

Testing and Comparing the Performance of Cloud Service Providers Using a Service Broker Architecture

Divyaa Manimaran Elango¹, Frank Fowley¹, and Claus Pahl²(⊠)

 IC4, Dublin City University, Dublin, Ireland
SwSE, Free University of Bozen-Bolzano, Bolzano, Italy Claus.Pahl@unibz.it

Abstract. Service brokers are tools that allow different individual service providers to be integrated. An API can be a mechanism to provide a joint interface. Broker can actually also be use for more than integration. We use a cloud service broker that implements a multi-cloud abstraction API in order to carry out performance comparisons between different cloud services. The broker tool here is a multi-cloud storage API that integrates a number of provided storage services. The library supporting the API is organised into three services, which are a file, a blob and a table service. Using this broker architecture, we developed a performance test scenario to compare the different providers, i.e., to compare a range of storage operations by different providers.

1 Introduction

Integration is a key problem in the cloud services context. A cloud service broker is an intermediary application between a client and cloud provider service that can provide this integration [15]. Brokerage reduces the need for service consumers to analyze different types of services by different providers [1]. This enables a single platform to offer the client a common cloud storage service. This results in cost optimization and reduced level of back-end data management requirements.

For our performance evaluation, we use here a cloud service broker that implements a multi-cloud abstraction API. This multi-cloud storage broker supports GoogleDrive, DropBox, Microsoft Azure and Amazon Web Services as the provided storage services. The API library offers file, blob and table services. The API can facilitates the distribution of different types of cloud provider services [16]. The abstraction library allows the cloud broker to adapt to a rapidly changing marketplace.

Vendor lock-in is often referred to as a critical point in choosing a provider. In order to avoid lock-in, a broker can help. A multi-cloud abstraction library is a suitable mechanism that it makes it easy for the client to switch between cloud providers with different services that are supported by the broker.

[©] Springer International Publishing AG, part of Springer Nature 2018

Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 117–129, 2018. https://doi.org/10.1007/978-3-319-79090-9_8

Switching or migrating between providers can be driven by quality [27, 32]. We use a broker implementation to compare the supported services [8, 13, 23] from a performance perspective [42]. Service brokers normally remedy interoperability problems [2-5, 10]. However, based on this architecture, we look into other service qualities, namely performance which is of key importance for all cloud layers [28-30]. A performance test application was developed here to compare between the services provided through the broker [19]. The performance test scenario was used to compare a range storage operations across different supported providers.

2 Broker – Principles and Supported Services

In Fig. 1 we have outlined the core components of the broker architecture. We also discuss the storage services supported by it in this section.

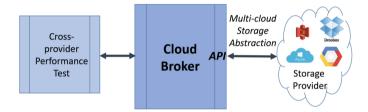


Fig. 1. Architecture of a multi-cloud storage broker.

2.1 Principle Properties of the Storage Broker

Cloud services are generally provided with specifications, but often constructed in a way that makes them hard to be used as part of a common interface, thus impeding on interoperability. We studies different multi-cloud libraries, including Apache Jclouds, DeltaCloud, Kloudless, SecureBlackBox, and SimpleCloud. The purpose was to adopt a successful solution template.

We decided to adopt an approach similar to the Apache Jclouds library for abstraction, as we will explain now. Jclouds [22] provides cloud-agnostic abstraction. A single instance context approach for the mapping of a user request in jclouds was used in our implementation. The purpose of having each class for each provider across different levels of service was adopted from a similar design in the SecureBlackBox library. Our concept of including a manager interface layer at each component level is adopted from LibCloud, another library.

2.2 Services Supported by the Broker

We have included storage services from Google, Dropbox, Azure and Amazon in our cloud storage broker.

- Amazon Web Service S3 [35] is a file storage service which is built on REST and SOAP. Their SDK is available in all major development languages.
- Azure Storage [37] supports blob, file, queue and table services. The API is built on REST, HTTP and xml, and can be integrated with Microsoft visual studio, eclipse and GIT. The Azure SDK provides a separate API package for each service and has the same code flow across different service APIs.
- DropBox [36] is a file hosting service. It also enables synchronised backup and web sharing. The DropBox API is very light-weight and easy for a new user.
- GoogleDrive [38] offers a cloud file storage service. The GoogleDrive service includes access to a Google API client library.

This selection of service providers resulted in a grouping of the cloud providers and their services as shown in the table below¹ that summarises the main features of the services:

Service	Azure	AWS	Google	DropBox
File	Storage file	-	GoogleDrive	DropBox
Blob	Storage blob	AWS S3	-	-
Table	Storage Table, DocumentDB	DynamoDB, SimpleDB	-	-

3 Broker Architecture

Portability and interoperability are the key objectives of a cloud brokerage tool. Thus the objective of designing and developing an abstraction API is to produce an effective cross-service cloud delivery model [14]. Before describing how we use this to support performance evaluation, we still need to introduce the architectural principles. The main service-oriented functionalities of cloud providers are compute nodes, data volume, load balance, DNS and so on. The advantage of bringing these functionalities to a multi-cloud application provides (1) an easy way of importing and exporting data, (2) choice over price, (3) enhanced SLA, and (4) the elimination of vendor lock-in.

