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Abstract. Business processes modeling and management solutions pro-
vide powerful abstraction mechanisms for the control flow of complex,
task-driven applications, and as such allow for better alignment with
business-related concerns. Despite the existence and wide adoption of
standardized business process management languages such as WS-BPEL
and BPMN 2.0, workflow engines in current Platform-as-a-Service (PaaS)
offerings are in practice more restricted, in part for reasons such as ven-
dor lock-in, but also due to restrictions of multi-tenant environments.

In this paper, we explore the main security-related problems caused
by offering BPMN2-compliant workflow engines in a multi-tenant PaaS
environment, particularly focusing on threats caused by misbehaving ten-
ants and the lack of proper tenant isolation. In addition, we propose a
service-level tenant isolation framework that allows PaaS offerings to
support workflow engines which comply with the BPMN 2.0 standard,
and we discuss the technical feasibility of implementing this framework
using Java technologies such as OSGi and the Resource Consumption
Management API (JSR-284).
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1 Introduction

Platform-as-a-Service (PaaS) is a category of cloud computing services where
the execution platform is offered to software teams for facilitating the devel-
opment, deployment and maintenance of applications [1,2]. When optimized
resource utilization is among the main goals, different applications may share a
single installation of the execution platform in a multi-tenant fashion. Workflow
engines, in charge of executing business processes, can be part of a PaaS offering
and, thus, shared among multiple tenant applications.

Renowned workflow engines in PaaS offerings, such as Amazon SWF [3] and
Fantasm in Google App Engine [4], incur a high degree of vendor lock-in and are
limited in functionality and suboptimal vis-à-vis utilization of resources. Since
these engines have their own custom (i.e. non-standard) workflow modeling lan-
guages, the application will be, de facto, locked-in by the PaaS provider due to
c© Springer International Publishing AG, part of Springer Nature 2018
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high cost of porting (cf. [5]). In addition, some features, such as human tasks
or advanced event handling mechanisms which are commonly used in state-of-
the-art business process automation (cf. [6]), are not supported out of the box.
Supporting such features requires quite some ad-hoc engineering effort by the
application developers. Furthermore, despite sharing the execution environment
of the workflow engine between multiple tenant applications, these solutions
require separate environments for executing workflow tasks of each distinct ten-
ant application. The latter decreases resource efficiency whose maximization is
a principal goal of cloud computing [7].

These problems can be solved by offering workflow engines that comply with
the Business Process Modeling and Notation 2.0 (BPMN 2.0) [8] specification
which, next to the Business Process Execution Language (BPEL) [9], is the stan-
dard increasingly being adopted in practice. The standardized nature of such
engines increases the portability of applications developed using them. In addi-
tion, thanks to accumulated experience of decades which is behind BPMN 2.0,
these engines do not lack necessary and mainstream functional features. Fur-
thermore, these engines are capable of executing workflow tasks in the same
execution environment as the engine itself. Thanks to this capability, resources
are utilized more efficiently.

However, PaaS offering of BPMN2-compliant engines causes certain security
threats which necessitates specific protection measures well beforehand. The
principal source of threats is the untrusted tenant-provided code of workflow
tasks that will be executed in an execution environment shared between the
PaaS provider and multiple, possibly competing, tenants (cf. [10]). For instance,
conflicting access to IO resources is possible. As an alternative example, tenants
may exhaustively consume resources such as memory and bring down the service
entirely.

The state-of-the-art protection mechanism against such threats is OS-level vir-
tualization, i.e. hypervisors [11] or containers [12],where granularity-level of tenant
isolation is, as shown in Fig. 1(a), that of Operating System (OS) processes. This
requires having at least one active OS process for each tenant which implies that
quite some resources are reserved even if the tenant application does not impose
any load. Moreover, OS-level virtualization is not sufficient for all functionalities of
BPMN2-compliant engines because they execute some workflow tasks within the
same OS process as the engine itself1 which requires sharing a single OS process
between the PaaS provider and tenants. For more efficient utilization of resources
and being compatible with the nature of BPMN2-compliant engines, tenant isola-
tion has to take place at a higher level in the computational stack. As depicted by
Fig. 1(b), this is the level where the service itself is implemented.

