
HyVar

Scalable Hybrid Variability for Distributed Evolving
Software Systems

Thomas Brox Røst1(&), Christoph Seidl2, Ingrid Chieh Yu3,
Ferruccio Damiani4 , Einar Broch Johnsen3 , and Cristina Chesta5

1 Atbrox AS, Trondheim, Norway
thomas@atbrox.com

2 Technische Universität Braunschweig, Braunschweig, Germany
c.seidl@tu-braunschweig.de
3 Universitetet i Oslo, Oslo, Norway

{ingridcy,einarj}@ifi.uio.no
4 Università di Torino, Turin, Italy

damiani@di.unito.it
5 Santer Reply SpA, Turin, Italy

c.chesta@reply.it

Abstract. The HyVar project (www.hyvar-project.eu/) proposes a development
framework for continuous and individualized evolution of distributed software
applications running on remote devices in heterogeneous environments, focus-
ing on the automotive domain. The framework combines variability modeling
and software reuse from software product lines with formal methods and soft-
ware upgrades and can be integrated in existing software development pro-
cesses. HyVar’s objectives are: (O1) To develop a Domain Specific Variability
Language (DSVL) and tool chain to support software variability for highly
distributed applications; (O2) to develop a cloud infrastructure that exploits
software variability as described in the DSVL to track the software configura-
tions deployed on remote devices and to enable (i) the collection of data from
the devices to monitor their behavior; and (ii) secure and efficient customized
updates; (O3) to develop a technology for over-the-air updates of distributed
applications, which enables continuous software evolution after deployment on
complex remote devices that incorporate a system of systems; and (O4) to test
HyVar’s approach as described in the above objectives in an industry-led
demonstrator to assess in quantifiable ways its benefits. The end of the project is
approaching and we are close to reaching all the objectives. In this paper, we
present the integrated tool chain, which combines formal reuse through software
product lines with commonly used industrial practices, and supports the
development and deployment of individualized software adaptations. We also
describe the main benefits for the stakeholders involved.

The HyVar project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No 644298.

© Springer International Publishing AG, part of Springer Nature 2018
Z. Á Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 159–163, 2018.
https://doi.org/10.1007/978-3-319-79090-9_12

http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0001-5382-3949
http://www.hyvar-project.eu/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_12&domain=pdf

Keywords: Software engineering � Software maintenance � Software evolution
Software product lines � Variability models � Distributed software
Over-the-air updates � Data intensive systems � Internet of things
Cloud computing

1 Motivation and Approach

1.1 Software Evolution in the Automotive Domain

Evolution is a well-known problem in any software product family of non-trivial
complexity. Over the lifespan of a product line, new features are added, old features are
deprecated, and separate code branches may be created to deal with spin-off products.
As the code and customer base grow, the possible feature combinations used by various
product instances soon become unwieldy.

In the automotive domain, all the possible variants of a car (make, model, base
equipment, extras etc.) can create a situation with a combinatorial explosion of feature
combinations. This poses a challenge when maintaining the supporting software. Not
only new features must be catered for but also all previous feature combinations for
products that are still on the market and under support agreements. This can easily lead
to bad software development practices, such as “clone and own”, where code is copied
between repository branches and modified in isolation.

Regarding deployment of software updates in the automotive scenario, how does
one ensure that a given car gets an update that is customized to its particular feature
combination? Moreover, how can we also take, e.g., the driving characteristics of the
car’s owner into account when updating the car’s software? Using traditional software
development techniques, it is easy to end up with a software repository with lots of
duplicated and overlapping code, where making any substantial change carries the risk
of unforeseen down-the-line implications.

1.2 HyVar Solution

Within the HyVar project, we take a two-fold approach towards tackling this problem,
focusing on both the development and deployment aspect of maintaining complex
software products.

On the development side, we have created a DSVL and other tools that use software
product line (SPL) modeling techniques for a structured approach towards handling
feature combinations [1–3]. These tools can either be adopted for development from
scratch for new projects or be applied to existing projects with low adoption efforts.
Moreover, our analysis tools can be applied to a project that is already suffering from
previous clone-and-own development so that differences and similarities of cloned
products are automatically extracted and modeled [4]. This greatly simplifies the task of
cleaning up from years of bad development practices.

