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Abstract. We study quantum attacks on finding a collision in a non-
uniform random function whose outputs are drawn according to a distri-
bution of min-entropy k. This can be viewed as showing generic security
of hash functions under relaxed assumptions in contrast to the standard
heuristic of assuming uniformly random outputs. It is useful in analyzing
quantum security of the Fujisaki-Okamoto transformation [31]. In par-
ticular, our results close a gap left open in [30].

Specifically, let D be a distribution of min-entropy k on a set Y .
Let f : X → Y be a function whose output f(x) is drawn according
to D for each x ∈ X independently. We show that Ω(2k/3) quantum
queries are necessary to find a collision in f , improving the previous
bound Ω(2k/9) [30]. In fact we show a stronger lower bound 2k/2 in some
special case. For most cases, we also describe explicit quantum algorithms
matching the corresponding lower bounds.

1 Introduction

Hash functions are central and prominent in modern cryptography, and there
have been many ingenious designs of cryptographic hash functions [2,4,13,26].
One significant property of a cryptographic hash function H, backed with inten-
sive tests in practice, is collision resistance. Namely, it should be computa-
tionally unfeasible to find a collision, which is a pair of distinct input strings
(x, x′) with H(x) = H(x′). Because of this nice feature, hash functions are being
used in numerous cryptographic constructions and applications, e.g., protecting
passwords [1], constructing message authentication codes and digital signature
schemes, as well as various crypto-currencies exemplified by BitCoin [25].

Theoretical analysis of a hash function H often refers to generic security,
where one ignores the internal design of H and views it as a black box. Moreover,
the output of H is assumed to have been drawn uniformly at random from some
codomain of size N . The complexity of finding a collision is then measured by
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the number of evaluations of H, i.e., queries to the black box. By the well-
known birthday bound, Θ(

√
N) queries are both sufficient and necessary to find

a collision in H. These principles are extended and formalized as the random
oracle model, in which a hash function is treated as a truly random function that
is publicly available but only through oracle queries [11]. This heuristic has been
widely adopted to construct more efficient cryptosystems and facilitate security
reduction proofs which are otherwise challenging or unknown [12,21].

However, in reality, there are attacks that perform significantly better than
the plain birthday attack. The recent explicit break of full SHA-1 by Google
and the Cryptology Group at the Netherlands’ Centrum Wiskunde & Informat-
ica [29], in which two PDF files can be generated that collide on the same 160-bit
digest, only takes ∼261 hash evaluations instead of the 280 expected via the birth-
day attack. These attacks are possible because the internal structure of H may
create opportunities for more effective cryptanalysis. A natural reaction would
be to figuratively open up the black box and take into account the inner work-
ings case-by-case when analyzing a hash function. Alternatively, can we prove
generic security bounds, but under relaxed and/or more accurate assumptions?

The approaching era of quantum computing will make these challenges more
worrisome. The power of quantum computers, while promising in accelerating
the resolution of fundamental problems in many areas such as chemistry, biology,
etc., raises a tremendous threat to cryptography. Many public key cryptosystems
will be broken due to Shor’s efficient quantum algorithm for the factoring and
discrete logarithm problems upon which they are based [27]. In addition, new
features of quantum adversaries are difficult and subtle to deal with, especially
in the setting of cryptographic protocols. In fact many classical security anal-
yses become inapplicable or even fail completely in the presence of quantum
adversaries [17,23,33].

Pertaining to hash functions, a quantum adversary is able to implement the
hash function as a quantum circuit and evaluate it in quantum superposition.
Therefore, if H is treated as a black box, it is reasonable to allow a quantum
adversary to query H in quantum superposition:

∑
x αx|x, 0〉 �→ ∑

x αx|x,H(x)〉.
Although this does not imply that the adversary can learn the entirety of H
in one query, an immediate difficulty, for example, is the failure of the “lazy
sampling” trick, where one can simulate a random function by sampling ran-
dom responses on-the-fly. Indeed, much effort has been devoted to extending the
results and useful techniques in the classical random oracle model to the quantum
setting (formalized as the quantum random oracle model) [9,14,19,38]. Notably,
Zhandry [37] shows that Θ(N1/3) quantum queries are both sufficient and nec-
essary to find a collision in a uniformly random function. This establishes the
generic security of uniformly random hash functions. But as classical attacks
have illustrated, assuming uniform randomness is sometimes too optimistic and
risky. Such concerns are becoming more pressing due to recent advances in the
physical realization of quantum computers [3,5]. Optimized architectures are also
reducing the cost of implementing quantum algorithms (e.g., see an estimation
of Grover’s quantum search algorithm [10]).
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This motivates the question we study in this work: what is the complexity of
finding a collision in a non-uniformrandom function, under quantum attacks
in particular? Specifically we consider a distribution Dk on set Y which has
min-entropy k, i.e., the most likely element occurs with probability 2−k. We
want to find a collision in a function H : X → Y where for each x ∈ X,
H(x) is drawn independently according to Dk. We call it a rand-min-k function
hereafter. Note that if Dk is uniform over Y (hence |Y | = 2k), this becomes the
standard uniformly random function. Given H as a black-box, we are interested
in the number of queries needed by a quantum algorithm to find a collision in
H. As a result, this will establish the generic security of hash functions under
a relaxed condition where the outputs of a hash function are drawn from a
distribution of min-entropy k rather than a strictly uniform distribution. This
condition might be a more realistic heuristic for a good hash function. Roughly
speaking, a hash function designer will only need to make sure that there is
no single value y ∈ Y that has a large set of preimages (i.e., f−1(y) := {x ∈
X : f(x) = y} with |f−1(y)| ≤ 2k). In contrast, modeling a hash function
as a uniformly random function would require certain regularity such that the
preimage set of every codomain element has roughly the same size, which may be
difficult to justify and test in practice. We also note that a concrete application of
collision finding in rand-min-k functions appears in the famous Fujisaki-Okamoto
transformation [21], whose quantum security has been studied in [31].

