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Abstract. Docker is emerging as a simple yet effective solution for
deploying and managing multi-component applications in virtualised
cloud platforms. Application components can be shipped within portable
and lightweight Docker containers, which can then be interconnected to
allow components to interact each other. At the same time, the need for
an enhanced support for orchestrating the management of the applica-
tion components shipped within Docker containers is emerging.

In this paper we show how TOSCA can be exploited to provide such
an enhanced support, by proposing a representation for describing the
components forming an application, as well as the Docker containers
used to ship such components. We also present TOSKER, an engine for
orchestrating the management of multi-component applications based on
the proposed TOSCA representation and on Docker.

1 Introduction

Cloud computing has revolutionised IT, by allowing to run on-demand dis-
tributed applications at a fraction of the cost which was necessary just a few
years ago [3]. This is possible as cloud providers exploit virtualisation techniques
to achieve elasticity of large-scale shared resources [22]. Container-based virtu-
alisation (where the operating system kernel permits running multiple isolated
guest instances, called containers) can thus play an important role for cloud
platforms, especially because it provides a lightweight virtualisation framework
for PaaS/edge clouds [19,30] Applications can be packaged, along with all soft-
ware dependencies they need to run, into portable and lightweight containers,
which can then be managed on cloud platforms [28].

Containers are also an ideal solution for SOA-based architectural patterns
(e.g., microservices [24]) that are emerging in the cloud community to decom-
pose monolithic applications into suites of independently deployable, lightweight
components. Application components can indeed be packaged in indepen-
dently deployable, lightweight containers, which can then be interconnected to
allow components to interact with each other (forming multi-container applica-
tions [31]).

Docker [14] is considered the de-facto standard for container-based virtual-
isation [29]. Docker permits packaging software components in Docker images,
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which are then exploited as read-only templates to create and run Docker con-
tainers. Docker containers can also mount external volumes, which ensure data
persistence independently of the lifecycle of containers [23].

Docker permits orchestrating containers, by allowing to define multi-
container Docker applications [31]. Given (the images of) the containers forming
a multi-container application, the volumes they must mount, and the connec-
tions to set up among containers, Docker compose [15] is indeed capable of
automatically deploying the corresponding application.

Docker containers are however treated as “black-boxes”, and they constitute
the minimum orchestration entity considered by currently existing approaches
for orchestrating multi-component applications with Docker (e.g., [2,15,16,32]).
Application components must be manually packaged, along with all their soft-
ware dependencies, in (images of) Docker containers. Components are then
strictly bound to their hosting containers, as it is not possible to orchestrate
the management of the components forming an application independently of the
Docker containers hosting them. For instance, it is not possible to run only some
of the components hosted on a container, as whenever a container is started, all
components it hosts are also started. Also, if we wish to change the container
used to host a component, new Docker images must be manually developed
(e.g., if a maven container is hosting the front-end and back-end of an applica-
tion, and we wish to move the front-end to a java container, we must develop
two new Docker images, one for hosting the front-end on a java container and
one for hosting only the back-end on a maven container).

To fully exploit the potential of SOA, the current support for orchestrat-
ing multi-component applications with Docker should be enhanced. A concrete
solution is to still rely on Docker containers as a portable and lightweight mean
to deploy application components on cloud platforms, by also allowing to inde-
pendently manage the components and containers forming a multi-component
application [28]. In this paper we propose a solution precisely following this idea,
which relies on the OASIS standard TOSCA [27] as the mean for orchestrating
multi-component applications on top of Docker containers.

— We propose a TOSCA-based representation for multi-component applica-
tions, which permits modularly specifying the components forming an appli-
cation, the Docker containers and Docker volumes needed to run them, as
well as the relationships occurring among them (e.g., a component is hosted
on a container, a component connects to another).

— We also present TOSKER, an engine for orchestrating the management of
multi-component applications based on the proposed TOSCA representation
and on Docker.

Our approach enhances the current support for orchestrating the manage-
ment of multi-component applications in Docker, as it considers application
components as orchestration entities, which are independent from the Docker
containers and Docker volumes used to build their runtime infrastructure. For
instance, TOSKER allows to independently manage the application compo-
nents hosted on a Docker container, hence allowing to run only some of them
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(if needed). Our approach also eases the change of Docker containers used to
host the components of an application, as this only requires to update the cor-
responding TOSCA specification! (which will then be processed by TOSKER to
automatically deploy and manage the specified application).