As concept and function integration is the key difficulty in constructing the broker, this broker implementation is based on an ontology that at conceptual level defines the integration. This Storage Abstraction Ontology describes the common naming and meaning approach of the abstraction API [25, 26, 34]. The model consists of four main layers, namely Service, Provider, Level-2 (composite storage objects) and Level-1 (core storage objects).

- Level-4 Service: The Service layer is the top layer and is directly integrated to the user interface layer. This layer basically describes the services that the multi-cloud storage abstraction API supports. There are three services currently supported. They are Blob, Table and File service.
- Level-3 Provider: The Provider layer is the second layer, which is one of the context object parameters mapped to the service layer. The multi-cloud storage abstraction supports four main providers, namely Microsoft Azure,

¹ https://www.google.com/drive/; https://www.dropbox.com/; https://aws.amazon.com/s3/; https://azure.microsoft.com/en-us/services/storage/;

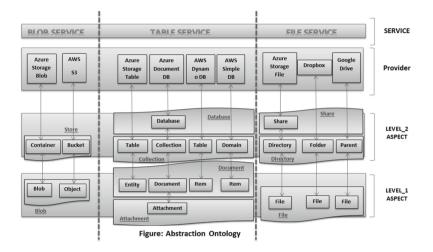


Fig. 2. Ontology-based layered broker architecture.

Amazon Web Services, GoogleDrive and DropBox. The corresponding services supported by the providers are shown below:

Service	Provider					
Blob	Azure storage blob; AWS S3					
Table	Azure storage table; Azure DocumentDB; AWS DynamoDB; AWS SimpleDB					
File	Azure storage file; DropBox and GoogleDrive					

- Level-2 Composite: Level-2 is the next layer. This layer represents the first level or higher level of composite object abstraction. This layer is serviceneutral and brings out the common naming across the providers specific functionalities. Each layer is abstracted based on the common operations and aspect of how the main function is applied in that particular service. Common naming is represented to easily categorise storage resources and group them to make the development of the coding easier.

Based on the Abstraction Ontology Fig. 2, the Blob service has Store which groups Container from Azure Storage Blob and Bucket from AWS S3. The Table service has two different sub-layers - where Database belongs to Azure DocumentDB Database, and where Collection groups Table from Azure Storage Table, collection from Azure DocumentDB Collection, Table from AWS DynamoDB and Domain from AWS SimpleDB. The File service has two different sub-layers where Share belongs to Azure Storage File and Directory groups Directory from Azure Storage File, Folder from DropBox and Parent from the GoogleDrive service.

- Level-1 Core: Level-1 represents the lower level of core object abstraction. This layer contains the core functionalities of a particular service across different providers. The classes in this level are extended from an abstract class called AbstractConnector. The class implements the abstract methods defined in the AbstractConnector class. The mapping from Level-2 to Level-1 is performed by an interface class called Manager. This Manager identifies the provider class by its key. Basic CRUD operations on the storage resources are included as core methods. In order to achieve these functions, each operation request should pass through the Level-2 mappings and are then mapped across the service and providers.

The Blob service has Blob which groups Blob from Azure Storage Blob and Object from AWS S3. The Table service has two different sub layers. It has Item which groups Entity from Azure Storage Table, Document from Azure DocumentDB Document, Item from AWS DynamoDB and Item from AWS SimpleDB. Also, the second sub layer Attachment belongs to Azure DocumentDB. The File service has File which groups File from Azure Storage File, File from DropBox and File from GoogleDrive.

4 Performance Testing and Provider Comparison

We have used the broker to compare performance values for the four providers selected. The broker is instrumented to provide the response time results.

In this section, we desribe the performance test set-up and the results for the three service types blob, file and table across the different providers. We organise this section based on the storage types blob, file and table.

Not all providers support each of the storage types. So, the number of compared services provided varies between two and four. We report on the time consumed for a number of standard operations at the two important levels 1 and 2 of the layer architecture. In this way, we cover individual objects (items) and composites (collections) and a range of standard operations on them such as creating or deleting.

4.1 Blob Service Performance Test

The *Blob Service Performance Test* was performed on two providers, namely Azure Storage Blob and AWS S3. This performance test includes two object levels. Level-2 represents Store (which includes container and Bucket). Level-1 represents Blob (which includes Blob and Object).

- The total number of tests performed was 27 to fully cover the respective core and composite objects and the different relevant operations on them. The performance test compares the operations across the service providers.
- Each operation was run 10 times in order to avoid any accidential performance irregularities due to external factors, and the corresponding process time for each request from T1 to T10 was calculated.
- Each request was processed with the same blob size of $10.2\,\mathrm{MB},$ which resembles a standard object size.

The result includes start time, end time, average time and total duration – see Figs. 3 and 4.

