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Preface

PQCrypto 2018, the 9th International Conference on Post-Quantum Cryptography, was
held in Fort Lauderdale, Florida, USA, during April 9–11, 2018.

The aim of the PQCrypto conference series is to serve as a forum for researchers to
present results and exchange ideas on cryptography in an era with large-scale quantum
computers.

PQCrypto 2018 was co-located with NIST’s First PQC Standardization Conference
(April 11–13, 2018) in Fort Lauderdale, Florida. Following the same model as its
predecessor, PQCrypto 2018 adopted a two-stage submission process in which authors
registered their paper one week before the final submission deadline.

The conference received 97 submissions with authors from 30 countries. Each paper
(that had not been withdrawn by the authors) was reviewed in private by at least three
Program Committee members. The private review phase was followed by an intensive
discussion phase, conducted online. At the end of this process, the Program Committee
selected 24 papers for inclusion in the technical program and publication in these
proceedings. The accepted papers cover a broad spectrum of research within the
conference’s scope, including code-, hash-, isogeny-, and lattice-based cryptography,
multivariate cryptography, and quantum cryptanalysis.

Along with the 24 contributed technical presentations, the program featured out-
standing invited talks and a presentation on NIST’s post-quantum cryptography
standardization.

Organizing and running this year’s edition of the PQCrypto conference series was a
team effort, and we are indebted to everyone who helped make PQCrypto 2018 a
success. In particular, we would like thank all members of the Program Committee and
the external reviewers who were vital for compiling the technical program. Evaluating
and discussing the submissions was a labor-intense task, and we truly appreciate the
work that went into this. We also owe a big thank you to Maria Provost from Florida
Atlantic University, who made sure that all local arrangements fell into place as
needed.

February 2018 Tanja Lange
Rainer Steinwandt
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LEDAkem: A Post-quantum Key
Encapsulation Mechanism Based

on QC-LDPC Codes

Marco Baldi1(B) , Alessandro Barenghi2 , Franco Chiaraluce1 ,
Gerardo Pelosi2 , and Paolo Santini1

1 Università Politecnica delle Marche, Ancona, Italy
{m.baldi,f.chiaraluce}@univpm.it, p.santini@pm.univpm.it

2 Politecnico di Milano, Milan, Italy
{alessandro.barenghi,gerardo.pelosi}@polimi.it

Abstract. This work presents a new code-based key encapsulation
mechanism (KEM) called LEDAkem. It is built on the Niederreiter
cryptosystem and relies on quasi-cyclic low-density parity-check codes
as secret codes, providing high decoding speeds and compact keypairs.
LEDAkem uses ephemeral keys to foil known statistical attacks, and
takes advantage of a new decoding algorithm that provides faster decod-
ing than the classical bit-flipping decoder commonly adopted in this kind
of systems. The main attacks against LEDAkem are investigated, tak-
ing into account quantum speedups. Some instances of LEDAkem are
designed to achieve different security levels against classical and quan-
tum computers. Some performance figures obtained through an efficient
C99 implementation of LEDAkem are provided.

Keywords: Code-based cryptography
Key encapsulation mechanism · Niederreiter cryptosystem
Post-quantum cryptography
Quasi-cyclic low-density parity-check codes

1 Introduction

Devising efficient and robust post-quantum key encapsulation mechanisms
(KEMs) is an important and urgent research target, as also witnessed by the
recent NIST call for post-quantum cryptographic systems [32]. Code-based
cryptosystems are among the most promising candidates to replace quantum-
vulnerable primitives which are still relying on the hardness of the integer factor-
ization or discrete logarithm problems, such as the Diffie-Hellman key exchange
and the Rivest-Shamir-Adleman (RSA) and ElGamal cryptosystems. Indeed,
Shor’s algorithm [41] can be used to solve both the integer factorization and the
discrete logarithm problems in polynomial time with a quantum computer. One
of the problems for which no known polynomial time algorithm on a quantum

c© Springer International Publishing AG, part of Springer Nature 2018
T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 3–24, 2018.
https://doi.org/10.1007/978-3-319-79063-3_1
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computer exists is the decoding of a general linear code. Indeed, such a prob-
lem belongs to the non deterministic-polynomial (NP)-complete computational
equivalence class [11,27], which is widely believed to contain problems which
have no polynomial time solution on a quantum computer.

The first code-based public-key cryptosystem relying on the general linear
code decoding problem was proposed by McEliece in 1978 [28], and used Goppa
codes [18] to form the secret key. Such a choice yields large public keys, which is
the main limitation of Goppa code-based systems. The Niederreiter cryptosys-
tem [34] is a code-based cryptosystem exploiting the same trapdoor, but using
syndromes and parity-check matrices instead of codewords and generator matri-
ces as in McEliece. When the same family of codes is used, Niederreiter and
McEliece are equivalent [25] and therefore they achieve the same security levels.

Replacing Goppa codes with other families of more structured codes may
reduce the public key size. However, this may also compromise the system secu-
rity, as it occurred with some first McEliece variants based on quasi-cyclic (QC)
codes [17], low-density parity-check (LDPC) codes [31] and quasi-cyclic low-
density parity-check (QC-LDPC) codes [35], quasi-dyadic (QD) codes [30], con-
volutional codes [26] and some instances based on generalized Reed-Solomon
(GRS) codes [7,10]. Nevertheless, some variants exploiting QC-LDPC and quasi-
cyclic moderate-density parity-check (QC-MDPC) codes [2,3,29] have been
shown to be able to achieve very compact keys without endangering security.

Recently, some new statistical attacks have been developed that exploit the
information coming from decryption failures in QC-LDPC and QC-MDPC code-
based systems to perform key recovery attacks, thus forcing to renew keys fre-
quently in these systems [16,20].

In this paper, we start from the QC-LDPC code-based system proposed in
[2,3] and we develop a new KEM based on the the Niederreiter cryptosystem. We
also introduce an improved decoding algorithm which exploits correlation among
intentional errors seen by the private code. This way, the correction capability of
the private code is exploited to the utmost, thus allowing to achieve significant
reductions in the public key size. We call the new system LEDAkem and study
its properties and security. We take into account the fact that Grover’s algorithm
running on a quantum computer may be exploited to speedup attacks based on
information set decoding (ISD) [22,43], and we propose some sets of parameters
for LEDAkem achieving different security levels against attacks exploiting both
classical and quantum computers. We also describe an optimized software imple-
mentation of the proposed system and provide and discuss some performance
figures. LEDAkem currently is one of the first round candidate algorithms of
the NIST post-quantum cryptography standardization project [32], along with
other code-based KEMs. In this work we will highlight the differences between
our proposal and the closest one among the others, i.e. BIKE [1], which relies
on QC-MDPC codes for its construction.

The organization of the paper is as follows. In Sect. 2 we describe LEDAkem.
In Sect. 3 we present its security analysis and in Sect. 4 its peculiar features.
In Sect. 5 we discuss some implementation issues and we show some numerical
results. Finally, some conclusions are drawn in Sect. 6.
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2 The LEDAkem Cryptosystem

The LEDAkem cryptosystem is derived from the Niederreiter cryptosystem with
the following main differences:

– Non-algebraic codes known as QC-LDPC codes are used as secret codes.
– The public code is neither coincident with nor equivalent to the private code.
– Suitably designed iterative non-bounded-distance decoding algorithms are

used.

The motivation for using QC-LDPC codes as private codes is in the fact
that these codes are known to achieve important reductions in the public key
size when used in this context [2,29]. Moreover, when LDPC codes are used as
private codes, the public code cannot be either coincident with or equivalent to
the private code. Indeed, in such a case, an attacker could search for low weight
codewords in the dual of the public code and find a sparse parity-check matrix
of the private code which allows efficient decoding.

For this reason, following [2], LEDAkem uses a transformation matrix Q that
hides the sparse parity-check matrix H of the private code into a denser parity-
check matrix L = HQ of the public code. This also affects the error vector that
must be corrected during decryption, which is obtained from the error vector
used during encryption through multiplication by Q. In this work, we show
how it is possible to exploit the knowledge of Q to design an ad-hoc decoding
algorithm achieving very good performance in terms of both decoding speed and
decryption failure rate (DFR).

In fact, a well-known feature of LDPC coding is that the decoding radius of
iterative decoders is not sharp and cannot be estimated in a deterministic way.
It follows that some residual DFR must be tolerated, and it must be estimated
heuristically through Montecarlo simulations. This is done for all the proposed
instances of LEDAkem in order to guarantee that they achieve a sufficiently low
DFR. Providing quantitative estimates of the DFR for the proposed instances
of LEDAkem allows us to prevent attacks such as the ones described in [16,20]
changing the key either at each round of the KEM, or before a sufficient amount
of decoding failures are observed by the attacker.

2.1 Coding Background

A QC code is defined as a linear block code with dimension k = pk0 and length
n = pn0, in which each cyclic shift of a codeword by n0 symbols results in another
valid codeword. It follows from their definition that QC codes have generator and
parity-check matrices in “blocks circulant” form or, equivalently, in “circulants
block” form. The latter is used in LEDAkem. A v × v circulant matrix A has
the following form
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A =

⎡
⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · av−1

av−1 a0 a1 · · · av−2

av−2 av−1 a0 · · · av−3

...
...

...
. . .

...
a1 a2 a3 · · · a0

⎤
⎥⎥⎥⎥⎥⎦

. (1)

According to its definition, any circulant matrix is regular, since all its rows and
columns are cyclic shifts of the first row and column, respectively.

The set of v × v binary circulant matrices forms an algebraic ring under the
standard operations of modulo-2 matrix addition and multiplication. The zero
element is the all-zero matrix, and the identity element is the v × v identity
matrix. The algebra of the polynomial ring F2[x]/〈xv + 1〉 is isomorphic to the
ring of v × v circulant matrices over F2 with the following map

A ↔ a (x) =
v−1∑
i=0

aix
i. (2)

According to (2), any binary circulant matrix is associated to a polynomial in
the variable x having coefficients over F2 which coincide with the entries of the
first row of the matrix

a (x) = a0 + a1x + a2x
2 + a3x

3 + · · · + av−1x
v−1. (3)

According to (2), the all-zero circulant matrix corresponds to the null polyno-
mial and the identity matrix to the unitary polynomial. The ring of polynomials
F2[x]/〈xv +1〉 includes elements that are zero divisors which are mapped to sin-
gular circulant matrices over F2. Avoiding such matrices is important in some
parts of LEDAkem, and smart ways exist to design non-singular circulant matri-
ces. As it will be described next, the main part of the secret key of LEDAkem is
formed by a binary QC-LDPC code described through its parity-check matrix
H. Let n denote the code length in bits and k denote the code dimension in bits,
then H has size (n − k) × n = r × n, where r is the code redundancy.

2.2 Description of the Primitives

The main functions of LEDAkem are described next.

Key Generation. Both private and public keys consist of binary matrices.
These matrices, in their turn, are formed by p × p circulant blocks, being p an
integer properly chosen.

Secret key. The key generation input is formed by:

– The circulant block size p (usually in the order of some thousands bits).
– The integer n0 (usually between 2 and 4), representing the number of circulant

blocks forming the matrix H.
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– The integer dv, representing the row/column weight (usually between 15 and
25) of the circulant blocks forming the matrix H.

– The vector of integers m̄ = [m0,m1, . . . ,mn0−1], representing the row/column
weights (each entry usually smaller than 10) of the circulant blocks forming
the matrix Q (the structure of Q is clarified below).

Given these inputs, the secret key is obtained as follows.
First, n0 sparse circulant matrices with size p × p are generated at ran-

dom. Each of them has row/column weight dv. We denote such matrices
as H0,H1, . . . , Hn0−1. The secret low-density parity-check matrix H is then
obtained as

H = [H0|H1|H2| . . . |Hn0−1] . (4)

The size of H is p × n0p. Other n2
0 sparse circulant blocks Qi,j are then

randomly generated to form the secret sparse matrix

Q =

⎡
⎢⎢⎢⎣

Q0,0 Q0,1 . . . Q0,n0−1

Q1,0 Q1,1 . . . Q1,n0−1

...
...

. . .
...

Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

⎤
⎥⎥⎥⎦ . (5)

The row/column weight of each block Qi,j is fixed according to the following
matrix

w(Q) =

⎡
⎢⎢⎢⎣

m0 m1 . . . mn0−1

mn0−1 m0 . . . mn0−2

...
...

. . .
...

m1 m2 . . . m0

⎤
⎥⎥⎥⎦ , (6)

such that each row and each column of Q has weight m =
∑n0−1

i=0 mi.
The choice of the weights m̄ = [m0,m1, · · · ,mn0−1] and the size p of the

circulant blocks composing it is very important since it allows to discern if Q is
invertible or not. In particular, denoting with Π {·} the permanent of a matrix,
the following theorem holds.

Theorem 1. Let p > 2 be a prime such that ordp(2) = p−1 and Q be an n0×n0

matrix with elements in F2[x]/〈xp + 1〉; if Π {w(Q)} is odd and Π {w(Q)} < p,
then Q is non singular.

Proof. Omitted for the sake of brevity.

With this result, we can guarantee that, when the sequence m̄ is properly chosen,
the matrix Q is always non singular, which is a necessary condition for the key
generation process to be successful.

Definition 1. The secret key (SK) of LEDAkem is formed by {H,Q}.
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Since both H and Q are formed by sparse circulant blocks, it is convenient
to represent each of these blocks through the indexes of the symbols 1 in their
first row, i.e., adopt a sparse representation for them. Each index of this type
requires �log2(p)� bits to be stored. If we consider that the circulant blocks in
any block row of Q have overall weight m =

∑n0−1
i=0 mi, the size of SK in bits is

Ssk = n0 (dv + m) �log2(p)� . (7)

In practice, the secret matrices are generated through a deterministic random
bit generator (DRBG), seeded with a bit string extracted from a true random
number generator (TRNG). In this case, to obtain H and Q it is sufficient to
know the TRNG extracted seed of the DRBG that has been used to generate
the positions of their non-null coefficients, since this process is rather fast. This
approach allows reducing the size of the secret key to the minimum required, as
it is assumed that the TRNG output cannot be compressed. The entity of the
reduction depends on the values of the parameters involved in (7).

Public key. Starting from H and Q, the following binary matrices are computed.
First of all, the matrix L is obtained as

L = HQ = [L0|L1|L2| . . . |Ln0−1] . (8)

If both dv and m are odd, then Ln0−1 has full-rank. In fact, Ln0−1 =∑n0−1
i=0 HiQi,n0−1 and has weight equal to mdv − 2c (where c is the number

of cancellations occurred in the product). It is possible to demonstrate that if
mdv is odd and mdv < p then Ln0−1 is non-singular.

After inverting Ln0−1, the following matrix is computed:

M = L−1
n0−1L = [M0|M1|M2| . . . |Mn0−2|I] = [Ml|I] . (9)

Definition 2. The public key (PK) of LEDAkem is formed by Ml =
[M0|M1|M2| . . . |Mn0−2].

Since the circulant blocks forming Ml are dense, it is convenient to store
them through the binary representation of their first row (the other rows are
then obtained as cyclic shifts of the first row). The bit-size of the PK hence is

Spk = (n0 − 1) p. (10)

Encryption. The plaintext of LEDAkem is an ephemeral random secret gen-
erated by Bob who is willing to share it with Alice. The encryption inputs are:

– The values of n0 and p, from which n = n0p is computed.
– The number of intentional errors t � n.

Bob generates a secret in the form of a random binary vector e with length of
n = n0p bits and Hamming weight t. Given a key derivation function (KDF), the
shared secret key ks is generated from e as ks = KDF(e). In order to encapsulate
the shared secret e, Bob fetches Alice’s PK Ml and computes s = [Ml|I] eT where
T denotes matrix transposition. The p × 1 syndrome vector s representing the
encapsulated secret is then sent to Alice.
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Decryption. In order to perform decryption, Alice must recover e from s.
The latter can be written as s = MeT = L−1

n0−1LeT = L−1
n0−1HQeT . The first

decryption step for Alice is computing s′ = Ln0−1s = HQeT . For this purpose,
Alice needs to know Ln0−1 that, according to (8), is the last circulant block of
the matrix HQ. Hence, it can be easily computed from the SK which contains
both H and Q. If we define the expanded error vector as

e′ = eQT , (11)

then we have s′ = He′T . Hence, QC-LDPC decoding through H can be exploited
for recovering e′ from s′. QC-LDPC decoders are not bounded distance decoders,
and some DFR must be tolerated. However, the system parameters can be chosen
such that the DFR is acceptably small. For this purpose, the average decoding
radius of the private code must be sufficiently larger than the Hamming weight
of e′, which is approximately equal to mt (due to the sparsity of Q and e). Then,
multiplication by

(
QT

)−1 would be needed to obtain e from e′, that is,

e = e′ (QT
)−1

. (12)

However, by exploiting the efficient decoding algorithm described in Sect. 2.3,
this last step can be avoided, which also allows avoiding the computation and
storage of

(
QT

)−1 as part of the secret key. In fact, the decoding algorithm
described in Sect. 2.3 allows recovering e directly by performing decoding of
s′ = Ln0−1s = HQeT through H, while taking into account the effect of the
multiplication of e by Q. Then, the secret key is recovered as ks = KDF(e).

In case a decoding error occurs, the decryption procedure derives the shared
secret combining with a KDF the syndrome with a secret constant, which may
be derived via a PRNG from the secret key material [38]. Alternatively, using
a secret permutation of the syndrome as input to the KDF was noted to be
effective in [21]. Such an approach is beneficial from the security standpoint in
case of an accidental keypair reuse. More details concerning this aspect, which
is related to formal security of LEDAkem, will be given in Sect. 4. According to
this approach, Bob will become aware of the decoding failure upon reception of
the message sent by Alice encrypted with the incorrectly derived shared secret.

2.3 Efficient Decoding

Classical bit flipping (BF) decoding works as follows. At each iteration, for each
codeword bit position, the number of unsatisfied parity-check equations is com-
puted, and if this number equals or exceeds a given threshold, then that bit is
flipped. The decision threshold can be chosen in many ways, affecting the decoder
performance, and it can be fixed or it can vary during iterations. A choice that
often turns out to be optimal is to fix the threshold, at each iteration, as the
maximum number of unsatisfied parity-check equations in which any codeword
bit is involved. In fact, a codeword bit participating in a higher number of unsat-
isfied parity-check equations can be considered less reliable than a codeword bit
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participating in a smaller number of unsatisfied parity-check equations. So, if
the threshold is chosen in this way, the bits that are flipped are those that are
most likely affected by errors.

Starting from classical BF, we have developed an improved decoder that
is specifically designed for LEDAkem, where the position of the ones in the
expanded error vector e′ to be corrected is influenced by the value of QT , as e′

is equivalent to a random error vector e with weight t multiplied by QT . Since
this improved decoder takes into account such a multiplication by the transpose
of matrix Q to estimate with greater efficiency the locations of the bits of the
expanded error vector, we denote it as Q-decoder.

Inputs of the decoder are the syndrome s′ and the matrices H and Q accord-
ing to (4) and (5), respectively. The output of the decoder is a 1 × n vector ê
or a decoding failure, where ê represents the decoder estimate of the error vec-
tor e appearing in the equality s′ = HQeT . The decoding process performs a
maximum of lmax iterations, where the l-th iteration processes s(l−1) and ê(l−1)

(that is the values at the previous iteration) and outputs s(l) and ê(l). A thresh-
old criterion is adopted to compute the positions in ê(l) that must be changed.
The threshold values b(l) can be chosen in different ways and affect the decoder
performance. In the next section we describe a simple and effective procedure to
design such values. The decoder initialization is performed by setting s(0) = s′T

and ê(0) = 0n, where 0n is the length-n vector with all-zero entries. It is impor-
tant to note that s(0) (and, by extension, s(l)) is a row vector. Moreover, let us
consider that all multiplications are binary, except those denoted with ‘∗’, which
are performed in the integer domain Z. The l-th iteration of the Q-decoder per-
forms the following operations:

i. Compute Σ(l) =
[
σ
(l)
1 , σ

(l)
2 , · · · , σ

(l)
n

]
= s(l−1) ∗ H, resulting in a vector of

integers having entries between 0 and dv.
ii. Compute R(l) =

[
ρ
(l)
1 , ρ

(l)
2 , · · · , ρ

(l)
n

]
= Σ(l) ∗ Q.

iii. Define 	(l) =
{

v ∈ [1, n]| ρ
(l)
v ≥ b(l)

}
.

iv. Update ê(l−1) as
ê(l) = ê(l−1) + 1�(l)

where 1�(l) is a length-n binary vector with all-zero entries, except those
indexed by 	(l).

v. Update the syndrome as

s(l) = s(l−1) +
∑

v∈�(l)
qvHT

where qv is the v-th row of QT .
vi. If the weight of s(l) is zero then stop decoding and return ê(l).
vii. If l < lmax then increment l and go back to step (i), otherwise stop decoding

and return a decoding failure.

As in classical BF, the first step of this algorithm computes the vector Σ(l).
Each entry of this vector counts the number of unsatisfied parity-check equations
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corresponding to that bit position, and takes values in {0, . . . , dv}. This evaluates
the likelihood that the binary element of e′ at the same position is equal to one.
Differently from classical BF, in step (ii) the correlation R(l) between these
likelihoods and the rows of QT is computed. In fact, the expanded error vector
e′ = eQT can be written as the sum of the rows of QT indexed by the support
of e, that is e′ =

∑
j∈Ψ{e} qj where Ψ {e} denotes the support of e.

Since both Q and e are sparse (that is, m, t � n), cancellations between ones
in the sum are very unlikely. When the correlation between Σ(l) and a generic
row qv of QT is computed, two cases may occur:

– If v /∈ Ψ {e}, then it is very likely that qv has a very small number of common
ones with all the rows of QT forming e′, hence the correlation is small.

– If v ∈ Ψ {e}, then qv is one of the rows of QT forming e′, hence the correlation
is large.

The main difference with classical BF is that, while in the latter all error
positions are considered as independent, the Q-decoder exploits the correlation
among expanded errors which is present in LEDAkem, since their positions are
influenced by QT . This allows achieving important reductions in the number of
decoding iterations. As a further advantage, this decoder allows recovering e,
besides e′, without the need of computing and storing the inverse of the matrix
QT . For this purpose, it is sufficient that, at each iteration, the Q-decoder flips
the bits of the estimated error vector e that correspond to the correlations values
overcoming the threshold.

2.4 Choice of the Q-decoder Decision Thresholds

One important aspect affecting performance of the Q-decoder is the choice of
the threshold values against which the correlation is compared at each iteration.
A natural choice is to set the threshold used at iteration l equal to the maximum
value of the correlation R(l), that is b(l) = maxj=1,2,··· ,n

{
ρ
(l)
j

}
. This strategy

ensures that only those few bits that have maximum likelihood of being affected
by errors are flipped during each iteration, thus achieving the lowest DFR. How-
ever, such an approach has some drawbacks in terms of complexity, since the
computation of the maximum correlation requires additional computations with
respect to a fixed threshold.

Therefore, as in [14], we consider a different strategy, which allows comput-
ing the threshold values on the basis of the syndrome weight at each iteration.
According to this approach, during an iteration it is sufficient to compute the
syndrome weight and read the corresponding threshold value from a look-up
table. This strategy still allows to achieve a sufficiently low DFR, while employ-
ing a significantly smaller number of decoding iterations.

Let us consider the l-th iteration of the Q-decoder, and denote by tl the weight
of the error vector e(l) and with t′l the weight of the corresponding expanded error
vector e′(l) = e(l)QT . Let us introduce the following probabilities [6]
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pci(t′l) =
min[n0dv−1,t′

l]∑
j=0, j odd

(
n0dv−1

j

)(
n−n0dv

t′
l−j

)
(
n−1
t′
l

)

pic(t′l) =
min[n0dv−1,t′

l−1]∑
j=0, j even

(
n0dv−1

j

)(
n−n0dv

t′
l−j−1

)
(

n−1
t′
l−1

) (13)

where pci(t′l) is the probability that a codeword bit is error-free and a parity-
check equation evaluates it to be incorrect, and pic(t′l) is the probability that
a codeword bit is error-affected and a parity-check equation evaluates it to be
correct. In both these cases, the syndrome bit is equal to 1. The probability that
each syndrome bit is equal to 1 can be therefore computed as pic(t′l)+ pci(t′l), so
the average syndrome weight at iteration l results in

w(l)
s = E

[
wt

{
s(l)

}]
= [pic(t′l) + pci(t′l)] p (14)

where wt {·} denotes the Hamming weight. Since both the parity-check matrix
and the error vector are sparse, the probability of wt

{
s(l)

}
being significantly

different from w
(l)
s is negligible.

So, (14) allows predicting the average syndrome weight starting from t′l. In
order to predict how t′l varies during iterations, let us consider the i-th code-
word bit and the corresponding correlation value ρ

(l)
i at the l-th iteration. The

probability that such a codeword bit is affected by an error can be written as

P
{

ei = 1|ρ(l)i

}
=

P
{

ei = 1, ρ
(l)
i

}

P
{

ρ
(l)
i

} =

⎛
⎝1 +

P
{

ei = 0, ρ
(l)
i

}

P
{

ei = 1, ρ
(l)
i

}
⎞
⎠

−1

(15)

where ei is the i-th bit of the error vector used during encryption. After some
calculations, we obtain

P
{

ei = 1|ρ(l)i

}
=

1

1 + n−tl
tl

(
pci(tl)
pic(tl)

)ρ
(l)
i

(
1−pci(tl)
1−pic(tl)

)mdv−ρ
(l)
i

(16)

where pci(tl) and pic(tl) are given in (13), with tl as argument instead of t′l.
Adding the i-th row of QT to the expanded error vector e′ is the same as

flipping the i-th bit of the error vector e. Hence, we can focus on e and on how its
weight tl changes during decoding iterations. The values of t′l can be estimated
using (14), while, due to sparsity, those of tl can be estimated as t′l/m.

The decision to flip the i-th codeword bit is taken when the following condi-
tion is fulfilled

P
{

ei = 1|ρ(l)i

}
> (1 + Δ)P

{
ei = 0|ρ(l)i

}
(17)

where Δ ≥ 0 represents a margin that must be chosen taking into account
the DFR and complexity: increasing Δ decreases the DFR but increases the
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number of decoding iterations. So, a trade-off value of Δ can be found that allows
achieving a low DFR while avoiding unnecessary large numbers of iterations.

Since P
{
ei = 0|ρ(l)i

}
= 1 − P

{
ei = 1|ρ(l)i

}
, (17) can be rewritten as

P
{

ei = 1|ρ(l)i

}
>

1 + Δ

2 + Δ
. (18)

P
{

ei = 1|ρ(l)i

}
is an increasing function of ρ

(l)
i , hence the minimum value of ρ

(l)
i

such that (18) is satisfied can be computed as

b(l) = min
{

ρ
(l)
i ∈ [0,mdv], s.t. P

{
ei = 1|ρ(l)i

}
>

1 + Δ

2 + Δ

}
(19)

and used as the decision threshold at iteration l.
Based on the above considerations, the procedure to compute the decision

threshold value per each iteration as a function of the syndrome weight can be
summarized as follows:

i. The syndrome weights corresponding to t′l = 0,m, 2m, · · · ,mt (which are all
the possible values of t′l neglecting cancellations) are computed according to
(14). These values are denoted as {ws(0), ws(m), · · · , ws(mt)}.

ii. At iteration l, given the syndrome weight w̄s
(l), the integer j ∈ [0, t] such

that ws(jm) is as close as possible to w̄s
(l) is computed.

iii. Consider tl = j and compute b(l) according to (19) and (16). The value of
b(l), so obtained, is used as the decoding threshold for iteration l.

The above procedure can be implemented efficiently by populating a look-
up table with the pairs {wj , bj}, sequentially ordered. During an iteration, it is
enough to compute w̄s

(l), search the largest wj in the look-up table such that
wj < w̄s

(l) and set b(l) = bj .
We have observed that, moving from large to small values of wj , the thresh-

olds computed this way firstly exhibit a decreasing trend, then start to increase.
According to numerical simulations, neglecting the final increase is beneficial
from the performance standpoint. Therefore, in the look-up table we replace the
threshold values after the minimum with a constant value equal to the minimum
itself.

2.5 Relations with QC-MDPC Code-Based Systems

In LEDAkem, the public code is a QC-MDPC code that admits L = HQ as
a valid parity-check matrix. However, differently from QC-MDPC code-based
schemes, the private code is a QC-LDPC code, which facilitates decoding. In
fact, decoding directly the public QC-MDPC code through classical BF decoders
would be a possibility, but the approach we follow is different. By using the
decoding algorithm described in Sect. 2.3, we decode the private QC-LDPC code,
taking into account the correlation introduced in the private error vector due to
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multiplication by QT . Since the private QC-LDPC matrix is sparser than the
QC-MDPC matrix of the public code, this yields lower decoding complexity.

Besides working over different matrices, the main difference between these
two decoding algorithms is in the use of integer multiplications in our decoder,
while all multiplications are performed over F2 in classical BF decoders. In fact,
in our decoder we perform the following operation to compute R(l)

R(l) = s(l−1) ∗ H ∗ Q = eQT HT ∗ H ∗ Q ≈ eLT ∗ L (20)

where the last approximation comes from the fact that, for two sparse matrices
A and B, we have A · B ≈ A ∗ B. Thus, we can say that HQ ≈ H ∗ Q. So, if we
consider classical BF decoding working over the matrix L = HQ, the counter
vector is computed as

Σ(l) = s(l−1) ∗ L = eLT ∗ L. (21)

In the Q-decoder, the error vector is updated by summing rows of QT , which
is equivalent to flipping bits of the public error vector. Hence, there is a clear
analogy between decoding of the private QC-LDPC code through the Q-decoder
and decoding of the public QC-MDPC code through a classical BF decoder.
Through numerical simulations we have verified that the two approaches yield
comparable performance in the waterfall region. Performance in the error floor
region is instead dominated by the minimum distance of the code over which
decoding is performed. Since QC-LDPC codes have smaller minimum distance
than QC-MDPC codes, this reflects into a higher error floor when decoding is
performed over the private QC-LDPC code. However, no error floor has been
observed during simulations of LEDAkem with QC-LDPC decoding, down to a
DFR between 10−9 and 10−8. Since this is the working point of the codes we use,
in terms of DFR, we can say that the error floor effect, if present, is negligible
from our scheme performance standpoint.

3 Security Analysis

LEDAkem is constructed starting from the computational problem of syndrome
decoding, i.e., obtaining a bounded weight error vector from a given syndrome
and a general linear code, which was shown to be NP-complete in [11]. The main
difference from the statement of the general hard problem on which our proposal
is built is the nature of the code employed, which is quasi-cyclic and admits a
representation with a low-density parity-check matrix. To best of our knowledge,
there is no superpolynomial advantage in performing syndrome decoding on QC-
LDPC, given our public code representation, either due to the quasi-cyclic form
of the code or to the low density of its parity matrix. We point out that the same
assumption on the lack of advantage due to the quasi-cyclic structure of a code
has also been done in both the BIKE [1] and the BIG QUAKE [8] proposals.
With these statements standing, the security analysis of LEDAkem examines
and quantifies the effectiveness of the best known attacks detailing the efficiency
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of algorithms running on both classical and quantum computers providing non-
exponential speedups over an enumerative search for the correct error vector.
We remark that currently no algorithm running on either a classical Turing
Machine (TM) or a quantum TM provides an exponential speedup in solving
the computational problem underlying LEDAkem compared to an exhaustive
search approach.

3.1 Analysis of the Algorithm with Respect to Known Attacks

As mentioned in the previous sections, LEDAkem derives from QC-LDPC code-
based cryptosystems already established in the literature [4,6]. As proved in [16],
in case of using long-term keys, these cryptosystems may be subject to reaction
attacks that are able to recover the secret key by exploiting the inherent non-
zero DFR they exhibit and Bob’s reactions upon decryption failures. However,
using ephemeral keys prevents the possibility to mount an attack of this kind,
which requires long statistical evaluations. Nevertheless, the risks in case of an
accidental keypair reuse must be considered, and this will be done in Sect. 4.

A first type of attacks that can be mounted against LEDAkem are decoding
attacks (DAs) aimed at performing decoding through the public code repre-
sentation, without knowing the private code representation. The most powerful
algorithms that can be used for this purpose are ISD algorithms. These algo-
rithms aim at performing decoding of any linear block code by exploiting a
general representation of it. ISD algorithms have been introduced by Prange
[37] and subsequently improved by Lee-Brickell [23], Leon [24] and Stern [42].
More recently, they have known great advances through modern approaches,
also exploiting the generalized birthday paradox [9,12,27,33,36]. It is possible
to show that the general decoding problem is equivalent to the problem of find-
ing low-weight codewords in a general (random-like) code. Therefore, algorithms
for searching low-weight codewords can be used as ISD algorithms.

The availability of an efficient algorithm to search for low-weight codewords
is also at the basis of key recovery attacks (KRAs). In LEDAkem the matrix
L = HQ is a valid parity-check matrix for the public code. Since L is sparse,
by knowing it an attacker could separate H from Q and recover the secret key.
In order to discover L, an attacker must search for its rows in the dual of the
public code. Due to the sparsity of H and Q, any of these rows has weight in the
order of n0dvm. The attack can be implemented by exploiting again an efficient
algorithm for the search of low-weight codewords in linear block codes.

Another potential attack to systems based on QC-LDPC codes is that pre-
sented in [40]. This attack uses a special squaring technique and, by extracting
the low-weight error vectors, finds low-weight codewords more efficiently than
with a general ISD algorithm. This attack, however, is applicable if and only if
p is even. Therefore, in order to increase the system security it is advisable to
choose odd values of p. Choosing p as a prime is an even more conservative choice
against cryptanalysis exploiting factorization of p. The value of p in LEDAkem
is chosen in such a way to prevent these attacks.
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To estimate complexity of DAs and KRAs exploiting ISD and low-weight
codeword searching algorithms, let us define the work factor (WF) of an algo-
rithm as the base-2 logarithm of the average number of binary operations it
requires to complete its execution successfully. Let WF (n, k, w) denote the WF
of the most efficient algorithm searching for codewords of weight w in a code
having length n and dimension k. Such an algorithm can be used to perform ISD
with the aim of decrypting a LEDAkem ciphertext without knowing the private
key. In this case, we have n = n0p, k = (n0 − 1)p and w = t. Moreover, due to
the QC nature of the codes, a speedup in the order of

√
p must be taken into

account [39]. Hence, the security level against decoding attacks of this type can
be computed as

SLDA =
WF (n0p, (n0 − 1)p, t)√

p
. (22)

Concerning the KRAs attack, based on the above considerations we have a
similar formula, but with different parameters, that is,

SLKRA =
WF (n0p, p, n0dvm)

p
, (23)

where the speedup factor p is due to the fact that recovering only one out of p
sparse rows of L, is enough for the attacker (due to the QC structure of L).

According to [43], the most efficient ISD algorithm taking into account
Grover’s algorithm [19] running on a quantum computer is Stern’s algorithm.
Therefore, the post-quantum security levels have been estimated by considering
the work factor of Stern’s algorithm with quantum speedup according to [43].
Instead, with classical computers the most efficient ISD algorithm turns out to
be the BJMM algorithm in [9]. Therefore, the security levels against attackers
provided with classical computers have been estimated by considering the work
factor of BJMM in (22) and (23). We chose to employ the results provided in [43]
to evaluate the computational efforts of Stern’s variant of the ISD as they provide
exact formulas instead of asymptotic bounds. However, we note that a recent
work [22] provides improved asymptotic bounds on the computational complex-
ity of quantum ISD for increasing values of the codeword length n. Deriving
from this approach exact values for given parameters set is worth investigating.

3.2 System Parameters

The NIST call for Post-Quantum Cryptography Standardization [32] defines
5 security categories, numbered from 1 to 5 and characterized by increasing
strength (see [32] for details). According to this classification, nine instances
of LEDAkem are proposed, grouped in three classes corresponding to different
security levels. The three instances in each class correspond to three values of n0

(2, 3, 4), each one yielding a different balance between performance and public
key size. The parameters of the nine instances of LEDAkem are reported in
Table 1 for the security categories 1, 3 and 5, respectively. In the table, the
superscript (pq) denotes that the attack work factor has been computed taking
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into account quantum speedups due to Grover’s algorithm, while the superscript
(cl) denotes that only classical computers have been considered.

For each security category and considered value of n0, we have fixed a value
of the parity-check matrix row/column weight dv in the order of 25 or less (that
is advisable to have good error correcting capability of the private QC-LDPC
code), and we have found the values of p and m that allow satisfying (23) for the
target security level. In fact, the value of m must be chosen such that the dual
of the public code, having minimum distance equal to n0mdv, is robust against
KRAs based on ISD. Once n0 is fixed, we can find many pairs of values m and dv

which satisfy this bound; among them, we have chosen the one having the lowest
product mdv, which is a metric affecting the error correcting capability of the
private code. Then, we have found the value of t that allows satisfying (22) and
checked whether t′ = tm errors can be corrected by the private code through
Q-decoding with a sufficiently low DFR. Otherwise, we have increased the value
of p keeping all the other parameters fixed. Concerning the estimation of the
DFR, we have first exploited BF asymptotic thresholds [6], and then we have
performed Montecarlo simulations for each system instance in order to evaluate
its DFR. In all Montecarlo simulations, except the one for the Category 1, n0 = 2
parameter set, we have encountered no errors, so the DFR can be approximately
bounded by the reciprocal of the number of simulated decryptions. Concerning
the parameter set for Category 1, n0 = 2, we obtained 20 failures on 2.394 · 109

decoding computations, pointing to a DFR ≈ 8.3 ·10−9.

Table 1. Parameters for LEDAkem and estimated computational efforts to break a
given instance as a function of the security category and number of circulant blocks n0

Category n0 p dv [m0, · · · ,
mn0−1]

t SL
(pq)
DA SL

(pq)
KRA SL

(cl)
DA SL

(cl)
KRA DFR

1 2 27,779 17 [4, 3] 224 135.43 134.84 217.45 223.66 ≈8.3 · 10−9

3 18,701 19 [3, 2, 2] 141 135.63 133.06 216.42 219.84 �10−9

4 17,027 21 [4, 1, 1, 1] 112 136.11 139.29 216.86 230.61 �10−9

2–3 2 57,557 17 [6, 5] 349 200.47 204.84 341.52 358.16 �10−8

3 41,507 19 [3, 4, 4] 220 200.44 200.95 341.61 351.57 �10−8

4 35,027 17 [4, 3, 3, 3] 175 200.41 201.40 343.36 351.96 �10−8

4–5 2 99,053 19 [7, 6] 474 265.38 267.00 467.24 478.67 �10−8

3 72,019 19 [7, 4, 4] 301 265.70 270.18 471.67 484.48 �10−8

4 60,509 23 [4, 3, 3, 3] 239 265.48 268.03 473.38 480.73 �10−8

In order to make a conservative design of the system, we have considered some
margin in the complexity estimates of the attacks, such that the actual security
level for these instances is larger than the target one. This also accounts for
possible (though rare) cancellations occurring in L, which may yield a row weight
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slightly smaller than mdvn0. The values of dv have been chosen greater than 15
in order to avoid codes having too small minimum distances. In addition, they
are odd to ensure that the circulant blocks forming H and L (and Ln0−1, in
particular) have full rank. Also the values of m are always odd, and the sets
[m0,m1, · · · ,mn0−1] have been chosen in such a way to guarantee that Q has
full rank. In fact, L = HQ is a valid parity-check matrix for the public code: if
Q is singular, it might happen that the rank of L is lower than p, leading to a
code with a co-dimension lower than p. With the choice of an invertible Q, we
guarantee that this does not occur.

4 Properties of the Proposed Cryptosystem

The QC-LDPC code-based Niederreiter cryptosystem alone achieves only indis-
tinguishability under chosen plaintext attack (IND-CPA), that however is suffi-
cient in case of using ephemeral keys. It is possible to convert a Niederreiter cryp-
tosystem achieving only IND-CPA into one achieving indistinguishability under
chosen ciphertext attack (IND-CCA), under the assumption that the DFR of the
underlying code is zero. Such a conversion involves substituting the outcome of a
decoding failure (due to an ill-formed ciphertext) with the outcome of a KDF tak-
ing as input either the public syndrome and a fixed secret bit sequence [21,38],
or a secret permutation of the syndrome itself [13]. We apply the conversion
specified in [21] to our scheme, despite its DFR is not null, as it still proves
beneficial in case of an accidental keypair reuse, against an attacker matching
the IND-CCA model whenever no decoding failures due to the QC-LDPC code
structure takes place. Furthermore, we note that LEDAkem ciphertexts are not
malleable in a chosen plaintext scenario. Indeed, even if an attacker alters arbi-
trarily a ciphertext so that it decrypts to a valid error vector e (e.g., discarding
the ciphertext and forging a new one), the shared secret is derived via a hash
based KDF, which prevents him from controlling the output of the decryption.

Relations with the Security of QC-MDPC Code-Based Systems. Dif-
ferently from QC-MDPC code-based systems, the public code in LEDAkem has
a QC-MDPC matrix L that can be factorized into H and Q, and this might
appear to yielding lower security than a general QC-MDPC matrix. However, in
order to attempt factorization of L, the attacker should first recover it by search-
ing for low-weight codewords in the dual of the public code. Once L has been
recovered, trying to factorize it into H and Q indeed becomes pointless, since
the attacker could exploit L to perform direct decoding of the public QC-MDPC
code. Alternatively, an attacker could try to perform decoding of the public code,
which requires solving the syndrome decoding problem for the same code. The
best known techniques for solving these two problems are based on ISD, and no
method is known to facilitate their solution by exploiting the fact that L can be
factorized into H and Q.
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Risks in Case of Keypair Reuse. While LEDAkem uses ephemeral keys that
are meant for single use, it is possible that implementation accidents lead to a
reuse of the same keypair more than once. The main threat in case of keypair
reuse is the reaction attack described in [16], where a correlation between the
DFR and the private key is derived. However, for the attack to succeed, the
attacker needs to reliably estimate the decoding failure rate for a set of care-
fully crafted or selected error vectors. Given the DFR for which LEDAkem was
designed (<10−8), obtaining a reliable estimate requires a number of decryptions
with the same key in the order of billions. Since the said evaluation should be
obtained for all the possible distances between two set bits in the secret key, a
conservative estimate of the number of decryption actions required is (p−1) 1

DFR ,
which, considering the weakest case, corresponding to Category 1 with n0 = 2,
yields �2.7 × 1012 decryptions. Therefore, the attack presented in [16] is not a
practical threat on LEDAkem with the proposed parameters, unless a significant
amount of decryptions are performed with the same key. Moreover, even the cho-
sen ciphertext attack (CCA) described in [13], where a ciphertext is crafted with
a number of errors greater than t to artificially increase the DFR of the system,
can be thwarted through checking the weight of the decoded error vector and
reporting a decoding failure if it exceeds t.

Protection Against Side-Channel Attacks. The two most common side
channels exploited to breach practical implementations of cryptosystems are the
execution time of the primitive and the instantaneous power consumption during
its computation. In particular, in [15], it was shown how a QC-LDPC code-based
system can be broken by means of simple power analysis, exploiting the control-
flow dependent differences of the decoding algorithm. We note that employing
ephemeral keys provides a natural resistance against non-profiled power con-
sumption side channel attacks, as a significant amount of measurements with
the same key (>30) must be collected before the key is revealed.

Concerning execution time side channel information leakage, the main por-
tion of the LEDAkem decryption algorithm which is not characterized by a
constant execution time is decoding. Indeed, the number of iterations made by
the decoder depends on the values being processed. However, for the proposed
parameters, we note that the number of iterations is between 3 and 5, with a sig-
nificant bias towards 4. Hence, it is simple to achieve a constant time decoding by
modifying the algorithm so that it always runs for the maximum needed amount
of iterations to achieve the desired DFR. Such a choice completely eliminates
the timing leakage, albeit trading it off for a performance penalty.

5 Implementation and Numerical Results

An effort has been made to realize a fast and efficient C99 implementation of
LEDAkem without platform-dependent optimizations, which is publicly avail-
able in [5]. To this end, we represented each circulant block as a polynomial in
F2[x]/〈xp+1〉 thanks to the isomorphism described in Sect. 2.1. Consequently, all
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Table 2. Running times for key generation, encryption and decryption as a function
of the category and the number of circulant blocks n0 on an AMD Ryzen 5 1600 CPU.

Category n0 KeyGen (ms) Encrypt (ms) Decrypt (ms) Total CPU time
ephemeral KEM (ms)

1 2 34.11 (±1.07) 2.11 (±0.08) 16.78 (±0.53) 52.99

3 16.02 (±0.26) 2.15 (±0.17) 21.65 (±1.71) 39.81

4 13.41 (±0.23) 2.42 (±0.08) 24.31 (±0.86) 40.14

2–3 2 142.71 (±1.52) 8.11 (±0.21) 48.23 (±2.93) 199.05

3 76.74 (±0.78) 8.79 (±0.20) 49.15 (±2.20) 134.68

4 54.93 (±0.84) 9.46 (±0.28) 46.16 (±2.03) 110.55

4–5 2 427.38 (±5.15) 23.00 (±0.33) 91.78 (±5.38) 542.16

3 227.71 (±1.71) 24.85 (±0.37) 92.42 (±4.50) 344.99

4 162.34 (±2.39) 26.30 (±0.53) 127.16 (±4.42) 315.80

the involved block circulant matrices are represented as matrices of polynomials
in F2[x]/〈xp +1〉. The polynomials are materialized employing a bit-packed form
of their binary coefficients in all the cases where the number of non-null coef-
ficients is high. In case a polynomial has a low number of non-null coefficients
with respect to the maximum possible, i.e., the circulant matrix is sparse, we
materialize only the positions of its one coefficients as integers.

We provide below the results of a set of execution time benchmarks. The
results were obtained measuring the required time for key generation, encryp-
tion (key encapsulation) and decryption (key decapsulation) as a function of the
chosen security category and the number of circulant blocks n0. The measure-
ments reported are obtained as the average of 100 executions of the reference
implementation. The generated binaries were run on an AMD Ryzen 5 1600
CPU at 3.2 GHz, locking the frequency scaling to the top frequency.

Table 2 reports the running times in terms of CPU time taken by the process.
As it can be noticed, the most computationally demanding primitive is the key
generation, which has more than 80% of its computation time taken by the exe-
cution of a single modular inverse in F2[x]/〈xp + 1〉 required to obtain the value
of L−1

n0−1. The encryption primitive is the fastest among all, and its computation
time is substantially entirely devoted (>99%) to the n0 − 1 polynomial multi-
plications performing the encryption. The decryption primitive computation is
dominated by the Q-decoder computation (>95% of the time), with a minimal
portion taken by the n0 modular multiplications which reconstruct Ln0−1 and
the one to compute the private syndrome fed into the Q-decoder.

Considering the computational cost of performing a KEM with ephemeral
keys, the most advantageous choice is to pick n0 = 4 for any security level,
although the computational savings are more significant when considering high-
security parameter choices (Category 3 and 5).
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Table 3. Sizes of the keypair and encapsulated shared secret as a function of the chosen
category and number of circulant blocks n0.

Category n0 Private key size (B) Public key
size (B)

Shared secret
size (B)

Enc secret
size (B)

At rest In memory

1 2 24 668 3,480 3,480 32

3 24 844 4,688 2,344 32

4 24 1,036 6,408 2,136 32

2–3 2 32 972 7,200 7,200 48

3 32 1,196 10,384 5,192 48

4 32 1,364 13,152 4,384 48

4–5 2 40 1,244 12,384 12,384 64

3 40 1,548 18,016 9,008 64

4 40 1,772 22,704 7,568 64

Table 3 reports the sizes of both the keypairs and the encapsulated secrets for
LEDAkem. In particular, regarding the size of the private keys we report both the
size of the stored private key and the required amount of main memory to store
the expanded key during the decryption phase. We note that, for a given security
category, increasing the value of n0 enlarges the public key, as it is constituted
of (n0 − 1)p bits. This increase in the size of the public key represents a tradeoff
with the decrease of the size of the ciphertext to be transmitted since it is only
p bits long, and p decreases if a larger number of blocks is selected, for a fixed
security category. The size of the derived encapsulated secret is at least 256 bits,
in order to meet the requirement reported in [32]. The shared secret is derived
employing the SHA-3 hash function with a 256, 384 or 512 bits digest, in order
to match the requirements of Categories 1, 3, and 5, respectively.

6 Conclusion

We have introduced a post-quantum KEM based on QC-LDPC codes with the
following advantages: it is built on an NP-complete problem under reasonable
assumptions; it exploits improved BF decoders which are faster than classical
BF decoders; it requires compact keypairs (below 23 kiB at most), with min-
imum size private keys; it needs only addition and multiplication over F2[x],
and modular inverse over F2[x]/〈xp + 1〉 besides single-precision integer opera-
tions; it is particularly efficient in applying countermeasures against non-profiled
power consumption side channel attacks. As regards implementation, no plat-
form specific optimizations have been exploited, thus we expect these results to
be quite consistent across different platforms. On the other hand, starting from
this platform-agnostic reference implementation, a number of optimizations can
be applied to make LEDAkem faster.
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Abstract. We propose a new algorithm for the decoding of random
binary linear codes of dimension n that is superior to previous algo-
rithms for high error rates. In the case of Full Distance decoding, the best
known bound of 20.0953n is currently achieved via the BJMM-algorithm
of Becker, Joux, May and Meurer. Our algorithm significantly improves
this bound down to 20.0885n.

Technically, our improvement comes from the heavy use of Nearest
Neighbor techniques in all steps of the construction, whereas the BJMM-
algorithm can only take advantage of Nearest Neighbor search in the last
step.

Since cryptographic instances of LPN usually work in the high error
regime, our algorithm has implications for LPN security.

Keywords: Decoding binary linear codes · BJMM
Nearest Neighbors · LPN · Full Distance decoding · Representations

1 Introduction

The NP-hard decoding problem for random linear codes plays a major role in
coding and complexity theory. It is especially suitable for the construction of
quantum-secure cryptographic systems like [McE78,Ale03,Reg05]. In view of
the upcoming NIST selection of post-quantum public-key cryptosystems [NIS] it
is of crucial importance for secure parameter selection to know the best decoding
algorithms.

A linear code C is a k-dimensional subspace of Fn
2 . In the decoding problem

the attacker gets an erroneous version x = c + e of a codeword c for some
error vector e with Hamming weight Δ(e) = ω. His target is to find e in order
to recover the original codeword c. Sometimes, the weight ω is bounded by
the distance d of the code C (Full Distance Decoding) or by d

2 (Half Distance
Decoding).

Therefore the running time T (n, k, d) of any decoding algorithm is a function
of the parameters n, k and d. It is well known that the Gilbert-Varshamov bound
gives us k

n ≈ 1−H( d
n ) for random linear codes, where H(·) is the binary entropy

function H(p) := −p log(p) − (1 − p) log(1 − p). This results in a running time
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T (n, k) which is a function of n and k only. Furthermore one often compares
worst case running times where we maximize the running time over all rates k

n
resulting in a running time T (n).

The best algorithmic paradigm that we know today for random binary linear
codes is a class of algorithms called Information Set Decoding (ISD). Here, for
simplicity we only compare ISD running times in the Full Distance Decoding
setting, but see also Fig. 1. For all ISD algorithms the maximal run time is
achieved at a rate k

n slightly below 1
2 .

Fig. 1. Comparison for Full/Half Distance of our work and other algorithms.

The first ISD algorithm is due to Prange [Pra62] and achieves worst case
running time 20.121n. This was improved by Stern and Dumer [Ste88,Dum91]
to 20.117n. Using the representation technique, May et al. [MMT11] and later
Becker et al. [BJMM12] further decreased the run time to 20.112n and 20.102n,
respectively. The last is called BJMM algorithm and is currently asymptotically
the best algorithm for decoding of random linear codes.

In 2015, May and Ozerov [MO15] proposed some Nearest Neighbor (NN)
search that further sped up BJMM to 20.0967n, which was later optimized
in [BM17b] to 20.0953n.
Our results. As can be seen from Fig. 1, our new algorithm achieves in the Full
Distance Decoding setting 20.0885n, which is a quite remarkable improvement
over the current state of the art. However, the improvement for the Half Distance
Decoding is comparably small. As a rule of thumb, the larger the error rate, the
more significant our algorithm’s improvement.

As most promising in cryptographic settings, we currently see the application
of our algorithm for Learning Parity with Noise (LPN) instances. Every LPN
instance of dimension k with error τ is naturally a decoding problem for a random
linear code. As shown by Esser et al. [EKM17] in practice one currently best
solves large LPN instances by a hybrid approach. Namely, one first applies a
dimension reduction algorithm (such as BKW [GJL14]) at the cost of introducing
a large error close to 1

2 , followed by a decoding algorithm. Since our algorithm
works especially well in the high-error regime, it seems to be a perfect candidate
for solving these transformed LPN instances.
Our algorithm. ISD algorithms with representation technique such as MMT
and BJMM currently use a 2-step matching process, where in the first step one
does an exact matching of vectors (for eliminating representations) and in a
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second step one does an approximate matching via NN search. We eliminate
this two-step process and perform only an approximate matching in all stages
of the algorithm.

This allows us to eliminate representations less restrictive, and to use the full
power of NN search in every step of our algorithm. Thus, our approximate match-
ing is in spirit similar to the Ball Decoding approach of Bernstein et al. [BLP11].
The heavy use of NN search might also explain the large improvement (only) in
the high error-regime, where NN search can show its full strength.

This paper is organized as follows. In Sect. 2, we review some ISD algorithms.
Section 3 introduces a basic version of our new algorithm, whereas the generalized
version is given in Sect. 4. Our results are provided in Sect. 5.

2 Preliminaries

Syndrome Decoding. Let us start with some preliminaries on linear codes and
decoding algorithms. We denote the Hamming distance of two vectors x,y ∈ F

n
2

by Δ(x,y). The Hamming weight Δ(x) of x is defined as the Hamming distance
of x to the zero vector 0.

A linear code C is a k-dimensional subspace of Fn
2 . Its distance is defined by

d := minc�=c′∈C{Δ(c, c′)}. We can specify C by a generator matrix G ∈ F
k×n
2 or

a parity check matrix P ∈ F
(n−k)×n
2 via

C := {xG ∈ F
n
2 | x ∈ F

k
2} or C := {c ∈ F

n
2 | Pc = 0}.

Random linear codes have a random G or random P , where in both cases each
matrix entry is chosen uniformly at random from F2. For an arbitrary vector
y = c + e ∈ F

n
2 , c ∈ C we define the syndrome of y as

s := Py = Pc + Pe = Pe. (1)

Definition 1 (Syndrome Decoding Problem). Let C be a linear code spec-
ified by some parity check matrix P ∈ F

(n−k)×n
2 . Given P , an (erroneous) code-

word y ∈ F
n
2 and a weight ω ∈ N, one has to find an error vector e ∈ F

n
2 with

y + e ∈ C and Δ(e) = ω.
We call (P, s, ω) with s = Py an instance of the Syndrome Decoding Problem.

We say that e ∈ F
n
2 solves (P, s, ω) iff s = Pe and Δ(e) = ω.

A fundamental algorithm for solving the Syndrome Decoding Problem was
introduced by Prange [Pra62]. This algorithm is the basis of all of today’s
so-called Information Set Decoding (ISD) algorithms [Ste88,Dum91,BLP11,
MMT11,BJMM12]. In Prange’s algorithm, one reduces the dimension of the
search space from n down to k via Gaussian elimination.

In more detail, one chooses some invertible G ∈ F
(n−k)×(n−k)
2 such that GP =

(P̄ | In−k), where In−k is the (n − k)-dimensional identity matrix. Therefore
Eq. (1) becomes

GPe = (P̄ | In−k)e = P̄e′ + e′′ = Gs =: s̄, with e = (e′, e′′) ∈ F
k
2 × F

n−k
2 . (2)
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Thus, every instance (P, s, ω) with P ∈ F
(n−k)×n
2 of the Decoding Problem has

some (non-unique) standard form (P̄ , s̄, ω) with P̄ ∈ F
(n−k)×k
2 such that e ∈ F

n
2

solves (P, s, ω) iff (P̄ | In−k)e = s̄.

Definition 2 (Standard form). For any instance (P, s, ω) ∈ F
(n−k)×n
2 ×

F
n−k
2 × N of the decoding problem, we say that (P̄ , s̄, ω) ∈ F

(n−k)×k
2 × F

n−k
2 × N

is a standard form of (P, s, ω) if there exists some invertible G ∈ F
(n−k)×(n−k)
2

such that
GP = (P̄ | In−k) and Gs = s̄.

The underlying idea of all Information Set Decoding algorithm is to solve
a dimension-reduced standard form (P̄ , s̄, ω) of a Decoding Problem instance
instead of its original form (P, s, ω).

However, before transforming (P, s, ω) to its normal form one applies some
column permutation π to P to enforce a special weight distribution on e =
(e′, e′′) ∈ F

k
2 × F

n−k
2 . While Prange chooses Δ(e′) = 0, other ISD algorithms

enforce Δ(e′) = p for some parameter p ≥ 0 (see Algorithms 1 and 2). Thus
it is sufficient to find some e′ ∈ F

k
2 , Δ(e′) = p such that after applying π and

converting to standard form the term P̄e′ is close to s̄, i.e.,

Δ(P̄e′, s̄) = Δ(e′′) = ω − p.

Algorithm 1. ISD – Weight Distribution and Standard Form

Input : P ∈ F
(n−k)×n
2 , s ∈ F

n−k
2 , ω ∈ N

Output: e ∈ F
n
2 with Pe = s and Δ(e) = ω

repeat
repeat

π ← random permutation on F
n
2

(· | Q) ← π(P ) (permute columns) � Q ∈ F
(n−k)×(n−k)
2

until Q is invertible

(P̄ | In−k) ← Gπ(P ) and s̄ ← Gs � G ∈ F
(n−k)×(n−k)

(e′, e′′) = ISDSolve(P̄ , s̄, ω) � See Algorithm 2.
until (e′, e′′) �= ⊥
return π−1(e′||e′′)

Algorithm 2. ISDSolve

Input : P̄ ∈ F
(n−k)×k
2 , s̄ ∈ F

n−k
2 , ω ∈ N

Output : (e′, e′′) ∈ F
k
2 × F

n−k
2

Parameters: choose optimal 0 ≤ p ≤ ω
for e′ ∈ F

k
2 with Δ(e′) = p do

e′′ ← He′ + s̄
if Δ(e′′) = ω − p then return(e′, e′′)

end
return ⊥
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Dumer’s ISD-algorithm [Dum91] introduces another parameter � and trans-
forms P into a different standard form

G′P =
(

P̄1 0
P̄2 In−k−�

)
,where P̄1 ∈ F

�×(k+�)
2 and P̄2 ∈ F

(n−k−�)×(k+�)
2 .

Set s̄ := G′s = (s1, s2) ∈ F
�
2 × F

n−k−�
2 . We can now write Eq. (2) as

P̄1e
(1)
1 = P̄1e

(1)
2 + s1 and (3)

Δ(P̄2e
(1)
1 , P̄2e

(1)
2 + s2) = ω − p. (4)

splitting e′ = e(1)1 + e(1)2 with e′, e(1)1 , e(1)2 ∈ F
k+�
2 . Hence, by Eq. (3) we have an

exact matching of P̄e′ and s̄ on � coordinates, and by Eq. (4) an approximate
matching of the same vectors on the remaining n − k − � coordinates.

The BJMM algorithm [BJMM12] solves the exact matching of Eq. (3). In a
nutshell, BJMM constructs solutions (e(1)1 , e(1)2 ) for Eq. (3) using some depth-3
binary search tree. For optimizing the depth of this search tree, see [BM17b].
All candidate solutions (e(1)1 , e(1)2 ) are then checked via Eq. (4).

For the approximate matching, May and Ozerov [MO15] proposed a Nearest
Neighbor (NN) search algorithm that, given two lists L1, L2, finds in time sub-
quadratic of the list lengths all elements (x1,x2) ∈ L1 × L2 within some given
Hamming distance Δ(x1,x2). Thus, May-Ozerov NN search can be used to speed
up the check of candidate solutions via Eq. (4) inside the BJMM algorithm.

Theorem 1 ([MO15]). Given two lists L1, L2 with elements taken uniformly at
random from F

n
2 and length |L1|, |L2| ≤ 2λn. Then for any ε > 0 one can find all

but a negligible fraction of the pairs (x1,x2) ∈ �L1 ×L2 satisfying Δ(x1,x2) ≤ γn
for some given 0 ≤ γ ≤ n

2 provided that λ < 1 − H(γ
2 ) in time

2(y(λ,γ)+ε)n, where y(λ, γ) := (1 − γ)
(

1 − H

(
H−1(1 − λ) − γ

2

1 − γ

))
.

Please notice that Theorem 1 can only be applied for parameters satisfying
the condition λ < 1 − H(γ

2 ), which will not always be the case for our new
decoding algorithm. Whenever this condition is violated, we will choose one of
the following two simple NN search algorithms Algorithms 3 or 4.

Algorithm 3. NN-Enumerate-Pairs

Input : L1, L2 ⊂ F
n
2 , γ

Output: L
for (x1,x2) ∈ L1 × L2 do

if Δ(x1,x2) ≤ γn then L ← (x1,x2)
end
return L
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Since Algorithm 3 simply tests the distance of all pairs in L1 × L2, it runs in
time quadratic in the list lengths

22λn. (5)

Notice that here, as in the rest of the paper, we neglect for ease of presentation
polynomial factors in the run time.

Algorithm 4. NN-Meet-in-the-Middle

Input : L1, L2 ⊂ F
n
2 , γ

Output: L
L′
2 ← ∅

for x2 ∈ L2 do
for e ∈ F

n
2 with Δ(e) ≤ γ

2n do
L′
2 ← L′

2 ∪ (x2 + e,x2)
end

end
for x1 ∈ L1 do

for e ∈ F
n
2 with Δ(e) ≤ γ

2n do
if (x1 + e,x2) ∈ L′

2 then L ← (x1,x2)
end

end
return L

Recall from Theorem 1 that L1, L2 contain random vectors from F
n
2 . Thus,

for any pair (x1,x2) ∈ L1 × L2 we have Pr[Δ(x1,x2) ≤ γn] =
(

n
γn

) · 2−n. As a
consequence, using a union bound over all pairs we can upper bound the size of
the output list L for any NN algorithm by |L| ≤ (

n
γn

) · 2(2λ−1)n.
This in turn shows that the running time of Algorithm4 is upper bounded

by

max
{(

n
γ
2n

)
· 2λn,

(
n

γn

)
· 2(2λ−1)n

}
. (6)

Since our new decoding algorithm improves the decoding with high error
rate, it is best suited for attacking instances of the Learning Parity with Noise
Problem (LPN).

Definition 3 (LPN). Let τ ∈ [0, 1
2 ) be some error parameter, and let s ∈ F

k
2

be a secret vector. In the LPNk,τ problem one has oracle access to samples of
the form

(ai, bi) := (ai, 〈ai, s〉 + ei), for i = 1, 2, . . .

where ai ∈R F
k
2 and ei ∈ {0, 1} with Pr[ei = 1] = τ . The goal is to recover s.

Let us denote by n the number of samples, which can be freely chosen. We write
an LPN instance as a matrix-vector tuple

(A,b) ∈ F
n×k
2 × F

n
2 satisfying As = b + e,
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where e = (e1, . . . , en) and the ith row of A and b represent the ith LPN sample.
Notice that A is by definition of LPN the generator matrix of a random

binary linear [n, k]-code, in which we are free to choose n ourselves. Thus, we
can make the rate k

n arbitrarily small.
Moreover, b is a noisy codeword that is decoded to b + e with an error

e ∈ F
n
2 of (large) expected weight E[Δ(e)] = τn. Typical parameters for τ in the

cryptographic setting are τ = 1
4 , or τ = 1

8 .

3 The Depth-2 Algorithm

Our Goal. As described in Sect. 2, many ISD algorithms like Dumer or BJMM
do an exact matching using Eq. (3) P̄1e

(1)
1 = P̄1e

(1)
2 + s1 on � coordinates, and

among the candidates (e(1)1 , e(1)2 ) ∈ F
k+�
2 × F

k+�
2 that fulfill Eq. (3), they search

for those, whose remaining n−k−� coordinates approximately match by Eq. (4).
As opposed to the BJMM algorithm, we really go back to the initial Eq. (2)

P̄e′ + e′′ = s̄. Splitting e′ = e(1)1 + e(1)2 for e(1)1 , e(1)2 ∈ F
k
2 yields

P̄e(1)1 = P̄e(1)2 + s̄ on all n − k but Δ(e′′) = ω − p coordinates. (7)

Our goal is to directly construct e(1)1 , e(1)2 such that Δ(e(1)1 + e(1)2 ) = p and the
corresponding vectors P̄e(1)1 , P̄e(1)2 + s̄ approximately match on all n−k but ω−p
coordinates. This immediately yields a solution (e′, e′′) with e′′ = P̄e′ + s̄ and
Δ(e′′) = ω − p for the Decoding problem in standard form.

In comparison to other ISD algorithms, our vectors e(1)1 , e(1)2 have length k
(like in Prange) instead of k+� (like in Dumer, BJMM). This decreases the search
space significantly. Moreover, it introduces a less restrictive weight distribution
on a solution (e′, e′′) ∈ F

k
2 × F

n−k
2 , since usually p � ω and we only need small

weight p on the first k coordinates instead of the first k + � coordinates. This in
turn means that we need less iterations in Algorithm1 to find a permutation π
that fulfills our weight distribution.

On the downside, our approximate matching routine is more costly than the
exact matching in other ISD algorithms. But as our analysis shows, the benefits
outweigh this disadvantage, especially when the weight of our solution is large
enough.

Recall that by Eq. (7) our goal is to construct two lists L
(1)
1 , L

(1)
2 in depth 1

of a search tree containing entries

(e(1)1 , P̄e(1)1 ) and (e(1)2 , P̄e(1)2 + s̄) such that

Δ(e′) = Δ(e(1)1 + e(1)2 ) = p and Δ(e′′) = ω − p.

The two lists L
(1)
1 , L

(1)
2 are constructed in a recursive manner out of other lists

in a search tree of some depth m that has to be optimized. In this section, we
describe our algorithm for depth m = 2 only, since this already gives the main
ideas.
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Let us introduce some useful notion, see also Fig. 2. For any vector v =
v1 . . . vn ∈ F

n
2 and any positive lengths �1, . . . , �m+1 ∈ N with

∑m+1
j=1 �i = n,

we define by v[j] ∈ F
�j

2 the projection of v onto its coordinates (
∑j−1

i=1 �i +
1, . . . ,

∑j
i=1 �i). We also extend our notion to lists of vectors L ⊂ F

n
2 . In L[j] we

project all elements v ∈ L to v[j].

Fig. 2. The projection v[j] of v.

Outline of depth-2 algorithm. Here we give a high-level overview of our
construction with a search tree of depth 2. The reader is advised to follow the
description via Fig. 3.

Fig. 3. Our depth-2 algorithm.

Among the n − k coordinates of e′′, we introduce another split into �1 and
�2 := n − k − �1 coordinates. In the final list L(2), we enforce some weight
ω1 on the first �1 coordinates of e′′ = (e′′

[1], e′′
[2]), and the remaining weight

ω2 := ω − p − ω1 on the remaining �2 coordinates. The parameters �1, ω1 are
subject to optimization.
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For the construction of e′′
[2] we use an NN search for the lists L

(1)
1 , L

(1)
2 on

level 1 that gives us weight ω2 on these coordinates.
In those lists L

(1)
1 , L

(1)
2 we furthermore enforce weight p1 ≥ p

2 on the coordi-
nates of e(1)1 and e(1)2 . The parameter p1 is again subject to optimization.

Analogously we restrict to only those P̄e(1)1 , P̄e(1)2 + s̄ whose first �1 coor-
dinates have a weight ω

(1)
1 . The weight ω

(1)
1 has to be optimized. Again, we

filter out all vector sums on level 2 whose weight is not exactly ω1 on these �1
coordinates.

The lists L
(1)
1 , L

(1)
2 are constructed out of four lists L

(0)
i , i = 1, . . . , 4 on

level 0. Here, we describe only the construction of L
(1)
1 , the construction of L

(1)
2

is analogous. In L
(0)
1 we enumerate all vectors e(0)1 ∈ F

k/2
2 × 0k/2 with weight

p1/2. For each of these vectors we compute P̄e(0)1 . Similary, in L
(0)
2 we enumerate

all vectors e(0)2 ∈ 0k/2 ×F
k/2
2 with weight p1/2 and compute P̄e(0)2 . We then run

a NN search on the first �1 coordinates to find all vector sums with weight ω
(1)
1

on these coordinates. Note that the vectors e(0)1 and e(0)2 automatically add up to
a vector of weight p1 as required for list L

(1)
1 .

This concludes the high-level description of our algorithm. More details can
be found in Algorithm5, which has to be used as an ISDSolve-subroutine in
Algorithm 1 to obtain a full fletched ISD algorithm, including column permuta-
tion π and transformation to standard form.
List of objects. For completeness, we provide in the following a precise descrip-
tion of the lists. For the lists of level 0, we have

L
(0)
1 = {(P̄e(0)1 , e(0)1 ) ∈ F

n−k
2 × F

k/2
2 × 0k/2 | Δ(e(0)1 ) = p1/2}, (8)

L
(0)
2 = {(P̄e(0)2 , (e(0)2 ) ∈ F

n−k
2 × 0k/2 × F

k/2
2 | Δ(e(0)2 ) = p1/2},

L
(0)
3 = {(P̄e(0)3 , e(0)3 ) ∈ F

n−k
2 × F

k/2
2 × 0k/2 | Δ(e(0)3 ) = p1/2},

L
(0)
4 = {(P̄e(0)4 + s̄, e(0)4 ) ∈ F

n−k
2 × 0k/2 × F

k/2
2 | Δ(e(0)4 ) = p1/2}.

Thus, all lists on level 0 have size S0 =
(

k/2
p1/2

)
. Note that L

(0)
1 = L

(0)
3 . The lists

on level 1 are constructed via NN search on the first �1 coordinates such that we
obtain weight ω

(1)
1 on these coordinates. This yields

L
(1)
1 = {(P̄e(1)1 , e(1)1 ) ∈ F

n−k
2 × F

k
2 | Δ(e(1)1 ) = p1,Δ((P̄e(1)1 )[1]) = ω

(1)
1 },

L
(1)
2 = {(P̄e(1)2 + s̄, e(1)2 ) ∈ F

n−k
2 × F

k
2 | Δ(e(1)2 ) = p1,Δ((P̄e(1)2 + s̄)[1]) = ω

(1)
1 }.

By the randomness of P̄ , both lists have expected size

S1 := E[|L(1)
i |] = S2

0 · Pr[weight ω
(1)
1 on the first �1 coordinates]

=
(

k/2
p1/2

)2

·
( �1
ω

(1)
1

)
2�1

for i = 1, 2.
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Eventually, by an NN search on �2 bits for weight ω2 on the level-1 lists and
subsequent filtering for weight p on the last k coordinates and weight ω1 on the
first �1 bits, we obtain

L(2) = {(e′′, e′) ∈ F
k
2 × F

n−k
2 | Δ(e′) = p, e′′ = P̄e′ + s̄,Δ(e′′) = ω − p}.

Thus, any element (e′′, e′) of L(2) yields a solution (e′, e′′) of a Syndrome Decod-
ing Problem in standard form.

Algorithm 5. Depth-2-ISDSolve

Input : P̄ ∈ F
(n−k)×k
2 , s̄ ∈ F

n−k
2 , ω

Output : (e′, e′′) ∈ F
k
2 × F

n−k
2

Parameters: Optimize p, ω1, �1, p1, ω
(1)
1 .

Set ω2 = ω − p − ω1 and �2 = n − k − �1.
1 Create lists L

(0)
i , i = 1, 2, 3, 4 as defined in (8)

2 L
(1)
i ← NN-Search(L(0)

2i−1, L
(0)
2i , 1, ω

(1)
1 ), i = 1, 2


 NN-Search(L1, L2, i, w) performs a NN search on (L1)[i], (L2)[i]

 with target weight w while keeping all other coordinates.

3 L(2) ← NN-Search(L(1)
1 , L

(1)
2 , 2, ω2)

4 L(2) ← Filter(L(2), 1, ω1)) 
 Filter(L, i, w) filters L for elements
L(2) ← Filter(L(2), 3, p)) 
 with weight w on its projection in L[i].
if |L(2)| > 0 then return (e′, e′′) for some (e′′, e′) ∈ L(2)

else return ⊥

Notice that Algorithm 5 can only succeed to output a solution (e′, e′′) �= ⊥
if there exists some e′ with weight p such that P̄e′ + s̄ = e′′ = (e′′

[1], e
′′
[2]) with

e′′
[1], e

′′
[2] having weights ω1 and ω2, respectively. This specific weight distribution

has to be induced by the column permutation π of Algorithm 1.

Definition 4. Let e ∈ F
n
2 with Δ(e) = ω and k, p ∈ N. Let �1, �2 ∈ N with

�1+�2 = n−k, and let ω1, ω2 ∈ N with ω1+ω2 = ω−p. We call a permutation π
good for e with respect to (p, ω1, �1, ω2, �2), if π(e) = (e′, e′′

[1], e
′′
[2]) ∈ F

k
2×F

�1
2 ×F

�2
2

with
Δ(e′) = p, Δ(e′′

[1]) = ω1 and Δ(e′′
[2]) = ω2.

A random permutation π is good with probability

Pπ =

(
k
p

)(
�1
ω1

)(
�2
ω2

)
(

n
ω

) .

It remains to show that on input a standard form Syndrome Decoding
instance (P̄ , s̄, ω) that stems from a good π, Algorithm 5 constructs a non-empty
list of solutions L(2).
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Lemma 1 (Correctness). Let e be a solution to the Syndrome Decoding Prob-
lem. Let π be good for e with respect to any fixed parameters (p, ω1, �1, ω2, �2) as
given by Definition 4. Whenever we run Algorithm5 with parameters p1, ω

(1)
1 ∈ N

satisfying
(

p

p/2

)(
k − p

p1 − p/2

)
≥ 2�1(

ω1
ω1/2

)( �1−ω1

ω
(1)
1 −ω1/2

) , (9)

then on expectation we have (e′′, e′) ∈ L(2) for π(e) = (e′, e′′).

Thus, Lemma 1 shows that any (possibly unique) solution e to the Syndrom
Decoding Problem is constructed in our sub-routine of Algorithm5 at that point
in time when the full-fletched ISD Algorithm1 provides a good permutation π,
under the condition that (9) holds.

Before we prove Lemma 1, we would like to show that its statement is not
vacuous. Namely, there always exist p1, w

(1)
1 such that condition (9) holds.

Using the Binomial Theorem, we have
(

n

n/2

)
<

n∑
i=0

(
n

i

)
= 2n < (n + 1)

(
n

n/2

)
.

This implies
2n

n + 1
<

(
n

n/2

)
< 2n.

Thus, up to a linear factor we can approximate
(

n
n/2

)
by 2n. Hence if we ignore

linear factors, condition (9) collapses for the setting p1 = k/2 and w
(1)
1 = �1/2

to
2p+k−p ≥ 2�1−ω1−(�1−ω1) ⇔ k ≥ 0,

which is trivially fulfilled. Thus, there always exist feasible parameters
p, ω1, �1, p1, ω

(1)
1 that lead to a solution when running Algorithm5. Among these

feasible parameters, we will later minimize running time.

Proof (of Lemma 1). Let π(e) = (e′, e′′) be the solution of our Syndrome Decod-
ing problem in standard form. Since we have standard form, we conclude that
e′′ = P̄e′ + s̄ is fully determined by e′. Moreover, since we assume π to be good,
e′′ is of the correct form. Thus, it suffices to show that Algorithm5 constructs
the desired e′ ∈ F

k
2 .

Notice that in our construction e′ = e(1)1 +e(1)2 , and in turn e(1)1 = e(0)1 +e(0)2

(and analogous for e(1)2 ).
Let us first argue that in our construction we obtain up to a polynomial

factor all
(

k
p1

)
vectors e(1)1 ∈ F

k
2 on level 1. All vector sums e(0)1 + e(0)2 are by

the definition of e(0)1 , e(0)2 different. Up to polynomial factors (denoted by ≈),

we have by standard approximation via the binary entropy function
(

k/2
p1/2

)2 ≈
22H(

p1
k )k/2 ≈ (

k
p1

)
vectors e(1)1 that we construct.
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Now let us turn to the construction of e′ with weight p on level 2 via e(1)1 + e(1)2

with e(1)1 , e(1)2 having weight p1 ≥ p/2. We call (e(1)1 , e(1)2 ) a representation of e′

if e′ = e(1)1 + e(1)2 . Notice that our desired solution e′ has

R2 :=
(

p

p/2

)(
k − p

p1 − p/2

)
representations, (10)

since the set of 1-coordinates in e′ can be represented in
(

p
p/2

)
ways as 1 + 0 or

0 + 1, and the set of 0-coordinates in e′ can be represented in
(

k−p
p1−p/2

)
ways as

0 + 0 or 1 + 1.
From an algorithmic point of view, we do not care which of the R2 represen-

tations is eventually used for constructing e′. It is therefore sufficient that only 1
of these R2 representations is present in L

(1)
1 ×L

(1)
2 . Hence, for achieving minimal

run time we construct only a random 1/R2-fraction of all representations such
that on expectation one representation is present in L

(1)
1 × L

(1)
2 , and therefore

e′ appears in L(2).
For constructing only an 1/R2-fraction, we construct on level 1 only those

elements (P̄e(1)1 , e(1)1 ) ∈ L
(1)
1 whose first �1 coordinates have weight ω

(1)
1 (analo-

gous for L
(1)
2 ). This means that we enforce Δ((P̄e(1)1 )[1])) = ω

(1)
1 . Let E be the

event that there exists a representation of

e′′
[1] = (P̄e(1)1 + P̄e(1)2 + s̄)[1] with Δ((P̄e(1)1 )[1]) = Δ((P̄e(1)2 + s̄)[1]) = ω

(1)
1 .

By randomness of P̄ , we have

p2,2 := Pr[E] =

(
ω1

ω1/2

)( �1−ω1

ω
(1)
1 −ω1/2

)
2�1

,

since there are a total of 2�1 possible representations of the form e[1] = (P̄e(1)1 +
P̄e(1)2 + s̄)[1] out of which

(
ω1

ω1/2

)( �1−ω1

ω
(1)
1 −ω1/2

)
have the correct weight ω

(1)
1 for

(P̄e(1)1 )[1], (P̄e(1)2 + s̄)[1] by the same argument as in Eq. (10).
Thus, the expected number of representations of e′ is R2 · p2,2. Hence on

expectation, we construct e′ in L(2) if R2 · p2,2 ≥ 1, which is equivalent to
condition (9). ��

Complexity of the Depth-2 Algorithm. Our Algorithm 5 starts with the
construction of lists L

(0)
i , i = 1, 2, 3, 4 (step 1) which takes time S0 =

(
k/2
p1/2

)
. By

Theorem 1 and Eqs. (5), (6), the Nearest Neighbor search on (L(0)
i )[1] (step 2)

takes time

T0 :=

⎧⎪⎪⎨
⎪⎪⎩

2y(
log(S0)

�1
,

ω
(1)
1
�1

)�1 if log(S0)
�1

< 1 − H(ω
(1)
1
2�1

)

min{S2
0 ,max{( �1

ω
(1)
1
2

) · S0, S
2
0 ·

( �1

ω
(1)
1

)
2�1

}} else
.
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resulting in the lists L
(1)
1 , L

(1)
2 that have expected size S1 =

(
k/2
p1/2

)2 ·
( �1

ω
(1)
1

)
2�1

. These
lists are again combined via Nearest Neighbor search (step 3) in time

T1 :=

⎧⎨
⎩

2y(
log(S1)

�2
,

ω2
�2

)�2 if log(S1)
�2

< 1 − H( ω2
2�2

)

min{S2
1 ,max{( �2

ω2
2

) · S1, S
2
1 · (�2

ω2
)

2�2
}} else

,

resulting in the final list L(2). The filtering (step 4) takes time S2 := |L(2)|. We
only need to store the lists L

(0)
i of size S0 as well as the lists L

(1)
1 , L

(1)
2 of size

S1. The total running time is

time T = max{T0, T1, S0, S2} = max{T0, T1},

since T0 ≥ S0 and T1 ≥ S2.

Total complexity of Decoding. Algorithm 5 constructs a solution iff π is good
which happens according to Definition 4 with probability Pπ, resulting in a total
expected running time of T · P−1

π for our full-fletched ISD algorithm.

4 The Depth-m Algorithm

Our algorithm with depth 2, as described in the previous Sect. 3, already illus-
trates the overall idea of approximate matching, but does not yet yield improved
running times compared to the BJMM algorithm. Therefore, we generalize to
arbitrary depth in this section, which is mostly straight-forward but still includes
some subtleties how to proceed with approximate matchings - and their respec-
tive weights - over many levels of a search tree.
Outline of depth-m algorithm. Let us start again with a high-level overview
for our algorithm with arbitrary depth m. The reader is advised to follow the
description via Fig. 4 which shows the algorithm for m = 3.

In the final list L
(m)
1 we now split the first n − k coordinates into m blocks

instead of only 2 blocks, i.e we have e′′ = (e′′
[1], . . . , e

′′
[m]). Block e′′

[i] has length

�i and weight ω
(m)
i . The parameters �i, ω

(m)
i are subject to optimization.

On level 0, there are a total of 2m lists L
(0)
1 , . . . , L

(0)
2m . The construction of

the 2m−1 lists L
(1)
1 , . . . , L

(1)
2m−1 on level 1 out of the level-0 lists is identical to the

construction in Sect. 3.
For the level-m lists, we have

L
(0)
j1

= {(P̄e(0)j1
, e(0)j1

) ∈ F
n−k
2 × F

k/2
2 × 0k/2 | Δ(e(0)j1

) = p1/2}, (11)

L
(0)
j2

= {(P̄e(0)j2
, e(0)j2

) ∈ F
n−k
2 × 0k/2 × F

k/2
2 | Δ(e(0)j2

) = p1/2},

L
(0)
2m = {(P̄e(0)2m + s̄, e(0)2m) ∈ F

n−k
2 × 0k/2 × F

k/2
2 | Δ(e(0)2m) = p1/2}.

for j1 = 1, 3, . . . , 2m − 1 and j2 = 2, 4, . . . , 2m − 2. All lists on level 0 therefore
have size S0 =

(
k/2
p1/2

)
.
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Fig. 4. Our algorithm for depth 3.

Starting from the level-0 lists, our algorithm combines two lists at a time
using NN search in a binary tree wise fashion until we reach the final list L(m).
On every level i = 1, . . . , m − 1 we construct the first list L

(i)
1 via NN search

on the projected lists (L(i−1)
1 )[i], (L

(i−1)
2 )[i] such that we obtain weight ω

(i)
i . We

furthermore filter for weight pi on the last k coordinates and a specific weight
distribution on the remaining coordinates such that we get

L
(i)
1 ={(P̄e(i)1 , e(i)1 ) ∈ F

n−k
2 ×F

k
2 | Δ(e(i)1 )=pi , Δ((P̄e(i)1 )[h]) = ω

(i)
h , h = 1, . . . , i}.

The other lists L
(i)
j , j = 2, . . . , 2i are created analogously. By randomness of

P̄ the projection (P̄e(i)1 )[i] with weight ω
(i)
i is in our construction the sum

of two random vectors. For every h = 1, . . . , i − 1 the projection (P̄e(i)1 )[h]
with weight ω

(i)
h is the sum of two random vectors of specific weight ω

(i−1)
h .

Fixing the first vector, there are
( �h

ω
(i−1)
h

)
possible second vectors out of which

( ω
(i−1)
h

ω
(i−1)
h −ω

(i)
h /2

)(�h−ω
(i−1)
h

ω
(i)
h /2

)
yield the correct weight ω

(i)
h . Therefore, the expected

list sizes on layer i are upper bounded by
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Si ≤ |{x ∈ F
k
2 |Δ(x) = pi}| · Pr

x∈F
�i
2

[Δ(x) = ω
(i)
i ]

·
m−1∏

h=i+1

Pr
x,y∈F

�h
2

[Δ(x + y) = ω
(i)
h |Δ(x) = Δ(y) = ω

(i+1)
h ]

=
(

k

pi

)
·
( �i

ω
(i)
i

)
2�i

·
i−1∏
h=1

( ω
(i−1)
h

ω
(i−1)
h −ω

(i)
h /2

)(�h−ω
(i−1)
h

ω
(i)
h /2

)
( �h

ω
(i−1)
h

) .

Eventually, an NN search on �m = n − k − ∑m−1
i=1 �i bits for weight ω

(m)
m =

ω − pm −∑m−1
i=1 ω

(m)
i , pm = p, on the level-(m− 1) lists and subsequent filtering

for weight pm on the last k coordinates and weight ω
(m)
i for every projection e′′

[i],
i = 1, . . . ,m − 1, we obtain

L(m) = {(e′′, e′) ∈ F
n−k
2 × F

k
2 | Δ(e′) = pm, e′′ = P̄e′ + s̄,Δ(e′′) = ω − pm}.

Thus, any element (e′′, e′) of L(m) yields a solution (e′, e′′) of a Syndrome Decod-
ing Problem in standard form.

More details can be found in Algorithm6, which has to be used again as an
ISDSolve-subroutine in Algorithm1 to obtain a full fletched ISD algorithm.

Algorithm 6. Depth-m-ISDSolve

Input : P̄ ∈ F
(n−k)×k
2 , s̄ ∈ F

n−k
2 , ω

Output : (e′, e′′) ∈ F
k
2 × F

n−k
2

Parameters: Optimize p1, . . . , pm, ω
(m)
1 , . . . , ω

(m)
m−1, �1, . . . , �m−1.

Compute ω
(m)
m = ω − pm − ∑m−1

i=1 ω
(m)
i , �m = n − k − ∑m−1

i=1 �i.

1 Define ω
(i)
i :=

ω
(i+1)
i
2

, i = 1, . . . , m − 2.

Choose optimal ω
(i)
j such that condition (12) holds.

2 Create lists L
(0)
j , j = 1, . . . , 2m as defined in (11).

3 L
(1)
j ← NN-Search((L

(0)
2j−1)[1], (L

(0)
2j )[1], ω

(1)
1 ), j = 1, . . . , 2m−1

for i = 2, . . . , m, j = 1, . . . , 2i do

4 L
(i)
j ← NN-Search((L

(i−1)
2j−1 )[i], (L

(i−1)
2j )[i], ω

(i)
i )

5 L
(i)
j ← Filter(L

(i)
j , h, ω

(i)
h )), h = 1, . . . , i − 1

L
(i)
j ← Filter(L

(i)
j , m + 1, pi))

end

if |L(m)| > 0 then return (e′, e′′) for some (e′′, e′) ∈ L(m)

else return ⊥

Notice that Algorithm 6 can only succeed to output a solution (e′, e′′) �= ⊥
if there exists some e′ with weight pm such that P̄e′ + s̄ = (e′′

[1], . . . , e
′′
[m]) with

e′′
[i] having weight ω

(m)
i for all i = 1, . . . , m. This specific weight distribution has

to be induced by the column permutation π of Algorithm 1.
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Definition 5. Let e ∈ F
n
2 with Δ(e) = ω and k, pm ∈ N. Let �1, . . . , �m ∈ N

with
∑m

i=1 �i = n − k, and ω
(m)
1 , . . . , ω

(m)
m ∈ N with

∑m
i=1 ω

(m)
i = ω − pm.

We call a permutation π good for e with respect to pm, (ω(m)
i , �i)i=1,...,m, if

π(e) = (e′, e′′
[1], . . . , e

′′
[m]) ∈ F

k
2 × F

�1
2 × · · · × F

�m
2 with

Δ(e′) = pm, Δ(e′′
[i]) = ω

(m)
i , i = 1, . . . , m.

A random permutation π is good with probability

Pπ =

(
k

pm

) ∏m
i=1

( �i

ω
(m)
i

)
(

n
ω

) .

We now show that on input a standard form Syndrome Decoding instance
(P̄ , s̄, ω) that stems from a good π, Algorithm 6 constructs a non-empty list of
solutions L(m).

Lemma 2 (Correctness). Let e be a solution to the Syndrome Decoding
Problem. Let π be good for e with respect to any fixed parameters pm, ω

(m)
i , �i,

i = 1, . . . , m as given by Definition 5. Whenever we run Algorithm6 with param-
eters pi, ω

(i)
j ∈ N, for j = 1, . . . , i, i = 1, . . . ,m − 1 satisfying

(
pi

pi/2

)(
k − pi

pi−1 − pi/2

)
≥

i−1∏
h=1

2�h

( ω
(i)
h

ω
(i)
h /2

)( �h−ω
(i)
h

ω
(i−1)
h −ω

(i)
h /2

) , ∀i = 2, . . . ,m (12)

then on expectation we have (e′′, e′) ∈ L(m) for π(e) = (e′, e′′).

Analogous to Sect. 3, we can show that the setting pi = k/2 and w
(i)
h = �h/2,

for h = 1, . . . , i− 1, i = 2, . . . ,m, yields feasible parameters for Algorithm 6 that
fulfill condition (12).

Proof (of Lemma 2). The proof is similar to the proof of Lemma1 and can be
found in the full version [BM17a].

Complexity of Algorithm 6. The lists L
(0)
j , j = 1, . . . , 2m are created in time

S0 (step 2). The NN search on those lists yields lists L
(1)
j , j = 1, . . . , 2m−1 (step

3).
Next, another NN search on the new lists returns lists L

(2)
j , j = 1, . . . , 2m−2

(step 4) which are subsequently filtered (step 5). These two steps of NN search
and filtering are repeated until only one list is left. By Theorem1 and Eqs. (5),
(6) the NN search layer on i = 0, . . . ,m − 1 takes time

Ti :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2y(
log(Si)

�i+1
,

ω
(i+1)
i+1
�i+1

)�i+1 if log(Si)
�i+1

< 1 − H(
ω

(i+1)
i+1
2�i+1

)

min{S2
i ,max{( �i+1

ω
(i+1)
i+1
2

) · Si, S
2
i ·

(
�i+1

ω
(i+1)
i+1

)
2�i+1

}} else
.
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The filtering takes time Si on layer i = 2, . . . , m−1 and Sm := |L(m)| on layer m.
On every level i of our search tree we consume time Ti and store lists of size

Si. Thus, we obtain
time T = max

i=1,...,m
{Ti}

using Ti ≥ Si for i = 0, . . . ,m − 1 and Tm−1 ≥ Sm.
Total complexity of Decoding. Algorithm 6 constructs a solution iff π is good
which happens according to Definition 5 with probability Pπ, resulting in a total
expected running time of T · P−1

π for our full-fletched ISD algorithm.

5 Results

Syndrome Decoding Problem. The best known complexity for Full Distance
decoding is currently 20.0953n using BJMM in depth 4 [BM17b], whereas for Half
Distance Decoding the best known bound is 20.0473n [MO15].

As stated in Theorem 2, we improve the bound for Full Distance Decoding to
20.885n. In the Half Distance Decoding setting, we achieve a small improvement
to 20.0465n.

Theorem 2. Algorithm1 in combination with Algorithm6 for m = 4 solves Full
Distance decoding for random binary linear codes in expected time 20.0885n using
20.0736n space. Half Distance decoding is solved in exptected time 20.0465n using
20.0294n space.

Proof. For Full Distance Decoding we achieve the maximal running time at code
rate

k

n
= 0.46 with relative distance

ω

n
=

d

n
= H−1

(
1 − k

n

)
= 0.1237.

For this code rate, we minimize the running time choosing the relative weights

p1
n

= 0.00559,
p2
n

= 0.01073,
p3
n

= 0.02029,
p4
n

= 0.03460,

resulting in

R2 = 20.01357n, R3 = 20.02668n, R4 = 20.06028n

representations. Furthermore we set

�1
n

= 0.0366,
�2
n

= 0.0547,
�3
n

= 0.0911,

ω1

n
= 0.0066,

ω2

n
= 0.0099,

ω3

n
= 0.0114,

ω
(3)
1

n
= 0.0232.

Optimization showed that

ω
(1)
1 =

ω
(2)
1

2
, ω

(2)
2 =

ω
(3)
2

2
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is a good choice which yields

ω
(1)
1

n
= 0.011515,

ω
(2)
1

n
= 0.023029,

ω
(2)
2

n
= 0.016676,

ω
(3)
2

n
= 0.033351,

ω
(3)
3

n
= 0.009993

using condition Eq. (12) from Lemma 2. The resulting list sizes are

S0 = 20.02179n, S1 = 20.03987n, S0.05939n
2 , S3 = 20.05975n.

The lists on layer 0 are combined with the NN search of Algorithm3 in time

T0 = 20.04359n,

as the condition for May-Ozerov is not satisfied and Algorithm4 is less efficient
in this case. On layer 1 we use Algorithm 4 in time

T1 = 20.07356n,

which is also the space consumption for this step. On the remaining layers, we
use May-Ozerov NN search which yields

T2 = 20.07365n, T3 = 20.07359n.

The probability for the correct weight distribution satisfying Definition 5 is

Pπ = 2−0.01485n.

Thus the overall running time and space consumption is

T =
T2

Pπ
= 20.0885n and S = T1 = 20.0736n.

The case of Half Distance Decoding is analogous and can be found in the full
version [BM17a]. ��

While Theorem 2 states the run time for the worst-case rate, Fig. 5 illustrates
and compares the run time as a function of all constant rates k

n of our algorithm
to other decoding algorithms like Prange, BJMM and BJMM with NN-search,
called BJMM-NN.

We also provide the C-code for optimizing all these algorithms at https://
github.com/LeifBoth/Decoding-LPN.

Figure 6 compares in more detail for varying depths m the complexity of our
algorithm to BJMM-NN, as analyzed in [BM17b]. Here, we consider FD, HD
and typical McEliece instances with k = 0.775 and ω = 0.02 [BLP08].

In the Full Distance (FD) setting, our algorithm is superior to BJMM-NN in
all depths m = 2, 3, 4. Already for depth m = 3, we beat the current FD record.
Moreover, the improvement of the exponent from 0.0953n to only 0.0885n is quite

https://github.com/LeifBoth/Decoding-LPN
https://github.com/LeifBoth/Decoding-LPN
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Fig. 5. [Pra62,BJMM12,MO15] and our algorithm for varying code rates k
n
.

significant. Another quite surprising benefit of our algorithm when compared to
BJMM-NN is its modest space consumption. We were not able to improve our
running times for m = 5, due to the large parameter space for optimization.
Whether further improvements are possible currently remains an open problem.

In the Half Distance (HD) setting, our algorithm also outperforms BJMM-
NN, slightly reducing the running time from 20.0473n to 20.0465n. Unfortunately
this improvement is not as significant as in the FD setting. The same happens
for McEliece instances with a typically small error weight way below HD, where
our improvement from 20.0350n to 20.0347n is only marginal.

We suspect that the strong dependency of our algorithm on the error-weight
is due to the heavy reliance on Nearest Neighbor search on every layer, which
needs a sufficiently large weight ω to show its strength. We will also see this
effect in the case of LPN.
LPN Problem. Let us apply our algorithm to the LPNk,τ problem (Defini-
tion 3). In LPNk,τ we have to solve a (n, k, ω)-decoding problem with expected
weight ω = τn and fixed k. However, we are free to choose the number of sam-
ples n, and can therefore make the code rate k

n arbitrarily small. Thus, for every
fixed instance (k, τ) we minimize the running time T (n, k, τ) of our decoding
algorithm over all n. The optimal number of samples for our algorithm for the
cryptographically popular LPN512, 14

-instances is n ≈ 140.000.
In Fig. 7, we compare different decoding algorithms for directly attacking

LPN512, 14
, where we suppress polynomial overheads. Here BJMM-NN would take

2180 steps, our algorithm has complexity 2169.
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Fig. 6. Running time and memory consumption of our algorithm compared to the
optimized BJMM-NN variant of [BM17b].

It is however important to stress that stand-alone decoding is not the best
way to attack LPN instances. As shown by Esser et al. [EKM17] a combination
of the BKW algorithm [GJL14] and decoding algorithm is due to its flexible
memory requirements currently the best way to tackle LPN instances in practice.
Here, one first uses BKW to turn LPNk,τ instances into LPNk′,τ ′ instances with
reduced dimension k′ < k at the cost of increased error τ ′ > τ . Then in a second
step, LPNk′,τ ′ is solved via decoding.

Fig. 7. Complexities of different decoding algorithms for LPN instances.

Since our decoding algorithm shows its strength for large errors τ ′, its seems
like a perfect choice in such a hybrid BKW-decoding algorithm. In a typical
attack on LPN512, 14

, like the ones described in [EKM17], BKW would turn
LPN512, 14

into LPN117, 255512
instances, which are subsequently decoded. The cal-

culations in Fig. 7 give us good indication that such instances with large error
τ ′ close to 1

2 can be much faster decoded by our new algorithm. However, the
full extent of our improvement has yet to be determined by real experiments.

Figure 8 shows the asymptotic behavior of our algorithm on LPN-instances
for varying weights τ , which also illustrates the strength of our algorithm in the
high error regime. Notice that the graph of our new algorithm’s complexity can
be very well approximated by a line, which yields the simple formula

TLPN (k, τ) = 21.3kτ .
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Fig. 8. Dependence on LPN error τ of [Pra62,MO15] and our algorithm.
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Abstract. In 2013, Misoczki, Tillich, Sendrier and Barreto proposed a
variant of the McEliece cryptosystem based on quasi-cyclic moderate-
density parity-check (QC-MDPC) codes. This proposal uses an iterative
bit-flipping algorithm in its decryption procedure. Such algorithms fail
with a small probability.

At Asiacrypt 2016, Guo, Johansson and Stankovski (GJS) exploited
these failures to perform a key recovery attack. They introduced the
notion of the distance spectrum of a sparse vector and showed that the
knowledge of the spectrum is enough to find the vector. By observing
many failing plaintexts they recovered the distance spectrum of the QC-
MDPC secret key.

In this work, we explore the underlying causes of this attack, ways in
which it can be improved, and how it can be mitigated.

We prove that correlations between the spectrum of the key and the
spectrum of the error induce a bias on the distribution of the syndrome
weight. Hence, the syndrome weight is the fundamental quantity from
which secret information leaks. Assuming a side-channel allows the obser-
vation of the syndrome weight, we are able to perform a key-recovery
attack, which has the advantage of exploiting all known plaintexts, not
only those leading to a decryption failure. Based on this study, we derive
a timing attack. It performs well on most decoding algorithms, even on
the recent variants where the decryption failure rate is low, a case which
is more challenging to the GJS attack. To our knowledge, this is the first
timing attack on a QC-MDPC scheme.

Finally, we show how to construct a new KEM, called ParQ that can
reduce the decryption failure rate to a level negligible in the security
parameter, without altering the QC-MDPC parameters. This is done
through repeated encryption. We formally prove the IND-CCA2 secu-
rity of ParQ, in a model that considers decoding failures. This KEM
offers smaller key sizes and is suitable for purposes where the public key
is used statically.
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1 Introduction

Code-based cryptography is almost as mature as public-key cryptography itself,
dating back to 1978 with the invention of the original McEliece public-key
encryption scheme [28]. This scheme, when used with (as originally proposed)
binary Goppa codes, has largely resisted all cryptanalytic efforts, from both
classical and quantum adversaries. Because of this, code-based cryptography
is a strong candidate for post-quantum standardisation, with several variants
[30,31] attempting to make improvements or refinements on the original design.

Following [4,18], a new variant was proposed in 2013 using quasi-cyclic (QC)
moderate density parity-check (MDPC) codes [29]. QC-MDPC codes use much
shorter keys (about 10 kbits). This choice appears promising and the QC-MDPC
scheme was recommended for further study by the report “Initial Recommen-
dation of long-term secure post-quantum systems” of the European project
PQCRYPTO [3]. Some hardware implementations of this scheme were published
in [22,27].

The decryption algorithm of the QC-MDPC scheme is a variant of Gallager’s
bit-flipping algorithm [19]. It is an iterative algorithm with a simple structure,
very easy to implement, even on constrained devices. It has an inconvenient
though, it is subject to failure with non-negligible probability. The algorithm
proposed in the original paper [29] has a decoding failure rate (DFR) of 10−7.

While decoding errors may not represent a serious reliability issue, in a recent
paper by Guo, Johansson and Stankovski (GJS) [20], the authors showed that
these decoding failures actually do represent a very serious security issue. The
authors exploited this DFR and managed to successfully recover the key by
analyzing the error patterns that made the decryption fail. They found that
these error patterns are correlated with the key. They introduce a new tool,
the distance spectrum, to describe the correlation. They successfully use this
correlation to perform their attack and give some hints on the reason why error
patterns correlated in such a way are more prone to cause decryption failure.

The original QC-MDPC primitive is extremely vulnerable because the adver-
sary may choose the error and even force a higher weight, in this case the attack
of [20] recovers the key within minutes, when attacking a parameter set intended
for the 80-bit classical security level. With a semantically secure conversion (CCA
security, as in [23]) it requires 239.7 operations.

1.1 Our Contributions

In this paper we extend the analysis of the GJS attack on QC-MDPC. The GJS
attack works because the decoding failure depends of the existence of common
values in the spectrums of the error pattern and of the secret key. In Sect. 3 we
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show that this correlation can be observed through the weight distribution of the
first syndrome computed by the MDPC decoder. Pushing the analysis further
we are able to quantify this bias. This allows us to perform a side-channel attack
using the syndrome weight to recover the distance spectrum of the secret key. We
show that the number of samples we need to make this attack work is consistent
with the Chernoff bound applied to the above mentioned bias. This opens the
way to theoretical estimates for the cost of attacks related to the secret key
distance spectrum recovery.

Next, by remarking that the syndrome weight is correlated to the decoding
time, we perform a GJS type of attack by counting the number of iterations. This
provides a timing attack which is very generic and can be applied to any variant
of the bit flipping algorithm which is not protected against timing attacks. More-
over, it works regardless of the failure rate. To our knowledge, this is the first
timing attack on this kind of scheme. This confirms a conjecture made by Mau-
rich and Güneysu [25] that the number of iterations in the decoding procedure
leaks secret information.

In Sect. 4 we demonstrate the power of this attack by showing experimental
results of the timing attack on various parameter sets and decoding procedures.
This shows that the attack is practical even against the 256-bit classical param-
eter set. Additionally, we analyze and discuss how some other variations in the
decoding procedure proposed in [27] affect the attack and its effectiveness.

Finally in Sect. 5, we show a new construction for a QC-MDPC-based KEM,
called ParQ. This KEM uses QC-MDPC encryption as the underlying primi-
tive, and does not need to alter the parameter set of the primitive itself. The
scheme works by creating multiple independent encapsulations of the same key,
so that a decapsulation failure only occurs if a decoding failure happens for each
ciphertext. This causes the decapsulation algorithm to only fail with negligible
probability, and so it entirely eliminates the possibility of using decoding failures
to recover the key with the GJS attack. This scheme does not increase key sizes at
all, and only increases the size of the encapsulation by a small factor (3–12×).
We provide a comprehensive proof of IND-CCA2 security of the scheme, and
analyse the KEM compared with other code-based key transport methods. Our
proof considers the possibility of decoding failures. Other CCA2 constructions
[23,26] did not consider this, which is why the GJS attack was able to break
CCA2 security. Most commentary on mitigating the GJS attack has focused on
either altering the parameters of QC-MDPC to decrease the DFR or using the
keys ephemerally. Through our scheme we show that there is a third option that
can address decoding failures at the protocol level.

1.2 Related Work

The McEliece cryptosystem was originally proposed in [28], and low density
parity-check codes were proposed in [19]. The QC-MDPC variant of McEliece
was proposed in [29]. The key-recovery reaction attack we focus on in this paper
was shown in [20]. In [17], the authors analyzed how the observations from [20]
applied to the case of LDPC McEliece [30], showing that the attack also worked
on soft decision decoding procedures.
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Since the first publication of the QC-MDPC scheme, efforts have been made
to tune the decoding algorithm, especially exploring the different ways to fix the
thresholds in order to reduce the DFR [10]. This is discussed in details in Sect. 2.2.

Side-channel timing attacks [24] on McEliece systems other than QC-MDPC
have been considered for example in [33–35] which has motivated the need for
constant-time implementations [7,13]. In [11,12,25], the authors demonstrated
several power-analysis side-channel attacks on QC-MDPC, and [25] conjectured
that it might be possible that the number of decoding rounds leaks secret infor-
mation. To our knowledge, our paper is the first to conclusively show that this
is in fact the case.

CCA2 conversions for McEliece systems have been considered before, most
notably in [23]. General conversions for designing CCA2 KEMs from OW-CPA
systems were studied in [15]. Other key exchange and key encapsulation schemes
related to QC-MDPC include [5,13,14,26].

A line of constructions beginning with [32], and applied to McEliece in sev-
eral follow-up works [16,36] explored the concept of the k-repetition paradigm
for encryption. This paradigm bears some resemblance to our parallel KEM
in Sect. 5, although these constructions are different and have a different goal:
CCA2 security without random oracles.

2 QC-MDPC McEliece and the GJS Attack

2.1 Quasicyclic Moderate Density Parity Check McEliece

QC-MDPC-McEliece is a public key encryption method consisting of three algo-
rithms. It is defined by four parameters, n, k, w, and t. The key generation algo-
rithm QCMDPC.KeyGen constructs an (n, k)-linear quasicyclic code, consisting of
a generator matrix G (the public key) and a parity check matrix H (the secret
key), for which each row has weight w. The encryption algorithm QCMDPC.Enc
encrypts a plaintext x ∈ IFk

2 by calculating the corresponding codeword to x, xG
and adding an error e of weight t to obtain the ciphertext c = e+xG. The decryp-
tion algorithm QCMDPC.Dec decodes c back to xG and recovers x.

While QC-MDPC can allow for k to be any divisor of n, we will consider the
case of n/k = 2. We let E denote the set of e ∈ IFk

2 with Hamming weight t.
Note that the size of each block, r = (n − k) = k.

Algorithm 1. QCMDPC.KeyGen

Input: Security parameter 1λ.
Output: Public key pk, secret key sk.

1: Generate h0, h1 ∈ IFk
2 , both with weight w/2.

2: Let H = [H0|H1], where H0 and H1 are k × k matrices generated from h0 and h1

by cyclically rotating them.
3: Set G = [Ik|Q], where Ik is the k × k identity matrix, Q = (H−1

1 H0)
T .

4: return pk = q, the first row of Q and sk = h0, h1. These allow for the reconstruc-
tion of G and H.
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Algorithm 2. QCMDPC.Enc

Input: Public key pk = q, plaintext x ∈ IFk
2 , error vector e ∈ E.

Output: Ciphertext c ∈ IFn
2 .

1: Reconstruct G = [Ik|Q] by cyclically rotating q to obtain Q.
2: return c = e + xG.

Algorithm 3. QCMDPC.Dec

Input: Secret key sk, public key pk, and ciphertext c ∈ IFn
2 .

Output: Plaintext x ∈ IFk
2 and error vector e ∈ E, or decryption failure symbol ⊥.

1: Reconstruct parity-check matrix H = [H0|H1], and generator matrix G = [Ik|Q].
2: Run the decoding procedure on c with parity-check matrix H to recover codeword

xG. If a decoding failure occurs, return ⊥.
3: Recover x from the first k bits of xG.
4: Recover e = c − xG.
5: return (x, e).

Multiple parameter sets for QC-MDPC have been proposed for multiple secu-
rity levels. Our interest is in the 80-bit and 256-bit classical security sets (which
corresponds to at least 40-bit and 128-bit quantum security) that were originally
proposed in [29], and have been further discussed in [5].

Classical bit-strength n k w t

80 9602 4801 90 84

128 20 326 10 163 142 134

256 65 542 32 771 274 264

2.2 QC-MDPC Decoding Procedure

The original paper on MDPC codes [29] proposes to use a hard decision version
of Gallager’s bit-flipping algorithm for decoding LDPC codes [19]. The main idea
is the following. At each iteration, the algorithm computes the number of unsat-
isfied parity-check equations associated to each bit. Each bit that is involved
in ≥b unsatisfied equations is flipped, for b some threshold, and the syndrome
is recomputed. This repeats until the syndrome becomes zero. In practice, the
algorithm stops after fixed number of iterations and this is considered a decoding
failure.

For our main analyses we use decoder D1 from [27] with fixed thresholds
{95, 85, 80, 76, 74, 73, 72, 72}. D1 is a modification of Gallager’s algorithm which
updates the syndrome in place after each bit flipped. Algorithm4 is the normal
out-of-place bit flipping algorithm and Algorithm5 is the in-place version.
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Algorithm 4. Iterative bit flipping decoding algorithm
Input: c = (c0, . . . , cn−1) ∈ IFn

2 , H = (h(0), . . . , h(n−1)) ∈ IFr×n
2

s ← H · cᵀ � compute the syndrome
while s �= 0 do

for i = 0, . . . , n − 1 do
if 〈s, h(i)〉 ≥ b then � if number of unsatisfied equations ≥ threshold b

ci ← ci ⊕ 1 � flip the ith bit

s ← H · cᵀ
return c

Algorithm 5. In-Place: Iterative bit flipping decoding algorithm
Input: c = (c0, . . . , cn−1) ∈ IFn

2 , H = (h(0), . . . , h(n−1)) ∈ IFr×n
2

s ← H · cᵀ � compute the syndrome
while s �= 0 do

for i = 0, . . . , n − 1 do
if 〈s, h(i)〉 ≥ b then � if number of unsatisfied equations ≥ threshold b

ci ← ci ⊕ 1 � flip the ith bit
s ← s ⊕ h(i)

return c

Variable thresholds. A more recent approach, studied in [10], is to choose the
values of b at each iteration depending on the syndrome weight at the time. This
approach gives the best results so far, both in terms of decryption failure rate
and average number of iterations.

In both cases, until now the thresholds were claimed as experimental results
with no explanation on the way they were generated. In AppendixB we discuss
a procedure to obtain such thresholds for any security parameters.

2.3 The GJS Attack

The key recovery attack in [20] is a reaction attack. It takes advantage of the
decoding failures that occasionally occur during decryption. It assumes only that
an adversary is able to tell when such an error has occurred, for example because
a request for resend is sent back. It consists of two steps. The first step is to
calculate the distance spectrum of the secret key (or one part of the secret key),
based on observing a large number of error vectors that resulted in a decoding
failure. The second step is to reconstruct the secret key based on its distance
spectrum.

In this paper, we will focus our attention on the first step. Reconstructing
the secret key from the distance spectrum has been analysed before [17,20], and
shown to be fairly fast and simple as compared to the first step, and is an entirely
offline computation, requiring no communication.

Definition 1 (Distance Spectrum). The distance spectrum of a vector h ∈
IFr

2, denoted Δ(h), is the set of distances δ such that there exist two non-zero
bits of h at distance δ. The distance are counted cyclically.
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Δ(h) =

⎧
⎨

⎩
δ : 1 ≤ δ ≤

⌊r

2

⌋
,∃(i, j),

0 ≤ i < j < r,
h[i] = h[j] = 1,
min{j − i, r − (j − i)} = δ

⎫
⎬

⎭

where h[i] denotes the ith entry of the binary vector h.

Fig. 1. Distance spectrum of 1001000112

For example, the distance spectrum of the vector 1001000112 is {1, 2, 3, 4}
(Fig. 1). Note that any cyclic shift or reversal of a vector will result in the same
distance spectrum. In [17,20], it was shown how to quickly reconstruct a vector
(up to a reversal or cyclic shift) from a distance spectrum. The first step of the
GJS attack is to find the distance spectrum of the first half h0 of the secret key
(h0, h1). From this, h0 can be computed, which allows us to also calculate h1 by
elementary linear algebra.

In order to analyse more precisely the results, we need to take into account
the fact that some distances may appear more than once.

Definition 2 (Distance Spectrum with multiplicity). The distance spec-
trum with multiplicity of a vector h ∈ IFr

2, denoted Δμ(h), is a vector of IN� r
2 �

such that for every distance 1 ≤ δ ≤ ⌊
r
2

⌋
, its δth component Δμ(h)[δ] is the

number of existing sets of two non-zero bits of h at distance δ. The distance are
counted cyclically.

Example 1. For h = 00110000112 (see Fig. 1), then Δμ(h) = [2, 1, 1, 2].

In general we can see that if a vector h0 ∈ IFk
2 has weight w0, then the distance

spectrum with multiplicity of h0 will be a vector of size �k/2� such that the sum
of the entries of Δμ(h0) is

(
w0
2

)
.

Finding the distance spectrum of the secret key is done by taking note
whether a decoding failure occurs for a large number of error vectors. This is
done because of the following observation:

Observation 1 (GJS, Key Observation). When a distance in the error vec-
tor used in a QC-MDPC encryption matches a distance in the distance spectrum
of the secret key, a decoding failure is less likely to occur.
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Based on this observation, it was noticed that by carefully calculating the
decoding failure rate for errors that have a given distance vs. those that do
not, the multiplicity of that distance in the secret key’s distance spectrum can
be correctly guessed. Note that this observation applies to each half of the error
vector (and parity check matrix) independently. So when we refer to the distance
spectrum of the error or parity-check matrix, we mean the distance spectrum of
the first k bits, unless stated otherwise.

Algorithm 6 was proposed in [20] for attacking the CCA security of a QC-
MDPC implementation.

Algorithm 6. GJS CCA attack
1: Initialize observedd = 0 and failedd = 0 for d ∈ {1, . . . , 
k/2�}.
2: for i = 1 to M do
3: Send c = QCMDPC.Enc(x, e) with a uniformly random e = [e0||e1] to target.
4: for d ∈ Δ(e0) do
5: Increment observedd by 1.
6: if Decoding failed for c then
7: Increment failedd by 1.

8: return failedd/observedd for d ∈ {1, . . . , 
k/2�}.

The resulting values, failedd/observedd for each d give an estimate of the
decoding failure rate for error vectors with d in their distance spectrum. We can
then recover the distance spectrum, identifying the multiplicity of each distance
from the following observation:

Observation 2 (GJS). For a fixed key, the decoding failure rate for error vec-
tors with d in their distance spectrum is inversely proportional to the multiplicity
of d in the distance spectrum of the key.

For large enough values of M , the decoding failure rate clearly separates into
bands. These bands exactly correspond to the multiplicity of that distance in
Δ(h0). This allows an attacker to recover Δ(h0), and thus the secret key.

The complexity of the attack is dominated by the value M . The decoding
failure rates for different multiplicities are quite close together, and so a very
accurate estimation is need in order to properly decide on the multiplicity. In
[20], the authors found that M = 229 was sufficient for the 80-bit classical
parameter set, using the Gallager decoding algorithm. They conjectured that
using a more sophisticated decoding algorithm like that in [29], would mean that
M would have to be increased by an amount proportional to the difference in the
decoding failure rate. They also conjectured that higher parameter sets would
not significantly alter the effectiveness of the attack, as the decoding failure rate
does not significantly change.



QC-MDPC: A Timing Attack and a CCA2 KEM 55

3 Analysis and Timing Attack

3.1 Correlation

Our attack is based on the fact that the average syndrome weight is slightly
different if the relative position of non-zero bits in the key and the error are
correlated.

For the sake of simplicity, in this section, we will consider a parity-check
matrix made of one single circulant block in H ∈ IFk×k

2 instead of two. We will
see later that the practical results are the same. We denote by h ∈ IFk

2 the first
row of the matrix H. The variable t still represents the weight of the error e, so
here the numerical value of t should be half its usual value.

Without any information. Let us suppose that we do not have any informa-
tion on the key. For a random key vector h of size k and weight d and a random
error vector e of size k and weight t, denote by f(k, d, t, b) the probability that
the scalar product in IF2 is of parity b:

f(k, d, t, b) := Pr[〈h, e〉 = b] =
d∑

i=0, i is of parity b

(
d
i

)(
k−d
t−i

)

(
k
t

) .

The average syndrome weight of an error e and a parity-check matrix gener-
ated by cyclic shifts of h is k times the probability that a bit is non-zero (see [9,
page 91]), that is:

E [wt (H · eᵀ) ] = k · f(k, d, t, 1).

Case of two consecutive non-zero bits in the key. Now, suppose the key
vector h has � times two consecutive non-zero bits. Let us observe the shifts of
the vector:

shift(h) = 1 1 u,wt(u) = d − 2 � times

shift(h) = 1 0 u,wt(u) = d − 1 d − � times

shift(h) = 0 1 u,wt(u) = d − 1 d − � times

shift(h) = 0 0 u,wt(u) = d k − 2d + � times.

Suppose that the first two bits of the error vector are non-zero, that is:

e = 1 1 u,wt(u) = t − 2 .

With this extra assumption on the form of h and e, the average syndrome
weight of e with respect to the the parity-check matrix H generated by cyclic
shifts of h can now be approximated by:

E [wt (H · eᵀ) ] = � f(k − 2, d − 2, t − 2, 1)
+ 2(d − �) f(k − 2, d − 1, t − 2, 0)
+ (k − 2d + �) f(k − 2, d, t − 2, 1).

(1)



56 E. Eaton et al.

Contrary to the previous result, this is an approximation. Indeed, this model
assumes that the rest of the vector (denoted by u) is random for each shift. It
does not take into account the covariance between the bits of the syndrome.
Previously we were averaging on all the lines and the covariance was therefore
null, while here the fact that we group the rows depending on the value of the
first two bits breaks the symmetry. Still, we will see that the approximation is
close to the real value and we can neglect the correction term for the rest of the
study.

Exploiting the leak. Suppose that we only consider error patterns starting
with two consecutive non-zero bits, the syndrome weight is expected to be
slightly different on average, depending on � the number of times two consecu-
tive bits are non-zero in the key vector h. Moreover, the expected value varies
linearly with �. Therefore, if we observe enough values of the syndrome weight,
we can recover the value of �.

Definition 3 (Average syndrome weight with multiplicity). Let us
denote by D� the following set:

D� :=
{

(h, e) ∈ IFk
2 × IFk

2 |wt(h) = d,wt(e) = t, δ ∈ Δ(e),Δμ(h)[δ] = �
}

.

The average syndrome weight with multiplicity σ̄� is the expectation of the syn-
drome weight for a uniform distribution of (h, e) over D�:

σ̄� :=E(h,e)∼U(D�) [wt(H · eᵀ) ] .

From the Eq. (1) in Sect. 3.1 we know that we can approximate σ̄� by:

σ̄� = � f(k − 2, d − 2, t − 2, 1)
+ 2(d − �) f(k − 2, d − 1, t − 2, 0)
+ (k − 2d + �) f(k − 2, d, t − 2, 1).

with f(k, d, t, b) :=
d∑

i=0, i is of parity b

(
d
i

)(
k−d
t−i

)

(
k
t

)

Comparison with measured values. The values of σ̄� correspond to the
different clusters that we can see on the figures. According to the approximation,
the value of σ̄� is linear in the multiplicity: σ̄0−σ̄� = �·(σ̄0−σ̄1). This is consistent
with what we observe.

With the usual parameters for 80-bit security, (here using t = 42 as there is
only one block) we obtain σ̄0 = 1324.23 and σ̄1 = 1323.28.

When comparing the values to those measured on Fig. 2, we can see that the
measured σ̄0 is slightly lower than the approximated value, and on the contrary
σ̄1 is slightly higher. This error is due to the approximation that neglects the
covariance. When performing the same experiment on parameters for LDPC
codes, where the covariance is much smaller, the measures correspond exactly
to the computed values.
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Fig. 2. Attack on the syndrome weight (1 block): average syndrome weight per dis-
tance, 105 samples. The color of the distances indicate their multiplicity in the key
spectrum (black = 0, red= 1, blue = 2, green = 3) (Color figure online)

As a consequence, the real distance σ̄0 − σ̄1 is smaller than the one computed
using Eq. (1). Hence, the theoretical analysis gives an interesting bound on the
relative distance ε = σ̄0−σ̄1

k : εmeasured < εcomputed.

Hypothesis testing. Each syndrome is the result of k scalar products between
the error and a parity-check equation. When the error contains a distance present
in the spectrum of the key with multiplicity �, the average syndrome weight is
σ̄�, this means that on average σ̄� of the k parity-check equations are not verified.
Hence, under the independence assumption, we can see each bit of the syndrome
as a Bernoulli trial satisfied with probability σ̄�

k .
Here, our goal is to decide for each distance δ whether or not δ is in the

distance spectrum of h. We do not care about the multiplicity. Formally, we
want to distinguish D0 from ∪�≥1D�. Let us by D≥1 := ∪�≥1 D�. We can define
σ̄≥1 on D≥1 just like we defined σ̄� on D�. The sets are disjoint so we have

σ̄≥1 =
∑

�≥1 σ̄�|D�|
∑

�≥1|D�| .
Hence, deciding whether a distance is in the spectrum of the key or not

is just like distinguishing a random binary variable with success probability
p0 := σ̄0 from a random binary variable with success probability p1 := σ̄≥1. This
is a classic problem of hypothesis testing.

Note that for our parameters, the size of D� for � ≥ 2 is negligible compared
to D1, hence there is no practical need to distinguish σ̄1 from σ̄≥1.

Sample size. There is a lot of literature about hypothesis testing, and in par-
ticular a theorem from Chernoff [21] concerning such cases.
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Proposition 1 (Chernoff’s bound). Let 0 < p < 1, let X1,X2, . . . , XN be
independent binary random variables, with Pr[Xk = 1] = p and let SN =
∑N

k=1 Xk

N . Then for any t ≥ 0,

Pr[|SN − p| ≥ t] ≤ 2e−2Nt2 .

This can be used to understand how the number of samples required to find
the key evolves. Here we want to distinguish p0 from p1, we will use p0+p1

2 as the
decision threshold. Chernoff’s bound states that we should have N ∼ 1

ε2 repeated
Bernoulli trials for the decision test to be relevant, where ε = |p1 − p0| = σ̄0−σ̄1

k
is the distance between the two outcomes.

To decide whether a particular distance δ is in the spectrum or not, we need
to compute the mean of N Bernoulli trials, but each syndrome weight is already
the sum of the results of k Bernoulli tests. Hence, we need to observe the weight
of N

k syndromes. These syndromes need to be in one of the D�, this means that
the distance δ needs to be in the spectrum of the error pattern that generates
the syndrome. As the error patterns are generated uniformly, we proceed by
rejection sampling to ensure this condition. The number of vectors of size k and
weight w that do not contain a particular distance is

∏w−1
j=0 (k−3j), so neglecting

the cases of multiplicity we obtain a good approximation of the frequency of such
vectors with:

α := Pr(δ ∈ Δ(e)) ≈ 1 −
∏� t

2�−1

j=0 (k − 3j)
∏� t

2�−1

j=0 (k − j)
.

Hence, to decide whether or not δ ∈ Δ(h), we need to observe the decoding of
N

α·k syndromes, with N ∼ 1
ε2 . As we use the same data to decide for all distances,

this is the number of samples needed to recover the whole spectrum.

3.2 Attack on the Syndrome Weight

Attack Model. The scenario for our attack is the following. Eve can encrypt
random messages using the QC-MDPC scheme described in Sect. 2.1 and Alice’s
public key. She has access to the plaintext but cannot choose the messages. She
sends the messages for decryption. Whenever the device decodes a message sent
by Eve, she has a way to observe the weight of the syndrome.

The attack we describe here is an abstraction. We do not focus on how, or
even if, Eve gets access to the data. It might be possible or not depending on
a particular implementation and on the abilities of the attacker. The point is
to establish through a simulation that some secret information leaks from the
syndrome weight and to compare the cost of that simulation with the theoretical
analysis of the previous section.
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We suppose that Eve’s error patterns are randomly generated. Indeed, in the
scheme, semantically secure conversions ensure that the error patterns are ran-
dom [23]. If we allow Eve to choose the error patterns, this will only make the
attack easier, as in [20].

Contrary to [20], we collect information from all the error patters, not only
those leading to a decoding failure.

Attack on Syndrome Weight. Our goal is to compute the distance spectrum
of Alice’s private key. For each distance δ between 1 and �k

2 � we want to decide
whether or not δ ∈ Δ(hAlice). As we have seen in Sect. 3.1, for each distance
δ ∈ Δ(e), the expected average weight of the syndrome σ = wt(s), where s =
HAlice · cᵀ = HAlice · eᵀ, is expected to be different if δ ∈ Δ(hAlice).

Hence, the idea is, for each distance δ, to compute the average value of the
syndrome weight σ for error patterns e such that δ ∈ Δ(e). The error patterns
are generated randomly and each error e can be used to obtain information on
all the distances in its spectrum. This leads to Algorithm 7.

Following the discussion in Sect. 3.1, we will take threshold = σ̄0 + σ̄1
2 .

Algorithm 7. Computing the distance spectrum
Input: N the size of the sample, oracle access to the decoder

SyndromeCount ← (0, . . . , 0) ∈ IN
 k
2 �

OccurenceCount ← (0, . . . , 0) ∈ IN
 k
2 �

Δ ← (0, . . . , 0)
for 0 ≤ i ≤ N − 1 do

e
$←− IFn

2 ,wt(e) = t
σ ← OracleDecoder(e) � σ = wt(e · HAlice

ᵀ)
for δ ∈ Δ(e) do

SyndromeCount[δ] += σ
OccurenceCount[δ] += 1

for 1 ≤ δ ≤ 
 k
2
� do

if SyndromeCount[δ]/OccurenceCount[δ] < threshold then
Δ[δ] ← 1

return Δ

3.3 Attack on Iteration Count

Now that we know that the syndrome weight leaks information, any parameter
correlated to this quantity could be used for a side channel attack. An interesting
parameter that is often easy to measure is the number of iterations of a loop.
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The decoding algorithm for QC-MDPC codes is an iterative algorithm with
no termination proof. The number of rounds needed to correct the errors varies.
This has been studied by in [10]. As mentioned in Sect. 2.2, the algorithm depends
on the way we chose the thresholds. For most instances, using fixed or vari-
able thresholds, the algorithm usually corrects the error in 3 rounds, but some
instances need 4, 5 or even more iterations. Usual implementations abort after
a certain number of rounds (around 10), this is what was used for the attack
in [20].

Experimentally, we observe that the correlations between the spectrum of the
error and the spectrum of the key has an impact on the average decryption time.
The more distances appear both in spectrum of the error and in the spectrum
and the key, the fewer the number of iterations needed to decode on average.
This appears clearly on Fig. 3. We note that the correlation is slightly more
important on Fig. 3 when we use variable thresholds than with fixed theresholds
(the average value is lower for variable thresholds, but the same scale is used for
both figures).

Fig. 3. Average number of iterations needed for decryption, depending on the size of
the intersection of the spectrum of the error and the spectrum of the key. 229 samples,
128-bit security QC-MDPC scheme, decoding with fixed thresholds (left) and variable
thresholds (right). Note that use of variable thresholds results in stronger correlation.

This motivated us to try to perform a theoretical timing attack (Algorithm8).
The scenario is the same as previously, but instead of observing the syndrome
weight, Eve can measure the number of iterations needed to decode her message.
To obtain the spectrum, Eve uses the exact same data collection algorithm: for
every distance in the spectrum, she computes the average number of iterations
needed to correct an error containing this distance.

This works well and it is possible to fully recover the distance spectrum with
variable thresholds using 225 samples on 80-bit security QC-MDPC scheme, 225

samples for 128-bit security parameters (see Fig. 6) and 228 samples for 256-bit
security parameters. For fixed thresholds, we manage to recover the spectrum
for 256-bit security with 228 samples.
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Algorithm 8. Timing attack on QC-MDPC
1: Initialize observedd = 0 and iterationsd = 0 for d ∈ {1, . . . , 
k/2�}.
2: for i = 1 to M do
3: e

$←− IFn
2 ,wt(e) = t

4: c ← QCMDPC.Enc(x, e)
5: Send c to target.
6: n ← number of iterations (from side channel).
7: for d ∈ Δ(e0) do
8: observedd += 1.
9: iterationsd += n.

10: Return iterationsd/observedd for d ∈ {1, . . . , 
k/2�}.

4 Experimental Results

Results of Syndrome Attack. The spectrum recovery algorithm was first
tried on a simplified version of the scheme using only one block, in order to com-
pare to the expected behaviour. The result is striking. Using the usual parameters
for 80-bit security, with one hundred thousand samples, the spectrum appears
very clearly and we can even see the multiplicities, that is, distances that appear
several times in the key, see Fig. 2. When pushing to one billion samples, there
is no room for confusion.

When performing the same experiment on the real QC-MDPC scheme with
two blocks, we obtain similar results. The attack is performed on each block
separately, that is for each error pattern, we added the syndrome weight to
the counters of all distances present in the first half of the error to recover the
spectrum of the first block. Because there is no correlation between the two
halves of the error pattern, the presence of the second block acts as a random
noise added to the syndrome weight. Hence the only difference is that we need
more samples to reduce the variance and distinguish well which distances are
in the key spectrum. Note that it is possible to compute the spectrum of both
blocks at the same time, so there is no need to double the number of samples to
recover the second block.

For 80-bit security parameters, we can see on Fig. 4 the spectrum appearing
more and more distinctively when we increase the number of samples. With 220

samples, we can fully distinguish the spectrum. The same attack requires 223

samples for 128-bit security parameters and 225 for 256-bit security parameters.
This attack was also performed when another error is added to the syndrome,

like in the Ouroboros scheme [14] (with an additional error of weight 3d). Again,
this only adds random noise and we can recover the spectrum with around a few
million samples for the 80-bit security parameters.

Results of iteration attack. After running Algorithm8 we collect data corre-
sponding to the average number of iterations it took to decode an error when d
is present. The resulting plots (Fig. 5) look very similar to the plots of the decod-
ing failure rate that result from Algorithm6. Once the bands have completely
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Fig. 4. Average syndrome weight per distance, (from left to right, from top to bot-
tom) 214, 216, 218 and 220 samples, 80-bit security QC-MDPC scheme. The color of the
distances indicate their multiplicity in the key spectrum (black = 0, red = 1, blue = 2,
green = 3, purple ≥ 4) (Color figure online)

Fig. 5. Attack using the number of decoding iterations against parameters for 256-bit
security with fixed threshold decoding.
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Fig. 6. Attack using the number of decoding iterations, with 225 samples, against
parameters for 128-bit security QC-MDPC scheme with variable threshold decoding.
The color of the distances indicate their multiplicity in the key spectrum (black = 0,
red= 1, blue = 2, green = 3, purple ≥ 4) (Color figure online)

separated, the distance spectrum (and thus the secret key) can be recovered in
the same way it was in the GJS [20] attack.

This side-channel attack is much faster than the reaction attack. An intuitive
explanation for the speedup is that differences in the number of iterations are
much more common than decoding errors. This allows more information about
the correlations to be collected per iteration.

4.1 In-Place Decoder vs. Out-of-Place Decoder

We observed that changes to the decoding algorithm can have a significant
impact on the information gathered during the attack.

D1 uses in-place updates to the syndrome which seems to cause some asym-
metry in the errors with respect to distance. For example, in Fig. 5 the bands
converge as distance increases.

Postponing the updates until the end of each iteration (using B from [27])
seems to eliminate this asymmetry and reduces the correlation between number
of iterations and distance multiplicity. This may reduce the efficiency of the
attack.

Figure 7 shows a direct comparison between these two types of decoders. Note
that the relationship between number of iterations and multiplicity is inverted
between decoders.

We are not sure why this is the case but give a possible explanation for the
behaviour. When distances match the resulting behaviour is a decrease in total
changes to counters (both correct and incorrect). As noted in [20] this decreases
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Fig. 7. Comparison of in-place and out-of-place decoders with fixed thresholds using
30 million iterations against 80-bit security. Decoder definitions are from [27].

the error rate since it decreases the probability of an incorrect change. It also
decreases the expected number of bits flipped which could cause an increase in
the expected number of iterations.

When multiple bits are flipped at once in the out-of-place decoder the benefit
of a correct flip early in an iteration is removed so it is possible that benefit of
early flipping is dominated by the increased chance of an incorrect flip.

5 Eliminating Decoding Failure Vulnerabilities

In this section we present ParQ—A KEM constructed from repeating a QC-
MDPC encryption scheme in order to eliminate the effect of decoding failures.
The general idea is for the ciphertext to include several independent encapsu-
lations of the same key in such a way that the scheme achieves CCA2 security,
and so that a decapsulation failure occurs in ParQ only if a decryption failure
occurs in every instance of the underlying QC-MDPC scheme. As current esti-
mates for the failure rate indicate that failures occur at a rate of roughly 2−23,
this suggests that a small amount of parallelization (3–12×) will make decapsu-
lation failures occur in ParQ at a negligible rate, thus removing the possibility
of implementing a reaction attack based on these failures.

5.1 ParQ—A Parallelized QC-MDPC KEM

ParQ is largely characterized by the same parameters as other QC-MDPC code-
based schemes, specifically, k, the plaintext length, n = 2k, w, the weight of the
secret key, and t, the weight of the error. In addition to these parameters, ParQ
has the parameter P , denoting the degree of parallelization. P must be greater
than or equal to 2, and should generally be chosen to be in the range of 3 – 12.
ParQ is described by three algorithms: ParQ.KeyGen for key generation (omitted
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Algorithm 9. ParQ.Enc

Input: Public key pk, a seed s ∈ {0, 1}k.
Output: Session key K, key encapsulation C = (c1, . . . , cP ).

1: for i = 1 to P do
2: Let ei = ErrGen(s||i).
3: Compute xi = s ⊕ PRF(ei||i).
4: Compute ci = QCMDPC.Enc(pk, xi, ei).

5: Compute K = KDF(s).
6: Return session key K, key encapsulation C = (c1, . . . , cP ).

Algorithm 10. ParQ.Dec

Input: Secret key sk, public key pk, and encapsulation C = (c1, c2, . . . , cP ).
Output: Session key K, or decapsulation failure symbol ⊥.

1: for i = 1 to P do
2: Run (xi, ei) ← QCMDPC.Dec(sk, ci).
3: if QCMDPC.Dec succesfully decoded for the first time then
4: Set used index j = i.

5: if QCMDPC.Dec failed to decode for i = 1 to P then
6: Return decapsulation failure ⊥.

7: Compute s = xj ⊕ PRF(ej ||j).
8: Compute K, C′ = (c′

1, c
′
2, . . . , c

′
P ) ← ParQ.Enc(pk, s).

9: if ci = c′
i for all i ∈ {1, . . . , P} then

10: Return K.
11: else
12: Return decapsulation failure ⊥.

since it is the same as Algorithm 1), ParQ.Enc for encapsulation, and ParQ.Dec
for decapsulation. It uses three functions which we model as random oracles,
ErrGen, PRF, and KDF, which map onto E, IFk

2 , and {0, 1}λ, respectively.

5.2 Overview of IND-CCA2 Reduction for ParQ

For the rest of this section, we show the IND-CCA2 (INDistinguishable under
Chosen Ciphertext Attack) security of the ParQ KEM. We show this by reduc-
tion from the OW-CPA (One Way under Chosen Plaintext Attack) security of
the QC-MDPC McEliece system. We use the standard definitions of IND-CCA2
and OW-CPA security, which can be found in AppendixA for completeness.

Theorem 1. Let A be an adversary capable of winning the IND-CCA2 secu-
rity game with the ParQ KEM with qd decapsulation queries and qErrGen, qPRF,
and qKDF queries to the random oracles ErrGen, PRF, and KDF respectively, in
time t and with advantage ε. Then there exists a reduction B that uses A as a
subroutine by simulating the IND-CCA2 environment in order to break the OW-
CPA security of QC-MDPC McEliece, in time ≈t and with success probability
γ(ε/P − δ), where δ is negligible and γ is negligibly close to 1 in the security
parameter.
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In order to establish IND-CCA2 security via a reduction from OW-CPA, we
need to establish how to embed the given OW challenge c∗ into an IND challenge
(Sect. 5.4), and how to successfully respond to decapsulation queries (Sect. 5.5).
Then we need to show that the simulation satisfies several key properties: that
the simulated challenge is indistinguishable from a real challenge (Sect. 5.4), that
an adversary’s ability to solve the IND challenge allows the simulation to solve
the OW challenge (Sect. 5.4), and that the simulated responses to decapsulation
queries are indistinguishable from actual responses to a decapsulation query
(Sect. 5.5).

In ParQ, we have that ei = ErrGen(s||i) and xi = s ⊕ PRFi(ei), or s =
xi ⊕PRFi(ei). So for any possible c and i, there is at most one s associated with
it such that c = QCMDPC.Enc(s ⊕ PRF(ErrGen(s||i)||i),ErrGen(s||i)).

5.3 Simulating the Random Oracle

ParQ makes use of three functions that we will model as random oracles—a
pseudo random function PRF, an error generation function ErrGen, and a key
derivation function KDF. Each random oracle will be maintained by a stan-
dard ‘on-the-fly’ method. For each oracle, a table is maintained specifying which
queries have been made and what the responses were. For each oracle, when a
query is made, we first check if it has been queried before, and if so, respond with
the same response made before. We then specify how to handle new queries.

For new queries to ErrGen of the form s||i we choose a uniformly random
error vector e ∈ E. We then also calculate x = s ⊕ PRF(e||i) and add e and
c = QCMDPC.Enc(x, e) to the table. We then respond with e.

For new queries to the PRF oracle of the form e||i we first check and see if e is
the error vector associated with the challenge ciphertext c∗. We do this by using
the generator matrix G to see if c∗ − e is a codeword. If so, then we have solved
the challenge. Otherwise, generate a uniformly random string from {0, 1}k, add
it to the table and respond.

New queries to KDF can simply be handled by responding with a uniformly
random {0, 1}λ.

5.4 Challenge Injection

As we are attempting to solve an OW-CPA challenge, we are given a public key
G and a ciphertext c∗ and asked to find the (x∗, e∗) such that c∗ = x∗G + e∗.

To simulate a challenge, we will first select a uniformly random index j
$←−

{1, . . . , P}. Then, we will select a uniformly random seed s ∈ {0, 1}k. We will
run the encapsulation algorithm ParQ.Enc on the seed s, except that we will not
query ErrGen(s||j) to generate ej , and thus not generate xj and cj . Thus we will
have c1, . . . , cj−1, cj+1, . . . , cP and K.

To finish the challenge encapsulation, we will select a uniformly random bit
b ∈ {0, 1}. If b = 0, we will send K, and if b = 1 we will send a uniformly
random K ′ ∈ {0, 1}λ. We will send C = (c1, . . . , cj−1, c

∗, cj+1, . . . , cP ) as the
encapsulation.
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OW Challenge Solution Extraction. We need to show that the adversary’s
advantage in solving the IND-CCA2 challenge corresponds to an extractor’s abil-
ity to solve the OW-CPA challenge. Note that the only way for an adversary to
distinguish the correct key from an incorrect one is by querying the s associated
with each ci to the KDF oracle. Without having done this, the adversary has
no information on K and so she has no advantage in distinguishing a proper
K from a random one. Therefore, the adversary’s advantage in distinguishing
corresponds exactly to their ability to query (and thus find) s.

