
Towards Business-to-IT Alignment
in the Cloud

Kyriakos Kritikos1(B), Emanuele Laurenzi2, and Knut Hinkelmann2

1 ICS-FORTH, Heraklion, Greece
kritikos@ics.forth.gr

2 FHNW University of Applied Sciences and Arts Northwestern Switzerland,
Olten, Switzerland

{emanuele.laurenzi,knut.hinkelmann}@fhnw.ch

Abstract. Cloud computing offers a great opportunity for business pro-
cess (BP) flexibility, adaptability and reduced costs. This leads to realis-
ing the notion of business process as a service (BPaaS), i.e., BPs offered
on-demand in the cloud. This paper introduces a novel architecture focus-
ing on BPaaS design that includes the integration of existing state-of-
the-art components as well as new ones which take the form of a business
and a syntactic matchmaker. The end result is an environment enabling
to transform domain-specific BPs into executable workflows which can
then be made deployable in the cloud so as to become real BPaaSes.

Keywords: BPaaS · Service · Design · Discovery · Selection
Alignment · Mediation

1 Introduction

Due to intense market competition, organisations can survive only if they offer
services that are either innovative or exhibit a better quality than their competi-
tors. However, by owning a limited infrastructure and continuously requiring to
improve the existing business processes (BPs) leads to reaching certain impass-
able limits. Moreover, the infrastructure maintenance, operation and manage-
ment costs can be quite prohibiting, especially for small or medium enterprises.

Fortunately, cloud computing can become the medium via which organisa-
tions can acquire cheap, commodity resources on-demand while also being able
to achieve certain benefits, including: outsourcing infrastructure management
with reduced cost, flexible resource management, and elasticity. Such benefits
can certainly enable improving and optimally controlling BP performance.

However, as cloud computing handles only the infrastructure level, an organ-
isation now faces the hard and yet unsolvable problem of aligning the business
with the IT level. Moreover, many organisations do not have the expertise and
know-how to use and combine the cloud services offered.

The above problems can be solved by combining BP management with cloud
computing to realise the BP as a service (BPaaS) paradigm to enable migrat-
ing and more optimally managing BPs in the Cloud [6,31,32]. However, such a
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 35–52, 2018.
https://doi.org/10.1007/978-3-319-79090-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_3&domain=pdf


36 K. Kritikos et al.

combination is not trivial as it leads to the following challenges which especially
concern the BP design lifecycle activity: (a) how to map a BP to a technical
workflow with a suitable automation level; (b) how to align business terms and
requirements with technical ones to drive the selection of the most suitable ser-
vices to be then integrated into the workflow; (c) how to deal with the service
incompatibility problem effectively to guarantee the correct execution of the
designed workflow. Such a problem relates to checking the syntactic compatibil-
ity of messages exchanged between two or more selected workflow services.

To realise the vision of BPaaS, the CloudSocket project (www.cloudsocket.
eu) delivers a platform that unifies together environments supporting different
BP lifecycle activities. This paper presents our contribution in form of a BPaaS
Design Environment able to deal successfully with all aforementioned challenges.
This translates to introducing an innovative architecture with suitable compo-
nents that support: smart and semantic service discovery at both business and
technical levels, optimal cross-level service selection, mapping between business
and technical requirements and mediation between the execution of two or more
services to achieve message-level compatibility. In result, the developed environ-
ment enables a BPaaS provider to transform the initial business functional and
non-functional requirements that match the necessities of potential BPaaS cus-
tomers into an executable workflow. That workflow can then become deployable
in the cloud by using other CloudSocket environments.

The BPaaS Design Environment was built by exploiting state-of-the-art as
well as two novel components. The first component, the business matchmaker,
enables to find services that satisfy the user functional and non-functional
requirements at the business level by following a novel questionnaire-based app-
roach. Such services are then filtered and selected by employing state-of-the-art
technical service matchmaking and selection components. Service selection relies
on the second novel component, the syntactic matchmaking one, able to infer the
message-based compatibility between two or more selected services and produce
a mapping specification. This specification can then be exploited by a service
mediation service to support the compatible message transformation between
services and thus guarantee the smooth operation of the BPaaS workflow in
which this mediation service is integrated.

This paper is structured as follows. Section 2 shortly analyses existing
research results, some of which are exploited in the production of the BPaaS
Design Environment. Section 3 analyses the environment’s main architecture by
also explaining the main functionality and role of its components. Sections 4 and
5 detail the architecture’s two main novel components, the business and syn-
tactic matchmakers. Section 6 introduces a use case to demonstrate the main
benefits of the proposed environment and to validate it. Finally, the last section
concludes the paper and draws directions for further research.

www.cloudsocket.eu
www.cloudsocket.eu


Towards Business-to-IT Alignment in the Cloud 37

2 Background

2.1 Business-to-IT Alignment

Business-to-IT alignment typically refers to the gap between business require-
ments and technical solutions [12]. Cloud offerings are technically described mak-
ing it hard for business people to properly assess the best fitting cloud solution
[33]. Thus, identifying suitable cloud solutions requires specifying requirements
for and capabilities of a service in both a business and IT language. To ensure
knowledge understandability and transparency, it is a common practice to rep-
resent knowledge in models [11,29]. Models abstract away from complex realities
and achieve precise modelling of the intended domain. In [13] we already adopted
a model-driven approach where an extension of BPMN 2.0 allows modeling both
BP requirements for business and workflows/cloud services in a technical lan-
guage. That approach includes translating the business to the technical language
to enable matching process requirements and workflow/cloud service capabili-
ties. Translation and matching are performed by semantically lifting models with
ontologies to make them machine-interpretable.

