
Testing and Comparing the Performance
of Cloud Service Providers

Using a Service Broker Architecture

Divyaa Manimaran Elango1, Frank Fowley1, and Claus Pahl2(B)

1 IC4, Dublin City University, Dublin, Ireland
2 SwSE, Free University of Bozen-Bolzano, Bolzano, Italy

Claus.Pahl@unibz.it

Abstract. Service brokers are tools that allow different individual ser-
vice providers to be integrated. An API can be a mechanism to provide a
joint interface. Broker can actually also be use for more than integration.
We use a cloud service broker that implements a multi-cloud abstraction
API in order to carry out performance comparisons between different
cloud services. The broker tool here is a multi-cloud storage API that
integrates a number of provided storage services. The library supporting
the API is organised into three services, which are a file, a blob and a
table service. Using this broker architecture, we developed a performance
test scenario to compare the different providers, i.e., to compare a range
of storage operations by different providers.

1 Introduction

Integration is a key problem in the cloud services context. A cloud service bro-
ker is an intermediary application between a client and cloud provider service
that can provide this integration [15]. Brokerage reduces the need for service
consumers to analyze different types of services by different providers [1]. This
enables a single platform to offer the client a common cloud storage service.
This results in cost optimization and reduced level of back-end data manage-
ment requirements.

For our performance evaluation, we use here a cloud service broker that
implements a multi-cloud abstraction API. This multi-cloud storage broker sup-
ports GoogleDrive, DropBox, Microsoft Azure and Amazon Web Services as the
provided storage services. The API library offers file, blob and table services.
The API can facilitates the distribution of different types of cloud provider ser-
vices [16]. The abstraction library allows the cloud broker to adapt to a rapidly
changing marketplace.

Vendor lock-in is often referred to as a critical point in choosing a provider.
In order to avoid lock-in, a broker can help. A multi-cloud abstraction library
is a suitable mechanism that it makes it easy for the client to switch between
cloud providers with different services that are supported by the broker.

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 117–129, 2018.
https://doi.org/10.1007/978-3-319-79090-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_8&domain=pdf


118 D. M. Elango et al.

Switching or migrating between providers can be driven by quality [27,32].
We use a broker implementation to compare the supported services [8,13,23]
from a performance perspective [42]. Service brokers normally remedy interop-
erability problems [2–5,10]. However, based on this architecture, we look into
other service qualities, namely performance which is of key importance for all
cloud layers [28–30]. A performance test application was developed here to com-
pare between the services provided through the broker [19]. The performance
test scenario was used to compare a range storage operations across different
supported providers.

2 Broker – Principles and Supported Services

In Fig. 1 we have outlined the core components of thee broker architecture. We
also discuss the storage services supported by it in this section.

Fig. 1. Architecture of a multi-cloud storage broker.

2.1 Principle Properties of the Storage Broker

Cloud services are generally provided with specifications, but often constructed
in a way that makes them hard to be used as part of a common interface, thus
impeding on interoperability. We studies different multi-cloud libraries, including
Apache Jclouds, DeltaCloud, Kloudless, SecureBlackBox, and SimpleCloud. The
purpose was to adopt a successful solution template.

We decided to adopt an approach similar to the Apache Jclouds library for
abstraction, as we will explain now. Jclouds [22] provides cloud-agnostic abstrac-
tion. A single instance context approach for the mapping of a user request in
jclouds was used in our implementation. The purpose of having each class for
each provider across different levels of service was adopted from a similar design
in the SecureBlackBox library. Our concept of including a manager interface
layer at each component level is adopted from LibCloud, another library.

2.2 Services Supported by the Broker

We have included storage services from Google, Dropbox, Azure and Amazon in
our cloud storage broker.



Testing and Comparing the Performance of Cloud Service Providers 119

– Amazon Web Service S3 [35] is a file storage service which is built on REST
and SOAP. Their SDK is available in all major development languages.

– Azure Storage [37] supports blob, file, queue and table services. The API is
built on REST, HTTP and xml, and can be integrated with Microsoft visual
studio, eclipse and GIT. The Azure SDK provides a separate API package
for each service and has the same code flow across different service APIs.

– DropBox [36] is a file hosting service. It also enables synchronised backup and
web sharing. The DropBox API is very light-weight and easy for a new user.

