
CEP-Based SLO Evaluation

Kyriakos Kritikos1 , Chrysostomos Zeginis1(B), Andreas Paravoliasis2,
and Dimitris Plexousakis1

1 Institute of Computer Science - FORTH, Heraklion, Greece
{kritikos,zegchris,dp}@ics.forth.gr

2 Computer Science Department, University of Crete, Heraklion, Greece
csd3031@csd.uoc.gr

Abstract. Modern service-based applications (SBAs) operate in highly
dynamic environments where both underlying resources and the appli-
cation demand can be constantly changing which external SBA com-
ponents might fail. Thus, they need to be rapidly modified to address
such changes. Such a rapid updating should be performed across multiple
levels to better deal, in an orchestrated and globally-consistent manner,
with the current problematic situation. First of all, this means that a fast
and scalable event generation and detection mechanism should exist to
rapidly trigger the adaptation workflow to be performed. Such a mecha-
nism needs to handle all kinds of events occurring at different abstraction
levels and to compose them so as to detect more advanced situations. To
this end, this paper introduces a new complex event processing frame-
work able to realise the respective features mentioned (processing speed,
scalability) and have the flexibility to capture and sense any kind of event
or event combination occurring in the SBA system. Such a framework
is wrapped in the form of a REST service enabling to manage the event
patterns that need to be rapidly detected. It is also well connected to
other main components of the SBA management system, via a publish-
subscribe mechanism, including monitoring and the adaptation engines.

Keywords: Complex event processing · Event pattern · Detection
Service

1 Introduction

Due to tough competition, organisations can survive if they can improve their
services to exhibit better service levels with less cost. Such organisations need to
also possess a smart infrastructure and a dedicated devops team to appropriately
re-configure the services offered as well as manually intervene in unanticipated,
problematic situations. As such, a lot of effort is spent in maintaining such an
infrastructure while an increasing management and operational cost also incurs.

Fortunately, the advent of cloud computing has revolutionised the way
resource management is performed. Nowadays, organisations can outsource their
infrastructure management to cloud providers that promise to offer infinite,

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 20–34, 2018.
https://doi.org/10.1007/978-3-319-79090-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_2&domain=pdf
http://orcid.org/0000-0001-9633-1610


CEP-Based SLO Evaluation 21

cheap commodity resources on an on-demand basis. Due to flexible resource
management and the capability to scale a cloud-based system, organisations
can now optimise their services at the infrastructure level. However, still effort is
needed at higher-levels of abstractions. In particular, external SaaS services need
to be dynamically selected to realise part of the required functionality while the
whole system needs to be adapted.

In the literature, it has been advocated [11] that dynamic SBA adaptation
should be performed in a cross-layer manner by also putting in place, as a pre-
requisite, a suitable monitoring framework. Cross-layer adaptation is needed for
various reasons. First, as the service system itself includes multiple levels that
must be appropriately controlled. Second, as the individual adaptation at one
level can influence, impact or even negate the adaptation results at adjacent
levels, leading to a vicious re-adaptation cycle. Cross-layer monitoring is also
needed to propagate and aggregate up to higher-levels measurements produced
in lower levels so as to cover measurability gaps.

As the glue between monitoring and adaptation, there is a need for a rapid
and scalable Service Level Objective (SLO) evaluation framework able to trans-
form measurements to events and subsequently detect event patterns that can
lead to performing adaptation actions in the context of adaptation rules. Such
a framework should also exhibit suitable accuracy levels by correctly correlating
the events occurring based on their metrics and measured objects. It should also
be able to detect and correlate events which should map to both the type and
instance level in the managed SBA system.

In this work, such a framework has been carefully designed and realised, by
conforming to all the aforementioned requirements. In particular, the framework
architecture was initially designed by considering principles, such as service-
orientation, and by carefully decoupling framework parts subject to scaling.
Based on this architecture and the appropriate selection of the right, existing
components and tools, a respective framework was then implemented and inte-
grated in our existing SBA monitoring and adaptation framework [21]. Such
an integration is loosely coupled as our SLO evaluation framework can be in
principle connected to any monitoring and adaptation engine.

