
An Ontology-Based Architecture
for an Adaptable Cloud Storage Broker

Divyaa Manimaran Elango1, Frank Fowley1, and Claus Pahl2(B)

1 IC4, Dublin City University, Dublin, Ireland
2 Software and Systems Engineering Research Centre,

Free University of Bozen-Bolzano, Bolzano, Italy
Claus.Pahl@unibz.it

Abstract. Interoperability and easier migration between offered ser-
viced are aims that can be supported by cloud service brokerage in
the cloud service ecosystem. We present here a multi-cloud storage bro-
ker, implemented as an API. This API allows objects and collections
of objects to be stored and retrieved uniformly across a range of cloud-
based storage providers. This in turn realizes improved portability and
easy migration of software systems between providers and services.

Our multi-cloud storage abstraction is implemented as a Java-based
multi-cloud storage API and supports a range of storage providers includ-
ing GoogleDrive, DropBox, Microsoft Azure and Amazon Web Services as
sample service providers. We focus on the architectural aspects of the bro-
ker in this paper. The abstraction provided by the broker is based on a lay-
ered ontological framework. While many multi-cloud applications exist,
we investigate in more detail the mapping of the layered ontology onto a
design pattern-based organisation of the architecture. This software archi-
tecture perspective allows us to show how this satisfies important main-
tainability and extensibility properties for any software system.

Keywords: Cloud Service Brokerage · Cloud storage
Data migration · Ontology · API performance

1 Introduction

Interoperability is a key concern in the cloud service ecosystem. Cloud service
brokerage (CSB) aims for more interoperability to enable more portability and
easier migration between different service providers [26,33,34]. CSBs can support
portability and migration through mechanisms such as integration and adapta-
tion of different provided services into a uniform representation [15].

We present here a multi-cloud storage broker that implements an API to
allow objects to be stored and retrieved uniformly across a range of storage
providers. Two features characterise the broker. Firstly, the abstraction is based
on a layered ontological framework that allows mapping of common concepts of
object storage to implementation layers. Secondly, the architecture is organised
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 86–101, 2018.
https://doi.org/10.1007/978-3-319-79090-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_6&domain=pdf

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 87

around common software design patterns to ensure maintainability and extensi-
bility. This is important in order to extend the broker to new providers [21].

The central software architecture concepts for the design of the broker and
methodology behind the abstraction library will be our core focus. The multi-
cloud storage abstraction is realized by a Java-based multi-cloud storage API.
Technically, the library is provided as a jar file that supports the selected four
service providers, namely GoogleDrive, DropBox, Microsoft Azure and Amazon
Web Services [37–40]. The library offers three service categories that reflect the
different storagetypes, i.e., a file service, a blob service and a table service.

We focus on the ontology framework for the central storage concepts and
functions and show how this is mapped onto a layered, design pattern-based
library architecture for the API we developed [30,31]. This is an aspect that has
not been sufficiently address in other investigations of multi-cloud brokers. An
application of the library can also be used to compare storage operations across
different providers, which we an others [16,32] have explored elsewhere.

This document is organized as follows. In Sect. 2, we give an outline of cloud
service brokerage. Section 3 describes background and related work. In Sect. 4,
the ontology-based interoperability framework is explained, and Sect. 5 looks at
other architectural design aspects. Section 6 discusses the implementation effort
and the learning outcome and presents some conclusions.

2 Principles of Cloud Service Brokerage and Use Cases

2.1 Cloud Brokerage

A cloud broker [11,17] is an intermediary software application between a client
and cloud provider service. Brokerage reduces the time spent by a client in
analyzing different types of services provided by different service providers.

In our case, brokerage enables a single platform to offer the client a common
cloud storage service. This results in cost optimization and reduced level of back-
end data management requirements, but also enables easy migration of data and
files through the joint interface [8].

A multi-cloud storage abstraction API can act as the cloud broker library
which facilitates the integration of different types of cloud services [18]. The
abstraction library allows the broker to adapt to a rapidly changing marketplace
[4]. Changeability and extensibility are consequently central requirements for
our broker library [9,10]. Figure 1 illustrates the architecture.

Fig. 1. Service brokerage architecture for cloud storage.

88 D. M. Elango et al.

2.2 A Brokerage Use Case

Cloud brokerage shall be illustrated by a use case. Disaster recovery (DR) is a
sample specific storage use case, used where there is an interruption of an action
or an event in an unpredictable time that causes the services to be unavailable to
the end user. Cloud back-up storage is a way of protecting the online resources
to make them available in the event of a disaster, such as loss of data.

