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Abstract. Ocean data management plays an important role in the
oceanographic problems, such as ocean acidification. These data, hav-
ing different physical, biological and chemical nature, are collected from
all seas and oceans of the world, generating an international networks for
standardizing data formats and facilitating global databases exchange.
Cloud computing is therefore the best candidate for oceanographic data
migration on a distributed and scalable platform, able to help researchers
for performing future predictive analysis. In this paper, we propose a
new Cloud based workflow solution for storing oceanographic data and
ensuring a good user experience about the geographical data visualiza-
tion. Experiments prove the goodness of the proposed system in terms
of performance.
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1 Introduction

Ocean Data management is a current challenge because both of ocean specific
terminology diversity (physio-chemical parameters, sensor type, units of mea-
sures, conditions of measures, etc.) and of huge volume of ocean data collected
from several international projects. The last aim to control the ocean acidifica-
tion phenomena, an emerging global problem related to the seawater CO2 rate
[1] that negatively affects the environment. Therefore, scientific community was
thinking about software for calculating inorganic seawater carbon in order to
track the evolution of CO2 in the oceans.

However, traditional desktop or web application can not provide the func-
tionalities required by similar problem. Indeed, storing and processing a big
volumes of data needs availability, reliability and scalability. For this purpose,
the best choice for this kind of application is Cloud Computing, which delivers
the resources for managing efficiently the collected data.
c© Springer International Publishing AG, part of Springer Nature 2018
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The goal of this scientific work follows the previous one [2]. More specifically,
in this paper we planned to improve scalability and user experience of the Web
Application, used for visualizing oceanographic data, already developed. For this
purpose, here we analyzed the oceanographic data contest in order to design a
Cloud workflow for migrating data from online databases to a distributed system
able to enable future predictive analysis. Thus, we designed a data acquisition
and integration workflow through a Cloud Storage approach which use a more
recommended NoSQL solution for successfully managing semi-structured data
and retrieving them for future seawater’s acidification predictive analysis.

The rest of the paper is organized as follows. Related Works are described
in the Sect. 2. In Sect. 3, we discussed the material used in this scientific work,
from data source up to main oceanographic data issues. The Sect. 4 explains
the Cloud approach used in order to migrate oceanographic data from sources
to Cloud Storage, whereas in Sect. 5 we discussed the outcomes’ experiments.
Finally, the Sect. 6 concludes the paper with the lights for the future.

2 Related Work

The most popular oceanographic data visualization software is the Ocean Data
View (ODV). According to Schlitzer [3], ODV is a software used for the inter-
active exploration, analysis and visualization of oceanographic and other geo-
referenced profile, time-series, and trajectory or sequence data. It displays origi-
nal data points or gridded fields based on the original data and supports different
data formats. ODV displays data on different views representing it in a global
map that integrates the gridding algorithms [4] based software, called DIVA [5],
in order to grid elements in the map for performing interpolation. Moreover,
it allows to select one data source by entering the outer coordinates, consider-
ing the result as a separate small collection. In addition, ODV allows to select
features for drawing one or more specific diagrams in order to compare these.

A software for 3D visualization has been proposed by Ware et al. [6]. The
representation of that requires a user visual stimulation and allows them to
compare two or more locations [7].

On the other hand, in recent time, the scientific community has started an
investigation about atmospheric and oceanographic research using the Cloud
Computing paradigm [8]. In order to proof that, in [9], the author reported a
survey for discussing the progress made by Cloud in the oceanographic chal-
lenges. These include effective discovery, organization, analysis and visualization
of large amounts of data. In [10], the authors reported “the outcomes of an NSF-
funded project that developed a geospatial cyberinfrastructure to support atmo-
spheric research”. Specifically, they provided several modules for covering the
aforementioned challenges in order to “develop an online, collaborative scientific
analysis system for atmospheric science”. In [11], instead, the authors described
the LiveOcean project, which aims to mitigate “the financial impact of ocean
acidification on the shellfish industry in the Pacific Northwest of the United
States”. The authors builded this system on Microsoft Azure Cloud Platform
highlighting the modularity as most important theme.
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Other important aspect is the management of the sensors designated for
gathering row data. Indeed, increasing the number of data also the oceanographic
context entries in the Big Data problem and specific solutions, such as [12,13],
are useful for be inspired.