Classically, it is not difficult to derive a variation of the birthday bound, which
gives Θ(2k/2) as the query complexity in typical cases. In the quantum setting,
Targhi et al. [30] prove that Ω(2k/9) queries are necessary for any quantum
algorithm to find a collision with constant probability. Compared to the tight
bound 2k/3 in the uniform case, the bound is unlikely to be optimal and the gap
seems significant. In addition, no quantum algorithms are described or analyzed
formally. Overall, our understanding of finding a collision in non-uniform random
functions is far from satisfying as far as quantum attacks are concerned.

1.1 Our Contributions

In this work, we characterize the complexity of finding collisions in a rand-min-k
function when it is given as an oracle to a quantum algorithm. We are able to
prove matching upper and lower bounds in many cases. The results are summa-
rized in Table 1.

A simple special case is the flat distribution, which is uniform on a sub-
set of size 2k. In this case, not surprisingly, the same bound 2k/3 for the uni-
form random function holds. Another special case, which represents the hardest
instances, concerns the δ-min-k distributions, where there is a mode element
with probability mass 2−k and the remaining probability mass is distributedly
uniformly throughout the rest of the codomain. Here we show that 2k/2 queries
are both sufficient and necessary. For general min-k distributions, the complex-
ity is characterized by the collision variable β(D) for a distribution D, which is
the reciprocal of the probability that two independent samples from D collide.
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Table 1. Summary of quantum collision finding in rand-min-k functions. β :=
1

Pr[x=y:x,y←D]
is the collision variable, which equals 2k for flat-distributions (i.e., uni-

form on a subset of size 2k), and lies in [2k, 22k] for δ-min-k distributions (i.e., peak at
one element, and uniform elsewhere), as well as for general min-k distributions. Here
M refers to the size of the domain and N refers to the size of the codomain.

Dk M, N, k settings Upper bound Lower bound Match?

All M = o(β1/2) (inj. by Lemma 2) ∞ ∞ ✓

All M = Ω(β1/2) β1/3 (Theorem 5) 2k/3 (Corollary 2) ✗

flat-k M = Ω(2k/2) 2k/3 (Theorem 5) 2k/3 (Corollary 2) ✓

δ-min-k M = Ω(N1/2), 2k ≤ N < 23k/2 N1/3 (Theorem 5) N1/3 (Corollary 3) ✓

M = Ω(N1/2), 23k/2 ≤ N < 22k 2k/2 (Theorem 6) 2k/2 (Corollary 3) ✓

M = Ω(2k), N ≥ 22k 2k/2 (Theorem 6) 2k/2 (Corollary 3) ✓

We prove a generic upper bound β1/3, and a lower bound 2k/3 . For compar-
ison, classically one can show that the (generalized) birthday bound Θ(β1/2),
which equals Θ(N1/2) for uniform distributions, precisely depicts the hardness
of finding a collision.

Technical overview. For the generic lower bound 2k/3, we follow the natural idea
of reducing from collision finding in uniform random functions (Theorem3). We
show that finding a collision in a uniformly random function of codomain size
2k reduces to that in flat distributions, and then to general min-k distributions.
Therefore the 2k/3 lower bound follows. This approach is in contrast to that
in [30], where they basically extract close-to-uniform bits from the output of a
rand-min-k function f by composing f with a universal hash function h. Note
that a collision in f is also a collision in h ◦ f . In addition, h ◦ f can be shown
to be quantum indistinguishable from a uniformly random function by a gen-
eral theorem of Zhandry [36], which relates sample-distinguishability to oracle-
distinguishability. Therefore any adversary for rand-min-k can be turned into an
adversary for h ◦ f , contradicting the hardness for uniformly random functions.
However, the discrepancy between h ◦ f and a uniformly random function gets
accumulated and amplified in the sample-to-oracle lifting step, and this may
explain the slackness in their lower bound 2k/9.

Instead, given an oracle f whose images are distributed according to a distri-
bution D, our reductions employ a redistribution function to simulate an oracle
f ′ whose images are distributed according to another distribution D′ on Y ′. A
redistribution function r maps a pair (x, f(x)) to an element in Y ′, and r is
sampled from a proper distribution such that f ′(x) := r(x, f(x)) is distributed
according to D′, taking into account the random choice of f as well. We show
algorithms for sampling appropriate redistribution functions, called redistribu-
tion function samplers, for the distributions we are concerned with. As a result,
we can use an adversary for the collision-finding problem in D′ to attack the
collision-finding problem in D. To complete the reductions, we show that a col-
lision found in the simulated oracle for f ′ will indeed be a valid collision in f
with probability at least 1/2.
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Along the same lines, it is possible to demonstrate that collision-finding in
δ-min-k distributions is the hardest case. In fact, we are able to establish rigor-
ously a strengthened lower bound in this case (Theorem 4). Our proof proceeds by
showing indistinguishability between a random δ-min-k function on a codomain
of size N and a uniformly random function on the same codomain. Then the
lower bound in the uniform case translates to a lower bound for the δ-min-k
case. The exact bounds vary a bit for different relative sizes of N and k.

Establishing upper bounds is relatively easy (Theorem 5). We adapt the
quantum algorithm of [37] in the uniform case. Basically we partition the domain
of a rand-min-k function f into subsets of proper size, so that when restricting f
on each subset, there exists a collision with at least constant probability. Next,
we can invoke the collision finding algorithm by Ambainis [8] on each restricted
function, and with a few iterations, a collision will be found.

Moreover, we give alternative proofs showing the lower bound for δ-min-k
distributions (Theorem 6). They are helpful to provide more insight and explain
the bounds intuitively. Specifically, we reduce an average-case search problem,
of which the hardness has been studied [24], to finding a collision in a δ-min-k
random function. On the other hand, when the mode element of a min-k distribu-
tion is known, we show that applying Grover’s quantum search algorithm almost
directly will find a collision within O(2k/2) queries. This actually improves the
algorithms above in some parameter settings.