Our storage abstraction library is suited to support this DR use case as it
provides a multi-cloud broker for easy storage back up. Concrete advantages
are good time management in terms of restoring processes, increased scalabil-
ity, security and compliance, redundancy and end to end recovery for the DR
application [2,3]. The storage providers supported by our API (Microsoft Azure,
Google, DropBox and Amazon Web Service) offer good bandwidth and low cost
services that can be used for backup and recovery tasks.

2.3 Vendor Lock-In

Vendor lock-in is a problem in cloud computing, preventing users from migrating
between providers. Clients become dependent on a single cloud provider. The
client is not given an option to migrate to other providers. Issues can arise, such
as legal constraints or increased costs, that consequently negatively impact on
key properties by vendor lock-in and lack of standards [6,7].

A multi-cloud storage API can play a crucial role in such cases, making it
easier for the client to switch providers. This can be applied across different cloud
type environments, like private or public environments which are more beneficial
from a business perspective. Furthermore, the extensibility of the library to
support new cloud providers gives the client a wide view of portability to many
different new cloud providers.

3 Background and Related Work

3.1 Cloud Service Provider APIs

Many cloud storage provider APIs exist, from which we selected four providers
with different individual services [37–40]. Some key properties from a software
engineering perspective that have impacted on the implementation are:

– Amazon Web Service S3: is a file storage service built on REST and SOAP. An
S3 SDK is available in major development languages. The developer portal
includes rich documentation. However, from a software development point-
of-view, the services have a hight number of classes. The library is heavy
since it has many packages for all services. Understanding the class naming
can be seen as challenging – many services are listed in the same SDK docu-
mentation. We also experienced the service be inconsistent, as there was an
occasional delay in read and write requests.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 89

– Azure Storage: supports blob, file, queue and table services. The API is built
on REST, HTTP and XML, and can be easily integrated with Microsoft
Visual Studio, Eclipse and GIT. Azure is relatively user friendly. The standard
portal interface is used for storage account set-up and document DB account
parameters. The Azure SDK is available for major development languages.
The Azure SDK provides a separate API package for each service and has
the same code flow across different service APIs.

– DropBox: is a file hosting service. It uses SSL transfer for synchronization and
AES 256 encryption as the security mechanisms. It also enables synchronised
backup and web sharing. The DropBox API is lightweight and easy for a new
user to go through quickly. Code samples and method explanations are given
in the developer’s portal.

– GoogleDrive: offers a cloud file storage service. The API is built on OAuth2
authentication. It is generally easy to understand. The structure is clearly
documented and the use of method calls is well explained. The GoogleDrive
service includes access to a Google API client library. Failure to include http
and OAuth client libraries will disable the authentication. The Google devel-
oper portal simplifies the way of implementing the API in a workspace and
provides details for configuring the authentication.

A survey of the main features of the providers that we carried out has resulted
in a grouping of the cloud providers and their services as shown in Table 1.

Table 1. Storage services and their providers.

Service Azure AWS Google DropBox

File Azure storage file - GoogleDrive DropBox

Blob Azure storage blob AWS S3 - -

Table Azure storage table,
Azure DocumentDB

Amazon DynamoDB,
Amazon SimpleDB

- -

3.2 Multi-cloud Libraries

For the design of our multi-cloud broker, we looked at existing multi-cloud
libraries for inspiration. Cloud providers publish specifications of their services,
which are different style and which makes it hard to use them as a common joint
interface. We looked at several existing multi-cloud libraries, including Apache
jclouds, DeltaCloud, Kloudless, SecureBlackBox, Temboo and SimpleCloud.

A key requirement was flexibility, which would allow our library to be adapted
to changing services or completely different services. We decided to construct our

90 D. M. Elango et al.

broker based a combination of proven design patterns, adapted to the context
here. Patterns and principles from different libraries were adopted:

– In this vein, we decided to adopt an approach that was also followed in the
Apache jclouds library to provide abstraction. Apache jclouds provides cloud-
agnostic abstraction [27]. The principle is to use a single instance context for
the mapping of a user request.

– The concept of a class for each provider across different levels of services was
adopted from a similar design that we found in the SecureBlackBox library.

– The structural pattern building around a manager interface layer at each
component level was adopted from the Apache LibCloud architecture.

