows from identity in TGraphs, and the
conditions for inv follow directly from the definition of inv and id for spans.

Example. To provide a concrete example for the rather abstract Definition 6,
Fig. 10 depicts an example of two spans of typed graphs together with their
composition according to Fact 4. To avoid diagram clutter, all internal mappings
of typed graph arrows are indicated by using the same node label, i.e., the source

42 A. Anjorin

node with label a is mapped to the target node with label a. Note, however, that
labels have no further semantics and are not part of our typed graphs according
to Definition 4. To ease comparison with the previous example in Sets depicted
in Fig. 8, the same node labels are reused. Intuitively, pullback construction
in Graphs is basically just component-wise pullback construction in Sets for
edges and nodes. To the left of Fig. 10, the first delta removes a prescription of
a (Aspirin) to the patient p and adds a new pharmaceutical i (Ibuprofen) to the
model. The second delta to the right of Fig. 10 then removes a from the model
and prescribes the previously created i to the patient p. The composed delta,
formed by constructing a pullback square as indicated in Fig. 10, combines both
deltas by deleting a together with the prescribed edge directly in one deletion
step, and similarly, creating i and the new prescribed edge in a creation step.

TGraphs

p:Patient

a:Aspirin

prescribed

p:Patient

a:Aspirin

p:Patient

a:Aspirin

i:Ibuprofen

p:Patient

p:Patient

i:Ibuprofen

p:Patient

i:Ibuprofen

prescribed

PB

Fig. 10. Composition of deltas from our running example

After defining model spaces of typed graphs and spans of typed graphs, we
are now ready to handle the next abstract concept from Diskin et al. [13], that
of a triple space. A triple space essentially defines triples over two model spaces,
let us call these the “source” and “target” model spaces, by connecting source
and target models with correspondence links. Recall that our goal is to develop a
synchronisation framework, and such triples capture the state of a pair of related
source and target models. This is formalised by the following definition.

Definition 7 (Triple Space). A triple space M R←→ N is a graph
(ΔMN ,M ∪ N, src, trg) with a set M ∪ N of nodes (M and N are the sets
of models from the model spaces M and N , respectively), set ΔMN of edges
(referred to as correspondence relations or just “corrs”), and total functions
src : ΔMN → M and trg : ΔMN → N .
We write m ← δMN → n if m ∈ M,n ∈ N, δMN ∈ ΔMN and
src(δMN) = m, trg(δMN) = n.

BX with TGGs 43

Analogously to model spaces of typed graphs, we shall now refine triple spaces
for typed graphs. Note that triple spaces according to Diskin et al. [13] are not
completely uniform, with corrs – in contrast to source and target models – not
necessarily being themselves models taken from a “correspondence” model space.

The standard way of defining triple spaces for TGGs, however, is typically to
take a uniform approach, introducing a category of typed triple graphs and triple
arrows. This leads to a richer structure than is required by Diskin et al. [13],
but still yields a valid implementation. For the sake of a direct comparison with
Diskin et al. [13], we shall ignore this additional structure (deltas on corrs) in
this chapter. The following definition formalises typed triple graphs.

Definition 8 (Typed Triple Graphs). A triple graph G = GS
σ← GC

τ→
GT consists of graphs GS , GC , GT and graph arrows σ : GC → GS and τ :
GC → GT .
A triple arrow f = (fS , fC , fT) : G → G′ (depicted in Fig. 11), where G =

GS
σ← GC

τ→ GT and G′ = G′
S

σ′
← G′

C
τ ′
→ G′

T are triple graphs, is a triple
of graph arrows fS : GS → G′

S, fC : GC → G′
C , fT : GT → G′

T , such that
σ ; fS = fC ; σ′ and τ ; fT = fC ; τ ′.
A type triple graph is a distinguished triple graph TG.
A typed triple graph Ĝ = (G, type) consists of a triple graph G, and a triple
graph arrow type : G → TG.
A typed triple graph arrow f : Ĝ → Ĝ′ is a triple graph arrow f : G → G′ with
type = f ; type′, where Ĝ = (G, type), Ĝ′ = (G′, type′) are typed triple graphs.

Graphs

GS
σ← GC

τ→ GT

G′
S

σ′
← G′

C
τ ′
→ G′

T

fS fC fT==

Fig. 11. A triple arrow is a structure preserving triple of graph arrows.

The following fact ensures that typed triple graphs as objects and typed triple
graph arrows as arrows do indeed form a category with pushouts and pullbacks:

Fact 5 (Triples is a Category with pushouts and pullbacks). Triples =
(Ob,Arr, ; , id) consisting of:

– typed triple graphs Ob, typed triple graph arrows Arr,
– for G,G′, G′′ ∈ Ob, f = G → G′, g = G′ → G′′ ∈ Arr, ; (f, g) is defined as

f ; g := (fS ; gS , fC ; gC , fT ; gT),
– for G = GS ← GC → GT ∈ Ob, idG : G → G is defined as

idG := (idS , idC , idT).

is a category with pushouts and pullbacks.

44 A. Anjorin

Proof (Sketch). Analogous arguments as in Fact 2, i.e., Triples can be con-
structed from TGraphs in a standard manner (as a functor category) that pre-
serves numerous properties including the basic categorical structure, pushouts,
and pullbacks.

The following fact states that a triple space consisting of two model spaces
of typed triple graphs and a set of triples of typed graphs forms a triple space
according to Definition 7:

Fact 6 (Triple Space of Typed Triple Graphs). Let M and N be model
spaces of typed graphs and spans (according to Fact 4) typed over a source type
graph TGS, and a target type graph TGT , respectively. The set ΔMN of all typed
triple graphs typed over TG = TGS

σTG← TGC
τTG→ TGT forms a triple space

(ΔMN ,M ∪ N, src, trg) according to Definition 7, with:
∀G = GS

σ← GC
τ→ GT ∈ ΔMN : src(G) = GS , trg(G) = GT .

Proof (Sketch). Follows directly from Fact 4 and Definition 7.

Example. As an example of a typed triple graph (G, type), Fig. 12 depicts a
diagram in Graphs showing the underlying triple structure. The internal map-
pings of typeS , typeC , typeT are implicitly given by indicating node types in the
typed graphs, e.g., h:Hospital of type Hospital. Note that the graph arrows
σTG, τTG, σ, τ are in Graphs and not necessarily in TGraphs, i.e., are not type
preserving; their internal mappings are indicated with thin dotted arrows. The
diagram introduces the type graph TGT for the target domain, which we shall

Graphs

Hospital

Doctor

Patient

Aspirin

doctors

patients

patients prescribed

Ibuprofen

pharmaceuticals

pharmaceuticals

prescribed

TGS

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticals
doctors

patients

patients

GS

DosagePlan

Dosage

dosages

Ascriptin

Axotal

Ibumed

Ibuprin

brand

brand

brand

brand

TGT
HToD

TGC

IToD

AToD

prescribed

dp:DosagePlan

dg:Dosage

dosages

as:Ascriptin

brand

GT
h2dp:HToD

p2dg:AToD

GC

σTG τTG

τσ

typeS typeC typeT

Fig. 12. A typed triple graph from our example

BX with TGGs 45

refer to in the rest of the chapter as MediSupply. It consists of a dosage plan
with dosages, each of which can be marked with a certain brand, e.g., Ascriptin,
or Axotal. The correspondence type graph TGC states which source and target
types can be connected in triples: Hospitals correspond to dosage plans, while
prescribed edges, representing prescriptions via generic names, correspond to
dosages, fixing the actual brand for the prescription. The typed triple graph
GS ← GC → GT represents a concrete and well-typed example triple.

3 Specifying Symmetric Delta Lenses with TGGs

In this section, we shall first cover the basics of the symmetric delta lens (sd-
lens) framework of Diskin et al. [13], and then discuss in a step-wise fashion how
sd-lenses can be specified with a TGG. Although there are numerous operational
scenarios that are required for consistency management in general, the sd-lens
framework focuses on forward and backward change propagation. This is best
explained and motivated with a concrete example.

Example. A forward propagation, denoted as fpg, takes a corr and a source
delta as input, and outputs a target delta and a new corr. This is depicted
schematically to the left of Fig. 13. In contrast to input artefacts (c and δM

in the example), output artefacts are denoted with dashed lines (δN and c′).

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticals
doctors

patients

patients
prescribed

dp:DosagePlan

dg:Dosage

dosages

as:Ascriptin

brand

h2dp:HToD

p2dg:AToD

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticals
doctors

patients

patients

dp:DosagePlanh2dp:HToD

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticals
doctors

patients

patients

dp:DosagePlan

m n

δM δN

m′ n′

m n

m′ n′

�→fpg �→fpg

c

c′

Fig. 13. A forward propagation square

46 A. Anjorin

A concrete example based on typed triple graphs and spans of typed graphs
is depicted to the right of Fig. 13. Following the same schema as the abstract
square to the left of Fig. 13, the example shows how a source delta, representing
creating a prescription of Aspirin, is forward propagated to the target domain,
where the corresponding target delta represents creating a dosage with Ascriptin
as brand. The corr is also updated to reflect the changes.

As indicated by the example, only corrs and deltas that “make sense” are
accepted as input and produced as output; intuitively, fpg and bpg take two
adjacent sides of a square and complete them to a full square. Consequently, a
corr c that has nothing to do with a source delta δM is not valid input, i.e., the
source m of the corr must be the same as the source of δM . These synchronisation
domains (and co-domains) are formalised in the following definition as suitable
pullbacks.

Definition 9 (Synchronisation Domains and Co-Domains). Given a
model space M = (M,ΔM , ; , id, inv), source and target functions src : ΔM →
M and trg : ΔM → M , can be defined for deltas as follows:
∀ δ : m → m′ ∈ ΔM , src(δ) := m, trg(δ) := m′.

Given another model space N = (N,ΔN , ; , id, inv), let M R←→ N be a triple
space over M and N . The synchronisation domains and co-domains �, �, �, �
are then defined as the pullbacks of the squares in Fig. 14 (with dashed arrows
belonging to the pullback).

src

�

�

� ΔMN

ΔM M
src

srcPB

ΔMN

ΔM

Msrc

PB

N

ΔN �

trg ΔMN

PBtrgtrg

N ΔN

ΔMN

PBtrg

Fig. 14. Synchronisation domains and co-domains

We are now ready to define forward and backward propagation as functions
with these reasonable synchronisation domains and co-domains. As formalised
by the following definition, a symmetric delta lens is just a pair (fpg, bpg) of
such forward and backward propagation functions.

BX with TGGs 47

Definition 10 (Symmetric Delta Lens). A symmetric delta lens λ : M R⇐⇒
N over a triple space M R←→ N is a pair (fpg, bpg) of forward and backward
propagation functions:
fpg : �−→ �, (c, δM)
→ (c′, δN) such that src(δN) = trg(c) ∧ trg(δM) = src(c′).
bpg : �←− �, (c, δN)
→ (c′, δM) such that src(δM) = src(c) ∧ trg(δN) = trg(c′).

A primary motivation for developing a synchronisation framework such as
the sd-lens framework is to be able to identify and precisely characterise desir-
able behaviour for synchronisers (in this case forward and backward propagation
functions). We shall cover some formal properties in Sect. 4, and discuss how
these properties can be guaranteed for TGG-based synchronisers.

In the rest of this section, we shall focus for the moment on the basic idea of
the TGG approach. Our goal is to develop an intuition for how a TGG represents
a rather direct specification of an sd-lens. Without any additional restrictions,
the specified sd-lens might not be “well-behaved” in any sense but this is not
necessarily a disadvantage. It just means that the TGG framework provides a
flexible playground for studying trade-offs between assumptions, corresponding
imposed limitations, and guaranteed desirable formal properties.

3.1 Enumerate All Squares

The first step on the way to a TGG-based specification of an sd-lens is to take an
example-based approach. Imagine how a binary function sum : int × int → int
could theoretically be specified with a list of “examples” {(1, 1)
→ 2, (1, 2)
→
3, . . .} describing the expected output value for given input pairs. Although this
can only be achieved for a finite (and probably rather small) domain, there are
some approaches [23] dealing with how to “learn” a program or transformation
from a small set of examples. Applying this idea to sd-lenses, examples in this
sense would correspond to a set of fpg and bpg squares, describing how to
complete concrete squares given a specific corr and vertical delta. An example
for an fpg and a bpg square is depicted in Figs. 15 and 16, respectively, following
the same schema as Fig. 13.

In the former, a hospital h with one doctor d, one patient p, and one phar-
maceutical a (Aspirin) prescribed for the patient p, corresponds to a dosage plan
dp for the hospital, with a dosage dg and its assigned brand as (Ascriptin).

Given such a triple, a vertical source delta deleting the prescription and
pharmaceutical, and creating a new prescription and pharmaceutical (this time
Ibuprofen), is propagated to a corresponding vertical target delta.

As should be expected, the dosage corresponding to the deleted prescription
is also deleted, and a new dosage dg’ is created for the new prescription. A bit
surprising is perhaps, that the brand as (Ascriptin) is not deleted and instead
retained in the MediSupply model. The rationale here is that such a “clean up”
operation should only be performed explicitly by whoever is in charge of the
MediSupply model. Even though there is no dosage currently referencing as in
the final MediSupply model, this might change in the near future.

48 A. Anjorin

h:Hospital

d:Doctor

p:Patient

i:Ibuprofen

pharmaceuticals
doctors

patients

patients
prescribed

dp:DosagePlan

dg':Dosage

dosages

as:Ascriptin

brand

h2dp:HToD

p2dg':IToD

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticals
doctors

patients

patients

h2dp:HToD

h:Hospital

d:Doctor

p:Patient

doctors

patients

patients

dp:DosagePlan�→fpg

prescribed

dp:DosagePlan

dg:Dosage

dosages

as:Ascriptin

brand

as:Ascriptin

ib:Ibumed

p2dg:AToD

Fig. 15. An fpg square

In this concrete example square, however, a new brand ib (Ibumed) must of
course be created for the new prescription in the MediSoft model.

The situation is analogous but reversed for the bpg square in Fig. 16: here a
dosage dg is deleted together with the referenced brand as (Ascriptin), and a
new dosage dg’ is created with a new brand ib (Ibumed). In the MediSoft model,
however, no corresponding “clean up” is performed, i.e., the pharmaceutical a
(Aspirin) is not deleted, for the same arguments as for the fpg square.

The point here is to understand that one could, theoretically, specify the
pair (fpg, bpg) by drawing a lot of (to be precise almost always infinitely many)
concrete squares. As this is not very practical, the following ideas are used to
progressively reduce the number of “squares” required to specify an sd-lens,
culminating in a TGG, a finite set of “rules” able to generate an infinite number
of concrete fpg and bpg squares, and thus an sd-lens.

BX with TGGs 49

h:Hospital

d:Doctor

p:Patient

i:Ibuprofen

doctors

patients

patients

prescribed

dp:DosagePlan

dg':Dosage

dosages

brand

h2dp:HToD

p2dg':IToD

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharmaceuticals
doctors

patients

patients

h2dp:HToD

h:Hospital

d:Doctor

p:Patient

doctors

patients

patients

dp:DosagePlan�→
bpg

prescribed

dp:DosagePlan

dg:Dosage

dosages

as:Ascriptin

brand

ib:Ibumed

p2dg:AToD

a:Aspirin

pharmaceuticals

a:Aspirin

pharm...

pharm...

Fig. 16. A bpg square

3.2 Enumerate Simultaneous fpg/bpg Squares

The first idea towards reducing the number of required squares is to “fuse”
fpg and bpg squares together into a single simultaneous square. Such a square
is depicted in Fig. 17, also introducing a series of new notational elements to
enable compact diagrams.

Firstly, vertical deltas are depicted in a single graph with colours instead of
as an explicit span of graphs: black elements (edges and nodes) are retained,
green elements are created, and red elements are deleted by the delta.

Secondly, triples are flattened into a single diagram without explicitly demar-
cating the individual graphs in the triple. This is indicated by aligning all ele-
ments of the source graph to the left, all elements of the target graph to the
right, and by using hexagons to clearly distinguish elements in the correspon-
dence graph from all other source and target nodes. To make clear that the links

50 A. Anjorin

between correspondence elements and source/target elements are not edges but
rather mappings of the source/target graph arrows between the correspondence
graph and source/target graphs, these links are dotted instead of solid.

Finally, and most importantly, the “square” (think of blowing up the diagram
into a square without colours) is now to be interpreted as being simultaneous, i.e.,
as describing at the same time both an fpg and a bpg square as in the previous
subsection. In this concrete square, deleting a prescription and creating a new
prescription together with a new pharmaceutical (Ibuprofen to be exact) corre-
sponds to deleting the corresponding dosage and creating a new one together
with the new brand (Ibumed to be exact). Recall that this is not a “pattern” of
some kind – it is a concrete example and only describes the forward/backward
propagation of exactly this triple and source/target vertical deltas.

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.
doctors

patients

patients

h2dp:HToD

prescribed

dp:DosagePlan

dg:Dosage

dosages

as:Ascriptin

brand

p2dg:AToD

i:Ibuprofen

pharm.

prescribed
dg':Dosage

dosages

brand
p2dg':IToD

ib:Ibumed

Fig. 17. A simultaneous fpg/bpg square

The attentive reader should have noticed that we have taken a shortcut.
Figure 17 does not exactly decompose into the two squares in Figs. 15 and 16.
The cleaning up operation in the input domain is not enforced, i.e., after deleting
a prescription/dosage, the leftover pharmaceutical/brand is not deleted but left
in the source/target model. The rationale here is that these parts of the squares
do not match up nicely, cannot be combined, and have to be specified in extra,
simpler, but non-simultaneous squares.

For this concrete example, the required squares are depicted in Fig. 18. These
are not simultaneous squares, i.e., the square to the left ➊ describes an fpg
square that propagates deleting a (Aspirin) by simply doing nothing in the
target domain. It does not describe a bpg square that propagates doing nothing
in the target domain to inexplicably deleting a. This would indeed be rather
surprising. Together with the square to the right ➋, both squares describe the
separate “clean up” action in each domain, which can be executed independently
by the respective MediSoft and MediSupply clients, and which have no effect on
the other domain. Let us refer to such squares in the following as ignore squares,
as one vertical delta is always the id delta.

Although we have almost halved5 the squares that have to be enumerated
to specify an sd-lens, there are still too many for any realistic example. Before
5 Remember that not all squares can be combined.

BX with TGGs 51

a:Aspirin

pharm.
doctors

patients
patients

h2dp:HToD dp:DosagePlan

as:Ascriptin

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.
doctors

patients
patients

h2dp:HToD dp:DosagePlan

as:Ascriptin

1 2
h:Hospital

d:Doctor

p:Patient

Fig. 18. Not all squares have to be simultaneous

we finally resort to specifying a square “generator” instead, the next simple
but important idea, or better, convention, is to describe only monotonic (purely
creating or deleting but not both) squares.

3.3 Enumerate Monotonic, Simultaneous fpg/bpg Squares

Let us say we decide to describe only creating, simultaneous (and ignore) squares.
By convention, we now agree that all “dual” deleting squares are also derived by
inverting the vertical deltas. For our example, this means that we only think of
and pair monotonic source and target deltas resulting in the two simultaneous
squares depicted in Fig. 19. Comparing this carefully with Fig. 17 reveals that we
have again taken another shortcut. What we can now describe is not precisely
what Fig. 17 specifies. Using the squares in Fig. 19 we can indeed derive the
square in Fig. 17 by composition of squares, but we can also do other things not
allowed by Fig. 17. As we have separated creation and deletion, there is nothing
forcing us to replace a deleted prescription with a new one. On the positive side,
we have described quite a few additional squares, including, e.g., deleting the
prescription of i (Ibuprofen) and replacing it with a prescription of a (Aspirin).

Our ignore squares also have to be rephrased in terms of creation as depicted
in Fig. 20. The corresponding squares in Fig. 18 are also indirectly specified as
the duals of their creating counterparts.

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.
doctors

patients

patients

h2dp:HToD

prescribed

dp:DosagePlan

dg:Dosage

dosages

as:Ascriptin

brand

p2dg:AToD

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.
doctors

patients

patients

h2dp:HToD dp:DosagePlan

as:Ascriptin

i:Ibuprofen

pharm.

prescribed dg':Dosage

dosages

brand

p2dg':IToD

ib:Ibumed

1 2

Fig. 19. Monotonic, simultaneous squares

52 A. Anjorin

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.
doctors

patients
patients

h2dp:HToD dp:DosagePlan

as:Ascriptin

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.
doctors

patients
patients

h2dp:HToD dp:DosagePlan

as:Ascriptin

1 2

Fig. 20. Monotonic, but non-simultaneous squares

Restricting enumerated squares to purely creating deltas is without doubt a
true restriction, arguably even a rather strong one. In practice, however, such
dual squares appear to be quite reasonable and can be viewed as a welcome lim-
itation, enforcing not only a compact, but also a simple specification of expected
synchronisation behaviour. As we shall see in the next subsection, having purely
monotonic rules also greatly simplifies the required theory for describing rule
application. Finally, monotonic rules also have numerous technical advantages.
For instance, deciding if a given graph belongs to a graph language or not is
much easier if the rules generating the graph language are monotonic.

3.4 Specify Monotonic, Simultaneous Triple Rules

The most important idea is to transition from enumerating (infinitely many)
concrete squares to generating them with a finite set of rules. This is a well-
known technique used for generative language definition, for example, via string
grammars for context-free tree languages, or graph grammars, generalising the
technique to describing graph languages.

To generate all our (simultaneous) squares, so-called triple rules are used
to represent the pre- and postcondition for forward/backward propagation as
graph patterns. In its simplest form, a triple rule is just an arrow in the category
Triples of triple graphs and triple graph arrows:

Definition 11 (Triple Rule). A triple rule r : L → R is an arrow in the
category Triples (cf. Definition 8).

Example. So what is the difference between the simultaneous, monotonic squares
depicted in Fig. 19 and the set of triple rules depicted in Fig. 21? Compare, for
example, the square to the left of Fig. 19 and the top-left triple rule in Fig. 21
(both marked as ➊). The important difference is that the triple rule consists of
variables, and not concrete nodes and edges.

For our example, this means that the triple rule contains a hospital and a
patient, not a particular hospital and patient as in the square. Typically, the
context (the black elements) specified in a rule is also minimal in the sense that
unnecessary elements are not included. In this case, we do not care about the

BX with TGGs 53

doctor assigned to the patient and it is thus omitted in the rule. The other triple
rules in Fig. 21 handle different situations: The triple rule to the top-right ➋
handles the case where Axotal is chosen as a brand for the dosage of Aspirin.
Analogously, the triple rule to the left ➌ handles Ibuprofen/Ibumed while the
triple rule to the right ➍ handles Ibuprofen/Ibupren. Finally, the last triple rule
at the bottom ➎ is a so called axiom as it has no precondition and can always
be applied to create a new hospital and dosage plan.

:Hospital

:Patient

:Aspirin

pharm.

patients

:HToD

prescribed

:DosagePlan

:Dosage

dosages

:Ascriptin

brand

:AToD

:Hospital

:Patient

:Aspirin

pharm.

patients

:HToD

prescribed

:DosagePlan

:Dosage

dosages

:Axotal

brand

:AToD

:Hospital

:Patient

:Ibuprofen

pharm.

patients

:HToD

prescribed

:DosagePlan

:Dosage

dosages

:Ibumed

brand

:IToD

:Hospital

:Patient

:Aspirin

pharm.

patients

:HToD

prescribed

:DosagePlan

:Dosage

dosages

:Ibupren

brand

:IToD

:Hospital :HToD :DosagePlan

5

1 2

3 4

Fig. 21. Finite set of triple rules representing infinitely many squares

Infinitely many concrete squares can be produced from a triple rule by assign-
ing all its variables to actual nodes and edges in a given host graph. In this way,
the graph “pattern” representing the precondition (all black elements) of the
rule can be “matched” in a larger context (given by the host graph), where the
postcondition (all black and green elements) can be subsequently enforced by
applying the rule. In our case, correct pattern matching is precisely defined by
the requirements for structure preservation in the category Triples, i.e., exactly
the conditions that make a triple of graph arrows a triple arrow. The process of
rule application is formalised using the pushout construction in Triples.

54 A. Anjorin

Definition 12 (Triple Rule Application). A triple rule r : L → R can be
applied to a host triple graph G at a match arrow m : L → G to yield a resulting
triple graph G′ by constructing a pushout {G′,m′ : R → G′, r′ : G → G′} of
{m, r}. This is referred to as a direct derivation, denoted by G

r@m=⇒ G′ or just
G

r⇒ G′. A derivation G
∗⇒ G′ is either a direct derivation G

r⇒ G′ or a
sequence G

r1=⇒ G1
r2=⇒ . . .

rn=⇒ G′ with n > 1.

We defined pushouts (think generalised union over a common subobject) in
Definition 6, and we know that the category Triples has pushouts due to Fact 5.
This tells us, however, nothing about how pushouts are actually constructed in
Triples. The interested reader is referred to, e.g., Ehrig et al. [15] for a detailed
construction for pushouts in Sets, Graphs, and TGraphs, and, e.g., Schürr [31]
for pushouts in Triples. For this chapter, the intuition that pushouts in Triples
are basically constructed in a component-wise manner in Graphs suffices.

Example. To support this intuition, a concrete example is depicted in Fig. 22
showing how triple rule r : L → R (➊ in Fig. 21) is applied to a host graph G
to yield the resulting G′. Not that the nodes in the match of L in G via m are
depicted with a grey background. The host graph G contains a concrete hospital
h, with a doctor d, and another patient q. Rule application is accomplished by
constructing the pushout {G′, r′,m′} of {r,m} in Triples, i.e., in some sense

:Hospital

:Patient

:Aspirin

pharm.

patients

:HToD :DosagePlan

:Ascriptin

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.doctors

patients

patients

h2dp:HToD dp:DosagePlan

as:Ascriptin

q:Patient

patients

ax:Axotal

:Hospital

:Patient

:Aspirin

pharm.

patients

:HToD

prescribed

:DosagePlan

:Dosage

dosages

:Ascriptin

brand

:AToD

h:Hospital

d:Doctor

p:Patient

a:Aspirin

pharm.doctors

patients

patients

h2dp:HToD dp:DosagePlan

as:Ascriptin

q:Patient

patients

ax:Axotal

prescribed dg:Dosage

dosages

brand

p2dg:AToD

RL

G G′

r

m m′

r′

PO

Fig. 22. Monotonic triple rule application via pushouts in Triples

BX with TGGs 55

merging R and G together by gluing them along all elements that originated
from L. Note that the final, concrete square derived by this rule application
can be reconstructed from r′ : G → G′ by placing G = GS ← GC → GT

over G′ = G′
S ← G′

C → G′
T and extending r′ to vertical deltas of the form

GS ← GS → G′
S and GT ← GT → G′

T . In essence, the precondition pattern L
was matched in the concrete context provided by the host graph G, and then
extended according to the postcondition pattern R.

After formalising rule application, we now introduce the concept of a triple
graph grammar, consisting of a type triple graph and a finite set of triple rules:

Definition 13 (Triple Graph Grammar). A triple graph grammar TGG =
(TG,R) consists of a type triple graph TG = TGS ← TGC → TGT , and a finite
set R of triple rules.
Let L(TG) denote the set of all triple graphs of type TG.
The triple graph language generated by the triple graph grammar TGG is given
by L(TGG) := {G ∈ L(TG) | ∃ ∅ ∗=⇒ G}, where ∅ is the empty triple graph
(the initial object in Triples), and the derivation ∅ ∗=⇒ G consists only of direct
derivations with triple rules from the triple graph grammar TGG.
The projection to the source domain is given by:
ProjS(L(TGG)) := {GS ∈ L(TGS) | ∃GS ← GC → GT ∈ L(TGG)}.
Projections to the correspondence and target domains are defined analogously.

3.5 Automatically Derive “Boring” Ignore Rules

A final pragmatic, and useful convention, is to automatically and systematically
derive a set of “boring” ignore rules that in a sense complete a specified TGG.6

As a final definition in this section, let us formally distinguish triple rules used
to generate squares that are only meant to be interpreted as either fpg or bpg
squares but not as both, i.e., non-simultaneous, monotonic squares such as those
depicted in Fig. 20:

Definition 14 (Ignore Rule). A source (target) ignore rule is a triple rule
r : L → R, r = (rS , rC , rT), with rT = idLT

(rS = idLS
). Source and target

ignore rules are collectively referred to as ignore rules.

Example. This idea is best explained using our concrete example. Consider the
TGG consisting of 5 triple rules depicted in Fig. 21, and the underlying triple
space formed by taking the type triple graph depicted in Fig. 12, i.e., taking
all typed source and target graphs for the source and target model spaces,
respectively, together with all possible deltas consisting of the atomic opera-
tions: (i) creating a node or an edge, and (ii) deleting a node or an edge.

Although our TGG already describes quite a number of fpg and bpg squares
with these 5 rules, there are still many possible inputs to fpg/bpg for which it
says nothing. What should happen if a new doctor is added to a hospital? Or
6 This is analogous to notions of a “conservative copy” in the context of model migra-

tion, e.g., as exemplified in the Epsilon Flock tool [30].

56 A. Anjorin

a new patient? If TGG-based tools would always complain about such “unde-
fined” adjacent sides of squares, specifying synchronisers with TGGs would be a
tedious, big-bang effort as it is often not feasible to restrict changes to only what
is currently supported. In MDE application scenarios, it turns out to be better
to simply ignore as many undefined changes as possible. This allows users to
deploy and iteratively test TGG-based synchronisers in realistic application sce-
narios even after just specifying a handful of triple rules. To do this formally, the
following convention has proven to be a suitable heuristic for deriving “missing”
rules automatically:

For every type t that is not created in any rule, an ignore rule rt is derived
that creates t with minimal context, i.e., with no context for nodes, and
source and target nodes as context for edges.

Applying this to our example results in the additional ignore rules depicted in
Figs. 23 and 24, basically formalising in each domain that these “private” changes
do not have an effect on the other domain.

:Hospital

:Doctor

doctors

:Doctor

:Patient

:Hospital

:Patient

patients

:Doctor

:Patient

patients

Fig. 23. Automatically derived source ignore rules

:Ascriptin

:Axotal

:Ibupren

:Ibumed

:DosagePlan

:Ascriptin

pharm.

:DosagePlan

:Axotal

pharm.

:DosagePlan

:Ibupren

pharm.

:DosagePlan

:Ibumed

pharm.

Fig. 24. Automatically derived target ignore rules

Do not be irritated by the compact concrete syntax used in the diagrams: in
sum, 13 complete ignore rules are depicted. The top-left triple rule in Fig. 23,
for instance, is a source ignore rule: (rS , rC , rT) : ∅ ← ∅ → ∅ −→ RS ← ∅ → ∅,
where ∅ is the empty graph and RS is a typed source graph consisting of only
one node (:Doctor).

BX with TGGs 57

3.6 Advanced TGG Language Features

To be able to work productively with TGGs, a series of further language features
are necessary in practice. As discussing all these features in detail would go far
beyond the scope of this chapter, the following gives only a brief overview of the
most important advanced features with pointers for further reading.

In an MDE context, the source and target model spaces are typically speci-
fied declaratively by providing a “metamodel”, which is basically a type graph
according to Definition 4 together with a set of domain constraints used to
further restrict the set of valid models in the domain. In our example, such con-
straints could ensure, e.g., that there are no two pharmaceuticals in the source
domain, and, analogously, no two brands in the target domain with the same
name, or that every patient is assigned at least one (or perhaps exactly one)
doctor, etc. With details depending on the specific modelling framework, some
kind of class diagram dialect is often used with which (simple) constraints can be
specified via language features such as multiplicities and composite/aggregation
annotations for associations. For more complex domain constraints an addi-
tional language is sometimes used, for example, the Object Constraint Lan-
guage (OCL). Constraints are handled in the graph transformation framework
via graph constraints, which can be converted to suitable application conditions
for graph transformation rules. The interested reader is referred to Radke et
al. [29] for existing results on converting metamodels (class diagrams and an
“essential” subset of OCL) to equivalent type graphs with graph constraints.
Handling domain constraints in a TGG-context is discussed, e.g., by Anjorin
et al. [6]. Enriching a TGG with application conditions is a useful and pow-
erful means of controlling and shaping the generated language, and does not
have to be directly connected to avoiding constraint violation. Most TGG-tools,
however, do not yet support arbitrary application conditions [21,26].

Although attribute handling was avoided in this chapter for presentation
purposes, models typically have multiple attribute values in practice, which have
to be accounted for in deltas, constraints, and rules. For our example, this would
include the unique chemical formula of pharmaceuticals, names and address
information of patients and doctors, the cost of brands, etc. The interested reader
is referred to Ehrig et al. [15] for details on attributed typed graphs, and to
Anjorin et al. [7] for a discussion of how attribute conditions can be handled in
a TGG context.

Consider the five triple rules in Fig. 21. Without any support for modularity
and reuse, large parts of these rules would have to be duplicated for every phar-
maceutical. While this might not appear problematic for such a small example,
in practice TGGs consisting of hundreds of rules would become challenging to
maintain and refactor. There exist various approaches to enable compact and
modular rule specification: on the level of class diagrams, inheritance can be used
to introduce common and often abstract super-types. For our example, it would
be natural to introduce an abstract type Pharmaceutical and make Aspirin and
Ibuprofen “inherit” from this type. In many cases, (parts of) triple rules can be
unified by demanding abstract instead of concrete types as context. The inter-

58 A. Anjorin

ested reader is referred to Ehrig et al. [15] for a formalisation and integration
of inheritance into the graph transformation framework. On the level of graph
transformation rules, there exist approaches such as that suggested by Anjorin
et al. [5] that allow triple rules to be split into and combined flexibly from “rule
fragments”. For our example, commonalities of the triple rules in Fig. 21 could
be extracted into a single “abstract” triple rule, which other rules could “refine”
and extend as required. Another approach is to unify rules by adding variability
annotations [34]. For our example, the triple rules with labels 1 and 2 in Fig. 21
could be thus unified in a single triple rule by annotating the differences (the
node :Ascriptin vs. :Axotal) with labels indicating the variants in which these
elements are to be present.

Although all TGG rules are depicted visually in this chapter, for an improved
editing and refactoring experience, crucial when extracting “super-rules” and
generally during maintenance, the TGG tool eMoflon7 now supports a simple
textual concrete syntax together with a read-only visualisation.

In general, addressing realistic application scenarios with TGGs, such as an
application to transforming satellite procedures by Hermann et al. [19], often
requires some pre- and post-processing with normal graph transformations, e.g.,
to establish auxiliary derived elements in models in order to simplify (or enable)
the required TGG specification.

4 Formal Properties

In an ongoing attempt to formally capture what “good” behaviour means in the
context of model synchronisation, a set of laws has been proposed for the sd-lens
framework [13]. These laws can not only be used to check whether a manually
programmed pair of fpg and bpg functions is in this sense “well-behaved”, but
also to guide and drive the automatic derivation of an sd-lens from some compact
specification such as a TGG. Indeed, the interpretation of triple (ignore) rules
as (non-) simultaneous “square generators”, as suggested in this chapter, can be
justified with the basic laws of the sd-lens framework.

The typical lens laws are round trip properties, formulated over fpg and bpg
without any assumptions about their internal structures. This treatment of fpg
and bpg as black-box functions is natural for approaches based on functional pro-
gramming, from which the original ideas for lenses originate [16]. The well-known
lens laws have been transferred to the sd-lens framework by Diskin et al. [13]
resulting in (i) stability, formalising the expectation that idle deltas be mapped
to idle deltas,8 (ii) undoability, demanding well-behavedness of a vertical compo-
sition of squares, and (iii) invertibility, demanding well-behavedness of a horizon-
tal composition of squares. Based on Definition 6, it is possible to formulate these
laws in a TGG setting. Hermann et al. do exactly this [18], providing proofs for
stability and undoability by formalising exactly how fpg and bpg functions are
derived from a TGG that must comply with certain additional restrictions.
7 www.emoflon.org.
8 Hence the suggestion to view source ignore rules as generating only fpg squares.

www.emoflon.org

BX with TGGs 59

The goal of this chapter in general, and of this section in particular, is humble
but clear: to provide an introduction to and overview of the TGG approach
that is particularly accessible to bxers more accustomed to the various lens
frameworks and their style of round trip “functional” laws. This means that
instead of covering the familiar round trip laws in a TGG context (as done by
Hermann et al. [18], to which the interested reader is referred), we shall instead
cover basic TGG laws rephrased to fit better in the sd-lens framework.

The TGG laws correctness and completeness, proposed by Schürr and
Klar [32], are in constrast more related to the consistency relation induced by a
specified TGG, namely that a triple is consistent if and only if it is a member
of the language of triples generated by the TGG. Taken from Diskin et al. [13],
a notion of consistency can be defined as follows on the level of the sd-lens
framework:

Definition 15 (Consistency in the SD-Lens and TGG Framework).

Given a triple space M R←→ N = (ΔMN ,M ∪N, src, trg) over model spaces M
and N , let C ⊆ ΔMN be a chosen set of consistent corrs in ΔMN .
A triple m ← δMN → n is consistent if δMN is consistent, i.e., δMN ∈ C.
A pair of source and target models (m,n) ∈ M × N is said to be consistent with
respect to C, denoted by m ∼C n, iff ∃ δMN ∈ C. m ← δMN → n.
A source model m ∈ M is consistent with respect to C iff ∃n ∈ N. m ∼C n.