1.2 Discussion

Collision finding is an important problem in quantum computing, and a consid-
erable amount of work in this context exists. Brassard et al. [16] give a quantum
algorithm that finds a collision in any two-to-one function f : [M ] → [N ] with
O(N1/3) quantum queries. Ambainis [8] gives an algorithm based on quantum
random walks that finds a collision using O(M2/3) queries whenever there is
at least one collision in the function. Aaronson and Shi [6] and Ambainis [7]
give an Ω(N1/3) lower bound for a two-to-one function f with the same domain
and co-domain of size N . Yuen [35] proves an Ω(N1/5/poly(log N)) lower bound
for finding a collision in a uniformly random function with a codomain at least
as large as the domain. This is later improved by Zhandry [37] to Θ(N1/3) for
general domain and codomain as we mentioned earlier.

We stress that, typically in quantum computing literature, the lower bounds
are proven for the worst-case scenario and with constant success probability.
This in particular does not rule out adversaries that succeed with an inverse
polynomial probability which is usually considered a break of a scheme in cryp-
tography. Hence a more appropriate goal in cryptography would be showing the
number of queries needed for achieving any (possibly low) success probability,
or equivalently bounding above the success probability of any adversary with
certain number of queries. Our results, as in [30,37], are proven in the strong
sense that is more appropriate in cryptographic settings.

Our work leaves many interesting possible directions for future work. For
some distributions, our reductions may take a long time to implement. Can we
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find time-efficient reductions in general? We have been mainly concerned with
finding one collision; it is interesting to investigate the complexity of finding
multiple collisions in a non-uniform random function. Finally, we note that a
stronger notion for hash functions called collapsing has been proposed which is
very useful in the quantum setting [32]. Can we prove that rand-min-k functions
are collapsing? Note that a uniform random function is known to be collapsing,
and more recently it has been shown that the sponge construction in SHA-3 is
collapsing (in the quantum random oracle model) [18].

Missing proofs and more. Due to space limitations, we omit a few proofs in this
submission. The full version can be found at ia.cr/2017/688, where in addition to
the missing proofs, we also extend the work here and give tight analysis for the
quantum generic security of preimage and second-preimage resistance of hash
functions under non-uniform output distributions.

Independent work. In a concurrent and independent work by Ebrahimi and
Unruh [20], they give twelve bounds for quantum collision finding of min-k ran-
dom functions. We observe that ten of them coincide with our bounds, and
in particular, they present essentially the same quantum collision-finding algo-
rithms as ours. The remaining two are generic lower bounds improving upon their
prior work [30], which are Ω(2k/5) and Ω(β1/9) (in our notation). Our bounds
are stronger – Ω(2k/3) and Ω(β1/6) (by noting that β ≤ 22k) respectively.

2 Preliminaries

Here we introduce a few notations and definitions. We also discuss basic results
concerning the collision probability and birthday bound in min-k distributions.

Let D be a discrete probability distribution on set Y defined by probability
mass function D(y) := Prz←D[z = y]. The support of D is Supp(D) := {y ∈
Y : D(y) > 0}. We denote Y X := {f : X → Y } the set of functions for some
domain X and codomain Y . The notation f ← Y X indicates that f is a function
sampled uniformly from Y X .

Definition 1 (Min-Entropy). Let D be a distribution on set Y . D is said to
have min-entropy k if k = − log2(maxy∈Y {D(y)}). We refer to a distribution of
min-entropy k as a min-k distribution or simply a k-distribution.

Definition 2 (Flat-k-Distribution). We call a k-distribution D on set Y a
flat-k-distribution, denoted Dk,�, if the support S of D has size exactly 2k. It
follows that ∀y ∈ S, D(y) = 2−k.

Definition 3 (δ-k-Distribution). We call a k-distribution D on set Y a δ-k-
distribution if there is a unique mode element m ∈ Y such that ∀y ∈ Y

D(y) =

{
2−k if y = m ;

1−2−k

|Y |−1 otherwise.

https://ia.cr/2017/688
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We denote such a distribution Dk,δ. It is implicit that |Y | > 2k. The support
of D is the entire set Y , and remaining probability mass 1 − 2−k is distributed
uniformly among all elements in Y other than the mode.

Definition 4 (Function of min-entropy k). Let D be a min-k distribution
on set Y . We define DX to be the distribution on Y X such that for every x ∈ X,
its image is sampled independently according to D. f ← DX denotes sampling a
function in this way, and we say that f is a function of min-entropy k.

Definition 5 (Collision problem). Let f ← DX be a function of min-entropy
k. A pair of elements x1 ∈ X and x2 ∈ X such that x1 �= x2 and f(x1) = f(x2)
is called a collision in f . We refer to the problem of producing such a pair as
the collision finding problem in D.

Definition 6 (Quantum oracle access). A quantum oracle O for some func-
tion f implements a unitary transformation:

∑
αx,y,z|x, y, z〉 O�→ ∑

αx,y,z|x, y +
f(x), z〉. An algorithm A that makes (quantum superposition) queries to O is
said to have quantum oracle access to f , and is denoted Af .

2.1 Collision Probability and Non-uniform Birthday Bound

Definition 7. The collision probability of a probability distribution D is defined
to be the probability that two independent samples from D are equal. Namely

CP(D) := Pr
y1,y2←D

[y1 = y2] =
∑

y∈Y

D(y)2.

We call β(D) := 1
CP(D) the collision variable of D.

β(D) will be an important variable determining the complexity of collision
finding. In fact we can derive a birthday bound for collisions in an arbitrary
distribution D in terms of β(D), analogous to the case of uniform distributions,
using a key lemma by Wiener [34].

Lemma 1 ([34, Theorem 3]). Let RD be the random variable denoting the num-
ber of i.i.d. samples from a distribution D until a collision appears for the first
time. Let q ≥ 1 be an integer and γq := q−1√

β(D)

Pr(RD > q) ≤ e−γq (1 + γq).

