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Preface

PQCrypto 2018, the 9th International Conference on Post-Quantum Cryptography, was
held in Fort Lauderdale, Florida, USA, during April 9-11, 2018.

The aim of the PQCrypto conference series is to serve as a forum for researchers to
present results and exchange ideas on cryptography in an era with large-scale quantum
computers.

PQCrypto 2018 was co-located with NIST’s First PQC Standardization Conference
(April 11-13, 2018) in Fort Lauderdale, Florida. Following the same model as its
predecessor, PQCrypto 2018 adopted a two-stage submission process in which authors
registered their paper one week before the final submission deadline.

The conference received 97 submissions with authors from 30 countries. Each paper
(that had not been withdrawn by the authors) was reviewed in private by at least three
Program Committee members. The private review phase was followed by an intensive
discussion phase, conducted online. At the end of this process, the Program Committee
selected 24 papers for inclusion in the technical program and publication in these
proceedings. The accepted papers cover a broad spectrum of research within the
conference’s scope, including code-, hash-, isogeny-, and lattice-based cryptography,
multivariate cryptography, and quantum cryptanalysis.

Along with the 24 contributed technical presentations, the program featured out-
standing invited talks and a presentation on NIST’s post-quantum cryptography
standardization.

Organizing and running this year’s edition of the PQCrypto conference series was a
team effort, and we are indebted to everyone who helped make PQCrypto 2018 a
success. In particular, we would like thank all members of the Program Committee and
the external reviewers who were vital for compiling the technical program. Evaluating
and discussing the submissions was a labor-intense task, and we truly appreciate the
work that went into this. We also owe a big thank you to Maria Provost from Florida
Atlantic University, who made sure that all local arrangements fell into place as
needed.

February 2018 Tanja Lange
Rainer Steinwandt
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LEDAkem: A Post-quantum Key
Encapsulation Mechanism Based
on QC-LDPC Codes

Marco Baldi!®)@®), Alessandro Barenghi?®, Franco Chiaraluce' ®,
Gerardo Pelosi?®, and Paolo Santini'
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Abstract. This work presents a new code-based key encapsulation
mechanism (KEM) called LEDAkem. It is built on the Niederreiter
cryptosystem and relies on quasi-cyclic low-density parity-check codes
as secret codes, providing high decoding speeds and compact keypairs.
LEDAkem uses ephemeral keys to foil known statistical attacks, and
takes advantage of a new decoding algorithm that provides faster decod-
ing than the classical bit-flipping decoder commonly adopted in this kind
of systems. The main attacks against LEDAkem are investigated, tak-
ing into account quantum speedups. Some instances of LEDAkem are
designed to achieve different security levels against classical and quan-
tum computers. Some performance figures obtained through an efficient
C99 implementation of LEDAkem are provided.

Keywords: Code-based cryptography

Key encapsulation mechanism - Niederreiter cryptosystem
Post-quantum cryptography

Quasi-cyclic low-density parity-check codes

1 Introduction

Devising efficient and robust post-quantum key encapsulation mechanisms
(KEMs) is an important and urgent research target, as also witnessed by the
recent NIST call for post-quantum cryptographic systems [32]. Code-based
cryptosystems are among the most promising candidates to replace quantum-
vulnerable primitives which are still relying on the hardness of the integer factor-
ization or discrete logarithm problems, such as the Diffie-Hellman key exchange
and the Rivest-Shamir-Adleman (RSA) and ElGamal cryptosystems. Indeed,
Shor’s algorithm [41] can be used to solve both the integer factorization and the
discrete logarithm problems in polynomial time with a quantum computer. One
of the problems for which no known polynomial time algorithm on a quantum

© Springer International Publishing AG, part of Springer Nature 2018
T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 3-24, 2018.
https://doi.org/10.1007/978-3-319-79063-3_1
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computer exists is the decoding of a general linear code. Indeed, such a prob-
lem belongs to the non deterministic-polynomial (NP)-complete computational
equivalence class [11,27], which is widely believed to contain problems which
have no polynomial time solution on a quantum computer.

The first code-based public-key cryptosystem relying on the general linear
code decoding problem was proposed by McEliece in 1978 [28], and used Goppa
codes [18] to form the secret key. Such a choice yields large public keys, which is
the main limitation of Goppa code-based systems. The Niederreiter cryptosys-
tem [34] is a code-based cryptosystem exploiting the same trapdoor, but using
syndromes and parity-check matrices instead of codewords and generator matri-
ces as in McEliece. When the same family of codes is used, Niederreiter and
McEliece are equivalent [25] and therefore they achieve the same security levels.

Replacing Goppa codes with other families of more structured codes may
reduce the public key size. However, this may also compromise the system secu-
rity, as it occurred with some first McEliece variants based on quasi-cyclic (QC)
codes [17], low-density parity-check (LDPC) codes [31] and quasi-cyclic low-
density parity-check (QC-LDPC) codes [35], quasi-dyadic (QD) codes [30], con-
volutional codes [26] and some instances based on generalized Reed-Solomon
(GRS) codes [7,10]. Nevertheless, some variants exploiting QC-LDPC and quasi-
cyclic moderate-density parity-check (QC-MDPC) codes [2,3,29] have been
shown to be able to achieve very compact keys without endangering security.

Recently, some new statistical attacks have been developed that exploit the
information coming from decryption failures in QC-LDPC and QC-MDPC code-
based systems to perform key recovery attacks, thus forcing to renew keys fre-
quently in these systems [16,20].

In this paper, we start from the QC-LDPC code-based system proposed in
[2,3] and we develop a new KEM based on the the Niederreiter cryptosystem. We
also introduce an improved decoding algorithm which exploits correlation among
intentional errors seen by the private code. This way, the correction capability of
the private code is exploited to the utmost, thus allowing to achieve significant
reductions in the public key size. We call the new system LEDAkem and study
its properties and security. We take into account the fact that Grover’s algorithm
running on a quantum computer may be exploited to speedup attacks based on
information set decoding (ISD) [22,43], and we propose some sets of parameters
for LEDAkem achieving different security levels against attacks exploiting both
classical and quantum computers. We also describe an optimized software imple-
mentation of the proposed system and provide and discuss some performance
figures. LEDAkem currently is one of the first round candidate algorithms of
the NIST post-quantum cryptography standardization project [32], along with
other code-based KEMs. In this work we will highlight the differences between
our proposal and the closest one among the others, i.e. BIKE [1], which relies
on QC-MDPC codes for its construction.

The organization of the paper is as follows. In Sect. 2 we describe LEDAkem.
In Sect.3 we present its security analysis and in Sect.4 its peculiar features.
In Sect.5 we discuss some implementation issues and we show some numerical
results. Finally, some conclusions are drawn in Sect. 6.
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2 The LEDAkem Cryptosystem

The LEDAkem cryptosystem is derived from the Niederreiter cryptosystem with
the following main differences:

— Non-algebraic codes known as QC-LDPC codes are used as secret codes.

— The public code is neither coincident with nor equivalent to the private code.

— Suitably designed iterative non-bounded-distance decoding algorithms are
used.

The motivation for using QC-LDPC codes as private codes is in the fact
that these codes are known to achieve important reductions in the public key
size when used in this context [2,29]. Moreover, when LDPC codes are used as
private codes, the public code cannot be either coincident with or equivalent to
the private code. Indeed, in such a case, an attacker could search for low weight
codewords in the dual of the public code and find a sparse parity-check matrix
of the private code which allows efficient decoding.

For this reason, following [2], LEDAkem uses a transformation matrix @ that
hides the sparse parity-check matrix H of the private code into a denser parity-
check matrix L = HQ of the public code. This also affects the error vector that
must be corrected during decryption, which is obtained from the error vector
used during encryption through multiplication by . In this work, we show
how it is possible to exploit the knowledge of ) to design an ad-hoc decoding
algorithm achieving very good performance in terms of both decoding speed and
decryption failure rate (DFR).

In fact, a well-known feature of LDPC coding is that the decoding radius of
iterative decoders is not sharp and cannot be estimated in a deterministic way.
It follows that some residual DFR must be tolerated, and it must be estimated
heuristically through Montecarlo simulations. This is done for all the proposed
instances of LEDAkem in order to guarantee that they achieve a sufficiently low
DFR. Providing quantitative estimates of the DFR for the proposed instances
of LEDAkem allows us to prevent attacks such as the ones described in [16,20]
changing the key either at each round of the KEM, or before a sufficient amount
of decoding failures are observed by the attacker.

2.1 Coding Background

A QC code is defined as a linear block code with dimension k = pky and length
n = pnyg, in which each cyclic shift of a codeword by n¢ symbols results in another
valid codeword. It follows from their definition that QC codes have generator and
parity-check matrices in “blocks circulant” form or, equivalently, in “circulants
block” form. The latter is used in LEDAkem. A v X v circulant matrix A has
the following form
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g ap ag---Gy—1
ay—1 Ao A1 *-° Qy—2
A= |Cv-20y—-10G0 " Ay-3 | (1)
ayp az ag--- ap

According to its definition, any circulant matrix is regular, since all its rows and
columns are cyclic shifts of the first row and column, respectively.

The set of v x v binary circulant matrices forms an algebraic ring under the
standard operations of modulo-2 matrix addition and multiplication. The zero
element is the all-zero matrix, and the identity element is the v x v identity
matrix. The algebra of the polynomial ring Fa[z]/(z” 4+ 1) is isomorphic to the
ring of v X v circulant matrices over Fy with the following map

v—1
Ae—a(x)= Zaixi. (2)
i=0

According to (2), any binary circulant matrix is associated to a polynomial in
the variable x having coefficients over Fo which coincide with the entries of the
first row of the matrix

a(x) :ao+a1x+a2x2+a3x3+...+av71xv—1. (3)

According to (2), the all-zero circulant matrix corresponds to the null polyno-
mial and the identity matrix to the unitary polynomial. The ring of polynomials
Fo[z]/(z¥ + 1) includes elements that are zero divisors which are mapped to sin-
gular circulant matrices over Fy. Avoiding such matrices is important in some
parts of LEDAkem, and smart ways exist to design non-singular circulant matri-
ces. As it will be described next, the main part of the secret key of LEDAkem is
formed by a binary QC-LDPC code described through its parity-check matrix
H. Let n denote the code length in bits and k£ denote the code dimension in bits,
then H has size (n — k) X n = r X n, where r is the code redundancy.

2.2 Description of the Primitives

The main functions of LEDAkem are described next.

Key Generation. Both private and public keys consist of binary matrices.
These matrices, in their turn, are formed by p x p circulant blocks, being p an
integer properly chosen.

Secret key. The key generation input is formed by:

— The circulant block size p (usually in the order of some thousands bits).
— The integer ng (usually between 2 and 4), representing the number of circulant
blocks forming the matrix H.
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— The integer d,,, representing the row/column weight (usually between 15 and
25) of the circulant blocks forming the matrix H.

— The vector of integers m = [mg, M1, ..., My,—1], representing the row/column
weights (each entry usually smaller than 10) of the circulant blocks forming
the matrix @ (the structure of @ is clarified below).

Given these inputs, the secret key is obtained as follows.

First, ng sparse circulant matrices with size p x p are generated at ran-
dom. Each of them has row/column weight d,. We denote such matrices
as Ho,Hy,...,H,,—1. The secret low-density parity-check matrix H is then
obtained as

H = [Hy|H,|Hs| ... |Hng—1] - (4)

The size of H is p x ngp. Other nf sparse circulant blocks Q; ; are then
randomly generated to form the secret sparse matrix

Q0,0 QO,l s QO,nofl

Qio Qi1 - Qune—1
Q= : N : ()
Qngfl,o Q’nofl,l A Q’nofl,nofl

The row/column weight of each block Q;; is fixed according to the following

matrix
mo My ... Mpe—1

Mpo—11MQ ... Mpy—2
wi@) = | T ©)
mi; Mo ... My
such that each row and each column of @ has weight m = Y/ Y.
The choice of the weights m = [mg, m1,- -+ ,mp,—1] and the size p of the

circulant blocks composing it is very important since it allows to discern if @ is
invertible or not. In particular, denoting with IT{-} the permanent of a matrix,
the following theorem holds.

Theorem 1. Let p > 2 be a prime such that ord,(2) = p—1 and Q be an ng X ng
matriz with elements in Fao[z]/(aP + 1); if I {w(Q)} is odd and I {w(Q)} < p,
then Q is non singular.

Proof. Omitted for the sake of brevity.

With this result, we can guarantee that, when the sequence m is properly chosen,
the matrix @ is always non singular, which is a necessary condition for the key
generation process to be successful.

Definition 1. The secret key (SK) of LEDAkem is formed by {H,Q}.



8 M. Baldi et al.

Since both H and @ are formed by sparse circulant blocks, it is convenient
to represent each of these blocks through the indexes of the symbols 1 in their
first row, i.e., adopt a sparse representation for them. Each index of this type
requires [log,(p)] bits to be stored. If we consider that the circulant blocks in
any block row of @ have overall weight m = Y Ym;, the size of SK in bits is

Ssk = no (dy +m) [logs(p)] - (7)

In practice, the secret matrices are generated through a deterministic random
bit generator (DRBG), seeded with a bit string extracted from a true random
number generator (TRNG). In this case, to obtain H and @ it is sufficient to
know the TRNG extracted seed of the DRBG that has been used to generate
the positions of their non-null coefficients, since this process is rather fast. This
approach allows reducing the size of the secret key to the minimum required, as
it is assumed that the TRNG output cannot be compressed. The entity of the
reduction depends on the values of the parameters involved in (7).

Public key. Starting from H and @, the following binary matrices are computed.
First of all, the matrix L is obtained as

L=HQ=[Lo|Li|La| ...|Lyy_1]. (8)

If both d, and m are odd, then L, ,_; has full-rank. In fact, L,,—1 =
Z?:oal H;Qin,—1 and has weight equal to md, — 2¢ (where ¢ is the number
of cancellations occurred in the product). It is possible to demonstrate that if
md, is odd and md, < p then L, _; is non-singular.

After inverting L,,_1, the following matrix is computed:

M =1L," |L=[M|M|M,]|...|M,, _o|I] = [MI]. (9)

ngfl

Definition 2. The public key (PK) of LEDAkem is formed by M; =
[Mo| My | Ms] ... | M, —2].

Since the circulant blocks forming M; are dense, it is convenient to store
them through the binary representation of their first row (the other rows are
then obtained as cyclic shifts of the first row). The bit-size of the PK hence is

Spr = (no — 1) p. (10)

Encryption. The plaintext of LEDAkem is an ephemeral random secret gen-
erated by Bob who is willing to share it with Alice. The encryption inputs are:

— The values of ng and p, from which n = ngp is computed.
— The number of intentional errors t < n.

Bob generates a secret in the form of a random binary vector e with length of
n = nop bits and Hamming weight ¢. Given a key derivation function (KDF), the
shared secret key k; is generated from e as ks, = KDF(e). In order to encapsulate
the shared secret e, Bob fetches Alice’s PK M; and computes s = [M;|I] e? where
T denotes matrix transposition. The p x 1 syndrome vector s representing the
encapsulated secret is then sent to Alice.
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Decryption. In order to perform decryption, Alice must recover e from s.
The latter can be written as s = Mel = L,_Lol_lLeT = Lgol_lHQeT. The first
decryption step for Alice is computing s’ = L,,_1s = HQe®. For this purpose,
Alice needs to know L,,_1 that, according to (8), is the last circulant block of
the matrix HQ. Hence, it can be easily computed from the SK which contains

both H and Q. If we define the expanded error vector as
e =eQT, (11)

then we have s’ = He/”. Hence, QC-LDPC decoding through H can be exploited
for recovering €’ from s’. QC-LDPC decoders are not bounded distance decoders,
and some DFR must be tolerated. However, the system parameters can be chosen
such that the DFR is acceptably small. For this purpose, the average decoding
radius of the private code must be sufficiently larger than the Hamming weight
of ¢/, which is approximately equal to mt (due to the sparsity of @ and e). Then,

multiplication by (QT)_1 would be needed to obtain e from ¢, that is,

e=r¢ (QT)_l . (12)

However, by exploiting the efficient decoding algorithm described in Sect. 2.3,
this last step can be avoided, which also allows avoiding the computation and
storage of (QT)fl as part of the secret key. In fact, the decoding algorithm
described in Sect. 2.3 allows recovering e directly by performing decoding of
s’ = L,,_15 = HQe® through H, while taking into account the effect of the
multiplication of e by Q. Then, the secret key is recovered as ks = KDF(e).

In case a decoding error occurs, the decryption procedure derives the shared
secret combining with a KDF the syndrome with a secret constant, which may
be derived via a PRNG from the secret key material [38]. Alternatively, using
a secret permutation of the syndrome as input to the KDF was noted to be
effective in [21]. Such an approach is beneficial from the security standpoint in
case of an accidental keypair reuse. More details concerning this aspect, which
is related to formal security of LEDAkem, will be given in Sect. 4. According to
this approach, Bob will become aware of the decoding failure upon reception of
the message sent by Alice encrypted with the incorrectly derived shared secret.

2.3 Efficient Decoding

Classical bit flipping (BF) decoding works as follows. At each iteration, for each
codeword bit position, the number of unsatisfied parity-check equations is com-
puted, and if this number equals or exceeds a given threshold, then that bit is
flipped. The decision threshold can be chosen in many ways, affecting the decoder
performance, and it can be fixed or it can vary during iterations. A choice that
often turns out to be optimal is to fix the threshold, at each iteration, as the
maximum number of unsatisfied parity-check equations in which any codeword
bit is involved. In fact, a codeword bit participating in a higher number of unsat-
isfied parity-check equations can be considered less reliable than a codeword bit



10 M. Baldi et al.

participating in a smaller number of unsatisfied parity-check equations. So, if
the threshold is chosen in this way, the bits that are flipped are those that are
most likely affected by errors.

Starting from classical BF, we have developed an improved decoder that
is specifically designed for LEDAkem, where the position of the ones in the
expanded error vector e’ to be corrected is influenced by the value of Q7 as ¢’
is equivalent to a random error vector e with weight ¢ multiplied by Q7. Since
this improved decoder takes into account such a multiplication by the transpose
of matrix @ to estimate with greater efficiency the locations of the bits of the
expanded error vector, we denote it as Q-decoder.

Inputs of the decoder are the syndrome s’ and the matrices H and @Q accord-
ing to (4) and (5), respectively. The output of the decoder is a 1 x n vector é
or a decoding failure, where é represents the decoder estimate of the error vec-
tor e appearing in the equality s’ = HQeT. The decoding process performs a
maximum of [,,,, iterations, where the [-th iteration processes s¢=1 and (-1
(that is the values at the previous iteration) and outputs s) and é(). A thresh-
old criterion is adopted to compute the positions in é() that must be changed.
The threshold values b can be chosen in different ways and affect the decoder
performance. In the next section we describe a simple and effective procedure to
design such values. The decoder initialization is performed by setting s(©) = s/
and é©) = 0,,, where 0,, is the length-n vector with all-zero entries. It is impor-
tant to note that s (and, by extension, s(l)) is a row vector. Moreover, let us
consider that all multiplications are binary, except those denoted with ‘*’, which
are performed in the integer domain Z. The [-th iteration of the Q-decoder per-
forms the following operations:

i. Compute ¥ = [ay),ay), - ,aq(ll)} = s « H, resulting in a vector of
integers having entries between 0 and d,,.
ii. Compute R = [pgl),pél), e ,pg)} =X0 Q.
iii. Define 3O = {v € [1,n]| pgl) > b(l)}.
iv. Update é(=1) as
A

where 1q) is a length-n binary vector with all-zero entries, except those
indexed by 3.
v. Update the syndrome as

) _ (-1 T
RS SIS

where ¢, is the v-th row of Q.

vi. If the weight of s is zero then stop decoding and return é).

vii. If I < ;4. then increment [ and go back to step (i), otherwise stop decoding
and return a decoding failure.

As in classical BF, the first step of this algorithm computes the vector X,
Each entry of this vector counts the number of unsatisfied parity-check equations
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corresponding to that bit position, and takes values in {0, ..., d,}. This evaluates
the likelihood that the binary element of ¢’ at the same position is equal to one.
Differently from classical BF, in step (ii) the correlation R® between these
likelihoods and the rows of Q7 is computed. In fact, the expanded error vector
e/ = eQT can be written as the sum of the rows of Q7 indexed by the support
of e, that is ¢/ = Zjeu'/{e} g; where ¥ {e} denotes the support of e.

Since both @ and e are sparse (that is, m,t < n), cancellations between ones
in the sum are very unlikely. When the correlation between () and a generic
row g, of QT is computed, two cases may occur:

— If v ¢ U {e}, then it is very likely that ¢, has a very small number of common
ones with all the rows of Q7 forming e’, hence the correlation is small.

— If v € ¥ {e}, then g, is one of the rows of QT forming e’, hence the correlation
is large.

The main difference with classical BF is that, while in the latter all error
positions are considered as independent, the Q-decoder exploits the correlation
among expanded errors which is present in LEDAkem, since their positions are
influenced by QT. This allows achieving important reductions in the number of
decoding iterations. As a further advantage, this decoder allows recovering e,
besides €/, without the need of computing and storing the inverse of the matrix
QT . For this purpose, it is sufficient that, at each iteration, the Q-decoder flips
the bits of the estimated error vector e that correspond to the correlations values
overcoming the threshold.

2.4 Choice of the Q-decoder Decision Thresholds

One important aspect affecting performance of the Q-decoder is the choice of
the threshold values against which the correlation is compared at each iteration.
A natural choice is to set the threshold used at iteration [ equal to the maximum

value of the correlation R(l), that is () = max;—1,2,....n {p;l)

ensures that only those few bits that have maximum likelihood of being affected
by errors are flipped during each iteration, thus achieving the lowest DFR. How-
ever, such an approach has some drawbacks in terms of complexity, since the
computation of the maximum correlation requires additional computations with
respect to a fixed threshold.

Therefore, as in [14], we consider a different strategy, which allows comput-
ing the threshold values on the basis of the syndrome weight at each iteration.
According to this approach, during an iteration it is sufficient to compute the
syndrome weight and read the corresponding threshold value from a look-up
table. This strategy still allows to achieve a sufficiently low DFR, while employ-
ing a significantly smaller number of decoding iterations.

Let us consider the [-th iteration of the Q-decoder, and denote by ¢; the weight
of the error vector e and with t; the weight of the corresponding expanded error
vector €V = eMQT. Let us introduce the following probabilities [6]

}. This strategy
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min[nodvfl,t;] (ngd,,ffl) (nfnodv)

t—j
pci(t;) = Z J 1—J

j=0, j odd (?1)

min[nod,,—l,t;—l] (nOdP71> (nfnodv)

t—j—1
plc(t;) _ Z J 1 —J

j=0, j even (Z:i)

(13)

where p¢;(t;) is the probability that a codeword bit is error-free and a parity-
check equation evaluates it to be incorrect, and p;.(t]) is the probability that
a codeword bit is error-affected and a parity-check equation evaluates it to be
correct. In both these cases, the syndrome bit is equal to 1. The probability that
each syndrome bit is equal to 1 can be therefore computed as pic(t]) + pei(t;), so
the average syndrome weight at iteration [ results in

wl) = B [wt {sO}] = [picth) + pa ()] p (14)

where wt {-} denotes the Hamming weight. Since both the parity-check matrix
and the error vector are sparse, the probability of wt {s(l)} being significantly
different from wgl) is negligible.

So, (14) allows predicting the average syndrome weight starting from ¢]. In

order to predict how t; varies during iterations, let us consider the i-th code-

word bit and the corresponding correlation value pl(-l) at the [-th iteration. The

probability that such a codeword bit is affected by an error can be written as

—1
oy Ple=14"} P{ei=0."}
Ple=1p} = —————J =1+

Porp )

where e; is the i-th bit of the error vector used during encryption. After some
calculations, we obtain

(15)

P {ei = 1|Pl(-l)} = ! - (16)

O 1
n—t; (pei(t) )" 1—pei(t) \ " P
1+ t I (Pic(tl)) (1_pic(tl))

where p¢;(t;) and p;.(t;) are given in (13), with ¢; as argument instead of ¢].
Adding the i-th row of QT to the expanded error vector €’ is the same as
flipping the i-th bit of the error vector e. Hence, we can focus on e and on how its
weight ¢; changes during decoding iterations. The values of ¢; can be estimated
using (14), while, due to sparsity, those of ¢; can be estimated as t]/m.
The decision to flip the i-th codeword bit is taken when the following condi-
tion is fulfilled

Ple=1p"} > 1+ 2)P{ei =0/} (17)

where A > 0 represents a margin that must be chosen taking into account
the DFR and complexity: increasing A decreases the DFR but increases the
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number of decoding iterations. So, a trade-off value of A can be found that allows
achieving a low DFR while avoiding unnecessary large numbers of iterations.

Since P {e,; = O|pl(.l)} =1-P {ei = 1|p(l)}, (17) can be rewritten as

3

1+ A

@

i

O]

P {ei =1 pgl)} is an increasing function of p;’, hence the minimum value of p;

such that (18) is satisfied can be computed as

1+A
") = min {pgl) € [0,md,], s.t. P{ei = 1|p£l)} 5T A 1 A} (19)

and used as the decision threshold at iteration I.

Based on the above considerations, the procedure to compute the decision
threshold value per each iteration as a function of the syndrome weight can be
summarized as follows:

i. The syndrome weights corresponding to t; = 0,m, 2m, - -- ,mt (which are all
the possible values of ¢} neglecting cancellations) are computed according to
(14). These values are denoted as {w4(0), ws(m), - ,ws(mt)}.

ii. At iteration I, given the syndrome weight w,("), the integer j € [0,t] such
that w,(jm) is as close as possible to (") is computed.

iii. Consider ¢; = j and compute b") according to (19) and (16). The value of
b | so obtained, is used as the decoding threshold for iteration I.

The above procedure can be implemented efficiently by populating a look-
up table with the pairs {w;, b;}, sequentially ordered. During an iteration, it is
enough to compute ("), search the largest w; in the look-up table such that
w; < ws®M and set b = bj.

We have observed that, moving from large to small values of w;, the thresh-
olds computed this way firstly exhibit a decreasing trend, then start to increase.
According to numerical simulations, neglecting the final increase is beneficial
from the performance standpoint. Therefore, in the look-up table we replace the
threshold values after the minimum with a constant value equal to the minimum
itself.

2.5 Relations with QC-MDPC Code-Based Systems

In LEDAkem, the public code is a QC-MDPC code that admits L = HQ as
a valid parity-check matrix. However, differently from QC-MDPC code-based
schemes, the private code is a QC-LDPC code, which facilitates decoding. In
fact, decoding directly the public QC-MDPC code through classical BF decoders
would be a possibility, but the approach we follow is different. By using the
decoding algorithm described in Sect. 2.3, we decode the private QC-LDPC code,
taking into account the correlation introduced in the private error vector due to
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multiplication by Q. Since the private QC-LDPC matrix is sparser than the
QC-MDPC matrix of the public code, this yields lower decoding complexity.

