
123

Zoltán Ádám Mann
Volker Stolz (Eds.)

Workshops of ESOCC 2017
Oslo, Norway, September 27–29, 2017
Revised Selected Papers

Advances in
Service-Oriented
and Cloud Computing

Communications in Computer and Information Science 824

Communications
in Computer and Information Science 824

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
Nanyang Technological University, Singapore, Singapore

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

Zoltán Ádám Mann • Volker Stolz (Eds.)

Advances in
Service-Oriented
and Cloud Computing
Workshops of ESOCC 2017
Oslo, Norway, September 27–29, 2017
Revised Selected Papers

123

Editors
Zoltán Ádám Mann
University of Duisburg-Essen
Essen
Germany

Volker Stolz
Western Norway University
of Applied Sciences

Bergen
Norway

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-79089-3 ISBN 978-3-319-79090-9 (eBook)
https://doi.org/10.1007/978-3-319-79090-9

Library of Congress Control Number: 2018939618

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the joint workshop proceedings of the events co-located with the
6th European Conference on Service-Oriented and Cloud Computing (ESOCC), held in
Oslo, Norway, September 27–29, 2017. ESOCC 2017 was organized by the University
of Oslo, Norway.

On the first day of the conference, the following workshops were held:

• The First International Workshop on Business Process Management in the Cloud
(BPM@Cloud)

• The Third International Workshop on Cloud Adoption and Migration (CloudWays)
• The EU Projects Track

Each workshop submission was reviewed by at least three Program Committee
members, and the authors contributed revised articles to this volume of proceedings,
taking additional feedback during the workshop into account. Here, a brief description
of each workshop is given.

The BPM@Cloud 2017 workshop focused on business process management in the
cloud. Organizations are continuously thinking of moving to the cloud in order to
reduce costs as well as allow a more flexible provisioning of their business processes
(BPs) and services. As they do not possess the appropriate expertise, there is a need to
support them via platforms able to realize the respective methods, techniques, and
algorithms that concentrate on checking which parts of their BPs should be moved to
the cloud, bridging the gap between the business and IT level, and supplying assistance
to the four main life cycle activities of BP design, allocation, execution, and evaluation
in the cloud. In this respect, the notion of BP as a service (BPaaS), i.e., a Web-based
business process that runs in the cloud, arises, which is projected to become quite
profitable for the organizations participating in its value chain. As such, BPaaS not only
caters for migrating existing BPs in the cloud but can also become a novel exploitation
product in the cloud stack that will further boost the adoption of cloud computing. The
BPM@Cloud 2017 workshop brought together experts on business process manage-
ment (BPM) and cloud computing from both academia and industry. It became a
medium for thorough discussion and collaboration between its participants. It enabled
its presenters to disseminate work that better promotes the notion of BPaaS while also
fostering the multidisciplinary collaboration between different research areas in cloud
computing and BPM to realize this notion. New challenges were also identified, which
can direct the research to be conducted over BPM in the cloud in the near future. The
first part of this volume includes all the technical papers of BPM@Cloud 2017.

The CloudWays 2017 workshop focused on cloud adoption and migration.
Regardless of the benefits of cloud computing, many organizations still rely on
business-critical applications in the form of legacy systems that have been developed
over a long period of time using traditional development methods. Despite often serious
maintainability issues, (on-premise) legacy systems are still crucial as they support core

business processes. Therefore, migrating legacy systems toward cloud-based platforms
allows organizations to leverage their existing systems deployed and provided (using
publicly available resources) as scalable cloud services. The CloudWays 2017 work-
shop brought together cloud migration experts from both academia and industry: to
promote discussions and collaboration among participants; to help disseminate novel
cloud adoption, migration, and software architecture practices and solutions; and to
identify future cloud architecture challenges and dimensions. The second part of this
volume includes all the technical papers of CloudWays 2017.

The EU Projects Track 2017 aimed at presenting the major running European-funded
projects highlighting the main industrial and academic trends in terms of research and
innovation in service-oriented and cloud computing-related domains. The third part of
this volume includes all papers of the EU Projects Track 2017.

The contributions of the main conference are published as the 6th IFIP WG 2.14
European Conference ESOCC 2017 proceedings in LNCS vol. 10465 by Springer,
2017.

As workshop organization chairs, we would like to thank the individual workshop
chairs for their efforts in publicizing the events and succeeding in bringing together
participants and authors with contributions reflecting the state of the art. We would also
like to thank all authors who presented their work at the events and are contributing
here in this volume.

We are also grateful to the local organization team in Oslo that took care of most
logistical aspects of organizing such an event, and to the general chair of ESOCC,
Einar Broch Johnsen, for giving us the opportunity to hold these events together with
the conference.

January 2018 Zoltán Ádám Mann
Volker Stolz

VI Preface

Contents

BPM@Cloud

Towards PaaS Offering of BPMN 2.0 Engines: A Proposal
for Service-Level Tenant Isolation . 5

Majid Makki, Dimitri Van Landuyt, and Wouter Joosen

CEP-Based SLO Evaluation . 20
Kyriakos Kritikos, Chrysostomos Zeginis, Andreas Paravoliasis,
and Dimitris Plexousakis

Towards Business-to-IT Alignment in the Cloud . 35
Kyriakos Kritikos, Emanuele Laurenzi, and Knut Hinkelmann

CloudWays

Engineering Cloud-Based Applications: Towards
an Application Lifecycle . 57

Vasilios Andrikopoulos

A Cloud Computing Workflow for Managing Oceanographic Data 73
Salma Allam, Antonino Galletta, Lorenzo Carnevale, Moulay Ali Bekri,
Rachid El Ouahbi, and Massimo Villari

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker. . . . 86
Divyaa Manimaran Elango, Frank Fowley, and Claus Pahl

Cloud-Native Databases: An Application Perspective 102
Josef Spillner, Giovanni Toffetti, and Manuel Ramírez López

Testing and Comparing the Performance of Cloud Service Providers
Using a Service Broker Architecture . 117

Divyaa Manimaran Elango, Frank Fowley, and Claus Pahl

TOSKER: Orchestrating Applications with TOSCA and Docker 130
Antonio Brogi, Luca Rinaldi, and Jacopo Soldani

EU Projects

Secure Data Processing in the Cloud . 149
Zoltán Ádám Mann, Eliot Salant, Mike Surridge, Dhouha Ayed,
John Boyle, Maritta Heisel, Andreas Metzger, and Paul Mundt

DITAS: Unleashing the Potential of Fog Computing to Improve
Data-Intensive Applications . 154

Pierluigi Plebani, David Garcia-Perez, Maya Anderson,
David Bermbach, Cinzia Cappiello, Ronen I. Kat,
Achilleas Marinakis, Vrettos Moulos, Frank Pallas,
Barbara Pernici, Stefan Tai, and Monica Vitali

HyVar: Scalable Hybrid Variability for Distributed Evolving
Software Systems . 159

Thomas Brox Røst, Christoph Seidl, Ingrid Chieh Yu,
Ferruccio Damiani, Einar Broch Johnsen, and Cristina Chesta

Enhancing Big Data Application Design with the DICE Framework 164
Giuliano Casale and Chen Li

Developing, Provisioning and Controlling Time Critical Applications
in Cloud . 169

Zhiming Zhao, Paul Martin, Andrew Jones, Ian Taylor,
Vlado Stankovski, Guadalupe Flores Salado, George Suciu,
Alexandre Ulisses, and Cees de Laat

MIKELANGELO: MIcro KErneL virtualizAtioN for hiGh
pErfOrmance cLOud and HPC Systems . 175

Nico Struckmann, Yosandra Sandoval, Nadav Har’El, Fang Chen,
Shiqing Fan, Justin Činkelj, Gregor Berginc, Peter Chronz,
Niv Gilboa, Gabriel Scalosub, Kalman Meth, and John Kennedy

BASMATI: Cloud Brokerage Across Borders for Mobile
Users and Applications . 181

Emanuele Carlini, Massimo Coppola, Patrizio Dazzi,
Konstantinos Tserpes, John Violos, Young-Woo Jung,
Ganis Zulfa Santoso, Jorn Altmann, Jamie Marshall,
Eric Pages, and Myoungjin Kim

C4E: Cloud Brokering Platform for Federated Services Aimed
at European Public Administrations . 187

Antonino Galletta, Oliver Ardo, Antonio Celesti, Peter Kissa,
and Massimo Villari

Author Index . 193

VIII Contents

BPM@Cloud

Preface of BPM@Cloud 2017

To reduce costs as well as allow a more flexible provisioning of their business pro-
cesses (BPs) and services, organizations are continuously thinking of moving to the
cloud. However, most of them do not have the appropriate expertise for performing this
move. As such, there is a need for platforms which are able to realize the respective
methods, techniques, and algorithms that provide the appropriate cloud-based support
level to these organizations. This support level should enable organizations to check
which parts of their business processes should be moved to the cloud as well as
facilitate bridging the gap between the business and IT level. Moreover, it should assist
in the allocation, publishing, execution, monitoring, evaluation, and adaptive provi-
sioning of these BPs, thus catering for their appropriate management based on the four
main life cycle activities of BP design, allocation, execution, and evaluation. By
moving and offering BPs in the cloud, the notion of BP as a service (BPaaS) is realized,
which is projected to become quite profitable for the organizations participating in its
value chain that can play the role of brokers, BPaaS management platform operators, or
software developers. Thus, BPaaS not only caters for migrating existing BPs in the
cloud but can also become a novel exploitation product in the cloud stack that will
further boost the adoption of cloud computing.

This was the first edition of this workshop — the First International Workshop on
Business Process Management in the Cloud (BPM@Cloud 2017)— which was held in
Oslo, Norway, on September 27, 2017, as an ESOCC satellite event. The main goals of
the workshop were the following: (a) to bring together experts on business process
management (BPM) and cloud computing from both academia and industry; (b) to
become a medium for thorough discussion and collaboration between the workshop
participants; (c) to enable the dissemination of work that better promotes the notion of
BPaaS; (d) to foster the multidisciplinary collaboration between different research areas
in cloud computing and BPM to realize the notion of BPaaS; (e) to identify new
challenges that can direct the research to be conducted over BPM in the cloud in the
near future. New versions of the workshop are planned to be organized in the next few
years, preferably as satellite events of ESOCC.

In this first edition of this workshop, the following three full papers were accepted
for presentation.

The first paper “Toward PaaS Offering of BPMN 2.0 Engines: A Proposal for
Service-Level Tenant Isolation” by Majid Makki, Dimitri Van Landuyt, and Wouter
Joosen explores the main security issues related to the offering of BPMN2-compliant
workflow engines in multi-tenant PaaS environments and proposes a service-level
tenant isolation framework to address them by also discussing the technical feasibility
of its implementation.

The second paper “CEP-Based SLO Evaluation” by Kyriakos Kritikos, Chrysostomos
Zeginis, Andreas Paravoliasis, and Dimitris Plexousakis discusses the main issues involved
in cross-layer cloud application monitoring and proposes a complex event processing

(CEP) SLO evaluation framework to support the rapid and scalable identification of
complex event patterns that signify complex problematic situations which can be addressed
via the triggering of cross-layer adaptation workflows.

The third paper “Toward Business-to-IT Alignment in the Cloud” by Kyriakos
Kritikos, Emanuele Laurenzi, and Knut Hinkelmann discusses the main issues involved
in the design of BPaaS services and proposes a novel semantic framework which is
able to align high-level, domain-specific business processes to service-based technical
workflows. The novel features of that framework include a questionnaire-based
approach for the discovery of services matching the user requirements at the business
level as well as a workflow concretization method which takes into account both
technical requirements as well as the message compatibility between the discovered
services in order to find the most optimal service agglomeration that realizes the
functionality of the technical workflow.

In addition to the presentation of the accepted papers, an invited talk titled
“Business Processes and Smart Devices — A Marriage of Convenience?” was jointly
organized with participants of the Cloudways workshop focusing on the challenges and
perspectives with process modelling in the cloud, looking specifically also at edge and
IoT as a context. The presentation was given by Prof. Pierluigi Plebani from the
Politecnico di Milano, Italy.

We would like to thank all authors, members of the Program Committee, and
workshop participants, as their involvement was indispensable for the success of the
workshop. A special credit goes to the Information System Laboratory of ICS-FORTH
as well as to the members of the Horizon 2020 Cloudsocket European project.

Kyriakos Kritikos

Preface of BPM@Cloud 2017 3

Organization

Program Committee

Vasilios Andrikopoulos University of Groningen, The Netherlands
Claudia-Melania Chituc Eindhoven University of Technology, The Netherlands
Marco Comuzzi Unist, South Korea
Schahram Dustdar Vienna University of Technology, Austria
Vincent Emeakaroha University College Cork, Ireland
Ana Juan Ferrer ATOS, Spain
Giancarlo Fortino University of Calabria, Italy
Stella Gatziu Grivas University of Applied Sciences Northwestern – FHNW,

Switzerland
Farideh Heirari Eindhoven University of Technology, The Netherlands
Knut Hinkelmann University of Applied Sciences Northwestern – FHNW,

Switzerland
Christian Janiesch University of Würzburg, Germany
Dimka Karastoyanova Kuhne Logistics University, Germany
Massimo Mecella Sapienza - Università di Roma, Italy
Jan Mendling Vienna University of Economics and Business, Austria
Adrian Mos XEROX Research, France
Oscar Pastor Polytechnic University of Valencia, Spain
Barbara Pernici Politecnico di Milano, Italy
Pierluigi Plebani Politecnico di Milano, Italy
Dimitris Plexousakis FORTH, Greece
Barbara Re University of Camerino, Italy
Barbara Weber Technical University of Denmark, Denmark
Stefan Wesner University of Ulm, Germany
Robert Woitsch BOC, Austria

Towards PaaS Offering of BPMN 2.0
Engines: A Proposal for Service-Level

Tenant Isolation

Majid Makki(B), Dimitri Van Landuyt, and Wouter Joosen

imec-DistriNet, KU Leuven, 3001 Heverlee, Belgium
{majid.makki,dimitri.vanlanduyt,wouter.joosen}@cs.kuleuven.be

Abstract. Business processes modeling and management solutions pro-
vide powerful abstraction mechanisms for the control flow of complex,
task-driven applications, and as such allow for better alignment with
business-related concerns. Despite the existence and wide adoption of
standardized business process management languages such as WS-BPEL
and BPMN 2.0, workflow engines in current Platform-as-a-Service (PaaS)
offerings are in practice more restricted, in part for reasons such as ven-
dor lock-in, but also due to restrictions of multi-tenant environments.

In this paper, we explore the main security-related problems caused
by offering BPMN2-compliant workflow engines in a multi-tenant PaaS
environment, particularly focusing on threats caused by misbehaving ten-
ants and the lack of proper tenant isolation. In addition, we propose a
service-level tenant isolation framework that allows PaaS offerings to
support workflow engines which comply with the BPMN 2.0 standard,
and we discuss the technical feasibility of implementing this framework
using Java technologies such as OSGi and the Resource Consumption
Management API (JSR-284).

Keywords: Platform-as-a-Service (PaaS) · Workflow engines
Multi-tenancy · Untrusted code · Tenant isolation

1 Introduction

Platform-as-a-Service (PaaS) is a category of cloud computing services where
the execution platform is offered to software teams for facilitating the devel-
opment, deployment and maintenance of applications [1,2]. When optimized
resource utilization is among the main goals, different applications may share a
single installation of the execution platform in a multi-tenant fashion. Workflow
engines, in charge of executing business processes, can be part of a PaaS offering
and, thus, shared among multiple tenant applications.

Renowned workflow engines in PaaS offerings, such as Amazon SWF [3] and
Fantasm in Google App Engine [4], incur a high degree of vendor lock-in and are
limited in functionality and suboptimal vis-à-vis utilization of resources. Since
these engines have their own custom (i.e. non-standard) workflow modeling lan-
guages, the application will be, de facto, locked-in by the PaaS provider due to
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 5–19, 2018.
https://doi.org/10.1007/978-3-319-79090-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_1&domain=pdf

6 M. Makki et al.

high cost of porting (cf. [5]). In addition, some features, such as human tasks
or advanced event handling mechanisms which are commonly used in state-of-
the-art business process automation (cf. [6]), are not supported out of the box.
Supporting such features requires quite some ad-hoc engineering effort by the
application developers. Furthermore, despite sharing the execution environment
of the workflow engine between multiple tenant applications, these solutions
require separate environments for executing workflow tasks of each distinct ten-
ant application. The latter decreases resource efficiency whose maximization is
a principal goal of cloud computing [7].

These problems can be solved by offering workflow engines that comply with
the Business Process Modeling and Notation 2.0 (BPMN 2.0) [8] specification
which, next to the Business Process Execution Language (BPEL) [9], is the stan-
dard increasingly being adopted in practice. The standardized nature of such
engines increases the portability of applications developed using them. In addi-
tion, thanks to accumulated experience of decades which is behind BPMN 2.0,
these engines do not lack necessary and mainstream functional features. Fur-
thermore, these engines are capable of executing workflow tasks in the same
execution environment as the engine itself. Thanks to this capability, resources
are utilized more efficiently.

However, PaaS offering of BPMN2-compliant engines causes certain security
threats which necessitates specific protection measures well beforehand. The
principal source of threats is the untrusted tenant-provided code of workflow
tasks that will be executed in an execution environment shared between the
PaaS provider and multiple, possibly competing, tenants (cf. [10]). For instance,
conflicting access to IO resources is possible. As an alternative example, tenants
may exhaustively consume resources such as memory and bring down the service
entirely.

The state-of-the-art protection mechanism against such threats is OS-level vir-
tualization, i.e. hypervisors [11] or containers [12],where granularity-level of tenant
isolation is, as shown in Fig. 1(a), that of Operating System (OS) processes. This
requires having at least one active OS process for each tenant which implies that
quite some resources are reserved even if the tenant application does not impose
any load. Moreover, OS-level virtualization is not sufficient for all functionalities of
BPMN2-compliant engines because they execute some workflow tasks within the
same OS process as the engine itself1 which requires sharing a single OS process
between the PaaS provider and tenants. For more efficient utilization of resources
and being compatible with the nature of BPMN2-compliant engines, tenant isola-
tion has to take place at a higher level in the computational stack. As depicted by
Fig. 1(b), this is the level where the service itself is implemented.

This work-in-progress paper proposes a service-level tenant isolation frame-
work for enabling PaaS offering of BPMN 2.0 engines based on Java technologies.
We formulate a concrete research problem by analyzing the BPMN 2.0 specifi-
cation and widely-used BPMN2-compliant engines. Furthermore, given the fact
that the absolute majority of BPMN2-compliant engines are Java-based [13],

1 This is required by the BPMN 2.0 specification for some types of tasks.

Towards PaaS Offering of BPMN 2.0 Engines 7

Fig. 1. OS-level virtualization requires having separate OS processes for each tenant
application and the workflow engine while service-level isolation allows running all code
inside a single OS process.

we present an initial outline of a solution based on Java-related technologies.
The proposed solution takes threads as units of isolation for executing untrusted
code of tenant applications to overcome the aforementioned insufficiency of the
OS-level virtualization approach and the suboptimal resource utilization thereof.
The technical feasibility of the solution is shown by explaining how existing tech-
nologies, such as OSGi [14] and the Java Resource Consumption Management
API (JSR-284 [15]), enable its implementation.

The rest of this paper is structured as follows. Section 2 analyzes the research
problem. Section 3 presents the solution outline along with remarks on its techni-
cal feasibility. Section 4 briefly contrasts this proposal with related work. Finally,
Sect. 5 concludes the paper.

2 Problem Statement

This section analyzes the most compelling security threats caused by the PaaS
offering of BPMN 2.0 engines and formulates the research problem as a number
of concrete requirements.

2.1 Security Threat Analysis

We have systematically analyzed and prioritized the security threats using the
STRIDE2 threat model [16,17]. The most problematic security threats, insofar
as this paper is concerned, are related to two core features of BPMN 2.0 namely
Script Task and Service Task activity types. The former is required by the
standard to be “executed by a business process engine” [8]. This implies that
the same OS process running the engine is responsible for executing the Script
Task. While the standard does not require Service Task activities to be exe-
cuted by the same Operating System (OS) process running the engine, most
well-known and enterprise-ready BPMN 2.0 engines, such as jBPM [18] and
Activiti [19], allow defining Service Task activities that are executed within
the same OS process running the engine. Retaining this additional feature is

2 The acronym stands for six threat categories namely Spoofing, Tampering with
Data, Repudiation, Information Disclosure, Denial of Service and Elevation of
Privilege.

8 M. Makki et al.

essential for avoiding the overhead of remote service invocation, e.g.
(de-)serialization and network delay.

In a multi-tenant context of a PaaS offering, the code of Script Task
and Service Task activities belong to untrusted tenant applications using the
engine. Executing untrusted code of tenants in the same OS process running the
engine incurs different types of security threats (cf. [10,20,21]). Tampering with
Data, Information Disclosure, Denial of Service and Elevation of Privilege are
identified as the most important threat categories in this specific context and
are discussed below.

Tampering with Data. Since tenant-provided code may access IO resources,
one tenant application may modify another tenant’s data stored on a shared
device. In addition, a tenant application may modify the value of in-memory
object references belonging to or shared with other tenants.

Information Disclosure. A tenant application may read another tenant’s data
by, e.g., listening on a network port belonging to the other tenant. Similarly,
a tenant application may access in-memory object references belonging to or
shared with other tenants.

Denial of Service. One tenant application may disrupt the PaaS offering
entirely either by using up computational resources or by misusing part of the
API shared among all tenants. The resources of concern are CPU cycles, mem-
ory space and IO bandwidth (both storage and network). Misuse of shared API
can be either in form of killing the OS process hosting the service or in form of
locking shared objects indefinitely.

Elevation of Privilege. By creating a thread which is not under control of the
framework, one tenant application may increase its privileges and act without
constraints imposed by the framework.

2.2 Requirements

Since these threats are caused by code running within a single OS process, pro-
tection against them has to take place inside that OS process as well. Therefore,
a service-level tenant isolation framework is needed which fulfills the following
functional requirements:

– FR1: The framework should guarantee that no tenant application may access
objects or primitive values belonging to other tenants.

– FR2: The framework has to guarantee that shared system objects and refer-
ences accessible for tenant applications can neither be locked indefinitely nor
be modified by any of them.

– FR3: The creation of threads has to be entirely mediated by the framework.
– FR4: Permission of killing the OS process has to be denied for all tenant

applications.
– FR5: The framework should check tenant permissions before granting access

to any IO resource (e.g. a file on storage device or a network port).

Towards PaaS Offering of BPMN 2.0 Engines 9

– FR6: An upper limit has to be put on CPU usage, memory consumption and
IO bandwidth (both storage and network) on a per-tenant basis.

– FR7: Upper limit imposition on resource consumption has to be so flexi-
ble that resource utilization maximizes. In other words, if there are unused
resources that can be allocated safely, the framework should let tenant code
exceed the limits to some extent.

In addition, fulfillment of the above functional requirements should respect
the following quality requirements:

– QR1: All tenant isolation measurements should be enforced transparently by
the framework. In other words, code of tenant applications has to be entirely
decoupled from the tenant isolation framework.3

– QR2: The relative performance overhead of the framework compared to OS-
level virtualization tactics (cf. [11,12]) is required to be in an acceptable
margin.

3 Service-Level Tenant Isolation

This section outlines a service-level tenant isolation framework as a solution for
fulfilling the above requirements and shows technical feasibility of the framework.
Section 3.1 presents the framework architecture conceptually. Section 3.2 elabo-
rates on partial fulfillment of FR1 while Sect. 3.3 supplements it and discusses
static code restriction which is required for fulfillment of FR2 and FR3. Sup-
plementary measures for fulfillment of FR2 and FR3 are presented in Sect. 3.4
while Sect. 3.5 deals with permission checking mechanism which is required for
FR2, FR3, FR4 and FR5. Finally, Sect. 3.6 explains how the framework realizes
FR6 and FR7. The qualitative requirements are taken into account orthogonally
throughout this section.

3.1 Overall Architecture

Figure 2 shows the principal components running within a single OS process
in three layers: (i) the bottom layer is the Java execution platform and the
components it provides, (ii) the middle layer is where the service components
of the PaaS offering, including components of the tenant isolation framework,
sit, and (iii) the top layer consists of code of tenant applications built upon the
PaaS offering.

The tenant isolation framework consists of seven main components which are
introduced gradually throughout this section. The two front-end components of
the framework which are directly used by tenants are Deployment Service and
Workflow Execution Service. The former is responsible for deploying tenant
applications into the PaaS environment. The latter is responsible for starting
new workflow executions or continue/monitor/abort existing ones by running
the code of tenant applications in isolation from other tenants.
3 This is required for portability of tenant applications to other instances of the same

BPMN 2.0 engine where the tenant isolation framework is not used.

10 M. Makki et al.

Fig. 2. Building blocks of the framework in relation to tenant applications and the
execution platform

For imposing isolation measures, the Workflow Execution Service, using
an existing BPMN2-compliant engine such as jBPM [18], runs the untrusted code
of tenant applications in separate threads and guarantees that each active thread
is associated with only one tenant application at a time. Once each thread finishes
its job, it can be reused for other tenant applications using a thread pool provided
by the Java Concurrency API. The Workflow Execution Service leverages
upon the Concurrency API of the Java execution platform for handling threads.
Furthermore, it uses the Tenant Awareness component of the framework which
is responsible for keeping track of associations between threads and tenants.
Thus, the main cornerstone of the proposed solution is taking threads as units
of tenant isolation just as OS-level virtualization tactics take OS processes as
units of tenant isolation.

3.2 Tenant Containers

In order to dedicate a separate referencing space for objects of each tenant
application (cf. FR1), the Deployment Service deploys each application in a
distinct tenant container. As opposed to containers of OS-level virtualization
approach, containers shown in Fig. 2 are managed inside a single OS process.
OSGi [14] bundles provide exactly this containerization functionality. OSGi loads
each bundle using a distinct Java classloader and sets the bootstrap classloader,
which is responsible for loading core Java classes, as the parent of each bundle

Towards PaaS Offering of BPMN 2.0 Engines 11

classloader. Hence, the code of each bundle can access fields of its own classes
and static fields of core Java classes.

By containing the code of each tenant application in a separate OSGi bun-
dle, the FR1 requirement will be partially fulfilled. For complete fulfillment of
FR1, cross-bundle communication between tenant application bundles has to be
forbidden which is the topic of next section along with realization of FR2 and
FR3.

3.3 Static Code Restriction

Access of tenant applications to other classes and interfaces has to be restricted
for fulfillment of FR1, FR2 and FR3. API restriction is required both statically
and dynamically. Static restriction takes place only once at deployment time by
the Static Code Controller (cf. Fig. 2). This is done in multiple stages using
code analysis facilities provided by the Java platform and tools built upon it.

Cross-bundle Communication. Each OSGi bundle declares the list of classes
it imports from other bundles. This is used for cross-bundle communication. By
imposing limits on this list, the Static Code Controller guarantees that no
cross-bundle communication is possible between two tenant applications and,
thus, completes the realization of FR1.

Blacklist. One of the main elements of Static Code Controller is
BlacklistService which maintains a list of classes, methods and fields that
tenant applications are not allowed to use.

Given the structure of classloaders in OSGi, security vulnerabilities per-
taining to shared object locks and modifications (cf. FR2) are caused by
four Java programming constructs related to classes loaded by the bootstrap
classloader: (i) static field declarations, (ii) reference updates on static fields,
(iii) changing state of objects referenced by static fields, (iv) static synchro-
nized methods, and (v) synchronized blocks locking static fields [10,20,21]. The
BlacklistService searches for occurrences of these constructs in all classes
loaded by the bootstrap classloader using the Java source code querying facilities
provided by the Spoon library [22] as well as call graph construction and refer-
ence analysis (a.k.a. points-to analysis) mechanisms of the Soot framework [23].
A call graph consists of nodes and edges representing Java methods and invoca-
tion relationship between them respectively. Reference analysis helps resolving
non-static access to objects referenced by static fields of concern.

In addition, to further comply with FR3, the BlacklistService adds the
java.lang.Thread class to the blacklist. Furthermore, using the Spoon library,
it adds any method in the java.util.concurrency package capable of instan-
tiating new threads or intervening in the life-cycle of an existing thread.

Acceptance Policy. The final stage of Static Code Controller involves
accepting or rejecting the tenant application code. It checks whether the code
of a tenant application directly or indirectly deals with blacklisted constructs.

12 M. Makki et al.

SecurityManager sm = System.getSecurityManager ();
if (BlacklistService.isBlacklisted(this)) {

if (sm != null) {
sm.checkPermission(new

ReflectPermission("evadeBlacklist"));
}

}
super.originalMethod (...); // pseudocode

Listing 1.1. Restricting access of tenant applications to Java Reflection API.

For instance, it checks whether a blacklisted static synchronized is invoked
or the constructor of the Thread class is used. The first step for doing so is
creating a call graph using the Soot framework. Afterwards, the call graph has
to be traversed to see if any of the fields, methods or classes in the blacklist is
used by the methods included in the call graph. Furthermore, using the refer-
ence analysis mechanism provided by Soot, it has to be verified whether objects
referenced by static fields in the blacklist are modified indirectly (e.g. by means
of an intermediate local reference).

3.4 Dynamic Code Restriction

Restricting code of tenant applications statically is not sufficient because all the
malicious operations, which can be detected statically, can be done dynamically
as well using the Reflection API. Therefore, Restricted Reflection API
should be used by tenant applications instead of the original Java Reflection
API (cf. Fig. 2). This, however, can reintroduce the vendor lock-in problem that
QR1 requires to avoid. Therefore, tenant applications are allowed to use the origi-
nal Reflection API but at deployment-time, the Deployment Service asks the
Code Transformer to transform tenant code such that the original Reflection
API is replaced by Restricted Reflection API. This is feasible and straight-
forward because the Restricted Reflection API has exactly the same package
structure and exposes exactly the same API as the original one but with dif-
ferent behavior in some cases. The Code Transformer component employs the
transformation utilities provided by the Spoon framework [22].

The behavior difference is summarized by Listing 1.1 where this either refers
to a Field object whose get method is called, a Constructor object whose
newInstance method is invoked or a Method object whose invoke method is
called. Determining whether the use of these class members are blacklisted for
tenant applications, the same BlacklistService, which maintains the blacklist,
is used. Since the blacklist is prepared once in the entire life-time of the applica-
tion and kept in memory for subsequent uses, this does not impose a significant
performance overhead (cf. QR2).

As shown, Java SecurityManager is used to check whether evadeBlacklist
permission is granted to the OSGi bundle requesting the reflective operation.
This permission has to be granted only to trusted bundles, i.e. not to bundles
containing code of tenant applications. The checkPermission method throws

Towards PaaS Offering of BPMN 2.0 Engines 13

an AccessControlException if the required permission is not granted to the
bundle requesting the reflective operation.

The next section elaborates on how the permission checking mechanism of the
Java SecurityManager works and on how it is employed by the tenant isolation
framework.

3.5 Permission Checks

In addition to the above permission checking, the tenant isolation framework
enforces permission checks on invocations of System.exit method (cf. FR4)
and on every IO access (cf. FR5). Permission checks are automatically done
by the Java platform itself once the SecurityManager is enabled. The role of
the framework, hence, is limited to enabling the SecurityManager and granting
permissions properly.

The SecurityManager relies on a mechanism called stackwalking and asso-
ciates a permission set to each protection domain (cf. [24,25]). In OSGi, there
exists one protection domain for each bundle. The set of permissions of each ten-
ant application is granted to it by the Deployment Service at deployment time.
Tenant permission sets are, in principle, a combination of FilePermission and
SocketPermission for restricting their access to IO resources which is required
by FR5. By denying the RuntimePermission("exitVM") to tenant bundles, FR4
is also fulfilled. All other bundles, which do not contain tenant-provided code,
are granted AllPermission.

When permission p is required, the Java platform SecurityManager triggers
stackwalking, i.e. tracing the entire method invocation stack which has led to
the point of permission checking, and verifies that

∀pd∈PDs
p ∈ Ppd (1)

where PDs is the set of all protection domains involved in the scanned method
invocation stack s and Ppd is the set of permissions granted to the protection
domain pd. This way, the permissions of tenant application for whom permission
p has to be checked are taken into account and retrieved from its corresponding
protection domain.

Permission checks are not required when the running code is trusted, e.g. when
PaaS management and monitoring components are executed. In order to avoid the
performance overhead of the SecurityManager when it is not needed, the frame-
work enables it only when tenant application code is executed and disables it oth-
erwise. The TenantWorkflowExecutor, which is responsible for starting/resum-
ing/aborting a tenant workflow, toggles the ToggleableSecurityManager shown
in Fig. 3 before and after workflow execution using enable and disable methods
of the latter. These methods change the value of a ThreadLocal variable which is
used in the checkPermission method according to Listing 1.2.

14 M. Makki et al.

Fig. 3. The framework extends the SecurityManager such that it can be enabled only
when tenant-provided code is executed. This is done by means of a ThreadLocal vari-
able toggled before and after a tenant workflow executes.

if (enabled.get()) {
super.checkPermission(p);

}

Listing 1.2. Evading permission check when it is not required.

3.6 Resource Consumption Control

Fulfilling FR6 requires associating a service-level agreement (SLA) to each ten-
ant application. Listing 1.3 shows the structure of a tenant SLA. The frame-
work uses the Java Resource Consumption Management API (JSR-284) [15]
for imposing limits on resource consumption of each tenant application. On
a per-tenant basis, ResourceMeter instances are created for each element of
the SLA. Meters are notified by the Java platform every time new informa-
tion about their corresponding resources allocation/release is available. The
Resource Consumption Controller creates tenant meters only once (the first
time they are needed) by consulting the Tenant Awareness component which
has access to SLAs. Once meters are created, they will be associated with a
tenant-specific ResourceContext. Before executing the untrusted code of any
tenant, the TenantWorkflowExecutor associates the tenant meters to the exe-
cuting thread according to Listing 1.4.

The meters provided by the Java platform are themselves capable of impos-
ing a limit on consumption of IO-related resources. Hence, it is sufficient to
choose the right type of meter for each resource type. The BoundedMeter
is used for maxOpenFiles, maxOpenSockets and maxOpenDatagrams and the
ThrottledMeter is used for other IO-related resources. Both of these meters are
capable of imposing a limit on resource usage. The only difference is that the
former is appropriate for cases dealing with absolute numbers (e.g. number of
open files) while the latter best suits cases where a rate is involved (e.g. bytes
read from file system per seconds).

The meters provided by the Java platform however are not capable of imposing
a limit on memory and CPU usage. The best they can do is to notify when the
limit is reached. Our framework employs Quasar Fibers [26] instead of original

Towards PaaS Offering of BPMN 2.0 Engines 15

public class TenantSLA {

private long maxCpuUsage; // CPU nanoseconds per second
private long maxMemoryUsage; // bytes

private int maxOpenFiles;
private long maxReadDiskRate; // bytes per second
private long maxWriteDiskRate; // bytes per second

private int maxOpenSockets; // TCP sockets
private long maxReadSocketRate; // bytes per second
private long maxWriteSocketRate; // bytes per second

private int maxOpenDatagrams; // UDP datagrams
private long maxReadDatagramRate; // bytes per second
private long maxWriteDatagramRate; // bytes per second

// getters and setters

}

Listing 1.3. Structure of Tenant SLA.

ResourceContextFactory factory = ResourceContextFactory.getInstance ();
ResourceContext rc = factory.lookup(tenantId);
rc.bindThreadContext(); // binds to the current thread
// workflow execution code
rc.unbindThreadContext (); // unbinds from the current thread

Listing 1.4. Binding tenant ResourceContext to threads before starting workflow
execution.

Java threads in order to safely suspend the untrusted code of tenants when they
consume too much memory space or CPU time. Since Fiber suspension is done at
the level of the JVM rather than that of the OS kernel, regularly suspending them
does not impose much overhead. Furthermore, tenant-specific information about
consumption level can be used for resuming suspended Fibers whereas execution
of original Java threads are left to the OS kernel which does not have any tenant-
specific information.

Fiber suspension may take place after specific checkpoints. The memory
usage is checked every time a new object is instantiated. Therefore, the bytecode
of the Object constructor is manipulated to enforce a memory limit checkpoint.
Once the responsible NotifyingMeter notifies the surpass of memory limit by
a specific tenant, a tenant-specific boolean variable will be modified to indi-
cate that the corresponding tenant cannot create new objects anymore. The
boolean variable will be consulted by the memory checkpoint inside of the Object
constructor.

The CPU checkpoints, however, are more widespread. They have to guaran-
tee that tenants cannot evade CPU usage control mechanism. Hence, two types
of checkpoints are inserted by bytecode manipulation of both the Java API
and the untrusted code of tenant: (i) inside every loop structure and (ii) inside
every recursion (be it direct or indirect). Manipulating the Java API is required

16 M. Makki et al.

because tenants may exploit it by means of method arguments. Similarly, a
boolean variable is checked in every checkpoint and if the tenant code has
to be suspended due to excess of CPU usage, it will be suspended. Despite
the widespread nature of CPU checkpoints, the performance overhead is not
expected to be high because under normal circumstances every checkpoint will
amount to a simple if statement involving a boolean variable.

FR7 requires managing some types of resources flexibly. Flexible resource
consumption means allowing tenants surpassing the limits defined in their SLAs
when there are sufficient amount of resources available for allocation. This
involves too much risk in case of memory usage, number of open files and num-
ber of open sockets because once tenants go beyond their limits on these types
of resources, there is no guarantee that the system can push them back to their
borders (cf. [10,20,21] for the case of memory usage). However, that risk is not
relevant in case CPU usage and IO bandwidth because their consumption is
time-dependent by nature and thus can be reclaimed by the system if need be.

The following condition determines whether resource allocation can be done
regardless of the fact that a tenant SLA limit is reached:

totalr + amountr ≤ lr × capacityr (2)

where r is a resource of concern, totalr is the total consumption amount of all
tenants before approving the new request, amountr is the requested amount,
capacityr is the total capacity of the system on r and lr is the leniency factor
between 0 and 1. When leniency factor is set to zero, every tenant will be strictly
restricted to its SLA regardless of resource availability, i.e. unallocated amounts.
When it is set to one, the unallocated amounts will be used for letting more
active tenants going beyond their SLA limits.

The System Health Monitoring is consulted component for retrieving the
total usage. Capacity is a set by system administrators while total usage is
retrieved from the ResourceContextFactory provided by the Java platform.
The latter does not calculate the total usage every time queried. Instead, it
keeps track of total amounts on every resource allocation and release. Decisions
of this approver are safe because they are made about resources measured on
a per-second basis and surpassing their limits will have no effect beyond the
measurement window which is two seconds according to the API. In other words,
it is guaranteed that these resources can be throttled back to the limits defined
in tenant SLAs once the load on the system increases.

4 Related Work

In this section, we briefly compare this paper with related work.

PaaS Offering of Workflow Engines. Pathirage et al. [27] proposes an archi-
tecture for PaaS offering of Apache ODE [28] which is a workflow engine com-
plying with WS-BPEL. Since all activities involving code execution are remote
web-services, the security threats that we covered in this paper are not relevant

Towards PaaS Offering of BPMN 2.0 Engines 17

for that work. However, delegating execution of all untrusted activity code to
remote web-services both reduces efficiency of resource utilization and imposes
the overhead of remote invocation (e.g. network delay and serialization). Yu
et al. [29] claims having enabled jBPM [18], a BPMN2-compliant engine, to be
offered as a PaaS. However, the security threats discussed in this paper are over-
looked altogether. Amazon SWF [3] and Fantasm on Google App Engine [4]
are production ready PaaS offerings of workflow engines. However, applications
developed using them highly suffer from vendor lock-in problem in terms of both
code and data. Furthermore, resource utilization is sub-optimal due to adoption
of OS-level virtualization tactics.

OS-level Virtualization. Similar isolation measures can be imposed by means
of containers (cf. [12]) or virtual machines (cf. [11]). However, in case of Java, a
separate instance of the JVM should be started for each tenant which reduces
efficiency of resource utilization. Furthermore, these solutions are totally insuffi-
cient for offering BPMN2-compliant engines as the latter runs Script Task and,
in some cases, Service Task activities in the same OS process as the workflow
engine itself.

Java Language Vulnerabilities. Security threats related to running untrusted
code in Java threads are discussed in [10,20,21]. These problems are caused by
the shared nature of static fields, blocking effect of static synchronized methods,
reference leaks and shared nature of computational resources. Our threat analysis
is based on these works and we have proposed ideas for solving some of them
and workarounds for some others based on existing technologies.

Application Performance Isolation. There are a number of works dealing
with performance isolation for Software-as-a-Service (SaaS) applications [30–33].
While these works deal with SLAs expressed in external properties of an applica-
tion such as response-time and throughput, the SLAs are defined in system-level
terms such as CPU usage. This is because these works do not deal with the issues
of running untrusted code in a shared execution environment. Krebs et al. have
proposed a framework for determining resource usage based on the aforemen-
tioned external properties [34]. However, their solution requires categorization
of all possible requests into different groups beforehand which is not feasible in
case of PaaS where application requests are not known by the PaaS provider.

5 Conclusion

Business process automation is a common practice supported by a set of mature
standards (e.g. BPMN 2.0 and WS-BPEL) and numerous workflow engines that
implement these standards. Due to the specific deployment model of multi-
tenancy in a Platform-as-a-Service (PaaS) context, full support of these stan-
dards requires additional attention to security threats caused by misbehaving
tenants. We have presented an outline of a framework for tenant isolation in
the context of co-existing business processes of different tenants, and we have
discussed its practical feasibility for the Java environment.

18 M. Makki et al.

Advancing this work fits into our ongoing research on the key trade-offs
related to multi-tenancy between resource optimization, customization sup-
port (e.g. by means of tenant-provided tasks), security (tenant isolation) and
portability of business processes across different cloud providers. We have imple-
mented the permission checking and resource consumption mechanisms of the
framework. In follow-up work, we will further implement the code restriction part
and evaluate the proposed framework vis-à-vis performance overhead compared
to the OS-level virtualization approach and dimension of tenant code restric-
tions (i.e. determining how limited tenant applications will be in using the Java
API given the restrictions imposed by the framework).

Acknowledgement. This research is partially funded by the Research Fund KU
Leuven (project GOA/14/003 - ADDIS), the strategic basic research (SBO) project
DeCoMAdS, and the MuDCads O&O project.

References

1. Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing sys-
tems. In: INC, IMS and IDC, pp. 44–51 (2009)

2. Walraven, S., Truyen, E., Joosen, W.: Comparing paas offerings in light of SaaS
development. Computing 96(8), 669–724 (2014)

3. AWS: Amazon Simple Workflow Service (Amazon SWF). https://aws.amazon.
com/documentation/swf/. Accessed 12 June 2017

4. Google: Google App Engine Fantasm. https://cloud.google.com/appengine/
articles/fantasm. Accessed 12 June 2017

5. Opara-Martins, J., Sahandi, R., Tian, F.: Critical review of vendor lock-in and
its impact on adoption of cloud computing. In: 2014 International Conference on
Information Society (i-Society), pp. 92–97. IEEE (2014)

6. Ko, R.K., Lee, S.S., Wah Lee, E.: Business process management (BPM) standards:
a survey. Bus. Process Manag. J. 15(5), 744–791 (2009)

7. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

8. OMG: Business Process Model and Notation 2.0. http://www.omg.org/spec/
BPMN/2.0/PDF/. Accessed 04 Aug 2015

9. OASIS: Web Services Business Process Execution Language. http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. Accessed 04 June 2016

10. Rodero-Merino, L., Vaquero, L.M., Caron, E., Muresan, A., Desprez, F.: Building
safe PaaS clouds: a survey on security in multitenant software platforms. Comput.
Secur. 31(1), 96–108 (2012)

11. Li, Y., Li, W., Jiang, C.: A survey of virtual machine system: current technology
and future trends. In: 2010 Third International Symposium on Electronic Com-
merce and Security (ISECS), pp. 332–336. IEEE (2010)

12. Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE
Cloud Comput. 1(3), 81–84 (2014)

13. Wikipedia: List of BPMN Engines. https://en.wikipedia.org/wiki/List of BPMN
2.0 engines. Accessed 05 July 2017

14. OSGi-Alliance: OSGi specification (2012). https://osgi.org/download/r4v43/osgi.
core-4.3.0.pdf. Accessed 19 April 2017

https://aws.amazon.com/documentation/swf/
https://aws.amazon.com/documentation/swf/
https://cloud.google.com/appengine/articles/fantasm
https://cloud.google.com/appengine/articles/fantasm
http://www.omg.org/spec/BPMN/2.0/PDF/
http://www.omg.org/spec/BPMN/2.0/PDF/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines
https://en.wikipedia.org/wiki/List_of_BPMN_2.0_engines
https://osgi.org/download/r4v43/osgi.core-4.3.0.pdf
https://osgi.org/download/r4v43/osgi.core-4.3.0.pdf

Towards PaaS Offering of BPMN 2.0 Engines 19

15. JCP: JSR 284: Resource Consumption Management API. https://jcp.org/en/jsr/
detail?id=284. Accessed 12 June 2017

16. Microsoft: The stride threat model (2015). https://msdn.microsoft.com/en-us/
library/ee823878(v=cs.20).aspx. Accessed 19 April 2017

17. Shostack, A.: Threat Modeling: Designing for Security. Wiley, New York (2014)
18. RedHat-JBoss: jBPM. http://www.jbpm.org/. Accessed 04 June 2017
19. Alfresco: Activiti User Guide. https://www.activiti.org/userguide/. Accessed 24

May 2017
20. Czajkowski, G., Daynés, L.: Multitasking without comprimise: a virtual machine

evolution. ACM SIGPLAN Not. 36, 125–138 (2001)
21. Herzog, A., Shahmehri, N.: Problems running untrusted services as Java threads.

Certification Secur. Inter-Organ. E-Serv. 177, 19–32 (2004)
22. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: a

library for implementing analyses and transformations of Java source code. Softw.
Pract. Exp. 46(9), 1155–1179 (2016)

23. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for Java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infrastructure Work-
shop (CETUS 2011), vol. 15, p. 35 (2011)

24. Oracle: Java 8 SE platform security. https://docs.oracle.com/javase/8/docs/
technotes/guides/security/overview/jsoverview.html. Accessed 19 April 2017

25. Gong, L., Ellison, G.: Inside Java (TM) 2 Platform Security: Architecture, API
Design, and Implementation. Pearson Education, London (2003)

26. Parallel Universe: Quasar. http://docs.paralleluniverse.co/quasar/. Accessed 09
July 2017

27. Pathirage, M., Perera, S., Kumara, I., Weerawarana, S.: A multi-tenant architec-
ture for business process executions. In: 2011 IEEE International Conference on
Web services (ICWS), pp. 121–128. IEEE (2011)

28. Apache: Apache ode. http://ode.apache.org/. Accessed 09 July 2017
29. Yu, D., Zhu, Q., Guo, D., Huang, B., Su, J.: jBPM4S: a multi-tenant extension of

jBPM to support BPaaS. In: Bae, J., Suriadi, S., Wen, L. (eds.) AP-BPM 2015.
LNBIP, vol. 219, pp. 43–56. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19509-4 4

30. Walraven, S., De Borger, W., Vanbrabant, B., Lagaisse, B., Van Landuyt, D.,
Joosen, W.: Adaptive performance isolation middleware for multi-tenant SaaS. In:
2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing
(UCC), pp. 112–121. IEEE (2015)

31. Krebs, R., Loesch, M., Kounev, S.: Platform-as-a-service architecture for perfor-
mance isolated multi-tenant applications. In: 2014 IEEE 7th International Confer-
ence on Cloud Computing (CLOUD), pp. 914–921. IEEE (2014)

32. Krebs, R., Momm, C., Kounev, S.: Metrics and techniques for quantifying perfor-
mance isolation in cloud environments. Sci. Comput. Program. 90, 116–134 (2014)

33. Lin, H., Sun, K., Zhao, S., Han, Y.: Feedback-control-based performance regulation
for multi-tenant applications. In: 2009 15th International Conference on Parallel
and Distributed Systems (ICPADS), pp. 134–141. IEEE (2009)

34. Krebs, R., Spinner, S., Ahmed, N., Kounev, S.: Resource usage control in multi-
tenant applications. In: 2014 14th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (CCGrid), pp. 122–131. IEEE (2014)

https://jcp.org/en/jsr/detail?id=284
https://jcp.org/en/jsr/detail?id=284
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
http://www.jbpm.org/
https://www.activiti.org/userguide/
https://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/overview/jsoverview.html
http://docs.paralleluniverse.co/quasar/
http://ode.apache.org/
https://doi.org/10.1007/978-3-319-19509-4_4
https://doi.org/10.1007/978-3-319-19509-4_4

CEP-Based SLO Evaluation

Kyriakos Kritikos1 , Chrysostomos Zeginis1(B), Andreas Paravoliasis2,
and Dimitris Plexousakis1

1 Institute of Computer Science - FORTH, Heraklion, Greece
{kritikos,zegchris,dp}@ics.forth.gr

2 Computer Science Department, University of Crete, Heraklion, Greece
csd3031@csd.uoc.gr

Abstract. Modern service-based applications (SBAs) operate in highly
dynamic environments where both underlying resources and the appli-
cation demand can be constantly changing which external SBA com-
ponents might fail. Thus, they need to be rapidly modified to address
such changes. Such a rapid updating should be performed across multiple
levels to better deal, in an orchestrated and globally-consistent manner,
with the current problematic situation. First of all, this means that a fast
and scalable event generation and detection mechanism should exist to
rapidly trigger the adaptation workflow to be performed. Such a mecha-
nism needs to handle all kinds of events occurring at different abstraction
levels and to compose them so as to detect more advanced situations. To
this end, this paper introduces a new complex event processing frame-
work able to realise the respective features mentioned (processing speed,
scalability) and have the flexibility to capture and sense any kind of event
or event combination occurring in the SBA system. Such a framework
is wrapped in the form of a REST service enabling to manage the event
patterns that need to be rapidly detected. It is also well connected to
other main components of the SBA management system, via a publish-
subscribe mechanism, including monitoring and the adaptation engines.

