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Abstract. Service brokers are tools that allow different individual ser-
vice providers to be integrated. An API can be a mechanism to provide a
joint interface. Broker can actually also be use for more than integration.
We use a cloud service broker that implements a multi-cloud abstraction
API in order to carry out performance comparisons between different
cloud services. The broker tool here is a multi-cloud storage API that
integrates a number of provided storage services. The library supporting
the API is organised into three services, which are a file, a blob and a
table service. Using this broker architecture, we developed a performance
test scenario to compare the different providers, i.e., to compare a range
of storage operations by different providers.

1 Introduction

Integration is a key problem in the cloud services context. A cloud service bro-
ker is an intermediary application between a client and cloud provider service
that can provide this integration [15]. Brokerage reduces the need for service
consumers to analyze different types of services by different providers [1]. This
enables a single platform to offer the client a common cloud storage service.
This results in cost optimization and reduced level of back-end data manage-
ment requirements.

For our performance evaluation, we use here a cloud service broker that
implements a multi-cloud abstraction API. This multi-cloud storage broker sup-
ports GoogleDrive, DropBox, Microsoft Azure and Amazon Web Services as the
provided storage services. The API library offers file, blob and table services.
The API can facilitates the distribution of different types of cloud provider ser-
vices [16]. The abstraction library allows the cloud broker to adapt to a rapidly
changing marketplace.

Vendor lock-in is often referred to as a critical point in choosing a provider.
In order to avoid lock-in, a broker can help. A multi-cloud abstraction library
is a suitable mechanism that it makes it easy for the client to switch between
cloud providers with different services that are supported by the broker.
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Switching or migrating between providers can be driven by quality [27,32].
We use a broker implementation to compare the supported services [8,13,23]
from a performance perspective [42]. Service brokers normally remedy interop-
erability problems [2-5,10]. However, based on this architecture, we look into
other service qualities, namely performance which is of key importance for all
cloud layers [28-30]. A performance test application was developed here to com-
pare between the services provided through the broker [19]. The performance
test scenario was used to compare a range storage operations across different
supported providers.

2 Broker — Principles and Supported Services

In Fig. 1 we have outlined the core components of thee broker architecture. We
also discuss the storage services supported by it in this section.
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Fig. 1. Architecture of a multi-cloud storage broker.

2.1 Principle Properties of the Storage Broker

Cloud services are generally provided with specifications, but often constructed
in a way that makes them hard to be used as part of a common interface, thus
impeding on interoperability. We studies different multi-cloud libraries, including
Apache Jclouds, DeltaCloud, Kloudless, SecureBlackBox, and SimpleCloud. The
purpose was to adopt a successful solution template.

We decided to adopt an approach similar to the Apache Jclouds library for
abstraction, as we will explain now. Jclouds [22] provides cloud-agnostic abstrac-
tion. A single instance context approach for the mapping of a user request in
jclouds was used in our implementation. The purpose of having each class for
each provider across different levels of service was adopted from a similar design
in the SecureBlackBox library. Our concept of including a manager interface
layer at each component level is adopted from LibCloud, another library.

2.2 Services Supported by the Broker

We have included storage services from Google, Dropbox, Azure and Amazon in
our cloud storage broker.
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— Amazon Web Service S3 [35] is a file storage service which is built on REST
and SOAP. Their SDK is available in all major development languages.

— Azure Storage [37] supports blob, file, queue and table services. The API is
built on REST, HTTP and xml, and can be integrated with Microsoft visual
studio, eclipse and GIT. The Azure SDK provides a separate API package
for each service and has the same code flow across different service APIs.

— DropBoz [36] is a file hosting service. It also enables synchronised backup and
web sharing. The DropBox API is very light-weight and easy for a new user.

— GoogleDrive [38] offers a cloud file storage service. The GoogleDrive service
includes access to a Google API client library.