[2] defines Semantic Lifting as “the process of associating content items with
suitable semantic objects as metadata to turn unstructured content items into
semantic knowledge resources”. Semantic Lifting shifts the purpose of modelling
beyond transparency and communication [14]. The interpretable knowledge base
(ontology) allows reaching higher system automation levels based on models [13].
For example, an ontology-based early warning system assessing supply chain
risks was proposed in [8], while in [7] ontologies are combined with a case-
based reasoning approach to support workplace learning. Closer to our current
problem, [9] introduced the AML ontology for automatic identification of corre-
spondences between BP model activities. Similar BP matching approaches are
described in [1]. Such approaches are not sufficient for BP-to-workflow matching
as a BP is far less detailed than a workflow such that a BP activity is most likely
to refer to a whole workflow fragment. As such, due to this different degree of
detail between the two levels, such approaches suffer from inaccurate matching,
something not only addressed but also far improved by our approach.

Approach. We follow a model-driven which performs domain-specific conceptu-
alization (mapping to well-known benefits [10,17,25]) on two levels, where the
one targets BP users, while the other targets IT service experts. This allows
designing domain-specific models capturing suitable domain knowledge on both
levels. This approach builds upon the findings in [13] but adopts a different per-
spective on business-to-IT alignment in the Cloud. Namely, there is a shift from
language translation to the mapping of values between requirements and speci-
fications on both the business and IT levels, separately. Hence, the Business-IT
alignment paradigm is applied sequentially by further refining results from the
business to the IT level. As such, 3 matchmaking components are proposed: (a)
the business and (b) technical matchmakers enhanced with formal semantics for
machine-interpretation plus (c) the syntactic matchmaker. The combination of
these 3 components allows identifying the most suitable cloud services within
both business and technical terms that will eventually form a workflow.



38 K. Kritikos et al.

2.2 Technical Service Matchmaking

Technical service matchmaking involves functional and QoS matching. Func-
tional matching usually focuses on I/O-based matching [18,26] while QoS match-
ing takes the view of QoS as conformance [20] and employs different kinds of
techniques [21] to infer if the service’s solution space is included in that of the
request. While most work focuses on one aspect individually, some approaches
consider both aspects simultaneously [3,16]. However, they usually sequentially
combine the matching in both aspects and do not employ semantic techniques,
thus not exhibiting the right performance and accuracy level.

As such, our previous work [23] explored different ways the 2 matching types
can be jointly performed: (a) sequential combination; (b) parallel combination;
(c) subsumes-based combination. The experimental evaluation of these combina-
tions showed that the parallel one leads to the best possible results with respect
to performance, as matchmaking accuracy is perfect in all combinations.

Our approach exploits two aspect-specific matchmakers, a functional and a
non-functional. The functional is a state-of-the-art matchmaker developed in the
Alive project [4] which relies on the combination of I/O-based and IR-based
matching. It exploits a smart graph-based structure to dynamically tolerate
changes in domain ontologies (i.e., the ontologies via service I/O is annotated)
as well as supply almost constant-in-time query operations over the graph.

The unary matchmaker [21] follows a hybrid QoS service matching approach.
First, it aligns ontology-based service specifications based on their QoS terms.
Then, it performs service filtering in a step-wise manner by considering each QoS
term individually in each step. As unary constraints are assumed to be involved
in service offers and demands, the matchmaker employs smart structures to
support term-based filtering which results in ultra fast matching time.

2.3 Service Selection

Service selection work usually considers only one abstraction level by also
neglecting semantics, thus producing results of imperfect accuracy. Accuracy
is further reduced as some algorithms employ smart but non-optimal solving
techniques, like Genetic Algorithms to accelerate the service selection time.

As service selection for a BPaaS includes different abstraction levels, we have
developed a cross-level constraint-based algorithm [22] which exhibits the follow-
ing features: (a) handling of multiple optimisation objectives by employing the
Analytic Hierarchy Process (AHP) [27] and Simple Additive Weighting (SAW)
[15] techniques; (b) the capability to bridge the gap between the two levels (SaaS
and IaaS) via inserting functions that derive the QoS at the SaaS level based on
the capabilities selected at the IaaS level; (c) the addressing of overconstrained
requirements by employing smart utility functions that allow slightly violating
these requirements so as to produce at least one solution; (d) consideration of
dependencies between QoS parameters at the same level enabling a more accu-
rate evaluation of respective solutions; (e) the capability [19] to accelerate solving
time by fixing parts of the problem to certain partial solutions by relying on the
BPaaS execution history.