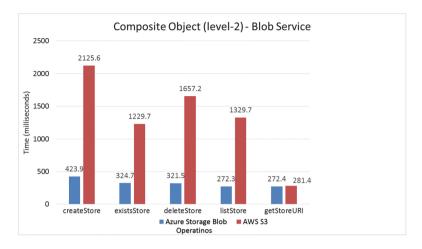


Fig. 3. Blob service Level-2 composite object.

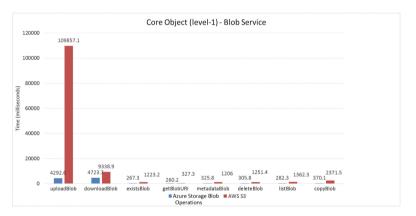


Fig. 4. Blob service Level-1 core object.

4.2 File Service Performance Test

The *File Service Performance Tests* were performed on Azure Storage File, GoogleDrive and DropBox. The tests include two object levels. Level-2 represents Share and Directory. Level-1 represents Files.

- The total number of tests performed was 26 to cover the combinations of different object types and different operations on them.
- The performance tests compare the operations across the service providers. Each operation was run 10 times to eliminate irregular single behaviour, and the corresponding process time for each request from T1 to T10 was calculated.
- Each request was processed with same file size of $10.2\,{\rm MB}$ as a common size for the object type in question.

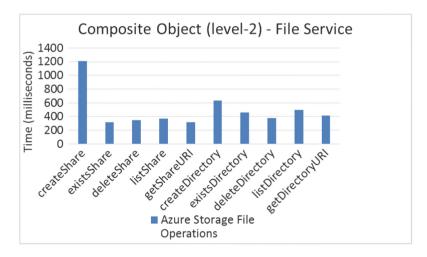


Fig. 5. File service Level-2 composite object.

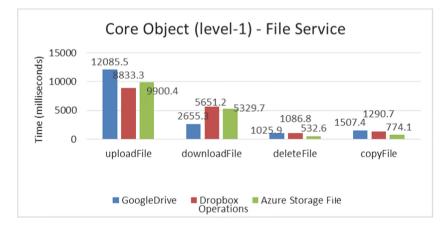


Fig. 6. File service Level-1 core object.

The results include start time, end time, average time and total duration – see Figs. 5 and 6.

4.3 Table Service Performance Test

The *Table Service Performance Tests* were performed on Azure Storage Table, Azure DocumentDB, AWS DynamoDB and AWS SimpleDB. The Tests include two object levels. Level-2 represents Database and Collections (which includes Table, Collections, Table and Domain). Level-1 represents Item (which includes Entity, Document, Table Item, Domain Item) and Attachment.

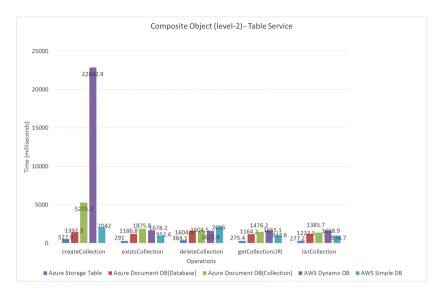


Fig. 7. Table service Level-2 composite object.

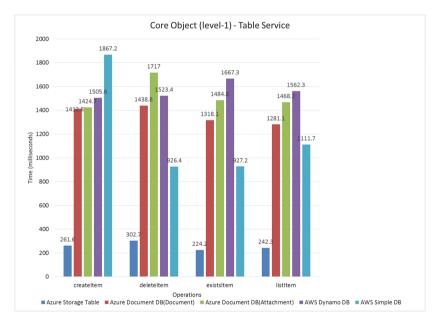


Fig. 8. Table service Level-1 core object.

- The total number of tests was 45. As already explained for the blob tests, this number covers the combination of different objects and the different operations on them. The performance tests compare the operations then across the service providers. Each operation was run 10 times, as earlier to avoid irregularities, and the corresponding process time for each request from T1 to T10 was calculated. Each request was processed with a single data record of approximately four columns.

The results include start time, end time, average time and total duration – see Figs. 7 and 8 (and also the performance details in Fig. 9).