4 The Ontological Framework for Cloud Storage

We discuss the guiding problems and principles, before introducing our stor-
age abstraction ontology that organises the API architecture and showing how
provider functionality is mapped onto this.

4.1 Abstraction, Interoperability and Extensibility

The architecture of our API is built on multiple layers of abstraction. Abstraction
serves here to reduce complexity. It provides for service-neutral functional logic
which also realises extensibility, i.e., allows additional vendors to be supported
without changing the underlying core functional logic of the API design. In the
future, new storage services can be added to the API without code change [28].
A programmable abstraction layer provides flexibility to connect and configure
services [29]. Thus, interoperability and portability can be achieved. Such APIs
are used for developing cloud-based applications like content delivery platforms
and back-up applications, as our earlier use case demonstrates.

The main objective of the cloud storage abstraction API is to produce an
effective multi-cloud delivery model, with a single portable view that supports
enhanced business capabilities such as brokerage [36].

The advantage of bringing these functionalities to an interoperable multi-
cloud application provides (i) an easy way of importing and exporting data,
(ii) choice over price, (iii) enhanced SLA, and (iv) the elimination of vendor lock-
in. While there are standardisation frameworks in this context such as the Cloud
Infrastructure Management Interface (CIMI) and theOpen Cloud Computing
Interface (OCCI) that target interoperability, our integration broker provides
interoperability based on an extensible API.

4.2 Storage Abstraction Ontology

An ontology-based layered architecture serves to provide interoperability and
extensibility. At the core of the architecture is a stroage abstraction ontology
that describes the common service concepts across the abstraction layers. This
ontology model consists of four main layers, namely Service, Provider, (Level-2)
Composite Object and (Level-1) Core Object.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 91

Fig. 2. Storage abstraction ontology based on 4 layers.

– Service: The Service layer is the top layer and is directly integrated into the
user interface layer. This layer basically describes the services types supported
by the abstraction API, which are blob, table and file service.

– Provider: The Provider layer is the next layer where context object parameters
are mapped to the service layer. We supports four main providers – Microsoft
Azure, Amazon Web Services, GoogleDrive and DropBox:

Service Provider
Blob Azure storage blob; AWS S3
Table Azure storage Table; Azure DocumentDB; AWS DynamoDB; AWS

SimpleDB
File Azure storage file; DropBox and GoogleDrive

– Composite Objects – Level-2: The Composite Objects (object level-2) rep-
resents the first level (or higher level) of abstraction for the object types
blob, table and file. It is service-neutral and established a common nam-
ing across individual providers and their specific functionalities. Each layer
is abstracted based on common operations and of how the main function is
applied in that particular service. Common naming allows to easily categorise
storage resources and group them to simplify development.
The Abstraction Ontology diagram (Fig. 2) shows the concept. The blob ser-
vice has a “Store” concept, which groups for instance ‘Container’ from Azure
Storage Blob and ‘Bucket’ from AWS S3. The table service has two different
sub-layers – where “Database” belongs to Azure DocumentDB Database, and
where “Collection” groups ‘Table’ from Azure Storage Table, ‘collection’ from
Azure DocumentDB Collection, ‘Table’ from AWS DynamoDB and ‘Domain’
from ‘AWS SimpleDB’. The file service has two sub-layers where “Share”
belongs to Azure Storage File and “Directory” groups ‘Directory’ from Azure
Storage, ‘Folder’ from DropBox and ‘Parent’ from GoogleDrive.

92 D. M. Elango et al.

– Core Objects – Level-1: The Core Object (object level-1) aspect represents
the lower level of storage object abstraction. This layer contains the core
functionalities of a particular service across different providers.
The classes at this level are extended from an abstract class called Abstract-
Connector, implementing the abstractor pattern. The class implements the
abstract methods defined in an AbstractConnector class. The mapping from
Level-2 to Level-1 is performed by an interface class called Manager. This
Manager identifies the provider class by its key. Basic CRUD operations on
the storage resources arecore methods. In order to implement these functions,
each operation “request” should “pass through” the Level-2 mappings and is
then mapped across the service and providers.
The blob service has “Blob”, which groups ‘Blob’ from Azure Storage Blob
and ‘Object’ from AWS S3. The table service has two sublayers. It has an
“Item” to group ‘Entity’ from Azure Storage Table, ‘Document’ from Azure,
‘Item’ from AWS DynamoDB and ‘Item’ from AWS SimpleDB. Further-
more, the second sublayer “Attachment” belongs to the Azure DocumentDB
Attachment. The file service has “File” grouping ‘File’ from Azure Storage
File, ‘File’ from DropBox and ‘File’ from GoogleDrive.