Our approach aims to go over the [3–7] solutions, proposing a Cloud Com-
puting scenario in order to provide for Big Data coming into the oceanographic
context.

Cloud Computing is a very hot topic in scientific community, it raises chal-
lenges in research fields as described in [14–17]. Most of the works are focused
on the study and realization of innovative models that allows the collaboration
among different Cloud providers focusing on various aspects of the federation.
New trends in scientific work aim to adopt the Federation for new interesting
scenarios: IoT, Edge, Cloud and Osmotic Computing [18].

3 Material

The following section describes the material used for this scientific work, high-
lighting the data structure and discussing the main challenges and issues.

3.1 Data Source

Data used in this scientific work came from the Carbon Dioxide Information
Analysis Center (CDIAC), which is considered the first information analysis
center for the oceanic parameters [19]. It provides an important climate-change
database center organized as showed in the Fig. 1.

In particular, with reference to the Fig. 1, it is possible to notice the
ODVServer zone, that represents the data sources selected in our study. Data are
stored into relational databases, it is possible to export them using the comma
separated value (CSV) format. In particular the ODVServer Data System is
composed by three databases:

1. the GLobal Ocean Data Analysis Project (GLODAP) which gathers unified
dataset for determining the “global distributions of both natural and anthro-
pogenic inorganic carbon, such as radiocarbon” [20];

2. the PACIFic ocean Interior CArbon (PACIFICA) database that gathers “data
synthesis of ocean interior carbon and its related parameters in the Pacific
Ocean” [21];

3. the CARbon dioxide IN the Atlantic Ocean (CARINA) database which gath-
ers “data set of open ocean subsurface measurements for biogeochemical inves-
tigations” [22].

Other data sources (SOCAT, CORILIOS CORA, JGOFS, eWOCE, LDEO and
CLIVAR) are out of the scope of this paper and will be treated in future works.



76 S. Allam et al.

Fig. 1. CDIAC data center

3.2 Data Structure

Data collected in the aforementioned databases have a common structure
explained in the following:

– Time data: Month, Day, Year;
– Location data: Longitude, Latitude, Depth;
– Physical & Chemical data: Section, Station, Cruise, BottomDepth, Bot-

tleNumber, Cast, Salinity, cdtSalinity, Oxygen, Nitrate, Nitrite, Silicate,
Phosphate, CFC11, CFC12, CFC113, TCO2, Alkalinity, pCO2, pHSWS25,
pHSWS25 Temp, AnthropogenicCO2, DOC, TOC, DeltaC14, DeltaC13, H3,
DeltaH3, He, C14err, H3err, DeltaH3err, He err, CCl4, SF6, AOU, pCFC11,
CFC11Age, pCFC12, pCFC113, pCCl4, pSF6, CFC12Age, PotentialAl-
kalinity, ConventionalRadiocarbonAge, NaturalC14, bkgc14e, BombC14,
BombC14atom, NaturalC14atom, PotTemperature, SigmaTheta, Sigma1,
Sigma2, Sigma3, Sigma4, bf, sf, cdtsf, of, no3f, no2f, sif, po4f, cfc11f, cfc12f,
cfc113f, tco2f, alkf, pco2f, phsws25f, aco2f, docf, tocf, c14f, c13f, h3f, dh3f,
hef, ccl4f, sf6f, aouf, palkf, bkgc14f, bombc14f;

– Environmental data: Pressure, Temperature.

Data are collected according to the specific oceanographic region. Specifi-
cally, each region is composed by a set of sections that contain several stations
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geographically located. For each of them, there are more than one record depend-
ing on the depth variation. The Fig. 2 represents a hierarchical overview of the
entire dataset just described.