In the TGG framework, the set C of consistent corrs is given by:
{GC | ∃GS ← GC → GT ∈ L(TGG)}, i.e., the language generated by a given
triple graph grammar TGG over a triple space of typed triple graphs.

As the TGG laws say very little about how exactly fpg and bpg should be
derived from a TGG, the intuition of squares suggested in this chapter is, there-
fore, only “best practice” and should be regarded as just one of many possible
ways of specifying, reading, and working with TGG rules. It is, however, based
on and compatible with the work of Diskin et al. [13] and Hermann et al. [17],
and is hopefully thus accessible to bxers familiar with lenses and in particular
with the sd-lens framework. It also reflects, to the best of our knowledge, the
basic strategy employed in current TGG tools [21,26].

A problem with the square generation intuition, however, is that fpg and
bpg do not necessarily end up being functions, let alone total functions, in prac-
tice. The TGG framework is naturally non-deterministic, not only during rule
application which is typical for the graph transformation approach, but also con-
cerning the choice of applicable rules in each step of a derivation. The standard
TGG laws do not help here (or viewed positively, do not impose any restric-
tions). There are many ways of handling non-determinism (if it is unwanted),
including incorporating uncertainty or variability directly in the involved model
spaces [12], or using update policies at design time (e.g., via preferences) or at
runtime (e.g., via user interaction) to choose between multiple matches of mul-
tiple applicable rules whenever necessary.

Yet another way of handling non-determinism is via monadic lenses, as dis-
cussed in the introductory chapter of this book. For the rest of this chapter, we

60 A. Anjorin

shall assume that an appropriate update policy is used to restrain TGG-based
fpg and bpg operations to be (not necessarily total) functions.

4.1 Problem Setting in an MDE Context

The TGG framework has been influenced and shaped by application scenarios
mostly in an MDE context. This concerns how model and triple spaces are spec-
ified in practice, expectations concerning deltas that can result at runtime, and
the corresponding synchronisation (co-)domains of fpg and bpg. It is impor-
tant to understand the “MDE-based” problem setting, as the TGG laws and
corresponding current challenges only make sense in this context.

The first point is that TGG-based synchronisers are typically partial and can
fail in practice, even on “meaningful” input from the synchronisation domain as
defined in Definition 9. One reason is scalability, i.e., certain heuristics or strate-
gies are used instead of a complete search, substantially increasing efficiency but
also imposing extra (sometimes very technical) restrictions on the class of TGGs
and on the supported synchronisation domain. Another reason is a mismatch
between how model spaces are specified in an MDE context, namely declara-
tively using a metamodel (essentially a type graph for this chapter), and how
a TGG is specified over these model spaces, namely in a generative, rule-based
manner. Finally, in a typical MDE context there are often no restrictions on how
a model can be edited, i.e., most constraints can be violated. The expectation
here is that a synchroniser should still behave elegantly for invalid input, e.g.,
detecting and rejecting such invalid input with a helpful message and a precise
characterisation of the exact problem.

This situation9 is depicted schematically in Fig. 25 (to be explained in more
detail in a moment): the source model space M = (M,ΔM , idM , invM) is spec-
ified by providing TGS . The set of all source models is taken as M = L(TGS),
while ΔM is formed by generating all possible deltas on all these models from
the basic set of four10 possible updates: (i) adding a single edge, (ii) removing a
single edge, (iii) adding a single node, and (iv) removing a single, isolated node.

If fpg is partial, i.e., can fail for certain adjacent square sides as input,
it is of course useful to precisely characterise the subset of � on which fpg is
total. This is stated by the completeness law, which essentially demands that
a TGG-based fpg be defined for every pair of consistent triple and consistent
source delta in �. But what exactly is a consistent source delta? Intuitively, a
consistent source delta forms an input pair of adjacent sides of an fpg square
that might not necessarily be generated by the TGG in question, but can at
least be “approximated” with a generated fpg square. This is the case for any
source delta between two consistent source models, as formalised by the following
definition.

9 The diagram is more complex for constraints; the interested reader is referred to
Anjorin et al. [4].

10 Most practical implementations also support attribute manipulation; some even sup-
port “moving” a subgraph in a containing graph.

BX with TGGs 61

Definition 16 (Consistent Source Delta). Given a triple space M R←→
N = (ΔMN ,M ∪ N, src, trg) over source and target model spaces M and N ,
respectively, and a set of consistent corrs C ⊆ ΔMN , a source delta δM : m → m′

is consistent iff both m and m′ are consistent. Consistent target deltas are defined
analogously.

L(TGS)

L(TGC) L(TGT)

ProjS(L(TGG))

∅

GS

ĜS

G′
SGS

G∗
S

δ∗−
S

δ∗+
S

δ⊆

G#
S

Fig. 25. TGG-based “consistency surface” and (in)consistent input deltas

As can be seen to the left of Fig. 25,11 the set of consistent source models is
given by ProjS(L(TGG)) and can be depicted as a consistency “surface” (the
curved green surface in the diagram). With ∅ representing the empty graph,
consistent source models GS , G′

S , and GS are all reachable via (projections to
the source component of) derivations of rules of the TGG (depicted as double
lined arrows =⇒ in the diagram). These derivations imply that deltas δ : ∅ →
GS , δ′ : ∅ → G′

S , δ : ∅ → GS exist and can be described by a series of fpg
squares (rule applications). Propagating such source deltas (and their inverses)
is more or less straight-forward, as the TGG rules specify directly what is to be
done. In an MDE context, however, where source models are typically updated
using editors that are completely independent of some underlying TGG-based
synchroniser, the expectation is to be able to forward propagate any consistent
source delta.

In Fig. 25, δ∗ : GS → G′
S , depicted as a span GS

δ∗−
S← G∗

S

δ∗+
S→ G′

S in the
diagram, represents a source delta that is consistent, but does not necessarily
correspond to any TGG derivation. This is indicated by placing G∗

S in L(TGS)
but not on the “consistency surface” ProjS(L(TGG)). It is arguably unreason-
able to expect a TGG-based fpg to be defined for such consistent deltas – how
11 This visualisation, as an attempt to impart to a geometric intuition for consistency,

was suggested by James McKinna at the 2016 summer school on bidirectional trans-
formations: https://www.cs.ox.ac.uk/projects/tlcbx/ssbx/.

https://www.cs.ox.ac.uk/projects/tlcbx/ssbx/

62 A. Anjorin

should we know what to do? But such a flexible “completeness” property is unar-
guably useful in (MDE) practice and is formalised by the following definition.

Definition 17 (Transformation Completeness). A symmetric delta lens
λ : M R⇐⇒ N over a triple space M R←→ N is forward transformation com-
plete with respect to a set of consistent corrs C ⊆ ΔMN , if its forward propagation
function fpg : �−→ � is total on the set:

{(c, δM) ∈ � | c, δM are consistent}

Backward transformation completeness is defined analogously.
An sd-lens is transformation complete if it is both forward and backward trans-
formation complete.

A source delta that is not consistent is represented in Fig. 25 as δ̂ : GS → ĜS ,
depicted as a span GS ← G#

S → ĜS in the diagram (note that ĜS is not on
the consistency surface). According to Definition 17, a transformation complete
sd-lens does not have to be able to propagate such a delta and can reject it (fail).

The attentive reader might already have realised that achieving transforma-
tion completeness is actually quite simple: As the starting GS and ending model
G′

S for every consistent delta δ∗ must themselves be consistent, we know that
there exist deltas δ : ∅ → GS and δ′ : ∅ → G′

S , which can thus both be described
directly with derivations ∅ ∗⇒ GS and ∅ ∗⇒ G′

S of the TGG. This means that we
could simply “rollback” δ and propagate δ′, i.e., take inv(δ) ; δ′ as an approxima-
tion of δ∗. As this effectively ignores δ∗, i.e., produces the same approximation
independent of how GS is exactly changed to G′

S , it should not be surprising
that this “brute force” strategy does not produce good results. As depicted in
Fig. 25, most TGG tools attempt to determine an intermediate (if possible max-
imal) consistent source model GS with deltas δ−

S : GS → GS , δ+S : GS → G′
S ,

providing the approximation inv(δ−
S) ; δ+S for δ∗. The intuition is that avoiding

the unnecessary rollback of δ : ∅ → GS yields a“better” approximation of δ∗.
While TGG tools do have substantial freedom concerning how best to approx-

imate deltas such as δ∗, the following correctness law demands basic compati-
bility with the underlying TGG, i.e., that the resulting triple be consistent:

Definition 18 (Transformation Correctness). A symmetric delta lens λ :
M R⇐⇒ N over a triple space M R←→ N is forward transformation correct
with respect to a set of consistent corrs C ⊆ ΔMN , if the following holds for its
forward propagation function fpg : �−→ �:

fpg is defined for (c, δM) ∈ �=⇒ fpg(c, δM) = (c′, δN) ∈ � and c′ is consistent

Backward transformation correctness is defined analogously.
An sd-lens is transformation correct if it is both forward and backward transfor-
mation correct.

BX with TGGs 63

Example. A consistent delta δ∗
T : GT → G′

T and inconsistent delta δ̂T : GT →
ĜT are depicted for our running example as spans in Fig. 26, following the same
schema as in Fig. 25. Note, however, that Fig. 26 shows target deltas as it easier
to construct an instructive example in the target model space.

The initial consistent target graph GT consists of a dosage plan dp, with a
single dosage dg of as (Ascriptin). The delta δ̂ removes the Dosage dg from the
dosage plan dp leading to a target model Ĝ that is inconsistent, i.e., cannot be
generated with the rules of our TGG as the target component of a triple graph.
The delta δ∗

T changes the assigned brand of the dosage dg from Ascriptin to
Axotal. Although the resulting target graph G′

T is consistent (consistent graphs
are on the consistency surface and additionally have a bold border and a drop
shadow), deleting and creating a single edge connecting a dosage to a brand
cannot be directly described as a derivation of our TGG. As the rules always
create (and thus delete) a dosage together with both edges connecting it to the
dosage plan and a current brand, the best approximation in terms of the TGG
is via the consistent intermediate target graph GT . The delta δ̂T is inconsistent
as deleting the edge connecting a dosage to its dosage plan (resulting in the final
target graph ĜT) cannot be described with a derivation of the TGG.

∅

GS

G′
SGS

G∗
S

∅
dp:DosagePlan

as:Ascriptin ax:Axotal

GT

dp:DosagePlan

as:Ascriptin ax:Axotal

dg:Dosage

GT

dp:DosagePlan

as:Ascriptin ax:Axotal

dg:Dosage

GT

dp:DosagePlan

as:Ascriptin ax:Axotal

dg:Dosage

G′
T

dp:DosagePlan

as:Ascriptin ib:Ibumed

dg:Dosage

ĜT

dp:DosagePlan

as:Ascriptin ib:Ibumed

dg:Dosage

ĜT

Fig. 26. Consistent and inconsistent target deltas for our running example

64 A. Anjorin

4.2 A Correct and Complete TGG Synchronisation Algorithm

This subsection formalises (at least to a certain extent) the suggestion in this
chapter of viewing a TGG not only as a generative specification of consistency,
but also as a direct specification of fpg and bpg in terms of generated “squares”.

A TGG synchronisation algorithm is a concrete strategy of how to produce an
sd-lens, i.e., propagation functions (fpg, bpg), from a given TGG. The algorithm
described in the following, which we shall refer to as a precedence-driven TGG
synchronisation algorithm, is based on the work of Lauder et al. [24], developed
further by Anjorin [1], and is not exactly what is proposed by Hermann et
al. [18]. The main difference is that it favours scalability, i.e., propagation time
depends on the size of the “delta” and not of the models, over a slightly better
handling of information loss. Conceptually, however, both algorithms are similar
and share similar strengths and weaknesses. The precedence-driven algorithm of
Lauder et al. also fits with the “square generation” intuition for TGGs proposed
in this chapter, and is implemented as described in the TGG tool eMoflon (with
additional details for handling advanced language features).

Let us start by repeating the valid input and expected output for correct
and complete TGG-based forward propagation, where consistency is defined
with respect to a given triple graph grammar TGG = (TG,R), i.e., C =
ProjC(L(TGG)):

Input: A pair (G, δ∗
S) ∈ � such that:

1. The triple graph G = GS ← GC → GT is consistent
2. The source delta δ∗

S = GS←G∗
S→G′

S is consistent

Output: A pair (G′, δ′
T) ∈ � computed as fpg(G, δ∗

S) such that:

1. The target delta is of the form δ′
T = GT ← GT → G′

T

2. The triple graph G′ = G′
S ← G′

C → G′
T is consistent

As depicted schematically in Fig. 27, fpg is realised via two auxiliary functions
rollback and translate, i.e., fpg(G, δ∗

S) = translate(rollback(G, δ∗
S)). Note

that correspondence models are depicted as bidirectional arrows, all derived
arrows are denoted with a dashed stroke, and that the diagram is compatible
with both Figs. 25 and 26. The contract for rollback is as follows:

Input: A pair (G, δ∗
S) ∈ � such that:

1. The triple graph G = GS ← GC → GT is consistent

2. The source delta δ∗
S = GS

δ∗−
S← G∗

S

δ∗+
S→ G′

S is consistent

Output: Triple arrow δ− : G → G, and source delta GS
δ−
S← GS

δ+
S→ G′

S such
that:

1. The triple graph G = GS ← GC → GT is consistent
2. δ− : G → G can be derived via a derivation G

∗⇒ G with rules of the TGG

BX with TGGs 65

3. The source delta GS
δ−
S← GS

δ+
S→ G′

S is a reduction of GS
δ∗−
S← G∗

S

δ∗+
S→ G′

S ,
i.e., ∃ δ⊆

S : GS → G∗
S , such that δ⊆

S ; δ∗−
S = δ−

S , δ⊆
S ; δ∗+

S = δ+S and δ⊆
S is

monomorphic.
4. Finally, δ+S : GS → G′

S can be extended to a triple graph arrow δ+ : G → G′

using the rules of the TGG, i.e., ∃G
∗⇒ G′

The function rollback essentially determines a consistent triple graph G by
deleting elements in the input triple graph G. In addition, Point (4) of its contract
guarantees that G is also a suitable starting point for the next and final step
translate with the following contract:

Input: A triple graph G and a graph arrow δ+S : GS → G′
S such that:

1. The triple graph G = GS ← GC → GT is consistent
2. The graph arrow δ+S : GS → G′

S can be extended to a triple graph arrow
δ+ = (δ+S , δ+C , δ+T) : G → G′ using the rules of the TGG, i.e., ∃G

∗⇒ G′

Output: A triple graph G′ and a graph arrow δ+T : GT → G′
T such that:

1. The triple graph G′ = G′
S ← G′

C → G′
T is consistent

GS GT

G∗
S

G′
S

GS GT

G′
T

c ∈ C

c′ ∈ C

c− ∈ C

�→rollback

�→translate

δ−
S

δ+S δ+T

δ−
Tδ∗−

S

δ∗+
S

δ⊆

Fig. 27. Decomposition of fpg into two steps: rollback and translate

Instead of discussing concrete implementations of rollback and translate
in detail (the interested reader is referred to Anjorin [1]), let us conclude this
section by discussing (efficient) implementation strategies in general. First of all
implementations do exist, i.e., fpg is complete, as it is (i) always possible to
rollback to G = ∅, and (ii) it must be possible to extend consistent G′

S to a
consistent triple graph G′ from scratch (definition of consistency).

Rolling back to ∅ for every input is obviously neither the best nor most effi-
cient implementation possible. Hermann et al. [18] suggest to instead determine

66 A. Anjorin

a maximally consistent subgraph by “re-marking” as many elements as possible
from scratch, using the rules of the TGG. While this is certainly qualitatively
better than rolling back to ∅, it scales directly with model size and not with
delta size, i.e., a very small change for large models will take as long (or even
longer) to propagate as reconstructing all models from scratch. By using auxiliary
structures to track dependencies as a so-called precedence relation on elements,
Lauder et al. [24] suggest an efficient algorithm that is not as information pre-
serving as that of Hermann et al. [18] but is certainly better than a complete
rollback to ∅. Further simplifying the efficient implementation of rollback is
ongoing work.

Implementing translate is a simple matter of applying TGG rules and back-
tracking until G′ is attained as required (a complete search with backtrack-
ing to correct wrong local decisions). Such a näıve implementation does not
scale in practice, however, unless an underlying model repository database or
similar engine is used for efficient backtracking. Existing strategies implement
translate by imposing additional restrictions on the structure of the TGG. The
simplest example for such a restriction is demanding that the set of translation
rules of the TGG be confluent, i.e., that applicable rules can be applied in any
order as the result of a forward translation is always the same. Even though this
can be checked statically at design time via a critical pair analysis [15], this is
a rather strong restriction in practice. A suggestion of how to achieve a similar
effect with weaker restrictions has been made by Anjorin et al. [4], and this is
what is currently implemented in eMoflon. A weakness of the precedence-based
approach is, however, that only a rather small class of (negative) application
conditions can be supported in TGG rules [6].

Given implementations of rollback and translate, proving that fpg is cor-
rect is typically straightforward as we have the rollback derivation G

∗⇐ G and
the translation derivation G

∗⇒ G′, guaranteeing that we remain in L(TGG). It
is, however, often challenging to show that “clever” rollback implementations
fulfil Point (4) of its contract in all cases and for all TGG language features,
particularly (negative) application conditions.

4.3 Hippocraticness and Least Change as Current Challenges

Guaranteeing correct and complete TGG-based propagation functions is already
non-trivial, especially if these functions are expected to be efficient enough for
practical applications. Once one has a working synchroniser, however, the ques-
tion of the “quality” of synchronisation results arises. Correctness alone does not
guarantee that a synchroniser always produces the “best possible” result.

Concerning consistency restoration, there appears to be some (tenuous) con-
sensus on the fact that changing “as little as possible” to restore consistency is
typically what is wanted (see Cheney et al. [10] for a related discussion). The
following property suggested by Meertens [27] and Stevens [33] is for a special
but relatively clear case: a synchroniser is hippocratic if it can guarantee that it
does nothing if doing nothing is correct.

BX with TGGs 67

Definition 19 (Hippocraticness). Given a symmetric delta lens λ : M R⇐⇒
N over a triple space M R←→ N , and a set of consistent corrs C ⊆ ΔMN . The
forward propagation function fpg : �−→ � of the lens is hippocratic if (depicted
diagrammatically to the left of Fig. 28):

∀(m c←→ n, δM : m → m′) ∈ �. ∃m′ c′∈C←→ n =⇒ fpg(c, δM) = (c′, idN) ∈ �

m n

m′

�→fpg

c

c′ ∈ C

idN

m n

m′ n′

�→fpg

c

c′ ∈ C

δNδM
δM

nc ∈ C

δN

n

Fig. 28. Hippocraticness and least change

In an attempt to generalise hippocraticness, one could demand a partial order
≤ on all possible consistent results, representing a preference of which change
is considered the “least surprising” (see Cheney et al. [10] for a detailed discus-
sion). In practice, this partial order could perhaps count the number of (possibly
weighted) changes, or favour certain types of changes (attribute manipulation)
over others (creation and deletion), etc. Change propagation then becomes an
optimisation problem, with the requirement of determining the least surprising
consistent result:

Definition 20 (Least Change). Given a symmetric delta lens λ : M R⇐⇒ N
over a triple space M R←→ N , a set of consistent corrs C ⊆ ΔMN , and a
partial order ≤ ⊆ �×�. The forward propagation function fpg : �−→ � of the
lens adheres to the principle of least change if (depicted diagrammatically to the
right of Fig. 28):

∀(m c←→ n, δM : m → m′) ∈ �. fpg(c, δM) = (m′ c′∈C←→ n′, δN : n → n′) =⇒
�(m′ c∈C←→ n, δN : n → n). (c, δN) ≤ (c′, δN)

Hippocraticness and least change are current challenges for the TGG app-
roach. Promising work in this direction include the idea of deriving additional
“repair” rules from a TGG, with which consistency can sometimes be restored
before applying rollback [20]. A further idea is to delay the deletion of elements
by keeping them in a pool and attempting to reuse these elements marked for

68 A. Anjorin

deletion in translate. Finally, Leblebici [25] are working on combining optimi-
sation techniques with TGGs using, e.g., an integer linear programming solver
to minimise an objective function and thus choose from multiple consistent solu-
tions. Such an objective function can be defined by a TGG designer to capture
a problem-specific notion of least change/surprise.

With an understanding of least change related limitations of TGG-based
approaches, the practical best practice guidelines proposed by Anjorin et al. [2]
can be followed to improve synchronisation behaviour.

Example. To demonstrate how hippocraticness and least change can be vio-
lated by rolling back and translating, two diagrams following the same schema
as Fig. 27 are depicted in Figs. 29 and 30. In the first diagram (Fig. 29), the
target (input) delta to be backward propagated is a change of the brand of a
dosage from Ascriptin to Axotal. The interesting point here is that the source
(output) component of the input and output triple are identical, i.e., the result

h:Hospital

p:Patient

a:Aspirin

h:Hospital

p:Patient

a:Aspirin

h:Hospital

p:Patient

a:Aspirin

h2dp:HToDdp:DosagePlan

as:Ascriptin ax:Axotal

dg:Dosage p2dg:AToD

dp:DosagePlan

as:Ascriptin ax:Axotal

dg:Dosage

dp:DosagePlan

as:Ascriptin ax:Axotal

dg:Dosage

dp:DosagePlan

as:Ascriptin ax:Axotal

h2dp:HToD

h2dp:HToD

p2dg':AToD

�→rollback

�→translate

Fig. 29. Violation of hippocraticness

BX with TGGs 69

after changing the brand is already consistent and a hippocratic synchroniser
need not do anything at all. Guaranteeing this with a TGG-based synchroniser,
however, typically requires a costly consistency check that will in general scale
with model and not delta size. Often faster (but not hippocratic) would be to
rollback to a state that can be derived via a derivation with TGG rules, and
then translate from this point as depicted in Fig. 29. Note how the edge in
the source (output) model is unnecessarily deleted and re-created. While this
might appear unremarkable for our simple example, such unnecessary changes
can have a grievous ripple effect for more complex and realistic examples.

Even if hippocraticness is (artificially) enforced by always applying a (costly)
consistency check before running fpg, the root of the problem will remain and
manifest itself as undesirable synchronisation behaviour (effectively violating
a suitable notion of least change). The problem is not solely due to a “bad”
approximation of a consistent delta as was the case in Fig. 29. One could consider
restricting the domain of fpg to only deltas that correspond directly to deriva-
tions with rules of the underlying TGG, but the example depicted in Fig. 30
shows that this does not solve the problem completely.

h:Hospital

p:Patient

a:Aspirin i:Ibuprofen

h:Hospital

p:Patient

a:Aspirin i:Ibuprofen

h:Hospital

p:Patient

a:Aspirin i:Ibuprofen

h2dp:HToD dp:DosagePlan

as:Ascriptin ib:Ibupren

dg:Dosagep2dg:AToD

dp:DosagePlan

as:Ascriptin ib:Ibupren

dg':Dosage

dp:DosagePlan

as:Ascriptin ib:Ibupren

h2dp:HToD

h2dp:HToD

i2dg:IToD

�→rollback

�→translate

h:Hospital

p:Patient

a:Aspirin i:Ibuprofen

dg:Dosage

Fig. 30. Violation of least change

70 A. Anjorin

In this case, the source (input) delta to be propagated can be perfectly
described via derivations with the rules of the TGG. Nonetheless, rollback
is still too conservative as it enforces a consistent intermediate triple graph,
deleting the dosage dg, just to have it recreated in translate. The “clever” fix
of just deleting and creating the edge assigning dg its new brand (note the light
grey elements) is beyond the TGG synchronisation algorithm presented in this
chapter.

5 Conclusion and Future Perspectives

This chapter complements the work of Hermann, Diskin, and others [13,18],
sharing the common goal of bringing the TGG and (sd-)lens frameworks closer
together by revisiting the former as an implementation of the latter.

Although substantial work has been accomplished, e.g., by introducing a
symmetric and delta-based version of the lens framework which fits better to
TGGs, further steps are still required including incorporating non-determinism
(see Diskin et al. [12] for first steps), and other consistency restoration functions
besides forward and backward propagation. Besides the least change challenge
highlighted in Sect. 4.3, there exist numerous suggestions of ways in which the
TGG framework could be improved in the near future (see Anjorin et al. [3] for
a detailed overview).

References

1. Anjorin, A.: Synchronization of models on different abstraction levels using triple
graph grammars. Ph.D. thesis, Technische Universität Darmstadt (2014)

2. Anjorin, A., Leblebici, E., Kluge, R., Schürr, A., Stevens, P.: A systematic approach
and guidelines to developing a triple graph grammar. In: Cunha, A., Kindler, E.
(eds.) BX 2015, CEUR Workshop Proceedings, vol. 1396, pp. 81–95. CEUR-WS.org
(2015)

3. Anjorin, A., Leblebici, E., Schürr, A.: 20 years of triple graph grammars: a roadmap
for future research. ECEASST 73, 1–20 (2016)

4. Anjorin, A., Leblebici, E., Schürr, A., Taentzer, G.: A static analysis of non-
confluent triple graph grammars for efficient model transformation. In: Giese, H.,
König, B. (eds.) ICGT 2014. LNCS, vol. 8571, pp. 130–145. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-09108-2 9

5. Anjorin, A., Saller, K., Lochau, M., Schürr, A.: Modularizing triple graph gram-
mars using rule refinement. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS,
vol. 8411, pp. 340–354. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-54804-8 24

6. Anjorin, A., Schürr, A., Taentzer, G.: Construction of integrity preserving triple
graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2012. LNCS, vol. 7562, pp. 356–370. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33654-6 24

7. Anjorin, A., Varró, G., Schürr, A.: Complex attribute manipulation in TGGs with
constraint-based programming techniques. In: Hermann, F., Voigtländer, J. (eds.)
BX 2012, ECEASST, vol. 49, pp. 1–16. EASST (2012)

https://doi.org/10.1007/978-3-319-09108-2_9
https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/978-3-642-33654-6_24
https://doi.org/10.1007/978-3-642-33654-6_24

BX with TGGs 71

8. Awodey, S.: Category Theory. Oxford Logic Guides. Ebsco Publishing, Ipswich
(2006)

9. Biermann, E., Ermel, C., Taentzer, G.: Precise semantics of EMF model transfor-
mations by graph transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 53–67. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87875-9 4

10. Cheney, J., Gibbons, J., McKinna, J., Stevens, P.: Towards a principle of least
surprise for bidirectional transformations. In: Cunha, A., Kindler, E. (eds.) BX
2015, CEUR Workshop Proceedings, vol. 1396, pp. 66–80. CEUR-WS.org (2015)

11. Czarnecki, K., Foster, J.N., Hu, Z., Lämmel, R., Schürr, A., Terwilliger, J.F.: Bidi-
rectional transformations: a cross-discipline perspective. In: Paige, R.F. (ed.) ICMT
2009. LNCS, vol. 5563, pp. 260–283. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02408-5 19

12. Diskin, Z., Eramo, R., Pierantonio, A., Czarnecki, K.: Incorporating uncertainty
into bidirectional model transformations and their delta-lens formalization. In:
Anjorin, A., Gibbons, J. (eds.) BX 2016, CEUR Workshop Proceedings, vol. 1571,
pp. 15–31. CEUR-WS.org (2016)

13. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: the symmetric case. In:
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 304–
318. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 22

14. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving
bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007.
LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71289-3 7

15. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31188-2

16. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: a linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007)

17. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y.: Cor-
rectness of model synchronization based on triple graph grammars. In: Whittle,
J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 668–682.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8 49

18. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,
S., Engel, T.: Model synchronization based on triple graph grammars: correctness,
completeness and invertibility. SoSym 14(1), 241–269 (2015)

19. Hermann, F., et al.: Triple graph grammars in the large for translating satellite
procedures. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS, vol. 8568, pp.
122–137. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08789-4 9

20. Hildebrandt, S.: On the performance and conformance of triple graph grammar
implementations. Ph.D. thesis, University of Potsdam (2014)

21. Hildebrandt, S., Lambers, L., Giese, H., Rieke, J., Greenyer, J., Schäfer, W.,
Lauder, M., Anjorin, A., Schürr, A.: A survey of triple graph grammar tools. In:
Stevens, P., Terwilliger, J.F. (eds.) BX 2013, ECEASST, vol. 57. EASST (2013)

22. Johnson, M., Rosebrugh, R.D.: Unifying set-based, delta-based and edit-based
lenses. In: Anjorin, A., Gibbons, J. (eds.) BX 2016, CEUR Workshop Proceed-
ings, vol. 1571, pp. 1–13. CEUR-WS.org (2016)

https://doi.org/10.1007/978-3-540-87875-9_4
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/978-3-540-71289-3_7
https://doi.org/10.1007/978-3-540-71289-3_7
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-642-24485-8_49
https://doi.org/10.1007/978-3-319-08789-4_9

72 A. Anjorin

23. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Model
transformation by-example: a survey of the first wave. In: Düsterhöft, A., Klettke,
M., Schewe, K.-D. (eds.) Conceptual Modelling and Its Theoretical Foundations.
LNCS, vol. 7260, pp. 197–215. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28279-9 15

24. Lauder, M., Anjorin, A., Varró, G., Schürr, A.: Efficient model synchronization
with precedence triple graph grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J.,
Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 401–415. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-33654-6 27

25. Leblebici, E.: Towards a graph grammar-based approach to inter-model consistency
checks with traceability support. In: Anjorin, A., Gibbons, J. (eds.) BX 2016,
CEUR Workshop Proceedings, vol. 1571, pp. 35–39. CEUR-WS.org (2016)

26. Leblebici, E., Anjorin, A., Schürr, A., Hildebrandt, S., Rieke, J., Greenyer, J.: A
comparison of incremental triple graph grammar tools. In: Hermann, F., Sauer, S.
(eds.) GT-VMT 2014, ECEASST, vol. 67. EASST (2014)

27. Meertens, L.: Designing constraint maintainers for user interaction. Technical
report (1998)

28. Pratt, T.W.: Pair grammars, graph languages and string-to-graph translations. J.
Comput. Syst. Sci. 5(6), 560–595 (1971)

29. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Translating essential
OCL invariants to nested graph constraints focusing on set operations. In: Parisi-
Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 155–170.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21145-9 10

30. Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.C., Poulding, S.: Epsilon flock:
a model migration language. SoSyM 13(2), 735–755 (2014)

31. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59071-4 45

32. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel,
R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-8 28

33. Stevens, P.: Towards an algebraic theory of bidirectional transformations. In: Ehrig,
H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214,
pp. 1–17. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87405-
8 1

34. Strüber, D., Rubin, J., Chechik, M., Taentzer, G.: A variability-based approach
to reusable and efficient model transformations. In: Egyed, A., Schaefer, I. (eds.)
FASE 2015. LNCS, vol. 9033, pp. 283–298. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46675-9 19

35. Weber, J.H., Diemert, S., Price, M.: Using graph transformations for formalizing
prescriptions and monitoring adherence. In: Parisi-Presicce, F., Westfechtel, B.
(eds.) ICGT 2015. LNCS, vol. 9151, pp. 205–220. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21145-9 13

https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-33654-6_27
https://doi.org/10.1007/978-3-319-21145-9_10
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-540-87405-8_28
https://doi.org/10.1007/978-3-540-87405-8_1
https://doi.org/10.1007/978-3-540-87405-8_1
https://doi.org/10.1007/978-3-662-46675-9_19
https://doi.org/10.1007/978-3-662-46675-9_19
https://doi.org/10.1007/978-3-319-21145-9_13
https://doi.org/10.1007/978-3-319-21145-9_13

Modular Edit Lenses

Martin Hofmann†
LMU Munich, Munich, Germany

Abstract. This article is a reading guide to the theory of symmetric
edit lenses by Pierce, Wagner, and the author, which form a general
framework for the modular construction of bidirectional synchronizers
and which generalize the popular lenses framework by Foster and Pierce
to a truly symmetric, bidirectional setting.

The article describes both the state-based and the edit-based version,
as well as an extended example instantiation involving tree-structured
data. The main focus is on edit lenses and the categorical combinators
which allow for their modular construction. The article is based on three
original research papers [9–11,22] and summarises these in a concise form
but does not contain new scientific material.

1 Introduction

This article is based on a series of three lectures given by the author about his
joint work with Benjamin Pierce and David Wagner on the topic of bidirectional
synchronisation based on a symmetric version of lenses [7]. In addition to the
slides that are still available on the school website this article fills in most of the
oral explanations offered. For more detail the reader should consult the papers
[9–11,22] on which the lectures were based. This article does not contain any
original material beyond those.

Bidirectional synchronisation between data given in two different representa-
tions is a ubiquitous task. Typical examples include different file systems, data
on the web or in the cloud, different software models, different data formats.

In each case the first step is to specify the translation or more general corre-
spondence between the two representations to be synchronised. Mutually inverse
back-and-forth translations between the two representations, when available, are
always the best option, but in many cases are not possible because each repre-
sentation may contain additional data that is not reflected in the other repre-
sentation.

In the classical framework of (asymmetric) lenses [7] one considers that one
representation (the “source”) contains more information than the other (the
“view”). Thus, a lens from source set S to view set V comprises two functions

get ∈ S → V
put ∈ V × S → S

c© Springer International Publishing AG, part of Springer Nature 2018
J. Gibbons and P. Stevens (Eds.): Bidirectional Transformations, LNCS 9715, pp. 73–99, 2018.
https://doi.org/10.1007/978-3-319-79108-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79108-1_3&domain=pdf

74 M. Hofmann

subject to the requirements that

get(put(v, s)) = s

put(get(s), s) = s

Thus, get(s) extracts the V -view from s ∈ S and put(v, s) is the result of modi-
fying the V -part of s ∈ S with a new view v ∈ V but leaving as they were the
additional parts of s that are not reflected by the V -view.

Much research on those lenses has been devoted to the comfortable con-
struction of useful lenses. Rather than writing get and put from scratch and
establishing the two equational laws one can now define them from basic build-
ing blocks with combinators [7] and also derive a suitable put from a given get
[21]. The other direction where put must be provided and get is derived and the
laws are checked has also been explored [16] (see also this volume) and recently a
reconciliation between the combinatory approach from [7] and the programming
style with variables implicit in [20,21] has been achieved using category-theoretic
ideas [17].

In the work described here, the asymmetry between source and view implicit
in lenses is removed; a symmetric lens between two sets X and Y is defined as
a stateful back- and forth transformation: it comprises a set C of states, the
complement, and functions

putr ∈ X × C → Y × C

putl ∈ Y × C → X × C

subject to

putr(x, c) = (y, c′)
putl(y, c′) = (x, c′)

(PutRL)

putl(y, c) = (x, c′)
putr(x, c′) = (y, c′)

(PutLR)

In addition, C must contain a distinguished element init ∈ C.
Thus, to synchronise between repositories X and Y , one uses a shared state

with values in C and initialised with init . In order to transport a new value x ∈ X
across the lens one invokes putr(x, c) with c being the current state, initially init ,
which yields a pair (y, c′) comprising the corresponding Y -value y and the new
shared state c′. The shared state may be used to represent components of either
X or Y that are not reflected in the other repository.

The article elaborates this idea as follows. The next section presents the
theory of symmetric lenses as given in [9]. We show how they can be composed
both sequentially and in parallel, how they relate to asymmetric lenses, and
how to design lens combinators for recursive data structures. Section 3 then
describes an extension of the lens framework with edit operations. Rather than
transporting through the lens the complete new state of the repository one only

Modular Edit Lenses 75

transmits the changes that have occurred since the last synchronisation point.
Besides possibly saving bandwidth in a distributed scenario this allows for more
precise translations if instead of merely propagating the changes themselves we
propagate the edit operation that led to them. This allows us, for example,
to distinguish a swap between two entries from erasure followed by insertions of
new entries. The allowed editing operations on some data structure or repository
thus form an edit language and bidirectional synchronisations translate between
them. Again, we describe the category-theoretic properties of these edit lenses,
i.e., the ways in which they can be composed, and also combinators for the
construction of lenses to operate on more complex data structures. It turns out
that the view of such data structures as recursive types does not lend itself to
an extension with edits. Instead, we show how to define meaningful edit lenses
on so-called containers [1] which are closely related to the combinatory species
from [15].

Section 4 describes an application of edit lenses or rather edit languages to
XML processing using the automata-theoretic framework of [4,8]. We define a
useful set of edits for XML trees and demonstrate how these can be typechecked
against document type specifications represented by automata. It is based on
the article [11].

We conclude with some suggestions for further research and projects.

2 Symmetric Lenses

We begin by introducing some notation for the symmetric lenses that have
already been presented in the introduction.

Definition 1 (Symmetric lens). A lens � from X to Y (written � ∈ X ↔ Y)
has three parts: a set of complements C, a distinguished element init ∈ C, and
two functions

putr ∈ X × C → Y × C

putl ∈ Y × C → X × C

satisfying the following laws:

putr(x, c) = (y, c′)
putl(y, c′) = (x, c′)

(PutRL)

putl(y, c) = (x, c′)
putr(x, c′) = (y, c′)

(PutLR)

We use record notation writing �.C for the complement set of �, etc.