First, we show that the adversary’s probability of querying s to KDF without
having queried an ei for one of the ci’s to PRF (along with i) is negligibly small.

Without having queried some ei to PRF, the plaintext values x1, . . . , xp pro-
vide no information on s. Recall that s = xi ⊕PRF(ei||i). Then (x1, . . . , xP ) can
be thought of as P maskings of the same value s, with independent masking
values. This contains no information about s, unless the adversary has queried
at least one ei to PRF.

Similarly, the values (e1, . . . , eP ) provide no information about s, unless the
adversary queries s||i to ErrGen for some i. This happens with probability at
most qErrGen/2k. So as long as s is not queried to ErrGen and ei||i is not queried
to PRF, then both (x1, . . . , xP ) and (e1, . . . , eP ) give no information about s,
and so the encapsulation C = (c1, . . . , cP ) does not.

So we have shown that unless the adversary queries ei||i to PRF or s||i to
ErrGen (for any i), the encapsulation C = (c1, . . . , cP ) actually contains no infor-
mation whatsoever about s. Therefore, the adversary can only query random
seeds to KDF and so the probability that they query s to KDF is at most qKDF/2k.

If the adversary queries ei||i to PRF for any i, then they can easily find s and
thus break the indistinguishability challenge. But (as we will establish next),
since the adversary has not queried s to KDF or s||i to ErrGen, the adversary
has no ability to detect which ciphertext ci corresponds to the OW challenge c∗.
So if the adversary submits an ei to PRF, with probability 1/P , this ei is in fact
e∗, and we will solve the OW-CPA challenge.

Indistinguishability of Simulated Challenge. When the adversary is given
a challenge encapsulation C = (c1, . . . , cj−1, c

∗, cj+1, . . . , cP ), along with a pos-
sible key K, we need to ensure that they cannot tell that this is not a correctly
formatted encapsulation. Other than replacing cj with c∗, this is a correct encap-
sulation. All encapsulations come in the form of P uniform ciphertexts. However
a correct encapsulation has the additional property that for each (xi, ei) associ-
ated with a ci, s = xi ⊕ PRF(ei||i) is the same for all ci, and ei = ErrGen(s||i).

Intuitively, we can see that the only way for an adversary to distinguish
between a correctly formatted encapsulation, and one that is generated as in
our simulation is by being able to find the (xi, ei) associated with at least one
of the ci, and then checking the other ci through the PRF and ErrGen functions.

Formally, if s has not been queried to kdf , s||i has not been queried to ErrGen
for any i, and ei||i has not been queried to PRF for any i, then each xi and ei is
indistinguishable from being independently and uniformly generated. As such,
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the ciphertext is perfectly indistinguishable unless the adversary queries ei||i to
PRF for some i. This event also corresponds to the adversary’s ability in solving
the IND challenge and is considered in the previous subsection.

5.5 Simulating Decapsulation Queries

When we receive a query for decapsulation C = (c1, . . . , cP ), we need to respond
with the decapsulation K. Upon receiving the query, we lookup the ErrGen table
for P queries of the form s||1, s||2, . . . , s||P such that ci is in the table for each
s||i. If such a set of P queries is found, we respond with KDF(s). Otherwise, we
return the decryption failure symbol ⊥.

We must establish that this simulation is indistinguishable from a real decap-
sulation oracle. To establish this, we need to show two things: that we do not
respond with ⊥ when we should respond with a decapsulated key, and that we
do not respond with a decapsulated key when we should respond with ⊥. For
the first point, we must ensure that any potential encapsulation query made by
the adversary in any way other than by beginning with a seed s and generating
each ci according to ci = QCMDPC.Enc(s ⊕ PRF(ErrGen(s||i)||i),ErrGen(s||i))
only results in a ciphertext that would not return ⊥ with negligible probability.

As previously noted, any ciphertext and index pair (c, i) is associated with
exactly one seed s induced by s = x ⊕PRF(e||i), as there is at most one pair (x, e)
associated with c. For the ciphertext to be valid (and thus for a decapsulation
oracle to not output ⊥), it must be the case that ErrGen(s||i) = e. So for a
decapsulation query C = (c1, . . . , cP ), for a correct decapsulation oracle to not
return ⊥, each ci must be associated with the same seed s, and for each i,
ei = ErrGen(s||i).

When an adversary submits a decapsulation query, if it is not the case that a
single s has been queried P times to ErrGen in the form s||1, s||2, . . . , s||P , then
there are two possibilities. Either for at least one ci, no query has been made
of the form s′||i that results in ci, or such a query has been made but the s′ is
different from one other s.

In the latter case, our simulation would return ⊥, and indeed this is consis-
tent with what an actual decapsulation oracle would return, as each ci is not
associated with the same seed, which the decapsulation algorithm can always
detect.

In the first case, where s||i has not been queried to generate ci, our simulation
will return ⊥. This is usually consistent with what a correct decapsulation oracle
will return. The only case an inconsistency would arise is if, when ErrGen(s||i)
is later queried, ErrGen(s||i) = ei, despite it not having been queried at the time
that the decapsulation query is made. As ErrGen is a random oracle, this only
happens with probability at most 1/#E.

Showing that we do not respond with a decapsulation when we should
respond with ⊥ corresponds to the fact that we will never have a decoding
failure. In a real decapsulation oracle, if a decoding error were to occur for each
ci, then we would be forced to respond with ⊥. But in our simulated version, we
would respond with the correct decapsulation, as we would have seen it from the
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random oracle. However, because of the parallelization, we can see that any s
will result in errors that will give a total decapsulation failure (i.e. the decoding
procedure fail for all e1, e2, . . . , eP ) with probability ζP , where ζ is the decoding
failure rate. Given this, we need to consider the probability that an adversary
queries an encapsulation C that should result in a decapsulation failure. We
should note that it should be hard to identify error vectors which will result in
decoding failures (or else an adversary may not need to launch the GJS attack
at all), but as we have no proof of this, we assume an adversary can perfectly
distinguish which error vectors will result in decoding failures.

A fraction ζP of seeds will result in an encapsulation that cannot be decap-
sulated. So in qErrGen queries to the random oracle, the probability that the
adversary is able to find such a seed is less than qErrGenζ

P . We assume that P is
chosen so that this quantity is negligible (we discuss this further in Sect. 5.7).

5.6 Combining

We let Game 0 (or G0) refer to the original IND-CCA2 game. We let Game 1 (G1)
refer to the simulated IND-CCA2 game, where the challenge and decapsulation
oracle are simulated.

To simplify our calculation, we also define three events that can occur in the
process of either Game 0 or Game 1.

– Event 1 (or E1) refers to the event that the adversary A queries s to the KDF
oracle.

– Event 2 (or E2) refers to the event of the adversary A querying one of the
ei||i (from the challenge encapsulation) to PRF prior to querying s to KDF or
s||i to ErrGen.

– Event 3 (or E3) is the event that the adversary A breaks the distinguishability
of the simulated decapsulation oracle. Specifically, that they query an s||i to
ErrGen such that ErrGen(s||i) will result in a decoding failure for each i, or
that they submit a ciphertext to the decapsulation oracle without querying
the associated s to construct it, and that when s is later queried, it does result
in the proper error vector, and that they do this prior to Event 1 or 2.

Then, according to the discussion in Sects. 5.4 and 5.5, we perform the fol-
lowing calculation:

1
2

+ ε = Pr
G0

[A wins]

≤Pr
G0

[A wins|¬E1] + Pr
G0

[E1] ≤ 1
2

+ Pr
G0

[E1]. (2)

This tells us that ε ≤ PrG0[E1]. Next, we consider PrG0[E1]:

ε ≤ Pr
G0

[E1] ≤ Pr
G0

[E2] + Pr
G0

[E1|¬E2] ≤ Pr
G0

[E2] +
qKDF + qErrGen

2k
. (3)
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Next, we relate PrG0[E2] to PrG1[E2]. This is done simply by noting that

Pr
G0

[E2] ≤ Pr
G0

[E2|¬E3] + Pr
G0

[E3], (4)

and that

Pr
G0

[E2|¬E3] = Pr
G1

[E2|¬E3], Pr
G0

[E3] = Pr
G1

[E3]. (5)

Then finally, noting that our ability to solve the OW-CPA challenge corre-
sponds to 1/P times PrG1[E2 ∧ ¬E3], we get that

Pr[We win OW-CPA game] ≥ 1
P

Pr
G1

[E2 ∧ ¬E3]

=
1
P

Pr
G0

[¬E3] Pr
G0

[E2|¬E3] ≥ 1
P

Pr
G0

[¬E3]
(
Pr
G0

[E2] − Pr
G0

[E3]
)

, (6)

and so
Pr[We win OW-CPA game] ≥ γ

P
(ε − δ), (7)

where
δ =

qParQ.Dec

#E
+

qKDF + qErrGen
2k

+ qErrGenζ
P (8)

and
γ = 1 − qParQ.Dec

#E
− qErrGenζ

P . (9)

5.7 Comparison

In this section we compare aspects of ParQ’s efficiency and security with other
code-based KEMs, many of which have been submitted to NIST’s Post-Quantum
Cryptography project [1]. We restrict ourselves to code-based systems for direct
comparison. Comparing code-based systems to other post-quantum systems has
been done elsewhere in the literature, for example in [5]. All comparisons are done
considering parameters that have been proposed for 128 bits of post-quantum
security, or NIST’s security level 5 (AES 256) (see Table 1).

While we do not have specific data on the speed of ParQ as it compares to
other systems, one can expect that, because it requires P encapsulations and
the decapsulation must be constant time to avoid side-channel timing attacks,
the time to encapsulate and decapsulate likely increases by a factor of roughly
P as opposed to a construction like CAKE.

Here we have selected the parameter P to be 12. This reflects the fact that
it reduces the decapsulation error rate to be on the order of 2−252, presumably
hard for even a fully quantum adversary to find a seed that results in a total
decapsulation failure (even if the adversary is perfectly able to tell which errors
will result in decoding failures, which is presumably hard without the secret key).
One could choose P to be much lower, on the order of 2 or 3. While it appears
that the GJS attack would be mitigated by these low values of P , (increasing the
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Table 1. Length in bytes of keys and encapsulations for code-based KEMs. Using
8192128 for classic McEliece

Scheme Public key Secret key Encapsulation Static key use

CAKE [5] 8193 8193 8225 ✗

BIKE-1 [2] 8188 8188 8188 ✗

BIKE-2 [2] 4094 8188 4094 ✗

BIKE-3 [2] 9033 9033 9033 ✗

Classic McEliece [6] 1 357 824 14 080 240 ✓

ParQ 4094 8193 98 313 ✓

attack complexity to an estimated 266 or 287 queries respectively), decapsulation
errors may still occur in the normal lifetime of a key, meaning that the guarantees
of the CCA2 security proof would not apply. While we have specified that P must
be at least 2, note that P could be set to 1. This would cause the scheme to bear
some resemblance to the CAKE scheme [5] or the BIKE-1 scheme [2]. However,
this would cause the scheme to be vulnerable to the GJS attack, which is why
these schemes currently insist on using the public key ephemerally.

6 Conclusion and Future Work

We have explored and answered several fundamental questions that arose as a
result of the powerful GJS reaction attack on QC-MDPC McEliece. We analyzed
the origin of this leak: a bias on the distribution of the syndrome weight. This
analysis allows a better understanding of the GJS attack and we deduce other
side-channel attacks exploiting all decoding instances.

Our analysis provides quantitative bounds on the minimal number of samples
needed to deduce relevant information (using Chernoff’s bound), which could be
used to deduce better parameters to prevent attacks on the syndrome weight.
Other side-channel attacks on different (noisier) parameters exploiting the same
idea will be even more costly.

We also discussed how variations in the implemented decoding procedure can
affect the attack. Lastly we have showed how decoding failures can be addressed
at the protocol level by constructing a KEM that entirely defeats the GJS reac-
tion attack for QC-MDPC, without altering the parameters of the system. We
provided a proof of the CCA2 security of the KEM in the random oracle model.
Notably, this proof considered the possibility of decoding failures, meaning that
it should not be possible to attack the system by exploiting decoding failures.

The security of ParQ is proven in the random-oracle model. A complete and
thorough analysis of post-quantum security would require a security reduction in
the quantum random-oracle model [8]. Showing that ParQ (or a small modifica-
tion of ParQ) is secure in this model would give greater post-quantum assurance.

MDPC codes are still a recent proposal. Even though they are close to the
thoroughly studied LDPC codes, they seem to behave differently, in particular
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as far as decoding is concerned [9]. It is very likely that the state of the art for
decoding MDPC codes will evolve quickly, especially considering the NIST call
for quantum safe primitives. Interestingly, it seems that more efficient decoders
(e.g. those using variable threshold rules) are more prone to information leakage,
and thus better decoders might not be safer. Evaluating new decoding algorithm,
their failure rates and running time distribution with respect to this work could
indicate whether and at what cost QC-MDPC codes could be used for PKEs as
safely as for KEMs.

A Security Definitions and Games

These standard definitions, used in the security proof for ParQ, have been repli-
cated from [15] for the sake of completeness.

The IND-CCA2 and OW-CPA games take place between two parties, the
challenger C, and the attacker or adversary, A.

Game 1 (IND-CCA2 Challenge).

1. C obtains (pk, sk) ← ParQ.KeyGen(1λ), and sends pk to A. C runs ParQ.Enc(s)
with a uniformly random s, obtaining K0, C. C then generates a uniformly
random K1 ∈ {0, 1}λ, and a uniformly random bit b ∈ {0, 1}. C then sends C
and Kb to A.

2. A may freely send decapsulation queries C to C. C responds by sending
ParQ.Dec(C) to A. The only exception is that A may not send the challenge
encapsulation C as a decapsulation query.

3. Eventually, A must return a bit b′ as a guess for the bit b. A is said to have
won the IND-CCA2 game if b′ = b.

We write A’s ability to win Game 1 as 1/2 + ε. We call ε the adversary’s
advantage in breaking IND-CCA2 security.

Game 2 (OW-CPA Challenge).

1. C generates (pk, sk) ← QCMDPC.KeyGen(1λ). They select a uniformly ran-

dom x
$←− {0, 1}k and e

$←− {0, 1}n, with e having weight t. They then compute
c∗ ← QCMDPC.Enc(pk, x, e) and sends c∗ and pk to A.

2. A performs some computation on c∗ and pk. Eventually they must produce
an x′. A is said to have won the OW-CPA game if x′ = x.

B Choosing the Bit-Flipping Thresholds

In standard literature, rules for threshold computation are heuristic and are not
available for all parameter sets. To convince that our experiments were fair we
describe the rules we used for fixed and variable threshold. We denote d = w/2
the column weight.
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Monitoring Strategy: For a given set of parameters, we run the bit-flipping algo-
rithm on many random instances and we choose at each iteration the threshold
which minimizes the error weight at the end of all flips1. This is possible in a
simulation because we know the initial error pattern and we can monitor its
evolution. We will refer to this as the “monitoring strategy” and use it as a tool
to define the thresholds.

Fixed Thresholds: For a given set of parameters, we run a simulation using the
monitoring strategy and we keep track of the threshold values used at the first
iteration. The maximum of those values is kept as the fixed threshold, say b0,
for the first iteration. We run a second simulation, for which the first threshold
is fixed to b0 and the monitoring strategy is used for the following iterations. We
keep track of the threshold values used at the second iteration. The maximum
of those values is kept as the fixed threshold, say b1, for the second iteration. We
repeat this until we reach the maximal expected number of iterations.

Variable thresholds: For a given set of parameters, the goal here is to establish a
rule bi(σ), i ≥ 0, giving the i-th iteration threshold as a function of the syndrome
weight σ. Assuming all b� for � < i are known, we run a simulation using the
functions b0, . . . , bi−1 for the first i iterations and using the monitoring strategy
after that. We keep track of the pairs (σ, b) of syndrome weights and threshold
values used at the i-th iteration. For each syndrome weight σ, we define fi(σ)
as the average of all thresholds observed. Next, using the least square method,
we find the quadratic2 function gi(σ) which best approximates all the (σ, fi(σ))
where each (σ, fi(σ)) is weighted by the number of occurrences of the syndrome
weight σ. The threshold function for the i-th iteration will be �gi(σ)�. We add
the condition that bi is increasing with σ and we get bi : σ → max

(
bmin
i , �gi(σ)�)

where bmin
i is the minimal value of �gi(σ)� over the observed range for σ, and is

never smaller than d/2.

Results and Comments. We give below the threshold rules we used for our
simulations deduced from the above-mentioned process. Note that we do not
claim, nor observed, that those rules are giving any kind of improvement in
speed or failure rate.

Fixed Thresholds. For 80-bit security parameters, (k,w, t) = (4801, 90, 84), we
have (bi)i≥0 = (30, 28, 26, 25, 23, . . . ). The dots meaning that the last value is
repeated as much as necessary. We remark that, for the same parameters, QcBits
[13] uses thresholds that are exactly one unit lower for the first 4 iterations. This
probably reflects the fact that our strategy is rather conservative.

For 128-bit security, (k,w, t) = (10163, 142, 134), we get (bi)i≥0 = (46, 43, 41,
40, 39, 37, 36, . . . ). Finally for 256-bit security, (k,w, t) = (32771, 274, 264) we
obtain (bi)i≥0 = (83, 80, 77, 74, 72, . . . ).
1 In case of a tie, we choose the smallest threshold, but never smaller than d/2.
2 We use the linear approximation unless the quadratic approximation gives different

values of bi(σ) = gi(σ)� for σ in the observed range.



74 E. Eaton et al.

Variable Thresholds.

(k,w, t) =
(4801, 90, 84) ⇒

⎧
⎨

⎩

b0(σ) = �11.1 + 0.00919σ�
b1(σ) = max(24, �38.7 − 0.0242σ + 1.004 10−5σ2�)
bi(σ) = max(24, �34.9 − 0.0195σ + 0.836 10−5σ2�), i ≥ 2,

(k,w, t) =
(10163, 142, 134) ⇒

⎧
⎨

⎩

b0(σ) = �15.5 + 0.00665σ�
b1(σ) = �51.7 − 0.0128σ + 0.257 10−5σ2�
bi(σ) = max(37, �40.1 − 0.00395σ + 9.50 10−7σ2�, i ≥ 2

(k,w, t) =
(32771, 274, 264) ⇒

⎧
⎪⎪⎨

⎪⎪⎩

b0(σ) = �22.9 + 0.00402σ�
b1(σ) = �18.2 + 0.00431σ�
b2(σ) = max(71, �315.8 − 0.0422σ + 0.182 10−5σ2�)
bi(σ) = max(69, �62.5 + 0.000648σ�), i ≥ 3.
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Dunkelman, O., Güneysu, T., Gueron, S., Hülsing, A., Lange, T., Mohamed,
M.S.E., Rechberger, C., Schwabe, P., Sendrier, N., Vercauteren, F., Yang, B.Y.:
Initial recommendations of long-term secure post-quantum systems (2015). http://
pqcrypto.eu.org/docs/initial-recommendations.pdf

4. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryptosys-
tem based on QC-LDPC codes. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 246–262. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-85855-3 17
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Abstract. This paper presents an FPGA implementation of the Nieder-
reiter cryptosystem using binary Goppa codes, including modules for
encryption, decryption, and key generation. We improve over previous
implementations in terms of efficiency (time-area product and raw per-
formance) and security level. Our implementation is constant time in
order to protect against timing side-channel analysis. The design is fully
parameterized, using code-generation scripts, in order to support a wide
range of parameter choices for security, including binary field size, the
degree of the Goppa polynomial, and the code length. The parameter-
ized design allows us to choose design parameters for time-area trade-offs
in order to support a wide variety of applications ranging from smart
cards to server accelerators. For parameters that are considered to pro-
vide “128-bit post-quantum security”, our time-optimized implementa-
tion requires 966,400 cycles for the generation of both public and private
portions of a key and 14,291 cycles to decrypt a ciphertext. The time-
optimized design uses only 121,806 ALMs (52% of the available logic)
and 961 RAM blocks (38% of the available memory), and results in a
design that runs at about 250 MHz on a medium-size Stratix V FPGA.

Keywords: Post-Quantum Cryptography · Code-based cryptography
Niederreiter cryptosystem · FPGA · Hardware implementation

1 Introduction

Arguably today’s most wide-spread asymmetric cryptographic algorithms are
the Rivest-Shamir-Adleman (RSA) cryptosystem, Diffie-Hellman key exchange
(DH), and a variety of primitives from the field of Elliptic-Curve Cryptogra-
phy (ECC), e.g., ECDSA, EdDSA, ECDH, etc. These cryptosystems are based
on the hardness of the integer-factorization problem and the discrete-logarithm
problem. Using today’s computing systems, no efficient algorithms for solving
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these problems are known. However, the picture changes drastically if quan-
tum computers are taken into account. In the 1990s, Shor proposed algorithms
that can solve both the integer-factorization problem and the discrete-logarithm
problem in polynomial time on a quantum computer [23,24]. In order to provide
alternatives to the threatened schemes, the field of Post-Quantum Cryptogra-
phy (PQC) emerged in the 2000 s and has received increased attention recently,
most noticeably due to a standardization process for PQC schemes started by
NIST in 2017 [7].

Currently, there are five categories of mathematical problems that are under
investigation for PQC: code-based systems, lattice-based systems, hash-based
systems, systems based on multivariate polynomial equations, and systems based
on supersingular isogenies of elliptic curves [4,22]. Each of these categories has
advantages and disadvantages. They vary in the performance measures (sizes of
public and private keys, sizes of ciphertext and key-exchange messages, computa-
tional cost, etc.) and in maturity: some schemes (e.g., some code-based schemes
and hash-based signature schemes) are considered well-understood and there is
a general agreement on the required security parameters while other schemes are
more recent and the exact security that they provide is yet under investigation.

Conservative and well-understood choices for code-based cryptography are
the McEliece cryptosystem [18] and its dual variant by Niederreiter [19] using
binary Goppa codes. In this paper, we focus on the Niederreiter cryptosystem.
This cryptosystem has relatively large public keys of up to 1 MB for roughly 256-
bit classical security (corresponding to “128-bit post-quantum security” meaning
that a quantum computer needs to perform at least 2128 “operations” using the
best known attacks) using parameters proposed in [2]. There are more efficient
PQC schemes than Niederreiter with binary Goppa codes. However, some of
these schemes exhibit weaknesses that restrict their application to certain use-
cases (e.g., Niederreiter with QC-MDPC codes instead of binary Goppa codes is
affected by decoding errors [13] which restricts their use to ephemeral applica-
tions without long-term usage of keys) while how to choose security parameters
for some schemes is challenging (e.g., for some lattice-based schemes that have
a security reduction, parameters need to be chosen either based on best-known
attacks or based on the non-tight security reduction, which results in a dilemma
of choosing either more efficient or more reliable parameters [1]).

The large public keys of the Niederreiter cryptosystem using binary Goppa
codes make it particularly troublesome for use in embedded systems (due to
strong restrictions on resource usage) and in server scenarios (given a large
number of simultaneous connections). In both cases, hardware acceleration can
help to improve the performance—either by providing a low-area, power efficient
crypto core in the embedded scenario or by providing a large, latency or through-
put optimized crypto accelerator for the server scenario. Therefore, we describe
and evaluate an FPGA implementation of this cryptosystem. Our FPGA imple-
mentation can be tuned in regard to performance and resource usage for either
low-resource usage in embedded systems or high performance as accelerator for
servers. Furthermore, we provide a generic implementation that can be used for
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different performance parameters. This enables us to synthesize our design for
the above mentioned 256-bit security parameters and also smaller parameter
sets for comparison with prior art. For a given set of parameters, i.e. security
level, the design can be further configured to trade-off performance and area,
by changing widths of data paths, memories, and other parameters inside the
design, without affecting the security level. All of the parameters can be config-
ured for key generation, encryption, and decryption.

Inspired by the confidence in the code-based cryptosystems, there are a
few hardware implementations of different variants of these cryptosystems, e.g.,
[14,17,26]. Most of the work only focuses on the encryption and decryption parts
of the cryptosystem due to the complexity of the key generation module. More-
over, none of the prior designs are fully configurable as ours nor do they support
the recommended “128-bit post-quantum security” level. We are aware of only
one publication [26] that provides the design of a full McEliece cryptosystem
including key generation, encryption and decryption modules. However, their
design only provides a 103-bit classical security level, which does not meet the
currently recommended security level for defending against quantum comput-
ers. More importantly, the design in [26] is not constant-time and has poten-
tial security flaws. For example, within their key generation part, they generate
non-uniform permutations, and within the decryption part, they implement a
non-constant-time decoding algorithm. Note that our work focuses on a design
that can defend against timing side-channel attacks due to its constant-time
implementation. However, other types of side-channel attacks are out of scope
of this work. A detailed comparison with related work is presented in Section 5.

Contributions. This paper presents the first “128-bit post-quantum secure”,
constant-time, efficient, and tunable FPGA-based implementation of the Nieder-
reiter cryptosystem using binary Goppa codes. The contributions are:

– full cryptosystem with tunable parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code,

– new hardware implementation of merge sort for obtaining uniformly dis-
tributed permutations,

– new optimization of the Gao-Mateer additive FFT for polynomial evaluation,
– hardware implementation of a constant-time Berlekamp-Massey decoding

algorithm, and
– design testing using Sage reference code, iVerilog simulation, and output from

real FPGA runs.

2 Niederreiter Cryptosystem

The first public-key encryption scheme based on coding theory was proposed
in 1978 by McEliece [18], known as the McEliece public-key cryptosystem. In
1986, Niederreiter proposed a variant of the McEliece cryptosystem that uses
a parity check matrix for encryption instead of a generator matrix as used by
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McEliece. Furthermore, Niederreiter proposed to use Reed-Solomon codes, which
were later shown to be insecure [27]. However, the Niederreiter cryptosystem
using binary Goppa codes remains secure and the Niederreiter cryptosystem has
been shown to be equivalent (using corresponding security parameters) to the
McEliece cryptosystem [15].

The private key of the Niederreiter cryptosystem is a binary Goppa code G
that is able to correct up to t errors. It consists of two parts: a generator, which
is a monic irreducible polynomial g(x) of degree t over GF(2m), and a support,
which is a random sequence of n distinct elements from GF(2m). The public key
is a binary parity check matrix H ∈ GF(2)mt×n, which is uniquely defined by
the binary Goppa code. To reduce the size of the public key, the matrix H of size
mt×n can be compressed to a matrix K ∈ GF(2)mt×k of size mt×(n−mt) with
k = (n − mt) by computing its systematic form. This is often called “modern
Niederreiter” and can also be used for the McEliece cryptosystem. For encryp-
tion, the sender encodes the message as a weight-t error vector e of length n. Then
e is multiplied with the public parity check matrix H and the resulting syndrome
is sent to the receiver as the ciphertext c. For decryption, the receiver uses the
secret support and the generator to decrypt the ciphertext in polynomial time
using an efficient syndrome decoding algorithm of G. If neither the support nor
the generator is known, it is computationally hard to decrypt the ciphertext,
given only the public key H. The Niederreiter cryptosystem has performance
advantages over the McEliece system if it is used as a key-encapsulation scheme,
where a symmetric key is derived from the weight-t error vector e. The Nieder-
reiter cryptosystem with properly chosen parameters is believed to be secure
against attacks using quantum computers.

Security Parameters. The PQCRYPTO project [21] gives “initial recommen-
dations” for several PQC schemes. For McEliece and Niederreiter using binary
Goppa codes, they recommend to use a binary field of size m = 13, adding
t = 119 errors, code length n = 6960, and code rank k = n−mt = 6960−13·119 =
5413 for “128-bit post-quantum security” [2]. More precisely, these parameters
give a classical security level of 266-bit (slightly overshooting 256-bit security);
they were chosen to provide maximum security for a public key size of at most
1 MB [6]. We use these recommended parameters as primary target for our imple-
mentation. However, since our design is fully parameterized, we can synthesize
our implementation for any meaningful choice of m, t, n, and k for comparison
with prior art (see Section 5).

2.1 Algorithms

There are three main operations within the Niederreiter cryptosystem: key gen-
eration, encryption and decryption. Key generation is the most expensive opera-
tion; it is described in Algorithm 1. The implementation of the key generator has
been described in detail in [28]. To generate a random sequence of distinct field
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Algorithm 1. Key-generation algorithm for the Niederreiter cryptosystem.
Input : System parameters: m, t, and n.
Output: Private key (g(x), (α0, α1, . . . , αn−1)) and public key K.

1 Choose a random sequence (α0, α1, . . . , αn−1) of n distinct elements in GF(2m)
as support.

2 Choose a random polynomial g(x) as generator such that g(α) �= 0 for all
α ∈ (α0, . . . , αn−1).

3 Compute the t × n parity check matrix

H =

⎡
⎢⎢⎢⎣

1/g(α0) 1/g(α1) · · · 1/g(αn−1)
α0/g(α0) α1/g(α1) · · · αn−1/g(αn−1)

...
...

. . .
...

αt−1
0 /g(α0) αt−1

1 /g(α1) · · · αt−1
n−1/g(αn−1)

⎤
⎥⎥⎥⎦ .

4 Transform H to a mt × n binary parity check matrix H ′ by replacing each entry
with a column of m bits.

5 Transform H ′ into its systematic form [Imt|K].
6 Return the private key (g(x), (α0, α1, . . . , αn−1)) and the public key K.

Algorithm 2. Encryption algorithm for the Niederreiter cryptosystem.
Input : Plaintext e, public key K.
Output: Ciphertext c.

1 Compute c = [Imt|K] × e.
2 Return the ciphertext c.

Algorithm 3. Decryption algorithm for the Niederreiter cryptosystem.
Input : Ciphertext c, secret key (g(x), (α0, α1, . . . , αn−1)).
Output: Plaintext e.

1 Compute the double-size 2t × n parity check matrix

H(2) =

⎡
⎢⎢⎢⎣

1/g2(α0) 1/g2(α1) · · · 1/g2(αn−1)
α0/g2(α0) α1/g2(α1) · · · αn−1/g2(αn−1)

...
...

. . .
...

α2t−1
0 /g2(α0) α2t−1

1 /g2(α1) · · · α2t−1
n−1 /g2(αn−1)

⎤
⎥⎥⎥⎦ .

2 Transform H(2) to a 2mt × n binary parity check matrix H ′(2) by replacing each
entry with a column of m bits.

3 Compute the double-size syndrome: S(2) = H ′(2) × (c|0).
4 Compute the error-locator polynomial σ(x) by use of the decoding algorithm

given S(2).
5 Evaluate the error-locator polynomial σ(x) at (α0, α1, . . . , αn−1) and determine

the plaintext bit values.
6 Return the plaintext e.
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elements, [28] presents a low-cost Fisher-Yates shuffle module which generates a
uniform permutation. However, the runtime of the permutation module in [28]
depends on the generated secret random numbers. This non-constant-time design
of the permutation module might have vulnerabilities which enable timing side-
channel analysis. In our work, we present a merge sort module, which generates
a uniform permutation within constant time, as described in Section 3.1.

Within the Niederreiter cryptosystem, the ciphertext is defined as a syn-
drome, which is the product between the parity check matrix and the plaintext.
As shown in Algorithm 2, the encryption operation is very simple and maps
to the multiplication between the extended public key [Imt|K] and the plain-
text e. In our work, we only focus on the core functionalities of the Niederreiter
cryptosystem, therefore we assume that the input plaintext e is an n-bit error
message of weight t.

As shown in Algorithm 3, the decryption operation starts from extracting
the error locator polynomial out of the ciphertext using a decoding algorithm.
We use the Berlekamp-Massey’s (BM) algorithm in our design and develop a
dedicated BM module for decoding, as described in Section 3.2. One problem
within BM-decoding is that it can only recover t

2 errors. To solve this issue, we
use the trick proposed by Nicolas Sendrier [14]. We first compute the double-
size parity check matrix H(2) corresponding to g2(x), then we append (n − mt)
zeros to c. Based on the fact that e and (c|0) belong to the same coset given
H(2) × (c|0) = H × e, computing the new double-size syndrome S(2) enables the
BM algorithm to recover t errors. Once the error locator polynomial is computed,
it is evaluated at the secret random sequence (α0, α1, . . . , αn−1), and finally the
plaintext e is recovered.

2.2 Structure of the Paper

The following sections introduce the building blocks for our cryptosystem in
a bottom-up fashion. Details of the GF(2m) finite field arithmetic and of the
higher-level GF(2m)[x]/f polynomial arithmetic can be found in [28]. Lever-
aging the arithmetic operations are modules that are used in key generation,
encryption, and decryption. For key generation, the description of the Gaussian
systemization and additive FFT module has been provided in [28] and in this
paper we will focus on the introduction of the new merge sort module and the
optimization of the additive FFT module, as described in Section 3. For encryp-
tion, a simple matrix-vector multiplication is needed. For decryption, additive
FFT is used as well, and a new Berlekamp-Massey decoding module is introduced
and described in Section 3. Then we describe how these modules work together
to obtain an efficient design for the full cryptosystem in Section 4. Validation of
the design using Sage, iVerilog, and Stratix V FPGAs is presented in Section 5
together with a discussion and comparison with related work.
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Algorithm 4. Fisher-Yates shuffle
Output: Shuffled array A
Initalize: A = {0, 1, . . . , n − 1}

1 for i from n − 1 downto 0 do
2 Generate j uniformly from range [0, i)
3 Swap A[i] and A[j]

Algorithm 5. Merge sort
Input: Random list A, of length 2k

Output: Sorted list A
1 Split A into 2k sublists.
2 for i from 0 to k − 1 do
3 Merge adjacent sublists.

3 Modules

The main building blocks within our Niederreiter cryptosystem (as shown in
Figure 2) are: two Gaussian systemizers for matrix systemization over GF(2m)
and GF(2) respectively, Gao-Mateer additive FFT for polynomial evaluations,
a merge-sort module for generating uniformly distributed permutations, and a
Berlekamp-Massey module for decoding. The Gaussian systemizer and the orig-
inal version of additive FFT have been described in detail in [28]. We will focus
on the merge-sort module, the Berlekamp-Massey module and our optimizations
for the additive-FFT module in this section.

3.1 Random Permutation

An important step in the key-generation process is to compute a random permu-
tation of selected field elements, which is part of the private key and therefore
must be kept secret. In [28], the random permutation was computed by perform-
ing Fisher-Yates shuffle [11] on the ordered list (0, 1, . . . , 2m − 1). Algorithm 4
shows the operation of the Fisher-Yates shuffle. This algorithm computes a per-
mutation efficiently and requires only a small amount of computational logic.
As shown in Algorithm 4, in each iteration step i (in decrementing order), this
module generates a random integer 0 ≤ j < i (Algorithm 4, line 2), and then
swaps the data in array position i and j. In [28], a PRNG is used, which keeps
generating random numbers until the output is in the required range. Therefore,
this implementation of Fisher-Yates shuffle produces a non-biased permutation
(under the condition that the PRNG has no bias) but it is not constant-time
because different seeds for the PRNG will lead to different cycle counts for the
Fisher-Yates shuffle. This causes a potential risk of timing side-channel attacks,
which is hard to eliminate even if a larger PRNG is used.
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To fully eliminate potential timing attacks using the Fisher-Yates shuffle
approach from [28], in this work, we implemented a constant-time sorting module
for permutation based on the merge-sort algorithm. Sorting a random list can be
regarded as the reverse operation of a permutation: Sorting a randomly permuted
list can be seen as applying swapping operations on the elements until a sorted
list is achieved. Applying the same swapping operations in reverse order to a
sorted list results in a randomly permuted list. Therefore, given a constant-time
sort algorithm, a constant-time algorithm for generating a random permutation
can easily be derived.

Merge Sort. Merge sort is a comparison-based sorting algorithm which pro-
duces a stable sort. Algorithm 5 shows the merge sort algorithm. For example,
a given random list A = (92, 34, 18, 78, 91, 65, 80, 99) can be sorted by using
merge sort within three steps: Initially, list A is divided into eight sublists
(92), (34), (18), (78), (91), (65), (80), and (99) with granularity of one. Since there
is only one element in each sublist, these sublists are sorted. In the first step, all
the adjacent sublists are merged and sorted, into four sublists (34, 92), (18, 78),
(65, 91), and (80, 99) of size two. Merging of two sorted lists is simple: Itera-
tively, first elements of the lists are compared and the smaller one is removed
from its list and appended to the merged list, until both lists are empty. In
the second step, these lists are merged into two sublists (18, 34, 78, 92) and
(65, 80, 91, 99) of size four. Finally, these two sublists are merged to the final
sorted list Asorted = (18, 34, 65, 78, 80, 91, 92, 99).

In general, to sort a random list of n elements, merge sort needs log2(n)
iterations, where each step involves O(n) comparison-based merging operations.
Therefore, merge sort has an asymptotic complexity of O(n log2(n)).

Random Permutation. As mentioned above, sorting a random list can be
regarded as the reverse operation of permutation. When given a random list A,
before the merge sort process begins, we attach an index to each element in the
list. Each element then has two parts: value and index, where the value is used
for comparison-based sorting, and the index labels the original position of the
element in list A. For the above example, to achieve a permutation for list P =
(0, 1, . . . , 7), we first attach an index to each of the elements in A, which gives us
a new list A′ = ((92, 0), (34, 1), (18, 2), (78, 3), (91, 4), (65, 5), (80, 6), (99, 7)).
Then the merge sort process begins, which merges elements based on their
value part, while the index part remains unchanged. Finally, we get A′

sorted =
((18, 2), (34, 1), (65, 5), (78, 3), (80, 6), (91, 4), (92, 0), (99, 7)). By extracting
the index part of the final result, we get a random permutation of P , which is
(2, 1, 5, 3, 6, 4, 0, 7). In general, to compute a random permutation, we generate
2m random numbers and append each of them with an index. The sorting result
of these random numbers will uniquely determine the permutation.

In case there is a collision among the random values, the resulting permuta-
tion might be slightly biased. Therefore, the bit-width of the randomly generated
numbers needs to be selected carefully to reduce the collision rate and thusly the



FPGA-Based Niederreiter Cryptosystem Using Binary Goppa Codes 85

Design Algorithm Const. Cycles Logic Time × Area Mem. Reg. Fmax

[28] FY-shuffle × 23,635 149 3.52 · 106 7 111 334MHz
Our merge-sort � 147,505 448 6.61 · 107 46 615 365MHz

Table 1. Performance of computing a permutation on 213 = 8192 elements with
m = 13 and b = 32; Const. = Constant Time.

bias. If the width of the random numbers is b, then the probability that there are
one or more collisions in 2m randomly generated numbers is 1 − ∏2m−1

i=1
(2b−i)

2b

due to the birthday paradox. Therefore, for a given m, the collision rate can be
reduced by using a larger b. However, increasing b also increases the required
logic and memory. Both m and b are parameters which can be chosen at com-
pile time in our implementation. The value for b can easily be chosen to fit to
the required m. For the parameters m = 13 and b = 32 the collision rate is
0.0078. We further reduce the collision rate and thus the bias within merge sort
by incorporating the following trick in our design at low logic cost: In case the
two random to-be-merged values are equal, we do a conditional swap based on
the least significant bit of the random value. Since the least significant bit of the
random value is random, this trick will make sure that if some random num-
bers are generated twice, we can still get a non-biased permutation. There still
is going to be a bias in the permutation if some random values appear more
than two times. This case could be detected and the merge sort module could
be restarted repeatedly until no bias occurs. However, the probability of this is
very low (prob ≈ 2−27.58 according to [10]) for m = 13 and b = 32.

Fully Pipelined Hardware Implementation. We implemented a parame-
terized merge sort module using two dual-port memory blocks P and P ′ of depth
2m and width (b+m). First, a PRNG is used, which generates 2m random b-bit
strings, each cell of memory block P then gets initialized with one of the ran-
dom b-bit strings concatenated with an m-bit index string (corresponding to the
memory address in this case). Once the initialization of P finishes, the merge
sort process starts. In our design, the merge sort algorithm is implemented in
a pipelined way. The basic three operations in the merge-sort module are: read
values from two sublists, compare the two values, and write down the smaller one
to a new list. In our design, there are four pipeline stages: issue reads, fetch out-
puts from memory, compare the outputs, and write back to the other memory.
We built separate logic for these four stages and time-multiplex these four stages
by working on independent sublists in parallel whenever possible. By having the
four-stage pipelines, we achieve a high-performance merge-sort design with a
small logic overhead.

Table 1 shows a comparison between our new, constant time, sort-based
permutation module with the non-constant time Fisher-Yates shuffle approach
in [28]. Clearly, the constant-time permutation implementation requires more
time, area, and particularly memory. Therefore, a trade-off needs to be made
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Figure 1. Dataflow diagram of the Berlekamp-Massey module.

between the need for increased security due to the constant-time implementa-
tion and resource utilization. In scenarios where timing side-channel protection
is not needed, the cheaper Fisher-Yates shuffle version might be sufficient.

3.2 Berlekamp-Massey Algorithm

Finding a codeword at distance t from a vector v is the key step in the decryp-
tion operation. We apply a decoding algorithm to solve this problem. Among
different algorithms, the Berlekamp-Massey (BM) algorithm [16] and Patterson’s
algorithm [20] are the algorithms most commonly used. Patterson’s algorithm
takes advantage of certain properties present in binary Goppa codes, and is able
to correct up to t errors for binary Goppa codes with a designated minimum
distance dmin ≥ 2t + 1. On the other hand, general decoding algorithms like the
BM algorithm can only correct t

2 errors by default, which can be increased to t
errors using the trick proposed by Nicolas Sendrier [14]. However, the process of
BM algorithm is quite simple compared to Patterson’s algorithm. More impor-
tantly, it is easier to protect the implementation of BM algorithm against timing
attacks given the simplicity of the decryption steps. Consequently, we use BM
algorithm in our decryption module.

Our implementation follows the Berlekamp iterative algorithm as described
in [16]. The algorithm begins with initializing polynomials σ(x) = 1 ∈
GF(2m)[x], β(x) = x ∈ GF(2m)[x], integers l = 0 and δ = 1 ∈ GF(2m). The
input syndrome polynomial is denoted as S(x) =

∑2t−1
i=1 Six

i ∈ GF(2m)[x]. Then
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Algorithm 6. Berlekamp-Massey algorithm for decryption.
Input : Public security parameter t, syndrome polynomial S(x).
Output: Error locator polynomial σ(x).

1 Initialize: σ(x) = 1, β(x) = x, l = 0, δ = 1.
2 for k from 0 to 2t − 1 do

3 d =
∑t

i=0 σiSk−i

4 if d = 0 or k < 2l:
5 {σ(x), β(x), l, δ} =

{
σ(x) − dδ−1β(x), xβ(x), l, δ

}
.

6 else:
7 {σ(x), β(x), l, δ} =

{
σ(x) − dδ−1β(x), xσ(x), k − l + 1, d

}
.

8 Return the error locator polynomial σ(x).

within each iteration step k (0 ≤ k ≤ 2t − 1), the variables {σ(x), β(x), l, δ}
are conditionally updated using operations described in Algorithm6. Note that
updating polynomial β(x) only involves multiplying a polynomial by x, which
can be easily mapped to a binary shifting operation on its coefficients in hard-
ware. Updating integer l and field element δ only involves subtraction/addition
operations, and these operations can also be easily implemented in hardware.
Therefore the bottleneck of the algorithm lies in computing d and updating σ(x).

Hardware Implementation. The first step within each iteration is to cal-
culate d (Algorithm 6, line 3). We built an entry sum module (as shown in
Figure 1) for this computation, which maps to a vector-multiplication operation
as described in [28]. We use two registers σvec and βvec of m · (t + 1) bits to
store the coefficients of polynomials σ(x) and β(x), where the constant terms σ0

and β0 are stored in the lowest m bits of the registers, σ1 and β1 are stored in
the second lowest m bits, and so on. We also use a register Svec of m ·(t+1) bits
to store at most (t + 1) coefficients of S(x). This register is updated within each
iteration, where Sk is stored in the least significant m bits of the register, Sk−1

is stored in the second least significant m bits, and so on. The computation of
d can then be regarded as an entry-wise vector multiplication between register
σvec and register Svec = (0, 0, . . . , S0, S1, . . . , Sk−1, Sk) for all 0 ≤ k ≤ 2t − 1.
Register σvec is initialized as (0, 0, . . . , 1) for the first iteration, and then gets
updated with the new coefficients of σ(x) for the next iteration. Svec is ini-
tialized as all zeroes, and then constructed gradually by reading from a piece
of memory which stores coefficient Si of syndrome polynomial S(x) at address
i for 0 ≤ i ≤ 2t − 1. Within the k-th iteration, a read request for address k
of the memory is issued. Once the corresponding coefficient Sk is read out, it is
inserted to the lowest m bits of Svec . After the computation of d, we start updat-
ing variables {σ(x), β(x), l, δ}. To update σ(x), one field-element inversion, one
field-element multiplication, one scalar multiplication as well as one vector sub-
traction are needed. At first, field element δ is inverted. As described in [28], the
inversion of elements in GF(2m) can be implemented by use of a pre-computed
lookup table. Each entry of the table can be read in one clock cycle. After reading
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mulBM mulBM step Cycles Logic Time × Area Mem. Reg. Fmax

10 10 7379 6285 4.64 · 107 7 13,089 364MHz
20 20 4523 7052 3.19 · 107 7 13,031 353MHz
30 30 3571 7889 2.82 · 107 7 12,956 361MHz
40 40 3095 9047 2.8 · 107 7 13,079 356MHz
60 60 2619 11,400 2.99 · 107 7 13,274 354MHz

Table 2. Performance of the Berlekamp-Massey module for m = 13, t = 119, and
deg(S(x)) = 237.

out δ−1, a field-element multiplication between d and δ−1 is performed, which
makes use of the GF(2m) multiplication module as described in [28]. Once we get
dδ−1, a scalar multiplication between field element dδ−1 and polynomial β(x)
starts, which can be mapped to an entry-wise vector multiplication between vec-
tor (dδ−1, dδ−1, . . . , dδ−1) and (βt, βt−1, . . . , β1, β0). The last step for updating
σ(x) is to subtract dδ−1β(x) from σ(x). In a binary field GF(2m), subtraction
and addition operations are equivalent. Therefore, the subtraction between σ(x)
and dδ−1β(x) can simply be mapped to bit-wise xor operations between vector
(σt, σt−1, . . . , σ1, σ0) and vector (dδ−1βt, dδ−1βt−1, . . . , dδ−1β1, dδ−1β0). Updat-
ing polynomial β(x) is done by conditionally replacing its coefficient register
βvec with δvec , and then shift the resulting value leftwards by m bits. Updating
integer l and field element δ only involves simple and cheap hardware operations.

The above iterations are repeated for a fixed number of 2t times, where t is
the public security parameter. After 2t iterations, the final output is determined
as the error locator polynomial σ(x). It is easy to see that within each iteration,
the sequence of instructions is fixed, as long as we make sure that the conditional
updates of variables {σ(x), β(x), l, δ} are constant time (which is easy to achieve
due to its fixed computational mapping in hardware), the run time of the whole
design is fixed given the fixed iteration times. Therefore our BM implementation
is fully protected against existing timing side-channel attacks, e.g., [3,25].

We built a two-level design. The lower level is a BM step module, which maps
to one iteration, shown as “Berlekamp-Massey Step” in Figure 1. The higher-
level BM module then iteratively applies BM step and entry sum modules. Table 2
shows performance for the BM module. A time-area trade-off can be achieved by
adjusting the design parameters mulBM and mulBM step, which are the number
of multipliers used in the BM and BM step modules. mulBM and mulBM step can
be freely chosen as integers between 1 and t + 1.

3.3 Optimizations for Additive FFT

Evaluating a polynomial at multiple data points over GF(2m) is an essential
step in both the key generation and the decryption processes. In key generation,
an evaluation of the Goppa polynomial g(x) is needed for computing the par-
ity check matrix H, while for decryption, it is required by the computation of
the double-size parity check matrix H(2) as well as the evaluation of the error
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locator polynomial σ(x). Therefore, having an efficient polynomial-evaluation
module is very important for ensuring the performance of the overall design. We
use a characteristic-2 additive FFT algorithm introduced in 2010 by Gao and
Mateer [12], which was used for multipoint polynomial evaluation by Bernstein
et al. in [5]. Additive FFT consists of two parts. First, radix conversion and twist
is performed on the input polynomial. Given a polynomial g(x) of 2k coefficients,
the recursive twist-then-radix-conversion process returns 2k 1-coefficient polyno-
mials. Then, these 1-coefficient polynomials are used to iteratively evaluate the
input points by use of the reduction process.

We applied some modifications and improvements to both parts of the addi-
tive FFT design from [28]:

Optimizing Radix Conversion and Twisting. The radix-conversion step,
which includes both radix conversion and twist, consists of several rounds that
iteratively compute the new output coefficients of the converted input polyno-
mial. The number of rounds is the base-2 logarithm of the degree of the input
polynomial. In each round, new temporary coefficients are computed as the sum
of some of the previous coefficients followed by a twist operation, i.e., a multi-
plication of each coefficient with a pre-computed constant to obtain a new basis
for the respective round.

The radix-conversion module in [28] is using dedicated logic for each round
for summing up the required coefficients, computing all coefficients within one
cycle. Computing all coefficients with dedicated logic for each round requires a
significant amount of area although radix conversion only requires a very small
amount of cycles compared to the overall additive FFT process. Therefore, this
results in a relatively high time-area product and a poor usage of resources.

We improve the area-time product at the cost of additional cycles and addi-
tional memory requirements by using the same logic block for different coeffi-
cients and rounds. An additional code-generation parameter is used to specify
how many coefficients should be computed in parallel, which equals to the num-
ber of multipliers (1 ≤ Mult. ≤ t + 1) used in twist when mapping to hard-
ware implementations. Each round then requires several cycles depending on the
selected parameter. The computation of the new coefficients requires to sum up
some of the previous coefficients. The logic therefore must be able to add up any
selection of coefficients depending on the target coefficient. We are using round-
and coefficient-dependent masks to define which coefficients to sum up in each
specific case. These masks are stored in additional RAM modules.

Furthermore, in the design of [28], the length of the input polynomial is
constrained to be a power of 2. For shorter polynomials, zero-coefficients need
to be added, which brings quite some logic overhead especially on some extreme
cases. For example, for a polynomial of 129 coefficients (t = 128), a size-256 radix
conversion module will be needed. Instead, our improved design eliminates this
constraint and allows an arbitrary input length with low overhead and therefore
is able to further reduce cycle count and area requirements.
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Design Coeffs. Mult. Cycles Logic Time × Area Reg. Mem. Fmax

Our 120 2 385 1893 7.3 · 105 3541 6 305MHz

Our 120 4 205 2679 5.5 · 105 3622 10 273MHz
[28] 128 4 211 5702 1.2 · 106 7752 0 407MHz

Our 120 8 115 4302 4.9 · 105 3633 17 279MHz
[28] 128 8 115 5916 6.8 · 105 7717 0 400MHz

Table 3. Performance of our radix-conversion module compared to [28] for GF(213).

Table 3 shows the performance improvements of the current radix-conversion
module compared to the design in [28]. The numbers for our new design are
given for a polynomial of length 120. The design in [28] requires the next larger
power of 2 as input length. Therefore, we give numbers for input length 128
for comparison. For a processing width of four coefficients (multipliers), our
new implementation gives a substantial improvement in regard to the time-area
product over the old implementation at the cost of a few memory blocks.

Parameterizing Reduction. In the previous design of the additive FFT
in [28], the configuration of the reduction module is fixed and uniquely deter-
mined by the polynomial size and the binary field size. Before the actual com-
putation begins, the data memory is initialized with the 2k 1-coefficient polyno-
mials from the output of the last radix-conversion round. The data memory D
within the reduction module is configured as follows: The depth of the memory
equals to 2k, based on this, the width of the memory is determined as m×2m−k

since in total m × 2m memory bits are needed to store the evaluation results
for all the elements in GF(2m). Each row of memory D is initialized with 2m−k

identical 1-coefficient polynomials. The other piece of memory within the reduc-
tion module is the constants memory C. It has the same configuration as the
data memory and it stores all the elements for evaluation of different reduction
rounds. Once the initialization of data memory and constants memory is finished,
the actual computation starts, which consists of the same amount of rounds as
needed in the radix conversion process. Within each round, two rows of values
(f0 and f1) are read from the data memory and the corresponding evaluation
points from the constants memory, processed, and then the results are written
back to the data memory. Each round of the reduction takes 2k cycles to finish.
In total, the reduction process takes k × 2k cycles plus overhead for memory
initialization.

In our current design, we made the reduction module parameterized by intro-
ducing a flexible memory configuration. The width of memories D and C can be
adjusted to achieve a trade-off between logic and cycles. The algorithmic pat-
tern for reduction remains the same, while the computational pattern changes
due to the flexible data reorganization within the memories. Instead of fixing
the memory width as m × 2m−k, it can be configured as a wider memory of
width m × 2m−k+i, 0 ≤ i ≤ k. In this way, we can store multiple 1-coefficient
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Mult. Cycles Logic Time × Area Mem. bits Mem. Reg. Fmax

32 968 4707 4.56 · 106 212,160 63 10,851 421 MHz
64 488 9814 4.79 · 106 212,992 126 22,128 395 MHz

Table 4. Performance of our parameterized size-128 reduction module for GF(213).

Multipliers
Design Rad. Red. Cycles Logic Time × Area Mem. Reg. Fmax

Our 4 32 1173 7344 8.61 · 106 73 14,092 274MHz
[28] 4 32 1179 10,430 1.23 · 107 63 18,413 382MHz

Our 8 64 603 13,950 8.41 · 106 143 25,603 279MHz
[28] 8 32 1083 10,710 1.16 · 107 63 18,363 362MHz

Table 5. Performance of our optimized additive-FFT module compared to [28] for
m = 13, deg(g(x)) = 119. Rad. and Red. are the number of multipliers used in radix
conversion and twist (reduction) separately.

polynomials at one memory address. The organization of the constants mem-
ory needs to be adapted accordingly. Therefore, within each cycle, we can either
fetch, do computation on, or write back more data and therefore finish the whole
reduction process within much fewer cycles (k × 2k−i plus overhead of few ini-
tialization cycles). However, the speedup of the running time is achieved at the
price of increasing the logic overhead, e.g., each time the width of the memory
doubles, the number of multipliers needed for computation also doubles.

Table 4 shows the performance of our parameterized reduction module. We
can see that doubling the memory width halves the cycles needed for the reduc-
tion process, but at the same time approximately doubles the logic utilization.
We can see that although the memory bits needed for reduction remain similar
for different design configurations, the number of required memory blocks dou-
bles in order to achieve the increased memory width. Users can easily achieve a
trade-off between performance and logic by tuning the memory configurations
within the reduction module.

Table 5 shows performance of the current optimized additive FFT module.
By tuning the design parameters in the radix conversion and reduction parts,
we are able to achieve a 28% smaller time-area product compared to [28] when
Rad. = 4 and Red. = 64.

4 Key Generation, Encryption and Decryption

We designed the Niederreiter cryptosystem by using the main building blocks
shown in Figure 2. Note that we are using two simple 64-bit Xorshift PRNGs in
our design to enable deterministic testing. For real deployment, these PRNGs
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must be replaced with a cryptographically secure random-number generator,
e.g., [8]. We require at most b random bits per clock cycle per PRNG.

4.1 Key Generation

The overall design of our key-generation module is identical to the design in [28].
The dataflow diagram is shown in Figure 2a. However, we improve the security
of private-key generation by substituting the Fisher-Yates Shuffle module with
a merge-sort module in order to generate a uniform and random permutation in
constant time (see Section 3.1). The generation of the public key is improved by
several optimizations applied to the additive FFT module (see Section 3.3).

Table 6 shows a comparison of the performance of the old implementation
in [28] with our new, improved implementation. Despite the higher cost for the
constant-time permutation module, overall, we achieve an improvement in regard
to area requirements and therefore to the time-area product at roughly the
same frequency on the price of a higher memory demand. However, the overall
memory increase is less than 10% which we believe is justified by the increased
side-channel resistance due to the use of a constant-time permutation.

4.2 Encryption

Figure 2b shows the interface of the encryption module. The encryption mod-
ule assumes that the public key K is fed in column by column. The matrix-
vector multiplication [Imt|K] × e is mapped to serial xor operations. Once
the PK column valid signal is high, indicating that a new public-key column
(PK column) is available at the input port, the module checks if the correspond-
ing bit of plaintext e is 1 or 0. If the bit value is 1, then an xor operation
between the current output register (initialized as 0) and the new public-key
column is carried out. Otherwise, no operation is performed. After the xor oper-
ation between K and the last (n − mt) bits of e is finished, we carry out one
more xor operation between the output register and the first mt bits of e. Then
the updated value of the output register will be sent out as the cipheretxt c.
Table 7 shows performance of the encryption module. The encryption module is
able to handle one column of the public key in each cycle and therefore requires
a fixed number of (n − mt) cycles independent of the secret input vector e.

4.3 Decryption

Within the decryption module, as described in Figure 2c, first the evaluation of
the Goppa polynomial g(x) is carried out by use of the optimized additive FFT
module, which was described in Section 3.3. In our implementation, instead of
first computing the double-size parity-check matrix H(2) and then computing the
double-size syndrome S(2), we combine these two steps together. The computa-
tion of S(2) can be mapped to serial conditional xor operations of the columns of
H(2). Based on the observation that the last (n − mt) bits of vector (c|0) are all
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Figure 2. Dataow diagrams of the three parts of the full cryptosystem: (a) key gener-
ation, (b) encryption, and (c) decryption. Dark gray boxes represent block memories,
while white boxes represent major logic modules.

zero, the last (n−mt) columns of H(2) do not need to be computed. Furthermore,
the ciphertext c should be a uniformly random bit string. Therefore, for the first
mt columns of H(2), roughly only half of the columns need to be computed.
Finally, we selectively choose which columns of H(2) we need to compute based
on the nonzero bits of the binary vector (c|0). In total, approximately m × t2

field element multiplications are needed for computing the double-size syndrome.
The computation of the corresponding columns of H(2) is performed in a similar
column-block-wise method as described in [28]. The size B (1 ≤ B ≤ mt

2 ) of the
column block is a design parameter that users can pick freely to achieve a trade-
off between logic and cycles during computation. After the double-syndrome S(2)

is computed, it is fed into the Berlekamp-Massey module described in Section 3.2
and the error-locator polynomial σ(x) is determined as the output. Next, the
error-locator polynomial σ(x) is evaluated using the additive FFT module (see
Section 3.3) at all the data points over GF(2m). Then, the message bits are
determined by checking the data memory contents within the additive FFT
module that correspond to the secret key-element set (α0, α1, . . . , αn−1). If the
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Case NH NR Cycles Logic Time × Area Mem. Fmax Time

Prior work [28]
Logic 40 1 11,121,220 29,711 3.30 · 1011 756 240MHz 46.43 ms
Bal. 80 2 3,062,942 48,354 1.48 · 1011 764 248MHz 12.37 ms
Time 160 4 896,052 101,508 9.10 · 1010 803 244MHz 3.68 ms

Our work
Logic 40 1 11,121,214 22,716 2.53 · 1011 819 237MHz 46.83 ms
Bal. 80 2 3,062,936 39,122 1.20 · 1011 827 230MHz 13.34 ms
Time 160 4 966,400 88,715 8.57 · 1010 873 251MHz 3.85 ms

Table 6. Performance of the key-generation module for parameters m = 13, t = 119,
and n = 6960. All the numbers in the table come from compilation reports of the
Altera tool chain for Stratix V FPGAs.

m t n Cycles Logic Time × Area Mem. Reg. Fmax

13 119 6960 5413 4276 2.31 · 107 0 6977 448MHz

Table 7. Performance for the encryption module.

Case B mulBM Cycles Logic Time × Area Mem. Reg. Fmax Time

Area 10 10 34,492 19,377 6.68 · 108 88 47,749 289 MHz 0.12 ms
Bal. 20 20 22,768 20,815 4.74 · 108 88 48,050 290 MHz 0.08 ms
Time 40 40 17,055 23,901 4.08 · 108 88 49,407 300 MHz 0.06 ms

Table 8. Performance for the decryption module for m = 13, t = 119 and n = 6960,
mulBM step is set to mulBM.

corresponding evaluation result for αi, i = 0, 1, . . . , n − 1 equals to zero, then the
i-th bit of the plaintext is determined as 1, otherwise is determined as 0. After
checking the evaluation results for all the elements in the set (α0, α1, . . . , αn−1),
the plaintext is determined. Table 8 shows the performance of the decryp-
tion module with different design parameters. By tuning design parameters
mulBM step , mulBM, and B, a time-area trade-off can be made.

5 Testing, Evaluation, and Comparison

Our implementation of the Niederreiter cryptosystem is fully parameterized and
can be synthesized for any choice of reasonable security parameters. However, the
main target of our implementation is the 256-bit (classical) security level, which
corresponds to a level at least “128-bit post-quantum security”. For testing,
we used the parameters suggested in the PQCRYPTO recommendations [2]:
m = 13, t = 119, n = 6960 and k = 5413 (k = n − mt).

Testing. To validate the FPGA implementation, in addition to simulations, we
implemented a serial IO interface for communication between the host computer
and the FPGA. The interface allows us to send data and simple commands from
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Case NH NR B mulBM Logic Mem. Reg. Fmax

Area 40 1 10 10 53,447 (23%) 907 (35%) 118,243 245 MHz
Bal. 80 2 20 20 70,478 (30%) 915 (36%) 146,648 251 MHz
Time 160 4 40 40 121,806 (52%) 961 (38%) 223,232 248 MHz

Table 9. Performance for the entire Niederreiter cryptosystem (i.e., key generation,
encryption, and decryption) including the serial IO interface when synthesized for the
Stratix V (5SGXEA7N) FPGA; mulBM step is set to mulBM.

the host to the FPGA and receive data, e.g., public and private key, ciphertext,
and plaintext, from the FPGA. We verified the correct operation of our design
by comparing the FPGA outputs with our Sage reference implementation (using
the same PRNG and random seeds).

Evaluation. We synthesized our design using Altera Quartus 17.0 for these
parameters on a Stratix V FPGA (5SGXEA7N). The results are given in Table 9,
with included logic overhead of the IO interface. We provide numbers for three
performance parameter sets, one for small area, one for small runtime, and one
for balanced time and area. The parameters NR and NH control the size of the
systolic array in the Gaussian systemizer modules, which are used for computing
the private Goppa polynomial and the public key. Parameter B is the matrix-
block size used for computing the syndrome. Parameter mulBM determines the
number of multipliers used in the high-level BM decoding module. The number of
multipliers (mulBM step) used in the low-level BM step module is set to mulBM for
the evaluation. The memory requirement varies slightly due the differences in
the memory word size based on the design parameters. These design parameters
can be freely chosen as long as the synthesized result fits on the target FPGA.
For security parameter set m = 13, t = 119, n = 6960, our experiment shows
that the largest design parameter set we can fit on Stratix V FPGA is: NR=
250, NH= 6, mulBM = 60, mulBM step= 60, and B = 60.

Comparison. In the following, we compare our work with previous designs.
First, we compare it with a 103-bit classical security-level hardware-design

described in [26]. This work is the only previously existing hardware implemen-
tation for the whole code-based cryptosystem, including a key generator, that we
have found in literature. To compare with their work, we synthesized our design
with the Xilinx tool-chain version 14.7 for a Virtex-5 XC5VLX110 FPGA. Note
that the performance data of [26] in Table 10 includes a CCA2 conversion for
encryption and decryption, which adds some overhead compared to our design.
From Table 10, we can see that our design is much faster when comparing cycles
and time, and also much cheaper in regard to area and memory consumption.

Second, we compare our work with a hardware design from [17], which
presents the previously fastest decryption module for a McEliece cryptosys-
tem. Therefore the comparison of our work with design [17] only focuses on the
decryption part. We synthesized our decryption module with the parameters
they used, which correspond to a 128-bit classical security level, for a Virtex-6
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Cycles Logic Freq. Mem. Time (ms)
Gen. Dec. Enc. (MHz) Gen. Dec. Enc.

m = 11, t = 50, n = 2048, Virtex 5 LX110
[28] 14,670,000 210,300 81,500 14,537 163 75 90.00 1.29 0.50

Our 1,503,927 5864 1498 6660 180 68 8.35 0.03 0.01

m = 12, t = 66, n = 3307, Virtex 6 LX240
[17] - 28,887 - 3307 162 15 - 0.18 -

Our - 10,228 - 6571 267 23 - 0.04 -

m = 13, t = 128, n = 8192, Haswell vs. Stratix V
[9] 1,236,054,840 343,344 289,152 - 4000 - 309.01 0.09 0.07

Our 1,173,750 17,140 6528 129,059 231 1126 5.08 0.07 0.07

Table 10. Comparison with related work. Logic is given in “Slices” for Xilinx Virtex
FPGAs and in “ALMs” for Altera Stratix FPGAs.

XC6VLX240T FPGA. From Table 10, we can see that the time-area product
of our decryption module is 10228 · 6571 = 67, 208, 188, which is 30% smaller
than the time-area product of their design of 28887 · 3307 = 95, 529, 309 when
comparing only the decryption module. Moreover, our design is able to achieve
a much higher frequency and a smaller cycle counts compared to their design.
Overall we are more than 4x faster than [17].

Finally, we also compare the performance of our hardware design with the
to-date fastest CPU implementation of the Niederreiter cryptosystem [9]. In this
case, we ran our implementation on our Altera Stratix V FPGA and compare
it to a Haswell CPU running at 4 GHz. Our implementation competes very well
with the CPU implementation, despite the over 10x slower clock of the FPGA.

6 Conclusion

This paper presented a complete hardware implementation of Niederreiters’s
code-based cryptosystem based on binary Goppa codes, including key genera-
tion, encryption and decryption. The presented design can be configured with
tunable parameters, and uses code-generation to generate vendor-neutral Ver-
ilog HDL code for any set of reasonable parameters. This work presented hard-
ware implementations of an optimization of the Gao-Mateer additive FFT for
polynomial evaluation, of merge sort used for obtaining uniformly distributed
permutations, and of a constant-time Berlekamp-Massey algorithm.

Open-Source Code. The source code for this project is available under an
open-source license at http://caslab.csl.yale.edu/code/niederreiter/.
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Abstract. Aggarwal, Joux, Prakash and Santha recently introduced a
new potentially quantum-safe public-key cryptosystem, and suggested
that a brute-force attack is essentially optimal against it. They con-
sider but then dismiss both Meet-in-the-Middle attacks and LLL-based
attacks. Very soon after their paper appeared, Beunardeau et al. pro-
posed a practical LLL-based technique that seemed to significantly
reduce the security of the AJPS system. In this paper we do two things.
First, we show that a Meet-in-the-Middle attack can also be made to
work against the AJPS system, using locality-sensitive hashing to over-
come the difficulty that Aggarwal et al. saw for such attacks. We also
present a quantum version of this attack. Second, we give a more precise
analysis of the attack of Beunardeau et al., confirming and refining their
results.

1 Introduction

Aggarwal et al. [1] recently proposed a variant of the NTRU public-key encryp-
tion scheme [13]. This variant uses integers with sparse binary representation as
a secret key, rather than polynomials with small coefficients. In particular, their
cryptosystem is suspected to be resistant to quantum attacks.

Their system works as follows. Consider a Mersenne number N = 2n−1, with
n prime. Then we can identify the ring R = Z/NZ with the set of n-bit strings,
where 1n is identified with 0n. To set up the keys of the cryptosystem, choose
f, g ∈ R of fixed Hamming weight w = �√n/2� uniformly at random, subject
to g having a multiplicative inverse in R. Set the public key to h := f/g (this
corresponds to an n-bit string of arbitrary Hamming weight) and the private
key to g. In the next section we describe how Aggarwal et al. use these keys for
encryption and decryption.

The security of this system relies on the assumption that it is hard to solve
the following Mersenne Low Hamming Ratio Search Problem: given n,w ∈ N

and h ∈ R, find f, g ∈ R of weight w such that h = f/g, assuming such f and g
exist. A brute-force attack on this system would just try out all

(
n−1
w−1

)
possible

g’s of weight w that start with a 1 (the latter is without loss of generality) and

c© Springer International Publishing AG, part of Springer Nature 2018
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check whether hg has weight w. Aggarwal et al. [1] suggest that this brute-force
attack is close to optimal. This would correspond to roughly λ = log

(
n−1
w−1

) ≈
1
2 ·w log n bits of security. On a quantum computer, this brute-force attack could
be implemented using Grover’s quantum search algorithm [11] in time roughly√(

n−1
w−1

)
, corresponding to roughly 1

4 · w log n bits of security.
In particular, Aggarwal et al. [1] consider and then dismiss two possible lines

of attack that could be better than brute force. First, they suggest that a com-
binatorial Meet-in-the-Middle attack would fail due to a problem of “approxi-
mate collisions”. Second, they argue that their variation makes an adaptation
of known lattice attacks against NTRU ineffective. The latter claim was rapidly
challenged, when a faster experimental attack using LLL reduction was found
by Beunardeau et al. [6]. This attack exploits the low weight of f and g, and
is able to find f, g using partition-search in the integer interval {0, . . . , 2n − 1}.
The authors argue that their attack reduces the bit security to about λ ≈ 2w.
Beunardeau et al. [6] warn that their attack is only practically feasible, and
might not work with, for example, increasing parameters. They further expect
that slightly changing the cryptosystem protects against this attack [6, Sect. 4].

1.1 This Work

In this work we revisit the security of the AJPS cryptosystem. We first pro-
pose a Meet-in-the-Middle attack that circumvents the issues raised by [1] and
gives a polynomial speed-up over a brute-force attack. It runs in classical time
Õ
(√(

n−1
w−1

))
, and can be accelerated on a quantum computer to Õ

(
3

√(
n−1
w−1

))
.

Our analysis requires several minor heuristics, which we have confirmed experi-
mentally. Secondly, we formally analyze the attack of Beunardeau et al. [6]. Our
analysis suggest that the attack is slightly less efficient, asymptotically, than sug-
gested in [6]. However, this small difference in complexity makes little difference
in practice.

Meet-in-the-Middle attack. Aggarwal et al. [1, Sect. 5.1] described a failed
attempt at a Meet-in-the-Middle (MITM) attack on their cryptosystem. It fails
because the “collisions” in the “middle” are not exact, and they view this failure
as evidence for the optimality of the brute-force attack. In contrast, we show
how a MITM attack on their system can nonetheless be executed, using locality-
sensitive hashing to overcome the issue of inexact, approximate collisions.

The idea is still, given public key h ∈ {0, 1}n, to find an n-bit string g ∈ R
of weight ≤ w, such that hg also has low weight. Split the n-bit string g =
g1 ⊕ g2 into an n-bit string g1 with roughly αw 1s in the first αn bits and 0s
elsewhere, and a g2 with roughly (1 − α)w 1s in the last (1 − α)n bits and
0s elsewhere. Now hg = hg1 + hg2 having low weight corresponds to hg1 and
hg2 being approximately equal (i.e., having low Hamming distance), so our goal
becomes to find an “approximate collision” between the two sets {hg1} and
{hg2}. We can do this by first computing all elements of the first set, together
with their hashes, and storing these in an appropriate data structure. After that
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we search in the second set to find an approximate collision with the elements
in the data structure (if such an approximate collision exists). This attack turns
out to be substantially cheaper than a brute-force search over all g’s of weight w.
In the classical case, setting the split at α = 1/2, the runtime of the attack is
roughly

(
n/2
w/2

) ≈ (n
w

)1/2, which corresponds to roughly 1
4 ·w log n bits of security.

In the quantum case, setting α = 1/3 yields an algorithm similar to [5], which
has runtime roughly

(
n/3
w/3

) ≈ (n
w

)1/3, corresponding to 1
6 ·w log n bits of security.

A meet-in-the-middle attack on NTRU, which has a similar structure to the
AJPS cryptosystem, is due to Odlyzko, and is described in [15]. The first example
of a quantum meet-in-the-middle algorithm was the collision-finding algorithm of
Brassard et al. [9]. Similar ideas were later used in a quantum algorithm for the
subset sum problem [5], and a quantum attack on the NTRU cryptosystem [23],
which have a similar structure to the algorithm presented here. One difference
in our new algorithm is the use of Ambainis’s variable-cost quantum search
algorithm [3], described in Sect. 2.2.

To complement our theoretical analysis we also implemented this attack on
a classical computer and ran a simulation for quantum computers. Our source
code is available at https://github.com/lducas/MiTM-Mersenne.

Analysis of the lattice attack of Beunardeau et al. Although Beunardeau et al. [6]
provide experimental evidence for the efficiency of their attack, they leave open
the task of providing a theoretical analysis to support the correctness of their
approach. This leaves some uncertainty for a concrete security estimate of the
cryptosystem of Aggarwal et al. We attempt to fill this gap with a more in-depth
analysis of their attack. We conclude that the cost of their attack is in fact of
the form (2 + δ + o(1))2w for some very small constant δ > 0. Besides clarifying
the heuristic asymptotic complexity of the attack of Beunardeau et al. [6], it
also essentially confirms their practical claim that their attack reduces the secu-
rity to roughly 2w bits. Hence it remains the best known attack on the AJPS
cryptosystem (better than our MITM attack).

1.2 Impact

The impact of this work is mostly of a conceptual nature. Our Meet-in-the-
Middle attack is a reminder that inexact collisions can sometimes be circum-
vented, depending on the metric at hand. While a similar near-collision MITM
attack was well known against NTRU (attributed to Odlyzko in [15]), it was
rather easy due to how close the near-collisions were. The setting of Aggarwal
et al. is more demanding. Our work also shows another application of Nearest-
Neighbor Search (NNS) techniques to cryptanalysis, which have already found
important application to lattice problems [4,17,18].

Our analysis of the attack of Beunardeau et al. [6] also provides better confi-
dence in the revised security estimate of the treated cryptosystem [1]. Moreover,
we hope that it provides clear tools and heuristics to understand the behavior
of LLL in more general scenarios.

https://github.com/lducas/MiTM-Mersenne
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Open questions. Our work highlights several interesting open questions. Con-
cerning the cryptosystem of [1], an interesting idea would be to see whether
the lattice attack and the MITM attack could be combined into an even faster
attack, as was already done against NTRU by Howgrave-Graham [14]. At first
sight, it seems that this approach would not lead to an exponential acceleration,
yet it may make it possible to amortize the polynomial cost of each call to the
LLL algorithm.

More generally, our work highlights the question of Nearest-Neighbor Search
using quantum computers. This question was already approached in [17,19],
which considered generic application of Grover’s algorithm over classical NNS
techniques. It seems an important question to determine whether less generic
approaches could perform better.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we give the neces-
sary preliminaries, including a description of the AJPS cryptosystem of [1], and
a description of a variant of the quantum search algorithm due to [3], for settings
where the cost of checking if an element is marked varies. In Sect. 3, we present
and analyze our classical Meet-in-the-Middle attack, and in Sect. 4, we present
and analyze our quantum Meet-in-the-Middle attack. In Sect. 5, we present our
formal analysis of the Beunardeau et al. attack [6].

2 Preliminaries

2.1 The AJPS Cryptosystem

In this section, we will describe the cryptosystem of Aggarwal et al. [1] (the
AJPS cryptosystem). Let N = 2n − 1, where n is a prime number1, and let
R = Z/NZ be the integer ring modulo N . We define w = �√n/2� to be the
upper bound on what we will consider “low weight”.

We will identify a number in R with its binary representation. In this way,
we can represent the elements of R by the elements of Fn

2 , with 1n and 0n both
representing 0 ∈ R, and all other elements of R having unique representatives in
F

n
2 . For nonzero a ∈ R, denote by |a| the Hamming weight of the unique binary

representation of a, and define |0| = 0. Similarly, denote by Δ(a, b) the Hamming
distance between the binary representations of a and b (using the representation
0n for 0 ∈ R). Note that it is not necessarily the case that |ab| and |a| · |b| are
equal nor that |a + b| and |a| + |b| are equal. However, we have the following.

1 Numbers of the form N = 2n − 1 with n ∈ N are called Mersenne numbers. If,
additionally, N = 2n − 1 is prime, it is called a Mersenne prime. For the purposes
of the AJPS cryptosystem, N doesn’t need to be prime, but n does.
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Lemma 1 ([1]). Let a, b ∈ R. Then

(i) |a + b| ≤ |a| + |b|,
(ii) |ab| ≤ |a| · |b|, and
(iii) if a 	= 0, then | − a| = n − |a|.

Elements of the ring R have the special property that for any i ∈ {0, . . . , n−1}
and a ∈ R, the binary representation of a · 2i mod N is just a cyclic shift of the
binary representation of a by i.

We now describe the AJPS cryptosystem [1] with public parameter n.

Key Generation. Randomly choose two elements f, g ∈ R of Hamming weight
w, where g is invertible in R. Set h = f/g. The public key is h, and the secret
key is g.

Encryption. To encrypt a bit s, pick random p, q ∈ R of Hamming weight at
most w. Output the ciphertext c = (−1)s(ph + q) ∈ R.

Decryption. To decrypt c, compute cg = (−1)s(phg + qg) = (−1)s(pf + qg).
Since p, q, f and g all have Hamming weight ≤ w, the n-bit string pf +qg has
Hamming weight ≤ 2w2 < n/2 by Lemma 1. Thus if s = 0, then |cg| < n/2.
On the other hand, if s = 1, then | − cg| < n/2, so by Lemma 1, |cg| >
n − n/2 = n/2. Thus, to decrypt c, output 0 if |cg| < n/2, and 1 otherwise.

To attack this cryptosystem, it suffices to solve the following problem:

Given h ∈ R, find g ∈ R of Hamming weight w such that
|hg| = w, assuming such a g exists.

Since multiplication by 2i just shifts the binary representation of an element
of R by i, if g is a solution to the above problem, then so is 2ig. Thus, if a solution
exists, then a solution with the first bit set to 1 exists, and so we can restrict our
attention to such solutions. Since a brute-force attack can find such a solution g
in time

(
n−1
w−1

)
, to achieve security parameter λ, n and w must satisfy

(
n−1
w−1

)
> 2λ

and w <
√

n/2. Our results, however, imply that a stronger condition is required
to achieve λ-bit security.

2.2 Quantum Search with Variable Costs

In this section we will introduce the quantum search algorithm, originally due
to Grover [11] and later generalized [7,8]. This algorithm searches a universe of
size N for a particular marked item, given access to some procedure for checking
if a given item is marked, using O(

√
N) calls to the checking procedure. We

will also make use of an elegant variant of the quantum search algorithm due
to Ambainis [3], that has better complexity when the cost of checking if a given
item is marked varies by item.

Let U be some set of N objects, and let C : U → {0, 1} be some procedure,
called the checking procedure, that outputs 1 when given a marked item, and
suppose the complexity of the procedure C is C. Then there exists a quantum
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algorithm with complexity Õ(C
√

N) that outputs u ∈ U such that C(u) = 1
with probability at least 2/3, assuming such a u exists.

We may also consider the scenario in which the complexity of computing
C(u) varies with u. Call this complexity C(u). Using the previously mentioned
standard quantum search algorithm, we can search for u ∈ U such that C(u) = 1
in Õ(maxu∈U C(u)

√
N) steps. However, we can do better:

Theorem 1 (Quantum search with variable costs (Ambainis [3])). Let
C : U → {0, 1} be any checking procedure. There exists a quantum algorithm that
outputs u ∈ U such that C(u) = 1 with probability at least 2/3 (assuming such a
u exists), and has complexity

Õ

⎛

⎝
√∑

u∈U

C(u)2

⎞

⎠ ,

where C(u) is the cost of computing C(u), and needn’t be known in advance. We
call this algorithm quantum search for u ∈ U that satisfies C.

In the case where C(u) = C is constant, the algorithm from Theorem 1 has
complexity Õ(C

√
N), as in the standard quantum search algorithm.

3 Classical Meet-in-the-Middle Attack

3.1 Introduction

The “Meet-in-the-Middle attack” (MITM attack) is a well-known generic cryp-
tographic attack that can be deployed against a variety of cryptosystems, often
achieving an improved time complexity in breaking the system, at the cost of
greater space complexity. It may have originated in [12].

To illustrate this attack, we give an example in the context of the knapsack
problem, which can be described as follows. Given numbers h1, . . . , hn ∈ Z, find
g ∈ F

n
2 such that

n∑

i=1

hig[i] = 0.

The MITMA idea is to split F
n
2 = G1 ⊕ G2 into two equally-large subspaces

of dimension n/2, where G1 = {(g, 0�n/2�) : g ∈ F
�n/2�
2 } and G2 = {(0�n/2�, g) :

g ∈ F
�n/2�
2 }. We calculate all numbers H(g1) = −∑i hig1[i] for g1 ∈ G1 and

store them in a database D. This costs 2n/2 time and space, up to a poly(n)
factor.

Hereafter, we calculate H(g2) =
∑

i hig2[i] for g2 ∈ G2, and check whether
the element −H(g2) is somewhere in D, using a single database lookup. If so,
then we have found a g1 ∈ G1 such that H(g2) = −H(g1). Then g1 + g2 ∈ F

n
2

is a solution. This search costs about 2n/2 database lookups, and 2n/2 · poly(n)
time. This has much better time complexity than trying all combinations, which
costs roughly 2n time (but poly(n) space).
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Description of our MITM attack on the AJPS system. Given h ∈ R, we want to
find f, g ∈ R, each of Hamming weight w, such that h = f/g — or equivalently,
such that gh = f . In other words, our task is, informally, to find g ∈ F

n
2 of weight

w such that |gh| is small.
For α ∈ [0, 1] to be specified later, we define

G
(α)
1 = {(g, 0�(1−α)n�) : g ∈ F

�αn�
2 , |g| = �αw�}

and G
(α)
2 = {(0�αn�, g) : g ∈ F

�(1−α)n�
2 , |g| = �(1 − α)w�}.

We note that while G
(α)
1 ⊕G

(α)
2 does not include all g ∈ F

n
2 such that |g| = w,

restricting to this set is without loss of generality, since, if g = g1+g2 is a solution,
meaning that both g and gh have weight w, then for any z ∈ {0, . . . , n − 1}, 2zg
is also a solution. This is because 2zg just shifts the binary representation of
g by z in a cyclic manner, so 2zg and 2zgh also have weight w. Thus, if there
exists a solution, then there exists a solution in which g1 and g2 have weights
�αw� and �(1 − α)w�, respectively.

The attack will begin by enumerating (g1, g1h) for all g1 ∈ G
(α)
1 , after which

we will search over G
(α)
2 for some g2 that is in collision with some g1 ∈ G

(α)
1 ,

where, intuitively, we want to define g1, g2 to be in collision whenever the Ham-
ming distance Δ(g1h,−g2h) is not much bigger than 2w. The difficulty is that,
given some value −g2h, while it would be easy to find a stored value of g1h that
is equal to −g2h, it is not immediately clear how to find such a stored value that
is close in Hamming distance to −g2h.

Locality-sensitive hash functions. Our solution is to use a simple form of locality-
sensitive hashing [16]. Intuitively, a locality-sensitive hash should take the same
value, with high probability, on two elements that are close with respect to some
desired distance. In our case, for B = {i1, . . . , iB} ⊂ [n] with i1 < · · · < iB , define
HB : F

n
2 → F

|B|
2 by HB(s1, . . . , sn) = (si1 , . . . , siB

). We will use the function
family FB = {HB : |B| = B} for some B to be specified later. This works for
our purposes, because if two strings are close in Hamming distance, then on a
random small subset B of their bits, they are likely to agree.

Detailed description of algorithm. Our Meet-in-the-Middle attack proceeds as
follows:

1. Choose a uniformly random H ∈ FB .
2. Initialize an empty hash table D, with 2B (initially empty) linked lists, one

for each element in the range of H.
3. For each g1 ∈ G

(α)
1 :

(a) Insert (g1,H(g1h)) into D.
4. For each g2 ∈ G

(α)
2 :

(a) Look up H(−g2h) in D, and let L be the resulting list of values g1 such
that H(g1h) = H(−g2h).

(b) For each g1 in L:
i. If |g1 + g2| = w and |(g1 + g2)h| = w, then output g1 + g2.
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Analysis of algorithm. We first argue that our algorithm succeeds in finding a
solution if one exists. The next lemma shows that if −g2h is uniformly random
from R, and b is an arbitrary element of R with Hamming weight w, then (with
high probability) −g2h and g1h = −g2h + b do not differ in much more than 2w
bits of their binary representations, i.e., Δ(−g2h, g1h) is not much larger than
2w.

Lemma 2. Let a ∈ R = Z/(2n − 1)Z be chosen uniformly at random, let w ∈ N

and let b ∈ R be any element such that |b| = w. Then, for every s > 0, we have:

P
[
Δ(a, a + b) > 2w + s

√
w
] ≤ exp

(
− s2

8 + 4s/
√

w

)
+ 2−n. (1)

Proof. We assume a to be chosen uniformly at random from F
n
2 , instead of from

R. These two distributions P,Q on the set of n-bit strings only differ by 2−n

with respect to the total variation distance:

1
2

∑

b∈F
n
2

|P[b] − Q[b]| =
1
2

⎛

⎝|P[1n] − Q[1n]| +
∑

b∈F
n
2 \{1n}

|P[b] − Q[b]|
⎞

⎠

=
1
2

(
1
2n

+ (2n − 1)
(

1
2n − 1

− 1
2n

))
= 2−n,

which accounts for the 2−n-term in the right-hand side of Eq. (1).
Given a, b, we define the carry element cncn−1 . . . c1 = c ∈ R by c = (a+ b)⊕

(a ⊕ b). One can show that c equals the ‘carry vector’ that one puts above the
sum of a and b when doing addition on a blackboard (see Table 1). Note that
a ⊕ b ⊕ c = a + b, implying that Δ(a, a + b) = |b ⊕ c| = |b| + |c| − 2|b ∧ c| =
w + |c| − 2|b ∧ c|.

Table 1. Having a nonzero bit in b ∧ c leads necessarily to an extra carry.

c 0111 1110

a 0010 1111

b 0001 0001

b ∧ c 0001 0000

We now want to analyze the number of carry bits, i.e., the random variable
|c|. The idea of the proof is that each 1-bit in b, combined with bits of a, will
induce a sequence of carry-bits “to its left”. If there were no other 1-bits in b,
then that induced number of carry-bits would be geometrically distributed with
parameter 1/2; we can think of this as the number of 1s that precede the first 0
in a sequence of 0/1-valued fair coin flips. In actual fact, the number of carry
bits induced by one 1-bit in b could be one more, namely when the leftmost
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end of the sequence of carry-bits coincides with another position where b has a
1-bit. The number of positions where this can happen is the random variable
|b ∧ c|. Therefore the random variable |c| is majorized2 by the random variable
|b ∧ c| + S, where S =

∑w
i=1 Gi is the sum of w i.i.d. geometrically distributed

random variables (each with parameter 1/2, and support {0, 1, 2, . . .}).
Therefore we have

P
[
Δ(a, a + b) > 2w + s

√
w

]
= P

[
w + |c| − 2|b ∧ c| > 2w + s

√
w

]

= P
[|c| > 2|b ∧ c| + w + s

√
w

] ≤ P
[|c| > |b ∧ c| + w + s

√
w

] ≤ P
[
S > w + s

√
w

]

= P
[
Bin(2w + s

√
w, 1/2) < w

] ≤ exp

(
− (s

√
w)2

8w + 4s
√

w

)
= exp

(
− s2

8 + 4s/
√

w

)
.

The second inequality uses majorization. The penultimate equality holds
because the event ‘S > w + s

√
w’ is the same as the event that in a sequence of

2w + s
√

w fair coin flips, there are fewer than w successes. We upper bound the
probability of the latter by Chernoff’s inequality. ��
Heuristic 1. The above lemma still holds when setting a = hg1 and b = f for
f, g, h distributed as in the AJPS cryptosystem.

Remark 1. The above heuristic is corroborated by experiments, see AppendixA.
More concretely, for primes n ≤ 2000, it holds that Δ(−g2h, g1h) ≤ 2w − 1 for
more than half of the keys, and that Δ(−g2h, g1h) ≤ 2w + 7 for about 90% of
the keys.

We are now ready to analyze the space and time complexity of the algo-
rithm. We will set α = 1/2. We can see immediately that the algorithm requires
Õ(|G(α)

1 |) = Õ
((

n/2
w/2

))
space.

To analyze the time complexity, we first note that Step 3 of the algo-
rithm costs |G(α)

1 | insertions into the data structure, so the cost is Õ(|G(α)
1 |) =

Õ
((

n/2
w/2

))
. The loop in Step 4 runs |G(α)

2 | times, and the iteration corresponding

to some g2 ∈ G
(α)
2 costs approximately 1 + �(g2), where �(g2) = |{g1 ∈ G

(α)
1 :

H(g1h) = H(−g2h)}|. The total cost of Step 4 is thus at most:

|G(α)
2 | +

∑

g2∈G
(α)
2

�(g2).

We can rewrite the above as

|G(α)
2 |+

∑

v∈F
B
2

|{(g1, g2) ∈ G
(α)
1 × G

(α)
2 : H(g1h) = H(−g2h) = v}|

= |G(α)
2 | + |{(g1, g2) ∈ G

(α)
1 × G

(α)
2 : H(g1h) = H(−g2h)}|.

2 Random variable X majorizes random variable Y , if P[X > t] ≥ P[Y > t] for all t.



110 K. de Boer et al.

Heuristic 2. For every fixed H ∈ FB, with high probability over g and f as
chosen in the AJPS system, we have |{(g1, g2) ∈ G

(α)
1 × G

(α)
2 : H(g1h) =

H(−g2h)}| ≈ |G(α)
1 | · |G(α)

2 |2−B.

Remark 2. The above heuristic is obtained by considering all H(g1h) and H(g2h)
values as independent random uniform strings of B bits. The validity of this
heuristic is confirmed by the experiments presented in Appendix A.1.

Let g = g∗
1 +g∗

2 be a solution. The algorithm will only find this g if H(g∗
1h) =

H(−g∗
2h), in which case we say H is good for g. By Lemma 2 and assuming

Heuristic 1, Δ(g∗
1h,−g∗

2h) ≤ 2w + s
√

w happens with high probability, for a
fixed constant s. So, assuming Δ(g∗

1h,−g∗
2h) ≤ 2w + s

√
w, the hash function

H is good with probability at least p(B) = (n−2w−s
√

w
B )

(n
B) where the probability is

over the function family FB = {HB : |B| = B}.

Lemma 3. Under the above heuristics, setting α = 1/2 and B = �log2
(

n/2
w/2

)� (≈
w
2 log(n/w) + O(w)), the time complexity of the algorithm is Õ

(√(
n
w

))
.

Proof. Ignoring polylogarithmic factors, the complexity of the algorithm equals
|G(α)

1 | + |G(α)
2 | + |G(α)

1 | · |G(α)
2 |2−B . Note that |G(α)

2 |2−B ≤ 1, by the choice of B

and the fact that |G(α)
2 | =

(
n/2
w/2

)
. Therefore the complexity of steps 1–4 equals

2|G(α)
1 | + |G(α)

2 | = 3
(

n/2
w/2

)
= Õ

(√(
n
w

))
. To achieve constant success probability,

we repeat the algorithm 1/p(B) times, which is, as we will show, polynomial
in n. We use the identity ln

(
m
�

)
= � ln(m/�)+�+O(ln m) whenever � = Õ(

√
m),

and the fact that w2 ≈ n/4. We have:

ln
1

p(B)
= ln

(
n

B

)
− ln

(
n − 2w − s

√
w

B

)
= −B ln

(
n − 2w − s

√
w

n

)
+ O(ln n)

= (1 + o(1))
2wB

n
+ O(ln n) = (1 + o(1))

w2

n
ln(n/w) + O(ln n) = O(ln n).

��

4 Quantum Meet-in-the-Middle Attack

We now present our quantum meet-in-the-middle attack. The first example of
a quantum meet-in-the-middle algorithm was the collision finding algorithm of
Brassard et al. [9]. Similar ideas were later used in quantum algorithm for the
subset sum problem [5], and a quantum attack on the NTRU cryptosystem [23],
which have a similar structure to the algorithm presented here. One difference
in our new algorithm is the use of Ambainis’s variable-cost quantum search
algorithm [3], described in Sect. 2.2.

The algorithm presented in this section requires time and space Õ
((

n
w

)1/3
)
.

The bulk of the memory required for this quantum algorithm must be quantum
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accessible, meaning it does not need to be able to store a quantum state, but
must be accessible in superposition. Only O(n) of the space used by the algorithm
must be fully quantum memory, capable of being in an arbitrary superposition.

The quantum algorithm presented and analyzed in this section is then very
similar to the classical MITM attack, except we use quantum search to search
over all g2 ∈ G

(α)
2 , and then since the complexity of this step of the algorithm

decreases in the quantum case, it is optimal to use α = 1/3 rather than α = 1/2.

Detailed description of algorithm. Our quantum MITM attack proceeds as fol-
lows:

1. Choose a uniformly random H ∈ FB .
2. Initialize an empty hash table D.
3. For each g1 ∈ G

(α)
1 :

(a) Insert (g1,H(g1h)) into D.
4. Quantum search (using Theorem 1) for g2 ∈ G

(α)
2 that satisfies the following

checking procedure:
(a) Look up H(−g2h) in D, and let L(g2) be the resulting list of values g1

such that H(g1h) = H(−g2h).
(b) Quantum search for g1 in L that satisfies the following checking procedure:

i. If |g1 + g2| = w and |(g1 + g2)h| = w, then output 1.

Analysis of algorithm. We will use α = 1/3. The algorithm requires |G(α)
1 | =

(
αn
αw

)
=
(

n/3
w/3

)
quantum accessible memory, and O(log |G(α)

2 |) = O(n) quantum
memory.

In order to upper bound the time complexity, we will make use of Heuristic 2
with α = 1/3. Then we have the following.

Lemma 4. Assuming Heuristics 1 and 2 with α = 1/3, setting B = �log2
(

n/3
w/3

)�,
the time complexity of the algorithm is Õ

((
n
w

)1/3
)
.

Proof. As in the classical algorithm, the time complexity of Steps 1 to 3 of the
quantum algorithm is Õ(|G(α)

1 |) = Õ
((

αn
αw

))
, which, in this case, is Õ

((
n/3
w/3

))
.

For a particular g2 ∈ G
(α)
2 , Steps 4a and 4b together cost (neglecting negligi-

ble factors) 1 +
√

�(g2), so using variable cost quantum search, as described in
Sect. 2.2, the total cost of Step 4 is

√√
√
√

∑

g2∈G
(α)
2

(1 +
√

�(g2))2 = O

⎛

⎜
⎝
√

|G(α)
2 | +

√√
√
√

∑

g2∈G
(α)
2

�(g2)

⎞

⎟
⎠ .

By 2 and the choice of B, we have
∑

g2∈G
(α)
2

�(g2) ≈ |G(α)
1 | · |G(α)

2 |2−B ≤ |G(α)
2 |.

Thus, the total complexity of steps 1–4 of the attack is O

(√
|G(α)

2 |
)

=
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O
(√(

2n/3
2w/3

))
= Õ

((
n/3
w/3

))
. Finally, as in Sect. 3, H is good with probability

p(B) = (n−2w−s
√

w
B )

(n
B) . To achieve constant success probability, we repeat 1/p(B)

times, which is polynomial in n by a similar reasoning as in Lemma 3. ��

5 Analysis of the Beunardeau et al. Attack

Within a week of the publication of the AJPS cryptosystem [1], an experimental
attack was proposed by Beunardeau et al. [6]. This attack exploits the fact that
a certain lattice, derived from the public key of the AJPS cryptosystem and two
well-chosen partitions, has very short vectors. One of these short vectors, which
can be found by means of the LLL lattice reduction algorithm [20], represents
the private key.

Although Beunardeau et al. do not give a clear asymptotic estimate of the
complexity of their attack, they do suggest tentatively that it might run in
time 22wnO(1), where w = �√n/2� is the Hamming weight of secret key g ∈
R [6, Sect. 2.2]. More specifically, once a partition is chosen, the attack runs in
polynomial time nO(1), and the probability that it is successful should be about
2−2w.

Remark 3. Note that this probability is taken only over the randomness of the
secret key. It is not obvious that one can amplify the success probability for a
fixed key up to a constant by repeating the attack with 22w different partitions.
Indeed, there could be certain keys that are caught by a fraction of partitions
significantly smaller than 2−2w.

In this section, we propose an analysis of a simplified version of their attack.
Using standard lattice heuristics we can argue that, for each pair of partitions,
the probability that a secret key will be found by applying LLL on the derived
lattice equals ( 12 − c

(
d
w

)2
+ o(1))2w, where d is the lattice dimension, and c is

a very small constant, say 1/140. The lattice dimension d corresponds to the
number of blocks in a partition of the bits of f and g. While in theory we can
choose d between 2 and O(w), in order to find f and g for a particular h, we will
generally need to choose d as large as Ω(w). We discuss this more at the end of
Sect. 5.3. While asymptotically slightly different from the tentative conclusion
of [6], this analysis certainly does not contradict the fact that this attack is quite
efficient in practice, and remains the best known attack (better than our MITM
attack).

We remark that one could also replace LLL with a perfect SVP-oracle to raise
the success probability to (12 +o(1))2w, but this would increase the running time
of the lattice reduction step to 2Θ(d). Namely, for partitions of size d = Θ(w)
the ratio of the cost over success probability remains at least 2(2+δ)w+o(w) for a
fixed δ > 0.

Finally, we note that this attack can also be sped up with a quantum com-
puter. If, for a particular fixed key g, the probability that a sampled partition
allows the LLL subroutine to find the secret key is p, then there is a quantum
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algorithm that finds the key in only
√

1/p calls to the subroutine, compared to
the 1/p calls required by a classical algorithm. So under the heuristic assumption
that p ≈ 2−2w, there is a quantum algorithm that recovers the key in time ≈ 2w.

Unfortunately, despite some effort, we have not been able to answer the
question left open by Beunardeau et al.: “Are there classes of public keys that
are harder to recover using this lattice attack, and if so, which ones?”

5.1 Partitions

In this section, we show how partitioning of [n] = {0, . . . , n − 1} can lead to a
short representation of the secret key g ∈ R = Z/NZ. The overall idea is to write
g as a binary string in F

n
2 , as before. Since g has a low Hamming weight, one can

imagine the one-valued bits scattered sparsely among the n possible positions.
One then chooses interval-like subsets of [n] such that, with any luck, each one-
valued bit falls in the right-half of one of these subsets. In that case, each subset
of [n] in the partition corresponds to a binary substring of g representing a
“small” number. Consequently, the array of these numbers can be considered as
a short representation of g. An example is depicted in Table 2.

Remark 4. Because of the bit-wise arithmetic in R, it is natural to consider
interval-like partitions only. An interval-like partition P of [n] consists of subsets
that are of the form {a, a + 1, a + 2, . . . , b − 1, b} for a, b ∈ [n], i.e., subsets
without ‘gaps’. Due to the fact that multiplication by 2i in R simply shifts all
binary representations by i, we also allow subsets of the form {a, a+1, . . . , n−2,
n − 1, 0, 1, . . . , b}.

Remark 5. Formally, our approach is slightly different from the one of
Beunardeau et al. [6]. Namely, they define partitions with black and white blocks,
hoping that all 1-valued bits of the secret key fall into the white blocks of the
partitions. It turns out, however, that the black blocks do not play any role in
the construction of the lattice related to this partition. Therefore, we prefer to
omit the black partitions in our approach. This alteration has no algorithmic
impact and is merely an editorial choice simplifying the analysis.

Table 2. Example partition of g with Hamming weight 3.

g 00100000000001000010

Partition {19, 18, 17, 16}, {15, 14, 13, 12}, {11, . . . , 6}, {5, . . . , 0}
g partitioned in a “good” way 0010 0000 000001 000010

Array of decimal numbers
representing g

[2, 0, 1, 2], g = 2 · 216 + 0 · 212 + 1 · 26 + 2 · 20
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5.2 Lattice Reduction

Lattice construction. Given any two interval-like partitions P = {P1, . . . , Pk},
Q = {Q1, . . . , Q�} of [n] and a public key h ∈ R. Let pi, qi be the least elements
of Pi, Qi respectively. Then, one can consider the following lattice.

LP,Q,h =

⎧
⎨

⎩
(x1, . . . , xk, y1, . . . , y�)

∣
∣
∣ h ·

k∑

i=1

2pi · xi −
�∑

j=1

2qi · yi ≡ 0 mod N

⎫
⎬

⎭
.

This lattice LP,Q,h has determinant Δ = N and dimension d = k+�. Namely,
as LP,Q,h is a sublattice of Zd, we have det(LP,Q,h) = det(Zd)·[Zd : LP,Q,h] = N ,
since det(Zd) = 1 and the group index equals N .

This lattice contains vectors of the form (0, . . . , 0, 2m,−1, 0, . . . , 0), for some
m, which we will call ‘structural’ vectors. These structural vectors have length√

4|Pi| + 1 and
√

4|Qi| + 1. For example, (2p2−p1 ,−1, 0, . . . , 0) ∈ LP,Q,h is a struc-
tural vector which is easily seen to have the described length, observing that
p2 − p1 = |P1|. Applying this example for every two subsequent variables of the
same kind, one arrives at all structural vectors.

Definition 1 (Secret vector). Let h = f/g ∈ R be as in the AJPS-
cryptosystem, suppose P = {P1, . . . , Pk} and Q = {Q1, . . . , Q�} are interval-like
partitions of [n] and denote pi = min Pi and qj = min Qj. We define the secret
vector

s := (g1, . . . , gk, f1, . . . , f�) ∈ LP,Q,h,

where 0 ≤ gi < 2|Pi| and 0 ≤ fj < 2|Qj | are the unique natural numbers such
that

∑k
i=1 gi · 2pi = g and

∑�
j=1 fj · 2qj = f .

Remark 6. The vector s is actually just the concatenation of the vectors
(g1, . . . , gk) and (f1, . . . , f�), which are constructed from g, P and f,Q respec-
tively as in Table 2.

Applying LLL Let us recall the guarantees provided by the LLL algorithm.

Lemma 5 ([20,21]). For any γ >
√

4/3, the LLLγ-algorithm applied to a d-
dimensional lattice L returns, within polynomial time, a basis (b1, . . . , bd) of L
satisfying

– ‖b1‖ ≤ HF(L) := γ(d−1)/2 · Δ
1/d
L (Hermite factor bound);

– ‖b1‖ ≤ AF(L) := γd−1 · λ1(L) (Approximation factor bound).

where λ1(L) is the length of a shortest nonzero vector of L, and ΔL is the
determinant of the lattice L.

In practice, LLL performs much better. For cryptanalytic purposes, one often
assumes γ = 1.04, which is corroborated by many experiments [22]. In the current
analysis, this practical value of γ will be used.
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The inequalities in Lemma 5 give rise to two so-called regimes of LLLγ , the
Hermite regime and the Approximation regime. A lattice L lies in the Hermite
regime when HF(L) ≤ AF(L), and lies in the Approximation regime whenever
AF(L) < HF(L). One distinguishes these two cases because the output of LLL
differs significantly between the regimes. This effect is most prominent when a
single, unique short vector causes a lattice to be in the Approximation regime;
in that case LLL typically outputs this particular short vector [10, Sect. 3.3].

One would like to have that this last scenario holds for the lattice LP,Q,h and
the secret vector s. So, informally, one wishes to have no vectors in LP,Q,h that
are shorter than usual except for the secret vector s. One obstacle could be that
the structural vectors are too short, causing s not to be unique. However, we
will rule out this possibility by comparing the lengths of these structural vectors
to the Gaussian heuristic of LP,Q,h.

The Gaussian heuristic uses a geometric argument to estimate the length
of the shortest vector of a lattice [10]. For d-dimensional lattices L one expects
λ1(L) ≈√d/(2πe) ·Δ1/d

L , according to this heuristic. Applying this to the lattice
of interest, one obtains λ1(LP,Q,h) ≈ √n/(2πe) · 2

n
d . Recall that the structural

vectors have approximate length 2|Pi| and 2|Qi|. So, whenever |Pi|, |Qi| > n/d +
Θ(log n), we have 2|Pi|, 2|Qi| >

√
d/(2πe) · 2

n
d . So, in this case, the structural

vectors are not shorter than the estimate of the Gaussian heuristic and hence
longer than the secret vector s. Note that the average size of |Pi|, |Qi| is 2n/d,
meaning that this constraint is not so restrictive.

Therefore, we assume the following heuristic.

Heuristic 3. The attack of Beunardeau et al. is successful in recovering the
secret vector s if s (as in Definition 1) is the shortest vector and causes the lattice
LP,Q,h to fall into the Approximation regime, i.e., AF(LP,Q,h) < HF(LP,Q,h).

From the above heuristic we can deduce that the lattice attack succeeds if

‖s‖ · γd−1 < γ(d−1)/2 · 2n/d = HF(LP,Q,h).

Moreover, according to the study of Albrecht et al. [2] on the behavior
of LLL for unique-SVP instances, this condition should be essentially tight.
More precisely, we expect the attack to fail with overwhelming probability when
AF(LP,Q,h) > O(

√
d) · HF(LP,Q,h).

The metric bounds ‖s‖∞ ≤ ‖s‖ ≤ √
d · ‖s‖∞ imply that the attack passes

when
√

d · ‖s‖∞ < γ−(d−1)/2 · 2
n
d and is expected to fail when ‖s‖∞ > O(

√
d) ·

γ−(d−1)/2 · 2
n
d . Since ‖s‖∞ = max{gi, fi}, we can write ‖s‖∞ = 2r, where r is

the bit size of the maximum of the gi and fi. Putting this in the inequalities and
taking base-two logarithms, yields the following. The attack succeeds whenever
r < n

d (1 − δ1 − δ2) and is expected to fail when r > n
d (1 − δ1 + δ2 + O(d/n)),

where

δ1 =
d(d − 1) · log2(γ)

2n
and δ2 =

d · log2(d)
2n

.
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5.3 Success Probability Analysis

Let P and Q be partitions with block sizes at least n/d+Θ(log n), where d = k+�
with k = |P | and � = |Q|. We analyze the success probability of the lattice attack
with respect to random f and g ∈ R both of Hamming weight w = �√n/2�.

From the previous section, we found that it suffices that the non-zero bits
of f and g fall in the rightmost r bits of each block, in order to make LLL find
the secret vector. So, for g, the total number of bits that are allowed to be one
equals k · r. Therefore, we can approximate the probability of the bits of f and
g all falling in the good region by

(
� · r

n

)w (
k · r

n

)w

.

Putting in the upper and lower bound for r, we obtain an upper and lower bound
for the success probability p of the attack.

(
�k(1 − δ1 − δ2)2

d2

)w

< p <

(
�k(1 − δ1 + δ2 + O(d/n))2

d2

)w

.

In order to maximize the above probability, we will assume that k = � = d/2
and d = O(w). Namely, the fraction �k

(�+k)2 attains its maximum at � = k = d/2.

Recalling w2 ≈ n/4, we obtain δ1 = d(d−1)
2n · log2(γ) ≈ 1

8

(
d
w

)2 · log2(γ) and
δ2 = o(1) as n → ∞. Therefore

(
1 − δ1 − o(1)

2

)2w

< p <

(
1 − δ1 + o(1)

2

)2w

.

Thus, assuming Heuristic 3, the success probability of LLL recovering a randomly
chosen AJPS secret key pair (f, g) ∈ R2 from the lattice LP,Q,h (where h = f/g),

is roughly
(

1
2 − c

(
d
w

)2
+ o(1)

)2w

, where c = log2(γ)/8 = log2(1.04)/8 ≈ 1/140.
This probability value suggests that one should start with partitions with a small
number of blocks, exploiting both the low dimension m of the lattice LP,Q,h and
a slightly larger success probability. Note, however, that it is not likely that the
secret key s = (g, f) will be recovered in this stage; the smaller d is, the fewer
possible partitions there are, so the need to sample new partitions will require
us to increase d to Ω(w) for most keys.

Replacing LLL by an SVP-oracle. If one replaces LLL by an SVP-oracle, the
success condition from Heuristic 3 needs to be amended. Instead, the attack
would be successful when s is the shortest vector of L. Heuristically this is
the case if and only if s is shorter than what is predicted by the Gaussian
Heuristic λ1(L) ≈√d/2πe ·Δ1/d

L . Using a similar analysis, this leads to a success
probability of 2−2w+o(1). Note however that the best SVP-solvers [4] need time
(3/2)d/2, which would increase the overall complexity of the attack significantly.
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5.4 Generalization to Scaled Partitions

The attack that is treated above is a simplification of the attack of Beunardeau et
al.; essentially we omitted a ‘scaling’ technique [6, Sect. 2.2, ‘Trying partitions’].
This particular technique allows the variation of partition sizes and the fraction
of each partition block that must consist of leading 0s.

The lattice LP,Q,h scaled by the vector σ = (σ1, . . . , σk, σ′
1, . . . , σ

′
�) ∈ R

d can
be defined explicitly as follows.

Lσ
P,Q,h =

{

(σ1x1, . . . , σkxk, σ′
1y1, . . . , σ

′
�y�)

∣
∣
∣

h ·
k∑

i=1

2pi · xi −
�∑

j=1

2qi · yi ≡ 0 mod N

}

.

Allocating less weight σi to the content xi of a certain partition Pi lets a lattice
reduction algorithm tolerate larger values xi; this means that the required frac-
tion of leading 0s in this partition is diminished. This technique implies more
freedom in choosing block sizes and required fractions of leading 0s.

Note, however, that scaling the entire lattice L �→ cL by a constant won’t
affect the attack at all. Therefore, one might require, without loss of generality,
that

∏k
i=1 σi

∏�
j=1 σ′

j = 1. This implies that the increase and decrease of the
fractions of leading 0s of the blocks are in an equilibrium, not affecting the total
region where non-zero bits are allowed.

So, this extension possibly increases the number of public keys that can be
broken but does not affect the running time nor the success probability of the
attack. Even considering this generalization, we were not able to prove that
this improved attack could recover every key with constant probability in time
2(2+δ)w+o(1) for some small constant δ > 0.
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A Experiments

Since our MITM attack is not fully provable due to the presence of Heuristics 1
and 2, we provide some experimental verifications. The python scripts of those
experiments are available at https://github.com/lducas/MiTM-Mersenne.

One tweak in our implementation is that when w is odd, we do not split our
space exactly into two equal parts. Instead we choose w1 = �w/2�, w2 = w−w1,
and then choose n1, n2, such that

(
n1
w1

) ≈ (n2
w2

)
. We will also simulate the quantum

case, and choose w1 = �w/3�, w2 = w − w1, and then choose n1, n2, such that(
n1
w1

)2 ≈ (n2
w2

)
. In both the classical and quantum case, we set B = �log2

(
n1
w1

)�.

https://github.com/lducas/MiTM-Mersenne
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A.1 Verification of Heuristic 2

We recall that Heuristic 2 states that the number of collisions c = |{(g1, g2) ∈
S1 × S2 : H(g1h) = H(−g2h)}| is approximately given by c′ = |S1| · |S2|2−B . We
measure the ratio r = c/c′ experimentally, over 100 samples for each dimension n.
Infrequently, this ratio may get as large as 3, yet for 90% of the experiments, it
was very close to 1. Figure 1 below shows the 9th decile of r as n grows.

Quantum settingClassical setting

Fig. 1. 9th decile of the ratio between the measured number of collisions c and expected
number of collisions c′ according to Heuristic 2, over 100 experiments per dimension.

A.2 Running time and success probability

In Figs. 2 and 3, we report on the practical efficiency of our attack and compare
it to our heuristic prediction. Note that in the quantum regime, the success
probability of this MITM attack in practice is sometimes significantly larger
than the theoretical prediction. This is most likely due to the fact that our

Quantum settingClassical setting

Fig. 2. Success rate of the attack over 100 trials (in blue), compared to the theoretical
success rate (1 − 2w/(n − B))B (in red). The rather discontinuous shape of the red
curve is due to the rounding of w = �√n/2� and B = �log2

(
n1
w1

)�. (Color figure online)
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Experimental running time Prediction

Fig. 3. Average running time of the classical attack over 100 trials in comparison with

the function
√(

n
w

)
, which is the dominant factor in our asymptotic complexity.

analysis is done for one particular solution, while certain rotations of the same
key may be found as well if its bits are properly balanced with respect to the
split F

n
2 = G1 ⊕ G2.
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Abstract. The hardness of solving multivariate quadratic (MQ) sys-
tems is the underlying problem for multivariate-based schemes in the
field of post-quantum cryptography. The concrete, practical hardness of
this problem needs to be measured by state-of-the-art algorithms and
high-performance implementations. We describe, implement, and evalu-
ate an adaption of the Crossbred algorithm by Joux and Vitse from 2017
for solving MQ systems over F2. Our adapted algorithm is highly paral-
lelizable and is suitable for solving MQ systems on GPU architectures.
Our implementation is able to solve an MQ system of 134 equations
in 67 variables in 98.39 hours using one single commercial Nvidia GTX
980 graphics card, while the original Joux-Vitse algorithm requires 6200
CPU-hours for the same problem size. We used our implementation to
solve all the Fukuoka Type-I MQ challenges for n ∈ {55, . . . , 74}. Based
on our implementation, we estimate that the expected computation time
for solving an MQ system of 80 equations in 84 variables is about one
year using a cluster of 3600 GTX 980 graphics cards. These parameters
have been proposed for 80-bit security by, e.g., Sakumoto, Shirai, and
Hiwatari at Crypto 2011.

Keywords: Post-quantum cryptography
Multivariate quadratic systems · Parallel implementation · GPU

1 Introduction

With the advent of quantum computing, an adversary can efficiently break uni-
versally adopted public-key cryptographic schemes, e.g. RSA and elliptic-curve
cryptography, with a sufficiently large quantum computer [16,17]. In order to
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mitigate this imminent threat, cryptographic schemes that are resistant against
quantum computers have drawn great attention from academia. These schemes
are collectively referred to as post-quantum cryptography (PQC).

One potential candidate for PQC is multivariate cryptography. Multivariate
cryptography relies on the difficulty of solving a system of m polynomial equa-
tions in n variables over a finite field. The complexity of solving a multivariate
polynomial system (MP problem) or a multivariate quadratic system (MQ
problem) where coefficients of the monomials are independently and uniformly
distributed (i.e. random) is well-known to be NP-hard. An arbitrary MP system
can be transformed into an equivalent MQ system by substituting monomials
of degree larger than two with new variables and introducing extra equations to
the system. Furthermore, a polynomial system over any extension field F2n can
be reduced into an equivalent system over F2 using Weil descent.

Since the early 1980s, various asymmetric multivariate encryption schemes
(e.g., [5,14,18]) based on Hidden Field Equations (HFE) [10] as well as signature
schemes (e.g., [6,12,13]) have been proposed. Besides these asymmetric schemes,
some symmetric encryption schemes, e.g., the stream cipher QUAD [1], have
been proposed and analyzed [20].

Introducing a trapdoor into an MQ system for the use in public-key cryptog-
raphy results in a system that is not truly random and typically exhibits a hidden
structure that often can be exploited in its cryptanalysis. However, we do not
focus on the cryptanalysis of any particular cryptographic scheme by exploiting
some hidden structure. Our goal is to investigate the concrete, practical hardness
of the underlying problem of solving random MQ systems over F2 by providing
an efficient, parallel implementation of the state-of-the-art algorithm.

This paper is structured as follows: In Sect. 2, we introduce the Crossbred
algorithm by Joux and Vitse and our adaption to this algorithm. In Sect. 3, we
describe our implementation of the adapted algorithm for a cluster of GPUs.
In Sect. 4 we describe how to choose the parameters for our implementation,
given a specific MQ system size, and in Sect. 5, we provide an evaluation of our
implementation.

The source code of our implementation and further information are available
at www.polycephaly.org/mqsolver/.

2 Joux-Vitse’s Crossbred Algorithm

There are several approaches for solving MP systems, e.g., Faugère’s F4 and
F5 algorithms [7,8] based on the computation of Gröbner-bases and a family of
algorithms based on extended linearization (XL) [19]. For MQ systems over F2,
Fast Exhaustive Search (FES) [3], i.e., efficient enumeration over the search
space, was the approach used by the previous record holder [4] of Fukuoka MQ
Type-I and Type-IV challenges1. The record on Type-I challenges is now held
by an implementation of the Crossbred algorithm by Joux and Vitse [11].

1 https://www.mqchallenge.org/.

http://www.polycephaly.org/mqsolver/
https://www.mqchallenge.org/
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The basic idea of the XL algorithm is to extend the original MQ system by
multiplying it by all monomials up to a certain degree D − 2 and by treating
monomials in the resulting degree-D system as linear variables. Solving this
linear system gives a solution for the original MQ system with high probability,
if D is chosen large enough.

FES works by enumerating all possible assignments of the variables and by
checking the correctness of each assignment with the original MQ system. In
contrast to a plain brute-force search, the possible assignments are enumerated
in Gray-code order such that there is only one single variable with a different
assignment in each enumeration step. This allows to compute the new evaluation
result efficiently based on the change in regard to the previous evaluation result,
which requires storage and recursive update of partial derivatives up to the total
degree of the system [4].

2.1 The Crossbred Algorithm

The basic idea of Joux and Vitse’s Crossbred algorithm is to extend the original
MQ system to a system with a degree D lower than the degree required for XL
and to derive a sub-system that has at most degree d in the first k variables. This
sub-system is then solved by iterating over the remaining n − k variables and
solving the resulting degree-d system in k variables in each iteration. For d = 1,
this requires to only solve a linear system in k variables for each assignment of
n − k variables.

For example, by fixing the last two variables x3 and x4, the sub-system

S =

⎧
⎪⎨

⎪⎩

x1x4 + x2x3 + x1 + x3 + x4 = 0
x1x3 + x3x4 + x2 + 1 = 0
x2x3 + x2x4 + x3x4 + x1 + x4 = 0

becomes a linear system in x1 and x2. Clearly, the resulting linear system can be
directly solved with Gaussian elimination, with which solutions to the system S
can be derived efficiently.

For a monomial xα = xα1
1 xα2

2 . . . xαk

k x
αk+1
k+1 . . . xαn

n , the total degree of the
first k variables is denoted as degkxα =

∑k
i=1 αi. Given an MQ system F , the

Crossbred algorithm first computes a degree-D Macaulay matrix with respect
to a monomial order >degk

where monomials are sorted according to degk in
descending order. Subsequently the algorithm extracts at least k equations where
the monomials of degk larger than one (which are non-linear in x1, . . . , xk) are
eliminated and only keeps monomials of degk ≤ 1 (which are linear in x1, . . . , xk).
These equations give a sub-system that can be transformed into a linear system
in the first k variables by fixing the remaining n − k variables. After one such
sub-system S is obtained, Crossbred performs exhaustive search by fixing the
last n − k variables and testing whether or not the resulting linear system S ′ is
solvable. If so, solutions to S ′ are checked with the original MQ system F . The
algorithm terminates if a solution is found, otherwise it fixes n − k variables in
S with another set of values and continues the exhaustive search procedure.
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Algorithm 1. The Original Crossbred Algorithm
1: procedure Crossbred
2: Input:
3: an MQ system of m equations in n variables F = {f1, f2, . . . , fm}
4: Macaulay degree: D
5: number of variables to keep: k
6: number of variables to fix during MQ external hybridization: p
7:
8: for each (xn−p+1, . . . , xn) in {0, 1}p do
9: 1. Fix the last p variables in F to obtain an MQ system F ′.

10: 2. Compute the degree-D Macaulay matrix MackD
11: where monomials are sorted by degk based on F ′.
12: 3. Extract r linearly independent equations S = {s1, s2, . . . , sr} from MackD
13: where monomials of degk > 1 have been eliminated.
14:
15: Call FastEvaluate(S, k, n − p) and
16: for each output linear system S ′ do
17: 4. Test if S ′ is solvable. If so, extract solutions and verify them with F .
18: 5. Continue if no solution is found.
19: Otherwise output the solution and terminate.
20: end for
21: end for
22: end procedure

To obtain a linear system S ′ from the extracted sub-system S, the Crossbred
algorithm uses a recursive algorithm called FastEvaluate to fix n − k variables
in S. The basic idea of this algorithm is to split each polynomial into two groups
of monomials. An arbitrary polynomial p can be written as p = p0 +xip1, where
xip1 are monomials that involve a specific variable xi while p0 are monomials
that do not. It is clear from this form that p0 is exactly the result of fixing
xi = 0 in p and p0 + p1 is the result of fixing xi = 1 in p. This idea can be
applied recursively to fix n − k variables.

One can further fix some variables in the original MQ system before com-
puting Macaulay matrices, which is referred to as external hybridation by the
authors [11]; here, we use the term external hybridization. The authors of the
Crossbred algorithm consider external hybridization merely as a method to dis-
tribute the workload between computers and do not expect it to be asymp-
totically useful [11]. Nevertheless, this technique can be helpful to increase the
number of variables that can be kept for linearization, which reduces the runtime
of the algorithm significantly.

2.2 Adapting the Crossbred Algorithm for Parallel Implementation

The FastEvaluate algorithm proposed by Joux and Vitse has the disadvantage
that computing the subsets p0 and p1 on higher levels of the recursion is relatively
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expensive. We propose to use Gray-code enumeration [3] instead of FastEvalu-
ate, which requires only O(2n−k · D · k) machine instructions on the cost of
O(

∑D
i=0

(
n−k

i

) · k) memory.
Gray-code enumeration was proposed to efficiently evaluate a polynomial

function f(x1, x2, . . . , xn) in all points (x1, x2, . . . , xn) ∈ F
n
2 . To obtain the result

of evaluating f on the next point a ∈ F
n
2 from the current result f(a ′) where only

the ith coordinates of a and a ′ differ, O(1) machine instructions are executed to
combine f(a ′) with the result of evaluating the first order partial derivative ∂f

∂xi

on a ′ [3]. In particular, f(a) = f(a ′) + ∂f
∂xi

(a ′). This technique can be applied
recursively to evaluate ∂f

∂xi
(a ′) and its higher order partial derivatives until the

partial derivative reduces to a constant. Therefore, if f is of degree D, O(D)
operations are required to compute f(a).

The same technique can also be applied to evaluate a function f whose output
is a linear function in k variables instead of a constant over F2 by simply splitting
the polynomial into a sum of k+1 sub-polynomials, one for each of the k variables
and one for a constant term. For example, the polynomial

f = x1x4x5x6 + x1x4x5x7 + x4x5x6x7 + x1x4x5 + x3x4x7 + x3x5

+ x2x4x6 + x4x6x7 + x1x4 + x1x5 + x5x7 + x6x7 + x1 + x2 + x4 + 1

which is linear in x1, x2, and x3 can be split into the 4 polynomials

f1 = x1(x4x5x6 + x4x5x7 + x4x5 + x4 + x5 + 1),
f2 = x2(x4x6 + 1),
f3 = x3(x4x7 + x5),
f4 = x4x5x6x7 + x4x6x7 + x5x7 + x6x7 + x4 + 1,

such that f = f1 + f2 + f3 + f4. Now, f can be evaluated by applying Gray-code
enumeration to f1, f2, f3, andf4 individually.

Since the result of evaluating f or any of its partial derivatives on a point
a ∈ F

4
2 is a linear function that can be represented by four F2 elements (three

variables and the constant term) and the last order partial derivatives reduce to
constants, evaluating f(a) takes at most 3·(3+1)+1 xor-operations and another
4 ·2 operations for computing the indices of the coordinates that changed during
enumeration. In general, for a polynomial function f of degree D whose output
is a linear function in k variables, evaluating f requires O(D · k) operations.

Since a machine instruction operates on machine words, which for example
have size 64 for 64-bit architectures or 32 on GPUs, multiple polynomials can be
evaluated with Gray-code enumeration simultaneously. Therefore, the algorithm
described above can be applied to fix n−k variables in an extracted sub-system
S of m equations in n variables using O(D · k) instructions, as long as m is not
larger than the machine word size.

Gray-code enumeration can be easily parallelized: To run the enumeration
with 2t threads in parallel, first fix t variables in the sub-system S with all t-
tuples in {0, 1}t to create 2t smaller sub-systems in n − t variables. With this
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approach, although the sub-systems are distinct from each other, their last order
partial derivatives with respect to the n − t − k variables that must be fixed are
identical.

3 Implementation

Our target platform for the implementation is a hybrid cluster of workstations
equipped with GPUs. Therefore, we have two processor architectures to our dis-
posal: AMD64 CPUs and Nvidia GPUs (Kepler and Maxwell microarchitecture).
The Gray-code enumeration part of the Crossbred algorithm is particularly easy
to parallelize and therefore suitable for GPU deployment. Thus, we use the CPUs
to generate and process the Macaulay matrix and the GPUs for Gray-code enu-
meration and linear-system solving.

3.1 Macaulay-Matrix Computations

The first step in Joux-Vitse’s Crossbred algorithm is to extend the original MQ
system to a Macaulay matrix of degree D. (Our implementation works for D = 3
and D = 4.) The columns are ordered such that the monomials with degk > 1
are in the front. Then, several (in our implementation 32) non-trivial vectors
in the left kernel of the Macaulay matrix are computed. Finally, a sub-system
linear in x1, . . . , xk is extracted for Gray-code enumeration.

Since the Macaulay matrix is very sparse, a sparse-system solver like the block
Lanczos algorithm or the block Wiedemann algorithm could be used. However,
the Macaulay matrix exhibits a special structure: Since the Macaulay matrix
is generated from the original system by multiplying the polynomials with all
monomials up to a certain degree, the resulting matrix is close to being diagonal.
Therefore, we decided to exploit this special structure in a specifically adapted
implementation of Gaussian elimination.

The first step is to compute the reduced echelon form of the original input
system. This is a very small computation and requires a negligible amount of
time. Then, we compute the Macaulay matrix M such that the columns are in
the required order. We store M in a sparse representation. Then we search for
rows in the Macaulay matrix that have an increasing number of leading zeros
and swap them into place: Find a row that has no leading zeros and swap it to
the top, find a row that has one leading zero and swap it to the second row, and
so on. Due to the structure of the Macaulay matrix, usually about two thirds of
the rows of the upper-triangular form of M can be obtained just by swapping in
suitable rows. Now, only the remaining one third of the upper-triangular form
of M needs to be computed. Observe that up to this point, M can be stored in
a sparse format and no costly row reductions needed to be performed.

In order to compute the remaining rows of the upper-triangular form of M,
one must perform row reduction. Therefore, we switch over to a dense represen-
tation by first performing row reduction on rows that have not found their final
position during row-swapping with those that did. In this manner, we drop those
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rows and columns that already have been pivoted by row-swapping and obtain a
dense, reduced matrix RM. On this matrix, we perform classical Gaussian elim-
ination in order to compute the desired sub-system that is linear in x1, . . . , xk.

After RM is computed, it can be copied to the GPU if the off-chip memory
if large enough to accommodate it. Subsequently a sub-system can be extracted
with Gaussian elimination on the GPU and copied back to the system main
memory. On the other hand, if the size of RM is too large or if the overall work-
load is pipelined between CPU and GPU, Gaussian elimination is simply per-
formed on the CPU. We parallelized the CPU implementation using the POSIX
Thread API to distribute the workload over all CPU cores. We observed during
experiments that our GPU implementation on a Nvidia GTX 980 graphics card
outperforms our CPU version on a AMD FX-8350 4 GHz processor by a factor
of 9 in most cases.

Since the size of registers on a GPU is 32 bits and both Gray-code enumera-
tion and linear system solving require the input system to be stored in column-
wise format, only 32 linearly independent equations need to be extracted from
the reduced Macaulay matrix RM for the sub-system S.

3.2 Fixing Variables in the Sub-system

We implemented the Gray-code enumeration algorithm for fixing n−k variables
in the degree-D sub-system S to enumerate linear systems in k variables for
the GPU architecture. The data structures used by Gray-code enumeration are
allocated from the off-chip global memory. We simply distribute the workload
over 2t threads by fixing t variables in S to obtain individual and independent
smaller sub-systems Si, 1 ≤ i ≤ 2t for each thread. Since the last partial deriva-
tives are constants and remain the same for all 2t smaller sub-systems as noted
in Sect. 2.2, they can be shared by all threads. Since they are constant, we store
them in read-only constant memory.

The GPU threads in a warp begin enumeration with the same starting point
and consequently they will access partial derivatives in the same order in each
iteration. Therefore, the data structures for one warp can be interleaved to obtain
optimal memory throughput. In addition, because of the cyclic nature of Gray-
code enumeration, the last-level derivatives stored in constant memory are likely
to be cached in the constant memory cache. Since the data of the 32 equations in
the sub-system is stored in column-wise format, in total

(
n−k−t

D

)
32-bit integers

are required for storing the constant last-level derivatives.
As described in Sect. 2.2, the evaluation of a k-linear polynomial is split into

the evaluation of k + 1 polynomials. Therefore, we store the data for the non-
constant partial derivatives for the 32 threads in one warp in basic units of 32(k+1)
words interleaved in memory. Since for each of the k + 1 polynomials n − k − t
variables have to be fixed during enumeration, storing results of evaluating the
non-constant partial derivatives of Si requires

∑D−1
j=1

(
n−k−t

j

)
such basic memory

units for one warp. Together with the result of evaluating Si at the current point
(which requires one basic unit as well) a warp requires

∑D−1
j=0

(
n−k−t

j

)
basic units.
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Therefore, in total Gray-code enumeration requires (2t−5 · ∑D−1
j=0

(
n−k−t

j

)
) · 32 ·

(k + 1) words of size 32-bit in global memory and
(
n−k−t

D

)
words of size 32-bit in

constant memory.

3.3 Testing the Solvability of a Linear System

After a linear system has been computed during an iteration step of Gray-code
enumeration, the system needs to be checked for solvability. Since the linear
system is small, the straight-forward approach for testing its solvability is to
simply solve it with Gauss-Jordan elimination.

In the standard Gauss-Jordan elimination algorithm, once a pivot row for
the ith pivot element is located, it is moved to its final position by swapping
with the ith row. However, we are storing the linear system in column order, so
row swapping is expensive. Therefore, we avoid row-swapping by maintaining a
mask that tracks which rows are in their final position.

After as many rows as the number of variables k in the linear system Si have
been marked as final, the algorithms stops. The remaining unmarked rows are
redundant equations and their first k coefficients which represent the variables
x1, x2, . . . , xk are guaranteed to be zero. Therefore, testing the solvability of Si

is as simple as checking if the constant term of any of the redundant equations
is non-zero.

Clearly, if the system is solvable, a solution can be extracted from the last
column based on the first k columns. In particular, the position of 1 in the ith

column points to the value for xi in the last column. Note that before extracting
a solution, one has to test whether or not the system is underdetermined. To
achieve this, one can simply verify that none of the first k columns is completely
zero since one such column implies a missing pivot element. This verification can
be done simultaneously while extracting a solution and does not require extra
computation.

We avoid storing data for linear system solving in global memory by storing
the entire data in registers. In order to make sure that the compiler maps data
to registers, we do not use an array data structure to store the data. Instead, we
use a Python script to generate unrolled code with distinct variables for all data.
However, the consequence of generating CUDA code at compilation time is that
the program has to be re-compiled for each choice of k. This takes roughly 6 s
on an AMD FX-8350 4 GHz processor, which is negligible.

3.4 Probability of False Positives

There are three possible outcomes of solving the linear system: there can be
no, one, or more than one solution. The expected outcome is that there is no
solution in which case we proceed to the next Gray-code iteration step. Ideally,
we find one single solution only once—which then is also a solution for the
original quadratic system. However, there is a small probability that a solution
for the subsystem S is not a solution for the original system, i.e., it is a false
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positive. Finally, there is also a chance for finding more than one solution which
requires further processing.

Suppose we have a random linear system of m equations in F2 of n variables.
We would like to estimate the probability that this system has at least one
solution. Let A be the augmented matrix of this system (m × (n + 1)).

Assume that during Gaussian elimination the upper-left corner is a pivot.
This means that there is at least one 1 in the first column (2m − 1 possibilities).
The first row with a leading 1 gets swapped to the top, and the rest of the first
column is eliminated. There are n other entries in the first row (2n possibilities).
The remaining (m − 1) × n sub-matrix remain uniformly random.

We can continue this reasoning conclude that if the Gaussian elimination
have pivots in columns a1 < a2 < · · · < a� ≤ n + 1 exactly

2
∑�

j=1(n+1−aj)

⎛

⎝
�∏

j=1

(2m+1−j − 1)

⎞

⎠

times. Thus, when m > n, we can tell that the largest block of consistent systems
have pivots a1 = 1, a2 = 2, . . . , an = n, and these number

2n(n+1)/2

⎛

⎝
n∏

j=1

(2m+1−j − 1)

⎞

⎠ < 2n(n+1)/2

⎛

⎝
n∏

j=1

(2m+1−j)

⎞

⎠ = 2n(m+1).

There are 2m(n+1) possible matrices so probability of a full-rank consistent
system is bounded by 2−(m−n). More precisely, for large m = n, the probability
of full-rank consistency is 1

2 · 3
4 · 7

8 · · · (1 − 1
2n

)
� p0 =

∏∞
j=1

(
1 − 1

2j

) ≈ 0.288788.
In general a full-rank consistent systems occurs with probability roughly

2−(m−n)
n∏

j=1

(1 − 2m−n+j) � pm−n := p0 · 2−(m−n)/

⎛

⎝
m−n∏

j=1

(1 − 2−j)

⎞

⎠ .

The second largest block of systems (missing a pivot in column n) is less
likely by a factor of 1

2(2(m+1−n)−1)
. Systems missing a pivot in column (n− j) are

a further factor of 1/2j−1 less likely. Thus, probability of consistent systems with
(n − 1) pivots is ≈ pm−n

2(2(m+1−n)−1)

(
1 + 1

2 + 1
4 + 1

8 + · · · + 1
2n−1

) ≈ pm−n

(2(m+1−n)−1)
.

The largest block missing two pivots (in columns n and n − 1) is a factor
1

23(2(m+1−n)−1)(2(m+2−n)−1)
smaller than full-rank. Each time we move the first

missing pivot left there is a factor of 1/2. Each time we move the second (right-
most) missing pivot left there is a factor of 1/4. Summing over 2−i4−j gets a
factor of 8/3, so we end up having probability of missing 2 pivots close to

≈ pm−n

3(2(m+1−n) − 1)(2(m+2−n) − 1)

Continuing this argument, we note that the largest term missing k pivots is
smaller by a factor of 2k(k+1)

(∏k
j=1(2

m−n+k − 1)
)
. Summing over all matrices
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missing k pivots, we get a factor of � 2
1
4
3 · · · 2k

2k−1
. So the totality of all matrices

missing k pivots is ≈ pm−n/
(∏k

j=1(2
m−n+k − 1)

) (∏k
j=1(2

k − 1)
)
.

The probability of a set of consistent equations for large m and n approaches
⎛

⎝
p0

2m−n
(∏m−n

j=1 (1 − 2−j)
)

⎞

⎠

⎡

⎣
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1
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j=1(2k − 1)

)

⎞

⎠

⎤
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If we only take two terms, it becomes roughly
⎛

⎝
p0

2m−n
(∏m−n+1

j=1 (1 − 2−j)
)

⎞

⎠ → 2−(m−n) for large m − n.

This is consistent with intuition. For example, to have no more than 1 con-
sistent system in 1000, we need m − n ≥ 10. For two further examples, we note
that p1 = p0 = 0.288788. The probability when m − n = 1 of a set of consistent
equations is approximately

p1 ·
⎡

⎣
∞∑

k=0

⎛

⎝
1

(∏k
j=1(2k+1 − 1)

) (∏k
j=1(2k − 1)

)

⎞

⎠

⎤

⎦ = 0.389678.

When m = n, the probability of a set of consistent equations is approximately

p0

∞∑

k=0

1
(∏k

j=1(2k − 1)
)2 = 0.610322,

which is exactly the complement of the previous result!

3.5 Verification of Solution Candidates

When a single solution candidate is found, it needs to be verified with the original
MQ system. Ideally, one would copy the solution candidate from the GPU off-
chip memory back to the main memory and verify it on the CPU immediately.
In practice, this is not efficient because checking each solution candidate right
away on the CPU interrupts the workflow of the GPU. Therefore, an alternative
approach is to store all solution candidates in a buffer and only copy them back
to the main memory after the GPU kernel finishes. One caveat of this approach
is that a sufficiently large buffer must be allocated on the off-chip memory,
which may have little capacity left after allocating memory blocks for the data
structures used in Gray-code enumeration. If the number of solution candidates
is larger than the size of the buffer, some candidates must be dropped.

To avoid this pitfall, we copy some polynomials from the original MQ system
to the GPU which serve as a filter. Evaluating a random polynomial over F2 at a
random input results in zero with probability 0.5. Therefore, using i polynomials
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reduces the number of candidates by a factor of 2−i (for i � n). Only solution
candidates that pass the filter will then be verified with the rest of the equations
in the original MQ system by the CPU.

We are using 32 polynomials that are stored in column-wise format. In this
manner, to apply the filter a thread needs to evaluate n(n−1)

2 +n+1 monomials in
the polynomials with the solution candidate. Therefore, this takes at most O(n2)
machine instructions. However, filtering only needs to be applied when the linear
system has a solution, which happened very rarely during our experiments and
its execution time was completely hidden.

If more than one solution is found, more effort is required in order not to
miss the solution. The probability of having more than one solution is very
small for well chosen implementation parameters (see Sect. 3.4). Therefore, our
implementation simply reports when it encounters this case and moves on to the
next iteration step. During all our experiments, this case never occurred.

3.6 Pipelining

When external hybridization is applied, i.e, p variables are fixed in the original
MQ system, one has to extract a sub-system and subsequently perform Gray-
code enumeration at most 2p times. Since we perform Gray-code enumeration
on the GPU, which operates independently from the CPU, we are able pipeline
the two stages. In other words, while performing Gray-code enumeration on the
GPU, a sub-system for the next Gray-code enumeration can be computed in
parallel on the CPU. In this manner, as long as extracting a sub-system takes at
most as much time as Gray-code enumeration, which can be controlled by the
choice of p, only the runtime of extracting the first sub-system will manifest.

4 Choice of Parameters

There are several parameters to choose before the Crossbred algorithm can be
executed on a CPU/GPU cluster. First, we need to know how many variables k
we can keep for linearization. This depends on the Macaulay degree D and the
number of variables p fixed in external hybridization. Finally we need to decide
how many variables to fix before deploying the workload to the GPUs and how
many GPU threads to launch in parallel.

4.1 Number of Variables to Keep

We want to set the parameter k as high as possible in order to reduce the search
space for Gray-code enumeration: For every extra variable that can be kept, the
search space is halved. As described in the original Crossbred algorithm [11],
the maximum of k depends on the Macaulay degree D as well as the number
of variables n and the number of equations m in the original MQ system. The
number of linearly independent equations that can be extracted from a Macaulay
matrix can be computed as the difference of the number of independent rows
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Fig. 1. Maximum number of variables k that can be kept depending on n and m.