The rest of the paper is organised as follows. Section 2 provides some back-
ground on TOSCA. Section3 illustrates our proposal for specifying multi-
container Docker applications in TOSCA, and Sect.4 presents the TOSKER
engine for actually orchestrating such applications. Finally, Sects. 5 and 6 discuss
related work and draw some concluding remarks, respectively.

2 Background

TOSCA (Topology and Orchestration Specification for Cloud Applications [27])
is an OASIS standard whose main goals are to enable (i) the specification of
portable cloud applications and (ii) the automation of their deployment and
management. TOSCA provides a YAML-based and machine-readable modelling
language that permits describing cloud applications. Obtained specifications can
then be processed to automate the deployment and management of the specified
applications. We hereby report only those features of the TOSCA modelling
language that are used in this paper?.
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Fig. 1. The TOSCA metamodel [27].

TOSCA permits specifying a cloud application as a service template, that is
in turn composed by a topology template, and by the types needed to build such a
topology template (Fig. 1). The topology template is a typed directed graph that

! This can also be done automatically by exploiting TOSKERISER [10]. Given a
TOSCA application specification, TOSKERISER can indeed automatically (discover
and) include the Docker containers offering the software support needed by its com-
ponents.

2 A more detailed, self-contained introduction to TOSCA can be found in [5,12].
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describes the topological structure of a multi-component application. Its nodes
(called node templates) model the application components, while its edges (called
relationship templates) model the relations occurring among such components.

Node templates and relationship templates are typed by means of node types
and relationship types, respectively. A node type defines the observable prop-
erties of a component, its possible requirements, the capabilities it may offer
to satisfy other components’ requirements, and the interfaces through which it
offers its management operations. Requirements and capabilities are also typed,
to permit specifying the properties characterising them. A relationship type
instead describes the observable properties of a relationship occurring between
two application components. As the TOSCA type system supports inheritance,
a node/relationship type can be defined by extending another, thus permitting
the former to inherit the latter’s properties, requirements, capabilities, interfaces,
and operations (if any).

Node templates and relationship templates also specify the artifacts needed
to actually realise their deployment or to implement their management opera-
tions. As TOSCA allows artifacts to represent contents of any type (e.g., scripts,
executables, images, configuration files, etc.), the metadata needed to properly
access and process them is described by means of artifact types.

TOSCA applications are then packaged and distributed in CSARs (Cloud
Service ARchives). A CSAR is essentially a zip archive containing an applica-
tion specification along with the concrete artifacts realising the deployment and
management operations of its components.

3 Specifying Multi-component Applications

Multi-component applications typically integrate various and heterogeneous
components [18]. We hereby define a TOSCA-based representation for such com-
ponents, as well as for the Docker containers and Docker volumes that will be
used to form their runtime infrastructure.

We first define three different TOSCA node types® to permit distinguishing
the Docker containers, the Docker volumes, and the application components
forming a multi-component application (Fig. 2).

— tosker.nodes. Container permits representing Docker containers, by indicat-
ing whether a container requires a connection (to another Docker container
or to an application component), whether it has a generic dependency on
another node in the topology, or whether it needs some persistent storage
(hence requiring to be attached to a Docker volume). tosker.nodes. Container
also permits indicating whether a container can host an application compo-
nent, whether it offers an endpoint where to connect to, or whether it offers
a generic feature (to satisfy a generic dependency requirement of another

3 The actual definition of all TOSCA types discussed in this section is publicly avail-
able on GitHub at https://github.com/di-unipi-socc/tosker-types.
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Fig. 2. TOSCA node types for multi-component, Docker-based applications, viz., tos-
ker.nodes. Container, tosker.nodes.Software, and tosker.nodes. Volume.

container/application component). To complete the description, tosker.no-
des.Container provides placeholders (through the properties ports, env_va-
riables and command, respectively) for specifying the port mappings, the
environment variables, and the command to be executed when running the
corresponding Docker container, and it lists the operations to manage a con-
tainer (which correspond to the basic operations offered by the Docker plat-
form [23]).

— tosker.nodes. Volume permits specifying Docker volumes, and it defines a
capability attachment to indicate that a Docker volume can satisfy the stor-
age requirements of Docker containers. It also lists the operations to manage
a Docker volume (which corresponds to the basic operations offered by the
Docker platform [23]).