Towards Business-to-IT Alignment in the Cloud 39

State-of-the-Art Advancement. The proposed BPaaS Design Environment
advances the state-of-the-art by exhibiting an innovative combination of exist-
ing, like holistic technical service matchmaking, and new features. The innovative
business matchmaker follows a dynamic questionnaire-based approach enabling
business users to answer a minimum set of questions before the mapping of
the designed BP to a set of services, able to realise its functionality, can be
produced. Such an approach is more natural and user-intuitive as it employs
questions mapped to a natural language with terms drawn from the business
domain. It also supports producing a minimal set of services to be further fil-
tered and selected based on technical requirements such that the solution space
is significantly reduced and service discovery time accelerated.

The novel syntactic matchmaker enables producing a correct executable
workflow via the suitable integration of services at the technical level based
on their message compatibility. Such compatibility is guaranteed by generating
mapping specifications that are exploited by mediation tasks incorporated in
the generated workflow. Finally, our framework addresses all layers involved in a
BPaaS system along with their dependencies thus being able to produce a more
complete and optimal BPaaS design product.

3 Architecture

The creation of the BPaaS Design Environment was underpinned by the design
science research (DSR) methodology in [30]. First, the literature on Business-IT
alignment in the Cloud was screened. Then, CloudSocket created the settings to
contribute to the problem awareness: application scenarios were created in work-
shops involving both industrial and scientific experts. The results and insights
were useful to suggest the BPaaS Design Environment’s first draft which was
then finalised in a web-based solution through continuous development. Finally,
as shown in Sect. 6, the validation took place with respect to the most agreed
application scenario among the members of the CloudSocket consortium.

The BPaaS Design Environment follows a model-driven and semantics-aware
approach for business-to-IT alignment in the cloud which comprises 3 main trans-
formation steps: (a) BP-to-business-services; (b) business-services-to-technical-
services; (c) BP & technical-services-to-executable-workflow. The approach guar-
antees the produced solution’s technical feasibility by employing a two-step ser-
vice matchmaking process at both business and technical levels and a service
selection algorithm that is syntactic-compatibility-aware at the technical level.

To achieve its main goal, the environment exhibits an architecture, depicted
in Fig. 1, comprising 8 main components that are now analysed in detail. Some
components correspond directly to some of the aforementioned steps while others
play a supporting or orchestration role.

BPaaS Designer (BD). It represents the main point of interaction with the user
during BPaaS design. It enables specifying both domain-specific BPs and exe-
cutable workflows. It also guides users in providing suitable input to support the
BP-to-workflow alignment.



40 K. Kritikos et al.

Fig. 1. The architecture of the BPaaS Design Environment

Orchestrator (Orch). Orchestrates its underlying components to handle requests
issued by the BPaaS Designer.

Business Matchmaker (BM). Matches the cloud services registered in the Knowl-
edge Base based on business requirements derived from a questionnaire-based
approach explained in Sect. 4.

Technical Matchmaker (TM). It exploits technical state-of-the-art aspect-specific
matchmakers in a parallelised fashion according to the approach in [23].

Service Selector (SS). It [22] produces a concrete optimal solution for the service-
based workflow at hand by considering the user technical non-functional require-
ments while also attempting to maximise the message compatibility between
services by exploiting the next component.

Syntactic Matchmaker (SM). Called dynamically by the SS while solving the
service selection problem to find the message compatibility [24] between the
next and all previously selected services in each BPaaS workflow’s execution path
where such a service participates. When an incompatible solution is constructed,
SS can backtrack and check another one. To smartly deal with cases where the
same call is issued, e.g., due to deep backtracking, SM stores the call results to
immediately answer it. The mapping of the output parameters to the input ones
of the next service is also recorded to enable updating the BPaaS workflow via
a mediation service, as performed by the next component.

Workflow Updater (WU). Updates the BPaaS workflow by performing the follow-
ing actions for each workflow’s execution path: (a) replays the solution construc-
tion in each path to obtain the mapping of the current service in the path from
the SM; (b) introduces a mediation service within the workflow, immediately
before the current service, which takes as input the current output parameter
set and the mapping specification and produces as output the input parameters
of the current service.



Towards Business-to-IT Alignment in the Cloud 41

Knowledge Base (KB). Includes all necessary and sufficient information to sup-
port all reasoning/matching/selection tasks executed in the system.

4 Business Matchmaking

The Business Matchmaker allows specifying requirements in a more user-centric
approach than that in [13]. It relies on a context-adaptive questionnaire that
guides the user via a set of questions reflecting BP functional and non-functional
requirements. Follow-up questions are displayed based on the result of a prioriti-
sation algorithm that considers: (a) user preferences in terms of categories (e.g.,
Performance rather than Data Security); (b) information value (or entropy) of
semantic attributes reflecting cloud service specifications at the business level,
e.g., how distinguishing an attribute, such as monthly downtime, is for service
filtering. Namely, the higher the entropy value of an attribute, the higher its
service distinguishability degree, and thus the higher the assigned priority of the
related question. This approach leads to the least possible number of questions
being answered, thus reducing the business service matching time. The idea is
that the questionnaire can be applied on the whole BP first. If no service is found,
we then move down to groups of activities, until the level of single activities.

