®

Check for
updates

Testing and Comparing the Performance
of Cloud Service Providers
Using a Service Broker Architecture

Divyaa Manimaran Elango!, Frank Fowley!, and Claus Pahl?(®)

1 1C4, Dublin City University, Dublin, Ireland
2 SwSE, Free University of Bozen-Bolzano, Bolzano, Italy
Claus.Pahl@unibz.it

Abstract. Service brokers are tools that allow different individual ser-
vice providers to be integrated. An API can be a mechanism to provide a
joint interface. Broker can actually also be use for more than integration.
We use a cloud service broker that implements a multi-cloud abstraction
API in order to carry out performance comparisons between different
cloud services. The broker tool here is a multi-cloud storage API that
integrates a number of provided storage services. The library supporting
the API is organised into three services, which are a file, a blob and a
table service. Using this broker architecture, we developed a performance
test scenario to compare the different providers, i.e., to compare a range
of storage operations by different providers.

1 Introduction

Integration is a key problem in the cloud services context. A cloud service bro-
ker is an intermediary application between a client and cloud provider service
that can provide this integration [15]. Brokerage reduces the need for service
consumers to analyze different types of services by different providers [1]. This
enables a single platform to offer the client a common cloud storage service.
This results in cost optimization and reduced level of back-end data manage-
ment requirements.

For our performance evaluation, we use here a cloud service broker that
implements a multi-cloud abstraction API. This multi-cloud storage broker sup-
ports GoogleDrive, DropBox, Microsoft Azure and Amazon Web Services as the
provided storage services. The API library offers file, blob and table services.
The API can facilitates the distribution of different types of cloud provider ser-
vices [16]. The abstraction library allows the cloud broker to adapt to a rapidly
changing marketplace.

Vendor lock-in is often referred to as a critical point in choosing a provider.
In order to avoid lock-in, a broker can help. A multi-cloud abstraction library
is a suitable mechanism that it makes it easy for the client to switch between
cloud providers with different services that are supported by the broker.

© Springer International Publishing AG, part of Springer Nature 2018
Z. A. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 117-129, 2018.
https://doi.org/10.1007/978-3-319-79090-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_8&domain=pdf

118 D. M. Elango et al.

Switching or migrating between providers can be driven by quality [27,32].
We use a broker implementation to compare the supported services [8,13,23]
from a performance perspective [42]. Service brokers normally remedy interop-
erability problems [2-5,10]. However, based on this architecture, we look into
other service qualities, namely performance which is of key importance for all
cloud layers [28-30]. A performance test application was developed here to com-
pare between the services provided through the broker [19]. The performance
test scenario was used to compare a range storage operations across different
supported providers.

2 Broker — Principles and Supported Services

In Fig. 1 we have outlined the core components of thee broker architecture. We
also discuss the storage services supported by it in this section.

Multi-cloud O«
Storage Qs \
Cross- € N 4
provider ~ R Cloud At Abstractlon‘ /\‘
Performance BroheE / > /
Test Storage }/
. Provider,

\

Fig. 1. Architecture of a multi-cloud storage broker.

2.1 Principle Properties of the Storage Broker

Cloud services are generally provided with specifications, but often constructed
in a way that makes them hard to be used as part of a common interface, thus
impeding on interoperability. We studies different multi-cloud libraries, including
Apache Jclouds, DeltaCloud, Kloudless, SecureBlackBox, and SimpleCloud. The
purpose was to adopt a successful solution template.

We decided to adopt an approach similar to the Apache Jclouds library for
abstraction, as we will explain now. Jclouds [22] provides cloud-agnostic abstrac-
tion. A single instance context approach for the mapping of a user request in
jclouds was used in our implementation. The purpose of having each class for
each provider across different levels of service was adopted from a similar design
in the SecureBlackBox library. Our concept of including a manager interface
layer at each component level is adopted from LibCloud, another library.

2.2 Services Supported by the Broker

We have included storage services from Google, Dropbox, Azure and Amazon in
our cloud storage broker.

Testing and Comparing the Performance of Cloud Service Providers 119

— Amazon Web Service S3 [35] is a file storage service which is built on REST
and SOAP. Their SDK is available in all major development languages.

— Azure Storage [37] supports blob, file, queue and table services. The API is
built on REST, HTTP and xml, and can be integrated with Microsoft visual
studio, eclipse and GIT. The Azure SDK provides a separate API package
for each service and has the same code flow across different service APIs.

— DropBoz [36] is a file hosting service. It also enables synchronised backup and
web sharing. The DropBox API is very light-weight and easy for a new user.

— GoogleDrive [38] offers a cloud file storage service. The GoogleDrive service
includes access to a Google API client library.

This selection of service providers resulted in a grouping of the cloud providers
and their services as shown in the table below! that summarises the main features
of the services:

Service | Azure AWS Google DropBox
File Storage file - GoogleDrive | DropBox
Blob Storage blob AWS S3 - -
Table | Storage Table, DocumentDB | DynamoDB, SimpleDB | - -

3 Broker Architecture

Portability and interoperability are the key objectives of a cloud brokerage tool.
Thus the objective of designing and developing an abstraction API is to produce
an effective cross-service cloud delivery model [14]. Before describing how we use
this to support performance evaluation, we still need to introduce the architec-
tural principles. The main service-oriented functionalities of cloud providers are
compute nodes, data volume, load balance, DNS and so on. The advantage of
bringing these functionalities to a multi-cloud application provides (1) an easy
way of importing and exporting data, (2) choice over price, (3) enhanced SLA,
and (4) the elimination of vendor lock-in.