Figure 1 taken from [9] illustrates the operation of a symmetric lens in a
concrete example.

An important feature of symmetric lenses is that they can be sequentially
composed as follows.

76 M. Hofmann

Fig. 1. Behavior of a symmetric lens

Definition 2 (Lens composition).

k ∈ X ↔ Y � ∈ Y ↔ Z

k; � ∈ X ↔ Z

C = k.C × �.C
init = (k.init , �.init)
putr(x, (ck, c�)) = let (y, c′

k) = k.putr(x, ck) in
let (z, c′

�) = �.putr(y, c�) in
(z, (c′

k, c′
�))

putl(z, (ck, c�)) = let (y, c′
�) = �.putl(z, c�) in

let (x, c′
k) = k.putl(y, ck) in

(x, (c′
k, c′

�))

Modular Edit Lenses 77

Viewing a symmetric lens as a pair of stateful back-and-forth functions this
composition amounts to ordinary composition of functions.

It is important to note that earlier attempts at formalising symmetric bidi-
rectional synchronisation had difficulties with composition.

Consider Meertens’ constraint maintainers [18] which were later followed up
in the context of model-driven design by Stevens [19], Diskin [5], and Xiong et
al. [23]. A constraint maintainer between two sets X and Y has a consistency
relation R ⊆ X × Y and two consistency maintainers � : X × Y → X and
� : X × Y → Y such that (x � y) R y and x R (x � y) always hold, and such that
x R y implies x � y = x and x � y = y. Now, given such consistency relations
R ⊆ X × Y and R′ ⊆ Y × Z maintained by �, � and �′, �′, then to construct
a maintainer for the composition R;R′, we need to, given x ∈ X and z ∈ Z,
come up with a y ∈ Y that will allow us to use either of the existing maintainer
functions, but there is no canonical way of doing that and indeed Meertens gives
a concrete counterexample.

2.1 Composition and Equivalence

In order to render lens composition associative and also to iron out other unim-
portant detail it is useful to regard lenses up to behavioural equivalence:

Definition 3. Two lenses k, � ∈ X ↔ Y are equivalent, written k ≡ �, when
there is a relation R ⊂ k.S × �.S and:

sk R s�

k.putr(a, sk) = (bk, s′
k)

�.putr(a, s�) = (b�, s
′
�)

bk = b� ∧ s′
k R s′

�

sk R s�

k.putl(b, sk) = (ak, s′
k)

�.putl(b, s�) = (a�, s
′
�)

ak = a� ∧ s′
k R s′

�

�.init R k.init

It is not hard to see that equivalence of lenses is indeed an equivalence relation
and that composition is associative up to ≡. Thus, sets with equivalence classes
of symmetric lenses as morphisms form a category.

There is an alternative characterisation of lens equivalence using observa-
tions: Given a lens � ∈ X ↔ Y , define a put object for � to be a member of X+Y .
Define a function apply taking a lens, an element of that lens’ complement set,
and a list of put objects, by pushing the list’s elements through the lens beginning
with the given element. Now, lenses k, � ∈ X ↔ Y are observationally equivalent
(written k ≈ �) if, for every sequence of put objects P ∈ (X + Y)� we have

apply(k, k.init , P) = apply(�, �.init , P).

One can then show that k ≈ � if and only if k ≡ �.

78 M. Hofmann

2.2 Useful Lenses

We now give a few instance of lenses that keep occurring in examples.
Every bijective function gives rise to a lens:

f ∈ X → Y f bijective
isof ∈ X ↔ Y

C = Unit
init = ()
putr(x, ()) = (f(x), ())
putl(y, ()) = (f−1(y), ())

For each set X we have the terminal lens

x ∈ X

termx ∈ X ↔ Unit

C = X
init = x
putr(x′, c) = ((), x′)
putl((), c) = (c, c)

Being symmetric, lenses can be reversed:

� ∈ X ↔ Y

�op ∈ Y ↔ X

C = �.C
init = �.init
putr(y, c) = �.putl(y, c)
putl(x, c) = �.putr(x, c)

The disconnect lens allows one to hide information from being transmitted and
to store it in the complement.

x ∈ X y ∈ Y

disconnectxy ∈ X ↔ Y

disconnectxy = termx; termop
y

We also notice that asymmetric lenses give rise to symmetric lenses and thus
can be seen as a special case of the latter.

Modular Edit Lenses 79

Besides the sequential composition symmetric lenses can also be juxtaposed
thus endowing the category of lenses with a symmetric monoidal structure.

k ∈ X ↔ Z � ∈ Y ↔ W

k ⊗ � ∈ X × Y ↔ Z × W

C = k.C × �.C
init = (k.init , �.init)
putr((x, y), (ck, c�)) = let (z, c′

k) = k.putr(x, ck) in
let (w, c′

�) = �.putr(y, c�) in
((z, w), (c′

k, c′
�))

putl((z, w), (ck, c�)) = let (x, c′
k) = k.putl(z, ck) in

let (y, c′
�) = �.putl(w, c�) in

((x, y), (c′
k, c′

�))

This means, that we can represent lenses by wiring diagrams where composition
corresponds to chaining and the tensor product to juxtaposition [14].

We do not know whether the category of symmetric lenses admits a trace
in the sense of traced monoidal categories [2]. In the wiring analogy this would
correspond to allowing feedback loops; algebraically, we would need to construct
from a lens � : X × Y ↔ X × Z a trace tr(�) : Y ↔ Z.

Graphically, this corresponds to joining the two X-ends of � with a “feedback”
wire. This trace operation should validate all equations that hold “graphically”
in this sense.

2.3 Sums and Lists

We now turn to the definition of lenses acting on disjoint union sets (“sums”)
and will then use them to synchronise lists and trees using recursion.

k ∈ X ↔ Z � ∈ Y ↔ W

k ⊕ � ∈ X + Y ↔ Z + W

C = k.C × �.C
init = (k.init , �.init)
putr(inl(x), (ck, c�)) = let (z, c′

k) = k.putr(x, ck) in
(inl(z), (c′

k, c�))
putr(inr(y), (ck, c�)) = let (w, c′

�) = �.putr(y, c�) in
(inr(w), (ck, c′

�))
putl(inl(z), (ck, c�)) = let (x, c′

k) = k.putl(z, ck) in
(inl(x), (c′

k, c�))
putl(inr(w), (ck, c�)) = let (y, c′

�) = �.putl(y, c�) in
(inr(y), (ck, c′

�))

80 M. Hofmann

This yields another symmetric monoidal structure. We remark that there are
various ways to define an injection lens, but none of them commutes in the
natural way with ⊕.

inlx ∈ X ↔ X + Y

Next, we come to a list mapping lens that synchronises between two lists in a
point-wise fashion using a given lens to synchronise entries. The complement
maintains a mapping between the respective positions. We use the notation Zω

for the set of infinite lists with entries from Z and for z ∈ Z we write zω for the
list 〈z, z, z, . . . 〉 ∈ Zω.

� ∈ X ↔ Y

map(�) ∈ X� ↔ Y �

C = (�.C)ω

init = (�.init)ω

putr(x, c) = let 〈x1, . . . , xm〉 = x in
let 〈c1, . . .〉 = c in
let (yi, c

′
i) = �.putr(xi, ci) in

(〈y1, . . . , ym〉 , 〈c′
1, . . . , c

′
m, cm+1, . . .〉)

putl (similar)

We can also define a lens akin to fold-right known from functional programming
provided that we have a decreasing weight function. Given � : Unit +X ×Z ↔ Z
can define fold(�) : X∗ ↔ Z such that

Unit + X × X�

Unit + X × Z

X�

Z

iso

idUnit ⊕ (idX ⊗ fold(�)) fold(�)

�

Folding can be generalised to trees and yields the following useful special cases.

– leaves : TreeA ↔ [A]
– concat : [[A]] ↔ [A]
– partition : [A � B] ↔ [A] × [B]
– map : (A ↔ B) → ([A] ↔ [B])

Notice in particular that the mapping lens defined explicitly before can alter-
natively obtained as an instantiation of the fold lens just as one knows from
functional programming.

We remark that the versions of sums and lists described here are called
retentive. This means that when we change sides or extend list length we use
the “retained” values from the last time we were on that side/had that length.

Modular Edit Lenses 81

There is also a forgetful version where upon shortening or changing sides we
throw data away.

We also note that since lenses are self-dual one can easily define hylomor-
phisms: from k : Z ↔ Unit + X × Z and � : Unit + X × W ↔ W obtain
Hy(�, k) : Z ↔ W such that the obvious diagram commutes. One can also
define iterators over more than one list and generalise the whole setup to other
inductive datatypes.

For other non-inductive datatypes, in particular labelled graphs we can use
containers as described in the next subsection.

2.4 Containers

Containers [1] are a general framework for data structures with positions holding
data. They are closely related to combinatorial species [15], see also https://en.
wikipedia.org/wiki/Combinatorial species. Containers subsume inductive types
like lists or trees are also containers, but not all containers are inductive types,
e.g. labelled graphs are not.

Definition 4. A container consists of

– a set I of shapes
– for each shape i ∈ I a set B(i) of positions.

A container (I,B) defines a functor on Sets: FI,B(X) =
∑

i∈I XB(i). An
element of FI,B(X) consists of a shape i and for each position p ∈ B(i) an
element of X.

For lists we take I = N and B(i) = {0, . . . , i−1}. In this case, we have FI,B(X) =∑
n∈N

X{0,...,n−1} which is isomorphic to the set of lists X∗.
In the case of graphs with X-labelled nodes we take for I the set of unlabelled

graphs and for B(i) the nodes of i.
For a function f : X → Y the morphism part FI,B(f) : FI,B(X) → FI,B(Y)

applies f to each entry of a container. It generalises “map” on lists and trees.
Our aim is to generalise FI,B(f) to FI,B(�) with � a lens. If the shape does

not change we can just apply the lens position-wise. In order to deal with shape
changes, say from i to i′, we need some additional structure:

Definition 5. An ordered container is a container (I,B) with the following
additional structure.

– the set of positions I forms a partial ordering (poset) with binary meets on
shapes. Here, i ≤ i′ means that i is a sub-shape of i′, e.g., sub-tree or shorter
list. The meet of, say, two trees is the largest common sub-tree of the two.

– B forms a functor from the poset I to the category of sets: if i ≤ i′ then there
is an injection B(i) → B(i′) written b �→ b | i′.

– If p ∈ B(i) and p′ ∈ B(i′) are equal in B(j), thus, i ≤ j, i′ ≤ j then there
must exist unique q ∈ B(i ∧ i′) such that p and p′ arise from q by applying
injections, i.e. B is a pullback preserving functor from I to the category of
sets.

https://en.wikipedia.org/wiki/Combinatorial_species
https://en.wikipedia.org/wiki/Combinatorial_species

82 M. Hofmann

We are now ready to define a container mapping lens. For (I,B) an ordered
container we obtain the following lens combinator.

� ∈ X ↔ Y

FI,B(�) ∈ FI,B(X) ↔ FI,B(Y)

C =
{t ∈ ∏

i∈I B(i) → �.(C) |
∀i, i′. i ≤ i′ ⊃ ∀b∈B(i). t(i′)(b|i′) = t(i)(b)}

init(i)(b) = �.init
putr((i, f), t) =
let f ′(b) = fst(�.putr(f(b), t(i)(b))) in
let t′(j)(b) =
if ∃b0 ∈ B(i ∧ j). b0|j = b
then snd(�.putr(f(b0|i), t(j)(b)))
else t(j)(b)

in

((i, f ′), t′)
putl (similar)

In [9] we also discuss a restructuring lens that can synchronise between different
container types. See also Sect. 3.

2.5 Spans of Lenses

There is a close relationship between asymmetric and symmetric lenses via spans.
This was noted in [9] and elaborated in detail by Johnson et al., see [12,13] and
also this volume. Indeed, symmetric lenses are equivalent to spans of lenses, i.e.,
two views on a common source in the sense of asymmetric lenses.

Every asymmetric lens, i.e., a classical lens in the sense of Foster et al., gives
rise to a symmetric lens.

� ∈ X
a↔ Y

�sym ∈ X ↔ Y

C = {f ∈ Y → X | ∀y ∈ Y. �.get(f(y)) = y}
init = �.create
putr(x, f) = (�.get(x), fx)
putl(y, f) = let x = f(y) in (x, fx)

Here fx(y) = �.put(y, x). But not all symmetric lenses are of that form, e.g., the
opposite of an asymmetric lens is not an asymmetric lens unless it comes from
a bijection.

However, for any lens � we can find asymmetric lenses k1, k2 such that

(ksym
1)op ; ksym

2 = �

Modular Edit Lenses 83

For the “intermediate type”, i.e., the common source of k1 and k2 we use the
set of consistent triples for �:

S� = {(x, y, c) ∈ X × Y × �.C | �.putr(x, c) = (y, c)}

If � : X ↔ Y then indeed k1 : S� → X and k2 : S� → Y where k1 and k2 are the
obvious projections.

2.6 Summary

Symmetric lenses generalise the asymmetric lenses by Foster et al. to truly bidi-
rectional synchronisation. They can be seen as symmetrised asymmetric lenses
with a shared complement, as stateful back-and-forth transformations, and as
spans of asymmetric lenses. We have also seen that it is useful to understand
symmetric lenses modulo bisimulation which coincides with observational equiv-
alence in a suitable sense. The symmetric lenses with sets as objects form a
category whose structure we have begun to explore. In particular, we identi-
fied two kinds of tensor product one akin to cartesian product and the other
one akin to disjoint union of sets. We also showed how the category of lenses
supports inductive and container-like datatypes and thus bidirectional synchro-
nisation between them.

Further work and possible projects in the area of symmetric lenses include
the integration with programming and implementations, a further exploration
of the possibility of defining lenses by recursion and an investigation of possible
higher-order structure.

3 Edit Lenses

As we have seen, both asymmetric and symmetric lenses transport entire states
across the link. They do not differentiate between small changes and altogether
new setups of either side of a lens. Of course, the complement can be used to
store parts or all of the current state of one or both sides of a lens and so one
can work out differences using a diff-like algorithm. But, as is well-known such
diffing methods invariably have to rely on heuristics and cannot, for example,
distinguish between swaps and deletions followed by insertions of elements in
a data structure. To remedy this, we introduce edit languages which are spe-
cial kinds of monoids representing edits to a data structure. An edit lens then
transports and translates elements of the edit language which are to be applied
at the other end. We shall see that the ordinary symmetric lenses, henceforth
called state-based lenses arise as a special case of edit lenses and that much of the
existing category-theoretic structure carries over to the edit case. The powerful
fold-combinators for inductive data types do, however, not generalise and must
therefore be replaced with a selection of combinators for mapping, restructuring,
and partitioning.

84 M. Hofmann

3.1 Edit Languages

An edit language for a set X is defined as a monoid M together with a partial
monoid action of M on X:

1M · m = m · 1M = m

m1 · (m2 · m3) = (m1 · m2) · m3

1M � x = x

(m1 · m2) � x = m1 � (m2 � x)

The last two equations are understood in the sense of Kleene equality: if one
side is defined so is the other and they are equal. In general, however, a term
m � x may be undefined.

If we have a set X we often use the notation ∂X for an associated edit
language. For example, if X is a set we may consider the following edit language
for the set X� of lists over X. We first define atomic edits E for X∗:

– modify(p,dx) where p ∈ N ,dx ∈ ∂X
– resize(i,j,x) where i, j ∈ N , x ∈ X
– reorder(i,f) where f permutes {0, . . . , i}
We then take ∂(X∗) as the free monoid E∗ of atomic edits. The action of atomic
edits is implicit in the names of the edits, e.g. modify(p,dx) succeeds on l =
[x0, . . . , xn−1] if p < n and if dx � xp succeeds. The result then is

[x0, . . . , xp−1,dx � xp, xp+1, . . . , xn−1]

This action is then extended to lists of edits by sequential application. In general,
1 represents the neutral edit that does nothing and the product m ·m′ represents
the combined edit whose effect is to first apply m′ and then m. Often, edits
are construed as sequences of atomic edits, but this does not have to be so
for sometimes, laws may be imposed between edits, e.g., certain edits might
commute with one another or cancel each other out.

This happens, for example in the “overwrite” monoid which we use in order
to embed state-based into edit based lenses. For each element x ∈ X it has an
edit whose effect is to replace the current state with x. Another example is given
by product monoids which we use as an edit language for cartesian products.
There we take the view that edits to different components of a cartesian product
commute with each other.

Following algebraic tradition we call a pair of a set and an edit language, i.e.,
a monoid acting partially on it, a module. We have already sketched how every
set X can be regarded as a module. Formally, ∂X = X ∪ {1} and x � x′ = x,
etc.

We also explained how lists and cartesian products can be regarded as module
constructions.

Modular Edit Lenses 85

As for sums we adopt the following approach. Primitive edits for the disjoint
union X + Y are

G⊕
X,Y = {switchiL(dx) | i ∈ {L,R},dx ∈ ∂X}

∪ {switchiR(dy) | i ∈ {L,R},dy ∈ ∂Y }
∪ {stayL(dx) | dx ∈ ∂X} ∪ {stayR(dy) | dy ∈ ∂Y }
∪ {fail}

We then define ∂(X ⊕ Y) = (G⊗
X,Y)∗. Thus, an edit operation is a sequence of

primitive edit operations. Again, we omit the obvious definition of the action of
those primitive elements.

We tried to impose reasonable equations on ∂(X ⊕ Y) so as to achieve the
expected isomorphism X ⊕ (Y ⊕Z) � (X ⊕Y)⊕Z, but did not succeed in doing
so.

Now reconsider the aforementioned edit language for lists. We give its prim-
itive edits with slightly more detail.

Glist
X = {mod(p,dx) | p ∈ N

+,dx ∈ ∂X}
∪ {ins(i) | i ∈ N} ∪ {del(i) | i ∈ N}
∪ {reorder(f) | ∀i ∈ N.f(i) permutes {1, . . . , i}}
∪ {fail}

Here, an interesting open question is to what extent such an edit language can be
derived automatically from the recursive definition of lists by X� = 1+X ×X�.
Other interesting points for thought include the question why it is important
to have a partial action rather than a total one and why it is reasonable to
distinguish between a monoid element, i.e., an edit and the function it induces
on the underlying set. The paper on edit lenses [10] contains some ideas on these
questions.

3.2 Stateful Homomorphisms

We now describe how to synchronise two edit languages. As in the state-based
case the translations will be history-dependent and thus require a shared com-
plement set.

Definition 6. Given monoids M and N and a complement set C, a stateful
monoid homomorphism from M to N over C is a function h ∈ M ×C → N ×C
satisfying two laws:

h(1M , c) = (1N , c)

h(m, c) = (n, c′) h(m′, c′) = (n′, c′′)
h(m′ ·M m, c) = (n′ ·N n, c′′)

It is an interesting exercise or question to reformulate this definition as an
instance of a standard homomorphism between a different kind of monoids.

86 M. Hofmann

3.3 Edit Lenses

We now come to the central definition of an edit lens. It operates between two
modules and, in addition to a stateful homomorphisms comprises a consistency
relation which, as we recall, was definable in the state-based setting but does
not seem to be in the present case.

Definition 7. An edit lens � : 〈M,X〉 ↔ 〈N,Y 〉 has:

– a complement set C of private data
– consistency relation K ∈ X × C × Y
– stateful monoid homomorphisms

� : M × C → N × C

� : N × C → M × C

that preserve consistency

in the sense that if (x, c, y) ∈ K and �(dx, c) = (dy, c′) then (dx x, c′, dy y) ∈ K
and symmetrically for �. Again, we use dot notation to refer to the components
of an edit lens.

As before, we may consider lenses up to equivalence thus obtaining a category.

Definition 8 (Lens equivalence). Two lenses k, � : X ↔ Y are equivalent
(written k ≡ �) if, there exists a relation S ⊆ X × k.C × �.C × Y such that

– (initX , k.init , �.init , initY) ∈ S;
– if (x, c, d, y) ∈ S and dx x is defined, then if (dy1, c

′) = k.�(dx, c)
and (dy2, d

′) = �.�(dx, d), then dy1 = dy2 (qua monoid elements) and
(dx x, c′, d′, dy1 y) ∈ S; and

– analogously for �.

Again, there is an equivalent definition with dialogues whose precise definition
we omit. We now give the definitions of product and sum lenses.

k ∈ X ↔ Z � ∈ Y ↔ W

k ⊗ � ∈ X ⊗ Y ↔ Z ⊗ W

C = k.C × �.C
init = (k.init , �.init)
K = { ((x, z), (ck, c�), (y, w)) |

(x, ck, y) ∈ k.K
∧ (z, c�, w) ∈ �.K }

�((dx,dy), (ck, c�)) = ((dx′,dy′), (c′
k, c′

�))
where (dx′, c′

k) = k.�(dx, ck)
and (dy′, c′

�) = �.�(dy, cell)
�((dx,dy), (ck, c�)) : analogous

Modular Edit Lenses 87

k ∈ X ↔ Y � ∈ Z ↔ W

k ⊕ � ∈ X ⊕ Z ↔ Y ⊕ W

C = k.C + �.C
init = inl(k.init)

K = {(inl(x), inl(c), inl(y)) | (x, c, y) ∈ k.K}
∪ {(inr(z), inr(c), inr(w)) | (z, c, w) ∈ �.K}

ck = k.init
c� = �.init
�g(switchLL(dx), inl(c)) = let (dy, c′) = k.�(dx, ck)

in (switchLL(dy), inl(c′))
�g(switchRL(dx), inr(c)) = let (dy, c′) = k.�(dx, ck)

in (switchRL(dy), inl(c′))
�g(switchLR(dz), inl(c)) = let (dw, c′) = �.�(dz, c�)

in (switchLR(dw), inr(c′))
�g(switchRR(dz), inr(c)) = let (dw, c′) = �.�(dz, c�)

in (switchRR(dw), inr(c′))
�g(stayL(dx), inl(c)) = let (dy, c′) = k.�(dx, c)

in (stayL(dy), inl(c′))
�g(stayR(dz), inr(c)) = let (dw, c′) = �.�(dz, c)

in (stayR(dw), inr(c′))
�g(e, c) = (fail, c) in all other cases

�g is analogous

As already mentioned a list mapping edit lens can, as far as we know, be con-
strued from a more general fold-pattern so we give it here as a primitive combi-
nator.

� ∈ X ↔ Y

�∗ ∈ X∗ ↔ Y ∗

C = �.C∗

init = ε
K = {(x, c, y) | |x| = |c| = |y| ∧

∀1≤p≤|x|. (xp, cp, yp) ∈ �.K}
�g(mod(p,dx), c) = let (dy, c′

p) = �.�(dx, cp) in
(mod(p,dy), c[p �→ c′

p]))
when p ≤ n

�g(mod(p,dx), c) = (fail, c) when p > n
�g(fail, c) = (fail, c)
�g(dx, c) = (dx,dx c) in all other cases
� similar

88 M. Hofmann

As a concrete application we repeat in Fig. 2 a running example from [10] which
illustrates the lenses we have seen so far.

3.4 The Partition Lens

We seek a lens of the form

partition ∈ (X ⊕ Y)∗ ↔ X∗ ⊗ Y ∗

. . .

Once we have it, we can compose many important lenses on lists from it: e.g., we
can use mapping to go from Z∗ to (X +Y)∗ and then on using partition and we
can further process X∗×Y ∗ by working on both parts separately using the tensor
lens after which we can go back to a single list type W ∗ using the opposite of
partitioning. Figure 3 (taken from [10]) contains the code for the partition lens.
From a bird’s eye perspective we recognise the complement C = {L,R}∗ which
tells where the positions of the LHS belong. The consistent triples can thus be
visualised as in

inl(Schumann)
inl(Beethoven)

inr(Kant)
inr(Frege)
inl(Dvorak)

Schumann
Beethoven
Dvorak

Kant
Frege

L L R R L

The example in Fig. 4 (where L,R are written inl, inr) gives an idea how
edits are propagated. We refer to loc.cit. for details.

3.5 Containers

As in the state-based case we now show how to synchronise between container
types using edit lenses. For technical reasons we need a slightly different formula-
tion of containers, the difference being on the one hand that shapes and positions
must be editable, i.e., modules, and on the other hand that positions are given
as a single set rather than a family of sets which facilitates the definition of
rearrangements.

Definition 9. An editable container, henceforth “container”, is given by the
following data:

– A module I of shapes additionally endowed with a partial order,
– A fixed set P of positions
– For each shape i a subset live(i) ⊆ P .

Modular Edit Lenses 89

Fig. 2. Synchronising composers

90 M. Hofmann

Fig. 3. Partition lens, the code view.

We notice that we can recover the traditional formulation by B(i) = {p | p ∈
live(i)} and as before, a container type T = 〈I, P, live〉 defines a type operator
by T (X) =

∑
i∈I live(i).

Let T = 〈I, P, live〉 be a container type. An edit di ∈ ∂I is an insertion if
di i ≥ i whenever defined. It is a deletion if di i ≤ i whenever defined. It is a
rearrangement if |live(di i)| = |live(i)| (same cardinality) whenever defined. We
only employ edits from these three categories as ingredients of container edits;
any other edits in the module will remain unused. This division of container
edits into “pure” insertions, deletions, and rearrangements facilitates the later
definition of lenses operating on such edits.

Definition 10. We define the monoid of edits for a container type 〈I, P, live〉
as the free monoid generated by

– Modifications: mod(p, dx) where p ∈ P and dx ∈ ∂X,
– Insertions: ins(di) with di an insertion,
– Deletions: del(di) with di a deletion,
– Rearrangements: rearr(di, f) with di a rearrangement and f : live(i) �

live(di i).
– Fail: fail

with the action given as follows.

Modular Edit Lenses 91

Fig. 4. Propagating edits across the partition lens

fail (i, f) is always undefined
mod(p, dx) (i, f) = (i, f [p �→ dx f(p)]) when p ∈ live(i)
ins(di) (i, f) = (di i, f ′)

where f ′(p) = if p ∈ live(i) then f(p) else initX

del(di) (i, f) = (di i, f�live(di i))
rearr(di, f) (i, g) = (di i, g′)

where g′(p) = g(f(i)(p))

92 M. Hofmann

We remark that it would be interesting to consider further edits and also equa-
tions between these primitive edits. A container mapping lens which synchronises
between two container types of the same kind but with different entry types can
now be defined as follows.

� ∈ X ↔ Y T = 〈I, P, live〉 a container type
T (�) ∈ T (X) ↔ T (Y)

C = T (�.C)

init = (initI , λp. �.init)

�g(mod(p,dx), (i, f)) = (mod(p,dy), (i, f ′))
when p ∈ live(i) and where
f ′ = f [p �→c′], (dy, c′) = �.�(dx, f(p))

�g(mod(p,dx), (i, f)) = (fail, (i, f)) if p �∈ live(i)
�g(ins(di), (i, g)) = (ins(di),

(di i, g[p �→�.init]))
when di i is defined

�g(del(di), (i, g)) = (del(di), (di i, g�live(di i)))
when di i is defined

�g(rearr(di, h), (i, g)) = (rearr(di, h),
(di i, λp.g(h(i)(p))))
when di i is defined

�g(dz, c) = (fail, c) in all other cases

�g(−,−) = analogous

K = {((i, f), (i, g), (i, f ′)) | i ∈ I
∧ (f(p), g(p), f ′(p)) ∈ �.K}

We also define a container restructuring lens between different container types
T = 〈I, P, live〉 and T ′ =

〈
I ′, P ′, live′〉. As input it requires an edit lens � : I ↔ I ′

between the respective shapes and for each consistent triple (i, c, i′) ∈ �.K a
bijection f(i,c,i′) between live(i) and live(i′).

Modular Edit Lenses 93

T = 〈I, P, live〉 a container type
T ′ =

〈
I ′, P ′, live′〉 a container type

� ∈ I ↔ I ′

[T, T ′](�) ∈ T (X) ↔ T ′(X)

C = �.K

init = (initI , �.init , initI′)

K = {((i, f), (i, c, i′), (i′, f ′))
| (i, c, i′) ∈ �.K ∧ ∀p∈live′(i′).f(fi,c,i′(p)) = f ′(p)}

�g(mod(p,dx), (i, c, i′)) = (mod(f−1
i,c,i′(p),dx), (i, c, i′)

when p ∈ live(i)
�g(ins(di), (i, c, i′)) = (rearr(1, fi)ins(di′),

(di i, c′,di′ i′))
�g(del(di), (i, c, i′)) = (rearr(1, fd)del(di′),

(di i, c′,di′ i′))
�g(rearr(di, f), (i, c, i′)) = (rearr(di′, fr),

(di i, c′,di′ i′))

in the last three clauses: (di′, c′) = �.�(di, c).
Three families of bijections fi, fd, fr must be chosen in such a way that

the container edits in which they appear are well-formed (this is possible since
di′ is an insertion, deletion, or rearrangement as appropriate) and such that the
following three constraints are satisfied: in each case i, i′, etc., refer to the current
values from above and p ∈ live′(di′ i′) is an arbitrary position.

fi(di′ i′)(p) = f−1
i,c,i′(fdi i,c′,di′ i′(p))

when fdi i,c′,di′ i′(p) ∈ live(i)
fd(di′ i′)(p) = f−1

i,c,i′(fdi i,c′,di′ i′(p))
fr(di′ i′)(p) = f−1

i,c,i′(f(i)(fdi i,c′,di′ i′(p)))

As an example of container restructuring Fig. 5 demonstrates a lens for in-order
flattening of a tree. The underlying lens � on shapes is trivial and merely ensures
equal number of nodes. In addition it specifies some policy where to add and
remove tree nodes. We assume that this happens by filling levels from the left.
The bijections fi,c,i′ define a bijective correspondence between nodes of synchro-
nised shapes. In the example, we choose the in-order correspondence indicated
by the dotted lines. After inserting two fresh nodes we are temporarily in the
inconsistent state in the top right of Fig. 5. After applying the corresponding
fi-bijection we get into the consistent state depicted in the bottom right.

3.6 Typed Edit Language

We have experimented with typed edit languages which should (tentatively!)
comprise

94 M. Hofmann

Fig. 5. Inserting two fresh nodes at the end of the list, propagation and restoration of
consistency.

– a set T of “types”
– for each t ∈ T a set X(t) with distinguished element initX(t) ∈ X(t)
– for any two types t, t′ a set of edits ∂X(t, t′) with composition and identities,

i.e. a category!
– an action of ∂X on X: if e ∈ ∂X(t, t′) and x ∈ X(t) then e.x ∈ X(t′). I.e.

X(−) becomes a set-valued functor (presheaf).

This would allow one to distinguish lists by their lengths and thus to avoid border
cases with head and tail of the empty list. It might also provide a solution to the
problem that disjoint union for edit lenses is not associative by distinguishing
the two components of a sum with types. There is also a relationship with the
modelling of edits as categories in, for example, Johnson’s work [12,13], this
volume. There, however, the states, i.e., editable objects themselves, form the
object of the category and not the types. As a result, an edit can only be applied
to a single object (its domain in the category-theoretic sense). We prefer the
viewpoint that an edit is an operation that as such can be applied to different
objects. In the case of modules these objects are all elements of the underlying
set, in the typed case these are the objects of the domain type of the edit.

Further exploration of the idea of typed edit languages is left as an open
problem.

3.7 State-Based to Edit-Based and Back

In this section we explain how to relate state-based lenses with edit based ones.
Let X be a set. The free monoid X∗ acts on X by

(xn . . . x1)x = xn

For x ∈ X define module Xx as Xx = (X,x,X∗). Let � : X ↔ Y be a state-
based symmetric lens and �.putr(x, �.missing) = (y, �.missing) be a consistent

Modular Edit Lenses 95

triple for �. It is now an easy exercise to define an edit based lens between Xy

and Yy.
Conversely, if X is a module let a differ for X be a binary operation dif ∈

X × X → ∂X satisfying dif (x, x′)x = x′ and dif (x, x) = 1. Thus, a differ
finds, for given states x, x′, an edit operation dx such that dx x = x′ and dx
is “reasonable” at least in the sense that if x = x′ then the produced edit is
minimal, namely 1.

It is instructive to ponder possible differs for the module X∗, say for trivial X.
Now, given an edit-based lens � : X ↔ Y and differs for X and Y we obtain

a state-based lens by

k : X ↔ Y

C = �.K
init = (initX , �.init , initY)
putr(x′, (x, c, y)) = (dx x, c′,dy y)

where
dx = dif (x, x′) and (dy, c′) = �.�(dx, c)

4 Information Trees

Before concluding this section outlines an approach for edit lens primitives for
trees and (later on) graphs with unordered children as in XML or web applica-
tions. Various options beyond hand-crafting from the definitions could be con-
tainers modulo reordering of children positions. These, in fact, are the aforemen-
tioned combinatorial species which in this sense strictly generalise the containers.

Here, instead, we define unordered trees from scratch and then use tree
automata to describe well-formed subsets. Using weakest preconditions we are
then able to characterise those edit operations which preserve well-formedness
and in this way obtain natural instance of typed edit languages.

Defining lenses on top of these edit languages is left for future work here.

4.1 Information Trees

An information tree is a finite tree with unordered children whose edges are
labelled with words over a fixed finite alphabet Σ. Using linear notation with
set braces {||} and arrows �→ we have the following example

{|name �→ {|John �→ {||}|}, email �→ {|john@example.com �→ {||}|}
or in abbreviated form: same in abbreviated form:

{|name �→ John, email �→ john@example.com|}

96 M. Hofmann

We consider the following primitive edits.

e ::= insert(t) |
hoist(m,n) |
delete(m) |
rename(m,n) |
at(n, e)

where m,n are names, and t is a tree. Here, insert(t) inserts t at the root
(assuming that there are no name clashes); hoist(m,n) removes the n-children
from the m-labelled sub-trees of the root and adds (“hoists”) them to the root;
at(n, e) applies e to the n-labelled children of the root and thus, allows the
application of edits at arbitrary depths.

4.2 Sheaves Automata

We will specify tree types (document types) by a special kind of automata,
namely the sheaves automata from [4,8].

Intuitively, a sheaves automaton has a set of states Q and for each q ∈ Q
a sheaves formula which partitions the allowed sub-trees into disjoint classes
(recursively using states) and specifies an arithmetic constraint between the
numbers of sub-trees falling into each class.

For example, we could have two states “person” and “address”. A “person”
has one “address” labelled address and many “persons” labelled friend. An
“address” has sub-trees labelled Street, Town, etc. some of them optional.

Another example of a tree type definable with a sheaves automaton is a type
FS of file systems:

FS ::= (.∗ → F | D)∗

F ::= f → .∗

D ::= d → FS

Special naming conventions, file names starting with dot or ending with bin,
etc., can also be accommodated. Further examples include tree-structured rep-
resentation of program text and tree representation of game states (SGF).

It is known [4] that inclusion and nonemptiness of sheaves automata is decid-
able and that boolean operations are computable. Furthermore, sheaves sheaves
automata have been presented as a type system [8] with subtyping where the
algorithms for inclusion etc are used in order to do automatic type checking for
functional programs (in a restricted syntax) producing trees.

Our result [11] asserts that for sheaves automaton A and tree edit e one can
effectively compute a sheaves automaton e.A such that

t ∈ L(e.A) ⇐⇒ e.t fails ∨ e.t ∈ L(A)

Writing e : A → B to mean that ∀t ∈ L(A). e.t defined ⇒ e.t ∈ L(B), we have

e : A → B ⇐⇒ L(A) ⊆ L(e.B)

Modular Edit Lenses 97

where the latter condition is decidable by the known results (as usual L(−)
stands for the set of accepted trees).

To see the equivalence we reason as follows: Suppose e : A → B and t ∈ L(A).
If e.t is undefined then e.t ∈ L(e.B) by definition of e.B. So, assume e.t defined.
By assumption e.t ∈ L(B) and, again by definition of e.B, we have t ∈ L(e.B).

For the converse, suppose L(A) ⊆ L(e.B) and t ∈ L(A) and e.t defined.
Then, t ∈ L(e.B) and, since e.t defined, e.t ∈ L(B).

The construction of e.B proceeds along the following lines.

– For every edit e define (by induction on e) a sheaves automaton De such that
L(De) = {t | e.t undefined}.

– For every edit e define (by induction on e) a sheaves automaton e	B such that
whenever e.t is defined then t ∈ L(e 	 B) ⇐⇒ e.t ∈ L(B) (by anticipating
the action of e). If e.t is undefined then t may or may not be in e 	 B.

– Then put e.B = De ∨ e 	 B with ∨ denoting union construction for sheaves
automata.

We remark that the union requires a product construction leading to a quadratic
increase of the number of states and hence to exponential blowup upon nesting.
It is plausible that this could be remedied by moving to a non-deterministic
version of the sheaves automata.

For a concrete example, we consider the construction of e.B when e =
insert(t′): recall that this edit inserts t′ at the root assuming the top-level labels
of t′ are not present. Thus, De checks that one of the top-level labels of t′ is
present (cardinality ≥ 1). To construct e 	 B we then add a new initial state s′

0.
We then label s′

0 just like s0 (initial state of B but “as if t′ is present”). E.g. if
t′ has an a label and s has an expression matching a then we replace the count
variable x by x + 1. This also show the need for actual arithmetic constraints.