This work-in-progress paper proposes a service-level tenant isolation frame-
work for enabling PaaS offering of BPMN 2.0 engines based on Java technologies.
We formulate a concrete research problem by analyzing the BPMN 2.0 specifi-
cation and widely-used BPMN2-compliant engines. Furthermore, given the fact
that the absolute majority of BPMN2-compliant engines are Java-based [13],

1 This is required by the BPMN 2.0 specification for some types of tasks.
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Fig. 1. OS-level virtualization requires having separate OS processes for each tenant
application and the workflow engine while service-level isolation allows running all code
inside a single OS process.

we present an initial outline of a solution based on Java-related technologies.
The proposed solution takes threads as units of isolation for executing untrusted
code of tenant applications to overcome the aforementioned insufficiency of the
OS-level virtualization approach and the suboptimal resource utilization thereof.
The technical feasibility of the solution is shown by explaining how existing tech-
nologies, such as OSGi [14] and the Java Resource Consumption Management
API (JSR-284 [15]), enable its implementation.

The rest of this paper is structured as follows. Section 2 analyzes the research
problem. Section 3 presents the solution outline along with remarks on its techni-
cal feasibility. Section 4 briefly contrasts this proposal with related work. Finally,
Sect. 5 concludes the paper.

2 Problem Statement

This section analyzes the most compelling security threats caused by the PaaS
offering of BPMN 2.0 engines and formulates the research problem as a number
of concrete requirements.

2.1 Security Threat Analysis

We have systematically analyzed and prioritized the security threats using the
STRIDE2 threat model [16,17]. The most problematic security threats, insofar
as this paper is concerned, are related to two core features of BPMN 2.0 namely
Script Task and Service Task activity types. The former is required by the
standard to be “executed by a business process engine” [8]. This implies that
the same OS process running the engine is responsible for executing the Script
Task. While the standard does not require Service Task activities to be exe-
cuted by the same Operating System (OS) process running the engine, most
well-known and enterprise-ready BPMN 2.0 engines, such as jBPM [18] and
Activiti [19], allow defining Service Task activities that are executed within
the same OS process running the engine. Retaining this additional feature is

2 The acronym stands for six threat categories namely Spoofing, Tampering with
Data, Repudiation, Information Disclosure, Denial of Service and Elevation of
Privilege.
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essential for avoiding the overhead of remote service invocation, e.g.
(de-)serialization and network delay.

In a multi-tenant context of a PaaS offering, the code of Script Task
and Service Task activities belong to untrusted tenant applications using the
engine. Executing untrusted code of tenants in the same OS process running the
engine incurs different types of security threats (cf. [10,20,21]). Tampering with
Data, Information Disclosure, Denial of Service and Elevation of Privilege are
identified as the most important threat categories in this specific context and
are discussed below.

Tampering with Data. Since tenant-provided code may access IO resources,
one tenant application may modify another tenant’s data stored on a shared
device. In addition, a tenant application may modify the value of in-memory
object references belonging to or shared with other tenants.

Information Disclosure. A tenant application may read another tenant’s data
by, e.g., listening on a network port belonging to the other tenant. Similarly,
a tenant application may access in-memory object references belonging to or
shared with other tenants.

Denial of Service. One tenant application may disrupt the PaaS offering
entirely either by using up computational resources or by misusing part of the
API shared among all tenants. The resources of concern are CPU cycles, mem-
ory space and IO bandwidth (both storage and network). Misuse of shared API
can be either in form of killing the OS process hosting the service or in form of
locking shared objects indefinitely.

Elevation of Privilege. By creating a thread which is not under control of the
framework, one tenant application may increase its privileges and act without
constraints imposed by the framework.

2.2 Requirements

Since these threats are caused by code running within a single OS process, pro-
tection against them has to take place inside that OS process as well. Therefore,
a service-level tenant isolation framework is needed which fulfills the following
functional requirements:

– FR1: The framework should guarantee that no tenant application may access
objects or primitive values belonging to other tenants.