4.1 The Context-Adaptive Questionnaire

The Context-Adaptive Questionnaire relies on our BPaaS ontology [11]. Ques-
tions focus first on functional requirements and then on non-functional ones. The
questionnaire enables the user to specify functional requirements in two ways by:

– inserting an action and object from a predefined taxonomy in the BPaaS
ontology. This corresponds to the convention of BPMN to name activities by
a verb (i.e., action) and a noun (object) [28] whose combination provides the
“what-is-about” knowledge.

– inserting the most suitable category from APQC Process Classification
Framework.

Next, the user can choose one of the 5 non-functional (NF) categories: Data
Security, Payment, Performance, Service support, and Target Market.

The NF categories were derived from the Cloud Service Agreement Stan-
dardisation Guidelines [5], published by EC to standardize and streamline the
terminologies and understanding of cloud services. The NF categories were sub-
sequently discussed and validated within the CloudSocket consortium. In result,
a set of questions and sub-questions were derived out of them. For instance, the
Performance category includes questions like the following:

– What is your preferred monthly downtime in minutes?
Possible answer : 30 min

– Should the process be executed on a daily, weekly, monthly or yearly basis?
Possible answer : On a weekly basis



42 K. Kritikos et al.

Fig. 2. The object selection for the functional requirements posing

– What is your favorite response time level?
Possible answer : High, Medium or Low

– How many simultaneous users should the cloud service support?
Possible answer : at most 10

For each question, we have distinguished among 4 types of answers as: (1)
single-answer selection; (2) multi-answer selection; (3) search-insert; (4) value-
insert. Value- and search-insert require user input. While the former enables
inserting attribute values (e.g., the aforementioned downtime), the latter enables
crawling predefined values from the ontology and selecting the suitable one. For
instance, answers related to the first 3 functional requirement questions (Action,
Object and APQC category) are of search-insert type. Namely, users can insert
keywords for the BP they are looking for, and the ontology returns the con-
cepts matching these keywords. Figure 2 shows this functionality’s implementa-
tion result.

Each time a question is answered, semantic rules are applied to convert
implicit knowledge reflecting the business requirements into an explicit one. This
prepares the ground to identify matching cloud services by applying a semantic
query. For example, assume we have the following:
Specifications from the KB as follows:

– A cloud service with the execution constraint of 20 times per day.

Requirements from the questionnaire as follows:

• Should the process be executed on a daily, weekly, monthly or yearly basis?
Answer : At least on a weekly basis.

• How many times should the process be executed?
Answer : At least 10 times



Towards Business-to-IT Alignment in the Cloud 43

Running a process at least on a weekly basis implies that can also run on a daily
basis. The semantic rule, therefore, would infer the answer “On a daily basis”
and insert it in the KB. The semantic query then compares the derived fact with
the cloud service fact related to the execution constraint. In result, the cloud
service specification matches with the requirement.

4.2 Question Prioritisation Algorithm

The NFR questions follow a question prioritisation algorithm. This enables
identifying the matching cloud services by asking as few questions as possi-
ble. Answers to the questions, along with previous ones, are used to display the
follow-up question. The algorithm considers the following:

– Grouping among non-functional attributes. For instance, if the user selects to
answer one from availability and response time attributes of the Performance
category, the follow-up question will be on the other attribute in this category.

– Entropy expressing the variation degree in the values of each non-functional
attribute. Entropy of an attribute is “0” when every cloud service stored in
the KB contains the same attribute value, while “1” in the opposite case.

The entropy formula is expressed as follows:

Entropy (attri) = −
J∑

j=1

(pij · log2 (pij))

where J is the total number of attribute values and pij is the probability that
a certain attribute value valij of attribute attri appears in a certain cloud ser-
vice. As this probability can be regarded as independent and uniform across all
attribute values, pij can be expressed as: pij =

[CS]csvalik=valij

[CS] where the nomi-
nator denotes the number of cloud services that exhibit the respective attribute
value (csvalik denotes the value of attri for cloud service k) and the denominator
the number of all services.

The prioritisation algorithm’s signature and main logic is as follows.
Input.

– Already stated variables: attr, CS, val, csval.
– The set of non-functional categories C ={Data Security, Payment, Perfor-
mance, Service support, Target Market}.

– Set of tuples < attri, Ql > where Q is the set of questions and Ql is a certain
question where 1 ≤ l ≤ [Q]. So, each tuple maps 1 attribute to 1 question.

Output. The filtered set of cloud services CS that match with the content of the
questionnaire, i.e., questions and answers.
Business Logic.

1. IF the number of categories left is positive (|C| > 0), select a category cn,
ELSE exit.



44 K. Kritikos et al.

2. IF cn has a positive number of semantic attributes left, i.e.,
|attri s.t attri.cat = cn| > 0, THEN calculate the entropy of all the selected
category’s attributes, ELSE remove the current category cn from C and go
to (1).

3. Select attribute attri with highest entropy.
4. Display question Ql that is mapped with the attri.
5. Get user answer mapping to a value valij of attribute attri.
6. Filter services in CS which do not satisfy the condition: csvalik = valij .
7. Remove the semantic attribute attri from the category cn and go to (2).
8. Exit.

5 Syntactic Matchmaking

Business/technical matching cannot guarantee the message compatibility
between selected services in a BPaaS workflow. Such a compatibility is thus
a hard constraint in service selection for producing optimal, message-compatible
solutions that can be safely executed. As such, the TM was developed to derive
such compatibility and offer it as a function to SS.