The developed framework relies on the CAMEL domain-specific language
(DSL), able to capture various aspects in the cloud-based application lifecycle
management, including the monitoring and adaptation ones. In particular, this
DSL is expressive enough to specify complex event patterns, where each event
maps to a metric condition, and associate them with respective sets of adapta-
tion actions that must be triggered to adapt the SBA in a cross-layer manner.
CAMEL also covers well the monitoring aspect via its capability to specify how
composite metrics are aggregated and to associate metrics with the (e.g., service)
component that they measure. As it will be shown, such information is essential
to have the ability to correlate events in the context of event pattern detection.

The proposed framework relies on the Esper Complex Event Processing
(CEP) engine. This engine is quite scalable with the capability to process thou-
sands or even millions of events. Due to the way our architecture has been



22 K. Kritikos et al.

designed, this engine can be scaled when its processing limits are reached,
enabling our framework to really scale at those parts where most of the load
is directed.

The rest of the paper is structured as follows. The next section provides a
use case scenario which is used as a running example across the whole paper,
while Sect. 3 reviews the related work. Section 4 provides background informa-
tion necessary for the comprehension of this paper contribution. Section 5 anal-
yses the proposed framework architecture and supplies some implementation
details. Section 6 explains the way the event pattern specification is generated
by accounting also on how the events of the pattern should be correlated. Finally,
the last section concludes the paper and draws directions for further research.

2 Use Case

The use case, which is used as a running example across the paper, has been
drawn from the CloudSocket project1 which deals with the management of Busi-
ness Processes (BPs) in the Cloud. This use case concerns the development of a
service-based BP as a service (BPaaS), named as “SendInvoice”, which offers the
functionality of invoice generation and sending. This BPaaS maps to a support-
ing BP which can really provide appropriate automation level within a small or
medium-sized organisation with respect to the management of invoicing. In this
respect, it makes sense to develop and offer this BP in the cloud as the demand
for this BP would be quite high.

The “SendInvoice” BPaaS exploits two main services: (a) an external SaaS
dedicated to the customer relationship management (CRM) named as YMENS
CRM; (b) an internal component for invoice management called “Invoice Ninja”
which has been purchased and deployed in the Cloud in an Amazon EC2 VM
named as “m1.medium”. These two services are then combined into a technical
workflow which is deployed in the cloud and includes tasks that map to certain
methods/functionalities of these services.

The topology of the initial deployment of the “SendInvoice” BPaaS in the
Cloud, as specified also in CAMEL, is depicted in Fig. 1 where both the type
and instance levels are shown. As it can be observed, only one instance of the
“InvoiceNinja” (software) component, named as “InvoiceNinja inst1” has been
deployed in one instance of the “m1.medium” VM named as “m1.medium inst1”.

Suppose, now, that the organisation offering the “SendInvoice” BPaaS, i.e.,
a Cloud Broker, needs to control its execution in order to sustain a suitable
service level that has been agreed with any of its customers in the context of an
SLA. As the set of customers can grow, the Cloud Broker needs to control the
amount of resources dedicated to “Invoice Ninja” as well as have the ability to
replace the CRM service when its service level is not any more acceptable. To this
end, it specifies the following set of adaptation rules (specified in CAMEL but
abstracted away due to space limitation reasons) which scale out “Invoice Ninja”

1 www.cloudsocket.eu.

http://www.cloudsocket.eu


CEP-Based SLO Evaluation 23

Fig. 1. The topology of the “SendInvoice” BPaaS.

or replace “YMENS CRM” with another SaaS. These rules are then given as
input to the BPaaS Execution Environment of the CloudSocket platform which
takes care of performing the respective adaptation actions required. The CEP-
based SLO Evaluation framework proposed can be part of this environment by
replacing an equivalent component which currently supports only adaptation at
the IaaS level (mostly scaling actions).

R1 : raw cpu (m1.medium) > 80% ∧ raw mem (m1.medium) > 90% ⇒ scale − out (IN)

R2 : mean rt (Y C) > 20 ∧ mean avail (Y C) < 99.99% ⇒ replace (Y C)

R3 : mean cpu (m1.medium) > 70% ∧ mean rt (IN) > 20 ⇒ scale − out (IN)

where raw cpu & raw mem are the Raw CPU and Raw Memory Utilisation met-
rics, mean rt, mean cpu and mean avail are the MEAN Response Time, CPU
Utilisation and Availability metrics while IN represents the “Invoice Ninja”
component and Y C the “YMENS CRM” component.