Fig. 2. Hierarchical multivalued attributes. Here P1, P2, ... , P90 denote Physical &
chemical data.

3.3 Challenges and Issues of Oceanographic Data

The CDIAC oceanographic data have the ‘Cruise/Section-Station-Depth’ form.
Such data are in relationships with time and space and archive all information
about how, when and where data were stored, as well as type and nature of
available data. Thus, it provides a conceptual overview of ocean data structure
that should be useful in data management.

In ocean data, the dimensions are normally recorded as ‘date/time, latitude,
longitude, and depth’ [23]. By associating latitude and longitude in location, the
model will be ‘date/time, location, and depth’. Unfortunately, data provided by
the GLODAP, PACIFICA and CARINA databases do not have the data/time
field in the ‘dd/mm/yy hour:minute:second’ form, but only in the ‘dd/mm/yy’
form. Therefore, the model becomes ‘data, location, depth’. For this purpose, it
is difficult to treat these data as time series.

Referring to the TLZ model [23], there are eight possible relationships, as
reported in the Table 1.

We also noted that the geographical distance and depth gauge is not periodic
among samples, i.e the Fig. 3 shows that the distance among stations is not the
same and the stations depth is also different. More specifically, the data gauge
on different depth is not uniform throughout the sample collection process.

Thus, the main challenge was to manage these data, in order to facilitate
future predictive analysis and query them in a flexible way.
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Table 1. DLH space relationship. Noted Date = ‘D’, Location = ‘L’ and Depth = ‘H’.

D L H Relationship

1 1 1 One date, one location, one depth

1 1 n One date, one location, many depth

1 n 1 One date, many location, one depth

1 n n One date, many location, many depth

n 1 1 many date, one location, one depth

n 1 n many date, one location, many depth

n n 1 many date, many location, one depth

n n n many date, many location, many depth

Fig. 3. A representation of data characteristic

4 Methodology

As mentioned in the Sect. 1, this work aimed to improve the previous one [2]
through the Cloud Computing utilization. Specifically, the Sun/Oracle’s JEE-
based cross-platform, called ODVServer, used to store data in a traditional SQL
database and to visualize oceanographic data using Google Maps APIs. The
Fig. 4 shows an overview of the previous platform.

Unfortunately, the visualization of all sections from one database was not
easily distinguishable. Moreover, we were not able to analyze the oceanographic
data on the basis of different geographical shapes. For this purpose, we propose
the Cloud improvement reported in the following.

4.1 Workflow

Driven by the need to improve the viewing system of the different oceano-
graphic sections, we have planned to replace web data processing, performed
with the Google Maps APIs, with the native storage of a GeoJSON, a
human and machine-readable format for encoding geographic data structures.
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Fig. 4. Overview of the ODVServer platform. The layout was divided into two side.
The first one (A) provided a geographical representation of the reading. Indeed, the
right side (B, C, D, E) provided the insight view of the selected station.

Therefore, a NoSQL database was required in order to manage semi-structured
and non structured data and for storing all the oceanographic databases.

Referring to the Fig. 5, data move from sources (CARINA, PACIFICA and
GLODAP) to the Cloud Platform through RESTful APIs. Specifically, the lis-
tening microservice receives CSV data in order to implement the transformation
into GeoJSON. Thus, this information moves to a sharded and replicated Mon-
goDB distribution, a native JSON NoSQL database. The choice of MongoDB
avoids further data transformations. Moreover, in order to scale the microservice
workload, it is embedded inside a docker container, ensuring a lightweight and
portable service virtualization.

The bottom side of the Fig. 5 shows a HTTP communication between the
distributed storage and the front end, in order to view the query and future
analyses results. At the same time, Apache Spark has been thought for perform-
ing future real-time predictive algorithms on oceanographic data. However, the
dotted lines indicate guidelines for future works.