Nindep row in the Macaulay matrix and the number of monomials Nnl which are
non-linear in x1, . . . , xk. This number must be no less than k; otherwise, there
will not be enough equations in the sub-system to obtain a unique solution.
The maximum value of k for MQ systems with n = m and m = 2n, based on
Macaulay degree D = 3 and 4, can be computed as

Nindep row =

{
m · (n + 1), when D = 3,

m · (
(
n
2

)
+ n + 1) − (

(
m
2

)
+ m), when D = 4,

Nnl =
D∑

i=2

i∑

j=2

(
k

j

)

·
(

n − k

i − j

)

,

Nindep row − Nnl

!≥ k.

Figure 1 shows a graph for the number of variables we can keep in relation to
the system size for n < 200. Clearly, with degree-4 Macaulay matrices one can
keep more variables than with degree-3 Macaulay matrices for large enough n.
However, for some determined systems, e.g. n = 140, using a degree-4 Macaulay
matrix does not allow us to keep more variables than when using a degree-3
matrix. In addition, the gap between the two curves for overdetermined systems
becomes narrower as n grows. Therefore, similar to determined systems, the
effectiveness of degree-4 matrices is expected to become marginal at which point
degree-5 Macaulay matrices are required if one wishes to keep considerably more
variables than when using degree-3 matrices.

Note that k grows linearly in the beginning of each curve, where the degree of
regularity of the MQ system is smaller than or equal to the Macaulay degree. In
this case, a Gröbner basis can be extracted directly from the Macaulay matrix,
which immediately yields a solution to the system.
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4.2 Macaulay Degree

As discussed in [11], since the Macaulay matrix is used to induce cancellation
of the monomials where any of the variables x1, x2, . . . , xk has a degree larger
than one, the degree of the Macaulay matrix must be no less than the degree
of regularity of a random system of m equations in k variables. In addition,
the Macaulay degree is a key factor that determines the maximum value of k.
One should therefore choose a Macaulay degree that is larger than the degree
of regularity requirement and that can provide a sufficient number of linearly
independent equations for the intended value of k.

One caveat of choosing the Macaulay degree is that the memory requirement
must be smaller than the available system memory. Since both the number of
rows and columns of a Macaulay matrix grow considerably when the degree
increases, one might have to choose a smaller Macaulay degree and subsequently
a smaller k in case the available memory is insufficient.

Our implementation supports both degree-3 and degree-4 Macaulay matrices.
Degree-3 Macaulay matrices are useful for small toy examples, while degree-4
Macaulay matrices are sufficient for the largest problem sizes that we target.

4.3 Number of Variables to Fix During External Hybridization

Section 4.1 gives the formula for computing the maximum value of k for a given
system. Since the parameter n in the formula is the number of variables in the
MQ system, one can achieve a higher k by fixing some p variables with external
hybridization. In this manner, the number of variables in the system drops by
p but the number of equations remains the same. Therefore, the number of
variables that can be kept may be higher.

For example, an MQ system of 148 equations in 74 variables allows to keep
k = 21 variables with a degree-4 Macaulay matrix. By fixing p = 4 variables, it
becomes a system in 70 variables, which allows to keep one more variable, i.e., k =
22. In this manner, the search space of Gray-code enumeration is split into 24 ×
274−4−22 instead of 1 × 274−21, which reduces the total number of iterations for
Gray-code enumeration by half. On the other hand, 2p sub-systems of Macaulay
matrices need to be computed—so there is a limit on the effectiveness of applying
external hybridization.

4.4 Number of Variables to Fix Before Exhaustive Search

In addition to fixing variables by external hybridization, one can further fix
some variables in the extracted sub-system before entering the exhaustive search
stage. By fixing b variables the sub-system beforehand, one can divide the work-
load evenly into 2b smaller sub-systems which require less resources for applying
exhaustive search. Clearly, since the main purpose of fixing these b variables in
the sub-system is to fine-tune the resource requirement, the choice of b should
be adjusted based on the hardware architecture and the remaining parameters.
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Table 1. Effect of changing the number of GPU threads.

Number of
threads

Memory
per thread

Total
memory

Constant
memory

Search space
per thread

Runtime
(seconds)

29 15.41 kB 7.70 MB 5320 B 221 20.97

210 14.01 kB 14.01 MB 4560 B 220 11.93

211 12.68 kB 25.37 MB 3876 B 219 7.16

212 11.42 kB 45.69 MB 3264 B 218 4.89

213 10.22 kB 81.81 MB 2720 B 217 5.15

214 9.10 kB 145.56 MB 2240 B 216 5.15

215 8.04 kB 257.12 MB 1820 B 215 5.04

216 7.04 kB 450.50 MB 1456 B 214 4.95

217 6.11 kB 782.00 MB 1144 B 213 4.94

218 5.25 kB 1343.00 MB 880 B 212 4.79

219 4.45 kB 2278.00 MB 660 B 211 4.86

220 3.72 kB 3808.00 MB 480 B 210 4.86

4.5 Number of GPU Threads

Typically, more threads than available cores are launched on a GPU in order
to hide memory and instruction latencies. Therefore, there should be a certain
threshold for the number of threads after which increasing the number of threads
on the GPU does not have an influence on the performance anymore. To find
this threshold, we performed a series of experiments by running our GPU kernel
on a randomly generated MQ system of 92 equations in 46 variables with differ-
ent numbers of 2t threads. We performed the experiments on a Nvidia Quadro
M1000M GPU using the following settings:

– GPU: Nvidia Quadro M1000M, 4 GB off-chip memory, 512 CUDA cores
– Macaulay degree: D = 3
– external hybridization: p = 0
– Number of variables to fix before enumeration: b = 0
– Number of variables to keep: k = 16

The results are given in Table 1. As expected, the runtime basically remains
constant for t ≥ 12. For t < 12, the degree of parallelism is not sufficient and
the latencies manifest.

When t = 9, there are 29 = 512 GPU threads deployed, which is exactly
the number of CUDA cores available on this particular GPU. In this case, the
workload is evenly distributed to all the CUDA cores. Nevertheless, the degree
of parallelism is far from enough because executing one single thread per CUDA
core is not enough to hide latencies. For example, when the thread loads data
from the global memory, which requires hundreds of cycles to access, there is no
other thread that can take over the execution resources. Therefore, the CUDA
core has no choice but to stall.



Implementing Joux-Vitse’s Crossbred Algorithm on GPUs 135

Starting from t = 10, there are several threads per CUDA core and some
latencies can be hidden. The performance gradually improves until t = 12, where
the degree of parallelism reaches a point where deploying more threads does
not improve the ability of the GPU to hide latencies anymore. Therefore, for
these experimental settings the threshold where the optimal performance of our
implementation can be achieved is 212.

Note that as explained in Sect. 3.2, for each doubling in the number of GPU
threads the amount of global memory required for a single GPU thread reduces
slightly but the total amount of memory required for the GPU kernel increases
nearly twofold. However, since the last-level derivatives stored in constant mem-
ory are shared by all threads, constant memory requirement decreases as t
increases.

5 Evaluation

We evaluated the performance of our implementation on the Saber clusters [2].
Saber is located at Eindhoven University of Technology and Saber2 at University
of Illinois at Chicago. The clusters consist of mostly homogeneous workstations.
Out of all the nodes in these two clusters, we used 27 cluster nodes, each equipped
with two Nvidia graphics cards. Twelve out of those 27 nodes have two GTX 780
graphics cards while the remaining 15 nodes have two GTX 980 cards. Each
node has 32 GB RAM and one AMD FX-8350 4 GHz processor, which has four
physical CPU modules (similar to a physical core in an Intel CPU) shared by
eight logical threads (similar to Intel’s hyper threading), 16 kB L1 data cache
per thread, 2 MB L2 cache per module, and 8 MB L3 cache shared by the whole
CPU. We used CUDA version 7.5 and compiled our implementation with the
back-end compiler bundled with CUDA, which is GCC version 4.8.

We compare our results to the FES implementations on GPUs from [3] and on
FPGAs from [4] and to the Crossbred implementation on CPUs from [11]. Since
[3] is using an older GTX 295 graphics card, we scale their results as follows: The
GTX 295 graphics card has 480 CUDA cores running at 1242 MHz. Our GTX 980
graphics card has 2048 CUDA cores running at 1278.50 MHz. Therefore, we scale
the results of [3] by a factor of 1242

1278 · 480
2048 in order to achieve a rough comparison

of the performance. This over-estimates the power of a GTX 295 compared to a
GTX 780 and therefore is in favor of [3] in some of the comparisons.

5.1 Overdetermined Systems—Fukuoka MQ Challenge

We solved some of the Fukuoka MQ challenges using our implementation. These
challenges were created in 2015 in order to help determining appropriate param-
eters for public-key cryptographic schemes based on MQ systems. In particular,
we chose to target Type-I challenges generated with seed 4 because they consist
of MQ systems in n variables and m = 2n equations over F2.

The experimental results of solving Type-I challenges for n ∈ {55, . . . , 67}
using one single GTX 980 graphics card are given in Table 2. The workflow
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Table 2. Solving overdetermined systems with a single GTX 980 graphics card.

n
Parameters

(D, p, k, b, t)

Search space

2p × 2b × 2n−p−k−b

Extracting

sub-systems

(seconds)

Exhaustive

search

(seconds)

Total

runtime

(seconds)

Worst-case

runtime

(seconds)

55 (4, 0, 19, 0, 14) 1 × 1 × 236 387.80 318.25 706.20 706.20

56 (4, 1, 20, 0, 14) 21 × 1 × 235 491.60 (1) 169.94 (1) 658.67 1317.34

57 (4, 0, 20, 0, 14) 1 × 1 × 237 606.75 650.90 1258.73 1258.73

58 (4, 0, 20, 0, 14) 1 × 1 × 238 670.26 1311.97 1982.74 1982.74

59 (4, 0, 20, 0, 14) 1 × 1 × 239 741.62 2619.00 3361.77 3361.77

60 (4, 0, 20, 0, 14) 1 × 1 × 240 782.12 5211.05 5994.41 5994.41

61 (4, 0, 20, 1, 14) 1 × 21 × 240 872.34 5204.18 (1) 6077.13 11280.34

62 (4, 0, 20, 2, 14) 1 × 22 × 240 920.24 10485.95 (2) 11407.64 21892.14

63 (4, 4, 21, 0, 14) 24 × 1 × 238 9406.21 (11) 14827.94 (11) 24234.15 35250.72

64 (4, 3, 21, 1, 13) 23 × 21 × 239 1991.48 (2) 10469.58 (4) 12456.97 49844.24

65 (4, 3, 21, 2, 14) 23 × 22 × 239 1046.62 (1) 10517.21 (4) 11565.10 92510.64

66* (4, 1, 21, 5, 13) 21 × 25 × 239 16268.10 (2) 133896.93 (51) 151867.70 184295.62

67* (4, 0, 21, 7, 13) 1 × 27 × 239 10298.95 198835.78 (74) 209172.34 354231.11

Table 3. Solving overdetermined systems using 27 nodes of the Saber clusters.

n
Parameters

(D, p, k, b, t)

Search space

2p × 2b × 2n−p−k−b

Extracting

sub-systems

(seconds)

Total

runtime

(seconds)

Worst-case

runtime

(GPU-hours)

68 (4, 6, 21, 2, 13) 26 × 22 × 239 9799.15 12802.11 214.45

69 (4, 8, 22, 0, 13) 28 × 1 × 239 11238.49 56697.70 229.10

70 (4, 7, 22, 2, 13) 27 × 22 × 239 14367.71 44223.81 452.65

71 (4, 8, 22, 2, 13) 28 × 22 × 239 14392.00 87415.91 947.20

72 (4, 9, 22, 2, 13) 29 × 22 × 239 13912.39 144145.58 1867.44

73 (4, 8, 22, 4, 13) 28 × 24 × 239 18055.07 159585.32 3700.87

74 (4, 10, 22, 3, 13) 210 × 23 × 239 15163.72 118323.38 8236.05

of the algorithm, i.e., how the search space is split and enumerated, is listed
in the 3rd column of the table. For parameters p > 0 and b > 0, external
hybridization and Gray-code enumeration need to be repeated at most 2p and
2b times respectively. The numbers inside the parentheses in the 4th and 5th

column specify how many repetitions were performed during the experiments.
For all these small experiments we used the GPU instead of the CPU to extract
sub-systems except for the last two experiments marked with an asterisk, because
the reduced Macaulay matrix was too large to fit into the 4GB off-chip memory
of the GTX 980 graphics card. As shown in Table 2, solving an MQ system of
134 equations in 67 variables requires at most 354231.11 s which equals to 98.39 h
on a single GPU, including the computation time of extracting sub-systems.

For larger Type-I challenges with n ∈ {68, . . . , 74} we used 27 nodes in the
Saber and Saber2 clusters by distributing the 2p smaller MQ systems obtained
from external hybridization evenly over the nodes. The results are given in
Table 3, which basically has the same format and notation as Table 2. In these
larger experiments, sub-systems were extracted from degree-4 Macaulay matrices
with the CPU because the GPU off-chip memory cannot accommodate the size of
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the reduced Macaulay matrices. However, these parameters allowed us to pipeline
the extraction of sub-systems on the CPU and the exhaustive search stage on the
GPU. Therefore, the computation time of the former can be completely hidden
except in the first run. Some of the cluster nodes we used have GTX 780 graphics
cards with only 3 GB of off-chip memory while GTX 980 graphics cards have
4 GB. Therefore, we adjusted the parameters t and b according to the memory
size of the GTX 780. Consequently, the 4 GB off-chip memory on the GTX 980
was not fully utilized but there was no noticable impact on performance.

Impact of k . The experiments show that despite the number of variables
increasing by one for each experiment, whenever the maximum value of the
parameter k increases (either with or without external hybridization), the run-
time almost stays the same. For example, for the overdetermined MQ system
F68, n = 68 by keeping k = 21 variables, there are 47 variables left in F68 to
enumerate (see Table 3). For the overdetermined MQ system F69, n = 69, the
maximum value of k can be increased by one (with external hybridization), so
k = 22 variables can be kept. Therefore, there are also 47 variables to enumerate
for F69. Hence, for both systems the total maximum number of iterations that
need to be performed during Gray-code enumeration is the same. However, since
for F69 linear systems in 22 variables instead of 21 have to be computed, the cost
of each iteration of Gray-code enumeration for F69 is slightly larger than for F68.
Thus, the worst-case runtime for n = 69 is slightly larger than for n = 68.

Comparison. Previous records of solving Type-I challenges were held by the
FES and Crossbred algorithms. The FES implementation for FPGAs is able
to perform full enumeration over the search space for an MQ system in 64
variables in 956 days [4]. Therefore, it solves a MQ system of 148 equations in
74 variables in at most 274−64 ·956 days ≈ 2900 FPGA-years. The corresponding
GPU implementation in [3] requires 21 min to solve an MQ system with n = 48
variables on a GTX 295 graphics card. Scaling the performance on the GTX 295
to our graphics cards as described before results in 274−48 · 21min · 1242

1287 · 480
2048 ≈

610 GPU-years. The original Crossbred implementation for CPUs requires at
most 41 CPU-years to solve the challenge [11] using k = 23. As shown in Table 3,
our implementation is most efficient with k = 22 and requires at most 8236
GPU-hours, i.e., 0.94 GPU-years. Table 4 shows an overview of the comparison
including the respective speedup of our implementation.

Estimated Security for n = 74, m = 2n. As mentioned before, a GTX 980
graphics card consists of 2048 CUDA cores operating at 1278.50 MHz. Based on
profiling information, our implementation achieves 37% GPU utilization. There-
fore, we estimate the security strength of this particular MQ system, defined as
the number of operations required to solve the system, as

8236.05 · 2048 · 1278.50 · 106 · 3600 · 0.37 ≈ 264.6.

Thus, an MQ system with n = 74,m = 2n only provides about 64-bit security.
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Table 4. Worst-case runtime and speedup of our work compared to previous work.

n m k Approach Worst-case runtime Our speedup

74 148 – [4] (2014) 2900 FPGA-yearsa 3100.0

74 148 – [3] (2010) 610 GPU-yearsa,b 650.0

74 148 23 [11] (2017) 41 CPU-years 44.0

74 148 22 Our (2018) 0.94 GPU-years 1.0

46 46 12 [11] (2017) 1900 CPU-seconds 23.0

46 46 12 Our (2018) 82 GPU-seconds 1.0

59 59 – [4] (2014) 30 FPGA-daysa 12.0

59 59 – [3] (2010) 6.8 GPU-daysa,b 2.8

59 59 13 Our (2018) 2.4 GPU-days 1.0
aextrapolated; bscaled from GTX 259 to GTX 980

5.2 Determined Systems

Determined systems with n = m are not included in the Fukuoka MQ chal-
lenges. Therefore, we performed experiments for such systems using randomly
generated, solvable systems. We solved those systems with one single GTX 980
graphics card on a node in the Saber2 cluster. The experimental results are given
in Table 5, whose format and notation is the same as Table 2.

For determined systems, the number of variables that can be kept is much
smaller than for overdetermined systems due to that fact that fewer equations
are available. However, the linear systems that are enumerated during Gray-code
enumeration consist of fewer variables. Therefore, the cost of each iteration is
also lower. As Table 5 shows, solving a determined MQ system in n variables is
roughly as difficult as solving an overdetermined MQ system where m′ = 2n′,
n′ = n+7 ∼ n+8. Nevertheless, Fig. 1 shows that the gap between the number of
variables that can be kept for determined and overdetermined systems gradually
becomes larger as n grows. Therefore, this observation only applies to the systems
in Table 5 but not to larger determined systems, e.g. n = 172.

Comparison. The extrapolated worst-case runtime of the FES algorithm on
FPGAs from [4] is 259−64 · 956 days ≈ 30 FPGA-days. The corresponding run-
time on GPUs [3] is 259−48 · 21min · 1242

1278 · 480
2048 ≈ 6.8 GPU-days. Our implemen-

tation requires at most 210601 s, i.e., about 2.4 GPU-days. Table 4 shows the
speedup of our implementation. Our speedup over FES for n = m = 59 is signif-
icantly lower than for n = 74,m = 148. This shows that the Crossbred algorithm
is less efficient for small k and therefore more suitable for larger systems and for
overdetermined systems. The authors of the Crossbred-CPU implementation in
[11] do not provide performance numbers for n = m = 59. Therefore, we show a
comparison for n = m = 46 in Table 4.



Implementing Joux-Vitse’s Crossbred Algorithm on GPUs 139

Table 5. Solving determined systems with a single GTX 980 graphics card.

n
Parameters

(D, p, k, b, t)

Search space

2p × 2b × 2n−p−k−b

Extracting

sub-systems

(seconds)

Exhaustive

search

(seconds)

Total

runtime

(seconds)

Worst-case

runtime

(seconds)

46 (4, 0, 12, 0, 16) 1 × 1 × 234 33.90 47.63 82.12 82.12

47 (4, 0, 12, 0, 15) 1 × 1 × 235 36.31 96.12 132.92 132.92

48 (4, 0, 12, 0, 15) 1 × 1 × 236 39.76 190.59 230.88 230.88

49 (4, 0, 12, 0, 15) 1 × 1 × 237 42.98 380.91 424.48 424.48

50 (4, 0, 12, 0, 15) 1 × 1 × 238 46.86 754.86 802.34 802.34

51 (4, 0, 12, 0, 15) 1 × 1 × 239 50.74 1542.07 1593.46 1593.46

52 (4, 0, 12, 0, 14) 1 × 1 × 240 53.59 3049.07 3103.21 3103.21

53 (4, 0, 12, 1, 14) 1 × 21 × 240 57.05 6249.61 (2) 6307.22 6307.22

54 (4, 0, 12, 2, 14) 1 × 22 × 240 60.86 3141.67 (1) 3205.11 12635.54

55 (4, 1, 13, 1, 14) 21 × 21 × 240 95.30 (1) 3322.54 (1) 3418.48 13480.76

56 (4, 0, 13, 3, 14) 1 × 23 × 240 118.85 6600.55 (2) 6720.12 26521.05

57 (4, 0, 13, 4, 14) 1 × 24 × 240 121.54 46053.43 (14) 46175.72 52754.03

58 (4, 0, 13, 5, 14) 1 × 25 × 240 133.97 105432.90 (32) 105567.66 105567.66

59 (4, 0, 13, 6, 14) 1 × 26 × 240 144.13 197303.32 (60) 197448.24 210601.00

“80-bit Security”. Sakumoto et al. propose an MQ-based public-key identi-
fication schemes and “80-bit secure” parameters n = 84, m = 80 in [15]. When
using our implementation and hardware for solving such systems, the best con-
figuration is (D, p, k, b, t) = (4, 27, 16, 1, 14), because this choice gives the largest
k for the smallest p such that the computation on one Macaulay matrix does not
take more time than the corresponding computations on the GPU. Therefore,
the runtime of extracting the sub-systems can be completely hidden by pipelin-
ing CPU and GPU computations. Extracting a sub-system with these parame-
ters takes 985.86 s and each GPU kernel launch takes on average 4338.59 s for
240 iterations. The worst-case runtime for solving the MQ system is therefore
4338.59 s · 2(84−16−40) ≈ 37000 GPU-years.

However, since the probability of obtaining a solution for a determined system
is approximately 1 − 1

e ≈ 0.63 [9] and the runtime r for exploring a sub-space of
size 280−16 is r = 4338.59 s ·2(80−16−40) ≈ 2300 GPU-years (with the parameters
as above), the expected runtime of solving an MQ system where n = 84, m = 80
is only

r ·
(

1 − 1
e

)

·
∞∑

i=1

i
1

ei−1
= r · e

e − 1
≈ 3600 GPU-years.

Following the calculation in Sect. 5.1, the expected number of operations
required for solving such a system on a GPU is therefore

3600 · 2048 · 1278.50 · 106 · 365 · 24 · 3600 · 0.3706 ≈ 276.5,

i.e., these parameters are roughly “76-bit secure” which is very close to the
security claimed in [15]. Due to the small k, the Crossbred algorithm gives only
a moderate improvement over the FES algorithm as in [3] with an expected cost
of roughly 280 · 4 · e

e−1 ≈ 282.7 GPU-operations.
However, solving the underlying MQ systems of this public-key identification

scheme using the security parameters of [15] is feasible on average within about
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one year using 3600 GTX 980 graphics cards at the cost of electricity and about
$2 million US dollars for hardware, assuming a price of $550 US dollars per GTX
980 graphics card2. This shows that breaking 80-bit security is within reach at
moderate cost and time using today’s technology and that 128-bit security must
be the minimum requirement for multivariate cryptography.
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Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 205–222. Springer, Heidelberg
(2014)

5. Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.: Square, a new multivariate
encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp.
252–264. Springer, Heidelberg (2009)

6. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005)

7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure
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Abstract. We investigate the security of a public-key encryption
scheme, the Indeterminate Equation Cryptosystem (IEC), intro-
duced by Akiyama, Goto, Okumura, Takagi, Nuida, and Hanaoka at
SAC 2017 as post-quantum cryptography. They gave two parameter
sets PS1 (n, p, deg X, q) = (80, 3, 1, 921601) and PS2 (n, p, deg X, q) =
(80, 3, 2, 58982400019).
The paper gives practical key-recovery and message-recovery attacks
against those parameter sets of IEC through lattice basis-reduction algo-
rithms. We exploit the fact that n = 80 is composite and adopt the idea of
Gentry’s attack against NTRU-Composite (EUROCRYPT2001) to this
setting. The summary of our attacks follows:

– On PS1, we recover 84 private keys from 100 public keys in 30–40 s
per key.

– On PS1, we recover partial information of all message from 100
ciphertexts in a second per ciphertext.

– On PS2, we recover partial information of all message from 100
ciphertexts in 30 s per ciphertext.

Moreover, we also give message-recovery and distinguishing attacks
against the parameter sets with prime n, say, n = 83. We exploit another
subring to reduce the dimension of lattices in our lattice-based attacks
and our attack succeeds in the case of deg X = 2.

– For PS2’ (n, p, deg X, q) = (83, 3, 2, 68339982247), we recover 7 mes-
sages from 10 random ciphertexts within 61,000 s ≈ 17 h per cipher-
text.

– Even for larger n, we can find short vectors from lattices to break
the underlying assumption of IEC. In our experiment, we can found
such vector within 330,000 s ≈ 4 days for n = 113.

Keywords: Public-key encryption · Indeterminate Equations
Cryptosystem · Post-quantum cryptography

1 Introduction

Algebraic-Surface Cryptosystem (ASC) is a public-key cryptosystem based
on the section-finding problem [AG06,AGM09]. Recently, the new version
c© Springer International Publishing AG, part of Springer Nature 2018
T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 142–161, 2018.
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of ASC, the IEC encryption scheme, was proposed by Akiyama et al. at
SAC 2017 [AGO+18], where IEC stands for Indeterminate Equation Cryptosys-
tem. Let Rn,q := Zq[t]/(tn −1) and consider Rn,q[x, y]. The section-finding prob-
lem over Rn,q[x, y] is, given an algebraic surface X(x, y) = 0, finding the section
u = (ux, uy) ∈ R2

n,q such that X(ux, uy) = 0 [AGO+18]. The authors inves-
tigate the security of IECs by considering the lattice-based attacks and define
two sets of parameter values, PS1 (n, p,deg X, q) = (80, 3, 1, 921601) and PS2
(n, p,deg X, q) = (80, 3, 2, 58982400019).

1.1 Our Contribution

We give practical-time lattice-based attacks against the IECs.
Our first attack is combining the original lattice-based attack with Gentry’s

attack [Gen01] against NTRU Composite [Sil01]. Let d be a non-trivial divisor
of n, say, 40. We can consider the subring Rd,q[x, y] instead of Rn,q[x, y]. This
modification allows us to employ a smaller lattice than that in the original lattice-
based attacks. Our attack succeeds as follows:

– On PS1, we mount a key-recovery attack. Our attack finds 84 secret keys
from 100 random keys. The attack takes approximately 30 s per key.

– On PS1, we mount a partial-message-recovery attack. Our attack finds partial
messages of all 100 pairs of random public key and ciphertext. The attack
takes approximately 0.5 s per try.

– On PS2, we mount a partial-message-recovery attack. Our attack finds partial
messages of all 100 pairs of random public key and ciphertext. The attack
takes approximately 30 s per try.

We exploit another class of subring Rn,q[x] of Rn,q[x, y] to reduce the dimen-
sion of lattices in our lattice-based attacks. Our attack succeeds in the case of
deg X = 2 as follows:

– For (n, p,deg X) = (83, 3, 2), we recover 7 messages out of 10 random cipher-
texts in 61,000 s ≈ 17 h per ciphertext.

– Even for larger n, we can find short vector which enables us to break the
underlying assumption of IEC. We can find such vector for n = 113 within
330,000 s ≈ 4 days.

Responsible Disclosure Process: We already notified the authors of our attacks
before making this paper public. We informed them by email on Septem-
ber 28th with key-recovery attack on PS1, October 2nd with partial-message-
recovery attack on PS1 and PS2, October 17th with message-recovery attack
on (n, p,deg X) = (83, 3, 2), and November 2nd with distinguishing attack on
variant of PS2 with n ≥ 83. The authors reported that they have changed
parameter values and they run their experiments further. We publish this paper
after Akiyama et al. published their revised paper and their NIST PQC submis-
sion [AGO+17b,AGO+17a].
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1.2 Organization

We define notations and review lattices in Sect. 2. We review the IEC scheme in
Sect. 3 and the original lattice-based attacks in Sect. 4. We recall Gentry’s attack
in Sect. 5. We combine them in Sect. 6. We also give new attacks in Sect. 7. The
experimental results are reported in Sect. 8.

2 Preliminaries

Notations: The security parameter is denoted by κ.
For a positive integer q, we define Zq := Z/qZ and Z

+
q := {0, 1, . . . , q − 1}.

For a positive integer n, we define Rn := Z[t]/(tn − 1). For two positive integers
n and q, we define Rn,q := Zq[t]/(tn − 1). We also define a subset Rn,q,p of Rn,q

as a set of all Z+
p -coefficient polynomials in Rn,q, that is,

Rn,q,p :=

{
f =

n−1∑
i=0

fit
i ∈ Rn,q

∣∣∣∣ fi ∈ {0, 1, . . . , p − 1} ⊂ Zq

}
.

Let R be a ring and consider R[x, y]. For R and a set of indices Γ ⊆ Z
2
≥0, we

define
F(Γ, R) :=

{
f ∈ R[x, y] | f =

∑
(i,j)∈Γaijx

iyj
}

,

a set of all polynomials in R[x, y] which only consists of xiyj terms for (i, j) ∈ Γ.
We will refer Γ as the term set. (Those notations are borrowed from [AGO+18].)
We define the total degree of f(x, y) ∈ R[x, y] as the maximum of the sums of
the exponents of the variables in the term aijx

iyj .

Polynomials: We review the notations which bridge polynomials in Rn and n-
dimensional vectors (and matrices). For integers n and q, let us define two func-
tions:

vecn : Rn,q → Z
n : f = f0 + f1t + · · · + fn−1t

n−1 �→ (f0, f1, . . . , fn−1)

Rotn : Rn,q → Z
n×n : f �→ {fj−i mod n}i,j=0,...,n−1 =

⎛
⎜⎜⎜⎜⎜⎝

vecn(f)
vecn(tf)
vecn(t2f)

...
vecn(tn−1f)

⎞
⎟⎟⎟⎟⎟⎠ .

We have

vecn(f) · Rotn(g) = vecn(f · g) and Rotn(f) · Rotn(g) = Rotn(f · g)

Lattices: Given n-linearly independent vectors B = {b0, . . . , bn−1} ⊂ R
m, the

lattice generated by them is the set of vectors
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L(B) = Z
n · B = {

n−1∑
i=0

xibi | xi ∈ Z}.

The vectors B are known as a basis of the lattice. If n = m, we say the lattice
is the full-rank. In what follows, we only consider full-rank lattices.

The determinant or volume vol(Λ) of a full-rank lattice Λ is the absolute
value of the determinant of any given basis B of Λ, that is, vol(Λ) = |det(B)|.
The dual of a lattice Λ, denoted by Λ∗, is the lattice consisting of the set of all
vectors z ∈ R

m orthogonal to any vectors v ∈ Λ, that is, Λ∗ = {z ∈ R
m | 〈z, y〉 =

0 for all y ∈ Λ}.
We also define q-ary lattices. For A ∈ Z

n×m
q ,

Λq(A) := {z ∈ Z
m | z = sA (mod q) for some s ∈ Z

n}
Λ⊥

q (A) := {e ∈ Z
m | eA� ≡ 0 (mod q)}.

We have
Λ⊥

q (A) = q · Λq(A)∗ and Λq(A) = q · Λ⊥
q (A)∗.

See e.g., [GPV08, Sect. 5].
The basis of Λq is easily obtained. For example, we obtain the basis by

considering a matrix
(

A
qIm

)
and taking the row echelon form of the matrix.

SVP and CVP: Finally we define shortest-vector problem and closest-vector
problem. The shortest-vector problem (SVP) is, given a lattice Λ, finding a non-
zero vector v ∈ Λ \ {0} such that ‖v‖ ≤ ‖x‖ for any non-zero lattice vector
x ∈ Λ \ {0}. The closet-vector problem (CVP) is, given a lattice Λ and a target
vector t, finding a lattice vector w ∈ Λ such that ‖w−t‖ ≤ ‖x−t‖ for any lattice
vector x ∈ Λ.

The Gaussian heuristic says that the m-dimensional full-rank lattice contains
a short vector of length approximately

γ =
√

m

2πe
det(L)1/m.

If our target vector v is sufficiently smaller than γ, then we expect the LLL
or BKZ algorithm find the short vector v.

3 IEC Scheme

Parameters: In the IEC scheme, we will employ X ∈ R[x, y] as a public key,
r, e ∈ R[x, y] as a random polynomials in ciphertexts. The IEC involves several
parameters, (p, q, n) and (ΓX ,Γr,ΓXr):

1. p, q: primes and p � q
2. n: the degree of Rn,q = Zq[t]/(tn − 1)
3. ΓX : The term set of X(x, y)
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4. wX : The total degree of X
5. Γr: The term set of the random polynomial r(x, y)
6. wr : The total degree of r
7. ΓXr: The term set of the random polynomial e(x, y)

Akiyama et al. defined

ΓXr := {(i, j) + (k, l) | (i, j) ∈ ΓX , (k, l) ∈ Γr}
in order to avoid the linear algebraic attacks against the previous cryptosys-
tems [AGO+18, Sect. 2.2]. They also require large q as

q > #ΓXr · p(p − 1) · (n(p − 1))wX+wr (1)

to make the scheme perfectly correct. They implicitly defined

ΓX = {(i, j) ∈ Z
2
≥0 | i + j ≤ wX} and Γr = {(i, j) ∈ Z

2
≥0 | i + j ≤ wr}.

Although ΓX and Γr can be different, they always take ΓX = Γr. Hence, they
just parameterize deg X instead of wX and wr. They give two sets of parameter
values in Table 1.

Table 1. Proposed sets of parameter values [AGO+18, Table 3]. PS2’ is obtained by
setting n = 83 in PS2.

n p q deg X deg r #ΓXr |sk | (bits) |pk | (bits) |ct | (bits)

PS1 80 3 921601 1 1 6 256 4755 9510

PS2 80 3 58982400019 2 2 15 256 17174 42935

PS2’ 83 3 68339982247 2 2 15 264 17928 44820

Key Generation: The secret key is a small solution of the indeterminate
equation X(x, y) = 0. We denote the solution by

u : (x, y) = (ux(t), uy(t)) ∈ R2
n,q,p.

The public key is the indeterminate equation X(x, y) = 0 that has a small
solution u. We denote it by

X(x, y) =
∑

(i,j)∈ΓX

aijx
iyj , where aij ∈ Rn,q.

Akiyama et al. recommend to choose aij except a00 uniformly at random and
set a00 := −∑(i,j)∈ΓX\{(0,0)} aiju

i
xuj

y.

Encryption: A plaintext is treated as m(t) ∈ Rn,q,p. The ciphertext is

c(x, y) := m(t) + X(x, y) · r(x, y) + p · e(x, y) ∈ F(ΓXr, Rn,q),

where we choose r(x, y) ← F(Γr, Rn,q) and e(x, y) ← F(ΓXr, Rn,q,p).
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Decryption: Given a ciphertext c(x, y) ∈ F(ΓXr, Rn,q),

1. compute c(ux, uy) ∈ Rn,q

2. regard c(ux, uy) as a polynomial in Rn (= Z[t]/(tn − 1)), compute m′(t) :=
c(ux, uy) mod p, and output m′(t)

Notice that c(ux, uy) = m(t) + p · e(ux, uy) ∈ Rn,q because X(ux, uy) = 0 ∈
Rn,q. By the condition on q and p, if c is a valid ciphertext, then c(ux, uy) mod
q = m(t) + p · e(ux, uy) ∈ Rn. Thus, we have m(t) = (c(ux, uy) mod q) mod p.

See our implementation in Sect.A.

3.1 Security Assumption

Let X(ΓX , Rn,q, p) be the set of X(x, y) which has a small solution u, that is,

X(ΓX , Rn,q, p) := {X ∈ F(ΓX , Rn,q) | ∃ux, uy ∈ Rn,q,p : X(ux, uy) = 0}.

Akiyama et al. defined the following decision problem:

Definition 3.1 (IE-LWE Problem). For parameters n, p, q,ΓX ,Γr, and ΓXr,
we define two sets

U := X(ΓX , Rn,q, p) × F(ΓXr, Rn,q)
T := {(X,Xr + e) | X ∈ X(ΓX , Rn,q, p), r ∈ F(Γr, Rn,q), e ∈ F(ΓXr, Rn,q,p)}.

The IE-LWE problem is distinguishing the multivariate polynomials chosen from
a ‘noisy’ set T of polynomials from a ‘uniform’ set U .

The IE-LWE assumption states that it is infeasible to solve the IE-LWE problem,
where X is chosen by the key-generation algorithm Gen.

Definition 3.2 (IE-LWE Assumption). For parameters n, p, q,ΓX ,Γr, and
ΓXr, a key-generation algorithm Gen, and an adversary A, we define A’s advan-
tage as

Advie-lwe
Gen,A(κ) :=

∣∣∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎢⎢⎣

X ← Gen(1κ);
r ← F(Γr, Rn,q);

e ← F(ΓXr, Rn,q,p);
Y := Xr + e;
A(X,Y ) → 1

⎤
⎥⎥⎥⎥⎦− Pr

⎡
⎣ X ← Gen(1κ);

Y ← F(ΓXr, Rn,q);
A(X,Y ) → 1

⎤
⎦
∣∣∣∣∣∣∣∣∣∣
.

We say that the IE-LWE assumption on Gen holds if for any PPT adversary A,
its advantage Advie-lwe

Gen,A(κ) is negligible in κ.

Akiyama et al. showed that the IEC scheme (Gen,Enc,Dec) is IND-CPA
secure if the IE-LWE assumption on Gen holds [AGO+18, Theorem 1].

4 Review of Linear-Algebraic Attacks

We review the linear-algebraic attacks in [AGO+18]. In the following, we omit
the subscript n from Rotn and vecn.
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4.1 Key-Recovery Attack

We review the example in the case deg X = 1.
We are given X(x, y) = a00 + a10x + a01y and want to find a small solution

(ux, uy) ∈ R2
n,q satisfying

a10 · ux + a01 · uy + a00 = 0 (in Rn,q).

This implies

vec(ux) · Rot(a10) + vec(uy) · Rot(a01) ≡ vec(−a00) (mod q),

that is, (
vec(ux), vec(uy)

) ·
(

Rot(a10)
Rot(a01)

)
≡ vec(−a00) (mod q).

Therefore, we let

Akr1 = [Rot(a10)� | Rot(a01)�] ∈ Z
n×2n
q

and consider the lattice

Λ⊥(Akr1) = {v ∈ Z
2n | v · A�

kr1 ≡ 0 (mod q)}
= {(vx, vy) ∈ Z

2n | vx · Rot(a10) + vy · Rot(a01) ≡ 0 (mod q)}.

Now, we consider a target vector t ∈ Z
2n, an arbitrary solution of t · A�

kr1 ≡
vec(−a00) (mod q). Solving the CVP instance (Λ⊥(Akr1), t), we obtain a vector
w ∈ Λ⊥(Akr1). We let ū = (vec(ux), vec(uy)) := t − w.

We have ū · A�
kr1 ≡ vec(−a00) (mod q) because ū = t − w. In addition, we

expect that the norm of ū is small, since w is the close vector to t and ū is the
difference.

Remark 4.1. In the case of deg X = deg r = 2, we have X(x, y) = a00 + a10x +
a01y + a20x

2 + a11xy + a02y
2 and consider a matrix

Akr2 = [Rot(a10)� | Rot(a01)� | Rot(a20)� | Rot(a11)� | Rot(a02)�] ∈ Z
n×5n
q .

4.2 Message-Recovery Attack

We again review the example in the case deg X = 1 and deg r = 1.
Let us consider f(x, y) = p · e(x, y) + m ∈ F(ΓXr, Rn,q). The ciphertext c of

m has the relation

∑
(i,j)∈ΓXr

cijx
iyj =

⎛
⎝ ∑

(i,j)∈ΓX

aijx
iyj

⎞
⎠ ·
⎛
⎝ ∑

(i,j)∈Γr

rijx
iyj

⎞
⎠+

⎛
⎝ ∑

(i,j)∈ΓXr

fijx
iyj

⎞
⎠ .

(2)
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Let us consider the following matrix

Amr1 =

⎛
⎝

1 x y x2 xy y2

1 A00 A10 A01

x A00 A10 A01

y A00 A10 A01

⎞
⎠ ∈ Z

3n×6n,

where Aij := Rot(aij) ∈ Z
n×n. Let

r̄ :=
(
vec(r00), vec(r10), vec(r01)

) ∈ Z
3n,

f̄ :=
(
vec(f00), vec(f10), vec(f10), vec(f20), vec(f11), vec(f02)

) ∈ Z
6n,

c̄ :=
(
vec(c00), vec(c10), vec(c10), vec(c20), vec(c11), vec(c02)

) ∈ Z
6n.

According to Eq. 2, we have

c̄ ≡ r̄ · Amr1 + f̄ (mod q).

Now, we consider a lattice

Λq(Amr1) = {z ∈ Z
6n | z ≡ sAmr1 (mod q) for some s ∈ Z

3n}
and a target vector c̄ ∈ Z

6n. Solving the CVP instance (Λq(Amr1), c̄), we obtain
w ∈ Λq(Amr1). We let v̄ := c̄ − w.

Now, we have c̄ ≡ sA + v̄ (mod q) for some s ∈ Z
3n and expect that v̄ is

small. If we obtain v̄ = f̄ , we finally obtain m by taking it modulo p.

Remark 4.2. In the case of deg X = deg r = 2, we will consider a matrix

Amr2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 x y . . . x4 x3y x2y2 xy3 y4

1 A00 A10 A01

x A00

y A00

x2 A20 A11 A02

xy A20 A11 A02

y2 A20 A11 A02

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Z
6n×15n,

and solve the CVP instance with 15n-dimensional lattice.

Experimental Results: Akiyama et al. estimate IEC’s security by mounting these
attacks against the small parameter sets n = 10, 20, . . . , 60 for deg X = 1 and
n = 10, 20, 30, 40 for deg X = 2. Their environment is

– CPU: AMD Opteron(TM) Processor 848
– Memory: 64 GB
– OS: Linux version 2.6.18-406.el5.centos.plus
– Software: Magma Ver2.21-5

They also define q as small as possible.
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They mount a key-recovery attack, which succeeds if and only if (ux, uy) ∈
Rn,q,p satisfying X(ux, uy) = 0 is found. In their experiments, the key-recovery
attack for deg X = 1 failed for n ≥ 50 and that for deg X = 2 failed even for
n ≥ 10.

They also mount a message-recovery attack, which, given X and Xr + e,
succeeds if and only if e = (e1, . . . , e6n) with ei ∈ [0, p−1] is found. The message-
recovery attack for deg X = 1 failed for n ≥ 50. Curiously, the attack for deg X =
2 succeed to find short e even for n = 40. (They seem stop their experiment due
to time constraint. Their experiment took about 230000 s ≈ 2.7 days to process
a 600-dimensional lattice.)

5 Review of Gentry’s Attack

We review Gentry’s attack against NTRU-Composite [Sil01]. Let us consider
NTRU’s key generation and encryption: Roughly speaking, we choose a secret
key (f, g) ∈ R2

n,q,p and compute a public key as h = g/f ∈ Rn,q. The ciphertext
of plaintext m ∈ Rn,q,p with randomness r ∈ Rn,q,p is c = phr + m ∈ Rn,q.

Lattice Attack: Coppersmith and Shamir [CS97] pointed out that a short vector
(vecn(f), vecn(g)) ∈ Z

2n is in a lattice spanned by a matrix

LCS :=
(

Rotn(1) Rotn(h)
Rotn(0) Rotn(q)

)
∈ Z

2n×2n.

We have h = g/f mod q and this implies fh + kq = g for some k ∈ Rn.
Therefore, (vecn(f), vecn(k))·LCS = (vecn(f), vecn(g)) as we wanted. Hence, we
solve the SVP problem on the lattice and expect to find (vecn(f), vecn(g)) ∈ Z

2n

as the solution.

Gentry’s Attack: Gentry pointed out that there is a ring homomorphism
θ : Rn → Rd, where d | n is a non-trivial divisor.

Theorem 5.1 ([Gen01, Theorem 1]). Let n be a composite, and d be a non-
trivial divisor of n. The mapping

θ : Rn → Rd : f =
n−1∑
i=0

fit
i �→

d−1∑
i=0

⎛
⎝n/d−1∑

j=0

fjd+i

⎞
⎠ ti

is a ring-homomorphism.

Gentry considered the 2d-dimensional lattice analogue of Λ(LCS), the lattice
spanned by a matrix

Ld =
(

Rotd(1) Rotd(θ(h))
Rotd(0) Rotd(q)

)
∈ Z

2d×2d.
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The lattice Λ(Ld) contains a short vector
(
vecd(θ(f)), vecd(θ(g))

)
, whose norm is

approximately equals to that of
(
vecn(f), vecn(g)

)
(see [Gen01, Appendix A.2]).

Therefore, we expect the basis-reduction algorithm, say, LLL or BKZ, finds θ(f)
and θ(g). We can exploit this partial information θ(f) as follows:

1. Message-Recovery Attack: We have θ(f)·θ(c) = θ(f)·θ(m)+pθ(r)·θ(g) mod q.
Thus, the expected magnitudes of coefficients of θ(f) · θ(m) + pθ(r) · θ(g) are
small, then we can recover θ(m).

2. Secret-Key Recover Attack: Using θ(f) and θ(g) as hint, we again solve the
SVP problem and find (f, g). Indeed, Gentry succeeds to find f in the case
of (n, q, p) = (256, 127, 2) in his experiment.

6 Attacks Against Composite n

We employ Gentry’s idea. Let us expand the range of the homomorphism
θ : Rn → Rd to

θ : Rn,q[x, y] → Rd,q[x, y].

6.1 Key-Recovery Attack for degX = 1

We are given X(x, y) = a01x + a01y + a00 and want to find a small solution
(ux, uy) ∈ R2

n,q satisfying

a10 · ux + a01 · uy + a00 = 0 (in Rn,q).

Applying the homomorphism θ, we have

θ(a10) · θ(ux) + θ(a01) · θ(uy) + θ(a00) = 0 (in Rd,q).

Thus, we can try to find (θ(ux), θ(uy)) by using the lattice-basis reduction algo-
rithms on the lattice of dimension 2d (< 2n).

The concrete attack consists of two sub-attacks, finding θ(ux) and θ(uy) and
finding ux and uy by using those hints. The details follow.

Finding θ(ux) and θ(uy): We set

Akr1,d = [Rotd(θ(a10))�|Rotd(θ(a01))�] ∈ Z
d×2d
q

and want to find a short vector vd satisfying

vd · A�
kr1,d ≡ vecd(−θ(a00)) (mod q). (3)

We consider a lattice Λ⊥
q (Akr1,d). Let t ∈ Z

2d be an arbitrary solution of Eq. 3.
We solve the CVP instance (Λ⊥

q (Akr1,d), t) and obtain w ∈ Λ⊥
q (Akr1,d).

Now, we have “short” v̄d := t−w satisfying Eq. 3. Let us interpret the vector
v̄d as the pair of polynomials (v(d)

x , v
(d)
y ) ∈ R2

d,q. and assume that v
(d)
x = θ(ux)

and v
(d)
y = θ(uy).
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We have vol(Λ⊥
q (Akr1,d)

)
= qd, γ ≈ √

2d/(2πe) · vol(Λ⊥
q (Akr1,d)

)1/2d =√
d/πe · q1/2, and ‖vd‖ ≤ 2p

√
2d. Since γ � ‖vd‖, that is, the target vector

is very shorter than the expected length of the shortest vector, we expect that
the LLL/BKZ algorithm can find vd.

Finding ux and uy: We already have a hint (θ(ux), θ(uy)). In this paper, we
consider a simpler method than Gentry’s one: We set

Akr1,hint =

⎡
⎣Rotn(a10)� Rotn(a01)�

Id · · · Id︸ ︷︷ ︸
n/d

Id · · · Id︸ ︷︷ ︸
n/d

⎤
⎦ ∈ Z

(n+2d)×2n
q

and try to find a short vector v satisfying

v · A�
kr1,hint ≡ (vecn(−a00), vecd(θ(ux)), vecd(θ(uy))

)
(mod q). (4)

We again consider a lattice Λ⊥
q (Akr1,hint). Let t ∈ Z

2n be an arbitrary solution
of Eq. 4. We solve the CVP instance (Λ⊥

q (Akr1,hint), t) and obtain w. Now, we
have a short vector v̄ := t − w satisfying Eq. 4.

Interpreting the vector v̄ as the pair of polynomials (ux, uy) ∈ R2
n,q, we have

a10 · ux + a01 · uy + a00 = 0 in Rn,q as we wanted.
We have vol(Λ⊥

q (Akr1,hint)
)

= qn+d, γ ≈ √
2n/(2πe) · vol(Λ⊥

q (Ad)
)1/2n =√

d/πe · q1+d/n, and ‖v̄‖ ≤ p
√

2n. Since γ � ‖v̄‖, we expect that the LLL/BKZ
algorithm can find the target vector v̄.

6.2 Partial-Message-Recovery Attack for degX = 1

We try to find θ(m) mod p from a ciphertext c of m. If so, it easily breaks the
IND-CPA security of the IEC scheme.

For simplicity, we define f(x, y) = pe(x, y) + m, which results in θ(f) =
pθ(e)+θ(m). Since θ is a ring homomorphism from Rn[x, y] → Rd[x, y], we have

θ(c) = θ(r) · θ(X) + θ(f).

Let us consider the following matrix:

Apmr1,d :=

⎛
⎝

1 x y x2 xy y2

1 A′
00 A′

10 A′
01

x A′
00 A′

10 A′
01

y A′
00 A′

10 A′
01

⎞
⎠ ∈ Z

3d×6d,

where A′
ij := Rotd(θ(aij)) ∈ Z

d×d. Let

r̄d :=
(
vecd(θ(r00)), vecd(θ(r10)), vecd(θ(r01))

) ∈ Z
3d

,

c̄d :=
(
vecd(θ(c00)), vecd(θ(c10)), vecd(θ(c01)), vecd(θ(c20)), vecd(θ(c11)), vecd(θ(c02))

) ∈ Z
6d

,

f̄d :=
(
vecd(θ(f00)), vecd(θ(f10)), vecd(θ(f01)), vecd(θ(f20)), vecd(θ(f11)), vecd(θ(f02))

) ∈ Z
6d

.
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We have
c̄d ≡ r̄d · Apmr1,d + f̄d (mod q).

Now, we consider a lattice Λq(Apmr1,d) and solve the CVP instance
(Λq(Apmr1,d), c̄d) and obtain v̄d. Let us interpret the vector v̄d as a tuple of
polynomials (v00, v10, v01, v20, v11, v02) ∈ R6

d,q. Suppose that we have v̄d = f̄d, if
so, we have v00 = θ(f00) and, thus,

v00 ≡ θ(f00) ≡ pθ(e00) + θ(m) ≡ θ(m) (mod p).

We have vol(Λ⊥
q (Apmr1,d)

)
= q3d, γ ≈ √

6d/(2πe) · vol(Λ⊥
q (Ad)

)1/6d =√
3d/πe · q1/2, and ‖v̄d‖ ≤ (n/d)p2

√
6d. We expect that the LLL/BKZ algo-

rithm can find v̄d, because γ � ‖v̄d‖.

6.3 Partial-Message-Recovery Attack for degX = 2

In the case of deg X = deg r = 2, we consider a matrix

Apmr2,d :=

⎛
⎜⎜⎜⎜⎜⎝

1 x y . . . x4 x3y x2y2 xy3 y4

1 A′
00 A′

10 A′
01

x A′
00

y A′
00

x2 A′
20 A′

11 A′
02

xy A′
20 A′

11 A′
02

y2 A′
20 A′

11 A′
02

⎞
⎟⎟⎟⎟⎟⎠ ∈ Z

6d×15d,

where A′
ij := Rotd(θ(aij)) ∈ Z

d×d. By the similar way, we solve the CVP
instance (Λq(Apmr2,d), c̄d) and obtain v̄d, which corresponding to a tuple of poly-
nomials (v00, v10, . . . , v04) ∈ R15

d,q. We output v00 mod p as θ(m) mod p.

We have vol(Λ⊥
q (Apmr2,d)

)
= q9d, γ ≈ √

15d/(2πe) · vol(Λ⊥
q (Ad)

)1/15d =√
15d/2πe · q3/5, and ‖v̄d‖ ≤ (n/d)p2

√
15d. We expect that the LLL/BKZ algo-

rithm can find v̄d because γ � ‖v̄d‖.

7 Attacks Against Prime n

After reporting the previous attacks to the authors of [AGO+18], they set n as
a prime, say, n = 83 (and q = 68339982247) [Aki17]. In this section, we propose
a sub-ring attack, which is applicable to the case that n is a prime.

(Non-trivial) subring: Notice that Rn,q[x] is a subring of Rn,q[x, y]. We consider
a ring homomorphism

π : Rn,q[x, y] → Rn,q[x] : f(x, y) �→ f(x, 0).

We have the relation c(x, y) = r(x, y) · X(x, y) + f(x, y), where f(x, y) =
pe(x, y) + m. Applying the ring homomorphism π, we obtain

π(c) ≡ π(r) · π(X) + π(f) ≡ π(r) · π(X) + p · π(e) + m (mod q) (5)

and notice that the max norm of π(f) is at most that of f = p · e + m.
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7.1 Message-Recovery Attack Against degX = 1

Let us recall the message-recovery attack against deg X = 1 in Subsect. 4.2. We
consider

Amr1 :=

⎛
⎜⎝

1 x y x2 xy y2

1 A00 A10 A01

x A00 A10 A01

y A00 A10 A01

⎞
⎟⎠ ∈ Z

3n×6n,

c̄ := (vecn(c00), vecn(c10), vecn(c01), vecn(c20), vecn(c11), vecn(c02)) ∈ Z
6n,

where Aij := Rotn(aij) ∈ Z
n×n, and try to solve the CVP instance (Λq(Amr1), c̄)

to find f̄ .
In the lattice-based attacks, we often shorten the basis of the lattice and

the target vector to reduce the dimension. Here, we give another approach to
shorten them.

Concrete Attack: Deleting the rows and columns whose indices contain y from
A and c̄, we obtain

A′
mr1 :=

( 1 x x2

1 A00 A10

x A00 A10

)
∈ Z

2n×3n,

c̄′ :=
(
vecn(c00), vecn(c10), vecn(c20)

) ∈ Z
5n.

Letting

r̄′ = (vecn(r00), vecn(r10)) ∈ Z
2n,

f̄ ′ = (vecn(f00), vecn(f10), vecn(f20)) ∈ Z
3n,

we have
c̄′ ≡ r̄′ · A′

mr1 + f̄ ′ (mod q),

which corresponds to Eq. 5. Thus, solving the CVP instance (Λq(A′
mr1), c̄

′), we
expect to find f̄ ′ and obtain m := vecn(f00) mod p.

Gaussian Heuristic: This shortening reduces the dimension of the lattice from
5n = 415 to 3n = 249. We have vol(Λq(A′

mr2)
)

= qn and γ ≈ √
3n/(2πe) ·

vol(Λq(A′)
)1/3n =

√
3n/2πe · q1/3 and ‖f̄ ′‖ ≤ p2

√
3n. In our parameter setting,

we have γ ≈ 380.81 and ‖f̄ ′‖ ≤ 142.02 and the gap between γ and ‖f̄ ′‖ is not
so large. Thus it seems hard to find f̄ ′ in this setting.

7.2 Message-Recovery Attack Against degX = 2

Let us recall the message-recovery attack against deg X = 2 in Sub-
sect. 4.2. We consider Amr2 ∈ Z

6n×15n and c̄ := (vecn(c00), vecn(c10),
vecn(c01), . . . , vecn(c04)) ∈ Z

15n, and try to solve the CVP instance (Λq(Amr2), c̄)
to find f̄ .
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Concrete Attack: Deleting the rows and columns whose indices contain y from
A and c̄, we obtain

A′
mr2 :=

⎛
⎜⎝

1 x x2 x3 x4

1 A00 A10 A20

x A00 A10 A20

x2 A00 A10 A20

⎞
⎟⎠ ∈ Z

3n×5n,

c̄′ := (vecn(c00), vecn(c10), vecn(c20), vecn(c30), vecn(c40)) ∈ Z
5n.

Letting

r̄′ = (vecn(r00), vecn(r10), vecn(r20)) ∈ Z
3n,

f̄ ′ = (vecn(f00), vecn(f10), vecn(f20), vecn(f30), vecn(f40)) ∈ Z
5n,

we have
c̄′ ≡ r̄′ · A′

mr2 + f̄ ′ (mod q),

which corresponds to Eq. 5. Thus, solving the CVP instance (Λq(A′
mr2), c̄

′), we
expect to find f̄ ′ and obtain m := vecn(f00) mod p.

Gaussian Heuristic: We note that this shortening reduces the dimension of
the lattice from 15n = 1243 to 5n = 415. We have vol(Λq(A′

mr2)
)

= q2n and

γ ≈ √
5n/(2πe) · vol(Λq(A′)

)1/5n =
√

5n/2πe · q2/5 and ‖f̄ ′‖ ≤ p2
√

5n. In
our parameter setting, γ ≈ 106330.25 and ‖f̄ ′‖ ≤ 183.35. We expect that the
LLL/BKZ algorithm can find a short vector f̄ ′ because of this large gap.

7.3 Distinguishing Attack for degX = 1 and degX = 2

Further, we try to falsify the IE-LWE assumption, that is to distinguish (X, c) =
(X,Xr + e) from (X,u). In order to do so, we try to find a short vector v̄′ from
Λq(A′

mr1). If c is Xr + e, then we have 〈c̄′, v̄′〉 mod q is “short,” while if c is
chosen uniformly at random, then 〈c̄′, v̄′〉 mod q is distributed according to the
uniform distribution over Zq.

This can also be applied to the case of deg X = 2.

8 Experiments

We run our experiment on a virtual machine on our company’s internal private
cloud. Our environment is

– CPU: QEMU Virtual CPU version 2.5+
– Memory: 32 GB
– OS: CentOS7 (Linux version 3.10.0-693.5.2.el7.x86 64)
– Software: SageMath version 8.0
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8.1 Key-Recovery Attack for degX = 1

We mount our attack in Subsect. 6.1 with n = 80 and d = 40. We employ the
default BKZ algorithm in SageMath 8.0 as the lattice-basis reduction algorithm
and the rounding algorithm to solve the CVP instance. We generate 100 key
pairs and try to find a pair (ux, uy) ∈ R2

n,q,p satisfying X(ux, uy) = 0. In our
experiment, 84 secret keys are found from 100 public keys. The attack used an
average CPU time of 32.68 s per key on a single core of our server. (min: 29.16,
avg: 32.68, med: 32.54, max: 39.11)

We did not check the other settings, say, d = 20 or d = 16.

8.2 Partial-Message-Recovery Attack for degX = 1

We mount our attack in Subsect. 6.2 with n = 80 and d = 10. We employ the
default BKZ algorithm with block size 10 as the lattice-basis reduction algorithm
and the embedding algorithm to solve the CVP instance. We generate 100 pairs of
a public key and a random ciphertext on a random plaintext. In our experiment,
all partial message θ(m) mod p are recovered. The attack used an average CPU
time of 0.47 s per key on a single core of our server. (min: 0.29, avg: 0.47, med:
0.46, max: 0.73)

8.3 Partial-Message-Recovery Attack for degX = 2

We mount our attack in Subsect. 6.3 with n = 80 and d = 10. We employ the
default BKZ algorithm as the lattice-basis reduction algorithm and the embed-
ding algorithm to solve the CVP instance. We generate 100 pairs of a public key
and a random ciphertext on a random plaintext. In our experiment, all partial
message θ(m) mod p are recovered. The attack used an average CPU time of
33.40 s per key on a single core of our server. (min: 20.95, avg: 33.40, med: 32.41,
max: 84.77)

8.4 Message-Recovery Subring Attack for degX = 2

We mount our attack in Subsect. 7.2 with n = 83 (and q =
68339982247). We employ the BKZ algorithm with options block size=10,
fp="rr", precision=150 as the lattice-basis reduction algorithm and the
embedding algorithm to solve the CVP instance. We generate 10 pairs of a pub-
lic key and a random ciphertext on a random plaintext. In our experiment, all
message m are recovered. The attack used an average CPU time of 54842.55 s per
key on a single core of our server. (min: 51481.51, avg: 54842.55, med: 54127.69,
max: 61770.88)

8.5 Distinguishing Subring Attack for degX = 2

We mount our attack in Subsect. 7.3 with various prime n with p = 3 and
a smallest prime q satisfying Eq. 1. We generate 10 public keys on each n ∈
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Fig. 1. Summary of running time

{83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149} and try to find a short
vector v̄′ in the lattice Λq(A′

mr2). We employ the BKZ algorithm with options
block size=10, fp="rr", precision=150 up to n = 113 and block size=10,
fp="rr", precision=200 for n ≥ 127 as the lattice-basis reduction algorithm.

The timing results are summarized in Fig. 1 and the qualities of v̄′ are sum-
marized in Fig. 2. The attack on n = 83, 113, 149 used an average CPU time of
57471.10, 309815.82, 762618.22 s per key. The attack on n = 83, 113 found short

Fig. 2. Summary of ratio ‖v̄′‖/q
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vectors v̄′ such that the average of ratio ‖v̄′‖/q is 0.021, and 0.11. In the case of
n = 149, we fail to find short vectors v̄′.

We check the quality of v̄′ as follows. We generate 50000 random errors
ei(x, y) ∈ F(ΓXr, Rn,q,p) and 50000 random polynomials ui(x, y) ∈ F(ΓXr, Rn,q).
We then compute compute δi := v̄′ · ēi modc q and ξi := v̄′ · ūi modc q, where
we denote by modc the centered modulo operator. We check how they vary.

For example, in the case of n = 113, we take the worst vector v̄′ with ‖v̄′‖/q =
0.12. Although this is the worst vector, it is enough to distinguish the errors from
uniform as the histogram in Fig. 3 shows.
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Fig. 3. Histogram of δi (blue lines) and ξi (orange lines). We count q/30 (Color figure
online)

9 Conclusion

In this paper, we propose two strategies to reduce the dimension of lattices in
lattice-based attacks. The first one is for composite n and is inspired by Gentry’s
attack [Gen01] against NTRU Composite [Sil01]. This strategy exploits the ring
homomorphism θ : Rn,q[x, y] → Rd,q[x, y] to reduce the dimension of lattices in
lattice-based attacks. The second one is for prime n and exploits another class
of subring Rn,q[x] of Rn,q[x, y] to reduce the dimension. The message-recovery
attack succeeds in the case deg X = 2 but fails in the case deg X = 1. The
distinguishing attack also succeeds in larger n, say, n = 113.

We finally note that we have already reported our attacks to
Akiyama et al. and the parameter settings in their paper on Cryptology
ePrint Archive [AGO+17b] and NIST PQC submission [AGO+17a] reflected
our attacks. They further investigated lattice-based attacks and estimated
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the security by following the security-estimation methods of the LWE prob-
lems [AGVW17,ADPS16,BDGL15,Che13]. See their paper for details.
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A Implementation

Listing 1.1. ref.sage

# Parameters ====================

def gen_G(upper_bound , lower_bound):

# compare with total deg. if equal, (1,0) < (0,1)

def my_key(a):

return (a[0] + a[1], a[1], a[0])

# i for index of x, j for index of y

l = [(i,j) for j in range(upper_bound+1) \

for i in range(upper_bound+1) \

if (lower_bound <= i+j) and (i+j <= upper_bound)]

return sorted(l, key=my_key)

GX = gen_G(wx,0); Gr = gen_G(wr,0)

GXr = gen_G(wx+wr,0); GXp = gen_G(wx,1)

def bd(n,p):

return len(GXr) * p * (p-1) * (n * (p-1))ˆ(wx+wr)

q = next_prime(bd(n,p))

# Rings ====================

Zq = Integers(q)

R.<t> = Zq[]

Rq = R.quotient(tˆn-1)

Rqd = R.quotient(tˆd-1)

F.<x,y> = Rq[]

# Random polys ====================

def random_tpoly(p): return R([randint(0,p-1) for _ in range(n)])

def random_template(p,indices):

a = 0

for (i,j) in indices:

a += Rq(random_tpoly(p)) * xˆi * yˆj

return a



160 K. Xagawa

def random_r(): return random_template(q,Gr)

def random_e(): return random_template(p,GXr)

# Cryptosystem ====================

def skgen():

return random_tpoly(p), random_tpoly(p)

def pkgen(ux,uy):

X = random_template(q,GXp)

X -= X(ux,uy)

return X

def encrypt(X,m):

return Rq(m)+ X * random_r() +p * random_e()

def decrypt(ux,uy,c):

cu = c(ux,uy)

mt = cu.lift().change_ring(ZZ).change_ring(Integers(p))

# output mt in Rq

return mt.change_ring(Integers(q))
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Abstract. Because they require no assumption besides the preimage or
collision resistance of hash functions, hash-based signatures are a unique
and very attractive class of post-quantum primitives. Among them, the
schemes of the sphincs family are arguably the most practical stateless
schemes, and can be implemented on embedded devices such as FPGAs
or smart cards. This naturally raises the question of their resistance to
implementation attacks.

In this paper, we propose the first fault attack against the framework
underlying sphincs, gravity-sphincs and sphincs+. Our attack allows
to forge any message signature at the cost of a single faulted message.
Furthermore, the fault model is very reasonable and the faulted signa-
tures remain valid, which renders our attack both stealthy and practical.
As the attack involves a non-negligible computational cost, we propose
a fine-grained trade-off allowing to lower this cost by slightly increasing
the number of faulted messages. Our attack is generic in the sense that
it does not depend on the underlying hash function(s) used.

1 Introduction

Hash-based signatures base their security solely on the hardness of finding col-
lisions or (second) preimages for hash functions, and do not require any addi-
tional assumption. This striking property makes them stand out even among
other post-quantum schemes. From a strict viewpoint of security assumptions,
one can hardly expect better as Rompel [Rom90] has shown that secure signa-
tures exist if and only if one-way functions exist, and Song [Son14] has extended
this result to quantum adversaries. In addition, hash-based signatures are easy
to analyze and their security does not depend on the choice of the underlying
primitive.

Since Lamport [Lam79] proposed the first hash-based signature scheme –
which could sign only one message –, several constructions have been proposed to
improve its efficiency. They can be separated in two classes: stateful and stateless
constructions. Stateful signatures, introduced by Merkle [Mer90], constrain the
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signer to maintain a record of its used keys. Such a requirement may generate
operational problems, in particular when the key is used by multiples servers.
Stateless signatures, as introduced by Goldreich [Gol86], lift this requirement
but at the cost of a huge blow-up in the signature time and size.

It is only recently that practical stateless constructions have been proposed.
In 2015, Bernstein et al. [BHH+15] proposed sphincs, a hash-based signa-
ture scheme which achieved both statelessness and a reasonable efficiency (with
respect to the running time and signature size) by combining the constructions of
Goldreich and Merkle, and using a few-time signature scheme. In 2017, two vari-
ations of sphincs were proposed to NIST’s call for post-quantum cryptographic
schemes [NIS16]: gravity-sphincs [AE17b] by Aumasson and Endignoux, and
sphincs+ [BDE+17] by Bernstein et al.

Hash functions can be implemented very efficiently on constrained devices
and it is not surprising that several implementations of hash-based signatures
on micro-controllers have been proposed [RED+08,HBB12], including an ARM
implementation [HRS16] of sphincs. However, embedded devices are known to
be sensitive to physical attacks such as side-channel analysis or fault attacks.

Since the seminal article of Boneh et al. [BDL97], fault attacks have proved
to be the strongest kind of cryptanalysis on embedded devices. In a fault attack,
we suppose that the attacker is strong enough to corrupt the internal state
of an algorithm during its execution. While this supposes a rather powerful
attacker, these conditions can often be fulfilled in real life and generally result
in devastating attacks. However, to the best of our knowledge, no fault attack
against hash-based signatures has been publicly proposed.

1.1 Our Contribution

At a very high level, the sphincs framework (in this document, this notion
encompasses the original sphincs scheme, as well as gravity-sphincs and
sphincs+) combines hash trees and several one-time signature schemes (OTS)
inside a tree data structure in order to obtain a stateless signature scheme.
We propose the first fault injection attack against the sphincs framework. The
attack is done in two steps, a faulting part and a grafting part:

1. The faulting step. Two signatures for the same message are queried. During
the second signature computation, a fault is provoked so that an OTS inside
the sphincs framework ends up signing a different value than the first time.
Usually, an OTS key is only used to sign a single value, but our fault attack
compels it to do otherwise.

2. The grafting step. We show that the knowledge of the two signatures – the
correct one and the faulted one – can be exploited to recover parts of the
secret key of the OTS which was subjected to the fault, and therefore to
partially compromise it. In turn, an attacker will use this compromised OTS
as a mean to authenticate a tree different from the one it is supposed to
authenticate.
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The attacker then generates a tree which is entirely under its control, and
will use the compromised OTS to graft it to the sphincs tree, which is why
we call this step the grafting step.

The grafted tree is chosen by the attacker and independent from the secret
key, while allowing to generate valid signatures for some messages. We show
that it is more than enough to provide universal forgery ability to an attacker
while explaining how she can achieve it. The attack requires little power from
the attacker – which makes it practical – and produces valid signatures, which
renders it particularly stealthy.

Whereas this attack comes with a non-negligible computational cost for each
forgery, we propose trade-offs to lower this cost by slightly increasing the number
of faulted signatures available to the attacker. Our attack is generic in the sense
that it targets the sphincs framework: it is successful regardless of the underlying
hash function used, and is indifferent to the specificities of the original sphincs,
gravity-sphincs or sphincs+.

1.2 Roadmap

First we will introduce the notions related to trees. In Sect. 2, we will give a
quick overview of hash-based signatures constructions. Then we will describe our
attack in Sect. 3. The grafting step will be presented before the faulting step, as
it only requires two signatures by the same OTS and is indifferent to whether
they were obtained through a fault attack. We will then discuss countermeasures
in Sect. 3.4. Section 4 will conclude this paper and expose open questions.

1.3 Related Works

Our grafting technique relies on and extend a result by Bruinderink and
Hülsing [GBH16] about the security of common OTS’s under two-message
attacks.

Due to their relative novelty, the resistance of post-quantum cryptographic
schemes against fault attacks has only recently been studied. A wide array
of attacks against lattice-based schemes has been covered in [BBK16], and a
loop-abort attack has been demonstrated in [EFGT16]. For schemes based on
supersingular isogenies, loop-abort and point decompression attacks have been
investigated in [BG15,Ti17,GW17]. While we know of no fault attack against
hash-based signatures, countermeasures have been studied in [MKAA16].

Hash functions have been targeted by fault attacks on their keyed opera-
tion modes. Notably Hemme and Hoffmann [HH11] propose a differential fault
analysis allowing the attacker to recover the internal state of a SHA-1 instance
using about 1000 faulted hashes with the fault targeting a specific variable in the
computation. A similar attack targeting SHA-3 was presented in 2015 [BGS15].
This attack involves random single bit faults on 80 messages to recover most of
the SHA-3 internal state. In comparison, our attack requires only one fault, and
the precision needed by the attacker in order to succeed is very low.
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2 Preliminaries

We first set up the notations, then introduce the security models used for signa-
ture schemes and present Merkle’s and Goldreich’s constructions.

2.1 Notations and Conventions

We denote by λ the security parameter of a signature scheme. H : {0, 1}∗ →
{0, 1}λ denotes a cryptographic hash function. We will note vectors in bold
lowercase. Whenever we consider faulting the value of a vector v, we denote by
v� the faulted value of v.

2.2 Dendrologic Notations

We recall notions related to trees. We suppose that the definitions of (balanced)
binary tree, parent, child, sibling, root, leaf and internal node are known.

We denote by &f the address of a leaf f. The height of a tree is the length
of the longest path between the root and any node. Two nodes are at the same
height (resp. in the same layer, resp. at the same level) if they lie at the same
distance from the root.

In this article, we also deal with hypertrees, which are trees whose nodes are
trees. The height of a hypertree is the sum of the largest heights of each layer.
To avoid confusion between the hypertree and the node trees, we will refer to
the layers of the hypertree and the levels of the node trees.

As an example, Fig. 3 depicts a toy version of a sphincs hypertree. This
example has 2 layers of height 2, hence it has a total height of 4. sphincs-256
has 12 layers of height 5, so its total height is 60.

2.3 Security Models for Signature Schemes

We briefly recall some classical security notions for signature schemes.

Definition 21. Existential forgery – An adversary is able of existential forgery
if there exists a message m such that she can exhibit a valid (message, signature)
pair (m, σ∗) where σ∗ was not produced by the legitimate signer.

Definition 22. Universal forgery – An adversary is able of universal forgery if
for any message m, she can exhibit a valid signature σ∗.

Any attacker able of universal forgery is able of existential forgery. For more
formal notations, we refer the reader to e.g. [GBH16].

2.4 Hash-Based Signatures

Hash-based signatures stem from a very simple idea: the public key is a commit-
ment of the secret key, whereas the signature of a message consists of revealing
some information from which the verifier can recompute the commitment.
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A simple way to build a hash-based one-time signature (OTS) can be defined
as follows. Given a hash function H, let a secret key S = (S1, S2) and the message
space be �0,M − 1� for an integer M . The public key is

P = (P1, P2) = (HM (S1),HM (S2)).

The signature of a message m ∈ �0,M − 1� is

σ = (σ1, σ2) = (Hm(S1),HM−m(S2)).

The verifier only needs to check that

(σM−m
1 , σm

2 ) = (P1, P2).

This scheme is one-time if H is preimage-resistant. However, it is not two-time,
since given signatures for messages m1 < m2 one can compute signatures for any
m1 < m3 < m2, thus breaking existential unforgeability.

We draw the readers’ attention to the fact that in the scheme we presented,
the public key can be computed from any valid signature. This is a common
feature among hash-based signatures and will effectively be the case for all the
schemes considered in this paper. From this feature, one does not need the public
key if it is able to authenticate it. It allows to derive many-times signatures
schemes from OTS by computing signature trees.

In the rest of this section, we present an OTS, two few-times signatures (FTS)
and two many-times signatures, a stateful one and a stateless one.

2.4.1 An OTS: WOTS
wots is a one-time signature whose principle was enunciated by Merkle [Mer90]
following an idea from Winternitz. It is parameterized by three values:

– w: the size of the words used by wots
– �1: the fixed number of words of size w of the messages to be signed
– �2: the fixed number of words of size w of the parity-check value used in the

signature algorithm.

Let � = �1 + �2 be the fixed number of words of size w of the signature. We
can now detail wots.

• Keygen()
1. Let sk = (si)i=1,...,� where the si are uniformly random w-bits words;
2. For 1 � i � �, pi ← Hw−1(si);
3. public key: pk ← (p1, . . . , p�), private key: sk.

• Sign(m, sk)
1. Express m in base w: m = (m1m2 . . .m�1)w;
2. Compute the parity-check value C ← ∑�1

i=1(w − 1 − mi);
3. Express C in base w: C = (C1C2 . . . C�2)w;
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4. b = (b1, b2, . . . , b�) ← (m1, . . . ,m�1 , C1, . . . , C�2) – we will later call it the
b-vector of m;

5. For 1 � i � �, σi ← Hbi(si);
6. signature: σ ← (σ1, . . . , σ�).

• Verify(m,σ, pk)
1. Compute the b-vector of m as in the signature algorithm (Steps 1–4);
2. Accept if and only if ∀i ∈ �1, ��, pi = Hw−1−bi(σi).

Remark 1. gravity-sphincs implements the unmasked version of wots
described above, but sphincs(+) replaces wots by a variant, wots+, which
uses random masks in order to replace collision resistance by second preimage
resistance. Since our attack is indifferent to the presence of masks, we present
it only in the case of the mask-less scheme (wots) as it makes our exposition
simpler.

Parameters: In practice, sphincs-256 (it is the practical instantiation of sphincs
proposed in [BHH+15]), gravity-sphincs and sphincs+ set:

⎧
⎨

⎩

�1 = 64,
�2 = 3,
w = 16.

These parameters offer a good trade-off between size and speed and are usually
chosen in the most recent constructions.

In [GBH16, Sect. 5], the authors study (among other scenarii) wots resis-
tance against existential forgery under two-random-message attacks. They argue
that the probability of being able to forge the signature of a random message
m3 knowing the signature of two known random messages m1 and m2 is roughly
equal to the probability that for all 0 � i < �, the i-th coordinate of the b-vector
of m3 is lower that the i-th coordinate of the b-vector of m1 or m2. We will see
that this existential forgery on wots can be extended to a universal forgery on
the sphincs framework in Sect. 3.1.

2.4.2 FTS
In order to expand an OTS construction to a FTS signature scheme, one can
generate many OTS, link the public keys using an authentication tree and use
the root of this tree as public key. To sign a message, the signer only needs to
choose a subset of the OTS generated and sign the message with each of them.
The verifier only has to recover the various public keys from the signatures and
to check if the public key is equal to the authentication value associated with
the public keys and the corresponding authentication path.

All three algorithms based on the sphincs framework make use of different
FTS. In the context of our attack, one only needs to keep two facts in mind:

– just like wots, the FTSs are entirely deterministic;
– in each of these FTSs, the public key can be directly computed from a valid

signature.
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2.4.3 A Stateful Construction: Merkle’s Scheme
Merkle’s scheme [Mer90] is based on hash trees, which are (generally balanced)
binary trees in which each internal node is defined as the hash of its two concate-
nated child nodes. In Merkle’s construction, each leaf of a hash tree is an OTS
public key: such a hash tree is called a Merkle tree. The public key for Merkle’s
scheme is the root of the Merkle tree and the private key is the set of all the
OTS private keys paired with the OTS public keys.

For a leaf f of a Merkle tree, we denote by A(f) and call authentication path
of f, the unique set of nodes (with one node per level, excluding the root) such
that the root of the Merkle tree can be recomputed from f and A(f).

To sign a message, the signer chooses an unused OTS key pair (ski, pki) in
a leaf of the Merkle tree: he signs m with ski and sends the signature together
with pki and its authentication path A(pki). The receiver verifies that: (1) the
message’s signature using the OTS is valid, and (2) the general public key (which
is the root of the Merkle tree) can be recomputed from pki and A(pki).

This scheme has two major drawbacks. First, the signature time – or memory
requirement – is exponential in the tree height, since the whole tree must either
be stored or recomputed each time a signature is performed.1 Second, the signer
must keep track of the used OTS key pairs, which makes the scheme stateful.

2.4.4 A Stateless Construction: Goldreich’s Signature
Goldreich’s proposal [Gol86] solves the two aforementioned issues: it is still based
on a binary tree whose leaves are OTS public keys, but internal nodes are now
OTS key pairs. Each node of the tree is uniquely indexed by a bitstring which
is used, together with a seed which is part of the overall private key, to pseudo-
randomly generate the node’s key pair.

The scheme’s public key is the root’s public key and its private key is com-
posed of the root’s private key and the seed referred to above. To sign a message,
one randomly selects a leaf and then signs the message with this key pair. Each
node (specifically the public key inside) between this leaf and the root is then
signed, together with its sibling node, by its father node. The verifier accepts if
and only if all the signatures are valid.

The drawback of this approach is the signature size. For 128 bits of pre-
quantum security, one needs a 256-layer tree; using for example a Winternitz
OTS with parameter w = 16 (see Sect. 2.4.1) and a hash function with a 256-bit
output, the signature size reaches 1.65 MB.

2.5 SPHINCS

The aim of sphincs is twofold: to achieve moderate signature time and size, and
to get rid of any kind of state. To reach this goal, the sphincs tree is designed
as a Goldreich tree whose nodes are Merkle trees.

1 There exist techniques which get rid of exponential running time at the expense of
somewhat increasing state size, such as the tree traversal algorithm of [BDS08].
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Fig. 1. A Merkle tree. Two merging
arrows mean “the parent is the hash
of the two children”. The authentica-
tion path of f = pk000 would be A(f) =
{pk001, H01, H1}.
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Fig. 2. A Goldreich tree. In addition to
the notations of Fig. 1, a dashed arrow
means “the leaf signs the root below”.

In this new configuration, each leaf in a Merkle tree is used to sign the root of
a Merkle tree located in the layer below. Such a construction can also be found
in GMSS [BDK+07] and XMSS [BDH11,HRB13]. Moreover, leaves of a sphincs
tree sign a public key of a few-time signature (FTS) scheme, which security is
not compromised if the same key pair is used on few different messages. This is
summarized in Fig. 3.

In order to have a quick overview of sphincs, one can see it as a combination
of 3 types of trees. Namely:

1. The sphincs hypertree: a Goldreich tree of height h (60 in sphincs-256)
organised in d layers (12 in sphincs-256). Each layer’s leaf signs the root of
a Merkle tree.

2. Merkle trees of size h/d (= 5 in sphincs-256) whose leaves are public keys
for the OTS used in the Goldreich construction: wots.

3. The FTS used to sign the message is signed by the last layer of the hypertree.

We now delve a bit deeper into sphincs’s machinery.
A sphincs tree of height h can be seen as a Goldreich tree of d layers with

Merkle trees of height h/d instead of nodes. In [BHH+15], a few modifications
have been made to the Merkle tree construction described in Sect. 2.4.3. One
of them is important for our work: in the leaves of sphincs’s Merkle subtrees,
all wots public keys are compressed as follows: their � parts are considered as
leaves of a binary hash tree; this tree’s root is then computed applying this rule:
if a node has no sibling, then it is lifted to a higher level in the tree until it has
one. The tree’s root stands as the compressed wots public key.
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for gravity-sphincs, fors for sphincs+).

Like in Goldreich’s construction, where each node is indexed, each leaf has
an address in sphincs, which contains its layer in the sphincs hypertree, the
number of its Merkle tree in the layer and its position in the Merkle tree.

We now describe the original sphincs signature scheme (which we will call
o-sphincs to disambiguate it from the sphincs framework).

• Keygen()
Pick a pair of seeds (S1, S2) ∈ {0, 1}λ × {0, 1}λ at random and generate the
top Merkle tree (the one in layer d − 1), whose root is the overall public key
pk. The private key is sk ← (S1, S2).

• Sign(m, sk)
1. Generate 2 pseudo-random values (R1, R2) ∈ ({0, 1}λ)2 from m and S2;
2. Compute D = H(R1||m);
3. idx ← the h leftmost bits of R2;
4. Generate the horst key pair of index idx;
5. σH = signature of D using this horst key pair;
6. σ0 = signature of the horst public key using the wots key pair at layer

0, which is (in compressed form) in the leaf f0 with &f0 = d||idx ;
7. For 1 � i < d, σi = signature of the root of the Merkle tree containing

fi−1, using the wots key pair in the appropriate leaf fi of the layer i;
8. signature: σ = (idx, R1,σH ,σ0, A(f0),σ1, A(f1), . . . ,σd−1, A(fd−1)).
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• Verify(m,σ, pk)
1. Compute D = H(R1||m);
2. Compute the horst public key assuming σH is valid;
3. For 0 � i < d:

(a) assume that the wots signature σi is valid and deduce a wots public
key from it and from the root computed the step before2;

(b) assume that A(fi) is correct and compute the root of its Merkle tree;
4. compare this last root to the sphincs public key: accept if and only if

they are equal.

2.6 Gravity-SPHINCS and SPHINCS+ Modifications

gravity-sphincs was proposed in [AE17b], with several changes to o-sphincs
aiming at improving its performance and signature size. The changes relevant to
our attack are the following:

1. The top layer of the hypertree is now cached as it is always used in the
signature algorithm, and its height is increased from 5 to 20 (thus lowering
the number of layers in the hypertree). As a result, the number of leaves in
the topmost Merkle tree is increased from 32 to 220.

2. The index of the FTS instance is now derived directly from the message and a
public salt computed by the signer from its secret key (this is well summarized
in [AE17a, Fig. 3]). As a consequence, the verifier can verify the index and
the attacker cannot choose it anymore – but we will see that it is easy to get
around this protection.

Independently, sphincs+ was proposed in [BDE+17]. The modification rele-
vant to our attack is that the message digest md and FTS index idx are computed
as

(md‖idx) ← H(r, pk,m), (1)

where r is a public salt generated by the signer from the message and a private
seed. This change in index generation is similar to the one of gravity-sphincs.
For simplicity, this document will only focus on the parameter sets targeting
NIST’s security level 1.

We will see that these modifications, while theoretically increasing the cost
of our attack, actually have a very limited impact on its efficiency.

Parameters. o-sphincs, gravity-sphincs and sphincs+ propose parameters
to provide 128 bits of quantum security against existential forgery (assuming
256-bits messages). Table 1 summarizes these parameters.3 We note that [AE17b]
proposed several trade-offs between efficiency and signature size, as well as vari-
ations on the number of signatures allowed by the context.

2 Which is the value whose signature is σi.
3 We choose the NIST-oriented version of gravity-sphincs according to [AE17b].
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Table 1. Parameters for o-sphincs, gravity-sphincs and sphincs+

Scheme Security w � h d Sig. size (kB)

o-sphincs 128 16 67 60 12 41

gravity-sphincs 128 16 67 60 6 27

sphincs+-128f 128 16 67 60 20 17

sphincs+-128s 128 16 67 64 8 8

3 A Grafting Attack Against the SPHINCS Framework

In this section we propose a new kind of attack against the hyper-tree structure
of the sphincs framework. The goal of this attack is to insert a branch under
our control below a leaf fd−1 (which is an OTS public key) of the top layer. In
order to do this, one must be able to provide a signature for the root of the
branch which is valid for the key fd−1. Once the root is authenticated – and the
branch grafted, one has total control over the branch and can easily modify any
of the nodes inside, both by modifying the seed used for its generation and by
randomizing unverifiable values.

In the rest of this section we will detail the principles of the grafting attack
and its implications in terms of security. Finally, we will provide a practical fault
attack that leads to a universal forgery on the sphincs framework, and we will
discuss different complexity trade-offs. At last we will provide a short overview
of the possible countermeasures to our attack.

3.1 Grafting a Branch in the SPHINCS Hyper-Tree

Let us target a leaf fd−1 of the top layer of the hyper-tree. We suppose that
the corresponding wots key has signed two different values, which the attacker
knows along with their signatures. According to [GBH16], she is able to forge a
wots signature with a probability pw ≈ 2−34. We convert this existential forgery
capability against wots into the samea universal forgery capability against any
sphincs-style scheme. In order to find a forgeableforge a message m, we proceed
as follows:

1. Randomly generate a seed such that the index of the FTS to be used falls
under the targeted wots instance. It happens with probability pf, where pf
is 1 for o-sphincs,4 2−20 for gravity-sphincs,5 and 2−3 (resp. 2−8) for
sphincs+-128f (resp. -128s).

2. From this seed and the message m, compute the signature up to the penulti-
mate layer of the hyper-tree. With probability pw, the root of the layer can
be signed by the attacker capacity on the corresponding wots signature.

4 o-sphincs provides the verifier no mechanism to check that the FTS index is valid.
An attacker can therefore directly pick a suitable index, hence the probability 1.

5 The probability to find such a seed is equal to the inverse of number of leaves in the
top-most layer of the hyper-tree, which is 2−20 for gravity-sphincs.



176 L. Castelnovi et al.

3. Complete the signature using the legitimate authentication path of the signer,
known from the legitimate signature of any message whose authentication
path in the hyper-tree goes through fd−1.

The naive way to convert the existential forgery described above into uni-
versal forgeryachieve the forgery described above is to randomly choose the seed
(from which are generated the OTS and all the FTS used during the signature)
in order to fulfill two requirements:

1. the FTS used is under the targeted wots instance: this happens with the
probabilities pf stated in Sect. 3.1.

2. the attacker can sign the root of the Merkle’s tree used in the penultimate
layer with the targeted wots secret key: this happens with probability pw.

To find a seed which simultaneously fulfills both requirements, an attacker
needs to try about 1/pfpw seeds for each message. These trials can be done
entirely offline. We note that the number of hash computations is even higher
as every trial costs around 215 hashes. However, it is possible to do better.

Indeed, even though an honest signer generates (the OTS secret keys corre-
sponding to the leaves of) Merkle trees with a private seed, there is no way a veri-
fier can check that this was effectively the case. Therefore, the search of a suitable
Merkle tree for the penultimate layer (by suitable, we mean that its root can be
signed with the targeted wots key) can be decorrelated from the search for a suit-
able FTS index. This makes the number of trials drop from 1/pfpw to 1/pf + 1/pw.

In addition, a signature does not contain whole Merkle trees but only, for
each of them, a leaf fi6 and its authentication path A(fi); this reduces signature
size as well as verification time. However, it also allows to speed up forgery as
the attacker does not have to generate a suitable Merkle tree but only a leaf fd−2

and an authentication path A(fd−2) which looks like an authentication path in a
suitable Merkle tree. To do this, the attacker can simply choose all the values of
A(fd−2) at random, except the last one. She then tries several values for this last
value, until the root computed from fd−2 and A(fd−2) can be signed with fd−1.
With this improvement, each new trial now costs one hash instead of 215 hashes.

With these improvements, the cost of a forgery on any sphincs scheme drops
from up to 215/pfpw hashes down to 1/pf +1/pw hashes. As an illustration, this
represents a drop from 269 to 234 for gravity-sphincs.

3.2 Fault Injection Against the SPHINCS Framework

As we have been seen before, the entire attack depends on the capability of the
attacker to obtain two distinct wots signatures for the same secret key. In the
context of the sphincs framework, the whole construction of the hyper-tree is
deterministic and a signature is entirely dependent of both the message and the
secret key. This characteristic leads to the fact that no OTS can sign distinct
messages, thus ensuring the security of the scheme.
6 Precisely, the signature contains a wots signature from which one can recover fi.
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In the following we present a fault injection attack allowing an attacker to
recover the signature of two different messages with the same wots key.

Let us denote sk = (s1, s2, . . . , s�) the targeted wots secret key corre-
sponding to fd−1 and δ the Merkle tree root authenticated by it. We ask for
the signature of a message m about which we suppose, without loss of gener-
ality, that at the last step it requires signing δ. We note δ’s wots signature
σd−1 = (σd−1,1, . . . σd−1,�). We receive the overall signature

σ = (idx, R1,σH ,σ0, A(f0), . . . ,σd−1, A(fd−1)).

In the next step, we will ask again the signature of the same message m. As
the algorithm is entirely deterministic, the resulting signature should be the same
as σ. However we will perturb the operations done in the computation of the
authentication path A(fd−2). This perturbation will result in the computation
of a Merkle tree root δ� distinct from δ. The resulting wots signature σ�

d−1

of δ� gives the attacker the possibility to mount the grafting attack as shown
previously. An overview of the fault can be seen in Fig. 4.

A nice feature of the fault model is that it is a very weak one. Indeed it
verifies the following properties:

– only a single fault is needed per signature as a single fault in the computation
of the Merkle tree of the penultimate layer fulfills the required modification;

– the fault is very permissive as we do not use the actual value of the faulted
variable: we need the variable to change but do not need to know the actual
value of the change;

– the fault can be done in a wide time period. Indeed, since the verification algo-
rithm uses A(fd−2) to compute δ�, this authentication path must be faulted:
otherwise, the attacker would deduce from it the legitimate root δ instead
of the faulted one δ�. This implies that one cannot directly fault the nodes
which computations are redone by the signature verifier, but faulting all the
other nodes will lead to a successful attack. In other words, one can fault any
node “below” the authentication path, whereas it is not of interest for our
purposes to fault any node “above”. In practice, it means that, in o-sphincs
33 227 hash computations may eventually be the target of the fault while
273 352 hash computations are available as targets in gravity-sphincs with
parameters given in Table 1.
These numbers stands for roughly 6% of the whole o-sphincs computation
and 18% of the whole gravity-sphincs7.

Remark 2. The faulted overall sphincs signatures produced by this attack are
valid. Indeed, σ�

d−1 is the valid signature of δ�, computed from A(fd−2)�, which is
given in the overall signature σ�. Moreover, all other elements of σ� are correct.
Thus σ� is accepted by the verification algorithm.
7 If the top layer of gravity-sphincs is not cached, this percentage falls drastically

but gravity-sphincs also becomes very slow for these parameters, requiring about
230 hashes per signature.
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3.3 Compromise Between Faulted Signatures and Computational
Power

We have seen that one can achieve universal forgery on the existing schemes of
the sphincs family at the price of one faulted signature. However, each of the
signatures forged comes at a non-negligible computational cost as one needs to
try about 1/pw ≈ 234 values for the penultimate Merkle tree root (see Sect. 3.1)
to be able to use the capacity on wots. In this section we provide trade-offs
between the number of faulted signatures allowed to the attacker and the com-
putational cost needed to forge a signature.

3.3.1 Total Break on WOTS
First, we estimate how many faulted signatures are necessary to recover an entire
wots private key.

It is safe to model H as a random oracle. As a consequence of this hypothesis,
when the computation of δ is faulted, δ� takes a uniformly random value between
0 and 2λ − 1. Each bi for 1 � i � �1 is therefore 0 with probability 1/w.

Then the checksum C follows the law of a sum of �1 = 64 random variables
(r.v.) following the uniform law over �0, w−1� which, thanks to the central limit
theorem, we shall approximate by a normal law with parameters μ = �1(w−1)/2
and σ2 = �1(w2 − 1)/12.



Grafting Trees: A Fault Attack Against the SPHINCS Framework 179

Let us write C in base w in the big-endian convention. Then bi = 0 for
�1 < i � � means C mod wj < wj−1 with j = i − �1. This event has probability:

P(C mod wj < wj−1) =
��1(w−1)/wj�∑

q=0

qwj+wj−1−1∑

z=qwj

P(C = z),

with P(C = z) = ρμ,σ(z)/
∑

n∈Z
ρμ,σ(n), where ρμ,σ(x) = exp(−(x−μ)2/(2σ2)).

We obtain P(b65 = 0) ≈ 1/w,P(b66 = 0) ≈ 0.098,P(b67 = 0) ≈ 2−30.7. This
last value calls for a remark. It means that we have to ask for 230.7 signatures in
average to get s67, which is a lot, but, in the same time, we need s67 to sign a
root with probability 2−30.7. So, with respect to s67, we can only look for H(s67).
Given the very high probability of finding this value (P(b67 = 1) ≈ 0.80), we shall
suppose that the average number of signatures required to recover s1, . . . , s66 is
high enough to find H(s67) with overwhelming probability, and therefore we do
not care about s67 anymore. We will later see that this is verified in practice.

Finally, we rely on the values of P(b65 = 0) and P(b66 = 0) to justify this
approximation which will be done hereafter: b1, b2, . . . , b66 are viewed as 66 uni-
form deviate in �0, w − 1�.

Let us now consider the number of signatures required on average to carry out
the attack. Let X be the random variable which models the number of requested
signatures to find sk (except s67). Our problem then boils down to computing
E(X).

Let {σ(1)�,σ(2)�, . . . ,σ(n)�} be the set of the n requested faulted signatures
at a certain point in the attack. We define: V

(n)
j :=

{
σ
(i)�
d−1,j | 1 � i � n

}
, that

is, the set of values taken by the jth coordinate of all received σ
(i)�
d−1’s, when

the attacker has gathered n faulted signatures. We also define the event Bn :=
{∃1 � j < � s.t. sj /∈ V

(n)
j }. It can be shown that P(X = n) = P(Bn−1 ∩ Bn)

and that it leads to:

P(X = n) = P(Bn) − P(Bn−1). (2)

Since the coordinates of σ�
d−1 are pairwise independent and follow the same

uniform law over �0, w − 1� by assumption, we have:

P(Bn) =
�−1∏

j=1

P

(
sj ∈ V

(n)
j

)
=

(

1 −
(

w − 1
w

)n)�−1

. (3)

Composing Eqs. 2 and 3 with the parameters set in the sphincs schemes, we
estimate that E(X) ≈ 74.5. Note that this leads to a probability to find H(s67)
greater than 1 − 2−170, which is indeed more than enough to do so.

One whole wots private key can thus be recovered querying 74.5 faulted
signatures on average for the parameters used in the sphincs schemes.
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3.3.2 Trade-Offs
We have seen that the attack can be mounted with only one faulted signature,
with a non-negligible computational cost needed to forge every signatures, or that
an attacker can make about 75 faulted signatures to ensure a free selection of
the Merkle tree root. We now investigate the various trade-offs we can obtain by
increasing step by step the number of faulted messages available to the attacker.

For this purpose, we extend Hülsing and Groot Bruinderink’s [GBH16] rea-
soning. Let us denote by δ the root which wots signature we want to forge, and
by δ(1), δ(2), . . . , δ(n) n uniformly random roots for which we have valid signa-
tures by the same wots private key. Let b = (b1, . . . , b�) be the b-vector of δ

and b(i) = (b(i)1 , . . . , b
(i)
� ) be the b-vector of δ(i) for all 1 � i � n. Then we can

forge a valid wots signature for δ if and only if the following expression is true:

�∧

j=1

n∨

i=1

{bj � b
(i)
j }.

In order to estimate the probability of this event, we make the assumption
that coordinates of the b-vector of a uniformly random word are pairwise inde-
pendent and uniformly distributed in �0, w − 1�. If this assumption is clearly
true for the first �1 coordinates, it is clearly not for the last �2 ones. However,
we shall see later that the resulting theoretical probabilities are very close to
probabilities obtained by simulations. Thus we work with this assumption for
the sake of simplicity.

Moreover, we make the assumption that random roots δ(i) are pairwise inde-
pendent, i.e. that corresponding b-vectors are pairwise independent. By coordi-
nates independence assumption:

P

(∧�
j=1

∨n
i=1{bj�b

(i)
j }

)
=P

(∨n
i=1{bj�b

(i)
j }

)�
=

(
1−P(bj<b

(1)
j )n

)�
=(1− 1

wn+1
∑w−1

a=0 an)�
, (4)

the second equality coming from b-vectors independence assumption and the last
one by identical distribution assumption. Table 2 presents the average number
of roots to try before finding one whose signature can be forged, based on the
number of faulted signatures the attacker has – note that the attacker is supposed
to have the legitimate signature in addition to the faulted ones. The numbers
are obtained from Eq. 4, and are matched by experiments.

We can observe that the computational complexity of the forgery of a message
m is essentially the sum of the complexities of three operations:

Table 2. Number of grafted trees to generate randomly before finding one that can be
signed by the faulted OTS, in function of the number of faulted signatures. We note
that for 1 faulted signature, this number is 1/pw.

Faulted signatures 1 2 3 4 5 10 20

Number of trees to try 234.9 224.0 218.0 214.2 211.7 25.5 22.0
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– the number of seeds to try to assign a satisfying index to the message – from
1 for o-sphincs to 220 for gravity-sphincs;

– the number of Merkle tree root values to try before being able to forge the
wots signature – depending on the number of faulted signatures, see Table 2;

– the complexity of the signature8.

With this observation, we can state that only 3 faulted messages are needed to
provide universal forgery against gravity-sphincs at the cost of about 220 hash
computations.

3.4 Countermeasures

Generic countermeasures such as making the signature computation redundant
can complicate our attack, but they may incur a significant overhead (for redun-
dancy, a factor 2 in time and space). Indeed, a simple verification of the signature
would not be efficient in our case as the attack provides valid signatures. More-
over, only a small part of the execution will be faulted and thus the redundancy
must be checked for each of the roots of a Merkle sub-tree. However redundant
computation is an efficient way to significantly constrain the attacker to a more
powerful model as the fault should be exactly replicable on both executions. As
generic countermeasures are well documented, our discussion will focus on the
countermeasures that are specific to the sphincs framework.

In [MKAA16] the authors propose a specific recomputation designed to avoid
faults in Merkle trees, called Recomputating with Swapped Nodes (RESN).
Whereas the countermeasure provides efficient security at an acceptable overhead
by lightly pipelining the circuit, it does not cover the Goldreich construction.
The main impact to our attack additionally from classical recomputation meth-
ods is that it limits the fault to targeting only the computation of the root of
the Merkle tree as any other faulted hash computation would be detected by the
RESN. We note that, in this case, the faulted signature will not be a valid one
anymore and the result could be verified with an additional overcost.

A näıve way to protect sphincs against our attack would be to compute
the index of the FTS from public values instead of secret ones. Indeed, if one
computes the index from the message and the public key, the attacker is not
able anymore to choose the index of the message to sign.

However, the cure would be worse than the disease. Indeed, while our attack
would be thwarted by this modification, a malicious user would now be able to
provoke multi-collisions on the index idx of the FTS by trying several messages.

In the schemes studied, the number of FTS leaves is upper bounded by 264.
This implies that given a fixed value for the index idx, an attacker can find
k messages leading to this index with a computational effort about k × 264.
Therefore, this modification would lead to universal forgeability of the targeted
schemes without any fault.
8 The complexity of the forged signature can be slightly lowered because the attacker

does not need to compute valid values for the authentication path and can simply
generate random values.
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An efficient countermeasure would be to somehow link the different layers
of the hyper-tree so that a fault in the computation of the tree would result in
a non valid signature, i.e. a root value distinct from the public key. A simple
check of the validity before returning the signature would prevent any fault
attack. However, in order to link these layers, one cannot compute the OTS keys
only from its index and the secret key, so the whole hyper-tree would have to be
recomputed for each signature, ensuing a huge overhead in signing time.

4 Conclusion and Open Questions

In this paper we propose the first fault attack against signature schemes of the
sphincs family. After an initial cost of a single faulted message, it allows to forge
signatures for any message at an (offline) cost of 234 hashes per message.

We proposed several trade-offs to lower this computational cost while slightly
increasing the number of faulted messages. For any of the targeted schemes, we
can forge any message at a cost of about 220 hashes functions knowing only 3
faulted messages. Moreover, the fault model is very permissive.

While our attack can be thwarted by generic (but possibly costly) counter-
measures against fault attacks, we did not find any specific countermeasure.

As demonstrated by this work, the deterministic nature of several hash-based
signatures and their internal use of OTS can be a weakness against fault attacks.
On the defensive side, an interesting line of work would be to propose hash-based
constructions which offer some innate resilience against fault attacks.

On the offensive side, a natural extension of this work would be to implement
the proposed fault attack in practice. Our attack target the sphincs framework,
but it would be interesting to extend it to other multi-tree constructions such
as multi-tree XMSS or GMSS. One could also devise an alternative way (other
than fault injection) to recover two distinct wots signatures for the same key,
which would allow to apply our grafting attack. We leave this for future work.
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Abstract. We investigate the post-quantum security of hash functions
based on the sponge construction. A crucial property for hash functions
in the post-quantum setting is the collapsing property (a strengthening
of collision-resistance). We show that the sponge construction is col-
lapsing (and in consequence quantum collision-resistant) under suitable
assumptions about the underlying block function. In particular, if the
block function is a random function or a (non-invertible) random per-
mutation, the sponge construction is collapsing. We also give a quantum
algorithm for finding collisions in an arbitrary function. For the sponge
construction, the algorithm complexity asymptotically matches the com-
plexity implied by collision resistance.
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1 Introduction

Cryptographic hash functions are one of the central primitives in cryptography.
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While all widely deployed public-key cryptography is threatened by the rise
of quantum computers, hash functions are believed to be only mildly affected.
The reason for this is twofold. On the one hand, generic quantum attacks achieve
at most a square-root speed up compared to their pre-quantum counterparts and
can be proven asymptotically optimal [8,13,20]. On the other hand, there do not
exist any dedicated quantum attacks on any specific hash function that perform
better than the generic quantum attacks (except, of course, for hash functions
based on number theory like, e.g., VSH [9]).

One of the most important properties of a hash function H is collision-
resistance. That is, it is infeasible to find x �= x′ with H(x) = H(x′). Intuitively,
collision-resistance guarantees some kind of computational injectivity – given
H(x), the value x is effectively determined. Of course, information-theoretically,
x is not determined, but in many situations, we can treat the preimage x as
unique, because we will never see another value with the same hash. For example,
collision-resistant hashes can be used to extend the message space of signature
schemes (by signing the hash of the message), or to create commitment schemes
(e.g., sending H(x‖r) for random r commits us to x; the sender cannot change
his mind about x because he cannot find another preimage).

In the post-quantum setting,1 however, it was shown by Unruh [18] that
collision-resistance is weaker than expected: For example, the commitment
scheme sketched in the previous paragraph is not binding: it is possible for an
attacker to send a hash h, then to be given a value x, and then to send a random
value r such that h = H(x‖r), thus opening the commitment to any desired value
– even if H is collision-resistant against quantum adversaries.2 This contradicts
the intuitive requirement that H(x) determines x.

Fortunately, Unruh [18] also presented a strengthened security definition for
post-quantum secure hash functions: collapsing hash functions. Roughly speak-
ing, a hash function is collapsing if, given a superposition of values m, mea-
suring H(m) has the same effect as measuring m (at least from the point of
view of a computationally limited observer). Collapsing hash functions serve as
a drop-in replacement for collision-resistant ones in the post-quantum setting:
Unruh showed that several natural classical commitment schemes (namely the
scheme sketched above, and the statistically-hiding schemes from [12]) become
post-quantum secure when using a collapsing hash function instead of a collision-
resistant one. The collapsing property also directly implies collision-resistance.

In light of these results, it is desirable to find hash functions that are col-
lapsing. Unruh [18] showed that the random oracle is collapsing. (That is, a
hash function H(x) := O(x) is collapsing when O is a random oracle.) However,
this has little relevance for real-world hash functions: A practical hash function

1 We mean a situation in which the protocols and primitives that are studied are
classical, but the attacker can perform quantum computations.

2 More precisely, [18] shows that relative to certain oracles, a collision-resistant hash
function exists that allows such attacks. In particular, this means that there cannot
be a relativizing proof that the commitment scheme is binding assuming a collision-
resistant hash function.
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is typically constructed by iteratively applying some elementary building block
(e.g., a “compression function”) in order to hash large messages. So even if we are
willing to model the elementary building block as a random oracle, the overall
hash function construction should arguably not be modeled as a random oracle.3

For hash functions based on the Merkle-Damg̊ard (MD) construction (such
as SHA2 [16]), Unruh [19] showed: If the compression function is collapsing, so
is the hash function resulting from the MD construction. In particular, if we
model the compression function as a random oracle (as is commonly done in the
analysis of practical hash functions), we have that hash functions based on the
MD construction are collapsing (and thus suitable for use in a post-quantum
setting).

However, not all hash functions are constructed using MD. Another popular
construction is the sponge construction [4], underlying for example the current
international hash function standard SHA3 [17], but also other hash functions
such as Quark [2], Photon [11], Spongent [6], and Gluon [3]. The sponge con-
struction builds a hash function H from a block function4 f . In the classical
setting, we know that the sponge construction is collision-resistant if the block
function f is modeled as a random oracle, or a random permutation, or an invert-
ible random permutation [5].5 However, their proof does not carry over to the
post-quantum setting: their proof relies on the fact that queries performed by the
adversary to the block function are classical (i.e., not in superposition between
different values). As first argued in [7], random oracles and related objects should
be modeled as functions that can be queried in superposition of different inputs.
(Namely, with a real hash function, an adversary can use a quantum circuit
implementing SHA3 and can thereby query the function in superposition. The
adversary could evaluate the sponge on the uniform superposition over all mes-
sages of a certain length, possibly helping him to, e.g., find a collision.) Thus,
we do not know whether the sponge construction (and thus hash functions like
SHA3) is collapsing (or at least collision-resistant in the post-quantum setting).

Our contributions. In the present paper we tackle the question whether the
sponge construction is collision-resistant and collapsing in the post-quantum
setting. We show:

– If the block function f is collision-resistant when restricted to the left and right
half of its output and it is hard to find a zero-preimage of f (restricted to the
right half of its output), then the sponge construction is collision resistant.

3 For example, hash functions using the Merkle-Damg̊ard construction are not well
modeled as a random oracle. If we use MAC (k,m) := H(k‖m) as a message authen-
tication code (MAC) with key k, we have that MAC is secure (unforgeable) when
H is a random oracle, but easily broken when H is a hash function built using the
Merkle-Damg̊ard construction.

4 It is not called a compression function, since the domain and range of f are identical.
5 [5] shows that the sponge construction is indifferentiable from a random oracle in the
classical setting. Together with the fact that the random oracle is collision-resistant,
collision-resistance of the sponge construction follows.
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– If the block function f is collapsing when restricted to the left and right half of
its output, respectively, and if it is hard to find a zero-preimage of f (restricted
to the right half of its output), then the sponge construction is collapsing.

– If the block function f is a random oracle or a random permutation, then the
sponge construction is collapsing.

– We give a quantum algorithm for finding collisions in any function (given
access to a random oracle), in particular in the sponge construction. The
number of quantum queries to f asymptotically matches our bounds for col-
lision resistance.

It should be stressed that we do not show that the sponge construction is
collapsing (or even collision-resistant) if the block function f is an efficiently
invertible random permutation. In this case, it is trivial to find zero-preimages
by applying the inverse permutation to 0. This means that the present result
cannot be directly used to show the security of, say, SHA3, because SHA3 uses
an efficiently invertible permutation as block function. Our results apply to hash
functions where the block function is not (efficiently) invertible, e.g., Gluon [3].
It seems that this limitation is just a residue of our technique.

Organization. In Sect. 2 (“Collapsing hash functions”), we recall the definition
of collapsing hash functions and some important properties of that definition. In
Sect. 3 (“The sponge construction”) we recall the sponge construction. In Sect. 4
(“Collision-resistance of the sponge construction”) we first show the collision
resistance of the sponge construction. Then in Sect. 5 (“Sponges are collapsing”),
we present our main result – that the sponge construction is collapsing. In Sect. 6
(“Quantum Attack”) we present a quantum algorithm for finding collisions that
uses a random oracle. Additional details, including preliminaries and full proofs
are given in the full version [10].

2 Collapsing Hash Functions

In this section, we recall the notion of collapsing hash functions H from [18]. We
describe both the underlying intuition, as well as the formal definitions.

A hash function is a function HO : X → Y for some range X and domain Y .
(Typically, Y consists of fixed length bitstrings, and X consists of fixed length
bitstrings or {0, 1}∗.) H can depend on an oracle O. (Typically, O will be a
random function, a random permutation, or simply be missing if we are in the
standard model. Unless specified otherwise, we make no assumptions about the
distribution of O.)

As mentioned in the introduction, intuitively, we wish that H(m) uniquely
identifies m in some sense. In the classical setting, this naturally leads to the
requirement that it is hard to find m �= m′ with H(m) = H(m′). Then we
can treat H(m) as if it had only a single preimage (even though, of course, a
compressing H will have many preimages, we just cannot find them). In the
quantum setting, there is another interpretation of the requirement that H(m)
identifies m. Namely, if we are given a register M that contains a superposition
of many values m, then measuring H(m) on that register should – intuitively –
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Fig. 1. Games from the definition of collapsing hash functions. M represents a mea-
surement in the computational basis. (A,B) is assumed to satisfy the property that M
always returns m with H(m) = h. A function is collapsing if the probability of b = 1
is negligibly close in both games.

fully determine m. That is, the effect on the register M should be the same, no
matter whether we measure just the hash H(m) or the whole message m. One can
see that for any compressing function H, it is impossible that measuring H(m)
and m has information-theoretically the same effect on the state.6 However,
what we can hope for is that for a computationally limited adversary, the two
situations are indistinguishable. In other words, we require that no quantum-
polynomial-time adversary can distinguish whether we measure H(m) or m. This
property is then useful in proofs, because we can replace H(m)-measurements by
m-measurements and vice versa.

We can slightly simplify this condition if we require that the register M
already contains a superposition of values m that all have the same hash H(m).
In this case, measuring H(m) has no effect on the state, so we can state the
requirement as: If M contains a superposition of messages m with the same
H(m) = h, then no quantum-polynomial-time adversary can distinguish whether
we measure M in the computational basis, or whether we do not measure it at all.

Or slightly more formally: We let the adversary A produce a register M and
a hash value h (subject to the promise that measuring M would lead to an m
with H(m) = h). The adversary additionally keeps an internal state in regis-
ter S. Then we either measure M in the computational basis (Game1, depicted
in Fig. 1(a)), or we do not perform any such measurement (Game2, depicted in
Fig. 1(b)). Finally, we give registers S (the internal state) and M (the potentially
measured message register) to the adversary’s second part B. We call H collaps-
ing if no quantum-polynomial-time (A,B) can distinguish Game1 and Game2.

This is formalized by the following definition:

Definition 1 (Collapsing [18]). For algorithms A, B, consider the following
games:

Game1 : (S,M, h) ← AO(), m ← M(M), b ← BO(S,M)

Game2 : (S,M, h) ← AO(), b ← BO(S,M)

6 E.g., M could contain
∑

m 2−|m|/2|m〉. Then measuring H(m) will lead to the state∑
m s.t. H(m)=h

1√
|H−1(h)|

|m〉 which is almost orthogonal for large |H−1(h)| to the

state |m〉 we get when measuring m.
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Fig. 2. The sponge construction S with a four block input m1‖m2‖m3‖m4 and a three
block output h1‖h2‖h3. The application of the padding function is not depicted (we
assume m1‖m2‖m3‖m4 = pad(m)).

Here S,M are quantum registers. M(M) is a measurement of M in the compu-
tational basis.

For a set m, we call an adversary (A,B) valid on m for HO iff Pr[HO(m) =
h ∧ m ∈ m] = 1 when we run (S,M, h) ← AO() and measure M in the
computational basis as m. If we omit “on m”, we assume m to be the domain
of HO.

A function H is collapsing (on m) iff for any quantum-polynomial-time
adversary (A,B) that is valid for HO (on m),

∣
∣Pr[b = 1 : Game1] − Pr[b =

1 : Game2]
∣
∣ is negligible.

The definition follows [18], except that we made the oracle O explicit (which
was implicit in [18]).

Miscellaneous facts. The following properties of collapsing hash functions
will be useful throughout this paper. They are immediate consequences of their
concrete-security variants as shown in Sect. 3.1 of the full version [10].

Lemma 2. If HO is injective, then HO is collapsing.

Theorem 3. If O : {0, 1}e → {0, 1}d is a random function with superlogarith-
mic d (in the security parameter), then HO := O is collapsing.

Lemma 4. If GO ◦HO is collapsing, and GO is quantum-polynomial-time com-
putable, then HO is collapsing.

Lemma 5. If GO and HO are collapsing, and HO is quantum-polynomial-time
computable, then GO ◦ HO is collapsing.

3 The Sponge Construction

In this section, we review the sponge construction introduced by [4]. The sponge
construction has two internal parameters r and c called the rate and the capacity,
respectively. The internal state has r+c bits. We refer to the first part of the state
as the left state, and to the second part of the state as the right state. Underlying
the sponge construction is a block function f that inputs and outputs r + c bits.
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To hash a message m, the message is first padded to a non-zero multiple of
the rate r. That is, we use some injective padding function pad to get k ≥ 1
message blocks m1‖ . . . ‖mk = pad(m).7 Then we XOR m1 to the left state,
apply f to the (whole) state, XOR m2 to the left state, apply f to the state,
. . . , apply f to the state, XOR mk to the left state. The steps performed so
far are referred to as the absorbing phase (denoted in this paper with Sin).
Now we start with the squeezing phase Sout: We apply f to the state, read
the left state as h1, apply f to the state, read the left state as h2, . . . . We
continue to do so until h1‖h2‖ . . . contains ≥ n bits (where n is a parameter
specifying the desired output length), and return the first n bits of h1‖h2‖ . . . .
The whole process described here (padding, absorbing phase, squeezing phase)
is the sponge construction, referred to as S in this paper. Note that the use of
the terms absorbing and squeezing phase in this paper slightly differ from the
description in [4]: In this paper, we end the absorbing phase just before the last
application of f , whilst the original sponge paper includes that application of f
in the absorbing phase. The separation we use helps to simplify the proofs in
later sections. The resulting sponge construction is the same as in [4], though.
The sponge construction is illustrated in Fig. 2 for the special case of k = 4 and
n = 3r (four input blocks and three output blocks). The following definition
makes the above explanation precise:

Definition 6 (Sponge construction). Fix integers c > 0 (the capacity) and
r > 0 (the rate ), and n > 0 (the output length). Fix f : {0, 1}r+c → {0, 1}r+c

(the block function ) and pad : {0, 1}∗ → ({0, 1}r)+ (where {0, 1}r)+ is the set
of bit-strings consisting of r-bit blocks).

For m1, . . . ,mk ∈ {0, 1}r, let

Sin
c,r,f (m1‖ . . . ‖mk) := f

(

Sin
c,r,f (m1‖ . . . ‖mk−1)

) ⊕ (mk‖0c)

Sin
c,r,f (m1) := m1‖0c

(We call Sin the absorbing phase.)
For s ∈ {0, 1}r+c, let

Sout
c,r,f ,n(s) =

{

s′‖Sout
c,r,f ,n−|s′|(f(s)) (n > 0)

empty word (n = 0)

where s′ consists of the first min{n, r} bits of f(s). (We call Sout the squeezing
phase .)

Let Sc,r,f ,pad,n := Sout
c,r,f ,n ◦ Sin

c,r,f ◦ pad. We call Sc,r,f ,pad,n the sponge con-
struction.

Usually, c, r, f , pad , n will be clear from the context. Then we omit them and
simply write Sin,Sout, and S.
7 The original construction requires that the last block of pad(m) is non-zero, this is

important for other properties than collision-resistance/collapsing. In this work, we
do not put any such requirement on pad . We do, however, assume that pad outputs
at least one block.
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Notation: The sponge construction operates on a state of size r + c, and we
will often need to refer to the two halves of that state separately: For any s ∈
{0, 1}r+c, let sleft denote the first r bits of s, and let sright refer to the last c bits
of s. If f is a function with r + c bit output, then we write f left for the function
defined by f left(x) := f(x)left. And f right analogously.

As the output of the sponge function can be smaller than the rate, i.e. n ≤
r, we also define the function f left/n : {0, 1}r+c → {0, 1}min(n,r), which is the
function that outputs the first min(n, r) bits of f . In particular, f left/n := f left for
n ≥ r.

4 Collision-Resistance of the Sponge Construction

In this section we state our result concerning collision-resistance of the sponge
construction. We motivate our statement with Lemma8 connecting attacks on
some features of the block function with collision-resistance of the overall con-
struction. Those features are collision-resistance of f right, collision resistance of
f left/n, and zero-preimage-resistance of f right.

The last notion is defined as follows: a function fO : {0, 1}d → {0, 1}e is
zero-preimage-resistant iff for any quantum-polynomial-time adversary AO, we
have that Pr[fO(x) = 0e : x ← AO()] is negligible. Concrete security bounds are
given in the full version [10].

Let us state the main result of this section.

Theorem 7. Assume that f right and f left/n are collision resistant and f right is
zero-preimage resistant. Then Sc,r,f ,pad,n is collision-resistant.

Proof sketch. We prove this theorem by a reduction to adversaries attacking the
block function. Namely finding collisions in f right or f left/n, or a zero-preimage
under f right. This reduction is presented in Lemma 8. Knowing that every collision
in S results in breach in the security of f right or f left/n, allows us to state the claim
of the theorem. �
Lemma 8. Assume that pad is injective. There is a deterministic polynomial-
time oracle algorithm A such that for any m �= m̂ with S(m) = S(m̂), Af (m, m̂),
outputs one of the following:

– (right, (s, ŝ)) where (s, ŝ) is a collision of f right,
– (zero, s) where s is a zero-preimage of f right,
– or (left, (s, ŝ)) where (s, ŝ) is a collision of f left/n.

Proof. A starts by computing the first right-state of the squeezing phase on input
of the two colliding messages, i.e., it evaluates f ◦ Sin ◦ pad . We will denote the
states traversed during this calculation by si and ŝi for m and m̂, respectively.
As our analysis starts with the final state of this computation and revisits the
intermediate states in backwards direction, we denote by s0 the final state, whose
left part is output (for n < r only the first n bits), by s−1 the state just before
the last application of f and so on. A figure including this notation is presented
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later in Fig. 3. Using p := pad(m) and p̂ := pad(m̂), the intermediate states s−i

for 1 ≤ i ≤ |p|− 1 are defined by s−i := f(s−i−1)⊕ p|p|+1−i‖0c, s0 := f(s−1) and
s−|p| := p1‖0c. As m and m̂ collide per assumption, we have s

left/n
0 = ŝ

left/n
0 .

1. Algorithm A first checks if s−1 or ŝ−1 are a preimage of 0c, or form a collision
under f left/n. If the right part of s0 (or ŝ0) is 0c, s−1 (ŝ−1) is a pre-image of
0c under f right and A outputs (zero, s−1) ((zero, ŝ−1), respectively). If s−1 �=
ŝ−1, A outputs (left, s−1, ŝ−1). These two states form a collision under f left/n

because they are the inputs to the last f in S and s
left/n
0 = ŝ

left/n
0 . Otherwise,

s−1 = ŝ−1 and there are no preimages of zero.
2. If not done yet, s−1 = ŝ−1 and A checks for a preimage of 0c or a collision

in f right. If sright−1 = 0c, A found a preimage of 0c. This is true as if both
messages ended here then s−1 = ŝ−1 would imply that p = p̂ (and so m = m̂)
which contradicts the assumptions of the lemma. Hence, at least one message
must be longer. Assuming the longer message is m, A outputs (zero, s−2) (or
(zero, ŝ−2) if it was m̂).
Next the algorithm checks if p−1 = p̂−1, where we follow a similar notation
for message blocks as for the states. The last block of the input is denoted
by p−1. If p−1 �= p̂−1, A outputs (right, s−2, ŝ−2). This is a collision of f right

because p−1 �= p̂−1 but s−1 = ŝ−1. Thus f(s−2) �= f(ŝ−2) which in turn
implies s−2 �= ŝ−2 while f right(s−2) = f right(ŝ−2). We can be certain that
there are at least two applications of f both in S(m) and S(m̂) because the
right half of s−1 = ŝ−1 is not 0c.

3. If p−1 = p̂−1 we end up in the same situation as before but now for i = 2.
Namely we have that s−2 = ŝ−2 and the algorithm performs the same checks
as before but for a bigger i. Repeat Step 2 for all 2 ≤ i ≤ min{|p|, |p̂|}.

If the iteration ends without success, this especially means that no collision
was found but at least one message was fully processed. In this case A out-
puts a preimage of 0c under f right. That is because no collisions means that all
compared message blocks are the same but the two messages are different per
assumption. Hence, they must have different lengths. With different length mes-
sages that traverse the same state values at the point of i = min{|p|, |p̂|} the right
part of both states is 0c, so the algorithm will output (zero, ŝ−|p|−1) (assuming
|p| < |p̂|). �

5 Sponges are Collapsing

In this section, we show that the sponge constrution is collapsing, under certain
assumptions about the block function f . We only state the qualitative results
here, more precise statements with concrete security bounds will be given in
the full version [10]. The results in this section hold for all distributions of the
oracle O (including the case that there is no oracle O). The specific cases of
random functions and random permutations are covered in Sect. 5.1. Since all
adversaries (A,B,A′, B′, . . . ) and the block function f have oracle access to O
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throughout the section, we omit the oracle O from our notation for increased
readability (i.e., we write A, f instead of AO, fO). Throughout this section, we
assume that fO can be computed in quantum-polynomial-time (given oracle
access to O).

We will analyze the sponge construction in three parts. First, we analyze the
security of the absorbing phase Sin, then we analyze the security of the squeezing
phase Sout, and finally we conclude security of the whole sponge S, consisting
of padding, absorbing, and squeezing.

First, we analyze the absorbing phase. For the absorbing phase (without
padding or squeezing) to be collapsing, we will need two properties of f right:

– f right is collapsing. This is the main property required from the block function
f . If we would restrict Sin to fixed length messages, then we could show the
collapsing property of Sin based on that property alone.

– f right is zero-preimage-resistant.
To see why we need this property, consider a block function f where the
adversary can find, e.g., x, y ∈ {0, 1}r with f(x‖0c) = y‖0c. Then we can
see that Sin(x‖y) = 0c+r, and thus Sin(x‖y‖z) = z‖0c = Sin(z) for any
z ∈ {0, 1}r. Thus Sin would not be collision-resistant, and in particular not
collapsing.

We state the result formally:

Lemma 9 (Absorbing phase is collapsing). Assume that f right is collapsing,
and that f right is zero-preimage-resistant. Then Sin is collapsing.

Note that this lemma does not explicitly state anything about the size of r
and c. But of course, f right can only be collapsing and zero-preimage-resistant is
the capacity c is superlogarithmic.

We only give a detailed proof sketch for Lemma9. The full proof is given in
the full version [10].

Proof sketch. Consider a quantum-polynomial-time adversary (A,B) where A
outputs a hash h, and a superposition of messages m on the register M , and B
expects M back and outputs a guess b. We need to show that the two games in
Definition 1 (see also Fig. 1) are indistinguishable, i.e., the probability of b = 1 is
approximately the same in both games. Since the domain of Sin is ({0, 1}r)+, we
can assume that (A,B) is valid on ({0, 1}r)+, i.e., M contains a superposition
of messages m ∈ ({0, 1}r)+ with Sin(m) = h.

To show that the two games are indistinguishable, we start with Game2 from
Definition 1 (Fig. 1(b)) and transform it step by step into Game1.

Game 1 (M,h) ← A(). b ← B(M). (Same as Game2 from Definition 1.)

Note that we keep the register S (the state of (A,B)) implicit in this proof
sketch, to improve readability.

Now, in each successive game, we measure more and more information about
the message m contained in M , until in the final game, we measure m completely
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Fig. 3. Values occurring in the computation of h = Sin(m), using the notation from
the proof sketch of Lemma 9.

(like in Game1 from Definition 1). In order to refer to the different values derived
from m that we measure, we will need to use a lot of notation to refer to various
intermediate values occurring in the computation of Sin(m). To make it easier to
follow the proof, all relevant notation has been depicted in Fig. 3, which shows
an evaluation of Sin(m).

Since (A,B) is valid, we know that Sin(m) = h where h is the classical output
of A. That is, h = Sin(m) has already been measured.8 In the computation
of Sin(m), let s−2 refer to the state that goes into the last application of f
(see Fig. 3), and let m−1 refer to the last block of the input message m (i.e.,
m−1 = m|m|). Then h = f(s−2) ⊕ (m−1‖0c) by definition of Sin, and thus
hright = f right(s−2). Now since by assumption, f right is collapsing, we can reason:
Since f right is collapsing, and we have measured the output hright of f right(s−2),
it follows that we can additionally measure s−2, and the adversary B will not
be able to notice the difference. That is, we get the following game with only
negligibly different Pr[b = 1]:

Game 2attempt (M,h) ← A(). Measure s−2. b ← B(M).

This would indeed work, if we knew that |m| ≥ 2. However, it could be that |m| =
1. In this case, we have s−2 = ⊥ (i.e., s−2 does not occur in the computation).
Worse, if M contains a superposition of messages m, some of length |m| =
1, others of length |m| ≥ 2, then measuring s−2 will reveal whether |m| ≥ 2
or |m| = 1. We cannot guarantee that this measurement will not change the
quantum state of M in a noticeable way. Then Pr[b = 1 : Game 1] �≈ Pr[b = 1 :
Game 2attempt]. The collapsing property of f right does not help here, because to
apply that property, we need to know that hright is indeed the output of f right

(which is not the case when |m| = 1).
8 In this proof sketch, when we use the expression “measure a” where a is some expres-

sion depending on the message m (e.g., a could be Sin(m)), then we mean that we
measure the register M , but not with a complete measurement, but with a mea-
surement that gives outcome a (e.g., Sin(m)) when M contains |m〉. Formally, that
measurement would consist of the projectors Pi defined by Pi :=

∑
m s.t. a=i|m〉〈m|.

E.g., if we “measure Sin(m)”, the projectors are Pi :=
∑

m s.t. Sin(m)=i|m〉〈m|.
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A similar problem also occurs in later games: Let s−k denote the k-th state
from the end, with h being s−1, the input to the last f being s−2, the input to
the previous f being s−3, etc., see Fig. 3. (We count backwards because this will
make notation easier, since our games will start measuring states from the end.)
When we have measured some right state sright−k , we want to argue that we can
measure the previous state s−(k+1) because sright−k = f right(s−(k+1)). Again, this
will not be possible because we do not know whether s−k is not already the first
state of the computation of Sin(m). (That is, we do not know whether |m| = k.)

To get around this problem, we need a mechanism to decide whether a state
s−k is the initial state, i.e., whether s−k is s−|m|. How do we do that? By
construction of Sin, the initial state s−|m| satisfies sright−|m| = 0c. Thus, we might

try to decide whether s−k is the initial state by checking whether sright−k = 0c.
For example, if we want to measure s−2, we do so only when hright = sright−1 �= 0c.
This approach is basically sound, but what happens when a state in the middle
has sright−k = 0c? We would be mislead, and the proof would break down.

To avoid this problem, we will first measure at which positions this bad case
happens. Let b be the set of all indices k < |m| such that sright−k = 0c. (That is,
the indices of all states in which we observe a 0c in the right part, but which
are not the initial state.) Once we know the set b, then we can decide whether
s−k is the initial state or not. Namely, s−k is the initial state (i.e., k = |m|) iff
sright−k = 0c and k /∈ b.

So the first step in our sequence of games is to measure the set b:

Game 2 (M,h) ← A(). Measure b. b ← B(M).

We assumed that f right is zero-preimage-resistant. This implies that with over-
whelming probability, sright−k = f right(s−(k+1)) �= 0c for all k < |m|. Thus b = ∅

with overwhelming probability. Therefore measuring b has only negligible effect
on the quantum state. Thus

Pr[Game 1] ≈ Pr[Game 2].

(We use the shorthand Pr[Game 1] for Pr[b = 1 : Game 2]. And ≈ denotes a
negligible difference.) Now we can proceed with measuring more and more states
from the computation of Sin(m). First, we measure s−1:

Game 41 (M,h) ← A(). Measure b and s−1. b ← B(M).

(Note: The numbering of games in this proof sketch has gaps so that the game
numbers here match the game numbers in the full version [10].) Since s−1 = h
by definition, and since h is already measured by A, the additional measurement
does not change the quantum state, and we have:

Pr[Game 2] = Pr[Game 41].

Now we add a measurement whether s−2 is defined:
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Game 51 (M,h) ← A(). Measure b and s−1 and whether s−2 = ⊥.9 b ← B(M).

Given b and s−1 we can already tell whether s−2 = ⊥. Namely, s−2 = ⊥ iff
sright−1 = 0c and 1 /∈ b. Thus measuring whether s−2 = ⊥ has no effect on the
quantum state, and we get

Pr[Game 41] = Pr[Game 51].

Now, finally, we can do what we already intended to do in Game 2attempt:
We measure s−2, and use the collapsing property of f right to show that this
measurement does not noticeably disturb the quantum state:

Game 42 (M,h) ← A(). Measure b, and s−1, and whether s−2 = ⊥, and s−2.
b ← B(M).

In case that we measured that s−2 = ⊥, measuring s−2 in Game 42 has no effect
on the quantum state (since we know that the outcome will be ⊥). And in case
that we measured that s−2 �= ⊥, we know that sright−1 = f right(s−2) (as already
discussed above), and thus measuring s−2 can be noticed with at most noticeable
probability by a quantum-polynomial-time adversary. Thus

Pr[Game 51] ≈ Pr[Game 42].

And then we continue by adding a measurement whether s−3 �= ⊥:

Game 52 (M,h) ← A(). Measure b, and s−1, and whether s−2 = ⊥, and s−2,
and whether s−3 = ⊥. b ← B(M).

Since s−3 = ⊥ iff s−2 = ⊥ or sright−2 = 0c and 2 /∈ b, measuring whether
s−3 = ⊥ holds has no effect on the quantum state. Thus we get

Pr[Game 42] = Pr[Game 52].

And then we measure s−3:

Game 43 (M,h) ← A(). Measure b, and s−1, and whether s−2 = ⊥, and s−2,
and whether s−3 = ⊥, and s−3. b ← B(M).

Using that f right is collapsing, we get

Pr[Game 52] ≈ Pr[Game 43].

We continue in this way, alternatively adding a measurement whether the next
state s−k = ⊥, and then adding a measurement of s−k, each time using the
collapsing property of f right. After � such steps, where � is a polynomial upper
bound on the length of m, we get the following game:

Game 4� (M,h) ← A(). Measure b, measure whether s−1, . . . , s−� = ⊥,
measure s−1, . . . , s−�. b ← B(M).

9 Measuring “whether s−2 = ⊥” means a measurement on M defined by projectors P
and 1 − P where P :=

∑
m s.t. s−2=⊥|m〉〈m|.
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Since in each of the steps, we accrue only a negligible distinguishing proba-
bility between consecutive games, we get:

Pr[Game 41] ≈ Pr[Game 4�].

(Details are given in the full version [10].)
In Game 4�, we measure s−1, . . . , s−�. From these, we can compute |m| (since

s−k = ⊥ for k > |m|). Furthermore, each message block m−k (the k-th message
block from the end) can be computed as follows: We have s−k = f(s−(k+1)) ⊕
(m−k‖0c), and thus m−k = sleft−k ⊕ f(s−(k+1))left. Except for m−|m|, which can
be computed as m−|m| = sleft−|m|. (Cf. Fig. 3) Finally, we can compute m as
m = m−|m|‖ . . . ‖m−1.

Since we can compute m from the measurements performed in Game 4�, it
follows that those measurements are equivalent (in their effect on the quantum
state) to a measurement of m. Thus

Pr[Game 4�] = Pr[Game 6]

for the following final game:

Game 6 (M,h) ← A(). Measure m. b ← B(M).

Altogether, we have shown

Pr[Game 1] ≈ Pr[Game 6].

And Game 1 and Game 6 are identical to the games Game2 and Game1 from
Definition 1, respectively. Since (A,B) was an arbitrary quantum-polynomial-time
adversary that is valid for Sin, it follows by Definition 1 that Sin is collapsing. �
Next, we show that the squeezing phase is collapsing. Let f left/n be defined for
n > 0, as the first min(n, r) bits of the output of f (in particular, f left/n = f left

for n ≥ r). Then the collapsing property of the squeezing phase is a relatively
trivial consequence of the fact that f left/n is collapsing.

Lemma 10 (Squeezing phase is collapsing). Let n > 0 be the output length
and assume that f left/n is collapsing. Then Sout is collapsing.

A concrete security variant of this lemma is given in the full version [10].

Proof. Let Gη(x) return the first η = min(r, n) bits of x. Then Gη(Sout(s)) =
f left/n(s). Thus the lemma follows directly from Lemma 4. �

And finally we get that the sponge construction as a whole is collapsing. This
is a simple corollary from the fact that both the absorbing and the squeezing
phase are collapsing.

Theorem 11 (Sponge construction is collapsing). Let n > 0 be the output
length and assume that f left/n and f right are collapsing, and that f right is zero-
preimage-resistant. Assume that pad is injective. Then S is collapsing.
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A concrete security variant of this theorem is given in the full version [10].

Proof. By Lemma 9, Sin is collapsing, and by Lemma 10, Sout is collapsing. Then
by Lemma 5, Sout ◦ Sin is collapsing. Since pad is injective, by Lemma 2, pad is
collapsing. Thus by Lemma 5, S = (Sout ◦ Sin) ◦ pad is collapsing. �

5.1 Using Random Oracles or Random Permutations

In this section, we show that S is collapsing, when O is a random function or
random permutation and fO(x) := O(x). The collapsing of f right, f left/n follows
from [18], and the zero-preimage-resistance of f right follows from the optimality
of Grover’s algorithm. The computation of the precise advantage is given in the
full version [10].

Theorem 12. If O : {0, 1}r+c → {0, 1}r+c is a random function, and fO(x) :=
O(x), and r, c and output length n are superlogarithmic, then S is collapsing.

Proof. In the full version, we show that the preconditions of this Lemma follow
from [18]. It then follows immediate from Theorem11. �

And since random functions and random permutations are known to be indis-
tinguishable, we readily derive the security of the sponge construction also for
block functions that are random permutations.

Theorem 13. If O : {0, 1}r+c → {0, 1}r+c is a random permutation, and
fO(x) := O(x), and r, c and output length n are superlogarithmic, then S is
collapsing.

A concrete security variant (with security bounds in terms of the number of
oracle-queries) is given in the full version [10].

Proof. Zhandry [20] shows that no adversary making a polynomial number of
queries can distinguish a random permutation from a random function with
more than negligible probability (assuming that the output length is superloga-
rithmic). Thus the advantage of the adversary attacking the collapsing property
of S when O is a random permutation can only be negligibly higher than the
advantage of the same adversary attacking the collapsing property of S when O
is a random function. The latter advantage is negligible by Theorem12, thus the
former advantage is negligible, too. Hence S is collapsing when O is a random
permutation. �

6 Quantum Attack

In the following we present a quantum collision-finding attack against the Sponge
construction. The attack is based on a quantum collision-finding algorithm for
any function (Theorem 15 below) that assumes access to a random oracle (RO).
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The general working of our attack is to select a suitable function g, run a
collision finding algorithm by Ambainis [1] to obtain a collision for g, and finally
turn this collision into a collision for the target Sponge. The suitable function
in this context refers to the function giving the optimal result. First, we make
a case distinction whether the length of the required collision n is smaller or
bigger than the capacity c of the sponge. In case n < c, we simply search for an
output collision in S. In the other case n ≥ c, it is more efficient to search for a
right-collision, as these are collisions in a function with c bits of output and can
be extended to arbitrary-length output collisions. Second, the function has to be
selected or rather constructed in a way that allows for efficient iteration, in case
a first run of the core algorithm does not succeed. Our attack makes heavy use
of the following quantum algorithm by Ambainis [1].

Theorem 14 ([1] Theorem3). Let g : X → Y be a function that has at least
one collision. The size of the set X is M . Then there exists a constant kAmb and
a quantum algorithm Amb making kAmb · M2/3 quantum queries to g that finds
a collision with probability at least 15/16.

We note that [1] also gives guarantees on the actual quantum running time
and memory requirements of the quantum collision-finding algorithm. Con-
cretely, there exist (small) constants k′

Amb, k
′′
Amb such that the running time

and quantum memory is at most k′
Amb · M2/3 · logk′′

Amb(M + |Y |). Therefore, all
our results of this section which are stated in terms of query complexity also
yield guarantees on the running time and memory, incurring the same blowup
by a poly-logarithmic factor in the number of queries.

6.1 Quantum Collision Finding with Random Oracle

We start by showing how to use Ambainis’ algorithm to generically find a colli-
sion in any function as long as we have access to a random oracle.

Theorem 15. For finite sets A,B with |B| ≥ 3 and |A| ≥ 40|B|, and any
function h : A → B, there exists a quantum algorithm which requires access to a
random oracle H : T → A and outputs a collision of h with probability at least
1/8 after at most kAmb · |B|1/3 queries to h and at most 2kAmb · |B|1/3+2 queries
to H where kAmb is the constant from Theorem14.

As noted after Theorem 14, there exist constants k′
Amb, k

′′
Amb such that the run-

ning time and quantum memory of the collision-finding algorithm is at most
k′
Amb · |B|1/3 · logk′′

Amb(|B|).

Proof. Let T := {1, 2, . . . ,
⌈√|B|

⌉

+ 1} be a finite set of
⌈√|B|

⌉

+ 1 elements.
In the description of our generic collision-finding algorithm coll-ro below, we
use the random oracle (RO) H : T → A. When repeating the algorithm in order
to improve the success probability, we assume that a “fresh” random oracle is
used in every run, which can be achieved using standard techniques such as
prepending an iteration-counter to the inputs.