SERVICE	PROVIDER	LEVEL OF ASPECTS	Operation Type Parameter: Inputs Fil	eSize Start	ime T1	T2	T3	T4	T5	T6	T7	T8	T9	T10	End Time	Avg Time	Duration	Av
BlobService	Azure Storage Blot	LEVEL 2	createContainer ntainerNaistcontaini 10.			105	114	117	112	116	238	111	184	138	1478.612	423	00:04.0	423
BlobService	Azure Storage Blot	LEVEL_2	existsContainer ntainerNarstcontaine 10.				83	73	93	71	73	79	82	117	1478.613	324	00:03.0	324
BlobService	Azure Storage Blot	LEVEL 2		2 MB 1478		78	71	70	69	68	69	73	70	74	1478.616	324	00:03.0	321
lobService	Azure Storage Blot	LEVEL_2		2 MB 1478		73	60	56	65	60	56	59	76	65	1478.613	272	00:02.1	272
lobService	Azure Storage Blot	LEVEL_2	getContainerURIntainerNaestcontaine 10.				38	35	41	35	40	39	47	43	1478.613	272	00:02.1	272
obService	AWS S3	LEVEL_2	createContainer ntainerNapicasso-bu 10.			1587	1711	1370	1426	1618	2172	1647	1530	1808	1478.699	2125	00:21.0	212
obService	AWS S3	LEVEL_2	existsContainer ntainerNapicasso-bu 10.	2 MB 1478	699 5493	841	723	757	910	744	707	727	710	685	1478.699	1229	00:12.0	122
obService	AWS \$3	LEVEL_2	deleteContainer ntainerNapicasso-bu 10.	2 MB 1478	706 5394	1186	1071	1173	1845	1152	1188	1350	1167	1046	1478.706	1657	00:16.1	165
obService	AWS S3	LEVEL_2		2 MB 1478	701 4580	941	836	1061	893	737	1280	833	1294	842	1478.701	1329	00:13.0	133
obService	AWS S3	LEVEL 2		2 MB 147		30	17	15	16	15	17	27	14	14	1478.7	281	00:02.1	28
obService	Azure Storage Blot	LEVEL 1				3553	5137	3245		3141	2914	4522	4103	3420	1478.614	4292	00:42.1	425
									3110									
lobService	Azure Storage Blot	LEVEL_1	Download oadFilePatject\\New 10.			5097	4984	4083	4576	4215	4351	4117	4139	4450	1478.614	4723	00:47.0	47
lobService	Azure Storage Blot	LEVEL_1	Exists ne,BlobReontainer", 10.			69	66	63	68	76	82	77	76	73	1478.614	267	00:02.1	26
lobService	Azure Storage Blot	LEVEL_1		.2 MB 1478		37	35	33	34	33	41	32	46	34	1478.614	260	00:02.1	26
lobService	Azure Storage Blot	LEVEL_1	Metadata ne,BlobReontainer", 10.	2 MB 1478	615 2875	44	54	45	43	41	39	38	37	38	1478.615	325	00:03.0	32
lobService	Azure Storage Blob	LEVEL 1	Delete ne.BlobReontainer", 10.	2 MB 1478	616 2385	76	81	74	66	67	71	70	73	95	1478.616	305	00:03.0	30
lobService	Azure Storage Blot	LEVEL 1	List ntianerNaistcontaine 10.				75	75	75	85	77	91	73	71	1478.615	282	00:02.1	28
lobService	Azure Storage Blot	LEVEL_1	ListBatch ntianerNarstcontaine 10.				100	85	77	77	76	75	76	81	1478.615	292	00:02.1	25
lobService		LEVEL_1					224	144	179	154	174	147	148	144	1478.615	370	00:02.1	23
	Azure Storage Blot																	
lobService	AWS S3	LEVEL_1	Upload Path,Blobard\\Proj(10.				99692	108463	106346	114377	109462	112648	111216	108084	1478.703	109857	18:18.1	109
lobService	AWS \$3	LEVEL_1	Download adFilePattProject\\N 10.		704 1856	5 7761	10831	7672	7507	7502	8273	8285	9286	7707	1478.704	9338	01:33.0	933
lobService	AWS S3	LEVEL_1	Exists e,BlobRefesso-bucke 10.	2 MB 1478	704 4402	814	784	775	1449	798	809	854	787	760	1478.704	1223	00:12.0	12
lobService	AWS 53	LEVEL 1	URI 2.BlobRefesso-bucker 10.		704 3061	25	20	21	30	30	21	25	21	19	1478,704	327	00:03.0	32
lobService	AWS S3	LEVEL 1	Metadata >.BlobRefesso-bucke 10.				1043	818	813	787	722	816	755	704	1478,705	1206	00:12.0	12
lobService	AWS S3	LEVEL_1	Delete ±.BlobRefesso-bucke 10.			740	697	730	707	841	1279	706	745	762	1478.705	1250	00:12.0	12
								730		841	1279	705						12
lobService	AWS S3	LEVEL_1	List ucketNampicasso-bu 10.			1018	912		1013				893	939	1478.705	1362	00:13.1	
lobService	AWS S3	LEVEL_1		2 MB 1478		1904	1756	1834	2032	2087	1829	1875	1781	1734	1478.705	2371	00:23.1	23
leService	Azure Storage File	LEVEL_2	createShare ihareNami'testshare' 10.	2 MB 1478	523 5052	985	916	770	878	741	562	683	768	728	1478.523	1208	00:12.0	12
ileService	Azure Storage File	LEVEL_2	existsShare ihareNami'testshare' 10.	2 MB 1478	529 2670	80	39	64	64	77	63	37	38	55	1478.529	318	00:03.0	31
ileService	Azure Storage File	LEVEL 2	deleteShare ihareNam('testshare' 10.	2 MB 1478	539 2744	72	71	69	70	70	94	78	100	106	1478.539	347	00:03.0	34
FileService	Azure Storage File	LEVEL 2		2 MB 1478		123	112	54	63	84	75	77	53	76	1478.532	370	00:03.1	37