Corollary 1. Let y1, . . . , yq be i.i.d. samples from D, and let Colq(D) be the
event that yi = yj for some i, j ∈ [q]. There is a constant c > 2 such that if
q ≥ c

√
β(D), then Pr(Colq(D)) ≥ 2/3 .

Proof. Let E be the event that yi = yj for some i, j ∈ [q]. Then

Pr[E] ≥ 1 − Pr[XD > q] ≥ 1 − e−γq (1 + γq) ≥ 2/3 ,

when q ≥ c
√

β(D) because 1+γq

eγq < 0.3 whenever γq = q−1√
β(D)

> 2.
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We can also derive an upper bound on Pr[Colq(D)] by standard approach.

Lemma 2. Pr[Colq(D)] ≤ q2

β(D) .

Proof. For any pair i ∈ [q] and j ∈ [q], Let Colij be the event that yi = yj .
Then Pr[Colij ] = CP(D). Therefore by union bound, we have

Pr[Colq(D)] = Pr[∪i,j∈[q]Colij ] ≤
(

q

2

)

· CP(D) ≤ q2

β(D)
.

As a result, when q = o(
√

β(D)), essentially no collision will occur. Namely q

needs to be Ω(
√

β(D)) to see a collision, which is also sufficient by Corollary 1.
This is summarized below as a birthday bound for general distributions.

Theorem 1. Θ(
√

β(D)) samples according to D are sufficient and necessary
to produce a collision with constant probability for any classical algorithms.

Finally, we characterize β(D) for min-k distributions.

Lemma 3. Let Dk be a min-k distribution on Y with |Y | = N ≥ 2k and k ≥ 1.

– For a flat-k distribution Dk,�, β(Dk,�) = 2k.

– For δ-min-k distribution Dk,δ, β(Dk,δ) ≈
{

N ifN < 22k ;
22k ifN ≥ 22k.

– For a general min-k distribution Dk, β(Dk) ∈ [2k, 22k].

Proof. For flat-k Dk, Dk(y) = 1
2k for all y ∈ Y ′ ⊆ Y with |Y ′| = 2k. Hence

β(Dk) = 1∑
y∈Y ′ 2−2k = 2k. For Dk,δ distribution

β(Dk,δ) =
1

CP(Dk,δ)
=

1

2−2k + (1−2−k)2

N−1

=
22k(N − 1)

N − 2 · 2k + 22k
≈ 22k · N

22k + N
.

Different ranges of N give the estimation for β(Dk,δ). For general Dk, it is easy
to see that 2−2k ≤ CP(Dk) ≤ 2−k and hence β(Dk) ∈ [2k, 22k].

3 Lower Bounds: Finding a Collision is Difficult

We prove our quantum query lower bounds for min-k collision finding by security
reductions. Recall the hardness result for uniform distributions by Zhandry [37].

Lemma 4 ([37] Theorem3.1). Let f : [M ] → [N ] be a uniformly random
function. Then any algorithm making q quantum queries to f outputs a collision
in f with probability at most C(q + 1)3/N for some universal constant C.

We show that collision finding in any min-k distribution is at least as diffi-
cult as collision finding in a uniform distribution on a set of size 2k. We begin
by demonstrating a reduction of collision finding in a uniform distribution to
collision finding in a flat-k distribution. Then we show a reduction of collision
finding in a flat-k distribution to collision finding in a general k-distribution.
Therefore we prove the following results.
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Theorem 2. Let fflat ← DX
k,� be a random function whose outputs are cho-

sen independently according to a flat-k-distribution Dk,�. Then any quantum
algorithm making q queries to fflat outputs a collision with probability at most
O((q + 1)3/2k).

Theorem 3. Let fD ← DX be a random function whose outputs are chosen
independently according to a distribution D of min-entropy k. Then any quantum
algorithm making q queries to fD outputs a collision with probability at most
O((q + 1)3/2k).

Corollary 2. Any quantum algorithm needs at least Ω(2k/3) queries to find a
collision with constant probability in a random function fD ← DX whose outputs
are chosen according to a distribution D of min-entropy k.

Each of the proofs describe an algorithm (i.e., a reduction) attempting to find
a collision in a random function f to which it has oracle access. The reduction
will run, as a subroutine, another algorithm which finds a collision in another
random function g when given oracle access to g (these random functions are not
necessarily sampled from the same distribution). To adopt the subroutine which
finds collisions in g for the task of finding a collision in f , the reduction simulates
an oracle for g by building an oracle converter from the oracle for f and a suitable
redistribution function. In general the redistribution function must be random,
sampled from a particular distribution so that the distribution of its images
equals that of g. Given some distributions from which the images of f and g are
sampled, only some special sampling procedures will produce a redistribution
function suitable for building the oracle converter needed. We formalize the
concept of a redistribution function sampler as a generally randomized algorithm
that performs such a sampling procedure specific to the oracles the reduction
has access to and needs to simulate.

Definition 8 (D → D′ Redistribution Function Sampler). Suppose f :
X → Y is a random function whose images are distributed according to a dis-
tribution D. Let D′ be a distribution on Y ′. We call an algorithm S a D → D′

redistribution function sampler if it returns a function r : X × Y → Y ′ such
that Pr[r(x, f(x)) = y] = D′(y) for all y ∈ Y ′ and x ∈ X, where the probability
is taken over the random choice of f and the randomness of S.

We use the term redistribution function to refer to a function returned by a
redistribution function sampler, explicitly stating the distributions when neces-
sary. The redistribution function naturally induces an oracle converter.

Definition 9 (Oracle Converter). Suppose f ← DX is a random function
whose images are distributed according to a distribution D on Y . Let D′ be a
distribution on Y ′, and r : X × Y → Y ′ be a D → D′ redistribution function.
An algorithm C, having oracle access to f and r, is called an oracle converter
from f to g if C computes a function g : X → Y ′ defined by g(x) := r(x, f(x)).