The main idea is that the TM should first find which output messages of pre-
viously selected services match to which input messages of the currently selected
service (based on SS’s solution generation process) for each execution path in
the BPaaS workflow. Then, it should check for each message-to-message match
if the first message conveys less information than that required by the second
message. If this checking succeeds, no compatibility between the execution path’s
considered services exists. When all message pair matches are compatible, the
considered services are message-compatible.

Message Matching. The first message compatibility step can rely on existing
semantic service annotations to easily and rapidly discover matching message
pairs, as the messages involved in these pairs should map to semantically com-
patible concepts. However, even in the presence of such knowledge, message
matching is not trivial and follows a two-step process involving semantic & syn-
tactic message matching. This process is exemplified via the example of a certain
service pair involving service S2 with 2 input parameters mapped to ontology
concepts A & B and service S1 with 2 output parameters mapped to ontology
concepts C & D.

At the semantic level, a bipartite matching approach is followed checking
whether every parameter of the current service has a mapping to one parameter
of the previously selected services (or the initial user input) in a certain execution
path and attempting to discover a solution with the lowest overall distance.
As such, we first define a local matching degree between two parameters to
be the distance between the parameters’ annotation concepts in the ontology
subsumption hierarchy, provided that the second parameter’s concept subsumes
the first parameter’s one. If the latter does not hold, the distance is infinite.
This guarantees that no information loss occurs as in the opposite case, the
more concrete concept in the S2 input will require specifying additional pieces



Towards Business-to-IT Alignment in the Cloud 45

of information than those exhibited in the concept in the S1 output. A mapping
solution’s overall distance is then the sum of the distances of the matches found.
As such, the matching problem can be defined as follows:

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
[J] ·

(∑j∈J
i∈I

(
dist(Mi,Nj)
maxPSize · xij

)
+

∑
j∈J

(
1 − ∑

i∈I xij

))

∑
j∈J xij ≤ 1∑
i∈I xij ≤ 1

i = [1, . . . , [I]], j = [1, . . . , [J ]]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where I and J are the sets of input and output parameters, respectively, xij

is a decision variable whether the output parameter i matches the input one j,
dist (Mi, Nj) is the distance between annotation concepts Mi and Nj of the two
parameters pair while maxPSize represents the maximum subsumption path
length in the respective domain ontology used.

Suppose that the following relations hold in the running example: A sub-
sumes B, C & B, C subsume D. In this respect, the best possible matching
is {A → C,B → D} with overall distance of 2. The other matching solution
{A → D,B → C} is not selected as the local distance between B & C is infinite
so the overall distance is also infinite.

The algorithm then proceeds at the syntactic level by considering only those
message pairs with a finite local degree of match. For each message pair filtered,
we note the information items for the output parameter and those of the input
parameter and then we check whether the former include the latter. As the infor-
mation items have been already matched to ontology concepts, we perform this
checking by replacing the information items with the attributes of the ontology
concept. Even if the concepts matched are not identical, as they are related with
a subsumption relation, they will have common attributes. So, the problem then
is mapped to checking whether the concept attributes of the output parameter
form a superset of those of the input parameter.

Message types might also convey information not included in an ontology
requiring to perform a different matching kind for them. This matching’s logic
is similar to that for the semantic level. In particular, bipartite matching is
performed with the exception of how the distance is calculated at the local level.
At that level, we consider both how similar the field names are and how close
are their types. Name similarity can rely on well-known string distance measures
(e.g., Levenshtein) while type similarity relies on the approach in [24] mapping
to the compatibility level between types. The local overall distance would then
equal the weighted sum of the two different distances.

If all input parameter parts are matched, the compared messages are
semantically compatible. Otherwise, the compared services are semantically
incompatible.

Let us continue the running example to explain syntactic matchmaking.
Suppose that A & C were found equivalent. C maps to message type MT1

containing 4 information pieces MT11, MT12, MT13 and MT14. A maps to
message type MT2 containing 3 information pieces MT21, MT22, and MT23.



46 K. Kritikos et al.

Fig. 3. The Send Invoice business process in BPMN 2.0

Based on matching message types to ontology concepts, we have that MT11

and MT21 map to A.A1 while MT12 and MT22 map to A.A2. Thus, the infor-
mation pieces are transformed into {A.A1, A.A2,MT13,MT14} for first mes-
sage type and {A.A1, A.A2,MT23} for the second. For those pieces not map-
ping to ontology attributes, we solve a bipartite matching problem again. Sup-
pose that dist (MT13,MT23) = 0.8 and dist (MT14,MT23) = 0.2. Then, the
sole mapping to be selected will be {MT13 → MT23}. If we replace MT23

with MT13, we then need to check whether {A.A1, A.A2,MT13} is subset of
{A.A1, A.A2,MT13,MT14} which holds.

6 Validation

Our approach was validated based on a use case developed by CloudSocket’s
industrial partners. We focused on a very common BPs among SMEs - the Send
Invoice one. This BP is modelled in BPMN, see Fig. 3, via our BPaaS Design
environment. It starts with the “Manage Customer Relationship” activity; next
an exclusive gateway splits the BP flow between either creating a new invoice or
updating an existing one. Then, invoice completeness is checked, and finally the
invoice is sent. Subsequently, starting with this BPMN process, we acquaint the
reader with a prerequisite plus the main steps involved in our approach.