As usual, we define edits as lists of primitive edits and extend the notation
e : A → B to edits. We notice that by iterating the calculation of weakest
preconditions this latter judgement is also decidable.

4.3 Edit Languages for Information Trees

If A is a sheaves automaton we define an edit language A′ with underlying set
L(A) and ∂A′ = {e | e : A → A}. We can automatically check whether e ∈ ∂A′

for a given edit e. This lends itself naturally to a typed generalisation where types
are sheaves automata or a finite subset thereof and ∂(A,B) = {e | e : A → B}.

5 Conclusion and Next Steps

We have shown the first steps towards editing and synchronising unordered trees
defined by tree automata. Our approach integrates smoothly with existing edit
lenses framework and combinators. In this setting the typed edit lenses consid-
ered earlier occur naturally and can be seen as synthesis with sd/delta lenses by
Diskin et al. [6]. which replace edit languages by categories. There are several

98 M. Hofmann

open ends that could lead to small research projects or even PhD topics. In
particular, these are

– to further investigate categorical structure of lenses and edit lenses;
– to explore equations and optimisation, e.g., “deforestation”;
– to further develop lenses based on information trees;
– to study connections with logic, e.g. whether specifications can be transported

across a lens;
– to make connections to recent work about weak consistency models, e.g. [3]

where consistency is not always restored in full but up to certain levels in
order to save bandwidth.

References

1. Abbott, M., Altenkirch, T., Ghani, N.: Containers: constructing strictly positive
types. Theor. Comput. Sci. 342(1), 3–27 (2005)

2. Verity, D., Joyal, A., Street, R.: Traced monoidal cate-
gories. Math. Proc. Camb. Philos. Soc. 3, 447–468 (1996).
https://en.wikipedia.org/wiki/Traced monoidal category

3. Balegas, V., Li, C., Najafzadeh, M., Porto, D., Clement, A., Duarte, S., Ferreira,
C., Gehrke, J., Leitão, J., Preguiça, N.M., Rodrigues, R., Shapiro, M., Vafeiadis,
V.: Geo-replication: fast if possible, consistent if necessary. IEEE Data Eng. Bull.
39(1), 81–92 (2016)

4. Dal Zilio, S., Lugiez, D.: XML schema, tree logic and sheaves automata. In:
Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 246–263. Springer, Hei-
delberg (2003). https://doi.org/10.1007/3-540-44881-0 18

5. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: Czarnecki,
K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol.
5301, pp. 21–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
87875-9 2

6. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Orejas, F.: From
state- to delta-based bidirectional model transformations: the symmetric case.
Technical report GSDLAB-TR 2011–05-03. University of Waterloo, May 2011

7. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: a linguistic approach to the view update
problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007). Extended abstract
in Principles of Programming Languages (POPL), 2005

8. Foster, J.N., Pierce, B.C., Schmitt, A.: A logic your typechecker can count on:
unordered tree types in practice. In: PLAN-X 2007, Programming Language Tech-
nologies for XML, an ACM SIGPLANWorkshop Colocated with POPL 2007, Nice,
France, 20 January 2007, pp. 80–90 (2007)

9. Hofmann, M., Pierce, B.C., Wagner, D.: Symmetric lenses. In: ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), Austin,
Texas, January 2011. Full version to appear in the Journal of the ACM

10. Hofmann, M., Pierce, B.C., Wagner, D.: Edit lenses. In: Field, J., Hicks, M. (eds.)
Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, 22–28
January 2012, pp. 495–508. ACM (2012)

https://en.wikipedia.org/wiki/Traced_monoidal_category
https://doi.org/10.1007/3-540-44881-0_18
https://doi.org/10.1007/978-3-540-87875-9_2
https://doi.org/10.1007/978-3-540-87875-9_2

Modular Edit Lenses 99

11. Hofmann, M., Pierce, B.C., Wagner, D.: Edit languages for information trees. ECE-
ASST 57 (2013). https://doi.org/10.14279/tuj.eceasst.57.872

12. Johnson, M., Rosebrugh, R., Wood, R.: Lenses, fibrations, and universal transla-
tions. Math. Struct. Comput. Sci. 22, 25–42 (2012)

13. Johnson, M., Rosebrugh, R.D., Wood, R.: Algebras and update strategies. J. Univ.
Comput. Sci. 16, 729–748 (2010)

14. Joyal, A., Street, R.: The geometry of tensor calculus, I. Adv. Math. 88(1), 55–112
(1991)

15. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42, 1–82
(1981). https://en.wikipedia.org/wiki/Combinatorial species

16. Ko, H.-S., Zan, T., Hu, Z.: BiGUL: a formally verified core language for putback-
based bidirectional programming. In: Erwig, M., Rompf, T. (eds.) Proceedings of
the 2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manip-
ulation, PEPM 2016, St. Petersburg, FL, USA, 20–22 January 2016, pp. 61–72.
ACM (2016)

17. Matsuda, K., Wang, M.: Applicative bidirectional programming with lenses. In:
Fisher, K., Reppy, J.H. (eds.) Proceedings of the 20th ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2015, Vancouver, BC,
Canada, 1–3 September 2015, pp. 62–74. ACM (2015)

18. Meertens, L.: Designing constraint maintainers for user interaction (1998).
Manuscript

19. Stevens, P.: Bidirectional model transformations in QVT: semantic issues and open
questions. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-75209-7 1

20. Voigtländer, J.: Bidirectionalization for free! (pearl). In: Shao, Z., Pierce, B.C.
(eds.) Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2009, Savannah, GA, USA, 21–23 January
2009, pp. 165–176. ACM (2009)

21. Voigtländer, J., Hu, Z., Matsuda, K., Wang, M.: Combining syntactic and semantic
bidirectionalization. In: Hudak, P., Weirich, S. (eds.) ICFP, pp. 181–192. ACM
(2010)

22. Wagner, D.: Symmetric edit lenses: a new foundation for bidirectional languages.
Ph.D. thesis. University of Pennsylvania (2014)

23. Xiong, Y., Song, H., Hu, Z., Takeichi, M.: Supporting parallel updates with bidi-
rectional model transformations. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol.
5563, pp. 213–228. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02408-5 15

https://doi.org/10.14279/tuj.eceasst.57.872
https://en.wikipedia.org/wiki/Combinatorial_species
https://doi.org/10.1007/978-3-540-75209-7_1
https://doi.org/10.1007/978-3-540-75209-7_1
https://doi.org/10.1007/978-3-642-02408-5_15
https://doi.org/10.1007/978-3-642-02408-5_15

Principles and Practice of Bidirectional
Programming in BiGUL

Zhenjiang Hu(B) and Hsiang-Shang Ko

National Institute of Informatics, Tokyo, Japan
{hu,hsiang-shang}@nii.ac.jp

Abstract. Putback-based bidirectional programming allows the pro-
grammer to write only one backward transformation, from which the
unique corresponding forward transformation is derived for free. A key
distinguishing feature of putback-based bidirectional programming is full
control over the bidirectional behavior, which is important for specifying
intended bidirectional transformations without any ambiguity. In this
chapter, we will introduce BiGUL, a simple yet powerful putback-based
bidirectional programming language, explaining the underlying princi-
ples and showing how various kinds of bidirectional application can be
developed in BiGUL.

1 Putback-Based Bidirectional Programming

In this chapter, the kind of bidirectional transformations (BXs) we discuss is
aymmetric lenses [8], which basically consist of a pair of transformations1: a
forward transformation get producing a view from a source, and a backward, or
putback, transformation put which takes a source and a possibly modified view,
and reflects the modifications on the view to the source, producing an updated
source. These two transformations should be well-behaved in the sense that they
satisfy the following round-tripping laws:

put s (get s) = s GetPut

get (put s v) = v PutGet

The GetPut property requires that no change to the view should be reflected
as no change to the source, while the PutGet property requires that all changes
in the view should be completely reflected to the source so that the changed
view can be successfully recovered by applying the forward transformation to
the updated source.

The purpose of bidirectional programming is to develop well-behaved bidi-
rectional transformations to solve various synchronization problems. A straight-
forward approach to bidirectional programming is to write two unidirectional
1 The text of this section is adapted from the first author’s FM 2014 paper [10].

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-319-79108-1 4) contains supplementary material, which is
available to authorized users.

© Springer International Publishing AG, part of Springer Nature 2018
J. Gibbons and P. Stevens (Eds.): Bidirectional Transformations, LNCS 9715, pp. 100–150, 2018.
https://doi.org/10.1007/978-3-319-79108-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79108-1_4&domain=pdf
http://orcid.org/0000-0002-9034-205X
http://orcid.org/0000-0002-2439-1048
https://doi.org/10.1007/978-3-319-79108-1_4
https://doi.org/10.1007/978-3-319-79108-1_4

Principles and Practice of Bidirectional Programming in BiGUL 101

transformations. Although this ad hoc solution provides full control over both get
and putback transformations, and can be realized using standard programming
languages, the programmer needs to show that the two transformations satisfy the
well-behavedness laws, and a modification to one of the transformations requires
a redefinition of the other transformation as well as a new well-behavedness proof.
To ease and enable maintainable bidirectional programming, it is preferable to
write just a single program that can denote both transformations.

Lots of work [2,3,8,9,12,15,16] has been devoted to the get-based approach,
allowing the programmer to write, mainly, the forward transformation get , and
deriving a suitable putback transformation. While the get-based approach is
friendly, a get function will typically not be injective, so there may exist many
possible put functions that can be combined with it to form a valid BX. This
ambiguity of put is what makes bidirectional programming challenging and
unpredictable in practice. For specific domains where declarative approaches
suffice, the get-based approach works fine, but when it comes to problems for
which it is essential to precisely control put behavior, the get-based approach
is inherently awkward: while most get-based languages/systems offer some fea-
tures for programming put behavior, the programmer ends up having to break
the get-based abstraction and figure out the put semantics of their get programs
in excruciating detail to be able to reliably use these features, largely defeating
the purpose of these languages/systems.

The main topic of this chapter is the putback-based approach to bidirectional
programming. In contrast to the get-based approach, it allows the programmer
to write a backward transformation put and derives a suitable get that can be
paired with this put to form a bidirectional transformation. Interestingly, while
get usually loses information when mapping from a source to a view, put must
preserve information when putting back from the view to the source, according
to the PutGet property.

Before explaining how to program put in practice, let us briefly review the
foundations [5–7], showing that “putback” is the essence of bidirectional pro-
gramming. We start by defining validity of put as follows:

Definition 1 (Validity of put). We say that a put function is valid if there
exists a get function such that both GetPut and PutGet are satisfied.

The first interesting fact is that, for a valid put , there exists exactly one get
that can form a BX with it. This is in sharp contrast to get-based bidirectional
programming, where many puts may be paired with a get to form a BX.

Lemma 1 (Uniqueness of get). Given a put function, there exists at most
one get function that forms a well-behaved BX.

The second interesting fact is that it is possible to check the validity of put
without mentioning get . The following are two important properties of put .

– The first,whichwe call view determination, says that the equivalence of updated
sources produced by a put implies equivalence of views that are put back.

∀ s, s′, v, v′. put s v = put s′ v′ ⇒ v = v′ ViewDetermination

Note that view determination implies that put s is injective (with s = s′).

102 Z. Hu and H.-S. Ko

– The second, which we call source stability, denotes a slightly stronger notion
of surjectivity for every source:

∀ s. ∃ v. put s v = s SourceStability

These two properties together provide an equivalent characterization of the valid-
ity of put [5].

Theorem 1. A put function is valid if and only if it satisfies
ViewDetermination and SourceStability.

Practically, there are few languages supporting putback-based bidirectional
programming. This is not without reason: as argued by Foster [7], it is more
difficult to construct a framework that can directly support putback-based bidi-
rectional programming.

In the rest of this chapter, we will introduce BiGUL [11] (pronounced
“beagle”), a simple yet powerful putback-based bidirectional language, which
grew out of some prior putback-based languages [13,14]. BiGUL is implemented
as an embedded language in Haskell, and we will assume that the reader is rea-
sonably familiar with Haskell. After briefly explaining how to install BiGUL in
Sect. 2, we will introduce basic BiGUL programming in Sect. 3, and see a few
more examples about lists in Sect. 4. We will then move on to the underlying prin-
ciples in Sect. 5, explaining the design and implementation of BiGUL in detail.
Those readers who are more interested in practical applications or want to see
more examples first may safely skip Sect. 5 (which is rather long) and proceed to
the last three sections, which will show how various bidirectional applications can
be developed, including list alignment in Sect. 6, relational database updating in
Sect. 7, and parsing and “reflective” printing in Sect. 8.

2 Preparation: Installing BiGUL

BiGUL is implemented as an embedded domain-specific language in Haskell,
and this chapter assumes that the readers have some Haskell background. (If
not, see https://wiki.haskell.org/Learning Haskell for a list of resources for learn-
ing Haskell; for the Haskell environment, it is recommended to install Haskell
Platform at https://www.haskell.org/platform/.) BiGUL has been released to
Hackage, and the latest version (1.0.1 at the time of writing) can be installed
using Cabal in the usual way, by executing the following in the command line:

$ cabal update
$ cabal install BiGUL

If you want to ensure compatibility with this chapter, you can instead install
BiGUL-1.0.1 specifically by executing:

$ cabal install BiGUL-1.0.1

Now you can easily check whether BiGUL is correctly installed. First, create
a simple file called Test.hs with the following content for importing BiGUL
modules.

https://wiki.haskell.org/Learning_Haskell
https://www.haskell.org/platform/

Principles and Practice of Bidirectional Programming in BiGUL 103

{-# LANGUAGE FlexibleContexts, TemplateHaskell, TypeFamilies #-}
import Generics.BiGUL
import Generics.BiGUL.Interpreter
import Generics.BiGUL.TH
import Generics.BiGUL.Lib

Then load it using GHCi.

$ ghci Test.hs
GHCi, version 7.10.3: http://www.haskell.org/ghc/ :? for help
[1 of 1] Compiling Main (Test.hs, interpreted)
Ok, modules loaded: Main.
*Main>

If you see the above message, congratulations on your successful installation.
To make it more convenient to play with the BiGUL code in this

chapter, the Haskell source files for Sect. 3 (Basic.hs), Sect. 4 (List.hs),
Sect. 6 (Alignment.hs), Sect. 7 (Brul.hs), and Sect. 8 (BiYacc.hs) are
provided at:

https://bitbucket.org/prl tokyo/bigul/src/master/SSBX16/

They are also available as electronic supplementary material to the online version
of this chapter on SpringerLink. There are some dependencies among the files:
List.hs imports Basic.hs, and Brul.hs imports Alignment.hs. The imported
files should be present in the same directory as the files being loaded.

3 A Quick Tour of BiGUL

Intuitively, we can think of a bidirectional BiGUL program

bx :: BiGUL s v

as describing how to manipulate a state consisting of a source component of
type s and a view component of type v ; the goal is to embed all information in
the view to proper places in the source. For each bx ::BiGUL s v , we can run it
forwards by calling get and backwards by calling put :

get bx :: s → Maybe v
put bx :: s → v → Maybe s

Here, get bx is a function mapping a source to a view, which can possibly fail: it
either returns a successfully computed view wrapped in the Just constructor of
Maybe, or signifies failure by producing the Nothing constructor. On the other
hand, put bx accepts an original source and uses a view to update it to get an
updated source (and might fail as well).

In BiGUL, it suffices for the programmer to write the put behavior (i.e., how
to use a view to update the original source to a new source), and the (unique)
get behavior is obtained for free. The core of BiGUL consists of a small num-
ber of primitives and combinators for constructing well-behaved bidirectional
transformations, which we introduce below.

https://bitbucket.org/prl_tokyo/bigul/src/master/SSBX16/

104 Z. Hu and H.-S. Ko

3.1 Skip

The first primitive for writing put is

Skip :: (s → v) → BiGUL s v

The put behavior of Skip f keeps the source unchanged, provided that the view
is computable from the source by f (while in the get direction, the view is fully
computed by applying function f to the source). Consider a simple put defined
by Skip square where

square :: Num a ⇒ a → a
square x = x ∗ x

We can test its put behavior as follows:

*Basic> put (Skip square) 10 100
Just 10

It first checks if the view 100 is the square of the source 10. If that is the case,
the original source is returned. But if the view is changed, say to 250, it should
produce Nothing :

*Basic> put (Skip square) 10 250
Nothing

To see why put produces Nothing , we may use putTrace instead of put to get
more information:

*Basic> putTrace (Skip square) 10 250
view not determined by the source

Each putback transformation in BiGUL is equipped with a unique get for
doing forward transformation. We can test the get behavior as follows:

*Basic> get (Skip square) 5
Just 25

In prose: doing the forward transformation of Skip square on the source 5 gives
the view 25. If get fails, we can also use getTrace to see more information about
the failure, analogous to putTrace.

As a simple exercise, can you see what the following skip1 does?

skip1 :: BiGUL s ()
skip1 = Skip (const ())

3.2 Replace

The second primitive is

Replace :: BiGUL s s

which completely replaces the source with the view. For instance,

Principles and Practice of Bidirectional Programming in BiGUL 105

*Basic> put Replace 1 100
Just 100

uses the view 100 to replace the source 1 and gets a new source 100.

3.3 Product

If we want to use a view pair (v1, v2) to update a source pair (s1, s2), we can
write Prod bx1 bx2 or bx1 ‘Prod ’ bx2 , a product of two putback transformations
bx1 and bx2 , to use v1 to update s1 with bx1 and v2 to s2 with bx2 .

Prod :: BiGUL s1 v1 → BiGUL s2 v2 → BiGUL (s1, s2) (v1, v2)

For instance, we can use Prod to combine Skip and Replace to put a view pair
into a source pair.

*Basic> put (skip1 `Prod' Replace) (5,1) ((),100)
Just (5,100)

Generally, we can use nested Prods to describe a complicated structural mapping:

*Basic> put ((skip1 `Prod' Replace) `Prod' Replace) ((5,1),2)
(((),100),200)

Just ((5,100),200)

3.4 Source/View Rearrangement

So far, the source and view have been of the same structure. What if we wish
to put a view (v1, v2) into a source of a different structure, say ((s0, s1), s2), to
replace s1 by v1 and s2 by v2? To do that, we need to rearrange the source and
view into the same structure, and BiGUL provides a way of rearranging either
the source or view through a “simple” λ-expression e:

$(rearrS [[e :: s1 → s2]]) :: BiGUL s2 v → BiGUL s1 v
$(rearrV [[e :: v1 → v2]]) :: BiGUL s v2 → BiGUL s v1

The “simple” λ-expression e should be wrapped inside Template Haskell quasi-
quotes [[. . .]] (written as [| . . . |] in plain text Haskell); it is then processed and
expanded by rearrS or rearrV to “core” BiGUL code, which is spliced (pasted)
into the invocation site by Template Haskell, as instructed by $(. . .). By “simple”
we mean that there should be no wildcards ‘ ’ in the argument pattern, and that
the body can only contain the argument variables and constructors, and must
mention all the argument variables. We will discuss the details later in Sect. 5.6.
Returning to the problem of putting a pair into a triple, we may define the
following putback transformation

putPairOverNPair :: (Show s0,Show s1,Show s2)
⇒ BiGUL ((s0, s1), s2) (s1, s2)

106 Z. Hu and H.-S. Ko

putPairOverNPair = $(rearrV [[λ(v1, v2) → (((), v1), v2)]])$

(skip1 ‘Prod ’ Replace) ‘Prod ’ Replace

by first rearranging the view (v1, v2) to a triple (((), v1), v2) with the same struc-
ture as the source, and then using (skip1 ‘Prod ’ Replace) ‘Prod ’ Replace to put
the arranged view (((), v1), v2) into the source ((s0, s1), s2). The type context
(Show s0,Show s1,Show s2) above is required by BiGUL for printing debugging
messages. And note that the two ‘$’ signs in the definition off putPairOverNPair
have different meanings: the first one marks the beginning of a Template Haskell
splice, while the second one is the low-precedence application operator.

The mechanism of source/view rearrangement enables us to process algebraic
data structures such as lists and trees, by mapping an algebraic structure to the
(nested) pair structure. The following example uses the view to replace the first
element of a nonempty source list:

pHead :: Show s ⇒ BiGUL [s] s
pHead = $(rearrS [[λ(s : ss) → (s, ss)]])$

$(rearrV [[λv → (v , ())]])$

Replace ‘Prod ’ skip1

It rearranges the source (a nonempty list) to a pair with its head element s and
its tail ss, and the view v to a pair (v , ()), so that we can use v to replace s and ()
to keep ss.

*Basic> put pHead [1,2,3,4] 100
Just [100,2,3,4]

What if we wish to define a general putback transformation that uses the
view to replace the ith element of the source list? We can define it recursively
as follows:

pNth :: Show s ⇒ Int → BiGUL [s] s
pNth i = if i = = 0 then pHead

else $(rearrS [[λ(x : xs) → (x , xs)]])$
$(rearrV [[λv → ((), v)]])$

skip1 ‘Prod ’ pNth (i − 1)

If i is 0, we simply use pHead to update the head element of the source with
the view. Otherwise, we do the same arrangements on the view and the source
as we did for pHead , but then keep the head element unchanged and replace the
(i − 1)th element of the tail of the source by the view.

*Basic> put (pNth 3) [1..10] 100
Just [1,2,3,100,5,6,7,8,9,10]

As we know, any putback function in BiGUL is equipped with a get function.
For pNth, we can test its get behavior as follows; its corresponding get function
is actually the familiar index function (!!).

Principles and Practice of Bidirectional Programming in BiGUL 107

*Basic> get (pNth 3) [1..10]
Just 4

Both pHead and pNth contain the programming pattern in which both the
source and view are rearranged into a product and then further updates are
performed on corresponding components. This is a ubiquitous pattern in BiGUL,
for which we provide a more compact syntax:

$(update P [[sourcePattern]] P [[viewPattern]] D[[updates]])

The source and view are respectively decomposed using sourcePattern and
viewPattern inside the pattern quasi-quotes P [[. . .]] (written as [p| . . . |] in plain
text Haskell), and corresponding elements are updated using the programs pro-
vided in the declaration quasi-quote D[[. . .]] ([d| . . . |] in plain text Haskell). For
example, we may describe (skip1 ‘Prod ’ Replace) ‘Prod ’ Replace by

testUpdate :: (Show a,Show b,Show c) ⇒ BiGUL ((a, b), c) (((), b), c)
testUpdate = $(update P [[((x , y), z)]]

P [[((x , y), z)]]
D[[x = skip1 ; y = Replace; z = Replace]])

In this concrete example, the three elements of the tuple (in both the source
and view) are bound to the variables x , y , and z , and they are sent to the three
combinators as arguments in the D[[. . .]] part. Note that since skip1 does nothing
on its source but checks if its view is (), we can just match that source element
with a wildcard ‘ ’ in the source pattern and avoid writing skip1 in D[[. . .]].

testUpdate ′ :: (Show a,Show b,Show c) ⇒ BiGUL ((a, b), c) (((), b), c)
testUpdate ′ = $(update P [[((, y), z)]]

P [[(((), y), z)]]
D[[y = Replace; z = Replace]])

3.5 Case

The Case combinator is for case analysis, and the general structure is as follows:

Case [$(normal [[mainCond :: s → v → Bool]] [[exitCond :: s → Bool]])
=⇒ (bx :: BiGUL s v)

, . . .

, $(adaptive [[mainCond :: s → v → Bool]])
=⇒ (f :: s → v → s)

, . . .
]

:: BiGUL s v

It contains a sequence of cases, each of which is either normal or adaptive. We
try the conditions of these cases in order and decide which branch we go into.

108 Z. Hu and H.-S. Ko

– For a normal case, $(normal . . .) takes two predicates, which we call the main
condition and the exit condition. The predicate for the main condition is very
general, and we can use any function of type (s → v → Bool) to examine the
source and view. The predicate for the exit condition checks the source only.
If the main and the exit conditions are satisfied, then the BiGUL program
after the arrow ‘=⇒’ (written ‘==>’ in plain text Haskell and defined in the
module Generics.BiGUL.Lib) is executed. The exit conditions in different
branches are expected to be disjoint for efficient execution of the forward
transformation.

– For an adaptive case, if the main condition is satisfied, a function of type
(s → v → s) is used to produce an adapted source from the current source
and view before the whole Case is rerun, with the expectation that one of the
normal cases will be applicable this time. Note that if adaptation does not
lead to a normal case, an error will be reported at runtime. This is to ensure
that BiGUL does not stuck in adaptation and fail to terminate.

As a simple example, consider using the view to replace each element in the
source list. To do so, we use Case to describe a case analysis.

replaceAll :: (Eq s,Show s) ⇒ BiGUL [s] s
replaceAll =

Case [$(normal [[λs v → length s = = 1]] [[λs → length s = = 1]])
=⇒ $(rearrS [[λ[x] → x]]) Replace

, $(normal [[λs v → length s > 1]] [[λs → length s > 1]])
=⇒ $(rearrS [[λ(x : xs) → (x , xs)]])$

$(rearrV [[λv → (v , v)]])$

Replace ‘Prod ’ replaceAll
, $(adaptive [[λs v → length s = = 0]])

=⇒ λs v → [⊥]
]

It consists of two normal cases and one adaptive case. The first normal case says
that if the source is of length 1 (containing a single element), we rearrange the
source list by extracting the single element, and replace this element with the
view. The second normal case says that if the source has more than 1 element,
we rearrange the source list to a pair of its head element and its tail, rearrange
the view by duplicating it to a pair, and use one copy of the view to replace the
head element, and the other copy to recursively replace each element in the tail
of the source. The last adaptive case says that if the source is empty, we adapt
the source to a singleton list with the don’t-care element ⊥ (‘undefined’ in plain
text Haskell), and rerun the whole Case executing the first normal case.

*Basic> put replaceAll [] 100
Just [100]
*Basic> put replaceAll [1..10] 100
Just [100,100,100,100,100,100,100,100,100,100]

Principles and Practice of Bidirectional Programming in BiGUL 109

Note that in the first running example, the source [] is first adapted to [⊥], and
the don’t care element ⊥ is replaced by 100 at the rerun of the whole Case.

As another interesting example, we define emb, which can safely embed any
pair of well-behaved get and put into BiGUL. It is defined as follows:

emb :: Eq v ⇒ (s → v) → (s → v → s) → BiGUL s v
emb g p =

Case [$(normal [[λs v → g s = = v]] [[λs → True]])
=⇒ Skip g

, $(adaptive [[λ → otherwise]])
=⇒ p

]

where, given a pair (g , p) of well-behaved get and put functions, if the view is the
same as that produced by applying g to the source, we make no change on the
source with Skip g (hinting that the view can be produced using g), otherwise
we adapt the source using p to reflect the change on the view to the source.
Note that if p and g form a well-behaved bidirectional transformation, in the
rerun of the whole Case after the adaptation, the first normal case will always
be applicable. To see a use of emb, we may define the following putback function
to update a pair with its sum.

pSum2 :: BiGUL (Int , Int) Int
pSum2 = emb g p

where g (x , y) = x + y
p (x , y) v = (v − y , y)

While we allow a general function to describe the main condition or the exit
condition, it is usually more concise to use patterns to describe these conditions.
For instance, we may replace the condition [[λs → length s = = 1]] by

[[λ[x] → True]]

Here, the meaning of a boolean-valued pattern-matching lambda-expression is
redefined as a total function which computes to False when an input does not
match the pattern; this meaning is different from that of a general pattern-
matching lambda-expression, which fails to compute (and throws an exception)
when the pattern is not matched. For example, in general the lambda-expression
λ[x] → True will fail to compute if the first input is not a singleton list; when
used in branch construction, however, the lambda-expression will compute to
False upon encountering an empty list. A unary condition like [[λ[x] → True]]
where only the pattern part matters can be abbreviated to

P [[[x]]]

to further reduce syntactic noise. Finally, to also allow this kind of abbreviation
in main conditions, BiGUL provides a special form for the normal case where

110 Z. Hu and H.-S. Ko

the main condition is specified as the conjunction of two unary predicates on the
source and view respectively:

$(normalSV [[sourceCond :: s → Bool]]
[[viewCond :: v → Bool]]
[[exitCond :: s → Bool]])

=⇒ (bx :: BiGUL s v)

and a special form for the adaptive case where the main condition is specified as
the conjunction of two unary predicates on the source and view respectively:

$(adaptiveSV [[sourceCond :: s → Bool]]
[[viewCond :: v → Bool]])

=⇒ (f :: s → v → s)

3.6 View Dependency

Sometimes, a view may contain derived values that are computed from other
parts of the view, and the view should be consistently changed. For instance, for
the view (x , even (x)), the second component is an indicator showing whether
or not the first component is an even number. To capture this, BiGUL provides

Dep :: Eq v ′ ⇒ (v → v ′) → BiGUL a v → BiGUL a (v , v ′)

to describe this intention. We may, for example, define

replaceAll2 :: BiGUL [Int] (Int ,Bool)
replaceAll2 = Dep even replaceAll

to replace all elements of the source by the first component of the view, while
checking whether the second component is consistent with the first component.

*Basic> put replaceAll2 [1..10] (100,True)
Just [100,100,100,100,100,100,100,100,100,100]
*Basic> put replaceAll2 [1..10] (100,False)
Nothing
*Basic> putTrace replaceAll2 [1..10] (100,False)
second view component not determined by the first

As seen in the last running of put , it reports an error because the view (100,False)
is inconsistent: 100 is an even number, so the second component should be True.

3.7 Composition

BiGUL programs can be composed sequentially:

Compose :: BiGUL a u → BiGUL u b → BiGUL a b

Principles and Practice of Bidirectional Programming in BiGUL 111

This combinator is straightforward in the get direction: get (Compose l r)
(where l :: BiGUL a u and r :: BiGUL u b) simply applies get l to its input
of type a to compute an intermediate value of type u, which is then processed
by get r to produce the final result of type b. Its put direction is more complex:
put (Compose l r) starts with a source s :: a and a view v :: b, and the aim is to
produce an updated source of type a. The only way to proceed is to use put r
to put v into some intermediate source m of type u, and to produce this m we
are forced to use get l on s. We can then update m with v to m ′ using put r ,
and update a with m ′ using put l . In general, programs involving Compose are
significantly harder to think about since we have to think in both put and get
directions to figure out precisely what is going on.

As a simple example, consider that we wish to use the view to update the
head element of the head element of a list of lists. We can define such a putback
function as the following pHead2 by composing pHead with pHead .

pHead2 :: Show a ⇒ BiGUL [[a]] a
pHead2 = pHead ‘Compose’ pHead

The following is an example to demonstrate this:

*Basic> put pHead2 [[1,2],[3,4,5],[]] 100
Just [[100,2],[3,4,5],[]]

4 Bidirectional Programming on Lists

To give some more involved examples, in this section we demonstrate that many
list functions can be bidirectionalized using BiGUL. The putback behaviors of
these functions are in fact non-trivial, and the reader might want to skip to later
sections in which more examples are developed, starting from Sect. 6.

To show the correspondence with the original list functions, we prefix the
original forward function names with lens. Note that in our context, the original
forward functions can be automatically derived from the new putback transfor-
mations by calling get .

We shall focus on bidirectionalizing foldr , an important higher-order function
on lists:

foldr :: (a → b → b) → b → [a] → b
foldr f e [] = e
foldr f e (x : xs) = f x (foldr f e xs)

Many interesting functions can be defined in terms of foldr :

sum = foldr (+) 0
map f = foldr (λa r → f a : r) []

where sum sums up all the elements in a list, and map f applies f to every
element in a list.

112 Z. Hu and H.-S. Ko

We start by developing a putback function for foldr in BiGUL:

lensFoldr :: (Show a,Show v)
⇒ BiGUL (a, v) v → (v → Bool) → BiGUL ([a], v) v

where we hope to define a putback program of type BiGUL ([a], v) v that is to
use the view to update the source, a list together with a value, by recursively
applying a simpler putback function of type BiGUL (a, v) v (until a condition
is satisfied or all the list elements have been visited). The program is somewhat
tricky, and is probably not easy to understand since Compose is involved.

lensFoldr bx pv =
Case [$(adaptive [[λ(x , y) v → pv v ∧ length x 	≡ 0]])

=⇒ λ(x , y) v → ([], y)
, $(normal [[λ(xs,) v → null xs]] [[λ(xs,) → null xs]])

=⇒ $(rearrV [[λv → ((), v)]])$
$(update P [[(, v)]] P [[((), v)]] D[[v = Replace]])

, $(normalSV P [[]] P [[]] [[λ(xs,) → not (null xs)]])
=⇒ $(rearrS [[λ((x : xs), e) → (x , (xs, e))]])$

(Replace ‘Prod ’ lensFoldr bx pv) ‘Compose’ bx
]

The lensFoldr program accepts a putback function bx and a view condition pv ,
and performs a case analysis to put the view v to the source (xs, e). If the view
v satisfies pv but the list xs in the source is not empty, then it adapts the list to
be empty. If the list xs in the source is empty, we do nothing but use the view to
replace the second component of the source. Otherwise, we rearrange the source
from the form of (x : xs, e) to that of (x , (xs, e)), and apply lensFoldr recursively
with a composition with bx . One may understand the composition through the
following picture (where r = Replace ‘Prod ’ lensFoldr bx pv).

(x, (xs, e)) r↔ (x, e′) bx↔ v

With lensFoldr , we can redefine many list functions from the putback point
of view. As the first example, consider mapAppend :

mapAppend f (xs, ys) = map f xs ++ ys

We can define its putback function as follows.

lensMapAppend :: (Show a,Show b) ⇒ BiGUL a b → BiGUL ([a], [b]) [b]
lensMapAppend pf = lensFoldr bx null

where bx = $(rearrV [[λ(v : vs) → (v , vs)]])$

pf ‘Prod ’ Replace

Here bx has the type of BiGUL (a, [b]) [b] and is defined on pf that has the
type of BiGUL a b.

Principles and Practice of Bidirectional Programming in BiGUL 113

*List> put (lensMapAppend dec1) ([0..10],[]) [100..110]
Just ([99,100,101,102,103,104,105,106,107,108,109],[])
*List> get (lensMapAppend dec1) ([1..10],[])
Just [2,3,4,5,6,7,8,9,10,11]

Note that, for testing, we embed into our framework the bijective functions for
increasing and decreasing a number by 1.

dec1 :: (Eq a,Num a) ⇒ BiGUL a a
dec1 = emb g p

where g s = s + 1
p s v = v − 1

For a second example, consider the function sum (xs, e), which is to sum up
all elements of the list xs starting from the seed e. If the sum is changed, there
are many ways to reflect this change to the input (xs, e). The following describes
one way in BiGUL:

lensSum :: BiGUL ([Int], Int) Int
lensSum = lensFoldr pSum2 (const False)

which will reflect the change difference on the view to the head element of xs if
xs is not empty, or to the seed e otherwise. We may choose other ways, say to
reflect the change difference on the view only to the seed by defining

lensSum ′ :: BiGUL ([Int], Int) Int
lensSum ′ = lensFoldr ($(rearrS [[λ(x , y) → (y , x)]]) pSum2) (const False)

Note that although get lensSum ([1, 2, 3], 0) = get lensSum ′ ([1, 2, 3], 0) =
Just 6, their putback behaviors are different:

put lensSum ([1, 2, 3], 0) 16 = Just ([11, 2, 3], 0)
put lensSum ′ ([1, 2, 3], 0) 16 = Just ([1, 2, 3], 10)

It is worth noting that our definition of lensFoldr is just one putback function
for foldr , and there are many others. This reflects the fact that one foldr can
have many puts, each describing one updating strategy.

5 BiGUL’s Bidirectionality

We have been writing put programs, usually having a corresponding get in mind
but not explicitly describing it, and yet BiGUL is capable of finding the right
get behaviour as if it could read our mind. How? We will see that, when writing
a BiGUL program, we are always simultaneously describing both a put function
and a get function, which are guaranteed to be a well-behaved pair. And the
“mind-reading” ability is far from magic: It is the consequence of the fact that

114 Z. Hu and H.-S. Ko

well-behavedness directly implies that get is uniquely determined by put , which
is the main motivation for taking a putback-based approach. In this section, we
will first review the theory, this time explicitly taking partiality into account,
and then we will dive into BiGUL’s internals to get a taste of putback-based
design.

This is a fairly long section, but it is not a prerequisite for subsequent sections;
readers who wish to see more examples first or are more interested in practical
BiGUL applications can safely skip this section and proceed to Sect. 6.

5.1 Lenses, Well-Behavedness, and the Fundamental Theorem

Formally, we call a well-behaved pair of put and get a lens:

Definition 2 (lens). A lens between a source type s and a view type v consists
of two functions:

put :: s → v → Maybe s
get :: s → Maybe v

satisfying two well-behavedness laws:

put s v = Just s′ ⇒ get s′ = Just v PutGet

get s = Just v ⇒ put s v = Just s GetPut

In the original formulation [8], a lens refers to just a pair of functions having
the right types, and one needs to explicitly say “well-behaved lens” to mean
a well-behaved pair; we will, however, discuss well-behaved lenses only, so we
build well-behavedness into our definition of lenses by default. Note that this
definition models partial transformations explicitly as Maybe-valued functions:
put and get are total functions that can nevertheless produce Nothing to indicate
failure. From now on, this definition replaces the one in Sect. 1, where only total
lenses were discussed. Also note that these well-behavedness laws are actually
easy to satisfy vacuously, by making the transformations produce Nothing all (or
most of) the time. One important task of the BiGUL programmer is thus to meet
certain side conditions for guaranteeing the totality of their BiGUL programs.
These side conditions will be introduced below along with the relevant BiGUL
constructs.