Besides working over different matrices, the main difference between these
two decoding algorithms is in the use of integer multiplications in our decoder,
while all multiplications are performed over Fs in classical BF decoders. In fact,
in our decoder we perform the following operation to compute R(*)

RO =5V H«Q=eQTH" xH*xQ~eLT L (20)

where the last approximation comes from the fact that, for two sparse matrices
A and B, we have A- B =~ A x B. Thus, we can say that HQ ~ H % Q. So, if we
consider classical BF decoding working over the matrix L = H(Q, the counter
vector is computed as

SO = gDy = erT & L. (21)

In the Q-decoder, the error vector is updated by summing rows of Q7, which
is equivalent to flipping bits of the public error vector. Hence, there is a clear
analogy between decoding of the private QC-LDPC code through the Q-decoder
and decoding of the public QC-MDPC code through a classical BF decoder.
Through numerical simulations we have verified that the two approaches yield
comparable performance in the waterfall region. Performance in the error floor
region is instead dominated by the minimum distance of the code over which
decoding is performed. Since QC-LDPC codes have smaller minimum distance
than QC-MDPC codes, this reflects into a higher error floor when decoding is
performed over the private QC-LDPC code. However, no error floor has been
observed during simulations of LEDAkem with QC-LDPC decoding, down to a
DFR between 10~% and 1078, Since this is the working point of the codes we use,
in terms of DFR, we can say that the error floor effect, if present, is negligible
from our scheme performance standpoint.

3 Security Analysis

LEDAkem is constructed starting from the computational problem of syndrome
decoding, i.e., obtaining a bounded weight error vector from a given syndrome
and a general linear code, which was shown to be NP-complete in [11]. The main
difference from the statement of the general hard problem on which our proposal
is built is the nature of the code employed, which is quasi-cyclic and admits a
representation with a low-density parity-check matrix. To best of our knowledge,
there is no superpolynomial advantage in performing syndrome decoding on QC-
LDPC, given our public code representation, either due to the quasi-cyclic form
of the code or to the low density of its parity matrix. We point out that the same
assumption on the lack of advantage due to the quasi-cyclic structure of a code
has also been done in both the BIKE [1] and the BIG QUAKE |[8] proposals.
With these statements standing, the security analysis of LEDAkem examines
and quantifies the effectiveness of the best known attacks detailing the efficiency
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of algorithms running on both classical and quantum computers providing non-
exponential speedups over an enumerative search for the correct error vector.
We remark that currently no algorithm running on either a classical Turing
Machine (TM) or a quantum TM provides an exponential speedup in solving
the computational problem underlying LEDAkem compared to an exhaustive
search approach.

3.1 Analysis of the Algorithm with Respect to Known Attacks

As mentioned in the previous sections, LEDAkem derives from QC-LDPC code-
based cryptosystems already established in the literature [4,6]. As proved in [16],
in case of using long-term keys, these cryptosystems may be subject to reaction
attacks that are able to recover the secret key by exploiting the inherent non-
zero DFR they exhibit and Bob’s reactions upon decryption failures. However,
using ephemeral keys prevents the possibility to mount an attack of this kind,
which requires long statistical evaluations. Nevertheless, the risks in case of an
accidental keypair reuse must be considered, and this will be done in Sect. 4.

A first type of attacks that can be mounted against LEDAkem are decoding
attacks (DAs) aimed at performing decoding through the public code repre-
sentation, without knowing the private code representation. The most powerful
algorithms that can be used for this purpose are ISD algorithms. These algo-
rithms aim at performing decoding of any linear block code by exploiting a
general representation of it. ISD algorithms have been introduced by Prange
[37] and subsequently improved by Lee-Brickell [23], Leon [24] and Stern [42].
More recently, they have known great advances through modern approaches,
also exploiting the generalized birthday paradox [9,12,27,33,36]. It is possible
to show that the general decoding problem is equivalent to the problem of find-
ing low-weight codewords in a general (random-like) code. Therefore, algorithms
for searching low-weight codewords can be used as ISD algorithms.

The availability of an efficient algorithm to search for low-weight codewords
is also at the basis of key recovery attacks (KRAs). In LEDAkem the matrix
L = HQ is a valid parity-check matrix for the public code. Since L is sparse,
by knowing it an attacker could separate H from () and recover the secret key.
In order to discover L, an attacker must search for its rows in the dual of the
public code. Due to the sparsity of H and @, any of these rows has weight in the
order of ngd,m. The attack can be implemented by exploiting again an efficient
algorithm for the search of low-weight codewords in linear block codes.

Another potential attack to systems based on QC-LDPC codes is that pre-
sented in [40]. This attack uses a special squaring technique and, by extracting
the low-weight error vectors, finds low-weight codewords more efficiently than
with a general ISD algorithm. This attack, however, is applicable if and only if
p is even. Therefore, in order to increase the system security it is advisable to
choose odd values of p. Choosing p as a prime is an even more conservative choice
against cryptanalysis exploiting factorization of p. The value of p in LEDAkem
is chosen in such a way to prevent these attacks.
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To estimate complexity of DAs and KRAs exploiting ISD and low-weight
codeword searching algorithms, let us define the work factor (WF) of an algo-
rithm as the base-2 logarithm of the average number of binary operations it
requires to complete its execution successfully. Let W F'(n, k, w) denote the WF
of the most efficient algorithm searching for codewords of weight w in a code
having length n and dimension k. Such an algorithm can be used to perform ISD
with the aim of decrypting a LEDAkem ciphertext without knowing the private
key. In this case, we have n = ngp, k = (ng — 1)p and w = ¢. Moreover, due to
the QC nature of the codes, a speedup in the order of |/p must be taken into
account [39]. Hence, the security level against decoding attacks of this type can
be computed as

WF(TLop, (nO - 1)p7 t)
\/f) .

Concerning the KRAs attack, based on the above considerations we have a
similar formula, but with different parameters, that is,

SLpa = (22)

WF dy
SLKRA — (nopﬁ% no m) , (23)

where the speedup factor p is due to the fact that recovering only one out of p
sparse rows of L, is enough for the attacker (due to the QC structure of L).
According to [43], the most efficient ISD algorithm taking into account
Grover’s algorithm [19] running on a quantum computer is Stern’s algorithm.
Therefore, the post-quantum security levels have been estimated by considering
the work factor of Stern’s algorithm with quantum speedup according to [43].
Instead, with classical computers the most efficient ISD algorithm turns out to
be the BJMM algorithm in [9]. Therefore, the security levels against attackers
provided with classical computers have been estimated by considering the work
factor of BIMM in (22) and (23). We chose to employ the results provided in [43]
to evaluate the computational efforts of Stern’s variant of the ISD as they provide
exact formulas instead of asymptotic bounds. However, we note that a recent
work [22] provides improved asymptotic bounds on the computational complex-
ity of quantum ISD for increasing values of the codeword length n. Deriving
from this approach exact values for given parameters set is worth investigating.

3.2 System Parameters

The NIST call for Post-Quantum Cryptography Standardization [32] defines
5 security categories, numbered from 1 to 5 and characterized by increasing
strength (see [32] for details). According to this classification, nine instances
of LEDAkem are proposed, grouped in three classes corresponding to different
security levels. The three instances in each class correspond to three values of ng
(2,3,4), each one yielding a different balance between performance and public
key size. The parameters of the nine instances of LEDAkem are reported in
Table1 for the security categories 1, 3 and 5, respectively. In the table, the
superscript (pq) denotes that the attack work factor has been computed taking
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into account quantum speedups due to Grover’s algorithm, while the superscript
(cl) denotes that only classical computers have been considered.

For each security category and considered value of ng, we have fixed a value
of the parity-check matrix row/column weight d,, in the order of 25 or less (that
is advisable to have good error correcting capability of the private QC-LDPC
code), and we have found the values of p and m that allow satisfying (23) for the
target security level. In fact, the value of m must be chosen such that the dual
of the public code, having minimum distance equal to ngmd,,, is robust against
KRAs based on ISD. Once ny is fixed, we can find many pairs of values m and d,
which satisfy this bound; among them, we have chosen the one having the lowest
product md,, which is a metric affecting the error correcting capability of the
private code. Then, we have found the value of ¢ that allows satisfying (22) and
checked whether ¢ = tm errors can be corrected by the private code through
Q-decoding with a sufficiently low DFR. Otherwise, we have increased the value
of p keeping all the other parameters fixed. Concerning the estimation of the
DFR, we have first exploited BF asymptotic thresholds [6], and then we have
performed Montecarlo simulations for each system instance in order to evaluate
its DFR. In all Montecarlo simulations, except the one for the Category 1, ng = 2
parameter set, we have encountered no errors, so the DFR can be approximately
bounded by the reciprocal of the number of simulated decryptions. Concerning
the parameter set for Category 1, ng = 2, we obtained 20 failures on 2.394 - 10°
decoding computations, pointing to a DFR = 8.3-107Y.

Table 1. Parameters for LEDAkem and estimated computational efforts to break a
given instance as a function of the security category and number of circulant blocks ng

Category |ng | p dy [mo,---, |t |SLPY SLS&L SL{Y SL%{A DFR
Mng— 1]

1 2 127,779 17 [4, 3] 224|135.43|134.84 | 217.45223.66 |~8.3 - 107°
3 18,701 |19 [3,2,2] 1411135.63|133.06 |216.42|219.84 510_9
4 17,027 |21 [4,1,1,1] 112 136.11 139.29 |216.86 230.61  <10~°

2-3 2 |57,557 17 [6, 5] 349/200.47|204.84 |341.52|358.16 | <1078
3 41,507 19 [3,4,4] 220 200.44|200.95 341.61 351.57 <10~
4 |35,027(17([4,3,3,3] |175/200.41|201.40 |343.36|351.96 51078

4-5 2 199,053 |19 |[7, 6] 474265.38 | 267.00 | 467.24 | 478.67 | <107®
3 72,019 |19 |[7,4,4] 301/265.70|270.18 |471.67|484.48 §1078
4 60,509 23|[4,3,3,3] |239|265.48 268.03 |473.38480.73 |<107®

In order to make a conservative design of the system, we have considered some
margin in the complexity estimates of the attacks, such that the actual security
level for these instances is larger than the target one. This also accounts for
possible (though rare) cancellations occurring in L, which may yield a row weight
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slightly smaller than md,ng. The values of d,, have been chosen greater than 15
in order to avoid codes having too small minimum distances. In addition, they
are odd to ensure that the circulant blocks forming H and L (and Ly,,_1, in
particular) have full rank. Also the values of m are always odd, and the sets
[mo, m1, -+ ,mp,—1] have been chosen in such a way to guarantee that @ has
full rank. In fact, L = HQ is a valid parity-check matrix for the public code: if
@ is singular, it might happen that the rank of L is lower than p, leading to a
code with a co-dimension lower than p. With the choice of an invertible @, we
guarantee that this does not occur.

4 Properties of the Proposed Cryptosystem

The QC-LDPC code-based Niederreiter cryptosystem alone achieves only indis-
tinguishability under chosen plaintext attack (IND-CPA), that however is suffi-
cient in case of using ephemeral keys. It is possible to convert a Niederreiter cryp-
tosystem achieving only IND-CPA into one achieving indistinguishability under
chosen ciphertext attack (IND-CCA), under the assumption that the DFR of the
underlying code is zero. Such a conversion involves substituting the outcome of a
decoding failure (due to an ill-formed ciphertext) with the outcome of a KDF tak-
ing as input either the public syndrome and a fixed secret bit sequence [21,3§],
or a secret permutation of the syndrome itself [13]. We apply the conversion
specified in [21] to our scheme, despite its DFR is not null, as it still proves
beneficial in case of an accidental keypair reuse, against an attacker matching
the IND-CCA model whenever no decoding failures due to the QC-LDPC code
structure takes place. Furthermore, we note that LEDAkem ciphertexts are not
malleable in a chosen plaintext scenario. Indeed, even if an attacker alters arbi-
trarily a ciphertext so that it decrypts to a valid error vector e (e.g., discarding
the ciphertext and forging a new one), the shared secret is derived via a hash
based KDF, which prevents him from controlling the output of the decryption.

Relations with the Security of QC-MDPC Code-Based Systems. Dif-
ferently from QC-MDPC code-based systems, the public code in LEDAkem has
a QC-MDPC matrix L that can be factorized into H and @, and this might
appear to yielding lower security than a general QC-MDPC matrix. However, in
order to attempt factorization of L, the attacker should first recover it by search-
ing for low-weight codewords in the dual of the public code. Once L has been
recovered, trying to factorize it into H and () indeed becomes pointless, since
the attacker could exploit L to perform direct decoding of the public QC-MDPC
code. Alternatively, an attacker could try to perform decoding of the public code,
which requires solving the syndrome decoding problem for the same code. The
best known techniques for solving these two problems are based on ISD, and no
method is known to facilitate their solution by exploiting the fact that L can be
factorized into H and Q.
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Risks in Case of Keypair Reuse. While LEDAkem uses ephemeral keys that
are meant for single use, it is possible that implementation accidents lead to a
reuse of the same keypair more than once. The main threat in case of keypair
reuse is the reaction attack described in [16], where a correlation between the
DFR and the private key is derived. However, for the attack to succeed, the
attacker needs to reliably estimate the decoding failure rate for a set of care-
fully crafted or selected error vectors. Given the DFR for which LEDAkem was
designed (<107%), obtaining a reliable estimate requires a number of decryptions
with the same key in the order of billions. Since the said evaluation should be
obtained for all the possible distances between two set bits in the secret key, a
conservative estimate of the number of decryption actions required is (p— l)ﬁ,
which, considering the weakest case, corresponding to Category 1 with ng = 2,
yields >2.7 x 10'2 decryptions. Therefore, the attack presented in [16] is not a
practical threat on LEDAkem with the proposed parameters, unless a significant
amount of decryptions are performed with the same key. Moreover, even the cho-
sen ciphertext attack (CCA) described in [13], where a ciphertext is crafted with
a number of errors greater than t to artificially increase the DFR of the system,
can be thwarted through checking the weight of the decoded error vector and
reporting a decoding failure if it exceeds t.

Protection Against Side-Channel Attacks. The two most common side
channels exploited to breach practical implementations of cryptosystems are the
execution time of the primitive and the instantaneous power consumption during
its computation. In particular, in [15], it was shown how a QC-LDPC code-based
system can be broken by means of simple power analysis, exploiting the control-
flow dependent differences of the decoding algorithm. We note that employing
ephemeral keys provides a natural resistance against non-profiled power con-
sumption side channel attacks, as a significant amount of measurements with
the same key (>30) must be collected before the key is revealed.

Concerning execution time side channel information leakage, the main por-
tion of the LEDAkem decryption algorithm which is not characterized by a
constant execution time is decoding. Indeed, the number of iterations made by
the decoder depends on the values being processed. However, for the proposed
parameters, we note that the number of iterations is between 3 and 5, with a sig-
nificant bias towards 4. Hence, it is simple to achieve a constant time decoding by
modifying the algorithm so that it always runs for the maximum needed amount
of iterations to achieve the desired DFR. Such a choice completely eliminates
the timing leakage, albeit trading it off for a performance penalty.

5 Implementation and Numerical Results

An effort has been made to realize a fast and efficient C99 implementation of
LEDAkem without platform-dependent optimizations, which is publicly avail-
able in [5]. To this end, we represented each circulant block as a polynomial in
Fylx]/(xP+1) thanks to the isomorphism described in Sect. 2.1. Consequently, all
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Table 2. Running times for key generation, encryption and decryption as a function
of the category and the number of circulant blocks ng on an AMD Ryzen 5 1600 CPU.

Category | no | KeyGen (ms) | Encrypt (ms) | Decrypt (ms) | Total CPU time
ephemeral KEM (ms)
1 2 | 3411 (£1.07) | 2.11 (£0.08) | 16.78 (£0.53)  52.99
3 | 16.02 (£0.26) | 2.15 (£0.17) | 21.65 (£1.71)| 39.81
4 | 1341 (£0.23) | 2.42 (£0.08)  24.31 (£0.86)  40.14
2-3 2 14271 (£1.52) | 8.11 (£0.21) | 48.23 (£2.93)  199.05
3 | 76.74 (£0.78) | 8.79 (£0.20) | 49.15 (£2.20) | 134.68
4 | 54.93 (£0.84)  9.46 (£0.28)  46.16 (£2.03) 110.55
4-5 2 |427.38 (£5.15) | 23.00 (£0.33) | 91.78 (£5.38) | 542.16
322771 (£1.71) | 24.85 (£0.37) | 92.42 (£4.50) | 344.99
4 16234 (£2.39)  26.30 (£0.53) 127.16 (£4.42) | 315.80

the involved block circulant matrices are represented as matrices of polynomials
in Fa[z]/(z? +1). The polynomials are materialized employing a bit-packed form
of their binary coefficients in all the cases where the number of non-null coef-
ficients is high. In case a polynomial has a low number of non-null coefficients
with respect to the maximum possible, i.e., the circulant matrix is sparse, we
materialize only the positions of its one coefficients as integers.

We provide below the results of a set of execution time benchmarks. The
results were obtained measuring the required time for key generation, encryp-
tion (key encapsulation) and decryption (key decapsulation) as a function of the
chosen security category and the number of circulant blocks ng. The measure-
ments reported are obtained as the average of 100 executions of the reference
implementation. The generated binaries were run on an AMD Ryzen 5 1600
CPU at 3.2 GHz, locking the frequency scaling to the top frequency.

Table 2 reports the running times in terms of CPU time taken by the process.
As it can be noticed, the most computationally demanding primitive is the key
generation, which has more than 80% of its computation time taken by the exe-
cution of a single modular inverse in Fa[z]/(z? 4 1) required to obtain the value
of Lgol_l. The encryption primitive is the fastest among all, and its computation
time is substantially entirely devoted (>99%) to the ny — 1 polynomial multi-
plications performing the encryption. The decryption primitive computation is
dominated by the Q-decoder computation (>95% of the time), with a minimal
portion taken by the ng modular multiplications which reconstruct L,,_; and
the one to compute the private syndrome fed into the Q-decoder.

Considering the computational cost of performing a KEM with ephemeral
keys, the most advantageous choice is to pick ng = 4 for any security level,
although the computational savings are more significant when considering high-
security parameter choices (Category 3 and 5).
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Table 3. Sizes of the keypair and encapsulated shared secret as a function of the chosen
category and number of circulant blocks ng.

Category | no | Private key size (B) | Public key | Shared secret | Enc secret
size (B) size (B) size (B)
At rest | In memory
1 2 |24 668 3,480 3,480 32
3 |24 844 4,688 2,344 32
4 |24 1,036 6,408 2,136 32
2-3 2 |32 972 7,200 7,200 48
3 132 1,196 10,384 5,192 48
4 132 1,364 13,152 4,384 48
4-5 2 140 1,244 12,384 12,384 64
3 |40 1,548 18,016 9,008 64
4 40 1,772 22,704 7,568 64

Table 3 reports the sizes of both the keypairs and the encapsulated secrets for
LEDAkem. In particular, regarding the size of the private keys we report both the
size of the stored private key and the required amount of main memory to store
the expanded key during the decryption phase. We note that, for a given security
category, increasing the value of ngy enlarges the public key, as it is constituted
of (ng — 1)p bits. This increase in the size of the public key represents a tradeoff
with the decrease of the size of the ciphertext to be transmitted since it is only
p bits long, and p decreases if a larger number of blocks is selected, for a fixed
security category. The size of the derived encapsulated secret is at least 256 bits,
in order to meet the requirement reported in [32]. The shared secret is derived
employing the SHA-3 hash function with a 256, 384 or 512 bits digest, in order
to match the requirements of Categories 1, 3, and 5, respectively.

6 Conclusion

We have introduced a post-quantum KEM based on QC-LDPC codes with the
following advantages: it is built on an NP-complete problem under reasonable
assumptions; it exploits improved BF decoders which are faster than classical
BF decoders; it requires compact keypairs (below 23 kiB at most), with min-
imum size private keys; it needs only addition and multiplication over Fa[z],
and modular inverse over Fa[x]/(x? + 1) besides single-precision integer opera-
tions; it is particularly efficient in applying countermeasures against non-profiled
power consumption side channel attacks. As regards implementation, no plat-
form specific optimizations have been exploited, thus we expect these results to
be quite consistent across different platforms. On the other hand, starting from
this platform-agnostic reference implementation, a number of optimizations can
be applied to make LEDAkem faster.
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Abstract. We propose a new algorithm for the decoding of random
binary linear codes of dimension n that is superior to previous algo-
rithms for high error rates. In the case of Full Distance decoding, the best
known bound of 299537 is currently achieved via the BJMM-algorithm
of Becker, Joux, May and Meurer. Our algorithm significantly improves
this bound down to 20-08857,

Technically, our improvement comes from the heavy use of Nearest
Neighbor techniques in all steps of the construction, whereas the BJMM-
algorithm can only take advantage of Nearest Neighbor search in the last
step.

Since cryptographic instances of LPN usually work in the high error
regime, our algorithm has implications for LPN security.

Keywords: Decoding binary linear codes - BJMM
Nearest Neighbors + LPN - Full Distance decoding - Representations

1 Introduction

The NP-hard decoding problem for random linear codes plays a major role in
coding and complexity theory. It is especially suitable for the construction of
quantum-secure cryptographic systems like [McE78, Ale03,Reg05]. In view of
the upcoming NIST selection of post-quantum public-key cryptosystems [NIS] it
is of crucial importance for secure parameter selection to know the best decoding
algorithms.

A linear code C is a k-dimensional subspace of . In the decoding problem
the attacker gets an erroneous version x = ¢ + e of a codeword c for some
error vector e with Hamming weight A(e) = w. His target is to find e in order
to recover the original codeword c. Sometimes, the weight w is bounded by
the distance d of the code C (Full Distance Decoding) or by 4 (Half Distance
Decoding).

Therefore the running time T'(n, k, d) of any decoding algorithm is a function
of the parameters n, k and d. It is well known that the Gilbert-Varshamov bound
gives us % ~1-H (%) for random linear codes, where H (-) is the binary entropy
function H(p) := —plog(p) — (1 — p)log(1 — p). This results in a running time
© Springer International Publishing AG, part of Springer Nature 2018
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T(n,k) which is a function of n and k only. Furthermore one often compares
worst case running times where we maximize the running time over all rates %
resulting in a running time 7'(n).

The best algorithmic paradigm that we know today for random binary linear
codes is a class of algorithms called Information Set Decoding (ISD). Here, for
simplicity we only compare ISD running times in the Full Distance Decoding
setting, but see also Fig.1. For all ISD algorithms the maximal run time is
achieved at a rate % slightly below %

0.0885  0.0953 0.102 0112 0117 0121

I I | | | |
Our work [MO15, BM17] [BIMM12] [MMT11] [SteR9] [Pra62]
0.0465 0.0473  0.0494 0.0537  0.0557  0.0576

| | | | | |

vork [M i IMT ' 6
Our work [MO15] [BJMM12] [MMT11]  [Ste89]  [Pra62]

Fig. 1. Comparison for Full/Half Distance of our work and other algorithms.

The first ISD algorithm is due to Prange [Pra62] and achieves worst case
running time 2%21" This was improved by Stern and Dumer [Ste88, Dum91]
to 291177 Using the representation technique, May et al. [MMT11] and later
Becker et al. [BJIMM12] further decreased the run time to 29-112" and 20-102n,
respectively. The last is called BJMM algorithm and is currently asymptotically
the best algorithm for decoding of random linear codes.

In 2015, May and Ozerov [MO15] proposed some Nearest Neighbor (NN)
search that further sped up BJMM to 20:096™  <which was later optimized
in [BM17b] to 20-0953n,

Our results. As can be seen from Fig. 1, our new algorithm achieves in the Full
Distance Decoding setting 2°-9%%5"  which is a quite remarkable improvement
over the current state of the art. However, the improvement for the Half Distance
Decoding is comparably small. As a rule of thumb, the larger the error rate, the
more significant our algorithm’s improvement.

As most promising in cryptographic settings, we currently see the application
of our algorithm for Learning Parity with Noise (LPN) instances. Every LPN
instance of dimension k with error 7 is naturally a decoding problem for a random
linear code. As shown by Esser et al. [EKM17] in practice one currently best
solves large LPN instances by a hybrid approach. Namely, one first applies a
dimension reduction algorithm (such as BKW [GJL14]) at the cost of introducing

a large error close to 1, followed by a decoding algorithm. Since our algorithm

2
works especially well in the high-error regime, it seems to be a perfect candidate

for solving these transformed LPN instances.

Our algorithm. ISD algorithms with representation technique such as MMT
and BJMM currently use a 2-step matching process, where in the first step one
does an exact matching of vectors (for eliminating representations) and in a
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second step one does an approximate matching via NN search. We eliminate
this two-step process and perform only an approximate matching in all stages
of the algorithm.

This allows us to eliminate representations less restrictive, and to use the full
power of NN search in every step of our algorithm. Thus, our approximate match-
ing is in spirit similar to the Ball Decoding approach of Bernstein et al. [BLP11].
The heavy use of NN search might also explain the large improvement (only) in
the high error-regime, where NN search can show its full strength.

This paper is organized as follows. In Sect. 2, we review some ISD algorithms.
Section 3 introduces a basic version of our new algorithm, whereas the generalized
version is given in Sect. 4. Our results are provided in Sect. 5.

2 Preliminaries

Syndrome Decoding. Let us start with some preliminaries on linear codes and
decoding algorithms. We denote the Hamming distance of two vectors x,y € Fy
by A(x,y). The Hamming weight A(x) of x is defined as the Hamming distance
of x to the zero vector 0.
A linear code C is a k-dimensional subspace of 5. Its distance is deﬁt}ied by
Xn

d := minexercc{A(c, c’)}. We can specify C by a generator matrix G € F3*" or

a parity check matrix P € an_k)m via

C::{XGEFS\XG]Fg}orC::{CEFS‘|Pc:O}.

Random linear codes have a random G or random P, where in both cases each
matrix entry is chosen uniformly at random from Fy. For an arbitrary vector
y =c+e € Fj, c € C we define the syndrome of y as

s:= Py = Pc+ Pe = Pe. (1)

Definition 1 (Syndrome Decoding Problem). Let C be a linear code spec-
ified by some parity check matriz P € ]an_k)xn. Given P, an (erroneous) code-
word 'y € F§ and a weight w € N, one has to find an error vector e € Fy with
y+eecC and Ae) = w.

We call (P,s,w) with s = Py an instance of the Syndrome Decoding Problem.

We say that e € F} solves (P,s,w) iff s = Pe and A(e) = w.

A fundamental algorithm for solving the Syndrome Decoding Problem was
introduced by Prange [Pra62]. This algorithm is the basis of all of today’s
so-called Information Set Decoding (ISD) algorithms [Ste88,Dum91,BLP11,
MMT11,BJMM12]. In Prange’s algorithm, one reduces the dimension of the
search space from n down to k via Gaussian elimination.

In more detail, one chooses some invertible G € ]Fénik)x(n*k) such that GP =
(P | I,_x), where I,,_j is the (n — k)-dimensional identity matrix. Therefore
Eq. (1) becomes

GPe= (P |I,_;)e=Pe +e" =Gs=:5, withe = (¢,e") e Fk x F3~*. (2)
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(n—k)xn

Thus, every instance (P,s,w) with P € [, of the Decoding Problem has

some (non-unique) standard form (P,8,w) with P € Fén_k)Xk such that e € F3
solves (P,s,w) iff (P | I,_;)e =S5.

Definition 2 (Standard form). For any instance (P,s,w) € Fg"_k)xn X
Fg_k x N of the decoding problem, we say that (P,8,w) € anfk)x}c X Fg_k x N
is a standard form of (P,s,w) if there exists some invertible G € an_k)x("_k)
such that

GP = (P| I, ;) and Gs =35.

The underlying idea of all Information Set Decoding algorithm is to solve
a dimension-reduced standard form (P,s,w) of a Decoding Problem instance
instead of its original form (P, s,w).

However, before transforming (P,s,w) to its normal form one applies some
column permutation m to P to enforce a special weight distribution on e =
(e/,e") € F5 x F3~%. While Prange chooses A(e’) = 0, other ISD algorithms
enforce A(e’) = p for some parameter p > 0 (see Algorithms1 and 2). Thus
it is sufficient to find some e’ € F5, A(e’) = p such that after applying 7 and
converting to standard form the term Pe’ is close to S, i.e.,

A(Pe',5) = Ale”) =w —p.