4.3 Storage Service Provider Functionality

An important concern was having common naming for mapping the user’s
requests onto the different services. The broker acts as an adapter for accessing
different providers’ services through a common interface. We found a high degree
of commonality between different cloud provider functions and their names. How-
ever, some operations exists in one provider, but not in others. Furthermore, the
parameters in some of the methods also differ between providers.

In the example below, the Level-2 aspect “Store” in the Blob service supports
providers with different specific names, namely Azure’s storage blob container
and AWS’s S3 bucket. The table also shows the common createStore() method
and the corresponding Azure-specific and AWS-specific underlying method calls.
The approach is based on identifying synonyms for common object names, such
as container (Azure) and bucket (S3) for ‘store’:

Common name (Level-2) Name in azure storage blob Name in AWS S3
Store Container Bucket

The same then applies to function names:

Common method name Name in azure storage blob Name in AWS S3
createStore() create() create container createBucket() create bucket

The abstraction ontology maps similar service groupings together across differ-
ent cloud providers. Selected services have similar or the same core functional
logic – grouped into levels in the ontology. Based on this, the framework design
includes the “service”, “provider”, “composite object” and “core object” for its
implementation.

In the example below, the common level-2 composite “Collection” is already
defined for two providers. There are four corresponding service names: Azure

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 93

storage table ‘table’, AWS document DB ‘collection’, AWS dynamo DB ‘table’
and AWS simple DB ‘domain’. The table below shows the common getCollec-
tionMetadata() method and its corresponding provider API method calls:

Common ontology
name

Azure storage
table

Azure Document
DB

AWS Dynamo DB AWS Simple DB

Composite: Collec-
tion

Table Collection Table Domain

Operation: getCol-
lectionMetadata()

- - describeTable()
returns information
about the table.

domainMetadata()
returns information
about the domain.

Operation: listCol-
lection()

listTables()
Lists the table
names in the
account

readCollection()
Reads a document
collection by the
collection link

listTables() Sim-
plified method for
invoking ListTables

listDomains() Lists
all domains associ-
ated with the Access
Key ID

The method name to retrieve the metadata of a collection in the Table service
is not supported by Azure, but AWS does. So, a common operation can not
be realised across the level-2 composite Collection. A similar problem exists
with the blob and file services. This lack of consistency in the available provider
API operations has led to the omission of valuable API method calls. We also
introduce another example, which is the common listCollection() method and its
corresponding provider API method calls. The method name to retrieve the list
of collections in the table service is supported by both Azure and AWS. However,
the method names are different, although description and logic are the same.

5 Design of the Cloud Storage API

Our design involves a mapping of an ontology-based conceptual framework onto
a layered architecture, which in turn was structured by suitable design patterns.
We look at security management of the different service providers.

5.1 An Ontology-Driven Architecture

We applied a “model-driven” software engineering technique to simplify the pro-
cess of design from concept modeling to implementation. This was done at each
level in the abstraction ontology by breaking entities into single components.
Adopting this kind of best-practice in software design was important in order
to reduce the development overhead and produce a quality library that can be
extended easily. Two types of modeling approaches could have been used here.

– Firstly, a provider-specific model, in which the provisioning and deployment
of the abstraction library is defined for each cloud provider.

– Secondly, a cloud provider-independent model, which defines the provisioning
and deployment of the abstraction library in a cloud-agnostic way.

We adopted the approach taken in the CloudML EU-funded research project.
There, a domain-specific modelling language is used to reduce the complexity of
cloud system design. CloudML enables to provision and deploy an abstraction
library. Its design includes what we call level-1 core objects, which are assembled

94 D. M. Elango et al.

based on the CloudML internal component design. These are mapped to level-2
components by using a model-driven approach. A client using the service does
not necessarily know about the internal deployment, and there is no limitation
on the design and evolution of the multi-cloud abstraction library.

5.2 Application of Design Pattern

Design patterns play a central role in organising the layered ontology-based
architecture in order to achieve the required maintainability and extensibility,
but also in general the quality of the software.

Mapping Based on an Object Context for Maintainability. For any
multi-cloud library design patterns can reduce the need to have an object instan-
tiation for each provider’s class using the constructor. This was a problem noted
for the jclouds library. A lack of code clarity and high level of complexity in the
framework pattern was observed.