Post-quantum Security of the Sponge Construction 201

Algorithm 1. Algorithm coll-ro

Input: h : A → B and access to random oracle H : T → A
Output: m �= m̂ such that h(m) = h(m̂) or “fail”

1: Set g := h ◦ H, X := T with size M =
⌈√|B|

⌉
+ 1, Y := B

2: Run Amb from Theorem 14 on g, making kAmb · M2/3 queries to g.
3: If it outputs (t, t̂)
4: Set (m, m̂) := (H(t),H(t̂))
5: If m �= m̂, output (m, m̂)
6: Output “fail”

If Ambainis’ algorithm succeeds in outputting a collision and H does not
have any collisions, then we obtain a collision of h. Hence,

Pr[coll-ro outputs m �= m̂ such that h(m) = h(m̂)]
≥ Pr[Amb outputs a collision ∧ H does not have collisions]
≥ Pr[Amb outputs a collision] − Pr[H has a collision]. (1)

We can lower bound the first probability as follows:

Pr[Amb outputs a collision] = Pr[g has a collision ∧ Amb outputs a collision]
= Pr[g has a collision] − Pr[g has a collision ∧ Ambdoes not output a collision]

≥ Pr[g has a collision] − 1
16

.

Note that g maps M messages to B. If these outputs were distributed inde-
pendently and uniformly, we could lower bound the collision probability with a
birthday bound. In our case, these outputs are not necessarily uniformly (due to
h) but still independently (due to H) distributed. It is proven in [15] that in this
case, the same lower bound on the collision probability remains true. Therefore,
it follows (e.g. from [14, Lemma A.16]) that

Pr[g has a collision] ≥ M(M − 1)
4 · |B| ≥ (M − 1)2

4 · |B| ≥
(⌈√|B|

⌉)2

4 · |B| ≥ 1
4
. (2)

In order to upper bound the second term of (1), observe that H maps M messages
to independent and uniform elements in A. From a union bound (see, e.g. [14,
Lemma A.15], noting that M ≤ √

2|A|), we get that

Pr[H has a collision] ≤ M2

2|A| ≤ (
√|B| + 2)2

2|A| ≤ |B| + 4
√|B| + 4

2|A| ≤ 5|B|
2|A| ≤ 1

16
.

(3)

The second-to-last inequality holds because 4
√|B| + 4 ≤ 4|B| for |B| ≥ 3, and

the last inequality is due to our assumption 40|B| ≤ |A|. Combining (2) and
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(3), coll-ro outputs a collision with probability at least 1
4 − 1

16 − 1
16 = 1

8 .
The quantum circuit for g := h ◦ H makes one query to h and two queries to H.
Therefore, the total number of queries to h is at most kAmb ·M2/3 = kAmb ·|B|1/3

and the number of queries to H is at most 2kAmb · |B|1/3 + 2. �
Theorem 16. Let Sc,r,f ,pad,n(m) be a sponge construction with arbitrary block
function f . There exists a quantum algorithm coll-ro making at most qf quan-
tum queries to f and qH quantum queries to a random oracle H. coll-ro out-
puts colliding messages m �= m̂ such that Sc,r,f ,pad,n(m) = Sc,r,f ,pad,n(m̂) with
probability at least 1/8, where qf := 2kAmb · min{ c+6+2r

r 2c/3, 2n+6+3r
r 2n/3}, and

qH := 2kAmb · min{2c/3, 2n/3} + 2, where kAmb is the constant from Theorem14
and pad is any padding function which appends at most 2r bits.

Typical padding functions do not append more than r + 1 bits to the mes-
sage, and are therefore covered by the theorem. Otherwise, the proof below can
be easily modified to take longer paddings into account, resulting in increased
factors in the expression of qf above.

Proof. We make a case distinction whether the length n of the required collision
n is smaller or bigger than the capacity c of the sponge. In case n < c, it is
more efficient to directly search for an output collision in S. In the other case
n ≥ c, it is more efficient to search for collisions in the right internal state, as
these are collisions in a function with c bits of output and can be extended to
arbitrary-length output collisions.

Algorithm 2. Algorithm sponge-coll-ro

Input: Sponge parameters n, c, r and access to RO H
Output: m �= m̂ such that Sc,r,f ,pad,n(m) = Sc,r,f ,pad,n(m̂) or “fail”
1: If n < c
2: Set h := S, domain A := {0, 1}n+6 and range B := {0, 1}n.
3: If n ≥ c
4: Set h := f right ◦ Sin ◦ pad , domain A := {0, 1}c+6 and range B := {0, 1}c

5: Run coll-ro from Theorem 15 on h, making kAmb · |B|1/3 queries to h
6: If it outputs (m, m̂)
7: If n < c, output (m, m̂)
8: If n ≥ c
9: Set a := (f left ◦ Sin ◦ pad)(m) ⊕ (f left ◦ Sin ◦ pad)(m̂)

10: Output (pad(m)‖a, pad(m̂)‖0r)
11: Output “fail”

Let us analyze the case n < c. According to Theorem15, coll-ro outputs a
collision with probability at least 1

8 using at most kAmb·|B|1/3 = kAmb·2n/3 quan-
tum queries to h. A single evaluation of S requires at most 2 · �max{|pad(m)| :
m ∈ {0, 1}n+6}/r� ≤ 2 · (n + 6 + 2r)/r queries to the block function f in the
absorbing phase and 2 · �n/r� ≤ 2(n + r)/r queries to f in the squeezing phase.
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Hence, one query to h requires at most 2·(2n+6+3r)/r queries to the block func-
tion f . Therefore, a collision in S can be found with at most 2kAmb · 2n+6+3r

r 2n/3

queries to f . In the other case n ≥ c, the algorithm coll-ro finds two messages
m �= m̂ such that (f right ◦Sin ◦ pad)(m) = (f right ◦Sin ◦ pad)(m̂) with probability
at least 1

8 . Such a right-collision can then be extended to a full-state collision
by appending to the padded colliding messages pad(m) and pad(m̂) one more
suitably chosen message block resulting in y := pad(m)‖a and ŷ := pad(m̂)‖0r.
As both |y| and |ŷ| are (possibly different) multiples of r, the same bits will
be appended by pad according to our assumptions on the padding function. By
the choice of a in Step 9, we have that (f ◦ Sin ◦ pad)(y) = (f ◦ Sin ◦ pad)(ŷ),
i.e. the full states collide and therefore, all n output bits produced from this
state will coincide. The algorithm makes kAmb · |B|1/3 = kAmb · 2c/3 queries to
h := f right◦Sin◦pad . In this case, one query to h requires at most 2 ·(c+6+2r)/r
queries to the block function f . Therefore, a collision in (f ◦ Sin ◦ pad) can be
found with at most 2kAmb · c+6+2r

r 2c/3 queries to f , resulting in the claimed
bound. �
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Abstract. SPHINCS is a recently proposed stateless hash-based signa-
ture scheme and promising candidate for a post-quantum secure digital
signature scheme. In this work we provide a comparison of the perfor-
mance when instantiating SPHINCS with different cryptographic hash
functions on both recent Intel and AMD platforms found in personal
computers and the ARMv8-A platform which is prevalent in mobile
phones.

In particular, we provide a broad comparison of the performance of
cryptographic hash functions utilizing the cryptographic extensions and
vector instruction set extensions available on modern microprocessors.
This comes with several new implementations optimized towards the
specific use case of hash-based signature schemes.

Further, we instantiate SPHINCS with these primitives and provide
benchmarks for the costs of generating keys, signing messages and ver-
ifying signatures with SPHINCS on Intel Haswell, Intel Skylake, AMD
Ryzen, ARM Cortex A57 and Cortex A72.

Keywords: Post-quantum cryptography
Hash-based signature schemes · SPHINCS · Implementation · ARM

1 Introduction

Digital signature schemes are one of the fundamental cryptographic algorithms
and are typically used to provide authenticity, integrity and non-repudiation for
a message. They have found several applications in information security, e.g.
certification of public keys, code signing or as an electronic signature. One of
the major threats to the currently widely used digital signature schemes like
DSA/ECDSA is that they are not secure if an attacker can build a large enough
quantum computer. The security of these schemes relies on difficult number
theoretic problems, which can be solved in polynomial time on a quantum com-
puter [33].

There are various solutions for post-quantum secure digital signature schemes,
namely lattice-based, multivariate-quadratic, code-based and hash-based signa-
tures. One of the main advantage of hash-based signature schemes is that the
security reduces to properties of the underlying cryptographic hash function. As
every digital signature scheme requires a one-way function [32] these can be seen
c© Springer International Publishing AG, part of Springer Nature 2018
T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 205–226, 2018.
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as the minimal assumptions necessary to construct a secure signature scheme. All
the other previously mentioned signature schemes require further assumptions
by relying on the difficulty of hard problems for which the asymptotic difficulty
might not always hold for the concrete instances used in a cryptographic systems
and they require carefully choosing the parameters.

Hash-based digital signature schemes are therefore a very attractive choice.
However most schemes, like XMSS [9] and LMS [14], are stateful, this means that
one has to update the secret key with every signature. This may sound quite
innocent, however it can be a severe difficulty in practice. For instance when
sharing a private key on different computers one has to synchronize all of them
or security can be void. For some applications this might be acceptable, however
in general we desire to have a stateless signature scheme.

Goldreich proposed the first stateless hash-based signature scheme [18], how-
ever the parameters required for this construction to provide a sufficient security
level and reasonable number of signatures per key pair resulting in a fairly large
signature above 1 MB. SPHINCS [5] improves upon this construction in several
aspects and first demonstrates that stateless schemes can be practical and pro-
vide a reasonable signature size (41 KB) while computing hundreds of signatures
per second on a modern CPU.

The performance of SPHINCS directly relates to the underlying crypto-
graphic hash function and therefore the performance of this function is critical,
which will be the main focus of this work. The requirements for this function
also differ from the classic use cases for cryptographic hash functions, as we do
not require collision resistance and the inputs for most calls are rather short,
typically 256 or 512 bits.

Contributions. The main goal of this work is to provide a comparison of per-
formance when instantiating SPHINCS with different hash functions on modern
high-end processors found in personal computers and mobile phones. In order
to achieve this we provide several implementations, for modern Intel, AMD and
ARM CPUs, optimized towards the requirements of SPHINCS. This includes
implementations of SHA256, Keccak, Simpira, Haraka and ChaCha opti-
mized for hashing short inputs in parallel utilizing vector instructions and cryp-
tographic extensions available on these microprocessors.

We further instantiate SPHINCS with these implementations and provide a
broad comparison of the costs of generating key pairs, signing messages and ver-
ifying signature on Intel Haswell, Intel Skylake, AMD Ryzen, ARM Cortex A57
and A72. These are also the first optimized implementations for the ARMv8-A
platform for SPHINCS and improve the understanding of the costs of state-
less hash-based signature schemes. This performance results also indicate that
SPHINCS is practical on the architecture used in a growing number of mobile
phones.

Software. The implementations are put in the public domain and are available
under https://github.com/kste/sphincs.

https://github.com/kste/sphincs
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Related Work. So far there is only a limited amount of benchmarks for
SPHINCS available. The original paper proposing SPHINCS [5] provides a refer-
ence implementation and an optimized implementation which utilizes the AVX2
vector extensions for speeding up the underlying ChaCha permutation. In [29]
the authors propose a dedicated short-input hash function Haraka, which uti-
lizes the AES instruction set to speed-up hash-based signature schemes and also
provide some benchmarks for SPHINCS on the recent Intel platforms. The AES-
based permutation design Simpira has recently also been proposed to instantiate
SPHINCS [21] and its performance on Intel Skylake was evaluated. The first
implementation on low-end platforms was provided in [25]. Here the authors
demonstrate that SPHINCS can also be implemented on a 32-bit microcontroller
based on the ARM Cortex M3 with very limited RAM available.

2 The SPHINCS Signature Scheme

In this section we give an overview of the SPHINCS digital signature scheme.
Throughout the paper we will use the same parameters as suggested in [5], which
will give a signature size of 41 KB, public-key size of 1056 bytes and a private-key
size of 1088 bytes. These parameters target a security level of 128 bits against an
adversary who has access to a large enough computer and allow up 250 signatures
for a key pair. For more details we refer the reader to [5].

First, we will give a brief description of the main components used for
SPHINCS and provide some insights on how much impact the performance of
the underlying primitives has on the performance of SPHINCS. In particular,
we are interested in two functions

F : {0, 1}256 → {0, 1}256
H : {0, 1}512 → {0, 1}256. (1)

which, as we will see later, are responsible for most of the computations in
SPHINCS.

2.1 Hash Trees

At various points in the construction, SPHINCS uses a hash tree (also known
as Merkle tree). A hash tree is a full binary tree of height h. We denote the
ith node at level j of this tree as Ni,j , hence the root corresponds to N0,h.
Each node, which is not a leaf, gets labeled with the hash of its child nodes
Ni,j = H(N2i,j−1||N2i+1,j−1). Note that in order to drop the requirement for a
collision resistant hash function [13], the inputs to H are further masked in all
hash trees used in SPHINCS.

An important term related with hash trees is the authentication path. The
authentication path Authi serves as a proof that the node Ni,j is part of the
hash tree with root N0,h. It contains the minimal number of nodes which are
required to recompute the root of a hash tree given Ni,j . This newly computed
root can then be compared with the previously commited one to verifiy that Ni,j

is indeed part of the original tree.
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2.2 One-Time Signature: WOTS+

As a one-time signature SPHINCS uses WOTS+ [24], which has a parameter w
allowing a trade-off between signature size and number of computations. Further,
we derive the following parameters

l1 =
⌈ n

log w

⌉
, l2 =

⌊ log (l1(w − 1))
log w

⌋
+ 1, l = l1 + l2. (2)

In the case of SPHINCS w = 16, thus l = 67. Additionally, we use F to
construct the chaining function

ci(x) = F(ci−1(x) ⊕ Qi) (3)

where Qi is a round specific bitmask and c0(x) = x.

Key Generation. The keys are derived from an initial secret key S which is
expanded using a pseudo-random generator (PRG) to obtain a sequence of secret
keys sk = (sk1, . . . , sk67) for WOTS+. The public key pk is then computed by
applying the chaining function on each part of the secret key

(pk1, . . . ,pk67) = (cw−1(sk1), . . . , cw−1(sk67)). (4)

In order to reduce the size of this public key we build a hash tree on top of it to
obtain pk. As l is usually not a power of two the L-tree [13] construction is used.
This structure is similar to a binary tree, however if there is an odd number of
nodes on a level the rightmost node is lifted up one level (see Fig. 1). The root
of the resulting tree is then used as the public key pk.

Signing. A message m is signed by first computing the base w representation
of the message M = (M1, . . . Ml1). The next step is to compute a checksum∑l1

i=1(w − 1 − Mi) and also its base w representation C = (C1, . . . , Cl2). We
concatenate these values and obtain B = (B1, . . . , Bl) = M ||C. The signature
for M is then given by

σ = (σ1, . . . , σl) = (cB1(sk1), . . . , cBl(skl)). (5)

Verification. The process of verifying a signature σ of a message m with the
public key pk is done in a similar way. First, we have to recompute B and then
compute

(pk′
1, . . . ,pk′

l) = (cw−1−B1(σ1), . . . , cw−1−Bl(σl)) (6)

Note that the correct bitmasks have to be used in each step of the chaining
function to get the correct results. The final step is to recompute the root of the
L-tree and check if pk′ = pk.

2.3 Few-Time Signature: HORST

The second important component of SPHINCS is a few-time signature scheme.
SPHINCS uses HORST, which is a variant of HORS [31] with an additional tree
structure. HORST has two parameters t and k, which are t = 216 and k = 32 in
the case of SPHINCS.
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Fig. 1. WOTS+ key generation using an L-tree for computing the public key.

Key Generation. In order to generate the secret key we expand a secret S to
obtain sk = (sk1, . . . , skt), similar to the WOTS+ key generation. The elements
of this list are used to generate the leaves of a binary tree by computing F(ski).
We then compute a hash tree on top of these leaves and the public key is the
root node.

Signing. For signing, the message m is split into k pieces of length log t giving
us M = (M1, . . . , Mk). Next, we interpret each Mi as an integer and compute
the signature as σ = (σ1, . . . , σk, σk+1). Each block σi = (skMi

,AuthMi
) for all

i ≤ k. This corresponds to the Mith element in the secret key and AuthMi
are

the elements required for computing the authentication path up to level 10 (see
Fig. 2). Finally, σk+1 contains all nodes at level 10 of the tree.

Verification. The verification process is very similar. First, the received parts
of the secret key are hashed using F. Together with the authentication paths
this allows us to recompute the nodes at level 10 for each ski. These can then
be verified with the values given in σk+1. Finally, the nodes in σk+1 are used to
recompute the root of the tree which has to be equal to pk.

2.4 Putting Everything Together

SPHINCS uses a nested tree structure consisting of 12 layers of trees of height
5 (see Fig. 3). Each tree is a binary tree where the leaves are the public key of
a WOTS+ key pair. The top layer consists of a single tree and each key pair in
the leaves is used to sign the root of another tree. Hence, on the second layer we
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Fig. 2. Signing process in the HORST few-time signature scheme. In this case sk2 and
sk7 are chosen by m and all the blue nodes are part of the authentication path and
therefore part of the signature. (color figure online)

will have 32 trees. This process is repeated until we reach the bottom layer. On
the bottom layer we use the final WOTS+ keys to sign a HORST public key,
which is then used to sign the message.

Key Generation. For generating the keys in SPHINCS we choose two random
256-bit values S,S ′. The first value is used during the key generation and the
second one for signing. Furthermore, we need to generate all the bitmasks Q for
WOTS+, HORST and the binary hash trees. For the public key pk we only need
to compute the root of the tree at the top and therefore have to generate the 32
WOTS+ key pairs. The secret key is then (S,S ′, Q) and the public key (pk, Q).

Signing. The first step is to select a HORST key to sign the message. We use
a pseudorandom function (which involves S ′) to compute the index idx of the
HORST key pair which we then use to sign a randomized digest R derived from
m giving us the signature σHORST . Note that the HORST key pair is fully
determined by this idx and the secret key S.

The next step is to generate the WOTS+ key pair which signs the HORST
public key used when computing σHORST . This again depends entirely on S and
the position in the tree and gives us the WOTS+ signature σw,1. The public key
for this WOTS+ signature is part of another tree and needs to be authenticated
again. We therefore compute the authentication path Authw,1 for pkw,1.

This procedure of signing the root with a WOTS+ key pair and computing the
authentication path is repeated until we reach the top layer. The full signature
then consists of

σ = (idx, R, σHORST , σw,1,Authw,1, . . . , σw,12,Authw,12). (7)
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Fig. 3. Virtual tree structure used in SPHINCS.

Verification. The verification process consists of recomputing the randomized
digest for the message and first verifying σHORST . If this is successful we continue
with the verification of σw,1 and all further signature σw,i until we reach the root
of our tree. If all verifications succeed and the root of the top tree equals pk the
signature is accepted.

3 How to Instantiate SPHINCS?

The performance of SPHINCS strongly correlates with the performance of two
functions F and H which have the following security requirements

– Preimage Resistance: For a given output y it should be computationally
infeasible to find an input x′ such that y = f(x′).

– Second-Preimage Resistance: For a given x and y = H(x) it should be
computationally infeasible to find x′ �= x such that f(x′) = y.

– Undetectability: It should be computationally infeasible for an adversary
to predict the output.

For F we require preimage resistance, second-preimage resistance and unde-
tectability, while H has to be second-preimage resistant. The best generic attacks
against an ideal function with an output size of n bits require 2n calls to the
function respectively 2n/2 on a quantum computer using Grover’s algorithm. In
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the case of SPHINCS an attacker with access to a quantum computer should
not be able to succeed in violating any of these properties with less than 2128

calls to the underlying function.
Contrary to a generic cryptographic hash function these requirements are

very different. For instance we do not require those functions to be collision
resistant, which in general is a much stronger requirement. Various crypto-
graphic hash functions in the past have been broken in this setting like MD4 [35],
MD5 [37] or SHA-1 [36] and while one can construct collisions in practice for all
these functions, finding a preimage is still very costly, even for MD4 [22,30]. The
second difference is that these functions have a fixed input size. Most hash func-
tions only reach their best performance for longer messages and several attacks
are also only applicable for long messages.

Before, we discuss the different choices we first take a closer look at how many
calls to these functions are required for key generation, signing and verification
(also see Table 1). For generating the key in SPHINCS we need to do 32 WOTS+

key generations (and the corresponding L-tree) and construct the hash tree. In
total this amounts to 32 ·(67 ·15) = 32160 computations of F and (32 ·66)+31 =
2143 computations of H.

Table 1. Costs in term of F and H for the operations in SPHINCS.

Operation Calls to F Calls to H

Key generation 32160 2143

Signing 451456 93406

Verification ≤ 12092 1235

For signing we need to compute one HORST signature and 12 trees which
include the costs for one WOTS+ key generation each. Note that the WOTS+

signature can already be extracted while generating the WOTS+ key pairs. This
means that one signature requires at least 65536+ (12 · 32160) = 451456 calls to
F and 65535 + 12 · 2144 + 2143 = 93406 calls to H.

For verification we need one HORST verification and 12 WOTS+ verifications
(including the L-tree) which corresponds to at most 12 · (67 · 15) + 32 = 12092
calls to F and (12 · (66 + 5)) + 383 = 1235 calls to H.

3.1 ChaCha

ChaCha is a family of stream ciphers [4]. In the original SPHINCS design both
F and H are constructed from the 512-bit permutation πChaCha. If πChaCha

represents 12 rounds of the ChaCha permutation then

F(M1) = Trunc(πChaCha(M1||C))

H(M1||M2) = Trunc(πChaCha(πChaCha(M1||C) ⊕ (M2||0256))
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where M1,M2 are 256-bit messages and C is a 256-bit constant. Trunc is a
function which truncates the output to 256 bits.

The best attack on the ChaCha stream cipher can recover a secret key for
7 rounds [2], however no concrete analysis exists in the construction used here.
The building block used for the SHA-3 candidate Blake [3] shares a lot of
similarities with the permutation used for ChaCha and it is likely that similar
attack strategies can be applied. The best (second)-preimage attacks on Blake
only cover 2.75 rounds and a (pseudo) preimage attack on 6.75 rounds of the
compression function exists [16].

3.2 SHA256

SHA256 is one of the most widely used cryptographic hash functions. It was
published in 2001 and designed by the NSA. The compression function processes
blocks of 512-bit using the Davies-Meyer construction and can be directly used
to build both F and H1. We denote these functions as SHA256-F and SHA256-
H. The best preimage attacks on SHA256 reach 45 out of 64 rounds [28] and are
only slightly faster than bruteforce. In [1], the costs of finding a preimage using
Grover’s quantum algorithm [19] for SHA-256 have been estimated at around
2166 basic operations.

3.3 Keccak

Keccak is a family of cryptographic hash functions based on the Sponge con-
struction and has been standardized as SHA-3 (FIPS PUB 202). It offers a range
of permutations of size b = 25 · 2l for l = 0, . . . , 6. For an output size of 256-bit
the SHA-3 standard specifies to use Keccak[b = 1600, c = 512]. This would
allow us to instantiate F and H with a single call to the permutation, as we can
process up to 1088 bits. However, this seems quite an inefficient use and it might
be beneficial to use a smaller permutation. Recently, two versions of Keccak
with a reduced number of rounds have been proposed [8]. KangarooTwelve
for 128-bit security and MarsupilamiFourteen for 256-bit security.

The capacity c in a sponge directly relates to the security level and in the
classical setting a Sponge requires c = 512, to have 256-bit second-preimage
resistance. However, it is not clear whether we need a capacity of 512 bits if we
only require 2128 security against a quantum adversary.

In order to evaluate the potential of using Keccak in SPHINCS we choose
both a smaller permutation and reduce the number of rounds

Keccak-F(M) = Trunc(Keccak[b = 800, rounds = 12, c = 256](M))
Keccak-H(M) = Trunc(Keccak[b = 800, rounds = 12, c = 256](M)).

(8)

The best preimage attacks on Keccak with an output size of 256-bit can
cover 4 rounds of Keccak [23], apart from a slight improvement over brute force
1 To separate the domains of the two functions one could use a different IV or round

constants.
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with huge memory for 8 rounds [10]. The costs of applying Grover’s quantum
algorithm to find a preimage for SHA3-256 have also been estimated at around
2166 in [1]. Overall, taking into account the restricted setting a reduced-round
version of Keccak seems reasonable for this use case.

3.4 Haraka

Haraka is a short-input hash function, specifically designed for the use in hash-
based signature schemes [29]. The construction uses an efficient 256-bit (resp.
512-bit) permutation based on the AES with a simple mode (see Fig. 4) to build
the two functions F and H.

The best preimage attacks by the authors can find a preimage for 3.5 respec-
tively 4 out of 5 rounds. For an earlier version of Haraka-H there also exists
an attack exploiting weak round constants which can find a preimage in 2192

evaluations [26], however this attack is not applicable to the current version.

Fig. 4. Using a permutation π to construct a short-input hash function.

3.5 Simpira

Simpira is a family of cryptographic permutations [20] that supports an input
size of b · 128. The design is based on generalized Feistel networks and uses the
AES round function for updating the branches. The variants with b = 2 and
b = 4 can be used in the same mode as Haraka to construct

Simpira-F(M) = Simpira[b = 2](M) ⊕ M

Simpira-H(M) = Trunc(Simpira[b = 4](M) ⊕ M).
(9)

The security claim for Simpira is that no distinguisher with costs < 2128

exists, but so far no concrete preimage attacks have been published.

4 Efficient Implementations for F and H

The target platforms for our implementations are on one hand the recent x86
CPUs by Intel (Haswell and Skylake), AMD (Ryzen) and on the other hand the
ARMv8-A architecture, which has a large share in the mobile phone market.
In order to understand how to efficiently implement our primitives on these
platforms we give a quick overview of the most important features we utilize.
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4.1 Instruction Pipeline

Modern CPUs have an instruction pipeline, which allows some form of paral-
lelism on a single CPU core. This is realized by splitting up an instruction into
different stages which can be executed in the same cycle. In order to assess the
performance of an instructions we use two notions, the latency and the inverse
throughput. Latency corresponds to the number of clock cycles we have to wait
until we get the result of an instruction, while the inverse throughput is the
number of clock cycles we have to wait until we can issue the same instruction
again.

Utilizing the pipeline is an important performance consideration and can
especially be useful for instructions with a high latency and low inverse through-
put. This has previously been studied in various AES-based designs [20,27,29] to
increase the performance of cryptographic operations. In the case of SPHINCS
it is particularly easy to keep the pipeline filled up, as one has multiple inde-
pendent inputs available for most operations. For instance, the WOTS+ chains
can be computed in parallel and most levels of a hash tree allow a high degree
of parallelism.

4.2 Vector Instructions

Another important feature of modern microprocessors are vector units which
provide parallelism through single instruction, multiple data (SIMD) instruc-
tions. These instructions allow to apply the same operation to multiple values
stored in a vector register and can significantly increase the throughput. For
many cryptographic primitives the fastest implementations utilize SIMD instruc-
tions. While we often have to pack the data in a specific format, these costs are
compensated by processing multiple messages/blocks in parallel. Especially in
the case of hash-based signature where multiple independent inputs are almost
constantly available it allows us to fully utilize this feature for a very efficient
implementation.

On the current Intel and AMD platforms2 the vector extensions is called
AVX2, which features 16 registers of 256-bit. This will be further extended to
AVX-5123, allowing to operate on 512-bit vectors which will likely speed-up all
vector implementations through the higher degree of parallelism.

The ARMv8-A architecture offers the NEON instruction set, which allows to
operate on 128-bit vectors. Future ARM platforms [34] will come with a scalable
vector extension (SVE), supporting vectors up to a size of 2048 bits and hence
allowing 16 times the parallelism compared to the current ARM processors.

2 AVX2 is available since Intel Haswell, for older platforms the predecessor AVX can
be used which supports 128-bit vectors.

3 AVX-512 can already be found in Xeon Phi (Knights Landing) and Skylake-X pro-
cessors.



216 S. Kölbl

4.3 Crypto Extensions

An increasing number of platforms provide instructions carrying out crypto-
graphic operations, which provide a significant speed-up for the supported prim-
itives while also providing a constant running time and protection against cache-
timing attacks. All recent Intel platforms provide instructions for the round func-
tion of the AES and a similar extensions is available on ARMv8-A. Additionally,
the ARM crypto extensions support SHA-1 and SHA256. On the newest AMD
platform Ryzen these instructions are also available and support for them is
also planned for the next generation of Intel processors. An overview of these
instructions and their performance characteristics is given in Table 3.

4.4 ChaCha-F and -H

The ChaCha permutation is very fast in software and benefits strongly from
the SIMD features on modern CPUs, which is also one of the main motivations
why the SPHINCS designers use it for instantiating SPHINCS. As the design
is based on 32-bit words, AVX2 can be utilized to process up to 8 blocks in
parallel. Similar, using ARM NEON we can process 4 blocks in parallel. On
Intel platforms we use the original AVX2 implementation of ChaCha provided
with SPHINCS in [6]. For ARM we use the implementation by Romain Dolbeau
available in Supercop [6], as it is the fastest available using on the ARM Cortex
A57, to construct ChaCha-F and ChaCha-H.

4.5 SHA256-F and -H

SHA256 is also based around operations on 32-bit words and therefore bene-
fits in the same way as ChaCha from the use of SIMD instructions. For Intel
Haswell and Skylake we implemented SHA256 using AVX2 processing 8 blocks
in parallel.

We use eight registers, where each one contains one 32-bit word of the state
Si for all eight blocks (see Fig. 5). We assume that the incoming message blocks
lie consecutively in memory and load them into 16 256-bit vectors. In order to
have an efficient implementation of the message expansion we have to transpose
the content of these vectors. This adds an overhead of 32 pack/unpack and 16
permute instructions. Note that this is not required for the state words, as we
can simply use the transposed initial value.

By using this data representation the round function and message expansion
can be implemented very efficiently and we require the same number of oper-
ations as none vectorized implementation. In order to get the correct output
format we have to again transpose the state which adds another 16 pack/unpack
and 8 permute instructions.

For AMD Ryzen and ARM we use the SHA256 crypto extensions as those
implementations compare favorable in performance. The latency of these instruc-
tions is fairly high on both platforms and therefore we interleave four calls in
parallel to make use of the instruction pipeline.
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Fig. 5. On the left the SHA256 state update and on the right the mapping of the state
for the eight blocks to the registers. Aj

i corresponds to the word A as input to round i
for block j.

4.6 Keccak-F and -H

KangarooTwelve already utilizes SIMD instructions and we base our con-
struction of Keccak-F and Keccak-H on the available implementation [7] of
Keccak[b = 1600, r = 12] processing 4 blocks in parallel. The same strategy can
be used to implement Keccak[b = 800, r = 12] processing 8 blocks in parallel.
Compared to SHA-3 as defined in FIPS PUB 202 we can gain a factor of ≈ 4 in
speed as we can process double the number of blocks with half the number of
rounds when using Keccak[b = 800, r = 12].

For ARM we can use a similar approach, however only 2 (for Keccak[b =
1600, r = 12]) resp. 4 blocks can be processed in parallel. For hashing a single
input we use the ARMv8 implementation provided in the Keccak Code pack-
age [7] and for multiple inputs we implemented a version of Keccak[b = 800, r =
12] processing four blocks in parallel using a strategy similar to the x86 imple-
mentation.

4.7 Haraka

For x86 we use the latest version of Haraka available online4 and the only
difference between the platforms is to find the optimal number of parallel
calls. Depending on the platform it is better to interleave four or eight calls
to Haraka-F resp. Haraka-H, which is related to the latency of the aesenc
instruction (see Table 3). We therefore use eight calls in parallel on Haswell and
four on Skylake/Ryzen.

One of the main difference between the AES instruction set on Intel and
ARM is that on ARM one round of AES is split up into two instructions aese
and aesmc. It is very important that these two instructions are adjacent, as
this significantly reduces the latency5. Another difference is that on Intel the
key addition happens at the end of the round which aligns with the Haraka

4 See https://github.com/kste/haraka.
5 see ARM Cortex A57 Software Optimization Guide, Page 35.

https://github.com/kste/haraka
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specification while the aese instruction on ARM adds the key at the beginning.
One AES round on these platforms is therefore defined as

aesenc = AddKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes
aesmc ◦ aese = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddKey.

(10)

For an efficient implementation we can use a different set of round con-
stants to take this into account. Haraka-256 uses the round constants RC2i

and RC2i+1 in the ith AES layer. In the ARM implementation we use an all
zero constant for the first call and RC0, RC1 for the second layer. For the third
AES layer we compute RC ′

2||RC ′
3 = mix−1

256(RC2, RC3) (see Fig. 6). For the mix-
ing operation used in Haraka we can replace pack/unpack with the equivalent
instruction on ARM zip1 and zip2.

Fig. 6. Implementation of Haraka-256 on ARM using the AES specific instructions.
The order of mix and the addition of round constants are exchanged to facilitate the
free XOR from the key addition of aese.

4.8 Simpira

Simpira is another design which utilizes the AES round function, but in a Feistel
network and therefore can be implemented with the AES instructions available
on both x86 and ARM. The key addition is used to add a constant and to
realize the XOR in the Feistel. On Intel we use the implementation provided by
the Simpira designers6 while for ARM we provide a new implementation.

Similar to the case of Haraka it is important to have aese and aesmc
aligned and interleave the calls to hide the latency. Also the different order of
the key addition needs to be taken into account, which requires an additional
XOR per round for b = 2 respectively two XORs for b = 4 to realize the Feistel
networks used in Simpira. In the x86 implementation these XORs are for free
as the key addition happens at the end of aesenc which can be used to XOR
with the other branches. Overall this adds a slight overhead compared on the
ARM platforms, but still allows a very efficient implementation.

6 See http://mouha.be/simpira/.

http://mouha.be/simpira/
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5 Performance Results

We base our implementation of SPHINCS on the source code provided by the
SPHINCS authors, which is also available in [6], and instantiate F and H with
the previously discussed primitives to measure the number of cycles required to
perform key generation, signing and verification.

The platforms we use for benchmarking include an Intel Haswell (i7-4770S
with 3.1 GHz), an Intel Skylake (i7-6700 with 3.4 GHz), an AMD Ryzen (1700
with 3.7 GHz), ARM Cortex A57 (Samsung Galaxy S6 with 2.1 GHz) and an
ARM Cortex A72 (Samsung Chromebook Plus with 2.0 GHz). All benchmarks
are done on a single core and any frequency scaling technologies like Turbo Boost
are deactivated. For measuring the cycle count we use the available performance
counter on Intel/AMD and the wall-clock time on ARM. For compiling we use
gcc version 6.3.0 with the flags -O3 -mavx2 -march=native -mtune=native
-fomit-frame-pointer on Intel/AMD and for ARM we crosscompile with -O3
-mcpu=A57+crypto -fomit-frame-pointer.

As a first step we measured the performance of F and H for all our primitives
on all platforms (see Figs. 7 and 8). We only highlight here the performance
for processing multiple inputs in parallel, as in SPHINCS only a minority of
the operations can not be parallelized. For single inputs the performance drops
especially for the otherwise vectorized implementations of ChaCha, Keccak
and SHA256 (on Intel). In general the gap between the implementations utilizing
crypto specific instructions and the vectorized implementations is much smaller
on Intel than on ARM. Especially, Keccak suffers from the smaller vector size
and the higher latency and worse throughput of the vector instructions on ARM
(see Table 3).

The performance numbers of these functions reflect directly in the costs for
carrying out key generation, signing and verification in SPHINCS. In Table 2,
we give an overview of the exact number of cycles required for each operation
for the different instantiations of SPHINCS. Unsurprisingly, signing is the most

Fig. 7. Performance of F on different platforms for processing multiple inputs in par-
allel. All numbers given are in cycles per byte.
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Fig. 8. Performance of H on different platforms for processing multiple inputs in par-
allel. All numbers given are in cycles per byte.

Fig. 9. Number of cycles for signing one message.

costly operation and allows the biggest gains for highly optimized designs like
Haraka and Simpira. As we can see in Table 1, signing requires to call F
five times more often than H and therefore the performance for F is of greater
importance (Fig. 9).

On ARMv8-A the gap between the performance of the primitives without
hardware support (ChaCha and Keccak) and those with is much wider.
SPHINCS-Haraka is around eight times faster for signing than SPHINCS-
Keccak on the ARM Cortex A57, while the biggest gap on Skylake is only
a factor of five. This again comes with no surprise, as the underlying functions
exhibit a similar difference in performance on this platform. The performance
of SPHINCS on mobile devices with the ARM Cortex A57 is very practical and
on the Samsung Galaxy S6 used here which has four cores we can compute over
hundred signatures per second for the SPHINCS instantiations which utilize
hardware support.
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Table 2. Benchmarks of SPHINCS on different platforms. All results are the median
value of 100 measurements.

Architecture Primitive KeyGen Sign Verify

Intel Haswell ChaCha 3.295.808 52.249.518 1.495.416

Haraka 2.027.136 33.640.796 592.036

Keccak 7.564.068 122.517.136 2.366.644

SHA256 9.676.984 157.270.152 3.804.288

Simpira 2.108.364 33.210.104 595.524

Intel Skylake ChaCha 2.839.018 43.495.454 1.291.980

Haraka 1.340.338 20.782.894 415.586

Keccak 6.589.798 108.629.952 2.152.066

SHA256 8.724.516 142.063.840 2.812.466

Simpira 1.808.830 28.408.658 520.832

AMD Ryzen ChaCha 3.648.660 63.427.980 1.587.120

Haraka 965.430 15.545.370 258.660

Keccak 11.354.460 189.986.970 3.739.140

SHA256 3.267.180 53.332.380 1.090.650

Simpira 1.261.590 20.439.600 335.790

ARM Cortex A57 ChaCha 10.361.344 193.512.960 3.488.256

Haraka 2.246.656 47.100.928 717.824

Keccak 22.006.272 376.908.288 7.358.464

SHA256 5.292.032 92.088.832 1.679.872

Simpira 3.362.304 63.489.536 1.108.992

ARM Cortex A72 ChaCha 10.940.928 199.582.208 3.666.944

Haraka 2.320.384 45.261.312 737.280

Keccak 22.963.712 392.445.952 7.640.064

SHA256 5.359.616 92.767.744 1.717.760

Simpira 3.412.480 62.707.712 1.131.520

5.1 Comparison with Other Signature Schemes

To put the performance of SPHINCS into context with other recently proposed
post-quantum digital signature schemes we provide a short overview with some
of the candidates submitted to the NIST post-quantum competition. For most
schemes there is only a limited amount of benchmarks available and those imple-
mentations are usually only optimized for x86. We therefore restrict this com-
parison to the platforms where optimized implementations exist.

Dilithium is a lattice-based signature scheme based on module lattices [15].
The set of parameters for which the authors claim 128-bit post-quantum secu-
rity leads to a signature size of 2.7 kB. The authors also provide an optimized
implementation utilizing AVX2 which on Haswell takes 251.590 cycles for key
generation, signing 112.716.000 and verification 58.680.000.
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Another candidate for lattice-based signature schemes is Falcon [17], which
is based on the short integer solution problem over NTRU lattices. Choosing
parameters which provide a similar security level as SPHINCS leads to a sig-
nature size of 1.2 kB. The authors also provide benchmarks on Skylake: Key
generation takes 64.812.000, signing 1.074.219 and verification 186.472 cycles.

MQDSS [12] is a signature scheme based on the problem of solving mul-
tivariate quadratic equations. For the 128-bit post-quantum security level the
signature size is comparable to SPHINCS at 41 kB. An optimized AVX2 imple-
mentation exists and on Haswell the scheme achieves a performance of 1.826.612
cycles for key generation, 8.510.616 for signing and 5.752.612 for verification.

A new digital signature scheme, based on non-interactive zero-knowledge
proofs, named Picnic has been proposed [11]. The security also is based on the
security of symmetric-key primitives similar to SPHINCS7. For the proposed
parameters and instantiation Picnic has a signature size of 195 kB, however con-
trary to SPHINCS the size of the signature is also influenced by the choice of the
symmetric-key primitive. The authors provide benchmarks on Haswell for Picnic
instantiated with LowMC: Key generation takes 36.000, signing 112.716.000 and
verification 58.680.000 cycles.

6 Conclusion

We presented a detailed discussion of how to instantiate SPHINCS, what the
requirements are and how the performance relates to the underlying crypto-
graphic hash function. Further, we provide an overview of promising candidates
for instantiating SPHINCS and discuss their security and performance charac-
teristics.

We provided benchmarks on Intel Haswell, Intel Skylake and ARM Cor-
tex A57 for these primitives based on implementations optimized towards the
requirements for hash-based signature schemes. Further, we provided a compar-
ison of SPHINCS instantiated with those primitives.

Overall we can see that on current platforms the performance for primitives
utilizing the crypto extensions is favorable compared to others and also the
difference between Intel and ARMv8-A is smaller. However, all primitives relying
on vectorized implementations get a significant slow down on ARMv8-A. Future
platforms, with support for larger vectors, are in the pipeline and will very likely
give a significant performance boost to hash-based signature schemes and will
make those primitives more competitive.
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7 The main difference is that SPHINCS has a security proof in the standard model
and Picnic in the quantum random-oracle model (QROM).
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A Instructions

In Table 3 we give an overview of the performance characteristics8,9 of the
instructions on the different platforms. Note that on the ARM Cortex A57/A73
a pair of aese and aesmc will have a latency of 3 and inverse throughput of 1.

Table 3. Comparison of the latency L and inverse throughput T of several instructions
used in the implementations.

Instruction Platform L T Description

vpxor, vpand, vpor Haswell 1 0.33 XOR/AND/OR of 256-bit vectors

Skylake 1 0.33

Ryzen 1 0.5

veor, vand, vorr Cortex A57 3 2 XOR/AND/OR of 128-bit vectors

Cortex A72 3 2

vpslld Haswell 1 1 Shift of words in 256-bit vectors

Skylake 1 1

Ryzen 1 2

vshl Cortex A57 3 1 Shift of words in 128-bit vector

Cortex A72 3 1

punpckhdq,
punpckldq

Haswell 1 1 Interleave upper/lower halves of two
128-bit vectors

Skylake 1 1

Ryzen 1 0.5

zip1, zip2 Cortex A57 3 2

Cortex A72 3 2

aesenc Haswell 7 1 SubBytes, ShiftRows, MixColumns,
AddKey

Skylake 4 1

Ryzen 4 0.5

aese, aesmc Cortex A57 3 1 AddKey, SubBytes, ShiftRows /
MixColumns

Cortex A72 3 1

SHA256RNDS2 Ryzen 4 2 Two rounds of SHA256

SHA256MSG1 Ryzen 2 0.5 Helper for message expansion

SHA256MSG2 Ryzen 3 2

sha256h Cortex A57/A72 6 1 SHA256 state update

sha256h2 Cortex A57/A72 6 1

sha256su0 Cortex A57/A72 3 1 SHA256 message expansion

sha256su1 Cortex A57/A72 6 1

8 For Intel/AMD see: https://software.intel.com/sites/landingpage/IntrinsicsGuide
and http://agner.org/optimize/instruction tables.pdf.

9 For ARM see: http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cort
ex A57 Software Optimization Guide external.pdf.

https://software.intel.com/sites/landingpage/IntrinsicsGuide
http://agner.org/optimize/instruction_tables.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
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Abstract. A recent paper by Costello and Hisil at Asiacrypt’17 presents
efficient formulas for computing isogenies with odd-degree cyclic kernels
on Montgomery curves. We provide a constructive proof of a general-
ization of this theorem which shows the connection between the shape
of the isogeny and the simple action of the point (0, 0). This generaliza-
tion removes the restriction of a cyclic kernel and allows for any separable
isogeny whose kernel does not contain (0, 0). As a particular case, we pro-
vide efficient formulas for 2-isogenies between Montgomery curves and
show that these formulas can be used in isogeny-based cryptosystems
without expensive square root computations and without knowledge of
a special point of order 8. We also consider elliptic curves in triangular
form containing an explicit point of order 3.

Keywords: Vélu’s formulas · Montgomery form · 2-isogenies · SIDH
Post-quantum cryptography

1 Introduction

Ever since their introduction to public-key cryptography by Miller [Mil86] and
Koblitz [Kob87], elliptic curves have been of interest to the cryptographic com-
munity. By using the group of points on an appropriately chosen elliptic curve
where the discrete logarithm problem is assumed to be hard, many standard
protocols can be instantiated. Notably, the Diffie–Hellman key exchange [DH76]
and the Schnorr signature scheme [Sch89] and its variants [Acc99,BDL+12] allow
for efficient implementations with high security and small keys. The efficiency of
these curve-based algorithms is largely determined by the scalar multiplication
routine, and as a result a lot of research has gone into optimizing this operation.

However, the threat of large-scale quantum computers has initiated the search
for alternative algorithms that also resist quantum adversaries (which the clas-
sical curve-based systems do not [Sho94]). Building on the work of Couveignes
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[Cou06] and Rostovsev and Stolbunov [RS06], in 2011 Jao and De Feo [JF11]
proposed supersingular isogeny Diffie–Hellman (SIDH) as a key exchange proto-
col offering post-quantum security. Being based on the theory of elliptic curves,
SIDH inherits several operations from traditional curve-based cryptography. As
such, it has immediately benefited from decades of prior research into optimiz-
ing their operations. In particular, the Montgomery form of an elliptic curve has
resulted in great performance. Initially proposed by Montgomery to speed up fac-
toring using ECM [Mon87,Len87] and having been used for very efficient Diffie–
Hellman key exchange (eg. Bernstein’s Curve25519 [Ber06]), the current fastest
instantiations of SIDH also employ Montgomery curves [CLN16b,KAK16]. But,
although the optimizations for scalar multiplication immediately carry over, the
work on computing explicit isogenies on Montgomery curves is more limited.

For isogeny computations one commonly uses Vélu’s formulas [Vél71]. How-
ever, if the elliptic curve has a form which is less general than (or different from)
Weierstrass form, the formulas from Vélu are not guaranteed to preserve this.
As isogenies are only well-defined up to isomorphism, one can post-compose
with an appropriate isomorphism to return to the required form, but it may not
be obvious with which isomorphism, or the isomorphism may be expensive to
compute. A more elegant approach is to observe some extra structure on the
curve model and require the isogenies to preserve this. For example, Moody and
Shumow [MS16] apply this idea to Edwards and Huff curves by fixing certain
points. Moreover, since the isogeny is invariant under addition by kernel points,
there is a close connection between the isogeny and the action (by translation)
of some chosen point. We make this more explicit in Theorem 1 for curves in
Weierstrass form.

So far the approaches for obtaining formulas for isogenies on Montgomery
curves have been rather ad hoc. In [FJP14], De Feo, Jao and Plût apply Vélu’s
formulas and compose with the appropriate isomorphisms to return to Mont-
gomery form. As noted in [FJP14, Sect. 4.3.2], this approach fails to produce
efficient results for 2-isogenies. That is, either one has to compute expensive
square roots in a finite field (see eg. [CJL+17, Sect. 3.1]), or one relies on having
an appropriate point of order 8. However, this point of order 8 is not readily
available for the final two 2-isogenies. As one suggested workaround in [FJP14]
they derive formulas for 4-isogenies between two curves in Montgomery form and
propose to compute 2e-isogenies as a chain of 4-isogenies. As a result, optimized
SIDH implementations [CLN16a,KAK16] have employed curves where e is even
so that 2e-isogenies can be comprised entirely of 4-isogenies. In [CH17], Costello
and Hisil present elegant formulas for isogenies between Montgomery curves, but
their theorem covers only the case of odd cyclic kernels and subsequently also
does not address the case of 2-isogenies. Moreover, there is no justification for
the derivation of these isogenies (except for showing that they work).

We bridge this gap by providing a more thorough analysis on isogenies
between Montgomery curves. We show that the isogenies arising in [CH17] are
exactly those fixing (0, 0). Since we enforce the isogeny to fix (0, 0), this point
cannot be in the kernel. We show in Proposition 1 that this is the only restric-
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tion, and as a result present a generalization of [CH17, Theorem 1]. As a special
case, we obtain formulas for 2-isogenies for 2-torsion points other than (0, 0).
We then show that this point can be naturally avoided in well-designed isogeny-
based cryptosystems (see Sect. 4.3), and discuss the application of the 2-isogeny
formulas to isogeny-based cryptosystems.

Finally, although currently it does not give rise to faster isogeny formulas,
we consider it worthwhile to point out that the same techniques immediately
apply to other models. In particular, models derived from the Tate Normal
Form [Hus04, Sect. 4.4], where one could expect to get simple �-isogenies for
� ≥ 3. We work out the case � = 3, also known as the triangular form [BCKL15],
and derive isogenies by again fixing the action of the special point (0, 0).

Organization. We begin by recalling some background on elliptic curves, iso-
genies and SIDH in Sect. 2. We state a theorem in Sect. 3 that allows to describe
an isogeny in terms of the abscissas of its kernel points and their translations by
a chosen point Q. We apply this to Montgomery curves in Sect. 4 and to curves
in triangular form in Sect. 5, in both cases using Q = (0, 0).

2 Preliminaries

An elliptic curve E defined over a field K is by definition [Gal12,Sil09] the curve

E/K : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3, (1)

where a1, a2, a3, a4, a6 ∈ K such that E is non-singular. It is embedded into P
2

with a single point OE = (0 : 1 : 0) on the line Z = 0. This form is commonly
referred to as Weierstrass form and the specified base point (implicitly) is OE .
On the open patch defined by Z �= 0 we can set x = X/Z and y = Y/Z and
work on the corresponding affine curve inside A

2 given by

E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

We can move back to the projective curve by mapping (x, y) �→ (x : y : 1).
Therefore, although many equations are given in affine coordinates, they can
easily be transformed into projective ones. For any extension L/K, the set of L-
rational points E(L) forms a group with identity OE [Sil09, Proposition 2.2(f)].
A subgroup G ⊂ E(K̄) is said to be defined over K if σ(P ) ∈ G for all σ in the
Galois group Gal(K̄/K).

Isogenies. Let E and ˜E be elliptic curves. An isogeny φ from E to ˜E is a sur-
jective morphism such that φ(OE) = O

˜E [Sil09, Sect. III.4]. The (finite) degree
d of an isogeny is its degree as a morphism, and we say an isogeny is separable
if #ker(φ) = d. In this paper every isogeny that appears is assumed to be sepa-
rable. Given a finite subgroup G ⊂ E(K̄) defined over K, there exists a curve ˜E

and an isogeny φ : E → ˜E such that ker(φ) = G [Gal12, Theorem 9.6.19]. The
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curve ˜E is unique up to isomorphism (over K̄) and the isogeny φ is unique up to
post-composition with an isomorphism. The isogeny φ can be made explicit by
using Vélu’s formulas [Vél71] (for some fixed choice for the isogeny).

Montgomery Form. Setting a1 = a3 = a6 = 0 and a4 = 1 gives a curve in the
form E : y2 = x3+ax2+x. We also consider curves in the form by2 = x3+ax2+x,
better known as Montgomery form. Over K̄ these two curve forms are isomorphic
via (x, y) �→ (x, y

√
b), but this isomorphism is only defined over K if

√
b ∈ K.

In particular, if K = Fq and
√

b /∈ K then we call this curve a (non-trivial)
quadratic twist. An easy check shows that Q = (0, 0) is a K-rational point of
order 2, while for any Q4 ∈ E(K̄) we have that [2]Q4 = Q if and only if

Q4 ∈ {(1,±
√

(a + 2)/b) , (−1,±
√

(a − 2)/b)}
If P is any point of order 2 other than Q, then x2

P + axP + 1 = 0.

Tate Normal Form. Suppose we are given a curve E/K containing a point P
of prime order � ≥ 3. We can move P to (0, 0) and its tangent line to the line
y = 0. This transformation is completely K-rational and puts the curve in Tate
Normal Form [Hus04, Sect. 4.4]

y2 + axy + by = x3 + cx2 , a, b, c ∈ K.

In Sect. 5 we focus on the case where � = 3, in which case c = 0 and b �= 0.
Moreover, if b = β3, then the transformation (x, y) �→ (x/β2, y/β3) lets us
assume that b = 1 and thus gives the form

E/K : y2 + axy + y = x3.

Note that β is not necessarily defined over K. However, Proposition 4 shows
that once we start on such a curve, the 3-isogenies will preserve this form. It has
discriminant Δ(E) = a3 − 27 and has a subgroup {OE , (0, 0), (0,−1)} of order
3. The point (0, 0) acts on points outside this subgroup by

(x, y) + (0, 0) =
(−y

x2
,
−y

x3

)

.

This curve is known as a triangular curve [BCKL15] and is isomorphic to
the twisted Hessian curve [BCKL15, Theorem 5.3]

(a3 − 27)x3 + y3 + 1 = 3axy.

SIDH. Let eA, eB , f ∈ Z≥0 such that p = �eA

A �eB

B f − 1 is prime. For K = Fp2

we can then find a supersingular curve E over K [Brö09] such that

#E(K) = (p + 1)2,
E(K)[�eA

A ] = Z/�eA

A Z × Z/�eA

A Z,

E(K)[�eB

B ] = Z/�eB

B Z × Z/�eB

B Z.
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By having the two parties compute isogenies of degree �eA

A resp. �eB

B and compos-
ing we can define a key exchange algorithm [FJP14, Sect. 3.2] similar to Diffie–
Hellman. Since these degrees are exponentially large, they cannot be computed
directly by polynomial evaluation. Instead, we decompose an �eA

A -isogeny as a
sequence of eA isogenies of degree �A, which are efficiently computable for small
�A [FJP14, Sect. 4] (typically �A ∈ {2, 3}). Focusing on one of the sides, the
secret key is a tuple (γ, δ) ∈ Z/�eA

A Z×Z/�eA

A Z where not both γ and δ are divis-
ible by �A. Fixing a basis E(K)[�eA

A ] = 〈P,Q〉, this corresponds to an isogeny
with kernel 〈[γ]P + [δ]Q〉. As the kernel is determined by its generator up to
some invertible scalar multiple, and since at least one of the two scalars must be
invertible, all keys can either be put in the form (1, δ) or (γ, 1).

3 Isogenies on Weierstrass Curves

We begin by stating a straightforward, but rather useful theorem. By assuming
to have knowledge on the action of an isogeny on a single point Q, we can
translate this point by elements of the kernel to obtain a simple description
of the isogeny. Many curve models have a natural choice for this point (eg.
Q = (0, 0) in Montgomery form, see Sect. 4).

Theorem 1. Let K be a field and E/K an elliptic curve in Weierstrass form.
Let G ⊂ E(K̄) be a finite subgroup defined over K and

φ : (x, y) �→ (f(x), c0yf ′(x) + g(x)) , c0 ∈ K̄∗, (2)

a separable isogeny such that ker(φ) = G. Let Q ∈ E(K̄) such that Q /∈ G. Then

f(x) = c1(x − xQ)
∏

T∈G\{OE}

(x − xQ+T )
(x − xT )

+ f(xQ) , for c1 ∈ K̄∗.

Proof. First note that the existence of φ follows from Vélu’s formulas [Vél71],
while a standard result [Gal12, Theorem 9.7.5] shows that it can be written
in the form of (2) (where f ′(x) is the formal derivative df/dx of f(x)). More
explicitly, following the notation of [Gal12, Theorem 25.1.6], there exist functions
u, t : G \ {OE} → K̄ such that

f(x) = x +
∑

T∈G1∪G2

(

t(T )
x − xT

+
u(T )

(x − xT )2

)

,

where G2 ⊂ G is the set of points of order 2 and G1 ⊂ E(K̄) is such that

G = {OE} ∪ G2 ∪ G1 ∪ {−T : T ∈ G1} .

Moreover, u(T ) = 0 if and only if T has order 2. Collecting denominators, it
is then immediate that there exists a function w ∈ K̄[x] such that deg(w) = |G|
and

f(x) =
w(x)
v(x)

, where v(x) =
∏

T∈G\{OE}
(x − xT ) .
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Now define

h(x) = w(x)v(xQ) − w(xQ)v(x).

Note that clearly h(xQ) = 0. Since the value of f is invariant under the action
of points in G, we in fact have that h(xQ+T ) = 0 for all T ∈ G. Therefore it
follows that (x − xQ+T ) | h(x) for all T ∈ G. If for all T1, T2 ∈ G such that
T1 �= T2 we have that xQ+T1 �= xQ+T2 , then it immediately follows that

∏

T∈G

(x − xQ+T ) | h(x).

Otherwise1, assume we have T1, T2 ∈ G such that T1 �= T2 and xQ+T1 =
xQ+T2 . Since any x-coordinate corresponds to at most 2 points on E, it follows
that Q + T2 = ± (Q + T1). However, Q + T2 = Q + T1 implies that T1 = T2,
which contradicts our assumption. Therefore Q + T2 = − (Q + T1) and

[2]φ(Q + T1) = φ(Q + T1) + φ(Q + T1)
= φ(Q + T1) + φ(Q + T2)
= φ(Q + T1) − φ(Q + T1)
= O

˜E .

Moreover,

[2](Q + T1) = OE ⇐⇒ Q + T1 + Q + T1 = OE

⇐⇒ Q + T1 − (Q + T2) = OE

⇐⇒ T1 = T2,

which contradicts the assumption that T1 �= T2. Thus ψ2(Q + T1) �= 0 and by
Lemma 1 we can conclude that f ′(xQ+T1) = 0. Since away from the zeros of v
we have

h(x) =
(

f(x) − f(xQ)
)

v(x)v(xQ),

it follows from the fact that f ′(xQ+T1) = f(xQ+T1)−f(xQ) = 0 that h′(xQ+T1) =
0. That is, h has (at least) a double root at xQ+T1 . In other words,

(x − xQ+T1)(x − xQ+T2) | h(x).

It is then clear that indeed
∏

T∈G

(x − xQ+T ) | h(x).

1 This proof is quite elementary. An alternative method (which is perhaps more illu-
minating) is to consider the divisor of x − f(xQ) on E/G and to pull it back via φ.
We can then use the fact that div(f(x) − f(xQ)) = φ∗ div(x − f(xQ)).
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As deg(h) ≤ max(deg(w),deg(v)) = |G|, there exists a constant c ∈ K∗ such
that

h(x) = c
∏

T∈G

(x − xQ+T ).

Thus,

f(x) =
w(x)
v(x)

=
h(x)

v(x)v(xQ)
+ f(xQ).

The result follows by setting c1 = c/v(xQ). ��
Lemma 1. Let the setup be as in Theorem1 and let R ∈ E(K̄) \ G. Then

[2]φ(R) = O
˜E ⇐⇒ ψ2(R)f ′(xR) = 0,

where ψ2 is the 2-division polynomial.

Proof. Firstly note that R /∈ G and thus φ(R) �= O
˜E . Therefore, by definition of

the 2-division polynomial on ˜E = E/G it follows that

[2]φ(R) = O
˜E ⇐⇒ 2yφ(R) + ã1xφ(R) + ã3 = 0,

where ã1 and ã3 are Weierstrass constants of ˜E conform (1). Using the definition
of φ and by recalling that (see eg. [Gal12, Theorem 9.7.5])

2g(xR) = c0(a1xR + a3)f ′(xR) − ã1f(xR) − ã3,

a straightforward computation shows that

2yφ(R) + ã1xφ(R) + ã3 = 0 ⇐⇒ c0 (2yR + a1xR + a3) f ′(xR) = 0.

Finally observe that ψ2(R) = 2yR + a1xR + a3 and c0 �= 0. ��
Remark 1. Theorem 1 shows the connection between φ and the action of the
point Q on abscissas of kernel elements, as φ is given by a product of functions

x − xQ+T

x − xT
.

If this action is simple (eg. in Montgomery form where x(0,0)+T = 1/xT ) then
we can expect simple formulas for isogenies.

Remark 2. By relying on Theorem 1 we simplify the proof compared to earlier
works [CH17,MS16]. Whereas those works present rational maps and prove them
to be isogenies, we turn this argument around. We use the existence of the
isogeny (by Vélu’s formulas) and apply appropriate isomorphisms to enforce
some structure to be maintained (eg. (0, 0) �→ (0, 0) in Montgomery form). We
can then apply Theorem 1 to get formulas for the isogeny up to some constants.
Finally we also use the formal group law. However, as opposed to proving that
the rational functions defining the isogeny satisfy the curve relation of the co-
domain curve, we can assume them to vanish and therefore extract the constants
and the coefficients of the co-domain curve. This significantly simplifies the proof
compared to earlier works (eg. [MS16, Theorem 2] and [CH17, Theorem 1]).
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4 Montgomery Form and 2-Isogenies

In [CH17, Theorem 1] Costello and Hisil present rational maps which they prove
to be isogenies between Montgomery curves. These isogenies are not unique,
and are for example different from the formulas directly derived using Vélu’s
formulas. It is immediate that the isogenies in [CH17] have the property of
fixing (0, 0). In Sect. 4.1 we show that this fact, together with the co-domain
curve being in Montgomery form, characterizes their formulas (up to some sign
choices). This generalizes the theorem by Costello and Hisil, by removing the
restriction of kernels being cyclic and having odd order. In particular, in Sect. 4.2
we present formulas for 2-isogenies determined by points of order 2 other than
(0, 0). Until now these had not appeared, and were considered to require the
computation of a square root. In Sect. 4.3 we show how one could apply these
formulas in an implementation. Although it requires only a modest change to the
parameters, this does require care and can simplify the implementation. Finally
in Sect. 4.4 we comment on a comparison to the state-of-the-art.

4.1 The General Formula

We begin by stating Proposition 1, which is the analogue of [CH17, Theorem 1].

Proposition 1. Let K be a field with char(K) �= 2. Let a ∈ K such that a2 �= 4
and E/K : y2 = x3 + ax2 + x is a Montgomery curve. Let G ⊂ E(K̄) be a
finite subgroup such that (0, 0) /∈ G and let φ be a separable isogeny such that
ker(φ) = G. Then there exists a curve ˜E/K : y2 = x3 +Ax2 +x such that, up to
post-composition by an isomorphism,

φ : E → ˜E

(x, y) �→ (f(x), c0yf ′(x))

where

f(x) = x
∏

T∈G\{OE}

xxT − 1
x − xT

.

Moreover, writing

π =
∏

T∈G\{OE}
xT , σ =

∑

T∈G\{OE}

(

xT − 1
xT

)

,

we have that A = π(a − 3σ) and c20 = π.

Proof. Over K̄ we can always move E/G to Montgomery form. Let P ∈ E(K̄)
such that xP = 1. Then [2]P = (0, 0), hence [2]φ(P ) = φ([2]P ) �= OE/G while
[4]φ(P ) = [2] (0, 0) = OE/G. Thus φ(P ) is a point of exact order 4, and we apply
an isomorphism such that xφ(P ) = (−1)|G|−1 (see eg. [FJP14, Sect. 4.3.2]). In



Computing Isogenies Between Montgomery Curves Using the Action of (0, 0) 237

particular this assures that φ : (0, 0) �→ (0, 0). We then twist the y-coordinate
via another isomorphism to set the coefficient of y2 to 1 and have

˜E = E/G : y2 = x3 + Ax2 + x.

Now apply Theorem 1 with Q = (0, 0). We obtain that

f(x) = c1(x − x(0,0))
∏

T∈G\{OE}

(x − x(0,0)+T )
(x − xT )

+ f(x(0,0))

= c1x
∏

T∈G\{OE}

(

x − 1
xT

)

(x − xT )
.

As we set up ˜E such that f(1) = (−1)|G|−1, we find that

c1 =
∏

T∈G\{OE}
xT .

Feeding c1 back into the equation for f puts it in the right form. At this
point it only remains to find A and c0 (observe that g = 0 in Montgomery
form [Gal12, Theorem 9.7.5]). To this end we utilize the formal group law, similar
to [CH17,MS16].

Let t = x/y be a uniformizer at OE and write s = 1/y. By observing that
s = t3 +at2s+ ts2 we can recursively substitute s into itself to get an expression
s(t) ∈ Z[a][[t]] as a power series2

s(t) = t3 + at5 + (a2 + 1)t7 + O(t9)

This is well-defined, see for example [Sil09, Sect. IV.1]. As a result we can write

1/s(t) = y(t) = t−3 − at−1 + O(t),

ty(t) = x(t) = t−2 − a + O(t2).

Let X(t) = f(x(t)). Then

X(t) = πt−2 + π(σ − a) + O(t2),

dX/dt = −2πt−3 + O(t),

dx/dt = −2t−3 + O(t),

(dx/dt)−1 = −t3/2 + O(t7).

Now define

Y (t) = c0y(t) · (df/dx)

= c0y(t) · (dX/dt) · (dx/dt)−1
,

2 We denote by O(tn) a series whose coefficients of tm are zero for all m < n.
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so that

Y (t) = c0πt−3 − c0aπt−1 + O(t).

Writing

F (t) = Y (t)2 − (

X(t)3 + AX(t)2 + X(t)
)

it follows that

F (t) = F−6 · t−6 + F−4 · t−4 + O(t−2),

with

F−6 = π2(c20 − π) , F−4 = π2
(

3π(a − σ) − 2ac20 − A
)

.

Now since by assumption φ is an isogeny with co-domain curve ˜E, and since
F is precisely the equation defining ˜E, we must have F = 0. Solving F−6 = 0
and F−4 = 0 simultaneously leads to the desired equations for c20 and A. Note
that this way we have only defined c0 up to sign. However, the sign choice
merely induces a composition with [−1] and therefore does not affect φ up to
isomorphism. ��
Remark 3. It is perhaps not immediately obvious that Proposition 1 is a gen-
eralization of the result by Costello and Hisil [CH17, Theorem 1]. Our result
assumes the domain curve E to be of the form y2 = x3 + ax2 + x, while their
theorem also accounts for curves E0 : by2 = x3 + ax2 + x. Moreover, the map
itself looks slightly different. However, it is straightforward to check that if one
pre-composes with the isomorphism

ψ0 : E0 → E

(x, y) �→ (x, y
√

b)

and post-composes with the isomorphism

ψ1 : ˜E → E1 : By2 + x3 + Ax2 + x,

(x, y) �→
(

x,
y√
πb

)

then one recovers the theorem from Costello and Hisil in the case of odd-degree
cyclic kernels. Ignoring these twists in Proposition 1 simplifies the proof. For
example, see Proposition 2.

Remark 4. If K = Fq is a (large-characteristic) finite field, then possibly π is a
non-square in Fq. As a result φ is not defined over Fq. However, in that case the
map

(x, y) �→ (f(x), yf ′(x))

is defined over Fq with co-domain curve ˜E(t) : πy2 = x3 + Ax2 + x. This is
the quadratic twist of ˜E. Since ˜E and its twist have the same Kummer line, we
eliminate this issue by projecting to P

1 (ie. by using x-only arithmetic).



Computing Isogenies Between Montgomery Curves Using the Action of (0, 0) 239

Remark 5. If we set up an SIDH instance with �A = 2 and eA ≥ 2 then the
x-coordinates of points of order 2 are in fact squares. This follows from [Hus04,
Chap. 1, Theorem 4.1] combined with the doubling formulas for Montgomery
curves, as noted in [CJL+17, Sect. 3.2]. Since all x-coordinates of points with
orders other than 2 appear twice in the equation for π, it follows that π is
actually a square. Therefore φ is defined over Fp2 , and in particular we always
have #E(Fp2) = # ˜E(Fp2). This is (implicitly) used in formulas for public-key
compression [CJL+17,ZJP+17].

4.2 2-Isogenies

As an immediate consequence of Proposition 1 we obtain formulas for 2-isogenies
for 2-torsion points other than (0, 0).

Proposition 2. Let K be a field with char(K) �= 2. Let a, b ∈ K such that
b �= 0 and a2 �= 4, and E/K : by2 = x3 + ax2 + x is a Montgomery curve. Let
P ∈ E(K̄) such that P �= (0, 0) and [2]P = OE. Then

φ : E → ˜E/K : By2 = x3 + Ax2 + x

(x, y) �→ (f(x), yf ′(x)),

with B = xP b and A = 2(1 − 2x2
P ) is a 2-isogeny with ker(φ) = 〈P 〉, where

f(x) = x · xxP − 1
x − xP

.

Proof. This is exactly the statement in Proposition 1 composed with the iso-
morphisms ψ0 and ψ1 from Remark 3. The result follows by using the identity
axP = −(x2

P + 1) to derive A. ��
We also compute the kernel of the dual of φ, which will be helpful in Sect. 4.3

for larger degree isogenies.

Corollary 1. Let the setup be as in Proposition 2. Then ker(̂φ) = 〈(0, 0)〉.

Proof. Let ψ be a separable isogeny with domain ˜E and kernel 〈(0, 0)〉. Then
certainly E[2] ⊂ ker(ψ ◦ φ), and since deg(ψ ◦ φ) = 4 we in fact have E[2] =
ker(ψ ◦ φ). Thus ψ = ̂φ up to isomorphism by uniqueness of the dual isogeny,
and hence ker(̂φ) = ker(ψ). ��

The statement and proof of Proposition 2 does not explain why we are able
to compute 2-isogenies without explicit square roots, while earlier works [CH17,
FJP14] could not. We provide a more direct computation in Remark 6 to show
why this is the case.
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Remark 6. In [FJP14, Sect. 4.3.2] the authors describe a 2-isogeny with kernel
(0,0) as

ϕ : E → F : by2 = x3 + (a + 6)x2 + 4(2 + a)x

(x, y) �→
(

(x − 1)2

x
, y

(

1 − 1
x2

))

.

The coefficient of x can be removed by computing 2
√

a + 2 and composing
with the isomorphism

(x, y) �→
(

x

2
√

a + 2
,

y

2
√

a + 2

)

,

putting F in the desired form. This requires computing a square root, which
could be avoided by having knowledge of a point P8 =

(

2
√

a + 2,—
)

of order 8
above (0, 0). Instead, we observe that we can compose with the isomorphism

ψ : F → G :
b√

a2 − 4
y2 = x3 − 2a√

a2 − 4
· x2 + x

(x, y) �→
(

x + a + 2√
a2 − 4

,
y√

a2 − 4

)

,

which moves the kernel of ϕ̃ to (0, 0). This requires computing
√

a2 − 4 and
therefore also relies on a square root. However, if P2 = (x2, 0) is a point of order
2 on E with x2 �= 0, then x2

2 + ax2 + 1 = 0. Therefore it is immediate that
√

a2 − 4 = 2x2 + a,

allowing us to compute the isomorphism efficiently. We have such a point by
assumption in Proposition 2. We can now compute φ as ψ ◦ ϕ ◦ χ, where χ is an
isomorphism mapping P2 to (0, 0) (eg. [FJP14, Eq. (15)]).

To provide explicit operation counts3 we move to projective space and project
to P

1. Let P = (XP : 0 : ZP ) be a point of order 2 on E : bY 2Z = X3 +aX2Z +
XZ2 such that XP �= 0. Then by Proposition 2

φ : E → ˜E : BY 2Z = X3 + AX2Z + XZ2

(X : — : Z) �→ (X(XXP − ZZP ) : — : Z(XZP − ZXP ))

is a 2-isogeny with kernel 〈P 〉. We have

A = 2 (Z2
P − 2X2

P )/Z2
P ,

and to avoid inversions we represent it projectively as

(A : 1) = (2 (Z2
P − 2X2

P ) : Z2
P ).

3 We denote by M, S resp. a the cost of a field multiplication, squaring resp. addition
or subtraction (which are assumed to have equal cost).
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However, the doubling formulas on Montgomery curves use (A+2)/4 instead
of A, and we see that

(A + 2 : 4) = (−X2
P : Z2

P ).

This can be computed in 2S + 1a, but one can easily integrate the negation
into the doubling formulas to reduce the cost to 2S. Moreover, we observe that

X(XXP − ZZP ) = X
[

(X − Z)(XP + ZP ) + (X + Z)(XP − ZP )
]

,

Z(XZP − ZXP ) = Z
[

(X − Z)(XP + ZP ) − (X + Z)(XP − ZP )
]

.

This can be computed in 4M + 6a via the sequence of operations

T0 = XP + ZP , T1 = XP − ZP , T2 = X + Z , T3 = X − Z , T4 = T3 · T0 ,

T5 = T2 · T1 , T6 = T4 + T5 , T7 = T4 − T5 , T8 = X · T6 , T9 = Z · T7.

If we assume XP + ZP and XP − ZP to be pre-computed, the cost reduces
to 4M + 4a. This would for example apply if we require multiple evaluations of
the isogeny (eg. in SIDH).

4.3 Application to Isogeny-Based Cryptography

In the general setting it is not true that the kernels appearing in the compu-
tations cannot contain the point (0, 0), so it is not clear that the 2-isogenies
can immediately be used. In a similar fashion, it is not true in general that
kernels of 4-isogenies cannot contain (1,±√

(a + 2)/b) or (−1,±√

(a − 2)/b).
In [CLN16a, Sect. 3] and [CH17] this assumption is used without justification
(implicitly by replacing ψ4 with ̂ψ4). This is dealt with by using a separate
function first 4 isog for the first 4-isogeny, which is the only kernel that can
contain such a point (a proof of which does not appear). However, Lemma2
and Corollary 2 show that we can avoid these points with only a minor restric-
tion on the keyspace. Applying this restriction to [CLN16a] makes the function
first 4 isog redundant, simplifying the implementation.

Lemma 2. Let e, f ∈ Z≥0 and let p = 2e3f − 1 be prime. Let E/Fp2 be a
supersingular elliptic curve in Montgomery form such that #E(Fp2) = (p + 1)2.
Let P,Q ∈ E(Fp2) such that E[2e] = 〈P,Q〉 and [2e−1]Q = (0, 0). Let α ∈ Z2e .
Then (0, 0) /∈ 〈P + [α]Q〉.
Proof. It is clear that 〈P+[α]Q〉 can only contain a single point of order 2, namely
[2e−1](P+[α]Q). But by assumption on Q we know that [2e−1](P+[α]Q) �= (0, 0),
hence the result follows.

By Lemma 2 we know that we can compute the 2e-isogenies as defined in Proposi-
tion 1. However, as the degrees grow this will quickly be impractical. Instead, we
do the computations as a sequence of 2-isogenies (ie. as in Proposition 2) [FJP14,
Sect. 4]. Therefore we must show that none of these intermediate isogenies has
a kernel generated by (0, 0).
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Corollary 2. Let the setup be as in Lemma 2 and write R = P + [α]Q. Let φ
be an isogeny such that ker(φ) = 〈R〉 and suppose that we compute

φ = φe−1 ◦ · · · ◦ φ0,

ker(φ0) = 〈[2e−1]R〉,
ker(φi) = 〈[2e−i−1

]

φi−1 · · · φ0 (R)〉 , (for 1 ≤ i ≤ e − 1)

as a sequence of 2-isogenies, each one computed as in Proposition 2. Then (0, 0) /∈
ker(φi) for all 0 ≤ i ≤ e − 1.

Proof. We apply induction on i. The statement for i = 0 follows from Lemma 2.
Let i > 0. Then ker(̂φi−1) = 〈(0, 0)〉 by the inductive hypothesis and by Corol-
lary 1. But since the walk determined by φ is non-backtracking, it follows that
ker(φi) �= 〈(0, 0)〉. As #ker(φi) = 2, we conclude that (0, 0) /∈ ker(φi).

The keyspace is determined by tuples (γ, δ) which define kernels of the form
〈[γ]P + [δ]Q〉, where not simultaneously γ ≡ 0 mod 2 and δ ≡ 0 mod 2. We can
divide the space into the three disjoint sets (of equal size)

K(i,j) = {(γ, δ) : γ ≡ i mod 2 , δ ≡ j mod 2} ,

for (i, j) ∈ {(0, 1), (1, 0), (1, 1)}. The restriction on the keyspace then corresponds
exactly to disallowing K(0,1), removing 1/3 of the keyspace. It is easy to see
that these keys define the isogeny walks for which the first 2-isogeny has kernel
〈(0, 0)〉. Note that this depends on the choice of 2e-torsion basis {P,Q}, where we
choose Q to lie above (0, 0). A similar argument applies to the use of 4-isogenies
in [CLN16a].

Remark 7. The initial proposal to use curves in Montgomery form [CLN16a,
Sect. 4] suggested taking P as an Fp-rational point on the curve E0/Fp : y2 =
x3 + x with j(E0) = 1728 and Q as the image of P under the distortion map
(x, y) �→ (−x, iy). This allows a compressed representation of {P,Q}. Although
this does not work for the basis as chosen in Lemma 2, it only results in a small
increase in the size of public parameters (which never need to be transferred).

4.4 Relating 2-Isogenies and 4-Isogenies

It is easy to see that the 4-isogenies from [CH17, Appendix A], which are cur-
rently the fastest formulas, can be derived by applying the 2-isogenies from
Sect. 4.2 twice. That is, since they have equal kernel they are equal up to com-
position with an isomorphism. Both isogenies have a Montgomery curve as co-
domain, of which there are at most six per isomorphism class (by looking at
the formula for the j-invariant). Also, in both cases the dual is generated by
a point P ∈ {(1,±√

(a + 2)/b), (−1,±√

(a − 2)/b)}. Therefore we can trans-
form one into the other by possibly composing with the simple isomorphisms
(x, y) �→ (x,−y) and (x, y) �→ (−x, iy), where i ∈ K̄ such that i2 = −1. As a
result, applying the 2-isogenies twice will not have more efficient formulas than
the 4-isogenies. Indeed, if this were the case we could use the above transfor-
mation to obtain equally fast 4-isogenies. We summarize the costs in Table 1.
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Table 1. Comparison of the costs of evaluating 2-isogenies and 4-isogenies.

Operation 2-isogeny 2 × 2-isogeny 4-isogeny [CH17]

Compute (A + 2 : 4) 2S 4S 4S + 5aa

First evaluation 4M + 6a 8M + 12a 6M + 2S + 6a

Subsequent evaluations 4M + 4a 8M + 8a 6M + 2S + 6a
aMany of these additions are not needed to compute (A + 2 : 4), but are used as
pre-computation for the isogeny evaluation. We provide the counts as is to align
with [CH17] since it does not affect our comparison of the costs of large degree
isogeny evaluations.

Besides their theoretic value, there are some small upsides to using 2-isogenies
in an implementation. Firstly, the computation leaks only a single bit as opposed
to two [FJP14, Sect. 4.3.2]. Instead of leaking the dual of the final 4-isogeny, it
would only leak the dual of the last 2-isogeny. Also, in some cases one may be
able to select smaller parameters for a certain given security level. Primes of
the form 2e3f − 1 where e ≈ log2 (3f ) are somewhat sparse, and depending on
one’s requirements restricting e to be even could result in a (much) larger prime
than hoped for. Alternatively, one could of course achieve this by doing a single
2-isogeny followed by a chain of 4-isogenies. However, this does come at the
cost of having to implement more algorithms, increasing the size and complexity
of an (already complex) implementation. Finally, having worked out formulas
for isogenies of even degree and by showing how to avoid (0, 0), we are able to
straightforwardly write down formulas for 2e-isogenies with e ≥ 3. It remains
to be seen if these can be made more efficient than repeated applications of
4-isogenies.

5 Triangular Form and 3-Isogenies

Given the generality of Theorem 1, an obvious question is whether there are other
classes of curves which could possibly give rise to simple formulas for isogenies.
In this section we analyze curves in triangular form E/K : y2 + axy + y = x3

containing a point (0, 0) of order 3. Most of the ideas from earlier sections apply
and in particular we get analogous statements for computing 3-isogenies (see
Sect. 5.2). Although these allow to compute the co-domain curve very efficiently,
the evaluation of the isogeny is not as efficient as its Montgomery counterpart.
Moreover, since tripling formulas are currently slower, at this point Montgomery
form still performs better with respect to 3-isogenies.

5.1 The General Formula

We start by presenting formulas for triangular curves that work for any separable
isogeny whose kernel is an odd order subgroup. It is possible to include groups
of even order, but this creates a case distinction which makes the proof more
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tedious. Since having (enough) rational points of even order would enable us to
go to Montgomery form and reduce to Sect. 4, we discard that case here.

There are a couple of (minor) complications compared to the proof of Propo-
sition 1. Firstly, we cannot assume that g = 0. If we work on P

1 this will not
affect the efficiency, but we will have to take it into account in the proof. Sec-
ondly, the action of (0, 0) does not involve only x-coordinates. To eliminate the
y-coordinates that arise, we group the kernel points into sets {T,−T} (similar
to [CH17, Theorem 1]).

Proposition 3. Let K be a field with char(K) �= 2. Let a ∈ K such that a3 �= 27
and E/K : y2 + axy + y = x3 in triangular form. Let G ⊂ E(K̄) be a finite
subgroup of odd order such that (0, 0) /∈ G and let φ be a separable isogeny such
that ker(φ) = G. Let

X =
{

xP

∣

∣

∣

∣

P ∈ G \ {OE}
}

.

Then there exists a curve ˜E/K : y2 + Axy + y = x3 such that, up to post-
composition by an isomorphism,

φ : E → ˜E

(x, y) �→ (f(x), c0yf ′(x) + g(x))

where

f(x) = x
∏

z∈X

x2z2 − x(az + 1) − z

(x − z)2
.

Moreover, writing

π =
∏

z∈X

z , σ =
∑

z∈X

(

1
z2

+
a

z
− 2z

)

,

we have that A2 = π2(a2 + 12σ) and c0 = (−1)|X|π.

Proof (sketch). This proof is almost completely analogous to the one of Propo-
sition 1. That is, we put E/G in triangular form by moving the image of (0, 0)
under φ to (0, 0). We then apply Theorem 1 with Q = (0, 0) and use that

yT y−T = −x3
T , and yT + y−T = −axT − 1.

By observing that φ : (0,−1) �→ (0,−1) we find that

c0 = (−1)|X|
π3/c1,

and finally we apply the formal group law to find expressions for c1 and A. ��
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5.2 3-Isogenies

We work out explicit formulas for 3-isogenies.

Proposition 4. Let K be a field with char(K) �= 2. Let a ∈ K such that a3 �= 27
and E/K : y2 + axy + y = x3 in triangular form. Let P ∈ E(K̄) a point such
that [3]P = OE and xP �= 0. Then

φ : E → ˜E/K : y2 + Axy + y = x3

(x, y) �→ (f(x),−xP yf ′(x) + g(x))

with A = −3 (2 + axP ) is a 3-isogeny such that ker(φ) = 〈P 〉, where

f(x) = x · x2x2
P − x(axP + 1) − xP

(x − xP )2
.

Proof. This is Proposition 3 with X = {xP }. Using the division polynomial

ψ3(x) = x
(

3x3 + a2x2 + 3ax + 3
)

it follows that 9 (2+axP )2 = π2
(

a2 + 12σ
)

. Hence A = ±3 (2+axP ) and the only
remaining uncertainty is the choice of sign. However, setting A = −3 (2 + axP ),
a direct computation shows that

f ′(x) = x2
P ·

(

(x − xP )3 − (6x2
P + a2xP + a)x + x3

P + 1
)

(x − xP )3
,

while

g(x) = x3 ·
(

(3 + axP )x2
P x + x3

P + 1
)

(x − xP )3
.

For X = f(x) and Y = −xP yf ′(x) + g(x), a straightforward calculation
shows that Y 2 + AXY + Y = X3. It is then clear that φ is an isogeny and that
ker(φ) = 〈P 〉. ��

Again, as a consequence of fixing (0, 0) the dual will be generated by it.

Corollary 3. Let the setup be as in Proposition 4. Then ker(̂φ) = 〈(0, 0)〉.

Proof. Since (0, 0) ∈ E has order 3 and is not in ker(φ), it follows from ̂φ◦φ = [3]
that φ ((0, 0)) �= O

˜E , while (̂φ ◦ φ) ((0, 0)) = OE . Hence φ ((0, 0)) ∈ ker(̂φ), and
since deg(̂φ) = 3 we have that ker(̂φ) = 〈φ ((0, 0))〉. The result is now immediate
by observing that φ ((0, 0)) = (0, 0). ��
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5.3 Application to Isogeny-Based Cryptography

By doing an analogous analysis as in Sect. 4.3 it is straightforward to see that
it is theoretically possible to use the triangular form as above in isogeny-based
systems. More specifically, by choosing a basis E(Fp2)[3e] = 〈P,Q〉 such that
[3e−1]Q = (0, 0) and by only allowing secret kernels of the form 〈P +[α]Q〉, we can
always apply the isogeny from Proposition 4. However, to be seriously considered
for implementations the efficiency must be at least on par with those coming from
the Montgomery form. Although the computation of A can be done with only two
multiplications, we have not been able to reduce the cost of the 3-isogeny evalua-
tion far enough to be considered as efficient as its Montgomery counterpart. More-
over, the x-only tripling formulas (which can for example be obtained by using the
3-isogenies from [BCKL15, Theorem 5.4]) are significantly slower.

Acknowledgements. I would like to thank Craig Costello for valuable suggestions
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the anonymous reviewers of PQCrypto 2018 for their constructive comments.

References

[Acc99] Accredited Standards Committee X9. American National Standard X9.62-
1999, Public key cryptography for the financial services industry: the elliptic
curve digital signature algorithm (ECDSA). Technical report, ANSI (1999)

[BCKL15] Bernstein, D.J., Chuengsatiansup, C., Kohel, D., Lange, T.: Twisted hes-
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Abstract. Supersingular isogeny-based cryptography is one of the more
recent families of post-quantum proposals. An interesting feature is the
comparatively low bandwidth occupation in key agreement protocols,
which stems from the possibility of key compression. However, compres-
sion and decompression introduce a significant overhead to the overall
processing cost despite recent progress. In this paper we address the main
processing bottlenecks involved in key compression and decompression,
and suggest substantial improvements for each of them. Some of our
techniques may have an independent interest for other, more conven-
tional areas of elliptic curve cryptography as well.

1 Introduction

In the Supersingular Isogeny Diffie-Hellman (SIDH) protocol [9], the two parties
need to exchange a representation of their public keys each consisting of an
elliptic curve E together with two points P,Q on E. The curve E is supersingular
and is defined over an extension field Fp2 for a prime of the form p = �m

A �n
B − 1

where �A, �B are small primes, usually equal to 2 and 3, respectively. Originally,
this exchange was done using triples of the form (E, xP , xQ) where E : y2 =
x3 + ax + b and xP , xQ are the abscissas of P and Q. Two extra bits were also
needed to recover the correct y-coordinates. Thus, the public keys are transfered
using essentially the four elements a, b, xP , xQ ∈ Fp2 which require 8 log p bits.

A different representation of the SIDH public keys was proposed by [1] that
reduced the size to 4 log p bits. The idea was to first represent the curve E using
its j-invariant, which is an element of Fp2 , rather than the coefficients a, b. This
way E is represented using 2 log p bits. The isomorphism class of an elliptic
curve is uniquely determined by its j-invariant. Second, since the points P,Q
are always in the torsion subgroups E[�m

A ] or E[�n
B ], they can be represented

using elements of Zt ⊕ Zt where either t = �m
A or t = �n

B . Since the parameters
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are such that �m
A ≈ �n

B , a pair (t1, t2) ∈ Zt ⊕ Zt is represented using 2 log p
bits. This reduction of size of the public keys, however, comes with a rather high
computational overhead. The conversion between the coefficients a, b of a curve E
and its j-invariant is done efficiently; the expensive part is the conversion between
elements of Zt⊕Zt and the points P,Q. As reported in [1], the compression phase
for each party was slower than a full round of uncompressed key exchange by a
factor of more than 10 times.

Costello et al. [5] further improved the key compression scheme by reducing
the public key sizes to 3.5 log p bits and decreasing the runtime by almost an
order of magnitude. With this improvement, the key compression phase for each
party is as fast as one full round of uncompressed key exchange. This certainly
motivates the idea of including the compression and decompression phases as
default parts of SIDH. However, compared to the currently deployed (classi-
cal) schemes, the compression/decompression runtime is unfavorable, requiring
further research on speedup techniques.

Our contributions. We propose new algorithms that further decrease the runtime
of SIDH compression and decompression. In contrast to previous works that have
deployed “known” algorithms to optimize the performance of key compression,
some of the algorithms presented here are new and of broader interest than
isogeny-based crypto. A summary of the improvements follows.

– Constructing torsion bases. Assuming the usual parameters �A = 2, �B = 3,
we improve basis generation for both E[2m] and E[3n]. To generate a basis
for the 2m-torsion, we propose an algorithm dubbed entangled basis gener-
ation. This algorithm is around 15.9× faster than the usual basis generation
presented in [5]. For the 3n-torsion, we observed that the naive algorithm is
more efficient (both in theory and practice) than the explicit 3-descent of [12]
used by Costello et al. [5].

– Computing discrete logarithms. Inspired by the optimal strategy method of
[6] to compute smooth degree isogenies, we propose an algorithm to compute
discrete logs in the group μ�n where � is a small prime. For a window of size
w = 6, our algorithm is 3.9× and 4.6× faster than the algorithm used by [5]
for the groups μ2372 and μ3239 respectively.

– Pairing computation. We exploit the special shapes of pairs of points gen-
erated as entangled bases and the existence of a subfield dismissed by [5] to
optimize the Tate pairing. We achieve a speedup of 1.4× for the pairing phase
over the algorithms used by [5] for both binary and ternary pairings.

– Other improvements. We introduce reverse basis decomposition , which
combined with the previous improvements, allows for further optimizations
of compression and decompression. For example each party only needs to
compute 4 pairings rather than 5. Also, two expensive cofactor multiplications
by 3n are saved during Bob’s compression, and one cofactor multiplication
by 3n is saved during Alice’s decompression.

We have implemented the above improvements on top of (the then-latest version
of) the Microsoft SIDH library [10]. The library is designed for the specific prime
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p = 23723239 − 1 of size log p = 751 bits. Our software can be found at https://
github.com/geovandro/PQCrypto-SIDH.

1.1 Notations and Conventions

For simplicity, we assume that finite field arithmetic is carried out in a base field
Fp and its quadratic extension Fp2 for a prime p of form p := 2m · 3n − 1 for
some m > 2 and n > 1, so that p ≡ 3 (mod 4). The quadratic extension Fp2/Fp

is represented as Fp2 = Fp[i]/〈i2 + 1〉, and arithmetic closely mimics that of the
complex numbers.

All curves are represented using the Montgomery model unless otherwise
specified. We follow the convention of using subscripts A and B for Alice and
Bob, respectively. For example, the secret isogeny φA is computed by Alice and
her public parameters are denoted by the points PA, QA and the curve EA. Simi-
larly, Bob’s isogeny is denoted by φB, and his public parameters are PB , QB , EB .

We denote by i, c, m, s, and a the costs of inverting, cubing, multiplying,
squaring, and adding/subtracting/shifting in Fp, respectively, and by I, C, M,
S, and A the costs of the corresponding operations in Fp2 . We disregard the cost
of changing a sign (for instance, when handling the conjugate of a field element).
The costs of the Fp2 operations relative to the costs of operations in Fp can be
approximated by 1I = 1i + 2m + 2s + 1a, 1C = 2m + 2s + 6a, 1M = 3m + 5a,
1S = 2m + 3a, and 1A = 2a, by using the finite-field analogues to well-known
Viète multiple-angle trigonometric identities [15, Formulas 5.68 and 5.69].

2 Reverse Basis Decomposition

In this section, we use reverse basis decomposition to speed up both Alice’s and
Bob’s key compression by saving one pairing computation. Later in Sect. 3.1 we
show that, when combined with an entangled basis generation, this technique will
allow for avoiding two cofactor multiplications by 3n in Bob’s key compression
and one in Alice’s key decompression. We prove our results from Alice’s point
of view. The proofs for Bob are similar.

The main previous idea to achieve key compression [1,5] is the following:
instead of transmitting points φA(PB), φA(QB) ∈ EA[3n], which are represented
by two abscissas in Fp2 and consume 4 log p bits, Alice computes a canonical
basis R1, R2 ∈ EA[3n] and expresses the expanded public key in that basis as
φA(PB) = a0R1 + b0R2 and φA(QB) = a1R1 + b1R2. In matrix notation,

[
φA(PB)
φA(QB)

]
=

[
a0 b0
a1 b1

] [
R1

R2

]
. (1)

This representation consists of four smaller integers (a0, b0, a1, b1) ∈ (Z/3n
Z)4

of total size 2 log p bits as suggested in [1]. This was improved in [5] by transmit-
ting only the triple (a−1

0 b0, a
−1
0 a1, a

−1
0 b1) ∈ (Z/3n

Z)3 or (b−1
0 a0, b

−1
0 a1, b

−1
0 b1) ∈

(Z/3n
Z)3 depending on whether a0 or b0 is invertible. Therefore, only (3/2) log p,

https://github.com/geovandro/PQCrypto-SIDH
https://github.com/geovandro/PQCrypto-SIDH
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plus one bit indicating the invertibility of a0 or b0 modulo 3n, is needed. In the
above mentioned techniques, the coefficients a0, b0, a1, b1 can be computed using
five Tate pairings given by

g0 = e3n(R1, R2)
g1 = e3n(R1, φA(PB)) = e3n(R1, a0R1 + b0R2) = gb0

0

g2 = e3n(R1, φA(QB)) = e3n(R1, a1R1 + b1R2) = gb1
0

g3 = e3n(R2, φA(PB)) = e3n(R2, a0R1 + b0R2) = g−a0
0

g4 = e3n(R2, φA(QB)) = e3n(R2, a1R1 + b1R2) = g−a1
0 .

(2)

From this, Alice can recover a0, b0, a1, and b1 by solving discrete logs in a mul-
tiplicative subgroup of smooth order 3n using the Pohlig-Hellman algorithm.

Now since φA(PB) and φA(QB) also form a basis of EA[3n], we see that the
coefficient matrix in (1) is invertible modulo 3n. So, we can write[

R1

R2

]
=

[
c0 d0
c1 d1

] [
φA(PB)
φA(QB)

]
(3)

by inverting the matrix in (1). Changing the roles of the bases {R1, R2} and
{φA(PB), φA(QB)} in (2) we get

h0 = e3n(φA(PB), φA(QB))
h1 = e3n(φA(PB), R1) = e3n(φA(PB), c0φA(PB) + d0φA(QB)) = hd0

0

h2 = e3n(φA(PB), R2) = e3n(φA(PB), c1φA(PB) + d1φA(QB)) = hd1
0

h3 = e3n(φA(QB), R1) = e3n(φA(QB), c0φA(PB) + d0φA(QB)) = h−c0
0

h4 = e3n(φA(QB), R2) = e3n(φA(QB), c1φA(PB) + d1φA(QB)) = h−c1
0 .

(4)

The first pairing in (4) is computed as h0 = e3n(PB , φ̂A ◦ φA(QB)) =
e3n(PB , [deg φA]QB) = e3n(PB , QB)2

m

, which only depends on the public
parameters PB , QB and m. Therefore, it can be computed once and for all and be
included in the public parameters. In particular, only the pairings h1, h2, h3 and
h4 need to be computed at runtime. The discrete logs are computed as before
using Pohlig-Hellman, yielding c0 = − logh0

h3, d0 = logh0
h1, c1 = − logh0

h4

and d1 = logh0
h2. Next, Alice inverts the computed coefficients matrix of (3) to

obtain the coefficient matrix of (1). Explicitly,
[
a0 b0
a1 b1

]
=

1
D

[
d1 −d0

−c1 c0

]

where D = c0d1 − c1d0. Notice that the extra inversion of D−1 does not need to
be carried out when using the technique in [5]. More precisely, since at least one
of d0 and d1, say d1, is invertible modulo 3n, Alice transmits the tuple

(a−1
0 b0, a

−1
0 a1, a

−1
0 b1) = (−d−1

1 DD−1d0,−d−1
1 DD−1c1, d

−1
1 DD−1c0)

= (−d−1
1 d0,−d−1

1 c1, d
−1
1 c0)

which is independent of D.
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3 Entangled Basis Generation

We now introduce a technique to create a complete basis of the 2m-torsion from
a single (albeit specific) point of order 2m. In other words, the cost involved
is essentially that of creating a generator for a single subgroup of order 2m in
E[2m]: a generator for the linearly independent subgroup becomes immediately
available almost for free. Consequently, the linear independence test consisting
of two scalar multiplications by 2m−1 can be avoided. This is akin to distortion
maps even though none is typically available for the curves involved in SIDH. We
call the resulting bases “entangled” by analogy with the quantum phenomenon
whereby the properties of one entity are entirely determined by the properties
of another entity despite their separation4.

In order to construct an entangled basis 〈P,Q〉 = E[2m] for E : y2 = x3 +
Ax2 + x, we somewhat “subvert” the original Elligator 2 formulas [3] under
a different motivation than encoding points to random strings: obtaining two
linearly independent points on E at once. Herein the value t := ur2, for u ∈ Fp2

and r ∈ F
∗
p, will be a square rather than a non-square. The new construction is

proved in Theorem 1.

Theorem 1. Given a Montgomery supersingular elliptic curve EA/Fp2 : y2 =
x(x2 + Ax + 1) where p = 2m · 3n − 1, #EA(Fp2) = (p + 1)2, and A 	= 0, let
t ∈ Fp2 be a field element such that t2 ∈ Fp2 \ Fp, and let x1 := −A/(1 + t2) be
a quadratic non-residue that defines the abscissa of a point P1 ∈ EA(Fp2). Then
x2 := −x1 − A defines the abscissa of another point P2 ∈ EA(Fp2) such that
〈[h]P1, [h]P2〉 = EA[2m], where h := 3n is the cofactor of the 2m-torsion group.

Proof. Since x2 = t2x1, both abscissas are quadratic non-residues and by [8,
Chap. 1 (Sect. 4), Theorem 4.1] the two points P1 = (x1, y1), P2 = (t2x1, ty1),
with x1 + t2x1 + A = 0, are not in [2]EA. So the points [h]P1 and [h]P2 are full
2m-torsion points. To prove that h · P1, h · P2 generate EA[2m] we have to prove
that [h · 2m−1](P1 − P2) 	= 0, or equivalently that (u, v) = P1 + (−P2) 	∈ [2]EA.

By the addition law [14, Algorithm 2.3] on EA we get

λ =
y2 − y1
x2 − x1

=
−ty1 − y1
t2x1 − x1

=
−(t + 1)y1
(t2 − 1)x1

=
−y1

(t − 1)x1
,

μ =
y1x2 − y2x1

x2 − x1
=

t(t + 1)y1x1

(t + 1)(t − 1)x1
=

y1
(t − 1)x1

tx1 = −λtx1,

u = λ2 − A − x1 − x2 = λ2,

v = −λu − μ = −λu − (−λtx1) = −λ(u − tx1).

From the above equalities we see that v2 = λ2(u − tx1)2 = u(u2 + Au + 1)
and hence u2 + Au + 1 = (u − tx1)2. Let w := u − tx1 =

√
u2 + Au + 1. Then

1 − (u − w)2 = 1 − t2x2
1 = x2

1 + Ax1 + 1, which is a quadratic non-residue

4 We stress, however, that here the naming is purely analogous: there is no quantum
process involved in the construction.
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because x1 is itself a quadratic non-residue while their product is obviously
a square, x1(x2

1 + Ax1 + 1) = y2
1 . A straightforward calculation shows that

(1 − (u + w)2)(1 − (u − w)2) = u2(A2 − 4). But A2 − 4 is a quadratic residue
since EA has the full 2-torsion over Fp2 . Therefore, both (u ± w)2 − 1 have the
same quadratic residuosity, that is, they are both quadratic non-residues by the
above.

Now5 assume by contradiction that P1 − P2 ∈ [2]EA, i.e. there is a point
(x, y) ∈ EA(Fp2) such that [2](x, y) = (u, v). From the doubling formula on EA

we get

u =
(x2 − 1)2

4x(x2 + Ax + 1)
.

From this we get a quartic equation (x2 − 1)2 − 4ux(x2 + Ax + 1) = 0. Since
x 	= 0, we can divide both sides by x2 and rearrange some terms to get

(
x +

1
x

)2

− 4u

(
x +

1
x

)
− 4(Au + 1) = 0.

From this we obtain

x +
1
x

=
4u ± √

16(u2 + Au + 1)
2

=
4u ± 4w

2
= 2(u ± w).

In turn, from this we get x2 − 2(u ± w)x + 1 = 0. Again since x ∈ Fp2 , the
discriminant 4(u ±w)2 − 4, and hence at least one of the (u ±w)2 − 1 must be a
quadratic residue. But this contradicts the earlier observation that (u ± w)2 − 1
are both quadratic non-residues. Therefore P1 − P2 	∈ [2]E, yielding the claim
that 〈[h]P1, [h]P2〉 = EA[2m]. ��

In practice, one can efficiently implement entangled basis generation as fol-
lows. Let u0 ∈ Fp2 \ Fp such that u := u2

0 ∈ Fp2 \ Fp, e.g. u0 = 1 + i and u = 2i.
Define two separate tables of pairs (r, v) with v := 1/(1 + ur2):

– table T1 contains pairs (r, v) in which v is quadratic non-residue,
– table T2 contains pairs (r, v) in which v is quadratic residue.

Performing one quadraticity test on A, only once per curve, and restricting table
lookup to the table of opposite quadraticity ensures that x := −Av is a non-
square. Repeating quadraticity tests to ensure that a corresponding y exists,
and completing one square root extraction in Fp2 to obtain y, one gets 2 points
whose orders are multiples of 2m at once. This is detailed in Algorithm3.1.

Let us compare the number of operations required by the entangled basis
algorithm with the plain basis generation algorithm used in Costello et al. [5].

Entangled basis: Testing the quadraticity of A takes (m + n + 1)s+ nm. The
main loop runs twice on average at a cost 2(m + n + 1)s + (2n + 22)m. The

5 This part closely follows the idea behind [8, Chap. 1 (Sect. 4), Theorem 4.1].
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last stage is to complete a square root and costs (m+n−1)s+(n+1)m+1i.
The total cost of the algorithm is then

(4m + 4n + 2)s + (4n + 23)m + 1i.

Plain basis: To get the abscissa of a point on the curve takes (2n + 22)m +
2(m + n + 1)s. Clearing the cofactor 3n requires n point triplings at a cost
32nm. We also need to compute m−1 point doublings for linear independence
check that is required in the next steps. So obtaining the first basis point costs
(34n+16m+6)m+2(m+n+1)s. The second basis point is obtained exactly
the same way, except that we also need a linear independence check. This is
done in a loop that runs twice on average. The expected cost of obtaining
the second point is then twice the cost of obtaining the first point including
the m − 1 doublings step. The last stage of the algorithm is to recover the y
coordinates of the points which costs (4m + 4n)s + (4n + 36)m + 2i. Adding
all these, the total cost of the algorithm is

(10m + 10n + 6)s + (48m + 106n + 54)m + 2i.

For the values m = 372 and n = 239, and assuming s = 0.8m and i = 100m,
we get the performance ratio of 15.92.

Algorithm 3.1. Entangled basis generation for E[2m](Fp2) : y2 = x3 +Ax2 +x

Input: A = a + bi ∈ Fp2 ; u0 ∈ Fp2 : u := u2
0 ∈ Fp2 \ Fp; tables T1, T2 of pairs

(r ∈ Fp, v = 1/(1 + ur2) ∈ Fp2) of QNR and QR.
Output: {S1, S2} such that 〈[3n]S1, [3

n]S2〉 = E[2m](Fp2).

1: z ← a2 + b2, s ← z(p+1)/4

2: T ← (s2
?
= z) T1 : T2 // select proper table by testing quadraticity of A

3: repeat
4: lookup next entry (r, v) from T
5: x ← −A · v // NB: x nonsquare
6: t ← x · (x2 + A · x + 1) // test quadraticity of t = c + di
7: z ← c2 + d2, s ← z(p+1)/4

8: until s2 = z // compute y ← √
x3 + A · x2 + x

9: z ← (c + s)/2, α ← z(p+1)/4, β ← d · (2α)−1

10: y ← (α2 ?
= z) α + βi : −β + αi // compute basis

11: return S1 ← (x, y), S2 ← (ur2x, u0ry)

For the sake of completeness, we remark that the entangled basis method
requires the Montgomery curve coefficient A to be nonzero, and hence does not
apply to the curve E0 : y2 = x3 + x. That case is not relevant for compression,
but it can be handled through the use of the usual distortion map τ : E0 → E0

defined by τ(x, y) = (−x, iy). However, as we discuss in Sect. 7, both basis points
must be E0(Fp2) \ E0(Fp) in this case as well, and since the distortion map by
itself does not guarantee this property, it has to be properly checked.
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3.1 Avoiding Cofactor Multiplication

Combining reverse basis decomposition and entangled basis generation enables
us to further avoid two scalar multiplications by the large cofactor 3n during
Bob’s public key compression, and one during Alice’s decompression. First notice
that Algorithm 3.1 already incorporates the mentioned optimization, i.e. the out-
put points S1 and S2 satisfy (R1, R2) := ([3n]S1, [3n]S2) such that 〈R1, R2〉 =
E[2m]. This is only possible because in reverse basis decomposition the Tate
pairings hi take the points Si in their second argument which does not need to
be necessarily cofactor-reduced. In this case, for R1 = c0φB(PA) + d0φB(QA)
and R2 = c1φB(PA) + d1φB(QA), the respective pairing computations are

k0 = e2m(φB(PA), φB(QA))
k1 = e2m(φB(PA), S1) = e2m(φB(PA), [3−n]R1) = k3−nd0

0

k2 = e2m(φB(PA), S2) = e2m(φB(PA), [3−n]R2) = k3−nd1
0

k3 = e2m(φB(QA), S1) = e2m(φB(QA), [3−n]R1) = k−3−nc0
0

k4 = e2m(φB(QA), S2) = e2m(φB(QA), [3−n]R2) = h−3−nc1
0 .

Thus, the discrete logarithms are the desired ones up to a factor 3−n, and given
by ĉ0 = − logk0

k3 = 3−nc0, d̂0 = logk0
k1 = 3−nd0, ĉ1 = − logk0

k4 = 3−nc1,
and d̂1 = logk0

k2 = 3−nd1. Notice that 3−n mod 2m must be odd which implies
that ĉ0 or d̂0 is invertible if and only if c0 or d0 is invertible. Similar to the
situation in Sect. 2, when using the compression with only 3 coefficients as in [5]
Bob transmits exactly the original coefficients: assuming ĉ0 is invertible, then

(ĉ−1
0 d̂0, ĉ

−1
0 ĉ1, ĉ

−1
0 d̂1) = (c−1

0 3n3−nd0, c
−1
0 3n3−nc1, c

−1
0 3n3−nd1)

= (c−1
0 d0, c

−1
0 c1, c

−1
0 d1)

The derivation when d0 is invertible is analogous.
To decompress Bob’s public key, Alice needs to perform a single cofactor

multiplication by 3n as follows. Assume that a0 is invertible modulo 2m so that
Alice receives the triple (a−1

0 b0, a
−1
0 a1, a

−1
0 b1). She needs to compute the kernel

ker(φAB) = 〈φB(PA) + skA · φB(QA)〉 which can be written as

〈a0R1 + b0R2 + skA · (a1R1 + b1R2)〉 = 〈(a0 + skAa1)R1 + (b0 + skAb1)R2〉

As noted in [5], one computes ker(φAB) as a−1
0 ker(φAB) = 〈(1+skAa−1

0 a1)R1 +
(a−1

0 b0 + skAa−1
0 b1)R2〉, which can be done with one scalar multiplication and

one point addition by writing ker(φAB) = 〈R1 + (1 + skAa−1
0 a1)−1(a−1

0 b0 +
skAa−1

0 b1)R2〉. Now if Alice uses Algorithm 3.1, she obtains an entangled basis
{S1, S2} such that (R1, R2) = ([3n]S1, [3n]S2). She can then compute T = 〈S1 +
(1+skAa−1

0 a1)−1(a−1
0 b0+skAa−1

0 b1)S2〉 first and then recover the correct kernel
ker(φAB) = 〈[3n]T 〉 by performing one cofactor scalar multiplication.



256 G. H. M. Zanon et al.

3.2 On Basis Generation for E[3n ]

The entangled basis approach does not immediately generalize to the ternary
case. As a consequence, to generate bases for E[3n] we adopted the näıve app-
roach of randomly picking candidate points and testing them for the correct
order and linear independence.

Costello et al. suggest the use of a 3-descent approach based on a result
by Schaefer and Stoll [12], and claim significant performance gains. However,
we were unable to reproduce and thus verify their claims. On the contrary, the
näıve method is observed to be always faster than 3-descent, with a cost ratio
Cnäıve/C3-descent ≈ 0.87 that runs against their claim. A detailed analysis appears
to corroborate the observed cost ratio above. We defer further discussion for the
extended version of this paper [16].

We briefly note that, while the näıve approach incurs a substantial cost that
seems unavoidable at key compression, the knowledge gained in the process (in
the form of the actual counters that specify the points in the Elligator construc-
tion) could be then shared between Alice and Bob, speeding up the latter’s work
at key decompression. For a very modest increase in Alice’s key size (for instance,
a single extra byte for each of the two basis points would provide space that is
only exceeded with probability well below 2−400), Bob’s E[3n] basis generation
would get about 31% faster, and his full decompression of Alice’s key would
become about 22% faster. We also defer a detailed discussion of this technique
for the extended version of this paper [16].

4 Pairing Computation

The pairing computation techniques by Costello et al. [5] are based on
curves in a variant of the Montgomery model, with projective coordinates
(X2,XZ,Z2, Y Z), which turned out to be the best setting among several mod-
els they assessed. We will argue that the older and today less favored short
Weierstraß model leads to more efficient pairing algorithms. For convenience, we
extend Jacobian coordinates [X : Y : Z] with a fourth component, [X : Y : Z : T ]
with T = Z2.

Interestingly, Costello et al. dismiss the technique of denominator elimination
[2] and keep numerators and denominators separate during pairing evaluation.
We point out, however, that pairing values are defined over Fp2 and the inverse
of a field element a+bi is (a−bi)/(a2+b2). Hence, rather than keeping a separate
denominator a + bi one can simply and immediately multiply the pairing value
by the conjugate a − bi instead; the result only differs from the original one
by a denominator consisting of the norm a2 + b2 ∈ Fp, and this denominator
does get eliminated by the final exponentiation in the reduced Tate pairing
computation. This leaves the cost of pairing computation unchanged, but it
simplifies the implementation as it entirely does away with separate numerators
and denominators.

Let r ≥ 0 be the pairing order. For embedding degree k = 2, r | Φ2(p) =
p + 1 = 2m · 3n, and by construction r is always either 2m or 3n. We will be
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interested in computing reduced Tate pairings of order r, whose first argument
must have that order as well. In the case of compressed SIDH keys, pairings
of the following forms are computed together (recall that a fifth pairing e0 :=
er(P,Q) = er(P0, Q0)deg φ is readily available through precomputation):

e1 := er(P,R1), e2 := er(P,R2), e3 := er(Q,R1), e4 := er(Q,R2),

where the first two pairings share the same first argument P , and next two
pairings share the same first argument Q.

From now on, we will split the discussion into two cases: binary-order pair-
ings, r = 2m, and ternary-order pairings, r = 3n.

4.1 Binary-Order Pairings

The computation of the reduced Tate pairing er(P,Q) of order r = 2m proceeds
as described in Algorithm 4.1, which requires doubling a point V ∈ E(Fp2). The
doubling formulas in Jacobian coordinates have a single exception, that occurs
when the point being doubled has order 2. That is, when y = 0, since the angular
coefficient of the tangent to the curve at that point becomes undefined. That
exception, however, can only occur deterministically in the scenario contem-
plated here, namely at the last step of the Miller loop; since by definition the
first pairing argument is always a point of order 2m, chosen by the very entity
that is computing the pairing.

Besides, the difference in running time reveals no private information, since
the pairing arguments are either already public for being part of a conventional
torsion basis, or else are about to be made public for being part of a public key.

Algorithm 4.1. Tate2(P,Q): basic reduced Tate pairing of order r = 2m:
Input: points P, Q.
Output: er(P, Q).

1: f ← 1, V ← P
2: for i ← 0 to m − 1 do
3: f ← f2 · gV,V (Q)/g[2]V (Q), V ← [2]V
4: end for
5: return er(P, Q) ← f (p2−1)/r

The most efficient doubling method known for Jacobian coordinates is due to
Bernstein and Lange [4]. Let V = [X : Y : Z : T ] and [2]V = [X ′ : Y ′ : Z ′ : T ′]
in the extended coordinate system defined above. Then

X2 ← X2; Y2 ← Y 2; Y4 ← Y 2
2 ;

S ← 2((X + Y2)2 − X2 − Y4); M ← 3X2 + A · T 2; X ′ ← M2 − 2S;
Y ′ ← M · (S − X ′) − 8Y4; Z ′ ← (Y + Z)2 − Y2 − T ; T ′ ← (Z ′)2;
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The cost is 2M+8S+15A. The curve coefficient A typically lacks any structure
that might enable optimizations, and hence incurs full multiplication cost.

This algorithm yields several intermediate values that are useful in the
calculation of a function equivalent to gV,V (Q)/g[2]V (Q), namely g̃2(V,Q) :=
[M · (T · x − X) + W − L · y] · R · (T ′ · x − X ′)∗ when [2]V 	= O, g̃2(V,Q) :=
(T · x − X) · T ∗ when −V = V 	= O, or simply g̃2(V,Q) := 1 when V = O,
where L := Z ′ · T , R := Z ′ · T ∗, W := 2Y2. Denominators in the base field
(|Z2 · (T ′ · x − X ′)|2 in the first case, |Z2|2 in the others) are eliminated.

One can further optimize the computation of a function ĝ2(V,Q) equivalent
to g̃2(V,Q). First, the expression T ′ · x − X ′ that occurs at one step will play
the role of T · x − X at the next step, so one can simply store it from one step
to the next and thus save 1M. Second, one can show that all R and T ∗ factors
that appear in the definition of g̃2(V,Q) are irrelevant to the pairing value, and
can be omitted. We defer the details for the extended version of this paper [16].

Consequently, initializing h ← T · x − X before Miller’s loop at a cost of 1M
per pairing, the value g of function ĝ2(V,Q) can be evaluated as

g ← M · h + W − L · y; h ← T ′ · x − X ′; g ← g · h∗;

at a cost of 4M + 3A per step of Miller’s loop, except at the final step, when
it is simply g ← h. The cost of computing L ← Z ′ · T alone is 1M and that of
computing W is 1A. This completes the line function construction.

Finally, updating f at each step as f ← f2 · ĝ2(V,Q) incurs a cost 1S to
compute the complex square f2, plus 1M to compute f2 · ĝ2(V,Q) from f2 and
ĝ2(V,Q). Therefore, the proposed variant has the following overall cost per step,
where the shared part is amortized among parallel pairings that share the same
first argument:

– (shared) cost of point doubling and line function construction: 2M + 8S +
15A + 1M + 1A = 25m + 71a;

– (individual) cost of line function evaluation and accumulation: 4M + 3A +
1S + 1M = 17m + 34a.

By comparison, the Costello et al. [5] technique has the following costs:

– (shared) cost of point doubling and line function construction: 9M + 5S +
1s + 7a = 37m + 1s + 67a;

– (individual) cost of line function evaluation and accumulation: 5M + 2S +
2s + 1a = 19m + 2s + 32a.

Pairings on an entangled basis. If two pairings e(P,R1), e(P,R2) sharing the
same first argument P are computed on an entangled basis R1 = (x1, y1), R2 =
(x2, y2) with x2 = t2 · x1, y2 = t · y1 with carefully chosen t, one can slightly
improve the line function evaluation and accumulation. For t = (1 + i)r and
t2 = 2ir2 with some small r ∈ Fp, multiplication by t or t2 given the values of
T ′ · x1 or L · y1 is less expensive than the full multiplications T ′ · x2 or L · y2 for
generic (x2, y2), decreasing the pairing cost by 2m + 10a.
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Table 1. Binary Miller loop cost in 2 parallel pairings.

Technique Cost Ratio

Costello et al. [5] 75m + 5s + 131a 1

Ours (plain) 59m + 139a ≈ 0.747

Ours (entangled) 57m + 129a ≈ 0.722

The performance improvements brought about by the techniques we propose
are summarized on Table 1, assuming 1s ≈ 0.8m and essentially ignoring a. Our
proposed variant of the parallel reduced Tate pairing is shown in full detail as
Algorithm A.1 in the Appendix.

4.2 Ternary-Order Pairings

The computation of the reduced Tate pairing er(P,Q) of order r = 3n proceeds as
described in Algorithm 4.2. Again, the tripling formulas in Jacobian coordinates
have an exception when y = 0, but this can be handled in a similar fashion to the
binary case. The difference in running time reveals no private information for the
same reason, namely only public data is involved in the pairing computations.

Algorithm 4.2. Tate3(P,Q): basic reduced Tate pairing of order r = 3n:
Input: points P, Q.
Output: er(P, Q).

1: f ← 1, V ← P
2: for i ← 0 to n − 1 do
3: f ← f3 · gV,V (Q) · gV,[2]V (Q)/(g[2]V (Q) · g[3]V (Q)), V ← [3]V
4: end for
5: return er(P, Q) ← f (p2−1)/r

The most efficient tripling algorithm known for Jacobian coordinates is due
to Bernstein and Lange [4]. Let V = [X : Y : Z : T ] and [3]V = [X ′ : Y ′ : Z ′ : T ′]
in the extended coordinate system as before. Then:

X2 ← X2; Y2 ← Y 2; Y4 ← Y 2
2 ;

T2 ← T 2; M ← 3X2 + a · T2; M2 ← M2;
D ← (X + Y2)2 − X2 − Y4; F ← 6D − M2; F2 ← F 2;
W ← 2Y2; W ′ ← 2W S ← 16Y4;
U ← (M + F )2 − M2 − F2 − S; U ′ ← S − U ;
X ′ ← 4(X · F2 − W ′ · U); Y ′ ← 8Y · (U · U ′ − F · F2);
Z ′ ← (Z + F )2 − T − F2; T ′ ← (Z ′)2;
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The cost is 6M+ 10S+ 25A. This algorithm yields intermediate values that are
useful in the calculation of a function equivalent to gV,V (Q)·gV,[2]V (Q)/(g[2]V (Q)·
g[3]V (Q)), namely g̃3(V,Q) := (M · h + d) · (U ′ · h + F ′ · d) · (W ′ · h + F )∗ · R · h∗

3

when [3]V 	= O; g̃3(V,Q) := (M ·h+d) ·L∗ when [3]V = O but V 	= O; or simply
g̃3(V,Q) := 1 when V = O, where h := T ·x−X, d := W −L ·y, h3 := T ′ ·x−X ′,
F ′ := 2F , L ← ((Y + Z)2 − Y2 − T ) · T , and R := F · T ∗.

One can further optimize the computation of a function ĝ3(V,Q) equivalent
to g̃3(V,Q) in a similar fashion to what was done for the binary case. First, the
expression T ′ ·x−X ′ that occurs at a certain step will play the role of T ·x−X
at the next step, so one can simply store it from one step to the next and thus
save 1M. Second, one can show that all R and L∗ factors that appear in the
definition of g̃3(V,Q) are irrelevant to the pairing value, and can be omitted. We
defer the details for the extended version of this paper [16].

Consequently, the parabola function construction can be completed by com-
puting only L and F ′ as above at a cost 1M + 1S + 4A. After initializing
h ← T · x − X before Miller’s loop at a cost of 1M per pairing, the value g of
function g̃3(V,Q) can be evaluated as

d ← W − L · y; g ← (M · h + d) · (U ′ · h + F ′ · d) · (W ′ · h + F );
h ← T ′ · x − X ′; g ← g · h∗;

at a cost 9M + 5A per step of Miller’s loop, except at the final step, when it is
simply g ← M · h + d.

Finally, updating f at each step as f ← f3 · g̃3(V,Q) incurs a cost 1C to
compute the complex cube f3, plus 1M to compute f3 · g̃3(V,Q) from f3 and
g̃3(V,Q). Therefore, the proposed variant has the following overall cost per step,
where again the shared part is amortized among parallel pairings that share the
same first argument:

– (shared) cost of point tripling and parabola function construction: 6M+10S+
25A + 1M + 1S + 4A = 43m + 126a;

– (individual) cost of parabola function evaluation and accumulation: 9M +
5A + 1C = 32m + 2s + 66a.

By comparison, the Costello et al. [5] technique has the following costs:

– (shared) cost of point tripling and construction of the parabola functions:
19M + 6S + 6s + 15a = 69m + 6s + 128a;

– (individual) cost of evaluating the parabola functions and accumulating the
results: 10M + 2S + 4a = 34m + 60a.

The performance improvements brought about by the techniques we propose
are summarized on Table 2. Our proposed variant of the parallel reduced Tate
pairing is shown in full detail in the Appendix as AlgorithmA.2.
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Table 2. Ternary Miller loop cost in 2 parallel pairings.

Technique Cost Ratio

Costello et al. [5] 137m + 6s + 248a 1

Ours 107m + 4s + 258a ≈ 0.777

5 Discrete Logarithm Computation

Let �e be one of the prime-power factors of p+1 = 2m · 3n. Let μ�e ⊂ Fp2 be the
set of �e-th roots of unity in Fp2 , i.e. μ�e := {v ∈ Fp2 | v�e = 1}. Inverting in μ�e

is a mere conjugation, (a+bi)−1 = a−bi since the norm is 1. The Pohlig-Hellman
method (Algorithm 5.1) to compute the discrete logarithm of c ∈ μ�e requires
solving an equation of the form:

r�e−1−k

k = sdk

where s = g�e−1
has order � and, for k = 0, . . . , e − 1, dk ∈ {0, . . . , � − 1} is an

�-ary digit, r0 = c, and rk+1 depends on rk and dk.

Algorithm 5.1. Basic Pohlig-Hellman discrete logarithm algorithm
Input: generator g ∈ μ�e , challenge c ∈ μ�e .
Output: d := logg c, i.e. gd = c.

1: s ← g�e−1
// NB: s� = 1

2: d ← 0, r0 ← c
3: for k ← 0 to e − 1 do
4: vk ← r�e−1−k

k

5: find dk ∈ {0, . . . , � − 1} such that vk = sdk

6: d ← d + dk�k, rk+1 ← rk · g−�kdk

7: end for // NB: gd = c
8: return d

Assuming that g−�k is precomputed and stored for all k as a by-product of
the computation of s, the naive strategy to obtain the discrete logarithm requires
repeatedly computing the exponential r�e−1−k

k at the cost of e − 1 − k raisings
to the �, then solving a small discrete logarithm instance in a subgroup of order
� to get one �-ary digit, then clearing that digit in the exponent of rk at a cost
not exceeding � multiplications to obtain rk+1. The overall cost is thus O(e2).

It turns out that this strategy is far from optimal, as pointed out by
Shoup [13, Chap. 11]. The crucial task is to obtain the sequence r�e−1

0 , r�e−2

1 ,
r�e−3

2 , . . . , r�0

e−1 in this order, since each rk depends on the previous one.
In our case, the set of vertices is {Δjk | j+k ≤ e−1} where Δjk := r�j

k . Each
vertex has either two downward outgoing edges, or no edges at all. Vertices Δjk
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with j +k > e− 1 have two edges: a left edge Δjk → Δj+1,k that models raising
the source vertex to the �-th power to yield the destination vertex, r�j+1

k ← (r�j

k )�,
and a right edge Δjk → Δj,k+1 that models clearing the (j + k)-th digit in
the exponent of the source vertex, r�j

k+1 ← r�j

k · g−�(j+k)dk . Vertices Δjk with
j + k = e − 1 are leaves since they have no outgoing edges.

De Feo et al. [6, Eq. 5] describe an O(e2) dynamic programming algo-
rithm that computes the cost of an optimal subtree of Δ with root at
Δ00 and covering all leaves. If the cost of traversing a left or right edge
is p or q respectively, and the cost of an optimal subtree of k edges is
Cp,q(k), their algorithm is based on the relations Cp,q(1) = 0 and Cp,q(k) =
min1≤j<k (Cp,q(j) + Cp,q(k − j) + (k − j)p + jq) for k > 1.

The naive dynamic programming approach is to store the values of Cp,q(k)
for k = 1 . . . e, invoking the above relation k − 1 times at each step to find
the corresponding minimum, for a total e(e − 1)/2 invocations, hence the O(e2)
cost. However, because Cp,q(k) has no local minimum other than the single global
minimum (or two adjacent, equivalent copies of the global minimum at worst),
one can find that minimum with a variant of binary search that compares two
consecutive values near the middle of the search interval [1 . . . k − 1] and then
halves that interval. This yields the O(e log e) Algorithm 5.2, which computes
Cp,q(k) and the structure of the optimal traversal strategy by storing the values
of j above that attain the minimum at each step.

Algorithm 5.2. OptPath(p, q, e): optimal subtree traversal path
Input: p, q: left and right edge traversal cost; e: number of leaves of Δ.
Output: P : optimal traversal path

1: Define C[1 . . . e] as an array of costs and P [1 . . . e] as an array of indices.
2: C[1] ← 0, P [1] ← 0
3: for k ← 2 to e do
4: j ← 1, z ← k − 1
5: while j < z do
6: m ← j + �(z − j)/2	, m← m + 1
7: t1 ← C[m] + C[k − m] + (k − m) · p + m · q
8: t2 ← C[ m] + C[k − m] + (k − m) · p + m· q
9: if t1 ≤ t2 then

10: z ← m
11: else
12: j ← m

13: end if
14: end while
15: C[k] ← C[j] + C[k − j] + (k − j) · p + j · q, P [k] ← j
16: end for
17: return P
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5.1 Discrete Logarithm Computation Cost

The cost of an optimal strategy depends on the individual costs of traversing a
left edge and a right edge. We now show that, because of our proposed reverse
basis decomposition technique, the total cost of discrete logarithm computation
is drastically reduced. A left edge traversal represents the computation r�j+1

k ←
(r�j

k )� at a cost wS ≈ 2wm in the binary case and wC = w(2m + 1s) ≈ 2.8wm
in the ternary case, with windows of size w.

A right edge traversal represents the computation r�j

k+1 ← r�j

k · g−�(j+k)dk ,
which can be performed via table lookup r�j

k+1 ← r�j

k · T [j + k][dk] where
T [u][d] := g−�u·d. Since j + k ≤ e − 1, the table size is (e/w) · �w field ele-
ments. However, no more than a single multiplication is incurred regardless of
�, e, or w, namely, 1M ≈ 3m. When w is very small, avoiding the multiplica-
tion for dk = 1 noticeably reduces the running time and requires fewer table
entries. Moreover, the table is fixed with the reverse basis decomposition tech-
nique, because g = e(PB , QB)deg φA , or g = e(PA, QA)deg φB , thus incurring no
table building cost at running time for each newly generated key. Even the sim-
ple discrete logarithm instances at the leaves only incur O(�) lookups on the
same table, since sdk = T [e − 1][dk]∗.

Algorithm 5.3 summarizes the proposed technique, combining Shoup’s RDL
algorithm [13, Sect. 11.2.3] with the optimal divide-and-conquer strategy of De
Feo et al. and the efficient table lookup enabled by reverse basis decomposition.

Algorithm 5.3. Traverse(r, j, k, z, P, T, d)

Input: r: value of root vertex Δjk, i.e. r := r�j

k ; j, k: coordinates of root vertex Δjk;
z: number of leaves in subtree rooted at Δjk; P : traversal path; T : lookup table.

Output: d: digits (base �) of logg r0.
Remark: initial call is Traverse(r0, 0, 0, e, P, T, d).

1: if z > 1 then
2: t ← P [z] // z leaves: t to the left exp, z − t to the right

3: r′ ← r�z−t

// go left (z − t) times
4: Traverse(r′, j + (z − t), k, t, P, T )
5: r′ ← r · ∏k+t−1

h=k T [j + h][dh] // go right t times
6: Traverse(r′, j, k + t, z − t, P, T )
7: else // leaf
8: find t ∈ {0, . . . , � − 1} such that r = T [e − 1][t]∗

9: dk ← t // recover k-th digit dk of the discrete logarithm from r = sdk

10: end if

The resulting improvements are substantial. For discrete logs in μ2372 , the
optimal cost is ≈ 4958.4m with windows of size w = 1, ≈ 3127.9m with windows
of size w = 3, and ≈ 2103.7m with windows of size w = 6. For discrete logs in
μ3239 , the optimal cost is ≈ 4507.6m with windows of size w = 1, ≈ 2638.1m
with windows of size w = 3, and ≈ 1739.8m with windows of size w = 6.
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Tradeoffs are also possible. Instead of being a matrix of size (e/w) · �w, the
lookup table could be restricted to a single array T1[u] := g−�u of (e/w) entries,
by computing T1[u]d = g−�u·d on demand using an optimal multiplication chain
for cyclotomic exponentiation. For instance, discrete logs in μ2372 with windows
size w = 3 would require a table of size 124 at an average cost ≈ 4453.9m. For
comparison, the best results reported in [5, Sect. 5] are 5320m+3349s ≈ 8271.6m
for discrete logs in μ2372 and 5320m+3349s ≈ 7999.2m for discrete logs in μ3239 ,
both with windows of size w = 3, which is optimal in that technique; increasing
the window size actually causes a cost increase.

Table 3 summarizes the gains our technique makes possible and compares
them against the results from Costello et al., in terms of both the raw number
of multiplications in the base field and the ratio between our results and theirs.
We recall that no side-channel security concern arises from this technique, since
all information involved in the processing is public.

Table 3. Discrete logarithm computation costs (assuming s ≈ 0.8m)

Group Costello et al. [5] Ours, w = 1 (ratio) Ours, w = 3 (ratio) Ours, w = 6 (ratio)

µ2372 8271.6m 4958.4m (0.60) 3127.9m (0.39) 2103.7m (0.25)

µ3239 7999.2m 4507.6m (0.56) 2638.1m (0.33) 1739.8m (0.22)

6 Point Tripling on Montgomery Curves

Multiplication by 3n, be it as a cofactor in the case of the 2m torsion or as a
tool to test linear independence in the 3n torsion, is a computationally expensive
operation. We describe in Algorithm 6.1 an improved method for point tripling
on Montgomery curves that, though modest, directly addresses this bottleneck.

Algorithm 6.1. Improved tripling on the Montgomery curve By2 = x3+Ax2+x

Input: P = (x, z): Montgomery curve point in xz representation.
Output: [3]P = (x′, z′).

1: t1 ← x2; t2 ← z2;
2: t3 ← t1 + t2
3: t4 ← 2A · ((x + z)2 − t3) + t3
4: t3 ← (t1 − t2)

2;
5: t1 ← (t1 · t4 − t3)

2; t2 ← (t2 · t4 − t3)
2;

6: x′ ← x · t2; z′ ← z · t1;
7: return (x′, z′)



Faster Isogeny-Based Compressed Key Agreement 265

The cost of our tripling is 5M+6S+7A (or one less multiplication in scenarios
where the curve coefficient A can be carefully chosen and fixed) with 4 ancillary
variables, not counting the left shift (multiplication by 2) which costs no more
than an addition but can be precomputed for a given curve. It is less expensive
than the previously best tripling algorithm in the literature, which only attains
6M+5S+7A with 8 ancillary variables [11, Appendix B]. Note that this tripling
algorithm can be employed in the key (de)compression operations since they do
not require the curve coefficient A to be in projective form. The projective version
is only required in the computation of 3n-isogenies, where field inversions can be
avoided if the projective form is adopted. That is the case of the tripling formula
by Faz-Hernández et al. [7], which costs 7M + 5S + 9A.

7 Implementation and Experimental Results

Our improved key compression and decompression techniques have been imple-
mented on top of the SIDH C library [10] to make full-fledge key exchange
available. We left the previous (de)compression functions in the new version to
enable replicating the experiments and comparisons.

Since we only process public information (compression and decompression of
public keys), side-channel attacks are not an issue, and faster non-isochronous
algorithms like the extended Euclidean algorithm have been adopted.

Table 4. Benchmarks in cycles on an Intel Core i5 clocked at 2.9 GHz (clang compiler
with -O3 flag, and s = m in this implementation).

Operations 2m-torsion (w = 2) 3n-torsion (w = 1)

SIDH v2.0 [5] Ours Ratio SIDH v2.0 [5] Ours Ratio

Basis generation 24497344 1690452 14.49 20632876 17930437 1.15

Discrete log. 6206319 2776568 2.24 4710245 3069234 1.53

Pairing phase 33853114 25755714 1.31 39970384 30763841 1.30

Compression 78952537 38755681 2.04 78919488 61768917 1.28

Decompression 30057506 9990949 3.01 25809348 23667913 1.09

The initial public curve is the usual supersingular curve E0 : y2 = x3 + x
defined over Fp2 where p = 23723239 − 1. It is worth mentioning that before
applying our (de)compression techniques, the SIDH v2.0 library was first mod-
ified to perform Alice’s key generation with both points PA and QA defined
over the extension E0(Fp2) \ E0(Fp) instead of defining PA in the base field as
suggested in [5]. The approach in [5] starts with point PA = (x, y) ∈ E0(Fp)
over the base field and then applies the distortion map τ to get a linearly
independent point QA = τ(PA) = (−x, iy) lying on the trace zero group.
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This optimization cannot be combined with our techniques because using dis-
tortion maps on binary torsions only gives a basis 〈PA, τ(PA)〉 = E0[2m−1]
of a smaller group of order 22(m−1), and in this case the images of PA and
QA = τ(PA) under Bob’s isogeny consequently generate a smaller torsion as well,
i.e. 〈φB(PA), φB(QA)〉 = EB [2m−1]. In particular, the reverse basis decomposi-
tion technique combined with entangled basis would not work since an entangled
basis generates the full 2m-torsion, and this basis cannot be converted to a basis
of a smaller torsion, i.e. the change of basis matrix in Eq. 3 would not exist.
Therefore, we selected the new points

PA := 3239 · (5 + i,
√

(5 + i)3 + 5 + i) ∈ E0(Fp2) \ E0(Fp)

and QA := τ(PA) ∈ E0(Fp2)\E0(Fp). Points PB and QB are the ones in [5] since
for �n torsions with � odd, distortion maps do generate the full group E0[�n] and
PB can be kept over the base field. For the discrete logarithms we set w = 2 for
the binary case and w = 1 for the ternary one. Table 4 summarizes our experi-
mental results with respect to the previous state-of-the-art implementation.

8 Conclusion

In this paper we proposed a range of new algorithms and techniques to speed up
the supersingular isogeny Diffie-Hellman. For example, in the 2m-torsion using
w = 2 for the discrete logarithms, the key compression is about 2× faster than
the SIDH library and decompression achieves a factor of 3×, while the basis
generation itself is nearly 14.5× faster. The main bottleneck now, by far, is the
pairing phase, that takes about 25.8M cycles against 1.7M for basis generation
and 2.8M for the discrete logarithm phase. It is worthwhile to point out that
the techniques of entangled basis generation and the optimal strategy applied
to solve smooth-order discrete logarithms not only set up new speed records for
those tasks, but might find new applications in different contexts in cryptogra-
phy. We leave the possibility of extending the new entangled basis generation
technique to non-binary torsions as an open problem.

Acknowledgment. J. Doliskani and G. Pereira were supported by NSERC, Cryp-
toWorks21, and Public Works and Government Services Canada. M. Simplicio was
supported by Brazilian National Council for Scientific and Technological Develop-
ment (CNPq) under grant 301198/2017-9. M. Simplicio, P. Barreto and G. Zanon
were partially supported by the joint São Paulo Research Foundation (FAPESP) /
Intel Research grant 2015/50520-6 “Efficient Post-Quantum Cryptography for Build-
ing Advanced Security Applications.” M. Simplicio and P. Barreto are also partially
supported by the São Paulo Research Foundation (FAPESP) under grant 13/25977-7.



Faster Isogeny-Based Compressed Key Agreement 267

A Pairing Algorithms

Algorithm A.1. Tate2(P, [Qj ], m): reduced Tate pairing of
order r = 2m

Input: Curve E : y2 = x3 + ax + b
− Point P = [XP : YP : ZP ] on E of order 2m

− t points Qj = [XQj
: YQj

: ZQj
] on E, ZQj

∈ {0, 1}
Output: List of t values e2m(P,Qj)

1: X ← XP ; Y ← YP ; Z ← ZP ; T ← Z2

� NB: the following operations are in Fp2

2: for j ← 0 to t − 1 do
3: fj ← 1; hj ← T · XQj

− X;
4: end for
5: for k ← 0 to m − 1 do
� point doubling and line function construction:
6: X2 ← X2; Y2 ← Y 2; Y4 ← Y 2

2

7: M ← 3X2 + a · T 2

8: S ← 2((X + Y2)2 − X2 − Y4)
9: X ′ ← M2 − 2S

10: Y ′ ← M · (S − X ′) − 8Y4

11: Z ′ ← (Y + Z)2 − Y2 − T ;
12: T ′ ← (Z ′)2; L ← Z ′ · T ; W ← 2Y2

13: if Z ′ = 0 then // exception for points in [2]E
14: X ′ ← 0; Y ′ ← 1
15: end if

� line function evaluation and accumulation:
16: for j ← 0 to t − 1 do
17: if Z ′ 	= 0 then
18: g ← M · hj + W − L · YQj

19: hj ← T ′ · XQj
− X ′

20: g ← g · h∗
j

21: else
22: g ← hj ;
23: end if
24: fj ← f2

j ; fj ← fj · g;
25: end for
26: X ← X ′; Y ← Y ′;
27: Z ← Z ′; T ← T ′;
28: end for

29: return [(ZQj

?

	= 0) f
(p2−1)/r
j : 1 | j = 0 . . . t − 1]

Algorithm A.2. Tate3(P, [Qj ], n): reduced Tate pairing of
order r = 3n

Input: Curve E : y2 = x3 + ax + b
− Point P = [XP : YP : ZP ] on E of order 3n

− t points Qj = [XQj
: YQj

: ZQj
] on E, ZQj

∈ {0, 1}
Output: List of t values e3n(P,Qj)

1: X ← XP ; Y ← YP ; Z ← ZP ; T ← Z2;
� NB: the following operations are in Fp2

2: for j ← 0 to t − 1 do
3: fj ← 1; hj ← T · XQj

− X;
4: end for
5: for k ← 0 to n − 1 do
� point tripling and parabola function construction:
6: X2 ← X2; Y2 ← Y 2; Y4 ← Y 2

2 ; T2 ← T 2;
7: M ← 3X2 + a · T2; M2 ← M2

8: D ← (X + Y2)2 − X2 − Y4;
9: F ← 6D − M2; F2 ← F 2

10: W ← 2Y2; W ′ ← 2W ; S ← 16Y4

11: U ← (M + F )2 − M2 − F2 − S; U ′ ← S − U
12: X ′ ← 4(X · F2 − W ′ · U)
13: Y ′ ← 8Y · (U · U ′ − F · F2)
14: Z ′ ← (Z + F )2 − T − F2; T ′ ← (Z ′)2

15: L ← ((Y + Z)2 − Y2 − T ) · T ; F ′ ← 2F ;
16: if Z ′ = 0 then // exception for points in [3]E
17: X ′ ← 0; Y ′ ← 1
18: end if

� parabola function evaluation and accumulation:
19: for j ← 0 to t − 1 do
20: d ← W − L · YQj

;
21: if Z ′ 	= 0 then
22: g ← (M ·h+d)(U ′ ·h+F ′ ·d)(W ′ ·h+F )∗

23: h ← T ′ · XQj
− X ′; g ← g · h∗

24: else
25: g ← M · h + d
26: end if
27: f ← f3; f ← f · g
28: end for
29: X ← X ′; Y ← Y ′; Z ← Z ′; T ← T ′

30: end for

31: return [(ZQj

?