Keywords: Complex event processing · Event pattern · Detection
Service

1 Introduction

Due to tough competition, organisations can survive if they can improve their
services to exhibit better service levels with less cost. Such organisations need to
also possess a smart infrastructure and a dedicated devops team to appropriately
re-configure the services offered as well as manually intervene in unanticipated,
problematic situations. As such, a lot of effort is spent in maintaining such an
infrastructure while an increasing management and operational cost also incurs.

Fortunately, the advent of cloud computing has revolutionised the way
resource management is performed. Nowadays, organisations can outsource their
infrastructure management to cloud providers that promise to offer infinite,

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 20–34, 2018.
https://doi.org/10.1007/978-3-319-79090-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_2&domain=pdf
http://orcid.org/0000-0001-9633-1610

CEP-Based SLO Evaluation 21

cheap commodity resources on an on-demand basis. Due to flexible resource
management and the capability to scale a cloud-based system, organisations
can now optimise their services at the infrastructure level. However, still effort is
needed at higher-levels of abstractions. In particular, external SaaS services need
to be dynamically selected to realise part of the required functionality while the
whole system needs to be adapted.

In the literature, it has been advocated [11] that dynamic SBA adaptation
should be performed in a cross-layer manner by also putting in place, as a pre-
requisite, a suitable monitoring framework. Cross-layer adaptation is needed for
various reasons. First, as the service system itself includes multiple levels that
must be appropriately controlled. Second, as the individual adaptation at one
level can influence, impact or even negate the adaptation results at adjacent
levels, leading to a vicious re-adaptation cycle. Cross-layer monitoring is also
needed to propagate and aggregate up to higher-levels measurements produced
in lower levels so as to cover measurability gaps.

As the glue between monitoring and adaptation, there is a need for a rapid
and scalable Service Level Objective (SLO) evaluation framework able to trans-
form measurements to events and subsequently detect event patterns that can
lead to performing adaptation actions in the context of adaptation rules. Such
a framework should also exhibit suitable accuracy levels by correctly correlating
the events occurring based on their metrics and measured objects. It should also
be able to detect and correlate events which should map to both the type and
instance level in the managed SBA system.

In this work, such a framework has been carefully designed and realised, by
conforming to all the aforementioned requirements. In particular, the framework
architecture was initially designed by considering principles, such as service-
orientation, and by carefully decoupling framework parts subject to scaling.
Based on this architecture and the appropriate selection of the right, existing
components and tools, a respective framework was then implemented and inte-
grated in our existing SBA monitoring and adaptation framework [21]. Such
an integration is loosely coupled as our SLO evaluation framework can be in
principle connected to any monitoring and adaptation engine.

The developed framework relies on the CAMEL domain-specific language
(DSL), able to capture various aspects in the cloud-based application lifecycle
management, including the monitoring and adaptation ones. In particular, this
DSL is expressive enough to specify complex event patterns, where each event
maps to a metric condition, and associate them with respective sets of adapta-
tion actions that must be triggered to adapt the SBA in a cross-layer manner.
CAMEL also covers well the monitoring aspect via its capability to specify how
composite metrics are aggregated and to associate metrics with the (e.g., service)
component that they measure. As it will be shown, such information is essential
to have the ability to correlate events in the context of event pattern detection.

The proposed framework relies on the Esper Complex Event Processing
(CEP) engine. This engine is quite scalable with the capability to process thou-
sands or even millions of events. Due to the way our architecture has been

22 K. Kritikos et al.

designed, this engine can be scaled when its processing limits are reached,
enabling our framework to really scale at those parts where most of the load
is directed.

The rest of the paper is structured as follows. The next section provides a
use case scenario which is used as a running example across the whole paper,
while Sect. 3 reviews the related work. Section 4 provides background informa-
tion necessary for the comprehension of this paper contribution. Section 5 anal-
yses the proposed framework architecture and supplies some implementation
details. Section 6 explains the way the event pattern specification is generated
by accounting also on how the events of the pattern should be correlated. Finally,
the last section concludes the paper and draws directions for further research.

2 Use Case

The use case, which is used as a running example across the paper, has been
drawn from the CloudSocket project1 which deals with the management of Busi-
ness Processes (BPs) in the Cloud. This use case concerns the development of a
service-based BP as a service (BPaaS), named as “SendInvoice”, which offers the
functionality of invoice generation and sending. This BPaaS maps to a support-
ing BP which can really provide appropriate automation level within a small or
medium-sized organisation with respect to the management of invoicing. In this
respect, it makes sense to develop and offer this BP in the cloud as the demand
for this BP would be quite high.

The “SendInvoice” BPaaS exploits two main services: (a) an external SaaS
dedicated to the customer relationship management (CRM) named as YMENS
CRM; (b) an internal component for invoice management called “Invoice Ninja”
which has been purchased and deployed in the Cloud in an Amazon EC2 VM
named as “m1.medium”. These two services are then combined into a technical
workflow which is deployed in the cloud and includes tasks that map to certain
methods/functionalities of these services.

The topology of the initial deployment of the “SendInvoice” BPaaS in the
Cloud, as specified also in CAMEL, is depicted in Fig. 1 where both the type
and instance levels are shown. As it can be observed, only one instance of the
“InvoiceNinja” (software) component, named as “InvoiceNinja inst1” has been
deployed in one instance of the “m1.medium” VM named as “m1.medium inst1”.

Suppose, now, that the organisation offering the “SendInvoice” BPaaS, i.e.,
a Cloud Broker, needs to control its execution in order to sustain a suitable
service level that has been agreed with any of its customers in the context of an
SLA. As the set of customers can grow, the Cloud Broker needs to control the
amount of resources dedicated to “Invoice Ninja” as well as have the ability to
replace the CRM service when its service level is not any more acceptable. To this
end, it specifies the following set of adaptation rules (specified in CAMEL but
abstracted away due to space limitation reasons) which scale out “Invoice Ninja”

1 www.cloudsocket.eu.

http://www.cloudsocket.eu

CEP-Based SLO Evaluation 23

Fig. 1. The topology of the “SendInvoice” BPaaS.

or replace “YMENS CRM” with another SaaS. These rules are then given as
input to the BPaaS Execution Environment of the CloudSocket platform which
takes care of performing the respective adaptation actions required. The CEP-
based SLO Evaluation framework proposed can be part of this environment by
replacing an equivalent component which currently supports only adaptation at
the IaaS level (mostly scaling actions).

R1 : raw cpu (m1.medium) > 80% ∧ raw mem (m1.medium) > 90% ⇒ scale − out (IN)

R2 : mean rt (Y C) > 20 ∧ mean avail (Y C) < 99.99% ⇒ replace (Y C)

R3 : mean cpu (m1.medium) > 70% ∧ mean rt (IN) > 20 ⇒ scale − out (IN)

where raw cpu & raw mem are the Raw CPU and Raw Memory Utilisation met-
rics, mean rt, mean cpu and mean avail are the MEAN Response Time, CPU
Utilisation and Availability metrics while IN represents the “Invoice Ninja”
component and Y C the “YMENS CRM” component.

Rules R1 & R3 focus on scaling out the “Invoice Ninja” component. The first
rule attempts to immediately scale this component when one of its instances is
severely overloaded. On the other hand, the third rule focuses on scaling out
this component when its global status across all of its instances seems to be
overloaded.

Rule R2 attempts to replace the “YMENS CRM” external SaaS when both its
mean response time is more than the threshold posed and its availability drops
under a certain level. The replacement service is not specified as the system
should dynamically find its replacement according to the current situation.

The whole specification of the use case in CAMEL, including the topol-
ogy and the adaptation model of the “SendInvoice” BPaaS, can be found at:
https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?
usp=sharing.

https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?usp=sharing
https://drive.google.com/file/d/0B1oLQgQCVlqramYwa1hDZmtnSGc/view?usp=sharing

24 K. Kritikos et al.

3 Related Work

Various approaches have been proposed in complex event processing and event
pattern detection. Most rely on CEP engines that detect complex events contin-
uously and build correlations and relationships between them, such as causality
and timing ones. The detection of complex patterns is based on various tech-
niques applied either over event streams [18,19] or in an offline [9,13] manner.

Statistical event detection approaches mainly exploit a user-defined minimum
frequency or support (minsup). The springboard of all these approaches is the
Apriori algorithm [1]. This algorithm produces the set of all significant associa-
tion rules (rules relating a set of variables) between items in a large transactions
database with a minsup. In [16], the authors introduce a method for discovering
frequent event patterns, as well as their spatial and temporal properties in sen-
sor networks, exploiting data mining techniques. Provided that events are put
into a spatial and temporal context, the authors correlate certain event types
on a sensor node with context events in a confined neighborhood in the recent
past. Thus, a pattern of events is discovered whenever this pattern’s frequency
surpasses a minsup. In [14], the authors propose the Lossy Counting widely used
algorithm. This is an one-pass algorithm that computes approximate frequency
counts of elements in a data stream and involves grouping the row items into
blocks or chunks and counting within each chunk.

Temporal event processing approaches exploit the temporal relations among
an input stream’s events. Such approaches can be very useful for deriving implicit
information for the temporal ordering of raw data and predicting the future
behavior of the monitored application. In [3] the authors introduce a formal
framework for expressing data mining tasks involving time granularities, as well
as algorithms for performing these tasks. Time constraints are injected into the
system to bound the distance between an event pair in terms of time granularity.
For instance, event e2 must happen within two minutes after the occurrence of
event e1 so as to consider e1, e2 an event pattern. In [15] a temporal data mining
approach is presented for data that cannot fit in memory or are processed at a
faster rate than the generation one. The proposed sliding window model slides
forward in hops of batches, while only a single batch is available for processing.

Moreover, logic-based approaches exploit inferencing to discover patterns
defining respective association rules. In [17] a pattern discovery approach is
proposed mapping logical equivalences based on propositional logic. In partic-
ular, a rule mining framework is introduced, generating coherent application
domain independent rules for a given dataset that do not require setting an
arbitrary minsup. The logic-based approach in [2] proposes an event calculus
(EC) dialect, called RTEC, for efficient run-time recognition that is scalable to
large data streams and exploits main EC predicates to discover specific activi-
ties. In our previous work [20], we have introduced a logic-based algorithm for
discovering valid event patterns causing specific SLO violations. These event
patterns interrelate events produced during the SBA’s execution and can be
further exploited to enrich the adaptation rules defined by experts. This paper

CEP-Based SLO Evaluation 25

goes a step further introducing a scalable and high-performance complex event
processing framework that can realise and extend the event pattern detection
feature.

Finally, other approaches also consider Business Process Management (BPM)
when dealing with SLO evaluation. For instance, [6,10] propose solutions (mainly
scaling actions) for the optimization of Business Processes that are executed
on virtualized environments. A similar approach is proposed in [8], where the
authors apply data mining techniques to predict QoS and thus identify the cor-
relation between the design and provisioning alternatives.

4 Background

4.1 Esper

Esper2 is a stream-oriented CEP engine that provides the SQL-like and rich
Event Processing Language (EPL). EPL enables expressing complex (event)
matching conditions that include temporal windows, joining of different event
streams, as well as filtering, aggregation, sorting and pattern detection. The
proposed framework exploits it for the event pattern detection.

4.2 CAMEL

CAMEL is a multi-DSL, developed in the context of the PaaSage3 project to
deal with the specification of multiple aspects in the multi-cloud applications
lifecycle. It integrates already existing languages, like CloudML [7], as well of new
languages developed with that project, like the Scalability Rule Language (SRL)
[12]. The aspects covered by CAMEL mainly include: deployment, requirement,
metric, scalability, provider and organisation aspects.

This paper focuses mainly on the metric and scalability aspects covered by
the SRL sub-DSL of CAMEL. The metric package attempts to cover all measure-
ment details that need to be specified for a non-functional metric, like formulas,
functions, units of measurement plus measurement schedules and windows. This
package is also able to specify conditions on metrics that can be exploited to
specify SLOs as well as non-functional events in scalability rules.

The scalability aspect is covered via specifying scalability rules that map
single events or event patterns to one or more scaling actions. Scaling actions
can be either horizontal or vertical. Horizontal scaling actions include scale-out
and scale-in actions while vertical actions include scale-up and scale-down.

The conceptualisation of events and event patterns is depicted in Fig. 2.
Events can be single or composite. Single events can be further distinguished
in functional and non-functional. Functional events map to a certain functional
fault, like an application component failure. Non-functional events are associated

2 http://www.espertech.com/esper/.
3 https://paasage.ercim.eu/.

http://www.espertech.com/esper/
https://paasage.ercim.eu/

26 K. Kritikos et al.

Fig. 2. The event pattern part of the SRL meta-model.

to a metric condition violation. A composite event maps to a logical or time-
based combination of one or more events in the form of an event pattern. As such,
such a combination is associated with respective logical and time-based opera-
tors. Both binary and unary operators can be defined which leads to producing
unary and binary event patterns, respectively. Logical operators include AND,
OR, NOT and XOR. Time-based operators have been inspired by Esper’s EPL
and include many of the operators defined in that language (e.g., REPEAT).

As an event pattern is also a kind of event, patterns can be recursively defined.
This means that, for example, when applying a binary logical operator (e.g.,
AND) over a certain binary event pattern, the first event could be single and
the second could be another event pattern. For instance, suppose that the event
pattern EP1: A ∧ (B ∨ C) must be defined. To specify EP1, we need to define
that the first event is A, the second event maps to the event pattern EP2 and
that the logical operator applied is ∧. The second event pattern EP2 would then
be specified as the application of the ∨ operator over two events, B and C.

As another example, consider the case of adaptation rules R1 & R3 which
have the same consequent (i.e., adaptation action). In order to reduce the number

CEP-Based SLO Evaluation 27

of rules that need to be checked and triggered by the system, these two rules
could be combined into one. In that case and by considering that the name of
each rule could also be the name of the respective event to be defined, then a
more composite rule R4 would be constructed which would map to the complex
event pattern (R1 ∨ R3).

Via the recursive definition of events, more complex and advanced situations
can be captured in respective rules. This should not stop to the case of scalability
rules, but could cover any adaptation rule kind. This has been performed by the
CloudSocket project (see footnote 1) [5] via an SRL extension. This extension
can specify any adaptation rule kind at different abstraction levels. The event
part of the rule specification was left as is, but the action part was extended
to specify a workflow of adaptation actions that can be performed at the levels
of infrastructure, platform, service and business process. As such, this extension
fits well to the latest research trends in service computing that require specify-
ing, executing and managing cross-layer rules to more effectively deal with the
adaptation of cross-level SBAs in both simple and more advanced problematic
situations.

In the context of this work, only the event part of an adaptation rule is
considered due to intended functionality to be delivered. The CEP engine devel-
oped just detects the need to trigger a rule and then informs the rule execution
component, e.g., an Adaptation Engine, to enact that execution of that rule.

5 SLO Evaluation Framework

5.1 Framework Analysis

The proposed SLO Evaluation Framework relies on the modular architecture
depicted in Fig. 3. This architecture comprises three main levels: (a) interface;
(b) core logic; (c) database (DB). At the interface level, the main actions (add,
update, delete) that can be performed over an event pattern (EP) have been
wrapped into the form of a REST service, called, EP Service, able to parse
CAMEL/SRL fragments mapping to the specification of these patterns. Each
action, when called, then has an impact over the core logic level of the framework.

At this second level, there is a main component, called EP Parser, which
is responsible for processing the EPs obtained from the EP Service. Depending
then on the action requested, different interactions take place at this level.

EP Addition. In case of adding a new EP, the EP Parser transforms it into an EP,
specified in the EP language of the CEP framework, which is then registered in
the server of that CEP framework, called CEP Server, so that it can be immedi-
ately detected. The names of metrics referenced by the EP, i.e., directly involved
in the conditions of the EP’s events, are also sent to the Metric Subscriber which
not only informs its local metric list but also registers for subscribing to such
metrics, when they are new, in the Metric Publisher. In parallel to this registra-
tion, the updated metric list of the Metric Subscriber is stored in the EP DB for
fault-tolerance and rapid recovery reasons. The Metric Publisher is responsible

28 K. Kritikos et al.

Fig. 3. The architecture of the SLO evaluation framework.

for publishing the values of metrics monitored to potential subscribers. As such,
it can well map to a Monitoring Engine of a SBA management system. Once
both the new EP and its respective metrics are registered in the corresponding
system parts, the EP addition has been successful. So, the EP Parser stores the
new EP in the EP DB not only for recovery reasons but also to gather statistics
about EPs, while being detected by the Esper Server. The EP DB has been
realised in the form of a model repository able to store, query and manipulate
models of CAMEL, especially EPs, along with their statistics.

EP Deletion. In case of EP deletion, the EP is first fetched from the EP DB.
Then, in parallel, the EP Parser informs both the CEP Server and the Metric
Subscriber to update their structures and take further actions. The CEP Server
just deregisters the EP’s EPL specification. On the other hand, after checking
that the EP metrics to be removed are not exploited in other EPs, the Metric
Subscriber is informed to unsubscribe to these metrics to reduce the system load.

EP Update. In case of EP update, the produced EPL statement by the EP
Processor is used to update the previous one. In addition, the Metric Subscriber
is informed for adding or removing metrics which are or not needed any more
(by any EP), respectively.

While the above actions can take place through the interaction of an exter-
nal agent/user with the proposed Framework, we highlight that, in principle,
the same interactions could be differently achieved, e.g., via a publish-subscribe

CEP-Based SLO Evaluation 29

mechanism. As the respective functionality has been realised, we could easily
switch from one to another mechanism or have both available at the same time.

As there are internally performed actions inside the framework, while it is
running, these are now explicated in detail below.

As the Metric Subscriber subscribes to metrics, it can asynchronously receive
measurements for such metrics from the Metric Publisher. Such measurements
are then transformed into events which are fed into the CEP Server. Once all
suitable events are received by the latter component, it can detect one or more
EPs. When this occurs, this component will inform the Event Publisher.

The EP Publisher is responsible for publishing events to interested sub-
scribers, named as EP Subscribers. Such subscribers could be adaptation engines
responsible for executing the respective adaptation rule triggered, as, e.g., speci-
fied in CAMEL. Apart from this publication, the EP Publisher also updates the
entries in the EP DB to modify the respective statistics of the EP(s) concerned.

The proposed architecture exploits publish-subscribe mechanisms to both
receive some events/measurements and publish other kinds of events (e.g., EPs).
In this respect, it can actually interact with multiple components that might be
willing to obtain information from or feed information to this framework. For
instance, adaptation responsibility for an SBA management system could be
split into multiple instances of an Adaptation Engine to balance the respective
load. All these instances could then subscribe to the EP Publisher to manage
their own part of the adaptation space, i.e., only those EPs that concern them.

The presented architecture is logical. This means that it can be flexibly dis-
tributed at the physical level. For instance, we could have multiple instances of
the framework part that involves the CEP Server and the Event Publisher to
load balance the event workload entering the framework. Alternatively, we could
scale out the whole framework into parts that focus on different EP partitions.
For example, the SBA management system could be split similarly into different
parts, where each part could be devoted to a subset of all SBAs managed. Each
system part could be then associated to one instance of the SLO Evaluation
Framework, thus mapping only to the EPs of the SBAs that need to be handled.

5.2 Implementation

All framework components have been implemented in Java. The CEP engine
exploited is Esper, version 5.3.0. For the publish-subscribe mechanism, the 0-
MQ4 messaging middleware has been exploited that incurs less overhead with
respect to other messaging middleware realisations. The EP DB has been realised
as a model repository implemented via the CDO technology5 which provides
suitable and robust mechanisms for model persistence and lazy loading as well
as the HQL language to enable posing queries at a higher abstraction level than
pure SQL. The EP Service has been implemented via the Jersey6 java library.

4 zeromq.org.
5 https://eclipse.org/cdo/.
6 http://jersey.github.io/.

http://zeromq.org
https://eclipse.org/cdo/
http://jersey.github.io/

30 K. Kritikos et al.

6 Event Pattern Generation and Detection

While it could be considered as straightforward to transform an event pattern in
CAMEL into an EPL statement in Esper, this is by far not trivial as the events in
an EP need to be correctly correlated. Correlation means that the events should
be associated with either the same measured components or with components
that are connected in the SBA dependency hierarchy. This also has an impact
on the way measurements are represented as the information concerning the
measured component should be already present and be then copied accordingly
in the internal representation of the event in Esper.

Concerning the metric measurements, we have actually assumed the follow-
ing: (a) the Metric Subscriber subscribes only to metrics based on their name;
(b) the Metric Publisher publishes measurements for metrics that might be
named equivalently. The latter means that the measurement information pub-
lished should include sufficient information to enable the framework to identify
exactly what object is being measured.

To decouple the proposed framework from the dependency knowledge it
should possess, we assume that such dependency information is provided within
the measurement information published. While this leads to some published
information duplication, it translates to a loose integration of this framework
with the SBA management system. Otherwise, the framework would need to
connect to a models@runtime component [4] in that system to be informed con-
stantly about both the type and instance level in the SBA dependency hierarchy.

The measurement information published includes: (f1) the metric’s name
(e.g., MeanResponseTime); (f2) the metric value; (f3) the measurement times-
tamp; (f4) the name of the application/service concerned; (f5) the name of the
component measured; (f6) the name of the instance of the component measured;
(f7) the name of the VM measured; (f8) the name of the instance of the VM
measured.

Values for fields f1–f4 are always present. Depending on the level and kind
of component measured, only some of the values of the other fields need to be
supplied based on the following cases mapping to the type of measurement:

– ApplicationMeasurement : here the measurement concerns the whole applica-
tion so no additional fields are needed.

– VMMeasurement : here the measurement concerns a certain VM. There are
two sub-cases holding now: (i) the measurement concerns the VM type (e.g.,
m1.medium) and not its instance. Then, only the field f7 has to be provided;
(ii) the measurement concerns the VM instance (e.g., m1.medium inst1). In
this case, we need to provide both fields f7 & f8 as the type of the VM instance
concerned needs to be provided.

– ComponentMeasurement : here the measurement concerns a certain (software)
component. Again, two sub-cases might hold: (i) the measurement concerns
the component type (e.g., “InvoiceNinja”). In this case, apart from field f5,
we also need to provide field f7 (thus provide, e.g., the value of “m1.medium”)
as one component might logically be deployed into multiple VMs within the

CEP-Based SLO Evaluation 31

same deployment topology. As such, we need to explain for which deployment
the current measurement holds; (ii) the measurement concerns a component
instance (e.g., “InvoiceNinja Inst1”). In this case, all the fields need to be
provided in order to cover both the deployment of that component instance
at the instance level as well as the deployment of its (component) type at
the type level. Thus, considering the running example/use case, the follow-
ing values for the measurement fields will be provided: f5=“InvoiceNinja”,
f6=“InvoiceNinja Inst1”, f7=“m1.medium”, f8=“m1.medium inst1”.

By explaining how measurements are structured and instantiated based on the
kind of the component concerned, now we will explain the way EPs in CAMEL
are transformed into EPL statements. We distinguish between two cases – (C1)
all events in the EP refer to the instance level; (C2) all events in the EP refer to
the type level. We do not consider a mixture of events from different levels as this
does not make sense.

The C1 case maps to two sub-cases:

1. all events refer to the same component. Consider, for instance, the case of
rule R1. The respective EPL statement to be created for this rule would be
the following:

every(ev1=Event(metric=’CPUUtilisation’ and value >= 80
and application=’SendInvoice’ and vm=’m1.medium’) and
Event(metric=’MemoryUtilisation’ and value >= 90 and appli-
cation=’SendInvoice’ and vmInstance=ev1.vmInstance and
vm=’m1.medium’))

In this statement, we join these two events as streams based on their appli-
cation, VM and VM instance fields. Via this join, we impose that the EP
should hold for a specific application and VM but we do not care about
which matched vm instance is concerned (as any instance needs to be matched
here). Moreover, the presence of EVERY indicates that the pattern should
be repeatedly inspected and not just once.

2. all events refer to different but related components. In this case, the EPL
statement under construction needs to correlated the different components
together. For instance, suppose that an alternative rule to R1 would attempt
to scale the “InvoiceNinja” component when its raw CPU utilisation is above
80% and its response time is above 20 s. The respective statement generated
for this alternative rule would take the following form:

every(ev1=Event(metric=’CPUUtilisation’ and value >= 80
and application=’SendInvoice’ and vm=’m1.medium’) and
Event(metric=’ResponseTime’ and value > 20 and vmIn-
stance=ev1.vmInstance and application=’SendInvoice’ and
vm=’m1.medium’ and component=’InvoinceNinja’))

32 K. Kritikos et al.

This EPL statement is more complicated as it needs to join two events for
which we need to guarantee that they refer to the same application, VM and
VM instance, where the first two fields are mapped to specific values. We
also need to guarantee that the second event refers to the “InvoiceNinja”
component but we do not care about the instance of that component as we
guarantee that the same VM instance, as in the first event, has been used to
deploy this particular instance of that component.

For the type level, we have the following two similar kinds of cases which,
however, lead to the construction of simpler EPL statements.

1. all events refer to the same component. For instance, suppose that Rule R2

applies here. Then, the respective EPL statement to be constructed would
take the following form:

every(ev1=Event(metric=’MeanResponseTime’ and value > 20 and
application=’SendInvoice’ and component=’YMENS CRM’) and
Event(metric=’MeanAvailability’ and value < 99.99 and applica-
tion=’SendInvoice’ and component=’YMENS CRM’))

In this statement we just join two event streams based on their application
and component which are clearly identified in the respective conditions.

2. the events refer to different but correlated components. For instance, sup-
pose that Rule R3 needs to be applied. The respective EPL statement to be
constructed will be the following:

every(ev1=Event(metric=’MeanResponseTime’ and value > 20
and application=’SendInvoice’ and component=’InvoiceNinja’ and
vm=’m1.medium’) and Event(metric=’MeanCPUUtilisation’ and value
> 70 and application=’SendInvoice’ and vm=’m1.medium’))

So, we actually join again the two events by considering the following: (a) the
join is made based on the application and VM fields; (b) for the first event, we
need to identify the correct component concerned; (c) for the second event,
we do not need to specify a respective software component as it concerns the
infrastructure (VM) level.

Cases C1 and C2 with their 2 sub-cases have been exemplified via certain
examples. In reality, our framework is able to go beyond the capabilities shown
in these examples. It can process any kind of complex EP with an arbitrary
nesting and any kind of operator from those captured by CAMEL. However,
showing such a complex case needs substantial space and thus, it has been left
out from the analysis in this paper.

CEP-Based SLO Evaluation 33

7 Conclusions and Future Work

This paper has proposed a new SLO evaluation framework for SBAs that relies on
a rich EP expression language, namely SRL, and on the well-known Esper CEP
engine. This system has been designed based on a modular architecture where
many of its parts can scale on demand. This system is also loosely coupled with
the respective monitoring and adaptation engines that might be employed in a
SBA management system. The management of EPs is wrapped into the form of
a REST service enabling a respective SBA management system to be decoupled
from underlying implementation peculiarities and manage the generation and
handling of adaptation rules that contain such EPs.

Concerning future work, we plan to further evaluate the SLO evaluation
framework and especially investigate its exact distribution points. We also plan
to compare Esper with other CEP engines in order to reach an informed decision
about which CEP engine is more suitable in our context. In fact, it can be
interesting to create a system which can be configured to exploit different CEP
engines by incorporating the appropriate abstraction mechanisms.

Acknowledgments. This work is supported by CloudSocket project that has been
funded within the European Commission’s H2020 Program under contract number
644690.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB, pp. 487–499 (1994)

2. Artikis, A., Sergot, M.J., Paliouras, G.: Run-time composite event recognition. In:
DEBS, pp. 69–80. ACM (2012)

3. Bettini, C., Wang, X.S., Jajodia, S., Lin, J.-L.: Discovering frequent event pat-
terns with multiple granularities in time sequences. IEEE Trans. Knowl. Data
Eng. 10(2), 222–237 (1998)

4. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42(10), 22–27
(2009)

5. Seybold, D., Griesinger, F., Kritikos, K., Gallo, A., Cacciatore, S., Popovici, A.,
Iranzo, J., Sosa, R., Utz, W., Falcioni, D.: Explanatory Notes: Final BPaaS Pro-
totype. CloudSocket Project Deliverable D4.6–D4.8, June 2017

6. Euting, S., Janiesch, C., Fischer, R., Tai, S., Weber, I.: Scalable business process
execution in the cloud. In: 2nd IEEE Conference on Cloud Engineering (IC2E),
pp. 175–184. IEEE (2014)

7. Ferry, N., Chauvel, F., Rossini, A., Morin, B., Solberg, A.: Managing multi-cloud
systems with CloudMF. In: NordiCloud, pp. 38–45. ACM (2013)

8. Ghosh, R., Ghose, A., Hegde, A., Mukherjee, T., Mos, A.: QoS-driven management
of business process variants in cloud based execution environments. In: Sheng, Q.Z.,
Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 55–69.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46295-0 4

9. Hellerstein, J.L., Ma, S., Perng, C.-S.: Discovering actionable patterns in event
data. IBM Syst. J. 41(3), 475–493 (2002)

https://doi.org/10.1007/978-3-319-46295-0_4

34 K. Kritikos et al.

10. Janiesch, C., Weber, I., Menzel, M., Kuhlenkamp, J.: Optimizing the performance
of automated business processes executed on virtualized infrastructure. In: 47th
Hawaii International Conference on System Sciences (HICSS), pp. 3818–3826.
IEEE (2014)

11. Kazhamiakin, R., Pistore, M., Zengin, A.: Cross-layer adaptation and monitor-
ing of service-based applications. In: Dan, A., Gittler, F., Toumani, F. (eds.)
ICSOC/ServiceWave - 2009. LNCS, vol. 6275, pp. 325–334. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16132-2 31

12. Kritikos, K., Domaschka, J., Rossini, A.: SRL: a scalability rule language for multi-
cloud environments. In: CloudCom. IEEE (2014)

13. Magnusson, M.S.: Discovering hidden time patterns in behavior: T-patterns and
their detection. Behav. Res. Methods Instr. Comput. 32(1), 93–110 (2000)

14. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams, pp.
346–357 (2002)

15. Patnaik, D., Ramakrishnan, N., Laxman, S., Chandramouli, B.: Streaming algo-
rithms for pattern discovery over dynamically changing event sequences. CoRR,
abs/1205.4477 (2012)

16. Römer, K.: Distributed mining of spatio-temporal event patterns in sensor net-
works. In: EAWMS Workshop at DCOSS, pp. 103–116 (2006)

17. Sim, A.T.H., Indrawan, M., Zutshi, S., Srinivasan, B.: Logic-based pattern discov-
ery. IEEE Trans. Knowl. Data Eng. 22(6), 798–811 (2010)

18. Wang, D., Rundensteiner, E.A., Ellison, R.T.: Active complex event processing
over event streams. PVLDB 4(10), 634–645 (2011)

19. Wu, E., Diao, Y., Rizvi, S.: High-performance complex event processing over
streams. In: SIGMOD Conference, pp. 407–418. ACM (2006)

20. Zeginis, C., Kritikos, K., Plexousakis, D.: Event pattern discovery for cross-
layer adaptation of multi-cloud applications. In: Villari, M., Zimmermann,
W., Lau, K.-K. (eds.) ESOCC 2014. LNCS, vol. 8745, pp. 138–147. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44879-3 10

21. Zeginis, C., Kritikos, K., Plexousakis, D.: Event pattern discovery in multi-cloud
service-based applications. IJSSOE 5(4), 78–103 (2015)

https://doi.org/10.1007/978-3-642-16132-2_31
https://doi.org/10.1007/978-3-662-44879-3_10

Towards Business-to-IT Alignment
in the Cloud

Kyriakos Kritikos1(B), Emanuele Laurenzi2, and Knut Hinkelmann2

1 ICS-FORTH, Heraklion, Greece
kritikos@ics.forth.gr

2 FHNW University of Applied Sciences and Arts Northwestern Switzerland,
Olten, Switzerland

{emanuele.laurenzi,knut.hinkelmann}@fhnw.ch

Abstract. Cloud computing offers a great opportunity for business pro-
cess (BP) flexibility, adaptability and reduced costs. This leads to realis-
ing the notion of business process as a service (BPaaS), i.e., BPs offered
on-demand in the cloud. This paper introduces a novel architecture focus-
ing on BPaaS design that includes the integration of existing state-of-
the-art components as well as new ones which take the form of a business
and a syntactic matchmaker. The end result is an environment enabling
to transform domain-specific BPs into executable workflows which can
then be made deployable in the cloud so as to become real BPaaSes.

Keywords: BPaaS · Service · Design · Discovery · Selection
Alignment · Mediation

1 Introduction

Due to intense market competition, organisations can survive only if they offer
services that are either innovative or exhibit a better quality than their competi-
tors. However, by owning a limited infrastructure and continuously requiring to
improve the existing business processes (BPs) leads to reaching certain impass-
able limits. Moreover, the infrastructure maintenance, operation and manage-
ment costs can be quite prohibiting, especially for small or medium enterprises.

Fortunately, cloud computing can become the medium via which organisa-
tions can acquire cheap, commodity resources on-demand while also being able
to achieve certain benefits, including: outsourcing infrastructure management
with reduced cost, flexible resource management, and elasticity. Such benefits
can certainly enable improving and optimally controlling BP performance.

However, as cloud computing handles only the infrastructure level, an organ-
isation now faces the hard and yet unsolvable problem of aligning the business
with the IT level. Moreover, many organisations do not have the expertise and
know-how to use and combine the cloud services offered.

The above problems can be solved by combining BP management with cloud
computing to realise the BP as a service (BPaaS) paradigm to enable migrat-
ing and more optimally managing BPs in the Cloud [6,31,32]. However, such a
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 35–52, 2018.
https://doi.org/10.1007/978-3-319-79090-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_3&domain=pdf

36 K. Kritikos et al.

combination is not trivial as it leads to the following challenges which especially
concern the BP design lifecycle activity: (a) how to map a BP to a technical
workflow with a suitable automation level; (b) how to align business terms and
requirements with technical ones to drive the selection of the most suitable ser-
vices to be then integrated into the workflow; (c) how to deal with the service
incompatibility problem effectively to guarantee the correct execution of the
designed workflow. Such a problem relates to checking the syntactic compatibil-
ity of messages exchanged between two or more selected workflow services.

To realise the vision of BPaaS, the CloudSocket project (www.cloudsocket.
eu) delivers a platform that unifies together environments supporting different
BP lifecycle activities. This paper presents our contribution in form of a BPaaS
Design Environment able to deal successfully with all aforementioned challenges.
This translates to introducing an innovative architecture with suitable compo-
nents that support: smart and semantic service discovery at both business and
technical levels, optimal cross-level service selection, mapping between business
and technical requirements and mediation between the execution of two or more
services to achieve message-level compatibility. In result, the developed environ-
ment enables a BPaaS provider to transform the initial business functional and
non-functional requirements that match the necessities of potential BPaaS cus-
tomers into an executable workflow. That workflow can then become deployable
in the cloud by using other CloudSocket environments.

The BPaaS Design Environment was built by exploiting state-of-the-art as
well as two novel components. The first component, the business matchmaker,
enables to find services that satisfy the user functional and non-functional
requirements at the business level by following a novel questionnaire-based app-
roach. Such services are then filtered and selected by employing state-of-the-art
technical service matchmaking and selection components. Service selection relies
on the second novel component, the syntactic matchmaking one, able to infer the
message-based compatibility between two or more selected services and produce
a mapping specification. This specification can then be exploited by a service
mediation service to support the compatible message transformation between
services and thus guarantee the smooth operation of the BPaaS workflow in
which this mediation service is integrated.

This paper is structured as follows. Section 2 shortly analyses existing
research results, some of which are exploited in the production of the BPaaS
Design Environment. Section 3 analyses the environment’s main architecture by
also explaining the main functionality and role of its components. Sections 4 and
5 detail the architecture’s two main novel components, the business and syn-
tactic matchmakers. Section 6 introduces a use case to demonstrate the main
benefits of the proposed environment and to validate it. Finally, the last section
concludes the paper and draws directions for further research.

www.cloudsocket.eu
www.cloudsocket.eu

Towards Business-to-IT Alignment in the Cloud 37

2 Background

2.1 Business-to-IT Alignment

Business-to-IT alignment typically refers to the gap between business require-
ments and technical solutions [12]. Cloud offerings are technically described mak-
ing it hard for business people to properly assess the best fitting cloud solution
[33]. Thus, identifying suitable cloud solutions requires specifying requirements
for and capabilities of a service in both a business and IT language. To ensure
knowledge understandability and transparency, it is a common practice to rep-
resent knowledge in models [11,29]. Models abstract away from complex realities
and achieve precise modelling of the intended domain. In [13] we already adopted
a model-driven approach where an extension of BPMN 2.0 allows modeling both
BP requirements for business and workflows/cloud services in a technical lan-
guage. That approach includes translating the business to the technical language
to enable matching process requirements and workflow/cloud service capabili-
ties. Translation and matching are performed by semantically lifting models with
ontologies to make them machine-interpretable.

[2] defines Semantic Lifting as “the process of associating content items with
suitable semantic objects as metadata to turn unstructured content items into
semantic knowledge resources”. Semantic Lifting shifts the purpose of modelling
beyond transparency and communication [14]. The interpretable knowledge base
(ontology) allows reaching higher system automation levels based on models [13].
For example, an ontology-based early warning system assessing supply chain
risks was proposed in [8], while in [7] ontologies are combined with a case-
based reasoning approach to support workplace learning. Closer to our current
problem, [9] introduced the AML ontology for automatic identification of corre-
spondences between BP model activities. Similar BP matching approaches are
described in [1]. Such approaches are not sufficient for BP-to-workflow matching
as a BP is far less detailed than a workflow such that a BP activity is most likely
to refer to a whole workflow fragment. As such, due to this different degree of
detail between the two levels, such approaches suffer from inaccurate matching,
something not only addressed but also far improved by our approach.

Approach. We follow a model-driven which performs domain-specific conceptu-
alization (mapping to well-known benefits [10,17,25]) on two levels, where the
one targets BP users, while the other targets IT service experts. This allows
designing domain-specific models capturing suitable domain knowledge on both
levels. This approach builds upon the findings in [13] but adopts a different per-
spective on business-to-IT alignment in the Cloud. Namely, there is a shift from
language translation to the mapping of values between requirements and speci-
fications on both the business and IT levels, separately. Hence, the Business-IT
alignment paradigm is applied sequentially by further refining results from the
business to the IT level. As such, 3 matchmaking components are proposed: (a)
the business and (b) technical matchmakers enhanced with formal semantics for
machine-interpretation plus (c) the syntactic matchmaker. The combination of
these 3 components allows identifying the most suitable cloud services within
both business and technical terms that will eventually form a workflow.

38 K. Kritikos et al.

2.2 Technical Service Matchmaking

Technical service matchmaking involves functional and QoS matching. Func-
tional matching usually focuses on I/O-based matching [18,26] while QoS match-
ing takes the view of QoS as conformance [20] and employs different kinds of
techniques [21] to infer if the service’s solution space is included in that of the
request. While most work focuses on one aspect individually, some approaches
consider both aspects simultaneously [3,16]. However, they usually sequentially
combine the matching in both aspects and do not employ semantic techniques,
thus not exhibiting the right performance and accuracy level.

As such, our previous work [23] explored different ways the 2 matching types
can be jointly performed: (a) sequential combination; (b) parallel combination;
(c) subsumes-based combination. The experimental evaluation of these combina-
tions showed that the parallel one leads to the best possible results with respect
to performance, as matchmaking accuracy is perfect in all combinations.

Our approach exploits two aspect-specific matchmakers, a functional and a
non-functional. The functional is a state-of-the-art matchmaker developed in the
Alive project [4] which relies on the combination of I/O-based and IR-based
matching. It exploits a smart graph-based structure to dynamically tolerate
changes in domain ontologies (i.e., the ontologies via service I/O is annotated)
as well as supply almost constant-in-time query operations over the graph.

The unary matchmaker [21] follows a hybrid QoS service matching approach.
First, it aligns ontology-based service specifications based on their QoS terms.
Then, it performs service filtering in a step-wise manner by considering each QoS
term individually in each step. As unary constraints are assumed to be involved
in service offers and demands, the matchmaker employs smart structures to
support term-based filtering which results in ultra fast matching time.

2.3 Service Selection

Service selection work usually considers only one abstraction level by also
neglecting semantics, thus producing results of imperfect accuracy. Accuracy
is further reduced as some algorithms employ smart but non-optimal solving
techniques, like Genetic Algorithms to accelerate the service selection time.

As service selection for a BPaaS includes different abstraction levels, we have
developed a cross-level constraint-based algorithm [22] which exhibits the follow-
ing features: (a) handling of multiple optimisation objectives by employing the
Analytic Hierarchy Process (AHP) [27] and Simple Additive Weighting (SAW)
[15] techniques; (b) the capability to bridge the gap between the two levels (SaaS
and IaaS) via inserting functions that derive the QoS at the SaaS level based on
the capabilities selected at the IaaS level; (c) the addressing of overconstrained
requirements by employing smart utility functions that allow slightly violating
these requirements so as to produce at least one solution; (d) consideration of
dependencies between QoS parameters at the same level enabling a more accu-
rate evaluation of respective solutions; (e) the capability [19] to accelerate solving
time by fixing parts of the problem to certain partial solutions by relying on the
BPaaS execution history.

Towards Business-to-IT Alignment in the Cloud 39

State-of-the-Art Advancement. The proposed BPaaS Design Environment
advances the state-of-the-art by exhibiting an innovative combination of exist-
ing, like holistic technical service matchmaking, and new features. The innovative
business matchmaker follows a dynamic questionnaire-based approach enabling
business users to answer a minimum set of questions before the mapping of
the designed BP to a set of services, able to realise its functionality, can be
produced. Such an approach is more natural and user-intuitive as it employs
questions mapped to a natural language with terms drawn from the business
domain. It also supports producing a minimal set of services to be further fil-
tered and selected based on technical requirements such that the solution space
is significantly reduced and service discovery time accelerated.

The novel syntactic matchmaker enables producing a correct executable
workflow via the suitable integration of services at the technical level based
on their message compatibility. Such compatibility is guaranteed by generating
mapping specifications that are exploited by mediation tasks incorporated in
the generated workflow. Finally, our framework addresses all layers involved in a
BPaaS system along with their dependencies thus being able to produce a more
complete and optimal BPaaS design product.

3 Architecture

The creation of the BPaaS Design Environment was underpinned by the design
science research (DSR) methodology in [30]. First, the literature on Business-IT
alignment in the Cloud was screened. Then, CloudSocket created the settings to
contribute to the problem awareness: application scenarios were created in work-
shops involving both industrial and scientific experts. The results and insights
were useful to suggest the BPaaS Design Environment’s first draft which was
then finalised in a web-based solution through continuous development. Finally,
as shown in Sect. 6, the validation took place with respect to the most agreed
application scenario among the members of the CloudSocket consortium.

The BPaaS Design Environment follows a model-driven and semantics-aware
approach for business-to-IT alignment in the cloud which comprises 3 main trans-
formation steps: (a) BP-to-business-services; (b) business-services-to-technical-
services; (c) BP & technical-services-to-executable-workflow. The approach guar-
antees the produced solution’s technical feasibility by employing a two-step ser-
vice matchmaking process at both business and technical levels and a service
selection algorithm that is syntactic-compatibility-aware at the technical level.

To achieve its main goal, the environment exhibits an architecture, depicted
in Fig. 1, comprising 8 main components that are now analysed in detail. Some
components correspond directly to some of the aforementioned steps while others
play a supporting or orchestration role.

BPaaS Designer (BD). It represents the main point of interaction with the user
during BPaaS design. It enables specifying both domain-specific BPs and exe-
cutable workflows. It also guides users in providing suitable input to support the
BP-to-workflow alignment.

40 K. Kritikos et al.

Fig. 1. The architecture of the BPaaS Design Environment

Orchestrator (Orch). Orchestrates its underlying components to handle requests
issued by the BPaaS Designer.

Business Matchmaker (BM). Matches the cloud services registered in the Knowl-
edge Base based on business requirements derived from a questionnaire-based
approach explained in Sect. 4.

Technical Matchmaker (TM). It exploits technical state-of-the-art aspect-specific
matchmakers in a parallelised fashion according to the approach in [23].

Service Selector (SS). It [22] produces a concrete optimal solution for the service-
based workflow at hand by considering the user technical non-functional require-
ments while also attempting to maximise the message compatibility between
services by exploiting the next component.

Syntactic Matchmaker (SM). Called dynamically by the SS while solving the
service selection problem to find the message compatibility [24] between the
next and all previously selected services in each BPaaS workflow’s execution path
where such a service participates. When an incompatible solution is constructed,
SS can backtrack and check another one. To smartly deal with cases where the
same call is issued, e.g., due to deep backtracking, SM stores the call results to
immediately answer it. The mapping of the output parameters to the input ones
of the next service is also recorded to enable updating the BPaaS workflow via
a mediation service, as performed by the next component.

Workflow Updater (WU). Updates the BPaaS workflow by performing the follow-
ing actions for each workflow’s execution path: (a) replays the solution construc-
tion in each path to obtain the mapping of the current service in the path from
the SM; (b) introduces a mediation service within the workflow, immediately
before the current service, which takes as input the current output parameter
set and the mapping specification and produces as output the input parameters
of the current service.

Towards Business-to-IT Alignment in the Cloud 41

Knowledge Base (KB). Includes all necessary and sufficient information to sup-
port all reasoning/matching/selection tasks executed in the system.

4 Business Matchmaking

The Business Matchmaker allows specifying requirements in a more user-centric
approach than that in [13]. It relies on a context-adaptive questionnaire that
guides the user via a set of questions reflecting BP functional and non-functional
requirements. Follow-up questions are displayed based on the result of a prioriti-
sation algorithm that considers: (a) user preferences in terms of categories (e.g.,
Performance rather than Data Security); (b) information value (or entropy) of
semantic attributes reflecting cloud service specifications at the business level,
e.g., how distinguishing an attribute, such as monthly downtime, is for service
filtering. Namely, the higher the entropy value of an attribute, the higher its
service distinguishability degree, and thus the higher the assigned priority of the
related question. This approach leads to the least possible number of questions
being answered, thus reducing the business service matching time. The idea is
that the questionnaire can be applied on the whole BP first. If no service is found,
we then move down to groups of activities, until the level of single activities.

4.1 The Context-Adaptive Questionnaire

The Context-Adaptive Questionnaire relies on our BPaaS ontology [11]. Ques-
tions focus first on functional requirements and then on non-functional ones. The
questionnaire enables the user to specify functional requirements in two ways by:

– inserting an action and object from a predefined taxonomy in the BPaaS
ontology. This corresponds to the convention of BPMN to name activities by
a verb (i.e., action) and a noun (object) [28] whose combination provides the
“what-is-about” knowledge.

– inserting the most suitable category from APQC Process Classification
Framework.

Next, the user can choose one of the 5 non-functional (NF) categories: Data
Security, Payment, Performance, Service support, and Target Market.

The NF categories were derived from the Cloud Service Agreement Stan-
dardisation Guidelines [5], published by EC to standardize and streamline the
terminologies and understanding of cloud services. The NF categories were sub-
sequently discussed and validated within the CloudSocket consortium. In result,
a set of questions and sub-questions were derived out of them. For instance, the
Performance category includes questions like the following:

– What is your preferred monthly downtime in minutes?
Possible answer : 30 min

– Should the process be executed on a daily, weekly, monthly or yearly basis?
Possible answer : On a weekly basis

42 K. Kritikos et al.

Fig. 2. The object selection for the functional requirements posing

– What is your favorite response time level?
Possible answer : High, Medium or Low

– How many simultaneous users should the cloud service support?
Possible answer : at most 10

For each question, we have distinguished among 4 types of answers as: (1)
single-answer selection; (2) multi-answer selection; (3) search-insert; (4) value-
insert. Value- and search-insert require user input. While the former enables
inserting attribute values (e.g., the aforementioned downtime), the latter enables
crawling predefined values from the ontology and selecting the suitable one. For
instance, answers related to the first 3 functional requirement questions (Action,
Object and APQC category) are of search-insert type. Namely, users can insert
keywords for the BP they are looking for, and the ontology returns the con-
cepts matching these keywords. Figure 2 shows this functionality’s implementa-
tion result.

Each time a question is answered, semantic rules are applied to convert
implicit knowledge reflecting the business requirements into an explicit one. This
prepares the ground to identify matching cloud services by applying a semantic
query. For example, assume we have the following:
Specifications from the KB as follows:

– A cloud service with the execution constraint of 20 times per day.

Requirements from the questionnaire as follows:

• Should the process be executed on a daily, weekly, monthly or yearly basis?
Answer : At least on a weekly basis.

• How many times should the process be executed?
Answer : At least 10 times

Towards Business-to-IT Alignment in the Cloud 43

Running a process at least on a weekly basis implies that can also run on a daily
basis. The semantic rule, therefore, would infer the answer “On a daily basis”
and insert it in the KB. The semantic query then compares the derived fact with
the cloud service fact related to the execution constraint. In result, the cloud
service specification matches with the requirement.

4.2 Question Prioritisation Algorithm

The NFR questions follow a question prioritisation algorithm. This enables
identifying the matching cloud services by asking as few questions as possi-
ble. Answers to the questions, along with previous ones, are used to display the
follow-up question. The algorithm considers the following:

– Grouping among non-functional attributes. For instance, if the user selects to
answer one from availability and response time attributes of the Performance
category, the follow-up question will be on the other attribute in this category.

– Entropy expressing the variation degree in the values of each non-functional
attribute. Entropy of an attribute is “0” when every cloud service stored in
the KB contains the same attribute value, while “1” in the opposite case.