As concept and function integration is the key difficulty in constructing the
broker, this broker implementation is based on an ontology that at conceptual
level defines the integration. This Storage Abstraction Ontology describes the
common naming and meaning approach of the abstraction API [25,26,34]. The
model consists of four main layers, namely Service, Provider, Level-2 (composite
storage objects) and Level-1 (core storage objects).

— Level-4 Service: The Service layer is the top layer and is directly integrated
to the user interface layer. This layer basically describes the services that
the multi-cloud storage abstraction API supports. There are three services
currently supported. They are Blob, Table and File service.

— Level-3 Provider: The Provider layer is the second layer, which is one of
the context object parameters mapped to the service layer. The multi-cloud
storage abstraction supports four main providers, namely Microsoft Azure,

! https://www.google.com/drive/;
https://www.dropbox.com/;
https://aws.amazon.com/s3/;
https://azure.microsoft.com/en-us/services/storage/;

https://www.google.com/drive/
https://www.dropbox.com/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/

120 D. M. Elango et al.

| BLOB SERVICE TABLE SERVICE FILE SERVICE SERVICE
Azure AWS Azure Azure AWS AWS (e Google
Storage s storage || Document || Dynam || simple Storage | Dropbox | ;. Provider
Blob Table o8 oDB o8 Elle
A % T A T 4P
]]
i —
I Share
Stoe LEVEL_2
g :) ¥ 7 ASPECT
Container || Bucket | Table “coueaionl Table I Domain | I mrmoryl I Folder I Parent
— Collection Dirextor
1 J 1 1
Document || 1t it
Blob | Object | | Eatlty ” " I e | e | N LEVEL_1
File File - ASPECT
Attachment e =

1
! Figure: Abstraction Ontology !

Fig. 2. Ontology-based layered broker architecture.

Amazon Web Services, GoogleDrive and DropBox. The corresponding ser-
vices supported by the providers are shown below:

Service | Provider

Blob Azure storage blob; AWS S3

Table Azure storage table; Azure DocumentDB; AWS DynamoDB; AWS SimpleDB
File Azure storage file; DropBox and GoogleDrive

— Level-2 Composite: Level-2 is the next layer. This layer represents the first

level or higher level of composite object abstraction. This layer is service-
neutral and brings out the common naming across the providers specific
functionalities. Each layer is abstracted based on the common operations and
aspect of how the main function is applied in that particular service. Common
naming is represented to easily categorise storage resources and group them
to make the development of the coding easier.
Based on the Abstraction Ontology Fig. 2, the Blob service has Store which
groups Container from Azure Storage Blob and Bucket from AWS S3. The
Table service has two different sub-layers - where Database belongs to Azure
DocumentDB Database, and where Collection groups Table from Azure Stor-
age Table, collection from Azure DocumentDB Collection, Table from AWS
DynamoDB and Domain from AWS SimpleDB. The File service has two dif-
ferent sub-layers where Share belongs to Azure Storage File and Directory
groups Directory from Azure Storage File, Folder from DropBox and Parent
from the GoogleDrive service.

— Level-1 Core: Level-1 represents the lower level of core object abstraction.
This layer contains the core functionalities of a particular service across
different providers. The classes in this level are extended from an abstract
class called AbstractConnector. The class implements the abstract methods
defined in the AbstractConnector class. The mapping from Level-2 to Level-1

Testing and Comparing the Performance of Cloud Service Providers 121

is performed by an interface class called Manager. This Manager identifies the
provider class by its key. Basic CRUD operations on the storage resources are
included as core methods. In order to achieve these functions, each opera-
tion request should pass through the Level-2 mappings and are then mapped
across the service and providers.

The Blob service has Blob which groups Blob from Azure Storage Blob and
Object from AWS S3. The Table service has two different sub layers. It has
Item which groups Entity from Azure Storage Table, Document from Azure
DocumentDB Document, Item from AWS DynamoDB and Item from AWS
SimpleDB. Also, the second sub layer Attachment belongs to Azure Docu-
mentDB. The File service has File which groups File from Azure Storage File,
File from DropBox and File from GoogleDrive.

4 Performance Testing and Provider Comparison

We have used the broker to compare performance values for the four providers
selected. The broker is instrumented to provide the response time results.

In this section, we desribe the performance test set-up and the results for the
three service types blob, file and table across the different providers. We organise
this section based on the storage types blob, file and table.

Not all providers support each of the storage types. So, the number of com-
pared services provided varies between two and four. We report on the time
consumed for a number of standard operations at the two important levels 1
and 2 of the layer architecture. In this way, we cover individual objects (items)
and composites (collections) and a range of standard operations on them such
as creating or deleting.

4.1 Blob Service Performance Test

The Blob Service Performance Test was performed on two providers, namely
Azure Storage Blob and AWS S3. This performance test includes two object
levels. Level-2 represents Store (which includes container and Bucket). Level-1
represents Blob (which includes Blob and Object).