Algorithm 1. ISD — WEIGHT DISTRIBUTION AND STANDARD FORM

Input : Pc Fé"fk)xn, seFr " weN
Output: e € F3 with Pe =s and A(e) =w

repeat
repeat
7 < random permutation on F3
(-] Q) « m(P) (permute columns) b Qe FRx (k)
until Q is invertible
(P | In—%) < Gm(P) and § «— Gs > G e Fin—R)x(n=k)
(e/,e") = ISDSOLVE(P, §,w) > See Algorithm 2.

until (e',e”) # L
return 7' (e'||e”)

Algorithm 2. ISDSOLVE

Input :Pe F;"*’”X’“,é €eFr* weN
Output : (e/,e”) € Fs x F3—*
Parameters: choose optimal 0 < p < w
for e € F5 with A(e’) = p do

e «— He +5

if A(e”) =w — p then return(e’,e”)
end
return |
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Dumer’s ISD-algorithm [Dum91] introduces another parameter ¢ and trans-
forms P into a different standard form

G'P = <]];1 7 0 ) ,where P, € ng(kﬁ) and P, € ]an—k—@x(k-w)'
2 In—k—¢

Set §:= G’s = (s1,sp) € F§ x F27*~¢. We can now write Eq. (2) as

Plegl) = Plegl) +s;  and (3)
A(Pgegl), Pgegl) +82)=w-—p. (4)
splitting e’ = egl) —|—7e§1) with €/, egl), eél) € F5™. Hence, by Eq. (3) we have an
exzact matching of Pe’ and § on £ coordinates, and by Eq. (4) an approzimate

matching of the same vectors on the remaining n — k — £ coordinates.
The BJMM algorithm [BJMM12] solves the exact matching of Eq. (3). In a

nutshell, BJMM constructs solutions (egl), eél)) for Eq. (3) using some depth-3
binary search tree. For optimizing the depth of this search tree, see [BM17b].

All candidate solutions (egl)7 egl)) are then checked via Eq. (4).

For the approximate matching, May and Ozerov [MO15] proposed a Nearest
Neighbor (NN) search algorithm that, given two lists L1, Lo, finds in time sub-
quadratic of the list lengths all elements (x1,x2) € L1 X Lo within some given
Hamming distance A(x1,x2). Thus, May-Ozerov NN search can be used to speed
up the check of candidate solutions via Eq. (4) inside the BJMM algorithm.

Theorem 1 ([MO15]). Given two lists Ly, Ly with elements taken uniformly at
random from FY and length |L1|, |La| < 2**. Then for any € > 0 one can find all
but a negligible fraction of the pairs (x1,%2) € £1 X Lo satisfying A(x1,%2) < yn

for some given 0 < v < § provided that X\ <1 — H(3) in time

H7'(1-)) -1
2(y(>\;y)+e)n7 where y(\,7) = (1 —7) (1 —H <(1)2)> .
-

Please notice that Theorem 1 can only be applied for parameters satisfying

the condition A < 1 — H(Z), which will not always be the case for our new

decoding algorithm. Whenever this condition is violated, we will choose one of
the following two simple NN search algorithms Algorithms 3 or 4.

Algorithm 3. NN-ENUMERATE-PAIRS

Input :L,,Ly CF3, v
Output: L
for (x1,%x3) € L1 x Ly do
‘ if A(xy,%x2) <4nthen L «— (x1,x%2)
end
return L
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Since Algorithm 3 simply tests the distance of all pairs in Ly x Lo, it runs in
time quadratic in the list lengths

22)\n. (5)

Notice that here, as in the rest of the paper, we neglect for ease of presentation
polynomial factors in the run time.

Algorithm 4. NN-MEET-IN-THE-MIDDLE

Input :L,,Ly CFy, v

Output: L

Ly — 0

for x5 € L, do

for e € Iy with A(e) < 3n do
| L5« LLU (x2 +e,x2)

end

end

for x; € L1 do

for e € Fy with A(e) < 3n do
| if (x1+e,x3) € L then L — (x1,X;)

end

end
return L

Recall from Theorem 1 that Li, Ly contain random vectors from Fj. Thus,
for any pair (x1,%2) € L1 X Ly we have Pr[A(x1,%x2) < yn] = (77:1) <277 As a
consequence, using a union bound over all pairs we can upper bound the size of
the output list L for any NN algorithm by |L| < (W”n) .2(2A=1)n

This in turn shows that the running time of Algorithm4 is upper bounded

by
n n
m . 2>\n . 2(2A—1)n .
ax { (gn> ’ (fyn) (©)

Since our new decoding algorithm improves the decoding with high error
rate, it is best suited for attacking instances of the Learning Parity with Noise
Problem (LPN).

Definition 3 (LPN). Let T € [0,3) be some error parameter, and let s € F5
be a secret vector. In the LPN}, . problem one has oracle access to samples of
the form

(a,;,b,;) = (ai, <a1', S> + 67;)7 fO’I’i = 17 2, e

where a; €g F5 and e; € {0,1} with Pr[e; = 1] = 7. The goal is to recover s.

Let us denote by n the number of samples, which can be freely chosen. We write
an LPN instance as a matrix-vector tuple

(A,b) € Fp*F x T} satisfying As = b + e,
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where e = (ey,...,e,) and the i'" row of A and b represent the i** LPN sample.
Notice that A is by definition of LPN the generator matrix of a random
binary linear [n, k]-code, in which we are free to choose n ourselves. Thus, we
can make the rate % arbitrarily small.
Moreover, b is a noisy codeword that is decoded to b + e with an error
e € FY of (large) expected weight E[A(e)] = 7n. Typical parameters for 7 in the

cryptographic setting are 7 = %, or T = %.

3 The Depth-2 Algorithm

Our Goal. As described in Sect. 2, many ISD algorithms like Dumer or BJMM
do an exact matching using Eq. (3) 131651) = Plegl) + s; on ¢ coordinates, and
among the candidates (egl),eél)) € F5+ x FAT* that fulfill Eq. (3), they search
for those, whose remaining n—k — ¢ coordinates approximately match by Eq. (4).

As opposed to the BIMM algorithm, we really go back to the initial Eq. (2)

Pe' + e =s. Splitting e’ = egl) + e(21) for egl), eél) € F% yields

Pegl) = Pegl) +sonall n—k but A(e”) =w —p coordinates.  (7)

Our goal is to directly construct egl), eél) such that A(egl) + eél)) = p and the

corresponding vectors Pegl), peél) +8 approzimately match on all n—k but w—p
coordinates. This immediately yields a solution (e’,e”) with ¢’ = Pe’ +§ and
A(e"”) = w — p for the Decoding problem in standard form.

In comparison to other ISD algorithms, our vectors egl),eél) have length k
(like in Prange) instead of k+¢ (like in Dumer, BJMM). This decreases the search
space significantly. Moreover, it introduces a less restrictive weight distribution
on a solution (€/,e”) € F§ x F3 7% since usually p < w and we only need small
weight p on the first & coordinates instead of the first k + £ coordinates. This in
turn means that we need less iterations in Algorithm 1 to find a permutation 7
that fulfills our weight distribution.

On the downside, our approximate matching routine is more costly than the
exact matching in other ISD algorithms. But as our analysis shows, the benefits
outweigh this disadvantage, especially when the weight of our solution is large
enough.

Recall that by Eq. (7) our goal is to construct two lists Lgl), Lél) in depth 1
of a search tree containing entries

(egl), Pegl)) and (eél)7 Peg) +8) such that

Ale) = Ael) +el) = p and A(e”) =w —p.
The two lists L(ll)7 Lél) are constructed in a recursive manner out of other lists
in a search tree of some depth m that has to be optimized. In this section, we

describe our algorithm for depth m = 2 only, since this already gives the main
ideas.
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Let us introduce some useful notion, see also Fig.2. For any vector v =

v1...v, € Fy and any positive lengths ¢;1,...,4,,4+1 € N with Z;";ll b = n,
we define by vi;; € ng the projection of v onto its coordinates (Zf;ll l; +
1,...,>°7_, 4;). We also extend our notion to lists of vectors L C F%. In Lyj we

project all elements v € L to v[;.

Fig. 2. The projection v{;] of v.

Outline of depth-2 algorithm. Here we give a high-level overview of our

construction with a search tree of depth 2. The reader is advised to follow the
description via Fig. 3.

LgO) LéO) L:(;)) LSLO)
nk k/2 k)2
| R [0 | NK 10NN
Pe(lo) eﬁ‘” Pego) ego) Peéo) e§°> Peio)—ké eé(lo)
U 70

p Pe(zl)—|—§ egl)

4y 0y k
—

Pe'+s=¢e" €

Fig. 3. Our depth-2 algorithm.

Among the n — k coordinates of €”, we introduce another split into ¢; and

ly := n — k — {1 coordinates. In the final list L(?), we enforce some weight
wy on the first £; coordinates of e’ = (e”[;),€”[y)), and the remaining weight
Wy := w — p — wp on the remaining ¢y coordinates. The parameters ¢1,w; are

subject to optimization.
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For the construction of €[5 we use an NN search for the lists Lgl), Lgl) on

level 1 that gives us weight ws on these coordinates.

In those lists Lgl), L(l) we furthermore enforce weight p; > £ on the coordi-

nates of eg and e2 . The parameter p; is again subject to optlmlzatlon.

Analogously we restrict to only those Pegl), Peél) + 8 whose first ¢; coor-
dinates have a weight w( ). The weight wil) has to be optimized. Again, we
filter out all vector sums on level 2 whose weight is not exactly w; on these ¢4
coordinates.

The lists Lgl),Lg) are constructed out of four lists LEO),Z' =1,...,4 on

level 0. Here, we describe only the construction of L(ll)7 the construction of Lgl)

)

is analogous. In L( we enumerate all vectors ego) € Fk/ % 0F/2 with weight

p1/2. For each of these vectors we compute Pe1 . Similary, in Léo) we enumerate

all vectors eéo) € 0F/2 x F§/2 with weight p; /2 and compute Pego). We then run

a NN search on the first #; coordinates to find all vector sums with weight wgl)

on these coordinates. Note that the vectors e(lo) and ego)

a vector of weight p; as required for list Lgl).

This concludes the high-level description of our algorithm. More details can
be found in Algorithm 5, which has to be used as an ISDSOLVE-subroutine in
Algorithm 1 to obtain a full fletched ISD algorithm, including column permuta-

tion 7 and transformation to standard form.

automatically add up to

List of objects. For completeness, we provide in the following a precise descrip-
tion of the lists. For the lists of level 0, we have

LO = {(Pel?, e} € Fu* x 52 x 0¥/2 | A(el®) = p1 /2}, (8)
Pe;‘”, M) e T2k x 082 x FE/2 | A@el) = p1/2},
Pe?, ) € T F x FE/2 x 042 | Ael?) :p1/2}7

L = {(Pel” +5,e{") € Fy™* x 042 x F/? | Ael”)) = p1/2}.

Thus, all lists on level 0 have size Sy = (pkl//é). Note that Lgo) = Léo). The lists

on level 1 are constructed via NN search on the first ¢; coordinates such that we
obtain weight w%l) on these coordinates. This yields

LY = {(Pe&l i) e Byt x FE | Ael”) = pi A((Pef) ) = i},
LY = {(Pel!) +5,el") e Fp* x B | Alel)) = pr, A((Pel) +8))) = iV}
By the randomness of P, both lists have expected size

Si = IEHLZ(.UH = S2 . Pr[weight wgl) on the first ¢; coordinates]

2 (4
= <k/2> . (w§ ) for i =1,2.

p1/2 26
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Eventually, by an NN search on ¢5 bits for weight ws on the level-1 lists and
subsequent filtering for weight p on the last k coordinates and weight w; on the
first ¢, bits, we obtain

L® ={(e" &) e F§ xFy % | A(e') = p,e” = Pe’ +5,A(e") =w — p}.

Thus, any element (e”,€’) of L(?) yields a solution (€’,e”) of a Syndrome Decod-
ing Problem in standard form.

Algorithm 5. DEPTH-2-ISDSOLVE

Input : Pe Fénfk)Xk,é ek w
Output  : (¢/,e”) € F x F3=F

Parameters: Optimize p, w1, ¢1,p1, wgl).
Set wo =w—p—w; and o =n—k — {;.
1 Create lists LEO), i=1,2,3,4 as defined in (8)
2 Lgl) — NN—SearCh(Lg?)_l,L;?), 1,w§1)),i =1,2
> NN-Search(L1, Lo, 4, w) performs a NN search on (Li)p, (L2)p
> with target weight w while keeping all other coordinates.

s L « NN-Search(L{", L 2, w,)

4 L® — Filter(L®,1,w,)) > Filter(L, 4, w) filters L for elements
L) — Filter(L®, 3,p)) > with weight w on its projection in L;.
if |[L(®| > 0 then return (e/,e”) for some (e”,e’) € L(?
else return L

Notice that Algorithm 5 can only succeed to output a solution (e',e”) # L
if there exists some €’ with weight p such that Pe’ + s = e = (ef}}, e3) with
e, erl, having weights w1 and ws, respectively. This specific weight distribution

(1] ™2
has to lbe induced by the column permutation 7 of Algorithm 1.

Definition 4. Let e € Fy with A(e) = w and k,p € N. Let {1,405 € N with
Ui+l =n—k, and let wy,ws € N with wy +we = w—p. We call a permutation
good for e with respect to (p, w1, £1,ws, €), if (e) = (€, eﬁ], eE’Q]) € Fs xFi xFe
with

A(e) =p, Aefy)) = w1 and Aley)) = wa.

A random permutation w is good with probability

() E)
()
It remains to show that on input a standard form Syndrome Decoding

instance (P,§,w) that stems from a good 7, Algorithm 5 constructs a non-empty
list of solutions L(2).

P, =
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Lemma 1 (Correctness). Lete be a solution to the Syndrome Decoding Prob-
lem. Let  be good for e with respect to any fized parameters (p, w1, 1, ws,l2) as

given by Definition 4. Whenever we run Algorithm 5 with parameters pl,wgl) eN

satisfying
(p]/j2) <p1k— pp/2> - (7)) (22;”“ ) ®)

wil) —wi/2

then on expectation we have (e €') € L for m(e) = (¢/,€").

Thus, Lemma 1 shows that any (possibly unique) solution e to the Syndrom
Decoding Problem is constructed in our sub-routine of Algorithm 5 at that point
in time when the full-fletched ISD Algorithm 1 provides a good permutation m,
under the condition that (9) holds.

Before we prove Lemma 1, we would like to show that its statement is not
vacuous. Namely, there always exist p1, w§1) such that condition (9) holds.

Using the Binomial Theorem, we have

(o) <5 (1) = <(,)

2" <( ") <o
n+1 n/2 '

Thus, up to a linear factor we can approximate (7:}2) by 2™. Hence if we ignore

This implies

linear factors, condition (9) collapses for the setting p; = k/2 and w%l) =1{/2
to
optk=p > ghmwi=(himw) o >,

which is trivially fulfilled. Thus, there always exist feasible parameters
P, w1, El,pl,wgl) that lead to a solution when running Algorithm 5. Among these

feasible parameters, we will later minimize running time.

Proof (of Lemmal). Let 7(e) = (€’,€”) be the solution of our Syndrome Decod-
ing problem in standard form. Since we have standard form, we conclude that
e = Pe’ 45 is fully determined by e’. Moreover, since we assume 7 to be good,
e’ is of the correct form. Thus, it suffices to show that Algorithm5 constructs
the desired e’ € F5.

Notice that in our construction €’ = egl) + eél), and in turn egl) = ego) + eéo)
(and analogous for egl)).

Let us first argue that in our construction we obtain up to a polynomial
factor all (pkl) vectors egl) € F% on level 1. All vector sums ego) + eéo) are by
the definition of e(10)7e§0) different. Up to polynomial factors (denoted by =),

2
we have by standard approximation via the binary entropy function (pkl/ /22) &

92H (5H)k/2 (:1) vectors egl) that we construct.
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Now let us turn to the construction of € with weight p on level 2 via egl) +e, ()

with egl), eé ) having weight p; > p/2. We call (egl) é )) a representation of €’

51) + egl). Notice that our desired solution €’ has

p k—p ) .
Ry = representations, 10
’ (p/2) (pl —p/2 (10)

since the set of 1-coordinates in e’ can be represented in (p’/’Q) ways as 1 + 0 or
0+ 1, and the set of 0-coordinates in € can be represented in (plk__]gp/2
0+0or1+41.

From an algorithmic point of view, we do not care which of the Ry represen-
tations is eventually used for constructing €’. It is therefore sufficient that only 1
of these R5 representations is present in Lgl) X L(Ql). Hence, for achieving minimal
run time we construct only a random 1/Rs-fraction of all representations such

ife =e

) ways as

that on expectation one representation is present in Lgl) X Lgl), and therefore
e appears in L(?).

For constructing only an 1/Ra-fraction, we construct on level 1 only those
elements (Pegl), egl)) L(l) whose first ¢; coordinates have weight w( ) (analo-

gous for Lél)). This means that we enforce A((Pegl))m)) = %1). Let E be the
event that there exists a representation of

efi = (Pel” + Pel" +8)p with A((Pe{"))) = A((Pel) +8))) = wiV).
By randomness of P, we have

01—
(wr72) (LB 22, /2)
201 ’

p272 = PI'[E] =

since there are a total of 241 possible representations of the form e = (pegl) +

Pegl) + 8)j1) out of which (w“;}z) (wiﬁiﬁm) have the correct weight wgl) for

(Pegl))[l], (Pegl) +8)[1) by the same argument as in Eq. (10).

Thus, the expected number of representations of €’ is Ry - p2 2. Hence on
expectation, we construct € in L(® if R, - p22 > 1, which is equivalent to
condition (9). O

Complexity of the Depth-2 Algorithm. Our Algorithm 5 starts with the

construction of lists LEO),Z' =1,2,3,4 (step 1) which takes time Sy = (;1//22). By

Theorem 1 and Egs. (5), (6), the Nearest Neighbor search on (LEO))D] (step 2)
takes time
tog(sg) 4" &
2?/(T)T)él if log(So) <1-— H("-’l )
2 20,
min{S¢, max{( ., <1)) - S0, 53 - 2[1 }} else
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)
resulting in the lists L§1)7 Lél) that have expected size S; = (pkl//22)2- (221

lists are again combined via Nearest Neighbor search (step 3) in time

. These

Qv )t if o250 1 _ pr(gz)
T1 = Lo 2 2 s
min{S?, max{() - S, S} - ( 2)}} else
2

2¢2

resulting in the final list L(?). The filtering (step 4) takes time So := |[L(?)|. We

only need to store the lists L,L(-O) of size Sy as well as the lists Lgl), Lél) of size
S1. The total running time is

time T = max{Ty, T1, So, S2} = max{Ty, T1 },

since Ty > Sy and 17 > Ss.

Total complexity of Decoding. Algorithm 5 constructs a solution iff 7 is good
which happens according to Definition 4 with probability P, resulting in a total
expected running time of T'- P! for our full-fletched ISD algorithm.

4 The Depth-m Algorithm

Our algorithm with depth 2, as described in the previous Sect. 3, already illus-
trates the overall idea of approximate matching, but does not yet yield improved
running times compared to the BJMM algorithm. Therefore, we generalize to
arbitrary depth in this section, which is mostly straight-forward but still includes
some subtleties how to proceed with approximate matchings - and their respec-
tive weights - over many levels of a search tree.

Outline of depth-m algorithm. Let us start again with a high-level overview
for our algorithm with arbitrary depth m. The reader is advised to follow the
description via Fig. 4 which shows the algorithm for m = 3.

In the final list Lgm) we now split the first n — k coordinates into m blocks
instead of only 2 blocks, i.e we have e’ = (eﬁ], ey [ ]) Block ef’] has length

{; and weight w( ™) The parameters /¢;, w( m)

On level 0, there are a total of 2™ lists Lgo), . Lgo) The construction of

the 21 lists Lgl) L(,,)L . on level 1 out of the level-0 lists is identical to the
construction in Sect. 3
For the level-m lists, we have

are subject to optimization.

L = {(Pel”,el”) € Fy* 5 FE/? 5 082 | A(el”)) = py/2}, (11)
L = {(Pel) ) ey~ x 02 x FY/ | Alel?)) = p/2},

L) = {(Pel) +5,e%) c Fi~" x 05/2 x FE/? | A(el)) = p1/2}.
for j; = 1,3,.. .,2/’" —1land jo =2,4,...,2™ — 2. All lists on level 0 therefore

have size Sy = (:1/22).
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AN

Pe'+s=¢€" ¢

Fig. 4. Our algorithm for depth 3.

Starting from the level-0 lists, our algorithm combines two lists at a time
using NN search in a binary tree wise fashion until we reach the final list L(™).
On every level ¢ = 1,...,m — 1 we construct the first list L(l) via NN search
on the projected lists (Lgi_l))m, (Lg_l))m such that we obtain weight w (Z) . We
furthermore filter for weight p; on the last k coordinates and a specific Weight
distribution on the remaining coordinates such that we get

L ={(Pel? el € Fy*x F§ | A(ef”)=pi, A((Pel ) = w} h=1,....i}.

The other lists L;i), j = 2,...,2" are created analogously. By randomness of

P the projection (Pegi))[i] with weight wgi) is in our construction the sum

of two random vectors. For every h = 1,...,i — 1 the projection (Pegi))[ A

with weight w,(li is the sum of two random vectors of specific weight w(z D

Fixing the first vector, there are (wf,l)) possible second vectors out of which
h

(i—1)

-1 )
(w“ ufé o /2) (Zh’wz}{h ) yield the correct weight w;f). Therefore, the expected
W h

list sizes on layer ¢ are upper bounded by
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Si < {x € F§JAX) = pi}| - Pr [Ax) = w(")]
x€EF

m—1
Pr [A(x+y) =w|Ax) = Aly) = w} ]
h=it1%YEFS"
(7 1) (i—1)

_ (k) . (ff»‘)) ﬁ (, - W <>/2)<éh (w>/2 )'

ot 11 (wgzm)

Eventually, an NN search on ¢,, = n — k — 211711 £; bits for weight wgnm) =
W= Pm— oy w(m), Pm = P, on the level-(m — 1) lists and subsequent filtering

i

for weight p,, on the last k coordinates and weight w( ™) for every projection e[z]7
1=1,...,m— 1, we obtain

L0 = {(¢”,€) € Ty x Ff | A(e) = p,e” = Pe' +5, Ae") =w— pn).

Thus, any element (e”,e’) of L(™) yields a solution (e/,e”) of a Syndrome Decod-
ing Problem in standard form.

More details can be found in Algorithm 6, which has to be used again as an
ISDSoLvE-subroutine in Algorithm 1 to obtain a full fletched ISD algorithm.

Algorithm 6. DEPTH-m-ISDSOLVE

Input : PeFS Mk s et W
Output : (e/,e") € Fs x FpF
Parameters: Optimize pi, ... 7pm,w%m), . 7(nm)1’ ly,. .. ,Em,l
Compute W = — Pm — D iy w(m) bn=n—k-31" Ly..
() _ Wit
1 Define w; ::’T,zzl,...,m—l

Choose optimal wj(-i) such that condition (12) holds.
Create lists L(O) ,j=1,...,2™ as defined in (11).
LY « NN- Search((Lé]) 1)[1] L)y, iV), g =1,...,2m7 1
forz_2 .om,j=1,...,2" do
L{Y — NN- search((Lg; D (LS, w)
L§_> — F1lter(L§')7h,w,(l>)), h=1,...,i—1
LY Filter(L”,m +1,p;))
end
if [L(™)| > 0 then return (e’,e”) for some (e”,e’) € L(™
else return L

w N

'

Notice that Algorithm 6 can only succeed to output a solution (e',e”) # L
if there exists some e’ with weight p,, such that Pe’ +§ = (e'[’l], .. ,egn]) with

el having weight wi(m) for all i = 1,...,m. This specific weight distribution has
to be induced by the column permutation 7 of Algorithm 1.



40 L. Both and A. May

Definition 5. Let e € Fy with A(e) = w and k,p,, € N. Let 4y,..., ¢y, € N

with Y i 4; =n —k, and w%m), i e N with > w(m) =W —pPn.
We call a permutation © good for e with respect to pm, (W gm),&)z:17,,_,m, if
w(e) = (€¢/,€f));- - efy) € FE X TG x -+ x Fy™ with

A(e/) = Pm; A(eg]) :w(m),i: 1,....m.

?

A random permutation w is good with probability

k £;
(pm) H:il (wgm))
()
We now show that on input a standard form Syndrome Decoding instance

(P,8,w) that stems from a good 7, Algorithm 6 constructs a non-empty list of
solutions L™,

P, =

Lemma 2 (Correctness). Let e be a solution to the Syndrome Decoding

Problem. Let w be good for e with respect to any fixed parameters pm,wi(m),éi,

i=1,...,m as given by Definition 5. Whenever we run Algorithm 6 with param-
eterspl, ]() eN, forj=1,...,1,i=1,...,m—1 satisfying
Di k—p; i—l 9l
; ! > _ _ , Mi=2,....m 12
(pi/Q) <pi—1 Pi/2) - 1:[ wg! tn—wy) 12)
h=1 ( (1)/2) ( (z 1) _ (i)/2)

then on expectation we have (e”,€') € L™ for n(e) = (e,e").

Analogous to Sect. 3, we can show that the setting p; = k/2 and w,(f) =0y /2,
forh=1,...,i—1,i=2,...,m, yields feasible parameters for Algorithm 6 that
fulfill condition (12).

Proof (of Lemma2). The proof is similar to the proof of Lemmal and can be
found in the full version [BM17a].

Complexity of Algorithm 6. The lists LE.O), j=1,...,2™ are created in time

So (step 2). The NN search on those lists yields lists Lgl), jg=1,...,2m1 (step

Next, another NN search on the new lists returns lists L;Q), j=1,...,2m2
(step 4) which are subsequently filtered (step 5). These two steps of NN search
and filtering are repeated until only one list is left. By Theorem 1 and Egs. (5),
(6) the NN search layer on i = 0,...,m — 1 takes time

(i+1)
log(84) “it1 vy, ) (i+1)
o\ Th Vit if log(S;) <1 _H(“’z+1 )
Lita 20541

T, .= ( z+1
min{S?, max{( ., <z+1>) S;, 5% o1 +h oelse

2ki+1
2




Decoding Linear Codes with High Error Rate and Its Impact 41

The filtering takes time S; on layer i = 2,...,m—1and S, := \L(m)| on layer m.
On every level ¢ of our search tree we consume time 7; and store lists of size
S;. Thus, we obtain
time T= max {T;}
1=1,....m
using T; > S; for i =0,...,m —1 and T;,—1 > Sp,-
Total complexity of Decoding. Algorithm 6 constructs a solution iff 7 is good

which happens according to Definition 5 with probability P, resulting in a total
expected running time of T'- P! for our full-fletched ISD algorithm.

5 Results

Syndrome Decoding Problem. The best known complexity for Full Distance
decoding is currently 2°-9953" ysing BJMM in depth 4 [BM17b], whereas for Half
Distance Decoding the best known bound is 20-0473" [MO15].

As stated in Theorem 2, we improve the bound for Full Distance Decoding to

20-885n Tn the Half Distance Decoding setting, we achieve a small improvement
to 20.046571.