In our API, in order to avoid this problem and to provide a stable, main-
tainable code base, the context builder class is added to the architecture. This
builder class includes a key and a value parameter pair. This pair is called an
item, which adds the service, the provider, the aspect key, the operation key and
the input parameters to the context. Then, this context object is passed on to
execute the API method call. This mapping is applied for all the services sup-
ported by our API. Below, we outline the mapping of parameters into a single
context instance.

Context context = new Context();
context = addServiceContext(context);
context = addServiceProviderContext(context);
context = BlobService.addParameters(

IConstants.ASPECT_KEY, IConstants LEVEL-2_STORE, context);
context.addItem(new Item(

IConstants.OPERATION_KEY, IConstants.OPERATION_CREATE));
context = BlobService.addParameters(

IConstants.STORE_NAME, storeName, context);

Extensibility Through a Plug-in Framework. API design principles state
that a developer should not have visibility of the underlying low-level abstraction
classes, interfaces and methods. If a future extension can support new features
and services, then the framework should not have to be redesigned or its behavior
changed. We say that the framework acts like a plug-in for any new features,
services or providers. We achieve this in the design by enforcing that an abstract
class cannot be instantiated, it can only be inherited, as a strict coding rule.

The level-1 layer, which implements the lower-level API methods, is extended
from the AbstractConnector class. This abstract class must implement the inter-
face IConnector and all of its associated methods. The reason for this is because
an abstract class, by definition, is required to create subclasses of its instance.
The subclasses are required by the compiler to implement any interface methods

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 95

that the abstract class has left unimplemented. Less effort is required to extend
the API because the framework itself remains unchanged in that case.

Multi-service Support Through a Manager Interface Layer. The level-2
layer is limited because of the separation of the user level request which is meant
to distinguish between different API methods provided by the same provider. For
example, AWS provides DynamoDB and SimpleDB. Similarly, Azure provides
storage table and DocumentDB services. In order to remedy this, an interface
component called manager is implemented. The manager is responsible for iden-
tifying the corresponding “aspect-key” that is encapsulated within the context
parameter discussed earlier on.

We use two types of managers: the store manager and the table manager.

– The composite object Level-2 aspect is the higher level of abstraction. Since
Level-2 helps to identify the differences between the services, the store man-
ager interface is added in this layer, which splits the request to either blob or
file or table service at core object level-1.

– The table manager is used in a similar way. For example, the table service
at Level-1 has two APIs, the DynamoDB and SimpleDB, supported by one
provider, AWS. In order to differentiate between the services, an interface
component called manager was added to identify the common method name.

The relationship between the abstract class and the core logic of the level-2
aspect is managed using the context parameter.

5.3 Apache jclouds and Design Patterns

Our multi-cloud storage abstraction layer was designed using some of the design
concepts and patterns of jclouds. Apache jclouds is an open source library avail-
able in Java and Clojure, which supports several major cloud providers. The
jclouds library offers both a portable abstraction framework as well as cloud-
specific features. The main aim of jclouds is to manage errors, concurrency and
cloud complexity better.

The jclouds Architecture. jclouds features of a portable abstraction layer
called ‘View’, responsible for splitting the service type and cloud provider. A
‘View’ is connected to a provider-specific API or library driven API. The Context
Builder class maps the context object along with its parameters. The parameters
include provider class object, view, API metadata and provider metadata. This
object will be bound as a singleton object called Context and it is passed to the
context builder. The API Metadata class populates friendly names for the key,
which has two values – the type and the view information. The Service Registry
acts like a manager, which is responsible for holding the key to connect to a
provider’s class. The framework implements a builder pattern for request and
response, which connects to a backend API, along with authentication.

96 D. M. Elango et al.

In the context of our broker, the jclouds library caters for blob and compute
services. The following code block outlines the jclouds library code for calling a
context for an Azure blob. It uses the context builder class. The basic concept
of abstraction used in the jclouds library is based on the builder design pattern
known from software engineering. A context with service provider Azure that
offers the portable BlobStore API would look like as follows:

BlobStoreContext context =
ContextBuilder.newBuilder("azureblob")

.credentials(storageAccountName, storageAccountKey)

.buildView(BlobStoreContext.class);

5.4 Security Analysis – Authentication Mechanism

Security is another concern that needs to be unified across the providers in
addition to the mapping of concepts for core and composite storage objects used
by the different providers into a common ontology. Authentication, however,
differs across the providers selected.