The entropy formula is expressed as follows:

Entropy (attri) = −
J∑

j=1

(pij · log2 (pij))

where J is the total number of attribute values and pij is the probability that
a certain attribute value valij of attribute attri appears in a certain cloud ser-
vice. As this probability can be regarded as independent and uniform across all
attribute values, pij can be expressed as: pij =

[CS]csvalik=valij

[CS] where the nomi-
nator denotes the number of cloud services that exhibit the respective attribute
value (csvalik denotes the value of attri for cloud service k) and the denominator
the number of all services.

The prioritisation algorithm’s signature and main logic is as follows.
Input.

– Already stated variables: attr, CS, val, csval.
– The set of non-functional categories C ={Data Security, Payment, Perfor-
mance, Service support, Target Market}.

– Set of tuples < attri, Ql > where Q is the set of questions and Ql is a certain
question where 1 ≤ l ≤ [Q]. So, each tuple maps 1 attribute to 1 question.

Output. The filtered set of cloud services CS that match with the content of the
questionnaire, i.e., questions and answers.
Business Logic.

1. IF the number of categories left is positive (|C| > 0), select a category cn,
ELSE exit.

44 K. Kritikos et al.

2. IF cn has a positive number of semantic attributes left, i.e.,
|attri s.t attri.cat = cn| > 0, THEN calculate the entropy of all the selected
category’s attributes, ELSE remove the current category cn from C and go
to (1).

3. Select attribute attri with highest entropy.
4. Display question Ql that is mapped with the attri.
5. Get user answer mapping to a value valij of attribute attri.
6. Filter services in CS which do not satisfy the condition: csvalik = valij .
7. Remove the semantic attribute attri from the category cn and go to (2).
8. Exit.

5 Syntactic Matchmaking

Business/technical matching cannot guarantee the message compatibility
between selected services in a BPaaS workflow. Such a compatibility is thus
a hard constraint in service selection for producing optimal, message-compatible
solutions that can be safely executed. As such, the TM was developed to derive
such compatibility and offer it as a function to SS.

The main idea is that the TM should first find which output messages of pre-
viously selected services match to which input messages of the currently selected
service (based on SS’s solution generation process) for each execution path in
the BPaaS workflow. Then, it should check for each message-to-message match
if the first message conveys less information than that required by the second
message. If this checking succeeds, no compatibility between the execution path’s
considered services exists. When all message pair matches are compatible, the
considered services are message-compatible.

Message Matching. The first message compatibility step can rely on existing
semantic service annotations to easily and rapidly discover matching message
pairs, as the messages involved in these pairs should map to semantically com-
patible concepts. However, even in the presence of such knowledge, message
matching is not trivial and follows a two-step process involving semantic & syn-
tactic message matching. This process is exemplified via the example of a certain
service pair involving service S2 with 2 input parameters mapped to ontology
concepts A & B and service S1 with 2 output parameters mapped to ontology
concepts C & D.

At the semantic level, a bipartite matching approach is followed checking
whether every parameter of the current service has a mapping to one parameter
of the previously selected services (or the initial user input) in a certain execution
path and attempting to discover a solution with the lowest overall distance.
As such, we first define a local matching degree between two parameters to
be the distance between the parameters’ annotation concepts in the ontology
subsumption hierarchy, provided that the second parameter’s concept subsumes
the first parameter’s one. If the latter does not hold, the distance is infinite.
This guarantees that no information loss occurs as in the opposite case, the
more concrete concept in the S2 input will require specifying additional pieces

Towards Business-to-IT Alignment in the Cloud 45

of information than those exhibited in the concept in the S1 output. A mapping
solution’s overall distance is then the sum of the distances of the matches found.
As such, the matching problem can be defined as follows:

min

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
[J] ·

(∑j∈J
i∈I

(
dist(Mi,Nj)
maxPSize · xij

)
+

∑
j∈J

(
1 − ∑

i∈I xij

))

∑
j∈J xij ≤ 1∑
i∈I xij ≤ 1

i = [1, . . . , [I]], j = [1, . . . , [J]]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

where I and J are the sets of input and output parameters, respectively, xij

is a decision variable whether the output parameter i matches the input one j,
dist (Mi, Nj) is the distance between annotation concepts Mi and Nj of the two
parameters pair while maxPSize represents the maximum subsumption path
length in the respective domain ontology used.

Suppose that the following relations hold in the running example: A sub-
sumes B, C & B, C subsume D. In this respect, the best possible matching
is {A → C,B → D} with overall distance of 2. The other matching solution
{A → D,B → C} is not selected as the local distance between B & C is infinite
so the overall distance is also infinite.

The algorithm then proceeds at the syntactic level by considering only those
message pairs with a finite local degree of match. For each message pair filtered,
we note the information items for the output parameter and those of the input
parameter and then we check whether the former include the latter. As the infor-
mation items have been already matched to ontology concepts, we perform this
checking by replacing the information items with the attributes of the ontology
concept. Even if the concepts matched are not identical, as they are related with
a subsumption relation, they will have common attributes. So, the problem then
is mapped to checking whether the concept attributes of the output parameter
form a superset of those of the input parameter.

Message types might also convey information not included in an ontology
requiring to perform a different matching kind for them. This matching’s logic
is similar to that for the semantic level. In particular, bipartite matching is
performed with the exception of how the distance is calculated at the local level.
At that level, we consider both how similar the field names are and how close
are their types. Name similarity can rely on well-known string distance measures
(e.g., Levenshtein) while type similarity relies on the approach in [24] mapping
to the compatibility level between types. The local overall distance would then
equal the weighted sum of the two different distances.

If all input parameter parts are matched, the compared messages are
semantically compatible. Otherwise, the compared services are semantically
incompatible.

Let us continue the running example to explain syntactic matchmaking.
Suppose that A & C were found equivalent. C maps to message type MT1

containing 4 information pieces MT11, MT12, MT13 and MT14. A maps to
message type MT2 containing 3 information pieces MT21, MT22, and MT23.

46 K. Kritikos et al.

Fig. 3. The Send Invoice business process in BPMN 2.0

Based on matching message types to ontology concepts, we have that MT11

and MT21 map to A.A1 while MT12 and MT22 map to A.A2. Thus, the infor-
mation pieces are transformed into {A.A1, A.A2,MT13,MT14} for first mes-
sage type and {A.A1, A.A2,MT23} for the second. For those pieces not map-
ping to ontology attributes, we solve a bipartite matching problem again. Sup-
pose that dist (MT13,MT23) = 0.8 and dist (MT14,MT23) = 0.2. Then, the
sole mapping to be selected will be {MT13 → MT23}. If we replace MT23

with MT13, we then need to check whether {A.A1, A.A2,MT13} is subset of
{A.A1, A.A2,MT13,MT14} which holds.

6 Validation

Our approach was validated based on a use case developed by CloudSocket’s
industrial partners. We focused on a very common BPs among SMEs - the Send
Invoice one. This BP is modelled in BPMN, see Fig. 3, via our BPaaS Design
environment. It starts with the “Manage Customer Relationship” activity; next
an exclusive gateway splits the BP flow between either creating a new invoice or
updating an existing one. Then, invoice completeness is checked, and finally the
invoice is sent. Subsequently, starting with this BPMN process, we acquaint the
reader with a prerequisite plus the main steps involved in our approach.

Prerequisite Step: Service Profile Registration. The following services were
inserted in the KB as instances of CloudService class:

– YMENS, Zoho and Sugar CRM were inserted as CRM systems which were
annotated with the action Manage, the object Customer and the APQC cat-
egory 3.5.2.4 Manage Customer Relationship

– Mathema Document Generator, Open Source Billing, Simple Invoice and
InvoiceNinja as invoicing systems annotated with action Generate, object
Invoice and APQC category 9.2.2.2 Generate Customer Billing Data

– Gmail, Ninja email and Mailjet were inserted as e-mail systems which were
annotated with the action Manage, the object Invoice and the APQC category
9.2.2.3 Transmitting Billing Data to Customers

Towards Business-to-IT Alignment in the Cloud 47

Table 1 shows a part of the non-functional profiles of the considered services.

Table 1. Functional requirements for each group and single activity

Service Monthly
downtime

Response
time level

File type No of
simul.
users

Execution
constraint

YMENS CRM 4 min High Office doc,
PDF, audio,
video

500 None

Zoho CRM 4 min High Office doc,
PDF, audio,
video

500 None

Sugar CRM 10 min Medium Office doc,
PDF, audio,
video

200 500
(monthly
basis)

InvoiceNinja 4 min High Office doc,
PDF, audio,
video

600 None

Ninja Email 4 min High Office doc,
PDF, audio,
video

400 None

Simple Invoices 10 min Medium Office doc,
PDF, audio,
video

300 None

Mailjet 4 min High Office doc,
PDF, audio,
video

100 1K
(monthly
basis)

Open Source Billing 4 min Medium Office doc,
PDF, audio,
video

200 None

Gmail 4 min High Office doc,
PDF, audio,
video

100 None

First Main Step: Business Matchmaking. BM was used to identify the most
suitable cloud services. As a first step, the questionnaire was applied on the
whole BP (see starting notebook at Fig. 4).

We specified functional requirements in the first 3 questions - object Send,
action Invoice and APQC category 9.2.2 Invoice Customer - and none of the
cloud services matched.

Next, the questionnaire was applied on two single activities (i.e., Manage
Customer Relationship and Send Invoice) as well as on a group of activities (i.e.,
Create Invoice, Update Invoice and Check Invoice Completeness).

48 K. Kritikos et al.

Fig. 4. The starting notebook for the whole process

Table 2 shows the functional requirements for each activity/group. In the
first case, after specifying action, object and APQC category, the questionnaire
showed the 3 matching cloud services: YMENS, Zoho and SugarCRM. In the
4th question, we chose the Performance category, and the question prioritisation
algorithm kicked in. The question regarding the number of simultaneous users
was asked (attribute with highest entropy) and a value of 500 was entered. This
filtered out SugarCRM as it has the capability of max 200 simultaneous users.

Table 2. Functional requirements for each group and single activity

BPMN activity Action Object APQC category

Manage Customer Relationship
(Single activity)

Manage Customer
Relationship

3.5.2.4 Manage
Customer
Relationship

Send Invoice (Single activity) Send Invoice 9.2.2.3 Transmit
Billing Data to
Customers

Create New Invoice, Update
Invoice, Check Invoice
Completeness (Group of activities)

Generate Invoice 9.2.2.2 Generate
Customer Billing
Data

Similarly, we applied the questionnaire on the designated group of activities.
The matching services were InvoiceNinja and Open Source Billing, see Fig. 5a.

Finally, we applied the questionnaire on the last BP activity: Send Invoice.
The matching cloud services were Ninja E-mail and Mailjet (see Fig. 5b).

Second Main Step: Technical Matchmaking & Selection. As the final result
maps to two services per each activity (group), we now proceed with the tech-
nical matching and selection. Suppose that the user provides the next global

Towards Business-to-IT Alignment in the Cloud 49

(a) The selected invoice management
services

(b) The selected email services

Fig. 5. The selected services for last two activity groups

requirements for the whole process: cost < 100 euros per month, cycletime < 1
min and V PM < 16 (#vulnerabilities per month). Further, suppose that the
user imposes for the Manage Customer Relationship activity the following con-
straints: responsetime < 30 s and V PM < 10. Finally, Table 3 depicts the
non-functional profiles of the remaining services.

Table 3. The technical non-functional offerings of the 6 services

Service Cost Response time VPM

ZOHO CRM 30 euros 35 s 10

YMENS CRM 35 euros 20 s 05

Mailjet 25 euros 10 s 02

Ninja Email 10 euros 15 s 03

Open Source Billing 35 euros 25 s 08

InvoiceNinja 45 euros 10 s 05

Technical non-functional matching would then filter Zoho CRM as it does
not conform to the local constraints posed for the CRM activity. This leads to
selecting over 4 solutions as we have one candidate for the first (group) of activ-
ities and 2 candidates for the rest two activity groups. However, while running
service selection, it is detected that the Ninja Email and Open Source Billing are
incompatible, which leaves us with 3 solutions. Moreover, the solution mapping
to selecting YMENS, Open Source Billing and Ninja Email has VPM equal to
16 violating the respective global constraint. So, in the end, we need to select
between 2 solutions which are depicted in Table 4.

Table 4. The final ordered solutions produced

Solution Cost Cycle time VPM Utility

YMENS + InvoiceNinja + Ninja Email 90 euros 45 s 13 0.144

YMENS + Open Source Billing + Mailjet 95 euros 50 s 15 0.099

50 K. Kritikos et al.

As the broker requires to optimise all non-functional terms (cost, cycle time
and VPM), it gives equal preference over them. By also considering that the
activities are sequentially executed in the BPaaS workflow, the final result would
map to selecting services YMENS, InvoiceNinja, and Ninja Email. While there
is perfect syntactic compatibility between InvoiceNinja and Ninja Email as they
are offered by the same company, in the case of YMENS CRM and InvoiceNinja
the message types are compatible but still need to be aligned (e.g., attributes
accountid and id number mapping to the same attribute id of concept Client). As
such, the MS service was included between these 2 services resulting in a workflow
with 4 services sequentially executed (YMENS CRM → MS → InvoiceNinja →
Ninja Email).

7 Conclusions and Future Work

This paper has introduced a novel architecture for the design of BPaaS products
able to effectively deal with the business-to-IT alignment problem in order to
map an initial domain-specific BP into an executable BPaaS workflow. Such an
architecture has been carefully designed and implemented to include suitable
components which focus on different parts of the business-to-IT alignment prob-
lem, including business and technical matchmakers, a service selection as well as
an automatic workflow update component to enable the effective addressing of
the message compatibility problem in service-based workflow execution.

Our future work will focus on more advanced research challenges which
include: (a) the automatic production of a more complete and more close to
production workflow via the incorporation of different kinds of non-service tasks
(see previous section); (b) the automatic population of the KB; (c) the coverage
of additional cases in business-to-technical-requirement alignment.

Acknowledgments. This research has received funding from the European Commu-
nity’s Framework Programme for Research and Innovation HORIZON 2020 (ICT-07-
2014) under grant agreement number 644690 (CloudSocket).

References

1. Antunes, G., Bakhshandeh, M., Borbinha, J., Cardoso, J., Dadashnia, S.,
Francescomarino, C.D., Dragoni, M., Fettke, P., Gal, A., Ghidini, C., Hake, P.,
Khiat, A., Klinkmüller, C., Kuss, E., Leopold, H., Loos, P., Meilicke, C., Niesen,
T., Pesquita, C., Péus, T., Schoknecht, A., Sheetrit, E., Sonntag, A., Stucken-
schmidt, H., Thaler, T., Weber, I., Weidlich, M.: The process model matching
contest 2015. In: Lecture Notes in Informatics (2015)

2. Azzini, A., Braghin, C., Damiani, E., Zavatarelli, F.: Using Semantic Lifting for
Improving Process Mining: A Data Loss Prevention System Case Study (2013)

3. Benaboud, R., Maamri, R., Sahnoun, Z.: Agents and owl-s based semantic web
service discovery with user preference support. Int. J. Web Semant. Technol. 4(2),
57–75 (2013)

Towards Business-to-IT Alignment in the Cloud 51

4. Cliffe, O., Andreou, D.: Service Matchmaking Framework. Public Deliverable
D5.2a, Alive EU Project Consortium, 10 September 2009. http://www.ist-alive.
eu/index.php?option=com docman&task=doc download&gid=28&Itemid=49

5. Cloud Select Industry Group (C-SIG): Cloud Service Level Agreement Standard-
ization Guidelines. Technical report, EC (2014)

6. Duipmans, E.: Business Process Management in the cloud: Business Process as a
Service (BPaaS). Technical report (2012)

7. Emmenegger, S., Hinkelmann, K., Laurenzi, E., Martin, A., Thönssen, B.,
Witschel, H.F., Zhang, C.: An ontology-based and case-based reasoning supported
workplace learning approach. In: Hammoudi, S., Pires, L.F., Selic, B., Desfray, P.
(eds.) MODELSWARD 2016. CCIS, vol. 692, pp. 333–354. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66302-9 17

8. Emmenegger, S., Hinkelmann, K., Laurenzi, E., Thönssen, B.: Towards a procedure
for assessing supply chain risks using semantic technologies. In: Fred, A., Dietz,
J.L.G., Liu, K., Filipe, J. (eds.) IC3K 2012. CCIS, vol. 415, pp. 393–409. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-54105-6 26

9. Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: AgreementMakerLight
Results for OAEI 2013. http://disi.unitn.it/∼p2p/OM-2013/oaei13 paper1.pdf

10. Frank, U.: Domain-specific modeling languages: requirements analysis and design
guidelines. In: Reinhartz-Berger, I., Sturm, A., Clark, T., Cohen, S., Bettin, J.
(eds.) Domain Engineering, pp. 133–157. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-36654-3 6

11. Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van der Merwe, A.,
Woitsch, R.: A new paradigm for the continuous alignment of business and IT:
Combining enterprise architecture modelling and enterprise ontology. Comput. Ind.
79, 77–86 (2016)

12. Hinkelmann, K., Kritikos, K., Kurjakovic, S., Lammel, B., Woitsch, R.: A modelling
environment for business process as a service. In: Krogstie, J., Mouratidis, H., Su, J.
(eds.) CAiSE 2016. LNBIP, vol. 249, pp. 181–192. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39564-7 18

13. Hinkelmann, K., Laurenzi, E., Lammel, B., Kurjakovic, S., Woitsch, R.: A
semantically-enhanced modelling environment for business process as a service.
In: ES, pp. 143–152. IEEE (2016)

14. Hrgovcic, V., Karagiannis, D., Woitsch, R.: Conceptual modeling of the organ-
isational aspects for distributed applications: the semantic lifting approach. In:
COMPSAC Workshops, pp. 145–150. IEEE (2013)

15. Hwang, C., Yoon, K.: Multiple criteria decision making. In: Lecture Notes in
Economics and Mathematical Systems (1981). https://doi.org/10.1007/978-3-642-
48318-9

16. Jiang, S., Aagesen, F.A.: An approach to integrated semantic service discovery.
In: Gäıti, D., Pujolle, G., Al-Shaer, E., Calvert, K., Dobson, S., Leduc, G., Mar-
tikainen, O. (eds.) AN 2006. LNCS, vol. 4195, pp. 159–171. Springer, Heidelberg
(2006). https://doi.org/10.1007/11880905 14

17. Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Funda-
mental conceptual modeling languages in OMiLAB. In: Karagiannis, D., Mayr, H.,
Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, pp. 3–30. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39417-6 1

18. Klusch, M.: Semantic web service coordination. In: Schumacher M., Schuldt H.,
Helin H. (eds.) CASCOM: Intelligent Service Coordination in the Semantic Web,
pp. 59–104 (2008). https://doi.org/10.1007/978-3-7643-8575-0 4

http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49
http://www.ist-alive.eu/index.php?option=com_docman&task=doc_download&gid=28&Itemid=49
https://doi.org/10.1007/978-3-319-66302-9_17
https://doi.org/10.1007/978-3-642-54105-6_26
http://disi.unitn.it/~p2p/OM-2013/oaei13_paper1.pdf
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-642-36654-3_6
https://doi.org/10.1007/978-3-319-39564-7_18
https://doi.org/10.1007/978-3-319-39564-7_18
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1007/978-3-642-48318-9
https://doi.org/10.1007/11880905_14
https://doi.org/10.1007/978-3-319-39417-6_1
https://doi.org/10.1007/978-3-7643-8575-0_4

52 K. Kritikos et al.

19. Kritikos, K., Magoutis, K., Plexousakis, D.: Towards knowledge-based assisted IaaS
selection. In: CloudCom, pp. 431–439. IEEE Computer Society (2016)

20. Kritikos, K., Plexousakis, D.: Requirements for QoS-based web service description
and discovery. IEEE Trans. Serv. Comput. 2(4), 320–337 (2009)

21. Kritikos, K., Plexousakis, D.: Novel optimal and scalable nonfunctional service
matchmaking techniques. IEEE Trans. Serv. Comput. 7(4), 614–627 (2014)

22. Kritikos, K., Plexousakis, D.: Multi-cloud application design through cloud service
composition. In: CLOUD, pp. 686–693. IEEE, New York (2015)

23. Kritikos, K., Plexousakis, D.: Towards combined functional and non-functional
semantic service discovery. In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski,
I. (eds.) ESOCC 2016. LNCS, vol. 9846, pp. 102–117. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-44482-6 7

24. Kritikos, K., Plexousakis, D., Paternò, F.: Task model-driven realization of inter-
active application functionality through services. TiiS 3(4), 25 (2014)

25. Laurenzi, E., Hinkelmann, K., Reimer, U., van der Merwe, A., Sibold, P., Endl,
R.: DSML4PTM - A domain-specific modelling language for patient transferal
management. In: ICEIS 2017, Porto, Portugal, pp. 520–531 (2017)

26. Plebani, P., Pernici, B.: URBE: web service retrieval based on similarity evaluation.
IEEE Trans. Knowl. Data Eng. 21(11), 1629–1642 (2009)

27. Saati, T.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
28. Silver, B.: BPMN Method and Style, 2nd edn. Cody-Cassidy Press, Aptos (2011)
29. Uschold, M., King, M., Morale, S., Zorgios, Y.: The enterprise ontology. Knowl.

Eng. Rev. 13(01), 31–89 (1998)
30. Vaishnavi, V., Kuechler, B.: Design Science Research in Information Systems

(2004). http://desrist.org/desrist/content/design-science-research-in-information-
systems.pdf

31. Watfa, M.K., Najjar, N.A.L., Cheikha, J., Buali, N.: A new framework for cloud
business process management. In: Zhang, Y., Peng, L., Youn, C.-H. (eds.) Cloud-
Comp 2015. LNICST, vol. 167, pp. 83–92. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-38904-2 9

32. Whibley, P.: BPM in the Cloud - Transforming the Business Case for Process
Improvement. Technical report (2012)

33. Woitsch, R., Utz, W.: Business Processes as a Service (BPaaS): A Model-Based
Approach to align Business with Cloud offerings (2015). https://zenodo.org/
record/35583#.WbDscNhLfmE

https://doi.org/10.1007/978-3-319-44482-6_7
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf
http://desrist.org/desrist/content/design-science-research-in-information-systems.pdf
https://doi.org/10.1007/978-3-319-38904-2_9
https://doi.org/10.1007/978-3-319-38904-2_9
https://zenodo.org/record/35583#.WbDscNhLfmE
https://zenodo.org/record/35583#.WbDscNhLfmE

CloudWays

Preface of CloudWays 2017

Cloud computing has been the focus of attention of both academic research and
industrial initiatives. From a business point of view, organizations can benefit from the
on-demand and pay-per-use model offered by cloud services rather than an upfront
purchase of costly and over-provisioned infrastructure. From a technological per-
spective, the scalability, interoperability, and efficient (de-)allocation of resources
through cloud services can enable a smooth execution of organizational operations.

Regardless of the benefits of cloud computing, many organizations still rely on
business-critical applications in the form of legacy systems that have been developed
over a long period of time using traditional development methods. Despite often
serious maintainability issues, (on-premise) legacy systems are still crucial as they
support core business processes. Therefore, migrating legacy systems towards
cloud-based platforms allows organizations to leverage their existing systems deployed
and provided (using publicly available resources) as scalable cloud services.

This third edition of the workshop – the Third International Workshop on Cloud
Adoption and Migration (CloudWays 2017) – was held in Oslo, Norway, on September
27, 2017, as an ESOCC satellite event. The first edition was held in September 2015 in
Taormina, Italy, and the second in September 2016 in Vienna, Austria, both also as a
satellite events of ESOCC. The workshop’s goals were: to bring together cloud
migration and cloud architecture experts from both academia and industry; to promote
discussions and collaboration among participants; to help disseminate novel cloud
adoption, migration, and architecture practices and solutions; and to identify future
cloud challenges and dimensions that help software applications to be architecture for
and deployed in the cloud.

In this third edition, six full papers were accepted for presentation during the
workshop, out of a total of nine submissions.

The first paper “Engineering Cloud-Based Applications: Toward an Application
Life Cycle” by Vasilios Andrikopoulos aims to distill the challenges of adopting and
architecting cloud-based applications into a life cycle framework that takes cloud
characteristics such as service orientation, distribution, multi-tenancy, and utility
computing into account.

The second paper “A Cloud Computing Workflow for Managing Oceanographic
Data” by Salma Allam, Antonino Galletta, Lorenzo Carnevale, Moulay Ali Bekri,
Rachid El Ouahbi, and Massimo Villari was the first in the workshop to focus on data
aspects, which was done through the discussion of workflow concerns in the context of
an oceanography use case.

The third paper “Pattern-Driven Architecting of an Adaptable Ontology-Driven
Cloud Storage Broker” by Divyaa Manimaran Elango, Frank Fowley, and Claus Pahl
looks at interoperability in cloud computing. A cloud service broker is introduced from

a software design perspective, looking at architecture and design patterns used in the
construction.

The fourth paper “Cloud-Native Databases: An Application Perspective” by Josef
Spillner, Giovanni Toffetti Carughi, and Manuel Ramírez López continues the data
focus. Here databases as a services are investigated as an architectural concern by
looking at cloud-nativeness as a property.

The fifth paper “Using a Cloud Broker API to Evaluate Cloud Service Provider
Performance” by Divyaa Manimaran Elango, Frank Fowley, and Claus Pahl reports on
performance testing and comparison of different storage services. A broker API is used
to monitor and compare the different services.

The final paper “TosKer: Orchestrating Applications with TOSCA and Docker” by
Antonio Brogi, Luca Rinaldi, and Jacopo Soldani is also concerned with interoper-
ability. Raising the abstraction level through standards, languages such as the
orchestration language TOSCA is used to manage Docker containers.

In addition to the presentation of the accepted papers, an invited talk titled
“Business Processes and Smart Devices — A Marriage of Convenience?” was jointly
organized with participants of the BPM@Cloud workshop focusing on the challenges
and perspectives with process modelling in the cloud, looking specifically also at edge
and IoT as a context. The presentation was given by Prof. Pierluigi Plebani from the
Politecnico di Milano, Italy.

We take this opportunity to thank all authors, members of the Program Committee,
and workshop attendees, whose participation was invaluable to the success of the
event. We also acknowledge the support provided by The Irish Centre for Cloud
Computing and Commerce (IC4) and the Free University of Bozen-Bolzano (UniBZ).

Claus Pahl
Nabor Mendonça
Pooyan Jamshidi

Preface of CloudWays 2017 55

Organization

Program Committee

Aakash Ahmad IT University of Copenhagen, Denmark
Vasilios Andrikopoulos University of Stuttgart, Germany
Willliam Campbell Birmingham City University, UK
Vinicius Cardoso Garcia Federal University of Pernambuco, Brazil
Fei Cao University of Central Missouri, USA
Nabil El Ioini Free University of Bozen-Bolzano, Italy
Nicolas Ferry SINTEF, Norway
Frank Fowley Dublin City University, Ireland
So ̈ren Frey Daimler TSS, Germany
Wilhelm (Willi) Hasselbring Kiel University, Germany
Pooyan Jamshidi (Co-chair) Carnegie Mellon University, USA
Ali Khajeh-Hosseini AbarCloud, UK
Xiaodong Liu Napier University, Edinburgh, UK
Theo Lynn Dublin City University, Ireland
Paulo Henrique Maia State University of Ceará, Brazil
Nabor Mendonc ̧a (Co-chair) University of Fortaleza, Brazil
Claus Pahl (Co-chair) Free University of Bozen-Bolzano, Italy
Dana Petcu West University of Timisoara, Romania
Alessandro Rossini EVRY Cloud Services, Norway

Engineering Cloud-Based Applications:
Towards an Application Lifecycle

Vasilios Andrikopoulos(B)

Johann Bernoulli Institute for Mathematics and Computer Science,
University of Groningen, Groningen, The Netherlands

v.andrikopoulos@rug.nl

Abstract. The adoption of cloud computing by organizations of all sizes
and types in the recent years has created multiple opportunities and
challenges for the development of software to be used in this environment.
In this work-in-progress paper, the focus is on the latter part, providing
a view on the main research challenges that are created for software
engineering by cloud computing. These challenges stem from the inherent
characteristics of the cloud computing paradigm, and require a multi-
dimensional approach to address them. Towards this goal, a lifecycle for
cloud-based applications is presented, as the foundation for further work
in the area.

Keywords: Cloud computing · Software engineering
Cloud-based applications · Software lifecycle

1 Introduction

The adoption of cloud computing has increased dramatically since the introduc-
tion of the term only roughly ten years ago—despite the fact that the technolo-
gies underpinning the paradigm have been around for a while longer. It is not
an exaggeration to claim that in one way or another cloud computing offerings
and associated technologies are currently being used by the majority of software-
intensive enterprises. A report of the Thoughtworks Technology Advisory Board
back in May 20151, for example, claims that “Organizations have accepted that
“cloud” is the de-facto platform of the future, and the benefits and flexibility it
brings have ushered in a renaissance in software architecture.” From the thou-
sand professionals from across sectors participating to RightScale’s annual sur-
vey in early 2017 [31], 95% are reporting that the organization they belong to is
already using or experimenting with the use of cloud computing.

Under the umbrella of the same term, however, there are multiple service
delivery and deployment models on offer, succinctly summarized by NIST’s
widely accepted definition of cloud computing [24]. The availability of these

1 Thoughtworks Tech Radar, May 2015: https://assets.thoughtworks.com/assets/
technology-radar-may-2015-en.pdf.

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 57–72, 2018.
https://doi.org/10.1007/978-3-319-79090-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_4&domain=pdf
http://orcid.org/0000-0001-7937-0247
https://assets.thoughtworks.com/assets/technology-radar-may-2015-en.pdf
https://assets.thoughtworks.com/assets/technology-radar-may-2015-en.pdf

58 V. Andrikopoulos

options, in conjunction with the plethora of offerings by cloud providers like
Amazon Web Services (AWS), Microsoft Azure (MSA), and Google Compute
Platform (GCP), and software solutions for the deployment of private clouds
such as the ones from VMwware and OpenStack, create both opportunities and
challenges for software developers [4]. Even the process of selecting an appropri-
ate provider to run software on is an open research subject, with many of the
issues identified in [34] (e.g. lack of standardization in the QoS descriptions and
lack of long term performance prediction) still valid today. As such, there are
still many issues that need to be resolved with respect to how cloud computing
is to be used for software development.

At the same time, in the recent years the discourse on the best practices and
principles of software development, at least in the industry, has been affected
significantly by the introduction of two movements that have a co-dependence
relation with cloud computing. The first one is the use of DevOps technologies
and processes in order to bridge the gap between development and operations
of software [8] in order to streamline software delivery and maintenance. The
adoption of Continuous Delivery/Integration (CD/CI) techniques with frame-
works like Jenkins2 used together with deployment automation tools like Chef3

or Ansible4 shortens the development cycle dramatically and produces synergy
with agile-oriented software development practices. Allowing for the manage-
ment of multiple software stacks running in partially isolated containers inside
one operating system as made popular by Docker5, is the logical extension of this
approach: each architectural component is developed, deployed, managed, and
updated in its own software stack, and therefore it can follow a life cycle that is
loosely coupled with the overall system evolution. This principle is made even
more prominent in the second of the movements relevant to the discussion, i.e.
microservices [27]. While there is an ongoing discussion in the academic commu-
nity related to the actual innovation of microservices in comparison to Software-
Oriented Architecture, it is important to notice how the notion of microservices
have integrated into practice the use of design patterns, that so far have been
mostly adopted at a much lower level (e.g. the Gang of Four book). Entries
on microservices in Martin Fowler’s blog6, a popular grey literature source for
practitioners and researchers provides many instances of this phenomenon.

In summary, therefore, the virtualization of resources and their offering
as services, in conjunction with the DevOps movement, the containerization
of software stacks, and the use of microservices, have evolved the way that
software is developed, deployed, and managed over time. The key message of
this paper is that engineering software, and in particular software architecture,
should similarly evolve. For the purposes of scoping, the discussion is focused

2 Jenkinks: https://jenkins.io/.
3 Chef: https://www.chef.io/.
4 Ansible: https://www.ansible.com/.
5 Docker: https://www.docker.com/.
6 For example: Microservices, by James Lewis and Martin Fowler (March

2014): https://martinfowler.com/articles/microservices.html.

https://jenkins.io/
https://www.chef.io/
https://www.ansible.com/
https://www.docker.com/
https://martinfowler.com/articles/microservices.html

Engineering Cloud-Based Applications: Towards an Application Lifecycle 59

on how software engineering can change to incorporate cloud-related concepts
by means of introducing a cloud-based application lifecycle. In the absence of
a widely accepted definition of what constitutes one, and following the defini-
tion of service-based applications discussed in [3], this paper uses a working
definition of Cloud-based applications (CBAs) as applications that rely on one
or more cloud services in order to be able to deliver their functionality to their
users. CBAs therefore include both cloud-enabled through migration [2] and
cloud-native applications [21].

The rest of this paper is structured as follows: Sect. 2 identifies and presents
the most relevant challenges to cloud-based application engineering (definitely
not an exhaustive list). Section 3 transforms these challenges into a set of
requirements on lifecycle methodologies in this context. Consequently, Sect. 4
discusses a CBA lifecycle that aims to address these requirements as the basis
for future research. Finally, Sect. 5 compares the proposed lifecycle with related
approaches, and Sect. 6 concludes with a short summary and future work.

2 Major Challenges

Following the NIST definition [24], cloud computing has the following essen-
tial characteristics: (i) On-demand self-service: appropriate interfaces are offered
to consumers to access resources (computational, storage, network, etc.) in an
automated manner. (ii) Broad network access: resources are accessed over the
network by heterogeneous clients. (iii) Resource pooling: service providers are
enforcing a multi-tenant model of sharing the offered resources. (iv) Rapid elas-
ticity: the volume of accessed resources can be adjusted dynamically, by any
quantity and at any time. (v) Measured service: a metering mechanism is used
to ensure appropriate billing for the used resources in predefined periods of time.

The combinations of these characteristics has severe implications for the soft-
ware that is being developed in this environment. In the following we identify
four major challenges that arise due to these characteristics.

2.1 *aaS Software Model

The first major challenge stems from the fact that resources are offered in the
Everything as a Service (*aaS) model, usually affiliated with the categorization
of delivery models into Infrastructure (IaaS), Platform (PaaS), and Software
as a Service (SaaS), also covered by the NIST definition. The *aaS model is a
natural outcome of the first two characteristics (i.e. on-demand self-service, and
broad network access) and in many cases manifests as sets of RESTful APIs
that are exposing cloud resources through relatively simple CRUD operations.
While there has been lots of work on the subject of engineering service-based
applications in the last 15 or so years, see for example [3], the very nature of
service orientation still poses particular difficulties when used as the model for
accessing resources. These can be attributed to the following:

60 V. Andrikopoulos

Information Hiding Behind Interfaces: Exposing only the amount of information
that is absolutely necessary for clients to use a service is one of the fundamental
premises of service orientation [12]. However, this means that software develop-
ers have to refer to documentation and help desks in order to understand the
boundary conditions and assumptions of consuming each resource.

Lack of Control and Observability over Resource Implementation: While the
on-demand self-service characteristic prescribes a degree of control over the con-
sumed resources by removing the need for administration on the part of the
provider, this control is in practice limited to the operations defined in the ser-
vice API, that for all practical purposes act as black box endpoints.

Distributed and Heterogeneous Environment: Distribution transparency [33] is
an essential feature of offered services, creating an impression of homogeneity
and opaqueness to software developers. Nevertheless, the operating environment
is fundamentally distributed, irrespective of the type of software developed on
it (distributed or not).

Evolution Driven by 3rd Parties: As with many other API publishers in the past,
cloud providers reserve the right to change their supported APIs at any point
in time—and they do so for various reasons. As such, therefore, the evolution
of software developed on these solutions is at least partially driven by the cloud
providers and beyond software developer control.

Lastly, it can also be argued that while it is indeed possible to build all kinds
of systems on top of cloud resources, it is consistent with the model that it is
offered to design and implement them as services themselves. Doing so, however,
imposes its own challenges, as evidenced by the continuous research output of
the SOA community in the last two decades. The most thorny issue to deal
with is probably the design of the system as services itself; indicative of the
complexity of this issue is the fact that service design is identified as a major
research question in both the SOA research roadmap [30], and its revision ten
years later [10]. Further work towards this direction is therefore required.

2.2 Multi-tenancy of Resources

One of the most difficult challenges to address, especially for performance-
sensitive systems, is that of the shared nature of cloud resources due to its
resource pooling characteristic. In a sense it is exactly this characteristic which
makes rapid elasticity possible, while allowing for resource prices to be offered
at very low levels, as also discussed by the next challenge. In essence, multiple
tenants sharing the same infrastructure enable economies of scale for service
providers and allow for higher utilization on the provider side through smart
scheduling of large volumes of work load.

This sharing of resources, however, leads at the same time to performance
variability that is external to the application itself, and as such outside of the

Engineering Cloud-Based Applications: Towards an Application Lifecycle 61

control of the system developer. The inherent variance of cloud offerings has been
documented in a series of publications: in [22], for example, large deviations are
reported for similar in specification offerings across different providers, while
significant variance can be observed in the same provider and offering within the
same day and week [32] (and even more so across different availability zones),
or even over the period of a year for the same offering [17]. Benchmarking cloud
applications is faced with multiple challenges, see for example [9,14], and is not
readily available as a tool for software developers to incorporate in their toolset.
Cloud monitoring [1] is therefore the most common way to check and potentially
address detrimental performance variation of the consumed resources.

2.3 Utility Computing

One of the main reasons for the wide adoption of cloud computing is the trans-
fer of costs from the capital to operating expenses through its “pay as you go”
model [6], enabled by its measured service characteristic. In this sense, cloud
computing can be seen as an implementation of the utility computing vision [39].
Access to computational resources in this context is enabled in a utility-oriented
model, and results in the illusion of virtually infinite resources being available—
assuming of course a sufficiently large budget [6]. At the same time, the use
of economies of scale on behalf of the service providers, and the environment of
intense competition for a very lucrative market, result into continuously decreas-
ing prices for the offered resources. This creates the dynamics of a “race to zero”
phenomenon, especially in storage offerings7. Even if the provider prices are not
lower in comparison with operating one’s own data center as e.g. in the (already
outdated) analysis of [37], there are boundary conditions that still make the use
of cloud solutions favorable to the alternative [38]. The key is in the rapid elastic-
ity characteristic which allows for quick scaling to cope with dynamic demand,
resulting in compensation of potentially incurred losses throughout relatively
stable demand periods by means of serving requests that would otherwise be
over capacity and therefore resulting in loss of revenue.

Nevertheless, cheap is not the same as free of charge, and costs for success-
ful cloud-based companies might run so high that result in their profit margin
shrinking to the point of necessitating the migration to their own data centers
instead, as documented by the case of Dropbox8, a company that was famous
for running all their infrastructure on Amazon Web Services until that point.
Rightscale’s 2017 State of the Cloud survey [31] reports two stark findings that
are relevant to this discussion: first, mature adopters of the technology are more
concerned with cost management in comparison to beginners to it; second, only
a minority of companies actually take measures to minimize unnecessary costs
(e.g. VMs unnecessarily being active). Some notion of costs control is therefore
clearly necessary.
7 See for example: http://www.computerweekly.com/microscope/news/4500271376/

Whatever-the-cost-may-be-Cloud-price-war-continues.
8 See https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-

empire/.

http://www.computerweekly.com/microscope/news/4500271376/Whatever-the-cost-may-be-Cloud-price-war-continues
http://www.computerweekly.com/microscope/news/4500271376/Whatever-the-cost-may-be-Cloud-price-war-continues
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/

62 V. Andrikopoulos

2.4 Distributed Topology

There is no escaping the fact that systems developed in the cloud environment
are essentially distributed, and they need to be designed, implemented, and
operated as such [11]. Distribution in this case is both spatial and logical, but
distribution transparency [33] is partially violated when e.g. availability zones
are used for the deployment of applications. On top of this, there are multiple
offerings by service providers that can be used as alternatives to application
components [4] taking advantage of the on-demand self service characteristic.
For example, Database as a Services (DBaaS) offerings can replace completely
the data layer of an application, providing natively scaling mechanisms to cope
with increasing demand. An illustration of the range of possibilities available to
software architects is the case of Netflix, which combines AWS EC2, S3, EBS
and other offerings to run in a cloud-only environment9.

Adding to the size of the design space is the capability to use containers as the
means for enabling portability of application components and work loads across
cloud providers, essentially expanding on the characteristic of resource pooling.
In conjunction with a cloud orchestration layer, containers allow for a series
of benefits like reduced (infrastructure) complexity, automation of portability,
better governance and security management, transparent geographical domain-
aware distribution, and the ability to automate services that offer policy-based
optimization and self-configuration [23]. As a result, there are many possible
system configuration options that are optimal under different dimensions [4], e.g.
cost versus performance, creating exceptional challenges to software architects
in identifying the best solution for their needs.

3 Requirements on the Solution Space

From the discussion above it becomes quickly obvious that addressing these
challenges is a multi-faceted undertaking, and that their nature requires them
to be considered throughout the lifecycle of software systems operating in the
Cloud. The following constraints are, as a result, imposed on possible solutions
for engineering cloud-based applications (CBAs):

1. Irrespective of the purpose and type of software under consideration, cloud-
based application development should understand and incorporate service-
orientation concepts. In practice, this means that resources are accessed
through programmatic interfaces, which in turn favors the Infrastructure as a
Code approach [16] that homogenizes the way that the software itself and its
supporting infrastructure is managed. Across similar lines, cloud service com-
position [18], which deals with the selection and aggregation of cloud services
in order to support software, needs to be considered on equal grounds with
(software) service composition [30] which delivers functionality by combining
independent services.

9 Netflix Global Cloud Architecture: https://www.slideshare.net/adrianco/netflix-
global-cloud, slide 26.

https://www.slideshare.net/adrianco/netflix-global-cloud
https://www.slideshare.net/adrianco/netflix-global-cloud

Engineering Cloud-Based Applications: Towards an Application Lifecycle 63

2. System design should incorporate the notion of dynamic topology. Topology
here refers to the software and infrastructure stack required to operate the
software artifacts under consideration, including e.g. the middleware associ-
ated with them. The system topology is prone to change over time due to
changes (a) in the system architecture, and (b) refactoring of the infrastruc-
ture that supports the system. This might also include incorporation of new
services by the same cloud provider or migration to another provider and/or
deployment model. In this sense, the resolution of system architecture into
concrete deployment models should rely on the generation of viable topologies
through e.g. graph transformations, as per [4], instead of explicit modeling
of alternatives. This is a consequence of the very large amount of available
alternatives during design when considering all the different configurations
available for each service type.

3. Self-* characteristics (e.g. self-management, -adaptation, -healing, -configura-
tion, etc.) are necessary to deal with the multi-tenancy induced performance
variability and its impact to the QoS of cloud-based applications. The intro-
duction of a MAPE-K (Monitor, Analyse, Plan, and Execute over a Knowl-
edge base) feedback loop [20] is a necessary and very common solution at
this level as the means to implement control [29], but the difficulty is in
evaluating the impact of individual cloud services, e.g. a DBaaS solution, to
overall performance. Furthermore, the connection between run-time observa-
tions and design-time predictions is not sufficiently covered by the state of
the art [15], and further work is necessary towards this direction. End-to-end
performance measurement is potentially more important—alternative viable
topologies have to be evaluated after all against their actual effectiveness in
generating revenue—and in case of software delivered as services relatively
easy to implement.

4. An awareness of consumed resources on self-management level during both
development and operation of the system is essential. Cost models that cover
the various deployment models, e.g. an extension of the model for hybrid
clouds discussed in [19], should be used for this purpose. However, such anal-
ysis cannot be only performed offline. Instead, design- and run-time cost
analysis should complement each other [25], resulting in cost models that are
dynamically updated by actual billing data received from the cloud provider.

In the following we introduce a lifecycle model for cloud-based applications
that incorporates the constraints discussed above as the means for defining in
the future a holistic framework for engineering cloud-based applications. For
this purpose the lifecycle model of service-based applications as discussed in [3]
is used as the inspiration for this work.

4 Cloud-Based Applications Lifecyle

4.1 The Phases of the Lifecycle

Figure 1 illustrates the proposed lifecycle of CBAs. Before proceeding with
explaining the stages of the lifecycle, it needs to be pointed out that for the

64 V. Andrikopoulos

Fig. 1. The lifecycle of cloud-based applications

purposes of this discussion, there is no clear design- and run-time (or develop-
ment and operation, respectively) distinction, but more of a spectrum of activi-
ties spanning between them. The everything as a service and dynamic topology
challenges affect more the one end (design), while performance variability and
cost awareness more the other (run time). However it is impractical to attempt
to assign them to specific stages of the lifecycle. The proposed CBA lifecycle
(as shown in the figure) reflects this by intentionally not identifying when the
transitions between stages are to take place, but only the transition relations
between them. In this respect, the presented lifecycle is in accordance with the
main principles of the DevOps movement [8] which unifies the different stages
of software lifecycle.

Looking now at the figure, and starting from its top left part, the highest
stage of the lifecycle consists of the service portfolio for the application, i.e. the
collection of services that implement the functionalities offered by the applica-
tion. Such services could be composed out of other services, belonging either to
the same portfolio, or being external to it, as per the well established SOA prac-
tice [30]. Following the same principles, the service portfolio is the outcome of a
service identification phase that connects higher level requirements and business
operations into functionalities to be exposed by the application as services. In
terms of how these services are mapped into software components and its sup-
porting middleware, a decomposition into structural tiers can be applied using
one of the methodologies discussed in [3]. In principle, non-application specific
software components should be excluded from this process, resulting into a sys-
tem architecture expressed as a set of α-topologies [4] (top center of Fig. 1). The
intentional exclusion of the underlying software stack from this stage (except

Engineering Cloud-Based Applications: Towards an Application Lifecycle 65

where it cannot be avoided as e.g. in the case of customized middleware that
needs to be rolled out together with the application) allows for flexibility in
the transition to the next stage, that of viable topology alternatives, each one of
which represent the whole software stack and its relation to the application com-
ponents (bottom half of Fig. 1). Viable topology models encapsulate the various
types of cloud services (e.g. VM or DB as a Service in the figure) that are part
of the infrastructure supporting the software stack of the application.

As discussed above, and due to the numerous cloud service offerings cur-
rently available, a large number of viable topology alternatives potentially exist
for each application. Selecting between them can be, and usually is interpreted as
an optimization problem for which there are many techniques available (see [4]
for further discussion). However, an alternative approach would be to look into
this situation as an exploratory search problem instead. In this context, iden-
tifying a unique optimal solution in advance would be of not such interest as
in transitioning between different alternative solutions in order to identify the
optimal for the current conditions. For this purpose, the overall consumer util-
ity and revenue generated by the viable topology currently used needs to be
evaluated by comparing the continuously updated cost and performance mod-
els for each viable topology against the Service Level Agreements (SLAs) and
budget associated with the service portfolio by the application owners. This app-
roach requires, of course, that costs for the transition between viable topology
models are negligible in comparison with the overall revenue generated by the
application. Using a microservices-based approach for the decomposition of the
service portfolio into isolated sub-systems before generating viable topologies
would actually minimize such costs, since the finer granularity of each system
tier would mean less components to consider (and potentially migrate) on the
topology level. Alternatively, if this transition is deemed too costly and/or if the
search space of viable topology alternatives has been exhausted then it is mean-
ingful to revert to the previous stages of the lifecycle and either decompose the
service portfolio as different α-topologies, or even refactor the service portfolio
itself, repeating the cycle as necessary.

In order to add the necessary self-* mechanisms that regulate decision making
during system operation a distributed MAPE-K model can be used [20], as
discussed in Sect. 3. Considering the lifecycle of Fig. 1, however, it becomes clear
that a hierarchical organization of controllers is better fitting. On the bottom
level, it is possible to view the architectural components of each viable topology
as its own autonomic element. However, all such elements need to coordinate
with a controller on the level of the viable topology which is responsible for
changes inside it. Another level of controllers is necessary to be added at the
level of α-topologies when more than one viable topologies are active for a given
decomposition. A similar process is repeated to the level of the service portfolio,
and is used in order to trigger the transitions between stages of the lifecycle. Since
the degree of automation that is feasible and available can vary among these
transitions, it might become necessary to involve architects and system designers
for this purpose. As such, design activities could be triggered by operations, as
much as operational models could be derived during development.

66 V. Andrikopoulos

Fig. 2. The phases of the CBA lifecycle, with activities implemented as MAPE-K loops
and information flowing between them

Figure 2 summarizes and illustrates this discussion by identifying the concrete
phases of the proposed lifecycle (Service Identification, Service Decomposition,
Topology Generation, and Deployment & Operation) and the activities that take
place in each phase (Identify Services, Decompose into Architecture, Generate
Alternative, and Deploy & Operate, respectively). Each of the activities in the
figure is implemented by a MAPE-K controller which is responsible for moni-
toring the situation at its level (e.g. α-topology), analyzing its behavior (is the
application within its SLA and budget constraints?), planning for an action if
necessary (deciding whether to transition into a new viable topology by moving
into the Generate Alternative phase, or into a new alpha-topology by escalating
the decision upwards into the Service Identification controller), and executing
the decided action. Rules for the decision making, and the outcomes of past deci-
sions are persisted in the knowledge base component of the controller at each
level in order to learn over time about the effectiveness of each decision in a given
context. Figure 2 shows the flow of information between the controllers of each
level as dashed arrows between the loops. Bottom-level controllers (i.e. the con-
trollers of the components in a viable topology in the Deployment & Operation
phase) can only decide to escalate the need for an adaptive action upwards in

Engineering Cloud-Based Applications: Towards an Application Lifecycle 67

Fig. 3. The lifecycle of an example CBA (Web Shop)

the hierarchy, while top-level controllers (i.e. the controller at the level of Service
Identification) can only trigger transitions into a lower level through the next
phase.