This selection of service providers resulted in a grouping of the cloud providers
and their services as shown in the table below! that summarises the main features
of the services:

Service | Azure AWS Google DropBox
File Storage file - GoogleDrive | DropBox
Blob Storage blob AWS S3 - -
Table | Storage Table, DocumentDB | DynamoDB, SimpleDB | - -

3 Broker Architecture

Portability and interoperability are the key objectives of a cloud brokerage tool.
Thus the objective of designing and developing an abstraction API is to produce
an effective cross-service cloud delivery model [14]. Before describing how we use
this to support performance evaluation, we still need to introduce the architec-
tural principles. The main service-oriented functionalities of cloud providers are
compute nodes, data volume, load balance, DNS and so on. The advantage of
bringing these functionalities to a multi-cloud application provides (1) an easy
way of importing and exporting data, (2) choice over price, (3) enhanced SLA,
and (4) the elimination of vendor lock-in.

As concept and function integration is the key difficulty in constructing the
broker, this broker implementation is based on an ontology that at conceptual
level defines the integration. This Storage Abstraction Ontology describes the
common naming and meaning approach of the abstraction API [25,26,34]. The
model consists of four main layers, namely Service, Provider, Level-2 (composite
storage objects) and Level-1 (core storage objects).

— Level-4 Service: The Service layer is the top layer and is directly integrated
to the user interface layer. This layer basically describes the services that
the multi-cloud storage abstraction API supports. There are three services
currently supported. They are Blob, Table and File service.

— Level-3 Provider: The Provider layer is the second layer, which is one of
the context object parameters mapped to the service layer. The multi-cloud
storage abstraction supports four main providers, namely Microsoft Azure,

! https://www.google.com/drive/;
https://www.dropbox.com/;
https://aws.amazon.com/s3/;
https://azure.microsoft.com/en-us/services/storage/;
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Fig. 2. Ontology-based layered broker architecture.

Amazon Web Services, GoogleDrive and DropBox. The corresponding ser-
vices supported by the providers are shown below:

Service | Provider

Blob Azure storage blob; AWS S3

Table Azure storage table; Azure DocumentDB; AWS DynamoDB; AWS SimpleDB
File Azure storage file; DropBox and GoogleDrive

— Level-2 Composite: Level-2 is the next layer. This layer represents the first

level or higher level of composite object abstraction. This layer is service-
neutral and brings out the common naming across the providers specific
functionalities. Each layer is abstracted based on the common operations and
aspect of how the main function is applied in that particular service. Common
naming is represented to easily categorise storage resources and group them
to make the development of the coding easier.
Based on the Abstraction Ontology Fig. 2, the Blob service has Store which
groups Container from Azure Storage Blob and Bucket from AWS S3. The
Table service has two different sub-layers - where Database belongs to Azure
DocumentDB Database, and where Collection groups Table from Azure Stor-
age Table, collection from Azure DocumentDB Collection, Table from AWS
DynamoDB and Domain from AWS SimpleDB. The File service has two dif-
ferent sub-layers where Share belongs to Azure Storage File and Directory
groups Directory from Azure Storage File, Folder from DropBox and Parent
from the GoogleDrive service.

— Level-1 Core: Level-1 represents the lower level of core object abstraction.
This layer contains the core functionalities of a particular service across
different providers. The classes in this level are extended from an abstract
class called AbstractConnector. The class implements the abstract methods
defined in the AbstractConnector class. The mapping from Level-2 to Level-1
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is performed by an interface class called Manager. This Manager identifies the
provider class by its key. Basic CRUD operations on the storage resources are
included as core methods. In order to achieve these functions, each opera-
tion request should pass through the Level-2 mappings and are then mapped
across the service and providers.

The Blob service has Blob which groups Blob from Azure Storage Blob and
Object from AWS S3. The Table service has two different sub layers. It has
Item which groups Entity from Azure Storage Table, Document from Azure
DocumentDB Document, Item from AWS DynamoDB and Item from AWS
SimpleDB. Also, the second sub layer Attachment belongs to Azure Docu-
mentDB. The File service has File which groups File from Azure Storage File,
File from DropBox and File from GoogleDrive.