1. The authentication in GoogleDrive is based on a client secret json file. A
project is created in the Google developer’s console. The Drive API and
OAuth protocol is enabled. The credentials are generated and saved as a
client secret json file. In the coding, the authentication method should have
the permission scope and drive scope set to ‘GRANT’. When the browser
opens for the authentication response, the client is permitted full read and
write access.

2. The authentication in DropBox uses an access token, which is generated in the
console. An application is created under the app console and its permission
is set to ‘FULL’. Later, the authentication is set by linking the account using
the access token when passing the instance of the API client.

3. The authentication in Microsoft Azure is based on an account subscrip-
tion that allows for the accessing of the resources available within an azure
account. The Blob service is provided within an Azure storage account. The
azure storage account name, also known as namespace, is the first level for
processing authentication to the services within the storage account (blob,
file and table). It uses token-based authentication. The authentication of the
Azure storage blob is done using a connection string which has the parameters
of the storage account name and primary key. Similarly, the Table service is
supported within an Azure storage account. The authentication of the Azure
storage table is done using a connection string which has the parameters of the
storage account name and primary key. An Azure Document DB account is
required for accessing the Azure Document Db service and requires a master
key and URI (end-point).

4. The authentication in Amazon Web Services is based on a secret key and
an access key, which is common across all services supported by our storage
API. An AWS user should have a specified role with the required resource
access permissions. Identity Access Management allows the user to set the role
and access privileges, and this provides each user with sufficient credentials.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 97

The account can be activated using phone verification and authentication.
Credential auditing and usage reports can be used for review purposes.

The different authentication processes were considered for the broker authen-
tication method, i.e., calls from the multi-cloud storage abstraction API. Our
solution is based on a credentials object:

– Credentials storage: The credentials are stored in a common config file. So,
the user is not shown the authentication part as it happens in the back-end.

– Credentials update: If the credentials need to be changed, they are only
changed in the configuration file, which reduces overhead for the user to set
up the authentication process.

6 Discussion and Conclusions

We have discussed maintainability and extensibility as centralobjectives that
need to be evaluated here throughout the architecture discussion in the previous
section. In a summarising discussion, we return here to a few important concerns
such as establishing testability and maintainability through suitable design pat-
terns, e.g., the dependency injection pattern, to point out benefits. Other aspects
have already been discussed throughout Sect. 5 above.

Design Patterns and Software Quality. From the discussion above, specifi-
cally the code, it can be clearly seen that jclouds gets a separate instance for each
provider’s class and, in some cases, it makes direct REST calls to the underlying
provider API. Thus, the programming style in jclouds follows the dependency
injection software design pattern. It uses two programming frameworks: firstly,
Google Guice, which is a Google library alternative to Spring, and, secondly,
Guava, which supports transformation, concatenation and aggregation for stor-
age services.

Another quality concern shall be addressed: recompilation overhead. Depen-
dency injection avoids code duplication, is unit-testable and modular. It thus
allows injecting of the service class instead of calling the API service method,
achieved by writing custom code and connecting it at run time, which avoids
recompiling. Custom code instantiates an object for each service and provider.

Quality Factors – Testability and Extensibility. Testing is a further con-
cern. The jclouds library uses dependency injection, as discussed above, which
makes reference to an object before it will proceed for execution. Implementing
dependencies by constructors, using the ‘new’ constructor may result in difficul-
ties for unit testing. Performing dependency injection using a factory method is
a traditional solution to the testing concern.

This is also known as indirect dependency, where the factory method is
realised by having an interaction class between the client class and the service
class. It was considered that the use of too many interaction classes would make

98 D. M. Elango et al.

the code more complex and result in tight coupling between the abstraction lay-
ers. This would hide the definition of abstraction and furthermore, it would not
facilitate the future extension of the library.

According to the principles of API design, there should be a small number
of functionalities shared across the entire cloud provider API. This has been
achieved in the abstraction design used.

Final Comments. The aim of cloud service brokerage is customising or inte-
grating existing services or making them interoperable. Following the classifica-
tion schemes in [12,13], we have developed an integration broker:

– the main purpose is intermediation between cloud consumers and providers
to provide advanced capabilities (interoperability and portability),

– it builds up on an intermediary/broker platform to provide a marketplace to
bring providers and customers together,

– the broker system type is a multi-cloud API library.