leservice	Azure Storage File	LEVEL_2		.2 MB 1478		86	112	92	111	93	111	94	114	91	1478.529	315	00:03.0	31
ileService	Azure Storage File	LEVEL_2	createDirectory me,Directore","testdi 10.			310	303	108	178	145	193	189	445	162	1478.532	635	00:05.0	6
ileService	Azure Storage File	LEVEL_2	existsDirectory me,Directore","testdi 10.				109	95	131	76	110	93	112	94	1478.532	462	00:04.1	46
FileService	Azure Storage File	LEVEL_2	deleteDirectory me,Directore","testdi 10.			105	107	105	106	123	103	103	101	108	1478.539	379	00:03.1	37
lleService	Azure Storage File	LEVEL 2	listDirectory 10.	2 MB 1478	534 2779	369	410	190	209	202	209	201	201	217	1478.534	498	00:04.1	49
ileService	Azure Storage File	LEVEL_2	getDirectoryURI me,Directore","testdi 10.	2 MB 1478	532 2481	205	204	205	205	205	362	88	87	109	1478.532	415	00:04.0	41
ileService	Azure Storage File	LEVEL_1	Upload ame,FilePhimard\\Pi 10.		534 2447	4738	11320	14444	7463	12013	9090	6784	4711	3967	1478.534	9900	01:39.0	99
ileService	Azure Storage File	LEVEL 1		2 MB 1478		4791	4844	4757	4990	4801	4992	5355	5557	4641	1478.535	5329	00:53.0	53
ileService	Azure Storage File	LEVEL_1	Exists pryName,F"testdirec 10.			296	315	299	311	305	308	304	279	334	1478.536	553	00:05.1	5
ileService	Azure Storage File	LEVEL_1	Metadata pryName,F "testdirec 10.				131	110	157	134	146	103	110	131	1478.536	390	00:03.1	35
leService	Azure Storage File	LEVEL_1	Delete pryName,F "testdirec 10.	2 MB 1478	537 2871	408	476	447	256	179	187	197	159	146	1478.537	532	00:05.0	52
FileService	Azure Storage File	LEVEL_1	Copy ShareNamst", "testsh 10.	2 MB 1478	537 4283	352	307	294	295	384	627	603	280	316	1478.537	774	00:07.1	77
FileService	DropBox	LEVEL 1		2 MB 1478	283 1074	5 9155	7385	8656	9846	7310	9354	8973	8459	8449	1478.283	8833	01:28.0	883
ileService	DropBox	LEVEL 1	Metadata eferencet"test.pdf" 10.				503	557	510	482	482	471	506	520	1478.284	786	00:07.1	78
		LEVEL 1					4904	4961	4890	5403	6672	5535	4693		1478.518		00:56.1	563
FileService	DropBox		Download FileReferear/Dropbo 10.											8293		5651		
FileService	DropBox	LEVEL_1	Delete FilePath "test.pdf" 10.			722	666	770	1634	777	756	725	726	707	1478.519	1086	00:10.1	108
FileService	DropBox	LEVEL_1	Copy Destinationdf", "Cop 10.			810	864	818	820	1344	1114	767	859	1554	1478.519	1290	00:12.1	12
FileService	GoogleDrive	LEVEL_1	Upload Path,FileTfolder\\Gc 10.	2 MB 1478	268 1728	2 15613	11321	10637	11029	13292	10830	10418	10210	10223	1478.268	12085.5	02:00.0	120
FileService	GoogleDrive	LEVEL 1	List 10.	2 MB 147	.28 2788	314	329	294	280	359	317	379	292	275	1478.28	562	00:05.1	56
FileService	GoogleDrive	LEVEL_1	Download Path, FileRew folder \\ 10.	2 MB 1478	272 5484	2332	2303	2524	2475	2287	2423	2091	2868	1766	1478.272	2655	00:26.1	265
FileService	GoogleDrive	LEVEL 1	Delete eferencet test.pdf 10.				854	745	661	696	666	692	745	635	1478.277	1025	00:10.0	102
FileService	GoogleDrive	LEVEL 1	Copy Destinatiopdf", "cop 10.				1240	1800	1101	1016	1119	1083	1163	1069	1478.279	1507	00:15.0	150
ableService		LEVEL_2	createTable [ableName'testtable"	1478			306	280	275	268	324	252	275	263	1478.736	527	00:05.0	52
	zure Storage Tabl																	
ableService	czure Storage Tabl	LEVEL_2	existsTable [ableName]testtable"	1478			49	44	44	40	72	49	44	49	1478.736	291	00:02.1	2
ableService	zure Storage Tabl	LEVEL_2	deleteTable "ableNam("testtable"	1478		107	101	88	92	90	100	96	88	92	1478.739	384	00:03.1	38
ableService	zure Storage Table	LEVEL_2	getTableURI [ableName'testtable"	1478	736 2338	42	43	40	42	47	43	53	53	53	1478.736	275	00:02.1	27
ableService	zure Storage Table	LEVEL 2	listTable	1478	737 2372	48	43	51	45	42	42	42	43	44	1478,737	277	00:02.1	27
ableService	AzureDocumentDE	LEVEL 2	createDB DBName "TestDB"	1478		1233	1321	1027	1115	938	917	918	1136	1227	1478.782	1392	00:13.1	139
ableService	AzureDocumentDE	LEVEL_2	existsDB DBName "TestDB"	1478		1195	851	1205	1024	116	1142	1176	1064	914	1478,782	1285	00:12.1	112
		LEVEL_2																
ableService	AzureDocumentDE	LEVEL_2	deleteDB DBName "TestDB"	1478		1491	1458	1376	1194	1207	1236	1284	1305	1176	1478.805	1604	00:16.0	16
ableService	AzureDocumentDE	LEVEL_2	getDBURI DBName "TestDB"	1478		886	800	830	744	803	1213	905	856	798	1478.782	1164	00:11.1	110