– FR2: The framework has to guarantee that shared system objects and refer-
ences accessible for tenant applications can neither be locked indefinitely nor
be modified by any of them.

– FR3: The creation of threads has to be entirely mediated by the framework.
– FR4: Permission of killing the OS process has to be denied for all tenant

applications.
– FR5: The framework should check tenant permissions before granting access

to any IO resource (e.g. a file on storage device or a network port).
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– FR6: An upper limit has to be put on CPU usage, memory consumption and
IO bandwidth (both storage and network) on a per-tenant basis.

– FR7: Upper limit imposition on resource consumption has to be so flexi-
ble that resource utilization maximizes. In other words, if there are unused
resources that can be allocated safely, the framework should let tenant code
exceed the limits to some extent.

In addition, fulfillment of the above functional requirements should respect
the following quality requirements:

– QR1: All tenant isolation measurements should be enforced transparently by
the framework. In other words, code of tenant applications has to be entirely
decoupled from the tenant isolation framework.3

– QR2: The relative performance overhead of the framework compared to OS-
level virtualization tactics (cf. [11,12]) is required to be in an acceptable
margin.

3 Service-Level Tenant Isolation

This section outlines a service-level tenant isolation framework as a solution for
fulfilling the above requirements and shows technical feasibility of the framework.
Section 3.1 presents the framework architecture conceptually. Section 3.2 elabo-
rates on partial fulfillment of FR1 while Sect. 3.3 supplements it and discusses
static code restriction which is required for fulfillment of FR2 and FR3. Sup-
plementary measures for fulfillment of FR2 and FR3 are presented in Sect. 3.4
while Sect. 3.5 deals with permission checking mechanism which is required for
FR2, FR3, FR4 and FR5. Finally, Sect. 3.6 explains how the framework realizes
FR6 and FR7. The qualitative requirements are taken into account orthogonally
throughout this section.

3.1 Overall Architecture

Figure 2 shows the principal components running within a single OS process
in three layers: (i) the bottom layer is the Java execution platform and the
components it provides, (ii) the middle layer is where the service components
of the PaaS offering, including components of the tenant isolation framework,
sit, and (iii) the top layer consists of code of tenant applications built upon the
PaaS offering.

The tenant isolation framework consists of seven main components which are
introduced gradually throughout this section. The two front-end components of
the framework which are directly used by tenants are Deployment Service and
Workflow Execution Service. The former is responsible for deploying tenant
applications into the PaaS environment. The latter is responsible for starting
new workflow executions or continue/monitor/abort existing ones by running
the code of tenant applications in isolation from other tenants.
3 This is required for portability of tenant applications to other instances of the same

BPMN 2.0 engine where the tenant isolation framework is not used.
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Fig. 2. Building blocks of the framework in relation to tenant applications and the
execution platform

For imposing isolation measures, the Workflow Execution Service, using
an existing BPMN2-compliant engine such as jBPM [18], runs the untrusted code
of tenant applications in separate threads and guarantees that each active thread
is associated with only one tenant application at a time. Once each thread finishes
its job, it can be reused for other tenant applications using a thread pool provided
by the Java Concurrency API. The Workflow Execution Service leverages
upon the Concurrency API of the Java execution platform for handling threads.
Furthermore, it uses the Tenant Awareness component of the framework which
is responsible for keeping track of associations between threads and tenants.
Thus, the main cornerstone of the proposed solution is taking threads as units
of tenant isolation just as OS-level virtualization tactics take OS processes as
units of tenant isolation.

3.2 Tenant Containers

In order to dedicate a separate referencing space for objects of each tenant
application (cf. FR1), the Deployment Service deploys each application in a
distinct tenant container. As opposed to containers of OS-level virtualization
approach, containers shown in Fig. 2 are managed inside a single OS process.
OSGi [14] bundles provide exactly this containerization functionality. OSGi loads
each bundle using a distinct Java classloader and sets the bootstrap classloader,
which is responsible for loading core Java classes, as the parent of each bundle
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classloader. Hence, the code of each bundle can access fields of its own classes
and static fields of core Java classes.