	= 0) f
(p2−1)/r
j : 1 | j = 0 . . . t − 1]
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Abstract. Lattice-based signature and Identity-Based Encryption are
well-known cryptographic schemes, and having both efficient and prov-
able secure schemes in the standard model is still a challenging task
in light of the current NIST post-quantum competition. We address this
problem in this paper by mixing standard IBE scheme, à la ABB (EURO-
CRYPT 2010) on Ring-SIS/LWE assumptions with the efficient trapdoor
of Peikert and Micciancio (EUROCRYPT 2012) and we provide an effi-
cient implementation. Our IBE scheme is more efficient than the IBE
scheme of Ducas, Lyubashevsky and Prest based on NTRU assumption
and is based on more standard assumptions. We also describe and imple-
ment the underlying signature scheme, which is provably secure in the
standard model and efficient.

Keywords: Lattice · Signature · IBE · Software implementation
Ring-LWE/SIS

1 Introduction

The concept of Identity Based Encryption (IBE) was defined by Shamir [Sha85].
It is considered as an alternative to the classical Public Key Encryption (PKE),
often requiring a dedicated infrastructure. Indeed, the public key related to a
person is simply its identity, such as her email address or her social security num-
ber, and the associated private key is generated by a trusted authority using a
master public key. Thus, IBE hugely simplifies keys generation and distribution
in a multi-user system. The first IBE constructions appeared in [BF01,Coc01],
and were based respectively on bilinear maps and on quadratic residue assump-
tions.

Since the work of Shor in 1994 [Sho97], the hardness of such number theoretic
assumptions is extremely reduced when faced to a quantum computer. This has
motivated many research work attempting to achieve quantum security. The
first supposedly post-quantum IBE scheme, which was introduced in 2008 by
Gentry et al. [GPV08], was based on hard lattice problems. Since then, many
improvements have been proposed [CHKP10,ABB10,DLP14].
c© Springer International Publishing AG, part of Springer Nature 2018
T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 271–291, 2018.
https://doi.org/10.1007/978-3-319-79063-3_13
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Lattice-based cryptography. Lattice-based cryptography starts with the work of
Ajtai [Ajt96], and uses hard problems on lattices as the foundation of secure
cryptographic constructions. A lattice is an infinite arrangement of regularly
spaced points, and it can be generated as the set of all linear combinations of
m independent vectors in R

n, called a basis. One fundamental hard problem
on lattices is the Shortest Vector Problem (SVP): given some basis, find the
shortest non zero vector of the lattice. Lattice-based cryptography is based on
the assumption that this problem and its variants are hard problems even for
an approximation factor polynomial in the dimension of the lattice.

Lattice-based cryptographic constructions are mainly based on two well
known problems: the Small Integer Solution problem (SIS) and its Inhomoge-
neous variant (ISIS) [Ajt96], and the Learning With Errors problem (LWE)
introduced by Regev [Reg05]. In particular, the ISIS problem consists in finding
a short vector x ∈ Z

m such that Ax = u mod q, given an uniformly random
matrix A ∈ Z

n×m
q and some u ∈ Z

n
q . Ajtai and Regev gave reductions from

worst-case lattice problems to the average case LWE and SIS problems.
Few years later, structured variants of the LWE and SIS problems were pro-

posed [Mic07,SSTX09], called Ring-SIS and Ring-LWE. These problems are pre-
ferred in practice, since they enjoy smaller storage and faster operations. There
also exist reductions from worst-case ideal lattice problems to these structured
variants [LPR10,SSTX09,LM06,PR06]. These two problems can be used to con-
struct many basic cryptographic primitives such as PKE (adapting the schemes
from [Reg05,GPV08]) and signatures [Lyu12,DDLL13,DM14].

Lattice Trapdoors. To construct IBE or Attribute Based Encryption (ABE),
we can use trapdoors for the SIS problem. Initially described by Ajtai [Ajt96],
a trapdoor TA ∈ Z

m×m for A ∈ Z
n×m
q is a short basis of vectors satisfying

TA ·A = 0 mod q, generated together with A. Given only A, it is hard to find
such a short basis but, with the knowledge of TA it is easy to invert the SIS
(and the ISIS) problem. Trapdoors constructions were improved by [AP09], and
then described for ideal lattices in [SSTX09].

Micciancio and Peikert [MP12] proposed a new construction allowing a faster
inversion of the ISIS problem, by reducing it to the inversion of a smaller problem
for some structured gadget matrix G ∈ Z

n×l
q . The matrix A ∈ Z

n×m
q is generated

with its associated short basis R ∈ Z
(m−l)×l, as A = (A′ |HG − A′R) where

A′ ∈ Z
n×(m−l)
q is uniformly sampled, and H ∈ Z

n×n
q is an invertible element. In

[GM18], Micciancio and Genise improved the inversion of the ISIS problem in
the ring variant with an arbitrary modulus.

Lattice-based IBE. The first lattice-based IBE [GPV08] relies on the Dual-Regev
encryption scheme. In Dual-Regev, a public key consists in a vector u = Ax
mod q, for a short vector x ∈ Z

m (which is the secret key). To build the IBE,
an identity can be mapped to a public key via a hash function H : {0, 1}∗ → Z

n
q

modeled as a random oracle. The master secret key of the IBE is a short trapdoor
TA, that makes it possible to extract a secret key x associated to any id by
inverting Ax = H(id) mod q.
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This construction was later improved by removing the Random Oracle
Model (ROM) [CHKP10,ABB10]. In ABB, a publicly computable matrix Aid =
(A |F (id)) ∈ Z

n×(m+m′)
q , is associated to an identity id, where F (·) is map-

ping identities to matrices in Z
n×m′
q . As a result, the secret key for an iden-

tity id is a short vector x ∈ Z
m+m′

, such that Aidx = u mod q. To find
such an x = (xT

1 |xT
2 )T , it is only required to sample a short x2 ∈ Z

m′
, and

to use TA to invert the following ISIS problem: find a small x1 ∈ Z
m such that

Ax1 = u−F (id)x2. In 2014, Ducas et al. [DLP14] gave an NTRU variant of the
GPV IBE scheme. In their work, the public key is built using NTRU lattices,
which improves the efficiency of the scheme.

Our Contributions. In this paper, we provide the first software implemen-
tation of a standard model IBE based on the hardness of Ring-SIS/LWE. Our
main goal is to show that IBE schemes can, and without sacrificing efficiency,
guarantee better security by being on the standard model and relying on a
classical assumption on lattice problems. We instantiate our implemented IBE
scheme from the selective secure IBE scheme described in [ABB10] as well as
from the recent variant of trapdoor described in [MP12,GM18]. We also describe
and implement the underlying signature scheme that achieve a selective notion of
unforgeability based on the hardness of Ring-SIS/LWE. We choose to implement
these selective secure schemes in the standard model due to their efficiency and
also their simplicity compared to other adaptive secure variants [ABB10,DM14].
Our constructions work over polynomial rings Rq = Zq[x]/(xn+1) with n a power
of two and q a prime modulus congruent to 1 mod 2n. This setting is wide-spread
in ideal lattice cryptography due to its efficiency thanks to the Number Theo-
retic Transform (NTT) representation. Note that our complete implementation
can be found at https://github.com/lbibe/code.

We provide our implementation as a general-purpose thread-safe C++
library. We take much care to write plain C++ and not to explicitly include
highly specialized instructions, such as AVX2 and NEON, in order to ensure
portability over several hardware architectures. Instead, we rely on the GCC 7.2
compiler to make vectorization, and a set of optimization methods and multi-
threading have been introduced using a number of C++11 specific features.
More importantly, we design our code to be modular and provide three software
layers, each of which is of independent interest. The software layers are (1) the
different Gaussian sampling techniques based on [DP16,GM18], (2) the Gaussian
sampling for trapdoor lattice with arbitrary modulus using [MP12], and (3) the
underlying cryptographic constructions (both IBE and the related signature).

We experimentally evaluate the performance of these two constructions. To
our surprise, the obtained runtime is fast and even quite close to that of other
schemes built in the ROM or/and using different security assumptions. We remind
that our goal is not to provide the most efficient IBE or signature scheme, but to
show that “good” security properties can still be practical for many scenarios. In
Tables 1 and 2, we provide a comparison with state-of-the-art implementations
of IBE and signature schemes. We note the security parameter as λ (classical bit
security in Tables 1, 2, 3, 4, 5 and 6) and the lattice dimension as n.

https://github.com/lbibe/code
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Table 1. Timings for the different operations of IBE schemes: Setup (master key
generation), Extract (user private key generation), encryption and decryption. Since
Setup is performed only once, we provide the timing of only one single operation.
Extract can measure how many users the system can manage. As for Encrypt/Decrypt,
we give their throughput in KB per second.

Scheme (λ, n) Setup
(ms)

Extract
(ms)

Encrypt
(KB/s)

Decrypt
(KB/s)

BF-128 [Fou13] (128, −) – 0.55 4.10 6.19

DLP-14 [MSO17] (80, 512) 4034 3.8 587 1405

This paper (80, 1024) 1.67 4.02 230 1042

Table 2. Timings for the different operations of signature schemes: KeyGen (key gen-
eration), signature and verification. Since KeyGen is performed only once per user, we
provide the timing of only one single operation. As for Sign/Verify, we give the timing
as the number of sign/verify operations per second.

Scheme (λ, n) KeyGen (ms) Sign (op/s) Verify (op/s)

Falcon [FHK+18] (195, 768)a 53.48 202 2685

This paper (170, 1024) 0.96 540 21276
acorresponds to NIST Security Level 2, since Level 1 only achieves 114 bits of
security.

We obtain our results using dual-core Intel i7 2.6 GHz CPU with stan-
dard CPU benchmarks. Concerning the IBE schemes, we notice that our Setup
(master key generation), compared to DLP-14, is (much) faster (we note that
the DLP-14 Setup could now be improved using the recent results in Falcon
[FHK+18]), while decryption and Extract are of the same order of magnitude.
However, our encryption is twice slower. For the sake of completeness, we include
the timings of the paring-based IBE scheme of Boneh-Franklin. As for the sig-
nature scheme, we compare our implementation with Falcon [FHK+18] that is
the underlying signature scheme of [DLP14]. In our timings, we did not consider
the phase of precomputations that we detail later in Sect. 5 (see Tables 5 and 6).

Related work. In [EBB13], the authors gave a software implementation of the
trapdoor of Micciancio and Peikert [MP12] in both matrix and ring variants.
They also included this trapdoor into the signature in the ROM of [GPV08].
Recently, in a concurrent work, a software implementation of the improvement
lattice trapdoor [MP12,GM18] is given in [GPR+17,DDP+17], with application
to respectively the GPV signature and the ABE scheme of [BGG+14].

The only lattice based IBE given with an implementation we are aware of, is
the one of Ducas et al. [DLP14]. In [DLP14], the authors gave a proof-of-concept
implementation, recently improved by [MSO17]. This IBE scheme is the IBE of
[GPV08], working with structured NTRU lattices. The Gram-Schmidt norm of a
NTRU basis is quite small and efficiently computed, then the Gaussian sampling
using this basis outputs better quality vectors.
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Conclusion and Open Problems. Our main contribution is a software imple-
mentation of a lattice-based IBE and signature scheme. Both constructions are
proven secure in the standard model under the hardness of Ring-SIS/LWE. Our
IBE is a ring-version of the selective ABE scheme, adapted using the MP12
trapdoor, we provide its underlying signature scheme and both security proofs.

We stress that our implementation has an efficiency comparable to NTRU
based schemes in the ROM, even if we thought at first that a scheme on the
standard model and based on Ring-SIS/LWE would be much less efficient. Then,
we find it interesting to observe that even with the constraint on the choice of
parameters and using a Gaussian sampling, those constructions, which are not
using NTRU lattices, can also be efficient.

There are several open questions which would be interesting to answer. First,
we choose to study the selective secure IBE scheme of ABB, and a signature
scheme which achieve a selective notion of unforgeability. Both schemes can
be improved to a better security by using the adaptive IBE scheme of ABB,
and by looking at the standard secure signature of [DM14]. We also discuss in
Sect. 2.4 the choice of the encoding hash function used in both schemes, which
could be improved using the recent results of [LS18]. Finally, we want to modify
NFLlib, which for now only allows us to use parameter q of size 30 or 62 bits. As
discussed in Sect. 5, using a parameter q in between would optimize our choice
of parameters. Note that using a Module variant, as in [DLL+17], could also be
a solution.

2 Preliminaries

Notations. Let D be a distribution over some finite set S, then x ←↩ D means
that x is chosen from the distribution D and x ←↩ U(S) denotes the sampling of
a uniformly random element x from S. We denote column vectors and matrices
in bold, respectively by bold lowercase (e.g. x) and bold uppercase (e.g. A).
The euclidean norm of the vector x is denoted by ‖x‖. The norm of a matrix
‖T‖ = maxi ‖ti‖ is the maximum norm of its column vectors.

Lattices. An m-dimensional full-rank lattice Λ is a discrete additive subgroup of
R

m. A lattice is the set of all integer combinations of some linearly independent
basis vectors, B = {b1, · · · ,bm} ∈ R

m×m, Λ(B) = {∑m
i=1 zibi : zi ∈ Z}. For

n a power of two, the polynomial ring R = Z[x]/(xn + 1) is isomorphic to the
integer lattice Z

n, a polynomial f =
∑n−1

i=0 fix
i in R corresponds to the integer

vector of its coefficients (f0, · · · , fn−1) in Z
n. The norm of a polynomial ‖f‖ is

the norm of its coefficients vector. For the rest of the paper we will work with
polynomials over R, or Rq = R/qR = Zq[x]/(xn + 1) where q is a prime such
that q = 1 mod 2n.

Gaussian distribution. The Gaussian function of center c ∈ R
n and width

parameter σ is defined as ρσ,c(x) = exp(−π ‖x−c‖2

σ2 ), for all x ∈ R
n. We

can extend this definition to a positive definite covariance matrix Σ = BBT :
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ρ√
Σ,c(x) = exp

(−π(x − c)T Σ−1(x − c)
)
. The discrete Gaussian distribution

over a lattice Λ is defined as DΛ,σ,c(x) = ρσ,c(x)
ρσ,c(Λ) where ρσ,c(Λ) =

∑
x∈Λ ρσ,c(x).

Tailcut. To tailcut less than 2−λ of a one-dimensional Gaussian, we use the fact
that Prx←↩DZ,σ

[|x| > tσ] ≤ erfc
(
t/

√
2
)
, where erfc(x) = 1 − 2

π

∫ x

0
exp−t2 dt. For

example, t = 12 for λ = 100. Then, a vector x sampled in DZm,σ would have
small norm ‖x‖ ≤ tσ

√
m with overwhelming probability.

2.1 Cryptographic Problems on Lattices

Ring-SIS/Ring-LWE. We use ring variants of SIS and LWE, proposed by
[LM06,PR06] and [SSTX09,LPR10], and proven to be at least as hard as the
GapSVP/SIVP problems on ideal lattices.

Definition 1 (Ring-SISq,m,β). Given a = (a1, · · · , am)T ∈ Rm
q a vector of m

uniformly random polynomials, find a non-zero vector of small polynomials x =
(x1, · · · , xm)T ∈ Rm such that aT x =

∑m
i=1 ai ·xi = 0 mod q and 0 < ‖x‖ ≤ β.

Definition 2 (Decision Ring-LWEn,q,DR,σ
). Given a = (a1, · · · , am)T ∈ Rm

q

a vector of m uniformly random polynomials, and b = as+e, where s ←↩ U(Rq)
and e ←↩ DRm,σ, distinguish (a,b = as+e) from (a,b) drawn from the uniform
distribution over Rm

q × Rm
q .

2.2 Dual-Regev Public Key Encryption

The Dual-Regev PKE, first described in [GPV08, Sect. 7.1], is the starting point
to build an IBE on lattices. We describe its ring variant, with parameters n, m,
and q integers and ζ, τ two real numbers.

– Key Generation: The secret key corresponds to a vector of small norm poly-
nomials x ∈ Rm, sampled from DRm,ζ . The public key contains a uniformly
random chosen vector of polynomials a ←↩ U(Rm

q ) and one more polynomial
u = aT x ∈ Rq.

– Encryption: The plaintext message consists in a binary polynomial M ∈ R2.
The ciphertext is composed of m + 1 Ring-LWE samples: (b = as + e, c =
u · s + e′ + �q/2	M) ∈ Rm

q × Rq, where s is a uniformly chosen polynomial
in Rq, and e′, e follow a discrete Gaussian distribution respectively on R and
Rm of parameter τ . The ciphertext is then (b, c).

– Decryption: The recipient uses his private key x to compute: μ = c − bT x =
e′ − eT x + �q/2	M. To recover M , he looks at each coefficient of μ, if μi is
closer to 0 than to �q/2	, the message bit Mi = 0, otherwise Mi = 1.

Security. The ring-variant of the Dual-Regev scheme is IND-CPA secure under
the hardness of Ring-LWEn,q,DR,τ

[LPR13]. The correctness of the decryption
holds if the error term ‖e′ − eT x‖ is small enough, less than �q/4	.
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2.3 Cryptographic Definition of an IBE Scheme

Identity Based Encryption. Let λ be the security parameter of the scheme, an
Identity Based Encryption (IBE) is composed of four probabilistic polynomial
timealgorithms (Setup, Extract, Encrypt, Decrypt).

Security Game. We describe the ciphertext indistinguishability under a selective-
identity chosen-plaintext attack (IND-sID-CPA) as a game between an adversary
A and a challenger. The game proceeds as follows:

Init: The adversary A chooses the challenge identity id∗.
Setup: The challenger runs Setup(1λ), gives the master public key msk to A.
Queries 1: The adversary can make private-key extraction queries on

identities id 
= id∗, and the challenger answers by running skid ←
Extract(1λ,mpk,msk, id).

Challenge: Adversary A outputs two plaintexts M0,M1 ∈ M. The challenger
chooses a random bit b∗ ←↩ {0, 1} and, sets the challenge ciphertext to C∗ =
Encrypt(1λ,mpk, id∗,Mb∗). The challenge ciphertext C∗ is sent to A.

Queries 2: Adversary can make additional queries (answered as in Queries 1).
Guess: Eventually, A outputs a bit b and wins if b∗ = b.

The advantage of the adversary A playing the IND-sID-CPA security game
above is Adv(A)IND-sID-CPA

IBE =
∣
∣Pr [b = b∗] − 1

2

∣
∣ . An IBE scheme is IND-sID-

CPA secure if, for all PPT adversary A, his advantage Adv(A)IND-sID-CPA
IBE is

negligible.

2.4 Hash Functions

Our IBE and signature schemes use an encoding hash function H : Zn
q → Rq to

map identities in Z
n
q to invertible elements in Rq. The security proof requires the

map H to satisfy an injectivity property: the difference of two elements has to be
invertible in Rq. Such hash functions have been called encoding with Full-Rank
Differences (FRD) in [ABB10] and they must satisfy the following properties:

1. for all distinct u, v ∈ Z
n
q , the element H(u) − H(v) ∈ Rq is invertible; and

2. H is computable in polynomial time (in n log q).

Implementation of FRD Hash Functions. An invertible element of Rq in the
NTT domain corresponds to n non-zero integers of bit-size k. We implement our
encoding in a naive manner, by generating these n integers using an PRNG with
the identity id as a seed. In the literature, Ducas and Micciancio [DM14] chose
the ring Rq, with q a power of 3 because in such ring any polynomial of degree
less than n/2 with coefficients in {−1, 0, 1} is invertible. Recently, Lyubashevsky
and Seiler have proposed in [LS18] a way to construct such encoding using the
fact that small non-zero polynomials are invertible in cyclotomic rings. They
also use that xn +1 splits modulo q, and perform half of the FFT recursion tree,
depending on the logarithm of the number of splittings, and at the end of the
FFT tree, for small degree polynomials, multiplications have to be performed
using naive or Karatsuba algorithm.
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3 Trapdoors on Lattices

The construction of our IBE scheme relies on a kind of trapdoors, introduced
by Ajtai [Ajt96], and then improved, in particular in [MP12,GM18]. We define
the trapdoor function fA(x) = Ax mod q which represents the Inhomogeneous
SIS problem. The trapdoor consists in a short basis TA ∈ Z

m×m of the m-
dimensional integer lattice: Λ⊥

q (A) := {x ∈ Z
m such that Ax = 0 mod q}.

Thanks to the short basis TA, we sample from a Gaussian distribution with a
small parameter σ to obtain short vectors in Λ⊥

q (A). Then, solve the SIS, ISIS
or LWE problems.

We use the ring version of a second notion of trapdoors (gadget based trap-
doors) introduced by [MP12], and recently improved by [GM18], which are more
efficient. In this construction, the matrix A is constructed by picking the first
part uniformly at random, and the second part is almost uniformly random by
including a structured gadget, to help the inversion of the SIS problem.

3.1 Gadget-Based Trapdoor Construction

Gadget vector. We use the gadget vector g ∈ Rk
q for which the inversion

of fgT (z) = gT z ∈ Rq is easy: it is a vector of constant polynomials, g =
(1, 2, 4, · · · , 2k−1)T ∈ Rk

q with k = �log2 q�. The lattice Λ⊥
q (gT ) has a publicly

known basis Bq ∈ Rk×k, which satisfies ‖B̃q‖ ≤ √
5.

Trapdoor construction. The trapdoor construction is an almost uniformly ran-
dom vector of polynomials a ∈ Rm

q starting from a uniformly random vector
of polynomials a′ ∈ Rm−k

q (Algorithm 3.1.1) that hides the structured vector g,
together with a trapdoor T that enables its owner to recover this structure when
needed.

Definition 3 (g-trapdoor). Let a ∈ Rm
q and g ∈ Rk

q with k = �log2 q�
and m > k. A g-trapdoor for a consists in a matrix of small polynomials
T ∈ R(m−k)×k, following a discrete Gaussian distribution of parameter σ, such
that aT

(
T
Ik

)
= hgT for some invertible element h ∈ Rq. The polynomial h is

called the tag associated to T. The quality of the trapdoor is measured by its
largest singular value s1(T).

Algorithm 3.1.1. Algorithm TrapGen(q, σ,a′, h)
Input: q the ring modulus, σ a Gaussian parameter. Optional a′ ∈ Rm−k

q and h ∈ Rq.
If no a, h is given as input, the algorithm chooses a′ ←↩ U

(
Rm−k

q

)
and h = 1.

Output: a ∈ Rm
q with its trapdoor T ∈ R(m−k)×k, of norm ‖T‖ ≤ tσ

√
(m − k)n

associated to the tag h.
T ←↩ DR(m−k)×k,σ, a = (a′T ∣∣ hg − a′TT)T ,
return (a,T).
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3.2 Preimage Sampling

Peikert Sampler. To find x such that faT (x) = u, using this trapdoor, the
idea is to find a z satisfying fgT (z) = h−1 · (u − aT p) and following a discrete
Gaussian distribution of parameter α, where p is a perturbation vector with
covariance matrix Σp = ζ2Im − α2

(
T
Ik

)
(TT Ik ). Then, x = p +

(
T
Ik

)
z, has

covariance matrix Σx = Σp + α2
(
T
Ik

)
(TT Ik ) = ζ2Im and satisfies aT x =

aT p + aT
(
T
Ik

)
z = aT p + hgT z = aT p + h · h−1(u − aT p) = u. This idea is

summarized in Algorithm 3.2.1 SamplePre.

Algorithm 3.2.1. Algorithm SamplePre(T,a, h, ζ, σ, α, u)
Input: a ∈ Rm

q , with its trapdoor T ∈ R(m−k)×k associated to an invertible tag
h ∈ Rq, u ∈ Rq and ζ, σ and α three Gaussian parameters.

Output: x ∈ Rm
q following a discrete Gaussian distribution of parameter ζ satisfying

aTx = u ∈ Rq.
p ← SampleP(q, ζ, α,T), v ← h−1 · (u − aTp),
z ← SamplePolyG(σ, v), x ← p +

(
T
Ik

)
z,

return x.

It uses the two following algorithms:

– SamplePolyG(σ, v) → z, takes as input a Gaussian parameter σ and a target
v ∈ Rq, outputs z ←↩ DΛ⊥

q (gT ),α,v, with α =
√

5σ,
– SampleP(q, ζ, α,T) → p, takes as input the ring modulus q, ζ and α two

Gaussian parameters and T ←↩ DR(m−k)×k,σ, outputs p ←↩ D
Rm,

√
Σp

, where

Σp = ζ2Im − α2
(
T
Ik

)
(TT Ik ) with ζ > s1(T)α.

4 Identity-Based Encryption

Our IBE construction is a ring-version of the selective IBE of [ABB10], adapted
to use the gadget-based trapdoor of Micciancio and Peikert [MP12] (also adapted
to rings, described in Sect. 3). We use the same encoding with Full-Rank Differ-
ences H to map identities to invertible elements in Rq (defined in Sect. 2.4).

The master public key consists in a uniformly random polynomial u ∈ Rq and
a pseudo-random vector of polynomials a ∈ Rm

q . The master secret key is a g-
trapdoor T ∈ R(m−k)×k for a with associated tag set to zero: a = (a′T | −a′T T)T .

Then, thanks to a, we can compute a publicly computable vector associated
to an identity id:

aid = aT + (0 |H(id)g)T = (a′T |H(id)g − a′T T)T .

The secret key associated to an identity id is a short vector x ∈ Rm, computed
thanks to the algorithm SamplePre, which satisfies aT

idx = u ∈ Rq. We also use
the Dual-Regev encryption scheme to encrypt (using aid) and decrypt (using x).
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4.1 Our Construction

The parameters of the scheme are n, m, q, k, and q integers, and σ, α, γ, τ , and
ζ are real numbers, and chosen as described in Sect. 4.2.

1. Setup(1n) → (mpk, msk):
(a) Compute a ∈ Rm

q associated to its trapdoor T ∈ R(m−k)×k, (a,T) ←
TrapGen(q, σ, h = 0), i.e. a = (a′T | − a′T T)T ,

(b) Sample a uniformly random polynomial u ←↩ U(Rq),
(c) Output mpk = (a, u) ∈ Rm+1

q and msk = T ∈ R(m−k)×k.
2. Extract(mpk = (a, u),msk = T, id ∈ ID) → skid:

(a) Compute the tag hid = H(id),
(b) Compute aid = aT + (0 |hidg)T = (a′T ∣

∣ hidg − a′T T)T ,
(c) Sample a short x ← SamplePre (T,aid, hid, ζ, σ, α, u), such that aT

idx = u,
(d) Output skid = x ∈ Rm.

3. Encrypt(mpk = (a, u), id,M ∈ R2) → C:
(a) Compute the tag hid, and aid like above,
(b) Sample s ←↩ U(Rq), e0 ←↩ DRm−k,τ , e1 ←↩ DRk,γ , and e′ ←↩ DR,τ ,
(c) Compute b = aids + (eT

0 | eT
1 )T ∈ Rm

q , and c = u · s + e′ + �q/2	M ∈ Rq,
(d) Output C = (b, c) ∈ Rm+1

q .
4. Decrypt(skid = x, C = (b, c)) → M :

(a) Compute res = c − bT x = e′ − (eT
0 | eT

1 )x + �q/2	M ∈ Rq,
(b) For each resi, if it is closer to �q/2	 than to 0, Mi = 1, otherwise Mi = 0.

Correctness. Let x = (xT
0 |xT

1 )T with x0 ∈ Rm−k
q and x1 ∈ Rk

q . To decrypt a
ciphertext, we need the error term e′ − (eT

0 | eT
1 )(xT

0 |xT
1 )T = e′ − eT

0 x0 − eT
1 x1

to be bounded by �q/4	 (see Sect. 4.2 on the choice of the parameters).

Theorem 1. Our IBE construction with parameters n, m, q, k, σ, α, γ, τ
and ζ chosen as below is IND-sID-CPA secure in the standard model under the
hardness of Ring-LWEn,q,DR,τ

.

Proof. To prove the IND-sID-CPA security of the IBE scheme described above,
we use a sequence of games starting from the original IND-sID-CPA game
(Sect. 2.3). In the final game, the adversary has no information left about the
initial message and hence has advantage zero. To ensure that the adversary has
a negligible advantage in winning the IND-sID-CPA game, we show that a prob-
abilistic polynomial timeadversary cannot distinguish between games.

Game 0. The original IND-sID-CPA game between an adversary A and an IND-
sID-CPA challenger.
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Game 1. In the Game 0, the master public key of the scheme is mpk = (a, u),
with a generated thanks to TrapGen(q, σ, h = 0) with an associated trapdoor T
(i.e. a = (a′T | − a′T T)T ), and u is a uniform polynomial in Rq.

In Game 1, we change the generation of the public vector a by adding infor-
mation about the challenge identity id∗ targeted by A. The public parameter a is
now generated thanks to TrapGen(q, σ,a′,−hid∗), i.e. a = (a′T | −hid∗g−a′T T)T ,
where the first part a′ ∈ Rm−k

q is chosen from the uniform distribution. For the

second part, a′T T =
(∑m−k

i=1 aiti,1, · · · ,
∑m−k

i=1 aiti,k

)
, is either computation-

ally or statistically indistinguishable from the uniform distribution depending
on the trapdoor instantiation we choose. For the computational instantiation,
we set m − k = 2, and a′ = (1, a) with a ←↩ U(Rq) and obtain a public vector
a = (1, a | −(a · t2,1 + t1,1), · · · ,−(a · t2,k + t1,k) ) . To ensure such a looks uni-
form, we use the Ring-LWE assumption in its normal form: where the secret and
the error follow the same distribution.

The adversary A issues private key queries on identities id 
= id∗, and
the challenger has to answer to these queries. To do that, he computes aid =
aT +(0 |hidg)T = (a′T | (hid −hid∗)g−a′T T)T , and use SamplePre(T,aid, hid −
hid∗ , ζ, σ, α, u) to compute a private key associated to id: x ∈ Rm satis-
fying aT

idx = u, because hid − hid∗ is invertible. Note that for id = id∗,
aid = (a′T | − a′T T)T , and B can no longer answer private key queries.

Game 2. In the last game, we change how the challenge ciphertext is build. The
ciphertext C∗ is now chosen uniformly in Rm

q × Rq. The last step is to show
that Game 1 and Game 2 are computationally indistinguishable for A by doing
a reduction from the Ring-LWE problem. Suppose that A has non-negligible
advantage in distinguishing these two games. Then a simulator B can use A to
solve the Ring-LWE problem with non-negligible advantage (Sect. 2.1).

The simulator B receives m − k + 1 samples (ai, bi)0≤i≤m−k as an instance
of the decisional Ring-LWE problem. The simulator also receives the challenge
identity id∗ from the adversary A. Let a′ = (a1, · · · , am−k)T ∈ Rm−k

q and b′ =
(b1, · · · , bm−k)T ∈ Rm

q . The simulator runs TrapGen(q, σ,a′,−hid∗), because a′

is following a uniform distribution thanks to the Ring-LWE assumption, and
gets back a = (a′T | − hid∗g − a′T T)T , as in Game 1. Next, B sets u = a0 and
sends (a, u) to A as the master public key of the scheme. The adversary A issues
private key queries, and B answer to these queries like in Game 1.

Then the attacker A sends two messages M0,M1 to B. B generates a random
bit b∗, and generates the challenge ciphertext C∗ = (b∗, c∗) as follows: b∗ =
(b′T | − b′T T + êT )T , c∗ = b0 + �q/2	Mb∗ , where ê ←↩ DRk,μ for some μ real.

– If the Ring-LWE samples are drawn from the Ring-LWE distribution, we
have b′ = a′s + e and b0 = a0 · s + e0, for some s ∈ Rq, e ←↩ DRm−k,τ and
e0 ←↩ DR,τ . By substitution, b∗ = (b′T | − b′T T + êT )T )T = aT

id∗s + (eT | −
eT T + êT )T )T and c∗ = b0 + �q/2	Mb∗ = a0 · s + e0 + �q/2	Mb∗ . For
fixed e, the error term −eT T + êT is indistinguishable from a sample drawn
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from the distribution DRk,γ with γ2 = (σ‖e0‖)2 +μ2, for μ well chosen. Then
the challenge ciphertext, (b∗, c∗) follows the same distribution as in the IBE
of Game 2.

– If the Ring-LWE samples are uniformly random samples, the ciphertext chal-
lenge also looks uniform. Then, the challenge ciphertext C∗ is always a uni-
form element in Rm

q × Rq At the end, the adversary A outputs a guess b.

If b = b∗ with overwhelming probability, the simulator concludes that the
Ring-LWE instance was drawn from the Ring-LWE distribution, otherwise B
concludes that the Ring-LWE distribution was drawn from the uniform distri-
bution. �

4.2 Parameter Choices

In our construction, the modulus q is chosen to be a prime of size 14, 30 or
62 bits (implementation purpose of NFLlib [AMBG+16]). We use the compu-
tational instantiation of the trapdoor with m − k = 2, and a′ corresponds to
two polynomials, the first sets to one and the second to a uniform polynomial
a ←↩ U(Rq), as suggested in [EBB13]. We obtain a public vector, associated to
tag h: a = (1, a | h · g1 − (a · t2,1 + t1,1), · · · , h · gk − (a · t2,k + t1,k) ).

– The Gaussian parameter σ for the trapdoor sampling is σ >
√

(ln (2n/ε) /π)
[MP12] where n is the maximum length of the ring polynomials, and ε is
the desired bound on the statistical error introduced by each randomized-
rounding operation. This parameter is also chosen to ensure that the Ring-
LWE instance of parameters n, q and σ is hard.

– The Gaussian parameter α used for the G-sampling [MP12] is α =
√

5σ.
– By [GM18], the parameter ζ satisfies ζ > s1 (T)α. The spectral norm of T

is a subgaussian random matrix of parameter σ [MP12, Lemma 2.9]. There
exists a universal constant C (∼ 1/

√
2π), such that for any t′ ≥ 0, we have

s1 (T) ≤ Cσ(
√

kn+
√

2n+t′) except with probability at most 2 exp
(−π(t′)2

)
.

Then, we get ζ >
√

5Cσ2(
√

kn +
√

2n + t′).
– Finally, to choose the Gaussian parameters γ, τ for the Dual-Regev encryp-

tion, we need ‖e′ − eT
0 x0 − eT

1 x1‖ < �q/4	, which thanks to Sect. 2 gives:

‖e′ − eT
0 x0 − eT

1 x1‖ ≤ tτ
√

n + 2t2τζn + t2γζkn < �q/4	.
– Moreover, γ needs to satisfy γ =

√
σ2‖e0‖2 + μ2 so that the security proof

holds. We can have an idea of the norm of e0 by using the Sect. 2,

γ2 = σ2‖e0‖2 + μ2 ≤ σ2(tτ
√

2n)2 + μ2,

we choose μ = tστ
√

2n, and then γ = 2tστ
√

n.

Parameters set. We combine all the conditions to obtain the following set of
parameters, used in our implementation. Remark: The bit security of the under-
lying Ring-SIS instance does not appear here because it dominates the bit security
of the Ring-LWE instances.
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Table 3. Parameters set for our IBE construction.

n k σ LWEσ ζ γ τ LWEτ λ

512 50 3.3 241 1935.7 4493.2 3.3 241 40

1024 51 5 280 6360.5 14747.7 5 280 80

2048 62 6.7 2197 16898.5 64541.9 6.7 2198 195

4.3 Underlying Signature Scheme

Behind the IBE scheme above, there is an underlying natural signature scheme.
The key generation in both scheme consists in creating a public vector a ∈ Rm

q

together with its trapdoor T ∈ R(m−k)×k. The signature of a message corre-
sponds to the secret key associated to an identity in the IBE scheme. A signa-
ture x of a message M is a solution of aT

Mx = 0 mod q. To check if x is a valid
signature for some message M , we have to check that x is a non trivial solution
to the Ring-SIS instance above (x 
= 0, aT

Mx = 0 mod q and ‖x‖ ≤ tζ
√

nm).

Construction. The parameters of the scheme are n, m, q, k, and q integers, and
σ, α, and ζ are reals. Let H : Zn

q → Rq be a FRD map.

1. KeyGen(1n) → (vk, sk):
(a) Compute a ∈ Rm

q associated to its trapdoor T ∈ R(m−k)×k, (a,T) ←
TrapGen(q, σ, h = 0), i.e. a = (a′T | − a′T T)T ,

(b) Output vk = a ∈ Rm
q and sk = (a,T) ∈ Rm

q × R(m−k)×k.
2. Sign(sk = (a,T),M ∈ R2) → ν:

(a) Compute the tag hM = H(M),
(b) Compute aM = aT + (0 |hMg)T = (a′T ∣

∣ hMg − a′T T)T ,
(c) Sample a short x ← SamplePre (T,aM , hM , ζ, σ, α, 0), with aT

Mx = 0,
(d) Output ν = x ∈ Rm.

3. Verify(vk = a,M, ν = x) → {accept, reject}:
(a) Compute the tag hM and aM like above,
(b) Accept if, and only if, aT

Mx = 0 mod q and 0 < ‖x‖ ≤ tζ
√

mn.

Correctness. Thanks to Sect. 2, with high probability the norm of a signature
outputted by SamplePre is bounded by tζ

√
nm, because it is an integer vector

of size nm and of Gaussian parameter ζ.

Theorem 2. Our signature construction with parameters n, m, q, k, σ, α, and
ζ chosen as below is SU-CMA (Selective Unforgeability against Chosen Message
Attack) secure in the standard model under the hardness of Ring-SISq,m−k,β with
β = (1 + tσ

√
(m − k)n)tζ

√
mn.

Proof. Let A be an adversary attacking the signature scheme above through an
SU-CMA attack. We build a simulator B attacking the Ring-SIS problem.
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Init. The simulator B receives m − k uniformly random and independent
samples from Rq, a′ = (a1, · · · , am−k)T ∈ Rm−k

q as an Ring-SIS instance,
and the challenge message M∗ from the adversary A. The simulator runs
TrapGen(q, σ,a′,−hM∗), and gets back a = (a′T | − hM∗g − a′T T)T together
with T ←↩ DR(m−k)×k,σ. Next, B sends vk = a ∈ Rm

q to A.

Signing queries. The adversary A issues signing queries on messages M 
=
M∗, and B has to answer to these queries. To do that, he computes aM =
aT + (0 |hMg)T = (a′T | (hM − hM∗)g − a′T T)T , and then he can use
SamplePre(T,aM , hM − hM∗ , ζ, σ, α, 0) to find a signature x ∈ Rm satisfying
aT

Mx = 0 mod q.

Forgery. Eventually, A outputs a forgery ν∗ for M∗, satisfying aT
M∗ν∗ = 0

mod q, which gives a′T (Im−k | − T)ν∗
︸ ︷︷ ︸

z

= 0 mod q.

The norm of ‖T‖ ≤ tσ
√

(m − k)n because each of its columns is a Gaussian
vector of size k and of parameter σ. Then, the vector z is a solution of the Ring-SIS
instance of norm ‖z‖ = ‖(Im−k | − T)ν∗‖ ≤ β = (1 + tσ

√
(m − k)n) · tζ√

mn. �

Parameters choices. The parameters n, m, q, k, q, σ, α, and ζ follow the same
conditions detailed above for the IBE scheme. Moreover, we need to look at
the underlying Ring-SIS instance of size m − k = 2 and of norm β = (1 +
tσ

√
2n)tζ

√
mn which corresponds to a SIS instance of size n times bigger. The

two following conditions β ≥ √
2nqn/2n =

√
2nq and q ≥ β

√
nω(log n) ensure

that the SIS problem has a solution and that is hard.
To get an idea of the security achieved by a SIS instance, we follow the general

framework of [APS15,CN11]. To ensure that the shortest vector outputted by
BKZ is a solution of our SIS instance of norm β = (1 + tσ

√
2n)tζ

√
mn, the

root Hermite factor δ need to satisfy β
qn/2n = β√

q = δ2n. To achieve this Root
Hermite factor, we need to run BKZ with block size at least b. The estimated
cost of running BKZ with block size b, a number of rounds of N = (2n)2

b2 log(2n)

and on dimension 2n is cost(BKZb,N ) ≈ (2n)3

b2 log(2n) · cost(SVP oracle).

Parameters set. We now combine all those conditions to obtain the following
set of parameters. Remark: We can also instantiate this scheme such that the
public key is statistically close to uniform by using a Regularity Lemma ( [SS11,
Theorem 3.1]), but in this case, m − kis slightly larger and σ is much larger.

Table 4. Parameters set for our signature scheme.

n k σ LWEσ ζ δ b SIS λ

512 30 4.2 264 2529.3 1.011380 62 274 60

1024 24 5.8 2378 6143.8 1.008012 132 2156 140

1024 30 6.3 2246 8023.6 1.007348 154 2184 170
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5 Implementation

5.1 General Description

Our implementation was carried out in plain C++11 as a general-purpose library.
We now discuss the different principles followed during the design of our code:

Cutting-edge compiler. We have always used the latest version available of the
GCC compiler to build our binary. Our final timings have been produced using
the GCC 7.2 compiler that allows us to perform various optimization and code
sanitization that do not exist in older versions.

Thread-Safety. Lattice-based constructions are known to be highly parallelizable.
Therefore, we build our library so that it could be simultaneously called from
concurrent threads. To this end, we only use the <thread> model of C++11,
and not OpenMP or OpenCL, in order to keep the design as simple as possible.

Portability. Modern processors often come with a combination of advanced hard-
ware instructions: SSE 4.1, AVX, AVX2, AVX512+flavors and NEON. These
instructions allow developers to boost the performance of their applications.
Many developers tend to explicitly include such instructions inside their code
to gain in efficiency. However, we do not use this method, since it limits the
portability of the code. Instead, we rely on the compiler to insert them depend-
ing on the required optimization level and the targeted machine using its own
auto-vectorization techniques. Thus, our code can be easily compiled for INTEL
and ARM processors without any modification.

Dedicated polynomial ring library. We avoid the use of generic number theory
libraries, such as NTL and FLINT, in our implementation. Instead, we preferred
to use NFLlib library [AMBG+16] which offers fast implementations of arith-
metic operations over the ring. However, NFLlib has a primary drawback: it does
not allow developers to natively choose a prime modulus q of size between 30 bits
and 62 bits. This has resulted in performance penalty on our implementation
when q can be of size 50 bits, since we had to use 62 bits.

Double-precision float. Our implementation does not depend on multi-precision
floating-point arithmetic. Instead, all floating-point computations are performed
using double-precision arithmetic, as in [GM18].

Modularity. We designed our code to be composed of three software layers. In
what follows, we describe these layers and discuss some technical choices con-
cerning our implementation.

5.2 Software Layers

Gaussian Preimage Sampling. This layer implements the Peikert Gaussian sam-
pler. As mentioned in Sect. 3.2, this consists of combining two stages: an off-line
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(target independent) stage SampleP generating perturbation vectors, and an on-
line (target dependent) stage SamplePolyG generating samples from a particular
lattice. We note that this layer does not regard the actual implementation of
SampleP and SamplePolyG. We also note that we never include the runtime exe-
cution of SampleP in our timings for any operation that does need preimage
sampling. Indeed, we suppose that the trusted party, or the signer, periodically
calls SampleP and stores the resulted outputs. Below, we provide more details
about the runtime of this off-line operation.

SampleP and SamplePolyG. This layer implements the recent techniques
described in [GM18] and [DP16] for Gaussian sampling. We note that Sam-
plePolyG just calls SampleG (Fig. 2 in [GM18]) n times to build k polynomials
in Rq. For instance, when n = 1024 and k = 30 bits, SamplePolyG calls the
underlying sampler 1024 times, and then builds 30 polynomials in their NTT.
This n times sampling constitutes the main bottleneck of our Extract/Sign algo-
rithms. As for SampleP, we use the Fourier representation in the finite field as
well as the FFT’s butterfly transformation to speed up all the required multipli-
cation/inversion. To this end, we implement our C++ Cooley-Tukey FFT and
optimize it using template class recursion (a template class that recursively uses
its own definition).

IBE and Signature. Here, we implement the described signature and IBE schemes
using mainly our Gaussian Preimage Sampling and NFLlib to perform arithmetic
operations. For the IBE scheme, we build two classes in order to simulate the
different roles: the trusted party that generates the master keys and capable
of extracting users private keys, and a user that is able to encrypt using the
identity of another user as well as to decrypt using its own private key. This
abstraction allows us to easily set up our test benchmark with one trusted party
and several users. We note that we do not include the timings of the instantiation
of the different objects, since it is done only once during the setup of the entire
environment, and more importantly, it concerns memory allocations and some
initial computations that could be performed otherwise.

5.3 Experimental Results

Our timings have been obtained on an Intel i7-5600 2.6 GHz CPU. Clock cycles
were measured with the high resolution clock class of C++11. Results are pro-
vided in Table 5 (resp. Table 6) for the IBE (resp. signature) scheme.

We underline that we obtained our results using the security parameters in
Tables 3 and 4 except for k. Indeed, NFLlib limits the choice of k, then we use
k = 30 if it is smaller or equal to 30, and k = 62 otherwise. We note that
modifying NFLlib to take into account arbitrary moduli is possible, but here, we
did not and thus provide upper bounds to our implementations. This explains our
similar results when signing for two different levels of security (with n = 1024).
Our timings show that performance is still practical for many scenarios. We also
notice that timings are almost just multiplied by 2 for twice security.
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Table 5. Timings in ms for the different operations of the IBE scheme: Setup, Pre-
Compute, Extract, Encrypt and Decrypt.

(λ, n) Setup PreCompute Extract Encrypt Decrypt

(40, 512) 0.93 1.32 2.27 0.45 0.0625

(80, 1024) 1.67 3.125 4.02 1.0 0.12

(195, 2048) 3.125 6.67 8.19 2.44 0.94

Table 6. Timings in ms for the different operations of the Signature scheme: KeyGen,
PreCompute, Sign and Verify.

(λ, n) KeyGen PreCompute Sign Verify

(60, 512) 0.52 1.05 1.12 0.025

(140, 1024) 0.91 3.44 2.0 0.043

(170, 1024) 0.96 3.92 1.85 0.047

Comparison with related work. Now, we provide more insight about the Tables 1
and 2 in the introduction, as well as Table 7 presented below.

Table 7. Timings for the different proposals of the NIST competition. Refer to Table 2
for the notations.

Scheme (λ, n) KeyGen (ms) Sign (op/s) Verify (op/s)

Dilithium [DLL+17] (128, 768a) 0.08 2263 10660

qTesla [BAA+18] (128, 1024) 0.88 1267 5938

Falcon [FHK+18] (195, 768)b 53.48 202 2685

DRS [PSDS18] (128, 1024) 380 50 6

This paper (140, 1024) 0.91 498 23000
abased on Module-LWE/SIS with a ring of size 256.
bcorresponds to 172 bits of quantum security.

IBE Scheme. The closest work to our implemented IBE is the one presented in
[DLP14] and re-implemented in [MSO17]. Indeed, both requires Gaussian sam-
pling to extract users’ private keys, and our encryption/decryption algorithms
are very similar. However, DLP14 relies on NTRU lattices, which allow them
to tremendously reduce the size of users keys, and therefore the number of the
required Gaussian sampling (only one), while we need n calls to SampleG. Our
implementation is then slower for the Extract and Encrypt operations, neverthe-
less, due to our efficient implementation of [GM18], the difference is quite small.
However, our Setup is much faster. We recall that the trusted party generates
the private key for each user only once. Therefore, this operation is less critical
than the encryption/decryption.
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Signature Scheme. We compare our implementation with the lattice-based
signature proposals of the NIST competition1. We compiled and ran the Ref-
erence Implementation of each scheme that corresponds to the NIST Security
Level 1, namely 128 quantum bit security. Because of some run-time errors, we
did not include the timing for pqNTRUsign. We are aware of how different these
schemes are in their design and their choice of security parameters. We emphasize
that our evaluation study is not complete, especially that we did not implement
the secure hash function (as discussed in Sect. 2.4) that might slow down our
signature scheme. However, our results allow us to consider our performance
compared to highly optimized signature schemes. As for signature, our imple-
mentation performs three to four times slower than Dilithium and qTesla, while
it outperforms DRS. But our verification is much faster than other schemes. This
asymmetry could be useful in case signatures are produced by powerful machines
(e.g. a server) and to be verified by constrained devices. These results confirm
that our approach remains interesting for both security and performance.

Storage requirements. Here, we give an estimation of the storage requirements of
our implementation for the different entities. We note that, in the IBE scheme,
the trusted party requires the Gaussian Sampler, while the user requires it for
the signature scheme. Our estimations are directly based on the different fields of
our classes, which reflects the modular structure of our implementation. We note
that the precomputed values take much space, and therefore a trade-off between
the number of precomputations and the allocated storage must be found. A direct
conclusion can be drawn from our Table 8: lattice-based constructions are not
yet ready for constrained devices since, for instance when n = 512 and k = 30,
the public key is of size 61.875 KB, which is quite big for some systems.

Table 8. Storage requirements in bits

(a) Trusted Party

Public Key nk2 + 3nk
Private Key 2nk

(b) Cipher/Signature

Cipher 3nk + nk2

Signature 2nk + nk2

(c) User

Public Key 3nk + nk2

Private Key 2nk + nk2

(d) Gaussian Sampler

SampleP 384n
SampleG 192n

Precomputations 2kn+ nk2

1 We got all the codes from the NIST website https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/Round-1-Submissions.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
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[SS11] Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems
over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS,
vol. 6632, pp. 27–47. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4 4
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Abstract. Most algorithms for hard lattice problems are based on the
principle of rank reduction: to solve a problem in a d-dimensional lattice,
one first solves one or more problem instances in a sublattice of rank d−1,
and then uses this information to find a solution to the original problem.
Existing lattice sieving methods, however, tackle lattice problems such
as the shortest vector problem (SVP) directly, and work with the full-
rank lattice from the start. Lattice sieving further seems to benefit less
from starting with reduced bases than other methods, and finding an
approximate solution almost takes as long as finding an exact solution.
These properties currently set sieving apart from other methods.

In this work we consider a progressive approach to lattice sieving,
where we gradually introduce new basis vectors only when the sieve has
stabilized on the previous basis vectors. This leads to improved (heuris-
tic) guarantees on finding approximate shortest vectors, a bigger prac-
tical impact of the quality of the basis on the run-time, better memory
management, a smoother and more predictable behavior of the algo-
rithm, and significantly faster convergence – compared to traditional
approaches, we save between a factor 20 to 40 in the time complexity for
SVP.

Keywords: Lattice-based cryptography · Lattice sieving
Shortest vector problem (SVP) · Nearest neighbor searching

1 Introduction

Finding short lattice vectors. A central hard problem in the study of lattices is
the shortest vector problem (SVP): given a lattice L = {∑d

i=1 cibi : ci ∈ Z} ⊂
R

d, find a non-zero lattice vector s of minimum norm, i.e. find s ∈ L satisfying
‖s‖ = λ1(L) := minx∈L\{0} ‖x‖. The security of many lattice-based crypto-
graphic primitives can be traced back to the hardness of SVP or approximate
SVP (γ-SVP), where a non-zero vector s ∈ L of norm at most γ ·λ1(L) suffices as
a solution. Being able to estimate the computational hardness of these problems
is crucial for accurately assessing capabilities of cryptographic adversaries, and
for selecting parameters in cryptographic schemes [MLC+17]. Algorithms for
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exact SVP are essential both for solving exact and approximate SVP, as the lat-
ter problem can (heuristically) be reduced to solving several exact SVP instances
in lower-dimensional lattices through the BKZ algorithm [Sch87,SE94,CN11].

Exact SVP algorithms. There are currently two classes of algorithms for exact
SVP: algorithms requiring superexponential time 2ω(d) in the lattice dimen-
sion d, using a negligible amount of memory (such as enumeration [Kan83,
FP85,SE94,GNR10,AN17]), and algorithms requiring single exponential time
and space 2Θ(d) (such as lattice sieving [AKS01,HPS11] and Voronoi cell
approaches [SFS09,MV10a,Laa16]). Although the latter methods have clear
drawbacks due to the large memory requirement, these algorithms will inevitably
surpass the former algorithms in terms of the time complexity in high dimensions.
Conservative estimates of the (post-quantum) hardness of SVP are therefore
often based on the state-of-the-art asymptotics for the best (quantum) lattice
sieving algorithms [ADPS16,DLL+18,BDK+18].

Lattice sieving. Lattice sieving was introduced in 2001 by Ajtai–Kumar–Siva-
kumar [AKS01], and was only made somewhat practical less than 10 years ago
with fast heuristics [NV08,MV10b]. Recent years have seen further developments
in decreasing the asymptotic time complexity of sieving at the cost of using
more space [WLTB11,ZPH13,BGJ14,Laa15,BGJ15,LdW15,BL16,BDGL16],
while tradeoffs in the reverse direction have also been studied recently to reduce
the large memory requirement [BLS16,HK17,HKL18]. Various efforts have fur-
ther been made to make these algorithms competitive in high-performance com-
puting environments [Sch11,MS11,Sch13,FBB+14,MTB14,MODB14,IKMT14,
MLB15,BNvdP16,MB16,MLB17,YKYC17,Duc18]. The theoretically fastest
method in high dimensions is currently the LDSieve, with asymptotic time and
space complexities 20.29d+o(d) [BDGL16], while in practice the GaussSieve and
HashSieve appear to be the most practical in high dimensions [MB16,MLB17,
YKYC17].

Differences with other approaches. Existing lattice sieving methods are fun-
damentally different from other SVP approaches in several ways. Whereas for
instance enumeration and Voronoi cell-based methods use a rank reduction step
to reduce a d-dimensional problem to problems in lattices of rank d − 1, lat-
tice sieving never considers other lattices than the full-rank one. And unlike
other methods, lattice sieving (i) does not appear to benefit greatly from being
given better lattice bases as input (i.e. BKZ-reduced bases with larger block
sizes), and (ii) does not appear to be much faster when an approximate solution
suffices – often the algorithm only starts to find shorter vectors after the algo-
rithm is already 80% finished with finding an exact solution. All these properties
currently set sieving apart from other methods, and so one might ask whether
lattice sieving can be adjusted and perhaps improved by applying similar rank-
reduction techniques, so that sieving also obtains these “natural” properties of
finding short vectors faster, and performing better when given more reduced
bases.
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1.1 Contributions

We present progressive lattice sieving as a new baseline sieving approach, which
resolves many of the above differences with other methods, and greatly improves
the performance of heuristic sieving algorithms in practice. Progressive lattice
sieving uses a bottom-up approach, initially starting with sieving in a low-rank
sublattice of the input lattice. Then, when this subspace of the original space
has been saturated with vectors from this sublattice, new basis vectors are intro-
duced to find shorter lattice vectors in sublattices of higher rank, until ulti-
mately the algorithm reaches the full-rank lattice and attempts to find short
vectors in the original lattice. Using this rank reduction approach, progressive
sieving offers various benefits over standard sieving techniques, which we list
below. These are mostly independent of the exact underlying sieve used (e.g.
the GaussSieve [MV10b], HashSieve [Laa15], or LDSieve [BDGL16]), although
in some cases the improvements are bigger than in other cases.

Faster convergence: Overall, progressive sieving finds shortest vectors in lat-
tices much faster than using current methods, with speedups as large as a
factor 40 in dimension 70. Tables 1 and 2 illustrate improvements for 70-
dimensional lattices for the GaussSieve and HashSieve, and Fig. 1 shows the
improvements for various dimensions using progressive sieving.

Better memory usage: Working on low-rank lattices requires fewer vectors to
make progress, allowing one to do a large part of the algorithm using much
less memory than current approaches. Experiments further show progressive
sieving uses slightly less memory overall (Fig. 2b). This is especially relevant
as the main bottleneck in sieving is hitting the memory wall [MB16].

Heuristic guarantees for approximate SVP: Using the Geometric Series
Assumption, progressive sieving heuristically finds approximate solutions
faster than the full solution, unlike other approaches which commonly require
a large number of vectors and reductions to make any progress at all.1

Larger impact of reduced bases: The more reduced the input basis is, the
faster shorter lattice vectors are found, which contributes to a faster overall
running time. Similar to pruning in enumeration, this further opens up some
new directions for potential improvements (see Sect. 5.2).

Better predictability: As illustrated in the experimental profiles (Figs. 2 and
3), various aspects of sieving are easier to predict and easier to explain theoret-
ically with progressive sieving, which may lead to more accurate predictions
when extrapolating to higher dimensions.

Less resource contention: Vectors in the sieved list are only modified sporad-
ically. Instead of using the lock-free mechanism of [MB16,MLB17], to avoid
collisions between different nodes, we may therefore be able to construct par-
allel implementations with lower-overhead incurring mechanisms.

1 Arguably for current sieving approaches one could also take a sublattice of the full
lattice, based on the GSA, and do sieving on that lattice. However, in that case the
lattice may be too small (no solutions found) or too big (taking too much time).
With progressive sieving no a priori choices need to be made (see also Sect. 5.1).
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Outline. The remainder of this paper is organized as follows. In Sect. 2, we
introduce notation and related work on lattice sieving. Section 3 describes pro-
gressive sieving, and an experimental comparison with previous approaches is
given in Sect. 4. Section 5 discusses various aspects of these different approaches
to sieving, and Sect. 6 concludes with open problems for future work.

Table 1. Running times (in seconds) for solving exact SVP on 70-dimensional lattices
from the SVP challenge [SVP18], using the baseline GaussSieve algorithm [MV10b] and
the near-neighbor-based HashSieve extension of the GaussSieve [Laa15]. The lattice
bases are pre-reduced with either LLL or BKZ with blocksize 10 or 30, where we used
fplll [fplll18] to perform the basis reduction. The timings above are based only on the
sieving step, and do not include the time for the basis reduction step.

Exact SVP ←− GaussSieve −→ ←− HashSieve −→
LLL BKZ-10 BKZ-30 LLL BKZ-10 BKZ-30

Standard sieving 19100 18100 16500 3300 3050 2900

Progressive sieving 595 440 390 165 125 115

Speedup factor 32× 41× 42× 20× 24× 25×

Fig. 1. Time complexities for solving exact SVP on BKZ-10 reduced bases for the SVP
challenge lattices, using standard lattice sieving approaches (GaussSieve and Hash-
Sieve) and progressive sieving modifications of these algorithms (ProGaussSieve and
ProHashSieve). The formulas written in the figure denote the least-squares fits of the
four data sets up to two significant digits.

Concurrent work. During the write-up of this paper, we learned similar ideas were
independently and concurrently being studied by Ducas, which were later pub-
lished in [Duc18]. The focus of that work however is on a different improvement
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to sieving (“a few dimensions for free”), and the idea of progressive sieving is only
mentioned in passing, with little explanation where the improvement comes from.
In this paper we chose to focus only on the progressive sieving idea, to understand
why it works and where further improvements can be found.

2 Preliminaries

Given a set B = {b1, . . . , bm} ⊂ R
d of m independent d-dimensional vectors, we

denote the (rank-m) lattice spanned by B by L(B) = {∑m
i=1 cibi : ci ∈ Z}. With

abuse of notation, we sometimes write L = L(B) when the basis B is implicit.
For k ≤ m, we write Lk = Lk(B) for the sublattice {∑k

i=1 cibi : ci ∈ Z} ⊆ L
spanned by the first k basis vectors of B. For simplicity, we commonly assume
that the original problem concerns a lattice problem in a lattice of full rank
(m = d); however, using rank reduction we sometimes consider problems in
sublattices as well. We denote by Vol(L) =

√
det(BT B) the volume of a lattice

L, and by Vol(A) the volume of a set A ⊂ R
d.

2.1 Heuristic Assumptions

To analyze lattice algorithms, various heuristic assumptions are commonly used.
These are not proven and may well be false for certain extreme lattices/bases,
but commonly hold for random lattices encountered in cryptography. Analyzing
algorithms under these (average-case) assumptions therefore commonly leads to
more accurate security assessments than analyses based on provable (worst-case)
bounds, which are commonly not tight for random lattices.

The Gaussian heuristic states that, given a subset A ⊂ R
d, the number of

lattice points in A is roughly |A ∩ L| ≈ Vol(A)/Vol(L). As a consequence, we
expect a ball of radius r around a random point in space to contain a lattice
point iff r ≥ r0 ∼ √

d/(2πe), and heuristically we expect λ1(L) ≈ √
d/(2πe).

The Geometric Series Assumption (GSA) states that, after performing BKZ
reduction [Sch87] with block-size β on a full-rank lattice basis, the Gram-Schmidt
orthogonalization b∗

1 . . . b∗
d of the output basis satisfies ‖b∗

i ‖ ≈ δd−2i+1 ·Vol(L)1/d

for all i. Here δ = δ(β) determines the quality of the basis; the smaller δ, the
more orthogonal the basis and the shorter b1. Note that

∏d
i=1 ‖b∗

i ‖ = Vol(L).

2.2 Lattice Sieving Algorithms

The Nguyen–Vidick sieve. When the idea of lattice sieving was introduced by
Ajtai–Kumar–Sivakumar [AKS01], it was still a purely theoretical idea, and no
practical instantiations existed until Nguyen–Vidick described a heuristic version
of this idea in [NV08]. This sieve starts by sampling many long lattice vectors
(e.g. from a discrete Gaussian over the lattice), and then iteratively applies a
sieve to this list of vectors to produce a list with fewer, shorter lattice vectors.
This sieve essentially works by considering all pairwise combinations of vectors
in the input list, and seeing if any of the sums/differences are shorter than the
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Algorithm 1. The standard GaussSieve algorithm – GaussSieve
1: Initialize an empty list L ← ∅ and an empty stack S ← ∅
2: Initialize collisions ← 0
3: while true do
4: Get a vector v from the stack S or sample a new one from L(b1, . . . , bd)
5: Reduce v with all w ∈ L // this naively takes O(|L|) time

6: Reduce all w ∈ L with v // NNS can speed up these searches

7: Move reduced vectors w ∈ L from the list L to the stack S
8: if v has not changed then
9: Add v to the list L

10: else
11: if v �= 0 then
12: Add v to the stack S
13: else
14: collisions++
15: if collisions = 100 then // a target norm may be used instead

16: return argminv∈L ‖v‖ // the shortest vector found so far

original vectors. Note that any such combination of lattice vectors again forms a
vector which is in the lattice. These pairwise combinations are then used in the
next iteration, while the input vectors to the sieve are discarded. This process
of throwing away many short lattice vectors is unnaturally wasteful, and the
Nguyen–Vidick sieve is therefore not commonly used in practice.

The GaussSieve and ListSieve. In 2010, Micciancio–Voulgaris [MV10b] intro-
duced two new (heuristic) lattice sieving algorithms, which unlike the Nguyen–
Vidick sieve both start from an empty list L, and gradually grow this list by
adding more (short) lattice vectors to the list, until this list contains a solution.

In the ListSieve, before adding a randomly sampled lattice vector v to the
list, the vector is reduced with all list vectors w ∈ L by checking whether either
of the sum/difference vectors v ± w are shorter than v – if so, v is replaced
by this shorter vector. Once v has been reduced with all list vectors, and no
pairwise sums/differences with list vectors lead to shorter vectors anymore, v is
added to the list. This process is repeated until L contains a shortest vector.

In the GaussSieve this process is essentially the same, except that list vectors
w ∈ L are also reduced with newly sampled vectors v, before adding v to the
list; in contrast, in the ListSieve vectors which have been added to the list L
are never modified again. Algorithm1 describes the GaussSieve, while removing
Lines 6–7 leads to the ListSieve algorithm.

Extensions and variants. Over the last few years, various extensions and variants
of these heuristic sieving algorithms have been studied, to make them even more
efficient in practice. High-dimensional nearest neighbor search algorithms have
been used to obtain speed-ups in the searches in Lines 5–6 of Algorithm1, which
naively take time O(|L|) but can be done in sublinear time O(|L|ρ) with ρ < 1
with more advanced methods of indexing and querying the list L [Laa15,LdW15,
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BGJ15,BL16,BDGL16]. Recent work on tuple sieving [BLS16,HK17,HKL18]
focused on reducing the memory of lattice sieving, by considering a larger number
of vectors w1, . . . ,wk ∈ L from the list to form short combinations v ± w1 ±
· · · ± wk with v. Other work has shown that the same techniques can be used
to solve the Closest Vector Problem (CVP), and how near neighbor techniques
can be used to obtain fast CVP algorithms with preprocessing [Laa16].

3 Progressive Lattice Sieving

When given a (full-rank) d-dimensional lattice basis, standard sieving approaches
attempt to saturate this entire d-dimensional space from the start, always work-
ing with vectors from the full-dimensional space. With pairwise reductions
between lattice vectors, one needs roughly 20.21d+o(d) vectors to saturate this
space and make significant progress in obtaining shorter vectors. This means
that also approximate shorter vectors are not found until the list size approaches
20.21d+o(d), which means a lot of effort is spent even before any progress is made
at all. Naively this means the time complexity to find any shorter vectors at all
is at least 20.42d+o(d) (or 20.29d+o(d) using near neighbor techniques [BDGL16]).

Using BKZ, finding approximate shortest vectors does not necessarily require
the same amount of effort as finding exact solutions. More specifically, BKZ only
solves SVP instances in lower-dimensional lattices, thereby finding short lattice
vectors in (projected) sublattices sooner. The idea of progressive lattice sieving is
similar: by first considering low-dimensional sublattices of the full lattice, which
already contain many short lattice vectors, we will find approximate solutions
faster, which will eventually contribute to finding exact solutions faster as well.

The GaussSieve. Applying progressive sieving to the GaussSieve means mak-
ing the following modifications. First, we start with a sublattice of the original
lattice, spanned by the first few basis vectors. We then run a sieve on this sub-
lattice, until we reach the stopping criterion (e.g. a certain number of collisions).
We then add a new basis vector to the search space, and continue sieving in this
sublattice of slightly higher rank. We repeat this procedure until we reach the
complete lattice, where we expect to find an exact solution to SVP. The result of
applying progressive sieving to the GaussSieve is sketched in Algorithm 2, where
the main modifications are (1) vectors are sampled from sublattices, and (2) the
rank counter is increased and the collision counter is reset when we reach 100
collisions. For simplicity we start with a sublattice of rank 10 – everything below
rank 30 or 40 generally finishes within a second anyway, so setting the initial
rank to any rank below 40 will lead to similar results in higher dimensions.

Other sieving algorithms. Naturally the same idea can be trivially applied to
most other sieving algorithms as well. Applying the same idea to the List-
Sieve [MV10b] would simply mean we do not reduce list vectors with sam-
pled vectors in Lines 6–7 of Algorithm 2. Near neighbor extensions to siev-
ing [Laa15,BDGL16] only affect the search procedure for finding reducing pairs of
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Algorithm 2. The progressive GaussSieve algorithm – ProGaussSieve
1: Initialize an empty list L ← ∅ and an empty stack S ← ∅
2: Initialize collisions ← 0, rank ← min{10, d}
3: while true do
4: Get a vector v from the stack S or sample a new one from L(b1, . . . , brank)
5: Reduce v with all w ∈ L // this naively takes O(|L|) time

6: Reduce all w ∈ L with v // NNS can speed up these searches

7: Move reduced vectors w ∈ L from the list L to the stack S
8: if v has not changed then
9: Add v to the list L

10: else
11: if v �= 0 then
12: Add v to the stack S
13: else
14: collisions++
15: if collisions = 100 then
16: if rank = d then
17: return argminv∈L ‖v‖ // the shortest vector found so far

18: else
19: rank++ // continue with the next sublattice

20: collisions ← 0 // reset the collisions counter

vectors, and this can naturally be combined with progressive sieving as well. For
tuple sieving [BLS16,HK17,HKL18] we simply run tuple sieving on sublattices
until the corresponding sublattice has been saturated, after which we increase
the rank as before. Applying progressive sieving to the CVP sieve of [Laa16] is
also straightforward. The same idea can also be applied to the Nguyen–Vidick
sieve, but in that case the integration of progressive sieving is slightly more con-
trived; since the practical results with the Nguyen–Vidick sieve will likely be
worse than when using the GaussSieve, we have chosen to omit this application.

4 Experiments

Heuristically, sieving naively requires a search over all pairs of vectors in the list
(when not using near neighbor techniques), leading to a quadratic time com-
plexity in the list size. With progressive sieving, these arguments still hold, and
so the asymptotic improvement of progressive sieving will not be visible in the
leading time/memory exponents. Experimentally however there are rather large
hidden order terms, and these may become smaller with progressive sieving. To
get an insight into this improvement, we will experimentally evaluate progres-
sive sieving and compare it to standard sieving approaches. As a baseline we will
use the GaussSieve [MV10b], the baseline sieve without near neighbor searching,
and the HashSieve [Laa15], which is perhaps the most practical near neighbor
extension of the GaussSieve to date [MLB15,MB16,MLB17]. In Sect. 5 we will
give a more in-depth discussion of various aspects of these results.
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Experiment setting. All experiments were performed on a Medion Erazer P6661
laptop with an Intel Core i7-6500 CPU (2.50 GHz) and 8 GB of RAM. Except for
approximate SVP, where the termination condition was finding a vector of a cer-
tain length, all experiments used a bound on the number of “collisions” (reduc-
ing to the all-zero vector) as the termination condition. Similar to e.g. [MV10b,
IKMT14] we used (an unoptimized version of) Klein’s sampler [Kle00]. For the
HashSieve, we used the same parameters as in [Laa15,MLB15]. All experiments
were performed on lattices from the SVP challenge [SVP18], where the LLL/BKZ
basis reduction was done using fplll [fplll18].

4.1 Profiles

To get an idea how progressive sieving differs from classical sieving in practice,
Figs. 2 and 3 depict typical profiles of the classical and progressive HashSieve,
when solving SVP on 70-dimensional lattices from the SVP challenge [SVP18].
As described in the captions of the figures, the time complexities are significantly
better, the list size increases more steadily (and predictably) than in the original
HashSieve, approximate solutions are found considerably faster, and vectors in
the list are updated much less frequently in progressive sieving.

Note that as in Fig. 2c, classical sieving can be viewed as a special case of
progressive sieving, with the initial value of rank set to d. Also note that in all
figures, the horizontal axis counts the number of iterations of the while-loop of
Algorithms 1 and 2), which translates to actual time complexities as in Fig. 2a
– this means that e.g. a vector of Euclidean norm 2400 in this 70-dimensional
lattice is not found a factor 5× faster (as one might guess from Fig. 3a), but
close to a factor 5 · 20 ≈ 1000× faster (taking into account Fig. 2a).

4.2 Results

To get reliable complexity estimates for arbitrary dimensions, we ran several
experiments of both standard and progressive sieving on lattices of dimensions
40 to 80, the results of which are displayed in Fig. 1. These results clearly show a
large decrease in the time complexities for sieving in arbitrary dimensions, both
for the classical GaussSieve and the near-neighbor-optimized HashSieve algo-
rithm [Laa15]. For both algorithms the improvement is more than a factor 20×
for all tested dimensions, showing that the improvement of progressive sieving
can indeed be combined with near neighbor techniques.

Focusing only on 70-dimensional lattices, we also ran experiments with dif-
ferent quality bases, to see how the basis reduction affects the performance of
(progressive) sieving. The results in Table 1 are based on at least 10 experiments
each on randomized lattice bases (where only the experiments that took several
hours are based on just 10 runs). As can be seen in the table, progressive siev-
ing benefits more from reduced bases, with the speedup factor increasing as the
quality of the basis improves. We further observe that the speedup factor for the
HashSieve is slightly smaller than for the GaussSieve, which can be explained by
the HashSieve spending most of its time working with the near neighbor data
structure – costs which are not affected by progressive sieving.
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(a) Time complexities. Iterations (Line 3) take significantly less time
in the ProHashSieve, leading to finding short lattice vectors much faster.
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(b) List sizes. Whereas the list size behaves rather erratically in the orig-
inal HashSieve, the ProHashSieve shows a much more steady behavior.
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(c) Lattice rank. For the ProHashSieve, the rank of the sublattice
(roughly) follows a square-root law, with more time spent on higher ranks.

Fig. 2. Sieving profiles for the HashSieve (red) and ProHashSieve (blue), when given as
input a BKZ-30 reduced lattice basis of a 70-dimensional lattice. (Color figure online)
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(b) Reductions (×106). Progressive sieving rarely sees reductions of the
list with new vectors, making the GaussSieve similar to the ListSieve.
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(c) Operations (×109). Both algorithms roughly have the same ratio of
hashing operations (finding near neighbors) and vector comparisons.

Fig. 3. Sieving profiles for the HashSieve (red) and ProHashSieve (blue), when given as
input a BKZ-30 reduced lattice basis of a 70-dimensional lattice. (Color figure online)
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Finally, to illustrate the improvements for finding approximate shortest vec-
tors, Table 2 lists the time complexities for 1.1-SVP on 70-dimensional lattices
from the SVP challenge [SVP18]: the measured complexities are based on ter-
minating the algorithm as soon as a vector v ∈ L of norm ‖v‖ ≤ 1.1 · λ1(L) has
been found. As the results show (and as could already be seen in Fig. 3a), stan-
dard sieving barely benefits from this relaxed termination requirement, while
progressive sieving improves considerably both when an approximate solution
suffices, and when the input bases is more reduced, leading to extreme speedup
factors as high as 5000×. This highlights a weakness of existing lattice sieving
methods.

Table 2. Running times (in seconds) for solving approximate SVP with approximation
factor γ = 1.1 on 70-dimensional lattice bases from the SVP challenge [SVP18]. When
the bases are sufficiently well-reduced, low-rank sublattices already contain very short
lattice vectors, leading to substantially faster convergence for progressive sieving.

Approximate SVP (γ = 1.1) ←− GaussSieve −→ ←− HashSieve −→
LLL BKZ-10 BKZ-30 LLL BKZ-10 BKZ-30

Standard sieving 18500 17200 15600 3180 2960 2700

Progressive sieving 120 40 3 65 20 2

Speedup factor 150× 400× 5000× 50× 150× 1000×

5 Discussion

In this section we will briefly discuss different aspects of lattice sieving, and how
various design choices affect the performance of (progressive) sieving in practice.

5.1 Approximate SVP

As shown in Table 2, progressive sieving benefits greatly from being given a
relaxed termination condition, in the sense that an approximate solution to
SVP suffices. To quantify where this improvement comes from, recall that by
the Geometric Series Assumption (GSA), BKZ gives us a reduced lattice basis
{b1, . . . , bd} where the Gram-Schmidt orthogonalization vectors satisfy ‖b∗

i ‖ ≈
δd−2i+1 · Vol(L)1/d for all i = 1, . . . , d. As a result, the first k basis vectors
together form a rank-k sublattice Lk = L(b1, . . . , bk) ⊂ L of volume:

Vol(Lk) =
k∏

i=1

‖b∗
i ‖ = Vol(L)k/d · δ

∑k
i=1(d−2i+1) = Vol(L)k/d · δk(d−k) (1)

By the Gaussian heuristic we have λ1(L) ≈ Vol(L)1/d/
√

2eπd, and therefore the
shortest vector in this rank-k sublattice Lk has relative norm:

λ1(Lk) ≈ Vol(Lk)1/k

√
2eπk

=
δd−k Vol(L)1/d

√
2eπk

≈ δd−k

√
d

k
· λ1(L) (2)
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To obtain a solution to γ-SVP, i.e. approximate SVP with approximation factor
γ, we need δd−k

√
d/k ≈ γ. Depending on the basis quality δ, dimension d, and

approximation factor γ, this tells us how many dimensions we can essentially
“skip” at the end when looking for approximate solutions: already at rank k, we
will then expect to find a vector of sufficiently short length.

One could argue that the picture sketched by Table 2 is painted too rosily
in favor of progressive sieving, since classical sieving approaches could also find
approximate solutions faster by (a) computing a similar heuristic on what rank
k is required to find an approximate solution in a suitable sublattice, and then
(b) simply running sieving on such a sublattice until an approximate solution
has been found. Even in that case however, progressive sieving has the benefits
of not requiring an a priori choice of k (it automatically finds the right rank k
required to find a sufficiently short vector), and having a faster convergence for
exact SVP in such sublattices as well (as sketched in Table 1).

5.2 Effects of Basis Reduction

The experiments in Sect. 4 further suggest that progressive sieving benefits more
from being given a more reduced basis than classical sieving approaches. To
explain this, we observe that there are two sides to having better bases, and
previous sieving approaches only benefited from one of these advantages.

Standard sieving. When given a better basis, classical sieving methods will be
able to sample shorter lattice vectors in Line 4 more easily. Being able to sample
shorter vectors means that vectors will need to be reduced less frequently before
“stabilizing” in the list, thus reducing the overall cost of the algorithm as for
each vector, we might save some searches and reductions.

Progressive sieving. Besides the benefit stated above, which also holds for
progressive sieving, there is a second advantage to being given a nice lattice basis.
This is closely related to the heuristic analysis for approximate SVP above, as
having a reduced basis means that δ is smaller and therefore low-rank sublattices
will already contain shorter lattice vectors. And being able to find very short
lattice vectors early in low ranks, which will then be contained in the list L when
moving to higher-rank sublattices, means that reductions will proceed faster in
those higher ranks as well.

Formally, let Sd−1 = {x ∈ R
d : ‖x‖ = 1} denote the unit sphere, and let v ∼

Sd−1 be sampled uniformly at random from this sphere. Then, using spherical
cap arguments similar to e.g. [BDGL16], one can show that the probability
that v can be reduced with a random vector w ∈ Sd−1 (i.e. ‖v ± w‖ ≤ ‖v‖) is
(3/4)d+o(d) ≈ 2−0.21d+o(d). However, when the norms of list vectors w differ from
1, so that the norms of v and w are different, this probability changes. Intuitively,
for small ‖w‖ → 0 the probability of reducing v with w approaches 1, as either
v + w or v − w is likely to be shorter than v. For large ‖w‖ → √

2‖v‖ the
probability of being able to reduce v with w approaches 0, and for ‖w‖ ≥ 2‖v‖
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it is even impossible for such a reduction to take place. For arbitrary α ∈ (0,
√

2)
and random w ∈ αSd−1, a geometric exercise shows that this probability scales
as (1 − α2/2)d/2+o(d), showing that if list vectors w ∈ L are a factor α shorter
than the sampled vectors v, the likelihood that v can be reduced with the list is
exponentially larger (in α) than when vectors in the list have equal norm as v.

Summarizing, if the input basis to the sieve is more reduced, then in lower
ranks the algorithm will already find shorter lattice vectors to add to the list L,
and having shorter vectors in the list means that new vectors can be reduced
faster and more easily. Since in classical sieving approaches it takes much longer
to find (approximate) short lattice vectors, previous approaches to sieving do
not benefit from this accelerated reductions when the list vectors are short. We
believe this mostly explains the bigger improvements to progressive sieving when
using more reduced bases.

Pruning. Note that when the lattice basis is very reduced, the last coefficients
of the shortest lattice vector in terms of these basis vectors are commonly small
or zero. If the search space in the last few coefficients is small, one could simply
guess or enumerate these potential coefficients, while doing sieving on the first
coefficients. This suggests an approach where we only do sieving up to a certain
rank, and for the last few basis vectors we use a different procedure of either
guessing the coefficients and randomizing/restarting when we fail (similar to
pruned enumeration with randomized bases), or using e.g. enumeration or Babai
rounding to deal with these latter dimensions. A somewhat similar idea of dealing
with these last dimensions faster was analyzed in [Duc18].

5.3 Effects of the Sampler

By the sampler, we are referring to the procedure in Line 4 of Algorithms 1 and
2 of sampling new lattice vectors, in case the stack is empty: a new vector is
sampled from a certain distribution over the lattice, using some efficient sam-
pling algorithm. This sampling is often done through a randomized enumeration
procedure [Kle00], and the exact specification of this procedure determines how
short the sampled lattice vectors will be, how often similar vectors (in particular,
the vector 0) are sampled, and how long the procedure takes to produce a new
sample.

Standard sieving. Choosing the best parameters for the sampler, to get the
best performance for sieving, is a rather cumbersome procedure: there are several
parameters to tune in the sampler alone, and the best choice varies per dimension
and per lattice sieve method (GaussSieve, HashSieve, etc.). Experiments in the
past have shown that for previous sieving approaches, this choice of parameters
may also greatly influence the practical performance of the algorithm [IKMT14,
FBB+14,MLB15,MB16], which makes this aspect of sieving hard to deal with
properly – choosing parameters optimally is both difficult and important.



306 T. Laarhoven and A. Mariano

Progressive sieving. Although choosing parameters accurately still influences
the performance of progressive sieving, sampling longer vectors causes less of a
slowdown due to the list having many short vectors early on (as discussed before,
in the context of the input basis quality). Long sampled vectors are reduced in
length faster and more easily, so that sampling longer vectors is less of an issue.
Therefore fine-tuning the sampler will likely not lead to as big improvements
for progressive sieving as for standard sieving. However, this also means that
the numbers in Tables 1, 2 and Fig. 1 may not be entirely accurate when using
optimized samplers – our numbers are based on a simple, straightforward proof-
of-concept implementation of Klein’s sampler, rather than having optimized all
aspects of the algorithm (and in particular this sampling routine).2

5.4 Effects of List Updates (GaussSieve vs. ListSieve)

As mentioned, the main difference between Micciancio–Voulgaris’ GaussSieve
and ListSieve is that in the ListSieve, vectors that are added to the list are never
modified again. By “list updates”, we are referring to either making updates to
the list vectors as in the GaussSieve, or never updating list vectors as in the
ListSieve algorithm.

Standard sieving. In classical sieving approaches, as can for instance be seen
in Fig. 3b, lattice vectors in the sieved list are quite often reduced and moved
back to the stack, after which they are processed again and pushed back to
the list. In the ListSieve-variant of such algorithms, where list vectors are never
touched again, one would miss all these reductions, leading to a significantly
worse performance overall [MODB14]. Although the ListSieve is conceptually
slightly simpler, the performance loss would not be worth it to ever consider
using the ListSieve instead of the GaussSieve in high-performance environments.

Progressive sieving. For progressive sieving, reductions of list vectors almost
never happen, as can also be seen in Fig. 3b. Recall that the experiments
described in Figs. 2 and 3 are based on the GaussSieve-based HashSieve, where
such list updates are allowed if they produce shorter lattice vectors. For pro-
gressive sieving, the execution times of the GaussSieve and ListSieve variants
are much closer, which suggests using ListSieve-like sieving may be practical
as well. Note that the ListSieve does not save any inner product computations
between sampled and list vectors, since we already need to compute v · w to
see if v can be reduced with w in Line 5 (before reducing w with v in Line 6),
and so the performance is still worse when doing the ListSieve instead of the
GaussSieve: skipping potential reductions which are “free” is almost never a
wise choice.
2 Concurrent work [Duc18] suggests that ideas similar to progressive sieving only lead

to a factor 5× speed-up, i.e. roughly a factor 4× less than described here. We con-
jecture that this difference is mainly caused by Ducas using a more optimized imple-
mentation of the baseline approach, and in particular using a better sampler.
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A potential application of ListSieve-style sieving, knowing that its perfor-
mance is closer to the GaussSieve when using progressive sieving, is in parallel
implementations. For shared memory systems, current approaches use (proba-
ble) lock-free lists [MTB14,MLB15,MLB17], and these lock-free lists may no
longer be needed when we know that once a vector is added to the list, it is
never updated again and it becomes read-only memory. For distributed-memory
implementations [IKMT14,BNvdP16,YKYC17], using a ListSieve as a baseline
may also be beneficial in terms of performance and simplicity – synchronization
between nodes only has to be done on local sampled vectors, and not on list
vectors which are modified by different nodes.

6 Open Problems

As we have seen, progressive sieving has a better (experimental) performance
than current sieving approaches in many ways, making sieving slightly smoother,
more predictable, less dependent on parameter choices for the sampler, and more
dependent on the quality of the input basis. Below we state some open problems
for future work, related to the ideas presented in this paper.

6.1 BKZ and Sieving on Sliding Windows

A long-standing open problem is to efficiently implement sieving as the SVP sub-
routine for BKZ, which now commonly uses enumeration as its SVP subroutine
instead. Only recently has sieving become rather competitive with enumeration,
and projects in this direction are likely ongoing.

When running BKZ on d-dimensional bases, there is often a sliding window of
k indices i+1, . . . , i+k, for which SVP in k dimensions needs to be solved to form
an HKZ-reduced basis in this block. Then, when this block has been properly
reduced, the index i is increased by 1, and the same procedure is applied to
the window i + 2, . . . , i + k + 1. Since there is a large overlap between different
windows, a natural question is whether dealing with this new block can be done
more efficiently than starting from scratch.

This is somewhat similar to progressive sieving, where as an abstraction
we start with k basis vectors b1, . . . , bk, and after reducing this basis (running
sieving on this block), we switch to a basis π1(b2), . . . , π1(bk+1), with π1(x)
being the projection of x orthogonal to b1, and bk+1 being linearly independent
of the previous basis vectors. So (besides the projections) not only do we add
a new basis vector bk+1 to the system as in progressive sieving, we also remove
one vector b1, making all vectors currently in our list with a non-zero coefficient
of b1 “unusable” in the next iteration.

One potential way of dealing with shifting windows in sieving is to discard
all vectors w with non-zero coefficient of b1 when moving from one window to
the next – the contribution of b1 may be crucial for this vector to be short,
and removing this contribution may result in a long lattice vector. By the GSA,
the number of vectors of norm less than 4

3 · λ1(L(b1, . . . , bk)) in L(b1, . . . , bk)
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is approximately [43 · λ1(L(b1, . . . , bk))/λ1(L(b2, . . . , bk))]d, which is roughly a
fraction [λ1(L(b1, . . . , bk))/λ1(L(b2, . . . , bk))]d of all vectors in the sieved list
L ⊂ L(b1, . . . , bk). Although this fraction may be small depending on the shape
of the lattice and the block size k, a non-negligible fraction of vectors can thus
be reused in the next iteration without difficulties.

Besides this straightforward approach, one could also imagine vectors with
non-zero coefficients of b1 being reused in the next iteration by just removing this
contribution of b1, and hoping that the resulting vector is still short. This might
make the vectors slightly longer on average, but makes sure that all vectors can
be reused, potentially saving even more work on the sieve in the next window.

6.2 Enumeration with Sieving

Another long-standing open problem in lattice algorithms is to consider
approaches based on enumeration and sieving, and combining the “best of both
worlds” to construct even better SVP algorithms. As suggested in [Laa16], one
potential such combination would consist of running sieving on a subset of the
basis (say b1, . . . , bk), and then using the sieved list as an approximate Voronoi
cell for faster enumeration. This enumeration procedure would then consist of
considering combinations of the vectors bk+1, . . . , bd as in state-of-the-art enu-
meration algorithms, and then using the sieved list L ⊂ Lk to see whether those
enumerated vectors are close to a vector in the sublattice Lk. If it is close to
such a vector, the difference with that vector is likely a short vector in the full
lattice. In this case sieving would be used as a batch-CVP/CVPP oracle.

While this idea also works with classical sieving methods, it becomes even
more natural with progressive sieving, which already considers increasingly large
sublattices to make progress. Modifying progressive sieving to the above appli-
cation would simply mean changing the upper bound in Line 16 from the full
rank d to some bound d0. Similar ideas of combining sieving on a sublattice with
enumerating the “last few dimensions” have been studied in [Duc18], but more
work is needed to understand the full potential of such a hybrid approach.
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[MODB14] Mariano, A., Dagdelen, Ö., Bischof, C.: A comprehensive empirical com-
parison of parallel ListSieve and GaussSieve. In: Lopes, L., et al. (eds.)
Euro-Par 2014. LNCS, vol. 8805, pp. 48–59. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-14325-5 5

[MS11] Milde, B., Schneider, M.: A parallel implementation of GaussSieve for the
shortest vector problem in lattices. In: Malyshkin, V. (ed.) PaCT 2011.
LNCS, vol. 6873, pp. 452–458. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-23178-0 40

[MTB14] Mariano, A., Timnat, S., Bischof, C.: Lock-free Gauss-Sieve for linear
speedups in parallel high performance SVP calculation. In: SBAC-PAD,
pp. 278–285 (2014)

[MV10a] Micciancio, D., Voulgaris, P.: A deterministic single exponential time algo-
rithm for most lattice problems based on Voronoi cell computations. In:
STOC, pp. 351–358 (2010)

[MV10b] Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the
shortest vector problem. In: SODA, pp. 1468–1480 (2010)

[NV08] Nguyên, P.Q., Vidick, T.: Sieve algorithms for the shortest vector problem
are practical. J. Math. Cryptol. 2(2), 181–207 (2008)

https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-20901-7_10
https://doi.org/10.1007/978-3-642-54631-0_24
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-662-47989-6_1
https://doi.org/10.1007/978-3-319-22174-8_6
https://doi.org/10.1007/978-3-319-14325-5_5
https://doi.org/10.1007/978-3-642-23178-0_40
https://doi.org/10.1007/978-3-642-23178-0_40


Progressive Lattice Sieving 311

[Sch87] Schnorr, C.-P.: A hierarchy of polynomial time lattice basis reduction
algorithms. Theoret. Comput. Sci. 53(2–3), 201–224 (1987)

[Sch11] Schneider, M.: Analysis of Gauss-Sieve for solving the shortest vector
problem in lattices. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011.
LNCS, vol. 6552, pp. 89–97. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19094-0 11

[Sch13] Schneider, M.: Sieving for shortest vectors in ideal lattices. In: Youssef,
A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 375–391. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38553-7 22

[SE94] Schnorr, C.-P., Euchner, M.: Lattice basis reduction: improved practical
algorithms and solving subset sum problems. Math. Program. 66(2–3),
181–199 (1994)

[SFS09] Sommer, N., Feder, M., Shalvi, O.: Finding the closest lattice point by
iterative slicing. SIAM J. Discret. Math. 23(2), 715–731 (2009)

[SVP18] SVP Challenge (2018). https://latticechallenge.org/svp-challenge/
[WLTB11] Wang, X., Liu, M., Tian, C., Bi, J.: Improved Nguyen-Vidick heuristic

sieve algorithm for shortest vector problem. In: ASIACCS, pp. 1–9 (2011)
[YKYC17] Yang, S.-Y., Kuo, P.-C., Yang, B.-Y., Cheng, C.-M.: Gauss sieve algorithm

on GPUs. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp.
39–57. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-
4 3

[ZPH13] Zhang, F., Pan, Y., Hu, G.: A three-level sieve algorithm for the shortest
vector problem. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013.
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Abstract. The Learning with Rounding Problem (LWR) has become
a popular cryptographic assumption to study recently due to its deter-
minism and resistance to known quantum attacks. Unfortunately, LWR
is only known to be provably hard for instances of the problem where
the LWR modulus q is at least as large as some polynomial function of
the number of samples given to an adversary, meaning LWR is provably
hard only when (1) an adversary can only see a fixed, predetermined
amount of samples or (2) the modulus q is superpolynomial in the secu-
rity parameter, meaning that the hardness reduction is from superpoly-
nomial approximation factors on worst-case lattices.

In this work, we show that there exists a (still fully deterministic)
variant of the LWR problem that allows for both unbounded queries and
a polynomial modulus q, breaking an important theoretical barrier. To
our knowledge, our new assumption, which we call the Nearby Learning
with Lattice Rounding Problem (NLWLR), is the first fully determinis-
tic version of the learning with errors (LWE) problem that allows for
both unbounded queries and a polynomial modulus. We note that our
assumption is not practical for any kind of use and is mainly intended as
a theoretical proof of concept to show that provably hard deterministic
forms of LWE can exist with a modulus that does not grow polynomially
with the number of samples.

Keywords: Lattices · LWE · Learning with rounding

1 Introduction

In recent years, the need for quantum-secure cryptographic protocols has seem-
ingly dramatically increased. Many people and organizations, including appar-
ently the NSA, believe that powerful quantum computers will be coming soon. It
therefore seems imperative that the cryptographic community develop new, effi-
cient quantum-secure protocols for all of the common use cases of cryptography
today.
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Most of these protocols are based upon the Learning with Errors Assumption
(LWE), which was invented by Regev in [Reg05], or its ring variant. Informally,
given a fixed random vector s, the LWE assumption states that it is difficult
to distinguish samples of the form (aiai

ᵀs + δi) from random when the ais are
uniformly sampled random vectors and the δis are fresh samples from a low-norm
noise distribution. While it is well-known that the LWE assumption has played
a huge role in the development of theoretical crytography, including things like
fully homomorphic encryption [BV11], recently LWE has been gaining traction as
an assumption for practical cryptography due to the need for quantum security,
including in [BCD+16,Pei14]. In fact, it seems like most of the submissions to
the NIST post-quantum key exchange competition will be based on LWE (or its
ring variants).

But with all of the attention given to the LWE assumption, we think it
is worth considering a related, simpler, and more efficient assumption: the
learning with rounding (LWR) assumption. The LWR assumption was invented
in [BPR12] as a way to build the first nontrivial, parallelizable (and hence low
depth) PRFs1 from lattice assumptions. Informally, given a fixed random vec-
tor s, the LWR assumption states that it is difficult to distinguish samples of
the form

(
ai �ai

ᵀs�p

)
from random when the ais are random vectors sampled

uniformly at random. Note that the operation �·�p can be thought of as the gen-
eral rounding operation ‘round to the nearest multiple of q

p and then divide by
q
p ’. In the vast majority of cases where the LWE assumption is used, the LWR
assumption can be used in its place.

LWR has several advantages over LWE. The most obvious one is that, for
fixed dimension and vector distributions (i.e. key and sample distributions), LWR
is faster to compute. This is due to the fact that we don’t need to sample from
the noise distribution when generating an LWR sample, and this noise sampling
is typically a major pain point for practical LWE implementations. But LWR
is also more resilient than LWE in many ways as well: since it is deterministic,
it makes it so an adversary that can somehow trick an oracle into repeating
samples (outputting a sample with the same value of ai but with a different
noise sample) gains nothing. An often-overlooked fact about LWR is that it
would likely be much more resistant to side channel attacks than LWE, since
noise sampling can be difficult and take a lot of effort to inure against these
sorts of attack [RRVV14]. This fact implies that LWR would be a very good
post-quantum candidate for certain hardware implementations.

There have been many recent schemes that utilized the power of LWR. A nat-
ural use case was lattice-based PRFs, including [BLMR13,BP14]. Papers with
a practical focus on things like key exchange have also been build using round-
ing, including [CKLS16,DFH+16]. More powerful PRFs that provide increased
functionality and also might provide illustrating examples that even touch at

1 It was previously known how to build completely sequential (and thus high depth)
PRFs from PRGs using generic constructions like [GGM84]. It is possible to build
a very simple lattice-based PRF using the [GGM84] construction by treating LWE
as a PRG.
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things like indistinguishability obfuscation include papers like [BFP+15,CC17,
BKM17].

Given all of the benefits of LWR mentioned so far, it seems silly that any-
one would ever want to use the LWE assumption instead. However, there is an
excellent reason why people use LWE instead of LWR: security. As of now, LWE
does not reduce tightly to LWR, and LWR does not have a direct reduction from
worst-case lattice problems like LWE does. To reach the same provable security
levels as LWE schemes, it is often the case that the parameters of LWR schemes
have to be made substantially larger than their LWE counterparts, negating
many of the advantages of LWR.

Fundamentally, we think that there does not seem to be any obvious reason
why LWR should not be as hard or close to as hard as LWE (although without
proofs we can never be sure)2. The goal of this work is to continue to try to
close the gap between the two problems in terms of hardness. In this work, we
do not fully close this gap, or even come up with a primitive that is practically
useful–we cannot think of any practical use cases for what we build in this paper.
But we do make progress on what we consider an extremely important practical
problem in lattice cryptography.

In fact, we think that if the hardness gap between LWR and LWE was closed,
then there would be little use for LWE in practice. For instance, if LWR was
provably secure for parameters where the ‘rounding loss’ q

p was not much larger
than the noise magnitude for LWE with similar levels of security, many of the
very practical NIST post-quantum crypto proposals like Kyber [BDK+17] or
Frodo [BCD+16] would probably be redesigned to use LWR. We think that
research on the hardness of LWR (or the lack thereof) could have widespread
practical application in the long run.

1.1 LWR: Security Background

In order to put our work in context and explain the motivation, it is useful to
go over the previous work on LWR and LWR security.

Original LWR Work [BPR12]: the original LWR paper [BPR12] proved the hard-
ness of LWR where the modulus q was superpolynomially larger than the B-
bounded noise distribution used in the LWE oracle in the proof. The reduction
was straightforward: take an LWE oracle, and round the LWE output. If the
rounded LWE samples

(
ai, �ai

ᵀs + δi�p

)
were always equal to the LWR sam-

ples
(
ai, �ai

ᵀs�p

)
, then the LWR problem was at least as hard as the underlying

LWE problem. While this explanation simplifies the reduction, this is the fun-
damental idea of how it works in this paper.

However, this condition obviously does not hold if the error δi causes the
rounded LWE output �ai

ᵀs + δi�p to differ in Zp from the rounded LWR output
�ai

ᵀs�p. Since we have no way of authoritatively telling whether this bad event

2 Caution! This is just an opinion.
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happened or not, the authors of [BPR12] required that the modulus q be super-
polynomial relative to the B-bounded noise distribution used in the LWE oracle.
This ensured that the probability that any ai

ᵀs was within B of a ‘boundary’
where the rounding value changed was negligible for any polynomial amount of
LWR samples and allowed the proof to work.

Subsequent Work. After the original paper, several further works cleverly
improved the state of LWR [AKPW13,BGM+16,BLL+15,AA16]. In general,
the authors of these papers showed that, by cleverly sampling and leaking cer-
tain secret information and using smart statistical analyses, it was possible to
avoid instances where rounded LWE and LWR samples differed in the reduc-
tion. These works substantially improved the parameters for LWR in general,
but unfortunately still required an apriori bounded number of samples in the case
of a polynomial modulus. Let c be a constant3, γ ≥ 1, let B be the B-bound for
the noise distribution of the LWE instance that we reduce to our LWR instance,
let p be the rounding parameter (the group Zp that we are rounding to), and let
κ be a security parameter. The table below (with format borrowed from [AA16])
summarizes the state of the art.

Work Unbounded
samples (w)

Modulus (q) Advantage
change (ε → ε′)

[BPR12] Yes Bpκω(1) ε − negl(κ)

[AKPW13] No γBwpκ ε/(2dw)

[BGM+16] No Bwp (ε/qw)2

[BLL+15] No Bwp (ε/qw)2

[AA16] (1) No Bwpκ ε(wB)−c

[AA16] (2) No Bwpκ ε(w)−c

Work Dimension
change (d → d′)

Straightforward
rounding

Uniform samples

[BPR12] d Yes Yes

[AKPW13] d log(γ)/ log q Yes Yes

[BGM+16] d/logρq Yes Yes

[BLL+15] d Yes Yes

[AA16] (1) d Yes Yes

[AA16] (2) d − c Yes Yes

3 For typical choices of parameters.
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A First Attempt. When attempting to reduce LWE to LWR, it is natural to
ask why we cannot just throw out or ignore the samples that are close to these
rounding ‘boundaries’. We could use probabilistic rejection sampling to make
our LWR sample distribution mimic the output of an LWE oracle. This works
in essentially the following way (we are leaving out some details here, and what
we say isn’t exactly correct, but the intuition remains true): recall that a reg-
ular LWR oracle would simply just output samples of the form

(
ai, �ai

ᵀs�p

)
.

Now suppose we have a new oracle that outputs samples in a somewhat similar
manner, but with a catch: for every sample, it samples some δi from the LWE
noise distribution ψ. If ai

ᵀs + δi is within a distance of B from the rounding
boundary, then we reject the sample and start over. Otherwise, we go on ahead
and output

(
ai, �ai

ᵀs�p

)
as usual.

It shouldn’t take too much effort to see that the behavior of this new LWR
oracle is exactly the same as the following oracle: Take samples from an LWE
oracle, and round the second term, getting a term of the form

(
ai, �ai

ᵀs + δi�p

)
,

but reject the samples if ai
ᵀs+δi is within B of a rounding boundary. This oracle

is directly simulatable given an LWE oracle, so we can prove hardness directly
from LWE using a reduction like this.

Unfortunately, this approach still has one glaring hole: this type of rounding
with probabilistic rejection is not fully deterministic. It is true that, for a fixed
instance of the problem, every tuple whose first term is ai will always have
second term �ai

ᵀs�p. However, which ais are in fact included in samples is highly
nonuniform–and even probabilistic–and even though it is very simple to show
that the accumulated distribution of ais is computationally hard to distinguish
from fully random for one instance of the problem, this still presents significant
problems for many applications that require determinism. For instance, if we
attempt to build a PRF using this technique, different instantiations of the
PRF may have different outputs, since, depending on the noise sampled, some
instantiations of the PRF will reject certain ais while others will accept them.
This could be disastrous for security if an adversary has access to multiple copies
of the PRF, since we can guess how close a particular value of ai

ᵀs is to the
boundary based on the number of outputs versus rejections for a particular
sample.

It seems difficult to improve this basic attempt if we wanted to keep the
number of queries to be an unbounded polynomial, since we cannot know any
extra information about ai

ᵀs in the simulation, and we could not leak any non-
negligible amount of information per query to help us without risking a complete
reveal of the secret s.

Lattice Rounding. Our first core idea is the following: what if, instead of rounding
each sample to the nearest multiple of some integer, we group samples together
and deterministically round them to a nearby lattice point (not necessarily the
nearest, obviously)? We might be able to leak more information that can help
us eliminate rounding mistakes this way, as it could potentially be hard for an
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adversary to determine whether or not a point is close to a boundary created
by whatever lattice rounding algorithm we are using (think of Babai’s nearest
plane algorithm or regular Babai rounding)4.

However, we have to be careful when doing this. A simulator or adversary
cannot have access to both the values of uniformly random ai

ᵀs terms and the
lattice points gained as a result of rounding, or otherwise something similar to
the famous ‘learning a hidden parallelepiped’ attack in [NR06] seems to occur
and the (short) basis of the lattice can be learned. Once a simulator (or an
adversary for that matter) has access to the basis we are using to round, then
we gain very little from rounding to a lattice instead of to the nearest multiple
of some integer. Perhaps some clever trick could thwart this class of attacks, but
we could not come up with such an idea.

Restricting the Samples. The next main idea is something that arises naturally
from our first attempt: suppose we continue to utilize ‘lattice rounding’, but
what if we restrict the possible values of the samples Ai such that the values
Ais are in some kind of ball around points in the lattice that we are rounding
to rather than let them be uniform? Note that our samples consist of matrices
now instead of vectors. We can use the LWE assumption to show that such a
distribution looks random to an adversary, and we can simulate such samples
without a trapdoor for the lattice we are rounding to as well: pick a random
point in the lattice to which we will ‘round’ the final value Ais (given a ‘bad’
basis, of course), add noise to get the ‘actual’ value of Ais, and then output the
value of Ai such that Ais equals the lattice point we picked plus the noise term.

This has the unfortunate consequence that we cannot use a uniform distri-
bution of Ais, but allows us to potentially prove security because we do not
need to know a short basis of the lattice we are rounding to in order to simulate
queries. However, we are still unable to issue a challenge query in this regime–in
order to find a point close to the lattice, our sampler implicitly needs to know
the lattice point.

Finding an Acceptable Output. Our solution to the previous problem is the fol-
lowing: rather than output samples Ai and the closest lattice point to Ais, what
if we only output some limited information about that lattice point, rather than
the whole thing? It turns out that if we write the ‘nearest’ lattice point in Λ (B)
in the form Bu (according to some rounding algorithm A–we may not actually
output the closest lattice point) and then output u mod 2, we can actually prove
security. We develop a variant of the LWE assumption that reduces from the stan-
dard LWE assumption that allows us to do this while maintaining the properties
of unbounded (polynomial) samples and a polynomially-sized modulus.

4 Proving that an adversary cannot distinguish points close to the ‘rounding boundary’
of a lattice from uniformly random points without breaking some form of LWE seems
like a very interesting open problem.
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Informally, our assumption says that, for certain Ais picked so that Ais is
close to Λ (B), samples of the form

(
Ai, �Ais�A

Λ(B) mod 2
)

are indistinguishable from random. Note that our process is parameterized by a
lattice Λ (B) and a rounding algorithm A. We are obviously glossing over some
important details here, but this is the basic idea (and the details are in the body
of the paper).

2 Preliminaries

In this section we present some basic material common to many cryptographic
papers. A reader familiar with general cryptography and particularly lattices and
lattice cryptography can probably safely skip this section. We borrow elements
of the presentation from [BGG+14,GPV08].

2.1 General Notation

For a random variable X we denote by x ← X the process of sampling a value
x from the distribution of X. If S is a finite set instead of a distribution, we
denote by x ← S the process of sampling a value x according to the uniform
distribution over S.

A non-negative function v (λ) is negligible if for every polynomial p (λ) it
holds that v (λ) ≤ 1

p(λ) for all sufficiently large λ ∈ N.

Statistical Distance: Let Ω be a finite domain, and let X and Y be random
variables over Ω. We define the statistical distance between X and Y , denoted
SD (X,Y ) in the following way:

SD (X,Y ) =
1
2

∑
ω∈Ω

|Pr [X = ω] − Pr [Y = ω] |

We say that two variables X and Y are δ-close if SD (X,Y ) ≤ δ. If we param-
eterize X and Y with the security parameter λ ∈ N , we can say that two families
of distributions Xλ and Yλ are statistically indistinguishable or statistically close
if SD (Xλ, Yλ) is negligible in λ.

Rounding. For an integer p ≤ q, we define the modular “rounding” function

�·�p : Zq → Zp that maps x → 	(p/q) · x


and extend it coordinate-wise to matrices and vectors over Zq.

B-Bounded. Let B = B (n) ∈ N be a natural number. A family of distributions
ψ ∈ {ψn}n∈N

is called B-bounded if Pr [ψ ∈ [−B,B]] = 1 − negl (n).
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2.2 Lattice Background

Lattice Notation: let q, n, and m be positive integers, and let A ∈ Z
n×m
q be

a matrix. We let Λ⊥
q (A) denote the lattice spanned by all x ∈ Z

m
q such that

A ·x = 0 mod q. For a vector u ∈ Z
n
q , we generalize this and let Λu

q (A) denote
the set of all vectors such that A · x = u. Note that this is a coset of Λ⊥

q (A).

Discrete Gaussians. We borrow the elegant presentation style of [GPV08]. For
any s > 0 define the Gaussian function on R

n centered at c with parameter s:

∀x ∈ R
n, ρs,c (x) = e−π||x−c||2/s2

We sometimes omit the subscripts s and c in the case that they are 1 and 0,
respectively.

For any c ∈ R
n, real s > 0, and n-dimensional lattice Λ, we define the discrete

Gaussian distribution over Λ as:

∀x ∈ Λ, DΛ,s,c (x) =
ρs,c (x)
ρs,c (Λ)

Smoothing Parameter. In [MR04], Micciancio and Regev defined the smooth-
ing parameter: for any n-dimensional lattice Λ and positive real ε, the smoothing
paramter ηε (Λ) is the smallest real s > 0 such that ρ1/s (Λ∗\ {0}) ≤ ε.

2.3 LWE and Related Assumptions

Definition 1. Learning with Errors Problem (LWE): Consider integers n
and q, some distribution ψ over Zq, and distributions K and T , both over Z

n
q .

A (q, n, ψ,K, T )-LWE problem instance consists of access to an unspecified
challenge oracle OLWE, being, either, a noisy pseudorandom sampler OLWE

s

carrying some constant random secret key s ∈ Z
n
q sampled from the distribu-

tion K, or, a truly random sampler OLWE
$ , whose behaviors are respectively as

follows:

OLWE
s : Outputs samples of the form

(
ai,ai · s + δi

)
∈ Z

n
q × Zq, where s ∈ Z

n
q

is a persistent value invariant across invocations sampled by querying the
distribution K, δi ∈ Zq consists of a fresh sample from ψ, and ai ∈ Z

n
q is

sampled at random from T .
OLWE

$ : Outputs samples of the form
(
ai, ri

)
∈ Z

n
q ×Zq, where ai ∈ Z

n
q is sampled

at random from T and ri is a uniform random sample from Zq.

The (q, n, ψ,K, T )-LWE problem allows repeated queries to the challenge ora-
cle OLWE. We say that an algorithm A decides the (q, n, ψ,K, T )-LWE problem
if

AdvLWE [A] def=
∣∣ Pr[AOLW E

s = 1] − Pr[AOLW E
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.
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Definition 2. Learning with Rounding Problem (LWR): Consider inte-
gers n, p, and q such that q ≥ p, and distributions K and T , both over Z

n
q .

A (q, p, n,K, T )-LWR problem instance consists of access to an unspecified
challenge oracle OLWR, being, either, a noisy pseudorandom sampler OLWR

s

carrying some constant random secret key s ∈ Z
n
q sampled from the distribu-

tion K, or, a truly random sampler OLWR
$ , whose behaviors are respectively as

follows:

OLWR
s : Outputs samples of the form

(
ai, �ai · s�p

)
∈ Z

n
q × Zp, where s ∈ Z

n
q

is a persistent value invariant across invocations sampled by querying the
distribution K and ai ∈ Z

n
q is sampled at random from T .

OLWR
$ : Outputs samples of the form

(
ai, ri

)
∈ Z

n
q ×Zp, where ai ∈ Z

n
q is sampled

at random from T and ri is a uniform random sample from Zp.

The (q, p, n,K, T )-LWR problem allows repeated queries to the challenge ora-
cle OLWR. We say that an algorithm A decides the (q, p, n,K, T )-LWR problem
if

AdvLWR [A] def=
∣∣ Pr[AOLW R

s = 1] − Pr[AOLW R
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.

3 The Main Problem

We now are in a position to formally describe our new assumption. Before we
begin with the actual problem, though, we need to formally define lattice round-
ing.

Lattice Rounding. We are going to overload the rounding function. Let q, m,
and n be integers with m ≥ n. For some deterministic rounding algorithm A
and lattice basis B ∈ Z

m×n
q , we define the “rounding” function

�·�A
Λ(B) : Zm

q → Z
n
q that maps x → u

such that A (x) = B · u

Note that, while our rounding algorithm A is deterministic, it doesn’t neces-
sarily have to be perfect at rounding points to close lattice points. Since finding
the (exact) closest lattice point is thought to be hard even when arbitrary ‘hints’
about the lattice are known, we cannot expect any rounding algorithm to always
find the closest lattice points. In order to give a general definition, we only require
that our rounding algorithm is deterministic.

However, we do note that, in order for our proof to hold, our rounding algo-
rithm must round points within some error factor e of a lattice point to the
correct lattice point, but this e can be substantially smaller than the shortest
vector in the lattice. Examples of A could be Babai’s nearest plane algorithm or
Babai rounding with a ‘good’ lattice basis, for instance, although we use more
complicated rounding algorithms in this work.
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In addition, note that we output the coefficient vector u instead of an actual
lattice point like B · u. While in principle we could output a lattice point, it
will make the presentation of our results simpler if we define lattice rounding
to output coefficient vectors instead of lattice points. This choice also seemingly
makes lattice rounding easier to use, as most potential applications would prefer
to have a uniformly random vector instead of a uniformly random lattice point
as output.

3.1 Nearby Learning with Lattice Rounding Description

We next describe the details of our lattice rounding system.

Nearby Learning with Lattice Rounding

Input:
• Integers n, m, and q such that m = O (n log q)
• A ‘noise’ distribution ψ ∈ Z2q

• Algorithm GenTrap (1n, 1m, q) → Z
m×n
q × Z

m
2 × m

2
2q which outputs a parity

check matrix B ∈ Zm×n
q and a ‘trapdoor’ TB as described in the full paper.

• Algorithm Invert
(
B,TB,b ∈ Z

m
2q

) → Z
n
2q which outputs the vector u

where b = Bu + e for some short vector e ∈ Z
m
2q as described in the full paper.

Setup:
• Set B,TB ← GenTrap (1n, 1m, q).
• Set s ← Z

m
2q.

Output a Sample:
• Set ui ← Z

n
2q.

• Set δi ∈ Z
m
2q by concatenating m samples from ψ.

• Sample Ai ∈ Z
m×m
2q by choosing a random Ai that satisfies Ais = Bui + δi.

• Output
(
Ai, �Ais�Invert(·)

Λ(B) mod 2
)

= (Ai,ui mod 2).

Reconstruct a Sample Given Ai:

• Output
(
Ai, �Ais�Invert(·)

Λ(B) mod 2
)

Some Comments. We note that the algorithms GenTrap and Invert closely
resemble those from [MP12]. Any standard lattice trapdoor algorithm will work
here, but we chose to use this one for its ease of use and efficiency. Invert is the
function that takes the role of our abstract rounding algorithm A, and GenTrap
gives us the information necessary to run Invert.

Our modulus 2q is an artifact of our proof technique, so it is not clear that this
modulus is absolutely necessary for the problem to be hard. Let k be any constant
integer. It is also worth pointing out that the problem can be easily modified
to work with modulus kq and outputs of the form

(
Ai, �Ais�Invert(·)

Λ(B) mod k
)
,

as we essentially just swap the 2 factor for some other constant k. However, we
stick with the mod 2 case because generalizing to k doesn’t give us anything too
novel from a theoretical perspective and outputting more randomness with each
sample still does not make the problem practical.
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A natural question to ask is why we need to generate B with a trapdoor.
For many applications of LWR (like PRFs, for instance) we need to recompute
the output of a sample Ai given only the sample Ai and the key s (and not the
actual output). For basic LWR, this is trivial, but for NLWLR, this is difficult
without a trapdoor. Our algorithm ‘Reconstruct a Sample Given Ai’ handles
this functionality and needs to use the lattice trapdoor to work. We comment
on this more in our security proof.

Additive Homomorphism. We also note that our outputs are ‘almost’ homomor-
phic–i.e., if the error is small enough, then:

�Ais�Invert(·)
Λ(B) mod 2 + �Ajs�Invert(·)

Λ(B) mod 2 =

�(Ai + Aj) s�Invert(·)
Λ(B) mod 2

This means that many standard cryptographic schemes that are built upon LWE
can be built (very inefficiently) from the NLWLR assumption as well in a fairly
straightforward manner. For instance, Regev-like encryption [Reg05] can be done
fairly easily, and we briefly sketch how here: create a public key consisting of
k samples of the form

(
Ai, �Ais�Invert(·)

Λ(B) mod 2
)

and a secret key including s
and TB.

To encrypt a bit vector b ∈ Z
n
2 , pick a discrete Gaussian value ci over Z for

every sample Ai, and output the tuple
(

k∑
i=1

ciAi mod 2q,

k∑
i=1

ci �Ais�Invert(·)
Λ(B) + b mod 2

)

Decryption is done in the natural Regev way. As long as the noise blow-up is
controlled, then correctness follows. Uniformity over the choice of lattice point
(i.e.

∑k
i=1 ciui) can be shown from the leftover hash lemma [BDK+11], and the

leftover hash lemma over the integers [AGHS13] can be used to show that the
noise term (i.e.

∑k
i=1 ciδi) is distributed as a proper discrete ellipsoid, meaning

that we end up with a well-formed, properly chosen sample Ai and output as
our sum. This will require an extremely large k to be used but we already said
that this would be inefficient.

While we do not want to spend too much time going through inefficient
cryptosystems (thus why we do not offer a formal treatment of the previous
argument), we just want to illustrate that this new NLWLR assumption can, in
fact, be used to build reasonably powerful cryptosystems.

Parameter Choices. We next put forth a set of parameter choices that offers easy
instantiation and good theoretical hardness. Let m, n, and q be integers such
that m ≥ 4n log q. Let the distribution DZ,σ be a discrete Gaussian distribution
with σ ≤ q

5m log n (so that the overall distribution over Zm is a discrete Gaussian
DZm,σ′ with parameter σ′ ≤ q

5
√

m log n
).
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Existence of Efficient GenTrap and Invert. In the full version of the paper we
prove that the algorithms GenTrap and Invert exist as defined and that Invert
is deterministic. We prove in Lemma 2, that, for the choice of parameters men-
tioned above, the output of GenTrap is uniform and that the Invert algorithm
is correct with all but negligible probability.

Reduction from Standard LWE. Also in Lemma 2 we show that our construction
is at least as hard as standard LWE (uniform samples, uniform key) in dimension
n over modulus q and with discrete Gaussian noise with parameter σ

3 for the
parameters described above. If Q is the number of samples an adversary gets,
we do lose a factor of Q in our security reduction, but this doesn’t make an
enormous difference theoretically. This means that, through the LWE reduction
of [BLP+13], we have a polynomially-approximate reduction from worst-case lat-
tice problems while still allowing an unbounded (polynomial) number of queries.

We note that our reduction allows for substantially more general parameters
than the ones mentioned in this section.

4 Security Proof

In this section we prove the security of what we have called Nearby Learning
with Lattice Rounding. Our security proof is actually rather straightforward, but
has a couple of twists that can make it difficult to follow, so we offer a proof
outline below to make it easier to digest. We start by going over an uncommon
way to look at the standard LWE problem.

Unfortunately, we do not have space to present a full security proof in this for-
mat. Instead, we offer a proof outline which explains all of the intuition required
to follow the proof. For the full security proof, please see the full version of the
paper5.

4.1 Proof Outline

The core portion of our security proof has two main steps: first, we show that
a particular nonuniform variant of LWE is hard. Then we show that anyone
that can distinguish outputs of our nearby learning with lattice rounding oracle
from random can break this nonuniform LWE variant. Once we have shown that
our output is indistinguishable from random, we show that we can make the
rounding mechanism work by appropriately sampling a random lattice and a
trapdoor that are compatible with our scheme.

Reverse LWE. Our proof will become much easier to understand when viewed
through lens of what we call ‘reverse LWE’. Traditionally, LWE is thought of as
the following procedure: given a fixed key s, sample a random sample ai and a
noise sample δi and output (ai,ai

ᵀs + δi).

5 Available on eprint.
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However, we can also generate LWE samples in the following way: suppose
we are given a fixed key s. First, pick some random value u over the output
domain. Then, sample a value δi from the noise distribution, and choose a ran-
dom ai subject to the constraint that ai

ᵀs = u − δi. It should be clear that this
distribution is statistically close to that of the traditional LWE distribution, but
what this variant of LWE gives us the power to do is to choose our outputs to
be distributed in a non-uniform way if we like. Picking us (or, more precisely,
vectors of us) from a distribution that is computationally indistinguishable from
uniform rather than one that is statistically close to uniform is something that
we implicitly exploit in our reduction.

A New Nonuniform LWE. Our reduction starts by showing that the following is
a hard (nonuniform) instance of LWE: samples of the form (ai,ai

ᵀ (2s) + δi) ∈
Z

n
q × Z2q, where the operations are done modulo Z2q but the ais and s are

sampled uniformly modulo q. The proof goes approximately as follows: we start
with a typical LWE instance over Zq. Imagine we have samples of the form
(ai,ai

ᵀs + δi). Suppose we multiply the second term by two and ‘lift’ everything
up to Z2q: we now have samples of the form (ai,ai

ᵀ (2s) + 2δi). Note that the
second term of the tuple is, by the LWE assumption, indistinguishable over
the higher-order bits (the lowest-order bit will be zero since the modulus is a
multiple of two). We can then add in additional noise to make the 2s+ 2δ term
look uniform since the only nonuniformity is in the lowest-order bit.

This gives us LWE samples of the form (ai,ai
ᵀ (2s) + δi), where both ai and s

are uniform over Zn
q rather than Z

n
2q that are still indistinguishable from random

(for any attentive readers, it is straightforward to show that the ‘random’ part
of the LWE reduction holds as well).

Moving to Rounding. We now have an LWE problem where we can manipulate
the lowest-order bits of the key. Given samples of the form (ai,ai

ᵀ (2s) + δi), we
can sample a term t ∈ Z

n
2 and add in ai

ᵀt to the second term of the tuple, which
gives us a uniform key over Zn

2q (but we have knowledge of the lowest-order bits
of the key!).

Suppose we now want to sample a single query from our rounding oracle.
We can take m LWE samples in the above form and concatenate them as rows
into a matrix which we will conveniently call B ∈ Z

n
q . We have something of the

form (B,Bs + δ) where we know the lowest-order bits of s (in other words, s
mod 2).

Given a random vector t ∈ Z
m
2q, we can set a matrix Ai ∈ Z

m
2q such that

Ait = Bs − δ. Thus we can output a sample (Ai, s mod 2) and have it be a
valid output for our nearby learning with lattice rounding oracle since Bs is
the closest point in Λ (B) to Ait. It is also straightforward to show that Ai is
distributed uniformly at random (and independent of s mod 2) if the original
LWE samples were random.

Unfortunately, given that the secret in our reduction is a close lattice point
(which only gives us one query) rather than many queries (as a LWE secret
might), we are forced to use a hybrid argument over all of the adversary’s queries
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Q. This gives us a 1
Q -security loss in our reduction, but we still can output an

unbounded number of queries because Q must be polynomial at the end of the
day. We defer the details to the formal proof.

Actually Rounding. While the above argument explains why our output is indis-
tinguishable from random, we would like to be able to actually round as well (for
a valid Ai, any entity with the requisite secrets s and TB should be able to pro-
duce a valid output) instead of just simulating rounded output. This is essential
for sort of any application where mulitiple parties need to statelessly produce
the same outputs given repeated samples Ai as input6. The most basic way to
do this would be to sample our lattice basis B with a trapdoor. Recall that,
in [MP12] the authors provide algorithms for sampling a random-looking parity
check matrix B ∈ Z

m×n
q and a corresponding trapdoor TB such that, given the

trapdoor TB and a sample of the form Bu + δ ∈ Z
m
q (for some u ← Z

n
q and

some noise vector δ ∈ Z
m
q ) it is possible to efficiently determine u with high

probability.
Unfortunately, we want an instance of this algorithm where B still lives in Zq

but the output samples and the secret u live in Z2q. As an astute reader might
notice, this is slightly annoying to go through all of the details, but conceptually
simple. To illustrate, suppose we have a collection of short vectors x such that
Bx = 0 mod q, giving us a form of trapdoor for B. Then B (2x) = 0 mod 2q,
which gives us a slightly worse form of trapdoor. In sum, getting this trapdoor
sampler to work for a different modulus of output samples is fairly straightfor-
ward, if a bit tedious. We slightly modify the algorithms from [MP12] in order
to do this easily and efficiently.

4.2 Formal Security Statements

We now formally define the Nearby Learning with Lattice Rounding Assumption.
We note that the output of this distribution (in the ‘real case’) is identical to
that of the output described in Sect. 3.1, as required by definition.

Definition 3. Nearby Learning with Lattice Rounding (NLWLR): Con-
sider integers m, n, and q, some B-bounded distribution ψ over Z2q, and a
distribution T over Z

n
q .

Let the matrix B ∈ Z
m×n
q be distributed such that each row is a fresh sample

from T . We let Λ (B) denote the 2q-ary lattice with basis B.
A (q, n, ψ,K,B)-NLWLR problem instance consists of access to the public

matrix B and an unspecified challenge oracle ONLWLR, being, either, a noisy
pseudorandom sampler ONLWLR

s carrying some constant random secret key s ∈
Z

n
2q sampled from the distribution K, or, a truly random sampler ONLWLR

$ ,
whose behaviors are respectively as follows:

ONLWLR
s : Outputs samples of the form

(
Ai, zi

)
∈ Z

m×m
2q ×Z

m
2 , where the terms

are sampled in the following way: first, recall that s ∈ Z
n
q is a persistent

6 Like PRFs, for instance. We discuss PRFs in the conclusion.
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value invariant across invocations sampled by querying the distribution K.
Let the value ui be sampled randomly from Un

2q, and let δi ∈ Z
m
2q be sampled

by selecting m independent fresh samples from ψ and concatenating them
together to form a vector. To output Ai, we use Gaussian elimination to
solve for the matrix Ai that satisfies the following equation:

Ai · s = B · ui + δi

We then set zi = ui mod 2 and output that as well.
ONLWLR

$ : Outputs samples of the form
(
Ai, zi

)
∈ Z

m×m
2q × Z

m
2 , where Ai ∈

Z
m×n
q is sampled uniformly at random from Z

m×m
2q and zi is a randomly

sampled vector in Z
n
2 .

The (q, n, ψ,K,B)-NLWLR problem allows repeated queries to the challenge
oracle ONLWLR. We say that an algorithm A decides the (q, n, ψ,K,B)-NLWLR
problem if

AdvNLWLR [A] def=
∣∣ Pr[AONLW LR

s = 1] − Pr[AONLW LR
$ = 1]

∣∣

is non-negligible for a s selected appropriately at random from K.

Lemma 1. Consider integers m, n, and q, some B-bounded distribution ψ over
Z2q, and a distribution T over Z

n
q .

Let the matrix B ∈ Z
m×n
q be distributed such that each row is a fresh sample

from T . We let Λ (B) denote the 2q-ary lattice with basis B.
Let Q be the number of queries made to an NWLWR oracle. Any adversary

that can solve the (q, n, ψ,Un
q ,B)-NLWLR problem with advantage ε can be used

to solve the
(
2q, n, ψ, 2 · Un

q , T
)
-LWE problem with advantage at least 1

Qε.

Proof. Please refer to the full version of this paper.

Generating a Trapdoor. In the full version of the paper, we formally show that
there are suitable mechanisms for us to realize the GenTrap and Invert functions
needed for the nearby learning with lattice rounding assumption to work. As we
mentioned in the proof overview, this is really quite straightforward, but still
takes a bit of digging through the details in order to build a convincing proof.
Our construction of the GenTrap and Invert functions are almost identical to
(and the notation is borrowed from) those of [MP12], but in theory any kind of
trapdoor generation could be used. We defer the presentation and proof of these
algorithms to the full version of the paper.

Main Lemmas. We now formally a lemma that we prove in the full version of
the paper. We offer more general formulations in the full version as well.

Lemma 2. Let m, n, and q be integers such that m ≥ 4n log q. Let m = w =
2n log q, and and let the distribution D output matrices R ∈ Z

w×m such that
each entry Rij is equal to one with probability 1

4 , −1 with probability 1
4 , and
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zero otherwise. Finally, let the distribution ψ = DZ,σ be a discrete Gaussian
distribution with σ ≤ q

5m log n . Let B ∈ Z
m×n
q be the output of GenTrap. We

also require that σ ≥ 3ηε (Zm).
Then there exist GenTrap and Invert algorithms that are correct with

all but negligible probability. In addition, any adversary that can solve the
(q, n,DZ,σ,Un

q ,B)-NLWLR problem with advantage ε can be used to solve the(
q, n,DZ, σ

3
,Un

q ,Un
q

)
-LWE problem with advantage 1

Qε.

5 Conclusion and Open Problems

In this work, we developed a deterministic variant of LWE with polynomial
modulus and unbounded samples and showed that it is as hard as standard
LWE. To our knowledge, this is the first such construction. Below we summarize
our results in a table. Let c be a constant7, γ ≥ 1, let B be the B-bound for
the noise distribution of the LWE instance that the LWR instance reduces from,
qnd let κ be a (negligible) security parameter. We have:

Work Unbounded
samples (w)

Modulus (q) Advantage
change (ε → ε′)

[BPR12] Yes Bpκω(1) ε − negl(κ)

[AKPW13] No γBwpκ ε/(2dw)

[BGM+16] No Bwp (ε/qw)2

[BLL+15] No Bwp (ε/qw)2

[AA16] (1) No Bwpκ ε(wB)−c

[AA16] (2) No Bwpκ ε(w)−c

This Yes O
(
B

√
n log q

) · ω
(√

log n
)

ε (w)−1

Work Dimension
change (d → d′)

Straightforward
rounding

Uniform samples

[BPR12] d Yes Yes

[AKPW13] d log(γ)/ log q Yes Yes

[BGM+16] d/logρq Yes Yes

[BLL+15] d Yes Yes

[AA16] (1) d Yes Yes

[AA16] (2) d − c Yes Yes

This d/O (log q) No No

7 For typical choices of parameters.
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While our construction does offer unbounded samples and a polynomial mod-
ulus (and thus a polynomial approximation factor to worst-case lattice prob-
lems), it has some rather large drawbacks as well. The fact that the distribution
of the samples Ai is not uniform makes this new assumption much more difficult
to use in practice. Additionally, rounding to a lattice rather than to the nearest
multiple of some integer p means that we lose most (if not all) of the efficiency
advantages of rounding when compared to regular LWE.

It is our hope that future research can be done to eliminate these steps or
to provide evidence as to why they are essential to the security of learning with
rounding over a polynomial modulus with unbounded samples.

On Building PRFs. Given that we are building a deterministic variant of LWE
that supports an unbounded number of queries, a natural question to ask is
whether we can build fully parallelizable PRFs using the NLWLR assumption
with a polynomial modulus q. Unfortunately, this still seems like it will require a
substantial amount of new ideas. Note that even if we could prove that the stan-
dard form of LWR was exactly as hard as LWE, then constructing a lattice-based
PRF with polynomial modulus would still require new ideas. This is because all
of the known parallelizable lattice-based PRFs involve at least some form of
subset product LWE. In other words, these PRFs require things of the form

	∏
i=1

Ai,bi
s + δj

for ‘random’ matrices Ai, a secret key s, input bits bi, and fresh noise samples
δj to be hard. While the clever construction in [BP14] attempts to minimize the
noise blowup of these subset products, even it must have these subset products
in some (lesser) depth to maintain a healthy amount of parallelizability.

We consider proving the hardness of this subset product LWE problem for a
polynomial modulus (and reducing the hardness of it to a polynomial value for
the LWE security reduction parameter α) or providing evidence why it cannot
be easily reduced to be an important open problem in this area.
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Abstract. Signcryption is a scheme that achieves both functionalities
of public key encryption and digital signatures, and hence it is an impor-
tant and fundamental protocol in cryptography. On the other hand, it is
interesting to efficiently construct a signcryption scheme based on lattice-
based problems, since lattice-based construction is expected to have resis-
tance against quantum computing. The contribution of this paper is to
construct an efficient lattice-based signcryption satisfying strong security
without random oracles. We propose such a construction based on the
problems of the learning with errors (LWE) and small integer solution
(SIS). The public-key size and ciphertext size in our construction are
shorter than any other schemes, and there is no disadvantage for ours in
other parameters compared to other ones in terms of public/secret-key
and ciphertext sizes.

Keywords: Signcryption · Lattice problems · LWE · SIS

1 Introduction

1.1 Background

Cryptographic technologies are used in communication for confidentiality and/or
authenticity of information. Public-key encryption (PKE) and digital signa-
ture (DS) are especially important and elemental in cryptographic technologies.
PKE enables us to communicate securely without sharing secret information in
advance. On the other hand, DS is cryptographic technology that enables us to
authenticate the composer and integrity of digital data. Namely, PKE and DS
ensure confidentiality and authenticity of information, respectively. In contrast,
signcryption is cryptographic technology that achieves both confidentiality and
integrity, that is, both the functions of PKE and DS. Signcryption is important,
since it realizes a secure channel from an insecure channel such as the Internet.

The notion of signcryption was introduced by Zheng [36]. In the model of
signcryption, there are two kinds of setting, the two-user setting and multi-user
setting. The two-user setting is a simple model of signcryption in which there
c© Springer International Publishing AG, part of Springer Nature 2018
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is a single sender and a single receiver. In contrast, the multi-user setting is
the model where there are multiple senders and receivers. It is important to
realize signcryption in the multi-user setting, since it is a realistic model and
the security of two-user setting does not imply that of the multi-user setting.
Furthermore, there are two kinds of security for signcryption, the insider secu-
rity and outsider security. In the outsider security, an external adversary only
knows public information (i.e., public parameters and public-keys of entities).
On the other hand, in the insider security, an internal adversary can know some
private-keys. Note that the insider security is stronger, and hence it is suffi-
cient and reasonable to consider the insider security. The concrete differences
between these models are described in Sect. 3. The strongest security definition,
which consists of strong insider confidentiality and strong insider integrity in the
multi-user setting, was first formalized by Libert and Quisquater [18]. In this
paper, as IND-CCA security and sUF-CMA security in this security model, we
call multi-user indistinguishability against insider chosen ciphertext attack (MU-
IND-iCCA), and multi-user strong unforgeability against insider chosen message
attack (MU-sUF-iCMA), respectively. Currently, there are several constructions
known for signcryption schemes satisfying the strongest security, [4,18,22] in the
random oracle model, and [11,22,25,32] in the standard model (i.e., without ran-
dom oracles). The construction in [32] is a direct construction, and constructions
in [11,22,25] are generic constructions. Note that [22] requires a key registration,
and it is desirable to construct signcryption without the key registration. In this
sense, we focus on the generic constructions in [11,25] in this paper.

On the other hand, researchers have recently paid much attentions to lattice-
based cryptography, since it is expected that lattice problems can provide secu-
rity against quantum computers and can realize advanced functionalities. As
promising and interesting problems related with lattices, we can consider the
problems of learning with errors (LWE) and small integer solution (SIS) which
are focused on recently in constructions of lattice-based cryptography. So far,
various and important constructions of cryptographic schemes have been pro-
posed based on the problems: PKE in the standard model [19,28–30]; and DS
in the standard model [6,8–10,13,21,31,35] and in the random oracle model
[12,14,20]. In addition, there are constructions of key encapsulation mechanism
(KEM) [10,26], identity-based encryption [1,9,10,14,33,35], oblivious transfer
[28], and commitment [16]. Furthermore, there are constructions of hash func-
tions such as collision-resistant hash functions [15,24] and chameleon hash func-
tions [10].

1.2 Our Contribution

The purpose of this paper is to construct an efficient latticed-based signcryption
satisfying both MU-IND-iCCA and MU-sUF-iCMA security without random
oracles1. Specifically, our contribution of this paper is as follows:
1 Although a construction of lattice-based signcryption without random oracles was

proposed in [34], we confirmed that this construction didn’t meet MU-sUF-iCMA
security.
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1. In Sect. 4.1, we propose a construction of signcryption without random oracles
based on lattice problems. Although it is pointed out in [3,22] that a trivial
construction of signcryption by combining IND-CCA secure PKE and sUF-
CMA secure DS based on the sign-then-encrypt paradigm cannot achieve
MU-sUF-iCMA security, we can show that our construction based on the
sign-then-encrypt paradigm can achieve both MU-IND-iCCA and MU-sUF-
iCMA security. Namely, our lattice-based construction of signcryption meets
both MU-IND-iCCA and MU-sUF-iCMA security under the LWE and SIS
assumptions.

2. To improve efficiency of the lattice-based signcryption above, in Sect. 4.2,
we propose a lattice-based hybrid signcryption obtained by combining our
lattice-based signcryption and a DEM meeting indistinguishability against
one-time attack (IND-OT) security. We show that this construction also
achieves both of MU-IND-iCCA and MU-sUF-iCMA security under the LWE
and SIS assumptions.

3. In Sect. 5, we compare efficiency of our construction in Sect. 4.2 with other
lattice-based ones in terms of key-sizes and ciphertext-size. We note that there
is no direct construction of signcryption based on lattice problems, though
we can obtain several lattice-based constructions of signcryption by applying
lattice-based primitives to the existing generic constructions [11,25]. As a
result, we show that our construction can achieve shortest ciphertext-size
and there is no disadvantage in ours in other parameters.

2 Preliminaries

In this paper, we use the following notation. If we write (y1, y2, . . . , ym) ←
A(x1, x2, . . . , xn) for an algorithm A having n inputs and m outputs, it means to
input x1, x2, . . . , xn into A and to get the resulting output y1, y2, . . . , ym. If A is
a probabilistic algorithm, we write (y1, y2, . . . , ym) ← A(r;x1, x2, . . . , xn), where
r is a random value used in A. If x is a string, then |x| denotes its bit-length.
We denote a concatenation of x and y by x||y. If we write negligible ε in n (or
denoted by ε = negl(n)), it means a function ε : N → [0, 1] where ε(n) < 1/g(n)
for any polynomial g and sufficiently large n. Furthermore, probabilistic polyno-
mial time is abbreviated as PPT in this paper.

In this section, we describe definitions about lattices and related computa-
tional problems. For a positive integer n, [n] := {1, 2, . . . , n}. In this paper,
vectors are assumed to be in column form. For a vector x, the row vector is
written as xT . As a norm of a vector x = (x1, x2, . . . , xn), the Euclidean norm
is denoted by ‖x‖.

Let X and Y be two random variables in a finite set Ω. The statistical
distance of X and Y is defined as Δ(X,Y ) = 1

2

∑
w∈Ω |Pr[X = w] − Pr[Y = w]|.

In addition, we say that X is ε-close to Y , if Δ(X,Y ) ≤ ε.
Furthermore, for completeness, we give the models and security of deta encap-

sulation mechanisms (DEM) in AppendixA which will be considered in this
paper.
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2.1 Definitions for Lattices

An n-dimensional lattice Λ, which is generated by linearly independent vectors
B = {b1, . . . , bn}, is defined as Λ = L(B) = {∑i∈[n] cibi : ci ∈ Z}.

We define a discrete Gaussian distribution. For any real number α > 0,
we define the Gaussian function ρα(x) = exp(−π‖x‖2/α2) for x ∈ R

n. Let
ρα(Λ) :=

∑
x∈Λ ρα(x) for an n-dimensional lattice Λ. The discrete Gaussian

distribution for an n-dimensional lattice Λ is defined as follows: ∀x ∈ Λ, we
define DΛ,α(x) = ρα(x)

ρα(Λ) .
A lattice-based collision-resistant hash function f (cf. [24]) is defined as fol-

lows: For a parameter A ∈ Z
n×m
q and an input x ← Dm

Z,δ where δ(� q) is a
small real number, fA (x) = Ax mod q. If ‖x‖ > δ

√
m, we can use the Merkle-

Damg
◦
ard construction such as a construction in [16].

For integers n ≥ 1, q ≥ 2, m ≥ 2, and for a given parity-check matrix
A ∈ Z

n×m
q , we define the following m-dimensional lattices:

Λq(A) := {e ∈ Z
m : ∃s ∈ Z

n
q ,ATs = e mod q},

Λ⊥
q (A) := {e ∈ Z

m : Ae = 0 mod q},

Λu
q (A) := {e ∈ Z

m : Ae = u mod q}.

There are several computational problems related to the families of lattices
above. Of those, we focus on the small integer solution (SIS) problem and the
learning with errors (LWE) problem in this paper, which are recently paid much
attentions in the lattice-based cryptography. These problems are stated in the
following.

Definition 1 (SISq,β). For an integer q and a real number β, given a uniformly
random matrix A ∈ Z

n×m
q , find an integer vector e ∈ Z

m\{0} such that e ∈
Λ⊥

q (A) and ‖e‖ ≤ β.

Let T = R/Z. Let Dα be the Gaussian probability distribution over R with
mean 0 and standard deviation α > 0. For a vector s ∈ Z

n
q and the Gaussian

distribution Dα, let As,α be the distribution on Z
n
q ×T defined by the following:

choose a vector a
U← Z

n
q and an error e ← Dα, and then output (a, sTa/q +

e mod 1).