ableService	AzureDocumentDE	LEVEL_2	listDB	1478			922	918	1028	1015	1039	1023	1012	981	1478.783	1222	00:12.0	12
ableService	AzureDocumentDE	LEVEL_2	createCollection e,Collectic", "TestCollecti				2042	1739	1633	1561	3183	12362	11889	11873	1478.784	5275	00:52.1	52
ableService	AzureDocumentDE	LEVEL_2	existsCollection e,Collectic", "TestCollecti	ion" 1478	784 6885	1215	1232	1609	1294	1126	1103	1393	1449	1452	1478.784	1875	00:18.1	18
ableService	AzureDocumentDE	LEVEL_2	deleteCollectione,Collectic","TestCollecti	ion" 1478	805 4318	1491	1458	1376	1194	1207	1236	1284	1305	1176	1478.805	1604	00:16.0	160
ableService	AzureDocumentDE	LEVEL 2	getCollectionURIe,Collectic", "TestCollecti			1227	1023	1240	1208	1239	1320	1023	1131	1118	1478.784	1476	00:14.1	147
ableService	AzureDocumentDE	LEVEL 2	listCollection DBName "TestDB"	1478		1129	1254	1109	1112	1302	973	1082	1244	1130	1478,784	1385	00:13.1	13
	AWSDynamoDB	LEVEL 2	createTable 'ableName'testtable'	1478			21986	21475	26317	21638	21683	21883	23070	21710	1478.815	22842	03:48.0	228
ableService																		
ableService	AWSDynamoDB	LEVEL_2	existsTable "ableName"testtable"	1478			1047	1229	1133	1325	1115	1138	1021	1332	1478.815	1678	00:16.1	16
ableService	AWSDynamoDB	LEVEL_2	deleteTable 'ableName'testtable"	1478			1229	1228	1171	1491	1228	1332	1026	1005	1478.824	1623	00:16.0	16
ableService	AWSDynamoDB	LEVEL_2	getTableURI 'ableName'testtable'	1478		1238	1213	1243	1211	1192	1184	1227	1208	1351	1478.815	1655	00:16.1	16
ableService	AWSDynamoDB	LEVEL_2	listTable	1478		966	1046	898	954	912	921	922	922	921	1478.824	1658	00:16.1	16
ableService	AWSSimpleDB	LEVEL_2	createDomain pmainNamestDomain"	1478	869 6269	1591	1561	1552	1638	1561	1579	1564	1552	1553	1478.869	2042	00:20.0	2
bleService	AWSSimpleDB	LEVEL 2	existsDomain omainNarrestDomain"	1478			506	485	609	517	467	460	465	455	1478.869	952	00:09.1	95
bleService	AWSSImpleDB	LEVEL_2	deleteDomain omainNarrestDomain"	1478		1671	1656	1789	1703	1644	1677	1739	1630	1662	1478.885	2095	00:20.1	2
	AWSSimpleDB	LEVEL_2		1478			484	475	553	455	461	474	463	457	1478.885	2095	00:20.1	
ableService			getDomainURI pmainNamestDomain"															94
bleService	AW\$SimpleDB	LEVEL_2	listDomain	1478			475	500	541	473	468	472	459	486	1478.869	976	00:09.1	9
bleService	zure Storage Tabl	LEVEL_1	createEntity inKey,Rown", "smith(1 R			38	40	36	38	39	42	40	39	40	1478.776	261	00:02.1	26
ableService	zure Storage Table	LEVEL_1	deleteEntity ,Partition#*, "smith", "jo	nson* 1478	777 2329	79	84	86	74	73	73	79	83	67	1478.777	302	00:03.0	30
ableService	zure Storage Table	LEVEL 1	existsEntity "Partitione", "smith" 1 R			40	36	36	40	40	52	57	41	39	1479.301	224	00:02.0	22
bleService	vzure Storage Table	LEVEL 1	listEntity ame.Partittable", "sr 1 B				36	40	46	39	36	36	35	55	1479.301	242	00:02.0	24
bleService						40	1180	40	1132	39	36	36	35	1139	1479.301	1412	00:02.0	14
	AzureDocumentDE	LEVEL_1	createDocumenthe,Documcion", "doc 1 R															
bleService	AzureDocumentDE	LEVEL_1	existsDocument ctionNam ollection*, 1 R			1143	1077	1053	1089	1065	1008	998	999	1011	1478.791	1318	00:13.0	13
ableService	AzureDocumentDE	LEVEL_1	listDocument e,Collectic, "TestColl 1 R			997	1092	1023	1031	1059	988	983	1007	1021	1478.791	1281	00:12.1	12
ableService	AzureDocumentDE	LEVEL 1	deleteDocument-ctionNamCollection ¹ 1 R			1300	1204	1231	1157	1183	1199	1137	1157	1145	1478.795	1438	00:14.0	14
bleService	AzureDocumentDE	LEVEL 1	reateAttachmenie,Docume', "docume 1 R			1179	1256	1154	1136	1234	1130	1118	1121	1157	1478.791	1424	00:14.0	14
ableService	AzureDocumentDE	LEVEL 1	existsAttachmentame.Docum", "docum 1 R			11/3	1299	11.74	1255	1224	1100	1264	1353	1162	1478.793	1484	00:14.1	14
						1108			1255		1100	1142	1353	1102		1484		14
ableService	AzureDocumentDE	LEVEL_1	listAttachment ctionNamCollection 1R				1219	1228		1112					1478.792		00:14.1	
	AzureDocumentDE	LEVEL_1	JeleteAttachmename,Documn*, "docur 1 R	ecord 1478	794 4035	1584	1397	1459	1501	1246	1469	1456	1502	1517	1478.794	1717	00:17.0	1
ableService ableService	AWSDynamoDB	LEVEL_1	createItem me,Attribcble","jsonstrin				1221	1130	1127	1133	1021	1041	1010	1115	1478.821	1505	00:15.0	15