4.2 An Example Instantiation

Figure 3 shows an example instantiation of the proposed lifecycle in the case of a
Web Shop application. The service portfolio for the Web Shop consists (among
others) of two client-facing services: BuyProduct and ListProducts, the former of
which is composed out of services RegisterSale and PrepDelivery, while the latter
one is using the internal service GetInventory. The BuyProduct service can be
decomposed into a classic three-tier architecture, resulting in the top α-topology
in the figure; for ListProducts a simpler two-tier architecture with separate (even-
tually synchronizing) databases is used. Staying with the first α-topology we can
see that there are at least two alternative viable topologies to consider: in the
first a DBaaS solution like AWS RDS10 is used for the Database tier, operating
in a cluster mode for scalability purposes. The front- and back-end are imple-
mented as a web application deployed inside an App Server like JBoss11 that is
scaled horizontally by running inside multiple VMs in a service like AWS EC212.

10 Amazon Relational Database Service: https://aws.amazon.com/rds/.
11 JBoss: http://www.jboss.org/.
12 Amazon EC2: https://aws.amazon.com/ec2/.

https://aws.amazon.com/rds/
http://www.jboss.org/
https://aws.amazon.com/ec2/

68 V. Andrikopoulos

A Load Balancer solution is deployed inside its own VM for traffic routing. An
alternative viable topology for the Web Shop consists of deploying the front-end
in its own dedicated VM cluster, decoupling the stateless functionalities of the
back-end and deploying them separately in their own stack, and bundling the rest
of the back-end into VMs combining application servers and database instances
that replace the DBaaS solution (but which still need some logic to synchronize).
Such transformations require of course much more detailed α-topologies than the
examples in Fig. 3 that are kept to a minimum for illustration purposes, but are
nevertheless possible to be largely automated given an appropriate knowledge
base of reusable software stacks expressed e.g. as γ-topologies [4].

4.3 Evaluation and Discussion

Looking at the requirements identified in Sect. 3, it can be seen that the proposed
lifecycle indeed satisfies them by: (i) seamlessly integrating service-orientation
concepts both at the level of the artifacts that it deals with (applications as ser-
vice portfolios), and at the level of cloud services used as the underlying resources
for the deployment and operation of an application; (ii) building around the
dynamic nature of application topologies by decoupling their α-topology from
the actual viable topology and relying on the generation of the latter on demand
to cope with changes in the perceived behavior of the application through the
hierarchy of MAPE-K controllers; (iii) implementing the foreseen self-* char-
acteristics by means of the same controllers; and finally, (iv) by introducing
awareness of the consumed resources across the different phases of the lifecycle.
However, validation of the lifecycle in more complex scenarios than the exam-
ple presented in the previous through e.g. field studies, is the subject of future
work since it is related with the development of the necessary tooling to support
it (see Sect. 6). Furthermore, and in terms of limitations to the presented work
there are two main issues not covered by the discussion: quality assurance for the
developed software, and security and privacy. Both of these issues are in practice
cross-cutting concerns running in parallel to the lifecycle, and while it can be
argued that they could therefore be considered external to it, they nevertheless
need to be examined further in future works.

5 Related Work

There are a number of mature works in the literature focusing on the complete
lifecycle of cloud-based applications that are related to the lifecycle proposed
here. In their majority however they address only parts of the requirements dis-
cussed in Sect. 3. For example, the Cloud Application Lifecycle Model (CALM)
and its supporting framework is introduced in [35] without a provision for self-*
characteristics or cost awareness. The same holds for [26] that discusses a cloud
application lifecycle from a service governance perspective, and for the lifecycle

Engineering Cloud-Based Applications: Towards an Application Lifecycle 69

presented in [28] which builds around the notion of blueprints as abstract tem-
plates for services to be published in application marketplaces. The work in [36]
uses a centralized repository as the means to manage knowledge related to the
phases of the lifecycle, but without the notion of cost awareness.

In further related work, the MODAClouds project relies on a Model-Driven
Development-based approach to support the lifecycle of cloud-based applica-
tions [5]. The project builds on the models@runtime architectural pattern to
connect run-time and design-time [13] and provides an IDE for the development,
provisioning, deployment, and adaptation of CBAs. Nevertheless, the CBA life-
cycle itself is only implicitly defined by this approach. The work in [7], part of the
PaaSage project, discusses a service-based application lifecycle that emphasizes
a multi-cloud deployment model. When compared to this work, the approach
discussed in [7] attempts to (dynamically) optimize provider selection consider-
ing also monitoring data without however taking into account the possibility to
re-distribute the application as part of this process.

6 Conclusions and Outlook

In summary, this work is based on the observation that the adoption of cloud
computing, in conjunction with the advancements in software development in
the form of DevOps, container-based software management, and microservices,
requires an evolutionary step in software engineering practices, and especially
in the area of software architecture. The challenges that drive this evolution
are the everything as a service model in which cloud resources are offered, the
multi-tenant environment created by resource pooling, the need to incorporate
cost awareness due to the utility-based cost model for cloud computing, and the
abundance of available offerings that can easily and efficiently replace parts of
the software stack of each application. These challenges transform the lifecycle
of cloud-based applications into a series of loops that transition between sets
of application functionalities encapsulated as services, abstractly defined but
application-specific architectural models, and software stack models that seam-
lessly incorporate cloud services. These transitions are triggered by controllers
that coordinate within and across the various stages of the lifecycle.

Future work focuses on developing the methodologies and instrumentation
necessary in order to support the proposed lifecycle, with a refinement of its
various stages as an essential part of this process. A complete IDE in the manner
discussed by the MODAClouds approach [5] is identified as the means to achieve
this. Such an environment would further allow for field study-based validation
of the lifecycle through collaboration with the industry. The development and
integration of the IDE with the MAPE-K controllers as the implementation of
the lifecycle phases-related activities is a critical component towards this effort.

70 V. Andrikopoulos

References

1. Aceto, G., Botta, A., De Donato, W., Pescapè, A.: Cloud monitoring: a survey.
Comput. Netw. 57(9), 2093–2115 (2013)

2. Andrikopoulos, V., Binz, T., Leymann, F., Strauch, S.: How to adapt applications
for the cloud environment. Computing 95(6), 493–535 (2013)

3. Andrikopoulos, V., Bucchiarone, A., Di Nitto, E., Kazhamiakin, R., Lane, S.,
Mazza, V., Richardson, I.: Service engineering. In: Papazoglou, M.P., Pohl, K.,
Parkin, M., Metzger, A. (eds.) Service Research Challenges and Solutions for
the Future Internet. LNCS, vol. 6500, pp. 271–337. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17599-2 8

4. Andrikopoulos, V., Gómez Sáez, S., Leymann, F., Wettinger, J.: Optimal dis-
tribution of applications in the cloud. In: Jarke, M., Mylopoulos, J., Quix, C.,
Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014.
LNCS, vol. 8484, pp. 75–90. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-07881-6 6

5. Ardagna, D., Di Nitto, E., Casale, G., Petcu, D., et al.: MODACLOUDS: a model-
driven approach for the design and execution of applications on multiple clouds.
In: Proceedings of the 4th International Workshop on Modeling in Software Engi-
neering, MiSE 2012, pp. 50–56. IEEE Press, Piscataway (2012)

6. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., et al.: Above the clouds: a
Berkeley view of cloud computing. Technical report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, February 2009. http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

7. Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., et al.: Lifecycle man-
agement of service-based applications on multi-clouds: a research roadmap. In:
Proceedings of the 2013 International Workshop on Multi-cloud Applications and
Federated Clouds, pp. 13–20. ACM (2013)

8. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, Old Tappan (2015)

9. Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow?:
towards a benchmark for the cloud. In: Proceedings of the Second International
Workshop on Testing Database Systems, p. 9. ACM (2009)

10. Bouguettaya, A., Singh, M., Huhns, M., Sheng, Q.Z., et al.: A service computing
manifesto: the next 10 years. Commun. ACM 60(4), 64–72 (2017)

11. Cavage, M.: There’s just no getting around it: you’re building a distributed system.
Queue 11(4), 30 (2013)

12. Erl, T.: SOA: Principles of Service Design. Prentice Hall Press, Upper Saddle River
(2007)

13. Ferry, N., Solberg, A.: Models@ runtime for continuous design and deployment.
In: Di Nitto, E., Matthews, P., Petcu, D., Solberg, A. (eds.) Model-Driven Devel-
opment and Operation of Multi-Cloud Applications, pp. 81–94. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-46031-4 9

14. Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Bench-
marking in the cloud: what it should, can, and cannot be. In: Nambiar, R., Poess,
M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 173–188. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36727-4 12

15. Heinrich, R., Schmieders, E., Jung, R., Rostami, K., et al.: Integrating run-time
observations and design component models for cloud system analysis. In: Proceed-
ings of the 9th Workshop on Models@run.time, vol. 1270, pp. 41–46. CEUR (2014)

https://doi.org/10.1007/978-3-642-17599-2_8
https://doi.org/10.1007/978-3-319-07881-6_6
https://doi.org/10.1007/978-3-319-07881-6_6
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://doi.org/10.1007/978-3-319-46031-4_9
https://doi.org/10.1007/978-3-642-36727-4_12

Engineering Cloud-Based Applications: Towards an Application Lifecycle 71

16. Hüttermann, M.: Infrastructure as Code, pp. 135–156. Apress, Berkeley (2012)
17. Iosup, A., Yigitbasi, N., Epema, D.: On the performance variability of production

cloud services. In: 2011 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid), pp. 104–113. IEEE (2011)

18. Jula, A., Sundararajan, E., Othman, Z.: Cloud computing service composition: a
systematic literature review. Expert Syst. Appl. 41(8), 3809–3824 (2014)

19. Kashef, M.M., Altmann, J.: A cost model for hybrid clouds. In: Vanmechelen,
K., Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 46–60.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28675-9 4

20. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

21. Kratzke, N., Quint, P.C.: Understanding cloud-native applications after 10 years
of cloud computing-a systematic mapping study. J. Syst. Softw. 126, 1–16 (2017)

22. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th Annual Conference on Internet Measure-
ment, IMC 2010, pp. 1–14. ACM, New York (2010). http://doi.acm.org/10.1145/
1879141.1879143

23. Linthicum, D.S.: Moving to autonomous and self-migrating containers for cloud
applications. IEEE Cloud Comput. 3(6), 6–9 (2016)

24. Mell, P., Grance, T., et al.: The NIST definition of cloud computing. NIST Special
Publication 800–145 (2011). http://dx.doi.org/10.6028/NIST.SP.800-145

25. Moldovan, D., Truong, H.L., Dustdar, S.: Cost-aware scalability of applications
in public clouds. In: 2016 IEEE International Conference on Cloud Engineering
(IC2E), pp. 79–88. IEEE (2016)

26. Munteanu, V.I., Fortis, T.F., Negru, V.: Service lifecycle in the cloud environment.
In: 2012 14th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pp. 457–464. IEEE (2012)

27. Newman, S.: Building microservices. O’Reilly Media, Inc., Sebastopol (2015)
28. Nguyen, D.K., Lelli, F., Papazoglou, M.P., Van Den Heuvel, W.J.: Blueprinting

approach in support of cloud computing. Future Internet 4(1), 322–346 (2012)
29. Pahl, C., Jamshidi, P.: Software architecture for the cloud – a roadmap towards

control-theoretic, model-based cloud architecture. In: Weyns, D., Mirandola, R.,
Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 212–220. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23727-5 17

30. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented com-
puting: state of the art and research challenges. Computer 40(11), 38–45 (2007)

31. RightScale: RightScale 2017 State of the Cloud Report (2017). https://www.
rightscale.com/lp/state-of-the-cloud

32. Schad, J., Dittrich, J., Quiané-Ruiz, J.A.: Runtime measurements in the cloud:
observing, analyzing, and reducing variance. Proc. VLDB Endow. 3(1–2), 460–471
(2010)

33. van Steen, M., Tanenbaum, A.S.: A brief introduction to distributed systems. Com-
puting 98(10), 967–1009 (2016)

34. Sun, L., Dong, H., Hussain, F.K., Hussain, O.K., Chang, E.: Cloud service selection:
state-of-the-art and future research directions. J. Netw. Comput. Appl. 45, 134–
150 (2014)

35. Tang, K., Zhang, J.M., Feng, C.H.: Application centric lifecycle framework in cloud.
In: 2011 IEEE 8th International Conference on e-Business Engineering (ICEBE),
pp. 329–334. IEEE (2011)

https://doi.org/10.1007/978-3-642-28675-9_4
http://doi.acm.org/10.1145/1879141.1879143
http://doi.acm.org/10.1145/1879141.1879143
http://dx.doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1007/978-3-319-23727-5_17
https://www.rightscale.com/lp/state-of-the-cloud
https://www.rightscale.com/lp/state-of-the-cloud

72 V. Andrikopoulos

36. Tran, H.T., Feuerlicht, G.: Service repository for cloud service consumer life cycle
management. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS,
vol. 9306, pp. 171–180. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24072-5 12

37. Walker, E.: The real cost of a CPU hour. Computer 42(4), 35–41 (2009)
38. Weinman, J.: Cloudonomics: a rigorous approach to cloud benefit quantification.

J. Softw. Technol. 14(4), 10–18 (2011)
39. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research

challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010)

https://doi.org/10.1007/978-3-319-24072-5_12
https://doi.org/10.1007/978-3-319-24072-5_12

A Cloud Computing Workflow
for Managing Oceanographic Data

Salma Allam1, Antonino Galletta2(B), Lorenzo Carnevale2, Moulay Ali Bekri1,
Rachid El Ouahbi1, and Massimo Villari2

1 Lab MIASH and Lab MACS, Department of Computer Science and Mathematics,
Faulty of Sciences, University Moulay Ismail, Meknes, Morocco

allam.salma@gmail.com, ali.bekri@gmail.com, elouahbi@yahoo.fr
2 Department of Engineering, University of Messina, Messina, Italy

{angalletta,lcarnevale,mvillari}@unime.it

Abstract. Ocean data management plays an important role in the
oceanographic problems, such as ocean acidification. These data, hav-
ing different physical, biological and chemical nature, are collected from
all seas and oceans of the world, generating an international networks for
standardizing data formats and facilitating global databases exchange.
Cloud computing is therefore the best candidate for oceanographic data
migration on a distributed and scalable platform, able to help researchers
for performing future predictive analysis. In this paper, we propose a
new Cloud based workflow solution for storing oceanographic data and
ensuring a good user experience about the geographical data visualiza-
tion. Experiments prove the goodness of the proposed system in terms
of performance.

Keywords: Oceanography · Cloud Computing · Data collection
Data management · Data migration · NoSQL · Big Data

1 Introduction

Ocean Data management is a current challenge because both of ocean specific
terminology diversity (physio-chemical parameters, sensor type, units of mea-
sures, conditions of measures, etc.) and of huge volume of ocean data collected
from several international projects. The last aim to control the ocean acidifica-
tion phenomena, an emerging global problem related to the seawater CO2 rate
[1] that negatively affects the environment. Therefore, scientific community was
thinking about software for calculating inorganic seawater carbon in order to
track the evolution of CO2 in the oceans.

However, traditional desktop or web application can not provide the func-
tionalities required by similar problem. Indeed, storing and processing a big
volumes of data needs availability, reliability and scalability. For this purpose,
the best choice for this kind of application is Cloud Computing, which delivers
the resources for managing efficiently the collected data.
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 73–85, 2018.
https://doi.org/10.1007/978-3-319-79090-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_5&domain=pdf

74 S. Allam et al.

The goal of this scientific work follows the previous one [2]. More specifically,
in this paper we planned to improve scalability and user experience of the Web
Application, used for visualizing oceanographic data, already developed. For this
purpose, here we analyzed the oceanographic data contest in order to design a
Cloud workflow for migrating data from online databases to a distributed system
able to enable future predictive analysis. Thus, we designed a data acquisition
and integration workflow through a Cloud Storage approach which use a more
recommended NoSQL solution for successfully managing semi-structured data
and retrieving them for future seawater’s acidification predictive analysis.

The rest of the paper is organized as follows. Related Works are described
in the Sect. 2. In Sect. 3, we discussed the material used in this scientific work,
from data source up to main oceanographic data issues. The Sect. 4 explains
the Cloud approach used in order to migrate oceanographic data from sources
to Cloud Storage, whereas in Sect. 5 we discussed the outcomes’ experiments.
Finally, the Sect. 6 concludes the paper with the lights for the future.

2 Related Work

The most popular oceanographic data visualization software is the Ocean Data
View (ODV). According to Schlitzer [3], ODV is a software used for the inter-
active exploration, analysis and visualization of oceanographic and other geo-
referenced profile, time-series, and trajectory or sequence data. It displays origi-
nal data points or gridded fields based on the original data and supports different
data formats. ODV displays data on different views representing it in a global
map that integrates the gridding algorithms [4] based software, called DIVA [5],
in order to grid elements in the map for performing interpolation. Moreover,
it allows to select one data source by entering the outer coordinates, consider-
ing the result as a separate small collection. In addition, ODV allows to select
features for drawing one or more specific diagrams in order to compare these.

A software for 3D visualization has been proposed by Ware et al. [6]. The
representation of that requires a user visual stimulation and allows them to
compare two or more locations [7].

On the other hand, in recent time, the scientific community has started an
investigation about atmospheric and oceanographic research using the Cloud
Computing paradigm [8]. In order to proof that, in [9], the author reported a
survey for discussing the progress made by Cloud in the oceanographic chal-
lenges. These include effective discovery, organization, analysis and visualization
of large amounts of data. In [10], the authors reported “the outcomes of an NSF-
funded project that developed a geospatial cyberinfrastructure to support atmo-
spheric research”. Specifically, they provided several modules for covering the
aforementioned challenges in order to “develop an online, collaborative scientific
analysis system for atmospheric science”. In [11], instead, the authors described
the LiveOcean project, which aims to mitigate “the financial impact of ocean
acidification on the shellfish industry in the Pacific Northwest of the United
States”. The authors builded this system on Microsoft Azure Cloud Platform
highlighting the modularity as most important theme.

Oceanographic Data in Cloud Computing 75

Other important aspect is the management of the sensors designated for
gathering row data. Indeed, increasing the number of data also the oceanographic
context entries in the Big Data problem and specific solutions, such as [12,13],
are useful for be inspired.

Our approach aims to go over the [3–7] solutions, proposing a Cloud Com-
puting scenario in order to provide for Big Data coming into the oceanographic
context.

Cloud Computing is a very hot topic in scientific community, it raises chal-
lenges in research fields as described in [14–17]. Most of the works are focused
on the study and realization of innovative models that allows the collaboration
among different Cloud providers focusing on various aspects of the federation.
New trends in scientific work aim to adopt the Federation for new interesting
scenarios: IoT, Edge, Cloud and Osmotic Computing [18].

3 Material

The following section describes the material used for this scientific work, high-
lighting the data structure and discussing the main challenges and issues.

3.1 Data Source

Data used in this scientific work came from the Carbon Dioxide Information
Analysis Center (CDIAC), which is considered the first information analysis
center for the oceanic parameters [19]. It provides an important climate-change
database center organized as showed in the Fig. 1.

In particular, with reference to the Fig. 1, it is possible to notice the
ODVServer zone, that represents the data sources selected in our study. Data are
stored into relational databases, it is possible to export them using the comma
separated value (CSV) format. In particular the ODVServer Data System is
composed by three databases:

1. the GLobal Ocean Data Analysis Project (GLODAP) which gathers unified
dataset for determining the “global distributions of both natural and anthro-
pogenic inorganic carbon, such as radiocarbon” [20];

2. the PACIFic ocean Interior CArbon (PACIFICA) database that gathers “data
synthesis of ocean interior carbon and its related parameters in the Pacific
Ocean” [21];

3. the CARbon dioxide IN the Atlantic Ocean (CARINA) database which gath-
ers “data set of open ocean subsurface measurements for biogeochemical inves-
tigations” [22].

Other data sources (SOCAT, CORILIOS CORA, JGOFS, eWOCE, LDEO and
CLIVAR) are out of the scope of this paper and will be treated in future works.

76 S. Allam et al.

Fig. 1. CDIAC data center

3.2 Data Structure

Data collected in the aforementioned databases have a common structure
explained in the following:

– Time data: Month, Day, Year;
– Location data: Longitude, Latitude, Depth;
– Physical & Chemical data: Section, Station, Cruise, BottomDepth, Bot-

tleNumber, Cast, Salinity, cdtSalinity, Oxygen, Nitrate, Nitrite, Silicate,
Phosphate, CFC11, CFC12, CFC113, TCO2, Alkalinity, pCO2, pHSWS25,
pHSWS25 Temp, AnthropogenicCO2, DOC, TOC, DeltaC14, DeltaC13, H3,
DeltaH3, He, C14err, H3err, DeltaH3err, He err, CCl4, SF6, AOU, pCFC11,
CFC11Age, pCFC12, pCFC113, pCCl4, pSF6, CFC12Age, PotentialAl-
kalinity, ConventionalRadiocarbonAge, NaturalC14, bkgc14e, BombC14,
BombC14atom, NaturalC14atom, PotTemperature, SigmaTheta, Sigma1,
Sigma2, Sigma3, Sigma4, bf, sf, cdtsf, of, no3f, no2f, sif, po4f, cfc11f, cfc12f,
cfc113f, tco2f, alkf, pco2f, phsws25f, aco2f, docf, tocf, c14f, c13f, h3f, dh3f,
hef, ccl4f, sf6f, aouf, palkf, bkgc14f, bombc14f;

– Environmental data: Pressure, Temperature.

Data are collected according to the specific oceanographic region. Specifi-
cally, each region is composed by a set of sections that contain several stations

Oceanographic Data in Cloud Computing 77

geographically located. For each of them, there are more than one record depend-
ing on the depth variation. The Fig. 2 represents a hierarchical overview of the
entire dataset just described.

Fig. 2. Hierarchical multivalued attributes. Here P1, P2, ... , P90 denote Physical &
chemical data.

3.3 Challenges and Issues of Oceanographic Data

The CDIAC oceanographic data have the ‘Cruise/Section-Station-Depth’ form.
Such data are in relationships with time and space and archive all information
about how, when and where data were stored, as well as type and nature of
available data. Thus, it provides a conceptual overview of ocean data structure
that should be useful in data management.

In ocean data, the dimensions are normally recorded as ‘date/time, latitude,
longitude, and depth’ [23]. By associating latitude and longitude in location, the
model will be ‘date/time, location, and depth’. Unfortunately, data provided by
the GLODAP, PACIFICA and CARINA databases do not have the data/time
field in the ‘dd/mm/yy hour:minute:second’ form, but only in the ‘dd/mm/yy’
form. Therefore, the model becomes ‘data, location, depth’. For this purpose, it
is difficult to treat these data as time series.

Referring to the TLZ model [23], there are eight possible relationships, as
reported in the Table 1.

We also noted that the geographical distance and depth gauge is not periodic
among samples, i.e the Fig. 3 shows that the distance among stations is not the
same and the stations depth is also different. More specifically, the data gauge
on different depth is not uniform throughout the sample collection process.

Thus, the main challenge was to manage these data, in order to facilitate
future predictive analysis and query them in a flexible way.

78 S. Allam et al.

Table 1. DLH space relationship. Noted Date = ‘D’, Location = ‘L’ and Depth = ‘H’.

D L H Relationship

1 1 1 One date, one location, one depth

1 1 n One date, one location, many depth

1 n 1 One date, many location, one depth

1 n n One date, many location, many depth

n 1 1 many date, one location, one depth

n 1 n many date, one location, many depth

n n 1 many date, many location, one depth

n n n many date, many location, many depth

Fig. 3. A representation of data characteristic

4 Methodology

As mentioned in the Sect. 1, this work aimed to improve the previous one [2]
through the Cloud Computing utilization. Specifically, the Sun/Oracle’s JEE-
based cross-platform, called ODVServer, used to store data in a traditional SQL
database and to visualize oceanographic data using Google Maps APIs. The
Fig. 4 shows an overview of the previous platform.

Unfortunately, the visualization of all sections from one database was not
easily distinguishable. Moreover, we were not able to analyze the oceanographic
data on the basis of different geographical shapes. For this purpose, we propose
the Cloud improvement reported in the following.

4.1 Workflow

Driven by the need to improve the viewing system of the different oceano-
graphic sections, we have planned to replace web data processing, performed
with the Google Maps APIs, with the native storage of a GeoJSON, a
human and machine-readable format for encoding geographic data structures.

Oceanographic Data in Cloud Computing 79

Fig. 4. Overview of the ODVServer platform. The layout was divided into two side.
The first one (A) provided a geographical representation of the reading. Indeed, the
right side (B, C, D, E) provided the insight view of the selected station.

Therefore, a NoSQL database was required in order to manage semi-structured
and non structured data and for storing all the oceanographic databases.

Referring to the Fig. 5, data move from sources (CARINA, PACIFICA and
GLODAP) to the Cloud Platform through RESTful APIs. Specifically, the lis-
tening microservice receives CSV data in order to implement the transformation
into GeoJSON. Thus, this information moves to a sharded and replicated Mon-
goDB distribution, a native JSON NoSQL database. The choice of MongoDB
avoids further data transformations. Moreover, in order to scale the microservice
workload, it is embedded inside a docker container, ensuring a lightweight and
portable service virtualization.

The bottom side of the Fig. 5 shows a HTTP communication between the
distributed storage and the front end, in order to view the query and future
analyses results. At the same time, Apache Spark has been thought for perform-
ing future real-time predictive algorithms on oceanographic data. However, the
dotted lines indicate guidelines for future works.

4.2 Oceanographic Data Visualization

Based on the previous description, we looked for two properties: interoperability
and flexibility. The first one is guaranteed by the GeoJSON standard. Its fixed
structure identifies two parts: geometry section contains geospatial information
and type of GeoJSON element (see Sect. 2 in the Fig. 6); and properties section
contains all parameters codified as key-value pairs (see Sect. 3 in the Fig. 6). We
remark that Sect. 1 in the Fig. 6 represents the MongoDB’s master key.

80 S. Allam et al.

Fig. 5. The workflow includes the data acquisition and integration phases, considering
the CSV format databases (CARINA; PACIFICA and GLODAP). A NoSQL solution
stores all the GeoJSON information and integrates well with data analysis tool, such
as Apache Spark, and MEAN stack web application, such as the Meteor JS framework.
The dotted lines indicates guidelines for future works.

On the other hand, the flexibility is guaranteed by data management and
visualization dynamism, which allow users to select any representation. Indeed,
in our approach, we decided to store all samples in a single MongoDB collection.
Thus, we can create virtual representation based on users’ demand. For instance,
as showed in the Fig. 7, by means of our approach users are able to create virtual
representations per each zone of interest, starting from position of samples or
other constrains.

Oceanographic Data in Cloud Computing 81

Fig. 6. Difference structure of JSON and GeoJSON

Fig. 7. User demand

82 S. Allam et al.

5 Performance

In this section we discuss about of the performances of the system from a numer-
ical point of view. In particular, we conducted two different kind of analysis: for
populating and retrieve data of our system. Our testbed is composed of two dif-
ferent blades server. More specifically, we have 2 different type of machines one
for the computation and the other one for the storage. Computation worksta-
tion, in which is running the data conversion module, is equipped by the Intel(R)
Core(TM) i7-6700 CPU @ 3.40 GHz, RAM 16 GB, OS: Ubuntu server 16.04 LTS
64 BIT. Storage workstation, in which our database system MongoDB is running
on single node, is composed by the Intel(R) Core(TM) i3-6100 CPU @ 3.70 GHz,
RAM 32 GB, and Ubuntu server 16.04 LTS 64 BIT. Unfortunately we did not
find any solution to compare performances of our system. We made scalability
tests in different scenarios for both type of analysis. Experiments were repeated
30 subsequent times in order to consider confidence intervals at 95% and average
values.

5.1 Insert Data

Figure 8 shows the performances for parsing CSV data to GeoJSON and storing
them into MongoDB. Its behavior is linear with the increasing of the dataset size.
On the x-axis we reported the dataset size, whereas on the y-axis, we reported
the response time expressed in msec. How we can observe, the response time for
100.000 samples is acceptable less than 10 s.

Fig. 8. Data insert performance

5.2 Retrieve Data

Here we consider times for retrieving data from MongoDB in a specific geographic
shapes, in order to understand if flexibility features are really implementable.
More specifically we considered increasing concentric circles with different radius,
starting from 10 m up to 100 km.

Oceanographic Data in Cloud Computing 83

Fig. 9. Data retrieve performance

The behavior, as showed in Fig. 9, is constant around 30 ms, variations are
due to networks delay.

6 Conclusions and Future Work

In this scientific work, we investigated the management of oceanographic data
through the utilization of a Cloud Computing workflow. First of all, three CSV
format databases have been selected as data sources. Therefore, we explained
the workflow necessary for migrating these data up to the Cloud Storage. This
scientific work is the first initiative adopting Cloud for manage Ocean data, for
this reason we did not find any solution to compare performance of our system.
However experiments showed that our system response time presents a linear
trend. The execution time grows up with the increasing number of considered
samples.

On the other hand, the dotted lines in the Fig. 5 shows our idea about the
future perspective. In particular, Meteor JS framework will be the technology we

Fig. 10. A goal of the future work can be the acidification prediction.

84 S. Allam et al.

aim to use for developing the new frontend version. This choice depends on the
native MEAN stack adopted, which includes MongoDB as backend database;
whereas Apache Spark will be useful for performing predictive oceanographic
data analysis, such as the acidification prediction. About that, the Fig. 10 shows
a possible future work about the selection of the features that best describe the
reported behavior. Other future works are related to adopt the new Osmotic
Computing paradigm.

Acknowledgment. This work has been supported by Cloud for Europe grant
agreement number FP7-610650 (C4E) Tender: REALIZATION OF A RESEARCH
AND DEVELOPMENT PROJECT (PRE-COMMERCIAL PROCUREMENT) ON
“CLOUD FOR EUROPE”, Italy-Rome: Research and development services and related
consultancy services Contract notice: 2014/S 241-424518. Directive: 2004/18/EC.
(http://www.cloudforeurope.eu/).

References

1. Doney, S.C., Balch, W.M., Fabry, V.J., Feely, R.A.: Ocean acidification a critical
emerging problem. Oceanography 22(4), 16–25 (2009)

2. Allam, R.E.S., Ouahbi, M.D.E.O.: Adv. Inf. Technol. Theory Appl. 1, 163–166
(2016). ISSN: 2489–1703

3. Schlitzer, R.: Ocean Data View, pp. 1–11 (2011)
4. Smith, W.H.F., Wessel, P.: Gridding with continuous curvature splines in tension.

Geophysics 55(3), 293–305 (1990). http://library.seg.org/doi/10.1190/1.1442837
5. Started, G.: Ocean Data View, pp. 1–11 (2011)
6. Ware, C., Plumlee, M., Arsenault, R., Mayer, L.A., Smith, S., House, D.:

GeoZui3D: data fusion for interpreting oceanographic data. In: Oceans Conference
Record (IEEE), vol. 3, pp. 1960–1964 (2001)

7. Plumlee, M., Ware, C.: An evaluation of methods for linking 3D views.
In: Proceedings of the Symposium on Interactive 3D Graphics, pp. 193–
201 (2003). http://www.scopus.com/inward/record.url?eid=2-s2.0-0038642661&
partnerID=tZOtx3y1

8. Butler, K., Merati, N.: Analysis patterns for cloud-centric atmospheric and ocean
research. In: Cloud Computing in Ocean and Atmospheric Sciences, pp. 15–34.
Elsevier (2016). https://doi.org/10.1016/b978-0-12-803192-6.00002-5

9. Wigton, R.: Forces and patterns in the scientific cloud. In: Cloud Computing in
Ocean and Atmospheric Sciences, pp. 35–41. Elsevier (2016). https://doi.org/10.
1016/b978-0-12-803192-6.00003-7

10. Li, W., Shao, H., Wang, S., Zhou, X., Wu, S.: A2ci. In: Cloud Computing in Ocean
and Atmospheric Sciences, pp. 137–161. Elsevier (2016). https://doi.org/10.1016/
b978-0-12-803192-6.00009-8

11. Fatland, R., MacCready, P., Oscar, N.: LiveOcean. In: Cloud Computing in Ocean
and Atmospheric Sciences, pp. 277–296. Elsevier (2016). https://doi.org/10.1016/
b978-0-12-803192-6.00014-1

12. Fazio, M., Celesti, A., Villari, M., Puliafito, A.: The need of a hybrid storage
approach for IoT in PaaS cloud federation. In: 2014 28th International Conference
on Advanced Information Networking and Applications Workshops, pp. 779–784
(2014)

http://www.cloudforeurope.eu/
http://library.seg.org/doi/10.1190/1.1442837
http://www.scopus.com/inward/record.url?eid=2-s2.0-0038642661&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-0038642661&partnerID=tZOtx3y1
https://doi.org/10.1016/b978-0-12-803192-6.00002-5
https://doi.org/10.1016/b978-0-12-803192-6.00003-7
https://doi.org/10.1016/b978-0-12-803192-6.00003-7
https://doi.org/10.1016/b978-0-12-803192-6.00009-8
https://doi.org/10.1016/b978-0-12-803192-6.00009-8
https://doi.org/10.1016/b978-0-12-803192-6.00014-1
https://doi.org/10.1016/b978-0-12-803192-6.00014-1

Oceanographic Data in Cloud Computing 85

13. Celesti, A., Peditto, N., Verboso, F., Villari, M., Puliafito, A., Draco PaaS: a dis-
tributed resilient adaptable cloud oriented platform. In: IEEE International Sym-
posium on Parallel Distributed Processing. Workshops and PhD Forum 2013, pp.
1490–1497 (2013)

14. Tusa, F., Celesti, A., Villari, M., Puliafito, A.: How to enhance cloud architectures
to enable cross-federation. In: Proceedings of IEEE CLOUD 2010, pp. 337–345.
IEEE, July 2010

15. Vernik, G., Shulman-Peleg, A., Dippl, S., Formisano, C., Jaeger, M., Kolodner,
E., Villari, M.: Data on-boarding in federated storage clouds. In: 2013 IEEE Sixth
International Conference on Cloud Computing (CLOUD), pp. 244–251, June 2013

16. Goiri, I., Guitart, J., Torres, J.: Characterizing cloud federation for enhancing
providers’ profit. In: 2010 IEEE 3rd International Conference on Cloud Computing
(CLOUD), pp. 123–130, July 2010

17. Azodolmolky, S., Wieder, P., Yahyapour, R.: Cloud computing networking: chal-
lenges and opportunities for innovations. IEEE Commun. Mag. 51(7), 54–62 (2013)

18. Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a
new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)

19. Catalog of Databases and Reports, May 1999. http://cdiac.ornl.gov/oceans/
20. Key, R., Olsen, A., van Heuven, S., Lauvset, S., Velo, A., Lin, X., Schirnick, C.,

Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson,
E., Ishi, M., Perez, F., Suzuki, T.: Global Ocean Data Analysis Project, Version 2
(GLODAPv2). Ornl/Cdiac-162, Ndp-093, vol. 2 (2015)

21. Suzuki, T., Ishii, M., Aoyama, M., Christian, J.R., Enyo, K., Kawano, T., Key, R.M.,
Kosugi, N., Kozyr, A., Miller, L.A., Murata, A., Nakano, T., Ono, T., Saino, T.,
Sasaki, K.-I., Sasano, D., Takatani, Y., Wakita, M., Sabine, C.L.: Pacifica Data Syn-
thesis Project. Ornl/Cdiac-159, Ndp-092 (2013)

22. Hoppema, M., Velo, A., van Heuven, S., Tanhua, T., Key, R.M., Lin, X.,
Bakker, D.C.E., Perez, F.F., Ŕıos, A.F., Lo Monaco, C., Sabine, C.L., Álvarez, M.,
Bellerby, R.G.J.: Consistency of cruise data of the CARINA database in the
Atlantic sector of the Southern Ocean. Earth Syst. Sci. Data 1, 63–75 (2009)

23. Hubbs, C.L.: University of Michigan, U.S.A., vol. III, pp. 1–6 (1930)

http://cdiac.ornl.gov/oceans/

An Ontology-Based Architecture
for an Adaptable Cloud Storage Broker

Divyaa Manimaran Elango1, Frank Fowley1, and Claus Pahl2(B)

1 IC4, Dublin City University, Dublin, Ireland
2 Software and Systems Engineering Research Centre,

Free University of Bozen-Bolzano, Bolzano, Italy
Claus.Pahl@unibz.it

Abstract. Interoperability and easier migration between offered ser-
viced are aims that can be supported by cloud service brokerage in
the cloud service ecosystem. We present here a multi-cloud storage bro-
ker, implemented as an API. This API allows objects and collections
of objects to be stored and retrieved uniformly across a range of cloud-
based storage providers. This in turn realizes improved portability and
easy migration of software systems between providers and services.

Our multi-cloud storage abstraction is implemented as a Java-based
multi-cloud storage API and supports a range of storage providers includ-
ing GoogleDrive, DropBox, Microsoft Azure and Amazon Web Services as
sample service providers. We focus on the architectural aspects of the bro-
ker in this paper. The abstraction provided by the broker is based on a lay-
ered ontological framework. While many multi-cloud applications exist,
we investigate in more detail the mapping of the layered ontology onto a
design pattern-based organisation of the architecture. This software archi-
tecture perspective allows us to show how this satisfies important main-
tainability and extensibility properties for any software system.

Keywords: Cloud Service Brokerage · Cloud storage
Data migration · Ontology · API performance

1 Introduction

Interoperability is a key concern in the cloud service ecosystem. Cloud service
brokerage (CSB) aims for more interoperability to enable more portability and
easier migration between different service providers [26,33,34]. CSBs can support
portability and migration through mechanisms such as integration and adapta-
tion of different provided services into a uniform representation [15].

We present here a multi-cloud storage broker that implements an API to
allow objects to be stored and retrieved uniformly across a range of storage
providers. Two features characterise the broker. Firstly, the abstraction is based
on a layered ontological framework that allows mapping of common concepts of
object storage to implementation layers. Secondly, the architecture is organised
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 86–101, 2018.
https://doi.org/10.1007/978-3-319-79090-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_6&domain=pdf

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 87

around common software design patterns to ensure maintainability and extensi-
bility. This is important in order to extend the broker to new providers [21].

The central software architecture concepts for the design of the broker and
methodology behind the abstraction library will be our core focus. The multi-
cloud storage abstraction is realized by a Java-based multi-cloud storage API.
Technically, the library is provided as a jar file that supports the selected four
service providers, namely GoogleDrive, DropBox, Microsoft Azure and Amazon
Web Services [37–40]. The library offers three service categories that reflect the
different storagetypes, i.e., a file service, a blob service and a table service.

We focus on the ontology framework for the central storage concepts and
functions and show how this is mapped onto a layered, design pattern-based
library architecture for the API we developed [30,31]. This is an aspect that has
not been sufficiently address in other investigations of multi-cloud brokers. An
application of the library can also be used to compare storage operations across
different providers, which we an others [16,32] have explored elsewhere.

This document is organized as follows. In Sect. 2, we give an outline of cloud
service brokerage. Section 3 describes background and related work. In Sect. 4,
the ontology-based interoperability framework is explained, and Sect. 5 looks at
other architectural design aspects. Section 6 discusses the implementation effort
and the learning outcome and presents some conclusions.

2 Principles of Cloud Service Brokerage and Use Cases

2.1 Cloud Brokerage

A cloud broker [11,17] is an intermediary software application between a client
and cloud provider service. Brokerage reduces the time spent by a client in
analyzing different types of services provided by different service providers.

In our case, brokerage enables a single platform to offer the client a common
cloud storage service. This results in cost optimization and reduced level of back-
end data management requirements, but also enables easy migration of data and
files through the joint interface [8].

A multi-cloud storage abstraction API can act as the cloud broker library
which facilitates the integration of different types of cloud services [18]. The
abstraction library allows the broker to adapt to a rapidly changing marketplace
[4]. Changeability and extensibility are consequently central requirements for
our broker library [9,10]. Figure 1 illustrates the architecture.

Fig. 1. Service brokerage architecture for cloud storage.

88 D. M. Elango et al.

2.2 A Brokerage Use Case

Cloud brokerage shall be illustrated by a use case. Disaster recovery (DR) is a
sample specific storage use case, used where there is an interruption of an action
or an event in an unpredictable time that causes the services to be unavailable to
the end user. Cloud back-up storage is a way of protecting the online resources
to make them available in the event of a disaster, such as loss of data.

Our storage abstraction library is suited to support this DR use case as it
provides a multi-cloud broker for easy storage back up. Concrete advantages
are good time management in terms of restoring processes, increased scalabil-
ity, security and compliance, redundancy and end to end recovery for the DR
application [2,3]. The storage providers supported by our API (Microsoft Azure,
Google, DropBox and Amazon Web Service) offer good bandwidth and low cost
services that can be used for backup and recovery tasks.

2.3 Vendor Lock-In

Vendor lock-in is a problem in cloud computing, preventing users from migrating
between providers. Clients become dependent on a single cloud provider. The
client is not given an option to migrate to other providers. Issues can arise, such
as legal constraints or increased costs, that consequently negatively impact on
key properties by vendor lock-in and lack of standards [6,7].

A multi-cloud storage API can play a crucial role in such cases, making it
easier for the client to switch providers. This can be applied across different cloud
type environments, like private or public environments which are more beneficial
from a business perspective. Furthermore, the extensibility of the library to
support new cloud providers gives the client a wide view of portability to many
different new cloud providers.

3 Background and Related Work

3.1 Cloud Service Provider APIs

Many cloud storage provider APIs exist, from which we selected four providers
with different individual services [37–40]. Some key properties from a software
engineering perspective that have impacted on the implementation are:

– Amazon Web Service S3: is a file storage service built on REST and SOAP. An
S3 SDK is available in major development languages. The developer portal
includes rich documentation. However, from a software development point-
of-view, the services have a hight number of classes. The library is heavy
since it has many packages for all services. Understanding the class naming
can be seen as challenging – many services are listed in the same SDK docu-
mentation. We also experienced the service be inconsistent, as there was an
occasional delay in read and write requests.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 89

– Azure Storage: supports blob, file, queue and table services. The API is built
on REST, HTTP and XML, and can be easily integrated with Microsoft
Visual Studio, Eclipse and GIT. Azure is relatively user friendly. The standard
portal interface is used for storage account set-up and document DB account
parameters. The Azure SDK is available for major development languages.
The Azure SDK provides a separate API package for each service and has
the same code flow across different service APIs.

– DropBox: is a file hosting service. It uses SSL transfer for synchronization and
AES 256 encryption as the security mechanisms. It also enables synchronised
backup and web sharing. The DropBox API is lightweight and easy for a new
user to go through quickly. Code samples and method explanations are given
in the developer’s portal.

– GoogleDrive: offers a cloud file storage service. The API is built on OAuth2
authentication. It is generally easy to understand. The structure is clearly
documented and the use of method calls is well explained. The GoogleDrive
service includes access to a Google API client library. Failure to include http
and OAuth client libraries will disable the authentication. The Google devel-
oper portal simplifies the way of implementing the API in a workspace and
provides details for configuring the authentication.

A survey of the main features of the providers that we carried out has resulted
in a grouping of the cloud providers and their services as shown in Table 1.

Table 1. Storage services and their providers.

Service Azure AWS Google DropBox

File Azure storage file - GoogleDrive DropBox

Blob Azure storage blob AWS S3 - -

Table Azure storage table,
Azure DocumentDB

Amazon DynamoDB,
Amazon SimpleDB

- -

3.2 Multi-cloud Libraries

For the design of our multi-cloud broker, we looked at existing multi-cloud
libraries for inspiration. Cloud providers publish specifications of their services,
which are different style and which makes it hard to use them as a common joint
interface. We looked at several existing multi-cloud libraries, including Apache
jclouds, DeltaCloud, Kloudless, SecureBlackBox, Temboo and SimpleCloud.

A key requirement was flexibility, which would allow our library to be adapted
to changing services or completely different services. We decided to construct our

90 D. M. Elango et al.

broker based a combination of proven design patterns, adapted to the context
here. Patterns and principles from different libraries were adopted:

– In this vein, we decided to adopt an approach that was also followed in the
Apache jclouds library to provide abstraction. Apache jclouds provides cloud-
agnostic abstraction [27]. The principle is to use a single instance context for
the mapping of a user request.

– The concept of a class for each provider across different levels of services was
adopted from a similar design that we found in the SecureBlackBox library.

– The structural pattern building around a manager interface layer at each
component level was adopted from the Apache LibCloud architecture.

4 The Ontological Framework for Cloud Storage

We discuss the guiding problems and principles, before introducing our stor-
age abstraction ontology that organises the API architecture and showing how
provider functionality is mapped onto this.

4.1 Abstraction, Interoperability and Extensibility

The architecture of our API is built on multiple layers of abstraction. Abstraction
serves here to reduce complexity. It provides for service-neutral functional logic
which also realises extensibility, i.e., allows additional vendors to be supported
without changing the underlying core functional logic of the API design. In the
future, new storage services can be added to the API without code change [28].
A programmable abstraction layer provides flexibility to connect and configure
services [29]. Thus, interoperability and portability can be achieved. Such APIs
are used for developing cloud-based applications like content delivery platforms
and back-up applications, as our earlier use case demonstrates.

The main objective of the cloud storage abstraction API is to produce an
effective multi-cloud delivery model, with a single portable view that supports
enhanced business capabilities such as brokerage [36].

The advantage of bringing these functionalities to an interoperable multi-
cloud application provides (i) an easy way of importing and exporting data,
(ii) choice over price, (iii) enhanced SLA, and (iv) the elimination of vendor lock-
in. While there are standardisation frameworks in this context such as the Cloud
Infrastructure Management Interface (CIMI) and theOpen Cloud Computing
Interface (OCCI) that target interoperability, our integration broker provides
interoperability based on an extensible API.

4.2 Storage Abstraction Ontology

An ontology-based layered architecture serves to provide interoperability and
extensibility. At the core of the architecture is a stroage abstraction ontology
that describes the common service concepts across the abstraction layers. This
ontology model consists of four main layers, namely Service, Provider, (Level-2)
Composite Object and (Level-1) Core Object.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 91

Fig. 2. Storage abstraction ontology based on 4 layers.

– Service: The Service layer is the top layer and is directly integrated into the
user interface layer. This layer basically describes the services types supported
by the abstraction API, which are blob, table and file service.

– Provider: The Provider layer is the next layer where context object parameters
are mapped to the service layer. We supports four main providers – Microsoft
Azure, Amazon Web Services, GoogleDrive and DropBox:

Service Provider
Blob Azure storage blob; AWS S3
Table Azure storage Table; Azure DocumentDB; AWS DynamoDB; AWS

SimpleDB
File Azure storage file; DropBox and GoogleDrive

– Composite Objects – Level-2: The Composite Objects (object level-2) rep-
resents the first level (or higher level) of abstraction for the object types
blob, table and file. It is service-neutral and established a common nam-
ing across individual providers and their specific functionalities. Each layer
is abstracted based on common operations and of how the main function is
applied in that particular service. Common naming allows to easily categorise
storage resources and group them to simplify development.
The Abstraction Ontology diagram (Fig. 2) shows the concept. The blob ser-
vice has a “Store” concept, which groups for instance ‘Container’ from Azure
Storage Blob and ‘Bucket’ from AWS S3. The table service has two different
sub-layers – where “Database” belongs to Azure DocumentDB Database, and
where “Collection” groups ‘Table’ from Azure Storage Table, ‘collection’ from
Azure DocumentDB Collection, ‘Table’ from AWS DynamoDB and ‘Domain’
from ‘AWS SimpleDB’. The file service has two sub-layers where “Share”
belongs to Azure Storage File and “Directory” groups ‘Directory’ from Azure
Storage, ‘Folder’ from DropBox and ‘Parent’ from GoogleDrive.

92 D. M. Elango et al.

– Core Objects – Level-1: The Core Object (object level-1) aspect represents
the lower level of storage object abstraction. This layer contains the core
functionalities of a particular service across different providers.
The classes at this level are extended from an abstract class called Abstract-
Connector, implementing the abstractor pattern. The class implements the
abstract methods defined in an AbstractConnector class. The mapping from
Level-2 to Level-1 is performed by an interface class called Manager. This
Manager identifies the provider class by its key. Basic CRUD operations on
the storage resources arecore methods. In order to implement these functions,
each operation “request” should “pass through” the Level-2 mappings and is
then mapped across the service and providers.
The blob service has “Blob”, which groups ‘Blob’ from Azure Storage Blob
and ‘Object’ from AWS S3. The table service has two sublayers. It has an
“Item” to group ‘Entity’ from Azure Storage Table, ‘Document’ from Azure,
‘Item’ from AWS DynamoDB and ‘Item’ from AWS SimpleDB. Further-
more, the second sublayer “Attachment” belongs to the Azure DocumentDB
Attachment. The file service has “File” grouping ‘File’ from Azure Storage
File, ‘File’ from DropBox and ‘File’ from GoogleDrive.

4.3 Storage Service Provider Functionality

An important concern was having common naming for mapping the user’s
requests onto the different services. The broker acts as an adapter for accessing
different providers’ services through a common interface. We found a high degree
of commonality between different cloud provider functions and their names. How-
ever, some operations exists in one provider, but not in others. Furthermore, the
parameters in some of the methods also differ between providers.

In the example below, the Level-2 aspect “Store” in the Blob service supports
providers with different specific names, namely Azure’s storage blob container
and AWS’s S3 bucket. The table also shows the common createStore() method
and the corresponding Azure-specific and AWS-specific underlying method calls.
The approach is based on identifying synonyms for common object names, such
as container (Azure) and bucket (S3) for ‘store’:

Common name (Level-2) Name in azure storage blob Name in AWS S3
Store Container Bucket

The same then applies to function names:

Common method name Name in azure storage blob Name in AWS S3
createStore() create() create container createBucket() create bucket

The abstraction ontology maps similar service groupings together across differ-
ent cloud providers. Selected services have similar or the same core functional
logic – grouped into levels in the ontology. Based on this, the framework design
includes the “service”, “provider”, “composite object” and “core object” for its
implementation.