4 Performance Testing and Provider Comparison

We have used the broker to compare performance values for the four providers
selected. The broker is instrumented to provide the response time results.

In this section, we desribe the performance test set-up and the results for the
three service types blob, file and table across the different providers. We organise
this section based on the storage types blob, file and table.

Not all providers support each of the storage types. So, the number of com-
pared services provided varies between two and four. We report on the time
consumed for a number of standard operations at the two important levels 1
and 2 of the layer architecture. In this way, we cover individual objects (items)
and composites (collections) and a range of standard operations on them such
as creating or deleting.

4.1 Blob Service Performance Test

The Blob Service Performance Test was performed on two providers, namely
Azure Storage Blob and AWS S3. This performance test includes two object
levels. Level-2 represents Store (which includes container and Bucket). Level-1
represents Blob (which includes Blob and Object).

— The total number of tests performed was 27 to fully cover the respective core
and composite objects and the different relevant operations on them. The
performance test compares the operations across the service providers.

— Each operation was run 10 times in order to avoid any accidential performance
irregularities due to external factors, and the corresponding process time for
each request from T1 to T10 was calculated.

— Each request was processed with the same blob size of 10.2 MB, which resem-
bles a standard object size.

The result includes start time, end time, average time and total duration — see
Figs. 3 and 4.
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Fig. 3. Blob service Level-2 composite object.
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Fig. 4. Blob service Level-1 core object.

4.2 File Service Performance Test

The File Service Performance Tests were performed on Azure Storage File,
GoogleDrive and DropBox. The tests include two object levels. Level-2 rep-
resents Share and Directory. Level-1 represents Files.

— The total number of tests performed was 26 to cover the combinations of
different object types and different operations on them.

— The performance tests compare the operations across the service providers.
Each operation was run 10 times to eliminate irregular single behaviour, and
the corresponding process time for each request from T1 to T10 was calcu-
lated.

— Each request was processed with same file size of 10.2 MB as a common size
for the object type in question.
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Fig. 5. File service Level-2 composite object.
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Fig. 6. File service Level-1 core object.

The results include start time, end time, average time and total duration — see
Figs. 5 and 6.

4.3 Table Service Performance Test

The Table Service Performance Tests were performed on Azure Storage Table,
Azure DocumentDB, AWS DynamoDB and AWS SimpleDB. The Tests include
two object levels. Level-2 represents Database and Collections (which includes
Table, Collections, Table and Domain). Level-1 represents Item (which includes
Entity, Document, Table Item, Domain Item) and Attachment.
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Fig. 8. Table service Level-1 core object.

— The total number of tests was 45. As already explained for the blob tests, this
number covers the combination of different objects and the different opera-
tions on them. The performance tests compare the operations then across the
service providers.
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— Each operation was run 10 times, as earlier to avoid irregularities, and the
corresponding process time for each request from T1 to T10 was calculated.
FEach request was processed with a single data record of approximately four
columns.