We may denote g = Cf,r. We can immediately observe that g is distributed
as if the images were sampled independently according to D′, when f and r are
sampled according to the above definition.
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Lemma 5. The oracle converter defined above computes a function g that is dis-
tributed identically to D′X , i.e., its images are independently distributed accord-
ing to D′, if f ← DX is chosen randomly and r is generated by a D → D′

redistribution function sampler.

We will be concerned with finding collisions in f and g. In particular, we are
interested in whether a collision of g constitutes a collision of f . We define the
collision-conversion rate to capture this property of an oracle converter.

Definition 10 (Collision-conversion rate). Let C be an oracle converter
from f to g. We say that it has collision-conversion rate p if for any (x, x′)
such that g(x) = g(x′), f(x) = f(x′) also holds with probability at least p. The
probability is over the random choices of f ← DX and of a D → D′ redistribution
function r.

With these notions available, our reduction proofs basically sample a proper
redistribution function, and then simulate a correct oracle g distributed accord-
ing to D′X using an oracle converter accessing the given oracle f ∼ DX . Then
we run a collision-finding adversary on D′ with oracle g. Whenever it outputs a
collision, we can conclude that a collision is also found in f with probability p
by the collision-conversion rate, which will lead to the desired contradiction. For
each of the reductions, we will describe a suitable redistribution function sam-
pler and show that it has at least constant collision-conversion rate. To do so,
we assume that the reductions have full information about D and D′, as well as
sufficient randomness. This is fine as far as query complexity is concerned, and
it is an interesting open question to make them time-efficient. We also remark
that, for the sake of clarity, the distribution of images of our redistribution func-
tion is defined to be exactly matching distribution D′. It suffices to approximate
distribution D′ up to some negligible statistical distance.

Now we provide a generic formal description for all of our reductions, leav-
ing the redistribution function sampler as a modular component which we can
describe individually for each collision finding problem (for now we assume that
each reduction has access to an adequate redistribution function sampler in each
case). We do this in part to formally demonstrate how our reductions are com-
patible with quantum adversaries, allowing them to submit queries in quantum
superposition and receive the oracle responses in quantum superposition. We will
show that the oracle converters can be implemented as quantum oracles, so that
the reduction can simulate the collision-finding problem for a quantum adver-
sary who submit quantum queries. As usual, we consider a reduction solving
collision-finding in D using an adversary for collision-finding in D′.

We emphasize that the functions f and r are random functions sampled
before the adversary begins the attack (the attack referring to the query-response
phase in which interaction with the oracle occurs), as f is simply a model for what
would be a fixed, publicly known hash function in a practical security setting,
and r would be chosen by the adversary according to some procedure specific
to the hash function (this is the role played by redistribution function sampler).
Implementing the converter as a quantum-accessible oracle is straightforward
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Algorithm 1. Generic reduction via oracle converter
Input: Let f ← DX be a random function whose images are sampled according to D

on a set Y . Let D′ be a distribution on a set Y ′. Let S be a D → D′ redistribution
function sampler. Let A be an adversary for collision-finding in D′.

Output: A possible collision (x1, x2) in f .
1: Run S and store its output as r. Implement an oracle for r.
2: Construct an oracle converter C using the oracles for f and r. The responses of C

are now distributed according to D′. Refer to the function implemented by C as g.
3: Initialize A. For each query made by A, forward the query to C and return the

response to A.
4: When A returns a collision (x1, x2) in g, output (x1, x2).

as shown below (Fig. 1). Note that the function r can be turned into a unitary
operator by standard technique |x, x̃, y〉 r�→ |x, x̃, y ⊕ r(x, x̃)〉. f is given as a
quantum oracle, which we just need to query twice to answer each query to g.

UC

x
f(·)

r(·) f(·) x

|0 |0
y y ⊕ r(x, f(x))

Fig. 1. Quantum circuit that implements function g = Cf,r using two oracle calls to f .

Now that we have a generic construction for our reductions, we will show a
simple reusable general result that will allow us to quickly construct reductions
and extend query complexity lower bounds by simply demonstrating the exis-
tence of a satisfactory redistribution function sampler for use in each reduction.
In this context we say that a reduction algorithm succeeds if the output pair
indeed forms a collision in the given oracle function.

Lemma 6. Suppose there exists an algorithm A which solves collision finding in
a distribution D′ with probability at least PA, using q queries to an oracle for a
function g whose responses are distributed according to D′ 1. Suppose there exists
a D → D′ redistribution function sampler S such that the induced converter has
collision-conversion rate at least p. Then Algorithm1 initialized with S and A,
denoted RS,A, solves collision finding in D with probability at least p · PA using
2q queries to an oracle for f whose images are distributed according to D.

Proof. Lemma 6 follows trivially from the suppositions stated. Let A denote the
event that A succeeds, E denote the event that the a collision of g is also a
collision of f , and R denote the event that RS,A succeeds. Then

Pr[R] ≥ Pr[E ∩ A] = Pr[E|A] · Pr[A] = Pr[E] · Pr[A],
1 The probability PA reflects the randomness of oracle’s responses and of A.
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because E and A are independent (Pr[E] is simply the collision-conversion rate,
which is a property specific to the oracle converter used in Algorithm1). Since
Pr[E] ≥ p and Pr[A] ≥ PA, Pr[R] ≥ p · PA. The observation that RS,A uses
twice the number of oracle queries as A proves the lemma.

Therefore to prove Theorems 2 and 3, all that is left is to show suitable
redistribution function samplers.

Lemma 7. Let U2k be a uniform distribution on a set Y of size 2k. Let Dk,�

be a flat-k distribution on a set Y1, and Dk a general min-k distribution on a
set Y2. There exist U2k → Dk,� and Dk,� → Dk redistribution function samplers,
and the induced oracle converters have collision-conversion rates at least 1/2.

Proof. We describe the two samplers below.