— tosker.nodes.Software permits indicating the software components forming a
multi-component application. It permits specifying whether an application
component requires a connection (to a Docker container or to another appli-
cation component), whether it has a generic dependency on another node
in the topology, and that it has to be hosted on a Docker container or on
another component?. tosker.nodes.Software also permits indicating whether
an application component can host another application component, whether
it provides an endpoint where to connect to, or whether it offers a generic fea-
ture (to satisfy a generic dependency requirement of a container/application

* The host requirement is mandatory for nodes of type tosker.nodes.Software, as we
assume that each application component must be installed in another component or
in a Docker container.



TosKER: Orchestrating Applications with TOSCA and Docker 135

component). Finally, tosker.nodes.Software indicates the operations to man-
age an application component (viz., create, configure, start, stop, delete).

The interconnections and interdependencies among the nodes forming a multi-
component application can be indicated by exploiting the TOSCA normative
relationship types [27].

— tosca.relationships. AttachesTo can indeed be used to attach a Docker volume
to a Docker container.

— tosca.relationships. ConnectsTo can indicate the network connections to estab-
lish between Docker containers and/or application components.

— tosca.relationships. HostedOn can be used to indicate that an application com-
ponent is hosted on another component or on a Docker container (e.g., to
indicate that a web service is hosted on a web server, which is in turn hosted
on a Docker container).

— tosca.relationships. DependsOn can be used to indicate generic dependencies
between the nodes of a multi-component application (e.g., to indicate that
a component must be deployed before another, as the latter depends on the
availability of the former to properly work).

Ezample 1. Consider Thinking, an open-source® web application that allows
users to share their thoughts, so that all other users can read them. Thinking
is composed by three main components, namely (i) a Mongo database storing
the collection of thoughts shared by end-users, (ii) a Java-based REST API to
remotely access the database of shared thoughts, and (iii) a web-based GUI visu-
alising all shared thoughts and allowing to insert new thoughts into the database.
Figure 3 illustrates a representation of the Thinking application in TOSCA.

(i) The database is obtained by directly instantiating a MongoDB container,
which needs to be attached to a volume where the shared thoughts will be
persistently stored.

(ii) The API is hosted on a Maven Docker container, and it requires to be
connected to the MongoDB container (for remotely accessing the database
of shared thoughts).

(iii) The GUI is hosted on a NodeJS Docker container, and it depends on the
availability of the API to properly work (as it sends GET/POST requests
to the API to retrieve/add shared thoughts). O

Finally, also artifacts must be typed [27], as they are used to implement deploy-
ment and management operations of the nodes forming a multi-component appli-
cation and they must specify the metadata needed to properly access and process
them. We hence define tosker.artifacts.Image and tosker.artifacts. Dockerfile to
permit indicating that an artifact is an actual image or a Dockerfile, which will
then be used to create a Docker container. We also extend such artifact types
by defining tosker.artifacts. Image.Service and tosker.artifacts. Dockerfile.Service,

5 The source code of Thinking is publicly available on GitHub at https://github.com/
di-unipi-socc/thinking.
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Fig. 3. An example of multi-component application specified in TOSCA (where nodes
are typed with tosker.nodes. Container, tosker.nodes. Volume, or tosker.nodes.Software,
while relationships are typed with TOSCA normative types [27]).

to permit distinguishing images that execute a service when started from those
that “simply package” a runtime environment. We can instead rely on TOSCA
normative artifact types [27] for all other kinds of artifacts linked by the nodes
in a multi-container Docker application.

Ezxample 1 (cont.). Consider again the application in Fig. 3. The image artifact
associated to the MongoDB container is of type tosker.artifacts.Image.Seruvice,
as it links to an image offering a MongoDB server when executed. The image
artifacts associated to the containers Node and Maven are instead of type tos-
ker.artifacts. Image, as they link to images just offering runtime environments (for
NodeJS-based and Maven-based applications, respectively). The management
operations of GUI and API are instead implemented by “.sh” scripts®. O

4 TosKER

We hereby present TOSKER, an orchestrator capable of automatically deploy-
ing and managing multi-component applications specified with the proposed
TOSCA representation. We first illustrate the architecture of TOSKER, and we
then discuss its current prototype implementation.

6 The resulting TOSCA application specification is publicly available at https: //
github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-app/
thoughts/thoughts.yaml. A CSAR packaging such specification (together with all
artifacts needed to deploy and manage the Thinking application) is available at
https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-
app/thoughts.csar.
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4.1 The Architecture of TOSKER

Figure 4 shows the architecture of TOSKER, which is designed to be modular and
easily extensible. The architecture of TOSKER indeed partitions the functionali-
ties of TOSKER into lightweight modules that interact with each other, and new
functionalities can be easily added to TOSKER by developing and plugging-in
new modules.