– GoogleDrive [38] offers a cloud file storage service. The GoogleDrive service
includes access to a Google API client library.

This selection of service providers resulted in a grouping of the cloud providers
and their services as shown in the table below1 that summarises the main features
of the services:

Service Azure AWS Google DropBox

File Storage file - GoogleDrive DropBox

Blob Storage blob AWS S3 - -

Table Storage Table, DocumentDB DynamoDB, SimpleDB - -

3 Broker Architecture

Portability and interoperability are the key objectives of a cloud brokerage tool.
Thus the objective of designing and developing an abstraction API is to produce
an effective cross-service cloud delivery model [14]. Before describing how we use
this to support performance evaluation, we still need to introduce the architec-
tural principles. The main service-oriented functionalities of cloud providers are
compute nodes, data volume, load balance, DNS and so on. The advantage of
bringing these functionalities to a multi-cloud application provides (1) an easy
way of importing and exporting data, (2) choice over price, (3) enhanced SLA,
and (4) the elimination of vendor lock-in.

As concept and function integration is the key difficulty in constructing the
broker, this broker implementation is based on an ontology that at conceptual
level defines the integration. This Storage Abstraction Ontology describes the
common naming and meaning approach of the abstraction API [25,26,34]. The
model consists of four main layers, namely Service, Provider, Level-2 (composite
storage objects) and Level-1 (core storage objects).

– Level-4 Service: The Service layer is the top layer and is directly integrated
to the user interface layer. This layer basically describes the services that
the multi-cloud storage abstraction API supports. There are three services
currently supported. They are Blob, Table and File service.

– Level-3 Provider: The Provider layer is the second layer, which is one of
the context object parameters mapped to the service layer. The multi-cloud
storage abstraction supports four main providers, namely Microsoft Azure,

1
https://www.google.com/drive/;
https://www.dropbox.com/;
https://aws.amazon.com/s3/;
https://azure.microsoft.com/en-us/services/storage/;

https://www.google.com/drive/
https://www.dropbox.com/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/


120 D. M. Elango et al.

Fig. 2. Ontology-based layered broker architecture.

Amazon Web Services, GoogleDrive and DropBox. The corresponding ser-
vices supported by the providers are shown below:

Service Provider

Blob Azure storage blob; AWS S3

Table Azure storage table; Azure DocumentDB; AWS DynamoDB; AWS SimpleDB

File Azure storage file; DropBox and GoogleDrive

– Level-2 Composite: Level-2 is the next layer. This layer represents the first
level or higher level of composite object abstraction. This layer is service-
neutral and brings out the common naming across the providers specific
functionalities. Each layer is abstracted based on the common operations and
aspect of how the main function is applied in that particular service. Common
naming is represented to easily categorise storage resources and group them
to make the development of the coding easier.
Based on the Abstraction Ontology Fig. 2, the Blob service has Store which
groups Container from Azure Storage Blob and Bucket from AWS S3. The
Table service has two different sub-layers - where Database belongs to Azure
DocumentDB Database, and where Collection groups Table from Azure Stor-
age Table, collection from Azure DocumentDB Collection, Table from AWS
DynamoDB and Domain from AWS SimpleDB. The File service has two dif-
ferent sub-layers where Share belongs to Azure Storage File and Directory
groups Directory from Azure Storage File, Folder from DropBox and Parent
from the GoogleDrive service.

– Level-1 Core: Level-1 represents the lower level of core object abstraction.
This layer contains the core functionalities of a particular service across
different providers. The classes in this level are extended from an abstract
class called AbstractConnector. The class implements the abstract methods
defined in the AbstractConnector class. The mapping from Level-2 to Level-1



Testing and Comparing the Performance of Cloud Service Providers 121

is performed by an interface class called Manager. This Manager identifies the
provider class by its key. Basic CRUD operations on the storage resources are
included as core methods. In order to achieve these functions, each opera-
tion request should pass through the Level-2 mappings and are then mapped
across the service and providers.
The Blob service has Blob which groups Blob from Azure Storage Blob and
Object from AWS S3. The Table service has two different sub layers. It has
Item which groups Entity from Azure Storage Table, Document from Azure
DocumentDB Document, Item from AWS DynamoDB and Item from AWS
SimpleDB. Also, the second sub layer Attachment belongs to Azure Docu-
mentDB. The File service has File which groups File from Azure Storage File,
File from DropBox and File from GoogleDrive.