U2k → Dk,� sampler. In this case the redistribution function sampler is nearly
trivial because a simple relabeling of samples from the distribution U2k will
suffice to simulate samples from the distribution Dk,�. Let f be a function f :
X → Y whose images are distributed according to U2k , to which oracle access
is available. Let m : Y → Y1 be any injective mapping. Define S1 as a one-step
algorithm that returns a function r1(x, y) = m(y).

By the definition of r1, Pr[r1(x, f(x)) = y′] = Pr[m(f(x)) = y′] for all
x ∈ X and y′ ∈ Y1. Since m implements an injective mapping from Y to Y1,
Pr[m(f(x)) = y′] = Pr[f(x) = m−1(y′)]. Since, by the definition of f , Pr[f(x) =
y] = U2k(y) for all y ∈ Y , Pr[f(x) = m−1(y′)] = U2k(m−1(y′)) = 2−k. Hence
Pr[r1(x, f(x)) = y′] = Dk,�(y′) for all x ∈ X and y′ ∈ Y1, since Dk,�(y′) = 2−k

for all y′ ∈ Y1. It follows that S1 is a U2k → Dk,� redistribution function sampler.
We now show that the collision-conversion rate of the induced oracle converter
is exactly 1. Let (x1, x2) be a collision in g, the function implemented by the
oracle converter. Then r1(x1, f(x1)) = r1(x2, f(x2)), from which it follows that
m(f(x1)) = m(f(x2)). Since m is an injective mapping, we can conclude that
f(x1) = f(x2), which shows that (x1, x2) is necessarily a collision in f .

Dk,� → Dk sampler. We provide an overview of the Dk,� → Dk redistribution
function sampler in the following few paragraphs. The complete redistribution
function sampler is given in the full version, along with a detailed explanation
of the reasoning behind it. We reiterate that the redistribution function can
be prepared before oracle access to the hash function under attack is obtained,
allowing the query-response phase of the attack to be implemented as a quantum
algorithm without concern for the quantum implementation of the redistribution
function sampler.

The basic challenge that must be solved by the redistribution function sam-
pler is to provide a mapping from the support of one distribution to the support
of another distribution in such a way that the output is actually distributed
according to the second distribution, which we call Dk, when the input is
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distributed according to the first, which we call Dk,�
2. In order to maximize the

probability that Algorithm1 succeeds, the mapping must maximize the proba-
bility that two identical outputs correspond with two identical inputs, i.e., the
collision-conversion rate. Our construction for this redistribution function sam-
pler, which we call S2 (and which returns a function which we call r2), ensures
that this probability is no less than one half by allowing at most two elements
of the support of the Dk,� be mapped to each element of the support of Dk. To
provide intuition for how this is achieved, we recommend visualizing each distri-
bution as a rectangle divided into ‘bins’ representing the elements of its support,
with each bin’s width proportional to the probability mass of the corresponding
element under the distribution. We refer to this as the rectangular representation
of the distribution. An example is shown below. We let Dk,� be a flat distribution
of min-entropy 2, and Dk be a (non-flat) distribution of min-entropy 2. We label
each bin with a number indexing the elements of the support in each case.

1 2 3 4 5 Dk

1 2 3 4 Dk,�

For each of the elements of the support of Dk,�, we must decide what the
probability mass corresponding to that element in Dk,� should ‘be sent to’ by
the redistribution function, in the sense that whatever that element is mapped
to will occur with the same probability as that of sampling the element from
Dk,�. A natural solution that would correctly produce the distribution Dk is to
in some sense ‘project’ the distribution Dk,� onto Dk, so that each ‘location’
in the rectangular representation of Dk,� is mapped to a ‘location’ in the rect-
angular representation of Dk (by ‘location’ here we refer to horizontal position
a rectangular representation, selecting some specific probability density). We
illustrate this sort of projection by drawings lines between the two rectangular
representations that show where the boundaries between the elements of each
distribution’s support fall in the other distribution, shown below.

1 2 3 4 5 Dk

1 2 3 4 Dk,�

2 A redistribution function formally is also provided the query x that is associated
with the sample from the first distribution, which is (in Algorithm 1) the response
from an oracle whose output is distributed according to the first distribution. This is
necessary in cases where the second distribution has a larger support than the first,
since the image of the redistribution function cannot be larger than the domain. It
can safely be ignored otherwise (as in the construction for r1).
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From the fact that the width of each bin is proportional to the probabil-
ity mass associated with each element of each distribution, it follows that, if,
for a given sample from Dk,�, we sample an element from the support of Dk

according to the available probability mass inside the projected bin from Dk,�,
the sampling result will be distributed exactly according to the distribution Dk.
This is difficult to communicate verbally, but visually, one can imagine receiving
a sample from Dk,� as ‘selecting’ the bin associated with the sampled value in
the rectangular representation of the distribution. Then, following the lines bor-
dering that bin, we find that the probability mass associated with the sample
from Dk,� is mapped to probability mass corresponding to several elements of
the support of distribution Dk. If we now sample from these elements according
to their share of the probability mass corresponding to the sample from Dk,�,
our samples will be distributed according to Dk. For example, with reference
specifically to the graphic above, suppose that we receive element 2 as a sample
from Dk,�. Following the lines down from the bin corresponding to element 2
in the rectangular representation of Dk,�, we see that elements 2 and 3 in the
support of Dk both partially reside in the space corresponding to bin 2 in the
rectangular representation of Dk,�. In particular, element 2 in the support of Dk

consumes much more of the space than element 3. Hence we sample either 2 or
3, with a bias toward 2 exactly equal to how much more of the space element 2
consumes (recall that space in these rectangular representations corresponds to
probability mass). Similarly, had we received element 3 as a sample from Dk,�,
we would have sampled from elements 3 and 4 in the support of Dk with little or
no bias, since these seem to roughly evenly split the space inside the boundaries
of the bin corresponding to element 3 in the support of Dk,�.