— The total number of tests performed was 27 to fully cover the respective core
and composite objects and the different relevant operations on them. The
performance test compares the operations across the service providers.

— Each operation was run 10 times in order to avoid any accidential performance
irregularities due to external factors, and the corresponding process time for
each request from T1 to T10 was calculated.

— Each request was processed with the same blob size of 10.2 MB, which resem-
bles a standard object size.

The result includes start time, end time, average time and total duration — see
Figs. 3 and 4.

122 D. M. Elango et al.

Composite Object (level-2) - Blob Service
2500

2125.6

2000
_ 1657.2
0
2
g 1300 13207
2 1229.7
E
o 1000
£
IS

500 423
I 324 321 272 4 2814
0
createStore exnstsStore deleteStore ||stStore getsto reURI
m Azure Storage Blob m AWS S3
Operatinos

Fig. 3. Blob service Level-2 composite object.

Core Object (level-1) - Blob Service
120000

109857.1
100000

80000

60000

Time (milliseconds)

40000

20000
9338.9
42:' 472-3' 2673 L 3273 azs.s_lm5 305.8151“1 282.3_1362'3 s+
uploadsiob downloadBlob existsBlob getBlobURI metadatalob deleteBlob listBlob copyBlob
B Azure Storage Blob ®AWS S3
Operations

Fig. 4. Blob service Level-1 core object.

4.2 File Service Performance Test

The File Service Performance Tests were performed on Azure Storage File,
GoogleDrive and DropBox. The tests include two object levels. Level-2 rep-
resents Share and Directory. Level-1 represents Files.

— The total number of tests performed was 26 to cover the combinations of
different object types and different operations on them.

— The performance tests compare the operations across the service providers.
Each operation was run 10 times to eliminate irregular single behaviour, and
the corresponding process time for each request from T1 to T10 was calcu-
lated.

— Each request was processed with same file size of 10.2 MB as a common size
for the object type in question.

Testing and Comparing the Performance of Cloud Service Providers 123

Composite Object (level-2) - File Service

_ 1400
$ 1200
G 1000
g 800
= 600
£ 400 I I
v 200
EANERREREER R
[
2 N\ N\
FFEE S S S S S S
NS N SO SR o o g o o P\
2 ZERC- SV U RS I 4
k‘?”b Qj'\% bQ}Q, A Q'a{? ‘@0 \‘:’0 \‘Z? ‘—}9 '&(l
. N NN
(9 @ ‘Q,’b e_\f’ b@\@ AN Q}'Q
%
M Azure Storage File
Operations
Fig. 5. File service Level-2 composite object.
Core Object (level-1) - File Service
15000
2 12085.5
§ 10000 =
8 00.4
= 5651.2
329.7
£ 00 2655. 1086.8 1290.7
g 02 5326 12074 7741
£ O 10232 w226
uploadFile downloadFile deleteFile copyFile

H GoogleDrive ® Dropbox ® Azure Storage File
Operations

Fig. 6. File service Level-1 core object.

The results include start time, end time, average time and total duration — see
Figs. 5 and 6.

4.3 Table Service Performance Test

The Table Service Performance Tests were performed on Azure Storage Table,
Azure DocumentDB, AWS DynamoDB and AWS SimpleDB. The Tests include
two object levels. Level-2 represents Database and Collections (which includes
Table, Collections, Table and Domain). Level-1 represents Item (which includes
Entity, Document, Table Item, Domain Item) and Attachment.

124 D. M. Elango et al.

Composite Object (level-2) - Table Service

25000
228 o
20000
$ 15000
8
]
H
v
£ 10000
E
5000
5275 |
42 1875. 1385.7
“iI W ol il -2 (| £
o 5% 291 iz 38 275.4 . 6 277 zzi
createCollection existsCollection deleteCollection getCoHectlonURl listCollection
Operations
m Azure Storage Table W Azure Document DB(Database) ® Azure Document DB(Collection) B AWS Dynamo DB AWS Simple DB
Fig. 7. Table service Level-2 composite object.
Core Object (level-1) - Table Service
2000
1867.2
1800 1717
1667.3
1600 1562.3
1505 523.4 1484
{ 1468,
1424, 1438,
1400 14
1518 1281,
% 1200
s 111.7
s
g
2 1000
z 27.2
o
£
£ 800
600
400
302.
261 242,
) I I I
0
createltem deleteltem existsitem listitem

Operations
m Azure Storage Table ® Azure Document DB(Document) ® Azure Document DB(Attachment) ™ AWS Dynamo DB m AWS Simple DB

Fig. 8. Table service Level-1 core object.

— The total number of tests was 45. As already explained for the blob tests, this
number covers the combination of different objects and the different opera-
tions on them. The performance tests compare the operations then across the
service providers.

Testing and Comparing the Performance of Cloud Service Providers 125

— Each operation was run 10 times, as earlier to avoid irregularities, and the
corresponding process time for each request from T1 to T10 was calculated.
FEach request was processed with a single data record of approximately four
columns.