By containing the code of each tenant application in a separate OSGi bun-
dle, the FR1 requirement will be partially fulfilled. For complete fulfillment of
FR1, cross-bundle communication between tenant application bundles has to be
forbidden which is the topic of next section along with realization of FR2 and
FR3.

3.3 Static Code Restriction

Access of tenant applications to other classes and interfaces has to be restricted
for fulfillment of FR1, FR2 and FR3. API restriction is required both statically
and dynamically. Static restriction takes place only once at deployment time by
the Static Code Controller (cf. Fig. 2). This is done in multiple stages using
code analysis facilities provided by the Java platform and tools built upon it.

Cross-bundle Communication. Each OSGi bundle declares the list of classes
it imports from other bundles. This is used for cross-bundle communication. By
imposing limits on this list, the Static Code Controller guarantees that no
cross-bundle communication is possible between two tenant applications and,
thus, completes the realization of FR1.

Blacklist. One of the main elements of Static Code Controller is
BlacklistService which maintains a list of classes, methods and fields that
tenant applications are not allowed to use.

Given the structure of classloaders in OSGi, security vulnerabilities per-
taining to shared object locks and modifications (cf. FR2) are caused by
four Java programming constructs related to classes loaded by the bootstrap
classloader: (i) static field declarations, (ii) reference updates on static fields,
(iii) changing state of objects referenced by static fields, (iv) static synchro-
nized methods, and (v) synchronized blocks locking static fields [10,20,21]. The
BlacklistService searches for occurrences of these constructs in all classes
loaded by the bootstrap classloader using the Java source code querying facilities
provided by the Spoon library [22] as well as call graph construction and refer-
ence analysis (a.k.a. points-to analysis) mechanisms of the Soot framework [23].
A call graph consists of nodes and edges representing Java methods and invoca-
tion relationship between them respectively. Reference analysis helps resolving
non-static access to objects referenced by static fields of concern.

In addition, to further comply with FR3, the BlacklistService adds the
java.lang.Thread class to the blacklist. Furthermore, using the Spoon library,
it adds any method in the java.util.concurrency package capable of instan-
tiating new threads or intervening in the life-cycle of an existing thread.

Acceptance Policy. The final stage of Static Code Controller involves
accepting or rejecting the tenant application code. It checks whether the code
of a tenant application directly or indirectly deals with blacklisted constructs.
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SecurityManager sm = System.getSecurityManager ();
if (BlacklistService.isBlacklisted(this)) {

if (sm != null) {
sm.checkPermission(new

ReflectPermission("evadeBlacklist"));
}

}
super.originalMethod (...); // pseudocode

Listing 1.1. Restricting access of tenant applications to Java Reflection API.

For instance, it checks whether a blacklisted static synchronized is invoked
or the constructor of the Thread class is used. The first step for doing so is
creating a call graph using the Soot framework. Afterwards, the call graph has
to be traversed to see if any of the fields, methods or classes in the blacklist is
used by the methods included in the call graph. Furthermore, using the refer-
ence analysis mechanism provided by Soot, it has to be verified whether objects
referenced by static fields in the blacklist are modified indirectly (e.g. by means
of an intermediate local reference).

3.4 Dynamic Code Restriction

Restricting code of tenant applications statically is not sufficient because all the
malicious operations, which can be detected statically, can be done dynamically
as well using the Reflection API. Therefore, Restricted Reflection API
should be used by tenant applications instead of the original Java Reflection
API (cf. Fig. 2). This, however, can reintroduce the vendor lock-in problem that
QR1 requires to avoid. Therefore, tenant applications are allowed to use the origi-
nal Reflection API but at deployment-time, the Deployment Service asks the
Code Transformer to transform tenant code such that the original Reflection
API is replaced by Restricted Reflection API. This is feasible and straight-
forward because the Restricted Reflection API has exactly the same package
structure and exposes exactly the same API as the original one but with dif-
ferent behavior in some cases. The Code Transformer component employs the
transformation utilities provided by the Spoon framework [22].