From this revised definition of well-behavedness, we can immediately prove
a reformulation of Lemma 1:

Theorem 2 (uniqueness of get). Given two lenses whose put components
are equal, their get components are also equal.

Proof. Let l and r be two lenses; denote their put/get components as put l/get l
and put r/get r respectively, and assume that put l = put r . Then for any

Principles and Practice of Bidirectional Programming in BiGUL 115

s and v,

get l s = Just v
⇔ {well-behavedness of l }

put l s v = Just s
⇔ { put l = put r }

put r s v = Just s
⇔ {well-behavedness of r }

get r s = Just v

(This also entails that get l s = Nothing if and only if get r s = Nothing .)
�
This might be called the “fundamental theorem” of putback-based bidirectional
programming, as the theorem guarantees that the BiGUL programmer is in
full control of the bidirectional behaviour—programming the put behavior is
sufficient to determine the get behaviour. Also, to the language designer, the
theorem gives a kind of reassurance that, once the put behaviour of a construct
is determined, there is no need to worry about which get behaviour should
be adopted—there is at most one possibility. This is in contrast to get-based
design, in which there are usually more than one viable put semantics that can
be assigned to a get-based construct, and the designer needs to justify the choice
or provide several versions.

For the rest of this section, we will look at several constructs of BiGUL in
detail to get a taste of putback-based design. Each BiGUL construct is conceived,
at the design stage, as a lens (like Skip and Replace) or a lens combinator (like
Case), which constructs a more complex lens from simpler ones. The put and
get components of these lenses usually have to be developed together, but for
each lens we will employ a more “put-oriented” design process: We start from
an intended put behaviour, and then add restrictions so that we can find a
corresponding get . This does not guarantee that the lenses we arrive at will have
a “strong put flavour”—that is, some of the lenses will be as (or even more)
suitable for get-based programming as for putback-based programming. But we
will also see that some other lenses are more naturally understood in terms of
their put behaviour.

5.2 Replacement

The simplest lens is probably Replace, which replaces the entire source with the
view:

put Replace s v = Just v

Is there a get semantics that can be paired with this put? Yes, quite obviously—
in fact, PutGet directly gives us the definition of get Replace:

get Replace v = Just v

We still need to verify GetPut, which can be easily checked to be true.

116 Z. Hu and H.-S. Ko

5.3 Skipping

Coming up next is Skip, whose natural behaviour is

put Skip s v = Just s

Considering PutGet, though, we immediately see that this behaviour is too
liberal: If the view is simply thrown away, how can get Skip possibly recover it?
One way out is to require that the view is trivial enough such that it can be
thrown away and still be recovered, by setting the view type of Skip to the unit
type (). Then it is easy for get Skip to recover the view, for which there is only
one choice:

get Skip s = Just ()

This is the approach adopted prior to BiGUL 1.0.
More generally, we can establish well-behavedness as long as get Skip has

only one view choice for each source, regardless of what the view type is. The
existence of this “unique choice” is witnessed by a function f :: s → v , which we
add as an additional argument to Skip. The get direction is then

get (Skip f) s = Just (f s)

From the put direction, we may think of this function f as specifying a consis-
tency relation, saying that the view information is completely included in the
source (since you can compute the view from the source) and can be safely dis-
carded. Skip f can be used if and only if the source and view are consistent in
that sense, and this is the side condition about Skip that the BiGUL program-
mers need to be aware of if they want their programs using Skip to be total. We
thus arrive at:

put (Skip f) s v = if v = = f s then return s else Nothing

This pair of put and get can be verified to be well-behaved. Skip f , which features
in BiGUL 1.0, is one lens which turns out to be more easily understood from the
get direction—it bidirectionalizes any get function whose codomain has decidable
equality, albeit trivially. We recover the first version of Skip as a special case by
setting f to const ().

5.4 Product

For a simplest example of a lens combinator, we look at Prod . Both the source
and view types should be pairs; Prod accepts two lenses, say l and r , and applies
them respectively to the left and right components:

put (l ‘Prod ’ r) (sl , sr) (vl , vr) = do sl ′ ← put l sl vl
sr ′ ← put r sr vr
return (sl ′, sr ′)

Principles and Practice of Bidirectional Programming in BiGUL 117

The get direction is unsurprising:

get (l ‘Prod ’ r) (sl , sr) = do vl ← get l sl
vr ← get r sr
return (vl , vr)

Having constructed put and get from l and r , we also expect that their well-
behavedness is a consequence of the well-behavedness of l and r . While this may
look obvious, we take this opportunity to show how a well-behavedness proof for
a lens combinator can be carried out formally and in detail. To prove PutGet,
for example, we should prove that the assumption

put (l ‘Prod ’ r) (sl , sr) (vl , vr) = Just (sl ′, sr ′) (1)

implies the conclusion

get (l ‘Prod ’ r) (sl ′, sr ′) = Just (vl , vr) (2)

Both equations say that a somewhat complicated monadic Maybe-program com-
putes successfully to some value. It may seem that we need some messy case
analysis, but what we know about Maybe-programs tells us that such a program
computes successfully if and only if every step of the program does, and this
helps us to split both (1) and (2) into simpler equations. Formally, we have this
lemma:

Lemma 2. Let mx :: Maybe a and f :: a → Maybe b. Then, for all y :: b,

mx >>= f = Just y

if and only if

mx = Just x and f x = Just y for some x :: a

Proof. Case analysis on mx .
�
This lemma can be nicely applied to Maybe-programs written in the do-notation,
transforming such programs into predicates saying that a program computes to
some given value. To do it more formally: Define a translation S from do-blocks
of type Maybe a to predicates on a by

S (do {x ← mx ;B}) y = (∃x. mx = Just x ∧ S (do B) y)
S (do {my}) y = (my = Just y)

Then we can extend Lemma 2 to the following:

Lemma 3. The proposition

S (do B) y

is true if and only if

do B = Just y

118 Z. Hu and H.-S. Ko

Proof. By induction on the list structure of B , using Lemma 2 repeatedly.
�
For example, applying S to put (l ‘Prod ’ r) (sl , sr) (vl , vr) yields

λ(sl′′, sr′′). ∃sl′. put l sl vl = Just sl ′ ∧
∃sr′. put r sr vr = Just sr ′ ∧
return (sl ′, sr ′) = Just (sl ′′, sr ′′)

where the last equation is equivalent to sl ′ = sl ′′ ∧sr ′ = sr ′′ (since return = Just
for the Maybemonad). Applying Lemma 3 and doing some simplification, (1) is
equivalent to

put l sl vl = Just sl ′ ∧ put r sr vr = Just sr ′

Similarly, (2) can be shown to be equivalent to

get l sl ′ = Just vl ∧ get r sr ′ = Just vr

The entailment is then just PutGet for l and r .

5.5 Case Analysis

This is a representative combinator in BiGUL, and arguably the most complex
one. For simplicity, let us consider a two-branch variant of Case. A branch is a
condition and a body; since in put we manipulate both a source and a view, the
conditions in general can be binary predicates on both the source and view. We
thus define the type of branches as:

type CaseBranch s v = (s → v → Bool ,BiGUL s v)

and consider the following variant of Case:

Case :: CaseBranch s v → CaseBranch s v → BiGUL s v

The straightforward behaviour is

put (Case (pl , l) (pr , r)) s v = if pl s v then put l s v
else if pr s v then put r s v
else Nothing

That is, depending on which condition is satisfied (with pl having higher pri-
ority), we execute either put l or put r , or fail the computation if neither of
the conditions is satisfied. Now, again, we ask the question: Can we find a get
behaviour to pair with this put?

Principles and Practice of Bidirectional Programming in BiGUL 119

Ruling out branch switching for PutGet. An important working assump-
tion here is that we want lens combinators to be compositional : When we looked
at Prod , for example, we defined its put and get in terms of those of the smaller
lenses, and derived the overall well-behavedness from that of the smaller lenses.
For Case, this implies that, when establishing well-behavedness, we want a get
following a put (or a put following a get) to use the same branch taken by the
put (or the get), so we can make use of PutGet (or GetPut) of the branch.
The current put behaviour of Case does not leave any clue in the updated source
about which branch is used to produce it, though, so it is impossible for get to
always choose the correct branch.

One solution, which does not require changing the syntax of Case, is to check
that the ranges of the branches are disjoint. In general, for a lens, the range of
a put can be shown to coincide with the domain of the corresponding get . So
the get behaviour of Case can simply try to execute both branches on the input
source, and there will be at most one branch that computes successfully. We
can put (expensive) disjointness checks into put such that if put succeeds, the
subsequent get will have at most one branch to choose:

put (Case (pl , l) (pr , r)) s v =
if pl s v then do s′ ← put l s v

maybe (return s′) (const Nothing) (get r s′)
else if pr s v then do s′ ← put r s v

maybe (return s′) (const Nothing) (get l s′)
else Nothing

The maybe function is from Haskell’s prelude and has type b → (a → b) →
Maybe a → b; depending on whether the third, Maybe-typed, argument is
Nothing or a Just-value, the result is either the first argument or the second
argument applied to the value wrapped inside Just . In the first branch of the
code above, if put l s v successfully produces an updated source s′, we will
ensure that get r s′ does not succeed: If get r s′ is Nothing as we want, we will
return s′; otherwise we emit Nothing .

If get favours the first branch, meaning that it declares success as soon as
the first branch succeeds (without requiring that the second branch fails),

get (Case (pl , l) (pr , r)) s = maybe (get r s) return (get l s)

then we can also omit the check in put ’s first branch:

put (Case (pl , l) (pr , r)) s v =
if pl s v then put l s v
else if pr s v then do s′ ← put r s v

maybe (return s′) (const Nothing) (get l s′)
else Nothing

120 Z. Hu and H.-S. Ko

Ruling out branch switching for GetPut. The GetPut direction, on the
other hand, still does not avoid branch switching—the outcome of get does not
say anything about which of pl and pr will be satisfied in the subsequent put .
So we add some checks to get such that get ’s success will tell us which branch
will be chosen by put :

get (Case (pl , l) (pr , r)) s = maybe (do v ← getBranch (pr , r) s
if pl s v then Nothing

else return v)
return
(getBranch (pl , l) s)

getBranch (p, b) s = do v ← get b s
if p s v then return v

else Nothing

The definition of put should also be revised to use getBranch for the disjointness
check. This fixes GetPut, but breaks PutGet! Since put does not guarantee
that the updated (not the original) source and the view satisfy the condition of
the branch executed, even though get will be able to choose the correct branch,
the subsequent, newly added check is not guaranteed to succeed. We thus also
need to add similar checks to put :

put (Case (pl , l) (pr , r)) s v =
if pl s v then do s′ ← put l s v

if pl s′ v then return s′

else Nothing
else if pr s v then do s′ ← put r s v

if pr s′ v then maybe (return s′)
(const Nothing)
(getBranch (pl , l) s′)

else Nothing
else Nothing

Now this pair of put and get can be verified to be well-behaved.

Improving the Efficiency of get . The efficiency of the current get does not
look very good, especially when, in general, more than two branches are allowed,
and get has to try to execute each branch, possibly with a high cost, until it
reaches a successful one; also, inefficient get affects the efficiency of put , since
this calls get to check range disjointness. An idea is to ask the programmer to
make a rough “prediction” of the range of each branch: We enrich CaseBranch
with a third component, which is a source predicate:

type CaseBranch s v = (s → v → Bool ,BiGUL s v , s → Bool)

This new predicate is supposed to be satisfied by the updated source; we again
add checks to put to ensure this:

Principles and Practice of Bidirectional Programming in BiGUL 121

put (Case (pl , l , ql) (pr , r , qr)) s v =
if pl s v then do s′ ← put l s v

if pl s′ v ∧ ql s′ then return s′

else Nothing
else if pr s v then do s′ ← put r s v

if pr s′ v ∧ qr s′

then maybe (return s′)
(const Nothing)
(getBranch (pl , l , ql) s′)

else Nothing
else Nothing

Let us call pl and pr the main conditions, and ql and qr the exit conditions.
The exit condition, in general, over-approximates the range of a branch. Well-
behavedness tells us that the range of put is exactly the domain of the corre-
sponding get . Thus, in the get direction, every source in the domain of a branch
satisfies the exit condition. Contrapositively, if a source does not satisfy the exit
condition, then get for that branch will necessarily fail, and we do not need to
try to execute the branch at all. This leads to the following revised definition of
getBranch:

getBranch (pl , l , ql) s = if ql s then do v ← get l s
if pl s v then return v

else Nothing
else Nothing

If we do not care about efficiency, we can simply use const True as exit condi-
tions, and the behaviour will be exactly the same as the previous version. But
if we supply disjoint exit conditions, then get will try at most one branch. Inci-
dentally (but actually no less importantly), making exit conditions explicit also
encourages the programmer to think about range disjointness, which is essential
to guaranteeing the totality of Case.

Adaptation. We have seen that, to make Case total, one thing we need to
ensure is that the main condition of a branch should be satisfied again after
the update. In practice, the main condition is usually closely related to the
consistency relation, and we will only be able to deal with sources and views
that are already more or less consistent; this is a rather severe restriction. As
we have seen in Sect. 3.5, the solution is to introduce a different kind of branch
called adaptive branches, which can deal with sources and views that are too
inconsistent by adapting the source to establish enough consistency such that
a normal branch becomes applicable. Again, for simplicity, we consider only a
variant of Case which has just one adaptive branch at the end:

type CaseAdaptiveBranch s v = (s → v → Bool , s → v → s)
Case :: CaseBranch s v → CaseBranch s v →

CaseAdaptiveBranch s v → BiGUL s v

122 Z. Hu and H.-S. Ko

The execution structure of put becomes slightly more complicated, as the whole
thing has to be run again after adaptation; to ensure termination, we require
that the second run does not match an adaptive branch again. This is realized
in BiGUL in continuation-passing style:

put (Case bl br ba) s v =
putWithAdaptation bl br ba s v (λsa →

putWithAdaptation bl br ba sa v (const Nothing))
putWithAdaptation ::

CaseBranch s v → CaseBranch s v → CaseAdaptiveBranch s v →
s → v → (s → Maybe s) → Maybe s

putWithAdaptation (pl , l , ql) (pr , r , qr) (pa, f) s v cont =
if pl s v then do s′ ← put l s v

if pl s′ v ∧ ql s′ then return s′

else Nothing
else if pr s v then do s′ ← put r s v

if pr s′ v ∧ qr s′

then maybe (return s′)
(const Nothing)
(getBranch (pl , l , ql) s′)

else Nothing
else if pa s v then cont (f s v)
else Nothing

Major work is now moved into a separate function putWithAdaptation, which
takes an extra cont argument of type s → Maybe s. This extra argument is a
continuation that takes over after the body of an adaptive branch is executed,
and is invoked with the adapted source. The requirement of not doing adaptation
twice is met by setting putWithAdaptation itself as a continuation, and this inner
putWithAdaptation takes the continuation that always fails.

What about get? It turns out that get can simply ignore the adaptive branch!
If you have doubt about this “choice”, just invoke the fundamental theorem
(Theorem 2): The put behaviour is exactly what we want, and we can verify that
the pair of put and get is well-behaved, so we are reassured that our “choice” is
“correct”, simply because there is no other choice of get .

To sum up, we have arrived at a simpler variant of Case which nevertheless
has all the features of the multi-branch Case in BiGUL. We have inserted various
dynamic checks into the put semantics, and the BiGUL programmer needs to be
aware of these constraints to make execution of Case succeed: For each normal
branch, (i) the main condition should be satisfied after the update, (ii) the main
conditions of the branches before this one should not be satisfied after the update,
and (iii) the exit condition should be satisfied by the updated source. Also the
ranges of all the normal branches should be disjoint; the programmer is encour-
aged to write disjoint exit conditions, which imply disjointness of the ranges,
and improve the efficiency of get . Finally, for each adaptive branch, the adapted
source and the view should match the main condition of a normal branch.

Principles and Practice of Bidirectional Programming in BiGUL 123

5.6 Rearrangement

Source and view rearrangements are also among the more complex constructs of
BiGUL. Their complexity lies in the strongly and generically typed treatment
of pattern matching, though, rather than their bidirectional behavior. (We are
referring to “pattern matching” in functional programming, where a pattern
matching checks whether a value has a specific shape and decomposes it into
components. For example, matching a list with a pattern x :y :xs checks whether
the list has two or more elements, and then binds x to the first element, y to
the second one, and xs to the rest of the list.) The two kinds of rearrangement
are similar, and we will discuss view rearrangement only. We will start by for-
malizing pattern matching as a bidirectional operation—in fact an isomorphism.
Based on pattern matching, evaluation and inverse evaluation of rearranging
λ-expressions can be defined, again forming an isomorphism. The semantics of a
view rearrangement is then the composition of this latter isomorphism with the
lens obtained by interpreting the inner BiGUL program.

Strongly typed pattern matching, bidirectionally. Pattern matching is
inherently a bidirectional operation: In one direction, we break something into
a collection of its components at the variable positions of a pattern. This collec-
tion can be considered as indexed by the variable positions, and acting like an
environment for expression evaluation. Indeed, conversely, if we have a pattern
and a corresponding environment, we can treat the pattern as an expression and
evaluate it in the environment. These two directions are inverse to each other,
i.e., they form a (partial) isomorphism. For the language designer, it may be
slightly tedious to establish such isomorphisms, but for the programmer, pat-
tern matching and evaluation are arguably the most natural way to decompose
and rearrange things. Previous bidirectional languages usually provide theoret-
ically simpler combinators for decomposition and rearrangement, but they are
hard to use in practice. BiGUL’s native support of pattern matching, on the
other hand, turns out to be one important contributing factor in its usability.

BiGUL’s patterns are strongly typed: The programmer has to declare a target
type for a pattern, and the pattern is guaranteed, through typechecking, to make
sense for that target type. This can be achieved by defining the datatype of
patterns as a generalised algebraic datatype:

data Pat a where
PVar :: Eq a ⇒ Pat a
PConst :: Eq a ⇒ a → Pat a
PProd :: Pat a → Pat b → Pat (a, b)
PLeft :: Pat a → Pat (Either a b)
PRight :: Pat b → Pat (Either a b)
PIn :: InOut a ⇒ Pat (F a) → Pat a

A pattern can be a (nameless) variable, a constant, a product, a Left or Right
injection (for the Either type), or a generic constructor, and its target type is

124 Z. Hu and H.-S. Ko

given as the index in its type. For example, the pattern PLeft (PConst ()) has
type Pat (Either () b), and can only be used to match those values of type
Either () b (and matching succeeds only for the value Left ()). The InOut type-
class contains the types that are isomorphic to (and therefore interconvertible
with) a sum-of-products representation. The isomorphism is witnessed by

inn :: InOut a ⇒ F a → a and out :: InOut a ⇒ a → F a

which will be used to define pattern matching and evaluation. For example, [a] is
an instance of InOut , and F [a], an isomorphic sum-of-products representation
of [a], is Either () (a, [a]). The two functions witnessing the isomorphism for
lists are defined by

inn (Left ()) = []
inn (Right (x , xs)) = x : xs
out [] = Left ()
out (x : xs) = Right (x , xs)

How do we define pattern matching? As we mentioned above, the result of
matching a value against a pattern is an environment indexed by the variable
positions of the pattern. For example, matching a list against the cons pattern

PIn (PRight (PProd PVar PVar)) (3)

should produce an environment containing its head and tail. Here we want a safe
(but not necessarily efficient) representation of the environment type, in the sense
that the indices into the environment should be exactly the variable positions of
the pattern, and we want that to be enforced statically by typechecking. In other
words, this environment type depends on the pattern, and a way to compute this
type is to encode it as a second index of the Pat datatype:

data Pat a env where
PVar :: Eq a ⇒ Pat a (Var a)
PConst :: Eq a ⇒ a → Pat a ()
PProd :: Pat a a ′ → Pat b b′ b′′ → Pat (a, b) (a ′, b′)
PLeft :: Pat a a ′ → Pat (Either a b) a ′

PRight :: Pat b b′ → Pat (Either a b) b′

PIn :: InOut a ⇒ Pat (F a) b → Pat a b

Notice that an environment type is just a product of Var types—for example,
the environment type computed for the cons pattern (3) is

(Var a,Var [a]) (4)

We will discuss Var later, which is simply defined by

newtype Var a = Var a

Now we can define the (strongly typed) pattern matching operation:

Principles and Practice of Bidirectional Programming in BiGUL 125

deconstruct :: Pat a env → a → Maybe env
deconstruct PVar x = return (Var x)
deconstruct (PConst c) x = if c = = x then return () else Nothing
deconstruct (l ‘PProd ’ r) (x , y) = liftM2 (,) (deconstruct l x)

(deconstruct r y)
deconstruct (PLeft p) (Left x) = deconstruct p x
deconstruct (PLeft) = Nothing
deconstruct (PRight p) (Right x) = deconstruct p x
deconstruct (PRight) = Nothing
deconstruct (PIn p) x = deconstruct p (out x)

and its inverse (which is total):

construct :: Pat a env → env → a
construct PVar (Var x) = x
construct (PConst c) = c
construct (l ‘PProd ’ r) (envl , envr) = (construct l envl , construct r envr)
construct (PLeft p) env = Left (construct p env)
construct (PRight p) env = Right (construct p env)
construct (PIn p) env = inn (construct p env)

Precisely speaking, we have

deconstruct p x = Just e ⇔ construct p e = x

for all p ::Pat a env , x ::a, and e ::env , establishing a (half-) partial isomorphism
between env and a.

λ-expressions for rearrangement and their evaluation. Now consider view
rearrangement, which evaluates a “simple” pattern-matching λ-expression on
the view and continues execution with the transformed view. The body of the
λ-expression refers to the variables appearing in the pattern. How do we represent
such references? We have seen that an environment type is a product, i.e., a
binary tree; to refer to a component in an environment, we can use a path that
goes from the root to a sub-tree. In BiGUL, these paths are called directions:

data Direction env a where
DVar :: Direction (Var a) a
DLeft :: Direction a t → Direction (a, b) t
DRight :: Direction b t → Direction (a, b) t

The type of a direction is indexed by the environment type it points into and the
component type it points to. Note that the type of DVar is specified to work with
only environment types marked with Var ; this is for ensuring that a direction
goes all the way down to an actual component at a variable position of the
pattern, rather than stopping half-way and pointing to a sub-tree which include
more than one component. For example, for the environment type (4) for the cons
pattern, only two directions are valid, namely DLeft DVar and DRight DVar ,
whereas DVar alone would point to the entire environment instead of one of
the variable positions, and is ruled out by typechecking (in the sense that it is

126 Z. Hu and H.-S. Ko

impossible for DVar to have type Direction (Var a,Var [a]) b for any b). It is
easy to extract a component from an environment following a direction:

retrieve :: Direction env a → env → a
retrieve DVar (Var x) = x
retrieve (DLeft d) (x ,) = retrieve d x
retrieve (DRight d) (, y) = retrieve d y

Now we can define expressions, which are similar to patterns but include direc-
tions rather than variables, to represent the body of rearranging λ-expressions:

data Expr env a where
EDir :: Direction env a → Expr env a
EConst :: (Eq a) ⇒ a → Expr env a
EProd :: Expr env a → Expr env b → Expr env (a, b)
ELeft :: Expr env a → Expr env (Either a b)
ERight :: Expr env b → Expr env (Either a b)
EIn :: (InOut a) ⇒ Expr env (F a) → Expr env a

For example, the rearranging λ-expression

λ(x : xs) → (x , xs) (5)

is represented by the cons pattern (3) and the pair expression

EProd (EDir (DLeft DVar)) (EDir (DRight DVar)) (6)

Evaluating an expression under an environment is similar to inverse pattern
matching:

eval :: Expr env a → env → a
eval (EDir d) env = retrieve d env
eval (EConst c) env = c
eval (l ‘EProd ’ r) env = (eval l env , eval r env)
eval (ELeft e) env = Left (eval e env)
eval (ERight e) env = Right (eval e env)
eval (EIn e) env = inn (eval e env)

The type of RearrV is then:

RearrV :: Pat v env → Expr env v ′ → BiGUL s v ′ → BiGUL s v

Note that in the type of RearrV , the types of the pattern and expression share
the same environment type index, ensuring that the directions in the expression
can only refer to the variable positions in the pattern. And the put behaviour of
RearrV is simply:

put (RearrV p e b) s v = do env ← deconstruct p v
put b s (eval e env)

Principles and Practice of Bidirectional Programming in BiGUL 127

Inverse evaluation of rearranging λ-expressions. For the get direction,
after executing the inner BiGUL program to obtain an intermediate view, we
should reverse the roles of the pattern and body in the rearranging λ-expression
λp → e, using e as a (possibly non-linear) pattern to match the intermediate
view, and computing the final view by evaluating p. For example, the put direc-
tion of view rearrangement with the λ-expression (5) turns a view list into a pair,
on which the inner program operates; in the get direction, the inner program will
extract from the source an intermediate view pair, which should be converted
back to a list by the inverse λ-expression λ(x , xs) → (x :xs). In more detail, given
an intermediate view pair (x , xs), we match it with the pair expression (6), and
see that x is associated with the direction DLeft DVar and xs with DRight DVar .
From such associations we can reconstruct an environment of type (4) with x
and xs in the right places, and then we can evaluate the cons pattern (3) in this
reconstructed environment, arriving at the final view x : xs.

In general, the intermediate view will be decomposed according to the body
expression, and eventually each of its components will be paired with a direction
indicating which variable position the component should go into in the recon-
structed environment. To do the reconstruction, we can prepare a “container”
which is similar to an environment except that the variable positions are ini-
tially empty. For each pair of a component and a direction, we try to put that
component into the place in the container pointed to by the direction; if two
components are put into the same position (indicating that the λ-expression
uses a variable more than once), then they must be equal. In the end, we check
that all places in the container are filled, and then use it as an environment to
evaluate the pattern. Again, to compute the type of containers from a pattern,
we add a third index to Pat :

data Pat a env con where
PVar :: Eq a ⇒ Pat a (Var a) (Maybe a)
PConst :: Eq a ⇒ a → Pat a () ()
PProd :: Pat a a ′ a ′′ → Pat b b′ b′′ → Pat (a, b) (a ′, b′) (a ′′, b′′)
PLeft :: Pat a a ′ a ′′ → Pat (Either a b) a ′ a ′′

PRight :: Pat b b′ b′′ → Pat (Either a b) b′ b′′

PIn :: InOut a ⇒ Pat (F a) b c → Pat a b c

A container type is just like an environment type except that the variable posi-
tions give rise to Maybe instead of Var . For the cons example, the computed
container type is

(Maybe a,Maybe [a]) (7)

The first step—matching a value with an expression—can then be implemented
as:

uneval :: Pat a env con → Expr env b → b → con → Maybe con
uneval p (EDir d) x con = unevalD p d x con
uneval p (EConst c) x con = if c = = x then return con

128 Z. Hu and H.-S. Ko

else Nothing
uneval p (EProd l r) (x , y) con = uneval p l x con >>= uneval p r y
uneval p (ELeft e) (Left x) con = uneval p e x con
uneval p (ELeft) x con = Nothing
uneval p (ERight e) (Right x) con = uneval p e x con
uneval p (ERight) x con = Nothing
uneval p (EIn e) x con = uneval p e (out x) con
unevalD :: Pat a env con → Direction env b → b → con → Maybe con
unevalD PVar DVar x (Just y) = if x = = y

then return (Just x)
else Nothing

unevalD PVar DVar x Nothing = return (Just x)
unevalD (PConst c) x con = return con
unevalD (l ‘PProd ’ r) (DLeft d) x (conl , conr) = liftM (, conr)

(unevalD l d x conl)
unevalD (l ‘PProd ’ r) (DRight d) x (conl , conr) = liftM (conl ,)

(unevalD r d x conr)
unevalD (PLeft p) d x con = unevalD p d x con
unevalD (PRight p) d x con = unevalD p d x con
unevalD (PIn p) d x con = unevalD p d x con

This function uneval initially takes an empty container, which is generated by:

emptyContainer :: Pat v env con → con
emptyContainer PVar = Nothing
emptyContainer (PConst c) = ()
emptyContainer (l ‘PProd ’ r) = (emptyContainer l , emptyContainer r)
emptyContainer (PLeft p) = emptyContainer p
emptyContainer (PRight p) = emptyContainer p
emptyContainer (PIn p) = emptyContainer p

And then we can try to convert a container to an environment, checking whether
the container is full in the process:

fromContainerV :: Pat v env con → con → Maybe env
fromContainerV PVar Nothing = Nothing
fromContainerV PVar (Just v) = return (Var v)
fromContainerV (PConst c) con = return ()
fromContainerV (l ‘PProd ’ r) (conl , conr) = liftM2 (,)

(fromContainerV l conl)
(fromContainerV r conr)

fromContainerV (PLeft p) con = fromContainerV pat con
fromContainerV (PRight p) con = fromContainerV pat con
fromContainerV (PIn p) con = fromContainerV pat con

We can let out a sigh of relief once we successfully get hold of an environment,
since the last step—inverse pattern matching—is total. To sum up:

Principles and Practice of Bidirectional Programming in BiGUL 129

get (RearrV p e b) s = do v ′ ← get b s
con ← uneval p e v ′ (emptyContainer p)
env ← fromContainerV p con
return (construct p env)

To be concrete, let us go through the steps of inverse rearranging in the
cons example. Starting with an intermediate view (x , xs) and an empty con-
tainer (Nothing ,Nothing) of type (7), uneval will invoke unevalD twice, the
first time updating the container to (Just x ,Nothing) and the second time to
(Just x , Just xs). The resulting container is full, and thus fromContainerV will
successfully turn it into an environment (Var x ,Var xs) of type (4), in which
we evaluate the cons pattern (3) and obtain x : xs.

Conceptually, this is just reversing pattern matching and expression evalua-
tion. To actually prove the well-behavedness, though, we need to reason about
stateful computation (which is what uneval essentially is), which involves com-
ing up with suitable invariants and proving that they are maintained throughout
the computation.

It is interesting to mention that there would be a catch if we designed this
combinator from the get direction: It is tempting to think that, since a rear-
ranging λ-expression gives rise to a partial isomorphism, which can be lifted to
a lens, we can simply compose the lens lifted from the isomorphism with the
inner lens to give a lens semantics to RearrV . This would result in a redundant
computation of an intermediate source which is immediately discarded, and now
the success of the whole computation would unnecessarily depend on that of the
intermediate source. To eliminate the redundant computation, we would need to
use a special composition which composes a lens directly with an isomorphism
on the right. Such a need would be hard to notice since the get behaviour of the
two compositions are the same; that is, we really have to think in terms of put
to see that the special composition is needed.

5.7 Summary

In one (long) section, we have examined the internals of BiGUL. After seeing the
definition of (well-behaved) lenses that takes partiality explicitly into account, we
have gone through the development of most of BiGUL’s constructs and justified
their well-behavedness—in the case of Prod , we have even seen a more formal
and detailed well-behavedness proof. The Case construct is the most interesting
one in terms of its design for achieving bidirectionality, while the rearrangement
operations showcase more advanced datatype-generic programming techniques
in Haskell for guaranteeing type safety. We will now shift our focus back to
BiGUL programming, this time looking at some larger examples.

6 Position-, Key-, and Delta-Based List Alignment

In the next three sections, we will talk about some applications in BiGUL, start-
ing with the list alignment problem. List alignment is one of the tasks that

130 Z. Hu and H.-S. Ko

frequently show up when developing bidirectional applications. When the source
and view are both lists, and the get direction (i.e., the consistency relation) is
a map, how do we put an updated view—the updates on which might involve
insertions, deletions, in-place modifications, and reordering—into the source?
This topic has be treated by Barbosa et al.’s matching lenses [1], which are
special-purpose lenses into which several fixed alignment strategies are hard-
coded. Below we will see how a number of alignment strategies can be pro-
grammed with BiGUL’s general-purpose constructs, instead of having to extend
the language with special-purpose alignment constructs.

Throughout the section, we use a concrete example to introduce three vari-
ations of list alignment. Suppose that we represent a payroll database as a list.
(This is a slightly inadequate setting for explaining list alignment, because entries
in a database are usually unordered. But let us assume that order matters.)
Each entry is a triple—more precisely, a pair whose second component is again
a pair—consisting of an identification number (“id” henceforth), a name, and a
salary number:

type Source = (Id , (Name,Salary))
type Id = Int
type Name = String
type Salary = Int

For example, here is a sample payroll database:

employees :: [Source]
employees = [(0, ("Zhenjiang", 1000))

, (1, ("Josh" , 400))
, (2, ("Jeremy" , 2000))]

Suppose that the human resource department is in charge of hiring or sacking
employees but does not handle salary numbers, so the entries of the database
are presented to them only as pairs of ids and names:

type View = (Id ,Name)

For example, employees is presented to them as

[(0, "Zhenjiang"), (1, "Josh"), (2, "Jeremy")]

on which they can make modifications. It is easy to write a BiGUL program to
synchronize the source and view elements:

bx :: BiGUL Source View
bx = $(rearrV [[λ(id ,name) → (id , (name, ()))]])$

Replace ‘Prod ’ (Replace ‘Prod ’ Skip (const ()))

The problem is then how the correspondences between sources and views in the
two lists can be determined, so that bx can be applied to the right pairs.

Principles and Practice of Bidirectional Programming in BiGUL 131

6.1 Position-Based Alignment

As a first exercise, we consider the simplest strategy, which matches source and
view elements by their positions in the lists. If the source list has more elements
than the view list, the extra elements at the tail are simply dropped; if the source
list has fewer elements, then new source elements have to be created, which we
can specify as a function:

cr :: View → Source
cr (i ,n) = (i , (n, 0))

The salary is set to zero, which could be taken care of by, say, the accounting
department later. We will use bx and cr as the element synchronizer and creator
respectively for our payroll database throughout this section, but our alignment
programs will not be restricted to the payroll database setting—we will develop
our alignment programs generically, setting the source and view types as poly-
morphic type parameters (s and v below) and also the element synchronizer and
element creator as parameters (b and c below), so the alignment programs can
be widely applicable. Here is how we implement position-based alignment, which
is fairly standard:

posAlign :: (Show s,Show v) ⇒ BiGUL s v → (v → s) → BiGUL [s] [v]
posAlign b c = Case

[$(normalSV P [[[]]] P [[[]]] P [[[]]])
=⇒ $(update P [[[]]] P [[[]]] D[[]])

, $(normalSV P [[:]] P [[:]] P [[:]])
=⇒ $(update P [[x : xs]] P [[x : xs]] D[[x = b; xs = posAlign b c]])

, $(adaptiveSV P [[:]] P [[[]]])
=⇒ λ → []

, $(adaptiveSV P [[[]]] P [[:]])
=⇒ λ (v :) → [c v]

]

The normal branches deal with the situations where both lists are empty or non-
empty, and the adaptive branches remove or create elements when the lengths
of the two lists differ.

The get direction of posAlign does exactly what we want it to do:

*Alignment> get (posAlign bx cr) employees
Just [(0,"Zhenjiang"),(1,"Josh"),(2,"Jeremy")]

It should be quite obvious, though, that the put direction is not so useful for our
purpose. If we sack Josh:

updatedEmployees0 :: [View]
updatedEmployees0 = [(0, "Zhenjiang"), (2, "Jeremy")]

then the database will be updated to:

132 Z. Hu and H.-S. Ko

*Alignment> put (posAlign bx cr) employees updatedEmployees0
Just [(0,("Zhenjiang",1000)),(2,("Jeremy",400))]

where Jeremy inadvertently gets Josh’s original salary. Even if we do not remove
any employee, we may still want to reorder them:

updatedEmployees1 :: [View]
updatedEmployees1 = [(2, "Jeremy"), (0, "Zhenjiang"), (1, "Josh")]

and now everyone gets the wrong salary:

*Alignment> put (posAlign bx cr) employees updatedEmployees1
Just [(2,("Jeremy",1000)),(0,("Zhenjiang",400)),(1,("Josh",2000)

)]

This first exercise shows that the alignment problem is inherently one that should
be solved from the put direction. It is easy to implement the get direction cor-
rectly, but what matters is the put behavior.

6.2 Key-Based Alignment

A more reasonable strategy is to match source and view elements by some key
value. In our example, we can use the id as the key. Key-based alignment might
seem much more complex than position-based alignment, but, in fact, we can
just revise posAlign to get a BiGUL program for key-based alignment!