Fig. 9. Detailed performance measurements.

5 Discussion of Results and Conclusions

The aim of cloud service brokerage is customising or integrating existing services or making them interoperable. We have developed what based on common classification schemes in [11, 12, 39] is categorised as an integration broker. The purpose of a broker is intermediation between consumers and providers to provide advanced capabilities (interoperability and portability [33]) that builds up on an intermediary/broker platform to provide for instance a marketplace to bring providers and customers together and automatically facilitate multiprovider usage or portability across providers. The broker for cloud storage service providers implement a joint interface to allow

- easy portability for the user and
- easy extensibility for the broker provider.

This broker solution enables through the joint API also the opportunity for a cloud storage user to easily migrate between service providers and evolve the systems [9,21], without having sufficient standards [6,7,20].

We investigated here the usage of the broker to carry out comparative performance tests across the providers in order to support the user with the decision which provider to choose, if this is taken based on a performance criterion.

Our observations from the performance tests we described earlier are the following:

- (a) Core Objects: We can observe that the performance of core object storage operations varies significantly across Cloud providers. Azure outperforms AWS S3 by a factor of between 4 and 5 in our test scenario. For individual object operations, Azure is also up to 5 times faster in terms of access speed. For example, the common function of UploadBlob takes approximately 4 seconds on Azure and 10 seconds on AWS S3 for a 10.2 MB file.
- (b) Composite Objects: The tests of composite object operations [31] that relate to collections show that Azure has significantly more access performance than other providers. In particular, AWS DynamoDB has a unusually long access time for its CollectionCreate operation. The tests on individual table entity operations show Azure to be the fastest by a considerable margin with over 5 to 6 times lesser access speeds on average.
- (c) Upload and Download: The average of the combined file upload and download speeds do not vary considerably across the providers tested.

We have defined some parameters, such as object size, in a specific way. Other choices might result in different observations. Our aim here was not to recommend a particular provider. The aim was to demonstrate the usefulness of instrumenting brokers for either decision making or as an ongoing monitoring approach. Any selection can anyway not happen without considering other properties such as security.

In the future, we plan to consider more storage services. Furthermore, the impact of different architectures in terms on IaaS or PaaS with and without the use of container technologies [17, 18, 24, 40, 41] shall be explored.

Acknowledgements. This work was partly supported by IC4 (Irish Centre for Cloud Computing and Commerce), funded by EI and the IDA.