The behavior difference is summarized by Listing 1.1 where this either refers
to a Field object whose get method is called, a Constructor object whose
newInstance method is invoked or a Method object whose invoke method is
called. Determining whether the use of these class members are blacklisted for
tenant applications, the same BlacklistService, which maintains the blacklist,
is used. Since the blacklist is prepared once in the entire life-time of the applica-
tion and kept in memory for subsequent uses, this does not impose a significant
performance overhead (cf. QR2).

As shown, Java SecurityManager is used to check whether evadeBlacklist
permission is granted to the OSGi bundle requesting the reflective operation.
This permission has to be granted only to trusted bundles, i.e. not to bundles
containing code of tenant applications. The checkPermission method throws
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an AccessControlException if the required permission is not granted to the
bundle requesting the reflective operation.

The next section elaborates on how the permission checking mechanism of the
Java SecurityManager works and on how it is employed by the tenant isolation
framework.

3.5 Permission Checks

In addition to the above permission checking, the tenant isolation framework
enforces permission checks on invocations of System.exit method (cf. FR4)
and on every IO access (cf. FR5). Permission checks are automatically done
by the Java platform itself once the SecurityManager is enabled. The role of
the framework, hence, is limited to enabling the SecurityManager and granting
permissions properly.

The SecurityManager relies on a mechanism called stackwalking and asso-
ciates a permission set to each protection domain (cf. [24,25]). In OSGi, there
exists one protection domain for each bundle. The set of permissions of each ten-
ant application is granted to it by the Deployment Service at deployment time.
Tenant permission sets are, in principle, a combination of FilePermission and
SocketPermission for restricting their access to IO resources which is required
by FR5. By denying the RuntimePermission("exitVM") to tenant bundles, FR4
is also fulfilled. All other bundles, which do not contain tenant-provided code,
are granted AllPermission.

When permission p is required, the Java platform SecurityManager triggers
stackwalking, i.e. tracing the entire method invocation stack which has led to
the point of permission checking, and verifies that

∀pd∈PDs
p ∈ Ppd (1)

where PDs is the set of all protection domains involved in the scanned method
invocation stack s and Ppd is the set of permissions granted to the protection
domain pd. This way, the permissions of tenant application for whom permission
p has to be checked are taken into account and retrieved from its corresponding
protection domain.

Permission checks are not required when the running code is trusted, e.g. when
PaaS management and monitoring components are executed. In order to avoid the
performance overhead of the SecurityManager when it is not needed, the frame-
work enables it only when tenant application code is executed and disables it oth-
erwise. The TenantWorkflowExecutor, which is responsible for starting/resum-
ing/aborting a tenant workflow, toggles the ToggleableSecurityManager shown
in Fig. 3 before and after workflow execution using enable and disable methods
of the latter. These methods change the value of a ThreadLocal variable which is
used in the checkPermission method according to Listing 1.2.
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Fig. 3. The framework extends the SecurityManager such that it can be enabled only
when tenant-provided code is executed. This is done by means of a ThreadLocal vari-
able toggled before and after a tenant workflow executes.

if (enabled.get()) {
super.checkPermission(p);

}

Listing 1.2. Evading permission check when it is not required.

3.6 Resource Consumption Control

Fulfilling FR6 requires associating a service-level agreement (SLA) to each ten-
ant application. Listing 1.3 shows the structure of a tenant SLA. The frame-
work uses the Java Resource Consumption Management API (JSR-284) [15]
for imposing limits on resource consumption of each tenant application. On
a per-tenant basis, ResourceMeter instances are created for each element of
the SLA. Meters are notified by the Java platform every time new informa-
tion about their corresponding resources allocation/release is available. The
Resource Consumption Controller creates tenant meters only once (the first
time they are needed) by consulting the Tenant Awareness component which
has access to SLAs. Once meters are created, they will be associated with a
tenant-specific ResourceContext. Before executing the untrusted code of any
tenant, the TenantWorkflowExecutor associates the tenant meters to the exe-
cuting thread according to Listing 1.4.

The meters provided by the Java platform are themselves capable of impos-
ing a limit on consumption of IO-related resources. Hence, it is sufficient to
choose the right type of meter for each resource type. The BoundedMeter
is used for maxOpenFiles, maxOpenSockets and maxOpenDatagrams and the
ThrottledMeter is used for other IO-related resources. Both of these meters are
capable of imposing a limit on resource usage. The only difference is that the
former is appropriate for cases dealing with absolute numbers (e.g. number of
open files) while the latter best suits cases where a rate is involved (e.g. bytes
read from file system per seconds).