Rules R1 & R3 focus on scaling out the “Invoice Ninja” component. The first
rule attempts to immediately scale this component when one of its instances is
severely overloaded. On the other hand, the third rule focuses on scaling out
this component when its global status across all of its instances seems to be
overloaded.

Rule R2 attempts to replace the “YMENS CRM” external SaaS when both its
mean response time is more than the threshold posed and its availability drops
under a certain level. The replacement service is not specified as the system
should dynamically find its replacement according to the current situation.

The whole specification of the use case in CAMEL, including the topol-
ogy and the adaptation model of the “SendInvoice” BPaaS, can be found at:
https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?
usp=sharing.

https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?usp=sharing
https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?usp=sharing


24 K. Kritikos et al.

3 Related Work

Various approaches have been proposed in complex event processing and event
pattern detection. Most rely on CEP engines that detect complex events contin-
uously and build correlations and relationships between them, such as causality
and timing ones. The detection of complex patterns is based on various tech-
niques applied either over event streams [18,19] or in an offline [9,13] manner.

Statistical event detection approaches mainly exploit a user-defined minimum
frequency or support (minsup). The springboard of all these approaches is the
Apriori algorithm [1]. This algorithm produces the set of all significant associa-
tion rules (rules relating a set of variables) between items in a large transactions
database with a minsup. In [16], the authors introduce a method for discovering
frequent event patterns, as well as their spatial and temporal properties in sen-
sor networks, exploiting data mining techniques. Provided that events are put
into a spatial and temporal context, the authors correlate certain event types
on a sensor node with context events in a confined neighborhood in the recent
past. Thus, a pattern of events is discovered whenever this pattern’s frequency
surpasses a minsup. In [14], the authors propose the Lossy Counting widely used
algorithm. This is an one-pass algorithm that computes approximate frequency
counts of elements in a data stream and involves grouping the row items into
blocks or chunks and counting within each chunk.

Temporal event processing approaches exploit the temporal relations among
an input stream’s events. Such approaches can be very useful for deriving implicit
information for the temporal ordering of raw data and predicting the future
behavior of the monitored application. In [3] the authors introduce a formal
framework for expressing data mining tasks involving time granularities, as well
as algorithms for performing these tasks. Time constraints are injected into the
system to bound the distance between an event pair in terms of time granularity.
For instance, event e2 must happen within two minutes after the occurrence of
event e1 so as to consider e1, e2 an event pattern. In [15] a temporal data mining
approach is presented for data that cannot fit in memory or are processed at a
faster rate than the generation one. The proposed sliding window model slides
forward in hops of batches, while only a single batch is available for processing.

Moreover, logic-based approaches exploit inferencing to discover patterns
defining respective association rules. In [17] a pattern discovery approach is
proposed mapping logical equivalences based on propositional logic. In partic-
ular, a rule mining framework is introduced, generating coherent application
domain independent rules for a given dataset that do not require setting an
arbitrary minsup. The logic-based approach in [2] proposes an event calculus
(EC) dialect, called RTEC, for efficient run-time recognition that is scalable to
large data streams and exploits main EC predicates to discover specific activi-
ties. In our previous work [20], we have introduced a logic-based algorithm for
discovering valid event patterns causing specific SLO violations. These event
patterns interrelate events produced during the SBA’s execution and can be
further exploited to enrich the adaptation rules defined by experts. This paper



CEP-Based SLO Evaluation 25

goes a step further introducing a scalable and high-performance complex event
processing framework that can realise and extend the event pattern detection
feature.

Finally, other approaches also consider Business Process Management (BPM)
when dealing with SLO evaluation. For instance, [6,10] propose solutions (mainly
scaling actions) for the optimization of Business Processes that are executed
on virtualized environments. A similar approach is proposed in [8], where the
authors apply data mining techniques to predict QoS and thus identify the cor-
relation between the design and provisioning alternatives.

4 Background

4.1 Esper

Esper2 is a stream-oriented CEP engine that provides the SQL-like and rich
Event Processing Language (EPL). EPL enables expressing complex (event)
matching conditions that include temporal windows, joining of different event
streams, as well as filtering, aggregation, sorting and pattern detection. The
proposed framework exploits it for the event pattern detection.