The results include start time, end time, average time and total duration — see
Figs. 7 and 8 (and also the performance details in Fig.9).

seRviCE PROVIDER LEVELOF ASPECTS Operation Type >arameter: Inputs _ FileSize StartTime T1 ™) 13 ™ 13 LA 1 TS TI0 EndTime AvgTime Duration Avg
slobservice LeveL 2 tec 2MB w7612 004 105 14 17 12 ue 238 11 188 138 l7men a3 T ans
Blobservice LEveL 2 102MB 17613 2500 76 B 7 B 7 7 i) 2 a7 wmen 24 00030 | 3287
Blobservice LEVEL2 delet 102MB 107616 2575 78 n) © & o n) 7 e7me6 321 00030 | 3215
Blobservice AzureStorage Blok LEVEL 2 listContainer 02ME wme 25 7 & 56 & & 56 58 7 6 wme 2 o021 | 23
Blobservice LeveL 2 102MB 1761 23 68 E E a)) E a7 @ umes w2 o021 2ma
Blobservice Awss3 LEVEL2 createContainerntainerNavicasso-bu 102MB 1478699 6387 | 1567 1711 1370 1426 1618 2172 1647 1530 1808 1478699 2125 00210 | 21256
Blobservice Awss3 LEVEL2 existsContainerntainerNavicasso-bu 102MB 1478699 5433 841 723 757 90 7 707 727 710 685 14786%9 1229 00120 | 12297
Blobservice Awss3 LEVEL2 deleteContainerntainerNavicasso-bu 102MB 1478706 5396 1185 1071 1173 1s45 112 118 130 1167 1046 1478706 1657 0061 | 1657.2
Blobservice Awss3 LeveL 2 listContainer 102MB 178701 4ss0 sl &3 1061 893 737 1280 833 14 842 178701 1329 00130 | 13297
Blobservice Awss3 LEVEL2 getContainerURintainerNanicasso-bu 102M8 14787 2649 30 7 15 16 5 17 2 1 14 w7 281 ooo21 | 2614
BlobService AzureStorageBlot LEVEL 1 Upload llePath,Bld\\Project! 10.2MB 1478614 9781 3553 5137 3245 3110 3141 2914 4522 4103 3420 1478614 422 00421 | 42926
Blobservice AzureStorageBlok LEVEL L Download cadFilePatiect\\New 102MB 1478.614 7225 5097 4954 4083 4576 4215 431 417 4139 4SO 176l 4m3 00470 | 47237
BlobService AzureStorageBlok LEVEL L Exists neBlobReontainer’, 102MB 1478614 2023 69 & & E) i3 & 7 7 7 wmew 267 o021 | 2673
BlobService Azure StorageBlot LEVEL 1 URI neBlobReontainer’, 10.2MB 1478614 2277 37 35 3 u B a 2 % 3 l7mee 20 00021 | 2602
Blobservice AzureStorage Blok LEVEL_L Metadata ne,BlobReontainer’, 102MB 1478615 2879 44 st s a a 3 8 7 3 17615 325 00030 | 3258
Blobservice AzureStorageBlok LEVEL_L Delete neBlobReontainer”, 102MB 1478616 2385 76 81 i o & n o 7 S5 147616 305 00030 | 3058
BlobService Azure StorageBlot LEVEL 1 st ntianerNasstcontaine 102MB 1478615 2135 66 7 s s 8 7 B 7 N wmes 2 o021 | 223
BlobService AzureStorage Blok LEVEL_L UstBatch ntianerNasstcontaind 102MB 1476615 2189 91 100 85 4 7 3 3 7 81 wmels 292 ooo21 | 227
Blobservice AzureStorageBlok LEVELL Copy .DestinationContianc 10.2M8 1478616 2251 2 1 14 1 w7 1 194 147615 30 00031 | 3701
slobservice Awss3 LeveL 1 Upload wpath,lobard\\Proj 102MB 1478702 115172 113111 99692 108463 10636 114377 103462 11648 111216 108084 1478703 109857 13181 |109857.1
BlobService AWSS3 LEVEL 1 Download adFilePatiProject\\N 10.2MB 1478.704 18565 7761 10831 7672 7507 7502 8273 8285 9286 7707 1478704 9338 01:33.0 ~ 93389
Blobservice Awss3 LeveL 1 Exists :BlobRefesso-bucke 10.2MB 1478704 4402 814 784 775 lae 798 809 &4 77 760 1478704 123 00420 | 12232
slobservice Awss3 LeveL L URI aBlobRefesso-bucke’ 102MB 1478704 3061 25 2 2 0 30 2 2 2 19 17704 327 00030 | 3273
Blobservice Awss3 LeveL 1 Metadata :BlobRefesso-bucke 10.2MB 1478705 4758 | 84 1043 m18 813 787 72 Bl6 75 704 1478705 1206 00120 | 1206