Definition 2 (LWEq,α). For an integer q and a real number α, distinguish (with
non-negligible probability), with oracle access to any desired m = poly(n) sam-
ples, the distribution As,α for s ∈ Z

n
q from the uniform distribution on Z

n
q × T.

2.2 Algorithms with Trapdoors

We describe lattice-based adaptive trapdoor functions. Micciancio and Peikert
[23] introduced the following algorithms with trapdoors.
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Proposition 1 ([23]). There is an efficient randomized algorithm GenTrap
(1n, 1m, q) that, given any integers n ≥ 1, q ≥ 2 and sufficiently large m =
O(n log n), outputs a parity-check matrix A ∈ Z

n×m
q and a trapdoor T such that

the distribution of A ∈ Z
n×m
q is negl(n)-close to the uniform distribution. More-

over, there are efficient algorithms, denoted by Invert and SampleD, which do the
following with overwhelming probability over all random choices:

– For given T , A, and bT = sTA + eT as input, where s ∈ Z
n
q and either

‖e‖ < q/O(
√

n log q) or e ← DZm,αq for 1/α ≥ √
n log q · ω(

√
log n), the

deterministic algorithm Invert(T ,A, b) outputs s and e.
– For given T , A, u ∈ Z

n
q , and large s = O(

√
n log q) as input, the randomized

algorithm SampleD(T ,A,u, s) outputs samples from a distribution negl(n)-
close to DΛu

q ,s·ω(
√
log n).

A matrix A and the trapdoor T , which meet the conditions in Proposi-
tion 1, are generated by the technique in Theorem 4.1 of [23] using a prim-
itive matrix G as follows: For a positive integer k = �log q and a vector

gT = [1, 2, 22, . . . , 2k−1] ∈ Z
1×k
q , G is defined by G :=

⎡

⎢
⎣

gT 0
. . .

0 gT

⎤

⎥
⎦ ∈ Z

n×nk
q .

The GenTrap algorithm in Proposition 1 takes a matrix Ā ∈ Z
n×m
q and an

invertible matrix H ∈ Z
n×n
q as input, and then chooses T from a distribution

D over Z
m̄×w, computes a matrix A =

[
Ā|HG − ĀT

]
, and then outputs the

parity-check matrix A and the trapdoor T . H is a tag of the trapdoor.

3 Signcryption: Model and Security

In this section, we describe the model and security about signcryption.

Definition 3 (Signcryption). A signcryption scheme SCS consists of a five-
tuple of polynomial-time algorithms SCS = (Setup, KeyGenR, KeyGenS, SC,
USC) as follows: Let MSP be a message-space.

– Setup(1k): Setup is a randomised setup algorithm that on input a security
parameter k, outputs a public parameter prm.

– KeyGenR(prm): KeyGenR is a randomised key-generation algorithm of
receivers that on input a public parameter prm, outputs a receiver’s public-key
pkR and a receiver’s secret-key skR.

– KeyGenS(prm): KeyGenS is a randomised key-generation algorithm of
senders that on input a public parameter prm, outputs a sender’s public-key
pkS and a sender’s secret-key skS.

– SC(prm, pkR, skS , μ): SC is a randomised signcrypt algorithm that on input a
public parameter prm, a receiver’s public-key pkR, a sender’s secret-key skS

and a message μ ∈ MSP, outputs a ciphertext C.
– USC(prm, pkS , skR, C): USC is a deterministic unsigncrypt algorithm that on

input a public parameter prm, a sender’s public-key pkS, a receiver’s secret-
key skR and a ciphertext C, outputs a message μ or an invalid ⊥.
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It is required that for any prm ← Setup(1k), (pkR, skR) ← KeyGenR(prm)
and (pkS , skS) ← KeyGenS(prm), μ = USC(prm, pkS , skR, C), where C ←
SC(prm, pkR, skS , μ), holds.

The security of signcryption schemes requires both confidentiality and
unforgeability. In addition, we consider the insider strong security in the multi-
user setting. In the two-user setting, the adversary needs to generate his key-pair
at the beginning of security games, and is not allowed to generate other key-pairs.
On the other hand, in the multi-user setting, the adversary can generate key-
pairs and submit queries with public-keys to the unsigncrypt/signcrypt oracle
anytime. Besides, insider has a secret key skS (resp. skR) in the challenge phase
(resp. output phase) of the IND-CCA (resp. sUF-CMA) game. This means that
the adversary in the multi-user setting is more powerful than that in the two-user
setting.

The notion of confidentiality is MU-IND-iCCA, and notion of unforgeability
is MU-sUF-iCMA. These definitions are given as follows.

Definition 4 (MU-IND-iCCA). MU-IND-iCCA security against a signcryp-
tion scheme SCS = (Setup, KeyGenR, KeyGenS , SC, USC) is defined as follows:
Let A be a PPT adversary against SCS in the following game:

– Setup: The challenger generates prm ← Setup(1k) and (pkR, skR) ←
KeyGenR(prm), and sends (prm, pkR) to A.

– Queries 1: For each query (pkS , C) which A submits to the unsigncrypt oracle,
the challenger returns μ/⊥ ← USC(prm, pkS , skR, C).

– Challenge: When A submits (μ0, μ1, pk∗
S , sk∗

S), the challenger chooses b ∈
{0, 1} uniformly at random and returns a challenge ciphertext
C∗ ← SC(prm, pkR, sk∗

S , μb),
– Queries 2: For each query (pkS , C) which A submits to the unsigncrypt oracle,

the challenger does the same processes as the above Queries 1 phase except that
it is required that each query (pkS , C) meets (pkS , C) �= (pk∗

S , C∗).
– Output: A outputs b′ ∈ {0, 1}, and wins if b = b′.

Let [A wins] be an event that A wins in the above game, and let
AdvMU−IND−iCCA

A (k) := |Pr[A wins] − 1
2 | be the advantage of A. SCS is MU-

IND-iCCA secure if AdvMU−IND−iCCA
A (k) ≤ negl(k) for any PPT adversary A.

Definition 5 (MU-sUF-iCMA). MU-sUF-iCMA security against signcryp-
tion scheme SCS = (Setup, KeyGenR, KeyGenS , SC, USC) is defined as follows:
Let A be a PPT adversary in the following game:

– Setup: The challenger generates prm ← Setup(1k) and (pkS , skS) ←
KeyGenS(prm), and sends (prm, pkS) to A.

– Queries: For each query (pkR, μ) which A submits to the signcrypt oracle, the
challenger returns C ← SC(prm, pkR, skS , μ). We define that the number of
queries that A submits is at most q.

– Output: A outputs an forgery (pk∗
R, sk∗

R, C∗), and wins if (pk∗
R, μ∗, C∗) �=

(pki
R, μi, Ci) ∧ μ∗ = USC(prm, pkS , sk∗

R, C∗) for i ∈ [Q] hold.
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Let [A wins] be an event that A wins in the above game, and let
AdvMU−sUF−iCMA

A (k) := Pr[A wins] be the advantage of A. SCS is MU-sUF-
iCMA secure if AdvMU−sUF−iCMA

A (k) ≤ negl(k) for any PPT adversary A.

4 Our Construction Based on Lattice Problems

4.1 Lattice-Based Signcryption

In this section, we propose a lattice-based construction of signcryption. The idea
for our construction is as follows: To achieve both of MU-IND-iCCA and MU-
sUF-iCMA security, we use a tag-based encryption (TBE) [23], a DS [23], and
collision-resistant hash functions [24].

Although our construction is based on sign-then-encrypt methodology, it is
shown that the construction, by combining IND-CCA secure PKE (or IND-Tag-
CCA secure TBE) and sUF-CMA secure DS in a trivial way of this methodology,
cannot achieve MU-sUF-iCMA security while they can meet MU-IND-iCCA
security, according to [3,22]. This is because the insider adversary, who has
a receiver’s public-key, can unsigncrypt a ciphertext C by using the signcrypt
oracle and obtain a valid pair of messages and signatures which passes verification
of the DS. Hence, the adversary can make a forgery in the MU-sUF-iCMA game
by encrypting the pair again.

To resolve the problem above, we utilize the following idea in the sign-then-
encrypt paradigm: We generate a signature σ not only for a message μ and a
receiver’s public-key pkR, but also for outputs (c̄0, c̄1) of tag-based trapdoor (or
one-way) functions based on LWE such as gA (s;x) := sTA + xT mod q for a
parameter A ∈ Z

n×m
q , a secret vector s ∈ Z

n
q , and an error vector x ∈ Z

m. Let
c̄0 := gA (s;x0) and let c̄1 := gU (s;x1). And, it encrypts the signature and the
message by computing c0 = c̄0 + σ mod q and c1 = c̄1 + μ� q

2� mod q. Then,
the adversary needs to generate false c̄∗

0 or c̄∗
1 to break MU-sUF-iCMA security.

However, he cannot generate such a forgery unless he breaks the sUF-CMA
security, since c̄∗

0 and c̄∗
1 are signed.

In addition, our construction uses the lattice-based algorithms, GenTrap,
Invert, and SampleD, in Sect. 2.2. We use lattice-based collision-resistant hash
functions f in Sect. 2.1.

Our lattice-based construction (i.e., a direct construction based on infeasible
lattice problems) LB-SCS = (Setup, KeyGenR, KeyGenS , SC, USC) is given as
follows:

– prm ← Setup(1k): Set public parameters as follows: a positive integer n
(� k), a prime q = poly(n), m̄ = O(n log q), m = m̄ + n log q, α−1 =
O(n log q)2 · ω(

√
log n), δ = O(

√
n2 log2 q) · ω(

√
log n)2.  is a length of a

message, p is a positive integer such that p = Ω(qδ−1).

• G :=

⎡

⎢
⎣

gT 0
. . .

0 gT

⎤

⎥
⎦ ∈ Z

n×n log q
q , where gT =

[
1, 2, 22, . . . , 2log q−1

] ∈

Z
1×log q
q ,
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• The full-rank differences (FRD) encoding [1] H: Zn
q → Z

n×n
q ,

• A0, . . . ,Aλ
U← Z

n×n log q
q , B U← Z

n×m
q , U U← Z

n×

q , uS

U← Z
n
q ,

Output prm = (k, n, q, m̄,m, α, δ, λ, , p,G,H,A0, . . . ,Aλ,B,U ,uS).
– (pkR, skR) ← KeyGenR(prm): Generate a receiver’s key-pair as follows:

1. ĀR
U← Z

n×m̄
q ,TR ← Dm̄×n log q

Z,log n ,
2. AR =

[
ĀR| − ĀRTR

] ∈ Z
n×m
q ,

3. Output pkR := AR and skR := TR.
– (pkS , skS) ← KeyGenS(prm): Generate a sender’s key-pair as follows:

1. ĀS
U← Z

n×m̄
q , TS ← Dm̄×n log q

Z,log n ,
2. AS =

[
ĀS |G − ĀSTS

] ∈ Z
n×m
q ,

3. Output pkS := AS and skS := TS .
– C ← SC(pkR, skS , μ): To signcrypt μ ∈ {0, 1}
, do the following:

1. re, rs ← Dm
Z,log n, t = fĀR

(pkS) + fB (re) ∈ Z
n
q ,

2. AR,t = [ĀR | H(t)G − ĀRTR] ∈ Zn×m
q ,

3. s
U← Z

n
q , x0 ← Dm

Z,αq, x1 ← D

Z,αq,

4. c̄0 = sTAR,t + pxT
0 ∈ Z

m
q , c̄1 = sTU + pxT

1 ∈ Z


q,

5. C̄ = (c̄0, c̄1, re),
6. Generate a signature on μ||pkR||C̄.

• h = fĀS
(μ||pkR||C̄) + fB (rs) ∈ Z

n
q ,

• AS,h =
[
AS | A0 +

∑λ
i=1 hi · Ai

]
∈ Z

m+n log q
q ,

• e ← SampleD(TS ,AS,h ,uS , δ),
• (e, rs) ∈ Z

m+n log q × Z
m is the signature.

7. c0 = c̄0 + rs ∈ Z
m
q , c1 = c̄1 + p · μ� q

2� ∈ Z


q,

8. Output C = (c0, c1, re,e).
– μ/⊥ ← USC(pkS , skR, C): To unsigncrypt C = (c0, c1, re,e), do the follow-

ing:
1. t = fĀR

(pkS) + fB (re) ∈ Z
n
q , AR,t = [ĀR | H(t)G − ĀTR] ∈ Z

n×m
q ,

2. (z, rs) = Invert(TR,AR,t , c0),
3. Compute E ∈ Z

m×
 s.t. AR,tE = U mod q by using the SampleD algo-
rithm,

4. vT = cT
1 − (c0 − rS)TE = p(xT

1 + μT � q
2� − xT

0 E),
5. Recover μ from v/p mod q,
6. c̄0 = c0 − rs mod q, c̄1 = c1 − pμ� q

2� mod q, C̄ = (c̄0, c̄1, re),
7. h = fĀS

(μ||pkR||C̄) + fB (rs) ∈ Z
n
q , AS,h = [AS | A0 +

∑λ
i=1 hi · Ai] ∈

Z
m+n log q
q ,

8. Output μ if AS,h · e = uS mod q ∧ ‖e‖ ≤ δ
√

m + n log q. Output ⊥
otherwise.

The following theorems (i.e., Theorems 1 and 2) show security of LB-SCS
and their sketch proofs are given below.

Theorem 1. If LWEq,α assumption for α ≥ 2
√

n/q holds and collision-resistant
hash functions in [10] meet collision-resistance, LB-SCS is MU-IND-iCCA
secure.
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Proof. Let A be a PPT adversary against the signcryption LB-SCS in Sect. 4.1.
We consider several MU-IND-iCCA games Gamei for i ∈ {0, 1, 2, 3, 4}:

– Game0: This is the normal MU-IND-iCCA game.
– Game1: This game is same as Game0 except that if A submits an unsigncrypt

query (pkS , (c0, c1, re,e)) such that t∗ = fĀR
(pkS) + fB (re), it returns ⊥.

– Game2: This game is same as Game1 except that a parameter B of a collision-
resistant hash function fB is replaced with a parameter B with a trapdoor
TB ∈ Z

m̄×n log q in Proposition 1.
– Game3: This game is same as Game2 except that the challenger generates a

value c∗
0 of a challenge ciphertext C∗ as follows:

1. s
U← Z

n
q , x̄0 ← Dm̄

αq, c̄
T
0 = sT ĀR + px̄T

0 mod q,
2. x′

0 ← Dn log q
αq , c′T

0 = −c̄T
0 TR+px′T

0 = (sT (−ARTR))+p(−x̄0TR+x′
0)

T ∈
Z

n log q
q .

3. c̄∗T
0 = ĉT

0 ||c′T
0 .

– Game4: This game is same as Game3 except that instead of c̄0 = sT ĀR +
px̄0 mod q, c̄1 = sTU+px1 mod q, (c̄0, c̄1) ∈ Z

m̄
q ×Z

n×

q are chosen uniformly

at random.

And, we define the following events for i ∈ {0, 1, 2, 3, 4}:

– Si: This is an event that A wins in Gamei.
– Vi: This is an event that in Gamei, A submits an unsigncrypt query

(pkS , (c0, c1, re,e)) such that t∗ = fĀR
(pkS) + fB (re) ∈ Z

n
q .

– CRi: This is an event that in Gamei, A submits an unsigncrypt query
(pkS , (c0, c1, re,e)) such that (pkS , re) �= (pk∗

S , r∗
e) ∧ t∗ = fĀR

(pkS) +
fB (re) ∈ Z

n
q .

– Fi: This is an event that in Gamei, A submits an unsigncrypt query
(pk∗

S , (r∗
e , c0, c1,e)) such that (pkS , re) = (pk∗

S , r∗
e) ∧ ‖e‖ ≤ δ

√
m + n log q ∧

AS,h · e = uS mod q for h ← fĀS
(μ||pkR||C̄) + fB (rs) ∈ Z

n
q .

Then, in the advantage of A, |Pr[S0] − Pr[S1]| ≤ Pr[V1] holds by the differ-
ence lemma. |Pr[V1]| ≤ Pr[CR1] + Pr[F1] holds by the above definition of these
events. Then, we have

|Pr[V1]| ≤ Pr[CR1] + Pr[F1]
≤ Pr[CR1] + Pr[F4] + |Pr[F3] − Pr[F4]|

+ |Pr[F2] − Pr[F3]| + |Pr[F1] − Pr[F2]|

We show the following Lemmas to prove that AdvMU−IND−iCCA
A (k) is negligible.

Lemma 1. Pr[CR1] ≤ negl(k).

By using A, we construct a PPT algorithm B0 breaking the collision-resistance
of fĀR

+ fB in the following way:
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– Setup: Take (B, ĀR) ∈ Z
n×(m+m̄)
q as input. Generate AR as follows: Sample

TR ∈ Z
m̄×n log q
q from Dm̄×n log q√

log n
, compute AR ← [ĀR | −ĀRTR]. Choose

U ∈ Z
n×

q uniformly at random. Add (U ,B) to a public parameter, let pkR :=

AR and let skR = TR. Run A(prm, pkR).
– Queries 1: When A submits a query (pkS , (c0, c1,e, re)) to the unsigncrypt

oracle, do the same processes as Game0.
– Challenge: When A submits a challenge query (pk∗

S , sk∗
S , μ0, μ1), compute

t∗ = fB (r∗
e) + fĀR

(pk∗
S) ∈ Z

n
q . Choose b ∈ {0, 1} and compute a challenge

ciphertext C∗ on μb in the same way as the SC algorithm.
– Queries 2: When A submits a query (pkS , (c0, c1,e, re)) to the unsigncrypt

oracle, do the following: Check whether the event CR1 happens. If so, halt
and output a pair ((r∗

e , pk∗
S), (re, pkS)). Otherwise, return μ/⊥ according to

the USC algorithm.
– Output: When A outputs the guessing bit b′ ∈ {0, 1}, output a random bit in

{0, 1}.

B0 simulates the view of A completely. When A submits a query such that
t∗ = fĀR

(pkS) + fB (re) ∈ Z
n
q and (pks, re) �= (pks, re), the output of B0 is a

collision pair against the collision-resistant function fĀR
+ fB clearly. ��

Lemma 2. |Pr[S1] − Pr[S2]| ≤ negl(k), |Pr[F1] − Pr[F2]| ≤ negl(k),
|Pr[S2] − Pr[S3]| ≤ negl(k) and |Pr[F2] − Pr[F3]| ≤ negl(k).

|Pr[S1] − Pr[S2]| and |Pr[F1] − Pr[F2]| are negligible by Proposition 1.
|Pr[S2] − Pr[S3]| and |Pr[F2] − Pr[F3]| are negligible by using Corollary 3.10 of
[30] and Theorem 3.1 of [27]. ��
Lemma 3. |Pr[S3] − Pr[S4]| ≤ negl(k), |Pr[F3] − Pr[F4]| ≤ negl(k),∣
∣Pr[S4] − 1

2

∣
∣ ≤ negl(k), and Pr[F4] ≤ negl(k).

∣
∣Pr[S4] − 1

2

∣
∣ and Pr[F4] are negligible since μ and rS are statistically hidden in

Game4.
We prove that |Pr[S3] − Pr[S4]| ≤ negl(k) by constructing a PPT algorithm

B1 solving LWE problem. We construct this algorithm in the following way:

– Setup: Take a LWE challenge (ĀR,U , c̄0, c̄1) ∈ Z
n×(m̄+
)
q × Z

m̄+

q as input.

Choose t∗ ∈ Z
n
q uniformly at random and generate (B,TB) ← TrapGen(1k).

Sample TR ∈ Z
m̄×n log q from Dm̄×n log q

δ . Let AR := [ĀR | −H(t∗)G−ĀRTR].
Add (Ā,U ,B) to a public parameter. Let pkR := AR and skR := (TR,TB).
Run A(prm, pkR).

– Queries 1: When A submits an unsigncrypt query (pkS , (c0, c1,e, re)), respond
in the same way as Game3 by skR and the Invert algorithm of Proposition 1.

– Challenge: When A submits a challenge query (pk∗
S , sk∗

S , μ0, μ1), do the fol-
lowing
1. b

U← {0, 1}, r∗
e ← SampleD(TB ,B, (t∗ − fĀR

(pk∗
S)) mod q, log n),

2. c′T
0 = c̄T

0 TR + x′T
0 , c̄∗T

0 = p(c̄T
0 ||c′T

0 ) ∈ Z
m
q ,

3. c̄∗
1 = pc̄1 ∈ Z



q.
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4. Compute (c∗
0, c

∗
1,e

∗, r∗
e) by (pk∗

S , sk∗
S) in the same way as the SC algo-

rithm,
5. Return C∗ := (c∗

0, c
∗
1,e

∗, r∗
e).

– Queries 2: Do the same process as the Queries 1 phase. However, A submits
a query (pkS , C) such that (pkS , C) �= (pk∗

S , C∗).
– Output: When A outputs the guessing bit b′ ∈ {0, 1}, output 1 if b′ = b.

Output 0 otherwise.

We analyze the above algorithm B1. When A submits queries such that
t �= t∗, it is possible to return μ/⊥ following the USC algorithm because H(t)−
H(t∗) = H(t− t∗) ∈ Z

n×n
q is invertible by the property of the FRD encoding [1]

and we can use the Invert algorithm. In the Queries 1 phase, the probability that
A submits queries such that t = t∗ is negligible since t∗ is statistically hidden
in the Setup phase. B1 simulates the view of A completely. By using the output
of A, B1 can determine whether (c̄0, c̄1) is the sample of LWE or not. Hence, it
is possible to solve the LWE problem.

We can also prove that |Pr[F3] − Pr[F4]| ≤ negl(k) by constructing a PPT
algorithm B2 solving LWE. This algorithm is same as B1 except that B2 checks
whether A submitted an unsigncrypt query such that ‖e‖ ≤ δ

√
m + n log q and

AS,h · e = uS mod q, and outputs 0 if so. It outputs 1 otherwise. ��
From the above lemmas, AdvMU-IND-iCCA

A (k) is negligible, and hence the proof
is completed. ��
Theorem 2. If SISq,β assumption for β = O((n log n)5/2) · ω(log n3/2) holds
and hash functions meet collision-resistance, LB-SCS is MU-sUF-iCMA secure.

Proof. Let A be a PPT adversary against SCS in the MU-sUF-iCMA game, let
M := μ||pkR||c0, and let x(i) for i ∈ [Q] be a value x generated for ith oracle
access.

The forger A can be classified into several types as follows.

Type-1. A generates a forgery by finding a collision of fĀS
+ fB .

Type-2. A generates a forgery without finding a collision of fĀS
+ fB .

(a) A generates a forgery without any queried message.
(b) A generates a new forgery by using a queried message.

When A is a Type-1 adversary, we construct a PPT adversary S breaking
collision-resistance of fĀS

+fB and show that AdvMU-sUF-iCMA
A (k) ≤ AdvCR

S (k).
SCR is constructed as follows:

– Setup: Take matrices ĀS ∈ Z
n×m̄
q and B ∈ Z

n×m
q as input. In the same

way as the Setup and KeyGenS algorithm, generate prm and (pkS , skS) :=
((AS ,uS),TS) by using Ā and B. Run A(prm, pkS).

– Queries: When A submits (pkR, μ) as a query, compute c0 by using pkR.
Choose rs at random and compute h = fĀS

(μ||pkR||c0) + fB (rs). Compute
a ciphertext C := (c0, c1, re,e) on μ following the SC algorithm. Then, send
C to A.
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– Output: When A outputs a forgery (pk∗
R, sk∗

R, C∗), compute μ∗ following
the USC algorithm and output (M∗, r∗

s), (M (i), r
(i)
s ) such that fĀS

(M∗) +
fB (r∗

s) = fĀS
(M (i)) + fB (r(i)s ) with (M∗, r∗

s) �= (M (i), r
(i)
s ).

Then, SCR simulates the environment of A completely. The forgery
(pk∗

R, sk∗
R, C∗) is generated by finding a collision of fĀS

+ fB and S’s output is
a collision of CH clearly. Hence, AdvMU-sUF-iCMA

A (k) ≤ AdvCR
SCR

(k) holds.
Next, we consider Type-2 adversary and show a reduction from SISq,β for β =

O(λ(n log q)3/2) ·ω(
√

log n)3 to MU-sUF-iCMA of SCS. We make a modification
that the adversary cannot distinguish. We replace a parameter/trapdoor-pair
(B,TB) with a parameter B of a collision-resistant hash function.

First, We consider Type-2-(a) adversary, that is, adversary outputs a forgery
on a never queried message. By using this adversary, we construct S1 solving
SISq,β . This algorithm is given A = [Ā | A′] ∈ Z

n×m
q and u ∈ Z

n
q , and outputs

z ∈ Z
m such that Az = u mod q and ‖z‖ ≤ β − 1. A PPT algorithm S1 solving

SISq,β is as follows.

– Setup: Take A = [Ā | A′] ∈ Z
n×(m̄+n log q)
q as input. To generate prm and

(pkS , skS), do the following:
• Choose messages h(1),h(2), . . . ,h(Q) ∈ {0, 1}λ uniformly at random.

Compute the set P of all strings P such that the length |P | ≤ λ and
there is no h(i) including P as a prefix.

• Compute (AS ,A0,A1, . . . ,Aλ,u) in the following way: For i ∈
{0, 1, . . . , λ}, choose TS,i ← Dm̄×n log q

logn and compute Ai = HiG− ĀTS,i.
Hi is

Hi =

⎧
⎪⎨

⎪⎩

H(0) = 0 (i > t)
(−1)Pi · H(u(i)) (i ∈ [t])
−∑

j∈[t] Pj · Hj (i = 0)

• For h(i), generate a signature on μ(i) as follows:
1. AS,h(i) ← [A | A0 +

∑
j∈[λ] h

(i)
j Aj ] = [ĀS | A′ | HG − Ā(TS,0 +

∑
j∈[λ] h

(i)
j TS,j)],

2. Let T (i)
S = TS,0+

∑
j∈[λ] h

(i)
j TS,j be a trapdoor for the matrix AS,h(i) ,

3. Compute a signature e(i) ← SampleD(T (i)
S ,AS,h(i) ,uS , δ).

– Queries: For each query (μ(i), pk
(i)
R ) to the signcrypt oracle, do the following:

1. Compute C̄(i) following the SC algorithm,
2. r

(i)
s ← SampleD(TB ,B,h(i) − fĀS

(M (i)) mod q, log n),
3. Compute (c(i)0 , c

(i)
1 ) by using a signature (r(i)s ,e(i)),

4. Return C(i) := (c(i)0 , c
(i)
1 , r

(i)
e ,e(i)).

– Output: When A outputs a forgery (pk∗
R, sk∗

R, C∗ = (c∗
0, c

∗
1, r

∗
e ,e∗)), check

that it is possible to unsigncrypt μ∗ by the USC algorithm and compute e
and h∗ ← fĀS

(M∗) + fB (r∗
s) mod q.
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We show that S1 can solve SIS problem by using a pair (h∗,e∗). Since a pre-
fix of h∗ is P , the following holds: Since AS,h∗ = [ĀS | A′ | −ĀS(TS,0 +
∑

j∈[λ] h
(i)
j TS,j)] = [ĀS | A′ | −ĀSTS,h∗ ], we have

[ĀS | A′]
︸ ︷︷ ︸

AS

[
Im −T ∗

S

In log q

]

y∗

︸ ︷︷ ︸
z

= uS mod q.

‖y∗‖ ≤ δ
√

m = O(
√

λn log q) · ω(
√

log n)2 holds obviously, and ‖T ∗
S‖ ≤√

λ + 1 · O(
√

m̄ +
√

n log q) · ω(
√

log n) holds from Lemma 2.9 of [23]. Hence,
‖z‖ = O(λ(n log q)3/2) · ω(

√
log n)3 ≤ β − 1.

Next, we consider a Type-2-(b) adversary. That is, this is that A generates
a new forgery against a queried h∗. We construct S2 solving SIS in the same
way as the S1 algorithm except for the process of the Setup and Output phase.
This algorithm is given A ∈ Z

n×m
q and u ∈ Z

n
q , and outputs z ∈ Z

m such that
Az = 0 mod q and ‖z‖ ≤ β. We describe the process of S2 in Setup phase as
follows:

– Choose h(1),h(2), . . . ,h(Q) ∈ {0, 1}λ uniformly at random, and choose h(i)

from these at random and let h := h(i).
– Generate (AS ,A0,A1, . . . ,Aλ,uS) as follows: Generate Ai in the same way

as the S1 and p ← h. Choose y ← DZ,δ and let uS := Ahy mod q.
– For i ∈ [Q], generate a signature e(i) on h(i) in the same way as S1 except

for h. Let y be a signature on h.

We describe processes of S2 in Output phase in the following way: When A
outputs (pk∗

R, sk∗
R, C∗), compute (h∗,e∗) by using the USC algorithm. Since

h∗ = h, the following holds: Since AS,h∗ = [ĀS | A′ | −ĀS(TS,0 +
∑

j∈[λ] h
(i)
j TS,j)] = [ĀS | A′ | −ĀSTS,h∗ ], we have

[ĀS | A′]
︸ ︷︷ ︸

AS

[
Im̄ −T ∗

S

In log q

]

(y∗ − y)
︸ ︷︷ ︸

z

= 0 mod q.

‖y‖, ‖y∗‖ ≤ δ
√

m = O(
√

λn log q) · ω(
√

log n)2 holds clearly, and |T ∗
S | =

O(
√

λn log q) · ω(
√

log n). Hence, ‖z‖ = O(λ(n log q)3/2) · ω(
√

log n)3 =
O((n log q)5/2) · ω(

√
n)3.

From the discussion about Type-2-(a) and Type-2-(b) adversary, we com-
pleted the reduction from SISq,β .

From the above, the proof was completed. ��

4.2 Lattice-Based Hybrid Signcryption

In this section, we propose a lattice-based hybrid signcryption obtained by com-
bining LB-SCS in Sect. 4.1 and a DEM. In LB-SCS, the ciphertext size for a
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message is |μ| log q for the bit-length of a message |μ| and a modulus q. By com-
bining LB-SCS with a DEM, the ciphertext size for a message μ is reduced to
|μ|.

Let DEM = (DEM.Enc, DEM.Dec) be an IND-OT secure DEM meeting one-
to-one property2. Our hybrid signcryption HSC = (Setup, KeyGenR, KeyGenS ,
SC, USC) is as follows. The Setup, KeyGenR, and KeyGenS algorithms of HSC
are the same as those of LB-SCS.

– C ← SC(pkR, skS , μ): To signcrypt μ ∈ {0, 1}|μ|, do the following:
1. K

U← {0, 1}
, where  is the bit-length of a DEM’s symmetric key,
2. re, rs ← Dm

Z,log n, t = fĀR
(pkS) + fB (re) ∈ Z

n
q ,

3. AR,t = [ĀR | H(t)G − ĀTR] ∈ Zn×m
q ,

4. s
U← Z

n
q , x0 ← Dm

Z,αq, x1 ← D

Z,αq,

5. c̄0 = sTAR,t + pxT
0 ∈ Z

m
q , c̄1 = sTU + pxT

1 ∈ Z


q,

6. C̄ = (c̄0, c̄1, re),
7. Generate a signature on μ||K||pkR||C̄.

• h = fĀS
(μ||K||pkR||C̄) + fB (rs) ∈ Z

n
q ,

• AS,h =
[
AS | A0 +

∑λ
i=1 hi · Ai

]
∈ Z

m+n log q
q ,

• e ← SampleD(TS ,AS,h ,uS , δ),
• (e, rs) ∈ Z

m+n log q × Z
m is the signature.

8. c0 = c̄0 + rs ∈ Z
m
q , c1 = c̄1 + p · K� q

2� ∈ Z


q,

9. c2 = DEM.Enc(K,μ),
10. Output C = (c0, c1, c2, re,e).

– μ/⊥ ← USC(pkS , skR, C): To unsigncrypt C = (c0, c1, c2, re,e), do the fol-
lowing:
1. t = fĀR

(pkS) + fB (re) ∈ Z
n
q , AR,t = [ĀR | H(t)G − ĀTR] ∈ Z

n×m
q ,

2. (z, rs) = Invert(TR,AR,t , c0),
3. Compute E ∈ Z

m×
 s.t. AR,tE = U mod q by using the SampleD algo-
rithm,

4. vT = cT
1 − (c0 − rS)TE = p(xT

1 + KT � q
2� − xT

0 E),
5. Recover K from v/p mod q,
6. μ = DEM.Dec(K, c2),
7. c̄0 = c0 − rs mod q, c̄1 = c1 − p · K� q

2� mod q, C̄ = (c̄0, c̄1, re),
8. h = fĀS

(μ||K||pkR||C̄)+fB (rs) ∈ Z
n
q , AS,h = [AS | A0+

∑λ
i=1 hi ·Ai] ∈

Z
m+n log q
q ,

9. Output μ if AS,h · e = uS mod q ∧ ‖e‖ ≤ δ
√

m + n log q. Output ⊥
otherwise.

The above construction HSC is shown to be secure by the following theorems.

Theorem 3. If LWEq,α assumption for α ≥ 2
√

n/q holds and DEM is IND-OT
secure, HSC is MU-IND-iCCA secure.

2 We say that a DEM meets one-to-one if for a message µ and a symmetric-key K,
there is only one ciphertext c such that µ = DEM.Dec(K, c).
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Proof. Let A be a PPT adversary in the MU-IND-iCCA game. We define the
following games.

– Game0: This is the ordinary MU-IND-iCCA game.
– Game1: This is the same game as Game0 except that if A submits a decryp-

tion query (c0, c1, c2, re,e) such that (c0, c1, re,e) = (c∗
0, c

∗
1, r

∗
e ,e∗) and

c2 �= c∗
2, the oracle does not use the symmetric-key, but uses the key K∗

generated by the SC algorithm.
– Game2: This is the same game as Game1 except that the symmetric-key K

is chosen uniformly at random.

Let Si be an event that A wins in Gamei for i ∈ {0, 1, 2}.
Game1 is identical to Game0 unless it is possible to generate key-pairs

(pkR, skR), (pkS , skS) such that, for some symmetric key K generated in the
SC algorithm, K cannot be obtained following the USC algorithm. Therefore,
we have |Pr[S0] − Pr[S1]| ≤ negl(k) by completeness of HSC.

We can prove |Pr[S1] − Pr[S2]| ≤ 2AdvLWE(k) in the same way as in Theo-
rem 1. The reason is as follows: A symmetric key K is signcrypted in the same
way as LB-SCS in Sect. 4.1 and |Pr[S1] − Pr[S2]| = 2AdvMU-IND-iCCA

LB−SCS (k) holds.
Hence, |Pr[S1] − Pr[S2]| ≤ 2AdvLWE(k) holds.

We show
∣
∣Pr[S2] − 1

2

∣
∣ ≤ AdvIND-OT

DEM (k). We can simulate Setup, Queries 1,
and Queries 2 phases, following the algorithms of HSC. In the Challenge phase,
we encrypt the ciphertext c∗

2 by sending messages to the challenger in the IND-
OT game. In the Output phase, the guessing bit b′ ∈ {0, 1} in the IND-OT game
is the same as the output of A in the MU-IND-iCCA game.

From the above discussion, AdvMU-IND-iCCA
HSC (k) ≤ 2AdvLWE(k) +

AdvIND-OT
DEM (k). Therefore, the proof was completed. ��

Theorem 4. If SISq,β assumption for β = O((n log n)5/2) · ω(log n3/2) holds
and DEM is one-to-one, HSC is MU-sUF-iCMA secure.

Proof. It is possible to prove this theorem by the same way as Theorem 2. The
reason is as follows:

– If an adversary tries to make a forgery on a queried message μ, he has to make
a new symmetric-key K which was not used in the Queries phase, because
DEM is one-to-one. However, K has to be signcrypted in the same way as
LB-SCS. Hence, he needs to break SIS problem.

– Suppose that an adversary tries to make a forgery on a message μ which was
never queried. However, in HSC, the message has to be signcrypted in the
same way as LB-SCS. Hence, he has to break the SIS problem in this case as
well.

Therefore, by using the same proof technique in Theorem 2, we finally get
AdvMU-sUF-iCMA

HSC (k) ≤ AdvSIS(k). ��
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5 Comparison of Lattice-Based Signcryption

We compare our scheme with other existing ones in terms of key-sizes (i.e., sizes
of public-keys and secret-keys), and ciphertext-size in order to evaluate efficiency
among the constructions, where our scheme means the construction in Sect. 4.2
(i.e., more efficient one).

To the best of our knowledge, our constructions are the first direct con-
structions of signcryption based on lattice problems without random oracles.
Hence, there is no other direct construction to compare efficiency with ours.
However, since there are generic constructions of signcryption [11,25] satisfying
the strongest security (i.e., both of MU-IND-iCCA and MU-sUF-iCMA) with-
out random oracles, we can obtain lattice-based constructions of signcryption by
applying suitable lattice-based primitives to the generic constructions. Specifi-
cally, we consider the following applications of lattice-based primitives.

SCTK [11]: we apply IND-Tag-CCA secure Tag-based KEM [10,23], sUF-CMA
secure DS [10,23], IND-CCA secure DEM.

SCKEM [11]: we apply IND-CCA secure KEM [7,23], sUF-CMA secure DS [10,
23], IND-OT secure DEM, sUF-OT secure MAC.

SCCHK [25]: we apply IND-sID-CPA secure Identity-based Encryption [1], UF-
CMA secure DS [8], sUF-OT secure OTS [21].

In the description above, MAC is a message authentication code, and OTS is
a one-time signature. IND-Tag-CCA means indistinguishability against adap-
tive tag chosen ciphertext attack, sUF-OT means strong unforgeability against
one-time attack, and IND-sID-CPA means indistinguishability against selective
ID chosen plaintext attack. Then, to fairly compare efficiency of lattice-based
signcryption, we take into account the following:

1. In SCTK , SCKEM , and our scheme, we assume that the paradigm of authenti-
cated encryption in [5] is used to obtain IND-CCA secure DEM (or IND-OT
secure DEM). Namely, IND-CCA secure DEM is obtained from IND-CPA
secure symmetric-key encryptions (SKE) and sUF-CMA secure MAC. These
SKE and MAC can be constructed from the AES meeting the 128-bit security
and IND-CPA security. The key sizes are set to be at least 512 bits, since it
is necessary to have resistance against quantum computing by taking into
account the power of the Grover’s algorithm.

2. In SCTK , IND-Tag-CCA secure tag-based KEM is required. However, there
is no lattice-based construction meeting this security. We construct this tag-
based KEM by combining tag-based KEM achieving weaker security (see
AppendixB) and a chameleon hash function [10] in a generic way.

3. In SCKEM , we construct IND-CCA secure KEM by the BK-transformation
[7]. This reason is that even if we consider realizing CCA-secure KEM based
on the lattice problems [26], the resulting signcryption will be less efficient
than SCTK and SCCHK obviously.

4. In SCCHK , a lattice-based one-time signature [21] is required. The construc-
tion in [21] requires the ideal-lattice assumptions, which is believed to be
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stronger than the standard SIS and LWE assumption (i.e, Definitions 1 and
2). However, in an extended version of [21], a framework of lattice-based
OTS is proposed. By using this framework, we can obtain sUF-OT secure
OTS based on the SIS assumption and we apply this construction here.

Table 1. Comparison of sizes of public/secret keys and ciphertexts [bit]: A positive
integer n is a security parameter, q is a prime, a positive integer m = O(n log q) is
a dimension of a lattice, d(� q) is a value of an element sampled from a Gaussian
distribution in Z, |MAC| is the bit-length of MAC tags, K is the bit-length of sym-
metric keys of DEM, |vk| is the bit-length of an OTS’s verification-key, and |µ| is the
bit-length of a message.

Construction Receiver’s key size Sender’s key size Ciphertext size

Public key Secret key Public key Secret key

SCTK 3nm log q nm log q log d 3nm log q nm log q log d (m+K) log q +
3m log d+ |µ|

SCKEM 2nm log q (2m+K +
n) log q+2m log d+
|µ|+ 2|MAC|

SCCHK nm log q nm log q (3m+ n) log q +
|vk|+ |µ| log q

Our scheme (m+K) log q +
2m log d+ |µ|

Table 2. Parameter setting.

Parameters Size

n 256

q 4093

m = 3n log q 9215

d = 2n log q · log n 49148

|vk| ≈ n2 log2 n 42.0 × 105

K 512

|MAC| 128

Table 3. Comparison of ciphertext-size.

Constructions Ciphertext-size (bit-length)

SCTK 5.5 × 105

SCKEM 5.2 × 105

SCCHK 45.3 × 105

Our scheme 4.0 × 105

Table 1 shows comparison in sizes of public/secret-keys and ciphertexts.
Although it can be seen that SCCHK and our scheme are most efficient in terms
of receiver’s public-key size, it is difficult to conclude which construction is best
in terms of ciphertext size, only from Table 1. Therefore, we evaluate the con-
structions by applying concrete parameters. Table 2 shows evaluation results of
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parameters which we estimated by referring to [19]. Table 3 shows the result
obtained by applying the parameters in Table 2 to the constructions of signcryp-
tion. From Table 3, we can observe that ciphertext-size of our scheme is shortest.

From the above discussion, the public-key size and ciphertext size in our
scheme are shorter than any other schemes, and there is no disadvantage for
ours in other parameters compared to other ones. Furthermore, even if other
setting parameters in [2] are applied, we can similarly observe the advantage of
our scheme compared to other schemes as well.

Appendix A: Deta Encapsulation Mechanism (DEM)

A DEM consists of a two-tuple of polynomial-time algorithms DEM = (Enc,
Dec) as follows: Let MSP be a message-space, and let KSP be a key-space.

– Enc(K,μ): Enc is a randomised encryption algorithm that on input a
symmetric-key K ∈ KSP and a message μ ∈ MSP, outputs a ciphertext
C.

– Dec(K,C): Dec is a deterministic decryption algorithm that on input a secret-
key K and a ciphertext C, outputs a message μ or invalid ⊥.

IND-OT security against DEM = (Enc, Dec) is defined as follows: Let A be a
PPT adversary in the following game.

– Setup: The challenger generates a symmetric-key K
U← KSP.

– Challenge: When A submits (μ0, μ1), the challenger chooses b ∈ {0, 1} uni-
formly at random and returns C∗ ← Enc(K,μb).

– Output: A outputs b′ ∈ {0, 1}, and wins if b = b′.

Let AdvIND-OT
A (k) := |Pr[b = b′] − 1

2 | be the advantage of A. DEM is IND-OT
secure if AdvIND-OT

A (k) ≤ negl(k) for any PPT adversary A.

Appendix B: Lattice-Based Tag-Based Encryption
and Tag-Based KEM

IND-sTag-CCA secure TBE based on LWE can be easily constructed from
lattice-based tag-based trapdoor functions [23], where IND-sTag-CCA means
indistinguishability against selective tag chosen ciphertext attack (cf. [17]).
Hence, we obtain the following lattice-based construction of TBE = (Setup,
Kg, Enc, Dec):

– prm ← Setup(1n): Take a security parameter n as input and then set public
parameters prm as follows: a prime q = poly(n), integers m̄ = O(n log q),
m = m̄ + n log q, α−1 = O(n log q)2 · ω(

√
log n), a matrix G ∈ Z

n×n log q
q is as

the definition in Sect. 2.2.

Output prm = (n, q, m̄,m, α,G).
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– (pk, sk) ← Kg(prm): To generate a public-key pk and a secret-key sk, do the
following:
1. Ā

U← Z
n×m̄
q ,T ← Dm̄×n log q

log n , U U← Z
n×

q , A =

[
Ā| − ĀT

] ∈ Z
n×m
q ,

2. Output pk = (A,U), sk = T .
– C ← Enc(pk, tag, μ): To encrypt a message μ ∈ {0, 1}
, do the following:

1. s
U← Z

n
q ,x0 ← Dm

αq,x1 ← D

αq, Atag =

[
Ā|H(tag)G − ĀT

] ∈ Z
n×m
q ,

2. c0 = sTAtag + xT
0 ∈ Z

m
q , c1 = sTU + xT

1 + μ · �q/2� ∈ Z


q,

3. Output a ciphertext C = (c0, c1).
– μ ← Dec(sk, tag, C): To decrypt C = (c0, c1), do the following:

1. Atag =
[
Ā|H(tag)G − ĀT

]
, (s,x0) = Invert(T ,Atag, c0),

2. d = c1 − stU ∈ Z


q, let d = (d1, . . . , d
), and for each i ∈ [], ki = 0 if di

is closer to 0 than to � q
2�, otherwise let ki = 1.

3. Output a message μ = (k1, . . . , k
) ∈ {0, 1}
.

Note that the above construction is based on LWE, and we can obtain the lattice-
based (IND-sTag-CCA secure) TB-KEM from the TBE above by replacing a
message with a random key.
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Abstract. In this work we analyze the security of cubic cryptographic
constructions with respect to rank weakness. We detail how to extend the
big field idea from quadratic to cubic, and show that the same rank defect
occurs. We extend the min-rank problem and propose an algorithm to
solve it in this setting. We show that for fixed small rank, the complexity
is even lower than for the quadratic case. However, the rank of a cubic
polynomial in n variables can be larger than n, and in this case the
algorithm is very inefficient. We show that the rank of the differential is
not necessarily smaller, rendering this line of attack useless if the rank is
large enough. Similarly, the algebraic attack is exponential in the rank,
thus useless for high rank.

Keywords: Multivariate cryptography · Cubic polynomials
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1 Introduction

The min-rank problem (MR) is, given k m × n matrices and a target rank r, to
determine whether there exists a linear combination of the matrices of rank less
or equal to r. Although NP-complete in its general setting, there are efficient
algorithms to solve it for certain parameters. Indeed, Kipnis and Shamir modeled
an attack on the HFE system as an MR problem and were able to break it.
Since then, other multivariate public key schemes (MPK) have been subject to
similar attacks. Rank defects also lead to other weakness such as a fixed degree
of regularity in the algebraic attack on HFE [6].

The importance of the rank itself, and the prevalence of MR as an attack
technique in MPK suggest a more central role as the underlying problem that
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supports security. For example, we can think of HFE as a way to construct low
rank quadratic polynomials. Their low rank allows inversion, but it is insecure
because the same low rank is preserved as a linear combination of the public
key which can be efficiently solved through the Kipnis-Shamir modeling (KS) of
MR.

Although the MR problem is stated for two-dimensional matrices, it can be
naturally extended to d-dimensional matrices. It is particularly interesting to
analyze it for three-dimensional matrices, since rank problems become much
harder there. For example, simply determining the rank of a matrix is difficult
for three-dimensional matrices, and it is not even known the maximum possible
rank a matrix may have (see e.g. [15]).

Three-dimensional matrices lead to cubic polynomials. They are less common
than quadratic polynomials in MPKs for two reasons. First, they are larger thus
less efficient than quadratics. But more important, if f is cubic, its differential
Dfa(x) := f(x + a) − f(x) − f(a) is a quadratic map that preserves some
of the properties of f . Thus, it is possible to extend rank analysis techniques
from quadratics to cubics targeting the differential, c.f. [26]. Yet one important
question remains open: Is this a general property of any cubic map that dooms
any such construction? In this paper we address this question, by taking a general
perspective not focused on a particular construction.

1.1 Our Contribution

In order to close the knowledge gap, we gather the appropriate literature to
frame the discussion of the rank of cubic polynomials. We use the language
of tensors that allows for very natural extensions of key concepts from two to
d-dimensional matrices.

We extend the MR problem to three-dimensional matrices and we propose
two ways to solve it, which naturally extend the KS modeling. Interestingly,
if the rank is small, the complexity is even lower than for the quadratic case.
However, the rank of a cubic polynomial in n variables can be larger than n, and
in this case the attack is very inefficient.

We also discuss the relevance of two other typical lines of attack for MPK in
the context of cubic low rank polynomials, namely the algebraic and differential
attacks. We show that the rank of the differential is not necessarily much smaller
than the rank of the cubic polynomial, rendering this line of attack inefficient
if the rank is large enough. Similarly, the algebraic attack is exponential in the
rank, thus useless for high rank.

Although our approach is general, we provide a detailed example. We show
how to efficiently construct cubic polynomials over a finite field from a weight
three polynomial over a field extension, extending the so called big field idea.
And then, we show that the rank is preserved by this construction in the sense
that, a low rank core polynomial leads to a set of cubic polynomials with a low
rank linear combination.
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1.2 Related Work

In [25,26], Moody et al. do a rank analysis of the cubic ABC scheme [7]. They
expose a subspace differential invariant extending the ideas used in the quadratic
case [24]. They show that the MR attack used in [24] can be adapted to this
cubic case.

Their work avoids discussing the rank of cubic polynomials by focusing on
the differentials. This is rewarding in the ABC case because of the band structure
of the scheme. There are linear combinations of the public polynomials with a
band structure (they show it for the second differential) whose rank is bounded
(possibly by a factor of s2). The rank of some of their slices (or the second
differential evaluated at some vectors as they show) drops by a square root
factor to 2s. This allows an attack on cubic ABC even more efficient than on its
quadratic counterpart.

For a good reason, they approach the MR problem by guessing kernel vec-
tors instead of using the Kipnis-Shamir or minors modeling (see Sect. 2.4 for a
discussion of these techniques). The subspace differential invariant allows a tight
analysis of the efficiency of this approach.

2 Preliminaries

2.1 Notation

Given a natural number n, the set {1, . . . , n} is denoted by [n]. Let F be a finite
field of order q which, unless explicitly stated, has characteristic different from
2 or 3. Vectors are denoted by bold letters, e.g. u,v, and they are treated as
column vectors by default unless stated otherwise. The vector ei denotes the i-th
canonical vector, i.e. the vector whose only non-zero entry is the i-th one, which
is equal to 1. The i-th entry of a vector u is denoted by u[i], but sometimes we
also use the non-bold version of the corresponding letter with subscript i: ui.
The space of all n × m matrices is denoted by F

n×m. The entry of a matrix A
indexed by (i, j) is denoted by A[i, j]. We use the notation A[i, ·] to refer to the
i-th row of a matrix A (as a row vector), and A[·, j] to refer to the j-th column
of A (as a column vector). A three dimensional matrix of dimensions n×m×� is
an array of elements in F indexed by tuples (i, j, k), where 1 ≤ i ≤ n, 1 ≤ j ≤ m
and 1 ≤ k ≤ �. The vector space of these three-dimensional matrices is denoted
by F

n×m×�, and the entry indexed by (i, j, k) in a matrix A ∈ F
n×m×� will be

denoted by A[i, j, k]. We denote by A[i, ·, ·] the two-dimensional matrix whose
entry (j, k) is given by A[i, j, k], and similarly for A[·, j, ·] and A[·, ·, k]. For u ∈ F

n

and v ∈ F
m, u ⊗ v denotes the Kronecker product which we usually see as the

matrix uvᵀ.

2.2 Rank and Trilinear Forms

Let n,m, l be positive integers and let U , V and W be the vector spaces F
n,

F
m and F

l, respectively. The rank of a matrix A ∈ F
n×m can be defined as the

minimum number of summands r required to write A as
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A =
r∑

i=1

ui ⊗ vi,

where ui ∈ U and vi ∈ V for all i = 1, . . . , r. This definition of rank is more
flexible than other definitions as it is independent of the number of dimensions
so it can be extended to three-dimensional matrices as follows.

Definition 1. Let A ∈ F
n×m×� be a three-dimensional matrix, we define the

rank of A as the minimum number of summands r required to write A as

A =
r∑

i=1

ui ⊗ vi ⊗ wi,

where ui ∈ U , vi ∈ V and wi ∈ W for all i = 1, . . . , r. We denote this number
by Rank(A).

Let A ∈ F
n×m×� be a three-dimensional matrix. Then clearly, Rank(A) = 0

if and only if A is zero (empty sum). For an arbitrary A ∈ F
n×n×n, the maximal

value that Rank(A) can attain is unknown. To our knowledge, the best known
upper bound for the maximal value of Rank(A) is �(3/4)n2� (see [17, Theorem
7]).

A bilinear map B : U × U → F is a map that is linear in each argument, so
it can be written as

B(x,y) = xᵀAy (1)

where A ∈ F
n×n is the matrix such that A[i, j] = B(ei, ej).

A bilinear map B is symmetric if for all a,b ∈ U it holds that B(a,b) =
B(b,a), which is equivalent to A being symmetric.

Given a bilinear map B we can obtain a quadratic homogeneous polynomial
f(x) ∈ F[x] by defining f(x) := B(x,x). Different bilinear maps can yield the
same quadratic polynomial. Yet, symmetric bilinear maps are in bijection with
the set of quadratic homogeneous polynomials. The symmetric bilinear map
from a quadratic homogeneous polynomial f can be computed as B(x,y) :=
1
2 (f(x + y) − f(x) − f(y)).

Similarly, a trilinear map T : U × U × U → F is a map that is linear in each
argument. It can be written as

T (x,y, z) =
∑

i,j,k∈[n]

xiyjzk · αi,j,k

where αi,j,k := T (ei, ej , ek). Let A ∈ F
n×n×n be such that A[i, j, k] = αi,j,k.

We say that T is symmetric if for all a,b, c ∈ U , it is invariant under any
permutation of the indices, i.e.

T (a,b, c) = T (a, c,b) = T (b,a, c) = T (c,a,b) = T (b, c,a) = T (c,b,a),

or equivalently, the three-dimensional matrix A is symmetric. Given a trilinear
form T (symmetric or not) we can obtain the homogeneous cubic polynomial
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f(x) ∈ F[x] defined as f(x) := T (x,x,x), and given a homogeneous polynomial
f of degree 3 we can obtain the corresponding symmetric trilinear form as

T (x,y, z) =
1
3!

(f(x + y + z) − f(y + z) − f(x + z)

−f(x + y) + f(x) + f(y) + f(z)). (2)

For a cubic homogeneous polynomial f ∈ F[x], we define its rank, denoted by
Rank(f), as the rank of the corresponding three-dimensional symmetric matrix.

2.3 Big Field Idea

Let n be a positive integer. Let g(y) = yn + an−1y
n−1 + · · · + a1y + a0 be an

irreducible polynomial of degree n over F. Consider the degree n field extension
K = F[y]/ (g(y)). Notice that K can be seen as a vector space over F of dimension
n, so K ∼= F

n through the usual vector space isomorphism φ : K → F
n given by

φ(u1 + u2y + · · · + unyn−1) = (u1, u2, . . . , un).

Let Δ be the matrix whose i-th row is given by the Frobenius powers
((y0)qi−1

, (y1)qi−1
, . . . , (yn−1)qi−1

).
The matrix Δ, whose transpose is known as a Moore matrix, is invertible

because
{
y0, y1, . . . , yn−1

}
is a basis of K over F ([21], p. 109).

For β ∈ K let Fr(β) denote the vector (β, βq1
, . . . , βqn−1

) ∈ K
n. If α ∈ K,

then it is easy to see that Fr(α) = Δ · φ(α).
We refer to a polynomial in K[X] of the form

F(X) =
∑

0≤i1≤···≤id≤n−1

αi1,...,id
Xqi1+···+qid

where αi1,...,id
∈ K as a homogeneous weight d polynomial. Notice that a homo-

geneous weight 0 polynomial is simply a constant polynomial, i.e. an element
of K. A weight d polynomial F ∈ K[X] is a polynomial that can be written as
F = F0 + · · ·+Fd where each Fj ∈ K[X] is a homogeneous weight j polynomial.

The main property of this type of polynomials is that if F ∈ K[X] is homoge-
neous of weight d then the map F = φ◦F ◦φ−1 : Fn → F

n can be represented as
evaluation of n homogeneous multivariate polynomials in F[x1, . . . , xn] of degree
d. We state this formally in the following theorem.

Theorem 1. Let F ∈ K[X] be a homogeneous weight d polynomial. There exist
homogeneous degree d polynomials f1, . . . , fn ∈ F[x1, . . . , xn] such that for all
a ∈ F

n it holds that F (a) = (f1(a), . . . , fn(a))ᵀ where F is the composition
φ ◦ F ◦ φ−1.

Proof (sketch). Since for any j ∈ {0, 1, . . . , n − 1}, X 
→ Xqj

is an F-linear
map over K, and Xqi1+···+qid = Xqi1 · · · Xqid , then it is easy to see that each
component of F is a degree d multivariate polynomial over F. A more detailed
proof can be found in [8] as Theorem 6.2.1. ��
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Fig. 1. Big Field Idea

The previous property has been used extensively in order to generate
sequences of multivariate quadratic polynomials (f1, . . . , fn) that can be inverted
with the help of some secret information. Usually, some weight 2 polynomial
F ∈ K[X] is chosen, along with two invertible matrices S, T ∈ F

n×n. The pre-
vious theorem states that the composition F = φ ◦ F ◦ φ−1 is given by n mul-
tivariate quadratic polynomials in F[x1, . . . , xn] and therefore the composition
P = T ◦ F ◦ S = T ◦ φ ◦ F ◦ φ−1 ◦ S is also given by n multivariate quadratic
polynomials in F[x1, . . . , xn]. Usually, F is referred as the core or central poly-
nomial. If we ensure that F is a univariate polynomial that is easy to invert,
then we can invert P if we know S, T and F . This construction can be observed
in Fig. 1.

This type of “trapdoor” polynomials yield public key encryption schemes
where the public key is the polynomials themselves, the secret key is the trap-
door information that allows the inversion of the polynomials, encryption is just
evaluation and decryption is inversion. This concept is known as the Big Field
Idea, and some examples of schemes that follow this paradigm are MI [23], HFE
[27], and variants of HFE [5,28,29].

An important remark is that the polynomials representing the map F can be
efficiently computable from the coefficients of the polynomial F . The construc-
tion for d = 2 can be found in [8, Sect. 6.3]. We will show the construction for
d = 3 in Sect. 4.

2.4 Two-Dimensional MinRank Attack

Buss et al. [4] introduced the min-rank problem (MR) in the context of linear
algebra and proved its NP-completeness.

Definition 2 (MinRank Problem). Given positive integers m,n, r, k, and
matrices M0, . . . ,Mk ∈ Mm×n(F), determine whether there exist λ1, . . . , λk ∈ F

such that the rank of
∑k

i=1 λiMi − M0 is less or equal to r.

In the context of cryptography MR first appeared as part of an attack against
the HFE cryptosystem by Kipnis and Shamir [18]. The HFE cryptosystem, pro-
posed in 1996 by Jacques Patarin [27], is based on the big field idea presented
in Sect. 2.3, with a low rank central polynomial F ∈ K[X]. Kipnis and Shamir
showed that an attack on HFE can be reduced to an instance of MR with a small
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rank r. In particular, if M1, . . . ,Mn ∈ F
n×n are the symmetric matrices repre-

senting public polynomials, then there exists a linear combination
∑n

i=1 λiMi

having rank at most the rank of F . Moreover, these coefficients can be used to
construct an equivalent secret key. For more details on the MinRank attack on
HFE we refer the reader to [18]. We discuss below some of the most common
approaches to solve the min-rank problem.

The Kipnis-Shamir Modeling. Let A =
∑k

i=1 tiMi −M0 be the matrix with
entries in the polynomial ring F[t1, . . . , tk]. Then it is easy to see that the matrix
A has rank at most r if and only if the dimension of its right kernel is at least
n−r. Hence we construct (n−r) linearly independent vectors in the right kernel
of M by solving the following system of equations in F[t1, . . . , tk, v1,1, . . . , vr,n−r]:

A ·
(

In−r

V

)
= 0n×(n−r), (3)

where V is the matrix given by V [i, j] = vi,j for i = 1, . . . , r and j = 1, . . . , n−r.
This relation produces a system of n(n − r) bi-homogeneous polynomials of
bi-degree (1,1) in k + r(n − r) variables. Clearly, if (t1, . . . , tk, v1,1, . . . , vr,n−r)
is a solution of the system, then the evaluation of the matrix A at the point
(t1, . . . , tk) has rank at most r.

Guessing Kernel Vectors. As with any system of equations, it is possible to
guess some variables in (3) and solve for the others. Because of the structure
of this system, it is particularly appealing to guess kernel vectors (i.e. the vi,j

variables) and solve the resulting linear system in the ti variables, as proposed
in [13] (in fact, since the linear system is very overdetermined, it is enough to
guess k/n kernel vectors). The complexity of such attack is dominated by the
guessing part and depends on the probability of a correct guess. A tight bound
on this probability can be significantly improved by understanding the structure
of the solution space, e.g. by exploiting the interlinked kernel structure [33] or
by using the subspace differential invariant structure [24].

The Minors Modeling. In [12], Faugère et al. introduced the minors method
approach to solve the min-rank problem and in [3] they improved the MinRank
attack on HFE using this modeling. Let M =

∑k
i=1 tiMi be the matrix with

entries in the polynomial ring F[t1, . . . , tk]. Let I be the ideal in F[t1, . . . , tk]
generated by all the (r + 1) × (r + 1) minors of M . Let V (I) ⊆ F

k be the zero
locus of I. If (λ1, . . . , λk) ∈ V (I) ∩ F

k, then all the (r+1)× (r+1) minors of the
matrix M evaluated at (λ1, . . . , λk) are zero. As a result the rank of the matrix
M evaluated at (λ1, . . . , λk) is at most r. Each (r + 1)-minor is a homogeneous
polynomial in F[t1, . . . , tk] of degree r + 1, and the number of (r + 1)-minors in
M is

(
n

r+1

)2.
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3 Rank Analysis of Cubic Polynomials

Despite the disadvantages in terms of efficiency of considering cubic polynomials,
one possible advantage would be avoiding the MinRank attack on the quadratic
case. This might be expected since the MinRank attack relies on the fact that the
degree is 2. For instance, this allows us to represent the polynomials as xᵀAx,
which is crucial as the attack performs matrix operations and properties of such.
Therefore, a natural question is whether or not the MinRank attack applies in
a cubic setting. Let us start by defining the MinRank problem in this context.

Definition 3 (Cubic MinRank Problem). Given positive integers l,m, n,
r, k, and three-dimensional matrices M0, . . . ,Mk ∈ F

n×m×l, determine whether
there exist λ1, . . . , λk ∈ F such that the rank of

∑k
i=1 λiMi − M0 is less or equal

to r.

In this section we show that if there is a low-rank linear combination of the
cubic polynomials of the public key then the resulting instance of the MinRank
problem can be solved with an extension of the Kipnis-Shamir modeling. This
is by itself a weakness on the scheme as it allows an adversary to distinguish
between a public key and a random polynomial system of equivalent size. There-
after, we discuss other consequences of the low-rank for the differentials and for
the direct algebraic attack.

3.1 Solving the Three-Dimensional Min-Rank Problem

The following characterization of rank for cubic matrices leads to a generalization
of the Kipnis-Shamir modeling for the min-rank problem (for a proof, see e.g.
[20]).

Theorem 2. Given a three-dimensional matrix A ∈ F
n×m×�, the rank of A is

the minimal number r of rank one matrices S1, . . . , Sr ∈ F
m×�, such that, for all

slices A[i, ·, ·] of A, A[i, ·, ·] ∈ span(S1, . . . , Sr).

Let M0, . . . ,Mk ∈ F
n×n×n. Then, A =

∑k
i=1 λiMi − M0 is of rank r, if

and only if, there exist rank one matrices S1, . . . , Sr ∈ F
n×n, such that, for

i = 1, . . . , n, A[i, ·, ·] ∈ span(S1, . . . , Sr). Since each Si matrix is of rank one, we
can write it as Si = uivT

i for some vectors ui,vi ∈ F
n. Considering the entries of

the ui’s, vi’s, and the linear combination coefficients as variables yields a cubic
system of n3 equations in r(2n) + rn + k = 3rn + k variables

r∑

j=1

αijujvT
j = A[i, ·, ·], for i = 1, . . . , n. (4)

If r � n we can do much better. In that case, for most such rank r matri-
ces A, the first r slices A[1, ·, ·], . . . , A[r, ·, ·] are linearly independent. In this
case, span(S1, . . . , Sr) = span(A[1, ·, ·], . . . , A[r, ·, ·]). Then, for i = r + 1, . . . , n,
A[i, ·, ·] ∈ span(A[1, ·, ·], . . . , A[r, ·, ·]). Considering the coefficients of the linear
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Table 1. Complexity of MR by KS modeling for cubic system. For different values of
n, KS yields a cubic system of n3 equations in (3r + 1)n variables (assuming k = n).
The d-reg column gives the degree of regularity for such a semi-regular system without

field equations. The complexity column, gives the log base 2 of
(
vars+d−1

d

)2.8
.

n r vars eqns d-reg cpx

10 10 310 1000 67 699

11 11 374 1331 74 798

12 12 444 1728 81 899

13 13 520 2197 89 1010

14 14 602 2744 97 1123

15 15 690 3375 105 1240

combinations as variables yields a system of n2(n − r) quadratic equations in
(n − r)r + k variables

r∑

j=1

αijA[j, ·, ·] = A[i, ·, ·], for i = r + 1, . . . , n. (5)

Notice that the converse is not necessarily true. A solution to the system in (5)
does not necessarily implies the existence of the rank one Si matrices, neither
that A has rank r. However, this is a very overdetermined system, hence a
solution is very unlikely, unless indeed A has rank r.

Another approach in the r < n case is to take differentials (or slices) and
reduce the problem to a two-dimensional MR problem. If A ∈ F

n×n×n has rank
r, the corresponding symmetric trilinear map is likely to have rank r as well.
Then, the differentials of this map will have rank less or equal to r. Since the
differential operator is lineal, we have an MR problem among the differentials of
the symmetric trilinear maps corresponding to M0, . . . ,Mk. In the next section
we discuss the relation between the rank of a cubic and its differential in more
detail.

To the best of our knowledge, the complexity of solving a system such as
(4) has not been studied. It can be seen as a multi-homogeneous system of
multi-degree (1, 1, 1, 1), i.e. a tetra-linear system, and assuming some notion
of tetra-regularity, analyze it using the techniques in [9]. It should be noticed
that the techniques in [9] do not address the semi-regularity inherent to such
an overdetermined system. Alternatively, the techniques in [2] could be used to
establish the asymptotic behavior of an upper bound of the degree of regularity
based on the semi-regularity assumption. Although a complete asymptotic anal-
ysis is outside the scope of this paper, Table 1 shows the growth of such bound
for selected parameters.

In the case r � n, the system in (5) has O(n3) quadratic equations in
O(n) variables. Since the number of degree two monomials is O(n2) the system
can be solved by relinearization at degree 2, which reduces to solving a O(n2)
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square matrix. Notice that this is much faster than the KS approach in the
two-dimensional case.

3.2 Differentials

Given an instance of the cubic MinRank problem, one can always obtain a
quadratic instance by taking the differential (defined below) of the associated
polynomials. For example, it is known [14] that computing the differential of the
public polynomials of a cubic HFE instance yields an instance of the quadratic
HFE scheme, and therefore we can perform a quadratic MinRank attack. In this
section we explore the relation between the rank of a cubic polynomial and the
rank of its differential. More precisely, given a random homogeneous cubic poly-
nomial f ∈ F[x] of rank r, we want to estimate the rank of the quadratic part
of its differential Daf(x) = f(x + a) − f(x) − f(a).

The first and principal problem that we face in our analysis is: given an
integer r, how can we generate random homogeneous cubic polynomials of rank
r? Or equivalently, how can we generate random symmetric three-dimensional
matrices of rank r? To address these questions, we introduce the concept of
symmetric rank. We then choose random polynomials and use Kruskal’s theorem
to guarantee that those polynomials have certain symmetric rank.

Definition 4. Let S ∈ F
n×n×n be a three-dimensional symmetric matrix. We

define the symmetric rank of S as the minimum number of summands s required
to write S as

S =
s∑

i=1

tiui ⊗ ui ⊗ ui,

where ui ∈ F
n, ti ∈ F. If such decomposition does not exist, this number is

defined to be ∞. We denote this number by SRank(S).

The following proposition gives us a sufficient condition over F to guarantee
that for all matrices in F

n×n×n the symmetric rank is finite. A more general
result is shown in [31, Proposition 7.2].

Proposition 1. Let F be a finite field with |F| ≥ 3. Then each three-dimensional
symmetric matrix S ∈ F

n×n×n can be written as S =
∑s

i=1 tiui ⊗ ui ⊗ui, where
ui ∈ F

n and ti ∈ F.

By the previous proposition, if |F| ≥ 3, any homogeneous cubic polynomial
f can be written as

∑k
i=1 tiui(x)ui(x)ui(x), where each ui(x) is a homogeneous

linear polynomial and k depends on f . Furthermore, the symmetric rank of a
homogeneous cubic f ∈ F[x], denoted by SRank(f) and defined as the symmetric
rank of its symmetric matrix representation, does exist.

The symmetric rank is a good parameter to consider because it is a bound
of the rank of the differential.

Proposition 2. Let f ∈ F[x] be a homogeneous cubic polynomial. If g is the
quadratic homogeneous part of Dfa(x), then Rank(g) ≤ SRank(f).
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Proof. If f can be written as f(x) =
∑r

i=1 tiui(x)ui(x)ui(x), then for any a ∈ F
n

the quadratic part of Dfa(x) is
∑r

i=1 3tiui(a)ui(x)ui(x). ��

Let U = F
n. Clearly, each symmetric matrix A ∈ F

n×n×n with symmetric
rank r can be written as a sum of exactly r terms of the form tu ⊗ u⊗u, where
t ∈ F − {0} and u ∈ U .

Let Sr be the function which outputs A =
∑r

i=1 tiui ⊗ ui ⊗ ui, for ti ∈
F − {0} and ui ∈ U . By Proposition 1, if |F| ≥ 3, then each symmetric matrix
A ∈ F

n×n×n with symmetric rank equal to r is in the codomain of Sr. But some
symmetric matrices having symmetric rank less than r can also be there.

The following theorem is a particular case of the known Kruskal’s theorem
[19,30]. We use it to argue that if ti ∈ F− {0} and ui ∈ U are chosen uniformly
at random, then with high probability the corresponding output A of Sr has
symmetric rank equal to r. Moreover, by Kruskal’s theorem with high probability
Rank(A) = SRank(A). The Kruskal rank of a matrix with columns u1, . . . ,um,
denoted by KRank(u1, . . . ,um), is defined as the maximum integer k such that
any subset of {u1, . . . ,um} of size k is linearly independent.

Theorem 3. Let F be a finite field, u1, . . . ,ur ∈ U and t1, . . . , tr ∈ F. Suppose
that A =

∑r
i=1 tiui ⊗ ui ⊗ ui and that 2r + 2 ≤ KRank(t1u1, . . . , trur) + 2 ·

KRank(u1, . . . ,ur). Then Rank(A) = r.

Suppose 2 ≤ r ≤ n. If u1, . . . ,ur ∈ U are taken uniformly at random,
then with high probability a matrix with columns u1, . . . ,ur has full rank. If a
matrix with columns u1, . . . ,ur ∈ U is full rank, then KRank(u1, . . . ,ur) = r and
KRank(t1u1, . . . , trur) = r, for any t1, . . . , tr ∈ F−{0}. In this case, by Theorem
3 the corresponding output A of Sr is such that Rank(A) = SRank(A) = r.

We experimentally analyze the behavior of the rank of the differential of
a polynomial that is the output of Sr2 . The experimental results are shown
in Fig. 2, where each curve represents the percentage of times that a rank is
obtained, over 100,000 iterations.

3.3 Direct Algebraic Attack

The direct algebraic attack, or simply the direct attack, refers to the case when
an attacker aims to find the plaintext associated with a ciphertext (c1, . . . , cn)
directly from the public multivariate equations p1 = c1, . . . , pn = cn, without
the knowledge of any other information of the system. In almost all the cases,
the most efficient way to perform this attack is to compute a Gröbner basis of
the ideal I generated by the multivariate polynomials p1 − c1, . . . , pn − cn.

Gröbner bases have played an important role not only in multivariate cryp-
tography, but also in coding theory and lattices [1,34]. There is a general con-
sensus that when computing a Gröbner basis over a finite field, one of the most
efficient ways to do it is to use the F4 or F5 algorithms [10,11]. In a recent work
[22], the authors used their M4GB algorithm to solve some of Fukuoka’s MQ
challenges within 11 days. The complexity of all these algorithms depends on
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Fig. 2. For different values of q, CubicRank, and n a polynomial f is chosen according
SCubicRank, the Rank(Dfa) is computed for a random a ∈ U . Each graph represents
the percentage of times that a particular value Rank(Dfa) is obtained over 100,000
iterations.

the degree of regularity of the system. Since the degree of regularity is hard to
determine, it is usually approximated by its first fall degree, defined as the first
degree at which non-trivial relations between the polynomials p1, . . . , pn occur.

Let p be a linear combination of the polynomials p1, . . . , pn. We now want to
derive an upper bound for the first fall degree Dff(p1, . . . , pn) of the system that
depends on Rank(p). Before we do that, we need the following definition.

Definition 5. The LRank of a homogeneous λ ∈ F[x1, . . . , xn] is the smallest
integer s such that there exist linear homogeneous μ1, . . . , μs ∈ F[x1, . . . , xn]
with λ contained in the algebra F[μ1, . . . , μs].

Hodges et al. [16] proved that Dff(p1, . . . , pn) is bounded by

Dff(p1, . . . , pn) ≤ Dff(p) ≤ LRank(p)(q − 1) + 5
2

.
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Also, since LRank(p) ≤ 3 · Rank(p) then

Dff(p1, . . . , pn) ≤ 3 · Rank(p)(q − 1) + 5
2

. (6)

On the other hand, the complexity of finding a Groebner basis G for the ideal
I is bounded by

O

((
n + Dff

Dff

)ω)
,

where 2 ≤ ω ≤ 3 is the linear algebra constant. When n grows to infinity, the
complexity1 becomes O

(
nωDff

)
. Therefore, according to the bound in (6), the

complexity of finding G is bounded by

O
(
nω

3·Rank(p)(q−1)+5
2

)
.

Thus, if q and Rank(p) are constant, then the complexity of finding G is poly-
nomial in the number of variables n. We also observe that the complexity is
exponential in Rank(p).

4 Rank Analysis for Cubic Big Field Constructions

As we pointed out in Sect. 2.3, the Big Field Idea has been a basis to propose
quadratic multivariate encryption schemes for decades. Nevertheless, Theorem 1
is not restricted to any particular degree, which means that this approach works
to generate polynomials of any degree, in particular degree 3. In this section
we show that if the central map is a low rank cubic polynomial, then, as in the
quadratic case, there must exists a low-rank linear combination of the polynomi-
als of the public key. In particular, we obtain an instance of the cubic MinRank
problem which can be solved using the techniques presented in Sect. 3. There-
after, we discuss the direct algebraic attack on cubic big field schemes having
low rank central map.

4.1 Big Field Idea for Cubic Polynomials

Let F ∈ K[X] be a homogeneous weight 3 polynomial given by

F(X) =
∑

1≤i,j,k≤n

αi,j,kXqi−1+qj−1+qk−1

and S, T ∈ F
n×n invertible matrices. Our first goal is to give an explicit expres-

sion for the multivariate cubic polynomials of the composition T ◦φ◦F ◦φ−1 ◦S.
We begin by representing the map F as F(X) = T (X,X,X) where X =

1 Notice that we are using an upper bound to estimate the complexity. This is a
customary usage for this kind of attacks. In practice, it has been observed [32] that,
on average, this bound is not too far from the actual complexity.
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(Xq0
, . . . , Xqn−1

)ᵀ and T : K
n × K

n × K
n → K is the trilinear form given

by
T (β, δ,γ) =

∑

1≤i,j,k≤n

αi,j,k · (βiδjγk).

Let A be the three-dimensional matrix whose entry (i, j, k) is given by αi,j,k, and
assume without loss of generality that the matrix A is symmetric (otherwise we
can take the matrix whose (i, j, k) entry is given by 1

3! · (A[i, j, k] + A[i, k, j] +
A[j, i, k] + A[j, k, i] + A[k, i, j] + A[k, j, i]), which represents the same trilinear
form T ).

Let T ′ : Kn × K
n × K

n → K be the trilinear form given by T ′(β, δ,γ) =
T (ΔSβ,ΔSδ,ΔSγ), we can write this trilinear form as

T ′(β, δ,γ) =
∑

1≤i,j,k≤n

α′
i,j,k · (βiδjγk)

where α′
i,j,k = T ′(ei, ej , ek) = T (ΔSei,ΔSej ,ΔSek).

Let A′ be the three-dimensional matrix whose entry (i, j, k) is given by α′
i,j,k.

Notice that this is the cubic version of the matrix (ΔS)ᵀA(ΔS) from Sect. 2.3.
It is easy to see that the matrix A′ is symmetric since the matrix A is.

Let a ∈ F
n and let α = φ−1(Sa), we know that Fr(α) = Δ · φ(α) = ΔS · a

and therefore

F ◦ φ−1(Sa) = F(α) = T (Fr(α),Fr(α),Fr(α)) = T (ΔS · a,ΔS · a,ΔS · a)

= T ′(a,a,a) =
∑

1≤i,j,k≤n

α′
i,j,k · (aiajak).

Let R1, . . . , Rn ∈ F
n×n×n be three-dimensional symmetric matrices such that

A′ = y0 · R1 + y1 · R2 + · · · + yn−1 · Rn, where y0, y1 . . . yn−1 is the basis of K
over F, as explained in Sect. 2.3. Then

F ◦ φ−1 ◦ S(a) =
∑

1≤i,j,k≤n

α′
i,j,k · (aiajak)

=
∑

1≤i,j,k≤n

(
n∑

�=1

y�−1R�[i, j, k]

)
· (aiajak)

=
n∑

�=1

y�−1

⎛

⎝
∑

1≤i,j,k≤n

R�[i, j, k] · (aiajak)

⎞

⎠

︸ ︷︷ ︸
t�

.

Since t� ∈ F, we obtain that φ ◦ F ◦ φ−1 ◦ S(a) = (t1, . . . , t�)ᵀ. Therefore,
each cubic polynomial in the composition φ ◦ F ◦ φ−1 ◦ S is given by f�(x) =∑

1≤i,j,k≤n R�[i, j, k] · (xixjxk). Finally, when we apply the transformation T we
obtain that each cubic polynomial in the composition P = T ◦ φ ◦ F ◦ φ−1 ◦ S is
given by
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p�(x) =
∑

1≤i,j,k≤n

(
n∑

t=1

T [�, t] · Rt[i, j, k]

)
· (xixjxk).

As a conclusion, if we let A� be the matrix whose entry (i, j, k) is given
by

∑n
t=1 T [�, t] · Rt[i, j, k] then we obtain that this is the symmetric matrix

corresponding to the �-th polynomial in P . In particular, this shows we can
compute efficiently the composition T ◦ φ ◦ F ◦ φ−1 ◦ S from S, T and F .

4.2 Existence of Low Rank Linear Combination

Let us continue with the same setting as before, and let r be the rank of A, which
in particular means that A can be written as

∑r
�=1 u� ⊗ v� ⊗ w�. Suppose

that r is small. In this section we prove that there exists a low-rank linear
combination of the three-dimensional matrices representing the composition P ,
and in Sect. 3.1 we showed how to find such combination.

Recall that the matrix A′ was defined as A′[i, j, k] = T (ΔSei,ΔSej ,ΔSek),
we claim that the rank of this matrix is at most the rank of A. We show this by
exhibiting vectors u′

�,v
′
�,w

′
� ∈ K

n such that A′ =
∑r

�=1 u′
� ⊗ v′

� ⊗ w′
�. Let M

be the matrix ΔS, we define u′
� =

∑n
i=1 u�[i] · M [i, ·], v′

� =
∑n

i=1 v�[i] · M [i, ·]
and w′

� =
∑n

i=1 w�[i] · M [i, ·], then

A′[i′, j′, k′]
= T ′(Mei′ ,Mej′ ,Mek′)

=
∑

1≤i,j,k≤n

A[i, j, k] ·
(
(Mei′)[i] · (Mej′)[j] · (Mek′)[k]

)

=
∑

1≤i,j,k≤n

(
r∑

�=1

u�[i] · v�[j] · w�[k]

)
(
(M [i, ·]ei′) · (M [j, ·]ej′) · (M [k, ·]ek′)

)

=
r∑

�=1

∑

1≤i,j,k≤n

(
u�[i]M [i, ·]ei′

)(
v�[j]M [j, ·]ej′

)(
w�[k]M [k, ·]ek′

)

=
r∑

�=1

(
n∑

i=1

u�[i]M [i, ·]ei′

)⎛

⎝
n∑

j=1

v�[j]M [j, ·]ej′

⎞

⎠
(

n∑

k=1

w�[k]M [k, ·]ek′

)

=
r∑

�=1

[(u′
�) ei′ ] [(v′

�) ej′ ] [(w′
�) ek′ ]

=
r∑

�=1

u′
�[i

′] · v′
�[j

′] · w′
�[k

′].

From this we conclude that A′ =
∑r

�=1 u′
� ⊗ v′

� ⊗ w′
� and hence Rank(A′) ≤ r.

Now let (λ1, . . . , λn) = (y0, . . . , yn−1) · T−1, then

n∑

i=1

λiAi =
n∑

i=1

λi

⎛

⎝
n∑

j=1

T [i, j] · Rj

⎞

⎠ =
n∑

j=1

Rj

n∑

i=1

T [i, j] ·λi =
n∑

j=1

Rj · yj−1 = A′.
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This shows that there is a linear combination of the matrices representing
the public key whose result is a low rank three-dimensional matrix. This yields
directly an instance of the cubic MinRank problem which can be solved with the
extension of the Kipnis-Shamir modeling presented in Sect. 3. As we mentioned
before, this is by itself a weakness of the scheme, as it allows distinguishing public
keys from random polynomial systems and also have implications on the degree
of regularity of the system, as stated in Sect. 3.3. Moreover, the coefficients we
have obtained here carry the same information about the secret key as those in
the original (quadratic) MinRank attack, and this can be used in a similar way
to construct equivalent keys.

4.3 Algebraic Attack for Cubic Big Field Constructions

As a complement of Sect. 3.3, we now consider the case when the polynomials
p1, . . . , pn are constructed using the big field idea for cubic polynomials. Hodges
et al. [16] proved that for a scheme with core polynomial of weight 3, its first
fall degree Dff(p1, . . . , pn) is bounded by

Dff(p1, . . . , pn) ≤ LRank(P0)(q − 1) + 5
2

.

Here P0 is the homogeneous part of highest degree of the core polynomial F seen
as an element of the graded algebra K[X0, . . . , Xn−1]/

(
Xq

0 , . . . , Xq
n−1

)
, where Xi

corresponds to Xqi

, for i = 0, . . . , n − 1. In our case

P0 =
∑

1≤i,j,k≤n

αi,j,kXi−1Xj−1Xk−1.

If we take αijk uniformly at random, then with high probability LRank(P0) ≤
Rank(P0), so

Dff(p1, . . . , pn) ≤ Rank(F)(q − 1) + 5
2

, (7)

since Rank(P0) = Rank(F).
In [16] the authors show that if deg F = D, then LRank(F) ≤ �logq(D −

2)� + 1, and hence

Dff(p1, . . . , pn) ≤
(q − 1)�logq(D − 2)� + 4 + q

2
. (8)

We now want to experimentally study the tightness of the bound (8), as they
did in [16] for different parameters2. In Table 2 we present some of the results
obtained for different values of the parameters q, n and t, where t is the smallest
integer such that D ≤ qt − 1. The value B corresponds to the bound given
by Eq. (8), and Dff is the first fall degree of the system for each choice of the
parameters, which is read from Magma’s verbose output. All the polynomials
used in the attack were built as it will be explained in Sect. 4.1, and for all cases
we have included the field equations, i.e., xq

i − xi for i = 1, . . . , n.
2 Table 1 in [16] do not include the values for the parameters we are interested in, so

we constructed our own version of it.
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Table 2. Experimental results to study the tightness of the bound for Dff given by
(8), for different choices of the parameters q, t and n. The value of Dff is read from
Magma’s verbose output.

We notice that the bound given by (8) is very tight for small values of q and
t, and that it starts to widen considerably as q increases, and with a smaller pace
as t increases. We also observe that for fixed q and t, the bound gets tighter as n
increases. It is very clear that the bound needs to be improved for larger values
of q.

5 Conclusions and Future Work

The minimum rank of a linear combination of the public polynomials is an
important property of multivariate schemes. We have shown that this is still
true for cubic schemes. The rank for cubic maps can be directly studied and
exploited.

Many attacks have shown that it is hard to escape a low-rank when con-
structing quadratic encryption schemes. A high rank defect is necessary to allow
decryption, leaving a low rank map exposed. Our rank analysis of cubic cryp-
tosystems shows that low, fixed rank constructions have no chance of being
secure. On the other hand, we are convinced that cubic polynomials allow more
versatile constructions than quadratic, where a rank defect can help decryp-
tion but leave a rank large enough so that it does not necessarily represent a
weakness.

This work is preliminary in the sense that it opens new questions. Can we
construct cubic maps with a rank defect that allows decryption but leave a rank
large enough for security? Other algorithms to solve the cubic-min-rank prob-
lem are likely, for example based on the minors modeling or on guessing kernel
vectors. The complexity of each of these approaches needs to be studied more
carefully (even in the quadratic case). These attacks could also be extendable to
the cases where the field has characteristic 2 or 3. Finally, the hardness of rank
problems for three-dimensional matrices can be further harvest as a security
assumption.
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Abstract. The HFEv- signature scheme is one of the most studied mul-
tivariate schemes and one of the major candidates for the upcoming stan-
dardization of post-quantum digital signature schemes. In this paper, we
propose three new attack strategies against HFEv-, each of them using
the idea of projection. Especially our third attack is very effective and is,
for some parameter sets, the most efficient known attack against HFEv-.
Furthermore, our attack requires much less memory than direct and rank
attacks. By our work, we therefore give new insights in the security of
the HFEv- signature scheme and restrictions for the parameter choice of
a possible future standardized HFEv- instance.
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Gröbner basis · Projection

1 Introduction

Multivariate cryptography is one of the main candidates for establishing cryp-
tosystems which resist attacks with quantum computers (so called post-quantum
cryptosystems). Especially in the area of digital signatures, there exists a large
number of practical multivariate schemes such as UOV [1] and Rainbow [2].

Another well known multivariate signature scheme is the HFEv- signature
scheme, which was first proposed by Patarin et al. in [3]. Most notably about this
scheme are its very short signatures, which are currently the shortest signatures
of all existing schemes (both classical and post-quantum).

In this paper we propose three new attacks against the HFEv- signature
scheme, each of them using the idea of projection. This means that each of our
attacks reduces the number of variables in the system by guessing, either before
or after the attack itself.
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The most interesting results hereby are provided by a distinguishing based
attack, which is related to the hybrid approach of the direct attack [4]. The
goal of our attack is to remove the vinegar modifier. This allows the attacker to
follow up with any key recovery or signature forgery attack applicable to an HFE-
instance with the same degree bound and the same number of removed equations
as the original HFEv- instance. The attack is very effective and outperforms,
for selected parameter sets, all other attacks against HFEv-. Furthermore, the
memory requirements of our attack are far less than those of direct and MinRank
attacks.

The rest of the paper is organized as follows. In Sect. 2, we give a short
overview of multivariate cryptography and introduce the HFEv- cryptosys-
tem, while Sect. 3 reviews the previous cryptanalysis of this scheme. Section 4
describes our first two attacks, which combine the MinRank attack with the
idea of projection. In Sect. 5, we present then our distinguishing based attack,
whose complexity is analyzed in Sect. 6. Finally, Sect. 7 discusses shortly ideas
for future work.

2 Hidden Field Equations

2.1 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials over a finite field F. The security of multivariate schemes
is based on the MQ Problem of solving such a system. The MQ Problem is
proven to be NP-Hard even for quadratic polynomials over the field GF(2) [5]
and believed to be hard on average (both for classical and quantum computers).

To build a multivariate public key cryptosystem (MPKC), one starts with
an easily invertible quadratic map F : F

n → F
m (central map). To hide the

structure of F in the public key, we compose it with two invertible affine (or
linear) maps T : Fm → F

m and U : Fn → F
n. The public key of the scheme is

therefore given by P = T ◦ F ◦ U : Fn → F
m. The relation between the easily

invertible central map F and the public key P is referred to as a morphism of
polynomials.

The private key consists of the three maps T ,F and U and therefore allows
to invert the public key. To generate a signature for a document (hash value)
h ∈ F

m, one computes recursively x = T −1(h) ∈ F
m, y = F−1(x) ∈ F

n and
z = U−1(y) ∈ F

n. To check the authenticity of a signature z ∈ F
n, one simply

computes h′ = P(z) ∈ F
m. If the result is equal to h, the signature is accepted,

otherwise rejected. This process is illustrated in Fig. 1.

2.2 HFE Variants

The HFE encryption scheme was proposed by Patarin in [6]. The scheme belongs
to the BigField family of multivariate schemes, which means that it uses a degree
n extension field E of F as well as an isomorphism φ : Fn → E. The central map
is a univariate polynomial map over E of the form



Improved Cryptanalysis of HFEv- via Projection 377

Signature Generation

Signature Verification

h ∈ F
m x ∈ F

m y ∈ F
n z ∈ F

n

P

T −1 F−1 U−1

Fig. 1. Signature generation and verification for multivariate signature schemes

F(X) =
qi+qj≤D∑

0≤i,j

αijX
qi+qj

+
qi≤D∑

i=0

βiX
qi

+ γ.

Due to the special structure of F , the map F̄ = φ−1 ◦ F ◦ φ is a quadratic map
over the vector space F

n. In order to hide the structure of F in the public key,
F̄ is composed with two affine maps T and U , i.e. P = T ◦ F̄ ◦ U .

After the basic scheme was broken by direct [7] and rank attacks [8], sev-
eral versions of HFE for digital signatures have been proposed. Basically, these
schemes use two different techniques: the minus and the vinegar modification.
For the HFEv- signature scheme [3], the central map F has the form

F(X,xV ) =
qi+qj≤D∑

0≤i,j

αijX
qi+qj

+
qi≤D∑

i=0

βi(xn+1, . . . , xn+v)Xqi

+γ(xn+1, . . . , xn+v),

where βi and γ are linear and quadratic maps in the vinegar variables xV =
(xn+1, . . . , xn+v) respectively. Defining ψ : Fn+v → E × F

v by ψ = φ × idv, the
public key has the form

P = T ◦ φ−1 ◦ F ◦ ψ ◦ U : Fn+v → F
n−a

with two affine maps T : Fn → F
n−a and U : Fn+v → F

n+v, and is a multivariate
quadratic map with coefficients and variables over F.

Signature Generation: To generate a signature z for a document d, one uses a
hash function H : {0, 1}� → F

n−a to compute a hash value h = H(d) ∈ F
n−a

and performs the following four steps

1. Compute a preimage x ∈ F
n of h under the affine map T and set X = φ(x) ∈

E.
2. Choose random values for the vinegar variables xn+1, . . . , xn+v and substitute

them into the central map to obtain the parametrized map FV .
3. Solve the univariate polynomial equation FV (Y ) = X over the extension field

E by Berlekamp’s algorithm.
4. Compute the signature z = U−1(φ−1(Y )||xn+1|| . . . ||xn+v) ∈ F

n+v.

Signature Verification: To check the authenticity of a signature z ∈ F
n+v, the

verifier computes h = H(d) and h′ = P(z). If h′ = h holds, the signature is
accepted, otherwise rejected.
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3 Previous Cryptanalysis

3.1 Direct Algebraic Attack

The direct algebraic attack is the most straightforward way to attack a mul-
tivariate cryptosystem such as HFEv-. In this attack, one considers the public
equation P(z) = h as an instance of the MQ-Problem. In the case of HFEv-, this
public system is slightly underdetermined. In order to make the solution space
zero dimensional, one therefore fixes a+v variables in order to get a determined
system before applying an algorithm like XL [9] or a Gröbner basis method such
as F4 or F5 [10,11]. In some cases one gets better results by guessing additional
variables, even if this requires to run the Gröbner basis algorithm several times
(hybrid approach [4]).

The complexity of a direct attack using the hybrid approach against a system
of m quadratic equations in n variables can be estimated as

Compdirect = mink qk · 3 ·
(

n − k + dreg
dreg

)2

·
(

n − k

2

)
,

where dreg is the so called degree of regularity of the multivariate system. Note
that this formula gives only a rough estimate and lower bound of the complexity
of a direct attack, since it assumes that the linear systems appearing during the
attack are very sparse systems. It is not clear if this assumption holds and if the
used Wiedemann algorithm can work with the assumed complexity.

Experiments have shown that the public systems of HFE and its variants can
be solved significantly faster than random systems [7,12]. This phenomenon was
studied by Ding et al. in a series of papers [13–15]. In [15] it was shown that the
degree of regularity of solving an HFEv- system is upper bounded by

dreg, HFEv− ≤
{

(q−1)·(r+a+v−1)
2 + 2 q even and r + a odd

(q−1)·(r+a+v)
2 + 2 otherwise

. (1)

3.2 MinRank

The historically most effective attack on the HFE family of cryptosystems is
the MinRank attack which exploits the algebraic consequence of a low degree
bound D. This low degree bound leads to the fact that the central map has a
low Q-rank.

Definition 1. The Q-rank of a multivariate quadratic map F : F
n → F

n

over the finite field F with q elements is the rank of the quadratic form Q on
E[X1, . . . , Xn] defined by Q(X1, . . . , Xn) = φ ◦ F ◦ φ−1(X), under the identifica-
tion X1 = X,X2 = Xq, . . . , Xn = Xqn−1

.

Q-rank is invariant under one-sided isomorphisms of polynomials of the form
G = I ◦ F ◦ U , where I is the identity transformation. Q-rank is not, however,
invariant under isomorphisms of polynomials in general. The min-Q-Rank of a
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quadratic map F is the minimum Q-rank of any quadratic map in the isomor-
phism class of F . This quantity is invariant under isomorphisms of polynomials,
and is the relevant quantity for cryptanalysis. For historical reasons, language is
often abused and the term Q-rank is used in place of min-Q-rank.

As an example, consider an odd characteristic instance of HFE. We may
write the homogeneous quadratic part of F as

[
X Xq · · · Xqn−1

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1,1 α′
1,2 · · · α′

1,d 0 · · · 0
α′
1,2 α2,2 · · · α′

2,d 0 · · · 0
...

...
. . .

...
...

. . .
...

α′
1,d α′

2,d · · · αd,d 0 · · · 0
0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

X
Xq

...
Xqn−1

⎤

⎥⎥⎥⎦ ,

where α′
i,j = 1

2αi,j and d = �logq(D)�. Clearly, this quadratic form over the ring
E[X1, . . . , Xn] has rank d, and thus the HFE central map has Q-rank d.

The first iteration of the MinRank attack in the BigField setting is the
Kipnis-Shamir (KS) attack of [8]. Via polynomial interpolation, the public key
can be expressed as a quadratic polynomial G over the degree n extension field
E. By construction there is an F-linear map T −1 such that T −1 ◦ G has rank d,
thus there is a rank d matrix that is an E-linear combination of the Frobenius
powers of G. This turns recovery of the transformation T into the solution of a
MinRank problem over E.

A significant improvement to this method for HFE is the key recovery attack
of Bettale et al. [16]. The first significant observation made was that an E-linear
combination of the public polynomials has low rank as a quadratic form over
E. By constructing a formal linear combination of the public polynomials with
variable coefficients, one can collect the polynomials representing (d+1)×(d+1)
minors of this linear combination, which must be zero by the Q-rank bound. The
advantage this technique offers is that the coefficients of the polynomial are in F;
thus, the Gröbner basis calculation can be performed over F, while the variety
is computed over E. This minors modeling method is significantly more efficient
than the KS-attack when the number of equations is similar to the number of
variables. (In contrast, for schemes such as ZHFE, see [17], it seems that the
KS modeling is more efficient, probably due to the large number of variables in
the Gröbner basis calculation, see [18].) To make the ideal zero-dimensional, we
fix one variable; thus ,the complexity of the KS-attack with minors modeling is
asymptotically O(n(�logq(D)�)ω), where 2 ≤ ω ≤ 3 is the linear algebra constant.

The MinRank approach can also be effective in attacking HFE-. The key
observation in [19] is that not only does the removal of an equation increase the
Q-rank by merely one, there is also a basis in which it increases the degree only
by a factor of q. Thus HFE- schemes with large base fields are vulnerable to the
minors modeling method of [16], even when multiple equations are removed. The
complexity of the KS-attack with minors modeling for HFE- is asymptoticaly
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O(n(�logq(D)�+a)ω), where a is the number of equations removed and 2 < ω ≤ 3
is the linear algebra constant.

4 Variants of MinRank with Projection

As first explicitly noted in [15], the Q-rank of the central map is increased by
v with the introduction of v vinegar variables and therefore the min-Q-rank of
HFEv- is �logq(D)�+a+v. We now discuss techniques for turning this observation
into a key recovery attack. From this point on, let r denote �logq(D)�, that is,
the Q-rank of the HFE component of the central map.

4.1 MinRank then Projection

The simplest way to attempt an attack utilizing the low Q-rank of the central
map of HFEv- is to directly apply a MinRank attack and then try to discover
the vinegar subspace by considering the solution as a quadratic form. To this
end, consider the surjective E-algebra representation Φ : E → A defined by
Φ(X) = (X,Xq, . . . , Xqn−1

). We may map directly from an n-dimensional vector
space over F to A via right multiplication by the matrix

Mn =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
θ θq · · · θqn−1

θ2 θ2q · · · θ2qn−1

...
...

. . .
...

θn−1 θ(n−1)q · · · θ(n−1)qn−1

⎤

⎥⎥⎥⎥⎥⎥⎦
,

with the choice of a primitive element θ ∈ E (i.e. E = F(θ)). Right multiplication
by Mn corresponds to the linear map Φ ◦ φ, where the choice of isomorphism φ
is determined by the choice of primitive element θ.

We may incorporate the vinegar variables into the picture by simply append-
ing them to A. Specifically, define the map M̃n : F

n+v → A × F
v by right

multiplication by the matrix

M̃n =
[

Mn 0n×v

0v×n Iv

]
,

where Iv is the identity matrix. We may then represent any HFEv- map as a
single (n + v) × (n + v) matrix with coefficients in E. Note specifically that any
function bilinear with respect to the vinegar variable xn and the HFE variables
x0, . . . , xn−1 can be encoded in row and/or column n of the quadratic form

xQx� = xM̃nRM̃�
n x�,

where R ∈ M(n+v)×(n+v)(E).
Let F be defined by xM̃nFM̃�

n x� = F(x) where F is the central map of
HFEv-. We will say that F is the matrix representation of F over A × F

v. Let
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F∗i be the matrix representation of the ith Frobenius power of F over A × Fv.
Then we have, for example the following shape for F∗0:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0,0 · · · α0,d−1 0 · · · 0 β0,n · · · β0,n+v−1

...
. . .

...
...

. . .
...

...
. . .

...
α0,d−1 · · · αd−1,d−1 0 · · · 0 βd−1,n · · · βd−1,n+v−1

0 · · · 0 0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0 0 · · · 0
β0,n · · · βd−1,n 0 · · · 0 βn,n · · · βn,n+v−1

...
. . .

...
...

. . .
...

...
. . .

...
β0,n+v−1 · · · βd−1,n+v−1 0 · · · 0 βn,n+v−1 · · · βn+v−1,n+v−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here we see that rank(F∗0) = r + v. The structure of F∗1 is similar with the
upper left HFE block consisting of αi,j shifted down and to the right and raised
to the power of q, and the symmetric blocks of mixing monomials shifted down
and to the right with a more complicated function applied to the βi,j coefficients
to respect the Frobenius map.

Now let U,T and Pi be the matrix representations of the affine isomorphisms
U and T and the public quadratic forms Pi, respectively. Then we derive the
relation

(P1, . . . ,Pn)T−1Mn = (UM̃nF∗0M̃�
n U�, . . . ,UM̃nF∗(n−1)M̃�

n U�).

Thus UM̃nF∗0M̃�
n U� is an E-linear combination of the public quadratic forms.

Since UM̃n is invertible, the rank of this linear combination is the rank of F∗0,
which is r + v.

Following the analysis of [19, Theorem 2], we see that the effect of the minus
modifier on the matrix representation of F over A × F

v is to add to it constant
multiples of itself with a cyclic shift of the rows and columns down and to the
right within the HFE block. Thus for HFEv-, F∗0 has the shape given in Fig. 2.
The rank of this quadratic form is r + a + v.

The solution of the MinRank instance provides an equivalent transformation
T ′ to the output transformation T (up to the choice of extension to full rank)
and a matrix L representing the low Q-rank quadratic form U′M̃nF̂∗0M̃�

n U′�

over A × F
v, where P = T ′ ◦ φ−1 ◦ F̂ ◦ φ ◦ U ′ for an equivalent private key

(T ′, F̂ ,U ′). Now that the correct output transformation is recovered, it remains
to recover the vinegar subspace of the map L defined by L = U′M̃nF̂∗0M̃�

n U′�.
First, note that the kernel of L as a linear map is orthogonal to the vinegar

subspace, so we may simplify the analysis by projecting onto the orthogonal
complement of a codimension one subspace of the kernel. Let L̂ denote the com-
position of L with this projection. The strategy now is to compose codimension
one projection mappings π with the transformation L̂ to filter out the vinegar
variables. It suffices to choose projections whose kernels are orthogonal to ker(L̂).
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Fig. 2. The shape of the central map of HFEv- composed with the minus projection
over A × F

v. The shaded areas represent possibly nonzero entries.

If there is a nontrivial intersection between the kernel of π and the vinegar
subspace, the rank of the matrix representation of L̂◦π, ΠL̂Π�, will be reduced.
In contrast, if this intersection is empty, the rank of ΠL̂Π� should remain the
same. To see this, note that by an argument symmetric to that of [19, Lemma
1] we may equivalently define L̂ ◦ π by

L̂ ◦ π = U−1 ◦ [(φ ◦ π1 ◦ φ−1 ◦ S1) × π2] ◦ S2,

where S1 : Fn → F
n is nonsingular, S2 : Fn+v → F

n × F
v is an isomorphism,

π1 : E → E has degree at most qn−r−a (since the intersection of the image of
L̂ ◦ π and the HFE subspace is at least (r + a)-dimensional) and π2 : Fv → F

v

is linear. Since the degree bound of the central HFE quadratic form is qr+a, the
highest monomial degree in the composition of π2 with this map is bounded by
qn−1, thus the polynomials π1, π

q
1, . . . , π

qr+a

1 are linearly independent.
The probability that the linear form defining ker(π) which is orthogonal to

the kernel of L̂ lies in the vinegar subspace is q−(r+a+1). Once such a vector is
recovered, this step is repeated on the orthogonal complement of the discovered
vectors until a basis for the vinegar subspace is found. Thus the complexity of
this method when fixing one variable to make the ideal zero dimensional is

CompMP = O
((

n + r + v

r + a + v

)2(
n − a

2

)
+ (r + a + v + 1)3qr+a+1

)
.

4.2 Projection then MinRank

Another approach using MinRank is a “project-then-MinRank” approach. In
this strategy, one randomly projects the plaintext space onto a codimension k
subspace and then applies the MinRank attack. Since the projection π cannot
increase the Q-rank of the central map, the Q-rank is at most r + a + v.

We may choose k = n − r − a − v, and expect that the rank of P ◦ π is still
r + a + v, due to the fact that the HFE component is still of full rank, as noted
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in the previous section. If, however, there is a nontrivial intersection between
the kernel of π and the vinegar subspace, the rank of this quadratic form will be
less than r + a + v. The probability this occurs is qk−n = q−(r+a+v).

Generalizing, we may project further in an attempt to eliminate possibly
more vinegar variables and reduce the rank further. The minors system of a
MinRank attack at rank r is fully determined if the square of r less than the
number of variables bounds the number of public equations; thus, if the image
of π is of dimension at least the sum of

√
n − a and r, the minors system is

still fully determined. Therefore, consider eliminating c vinegar variables. This
requires k to be at least n − a − r + c −

√
n − a. The probability that there is a

c-dimensional intersection between the kernel of π and the vinegar subspace is
then qc(k−n)−(c

2) ≥ q(
c+1
2 )−cr−ca−c

√
n−a.

Once at least one vinegar variable is found, the new basis can be utilized
to filter out the remaining vinegar variables as in the previous method. The
complexity of the this method with one variable fixed is

CompPM = O
(

qc(r+a+
√

n−a)−(c+1
2 )

(
n + r + v − c

r + a + v − c

)2(
n − a

2

))
.

5 The Distinguishing Based Attack

In this section we present our distinguishing based attack against the HFEv-
signature scheme. We restrict to the case of F = GF(2). The idea of the attack
is closely related to the direct attacks with projection (also known as the hybrid
approach). We define

V =

{
n+v∑

i=n+1

λiUi|λi ∈ {0, 1}
}

,

where Ui denotes the i-th component of the affine transformation U : Fn+v →
F

n+v. Therefore, V is the space spanned by the affine representations of the vine-
gar variables xn+1, . . . , xn+v. Our attack is based on the following two observa-
tions.

– Consider the two HFEv- public keys P1 = HFEv−(n,D, a, v1) and P2 =
HFEv−(n,D, a, v2). Before applying a Gröbner basis algorithm to the sys-
tems, we fix a + v1 variables in P1 and a + v2 variables in P2 to get deter-
mined systems. As shown in Table 1 and Fig. 3, direct attacks against these
systems behave differently. In particular, we can distinguish between deter-
mined instances of the two systems P1 and P2 by looking at the step degrees
of the F4 algorithm. This remains possible even when adding (not too many)
additional linear equations to the systems P1 and P2 (thus guessing some of
the variables) before applying a Gröbner basis method (hybrid approach).

– Let us consider the special case where v2 = v1 − 1 holds. By adding one
linear equation � ∈ V to P1, we remove the influence of one of the vinegar
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variables from the system P1. A direct attack against the so obtained system
P ′
1 therefore behaves in exactly the same way as a direct attack against the

system P2 (see Table 2).

Table 1. Step degrees of the F4 algorithm against determined HFEv- systems for
different values of v

v HFEv-(26, 17, 1, v) HFEv-(33, 9, 3, v)

0 2,3,4,3,4 2,3,4,4,4

1 2,3,4,4,4 2,3,4,5,4

2 2,3,4,5,4 2,3,4,5,5

3 2,3,4,5,5 2,3,4,5,5,5,5,5,6

4 2,3,4,5,5,5,5,5 2,3,4,5,6,6

5 2,3,4,5,6

Random system 2,3,4,5,6 2,3,4,5,6,6

5.1 The Distinguisher

Based on the two above observations, we can now construct a distinguisher as
follows. We start with an HFEv- public key P = HFEv−(n,D, a, v). P consists
of n−a quadratic equations in n+v variables over the field GF(2). After adding
the field equations {x2

i − xi : i = 1, . . . , n + v}, we append k randomly chosen
linear equations �1, . . . , �k to the system. Therefore, our new system P ′ consists
of

– the n − a quadratic HFEv- equations from P
– n + v field equations x2

i − xi = 0 (i = 1, . . . , n + v)
– the k linear equations �1, . . . , �k.

Altogether, the system P ′ consists of 2n−a+ v +k equations in n+ v variables.
After having constructed the system P ′, we solve it via a Gröbner basis

algorithm. Due to Observation 2, the behaviour of this algorithm should depend
on the fact whether one of the linear equations �i added to the system (or a
linear combination of the �i) is an element of the vinegar space V. In fact, we
can observe a difference in the step degrees of the algorithm (see Example 1
below).

Formally written, we can use our technique to distinguish between the two
cases

{
k∑

i=1

λi�i | λi ∈ {0, 1}
}

∩ V = ∅ and
{

k∑
i=1

λi�i | λi ∈ {0, 1}
}

∩ V �= ∅.

(2)

However, in most cases that
{∑k

i=1 λi�i | λi ∈ {0, 1}
}

∩ V �= ∅, the intersection

contains only a single equation �̃.
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Remark: We have to note here that the number k of linear equations added
to the system P is upper bounded by a value k̄(n,D, a, v). When adding more
than k̄ linear equations to the system, a distinction between the two cases of (2)
is no longer possible.

Example 1: We consider HFEv- systems with (n,D, a) = (33, 9, 3) and varying
values of v ∈ {0, . . . , 4}. The resulting HFEv- public keys are systems of n−a =
30 quadratic equations in n + v variables. After appending the field equations
{x2

i − xi = 0} to the systems, we added randomly chosen linear equations to
reduce the effective number of variables in our systems. Figure 3 shows the degree
of regularity of a direct attack using F4 against the (projected) systems. For
comparison, the figure also contains data for a random system of the same size.

Fig. 3. Direct attack against (projected) HFEv- systems with (n, D, a) = (33, 9, 3) and
varying values of v

As Fig. 3 shows, there exists, for every parameter set (n,D, a, v) a number k̄
such that

(1) When adding less than k̄ linear equations to the system, the degree of regu-
larity of a direct attack against the projected system is the same as that of
a direct attack against the unprojected system.

(2) When adding k ≥ k̄ linear equations, the system behaves exactly like a
random system of the same size.

Let us now look at our distinguisher. For this, we skip the parameter set
(n,D, a, v) = (33, 9, 3, 0) since, in this case, V = ∅ holds. However, as Table 2
shows, we can, for each of the values v ∈ {1, . . . , 4}, distinguish between the two
cases of (2).

For abbreviation, we use in the table L :=
{∑k

i=1 λi�i | λi ∈ {0, 1}
}

. Note
that the evolution of the step degrees for HFEv-(33, 9, 3, 4) is the same as for a
random system of the same size.
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Table 2. Distinguisher experiments on HFEv-(33, 9, 3, v) systems for different values
of v

v k̄ n − k̄ Step degrees of F4

For L ∩ V = ∅ For L ∩ V = {�̃}
4 3 27 1,2,3,4,5,6 1,2,3,4,5,5,5

3 4 26 1,2,3,4,5,5,5 1,2,3,4,5,5

2 4 26 1,2,3,4,5,5 1,2,3,4,5,4

1 9 21 1,2,3,4,5 1,2,3,4,4,4

5.2 The Attack

Based on the distinguisher presented in the previous section, we can construct an
attack against HFEv- as follows. By performing the distinguishing experiment
with a large number of systems P ′ (containing different linear equations), we can
find a set of k linear equations �1, . . . , �k such that

{∑k
i=1 λi�i | λi ∈ {0, 1}

}
∩

V = {�̃1}. Using this, we can determine the exact form of �̃1 as follows. Note
that there exist coefficients αi ∈ {0, 1} (i = 1, . . . k) such that

�̃1 =
k∑

i=1

αi · �i.

In order to determine the exact form of this linear combination, we remove one
of the linear equations (say �1) from the system P ′ and add another randomly
chosen linear equation. If we still can observe a difference in the behaviour of
a direct attack compared to a random choice of linear equations, we know that
the coefficient α1 must be 0. Otherwise, the coefficient α1 must be 1, and we
have to add �1 back to the system.

We repeat this step for i = 2, . . . , k to determine the values of all the coeffi-
cients αi (i = 1, . . . , k). This will give us the exact form of the linear equation
�̃1 ∈ V. We denote this technique as “remove-and-add” strategy.

Having found �̃1, we add it to the original HFEv-(n,D, a, v) system. The
resulting system will behave exactly like an HFEv-(n,D, a, v − 1) system, and
we can again use our distinguisher and repeat the above procedure to find a
second linear equation �̃2 ∈ V. Note that this will be much easier than finding
�̃1 (see next section).

After having found v linear independent equations �̃1, . . . �̃v ∈ V and adding
them to the HFEv- system, the resulting system will behave exactly like an HFE-
(n,D,a) system (i.e. we have no vinegar variables any more). We can then use any
attack against HFE- (e.g. the key recovery attack of Vates et al. [19] or a direct
attack) to break the scheme. We analyze the complexity of our distinguisher and
this attack in the next section.

Let us briefly return to Example 1. When we start with the system P = HFEv-
(33, 9, 3, 4), we can use our distinguisher to find a set {�1, . . . , �k} of linear
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equations such that
{∑k

i=1 λi�i | λi ∈ {0, 1}
}

∩V = {�̃1}. After having recovered

the exact form of �̃, we can append it to the system P, which will then behave
exactly like an HFEv-(33, 9, 3, 3) system. Let us denote this new system by P(1).
We can then use the distinguisher on P(1) to obtain a second linear equation
�̃2 ∈ V. Adding �̃2 to the system P(1) leads to a system P(2) behaving exactly
like a HFEv-(33,9,3,2) system. By continuing this process, we finally obtain the
system P(4) corresponding to an HFEv- (33, 9, 3, 0) system. We can then break
this scheme by using any attack on HFE-.

Algorithm 1. Our distinguishing based attack
Input: HFEv-(n, D, a, v) public key P
Output: equivalent HFE-(n, D, a) public key P̃
1: Append k̄ randomly chosen linear equations �1, . . . , �k̄ in the variables x1, . . . , xn+v

(as well as the field equations x2
i − xi = 0) to the system P and solve it by F4.

2: Repeat this step until the F4-step degrees differ from the standard case.
This means that we have found a set of linear equations �1, . . . , �k such that{∑k

i=1 λi�i | λi ∈ {0, 1}
}

∩ V = {�̃1}
3: Determine the exact form of �̃ by the above described “remove-and-add” strategy.
4: Append the linear equation �̃ to the system P. The resulting system P ′ will behave

exactly like an HFEv-(n,D,a,v-1) public key.
5: Repeat the above steps until having found v linear independent equations

�̃1, . . . , �̃k ∈ V.
6: return P̃ = (P, �̃1, . . . , �̃v)

6 Complexity Analysis

In the first step of our attack, we have to find one linear equation �̃ ∈ V by using
our distinguisher and a following application of the “remove-and-add” strategy
described in the previous section. Therefore, the complexity of this first step of
our attack is determined by three factors:

1. The number of times we have to run the distinguisher in order to find a set
of linear equations �1, . . . , �k such that

{∑k
i=1 λi�i | λi ∈ {0, 1}

}
∩ V = {�̃} ,

2. The cost of one run of the distinguisher and
3. The cost of recovering the exact form of �̃.

The first number is determined by

– The probability that a randomly chosen linear equation in n + v variables is
contained in the space V spanned by the linear representation of the vine-
gar variables Un+1, . . . ,Un+v A randomly chosen linear equation �̄ in n + v
variables can be seen as a linear combination of the components of U , i.e.

�̄ =
n+v∑

i=1

λi · Ui. (3)
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The reason for this is that U is an invertible map from F
n+v to itself, which

means that the components of U form a basis of this space. There are 2n+v

choices for the parameters λi (i = 1, . . . , n + v). On the other hand, every
element �̃ of the space V spanned by the linear transformations of the vinegar
variables v1, . . . , vv can be written in the form

�̃ =
n+v∑

i=n+1

λi · Ui.

The probability that a randomly chosen linear equation �̄ lies in V is therefore
given by

prob(�̄ ∈ V) = 2−n. (4)

The reason for this is that all the coefficients λi (i = 1, . . . , n) in the repre-
sentation (3) of �̄ must be zero.

– The number of linear equations (and linear combinations thereof) added to
the public key. When adding k linear equations �1, . . . , �k to the public key,
we do not have to consider only the k equations �1, . . . , �k itself, but also all
linear combinations of the form

� =
k∑

i=1

λi · �i.

The total number of linear equations we have to consider is therefore not k,
but 2k.

Therefore, when adding k linear equations �1, . . . , �k to the public key, the prob-
ability of finding one linear equation �̃ ∈ V, is given by

prob = 1 − (1 − 2−n)2
k ≈ 2k−n.

In order to find one linear equation �̃ ∈ V, we therefore have to run our distin-
guisher about 2n−k times.

A single run of our distinguisher corresponds to one run of the F4 algorithm.
The cost of this can be estimated as

CompF4 = 3 ·
(

n′

dreg

)2

·
(

n′

2

)
,

where n′ is the number of variables in the quadratic system and dreg is the so
called degree of regularity.

Note that this formula assumes that the linear systems appearing during the
attack are solved using a sparse Wiedemann solver. Furthermore we use the fact
that the system is defined over the field GF(2), which reduces the number of
terms in the high degree polynomials.

With regard to the number n′ of variables we find that the linear equations
added to the public key are “absorbed” at a very early step of the F4 algorithm,
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i.e. they are used to reduce the number of variables in the system. This fact
is illustrated in Table 3. In the table, we consider two random systems, both
containing 25 quadratic equations. However, while the equations of system A are
polynomials in 25 variables, the polynomials of system B contain 35 variables.
On the other hand, the system B additionally contains 10 linear equations.

Table 3. Experiments with random systems

Step 25 equations, 25 variables 25 quadr. + 10 lin. equations, 35 variables

Degree Matrix size Time Degree Matrix size Time

1 10 × 36 0.0

1 20 × 36 0.0

1 2 25 × 326 0.0 2 330 × 631 0.0

2 3 652 × 2626 0.02 3 650 × 2626 0.02

3 4 7,894 × 14,498 1.27 4 7864 × 15568 1.34

4 5 52,488 × 52,956 79.86 5 52197 × 52665 80.26

5 6 248,705 × 245,506 179.34 6 248,273 × 108,524 182.24

As the table shows, both systems behave very similarly. Starting at step
2 (degree 3), there is no significant difference between the matrix sizes or the
running times of the single steps between the two systems.

We can therefore conclude that the quadratic systems we consider in our
distinguishing based attack (n − a quadratic equations + k linear equations in
n+v variables) behave just like systems of n−a quadratic equations in n+v−k
variables.

The cost of recovering the exact form of �̃ is negligible in comparison to
finding linear equations �1, . . . , �k such that

{∑k
i=1 λi�i | λi ∈ {0, 1}

}
∩ V =

{�̃}. Remember that �̃ can be written as a linear combination of �1, . . . , �k, i.e.
�̃ =

∑k
i=1 λi · �i.

As described in the previous section, we remove for this one linear equation
�i from the system P ′. By adding a randomly chosen linear equation, we obtain
a system P ′′ of the same dimensions. We apply the F4 algorithm against the two
systems P ′ and P ′′. If we observe a difference in the behavior of the algorithm,
we know that the coefficient λi in the above linear combination is 1. Otherwise
we have λi = 0. By running this test for all i ∈ {1, . . . , k}, we can determine
all the coefficients λi and therefore recover �̃. In order to recover �̃, we therefore
need 2 ·k runs of the F4 algorithm, which is far less than the 2n−k F4-runs above.
Therefore, we do not have to consider this step in our complexity analysis.

Altogether, we can estimate the complexity of this first step of our attack by

CompDist; classical = 2n−k · 3 ·
(

n + v − k

dreg

)2

·
(

n + v − k

2

)
. (5)
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In the presence of quantum computers, we can speed up the searching step of
this attack using Grover’s algorithm. Thus we get

CompDist; quantum = 2(n−k)/2 · 3 ·
(

n + v − k

dreg

)2

·
(

n + v − k

2

)
.

Note that this assumption of the complexity is very optimistic, since it assumes a
perfect “square-root” speed up by Grover’s algorithm. Since quantum algorithms
must be reversible, it is not clear if this is possible.

As Eq. (5) shows, the complexity decreases when we increase the number k
of linear equations added to the public key. However, as already mentioned in
the previous section, our distinguisher fails when k is too large. We denote the
maximal value of k for which our distinguisher works by k̄(n,D, a, v).

In order to remove all the vinegar variables from the system P, we have
to repeat the above process v times. However, with decreasing v we find (see
Table 2)

(1) the number k̄ of linear equations that we can add to the public system
increases, reducing the number of F4-runs.

(2) the degree of regularity of the systems generated by our distinguisher
decreases, reducing the complexity of a single F4-run.

Therefore, the following steps of our attack will be much faster than the first
step. This means, that we can estimated the complexity of the whole attack as
in formula (5).

However, in order to estimate the complexity of our attack against an HFEv-
(n,D, a, v) scheme in practice, we still have to answer the following two questions.

– What is the maximal number k̄ of linear equations we can add to the public
key such that our distinguisher works?

– What is the degree of regularity of the systems generated by our distinguisher?

In order to answer these questions, we once more consider Example 1 (see pre-
vious section).

First, let us consider the second question. As a comparison of Table 2 and
Fig. 3 shows, the degree of regularity of solving the systems generated by our
distinguisher corresponds exactly to the degree of regularity of an unprojected
HFEv- system with parameters (n,D, a, v). As stated in [20], we can estimate
this value as

dreg =
⌊

r + a + v + 7
3

⌋
, (6)

where r = �logq(D − 1)� + 1.
To answer the first question, let us take a closer look on the behavior of the

hybrid approach against random systems (see Fig. 3). We start with a random
system of 30 quadratic equations in 30 variables over GF(2). After appending
the field equations x2

i − xi = 0 (i = 1, . . . , 30), we add k ∈ {0, . . . , 20} linear
equations to the system. Table 4 shows for which values of k we reach given
values of regularity.
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Table 4. Degree of regularity of projected random systems with 30 equations

dreg # k of added linear equations

3 For k ≥ 16

4 For 10 ≤ k ≤ 15

5 For 4 ≤ k ≤ 9

6 For k ≤ 3

Let us define k̂(d) to be the maximal number of linear equations we can
add to the random system, such that the degree of regularity of a direct attack
against the system is greater or equal to d, i.e k̂(6) = 3, k̂(5) = 9 and k̂(4) = 15.

By comparing these numbers with the values of k̄ listed in Table 2, we find

k̂(d�) ≤ k̄ ≤ k̂(d�) + 1,

where d� is the degree of regularity of a direct attack against an HFEv-(n,D, a, v)
scheme (see Eq. (6)).

In order to estimate the complexity of our attack against an HFEv-(n,D, a, v)
scheme, we therefore proceed as follows.

1. We compute the degree of regularity of the unprojected HFEv-(n,D, a, v)
system (see Eq. (6)). Denote the result by d�.

2. We estimate the maximal number k̄ of linear equations we can add to the
public HFEv- system by k̂(d�). This value can be obtained as follows.
The degree of regularity of a random system of m = n−a quadratic equations
in n′ variables over GF(2) can be estimated as the smallest index d for which
the coefficient of Xd in

1
1 − X

·
(

1 − X2

1 − X

)n′

·
(

1 − X2

1 − X4

)m

is non-positive [21].
We can use this equation to determine the values of k̂(d�).

By substituting the so obtained values of k̄ and d� into formula (5), we therefore
get a close estimation of the complexity of our distinguishing based attack against
an HFEv-(n,D, a, v) system.

Remark: The above procedure allows to get an estimation of the complexity
of our distinguishing based attack against a given HFEv- scheme. However, it
seems to be a very hard task to find a closed formula for this complexity.

Example 2: Consider an HFEv- system over GF(2) with (n,D, a, v) =
(91, 5, 3, 2). We obtain r = �log2(D − 1)� + 1 = 3. The degree of regularity
of a direct attack against the HFEv- system (with field equations) is given by

dreg =
⌊

3 + 3 + 2 + 7
3

⌋
= 5.
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Therefore, we get

Compdirect = 3 ·
(

88
5

)2

·
(

88
2

)
≈ 263.9.

After adding k = 68 randomly chosen linear equations to the system, the step
degrees of the F4 algorithm look like 1; 1, 2, 3, 4. When one of the linear equation
was chosen from the vinegar space V, we obtain 1; 1, 2, 3, 3.

Therefore, we can estimate the complexity of our distinguisher by

CompDistinguisher = 223 ·
(

25
4

)2

·
(

25
2

)
≈ 260.1,

which is nearly 16 times faster than a direct attack.

The “MinRank-then-project” approach has a complexity estimated by

CompMP = 3 ·
(

96
8

)2(88
2

)
≈ 287.4,

while the complexity of the “project-then-MinRank” approach has complexity

CompPM = 214 · 3 ·
(

95
7

)2(88
2

)
≈ 292.6.

Therefore, for the above parameter set, the distinguishing based attack is the
most efficient classical attack against HFEv-.

With regard to the memory consumption, we get

Memorydirect =
(

88
5

)2

≈ 250.4,

MemoryMP =
(

96
8

)2

≈ 273.9,

MemoryPM =
(

95
7

)2

≈ 266.7,

MemoryDistinguisher =
(

25
4

)2

≈ 227.3.

As these data show, the distinguishing based attack requires much less memory
than the direct and the MinRank attack. Since attacks against large instances
of multivariate schemes often fail due to memory restrictions, the small memory
consumption is a huge benefit of this attack.

Remark: The comparably low complexity of our attack in Example 2 is caused
by the small number of vinegar variables in the system. Due to this, the distin-
guisher works also for relatively small numbers of variables, which enables us to
add a large number of linear equations to the system. This again reduces the
number of distinguisher runs and therefore the complexity of the attack. (In the
case of the example, we found that the distinguisher works for only 25 variables
in the system, due to which we had to run our distinguisher only 223 times.)
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When the number v of vinegar variables increases, we can not distinguish
between the two cases at 25 variables any more. We have to reduce the number of
linear equations added to the system and therefore have to run the distinguisher
much more often (and for larger systems). Therefore, for larger values of v, the
complexity of our attack increases.

For the parameter sets usually used in HFEv- like schemes (and suggested
for the NIST call for proposals), the direct attack is usually more efficient than
our attack. However, in terms of memory consumption, our attack is still much
better.

7 Possible Future Work

In this section we shortly describe a strategy to reduce the complexity of our
attack. However, since we have neither enough space nor time to present our
idea completely, we leave a detailed analysis as future work.

In the distinguishing step of our attack, we solve a large number of multivari-
ate systems using a direct attack. These systems are obtained by adding k linear
equations to a multivariate quadratic system P of m equations in n+v variables
(or equivalently projecting the system to a n + v − k dimensional subspace). In
Sect. 5, these projections were chosen at random.

The main idea to reduce the complexity of this step is now to select the pro-
jection in a slightly nonrandom fashion. In particular, we consider a projection
in two steps. We apply a projection π̃ of corank k+1 to the system P and derive
from this a set of corank k projections {πi}. In this case, we can treat the image
of π̃ in the plaintext space as being generated by the variables x1, . . . , xn+v−k−1,
while the image of each of the projections πi is generated by the same variables
plus one additional variable xn+v−k, which defines a 1-dimensional subspace of
the kernel of π̃, which will vary depending on the choice of πi.

During the computation of a Gröbner basis of P(πi) = (f1(πi), . . . , fm(πi)),
the F4 algorithm looks for polynomials pj of degree d−2 such that

∑
pj · fj(πi) =

q, where q is a polynomial of degree at most d − 1.
Our strategy will be to first solve for all pj in the variables x1, . . . , xn+v−k−1,

such that ∑
pjfj(πi) = q (mod xn+v−k).

As the above equation is equivalent to
∑

pjfi(π̃) = q, this computation can be
reused for multiple different choices of πi. By doing so, we therefore can reduce
the effort of computing the Gröbner basis needed during the application of our
distinguisher.

However, in order to find the exact amount of saving, much more work is
required. We therefore leave an exact analysis of the above mentioned idea as
future work.

Another topic for future work is a precise complexity analysis of our attack.
The complexity analysis presented in Sect. 6 is based much on heuristics and
experiments. In particular, formula (5) contains the parameters k̄ and d�

reg, which
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(so far) could only be determined experimentally. It therefore would be desireable
to develop a formula which computes the complexity of our attack for given
HFEv- parameters n, D, a and v.
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Abstract. In 2016, Yasuda et al. presented a new multivariate encryp-
tion technique based on the Square and Rainbow primitives and uti-
lizing the plus modifier that they called SRP. The scheme achieved a
smaller blow-up factor between the plaintext space and ciphertext space
than most recent multivariate encryption proposals, but proved to be
too aggressive and was completely broken by Perlner et al. in 2017.
The scheme suffered from the same MinRank weakness that has allowed
effective attacks on several notable big field multivariate schemes: HFE,
multi-HFE, HFE-, for example.

We propose a related new encryption scheme retaining the desirable
traits of SRP and patching its weaknesses. We call the scheme HFERP
because it utilizes a similar construction as SRP with an HFE primi-
tive replacing the Square polynomial. The effect of this substitution is to
increase the Q-rank of the pubic key to such a degree that the MinRank
attack is impossible. HFERP still retains the relatively small blow-up
factor between the plaintext space and ciphertext space, and is thus a
candidate for secure multivariate encryption without an essential dou-
bling in size between plaintext and ciphertext.

Keywords: Multivariate cryptography · HFE · Encryption
MinRank · Q-rank

1 Introduction

Ever since the discovery of polynomial time algorithms for factoring and comput-
ing discrete logarithms on a quantum computer by Shor [1], creating schemes
that resist such developments has fallen upon the shoulders of today’s cryp-
tographers. In recent years, quantum computing has made significant advances
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leading some experts to make more confident predictions that the post-quantum
world will soon be upon us, see, for example, [2].

There has also been an explosive development in public key technologies
relying on mathematics for which there is no known significant computational
advantage quantum computers possess. In particular, multivariate public key
cryptography (MPKC) produced numerous schemes for public key encryption
and digital signatures in the late 1990s. These schemes further fueled the devel-
opment of computational algebraic geometry, and seem to have inspired the
advancement of some of the symbolic algebra techniques we now apply to all
areas of post-quantum cryptography, that is, cryptography designed with quan-
tum computers in mind.

With the development of such techniques, many multivariate schemes have
been cryptanalyzed and broken. Specifically, multivariate encryption seems to be
challenging. The purpose of this article is to confront this challenge, advancing
a new multivariate encryption scheme HFERP, based on SRP, see [3], developed
to eradicate the deficiencies of its predecessor.

1.1 Recent History

While there may be many trustworthy candidates for multivariate signatures,
such as UOV [4], Rainbow [5], and Gui [6], developing multivariate schemes
for encryption has been a bit of a struggle. While some older ideas have have
been reborn with better parameter sets due to the advancement of the science,
such as applying HFE-, see [7], to encryption, most of the surviving multivariate
encryption schemes are relatively young.

In the last few years, there have been a few new proposals for multivariate
encryption, mostly following the idea that it is easier to hide the structure of an
injective mapping into a large codomain than to hide the structure of a bijection,
as is needed for any encryption mapping into a codomain of the same size as
the domain. The ABC Simple Matrix encryption scheme of [8,9] and ZHFE, see
[10] are examples of this idea. Most of these encryption ideas, both new and old,
have inspired recent surprising cryptanalyses that affect parameter selection or
outright break the scheme, see [11–15], for example.

Such a tale describes the life of SRP, see [3], the design of which aimed
to be very efficient and holds a comparably small blow up factor between the
plaintext and ciphertext sizes. The scheme also claimed security against attacks
efficient against the Square and Rainbow schemes by combining them into one.
Unfortunately, SRP is also the victim of a new cryptanalysis, see [16]. The attack
exploits the low Q-rank of the Square map, a vulnerability inherited by the public
key. A modified MinRank attack was able to pull apart the Square polynomials
from the Rainbow and Plus polynomials in the public key.

1.2 Our Contribution

We present a new composite scheme in the manner of SRP by replacing the
weaker Square layer with an HFE polynomial of higher Q-rank and finding the
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correct balance in the sizes of the HFE, Rainbow and Plus layers for efficiency
and security. We call our scheme HFERP. We further establish the complexity
of the relevant attack models: the algebraic attack, the MinRank attack, and the
invariant attack.

1.3 Organization

The paper is organized as follows. In the next section, we present isomorphisms
of polynomials and describe the structure of HFE and SRP. The subsequent
section reviews the Q-rank of ideals in polynomial rings and discusses invari-
ant properties of Q-rank and min-Q-rank. In Sect. 4, we review more carefully
the previous cryptanalyses of HFE and SRP. We then present HFERP in the
next section. Section 6 discusses the complexity of all known relevant attacks on
HFERP. Our choice of parameters to optimize security and performance along
with experimental results are then presented in the following section. Finally,
we conclude discussing why a similar approach to SRP seems to produce such a
different technology in HFERP.

2 Big Field Schemes

HFE and SRP are members of a family of cryptosystems known as “big field”
schemes. This term is based on the system exploiting the vector space structure
of a degree n extension of K over a finite field Fq. Using core maps within the
extension field allows us to take advantage of Frobenius automorphisms x �→ xq

for any function of the form f(x) = xqi+qj

, noting that φ−1 ◦ f ◦ φ is a vector-
valued quadratic function over Fq where φ : F

n
q → K is an Fq-vector space

isomorphism. By observing that any vector-valued quadratic function on F
n
q is

isomorphic to a sum of such monomials, it is clear that any quadratic function
f over K can be represented as a vector-valued function, F , over Fq.

This equivalence allows us to construct cryptosystems in conjunction with
the following concept, the isomorphisms of polynomials.

Definition 1. Two vector-valued multivariate polynomials F and G are said to
be isomorphic if there exist two affine maps T,U such that G = T ◦ F ◦ U .

The equivalence and isomorphism marry in a method commonly referred to
as the butterfly construction. Given a vector space isomorphism φ : Fn

q → K and
an efficiently invertible map f : K → K, we compose two affine transformations
T , U : Fn

q → F
n
q in order to obscure our choice of basis for the input and output.

This construction generates a vector-valued map P = T ◦φ−1◦f◦φ◦U = T ◦F ◦U ,
where F = φ−1 ◦ f ◦ φ.

K
f �� K

φ−1

��
F

n
q

U �� Fn
q

F ��

φ

��

F
n
q

T �� Fn
q
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2.1 HFE

The Hidden Field Equation Scheme was first introduced by Patarin, see [7], as an
improvement on the well known C∗ construction of [17]. Patarin’s contribution
was to use a general polynomial with degree bound D in place of the central
monomial map of C∗.

Explicitly, one chooses a quadratic map f : K → K of the form:

f(x) =
∑

i≤j
qi+qj≤D

αi,jx
qi+qj

+
∑

i
qi≤D

βix
qi

+ γ, (1)

where the coefficients αi,j , βi, γ ∈ K and the degree bound D is sufficiently low
for efficient inversion using the Berlekamp algorithm, see [18] .

The public key is computed as P = T ◦ F ◦ U , where F = φ−1 ◦ f ◦ φ. Inver-
sion is accomplished by taking a ciphertext y = P (x), computing v = T−1(y),
solving φ(v) = f(u) for u via the Berlekamp algorithm and then recovering
x = U−1(φ−1(u)).

2.2 Rainbow

The Rainbow scheme is a generalization of Patarin’s UOV, see [4]. The key idea,
introduced by Ding, see [5], was constructing multiple layers of UOV.

Let F be a finite field with a degree n extension F
n. Let V = {1, 2, . . . , n}.

For a chosen u, let v1, . . . , vu be integers such that 0 < v1 < · · · < vu = n and
let Vl = {1, . . . , vl} for each l ∈ {1, . . . , u}. Note that |Vi| = vi.

Let oi = vi+1 − vi for each i ∈ {1, . . . , u − 1} and Oi = Si+1 − Si for each
i ∈ {1, . . . , u−1}. Define Pl to be the space generated by the span of polynomials
of the following form:

f(x1, . . . , xn) =
∑

i∈Ol,j∈Vl

αi,jxixj +
∑

i,j∈Vl

βi,jxixj +
∑

i∈Vl

γixi + η

One can refer to the previous constructions using the following terminology: O
is the collection of oil variables, V is the collection of vinegar variables, and a
polynomial f ∈ Pl is an l-th layer Oil and Vinegar polynomial.

The Rainbow map F : F
n → F

n−v1 is defined as (with x1, . . . , xn being
referred to as x̄ for convenience)

F (x̄) = (F̃1(x̄), . . . , F̃u−1(x̄)) = (F1((̄x), . . . , Fn−v1(x̄))

where each F̃i consists of oi randomly chosen quadratic polynomials from Pi.
F is a Rainbow polynomial map with u − 1 layers. The public key is generated
in the usual fashion by applying two affine transformations, T and U , where
T : Fn−v1 → F

n−v1 and U : Fn → F
n: T ◦ F ◦ U .
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2.3 SRP

In Sect. 5, we present in detail the construction of our proposed scheme, HFERP.
For reference, we will include the Square Map definition as well as method of
inversion presented in the original SRP paper, see [3].

Instead of using the HFE core map described in Sect. 5, SRP uses the Squar-
ing map where the Square component is defined as FS : Fn′

q → F
d
q (where qd + 1

is divisible by 4) and it is the result of the following composition:

F
n′
q

πd−→ F
d
q

φ−→ K
X �→X2

−−−−−→ K
φ−1

−−→ F
d
q

Upon inversion step 3, the user would compute

R1,2 = ±X(qd+1)/4

and use it to find y = (y(i)
1 , . . . , y

(i)
d ) = φ−1(Ri) ∈ F

d
q . The choice of the Square

map was made because of the speed of inversion it provided when compared to
any other quadratic maps. Unfortunately, due to this choice, SRP was quickly
broken in [16] by isolating the squaring public polynomials and exploiting its
low Q-rank.

3 Q-Rank

The min-Q-rank of the public key is a critical quantity when analizing the secu-
rity of big field schemes within multivariate cryptography. For clarification, the
definition is as follows:

Definition 2. The Q-rank of any quadratic map f(x) on F
n
q is the rank of the

quadratic form φ−1 ◦f ◦φ in K[X0, . . . , Xn−1] via the identification Xi = φ(x)qi

.

Usually, the definition of the rank of a quadratic form is given as the mini-
mum number of variables required to express an equivalent quadratic form due
to quadratic form equivalences corresponding to matrix congruence. Note that
congruent matrices have the same rank. This same quantity is equal to the rank
of the matrix representations of the quadratic form, even in characteristic 2,
where the quadratics x2qi

are additive, but not linear for q > 2.
Q-rank is invariant under one-sided isomorphisms f �→ f ◦ U , but is not

invariant under isomorphisms of polynomials in general. The quantity that is
often meant by the term Q-rank, but more properly called min-Q-rank, is the
minimum Q-rank among all nonzero linear images of f . This min-Q-rank is
invariant under isomorphisms of polynomials and is the quantity relevant for
cryptanalysis.
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4 Previous Cryptanalysis of Relevant Schemes

SRP was a designed as a concatenation of two known multivariate schemes and a
scheme modifier. The first component was Square, see [19], which can be seen as a
degenerate version of HFE. The second component was oil-and-vinegar (OV) or,
more generally, Rainbow, see [5,20]. The final component was the plus modifier,
first proposed in [21]. The algebraic properties of these schemes were intended to
complement their weaknesses when used in conjunction. This patchwork design
requires, however, a careful consideration of the relevant cryptanalyses within
all of these families.

The original oil-and-vinegar (OV) scheme, proposed in [20], was completely
broken in [22] by what we call the invariant method. Specifically, the balanced
OV scheme contains an equal number of oil variables, variables which only occur
linearly in the central map, and vinegar variables, which occur quadratically.
Thus, the differential of any central polynomial has the shape

Dfi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 · · · a1,v a1,v+1 · · · a1,2v

...
. . .

...
...

. . .
...

a1,v · · · av,v av,v+1 · · · av,2v

a1,v+1 · · · av,v+1 0 · · · 0
...

. . .
...

...
. . .

...
a1,2v · · · av,2v 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

under an appropriate basis of F2v = V ⊕ O, where V is the subspace spanned
by the vinegar variables and O is the subspace spanned by the oil variables.