4.2 CAMEL

CAMEL is a multi-DSL, developed in the context of the PaaSage3 project to
deal with the specification of multiple aspects in the multi-cloud applications
lifecycle. It integrates already existing languages, like CloudML [7], as well of new
languages developed with that project, like the Scalability Rule Language (SRL)
[12]. The aspects covered by CAMEL mainly include: deployment, requirement,
metric, scalability, provider and organisation aspects.

This paper focuses mainly on the metric and scalability aspects covered by
the SRL sub-DSL of CAMEL. The metric package attempts to cover all measure-
ment details that need to be specified for a non-functional metric, like formulas,
functions, units of measurement plus measurement schedules and windows. This
package is also able to specify conditions on metrics that can be exploited to
specify SLOs as well as non-functional events in scalability rules.

The scalability aspect is covered via specifying scalability rules that map
single events or event patterns to one or more scaling actions. Scaling actions
can be either horizontal or vertical. Horizontal scaling actions include scale-out
and scale-in actions while vertical actions include scale-up and scale-down.

The conceptualisation of events and event patterns is depicted in Fig. 2.
Events can be single or composite. Single events can be further distinguished
in functional and non-functional. Functional events map to a certain functional
fault, like an application component failure. Non-functional events are associated

2 http://www.espertech.com/esper/.
3 https://paasage.ercim.eu/.

http://www.espertech.com/esper/
https://paasage.ercim.eu/


26 K. Kritikos et al.

Fig. 2. The event pattern part of the SRL meta-model.

to a metric condition violation. A composite event maps to a logical or time-
based combination of one or more events in the form of an event pattern. As such,
such a combination is associated with respective logical and time-based opera-
tors. Both binary and unary operators can be defined which leads to producing
unary and binary event patterns, respectively. Logical operators include AND,
OR, NOT and XOR. Time-based operators have been inspired by Esper’s EPL
and include many of the operators defined in that language (e.g., REPEAT).

As an event pattern is also a kind of event, patterns can be recursively defined.
This means that, for example, when applying a binary logical operator (e.g.,
AND) over a certain binary event pattern, the first event could be single and
the second could be another event pattern. For instance, suppose that the event
pattern EP1: A ∧ (B ∨ C) must be defined. To specify EP1, we need to define
that the first event is A, the second event maps to the event pattern EP2 and
that the logical operator applied is ∧. The second event pattern EP2 would then
be specified as the application of the ∨ operator over two events, B and C.

As another example, consider the case of adaptation rules R1 & R3 which
have the same consequent (i.e., adaptation action). In order to reduce the number



CEP-Based SLO Evaluation 27

of rules that need to be checked and triggered by the system, these two rules
could be combined into one. In that case and by considering that the name of
each rule could also be the name of the respective event to be defined, then a
more composite rule R4 would be constructed which would map to the complex
event pattern (R1 ∨ R3).

Via the recursive definition of events, more complex and advanced situations
can be captured in respective rules. This should not stop to the case of scalability
rules, but could cover any adaptation rule kind. This has been performed by the
CloudSocket project (see footnote 1) [5] via an SRL extension. This extension
can specify any adaptation rule kind at different abstraction levels. The event
part of the rule specification was left as is, but the action part was extended
to specify a workflow of adaptation actions that can be performed at the levels
of infrastructure, platform, service and business process. As such, this extension
fits well to the latest research trends in service computing that require specify-
ing, executing and managing cross-layer rules to more effectively deal with the
adaptation of cross-level SBAs in both simple and more advanced problematic
situations.

In the context of this work, only the event part of an adaptation rule is
considered due to intended functionality to be delivered. The CEP engine devel-
oped just detects the need to trigger a rule and then informs the rule execution
component, e.g., an Adaptation Engine, to enact that execution of that rule.

5 SLO Evaluation Framework

5.1 Framework Analysis

The proposed SLO Evaluation Framework relies on the modular architecture
depicted in Fig. 3. This architecture comprises three main levels: (a) interface;
(b) core logic; (c) database (DB). At the interface level, the main actions (add,
update, delete) that can be performed over an event pattern (EP) have been
wrapped into the form of a REST service, called, EP Service, able to parse
CAMEL/SRL fragments mapping to the specification of these patterns. Each
action, when called, then has an impact over the core logic level of the framework.