Blobservice Awss3 LeveL 1 Delete 2plobRefessobucke 102M8 1478705 5307 740 697 730 707 81 173 706 75 762 1478705 1251 00121 | 12514
Blobservice Awss3 LeveL s Ust ucketNamicasso-bu 102MB 1478705 S84 1018 912 8% 1013 8 880 87 893 99 L7705 162 00131 13623
Blobservice Awss3 LeveL 1 Copy .DestinationContianc 10.0M8 1478705 6883 194 175 1834 2032 2087 1829 1875 1781 1734 1478705 2371 00231 23715
Fileservice AuureStorageFile LEVEL2 createshare hareNamctestshare! 102MB 1478523 S0s2 | 985 916 770 &% 741 s 683 768 78 147853 108 00:120 | 12083
FileService Aaure StorageFile LEVEL 2 reNam(testshare’ 102M8 1478529 2670 80 E & 6 7 & 7 Y s 1759 38 00030 | 3187
FileService AuureStorageFile LEVEL 2 deleteshare shareNamitestshare' 102MB 1478539 2124 72 n 5 i o s 7 100 105 14753 347 00030 | 474
Fileservice AuureStorageFile LEVEL 2 tistshare 1028 WS 290 123 12 s & % s 7 5 76 wmsn 0 00031 | 307
FileService AuureStorageFile LEVEL 2 gefShareURI shareNamtestshare' 102MB 1478529 252 86 13 %2 11 $3 11 S4 14 S1 7523 35 00030 | 3157
Fileservice AwreStoragefile LEVEL2 createDirectory meDirectre’testdl 102MB 1478532 4317 310 303 108 178 145 193 189 445 162 478532 635 00060 | 635

Fileservice AuureStorageFile LEVEL2 existsDirectory meDirecte”,'testdl 10.2MB 1478532 3725 &L 109 S5 131 76 10 93 112 % 14752 462 00041 | 4627
FileService AuureStorageFile LEVEL2 deleteDirectory meDirectre” "testdl 10.2MB 147853 2838 105 107 105 106 123 103 103 101 108 147853 375 00031 | 3799
Fileservice Auuretorsge il LEVEL 2 Histoirectory 102MB 1753 277 3% 410 10 209 202 209 201 201 217 147853 4% 00041 | 4587
FileService AuureStorageFile LEVEL2 getDirectoryURImeDirectre’testdl 10.2MB 1478532 2481 205 204 205 205 205 32 8 87 109 s a5 o0a0 | a1sd
FileService AzureStorageFile LEVEL 1 Upload smefilePaimard\\P| 10.2MB 1478534 24474 4738 1130 1484 7463 12013 905 6784 4711 3967 1478534 9900 01:33.0 | 99004
Fileservice AuureStorageFile LEVEL 1 Download smeFilePd\\Project! 102MB 1478.535 8569 4791 4ssa 4757 490 4301 4992 sasS SSS7 dedl 1478535 5329 00530 | 53297
FileService Auure StorageFile LEVEL 1 Exists oyNamef'testdirec 102MB 147853 2759 296 315 | 299 31 305 308 304 279 33 147853 553 00051 | 553

FileService AuureStorageFile LEVEL 1 Metadata yNemef'testdirec 102MB 147853 2728 157 131 10 157 138 145 103 10 131 147853 390 00031 | 3%.7
Fileservice Auure StorageFile LEVEL 1 Delete yNamef'testdirec 102M8 1478537 2871 408 4% 447 26 17 187 197 159 146 1478557 52 00050 | 5326
FileService AuureStorageFile LEVEL 1 Copy ShareNamit’,"testsh 102MB 1478537 4283 | 332 307 29 295 384 67 603 280 316 14755 7. 00071 71
Fileservice Dropsox LeveL 1 Upload ileRefereiewfolder 102MB 1478283 10746 9155 7385 | 865 9846 7310 | 9354 8973 8459 5M9 1478283 8833 0280 88333
FileService DropBox LeveL 1 Metadata eferenceMtestpdf’ 102MB 1478284 330 501 S03 557 S0 482 48 471 506 520 1478284 78 00071 7862
Fileservice DropBox Leve 1 Download ileReferesr/Dropbo 102MB 1478.518 6933 4228 4904 | 491 4890 5403 6672 5535 4693 6293 1478518 SeS1 0061 56512
Fileservice DropBox LeveL 1 Delete Filepath “testpdf” 102M8 1478515 335 722 66 770 1e3 77 75 725 76 707 1478519 108 00101 10868
FileService DropBox LeveL 1 copy stinationdf”,"Cop 102MB 1478519 3957 810 864 | 818 820 1144 114 767 859 1554 178519 1290 00421 12907
Fileservice GoogleDrive Level 1 Upload PathFileTfolder\\Ge 102MB 1478268 17282 15613 11321 10637 11029 13292 10830 10418 10210 10223 1478268 120855 02000 120855
Fileservice GoogleDrive LeveL s ust 102MB 147828 2788 314 323 24 28 39 37 3% 292 255 147828 Se2 00051 5627
FileService GoogleDrive LeveL 1 Download athfileRwifolder\\ 102M8 1478.272 5434 2382 2303 2524 2475 2267 223 2091 2868 1766 1478272 2655 00261 26553
Fileservice GoogleDrive LeveL 1 Delete eferenced testpdf 102M8 1478277 3892 673 84 785 661 69 666 692 75 635 1478277 1025 00100 1059
FileService GoogleDrive LeveL L Copy Destinatiopdf”,’cop 102MB 1478279 4400 1083 1240 1500 1101 106 113 1083 163 1069 1478279 1507 00450 15074
TableService \aure Storage Tabli LEVEL 2 createTable “ableNam¢'testtable” wm7se 263 a2 06 280 255 268 32 22 275 263 M7 527 00050 5279
Tableservice ureStorageTable LEVEL 2 existsTable “ableNam testtable” w776 270 a9 4s w w 2 n a a 4 w77e 1 00021 291