Theorem 2. Algorithm 1 in combination with Algorithm 6 for m = 4 solves Full
Distance decoding for random binary linear codes in expected time 2°:0%%5" ysing
20:0736n space. Half Distance decoding is solved in exptected time 2°9-0455™ ysing
90-0294n 5,00

Proof. For Full Distance Decoding we achieve the maximal running time at code
rate

k d k
— = 0.46 with relative distance w_94_ H! (1 — ) = 0.1237.
n non n

For this code rate, we minimize the running time choosing the relative weights

PL o 0.00559, P2 —0.01073, 22 —002020, 4= 0.03460,
n n n n

resulting in

RQ _ 20.01357n7 R3 — 20.02668n’ R4 — 20.06028n

representations. Furthermore we set

b 0.0366, b 0.0547, b _ 0.0911,
n n n

w1 w§3)

Y1 0.0066, 2 =0.0099, 2 —00114, ‘1 —0.0232.
n n n n

Optimization showed that
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is a good choice which yields

oD o
L —0.011515, - =0.023029,
n n

e W® W@
2 =0.016676, —— =0.033351, —— =0.009993
n n n

using condition Eq. (12) from Lemma 2. The resulting list sizes are

SO — 20.0217971 Sl — 20.0398771, 88.0593971’ SS — 20.0597577,.

)

The lists on layer 0 are combined with the NN search of Algorithm 3 in time

_ 90.04359n
TO =2 )

as the condition for May-Ozerov is not satisfied and Algorithm 4 is less efficient
in this case. On layer 1 we use Algorithm 4 in time

__ 90.07356n
Tl =2 )

which is also the space consumption for this step. On the remaining layers, we
use May-Ozerov NN search which yields

Ty = 20:07365n 7y _ 90.07359n

The probability for the correct weight distribution satisfying Definition 5 is

P = 2—0A01485n
T = .

Thus the overall running time and space consumption is

T = & — 20.0885n and S = Tl — 20.073677,.
Pr
The case of Half Distance Decoding is analogous and can be found in the full
version [BM17a]. O

While Theorem 2 states the run time for the worst-case rate, Fig. 5 illustrates
and compares the run time as a function of all constant rates % of our algorithm
to other decoding algorithms like Prange, BJMM and BJMM with NN-search,
called BJMM-NN.

We also provide the C-code for optimizing all these algorithms at https://
github.com/LeifBoth/Decoding-LPN.

Figure 6 compares in more detail for varying depths m the complexity of our
algorithm to BJMM-NN, as analyzed in [BM17b]. Here, we consider FD, HD
and typical McEliece instances with k£ = 0.775 and w = 0.02 [BLP0S].

In the Full Distance (FD) setting, our algorithm is superior to BJMM-NN in
all depths m = 2,3, 4. Already for depth m = 3, we beat the current FD record.
Moreover, the improvement of the exponent from 0.09537 to only 0.0885n is quite


https://github.com/LeifBoth/Decoding-LPN
https://github.com/LeifBoth/Decoding-LPN
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Fig. 5. [Pra62,BJMM12,MO15] and our algorithm for varying code rates %

significant. Another quite surprising benefit of our algorithm when compared to
BJMM-NN is its modest space consumption. We were not able to improve our
running times for m = 5, due to the large parameter space for optimization.
Whether further improvements are possible currently remains an open problem.

In the Half Distance (HD) setting, our algorithm also outperforms BJMM-
NN, slightly reducing the running time from 2004737 to 20:04657 Unfortunately
this improvement is not as significant as in the FD setting. The same happens
for McEliece instances with a typically small error weight way below HD, where
our improvement from 2°:0350n to 20-0347n g only marginal.

We suspect that the strong dependency of our algorithm on the error-weight
is due to the heavy reliance on Nearest Neighbor search on every layer, which
needs a sufficiently large weight w to show its strength. We will also see this
effect in the case of LPN.

LPN Problem. Let us apply our algorithm to the LPNj , problem (Defini-
tion 3). In LPNy, , we have to solve a (n, k, w)-decoding problem with expected
weight w = 7n and fixed k. However, we are free to choose the number of sam-
ples n, and can therefore make the code rate % arbitrarily small. Thus, for every
fixed instance (k,7) we minimize the running time T'(n,k,7) of our decoding
algorithm over all n. The optimal number of samples for our algorithm for the
cryptographically popular LPNy;o 1- -instances is n ~ 140.000.

In Fig.7, we compare different’ decoding algorithms for directly attacking
LPN512&7 where we suppress polynomial overheads. Here BJMM-NN would take

2180 steps, our algorithm has complexity 2169,
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[BM17b] Our algorithm
log(T") /n log(S)/n|log(T') /n log(S)/n

0.1003 0.0781 | 0.0982 0.0717

0.0967  0.0879 | 0.0926 0.0647 (FD)
0.0953 0.0915 | 0.0885 0.0736

0.0491  0.0309 | 0.0488 0.0290

0.0473 0.0363 | 0.0478 0.0290 (HD)
0.0473 0.0351 | 0.0465 0.0294

0.0362  0.0264 | 0.0360 0.0260

0.0350  0.0280 | 0.0360  0.0252 (McEliece)
0.0350 0.0280 | 0.0347 0.0251

B N A W N w N S

Fig. 6. Running time and memory consumption of our algorithm compared to the
optimized BJMM-NN variant of [BM17b].

It is however important to stress that stand-alone decoding is not the best
way to attack LPN instances. As shown by Esser et al. [EKM17] a combination
of the BKW algorithm [GJL14] and decoding algorithm is due to its flexible
memory requirements currently the best way to tackle LPN instances in practice.
Here, one first uses BKW to turn LPNy, - instances into LPNy. -+ instances with
reduced dimension k' < k at the cost of increased error 7/ > 7. Then in a second
step, LPNy -+ is solved via decoding.

LPNsm,% LPNuz%
log(T") [log(S) |log(T) [log ()
Prange [Pra62] 213 - 117 -

BJMM [BJMM12] | 190 114 117 62
BJMM-NN [MO15]| 180 122 117 64
Our algorithm 169 | 138 75 47

Fig. 7. Complexities of different decoding algorithms for LPN instances.

Since our decoding algorithm shows its strength for large errors 7/, its seems
like a perfect choice in such a hybrid BKW-decoding algorithm. In a typical
attack on LPNjg, 1, like the ones described in [EKM17], BKW would turn
LPNj;5 1 into LPNy,7 285 instances, which are subsequently decoded. The cal-
culations in Fig.7 give us good indication that such instances with large error
7' close to % can be much faster decoded by our new algorithm. However, the
full extent of our improvement has yet to be determined by real experiments.

Figure 8 shows the asymptotic behavior of our algorithm on LPN-instances
for varying weights 7, which also illustrates the strength of our algorithm in the
high error regime. Notice that the graph of our new algorithm’s complexity can

be very well approximated by a line, which yields the simple formula

Trpn(k,7) =2"35.
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log(T)
k
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Fig. 8. Dependence on LPN error 7 of [Pra62, MO15] and our algorithm.
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Abstract. In 2013, Misoczki, Tillich, Sendrier and Barreto proposed a
variant of the McEliece cryptosystem based on quasi-cyclic moderate-
density parity-check (QC-MDPC) codes. This proposal uses an iterative
bit-flipping algorithm in its decryption procedure. Such algorithms fail
with a small probability.

At Asiacrypt 2016, Guo, Johansson and Stankovski (GJS) exploited
these failures to perform a key recovery attack. They introduced the
notion of the distance spectrum of a sparse vector and showed that the
knowledge of the spectrum is enough to find the vector. By observing
many failing plaintexts they recovered the distance spectrum of the QC-
MDPC secret key.

In this work, we explore the underlying causes of this attack, ways in
which it can be improved, and how it can be mitigated.

We prove that correlations between the spectrum of the key and the
spectrum of the error induce a bias on the distribution of the syndrome
weight. Hence, the syndrome weight is the fundamental quantity from
which secret information leaks. Assuming a side-channel allows the obser-
vation of the syndrome weight, we are able to perform a key-recovery
attack, which has the advantage of exploiting all known plaintexts, not
only those leading to a decryption failure. Based on this study, we derive
a timing attack. It performs well on most decoding algorithms, even on
the recent variants where the decryption failure rate is low, a case which
is more challenging to the GJS attack. To our knowledge, this is the first
timing attack on a QC-MDPC scheme.

Finally, we show how to construct a new KEM, called ParQ that can
reduce the decryption failure rate to a level negligible in the security
parameter, without altering the QC-MDPC parameters. This is done
through repeated encryption. We formally prove the IND-CCA2 secu-
rity of ParQ, in a model that considers decoding failures. This KEM
offers smaller key sizes and is suitable for purposes where the public key
is used statically.
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1 Introduction

Code-based cryptography is almost as mature as public-key cryptography itself,
dating back to 1978 with the invention of the original McEliece public-key
encryption scheme [28]. This scheme, when used with (as originally proposed)
binary Goppa codes, has largely resisted all cryptanalytic efforts, from both
classical and quantum adversaries. Because of this, code-based cryptography
is a strong candidate for post-quantum standardisation, with several variants
[30,31] attempting to make improvements or refinements on the original design.

Following [4,18], a new variant was proposed in 2013 using quasi-cyclic (QC)
moderate density parity-check (MDPC) codes [29]. QC-MDPC codes use much
shorter keys (about 10 kbits). This choice appears promising and the QC-MDPC
scheme was recommended for further study by the report “Initial Recommen-
dation of long-term secure post-quantum systems” of the FKuropean project
PQCRYPTO [3]. Some hardware implementations of this scheme were published
in [22,27].

The decryption algorithm of the QC-MDPC scheme is a variant of Gallager’s
bit-flipping algorithm [19]. It is an iterative algorithm with a simple structure,
very easy to implement, even on constrained devices. It has an inconvenient
though, it is subject to failure with non-negligible probability. The algorithm
proposed in the original paper [29] has a decoding failure rate (DFR) of 1077.

While decoding errors may not represent a serious reliability issue, in a recent
paper by Guo, Johansson and Stankovski (GJS) [20], the authors showed that
these decoding failures actually do represent a very serious security issue. The
authors exploited this DFR and managed to successfully recover the key by
analyzing the error patterns that made the decryption fail. They found that
these error patterns are correlated with the key. They introduce a new tool,
the distance spectrum, to describe the correlation. They successfully use this
correlation to perform their attack and give some hints on the reason why error
patterns correlated in such a way are more prone to cause decryption failure.

The original QC-MDPC primitive is extremely vulnerable because the adver-
sary may choose the error and even force a higher weight, in this case the attack
of [20] recovers the key within minutes, when attacking a parameter set intended
for the 80-bit classical security level. With a semantically secure conversion (CCA
security, as in [23]) it requires 2397 operations.

1.1 Owur Contributions

In this paper we extend the analysis of the GJS attack on QC-MDPC. The GJS
attack works because the decoding failure depends of the existence of common
values in the spectrums of the error pattern and of the secret key. In Sect. 3 we
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show that this correlation can be observed through the weight distribution of the
first syndrome computed by the MDPC decoder. Pushing the analysis further
we are able to quantify this bias. This allows us to perform a side-channel attack
using the syndrome weight to recover the distance spectrum of the secret key. We
show that the number of samples we need to make this attack work is consistent
with the Chernoff bound applied to the above mentioned bias. This opens the
way to theoretical estimates for the cost of attacks related to the secret key
distance spectrum recovery.

Next, by remarking that the syndrome weight is correlated to the decoding
time, we perform a GJS type of attack by counting the number of iterations. This
provides a timing attack which is very generic and can be applied to any variant
of the bit flipping algorithm which is not protected against timing attacks. More-
over, it works regardless of the failure rate. To our knowledge, this is the first
timing attack on this kind of scheme. This confirms a conjecture made by Mau-
rich and Giineysu [25] that the number of iterations in the decoding procedure
leaks secret information.

In Sect.4 we demonstrate the power of this attack by showing experimental
results of the timing attack on various parameter sets and decoding procedures.
This shows that the attack is practical even against the 256-bit classical param-
eter set. Additionally, we analyze and discuss how some other variations in the
decoding procedure proposed in [27] affect the attack and its effectiveness.

Finally in Sect. 5, we show a new construction for a QC-MDPC-based KEM,
called ParQ. This KEM uses QC-MDPC encryption as the underlying primi-
tive, and does not need to alter the parameter set of the primitive itself. The
scheme works by creating multiple independent encapsulations of the same key,
so that a decapsulation failure only occurs if a decoding failure happens for each
ciphertext. This causes the decapsulation algorithm to only fail with negligible
probability, and so it entirely eliminates the possibility of using decoding failures
to recover the key with the GJS attack. This scheme does not increase key sizes at
all, and only increases the size of the encapsulation by a small factor (3—12x).
We provide a comprehensive proof of IND-CCA2 security of the scheme, and
analyse the KEM compared with other code-based key transport methods. Our
proof considers the possibility of decoding failures. Other CCA2 constructions
[23,26] did not consider this, which is why the GJS attack was able to break
CCA2 security. Most commentary on mitigating the GJS attack has focused on
either altering the parameters of QC-MDPC to decrease the DFR or using the
keys ephemerally. Through our scheme we show that there is a third option that
can address decoding failures at the protocol level.

1.2 Related Work

The McEliece cryptosystem was originally proposed in [28], and low density
parity-check codes were proposed in [19]. The QC-MDPC variant of McEliece
was proposed in [29]. The key-recovery reaction attack we focus on in this paper
was shown in [20]. In [17], the authors analyzed how the observations from [20]
applied to the case of LDPC McEliece [30], showing that the attack also worked
on soft decision decoding procedures.
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Since the first publication of the QC-MDPC scheme, efforts have been made
to tune the decoding algorithm, especially exploring the different ways to fix the
thresholds in order to reduce the DFR [10]. This is discussed in details in Sect. 2.2.

Side-channel timing attacks [24] on McEliece systems other than QC-MDPC
have been considered for example in [33-35] which has motivated the need for
constant-time implementations [7,13]. In [11,12,25], the authors demonstrated
several power-analysis side-channel attacks on QC-MDPC, and [25] conjectured
that it might be possible that the number of decoding rounds leaks secret infor-
mation. To our knowledge, our paper is the first to conclusively show that this
is in fact the case.

CCA2 conversions for McEliece systems have been considered before, most
notably in [23]. General conversions for designing CCA2 KEMs from OW-CPA
systems were studied in [15]. Other key exchange and key encapsulation schemes
related to QC-MDPC include [5,13,14,26].

A line of constructions beginning with [32], and applied to McEliece in sev-
eral follow-up works [16,36] explored the concept of the k-repetition paradigm
for encryption. This paradigm bears some resemblance to our parallel KEM
in Sect. 5, although these constructions are different and have a different goal:
CCA2 security without random oracles.

2 QC-MDPC McEliece and the GJS Attack

2.1 Quasicyclic Moderate Density Parity Check McEliece

QC-MDPC-McEliece is a public key encryption method consisting of three algo-
rithms. It is defined by four parameters, n, k, w, and ¢t. The key generation algo-
rithm QCMDPC.KeyGen constructs an (n, k)-linear quasicyclic code, consisting of
a generator matrix G (the public key) and a parity check matrix H (the secret
key), for which each row has weight w. The encryption algorithm QCMDPC.Enc
encrypts a plaintext x € IF‘IQ€ by calculating the corresponding codeword to =, zG
and adding an error e of weight ¢ to obtain the ciphertext ¢ = e + xG. The decryp-
tion algorithm QCMDPC.Dec decodes ¢ back to G and recovers .

While QC-MDPC can allow for k£ to be any divisor of n, we will consider the
case of n/k = 2. We let E denote the set of ¢ € IF5 with Hamming weight ¢.
Note that the size of each block, r = (n — k) = k.

Algorithm 1. QCMDPC.KeyGen

Input: Security parameter 1.
Output: Public key pk, secret key sk.

1: Generate ho, h1 € IF5, both with weight w/2.

2: Let H = [Ho|H1], where Ho and H; are k x k matrices generated from ho and hq
by cyclically rotating them.

3: Set G = [I|Q], where I is the k x k identity matrix, Q = (H; ' Ho).

4: return pk = q, the first row of Q and sk = ho, h1. These allow for the reconstruc-
tion of G and H.
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Algorithm 2. QCMDPC.Enc

Input: Public key pk = ¢, plaintext 2 € IF%, error vector e € E.
Output: Ciphertext ¢ € IF5.

1: Reconstruct G = [I;|Q] by cyclically rotating g to obtain Q.
2: return ¢ = e + zG.

Algorithm 3. QCMDPC.Dec

Input: Secret key sk, public key pk, and ciphertext ¢ € TF5.
Output: Plaintext z € IF% and error vector e € E, or decryption failure symbol L.

1: Reconstruct parity-check matrix H = [Ho|H1], and generator matrix G = [I|Q)].

2: Run the decoding procedure on ¢ with parity-check matrix H to recover codeword
x2G. If a decoding failure occurs, return L.

3: Recover z from the first k bits of zG.

Recover e = ¢ — zG.

5: return (z,e).

=

Multiple parameter sets for QC-MDPC have been proposed for multiple secu-
rity levels. Our interest is in the 80-bit and 256-bit classical security sets (which
corresponds to at least 40-bit and 128-bit quantum security) that were originally
proposed in [29], and have been further discussed in [5].

Classical bit-strength | n k w |t
80 9602 | 4801 | 90| 84

128 20326 | 10163 | 142|134

256 65542 132771 | 274 | 264

2.2 QC-MDPC Decoding Procedure

The original paper on MDPC codes [29] proposes to use a hard decision version
of Gallager’s bit-flipping algorithm for decoding LDPC codes [19]. The main idea
is the following. At each iteration, the algorithm computes the number of unsat-
isfied parity-check equations associated to each bit. Each bit that is involved
in >b unsatisfied equations is flipped, for b some threshold, and the syndrome
is recomputed. This repeats until the syndrome becomes zero. In practice, the
algorithm stops after fixed number of iterations and this is considered a decoding
failure.

For our main analyses we use decoder D; from [27] with fixed thresholds
{95, 85,80, 76,74,73,72,72}. D; is a modification of Gallager’s algorithm which
updates the syndrome in place after each bit flipped. Algorithm 4 is the normal
out-of-place bit flipping algorithm and Algorithm 5 is the in-place version.
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Algorithm 4. Iterative bit flipping decoding algorithm

Input: ¢ = (co,...,cn1) €FS, H= (R, ... h"=D) c Fpx"
s— H-cT > compute the syndrome
while s # 0 do
fori=0,...,n—1do

if (s,hY) > b then > if number of unsatisfied equations > threshold b
ci—c D1l > flip the it bit
s«—H-cT
return c

Algorithm 5. In-Place: Iterative bit flipping decoding algorithm

Input: ¢ = (co,...,cn1) €5, H= (R, ... p»=D) e Frx"
s—H-cT > compute the syndrome
while s # 0 do
for:=0,...,n—1do

if (s,h") > b then > if number of unsatisfied equations > threshold b
ci—cCi D 1. > flip the i*™™ bit
s—s®h®

return c

Variable thresholds. A more recent approach, studied in [10], is to choose the
values of b at each iteration depending on the syndrome weight at the time. This
approach gives the best results so far, both in terms of decryption failure rate
and average number of iterations.

In both cases, until now the thresholds were claimed as experimental results
with no explanation on the way they were generated. In Appendix B we discuss
a procedure to obtain such thresholds for any security parameters.

2.3 The GJS Attack

The key recovery attack in [20] is a reaction attack. It takes advantage of the
decoding failures that occasionally occur during decryption. It assumes only that
an adversary is able to tell when such an error has occurred, for example because
a request for resend is sent back. It consists of two steps. The first step is to
calculate the distance spectrum of the secret key (or one part of the secret key),
based on observing a large number of error vectors that resulted in a decoding
failure. The second step is to reconstruct the secret key based on its distance
spectrum.

In this paper, we will focus our attention on the first step. Reconstructing
the secret key from the distance spectrum has been analysed before [17,20], and
shown to be fairly fast and simple as compared to the first step, and is an entirely
offline computation, requiring no communication.

Definition 1 (Distance Spectrum). The distance spectrum of a vector h €
TF5, denoted A(h), is the set of distances § such that there exist two non-zero
bits of h at distance 6. The distance are counted cyclically.
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- 0<i<yg<r,
Ah) =6:1<6 < |£],36.5), hlil = hij) = 1.
min{j —i,r—(j—i)} =96

where h[i] denotes the it entry of the binary vector h.

Fig. 1. Distance spectrum of 1001000112

For example, the distance spectrum of the vector 1001000115 is {1, 2, 3,4}
(Fig.1). Note that any cyclic shift or reversal of a vector will result in the same
distance spectrum. In [17,20], it was shown how to quickly reconstruct a vector
(up to a reversal or cyclic shift) from a distance spectrum. The first step of the
GJS attack is to find the distance spectrum of the first half hg of the secret key
(ho, h1). From this, hy can be computed, which allows us to also calculate hy by
elementary linear algebra.

In order to analyse more precisely the results, we need to take into account
the fact that some distances may appear more than once.

Definition 2 (Distance Spectrum with multiplicity). The distance spec-
trum with multiplicity of a vector h € I}, denoted A*(h), is a vector of INL2
such that for every distance 1 < § < |%], its 6™ component A*(h)[6] is the
number of existing sets of two non-zero bits of h at distance 6. The distance are

counted cyclically.
Ezample 1. For h = 00110000115 (see Fig. 1), then A*(h) =[2,1,1,2].

In general we can see that if a vector hg € ]F’Qc has weight wq, then the distance
spectrum with multiplicity of hg will be a vector of size |k/2| such that the sum
of the entries of A*(hg) is ().

Finding the distance spectrum of the secret key is done by taking note
whether a decoding failure occurs for a large number of error vectors. This is
done because of the following observation:

Observation 1 (GJS, Key Observation). When a distance in the error vec-
tor used in a QC-MDPC encryption matches a distance in the distance spectrum
of the secret key, a decoding failure is less likely to occur.
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Based on this observation, it was noticed that by carefully calculating the
decoding failure rate for errors that have a given distance vs. those that do
not, the multiplicity of that distance in the secret key’s distance spectrum can
be correctly guessed. Note that this observation applies to each half of the error
vector (and parity check matrix) independently. So when we refer to the distance
spectrum of the error or parity-check matrix, we mean the distance spectrum of
the first k£ bits, unless stated otherwise.

Algorithm 6 was proposed in [20] for attacking the CCA security of a QC-
MDPC implementation.

Algorithm 6. GJS CCA attack
1: Initialize observedq = 0 and failedq = 0 for d € {1,..., |k/2]}.
2: for i =1to M do
3: Send ¢ = QCMDPC.Enc(z, ¢) with a uniformly random e = [eg]|e1] to target.
4 for d € A(ep) do
5: Increment observedy by 1.
6: if Decoding failed for ¢ then
7.
8:

Increment failedq by 1.
return failedq/observedy for d € {1,...,|k/2]}.

The resulting values, failedy/observed, for each d give an estimate of the
decoding failure rate for error vectors with d in their distance spectrum. We can
then recover the distance spectrum, identifying the multiplicity of each distance
from the following observation:

Observation 2 (GJS). For a fixed key, the decoding failure rate for error vec-
tors with d in their distance spectrum is inversely proportional to the multiplicity
of d in the distance spectrum of the key.

For large enough values of M, the decoding failure rate clearly separates into
bands. These bands exactly correspond to the multiplicity of that distance in
A(hg). This allows an attacker to recover A(hg), and thus the secret key.

The complexity of the attack is dominated by the value M. The decoding
failure rates for different multiplicities are quite close together, and so a very
accurate estimation is need in order to properly decide on the multiplicity. In
[20], the authors found that M = 22° was sufficient for the 80-bit classical
parameter set, using the Gallager decoding algorithm. They conjectured that
using a more sophisticated decoding algorithm like that in [29], would mean that
M would have to be increased by an amount proportional to the difference in the
decoding failure rate. They also conjectured that higher parameter sets would
not significantly alter the effectiveness of the attack, as the decoding failure rate
does not significantly change.
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3 Analysis and Timing Attack

3.1 Correlation

Our attack is based on the fact that the average syndrome weight is slightly
different if the relative position of non-zero bits in the key and the error are
correlated.

For the sake of simplicity, in this section, we will consider a parity-check
matrix made of one single circulant block in H € TF5** instead of two. We will
see later that the practical results are the same. We denote by h € ]F’QC the first
row of the matrix H. The variable ¢ still represents the weight of the error e, so
here the numerical value of ¢ should be half its usual value.

Without any information. Let us suppose that we do not have any informa-
tion on the key. For a random key vector & of size k and weight d and a random
error vector e of size k and weight ¢, denote by f(k,d,t,b) the probability that
the scalar product in IF, is of parity b:

d d\ (k—d
fhanby=pring == 3 Wl

1=0, ¢ is of parity b (]tc)

The average syndrome weight of an error e and a parity-check matrix gener-
ated by cyclic shifts of h is k times the probability that a bit is non-zero (see [9,
page 91]), that is:

E[wt(H-e")]=k- f(k,d,t,1).

Case of two consecutive non-zero bits in the key. Now, suppose the key
vector h has ¢ times two consecutive non-zero bits. Let us observe the shifts of
the vector:

shift(h) = [1/1] u,wt(u) =d—2 - { times

shift(h) =[1/0] u,wt(u) =d —1 - d—{ times

shift( ) 01] u,wt(u) =d — 1 - d—{ times
|

shift(h) =[0/0] u,wt(u) = d k — 2d + ¢ times.

Suppose that the first two bits of the error vector are non-zero, that is:

e=|1]1] u,wt(u) =t — 2 |

With this extra assumption on the form of h and e, the average syndrome
weight of e with respect to the the parity-check matrix H generated by cyclic
shifts of h can now be approximated by:

E[wt(H-eT)] = ¢ Flk—2,d—
+ 2d—0) flk—2,d—
+(k—2d+0) f(k—2,d,t

)
) (1)

i

l\)l\D
O =

i

l\')wﬁ-

)
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Contrary to the previous result, this is an approximation. Indeed, this model
assumes that the rest of the vector (denoted by u) is random for each shift. It
does not take into account the covariance between the bits of the syndrome.
Previously we were averaging on all the lines and the covariance was therefore
null, while here the fact that we group the rows depending on the value of the
first two bits breaks the symmetry. Still, we will see that the approximation is
close to the real value and we can neglect the correction term for the rest of the
study.

Exploiting the leak. Suppose that we only consider error patterns starting
with two consecutive non-zero bits, the syndrome weight is expected to be
slightly different on average, depending on ¢ the number of times two consecu-
tive bits are non-zero in the key vector h. Moreover, the expected value varies
linearly with £. Therefore, if we observe enough values of the syndrome weight,
we can recover the value of £.

Definition 3 (Average syndrome weight with multiplicity). Let us
denote by Dy the following set:

1%:ﬁm@eﬂxmmmmpwmmwﬂﬁemgﬂwmm:4.

The average syndrome weight with multiplicity G, is the expectation of the syn-
drome weight for a uniform distribution of (h,e) over Dy:

Op:= E(h,e)~M(DZ) [Wt(H : eT)] .
From the Eq. (1) in Sect. 3.1 we know that we can approximate 7, by:

Gy = ¢ Flk—2,d—2,t —2,1)
+ 2d—10) f(k—2,d—1,t—2,0)
+(k—2d+0) f(k—2,d,t —2,1).

d d\ (k—d
with fkd ey =y W)

=0, ¢ is of parity b (];)

Comparison with measured values. The values of &, correspond to the
different clusters that we can see on the figures. According to the approximation,
the value of 3, is linear in the multiplicity: 69—y = £-(69—&1). This is consistent
with what we observe.

With the usual parameters for 80-bit security, (here using ¢t = 42 as there is
only one block) we obtain 6o = 1324.23 and & = 1323.28.