At this second level, there is a main component, called EP Parser, which
is responsible for processing the EPs obtained from the EP Service. Depending
then on the action requested, different interactions take place at this level.

EP Addition. In case of adding a new EP, the EP Parser transforms it into an EP,
specified in the EP language of the CEP framework, which is then registered in
the server of that CEP framework, called CEP Server, so that it can be immedi-
ately detected. The names of metrics referenced by the EP, i.e., directly involved
in the conditions of the EP’s events, are also sent to the Metric Subscriber which
not only informs its local metric list but also registers for subscribing to such
metrics, when they are new, in the Metric Publisher. In parallel to this registra-
tion, the updated metric list of the Metric Subscriber is stored in the EP DB for
fault-tolerance and rapid recovery reasons. The Metric Publisher is responsible



28 K. Kritikos et al.

Fig. 3. The architecture of the SLO evaluation framework.

for publishing the values of metrics monitored to potential subscribers. As such,
it can well map to a Monitoring Engine of a SBA management system. Once
both the new EP and its respective metrics are registered in the corresponding
system parts, the EP addition has been successful. So, the EP Parser stores the
new EP in the EP DB not only for recovery reasons but also to gather statistics
about EPs, while being detected by the Esper Server. The EP DB has been
realised in the form of a model repository able to store, query and manipulate
models of CAMEL, especially EPs, along with their statistics.

EP Deletion. In case of EP deletion, the EP is first fetched from the EP DB.
Then, in parallel, the EP Parser informs both the CEP Server and the Metric
Subscriber to update their structures and take further actions. The CEP Server
just deregisters the EP’s EPL specification. On the other hand, after checking
that the EP metrics to be removed are not exploited in other EPs, the Metric
Subscriber is informed to unsubscribe to these metrics to reduce the system load.

EP Update. In case of EP update, the produced EPL statement by the EP
Processor is used to update the previous one. In addition, the Metric Subscriber
is informed for adding or removing metrics which are or not needed any more
(by any EP), respectively.

While the above actions can take place through the interaction of an exter-
nal agent/user with the proposed Framework, we highlight that, in principle,
the same interactions could be differently achieved, e.g., via a publish-subscribe



CEP-Based SLO Evaluation 29

mechanism. As the respective functionality has been realised, we could easily
switch from one to another mechanism or have both available at the same time.

As there are internally performed actions inside the framework, while it is
running, these are now explicated in detail below.

As the Metric Subscriber subscribes to metrics, it can asynchronously receive
measurements for such metrics from the Metric Publisher. Such measurements
are then transformed into events which are fed into the CEP Server. Once all
suitable events are received by the latter component, it can detect one or more
EPs. When this occurs, this component will inform the Event Publisher.

The EP Publisher is responsible for publishing events to interested sub-
scribers, named as EP Subscribers. Such subscribers could be adaptation engines
responsible for executing the respective adaptation rule triggered, as, e.g., speci-
fied in CAMEL. Apart from this publication, the EP Publisher also updates the
entries in the EP DB to modify the respective statistics of the EP(s) concerned.

The proposed architecture exploits publish-subscribe mechanisms to both
receive some events/measurements and publish other kinds of events (e.g., EPs).
In this respect, it can actually interact with multiple components that might be
willing to obtain information from or feed information to this framework. For
instance, adaptation responsibility for an SBA management system could be
split into multiple instances of an Adaptation Engine to balance the respective
load. All these instances could then subscribe to the EP Publisher to manage
their own part of the adaptation space, i.e., only those EPs that concern them.

The presented architecture is logical. This means that it can be flexibly dis-
tributed at the physical level. For instance, we could have multiple instances of
the framework part that involves the CEP Server and the Event Publisher to
load balance the event workload entering the framework. Alternatively, we could
scale out the whole framework into parts that focus on different EP partitions.
For example, the SBA management system could be split similarly into different
parts, where each part could be devoted to a subset of all SBAs managed. Each
system part could be then associated to one instance of the SLO Evaluation
Framework, thus mapping only to the EPs of the SBAs that need to be handled.