Tableservice aure StorageTabli LEVEL 2 deleteTable “ableName'testtable” wm7s 27 107 101 s %2 0 10 % 5 92 17m79 3 o001 381
TableService aure Storage Tabli LEVEL 2 getTableURI “ableName'testtable” wmzs 2w @ a a 2 a7 @ 5 5 53 wm7s 25 00021 254
Tableservice ure StorageTabli LEVEL 2 listTable w77 w12 4 a e s a2 a2 2 a3 @ umr 1 w21 2m2
TableService AzureDocumentDE LEVEL 2 createDs DBName "TestDB" wm7E2 a9l 1283 w21 1027 15 98 S17 918 136 1227 M77R 192 00131 13923
TableService AzureDocumentDE LEVEL 2 existsDB DBName "TestDB" 478782 381 195 81 105 1024 16 1142 176 1064 Sl 1478782 1286 00121 11868
TableService AzureDocumentDE LEVEL 2 deleteDB DBName "TestoB" 78805 438 1451 1458 137 114 1207 126 184 1305 17 1478805 1604 0060 16045
TableService AzureDocumentDE LEVEL 2 gEDBURI DBName "TestoB" w7782 3807 86 800 80 7a4 803 1213 905 86 795 17782 164 00Il1 11642
TableService AzureDocumentDE LEVEL 2 115108 1478783 330 sa7 o2 o1 1028 1015 103 1023 1002 S8l 1478783 122 00420 12225
Tableservice LeveL 2 loctic’, TestCollection” 1478784 4636 | 1841 204 173 163 151 3183 12362 11889 1873 1478784 5275 00521 52759
Tableservice LeveL 2 " 778 s 115 122 1609 124 1125 1103 1393 1a9 1452 147878 1575 00181 15758
TableService MzureDocumentDE LEVEL2 deleteCollectione Collectic”, TestCollection” 1478805 4318 1491 1458 | 1376 1154 1207 123 1284 105 1176 1478805 1604 00160 16045
Tableservice LeveL 2 wmTe 4233 1227 1023 140 1208 1239 1320 1023 131 118 147784 147 00141 14762
Tableservice AzureDocumentDE LEVEL 2 listCollection DBName "TestoB" 178784 322 1129 125 105 112 1302 973 1082 144 1130 1478788 138 00131 13857
Tableservice AWSDynamoDB LEVEL 2 createTable “ableNam¢'testtable” w7ms1S 26592 22075 21586 21475 26317 21638 21683 21883 2070 21710 W478SlS 22842 03480 228429
TableService | AWSDynamoDB LEVEL 2 existsTable ableName testable” w7 &35 1207 1047 129 1133 125 105 138 1021 132 478815 167 0061 16762
TableService | AWSDynamoDB LEVEL 2 deleteTable ableName'testtable" 1478820 176 18 1229 1228 171 191 1228 132 1026 1005 1478824 1623 00160 16234
TableService AWSDynamoDB LEVEL 2 getTableURI “ableName'testtable” w7mss s 128 1213 13 D 1% 184 1227 1208 1351 178815 1655 0061 16551
TableService | AWSDynamoDB LEVEL 2 listTable wmma 8127 96 1% 8% 94 912 sl 92 S22 921 14784 1655 0061 1659
Tableservice AWSSImpleDB LEVEL2 createDomain omainNanestbomain® 147886 669 1591 156l 1552 1638 1561 1579 1564 152 1553 1478869 2042 00200 202

Tableservice AWSSimpleDB LeveL 2 istsDomain omainNamestDomain” w7mses assl 701 S0 a5 6w 517 a7 a0 & a5 u7mse) 92 00091 9526
Tableservice AWSSimpleDB LEVEL2 deleteDomain omainNanestDomain® w7msss 575 1670 186 179 103 164 1677 173 1630 1662 1478885 209 00201 2095