The meters provided by the Java platform however are not capable of imposing
a limit on memory and CPU usage. The best they can do is to notify when the
limit is reached. Our framework employs Quasar Fibers [26] instead of original
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public class TenantSLA {

private long maxCpuUsage; // CPU nanoseconds per second
private long maxMemoryUsage; // bytes

private int maxOpenFiles;
private long maxReadDiskRate; // bytes per second
private long maxWriteDiskRate; // bytes per second

private int maxOpenSockets; // TCP sockets
private long maxReadSocketRate; // bytes per second
private long maxWriteSocketRate; // bytes per second

private int maxOpenDatagrams; // UDP datagrams
private long maxReadDatagramRate; // bytes per second
private long maxWriteDatagramRate; // bytes per second

// getters and setters

}

Listing 1.3. Structure of Tenant SLA.

ResourceContextFactory factory = ResourceContextFactory.getInstance ();
ResourceContext rc = factory.lookup(tenantId);
rc.bindThreadContext(); // binds to the current thread
// workflow execution code
rc.unbindThreadContext (); // unbinds from the current thread

Listing 1.4. Binding tenant ResourceContext to threads before starting workflow
execution.

Java threads in order to safely suspend the untrusted code of tenants when they
consume too much memory space or CPU time. Since Fiber suspension is done at
the level of the JVM rather than that of the OS kernel, regularly suspending them
does not impose much overhead. Furthermore, tenant-specific information about
consumption level can be used for resuming suspended Fibers whereas execution
of original Java threads are left to the OS kernel which does not have any tenant-
specific information.

Fiber suspension may take place after specific checkpoints. The memory
usage is checked every time a new object is instantiated. Therefore, the bytecode
of the Object constructor is manipulated to enforce a memory limit checkpoint.
Once the responsible NotifyingMeter notifies the surpass of memory limit by
a specific tenant, a tenant-specific boolean variable will be modified to indi-
cate that the corresponding tenant cannot create new objects anymore. The
boolean variable will be consulted by the memory checkpoint inside of the Object
constructor.

The CPU checkpoints, however, are more widespread. They have to guaran-
tee that tenants cannot evade CPU usage control mechanism. Hence, two types
of checkpoints are inserted by bytecode manipulation of both the Java API
and the untrusted code of tenant: (i) inside every loop structure and (ii) inside
every recursion (be it direct or indirect). Manipulating the Java API is required
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because tenants may exploit it by means of method arguments. Similarly, a
boolean variable is checked in every checkpoint and if the tenant code has
to be suspended due to excess of CPU usage, it will be suspended. Despite
the widespread nature of CPU checkpoints, the performance overhead is not
expected to be high because under normal circumstances every checkpoint will
amount to a simple if statement involving a boolean variable.

FR7 requires managing some types of resources flexibly. Flexible resource
consumption means allowing tenants surpassing the limits defined in their SLAs
when there are sufficient amount of resources available for allocation. This
involves too much risk in case of memory usage, number of open files and num-
ber of open sockets because once tenants go beyond their limits on these types
of resources, there is no guarantee that the system can push them back to their
borders (cf. [10,20,21] for the case of memory usage). However, that risk is not
relevant in case CPU usage and IO bandwidth because their consumption is
time-dependent by nature and thus can be reclaimed by the system if need be.

The following condition determines whether resource allocation can be done
regardless of the fact that a tenant SLA limit is reached:

totalr + amountr ≤ lr × capacityr (2)

where r is a resource of concern, totalr is the total consumption amount of all
tenants before approving the new request, amountr is the requested amount,
capacityr is the total capacity of the system on r and lr is the leniency factor
between 0 and 1. When leniency factor is set to zero, every tenant will be strictly
restricted to its SLA regardless of resource availability, i.e. unallocated amounts.
When it is set to one, the unallocated amounts will be used for letting more
active tenants going beyond their SLA limits.