It should be clear now that this procedure will produce samples distributed
according to Dk when given samples distributed according to Dk,�, at the cost
of needing additional randomness to perform the sub-sampling. Generating the
redistribution function r2 is then simply a matter of saving the resulting samples
in a look-up table. Although this procedure is conceptually simple, its rigorous
mathematical description is exceedingly tedious, so we provide it in the full
version of this paper. Also in the full version is a proof that the redistribu-
tion function sampler S2 has a collision-conversion rate of at least one-half. The
intuition behind this property is that a sample from Dk produced by the redistri-
bution function could have been generated by, at most, 2 distinct samples from
Dk,�, since each bin in the rectangular representation of Dk resides within the
boundaries of, at most, 2 bins in the rectangular representation of Dk,�.

We have shown that S1 and S2, as just described (and formally described in
the full version in the case of S2), are U2k → Dk,� and Dk,� → Dk redistribution
function samplers, respectively. Finally, Theorems 2 and 3 follow easily. Note
that we write some of the constant factors in the probabilities with the com-
mon notation C, even though they will not all take the same numerical value,
in recognition that they are not interesting for the study of asymptotic query
complexity.



Quantum Collision-Finding in Non-uniform Random Functions 481

Proof (Proof of Theorems 2 and 3). By Lemma 7, there exists a U2k → Dk,�

redistribution function sampler S1 for which the induced collision-conversion rate
is at least one-half. Therefore Lemma 6 implies that our reduction algorithm is
an collision-finding adversary making 2q queries to a uniformly random function
f with success probability at least PA/2. However, Lemma 4 tells us that any 2q-
query adversary can succeed with probability at most C(2q + 1)3/2k. Therefore
the success probability PA of any q-query adversary A is O(q + 1)3/2k, which
proves Theorem 2.

Theorem 3 is proved in the same fashion by invoking the Dk,� → Dk redis-
tribution function sampler S2 in Lemma 7 and with Theorem 2 taking the place
of Lemma 4.

3.1 Stronger Lower Bound for δ-min-k Distributions

Note that following the same strategy, one can show a reduction of collision find-
ing in an arbitrary min-k distribution D to collision finding in a δ-k-distribution.
This is interesting because it affirms that the δ-k-distribution case is the most
difficult out of all k-distributions. Clearly, if no elements in the support of D are
associated with a probability mass less than 1/N , the proof of Theorem 3 can
be adapted by replacing all references of 2−k as the probability of sampling each
element from the flat distribution with a general probability D(x), and replacing
the general distribution D with a δ-k-distribution Dδ. The general case where D
has elements associated with smaller probability mass than 1/N may be resolved
by considering the distribution removing these elements and showing that it is
computationally indistinguishable from the original.

In this section we give further evidence and establish an even stronger bound
for finding collision in the δ-k-distribution case.

Theorem 4. For any q-query algorithm A,

Pr
f←Dk,δ

X
[f(x) = f(x′) : (x, x′) ← Af (·)] ≤ O

(
(q + 2)2

2k
+

(q + 2)3

N

)

.

We give two proofs. The one presented here relies on a technique by Zhandry
(Lemma 8). We give an alternative proof in the full version based on a reduction
from an average version of a search problem which is hard to solve from the
literature. This may serve as an intuitive explanation of the hardness of non-
uniform collision finding. It also connects to the quantum algorithm we develop
in Sect. 4.1 based on Grover’s search algorithm.

Lemma 8 [36, Theorem 7.2]. Fix q, and let Fλ be a family of distributions on
Y X indexed by λ ∈ [0, 1]. Suppose there is an integer d such that for every 2q
pairs (xi, yi) ∈ X × Y , the function pλ := Prf←Fλ

(f(xi) = yi,∀i ∈ {1, . . . , 2q})
is a polynomial of degree at most d in λ. Then any quantum algorithm A making
q queries can only distinguish Fλ from F0 with probability at most 2λd2.

This lemma enables us to prove the following proposition.
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Proposition 1. For any q-query algorithm A,
∣
∣
∣
∣ Pr
f←Dk,δ

X
(Af (·) = 1) − Pr

f←Y X
(Af (·) = 1)

∣
∣
∣
∣ ≤ 8q2/2k + 1/N.

Proof. For every λ ∈ [0, 1], define Dλ on Y such that there is an element m ∈ Y
with Dλ(m) = λ and for any y �= m Dλ(y) = 1−λ

|Y |−1 . Then define a family of

distributions Fλ on Y X where Fλ := Dλ
X , i.e., the output of each input is chosen

independently according to Dλ.
For any {(xi, yi)}2q

i=1, pλ := Prf←Fλ
(f(xi) = yi,∀i ∈ [2q]) = λt( 1−λ

|Y |−1 )2q−t,

where t is the number of occurrences of m in {yi}2q
i=1. Clearly pλ is a polynomial

in λ with degree at most 2q.
Notice that F2−k is exactly δ-min-k distribution Dk,δ, and F0 is uniformly

random on Ŷ X , where Ŷ := Y \{m}. Therefore by Lemma 8,
∣
∣
∣
∣ Pr
f←Dk,δ

X
(Af (·) = 1) − Pr

f←Ŷ X

(Af (·) = 1)
∣
∣
∣
∣ ≤ 2(2q)2 · 2−k = 8q2/2k.

Since Y X and Ŷ X has statistical distance 1
2 (N − 1)( 1

N−1 − 1
N )+ 1

2 ( 1
N − 0) =

1/N , we get that
∣
∣
∣Prf←Dk,δ

X (Af (·) = 1) − Prf←Y X (Af (·) = 1)
∣
∣
∣ ≤ 8q2/2k+1/N .

We are now ready to prove the stronger complexity for finding collision in a
δ-min-k random function.

Proof (Proof of Theorem 4). Suppose that there is an A with

Pr
f←Dk,δ

X
[f(x) = f(x′) : (x, x′) ← Af (·)] = ε

using q queries. Then construct A′ which on input oracle f , runs A and receives
(x, x′) from A. A′ then output 1 iff. f(x) = f(x′). By definition, we have that
Prf←Dk,δ

X (A′f (·) = 1) = ε. Meanwhile, note that A′ makes q+2 queries. There-
fore by Zhandry’s lower bound on finding collision in uniform random function
(Lemma 4), we know that Prf←Y X (A′f (·) = 1) ≤ O( (q+3)3

N ). Then Proposition 1
implies that

ε ≤ O(
(q + 3)3

N
) + 8(q + 2)2/2k + 1/N = O(

(q + 2)2

2k
+

(q + 3)3

N
).