In the example below, the common level-2 composite “Collection” is already
defined for two providers. There are four corresponding service names: Azure

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 93

storage table ‘table’, AWS document DB ‘collection’, AWS dynamo DB ‘table’
and AWS simple DB ‘domain’. The table below shows the common getCollec-
tionMetadata() method and its corresponding provider API method calls:

Common ontology
name

Azure storage
table

Azure Document
DB

AWS Dynamo DB AWS Simple DB

Composite: Collec-
tion

Table Collection Table Domain

Operation: getCol-
lectionMetadata()

- - describeTable()
returns information
about the table.

domainMetadata()
returns information
about the domain.

Operation: listCol-
lection()

listTables()
Lists the table
names in the
account

readCollection()
Reads a document
collection by the
collection link

listTables() Sim-
plified method for
invoking ListTables

listDomains() Lists
all domains associ-
ated with the Access
Key ID

The method name to retrieve the metadata of a collection in the Table service
is not supported by Azure, but AWS does. So, a common operation can not
be realised across the level-2 composite Collection. A similar problem exists
with the blob and file services. This lack of consistency in the available provider
API operations has led to the omission of valuable API method calls. We also
introduce another example, which is the common listCollection() method and its
corresponding provider API method calls. The method name to retrieve the list
of collections in the table service is supported by both Azure and AWS. However,
the method names are different, although description and logic are the same.

5 Design of the Cloud Storage API

Our design involves a mapping of an ontology-based conceptual framework onto
a layered architecture, which in turn was structured by suitable design patterns.
We look at security management of the different service providers.

5.1 An Ontology-Driven Architecture

We applied a “model-driven” software engineering technique to simplify the pro-
cess of design from concept modeling to implementation. This was done at each
level in the abstraction ontology by breaking entities into single components.
Adopting this kind of best-practice in software design was important in order
to reduce the development overhead and produce a quality library that can be
extended easily. Two types of modeling approaches could have been used here.

– Firstly, a provider-specific model, in which the provisioning and deployment
of the abstraction library is defined for each cloud provider.

– Secondly, a cloud provider-independent model, which defines the provisioning
and deployment of the abstraction library in a cloud-agnostic way.

We adopted the approach taken in the CloudML EU-funded research project.
There, a domain-specific modelling language is used to reduce the complexity of
cloud system design. CloudML enables to provision and deploy an abstraction
library. Its design includes what we call level-1 core objects, which are assembled

94 D. M. Elango et al.

based on the CloudML internal component design. These are mapped to level-2
components by using a model-driven approach. A client using the service does
not necessarily know about the internal deployment, and there is no limitation
on the design and evolution of the multi-cloud abstraction library.

5.2 Application of Design Pattern

Design patterns play a central role in organising the layered ontology-based
architecture in order to achieve the required maintainability and extensibility,
but also in general the quality of the software.

Mapping Based on an Object Context for Maintainability. For any
multi-cloud library design patterns can reduce the need to have an object instan-
tiation for each provider’s class using the constructor. This was a problem noted
for the jclouds library. A lack of code clarity and high level of complexity in the
framework pattern was observed.

In our API, in order to avoid this problem and to provide a stable, main-
tainable code base, the context builder class is added to the architecture. This
builder class includes a key and a value parameter pair. This pair is called an
item, which adds the service, the provider, the aspect key, the operation key and
the input parameters to the context. Then, this context object is passed on to
execute the API method call. This mapping is applied for all the services sup-
ported by our API. Below, we outline the mapping of parameters into a single
context instance.

Context context = new Context();
context = addServiceContext(context);
context = addServiceProviderContext(context);
context = BlobService.addParameters(

IConstants.ASPECT_KEY, IConstants LEVEL-2_STORE, context);
context.addItem(new Item(

IConstants.OPERATION_KEY, IConstants.OPERATION_CREATE));
context = BlobService.addParameters(

IConstants.STORE_NAME, storeName, context);

Extensibility Through a Plug-in Framework. API design principles state
that a developer should not have visibility of the underlying low-level abstraction
classes, interfaces and methods. If a future extension can support new features
and services, then the framework should not have to be redesigned or its behavior
changed. We say that the framework acts like a plug-in for any new features,
services or providers. We achieve this in the design by enforcing that an abstract
class cannot be instantiated, it can only be inherited, as a strict coding rule.

The level-1 layer, which implements the lower-level API methods, is extended
from the AbstractConnector class. This abstract class must implement the inter-
face IConnector and all of its associated methods. The reason for this is because
an abstract class, by definition, is required to create subclasses of its instance.
The subclasses are required by the compiler to implement any interface methods

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 95

that the abstract class has left unimplemented. Less effort is required to extend
the API because the framework itself remains unchanged in that case.

Multi-service Support Through a Manager Interface Layer. The level-2
layer is limited because of the separation of the user level request which is meant
to distinguish between different API methods provided by the same provider. For
example, AWS provides DynamoDB and SimpleDB. Similarly, Azure provides
storage table and DocumentDB services. In order to remedy this, an interface
component called manager is implemented. The manager is responsible for iden-
tifying the corresponding “aspect-key” that is encapsulated within the context
parameter discussed earlier on.

We use two types of managers: the store manager and the table manager.

– The composite object Level-2 aspect is the higher level of abstraction. Since
Level-2 helps to identify the differences between the services, the store man-
ager interface is added in this layer, which splits the request to either blob or
file or table service at core object level-1.

– The table manager is used in a similar way. For example, the table service
at Level-1 has two APIs, the DynamoDB and SimpleDB, supported by one
provider, AWS. In order to differentiate between the services, an interface
component called manager was added to identify the common method name.

The relationship between the abstract class and the core logic of the level-2
aspect is managed using the context parameter.

5.3 Apache jclouds and Design Patterns

Our multi-cloud storage abstraction layer was designed using some of the design
concepts and patterns of jclouds. Apache jclouds is an open source library avail-
able in Java and Clojure, which supports several major cloud providers. The
jclouds library offers both a portable abstraction framework as well as cloud-
specific features. The main aim of jclouds is to manage errors, concurrency and
cloud complexity better.

The jclouds Architecture. jclouds features of a portable abstraction layer
called ‘View’, responsible for splitting the service type and cloud provider. A
‘View’ is connected to a provider-specific API or library driven API. The Context
Builder class maps the context object along with its parameters. The parameters
include provider class object, view, API metadata and provider metadata. This
object will be bound as a singleton object called Context and it is passed to the
context builder. The API Metadata class populates friendly names for the key,
which has two values – the type and the view information. The Service Registry
acts like a manager, which is responsible for holding the key to connect to a
provider’s class. The framework implements a builder pattern for request and
response, which connects to a backend API, along with authentication.

96 D. M. Elango et al.

In the context of our broker, the jclouds library caters for blob and compute
services. The following code block outlines the jclouds library code for calling a
context for an Azure blob. It uses the context builder class. The basic concept
of abstraction used in the jclouds library is based on the builder design pattern
known from software engineering. A context with service provider Azure that
offers the portable BlobStore API would look like as follows:

BlobStoreContext context =
ContextBuilder.newBuilder("azureblob")

.credentials(storageAccountName, storageAccountKey)

.buildView(BlobStoreContext.class);

5.4 Security Analysis – Authentication Mechanism

Security is another concern that needs to be unified across the providers in
addition to the mapping of concepts for core and composite storage objects used
by the different providers into a common ontology. Authentication, however,
differs across the providers selected.

1. The authentication in GoogleDrive is based on a client secret json file. A
project is created in the Google developer’s console. The Drive API and
OAuth protocol is enabled. The credentials are generated and saved as a
client secret json file. In the coding, the authentication method should have
the permission scope and drive scope set to ‘GRANT’. When the browser
opens for the authentication response, the client is permitted full read and
write access.

2. The authentication in DropBox uses an access token, which is generated in the
console. An application is created under the app console and its permission
is set to ‘FULL’. Later, the authentication is set by linking the account using
the access token when passing the instance of the API client.

3. The authentication in Microsoft Azure is based on an account subscrip-
tion that allows for the accessing of the resources available within an azure
account. The Blob service is provided within an Azure storage account. The
azure storage account name, also known as namespace, is the first level for
processing authentication to the services within the storage account (blob,
file and table). It uses token-based authentication. The authentication of the
Azure storage blob is done using a connection string which has the parameters
of the storage account name and primary key. Similarly, the Table service is
supported within an Azure storage account. The authentication of the Azure
storage table is done using a connection string which has the parameters of the
storage account name and primary key. An Azure Document DB account is
required for accessing the Azure Document Db service and requires a master
key and URI (end-point).

4. The authentication in Amazon Web Services is based on a secret key and
an access key, which is common across all services supported by our storage
API. An AWS user should have a specified role with the required resource
access permissions. Identity Access Management allows the user to set the role
and access privileges, and this provides each user with sufficient credentials.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 97

The account can be activated using phone verification and authentication.
Credential auditing and usage reports can be used for review purposes.

The different authentication processes were considered for the broker authen-
tication method, i.e., calls from the multi-cloud storage abstraction API. Our
solution is based on a credentials object:

– Credentials storage: The credentials are stored in a common config file. So,
the user is not shown the authentication part as it happens in the back-end.

– Credentials update: If the credentials need to be changed, they are only
changed in the configuration file, which reduces overhead for the user to set
up the authentication process.

6 Discussion and Conclusions

We have discussed maintainability and extensibility as centralobjectives that
need to be evaluated here throughout the architecture discussion in the previous
section. In a summarising discussion, we return here to a few important concerns
such as establishing testability and maintainability through suitable design pat-
terns, e.g., the dependency injection pattern, to point out benefits. Other aspects
have already been discussed throughout Sect. 5 above.

Design Patterns and Software Quality. From the discussion above, specifi-
cally the code, it can be clearly seen that jclouds gets a separate instance for each
provider’s class and, in some cases, it makes direct REST calls to the underlying
provider API. Thus, the programming style in jclouds follows the dependency
injection software design pattern. It uses two programming frameworks: firstly,
Google Guice, which is a Google library alternative to Spring, and, secondly,
Guava, which supports transformation, concatenation and aggregation for stor-
age services.

Another quality concern shall be addressed: recompilation overhead. Depen-
dency injection avoids code duplication, is unit-testable and modular. It thus
allows injecting of the service class instead of calling the API service method,
achieved by writing custom code and connecting it at run time, which avoids
recompiling. Custom code instantiates an object for each service and provider.

Quality Factors – Testability and Extensibility. Testing is a further con-
cern. The jclouds library uses dependency injection, as discussed above, which
makes reference to an object before it will proceed for execution. Implementing
dependencies by constructors, using the ‘new’ constructor may result in difficul-
ties for unit testing. Performing dependency injection using a factory method is
a traditional solution to the testing concern.

This is also known as indirect dependency, where the factory method is
realised by having an interaction class between the client class and the service
class. It was considered that the use of too many interaction classes would make

98 D. M. Elango et al.

the code more complex and result in tight coupling between the abstraction lay-
ers. This would hide the definition of abstraction and furthermore, it would not
facilitate the future extension of the library.

According to the principles of API design, there should be a small number
of functionalities shared across the entire cloud provider API. This has been
achieved in the abstraction design used.

Final Comments. The aim of cloud service brokerage is customising or inte-
grating existing services or making them interoperable. Following the classifica-
tion schemes in [12,13], we have developed an integration broker:

– the main purpose is intermediation between cloud consumers and providers
to provide advanced capabilities (interoperability and portability),

– it builds up on an intermediary/broker platform to provide a marketplace to
bring providers and customers together,

– the broker system type is a multi-cloud API library.

We presented here on a broker solution [1] for cloud storage service providers to
implement a joint interface to allow

– portability and migration for the user, i.e., the consumer of the services,
– extensibility for the broker provider to allow changed or new services to be

included.

Our broker enables through its joint API also the opportunity for a cloud storage
user to easily migrate between services or to use multiple services at the same
time, depending on prefered characteristics such as security or performance [5].

Many broker implementations and multi-cloud APIs exist. We provide a novel
view by focussing here on the construction of a broker API and looking at soft-
ware architecture principles behind it. Again, ontologies have been used before,
but we demonstrate here how a layered ontology and a corresponding layered
architecture together with the use of appropriate design patterns can better
help to achieve extensibility and efficiency of the implementation. The selection
of design patterns has a significant impact on the testability, maintainability and
extensibility of the layered architecture that we have developed.

As future work, we plan to extend the broker by adding further services
by other providers to empirically verify the extensibility of the library. While
our API-based architecture only supports public cloud providers, this can be
extended to include private clouds in future. A more long-term usage beyond
some performance testing on the provider services, should also help to better
judge the maintainability in addition to the expected positive affect from the
pattern application. More work could also go into more uniform specification of
cloud services [25,35] aiming at more standardisation of the interfaces.

Acknowledgements. This work was partly supported by IC4 (Irish Centre for Cloud
Computing and Commerce), funded by EI and the IDA.

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 99

References

1. Ried, S.: Cloud Broker – A New Business Model Paradigm. Forrester, Cambridge
(2011)

2. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups – the new generation of
web applications. Internet Comput. 12(5), 13–15 (2008)

3. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the inter-cloud: protocols and formats for cloud computing interoperability. In:
International Conference on Internet and Web Applications and Services (2009)

4. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13–31.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13119-6 2

5. Elango, D.M., Fowley, F., Pahl, C.: Testing and comparing the performance of
cloud service providers using a service broker architecture. In: Mann, Z.Á., Stolz,
V. (eds.) ESOCC 2017. CCIS, vol. 824, pp. 117–129. Springer, Cham (2018)

6. Cloud Standards (2017). http://cloud-standards.org/
7. ETSI Cloud Standards (2017). http://www.etsi.org/newsevents/news/734-2013-

12-press-release-report-on-cloudcomputing-standards
8. Fehling, C., Mietzner, R.: Composite as a service: cloud application structures,

provisioning, and management. Info. Technol. 53(4), 188–194 (2011)
9. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change mod-

els and change rules for sustainable cloud software architectures. J. Softw. Evol.
Process 29, e1849 (2017). https://doi.org/10.1002/smr.1849

10. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. ACM Trans. Internet Technol. (2018, to appear)

11. Forrester Research: Cloud Brokers Will Reshape The Cloud (2012). http://www.
cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf09
4d/pu/

12. Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service bro-
kerage solutions for cloud architectures. In: Lomuscio, A.R., Nepal, S., Patrizi, F.,
Benatallah, B., Brandić, I. (eds.) ICSOC 2013. LNCS, vol. 8377, pp. 137–149.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06859-6 13

13. Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and com-
parison framework for cloud service brokerage architectures. IEEE Trans. Cloud
Comput. (2017). https://doi.org/10.1109/TCC.2016.2537333. http://ieeexplore.
ieee.org/document/7423741/

14. Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification
of change patterns. J. Data Semant. 2(2–3), 119–143 (2013)

15. Garcia-Gomez, S., et al.: Challenges for the comprehensive management of cloud
services in a PaaS framework. Scalable Comput. Pract. Exp. 13(3), 201–214 (2012)

16. Elango, D.M., Fowley, F., Pahl, C.: Using a cloud broker API to evaluate cloud
service provider performance. Research report 471, Department of Informatics,
University of Oslo, pp. 63–74 (2017)

17. Gartner: Cloud Services Brokerage. Gartner Research (2013). http://www.gartner.
com/it-glossary/cloud-servicesbrokerage-csb

18. Grozev, N., Buyya, R.: InterCloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Exp. 44, 369–390 (2012)

19. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
CLOSER Conference, pp. 137–146 (2016)

https://doi.org/10.1007/978-3-642-13119-6_2
http://cloud-standards.org/
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
https://doi.org/10.1002/smr.1849
http://www.cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
http://www.cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
http://www.cordys.com/ufc/file2/cordyscmssites/download/09b57cd3eb6474f1fda1cfd62ddf094d/pu/
https://doi.org/10.1007/978-3-319-06859-6_13
https://doi.org/10.1109/TCC.2016.2537333
http://ieeexplore.ieee.org/document/7423741/
http://ieeexplore.ieee.org/document/7423741/
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb

100 D. M. Elango et al.

20. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
4(5), 22–32 (2018). http://ieeexplore.ieee.org/document/8125558/

21. Hofer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and compari-
son. J. Internet Serv. Appl. 2(2), 81–94 (2011)

22. Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A., Estrada, G.:
Fuzzy self-learning controllers for elasticity management in dynamic cloud archi-
tectures. In: 12th International ACM SIGSOFT Conference on Quality of Software
Architectures QoSA (2016)

23. Arabnejad, H., Jamshidi, P., Estrada, G., El Ioini, N., Pahl, C.: An auto-scaling
cloud controller using fuzzy Q-learning - implementation in openstack. In: Aiello,
M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol.
9846, pp. 152–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44482-6 10

24. Gacitua-Decar, V., Pahl, C.: Structural process pattern matching based on graph
morphism detection. Int. J. Softw. Eng. Knowl. Eng. 27(2), 153–189 (2017)

25. IEEE Cloud Standards (2015). http://cloudcomputing.ieee.org/standards
26. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.

IEEE Trans. Cloud Comput. 1, 142–157 (2013)
27. jclouds: jclouds Java and Clojure Cloud API (2015). http://www.jclouds.org/
28. Ferrer, A.J., et al.: OPTIMIS: a holistic approach to cloud service provisioning.

Future Gener. Comput. Syst. 28(1), 66–77 (2012)
29. Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Sniblel, E.:

An architecture for virtual solution composition and deployment in infrastructure
clouds. In: International Workshop on Virtualization Technologies in Distributed
Computing (2009)

30. Pahl, C.: Layered ontological modelling for web service-oriented model-driven
architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol.
3748, pp. 88–102. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741 8

31. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural
styles. Inf. Softw. Technol. 51(12), 1739–1749 (2009)

32. Mietzner, R., Leymann, F., Papazoglou, M.: Defining composite configurable SaaS
application packages using SCA Variability Descriptors and Multi-tenancy Pat-
terns. In: International Conference on Internet and Web Applications and Services
(2008)

33. Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architec-
tural concerns. In: IEEE 7th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems MESOCA (2013)

34. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5 18

35. Papazoglou, M.P., van den Heuvel, W.J.: Blueprinting the cloud. IEEE Internet
Comput. 15, 74–79 (2011)

36. Petcu, D., et al.: Portable cloud applications–from theory to practice. Future
Gener. Comput. Syst. 29(6), 1417–1430 (2013)

37. Amazon Simple Storage Service (S3) Cloud Storage AWS https://aws.amazon.
com/s3/

38. Dropbox. https://www.dropbox.com/
39. Azure Storage - Secure cloud storage. https://azure.microsoft.com/en-us/services/

storage/

http://ieeexplore.ieee.org/document/8125558/
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-319-44482-6_10
http://cloudcomputing.ieee.org/standards
http://www.jclouds.org/
https://doi.org/10.1007/11581741_8
https://doi.org/10.1007/978-3-642-40651-5_18
https://doi.org/10.1007/978-3-642-40651-5_18
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.dropbox.com/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/

An Ontology-Based Architecture for an Adaptable Cloud Storage Broker 101

40. Google Drive - Cloud Storage & File Backup. https://www.google.com/drive/
41. Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture

migration. Softw. Pract. Exp. 47(9), 1159–1184 (2017)
42. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-

of-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/
TCC.2017.2702586. http://ieeexplore.ieee.org/document/7922500/

43. Aderaldo, C.M., Mendonca, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 1st International Workshop on Estab-
lishing the Community-Wide Infrastructure for Architecture-Based Software Engi-
neering. IEEE (2017)

44. Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte,
S., Wettinger, J.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion (2017)

https://www.google.com/drive/
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
http://ieeexplore.ieee.org/document/7922500/

Cloud-Native Databases: An Application
Perspective

Josef Spillner(B) , Giovanni Toffetti, and Manuel Ramı́rez López

Service Prototyping Lab, School of Engineering,
Zurich University of Applied Sciences, 8401 Winterthur, Switzerland

{josef.spillner,toff,ramz}@zhaw.ch
http://blog.zhaw.ch/icclab/

Abstract. As cloud computing technologies evolve to better support
hosted software applications, software development businesses are faced
with a multitude of options to migrate to the cloud. A key concern
is the management of data. Research on cloud-native applications has
guided the construction of highly elastically scalable and resilient state-
less applications, while there is no corresponding concept for cloud-
native databases yet. In particular, it is not clear what the trade-offs
between using self-managed database services as part of the application
and provider-managed database services are. We contribute an overview
about the available options, a testbed to compare the options in a system-
atic way, and an analysis of selected benchmark results produced during
the cloud migration of a commercial document management application.

1 State Management in Cloud-Native Applications

Cloud-native applications (CNA) are software applications which pass down ben-
eficial cloud computing characteristics. They use cloud platform and infrastruc-
ture services to become executable, offer their own functionality as software ser-
vice interfaces, are resilient against dependency service unavailability and other
incidents, scale elastically with user requests, are always available on demand
and are billed with a pay-per-use utility scheme without upfront cost [2]. The
inherent service orientation required for CNA favours a microservices model with
explicitly stateful and stateless services. The handling of data is confined to the
stateful services. These must in turn be highly available and resilient to pre-
vent loss, corruption or delay of data operations. Databases, message queues,
key-value stores, filesystems and other data access models have been analysed
in prior works concerning these requirements [7,13,14]. The desired characteris-
tics depend on near-instant service replication [10] which implies consistent data
replication and sharding mechanisms.

Figure 1 shows a typical topology of stateful and stateless microservices
orchestrated to offer a single application as a service in a highly available
and resilient manner on top of plain cloud infrastructure services. Almost all
approaches rely on coordinated replication which brings self-awareness about

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 102–116, 2018.
https://doi.org/10.1007/978-3-319-79090-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_7&domain=pdf
http://orcid.org/0000-0002-5312-5996

Cloud-Native Databases: An Application Perspective 103

its role (e.g., master or slave) to each microservice. Furthermore, they rely on
fast-spawning service implementations (e.g., containers or light-weight hypervi-
sors) to achieve rapid elasticity upon request spikes and instance recovery after
crashes.

Fig. 1. Cloud-native application with internal and external data management

It is however not clear under which circumstances applications should man-
age data by themselves. The range of commercially offered platform-integrated
stateful services is increasing. Their common value proposition can be expressed
in a simplified way by paying more to manage less. But for a business decision,
the value needs to be quantified. Due to the multitude of possible options, busi-
nesses need to obtain metrics on which such decisions can be performed. Apart
from the pricing, such decisions need to account for risks and for end-to-end
service provisioning quality and effort which from a software engineering per-
spective always includes the consideration of client-side bindings to the services.

To reduce the problem scope, we limit the research to applications which
handle large structured documents in database systems. Hence, through this
paper, empirical studies of how databases operated in a cloud-native context
behave in commercial cloud environments are made possible. The main contri-
bution is a testbed to measure and compare different database options from a
vendor-neutral perspective. The resulting distinction between self-managed and
provider-managed databases covered by the testbed is expressed in Fig. 2.

Fig. 2. Scopes of cloud-native database management

104 J. Spillner et al.

The paper is structured as follows: First, it presents the possible options for
cloud-native databases, differentiating between fully managed and application-
controlled offers. Then, it defines a method to compare and rate cloud database
services both on the technical and on the pricing level. The method translates
into a design of a testbed whose architecture and implementation we present.
Experiments we have conducted based on this method are then explained
together with the obtained results. The findings from the experiments need to be
interpreted in alignment with business strategies. For this reason the paper con-
cludes with an open discussion about the strategic impact of using the testbed
in a systematic way during the application engineering process.

2 Cloud-Native Database Options

Apart from conventional relational or document-centric databases, the migration
of applications into the cloud and the associated new operational requirements
have led to novel design choices and along with them new research challenges.
Recent database models thus include encrypted, privacy-preserving and stealth
databases, energy-efficient database operators and adaptive query systems over
dynamically provisioned resources [4,8]. Few of these designs have progressed
beyond prototypical systems, but from an applied science perspective, we are
interested in what recommendations can be given to application developers
today. Hence, only conventional (relational and document-centric) database sys-
tems and services which are widely available on cloud platforms are considered
along with systems commonly described as cloud-enabled or cloud-ready.

We distinguish between the choices of database hosting primarily by the
responsibility. Database management systems can be managed by the application
provider as part of the application (e.g. as application-controlled container),
outside of the application scope itself (e.g. as a separate virtual machine whose
autoscaling is determined by cloud facilities), and as fully cloud-managed service,
typically named Database-as-a-Service (DBaaS). Our focus is on cloud-native
database (CNDB) options which adhere to expectations from cloud application
developers such as elastic scaling, resilience against unexpected issues, flexible
multi-tenancy isolation and high performance at low price.

2.1 Self-managed Database Systems and Microservices

The widespread proliferation of open source database management systems has
led to the inclusion of these systems into software applications. The application
logic then controls the lifecycle of the database, launches and terminates it as
needed, and directly accesses it, often without authentication or through a single
user account. Tenants in the application are in this case mapped to the database
through identifiers or unprivileged separation such as tables or columns.

Cloud-native applications are often decomposed into horizontally scalable
microservices where all instances are of equal importance in a peer structure.
Only few database systems are currently mirroring this ability. Many still require

Cloud-Native Databases: An Application Perspective 105

a master-slave setup where the master instance needs to be launched before the
slave instances and must never fail, or variants thereof with multi-master repli-
cation. We analyse selected database systems concerning their use as dispos-
able microservices in Table 1. Of these, only Crate fully conforms to this model,
although a technology preview also exists for MongoDB (for master-slave repli-
cation).

Table 1. Available self-managed database microservices

Name Relation of instances

CouchDB Master-slave and master-master replication, manual sharding

MongoDB Replica sets with master-slave replication, keyed sharding

Crate Set of peers with automated sharding upon scaling

PostgreSQL Master-slave replication, sharding through Citus

MySQL Master-slave replication, sharding through Fabric

2.2 Provider-Managed Database Services

From a cloud application perspective, it is desirable to maximise the flexibility
by freely choosing among application-controllable software and managed services
for the assumed database interface. Despite efforts to standardise the interfaces
for database-as-a-service (DBaaS), the implementation differences are signifi-
cant enough to warrant the propagation of information about the underlying
database system. For instance, a developer may know how to write SQL state-
ments but can optimise them and avoid pitfalls when knowing that the engine
behind the SQL interface is in fact a MariaDB 10.2 with the XtraDB storage
engine. This knowledge should be conveyed and flexibly interpreted using dis-
coverable service descriptions, but in practice, it is often tightly coupled to the
application. Furthermore, database interface and implementation options pro-
vided in the commercial cloud space vary significantly. Table 2 compares the
availability of database interfaces at six public cloud (platform) providers from
two countries, USA and Switzerland. Implementations marked with asterisk are
available as open source and thus allocatable for local testing by application
developers prior to paying for the cloud deployment.

Despite multi-database service offers by most providers, the table is sparse.
This means that vendor lock-in risks need to be assessed. Furthermore, the pric-
ing of DBaaS differs for offers with the same interface. For instance, MongoDB
services are offered by Microsoft (as interface adapter to CosmosDB) and by the
Swisscom Application Cloud (AC). The Swisscom offer excluding high availabil-
ity starts at CHF 12 per month including 1 GB storage and 256 MB RAM. The
equivalent Azure offer (hosted in Europe-West) starts at CHF 134 but includes
10 GB storage and 5 DTUs, a custom unit expressing the processing power.
For an application engineer who wants to process a data volume of 1 GB, it is

106 J. Spillner et al.

Table 2. Available provider-managed database services

Amazon Google Microsoft IBM APPUiO Swisscom Application Implementation

Web Services Cloud Azure Bluemix AC Interface

Xa Xb SQL MySQL *

X X MariaDB *

X X PostgreSQL *

Aurora

Oracle DB

Xc SQL Server

X DB2

(X)d X X JSON QL or
similar (Mango
etc.)

MongoDB *

Xe CouchDB *

X DynamoDB

X CosmosDB

X Other TableStorage

X Datastore

X BigTable (*)

Xf Xg X X Redis *

Notes: aRDS, bCloud SQL, cDatabase Service, dCosmosDB adapter, eAs Cloudant NoSQL, fAs
ElastiCache, gVia external RedisLabs service

not clear if the cheaper offer would be performance-wise on par without further
experiments. There are detailed studies on cloud database services in general
[11]. In contrast, our focus is on their suitability for cloud-native applications.

3 Comparison Method and Testbed

The automatable comparison of databases is rooted in two main characteristics:
performance and resilience. Other metrics such as price and isolation can be
derived from trace data in conjunction with external information. Several queries
and transactions are run to measure the performance through an application-
specific benchmark. It includes the preparation of structures (tables, collections),
individual inserts, bulk inserts, queries and deletions. Furthermore, the avail-
ability is measured and in the case of self-managed database services actively
impeded by controlled interference and termination, leading to data about the
resilience.

As our chosen approach is to provide a testbed to compare database options,
its functional and non-functional requirements need to be defined first. The
functional requirements are:

1. The testbed must run itself in the target environment of the cloud-native
application to yield realistic metrics with simple queries and complex trans-
actions.

2. Both self-managed and provider-managed database services need to be sup-
ported.

Cloud-Native Databases: An Application Perspective 107

3. The testbed operator must be able to choose the dataset under test, either an
existing one or a synthetic one which is generated as part of the operation.

The non-functional requirements are:

1. The scale of testing needs to be configurable to balance representative and
timely results. Therefore, the runtime needs to be chosen to range from mere
minutes to multi-day sampling.

2. All tests need to be idempotent to allow for repetitions and statistical detec-
tion of anomalies.

3.1 Testbed Architecture and Implementation

The testbed architecture is derived from the requirements. To correlate with
cloud-native applications, a containerised approach is taken. Both the testbed
itself, with its performance benchmark and resilience calculation parts, and all
self-managed database services are launched as container compositions. Figure 3
visualises the technique of how the experiments are conducted by using Docker
Compose as orchestrator of containers. One container contains a performance
benchmark application, another one a fault provocation application, two stateful
containers serve as persistent input and output volumes for the reference dataset
and the results respectively, and additional containers spawn the database sys-
tems. The testbed containers allow for parameterisation through environment
variables to override any values in the internal configuration file. The most
important properties include binding metadata and credentials. Furthermore,
the testbed supports five configurable multi-tenancy isolation levels.

Fig. 3. Orchestrated containers and services as part of the experiment setup

Our implementation of this architecture is called CNDBbench, focusing on
the benchmarking part while also containing the resilience part. It is consisting
of Python classes for all supported database interfaces and the Docker image
generation scripts, and is made available as open source software for use in other
migration cases (see Repeatability).

108 J. Spillner et al.

3.2 Testbed Preparation: Document Management Scenario

Each instance of the testbed needs to be prepared according to application-
specific needs. The guiding objective of our research has been to analyse database
options for the class of cloud-native document management applications. Their
requirement is storing millions of documents (e.g. scanned PDFs of dozens of MB
in size) along with document metadata such as ownership, permissions, audit
trails and searchable full text determined by OCR prior to insertion. From the
application perspective, the design then involves stateful (database) components
which are realised as bindings to database services or instances of application-
controlled database microservices. Figure 4 demonstrates a document manage-
ment scenario and the possible realisation options.

Fig. 4. Document management scenario

The reference dataset to evaluate the database choices consists of 100,000
generated entries which correspond to an actual domain-specific dataset with
scanned newspaper articles. With associated metadata such as origin and access
control lists, there are 1.4 million entries in total. The medium-sized data with
large blob documents and structured metadata is representative for the domain
of document management in the cloud through databases; alternative hybrid
designs using blob storage are not considered in the present scenario. The fol-
lowing operations are performed to get both performance and deviation metrics:
insertion of data, search and retrieval of partial data. This selection matches
transactions in typical document management applications where updates and
deletions happen rather sporadically.

3.3 Testbed Operation

Once the testbed is prepared, it needs to be operated in a way which most
closely corresponds to the eventual operation of the application. Specifically,
network delays and latencies as well as microservice execution technologies need
to be properly reflected. Figure 5 shows seven testbed configurations which cor-
respond to all possible combinations of how to manage application data in the
cloud. More variability is added by defining for the cases of application-managed
databases where to physically store the data. Our research assumes attaching
volume containers whereas provider-managed storage areas would be another
option.

Cloud-Native Databases: An Application Perspective 109

Fig. 5. Combinations of local, application-managed and provider-managed containers
with application-managed and provider-managed databases

4 Selected Results

This section reports on results we have obtained from running the testbed in
some of the explained operational combinations using the document manage-
ment dataset. The research on the figurative cloud-nativeness of databases have
been conducted with experiments targeting the desired technical properties of
the specific application domain of document management. In total, 28 experi-
ments have been performed and recorded, showing the versatility of CNDBbench.
Selected results concerning performance, multi-tenancy flexibility and pricing
will be reported. Apart from the results described here due to interesting obser-
vations, all experiments and results are analysed and described in a technical
appendix to this paper (see Repeatability).

Five relational and document database systems from Table 2 have been
selected for the study of the first group. They are briefly summarised in Table 3.
Among those, PostgreSQL and MySQL are relational database systems (albeit
with recently added JSON document processing capabilities) and have been

Table 3. Evaluated database system software and cloud services

Software/service Data model Runtime Distribution

CouchDB Document Erlang Create-sharding

MongoDB Document C++ Config-sharding

Crate Mixed-model Java Auto-sharding

PostgreSQL Relational C Master-sharding

MySQL Relational C, C++ Fabric-sharding

AWS RDS Aurora Relational MySQL Read-replicas

AWS RDS MySQL Relational MySQL Read-replicas

Azure CosmosDB Document DocumentDB Key-sharding

Bluemix PostgreSQL Relational PostgreSQL Failover-replicas

Bluemix Cloudant Document CouchDB None

110 J. Spillner et al.

available in early versions since the mid-1990s. CouchDB and MongoDB are
often-cited representatives for document-centric systems which appeared in the
late 2000s. Crate is the most recent system, created in 2014, whose focus on cloud
deployments is stressed by masterless distributed operation and automatic node
recovery in combination with a standard SQL-over-HTTP interface. It offers a
mixed document/column store. All five systems have subtle differences in how
they shard (and replicate) data.

For the second group, summarised in the bottom half of the table, three
database service providers have been chosen: Amazon Web Service’s Relational
Database Service (RDS) with the Aurora implementation, which is a custom
storage engine, in addition to the stock MySQL with its InnoDB, MyISAM and
other default engines, IBM’s Cloudant NoSQL and PostgreSQL service on its
Bluemix platforms, which as the name suggests are a document store and a
relational database, respectively, and Azure’s CosmosDB née DocumentDB. An
interesting observation is that even more sharding options are present which
affect how well data can be managed by cloud-native applications. Interestingly,
Aurora despite being a cloud service does not offer sharding for horizontal scal-
ability. More variety is available at other providers, for instance Azure offering
key-sharded data in CosmosDB which would otherwise resemble Cloudant.

4.1 Database Performance

The first experiment compares the deviation of response times as measure of
instability between a local database system and a database system or service in
the cloud, represented by AWS. A complex document management transaction
consisting of six individual queries was performed with MySQL first as this sys-
tem is reflected in the largest variety of cloud hosting options. The benchmark
itself ran both on the local machine and as close as possible to the database, i.e.
with high affinity in the cloud. Figure 6a shows that the local queries are much
faster and their response time more predictable than those of the cloud coun-
terpart when the benchmark runs locally and thus all queries need to traverse
the wide-area network. Figure 6b contrasts the results with the affine bench-
mark. All such measurements are suffixed with /in-cloud. The trivial comparison
shows that a local benchmark with a local MySQL system performs equal to a
Kubernetes-hosted benchmark and MySQL container pair, as both communicate
via local link. As soon as the provider’s services are involved, this translates into
a local-area network transmission within one hosting region.

In Fig. 7a, a different set of queries was tested with MongoDB, hence the dif-
ferent absolute times and network delay effects. Nevertheless, the cloud-hosted
database container shows a higher stability in response times with both local and
cloud benchmark, while the latter also has a lower response time as expected from
the observation of MySQL. The interesting difference is that the response time
deviations are high for local MongoDB queries but low for local MySQL queries
which suggests that not only the network influences the variation in response
times. In contrast, Fig. 7b reports on the same experiments using the MongoDB
adapter for CosmosDB which was conducted over two non-consecutive days.

Cloud-Native Databases: An Application Perspective 111

Fig. 6. Query times for MySQL

Fig. 7. Query times for MongoDB/CosmosDB, both local and cloud benchmarks

In both the local and cloud-hosted benchmark cases, the latter using an Azure
VM, the performance is relatively stable within one day, varying a lot between
the days (about 33%), and extremely low compared to the native MongoDB
counterparts. Additionally, Fig. 8 compares two database services from Bluemix
to complete the variations in engines, providers, services and benchmark loca-
tions. The interesting observation is that not only are the absolute response
times of PostgreSQL strictly below the ones of MySQL (r̄t = 0.92 vs. 6.23),
their deviation is also a lot smaller (σ = 2.60 vs. 28.32).

Fig. 8. Query times for MySQL and PostgreSQL, local benchmark

112 J. Spillner et al.

Fig. 9. Model of flexible multi-tenancy configurations for database services, with
MongoDB

4.2 Database Multi-tenancy

Data management is affected by the level of isolation between the tenants in a
multi-tenant database service setup. Figure 9 represents the model of matching
isolation level to estimated performance and cost. For three out of the five dif-
ferent levels, we have measured the actual behaviour with three different imple-
mentations each.

Figure 10 contains the corresponding results. The multi-threaded implemen-
tation (MT) takes longer per thread to return the results but all threads return
close to each other, leading to a speedup of 22.5%, 41.9% and 59.6% over the
single-threaded implementation of A, B and C, respectively. Option C is the
fastest and most isolated option, but does not represent an unconditional overall
sweetspot due to also being the most expensive one.

Fig. 10. Results for multi-tenancy options A, B and C with and without multi-
threading

Cloud-Native Databases: An Application Perspective 113

4.3 Database Pricing

Of interest to the application provider is the total cost of provisioning in relation
to a quality of experience which allows for a surplus-generating revenue. Our
findings indicate that there is no clear price advantage of self-managed containers
on the SaaS level versus a comparable DBaaS option, or vice-versa, when taking
replicated containers for higher resilience into account. From a methodic point
of view, we derive an unquantified graphical representation of pricing in relation
to performance, availability/resilience, reliability, multi-tenancy and scalability
as shown in Fig. 11 and propose to derive a comparison tool for application
engineers.

Fig. 11. Spider graph for pricing trade-offs, sampled for MySQL at Google; outside =
best

5 Findings and Recommendations

As the selected results have shown, a general statement about a single
best database option will not be possible, and a sharp definition of CNDB
remains impossible. Our general recommendation is therefore that tools such
as CNDBbench should be used in cloud application migration projects to pro-
duce metrics upon which selection decisions can be based.

Several systems and services have undocumented or undiscoverable limita-
tions which can be revealed by systematic testing as is the case with CNDBbench.
For instance, Crate only returns up to 10,000 rows by default and requires a
LIMIT clause to return more. Azure CosmosDB limits the maximum requests to
1000 per second, which can be increased to 10,000, and requires the activation of
further instances to grow beyond, despite low load on the database. Several pro-
tocols and client-side libraries are setting up timeouts. Some are merely difficult
to deactivate, others even impossible, like the 20 s query timeout when inserting
many records through PyMongo.

For the mentioned limitations, we recommend a discoverable description of
these properties in addition to more complete documentation [6]. For the con-
struction of future applications, assuming more maturity and choice in con-
tainerised database systems, we recommend auto-clustering microservices as
currently implemented for Crate. In any case, the economics of self-managed
instances depends to a large degree on the business background, including the
skills and qualifications of the application engineers. In tech-savvy companies,
self-managed database containers running on top of virtual machines using con-
tainer management frameworks are recommended.

114 J. Spillner et al.

6 Discussion and Conclusion

We discuss our findings in the context of recent publications about both cloud-
native databases and database characteristics in the cloud in general.

Szczyrbowski and Myszor present a behaviour comparison between the Ora-
cle Database Schema Service which offers an HTTP interface [13] and the local
11g equivalent. Their main focus is on performance stability, minimising devi-
ations in query times for three operations: INSERT, UPDATE and SELECT.
Their approach is comparable to ours apart from updates and technological
choices. The findings suggest that the cloud service has a much lower deviation
apart from also being (presumably due to opaque hardware differences) faster
in the worst, average and best case. We were able to reproduce this for Mon-
goDB but not for MySQL, and therefore assume that their findings cannot be
generalised.

Another performance comparison is authored by Seriatos et al. [12]. The
focus is on three database systems – MongoDB, Cassandra and HBase – in
the BONFIRE cloud testbed. Cost and scaling are not discussed. The YCSB
benchmark is used. The findings tell that each of the system performs differently
depending on the workload which implies two future work directions: The first,
mentioned by the authors, is the tuning of parameters; the second, added by us,
is the design of adaptive multi-database connectivity as the next evolutionary
step for CNDBs.

The focus on cost is set by Mian et al. in an analysis of resource configuration
using the TPC-C/E/H benchmarks in three application scenarios [9]. While the
authors focus on AWS EC2, the DBaaS services of the same provider are not
considered. A similar aim is conveyed in the work by Floratou et al. albeit with
a critical look at unpleasant surprises in terms of financial risks when using
DBaaS [5]. The findings are that more expensive hourly services may turn out
more cost-effective overall, which is substantiated with observations of MySQL
and SQL Server running on local hardware. The authors propose a benchmark-
as-a-service for application developers (as database users). To cover the scaling
and resilience characteristics which are important in a cloud setting, Bagui et al.
look at sharding techniques and propose an implementation [1]. The work is
demonstrated with MySQL and extends to other engines. Costa et al. examined
partial database migration to the cloud [3]. The migration path in this work is
from local PostgreSQL to AWS DynamoDB without giving up the former by
adding a transparent adapter to the application. The finding is that scalability
bottlenecks can be circumvented by offloading data to DynamoDB. While we
have not analysed the same system, our results with non-ACID confirm this
observation.

Table 4 summarises which of the cloud database properties were covered by
related works and whether our findings agree () or disagree() with them.
When the results are not clear, the need for future experimental research () is
shown instead. The lack of a reusable testbed from the related work is evident.

We conclude that cloud-native databases are a challenging topic in need of
more formal expressions concerning their configuration and characteristics and of

Cloud-Native Databases: An Application Perspective 115

Table 4. Related work comparison

Study Performance Scalability Resilience Tenancy Price Testbed

Szczyrbowski et al. [13]

Seriatos et al. [12]

Mian et al. [9]

Floratou et al. [5]

Bagui et al. [1]

Costa et al. [3]

more experiments. We suggest that future research should be directed towards a
holistic approach of assessing flexible database options in the cloud which involve
self-hosted data containers, blob storage services and DBaaS.

Repeatability

Our benchmark implementation, CNDBbench, is publicly available to repeat our
experiments. For reference and reproducibility of the results, the experiment setup
including hardware specifications and instructions is given in detail in a raw open
science notebook which is made available together with a technical appendix due
to the page number limitation. The notebook also contains reference results, addi-
tional experiments and findings concerning resilience, scalability and pricing1,2.
We encourage the critical examination and re-use of the datasets.

Acknowledgements. This research has been funded by the Swiss Commission for
Technology and Innovation (CTI) in project ARKIS/18992.1. It has also been sup-
ported by an AWS in Education Research Grant, an IBM Academic Initiative for Cloud
offer, a Microsoft Azure Research Award and a Google Cloud credit, all of which helped
us to conduct our experiments on public commercial cloud environments.

References

1. Bagui, S., Nguyen, L.T.: Database sharding: to provide fault tolerance and scala-
bility of big data on the cloud. Int. J. Cloud Appl. Comput. (IJCAC) 5(2), 36–52
(2015)

2. Brunner, S., Blöchlinger, M., Toffetti, G., Spillner, J., Bohnert, T.M.: Experimen-
tal evaluation of the cloud-native application design. In: 4th International Work-
shop on Clouds and (eScience) Applications Management (CloudAM), Limassol,
Cyprus, December 2015

3. Costa, C.H., Maia, P.H.M., Mendonça, N.C., Rocha, L.S.: Supporting partial
database migration to the cloud using non-intrusive software adaptations: an expe-
rience report. In: Celesti, A., Leitner, P. (eds.) ESOCC Workshops 2015. CCIS,
vol. 567, pp. 238–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33313-7 18

1 CNDBbench: https://github.com/serviceprototypinglab/cndbbench.
2 CNDBresults: https://github.com/serviceprototypinglab/cndbresults.

https://doi.org/10.1007/978-3-319-33313-7_18
https://doi.org/10.1007/978-3-319-33313-7_18
https://github.com/serviceprototypinglab/cndbbench
https://github.com/serviceprototypinglab/cndbresults

116 J. Spillner et al.

4. Costa, C.M., Leite, C.R.M., Sousa, A.L.: Efficient SQL adaptive query processing
in cloud databases systems. In: IEEE EAIS, pp. 114–121, Natal, Brazil, May 2016

5. Floratou, A., Patel, J.M., Lang, W., Halverson, A.: When free is not really free: what
does it cost to run a database workload in the cloud? In: Nambiar, R., Poess, M.
(eds.) TPCTC 2011. LNCS, vol. 7144, pp. 163–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32627-1 12

6. Frey, S., Hasselbring, W., Schnoor, B.: Automatic conformance checking for migrat-
ing software systems to cloud infrastructures and platforms. J. Softw. Evol. Proc.
25(10), 1089–1115 (2013)

7. Goldschmidt, T., Jansen, A., Koziolek, H., Doppelhamer, J., Breivold, H.P.: Scal-
ability and robustness of time-series databases for cloud-native monitoring of
industrial processes. In: 7th IEEE International Conference on Cloud Computing
(CLOUD). pp. 602–609, Anchorage, Alaska, USA, July 2014

8. Götz, S., Ilsche, T., Cardoso, J., Spillner, J., Kissinger, T., Aßmann, U.,
Lehner, W., Nagel, W.E., Schill, A.: Energy-efficient databases using sweet spot
frequencies. In: 1st International Workshop on Green Cloud Computing (GCC),
pp. 871–876, London, UK, December 2014

9. Mian, R., Martin, P., Zulkernine, F.H., Vázquez-Poletti, J.L.: Cost-effective
resource configurations for multi-tenant database systems in public clouds. Int.
J. Cloud Appl. Computing (IJCAC) 5(2), 1–22 (2015)

10. Nguyen, H., Shen, Z., Gu, X., Subbiah, S., Wilkes, J.: AGILE: elastic distributed
resource scaling for infrastructure-as-a-service. In: 10th International Conference
on Autonomic Computing (ICAC), San Jose, California, USA, pp. 69–82, June
2013

11. Sakr, S.: Cloud-hosted databases: technologies, challenges and opportunities. Clus-
ter Comput. 17(2), 487–502 (2014)

12. Seriatos, G., Kousiouris, G., Menychtas, A., Kyriazis, D., Varvarigou, T.: Com-
parison of database and workload types performance in cloud environments. In:
Karydis, I., Sioutas, S., Triantafillou, P., Tsoumakos, D. (eds.) ALGOCLOUD
2015. LNCS, vol. 9511, pp. 138–150. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29919-8 11

13. Szczyrbowski, M., Myszor, D.: Comparison of the behaviour of local databases
and databases located in the cloud. In: Kozielski, S., Mrozek, D., Kasprowski, P.,
Ma�lysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2015-2016. CCIS, vol. 613, pp.
253–261. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-34099-9 19

14. Wiese, L.: Advanced Data Management for SQL, NoSQL, Cloud and Distributed
Databases. DeGruyter/Oldenbourg, Berlin (2015)

https://doi.org/10.1007/978-3-642-32627-1_12
https://doi.org/10.1007/978-3-319-29919-8_11
https://doi.org/10.1007/978-3-319-29919-8_11
https://doi.org/10.1007/978-3-319-34099-9_19

Testing and Comparing the Performance
of Cloud Service Providers

Using a Service Broker Architecture

Divyaa Manimaran Elango1, Frank Fowley1, and Claus Pahl2(B)

1 IC4, Dublin City University, Dublin, Ireland
2 SwSE, Free University of Bozen-Bolzano, Bolzano, Italy

Claus.Pahl@unibz.it

Abstract. Service brokers are tools that allow different individual ser-
vice providers to be integrated. An API can be a mechanism to provide a
joint interface. Broker can actually also be use for more than integration.
We use a cloud service broker that implements a multi-cloud abstraction
API in order to carry out performance comparisons between different
cloud services. The broker tool here is a multi-cloud storage API that
integrates a number of provided storage services. The library supporting
the API is organised into three services, which are a file, a blob and a
table service. Using this broker architecture, we developed a performance
test scenario to compare the different providers, i.e., to compare a range
of storage operations by different providers.

1 Introduction

Integration is a key problem in the cloud services context. A cloud service bro-
ker is an intermediary application between a client and cloud provider service
that can provide this integration [15]. Brokerage reduces the need for service
consumers to analyze different types of services by different providers [1]. This
enables a single platform to offer the client a common cloud storage service.
This results in cost optimization and reduced level of back-end data manage-
ment requirements.

For our performance evaluation, we use here a cloud service broker that
implements a multi-cloud abstraction API. This multi-cloud storage broker sup-
ports GoogleDrive, DropBox, Microsoft Azure and Amazon Web Services as the
provided storage services. The API library offers file, blob and table services.
The API can facilitates the distribution of different types of cloud provider ser-
vices [16]. The abstraction library allows the cloud broker to adapt to a rapidly
changing marketplace.

Vendor lock-in is often referred to as a critical point in choosing a provider.
In order to avoid lock-in, a broker can help. A multi-cloud abstraction library
is a suitable mechanism that it makes it easy for the client to switch between
cloud providers with different services that are supported by the broker.

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 117–129, 2018.
https://doi.org/10.1007/978-3-319-79090-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_8&domain=pdf

118 D. M. Elango et al.

Switching or migrating between providers can be driven by quality [27,32].
We use a broker implementation to compare the supported services [8,13,23]
from a performance perspective [42]. Service brokers normally remedy interop-
erability problems [2–5,10]. However, based on this architecture, we look into
other service qualities, namely performance which is of key importance for all
cloud layers [28–30]. A performance test application was developed here to com-
pare between the services provided through the broker [19]. The performance
test scenario was used to compare a range storage operations across different
supported providers.