Prerequisite Step: Service Profile Registration. The following services were
inserted in the KB as instances of CloudService class:

– YMENS, Zoho and Sugar CRM were inserted as CRM systems which were
annotated with the action Manage, the object Customer and the APQC cat-
egory 3.5.2.4 Manage Customer Relationship

– Mathema Document Generator, Open Source Billing, Simple Invoice and
InvoiceNinja as invoicing systems annotated with action Generate, object
Invoice and APQC category 9.2.2.2 Generate Customer Billing Data

– Gmail, Ninja email and Mailjet were inserted as e-mail systems which were
annotated with the action Manage, the object Invoice and the APQC category
9.2.2.3 Transmitting Billing Data to Customers



Towards Business-to-IT Alignment in the Cloud 47

Table 1 shows a part of the non-functional profiles of the considered services.

Table 1. Functional requirements for each group and single activity

Service Monthly
downtime

Response
time level

File type No of
simul.
users

Execution
constraint

YMENS CRM 4 min High Office doc,
PDF, audio,
video

500 None

Zoho CRM 4 min High Office doc,
PDF, audio,
video

500 None

Sugar CRM 10 min Medium Office doc,
PDF, audio,
video

200 500
(monthly
basis)

InvoiceNinja 4 min High Office doc,
PDF, audio,
video

600 None

Ninja Email 4 min High Office doc,
PDF, audio,
video

400 None

Simple Invoices 10 min Medium Office doc,
PDF, audio,
video

300 None

Mailjet 4 min High Office doc,
PDF, audio,
video

100 1K
(monthly
basis)

Open Source Billing 4 min Medium Office doc,
PDF, audio,
video

200 None

Gmail 4 min High Office doc,
PDF, audio,
video

100 None

First Main Step: Business Matchmaking. BM was used to identify the most
suitable cloud services. As a first step, the questionnaire was applied on the
whole BP (see starting notebook at Fig. 4).

We specified functional requirements in the first 3 questions - object Send,
action Invoice and APQC category 9.2.2 Invoice Customer - and none of the
cloud services matched.

Next, the questionnaire was applied on two single activities (i.e., Manage
Customer Relationship and Send Invoice) as well as on a group of activities (i.e.,
Create Invoice, Update Invoice and Check Invoice Completeness).



48 K. Kritikos et al.

Fig. 4. The starting notebook for the whole process

Table 2 shows the functional requirements for each activity/group. In the
first case, after specifying action, object and APQC category, the questionnaire
showed the 3 matching cloud services: YMENS, Zoho and SugarCRM. In the
4th question, we chose the Performance category, and the question prioritisation
algorithm kicked in. The question regarding the number of simultaneous users
was asked (attribute with highest entropy) and a value of 500 was entered. This
filtered out SugarCRM as it has the capability of max 200 simultaneous users.

Table 2. Functional requirements for each group and single activity

BPMN activity Action Object APQC category

Manage Customer Relationship
(Single activity)

Manage Customer
Relationship

3.5.2.4 Manage
Customer
Relationship

Send Invoice (Single activity) Send Invoice 9.2.2.3 Transmit
Billing Data to
Customers

Create New Invoice, Update
Invoice, Check Invoice
Completeness (Group of activities)

Generate Invoice 9.2.2.2 Generate
Customer Billing
Data

Similarly, we applied the questionnaire on the designated group of activities.
The matching services were InvoiceNinja and Open Source Billing, see Fig. 5a.

Finally, we applied the questionnaire on the last BP activity: Send Invoice.
The matching cloud services were Ninja E-mail and Mailjet (see Fig. 5b).

Second Main Step: Technical Matchmaking & Selection. As the final result
maps to two services per each activity (group), we now proceed with the tech-
nical matching and selection. Suppose that the user provides the next global



Towards Business-to-IT Alignment in the Cloud 49

(a) The selected invoice management
services

(b) The selected email services

Fig. 5. The selected services for last two activity groups

requirements for the whole process: cost < 100 euros per month, cycletime < 1
min and V PM < 16 (#vulnerabilities per month). Further, suppose that the
user imposes for the Manage Customer Relationship activity the following con-
straints: responsetime < 30 s and V PM < 10. Finally, Table 3 depicts the
non-functional profiles of the remaining services.

Table 3. The technical non-functional offerings of the 6 services

Service Cost Response time VPM

ZOHO CRM 30 euros 35 s 10

YMENS CRM 35 euros 20 s 05

Mailjet 25 euros 10 s 02

Ninja Email 10 euros 15 s 03

Open Source Billing 35 euros 25 s 08

InvoiceNinja 45 euros 10 s 05

Technical non-functional matching would then filter Zoho CRM as it does
not conform to the local constraints posed for the CRM activity. This leads to
selecting over 4 solutions as we have one candidate for the first (group) of activ-
ities and 2 candidates for the rest two activity groups. However, while running
service selection, it is detected that the Ninja Email and Open Source Billing are
incompatible, which leaves us with 3 solutions. Moreover, the solution mapping
to selecting YMENS, Open Source Billing and Ninja Email has VPM equal to
16 violating the respective global constraint. So, in the end, we need to select
between 2 solutions which are depicted in Table 4.