When comparing the values to those measured on Fig. 2, we can see that the
measured &y is slightly lower than the approximated value, and on the contrary
o1 is slightly higher. This error is due to the approximation that neglects the
covariance. When performing the same experiment on parameters for LDPC
codes, where the covariance is much smaller, the measures correspond exactly
to the computed values.
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Fig. 2. Attack on the syndrome weight (1 block): average syndrome weight per dis-
tance, 10° samples. The color of the distances indicate their multiplicity in the key
spectrum (black =0, red =1, blue =2, green = 3) (Color figure online)

As a consequence, the real distance 6y — &7 is smaller than the one computed

using Eq. (1). Hence, the theoretical analysis gives an interesting bound on the
relative distance ¢ = %: Emeasured < Ecomputed-
Hypothesis testing. Each syndrome is the result of k scalar products between
the error and a parity-check equation. When the error contains a distance present
in the spectrum of the key with multiplicity ¢, the average syndrome weight is
0y, this means that on average &, of the k parity-check equations are not verified.
Hence, under the independence assumption, we can see each bit of the syndrome
as a Bernoulli trial satisfied with probability %

Here, our goal is to decide for each distance § whether or not ¢ is in the
distance spectrum of h. We do not care about the multiplicity. Formally, we
want to distinguish Dy from Up>1 Dy. Let us by D>; := Ug>1 Dg. We can define
0>1 on D> just like we defined o, on D,. The sets are disjoint so we have
Foq = 2> 5¢|D£\.

= 2221‘D£|

Hence, deciding whether a distance is in the spectrum of the key or not
is just like distinguishing a random binary variable with success probability
po := 0 from a random binary variable with success probability p; :=&>1. This
is a classic problem of hypothesis testing.

Note that for our parameters, the size of D, for £ > 2 is negligible compared
to Dy, hence there is no practical need to distinguish &; from 7>;.

Sample size. There is a lot of literature about hypothesis testing, and in par-
ticular a theorem from Chernoff [21] concerning such cases.
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Proposition 1 (Chernoff’s bound). Let 0 < p < 1, let X1, Xa,..., XN be
independent binary random variables, with Pr[Xy = 1] = p and let Sy =

N
% Then for any t > 0,
Pr[|Sy — p| > t] < 2e" 2N,

This can be used to understand how the number of samples required to find
the key evolves. Here we want to distinguish pg from p;, we will use % as the
decision threshold. Chernoff’s bound states that we should have N ~ E% repeated
Bernoulli trials for the decision test to be relevant, where € = [p; — po| = Z07**
is the distance between the two outcomes.

To decide whether a particular distance ¢ is in the spectrum or not, we need
to compute the mean of N Bernoulli trials, but each syndrome weight is already
the sum of the results of £ Bernoulli tests. Hence, we need to observe the weight
of % syndromes. These syndromes need to be in one of the Dy, this means that
the distance ¢ needs to be in the spectrum of the error pattern that generates
the syndrome. As the error patterns are generated uniformly, we proceed by
rejection sampling to ensure this condition. The number of vectors of size k£ and
weight w that do not contain a particular distance is H;UQOI (k—3j), so neglecting
the cases of multiplicity we obtain a good approximation of the frequency of such
vectors with: 4]

a:= Pr(d € Ale)) = 1— W
[[;Z (k—3)

Hence, to decide whether or not § € A(h), we need to observe the decoding of
% syndromes, with N ~ E% As we use the same data to decide for all distances,
this is the number of samples needed to recover the whole spectrum.

[l e
oL

—

3.2 Attack on the Syndrome Weight

Attack Model. The scenario for our attack is the following. Eve can encrypt
random messages using the QC-MDPC scheme described in Sect. 2.1 and Alice’s
public key. She has access to the plaintext but cannot choose the messages. She
sends the messages for decryption. Whenever the device decodes a message sent
by Eve, she has a way to observe the weight of the syndrome.

The attack we describe here is an abstraction. We do not focus on how, or
even if, Eve gets access to the data. It might be possible or not depending on
a particular implementation and on the abilities of the attacker. The point is
to establish through a simulation that some secret information leaks from the
syndrome weight and to compare the cost of that simulation with the theoretical
analysis of the previous section.
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Eve Alice’s Decoder
m < IFIQC
ed IF5, wt(e) =t ¢ = Gatice -m' + e Decode(c, H ajice) :

S HAlice T
P A, o wt(s)

We suppose that Eve’s error patterns are randomly generated. Indeed, in the
scheme, semantically secure conversions ensure that the error patterns are ran-
dom [23]. If we allow Eve to choose the error patterns, this will only make the
attack easier, as in [20].

Contrary to [20], we collect information from all the error patters, not only
those leading to a decoding failure.

Attack on Syndrome Weight. Our goal is to compute the distance spectrum
of Alice’s private key. For each distance § between 1 and L%j we want to decide
whether or not § € A(haice). As we have seen in Sect. 3.1, for each distance
d € A(e), the expected average weight of the syndrome o = wt(s), where s =
H ppice - €™ = Hapice - €7, is expected to be different if 6 € A(hayice)-

Hence, the idea is, for each distance d, to compute the average value of the
syndrome weight o for error patterns e such that § € A(e). The error patterns
are generated randomly and each error e can be used to obtain information on
all the distances in its spectrum. This leads to Algorithm 7.

Following the discussion in Sect. 3.1, we will take threshold = Zo+-91.

Algorithm 7. Computing the distance spectrum

Input: N the size of the sample, oracle access to the decoder
k

2

SyndromeCount « (0, ...,0) € NN
OccurenceCount « (0,...,0) € (&
A« (0,...,0)
for0<i< N-1do
el F3,wt(e) =t
o « OracleDecoder(e) > o =wt(e Hagice")
for 6 € A(e) do
SyndromeCount[d] += o
OccurenceCount[d] +=1
for 1 <5< |%]do
if SyndromeCount[d]/OccurenceCount[d] < threshold then

AA(;] — 1

return

3.3 Attack on Iteration Count

Now that we know that the syndrome weight leaks information, any parameter
correlated to this quantity could be used for a side channel attack. An interesting
parameter that is often easy to measure is the number of iterations of a loop.
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The decoding algorithm for QC-MDPC codes is an iterative algorithm with
no termination proof. The number of rounds needed to correct the errors varies.
This has been studied by in [10]. As mentioned in Sect. 2.2, the algorithm depends
on the way we chose the thresholds. For most instances, using fixed or vari-
able thresholds, the algorithm usually corrects the error in 3 rounds, but some
instances need 4, 5 or even more iterations. Usual implementations abort after
a certain number of rounds (around 10), this is what was used for the attack
in [20].

Experimentally, we observe that the correlations between the spectrum of the
error and the spectrum of the key has an impact on the average decryption time.
The more distances appear both in spectrum of the error and in the spectrum
and the key, the fewer the number of iterations needed to decode on average.
This appears clearly on Fig.3. We note that the correlation is slightly more
important on Fig. 3 when we use variable thresholds than with fixed theresholds
(the average value is lower for variable thresholds, but the same scale is used for
both figures).

4.29 3.66

4.28 3.65

R
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Average # of iterations

4.25

4.24 3.61
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| A(e) n A(h) | | A(e) n A(h) |

Fig. 3. Average number of iterations needed for decryption, depending on the size of
the intersection of the spectrum of the error and the spectrum of the key. 229 samples,
128-bit security QC-MDPC scheme, decoding with fixed thresholds (left) and variable
thresholds (right). Note that use of variable thresholds results in stronger correlation.

This motivated us to try to perform a theoretical timing attack (Algorithm 8).
The scenario is the same as previously, but instead of observing the syndrome
weight, Eve can measure the number of iterations needed to decode her message.
To obtain the spectrum, Eve uses the exact same data collection algorithm: for
every distance in the spectrum, she computes the average number of iterations
needed to correct an error containing this distance.

This works well and it is possible to fully recover the distance spectrum with
variable thresholds using 22° samples on 80-bit security QC-MDPC scheme, 2%°
samples for 128-bit security parameters (see Fig.6) and 22 samples for 256-bit
security parameters. For fixed thresholds, we manage to recover the spectrum
for 256-bit security with 22% samples.
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Algorithm 8. Timing attack on QC-MDPC
1: Initialize observeds = 0 and iterationsq =0 for d € {1,..., [k/2]}.
2: for i =1to M do
el F3,wt(e) =t
¢ «— QCMDPC.Enc(z,e)
Send c¢ to target.
n < number of iterations (from side channel).
for d € A(eo) do
observedy += 1.

9: iterationsqg += n.
10: Return iterationsq/observedy for d € {1,..., |k/2]}.

@

4 Experimental Results

Results of Syndrome Attack. The spectrum recovery algorithm was first
tried on a simplified version of the scheme using only one block, in order to com-
pare to the expected behaviour. The result is striking. Using the usual parameters
for 80-bit security, with one hundred thousand samples, the spectrum appears
very clearly and we can even see the multiplicities, that is, distances that appear
several times in the key, see Fig.2. When pushing to one billion samples, there
is no room for confusion.

When performing the same experiment on the real QC-MDPC scheme with
two blocks, we obtain similar results. The attack is performed on each block
separately, that is for each error pattern, we added the syndrome weight to
the counters of all distances present in the first half of the error to recover the
spectrum of the first block. Because there is no correlation between the two
halves of the error pattern, the presence of the second block acts as a random
noise added to the syndrome weight. Hence the only difference is that we need
more samples to reduce the variance and distinguish well which distances are
in the key spectrum. Note that it is possible to compute the spectrum of both
blocks at the same time, so there is no need to double the number of samples to
recover the second block.

For 80-bit security parameters, we can see on Fig. 4 the spectrum appearing
more and more distinctively when we increase the number of samples. With 220
samples, we can fully distinguish the spectrum. The same attack requires 223
samples for 128-bit security parameters and 22° for 256-bit security parameters.

This attack was also performed when another error is added to the syndrome,
like in the Ouroboros scheme [14] (with an additional error of weight 3d). Again,
this only adds random noise and we can recover the spectrum with around a few
million samples for the 80-bit security parameters.

Results of iteration attack. After running Algorithm 8 we collect data corre-
sponding to the average number of iterations it took to decode an error when d
is present. The resulting plots (Fig. 5) look very similar to the plots of the decod-
ing failure rate that result from Algorithm 6. Once the bands have completely
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Fig. 4. Average syndrome weight per distance, (from left to right, from top to bot-
tom) 2,26 28 and 2%° samples, 80-bit security QC-MDPC scheme. The color of the
distances indicate their multiplicity in the key spectrum (black =0, red =1, blue=2,
green =3, purple > 4) (Color figure online)
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Fig. 5. Attack using the number of decoding iterations against parameters for 256-bit
security with fixed threshold decoding.
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Fig. 6. Attack using the number of decoding iterations, with 2% samples, against
parameters for 128-bit security QC-MDPC scheme with variable threshold decoding.
The color of the distances indicate their multiplicity in the key spectrum (black =0,
red =1, blue =2, green =3, purple > 4) (Color figure online)

separated, the distance spectrum (and thus the secret key) can be recovered in
the same way it was in the GJS [20] attack.

This side-channel attack is much faster than the reaction attack. An intuitive
explanation for the speedup is that differences in the number of iterations are
much more common than decoding errors. This allows more information about
the correlations to be collected per iteration.

4.1 1In-Place Decoder vs. Out-of-Place Decoder

We observed that changes to the decoding algorithm can have a significant
impact on the information gathered during the attack.

D, uses in-place updates to the syndrome which seems to cause some asym-
metry in the errors with respect to distance. For example, in Fig.5 the bands
converge as distance increases.

Postponing the updates until the end of each iteration (using B from [27])
seems to eliminate this asymmetry and reduces the correlation between number
of iterations and distance multiplicity. This may reduce the efficiency of the
attack.

Figure 7 shows a direct comparison between these two types of decoders. Note
that the relationship between number of iterations and multiplicity is inverted
between decoders.

We are not sure why this is the case but give a possible explanation for the
behaviour. When distances match the resulting behaviour is a decrease in total
changes to counters (both correct and incorrect). As noted in [20] this decreases
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Fig. 7. Comparison of in-place and out-of-place decoders with fixed thresholds using
30 million iterations against 80-bit security. Decoder definitions are from [27].

the error rate since it decreases the probability of an incorrect change. It also
decreases the expected number of bits flipped which could cause an increase in
the expected number of iterations.

When multiple bits are flipped at once in the out-of-place decoder the benefit
of a correct flip early in an iteration is removed so it is possible that benefit of
early flipping is dominated by the increased chance of an incorrect flip.

5 Eliminating Decoding Failure Vulnerabilities

In this section we present ParQ—A KEM constructed from repeating a QC-
MDPC encryption scheme in order to eliminate the effect of decoding failures.
The general idea is for the ciphertext to include several independent encapsu-
lations of the same key in such a way that the scheme achieves CCA2 security,
and so that a decapsulation failure occurs in ParQ only if a decryption failure
occurs in every instance of the underlying QC-MDPC scheme. As current esti-
mates for the failure rate indicate that failures occur at a rate of roughly 2723
this suggests that a small amount of parallelization (3-12x) will make decapsu-
lation failures occur in ParQ at a negligible rate, thus removing the possibility
of implementing a reaction attack based on these failures.

5.1 ParQ—A Parallelized QC-MDPC KEM

ParQ is largely characterized by the same parameters as other QC-MDPC code-
based schemes, specifically, k, the plaintext length, n = 2k, w, the weight of the
secret key, and ¢, the weight of the error. In addition to these parameters, ParQ
has the parameter P, denoting the degree of parallelization. P must be greater
than or equal to 2, and should generally be chosen to be in the range of 3 — 12.
ParQ is described by three algorithms: ParQ.KeyGen for key generation (omitted
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Algorithm 9. ParQ.Enc

Input: Public key pk, a seed s € {0, 1}’“.

Output: Session key K, key encapsulation C = (c1,...,cp).
: fori=1to P do

Let e; = ErrGen(s||7).

Compute z; = s ® PRF(e;|[i).

Compute ¢; = QCMDPC.Enc(pk, =i, €;).

: Compute K = KDF(s).

: Return session key K, key encapsulation C = (c1,...,cp).

Algorithm 10. ParQ.Dec

Input: Secret key sk, public key pk, and encapsulation C = (c1,ca,...,cp).
Output: Session key K, or decapsulation failure symbol L.
1: fori=1to P do
Run (z;,e;) — QCMDPC.Dec(sk, ¢;).
if QCMDPC.Dec succesfully decoded for the first time then
Set used index j = 1.
if QCMDPC.Dec failed to decode for 2 =1 to P then
Return decapsulation failure L.
Compute s = z; @ PRF(ej||7)-
Compute K,C’ = (cl,ch,...,cp) « ParQ.Enc(pk, s).
9:if ¢;=cj forallie{1,...,P} then
10: Return K.
11: else
12: Return decapsulation failure 1.

since it is the same as Algorithm 1), ParQ.Enc for encapsulation, and ParQ.Dec
for decapsulation. It uses three functions which we model as random oracles,
ErrGen, PRF, and KDF, which map onto E, IF%, and {0,1}*, respectively.

5.2 Overview of IND-CCA2 Reduction for ParQ

For the rest of this section, we show the IND-CCA2 (INDistinguishable under
Chosen Ciphertext Attack) security of the ParQQ KEM. We show this by reduc-
tion from the OW-CPA (One Way under Chosen Plaintext Attack) security of
the QC-MDPC McEliece system. We use the standard definitions of IND-CCA2
and OW-CPA security, which can be found in Appendix A for completeness.

Theorem 1. Let A be an adversary capable of winning the IND-CCA2 secu-
rity game with the ParQ KEM with qq decapsulation queries and qeqGen, GPRF,
and qpe queries to the random oracles ErrGen, PRF, and KDF respectively, in
time t and with advantage €. Then there exists a reduction B that uses A as a
subroutine by simulating the IND-CCAZ2 environment in order to break the OW-
CPA security of QC-MDPC McFEliece, in time =t and with success probability
~v(e/P — §), where § is negligible and ~ 1is negligibly close to 1 in the security
parameter.
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In order to establish IND-CCA2 security via a reduction from OW-CPA, we
need to establish how to embed the given OW challenge ¢* into an IND challenge
(Sect. 5.4), and how to successfully respond to decapsulation queries (Sect. 5.5).
Then we need to show that the simulation satisfies several key properties: that
the simulated challenge is indistinguishable from a real challenge (Sect. 5.4), that
an adversary’s ability to solve the IND challenge allows the simulation to solve
the OW challenge (Sect.5.4), and that the simulated responses to decapsulation
queries are indistinguishable from actual responses to a decapsulation query
(Sect. 5.5).

In ParQ, we have that e; = ErrGen(s||¢) and z; = s @ PRF;(e;), or s =
x; ® PRF;(e;). So for any possible ¢ and 4, there is at most one s associated with
it such that ¢ = QCMDPC.Enc(s ® PRF(ErrGen(s||i)|]2), ErrGen(s]|7)).

5.3 Simulating the Random Oracle

ParQ makes use of three functions that we will model as random oracles—a
pseudo random function PRF, an error generation function ErrGen, and a key
derivation function KDF. Each random oracle will be maintained by a stan-
dard ‘on-the-fly’ method. For each oracle, a table is maintained specifying which
queries have been made and what the responses were. For each oracle, when a
query is made, we first check if it has been queried before, and if so, respond with
the same response made before. We then specify how to handle new queries.

For new queries to ErrGen of the form s||i we choose a uniformly random
error vector e € E. We then also calculate © = s ® PRF(el|:) and add e and
¢ = QCMDPC.Enc(z, e) to the table. We then respond with e.

For new queries to the PRF oracle of the form e||i we first check and see if e is
the error vector associated with the challenge ciphertext c*. We do this by using
the generator matrix G to see if ¢* — e is a codeword. If so, then we have solved
the challenge. Otherwise, generate a uniformly random string from {0, 1}*, add
it to the table and respond.

New queries to KDF can simply be handled by responding with a uniformly
random {0, 1}*.

5.4 Challenge Injection

As we are attempting to solve an OW-CPA challenge, we are given a public key
G and a ciphertext ¢* and asked to find the (z*,e*) such that ¢* = 2*G + e*.

To simulate a challenge, we will first select a uniformly random index j &
{1,..., P}. Then, we will select a uniformly random seed s € {0,1}*. We will
run the encapsulation algorithm ParQ.Enc on the seed s, except that we will not
query ErrGen(sl||j) to generate e;, and thus not generate x; and ¢;. Thus we will
have ci,...,¢j—1,¢j41,...,cp and K.

To finish the challenge encapsulation, we will select a uniformly random bit
b e {0,1}. If b = 0, we will send K, and if b = 1 we will send a uniformly
random K’ € {0,1}*. We will send C' = (c1,...,¢j_1,¢",¢jt1,...,cp) as the
encapsulation.
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OW Challenge Solution Extraction. We need to show that the adversary’s
advantage in solving the IND-CCAZ2 challenge corresponds to an extractor’s abil-
ity to solve the OW-CPA challenge. Note that the only way for an adversary to
distinguish the correct key from an incorrect one is by querying the s associated
with each ¢; to the KDF oracle. Without having done this, the adversary has
no information on K and so she has no advantage in distinguishing a proper
K from a random one. Therefore, the adversary’s advantage in distinguishing
corresponds exactly to their ability to query (and thus find) s.

First, we show that the adversary’s probability of querying s to KDF without
having queried an e; for one of the ¢;’s to PRF (along with 7) is negligibly small.

Without having queried some e; to PRF, the plaintext values z1, ..., x, pro-
vide no information on s. Recall that s = x; ® PRF(e;||¢). Then (z1,...,2p) can
be thought of as P maskings of the same value s, with independent masking
values. This contains no information about s, unless the adversary has queried
at least one e; to PRF.

Similarly, the values (e, ...,ep) provide no information about s, unless the
adversary queries s||i to ErrGen for some i. This happens with probability at
most gerren/2". So as long as s is not queried to ErrGen and e;||i is not queried
to PRF, then both (z1,...,zp) and (ei,...,ep) give no information about s,
and so the encapsulation C = (cy,...,cp) does not.

So we have shown that unless the adversary queries e;||i to PRF or s||i to
ErrGen (for any i), the encapsulation C' = (cy, ..., cp) actually contains no infor-
mation whatsoever about s. Therefore, the adversary can only query random
seeds to KDF and so the probability that they query s to KDF is at most qxpr /2.

If the adversary queries e;||i to PRF for any 4, then they can easily find s and
thus break the indistinguishability challenge. But (as we will establish next),
since the adversary has not queried s to KDF or s||i to ErrGen, the adversary
has no ability to detect which ciphertext ¢; corresponds to the OW challenge c*.
So if the adversary submits an e; to PRF, with probability 1/P, this e; is in fact
e*, and we will solve the OW-CPA challenge.

Indistinguishability of Simulated Challenge. When the adversary is given
a challenge encapsulation C' = (c1,...,¢j—1,¢*, ¢j+1,...,cp), along with a pos-
sible key K, we need to ensure that they cannot tell that this is not a correctly
formatted encapsulation. Other than replacing c; with c*, this is a correct encap-
sulation. All encapsulations come in the form of P uniform ciphertexts. However
a correct encapsulation has the additional property that for each (z;,e;) associ-
ated with a ¢;, s = x; @ PRF(e;||?) is the same for all ¢;, and e; = ErrGen(s||i).
Intuitively, we can see that the only way for an adversary to distinguish
between a correctly formatted encapsulation, and one that is generated as in
our simulation is by being able to find the (z;,e;) associated with at least one
of the ¢;, and then checking the other ¢; through the PRF and ErrGen functions.
Formally, if s has not been queried to kdf, s||i has not been queried to ErrGen
for any ¢, and ¢;||¢ has not been queried to PRF for any 4, then each x; and e; is
indistinguishable from being independently and uniformly generated. As such,



68 E. Eaton et al.

the ciphertext is perfectly indistinguishable unless the adversary queries e;||i to
PRF for some 4. This event also corresponds to the adversary’s ability in solving
the IND challenge and is considered in the previous subsection.

5.5 Simulating Decapsulation Queries

When we receive a query for decapsulation C' = (¢y,. .., cp), we need to respond
with the decapsulation K. Upon receiving the query, we lookup the ErrGen table
for P queries of the form sl|1, s||2,...,s||P such that ¢; is in the table for each
s||i. If such a set of P queries is found, we respond with KDF(s). Otherwise, we
return the decryption failure symbol L.

We must establish that this simulation is indistinguishable from a real decap-
sulation oracle. To establish this, we need to show two things: that we do not
respond with | when we should respond with a decapsulated key, and that we
do not respond with a decapsulated key when we should respond with L. For
the first point, we must ensure that any potential encapsulation query made by
the adversary in any way other than by beginning with a seed s and generating
each ¢; according to ¢; = QCMDPC.Enc(s & PRF(ErrGen(s||i)||i), ErrGen(s||i))
only results in a ciphertext that would not return L with negligible probability.

As previously noted, any ciphertext and index pair (¢, ) is associated with
exactly one seed s induced by s = « @ PRF(e||i), as there is at most one pair (z, )
associated with c. For the ciphertext to be valid (and thus for a decapsulation
oracle to not output 1), it must be the case that ErrGen(s||i) = e. So for a
decapsulation query C' = (eq,...,cp), for a correct decapsulation oracle to not
return 1, each ¢; must be associated with the same seed s, and for each i,
e; = ErrGen(s]|i).

When an adversary submits a decapsulation query, if it is not the case that a
single s has been queried P times to ErrGen in the form s||1,s]|2,..., s||P, then
there are two possibilities. Either for at least one ¢;, no query has been made
of the form s'||¢i that results in ¢;, or such a query has been made but the s’ is
different from one other s.

In the latter case, our simulation would return 1, and indeed this is consis-
tent with what an actual decapsulation oracle would return, as each c¢; is not
associated with the same seed, which the decapsulation algorithm can always
detect.

In the first case, where s||i has not been queried to generate ¢;, our simulation
will return L. This is usually consistent with what a correct decapsulation oracle
will return. The only case an inconsistency would arise is if, when ErrGen(s||)
is later queried, ErrGen(s||i) = e;, despite it not having been queried at the time
that the decapsulation query is made. As ErrGen is a random oracle, this only
happens with probability at most 1/#E.

Showing that we do not respond with a decapsulation when we should
respond with L corresponds to the fact that we will never have a decoding
failure. In a real decapsulation oracle, if a decoding error were to occur for each
¢;, then we would be forced to respond with L. But in our simulated version, we
would respond with the correct decapsulation, as we would have seen it from the
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random oracle. However, because of the parallelization, we can see that any s
will result in errors that will give a total decapsulation failure (i.e. the decoding
procedure fail for all e1, es, ..., ep) with probability (¥, where  is the decoding
failure rate. Given this, we need to consider the probability that an adversary
queries an encapsulation C that should result in a decapsulation failure. We
should note that it should be hard to identify error vectors which will result in
decoding failures (or else an adversary may not need to launch the GJS attack
at all), but as we have no proof of this, we assume an adversary can perfectly
distinguish which error vectors will result in decoding failures.

A fraction ¢ of seeds will result in an encapsulation that cannot be decap-
sulated. So in ¢gngen queries to the random oracle, the probability that the
adversary is able to find such a seed is less than gg.genC P We assume that P is
chosen so that this quantity is negligible (we discuss this further in Sect.5.7).

5.6 Combining

We let Game 0 (or GO) refer to the original IND-CCA2 game. We let Game 1 (G1)
refer to the simulated IND-CCA2 game, where the challenge and decapsulation
oracle are simulated.

To simplify our calculation, we also define three events that can occur in the
process of either Game 0 or Game 1.

— Event 1 (or E1) refers to the event that the adversary A queries s to the KDF
oracle.

— Event 2 (or E2) refers to the event of the adversary A querying one of the
ei]|i (from the challenge encapsulation) to PRF prior to querying s to KDF or
s||i to ErrGen.

— Event 3 (or E3) is the event that the adversary A breaks the distinguishability
of the simulated decapsulation oracle. Specifically, that they query an s||i to
ErrGen such that ErrGen(s||é) will result in a decoding failure for each i, or
that they submit a ciphertext to the decapsulation oracle without querying
the associated s to construct it, and that when s is later queried, it does result
in the proper error vector, and that they do this prior to Event 1 or 2.

Then, according to the discussion in Sects. 5.4 and 5.5, we perform the fol-
lowing calculation:

1 .
5 te= ES[A wins]

< Pr[A wins|-FE1] + Pr[E1] < L + Pr[E1]. (2)
GO GO

S T
2 Go

This tells us that € < Prgo[F1]. Next, we consider Prgo[E1]:

QKDF + GErGen ) (3)

e < Pr[E1l] < Pr[E2] + Pr[E1|-E2] < Pr[E2] +
GO GO GO GO 2k
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Next, we relate Prgo[E2] to Prgi[E2]. This is done simply by noting that

Pr[E2] < Pr[E2|-E3| + Pr[E3], (4)
GO Go Go
and that
Pr[E2|-E3] =Pr[E2|-E3], Pr[E3] =Pr[E3]. (5)
GO G1 GO G1

Then finally, noting that our ability to solve the OW-CPA challenge corre-
sponds to 1/P times Prg1[E2 A —E3], we get that

1
Pr[We win OW-CPA game] ZF Ig{[EQ A —E3]
1 1
= — = - >7 - —
p BB B2 > o (BylE - pyen). O
and so
Pr[We win OW-CPA game] > %(e — ), (7)
where ¢ ‘ +q
5= ParQ.Dec KDF ErrGen Gen P
ZE T o + GErGen( (8)
and qParQ.D
—1_ arQ.Dec rrnp.
v 4E gEnGenC (9)

5.7 Comparison

In this section we compare aspects of ParQ’s efficiency and security with other
code-based KEMs, many of which have been submitted to NIST’s Post-Quantum
Cryptography project [1]. We restrict ourselves to code-based systems for direct
comparison. Comparing code-based systems to other post-quantum systems has
been done elsewhere in the literature, for example in [5]. All comparisons are done
considering parameters that have been proposed for 128 bits of post-quantum
security, or NIST’s security level 5 (AES 256) (see Table1).