References

- 1. Ried, S.: Cloud Broker A New Business Model Paradigm. Forrester (2011)
- Elango, D.M., Fowley, F., Pahl, C.: An ontology-based architecture for an adaptable cloud storage broker. In: Advances in Service-Oriented and Cloud Computing. Springer CCIS (2018, to appear)
- Benslimane, D., Dustdar, S., Sheth, A.: Services mashups the new generation of web applications. Internet Comput. 12(5), 13–15 (2008)
- Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for the inter-cloud: protocols and formats for cloud computing interoperability. In: International Conference on Internet and Web Applications and Services (2009)
- Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of cloud computing environments for scaling of application services. In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13–31. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13119-6_2
- 6. Cloud Standards (2017). http://cloud-standards.org/
- 7. ETSI Cloud Standards (2017). http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
- Fehling, C., Mietzner, R.: Composite as a service: cloud application structures, provisioning, and management. Inf. Technol. 53(4), 188–194 (2011)
- Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change models and change rules for sustainable cloud software architectures. J. Softw. Evol. Process 29(2) (2017)
- Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud software. In: ACM Transactions on Internet Technology. (2018, to appear)
- Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service brokerage solutions for cloud architectures. In: 1st International Workshop on Cloud Service Brokerage (2013)
- Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and comparison framework for cloud service brokerage architectures. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/TCC.2016.2537333. http://ieeexplore. ieee.org/document/7423741/
- Garcia-Gomez, S., et al.: Challenges for the comprehensive management of cloud services in a PaaS framework. Scalable Comput. Pract. Experience 13(3), 201–213 (2012)
- Elango, D.M., Fowley, F., Pahl, C.: Pattern-driven architecting of an adaptable ontology-driven cloud storage broker. In: University of Oslo, Department of Informatics, Research report 471, pp. 33–47 (2017)
- 15. Gartner: Cloud Services Brokerage. Gartner Research (2013). http://www.gartner. com/it-glossary/cloud-servicesbrokerage-csb
- Grozev, N., Buyya, R.: InterCloud architectures and application brokering: taxonomy and survey. Softw. Pract. Experience 44(3), 369–390 (2012)
- Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings CLOSER Conference, pp. 137–146 (2016)
- Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating to microservices architectures: an empirical investigation. IEEE Cloud Comput. (2018). Accepted for publication

- Hofer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and comparison. J. Internet Serv. Appl. 2(2), 81–94 (2011)
- 20. IEEE Cloud Standards (2015). http://cloudcomputing.ieee.org/standards
- Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)
- 22. jclouds: jclouds Java and Clojure Cloud API (2015). http://www.jclouds.org/
- Ferrer, A.J., et al.: OPTIMIS: a holistic approach to cloud service provisioning. Future Gener. Comput. Syst. 28(1), 66–77 (2012)
- Gacitua-Decar, V., Pahl, C.: Structural process pattern matching based on graph morphism detection. Int. J. Softw. Eng. Knowl. Eng. 27(2), 153–189 (2017)
- Pahl, C.: Layered ontological modelling for web service-oriented model-driven architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 88–102. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741_8
- Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural styles. Inf. Softw. Technol. 51(12), 1739–1749 (2009)
- 27. Pahl, C., Xiong, H.: Migration to PaaS clouds migration process and architectural concerns. In: IEEE 7th International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems MESOCA (2013)
- Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Sniblel, E.: An architecture for virtual solution composition and deployment in infrastructure clouds. In: International Workshop on Virtualization Technologies in Distributed Computing (2009)
- Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A., Estrada, G.: Fuzzy self-learning controllers for elasticity management in dynamic cloud architectures. In: 12th International ACM SIGSOFT Conference on Quality of Software Architectures QoSA (2016)
- Arabnejad, H., Jamshidi, P., Estrada, G., El Ioini, N., Pahl, C.: An auto-scaling cloud controller using fuzzy Q-learning - implementation in openstack. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 152–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44482-6_10
- Mietzner, R., Leymann, F., Papazoglou, M.: Defining composite configurable SaaS application packages using SCA. In: International Conference on Internet and Web Applications and Services, Variability Descriptors and Multi-tenancy Patterns (2008)
- Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10. 1007/978-3-642-40651-5_18
- Petcu, D., et al.: Portable cloud applications from theory to practice. Future Gen. Comput. Syst. 29(6), 1417–1430 (2013)
- Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification of change patterns. J. Data Semant. 2(2–3), 119–143 (2013)
- 35. Amazon Simple Storage Service (S3) Cloud Storage AWS. https://aws.amazon. com/s3/
- 36. Dropbox. https://www.dropbox.com/
- Azure Storage Secure cloud storage. https://azure.microsoft.com/en-us/services/ storage/
- 38. Google Drive Cloud Storage & File Backup. https://www.google.com/drive/
- Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture migration. Softw. Pract. Experience 47(9), 1159–1184 (2017)

- Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a stateof-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/ TCC.2017.2702586. http://ieeexplore.ieee.org/document/7922500/
- Aderaldo, C.M., Mendonca, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements for microservices architecture research. In: 1st International Workshop on Establishing the Community-Wide Infrastructure for Architecture-Based Software Engineering. IEEE (2017)
- 42. Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte, S., Wettinger, J.: Performance engineering for microservices: research challenges and directions. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering Companion (2017)