On the deployment side, we introduce a cloud-based tool chain that complements
our development tools [5]. The tool chain functions in an automotive context, keeping
tabs on a large number of connected devices and their feature configurations. A re-
configuration component detects whenever a software update must be applied, either

160 T. B. Røst et al.

due to changes on the device (pull action) or changes on the software side (push
action). Instead of taking the naïve approach of pushing the same monolithic update to
each device, the tool chain creates a customized update for each device and only does
the full recompile when it is deemed necessary. This greatly reduces the complexity
and bandwidth required to do over-the-air updates for a device fleet. Also, as part of the
supporting toolkit, we can do a static analysis of the resources required for running our
tool chain on the cloud. For a realistic traffic pattern model, this removes a lot of the
guesswork otherwise necessary for cloud infrastructure cost estimation.

2 Application and Benefits

The approach has been applied to an automotive domain scenario, namely the dynamic
reconfiguration of car software based on context, where we addressed the following
issues: (i) To develop a software product line by allowing developers to derive a new
product from an existing one; (ii) To reduce the risk in distributed software develop-
ment projects by developing several software product lines with distributed teams
keeping track of the dependencies; (iii) To support personalized deployment from the
cloud; and (iv) To derive a software product line from existing products. For the
stakeholders in our automotive scenario (e.g., car manufacturers and automotive
software developers), there are several benefits associated with using our tool chain.
Some of these benefits are outlined below, grouped according to issues (i)–(iv).

2.1 Software Product Line Development Using the HyVar Tool Chain

We experienced the following benefits by developing a software product line realizing
the emergency call service for both the European and Russian market, exploiting the
commonalities and ensuring compliance with the respective standards.

The existing product can be used as it is. Using the DSVL and delta modeling
techniques to transform statecharts and/or source code, it is possible to start from an
existing product.

New features are fully implemented and recorded in statecharts. The configura-
tion differences between product branches are highly visible and explicit so that they
are much easier to communicate within the company. Moreover, the executable pro-
grams can be created directly from the statechart editor.

Living models. As new features are both modeled and built from statecharts, there
is a direct connection between the model and the final product.

Reduced code duplication and development time. As code is generated from
models, the amount of code duplication is reduced. The copy/paste approach towards
software development is no longer needed.

2.2 Reducing Risk in Distributed Software Development Projects

Our initial demonstrator involved a single software product line. We then extended it
into a more complex system, including three software product lines with interdepen-
dencies. This yielded additional benefits.

HyVar: Scalable Hybrid Variability 161

All interfaces are defined through MSPL feature model interfaces. This
encourages both better encapsulation and a more structured approach towards feature
interfaces and simplifies the distributed development.

Independent software product line. By the use of feature model interfaces of the
HyVar tool chain, the new functionality can be planned and constructed independently
from the rest of the software product line.

Feature encapsulation helps evolution. Better encapsulation makes it explicit
which parts of the software system can be changed without introducing errors in the
existing functionality.

Early detection of specification errors. Using feature model interfaces, it is pos-
sible to guarantee that only intended configurations can be created.

2.3 Personalized Deployment from the Cloud

In our final demonstrator we enabled software updates that take the driving style and
preferences of individual drivers into account.

Cloud-based infrastructure. One of the major benefits of using cloud services is
that you only pay for the resources you use. This means that there is no need for an
upfront data center investment and that the costs scale along with the number of users
as the company grows. For customers who are wary of using public clouds, private
cloud installations are also possible.

Simulation model of cloud resource requirements. With the traffic data collected
by a car manufacturer stakeholder, it is possible to simulate the resources needed for the
tool chain cloud infrastructure. This makes it possible to estimate the costs required for
deploying the tool chain for a given fleet of cars even if there are peak periods.

Context changes can be reflected in the software configuration. Using validity
formulas, context constraints and the HyVarRec reconfigurator, the software can be
customized for a highly specific environment.

2.4 Derivation of an SPL from Existing Products

We have developed a variability mining methodology that provides the benefits listed
below. Although the methodology is compatible with the HyVar tool chain, the HyVar
demonstrator is not suitable for evaluating the methodology. Therefore, we have
evaluated it by considering another case study in the automotive domain.