5.2 Implementation

All framework components have been implemented in Java. The CEP engine
exploited is Esper, version 5.3.0. For the publish-subscribe mechanism, the 0-
MQ4 messaging middleware has been exploited that incurs less overhead with
respect to other messaging middleware realisations. The EP DB has been realised
as a model repository implemented via the CDO technology5 which provides
suitable and robust mechanisms for model persistence and lazy loading as well
as the HQL language to enable posing queries at a higher abstraction level than
pure SQL. The EP Service has been implemented via the Jersey6 java library.

4 zeromq.org.
5 https://eclipse.org/cdo/.
6 http://jersey.github.io/.

http://zeromq.org
https://eclipse.org/cdo/
http://jersey.github.io/


30 K. Kritikos et al.

6 Event Pattern Generation and Detection

While it could be considered as straightforward to transform an event pattern in
CAMEL into an EPL statement in Esper, this is by far not trivial as the events in
an EP need to be correctly correlated. Correlation means that the events should
be associated with either the same measured components or with components
that are connected in the SBA dependency hierarchy. This also has an impact
on the way measurements are represented as the information concerning the
measured component should be already present and be then copied accordingly
in the internal representation of the event in Esper.

Concerning the metric measurements, we have actually assumed the follow-
ing: (a) the Metric Subscriber subscribes only to metrics based on their name;
(b) the Metric Publisher publishes measurements for metrics that might be
named equivalently. The latter means that the measurement information pub-
lished should include sufficient information to enable the framework to identify
exactly what object is being measured.

To decouple the proposed framework from the dependency knowledge it
should possess, we assume that such dependency information is provided within
the measurement information published. While this leads to some published
information duplication, it translates to a loose integration of this framework
with the SBA management system. Otherwise, the framework would need to
connect to a models@runtime component [4] in that system to be informed con-
stantly about both the type and instance level in the SBA dependency hierarchy.

The measurement information published includes: (f1) the metric’s name
(e.g., MeanResponseTime); (f2) the metric value; (f3) the measurement times-
tamp; (f4) the name of the application/service concerned; (f5) the name of the
component measured; (f6) the name of the instance of the component measured;
(f7) the name of the VM measured; (f8) the name of the instance of the VM
measured.

Values for fields f1–f4 are always present. Depending on the level and kind
of component measured, only some of the values of the other fields need to be
supplied based on the following cases mapping to the type of measurement:

– ApplicationMeasurement : here the measurement concerns the whole applica-
tion so no additional fields are needed.

– VMMeasurement : here the measurement concerns a certain VM. There are
two sub-cases holding now: (i) the measurement concerns the VM type (e.g.,
m1.medium) and not its instance. Then, only the field f7 has to be provided;
(ii) the measurement concerns the VM instance (e.g., m1.medium inst1). In
this case, we need to provide both fields f7 & f8 as the type of the VM instance
concerned needs to be provided.

– ComponentMeasurement : here the measurement concerns a certain (software)
component. Again, two sub-cases might hold: (i) the measurement concerns
the component type (e.g., “InvoiceNinja”). In this case, apart from field f5,
we also need to provide field f7 (thus provide, e.g., the value of “m1.medium”)
as one component might logically be deployed into multiple VMs within the



CEP-Based SLO Evaluation 31

same deployment topology. As such, we need to explain for which deployment
the current measurement holds; (ii) the measurement concerns a component
instance (e.g., “InvoiceNinja Inst1”). In this case, all the fields need to be
provided in order to cover both the deployment of that component instance
at the instance level as well as the deployment of its (component) type at
the type level. Thus, considering the running example/use case, the follow-
ing values for the measurement fields will be provided: f5=“InvoiceNinja”,
f6=“InvoiceNinja Inst1”, f7=“m1.medium”, f8=“m1.medium inst1”.

By explaining how measurements are structured and instantiated based on the
kind of the component concerned, now we will explain the way EPs in CAMEL
are transformed into EPL statements. We distinguish between two cases – (C1)
all events in the EP refer to the instance level; (C2) all events in the EP refer to
the type level. We do not consider a mixture of events from different levels as this
does not make sense.