4.2 Oceanographic Data Visualization

Based on the previous description, we looked for two properties: interoperability
and flexibility. The first one is guaranteed by the GeoJSON standard. Its fixed
structure identifies two parts: geometry section contains geospatial information
and type of GeoJSON element (see Sect. 2 in the Fig. 6); and properties section
contains all parameters codified as key-value pairs (see Sect. 3 in the Fig. 6). We
remark that Sect. 1 in the Fig. 6 represents the MongoDB’s master key.
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Fig. 5. The workflow includes the data acquisition and integration phases, considering
the CSV format databases (CARINA; PACIFICA and GLODAP). A NoSQL solution
stores all the GeoJSON information and integrates well with data analysis tool, such
as Apache Spark, and MEAN stack web application, such as the Meteor JS framework.
The dotted lines indicates guidelines for future works.

On the other hand, the flexibility is guaranteed by data management and
visualization dynamism, which allow users to select any representation. Indeed,
in our approach, we decided to store all samples in a single MongoDB collection.
Thus, we can create virtual representation based on users’ demand. For instance,
as showed in the Fig. 7, by means of our approach users are able to create virtual
representations per each zone of interest, starting from position of samples or
other constrains.
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Fig. 6. Difference structure of JSON and GeoJSON

Fig. 7. User demand
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5 Performance

In this section we discuss about of the performances of the system from a numer-
ical point of view. In particular, we conducted two different kind of analysis: for
populating and retrieve data of our system. Our testbed is composed of two dif-
ferent blades server. More specifically, we have 2 different type of machines one
for the computation and the other one for the storage. Computation worksta-
tion, in which is running the data conversion module, is equipped by the Intel(R)
Core(TM) i7-6700 CPU @ 3.40 GHz, RAM 16 GB, OS: Ubuntu server 16.04 LTS
64 BIT. Storage workstation, in which our database system MongoDB is running
on single node, is composed by the Intel(R) Core(TM) i3-6100 CPU @ 3.70 GHz,
RAM 32 GB, and Ubuntu server 16.04 LTS 64 BIT. Unfortunately we did not
find any solution to compare performances of our system. We made scalability
tests in different scenarios for both type of analysis. Experiments were repeated
30 subsequent times in order to consider confidence intervals at 95% and average
values.

5.1 Insert Data

Figure 8 shows the performances for parsing CSV data to GeoJSON and storing
them into MongoDB. Its behavior is linear with the increasing of the dataset size.
On the x-axis we reported the dataset size, whereas on the y-axis, we reported
the response time expressed in msec. How we can observe, the response time for
100.000 samples is acceptable less than 10 s.

Fig. 8. Data insert performance

5.2 Retrieve Data

Here we consider times for retrieving data from MongoDB in a specific geographic
shapes, in order to understand if flexibility features are really implementable.
More specifically we considered increasing concentric circles with different radius,
starting from 10 m up to 100 km.
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Fig. 9. Data retrieve performance

The behavior, as showed in Fig. 9, is constant around 30 ms, variations are
due to networks delay.

6 Conclusions and Future Work

In this scientific work, we investigated the management of oceanographic data
through the utilization of a Cloud Computing workflow. First of all, three CSV
format databases have been selected as data sources. Therefore, we explained
the workflow necessary for migrating these data up to the Cloud Storage. This
scientific work is the first initiative adopting Cloud for manage Ocean data, for
this reason we did not find any solution to compare performance of our system.
However experiments showed that our system response time presents a linear
trend. The execution time grows up with the increasing number of considered
samples.

On the other hand, the dotted lines in the Fig. 5 shows our idea about the
future perspective. In particular, Meteor JS framework will be the technology we

Fig. 10. A goal of the future work can be the acidification prediction.
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aim to use for developing the new frontend version. This choice depends on the
native MEAN stack adopted, which includes MongoDB as backend database;
whereas Apache Spark will be useful for performing predictive oceanographic
data analysis, such as the acidification prediction. About that, the Fig. 10 shows
a possible future work about the selection of the features that best describe the
reported behavior. Other future works are related to adopt the new Osmotic
Computing paradigm.
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