2 Broker – Principles and Supported Services

In Fig. 1 we have outlined the core components of thee broker architecture. We
also discuss the storage services supported by it in this section.

Fig. 1. Architecture of a multi-cloud storage broker.

2.1 Principle Properties of the Storage Broker

Cloud services are generally provided with specifications, but often constructed
in a way that makes them hard to be used as part of a common interface, thus
impeding on interoperability. We studies different multi-cloud libraries, including
Apache Jclouds, DeltaCloud, Kloudless, SecureBlackBox, and SimpleCloud. The
purpose was to adopt a successful solution template.

We decided to adopt an approach similar to the Apache Jclouds library for
abstraction, as we will explain now. Jclouds [22] provides cloud-agnostic abstrac-
tion. A single instance context approach for the mapping of a user request in
jclouds was used in our implementation. The purpose of having each class for
each provider across different levels of service was adopted from a similar design
in the SecureBlackBox library. Our concept of including a manager interface
layer at each component level is adopted from LibCloud, another library.

2.2 Services Supported by the Broker

We have included storage services from Google, Dropbox, Azure and Amazon in
our cloud storage broker.

Testing and Comparing the Performance of Cloud Service Providers 119

– Amazon Web Service S3 [35] is a file storage service which is built on REST
and SOAP. Their SDK is available in all major development languages.

– Azure Storage [37] supports blob, file, queue and table services. The API is
built on REST, HTTP and xml, and can be integrated with Microsoft visual
studio, eclipse and GIT. The Azure SDK provides a separate API package
for each service and has the same code flow across different service APIs.

– DropBox [36] is a file hosting service. It also enables synchronised backup and
web sharing. The DropBox API is very light-weight and easy for a new user.

– GoogleDrive [38] offers a cloud file storage service. The GoogleDrive service
includes access to a Google API client library.

This selection of service providers resulted in a grouping of the cloud providers
and their services as shown in the table below1 that summarises the main features
of the services:

Service Azure AWS Google DropBox

File Storage file - GoogleDrive DropBox

Blob Storage blob AWS S3 - -

Table Storage Table, DocumentDB DynamoDB, SimpleDB - -

3 Broker Architecture

Portability and interoperability are the key objectives of a cloud brokerage tool.
Thus the objective of designing and developing an abstraction API is to produce
an effective cross-service cloud delivery model [14]. Before describing how we use
this to support performance evaluation, we still need to introduce the architec-
tural principles. The main service-oriented functionalities of cloud providers are
compute nodes, data volume, load balance, DNS and so on. The advantage of
bringing these functionalities to a multi-cloud application provides (1) an easy
way of importing and exporting data, (2) choice over price, (3) enhanced SLA,
and (4) the elimination of vendor lock-in.

As concept and function integration is the key difficulty in constructing the
broker, this broker implementation is based on an ontology that at conceptual
level defines the integration. This Storage Abstraction Ontology describes the
common naming and meaning approach of the abstraction API [25,26,34]. The
model consists of four main layers, namely Service, Provider, Level-2 (composite
storage objects) and Level-1 (core storage objects).

– Level-4 Service: The Service layer is the top layer and is directly integrated
to the user interface layer. This layer basically describes the services that
the multi-cloud storage abstraction API supports. There are three services
currently supported. They are Blob, Table and File service.

– Level-3 Provider: The Provider layer is the second layer, which is one of
the context object parameters mapped to the service layer. The multi-cloud
storage abstraction supports four main providers, namely Microsoft Azure,

1
https://www.google.com/drive/;
https://www.dropbox.com/;
https://aws.amazon.com/s3/;
https://azure.microsoft.com/en-us/services/storage/;

https://www.google.com/drive/
https://www.dropbox.com/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/services/storage/

120 D. M. Elango et al.

Fig. 2. Ontology-based layered broker architecture.

Amazon Web Services, GoogleDrive and DropBox. The corresponding ser-
vices supported by the providers are shown below:

Service Provider

Blob Azure storage blob; AWS S3

Table Azure storage table; Azure DocumentDB; AWS DynamoDB; AWS SimpleDB

File Azure storage file; DropBox and GoogleDrive

– Level-2 Composite: Level-2 is the next layer. This layer represents the first
level or higher level of composite object abstraction. This layer is service-
neutral and brings out the common naming across the providers specific
functionalities. Each layer is abstracted based on the common operations and
aspect of how the main function is applied in that particular service. Common
naming is represented to easily categorise storage resources and group them
to make the development of the coding easier.
Based on the Abstraction Ontology Fig. 2, the Blob service has Store which
groups Container from Azure Storage Blob and Bucket from AWS S3. The
Table service has two different sub-layers - where Database belongs to Azure
DocumentDB Database, and where Collection groups Table from Azure Stor-
age Table, collection from Azure DocumentDB Collection, Table from AWS
DynamoDB and Domain from AWS SimpleDB. The File service has two dif-
ferent sub-layers where Share belongs to Azure Storage File and Directory
groups Directory from Azure Storage File, Folder from DropBox and Parent
from the GoogleDrive service.

– Level-1 Core: Level-1 represents the lower level of core object abstraction.
This layer contains the core functionalities of a particular service across
different providers. The classes in this level are extended from an abstract
class called AbstractConnector. The class implements the abstract methods
defined in the AbstractConnector class. The mapping from Level-2 to Level-1

Testing and Comparing the Performance of Cloud Service Providers 121

is performed by an interface class called Manager. This Manager identifies the
provider class by its key. Basic CRUD operations on the storage resources are
included as core methods. In order to achieve these functions, each opera-
tion request should pass through the Level-2 mappings and are then mapped
across the service and providers.
The Blob service has Blob which groups Blob from Azure Storage Blob and
Object from AWS S3. The Table service has two different sub layers. It has
Item which groups Entity from Azure Storage Table, Document from Azure
DocumentDB Document, Item from AWS DynamoDB and Item from AWS
SimpleDB. Also, the second sub layer Attachment belongs to Azure Docu-
mentDB. The File service has File which groups File from Azure Storage File,
File from DropBox and File from GoogleDrive.

4 Performance Testing and Provider Comparison

We have used the broker to compare performance values for the four providers
selected. The broker is instrumented to provide the response time results.

In this section, we desribe the performance test set-up and the results for the
three service types blob, file and table across the different providers. We organise
this section based on the storage types blob, file and table.

Not all providers support each of the storage types. So, the number of com-
pared services provided varies between two and four. We report on the time
consumed for a number of standard operations at the two important levels 1
and 2 of the layer architecture. In this way, we cover individual objects (items)
and composites (collections) and a range of standard operations on them such
as creating or deleting.

4.1 Blob Service Performance Test

The Blob Service Performance Test was performed on two providers, namely
Azure Storage Blob and AWS S3. This performance test includes two object
levels. Level-2 represents Store (which includes container and Bucket). Level-1
represents Blob (which includes Blob and Object).

– The total number of tests performed was 27 to fully cover the respective core
and composite objects and the different relevant operations on them. The
performance test compares the operations across the service providers.

– Each operation was run 10 times in order to avoid any accidential performance
irregularities due to external factors, and the corresponding process time for
each request from T1 to T10 was calculated.

– Each request was processed with the same blob size of 10.2 MB, which resem-
bles a standard object size.

The result includes start time, end time, average time and total duration – see
Figs. 3 and 4.

122 D. M. Elango et al.

Fig. 3. Blob service Level-2 composite object.

Fig. 4. Blob service Level-1 core object.

4.2 File Service Performance Test

The File Service Performance Tests were performed on Azure Storage File,
GoogleDrive and DropBox. The tests include two object levels. Level-2 rep-
resents Share and Directory. Level-1 represents Files.

– The total number of tests performed was 26 to cover the combinations of
different object types and different operations on them.

– The performance tests compare the operations across the service providers.
Each operation was run 10 times to eliminate irregular single behaviour, and
the corresponding process time for each request from T1 to T10 was calcu-
lated.

– Each request was processed with same file size of 10.2 MB as a common size
for the object type in question.

Testing and Comparing the Performance of Cloud Service Providers 123

Fig. 5. File service Level-2 composite object.

Fig. 6. File service Level-1 core object.

The results include start time, end time, average time and total duration – see
Figs. 5 and 6.

4.3 Table Service Performance Test

The Table Service Performance Tests were performed on Azure Storage Table,
Azure DocumentDB, AWS DynamoDB and AWS SimpleDB. The Tests include
two object levels. Level-2 represents Database and Collections (which includes
Table, Collections, Table and Domain). Level-1 represents Item (which includes
Entity, Document, Table Item, Domain Item) and Attachment.

124 D. M. Elango et al.

Fig. 7. Table service Level-2 composite object.

Fig. 8. Table service Level-1 core object.

– The total number of tests was 45. As already explained for the blob tests, this
number covers the combination of different objects and the different opera-
tions on them. The performance tests compare the operations then across the
service providers.

Testing and Comparing the Performance of Cloud Service Providers 125

– Each operation was run 10 times, as earlier to avoid irregularities, and the
corresponding process time for each request from T1 to T10 was calculated.
Each request was processed with a single data record of approximately four
columns.

The results include start time, end time, average time and total duration – see
Figs. 7 and 8 (and also the performance details in Fig. 9).

Fig. 9. Detailed performance measurements.

126 D. M. Elango et al.

5 Discussion of Results and Conclusions

The aim of cloud service brokerage is customising or integrating existing ser-
vices or making them interoperable. We have developed what based on com-
mon classification schemes in [11,12,39] is categorised as an integration broker.
The purpose of a broker is intermediation between consumers and providers to
provide advanced capabilities (interoperability and portability [33]) that builds
up on an intermediary/broker platform to provide for instance a marketplace
to bring providers and customers together and automatically facilitate multi-
provider usage or portability across providers. The broker for cloud storage ser-
vice providers implement a joint interface to allow

– easy portability for the user and
– easy extensibility for the broker provider.

This broker solution enables through the joint API also the opportunity for a
cloud storage user to easily migrate between service providers and evolve the
systems [9,21], without having sufficient standards [6,7,20].

We investigated here the usage of the broker to carry out comparative perfor-
mance tests across the providers in order to support the user with the decision
which provider to choose, if this is taken based on a performance criterion.

Our observations from the performance tests we described earlier are the
following:

– (a) Core Objects: We can observe that the performance of core object stor-
age operations varies significantly across Cloud providers. Azure outperforms
AWS S3 by a factor of between 4 and 5 in our test scenario. For individ-
ual object operations, Azure is also up to 5 times faster in terms of access
speed. For example, the common function of UploadBlob takes approximately
4 seconds on Azure and 10 seconds on AWS S3 for a 10.2 MB file.

– (b) Composite Objects: The tests of composite object operations [31] that
relate to collections show that Azure has significantly more access perfor-
mance than other providers. In particular, AWS DynamoDB has a unusually
long access time for its CollectionCreate operation. The tests on individual
table entity operations show Azure to be the fastest by a considerable margin
with over 5 to 6 times lesser access speeds on average.

– (c) Upload and Download: The average of the combined file upload and down-
load speeds do not vary considerably across the providers tested.

We have defined some parameters, such as object size, in a specific way. Other
choices might result in different observations. Our aim here was not to rec-
ommend a particular provider. The aim was to demonstrate the usefulness of
instrumenting brokers for either decision making or as an ongoing monitoring
approach. Any selection can anyway not happen without considering other prop-
erties such as security.

In the future, we plan to consider more storage services. Furthermore, the
impact of different architectures in terms on IaaS or PaaS with and without the
use of container technologies [17,18,24,40,41] shall be explored.

Testing and Comparing the Performance of Cloud Service Providers 127

Acknowledgements. This work was partly supported by IC4 (Irish Centre for Cloud
Computing and Commerce), funded by EI and the IDA.

References

1. Ried, S.: Cloud Broker - A New Business Model Paradigm. Forrester (2011)
2. Elango, D.M., Fowley, F., Pahl, C.: An ontology-based architecture for an adapt-

able cloud storage broker. In: Advances in Service-Oriented and Cloud Computing.
Springer CCIS (2018, to appear)

3. Benslimane, D., Dustdar, S., Sheth, A.: Services mashups - the new generation of
web applications. Internet Comput. 12(5), 13–15 (2008)

4. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the inter-cloud: protocols and formats for cloud computing interoperability. In:
International Conference on Internet and Web Applications and Services (2009)

5. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of
cloud computing environments for scaling of application services. In: Hsu, C.-H.,
Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13–31.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13119-6 2

6. Cloud Standards (2017). http://cloud-standards.org/
7. ETSI Cloud Standards (2017). http://www.etsi.org/newsevents/news/734-2013-

12-press-release-report-on-cloudcomputing-standards
8. Fehling, C., Mietzner, R.: Composite as a service: cloud application structures,

provisioning, and management. Inf. Technol. 53(4), 188–194 (2011)
9. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change mod-

els and change rules for sustainable cloud software architectures. J. Softw. Evol.
Process 29(2) (2017)

10. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud soft-
ware. In: ACM Transactions on Internet Technology. (2018, to appear)

11. Fowley, F., Pahl, C., Zhang, L.: A comparison framework and review of service bro-
kerage solutions for cloud architectures. In: 1st International Workshop on Cloud
Service Brokerage (2013)

12. Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and com-
parison framework for cloud service brokerage architectures. IEEE Trans. Cloud
Comput. (2017). https://doi.org/10.1109/TCC.2016.2537333. http://ieeexplore.
ieee.org/document/7423741/

13. Garcia-Gomez, S., et al.: Challenges for the comprehensive management of cloud
services in a PaaS framework. Scalable Comput. Pract. Experience 13(3), 201–213
(2012)

14. Elango, D.M., Fowley, F., Pahl, C.: Pattern-driven architecting of an adaptable
ontology-driven cloud storage broker. In: University of Oslo, Department of Infor-
matics, Research report 471, pp. 33–47 (2017)

15. Gartner: Cloud Services Brokerage. Gartner Research (2013). http://www.gartner.
com/it-glossary/cloud-servicesbrokerage-csb

16. Grozev, N., Buyya, R.: InterCloud architectures and application brokering: taxon-
omy and survey. Softw. Pract. Experience 44(3), 369–390 (2012)

17. Pahl, C., Jamshidi, P.: Microservices: a systematic mapping study. In: Proceedings
CLOSER Conference, pp. 137–146 (2016)

18. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations and issues for migrating
to microservices architectures: an empirical investigation. IEEE Cloud Comput.
(2018). Accepted for publication

https://doi.org/10.1007/978-3-642-13119-6_2
http://cloud-standards.org/
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
http://www.etsi.org/newsevents/news/734-2013-12-press-release-report-on-cloudcomputing-standards
https://doi.org/10.1109/TCC.2016.2537333
http://ieeexplore.ieee.org/document/7423741/
http://ieeexplore.ieee.org/document/7423741/
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb
http://www.gartner.com/it-glossary/cloud-servicesbrokerage-csb

128 D. M. Elango et al.

19. Hofer, C.N., Karagiannis, G.: Cloud computing services: taxonomy and compari-
son. J. Internet Serv. Appl. 2(2), 81–94 (2011)

20. IEEE Cloud Standards (2015). http://cloudcomputing.ieee.org/standards
21. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review.

IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)
22. jclouds: jclouds Java and Clojure Cloud API (2015). http://www.jclouds.org/
23. Ferrer, A.J., et al.: OPTIMIS: a holistic approach to cloud service provisioning.

Future Gener. Comput. Syst. 28(1), 66–77 (2012)
24. Gacitua-Decar, V., Pahl, C.: Structural process pattern matching based on graph

morphism detection. Int. J. Softw. Eng. Knowl. Eng. 27(2), 153–189 (2017)
25. Pahl, C.: Layered ontological modelling for web service-oriented model-driven

architecture. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005. LNCS, vol.
3748, pp. 88–102. Springer, Heidelberg (2005). https://doi.org/10.1007/11581741 8

26. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural
styles. Inf. Softw. Technol. 51(12), 1739–1749 (2009)

27. Pahl, C., Xiong, H.: Migration to PaaS clouds - migration process and architec-
tural concerns. In: IEEE 7th International Symposium on the Maintenance and
Evolution of Service-Oriented and Cloud-Based Systems MESOCA (2013)

28. Konstantinou, A.V., Eilam, T., Kalantar, M., Totok, A.A., Arnold, W., Sniblel, E.:
An architecture for virtual solution composition and deployment in infrastructure
clouds. In: International Workshop on Virtualization Technologies in Distributed
Computing (2009)

29. Jamshidi, P., Sharifloo, A., Pahl, C., Arabnejad, H., Metzger, A., Estrada, G.:
Fuzzy self-learning controllers for elasticity management in dynamic cloud archi-
tectures. In: 12th International ACM SIGSOFT Conference on Quality of Software
Architectures QoSA (2016)

30. Arabnejad, H., Jamshidi, P., Estrada, G., El Ioini, N., Pahl, C.: An auto-scaling
cloud controller using fuzzy Q-learning - implementation in openstack. In: Aiello,
M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016. LNCS, vol.
9846, pp. 152–167. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44482-6 10

31. Mietzner, R., Leymann, F., Papazoglou, M.: Defining composite configurable SaaS
application packages using SCA. In: International Conference on Internet and
Web Applications and Services, Variability Descriptors and Multi-tenancy Pat-
terns (2008)

32. Pahl, C., Xiong, H., Walshe, R.: A comparison of on-premise to cloud migration
approaches. In: Lau, K.-K., Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013.
LNCS, vol. 8135, pp. 212–226. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40651-5 18

33. Petcu, D., et al.: Portable cloud applications - from theory to practice. Future Gen.
Comput. Syst. 29(6), 1417–1430 (2013)

34. Javed, M., Abgaz, Y.M., Pahl, C.: Ontology change management and identification
of change patterns. J. Data Semant. 2(2–3), 119–143 (2013)

35. Amazon Simple Storage Service (S3) Cloud Storage AWS. https://aws.amazon.
com/s3/

36. Dropbox. https://www.dropbox.com/
37. Azure Storage - Secure cloud storage. https://azure.microsoft.com/en-us/services/

storage/
38. Google Drive - Cloud Storage & File Backup. https://www.google.com/drive/
39. Jamshidi, P., Pahl, C., Mendonca, N.C.: Pattern-based multi-cloud architecture

migration. Softw. Pract. Experience 47(9), 1159–1184 (2017)

http://cloudcomputing.ieee.org/standards
http://www.jclouds.org/
https://doi.org/10.1007/11581741_8
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-319-44482-6_10
https://doi.org/10.1007/978-3-642-40651-5_18
https://doi.org/10.1007/978-3-642-40651-5_18
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://www.dropbox.com/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://www.google.com/drive/

Testing and Comparing the Performance of Cloud Service Providers 129

40. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (2017). https://doi.org/10.1109/
TCC.2017.2702586. http://ieeexplore.ieee.org/document/7922500/

41. Aderaldo, C.M., Mendonca, N.C., Pahl, C., Jamshidi, P.: Benchmark requirements
for microservices architecture research. In: 1st International Workshop on Estab-
lishing the Community-Wide Infrastructure for Architecture-Based Software Engi-
neering. IEEE (2017)

42. Heinrich, R., van Hoorn, A., Knoche, H., Li, F., Lwakatare, L.E., Pahl, C., Schulte,
S., Wettinger, J.: Performance engineering for microservices: research challenges
and directions. In: Proceedings of the 8th ACM/SPEC on International Conference
on Performance Engineering Companion (2017)

https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
http://ieeexplore.ieee.org/document/7922500/

TOSKER: Orchestrating Applications
with TOSCA and Docker

Antonio Brogi, Luca Rinaldi, and Jacopo Soldani(B)

Department of Computer Science, University of Pisa, Pisa, Italy
soldani@di.unipi.it

Abstract. Docker is emerging as a simple yet effective solution for
deploying and managing multi-component applications in virtualised
cloud platforms. Application components can be shipped within portable
and lightweight Docker containers, which can then be interconnected to
allow components to interact each other. At the same time, the need for
an enhanced support for orchestrating the management of the applica-
tion components shipped within Docker containers is emerging.

In this paper we show how TOSCA can be exploited to provide such
an enhanced support, by proposing a representation for describing the
components forming an application, as well as the Docker containers
used to ship such components. We also present TosKer, an engine for
orchestrating the management of multi-component applications based on
the proposed TOSCA representation and on Docker.

1 Introduction

Cloud computing has revolutionised IT, by allowing to run on-demand dis-
tributed applications at a fraction of the cost which was necessary just a few
years ago [3]. This is possible as cloud providers exploit virtualisation techniques
to achieve elasticity of large-scale shared resources [22]. Container-based virtu-
alisation (where the operating system kernel permits running multiple isolated
guest instances, called containers) can thus play an important role for cloud
platforms, especially because it provides a lightweight virtualisation framework
for PaaS/edge clouds [19,30] Applications can be packaged, along with all soft-
ware dependencies they need to run, into portable and lightweight containers,
which can then be managed on cloud platforms [28].

Containers are also an ideal solution for SOA-based architectural patterns
(e.g., microservices [24]) that are emerging in the cloud community to decom-
pose monolithic applications into suites of independently deployable, lightweight
components. Application components can indeed be packaged in indepen-
dently deployable, lightweight containers, which can then be interconnected to
allow components to interact with each other (forming multi-container applica-
tions [31]).

Docker [14] is considered the de-facto standard for container-based virtual-
isation [29]. Docker permits packaging software components in Docker images,

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 130–144, 2018.
https://doi.org/10.1007/978-3-319-79090-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_9&domain=pdf

TosKer: Orchestrating Applications with TOSCA and Docker 131

which are then exploited as read-only templates to create and run Docker con-
tainers. Docker containers can also mount external volumes, which ensure data
persistence independently of the lifecycle of containers [23].

Docker permits orchestrating containers, by allowing to define multi-
container Docker applications [31]. Given (the images of) the containers forming
a multi-container application, the volumes they must mount, and the connec-
tions to set up among containers, Docker compose [15] is indeed capable of
automatically deploying the corresponding application.

Docker containers are however treated as “black-boxes”, and they constitute
the minimum orchestration entity considered by currently existing approaches
for orchestrating multi-component applications with Docker (e.g., [2,15,16,32]).
Application components must be manually packaged, along with all their soft-
ware dependencies, in (images of) Docker containers. Components are then
strictly bound to their hosting containers, as it is not possible to orchestrate
the management of the components forming an application independently of the
Docker containers hosting them. For instance, it is not possible to run only some
of the components hosted on a container, as whenever a container is started, all
components it hosts are also started. Also, if we wish to change the container
used to host a component, new Docker images must be manually developed
(e.g., if a maven container is hosting the front-end and back-end of an applica-
tion, and we wish to move the front-end to a java container, we must develop
two new Docker images, one for hosting the front-end on a java container and
one for hosting only the back-end on a maven container).

To fully exploit the potential of SOA, the current support for orchestrat-
ing multi-component applications with Docker should be enhanced. A concrete
solution is to still rely on Docker containers as a portable and lightweight mean
to deploy application components on cloud platforms, by also allowing to inde-
pendently manage the components and containers forming a multi-component
application [28]. In this paper we propose a solution precisely following this idea,
which relies on the OASIS standard TOSCA [27] as the mean for orchestrating
multi-component applications on top of Docker containers.

– We propose a TOSCA-based representation for multi-component applica-
tions, which permits modularly specifying the components forming an appli-
cation, the Docker containers and Docker volumes needed to run them, as
well as the relationships occurring among them (e.g., a component is hosted
on a container, a component connects to another).

– We also present TosKer, an engine for orchestrating the management of
multi-component applications based on the proposed TOSCA representation
and on Docker.

Our approach enhances the current support for orchestrating the manage-
ment of multi-component applications in Docker, as it considers application
components as orchestration entities, which are independent from the Docker
containers and Docker volumes used to build their runtime infrastructure. For
instance, TosKer allows to independently manage the application compo-
nents hosted on a Docker container, hence allowing to run only some of them

132 A. Brogi et al.

(if needed). Our approach also eases the change of Docker containers used to
host the components of an application, as this only requires to update the cor-
responding TOSCA specification1 (which will then be processed by TosKer to
automatically deploy and manage the specified application).

The rest of the paper is organised as follows. Section 2 provides some back-
ground on TOSCA. Section 3 illustrates our proposal for specifying multi-
container Docker applications in TOSCA, and Sect. 4 presents the TosKer
engine for actually orchestrating such applications. Finally, Sects. 5 and 6 discuss
related work and draw some concluding remarks, respectively.

2 Background

TOSCA (Topology and Orchestration Specification for Cloud Applications [27])
is an OASIS standard whose main goals are to enable (i) the specification of
portable cloud applications and (ii) the automation of their deployment and
management. TOSCA provides a YAML-based and machine-readable modelling
language that permits describing cloud applications. Obtained specifications can
then be processed to automate the deployment and management of the specified
applications. We hereby report only those features of the TOSCA modelling
language that are used in this paper2.

Fig. 1. The TOSCA metamodel [27].

TOSCA permits specifying a cloud application as a service template, that is
in turn composed by a topology template, and by the types needed to build such a
topology template (Fig. 1). The topology template is a typed directed graph that

1 This can also be done automatically by exploiting TosKeriser [10]. Given a
TOSCA application specification, TosKeriser can indeed automatically (discover
and) include the Docker containers offering the software support needed by its com-
ponents.

2 A more detailed, self-contained introduction to TOSCA can be found in [5,12].

TosKer: Orchestrating Applications with TOSCA and Docker 133

describes the topological structure of a multi-component application. Its nodes
(called node templates) model the application components, while its edges (called
relationship templates) model the relations occurring among such components.

Node templates and relationship templates are typed by means of node types
and relationship types, respectively. A node type defines the observable prop-
erties of a component, its possible requirements, the capabilities it may offer
to satisfy other components’ requirements, and the interfaces through which it
offers its management operations. Requirements and capabilities are also typed,
to permit specifying the properties characterising them. A relationship type
instead describes the observable properties of a relationship occurring between
two application components. As the TOSCA type system supports inheritance,
a node/relationship type can be defined by extending another, thus permitting
the former to inherit the latter’s properties, requirements, capabilities, interfaces,
and operations (if any).

Node templates and relationship templates also specify the artifacts needed
to actually realise their deployment or to implement their management opera-
tions. As TOSCA allows artifacts to represent contents of any type (e.g., scripts,
executables, images, configuration files, etc.), the metadata needed to properly
access and process them is described by means of artifact types.

TOSCA applications are then packaged and distributed in CSARs (Cloud
Service ARchives). A CSAR is essentially a zip archive containing an applica-
tion specification along with the concrete artifacts realising the deployment and
management operations of its components.

3 Specifying Multi-component Applications

Multi-component applications typically integrate various and heterogeneous
components [18]. We hereby define a TOSCA-based representation for such com-
ponents, as well as for the Docker containers and Docker volumes that will be
used to form their runtime infrastructure.

We first define three different TOSCA node types3 to permit distinguishing
the Docker containers, the Docker volumes, and the application components
forming a multi-component application (Fig. 2).

– tosker.nodes.Container permits representing Docker containers, by indicat-
ing whether a container requires a connection (to another Docker container
or to an application component), whether it has a generic dependency on
another node in the topology, or whether it needs some persistent storage
(hence requiring to be attached to a Docker volume). tosker.nodes.Container
also permits indicating whether a container can host an application compo-
nent, whether it offers an endpoint where to connect to, or whether it offers
a generic feature (to satisfy a generic dependency requirement of another

3 The actual definition of all TOSCA types discussed in this section is publicly avail-
able on GitHub at https://github.com/di-unipi-socc/tosker-types.

https://github.com/di-unipi-socc/tosker-types

134 A. Brogi et al.

Fig. 2. TOSCA node types for multi-component, Docker-based applications, viz., tos-
ker.nodes.Container, tosker.nodes.Software, and tosker.nodes.Volume.

container/application component). To complete the description, tosker.no-
des.Container provides placeholders (through the properties ports, env va-
riables and command, respectively) for specifying the port mappings, the
environment variables, and the command to be executed when running the
corresponding Docker container, and it lists the operations to manage a con-
tainer (which correspond to the basic operations offered by the Docker plat-
form [23]).

– tosker.nodes.Volume permits specifying Docker volumes, and it defines a
capability attachment to indicate that a Docker volume can satisfy the stor-
age requirements of Docker containers. It also lists the operations to manage
a Docker volume (which corresponds to the basic operations offered by the
Docker platform [23]).

– tosker.nodes.Software permits indicating the software components forming a
multi-component application. It permits specifying whether an application
component requires a connection (to a Docker container or to another appli-
cation component), whether it has a generic dependency on another node
in the topology, and that it has to be hosted on a Docker container or on
another component4. tosker.nodes.Software also permits indicating whether
an application component can host another application component, whether
it provides an endpoint where to connect to, or whether it offers a generic fea-
ture (to satisfy a generic dependency requirement of a container/application

4 The host requirement is mandatory for nodes of type tosker.nodes.Software, as we
assume that each application component must be installed in another component or
in a Docker container.

TosKer: Orchestrating Applications with TOSCA and Docker 135

component). Finally, tosker.nodes.Software indicates the operations to man-
age an application component (viz., create, configure, start, stop, delete).

The interconnections and interdependencies among the nodes forming a multi-
component application can be indicated by exploiting the TOSCA normative
relationship types [27].

– tosca.relationships.AttachesTo can indeed be used to attach a Docker volume
to a Docker container.

– tosca.relationships.ConnectsTo can indicate the network connections to estab-
lish between Docker containers and/or application components.

– tosca.relationships.HostedOn can be used to indicate that an application com-
ponent is hosted on another component or on a Docker container (e.g., to
indicate that a web service is hosted on a web server, which is in turn hosted
on a Docker container).

– tosca.relationships.DependsOn can be used to indicate generic dependencies
between the nodes of a multi-component application (e.g., to indicate that
a component must be deployed before another, as the latter depends on the
availability of the former to properly work).

Example 1. Consider Thinking, an open-source5 web application that allows
users to share their thoughts, so that all other users can read them. Thinking
is composed by three main components, namely (i) a Mongo database storing
the collection of thoughts shared by end-users, (ii) a Java-based REST API to
remotely access the database of shared thoughts, and (iii) a web-based GUI visu-
alising all shared thoughts and allowing to insert new thoughts into the database.
Figure 3 illustrates a representation of the Thinking application in TOSCA.

(i) The database is obtained by directly instantiating a MongoDB container,
which needs to be attached to a volume where the shared thoughts will be
persistently stored.

(ii) The API is hosted on a Maven Docker container, and it requires to be
connected to the MongoDB container (for remotely accessing the database
of shared thoughts).

(iii) The GUI is hosted on a NodeJS Docker container, and it depends on the
availability of the API to properly work (as it sends GET/POST requests
to the API to retrieve/add shared thoughts). ��

Finally, also artifacts must be typed [27], as they are used to implement deploy-
ment and management operations of the nodes forming a multi-component appli-
cation and they must specify the metadata needed to properly access and process
them. We hence define tosker.artifacts.Image and tosker.artifacts.Dockerfile to
permit indicating that an artifact is an actual image or a Dockerfile, which will
then be used to create a Docker container. We also extend such artifact types
by defining tosker.artifacts.Image.Service and tosker.artifacts.Dockerfile.Service,
5 The source code of Thinking is publicly available on GitHub at https://github.com/

di-unipi-socc/thinking.

https://github.com/di-unipi-socc/thinking
https://github.com/di-unipi-socc/thinking

136 A. Brogi et al.

Fig. 3. An example of multi-component application specified in TOSCA (where nodes
are typed with tosker.nodes.Container, tosker.nodes.Volume, or tosker.nodes.Software,
while relationships are typed with TOSCA normative types [27]).

to permit distinguishing images that execute a service when started from those
that “simply package” a runtime environment. We can instead rely on TOSCA
normative artifact types [27] for all other kinds of artifacts linked by the nodes
in a multi-container Docker application.

Example 1 (cont.). Consider again the application in Fig. 3. The image artifact
associated to the MongoDB container is of type tosker.artifacts.Image.Service,
as it links to an image offering a MongoDB server when executed. The image
artifacts associated to the containers Node and Maven are instead of type tos-
ker.artifacts.Image, as they link to images just offering runtime environments (for
NodeJS-based and Maven-based applications, respectively). The management
operations of GUI and API are instead implemented by “.sh” scripts6. ��

4 TosKer

We hereby present TosKer, an orchestrator capable of automatically deploy-
ing and managing multi-component applications specified with the proposed
TOSCA representation. We first illustrate the architecture of TosKer, and we
then discuss its current prototype implementation.

6 The resulting TOSCA application specification is publicly available at https://
github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-app/
thoughts/thoughts.yaml. A CSAR packaging such specification (together with all
artifacts needed to deploy and manage the Thinking application) is available at
https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-
app/thoughts.csar.

https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-app/thoughts/thoughts.yaml
https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-app/thoughts/thoughts.yaml
https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-app/thoughts/thoughts.yaml
https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-app/thoughts.csar
https://github.com/di-unipi-socc/TosKer/blob/master/data/examples/thoughts-app/thoughts.csar

TosKer: Orchestrating Applications with TOSCA and Docker 137

4.1 The Architecture of TosKer

Figure 4 shows the architecture of TosKer, which is designed to be modular and
easily extensible. The architecture of TosKer indeed partitions the functionali-
ties of TosKer into lightweight modules that interact with each other, and new
functionalities can be easily added to TosKer by developing and plugging-in
new modules.

User interface. The UI allows to feed TosKer with the necessary input.
The latter includes a CSAR (packaging the TOSCA specification of a multi-
component application together with all artifacts needed to realise its manage-
ment), a sequence of management operations to be executed, and (optionally)
the subset of the application components on which to perform such a sequence
of management operations.

Fig. 4. The architecture of TosKer.

TOSCA utilities. The TOSCA Parser is an utility module for parsing a CSAR
and generating an internal representation of the application it packages. Such
representation will then be exploited by the other modules in TosKer to deploy
and manage the corresponding application.

Orchestration core. The Orchestrator is the core component of TosKer, as it
is in charge of planning and orchestrating the management of multi-component
applications. It first receives the input from the UI, and it exploits the TOSCA
Parser to generate an internal representation of the multi-component application
contained in the input CSAR.

The Orchestrator automatically determines which management operations
have to be executed on which components, and in which order7. (to permit

7 The Orchestrator assumes that components are managed according to the TOSCA
standard management lifecycle [27]. If such lifecycle is not respected (e.g., by requir-
ing to delete a component that has not yet been created), then the Orchestrator will
raise an error and stop orchestrating the application management.

138 A. Brogi et al.

executing the input sequence of operations on the indicated subset of applica-
tion components). The result is a (possibly expanded) sequence of management
operations, each to be executed on a certain application component.

The Orchestrator then orchestrates the actual execution the above mentioned
sequence of management operations by coordinating the Container Manager, Vol-
ume Manager and Software Manager. It indeed iterates over the sequence, and it
dispatches the actual execution of an operation on a component to the corre-
sponding manager (e.g., to create a component of type tosker.nodes.Container,
the Orchestrator dispatches the actual execution of create on such component to
the Container Manager). dispatched to the

Managers. The Container Manager, Volume Manager, and Software Manager
implement the actual lifecycle for components of type tosker.nodes.Container,
tosker.nodes.Volume, and tosker.nodes.Software, respectively.

– The Container Manager is in charge of implementing the operations to create,
start, stop and delete Docker containers, by also taking into account the dif-
ferent types of artifacts from which they are generated (viz., Docker images
or Dockerfiles—see Sect. 3).

– The Volume Manager has to implement the operations to create and delete
Docker volumes (as volumes can only be created or deleted [23]).

– The Software Manager is in charge of implementing the operations to create,
configure, start, stop and delete a component of type tosker.nodes.Software.
Notice that, as such a kind of components will be hosted on Docker containers,
the actual execution of a management operation on a component requires
to issue commands to its container. For instance, to create a component,
the Software Manager has to (i) copy all artifacts of the component inside a
dedicated folder of its container, (ii) start the container by executing the script
implementing the create operation of the component, (iii) commit the changes
applied to the container as a new image, and (iv) re-create the container by
exploiting the newly created image.

Notice that each manager implements management operations by instructing
the Docker Interface on which Docker commands to execute.

Docker interface. The Docker Interface is in charge of interacting with the
Docker engine installed on the host where TosKer is running. It is used by
the managers to manage Docker containers and Docker volumes, and to execute
operations inside running containers.

Notice that the Docker Interface decouples TosKer from the actual Docker
engine used, meaning that it can issue commands to a classic Docker engine (as
in the current implementation of TosKer—see Sect. 4.2), but it could also be
used to issue commands to an engine capable of distributing containers in a
cluster (e.g., Docker swarm [16] or Kubernetes [32]).

TosKer: Orchestrating Applications with TOSCA and Docker 139

4.2 Prototype Implementation

We have implemented a prototype of TosKer, which is open-source and pub-
licly available on GitHub8. The prototype is written in Python9, and it is
composed by a main package (tosker) containing the set of Python mod-
ules implementing the various components forming the architecture of TosKer
(viz., ui.py, tosca parser.py, orchestrator.py, container manager.py, vo-
lume manager.py, software manager.py, and docker interface.py).

The current prototype of TosKer is also published on PyPI10 (Python Pack-
age index), which permits installing it on a host by simply executing the com-
mand pip install tosker. It can then be used as a standard Python library,
or as a command line software by executing:

$ tosker FILE [COMPONENTS] COMMANDS [INPUTS]

where FILE is a CSAR archive or a TOSCA YAML file (containing the specifi-
cation of a multi-component application), COMPONENTS is optional and permits
specifying the subset of application components to be managed, COMMANDS is the
sequence of management operations to be executed, and INPUTS is an optional
sequence of input parameters to be passed to the TOSCA application11.

Example 2. Consider again the Thinking application in Example 1. Suppose, for
instance, that we wish to create and start its API and MongoDB. We can instruct
TosKer to do so, by executing:

$ tosker /usr/share/tosker/examples/thougthts.csar \
API MongoDB create start

Notice that this will not only result in creating and starting API and MongoDB,
but also the Maven container and DBVolume they require to properly work. GUI
and Node will instead be ignored by TosKer, as they are not contained in set
of components input to TosKer, nor they are needed by API or MongoDB. ��
To test the current prototype of TosKer, we specified the open-source applica-
tion Thinking in TOSCA, as well as three other existing applications, viz., (i) a
Wordpress instance running on a PHP web server and connecting to a MySQL
back-end, (ii) a NodeJS-based REST API connecting to a MongoDB back-end,
and (iii) an application with three interacting servers written in NodeJS. All
applications were effectively deployed by the current prototype of TosKer, and
they constituted the basis for developing a battery of unit tests12, which covered
96% of the source code of the Python modules we implemented (see Table 1).

8 https://github.com/di-unipi-socc/TosKer.
9 The choice of Python was mainly motivated by the availability of two open-

source Python libraries: docker-py (https://github.com/docker/docker-py) and
tosca-parser (https://github.com/openstack/tosca-parser/). docker-py implements a

https://github.com/di-unipi-socc/TosKer
https://github.com/docker/docker-py
https://github.com/openstack/tosca-parser/

140 A. Brogi et al.

Table 1. Unit test coverage in the current prototype of TosKer (obtained by running
the coverage-py tool—https://coverage.readthedocs.io).

Module Total statements Missed statements Coverage

ui.py 75 18 76%

docker interface.py 168 4 98%

tosca parser.py 219 2 99%

orchestrator.py 105 2 98%

container manager.py 26 0 100%

volume manager.py 9 0 100%

software manager.py 67 2 97%

Total 669 28 96%

5 Related Work

We hereby position TosKer with respect to other currently available solutions
for orchestrating the management of multi-component applications with Docker
and/or TOSCA.

Docker-based orchestration. Docker natively supports multi-container Doc-
ker applications with Docker compose [15]. Docker compose permits specifying
the (images of) containers forming an application, the links/connections to be set
between such containers, and the volumes to be mounted. Based on that, Docker
compose is capable of deploying the specified application. However, Docker com-
pose treats containers as black-boxes, meaning that there is no information on
which components are hosted by a container, and that it is not possible to orches-
trate the management of application components separately from that of their
containers (as it is instead possible with TosKer).

Other approaches worth mentioning are Docker swarm [16], Kubernetes [32],
and Mesos [2]. Docker swarm permits creating a cluster of replicas of a Docker
container, and seamlessly managing it on a cluster of hosts. Kubernetes and
Mesos instead permit automating the deployment, scaling, and management of
containerised applications over clusters of hosts. Docker swarm, Kubernetes and
Mesos differ from TosKer as they focus on how to schedule and manage con-
tainers on clusters of hosts, rather than on how to orchestrate the management
of the components and containers forming multi-component applications.

Python interface for the Docker engine API. tosca-parser is instead a parser for
TOSCA application specifications (developed by the OpenStack community).

10 https://pypi.python.org/pypi/tosKer.
11 Details on how to process inputs for TOSCA applications can be found in [27].
12 The TOSCA application specifications and the battery of unit tests that we

implemented are publicly available on GitHub at https://github.com/di-unipi-socc/
TosKer/tree/master/data/examples and https://github.com/di-unipi-socc/TosKer/
tree/master/tests, respectively.

https://coverage.readthedocs.io
https://pypi.python.org/pypi/tosKer
https://github.com/di-unipi-socc/TosKer/tree/master/data/examples
https://github.com/di-unipi-socc/TosKer/tree/master/data/examples
https://github.com/di-unipi-socc/TosKer/tree/master/tests
https://github.com/di-unipi-socc/TosKer/tree/master/tests

TosKer: Orchestrating Applications with TOSCA and Docker 141

TOSCA-based orchestration. OpenTOSCA [4] is an open-source engine for
deploying and managing TOSCA applications. It is designed to work with a
former, XML-based version of TOSCA [25], and to process applications “imper-
atively” (viz., by executing management plans defined by the application devel-
oper in the form of BPEL or BPMN workflows). TosKer instead works with
the newer, YAML-based version of TOSCA [27], and it is designed to process
applications “declaratively” (viz., by automatically determining the management
plans to be executed from the topology of an application).

Other approaches worth mentioning are SeaClouds [8], Brooklyn [1], Alien4-
Cloud [17], and Cloudify [20]. SeaClouds [8] is a middleware solution for deploy-
ing and managing multi-component applications on heterogeneous IaaS/PaaS
clouds. SeaClouds fully supports TOSCA, but it lacks a support for Docker con-
tainers. The latter makes SeaClouds not suitable to orchestrate the management
of multi-component applications including Docker containers.

Brooklyn [1], Alien4Cloud [17] and Cloudify [20] instead natively support
Docker containers, and they permit orchestrating the management of the soft-
ware components and Docker containers forming cloud applications. They how-
ever all differ from TosKer because they treat Docker containers as black-boxes
(hence not permitting to orchestrate the management of application components
separately from that of the containers hosting them).

Brooklyn [1] and Cloudify [20] also differ from TosKer as they require
to specify applications in non-standard blueprint languages (inspired to, but
not fully compliant with, the OASIS standards CAMP [26] and TOSCA [26],
respectively). For instance, a relationship is specified in TOSCA by connect-
ing a requirement of one component to a capability of another, and require-
ments/capabilities can be used to express interconnection constraints (which
then permit validating TOSCA application topologies [9]). Cloudify blueprints
instead do not include any notion of requirements or capabilities, as relationships
just connect a source node to a target node.

Summary. To the best of our knowledge, ours is the first solution that per-
mits specifying and orchestrating multi-component, Docker-based applications
in TOSCA, and managing software components independently of the containers
hosting them.

6 Conclusions

Container-based virtualisation is emerging as a simple yet effective solution for
deploying and managing multi-component applications in cloud platforms [28].
Application components can be shipped within portable and lightweight Docker
containers, which can then be interconnected to allow components to interact
with each other. At the same time, the current support for orchestrating the
management of the application components shipped within Docker containers
is limited [29]. For instance, components must be manually packaged in Docker
containers, and it is not possible to manage components independently of the

142 A. Brogi et al.

containers hosting them (e.g., whenever a container is started/stopped, all com-
ponents hosted on such container are also started/stopped).

In this paper we illustrated how TOSCA [27] can enhance the support for
orchestrating multi-component applications with Docker. We indeed (i) proposed
a TOSCA-based representation for multi-component applications, which per-
mits distinguishing the Docker containers and software components in a multi-
component application, as well as the relationships occurring among them. We
also (ii) presented TosKer, an orchestration engine for automatically deploying
and managing multi-component applications based on TOSCA and Docker.

Our approach enhances the current support for orchestrating the manage-
ment of multi-component applications in Docker. TosKer can indeed automat-
ically install application components within the containers hosting them (instead
of requiring to manually package components in images of Docker containers),
and it permits independently orchestrating the management of components and
containers (instead of binding the management lifecycle of components to that
of the containers hosting them).

We believe that our approach can also facilitate the widespread adoption of
the TOSCA standard. TosKer indeed provides a lightweight, easy-to-use engine
for deploying and managing TOSCA-based applications (exploiting Docker to
host their components).

We tested the current prototype of TosKer by developing a battery of unit
tests based on four existing applications. A more thorough evaluation of Tos-
Ker, based on concrete case studies and/or on datasets of multi-component
applications (e.g., µset [6]), is in the scope of our immediate future work.

Additionally, the current prototype of TosKer permits orchestrating appli-
cations on single hosts and it does not yet support horizontal scaling of contain-
ers. TosKer can be adapted to include such features, for instance, by simply
including a new version of the Docker Interface which interacts with Docker
Swarm [16] or Kubernetes [32] (instead of with the Docker engine installed on a
host). This is also in the scope of our future work.

It is finally worth noting that TosKer permits orchestrating the manage-
ment of multi-component applications, by already offering some basic planning
capabilities. For instance, when required to start a component of an applica-
tion, TosKer automatically determines which other components have to be
started, and it plans the sequence of operations that permits starting all such
components. Such planning is however based on a fixed set of operations, whose
behaviour is fixed by the TOSCA standard management lifecycle [27]. This is
because our approach does not yet include a way to customise the management
behaviour of application components. A solution can be to integrate our app-
roach with models designed precisely to permit compositionally describing the
management behaviour of the components forming an application (e.g., Aeo-
lus [13] or fault-aware management protocols [7]), which would also permit
improving the planning capabilities of TosKer (e.g, by exploiting the Aeolus-
based planning algorithm in [21]). The integration of our approach with an exist-
ing solution for modelling, analysing and planning the management of multi-
component applications is also in the scope of our future work.

TosKer: Orchestrating Applications with TOSCA and Docker 143

Acknowledgments. The authors would like to thank Claus Pahl for all helpful and
stimulating discussions on how to enhance the current support for orchestrating multi-
component applications with Docker, which were reported in [11] and laid the founda-
tions for the work presented in this paper.

References

1. Apache Software Foundation: Brooklyn. http://brooklyn.apache.org
2. Apache Software Foundation: Mesos. http://mesos.apache.org/
3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,

G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4), 50–58 (2010)

4. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A.,
Wagner, S.: OpenTOSCA – a runtime for TOSCA-based cloud applications. In:
Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp.
692–695. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45005-
1 62

5. Binz, T., Breitenbücher, U., Kopp, O., Leymann, F.: TOSCA: portable automated
deployment and management of cloud applications. In: Bouguettaya, A., Sheng,
Q., Daniel, F. (eds.) Advanced Web Services, pp. 527–549. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-7535-4 22

6. Brogi, A., Canciani, A., Neri, D., Rinaldi, L., Soldani, J.: Towards a reference
dataset of microservice-based applications. In: Cerone, A., Roveri, M. (eds.) SEFM
2017. LNCS, vol. 10729, pp. 219–229. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-74781-1 16

7. Brogi, A., Canciani, A., Soldani, J.: Fault-aware application management protocols.
In: Aiello, M., Johnsen, E.B., Dustdar, S., Georgievski, I. (eds.) ESOCC 2016.
LNCS, vol. 9846, pp. 219–234. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44482-6 14

8. Brogi, A., Carrasco, J., Cubo, J., D’Andria, F., Ibrahim, A., Pimentel, E., Soldani, J.:
EU Project SeaClouds - adaptive management of service-based applications across
multiple clouds. In: Proceedings of the 4th International Conference on Cloud Com-
puting and Services Science (CLOSER 2014), pp. 758–763 (2014)

9. Brogi, A., Di Tommaso, A., Soldani, J.: Validating TOSCA application topologies.
In: Proceedings of the 5th International Conference on Model-Driven Engineer-
ing and Software Development, MODELSWARD, vol. 1, pp. 667–678. SciTePress
(2017)

10. Brogi, A., Neri, D., Rinaldi, L., Soldani, J.: From (incomplete) TOSCA specifica-
tions to running applications, with Docker. In: Cerone, A., Roveri, M. (eds.) SEFM
2017. LNCS, vol. 10729, pp. 491–506. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-74781-1 33

11. Brogi, A., Pahl, C., Soldani, J.: Enhancing the orchestration of multi-container
Docker applications (2016). Submitted for Publication

12. Brogi, A., Soldani, J., Wang, P.W.: TOSCA in a Nutshell: promises and perspec-
tives. In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC 2014. LNCS,
vol. 8745, pp. 171–186. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44879-3 13

13. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Aeolus: a component model
for the cloud. Inf. Comput. 239, 100–121 (2014)

http://brooklyn.apache.org
http://mesos.apache.org/
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1007/978-1-4614-7535-4_22
https://doi.org/10.1007/978-3-319-74781-1_16
https://doi.org/10.1007/978-3-319-74781-1_16
https://doi.org/10.1007/978-3-319-44482-6_14
https://doi.org/10.1007/978-3-319-44482-6_14
https://doi.org/10.1007/978-3-319-74781-1_33
https://doi.org/10.1007/978-3-319-74781-1_33
https://doi.org/10.1007/978-3-662-44879-3_13
https://doi.org/10.1007/978-3-662-44879-3_13

144 A. Brogi et al.

14. Docker Inc.: Docker. https://www.docker.com/
15. Docker Inc.: Docker compose. https://github.com/docker/compose
16. Docker Inc.: Docker swarm. https://github.com/docker/swarm
17. FastConnect, Bull, Atos: Alien4cloud. https://alien4cloud.github.io/
18. Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Comput-

ing Patterns: Fundamentals to Design, Build, and Manage Cloud Applications.
Springer, Vienna (2014). https://doi.org/10.1007/978-3-7091-1568-8

19. Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance com-
parison of virtual machines and Linux containers. In: 2015 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pp. 171–
172. IEEE Computer Society (2015)

20. GigaSpaces Technologies: Cloudify. http://cloudify.co/
21. Lascu, T.A., Mauro, J., Zavattaro, G.: A planning tool supporting the deploy-

ment of cloud applications. In: Proceedings of the 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence, ICTAI 2013, pp. 213–220. IEEE
Computer Society (2013)

22. Leymann, F.: Cloud computing. it – Information Technology, Methoden und
innovative Anwendungen der Informatik und Informationstechnik 53(4), 163–164
(2011)

23. Matthias, K., Kane, S.P.: Docker: Up and Running. O’Reilly Media, Sebastopol
(2015)

24. Newman, S.: Building Microservices. O’Reilly Media, Inc., Sebastopol (2015)
25. OASIS: Topology and Orchestration Specification for Cloud Applications

(TOSCA), Version 1.0 (2013). http://docs.oasis-open.org/tosca/TOSCA/v1.0/
TOSCA-v1.0.pdf

26. OASIS: Cloud Application Management for Platforms (CAMP), Version 1.1
(2016). http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf

27. OASIS: Topology and Orchestration Specification for Cloud Applications
(TOSCA) Simple Profile in YAML, Version 1.0 (2016). http://docs.oasis-open.
org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-
v1.0.pdf

28. Pahl, C.: Containerization and the paas cloud. IEEE Cloud Comput. 2(3), 24–31
(2015)

29. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-
of-the-art review. IEEE Trans. Cloud Comput. (in press). https://doi.org/10.1109/
TCC.2017.2702586. Early access: http://ieeexplore.ieee.org/document/7922500/

30. Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology
review. In: Proceedings of the 2015 3rd International Conference on Future Internet
of Things and Cloud, FICLOUD 2015, pp. 379–386. IEEE Computer Society (2015)

31. Smith, R.: Docker Orchestration. Packt Publishing, Birmingham (2017)
32. The Kubernetes Authors: Kubernetes. http://kubernetes.io/

https://www.docker.com/
https://github.com/docker/compose
https://github.com/docker/swarm
https://alien4cloud.github.io/
https://doi.org/10.1007/978-3-7091-1568-8
http://cloudify.co/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.pdf
http://docs.oasis-open.org/camp/camp-spec/v1.1/camp-spec-v1.1.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1109/TCC.2017.2702586
http://ieeexplore.ieee.org/document/7922500/
http://kubernetes.io/

EU Projects

Preface of EU Projects Track 2017

The third edition of the EU Projects Track held at ESOCC 2017 was entirely devoted to
presenting results and perspectives of EU research projects on service-oriented and
cloud computing.