The C1 case maps to two sub-cases:

1. all events refer to the same component. Consider, for instance, the case of
rule R1. The respective EPL statement to be created for this rule would be
the following:

every(ev1=Event(metric=’CPUUtilisation’ and value >= 80
and application=’SendInvoice’ and vm=’m1.medium’) and
Event(metric=’MemoryUtilisation’ and value >= 90 and appli-
cation=’SendInvoice’ and vmInstance=ev1.vmInstance and
vm=’m1.medium’))

In this statement, we join these two events as streams based on their appli-
cation, VM and VM instance fields. Via this join, we impose that the EP
should hold for a specific application and VM but we do not care about
which matched vm instance is concerned (as any instance needs to be matched
here). Moreover, the presence of EVERY indicates that the pattern should
be repeatedly inspected and not just once.

2. all events refer to different but related components. In this case, the EPL
statement under construction needs to correlated the different components
together. For instance, suppose that an alternative rule to R1 would attempt
to scale the “InvoiceNinja” component when its raw CPU utilisation is above
80% and its response time is above 20 s. The respective statement generated
for this alternative rule would take the following form:

every(ev1=Event(metric=’CPUUtilisation’ and value >= 80
and application=’SendInvoice’ and vm=’m1.medium’) and
Event(metric=’ResponseTime’ and value > 20 and vmIn-
stance=ev1.vmInstance and application=’SendInvoice’ and
vm=’m1.medium’ and component=’InvoinceNinja’))



32 K. Kritikos et al.

This EPL statement is more complicated as it needs to join two events for
which we need to guarantee that they refer to the same application, VM and
VM instance, where the first two fields are mapped to specific values. We
also need to guarantee that the second event refers to the “InvoiceNinja”
component but we do not care about the instance of that component as we
guarantee that the same VM instance, as in the first event, has been used to
deploy this particular instance of that component.

For the type level, we have the following two similar kinds of cases which,
however, lead to the construction of simpler EPL statements.

1. all events refer to the same component. For instance, suppose that Rule R2

applies here. Then, the respective EPL statement to be constructed would
take the following form:

every(ev1=Event(metric=’MeanResponseTime’ and value > 20 and
application=’SendInvoice’ and component=’YMENS CRM’) and
Event(metric=’MeanAvailability’ and value < 99.99 and applica-
tion=’SendInvoice’ and component=’YMENS CRM’))

In this statement we just join two event streams based on their application
and component which are clearly identified in the respective conditions.

2. the events refer to different but correlated components. For instance, sup-
pose that Rule R3 needs to be applied. The respective EPL statement to be
constructed will be the following:

every(ev1=Event(metric=’MeanResponseTime’ and value > 20
and application=’SendInvoice’ and component=’InvoiceNinja’ and
vm=’m1.medium’) and Event(metric=’MeanCPUUtilisation’ and value
> 70 and application=’SendInvoice’ and vm=’m1.medium’))

So, we actually join again the two events by considering the following: (a) the
join is made based on the application and VM fields; (b) for the first event, we
need to identify the correct component concerned; (c) for the second event,
we do not need to specify a respective software component as it concerns the
infrastructure (VM) level.

Cases C1 and C2 with their 2 sub-cases have been exemplified via certain
examples. In reality, our framework is able to go beyond the capabilities shown
in these examples. It can process any kind of complex EP with an arbitrary
nesting and any kind of operator from those captured by CAMEL. However,
showing such a complex case needs substantial space and thus, it has been left
out from the analysis in this paper.



CEP-Based SLO Evaluation 33

7 Conclusions and Future Work

This paper has proposed a new SLO evaluation framework for SBAs that relies on
a rich EP expression language, namely SRL, and on the well-known Esper CEP
engine. This system has been designed based on a modular architecture where
many of its parts can scale on demand. This system is also loosely coupled with
the respective monitoring and adaptation engines that might be employed in a
SBA management system. The management of EPs is wrapped into the form of
a REST service enabling a respective SBA management system to be decoupled
from underlying implementation peculiarities and manage the generation and
handling of adaptation rules that contain such EPs.

Concerning future work, we plan to further evaluate the SLO evaluation
framework and especially investigate its exact distribution points. We also plan
to compare Esper with other CEP engines in order to reach an informed decision
about which CEP engine is more suitable in our context. In fact, it can be
interesting to create a system which can be configured to exploit different CEP
engines by incorporating the appropriate abstraction mechanisms.