Table 4. The final ordered solutions produced

Solution Cost Cycle time VPM Utility

YMENS + InvoiceNinja + Ninja Email 90 euros 45 s 13 0.144

YMENS + Open Source Billing + Mailjet 95 euros 50 s 15 0.099



50 K. Kritikos et al.

As the broker requires to optimise all non-functional terms (cost, cycle time
and VPM), it gives equal preference over them. By also considering that the
activities are sequentially executed in the BPaaS workflow, the final result would
map to selecting services YMENS, InvoiceNinja, and Ninja Email. While there
is perfect syntactic compatibility between InvoiceNinja and Ninja Email as they
are offered by the same company, in the case of YMENS CRM and InvoiceNinja
the message types are compatible but still need to be aligned (e.g., attributes
accountid and id number mapping to the same attribute id of concept Client). As
such, the MS service was included between these 2 services resulting in a workflow
with 4 services sequentially executed (YMENS CRM → MS → InvoiceNinja →
Ninja Email).

7 Conclusions and Future Work

This paper has introduced a novel architecture for the design of BPaaS products
able to effectively deal with the business-to-IT alignment problem in order to
map an initial domain-specific BP into an executable BPaaS workflow. Such an
architecture has been carefully designed and implemented to include suitable
components which focus on different parts of the business-to-IT alignment prob-
lem, including business and technical matchmakers, a service selection as well as
an automatic workflow update component to enable the effective addressing of
the message compatibility problem in service-based workflow execution.

Our future work will focus on more advanced research challenges which
include: (a) the automatic production of a more complete and more close to
production workflow via the incorporation of different kinds of non-service tasks
(see previous section); (b) the automatic population of the KB; (c) the coverage
of additional cases in business-to-technical-requirement alignment.

Acknowledgments. This research has received funding from the European Commu-
nity’s Framework Programme for Research and Innovation HORIZON 2020 (ICT-07-
2014) under grant agreement number 644690 (CloudSocket).

References

1. Antunes, G., Bakhshandeh, M., Borbinha, J., Cardoso, J., Dadashnia, S.,
Francescomarino, C.D., Dragoni, M., Fettke, P., Gal, A., Ghidini, C., Hake, P.,
Khiat, A., Klinkmüller, C., Kuss, E., Leopold, H., Loos, P., Meilicke, C., Niesen,
T., Pesquita, C., Péus, T., Schoknecht, A., Sheetrit, E., Sonntag, A., Stucken-
schmidt, H., Thaler, T., Weber, I., Weidlich, M.: The process model matching
contest 2015. In: Lecture Notes in Informatics (2015)

2. Azzini, A., Braghin, C., Damiani, E., Zavatarelli, F.: Using Semantic Lifting for
Improving Process Mining: A Data Loss Prevention System Case Study (2013)

3. Benaboud, R., Maamri, R., Sahnoun, Z.: Agents and owl-s based semantic web
service discovery with user preference support. Int. J. Web Semant. Technol. 4(2),
57–75 (2013)



Towards Business-to-IT Alignment in the Cloud 51

4. Cliffe, O., Andreou, D.: Service Matchmaking Framework. Public Deliverable
D5.2a, Alive EU Project Consortium, 10 September 2009. http://www.ist-alive.
eu/index.php?option=com docman&task=doc download&gid=28&Itemid=49

5. Cloud Select Industry Group (C-SIG): Cloud Service Level Agreement Standard-
ization Guidelines. Technical report, EC (2014)

6. Duipmans, E.: Business Process Management in the cloud: Business Process as a
Service (BPaaS). Technical report (2012)

7. Emmenegger, S., Hinkelmann, K., Laurenzi, E., Martin, A., Thönssen, B.,
Witschel, H.F., Zhang, C.: An ontology-based and case-based reasoning supported
workplace learning approach. In: Hammoudi, S., Pires, L.F., Selic, B., Desfray, P.
(eds.) MODELSWARD 2016. CCIS, vol. 692, pp. 333–354. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66302-9 17

8. Emmenegger, S., Hinkelmann, K., Laurenzi, E., Thönssen, B.: Towards a procedure
for assessing supply chain risks using semantic technologies. In: Fred, A., Dietz,
J.L.G., Liu, K., Filipe, J. (eds.) IC3K 2012. CCIS, vol. 415, pp. 393–409. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-54105-6 26

9. Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: AgreementMakerLight
Results for OAEI 2013. http://disi.unitn.it/∼p2p/OM-2013/oaei13 paper1.pdf

10. Frank, U.: Domain-specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J.
(eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36654-3 6

11. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van der Merwe, A.,
Woitsch, R.: A new paradigm for the continuous alignment of business and IT:
Combining enterprise architecture modelling and enterprise ontology. Comput. Ind.
79, 77–86 (2016)

12. Hinkelmann, K., Kritikos, K., Kurjakovic, S., Lammel, B., Woitsch, R.: A modelling
environment for business process as a service. In: Krogstie, J., Mouratidis, H., Su, J.
(eds.) CAiSE 2016. LNBIP, vol. 249, pp. 181–192. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39564-7 18