As in the previous two editions, the track provided a very good opportunity to
presenters for disseminating the results of their project, and to participants for getting
an updated view of the ongoing research on service-oriented and cloud computing.

These proceedings contain the descriptions of eight EU projects (BASMATI, C4E,
DICE, DITAS, HyVar, MIKELANGELO, RestAssured, SWITCH) that were presented
in Oslo. Each project description was (anonymously) reviewed by three members of the
Program Committe formed for the track.

I would like to that this opportunity to thank authors, Program Committee mem-
bers, and attendees of the track, and the local Organizing Committee of ESOCC 2017
for the strong support.

Antonio Brogi

Organization

Track Chair

Antonio Brogi University of Pisa, Italy

Program Committee

Marco Aiello University of Groningen, The Netherlands
Benoit Baudry Inria, France
Einar Broch Johnsen University of Oslo, Norway
Giuliano Casale Imperial College, UK
Paul Grefen Eindhoven University of Technology, The Netherlands
Philippe Massonet CETIC, Belgium
Ernesto Pimentel University of Malaga, Spain
Lutz Schubert Ulm University, Germany
Jacopo Soldani University of Pisa, Italy
Massimo Villari University of Messina, Italy
Gianluigi Zavattaro University of Bologna, Italy

Secure Data Processing in the Cloud

Zoltán Ádám Mann1, Eliot Salant2, Mike Surridge3(&),
Dhouha Ayed4, John Boyle5, Maritta Heisel1, Andreas Metzger1,

and Paul Mundt6

1 University of Duisburg-Essen, Duisburg, Germany
2 IBM Haifa Research Labs, Haifa, Israel

3 University of Southampton IT Innovation Centre, Southampton, UK
ms@it-innovation.soton.ac.uk

4 Thales Services, Palaiseau, France
5 Oxford Computer Consultants, Oxford, UK
6 Adaptant Solutions AG, Munich, Germany
http://www.restassuredh2020.eu/

Abstract. Data protection is a key issue in the adoption of cloud services. The
project “RestAssured – Secure Data Processing in the Cloud,” financed by the
European Union’s Horizon 2020 research and innovation programme, addresses
the challenge of data protection in the cloud with a combination of innovative
security solutions, data lifecycle management techniques, run-time adaptation,
and automated risk management. This paper gives an overview about the pro-
ject’s goals and current status.

Keywords: Cloud computing � Data protection � Privacy
Secure hardware enclaves � Sticky policies � Run-time adaptation
Automated risk management

1 Project Objectives

Secure cloud computing is key for business success and end user adoption of federated
and decentralized cloud services, and as such, is essential to stimulating the growth of
the European Digital Single Market. And, while cloud-based data be kept secure, these
data must also be made accessible to authorized users while ensuring privacy regula-
tions such as the European Union’s General Data Protection Regulation (GDPR)1.

The RestAssured project aims to provide solutions to specific technical concerns of
data protection in the cloud through four main areas of innovation (see Fig. 1):

• Use of emerging hardware solutions such as Intel’s SGX to provide secure enclaves
for data operations.

• Implementation of sticky policies which define data access, usage and storage rules.
• Run-time data protection assurance using self-adaptation and models@runtime.
• Automated risk management to automatically detect risks to data protection and

rapidly determine the cost vs. benefits of alternative protection mechanisms.

1 http://www.eugdpr.org/.

© Springer International Publishing AG, part of Springer Nature 2018
Z. Á Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 149–153, 2018.
https://doi.org/10.1007/978-3-319-79090-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_10&domain=pdf
http://www.eugdpr.org/

1.1 Secure Enclaves

Secure enclaves are offered by Intel’s SGX (Software Guard Extensions) which is
currently available in the marketplace, or AMD’s SME (Secure Memory Encryption).
While SGX and SME use different approaches, each with its advantages and disad-
vantages, the general idea is the same: a memory range is encrypted by the processor by
a key which is generated at power-on, and not available to any running process. This
means that all code and data within an enclave are protected from tamper and snooping,
even by processes running at superuser level, or by dumping memory.

RestAssured is creating a toolkit which will significantly simplify the work required
by a developer to set up and use an SGX enclave (such as remote attestation, sealing,
secret passing), allowing developers to focus on the development of their business
logic. Additionally, RestAssured is integrating the Open Source Opaque project into its
SGX toolkit. Opaque is a Spark SQL engine that can work with encrypted data,
leveraging Intel SGX to protect the computation [1]. Users can run SQL queries in a
Spark shell, or program the queries in high-level Scala language. There is no need to
develop SGX applications in C/C++ with the SGX SDK. However, Opaque has some
design and implementation limitations, related to attestation and data key passing. By
integrating with the RestAssured toolkit, we enable efficient attestation of Opaque
enclaves, flexible data key passing and overall integration into the RestAssured
platform.

1.2 Sticky Policies

Sticky policies for data define access rights on the data and, as their name suggests,
“stick” to the data, following it as it migrates across the cloud. In this way, sticky

Fig. 1. The RestAssured pillars of innovation

150 Z. Á. Mann et al.

policies allow for decentralized data lifecycle management; i.e. access control can be
enforced by decision points across the cloud, without the need for a centralized
enforcement entity. Sticky policies need not only support the rights of the data subject
in accordance with GDPR requirements, but must also be able to support the security
and privacy regulations which may be mandated by the enterprise which either owns or
processes the data, as well as any regulations the data may be subject to, based on its
physical storage location across the cloud.

1.3 Run-Time Data Protection Assurance

The flexibility and dynamism of the cloud poses a big challenge for data protection.
The applicability of traditional security mechanisms designed to keep the system in a
stable secure state is limited. In particular, security-by-design methodologies are not
sufficient, due to uncertainty at design time as to how the cloud and privacy require-
ments may evolve and change at run time.

To cope with continuously changing data protection requirements in a continuously
changing cloud environment, we apply methods from the field of self-adaptive systems
[2, 3]. This way the system can adapt to changes in both the cloud and the data
protection requirements, ensuring that requirements are met in the presence of changes,
with minimal impact on performance and costs. Adaptations may be made either fully
automatically, or after approval from a human operator.

To make sound adaptation decisions at run time, one needs a model of the system,
its requirements and environment. The model must be available at run time to enable
online reasoning, hence it is called model@runtime [4]. Data protection concerns relate
to all layers of the cloud stack, including secure hardware capabilities, co-location of
different tenants on the same server, encryption of communication between application
components, and data anonymization. All must be captured by the model@runtime. By
monitoring the state of the system and its environment, updating the model, and
comparing observed behavior to expected behavior, violations of data protection
policies can be detected. If a violation is detected, further reasoning using the
model@runtime can be used to automatically find and execute an appropriate adap-
tation action. This way, data protection issues can be mitigated or prevented
automatically.

1.4 Automated Risk Management

Under the GDPR, personal data controllers and processors must assess risks to personal
data, and employ security measures to appropriately manage identified risks,
throughout the life of the system(s) storing and using the data. Moreover, the data
controller is responsible for proving the systems and processes used comply with the
GDPR. It is no longer enough to implement recommended security measures based on
a ‘generic’ risk analysis – one must analyze risks specific to each situation, design
systems and processes to address risks to privacy, and continuously review and update
the risk analysis and security measures as either the system or the threat landscape
evolves.

Secure Data Processing in the Cloud 151

The requirement for continuous and auditable management of risks is especially
difficult in cloud-based applications, which may be subject to automatic adaptation at
any time. One of the main goals of RestAssured is to provide the means to trace how
such changes affect the level of risk, and where changes are made specifically to
manage risks, e.g. by allocating sensitive processes to a secure enclave, or by intro-
ducing advanced encryption to block new risks when migrating workloads. The goal is
to provide technologies that help data controllers to analyze risks and trace the mea-
sures used to address risks, making it much easier to comply with GDPR when using
cloud-based applications. To achieve this, RestAssured integrates and extends two
innovative approaches to information risk analysis:

• The Cloud System Analysis Pattern methodology [5] developed by University of
Duisburg-Essen in the CloudDAT project to help stakeholders identify
socio-technical assets and carry out a risk analysis specifically focusing on cloud
applications;

• A procedure devised by IT Innovation [6, 7] in the SERSCIS, OPTET and
UK ASSURED projects that automates risk identification and analysis based on a
description of a system in terms of its assets, and supports the selection of risk
management measures.

The use of an asset-based risk analysis approach supports compliance with infor-
mation risk management standards like ISO 27001 [8], while the use of automation
based on machine reasoning makes it possible to perform this analysis on a continuous
basis in the loop of autonomic cloud application and infrastructure management
processes.

2 Project Current State and Summary of Results

Although the project is still in its first year, good progress has been made towards having
a prototype implementation running two real-world use cases by project month 18.

The first use case, highlighting social care services, shows how volunteer healthcare
workers can be matched with suitable healthcare patients in a secure environment,
preserving the data access rights specified by both parties. Additionally, this use case
demonstrates how RestAssured can enforce the security and privacy requirements for a
workflow specifying the generation of summary reports by a third party only allowing
them access to anonymized data. Pivotal to this use case is the ability to integrate
Opaque into the RestAssured environment to support the database queries required to
match caregivers with patients, as well as sticky policy enforcement across the whole
workflow of the data.

An additional use case demonstrates a “pay-as-you-drive” scenario – where a
driver’s insurance rates depend on their monitored driving behavior. In this scenario, an
application at the network edge (e.g. Connected Car) enables the data subject (driver) to
identify and limit the transfer of personally identifiable information to the service
provider for providing an agreed upon service (e.g. usage-based car insurance). This
can be attained through the application of policies that match the intent of the data
subject to the data, while also enabling the data subject to apply data minimization to

152 Z. Á. Mann et al.

certain data (e.g. sensitive data the data subject is not comfortable sharing, or data
deemed not to be relevant for the purpose of service contextualization) prior to its
transfer to the service provider. Data subjects are able to opt-in/out of secondary/
tertiary processing of the data beyond the original agreed-upon purpose and the transfer
to third party organisations, as per their rights under the GDPR.

As in the previous use case, sticky policies, secure enclaves, and the RestAssured
toolkit play a central role in simplifying what is required by developers to implement
and deploy SGX-based applications.

From a technical perspective, a first draft of a prototype architecture for RestAs-
sured has been developed. This architectural blueprint defines the functionality of all
major system components, and defines the high-level interfaces between them.

Acknowledgement. The research leading to these results has received funding from the
European Community’s Horizon 2020 research and innovation programme under grant agree-
ment no 731678.

References

1. Zheng, W., Dave, A., Beekman, J.G., Popa, R.A., Gonzalez, J.E., Stoica, I.: Opaque: an
oblivious and encrypted distributed analytics platform. In: Proceedings of the 14th USENIX
symposium on Networked Systems Design and Implementation (NSDI 2017), pp. 283–298.
USENIX Assoc (2017)

2. Mann, Z.Á., Metzger, A.: Optimized cloud deployment of multi-tenant software considering
data protection concerns. In: Proceedings of the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2017), pp. 609–618. IEEE Press (2017)

3. Dräxler, S., Karl, H., Mann, Z.Á.: Joint optimization of scaling and placement of virtual
network services. In: Proceedings of the 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid 2017), pp. 365–370. IEEE Press (2017)

4. Schoenen, S., Mann, Z.Á., Metzger, A.: Using risk patterns to identify violations of data
protection policies in cloud systems. In: 13th International Workshop on Engineering
Service-Oriented Applications and Cloud Services (WESOACS) (2017)

5. Beckers, K., Côté, I., Goeke, L., Güler, S., Heisel, M.: A structured method for security
requirements elicitation concerning the cloud computing domain. Int. J. Secure Softw. Eng.
(IJSSE) 5(2), 20–43 (2014)

6. Surridge, M., Nasser, B., Chen, X., Chakravarthy, A., Melas, P.: Run-time risk management
in adaptive ICT systems. In: 8th International Conference on Availability, Reliability and
Security (ARES), pp. 102–110. IEEE (2013)

7. Chakravarthy, A., Wiegand, S., Chen, X., Nasser, B., Surridge, M.: Trustworthy systems
design using semantic risk modelling. In: Proceedings of the 1st International Conference on
Cyber Security for Sustainable Society, pp. 49–81. Digital Economy Sustainable Society
Network (2015)

8. ISO/IEC 27001:2013. Information technology – Security Techniques – Information security
management systems – Requirements, International Organization for Standardization (2013)

Secure Data Processing in the Cloud 153

DITAS: Unleashing the Potential of Fog
Computing to Improve Data-Intensive

Applications

Pierluigi Plebani1(B) , David Garcia-Perez2, Maya Anderson4,
David Bermbach3, Cinzia Cappiello1, Ronen I. Kat4, Achilleas Marinakis5,

Vrettos Moulos5, Frank Pallas3, Barbara Pernici1, Stefan Tai3,
and Monica Vitali1

1 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy

{pierluigi.plebani,cinzia.cappiello,barbara.pernici,
monica.vitali}@polimi.it

2 Atos Spain SA, Pere IV, 08018 Barcelona, Spain
david.garciaperez@atos.net

3 Information Systems Engineering Research Group,
TU Berlin, Einsteinufer 17, 10587 Berlin, Germany

{db,fp,st}@ise.tu-berlin.de
4 IBM Research – Haifa, Haifa University Campus,

Mount Carmel, 3498825 Haifa, Israel
{mayaa,ronenkat}@il.ibm.com

5 NTUA - National Technical University of Athens,
9 Iroon Polytechniou Street, Zografou Campus, 15773 Athens, Greece

{achmarin,vrettos}@mail.ntua.gr

1 Introduction

Although it has been initially introduced in the telecommunication domain by
Cisco [1], Fog Computing is recently emerging as a hot topic also in the software
domain, and especially for data-intensive applications (DIA), with the goal of
creating a continuum between the resources living on the Cloud and the ones
living on the Edge [3]. In fact, especially because of the significant increasing of
smart devices connected to the Internet (e.g., smartphones, raspberry PI), opera-
tors at the edge of the network are no longer considered as content consumers but
also content providers, i.e., the so called prosumers. This new scenario implies
a paradigm shift and the Fog Computing is contributing to it, by considering
Cloud and Edge parts of the same platform.

Among the new arising research challenges [5] that this new paradigm has
to deal with, the balance between the different quality of service provided by
applications running on the cloud and on the edge becomes fundamental. In
fact, services relying on resources exclusively running on the Cloud can be con-
sidered scalable and reliable by definition. Conversely, services which are based
on resources living on the Edge have the advantage of being very close to the
data generators (e.g., sensors and smart devices) thus, the latency associated to
the data transmission can be significantly reduced (Fig. 1).
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 154–158, 2018.
https://doi.org/10.1007/978-3-319-79090-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_11&domain=pdf
http://orcid.org/0000-0001-8245-226X

DITAS: Unleashing the Potential of Fog Computing 155

Fig. 1. Data-intensive application model

According to this scenario, the DITAS project1 aims to provide a Cloud
platform composed of a Software Development Kit (SDK) and an Execution
Environment (EE) to [4]: (i) simplify the design and the development of DIA in
a Fog environment where the advantages of both the sides can be exploited, (ii)
improve the execution of the developed applications by enabling both computa-
tion and data movement so that data and tasks could migrate from resources on
the Cloud to the ones on the Edge – or vice-versa – to satisfy constraints posed
by the application designer in terms of performance, security, and privacy.

As data can be distributed among resources both on the Cloud and the Edge,
Virtual Data Containers (VDCs) are proposed as a mean for timely and securely
offering data also transparently with respect to their location and format. Then,
the DITAS platform will provide mechanisms enabling the data and computa-
tion movement to enable the VDCs to satisfy the DIA requirements. Decision
about how, where, and when to move data and computation in DITAS is mainly
driven by the analysis of the data utility : i.e., the relevance of data for the usage
context, where the context is defined in terms of the designer’s goals and system
characteristics.

The rest of the paper introduces the current achievements of DITAS project:
a DIA model based on VDCs (see Sect. 2) and an architecture which defines the
scopes and the roles of the SDK and the EE (see Sect. 3).

2 DITAS Data-Intensive Application Model

The development of a DIA usually requires to take care of where to store data,
in which format, how to satisfy the security constraints, and many other aspects
which could distract the attention of developers from the business logic. This
situation becomes even more clear when dealing with an heterogeneous system
where different devices are involved in the data management, as in a Fog envi-
ronment. This implies that the developers have to manage this heterogeneity, as
well as to properly distribute the data among the Edge and the Cloud, to make
the application as efficient as possible.
1 http://www.ditas-project.eu.

http://www.ditas-project.eu

156 P. Plebani et al.

Fig. 2. Data-intensive application lifecycle in DITAS

As shown in Fig. 2, by introducing the VDC, a synergy between the DIA and
the data source life-cycle is created. First of all, data administrator defines and
publishes a VDC Blueprint to a repository, to make the DIA developers aware
of it. Developers design and develop their applications assuming that the data
required can be retrieved from a VDC, thus, without knowing how and where
the data are stored, but only posing some requirements in terms of quality of
data (e.g., accuracy, timeliness) and quality of service (e.g., transmission rate,
encryption). A DIA and the related VDCs are now connected each other, so the
deployment involve both.

Based on this model, DIA in DITAS are not directly connected to the data
sources, but the access to these sources are mediated by VDCs, which pro-
vide the following capabilities: (i) a uniform access to data sources regardless
of where they run, i.e., on the Edge or on the Cloud; (ii) a set of data pro-
cessing techniques able to transform data (e.g., encryption, compression); (iii)
the possibility to compose these processing techniques in pipelines (inspired by
the node-RED programming model2) and to execute the resulting application;
2 http://www.nodered.org.

http://www.nodered.org

DITAS: Unleashing the Potential of Fog Computing 157

(iv) the enactment of data and task movement strategies based on the deci-
sion taken by the Virtual Data Manager (VDM), which controls all the VDCs
instantiated from the same VDC Blueprint.

3 DITAS Architecture

To support the described DIA model, DITAS is developing: (i) an SDK which
will be used to assist both data administrators and DIA application developers,
and (ii) an execution environment (EE) where the deployed VDCs and DIAs
operate. The main components of these two tools are shown in Fig. 3.

About the SDK, the VDC Blueprint Editor helps the data administrator in
defining the characteristics of a VDC. The resulting VDC Blueprint contains,
among the others, all the information about where the data sources are located,
how to access to them, and the interface exposed to the application. As a VDC
can internally implement some data processing, the specification of this process-
ing (which adopts the node-red model) is also included in the blueprint. Finally,
non-functional properties are specified to define the data utility [2] which includes
the reputation, data quality, and QoS dimensions. Given a VDC Blueprint, the
EE will have all the information to instantiate a VDC able to manage the under-
lying data sources while satisfying the specified quality properties.

A VDC Blueprint repository makes all the blueprints available to the DIA
developers which can submit their functional and non-functional requirements
to obtain a list of possible candidates. Then, the developers will select the most

Fig. 3. Data-intensive application lifecycle in DITAS

158 P. Plebani et al.

suitable ones and configure the DIA to be able to be connected to the resulting
VDCs at run-time. Based on this approach, the DIA developer does not directly
access, and s/he could even ignore, the physical data sources as the data sources
from the DIA perspective are the selected VDCs.

The resulting DIA specification, which includes both the application model
and the selected VDC Blueprint, is submitted to the DIA Deployment tool which
represents the bridge between the SDK and the EE as it configures the modules
of the EE to host and run the DIA. More specifically, as the application logic
of the DIA is based on containerized modules, an orchestration engine for con-
tainers (like Docker Swarm or Kubernetes3) will be adopted in the EE to run
the resulting system. On the other side, the deployment of the VDC implies the
involvement of the VDM, which is in charge of supervising the execution of all
the VDC generated from the same VDC Blueprint. For this reason, when a VDC
Blueprint is requested for the very first time, a VDM is instantiated and, in turn,
instantiates and executes the related VDC. Once another application requires
a VDC from the same blueprint, the existing VDM instance will take care of
instantiating and controlling also the new VDC. As a consequence, a VDM is
in charge of improving the access to the physical data sources connected to the
controlled VDCs and it is the component that decides if, how, and when data
can be moved among the controlled data sources with the aim of satisfying the
requirements posed by all the applications that are connected to the controlled
VDCs. Such decisions are taken by the VDM based on the information collected
by the Data Utility and QoS Monitoring module, which transparently monitors
the traffic between the VDCs and the data sources (e.g., what information are
requested, the transmission rate).

Acknowledgments. DITAS project is funded by the European Union’s Horizon 2020
research and innovation programme under grant agreement RIA 731945.

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
Internet of Things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16 (2012)

2. Cappiello, C., Pernici, B., Plebani, P., Vitali, M.: Utility-driven data management
for data-intensive applications in fog environments. In: de Cesare, S., Frank, U.
(eds.) ER 2017. LNCS, vol. 10651, pp. 216–226. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70625-2 20

3. OpenFog Consortium Architecture Working Group: OpenFog Architecture
Overview, February 2016. http://www.openfogconsortium.org/ra

4. Plebani, P., Garćıa-Pérez, D., Anderson, M., Bermbach, D., Cappiello, C., Kat, R.I.,
Pallas, F., Pernici, B., Tai, S., Vitali, M.: Information logistics and fog computing:
the DITAS* approach. In: Proceedings of the CAiSE Forum, Essen, Germany, June
2017

5. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

3 https://docs.docker.com/engine/swarm/; https://kubernetes.io.

https://doi.org/10.1007/978-3-319-70625-2_20
https://doi.org/10.1007/978-3-319-70625-2_20
http://www.openfogconsortium.org/ra
https://docs.docker.com/engine/swarm/
https://kubernetes.io

HyVar

Scalable Hybrid Variability for Distributed Evolving
Software Systems

Thomas Brox Røst1(&), Christoph Seidl2, Ingrid Chieh Yu3,
Ferruccio Damiani4 , Einar Broch Johnsen3 , and Cristina Chesta5

1 Atbrox AS, Trondheim, Norway
thomas@atbrox.com

2 Technische Universität Braunschweig, Braunschweig, Germany
c.seidl@tu-braunschweig.de
3 Universitetet i Oslo, Oslo, Norway

{ingridcy,einarj}@ifi.uio.no
4 Università di Torino, Turin, Italy

damiani@di.unito.it
5 Santer Reply SpA, Turin, Italy

c.chesta@reply.it

Abstract. The HyVar project (www.hyvar-project.eu/) proposes a development
framework for continuous and individualized evolution of distributed software
applications running on remote devices in heterogeneous environments, focus-
ing on the automotive domain. The framework combines variability modeling
and software reuse from software product lines with formal methods and soft-
ware upgrades and can be integrated in existing software development pro-
cesses. HyVar’s objectives are: (O1) To develop a Domain Specific Variability
Language (DSVL) and tool chain to support software variability for highly
distributed applications; (O2) to develop a cloud infrastructure that exploits
software variability as described in the DSVL to track the software configura-
tions deployed on remote devices and to enable (i) the collection of data from
the devices to monitor their behavior; and (ii) secure and efficient customized
updates; (O3) to develop a technology for over-the-air updates of distributed
applications, which enables continuous software evolution after deployment on
complex remote devices that incorporate a system of systems; and (O4) to test
HyVar’s approach as described in the above objectives in an industry-led
demonstrator to assess in quantifiable ways its benefits. The end of the project is
approaching and we are close to reaching all the objectives. In this paper, we
present the integrated tool chain, which combines formal reuse through software
product lines with commonly used industrial practices, and supports the
development and deployment of individualized software adaptations. We also
describe the main benefits for the stakeholders involved.

The HyVar project has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement No 644298.

© Springer International Publishing AG, part of Springer Nature 2018
Z. Á Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 159–163, 2018.
https://doi.org/10.1007/978-3-319-79090-9_12

http://orcid.org/0000-0001-8109-1706
http://orcid.org/0000-0001-5382-3949
http://www.hyvar-project.eu/
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_12&domain=pdf

Keywords: Software engineering � Software maintenance � Software evolution
Software product lines � Variability models � Distributed software
Over-the-air updates � Data intensive systems � Internet of things
Cloud computing

1 Motivation and Approach

1.1 Software Evolution in the Automotive Domain

Evolution is a well-known problem in any software product family of non-trivial
complexity. Over the lifespan of a product line, new features are added, old features are
deprecated, and separate code branches may be created to deal with spin-off products.
As the code and customer base grow, the possible feature combinations used by various
product instances soon become unwieldy.

In the automotive domain, all the possible variants of a car (make, model, base
equipment, extras etc.) can create a situation with a combinatorial explosion of feature
combinations. This poses a challenge when maintaining the supporting software. Not
only new features must be catered for but also all previous feature combinations for
products that are still on the market and under support agreements. This can easily lead
to bad software development practices, such as “clone and own”, where code is copied
between repository branches and modified in isolation.

Regarding deployment of software updates in the automotive scenario, how does
one ensure that a given car gets an update that is customized to its particular feature
combination? Moreover, how can we also take, e.g., the driving characteristics of the
car’s owner into account when updating the car’s software? Using traditional software
development techniques, it is easy to end up with a software repository with lots of
duplicated and overlapping code, where making any substantial change carries the risk
of unforeseen down-the-line implications.

1.2 HyVar Solution

Within the HyVar project, we take a two-fold approach towards tackling this problem,
focusing on both the development and deployment aspect of maintaining complex
software products.

On the development side, we have created a DSVL and other tools that use software
product line (SPL) modeling techniques for a structured approach towards handling
feature combinations [1–3]. These tools can either be adopted for development from
scratch for new projects or be applied to existing projects with low adoption efforts.
Moreover, our analysis tools can be applied to a project that is already suffering from
previous clone-and-own development so that differences and similarities of cloned
products are automatically extracted and modeled [4]. This greatly simplifies the task of
cleaning up from years of bad development practices.

On the deployment side, we introduce a cloud-based tool chain that complements
our development tools [5]. The tool chain functions in an automotive context, keeping
tabs on a large number of connected devices and their feature configurations. A re-
configuration component detects whenever a software update must be applied, either

160 T. B. Røst et al.

due to changes on the device (pull action) or changes on the software side (push
action). Instead of taking the naïve approach of pushing the same monolithic update to
each device, the tool chain creates a customized update for each device and only does
the full recompile when it is deemed necessary. This greatly reduces the complexity
and bandwidth required to do over-the-air updates for a device fleet. Also, as part of the
supporting toolkit, we can do a static analysis of the resources required for running our
tool chain on the cloud. For a realistic traffic pattern model, this removes a lot of the
guesswork otherwise necessary for cloud infrastructure cost estimation.

2 Application and Benefits

The approach has been applied to an automotive domain scenario, namely the dynamic
reconfiguration of car software based on context, where we addressed the following
issues: (i) To develop a software product line by allowing developers to derive a new
product from an existing one; (ii) To reduce the risk in distributed software develop-
ment projects by developing several software product lines with distributed teams
keeping track of the dependencies; (iii) To support personalized deployment from the
cloud; and (iv) To derive a software product line from existing products. For the
stakeholders in our automotive scenario (e.g., car manufacturers and automotive
software developers), there are several benefits associated with using our tool chain.
Some of these benefits are outlined below, grouped according to issues (i)–(iv).

2.1 Software Product Line Development Using the HyVar Tool Chain

We experienced the following benefits by developing a software product line realizing
the emergency call service for both the European and Russian market, exploiting the
commonalities and ensuring compliance with the respective standards.

The existing product can be used as it is. Using the DSVL and delta modeling
techniques to transform statecharts and/or source code, it is possible to start from an
existing product.

New features are fully implemented and recorded in statecharts. The configura-
tion differences between product branches are highly visible and explicit so that they
are much easier to communicate within the company. Moreover, the executable pro-
grams can be created directly from the statechart editor.

Living models. As new features are both modeled and built from statecharts, there
is a direct connection between the model and the final product.

Reduced code duplication and development time. As code is generated from
models, the amount of code duplication is reduced. The copy/paste approach towards
software development is no longer needed.

2.2 Reducing Risk in Distributed Software Development Projects

Our initial demonstrator involved a single software product line. We then extended it
into a more complex system, including three software product lines with interdepen-
dencies. This yielded additional benefits.

HyVar: Scalable Hybrid Variability 161

All interfaces are defined through MSPL feature model interfaces. This
encourages both better encapsulation and a more structured approach towards feature
interfaces and simplifies the distributed development.

Independent software product line. By the use of feature model interfaces of the
HyVar tool chain, the new functionality can be planned and constructed independently
from the rest of the software product line.

Feature encapsulation helps evolution. Better encapsulation makes it explicit
which parts of the software system can be changed without introducing errors in the
existing functionality.

Early detection of specification errors. Using feature model interfaces, it is pos-
sible to guarantee that only intended configurations can be created.

2.3 Personalized Deployment from the Cloud

In our final demonstrator we enabled software updates that take the driving style and
preferences of individual drivers into account.

Cloud-based infrastructure. One of the major benefits of using cloud services is
that you only pay for the resources you use. This means that there is no need for an
upfront data center investment and that the costs scale along with the number of users
as the company grows. For customers who are wary of using public clouds, private
cloud installations are also possible.

Simulation model of cloud resource requirements. With the traffic data collected
by a car manufacturer stakeholder, it is possible to simulate the resources needed for the
tool chain cloud infrastructure. This makes it possible to estimate the costs required for
deploying the tool chain for a given fleet of cars even if there are peak periods.

Context changes can be reflected in the software configuration. Using validity
formulas, context constraints and the HyVarRec reconfigurator, the software can be
customized for a highly specific environment.

2.4 Derivation of an SPL from Existing Products

We have developed a variability mining methodology that provides the benefits listed
below. Although the methodology is compatible with the HyVar tool chain, the HyVar
demonstrator is not suitable for evaluating the methodology. Therefore, we have
evaluated it by considering another case study in the automotive domain.

Automated analysis of existing software products. The differences and similarities
of existing, cloned products can be analyzed almost completely automatically. From
this, it is possible to generate feature models, mappings and delta modules that later can
be used when adding new features or spinning off new product lines. The effort
compared to doing this manually is reduced greatly.

Generated software product line elements. From the results of the analyses, the
variability mining also generates suitable elements, such as delta modules, a technical
feature model and, if needed, even an entire suitable delta language, e.g., for elements
written in domain-specific languages. This overall greatly reduces the manual effort to
set up an SPL from cloned variants.

162 T. B. Røst et al.

Controlled restructuring. The process is not fully autonomous, meaning that
developers have a lot of control over things such as feature naming and how the mined
products should be restructured. They can also guide the restructuring through doing an
iterative feedback/adaption process with the variability mining technology.

Increased abstraction between features and code. As the feature models are
refined, so is the abstraction to the underlying code. This has long-term benefits in
terms of both planning, discussing and working with a product as a combination of
evolved features rather than just lines of code.

3 Conclusion

We have presented an innovative solution to the software reuse problem, integrating
SPL engineering principles with existing tools and commonly used industrial practices.
The HyVar approach supports the development and deployment of individualized
software adaptations and realizes the concept of hybrid variability. The methodology
and tool chain has been applied in a scenario from the automotive domain, and seems
promising also for other emerging scenarios, such as Internet of Things (IoT) and
Cyber-Physical Systems (CPS), characterized by a huge number of remote devices,
each of which has its own hardware configuration, runs a customizable distributed
software application and needs to evolve in order to fix or prevent misbehavior, to
adapt to environmental changes, accomplish new regulations, satisfy new user requests
or meet new market expectations.

References

1. Chesta, C., Damiani, F., Dobriakova, L., Guernieri, M., Martini, S., Nieke, M., Rodrigues, V.,
Schuster, S.: A toolchain for delta-oriented modeling of software product lines. In: Margaria,
T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp. 497–511. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47169-3_40

2. Nieke, N., Engel, G., Seidl. C.: DarwinSPL: an integrated tool suite for modeling evolving
context-aware software product lines. In: ter Beek, M.H., Siegmund, N., Schaefer, I. (eds.)
Proceedings of the Eleventh International Workshop on Variability Modelling of
Software-intensive Systems (VAMOS 2017), pp. 92–99. ACM (2017). https://doi.org/10.
1145/3023956.3023962

3. Damiani, F., Lienhardt, M., Paolini, L.: A formal model for multi SPLs. In: Dastani, M.,
Sirjani, M. (eds.) FSEN 2017. LNCS, vol. 10522, pp. 67–83. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68972-2_5

4. Wille, D., Schulze, S., Seidl, C., Schaefer, I.: Custom-tailored variability mining for
block-based languages. In: Proceedings of the International Conference on Software Analysis,
Evolution, and Reengineering (SANER 2016). IEEE (2016). https://doi.org/10.1109/saner.
2016.13

5. Mauro, J., Nieke,, N., Seidl, C., Chieh Yu, I.: Context aware reconfiguration in software
product lines. In: Schaefer, I., Alves, V., de Almeida, E.S. (eds.) Proceedings of the Tenth
International Workshop on Variability Modelling of Software-intensive Systems (VaMoS
2016), pp. 41–48. ACM (2016). https://doi.org/10.1145/2866614.2866620

HyVar: Scalable Hybrid Variability 163

http://dx.doi.org/10.1007/978-3-319-47169-3_40
http://dx.doi.org/10.1145/3023956.3023962
http://dx.doi.org/10.1145/3023956.3023962
http://dx.doi.org/10.1007/978-3-319-68972-2_5
http://dx.doi.org/10.1007/978-3-319-68972-2_5
http://dx.doi.org/10.1109/saner.2016.13
http://dx.doi.org/10.1109/saner.2016.13
http://dx.doi.org/10.1145/2866614.2866620

Enhancing Big Data Application Design
with the DICE Framework

Giuliano Casale and Chen Li(B)

Imperial College London, London, UK
{g.casale,chen.li1}@imperial.ac.uk

Abstract. The focus of the DICE project is to define a quality-driven
framework for developing Big data applications. DICE offers an Eclipse-
based development environment, centered around a novel UML profile,
to prototype, deploy, monitor, and test Big data applications. The DICE
framework has been designed to natively support popular open-source
solutions. The framework offers a set of 15 open source tools, which have
been validated against industrial case studies in the news and media,
port operations, and e-government domains.

Keywords: Quality · Big data · UML · Eclipse · DevOps

1 Overview

DevOps has become mainstream in recent years as a movement that attempts
to lower the barrier between IT development and operation teams in order to
increase the agility of the application release process. One requirement to imple-
ment this successfully is to share a unified set of concepts, models, and tools
among developers and operators. Even though DevOps tools are rapidly growing
in the industry, few of them are natively designed to support Big data applica-
tions, even though these have gained much traction in the industry in recent
years. By Big data application, we here mean applications that rely on core Big
data processing technologies such as Storm, Cassandra, Hadoop/MapReduce,
Spark, MongoDB, and many others.

The main objective of the DICE framework is to deliver a quality-driven
DevOps toolchain for Big data applications that natively support these Big data
technologies. The DICE architecture is shown in Fig. 1 and is centered around
the following main components:

– DICE IDE: this is an Eclipse-based IDE built upon a new UML profile
that abstracts the main characteristics of open source Big data technologies.

C. Li—This paper has been supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No. 644869. Project full
name: DICE - Developing Data-Intensive Cloud Applications with Iterative Quality
Enhancements: Feb 2015–2018, website: www.dice-h2020.eu.

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 164–168, 2018.
https://doi.org/10.1007/978-3-319-79090-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_13&domain=pdf
http://www.dice-h2020.eu

Enhancing Big Data Application Design with the DICE Framework 165

Fig. 1. DICE framework - available at http://github.com/dice-project/.

For example, with the DICE UML profile, a developer can express require-
ments on the number and topology of spouts and bolts in a Storm-based
application, and associate them to specific virtual machine instances in the
cloud. Moreover, the Papyrus-based UML diagram visualization allows to
iteratively refine the application design using a methodological workflow inte-
grated within the IDE as Eclipse cheat-sheets.

– Quality analysis plugins: these tools include discrete-event simulation and
verification of the application architecture in the early design stages. These
tools allow in particular to predict what latency will be experienced by the
users and verify quality guarantees offered by the design. The plugins also
include an architecture optimization tool that decides the resources to be
assigned upon deployment to the Big data application (e.g., number and
type of VMs).

– Continuous delivery and testing tools: these tools take care of continuous
integration, deployment, configuration, load testing, and fault injection of the
application in the runtime environment. The deployment tool, in particular,
is TOSCA-compliant and can be activated directly from within the DICE
IDE, allowing developers to reduce the time they need to deploy a Big data
application prototype to the cloud. Supported cloud environments include
AWS, OpenStack, and Flexiant FCO.

– Monitoring and feedback analysis tools: these tools collect monitor-
ing data from the running application and analyze it by means of machine
learning-based anomaly detection, trace checking, and statistical inference
techniques. Altogether, they allow examining whether the application is
behaving as expected in the runtime environment. Moreover, these tools sup-
ply monitoring information to the development environment, to guide future
iterations on the prototypes.

http://github.com/dice-project/

166 G. Casale and C. Li

The above capabilities have been validated on industrial demonstrators con-
cerning processing news streams from Twitter, cloud-based software systems for
port operations, and Big data applications for tax fraud detection. The outcome
of these validations is that an integrated toolchain can substantially accelerate
the design and testing of Big data applications, without requiring steep learning
curves.

2 The DICE Enhancement Tool

In this section, we illustrate a specific result of the DICE project, the DICE
Enhancement tool. The goal of this tool is to provide feedback to DICE devel-
opers on the application behaviour at runtime, leveraging the monitoring data
collected from the DICE Monitoring Platform (DMon), in order to help them
iteratively enhance the application design. The DICE Enhancement tools include
two modules: the DICE Filling-the-Gap (DICE-FG), which helps focusing on sta-
tistical estimation of UML parameters used by the quality analysis plugins for
simulation and optimization, and DICE-APR (Anti-Patterns and Refactoring), a
tool that detects anti-patterns in the UML design and supplies recommendation
on how to resolve them.

The methodological workflow of this tool is shown in Fig. 2. DICE-FG pro-
vides a performance and reliability analysis of big data applications and updates
UML models with analysis results. DICE-APR transforms the DICE UML model
annotated with DICE profiles into a Layered Queueing Network (LQN), which is
a queueing model that can be used for performance prediction. For example, an
LQN can predict the latency expected for the application under a given work-
load. The results are predicted CPU utilizations and latencies at the resources,
which will be used for APs detection and for recommending refactoring decisions.

DICE-FG is designed to achieve the following objectives:

– Provide statistical estimation algorithms to infer resource consumption of an
application.

– Provide fitting algorithms to match monitoring data to parametric statistics
distributions.

Fig. 2. DICE enhancement tool workflow.

Enhancing Big Data Application Design with the DICE Framework 167

– Use the above algorithms to parameterize UML models annotated with the
DICE profile.

– Acquire data via JSON and the DICE Monitoring platform (DMon).

The main logical components of the DICE-FG tool are the Analyzer and the
Actuator.

– DICE-FG Analyzer: The DICE-FG Analyzer executes the statistical meth-
ods necessary to obtain the estimates of the performance models parameters,
relying on the monitoring information available on the input files.

– DICE-FG Actuator: The DICE-FG Actuator updates the parameters in
the UML models, e.g., resource demands, which are obtained from the DICE-
FG Analyzer.

The DICE-APR module is designed to achieve the following objectives:

– Transforming UML diagrams annotated with DICE profiles to performance
model (i.e., Layered Queueing Networks) for performance analysis.

– Specifying the selected popular AP of DIAs (e.g., defining AP rules in exe-
cutable codes).

– Detecting the potential AP from the performance model.
– Generating refactoring decisions to update the architecture model to fix the

design flaws according to the AP solution.

The components of the DICE-APR module are Model-to-Model Transformation,
Anti-patterns Detection and Architecture Refactoring as detailed below.

– Model-to-Model Transformation: It provides the transformation of anno-
tated UML model with DICE Profile into quality analysis model. The target
performance models is Layered Queueing Networks.

– Anti-patterns Detection: The Anti-patterns detection component relies on
the analysis results of the Model-to-Model Transformation component. The
selected anti-patterns are formally specified for identifying if there are any
anti-patterns issues in the model.

– Architecture Refactoring: According to the solution of discovered anti-
patterns, refactoring decisions will be proposed, e.g., component reassign-
ment, to solve them. The architecture model will be shared back to the DICE
IDE for presentation, to the user in order to decide if the proposed modifica-
tion should be applied or not.

The implementation of the model-to-model transformations, from DICE UML to
LQN, used by DICE-APR rely on a tool called Tulsa [2], which is based on the
Epsilon language (i.e., Epsilon Transformation Language (ETL) and Epsilon
Object Language (EOL)). The LINE solver1 is then used to compute perfor-
mance metrics from the LQN model generated by Tulsa. The APs detection is
implemented using Matlab scripts that iteratively call the LINE API to deter-
mine if a specific refactoring action will yield a better latency or resolve CPU
bottlenecks.
1 LINE website: http://line-solver.sf.net.

http://line-solver.sf.net

168 G. Casale and C. Li

We have applied the DICE APR tool to case studies of the Wikistats open
source application, which is based on Apache Storm, finding that it can effec-
tively detect and resolve two common antipatterns: Infinite Wait (IW) and
Excessive Calculation (EC):
– IW occurs when a component must call several servers to complete the task.

If a large amount of time is required for each service, performance will suffer.
The solution is to report the component that causes the IW and provide
component replication or redesign suggestions to the developer.

– EC occurs when a processor performs all of the work of an application or holds
all of the application data. This anti-pattern manifests itself as an excessive
amount of CPU calculations that degrade performance. The solution is to
report to the developer the processor that causes the EC and suggest to add
a new processor to migrate tasks to the developer.

We point to [3] for details and experimental results of the DICE APR tool.
A pre-requisite for the APR tool to generate meaningful predictions is to

know how many resources each software components requires to carry out its
operation, under a given workload demand. The DICE FG tool delivers this
capability, based on a number of statistical estimators that transform moni-
toring metrics such as throughputs and utilizations into CPU requirements for
the application. DICE-FG uses a collection of algorithms, ranging from regres-
sion methods to statistical inference techniques over queueing networks. We
have recently reported on the relative accuracy of these methods in estimat-
ing resource demands [4], finding that no single method dominates the others,
thus a module like FG that offers multiple estimation algorithms allows to adapt
the situation to the different situations that arise in practice.

3 Conclusion

The DICE IDE and updates on the project are available at http://www.dice-
h2020.eu, together with a project vision document [1]. In the future we plan to
release specialized “thinned” product versions of the IDE dedicated to specific
technologies, such as Apache Storm, in order to supply to end users an environ-
ment targeting specific application classes (e.g., stream-based applications).

References

1. Casale, G., et al.: DICE: quality-driven development of data-intensive cloud appli-
cations. In: Proceedings of MiSE Workshop (2015)

2. Li, C., Altamimi, T., Zargari, M.H., Casale, G., Petriu, D.: Tulsa: a tool for trans-
forming UML to layered queueing networks for performance analysis of data inten-
sive applications. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol.
10503, pp. 295–299. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66335-7 18

3. Li, C., Casale, G.: Performance-aware refactoring of cloud-based big data applica-
tions. In: Proceedings of CSCI-ISCC (2017)

4. Spinner, S., Casale, G., Brosig, F., Kounev, S.: Evaluating approaches to resource
demand estimation. Perform. Eval. 92, 51–71 (2015)

http://www.dice-h2020.eu
http://www.dice-h2020.eu
https://doi.org/10.1007/978-3-319-66335-7_18
https://doi.org/10.1007/978-3-319-66335-7_18

Developing, Provisioning and Controlling Time
Critical Applications in Cloud

Zhiming Zhao1(&) , Paul Martin1 , Andrew Jones2 , Ian Taylor2,
Vlado Stankovski3 , Guadalupe Flores Salado4, George Suciu5,

Alexandre Ulisses6, and Cees de Laat1

1 University of Amsterdam, Science Park 904,
1098XH Amsterdam, The Netherlands

z.zhao@uva.nl
2 Cardiff University, Queen’s Buildings, 5 The Parade, Cardiff CF24 3AA, UK

3 University of Ljubljana, Ljubljana, Slovenia
4 Wellness Telecom SL, Seville, Spain

5 BEIA Consult International SRL, Bucharest, Romania
6 MOG Technologies SA, Maia, Portugal

Abstract. Quality constraints on time critical applications require high-
performance supporting infrastructure and sophisticated optimisation mecha-
nisms for developing and integrating system components. The lack of software
development tools and in particular cloud-oriented programming and control
models make the development and operation of time critical cloud applications
difficult and costly. The SWITCH project (Software Workbench for Interactive,
Time Critical and Highly self-adaptive Cloud applications) addresses the urgent
industrial need for developing and executing time critical applications in Clouds.
The primary users of SWITCH are Cloud application developers who wish to
design and develop elastic, time-critical applications for the federated Cloud. By
using SWITCH and its services they can discover appropriate infrastructures,
choreograph their applications and QoS/QoE dependencies, and configure their
applications for execution. They can choose where to deploy these applications
using a specific target infrastructure (e.g. an appropriately selected Cloud pro-
vider). They can also manage and monitor their running applications so that they
are always running optimally.

Keywords: Time critical applications � Cloud � Quality of user experience
Infrastructure programming � Self-adapting systems

1 Introduction

Quality constraints on applications, such as limiting network latency and jitter in live
event broadcasting or reducing processing delay for real-time sensor data in disaster
early warning systems, require high performance supporting infrastructure, along with
sophisticated optimization mechanisms for developing and integrating system com-
ponents. Cloud environments provide virtualized, elastic, and controllable on-demand

© Springer International Publishing AG, part of Springer Nature 2018
Z. Á Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 169–174, 2018.
https://doi.org/10.1007/978-3-319-79090-9_14

http://orcid.org/0000-0002-6717-9418
http://orcid.org/0000-0003-1916-864X
http://orcid.org/0000-0002-7502-1338
http://orcid.org/0000-0001-9547-787X
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_14&domain=pdf

services for supporting complex application systems. The lack of software development
tools and in particular cloud-oriented programming and control models make the
development and operation of time critical cloud applications difficult and costly.
A software workbench, which can couple the development, deployment and operation
phases of the time critical application lifecycle within cloud environments, will reduce
the development complexity of building such applications and improve the efficiency
of runtime application control [4, 5].

In the EU H2020 project SWITCH (the Software Workbench for Interactive, Time
Critical and Highly self-adaptive cloud applications), three highly customisable sub-
systems are proposed for the application development, virtual infrastructure customi-
sation and provisioning, and runtime adaptation respectively. In this paper, we first
discuss the key technical challenges arising in the development of the workbench based
on requirements analysis and technical review, and then present the current achieve-
ments in the development of the three subsystems.

2 Time Critical Application Cases and Requirements

The SWITCH project focuses on three use cases: collaborative real-time business
communication, elastic disaster early warning, and cloud studio for directing and
broadcasting live events. In each of these examples we can see different time related
quality attributes, e.g., communication latency, data processing and decision-making
time, and response time for switching between video streams. The ability to keep these
attributes within certain bounds clearly determines the delivery of the business value of
the cases, e.g., an early warning system cannot be effective when decisions cannot be
made within a certain time window, a business collaboration won’t meet business
needs if the user experience is destroyed by low audio/video quality caused by latency,
and a video studio application won’t be accepted by any professional broadcasting
station if the video switching response time is not guaranteed. We classify different
time critical constraints as speed critical (e.g., latency sensitive), real-time (focusing on
timeliness) and nearly real-time [6].