Tableservice AWSSImpleDB LEVEL2 getbomainURI mainNanestbomain® w7mses s14 S0 s 475 553 4S5 46l 478 463 457 1478869 S44 00090 9446
Tableservice AWSSimpleDB LeveL 2 listoomain S0 s 475 S0 saL 473 468 472 459 485 478869 975 00091 9767
Tableservice ureStorageTable LEVEL 1 createntity nKey,Rova 260 38 0 3 38 39 2 0 £ w0 776 261 00021 2616
TableService aure Storage Tabli LEVEL 1 deletekntity Parttionk”, "smith”, "jonson” 1478.777 232 79 s % " 7 n ”] & wmmr @ o000 3027
TableService \zure Storage Tabli LEVEL 1 existsEntity partitionk”, "smith” 1Record 1479301 1861 40 36 3 E) W 2 57 a 3 1m0 2 00020 282
Tableservice ureStorageTable LEVEL 1 listEntity ame,Partttable”, "sr 1Record 1479301 2054 46 3 a0 £ 3 3 3 3s 55 1479300 242 00020 2023
Tableservice LEveL 1 o 'doc 1Record 147879 3659 1168 180 1207 11322 115 61 175 1153 1139 147879 1412 00240 14128
Tableservice LeveL 1 \lRecord 178791 373 1143 1077 1053 1089 1065 1008 955 99 101 178791 1315 00130 13181
Tableservice AzureDocumentDE LEVEL 1 listoocument e,Collectic "TestColl 1Record 1478791 3610 997 1092 1023 1031 1059 988 983 1007 1021 147791 181 00121 12811
Tableservice LeveL 1 375 1300 104 123 157 183 1% 1137 1157 145 478795 1438 00240 14388
Tableservice LeveL 1 a6 1 186 114 13 123 130 18 121 1157 4771 142 00140 14247
Tableservice LeveL 1 3 mes 19 m77 155 122 100 126 133 U6 14779 o001 4848
Tableservice LeveL 1 a5 127 1219 128 140 112 128 142 107 187 47792 1468 00141 14682
Tableservice LeveL 1 ", "docur 1Record 1478794 4039 1584 1397 1459 1501 1266 1469 1456 1502 1517 7874 1717 00470 Am7
TableService AWSDynamoDB LEVEL1 createltem meAttribuble”jsonstring” 1478821 5130 | 1128 1221 | 130 1127 1133 1021 104 1010 115 147881 1505 00350 15056

Fig. 9. Detailed performance measurements.

126 D. M. Elango et al.

5 Discussion of Results and Conclusions

The aim of cloud service brokerage is customising or integrating existing ser-
vices or making them interoperable. We have developed what based on com-
mon classification schemes in [11,12,39] is categorised as an integration broker.
The purpose of a broker is intermediation between consumers and providers to
provide advanced capabilities (interoperability and portability [33]) that builds
up on an intermediary/broker platform to provide for instance a marketplace
to bring providers and customers together and automatically facilitate multi-
provider usage or portability across providers. The broker for cloud storage ser-
vice providers implement a joint interface to allow

— eagy portability for the user and
— eagy extensibility for the broker provider.

This broker solution enables through the joint API also the opportunity for a
cloud storage user to easily migrate between service providers and evolve the
systems [9,21], without having sufficient standards [6,7,20].

We investigated here the usage of the broker to carry out comparative perfor-
mance tests across the providers in order to support the user with the decision
which provider to choose, if this is taken based on a performance criterion.

Our observations from the performance tests we described earlier are the
following:

— (a) Core Objects: We can observe that the performance of core object stor-
age operations varies significantly across Cloud providers. Azure outperforms
AWS S3 by a factor of between 4 and 5in our test scenario. For individ-
ual object operations, Azure is also up to 5 times faster in terms of access
speed. For example, the common function of UploadBlob takes approximately
4 seconds on Azure and 10 seconds on AWS S3 for a 10.2 MB file.

— (b) Composite Objects: The tests of composite object operations [31] that
relate to collections show that Azure has significantly more access perfor-
mance than other providers. In particular, AWS DynamoDB has a unusually
long access time for its CollectionCreate operation. The tests on individual
table entity operations show Azure to be the fastest by a considerable margin
with over 5 to 6 times lesser access speeds on average.

— (c¢) Upload and Download: The average of the combined file upload and down-
load speeds do not vary considerably across the providers tested.

We have defined some parameters, such as object size, in a specific way. Other
choices might result in different observations. Our aim here was not to rec-
ommend a particular provider. The aim was to demonstrate the usefulness of
instrumenting brokers for either decision making or as an ongoing monitoring
approach. Any selection can anyway not happen without considering other prop-
erties such as security.

In the future, we plan to consider more storage services. Furthermore, the
impact of different architectures in terms on IaaS or PaaS with and without the
use of container technologies [17,18,24,40,41] shall be explored.

Testing and Comparing the Performance of Cloud Service Providers 127

Acknowledgements. This work was partly supported by IC4 (Irish Centre for Cloud
Computing and Commerce), funded by EI and the IDA.

References

1.

Ried, S.: Cloud Broker - A New Business Model Paradigm. Forrester (2011)

2. Elango, D.M., Fowley, F., Pahl, C.: An ontology-based architecture for an adapt-

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

able cloud storage broker. In: Advances in Service-Oriented and Cloud Computing.
Springer CCIS (2018, to appear)

Benslimane, D., Dustdar, S., Sheth, A.: Services mashups - the new generation of
web applications. Internet Comput. 12(5), 13-15 (2008)

Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the inter-cloud: protocols and formats for cloud computing interoperability. In:
International Conference on Internet and Web Applications and Services (2009)
Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13-31.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13119-6_2

Cloud Standards (2017). http://cloud-standards.org/

ETSI Cloud Standards (2017). http://www.etsi.org/newsevents/news/734-2013-
12-press-release-report-on-cloudcomputing-standards

Fehling, C., Mietzner, R.: Composite as a service: cloud application structures,
provisioning, and management. Inf. Technol. 53(4), 188-194 (2011)

Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change mod-
els and change rules for sustainable cloud software architectures. J. Softw. Evol.
Process 29(2) (2017)

Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. In: ACM Transactions on Internet Technology. (2018, to appear)

Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service bro-
kerage solutions for cloud architectures. In: 1st International Workshop on Cloud
Service Brokerage (2013)

Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and com-
parison framework for cloud service brokerage architectures. IEEE Trans. Cloud
Comput. (2017). https://doi.org/10.1109/TCC.2016.2537333. http://iecexplore.
ieee.org/document /7423741 /

Garcia-Gomez, S., et al.: Challenges for the comprehensive management of cloud
services in a PaaS framework. Scalable Comput. Pract. Experience 13(3), 201-213
(2012)

Elango, D.M., Fowley, F., Pahl, C.: Pattern-driven architecting of an adaptable
ontology-driven cloud storage broker. In: University of Oslo, Department of Infor-
matics, Research report 471, pp. 33—47 (2017)

Gartner: Cloud Services Brokerage. Gartner Research (2013). http://www.gartner.
com/it-glossary /cloud-servicesbrokerage-csb

Grozev, N., Buyya, R.: InterCloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Experience 44(3), 369-390 (2012)

Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
CLOSER Conference, pp. 137-146 (2016)

Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
(2018). Accepted for publication

https://doi.org/10.1007/978-3-642-13119-6_2
http://cloud-standards.org/
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
https://doi.org/10.1109/TCC.2016.2537333
http://ieeexplore.ieee.org/document/7423741/
http://ieeexplore.ieee.org/document/7423741/
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb

128

19.

20.
21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.
39.

D. M. Elango et al.

Hofer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and compari-
son. J. Internet Serv. Appl. 2(2), 81-94 (2011)

IEEE Cloud Standards (2015). http://cloudcomputing.ieee.org/standards
Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.
IEEE Trans. Cloud Comput. 1(2), 142-157 (2013)

jclouds: jclouds Java and Clojure Cloud API (2015). http://www.jclouds.org/
Ferrer, A.J., et al..: OPTIMIS: a holistic approach to cloud service provisioning.
Future Gener. Comput. Syst. 28(1), 66-77 (2012)

Gacitua-Decar, V., Pahl, C.: Structural process pattern matching based on graph
morphism detection. Int. J. Softw. Eng. Knowl. Eng. 27(2), 153-189 (2017)

Pahl, C.: Layered ontological modelling for web service-oriented model-driven
architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol.
3748, pp. 88-102. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741_8
Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural
styles. Inf. Softw. Technol. 51(12), 1739-1749 (2009)

Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architec-
tural concerns. In: IEEE 7th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems MESOCA (2013)
Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Sniblel, E.:
An architecture for virtual solution composition and deployment in infrastructure
clouds. In: International Workshop on Virtualization Technologies in Distributed
Computing (2009)

Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A., Estrada, G.:
Fuzzy self-learning controllers for elasticity management in dynamic cloud archi-
tectures. In: 12th International ACM SIGSOFT Conference on Quality of Software
Architectures QoSA (2016)

Arabnejad, H., Jamshidi, P., Estrada, G., El Ioini, N., Pahl, C.: An auto-scaling
cloud controller using fuzzy Q-learning - implementation in openstack. In: Aiello,
M., Johnsen, E.B., Dustdar, S., Georgievski, 1. (eds.) ESOCC 2016. LNCS, vol.
9846, pp. 152-167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44482-6_10

Mietzner, R., Leymann, F., Papazoglou, M.: Defining composite configurable SaaS
application packages using SCA. In: International Conference on Internet and
Web Applications and Services, Variability Descriptors and Multi-tenancy Pat-
terns (2008)

Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212-226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5_18

Petcu, D., et al.: Portable cloud applications - from theory to practice. Future Gen.
Comput. Syst. 29(6), 1417-1430 (2013)

Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification
of change patterns. J. Data Semant. 2(2-3), 119-143 (2013)

Amazon Simple Storage Service (S3) Cloud Storage AWS. https://aws.amazon.
com/s3/

Dropbox. https://www.dropbox.com/

Azure Storage - Secure cloud storage. https://azure.microsoft.com/en-us/services/
storage/

Google Drive - Cloud Storage & File Backup. https://www.google.com/drive/
Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture
migration. Softw. Pract. Experience 47(9), 1159-1184 (2017)

http://cloudcomputing.ieee.org/standards
http://www.jclouds.org/
https://doi.org/10.1007/11581741_8
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-642-40651-5_18
https://doi.org/10.1007/978-3-642-40651-5_18
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.dropbox.com/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://www.google.com/drive/

40.

41.

42.

Testing and Comparing the Performance of Cloud Service Providers 129

Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/
TCC.2017.2702586. http://ieeexplore.ieee.org/document/7922500/

Aderaldo, C.M., Mendonca, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 1st International Workshop on Estab-
lishing the Community-Wide Infrastructure for Architecture-Based Software Engi-
neering. IEEE (2017)

Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte,
S., Wettinger, J.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion (2017)

https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
http://ieeexplore.ieee.org/document/7922500/

	Testing and Comparing the Performance of Cloud Service Providers Using a Service Broker Architecture
	1 Introduction
	2 Broker – Principles and Supported Services
	2.1 Principle Properties of the Storage Broker
	2.2 Services Supported by the Broker

	3 Broker Architecture
	4 Performance Testing and Provider Comparison
	4.1 Blob Service Performance Test
	4.2 File Service Performance Test
	4.3 Table Service Performance Test

	5 Discussion of Results and Conclusions
	References