13. Hinkelmann, K., Laurenzi, E., Lammel, B., Kurjakovic, S., Woitsch, R.: A
semantically-enhanced modelling environment for business process as a service.
In: ES, pp. 143–152. IEEE (2016)

14. Hrgovcic, V., Karagiannis, D., Woitsch, R.: Conceptual modeling of the organ-
isational aspects for distributed applications: the semantic lifting approach. In:
COMPSAC Workshops, pp. 145–150. IEEE (2013)

15. Hwang, C., Yoon, K.: Multiple criteria decision making. In: Lecture Notes in
Economics and Mathematical Systems (1981). https://doi.org/10.1007/978-3-642-
48318-9

16. Jiang, S., Aagesen, F.A.: An approach to integrated semantic service discovery.
In: Gäıti, D., Pujolle, G., Al-Shaer, E., Calvert, K., Dobson, S., Leduc, G., Mar-
tikainen, O. (eds.) AN 2006. LNCS, vol. 4195, pp. 159–171. Springer, Heidelberg
(2006). https://doi.org/10.1007/11880905 14

17. Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Funda-
mental conceptual modeling languages in OMiLAB. In: Karagiannis, D., Mayr, H.,
Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 3–30. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39417-6 1

18. Klusch, M.: Semantic web service coordination. In: Schumacher M., Schuldt H.,
Helin H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web,
pp. 59–104 (2008). https://doi.org/10.1007/978-3-7643-8575-0 4

http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49
http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49
https://doi.org/10.1007/978-3-319-66302-9_17
https://doi.org/10.1007/978-3-642-54105-6_26
http://disi.unitn.it/~p2p/OM-2013/oaei13_paper1.pdf
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-319-39564-7_18
https://doi.org/10.1007/978-3-319-39564-7_18
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1007/11880905_14
https://doi.org/10.1007/978-3-319-39417-6_1
https://doi.org/10.1007/978-3-7643-8575-0_4


52 K. Kritikos et al.

19. Kritikos, K., Magoutis, K., Plexousakis, D.: Towards knowledge-based assisted IaaS
selection. In: CloudCom, pp. 431–439. IEEE Computer Society (2016)

20. Kritikos, K., Plexousakis, D.: Requirements for QoS-based web service description
and discovery. IEEE Trans. Serv. Comput. 2(4), 320–337 (2009)

21. Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service
matchmaking techniques. IEEE Trans. Serv. Comput. 7(4), 614–627 (2014)

22. Kritikos, K., Plexousakis, D.: Multi-cloud application design through cloud service
composition. In: CLOUD, pp. 686–693. IEEE, New York (2015)

23. Kritikos, K., Plexousakis, D.: Towards combined functional and non-functional
semantic service discovery. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski,
I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 102–117. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44482-6 7

24. Kritikos, K., Plexousakis, D., Paternò, F.: Task model-driven realization of inter-
active application functionality through services. TiiS 3(4), 25 (2014)

25. Laurenzi, E., Hinkelmann, K., Reimer, U., van der Merwe, A., Sibold, P., Endl,
R.: DSML4PTM - A domain-specific modelling language for patient transferal
management. In: ICEIS 2017, Porto, Portugal, pp. 520–531 (2017)

26. Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation.
IEEE Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)

27. Saati, T.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
28. Silver, B.: BPMN Method and Style, 2nd edn. Cody-Cassidy Press, Aptos (2011)
29. Uschold, M., King, M., Morale, S., Zorgios, Y.: The enterprise ontology. Knowl.

Eng. Rev. 13(01), 31–89 (1998)
30. Vaishnavi, V., Kuechler, B.: Design Science Research in Information Systems

(2004). http://desrist.org/desrist/content/design-science-research-in-information-
systems.pdf

31. Watfa, M.K., Najjar, N.A.L., Cheikha, J., Buali, N.: A new framework for cloud
business process management. In: Zhang, Y., Peng, L., Youn, C.-H. (eds.) Cloud-
Comp 2015. LNICST, vol. 167, pp. 83–92. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-38904-2 9

32. Whibley, P.: BPM in the Cloud - Transforming the Business Case for Process
Improvement. Technical report (2012)

33. Woitsch, R., Utz, W.: Business Processes as a Service (BPaaS): A Model-Based
Approach to align Business with Cloud offerings (2015). https://zenodo.org/
record/35583#.WbDscNhLfmE

https://doi.org/10.1007/978-3-319-44482-6_7
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf
https://doi.org/10.1007/978-3-319-38904-2_9
https://doi.org/10.1007/978-3-319-38904-2_9
https://zenodo.org/record/35583#.WbDscNhLfmE
https://zenodo.org/record/35583#.WbDscNhLfmE

	Towards Business-to-IT Alignment in the Cloud
	1 Introduction
	2 Background
	2.1 Business-to-IT Alignment
	2.2 Technical Service Matchmaking
	2.3 Service Selection

	3 Architecture
	4 Business Matchmaking
	4.1 The Context-Adaptive Questionnaire
	4.2 Question Prioritisation Algorithm

	5 Syntactic Matchmaking
	6 Validation
	7 Conclusions and Future Work
	References