To meet these different types of time critical constraint in cloud, both application
and virtual infrastructures (i.e. networked virtual machines hosting the application)
have to be customized during the design phase, and controllable at runtime to allow
adjustment performance as needed. We can highlight different steps in the application
lifecycle via three key overlapped cycles of application development, provisioning and
runtime (see Fig. 1).

The SWITCH workbench is proposed specifically to address each one of these
issues in turn within a single integrated toolset.

170 Z. Zhao et al.

3 The SWITCH Approach

The core idea of the SWITCH environment is a new development and execution model
on both application and infrastructure for time critical cloud applications. The new
model brings together application composition, execution environment customisation,
and runtime control, which are normally treated as separate processes, into one opti-
misation loop based on time critical requirements. The SWITCH environment employs
an ontological framework [8] to guide each step in the development, and tools are
delivered to the users via three subsystems: SIDE, DRIP and ASAP.

The SWITCH Interactive Development Environment (SIDE) subsystem pro-
vides interfaces for all of the user- and programmer-facing tools, by exposing a col-
lection of graphical interfaces and APIs that tie in SWITCH’s services to a Web-based
environment. The Dynamic Real-time Infrastructure Planner (DRIP) subsystem
prepares the execution of the applications developed in the SIDE subsystem by:
(1) identifying the constraints on infrastructure resources required to meet the
time-critical requirements of the applications; (2) defining an optimal virtual runtime
environment that meets those constraints; (3) provisioning the planned environment
with the chosen resource provider; and (4) deploying the components required by the
application. The Autonomous System Adaptation Platform (ASAP): (1) monitors
the status of the application and the runtime environment; (2) examines the actual
performance of the required quality attributes; (3) autonomously controls the appli-
cation and runtime environment to maintain optimal system level performance against
the time critical constraints; and (4) learns from its own decision history to improve its
intelligence in making future decisions for autonomous control.

Fig. 1. The key phases of time critical Cloud applications.

Developing, Provisioning and Controlling Time Critical Applications in Cloud 171

4 Software Workbench for Time Critical Cloud Applications

The software of SWITCH workbench is open source under Apache License 2.01.
Figure 2 depicts the application-infrastructure composition GUI (the right side) pro-
vided by the SIDE subsystem, and its interaction with provisioning and runtime control
(the left side). The GUI provides customizable viewpoints of the GUI based on the
different kinds of activity engaged in by the developer.

The application developer begins with composing the application logic and
defining the QoS constraints, such as the latency for state visualisation, sensor event
handling delay (step 1). The developer can also give an abstract network overlay to
define the runtime environment (step 2). These activities can be optimised and aided
using a formal reasoning component integrated in SIDE (step 3). Currently, TOSCA2 is
used to describe the logic structure of application-infrastructure.

The results of step 1 and 2 will be passed from SIDE to DRIP; the application logic
will be annotated with its time constraints, e.g., deadlines. DRIP will select suitable
virtual machine resources from given set of providers to match those time constraints
using a partial critical path (PCP) based approach [3, 9] (step 4). The planned virtual
infrastructure will then be provisioned on the selected provider(s). A parallel provi-
sioning mechanism is provided based on the mapping between topology and the

Fig. 2. All subsystems are glued via the GUI of SIDE.

1 SWITCH software repository: https://github.com/switch-project/SWITCH.
2 https://www.oasis-open.org/committees/tosca.

172 Z. Zhao et al.

https://github.com/switch-project/SWITCH
https://www.oasis-open.org/committees/tosca

providers [7]. An Open Cloud Computing Interface (OCCI)3 based provisioning
interface is supported (step 5). A deadline aware deployment approach is developed in
DRIP to deploys application components [1] (step 6). At runtime, SIDE allows the user
to: query and visualise the runtime status of the application and runtime environment
(step 8) [2], receive notification of system status and inform the user (step 9) [10],
directly manipulate the system execution (step 10) [11].

5 Summary

In this paper, we provided an overview of the overall approach in SWITCH for
developing time critical applications, and then provisioning and operating them in a
cloud-based environment. The workbench has three subsystems for application devel-
opment, cloud virtual infrastructure provisioning, and runtime operation respectively.
These subsystems implement optimisation mechanisms across different layers between
applications and virtual infrastructures. In the final phase of the project, three pilot use
cases will be prototyped and demonstrated using the full SWITCH workbench.

Acknowledgement. This research has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreements 643963 (SWITCH project).

References

1. Hu, Y., Wang, J., Zhou, H., Martin, P., Taal, A., de Laat, C., Zhao, Z.: Deadline-aware
deployment for time critical applications in clouds. In: Proceedings of the Euro-Par (2017)

2. Taherizadeh, S., Jones, A., Taylor, I., Zhao, Z., Martin, P., Stankovski, V.: Runtime
network-level monitoring framework in the adaptation of distributed time-critical cloud
applications. In: The 22nd International Conference on Parallel and Distributed Processing
Techniques and Applications (2016)

3. Wang, J., Taal, A., Martin, P., Hu, Y., Zhou, H., Pang, J., de Laat, C., Zhao, Z.: Planning
virtual infrastructures for time critical applications with multiple deadline constraints. Int.
J. Future Gener. Comput. Syst. 75, 365–375 (2017)

4. Zhao, Z., Martin, P., Wang, J., Taal, A., Jones, A., Taylor, I., Stankovski, V., Garcia Vega,
I., Suciu, G., Ulisses, A., de Laat, C.C.: Developing and operating time critical applications
in clouds: the state of the art and the SWITCH approach. Procedia Comput. Sci. 68, 17–28
(2015)

5. Zhao, Z., Taal, A., Jones, A., Taylor, I., Stankovskic, V., Garcia, I., Jesus, F., Suciue, G.,
Ulisses, A., Ferreira, P., de Laat, C.: A software workbench for interactive, time critical and
highly self-adaptive cloud applications (SWITCH). In: The Proceedings of 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (2015)

3 http://occi-wg.org/.

Developing, Provisioning and Controlling Time Critical Applications in Cloud 173

http://occi-wg.org/

6. Koulouzis, S., Martin P., Carval, T., Grenier, B., Judeau, G., Wang, J., Zhou, H., de Laat, C.,
Zhao, Z.: Seamless Infrastructure customisation and performance optimisation for
time-critical services in data infrastructures. In: Proceedings of the 8th International
Workshop on Data-Intensive Computing in the Clouds, ACM SIGHPC, in IEEE
Supercomputing (2017)

7. Zhou, H., Hu Y., Wang, J., Martin, P., de Laat, C., Zhao, Z.: Fast and dynamic resource
provisioning for quality critical cloud applications. In: IEEE International Symposium on
Real-time Computing (ISORC) (2016)

8. Martin, P., Taal, A., Quevedo, F., Rogers, D., Evans K., Jones, A., Stankovski, V.,
Taherizadeh, S., Trnkoczy, J., Suciu G., Zhao, Z.: Information modelling and semantic
linking for a software workbench for interactive, time critical and self-adaptive cloud
applications. In: The Workshop of CCPI-2016, in the Proceedings of the 30th IEEE
International Conference on Advanced Information Networking and Applications (AINA)
(2016)

9. Wang, J., de Laat, C., Zhao, Z.: QoS-Aware virtual SDN network planning. In: IFIP/IEEE
International Symposium on Integrated Network Management, Lisbon, Portugal, 8–12 May
2017

10. Paščinski, U., Trnkoczy, J., Stankovski, V., Cigale, M., Gec, S.: QoS-aware orchestration of
network intensive software utilities within software defined data centres. J. Grid Comput. 16
(1), 85–112 (2018)

11. Evans, K., Jones, A., Preece, A., Quevedo, F., Rogers, D., Spasić, I., Taylor, I., Stankovski,
V., Taherizadeh, S., Trnkoczy, J., Suciu, G., Suciu, V., Martin, P., Wang, J., Zhao, Z.:
Dynamically reconfigurable workflows for time-critical applications. In: International
Workshop on Workflows in Support of Large-Scale Science, in IEEE Supercomputing
(2015)

174 Z. Zhao et al.

MIKELANGELO: MIcro KErneL
virtualizAtioN for hiGh pErfOrmance

cLOud and HPC Systems

Nico Struckmann1(B), Yosandra Sandoval1(B), Nadav Har’El2, Fang Chen3,
Shiqing Fan3, Justin Činkelj4, Gregor Berginc4, Peter Chronz5, Niv Gilboa6,

Gabriel Scalosub6, Kalman Meth7, and John Kennedy8

1 High Performance Computing Center Stuttgart (HLRS), University of Stuttgart,
Nobelstr. 19, 70569 Stuttgart, Germany

{struckmann,sandoval}@hlrs.de
2 ScyllaDB, Ltd., 11 Galgalei Haplada, 4672211 Herzelia, Israel

nyh@scylladb.com
3 European Research Center, Huawei Technologies Duesseldorf GmbH,

Riesstr. 25, 80992 Munich, Germany
{fang.chen1,shiqing.fan}@huawei.com

4 XLAB Razvoj programske opreme in svetovanje, d.o.o. (XLAB),
Pot Za Brdom 100, 1000 Ljubljana, Slovenia
{justin.cinkelj,gregor.berginc}@xlab.si

5 Gesellschaft fuer wissenschaftliche Datenverbeitung mbH Goettingen (GWDG),
am Fassberg 11, 37077 Gottingen, Germany

peter.chronz@gwdg.de
6 Ben-Gurion University of the Negev (BGU),

Office of the President - Main Campus, 84105 Beer Sheva, Israel
{gilboan,sgabriel}@bgu.ac.il

7 IBM Israel Science and Technology Ltd., 94 Derech em-Hamoshavot,
49527 Petach Tikva, Israel

meth@il.ibm.com
8 Intel Shannon Limited (INTEL), Collinstown Industrial Park, Leixlip, Ireland

john.m.kennedy@intel.com

Abstract. MIKELANGELO is a project, targeted to disrupt the core
underlying technologies of Cloud computing, enabling even bigger uptake
of Cloud computing, HPC in the Cloud and Big Data technologies
under one umbrella. The vision of it is to improve responsiveness, agility
and security of the virtual infrastructure through packaged applica-
tions, using lean guest operating system OSv and superfast hypervisor
SuperKVM. In short, the work will concentrate on improvement of vir-
tual I/O in KVM, using additional virtio expertise, integrated with the
light-weight operating system OSv and with enhanced Security. The HPC
in the Cloud focus will be provided through involvement of a large HPC
centre, with the ability and business need to cloudify their HPC business.
The Consortium consists of hand-picked experts (e.g., the original creator
of KVM - Avi Kivity) who participate in the overall effort to reduce one
of the last performance hurdles in the virtualisation (I/O). Other layers

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 175–180, 2018.
https://doi.org/10.1007/978-3-319-79090-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_15&domain=pdf

176 N. Struckmann et al.

of inefficiency are addressed through OSv (thin operating system). Such
approach will allow for use of MIKELANGELO stack on heterogeneous
infrastructures, with high responsiveness, agility and improved security.
The targeted audience are primarily SMEs (e.g. simulation dependent
SMEs) and data center operators who either benefit from higher perfor-
mance or flexibility, introduced by the software stack. Four real world
use-cases with clear owners, serve as validators and also directly con-
tribute to the exploitation of project results.

Keywords: Cloud computing · HPC · Big data · SuperKVM · KVM
Virtualised infrastructures · OSv · vTorque

1 Introduction

MIKELANGELO project1 [1,3] is about improved performance, flexibility and
manageability of virtualised infrastructures. The project deals with a wide range
of technologies on many different levels of a typical stack, such as cloud and
HPC. These involve the hypervisor, the guest operating system and the man-
agement layers. On top of that, this holistic approach puts MIKELANGELO
into a unique position with the capacity of providing several cross-cutting tech-
nologies extending the potential of individual components. Today’s Cloud and
HPC architectures are inefficient, as there is always a trade-off between flexi-
bility, efficiency, stability and security. Cloud environments are in general more
flexible than static HPC environments, in terms of operating systems, kernel ver-
sion, software availability and abstraction of compute environments, i.e. shared
file system mount paths. However, Cloud’s flexibility provided by virtualiza-
tion comes with the disadvantage of a high overhead for I/O intensive applica-
tions. The overhead of I/O performance in virtual environments when compared
to native performance of compute nodes is not suitable for many HPC work-
loads that are latency-sensitive or have high I/O rates [2]. The project addresses
the whole stack comprising typical infrastructure as a service (IaaS) or, with
the support of some of the use cases, even platform as a service (PaaS). Its
core development focuses on enhancements made to the KVM hypervisor and
several, both functional and non-functional, improvements of the guest oper-
ating system. The optimized hypervisor sKVM targets, in combination with
the lean guest operating system and further optimizations for virtualized I/O,
like virtual RDMA (vRDMA), improved I/O core scheduling (IOCM), Zero-
Copy transmission (ZeCoRX) and shared memory between VMs running on the
same host (UNCLOT), snap for holistic telemetry and SCAM for greater secu-
rity, to improve the overall performance, flexibility and manageability of the
two formerly distinct Cloud and HPC environments. All of these components
are transparently integrated into commonly used middlewares, the widely used
HPC batch-system PBS/Torque [4] for HPC environments and OpenStack for

1 https://www.mikelangelo-project.eu.

https://www.mikelangelo-project.eu

MIKELANGELO 177

Clouds. vTorque extends PBS/Torque and provides the baseline for the integra-
tion of several MIKELANGELO components into HPC environments. It comes
with management capabilities by the creation of virtual environments and the
deployment of batch workloads in such. While MCM enhance OpenStack by new
scheduling capabilities, Scotty provides by continuous integration support. All
components can also be deployed independently.

2 MIKELANGELO Architecture

This document describes the current status of the final architecture and pro-
vides an overview of all components involved and where they are located in the
different layers the MIKELANGELO framework. The architecture is designed
to improve the I/O performance in virtualised environments and also to bring
the benefits of flexibility through virtualization to HPC systems. These benefits
include, besides application packaging and application deployment, also elastic-
ity during the application execution, without losing the high performance in
computation and communication provided by HPC infrastructures. Each of the
components can be used independently of other, however the benefits sum up
combining as much components as possible. The diagram in Fig. 1 shows a high
level overview of these components and their relations. The Hypervisor Architec-
ture, sKVM, aims at improving performance and security at the lower layer of the
architecture, the hypervisor. Previous work was divided into three separate com-
ponents: IOcm, an optimization for virtual I/O devices that uses dedicated I/O
cores, virtual RDMA (vRDMA) for low overhead communication between virtual
machines, UNCLOT for shared memory between VMs running on the same host,
and ZeCoRx avoids copying data between host and guest buffers on the receive
path. Further SCAM, a security feature identifying and preventing cache side-
channel attacks from malicious co-located virtual machines in multi tenant Cloud
environments. The guest operating system (or “guest OS”) is the operating sys-
tem, it implements the various APIs (Application Programming Interfaces) and
ABIs (Application Binary Interfaces) which the applications utilize. The goals
of enhancing the guest operating system are to run I/O-heavy and HPC (high
performance computing) applications more efficiently than on traditional virtu-
alized operating systems. Several cross-layer optimizations are targeted, ranging
from hypervisor on host OS up to the guest OS. In addition to improving effi-
ciency, another goal of the project is to simplify deployment of applications in
the cloud. MIKELANGELO initially focused only on application package man-
agement with its extensions done primarily to the Capstan open source project.
A completely new way of composing self-sufficient virtual machine images based
on OSv [5] is introduced. It allows for flexible and efficient reuse of pre-built
application packages that are readily provided by the consortium. It also builds
on best practices on how to approach the package preparation with various pack-
ages from the HPC and Big data fields. Since then, progressed towards cloud
management and application orchestration. This comprises the integration of
full support for deployment of unikernels onto OpenStack. Application orches-
tration using container-like interfaces is the last step towards management of

178 N. Struckmann et al.

lightweight applications on top of heterogeneous infrastructures. All of this has
been joined under one main toolbox (LEET - Lightweight Execution Environ-
ment Toolbox). On top of these components, the project also delivers compo-
nents spanning over all the layers of the software stack. This includes snap and
SCAM. Snap is a holistic telemetry solution aimed at gathering data from all
the layers of the target infrastructures, ranging from the hardware through all
layers of the infrastructure software to the applications themselves. Snap further-
more provides flexible telemetry data processing capabilities and a wide range
of storage backends. Finally, MIKELANGELO uses two commonly used deploy-
ment targets: Cloud and HPC. The purpose of integrating the aforementioned
components into a common environment is to demonstrate the potential of the
individual components. Cloud integration presents the architectural design and
gives details on how the integration with OpenStack is achieved. There is the
updated CI integration component Scotty and also a new component dedicated
to live re-scheduling of resources in Clouds, called Mikelangelo Cloud Manager
(MCM). Another tool introduced is called OSmod and is utilized to modify the
host operating system. Integration of all components eligible for HPC environ-
ments is achieved by extending the widely-spread batch system management
software Torque, under the name of vTorque. It extends PBS/Torque by virtu-
alization capabilities to handle VM instantiation, job deployment and VM tear
down within the Torque job life cycle in a transparent way to the user.

Fig. 1. High-level Cloud and HPC-Cloud architecture.

MIKELANGELO 179

3 Evaluation and Validation

There are four use cases to validate the project results which provide a perspec-
tive to transition project results into active exploitation. The use cases are: big
data, aerodynamic maps, cancellous bones and a cloud bursting use case. These
cover the most important areas of applications for Cloud and HPC. Cloud com-
puting is tackled by the big data use case, by the aerodynamics use case, and
by the cloud bursting use case. Big data is specifically handled by the big data
use case. It deployes a virtualized big data platform in the cloud with an auto-
mated deployment of synthetic workloads and defined real-world workloads for
validation. The cloud bursting use case has developed a new IO scheduler for
ScyllaDB, an IO tuning component for ScyllaDB, it improved an RPC frame-
work, and it enhanced the efficiency of data streaming for database replication.
Typical HPC applications are covered by the aerodynamic maps use case and
the cancellous bones use case. The aerodynamics use case has created a sim-
ulation platform with a dashboard supporting the submission of experiments,
defined test cases, implemented application packaging. The cancellous bones use
case ported its simulation to OSv. The figures below provide an evaluation of
accomplished improvements, beneficial to all four use-case, tackling the most
crucial part of today’s virtualization, the I/O (Figs. 2 and 3).

Fig. 2. vRDMA result

Fig. 3. sKVM I/O

180 N. Struckmann et al.

Acknowledgments. The work described in this document has been conducted within
the Research & Innovation action MIKELANGELO (project no. 645402), started in Jan
2015, and co-funded by the European Commission under the Information and Commu-
nication Technologies (ICT) theme of the H2020 framework programme (H2020-ICT-
07-2014: Advanced Cloud Infrastructures and Services).

References

1. Drăgan, I., Fortiş, T.-F., Iuhasz, G., Neagul, M., Petcu, D.: Applying self-* principles
in heterogeneous cloud environments. In: Antonopoulos, N., Gillam, L. (eds.) Cloud
Computing. CCN, pp. 255–274. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-54645-2 10

2. Felter, W., Ferreira, A., et al.: An updated performance comparison of virtual
machines and Linux containers. In: 2015 IEEE International Symposium on Per-
formance Analysis of Systems and Software (ISPASS), pp. 171–172, March 2015

3. HLRS: Inside (2015). http://inside.hlrs.de/editions/15spring.html#mike
4. Adaptive Computing Enterprises, Inc.: Torque resource manager (2017). http://

www.adaptivecomputing.com/products/open-source/torque/
5. Cloudius Systems: OSv (2017). http://osv.io/

https://doi.org/10.1007/978-3-319-54645-2_10
https://doi.org/10.1007/978-3-319-54645-2_10
http://inside.hlrs.de/editions/15spring.html#mike
http://www.adaptivecomputing.com/products/open-source/torque/
http://www.adaptivecomputing.com/products/open-source/torque/
http://osv.io/

BASMATI: Cloud Brokerage Across
Borders for Mobile Users

and Applications

Emanuele Carlini1,7(B) , Massimo Coppola1,7, Patrizio Dazzi1,7,
Konstantinos Tserpes2,7, John Violos2,7, Young-Woo Jung3,7,

Ganis Zulfa Santoso3,7, Jorn Altmann4,7, Jamie Marshall5,7, Eric Pages6,7,
and Myoungjin Kim6,7

1 ISTI-CNR, Pisa, Italy
emanuele.carlini@isti.cnr.it

2 NTUA, Athens, Greece
3 ETRI, Daejeon, South Korea

4 SNU, Seoul, South Korea
5 Amenesik, St Pierre Les Nemours, France

6 ATOS, Barcelona, Spain
7 INNOGRID, Seoul, South Korea

Abstract. BASMATI aims at delivering an integrated platform that
will support the dynamic needs of mobile applications and users through
an end-to-end approach for cloud services. BASMATI will emphasize on
enabling runtime adaptation of all assets, including user and applica-
tion prediction models, federation patterns, resources and data manage-
ment policies, brokerage and offloading decisions. BASMATI platform
will coordinate all assets to react in response to real-world events in
real-time.

1 Introduction

The explosion in numbers of mobile applications that we are using in our daily
lives is unquestionable. Almost all of them are relying on some sort of web-based
backend, usually in the form of a restful API or similar. The backend services are
commonly delivered through cloud computing technologies, exploiting their abil-
ity to adapt to the demand and ultimately allowing more cost-effective solutions
to the application providers. However the inherent characteristic of mobile apps,
that is user mobility, can combine with other application contextual character-
istics (e.g. highly asymmetric load bursts) and put a strain on the computing
and storage infrastructure, that needs to compensate any QoS loss caused by the
network. A standard approach to resolve the problem and avoid violating the
SLA objectives is to leverage resources that are close to the users physical loca-
tion for hosting backend application services, in a way similar to edge computing.
However, this solution also comes at a cost and implies some tradeoffs. At a local

c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 181–186, 2018.
https://doi.org/10.1007/978-3-319-79090-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_16&domain=pdf
http://orcid.org/0000-0003-3643-5404

182 E. Carlini et al.

scale, a high spatial density of the use of mobile services can reduce the over-
all efficiency or unreasonably increase the cost of resource provisioning through
scaling. At a global scale, the continuous maintenance of resource pools around
the world has practical issues and drawbacks that can impair the cost-efficiency
of such a solution.

BASMATI1 is a joint South-Korean and EU Horizon 2020 project, active
from June 2016 to August 2018 (26 months), that aims to develop an integrated
brokerage platform targeting federated clouds that supports the dynamic needs
of mobile applications and users. To tackle the issues mentioned above, BAS-
MATI resolves to the development of a platform that will be able to: (a) support
mobile app services and their context; (b) manage the infrastructure to achieve
cost-effectiveness; (c) supporting federation at a cloud infrastructure level, and;
(d) intelligent offloading and brokering of tasks including edge resources.

1.1 BASMATI Objectives

The BASMATI platform has been conceived, designed and developed having in
mind the peculiar requirements of the project use cases. However, the aim of
the platform, currently still in development, is to address the project objectives
in a broad sense. The consortium thus identified several challenges that can be
summarized around the following three main pillars.

Users and Application Knowledge. In order to be able to properly react to the
dynamic conditions affecting the cloud infrastructure supporting the backend
of mobile applications, it is of paramount importance to understand the actual
behavior of applications and their users, as well as to predict the future behavior
of the two. BASMATI approaches these challenges by profiling the footprint of
applications and analyzing the movement of users. This actually happens at
two levels, macro and micro; the former focused on the movements of masses
of users, the latter on the movement of single users within a defined area. The
joint processing of the application- and user-derived information, that we call
situational knowledge, gives to the BASMATI platform the ability of taking into
account the actual characteristics of users and applications when modelling their
behavior.

Resource Management. The second pillar of challenges faced by BASMATI is
contextualized in the area of Resource Management. When it is clear how appli-
cations and users will behave, it is fundamental to have a platform that can prop-
erly react in a consequent manner. To this end, the BASMATI platform needs
to offer innovative ways to represent and manage cloud resources, to properly
organize such resources in a federation and to provide effective ways to conduct
resource brokering and select the best candidates for a given application to host.
For these tasks, current candidates approaches are based on meta-heuristics,
such as Genetic Algorithms [2].

1 http://www.basmati.cloud/.

http://www.basmati.cloud/

BASMATI: Cloud Brokerage Across Borders 183

Application Adaptation. The third and last pillar on which the BASMATI chal-
lenges are organized focuses on the actual adaptation of applications at runtime.
Such support is a key enabler in a widely distributed and dynamic environment
in which applications go through changes both required to enable their migra-
tion, as well as to make them suitable to offer appropriate performances. This
is particularly evident when the conditions of the platform changes and when
users move around.

1.2 Project Consortium

The BASMATI project brings together a consortium composed by research cen-
tres, universities, industrial companies and SMEs with a proven track record in
various facets of the wide spectrum of Cloud Computing technologies and strong
commitment towards innovation, and therefore well positioned to efficiently and
effectively reach the objectives defined in the paper. The partnership involves 9
well-established organisations from Europe (Greece, Italy, Germany, Spain and
France) and Korea. It comprises a leading European University (NTUA) with
a high reputation in Cloud Computing, one of the largest European R&D and
technology transfer performers (CNR), two important European ICT Industries,
with a proven expertise in EU research projects (ATOS and CAS); a leading Uni-
versity in Korea (SNU) and the most important research center in Korea, world
leader for the number of US patents (ETRI), and two SMEs specialized in Cloud-
based solutions (AMEN and INNO) (Table 1).

Table 1. BASMATI consortium

Organization name Short name Country

Institute of Communications and Computer
Systems/National Technical University of
Athens (Coordinator)

ICCS/NTUA Greece

Consiglio Nazionale delle Ricerche CNR Italy

CAS Software AG CAS Germany

Atos Spain, SA ATOS Spain

Amenesik AMEN France

Electronics and Telecommunications
Research Institute (Coordinator)

ETRI South Korea

InnoGrid INNO South Korea

Seoul National University SNU South Korea

2 Results and Current State

During the 1st year, BASMATI put emphasis in defining the offloading and fed-
eration scenarios that are going to be supported by the platform. The criteria

184 E. Carlini et al.

for prioritizing such multiple scenarios were based upon application needs, as
well as upon available resources within the project lifetime. As such, the project
aimed at developing tools that would allow (a) the intelligent use of specialized
devices and cloudlets at the edge of the computing and storage infrastructure,
bringing about mobile services while being closer to the end user (thus allevi-
ating network constraints) [3], and; (b) smart migration of services and data to
cloud resources owned by different providers, under different provision policies
and business models [4,5]. The consortium refers to the first case as offloading
and to the second one as federation, seeking mainly cost-effective approaches to
implement them in the frame of the pilot scenarios.

Fig. 1. BASMATI architecture

2.1 Architecture

The idea behind the design choices underlying the architecture is to pro-
vide a common ground to address key technological and research challenges
that are identified by the requirement analysis, performed also in according to
the knowledge and capabilities of the partners and the needs of the project,
and which mainly focus on three core aspects [1]: (i) User, application and
situation modelling and understanding; (ii) Runtime adaptivity and reconfig-
uration; (iii) Brokering and Offloading of application and services.

BASMATI: Cloud Brokerage Across Borders 185

The BASMATI architecture is organized into multiple layers (see Fig. 1).
The Mobile layer contains components and functions that are expected to run
on the end-user mobile devices, which interface to the lower layers of the BAS-
MATI platform. The Federation Layer represents the core part of the BASMATI
infrastructure, and it is further decomposed in the two following logical layers.
The Application Back-End Management, which manages the runtime execu-
tion of application on top of federated resources, and the Federation Manage-
ment, which provides the specific features of BASMATI federation by building on
top of standard (multi) Cloud features. The Adapter Layer contains those soft-
ware modules designed to interface BASMATI federation with different Cloud
providers. Finally, the Resources Layer groups together actual resources and
services from different Cloud providers, Cloudlets and edge resources.

As the development of the component prototypes continues and the overall
design is evolved and revised, sequential diagrams for static and dynamic sce-
narios are analysed. Such diagrams describe the high level interactions of the
architecture components, both in a static scenario (i.e. place a new application
to the cloud, terminate it) and in a dynamic one (e.g. what happens when an
application violates the QoS requested by the users, which and how corrective
actions can be performed).

2.2 Cloud Federation Infrastructure

According to the BASMATI terminology, a cloud federation is a result of, primar-
ily, a business agreement between resource providers (not necessarily resource
owners like Amazon) who team up in order to make their resources available to
other members of the federation at a cost. Thus, the implementation and use
of a cloud federation needs to attain a plethora of, often conflicting, objectives.
The Cloud Provider Management, the Federated Resource Broker, the Federa-
tion Data Management (including Federated SLAs) and, mainly, the Federation
Business Logic are the primary components dealing with this goal.

References

1. Altmann, J., Carlini, E., Coppola, M., Dazzi, P., Ferrer, A.J., Haile, N., Jung, Y.W.,
Kang, D.J., Marshall, I.J., Tserpes, K., et al.: Basmati-a brokerage architecture on
federated clouds for mobile applications. Technical report, Seoul National University,
Technology Management, Economics, and Policy Program (TEMEP) (2016)

2. Anastasi, G.F., Carlini, E., Coppola, M., Dazzi, P.: QoS-aware genetic cloud bro-
kering. Future Gener. Comput. Syst. 75, 1–13 (2017)

3. Carlini, E., Coppola, M., Dazzi, P., Mordacchini, M., Passarella, A.: Self-optimising
decentralised service placement in heterogeneous cloud federation. In: 2016 IEEE
10th International Conference on Self-adaptive and Self-organizing Systems (SASO),
pp. 110–119. IEEE (2016)

186 E. Carlini et al.

4. Makris, A., Tserpes, K., Anagnostopoulos, D., Altmann, J.: Load balancing for
minimizing the average response time of get operations in distributed key-value
stores. In: 2017 IEEE 14th International Conference on Networking, Sensing and
Control (ICNSC), pp. 263–269. IEEE (2017)

5. Uzbekov, A., Altmann, J.: Enabling business-preference-based scheduling of cloud
computing resources. In: Bañares, J.Á., Tserpes, K., Altmann, J. (eds.) GECON
2016. LNCS, vol. 10382, pp. 225–236. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61920-0 16

https://doi.org/10.1007/978-3-319-61920-0_16
https://doi.org/10.1007/978-3-319-61920-0_16

C4E: Cloud Brokering Platform
for Federated Services Aimed

at European Public Administrations

Antonino Galletta1(B), Oliver Ardo2, Antonio Celesti1, Peter Kissa2,
and Massimo Villari1

1 Dep. Ingegneria, University of Messina, Messina, Italy
{angalletta,acelesti,mvillari}@unime.it

2 InterWay a.s., Bratislava, Slovakia
{oliver.ardo,peter.kissa}@interway.sk

Abstract. Cloud computing is evolving towards federated ecosystems,
where several Cloud Service Providers (CSPs) federate each other in
order to achieve economy of scale and an efficient use of their resources.
In line with the Digital Single Market (DSM) strategy promoted by the
European Commission, the objective of the FP7 Cloud for Europe (C4E)
project is to leverage the concept of Cloud federation in order to pave the
way toward an improvement of European Public Administration (PA)
ICT services. In particular, it aims, on one hand, at preserving national
authorities and on the other hand, at promoting efficiency, collabora-
tion and harmonization among the different PA offices spread over the
European Union (EU).

Keywords: Data export control · Cloud Brokering
Federated services · Hybrid storage · C4E

1 Introduction

In line with the Digital Single Market (DSM) strategy promoted by the European
Commission, Cloud for Europe (C4E, http://www.cloudforeurope.eu/) is a FP7
project co-funded by the European Commission under the funding scheme of
“CP-CSA” for PCP. The goal of C4E is to support the European Cloud Part-
nership allowing the Public Administrations (PAs) to implement strategies based
on Cloud federation in order to remove the obstacles of the Cloud usage and to
standardize requirements from different European countries.

The consortium of the project is composed of 24 partners coming from 12
countries. Leader of the project is Fraunhofer-Institute for Open Communica-
tion Systems (FOKUS), Germany. The Pre-Commercial Procurement (PCP)
founding schema is managed by AGID (Italy) that announced a public ten-
der named Realization of a research and development project PCP
(Pre-Commercial Procurement) on “Cloud For Europe”. The tender
was divided into three lots:
c© Springer International Publishing AG, part of Springer Nature 2018
Z. Á. Mann and V. Stolz (Eds.): ESOCC 2017, CCIS 824, pp. 187–191, 2018.
https://doi.org/10.1007/978-3-319-79090-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79090-9_17&domain=pdf
http://www.cloudforeurope.eu/

188 A. Galletta et al.

– LOT 1: “Federated Certified Service Brokerage (FCSB)”- CIG: 6027774476
– LOT 2: “Secure, Legislation - Aware Storage (SLAS)” - CIG: 6027802B8F
– LOT 3: “Legislation Execution (LE)”- CIG: 602781022C

In this paper we specifically focus on the first two LOTs. The rest of this paper
is organized as follows. Section 2 presents our consortium, Section 3 shows the
C4E tender objectives, whereas in Section 4, we discuss preliminary results.

2 Consortium

The consortium of LOTs 1 and 2 was composed in order to cover both research
and innovation aspects. It includes an academic parter and three industrial part-
ners belonging to different European Countries.

1. University of Messina (ITA) (academic), http://www.unime.it/en/home
2. Interway s.r.o. (SVK) (industrial), leader of LOT 1, https://www.

interway.sk/
3. Liberologico s.r.l. (ITA) (industrial), http://www.liberologico.com/
4. TeamNet International SA (ROU) (industrial), leader of LOT 2, http://

www.teamnet.ro/

3 C4E Tender Objectives

C4E [1], is aimed at creating new ICT solutions for PAs fostering the DSM. In
particular, the C4E project aims at overcoming the challenges of the adoption
of Cloud federation in the PA sector. Such challenges are defined by a technical
specification for Federated Certified Service Brokerage of EU Public Adminis-
tration Cloud and comes from the analysis of position and perception of the
European public sector about Cloud Computing and the vendor’s Cloud ser-
vices offering. A C4E reference scenario take into account various PA offices,
Cloud Service Providers (CSPs), and citizen where Legal aspects related to ICT
services have to be considered. In particular, the C4E tender defines the main
rules regarding the use of Cloud services by Public Administrations. The bro-
kering platform described above is the first of the three identified lots (FCSB).
LOT 2 (SLAS) regards secure storage in terms of:

– strong and secure encryption of data stored outside the public administra-
tion’s legislation;

– long-time storage availability for several type of data;
– compliance with legal requirements in terms of data privacy depending on

the type of data.

An important requirements of C4E is the integration among deployed solutions
developed into specific LOTs.

http://www.unime.it/en/home
https://www.interway.sk/
https://www.interway.sk/
http://www.liberologico.com/
http://www.teamnet.ro/
http://www.teamnet.ro/

C4E: Cloud Brokering Platform for Federated Services 189

4 C4E Tender Results

The project started in June 2013 and ended in March 2017. The final event was
in Vienna hosted by the Federal Computing Centre (BRZ) on June 21st, 2017.

Here, we present the achieved results for both LOTs 1 and 2. Regarding the
FCSB LOT, the outcome of this project is the accomplishment of an innovative
architecture able to deal with Cloud Brokering aspects for allowing European
PAs to rely on cross-border services, accessed in federated manner. In particular,
the piece of framework we propose is able to deal with more federated Clouds
[2] taking into account more aspects in the context of Cloud Brokering where
Geographic Constraints are considered. The flow chart in Fig. 1 describes how
the selection and the screening of services was performed. Looking at Fig. 1, it is
possible to notice that the recommendation engine relies on two main parts: the
NoSQL DB part dealing with Basic Rules, and BigData Analytics Part dealing
with Advanced Rules linked to Social, Reputation and other Services which are
useful for driving the PA officers in making their decisions. The early part is
MongoDB based whereas the latter, that is the BigData Engine works using
Apache Spark. MongoDB represents the unstructured long-term storage able
to be sharded among more sites along with the capabilities to be queried in
scalable ways like using geo-location properties. Geo-location features are very
effective in our system, because they allow users to define constrains based on
geographic position of services and resources. Our system, contrarily to tradi-
tional approaches, is able to guarantee continuity of service even if services and
resources change their properties. In fact, we only have to update the area of
interest in Europe, driven by any kind of needs, changing a document into a
specific MongoDB collection and the system is up and ready for the new config-
uration on fly.

Fig. 1. Service recommender; the recommendation system engine relies on two main
parts: NoSQL MongoDB and Apache spark.

Regarding the SLAS, a Cloud application able to manage tagged documen-
tations and media files through Private and Multiple Public Cloud platforms

190 A. Galletta et al.

was created. Specifically, the last one exploits the fragmentation process of the
content to store small parts of it into different Cloud platforms. As a result,
CSPs can not rebuild the data by its self, ensuring a good level of both data
availability and privacy.

The Web Application is composed by two sides: front-end (FE) and back-
end (BE). The FE was the result of a MEAN (MongoDB, Express, AngularJS,
Node.js) Stack application, developed using Meteor, an open source platform
for web, mobile, and desktop. Users are able to insert and download tagged
documentations and media files, selecting one option among multiple public and
private Clouds. Whereas, the BE was composed of a MongoDB instance, for
storing users’ files and tags, and several REST server APIs, developed in Java,
that act as interface among FE, Cloud Storage Providers and MongoDB storage
engine.

Figure 2 shows as healthcare documentations and media files, such as, e.g.,
Digital Imaging and Communications in Medicine (DICOM), are saved and
downloaded by users through a web application, keeping the level of privacy
required. We remark that the deployed system works with all type of files.
Figure 2 shows the overall architecture. Specifically, the system was composed of
the following elements:

1. physicians, the users of our system;
2. Magnetic Resonance Machine (MRM) that produces MRIs;
3. meteor web-app, an app that implement the recomposition and allows users

to analyze DICOM files directly from their browser;
4. OwnCloud, that acts as Private Cloud;
5. several Public Clouds, used to share content among physicians;
6. Splitter, a module that splits and disseminates data files;

Fig. 2. Overall high level federation architecture

C4E: Cloud Brokering Platform for Federated Services 191

7. MongoDB, a NoSQL database used to contain patients personal data and
TAGs; and

8. Anonymizer, a module that obfuscates patients’ data.

Producer and Consumers generated and retrieved MRI files codified as
DICOM. In particular, Producer was represented by the MRM and makes clin-
ical tests, which generates lots of images stored inside specific private Cloud
folders. In these directories, few internal physicians gain the access, because the
private Cloud guarantees data confidentiality and privacy. On the other hand,
Consumers can be considered as internal or remote physician, which analyze
the DICOM files thorough the Web application. In order to increase the overall
security of the system, DICOM files were processed by an ad-hoc module that
anonymize them. The algorithm modifies the DICOM header and stores orig-
inal data into specific MongoDB collections. Thus, external physicians makes
diagnosis without be able to associate the series with patients. Moreover, the
Splitter module receives the anonymized DICOM series as input and divides it
into chunks for distributing them among multiple public Cloud Storage providers
selected through the recommender deployed in FCSB LOT.

Acknowledgment. This work has been supported by Cloud for Europe (C4E)
Tender: Realization of a research and development project PCP (Pre-Commercial
Procurement) on “Cloud For Europe”, Italy-Rome: Research and development ser-
vices and related consultancy services Contract notice: 2014/S 241-424518. Directive:
2004/18/EC. (http://www.cloudforeurope.eu/)

References

1. Agenda Digitale Italia (AGID): Technical offer template. Retrieved July
2017 http://www.agid.gov.it/sites/default/files/documentazione/technical offer
template 03-12-14 15.30 publish 0 0.pdf/

2. Celesti, A., Levin, A., Massonet, P., Schour, L., Villari, M.: Federated networking
services in multiple openstack clouds. In: Celesti, A., Leitner, P. (eds.) ESOCC
Workshops 2015. CCIS, vol. 567, pp. 338–352. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-33313-7 26

http://www.cloudforeurope.eu/
http://www.agid.gov.it/sites/default/files/documentazione/technical_offer_template_03-12-14_15.30_publish_0_0.pdf/
http://www.agid.gov.it/sites/default/files/documentazione/technical_offer_template_03-12-14_15.30_publish_0_0.pdf/
https://doi.org/10.1007/978-3-319-33313-7_26
https://doi.org/10.1007/978-3-319-33313-7_26

Author Index

Allam, Salma 73
Altmann, Jorn 181
Anderson, Maya 154
Andrikopoulos, Vasilios 57
Ardo, Oliver 187
Ayed, Dhouha 149

Bekri, Moulay Ali 73
Berginc, Gregor 175
Bermbach, David 154
Boyle, John 149
Brogi, Antonio 130

Cappiello, Cinzia 154
Carlini, Emanuele 181
Carnevale, Lorenzo 73
Casale, Giuliano 164
Celesti, Antonio 187
Chen, Fang 175
Chesta, Cristina 159
Chronz, Peter 175
Činkelj, Justin 175
Coppola, Massimo 181

Damiani, Ferruccio 159
Dazzi, Patrizio 181
de Laat, Cees 169

El Ouahbi, Rachid 73
Elango, Divyaa Manimaran 86, 117

Fan, Shiqing 175
Fowley, Frank 86, 117

Galletta, Antonino 73, 187
Garcia-Perez, David 154
Gilboa, Niv 175

Har’El, Nadav 175
Heisel, Maritta 149
Hinkelmann, Knut 35

Johnsen, Einar Broch 159
Jones, Andrew 169
Joosen, Wouter 5
Jung, Young-Woo 181

Kat, Ronen I. 154
Kennedy, John 175
Kim, Myoungjin 181
Kissa, Peter 187
Kritikos, Kyriakos 20, 35

Laurenzi, Emanuele 35
Li, Chen 164
López, Manuel Ramírez 102

Makki, Majid 5
Mann, Zoltán Ádám 149
Marinakis, Achilleas 154
Marshall, Jamie 181
Martin, Paul 169
Meth, Kalman 175
Metzger, Andreas 149
Moulos, Vrettos 154
Mundt, Paul 149

Pages, Eric 181
Pahl, Claus 86, 117
Pallas, Frank 154
Paravoliasis, Andreas 20
Pernici, Barbara 154
Plebani, Pierluigi 154
Plexousakis, Dimitris 20

Rinaldi, Luca 130
Røst, Thomas Brox 159

Salado, Guadalupe Flores 169
Salant, Eliot 149
Sandoval, Yosandra 175
Santoso, Ganis Zulfa 181
Scalosub, Gabriel 175

Seidl, Christoph 159
Soldani, Jacopo 130
Spillner, Josef 102
Stankovski, Vlado 169
Struckmann, Nico 175
Suciu, George 169
Surridge, Mike 149

Tai, Stefan 154
Taylor, Ian 169
Toffetti, Giovanni 102
Tserpes, Konstantinos 181

Ulisses, Alexandre 169

Van Landuyt, Dimitri 5
Villari, Massimo 73, 187
Violos, John 181
Vitali, Monica 154

Yu, Ingrid Chieh 159

Zeginis, Chrysostomos 20
Zhao, Zhiming 169

194 Author Index

	Preface
	Contents
	BPM@Cloud
	Preface of BPM@Cloud 2017
	Organization

	Towards PaaS Offering of BPMN 2.0 Engines: A Proposal for Service-Level Tenant Isolation
	1 Introduction
	2 Problem Statement
	2.1 Security Threat Analysis
	2.2 Requirements

	3 Service-Level Tenant Isolation
	3.1 Overall Architecture
	3.2 Tenant Containers
	3.3 Static Code Restriction
	3.4 Dynamic Code Restriction
	3.5 Permission Checks
	3.6 Resource Consumption Control

	4 Related Work
	5 Conclusion
	References

	CEP-Based SLO Evaluation
	1 Introduction
	2 Use Case
	3 Related Work
	4 Background
	4.1 Esper
	4.2 CAMEL

	5 SLO Evaluation Framework
	5.1 Framework Analysis
	5.2 Implementation

	6 Event Pattern Generation and Detection
	7 Conclusions and Future Work
	References

	Towards Business-to-IT Alignment in the Cloud
	1 Introduction
	2 Background
	2.1 Business-to-IT Alignment
	2.2 Technical Service Matchmaking
	2.3 Service Selection

	3 Architecture
	4 Business Matchmaking
	4.1 The Context-Adaptive Questionnaire
	4.2 Question Prioritisation Algorithm

	5 Syntactic Matchmaking
	6 Validation
	7 Conclusions and Future Work
	References

	CloudWays
	Preface of CloudWays 2017
	Organization

	Engineering Cloud-Based Applications: Towards an Application Lifecycle
	1 Introduction
	2 Major Challenges
	2.1 *aaS Software Model
	2.2 Multi-tenancy of Resources
	2.3 Utility Computing
	2.4 Distributed Topology

	3 Requirements on the Solution Space
	4 Cloud-Based Applications Lifecyle
	4.1 The Phases of the Lifecycle
	4.2 An Example Instantiation
	4.3 Evaluation and Discussion

	5 Related Work
	6 Conclusions and Outlook
	References

	A Cloud Computing Workflow for Managing Oceanographic Data
	1 Introduction
	2 Related Work
	3 Material
	3.1 Data Source
	3.2 Data Structure
	3.3 Challenges and Issues of Oceanographic Data

	4 Methodology
	4.1 Workflow
	4.2 Oceanographic Data Visualization

	5 Performance
	5.1 Insert Data
	5.2 Retrieve Data

	6 Conclusions and Future Work
	References

	An Ontology-Based Architecture for an Adaptable Cloud Storage Broker
	1 Introduction
	2 Principles of Cloud Service Brokerage and Use Cases
	2.1 Cloud Brokerage
	2.2 A Brokerage Use Case
	2.3 Vendor Lock-In

	3 Background and Related Work
	3.1 Cloud Service Provider APIs
	3.2 Multi-cloud Libraries

	4 The Ontological Framework for Cloud Storage
	4.1 Abstraction, Interoperability and Extensibility
	4.2 Storage Abstraction Ontology
	4.3 Storage Service Provider Functionality

	5 Design of the Cloud Storage API
	5.1 An Ontology-Driven Architecture
	5.2 Application of Design Pattern
	5.3 Apache jclouds and Design Patterns
	5.4 Security Analysis – Authentication Mechanism

	6 Discussion and Conclusions
	References

	Cloud-Native Databases: An Application Perspective
	1 State Management in Cloud-Native Applications
	2 Cloud-Native Database Options
	2.1 Self-managed Database Systems and Microservices
	2.2 Provider-Managed Database Services

	3 Comparison Method and Testbed
	3.1 Testbed Architecture and Implementation
	3.2 Testbed Preparation: Document Management Scenario
	3.3 Testbed Operation

	4 Selected Results
	4.1 Database Performance
	4.2 Database Multi-tenancy
	4.3 Database Pricing

	5 Findings and Recommendations
	6 Discussion and Conclusion
	References

	Testing and Comparing the Performance of Cloud Service Providers Using a Service Broker Architecture
	1 Introduction
	2 Broker – Principles and Supported Services
	2.1 Principle Properties of the Storage Broker
	2.2 Services Supported by the Broker

	3 Broker Architecture
	4 Performance Testing and Provider Comparison
	4.1 Blob Service Performance Test
	4.2 File Service Performance Test
	4.3 Table Service Performance Test

	5 Discussion of Results and Conclusions
	References

	TOSKER: Orchestrating Applications with TOSCA and Docker
	1 Introduction
	2 Background
	3 Specifying Multi-component Applications
	4 TosKer
	4.1 The Architecture of TosKer
	4.2 Prototype Implementation

	5 Related Work
	6 Conclusions
	References

	EU Projects
	Preface of EU Projects Track 2017
	Organization

	Secure Data Processing in the Cloud
	Abstract
	1 Project Objectives
	1.1 Secure Enclaves
	1.2 Sticky Policies
	1.3 Run-Time Data Protection Assurance
	1.4 Automated Risk Management

	2 Project Current State and Summary of Results
	Acknowledgement
	References

	DITAS: Unleashing the Potential of Fog Computing to Improve Data-Intensive Applications
	1 Introduction
	2 DITAS Data-Intensive Application Model
	3 DITAS Architecture
	References

	HyVar
	Abstract
	1 Motivation and Approach
	1.1 Software Evolution in the Automotive Domain
	1.2 HyVar Solution

	2 Application and Benefits
	2.1 Software Product Line Development Using the HyVar Tool Chain
	2.2 Reducing Risk in Distributed Software Development Projects
	2.3 Personalized Deployment from the Cloud
	2.4 Derivation of an SPL from Existing Products

	3 Conclusion
	References

	Enhancing Big Data Application Design with the DICE Framework
	1 Overview
	2 The DICE Enhancement Tool
	3 Conclusion
	References

	Developing, Provisioning and Controlling Time Critical Applications in Cloud
	Abstract
	1 Introduction
	2 Time Critical Application Cases and Requirements
	3 The SWITCH Approach
	4 Software Workbench for Time Critical Cloud Applications
	5 Summary
	Acknowledgement
	References

	MIKELANGELO: MIcro KErneL virtualizAtioN for hiGh pErfOrmance cLOud and HPC Systems
	1 Introduction
	2 MIKELANGELO Architecture
	3 Evaluation and Validation
	References

	BASMATI: Cloud Brokerage Across Borders for Mobile Users and Applications
	1 Introduction
	1.1 BASMATI Objectives
	1.2 Project Consortium

	2 Results and Current State
	2.1 Architecture
	2.2 Cloud Federation Infrastructure

	References

	C4E: Cloud Brokering Platform for Federated Services Aimed at European Public Administrations
	1 Introduction
	2 Consortium
	3 C4E Tender Objectives
	4 C4E Tender Results
	References

	Author Index