4 Performance Testing and Provider Comparison

We have used the broker to compare performance values for the four providers
selected. The broker is instrumented to provide the response time results.

In this section, we desribe the performance test set-up and the results for the
three service types blob, file and table across the different providers. We organise
this section based on the storage types blob, file and table.

Not all providers support each of the storage types. So, the number of com-
pared services provided varies between two and four. We report on the time
consumed for a number of standard operations at the two important levels 1
and 2 of the layer architecture. In this way, we cover individual objects (items)
and composites (collections) and a range of standard operations on them such
as creating or deleting.

4.1 Blob Service Performance Test

The Blob Service Performance Test was performed on two providers, namely
Azure Storage Blob and AWS S3. This performance test includes two object
levels. Level-2 represents Store (which includes container and Bucket). Level-1
represents Blob (which includes Blob and Object).

– The total number of tests performed was 27 to fully cover the respective core
and composite objects and the different relevant operations on them. The
performance test compares the operations across the service providers.

– Each operation was run 10 times in order to avoid any accidential performance
irregularities due to external factors, and the corresponding process time for
each request from T1 to T10 was calculated.

– Each request was processed with the same blob size of 10.2 MB, which resem-
bles a standard object size.

The result includes start time, end time, average time and total duration – see
Figs. 3 and 4.



122 D. M. Elango et al.

Fig. 3. Blob service Level-2 composite object.

Fig. 4. Blob service Level-1 core object.

4.2 File Service Performance Test

The File Service Performance Tests were performed on Azure Storage File,
GoogleDrive and DropBox. The tests include two object levels. Level-2 rep-
resents Share and Directory. Level-1 represents Files.

– The total number of tests performed was 26 to cover the combinations of
different object types and different operations on them.

– The performance tests compare the operations across the service providers.
Each operation was run 10 times to eliminate irregular single behaviour, and
the corresponding process time for each request from T1 to T10 was calcu-
lated.

– Each request was processed with same file size of 10.2 MB as a common size
for the object type in question.



Testing and Comparing the Performance of Cloud Service Providers 123

Fig. 5. File service Level-2 composite object.

Fig. 6. File service Level-1 core object.

The results include start time, end time, average time and total duration – see
Figs. 5 and 6.

4.3 Table Service Performance Test

The Table Service Performance Tests were performed on Azure Storage Table,
Azure DocumentDB, AWS DynamoDB and AWS SimpleDB. The Tests include
two object levels. Level-2 represents Database and Collections (which includes
Table, Collections, Table and Domain). Level-1 represents Item (which includes
Entity, Document, Table Item, Domain Item) and Attachment.



124 D. M. Elango et al.

Fig. 7. Table service Level-2 composite object.

Fig. 8. Table service Level-1 core object.

– The total number of tests was 45. As already explained for the blob tests, this
number covers the combination of different objects and the different opera-
tions on them. The performance tests compare the operations then across the
service providers.



Testing and Comparing the Performance of Cloud Service Providers 125

– Each operation was run 10 times, as earlier to avoid irregularities, and the
corresponding process time for each request from T1 to T10 was calculated.
Each request was processed with a single data record of approximately four
columns.

The results include start time, end time, average time and total duration – see
Figs. 7 and 8 (and also the performance details in Fig. 9).

Fig. 9. Detailed performance measurements.



126 D. M. Elango et al.

5 Discussion of Results and Conclusions

The aim of cloud service brokerage is customising or integrating existing ser-
vices or making them interoperable. We have developed what based on com-
mon classification schemes in [11,12,39] is categorised as an integration broker.
The purpose of a broker is intermediation between consumers and providers to
provide advanced capabilities (interoperability and portability [33]) that builds
up on an intermediary/broker platform to provide for instance a marketplace
to bring providers and customers together and automatically facilitate multi-
provider usage or portability across providers. The broker for cloud storage ser-
vice providers implement a joint interface to allow

– easy portability for the user and
– easy extensibility for the broker provider.