Automated analysis of existing software products. The differences and similarities
of existing, cloned products can be analyzed almost completely automatically. From
this, it is possible to generate feature models, mappings and delta modules that later can
be used when adding new features or spinning off new product lines. The effort
compared to doing this manually is reduced greatly.

Generated software product line elements. From the results of the analyses, the
variability mining also generates suitable elements, such as delta modules, a technical
feature model and, if needed, even an entire suitable delta language, e.g., for elements
written in domain-specific languages. This overall greatly reduces the manual effort to
set up an SPL from cloned variants.

162 T. B. Røst et al.

Controlled restructuring. The process is not fully autonomous, meaning that
developers have a lot of control over things such as feature naming and how the mined
products should be restructured. They can also guide the restructuring through doing an
iterative feedback/adaption process with the variability mining technology.

Increased abstraction between features and code. As the feature models are
refined, so is the abstraction to the underlying code. This has long-term benefits in
terms of both planning, discussing and working with a product as a combination of
evolved features rather than just lines of code.

3 Conclusion

We have presented an innovative solution to the software reuse problem, integrating
SPL engineering principles with existing tools and commonly used industrial practices.
The HyVar approach supports the development and deployment of individualized
software adaptations and realizes the concept of hybrid variability. The methodology
and tool chain has been applied in a scenario from the automotive domain, and seems
promising also for other emerging scenarios, such as Internet of Things (IoT) and
Cyber-Physical Systems (CPS), characterized by a huge number of remote devices,
each of which has its own hardware configuration, runs a customizable distributed
software application and needs to evolve in order to fix or prevent misbehavior, to
adapt to environmental changes, accomplish new regulations, satisfy new user requests
or meet new market expectations.

References

1. Chesta, C., Damiani, F., Dobriakova, L., Guernieri, M., Martini, S., Nieke, M., Rodrigues, V.,
Schuster, S.: A toolchain for delta-oriented modeling of software product lines. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 497–511. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47169-3_40

2. Nieke, N., Engel, G., Seidl. C.: DarwinSPL: an integrated tool suite for modeling evolving
context-aware software product lines. In: ter Beek, M.H., Siegmund, N., Schaefer, I. (eds.)
Proceedings of the Eleventh International Workshop on Variability Modelling of
Software-intensive Systems (VAMOS 2017), pp. 92–99. ACM (2017). https://doi.org/10.
1145/3023956.3023962

3. Damiani, F., Lienhardt, M., Paolini, L.: A formal model for multi SPLs. In: Dastani, M.,
Sirjani, M. (eds.) FSEN 2017. LNCS, vol. 10522, pp. 67–83. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68972-2_5

4. Wille, D., Schulze, S., Seidl, C., Schaefer, I.: Custom-tailored variability mining for
block-based languages. In: Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering (SANER 2016). IEEE (2016). https://doi.org/10.1109/saner.
2016.13

5. Mauro, J., Nieke,, N., Seidl, C., Chieh Yu, I.: Context aware reconfiguration in software
product lines. In: Schaefer, I., Alves, V., de Almeida, E.S. (eds.) Proceedings of the Tenth
International Workshop on Variability Modelling of Software-intensive Systems (VaMoS
2016), pp. 41–48. ACM (2016). https://doi.org/10.1145/2866614.2866620

HyVar: Scalable Hybrid Variability 163

http://dx.doi.org/10.1007/978-3-319-47169-3_40
http://dx.doi.org/10.1145/3023956.3023962
http://dx.doi.org/10.1145/3023956.3023962
http://dx.doi.org/10.1007/978-3-319-68972-2_5
http://dx.doi.org/10.1007/978-3-319-68972-2_5
http://dx.doi.org/10.1109/saner.2016.13
http://dx.doi.org/10.1109/saner.2016.13
http://dx.doi.org/10.1145/2866614.2866620

	HyVar
	Abstract
	1 Motivation and Approach
	1.1 Software Evolution in the Automotive Domain
	1.2 HyVar Solution

	2 Application and Benefits
	2.1 Software Product Line Development Using the HyVar Tool Chain
	2.2 Reducing Risk in Distributed Software Development Projects
	2.3 Personalized Deployment from the Cloud
	2.4 Derivation of an SPL from Existing Products

	3 Conclusion
	References