First of all, we need to somehow obtain the keys. In our example, on both
the source and view we can use fst to extract the key value. In general, we
can further parametrize the alignment program with key extraction functions
ks :: s → k and kv :: v → k for some type k of key values:

keyAlign :: (Show s,Show v ,Eq k)
⇒ (s → k) → (v → k) → BiGUL s v → (v → s) → BiGUL [s] [v]

The first normal branch of posAlign still works perfectly. As for the second
normal branch, we should revise the main condition to also require that the
head elements of the two lists have the same key value:

λ(s : ss) (v : vs) → ks s = = kv v

The first adaptive branch, again, works well. The second adaptive branch, on
the other hand, is no longer applicable: since the main condition of the second
normal branch has been tightened, it is no longer the case that this adaptive
branch will receive only empty source lists. In fact, whether the source list is
empty or not is irrelevant here—what matters now is whether the key of the
first view is in the source list. If it is, then we bring the (first) source element
with the same key value to the head position, and the second normal branch can
take over; otherwise, we create a new source element. This gives us key-based
alignment:

Principles and Practice of Bidirectional Programming in BiGUL 133

keyAlign :: forall s v k . (Show s,Show v ,Eq k)
⇒ (s → k) → (v → k) → BiGUL s v → (v → s) → BiGUL [s] [v]

keyAlign ks kv b c = Case
[$(normalSV P [[[]]] P [[[]]] P [[[]]])

=⇒ $(update P [[[]]] P [[[]]] D[[]])
, $(normal [[λ(s : ss) (v : vs) → ks s = = kv v]] P [[:]])

=⇒ $(update P [[x : xs]] P [[x : xs]] D[[x = b; xs = keyAlign ks kv b c]])
, $(adaptiveSV P [[:]] P [[[]]])

=⇒ λ → []
, $(adaptive [[λss (v : vs) → kv v ∈ map ks ss]])

=⇒ λss (v :) → uncurry (:) (extract (kv v) ss)
, $(adaptiveSV P [[]] P [[:]])

=⇒ λss (v :) → c v : ss
]
where
extract :: k → [s] → (s, [s])
extract k (x : xs) | ks x = = k = (x , xs)

| otherwise = let (y , ys) = extract k xs
in (y , x : ys)

Note that the program does not assume that keys are unique—if there are n view
elements having the same key, then the first n source elements with that key will
be retained and synchronised with those view elements in order. This strategy
is a somewhat arbitrary choice, but can be changed by, for example, using a
different extract . (On the other hand, in practice it is probably wiser to enforce
uniqueness of keys, so that we can be sure which source element will be used
to match a view element, and do not need to rely on the choices made by the
implementation.)

Back to our payroll database example. The get direction behaves the same:

*Alignment> get (keyAlign fst fst bx cr) employees
Just [(0,"Zhenjiang"),(1,"Josh"),(2,"Jeremy")]

Unlike position-based alignment, view element deletion can now be reflected
correctly:

*Alignment> put (keyAlign fst fst bx cr) employees
updatedEmployees0

Just [(0,("Zhenjiang",1000)),(2,("Jeremy",2000))]

And reordering as well:

*Alignment> put (keyAlign fst fst bx cr) employees
updatedEmployees1

Just [(2,("Jeremy",2000)),(0,("Zhenjiang",1000)),(1,("Josh",400)
)]

So it seems that key-based alignment is just what we need. Indeed, key-
based alignment usually works well, but there is an important assumption: the

134 Z. Hu and H.-S. Ko

key values should not be changed. If, for example, we decide to assign a different
id to Josh:

updatedEmployees2 :: [View]
updatedEmployees2 = [(0, "Zhenjiang"), (100, "Josh"), (1, "Jeremy")]

Then the effect is the same as sacking Josh and then hiring him again, and his
salary is thus reset:

*Alignment> put (keyAlign fst fst bx cr) employees
updatedEmployees2

Just [(0,("Zhenjiang",1000)),(100,("Josh",0)),(1,("Jeremy",400))
]

The problem is that we cannot distinguish modification from deletion and inser-
tion pairs. To be able to have such distinction, we need the notion of deltas [4],
which allows us to explicitly represent and keep track of the correspondences
between source and view elements.

6.3 Delta-Based Alignment

A (horizontal) delta between a source list and a view list is a list of pairs of
corresponding positions:

type Delta = [(Int , Int)]

For example, the delta we have in mind between the source list employees and
the view list updatedEmployees2 is [(0, 0), (1, 1), (2, 2)], which, in particular, asso-
ciates the source and view entries for Josh since (1, 1) is included, instead of
[(0, 0), (2, 2)], which indicates that Josh’s source entry does not correspond to
any view entry and should be deleted, and that Josh’s view entry does not
correspond to any source entry and is thus new. Deltas can easily represent
reordering as well. For example, we would supply the delta between employees
and updatedEmployees1 as [(0, 1), (1, 2), (2, 0)], associating the 0th element in
the source—namely the one for Zhenjiang—with the 1st element in the view,
and so on. Comparing this treatment with the key-based one, we might say that
keys are “poor man’s correspondences”, which are not as explicit and unam-
biguous as Delta. A Delta between source and view lists directly describes the
accurate correspondences between them, whereas with keys the correspondences
can only be inferred, sometimes inaccurately.

So the input now includes not only source and view lists but also a delta
between them. Recall key-based alignment: what it does overall is to bring the
first matching source element to the front for each view element, so the source
list is updated throughout execution, with the links between the source and view
elements gradually and implicitly restored. If we are doing something similar with
delta-based alignment, then when the source list is updated, the delta should
also be updated to reflect the restored consistency. This suggests that the delta

Principles and Practice of Bidirectional Programming in BiGUL 135

should be paired with the source list, so that it can be updated. The type we
use for the delta-based alignment program is thus:

deltaAlign :: (Show s,Show v)
⇒ BiGUL s v → (v → s) → BiGUL ([s],Delta) [v]

Here we take a simpler approach to implementing deltaAlign, analyzing the
problem into just two cases: The delta can tell us either that the source and
view elements are all in correspondence, in which case a simple position-based
alignment suffices, or that we need to do some rearrangement of the source
elements, which can be done by adaptation. In BiGUL:

idDelta :: [s] → Delta
idDelta ss = [(i , i) | i ← [0 . . length ss]]
deltaAlign :: (Show s,Show v)

⇒ BiGUL s v → (v → s) → BiGUL ([s],Delta) [v]
deltaAlign b c = Case

[$(normal [[λ(ss, d) vs → length ss = = length vs ∧ d = = idDelta ss]]
P [[]])

=⇒ $(rearrV [[λvs → (vs, ())]])$posAlign b c ‘Prod ’ Skip (const ())
, $(adaptive [[λ → otherwise]])

=⇒ λ(ss, d) vs →
let d ′ = map swap d

ss ′ = [maybe (c v) (ss!!) (lookup j d ′) | (v , j) ← zip vs [0 . .]]
in (ss ′, idDelta ss ′)

]

The source and view lists are in full correspondence if and only if they have the
same length and the delta associates all their elements positionally. This full
positional delta can be computed by idDelta. When this is the case, it suffices to
call posAlign to carry out element-wise synchronization, since no rearrangement
is required. Otherwise, we enter the adaptive branch, which constructs a new
source list in full correspondence with the view list, drawing elements from the
original source list or creating new ones as the delta dictates. The new source
list is in full correspondence with the view list, so the delta we pair with it is
the one computed by idDelta.

Only when performing put does a delta make sense. When performing get ,
however, we still need to supply a delta since it is part of the source; but there
is a natural choice, namely idDelta. So we define:

putDeltaAlign :: (Show s,Show v)
⇒ BiGUL s v → (v → s) → [s] → Delta → [v] → Maybe [s]

putDeltaAlign b c ss d vs = fmap fst (put (deltaAlign b c) (ss, d) vs)
getDeltaAlign :: (Show s,Show v)

⇒ BiGUL s v → (v → s) → [s] → Maybe [v]
getDeltaAlign b c ss = get (deltaAlign b c) (ss, idDelta ss)

136 Z. Hu and H.-S. Ko

It is easy to prove that, given the same b and c, these two functions do form a
lens. The key observation is that the delta produced by put (deltaAlign b c) is
necessarily the one computed by idDelta, so, for example, in PutGet, throwing
away the delta in the put direction is fine because it can be recomputed by
idDelta, and the get direction can resume from exactly the same source pair.

Back to our example. We can now update Josh’s id without resetting his
salary by providing a full delta indicating that there are only in-place updates:

*Alignment> putDeltaAlign bx cr employees [(0,0), (1,1), (2,2)]
updatedEmployees2

Just [(0,("Zhenjiang",1000)),(100,("Josh",400)),(1,("Jeremy
",2000))]

Besides obvious modifications like reordering, we can also do some fairly sub-
tle modifications now: If we actually sack Josh and replace him with a new
Josh (inheriting the original Josh’s id) whose salary should be reset (to be re-
considered by the accounting department), we can say so by providing a partial
delta:

*Alignment> putDeltaAlign bx cr employees [(0,0), (2,2)] =<<
getDeltaAlign bx cr employees

Just [(0,("Zhenjiang",1000)),(1,("Josh",0)),(2,("Jeremy",2000))]

One alignment to rule them all. Where do deltas come from? In general, we
may provide a special view editor which monitors how the view is modified and
produces a suitable delta. But in more specialized scenarios, deltas can simply
be computed by, for example, comparing the source and view. We can formalize
this delta computation as:

type DeltaStrategy s v = [s] → [v] → Delta

and further parametrize putDeltaAlign:

putDeltaAlignS :: (Show s,Show v) ⇒ DeltaStrategy s v
→ BiGUL s v → (v → s) → [s] → [v] → Maybe [s]

putDeltaAlignS dst b c ss vs = putDeltaAlign b c ss (dst ss vs) vs

Position-based and key-based alignment can then be seen as special cases of
delta-based alignment using specific delta-computing strategies. For position-
based alignment, we simply compute the identity delta:

byPosition :: DeltaStrategy s v
byPosition ss = idDelta ss

And for key-based alignment, we compute a delta associating source and view
elements with the same key:

byKey :: Eq k ⇒ (s → k) → (v → k) → DeltaStrategy s v
byKey ks kv ss vs =

Principles and Practice of Bidirectional Programming in BiGUL 137

let sis = zip ss [0 . .]
in catMaybes [fmap (λ(, i) → (i , j)) (find (λ(s,) → ks s = = kv v) sis)

| (v , j) ← zip vs [0 . .]]

We can check that these strategies indeed give us position-based and key-based
alignment:

*Alignment> putDeltaAlignS byPosition bx cr employees
updatedEmployees0

Just [(0,("Zhenjiang",1000)),(2,("Jeremy",400))]
*Alignment> putDeltaAlignS (byKey fst fst) bx cr employees

updatedEmployees1
Just [(2,("Jeremy",2000)),(0,("Zhenjiang",1000)),(1,("Josh",400)

)]

7 Bidirectionalizing Relational Queries with BiGUL

In work on relational databases, the view-update problem is about how to trans-
late update operations on the view table to corresponding update operations on
the source table properly2. Relational lenses [3] try to solve this problem by pro-
viding a list of combinators that let the user write get functions (queries) with
specified updated policies for put functions (updates); however this can only
provide limited control of update policies. To resolve this problem, we define
a new library Brul [17], where two putback -based combinators (operators) are
designed to specify update policies, from which forward queries (selection, pro-
jection, join) can be automatically derived.

– align is to update a source list with a view list by aligning part of source
elements filtered by a predicate with view elements according to a matching
criteria between source element and view element;

– unjoin is to decompose a join view to update two sources.

In this section, we will focus on align. As will be seen in Sect. 7.3, it can
describe more flexible update strategies (related to selection/projection queries)
than relational lenses, while the well-behavedness is guaranteed for free.

7.1 Relational Database Representation

A relational table (RT) is denoted by a list of records (where the order does
not really matter), and each record (Record) is denoted by a list of attributes of
type RType, which could be an integer, a string, a floating point number, or a
double-precision floating point number.

type RT = [Record]
type Record = [RType]

2 The text of this section is adapted from our BX 2016 paper [17].

138 Z. Hu and H.-S. Ko

Fig. 1. Source table

data RType = RInt Int
| RString String
| RFloat Float
| RDouble Double
deriving (Show ,Eq ,Ord)

To allow pattern matching on the newly defined algebraic data type RType in
BiGUL, we need to add the following declaration.

deriveBiGULGeneric ''RType

Consider the table in Fig. 1 that stores five music track records, and each
record contains its Track name, release Date, Rating, Album, and the Quantity
of this Album. We can represent it as follows, where all the records have the
same structure.

s = [[RString "Lullaby" ,RInt 1989,RInt 3,RString "Galore",RInt 1]
, [RString "Lullaby" ,RInt 1989,RInt 3,RString "Show" ,RInt 3]
, [RString "Lovesong",RInt 1989,RInt 5,RString "Galore",RInt 1]
, [RString "Lovesong",RInt 1989,RInt 5,RString "Paris" ,RInt 4]
, [RString "Trust" ,RInt 1992,RInt 4,RString "Wish" ,RInt 5]
]

7.2 Relation Alignment

The alignment of two relational tables, which is related by a selection/projection
query, is similar to the key-based list alignment in Sect. 6. The difference is that
we need to consider filtering on (i.e., selection of) the source records based on a
condition.

Let us see how to extend keyAlign (in Sect. 6) to implement the new align
pAlign that can deal with filtering of source elements. We extend keyAlign with
two new arguments; one is the predicate p for filtering source elements, and the
other is the function h for hiding/concealing source elements if their correspond-
ing elements are removed from the view. As seen below, pAlign has a similar case
structure as that of keyAlign, except that we refine the third case of keyAlign
into two cases (the third and the fourth cases of pAlign): the third case says that
if the view v is empty but the first record in the source satisfies p, we should hide

Principles and Practice of Bidirectional Programming in BiGUL 139

this record using h, and the fourth case says that if the first record of the source
does not satisfy p, we simply ignore it and continue with the remaining records.

pAlign :: forall s v k . (Show s,Show v ,Eq k)
⇒ (s → Bool) -- predicate
→ (s → k) → (v → k) → BiGUL s v → (v → s)
→ (s → Maybe s) -- conceal function
→ BiGUL [s] [v]

pAlign p ks kv b c h = Case
[$(normalSV P [[[]]] P [[[]]] P [[[]]])

=⇒ $(update P [[[]]] P [[[]]] D[[]])
, $(normal [[λ(s : ss) (v : vs) → p s ∧ ks s = = kv v]] [[λ(s : ss) → p s]])

=⇒ $(update P [[x : xs]] P [[x : xs]] D[[x = b; xs = pAlign p ks kv b c h]])
, $(adaptive [[λ(s : ss) v → p s ∧ null v]])

=⇒ λ(s : ss) v → maybe [] (:[]) (h s) ++ ss
, $(normal [[λ(s : ss) v → not (p s)]] [[λ(s : ss) → not (p s)]])

=⇒ $(update P [[: xs]] P [[xs]] D[[xs = pAlign p ks kv b c h]])
, $(adaptive [[λss (v : vs) → kv v ∈ map ks (filter p ss)]])

=⇒ λss (v :) → uncurry (:) (extract (kv v) ss)
, $(adaptiveSV P [[]] P [[:]])

=⇒ λss (v :) → filterCheck p (c v) : ss
]
where
extract :: k → [s] → (s, [s])
extract k (x : xs) | p x ∧ ks x = = k = (x , xs)

| otherwise = let (y , ys) = extract k xs
in (y , x : ys)

filterCheck p v | p v = v
| otherwise = error "error in filter checking"

To test, recall the example in Sect. 6. Consider the following use of pAlign,
denoting that the view is selected from those records from the source whose salary
is greater than 1000, and that if a view record is removed, the corresponding
record in the source will be removed (and thus hidden).

pSelProj = pAlign (λ(k , (n, s)) → s > 1000) fst fst bx cr ′ (const Nothing)
where cr ′ (k ,n) = (k , (n, 2000))

We have:

*Brul> get pSelProj employees
Just [(2,"Jeremy")]
*Brul> put pSelProj employees updatedEmployees0
Just [(0,("Zhenjiang",1000)),(1,("Josh",400)),(0,("Zhenjiang

",2000)),(2,("Jeremy",2000))]

140 Z. Hu and H.-S. Ko

7.3 Describing Update Policies in Selection/Projection

With pAlign, we can describe various update policies for the selection/projection
queries. To be concrete, consider the following selection/projection query:

select Track ,Rating ,Album,Quantity as v

from s

where Quantity > 2

which extracts the track, rating, album and quality information from those music
tracks in the source s whose quantity is greater than 2. Let us see how to write a
single BiGUL program so that its get does the above query and its put describes
a specific update policy.

The first BiGUL program is u0 below.

u0 :: RType → BiGUL [Record] [Record]
u0 d = pAlign

(λr → (r !! 4) > RInt 2)
(λs → (s !! 0, s !! 3))
(λv → (v !! 0, v !! 2))
$(update P [[(t : : r : a : q : [])]]

P [[(t : r : a : q : [])]]
D[[t = Replace; r = Replace; a = Replace; q = Replace]])

(λ(t : r : a : q : []) → (t : d : r : a : q : []))
(const Nothing)

It tries to match the source records whose Quantity is greater than 2 with the
view records by the key (Track ,Album). There are three cases:

– A source record is matched with a view record: we first use a rearrangement
function to rearrange the view from a four-element list [t , r , a, q] to a five-
element list [t , , r , a, q] with the second element matched against a widecard.
This rearrangement function reshapes the view to match the shape of the
source. Then, the element in the source is Replaced by the corresponding
element in the view.

– A view record that has no matching source record: a new source record is
created with a default value d filled into the Date.

– A source record that has no matching view record: we simply delete this
record by returning Nothing .

Now if we wish to hide the source record by setting its Quantity to 0 rather
than deleting it if it has no matching view record, we could simply change the
last line of u0 and get u1 as follows.

u1 :: RType → BiGUL [Record] [Record]
u1 d = pAlign

(λr → (r !! 4) > RInt 2)

Principles and Practice of Bidirectional Programming in BiGUL 141

(λs → (s !! 0, s !! 3))
(λv → (v !! 0, v !! 2))
$(update P [[(t : : r : a : q : [])]]

P [[(t : r : a : q : [])]]
D[[t = Replace; r = Replace; a = Replace; q = Replace]])

(λ(t : r : a : q : []) → (t : d : r : a : q : []))
(λ(t : d : r : a : : []) → Just (t : d : r : a : RInt 0 : []))

To test, let us see some concrete running examples of using u0 . Recall s
defined in Sect. 7.1. We can confirm that get performs the query given at the
start of this subsection.

*Brul> get (u0 (RInt 2000)) s

Just [[RString "Lullaby", RInt 3, RString "Show", RInt 3],[RString "

Lovesong", RInt 5,RString "Paris",RInt 4],[RString "Trust",RInt 4,

RString "Wish",RInt 5]]

Now suppose that we change the above result (view) to the following by
raising the rating of Lullaby from 3 to 4, raising the quality of lovesong from 4
to 7, and deleting Trust :

v = [[RString "Lullaby",RInt 4,RString "Show",RInt 3]
, [RString "Lovesong",RInt 5,RString "Paris",RInt 7]
]

We can reflect these changes to the source by performing put with u0 .

*Brul> put (u0 (RInt 2000)) s v

Just [[RString "Lullaby",RInt 1989,RInt 3,RString "Galore",RInt 1],[

RString "Lullaby",RInt 1989,RInt 4,RString "Show",RInt 3],[RString

"Lovesong",RInt 1989,RInt 5,RString "Galore",RInt 1],[RString "

Lovesong",RInt 1989,RInt 5,RString "Paris",RInt 7]]

In the updated source, the changes of rating and quality are correctly
reflected, and the music track Trust is removed. Note that we may reflect the
changes to the source by performing put with u1 , another update strategy, and
we will keep the music track Trust while setting its quality to be 0.

*Brul> put (u1 (RInt 2000)) s v

Just [[RString "Lullaby",RInt 1989,RInt 3,RString "Galore",RInt 1],[

RString "Lullaby",RInt 1989,RInt 4,RString "Show",RInt 3],[RString

"Lovesong",RInt 1989,RInt 5,RString "Galore",RInt 1],[RString "

Lovesong",RInt 1989,RInt 5,RString "Paris",RInt 7],[RString "Trust

",RInt 1992,RInt 4,RString "Wish",RInt 0]]

8 Parsing and Reflective Printing

When we mention the front-end of a compiler, we usually think of a parser that
turns concrete syntax, which is designed to be programmer-friendly and provides

142 Z. Hu and H.-S. Ko

convenient syntactic sugar, into abstract syntax, which is concise, structured, and
easily manipulable by the compiler back-end. There is another direction, though,
in which a printer turns abstract syntax back into concrete syntax. This is
useful, for example, for reporting the result of compiler optimizations done on
abstract syntax to the programmer, who knows only concrete syntax. In this
case, though, we would want to print the optimized program in a form that is as
close to the original program as possible, so the programmer can spot what has
changed—and not changed—correctly and more easily. This is where the notion
of reflective printing comes in: By taking both the original concrete program and
the optimized abstract program as input, we can try to retain the look of the
original program as much as possible. Below we will use a simplified arithmetic
expression language to explain how reflective printing can be implemented in
BiGUL.

8.1 Well-Behavedness

It is probably obvious that the idea of reflective printing comes from put trans-
formations; parsing, then, is the get direction. Before we proceed to implement
parsing and reflective printing in BiGUL, a natural question to ask is: is well-
behavedness meaningful in the context of parsing of reflective printing? The
answer is yes, especially for PutGet: An abstract syntax tree (AST) may be
thought of as a concise and canonical representation of a concrete program, so
it would be strange if a concrete program printed from an AST could not be
parsed back to the same AST. GetPut, on the other hand, is in fact not strong
enough for our purpose, as it only says that, when an AST is unmodified, print-
ing it reflectively to the original program does not change anything, whereas we
would have liked to also say that “small” changes to the AST lead to only “small”
changes to the concrete program. That is, we would like reflective printing to
conform to some sort of least-change principle, a topic which is still unsettled
and actively investigated by the BX community. It is at least a good start to have
GetPut, though. We thus conclude that BiGUL is indeed a suitable language
for implementing reflective printers and corresponding parsers.

8.2 Additive Expressions

Here we use a minimal example which is simple and yet can demonstrate what
reflective printing is capable of. Consider the following abstract syntax of arith-
metic expressions consisting of integer constants, addition, and subtraction:

data Arith = Num Int
| Add Arith Arith
| Sub Arith Arith
deriving Show

This is a nice representation for the compiler, but we cannot expect the pro-
grammer to write something like “Sub (Num 1) (Add (Num 2) (Num 3))”, and

Principles and Practice of Bidirectional Programming in BiGUL 143

should provide a concrete syntax so that they can write “1 − (2 + 3)”. Such a
concrete syntax is usually defined in terms of a BNF grammar:

Exp → Exp '+' Factor
| Exp '-' Factor
| Factor

Factor → Int
| '-' Factor
| '(' Exp ')'

The two-level structure of Exp and Factor ensures that plus and minus associate
to the left by default; to change association, we should use parentheses. And, to
spice up the problem a little, we allow minus to be used also as a negative sign, as
specified by the second production rule for Factor . BiGUL deals with structured
data only, so we should represent a string generated using this grammar as a
concrete syntax tree of the following type:

data Exp = Plus Exp Factor
| Minus Exp Factor
| EF Factor
| ENull

data Factor = Lit Int
| Neg Factor
| Paren Exp
| FNull

Again, we need to provide one deriveBiGULGeneric statement for each of the
above datatypes to allow BiGUL to operate on them:

deriveBiGULGeneric ''Arith
deriveBiGULGeneric ''Exp
deriveBiGULGeneric ''Factor

Apart from the Null constructors, which are inserted to represent incomplete
trees that can occur during reflective printing, these two datatypes are in direct
correspondence with the grammar, so it is easy to recover the string from a
concrete syntax tree:

instance Show Exp where
show (Plus e f) = show e ++ "+" ++ show f
show (Minus e f) = show e ++ "-" ++ show f
show (EF f) = show f
show ENull = "."

instance Show Factor where
show (Lit n) = show n
show (Neg f) = "-" ++ show f

144 Z. Hu and H.-S. Ko

show (Paren e) = "(" ++ show e ++ ")"
show FNull = "."

Conversely, using modern parser technologies like Haskell’s parsec parser com-
binator library, we can easily implement a “concrete parser” that turns a string
into a concrete syntax tree:

parseExp :: String → Exp

The rest of the job is then to write a BiGUL program between Exp and Arith.

8.3 Reflective Printing in BiGUL

The program is basically a case analysis: For example, when the concrete side is
a plus and the abstract side is an addition, they match, and we can go into their
sub-trees recursively. For the concrete side, the right sub-tree is of type Factor
instead of Exp, so in fact we will write two (mutually recursive) programs:

pExpArith :: BiGUL Exp Arith
pExpArith = Case ⊥
pFactorArith :: BiGUL Factor Arith
pFactorArith = Case ⊥

The branch for plus and addition can then be written as:

$(update P [[Plus l r]] P [[Add l r]] D[[l = pExpArith; r = pFactorArith]])

Following the same line of thought, we can fill in other branches to relate all
abstract constructors with concrete production rules:

pExpArith :: BiGUL Exp Arith
pExpArith = Case

[$(normalSV P [[Plus]] P [[Add]] P [[Plus]])
=⇒ $(update P [[Plus l r]] P [[Add l r]]

D[[l = pExpArith; r = pFactorArith]])
, $(normalSV P [[Minus]] P [[Sub]] P [[Minus]])

=⇒ $(update P [[Minus l r]] P [[Sub l r]]
D[[l = pExpArith; r = pFactorArith]])

, $(normalSV P [[EF]] P [[]] P [[EF]])
=⇒ $(update P [[EF t]] P [[t]]

D[[t = pFactorArith]])
]

pFactorArith :: BiGUL Factor Arith
pFactorArith = Case

[$(normalSV P [[Lit]] P [[Num]] P [[Lit]])
=⇒ $(update P [[Lit i]] P [[Num i]] D[[i = Replace]])

Principles and Practice of Bidirectional Programming in BiGUL 145

, $(normalSV P [[Neg]] P [[Sub (Num 0)]] P [[Neg]])
=⇒ $(update P [[Neg t]] P [[Sub (Num 0) t]] D[[t = pFactorArith]])

, $(normalSV P [[Paren]] P [[]] P [[Paren]])
=⇒ $(update P [[Paren t]] P [[t]] D[[t = pExpArith]])

]

This covers only “normal” cases though, namely when the source and view are
“the same” except for parentheses and literals. What about the cases where the
source and view have mismatched shapes? For these cases, we need adaptation.
Corresponding to each branch we have already written, we add an adaptive
branch which looks at the shape of the view only, throws away a mismatched
source, and creates an incomplete one whose shape matches that of the view;
the source will be completely created through recursive processing. For example,
corresponding to the plus/addition branch, we write:

$(adaptiveSV P [[]] P [[Add]])
=⇒ λ → Plus ENull FNull

The full programs are:

pExpArith :: BiGUL Exp Arith
pExpArith = Case

[$(normalSV P [[Plus]] P [[Add]] P [[Plus]])
=⇒ $(update P [[Plus l r]] P [[Add l r]]

D[[l = pExpArith; r = pFactorArith]])
, $(normalSV P [[Minus]] P [[Sub]] P [[Minus]])

=⇒ $(update P [[Minus l r]] P [[Sub l r]]
D[[l = pExpArith; r = pFactorArith]])

, $(normalSV P [[EF]] P [[]] P [[EF]])
=⇒ $(update P [[EF t]] P [[t]]

D[[t = pFactorArith]])
, $(adaptiveSV P [[]] P [[Add]])

=⇒ λ → Plus ENull FNull
, $(adaptiveSV P [[]] P [[Sub]])

=⇒ λ → Minus ENull FNull
, $(adaptiveSV P [[]] P [[]])

=⇒ λ → EF FNull
]

pFactorArith :: BiGUL Factor Arith
pFactorArith = Case

[$(normalSV P [[Lit]] P [[Num]] P [[Lit]])
=⇒ $(update P [[Lit i]] P [[Num i]] D[[i = Replace]])

, $(normalSV P [[Neg]] P [[Sub (Num 0)]] P [[Neg]])

146 Z. Hu and H.-S. Ko

=⇒ $(update P [[Neg t]] P [[Sub (Num 0) t]] D[[t = pFactorArith]])
, $(normalSV P [[Paren]] P [[]] P [[Paren]])

=⇒ $(update P [[Paren t]] P [[t]] D[[t = pExpArith]])
, $(adaptiveSV P [[]] P [[Num]])

=⇒ λ → Lit 0
, $(adaptiveSV P [[]] P [[Sub (Num 0)]])

=⇒ λ → Neg FNull
, $(adaptiveSV P [[]] P [[]])

=⇒ λ → Paren ENull
]

8.4 Reflecting Optimizations and Evaluation Sequences

The BiGUL programs, being bidirectional, can be executed in the put direction
as a reflective printer, or in the get direction as a parser. Let us look at parsing
first. For example:

*BiYacc> get pExpArith (parseExp "(-(3+0))")
Just (Sub (Num 0) (Add (Num 3) (Num 0)))

Note that a unary minus is regarded as syntactic sugar, and is desugared into
a subtraction whose left operand is zero. Also note that parentheses are turned
into correct structure of the abstract syntax tree, and nothing more—excessive
parentheses are cleanly discarded.

For reflective printing, as we mentioned, one application is reporting what
compiler optimizations do. We can optimize the sub-expression 3 + 0 by getting
rid of the superfluous +0, for example, and the reflective printer will be able to
retain the excessive parentheses:

*BiYacc> put pExpArith (parseExp "(-(3+0))") (Sub (Num 0) (Num
3))

Just (-(3))

Notice also that the unary minus is preserved. If the original concrete expression
uses a binary minus instead, it will be preserved as well:

*BiYacc> put pExpArith (parseExp "(0-(3+0))") (Sub (Num 0) (Num
3))

Just (0-(3))

In the above example, the pair of parentheses around 3 is also preserved. This
is more a coincidence, though—if we change Sub to Add , for example, the pair
of parentheses will not be preserved:

*BiYacc> put pExpArith (parseExp "(0-(3+0))") (Add (Num 0) (Num
3))

Just (0+3)

Principles and Practice of Bidirectional Programming in BiGUL 147

This behavior is indeed what we described with our BiGUL program: the con-
crete binary minus does not match the abstract Add , so the whole concrete
expression 0-(3+0) inside the outermost pair of parentheses is discarded, and a
new concrete expression 0+3 is generated by adaptation. This behavior does not
give us “least change”, however: the pair of parentheses around 3 could have been
kept. This is one example showing that, while GetPut (no view change implies
no source change) is guaranteed by BiGUL, least-change behavior (small view
change implies small source change) is another matter completely, and requires
extra care and effort to achieve.

Another thing we can do is reflecting the steps in an evaluation sequence of
an abstract syntax tree to concrete syntax. For example, starting from:

*BiYacc> get pExpArith (parseExp "1+(2+3)")
Just (Add (Num 1) (Add (Num 2) (Num 3)))

it takes two steps to evaluate this expression:

*BiYacc> put pExpArith (parseExp "1+(2+3)") (Add (Num 1) (Num 5)
)

Just 1+(5)
*BiYacc> put pExpArith (parseExp "1+(5)") (Num 6)
Just 6

This means that if we have an evaluator on the abstract syntax, we will auto-
matically get an evaluator on the concrete syntax!

A reflective printer can also be used as an ordinary printer by setting the
original source to an empty one. For example:

*BiYacc> put pExpArith ENull (Sub (Num 0) (Add (Num 1) (Num 1)))
Just 0-(1+1)

Note that the subtraction is reflected as a binary minus instead of a unary
one, despite that the left operand is zero. This behavior is easily customizable:
By adding an adaptive branch before the one dealing generically with Sub in
pExpArith:

$(adaptiveSV P [[]] P [[Sub (Num 0)]])
=⇒ λ → EF FNull

the above abstract syntax tree can be printed as:

*BiYacc> put pExpArith ENull (Sub (Num 0) (Add (Num 1) (Num 1)))
Just 0-(1+1)

8.5 A Domain-Specific Language

As a final remark, the above programs may look long, but at the core of them
are merely the correspondences between concrete production rules and abstract
constructors. We can design a domain-specific language (DSL) that expresses

148 Z. Hu and H.-S. Ko

such correspondences concisely, and then expand programs in this DSL into
BiGUL. In fact, we have already done so, and the DSL is called BiYacc. For
example, all the programs we have written can be generated from the following
eight-line BiYacc program:

Arith +> Exp
Add l r +> (l +> Exp) '+' (r +> Factor);
Sub l r +> (l +> Exp) '-' (r +> Factor);
f +> (f +> Factor);

Arith +> Factor
Num n +> (n +> Int);
Sub (Num 0) r +> '-' (r +> Factor);
f +> '(' (f +> Exp) ')';

See our SLE 2016 paper [18] for more interesting experiments about reflective
printing, done on a more realistic imperative language.

9 Conclusion

We have given an introduction to BiGUL programming, explained the underlying
design of its putback-based language constructs, and presented a number of
applications. BiGUL in its current form is merely one step toward a versatile
bidirectional programming language, though. We conclude this chapter by laying
out some future directions.

While BiGUL is designed to ensure that programmers can freely describe
whatever consistency restoration strategies they have in mind and guarantees
that the described strategies are well-behaved, well-behavedness guarantees may
be trivial if a described strategy is not actually well-behaved and consequently
fails some dynamic checks at runtime. Working with the current BiGUL can thus
involve a lot of tedious testing to see if those dynamic checks can go through; also,
since we must keep the dynamic checks in place to ensure well-behavedness, at
runtime they can incur serious performance overheads. We need ways to precisely
characterize the behavior of the dynamic checks, so that it is possible to know
that they are redundant and can be safely skipped during execution.

Also we have observed that, as consistency relations or consistency restora-
tion strategies become more complex, BiGUL programs can quickly become awk-
ward to write and hard to read. It is also not that easy to develop reusable
libraries because BiGUL programs are not easily composable. (The only general
composition operator, namely the classical lens composition, behaves obscurely
in the putback direction and is difficult to understand in practice. A discussion of
this problem is offered by, e.g., Diskin et al. [4, Sect. 2.2].) We need to design new
language constructs that improve composability of BiGUL programs, discover
programming patterns and architectures, and eventually build reusable libraries
to facilitate program development.

Apart from language-specific issues, there are also challenges faced by the
functional programming approach to BXs in general. For one, graphs have always

Principles and Practice of Bidirectional Programming in BiGUL 149

been a kind of data structure that is hard to deal with in functional program-
ming, but the application domains of other BX sub-communities usually require
the ability to work with graphs; this is an area where BiGUL and other func-
tional programming–based languages/tools need to catch up. More fundamen-
tally, while programmable from one single direction, asymmetric lenses are a less
expressive BX formalism, and we probably should not restrict the future version
of BiGUL and new bidirectional languages to the framework of asymmetric lenses.
We should recognize that the essence of BiGUL is its full programmability of
bidirectional behavior, not the framework of asymmetric lenses which it currently
supports, and we should strive to bring this programmability into other existing
BX formalisms, or, if that is difficult, come up with new formalisms that are
designed with such programmability in mind.

Acknowledgements. We would like to thank James Cheney, Jeremy Gibbons, and,
in particular, Anthony Anjorin for their meticulous and helpful comments on this paper.
This work is supported by JSPS Grant-in-Aid for Scientific Research (A) No. 25240009
of Japan, the Nation Basic Research Program (973 Program) of China under Grant
No. 2015CB352201, and the National Natural Science Foundation of China under Grant
No. 61620106007.