User interface. The Ul allows to feed TOSKER with the necessary input.
The latter includes a CSAR (packaging the TOSCA specification of a multi-
component application together with all artifacts needed to realise its manage-
ment), a sequence of management operations to be executed, and (optionally)
the subset of the application components on which to perform such a sequence
of management operations.

(TosKer )
o
w ul Orchestrator TOSCA
Parser
Container Volume Software
Manager Manager Manager
Docker
Interface
& J

Fig. 4. The architecture of TOSKER.

TOSCA utilities. The TOSCA Parser is an utility module for parsing a CSAR
and generating an internal representation of the application it packages. Such
representation will then be exploited by the other modules in TOSKER to deploy
and manage the corresponding application.

Orchestration core. The Orchestrator is the core component of TOSKER, as it
is in charge of planning and orchestrating the management of multi-component
applications. It first receives the input from the Ul and it exploits the TOSCA
Parser to generate an internal representation of the multi-component application
contained in the input CSAR.

The Orchestrator automatically determines which management operations
have to be executed on which components, and in which order”. (to permit

" The Orchestrator assumes that components are managed according to the TOSCA
standard management lifecycle [27]. If such lifecycle is not respected (e.g., by requir-
ing to delete a component that has not yet been created), then the Orchestrator will
raise an error and stop orchestrating the application management.
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executing the input sequence of operations on the indicated subset of applica-
tion components). The result is a (possibly expanded) sequence of management
operations, each to be executed on a certain application component.

The Orchestrator then orchestrates the actual execution the above mentioned
sequence of management operations by coordinating the Container Manager, Vol-
ume Manager and Software Manager. It indeed iterates over the sequence, and it
dispatches the actual execution of an operation on a component to the corre-
sponding manager (e.g., to create a component of type tosker.nodes. Container,
the Orchestrator dispatches the actual execution of create on such component to
the Container Manager). dispatched to the

Managers. The Container Manager, Volume Manager, and Software Manager
implement the actual lifecycle for components of type tosker.nodes.Container,
tosker.nodes. Volume, and tosker.nodes.Software, respectively.

— The Container Manager is in charge of implementing the operations to create,
start, stop and delete Docker containers, by also taking into account the dif-
ferent types of artifacts from which they are generated (viz., Docker images
or Dockerfiles—see Sect. 3).

— The Volume Manager has to implement the operations to create and delete
Docker volumes (as volumes can only be created or deleted [23]).

— The Software Manager is in charge of implementing the operations to create,
configure, start, stop and delete a component of type tosker.nodes.Software.
Notice that, as such a kind of components will be hosted on Docker containers,
the actual execution of a management operation on a component requires
to issue commands to its container. For instance, to create a component,
the Software Manager has to (i) copy all artifacts of the component inside a
dedicated folder of its container, (ii) start the container by executing the script
implementing the create operation of the component, (iii) commit the changes
applied to the container as a new image, and (iv) re-create the container by
exploiting the newly created image.

Notice that each manager implements management operations by instructing
the Docker Interface on which Docker commands to execute.

Docker interface. The Docker Interface is in charge of interacting with the
Docker engine installed on the host where TOSKER is running. It is used by
the managers to manage Docker containers and Docker volumes, and to execute
operations inside running containers.

Notice that the Docker Interface decouples TOSKER from the actual Docker
engine used, meaning that it can issue commands to a classic Docker engine (as
in the current implementation of TOSKER—see Sect.4.2), but it could also be
used to issue commands to an engine capable of distributing containers in a
cluster (e.g., Docker swarm [16] or Kubernetes [32]).
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4.2 Prototype Implementation

We have implemented a prototype of TOSKER, which is open-source and pub-
licly available on GitHub®. The prototype is written in Python®, and it is
composed by a main package (tosker) containing the set of Python mod-
ules implementing the various components forming the architecture of TOSKER
(viz., ui.py, tosca parser.py, orchestrator.py, container manager.py, vo-
lume manager.py, software manager.py, and docker_interface.py).