We presented here on a broker solution [1] for cloud storage service providers to
implement a joint interface to allow

– portability and migration for the user, i.e., the consumer of the services,
– extensibility for the broker provider to allow changed or new services to be

included.

Our broker enables through its joint API also the opportunity for a cloud storage
user to easily migrate between services or to use multiple services at the same
time, depending on prefered characteristics such as security or performance [5].

Many broker implementations and multi-cloud APIs exist. We provide a novel
view by focussing here on the construction of a broker API and looking at soft-
ware architecture principles behind it. Again, ontologies have been used before,
but we demonstrate here how a layered ontology and a corresponding layered
architecture together with the use of appropriate design patterns can better
help to achieve extensibility and efficiency of the implementation. The selection
of design patterns has a significant impact on the testability, maintainability and
extensibility of the layered architecture that we have developed.

As future work, we plan to extend the broker by adding further services
by other providers to empirically verify the extensibility of the library. While
our API-based architecture only supports public cloud providers, this can be
extended to include private clouds in future. A more long-term usage beyond
some performance testing on the provider services, should also help to better
judge the maintainability in addition to the expected positive affect from the
pattern application. More work could also go into more uniform specification of
cloud services [25,35] aiming at more standardisation of the interfaces.

Acknowledgements. This work was partly supported by IC4 (Irish Centre for Cloud
Computing and Commerce), funded by EI and the IDA.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 99

References

1. Ried, S.: Cloud Broker – A New Business Model Paradigm. Forrester, Cambridge
(2011)

2. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups – the new generation of
web applications. Internet Comput. 12(5), 13–15 (2008)

3. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the inter-cloud: protocols and formats for cloud computing interoperability. In:
International Conference on Internet and Web Applications and Services (2009)

4. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13–31.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13119-6 2

5. Elango, D.M., Fowley, F., Pahl, C.: Testing and comparing the performance of
cloud service providers using a service broker architecture. In: Mann, Z.Á., Stolz,
V. (eds.) ESOCC 2017. CCIS, vol. 824, pp. 117–129. Springer, Cham (2018)

6. Cloud Standards (2017). http://cloud-standards.org/
7. ETSI Cloud Standards (2017). http://www.etsi.org/newsevents/news/734-2013-

12-press-release-report-on-cloudcomputing-standards
8. Fehling, C., Mietzner, R.: Composite as a service: cloud application structures,

provisioning, and management. Info. Technol. 53(4), 188–194 (2011)
9. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change mod-

els and change rules for sustainable cloud software architectures. J. Softw. Evol.
Process 29, e1849 (2017). https://doi.org/10.1002/smr.1849

10. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. ACM Trans. Internet Technol. (2018, to appear)

11. Forrester Research: Cloud Brokers Will Reshape The Cloud (2012). http://www.
cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf09
4d/pu/

12. Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service bro-
kerage solutions for cloud architectures. In: Lomuscio, A.R., Nepal, S., Patrizi, F.,
Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 137–149.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06859-6 13

13. Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and com-
parison framework for cloud service brokerage architectures. IEEE Trans. Cloud
Comput. (2017). https://doi.org/10.1109/TCC.2016.2537333. http://ieeexplore.
ieee.org/document/7423741/

14. Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification
of change patterns. J. Data Semant. 2(2–3), 119–143 (2013)

15. Garcia-Gomez, S., et al.: Challenges for the comprehensive management of cloud
services in a PaaS framework. Scalable Comput. Pract. Exp. 13(3), 201–214 (2012)

16. Elango, D.M., Fowley, F., Pahl, C.: Using a cloud broker API to evaluate cloud
service provider performance. Research report 471, Department of Informatics,
University of Oslo, pp. 63–74 (2017)

17. Gartner: Cloud Services Brokerage. Gartner Research (2013). http://www.gartner.
com/it-glossary/cloud-servicesbrokerage-csb

18. Grozev, N., Buyya, R.: InterCloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Exp. 44, 369–390 (2012)

19. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
CLOSER Conference, pp. 137–146 (2016)

https://doi.org/10.1007/978-3-642-13119-6_2
http://cloud-standards.org/
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
https://doi.org/10.1002/smr.1849
http://www.cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
http://www.cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
http://www.cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
https://doi.org/10.1007/978-3-319-06859-6_13
https://doi.org/10.1109/TCC.2016.2537333
http://ieeexplore.ieee.org/document/7423741/
http://ieeexplore.ieee.org/document/7423741/
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb

100 D. M. Elango et al.

20. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
4(5), 22–32 (2018). http://ieeexplore.ieee.org/document/8125558/