Acknowledgments. This work is supported by CloudSocket project that has been
funded within the European Commission’s H2020 Program under contract number
644690.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

2. Artikis, A., Sergot, M.J., Paliouras, G.: Run-time composite event recognition. In:
DEBS, pp. 69–80. ACM (2012)

3. Bettini, C., Wang, X.S., Jajodia, S., Lin, J.-L.: Discovering frequent event pat-
terns with multiple granularities in time sequences. IEEE Trans. Knowl. Data
Eng. 10(2), 222–237 (1998)

4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009)

5. Seybold, D., Griesinger, F., Kritikos, K., Gallo, A., Cacciatore, S., Popovici, A.,
Iranzo, J., Sosa, R., Utz, W., Falcioni, D.: Explanatory Notes: Final BPaaS Pro-
totype. CloudSocket Project Deliverable D4.6–D4.8, June 2017

6. Euting, S., Janiesch, C., Fischer, R., Tai, S., Weber, I.: Scalable business process
execution in the cloud. In: 2nd IEEE Conference on Cloud Engineering (IC2E),
pp. 175–184. IEEE (2014)

7. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud
systems with CloudMF. In: NordiCloud, pp. 38–45. ACM (2013)

8. Ghosh, R., Ghose, A., Hegde, A., Mukherjee, T., Mos, A.: QoS-driven management
of business process variants in cloud based execution environments. In: Sheng, Q.Z.,
Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 55–69.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0 4

9. Hellerstein, J.L., Ma, S., Perng, C.-S.: Discovering actionable patterns in event
data. IBM Syst. J. 41(3), 475–493 (2002)

https://doi.org/10.1007/978-3-319-46295-0_4


34 K. Kritikos et al.

10. Janiesch, C., Weber, I., Menzel, M., Kuhlenkamp, J.: Optimizing the performance
of automated business processes executed on virtualized infrastructure. In: 47th
Hawaii International Conference on System Sciences (HICSS), pp. 3818–3826.
IEEE (2014)

11. Kazhamiakin, R., Pistore, M., Zengin, A.: Cross-layer adaptation and monitor-
ing of service-based applications. In: Dan, A., Gittler, F., Toumani, F. (eds.)
ICSOC/ServiceWave - 2009. LNCS, vol. 6275, pp. 325–334. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16132-2 31

12. Kritikos, K., Domaschka, J., Rossini, A.: SRL: a scalability rule language for multi-
cloud environments. In: CloudCom. IEEE (2014)

13. Magnusson, M.S.: Discovering hidden time patterns in behavior: T-patterns and
their detection. Behav. Res. Methods Instr. Comput. 32(1), 93–110 (2000)

14. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams, pp.
346–357 (2002)

15. Patnaik, D., Ramakrishnan, N., Laxman, S., Chandramouli, B.: Streaming algo-
rithms for pattern discovery over dynamically changing event sequences. CoRR,
abs/1205.4477 (2012)

16. Römer, K.: Distributed mining of spatio-temporal event patterns in sensor net-
works. In: EAWMS Workshop at DCOSS, pp. 103–116 (2006)

17. Sim, A.T.H., Indrawan, M., Zutshi, S., Srinivasan, B.: Logic-based pattern discov-
ery. IEEE Trans. Knowl. Data Eng. 22(6), 798–811 (2010)

18. Wang, D., Rundensteiner, E.A., Ellison, R.T.: Active complex event processing
over event streams. PVLDB 4(10), 634–645 (2011)

19. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: SIGMOD Conference, pp. 407–418. ACM (2006)

20. Zeginis, C., Kritikos, K., Plexousakis, D.: Event pattern discovery for cross-
layer adaptation of multi-cloud applications. In: Villari, M., Zimmermann,
W., Lau, K.-K. (eds.) ESOCC 2014. LNCS, vol. 8745, pp. 138–147. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44879-3 10

21. Zeginis, C., Kritikos, K., Plexousakis, D.: Event pattern discovery in multi-cloud
service-based applications. IJSSOE 5(4), 78–103 (2015)

https://doi.org/10.1007/978-3-642-16132-2_31
https://doi.org/10.1007/978-3-662-44879-3_10

	CEP-Based SLO Evaluation
	1 Introduction
	2 Use Case
	3 Related Work
	4 Background
	4.1 Esper
	4.2 CAMEL

	5 SLO Evaluation Framework
	5.1 Framework Analysis
	5.2 Implementation

	6 Event Pattern Generation and Detection
	7 Conclusions and Future Work
	References