The results include start time, end time, average time and total duration — see
Figs. 7 and 8 (and also the performance details in Fig.9).
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Tableservice  AWSSimpleDB LeveL 2 listoomain S0 s 475 S0 saL 473 468 472 459 485 478869 975 00091 9767
Tableservice ureStorageTable  LEVEL 1 createntity nKey,Rova 260 38 0 3 38 39 2 0 £ w0 776 261 00021 2616
TableService aure Storage Tabli  LEVEL 1 deletekntity Parttionk”, "smith”, "jonson” 1478.777 232 79 s % " 7 n ” ] &  wmmr @ o000 3027
TableService \zure Storage Tabli  LEVEL 1 existsEntity partitionk”, "smith” 1Record 1479301 1861 40 36 3 E) W 2 57 a 3 1m0 2 00020 282
Tableservice ureStorageTable  LEVEL 1 listEntity  ame,Partttable”, "sr 1Record 1479301 2054 46 3 a0 £ 3 3 3 3s 55 1479300 242 00020 2023
Tableservice LEveL 1 o 'doc 1Record 147879 3659 1168 180 1207 11322 115 61 175 1153 1139 147879 1412 00240 14128
Tableservice LeveL 1 \lRecord 178791 373 1143 1077 1053 1089 1065 1008 955 99 101 178791 1315 00130 13181
Tableservice AzureDocumentDE  LEVEL 1 listoocument e,Collectic "TestColl 1Record 1478791 3610 997 1092 1023 1031 1059 988 983 1007 1021 147791 181 00121 12811
Tableservice LeveL 1 375 1300 104 123 157 183 1% 1137 1157 145 478795 1438 00240 14388
Tableservice LeveL 1 a6 1 186 114 13 123 130 18 121 1157 4771 142 00140 14247
Tableservice LeveL 1 3 mes 19 m77 155 122 100 126 133 U6 14779 o001 4848
Tableservice LeveL 1 a5 127 1219 128 140 112 128 142 107 187 47792 1468 00141 14682
Tableservice LeveL 1 ", "docur 1Record 1478794 4039 1584 1397 1459 1501 1266 1469 1456 1502 1517 7874 1717 00470 Am7
TableService  AWSDynamoDB  LEVEL1 createltem  meAttribuble”jsonstring” 1478821 5130 | 1128 1221 | 130 1127 1133 1021 104 1010 115 147881 1505 00350 15056

Fig. 9. Detailed performance measurements.
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5 Discussion of Results and Conclusions

The aim of cloud service brokerage is customising or integrating existing ser-
vices or making them interoperable. We have developed what based on com-
mon classification schemes in [11,12,39] is categorised as an integration broker.
The purpose of a broker is intermediation between consumers and providers to
provide advanced capabilities (interoperability and portability [33]) that builds
up on an intermediary/broker platform to provide for instance a marketplace
to bring providers and customers together and automatically facilitate multi-
provider usage or portability across providers. The broker for cloud storage ser-
vice providers implement a joint interface to allow

— eagy portability for the user and
— eagy extensibility for the broker provider.

This broker solution enables through the joint API also the opportunity for a
cloud storage user to easily migrate between service providers and evolve the
systems [9,21], without having sufficient standards [6,7,20].

We investigated here the usage of the broker to carry out comparative perfor-
mance tests across the providers in order to support the user with the decision
which provider to choose, if this is taken based on a performance criterion.

Our observations from the performance tests we described earlier are the
following:

— (a) Core Objects: We can observe that the performance of core object stor-
age operations varies significantly across Cloud providers. Azure outperforms
AWS S3 by a factor of between 4 and 5in our test scenario. For individ-
ual object operations, Azure is also up to 5 times faster in terms of access
speed. For example, the common function of UploadBlob takes approximately
4 seconds on Azure and 10 seconds on AWS S3 for a 10.2 MB file.

— (b) Composite Objects: The tests of composite object operations [31] that
relate to collections show that Azure has significantly more access perfor-
mance than other providers. In particular, AWS DynamoDB has a unusually
long access time for its CollectionCreate operation. The tests on individual
table entity operations show Azure to be the fastest by a considerable margin
with over 5 to 6 times lesser access speeds on average.

— (c¢) Upload and Download: The average of the combined file upload and down-
load speeds do not vary considerably across the providers tested.

We have defined some parameters, such as object size, in a specific way. Other
choices might result in different observations. Our aim here was not to rec-
ommend a particular provider. The aim was to demonstrate the usefulness of
instrumenting brokers for either decision making or as an ongoing monitoring
approach. Any selection can anyway not happen without considering other prop-
erties such as security.

In the future, we plan to consider more storage services. Furthermore, the
impact of different architectures in terms on IaaS or PaaS with and without the
use of container technologies [17,18,24,40,41] shall be explored.
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