21. Hofer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and compari-
son. J. Internet Serv. Appl. 2(2), 81–94 (2011)

22. Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A., Estrada, G.:
Fuzzy self-learning controllers for elasticity management in dynamic cloud archi-
tectures. In: 12th International ACM SIGSOFT Conference on Quality of Software
Architectures QoSA (2016)

23. Arabnejad, H., Jamshidi, P., Estrada, G., El Ioini, N., Pahl, C.: An auto-scaling
cloud controller using fuzzy Q-learning - implementation in openstack. In: Aiello,
M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol.
9846, pp. 152–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44482-6 10

24. Gacitua-Decar, V., Pahl, C.: Structural process pattern matching based on graph
morphism detection. Int. J. Softw. Eng. Knowl. Eng. 27(2), 153–189 (2017)

25. IEEE Cloud Standards (2015). http://cloudcomputing.ieee.org/standards
26. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.

IEEE Trans. Cloud Comput. 1, 142–157 (2013)
27. jclouds: jclouds Java and Clojure Cloud API (2015). http://www.jclouds.org/
28. Ferrer, A.J., et al.: OPTIMIS: a holistic approach to cloud service provisioning.

Future Gener. Comput. Syst. 28(1), 66–77 (2012)
29. Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Sniblel, E.:

An architecture for virtual solution composition and deployment in infrastructure
clouds. In: International Workshop on Virtualization Technologies in Distributed
Computing (2009)

30. Pahl, C.: Layered ontological modelling for web service-oriented model-driven
architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol.
3748, pp. 88–102. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741 8

31. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural
styles. Inf. Softw. Technol. 51(12), 1739–1749 (2009)

32. Mietzner, R., Leymann, F., Papazoglou, M.: Defining composite configurable SaaS
application packages using SCA Variability Descriptors and Multi-tenancy Pat-
terns. In: International Conference on Internet and Web Applications and Services
(2008)

33. Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architec-
tural concerns. In: IEEE 7th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems MESOCA (2013)

34. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5 18

35. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the cloud. IEEE Internet
Comput. 15, 74–79 (2011)

36. Petcu, D., et al.: Portable cloud applications–from theory to practice. Future
Gener. Comput. Syst. 29(6), 1417–1430 (2013)

37. Amazon Simple Storage Service (S3) Cloud Storage AWS https://aws.amazon.
com/s3/

38. Dropbox. https://www.dropbox.com/
39. Azure Storage - Secure cloud storage. https://azure.microsoft.com/en-us/services/

storage/

http://ieeexplore.ieee.org/document/8125558/
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-319-44482-6_10
http://cloudcomputing.ieee.org/standards
http://www.jclouds.org/
https://doi.org/10.1007/11581741_8
https://doi.org/10.1007/978-3-642-40651-5_18
https://doi.org/10.1007/978-3-642-40651-5_18
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.dropbox.com/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 101

40. Google Drive - Cloud Storage & File Backup. https://www.google.com/drive/
41. Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture

migration. Softw. Pract. Exp. 47(9), 1159–1184 (2017)
42. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-

of-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/
TCC.2017.2702586. http://ieeexplore.ieee.org/document/7922500/

43. Aderaldo, C.M., Mendonca, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 1st International Workshop on Estab-
lishing the Community-Wide Infrastructure for Architecture-Based Software Engi-
neering. IEEE (2017)

44. Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte,
S., Wettinger, J.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion (2017)

https://www.google.com/drive/
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
http://ieeexplore.ieee.org/document/7922500/

	An Ontology-Based Architecture for an Adaptable Cloud Storage Broker
	1 Introduction
	2 Principles of Cloud Service Brokerage and Use Cases
	2.1 Cloud Brokerage
	2.2 A Brokerage Use Case
	2.3 Vendor Lock-In

	3 Background and Related Work
	3.1 Cloud Service Provider APIs
	3.2 Multi-cloud Libraries

	4 The Ontological Framework for Cloud Storage
	4.1 Abstraction, Interoperability and Extensibility
	4.2 Storage Abstraction Ontology
	4.3 Storage Service Provider Functionality

	5 Design of the Cloud Storage API
	5.1 An Ontology-Driven Architecture
	5.2 Application of Design Pattern
	5.3 Apache jclouds and Design Patterns
	5.4 Security Analysis – Authentication Mechanism

	6 Discussion and Conclusions
	References