References

1. Barbosa, D.M.J., Cretin, J., Foster, J.N., Greenberg, M., Pierce, B.C.: Matching
lenses: alignment and view update. In: International Conference on Functional Pro-
gramming, pp. 193–204. ACM (2010). https://doi.org/10.1145/1863543.1863572

2. Bohannon, A., Foster, J.N., Pierce, B.C., Pilkiewicz, A., Schmitt, A.: Boomerang:
resourceful lenses for string data. In: Symposium on Principles of Programming
Languages, pp. 407–419. ACM (2008). https://doi.org/10.1145/1328438.1328487

3. Bohannon, A., Pierce, B.C., Vaughan, J.A.: Relational lenses: a language for updat-
able views. In: Symposium on Principles of Database Systems, pp. 338–347. ACM
(2006). https://doi.org/10.1145/1142351.1142399

4. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations: the asymmetric case. J. Object Technol. 10(6), 6:1–6:25 (2011).
https://doi.org/10.5381/jot.2011.10.1.a6

5. Fischer, S., Hu, Z., Pacheco, H.: A clear picture of lens laws. In: Hinze, R.,
Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 215–223. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19797-5 10

6. Fischer, S., Hu, Z., Pacheco, H.: The essence of bidirectional programming. Sci.
China Inf. Sci. 58(5), 1–21 (2015). https://doi.org/10.1007/s11432-015-5316-8

7. Foster, J.: Bidirectional programming languages. Ph.D. thesis, University of Penn-
sylvania, December 2009

8. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bidirectional tree transformations: a linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst. 29(3), 17 (2007). https://doi.org/10.
1145/1232420.1232424

9. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K., Nakano, K.: Bidirectionalizing
graph transformations. In: International Conference on Functional Programming,
pp. 205–216. ACM (2010). https://doi.org/10.1145/1932681.1863573

https://doi.org/10.1145/1863543.1863572
https://doi.org/10.1145/1328438.1328487
https://doi.org/10.1145/1142351.1142399
https://doi.org/10.5381/jot.2011.10.1.a6
https://doi.org/10.1007/978-3-319-19797-5_10
https://doi.org/10.1007/s11432-015-5316-8
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1932681.1863573

150 Z. Hu and H.-S. Ko

10. Hu, Z., Pacheco, H., Fischer, S.: Validity checking of putback transformations in
bidirectional programming. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014.
LNCS, vol. 8442, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-06410-9 1

11. Ko, H.S., Zan, T., Hu, Z.: BiGUL: a formally verified core language for putback-
based bidirectional programming. In: Workshop on Partial Evaluation and Pro-
gram Manipulation, pp. 61–72. ACM (2016). https://doi.org/10.1145/2847538.
2847544

12. Matsuda, K., Hu, Z., Nakano, K., Hamana, M., Takeichi, M.: Bidirectionalization
transformation based on automatic derivation of view complement functions. In:
International Conference on Functional Programming, pp. 47–58. ACM (2007).
https://doi.org/10.1145/1291220.1291162

13. Pacheco, H., Hu, Z., Fischer, S.: Monadic combinators for “putback” style bidirec-
tional programming. In: Workshop on Partial Evaluation and Program Manipula-
tion, pp. 39–50. ACM (2014). https://doi.org/10.1145/2543728.2543737

14. Pacheco, H., Zan, T., Hu, Z.: BiFluX: a bidirectional functional update language
for XML. In: International Symposium on Principles and Practice of Declarative
Programming, pp. 147–158 (2014). https://doi.org/10.1145/2643135.2643141

15. Voigtländer, J.: Bidirectionalization for free! In: Symposium on Principles of Pro-
gramming Languages, pp. 165–176. ACM (2009). https://doi.org/10.1145/1480881.
1480904

16. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards automatic
model synchronization from model transformations. In: International Conference
on Automated Software Engineering, pp. 164–173. ACM (2007). https://doi.org/
10.1145/1321631.1321657

17. Zan, T., Liu, L., Ko, H.S., Hu, Z.: Brul: a putback-based bidirectional transforma-
tion library for updatable views. In: International Workshop on Bidirectional Trans-
formations, pp. 77–89. CEUR-WS (2016). http://ceur-ws.org/Vol-1571/paper 3.
pdf

18. Zhu, Z., Zhang, Y., Ko, H.S., Martins, P., Saraiva, J., Hu, Z.: Parsing and reflec-
tive printing, bidirectionally. In: International Conference on Software Language
Engineering, pp. 2–14. ACM (2016). https://doi.org/10.1145/2997364.2997369

https://doi.org/10.1007/978-3-319-06410-9_1
https://doi.org/10.1007/978-3-319-06410-9_1
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1145/2847538.2847544
https://doi.org/10.1145/1291220.1291162
https://doi.org/10.1145/2543728.2543737
https://doi.org/10.1145/2643135.2643141
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1480881.1480904
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1145/1321631.1321657
http://ceur-ws.org/Vol-1571/paper_3.pdf
http://ceur-ws.org/Vol-1571/paper_3.pdf
https://doi.org/10.1145/2997364.2997369

Engineering Bidirectional
Transformations

Richard F. Paige(B)

Department of Computer Science, University of York, York, UK
richard.paige@york.ac.uk

Abstract. Bidirectional transformations, like software, need to be care-
fully engineered in order to provide guarantees about their correctness,
completeness, acceptability and usability. This paper summarises a col-
lection of lectures pertaining to engineering bidirectional transforma-
tions using Model-Driven Engineering techniques and technologies. It
focuses on stages of a typical engineering lifecycle, starting with require-
ments and progressing to implementation and verification. It summarises
Model-Driven Engineering approaches to capturing requirements, archi-
tectures and designs for bidirectional transformations, and suggests an
approach for verification as well. It concludes by describing some chal-
lenges for future research into engineering bidirectional transformations.

1 Introduction

This paper constitutes the notes for a set of lectures on a collection of techniques
and tools that can be used for engineering bidirectional transformations (BX).
The motivation for these lectures is our view that transformations in general –
and BX in the specific – are like other software systems: they are designed to
be executed on a machine, are complicated (they involve many components that
interact in a variety of ways), are in some cases complex (they exhibit behaviour
that cannot be directly predicted from the behaviour of the individual parts),
and are difficult to build correctly. As such, like software, transformations should
be engineered by following a rigorous process. The advantages of doing so are
the same as for software, including:

– Repeatability: by following a process, we potentially make it easier for others
to repeat our work, or to reduce the amount of effort required to build a
similar system in the future.

– Review and Scale: by decomposing a large engineering problem into stages, we
potentially make it easier to audit and validate the results of each stage, and
to solve larger problems than we would be able to if we treated the problem
monolithically.

– Automation: by following a process we have greater opportunities to automate
parts of it, e.g., generation of code or documents.

– Training: by following and documenting a rigorous engineering process we
may make it easier to train others.

c© Springer International Publishing AG, part of Springer Nature 2018
J. Gibbons and P. Stevens (Eds.): Bidirectional Transformations, LNCS 9715, pp. 151–187, 2018.
https://doi.org/10.1007/978-3-319-79108-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79108-1_5&domain=pdf
http://orcid.org/0000-0002-1978-9852

152 R. F. Paige

BX are special kinds of transformations with, in our opinion, complicated exe-
cution semantics. As such, BX may especially benefit from following a repeat-
able, reviewable, scalable, automated process with training/guidance, for their
development.

1.1 BX as Software

The assumption that we are making in the preceding is that BX are software
systems. A software system is an executable artefact: given a specification of
software (e.g., in a programming language or suitable modelling language), its
expected outputs can be produced by executing the specification on a suitable
machine (e.g., a server, a virtual machine, a simulator). A BX is an executable
artefact: assuming that the BX is expressed in a suitable programming language
or modelling language (and we review some of the key state of the art in Sect. 2)
then its expected outputs can be produced by executing the BX on a suitable
machine.

Like software, BX must satisfy functional and non-functional requirements,
can (and probably should) be designed, and can exhibit unacceptable behaviour
– that is, BX can contain faults, which may lead to failures. As we will see,
depending on the technologies used to represent and specify BX, different types
of failures may arise (e.g., inconsistencies) and different techniques may be used
to verify the BX to help ensure that faults are caught during engineering. As we
become increasingly ambitious in our attempts to solve complex problems using
BX, our need for rigorous engineering techniques for BX construction will only
increase.

1.2 Scope

There are numerous techniques and approaches that can be used to build and
engineer BX; in Sect. 2 we will consider some of these. However, the focus of
this paper will be on Model-Driven Engineering (MDE) techniques. Many of the
techniques that we present in later sections can be used both with and without
MDE tools, and if there are particular aspects that depend specifically on MDE,
we will point these out where such a dependence isn’t clear.

1.3 Background

Before we commence with the technical content of this paper, we provide some
basic definitions and terminology, in order that the paper remain reasonably
self-contained.

As mentioned, we are focusing on Model-Driven Engineering techniques for
engineering BX. The key concepts of MDE are as follows.

– MDE involves the semi-automated construction and manipulation of models,
which are structured, machine-implemented specifications of phenomena of
interest. Models are meant to be processable by automated tools, and capture
static and dynamic characteristics of systems.

Engineering Bidirectional Transformations 153

– Models in MDE are structured ; this structure can be defined in a number of
ways, primarily via metamodels, which are specifications of abstract syntax
(you can think of a metamodel as the definition of the abstract syntax of a
language).
A model is said to conform to a metamodel. Related approaches to defining
the structure of models include schemas (e.g., XML), type rules and con-
straints. Many of these approaches define structure using graphs or graph-like
concepts. As such, models themselves are often (but not exclusively) graphs.
This is a key distinction between MDE (and so-called modelware approaches
to engineering), and grammar-based (or grammarware) approaches.

– Models are typically specified alongside a set of constraints that capture well-
formedness rules that cannot normally be specified with a metamodel. For
example, a metamodel might be used to express that a model may include
containers, and that containers may be nested (e.g., packages in UML). But
a metamodel – which captures abstract syntax – will not normally express
that containers have unique names. This can be expressed by a separate
constraint, which is normally packaged up with the metamodel or models. If
a model conforms to a metamodel, it must also normally be checked against
any constraints, in order to establish that it is well formed.

– Standard technologies exist for capturing models, metamodels and constraints
in the MDE world. The de facto standard technology used for metamodelling
is Ecore (a part of the Eclipse Modelling Framework (EMF)). For constraints,
engineers typically use the Object Constraint Language (OCL), which also has
an official Eclipse implementation. There are other languages and technologies
available as well for metamodelling and for expressing constraints.

– Models by themselves typically encapsulate business value, but are also meant
to be processed by automated tools. These tools implement a variety of oper-
ations applicable to models, including the aforementioned transformations,
but also comparisons, merging, migration, matching and others.

Transformations are a key operation in MDE, and have been the subject of
widespread study (e.g., see recent proceedings of the long-running conference
on model transformation [1]). Numerous classifications and surveys have been
published on transformations in general, and BX in the specific. Four common
categories of transformations in MDE are:

– Unidirectional transformations, from a source model to a target model. Such
transformations are usually implemented in terms of metamodels, and are
typically used when the source and target metamodel are linguistically simi-
lar, e.g., between different dialects of UML, or from an object-oriented model
to a relational database model. Unidirectional transformations typically are
written in one of three styles: purely declarative, operational, and hybrid (i.e.,
a mixture of operational and declaration parts). In our experience, many com-
plicated transformations are very difficult to express in a purely declarative
style. As such, hybrid transformation languages (such as ATL [2] and ETL
[3]) tend to see the most use in industrial practice.

154 R. F. Paige

– Update-in-place transformations, which specify modifications made to one
and only one model. Update-in-place transformations can be specified using
languages suitable for unidirectional transformations, or specialist languages
such as EWL [4].

– Model-to-text (sometimes called model-to-grammar) transformations, where
the source/input to the transformation is a model, but the output no longer
conforms to a metamodel, e.g., free-form text or text conforming to a gram-
mar. Model-to-text transformations are used in order to step outside of the
modelware technical space and move to the grammarware technical space. An
example scenario for use of model-to-text transformation is code generation.

– Bidirectional transformations, which is the subject of the next section.

Transformations (and other operations on models) have side-effects. This
includes purely declarative transformations. The side-effect in question is the
production of traceability information, i.e., so-called trace-links, which relate
source and target model elements. Trace-links can be generated automatically by
transformation tools (such as Epsilon or ATL) and they can be stored for later
audit and analysis. Trace-links are important in the context of transformations
and BX as they provide (a) the basis for verification and validation of trans-
formations; and (b) the connection to the theory behind BX, specifically delta
lenses (in particular, delta lenses are a sound theory for trace models, encoded
in an algebraic form [5]).

1.4 Structure

We start with a brief review of the state-of-the-art in engineering BX with MDE,
focusing firstly on BX scenarios of use in MDE, followed by an overview of
MDE languages, tools and techniques for supporting BX. The remainder of the
paper considers different aspects of a BX engineering lifecycle, starting with an
overview of techniques for requirements engineering for BX, focusing on require-
ments specification and requirements analysis. We then move to an overview of
techniques for architecture and design of BX, including a small selection of rel-
evant design patterns. Finally, we briefly consider one approach for verification
of BX, which applies to a specific approach to BX implementation and design.
The paper concludes with a discussion on future challenges and perspectives on
engineering of BX.

2 State of the Art

This section addresses some of the important state of the art in MDE approaches
to BX, focusing on three specific elements: important BX scenarios that have
been identified in the literature; important languages that have been influential
in research in BX – in this case, we focus on QVT; and important tools that
implement aspects of BX and that are based on MDE technology. We do not
consider non-MDE approaches to BX in this brief review, and we also exclude
TGG approaches because these are covered in detail by Anjorin’s chapter [6] in
this volume.

Engineering Bidirectional Transformations 155

2.1 BX Scenarios

A number of recurring scenarios of use for BX have appeared in the MDE liter-
ature. Many of the MDE tools and languages that we discuss in the sequel have
been designed to address these scenarios.

1. Round-trip engineering, i.e., generating code from models, modifying the code
by hand, and then regenerating the models to reflect changes made in the
code. A BX approach would, conceptually, aim to apply the principle of least
change and minimise the number of modifications necessary to the original
model, instead of regenerating the entire model after each change. Research in
MDE related to incremental transformation is also addressing this scenario.

2. Collaborative modelling, wherein multiple stakeholders are editing the same
model simultaneously. In practice, what often happens is that each stake-
holder has a local copy (or view) of the source model, and their changes are
reflected back on the master/source copy at specified points of time.

3. Synchronisation, e.g., synchronising documents and code, like assurance cases
and source code. This is related to round-trip engineering but synchronisation
can involve model management operations other than transformations.

4. Reflection, for example, reflecting the results of some kind of analysis on a
source model. A concrete instance of this was investigated in the MADES
project1 where a UML MARTE model was transformed into a variety of
formal models (UPPAAL, TRIO) to support analysis, and some of the results
of the analysis were reflected in the MARTE models. This is an interesting
example of a BX as the backwards transformation is generating a view of the
target model which needs to be synchronised with the source model.

2.2 Standard MDE Languages for BX: QVT

While there are tools and approaches, based on MDE technology (like Eclipse
EMF) for supporting BX, most of these approaches are strongly influenced by
a significant standardised language for transformation: the OMG’s Query, View
and Transformations (QVT) standard [7]. QVT is a family of languages that
were first envisaged in 2002 upon issue of an OMG request for proposals to
support aspects of the OMG’s Model-Driven Architecture standard. A number
of replies were received, and the first version was submitted and approved in
2005. The most recent version, QVT 1.3, was released in June 2016.

QVT, as mentioned, is a family of languages. These languages are meant
to support transformation and querying of MOF models; transformations and
queries can be used in turn to generate views. The basic architecture of QVT
is illustrated in Fig. 1. The QVT architecture builds on other OMG languages,
particularly MOF but also the Object Constraint Language (OCL), from which
QVT acquires its expression and collection manipulation facilities.

The Relations language provides mechanisms for the declarative specification
of the relationships between MOF models. It supports in turn complex object
1 http://www.mades-project.org/.

http://www.mades-project.org/

156 R. F. Paige

Fig. 1. QVT architecture [7]

pattern matching, and implicitly creates trace classes and their instances to
record what occurred during the execution of a transformation. Assertions can
also be made; for instance, relations can assert that other relations also hold
between particular model elements matched by their patterns. As illustrated in
the figure, the intention is that Relations specifications can be translated in to
the QVT Core language, along with a set of trace models, which in total provide
a formal semantics for QVT Relations. Though this is the intention of Relations,
it has been shown – e.g., by Stevens [8] – that there are programs that can be
expressed in Relations that cannot be translated to Core.

QVT Core, by contrast, is a small yet expressive language that only supports
pattern matching over a flat set of variables by evaluating conditions over those
variables against a set of models. It is intended to be semantically equivalent to
QVT Relations, but equivalent QVT Relations programs are liable to be more
concise than the QVT Core programs.

The Operational Mappings (sometimes called QVT Operations, or QVT-o)
is an operational model transformation language that extends Relations with
imperative constructs. Of all the QVT languages, it is QVT-o that has received
the most use and attention.

The abstract syntax of the Relations language is illustrated in Fig. 2. The
abstract syntax can be interpreted as follows: a QVT Relations program contains
a set of rules which are relations. Relations are made up of patterns, and are
applied to a set of typed model parameters. In particular, these relations can
be interpreted in forward and backwards directions – that is, Relations is a BX
language by design.

An example of the concrete syntax of Relations is shown in Listing 1.1. This
example gives a relation that is part of the classic object-relational mapping, in
this case used to map persistent classes in an object oriented program to a table.
The example includes three parts: a domain (a set of patterns which defines the
variables and constraints that model elements bound to those variables must sat-
isfy – i.e., the bindings for the relation); the when clause (the conditions under
which the relation must hold); and the where clause (the condition that must be
satisfied by all model elements participating in the relation). The interpretation
of when-clauses in the Eclipse QVT implementation is that these are precondi-
tions, and where-clause are postconditions. Both of these clauses may contain
arbitrary OCL expressions.

Engineering Bidirectional Transformations 157

Fig. 2. QVT Relations abstract syntax

In this particular example, the domain clauses establish which model ele-
ments in a UML and a RDBMS model are of interest (they satisfy the predicate
part of the domain clauses), and the when and where clauses are defined else-
where by other relations.

The BX capabilities of QVT can also be illustrated by an example from QVT
Core. Figure 3 illustrates an example of a single mapping rule in QVT Core. This
is a checking example, which is used to check that particular patterns are satisfied
by models. Once again, this is an example involving relations between a UML
class model and a database model. The top part of the diagram (labelled Class
to Table) defines the c2t relation, which relates a class to a table. The bottom
pattern is evaluated using variable values of a valid binding (a valid pair of class
and table) from the top pattern. In effect, the top part of the mapping rule
defines a guard which restricts the scope of the bottom part of the rule.

relation ClassToTable /* map persistent class to table */

{

domain uml c:Class {

namespace = p:Package {},

kind = ’Persistent ’,

name = cn

}

domain rdbms t: Table {

schema = s:Schema {},

158 R. F. Paige

name = cn,

column = cl:Column {

name = cn + ’_tid ’,

type = ’NUMBER ’},

primaryKey = k:PrimaryKey {

name = cn + ’_pk ’,

column = cl }

}

when {

PackageToSchema(p,s);

}

where {

AttributeToColumn(c,t);

}

}

Listing 1.1. An example of QVT Relations

Fig. 3. QVT Core: mapping rule example

The mapping rule is directionless; it can be executed either way, i.e., checking
a database table against a UML class, or checking a UML class against a database
table.

The QVT standard is currently being further developed, both through the
OMG standardisation efforts, but also through work on Eclipse QVT, an imple-
mentation of the different QVT languages. We briefly discuss the status of Eclipse
QVT, and other MDE tools for BX, in the next subsection.

2.3 Tools

In this section we briefly outline some of the key tools, based on MDE technolo-
gies and principles, that either support or claim to support BX. As mentioned
earlier, we exclude approaches based on triple graph grammars as these are cov-
ered elsewhere.

Engineering Bidirectional Transformations 159

Medini. Medini2 claims to be a reasonably complete implementation of QVT
Relations, but is currently unsupported. It is an EMF based transformation
engine but also has a non-commercial licensed editor and debugger. While it
uses the QVT Relations syntax, it intentionally departs from the semantics of
the OMG standard (e.g., how it supports deletion of elements, that it does
not provide a checkonly mode). As such, we prefer not to label Medini as an
implementation of QVT, but as a tool that is inspired by QVT.

ModelMorf. ModelMorf is a proprietary tool from Tata Consulting Services3.
It also claims to faithfully implement the QVT Relations standard, but research
by Stevens [8] shows that it does not fully implement the semantics specified in
the standard. By some measures, it is more faithful than Medini, but it is still
not a full implementation of QVT.

JQVT. jQVT4 is a QVT-like engine that is defined on top of the Java type
system instead of using EMF. In turn, it uses Xbase (a partial programming
language written in Xtext which compiles to Java and includes powerful features
such as closures) instead of OCL for expressions. In essence, jQVT is a Java
embedding of QVT; the jQVT engine generates native Java code from jQVT
scripts. Of note is that it does provide support for bidirectional transformations.
As of early 2016 jQVT was still being maintained.

Echo. Echo5 is an open-source EMF-based tool for model repair and transfor-
mation that exploits the Alloy model finder to determine models that satisfy
relations. It provides an implementation of the QVT Relations syntax, but the
semantics intentionally departs from the OMG specification. Echo is also bidi-
rectional.

JTL. The Janus Transformation Language (JTL)6 is a by-design bidirectional
language with a QVT-like syntax, which propagates changes made in one model
to the other. If a change made to one model makes the second model inconsistent,
an approximation (“closest match”) is calculated using answer set programming.
As such, there can be several solutions to a transformation problem and the
results provided by JTL may need to be constrained further.

Eclipse QVT. Substantial engineering effort is being put into the development
of Eclipse QVT, a project that aims to support the full OMG QVT specification

2 http://projects.ikv.de/qvt/wiki.
3 Archived copy available at https://web.archive.org/web/20120323171429/http://
www.tcs-trddc.com/trddc website/ModelMorf/ModelMorf.htm.

4 https://sourceforge.net/projects/jqvt/.
5 http://haslab.github.io/echo/.
6 http://jtl.di.univaq.it/.

http://projects.ikv.de/qvt/wiki
https://web.archive.org/web/20120323171429/http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
https://web.archive.org/web/20120323171429/http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
https://sourceforge.net/projects/jqvt/
http://haslab.github.io/echo/
http://jtl.di.univaq.it/

160 R. F. Paige

(though with Ecore instead of MOF models). Currently, QVT Operations is well
supported and active as part of the Eclipse M2M project. QVT Relations (in
Eclipse terms, QVT Declarative) and QVT Core are work-in-progress. As work
on these projects is ongoing and their status is changing regularly, we refer the
reader to the Eclipse MMT project website7 for the latest information. As of
this writing, the intention with Eclipse QVT is that the Oxygen release in June
2017 will provide full support for QVT Relations.

Bidirectionalisation. There have been several approaches to so-called bidirec-
tionalisation of transformations. In these approaches, a forward transformation
(from source to target) is written and the backward transformation is calculated
or computed automatically. Examples of this approach include that of Hoisl [9].
The GRoundTram approach of Sasano [10] is another example.

For further details, and a more in-depth classification of MDE approaches
to BX, the interested reader is referred to Hidaka et al.’s excellent survey of
BX [11].

3 Requirements Engineering for BX

In this section we will consider techniques and tools for requirements engineering
for BX. We will motivate the benefits of considering requirements for BX in
general, before discussing some of the general questions to be addressed when
building a BX. These questions will help us motivate a discussion on the general
properties of BX (which may be the source of constraints on requirements for a
BX), as well as examples of functional and non-functional requirements for BX.
This is followed by a broad overview of requirements engineering processes for
BX, which leads in to a discussion on MDE languages suitable for requirements
engineering for BX.

3.1 Motivation

Requirements engineering is the process of identifying, documenting and main-
taining requirements in systems engineering. The typical tasks involved in
requirements engineering are:

– identification: where new requirements to address a problem are clarified
– analysis: where the requirements are assessed to ensure they accurately cap-

ture what is needed for the system under consideration, and conflicts between
stakeholders are resolved

– specification: where the requirements are documented in a precise (but not
necessarily formal) way

– validation: where the requirements are checked to ensure they are consistent
and address stakeholder needs

7 https://projects.eclipse.org/projects/modeling.mmt.

https://projects.eclipse.org/projects/modeling.mmt

Engineering Bidirectional Transformations 161

– maintenance: where the requirements are considered for update as the system
under consideration is constructed, deployed and changed.

BX are software systems and as such will benefit from a clear understanding of
requirements; for large or complicated BX, there may be benefits to following a
rigorous requirements engineering process as well. In particular, an understand-
ing of requirements for BX can help in mapping BX problems to tools that are
suitable for implementation (and vice versa). An understanding of requirements
for BX can also help in contrasting different potential solutions in terms of their
tradeoffs in how they satisfy requirements.

3.2 Questions and Properties for BX

A typical first phase of requirements engineering is identification, where engineers
attempt to determine what requirements a software system should exhibit. This
in turn may help determine properties or constraints that the ultimate system
will satisfy. There are numerous ways in which requirements can be identified,
e.g., via stakeholder interview, by reviewing existing similar systems, by follow-
ing questionnaires or checklists, or by using testing techniques to derive require-
ments. Based on Tehrani et al.’s work [12], we suggest some general questions
that could be addressed when constructing a BX, the answers to which could
help derive requirements.

1. What needs to be transformed into what? Alternatively – and declaratively
– what kind of consistency needs to be maintained?

2. What mechanisms can be used for building the BX? (i.e., theory, tools,
techniques)

3. What are the application domains for the BX?
4. What are the specific characteristics of the BX (e.g, what patterns are appro-

priate to use)?
5. What are the quality requirements (e.g., performance) for the BX?
6. What are the success criteria for the BX?

Questions 3, 4 and 6 are possibly the most opaque. Question 3 is designed to help
identify constraints on the scope of use for the BX, e.g., will the BX be used in
developing hard real-time systems, or interactive systems? Question 4 is designed
to help identify functional requirements, e.g., should the BX be parameterised,
should it be interactive? This in turn may help identify suitable patterns that
can be used in specifying or designing the BX. Question 6 is the “stopping
condition”: how will we know if we have successfully solved the BX problem?

BX exhibit various properties (such as least-change, or determinism). When
considering requirements for a BX, there are general properties that may be
of interest, particularly in determining constraints that the ultimate BX must
satisfy. Some examples are:

– Size: is the BX small (e.g., a single reversible refactoring) or large (e.g., a
reversible code generator)?

162 R. F. Paige

– Level of automation: is the BX meant to be fully automated, or involve a
human-in-the-loop?

– Visualisation: how is the BX, the results of executing the BX, and the input
to the BX presented to users?

– Level of industry application: to what extent is the BX to be deployed in an
industrial context?

– Maturity level: should the BX be implemented in a tool? Should the BX be
a theoretical construct?

Understanding the relative importance of these properties will be helpful in
deciding on what theory or tool to choose for defining a BX.

3.3 Functional and Non-functional Requirements

In the classical requirements engineering literature, functional requirements spec-
ify what a system must, could or should provide. Non-functional (or behavioural)
requirements specify criteria against which we can judge the quality of a sys-
tem. In a requirements document, functional and non-functional requirements
are typically presented separately, with suitable tests given that can be used to
assess the coverage and completeness of fulfilment of requirements.

There has been little published research on examples of requirements for
transformations in general, let alone BX, but based on some of [12,13] we can pro-
pose some examples for BX. We start with functional requirements. For simplic-
ity of presentation, we assume that a BX under development is defined between
two models (a source and a target).

– Correctness: a BX that is correct will restore consistency between inconsis-
tent models after its execution. Operationally, when the BX is run in the
forward direction, the target model must be well formed (defined in terms
of conformance to the target metamodel and any corresponding constraints).
Similarly, when the BX is run in the reverse direction, the source model must
be well formed. It is interesting to observe that the terminology used in the
BX community for correctness differs from that used in the requirements
engineering community.

– Inconsistency tolerance: the BX should be able to support incomplete or
inconsistent models, e.g., temporarily inconsistent models. This reflects the
practical situation wherein a BX gradually re-establishes consistency over a
sequence of steps.

– Modularity: it should be possible to compose BX into new transformations.
– Traceability: a BX should support the generation of trace-links (sometimes

called a correspondence model) between source and target models, as well as
between the steps of a transformation chain.

– Change propagation: a BX should provide support for propagating changes
from one model to the other model.

– Incrementality: a BX should make it possible to update a model based only
on the changes made to the other model (that is, the parts of the model that
do not change are not used to make changes to the other model).

Engineering Bidirectional Transformations 163

– Uniqueness: a BX could support the ability to generate a unique solution to
the problem of ensuring consistency between two models.

– Termination: it should be possible to support the definition of terminating
BX transformation executions.

– Style: a BX should be expressible in a particular style, i.e., declarative, oper-
ational or hybrid.

Note the wording of these requirements; we have used the words must, should
and could to indicate the degree of importance or criticality of each type of
requirement. As this suggests – and as is reinforced by [11] – there is substantial
variability in what BX provide (and also how they are implemented).

Non-functional requirements, recall, specify criteria against which we can
judge the quality of a BX. As is the case for functional requirements for BX,
there is limited research on non-functional requirements. Some examples have
been proposed by [13], and we list a selection here.

– Extensibility : the extent to which the BX can be extended to support new
functional requirements or a change in scope.

– Usability : is the BX judged to be usable by stakeholders?
– Robustness: can the BX manage invalid models (i.e., that do not conform to

the metamodels involved in the BX), or deal with errors in models?
– Interoperability : can the BX be combined and used together with non-BX

tools (e.g., other MDE tools and operations, such as model comparisons or
mergings)?

Clearly, more research on requirements for BX is needed. As our experience
with building BX grows, and our understanding of what constitutes a useful BX
scenario increases, our ability to elaborate sensible functional and non-functional
requirements for BX will improve.

3.4 Requirements Engineering Processes for BX

In this section we outline typical stages of a requirements engineering process for
BX and highlight the key artefacts and stakeholders that will be involved. We
discuss elicitation in some detail, and evaluation briefly. This leads in to the next
section where we give an overview of some of the key specification techniques
that can be used within a requirements engineering process for BX.

Typical requirements engineering literature [14], identifies the following
generic phases in requirements engineering:

– Domain analysis and elicitation: Identify who are your stakeholders. From
these stakeholders, gather information on the system domain and system
requirements.

– Evaluation and negotiation: Identify imprecision, conflicts, omissions and
redundancies in the informal requirements identified in the previous phase.
Resolve these (if possible and appropriate) via negotiation and consultation.

164 R. F. Paige

– Specification: Document the formal requirements in a specification (we will
consider this for BX in more detail later). The specification is often the basis
for a contract between developers and customers.

– Validation and Verification: Check the specification for consistency, complete-
ness and acceptability to stakeholders.

This is generic, applicable to any kind of software or systems engineering.
What might a requirements engineering process for BX look like? Tehrani et al.
[12] propose a process for transformations, which is depicted in Fig. 4.

Fig. 4. A transformation requirements engineering process [12]

(It is worth emphasising that the process shown in Fig. 4 is for transforma-
tions in general, not specifically for BX.) There are some points to note about
the above process.

– The process is generic for the most part, and resembles the steps that are
typically carried out for software systems.

– An interesting aspect is the use of scenarios as a concrete mechanism for
driving the development of a requirements specification. In the context of
BX this suggests that identifying and capturing more (and more detailed)
BX scenarios will be very helpful in improving our understanding of BX
requirements engineering.

– The process distinguishes between local and global requirements, as is often
done in systems engineering. A local requirement may pertain to a particular
transformation component (e.g., that correspondences are defined between
elements of particular types), whereas a global requirement may apply to an
entire transformation (e.g., a performance requirement, that a measure of
complexity is reduced by running a BX, or a safety requirement).

3.5 Elicitation

Elicitation is an important first step in any requirements engineering process.
What techniques might be applicable for BX? Many of the traditional elicitation
techniques appear to be directly applicable to BX problems with little change,

Engineering Bidirectional Transformations 165

as argued by Tehrani et al. [12]. For example, a classic elicitation technique is
observation (an ethnographic method): observing an existing – possibly manual
– BX technique or process could provide sensible requirements for an auto-
mated process. Consider a scenario wherein a BX is to be defined between an
Excel spreadsheet and a SysML requirements diagram8. A manual BX process
between the two might involve (a) making changes to cells in an Excel column;
(b) switching to a SysML editor; and (c) modifying attributes in a SysML class
model. This might indicate to a requirements engineer that there is a sequence
of steps that should be implemented in a BX.

Another technique that can be used for elicitation is the unstructured inter-
view, where open-ended questions are asked about the problem domain or the
current (BX) process. This can be useful for identifying transformation goals,
e.g., “ensure that the source and target models are inconsistent for no more than
10 ms”. In carrying out an unstructured interview regarding a transformation,
Tehrani [12] suggests some generic open-ended questions that may be useful to
consider; we have extended their questions with some of our own, based on our
experience in the MONDO project9.

– Is there a size range for the source and target models? This may suggest to
the engineer the type of infrastructure that may be useful for the project
(e.g., EMF to represent models).

– Does the encoding for the BX matter? For example, for very large scale models
it may be necessary to consider binary formats.

– Are there any assumptions that are made about the source or target models?
For example, are they always available? Are they read-only? Write-only? Are
there confidentiality restrictions?

Along with unstructured interviews there are structured interviews, which
involve asking pre-selected questions about the domain and the BX, perhaps
based around a checklist linked to a requirements pattern catalogue. For exam-
ple, a checklist of questions may be divided into parts, one focusing on questions
related to global functional requirements (e.g., is hippocraticness important, is
semantics preservation important?) and another related to local non-functional
requirements (e.g., should this rule satisfy a specific time bound?).

A final elicitation technique that we mention is scenario-based analysis, where
scenarios are used to capture different requirements transformation processing
cases. The benefit of using scenarios is that they are concrete: scenarios are usu-
ally presented in a concrete scenario language, often supplemented with sketches
of sample models. For example, for BX we might specify a scenario for intro-
ducing or removing a pattern to change an object-oriented design. The forward
transformation scenario could include a concrete example of introducing the
pattern into an existing design.

8 This is a sanitised version of a real problem encountered by the author.
9 http://www.mondo-project.org/.

http://www.mondo-project.org/

166 R. F. Paige

3.6 Evaluation

Once we have elicited requirements for BX through any of the techniques
described previously, we have a set of informal statements of what the BX must
or should provide. These statements may be inconsistent, and ideally we should
be identify this before we formalise the BX requirements in a specification. There
is little to no published research on evaluation techniques for BX requirements.
We may find some inspiration in the general requirements engineering literature.
For example, one approach used for requirements evaluation is prototyping, i.e.,
engineers build a prototype (paper, mock-up, simulation) of a solution in order
to help identify or reconcile inconsistencies. It is unclear whether the expense of
building a BX prototype is less than building a BX in the first place (because, for
example, a BX prototype could be constructed using standard BX tools, or could
be constructed as a paper prototype). Another approach that is sometimes used
is goal-oriented analysis, but it is as of yet unclear how goal-oriented techniques
apply to the definition of BX. There are significant open questions relating to
how we evaluate requirements for BX.

3.7 MDE Languages for Requirements Engineering for BX

In this section we move from a mostly abstract discussion on requirements engi-
neering for BX and focus on the more concrete topic of languages that can be
used to support requirements engineering for BX. There has been some work in
this area – i.e., on different MDE languages and tools for specifying transfor-
mation requirements – though there is still very limited experience of specifying
requirements for BX in the specific. Here, we will focus on presenting details of
one approach – transML – which is a family of languages that can be used for
engineering model transformations. transML can, as we will show, be used to
specify different aspects of the requirements for a BX. We will also use transML
in the next section to specify different facets of the architecture and design of
a BX. For an alternative approach to specifying requirements for transforma-
tions, based on mind-maps, the interested reader is referred to the DSL-Maps
approach [15].

transML [16], by way of introduction, is a family of MDE languages to sup-
port the lifecycle of transformation development, from requirements through to
implementation. It is technology agnostic, and can be used with any transforma-
tion implementation language (there is published experience of using transML
with QVT, EOL, ETL and ATL [16]). The overall architecture of transML –
that is, the set of languages and their inter-relationships – is depicted in Fig. 5.
The parts of transML relevant to this section are the Requirements language (at
the top) and the languages to support Analysis (Simple Scenarios and Formal
Specification).

We focus on the requirements language and those languages of transML that
support analysis in this section. The former is used primarily to support the
description of the results of elicitation. The latter are used to support detailed
specification.

Engineering Bidirectional Transformations 167

Fig. 5. transML architecture; boxes represent languages (or sets of languages) and
arrows represent dependencies, typically traceability links [16]

To support description of the results of elicitation, transML provides a dia-
grammatic representation of (BX) requirements that is derived from SysML
requirements diagrams. Such representations can be produced using any of the
aforementioned techniques for elicitation. Because transML is an MDE language,
it is defined using metamodels. The transML requirements metamodel is shown
in Fig. 6.

The requirements metamodel is very simple, but defines an expressive
requirements language for BX. The language explicitly supports hierarchical
decomposition of requirements, as well as classification, refinement, and trace-
ability. Of particular note is the ReqSource element, which identifies where
a requirement arises, i.e., in the source of a transformation, the target of
a transformation, or from the transformation itself (it is generated by the
transformation).

We illustrate the requirements metamodel with two examples, the first from
Guerra et al. [16] which shows an example requirements model for a unidi-
rectional transformation (Fig. 7), and the second which shows an example for
a BX (Fig. 8). In both cases, the examples involve transformations from and
between object-oriented and database models. We observe that different con-
crete syntaxes are used in each example. The first concrete syntax is based on
SysML, whereas the second is a box-and-arrow domain-specific requirements
language which makes use of elements of UML (particularly dependencies and
stereotypes).

The top-level requirement (OO2DB Transformation) in Fig. 7 is decom-
posed into the set of requirements below (i.e., No Redefined Attributes, Classes,

168 R. F. Paige

Fig. 6. transML requirements metamodel [16]

Fig. 7. transML requirements model example (SysML-like concrete syntax) [16]

Features). The Features requirement is further decomposed in the last level of the
diagram. Note that derived requirements are also noted, i.e., that the Inherited
Attributes requirement is derived from the Single-Val-Attributes and Multi-Val-
Attributes requirements.

The example in Fig. 8 illustrates a requirements specification for a BX. It has
a similar structure to the previous example for a unidirectional transformation.

Engineering Bidirectional Transformations 169

Fig. 8. transML requirements model example (box-and-arrow concrete syntax)

The main difference is in the expression of the individual requirements, which
are expressed in terms of consistency relationships rather than transformation
features.

Both of these examples are informal, in the sense that they rely substantially
on natural language, and are the result of applying elicitation techniques; they
may contain imprecision or inconsistencies, which may be resolved by analy-
sis. transML supports two sets of languages for requirements analysis: a simple
scenario language, and a formal specification language for requirements.