While we do not have specific data on the speed of ParQ as it compares to
other systems, one can expect that, because it requires P encapsulations and
the decapsulation must be constant time to avoid side-channel timing attacks,
the time to encapsulate and decapsulate likely increases by a factor of roughly
P as opposed to a construction like CAKE.

Here we have selected the parameter P to be 12. This reflects the fact that
it reduces the decapsulation error rate to be on the order of 27252, presumably
hard for even a fully quantum adversary to find a seed that results in a total
decapsulation failure (even if the adversary is perfectly able to tell which errors
will result in decoding failures, which is presumably hard without the secret key).
One could choose P to be much lower, on the order of 2 or 3. While it appears
that the GJS attack would be mitigated by these low values of P, (increasing the
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Table 1. Length in bytes of keys and encapsulations for code-based KEMs. Using
8192128 for classic McEliece

Scheme Public key | Secret key | Encapsulation | Static key use
CAKE [5] 8193 8193 8225 X
BIKE-1 [2] 8188 8188 8188 X
BIKE-2 [2] 4094 8188 4094 X
BIKE-3 [2] 9033 9033 9033 X
Classic McEliece [6] | 1357824 | 14080 240 v
ParQ 4094 8193 98313 4

attack complexity to an estimated 2% or 257 queries respectively), decapsulation
errors may still occur in the normal lifetime of a key, meaning that the guarantees
of the CCA2 security proof would not apply. While we have specified that P must
be at least 2, note that P could be set to 1. This would cause the scheme to bear
some resemblance to the CAKE scheme [5] or the BIKE-1 scheme [2]. However,
this would cause the scheme to be vulnerable to the GJS attack, which is why
these schemes currently insist on using the public key ephemerally.

6 Conclusion and Future Work

We have explored and answered several fundamental questions that arose as a
result of the powerful GJS reaction attack on QC-MDPC McEliece. We analyzed
the origin of this leak: a bias on the distribution of the syndrome weight. This
analysis allows a better understanding of the GJS attack and we deduce other
side-channel attacks exploiting all decoding instances.

Our analysis provides quantitative bounds on the minimal number of samples
needed to deduce relevant information (using Chernoff’s bound), which could be
used to deduce better parameters to prevent attacks on the syndrome weight.
Other side-channel attacks on different (noisier) parameters exploiting the same
idea will be even more costly.

We also discussed how variations in the implemented decoding procedure can
affect the attack. Lastly we have showed how decoding failures can be addressed
at the protocol level by constructing a KEM that entirely defeats the GJS reac-
tion attack for QC-MDPC, without altering the parameters of the system. We
provided a proof of the CCA2 security of the KEM in the random oracle model.
Notably, this proof considered the possibility of decoding failures, meaning that
it should not be possible to attack the system by exploiting decoding failures.

The security of ParQ is proven in the random-oracle model. A complete and
thorough analysis of post-quantum security would require a security reduction in
the quantum random-oracle model [8]. Showing that ParQ) (or a small modifica-
tion of ParQ) is secure in this model would give greater post-quantum assurance.

MDPC codes are still a recent proposal. Even though they are close to the
thoroughly studied LDPC codes, they seem to behave differently, in particular
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as far as decoding is concerned [9]. It is very likely that the state of the art for
decoding MDPC codes will evolve quickly, especially considering the NIST call
for quantum safe primitives. Interestingly, it seems that more efficient decoders
(e.g. those using variable threshold rules) are more prone to information leakage,
and thus better decoders might not be safer. Evaluating new decoding algorithm,
their failure rates and running time distribution with respect to this work could
indicate whether and at what cost QC-MDPC codes could be used for PKEs as
safely as for KEMs.

A Security Definitions and Games

These standard definitions, used in the security proof for ParQ, have been repli-
cated from [15] for the sake of completeness.

The IND-CCA2 and OW-CPA games take place between two parties, the
challenger C, and the attacker or adversary, A.

Game 1 (IND-CCA2 Challenge).

1. C obtains (pk, sk) «— ParQ.KeyGen(1*), and sends pk to A. C runs ParQ.Enc(s)
with a uniformly random s, obtaining Ky, C. C then generates a uniformly
random K; € {0,1}*, and a uniformly random bit b € {0,1}. C then sends C
and K to A.

2. A may freely send decapsulation queries C' to C. C responds by sending
ParQ.Dec(C) to A. The only exception is that A may not send the challenge
encapsulation C' as a decapsulation query.

3. Eventually, A must return a bit ¥’ as a guess for the bit b. A is said to have
won the IND-CCA2 game if b/ = b.

We write A’s ability to win Game 1 as 1/2 + e. We call € the adversary’s
advantage in breaking IND-CCA2 security.

Game 2 (OW-CPA Challenge).

1. C generates (pk, sk) +— QCMDPC.KeyGen(1*). They select a uniformly ran-
dom z & {0,1}* and e & {0, 1}", with e having weight ¢. They then compute
c* «— QCMDPC.Enc(pk, z, e) and sends ¢* and pk to A.

2. A performs some computation on ¢* and pk. Eventually they must produce
an x’. A is said to have won the OW-CPA game if 2’ = x.

B  Choosing the Bit-Flipping Thresholds

In standard literature, rules for threshold computation are heuristic and are not
available for all parameter sets. To convince that our experiments were fair we
describe the rules we used for fixed and variable threshold. We denote d = w/2
the column weight.
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Monitoring Strategy: For a given set of parameters, we run the bit-flipping algo-
rithm on many random instances and we choose at each iteration the threshold
which minimizes the error weight at the end of all flips'. This is possible in a
simulation because we know the initial error pattern and we can monitor its
evolution. We will refer to this as the “monitoring strategy” and use it as a tool
to define the thresholds.

Fized Thresholds: For a given set of parameters, we run a simulation using the
monitoring strategy and we keep track of the threshold values used at the first
iteration. The maximum of those values is kept as the fixed threshold, say by,
for the first iteration. We run a second simulation, for which the first threshold
is fixed to by and the monitoring strategy is used for the following iterations. We
keep track of the threshold values used at the second iteration. The maximum
of those values is kept as the fixed threshold, say b1, for the second iteration. We
repeat this until we reach the maximal expected number of iterations.

Variable thresholds: For a given set of parameters, the goal here is to establish a
rule b;(0), ¢ > 0, giving the i-th iteration threshold as a function of the syndrome
weight o. Assuming all b, for ¢ < i are known, we run a simulation using the
functions by, ..., b;_1 for the first i iterations and using the monitoring strategy
after that. We keep track of the pairs (o,b) of syndrome weights and threshold
values used at the i-th iteration. For each syndrome weight o, we define f;(o)
as the average of all thresholds observed. Next, using the least square method,
we find the quadratic? function g;(c) which best approximates all the (o, fi(c))
where each (o, f;(0)) is weighted by the number of occurrences of the syndrome
weight . The threshold function for the i-th iteration will be [g;(0)]. We add
the condition that b; is increasing with o and we get b; : ¢ — max (™, [g;(c)])
where b is the minimal value of [g;(c)] over the observed range for o, and is
never smaller than d/2.

Results and Comments. We give below the threshold rules we used for our
simulations deduced from the above-mentioned process. Note that we do not
claim, nor observed, that those rules are giving any kind of improvement in
speed or failure rate.

Fized Thresholds. For 80-bit security parameters, (k,w,t) = (4801, 90,84), we
have (b;)i>0 = (30,28,26,25,23,...). The dots meaning that the last value is
repeated as much as necessary. We remark that, for the same parameters, QcBits
[13] uses thresholds that are exactly one unit lower for the first 4 iterations. This
probably reflects the fact that our strategy is rather conservative.

For 128-bit security, (k,w,t) = (10163, 142, 134), we get (b;);>0 = (46,43,41,
40,39, 37,36,...). Finally for 256-bit security, (k,w,t) = (32771,274,264) we
obtain (b;);>0 = (83,80,77,74,72,...).

! In case of a tie, we choose the smallest threshold, but never smaller than d/2.

2 We use the linear approximation unless the quadratic approximation gives different
values of b;(c) = [gi(0)] for o in the observed range.
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Variable Thresholds.

bo(o) = [11.1 4 0.00919 o]
= { by(0) = max(24, [38.7 — 0.02420 + 1.004 10~552])
b; (o) = max(24, [34.9 — 0.01950 + 0.836 105027, > 2,

(k,w,t) =
(4801, 90, 84)

(b0,) = bo(0) = [15.5 + 0.00665 o]
(10163, 142, 134) bi(0) = [51.7 — 0.0128 0 + 0.257 10~ 502]
bi(0) = max(37, [40.1 — 0.00395 ¢ + 9.5010~762],i > 2
bo(o) = [22.9 + 0.00402 ¢
(k,w,t) = bl(a):(182+00043101
(32771, 274, 264) by(0r) = max(71, [315.8 — 0.0422 & + 0.18210~502])
bi(o) = max( ,[62.5 + 0.000648 71,7 > 3.
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Abstract. This paper presents an FPGA implementation of the Nieder-
reiter cryptosystem using binary Goppa codes, including modules for
encryption, decryption, and key generation. We improve over previous
implementations in terms of efficiency (time-area product and raw per-
formance) and security level. Our implementation is constant time in
order to protect against timing side-channel analysis. The design is fully
parameterized, using code-generation scripts, in order to support a wide
range of parameter choices for security, including binary field size, the
degree of the Goppa polynomial, and the code length. The parameter-
ized design allows us to choose design parameters for time-area trade-offs
in order to support a wide variety of applications ranging from smart
cards to server accelerators. For parameters that are considered to pro-
vide “128-bit post-quantum security”, our time-optimized implementa-
tion requires 966,400 cycles for the generation of both public and private
portions of a key and 14,291 cycles to decrypt a ciphertext. The time-
optimized design uses only 121,806 ALMs (52% of the available logic)
and 961 RAM blocks (38% of the available memory), and results in a
design that runs at about 250 MHz on a medium-size Stratix V FPGA.

Keywords: Post-Quantum Cryptography - Code-based cryptography
Niederreiter cryptosystem - FPGA - Hardware implementation

1 Introduction

Arguably today’s most wide-spread asymmetric cryptographic algorithms are
the Rivest-Shamir-Adleman (RSA) cryptosystem, Diffie-Hellman key exchange
(DH), and a variety of primitives from the field of Elliptic-Curve Cryptogra-
phy (ECC), e.g., ECDSA, EdDSA, ECDH, etc. These cryptosystems are based
on the hardness of the integer-factorization problem and the discrete-logarithm
problem. Using today’s computing systems, no efficient algorithms for solving

Permanent ID of this document: 939£29123£6853e858d367a6a143be76.
Date: 2018.01.24.
© Springer International Publishing AG, part of Springer Nature 2018

T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 77-98, 2018.
https://doi.org/10.1007/978-3-319-79063-3_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79063-3_4&domain=pdf

78 W. Wang, J. Szefer and R. Niederhagen

these problems are known. However, the picture changes drastically if quan-
tum computers are taken into account. In the 1990s, Shor proposed algorithms
that can solve both the integer-factorization problem and the discrete-logarithm
problem in polynomial time on a quantum computer [23,24]. In order to provide
alternatives to the threatened schemes, the field of Post-Quantum Cryptogra-
phy (PQC) emerged in the 2000s and has received increased attention recently,
most noticeably due to a standardization process for PQC schemes started by
NIST in 2017 [7].

Currently, there are five categories of mathematical problems that are under
investigation for PQC: code-based systems, lattice-based systems, hash-based
systems, systems based on multivariate polynomial equations, and systems based
on supersingular isogenies of elliptic curves [4,22]. Each of these categories has
advantages and disadvantages. They vary in the performance measures (sizes of
public and private keys, sizes of ciphertext and key-exchange messages, computa-
tional cost, etc.) and in maturity: some schemes (e.g., some code-based schemes
and hash-based signature schemes) are considered well-understood and there is
a general agreement on the required security parameters while other schemes are
more recent and the exact security that they provide is yet under investigation.

Conservative and well-understood choices for code-based cryptography are
the McEliece cryptosystem [18] and its dual variant by Niederreiter [19] using
binary Goppa codes. In this paper, we focus on the Niederreiter cryptosystem.
This cryptosystem has relatively large public keys of up to 1 MB for roughly 256-
bit classical security (corresponding to “128-bit post-quantum security” meaning
that a quantum computer needs to perform at least 2'2% “operations” using the
best known attacks) using parameters proposed in [2]. There are more efficient
PQC schemes than Niederreiter with binary Goppa codes. However, some of
these schemes exhibit weaknesses that restrict their application to certain use-
cases (e.g., Niederreiter with QC-MDPC codes instead of binary Goppa codes is
affected by decoding errors [13] which restricts their use to ephemeral applica-
tions without long-term usage of keys) while how to choose security parameters
for some schemes is challenging (e.g., for some lattice-based schemes that have
a security reduction, parameters need to be chosen either based on best-known
attacks or based on the non-tight security reduction, which results in a dilemma
of choosing either more efficient or more reliable parameters [1]).

The large public keys of the Niederreiter cryptosystem using binary Goppa
codes make it particularly troublesome for use in embedded systems (due to
strong restrictions on resource usage) and in server scenarios (given a large
number of simultaneous connections). In both cases, hardware acceleration can
help to improve the performance—either by providing a low-area, power efficient
crypto core in the embedded scenario or by providing a large, latency or through-
put optimized crypto accelerator for the server scenario. Therefore, we describe
and evaluate an FPGA implementation of this cryptosystem. Our FPGA imple-
mentation can be tuned in regard to performance and resource usage for either
low-resource usage in embedded systems or high performance as accelerator for
servers. Furthermore, we provide a generic implementation that can be used for
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different performance parameters. This enables us to synthesize our design for
the above mentioned 256-bit security parameters and also smaller parameter
sets for comparison with prior art. For a given set of parameters, i.e. security
level, the design can be further configured to trade-off performance and area,
by changing widths of data paths, memories, and other parameters inside the
design, without affecting the security level. All of the parameters can be config-
ured for key generation, encryption, and decryption.

Inspired by the confidence in the code-based cryptosystems, there are a
few hardware implementations of different variants of these cryptosystems, e.g.,
[14,17,26]. Most of the work only focuses on the encryption and decryption parts
of the cryptosystem due to the complexity of the key generation module. More-
over, none of the prior designs are fully configurable as ours nor do they support
the recommended “128-bit post-quantum security” level. We are aware of only
one publication [26] that provides the design of a full McEliece cryptosystem
including key generation, encryption and decryption modules. However, their
design only provides a 103-bit classical security level, which does not meet the
currently recommended security level for defending against quantum comput-
ers. More importantly, the design in [26] is not constant-time and has poten-
tial security flaws. For example, within their key generation part, they generate
non-uniform permutations, and within the decryption part, they implement a
non-constant-time decoding algorithm. Note that our work focuses on a design
that can defend against timing side-channel attacks due to its constant-time
implementation. However, other types of side-channel attacks are out of scope
of this work. A detailed comparison with related work is presented in Section 5.

Contributions. This paper presents the first “128-bit post-quantum secure”,
constant-time, efficient, and tunable FPGA-based implementation of the Nieder-
reiter cryptosystem using binary Goppa codes. The contributions are:

— full cryptosystem with tunable parameters, which uses code-generation to
generate vendor-neutral Verilog HDL code,

— new hardware implementation of merge sort for obtaining uniformly dis-
tributed permutations,

— new optimization of the Gao-Mateer additive FFT for polynomial evaluation,

— hardware implementation of a constant-time Berlekamp-Massey decoding
algorithm, and

— design testing using Sage reference code, iVerilog simulation, and output from
real FPGA runs.

2 Niederreiter Cryptosystem

The first public-key encryption scheme based on coding theory was proposed
in 1978 by McEliece [18], known as the McEliece public-key cryptosystem. In
1986, Niederreiter proposed a variant of the McEliece cryptosystem that uses
a parity check matrix for encryption instead of a generator matrix as used by



80 W. Wang, J. Szefer and R. Niederhagen

McEliece. Furthermore, Niederreiter proposed to use Reed-Solomon codes, which
were later shown to be insecure [27]. However, the Niederreiter cryptosystem
using binary Goppa codes remains secure and the Niederreiter cryptosystem has
been shown to be equivalent (using corresponding security parameters) to the
McEliece cryptosystem [15].

The private key of the Niederreiter cryptosystem is a binary Goppa code G
that is able to correct up to ¢ errors. It consists of two parts: a generator, which
is a monic irreducible polynomial g(z) of degree ¢t over GF(2™), and a support,
which is a random sequence of n distinct elements from GF(2™). The public key
is a binary parity check matrix H € GF(2)™*"  which is uniquely defined by
the binary Goppa code. To reduce the size of the public key, the matrix H of size
mt x n can be compressed to a matrix K € GF(2)™*F of size mt x (n —mt) with
k = (n — mt) by computing its systematic form. This is often called “modern
Niederreiter” and can also be used for the McEliece cryptosystem. For encryp-
tion, the sender encodes the message as a weight-t error vector e of length n. Then
e is multiplied with the public parity check matrix H and the resulting syndrome
is sent to the receiver as the ciphertext c¢. For decryption, the receiver uses the
secret support and the generator to decrypt the ciphertext in polynomial time
using an efficient syndrome decoding algorithm of G. If neither the support nor
the generator is known, it is computationally hard to decrypt the ciphertext,
given only the public key H. The Niederreiter cryptosystem has performance
advantages over the McEliece system if it is used as a key-encapsulation scheme,
where a symmetric key is derived from the weight-t error vector e. The Nieder-
reiter cryptosystem with properly chosen parameters is believed to be secure
against attacks using quantum computers.

Security Parameters. The PQCRYPTO project [21] gives “initial recommen-
dations” for several PQC schemes. For McEliece and Niederreiter using binary
Goppa codes, they recommend to use a binary field of size m = 13, adding
t = 119 errors, code length n = 6960, and code rank kK = n—mt = 6960—13-119 =
5413 for “128-bit post-quantum security” [2]. More precisely, these parameters
give a classical security level of 266-bit (slightly overshooting 256-bit security);
they were chosen to provide maximum security for a public key size of at most
1 MB [6]. We use these recommended parameters as primary target for our imple-
mentation. However, since our design is fully parameterized, we can synthesize
our implementation for any meaningful choice of m, ¢, n, and k for comparison
with prior art (see Section 5).

2.1 Algorithms

There are three main operations within the Niederreiter cryptosystem: key gen-
eration, encryption and decryption. Key generation is the most expensive opera-
tion; it is described in Algorithm 1. The implementation of the key generator has
been described in detail in [28]. To generate a random sequence of distinct field
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Algorithm 1. Key-generation algorithm for the Niederreiter cryptosystem.

Input : System parameters: m, t, and n.
Output: Private key (g(z), (a0, a1, ..., an—1)) and public key K.
1 Choose a random sequence (o, 1, ..., an—1) of n distinct elements in GF(2™)
as support.
2 Choose a random polynomial g(z) as generator such that g(a) # 0 for all
a € (g, ..., an_1).
3 Compute the ¢ X n parity check matrix

1/g(ao)  1/g(a1) .-+ 1/g(an-1)
ao/g(an) ai/glar) - an—1/g(an-1)

o fg(an) af glar) - ol fa(om 1)

4 Transform H to a mt x n binary parity check matrix H’ by replacing each entry
with a column of m bits.

5 Transform H' into its systematic form [L,.+|K].

6 Return the private key (g(x), (o, @1, ..., @n—1)) and the public key K.

Algorithm 2. Encryption algorithm for the Niederreiter cryptosystem.

Input : Plaintext e, public key K.
Output: Ciphertext c.

1 Compute ¢ = [[¢| K] X e.

2 Return the ciphertext c.

Algorithm 3. Decryption algorithm for the Niederreiter cryptosystem.

Input : Ciphertext ¢, secret key (g(x), (o, @1, ..., Qn-1)).
Output: Plaintext e.
1 Compute the double-size 2t X n parity check matrix

1/9%(o0) 1/g%(ca) -+ 1/g*(an—1)
@ ao/g* ()  ai/g*(a1) -+ an-1/g%(an-1)
HY = . . . .
021 /g%(a0) a2 /g3 (1) -+ a2} g (an-1)

2 Transform H® to a 2mt x n binary parity check matrix H ') py replacing each
entry with a column of m bits.

3 Compute the double-size syndrome: S = H' x (¢|0).

4 Compute the error-locator polynomial o(z) by use of the decoding algorithm
given @,

5 Evaluate the error-locator polynomial o(z) at (o, aa,...,an—1) and determine
the plaintext bit values.

6 Return the plaintext e.
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elements, [28] presents a low-cost Fisher-Yates shuffle module which generates a
uniform permutation. However, the runtime of the permutation module in [28]
depends on the generated secret random numbers. This non-constant-time design
of the permutation module might have vulnerabilities which enable timing side-
channel analysis. In our work, we present a merge sort module, which generates
a uniform permutation within constant time, as described in Section 3.1.

Within the Niederreiter cryptosystem, the ciphertext is defined as a syn-
drome, which is the product between the parity check matrix and the plaintext.
As shown in Algorithm 2, the encryption operation is very simple and maps
to the multiplication between the extended public key [I,,;|K] and the plain-
text e. In our work, we only focus on the core functionalities of the Niederreiter
cryptosystem, therefore we assume that the input plaintext e is an n-bit error
message of weight .

As shown in Algorithm 3, the decryption operation starts from extracting
the error locator polynomial out of the ciphertext using a decoding algorithm.
We use the Berlekamp-Massey’s (BM) algorithm in our design and develop a
dedicated BM module for decoding, as described in Section 3.2. One problem
within BM-decoding is that it can only recover § errors. To solve this issue, we
use the trick proposed by Nicolas Sendrier [14]. We first compute the double-
size parity check matrix H® corresponding to g?(z), then we append (n — mt)
zeros to c¢. Based on the fact that e and (c¢|0) belong to the same coset given
H® x (c|0) = H x e, computing the new double-size syndrome S?) enables the
BM algorithm to recover ¢ errors. Once the error locator polynomial is computed,
it is evaluated at the secret random sequence (ag, a1, ..., an—1), and finally the
plaintext e is recovered.

2.2 Structure of the Paper

The following sections introduce the building blocks for our cryptosystem in
a bottom-up fashion. Details of the GF(2™) finite field arithmetic and of the
higher-level GF(2™)[x]/f polynomial arithmetic can be found in [28]. Lever-
aging the arithmetic operations are modules that are used in key generation,
encryption, and decryption. For key generation, the description of the Gaussian
systemization and additive FFT module has been provided in [28] and in this
paper we will focus on the introduction of the new merge sort module and the
optimization of the additive FFT module, as described in Section 3. For encryp-
tion, a simple matrix-vector multiplication is needed. For decryption, additive
FFT is used as well, and a new Berlekamp-Massey decoding module is introduced
and described in Section 3. Then we describe how these modules work together
to obtain an efficient design for the full cryptosystem in Section 4. Validation of
the design using Sage, iVerilog, and Stratix V FPGAs is presented in Section 5
together with a discussion and comparison with related work.
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Algorithm 4. Fisher-Yates shuffle
Output: Shuffled array A
Initalize: A = {0,1,...,n — 1}

1 for i from n — 1 downto 0 do

2 Generate j uniformly from range [0, %)
3 Swap A[i] and A[j]

Algorithm 5. Merge sort

Input: Random list A, of length 2*
Output: Sorted list A

1 Split A into 2* sublists.

2 forifromOtok—1do

3 Merge adjacent sublists.

3 Modules

The main building blocks within our Niederreiter cryptosystem (as shown in
Figure2) are: two Gaussian systemizers for matrix systemization over GF(2™)
and GF(2) respectively, Gao-Mateer additive FFT for polynomial evaluations,
a merge-sort module for generating uniformly distributed permutations, and a
Berlekamp-Massey module for decoding. The Gaussian systemizer and the orig-
inal version of additive FFT have been described in detail in [28]. We will focus
on the merge-sort module, the Berlekamp-Massey module and our optimizations
for the additive-FFT module in this section.

3.1 Random Permutation

An important step in the key-generation process is to compute a random permu-
tation of selected field elements, which is part of the private key and therefore
must be kept secret. In [28], the random permutation was computed by perform-
ing Fisher-Yates shuffle [11] on the ordered list (0,1,...,2™ — 1). Algorithm4
shows the operation of the Fisher-Yates shuffle. This algorithm computes a per-
mutation efficiently and requires only a small amount of computational logic.
As shown in Algorithm 4, in each iteration step i (in decrementing order), this
module generates a random integer 0 < j < i (Algorithm 4, line 2), and then
swaps the data in array position ¢ and j. In [28], a PRNG is used, which keeps
generating random numbers until the output is in the required range. Therefore,
this implementation of Fisher-Yates shuffle produces a non-biased permutation
(under the condition that the PRNG has no bias) but it is not constant-time
because different seeds for the PRNG will lead to different cycle counts for the
Fisher-Yates shuffle. This causes a potential risk of timing side-channel attacks,
which is hard to eliminate even if a larger PRNG is used.
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To fully eliminate potential timing attacks using the Fisher-Yates shuffle
approach from [28], in this work, we implemented a constant-time sorting module
for permutation based on the merge-sort algorithm. Sorting a random list can be
regarded as the reverse operation of a permutation: Sorting a randomly permuted
list can be seen as applying swapping operations on the elements until a sorted
list is achieved. Applying the same swapping operations in reverse order to a
sorted list results in a randomly permuted list. Therefore, given a constant-time
sort algorithm, a constant-time algorithm for generating a random permutation
can easily be derived.

Merge Sort. Merge sort is a comparison-based sorting algorithm which pro-
duces a stable sort. Algorithm 5 shows the merge sort algorithm. For example,
a given random list A = (92,34,18,78,91,65,80,99) can be sorted by using
merge sort within three steps: Initially, list A is divided into eight sublists
(92), (34), (18), (78), (91), (65), (80), and (99) with granularity of one. Since there
is only one element in each sublist, these sublists are sorted. In the first step, all
the adjacent sublists are merged and sorted, into four sublists (34,92), (18, 78),
(65,91), and (80,99) of size two. Merging of two sorted lists is simple: Ttera-
tively, first elements of the lists are compared and the smaller one is removed
from its list and appended to the merged list, until both lists are empty. In
the second step, these lists are merged into two sublists (18,34, 78,92) and
(65,80,91,99) of size four. Finally, these two sublists are merged to the final
sorted list Agortea = (18,34, 65,78, 80,91, 92,99).

In general, to sort a random list of n elements, merge sort needs log,(n)
iterations, where each step involves O(n) comparison-based merging operations.
Therefore, merge sort has an asymptotic complexity of O(nlogy(n)).

Random Permutation. As mentioned above, sorting a random list can be
regarded as the reverse operation of permutation. When given a random list A,
before the merge sort process begins, we attach an index to each element in the
list. Each element then has two parts: value and index, where the value is used
for comparison-based sorting, and the index labels the original position of the
element in list A. For the above example, to achieve a permutation for list P =
(0,1,...,7), we first attach an index to each of the elements in A, which gives us
anew list A’ = ((92,0), (34,1), (18,2), (78,3), (91,4), (65,5), (80,6), (99,7)).
Then the merge sort process begins, which merges elements based on their
value part, while the index part remains unchanged. Finally, we get Al .4 =
((18,2), (34,1), (65,5), (78,3), (80,6), (91,4), (92,0), (99,7)). By extracting
the index part of the final result, we get a random permutation of P, which is
(2,1,5,3,6,4,0,7). In general, to compute a random permutation, we generate
2™ random numbers and append each of them with an index. The sorting result
of these random numbers will uniquely determine the permutation.