The current prototype of TOSKER is also published on PyPI'? ( Python Pack-
age indez), which permits installing it on a host by simply executing the com-
mand pip install tosker. It can then be used as a standard Python library,
or as a command line software by executing:

$ tosker FILE [COMPONENTS] COMMANDS [INPUTS]

where FILE is a CSAR archive or a TOSCA YAML file (containing the specifi-
cation of a multi-component application), COMPONENTS is optional and permits
specifying the subset of application components to be managed, COMMANDS is the
sequence of management operations to be executed, and INPUTS is an optional
sequence of input parameters to be passed to the TOSCA application'!.

Ezample 2. Consider again the Thinking application in Example 1. Suppose, for
instance, that we wish to create and start its API and MongoDB. We can instruct
TosKER to do so, by executing:

$ tosker /usr/share/tosker/examples/thougthts.csar \
API MongoDB create start

Notice that this will not only result in creating and starting A PI and MongoDB,
but also the Maven container and DB Volume they require to properly work. GUI
and Node will instead be ignored by TOSKER, as they are not contained in set
of components input to TOSKER, nor they are needed by API or MongoDB. O

To test the current prototype of TOSKER, we specified the open-source applica-
tion Thinking in TOSCA, as well as three other existing applications, viz., (i) a
Wordpress instance running on a PHP web server and connecting to a MySQL
back-end, (ii) a NodeJS-based REST API connecting to a MongoDB back-end,
and (iii) an application with three interacting servers written in NodeJS. All
applications were effectively deployed by the current prototype of TOSKER, and
they constituted the basis for developing a battery of unit tests'?, which covered
96% of the source code of the Python modules we implemented (see Table 1).

8 https://github.com/di-unipi-socc/TosKer.

% The choice of Python was mainly motivated by the availability of two open-
source Python libraries: docker-py (https://github.com/docker/docker-py) and
tosca-parser (https://github.com/openstack/tosca-parser/). docker-py implements a
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Table 1. Unit test coverage in the current prototype of TOSKER (obtained by running
the coverage-py tool—https://coverage.readthedocs.io).

Module Total statements | Missed statements | Coverage
ui.py 75 18 76%
docker_interface.py | 168 4 98%
tosca_parser.py 219 2 99%
orchestrator.py 105 2 98%
container_manager.py | 26 0 100%
volume_manager.py 9 0 100%
software manager.py | 67 2 97%
Total 669 28 96%

5 Related Work

We hereby position TOSKER with respect to other currently available solutions
for orchestrating the management of multi-component applications with Docker
and/or TOSCA.

Docker-based orchestration. Docker natively supports multi-container Doc-
ker applications with Docker compose [15]. Docker compose permits specifying
the (images of) containers forming an application, the links/connections to be set
between such containers, and the volumes to be mounted. Based on that, Docker
compose is capable of deploying the specified application. However, Docker com-
pose treats containers as black-boxes, meaning that there is no information on
which components are hosted by a container, and that it is not possible to orches-
trate the management of application components separately from that of their
containers (as it is instead possible with TOSKER).

Other approaches worth mentioning are Docker swarm [16], Kubernetes [32],
and Mesos [2]. Docker swarm permits creating a cluster of replicas of a Docker
container, and seamlessly managing it on a cluster of hosts. Kubernetes and
Mesos instead permit automating the deployment, scaling, and management of
containerised applications over clusters of hosts. Docker swarm, Kubernetes and
Mesos differ from TOSKER as they focus on how to schedule and manage con-
tainers on clusters of hosts, rather than on how to orchestrate the management
of the components and containers forming multi-component applications.

Python interface for the Docker engine API. tosca-parser is instead a parser for
TOSCA application specifications (developed by the OpenStack community).

9 https://pypi.python.org/pypi/tosKer.

' Details on how to process inputs for TOSCA applications can be found in [27].

12 The TOSCA application specifications and the battery of unit tests that we
implemented are publicly available on GitHub at https://github.com/di-unipi-socc/
TosKer/tree/master/data/examples and https://github.com/di-unipi-socc/TosKer/
tree/master /tests, respectively.
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TOSCA-based orchestration. OpenTOSCA [4] is an open-source engine for
deploying and managing TOSCA applications. It is designed to work with a
former, XML-based version of TOSCA [25], and to process applications “imper-
atively” (viz., by executing management plans defined by the application devel-
oper in the form of BPEL or BPMN workflows). TOSKER instead works with
the newer, YAML-based version of TOSCA [27], and it is designed to process
applications “declaratively” (viz., by automatically determining the management
plans to be executed from the topology of an application).