The invariant attack proceeds by computing the differential of random linear
combinations of the public polynomials until two full rank differentials, Df1 and
Df2, are produced. Then O is left invariant by Df−1

1 Df2 and is thus easily
recovered. A similar technique has been used in conjunction with rank attacks
to assault schemes with a similar structure whenever dim(V ) ≤ dim(O), see, in
particular, [11–13].

HFE and some of its modifications have been the target of effective crypt-
analyses utilizing the low Q-rank property of the central map. Each of these
cryptanalyses can be described as a big field MinRank attack, recovering a low
rank quadratic form over the extension E from which an isomorphism relating
the public key to an equivalent private key can be derived.

The earliest iteration of this technique is the well-known Kipnis-Shamir (KS)
attack of [23], also known by the name MinRank, due to the close relationship
between the attack and the MinRank problem in algebraic complexity theory,
see [24]. The KS-attack recovers a private key for HFE by exploiting the fact that
the low Q-rank of the central map is a property preserved by isomorphisms. Con-
sidering an odd characteristic instance of HFE. We may write the homogeneous
quadratic part of the central map as
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[
x xq · · · xqn−1

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0,0 α′
0,1 · · · α′

0,d−1 0 · · · 0
α′

0,1 α1,1 · · · α′
1,d−1 0 · · · 0

...
...

. . .
...

...
. . .

...
α′

0,d−1 α′
1,d−1 · · · αd−1,d−1 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

x
xq

...
xqn−1

⎤

⎥⎥⎥⎦ ,

where α′
i,j = 1

2αi,j and d = �logq(D)	. The KS-attack first interpolates an
univariate representation of the public key over E. This representation of the
public key is isomorphic to the central map of Q-rank bounded by the ceiling
of the logarithm of the degree bound. Thus, there is a linear map T−1 which
when composed with the public key has Q-rank d, and so there is a low rank
matrix that is an E-linear combination of the Frobenius powers of G. This turns
recovery of the transformation T into the solution of a MinRank problem over E.

Another version of this attack, utilizing the same property, is the key recovery
attack of [25]. The authors prove the existence of an E-linear combination of the
public key with low rank over E. Setting the unknown coefficients of this linear
combination as variables, they construct the ideal I ⊆ R = F[T ] of minors of this
sum of the appropriate dimension such that V (I) ∩ E

dim(R) consists of exactly
such linear coefficients. Thus a Gröbner basis needs to be computed over F and
the variety computed over E. This modeling of the KS-attack is called minors
modeling and dramatically improves the efficiency of the KS-attack in many
circumstances.

The KS-attack with either KS modeling or with minors modeling has also
been used to break other HFE descendants. In [25], the minors modeling app-
roach is used to break multi-HFE. In [15], the KS-attack is extended to provide
key recovery for HFE-. In [14], both the KS modeling and minors modeling
versions of the KS-attack are used to undermine the security of ZHFE.

The MinRank methodology is also employed in [16], where an effective key
recovery attack on SRP is presented. It was shown that the low Q-rank of Square
is exposed by the SRP construction. Specifically, the Q-rank of the square map
f(x) = x2 is one over an odd characteristic field. Since this low Q-rank map
is in the span of the public polynomials, there is an E-linear combination of
the public polynomials of rank one! Thus the ideal generated by the two-by-two
minors is resolved at degree two and the complexity of the attack is O(

(
m+1

2

)ω
),

where 2 ≤ ω ≤ 3 is the linear algebra constant. The attack is applied practically,
breaking the 80-bit parameters in about 8 min.

5 HFERP

In this section, we present a significant modification of SRP that we call HFERP.
The key observation is that by replacing the Square map with a higher Q-rank
instance of HFE, one can make the MinRank attack inefficient while maintaining
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efficient inversion. For simplicity of the exposition, we present the scheme with
a single layer UOV component, noting that it is trivial to replace UOV with a
multi-layer Rainbow via the same construction.

Choose a finite field Fq and let E be a degree d extension field over Fq. Let
φ : Fd

q → E be an Fq-vector space isomorphism. Also, let o, r, s, and l be non-
negative integers.

Key Generation. Let n = d + o − l, n′ = d + o and m = d + o + r + s.
The central map of HFERP is the concatenation of an HFE core map, FHFE ,
an UOV (or alternatively, Rainbow) section, FR, and the plus modifier, FP .
Formal definitions of the maps are provided below:

– The HFE component is defined as FHFE : Fn′
q → F

d
q and is the result of the

following composition:

F
n′
q

πd−→ F
d
q

φ−→ E
f−→ E

φ−1

−−→ F
d
q

where f is the HFE core map described in (1) and πd : Fd+o
q → F

d
q is the

projection onto the first d coordinates.
– The UOV (or alternatively, Rainbow) component is defined as

FR = (g(1), . . . , g(o+r)) : Fn′
q → F

o+r
q

following the normal construction of the UOV signature scheme where V =
{1, . . . , d} and O = {d + 1, . . . , d + o}. For every k ∈ {1, . . . , o + r}, the
quadratic polynomial g(k) is of the following form:

g(k)(x1, . . . , xn′) =
∑

i∈O,j∈V
α(k)xixj +

∑

i,j∈V,i≤j

β
(k)
i,j xixj +

∑

i∈V∪O
γ

(k)
i xi + η(k)

where α(k), β
(k)
i,j , γ

(k)
i , and η(k) are chosen at random from Fq.

– The Plus modification is defined as FP = (h(1), . . . , h(s)) : Fn′
q → F

s
q which

consists of s randomly generated quadratic polynomials.

An affine embedding U : Fn
q → F

n′
q of full rank and an affine isomorphism

T : F
m
q → F

m
q are chosen for the butterfly construction as is common in big

field schemes. The public key is given by P = T ◦ F ◦ U : F
n
q → F

m
q , where

F = FHFE‖FR‖FP ( ‖ being the concatination function), and the private key
is represented by the following figure:

F
d
q

���
��

��
��

��

F
n
q

P

��
U �� Fn+l

q

FHFE

�����������

FP ���
��

��
��

�

FR �� Fo+r
q

�� Fm
q

T �� Fm
q

F
s
q

		��������
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Encryption. Given a message M ∈ F
n
q , the ciphertext is computed as C =

P(M) ∈ F
m
q .

Decryption. Given a ciphertext C = (c1, . . . , cm) ∈ F
m
q , the decryption process

is the following:

1. Compute x = (x1, . . . , xm) = T −1(C).
2. Compute X = φ(x1, . . . , xd) ∈ E.
3. Use the Berlekamp algorithm to compute the inverse of the HFE polynomials

to recover y = (y1, . . . , yd).
4. Given the vinegar values y1, . . . , yd, solve the system of o+ r linear equations

in the n′ − d = o variables ud+1, . . . , un′ given by

g(k)(y1, . . . , yd, ud+1, . . . , un′) = xd+k

for k = 1, . . . , o + r. The solution is denoted (yd+1, . . . , yn′).
5. Compute the plaintext M ∈ F

n
q by finding the preimage of (y1, . . . , yn′) under

the affine embedding U .

6 Complexity of Attack

In this section we derive tight complexity estimates or proofs of resistance for the
principal relevant attacks on HFERP. These attacks include the direct algebraic
attack, the MinRank attack, the small field MinRank and dual rank attacks, and
the invariant attack.

6.1 Algebraic Attack

The algebraic attack attempts to invert the public key at a ciphertext directly via
the calculation of a Gröbner basis. It is commonly believed that the closeness of
the solving degree of a polynomial system, the degree at which the Gröbner basis
is resolved, and the degree of regularity, the degree at which a non-trivial syzygy
producing a degree fall first occurs, is a generic property. Thus the lower bound
on the complexity of the algebraic attack that the degree of regularity provides
is likely a tight bound, and is consequently a critical quantity for analyzing the
security of the scheme.

Theorem 1. The degree of regularity of the public key of HFERP is bounded by

dreg ≤
{ (q−1)
logq(D)�

2 + 2 if q is odd or �logq(D)	 is even,
(q−1)(
logq(D)�+1)

2 + 1 otherwise.

Proof. There is a linear function of the public key separating the HFE polyno-
mials H from the non-HFE polynomials N . Trivially, the dreg is bounded by the
degree of regularity of the system H, which, via [26, Theorem 4.2], produces the
above bound.
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One must note that the above bound is not what is needed to ensure security.
Instead we require a lower bound. Extensive experimentation shows that for very
small q, the above estimate is tight. We have, however, a further complication.
In general, adding more polynomials to an ideal may decrease its degree of regu-
larity. To address this issue we have conducted small scale experiments showing
that the degree of regularity and solving degree behave similarly to those of
random systems, see Sect. 7.

Conjecture 1. Under the assumption that the degree of regularity is at least
�logq(D)	 + 2 for small odd q and sufficiently large n, the complexity of the
algebraic attack is given by

Comp.alg = O
((

n + dreg

dreg

)2(
n

2

))
= O

(
n2
logq(D)�+6

)
.

6.2 MinRank Attack

The min-rank attack proposed in [16] is so successful due to the Q-rank of
the squaring map within SRP being equal to one. By changing the square map
component to an HFE core map, we are able to thwart such an attack on HFERP.
This subsection walks through the attack proposed in [16] , with HFERP in mind,
and proves that the min-Q-rank of HFERP differs from SRP.

Note that, similar to SRP, the public key of HFERP has an analogous scheme
without embedding as long as πd ◦ U is of full rank, which it is defined to be
in this scheme. Let π′

d : Fn
q → F

d
q be the projection onto the first d coordinates

and find a projection ρ : Fn+l
q → F

n
q such that U ′ = ρ ◦ U has full rank and

π′
d ◦ U ′ = πd ◦ U . Let F∗ : E → E represent the chosen high Q-rank HFE core

map so that FHFE = φ−1 ◦ F∗ ◦ φ ◦ πd. Then identify the Rainbow and random
components as F ′

R : FR ◦ U ◦ U ′−1 and F ′
P : FP ◦ U ◦ U ′−1 respectively. Thus,

one can see that

T ◦

⎡

⎣
φ ◦ F∗ ◦ φ−1 ◦ πd

FR

FP

⎤

⎦ ◦ U = T ◦

⎡

⎣
φ ◦ F∗ ◦ φ−1 ◦ π′

d

F ′
R

F ′
P

⎤

⎦ ◦ U ′.

Notice that the attack on SRP was not just a min-rank attack on the public
key of SRP, but on a linear combination of public forms of SRP that had low Q-
rank over the degree d extension used by the squaring component. This method
allowed the attack to ignore the fact that the public key of an instance of SRP
was expected to be of high rank. Thus, to demonstrate that HFERP resists such
an attack, we briefly outline the method of deriving the linear combination of
public forms from [16] for HFERP and prove that the min-Q-Rank of the result
is sufficiently high to resist such an attack.

Let α be a primitive element of the degree d extension E of Fq. Fix a vector
space isomorphism φ : Fd

q → E defined by φ(x̄) =
∑d−1

i=0 xiα
i. Then, fix a one

dimensional representation Φ : E → A defined by a
Φ�−→ (a, aq, . . . , aqd−1

). Next,
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define Md : Fd
q → A by Md = Φ ◦ φ. It was demonstrated you can look at this

map through the following matrix representation

Md =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1
α αq . . . αqd−1

α2 α2q . . . α2qd−1

...
...

. . .
...

αd−1 α(d−1)q . . . α(d−1)qd−1

⎤

⎥⎥⎥⎥⎥⎥⎦
∈ Md×d(E)

This matrix allows the passage from F
d
q and A easily by right multiplication

with Md or M−1
d . Next are a few more definitions necessary to be able to look

at a matrix representation of the public key:

M̃d =
[
Md 0
0 Io+r+s

]
∈ Mm×m(E)

M̂d =
[
Md

0o×d

]
∈ M(d+o)×d(E)

Finally, define F∗i be the matrix representation of the quadratic form over
A of the ith Frobenius power of the chosen HFE core map. Now we have all the
necessary notation to view the public key as a matrix equation.

Denote the m-dimensional vector of (d + o) × (d + o) symmetric matrices
associated by the private key as follows:

(F(HFE,0), . . . ,F(HFE,d−1),F(R,0), . . . ,F(R,o+r−1)F(P,0), . . . ,F(P,s−1)). (2)

Note that the function corresponding to the application of each coordinate of
a vector of the quadratic forms followed by the application of a linear map
represented by a matrix is denoted as a right product of the vector and a matrix
representation of the linear map.

Next, observe

(F(HFE,0), . . . ,F(HFE,d−1))Md = (M̂dF∗0M̂�
d , . . . , M̂dF∗(d−1)M̂�

d ),

which yields

(x̄F(HFE,0)x̄
�, . . . , x̄F(HFE,d−1)x̄

�)Md =

(x̄M̂dF∗0M̂�
d x̄�, . . . , x̄M̂dF∗(d−1)M̂�

d x̄�),

as a function of x̄. This gives the following equation:

(F(HFE,0), . . . ,F(HFE,d−1),F(R,0), . . . ,F(P,s−1))M̃d =

(M̂dF∗0M̂�
d , . . . , M̂dF∗(d−1)M̂�

d ,F(R,0), . . . ,F(P,s−1))
(3)

Now, look to the relation between the public key and its corresponding private
key central maps:

(P0, . . . ,Pm−1)T−1 = (UF(HFE,0)U�, . . . ,UF(P,s−1)U�). (4)
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By combining Eqs. 3 and 4, we have the following:

(P0, . . . ,Pm−1)T−1M̃d =

(UM̂dF∗0M̂�
d U

�, . . . ,UM̂dF∗(d−1)M̂�
d U

�,UF(R,0)U�, . . . ,UF(P,s−1)U�)

As in [16], let T̂ = T−1M̃d = [ti,j ] ∈ Mm×m(E) and W = UM̂d. This
identification produces

m−1∑

i=0

ti,0Pi = WF∗0W�. (5)

Since the rank of F∗i is equal to the Q-rank of the quadratic form of the HFE
core map for all i, the rank of this E-linear combination of the public matrices
is bounded by the minimum of the rank of UM̂d and the rank of F∗0, id est the
Q-rank of our HFE core map. This statement forms the following theorem:

Theorem 2. The min-Q-rank of the public key P of HFERP(q,d,o,r,s,l) is given
by:

min-Q-rank(P) ≤ min{Rank(UM̂d), Rank(F∗0)}

Proof. The proof in [16] describes the parameters in which the min-Q-rank(P)
can be equal to zero. So, we move forward with the assumption that UM̂d =
0, which occurs with high probability when d > l. In (5) we have a linear
combination of the public key equations equal to the following:

WF∗0W� = UM̂dF∗0M̂�
d U

�. (6)

This proves our result.

It should be noted that U, M̂d, and F∗0 are chosen by the user. They can
easily be chosen in such a way such that

min-Q-rank(P) = min{Rank(UM̂d), Rank(F∗0)}.

This would also occur with high probability if U, M̂d, and F∗0 were randomly
generated. Directly from [15], we also have the following complexity for the
MinRank attack on HFERP:

Corollary 1. The complexity of the MinRank attack with minors modeling on
HFERP is given by

Comp.Minors = O
((

m + �logq(D)�
�logq(D)	

)2(
m

2

))
= O

(
m2
logq(D)�+2

)
.
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6.3 Base-Field Rank and Invariant Attacks

Variants of several attacks applicable to other versions of the Rainbow cryptosys-
tem are applicable to HFERP. These include the linear-algebra-search version
of MinRank [27], the HighRank attack [27] and the UOV invariant attack [4].

The MinRank attack works by randomly choosing one or more vectors wj in
the plaintext space and solving for a linear combination ti ∈ F of the plaintext
equations satisfying:

m∑

i=1

tiDfi(wj) = 0

The attack succeeds when wj is in the kernel of a low rank linear combination
of differentials of the public polynomials. In the case of HFERP, the HFE com-
ponent equations form a d-dimensional subspace of the public equations having
rank d over F. Note that the attacker can remove up to d−1 equations while pre-
serving at least a one dimensional subspace of low rank maps. Thus, the attack
can succeed with a one dimensional solution space for ti and only a single wj as
long as m ≤ n + d.

If m > n + d, the adversary may still use a single vector wj to constrain
the ti’s rather than attempting to find two vectors in the kernel of the HFE
equations. In this case, the attacker must search through an m − n − d + 1
dimensional space of spurious solutions to find the useful 1 dimensional space
of tis. This method is still less expensive than searching for two vectors in the
kernel of the HFE equations when m < n + 2d.

It should be further noted that, since the differentials of the oil maps will
map any vector in the kernel of the HFE equations to the d-dimensional HFE
input space, we expect an o1+r1−d dimensional subspace of the oil equations to
also have such a vector in the kernel of their differentials, see Fig. 1. Thus, when
m < n + max(d, o1 + r1), vectors in the HFE kernel can be recognized, because
they are in the kernel of an unusually large subspace of the public equations,
and when 2d < n the linear combinations of the public equations from the HFE
and oil spaces can be recognized due to their low rank.

HFE Rainbow-1 Rainbow-2 Random

Fig. 1. The shape of the matrix representations of the central maps of HFERP. The
shaded regions represent possibly nonzero values while unshaded areas have coefficients
of zero.
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Thus the complexity of MinRank (for plausible choices of m) is

Comp.MinRank =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O
(
qdmω

)
m < n + max(d, o1 + r1)

O
(
qd+m−n−max(d,o1+r1)nω

)
m ≥ n + max(d, o1 + r1)
m < n + d + max(d, o1 + r1)
n > 2d

O (qm−nnω) m ≥ n + max(d, o1 + r1)
m < n + 2d

n ≤ 2d

O
(
q2dmω

)
m < 2n + max(d, o1 + r1 − d)
No better attack.

In the HighRank attack, the attacker randomly selects linear combinations of
the public polynomials with the hope of selecting a polynomial with significantly
less than full rank. This attack takes advantage of the d + o1 + r1-dimensional
subspace of the public polynomials generated by the HFE maps and either the
Rainbow-1 maps of Fig. 1 or for UOV of the d-dimensional HFE subspace. The
complexity of the attack is then:

Comp.HighRank = O
(
qm−d−o1−r1nω

)
.

It should also be noted that linear combinations of HFE and Rainbow-1
polynomials form an m−s dimensional subspace of the public polynomials, that
act linearly on the o2 − l dimensional preimage under U of the oil subspace. This
bounds their rank to be at most 2d. Noting that the probability that a random
square matrix has corank a is approximately q−a2

, we see that, the high rank
attack can be straightforwardly applied if 2d < n −

√
m − d − o1 − r1.

Additionally, the HighRank attack can be combined with the oil and vine-
gar invariant attack to distinguish linear combinations of the HFE and Rainbow
maps from other linear combinations of the public maps. Here, a pair of maps
from the HFE and Rainbow subspace can be identified by restricting their dif-
ferentials to a subspace of the plaintext space in which both maps are full rank,
and checking to see if (Dp1)−1Dp2 has a large invariant subspace (which will be
the intersection of the preimage of the oil subspace under U and the subspace
used to restrict the differentials). This allows the high rank attack to be applied

with similar complexity as long as 2d < n −
√

m−d−o1−r1
2 : Applying the attack

will involve testing no more than
(
q

m−d−o1−r1
2

)2

= qm−d−o1−r1 pairs of rank
n − 2d maps, and therefore this step will not dominate the complexity of the
approximately qm−d−o1−r1 rank computations involved in the HighRank step.
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If 2d ≥ ζ, where ζ1 = n−
√

m−d−o1−r1
2 , the complexity of HighRank is given

by:

Comp.HighRank =

{
Comp.HighRank = O

(
qm−dnω

)
2d ≥ ζ1

Comp.HighRank = O
(
qm−d−o1−r1nω

)
2d < ζ1.

Finally, when 2d ≥ n −
√

m−d−o1−r1
2 , as in the UOV attack, the previous

steps must be combined with a projection, aimed at removing enough vinegar
variables that the restriction of the differentials of linear combinations of HFE
and Rainbow maps to the projected plaintext space is less than full rank. This
yields a complexity for hybrid HighRank/UOV invariant type attacks of:

Comp.UOV =

⎧
⎨

⎩

O
(
qm−d−o1−r1nω

)
n > ζ2

O
(

qm−d−o1−r1+

√
m−d−o1−r1

2 +2d−n(o1 + o2 − l)4
)

n ≤ ζ2.

where ζ2 = 2d+
√

m−d−o1−r1
2 . This attack may also be applied to the Rainbow-2

maps of Fig. 1 in which case the complexity is:

Comp.UOV 2 =

{
O (qsnω) n > 2d + 2o1 +

√
s
2

O
(
qs+

√
s
2+2d+2o1−n(o2 − l)4

)
n ≤ 2d + 2o1 +

√
s
2 .

7 Parameter Selection and Experimental Results

We propose single-layer parameters (A) and (B) for 80-bit security and multi-
layer parameters (C) and (D) for 128-bit security:

(A) (q = 3, d = 42, o = 21, r = 15, s = 17, l = 0,D = 37 + 1)

(B) (q = 3, d = 63, o = 21, r = 11, s = 10, l = 0,D = 37 + 1)

(C) (q = 3, d = 85, o1 = o2 = 70, r1 = r2 = 89, s = 61, l = 0,D = 37 + 1)

(D) (q = 3, d = 60, o1 = o2 = 40, r1 = r2 = 23, s = 40, l = 0,D = 39 + 1)

Then we have the following values for (n,m): (63, 95) for (A), (84, 105) for (B),
(225, 464) for (C), and (140, 226) for (D). The security level for suggested param-
eters is estimated by all the attack in Sect. 6. Here, we assume that the degree
of regularity for direct attack is 10 by ecture 1 for (A), (B), and (C) while it is
12 for (D).

To draw a direct comparison with HFE, note that to achieve the same secu-
rity level as HFERP, an HFE scheme requires m equations, and hence n = m
variables. Therefore secure HFE public keys are far larger while offering slower
decryption due to the use of the Berlekamp algorithm in a far larger field.
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We ran a series of experiments with Magma, see [28], on a 2.6 GHz Intel®

XeonR CPU1. These are not optimized implementations (Table 1).

Table 1. Experimental results for HFERP.

(A) (B) (C) (D)

Key Generation 0.299 s 0.572 s 20.498 s 3.43 s

Encryption 0.001 s 0.001 s 0.006 s 0.001 s

Decryption 3.977 s 8.671 s 49.182 s 124.27 s

Secret Key Size 19.8 KB 31.7 KB 1344.0 KB 226.0 KB

Public Key Size 48.2 KB 93.6 KB 2905.7 KB 552.3 KB

We also investigated the growth of the first fall degree (dreg) as well as the
solving degree with five experiments performed at each of eight different param-
eters sets. We directly compared these data with randomly generated systems,
see Table 2.

Table 2. Direct attack experiment data for various values of d, o, r, s. (s.r.d. stands for
semi- regular degree)

(q, d, o, r, s, l, D) n m HFERP Random

dreg sol. deg dreg sol. deg s.r.d.

A. Direct Attack, d = 2o, d + o � 2(r + s), o = 4, 5, 6, 7

(3, 8, 4, 3, 3, 0, 2188) 12 18 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4

(3, 10, 5, 4, 3, 0, 2188) 15 22 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(3, 12, 6, 5, 4, 0, 2188) 18 27 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(3, 14, 7, 5, 5, 0, 2188) 21 31 6, 5, 5, 5, 5 6, 6, 6, 6, 6 5, 5, 5, 5, 5 6, 6, 6, 6, 6 6

B. Direct Attack, d = 3o, r + s � o, o = 3, 4, 5, 6

(3, 9, 3, 2, 2, 0, 2188) 12 16 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(3, 12, 4, 2, 2, 0, 2188) 16 20 5, 6, 6, 5, 5, 5, 6, 6, 6, 5 6, 5, 6, 6, 5 6, 6, 6, 6, 6 6

(3, 15, 5, 3, 3, 0, 2188) 20 26 6, 5, 5, 5, 5 6, 6, 6, 6, 6 5, 5, 5, 6, 5 6, 6, 6, 6, 6 6

(3, 18, 6, 3, 3, 0, 2188) 24 30 5, 5, 5, 5, 5 7, 7, 7, 7, 7 5, 5, 5, 5, 7 7, 7, 7, 7, 7 7

(d, o, r, s, l, D) n m HFERP Random

dreg sol. deg dreg sol. deg s.r.d.

C. Direct Attack, d � 3.4a, o � (2.8a, 2.8a), r � (3.56a, 3.56a), s � 2.44a, a = 1, 2, 3, 4

(3, (3, 3), (4, 4), 2, 0, 2188) 9 19 3, 3, 3, 3, 3 3, 3, 2, 3, 2 3, 3, 3, 3, 3 2, 3, 3, 2, 2 3

(7, (6, 6), (7, 7), 5, 0, 2188) 19 38 4, 4, 4, 4, 4 4, 4, 4, 4, 4 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(10, (8, 8), (11, 11), 7, 0, 2188) 26 55 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(14, (11, 11), (14, 14), 10, 0, 2188) 36 74 5 5 6

D. Direct Attack, d � 2.4a, o � (1.6a, 1.6a), r � (0.92a, 0.92a), s � 1.6a, a = 2, 3, 4, 5

(5, (3, 3), (2, 2), 3, 0, 39 + 1) 11 18 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 3, 4 4

(7, (5, 5), (3, 3), 5, 0, 39 + 1) 17 28 4, 4, 4, 4, 4 4, 4, 4, 4, 4 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5

(10, (6, 6), (4, 4), 6, 0, 39 + 1) 22 36 5, 5, 5, 5, 5 5, 5, 5, 5, 5 5, 5, 5, 5, 5 6, 6, 6, 6, 6 6

(12, (8, 8), (5, 5), 8, 0, 39 + 1) 28 46 5, 5 6, 6 5, 5 6 6

1 Certain commercial equipment, instruments, or materials are identified in this paper
in order to specify the experimental procedure adequately. Such identification is
not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or
equipment identified are necessarily the best available for the purpose.
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For comparison, we include the semi-regular degree for systems of m equa-
tions in n variables. This quantity was calculated by computing the first non-
positive coefficient in the series

Sn,m(t) =
(1 − tq)n(1 − t2)m

(1 − t)n(1 − t2q)m
.

Noting that the degree of regularity of the zero-dimensional ideal is the same as
the first fall degree of the ideal generated by the homogeneous components of
the generators of highest degree. We derive the above formula as the fusion of
the techniques in [29,30].

It is clear that the degree of regularity of the small scale instances of HFERP
grows in relation to that of random schemes. By the data in the tables, we can
estimate that the degree of regularity for direct attack on (A) and (B) is greater
than 9 at least.

8 Conclusion

SRP was an ambitious encryption scheme attempting to combine the efficiency
of the inversion of Square with the security of Rainbow to achieve security with
a small blow-up factor between the plaintext and ciphertext. Unfortunately, this
technique was a bit too ambitious.

Interestingly, the idea of replacing Square with a more general and higher
Q-rank HFE primitive seems to solve this problem. Even more interestingly, the
resulting scheme, HFERP, though in principle assailable via essentially every
major cryptanalytic technique available in multivariate cryptography, appears
to be out of range of these myriad attacks.

The parameter � in SRP was introduced for efficiency, attempting to reduce
the public key size while maintaining the algebraic structure of the scheme. We
have found that this quantity adds nothing to security and have set it equal to
zero for our suggested parameters. An interesting possible future problem is to
determine whether � can be securely set to a value larger than zero and thereby
reduce public key size. For now, we err on the side of caution, and conservatively
use all of the entropy we can get.

Acknowledgments. The first and fourth authors were supported by JST CREST
(Grant Number JPMJCR14D6).

A Toy Example

The purpose of the following toy example is to help the reader understand the
process of generating a public key for an instance of HFERP as well as an
example of encryption and decryption. The parameters used are by no means
secure and are soley for instructional purposes.

Parameters of this toy example are as follows: q = 7, d = o = r = 2, s = 1,
and l = 0. Then, construct E a degree 2 extension field over F7. The chosen
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HFE core map is f = ξ12X14 + ξ6X8 + ξ29X2 where ξ ∈ E. Let T and U be the
following affine maps:

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 2 4 5 0 3
1 1 3 3 4 4 4
4 2 1 3 1 0 6
0 1 0 1 5 5 5
5 5 3 6 4 2 4
2 5 1 6 5 6 0
1 1 2 2 6 4 3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,U =

⎡

⎢⎢⎣

4 6 6 4
3 2 0 2
1 1 6 5
3 6 6 6

⎤

⎥⎥⎦

With the parameters described above, F can be represented as the following
matrices over F7

F1 =

⎡

⎢⎢⎣

0 1 0 0
4 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , F2 =

⎡

⎢⎢⎣

0 3 0 0
1 6 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦ , F3 =

⎡

⎢⎢⎣

3 1 6 1
3 1 4 5
3 4 0 0
3 2 0 0

⎤

⎥⎥⎦ ,

F4 =

⎡

⎢⎢⎣

5 1 0 3
0 5 0 3
0 4 0 0
6 1 0 0

⎤

⎥⎥⎦ , F5 =

⎡

⎢⎢⎣

6 0 3 4
6 2 4 2
6 3 0 0
0 3 0 0

⎤

⎥⎥⎦ , F6 =

⎡

⎢⎢⎣

4 4 1 1
3 0 0 3
3 6 0 0
1 2 0 0

⎤

⎥⎥⎦ , F7 =

⎡

⎢⎢⎣

6 3 2 3
4 4 0 6
2 3 1 3
6 4 0 6

⎤

⎥⎥⎦

P1 and P2 represent the HFE component, P3 → P6 represent the rainbow com-
ponent, and P7 represents the plus component. With the public key generated
by P = T ◦ F ◦ U , its matrix form over F7 is:

P1 =

⎡

⎢⎢⎣

1 1 2 5
1 2 3 2
3 2 4 4
3 3 0 3

⎤

⎥⎥⎦ , P2 =

⎡

⎢⎢⎣

0 2 0 6
4 5 2 0
6 3 3 4
3 1 2 2

⎤

⎥⎥⎦ , P3 =

⎡

⎢⎢⎣

2 3 1 4
4 5 4 5
3 5 5 1
5 1 0 6

⎤

⎥⎥⎦ ,

P4 =

⎡

⎢⎢⎣

0 6 0 2
1 3 0 2
5 1 5 1
5 3 0 5

⎤

⎥⎥⎦ , P5 =

⎡

⎢⎢⎣

4 3 2 3
6 5 2 4
4 3 1 5
5 2 4 5

⎤

⎥⎥⎦ , P6 =

⎡

⎢⎢⎣

1 4 2 2
3 3 6 2
5 4 0 0
3 5 5 4

⎤

⎥⎥⎦ , P7 =

⎡

⎢⎢⎣

1 3 6 0
0 3 4 0
1 2 4 2
2 1 6 4

⎤

⎥⎥⎦

Given the following plaintext, (2, 6, 1, 5), the resulting ciphertext is
(0, 0, 1, 3, 0, 4, 0).

Decryption: Given a ciphertext (0, 0, 1, 3, 0, 4, 0), the following process is how
you would obtain its corresponding plaintext.
Part of the secret key:

T −1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 6 4 2 2 2 5
5 4 4 6 0 5 2
5 3 5 2 3 2 4
5 6 5 5 2 1 1
2 5 4 2 1 5 2
2 5 6 6 3 5 5
1 2 5 4 4 0 5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,U−1 =

⎡

⎢⎢⎣

4 5 2 1
3 1 3 1
4 1 2 0
5 6 1 1

⎤

⎥⎥⎦
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Feed the ciphertext through T −1 to get

(0, 6, 2, 6, 0, 4, 6) (7)

The first d = 2 elements are the corresponding HFE outputs. Take these elements
and adjust the HFE core map as follows:

f := f − 0ξ1−1 − 6ξ2−1 = ξ12X14 + ξ6X8 + ξ29X2 + ξ

Perform the Berlekamp algorithm to find the preimage of f . In doing so in this
toy example, you get (0, 6). Next, construct the vector:

u = [0, 6, u1, u2] .

Construct equations of the form uF1u
� = xi where xi refers to the ith element

of (7), for i ∈ {3, 4, 5, 6}. This will result with the following equations:
⎡

⎢⎢⎣

6u1 + 1
3u1 + 3u2 + 5

2u2 + 2
u1 + 2u2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

2
6
0
4

⎤

⎥⎥⎦

Solving this system of equations gives us u1 = 6 and u2 = 6. Thus,

u = [0, 6, 6, 6] .

Finally, feed this through U−1 to get the plaintext, [2, 6, 1, 5].
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Abstract. In this paper we address the construction of privacy-friendly
cryptographic primitives for the post-quantum era and in particular
accumulators with zero-knowledge membership proofs and ring signa-
tures. This is an important topic as it helps to protect the privacy of users
in online authentication or emerging technologies such as cryptocurren-
cies. Recently, we have seen first such constructions, mostly based on
assumptions related to codes and lattices. We, however, ask whether it is
possible to construct such primitives without relying on structured hard-
ness assumptions, but solely based on symmetric-key primitives such as
hash functions or block ciphers. This is interesting because the resistance
of latter primitives to quantum attacks is quite well understood.

In doing so, we choose a modular approach and firstly construct
an accumulator (with one-way domain) that allows to efficiently prove
knowledge of (a pre-image of) an accumulated value in zero-knowledge.
We, thereby, take care that our construction can be instantiated solely
from symmetric-key primitives and that our proofs are of sublinear size.
Latter is non trivial to achieve in the symmetric setting due to the
absence of algebraic structures which are typically used in other set-
tings to make these efficiency gains. Regarding efficient instantiations
of our proof system, we rely on recent results for constructing efficient
non-interactive zero-knowledge proofs for general circuits. Based on this
building block, we then show how to construct logarithmic size ring
signatures solely from symmetric-key primitives. As constructing more
advanced primitives only from symmetric-key primitives is a very recent
field, we discuss some interesting open problems and future research
directions. Finally, we want to stress that our work also indirectly impacts
other fields: for the first time it raises the requirement for collision resis-
tant hash functions with particularly low AND count.
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1 Introduction

The design of cryptographic schemes that remain secure in the advent of power-
ful quantum computers has become an important topic in recent years. Although
it is hard to predict when quantum computers will be powerful enough to break
factoring and discrete logarithm based cryptosystems, it is important to start
the transition to post-quantum cryptography early enough to eventually not
end up in a rush. This is underpinned by the NIST post-quantum cryptogra-
phy standardization project1, which aims at identifying the next generation of
public key encryption, key exchange and digital signature schemes basing their
security on conjectured quantum hard problems. Apart from these fundamental
schemes, there are many other valuable schemes which would nicely comple-
ment a post-quantum cryptographic toolbox. In this paper we are interested in
privacy-friendly cryptographic primitives for the post-quantum era and in partic-
ular accumulators with zero-knowledge membership proofs and ring signatures.
Such schemes help to protect the privacy of users, and significantly gained impor-
tance due to recent computing trends such as Cloud computing or the Inter-
net of Things (IoT). Examples where privacy-enhancing protocols are already
widely deployed today are remote attestation via direct anonymous attestation
(DAA) [14] as used by the Trusted Platform Module (TPM)2, privacy-friendly
online authentication within Intel’s Enhanced Privacy ID (EPID) [15], or usage
within emerging technologies such as cryptocurrencies to provide privacy of
transactions.3

Let us now briefly discuss the primitives we construct in this paper. An accu-
mulator scheme [10] allows to represent a finite set as a succinct value called the
accumulator. For every element in the accumulated set, one can efficiently com-
pute a so called witness to certify its membership in the accumulator. However, it
should be computationally infeasible to find a witness for non-accumulated val-
ues. We are interested in accumulators supporting efficient zero-knowledge mem-
bership proofs. Ring signature schemes [40] allow a member of an ad-hoc group
R (the so called ring), defined by the member’s public keys, to anonymously
sign a message on behalf of R. Such a signature attests that some member of R
produced the signature, but the actual signer remains anonymous.

For ring signatures there is a known approach to construct them from accu-
mulators and non-interactive zero-knowledge proof systems in the random oracle
model. The main technical hurdle in the post-quantum setting is to find accumu-
lators, and, more importantly, compatible proof systems under suitable assump-
tions. Only recently, Libert et al. in [34] showed that it is possible to instantiate
this approach in the post-quantum setting and provided the first post-quantum
accumulator from lattices. This combined with suitable non-interactive variants
of Σ-protocols yields post-quantum ring signatures in the random oracle model
(ROM). However, this does not give rise to a construction of ring signatures

1 https://csrc.nist.gov/groups/ST/post-quantum-crypto/.
2 https://trustedcomputinggroup.org/tpm-library-specification/.
3 https://getmonero.org/resources/moneropedia/ringsignatures.html.

https://csrc.nist.gov/groups/ST/post-quantum-crypto/
https://trustedcomputinggroup.org/tpm-library-specification/
https://getmonero.org/resources/moneropedia/ringsignatures.html
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from symmetric-key primitives such as hash functions or block ciphers, as we
pursue in this paper. The main technical tools we use in our construction are
recent results from zero-knowledge proof systems for general circuits [20,30], and
our techniques are inspired by recent approaches to construct post-quantum sig-
nature schemes based on these proof systems [20]. We note that there are also
post-quantum ring signature candidates from problems related to codes [36] and
multivariate cryptography [38]. However, they all have size linear in the number
of ring members, whereas we are only interested in sublinear ones. Additionally,
former schemes are proven secure in weaker security models.

Contribution. Our contributions are as follows:

– We present the first post-quantum accumulator (with one-way domain)
together with efficient zero-knowledge proofs of (a pre-image of) an accu-
mulated value, which solely relies on assumptions related to symmetric-key
primitives. That is, we do not require any structured hardness assumptions.
Our proofs are of sublinear size in the number of accumulated elements and
can be instantiated in both, the ROM as well as the quantum accessible ROM
(QROM). Besides being used as an important building block in this paper,
such accumulators are of broader interest. In particular, such accumulators
with efficient zero-knowledge membership proofs have many other applica-
tions beyond this work, e.g., membership revocation [6] or anonymous cash
such as Zerocoin [37]. We also note that the only previous construction of
post-quantum accumulators with efficient zero-knowledge membership proofs
in [34] relies on hardness assumptions on lattices.

– We use our proposed accumulator to construct ring signatures of sub-
linear size. Therefore, we prove an additional property—simulation-sound
extractability—of the proof system (ZKB++ [20]) we are using. This then
allows us to rigorously prove the security of our ring signature construction in
the strongest model of security for ring signatures due to Bender et al. [11].
Consequently, we propose a construction of sublinear size ring signatures
solely from symmetric-key primitives.

– We present a selection of symmetric-key primitives that can be used to instan-
tiate our ring signature construction and evaluate the practicality of our app-
roach. In particular, we present signature sizes for rings of various sizes when
instantiating the one-way function and hash function using LowMC [3,4].
Finally, we present some interesting directions for future research within this
very recent domain.

2 Preliminaries

Notation. Let x ←R
X denote the operation that picks an element uniformly at

random from a finite set X and assigns it to x. We assume that all algorithms
run in polynomial time and use y ← A(x) to denote that y is assigned the output
of the potentially probabilistic algorithm A on input x and fresh random coins.
For algorithms representing adversaries we use calligraphic letters, e.g., A. We
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assume that every algorithm outputs a special symbol ⊥ on error. We write
Pr[Ω : E ] to denote the probability of an event E over the probability space Ω.
A function ε : N → R

+ is called negligible if for all c > 0 there is a k0 such that
ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote
such a negligible function. Finally, we define [n] := {1, . . . , n}.

2.1 Zero-Knowledge Proofs and Σ-Protocols

Σ-Protocols. Let L ⊆ X be an NP-language with witness relation R so that
L = {x | ∃w : R(x,w) = 1}. A Σ-protocol for language L is defined as follows.

Definition 1 (Σ-Protocol). A Σ-protocol for language L is an interactive
three-move protocol between a PPT prover P = (Commit,Prove) and a PPT
verifier V = (Challenge,Verify), where P makes the first move and transcripts
are of the form (a, e, z) ∈ A × E × Z, where a is output by Commit, e is output by
Challenge and z is output by Prove. Additionally, Σ protocols satisfy the following
properties

Completeness. For all security parameters κ, and for all (x,w) ∈ R, it holds
that

Pr[〈P(1κ, x, w),V(1κ, x)〉 = 1] = 1.

s-Special Soundness. There exists a PPT extractor E so that for all x, and
for all sets of accepting transcripts {(a, ei, zi)}i∈[s] with respect to x where
∀i, j ∈ [s], i �= j : ei �= ej, generated by any algorithm with polynomial
runtime in κ, it holds that

Pr
[
w ← E(1κ, x, {(a, ei, zi)}i∈[s]) : (x,w) ∈ R

] ≥ 1 − ε(κ).

Special Honest-Verifier Zero-Knowledge. There exists a PPT simulator S
so that for every x ∈ L and every challenge e ∈ E, it holds that a transcript
(a, e, z), where (a, z) ← S(1κ, x, e) is computationally indistinguishable from
a transcript resulting from an honest execution of the protocol.

The s-special soundness property gives an immediate bound for soundness:
if no witness exists then (ignoring a negligible error) the prover can successfully
answer at most to (s − 1)/t challenges, where t = |E| is the size of the challenge
space. In case this value is too large, it is possible to reduce the soundness error
using �-fold parallel repetition of the Σ-protocol. Furthermore, it is also well
known that one can easily express conjunctions and disjunctions of languages
proven using Σ-protocols. For the formal details refer to [22,23].

Non-interactive ZK Proof Systems. Now, we recall a standard definition
of non-interactive zero-knowledge proof systems. Therefore, let L be an NP-
language with witness relation R so that L = {x | ∃ w : R(x,w) = 1}.

Definition 2 (Non-interactive Zero-Knowledge Proof System). A non-
interactive proof system Π is a tuple of algorithms (Setup, Proof, Verify), defined
as:
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Setup(1κ) : This algorithm takes a security parameter κ as input, and outputs a
common reference string crs.

Proof(crs, x, w) : This algorithm takes a common reference string crs, a statement
x, and a witness w as input, and outputs a proof π.

Verify(crs, x, π) : This algorithm takes a common reference string crs, a statement
x, and a proof π as input, and outputs a bit b ∈ {0, 1}.
We require the properties completeness, adaptive zero-knowledge, and

simulation-sound extractability. Due to the lack of space, the definitions are
presented in the full version.

The Fiat-Shamir Transform. The Fiat-Shamir transform [29] is a frequently
used tool to convert Σ-protocols 〈P,V〉 to their non-interactive counterparts.
Essentially, the transform removes the interaction between P and V by using
a RO H : A × X → E to obtain the challenge e.4 That is, one uses a PPT
algorithm Challenge′(1κ, a, x) which obtains e ← H(a, x) and returns e. Then,
the prover can locally obtain the challenge e after computing the initial message
a. Starting a verifier V′ = (Challenge′,Verify) on the same initial message a will
then yield the same challenge e. More formally, we obtain the non-interactive
PPT algorithms (PH ,VH) indexed by the used RO:

PH(1κ, x, w) : Start P on (1κ, x, w), obtain the first message a, answer with
e ← H(a, x), and finally obtain z. Returns π ← (a, z).

VH(1κ, x, π) : Parse π as (a, z). Start V′ on (1κ, x), send a as first message to V′.
When V′ outputs e, reply with z and output 1 if V′ accepts and 0 otherwise.

One can obtain a non-interactive proof system satisfying the properties above by
applying the Fiat-Shamir transform to any Σ-protocol where the min-entropy
α of the commitment a sent in the first phase is so that 2−α is negligible in
the security parameter κ and the challenge space E is exponentially large in
the security parameter. Formally, Setup(1κ) fixes a RO H : A × X → E, sets
crs ← (1κ,H) and returns crs. The algorithms Proof and Verify are defined as
follows: Proof(crs, x, w) := PH(1κ, x, w), Verify(crs, x, π) := VH(1κ, x, π).

Signatures via Fiat-Shamir. The Fiat-Shamir (FS) transform can elegantly
be used to convert (canonical) identification schemes into adaptively secure sig-
nature schemes. The basic idea is similar to above, but slightly differs regarding
the challenge generation, i.e., one additionally includes the message upon gen-
erating the challenge. Note that in the context of the stronger variant of the
FS transform we rely on, one can simply modify the language so that the state-
ments additionally include the message to be signed. This is because our variant
of the FS transform includes the statement upon challenge generation, which
is why extending the statement by the message also implicitly means including
the message in the challenge generation. We will not make this language change
explicit in the following, but implicitly assume that the language is changed if a
message is included as the last parameter of the statement to be proven.
4 This is a stronger variant of FS (cf. [12,28]). The original weaker variant of the FS

transform does not include the statement x in the challenge computation.
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The Unruh Transform. Similar to FS, Unruh’s transform [41–43] allows one
to construct NIZK proofs and signature schemes from Σ-protocols. In contrast
to the FS transform, Unruh’s transform can be proven secure in the QROM
(quantum random oracle model), strengthening the security guarantee against
quantum adversaries. At a high level, Unruh’s transform works as follows: given
Σ-protocol, the prover repeats the first phase of the Σ-protocol t times and
for each of those runs produces responses for M randomly selected challenges.
All those responses are permuted using a random permutation G. Querying the
random oracle on all first rounds all permuted responses then determines the
responses to publish for each round.

2.2 Efficient NIZK Proof Systems for General Circuits

ZKB++ [20], an optimized version of ZKBoo [30], is a proof system for zero-
knowledge proofs over arbitrary circuits. ZKBoo and ZKB++ build on the
MPC-in-the-head paradigm by Ishai et al. [33], which roughly works as follows.
The prover simulates all parties of a multiparty computation protocol (MPC)
implementing the joint evaluation of some function, say y = SHA-256(x), and
computes commitments to the states of all players. The verifier then randomly
corrupts a subset of the players and checks whether those players did the com-
putation correctly.

ZKBoo generalizes the idea of [33] by replacing MPC with circuit decom-
positions. There the idea is to decompose the circuit into three shares, where
revealing the wire values of two shares does not leak any information about the
wire values on the input of the circuit. The explicit formulas for circuit decom-
position can be found in [30] for ZKBoo and in [20] for ZKB++. Multiplication
gates induce some dependency between the individual shares which is why the
wire values on the output of the multiplication gates needs to be stored in the
transcripts. Hence, the transcripts grow linearly in the number of multiplication
gates. Due to space limitations we do not include further details on ZKB++
and refer the reader to [20] for the details.

3 PQ Accumulators and ZK Membership Proofs

Our goal is to come up with an accumulator and associated efficient zero-
knowledge membership proof system, which remains secure in the face of attacks
by a quantum attacker. The first building block we, thus, require for our con-
structions are accumulators which can be proven secure under an assumption
which is believed to resist attacks by a quantum computer. In this work our goal
is to solely rely on unstructured assumptions, and thus resort to using Merkle-
trees as accumulators. Merkle-trees were first used in the context of accumulators
by Buldas et al. in [16], who called their primitive undeniable attesters. In the
fashion of [27], we then extend the accumulator model to accumulators with
one-way domain, i.e., accumulators where the accumulation domain coincides
with the range of a one-way function so that one can accumulate images of the
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one-way function. For the associated zero-knowledge membership proof system,
we build up on recent progress in proving statements over general circuits as
discussed in Sect. 2.2.

The main technical hurdle we face in this context is designing the statement
to be proven with the proof system so that we can actually obtain proofs which
are sublinear (in particular logarithmic) in the number of accumulated elements.
Obtaining sublinear proofs is complicated mainly due to the absence of any
underlying algebraic structure on the accumulator.

3.1 Formal Model

We rely on the formalization of accumulators by [24], which we slightly adapt to
fit our requirement for a deterministic Eval algorithm. Based on this formaliza-
tion we then restate the Merkle-tree accumulator (having a deterministic Eval
algorithm) within this framework.

Definition 3 (Accumulator). A static accumulator is a tuple of efficient algo-
rithms (Gen, Eval, WitCreate, Verify) which are defined as follows:

Gen(1κ, t) : This algorithm takes a security parameter κ and a parameter t. If
t �= ∞, then t is an upper bound on the number of elements to be accumu-
lated. It returns a key pair (skΛ, pkΛ), where skΛ = ∅ if no trapdoor exists.
We assume that the accumulator public key pkΛ implicitly defines the accu-
mulation domain DΛ.

Eval((sk∼
Λ , pkΛ),X ) : This deterministic algorithm takes a key pair (sk∼

Λ , pkΛ) and
a set X to be accumulated and returns an accumulator ΛX together with some
auxiliary information aux.

WitCreate((sk∼
Λ , pkΛ),ΛX , aux, xi) : This algorithm takes a key pair (sk∼

Λ , pkΛ), an
accumulator ΛX , auxiliary information aux and a value xi. It returns ⊥, if
xi /∈ X , and a witness witxi

for xi otherwise.
Verify(pkΛ,ΛX ,witxi

, xi) : This algorithm takes a public key pkΛ, an accumulator
ΛX , a witness witxi

and a value xi. It returns 1 if witxi
is a witness for

xi ∈ X and 0 otherwise.

We require accumulators to be correct and collision free. While we omit the
straight forward correctness notion, we recall the collision freeness notion below,
which requires that finding a witness for a non-accumulated value is hard.

Definition 4 (Collision Freeness). A cryptographic accumulator is collision-
free, if for all PPT adversaries A there is a negligible function ε(·) such that:

Pr
[

(skΛ, pkΛ) ← Gen(1κ, t),
(wit�

xi
, x�

i ,X�) ← A(pkΛ) :
Verify(pkΛ,Λ�,wit�

xi
, x�

i) = 1 ∧
x�

i /∈ X�

]
≤ ε(κ),

where Λ� ← Evalr�((skΛ, pkΛ),X�).
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Gen(1κ, t) : Fix a family of hash functions {Hk}k∈Kκ with Hk : {0, 1}∗ → {0, 1}κ ∀ k ∈
Kκ. Choose k ←R Kκ and return (skΛ, pkΛ) ← (∅, Hk).

Eval((skΛ, pkΛ), X ) : Parse pkΛ as Hk and X as (x0, . . . , xn−1).
a If � k ∈ N so that

n = 2k return ⊥. Otherwise, let �u,v refer to the u-th leaf (the leftmost leaf is
indexed by 0) in the v-th layer (the root is indexed by 0) of a perfect binary tree.
Return ΛX ← �0,0 and aux ← ((�u,v)u∈[n/2k−v ])v∈[k], where

�u,v ←
{

Hk(�2u,v+1||�2u+1,v+1) if v < k, and
Hk(xi) if v = k.

WitCreate((sk∼
Λ , pkΛ), ΛX , aux, xi) : Parse aux as ((�u,v)u∈[n/2k−v ])v∈[k] and return witxi

where

witxi ← (��i/2v�+η,k−v)0≤v≤k, where η =

{
1 if �i/2v	 (mod 2) = 0

−1 otherwise.

Verify(pkΛ, ΛX , witxi , xi) : Parse pkΛ as Hk, ΛX as �0,0, set �i,k ← Hk(xi). Recursively
check for all 0 < v < k whether the following holds and return 1 if so. Otherwise
return 0.

��i/2v+1�,k−(v+1) =

{
Hk(��i/2v�,k−v||��i/2v�+1,k−v) if �i/2v	 (mod 2) = 0
Hk(��i/2v�−1,k−v||��i/2v�,k−v) otherwise.

a We assume without loss of generality that X is an ordered sequence instead of a set.

Scheme 1. Merkle-tree accumulator.

3.2 The Accumulator

In Scheme 1, we cast the Merkle-tree accumulator in the framework of [24].
Then, we restate some well-known lemmas and sketch the respective proofs.

Lemma 1. Scheme 1 is correct.

The lemma above is easily verified by inspection. The proof is omitted.

Lemma 2. If {Hk}k∈Kκ is a family of collision resistant hash functions, the
accumulator in Scheme 1 is collision free.

Proof (Sketch). Upon setup, the reduction engages with a collision resistance
challenger for the family of hash functions, obtains Hk, and completes the setup
as in the original protocol. Now, one may observe that every collision in the
accumulator output by the adversary implies that the reduction knows at least
two colliding inputs for Hk, which upper bounds the probability of a collision in
the accumulator by the collision probability of the hash function.

3.3 Accumulators with One-Way Domain

We now extend the definition of accumulators to ones with one-way domain
following the definition of [27], but we adapt it to our notation.
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Definition 5 (Accumulator with One-Way Domain). A collision-free
accumulator with accumulation domain DΛ and associated function family {fΛ :
IΛ → DΛ} where Gen(1κ, t) also selects fΛ is called an accumulator with one-way
domain if

Efficient verification. There exists an efficient algorithm D that on input
(x, z) ∈ DΛ × IΛ returns 1 if and only if fΛ(z) = x.

Efficient sampling. There exists a (probabilistic) algorithm W that on input
1κ returns a pair (x, z) ∈ DΛ × IΛ with D(x, z) = 1.

One-wayness. For all PPT adversaries A there is a negligible function ε(·)
such that:

Pr
[
(x, z) ← W (1κ), z� ← A(1κ, x) : D(x, z) = 1

] ≤ ε(κ).

Note that when we set fΛ to be the identity function, then we have a conventional
accumulator.

3.4 Membership Proofs of Logarithmic Size

The main technical tool used by [27] to obtain zero-knowledge membership
proofs of constant size is to exploit a property of the accumulator which is
called quasi-commutativity. Clearly, such a property requires some underlying
algebraic structure which we explicitly want to sacrifice in favor of being able to
solely rely on assumptions related to symmetric-key primitives with relatively
well understood post-quantum security. To this end we have to use a different
technique. First observe that when näıvely proving that a non-revealed value is
a member of our accumulator would amount to a disjunctive proof of knowledge
over all members, which is at least of linear size. Therefore, this is not an option
and we have to develop an alternative technique.

The Relation. Essentially our idea is to “emulate” some kind of commutativity
within the order of the inputs to the hash function in each level by a disjunctive
proof statement, i.e., we exploit the disjunction to hide where the path through
the tree continues. The single statements in every level of the tree are then
included in one big conjunction. The length of this statement is O(k) = O(log n).
More formally we define a relation R on {0, 1}κ ×{fΛ}×{Hk}× IΛ × ({0, 1}κ)2k

which—for a given non-revealed pre-image z—attests membership of the corre-
sponding image fΛ(z) in the accumulator ΛX :

((ΛX , fΛ,Hk), (z, (ai)i∈[k], (bi)i∈[k])) ∈ R ⇐⇒ (ak = fΛ(z) ∨ bk = fΛ(z))

∧
k−1∧

i=0

(ai = Hk(ai+1||bi+1) ∨ ai = Hk(bi+1||ai+1),

where ΛX = a0. In Fig. 1 we illustrate that the relation indeed works for arbitrary
members of the accumulator without influencing the form of the statement or the
witness. This illustrates that proving the statement in this way does not reveal
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((�0,0, fΛ, Hk), (z, (�1,1, �2,2), (�0,1, �3,2)))

�0,0

�0,1

�0,2 �1,2

�1,1

�2,2

z

�3,2

((�0,0, fΛ, Hk), (z, (�0,1, �1,2), (�1,1, �0,2)))

�0,0

�0,1

�0,2 �1,2

z

�1,1

�2,2 �3,2

Fig. 1. Visualization of different paths in the Merkle-tree and the corresponding wit-
ness. The nodes on the path corresponding to a0, a1 and a2 are underlined.

any information on which path in the tree was taken. To see this, observe that
at each level of the tree the relation covers both cases where ai is either a left or
right child. Given that, it is easy to verify that having a witness for relation R
implies having a witness for the accumulator together with some (non-revealed)
member.

Remark 1. In order to use relation R with the conventional accumulator in
Scheme 1, we just have to set fΛ to be the identity function (which yields x = z)
and then set ak = Hk(z) and bk = Hk(z).

3.5 Converting Accumulator Witnesses

Now, the remaining piece to finally be able to plug in a witness witfΛ(z) for
some accumulated value fΛ(z) with pre-image z into the relation R above is
some efficient helper algorithm which rearranges the values z and witfΛ(z) so
that they are compatible with the format required by R. Such an algorithm is
easily implemented, which is why we only define the interface below.

Trans(z,witfΛ(z)) : Takes as input a value z as well as a witness witfΛ(z) and
returns a witness of the form (z, (ai)i∈[k], (bi)i∈[k]) for R.

Since Trans can be viewed as a permutation on the indexes it is easy to see that
the function implemented by Trans is bijective and its inverse is easy to compute.
We denote the computation of the inverse of the function implemented by Trans
as (z,witfΛ(z)) ← Trans−1(z, (ai)i∈[n], (bi)i∈[n]).

4 Logarithmic Size Ring Signatures

The two main lines of more recent work in the design of ring signatures tar-
get reducing the signature size or removing the requirement for random ora-
cles (e.g., [13,19,26,27,31,32,35]). We, however, note that all these approaches
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require assumptions that do not withstand a quantum computer. To the best
of our knowledge, the first non-trivial post-quantum scheme (i.e., one that does
not have linear size signatures) in the random oracle model is the lattice-based
scheme recently proposed by Libert et al. [34]. We provide an alternative con-
struction in the random oracle model with logarithmic sized signatures, but avoid
lattice assumptions and only rely on symmetric-key primitives.

4.1 Formal Model

Below, we formally define ring signature schemes (adopting [11]).

Definition 6 (Ring Signature). A ring signature scheme RS is a tuple RS =
(Setup,Gen,Sign,Verify) of PPT algorithms, which are defined as follows.

Setup(1κ) : This algorithm takes as input a security parameter κ and outputs
public parameters xpars.

Gen(PP) : This algorithm takes as input parameters PP and outputs a keypair
(sk, pk).

Sign(ski,m,R) : This algorithm takes as input a secret key ski, a message m ∈ M
and a ring R = (pkj)j∈[n] of n public keys such that pki ∈ R. It outputs a
signature σ.

Verify(m,σ,R) : This algorithm takes as input a message m ∈ M, a signature σ
and a ring R. It outputs a bit b ∈ {0, 1}.

A secure ring signature scheme needs to be correct, unforgeable, and anonymous.
While we omit the obvious correctness definition, we subsequently provide formal
definitions for the remaining properties following [11]. We note that Bender et al.
in [11] have formalized multiple variants of these properties, where we always
use the strongest one.

Unforgeability requires that without any secret key ski that corresponds to
a public key pki ∈ R, it is infeasible to produce valid signatures with respect to
arbitrary such rings R. Our unforgeability notion is the strongest notion defined
in [11] and is there called unforgeability w.r.t. insider corruption.

Definition 7 (Unforgeability). A ring signature scheme provides unforgeabil-
ity, if for all PPT adversaries A, there exists a negligible function ε(·) such that
it holds that

Pr

⎡

⎢
⎢
⎣

PP ← Setup(1κ),
{(sk, pk) ← Gen(PP)}i∈[poly(κ)],
O ← {Sig(·, ·, ·),Key(·)},
(m�, σ�,R�) ← AO({pki}i∈[poly(κ)])

:
Verify(m�, σ�,R�) = 1 ∧

(·,m�,R�) /∈ QSign ∧
R� ⊆ {pki}i∈[poly(κ)]\QKey

⎤

⎥
⎥
⎦ ≤ ε(κ),

where Sig(i,m,R) := Sign(ski,m,R), Sig returns ⊥ if pki /∈ R ∨ i /∈ [poly(κ)],
and QSig records the queries to Sig. Furthermore, Key(i) returns ski and QKey

records the queries to Key.
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Anonymity requires that it is infeasible to tell which ring member produced a
certain signature as long as there are at least two honest members in the ring.
Our anonymity notion is the strongest notion defined in [11] and is there called
anonymity against full key exposure.

Definition 8 (Anonymity). A ring signature scheme provides anonymity, if
for all PPT adversaries A and for all polynomials poly(·), there exists a negligible
function ε(·) such that it holds that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

PP ← Setup(1κ),
{(ski, pki) ← Gen(PP)}i∈[poly(κ)],
b ←R {0, 1}, O ← {Sig(·, ·, ·)},
(m, j0, j1,R, st) ← AO({pki}i∈[poly(κ)]),
σ ← Sign(skjb

,m,R),
b� ← AO(st, σ, {ski}i∈[poly(κ)])

:
b = b� ∧

{pkji
}i∈{0,1} ⊆ R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 1/2 + ε(κ),

where Sig(i,m,R) := Sign(ski,m,R).

4.2 Generic Approaches to Design Ring Signatures

A folklore approach to design ring signatures in the random oracle model is to
use the NP relation RRS together with a one-way function μ, which defines the
relation between secret and public keys:

(R, sk) ∈ RRS ⇐⇒ ∃ pki ∈ RRS : pki = μ(sk),

and allows to demonstrate knowledge of a witness (a secret key) of one of the
public keys in the ring R. Usually, one then designs a Σ-protocol for relation
RRS and converts it into a signature scheme using the Fiat-Shamir heuristic.

Linear-size signatures. A frequently used instantiation of the above approach
is instantiating the relation above by means of a disjunctive proof of knowl-
edge [22]. Using this approach, one obtains ring signatures of linear size. It might
be tempting to think that there is a lot of optimization potential for signature
sizes in ring signatures. However, without additional assumptions about how the
keys are provided to the verifier, signatures of linear size are already the best
one can hope for: the verifier needs to get every public key in the ring to verify
the signature.

Reducing signature size. However, to further reduce the signature size there
is a nice trick which is based on the observation that in many practical scenarios
the prospective ring members are already clear prior to the signature genera-
tion. Consequently, one can compactly encode all public keys in this ring within
some suitable structure and compute the signatures with respect to this compact
structure. This trick was first used by Dodis et al. [27]. Loosely their approach
can be described as follows. They use a cryptographic accumulator with a one-
way domain to accumulate the ring R, a set of public keys being the output
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of applying the one-way function μ to the respective secret key. This way they
obtain a succinct representation of R. Then, they use a proof system that allows
to prove knowledge of a witness of one accumulated value (i.e., the public key)
and knowledge of the pre-image thereof (i.e., the corresponding secret key). This
proof can be turned into a signature using the Fiat-Shamir heuristic.

Depending on the size of the zero-knowledge membership proof this can yield
sublinear (logarithmic or even constant size) signatures. Dodis et al. presented
an instantiation of an accumulator together with the respective zero-knowledge
proofs that yield constant size ring signatures based on the strong RSA assump-
tion. Logarithmic size ring signatures under lattice assumptions are presented
in [34].

4.3 Our Construction of Logarithmic Size Ring Signatures

Our construction basically follows the approach discussed above to reduce sig-
nature size. However, in contrast to Dodis et al., besides targeting the post-
quantum setting, we (1) do not require a trusted setup5, and (2) cannot rely on
accumulators with one-way domain which provide quasi-commutativity. Latter
is too restricting and not compatible with the setting in which we work. In par-
ticular, it excludes Merkle-tree accumulators, which is why we chose to rely on
a more generic formalization of accumulators (cf. Sect. 3). Like Dodis et al., we
assume that in practical situations rings often stay the same for a long period
of time (e.g., some popular rings are used very often by various members of
the ring), or have an implicit short description. Consequently, we measure the
signature size as that of the actual signature, i.e., the information one requires
in addition to the group description. We want to stress once again that when
counting the description of the ring as part of the signature, every secure ring
signature schemes needs to have signature sizes which are at least linear in the
size of the ring.

For the ease of presentation let us fix one such popular ring R identified by
the corresponding accumulator ΛR and we assume that |R| = 2t for some t ∈ N.6

We present our construction as Scheme 2.

Remark 2. Note that in Scheme 2 crs is not a common reference string (CRS)
that needs to be honestly computed by a trusted third party. We simply stick
with the notion including a CRS for formal reasons, i.e,. to allow the abstract
notion of NIZKs, but as we exclusively use NIZK from Σ-protocols, we do not
require a trusted setup and crs is just a description of the hash function which
can be globally fixed, e.g., to SHA-256 or SHA-3. Recall, within Fiat-Shamir
Π.Setup(1κ) fixes a RO H : A × X → E, sets crs ← (1κ,H) and returns crs.

Remark 3. A trusted setup in context of ring signatures is actually problematic,
as it assumes that some mutually trusted party honestly executes the setup.
5 A trusted setup somehow undermines the idea behind ring signatures.
6 If this is not the case, one can always add dummy keys to the ring to satisfy this

condition.
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Setup(1κ) : Let Λ be the accumulator with one-way domain based on Scheme 1, run
(skΛ, pkΛ) ← Λ.Gen(1κ, t) (note that skΛ = ∅). Run crs ← Π.Setup(1κ) and return
PP ← (pkΛ, crs) = ((Hk, fΛ), (1κ, H)).

KeyGen(PP) : Parse PP as ((Hk, fΛ), crs), run (x, z) ← fΛ.W (1κ), and set pk ← (PP, x),
sk ← (pk, z). Return (sk, pk).

Sign(ski, m, R) : Parse ski as ((((Hk, fΛ), crs), xi), zi) and R as (pk1, . . . , pkt) = ((·,
x1), . . . , (·, xt)). Let X = (x1, . . . , xt), run (ΛX , aux) ← Λ.Eval((·, pkΛ), X ) and
witfΛ(zi) ← Λ.WitCreate((·, pkΛ), ΛX , aux, fΛ(zi)). Obtain (zi, (aj)j∈[t], (bj)j∈[t]) ←
Trans(zi, witfΛ(zi)), and return the signature σ ← (π, ΛX ), where

π ← Π.Proof(crs, (ΛX , fΛ, Hk), (zi, (aj)j∈[t], (bj)j∈[t])).

Verify(m, σ, R) : Parse σ as (π, ΛX ) and R as (pk1, . . . , pkt) = ((((Hk, fΛ), crs), x1),
. . . , (·, xt)). Let X = (x1, . . . , xt), and compute

(Λ′
X , aux′) ← Λ.Eval((·, pkΛ), X ).

If Λ′
X 
= ΛX return 0. Otherwise return Π.Verify(crs, (ΛX , fΛ, Hk), π).

Scheme 2. Construction of logarithmic size RS.

For instance, in case of the strong RSA accumulator [7,18] as used within [27],
the party running the Gen algorithm of the accumulator can arbitrarily cheat.
This can easily be done by keeping the accumulator secret (a trapdoor) instead
of discarding it. Using this information, a dishonest setup allows to insert and
delete arbitrary elements into and from the accumulator without changing the
accumulator value. In context of ring signatures one thus can arbitrarily modify
existing rings used within signatures, which could lead to modification of rings
to just include public keys into the ring so that for every member of the ring the
sole fact to know that one of these persons produced a signature already leads
to severe consequences. We stress that in our case there is no trusted setup.
In particular, there is no accumulator secret and the public parameters are just
descriptions of hash functions and a OWF.

Now, we argue that our ring signature presented in Scheme 2 represents a
secure ring signature scheme, where we omit correctness which is straightforward
to verify.

Theorem 1. If Λ is a collision free accumulator with one-way domain with
respect to fΛ and Π is a simulation-sound extractable non-interactive proof sys-
tem, then the ring signature scheme in Scheme 2 is unforgeable.

Proof. We prove unforgeability using a sequence of games.

Game 0: The original unforgeability game.
Game 1: As Game 0, but we modify Gen to setup (crs, τ) using S1 and henceforth

simulate all proofs in Sign without a witness using τ .
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Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1
is a zero-knowledge distinguisher for Π, i.e., |Pr[S0] − Pr[S1]| ≤ εzk(κ).

Game 2: As Game 1, but we further modify Gen to setup (crs, τ, ξ) using E1

and store ξ.
Transition - Game 1 → Game 2: By simulation-sound extractability, this change

is only conceptual, i.e., Pr[S1] = Pr[S2].
Game 3: As Game 2, but for the forgery (m�, σ�,R�) output by the adversary

we parse σ� as (π,ΛX ) and obtain (zi, (ai)i∈[k], (bi)i∈[k]) ← E2(crs, ξ, (ΛX , fΛ,
Hk), π). If the extractor fails, we abort.

Transition - Game 2 → Game 3: Game 2 and Game 3 proceed identically, unless
we abort. The probability for the abort event to happen is upper bounded
by εext(κ) which is why we can conclude that |Pr[S3] − Pr[S2]| ≤ εext(κ).

Game 4: As Game 3, but we abort if we have extracted (zi, (ai)i∈[n], (bi)i∈[n]) so
that (·,witfΛ(zi)) ← Trans−1(zi, (ai)i∈[n], (bi)i∈[n]) is a valid witness for some
fΛ(zi) which was never accumulated.

Transition - Game 3 → Game 4: If we abort in Game 4, we have a collision for
the accumulator. That is |Pr[S3] − Pr[S4]| ≤ εcf(κ).

Game 5: As Game 4, but we guess the index i� the adversary will attack before-
hand, and abort if our guess is wrong.

Transition - Game 4 → Game 5: The success probability in Game 4 is the same
as in Game 5, unless our guess is wrong, i.e., Pr[S5] = 1/poly(κ) · Pr[S4].

Game 6: As Game 5, but instead of honestly generating the keypair for user i�,
we engage with a challenger of a OWF to obtain xi� and include it in pki�

accordingly. We set ski� ← ∅.
Transition - Game 5 → Game 6: This change is conceptual, i.e., Pr[S5] = Pr[S6].

In the last game, we have an adversary against the OWF, i.e., Pr[S6] ≤ εowf(κ).
All in all, we have that Pr[S0] ≤ poly(κ) · εowf(κ) + εzk(κ) + εext(κ) + εcf(κ).

Theorem 2. If Π is a zero-knowledge non-interactive proof system, then the
ring signature scheme in Scheme 2 is anonymous.

Proof. We prove anonymity using a sequence of games.

Game 0: The original anonymity game.
Game 1: As Game 0, but we modify Gen to setup (crs, τ) using S1 and henceforth

simulate all proofs in Sign without a witness using τ .
Transition - Game 0 → Game 1: A distinguisher between Game 0 and Game 1

is a zero-knowledge distinguisher for Π, i.e., |Pr[S0] − Pr[S1]| ≤ εzk(κ).

In Game 1 the simulation is independent of b, meaning that Pr[S1] = 1/2. Thus,
we have Pr[S0] ≤ 1/2 + εzk(κ), which concludes the proof. ��

5 Implementation Aspects and Evaluation

In this section we discuss some implementation aspects regarding instantiating
our ring signature scheme. Moreover, we evaluate the efficiency of a concrete
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instantiation. Since we require simulation-sound extractable NIZK proof sys-
tems, we confirm that the Fiat-Shamir (resp. Unruh) transformed version of
ZKB++ represents a suitable proof system in the ROM (resp. QROM). We
again want to note that we were not able to include the ZKB++ construction
due to space limitations, but refer the reader to [20] for the details.

5.1 Simulation-Sound Extractability of ZKB++

To instantiate our ring signature scheme using ZKB++, we first need to con-
firm that the NIZK proof system obtained by applying the Fiat-Shamir/Unruh
transform to ZKB++ is in fact simulation-sound extractable. For the Unruh-
transformed proof system, this was already shown in [20, Theorem 2] in the
QROM, which is why we only focus on the Fiat-Shamir version. We base our
argumentation upon the argumentation in [28]. What we have to do is to show
that the FS transformed ZKB++ is zero-knowledge and provides quasi-unique
responses in the ROM. We do so by proving two lemmas. Combining those lem-
mas with [28, Theorems 2 and 3] then yields simulation-sound extractability as
a corollary.

Lemma 3. Let QH be the number of queries to the random oracle H, QS be
the overall queries to the simulator, and let the commitments be instantiated
via a RO H ′ with output space {0, 1}ρ and the committed values having min
entropy ν. Then the probability ε(κ) for all PPT adversaries A to break zero-
knowledge of κ parallel executions of the FS transformed ZKB++ is bounded by
ε(κ) ≤ s/2ν + (QS ·QH)/23·ρ.

The lemma above was already proven for ZKBoo in [25]. For ZKB++ the
argumentation is the same. We restate the proof below for completeness.

Proof. We bound the probability of any PPT adversary A to win the zero-
knowledge game by showing that the simulation of the proof oracle is statistically
close to the real proof oracle. For our proof let the environment maintain a list
H where all entries are initially set to ⊥.

Game 0: The zero-knowledge game where the proofs are honestly computed,
and the ROs are simulated honestly.

Game 1: As Game 0, but whenever the adversary requests a proof for some tuple
(x,w) we choose e ←R {0, 1, 2}κ before computing a and z. If H[(a, x)] �= ⊥ we
abort and call that event E. Otherwise, we set H[(a, x)] ← e.

Transition - Game 0 → Game 1: Both games proceed identically unless E hap-
pens. The message a includes 3 RO commitments with respect to H ′, i.e.,
the min-entropy is lower bounded by 3 · ρ. We have |Pr[S0] − Pr[S1]| ≤
(QS ·QH)/23·ρ.

Game 2: As Game 1, but we compute the commitments in a so that the ones
which will never be opened according to e contain random values.

Transition - Game 1 → Game 2: The statistical difference between Game 1 and
Game 2 can be upper bounded by |Pr[S1]−Pr[S2]| ≤ κ·1/2ν (for compactness
we collapsed the s game changes into a single game).
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Game 3: As Game 2, but we use the HVZK simulator to obtain (a, e, z).
Transition - Game 2 → Game 3: This change is conceptual, i.e., Pr[S2] = Pr[S3].

In Game 0, we sample from the first distribution of the zero-knowledge game,
whereas we sample from the second one in Game 3; the distinguishing bounds
shown above conclude the proof. ��
Lemma 4. Let the commitments be instantiated via a RO H ′ with output space
{0, 1}ρ and let QH′ be the number of queries to H ′, then the probability to break
quasi-unique responses is bounded by Q2

H′/2ρ.

Proof. To break quasi-unique responses, the adversary would need to come up
with two valid proofs (a, e, z) and (a, e, z′). The last message z (resp z′) only con-
tains openings to commitments, meaning that breaking quasi unique responses
implies finding a collision for at least one of the commitments. The probability
for this to happen is upper bounded by Q2

H′/2ρ which concludes the proof. ��
Combining Lemmas 3 and 4 with [28, Theorems 2 and 3] yields the following
corollary.

Corollary 1. The FS transformed ZKB++ is simulation-sound extractable.

5.2 Selection of Symmetric-Key Primitives

When instantiating our ring signature scheme using ZKB++, the selection of
the underlying primitives is of importance for the actual signature sizes as well
as the overall performance. As ZKB++’s proof size depends on the number
of multiplication gates and the size of the operands, we require a OWF and
a collision-resistant hash function with a representation as circuit, where the
product of the multiplicative complexity and the number of bits required to
store field elements is minimal. Note that for the OWF we can observe that,
when instantiating it with a block cipher, only one plaintext-ciphertext pair per
key is visible to an adversary. Hence, we have the same requirements as in [20],
which is why we also choose LowMC [3,4] with a reduced data complexity to
build the OWF. For the selection of the collision-resistant hash function we are
presented with different options:

Standardized Hash Functions. SHA-256 or SHA-3 are the obvious choices
for collision resistant hash functions. SHA-256’s compression function requires
around 25000 multiplication gates [9] and SHA-3’s permutation even more with
around 38400 gates [39].

Sponge Construction with Low Multiplicative Complexity Ciphers.
Using a block cipher with small multiplicative complexity as permutation in a
sponge construction, e.g., using LowMC or MiMC [2], enables the construction
of hash functions with similar security guarantees as SHA-256 and SHA-3, but
with a significantly reduced multiplicative complexity. Using the numbers from
[2], MiMCHash-256 requires 1293 multiplications with a field size of 1025 bits.
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LowMCHash-256 only requires a 1 bit binary field and 3540 AND gates7. Thus,
a hash based on LowMC is a better candidate for our use case.

Finally we present signature sizes when instantiating our ring signature
scheme with LowMC for both OWF and the hash function. Table 1 presents
signature size estimations for some choices of ring sizes and aiming at a 128 bit
post-quantum security level and we compute them using the formulas from [20].
For the Fiat-Shamir-transformed proof system the involved proofs have a maxi-
mal size of t ·(c+2s+log2(3)+� ·m+2i)) bits and t ·(c+3s+log2(3)+2� ·m+2i)
bits for the Unruh-transformed proofs, where t is the number of repetitions, c
the size of the commitments, i the size of the input to the circuit, � the size of the
underlying field, m the number of AND gates, and s the size of the seeds used
to generate the random tapes. We use ZKB++ as instantiated in [20] and give
the numbers for both the Fiat-Shamir and Unruh transformed proof system.

Table 1. Signature sizes at the 128 bit post-quantum security level.

Ring size |σ| (FS/ROM) |σ| (Unruh/QROM)

2k 1335900 + 3213168 · k bits 2059476 + 4763688 · k bits

25 2125KB 3159KB

210 4086KB 6067KB

220 8008KB 11882KB

We note that Ligero [5], a recent NIZK proof system for general circuits, offers
proofs logarithmic in the number of multiplication gates in the prime field case
respectively in the number of AND and XOR gates in the case of binary fields,
which would allow us to reduce the signature size significantly. However, to the
best of our knowledge, it is unclear whether Ligero provides simulation-sound
extractability.

6 Conclusions

In this this work we made some important steps towards establishing privacy-
enhancing primitives which are solely built from symmetric-key primitives and
therefore do not require any structured hardness assumptions. In our work, we
followed a modular concept and first introduced a post-quantum accumulator
with efficient zero-knowledge membership proofs of sublinear size. Besides the
applications to logarithmic size ring signatures as we presented in this paper, we
believe that our post-quantum accumulator construction with zero-knowledge
proofs may well have broader impact in the construction of other (privacy-
enhancing) protocols in the post-quantum setting.

7 Numbers updated according to a personal discussion with Christian Rechberger.
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Open Questions. In addition, we believe that our work also opens up quite
some possibilities for further research.

First, in the context of privacy-enhancing protocols, it would be interesting
to investigate how to extend our methods to obtain group signatures [21], i.e.,
anonymous signatures that provide the possibility to re-identify anonymous sign-
ers by a dedicated party. We note that Dodis et al. [27] informally discuss that
when adding ID escrow functionality to their ring signature scheme yields group
signatures. Basically, the lattice-based construction of Libert et al. [34] can be
considered as an instantiation of the former paradigm. The problem is that this
paradigm requires IND-CCA2 secure public-key encryption, which does not exist
given our constraints. In addition, it is well known [1,17] that group signatures
in the static model by Bellare et al. in [8] imply public-key encryption. This
means that the best one could hope for would be a construction being secure in
a weakened version of the Bellare et al. model. Work in this direction was earlier
pursued by Camenisch and Groth [17], who showed how to construct group sig-
nature schemes in a weaker model from one-way functions and non-interactive
zero-knowledge arguments. The question which remains open in our context is
whether one can find instantiations without the requirement for structured hard-
ness assumptions and providing the practical efficiency one would hope for, i.e.,
ideally instantiations which just require to prove statements with respect to a
few evaluations of a block cipher.

Second, in the context of symmetric-key primitives, one may observe that—
despite the recent trend to construct symmetric-key primitives with particularly
low AND count—there is no practical application so far which would require
collision resistant hash functions with particularly low AND count. Since our
accumulator construction relies on collision resistant hash functions, our work
may well also open up new fields of research in the symmetric-key community.

Acknowledgments. The authors have been supported by EU H2020 Project Pris-
macloud, grant agreement n◦644962. We thank Christian Rechberger for discussions
on the choice of symmetric-key primitives, especially regarding the instantiation of hash
functions using LowMC, as well as for providing us with updated LowMC instances.
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Abstract. Hash-based signature schemes are the most promising cryp-
tosystem candidates in a post-quantum world, but offer little structure to
enable more sophisticated constructions such as group signatures. Group
signatures allow a group member to anonymously sign messages on behalf
of the whole group (as needed for anonymous remote attestation). In
this work, we introduce G-Merkle, the first (stateful) hash-based group
signature scheme. Our proposal relies on minimal assumptions, namely
the existence of one-way functions, and offers performance equivalent to
the Merkle single-signer setting. The public key size (as small as in the
single-signer setting) outperforms all other post-quantum group signa-
tures. Moreover, for N group members issuing at most B signatures each,
the size of a hash-based group signature is just as large as a Merkle sig-
nature with a tree composed by N ·B leaf nodes. This directly translates
into fast signing and verification engines. Different from lattice-based
counterparts, our construction does not require any random oracle. Note
that due to the randomized structure of our Merkle tree, the signature
authentication paths are pre-stored or deduced from a public tree, which
seems a requirement hard to circumvent. To conclude, we present imple-
mentation results to demonstrate the practicality of our proposal.

Keywords: Group signatures · Hash-based signatures
Post-quantum cryptography

1 Introduction

Post-quantum cryptography is attracting increasing attention since the recent
announcements by NIST [oSN16], NSA [NSA15] and the PQCRYPTO project
[PQC16] that endorse the migration from classical to post-quantum schemes.
Hash-based signatures (HBS) are considered good candidates as they offer good
security and performance guarantees. They are considered quantum resistant,
while widely-deployed public key cryptosystems are susceptible to polynomial-
time quantum attacks [Sho94], and rely only on minimal assumptions, namely
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certain well-studied security notions related to hash functions. Note that any
signature scheme (classical or post-quantum) with appended message also relies
on the security of hashing (used to map arbitrary length message into a fixed
length digest), plus some other (likely less studied) assumptions.

Another strength of HBS refers to their practical performance. As opposed
to conventional schemes, where expensive computations are required, HBS only
require hash computations, an operation with performance akin to symmetric
key cryptography rather than public-key cryptosystems. Given their high effi-
ciency and tight security, HBS can be seen as one of the fewest post-quantum
cryptographic alternatives that can immediately replace conventional cryptosys-
tems (although stateful schemes may require extra caution related to state man-
agement [MKF+16]). However, the same simplicity that leads to high efficiency
and tight security also imposes limitations to build more sophisticated construc-
tions such as group signatures.

Group signatures allow any member of a group to anonymously sign messages
on behalf of a group. This is accomplished by a unique group public key that is
the same for all group members. A group manager can break the anonymity of
any group signature by means of a master key and thus determine the respective
issuer (traceability). Note that no other entity other than the group manager
is able to gather information or trace a signature back to any group member
(anonymity). Group signature schemes have great applicability in real-world,
such as in remote attestation protocols, traffic management, e-commerce, e-cash,
e-voting and e-auction, just to name a few examples.

1.1 Related Work

The first group signature scheme has been introduced in [Cv91]. Subsequently,
it has been improved in [ACJT00]. The notion of full-anonymity and full-
traceability can be traced back to the security model proposed in [BMW03],
which allows for even stronger security properties, once these notions are estab-
lished in a scheme. Since then, a great deal of practical constructions based on
classical assumptions have been proposed. Those schemes can be classified into
random oracle based constructions [ACJT00,CL02,CL04,DP06] and standard
model variants [BMW03,BSZ05,BW06,BW07,Gro07]. All of these constructions
are based on Groth-Sahai’s non-interactive proof systems (NIZK) for a great deal
of languages. In [BL09], Brickell and Li introduced EPID with advanced prop-
erties such as signature-based and private-key based revocation. There are only
a few (secure) constructions based on computational problems that are believed
to be quantum resistant. Such schemes are mainly based on lattice-based hard-
ness assumptions [GKV10,LLLS13,LLNW14,NZZ15,LNW15] or on code-based
scheme [ELL+15] that relies on additional (non-usual) assumptions. However,
all of those constructions require expensive non-interactive zero-knowledge argu-
ments for specific languages such as [MV03].

Previously, it seemed hard to construct group signature schemes out of hash
functions as they offer little structure to exploit. In fact, there exists little
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literature on special property signature schemes from hash functions. One exam-
ple is the forward secure signature scheme (also proxy- and key-insulated signa-
ture schemes) from one-way functions by Buchmann et al. [BDH11]. Recently, it
has also been shown that NIZK proofs [GMO16] can be built out of hash func-
tions and techniques from multi-party computation. This opens new directions
as NIZK proof systems serve as a common tool to realize advanced cryptographic
constructions. However, to the best of our knowledge, no hash-based group sig-
nature scheme has ever been proposed in the literature.

1.2 Our Contributions

In this work, we propose the first (stateful) hash-based group signature scheme.
Our proposal has many advantages over other group signature schemes such as:

– It is very simple as it is solely built from a regular Merkle tree based sig-
nature scheme in combination with a secure block cipher or pseudo random
function. The latter can be built out of one-way functions by the construc-
tion of Luby and Rackoff [LR86], hence allowing for a construction based on
minimal assumptions in the standard model. This answers the open question
raised in [LNW15].

– We do not require expensive non-interactive zero knowledge proofs (e.g. via
the Fiat-Shamir Transform) as used in other group signature schemes in order
to prove possession of a secret. As a result, no random oracle instantiation is
needed.

– It is post-quantum secure with small key and signature sizes, outperform-
ing all other post-quantum group signature alternatives. In fact, the public
key size and the underlying one-time signature size are as large as in the
single-signer setting. The authentication path increases by log N nodes as
the associated Merkle tree consists of N · B leaf nodes, resulting in the same
number of signatures per group member. This coincides with the number of
signatures in the single-signer setting.

To realize this functionality we exploit the structure of Merkle trees [Mer90].
More precisely, we let all group members share a very same Merkle tree, which
has the leaf nodes shuffled (by means of a block cipher or, more generally, a
pseudorandom permutation (PRP)) before the tree is built. Our construction
assigns a bounded number B of signatures to each group member. Each group
member also has its own secret key. In Sect. 6, we give several options to handle
a limitation related to the authentication paths, providing different trade-offs.
We stress that none of these strategies seems to be optimal for all situations,
but we hope that this discussion will feed further works in the community on
how to optimally address this particular problem.

In terms of efficiency, for N group members, hash function digest size n, the
size of our group signature is [|one-time signature| + n · (log N + log B)] bits,
which is as large as a Merkle tree signature with N · B leaf nodes. Lattice-based
counterparts occupy at least log N · Õ(n) bits (ring variant) or log N · Õ(n2)
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bits (matrix variant) and the group public key size increases by a factor of
log N . Additionally, the underlying lattice problem weakens by a factor of log N
(e.g. SIVPlogN ·Õ(n2), see [LNW15]). The nature of our construction immediately
carries over to the running times for signing and verification. Note that other
group signature constructions often rely on costly zero-knowledge proofs (using
Fiat-Shamir) to establish the different features of the group signature scheme,
whilst our construction inherits them from the Merkle tree structure for free. Our
scheme can be instantiated using any (stateful) Merkle-like signature scheme, e.g.
the XMSS Merkle tree scheme [BDH11,HBGM18].

In terms of security, we give a proof for full-traceability within the well-known
framework of Bellare et al. (BMW model) [BMW03] and anonymity according
to Camenisch and Groth [CG05]. The latter is required for a private key based
revocation mechanism, which is a desirable feature and enables the verifier to
identify signatures issued by a revoked private key. We also discuss a Proof-
of-Concept implementation to show its efficiency and scalability for a publicly
available tree.

1.3 Group Signature Scheme by Chaum and van Heyst

Our construction can be seen as an improvement of the very first discrete-log
based group signature scheme due to Chaum and van Heyst [Cv91]. In their first
construction each group member is randomly assigned a number of public and
secret keys of a secure signature scheme, where each group member stores its
assigned set of secret keys. To open signatures, the group manager stores the
group member’s name for every issued key. The group public key is represented
as the (random) concatenation of all public keys. It can be seen that the approach
taken in [Cv91] can be extended to any regular signature scheme. However, in
our construction we only have one single hash value as the group public key
regardless of the number of signers and signatures. Furthermore, each signer
just stores one single secret seed, out of which all one-time key pairs and leaf
nodes are derived. To ensure anonymity and traceability at reduced costs, the
group manager applies a pseudorandom permutation to shuffle the positions of
the leaf nodes and to open signatures without storing a large list of names and
respective keys. All these modifications can directly be applied to [Cv91].

1.4 Open Problems

Full-anonymity in the BMW model would lead to a public-key encryption scheme
[CG05,AW04] solely based on the existence of one-way functions, i.e. the group
signature scheme would also serve as a basis to build other public key crypto-
graphic primitives. However, there is little hope to achieve such a result as the
seminal work [IR89] by Impagliazzo und Rudich already showed that one cannot
base secure key agreement protocols on one-way functions. Thus, a challeng-
ing open problem consists of modifying our scheme in order to satisfy stronger
notions of full-anonymity. Obtaining and storing the authentication path, a
requirement of Merkle tree constructions, seems a limitation of our work hard to
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circumvent. Finally, we note that multi-tree approaches (e.g. [HRB13]) are not
applicable, thus limiting the maximum attainable tree height.

1.5 Organization

Section 2 presents the preliminary concepts, Sect. 3 the background on group
signature schemes and related security notions and Sect. 4 presents our construc-
tion. Section 5 details its security assessment, Sect. 6 discusses the authentication
path computation, Sect. 7 its implementation aspects and Sect. 8 our conclusions.

2 Preliminaries

It is well known [Mer90,BDS08,BDH11] that it is possible to build secure digital
signature schemes using only a secure hash function. This is an advantage in
comparison to any other signing scheme, which require not only a secure hash
function but also a hard underlying computational problem. In this sense, hash-
based signature schemes achieve minimal security requirements. The concept of
secure hash function is vague and requires some refinement. Below we recap three
computational problems related to hash functions useful to assess the security
of hash-based signature schemes.

A cryptographic hash function H : {0, 1}∗ → {0, 1}n is an efficiently com-
putable function H = (H,HKGen), where HKGen(1n) outputs a hash function H
and H maps on input H and an element m ∈ {0, 1}∗ to H(m) ∈ {0, 1}n. Depend-
ing on the given application scenario it may be required to have a certain set of
properties [Rog04].

One-wayness (OW) A hash function H is said to be one-way, if it is infeasible
for a PPT-adversary to find a preimage m of a random image.

Collision Resistance (CR) A hash function H is said to be collision resistant,
if it is infeasible for a PPT-adversary to find two distinct messages m �= m′ that
map to the same hash value, i.e., H(m) = H(m′).

Second Preimage Resistance (SR) A hash function H is said to be sec-
ond preimage resistant, if it is infeasible for a PPT-adversary and a given pair
(m,H(m)) to find another message m �= m′ that maps to the same hash value
H(m) = H(m′). We note that CR implies SR.

To provide λ bits of classical security against collision and pre-image attacks,
a hash function needs to have digest size of at least n = 2λ bits and n = λ bits,
respectively. To maintain the same levels of security in a post-quantum world,
the digest of the hash function would need to be extended by a factor 3/2 (for
collision) and by a factor 2 (for pre-image). This is due to speedups induced
by Grover’s search algorithm [Gro96] on a quantum computer. Note that this
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quantum speedup is marginal when compared to the one obtained by Shor’s
algorithm [Sho94] against RSA/ECC cryptosystems.

Most hash-based signature schemes are either one-time (OTS) or multi-time
signature (MTS) schemes. OTS schemes (such as Winternitz [Mer90] and W-
OTS+ [Hül13]) have an important limitation: a private key must not be used
to sign more than one message (if so, it loses its security guarantees). Due to
this limitation, Merkle proposed a way to transform an OTS scheme into a
MTS scheme solely based on hash functions. This is known as the Merkle tree
signature scheme [Mer90] and offers a way to tie many one-time public keys into
a single multi-time public key. In this sense, any of the signatures generated by
the one-time private keys can be validated with a single (multi-time) public key.

The Merkle scheme uses a binary tree of height h that is built from 2h one-
time key pairs. The leaf nodes are computed as the hash of the one-time public
keys. The inner nodes are computed as the hash of concatenated children nodes.
This rule is used to build all inner nodes up to the root, which is the multi-time
public key.

3 Foundations of Group Signature Schemes

In this section we introduce the different definitions and security notions asso-
ciated to group signature schemes following the work of Bellare et al. [BMW03]
for full-traceability and anonymity according to Camenisch and Groth [CG05],
which describe a comprehensive set of properties.

The appropriate security model for anonymity in our setting is due to [CG05],
since the adversary is only given access to the secret keys of corrupt users in
contrast to [BMW03], where the adversary has full access to the secret keys of
all group members. The former reflects circumstances where the adversary is
either static or he is adaptive and the parties cannot erase data (in these cases
full-anonymity would not enhance security). In our scheme, we do not achieve
full-anonymity in the sense of [BMW03] for an adaptive adversary and parties
with erasing capabilities, since revealing the secret keys immediately allow to
identify all the associated signatures. But this seems plausible for constructions
solely based on the existence of one-way functions. We note that once our hash-
based group signature scheme satisfies also full-anonymity following [BMW03]
it is possible to build a public-key encryption scheme out of it. This would be a
great result in post-quantum cryptography in general as this would imply public
key cryptography (see Sect. 8) solely based on the security of one-way functions
(minimal assumptions). In Sect. 8, we briefly discuss how full-anonymity allows
to construct a public key encryption scheme following [CG05,AW04]. Thus, in
the security game [CG05] the adversary is given a random signature and he must
output the correct identity, under which it has been signed and which has not
been corrupted before. We account for the fact that stateful Merkle-like schemes
output a bounded number of signatures in the anonymity game.
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In a group signature scheme there are essentially 3 parties involved:

• Group Manager He instantiates the scheme and generates the group public
key. He assigns each group member with a secret key. In case of misuse of
group signatures or misbehavior the group manager has the power to reveal
the identity of a group signature by means of its master key.

• Group Member A group member can sign any data using its secret key
such that his identity is concealed from any verifier other than the group
manager.

• Verifier Any verifier can use the group public key in order to verify a group
signature. He only knows that a group member signed the data, but he cannot
specify which group member.

The syntax of a group signature scheme and the involved algorithms is as follows.

Syntax: A group signature scheme is composed by the following polynomial-
time algorithms GS = (G.KGen,G.Sign,G.Verify,G.Open).

G.KGen(1k, 1N ): The group key generation algorithm is a randomized algorithm
that takes as input the security parameter k, the number of users N and
generates and outputs a group public key gpk, the group signing keys gski
associated to the i-th group member for i ∈ [N ] and the group master key or
tracing key gmsk required to open signatures by the group manager.

G.Sign(gski,m): The group signing algorithm takes as input a group signing key
gski, a message m ∈ {0, 1}∗ and outputs a group signature σ on the message.

G.Verify(σ,m, gpk): The deterministic group verification algorithm takes as
input a group signature, a message and the group public key, and outputs 1
in case the signature is valid, else 0.

G.Open(gmsk, σ,m): The group opening algorithm is a deterministic algorithm
that on input the group master key, a signature, and the corresponding mes-
sage outputs an identity related to σ.

There are two basic conditions to be satisfied in order for the scheme to work
appropriately. In particular, the correctness requirement of the verification and
tracing procedure has to be guaranteed for all honestly generated signatures.
That is, for any group member i ∈ [N ] the following two expressions have to
hold except with negligible probability

G.Verify(G.Sign(gski,m),m, gpk) = 1

G.Open(gmsk,G.Sign(gski,m),m) = i.

The first requirement mainly implies that all honestly generated group sig-
natures must be valid. And the second expression allows the group manager by
means of the master key to recover the identity of a correctly generated signature.

We now recap the security notions related to group signature schemes intro-
duced in [BMW03] by Bellare et al. and subsequently relaxed in [BBS04] by
Boneh et al. In the relaxed version, the adversary is not permitted to have oracle
access to the opening procedure. For anonymity we refer to the security model of
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Camenisch and Groth [CG05], where the adversary is indeed given access to the
secret keys of corrupted group members. This model particularly also captures
the possibility to realize private key based revocation, which represents a useful
feature in remote attestation protocols as it may be a required feature to identify
all signatures of an identity once its secret key gets exposed (e.g. extracted from
the TPM) such that a potential adversary is prevented from signing under this
identity. Following these models [BMW03,CG05], a group signature scheme is
required to ensure two main security features, which we expound below.

3.1 Anonymity

The adversary not in possession of the group master key is not able to unveil the
identity of a group member from its group signature. In the respective security
game following [CG05] the adversary is given opening access in order to allow the
adversary to see the identity of opened signatures. However, these models need
to be modified in order take into account the constrained number B of signatures
that a group member is able to issue. Therefore, the adversary is allowed to make
arbitrary many calls to the opening and signing oracle for corrupted parties (at
most B calls). For honest parties the adversary is only allowed to open at most
B − 1 signatures per signer.

We differentiate between SPRP-Anonymity, which strictly follows the
anonymity game of [CG05], and PRP-Anonymity, where the adversary is not
allowed to have access to the opening oracle. Later, we will show that a pseu-
dorandom permutation such as a secure block cipher can be used to instantiate
the scheme satisfying either anonymity notions (Fig. 1).

Experiment ExpSPRP,an−b
GS,A (k, N, B)

(gpk, gsk, gmsk) ←− G.KGen(1k, 1N )
(st, i0, i1, m) ←− AG.Open(gmsk,·,·),G.Sign(gsk·,·),Corrupt(·)(choose, gpk)
σ ←− G.Sign(gskib , m)
j ←− AG.Open(gmsk,·,·),G.Sign(gsk·,·)(guess, st, σ)

if A queried the opening oracle on m, σ in the phase guess, return 0
if A queried i0 or i1 to Corrupt(·), return 0
if the maximal number of queries to G.Sign(gsk·, ·) wrt i0 and i1
is bounded by B − 1, return j else ⊥.

Fig. 1. Experiment for SPRP-anonymity

Definition 1 (SPRP-Anonymity [CG05]). Formally, a group signature
scheme defined by the algorithms GS = (G.KGen,G.Sign,G.Verify,G.Open) is
called anonymous, if for all probabilistic polynomial adversaries A with access to
the opening and signing oracles and all polynomially bounded N the advantage
of the adversary in the experiment ExpSPRP,anGS,A (k,N,B) is negligible
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AdvSPRP,an−b
GS,A (k,N,B) = |P [ExpSPRP,an−1

GS,A (k,N,B) = 1] − P [ExpSPRP,an−0
GS,A (k,N,B) = 1]|.

We also define a weaker form of anonymity taking into account the relaxation
considered in [BBS04]. In particular, the adversary is not granted access to the
opening oracle in the experiment. As we will see later, this will allow us to
instantiate the scheme with only a secure block cipher.

Definition 2 (PRP-Anonymity). A group signature scheme defined by the
algorithms GS = (G.KGen,G.Sign,G.Verify,G.Open) is called anonymous, if for
all probabilistic polynomial adversaries A with access to signing oracle and all
polynomially bounded N the advantage of the adversary in ExpPRP,anGS,A (k,N,B) is
negligible

AdvPRP,an−b
GS,A (k,N,B) = |P [ExpPRP,an−1

GS,A (k,N,B) = 1] − P [ExpPRP,an−0
GS,A (k,N,B) = 1]|.

See Fig. 2.

Experiment ExpPRP,an−b
GS,A (k, N, B)

(gpk, gsk, gmsk) ←− G.KGen(1k, 1N )
(st, i0, i1, m) ←− AG.Sign(gsk·,·),Corrupt(·)(choose, gpk)
σ ←− G.Sign(gskib , m)
j ←− AG.Sign(gsk·,·)(guess, st, σ)

if A queried i0 or i1 to Corrupt(·), return 0
if the maximal number of queries to G.Sign(gsk·, ·) wrt i0 and i1
is bounded by B − 1, return j else ⊥.

Fig. 2. Experiment for PRP-anonymity

3.2 Full-Traceability

This feature allows the group manager or possessor of the master key to revoke
the anonymity of a signer and unveil its identity. Such a mechanism is important
if misbehavior or misuse of the private key has been detected. In fact, this notion
is even stronger as it is required that any set of colluding parties should not be
able to create signatures that cannot be opened by the group manager or traced
back to a group member, even if the parties have access to the master key, for
instance extracted during key generation. We note that in this model we do not
require to put a bound on the number of exchanged signatures.

Definition 3 (Full-Traceability [BMW03]). Formally, the group signature
scheme GS = (G.KGen,G.Sign,G.Verify,G.Open) is called fully traceable, if for
all probabilistic polynomial adversaries A with access to the opening oracle and
all polynomially bounded N the advantage of the adversary in the experiment
Expf−trace

GS,A (k,N) is negligible

Advf−trace
GS,A (k,N) = P [Expf−trace

GS,A (k,N) = 1].
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Experiment Expf−trace
GS,A (k, N)

(gpk, gsk, gmsk) ←− G.KGen(1k, 1N )
st ←− (gpk, gmsk)
(m, σ) ← AG.Sign(gsk·,·),Corrupt(·)(guess, st)

if G.Verify(σ, m, gpk) = 0, return 0
if i was queried to Corrupt(·), return 0
if (i, m) was queried to G.Sign(gsk·, ·), return 0
if G.Open(gmsk, σ, m) =⊥ ∨ ∃ i ∈ [N ] with G.Open(gmsk, σ, m) = i

return 1

Fig. 3. Experiment for full-traceability

4 G-Merkle: A Hash-Based Group Signature Scheme

Our stateful group signature scheme is based on the usage of a Merkle tree, as
used in single-signer hash-based signature schemes. The core idea is to extend
this approach to a multi-user setting, where more than one signer share the same
tree in order to sign messages. A first attempt towards this direction consists in
letting each user generate its own Merkle tree (as in the single-signer scheme).
Then, each of those sub-trees could be appended to a super tree that will have
as leaf nodes the root nodes of the sub-trees.

H(h5||h6)

h5 = H(h4||h2)

h1 = H(pk1) h2 = H(pk2)

h6 = H(h3||h1)

h3 = H(pk3) h4 = H(pk4)

Hash-based Merkle tree in a multi signer setting, where the nodes are mixed. The nodes
{pk1, pk2} belong to Signer 1 and the nodes {pk3, pk4} belong to Signer 2.

H(h5||h6)

h5 = H(h4||h2)

h4 = H(pk4) h2 = H(pk2)

h6 = H(h3||h1)

h3 = H(pk3) h1 = H(pk1)

Fig. 4. Hash-based Merkle tree in a multi signer setting after shuffling the nodes. The
nodes {pk1, pk2} belong to Signer 1 and the nodes {pk3, pk4} belong to Signer 2.
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This näıve construction however does not meet the unlinkability property,
a requirement of group signature schemes, since the authentication paths of
all signatures issued by a certain signer would share at least one node (the
root of its sub-tree). In order to overcome this obstacle, we apply a mixing
strategy to the leaf nodes prior to the tree construction. That is, in the key
generation phase, the group manager takes the set of leaf nodes from all parties
and subsequently applies a secure uniform random permutation to the sets. That
is, the permutation will mix the indices and hence the positions associated to the
leaf nodes in the combined set. Subsequently, the super-tree is built as described
before. In fact, this is a generic way of instantiating hash-based group signature
schemes, which can be considered as an extension of the single-signer setting.
Since our mixing strategy is based on the usage of pseudorandom permutations,
we start with some required definitions. Let Pn denote the set of permutations
and P ∈ Pn with P : {0, 1}n −→ {0, 1}n.

Definition 4. A pair of functions (E,D) with E,D : {0, 1}k × {0, 1}n −→
{0, 1}n is called (t, ε) pseudo random permutation, if Er and Dr are inverses of
each other for every r ∈ {0, 1}k and for any probabilistic polynomial adversary
the success probability to distinguish a pseudorandom permutation from a truly
random premutation is given by

AdvDist
A (k,N) = |PK [AEK ,DK (·) = 1] − PP∈Pn

[AP,P−1
(·) = 1]| ≤ ε

4.1 Instantiating PRPs from One-Way Functions

We note that while it is possible to instantiate pseudorandom permutations by
use of block ciphers, pseudorandom permutations can particularly also be built
from pseudorandom functions. More precisely, Luby and Rackoff [LR86] pro-
pose PRPs using pseudorandom functions combined with the Feistel construc-
tion. Goldreich et al. [GGM86] showed that pseudorandom generators imply
pseudorandom functions, which in turn can be derived from any one-way func-
tion [HILL93]. This shows, that one-way functions indeed suffice to construct
secure PRPs. Below we give a very simple way to generate pseudorandom per-
mutations from pseudorandom functions.

Theorem 1 (Theorem 3.1, [NR96]). Let f1, f2 be independent pseudo random
functions of length n and p1, p2 independent permutations of length 2n. Define
the functions

PRP (p1, f1, f1) = Tf1 ◦ Tf2 ◦ p1

SPRP (p1, p2, f1, f1) = p−1
2 ◦ Tf1 ◦ Tf2 ◦ p1,

where Tfi(l, r) = (r, l ⊕ fi(r)) for |l| = |r| = n and f1, f2, p1, p2 are cho-
sen independently. Then, PRP (p1, f1, f1) is a pseudorandom function and
SPRP (p1, p2, f1, f1) is a strong pseudo random permutation.
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By use of a suitable pseudorandom function, we can instantiate the group
signature scheme with a secure SPRP with the aid of Theorem 1. In this case,
the whole group signature scheme is just based on the existence of one-way
functions, the minimal requirement for the existence of public key cryptography.

4.2 Instantiating PRPs from Block Ciphers

In general, one could apply a perfect uniform random permutation, where a per-
mutation is chosen uniformly at random from a set of n! elements. However,
selecting an element from such a huge set requires at least O(n log(n)) bits. For
n > 220, this approach is impractical.

Thus, in practice, it is more efficient to instantiate pseudorandom permutations
by means of block ciphers such as AES, SIMON and many others that satisfy the
conditions from Definition 4. More specifically, the functions EK(·) and DK(·)
correspond to the encryption and decryption functions of the respective block
ciphers. Block ciphers represent a subset of all possible permutations.

Security of Block Cipher. When instantiating the scheme with a secure
block cipher it is essential for anonymity that an adversary seeing a number T
of (leaf position, group signer)-pairs (T > 0 for SPRP-anonymity and T = 0 for
PRP-anonymity) cannot correctly map leaf positions to group members for the
remaining leaves with non-negligible advantage. For instance, if a permutation
is sampled from the set of all possible permutations, each group member may
be associated to a remaining leaf supposing he did not issue all its signatures.
In practice, this means that either a permutation is chosen uniformly at random
from the set of all permutations (e.g. for a tree with 4 nodes) or the bit security
of the block cipher is larger than or equal to the target security level of the
scheme.

Block Ciphers with Larger Output Sizes. In practice, one does not find
block ciphers permuting 10-bit or 20-bit integers (as it would be needed for
h = 10 or h = 20) with security more than 100 bits. In this case, one can
use larger block ciphers such as AES-128 or AES-256. The tree is then built
slightly different. Once the manager receives all leaf nodes, it generates the set
of tuples S = {(leaf1, EK(1)), . . . , (leaf2h , EK(2h))} which contains leaves and
the associated encrypted positions (128-bit or 256-bit integers, which are larger
than the number of leaves 2h). For instance, (leaf1, . . . , leafB) belong to group
member 1 and (leafB+1, . . . , leaf2B) to group member 2 and so on. Subsequently,
the manager sorts the elements of S in an increasing order with respect to the
second component. The new order represents the new positions of the leaves in
the shuffled tree. The first layer of nodes is then built by not only including the
leaves in the hashes but also the encrypted values of the respective leaves, e.g.
hi,j = H(leafi, EK(i)||leafj , EK(j)). All other tree layers up to the root are built
as usual without any further modification. Due to this change, the encrypted
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indices are part of the authentication path and the group manager can thus
open signatures in case of misbehavior. For security, an adversary only sees 2h

encrypted indices somehow mapped to the initial positions (does not even know
the index-ciphertext pairs). In the worst-case, the security of the block cipher
will not decrease by more than log 2h bits.

4.3 Our Construction: (Stateful) G-Merkle

In this section, we employ our group signature scheme on any Merkle tree based
signature scheme. However, we keep our construction as general as possible by
not restricting to any specific one-time signature scheme. In what follows, let
S = (KeyGen,Sign, Verify) denote the set of algorithms applied in a regular
Merkle tree signature scheme.

G.KGen(1k ,1N ): The group manager generates the master key gmsk ∈ {0, 1}k
and initializes a block cipher (Egmsk(·),Dgmsk(·)). Each user i ∈ [N ] is assigned a
random secret key gski associated to a secure one-time signature scheme such as
Winternitz for B (e.g. B = 2t) leaf nodes. That is, the group manager invokes N
times G.KGen as in a regular Merkle tree signature scheme, however outputting
only the secret key gski and the hashed public keys serving as leaf nodes. The
group manager proceeds as follows:

1. The set of indices associated to the leaf nodes of all users is shuffled

Shuffle(1, . . . , N · B) = (j1, . . . , jN ·B)

where js = Egmsk(s) for s ∈ [N · B]. For instance, leaf node 1 is placed into
position j1 in the tree (see Fig. 4).

2 Subsequently, the group manager builds the G-Merkle tree on top of the shuf-
fled set of nodes and generates the group public key gpk, which is represented
as the root node of the G-Merkle tree.

3. Finally, the group manager transfers to user i the set of permuted indices

Si = {j(i−1)B+1, . . . , ji·B}
associated to the user’s leaf nodes. As for the authentication path, the group
manager can choose from several options to compute the authentication path
for a signature. We refer to Sect. 6 for an overview.

G.Sign(gski , m): User i maintains a counter t and a list of tuples

state = {((i − 1)B + 1, Egmsk((i − 1)B + 1), . . . , (i · B,Egmsk(i · B))}
defining the possible states in the signing process. Whenever the user wishes to
sign a message, he takes the actual state

state[t] = [(i − 1)B + t, Egmsk((i − 1)B + t)]
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from the list and sets t := t + 1, where the first component serves to internally
identify the node with its associated secret key and the second component defines
the position of the leaf node within the G-Merkle tree in order to deduce the
appropriate authentication path. Supposing that the j-th leaf has been used
to sign, following the authentication path consists of the nodes (a0, . . . , ah−1),
where h is the tree height. Define � := �j/2h	 and denote by vj [k] the k-th node
at the j-th layer, then we have

aj =

{
vj [� − 1] for � ≡ 1 mod 2
vj [� + 1] for � ≡ 0 mod 2.

Finally, by use of the secret key gski the signing algorithm outputs a group
signature (σ,m) on a message m that is composed by a one-time signature pro-
duced by the underlying signing algorithm Sign and the authentication path (see
Sect. 6).

G.Verify(σ,m , gpk): The deterministic group verification algorithm invokes
Verify of the underlying signature scheme on the G-Merkle tree taking as input
a group signature σ, a message m and the root node of the G-Merkle tree.

G.Open(gmsk,σ,m): On input the signature containing the exact authentica-
tion path, which can be represented by the position of the leaf node and the
intermediate nodes, the manager extracts the position l and invokes the decryp-
tion algorithm Dgmsk(l) = j for l ∈ [N · B], otherwise he outputs ⊥ and aborts.
Subsequently, he identifies the set Si with |Si| = B s.th. j ∈ Si and outputs i.

Possible Modifications. We note that in practice one rarely finds PRPs
with small output sizes. In this case, one applies our simple modifications from
Sect. 4.2 using any secure blockcipher. We further note that one may adopt a
dynamic approach in the key generation phase, where the group members indi-
vidually generate their secret keys and associated leaf nodes. Subsequently, the
leaf nodes are handed over to the group manager who shuffles the leaves and
builds the Merkle tree on top of this mixed set. Such a strategy prevents the
group manager from knowing the secrets and the risk of attacking the secrets is
minimized.

5 Security

In this section, we prove that the construction proposed in Sect. 4 pro-
vides anonymity following [CG05] and full-traceability according to [BMW03].
Unforgeability of the scheme follows directly from the underlying signature
scheme.
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5.1 Anonymity

For anonymity, we prove the variant of Definition 1 where the adversary is
allowed to have access to the secret keys of corrupt group members. The adver-
sary must guess under which honest identity the signature has been created.
Depending on the circumstance that the adversary is given or refused access to
the opening oracle in the choose stage, we require the underlying block cipher
to be an SPRP or PRP.

Theorem 2. Let N · B be the number of leaves in the G-Merkle tree and N the
number of users. Then, the construction described in Sect. 4.3 provides SPRP-
anonymity following the experiment in Definition 1 under the assumption that a
strong pseudorandom permutation is employed to shuffle the leaf nodes.

Proof. The proof of this theorem is very simple as the adversary represents now
an SPRP adversary involved in an indistinguishability game, however not having
access to the encryption oracle. That is, assume there exists an adversary that
breaks the anonymity of the scheme, then we can build an algorithm that dis-
tinguishes the encryption of different plaintexts derived under a strong pseudo-
random permutation. In particular, the adversary is initially given access to the
signing oracle and the opening oracle, which essentially represents the decryption
algorithm, on group signatures of its choice during the choose stage. Due to the
constrained tree size, the adversary can query the signing (and hence opening
oracle on different signatures) at most B − 1 times for each honest member such
that each user still has the chance to generate one last signature. He can also
corrupt arbitrary group members. Eventually, the adversary outputs some state
information st, an arbitrary message m to be signed and two existing identities
i0, i1, that have not been corrupted. In the second stage, the adversary gets as
input the state information st and a signature σ on m under an identity, which
is selected uniformly at random from i0 and i1. The adversary is now challenged
to make a right guess on the identity used to sign the message m. In this stage,
the adversary still has access to the signing and opening oracle on signatures
other than σ. The condition that each user can still sign a message prevents the
adversary to exhaust all leaf nodes and make a trivial guess via exclusion based
on the remaining signature not queried to the opening oracle yet.

The only element of a group signature that depends on the identities is the
position of a leaf in the G-Merkle tree. All other elements can be replaced by the
corresponding distributions that are independent from the identities. According
to our construction from Sect. 4.3, the index set of the leaf nodes owned by signer
Sk is {k0, . . . , kB−1} = Egmsk({(k − 1) · B, . . . , k · B − 1}). We can safely assume
that all but 1 plaintext-ciphertext pair per honest identity have been revealed
(each signer can still sign one last message) such that the remaining plaintexts
p0 ∈ [N · B] and p1 ∈ [N · B] of i0 and i1 are known to the adversary. The
output of the challenger is a random ciphertext c that either encrypts p0 or p1.
Under the SPRP assumption of the cipher, we can replace the ciphertext set,
in particular c as well, by random elements independent from the plaintext or
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indices related to an identity. As a result, the claim follows. We note that if
a perfect permutation was used to encrypt the indices, then the probability to
have a particular plaintext is equal for any ciphertext given by the challenger. �

In case the adversary is not granted access to the opening oracle in the
experiment from Definition 2, we can even prove PRP-anonymity with only the
requirement of using a pseudorandom permutation (analogously to Theorem2).

Theorem 3. Let N · B be the number of leaves in the G-Merkle tree and N the
number of users. Then, the construction described in Sect. 4.3 provides PRP-
anonymity in accordance to the experiment in Definition 2 assuming a pseudo-
random permutation is employed to shuffle the leaf nodes.

5.2 Traceability

Full-traceability subsumes a collection of other properties as described
in [BMW03]. Following the traceability experiment given in Fig. 3, the proof
relies on the unforgeability of the underlying signature scheme. In fact, our G-
Merkle scheme inherits its existential unforgeability immediately from the basic
scheme as described in Sect. 2. In general, if the basic Merkle tree construction
is secure against such an adversary, then so is the G-Merkle tree construction.
Thus, we call our group signature scheme G-MerkleXMSS if it relies on XMSS.

Theorem 4. Let T be a hash-based one-time/few-time signature scheme and
MerkleT the corresponding Merkle tree based multi-time signature scheme. If
MerkleT is existentially unforgeable under chosen message attacks, then so is
the group signature scheme G-MerkleT .

The proof of this statement is straightforward as the multisigner G-MerkleT
scheme differs from a single-signer MerkleT scheme in the shuffling procedure,
where the order of the nodes is changed, and the number of participants with
their own secret keys.

Theorem 5. Let T be the number of leaves in G-Merkle as defined in Sect. 4.
Suppose that there exists a PPT traceability adversary, then there exists an algo-
rithm B that breaks the unforgeability of the underlying signature scheme.

Proof. The proof of this theorem is mainly based on Theorem4 stating the
existential unforgeability of the underlying digital signature scheme. We show
that such an adversary does not exist unless the underlying signature scheme
is insecure. We proceed by means of the experiment defined in Fig. 3 following
[BMW03].

Suppose, there exists an attacker that can successfully generate such a
forgery. Clearly, in the G-Merkle tree construction the height of the tree
log2(N · B) and number of leaves N · B is known in advance such that a group
signature can only be valid if the index of the leaf node used to sign the mes-
sage is an element of {0, . . . , N · B}. Therefore, the adversary must produce a



G-Merkle: A Hash-Based Group Signature Scheme 457

forgery that opens to an identity of an honest user i /∈ C, which correctly ver-
ifies. However, this is only the case if the attacker breaks the unforgeability of
the underlying signature scheme (Merkle tree construction), since he is not in
possession of the secret key associated to the identity i. Due to Theorem 4 such
an adversary does not exist. �

6 Authentication Path Computation

The G-Merkle tree is composed by leaf nodes originating from different users.
Thus, the conventional approach of generating the authentication path is not
immediately applicable as the authentication path inherently requires the knowl-
edge of the other nodes. As a result, we need a different strategy in order to derive
the authentication path. In what follows, we propose some possible solutions to
tackle this target.

Public Leaf Nodes. The first approach works similar to the very first Merkle
tree constructions, where a user stores each leaf node of the associated tree.
Translating this strategy to the multi-user setting the group manager publishes
all leaf nodes of all users. This leads to a storage size of at most N · B nodes.
Whenever a user invokes its signing algorithm it combines the leaf nodes in order
to generate the authentication path associated to its one-time signature. Alter-
natively, the whole tree can be published/stored and the memory requirement
just double. In this case the running times for signing decrease as group members
are no longer required to compute the inner nodes.

User Directed Authentication Path Computation. The group manager
can also send to each user the authentication paths together with the associated
indices during key generation. The user stores the nodes and can delete those
nodes once they are consumed.

Lemma 1. Let N denote the number of group members and B the number of
potential signatures per user. Then the memory size Mem of a user is bounded
by

log N ≤ Mem ≤ B · log(N) + B < N · B

Proof. The best possible case occurs when all nodes of a user are neighbors such
that he can generate many of the entries in the authentication path by use of
his key pair. However, in this case, he can build a subtree of height 1 + log2 B
and requires to store log N nodes in order to build the authentication path. In
the worst-case the user stores the nodes of the log B-th layer, i.e. B nodes, which
allow him to generate all other nodes in the upper part of the G-Merkle tree.
This is due to the fact that all B potential signatures have to cross one of the B
nodes in the log B-th layer. Furthermore, he has to store at most B · log N nodes
from the remaining log N layers of the tree, which corresponds to the nodes in
the authentication path. �
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In practice each user can determine the exact number of nodes to be stored
and hence optimize the memory size. He can eliminate duplicated nodes that
appear in multiple authentication paths. For instance, all authentication paths
have to use either the left or right child of the root node. The user is doing best
if he chooses to store both right and left children (if req.) only once.

Improved Storage Size with Clustering. Based on the proof of Lemma 1
and the observation that the memory sizes improve, if the leaf nodes of a group
member are close to each other, it is possible to split the group into several
clusters. This is accomplished secretly by the group manager. The leaf nodes of
the G-Merkle tree are then clustered accordingly. For instance, we partition the
leaf nodes into k clusters, where each cluster contains all nodes of N/k users.
This enhances the probability for each group member to use many of the nodes in
the authentication path several times such that the absolute storage requirement
is reduced. Due to the fact that the verifiers and group members themselves are
not aware of how the leaf nodes are partitioned, how many clusters do exist
and who are the group members within a particular cluster, the anonymity is
still guaranteed in case the adversary is not given access to the opening oracle
within the anonymity game. Such a clustering strategy is advantageous if N is
very large. A further advantage of the clustering strategy is the usage of block
ciphers of small output sizes. In fact, the output size can be chosen equal to the
cluster size.

In case the adversary is given access to the opening oracle, the adversary at
most learns which users belong to a cluster. This reduces anonymity in the whole
set of group members to anonymity of the smaller cluster. But the adversary is
not able to map a signature to a certain group member of a cluster in the
challenge phase. Assuming that N = 2t1 and the cluster size is k = 2t2 , the
authentication path of users from a same cluster have always the same last
log(N · B) − log(N · B/k) = t2 nodes in the authentication path. This is due to
the fact that a certain cluster has the same parent node at height log(N · B/k).
From then on, the sibling nodes are identical.

Interactive Authentication Path Computation. In case the group manager
maintains a list of the group signers secret keys, it is possible to ask the group
manager the required authentication path in an online fashion. Once a group
member sends its part of the signature (OTS) together with the leaf position
to the verifier, the verifier can invoke the group manager for the associated
authentication path. Clearly, this has no impact on the security as all leaf nodes
can be made public.

7 Implementation

In this section, we discuss the implementation aspects of our proposal. This
discussion is based on our G-Merkle implementation in C, which is an extension
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of a XMSS/WOTS+ implementation as specified in [HBGM18], using SHA2-256
as the hash function.

Our implementation follows the approach described in Sect. 4.2 where block
ciphers with larger outputs are used. More precisely, we use AES-256 to perform
the indices encryption (which acts as the shuffling process of the leaf nodes).
Therefore, the leaf nodes indices are initially represented as 256-bits long integer
numbers (padded with zeros on the left) and then encrypted using AES-256.
The 256-bits ciphertexts are considered as the new (shuffled) leaf node indices.
Note that most of the encrypted indices will likely be out of the range [0, 2h −
1], but (as described in Sect. 4.2) G-Merkle only cares about the ordering in
which these encrypted indices appear. These encrypted indices are also used to
open signatures. Once the encrypted indices are computed, they are sorted in
increasing order. Our implementation uses a simple Quicksort implementation
for very large (256-bits long) numbers. We note that speedups in this step might
be achieved by using other sorting algorithms (e.g. Radix sort).

Table 1 shows the performance data of the G-Merkle inner processes. We
fix N = 64 as the number of group members (also called users) to facilitate
the comparison of different tree heights (but other values are possible, given
the trade-off between group members and number of signatures). The perfor-
mance data are given in thousands of cycles measured in an Intel(R) Core(TM)
i5-63000 CPU @2.40 GHz with 16 GB of RAM. The code has been compiled
with GCC 6.4.0 with -O3 compilation flag. Each process has been repeated 100
times and the number of cycles averaged. The first column represents the rele-
vant processes in G-Merkle, namely the generation of the leaf nodes (each user
has to perform this step, i.e. generate all OTS key pairs and the corresponding
leaf nodes), the encryption and sorting of all indices, the Merkle tree building
process, XMSS signature generation, XMSS signature verification and signature
opening (which consists of a call to AES-256 decryption). Between parentheses,
we denote whether the operation is performed by each user (U) or only by the
group manager (GM). The most expensive operation consists of building the
tree, an operation handled by the group manager only, not impacting the users.

Table 1. G-Merkle performance (in kcycles). U = User, GM = Group Manager.

Process (owner) N = 64

(h = 14, B = 256) (h = 16, B = 1024) (h = 18, B = 4096)

Generate leaf nodes (U) 2, 319, 508 9, 302, 171 35, 646, 646

Encrypt indices (GM) 56, 960 225, 818 934, 001

Sorting (GM) 16, 866 85, 767 364, 334

XMSS tree building (GM) 24, 347, 871 114, 011, 307 440, 567, 352

XMSS sign (U) 7, 052 7, 153 7, 059

XMSS verify (U) 9, 007 9, 092 9, 398

Signature opening (GM) 100 99 102
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The actual group management operations, such as encryption and sorting of
the leaf node indices, and opening of signatures, do not represent any signifi-
cant overhead, while the XMSS algorithms (sign and verify) are efficient. Our
implementation assumes that the Merkle tree is publicly (and securely) available,
as discussed in Sect. 6, thus the authentication path computation (a somewhat
expensive operation in XMSS) is not relevant here.

8 Conclusion and Discussion

We introduced the first (stateful) hash-based group signature scheme and showed
that it is based on standard assumptions and not on expensive non-interactive
zero knowledge proof systems, as seen in other group signature schemes. Our
approach exploits the structure of Merkle trees in general. Due to this fact, we
can generate group signatures more efficiently in terms of running times, signa-
ture and key sizes. It is worth mentioning that the provisioning of the authenti-
cation paths is challenging. By merging different trees from different users and
randomizing the tree structure, the simplicity to generate authentication paths
as in XMSS is lost at the benefit of anonymity. We presented several ways to
obtain the authentication path (such as publishing the whole Merkle tree), but
stress that it is still an open problem how to address it optimally. Furthermore,
we strongly emphasize that full-anonymity would result in a secure public key
encryption scheme. To illustrate the transformation of a group signature scheme
into an encryption scheme, once full-anonymity is achieved, the group manager
generates the master key and all secret keys of the different “identities”. The
group manager publishes the secret keys as the public key and keeps the master
key secret. If a party wishes to encrypt a message, he encodes this message in
terms of an identity (or identities) and sends the signature to the group man-
ager, who in turn decrypts the ciphertext by opening the signature. He reveals
the identity, which represents the encoded message. Due to full-anonymity an
adversary cannot unveil the identity given all secret keys of the identities. Such
a result would have a huge impact in cryptography in general as it would allow
to build public key cryptography solely based on the existence of one-way func-
tions. This however would somehow oppose the results of [IR89], which states
that one-way functions are not sufficient to build key agreement protocols.
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Abstract. We study quantum attacks on finding a collision in a non-
uniform random function whose outputs are drawn according to a distri-
bution of min-entropy k. This can be viewed as showing generic security
of hash functions under relaxed assumptions in contrast to the standard
heuristic of assuming uniformly random outputs. It is useful in analyzing
quantum security of the Fujisaki-Okamoto transformation [31]. In par-
ticular, our results close a gap left open in [30].

Specifically, let D be a distribution of min-entropy k on a set Y .
Let f : X → Y be a function whose output f(x) is drawn according
to D for each x ∈ X independently. We show that Ω(2k/3) quantum
queries are necessary to find a collision in f , improving the previous
bound Ω(2k/9) [30]. In fact we show a stronger lower bound 2k/2 in some
special case. For most cases, we also describe explicit quantum algorithms
matching the corresponding lower bounds.

1 Introduction

Hash functions are central and prominent in modern cryptography, and there
have been many ingenious designs of cryptographic hash functions [2,4,13,26].
One significant property of a cryptographic hash function H, backed with inten-
sive tests in practice, is collision resistance. Namely, it should be computa-
tionally unfeasible to find a collision, which is a pair of distinct input strings
(x, x′) with H(x) = H(x′). Because of this nice feature, hash functions are being
used in numerous cryptographic constructions and applications, e.g., protecting
passwords [1], constructing message authentication codes and digital signature
schemes, as well as various crypto-currencies exemplified by BitCoin [25].

Theoretical analysis of a hash function H often refers to generic security,
where one ignores the internal design of H and views it as a black box. Moreover,
the output of H is assumed to have been drawn uniformly at random from some
codomain of size N . The complexity of finding a collision is then measured by

c© Springer International Publishing AG, part of Springer Nature 2018
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the number of evaluations of H, i.e., queries to the black box. By the well-
known birthday bound, Θ(

√
N) queries are both sufficient and necessary to find

a collision in H. These principles are extended and formalized as the random
oracle model, in which a hash function is treated as a truly random function that
is publicly available but only through oracle queries [11]. This heuristic has been
widely adopted to construct more efficient cryptosystems and facilitate security
reduction proofs which are otherwise challenging or unknown [12,21].

However, in reality, there are attacks that perform significantly better than
the plain birthday attack. The recent explicit break of full SHA-1 by Google
and the Cryptology Group at the Netherlands’ Centrum Wiskunde & Informat-
ica [29], in which two PDF files can be generated that collide on the same 160-bit
digest, only takes ∼261 hash evaluations instead of the 280 expected via the birth-
day attack. These attacks are possible because the internal structure of H may
create opportunities for more effective cryptanalysis. A natural reaction would
be to figuratively open up the black box and take into account the inner work-
ings case-by-case when analyzing a hash function. Alternatively, can we prove
generic security bounds, but under relaxed and/or more accurate assumptions?

The approaching era of quantum computing will make these challenges more
worrisome. The power of quantum computers, while promising in accelerating
the resolution of fundamental problems in many areas such as chemistry, biology,
etc., raises a tremendous threat to cryptography. Many public key cryptosystems
will be broken due to Shor’s efficient quantum algorithm for the factoring and
discrete logarithm problems upon which they are based [27]. In addition, new
features of quantum adversaries are difficult and subtle to deal with, especially
in the setting of cryptographic protocols. In fact many classical security anal-
yses become inapplicable or even fail completely in the presence of quantum
adversaries [17,23,33].

Pertaining to hash functions, a quantum adversary is able to implement the
hash function as a quantum circuit and evaluate it in quantum superposition.
Therefore, if H is treated as a black box, it is reasonable to allow a quantum
adversary to query H in quantum superposition:

∑
x αx|x, 0〉 �→ ∑

x αx|x,H(x)〉.
Although this does not imply that the adversary can learn the entirety of H
in one query, an immediate difficulty, for example, is the failure of the “lazy
sampling” trick, where one can simulate a random function by sampling ran-
dom responses on-the-fly. Indeed, much effort has been devoted to extending the
results and useful techniques in the classical random oracle model to the quantum
setting (formalized as the quantum random oracle model) [9,14,19,38]. Notably,
Zhandry [37] shows that Θ(N1/3) quantum queries are both sufficient and nec-
essary to find a collision in a uniformly random function. This establishes the
generic security of uniformly random hash functions. But as classical attacks
have illustrated, assuming uniform randomness is sometimes too optimistic and
risky. Such concerns are becoming more pressing due to recent advances in the
physical realization of quantum computers [3,5]. Optimized architectures are also
reducing the cost of implementing quantum algorithms (e.g., see an estimation
of Grover’s quantum search algorithm [10]).
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This motivates the question we study in this work: what is the complexity of
finding a collision in a non-uniformrandom function, under quantum attacks
in particular? Specifically we consider a distribution Dk on set Y which has
min-entropy k, i.e., the most likely element occurs with probability 2−k. We
want to find a collision in a function H : X → Y where for each x ∈ X,
H(x) is drawn independently according to Dk. We call it a rand-min-k function
hereafter. Note that if Dk is uniform over Y (hence |Y | = 2k), this becomes the
standard uniformly random function. Given H as a black-box, we are interested
in the number of queries needed by a quantum algorithm to find a collision in
H. As a result, this will establish the generic security of hash functions under
a relaxed condition where the outputs of a hash function are drawn from a
distribution of min-entropy k rather than a strictly uniform distribution. This
condition might be a more realistic heuristic for a good hash function. Roughly
speaking, a hash function designer will only need to make sure that there is
no single value y ∈ Y that has a large set of preimages (i.e., f−1(y) := {x ∈
X : f(x) = y} with |f−1(y)| ≤ 2k). In contrast, modeling a hash function
as a uniformly random function would require certain regularity such that the
preimage set of every codomain element has roughly the same size, which may be
difficult to justify and test in practice. We also note that a concrete application of
collision finding in rand-min-k functions appears in the famous Fujisaki-Okamoto
transformation [21], whose quantum security has been studied in [31].

Classically, it is not difficult to derive a variation of the birthday bound, which
gives Θ(2k/2) as the query complexity in typical cases. In the quantum setting,
Targhi et al. [30] prove that Ω(2k/9) queries are necessary for any quantum
algorithm to find a collision with constant probability. Compared to the tight
bound 2k/3 in the uniform case, the bound is unlikely to be optimal and the gap
seems significant. In addition, no quantum algorithms are described or analyzed
formally. Overall, our understanding of finding a collision in non-uniform random
functions is far from satisfying as far as quantum attacks are concerned.

1.1 Our Contributions

In this work, we characterize the complexity of finding collisions in a rand-min-k
function when it is given as an oracle to a quantum algorithm. We are able to
prove matching upper and lower bounds in many cases. The results are summa-
rized in Table 1.

A simple special case is the flat distribution, which is uniform on a sub-
set of size 2k. In this case, not surprisingly, the same bound 2k/3 for the uni-
form random function holds. Another special case, which represents the hardest
instances, concerns the δ-min-k distributions, where there is a mode element
with probability mass 2−k and the remaining probability mass is distributedly
uniformly throughout the rest of the codomain. Here we show that 2k/2 queries
are both sufficient and necessary. For general min-k distributions, the complex-
ity is characterized by the collision variable β(D) for a distribution D, which is
the reciprocal of the probability that two independent samples from D collide.
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Table 1. Summary of quantum collision finding in rand-min-k functions. β :=
1

Pr[x=y:x,y←D]
is the collision variable, which equals 2k for flat-distributions (i.e., uni-

form on a subset of size 2k), and lies in [2k, 22k] for δ-min-k distributions (i.e., peak at
one element, and uniform elsewhere), as well as for general min-k distributions. Here
M refers to the size of the domain and N refers to the size of the codomain.

Dk M, N, k settings Upper bound Lower bound Match?

All M = o(β1/2) (inj. by Lemma 2) ∞ ∞ ✓

All M = Ω(β1/2) β1/3 (Theorem 5) 2k/3 (Corollary 2) ✗

flat-k M = Ω(2k/2) 2k/3 (Theorem 5) 2k/3 (Corollary 2) ✓

δ-min-k M = Ω(N1/2), 2k ≤ N < 23k/2 N1/3 (Theorem 5) N1/3 (Corollary 3) ✓

M = Ω(N1/2), 23k/2 ≤ N < 22k 2k/2 (Theorem 6) 2k/2 (Corollary 3) ✓

M = Ω(2k), N ≥ 22k 2k/2 (Theorem 6) 2k/2 (Corollary 3) ✓

We prove a generic upper bound β1/3, and a lower bound 2k/3 . For compar-
ison, classically one can show that the (generalized) birthday bound Θ(β1/2),
which equals Θ(N1/2) for uniform distributions, precisely depicts the hardness
of finding a collision.

Technical overview. For the generic lower bound 2k/3, we follow the natural idea
of reducing from collision finding in uniform random functions (Theorem3). We
show that finding a collision in a uniformly random function of codomain size
2k reduces to that in flat distributions, and then to general min-k distributions.
Therefore the 2k/3 lower bound follows. This approach is in contrast to that
in [30], where they basically extract close-to-uniform bits from the output of a
rand-min-k function f by composing f with a universal hash function h. Note
that a collision in f is also a collision in h ◦ f . In addition, h ◦ f can be shown
to be quantum indistinguishable from a uniformly random function by a gen-
eral theorem of Zhandry [36], which relates sample-distinguishability to oracle-
distinguishability. Therefore any adversary for rand-min-k can be turned into an
adversary for h ◦ f , contradicting the hardness for uniformly random functions.
However, the discrepancy between h ◦ f and a uniformly random function gets
accumulated and amplified in the sample-to-oracle lifting step, and this may
explain the slackness in their lower bound 2k/9.

Instead, given an oracle f whose images are distributed according to a distri-
bution D, our reductions employ a redistribution function to simulate an oracle
f ′ whose images are distributed according to another distribution D′ on Y ′. A
redistribution function r maps a pair (x, f(x)) to an element in Y ′, and r is
sampled from a proper distribution such that f ′(x) := r(x, f(x)) is distributed
according to D′, taking into account the random choice of f as well. We show
algorithms for sampling appropriate redistribution functions, called redistribu-
tion function samplers, for the distributions we are concerned with. As a result,
we can use an adversary for the collision-finding problem in D′ to attack the
collision-finding problem in D. To complete the reductions, we show that a col-
lision found in the simulated oracle for f ′ will indeed be a valid collision in f
with probability at least 1/2.
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Along the same lines, it is possible to demonstrate that collision-finding in
δ-min-k distributions is the hardest case. In fact, we are able to establish rigor-
ously a strengthened lower bound in this case (Theorem 4). Our proof proceeds by
showing indistinguishability between a random δ-min-k function on a codomain
of size N and a uniformly random function on the same codomain. Then the
lower bound in the uniform case translates to a lower bound for the δ-min-k
case. The exact bounds vary a bit for different relative sizes of N and k.

Establishing upper bounds is relatively easy (Theorem 5). We adapt the
quantum algorithm of [37] in the uniform case. Basically we partition the domain
of a rand-min-k function f into subsets of proper size, so that when restricting f
on each subset, there exists a collision with at least constant probability. Next,
we can invoke the collision finding algorithm by Ambainis [8] on each restricted
function, and with a few iterations, a collision will be found.

Moreover, we give alternative proofs showing the lower bound for δ-min-k
distributions (Theorem 6). They are helpful to provide more insight and explain
the bounds intuitively. Specifically, we reduce an average-case search problem,
of which the hardness has been studied [24], to finding a collision in a δ-min-k
random function. On the other hand, when the mode element of a min-k distribu-
tion is known, we show that applying Grover’s quantum search algorithm almost
directly will find a collision within O(2k/2) queries. This actually improves the
algorithms above in some parameter settings.

1.2 Discussion

Collision finding is an important problem in quantum computing, and a consid-
erable amount of work in this context exists. Brassard et al. [16] give a quantum
algorithm that finds a collision in any two-to-one function f : [M ] → [N ] with
O(N1/3) quantum queries. Ambainis [8] gives an algorithm based on quantum
random walks that finds a collision using O(M2/3) queries whenever there is
at least one collision in the function. Aaronson and Shi [6] and Ambainis [7]
give an Ω(N1/3) lower bound for a two-to-one function f with the same domain
and co-domain of size N . Yuen [35] proves an Ω(N1/5/poly(log N)) lower bound
for finding a collision in a uniformly random function with a codomain at least
as large as the domain. This is later improved by Zhandry [37] to Θ(N1/3) for
general domain and codomain as we mentioned earlier.

We stress that, typically in quantum computing literature, the lower bounds
are proven for the worst-case scenario and with constant success probability.
This in particular does not rule out adversaries that succeed with an inverse
polynomial probability which is usually considered a break of a scheme in cryp-
tography. Hence a more appropriate goal in cryptography would be showing the
number of queries needed for achieving any (possibly low) success probability,
or equivalently bounding above the success probability of any adversary with
certain number of queries. Our results, as in [30,37], are proven in the strong
sense that is more appropriate in cryptographic settings.

Our work leaves many interesting possible directions for future work. For
some distributions, our reductions may take a long time to implement. Can we
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find time-efficient reductions in general? We have been mainly concerned with
finding one collision; it is interesting to investigate the complexity of finding
multiple collisions in a non-uniform random function. Finally, we note that a
stronger notion for hash functions called collapsing has been proposed which is
very useful in the quantum setting [32]. Can we prove that rand-min-k functions
are collapsing? Note that a uniform random function is known to be collapsing,
and more recently it has been shown that the sponge construction in SHA-3 is
collapsing (in the quantum random oracle model) [18].

Missing proofs and more. Due to space limitations, we omit a few proofs in this
submission. The full version can be found at ia.cr/2017/688, where in addition to
the missing proofs, we also extend the work here and give tight analysis for the
quantum generic security of preimage and second-preimage resistance of hash
functions under non-uniform output distributions.

Independent work. In a concurrent and independent work by Ebrahimi and
Unruh [20], they give twelve bounds for quantum collision finding of min-k ran-
dom functions. We observe that ten of them coincide with our bounds, and
in particular, they present essentially the same quantum collision-finding algo-
rithms as ours. The remaining two are generic lower bounds improving upon their
prior work [30], which are Ω(2k/5) and Ω(β1/9) (in our notation). Our bounds
are stronger – Ω(2k/3) and Ω(β1/6) (by noting that β ≤ 22k) respectively.