In case there is a collision among the random values, the resulting permuta-
tion might be slightly biased. Therefore, the bit-width of the randomly generated
numbers needs to be selected carefully to reduce the collision rate and thusly the
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Design Algorithm Const. Cycles Logic Time x Area Mem. Reg. Fmax
[28] FY-shuffle x 23,635 149 3.52-10° 7 111 334 MHz
Our merge-sort v 147,505 448 6.61-107 46 615 365 MHz

Table 1. Performance of computing a permutation on 2'3 = 8192 elements with
m = 13 and b = 32; Const. = Constant Time.

bias. If the width of the random numbers is b, then the probability that there are
one or more collisions in 2™ randomly generated numbers is 1 — H?:l_l (QZZi)
due to the birthday paradox. Therefore, for a given m, the collision rate can be
reduced by using a larger b. However, increasing b also increases the required
logic and memory. Both m and b are parameters which can be chosen at com-
pile time in our implementation. The value for b can easily be chosen to fit to
the required m. For the parameters m = 13 and b = 32 the collision rate is
0.0078. We further reduce the collision rate and thus the bias within merge sort
by incorporating the following trick in our design at low logic cost: In case the
two random to-be-merged values are equal, we do a conditional swap based on
the least significant bit of the random value. Since the least significant bit of the
random value is random, this trick will make sure that if some random num-
bers are generated twice, we can still get a non-biased permutation. There still
is going to be a bias in the permutation if some random values appear more
than two times. This case could be detected and the merge sort module could
be restarted repeatedly until no bias occurs. However, the probability of this is
very low (prob ~ 272798 according to [10]) for m = 13 and b = 32.

Fully Pipelined Hardware Implementation. We implemented a parame-
terized merge sort module using two dual-port memory blocks P and P’ of depth
2™ and width (b+m). First, a PRNG is used, which generates 2™ random b-bit
strings, each cell of memory block P then gets initialized with one of the ran-
dom b-bit strings concatenated with an m-bit index string (corresponding to the
memory address in this case). Once the initialization of P finishes, the merge
sort process starts. In our design, the merge sort algorithm is implemented in
a pipelined way. The basic three operations in the merge-sort module are: read
values from two sublists, compare the two values, and write down the smaller one
to a new list. In our design, there are four pipeline stages: issue reads, fetch out-
puts from memory, compare the outputs, and write back to the other memory.
We built separate logic for these four stages and time-multiplex these four stages
by working on independent sublists in parallel whenever possible. By having the
four-stage pipelines, we achieve a high-performance merge-sort design with a
small logic overhead.

Table1 shows a comparison between our new, constant time, sort-based
permutation module with the non-constant time Fisher-Yates shuffle approach
n [28]. Clearly, the constant-time permutation implementation requires more
time, area, and particularly memory. Therefore, a trade-off needs to be made
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Figure 1. Dataflow diagram of the Berlekamp-Massey module.

between the need for increased security due to the constant-time implementa-
tion and resource utilization. In scenarios where timing side-channel protection
is not needed, the cheaper Fisher-Yates shuffle version might be sufficient.

3.2 Berlekamp-Massey Algorithm

Finding a codeword at distance ¢ from a vector v is the key step in the decryp-
tion operation. We apply a decoding algorithm to solve this problem. Among
different algorithms, the Berlekamp-Massey (BM) algorithm [16] and Patterson’s
algorithm [20] are the algorithms most commonly used. Patterson’s algorithm
takes advantage of certain properties present in binary Goppa codes, and is able
to correct up to t errors for binary Goppa codes with a designated minimum
distance d,,;n, > 2t + 1. On the other hand, general decoding algorithms like the
BM algorithm can only correct % errors by default, which can be increased to ¢
errors using the trick proposed by Nicolas Sendrier [14]. However, the process of
BM algorithm is quite simple compared to Patterson’s algorithm. More impor-
tantly, it is easier to protect the implementation of BM algorithm against timing
attacks given the simplicity of the decryption steps. Consequently, we use BM
algorithm in our decryption module.

Our implementation follows the Berlekamp iterative algorithm as described
in [16]. The algorithm begins with initializing polynomials o(z) = 1 €
GF(2™)[z], B(z) = « € GF(2™)[z], integers [ = 0 and § = 1 € GF(2™). The

input syndrome polynomial is denoted as S(z) = 327, ' S;z* € GF(2™)[z]. Then
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Algorithm 6. Berlekamp-Massey algorithm for decryption.

Input : Public security parameter ¢, syndrome polynomial S(x).
Output: Error locator polynomial o(z).

1 Initialize: o(z) =1, f(z) =2,1=0,5 = 1.

2 for k from 0 to 2t — 1 do

3 d= ZZ:O 0iSk_i

4 ifd=0or k<2l

5 {o(x), B(x),1,0} = {a(:c) - déflﬁ(x),mﬁ(x),l,é}.

6 else:

7 {o(z),B(x),l,6} = {J(x) —dé ' B(x), zo(z), k — 1+ 1, d}.
8 Return the error locator polynomial o(z).

within each iteration step k (0 < k < 2t — 1), the variables {o(z), 8(2),l,d}
are conditionally updated using operations described in Algorithm 6. Note that
updating polynomial 3(x) only involves multiplying a polynomial by z, which
can be easily mapped to a binary shifting operation on its coefficients in hard-
ware. Updating integer [ and field element ¢ only involves subtraction/addition
operations, and these operations can also be easily implemented in hardware.
Therefore the bottleneck of the algorithm lies in computing d and updating o (z).

Hardware Implementation. The first step within each iteration is to cal-
culate d (Algorithm 6, line 3). We built an entry_sum module (as shown in
Figure 1) for this computation, which maps to a vector-multiplication operation
as described in [28]. We use two registers oyec and Byec of m - (t + 1) bits to
store the coefficients of polynomials o(z) and B(x), where the constant terms o
and [y are stored in the lowest m bits of the registers, o1 and (; are stored in
the second lowest m bits, and so on. We also use a register Syee of m-(t+1) bits
to store at most (¢ + 1) coeflicients of S(z). This register is updated within each
iteration, where Sy is stored in the least significant m bits of the register, Si_1
is stored in the second least significant m bits, and so on. The computation of
d can then be regarded as an entry-wise vector multiplication between register
Oyec and register Syee = (0,0,...,50,51,...,Sk—1,5%) for all 0 < k < 2t — 1.
Register oyec is initialized as (0,0,...,1) for the first iteration, and then gets
updated with the new coefficients of o(x) for the next iteration. Syer is ini-
tialized as all zeroes, and then constructed gradually by reading from a piece
of memory which stores coefficient S; of syndrome polynomial S(x) at address
i for 0 < 4 < 2t — 1. Within the k-th iteration, a read request for address k
of the memory is issued. Once the corresponding coefficient Sy is read out, it is
inserted to the lowest m bits of Syec. After the computation of d, we start updat-
ing variables {o(x), 3(x),l,d}. To update o(x), one field-element inversion, one
field-element multiplication, one scalar multiplication as well as one vector sub-
traction are needed. At first, field element 9 is inverted. As described in [28], the
inversion of elements in GF(2™) can be implemented by use of a pre-computed
lookup table. Each entry of the table can be read in one clock cycle. After reading
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mulpm mulem step Cycles Logic Time x Area Mem. Reg. Fmax

10 10 7379 6285 4.64-10° 7 13,089 364 MHz
20 20 4523 7052 3.19 - 107 713,031 353 MHz
30 30 3571 7889 2.82 - 107 712,956 361 MHz
40 40 3095 9047 2.8-107 713,079 356 MHz
60 60 2619 11,400 2.99 - 107 713,274 354 MHz

Table 2. Performance of the Berlekamp-Massey module for m = 13, t = 119, and
deg(S(z)) = 237.

out 67!, a field-element multiplication between d and 6! is performed, which
makes use of the GF(2™) multiplication module as described in [28]. Once we get
dé—1, a scalar multiplication between field element d§~! and polynomial 3(x)
starts, which can be mapped to an entry-wise vector multiplication between vec-
tor (d6—1,dé—1,...,d57 ) and (B, Bi—1,..., 531, 50). The last step for updating
o(x) is to subtract dd~!3(x) from o(z). In a binary field GF(2™), subtraction
and addition operations are equivalent. Therefore, the subtraction between o(x)
and dd~!3(x) can simply be mapped to bit-wise xor operations between vector
(04,0¢-1,...,01,00) and vector (dd~ 13, d6 = B_1,...,dd~131,d5~1/3). Updat-
ing polynomial ((z) is done by conditionally replacing its coefficient register
Brvec With dyec, and then shift the resulting value leftwards by m bits. Updating
integer [ and field element § only involves simple and cheap hardware operations.

The above iterations are repeated for a fixed number of 2¢ times, where ¢ is
the public security parameter. After 2¢ iterations, the final output is determined
as the error locator polynomial o(x). It is easy to see that within each iteration,
the sequence of instructions is fixed, as long as we make sure that the conditional
updates of variables {o(z), 8(z),l,d} are constant time (which is easy to achieve
due to its fixed computational mapping in hardware), the run time of the whole
design is fixed given the fixed iteration times. Therefore our BM implementation
is fully protected against existing timing side-channel attacks, e.g., [3,25].

We built a two-level design. The lower level is a BM_step module, which maps
to one iteration, shown as “Berlekamp-Massey Step” in Figure 1. The higher-
level BM module then iteratively applies BM_step and entry_sum modules. Table 2
shows performance for the BM module. A time-area trade-off can be achieved by
adjusting the design parameters mulgy and mulgn step, Which are the number
of multipliers used in the BM and BM_step modules. mulgy and mulgnm step can
be freely chosen as integers between 1 and ¢ + 1.

3.3 Optimizations for Additive FFT

Evaluating a polynomial at multiple data points over GF(2™) is an essential
step in both the key generation and the decryption processes. In key generation,
an evaluation of the Goppa polynomial g(z) is needed for computing the par-
ity check matrix H, while for decryption, it is required by the computation of
the double-size parity check matrix H?) as well as the evaluation of the error
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locator polynomial o(x). Therefore, having an efficient polynomial-evaluation
module is very important for ensuring the performance of the overall design. We
use a characteristic-2 additive FFT algorithm introduced in 2010 by Gao and
Mateer [12], which was used for multipoint polynomial evaluation by Bernstein
et al. in [5]. Additive FFT consists of two parts. First, radix conversion and twist
is performed on the input polynomial. Given a polynomial g(x) of 2* coefficients,
the recursive twist-then-radix-conversion process returns 2¥ 1-coefficient polyno-
mials. Then, these 1-coefficient polynomials are used to iteratively evaluate the
input points by use of the reduction process.

We applied some modifications and improvements to both parts of the addi-
tive FFT design from [28]:

Optimizing Radix Conversion and Twisting. The radix-conversion step,
which includes both radix conversion and twist, consists of several rounds that
iteratively compute the new output coefficients of the converted input polyno-
mial. The number of rounds is the base-2 logarithm of the degree of the input
polynomial. In each round, new temporary coefficients are computed as the sum
of some of the previous coefficients followed by a twist operation, i.e., a multi-
plication of each coefficient with a pre-computed constant to obtain a new basis
for the respective round.

The radix-conversion module in [28] is using dedicated logic for each round
for summing up the required coefficients, computing all coefficients within one
cycle. Computing all coefficients with dedicated logic for each round requires a
significant amount of area although radix conversion only requires a very small
amount of cycles compared to the overall additive FFT process. Therefore, this
results in a relatively high time-area product and a poor usage of resources.

We improve the area-time product at the cost of additional cycles and addi-
tional memory requirements by using the same logic block for different coeffi-
cients and rounds. An additional code-generation parameter is used to specify
how many coefficients should be computed in parallel, which equals to the num-
ber of multipliers (1 < Mult. < ¢4 1) used in twist when mapping to hard-
ware implementations. Each round then requires several cycles depending on the
selected parameter. The computation of the new coefficients requires to sum up
some of the previous coefficients. The logic therefore must be able to add up any
selection of coefficients depending on the target coefficient. We are using round-
and coefficient-dependent masks to define which coefficients to sum up in each
specific case. These masks are stored in additional RAM modules.

Furthermore, in the design of [28], the length of the input polynomial is
constrained to be a power of 2. For shorter polynomials, zero-coefficients need
to be added, which brings quite some logic overhead especially on some extreme
cases. For example, for a polynomial of 129 coefficients (¢t = 128), a size-256 radix
conversion module will be needed. Instead, our improved design eliminates this
constraint and allows an arbitrary input length with low overhead and therefore
is able to further reduce cycle count and area requirements.
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Design Coeffs. Mult. Cycles Logic Time x Area Reg. Mem. Fmax

Our 120 2 385 1893 7.3-10° 3541 6 305 MHz
Our 120 4 205 2679 5.5 10° 3622 10 273 MHz
[28] 128 4 211 5702 1.2-10° 7752 0 407 MHz
Our 120 8 115 4302 4.9 -10° 3633 17 279 MHz
[28] 128 8 115 5916 6.8-10° 7717 0 400 MHz

Table 3. Performance of our radix-conversion module compared to [28] for GF(2'3).

Table 3 shows the performance improvements of the current radix-conversion
module compared to the design in [28]. The numbers for our new design are
given for a polynomial of length 120. The design in [28] requires the next larger
power of 2 as input length. Therefore, we give numbers for input length 128
for comparison. For a processing width of four coefficients (multipliers), our
new implementation gives a substantial improvement in regard to the time-area
product over the old implementation at the cost of a few memory blocks.

Parameterizing Reduction. In the previous design of the additive FFT
in [28], the configuration of the reduction module is fixed and uniquely deter-
mined by the polynomial size and the binary field size. Before the actual com-
putation begins, the data memory is initialized with the 2¥ 1-coefficient polyno-
mials from the output of the last radix-conversion round. The data memory D
within the reduction module is configured as follows: The depth of the memory
equals to 2%, based on this, the width of the memory is determined as m x 2™~
since in total m x 2™ memory bits are needed to store the evaluation results
for all the elements in GF(2™). Each row of memory D is initialized with 2m—*
identical 1-coeflicient polynomials. The other piece of memory within the reduc-
tion module is the constants memory C. It has the same configuration as the
data memory and it stores all the elements for evaluation of different reduction
rounds. Once the initialization of data memory and constants memory is finished,
the actual computation starts, which consists of the same amount of rounds as
needed in the radix conversion process. Within each round, two rows of values
(fo and f1) are read from the data memory and the corresponding evaluation
points from the constants memory, processed, and then the results are written
back to the data memory. Each round of the reduction takes 2¥ cycles to finish.
In total, the reduction process takes k x 2% cycles plus overhead for memory
initialization.

In our current design, we made the reduction module parameterized by intro-
ducing a flexible memory configuration. The width of memories D and C can be
adjusted to achieve a trade-off between logic and cycles. The algorithmic pat-
tern for reduction remains the same, while the computational pattern changes
due to the flexible data reorganization within the memories. Instead of fixing
the memory width as m x 2% it can be configured as a wider memory of
width m x 27”_’“‘”,0 < i < k. In this way, we can store multiple 1-coefficient
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Mult. Cycles Logic Time x Area Mem. bits Mem. Reg. Fmax
32 968 4707 4.56 - 10° 212,160 63 10,851 421 MHz
64 488 9814 4.79-10° 212,992 126 22,128 395 MHz

Table 4. Performance of our parameterized size-128 reduction module for GF(2'?).

Multipliers
Design Rad. Red. Cycles Logic Time x Area Mem. Reg. Fmax
Our 4 32 1173 7344 8.61-10° 73 14,092 274 MHz
[28] 4 32 1179 10,430 1.23-107 63 18,413 382 MHz
Our 8 64 603 13,950 8.41-10° 143 25,603 279 MHz
[28] 8 32 108310,710 1.16 - 107 63 18,363 362 MHz

Table 5. Performance of our optimized additive-FFT module compared to [28] for
m = 13, deg(g(z)) = 119. Rad. and Red. are the number of multipliers used in radix
conversion and twist (reduction) separately.

polynomials at one memory address. The organization of the constants mem-
ory needs to be adapted accordingly. Therefore, within each cycle, we can either
fetch, do computation on, or write back more data and therefore finish the whole
reduction process within much fewer cycles (k x 28~ plus overhead of few ini-
tialization cycles). However, the speedup of the running time is achieved at the
price of increasing the logic overhead, e.g., each time the width of the memory
doubles, the number of multipliers needed for computation also doubles.

Table 4 shows the performance of our parameterized reduction module. We
can see that doubling the memory width halves the cycles needed for the reduc-
tion process, but at the same time approximately doubles the logic utilization.
We can see that although the memory bits needed for reduction remain similar
for different design configurations, the number of required memory blocks dou-
bles in order to achieve the increased memory width. Users can easily achieve a
trade-off between performance and logic by tuning the memory configurations
within the reduction module.

Table 5 shows performance of the current optimized additive FFT module.
By tuning the design parameters in the radix conversion and reduction parts,
we are able to achieve a 28% smaller time-area product compared to [28] when
Rad. = 4 and Red. = 64.

4 Key Generation, Encryption and Decryption

We designed the Niederreiter cryptosystem by using the main building blocks
shown in Figure 2. Note that we are using two simple 64-bit Xorshift PRNGs in
our design to enable deterministic testing. For real deployment, these PRNGs
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must be replaced with a cryptographically secure random-number generator,
e.g., [8]. We require at most b random bits per clock cycle per PRNG.

4.1 Key Generation

The overall design of our key-generation module is identical to the design in [28].
The dataflow diagram is shown in Figure 2a. However, we improve the security
of private-key generation by substituting the Fisher-Yates Shuffle module with
a merge-sort module in order to generate a uniform and random permutation in
constant time (see Section 3.1). The generation of the public key is improved by
several optimizations applied to the additive FF'T module (see Section 3.3).
Table 6 shows a comparison of the performance of the old implementation
in [28] with our new, improved implementation. Despite the higher cost for the
constant-time permutation module, overall, we achieve an improvement in regard
to area requirements and therefore to the time-area product at roughly the
same frequency on the price of a higher memory demand. However, the overall
memory increase is less than 10% which we believe is justified by the increased
side-channel resistance due to the use of a constant-time permutation.

4.2 Encryption

Figure 2b shows the interface of the encryption module. The encryption mod-
ule assumes that the public key K is fed in column by column. The matrix-
vector multiplication [I,:|K] X e is mapped to serial xor operations. Once
the PK_column valid signal is high, indicating that a new public-key column
(PK_column) is available at the input port, the module checks if the correspond-
ing bit of plaintext e is 1 or 0. If the bit value is 1, then an xor operation
between the current output register (initialized as 0) and the new public-key
column is carried out. Otherwise, no operation is performed. After the xor oper-
ation between K and the last (n — mt) bits of e is finished, we carry out one
more xor operation between the output register and the first mt bits of e. Then
the updated value of the output register will be sent out as the cipheretxt c.
Table 7 shows performance of the encryption module. The encryption module is
able to handle one column of the public key in each cycle and therefore requires
a fixed number of (n — mt) cycles independent of the secret input vector e.

4.3 Decryption

Within the decryption module, as described in Figure 2c, first the evaluation of
the Goppa polynomial g(z) is carried out by use of the optimized additive FF'T
module, which was described in Section 3.3. In our implementation, instead of
first computing the double-size parity-check matrix H®) and then computing the
double-size syndrome S, we combine these two steps together. The computa-
tion of S(®) can be mapped to serial conditional xor operations of the columns of
H®). Based on the observation that the last (n —mt) bits of vector (c|0) are all
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Figure 2. Dataow diagrams of the three parts of the full cryptosystem: (a) key gener-
ation, (b) encryption, and (c) decryption. Dark gray boxes represent block memories,
while white boxes represent major logic modules.

zero, the last (n—mt) columns of H® do not need to be computed. Furthermore,
the ciphertext ¢ should be a uniformly random bit string. Therefore, for the first
mt columns of H® roughly only half of the columns need to be computed.
Finally, we selectively choose which columns of H(?) we need to compute based
on the nonzero bits of the binary vector (c|0). In total, approximately m x t2
field element multiplications are needed for computing the double-size syndrome.
The computation of the corresponding columns of H(?) is performed in a similar
column-block-wise method as described in [28]. The size B (1 < B < 2t) of the
column block is a design parameter that users can pick freely to achieve a trade-
off between logic and cycles during computation. After the double-syndrome S(?)
is computed, it is fed into the Berlekamp-Massey module described in Section 3.2
and the error-locator polynomial o(z) is determined as the output. Next, the
error-locator polynomial o(z) is evaluated using the additive FFT module (see
Section 3.3) at all the data points over GF(2™). Then, the message bits are
determined by checking the data memory contents within the additive FFT
module that correspond to the secret key-element set (ag,aq,...,an—1). If the
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Case Ng Nr Cycles Logic Time x Area Mem. Fmax Time
Prior work [28]
Logic 40 111,121,220 29,711 3.30- 10" 756 240 MHz 46.43 ms
Bal. 80 2 3,062,942 48,354  1.48-10'! 764 248 MHz 12.37 ms
Time 160 4 896,052 101,508 9.10-10'° 803 244 MHz 3.68 ms
Our work
Logic 40 111,121,214 22,716  2.53-10'' 819 237 MHz 46.83 ms
Bal. 80 2 3,062,936 39,122  1.20-10'! 827 230 MHz 13.34ms
Time 160 4 966,400 88,715 8.57-10° 873 251 MHz 3.85ms

Table 6. Performance of the key-generation module for parameters m = 13, t = 119,
and n = 6960. All the numbers in the table come from compilation reports of the
Altera tool chain for Stratix V FPGAs.

m t  n Cycles Logic Time x Area Mem. Reg. Fmax
13119 6960 5413 4276 2.31-10" 0 6977 448 MHz

Table 7. Performance for the encryption module.

Case B mulgm Cycles Logic Time x Area Mem. Reg. Fmax Time

Area 10 10 34,492 19,377 6.68 - 10° 88 47,749 289 MHz 0.12 ms
Bal. 20 20 22,768 20,815  4.74-10° 88 48,050 290 MHz 0.08 ms
Time 40 40 17,055 23,901 4.08 - 108 88 49,407 300 MHz 0.06 ms

Table 8. Performance for the decryption module for m = 13,¢ = 119 and n = 6960,
mulpM step 1S set to mulpwm.

corresponding evaluation result for o;, 7 = 0,1,...,n — 1 equals to zero, then the
i-th bit of the plaintext is determined as 1, otherwise is determined as 0. After
checking the evaluation results for all the elements in the set (ag, a1, ..., @n_1),
the plaintext is determined. Table8 shows the performance of the decryp-
tion module with different design parameters. By tuning design parameters
mulpm _step , Mulgy, and B, a time-area trade-off can be made.

5 Testing, Evaluation, and Comparison

Our implementation of the Niederreiter cryptosystem is fully parameterized and
can be synthesized for any choice of reasonable security parameters. However, the
main target of our implementation is the 256-bit (classical) security level, which
corresponds to a level at least “128-bit post-quantum security”. For testing,
we used the parameters suggested in the PQCRYPTO recommendations [2]:
m =13, t = 119, n = 6960 and k = 5413 (k = n —m¢t).

Testing. To validate the FPGA implementation, in addition to simulations, we
implemented a serial 10 interface for communication between the host computer
and the FPGA. The interface allows us to send data and simple commands from
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Case Ny Nr B mulgm Logic Mem. Reg. Fmax

Area 40 110 10 53,447 (23%) 907 (35%) 118,243 245 MHz
Bal. 80 220 20 70,478 (30%) 915 (36%) 146,648 251 MHz
Time 160 4 40 40 121,806 (52%) 961 (38%) 223,232 248 MHz

Table 9. Performance for the entire Niederreiter cryptosystem (i.e., key generation,
encryption, and decryption) including the serial IO interface when synthesized for the
Stratix V (5SGXEATN) FPGA; mulpm _step 1S set to mulgm.

the host to the FPGA and receive data, e.g., public and private key, ciphertext,
and plaintext, from the FPGA. We verified the correct operation of our design
by comparing the FPGA outputs with our Sage reference implementation (using
the same PRNG and random seeds).

Evaluation. We synthesized our design using Altera Quartus 17.0 for these
parameters on a Stratix VFPGA (5SGXEATN). The results are given in Table 9,
with included logic overhead of the 10 interface. We provide numbers for three
performance parameter sets, one for small area, one for small runtime, and one
for balanced time and area. The parameters Ng and Ny control the size of the
systolic array in the Gaussian systemizer modules, which are used for computing
the private Goppa polynomial and the public key. Parameter B is the matrix-
block size used for computing the syndrome. Parameter mulgy; determines the
number of multipliers used in the high-level BM decoding module. The number of
multipliers (mulgm gstep) used in the low-level BM_step module is set to mulgy for
the evaluation. The memory requirement varies slightly due the differences in
the memory word size based on the design parameters. These design parameters
can be freely chosen as long as the synthesized result fits on the target FPGA.
For security parameter set m = 13,t = 119,n = 6960, our experiment shows
that the largest design parameter set we can fit on Stratix V FPGA is: Ng=
250, NH: 6, mulBM = 60, mulBMfstep: 60, and B = 60.

Comparison. In the following, we compare our work with previous designs.
First, we compare it with a 103-bit classical security-level hardware-design
described in [26]. This work is the only previously existing hardware implemen-
tation for the whole code-based cryptosystem, including a key generator, that we
have found in literature. To compare with their work, we synthesized our design
with the Xilinx tool-chain version 14.7 for a Virtex-5 XC5VLX110 FPGA. Note
that the performance data of [26] in Table 10 includes a CCA2 conversion for
encryption and decryption, which adds some overhead compared to our design.
From Table 10, we can see that our design is much faster when comparing cycles
and time, and also much cheaper in regard to area and memory consumption.
Second, we compare our work with a hardware design from [17], which
presents the previously fastest decryption module for a McEliece cryptosys-
tem. Therefore the comparison of our work with design [17] only focuses on the
decryption part. We synthesized our decryption module with the parameters
they used, which correspond to a 128-bit classical security level, for a Virtex-6
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Cycles Logic Freq. Mem.  Time (ms)
Gen. Dec. Enc. (MHz) Gen. Dec. Enc.
m =11, t = 50, n = 2048, Virtex 5 LX110
[28] 14,670,000 210,300 81,500 14,537 163 75 90.00 1.29 0.50
Our 1,503,927 5864 1498 6660 180 68 8.35 0.03 0.01
m = 12, t = 66, n = 3307, Virtex 6 LX240

[17] - 28,887 - 3307 162 15 - 0.18 -
Our - 10,228 - 6571 267 23 - 0.04 -
m =13, t = 128, n = 8192, Haswell vs. Stratix V
[9] 1,236,054,840 343,344 289,152 - 4000 - 309.01 0.09 0.07

Our 1,173,750 17,140 6528 129,059 231 1126 5.08 0.07 0.07

Table 10. Comparison with related work. Logic is given in “Slices” for Xilinx Virtex
FPGAs and in “ALMs” for Altera Stratix FPGAs.

XC6VLX240T FPGA. From Table 10, we can see that the time-area product
of our decryption module is 10228 - 6571 = 67,208, 188, which is 30% smaller
than the time-area product of their design of 28887 - 3307 = 95,529,309 when
comparing only the decryption module. Moreover, our design is able to achieve
a much higher frequency and a smaller cycle counts compared to their design.
Overall we are more than 4x faster than [17].

Finally, we also compare the performance of our hardware design with the
to-date fastest CPU implementation of the Niederreiter cryptosystem [9]. In this
case, we ran our implementation on our Altera Stratix V FPGA and compare
it to a Haswell CPU running at 4 GHz. Our implementation competes very well
with the CPU implementation, despite the over 10x slower clock of the FPGA.