Corollary 3. Any quantum algorithm needs min{2k/2, N1/3} queries to find a
collision with constant probability. Specifically we need Ω(N1/3) if 2k ≤ N < 2

3k
2 ,

and Ω(2k/2) when N ≥ 2
3k
2 .
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4 Upper Bounds: (Optimal) Quantum Algorithms

We derive a generic upper bound for finding collision in any min-k random
functions. We adapt Ambainis’s algorithm (Lemma9) and describe a quantum
algorithm NU-ColF (Algorithm 2).

Lemma 9 ([8, Theorem 3]). Let f : X ′ → Y be a function that has at least one
collision. Then there is a quantum algorithm ColF making O(|X ′|2/3) quantum
queries to f that finds the collision with constant bounded error.

Algorithm 2. Collision Finding in Non-uniform Function NU-ColF

Input: f ← Dk
X as an oracle. Let s, t be parameters to be specified later.

Output: Collision (x, x′) or ⊥.
1: Divide X in to subsets Xi of equal size (ignoring the boundary case) |Xi| = s.
2: Construct fi : Xi → Y as the restriction of f on Xi.
3: For i = 1, . . . , t, Run Ambainis’s algorithm ColF on fi, and get candidate collision

xi and x′
i. if f(xi) = f(x′

i), output (xi, x
′
i) and abort.

4: Output ⊥.

Theorem 5. Let β := β(Dk). Let X be a set with |X| = M = Ω(
√

β). Algo-
rithm2 NU-ColF finds a collision in f ← XDk within O(β1/3) queries with con-
stant probability. Moreover with O(kβ1/3) queries the algorithm succeeds except
with probability negligible in k.

Proof. Since f is generated according to the min-k distribution, when restricting
to any subset Xi, we can think of drawing each function value independently
from Dk. Namely fi ∼ Dk

Xi holds for all i. Therefore, by Lemma 1, we have
that when s ≥ c

√
β(D) for some c > 2, fi contains a collision with constant

probability. If that is the case, Ambainis’s algorithm will find a collision with
constant probability using O(|Xi|2/3) = O(β(D)1/3) queries. We only need to
repeat t = O(k) times to succeed except with error negligible in k.

Note that our algorithm NU-ColF is generic, and needs no additional informa-
tion about Dk. By our characterization of β(Dk) in Lemma 3, we obtain specific
bounds for the two special distributions.

Corollary 4. There exists a quantum algorithm that finds a collision with con-
stant probability using the following numbers of queries:

– flat-k: O(β1/3) = O(2k/3) and it is tight when M = Ω(2k/2).

– δ-min-k: O(β1/3) =
{

O(N1/3) 2k ≤ N < 22k, tight whenN ≤ 23k/2

O(2
2k
3 ) N ≥ 22k.
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4.1 Quantum Algorithm for min-k Distribution with a Mode
Known

We design an alternative collision finding algorithm (Algorithm3), which per-
forms slightly better in some settings. It is based on a version of Grover’s algo-
rithm [15,22,28] for multiple marked items stated below.

Lemma 10. Let f : X → {0, 1} be an oracle function and let Zf = |{x ∈ X :
f(x) = 1}|. Then there is a quantum algorithm QSearch using q queries that
finds an x ∈ X such that f(x) = 1 with success probability Ω(q2 Zf

|X| ).

Algorithm 3 . Collision Finding in Non-uniform Function with a mode
known NU-ColF-Mode
Input: f ← Dk

X as an oracle. A mode element m of Dk.
Output: Collision (x, x′) or ⊥.
1: Run Grover’s algorithm QSearch on f to find x with f(x) = m.
2: Run Grover’s algorithm QSearch on f to find x′ with f(x) = m and x′ �= x.
3: Output ⊥ if any run of the Grover’s algorithm failed. Otherwise output (x, x′).

Theorem 6. NU-ColF-Mode finds a collision using O(2k/2) queries with con-
stant probability.

Proof. Let Zf := |f−1(m)|. Let pf be the probability that f is chosen, when
drawn from Dk

X . Since we invoke QSearch twice, we find (x, x′) with proba-
bility Ω

(
( q2Zf

|X| )2
)
. Then algorithm NU-ColF-Mode succeeds with probability

∑

f

pfΩ

(
q4

M2
Z2

f

)

= Ω

⎛

⎝ q4

M2

∑

f

pfZ2
f

⎞

⎠ = Ω(
q4

M2
E[Z2

f ]).

To compute E[Z2
f ], we define for every x ∈ X an indicator variable Zx =

{
1 if f(x) = m;
0 otherwise. , where f ← Dk

X , and clearly Zf =
∑

x∈X Zx. Since each

output of x is drawn independently according to Dk,δ, E[Zx] = ε := 2−k for all
x, it follows that E[Zx] = E[Z2

x] = ε, and E[Zx · Zx′ ] = E[Zx] · E[Zx′ ] = ε2 for
any x �= x′ by independence. Therefore

E[Z2
f ] =

∑

x

E[Z2
x] +

∑

x�=x′
E[ZxZx′ ] = Ω(M2ε2).

Hence the algorithm succeeds with probability Ω(q4ε2) = Ω(( q2

2k )2). As a result,
with q = O(2k/2) many queries, we find a collision with constant probability.

Remark 1. Note that we still need M = Ω(
√

β(D)) to ensure existence of colli-
sions. When N ≥ 23k/2, Theorem 6 gives a better bound (2k/2) than Theorem 5
(N1/3 when 23k/2 ≤ N < 22k and 22k/3 when N ≥ 22k).
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