The System Health Monitoring is consulted component for retrieving the
total usage. Capacity is a set by system administrators while total usage is
retrieved from the ResourceContextFactory provided by the Java platform.
The latter does not calculate the total usage every time queried. Instead, it
keeps track of total amounts on every resource allocation and release. Decisions
of this approver are safe because they are made about resources measured on
a per-second basis and surpassing their limits will have no effect beyond the
measurement window which is two seconds according to the API. In other words,
it is guaranteed that these resources can be throttled back to the limits defined
in tenant SLAs once the load on the system increases.

4 Related Work

In this section, we briefly compare this paper with related work.

PaaS Offering of Workflow Engines. Pathirage et al. [27] proposes an archi-
tecture for PaaS offering of Apache ODE [28] which is a workflow engine com-
plying with WS-BPEL. Since all activities involving code execution are remote
web-services, the security threats that we covered in this paper are not relevant



Towards PaaS Offering of BPMN 2.0 Engines 17

for that work. However, delegating execution of all untrusted activity code to
remote web-services both reduces efficiency of resource utilization and imposes
the overhead of remote invocation (e.g. network delay and serialization). Yu
et al. [29] claims having enabled jBPM [18], a BPMN2-compliant engine, to be
offered as a PaaS. However, the security threats discussed in this paper are over-
looked altogether. Amazon SWF [3] and Fantasm on Google App Engine [4]
are production ready PaaS offerings of workflow engines. However, applications
developed using them highly suffer from vendor lock-in problem in terms of both
code and data. Furthermore, resource utilization is sub-optimal due to adoption
of OS-level virtualization tactics.

OS-level Virtualization. Similar isolation measures can be imposed by means
of containers (cf. [12]) or virtual machines (cf. [11]). However, in case of Java, a
separate instance of the JVM should be started for each tenant which reduces
efficiency of resource utilization. Furthermore, these solutions are totally insuffi-
cient for offering BPMN2-compliant engines as the latter runs Script Task and,
in some cases, Service Task activities in the same OS process as the workflow
engine itself.

Java Language Vulnerabilities. Security threats related to running untrusted
code in Java threads are discussed in [10,20,21]. These problems are caused by
the shared nature of static fields, blocking effect of static synchronized methods,
reference leaks and shared nature of computational resources. Our threat analysis
is based on these works and we have proposed ideas for solving some of them
and workarounds for some others based on existing technologies.

Application Performance Isolation. There are a number of works dealing
with performance isolation for Software-as-a-Service (SaaS) applications [30–33].
While these works deal with SLAs expressed in external properties of an applica-
tion such as response-time and throughput, the SLAs are defined in system-level
terms such as CPU usage. This is because these works do not deal with the issues
of running untrusted code in a shared execution environment. Krebs et al. have
proposed a framework for determining resource usage based on the aforemen-
tioned external properties [34]. However, their solution requires categorization
of all possible requests into different groups beforehand which is not feasible in
case of PaaS where application requests are not known by the PaaS provider.

5 Conclusion

Business process automation is a common practice supported by a set of mature
standards (e.g. BPMN 2.0 and WS-BPEL) and numerous workflow engines that
implement these standards. Due to the specific deployment model of multi-
tenancy in a Platform-as-a-Service (PaaS) context, full support of these stan-
dards requires additional attention to security threats caused by misbehaving
tenants. We have presented an outline of a framework for tenant isolation in
the context of co-existing business processes of different tenants, and we have
discussed its practical feasibility for the Java environment.



18 M. Makki et al.

Advancing this work fits into our ongoing research on the key trade-offs
related to multi-tenancy between resource optimization, customization sup-
port (e.g. by means of tenant-provided tasks), security (tenant isolation) and
portability of business processes across different cloud providers. We have imple-
mented the permission checking and resource consumption mechanisms of the
framework. In follow-up work, we will further implement the code restriction part
and evaluate the proposed framework vis-à-vis performance overhead compared
to the OS-level virtualization approach and dimension of tenant code restric-
tions (i.e. determining how limited tenant applications will be in using the Java
API given the restrictions imposed by the framework).
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