This broker solution enables through the joint API also the opportunity for a
cloud storage user to easily migrate between service providers and evolve the
systems [9,21], without having sufficient standards [6,7,20].

We investigated here the usage of the broker to carry out comparative perfor-
mance tests across the providers in order to support the user with the decision
which provider to choose, if this is taken based on a performance criterion.

Our observations from the performance tests we described earlier are the
following:

– (a) Core Objects: We can observe that the performance of core object stor-
age operations varies significantly across Cloud providers. Azure outperforms
AWS S3 by a factor of between 4 and 5 in our test scenario. For individ-
ual object operations, Azure is also up to 5 times faster in terms of access
speed. For example, the common function of UploadBlob takes approximately
4 seconds on Azure and 10 seconds on AWS S3 for a 10.2 MB file.

– (b) Composite Objects: The tests of composite object operations [31] that
relate to collections show that Azure has significantly more access perfor-
mance than other providers. In particular, AWS DynamoDB has a unusually
long access time for its CollectionCreate operation. The tests on individual
table entity operations show Azure to be the fastest by a considerable margin
with over 5 to 6 times lesser access speeds on average.

– (c) Upload and Download: The average of the combined file upload and down-
load speeds do not vary considerably across the providers tested.

We have defined some parameters, such as object size, in a specific way. Other
choices might result in different observations. Our aim here was not to rec-
ommend a particular provider. The aim was to demonstrate the usefulness of
instrumenting brokers for either decision making or as an ongoing monitoring
approach. Any selection can anyway not happen without considering other prop-
erties such as security.

In the future, we plan to consider more storage services. Furthermore, the
impact of different architectures in terms on IaaS or PaaS with and without the
use of container technologies [17,18,24,40,41] shall be explored.



Testing and Comparing the Performance of Cloud Service Providers 127

Acknowledgements. This work was partly supported by IC4 (Irish Centre for Cloud
Computing and Commerce), funded by EI and the IDA.

References

1. Ried, S.: Cloud Broker - A New Business Model Paradigm. Forrester (2011)
2. Elango, D.M., Fowley, F., Pahl, C.: An ontology-based architecture for an adapt-

able cloud storage broker. In: Advances in Service-Oriented and Cloud Computing.
Springer CCIS (2018, to appear)

3. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups - the new generation of
web applications. Internet Comput. 12(5), 13–15 (2008)

4. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the inter-cloud: protocols and formats for cloud computing interoperability. In:
International Conference on Internet and Web Applications and Services (2009)

5. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13–31.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13119-6 2

6. Cloud Standards (2017). http://cloud-standards.org/
7. ETSI Cloud Standards (2017). http://www.etsi.org/newsevents/news/734-2013-

12-press-release-report-on-cloudcomputing-standards
8. Fehling, C., Mietzner, R.: Composite as a service: cloud application structures,

provisioning, and management. Inf. Technol. 53(4), 188–194 (2011)
9. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change mod-

els and change rules for sustainable cloud software architectures. J. Softw. Evol.
Process 29(2) (2017)

10. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. In: ACM Transactions on Internet Technology. (2018, to appear)

11. Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service bro-
kerage solutions for cloud architectures. In: 1st International Workshop on Cloud
Service Brokerage (2013)

12. Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and com-
parison framework for cloud service brokerage architectures. IEEE Trans. Cloud
Comput. (2017). https://doi.org/10.1109/TCC.2016.2537333. http://ieeexplore.
ieee.org/document/7423741/

13. Garcia-Gomez, S., et al.: Challenges for the comprehensive management of cloud
services in a PaaS framework. Scalable Comput. Pract. Experience 13(3), 201–213
(2012)

14. Elango, D.M., Fowley, F., Pahl, C.: Pattern-driven architecting of an adaptable
ontology-driven cloud storage broker. In: University of Oslo, Department of Infor-
matics, Research report 471, pp. 33–47 (2017)

15. Gartner: Cloud Services Brokerage. Gartner Research (2013). http://www.gartner.
com/it-glossary/cloud-servicesbrokerage-csb

16. Grozev, N., Buyya, R.: InterCloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Experience 44(3), 369–390 (2012)

17. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
CLOSER Conference, pp. 137–146 (2016)

18. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
(2018). Accepted for publication

https://doi.org/10.1007/978-3-642-13119-6_2
http://cloud-standards.org/
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
https://doi.org/10.1109/TCC.2016.2537333
http://ieeexplore.ieee.org/document/7423741/
http://ieeexplore.ieee.org/document/7423741/
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb


128 D. M. Elango et al.

19. Hofer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and compari-
son. J. Internet Serv. Appl. 2(2), 81–94 (2011)

20. IEEE Cloud Standards (2015). http://cloudcomputing.ieee.org/standards
21. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.

IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)
22. jclouds: jclouds Java and Clojure Cloud API (2015). http://www.jclouds.org/
23. Ferrer, A.J., et al.: OPTIMIS: a holistic approach to cloud service provisioning.

Future Gener. Comput. Syst. 28(1), 66–77 (2012)
24. Gacitua-Decar, V., Pahl, C.: Structural process pattern matching based on graph

morphism detection. Int. J. Softw. Eng. Knowl. Eng. 27(2), 153–189 (2017)
25. Pahl, C.: Layered ontological modelling for web service-oriented model-driven

architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol.
3748, pp. 88–102. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741 8

26. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural
styles. Inf. Softw. Technol. 51(12), 1739–1749 (2009)

27. Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architec-
tural concerns. In: IEEE 7th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems MESOCA (2013)

28. Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Sniblel, E.:
An architecture for virtual solution composition and deployment in infrastructure
clouds. In: International Workshop on Virtualization Technologies in Distributed
Computing (2009)

29. Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A., Estrada, G.:
Fuzzy self-learning controllers for elasticity management in dynamic cloud archi-
tectures. In: 12th International ACM SIGSOFT Conference on Quality of Software
Architectures QoSA (2016)

30. Arabnejad, H., Jamshidi, P., Estrada, G., El Ioini, N., Pahl, C.: An auto-scaling
cloud controller using fuzzy Q-learning - implementation in openstack. In: Aiello,
M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol.
9846, pp. 152–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44482-6 10

31. Mietzner, R., Leymann, F., Papazoglou, M.: Defining composite configurable SaaS
application packages using SCA. In: International Conference on Internet and
Web Applications and Services, Variability Descriptors and Multi-tenancy Pat-
terns (2008)

32. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5 18

33. Petcu, D., et al.: Portable cloud applications - from theory to practice. Future Gen.
Comput. Syst. 29(6), 1417–1430 (2013)

34. Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification
of change patterns. J. Data Semant. 2(2–3), 119–143 (2013)

35. Amazon Simple Storage Service (S3) Cloud Storage AWS. https://aws.amazon.
com/s3/

36. Dropbox. https://www.dropbox.com/
37. Azure Storage - Secure cloud storage. https://azure.microsoft.com/en-us/services/

storage/
38. Google Drive - Cloud Storage & File Backup. https://www.google.com/drive/
39. Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture

migration. Softw. Pract. Experience 47(9), 1159–1184 (2017)

http://cloudcomputing.ieee.org/standards
http://www.jclouds.org/
https://doi.org/10.1007/11581741_8
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-642-40651-5_18
https://doi.org/10.1007/978-3-642-40651-5_18
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.dropbox.com/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://www.google.com/drive/


Testing and Comparing the Performance of Cloud Service Providers 129

40. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/
TCC.2017.2702586. http://ieeexplore.ieee.org/document/7922500/

41. Aderaldo, C.M., Mendonca, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 1st International Workshop on Estab-
lishing the Community-Wide Infrastructure for Architecture-Based Software Engi-
neering. IEEE (2017)

42. Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte,
S., Wettinger, J.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion (2017)

https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
http://ieeexplore.ieee.org/document/7922500/

	Testing and Comparing the Performance of Cloud Service Providers Using a Service Broker Architecture
	1 Introduction
	2 Broker – Principles and Supported Services
	2.1 Principle Properties of the Storage Broker
	2.2 Services Supported by the Broker

	3 Broker Architecture
	4 Performance Testing and Provider Comparison
	4.1 Blob Service Performance Test
	4.2 File Service Performance Test
	4.3 Table Service Performance Test

	5 Discussion of Results and Conclusions
	References