2 Preliminaries

Here we introduce a few notations and definitions. We also discuss basic results
concerning the collision probability and birthday bound in min-k distributions.

Let D be a discrete probability distribution on set Y defined by probability
mass function D(y) := Prz←D[z = y]. The support of D is Supp(D) := {y ∈
Y : D(y) > 0}. We denote Y X := {f : X → Y } the set of functions for some
domain X and codomain Y . The notation f ← Y X indicates that f is a function
sampled uniformly from Y X .

Definition 1 (Min-Entropy). Let D be a distribution on set Y . D is said to
have min-entropy k if k = − log2(maxy∈Y {D(y)}). We refer to a distribution of
min-entropy k as a min-k distribution or simply a k-distribution.

Definition 2 (Flat-k-Distribution). We call a k-distribution D on set Y a
flat-k-distribution, denoted Dk,�, if the support S of D has size exactly 2k. It
follows that ∀y ∈ S, D(y) = 2−k.

Definition 3 (δ-k-Distribution). We call a k-distribution D on set Y a δ-k-
distribution if there is a unique mode element m ∈ Y such that ∀y ∈ Y

D(y) =

{
2−k if y = m ;

1−2−k

|Y |−1 otherwise.

https://ia.cr/2017/688
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We denote such a distribution Dk,δ. It is implicit that |Y | > 2k. The support
of D is the entire set Y , and remaining probability mass 1 − 2−k is distributed
uniformly among all elements in Y other than the mode.

Definition 4 (Function of min-entropy k). Let D be a min-k distribution
on set Y . We define DX to be the distribution on Y X such that for every x ∈ X,
its image is sampled independently according to D. f ← DX denotes sampling a
function in this way, and we say that f is a function of min-entropy k.

Definition 5 (Collision problem). Let f ← DX be a function of min-entropy
k. A pair of elements x1 ∈ X and x2 ∈ X such that x1 �= x2 and f(x1) = f(x2)
is called a collision in f . We refer to the problem of producing such a pair as
the collision finding problem in D.

Definition 6 (Quantum oracle access). A quantum oracle O for some func-
tion f implements a unitary transformation:

∑
αx,y,z|x, y, z〉 O�→ ∑

αx,y,z|x, y +
f(x), z〉. An algorithm A that makes (quantum superposition) queries to O is
said to have quantum oracle access to f , and is denoted Af .

2.1 Collision Probability and Non-uniform Birthday Bound

Definition 7. The collision probability of a probability distribution D is defined
to be the probability that two independent samples from D are equal. Namely

CP(D) := Pr
y1,y2←D

[y1 = y2] =
∑

y∈Y

D(y)2.

We call β(D) := 1
CP(D) the collision variable of D.

β(D) will be an important variable determining the complexity of collision
finding. In fact we can derive a birthday bound for collisions in an arbitrary
distribution D in terms of β(D), analogous to the case of uniform distributions,
using a key lemma by Wiener [34].

Lemma 1 ([34, Theorem 3]). Let RD be the random variable denoting the num-
ber of i.i.d. samples from a distribution D until a collision appears for the first
time. Let q ≥ 1 be an integer and γq := q−1√

β(D)

Pr(RD > q) ≤ e−γq (1 + γq).

Corollary 1. Let y1, . . . , yq be i.i.d. samples from D, and let Colq(D) be the
event that yi = yj for some i, j ∈ [q]. There is a constant c > 2 such that if
q ≥ c

√
β(D), then Pr(Colq(D)) ≥ 2/3 .

Proof. Let E be the event that yi = yj for some i, j ∈ [q]. Then

Pr[E] ≥ 1 − Pr[XD > q] ≥ 1 − e−γq (1 + γq) ≥ 2/3 ,

when q ≥ c
√

β(D) because 1+γq

eγq < 0.3 whenever γq = q−1√
β(D)

> 2.
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We can also derive an upper bound on Pr[Colq(D)] by standard approach.

Lemma 2. Pr[Colq(D)] ≤ q2

β(D) .

Proof. For any pair i ∈ [q] and j ∈ [q], Let Colij be the event that yi = yj .
Then Pr[Colij ] = CP(D). Therefore by union bound, we have

Pr[Colq(D)] = Pr[∪i,j∈[q]Colij ] ≤
(

q

2

)

· CP(D) ≤ q2

β(D)
.

As a result, when q = o(
√

β(D)), essentially no collision will occur. Namely q

needs to be Ω(
√

β(D)) to see a collision, which is also sufficient by Corollary 1.
This is summarized below as a birthday bound for general distributions.

Theorem 1. Θ(
√

β(D)) samples according to D are sufficient and necessary
to produce a collision with constant probability for any classical algorithms.

Finally, we characterize β(D) for min-k distributions.

Lemma 3. Let Dk be a min-k distribution on Y with |Y | = N ≥ 2k and k ≥ 1.

– For a flat-k distribution Dk,�, β(Dk,�) = 2k.

– For δ-min-k distribution Dk,δ, β(Dk,δ) ≈
{

N ifN < 22k ;
22k ifN ≥ 22k.

– For a general min-k distribution Dk, β(Dk) ∈ [2k, 22k].

Proof. For flat-k Dk, Dk(y) = 1
2k for all y ∈ Y ′ ⊆ Y with |Y ′| = 2k. Hence

β(Dk) = 1∑
y∈Y ′ 2−2k = 2k. For Dk,δ distribution

β(Dk,δ) =
1

CP(Dk,δ)
=

1

2−2k + (1−2−k)2

N−1

=
22k(N − 1)

N − 2 · 2k + 22k
≈ 22k · N

22k + N
.

Different ranges of N give the estimation for β(Dk,δ). For general Dk, it is easy
to see that 2−2k ≤ CP(Dk) ≤ 2−k and hence β(Dk) ∈ [2k, 22k].

3 Lower Bounds: Finding a Collision is Difficult

We prove our quantum query lower bounds for min-k collision finding by security
reductions. Recall the hardness result for uniform distributions by Zhandry [37].

Lemma 4 ([37] Theorem3.1). Let f : [M ] → [N ] be a uniformly random
function. Then any algorithm making q quantum queries to f outputs a collision
in f with probability at most C(q + 1)3/N for some universal constant C.

We show that collision finding in any min-k distribution is at least as diffi-
cult as collision finding in a uniform distribution on a set of size 2k. We begin
by demonstrating a reduction of collision finding in a uniform distribution to
collision finding in a flat-k distribution. Then we show a reduction of collision
finding in a flat-k distribution to collision finding in a general k-distribution.
Therefore we prove the following results.
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Theorem 2. Let fflat ← DX
k,� be a random function whose outputs are cho-

sen independently according to a flat-k-distribution Dk,�. Then any quantum
algorithm making q queries to fflat outputs a collision with probability at most
O((q + 1)3/2k).

Theorem 3. Let fD ← DX be a random function whose outputs are chosen
independently according to a distribution D of min-entropy k. Then any quantum
algorithm making q queries to fD outputs a collision with probability at most
O((q + 1)3/2k).

Corollary 2. Any quantum algorithm needs at least Ω(2k/3) queries to find a
collision with constant probability in a random function fD ← DX whose outputs
are chosen according to a distribution D of min-entropy k.

Each of the proofs describe an algorithm (i.e., a reduction) attempting to find
a collision in a random function f to which it has oracle access. The reduction
will run, as a subroutine, another algorithm which finds a collision in another
random function g when given oracle access to g (these random functions are not
necessarily sampled from the same distribution). To adopt the subroutine which
finds collisions in g for the task of finding a collision in f , the reduction simulates
an oracle for g by building an oracle converter from the oracle for f and a suitable
redistribution function. In general the redistribution function must be random,
sampled from a particular distribution so that the distribution of its images
equals that of g. Given some distributions from which the images of f and g are
sampled, only some special sampling procedures will produce a redistribution
function suitable for building the oracle converter needed. We formalize the
concept of a redistribution function sampler as a generally randomized algorithm
that performs such a sampling procedure specific to the oracles the reduction
has access to and needs to simulate.

Definition 8 (D → D′ Redistribution Function Sampler). Suppose f :
X → Y is a random function whose images are distributed according to a dis-
tribution D. Let D′ be a distribution on Y ′. We call an algorithm S a D → D′

redistribution function sampler if it returns a function r : X × Y → Y ′ such
that Pr[r(x, f(x)) = y] = D′(y) for all y ∈ Y ′ and x ∈ X, where the probability
is taken over the random choice of f and the randomness of S.

We use the term redistribution function to refer to a function returned by a
redistribution function sampler, explicitly stating the distributions when neces-
sary. The redistribution function naturally induces an oracle converter.

Definition 9 (Oracle Converter). Suppose f ← DX is a random function
whose images are distributed according to a distribution D on Y . Let D′ be a
distribution on Y ′, and r : X × Y → Y ′ be a D → D′ redistribution function.
An algorithm C, having oracle access to f and r, is called an oracle converter
from f to g if C computes a function g : X → Y ′ defined by g(x) := r(x, f(x)).

We may denote g = Cf,r. We can immediately observe that g is distributed
as if the images were sampled independently according to D′, when f and r are
sampled according to the above definition.
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Lemma 5. The oracle converter defined above computes a function g that is dis-
tributed identically to D′X , i.e., its images are independently distributed accord-
ing to D′, if f ← DX is chosen randomly and r is generated by a D → D′

redistribution function sampler.

We will be concerned with finding collisions in f and g. In particular, we are
interested in whether a collision of g constitutes a collision of f . We define the
collision-conversion rate to capture this property of an oracle converter.

Definition 10 (Collision-conversion rate). Let C be an oracle converter
from f to g. We say that it has collision-conversion rate p if for any (x, x′)
such that g(x) = g(x′), f(x) = f(x′) also holds with probability at least p. The
probability is over the random choices of f ← DX and of a D → D′ redistribution
function r.

With these notions available, our reduction proofs basically sample a proper
redistribution function, and then simulate a correct oracle g distributed accord-
ing to D′X using an oracle converter accessing the given oracle f ∼ DX . Then
we run a collision-finding adversary on D′ with oracle g. Whenever it outputs a
collision, we can conclude that a collision is also found in f with probability p
by the collision-conversion rate, which will lead to the desired contradiction. For
each of the reductions, we will describe a suitable redistribution function sam-
pler and show that it has at least constant collision-conversion rate. To do so,
we assume that the reductions have full information about D and D′, as well as
sufficient randomness. This is fine as far as query complexity is concerned, and
it is an interesting open question to make them time-efficient. We also remark
that, for the sake of clarity, the distribution of images of our redistribution func-
tion is defined to be exactly matching distribution D′. It suffices to approximate
distribution D′ up to some negligible statistical distance.

Now we provide a generic formal description for all of our reductions, leav-
ing the redistribution function sampler as a modular component which we can
describe individually for each collision finding problem (for now we assume that
each reduction has access to an adequate redistribution function sampler in each
case). We do this in part to formally demonstrate how our reductions are com-
patible with quantum adversaries, allowing them to submit queries in quantum
superposition and receive the oracle responses in quantum superposition. We will
show that the oracle converters can be implemented as quantum oracles, so that
the reduction can simulate the collision-finding problem for a quantum adver-
sary who submit quantum queries. As usual, we consider a reduction solving
collision-finding in D using an adversary for collision-finding in D′.

We emphasize that the functions f and r are random functions sampled
before the adversary begins the attack (the attack referring to the query-response
phase in which interaction with the oracle occurs), as f is simply a model for what
would be a fixed, publicly known hash function in a practical security setting,
and r would be chosen by the adversary according to some procedure specific
to the hash function (this is the role played by redistribution function sampler).
Implementing the converter as a quantum-accessible oracle is straightforward
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Algorithm 1. Generic reduction via oracle converter
Input: Let f ← DX be a random function whose images are sampled according to D

on a set Y . Let D′ be a distribution on a set Y ′. Let S be a D → D′ redistribution
function sampler. Let A be an adversary for collision-finding in D′.

Output: A possible collision (x1, x2) in f .
1: Run S and store its output as r. Implement an oracle for r.
2: Construct an oracle converter C using the oracles for f and r. The responses of C

are now distributed according to D′. Refer to the function implemented by C as g.
3: Initialize A. For each query made by A, forward the query to C and return the

response to A.
4: When A returns a collision (x1, x2) in g, output (x1, x2).

as shown below (Fig. 1). Note that the function r can be turned into a unitary
operator by standard technique |x, x̃, y〉 r�→ |x, x̃, y ⊕ r(x, x̃)〉. f is given as a
quantum oracle, which we just need to query twice to answer each query to g.

UC

x
f(·)

r(·) f(·) x

|0 |0
y y ⊕ r(x, f(x))

Fig. 1. Quantum circuit that implements function g = Cf,r using two oracle calls to f .

Now that we have a generic construction for our reductions, we will show a
simple reusable general result that will allow us to quickly construct reductions
and extend query complexity lower bounds by simply demonstrating the exis-
tence of a satisfactory redistribution function sampler for use in each reduction.
In this context we say that a reduction algorithm succeeds if the output pair
indeed forms a collision in the given oracle function.

Lemma 6. Suppose there exists an algorithm A which solves collision finding in
a distribution D′ with probability at least PA, using q queries to an oracle for a
function g whose responses are distributed according to D′ 1. Suppose there exists
a D → D′ redistribution function sampler S such that the induced converter has
collision-conversion rate at least p. Then Algorithm1 initialized with S and A,
denoted RS,A, solves collision finding in D with probability at least p · PA using
2q queries to an oracle for f whose images are distributed according to D.

Proof. Lemma 6 follows trivially from the suppositions stated. Let A denote the
event that A succeeds, E denote the event that the a collision of g is also a
collision of f , and R denote the event that RS,A succeeds. Then

Pr[R] ≥ Pr[E ∩ A] = Pr[E|A] · Pr[A] = Pr[E] · Pr[A],
1 The probability PA reflects the randomness of oracle’s responses and of A.
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because E and A are independent (Pr[E] is simply the collision-conversion rate,
which is a property specific to the oracle converter used in Algorithm1). Since
Pr[E] ≥ p and Pr[A] ≥ PA, Pr[R] ≥ p · PA. The observation that RS,A uses
twice the number of oracle queries as A proves the lemma.

Therefore to prove Theorems 2 and 3, all that is left is to show suitable
redistribution function samplers.

Lemma 7. Let U2k be a uniform distribution on a set Y of size 2k. Let Dk,�

be a flat-k distribution on a set Y1, and Dk a general min-k distribution on a
set Y2. There exist U2k → Dk,� and Dk,� → Dk redistribution function samplers,
and the induced oracle converters have collision-conversion rates at least 1/2.

Proof. We describe the two samplers below.

U2k → Dk,� sampler. In this case the redistribution function sampler is nearly
trivial because a simple relabeling of samples from the distribution U2k will
suffice to simulate samples from the distribution Dk,�. Let f be a function f :
X → Y whose images are distributed according to U2k , to which oracle access
is available. Let m : Y → Y1 be any injective mapping. Define S1 as a one-step
algorithm that returns a function r1(x, y) = m(y).

By the definition of r1, Pr[r1(x, f(x)) = y′] = Pr[m(f(x)) = y′] for all
x ∈ X and y′ ∈ Y1. Since m implements an injective mapping from Y to Y1,
Pr[m(f(x)) = y′] = Pr[f(x) = m−1(y′)]. Since, by the definition of f , Pr[f(x) =
y] = U2k(y) for all y ∈ Y , Pr[f(x) = m−1(y′)] = U2k(m−1(y′)) = 2−k. Hence
Pr[r1(x, f(x)) = y′] = Dk,�(y′) for all x ∈ X and y′ ∈ Y1, since Dk,�(y′) = 2−k

for all y′ ∈ Y1. It follows that S1 is a U2k → Dk,� redistribution function sampler.
We now show that the collision-conversion rate of the induced oracle converter
is exactly 1. Let (x1, x2) be a collision in g, the function implemented by the
oracle converter. Then r1(x1, f(x1)) = r1(x2, f(x2)), from which it follows that
m(f(x1)) = m(f(x2)). Since m is an injective mapping, we can conclude that
f(x1) = f(x2), which shows that (x1, x2) is necessarily a collision in f .

Dk,� → Dk sampler. We provide an overview of the Dk,� → Dk redistribution
function sampler in the following few paragraphs. The complete redistribution
function sampler is given in the full version, along with a detailed explanation
of the reasoning behind it. We reiterate that the redistribution function can
be prepared before oracle access to the hash function under attack is obtained,
allowing the query-response phase of the attack to be implemented as a quantum
algorithm without concern for the quantum implementation of the redistribution
function sampler.

The basic challenge that must be solved by the redistribution function sam-
pler is to provide a mapping from the support of one distribution to the support
of another distribution in such a way that the output is actually distributed
according to the second distribution, which we call Dk, when the input is
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distributed according to the first, which we call Dk,�
2. In order to maximize the

probability that Algorithm1 succeeds, the mapping must maximize the proba-
bility that two identical outputs correspond with two identical inputs, i.e., the
collision-conversion rate. Our construction for this redistribution function sam-
pler, which we call S2 (and which returns a function which we call r2), ensures
that this probability is no less than one half by allowing at most two elements
of the support of the Dk,� be mapped to each element of the support of Dk. To
provide intuition for how this is achieved, we recommend visualizing each distri-
bution as a rectangle divided into ‘bins’ representing the elements of its support,
with each bin’s width proportional to the probability mass of the corresponding
element under the distribution. We refer to this as the rectangular representation
of the distribution. An example is shown below. We let Dk,� be a flat distribution
of min-entropy 2, and Dk be a (non-flat) distribution of min-entropy 2. We label
each bin with a number indexing the elements of the support in each case.

1 2 3 4 5 Dk

1 2 3 4 Dk,�

For each of the elements of the support of Dk,�, we must decide what the
probability mass corresponding to that element in Dk,� should ‘be sent to’ by
the redistribution function, in the sense that whatever that element is mapped
to will occur with the same probability as that of sampling the element from
Dk,�. A natural solution that would correctly produce the distribution Dk is to
in some sense ‘project’ the distribution Dk,� onto Dk, so that each ‘location’
in the rectangular representation of Dk,� is mapped to a ‘location’ in the rect-
angular representation of Dk (by ‘location’ here we refer to horizontal position
a rectangular representation, selecting some specific probability density). We
illustrate this sort of projection by drawings lines between the two rectangular
representations that show where the boundaries between the elements of each
distribution’s support fall in the other distribution, shown below.

1 2 3 4 5 Dk

1 2 3 4 Dk,�

2 A redistribution function formally is also provided the query x that is associated
with the sample from the first distribution, which is (in Algorithm 1) the response
from an oracle whose output is distributed according to the first distribution. This is
necessary in cases where the second distribution has a larger support than the first,
since the image of the redistribution function cannot be larger than the domain. It
can safely be ignored otherwise (as in the construction for r1).
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From the fact that the width of each bin is proportional to the probabil-
ity mass associated with each element of each distribution, it follows that, if,
for a given sample from Dk,�, we sample an element from the support of Dk

according to the available probability mass inside the projected bin from Dk,�,
the sampling result will be distributed exactly according to the distribution Dk.
This is difficult to communicate verbally, but visually, one can imagine receiving
a sample from Dk,� as ‘selecting’ the bin associated with the sampled value in
the rectangular representation of the distribution. Then, following the lines bor-
dering that bin, we find that the probability mass associated with the sample
from Dk,� is mapped to probability mass corresponding to several elements of
the support of distribution Dk. If we now sample from these elements according
to their share of the probability mass corresponding to the sample from Dk,�,
our samples will be distributed according to Dk. For example, with reference
specifically to the graphic above, suppose that we receive element 2 as a sample
from Dk,�. Following the lines down from the bin corresponding to element 2
in the rectangular representation of Dk,�, we see that elements 2 and 3 in the
support of Dk both partially reside in the space corresponding to bin 2 in the
rectangular representation of Dk,�. In particular, element 2 in the support of Dk

consumes much more of the space than element 3. Hence we sample either 2 or
3, with a bias toward 2 exactly equal to how much more of the space element 2
consumes (recall that space in these rectangular representations corresponds to
probability mass). Similarly, had we received element 3 as a sample from Dk,�,
we would have sampled from elements 3 and 4 in the support of Dk with little or
no bias, since these seem to roughly evenly split the space inside the boundaries
of the bin corresponding to element 3 in the support of Dk,�.

It should be clear now that this procedure will produce samples distributed
according to Dk when given samples distributed according to Dk,�, at the cost
of needing additional randomness to perform the sub-sampling. Generating the
redistribution function r2 is then simply a matter of saving the resulting samples
in a look-up table. Although this procedure is conceptually simple, its rigorous
mathematical description is exceedingly tedious, so we provide it in the full
version of this paper. Also in the full version is a proof that the redistribu-
tion function sampler S2 has a collision-conversion rate of at least one-half. The
intuition behind this property is that a sample from Dk produced by the redistri-
bution function could have been generated by, at most, 2 distinct samples from
Dk,�, since each bin in the rectangular representation of Dk resides within the
boundaries of, at most, 2 bins in the rectangular representation of Dk,�.

We have shown that S1 and S2, as just described (and formally described in
the full version in the case of S2), are U2k → Dk,� and Dk,� → Dk redistribution
function samplers, respectively. Finally, Theorems 2 and 3 follow easily. Note
that we write some of the constant factors in the probabilities with the com-
mon notation C, even though they will not all take the same numerical value,
in recognition that they are not interesting for the study of asymptotic query
complexity.
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Proof (Proof of Theorems 2 and 3). By Lemma 7, there exists a U2k → Dk,�

redistribution function sampler S1 for which the induced collision-conversion rate
is at least one-half. Therefore Lemma 6 implies that our reduction algorithm is
an collision-finding adversary making 2q queries to a uniformly random function
f with success probability at least PA/2. However, Lemma 4 tells us that any 2q-
query adversary can succeed with probability at most C(2q + 1)3/2k. Therefore
the success probability PA of any q-query adversary A is O(q + 1)3/2k, which
proves Theorem 2.

Theorem 3 is proved in the same fashion by invoking the Dk,� → Dk redis-
tribution function sampler S2 in Lemma 7 and with Theorem 2 taking the place
of Lemma 4.

3.1 Stronger Lower Bound for δ-min-k Distributions

Note that following the same strategy, one can show a reduction of collision find-
ing in an arbitrary min-k distribution D to collision finding in a δ-k-distribution.
This is interesting because it affirms that the δ-k-distribution case is the most
difficult out of all k-distributions. Clearly, if no elements in the support of D are
associated with a probability mass less than 1/N , the proof of Theorem 3 can
be adapted by replacing all references of 2−k as the probability of sampling each
element from the flat distribution with a general probability D(x), and replacing
the general distribution D with a δ-k-distribution Dδ. The general case where D
has elements associated with smaller probability mass than 1/N may be resolved
by considering the distribution removing these elements and showing that it is
computationally indistinguishable from the original.

In this section we give further evidence and establish an even stronger bound
for finding collision in the δ-k-distribution case.

Theorem 4. For any q-query algorithm A,

Pr
f←Dk,δ

X
[f(x) = f(x′) : (x, x′) ← Af (·)] ≤ O

(
(q + 2)2

2k
+

(q + 2)3

N

)

.

We give two proofs. The one presented here relies on a technique by Zhandry
(Lemma 8). We give an alternative proof in the full version based on a reduction
from an average version of a search problem which is hard to solve from the
literature. This may serve as an intuitive explanation of the hardness of non-
uniform collision finding. It also connects to the quantum algorithm we develop
in Sect. 4.1 based on Grover’s search algorithm.

Lemma 8 [36, Theorem 7.2]. Fix q, and let Fλ be a family of distributions on
Y X indexed by λ ∈ [0, 1]. Suppose there is an integer d such that for every 2q
pairs (xi, yi) ∈ X × Y , the function pλ := Prf←Fλ

(f(xi) = yi,∀i ∈ {1, . . . , 2q})
is a polynomial of degree at most d in λ. Then any quantum algorithm A making
q queries can only distinguish Fλ from F0 with probability at most 2λd2.

This lemma enables us to prove the following proposition.
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Proposition 1. For any q-query algorithm A,
∣
∣
∣
∣ Pr
f←Dk,δ

X
(Af (·) = 1) − Pr

f←Y X
(Af (·) = 1)

∣
∣
∣
∣ ≤ 8q2/2k + 1/N.

Proof. For every λ ∈ [0, 1], define Dλ on Y such that there is an element m ∈ Y
with Dλ(m) = λ and for any y �= m Dλ(y) = 1−λ

|Y |−1 . Then define a family of

distributions Fλ on Y X where Fλ := Dλ
X , i.e., the output of each input is chosen

independently according to Dλ.
For any {(xi, yi)}2q

i=1, pλ := Prf←Fλ
(f(xi) = yi,∀i ∈ [2q]) = λt( 1−λ

|Y |−1 )2q−t,

where t is the number of occurrences of m in {yi}2q
i=1. Clearly pλ is a polynomial

in λ with degree at most 2q.
Notice that F2−k is exactly δ-min-k distribution Dk,δ, and F0 is uniformly

random on Ŷ X , where Ŷ := Y \{m}. Therefore by Lemma 8,
∣
∣
∣
∣ Pr
f←Dk,δ

X
(Af (·) = 1) − Pr

f←Ŷ X

(Af (·) = 1)
∣
∣
∣
∣ ≤ 2(2q)2 · 2−k = 8q2/2k.

Since Y X and Ŷ X has statistical distance 1
2 (N − 1)( 1

N−1 − 1
N )+ 1

2 ( 1
N − 0) =

1/N , we get that
∣
∣
∣Prf←Dk,δ

X (Af (·) = 1) − Prf←Y X (Af (·) = 1)
∣
∣
∣ ≤ 8q2/2k+1/N .

We are now ready to prove the stronger complexity for finding collision in a
δ-min-k random function.

Proof (Proof of Theorem 4). Suppose that there is an A with

Pr
f←Dk,δ

X
[f(x) = f(x′) : (x, x′) ← Af (·)] = ε

using q queries. Then construct A′ which on input oracle f , runs A and receives
(x, x′) from A. A′ then output 1 iff. f(x) = f(x′). By definition, we have that
Prf←Dk,δ

X (A′f (·) = 1) = ε. Meanwhile, note that A′ makes q+2 queries. There-
fore by Zhandry’s lower bound on finding collision in uniform random function
(Lemma 4), we know that Prf←Y X (A′f (·) = 1) ≤ O( (q+3)3

N ). Then Proposition 1
implies that

ε ≤ O(
(q + 3)3

N
) + 8(q + 2)2/2k + 1/N = O(

(q + 2)2

2k
+

(q + 3)3

N
).

Corollary 3. Any quantum algorithm needs min{2k/2, N1/3} queries to find a
collision with constant probability. Specifically we need Ω(N1/3) if 2k ≤ N < 2

3k
2 ,

and Ω(2k/2) when N ≥ 2
3k
2 .
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4 Upper Bounds: (Optimal) Quantum Algorithms

We derive a generic upper bound for finding collision in any min-k random
functions. We adapt Ambainis’s algorithm (Lemma9) and describe a quantum
algorithm NU-ColF (Algorithm 2).

Lemma 9 ([8, Theorem 3]). Let f : X ′ → Y be a function that has at least one
collision. Then there is a quantum algorithm ColF making O(|X ′|2/3) quantum
queries to f that finds the collision with constant bounded error.

Algorithm 2. Collision Finding in Non-uniform Function NU-ColF

Input: f ← Dk
X as an oracle. Let s, t be parameters to be specified later.

Output: Collision (x, x′) or ⊥.
1: Divide X in to subsets Xi of equal size (ignoring the boundary case) |Xi| = s.
2: Construct fi : Xi → Y as the restriction of f on Xi.
3: For i = 1, . . . , t, Run Ambainis’s algorithm ColF on fi, and get candidate collision

xi and x′
i. if f(xi) = f(x′

i), output (xi, x
′
i) and abort.

4: Output ⊥.

Theorem 5. Let β := β(Dk). Let X be a set with |X| = M = Ω(
√

β). Algo-
rithm2 NU-ColF finds a collision in f ← XDk within O(β1/3) queries with con-
stant probability. Moreover with O(kβ1/3) queries the algorithm succeeds except
with probability negligible in k.

Proof. Since f is generated according to the min-k distribution, when restricting
to any subset Xi, we can think of drawing each function value independently
from Dk. Namely fi ∼ Dk

Xi holds for all i. Therefore, by Lemma 1, we have
that when s ≥ c

√
β(D) for some c > 2, fi contains a collision with constant

probability. If that is the case, Ambainis’s algorithm will find a collision with
constant probability using O(|Xi|2/3) = O(β(D)1/3) queries. We only need to
repeat t = O(k) times to succeed except with error negligible in k.

Note that our algorithm NU-ColF is generic, and needs no additional informa-
tion about Dk. By our characterization of β(Dk) in Lemma 3, we obtain specific
bounds for the two special distributions.

Corollary 4. There exists a quantum algorithm that finds a collision with con-
stant probability using the following numbers of queries:

– flat-k: O(β1/3) = O(2k/3) and it is tight when M = Ω(2k/2).

– δ-min-k: O(β1/3) =
{

O(N1/3) 2k ≤ N < 22k, tight whenN ≤ 23k/2

O(2
2k
3 ) N ≥ 22k.
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4.1 Quantum Algorithm for min-k Distribution with a Mode
Known

We design an alternative collision finding algorithm (Algorithm3), which per-
forms slightly better in some settings. It is based on a version of Grover’s algo-
rithm [15,22,28] for multiple marked items stated below.

Lemma 10. Let f : X → {0, 1} be an oracle function and let Zf = |{x ∈ X :
f(x) = 1}|. Then there is a quantum algorithm QSearch using q queries that
finds an x ∈ X such that f(x) = 1 with success probability Ω(q2 Zf

|X| ).

Algorithm 3 . Collision Finding in Non-uniform Function with a mode
known NU-ColF-Mode
Input: f ← Dk

X as an oracle. A mode element m of Dk.
Output: Collision (x, x′) or ⊥.
1: Run Grover’s algorithm QSearch on f to find x with f(x) = m.
2: Run Grover’s algorithm QSearch on f to find x′ with f(x) = m and x′ �= x.
3: Output ⊥ if any run of the Grover’s algorithm failed. Otherwise output (x, x′).

Theorem 6. NU-ColF-Mode finds a collision using O(2k/2) queries with con-
stant probability.

Proof. Let Zf := |f−1(m)|. Let pf be the probability that f is chosen, when
drawn from Dk

X . Since we invoke QSearch twice, we find (x, x′) with proba-
bility Ω

(
( q2Zf

|X| )2
)
. Then algorithm NU-ColF-Mode succeeds with probability

∑

f

pfΩ

(
q4

M2
Z2

f

)

= Ω

⎛

⎝ q4

M2

∑

f

pfZ2
f

⎞

⎠ = Ω(
q4

M2
E[Z2

f ]).

To compute E[Z2
f ], we define for every x ∈ X an indicator variable Zx =

{
1 if f(x) = m;
0 otherwise. , where f ← Dk

X , and clearly Zf =
∑

x∈X Zx. Since each

output of x is drawn independently according to Dk,δ, E[Zx] = ε := 2−k for all
x, it follows that E[Zx] = E[Z2

x] = ε, and E[Zx · Zx′ ] = E[Zx] · E[Zx′ ] = ε2 for
any x �= x′ by independence. Therefore

E[Z2
f ] =

∑

x

E[Z2
x] +

∑

x�=x′
E[ZxZx′ ] = Ω(M2ε2).

Hence the algorithm succeeds with probability Ω(q4ε2) = Ω(( q2

2k )2). As a result,
with q = O(2k/2) many queries, we find a collision with constant probability.

Remark 1. Note that we still need M = Ω(
√

β(D)) to ensure existence of colli-
sions. When N ≥ 23k/2, Theorem 6 gives a better bound (2k/2) than Theorem 5
(N1/3 when 23k/2 ≤ N < 22k and 22k/3 when N ≥ 22k).



Quantum Collision-Finding in Non-uniform Random Functions 485

References

1. Password hashing competition (2012). https://password-hashing.net/
2. National Institute of Standards and Technology. SHA-3 standard: permutation-

based hash and extendable-output functions (2014). http://csrc.nist.gov/
publications/drafts/fips-202/fips 202 draft.pdf

3. IBM Q quantum experience (2017). https://www.research.ibm.com/ibm-q/
4. National Institute of Standards and Technology. FIPS 180–1: secure hash standard,

April 1995
5. People of ACM - John Martinis, 16 May 2017. https://www.acm.org/articles/

people-of-acm/2017/john-martinis
6. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element

distinctness problems. J. ACM (JACM) 51(4), 595–605 (2004)
7. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: col-

lision and element distinctness with small range. Theory Comput. 1(3), 37–46
(2005). http://www.theoryofcomputing.org/articles/v001a003

8. Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM
J. Comput. 37(1), 210–239 (2007). Preliminary version in FOCS 2004.
arXiv:quant-ph/0311001

9. Ambainis, A., Rosmanis, A., Unruh, D.: Quantum attacks on classical proof sys-
tems (the hardness of quantum rewinding). In: FOCS 2014, pp. 474–483. IEEE,
October 2014. Preprint on IACR ePrint 2014/296

10. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. arXiv
preprint arXiv:1603.09383 (2016)

11. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing
efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and
Communications Security, pp. 62–73. ACM (1993)

12. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995).
https://doi.org/10.1007/BFb0053428

13. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: The Keccak sponge function
family (2007). http://keccak.noekeon.org/
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Abstract. This paper designs and analyzes a quantum algorithm to
solve a system of m quadratic equations in n variables over a finite field
Fq. In the case m = n and q = 2, under standard assumptions, the
algorithm takes time 2(t+o(1))n on a mesh-connected computer of area
2(a+o(1))n, where t ≈ 0.45743 and a ≈ 0.01467. The area-time product
has asymptotic exponent t + a ≈ 0.47210.

For comparison, the area-time product of Grover’s algorithm has
asymptotic exponent 0.50000. Parallelizing Grover’s algorithm to reach
asymptotic time exponent 0.45743 requires asymptotic area exponent
0.08514, much larger than 0.01467.

Keywords: FXL · Grover · Reversibility · Bennett–Tompa
Parallelization · Asymptotics

1 Introduction

By definition, a NAND gate reads two bits a, b ∈ F2 as input and produces a
bit c = 1 − ab as output. It is well known that any function from �-bit strings to
�′-bit strings, for any � and any �′, can be viewed as being computed by a circuit
built from NANDs.
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For example, one can compute the 2-bit-to-2-bit function (a, b) �→ (ab, a+b) by
computing c = 1−ab, d = 1−ac, e = 1−bc, f = 1−cc, g = 1−de; note that f = ab
and g = a + b. By further composition one can build, e.g., an integer-addition
circuit producing a 32-bit output from two 32-bit inputs; a circuit computing a
256-bit SHA-256 output from a fixed-length input; and a circuit computing a 2048-
bit RSA public key as a product of two secret 1024-bit primes.

Circuits built from NANDs are one of the standard models of computation.
They are also, fundamentally, how computation is carried out today.1 The prob-
lem of inverting one of today’s computations—for example, finding a preimage
for a hash output, or finding a secret key given a public key, or finding a plain-
text given a public key and a ciphertext—can thus be viewed as the problem of
solving a system of multivariate quadratic (“MQ”) equations. Quadratic here
means “degree at most 2”, so quadratic equations include linear equations.

Specifically, each NAND gate can be expressed as a quadratic equation in at
most three variables, such as the equation c = 1 − ab in variables a, b, c, or the
equation f = 1 − cc in two variables c, f . Note that the second equation can be
simplified to the linear equation f = 1−c, using the fact that c2 = c. Each known
output bit for the computation can be expressed as a linear equation such as g = 0.

1.1 Random Systems of MQ Equations. Formally, a quadratic equation∑
j≥k αj,kxjxk = β in n variables x1, x2, . . . , xn over F2 is specified by a sequence

of n(n+1)/2+1 coefficients α1,1, α2,1, α2,2, . . . , αn,n, β. A system of m quadratic
equations in n variables is thus specified by m(n(n + 1)/2 + 1) coefficients. The
equation-solving problem is to determine, given these coefficients, whether there
exists a solution (x1, x2, . . . , xn) ∈ Fn

2 to all m equations, and if so to find some
solution. Note that a reliable method to determine existence of a solution can
be used recursively to find a solution.

There is a vast literature on fast equation-solving techniques that rely on
special structure of the coefficients. For example, systems of linear equations
(αj,k = 0 if j �= k) are easy to solve. More generally, any nonzero linear equation
can be eliminated, along with one of the variables used in the equation, producing
a system of m − 1 quadratic equations in n − 1 variables. As another example,
some systems have a “triangular” structure that makes them easy to solve: one
can first solve for one variable without regard to the rest, then solve for another
variable, etc. As yet another example, the problem of factoring a 256-bit integer
into two 128-bit factors has a tremendous amount of mathematical structure,
and this structure is exploited by factorization algorithms that run in mere
minutes on a laptop today. But none of these examples have a noticeable chance
of applying to a uniform random system with m = n = 256: a system of 256
1 One can object to the circuit model of computation as being too restrictive: (1) in

the algorithms literature it is common to treat random access to an arbitrarily large
array as a single operation taking a single unit of “time”; (2) the algorithms liter-
ature also allows “branches”. However, (1) for any particular size of array, random
access can be implemented as a series of NANDs—which is essentially how physi-
cal RAM devices work; (2) branches are equivalent to—and physically implemented
as—random access to an array of instructions.
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equations in 256 variables in which each coefficient is chosen uniformly and
independently at random from F2.

What is the fastest way to attack a uniform random system with large m
and large n? This question has an important application in post-quantum cryp-
tography: solving such a system, in particular with m slightly smaller than n,
conjecturally breaks a typical MQ signature system such as Patarin’s classic
“HFEv−” [19, Sect. 4 with modifications from 11.1 and 11.3]. Specifically, in
these systems, the public key is a list of coefficients αi,j,k, conjectured to be
difficult to distinguish from uniform random; the hash of a message is a list of
coefficients βi, which in the “random-oracle model” are uniform random by def-
inition; and a solution to the corresponding system of equations is a signature
on that message.

One of the central reasons for interest in these signature systems is that they
allow very short signatures: it seems that a secure post-quantum MQ signature
can be even shorter than a pre-quantum ECC signature. But the security eval-
uation here relies critically on quantifying the difficulty of solving a uniform
random system of MQ equations.

There are also various proposals for MQ encryption systems where security
analysis relies on a slight variant of the same question: m is taken somewhat
larger than n, and one wants to know the fastest way to attack a uniform random
solvable system. Algorithms designed to solve random systems of MQ equations
have also had some applications beyond MQ cryptography, as illustrated by the
attack in [8] against some small-key code-based encryption systems.

1.2 Performance of Various Algorithms for Random Systems. We
consider asymptotic attack cost as m → ∞ and n → ∞ with an essentially
constant ratio m/n. Specifically, let μ be a real number with μ ≥ 1, and assume
that m is a function of n satisfying m/n ∈ μ + o(1) as n → ∞.

All of the algorithmic issues that we analyze are visible for the frequently
used case μ = 1, and specifically m = n; the reader should feel free to focus on
this case. Standard HFEv− parameters actually take m slightly smaller than n
but still have m/n ∈ 1 + o(1) as n → ∞. Beware, however, that “FXL” (see
below) and “GroverXL” for μ = 1 use “XL” for μ > 1.

Brute-force search uses at most N1+o(1) operations where N = 2n: there
are N possibilities for (x1, x2, . . . , xn), and checking one possibility uses No(1)

operations. For m < n (the “underdetermined” case) one can reasonably expect
a solution to appear within just 2m possibilities, but the assumption μ ≥ 1
means that 2m does not beat N1+o(1).

Brute-force search is asymptotically beaten by Gröbner-basis techniques. In
particular:

• “Extended linearization” (XL) uses just N0.87280...+o(1) operations in the case
μ = 1, under plausible assumptions that have been checked in various exper-
iments.

• Even better, combining brute-force search with XL produces “fixing followed
by extended linearization” (FXL), which uses just N0.79106...+o(1) operations
in the case μ = 1 under the same assumptions.
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The exponents 0.87280 . . . and 0.79106 . . . here, modulo a calculation error
(0.785 instead of 0.79106), were published by Yang, Chen, and Courtois in 2004
[26]. See Sect. 2 for further history and an explanation of how XL works.

Brute-force search is also asymptotically beaten by the recent Lokshtanov–
Paturi–Tamaki–Williams–Yu algorithm [15], which uses at most N0.8765+o(1)

operations. This algorithm is randomized but, for each input, is proven to pro-
duce the correct result with negligible chance of error. The exponent 0.8765+o(1)
is above 0.79106 . . .+ o(1), and worst-case provability is outside the scope of our
paper. We do not know whether the ideas in [15] can save time in FXL.

1.3 Quantum Algorithms for Random Systems. Quantum computers
beat brute-force search in a different way: namely, Grover’s algorithm uses
N0.5+o(1) operations. These operations are serial, but simply running A parallel
copies of Grover’s algorithm reduces time by a factor A1/2. For example, parallel
Grover takes time N0.46+o(1) on a quantum computer of total area N0.08+o(1),
or time N0.35+o(1) on a quantum computer of area N0.3+o(1).

The main question considered in this paper is whether Grover’s method can
be usefully combined with XL. We answer this question in the affirmative. Our
main contributions are the design and analysis of an algorithm “GroverXL” that,
under the same assumptions used to analyze FXL, has exponent below 0.5+o(1).

We analyze this algorithm first in a simplified operation-count metric, and
then in realistic area and time metrics for a parallel two-dimensional mesh-
connected architecture. See Sects. 2.6 and 3.3 for discussion of the metrics, and
Sect. 4 for the main analysis. For example, for m = n, GroverXL takes time
N t+o(1) on a mesh-connected quantum computer of area Na+o(1), where the
user can choose either of the following parameter sets (t, a):

(t, a, t + a, t + a/2) = (0.45742 . . . , 0.01467 . . . , 0.47210 . . . , 0.46476 . . . ) or
(t, a, t + a, t + a/2) = (0.44962 . . . , 0.02557 . . . , 0.47519 . . . , 0.46240 . . . ).

The area-time product is N t+a+o(1), and parameter set 1 is designed to optimize
this exponent t+a. GroverXL can be further parallelized, taking time N t−p+o(1)

on a mesh-connected quantum computer of area Na+2p+o(1); parameter set 2
is designed to optimize this area-time tradeoff. For example, the time exponent
drops to 0.35 with area exponent 0.22481 . . . , whereas reaching time exponent
0.35 with parallel Grover needs area exponent 0.30000 as noted above.

We state our results more generally for systems of m quadratic equations
in n variables over Fq. The generalization from F2 to Fq appears in many MQ
systems and in further applications. Of course, guessing elements of Fq becomes
slower as q increases; for sufficiently large q, one should simply use XL.

2 XL and FXL

This section reviews the XL and FXL algorithms to solve m equations in n vari-
ables over a finite field Fq. For simplicity we consider solely quadratic equations,
although the ideas can easily be extended to cubic systems and higher.
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xyz + xy + xz + x = 0
0 = 0

xyz + xz + yz + z = 0
xy + x+ yz + z = 0

xy + xz = 0
xyz + xy = 0
yz + z = 0

xz + x+ y + 1 = 0
xyz + xy = 0
xyz + y = 0
xz + z = 0

xz + yz + y + z = 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0

0 1 0 1 1 0 1 0

0 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 1 0 1 0

0 0 1 1 0 1 0 1

1 1 0 0 0 0 0 0

1 0 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 1 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xyz
xy
xz
x
yz
y
z
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 1 1 1 0 1 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xyz
xy
xz
x
yz
y
z
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0

Fig. 2.2. Small example of XL. The goal is to find a solution to the following system of
three equations in three variables x, y, z over F2: xy+x+yz+z = 0; xz+x+y+1 = 0;
xz + yz + y + z = 0. Left column (black): Twelve equations obtained as x, y, z, 1 times
each of the original equations; note that x2, y2, z2 are replaced with x, y, z respectively.
Middle column (blue): Same twelve equations expressed in matrix form; the matrix is
a Macaulay matrix. Right column (green): Equations obtained by applying Gaussian
elimination to the Macaulay matrix. Three of the resulting equations are x + y = 0,
y + 1 = 0, and z + 1 = 0, implying (x, y, z) = (1, 1, 1). This is a solution, and therefore
the only solution, to the original system. (Color figure online)

This section also analyzes the asymptotic performance of XL and FXL,
assuming that m, the XL degree parameter d, and the FXL fixing parameter f
grow linearly with n. In particular, this section reviews the asymptotic number
of monomials and the asymptotic cost of linear algebra. See Sect. 3 for quantum
speedups, and Sect. 4 for analysis of the overall costs for random systems when
d/n and f /n are optimized.

2.1 XL: Extended Linearization. XL was introduced by Lazard [13]. It
was rediscovered and given the name “XL” in [6].

XL begins by computing a degree-d Macaulay matrix as follows. Multiply
each of the original m quadratic equations by each monomial of degree at most
d−2; each product is called a “relation”. Each relation is a linear combination of
monomials of degree at most d. The Macaulay matrix is, by definition, the matrix
of coefficients in these linear combinations. See Fig. 2.2 for a small example with
d = 3.

If the relations have a linear combination of the form 1 = 0 then the origi-
nal system of equations has no solution. XL recognizes this situation by linear
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algebra on the Macaulay matrix: it checks whether the vector (0, 0, . . . , 1), with 1
at the position of monomial 1, is a linear combination of the rows of the matrix.

More generally, XL checks whether the relations have a nonzero linear com-
bination involving only monomials of degree at most 1; i.e., whether the rela-
tions imply a nonzero linear equation among the variables. This linear equation
reduces the original system to a smaller system that can be solved recursively
(and further independent equations reduce the system even more). Recognizing
this situation is again linear algebra on the Macaulay matrix.2

An alternative is to check whether the relations have a nonzero linear com-
bination involving only powers of a single variable. The resulting univariate
equation is easily solved by fast root-finding algorithms, and each root produces
a smaller system that can be solved recursively. There can be “fake” roots that
do not correspond to solutions of the original system, but experiments suggest
that for random systems these “fake” roots rapidly produce contradictions in
subsequent levels of recursion.

There is no guarantee that XL will produce any of this information. Increasing
d can produce more information, but increasing d also produces many more
monomials, as discussed below. A common way to use XL is to try d = 2, then
d = 3, and so on, until the system is solved. As d increases, there appears to
be a sharp transition from (1) XL solving very few systems to (2) XL solving
almost all systems; the transition point is quantified in Sect. 4.

2.3 The Number of Monomials, and the Field Equation. A basic
combinatorics exercise states that the number of monomials of degree ≤d in
n variables v1, v2, . . . , vn is exactly the binomial coefficient

(
n+d

d

)
: the monomial

ve1
1 ve2

2 · · · ven
n with e1 + e2 + · · · + en ≤ d corresponds to the d-element subset

{e1 + 1, (e1 + 1) + (e2 + 1), . . . , (e1 + 1) + · · · + (en + 1)} of {1, 2, . . . , n + d}.
If q is small then one can save time in XL and FXL by using the field

equation vq = v to eliminate monomials with exponents larger than q − 1. For
example, if q = 2 then one uses only squarefree monomials; if v2 appears then
one immediately replaces it with v. There are only

(
n
0

)
+

(
n
1

)
+· · ·+(

n
d

)
squarefree

monomials of degree ≤d. The example in Fig. 2.2 uses this speedup.
More generally, define ϕq ∈ Z[z] as the polynomial (1− zq)/(1− z) = 1+ z +

· · · + zq−1. The number of monomials of degree d in n variables with exponent
at most q − 1 is the coefficient of zd in ϕn

q , which we abbreviate [zd]ϕn
q . The

number of monomials of degree ≤d is
∑

k≤d[z
k]ϕn

q , or equivalently [zd]((1 + z +
z2 + · · · )ϕn

q ).

2 Part of the literature suggests, incorrectly, that this requires computing echelon form.
In fact, it simply requires solving linear equations. Specifically, finding x such that
Mx is zero outside n+1 positions is the same as finding x such that M ′x = 0, where
M ′ removes those positions from M . To find a uniform random r such that M ′r = 0,
one can take a uniform random v, compute M ′v, use any method to find a solution
x to M ′x = M ′v, and compute r = x−v. Then Mr is sampled uniformly at random
from the space of vectors Mx that are zero outside the specified positions. If the
space has positive dimension then each r has at least a 50% chance of discovering
this.
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The asymptotic behavior of the binomial coefficient
(
n
d

)
is singly exponential

in n when d is linear in n. The same is true more generally for [zd]ϕn
q .

Specifically, assume that d/n ∈ δ+o(1) as n → ∞, where 0 < δ < q−1. Then
the number of monomials of degree d in n variables with exponents at most q−1
is 2(monq(δ)+o(1))n, where monq is defined below. The number of monomials of
degree ≤d in n variables with exponents at most q − 1 is also 2(monq(δ)+o(1))n

if δ ≤ (q − 1)/2, and 2(lg q+o(1))n = (q + o(1))n for all δ ≥ (q − 1)/2, where lg
means log2.

The definition of monq(δ) for 0 < δ < q − 1 is as follows: monq(δ) =
lg(ϕq(ρ)/ρδ), where ρ ∈ R is the unique positive root of the polynomial
(

z

1 − z
− qzq

1 − zq
− δ

)

ϕq = −δ+(1−δ)z+(2−δ)z2+· · ·+(q−1−δ)zq−1 ∈ R[z].

To see that this polynomial has a positive root, observe that the constant coeffi-
cient −δ is negative while the top coefficient q −1− δ is positive. To see that the
root is unique, observe that z/(1− z)− qzq/(1− zq)− δ is an increasing function
of z when z is positive (its derivative is 1/(1 − z)2 + q2zq−1/(1 − zq)2 > 0) and
that ϕq is positive when z is positive.

It is sometimes convenient to also define monq(0) = 0 and monq(q − 1) = 0.
Then monq is a continuous function on the interval [0, q − 1].

For example, mon2 is exactly the binary entropy function: mon2(δ) =
−δ lg δ−(1−δ) lg(1−δ). As q → ∞, the values monq(δ) converge up to what one
might call mon∞(δ), namely (1 + δ)mon2(δ/(1 + δ)) = (1 + δ) lg(1 + δ) − δ lg δ.

As a more complicated example, mon3(δ) = lg(1 + ρ + ρ2) − δ lg ρ, where
ρ is the unique positive root of the polynomial −δ + (1 − δ)z + (2 − δ)z2; i.e.,
ρ = (δ − 1 +

√
1 + 6δ − 3δ2)/(2(2 − δ)). If d/n ∈ δ + o(1) as n → ∞ then the

number of monomials of degree d in n variables with exponents at most 2 is
((1 + ρ + ρ2)/ρδ + o(1))n.

2.4 Understanding monq : The Saddle-Point Method. The fact that
monq is the asymptotic exponent for the number of monomials follows from a
standard trick in analytic combinatorics called the “saddle-point method”. For
monq it is enough to apply a simple case of this method, making assumptions
that we quote from [9, Sect. VIII.8.1]:

• B and C are power series with nonnegative coefficients. Our monq application
takes B = ϕq and C = 1.

• The constant coefficient of B is nonzero.
• The nonzero coefficients of B are at indices whose greatest common divisor

is 1.
• B has a positive radius R of convergence in the complex plane. For us R = ∞.
• C has radius of convergence ≥R.
• T is the limit of zB′(z)/B(z) as z approaches R from below. For us T = q−1.

The saddle-point method then states the following. Fix δ with 0 < δ < T . If δn is
an integer, then the coefficient [zδn]C(z)B(z)n is (c + o(1))C(ρ)B(ρ)n/ρδn+1

√
n
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as n → ∞, where ρ is the unique positive root of ρB′(ρ)/B(ρ) = δ, and c is an
explicit nonzero constant. See [9, Proposition VIII.8].

In particular, for any δ strictly between 0 and q −1, the coefficient [zδn]ϕn
q is

(c + o(1))/ρ
√

n times the nth power of ϕq(ρ)/ρδ, where ρ is the unique positive
root of ρϕ′

q(ρ)/ϕ(ρ) = δ, i.e., ρ/(1 − ρ) − qρq/(1 − ρq) = δ.
This is called the “saddle-point method” as a reference to the name “saddle

points” for roots of the derivative of an analytic function. The connection to
saddle points arises as follows. Cauchy’s integration formula states that

[zm]C(z)B(z)n =
1

2πi

∮
C(z)B(z)n dz

zm+1
=

1
2πi

∮
C(z)F (z)n dz

z
,

where
∮

integrates on any contour circling once (counterclockwise) around the
origin in the complex plane, and where F (z) = B(z)/zm/n. The saddle-point
method chooses a contour that passes through one or more saddle points of
log F (z), i.e., through roots of B′(z)/B(z)−m/nz: in the simple case mentioned
above, this contour is a circle of radius ρ around the origin, passing through
the unique positive root of zB′(z)/B(z) = δ. One can show, under reasonable
assumptions, that the integral is asymptotically dominated by the portion of
the integral around the saddle points. For a full exposition see, e.g., [24] or [9,
Chap. 8].

2.5 Fast Linear Algebra. Write A for the number of monomials analyzed
above: the number of monomials of degree ≤d in n variables with exponents at
most q − 1. Each of the m equations provided as input to XL produces at most
A relations, namely one relation for each monomial of degree at most d − 2.
The total number of relations is at most mA. In other words, the Macaulay
matrix has A columns and at most mA rows. We focus on the situation that A
is exponential in n while m is linear in n; the matrix then has A1+o(1) rows and
columns.

Each of the original equations is assumed to be quadratic, and therefore has
O(n2) terms. Consequently each relation also has O(n2) terms: i.e., there are
only O(n2) nonzero entries in each row of the Macaulay matrix. The Macaulay
matrix is thus extremely sparse.

Sparsity saves time in linear algebra. The fastest methods known to solve an
A × A dense system of linear equations use Aω+o(1) operations where ω ≈ 2.37,
while sufficient sparsity reduces the number of operations to A2+o(1). The idea of
applying sparse linear-algebra techniques to speed up XL was mentioned by Yang
and Chen in 2004 [25], analyzed in more detail by Yang, Chen, and Courtois later
the same year [26], and demonstrated in various XL implementations starting in
2006; see, e.g., [4].

We focus exclusively on Wiedemann’s algorithm [23] for sparse linear algebra
over finite fields. The algorithm is described in [23, p. 59] as an “O(n0(ω +
n1 log n1) log n0) expected time method of producing a solution to any linear
system [over Fq], providing a solution exists”. Here “ω” is the total number of
nonzero entries in the matrix; “n0” and “n1” are the minimum and maximum of
the number of rows and the number of columns; and “time” counts operations
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in a sequential RAM model, with each addition and multiplication in Fq taking
time 1.

In the XL situation mentioned above (m linear in n, and A exponential in n),
“n0” and “n1” and “ω” are all bounded by A1+o(1), so the number of operations
in Wiedemann’s algorithm is A2+o(1). A closer look shows that the algorithm is
bottlenecked by a series of A1+o(1) matrix-vector multiplications, using vector
length A1+o(1). The matrix and all other intermediate quantities also fit into
A1+o(1) field elements.

2.6 Communication Costs and Parallelization. Each of the sparse
matrix-vector multiplications described above consists of A1+o(1) random
accesses to an array of A1+o(1) field elements.3 A simplified operation-count
metric states that each random access has cost 1, independent of A.

This operation-count metric is a poor predictor of the time spent on compu-
tation, for two basic reasons. First, if one is spending A1+o(1) dollars on computer
hardware, then one can afford as many as A1+o(1) small processing cores that
operate in parallel; this could reduce the time by a factor as large as A1+o(1)

if there is enough work to do in parallel. Second, the distance between array
elements is forced to grow as a positive power of A, correspondingly increasing
the time necessary for communication.

There are many previous papers designing algorithms for a two-dimensional
A0.5+o(1) × A0.5+o(1) mesh of small parallel processing cores, with each core
connected locally to its neighbors. For example, Brent and Kung showed in [3]
how to multiply A-bit integers in time A0.5+o(1), and there are several papers
showing how to sort A small items in time A0.5+o(1).

Sorting can in turn be used to implement a batch of random accesses, and in
particular to parallelize Wiedemann’s algorithm in this model, as Bernstein [2]
pointed out in the context of integer factorization. This reduces the time for
Wiedemann’s algorithm, and the time for XL, to A1.5+o(1).

2.7 FXL: Fixing Followed by Extended Linearization. FXL was pro-
posed by Courtois, Klimov, Patarin, and Shamir in 2000 [6].

FXL solves a system of m quadratic equations in n variables v1, v2, . . . , vn

over Fq as follows. There are qf possibilities for the last f variables
vn−f+1, . . . , vn. For each possibility, use XL to solve the resulting system of
m quadratic equations in n − f variables. In other words, guess (fix) f variables
before running XL.

Increasing f by 1 costs a factor q in the number of guesses. However, it also
increases the ratio m/(n−f), and this often has a benefit of decreasing the degree
d needed for XL to succeed. Optimized FXL exponents for random systems are
presented in Sect. 4.

Note that FXL can be trivially parallelized, reducing the time by any desired
factor up through qf at the expense of increasing area by a similar factor.
3 As q grows, one has to account for the growing cost of reading, writing, and arith-

metic on field elements. For simplicity we focus on asymptotic statements as n → ∞
with q fixed.
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3 ReversibleXL and GroverXL

It is conceptually straightforward to replace the brute-force search in FXL with
Grover’s quantum search method, reducing the number of search iterations to
its square root. However, Grover’s method requires the underlying function—the
function that is evaluated on an input to see whether the input is a solution to
the search—to be computed reversibly, with no data ever erased.

The XL computation described in the previous section does not fit this model.
The computation is constantly erasing data: it repeatedly overwrites a vector
with a matrix-vector product. This section analyzes the costs of fitting XL into
Grover’s method.

3.1 Reversible Computation. There would be no difficulty if our goal were
merely to count operations: simply keep a journal of all intermediate results, and
then run the computation again in reverse order, as in [1, Lemma 1].

Formally, any sequence of NANDs is converted into a reversible computation
as follows. Say there are input bits b1, b2, . . . , bi, followed by NANDs bi+1 =
1−bf(i+1)bg(i+1), bi+2 = 1−bf(i+2)bg(i+2), and so on through bT = 1−bf(T )bg(T ),
where f(j) < j and g(j) < j. Some of the bits are specified to be output bits; for
simplicity assume that these are not the input bits and are not used for further
computations inside this sequence of NANDs.

Consider the following reversible circuit applied to T bits b1, b2, . . . , bT . First
apply the following “NOT-Toffoli” gates: bi+1 ← bi+1+1−bf(i+1)bg(i+1); bi+2 ←
bi+2 +1−bf(i+2)bg(i+2); and so on through bT ← bT +1−bf(T )bg(T ). Then apply
the same gates again in reverse order to the ancilla bits, i.e., the bits that are
not output bits.

If bits bi+1, . . . , bT all start as 0 then the reversible circuit first computes
exactly what the original NANDs did, and then it sets the ancilla bits back to
0. More generally, if the ancilla bits all start as 0 then the reversible circuit adds
the output of the original function into the output bits, while leaving the input
bits untouched and setting the ancilla bits back to 0.

In short, this reversible computation produces (x, 0, F (x) + y) if the input is
(x, 0, y). This is what it means to compute a function F reversibly.

3.2 Saving Space: The Bennett–Tompa Conversion. The circuit
described above uses T bits of storage (or T qubits in the context of Grover’s
method). This amount of hardware is usually vastly larger than the amount of
hardware needed for the original computation: in particular, the storage for XL
expands quadratically. This begs the question of whether one can afford this
amount of hardware, and the question of whether the same amount of hardware
can be more productively used in other ways.

Bennett proved in [1, Theorem 1] that any computation using time T and
space S can be converted into a reversible computation using time O(T log2 3) and
space O(S log T ). Bennett also proved, with credit to Tompa, that log2 3 can be
replaced by 1+ ε for any ε > 0. Bennett’s theorem is stated for multitape Turing
machines; we return below to issues of parallelization and communication costs.



Asymptotically Faster Quantum Algorithms to Solve MQ Equations 497

Bennett’s log2 3 conversion works as follows. Decompose a computation into
two halves: specifically, say the output is C2(C1(x)), where x is the input. Start-
ing from (x, 0, y), reversibly compute C1 by the same construction recursively,
obtaining (x,C1(x), y); reversibly compute C2 by the same construction recur-
sively, obtaining (x,C1(x), C2(C1(x))+y); and then reversibly compute C1 again,
obtaining (x, 0, C2(C1(x)) + y) as desired. This takes three half-size computa-
tions. The required space is proportional to the number of levels of recursion;
the point here is that ancillas used for C1 are reused for C2.

More generally, the Bennett–Tompa conversion splits a computation into
k parts, each taking time (approximately) T/k. Starting from (x, 0, . . . , 0, y),
compute C1, then C2, and so on through Ck, obtaining

(x,C1(x), C2(C1(x)), . . . , Ck−1(· · · C1(x) · · · ), Ck(· · · C1(x) · · · ) + y).

Then compute Ck−1, then Ck−2, and so on through C1, obtaining

(x, 0, . . . , 0, Ck(· · · (x) · · · ) + y).

This is the same strategy used above for the extreme case that each Ci is a single
NAND. Allowing larger computations Ci produces time exponent logk(2k − 1),
while increasing the space by a factor that depends on k.

Taking k ∈ 2Θ(
√
log T ) produces time and space within factors 2O(

√
log T ) of

the original computation, as pointed out by Knill in [12, Theorem 2.12]. In the
context of our XL analyses, these factors are 2o(n) and therefore do not affect our
asymptotic exponents. Knill also pointed out some smaller optimizations that
are not visible in our exponents.

3.3 Parallelizing the Bennett–Tompa Conversion. We point out that
the idea of the Bennett–Tompa conversion is compatible with massively par-
allel computation and local communication, in particular communication on a
realistic two-dimensional mesh architecture.

Assume that the original computation is a sequence of T time steps, where
each step is carried out in parallel by A small processing cores. The cores are
arranged in a

√
A×√

A mesh, with edges between adjacent cores. Formally, core
(i, j) has state s[i, j, t] at time t consisting of a small number of bits; s[i, j, t + 1]
is the output of a small computation applied to s[i, j, t], s[i− 1, j, t], s[i, j − 1, t],
s[i + 1, j, t], s[i, j + 1, t], with states past the edge defined to be empty. For our
XL application, “small” can be defined as subexponential in n, while T and A
grow exponentially with n.

We convert this into a reversible computation on a
√

A × √
A mesh of small

cores as follows. Divide the original computation into k parts C1, C2, . . . , Ck,
each taking time approximately T/k. Core (i, j) starts with (s[i, j, 0], 0, . . . , yi,j).
Recursively apply C1 reversibly, recursively apply C2 reversibly, and so on
through Ck, obtaining

(s[i, j, 0], s[i, j, t1], . . . , s[i, j, tk] + yi,j).

Then apply Ck−1 reversibly, apply Ck−2 reversibly, and so on through C1, obtain-
ing

(s[i, j, 0], 0, . . . , s[i, j, tk] + yi,j)
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as desired. The base case of the recursion is a time-1 parallel computation con-
sisting of small local computations, each of which is applied reversibly with small
overhead.

This conversion visibly expands the state in each core. The final state is accom-
panied by a journal of k earlier states; and each level of recursion needs its own
journal, overall multiplying the state size by k(log T )/ log k. Each level of recur-
sion also multiplies the time by (2k −1)/k. As in [12], we take k ∈ 2Θ(

√
n), so that

the overall area and time overheads are subexponential in n. The expanded area
also implies a slowdown in communication, but this is again subexponential in n.

3.4 ReversibleXL and GroverXL. ReversibleXL is, by definition, the
result of applying the above parallel conversion to the XL computation of
whether a system has a solution. As noted in Sect. 2, XL can fail to determine
whether a system has a solution, but we assume that d is chosen large enough
that XL works for all systems provided to ReversibleXL; see Sect. 4.

GroverXL solves a system of quadratic equations in n variables as follows. Use
Grover’s method to search through the qf possibilities for the last f variables,
applying ReversibleXL to each possibility. If the system has a solution then
Grover’s method returns a random choice of solution; otherwise it returns a
uniform random choice of the last f variables. Either way, substitute this choice
into the system, and use XL to see whether there is a solution for the remaining
variables.

GroverXL takes the time for qf/2+o(1) quantum computations of
ReversibleXL, plus a final computation of XL. Like other applications of Grover’s
method, GroverXL can be parallelized across many separate computations,
increasing the area by a corresponding factor while dividing the time by the
square root of the same factor. The limit of “many” is qf , at which point one
should simply use FXL.

4 Analysis for Random Systems

This section presents asymptotic cost exponents for solving random systems
of (μ + o(1))n quadratic equations in n variables over Fq, assuming μ ≥ 1.
Exponents are shown for various small choices of q and for various choices of μ
ranging from 1.0 up through 2.0.

Exponent e means that the cost is 2(e+o(1))n as n → ∞, or equivalently
(2e +o(1))n. Simple brute-force search has exponent lg q, and Grover’s algorithm
has exponent 0.5 lg q, where as before lg = log2. In all cases GroverXL has better
exponents.

4.1 A Script for Computing Cost Exponents. To simplify verification,
and to let the reader easily compute cost exponents for further pairs (q, μ), we
include a script to compute exponents. See Figs. 4.2 and 4.3. This script uses the
free Sage computer-algebra system, version 8.0.

The script covers both GroverXL and FXL. In each case it covers two different
metrics: (1) the exponent of a simplified operation count, and (2) the exponent
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import collections

# generic caching mechanism
class memoized(object):

def __init__(self,func):
self.func = func
self.cache = {}
self.__name__ = ’memoized:’ + func.__name__

def __call__(self,*args):
if not isinstance(args,collections.Hashable):

return self.func(*args)
if not args in self.cache:

self.cache[args] = self.func(*args)
return self.cache[args]

@memoized
def lg(x):

return log(x*1.0)/log(2.0)

Zx.<x> = ZZ[]
Ry.<y> = RR[]
Zxz.<z> = Zx[]
Zxza.<a> = Zxz[]

@memoized
def phi(q): # see Section 2.3

return Zx((1-x^q)/(1-x))

@memoized
def monpoly(q): # see Section 2.3

h = x/(1-x) - q*x^q/(1-x^q)
return Zx(phi(q)*h)

@memoized
def mon(q,delta): # see Section 2.3

if not q in ZZ: raise Exception(’q must be integer’)
if q < 2: raise Exception(’q must be at least 2’)
if delta < 0: return -Infinity
if delta == 0: return 0
if delta == q-1: return 0
if delta > q-1: return -Infinity
g = Ry(monpoly(q)) - delta*Ry(phi(q))
roots = g.roots(RR)
rho = max(r for r,e in roots)
return lg(phi(q)(rho)/rho^delta)

Fig. 4.2. Script for computing cost exponents, part 1: caching and mon computation.

of the area-time product AT on a two-dimensional mesh-connected computer.
In the context of parallelizing Grover’s method, another metric of interest is the
exponent of the

√
AT product; but for parallelized GroverXL this turns out to

be identical to the first metric.
The script tries five values of q, namely 2, 3, 4, 5, 16; this is specified by

doit(2) through doit(16) at the end of the script. The script takes a few
hours to run, almost entirely for q = 16.

There are three nested loops for each q: search is either 0.5 for GroverXL
or 1 for FXL; linalg is either 2 for a simplified operation-count metric or 2.5
for area-time product on a two-dimensional mesh; and k tries each μ between 1
and 2 in steps of 0.01. For each choice of (q, search, linalg, μ), the script prints
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@memoized
def deltapoly(q): # see Section 4.5

h = (-x/z - q*z^(q-1)/(1-z^q) + 1/(1-z)
- 2*a*z/(1-z^2) + 2*a*q*z^(2*q-1)/(1-z^(2*q)))

h *= z*(1-z^(2*q))/(1-z)
return Zxza(h)

@memoized
def delta(q,mu): # see Section 4.5

hmu = deltapoly(q)(QQ(mu)).discriminant()
roots = hmu.roots(RR)
if not roots: return -1
return min(r for r,e in roots if r>0)

@memoized
def alpha(q,mu): # see Section 4.4

return mon(q,delta(q,mu))

def doit(q):
for search in [0.5,1]:

searchlgq = search * lg(q)
for linalg in [2,2.5]:

def f(x): return (linalg*alpha(q,x) - searchlgq)/x
bestvalue,mu0 = find_local_minimum(f,1,10)
mu0 = RR(mu0)
for k in range(100,201):

mu = k*0.01
x = max(mu,mu0) # lambda in Section 4.6
context = ’%d %.1f %.1f’ % (q,search,linalg)
cost = mu*f(x) + searchlgq
alphax = alpha(q,x)
print context,’%.3f’%mu,cost,x,alphax,alphax*mu/x
sys.stdout.flush()

doit(2)
doit(3)
doit(4)
doit(5)
doit(16)

Fig. 4.3. Script for computing cost exponents, part 2: δ optimization and μ0 optimiza-
tion.

one line showing the exponent for solving m = (μ + o(1))n random quadratic
equations in n variables over Fq.

4.4 Understanding the XL Exponent. Guessing variables does not save
time if the system is sufficiently overdetermined: i.e., if μ is larger than a par-
ticular cutoff μ0 then FXL and GroverXL both boil down to XL. The script
computes the cost exponent for XL in three steps:

• Compute δ as explained in Sect. 4.5. The XL degree d is (δ + o(1))n.
• Compute α = monq(δ). The number of monomials in XL is 2(α+o(1))n.
• The exponent is linalg · α.

Specifically, XL takes time T = 2(1.5α+o(1))n on a mesh of area A = 2(α+o(1))n,
so AT is 2(2.5α+o(1))n. In a simplified operation-count metric the exponent is
only 2α. Note that the

√
AT exponent is also 2α; as mentioned above, the√

AT exponent is identical to the simplified operation-count exponent for these
algorithms.
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4.5 Understanding δ. The script uses XL degree d ∈ (δ + o(1))n, where δ is
computed as follows. Define h as the polynomial

z
1 − z2q

1 − z

(−x

z
− qzq−1

1 − zq
+

1
1 − z

− 2μz

1 − z2
+

2μqz2q−1

1 − z2q

)

in the polynomial ring R[x, z]. Define Δ ∈ R[x] as the discriminant of h with
respect to z. Then Δ has a unique positive real root, namely δ.

This is a concise statement of a calculation explained in the previous XL
literature. For example, for q = 2 and m = n, the XL exponent 0.87280 . . .
and the FXL exponent 0.79106 . . . were calculated this way in [26]. The rest of
this subsection reviews the main steps in the argument that this is the correct
asymptotic degree for XL.

Recall that A, the number of monomials in XL, is the coefficient of zd in
ϕq(z)n/(1 − z), where ϕq(z) = (1 − zq)/(1 − z); in short, [zd](ϕq(z)n/(1 − z)).
The number of relations is at most m[zd−2](ϕq(z)n/(1 − z)). A more careful
analysis shows that the linear span of the relations has codimension (i.e., A
minus the dimension) at least [zd](ϕq(z)n/(1− z)ϕq(z2)m). See [25, Theorem 2];
see also [7].

As d increases, there is a sharp transition in the behavior of the coefficient
[zd](ϕq(z)n/(1−z)ϕq(z2)m), and in the experimentally observed behavior of XL
for random systems. If d is noticeably below a cutoff analyzed below, then the
coefficient is a huge positive integer, and XL almost always fails for random sys-
tems (although it does succeed for some special systems of interest): there are
not enough relations to provide interesting information about any small subset
of the monomials. As d grows past the cutoff, the coefficient crosses below 0
and rapidly becomes quite negative, and XL almost always succeeds for ran-
dom systems. If the coefficient happens to be extremely close to 0 then XL will
often succeed and often fail (there are often some accidental extra dependencies
between relations), but adding o(n) to d eliminates this vacillation.

We analyze the asymptotics of this coefficient as in Sect. 2.4. First use
Cauchy’s integration formula

[zd]
(

ϕq(z)n

(1 − z)ϕq(z2)m

)

=
1

2πi

∮
ϕq(z)n dz

zd+1(1 − z)ϕq(z2)m
=

1
2πi

∮
F (z)n dz

z(1 − z)

where F (z) = ϕq(z)/zd/nϕq(z2)m/n. Then substitute d = δn and m = μn,
and apply the saddle-point method to compute an asymptotic formula for the
integral as n → ∞. This asymptotic formula involves powers of the form F (ρ)n,
where ρ runs through the complex roots of the logarithmic derivative

F ′(z)
F (z)

=
−δ

z
− qzq−1

1 − zq
+

1
1 − z

− 2μz

1 − z2
+

2μqz2q−1

1 − z2q
.

Multiplying this logarithmic derivative by z(1 − z2q)/(1 − z) produces the poly-
nomial h defined earlier, with δ substituted for x. The roots of h are essentially
the roots of F ′/F ; a closer look shows that h has an extra root −1 if q is odd,
but this does not affect the calculation of the cutoff.
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Finally, with some work one can see that the phase transition from positive
coefficients to negative coefficients occurs exactly when h has a double root,
i.e., exactly when the discriminant Δ is zero. See generally [5] for the theory of
double saddle points, and [26] for applications to XL.

4.6 Understanding the FXL and GroverXL Exponents. More gen-
erally, for any μ ≥ 1, the script computes the cost exponents for FXL and
GroverXL as follows:

• Choose λ ≥ μ as explained below. Assume that (1−μ/λ+o(1))n variables are
fixed, i.e., that XL is given (μ + o(1))n equations in (μ/λ + o(1))n variables.

• Compute α as in Sect. 4.4, starting from λ rather than μ. Then XL
and ReversibleXL take time T = 2(1.5α+o(1))(μ/λ+o(1))n using area T =
2(α+o(1))(μ/λ+o(1))n; i.e., in base 2n, they have time exponent 1.5αμ/λ and
area exponent αμ/λ (and operation-count exponent 2αμ/λ).

• For FXL, add (1 − μ/λ) lg q to the time exponent (and the operation-count
exponent) to account for the cost of brute-force search. For GroverXL, add
0.5(1 − μ/λ) lg q. In other words, add search(1 − μ/λ) lg q.

To summarize, the exponent is linalg ·αμ/λ+ search(1−μ/λ) lg q, where α is
implicitly a function of λ. This formula shows that λ is best chosen to minimize
linalg · α/λ − search(lg q)/λ. The script uses Sage’s find local minimum to
find the minimum of this function on [1, 10]; larger inputs did not help for the
range of linalg etc. that we use. The position of this maximum is mu0, exactly
the cutoff μ0 mentioned above. The script then defines λ = max{μ, μ0}.

4.7 Example: GroverXL for q = 2. The polynomial h defined earlier is
(1−2μ− δ)z3 +(−2μ− δ)z2 +(1− δ)z − δ. The discriminant Δ of h with respect
to z is a quartic polynomial in δ, so the equation Δ = 0 can be solved explicitly
by radicals, and it is easy to see the unique positive root:

δ = F (μ) = −μ +
1
2

+
1
2

√

2μ2 − 10μ − 1 + 2
√

μ4 + 6μ3 + 12μ2 + 8μ (1)

For example, if (q, μ) = (2, 1), then δ = 0.0899798 . . .; and α = mon2(δ) =
−δ lg δ − (1 − δ) lg(1 − δ) = 0.436402 . . .. This means that XL uses degree
2(0.08997...+o(1))n, and 2(0.43640...+o(1))n monomials. The operation-count expo-
nent is 2 · 0.43640 . . . = 0.87280 . . ..

As another example, μ0 = 1.81626 . . . maximizes (1 − 2mon2(F (μ0)))/μ0.
For μ = μ0, XL has δ = F (μ0) = 0.05573 . . . and α = mon2(δ) = 0.31026 . . ., for
operation-count exponent 0.62052 . . ..

FXL, when optimized for operation count, fixes enough variables to reach
m/μ0 remaining variables. For example, again for (q, μ) = (2, 1), FXL runs XL
with m = (1 + o(1))n equations and (1/μ0 + o(1))n = (0.55058 . . . + o(1))n vari-
ables. XL’s operation-count exponent in base 2n is then 0.55058 . . .·0.62052 . . . =
0.34164 . . .. The remaining (1 − 1/μ0 + o(1))n = (0.44941 . . . + o(1))n variables
are found by brute-force search, so the final exponent for FXL is 0.79106 . . ..

We emphasize that this calculation so far is not new: FXL was analyzed this
way in [26]. Our main contributions are the design and analysis of GroverXL.
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Table 4.10. GroverXL operation-count exponent for q ∈ {2, 3, 4, 5, 16} and various
μ. Operation count ignores communication costs. Each exponent is rounded down to
multiple of 0.00001. For comparison, Grover’s algorithm without XL has exponents
0.50000, 0.79248, 1.00000, 1.16096, 2.00000, independently of μ.

μ = 1.0 μ = 1.1 μ = 1.2 μ = 1.3 μ = 1.4 μ = 1.5 μ = 1.6 μ = 1.7 μ = 2.0

q = 2 0.46240 0.45864 0.45488 0.45112 0.44737 0.44361 0.43985 0.43609 0.42481

q = 3 0.70425 0.69542 0.68660 0.67778 0.66895 0.66013 0.65131 0.64248 0.61601

q = 4 0.85848 0.84433 0.83018 0.81602 0.80187 0.78772 0.77357 0.75942 0.71696

q = 5 0.96843 0.94918 0.92993 0.91068 0.89142 0.87217 0.85292 0.83367 0.77591

q = 16 1.42604 1.36865 1.31125 1.25386 1.19646 1.13907 1.08167 1.02428 0.86575

Table 4.11. GroverXL cost exponent for q ∈ {2, 3, 4, 5, 16} and various μ. Cost is
area-time product on two-dimensional mesh-connected computer. Each exponent is
rounded down to multiple of 0.00001. For comparison, Grover’s algorithm without XL
has exponents 0.50000, 0.79248, 1.00000, 1.16096, 2.00000, independently of μ.

μ = 1.0 μ = 1.1 μ = 1.2 μ = 1.3 μ = 1.4 μ = 1.5 μ = 1.6 μ = 1.7 μ = 2.0

q = 2 0.47210 0.46931 0.46652 0.46373 0.46094 0.45815 0.45536 0.45257 0.44420

q = 3 0.72468 0.71790 0.71112 0.70434 0.69756 0.69078 0.68400 0.67722 0.65688

q = 4 0.88987 0.87886 0.86785 0.85683 0.84582 0.83481 0.82380 0.81278 0.77975

q = 5 1.01016 0.99508 0.98000 0.96492 0.94984 0.93476 0.91968 0.90460 0.85937

q = 16 1.53753 1.49128 1.44503 1.39879 1.35254 1.30629 1.26005 1.21380 1.07506

Our script is also new (and possibly the first public software to automate these
analyses), as are the area-time analyses.

For GroverXL, we find minimum exponent 0.47210 . . . for the area-time prod-
uct by taking μ0 = 7.74234 . . . to maximize (0.5−2.5mon2(F (μ0)))/μ0. We also
find minimum operation-count exponent 0.46240 . . . by taking μ0 = 5.63489 . . .
to maximize (0.5 − 2mon2(F (μ0)))/μ0.

4.8 Example: GroverXL for q = 3. The polynomial h is now (−δ + 2 −
4μ)z4 − z3 + (−δ + 1 − 2μ)z2 + z − δ = 0. The discriminant Δ is a degree-6
polynomial, and the equation Δ = 0 is again solvable in radicals for δ as a
function of μ. This solution is quite complex, presumably less efficient than the
more general root-finding techniques used by our script.

Numerical computations proceed as in Sect. 4.7. For example, for (q, μ) =
(3, 1) we find minimum area-time exponent 0.72468 . . . (compared to 1.27507 . . .
for FXL) by taking μ0 = 5.36509 . . ., and minimum operation-count exponent
0.70425 . . . (compared to 1.17521 . . . for FXL) by taking μ0 = 4.11429 . . ..

4.9 Tables of Results. Tables 4.10 and 4.11 show the GroverXL operation-
count exponent and cost exponent respectively, as computed by the script from
Sect. 4.1. Tables 4.12 and 4.13 show the exponents for the amount of hardware.



504 D. J. Bernstein and B.-Y. Yang

Table 4.12. GroverXL space exponent when parameters are optimized for operation
count, for q ∈ {2, 3, 4, 5, 16} and various μ. Operation count ignores communication
costs. Each exponent is rounded down to multiple of 0.00001.

μ = 1.0 μ = 1.1 μ = 1.2 μ = 1.3 μ = 1.4 μ = 1.5 μ = 1.6 μ = 1.7 μ = 2.0

q = 2 0.02557 0.02812 0.03068 0.03324 0.03579 0.03835 0.04091 0.04346 0.05114

q = 3 0.05219 0.05741 0.06263 0.06785 0.07306 0.07828 0.08350 0.08872 0.10438

q = 4 0.07882 0.08670 0.09458 0.10247 0.11035 0.11823 0.12611 0.13400 0.15764

q = 5 0.10377 0.11415 0.12453 0.13490 0.14528 0.15566 0.16604 0.17641 0.20755

q = 16 0.26759 0.29434 0.32110 0.34786 0.37462 0.40138 0.42814 0.45490 0.43287

Table 4.13. GroverXL area exponent when parameters are optimized for cost, for
q ∈ {2, 3, 4, 5, 16} and various μ. Cost is area-time product on two-dimensional mesh-
connected computer. Each exponent is rounded down to multiple of 0.00001.

μ = 1.0 μ = 1.1 μ = 1.2 μ = 1.3 μ = 1.4 μ = 1.5 μ = 1.6 μ = 1.7 μ = 2.0

q = 2 0.01467 0.01614 0.01760 0.01907 0.02054 0.02200 0.02347 0.02494 0.02934

q = 3 0.03196 0.03516 0.03835 0.04155 0.04475 0.04794 0.05114 0.05434 0.06393

q = 4 0.04992 0.05491 0.05990 0.06489 0.06988 0.07488 0.07987 0.08486 0.09984

q = 5 0.06696 0.07365 0.08035 0.08704 0.09374 0.10044 0.10713 0.11383 0.13392

q = 16 0.18512 0.20363 0.22215 0.24066 0.25917 0.27768 0.29620 0.31471 0.37025

Table 4.14. FXL operation-count exponent for q ∈ {2, 3, 4, 5, 16} and various μ.
Operation count ignores communication costs. Each exponent is rounded down to
multiple of 0.00001. For comparison, brute-force search without XL has exponents
1.00000, 1.58496, 2.00000, 2.32192, 4.00000, independently of μ.

μ = 1.0 μ = 1.1 μ = 1.2 μ = 1.3 μ = 1.4 μ = 1.5 μ = 1.6 μ = 1.7 μ = 2.0

q = 2 0.79106 0.77017 0.74928 0.72838 0.70749 0.68660 0.66570 0.64481 0.58466

q = 3 1.17521 1.13423 1.09325 1.05228 1.01130 0.97033 0.92935 0.88839 0.78134

q = 4 1.39851 1.33836 1.27821 1.21807 1.15792 1.09777 1.03763 0.98102 0.84342

q = 5 1.54347 1.46563 1.38778 1.30993 1.23209 1.15424 1.07963 1.01421 0.86056

q = 16 2.00814 1.80896 1.60977 1.42959 1.29463 1.18842 1.10168 1.02899 0.86575

For example, the top-left entries in these tables are for q = 2 and μ = 1.0. The
entries are, respectively, 0.46240, 0.47210, 0.02557, and 0.01467. The first and
third numbers indicate that GroverXL uses 2(0.46240...+o(1))n operations in space
2(0.02557...+o(1))n, when GroverXL parameters are optimized for operation count.
The second and fourth numbers indicate that GroverXL has area-time product
2(0.47210...+o(1))n using area 2(0.01467...+o(1))n, when GroverXL parameters are
optimized for area-time product.

For comparison, Tables 4.14 and 4.15 show the FXL operation-count expo-
nent and cost exponent. Note that the case q = 16 and μ = 2.0 has the same
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Table 4.15. FXL cost exponent for q ∈ {2, 3, 4, 5, 16} and various μ. Cost is area-time
product on two-dimensional mesh-connected computer. Each exponent is rounded down
to multiple of 0.00001. For comparison, brute-force search without XL has exponents
1.00000, 1.58496, 2.00000, 2.32192, 4.00000, independently of μ.

μ = 1.0 μ = 1.1 μ = 1.2 μ = 1.3 μ = 1.4 μ = 1.5 μ = 1.6 μ = 1.7 μ = 2.0

q = 2 0.85284 0.83813 0.82341 0.80870 0.79398 0.77926 0.76455 0.74983 0.70569

q = 3 1.27507 1.24409 1.21310 1.18211 1.15112 1.12013 1.08914 1.05816 0.96519

q = 4 1.52698 1.47968 1.43237 1.38507 1.33777 1.29047 1.24317 1.19587 1.05396

q = 5 1.69553 1.63289 1.57025 1.50761 1.44497 1.38233 1.31969 1.25705 1.07570

q = 16 2.29409 2.12350 1.95291 1.78232 1.61828 1.48552 1.37710 1.28624 1.08219

operation-count exponent for FXL as for GroverXL; in this case μ is above
μ0 ≈ 1.80, and guessing is not helpful (although it does help in area-time prod-
uct, since then μ0 ≈ 2.16). For smaller values of q and μ, GroverXL has better
exponents than FXL, which in turn has better exponents than XL.
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Abstract. In this paper we present quantum information set decoding
(ISD) algorithms for binary linear codes. First, we refine the analysis of
the quantum walk based algorithms proposed by Kachigar and Tillich
(PQCrypto’17). This refinement allows us to improve the running time
of quantum decoding in the leading order term: for an n-dimensional
binary linear code the complexity of May-Meurer-Thomae ISD algorithm
(Asiacrypt’11) drops down from 20.05904n+o(n) to 20.05806n+o(n). Simi-
lar improvement is achieved for our quantum version of Becker-Jeux-
May-Meurer (Eurocrypt’12) decoding algorithm. Second, we translate
May-Ozerov Near Neighbour technique (Eurocrypt’15) to an ‘update-
and-query’ language more common in a similarity search literature. This
re-interpretation allows us to combine Near Neighbour search with the
quantum walk framework and use both techniques to improve a quan-
tum version of Dumer’s ISD algorithm: the running time goes down from
20.059962n+o(n) to 20.059450+o(n).

Keywords: Information set decoding · Quantum walk
Near Neighbour

1 Introduction

The Information Set Decoding problem with integer parameters n, k, d asks to
find the error-vector e ∈ F

n
2 given a matrix H ∈ F

(n−k)×n
2 and a vector s = Het

such that the Hamming weight of e, denoted w := wt(e), is bounded by some
integer. The matrix H is called the parity-check matrix of a binary linear [n, k, d]-
code C, where d is the minimum distance of the code. In this work, we stick to the
so-called full distance decoding setting, i.e., when we search for e with wt(e) ≤ d.
The analysis is easy to adapt to half-distance decoding, i.e., when wt(e) ≤ �d−1

2 �.
The ISD problem is relevant not only in coding theory but also in cryptogra-

phy: several cryptographic constructions, e.g. [McE78], rely on the hardness of
ISD. The problem seems to be intractable even for quantum computers, which
makes these constructions attractive for post-quantum cryptography.

First classical ISD algorithm due to Prange dates back to 1962 [Pra62] fol-
lowed by a series of improvements [Ste89,Dum91,MMT11,BJMM12], culminat-
ing in algorithms [MO15,BM17] that rely on Nearest Neighbour techniques in
c© Springer International Publishing AG, part of Springer Nature 2018
T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 507–527, 2018.
https://doi.org/10.1007/978-3-319-79063-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79063-3_24&domain=pdf
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Hamming metric. On the quantum side, the ISD problem received much less
attention: Bernstein in [Ber10] analysed a quantum version of Prange’s algo-
rithm, and recently Kachigar and Tillich [KT17] gave a series of ISD algorithms
based on quantum walks. The results presented here extend and improve upon
the work of [KT17].

Our contributions:

1. We describe quantum versions of all known ISD algorithms, which have better
asymptotical running times than algorithms given in [KT17]. We also explain
why for certain algorithms the analysis of [KT17] is sub-optimal;

2. We re-phrase May-Ozerov Near Neighbour algorithm [MO15] in the ‘update-
and-query’ language and give a method to analyse its complexity;

3. We present a quantum version of the May-Ozerov ISD algorithm.

Our second contribution is of independent interest as it provides an alterna-
tive but more flexible view on May-Ozerov Near Neighbour algorithm for the
Hamming metric. We give simple formulas for analysing its complexity which
allow us to stay in the Hamming space, i.e., without reductions from other met-
rics as it is usually done in the similarity search literature [Chr17]. The third
contribution answers the problem left open in [KT17], namely, how to use Near
Neighbour technique within quantum walks. Our results are summarized below.

Table 1. Running time and space complexities of ISD algorithms (full distance decod-
ing). The columns give the exponent-constants c, i.e., runtime and memory complexities
are of the form O(2cn). For Prange’s algorithm, the space is poly(n).

Algorithm Quantum Classical

Time Space Time Space

Prange [Ber10,Pra62] 0.060350 – 0.120600 –

Stern/Dumer [Ste89,Dum91]

+ Shamir-Schroeppel (SS) [KT17] 0.059697 0.00618 0.116035 0.03644

+ Near Neighbour (NN) Sect. 4 0.059922 0.00897 0.113762 0.04248

+ SS + NN Sect. 4 0.059450 0.00808

MMT [MMT11]

– Kachigar-Tillich [KT17] 0.059037 0.01502 0.111468 0.05408

– Section 3 0.058059 0.01849

BJMM [BJMM12]

– Kachigar-Tillich [KT17] 0.058696 0.01877 0.101998 0.07590

– Section 3 0.058040 0.01866

For each classical algorithm, Table 1 gives running times and space complex-
ities of their quantum counterparts. This work improves over Kachigar-Tillich
quantum versions of MMT in time, and of BJMM in both time and space. The
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improvement comes from different analysis: as explained in Sect. 2, the (asymp-
totical) complexity of these two algorithms is the maximum between the run-
times of several subroutines. The authors in [KT17] assume that the maximum
is attained at a certain subroutine and, during the derivation of the algorithm’s
parameters, enforce that the runtimes of all other subroutines remain below. On
the contrary, we assume that another subroutine is dominant. By the ‘quantum
space’ in Table 1, we mean the number of qubits in a quantum state an algo-
rithm operates on. The figures from Table 1 are obtained using the optimization
package implemented in Maple. The program is available at http://perso.ens-
lyon.fr/elena.kirshanova/.

In Sect. 4 we show how to combine the Near Neighbour search of May and
Ozerov [MO15] with quantum version of the ISD algorithm due to Dumer
[Dum91]. By itself, this does not improve over the algorithm given in [KT17].
But, combined with the so-called Shamir-Schroeppel trick [SS81] already used
in [KT17], we can slightly improve the runtime complexity of the algorithm.
We note that, as in the classical setting, the Near Neighbour technique requires
more memory, but we are still far from the Time = Memory regime. It turns out
that, as opposed to the classical case, quantum Near Neighbour search does not
improve MMT or BJMM. We argue why this is the case at the and of Sect. 4.

2 Preliminaries

We give an overview on classical algorithms for ISD, namely, Prange [Pra62],
Stern and its variants [Ste89,Dum91], MMT [MMT11], and BJMM [BJMM12]
algorithms. We continue with known quantum speed-ups for these algorithms.

2.1 Classical ISD Algorithms

All known ISD algorithms try to find the error-vector e by a clever enumeration
of the search space for e, which is of size

(
n
w

) ≈ 2n·H(w
n ), where H(x) = −x log x−

(1−x) log(1−x) is the binary entropy function. In the analysis of ISD algorithms,
it is common to relate the parameters w (the error-weight), and k (the rank of
a code) to dimension n, and simplify the running times to the form 2cn for some
constant c.1 To do this, we make use of Gilbert-Varshamov bound which states
that k

n = 1−H
(

w
n

)
as n → ∞. This gives us a way to express w as a function of

n and k. Finally, the running time of an ISD algorithm is obtained by a brute-
force search over all k

n ∈ [0, 1
2 ] (up to some precision) that leads to the worst-case

complexity. In the classical setting, this worst-case is reached by codes of rate
k
n ≈ 0.447, while in the quantum regime it is k

n ≈ 0.45.
Decoding algorithms start by permuting the columns of H which is equivalent

to permuting the positions of 1’s in e. The goal is to find a permutation π ∈ Sn

1 We omit sub-exponential in n factors throughout, because we are only interested in
the constant c. Furthermore, our analysis is for an average case and we sometimes
omit the word ‘expected’.

http://perso.ens-lyon.fr/elena.kirshanova/
http://perso.ens-lyon.fr/elena.kirshanova/
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such that π(e) has exactly p ≤ w 1’s on the first k coordinates and the remaining
weight of w − p is distributed over the last n − k coordinates. All known ISD
algorithms make use of the fact that such a permutation is found. We expect to
find a good π after P(p) trials, where

P(p) =

(
k
p

)(
n−k
w−p

)

(
n
w

) . (1)

The choice of p and how we proceed with π(H) depends on the ISD algorithm.
For example, Prange’s algorithm [Pra62] searches for a permutation π that

leads to p = 0. To check whether a candidate π is good, it transforms π(H) into
systematic form [Q | In−k] (provided the last n − k columns of π(H) form an
invertible matrix which happens with constant success probability). The same
transformation is applied to the syndrome s giving a new syndrome s̄. From the
choice of p, it is easy to see that for a good π, we just ‘read-off’ the error-vector
from the new syndrome, i.e., π(e) = s̄, and to verify a candidate π, we check if
wt(s̄) = w. We expect to find a good π after P(0) trials.

From now on, we assume that we work with systematic form of H, i.e.

[Q | In−k] · e = s̄ for Q ∈ F
n−k×k
2 . (2)

Other than restricting the weight of e to be 0 on the last n − k coordinates, we
may as well allow p > 0 at the price of a more expensive check for π. This is the
choice of Stern’s algorithm [Ste89], which was later improved in [Dum91]. We
describe the improved version. We start by adjusting the systematic form of H
introducing the �-length 0-window, so that Eq. 2 becomes

[
Q

∣
∣
∣
∣

0
In−k−�

]
· e = s̄ for Q ∈ F

n−k×k+�
2 . (3)

Now we search for a permutation π that splits the error as

e = [e1||0
k+�
2 ||0n−k−�] + [0

k+�
2 ||e2||0n−k] + [0k+�||e3],

such that wt(e1) = wt(e2) = p/2 and wt(e3) = w − p, where ei’s are of appro-
priate dimensions. With such an e, we can re-write Eq. (3) as

Q · [e1||0
k+�
2 ] + Q · [0

k+�
2 ||e2] = s̄ + e3. (4)

We enumerate all possible
(
(k+�)/2

p/2

)
vectors of the form v1 := Q[e1||0 k+�

2 ] into a
list L1 and all vectors of the form v2 := Q[0

k+�
2 ||e2]+ s̄ into a list L2. The above

equation tells us that for the correct pair (e1, e2), the sum of the corresponding
list-vectors equals to 0 on the first �-coordinates. We search for two vectors
v1 ∈ L1,v2 ∈ L2 that are equal on this �-window. We call such pair (v1,v2) a
match. We check among these matches if the Hamming distance between v1,v2,
denoted dt(v1,v2), is w − p. To retrieve the error-vector, we store ei’s together
with the corresponding vi’s in the lists. The probability of finding a permutation
that meets all the requirements is



Improved Quantum Information Set Decoding 511

P(p, �) =

(
k+�

p

)(
n−k−�
w−p

)

(
n
w

) . (5)

It would be more precise to have
(
(k+�)/2

p/2

)2
instead of

(
k+�

p

)
in the above formula,

but these two quantities differ by only a factor of poly(n) which we ignore. The
expected running time of the algorithm is then

T = P(p, �)−1 · max
{

|L2|, |L1| · |L2|
2�

}
, (6)

where the first argument of max is the time to sort L2, the second is the expected
number of pairs from L1 ×L2 that are equal on �, which we check for a solution.
See Fig. 1 for an illustration of the algorithm.

Q In−k−l

0 �

k + �

e1 e2

p
2

p
2

L1 L2

S2

Lout

|Aux〉

�

Q In−k−l

0
k + �

e1 e2

p
4

p
4

L1,1 L1,2 L2,1 L2,2

S2,2

L1 L2

|Aux〉

RMMT

Lout

|Aux〉

�

Fig. 1. On the left : A variant of Stern’s ISD algorithm due to Dumer [Dum91]. The

list L1 is constructed from all possible p/2-weight vectors e1 ∈ F
(k+�)/2
2 : L1 = {(e1,Q ·

[e1||0(k+�)/2])}. L2 is constructed similarly with 0(k+�)/2 and e1 swapped. Gray-shaded
vertical strip indicates the coordinates on which the elements v1 ∈ L1 and v2 ∈
L2 match. Line-shaded horizontal strips indicate a subset of lists stored on quantum
registers during the execution of quantum walk search algorithm.
On the right: May-Meurer-Thomae decoding [MMT11]. The lists L1, L2 are shorter
than in Dumer’s algorithm as their elements already match on RMMT-coordinates. It is
the creation of the lists L1, L2 (indicated in bold) that dominates over the creation of
Li,j , i, j ∈ {1, 2} and of Lout and hence, determines the running time of the algorithm.
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The Representation technique of [BJMM12,MMT11] further improves the
search for matching vectors by constructing the lists L1,L2 faster. Now the list
L1 consists of all pairs (e1,Qe1) where e1 ∈ F

k+�
2 (as opposed to e1 ∈ F

(k+�)/2
2 )

with wt(e1) = p/2. Similarly, L2 = {(e2,Qe2) | ∀e2 ∈ F
k+�
2 ,wt(e2) = p/2}.

The key observation is that now there are RMMT :=
(

p
p/2

)
ways to represent the

target e as e = e1 + e2. Hence, it is enough to construct only an RMMT–fraction
of L1,L2. Such a fraction of L1 (analogously, for L2) is built by merging in the
meet-in-the-middle way yet another two lists L1,1 and L1,2 filled with vectors
of the form Q[e1,1||0(k+�)/2] (for L1,1) and Q[0(k+�)/2||e1,2] (for L1,2) for all
p/4-weight e1,1 and e1,2, respectively. These starting lists are of size

|Li,j | =
(

(k + �)/2
p/4

)
, i, j ∈ {1, 2}. (7)

During the merge, we force vectors from L1,1 be equal to vectors from L1,2

on log RMMT coordinates leaving only one (in expectation) pair (e1, e2) ∈ L1 ×L2

whose sum gives e (see Fig. 1, right). Here and later, we shall abuse notations
slightly: technically, the list elements are pairs (e,Qe), but the merge is always
done on the second element, and the error retrieval is done on the first.

The number of necessary permutations we need to try is given by Eq. (5).
Provided a good π is found, the time to find the correct e is now given by
max{|L1,1|, |L1,1|2/2RMMT , |L1,1|4/2�+RMMT}. This is the maximum between (I) the
size of starting lists, (II) the size of the output after the first merge on log RMMT

coordinates, and (III) the size of the final output after merging on the remaining
� − log RMMT coordinates. Optimization for p, � reveals that (II) is the maximum.
Overall, the expected complexity of MMT is

TMMT = P(p, l) · |Li,j |2
RMMT

. (8)

Becker-Jeux-May-Meurer in [BJMM12] further improves the merging step
(i.e., the dominant one) noticing that zero-coordinates of e can be split in e1, e2
not only as 0+0, but also as 1+1. It turns out that constructing longer starting
lists Li,j using ei of weights wt(ei) = p/2 + ε is profitable as it significantly
increases the number of representations from

(
p

p/2

)
to RBJMM :=

(
p

p/2

)(
k+�−p

ε

)
, thus

allowing a better balance between the two merges: the first merge on log RBJMM

coordinates and the second on � − log RBJMM coordinates. The expected running
time of the BJMM algorithm is given by

TBJMM = P(p, l) · |Li,j |2
RBJMM

, where |Li,j | =
(

(k + �)/2
p/4 + ε

)
. (9)

In fact, the actual BJMM algorithm is slightly more complicated than we
have described, but the main contribution comes from adding ‘1 + 1’ to repre-
sentations, so hereafter we refer to this simplified version as BJMM.
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2.2 Quantum ISD Algorithms

Quantum ISD using Grover’s algorithm. To speed-up Prange’s algorithm,
Bernstein in [Ber10] uses Grover’s search over the space of permutations, which is
of size P(0) =

(
w
k

)
/
(

n
w

)
. This drops the expected runtime from 20.1206n (classical)

down to 20.06035n (quantum), cf. Table 1. The approach has an advantage over
all the quantum algorithms we discuss later as it requires quantum registers to
store data of only poly(n) size. To obtain a quantum speed-up for other ISD
algorithms like Stern’s, MMT, BJMM, we need to describe quantum walks.

Quantum walks. At the heart of the above ISD algorithms (except Prange’s)
is the search for vectors from given lists that satisfy a certain relation. This task
can be generalized to the k-list matching problem.

Definition 1 (k-list matching problem). Let k be fixed. Given k equal sized
lists L1, . . . ,Lk of binary vectors and a function g that decides whether a k-tuple
(v1, . . . ,vk) ∈ L1 × . . . × Lk forms a ‘match’ or not (outputs 1 in case of a
‘match’), find all k-tuples (v1, . . . ,vk) ∈ L1 × . . . × Lk s.t. g(v1, . . . ,vk) = 1.

For example, the Stern’s algorithm uses k = 2 and its g decides for a ‘match’
whenever a pair (v1,v2) ∈ L1 × L2 is equal on certain fixed � coordinates. For
MMT or BJMM, we deal with four lists L1, . . . ,L4, and function g decides for
the match if v1 + v2,v3 + v4 are equal on a certain part of coordinates (merge
of L1 with L2, and L3 with L4) and, in addition, v1 + v2 + v3 + v4 is 0 on �.

Quantumly we solve the above problem with the algorithm of Ambainis
[Amb04]. Originally it was described only for the case k = 2 (search version
of the so-called Element distinctness problem), but later extended to a more
general setting, [CE05]. We note that the complexity analysis in [CE05] is done
in terms of query calls to the g function, while here we take into account the
actual time to compute g. Ambainis algorithm is best described as a quantum
walk on the so-called Johnson Graph.

Definition 2 (Johnson graph and its eigenvalue gap). The Johnson graph
J(N, r) for an N -size list is an undirected graph with vertices labelled by all r-
size subsets of the list, and with an edge between two vertices S, S′ iff |S ∩ S′| =
r − 1. It follows that J(N, r) has

(
N
r

)
vertices. Its eigenvalue gap is δ = N

r(N−r) ,
[BCA89].

Let us briefly explain how we solve the k-list matching problem using quan-
tum walks. Our description follows the so-called MNRS framework [MNRS11]
due to Magniez-Nayak-Roland-Santha, which measures the complexity of a quan-
tum walk search algorithm in the costs of their Setup, Update, and Check phases.

To setup the walk, we first prepare a uniform superposition over all r-size
subsets Si ⊂ Li together with an auxiliary register (normalization omitted):

∑

Si⊂Li, |Si|=r

|S1〉 ⊗ . . . ⊗ |Sk〉 ⊗ |Aux〉 .
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The auxiliary register |Aux〉 contains all the information needed to decide
whether S1, . . . , Sk contains a match. In the ISD setting, |Aux〉 stores intermedi-
ate and output lists of the matching process. For example, in Stern’s algorithm
(k = 2) |Aux〉 contains all pairs (v1,v2) ∈ S1 × S2 that match on � coordinates.
In case the merge is done is several steps like in MTT (k = 4), the intermediate
sublists are also stored in |Aux〉 (see Fig. 1).

The running time and the space complexity of the Setup phase are essentially
the running time and the space complexity of the corresponding ISD algorithm
with the input lists of size |Si| = r instead of |Li|. By the end of the Setup
phase, we have a superposition over all r-sublists S1, . . . , Sk of L1, . . . ,Lk, where
each (S1, . . . , Sk) is entangled with the register |Aux〉 that contains the result of
merging (S1, . . . , Sk) into Sout ⊂ Lout. Also, during the creation of Sout we can
already tell if it contains the error-vector e that solves the ISD problem. When
we talk about quantum space of an ISD algorithm (e.g., Table 1), we mean the
size of the |Aux〉 register.

Next, in the Update phase we choose a sublist Si and replace one element
vi ∈ Si by v′

i /∈ Si. This is one step of a walk on the Johnson graph. We update
the data stored in |Aux〉: remove all the pairs in the merged lists that involve
vi and create possibly new matches with v′

i. We assume the sub-lists Si’s are
kept sorted and stored in a data-structure that allows fast insertions/removals
(e.g., radix trees as proposed in [BJLM13]). We also assume that elements in
S1, . . . , Sk that result in a match, store pointers to their match. For example,
if in Stern’s algorithm v1 ∈ S1,v2 ∈ S2 give a match, we keep a pointer to
v1 + v2 ∈ Sout and also a pointer from v1 + v2 to v1 ∈ S1,v2 ∈ S2.

After we have performed Θ(1/
√

δ) updates (recall, δ is the eigenvaule gap
of J(N, r)), we check if the updated register |S1〉 ⊗ . . . ⊗ |Sk〉 ⊗ |Aux〉 gives a
match. This is the Checking phase.

Thanks to the MNRS framework, once we know the costs of (a) the Setup
phase TS, (b) the Update phase TU, and (c) the Checking phase TC, we know
that after TQW many steps, we measure a register |S1〉 ⊗ . . . ⊗ |Sk〉 ⊗ |Aux〉 that
contains the correct error-vector with overwhelming probability, where

TQW = TS +
1√
ε

(
1√
δ

· TU + TC

)
. (10)

In the above formula, ε is a fraction of vertices in J(N, r) that contain the cor-
rect error-vector. For a fixed k, we have ε ≈ rk/Nk where N = |L1| = . . . = |Lk|.
Strictly speaking, the walk we have just described is a walk on a k-Cartesian
product of Johnson graphs – one for each sublist Si, so the value δ in Eq. (10)
must be the eigenvalue gap for such a large graph. As proved in [KT17, The-
orem 2], for fixed constant k, it is lower-bounded by N

k·r(N−r) . The analysis of
[KT17] as well ours are asymptotical, so we ignore the constant factor of 1/k.
An optimal choice for r that minimizes Eq. (10) is discussed in the next section.

Kachigar-Tillich quantum ISD algorithms. The quantum walk search
algorithm described above solves the ISD problem provided we have found a
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permutation π that gives the desired distribution of 1’s in the error-vector.
Kachigar and Tillich in [KT17] suggest to run Grover’s algorithm for π with
the ‘checking’ function for Grover’s search being a routine for the k-list match-
ing problem. Their ISD algorithm performs transformations on the quantum
state of the form (normalization omitted):

P(p,�)∑

i=1

|πi〉 |πi(H)〉 ⊗
[

∑

Si⊂Li, |Si|=r

|S1〉 ⊗ . . . ⊗ |Sk〉 ⊗ |Aux〉
]

︸ ︷︷ ︸
Quantum Walk = Check for the outer Grover

⊗ |Is π good?〉 (11)

The outer-search is Grover’s algorithm over P(p, �) permutations, where P(p, �)
is chosen such that we expect to have one π that leads to a good permutation of
1’s in the error-vector (see Eq. (5)). The check if a permutation π is good is real-
ized via quantum walk search for k vectors v1, . . . ,vk ∈ S1× . . .×Sk that match
on certain coordinates and lead to the correct error vector. Note an important
difference between classical and quantum settings: during the quantum walk we
search over sublists Si ⊂ Li which are exponentially shorter than Li.

After TQW steps, the register |Aux〉 contains a k-tuple (v1, . . . ,vk) that leads
to the correct error vector provided a permutation π is good. Hence, after
Õ(

√P(p, �) ·TQW) steps, the measurement of the first register gives a good π with
constant success probability. The resulting state will be entangled with registers
that store S1, . . . , Sk together with the pointers to the matching elements. Once
we measure S1, . . . , Sk, we retrieve these pointers and, finally, reconstruct the
error vector as in the classical case.

Quantum Shamir-Schroeppel technique was introduced in [SS81] to reduce
the memory complexity of a generic meet-in-the-middle attack, i.e., the k-list
matching problem for k = 2. Assume we want to find a pair v1,v2 ∈ L1 × L2

s.t. v1 = v2 on certain � coordinates. Assume further that we can decompose
L1 = L1,1 + L1,2 s.t. |L1,1| = |L1,2| =

√|L1| (analogously, for L2). The idea of
Shamir and Schroeppel is to guess that the correct vectors v1,v2 are equal to
some t ∈ F

�′
2 on �′ ≤ � coordinates and enumerate all such pairs. Namely, we

enumerate v1 by constructing L1 in the meet-in-the-middle way from L1,1,L1,2

in time max{√|L1|, |L1|/2�′}, s.t. L1 only contains vectors that are equal to t on
�′ (same for L2). Classically, we make 2�′

guesses for t, so the overall time of the
algorithm will be |L1| (same as naive 2-list matching), but we save in memory.

In [KT17], in order to improve not only in memory, but also in time, the
authors run Grover’s search over 2�′

guesses for t. Indeed, this gives a speed-up
for ISD algorithms that solve the 2-list matching problem (cf. the complexities
of Dumer’s algorithm in Table 1). However, as we argue in the next section, for
ISD algorithms that operate on 4 (or more) lists and whose complexity is not
dominated by the creation of the starting lists (like MMT or BJMM), quantum
Shamir-Schroeppel technique does not bring an advantage.
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3 Quantum MMT and BJMM Algorithms

In this section we analyse the complexity of quantum versions of MMT and
BJMM ISD algorithms and argue that the analysis in [KT17] is slightly sub-
optimal when optimized for time. We note that the way we apply and analyse
quantum walks to ISD closely resembles Bernstein’s et al. algorithm for the
Subset Sum problem [BJLM13].

Let us first look at the generalized version of a quantum ISD algorithm,
where we can plug-in any of the ISD algorithms described in Sect. 2. Recall that
on input, we receive (H, s) ∈ F

(n−k)×n
2 × F

n−k
2 , and are asked to output e ∈ F

n
2

of weight wt(e) = w that satisfies Het = s. Algorithm 1 below can be viewed as
a ‘meta’ quantum algorithm for ISD.

Algorithm 1. A quantum ISD algorithm

1: Prepare a superposition over P-many permutations π
2: For each π

a: Setup a superposition |S1〉 ⊗ . . . ⊗ |Sk〉 ⊗ |Aux〉 for Si ⊂ Li, |Si| = r
b: Run a quantum walk search on |S1〉⊗ . . .⊗|Sk〉⊗|Aux〉 to find a matching tuple
(e1, . . . , ek) ∈ S1 × . . . × Sk, if exists; indicate otherwise that no tuple is found.

3: Apply amplitude amplification (Grover’s search) on Step 1 for those π that led to
a match on Step 2.b. Measure the register π and then the register |Aux〉.

The algorithm is parametrized by (I) the size of the permutation space P we
iterate over in order to find the desired distribution of 1’s in the solution (e.g.,
Eq. (5) for MMT); (II) k – the number of staring lists Li’s an ISD-algorithm
considers (e.g., k = 0 for Prange, k = 2 for Stern/Dumer, k = 4 for MMT); (III)
r – the size of Si’s, 1 ≤ i ≤ k. The asymptotic complexity of Algorithm1 will
depend on these quantities as we now explain in detail.

Step 1 consists in preparing a superposition
∑P

i=1 |πi〉 |πi(H)〉, which is effi-
cient. Step 2 is a quantum walk algorithm for the k-list matching problem, i.e.
search for all (e1, . . . , ek) ∈ L1 × . . . × Lk from which the solution vector can
be constructed. The cost of Step 2 can be split into the cost of the Setup phase
(Step 2(a)) and the cost of the Update and Check phases (Step 2(b)).

The cost of the Step 2(a) – preparing a superposition over k-tensor product
of Si ⊂ Li and computing the data for |Aux〉 – is essentially the cost of a
classical ISD algorithm, where on input instead of the lists Li’s, we consider
sublists Si of size r � |Li|. Recall that ‘computing the data for |Aux〉’ means
constructing the subset Sout ⊂ Lout using only elements from Si’s (see Fig. 1).
Step 2(b) performs a quantum walk over the k-Cartesian product of Johnson
Graphs, J(|Li|, r)⊗k, with eigenvalue gap δ = Θ(|Li|/(r · (|Li| − r))) ≈ 1/r for
r � |Li|. To estimate ε – the fraction of (S1, . . . , Sk) that give the solution, note
that with probability Θ(r/|Li|), an r-size subset Si contains an element ei that
contributes to the solution. Hence, k such subsets – one vertex of J(|Li|, r)⊗k –
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contain the solution (e1, . . . , ek) with probability ε = (r/|Li|)k. Once we know
the time to create |Aux〉, δ and ε, we obtain the complexity of Step 2 from
Eq. (10).

Finally, Grover’s search over P-many permutations requires
√P calls to a

‘checking’ function s.t. a measurement will output the good π. The measurement
will collapse the state given in Eq. (11) into a superposition of |S1〉⊗ . . .⊗|Sk〉⊗
|Aux〉, where the amplitude of those |Aux〉 that contain the actual solution e
will be amplified. Measurement of |Aux〉 leads to the solution. Regarding Step
2 as ‘checking’ routine for amplitude-amplification of Step 1 and assuming that
an ISD algorithm on input-lists of size r has classical running time TISD(r), we
obtain the following complexity of Algorithm 1:

Theorem 1. Assume we run Algorithm1 with a classical ISD algorithm that
(I) expects after P permutations of the columns of H to find the desired weight-
distribution for the error-vector, (II) performs the search for the error-vector over
k lists each of size |L| in (classical) time TISD(|L|). Then for r � |L| satisfying

TISD(r) = Õ
(√

|L|k
rk+1

)
, the running time of Algorithm1 is

TISDQ =
√

P · TISD(r).

In particular, the MMT algorithm [MMT11] has k = 4, P = P(p, �) given in
Eq. (5), |L| given in Eq. (7), and RMMT :=

(
p

p/2

)
, leading to

TMMTQ = Õ
(√

P(p, �) · |L| 8
7

R 3
7
MMT

)
.

Similarly, for the BJMM algorithm [BJMM12] with starting lists-sizes |L| given
in Eq. (9) and RBJMM :=

(
p

p/2

)(
k+�−p

ε

)
, we have

TBJMMQ = Õ
(√

P(p, �) · |L| 8
7

R 3
7
BJMM

)
.

Proof. The first statement follows from the above discussion: Grover’s search
for a good π makes

√P ‘calls’, where each ‘call’ is a quantum walk search of
complexity TISD(r). The condition on r is set such that Steps 2(a) and 2(b) in
Algorithm 1 are asymptotically balanced, namely, we want TSetup = 1√

ε
· 1√

δ
·

Õ(log r), cf. Eq. (10). We remind that Si’s are stored in a data-structure that
makes the Update and Check of complexity Õ(log r). Since TSetup = TISD(r),
δ ≈ 1/r, and ε = (r/|Li|)k, the optimal choice for r should satisfy TISD(r) =
Õ(√|L|k/rk+1

)
.

For the MMT algorithm, the dominating step is the construction of the lists
L1,L2 whose elements are already equal on a certain number of coordinates
denoted log RMMT ≈ p in Sect. 2 (see Fig. 1, right). This step is of complex-
ity TMMT(|L|) = Õ(|L|2/RMMT), where |L| is the size of the starting lists (the
four upper-most lists on Fig. 1). Solving TMMT(r)

!=
√

|L|k
rk+1 for r, we receive
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r = |L| 4
7 · 2

2
7p as the optimal size for Si’s. Hence, the running time of the quan-

tum walk for MMT is TMMT(r) = Õ(|L| 8
7 /R 3

7
MMT) = Õ(|L| 8

7 /2
3
7p).

The BJMM algorithm differs from MMT in the number of representations
RBJMM and the size of the starting lists |L|. Similar to MMT, we choose r = |L| 4

7 ·
R 2

7
BJMM, the complexity of the quantum walk for BJMM becomes Õ(|L| 8

7 /R 3
7
BJMM). ��

The analysis of [KT17] differs from ours in computing TISD(r): in [KT17] it
is assumed that the dominant part MMT or BJMM algorithm is the first merge
(i.e., merging the starting lists on log RMMT or log RBJMM coordinates, which results
in choosing r = |L|4/5.). This is why they used the so-called Shamir-Schroeppel
trick [SS81]: reduce the size of the starting lists and repeat all the merges many
times with the new starting lists of smaller size. Classically, this trick allows
to reduce only space, while quantumly one could also hope to improve time
using Grover over repetitions of merges. Our optimization, however, shows that
Shamir-Schroeppel trick does not give any time improvement as it is the case
classically, because there is no reason to optimize a non-dominant step. Again,
it helped the analysis of [KT17], but this analysis assumes a non-optimal choice
of parameters that makes the first merging step dominant. One can, however,
using this idea, save in memory for the MMT algorithm (cf. Table 1)

Classically, the improvements over Prange achieved by recent algorithms are
quite substantial: BJMM gains a factor of 20.019·n in the leading-order term.
Quantumly, however, the improvement is less pronounced. The reason lies in
the fact that the speed-up coming from Grover’s search is much larger than
the speed-up offered by the quantum walk. Also, the k-list matching problem
become harder (quantumly) once we increase k (the fraction of ‘good’ subsets ε
becomes smaller).

4 Decoding with Near Neighbour

For a reader familiar with Indyk-Motwani locality-sensitive hashing [IM98] for
Near Neighbour search (defined below), Stern’s algorithm and its improvements
[Dum91] essentially implement such hashing by projecting on �-coordinates and
applying it to the lists L1,L2. In this section, we consider another Near Neigh-
bour technique.

4.1 Re-interpretation of May-Ozerov Near Neighbour Algorithm

The best known classical ISD algorithm is due to May-Ozerov [MO15]. It is based
on the observation that ISD is a similarity search problem under the Hamming
metric. In particular, Eq. (2) defines the approximate relation:

Qe1 ≈ Qe2 + s̄. (12)
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The approximation sign ≈ means that the Hamming distance between the left-
hand side and the right-hand side of Eq. (12) is at most wt(e3) = w − p (cf.
Eq. (4)). Enumerating over all e1 and e2, we receive an instance of the (w − p)-
Near Neighbour (NN) problem:

Definition 3 (γ-Near Neighbour). Let L ⊂ F
n
2 be a list of uniform random

binary vectors. The γ-Near Neighbour problem consists in preprocessing L s.t.
upon receiving a query vector q ∈ F

n
2 , we can efficiently find all v ∈ L that are

γ-close to q, i.e., all v with dt(v,q) ≤ γ · n for some γ ≤ 1/2.2

Thus the ISD instance given in Eq. (12) becomes a special case of the (w−p)-
NN problem with L = {Qe1} for all e1 ∈ F

(k+�)/2
2 × 0(k+�)/2×, and the queries

taken from {Qe2 + s} for all e2 ∈ 0(k+�)/2 × F
(k+�)/2
2 . In [MO15], the algorithm

is described for this special case, namely, when the number of queries is equal to
|L| and all the queries are explicitly given in advance. So it is not immediately
clear how to use their result in quantum setting, where we only operate on the
sublists of L and update them with new vectors during the quantum walk.

In this section, we re-phrase the May-Ozerov in the ‘Update’ and ‘Query’
language. It allows us to use the algorithm in more general settings, e.g., when
the number of queries differs from |L| and when queries q do not come all at
once. This view enables us to adapt their algorithm to quantum-walk framework.

The main ingredient of the May-Ozerov algorithm is what became known as
Locality-Sensitive Filtering (LSF), see [BDGL16] for an example of this tech-
nique in the context of lattice sieving. In LSF we create a set C ⊂ F

n
2 of fil-

tering vectors c which divide the Hamming space into (possibly overlapping)
regions. These regions are defined as Hamming balls of radius α centred at c,
where α is an LSF-parameter we can choose. So each filtering vector c ∈ C
defines a region Regionc as the set of all vectors that are α-close to c, namely,
Regionc = {v ∈ F

n
2 : dt(v, c) ≤ α}. Drawing an analogy with Locality-Sensitive

Hashing, these filtering vectors play role of hash-functions. In LSF, instead of
defining a function, we define its pre-image.

The preprocessing for the input list L consists in creating a large enough set
C of filtering vectors and assigning all v ∈ L to their regions (see the Insert(v)
function in Algorithm2 below). This assignment defines the LSF buckets as
Bucketc = Regionc ∩ L. The LSF data structure D consists of the union of all
the buckets. In the course of quantum walk search, we will also need to remove
vectors from D. For that we have the Remove(v) function which deletes v from
all the buckets Bucketc containing v. Note that for each Bucketc both Insert()
and Remove() can be implemented in time Õ(log |Bucketc|) if we store the buck-
ets as, for example, binary trees. Finally, in order to answer a query q, we look
at all buckets Bucketc that are β-close to q (i.e., all c ∈ C with dt(q, c) ≤ β),
and we check if any of the vectors stored in these β-close buckets gives a solution

2 The (dimensionless) distances we consider here, denoted further γ, α, β, are all ≤ 1/2,
since we can flip the bits of the query point and search for ‘close’ rather than ‘far
apart’ vectors.
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Algorithm 2. Algorithms for Locality-Sensitive Filtering
Parameters:

α - the insertion parameter
β - the query parameter
γ - the target distance
C - the set of filtering vectors
D - the LSF data structure: D = ∪c∈CBucketc

1: function Insert(x) � Add x to all the relevant buckets of D
2: for all c ∈ C s.t. dt(c,x) ≤ α do
3: Bucketc ← Bucketc ∪ {x}
4: end for
5: end function

1: function Remove(x) � Remove x from all buckets
2: for all c ∈ C s.t. dt(c,x) ≤ α do
3: Bucketc ← Bucketc \ {x}
4: end for
5: end function

1: function Query(q) � Find all x ∈ D with dt(x,q) ≤ β
2: CloseVectors ← ∅
3: for all c ∈ C s.t. dt(c,q) ≤ β do
4: for all x ∈ Bucketc do
5: if dt(x,q) ≤ γ then
6: CloseVectors ← CloseVectors ∪ {x}
7: end if
8: end for
9: end for

10: return CloseVectors
11: end function

to γ-Near Neighbour. As it is typically the case for NN-algorithms [Laa15], we
have two trade-off parameters (α, β): the closer α to 1/2, the more buckets we
should create, but the query is fast because we may allow small β. Making α
smaller reduces the prepocessing cost but requires more work during queries.

Structured filter-vectors or the ‘strips technique’. In the main proce-
dures of LSF, Update,Remove, and Query, we are required to find all close
buckets for a given point. Naive search finds these buckets time |C| which is inef-
ficient. We can do better by making filter-vectors c structured. The technique
has several names, ‘strips’ in [MO15], ‘random product code’ in [BDGL16], and
‘tensoring’ in [Chr17], but either way it amounts to the following. Each vector
c is a concatenation of several codewords from some low-dimensional codes (so,
C is a Cartesian product of all these codes). All c’s close to x are obtained by
iteratively decoding the relevant projections of x under the codes defined on
these projections (say, for x = [x1|| . . . ||x�], we start by decoding x1). On each
iteration, we filter out those c’s that are guaranteed to be far from x (i.e, only
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c = [c1|| . . . ||c�]’s with c1 close to x1 are kept). Choosing the lengths of low-
dimensional codes carefully enough, we can ensure that c’s are sufficiently close
to independent random vectors. This trick allows us find all close buckets in
time (up to lower-order terms) equal to the output size. We refer the reader to
[BDGL16,MO15] for details.

Before we give complexities for the routines described in Algorithm 2 as func-
tions of α, β, γ, we recall the definition of the entropy function for a discrete
probability distribution defined by a vector p.

Definition 4. Let p ∈ R
t be a real vector that represents a certain probability

distribution, i.e., p satisfies 0 ≤ pi ≤ 1, and
∑t

i=1 pi = 1. Then H(p) is the
entropy of the distribution p:

H(p) = −
∑

i

pi logpi.

We will be using the above definition in the following context: Let
(x1, . . . ,xm) be an m-tuple of vectors from F

n
2 and let p ∈ R

2m

be a real vector
indexed by all m-length binary vectors that represents the distribution of the
m-tuple. That is, pi1...im

counts the number of occurrences (relative to n) of the
coordinates’ configuration: pi1...im

= |{c : x1[c] = i1, . . . ,xm[c] = im}|. Such p
defines a discrete probability distribution on {1, . . . , 2m}.

For example, consider a random 2-tuple (x1,x2) with dt(x1,x2) = w. Its
distribution vector is p = (p00, p01, p10, p11) satisfying p01 + p10 = w and p00 =
|{c : x1[c] = 0,x2[c] = 0}|, p01 = |{c : x1[c] = 0,x2[c] = 1}|, p10 = |{c : x1[c] =
1,x2[c] = 0}|, p11 = |{c : x1[c] = 1,x2[c] = 1}|. In case x1 is fixed, we can
shift the tuple: (0,x2 − x1), and obtain p = (1 − w,w) with H(p) = H(w) =
−w log w− (1−w) log(1−w), which just counts the number of all binary vectors
of weight w.

In the following, we give complexities of the Near Neighbour problem rou-
tines. We assume throughout that the target distance 0 ≤ γ ≤ 1/2.

Lemma 1 (Size of C). To answer a Near Neighbour query q with the
Query(q) procedure from Algorithm2, i.e., output all v ∈ L s.t. dt(q,v) ≤ γ
with super-exponentially small error 3, the total number of buckets C should be
(up to sub-exponential factors)

|C| = 2(1−(H(p(α,β,γ))−H(p(γ)))·n, (13)

where p(α, β, γ) ∈ R
8 and p(γ) ∈ R

4 are probability distributions that satisfy

P (α, β, γ) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p000 = p111 = 1
2 − 1

4 (γ + β + α)

p001 = p110 = 1
4 (γ + β − α)

p010 = p101 = 1
4 (γ + α − β)

p100 = p011 = 1
4 (β + α − γ)

P (γ) :
{

p00 = p11 = 1−γ
2

p10 = p01 = γ
2 .

3 By ‘error’ we mean missing a vector which is γ-close to q.
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Proof. Consider a pair (v,q) s.t. dt(v,q) = γ. The number of filtering vectors
|C| is determined by the inverse of the probability that a random vector c will
‘find’ this pair, namely

|C| = 1/ Pr
c∈{0,1}n

[dt(c,v) = α, dt(c,q) = β | dt(v,q) = γ]. (14)

Here we give a brief explanation why we can do it and provide an extended
argument in the full version ([Kir18]). The change is legitimate since we can
rewrite the above probability as the sum over all α′, β′ ranging form 0 to α resp.
β. The sum attains its maximum at α, β (otherwise we could have decreased α
and/or β keeping the same success probability, but improving the runtime). We
argue on the validity sign change for γ via analysis: the probability given in the
denominator of Eq. (14) is monotonously increasing as γ decreases.

If we want to find all but super-exponentially small fraction of v’s for a given
q, we increase |C| by a poly(n) factor for some large enough polynomial and
obtain the result by Chernoff bounds.

The denominator of Eq. (14) is (assuming c,q, and v are uniform)

Pr
c,v,q

[dt(c,v) = α, dt(c,q) = β, dt(v,q) = γ]

Pr
v,q

[dt(v,q) = γ]
=

2H(p(α,β,γ))·n/23n

2H(p(γ))·n/22n
=

1
|C| , (15)

for some distribution vectors p(α, β, γ),p(γ).
The statement about the entries of the vector p(α, β, γ) comes from the

following three facts (the entries for p(γ) are straightforward to obtain):

– the distance constraints: three for p(α, β, γ) and one for p(γ),
– the uniformity of v, c and q (this allows to assume that the contribution of

p01 = p010 + p011 and p10 = p100 + p101 to the distance between two uniform
vectors is the same),

– the fact that
∑

i pi = 1.

This gives us 7 equations for 8 variables leaving 1 degree of freedom. We further
assume that p000 = p111 (essentially, the same choice was done in [MO15, Lemma
2]). Solving these linear equations gives pi’s as stated in the theorem. ��
Theorem 2 (LSF complexity for Hamming metric). For the Near Neigh-
bour problem with some fixed target 0 ≤ γ ≤ 1/2, the routines given in Algo-
rithm2 for some fixed 0 ≤ α, β ≤ 1/2 and the data structure D = ∪cBucketc,
have the following expected costs (up to terms sub-exponential in n):

• Each Update costs T LSF

Upd = |C| · 2(H(α)−1)n.

• Preprocessing costs T LSF

Prep = |L| · |C| · 2(H(α)−1)n.

• Each Query costs T LSF

Query = |C| · 2(H(β)−1)n · E|Bucketc|, where E|Bucketc|

– the expected size of each bucket – is equal to |L| · 2(H(α)−1)n.
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Proof. We assume that our buckets C are constructed using ‘structured’ filter
vectors c, which enables us to find all the buckets within a certain distance to a
fixed point in the output time (see the discussion above) and, at the same time,
allows us to treat c as (sufficiently) uniform random vectors.

The expected number of buckets for an update parameter α and a fixed
v is |C| · Prc∈{0,1}n [dt(v, c) = α] = |C| · Pr [wt(c − v) = α] = |C| · 2H(p(α))n =
|C|·2(H(α)−1)n. Preprocessing calls Update(v) for all v ∈ L, hence its complexity
is |L| · TUpd.

The probability that v will be added to a certain bucket during the update
is again 2(H(α)−1)n, so after |L| calls to Update, the average bucket-load will be
(up to sub-exponential terms) |L| · 2(H(α)−1)n. Treating |Bucketc| as a random
variable and using standard Chernoff bound arguments, one can easily show that
|Bucketc| does not significantly deviate from its expected value.

During the Query(q) calls, we find all β-close buckets in time |C| ·2(H(β)−1)n

and for each bucket we look through |Bucketc| vectors and among them choose
all γ-close to q. ��

In the application to ISD, where the number of queries is equal to |L|, it makes
sense to setup the NN-parameters α and β s.t. the time spent on preprocessing
and the time spent on |L| queries are equal. Indeed, in May-Ozerov algorithm,
we have α = β and, furthermore, α = H−1(1− log |L|) to make the expected size
of buckets equal to 1. After almost trivial algebraic manipulations with Eq. (13)
for these parameters, we obtain log |C| = (1 − γ)

(
1 − H

(
H−1(1−log |L|)−γ/2

1−γ

))
,

which matches the result of [MO15, Theorem 1].

4.2 Quantum ISD with Near Neighbour

Here we explain how to embed the Near Neighbour routines into quantum walk
search. In classical setting, we would create two lists L1,L2 of equal size (see
Fig. 1), setup the data structure D (i.e., choose enough filter-vectors) and call
Update(v1) for all v1 ∈ L1 with some update parameter α. This is the prepro-
cessing stage. Then, for each v2 ∈ L2, we call Query(v2) for a query parameter
β and search through the output of size |C|·2(H(β)−1)n ·E|Bucketc| for v1 ∈ D s.t.
dt(v1,v2) = w − p. This is the query stage. From the solution pair (v1,v2), we
retrieve the error-vector and solve the 2-list matching problem. If we set α = β
to balance out the costs for updates and queries, and α = H−1(1 − log |L1|) to
balance preprocessing and query stages, we solve the 2-list matching problem
for ISD in time |C| which is exactly what May-Ozerov algorithm achieves.

It is not hard to see that the ‘Update-and-Query’ description of the Near
Neighbour search suits particularly well the quantum walk search framework.
Assume we run the walk over a superposition of (S1, S2) ⊂ L1 × L2, where
|S1 ∪ S2| = Θ(r) for some r which will be determined later. During the Setup
phase we create the LSF data structure for S1, and call Update(v1) for all
v1 ∈ S1. Now, contrary to the classical setting, we apply Grover’s search over
all v2 ∈ S2 with the Grover checking function being Query(v2), which tells us
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Algorithm 3. A quantum walk with Near Neighbour

Quantum walk SETUP:
1: Create the LSF data structure D on the auxiliary register |Aux〉
2: for all v1 ∈ S1 do � |S1| = |S2| = Θ(r)
3: Call Update(v1) � Update D
4: end for
5: Using Grover search over all v2 ∈ S2: Query(v2) to check if (S1, S2) is marked

Quantum walk UPDATE:
6: Snew ← ∅
7: Repeat Θ(

√|S1|) times:
8: Call Update(v�) � Add a new v� /∈ S1 ∪ S2 to D
9: Snew ← Snew ∪ {v�}

10: Call Remove(v) � Remove v ∈ S1 ∪ S2 from D
11: (S1, S2) ← (S1, S2) \ {v}
12: Update the register (S1, S2) with Snew

Quantum walk CHECK:
13: Run Grover search over all v2 ∈ Snew using Query(v2) to check if (S1, S2) is marked

whether (S1, S2) is ‘marked’, i.e., whether it contains (v1,v2) s.t. dt(v1,v2) =
w − p. This allows us to spend more time on Query calls choosing β �= α.

We do the same during the Update+Check phases: we update S1 ∪ S2 with
Θ(

√
r) new vectors and for each of them we call the LSF Update routine. We

also delete Θ(
√

r) vectors by calling the LSF Remove function. The Checking
phase of the walk calls Query() in the superposition over all Θ(

√
r) new vectors

and decides in time Θ(r1/4 · T LSF

Query) whether the updated S1 ∪ S2 is marked.
So the advantage of quantum walk is two-fold: first, we work only with

exponentially shorter sublists S1, S2 and, second, during the Checking phase
we use Grover over many Query calls. Algorithm 3 below summarizes the above
description and should be used at Step (2.b) of Algorithm1.

Finally, one can combine quantum Near Neighbour search with the Shamir-
Schroeppel idea: instead of working with long lists L1,L2, consider their sublists
L′
1,L′

2 ⊂ L1,L2 s.t. v1 ∈ L′
1 and v2 ∈ L′

2 are equal to a certain vector t ∈ F
�′
2 on

�′-coordinates. The probability that L′
1,L′

2 contain the solution is 2−�′
. Quan-

tumly, the cost to construct L′
1,L′

2 that contain the solution is 2−�′/2 (Grover’s
search). Now run NN-search on shorter lists L′

1,L′
2 and on the dimension reduced

by �′. Such algorithm offers a slight improvement both in time and memory over
plain Stern’s algorithm as the next theorem shows.

Theorem 3 (Quantum Dumer+Near Neighbour). Assume we run Algo-
rithm1 for Dumer’s decoding, where during quantum walk we use the (w − p)-
Near Neighbour routines from Algorithm3. Then the expected running time
of Dumer’s algorithm is Õ(20.059922·n+o(n)) with quantum memory complex-
ity Õ(20.00897·n+o(n)). Using additionally the Shamir-Schroeppel trick, time and
memory can be improved to Õ(20.059450·n+o(n)) and Õ(20.00808·n+o(n)).
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Proof. The number of trials P = P(p, �) until we find a good permutation π for
the Near Neighbour version of Dumer’s decoding is given in Eq. (5). Grover’s
search will find a good π in time O(

√P). The checking routine for this search
is a quantum walk over the subsets (S1, S2) ⊂ L1 × L2 with |L1| = |L2| =(
(k+�)/2

p/2

)
, where during the walk we look for an approximate match in S1 ∪ S2

using Algorithm 3. Assume |S1 ∪ S2| = r. We want to determine r and the LSF
parameters α, β for Update and Query that minimize the Near Neighbour
search. In the following we omit the Õ-notation for all runtimes.

The complexity of the quantum walk Setup is max{|C|, r · T LSF

Upd,
√

r · T LSF

Query},
where |C| is given in Eq. (13) and T LSF

∗ is given in Theorem 2. That is, we take
the maximum between the time to setup D, call the Update r times and run
Grover over the r new elements to decide on marked subsets for the starting
superposition. The decision is realized via calling Query.

In the Update phase, we call
√

r times Update and Remove LSF routines to
update D. The complexity of the Update phase is

√
r · T LSF

Upd, and of the checking
phase is r1/4 · T LSF

Query. As in the classical case, we set

α = H−1(1 − log r)

to guarantee that the expected size of each bucket is 1.4 Note that this choice
also balances |C| = r · T LSF

Upd for the quantum walk Setup. Finally, the quantum
walk Checking routine runs Grover search over

√
r new elements in S1 ∪ S2 to

update the ‘marking’ flag for S1 ∪ S2. To balance the Update and the Check
phases (i.e, when

√
r · TUpd = r1/4 · TQuery), we set

β = H−1(1 − 3
4 log r).

Such choice also guarantees that during the Setup, r·T LSF

Upd ≥ √
r·T LSF

Query. Moreover,
it enables us to setup β slightly larger than α since Query becomes cheaper.

Finally, we want to balance TS for Setup, which is r · T LSF

Upd, with the Update
and Check phases, 1√

ε

(
1√
δ

· TU + TC

)
, cf. Eq. (10). Due to our choices of α, β, this

expression is equal to 1√
ε

· √
rT LSF

Upd since δ ≈ 1/r.
For k = 2, ε = r2/|L1 ∪ L2|2, from where we obtain

r = |L1 ∪ L2|2/3 ≈
(

(k + �)/2
p/2

)2/3

.

The last parameter we need to determine in order to give the complexity
of decoding is the weight parameter p for which we execute the (w − p)-Near
Neighbour search. The brute-force search over p reveals that for p = 0.0027 · n,
α = 0.4169 · n, β = 0.4280 · n, we have |C| = 20.00897·n. We obtain the figures
stated in the theorem by computing the necessary number of permutation for
such p and noting that |C| determines the memory cost.

4 One could also run Grover inside each bucket during the Query phase, when the
buckets are larger than 1. This, however, does not seem to bring an improvement.
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If we construct the lists L1,L2 using the Shamir-Schroeppel idea, we start
with k = 4 list Li,j each of size

(
(k+�)/4

p/4

)
. We merge them into 2 lists L1,L2 by

enforcing the vectors (v1,v2) ∈ L1×L2 having the same value on �′ coordinates.
Quantumly, we find the correct value for the ISD solution in time 2�′/2. We
solve the 4-list matching problem via quantum walk with the optimal choice for
r = |Li,j |4/5. Optimization reveals that the choosing p = 0.043, �′ = 0.007, α =
0.4330, β = 0.4419, gives the best running time. ��
Why choosing larger k does not help. The more starting lists k an ISD algorithm
has, the larger the fraction 1/ε = |L|k/rk is for any r < |L|. Hence, the running
time of approximate search and, consequently, the running time of quantum
walk become more expensive. The search for optimal parameters tries to shift
the work-load to the Grover search for a good permutation by making p smaller
(the smaller p is, the harder it is find a good π but the easier the NN-search).
From the above theorem, we have for k = 2, p = 0.0027 which is already quite
small. An optimization for k = 4 (e.g., MMT) chooses p = 0 which is Prange’s
algorithm. This is also the reason why we do not get a quantum speed-up for
algorithms proposed in [BM17].
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StG-335086-LATTAC.
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