The simple scenario language of transML supports description of concrete
cases for transformation, i.e., how examples are meant to be related by the BX.
transML is applicable to both models or fragments of models, the latter of which
is essential for incremental development and for working with large monolithic
models. An example of a transformation case (i.e., a scenario) for part of an
object-oriented to database BX is shown in Fig. 9.

On the left side of the example is the object-oriented model fragment, consist-
ing of a class with a multi-valued attribute; on the right side is a database model
fragment, consisting of two tables containing columns and foreign keys. This is
an example of a BX scenario involving a class with a multi-valued attribute and
a consistent database model that resolves the multi-valued aspect using a foreign
key (there are other solutions).

The second transML language for requirements analysis supports formal
specification of requirements; it is used to specify what a transformation has
to do. It captures correctness properties and specifies restrictions on the mod-
els involved in the BX (for example, the consistency relations specified in the
BX may only be applicable when the source or target models obey various con-
straints). The transML formal specification language supports all of this via use
of declarative patterns, a concept taken from triple graph grammars. Patterns
express allowed and permitted relations between elements from the involved
models. The pattern language itself is expressive and can include conditions on
attribute values as well as constraints.

170 R. F. Paige

Fig. 9. transML scenario (example case) [16]

The metamodel for the transML formal specification language for require-
ments is depicted in Fig. 10.

Fig. 10. transML formal specification language metamodel [16]

A requirements specification (the Specification element in Fig. 10) is made up
of a number of patterns. A pattern may be a positive or a negative precondition,
which are similar to both the when-clauses of QVT Relations, as well as triple
graph grammar’s negative application conditions. The Constraint Triple Graph
element encodes these clauses, and also include correspondence graphs (which is
effectively traceability information) as well as links to source and target graphs.

An example of a pattern for a BX is shown in Fig. 11.

Engineering Bidirectional Transformations 171

Fig. 11. transML example pattern [16]

The example pattern is, once again, taken from the object-oriented to
database BX example that we have used several times before. In this example,
the left side of the diagram is a negative pattern: it checks for the existence of
two classes c and p such that p is an ancestor or c, while both have an attribute
with the same name (X). On the right is a positive pattern: it expresses the
inherited attribute property (in this case, the inherited attribute named X is
mapped into two columns in the database model). More detailed examples of
patterns and specifications can be found in the paper on transML [16].

In the next section we consider the next phases of the BX engineering life-
cycle, focusing on architecture and design; we will explore further aspects of
transML for supporting these phases.

4 Architecture and Design

In this section we motivate and present the flavour of an approach for developing
the architecture and design of a BX, including MDE languages that can be
used to capture detailed designs of BX, as well as techniques for expressing and
applying design patterns for BX. What we present here builds on the techniques
introduced in the last section, where we used transML to capture requirements
for BX. We omit an end-to-end example, instead aiming to focus on touching on
a variety of techniques that can be used to engineer BX solutions.

As discussed earlier, large and complicated BX are similar to large and com-
plicated software systems: they involve many parts (e.g., transformation compo-
nents, rules) with complicated inter-relationships and dependencies. Many BX
have sophisticated behaviour which can be difficult to interpret from their con-
crete syntax. They are also difficult to engineer correctly. Large software systems
are usually not monolithic: they are built as a set of interrelated components.
Arguably, BX should be constructed in the same way.

Nevertheless, architecture for BX – and transformations in general – can be
complicated. Some of the issues are as follows.

– Components: what are appropriate component models for BX? For software
systems we have a reasonable understanding of what a component in a soft-
ware architecture is, how it may be implemented, and how it can be precisely

172 R. F. Paige

combined with other components. Our understanding of components for BX
and transformations in general is underdeveloped. Most transformation lan-
guages offer a notion of a rule, and some languages have a notion of module,
but richer and deeper understanding (e.g., of ports, protocols, and architec-
tural styles) is missing.

– Relationships: what are appropriate relationships that can be defined between
BX components? For software systems we have a comprehensive library of
component connectors (e.g., protocols, buffers, compositions, containments)
that can be deployed; a similar understanding for BX is not yet available.

– Interoperability: a key aspect of software architecture is what it provides in
terms of interoperation with external systems. For BX, the question is: how
can a BX be integrated with other components or architectures, e.g., code
generators, verification tools, etc.

We will now present an approach to transformation architecture embodied
in transML and present several small examples of both BX architecture and
unidirectional transformation architecture. We then describe an approach for
detailed design for transformations.

4.1 BX Architecture in transML

In Sect. 3 we introduced the transML approach and explained its support for
requirements specification (including scenarios and formal requirement specifi-
cation). As illustrated in Fig. 5, transML provides support for expressing trans-
formation architectures and designs.

Architecture in transML is embodied in a traditional architectural modelling
approach: an architecture is a set of components and connectors that interact
via directional interfaces. Component types are given in terms of metamodels,
or event types (for supporting event-driven architectures or for events gener-
ated by sensors) or other components (to support higher-order transformations).
The component model is general in the sense that it can be used to represent
transformations, black-box components (e.g., non-transformation or non-MDE
components), or actors (e.g., human users).

The transML metamodel for architectures is illustrated in Fig. 12. It is worth
noting the direction attribute on the Interface element; components of BX may
both generate and receive information via interfaces.

Constraints on interfaces can be used to impose a concept of contract, e.g., to
restrict expected inputs and outputs, but also to support conformance checking.

Figure 13 shows an example of a unidirectional transformation architecture,
using a simple component-based concrete syntax from UML. This example illus-
trates a transformation-centric view, i.e., the components in the architecture are
themselves transformations. This can be contrasted with a type-centric archi-
tecture, shown in Fig. 14, where the components are types (or metamodels). In
both cases, the example architecture is for a chain of transformations between
an object-oriented model and SQL code.

Engineering Bidirectional Transformations 173

Fig. 12. transML architecture metamode [16]

Fig. 13. transML architecture example (transformation-centric, undirectional)

Fig. 14. transML architecture example (type-centric, bidirectional)

In the above example, firstly a unidirectional OO2DB transformation is
executed (taking a UML model as input and producing a DB model as out-
put). Then, a normalising update-in-place transformation is executed on the DB
model. Finally, a model-to-text transformation is executed on the DB model,
producing SQL code compliant to a specific grammar.

174 R. F. Paige

The type-centric view represents the individual transformations as relation-
ships between components. We have extended this example to represent bidi-
rectional transformations throughout: i.e., OO2DB, Normalise and GenSchSQL
(the model-to-text transformation) could be executed in either direction. We
could, of course, present the same BX in a transformation-centric style. In this
case, the architecture in Fig. 13 would have bidirectional dependencies on the
relevant input and output models, as depicted in Fig. 15 (in the figure we have
circled the ports and connectors to highlight the bidirectionality of information
flow).

Fig. 15. transML architecture example (transformation-centric, bidirectional)

4.2 Design of BX

The architecture of a software system captures the key components and their
interrelationships. In the case of a BX this includes the connections between
transformation components, the ports through which components communicate,
and restrictions and constraints on that communication. The engineering process
for BX continues with design, which can be broken into two parts: high-level
design, which focuses on capturing what is transformed into what ; and low-level
design, which focuses on capturing how the transformation is to be carried out.
We briefly consider transML support for each aspect.

High-level design of a BX, once again, aims to capture what is transformed
into what. To represent this, transML introduces a mapping diagram, inspired
by triple graph grammars. These capture the mappings between arbitrary model
elements involved in the transformation. However, mappings are not meant to be
used as a implementation model – specifically, they are not meant to be used as
a tracing mechanism to guide the execution of code (this, as we will soon see, is
the purpose of the low-level design features of the transML family of languages).

The transML metamodel for mapping diagrams is illustrated in Fig. 16. Map-
pings have ends which are associated with modelling elements. Navigability is
a property of mappings; BX will involve navigation to both source and target.
Constraints can be attached to mappings in order to define conditions on when
(part of) a mapping can hold.

Engineering Bidirectional Transformations 175

Fig. 16. transML mapping diagram metamodel [16]

Fig. 17. transML mapping example [16]

Figure 17 illustrates a mapping, for the OO2DBl BX. On the left of the
diagram is a package containing key modelling elements of an OO model; on
the right, a database model. In the centre are the mappings along with some
informal English text explaining the purpose of each distinct mapping. Note the
navigability of each rule; these can be executed from a DB model to an OO
model, or vice versa.

176 R. F. Paige

Fig. 18. transML mapping example (constraint) [16]

The next example, in Fig. 18, elaborates what is presented in Fig. 17 and
imposes a constraint on the very last mapping, Multi-Val-Att-Top. The con-
straint, expressed in OCL, states that the owner of an attribute cannot have
any parent classes; this is so that multi-valued attributes can be appropriately
flattened into a table.

While high-level design is supported in transML via mapping diagrams, low-
level design – which is where the transition to implementation begins – is sup-
ported by more detailed diagrams. Technically, low-level design could be sup-
ported by using a favourite BX programming language. But it may be preferable
– for reasons of process – to maintain a degree of platform independence while
still focusing on the essential aspects of BX development. As such, transML pro-
vides low-level design languages for capturing the structure of BX rules, control
flow, and blocks. These are encapsulated in two diagrams: the rule structure
diagram and the rule behaviour diagram.

The rule structure diagram (metamodel in Fig. 19) is used to refine a mapping
diagram. A rule in such a diagram can contribute to the implementation of
one or more mappings. Rules themselves may be unidirectional or bidirectional.
Structure diagrams also allow for explicit or implicit (e.g., nondeterministic)
capture of execution flow, via subclasses of the Flow metaclass. In particular,
a set of rules can be placed inside a nondeterministic block, for example, as in
graph transformation programs.

Effectively, rule structure diagrams capture the structure rules, execution flow
and data dependencies. This is illustrated in Fig. 20, which shows a directional
transformation from an object-oriented model to a database model. The struc-
ture in particular is tailored to a representation of rules in the Epsilon Transfor-
mation Language (ETL). There is a top-level rule (Class2Table) that is executed
initially; its execution is followed by a block of rules that execute nondeterministi-
cally; these populate the structure of a database table (i.e., Reference2Column,
SingleValuedAtt2Column, MultiValuedAtt2Table). Note that blocks can be a

Engineering Bidirectional Transformations 177

Fig. 19. transML rule structure diagram metamodel [16]

Fig. 20. transML rule structure diagram example [16]

useful mechanism for design, even if the ultimate implementation language does
not support them (for example, ETL does not support blocks directly).

A second example is shown in Listing 1.2. In this case, a small domain-specific
BX language is used to specify parts of a transformation between trees and
graphs. The transformation is divided into two nondeterministic blocks; these
blocks encapsulate bidirectional rules between elements of one model (e.g., Tree)
and elements of a second model (e.g., Node).

Rule structure diagrams in particular need to take into account the choice
of ultimate implementation language. This is because these diagrams capture
execution flow, which is platform specific. For example, consider ETL: the exe-
cution flow model is such that each rule is executed once at each instance
of input; by comparison, in a graph transformation language, execution is for
“as long as possible”, i.e., until a fix-point is reached. As such, a specific rule

178 R. F. Paige

transformation Tree2Graph {

nondeterministic RuleBlockForward {

bidirectional Tree2Node { ... };

bidirectional TreeEdge2GraphEdge {...};

}

nondeterministic RuleBlockBackward {

bidirectional TreeLabelsfromNodeLabels {...};

bidirectional TreeEdgesfromGraphEdges { ... };

}

}

Listing 1.2. An example of a BX using blocks

structure diagram may be transformed easily to one implementation language,
but not another. The metamodel for rule structures is, in our experience, suffi-
ciently generic to capture a number of transformation implementation languages,
but there may be specific features of specific implementation languages that we
have not considered that are not easily supported.

The rule structure diagram treats rules as black boxes, ignoring their
behaviour. As such, concepts such as attribute contribution, object creation,
or link configuration will be ignored. These can all be specified using implemen-
tation languages such as ETL, but transML also provides a diagram for their
specification: the rule behaviour diagram. This allows the behaviour of rules to
be captured using an action language, or declarative graphical pre- and post-
conditions, or object diagrams annotated with operations (similar in a sense to
Catalysis snapshots). An example unidirectional rule behaviour diagram is shown
in Fig. 21. On the left of the figure is a snapshot with annotations indicating cre-
ation of objects. On the right is the ETL program that would correspond to such
a diagram.

Fig. 21. transML rule behaviour diagram example [16]

Engineering Bidirectional Transformations 179

It should be noted that while we have broad and quite deep experience of
using transML for engineering unidirectional transformations, we have much less
experience of using it for engineering BX. Using some of the features of transML
for capturing different aspects of BX may be a useful contribution to the BX
community, as they provide platform-independent ways of specifying different
features.

4.3 Design Patterns for BX

In this section we very briefly discuss several design patterns [17] for BX. Design
patterns in general capture recurring design problems (e.g., in object-oriented
design) and their solutions. Solutions generally need to be instantiated for par-
ticular problem concepts. Many different patterns have been developed and cap-
tured in the literature, including some for model transformations. In this section
we present three examples, taken from Lano et al. [18] with some customisation
for our context.

Auxiliary Correspondence Model Pattern. A special kind of model trans-
formation is a merging or weaving, where two or more models are combined into
a single model. This weaving process can be carried out in batch mode or via a
change propagation approach, where changes from the models being combined
can be propagated to others. In doing so, most such transformations make use
of a so-called auxiliary correspondence model. This is a design pattern: the aux-
iliary correspondence model defines auxiliary model elements and associations
that link source and target elements. It can be used to record mappings per-
formed by a BX and to propagate modifications when one model changes. The
benefit of using such a pattern is that it separates concerns: the source and target
models are kept separate from the connections that link their elements. In turn,
these explicit links between source and target model can make it easier to check
correctness and coverage in the transformation. The disadvantage of applying
this pattern is that it requires maintenance of an additional model.

Unique Instantiation Pattern. This pattern focuses on improving the effi-
ciency of transformations. In particular, it is applied to avoid duplicating model
elements in either the source or the target of a BX. In particular, the pattern
imposes a check that an element satisfying specified properties does not exist,
before the element is actually created in the source or target. For example, in a
QVT-Relations transformation that has applied this pattern, new elements will
not be created if there are already elements that satisfy the relations specified;
this is really at the heart of check-before-enforce mode in QVT-Relations. The
benefit of using this pattern is that it can help ensure hippocraticness; the disad-
vantage is the test for existence, which can degrade BX performance. However,
we note that other patterns, e.g., related to indexing [18] – and model indexing
frameworks like Hawk – can help offset this.

180 R. F. Paige

Map Objects Before Links Pattern. This pattern is used to separate the
relation between elements in source and target models from the relations between
links in the models. A particular application of this pattern would be to structure
a transformation wherein model elements are transformed before the relations
between model elements (i.e., nodes before edges). Such an execution flow may
be useful in cases where models may have self-associations or circular dependen-
cies. The benefit of using this pattern is similar to that of the Visitor pattern
[17] in object-oriented design: the specification of the transformation is modular
and processing for a new type of association in a modelling language can be
more easily handled. The disadvantage of using this pattern is that while edges
(relations) are treated modularly, nodes (model elements) may not be, and if a
new feature is added to a language, it may require significant restructuring to
the transformation that has used this pattern.

4.4 Summary

In this section we have discussed different aspects of the architecture and design
of BX, covering abstract architecture for transformations, through high-level
and low-level design, including behaviour of individual transformation rules, as
well as a selection of design patterns that can be used to help increase cohesion
and decrease coupling in our BX. We will next briefly discuss an approach to
verification of BX, focusing on use of mathematical techniques.

5 Verification

In this section we explore a specific approach to verifying bidirectional trans-
formations. The approach we present is intended to be pragmatic, meant to be
used with existing MDE tools and technologies. As such we do not consider
issues such as soundness or completeness, though the mechanisms are present to
prove conjectures related to these properties if so desired.

BX are challenging to implement on account of the inherent complicatedness
(or complexity!) that they must encode. Model transformation languages sup-
porting them often do so with conditions: some require that BX are bijective
(e.g. BOTL [19]), whereas others require users to work with specific formalisms
such as triple graph grammars (e.g. MOFLON [20]). Many modern transforma-
tion languages do not provide any support for BX (e.g. ATL [2]), meaning that
users must express them as two unidirectional transformations. While this seems
a practical workaround, the two transformations may diverge over time – that
is, there are no guarantees that the two unidirectional transformations maintain
the consistency relationship between the models.

A trade-off between the benefit (but complexity) of pure BX languages and
the practicality (but possible incoherence) of unidirectional transformations can
be achieved in Epsilon. Epsilon has languages supporting the specification of
unidirectional transformations in either a rule-based (ETL), update-in-place

Engineering Bidirectional Transformations 181

(EWL), or operational (EOL) [21] style. Furthermore, it provides an inter-
model consistency language (EVL [22]) that can be used to express and evaluate
constraints between models. With these languages, BX can be simulated by:
(1) defining pairs of unidirectional transformations for separately updating the
source and target models; and (2) defining inter-model constraints in EVL, the
violation of which will trigger EWL transformations to restore consistency.

Although this process gives us a means of checking consistency and automat-
ically triggering a transformation to restore it, we lack the important guarantee
that BX give us: the compatibility of the transformations. It might be the case
that after the execution of one transformation, the other does not actually restore
consistency, leading to further EVL violations. Thus, how do we check for, and
maintain, compatibility?

We aim to obtain the guarantees of BX without the need for BX languages.
Instead, we can use rigorous proof techniques to verify that faked BX are consis-
tency preserving, and thus indistinguishable to users from true BX. To this end,
we propose to apply techniques from graph transformation verification. Given a
faked BX in Epsilon, we will model the unidirectional transformations as graph
transformation rules, and EVL constraints as nested graph conditions [23]. Then,
by leveraging graph transformation proof calculi [24–26] in a weakest precondi-
tion style, we aim to automatically prove compatibility of the unidirectional
transformations with respect to the EVL constraints.

5.1 Illustration

To illustrate the idea, consider yet again the OO2DB problem. Consistency
between a typical OO and a typical DB model is defined in terms of a cor-
respondence between the data in the models, e.g. every table n corresponds to a
class n, and every column m corresponds to an attribute m. Figure 22 contains
two simple models that are consistent in this sense (we omit the metamodels,
but they are obvious).

:Class
name = "users"

:Attribute
pkey = True
name = "id"

:Attribute
pkey = False

name = "username"

feature feature

:Table
name = "users"

:Column
name = "id"

:Column
name = "username"

pkey column

Fig. 22. Two consistent OO and DB models

Users of the models should be able to create new classes (or tables) whilst
maintaining inter-model consistency. Upon the creation of a new class (resp.
table), a table (resp. class) should be created with the same name to restore
consistency. We can implement such a simple BX in Epsilon with a pair of

182 R. F. Paige

wizard AddClass {

do {

var c: new Class;

c.name = newName;

self.Class.all.first (). contents.add(c);

}}

wizard AddTable {

do {

var table: new Table;

table.name = newName;

self.Table.all.first (). contents.add(table);

}}

Listing 1.3. Example wizards for simulating BX

context OO!Class {

constraint TableExists {

check : DB!Table.all.select(t|t.name = self.name).size() > 0

}}

context DB!Table {

constraint ClassExists {

check : OO!Class.all.select(c|c.name = self.name).size() > 0

}}

Listing 1.4. Inter-model constraints

unidirectional transformations (one for updating the class diagram model, one for
updating the relational database) and a set of EVL constraints. For the former,
we can use the Epsilon Wizard Language (EWL) to define a pair of update-in-
place transformations, AddClass and AddTable (for simplicity, here we assume
the new class/table name newName to be pre-determined and unique, but Epsilon
does support the capturing and sharing of such data between wizards).

Using the Epsilon Validation Language (EVL), we express inter-model con-
sistency: that for every class n, there exists a table named n (and vice versa).
If one of the constraints is violated, Epsilon can automatically trigger the rele-
vant transformation to attempt to restore consistency. For example, after exe-
cuting the transformation AddClass, the constraint TableExists will be vio-
lated, indicating that the transformation AddTable should be executed to restore
consistency.

This example of a bidirectional transformation, simulated in Epsilon, is a
simple one chosen to illustrate the concepts. Even what appears to be a simple
BX can lead to more interesting (i.e. less symmetric) BX, e.g. manipulating
inheritance in the class model.

Engineering Bidirectional Transformations 183

5.2 Checking Compatibility

A critical difference between the simulated BX in the previous section and a true
BX is the absence of guarantees about the compatibility of the transformations:
upon the violation of TableExists, for example, does the execution of AddTable
actually restore consistency? For this simple example, a manual inspection will
confirm that the transformations are indeed compatible. But what about more
intricate BX? And what about BX that evolve and change over time? For the
Epsilon-based approach to be a convincing alternative to a BX language, it is
imperative that the compatibility of the transformations can be checked, and
that this can be done in a simple and automatic way. To this end, we propose
to leverage and adapt some recent developments in the verification of graph
transformations.

Graph transformation is a computation abstraction: the state of a computa-
tion is represented as a graph, and the computational steps as applications of
rules (i.e. akin to string rewriting in Chomsky grammars, but lifted to graphs).
Modelling a problem using graph transformation brings an immediate benefit
in visualisation, but also an important one in terms of semantics: the abstrac-
tion has a well-developed algebraic theory that can be used for formal reasoning.
This has been exploited to facilitate the verification of graph transformation sys-
tems, i.e. calculi for systematically proving specifications about graph properties
before and after any execution of some given rules. In particular, we look to
exploit work by Poskitt and Plump, who developed proof calculi for graph pro-
grams, separately addressing reasoning about programs and properties involving
attribute manipulation [25,26].

Our example BX for the OO2RDBMS problem can be translated into graph
programs and nested conditions, as given in Fig. 23. The programs PS , PT are
the individual rules creating a class or table node labelled newName (here, ∅
denotes the empty graph, indicating that the rules can be applied without first
matching any structure, i.e. unconditionally). The nested condition evl, given on
the right, expresses that for every class (or table) node, there is a table (or class)
node with the same name (note that x, y are variables, and that the numbers
indicate when nodes are the same down the nesting of the formula). Were the
weakest liberal preconditions to be constructed, we would find:

Wlp(PS ;PT , evl) ≡ Wlp(PT ;PS , evl) ≡ evl.

Since evl ⇒ evl is valid, both {evl} PS ; PT {evl} and {evl} PT ; PS {evl}
must hold, and – assuming correctness of the abstractions – the original EWL
transformations are therefore compatible with respect to the EVL constraints.

A key challenge with an approach such as this is what to do when the verifi-
cation step fails, i.e., the implication above does not hold. We are exploring the
use of the GROOVE tool10 to generate counterexamples when verification fails,
via exploring executions of the graph transformation rules.

10 http://groove.sourceforge.net/groove-index.html.

http://groove.sourceforge.net/groove-index.html

184 R. F. Paige

Fig. 23. Our CD2RDBM BX expressed as graph transformation rules and a nested
condition

6 Conclusions and Perspectives

Bidirectional transformations must be engineered, as must unidirectional trans-
formations and other programs that manipulate models in MDE. The state-of-
the-art in engineering BX is piecemeal at the moment: there are some specific
techniques for supporting different engineering phases – such as requirements
engineering or design – but very coarse understanding of efficient and effective
engineering lifecycles, and alternative process models. This paper attempts to
capture some of the current thinking on engineering BX. It summarises some of
the state-of-the-art in BX design and implementation, presents some approaches
for requirements specification and analysis, and suggests some ideas for captur-
ing the architecture of complicated BX, and the detailed design of BX in general.
It also presents some ideas on an approach for verification of BX; this approach
is pragmatic, in the sense that it is meant to be used within an engineering
process and it acknowledges tradeoffs between completeness and soundness.

MDE for BX possesses some sound theory – such as delta lenses – and some
pragmatic, if incomplete, tools (such as Eclipse QVT-Relations) but these are
still siloed: the theory needs to inform the enhancement of tools, and the tools
need to be used to test the corners of the theory. A good example of research
that attempts to link BX theory and practice is that combining triple graph
grammars and delta lenses (e.g., [27]), but more needs to be done. What is
really needed is tools that evidently implement the theory in a systematic and
audited way.

A key challenge in connecting theory with practical tools is the limitations in
our theories of metamodelling. It is questionable whether we have a sound and
complete understanding of a type theory for MDE and metamodelling, but this
would underpin any attempts to link a theory of BX with the pragmatic tools
supporting BX.

We mentioned tools for BX throughout this paper. The standardised tool
in the MDE community is QVT-Relations; the Eclipse implementation is still
under development. QVT-Relations has been criticised for being very complex,
with substantial semantic ambiguity. The development of its Eclipse implemen-
tation is revealing some of these ambiguities, but this will only be convincing
if supported by a sound theory, e.g., delta lenses. However, the gap between
delta lens theory and QVT-Relations is substantial: changing QVT-Relations to
conform with delta lenses may be difficult if not impossible; building a new BX

Engineering Bidirectional Transformations 185

that supports delta lens theory is possible, but it would not be QVT-Relations.
It is difficult to see how connections between strong theory and MDE standards
will play out.

It also remains to be seen whether we can develop a rich, compelling set of
industrial scenarios for BX. In our substantial industrial experience of transforma-
tions and MDE, we have had only one precise requirement for a BX (across over 20
industrial projects and 13 years of experience), and that was for the results of var-
ious forms of analysis (e.g., failure analysis, performance analysis) to be reflected
on source models after calculation. It is unclear if such scenarios benefit from the
heavyweight machinery of BX. But it should also be noted that requirements for
BX sometimes emerge as development proceeds and having ways in which trans-
formations can be extended to become bidirectional may be useful.

In Sect. 5 we described an approach to BX that involved specification of inter-
model consistency constraints between two models, and the definition of two
separate but synchronised update-in-place transformations on the two models.
When the constraints were violated and the models became inconsistent, the
transformations would be triggered to re-establish consistency. This approach –
two simple yet unidirectional transformations instead of a single bidirectional
transformation – needs to be clearly related to the BX solution space: when is
it more effective to use versus building a full BX?

Finally, we observe that many transformations developed in practice are oper-
ational (e.g., those written in EOL or subsets of ATL). As well, there are many
model-to-text (or model-to-grammar) transformations that support code gener-
ation scenarios. How do these fit in to the BX space? Are they simply too hard to
consider? Are there scenarios or types of transformations that simple should not
(rather than cannot) be bidirectionalised? As a challenge, consider the EuGE-
Nia tool11 which is a unidirectional model transformation written in EOL, which
automatically generates three models needed by GMF to construct a graphical
editor. These are generated by a transformation that takes as input a single
annotated Ecore model. The transformation is defined entirely operationally, as
we found that it would be too complex to implement using declarative rules (it is
not a mapping transformation). Could EuGENia be turned into a bidirectional
transformation? Our intuition is no (and, more pragmatically, we cannot see
any reason why one would want to do so), but it would be interesting to explore
what, fundamentally, makes an operational or hybrid transformation difficult to
bidirectionalise.

Acknowledgements. Parts of this work were supported by the European Commis-
sion’s 7th Framework Programme, through grant #611125 (MONDO). The author
also acknowledges the support of Innovate UK and the Aerospace Technology via the
SECT-AIR grant, and the EPSRC, for their support for the Summer School in Bidi-
rectional Transformations. The author thanks Dimitris Kolovos, Chris Poskitt, Arend
Rensink, Mike Dodds, Esther Guerra and Juan de Lara for many useful discussions
and collaboration on the topics presented in this paper, and to the reviewers of this
manuscript for the helpful suggestions and advice.

11 https://eclipse.org/epsilon/doc/eugenia/.

https://eclipse.org/epsilon/doc/eugenia/

186 R. F. Paige

References

1. Van Gorp, P., Engels, G. (eds.): ICMT 2016. LNCS, vol. 9765. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-42064-6

2. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

3. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9 4

4. Kolovos, D.S., Paige, R.F., Polack, F.A.C., Rose, L.M.: Update transformations in
the small with the epsilon wizard language. J. Object Technol. 6(9), 53–69 (2007)

5. Diskin, Z., Xiong, Y., Czarnecki, K.: From state- to delta-based bidirectional model
transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142,
pp. 61–76. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13688-
7 5

6. Anjorin, A.: An introduction to triple graph grammars as an implementation of
the delta-lens framework. In: Gibbons, J., Stevens, P. (eds.) Bidirectional Trans-
formations. LNCS, vol. 9715, pp. 29–72. Springer, Cham (2018)

7. OMG. MOF 2.0 QVT V1.3. Object Management Group (2016)
8. Stevens, P.: A simple game-theoretic approach to checkonly QVT relations. Softw.

Syst. Model. 12(1), 175–199 (2013)
9. Hoisl, B., Hu, Z., Hidaka, S.: Towards bidirectional higher-order transformation

for model-driven co-evolution. In: Hammoudi, S., Pires, L.F., Filipe, J., das Neves,
R.C. (eds.) MODELSWARD 2014. CCIS, vol. 506, pp. 153–167. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-25156-1 10

10. Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H., Nakano, K.: Toward bidirec-
tionalization of ATL with GRoundTram. In: Cabot, J., Visser, E. (eds.) ICMT
2011. LNCS, vol. 6707, pp. 138–151. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21732-6 10

11. Hidaka, S., Tisi, M., Cabot, J., Zhenjiang, H.: Feature-based classification of bidi-
rectional transformation approaches. Softw. Syst. Model. 15(3), 907–928 (2016)

12. Tehrani, S.Y., Zschaler, S., Lano, K.: Requirements engineering in model-
transformation development: an interview-based study. In: Van Gorp, P., Engels, G.
(eds.) ICMT 2016. LNCS, vol. 9765, pp. 123–137. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-42064-6 9

13. Nalchigar, S., Salay, R., Chechik, M.: Towards a catalog of non-functional require-
ments in model transformation languages. In: Proceedings of the Second Work-
shop on the Analysis of Model Transformations (AMT 2013), Miami, FL, USA, 29
September 2013

14. IEEE 29148–2011. Systems and software engineering lifecycle processes require-
ments engineering (2011)

15. Pescador, A., de Lara, J.: DSL-maps: from requirements to design of domain-
specific languages. In: Proceedings of the 31st IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE 2016, Singapore, 3–7 September
2016, pp. 438–443 (2016)

16. Guerra, E., de Lara, J., Kolovos, D.S., Paige, R.F., dos Santos, O.M.: Engineering
model transformations with transML. Softw. Syst. Model. 12(3), 555–577 (2013)

17. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

https://doi.org/10.1007/978-3-319-42064-6
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-642-13688-7_5
https://doi.org/10.1007/978-3-642-13688-7_5
https://doi.org/10.1007/978-3-319-25156-1_10
https://doi.org/10.1007/978-3-642-21732-6_10
https://doi.org/10.1007/978-3-642-21732-6_10
https://doi.org/10.1007/978-3-319-42064-6_9
https://doi.org/10.1007/978-3-319-42064-6_9

Engineering Bidirectional Transformations 187

18. Lano, K., Kolahdouz-Rahimi, S.: Model transformation design patterns. IEEE
Trans. Softw. Eng. 40(12), 1224–1259 (2014)

19. Braun, P., Marschall, F.: Transforming object oriented models with BOTL. In:
GT-VMT 2002. ENTCS, vol. 4066, pp. 103–117. Elsevier (2003)

20. Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: a standard-
compliant metamodeling framework with graph transformations. In: Rensink, A.,
Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11787044 27

21. Paige, R.F., Kolovos, D.S., Rose, L.M., Drivalos, N., Polack, F.A.C.: The design
of a conceptual framework and technical infrastructure for model management
language engineering. In: ICECCS 2009, pp. 162–171. IEEE Computer Society
(2009)

22. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the evolution of OCL for capturing
structural constraints in modelling languages. In: Abrial, J.-R., Glässer, U. (eds.)
Rigorous Methods for Software Construction and Analysis. LNCS, vol. 5115, pp.
204–218. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11447-
2 13

23. Habel, A., Pennemann, K.-H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

24. Habel, A., Pennemann, K.-H., Rensink, A.: Weakest preconditions for high-level
programs. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 445–460. Springer, Heidelberg (2006).
https://doi.org/10.1007/11841883 31

25. Poskitt, C.M.: Verification of graph programs. Ph.D. thesis, The University of York
(2013)

26. Poskitt, C.M., Plump, D.: Hoare-style verification of graph programs. Fundamenta
Informaticae 118(1–2), 135–175 (2012)

27. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z., Xiong, Y., Gottmann,
S., Engel, T.: Model synchronization based on triple graph grammars: correctness,
completeness and invertibility. Softw. Syst. Model. 14(1), 241–269 (2015)

https://doi.org/10.1007/11787044_27
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1007/978-3-642-11447-2_13
https://doi.org/10.1007/11841883_31

Author Index

Abou-Saleh, Faris 1
Anjorin, Anthony 29

Cheney, James 1

Gibbons, Jeremy 1

Hofmann, Martin 73
Hu, Zhenjiang 100

Ko, Hsiang-Shang 100

McKinna, James 1

Paige, Richard F. 151

Stevens, Perdita 1

	Preface
	Contents
	Introduction to Bidirectional Transformations
	1 Introduction
	2 Scenarios
	2.1 Data Conversions
	2.2 View–Update
	2.3 Model-Driven Development
	2.4 Composers

	3 Approaches
	3.1 Relational
	3.2 Lenses
	3.3 Ordered, Delta-Based, Categorical
	3.4 Triple-Graph Grammars

	4 Contributions
	4.1 Entangled State and Monadic Bidirectional Transformations
	4.2 Least Change
	4.3 Dependently Typed BX

	References

	An Introduction to Triple Graph Grammars as an Implementation of the Delta-Lens Framework
	1 Introduction and Motivation
	2 Model Spaces and Triple Spaces
	3 Specifying Symmetric Delta Lenses with TGGs
	3.1 Enumerate All Squares
	3.2 Enumerate Simultaneous fpg/bpg Squares
	3.3 Enumerate Monotonic, Simultaneous fpg/bpg Squares
	3.4 Specify Monotonic, Simultaneous Triple Rules
	3.5 Automatically Derive ``Boring'' Ignore Rules
	3.6 Advanced TGG Language Features

	4 Formal Properties
	4.1 Problem Setting in an MDE Context
	4.2 A Correct and Complete TGG Synchronisation Algorithm
	4.3 Hippocraticness and Least Change as Current Challenges

	5 Conclusion and Future Perspectives
	References

	Modular Edit Lenses
	1 Introduction
	2 Symmetric Lenses
	2.1 Composition and Equivalence
	2.2 Useful Lenses
	2.3 Sums and Lists
	2.4 Containers
	2.5 Spans of Lenses
	2.6 Summary

	3 Edit Lenses
	3.1 Edit Languages
	3.2 Stateful Homomorphisms
	3.3 Edit Lenses
	3.4 The Partition Lens
	3.5 Containers
	3.6 Typed Edit Language
	3.7 State-Based to Edit-Based and Back

	4 Information Trees
	4.1 Information Trees
	4.2 Sheaves Automata
	4.3 Edit Languages for Information Trees

	5 Conclusion and Next Steps
	References

	Principles and Practice of Bidirectional Programming in BiGUL
	1 Putback-Based Bidirectional Programming
	2 Preparation: Installing BiGUL
	3 A Quick Tour of BiGUL
	3.1 Skip
	3.2 Replace
	3.3 Product
	3.4 Source/View Rearrangement
	3.5 Case
	3.6 View Dependency
	3.7 Composition

	4 Bidirectional Programming on Lists
	5 BiGUL's Bidirectionality
	5.1 Lenses, Well-Behavedness, and the Fundamental Theorem
	5.2 Replacement
	5.3 Skipping
	5.4 Product
	5.5 Case Analysis
	5.6 Rearrangement
	5.7 Summary

	6 Position-, Key-, and Delta-Based List Alignment
	6.1 Position-Based Alignment
	6.2 Key-Based Alignment
	6.3 Delta-Based Alignment

	7 Bidirectionalizing Relational Queries with BiGUL
	7.1 Relational Database Representation
	7.2 Relation Alignment
	7.3 Describing Update Policies in Selection/Projection

	8 Parsing and Reflective Printing
	8.1 Well-Behavedness
	8.2 Additive Expressions
	8.3 Reflective Printing in BiGUL
	8.4 Reflecting Optimizations and Evaluation Sequences
	8.5 A Domain-Specific Language

	9 Conclusion
	References

	Engineering Bidirectional Transformations
	1 Introduction
	1.1 BX as Software
	1.2 Scope
	1.3 Background
	1.4 Structure

	2 State of the Art
	2.1 BX Scenarios
	2.2 Standard MDE Languages for BX: QVT
	2.3 Tools

	3 Requirements Engineering for BX
	3.1 Motivation
	3.2 Questions and Properties for BX
	3.3 Functional and Non-functional Requirements
	3.4 Requirements Engineering Processes for BX
	3.5 Elicitation
	3.6 Evaluation
	3.7 MDE Languages for Requirements Engineering for BX

	4 Architecture and Design
	4.1 BX Architecture in transML
	4.2 Design of BX
	4.3 Design Patterns for BX
	4.4 Summary

	5 Verification
	5.1 Illustration
	5.2 Checking Compatibility

	6 Conclusions and Perspectives
	References

	Author Index