Other approaches worth mentioning are SeaClouds [8], Brooklyn [1], Alien4-
Cloud [17], and Cloudify [20]. SeaClouds [8] is a middleware solution for deploy-
ing and managing multi-component applications on heterogeneous IaaS/PaaS
clouds. SeaClouds fully supports TOSCA, but it lacks a support for Docker con-
tainers. The latter makes SeaClouds not suitable to orchestrate the management
of multi-component applications including Docker containers.

Brooklyn [1], Alien4Cloud [17] and Cloudify [20] instead natively support
Docker containers, and they permit orchestrating the management of the soft-
ware components and Docker containers forming cloud applications. They how-
ever all differ from TOSKER because they treat Docker containers as black-boxes
(hence not permitting to orchestrate the management of application components
separately from that of the containers hosting them).

Brooklyn [1] and Cloudify [20] also differ from TOSKER as they require
to specify applications in non-standard blueprint languages (inspired to, but
not fully compliant with, the OASIS standards CAMP [26] and TOSCA [26],
respectively). For instance, a relationship is specified in TOSCA by connect-
ing a requirement of one component to a capability of another, and require-
ments/capabilities can be used to express interconnection constraints (which
then permit validating TOSCA application topologies [9]). Cloudify blueprints
instead do not include any notion of requirements or capabilities, as relationships
just connect a source node to a target node.

Summary. To the best of our knowledge, ours is the first solution that per-
mits specifying and orchestrating multi-component, Docker-based applications
in TOSCA, and managing software components independently of the containers
hosting them.

6 Conclusions

Container-based virtualisation is emerging as a simple yet effective solution for
deploying and managing multi-component applications in cloud platforms [28].
Application components can be shipped within portable and lightweight Docker
containers, which can then be interconnected to allow components to interact
with each other. At the same time, the current support for orchestrating the
management of the application components shipped within Docker containers
is limited [29]. For instance, components must be manually packaged in Docker
containers, and it is not possible to manage components independently of the
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containers hosting them (e.g., whenever a container is started/stopped, all com-
ponents hosted on such container are also started/stopped).

In this paper we illustrated how TOSCA [27] can enhance the support for
orchestrating multi-component applications with Docker. We indeed (i) proposed
a TOSCA-based representation for multi-component applications, which per-
mits distinguishing the Docker containers and software components in a multi-
component application, as well as the relationships occurring among them. We
also (i) presented TOSKER, an orchestration engine for automatically deploying
and managing multi-component applications based on TOSCA and Docker.

Our approach enhances the current support for orchestrating the manage-
ment of multi-component applications in Docker. TOSKER can indeed automat-
ically install application components within the containers hosting them (instead
of requiring to manually package components in images of Docker containers),
and it permits independently orchestrating the management of components and
containers (instead of binding the management lifecycle of components to that
of the containers hosting them).

We believe that our approach can also facilitate the widespread adoption of
the TOSCA standard. TOSKER indeed provides a lightweight, easy-to-use engine
for deploying and managing TOSCA-based applications (exploiting Docker to
host their components).

We tested the current prototype of TOSKER by developing a battery of unit
tests based on four existing applications. A more thorough evaluation of T0OS-
KER, based on concrete case studies and/or on datasets of multi-component
applications (e.g., uSET [6]), is in the scope of our immediate future work.

Additionally, the current prototype of TOSKER permits orchestrating appli-
cations on single hosts and it does not yet support horizontal scaling of contain-
ers. TOSKER can be adapted to include such features, for instance, by simply
including a new version of the Docker Interface which interacts with Docker
Swarm [16] or Kubernetes [32] (instead of with the Docker engine installed on a
host). This is also in the scope of our future work.

It is finally worth noting that TOSKER permits orchestrating the manage-
ment of multi-component applications, by already offering some basic planning
capabilities. For instance, when required to start a component of an applica-
tion, TOSKER automatically determines which other components have to be
started, and it plans the sequence of operations that permits starting all such
components. Such planning is however based on a fixed set of operations, whose
behaviour is fixed by the TOSCA standard management lifecycle [27]. This is
because our approach does not yet include a way to customise the management
behaviour of application components. A solution can be to integrate our app-
roach with models designed precisely to permit compositionally describing the
management behaviour of the components forming an application (e.g., Aeo-
lus [13] or fault-aware management protocols [7]), which would also permit
improving the planning capabilities of TOSKER (e.g, by exploiting the Aeolus-
based planning algorithm in [21]). The integration of our approach with an exist-
ing solution for modelling, analysing and planning the management of multi-
component applications is also in the scope of our future work.
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