6 Conclusion

This paper presented a complete hardware implementation of Niederreiters’s
code-based cryptosystem based on binary Goppa codes, including key genera-
tion, encryption and decryption. The presented design can be configured with
tunable parameters, and uses code-generation to generate vendor-neutral Ver-
ilog HDL code for any set of reasonable parameters. This work presented hard-
ware implementations of an optimization of the Gao-Mateer additive FFT for
polynomial evaluation, of merge sort used for obtaining uniformly distributed
permutations, and of a constant-time Berlekamp-Massey algorithm.

Open-Source Code. The source code for this project is available under an
open-source license at http://caslab.csl.yale.edu/code/niederreiter/.

Acknowledgments. This work was supported in part by United States’
National Science Foundation grant 1716541. We would like to acknowledge
FPGA hardware donations form Altera (now part of Intel). We also want to
thank Tung (Tony) Chou for his invaluable help. This paper has been greatly
improved thanks to feedback from our shepherds Lajla Batina and Pedro Maat
Costa Massolino and the anonymous reviewers.


http://caslab.csl.yale.edu/code/niederreiter/

FPGA-Based Niederreiter Cryptosystem Using Binary Goppa Codes 97

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

Alkadri, N.A., Buchmann, J., Bansarkhani, R.E., Kramer, J.: A framework to select
parameters for lattice-based cryptography. Cryptology ePrint Archive, Report
2017/615 (2017). https://eprint.iacr.org/2017/615

Augot, D., Batina, L., Bernstein, D.J., Bos, J., Buchmann, J., Castryck, W.,
Dunkelman, O., Giineysu, T., Gueron, S., Hiilsing, A., Lange, T., Mohamed,
M.S.E., Rechberger, C., Schwabe, P., Sendrier, N., Vercauteren, F., Yang, B.Y.:
Initial recommendations of long-term secure post-quantum systems. Technical
report, PQCRYPTO ICT-645622 (2015). https://pqcrypto.eu.org/docs/initial-
recommendations.pdf

Avanzi, R., Hoerder, S., Page, D., Tunstall, M.: Side-channel attacks on the
McEliece and Niederreiter public-key cryptosystems. JCEN 1(4), 271-281 (2011)
Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography.
Springer, Heidelberg (2009)

Bernstein, D.J., Chou, T., Schwabe, P.: McBits: fast constant-time code-based
cryptography. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086,
pp. 250-272. Springer, Heidelberg (2013)

Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryp-
tosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp.
31-46. Springer, Heidelberg (2008)

Chen, L., Moody, D., Liu, Y.K.: NIST post-quantum cryptography standardiza-
tion. https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-
cryptography-standardization/

Cherkaoui, A., Fischer, V., Fesquet, L., Aubert, A.: A very high speed true random
number generator with entropy assessment. In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 179-196. Springer, Heidelberg (2013)

Chou, T.: McBits revisited. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 213-231. Springer, Cham (2017)

DasGupta, A.: The matching, birthday and the strong birthday problem: a con-
temporary review. J. Stat. Plan. Inference 130(1), 377-389 (2005)

Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research. Oliver and Boyd, London (1948)

Gao, S., Mateer, T.: Additive fast Fourier transforms over finite fields. IEEE Trans.
Inf. Theory 56(12), 6265-6272 (2010)

Guo, Q., Johansson, T., Stankovski, P.: A key recovery attack on MDPC with CCA
security using decoding errors. In: Cheon, J.H., Takagi, T. (eds.) ASTACRYPT
2016. LNCS, vol. 10031, pp. 789-815. Springer, Heidelberg (2016)

Heyse, S., Giineysu, T.: Code-based cryptography on reconfigurable hardware:
tweaking Niederreiter encryption for performance. JCEN 3(1), 29-43 (2013)

Li, Y.X., Deng, R.H., Wang, X.M.: On the equivalence of McEliece’s and Nieder-
reiter’s public-key cryptosystems. IEEE Trans. Inf. Theory 40(1), 271-273 (1994)
Massey, J.: Shift-register synthesis and BCH decoding. IEEE Trans. Inf. Theory
15(1), 122-127 (1969)

Massolino, P.M.C., Barreto, P.S.L.M., Ruggiero, W.V.: Optimized and scalable co-
processor for McEliece with binary Goppa codes. ACM Trans. Embed. Comput.
Syst. 14(3), 45 (2015)

McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN
Progr. Rep. 42—44, 114-116 (1978)


https://eprint.iacr.org/2017/615
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/

98

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

W. Wang, J. Szefer and R. Niederhagen

Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl.
Control Inf. Theory 15, 19-34 (1986)

Patterson, N.: The algebraic decoding of Goppa codes. IEEE Trans. Inf. Theory
21(2), 203-207 (1975)

Post-quantum cryptography for long-term security PQCRYPTO ICT-645622.
https://pgcrypto.eu.org/

Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Report 2006/145 (2006)

Shor, P.W.: Algorithms for quantum computation: discrete logarithms and fac-
toring. In: Foundations of Computer Science - FOCS 1994, pp. 124-134. IEEE
(1994)

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. STAM Rev. 41(2), 303-332 (1999)

Shoufan, A., Strenzke, F., Molter, H.G., Stottinger, M.: A timing attack against
patterson algorithm in the McEliece PKC. In: Lee, D., Hong, S. (eds.) ICISC 2009.
LNCS, vol. 5984, pp. 161-175. Springer, Heidelberg (2010)

Shoufan, A., Wink, T., Molter, G., Huss, S., Strentzke, F.: A novel processor archi-
tecture for McEliece cryptosystem and FPGA platforms. IEEE Trans. Comput.
59(11), 1533-1546 (2010)

Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on gen-
eralized Reed-Solomon codes. Discret. Math. Appl. 2(4), 439444 (1992)

Wang, W., Szefer, J., Niederhagen, R.: FPGA-based key generator for the Nieder-
reiter cryptosystem using binary Goppa codes. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 253-274. Springer, Cham (2017)


https://pqcrypto.eu.org/

Cryptanalysis



®

Check for
updates

Attacks on the AJPS Mersenne-Based
Cryptosystem

Koen de Boer!®™) | Léo Ducas', Stacey Jeffery"2, and Ronald de Wolf!»2:3

1 CWI, Amsterdam, The Netherlands
kboer@cwi.nl
2 QuSoft, Amsterdam, The Netherlands
3 University of Amsterdam, Amsterdam, The Netherlands

Abstract. Aggarwal, Joux, Prakash and Santha recently introduced a
new potentially quantum-safe public-key cryptosystem, and suggested
that a brute-force attack is essentially optimal against it. They con-
sider but then dismiss both Meet-in-the-Middle attacks and LLL-based
attacks. Very soon after their paper appeared, Beunardeau et al. pro-
posed a practical LLL-based technique that seemed to significantly
reduce the security of the AJPS system. In this paper we do two things.
First, we show that a Meet-in-the-Middle attack can also be made to
work against the AJPS system, using locality-sensitive hashing to over-
come the difficulty that Aggarwal et al. saw for such attacks. We also
present a quantum version of this attack. Second, we give a more precise
analysis of the attack of Beunardeau et al., confirming and refining their
results.

1 Introduction

Aggarwal et al. [1] recently proposed a variant of the NTRU public-key encryp-
tion scheme [13]. This variant uses integers with sparse binary representation as
a secret key, rather than polynomials with small coefficients. In particular, their
cryptosystem is suspected to be resistant to quantum attacks.

Their system works as follows. Consider a Mersenne number N = 2" —1, with
n prime. Then we can identify the ring R = Z/NZ with the set of n-bit strings,
where 1" is identified with 0™. To set up the keys of the cryptosystem, choose
fyg € R of fixed Hamming weight w = |\/n/2]| uniformly at random, subject
to ¢ having a multiplicative inverse in R. Set the public key to h := f/g (this
corresponds to an n-bit string of arbitrary Hamming weight) and the private
key to g. In the next section we describe how Aggarwal et al. use these keys for
encryption and decryption.

The security of this system relies on the assumption that it is hard to solve
the following Mersenne Low Hamming Ratio Search Problem: given n,w € N
and h € R, find f,g € R of weight w such that h = f/g, assuming such f and g
exist. A brute-force attack on this system would just try out all (Z:ll) possible
g’s of weight w that start with a 1 (the latter is without loss of generality) and
© Springer International Publishing AG, part of Springer Nature 2018
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check whether hg has weight w. Aggarwal et al. [1] suggest that this brute-force

. . . —1\
attack is close to optimal. This would correspond to roughly A = log (~]) ~
% -wlog n bits of security. On a quantum computer, this brute-force attack could
be implemented using Grover’s quantum search algorithm [11] in time roughly

£/ (Z:ll), corresponding to roughly i -wlog n bits of security.

In particular, Aggarwal et al. [1] consider and then dismiss two possible lines
of attack that could be better than brute force. First, they suggest that a com-
binatorial Meet-in-the-Middle attack would fail due to a problem of “approxi-
mate collisions”. Second, they argue that their variation makes an adaptation
of known lattice attacks against NTRU ineffective. The latter claim was rapidly
challenged, when a faster experimental attack using LLL reduction was found
by Beunardeau et al. [6]. This attack exploits the low weight of f and g, and
is able to find f, g using partition-search in the integer interval {0,...,2" — 1}.
The authors argue that their attack reduces the bit security to about A ~ 2w.
Beunardeau et al. [6] warn that their attack is only practically feasible, and
might not work with, for example, increasing parameters. They further expect
that slightly changing the cryptosystem protects against this attack [6, Sect. 4].

1.1 This Work

In this work we revisit the security of the AJPS cryptosystem. We first pro-
pose a Meet-in-the-Middle attack that circumvents the issues raised by [1] and
gives a polynomial speed-up over a brute-force attack. It runs in classical time

0] ( (Z:i)), and can be accelerated on a quantum computer to O (@3/ (Z:i))

Our analysis requires several minor heuristics, which we have confirmed experi-
mentally. Secondly, we formally analyze the attack of Beunardeau et al. [6]. Our
analysis suggest that the attack is slightly less efficient, asymptotically, than sug-
gested in [6]. However, this small difference in complexity makes little difference
in practice.

Meet-in-the-Middle attack. Aggarwal et al. [1, Sect.5.1] described a failed
attempt at a Meet-in-the-Middle (MITM) attack on their cryptosystem. It fails
because the “collisions” in the “middle” are not exact, and they view this failure
as evidence for the optimality of the brute-force attack. In contrast, we show
how a MITM attack on their system can nonetheless be executed, using locality-
sensitive hashing to overcome the issue of inexact, approximate collisions.

The idea is still, given public key h € {0,1}", to find an n-bit string g € R
of weight < w, such that hg also has low weight. Split the n-bit string g =
g1 @ g2 into an n-bit string g1 with roughly aw 1s in the first an bits and 0Os
elsewhere, and a g2 with roughly (1 — a)w 1s in the last (1 — a)n bits and
0Os elsewhere. Now hg = hgi + hge having low weight corresponds to hg; and
hgs being approximately equal (i.e., having low Hamming distance), so our goal
becomes to find an “approximate collision” between the two sets {hg;} and
{hg2}. We can do this by first computing all elements of the first set, together
with their hashes, and storing these in an appropriate data structure. After that
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we search in the second set to find an approximate collision with the elements
in the data structure (if such an approximate collision exists). This attack turns
out to be substantially cheaper than a brute-force search over all ¢g’s of weight w.
In the classical case, setting the split at « = 1/2, the runtime of the attack is

roughly (Z)ﬁ) ~ (") Y ? which corresponds to roughly 1 -wlogn bits of security.

In the quantum case, setting o = 1/3 yields an algorithm similar to [5], which
) )1/3 corresponding to Low log n bits of security.
w/3 w ) 6
A meet-in-the-middle attack on NTRU, which has a similar structure to the
AJPS cryptosystem, is due to Odlyzko, and is described in [15]. The first example
of a quantum meet-in-the-middle algorithm was the collision-finding algorithm of
Brassard et al. [9]. Similar ideas were later used in a quantum algorithm for the
subset sum problem [5], and a quantum attack on the NTRU cryptosystem [23],
which have a similar structure to the algorithm presented here. One difference
in our new algorithm is the use of Ambainis’s variable-cost quantum search
algorithm [3], described in Sect. 2.2.
To complement our theoretical analysis we also implemented this attack on
a classical computer and ran a simulation for quantum computers. Our source
code is available at https://github.com/lducas/MiTM-Mersenne.

has runtime roughly (”/ N~ ("

Analysis of the lattice attack of Beunardeau et al. Although Beunardeau et al. [6]
provide experimental evidence for the efficiency of their attack, they leave open
the task of providing a theoretical analysis to support the correctness of their
approach. This leaves some uncertainty for a concrete security estimate of the
cryptosystem of Aggarwal et al. We attempt to fill this gap with a more in-depth
analysis of their attack. We conclude that the cost of their attack is in fact of
the form (2 + & + o(1))?* for some very small constant § > 0. Besides clarifying
the heuristic asymptotic complexity of the attack of Beunardeau et al. [6], it
also essentially confirms their practical claim that their attack reduces the secu-
rity to roughly 2w bits. Hence it remains the best known attack on the AJPS
cryptosystem (better than our MITM attack).

1.2 TImpact

The impact of this work is mostly of a conceptual nature. Our Meet-in-the-
Middle attack is a reminder that inexact collisions can sometimes be circum-
vented, depending on the metric at hand. While a similar near-collision MITM
attack was well known against NTRU (attributed to Odlyzko in [15]), it was
rather easy due to how close the near-collisions were. The setting of Aggarwal
et al. is more demanding. Our work also shows another application of Nearest-
Neighbor Search (NNS) techniques to cryptanalysis, which have already found
important application to lattice problems [4,17,18].

Our analysis of the attack of Beunardeau et al. [6] also provides better confi-
dence in the revised security estimate of the treated cryptosystem [1]. Moreover,
we hope that it provides clear tools and heuristics to understand the behavior
of LLL in more general scenarios.
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Open questions. Our work highlights several interesting open questions. Con-
cerning the cryptosystem of [1], an interesting idea would be to see whether
the lattice attack and the MITM attack could be combined into an even faster
attack, as was already done against NTRU by Howgrave-Graham [14]. At first
sight, it seems that this approach would not lead to an exponential acceleration,
yet it may make it possible to amortize the polynomial cost of each call to the
LLL algorithm.

More generally, our work highlights the question of Nearest-Neighbor Search
using quantum computers. This question was already approached in [17,19],
which considered generic application of Grover’s algorithm over classical NNS
techniques. It seems an important question to determine whether less generic
approaches could perform better.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we give the neces-
sary preliminaries, including a description of the AJPS cryptosystem of [1], and
a description of a variant of the quantum search algorithm due to [3], for settings
where the cost of checking if an element is marked varies. In Sect. 3, we present
and analyze our classical Meet-in-the-Middle attack, and in Sect. 4, we present
and analyze our quantum Meet-in-the-Middle attack. In Sect. 5, we present our
formal analysis of the Beunardeau et al. attack [6].

2 Preliminaries

2.1 The AJPS Cryptosystem

In this section, we will describe the cryptosystem of Aggarwal et al. [1] (the
AJPS cryptosystem). Let N = 2" — 1, where n is a prime number!, and let
R = Z/NZ be the integer ring modulo N. We define w = |/n/2] to be the
upper bound on what we will consider “low weight”.

We will identify a number in R with its binary representation. In this way,
we can represent the elements of R by the elements of Fy, with 1™ and 0™ both
representing 0 € R, and all other elements of R having unique representatives in
F%. For nonzero a € R, denote by |a| the Hamming weight of the unique binary
representation of a, and define |0] = 0. Similarly, denote by A(a,b) the Hamming
distance between the binary representations of a and b (using the representation
0" for 0 € R). Note that it is not necessarily the case that |ab| and |al - |b| are
equal nor that |a + b| and |a| + |b] are equal. However, we have the following.

! Numbers of the form N = 2" — 1 with n € N are called Mersenne numbers. If,
additionally, N = 2" — 1 is prime, it is called a Mersenne prime. For the purposes
of the AJPS cryptosystem, N doesn’t need to be prime, but n does.
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Lemma 1 ([1]). Let a,b € R. Then

(i) |a+0] <fa| +1b],
(i) |ab| < lal - |b], and
(i) if a # 0, then | —a| = n — |al.

Elements of the ring R have the special property that for any ¢ € {0,...,n—1}
and a € R, the binary representation of a-2¢ mod N is just a cyclic shift of the
binary representation of a by i.

We now describe the AJPS cryptosystem [1] with public parameter n.

Key Generation. Randomly choose two elements f, g € R of Hamming weight
w, where g is invertible in R. Set h = f/g. The public key is h, and the secret
key is g.

Encryption. To encrypt a bit s, pick random p,q € R of Hamming weight at
most w. Output the ciphertext ¢ = (—1)°(ph + q) € R.

Decryption. To decrypt ¢, compute cg = (—1)%(phg + qg) = (=1)*(pf + q9).
Since p, q, f and g all have Hamming weight < w, the n-bit string pf + ¢g has
Hamming weight < 2w? < n/2 by Lemma 1. Thus if s = 0, then |cg| < n/2.
On the other hand, if s = 1, then | — ¢g| < n/2, so by Lemmal, |cg| >
n —n/2 =n/2. Thus, to decrypt ¢, output 0 if |cg| < n/2, and 1 otherwise.

To attack this cryptosystem, it suffices to solve the following problem:

Given h € R, find g € R of Hamming weight w such that
|hg| = w, assuming such a g exists.

Since multiplication by 2% just shifts the binary representation of an element
of R by i, if g is a solution to the above problem, then so is 2¢g. Thus, if a solution
exists, then a solution with the first bit set to 1 exists, and so we can restrict our
attention to such solutions. Since a brute-force attack can find such a solution g
in time (Z:ll), to achieve security parameter A, n and w must satisfy (Z:ll) > 22
and w < 4/n/2. Our results, however, imply that a stronger condition is required
to achieve A-bit security.

2.2 Quantum Search with Variable Costs

In this section we will introduce the quantum search algorithm, originally due
to Grover [11] and later generalized [7,8]. This algorithm searches a universe of
size N for a particular marked item, given access to some procedure for checking
if a given item is marked, using O(v/N) calls to the checking procedure. We
will also make use of an elegant variant of the quantum search algorithm due
to Ambainis [3], that has better complexity when the cost of checking if a given
item is marked varies by item.

Let U be some set of N objects, and let C : U — {0, 1} be some procedure,
called the checking procedure, that outputs 1 when given a marked item, and
suppose the complexity of the procedure C is C. Then there exists a quantum
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algorithm with complexity O(Cv/N) that outputs u € U such that C(u) = 1
with probability at least 2/3, assuming such a u exists.

We may also consider the scenario in which the complexity of computing
C(u) varies with u. Call this complexity C(u). Using the previously mentioned
standard quantum search algorithm, we can search for v € U such that C(u) =1
in O(max,cy C(u)V'N) steps. However, we can do better:

Theorem 1 (Quantum search with variable costs (Ambainis [3])). Let
C:U — {0,1} be any checking procedure. There exists a quantum algorithm that
outputs u € U such that C(u) = 1 with probability at least 2/3 (assuming such a

u exists), and has complexity
O > Cwz],
uelU

where C(u) is the cost of computing C(u), and needn’t be known in advance. We
call this algorithm quantum search for v € U that satisfiesC.

In the case where C(u) = C is constant, the algorithm from Theorem 1 has
complexity O(C\/N ), as in the standard quantum search algorithm.

3 Classical Meet-in-the-Middle Attack

3.1 Introduction

The “Meet-in-the-Middle attack” (MITM attack) is a well-known generic cryp-
tographic attack that can be deployed against a variety of cryptosystems, often
achieving an improved time complexity in breaking the system, at the cost of
greater space complexity. It may have originated in [12].

To illustrate this attack, we give an example in the context of the knapsack
problem, which can be described as follows. Given numbers hq, ..., h, € Z, find

g € Fy such that
Z higli] = 0.
i=1

The MITMA idea is to split F§ = G1 & G4 into two equally-large subspaces
of dimension n/2, where G = {(g,0"/?1) : g € F%n/zj} and Gy = {(017/2] g)
g € an/zw}. We calculate all numbers H(g1) = — >, hig1[i] for g1 € Gy and
store them in a database D. This costs 2*/2 time and space, up to a poly(n)
factor.

Hereafter, we calculate H(g2) = >, higa[i] for go € G2, and check whether
the element —H (gs) is somewhere in D, using a single database lookup. If so,
then we have found a g; € G such that H(g2) = —H(g1). Then g1 + g2 € F}
is a solution. This search costs about 2"/2 database lookups, and 27/2 . poly(n)
time. This has much better time complexity than trying all combinations, which
costs roughly 2" time (but poly(n) space).
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Description of our MITM attack on the AJPS system. Given h € R, we want to
find f, g € R, each of Hamming weight w, such that h = f/g — or equivalently,
such that gh = f. In other words, our task is, informally, to find g € F% of weight
w such that |gh| is small.

For a € [0, 1] to be specified later, we define

G = {(g,0l0=mT) : g e T |g| = |aw]}
and G5 = {(0l*", g): g € SO || = [(1 — a)w]}.

We note that while G(la) @Gga) does not include all g € F3 such that |g| = w,
restricting to this set is without loss of generality, since, if g = g1 +gs is a solution,
meaning that both g and gh have weight w, then for any z € {0,...,n—1}, 2%g
is also a solution. This is because 2%g just shifts the binary representation of
g by z in a cyclic manner, so 2°g and 2*gh also have weight w. Thus, if there
exists a solution, then there exists a solution in which g; and go have weights
law]| and [(1 — a)w], respectively.

The attack will begin by enumerating (g1, ¢1h) for all g; € Gga), after which
we will search over Géa) for some go that is in collision with some g1 € Gga),
where, intuitively, we want to define g, g» to be in collision whenever the Ham-
ming distance A(g1h, —gah) is not much bigger than 2w. The difficulty is that,
given some value —goh, while it would be easy to find a stored value of g1 h that
is equal to —goh, it is not immediately clear how to find such a stored value that
is close in Hamming distance to —gsah.

Locality-sensitive hash functions. Our solution is to use a simple form of locality-
sensitive hashing [16]. Intuitively, a locality-sensitive hash should take the same
value, with high probability, on two elements that are close with respect to some
desired distance. In our case, for B = {iy,...,ig} C [n] withé; < --- < ip, define
Hp : Fy — IF‘QBI by Hp(s1,.--,8n) = (Siyy---,8ip). We will use the function
family Fg = {Hg : |B| = B} for some B to be specified later. This works for
our purposes, because if two strings are close in Hamming distance, then on a
random small subset B of their bits, they are likely to agree.

Detailed description of algorithm. Our Meet-in-the-Middle attack proceeds as
follows:

1. Choose a uniformly random H € Fpg.
2. Initialize an empty hash table D, with 25 (initially empty) linked lists, one
for each element in the range of H.
3. For each ¢; € G(la):
(a) Insert (g1,H(g1h)) into D.
4. For each g € Géa):
(a) Look up H(—g2h) in D, and let L be the resulting list of values g; such
that H(g1h) = H(—g2h).
(b) For each ¢y in L:
i. If |g1 + g2| = w and |(g1 + g2)h| = w, then output g1 + go.
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Analysis of algorithm. We first argue that our algorithm succeeds in finding a
solution if one exists. The next lemma shows that if —goh is uniformly random
from R, and b is an arbitrary element of R with Hamming weight w, then (with
high probability) —goh and g1h = —goh + b do not differ in much more than 2w
bits of their binary representations, i.e., A(—gah, g1h) is not much larger than
2w.

Lemma 2. Leta € R=17/(2" — 1)Z be chosen uniformly at random, let w € N
and let b € R be any element such that |b| = w. Then, for every s > 0, we have:

P[A(a,a + b) > 2w + sv/w| < exp ( (1)

§2

—— ]+ 27"
8 +4s/v/w >

Proof. We assume a to be chosen uniformly at random from F%, instead of from

R. These two distributions P, Q on the set of n-bit strings only differ by 27"

with respect to the total variation distance:

S IPB - il =g (PO - e+ YD P - 2l

= beFp\{17}

1/1 1 1
2(2n+( )<2n—1 2n>) ’

which accounts for the 27"-term in the right-hand side of Eq. (1).

Given a, b, we define the carry element ¢,¢;,—1...c1 =c€ Rby c= (a+b)®
(a ®b). One can show that ¢ equals the ‘carry vector’ that one puts above the
sum of a and b when doing addition on a blackboard (see Tablel). Note that
a®b®c=a+b, implying that A(a,a +b) = [bDc| = |b] + || =2[bAc| =
w+ || —2|bA ¢l

Table 1. Having a nonzero bit in b A ¢ leads necessarily to an extra carry.

c 0111 1110
a 0010 1111
b 0001 0001
bAc|0001 0000

We now want to analyze the number of carry bits, i.e., the random variable
|c|. The idea of the proof is that each 1-bit in b, combined with bits of a, will
induce a sequence of carry-bits “to its left”. If there were no other 1-bits in b,
then that induced number of carry-bits would be geometrically distributed with
parameter 1/2; we can think of this as the number of 1s that precede the first 0
in a sequence of 0/1-valued fair coin flips. In actual fact, the number of carry
bits induced by one 1-bit in b could be one more, namely when the leftmost
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end of the sequence of carry-bits coincides with another position where b has a

1-bit. The number of positions where this can happen is the random variable

|b A c|. Therefore the random variable |c| is majorized? by the random variable

|bAc|+ S, where S = >"1" | G; is the sum of w i.i.d. geometrically distributed

random variables (each with parameter 1/2, and support {0,1,2,...}).
Therefore we have

P[A(a,a+b) > 2w + sy/w] = Plw + [c| = 2[b A c| > 2w + sv/w]
=P[le] > 2bAc| +w+ sv/w] <P[le| > [bAc|+w+ svw] <P[S > w+ sv/w]
(svw)?

=P[Bin(2w + sv/w, 1/2) < w]| < exp (—m> = exp (—%) .

The second inequality uses majorization. The penultimate equality holds
because the event ‘S > w + s4/w’ is the same as the event that in a sequence of
2w + s+/w fair coin flips, there are fewer than w successes. We upper bound the
probability of the latter by Chernoff’s inequality. a

Heuristic 1. The above lemma still holds when setting a = hgy and b = f for
£, g, h distributed as in the AJPS cryptosystem.

Remark 1. The above heuristic is corroborated by experiments, see Appendix A.
More concretely, for primes n < 2000, it holds that A(—goh, g1h) < 2w — 1 for
more than half of the keys, and that A(—gah, g1h) < 2w + 7 for about 90% of
the keys.

We are now ready to analyze the space and time complexity of the algo-
rithm. We will set @ = 1/2. We can see immediately that the algorithm requires

O(|G§‘”|) =0 ((Z//g)) space.
To analyze the time complexity, we first note that Step 3 of the algo-

rithm costs |G§a)| insertions into the data structure, so the cost is O(|G§a)|) =
0] ((;i//g)) . The loop in Step 4 runs |Géa)| times, and the iteration corresponding
to some g € Gga) costs approximately 1 + ¢(gz2), where £(g2) = |{g1 € Gga) :
H(g1h) = H(—g2h)}|. The total cost of Step 4 is thus at most:

G+ 3 (g
926G

We can rewrite the above as

G714+ 3 Hlg1,92) € GV % GE = H(gih) = H(—gah) = v}

veFf

=G|+ (g1, 92) € G\ x GS - H(gih) = H(—gah)} .

? Random variable X majorizes random variable Y, if P[X > ¢] > P[Y > ¢] for all ¢.
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Heuristic 2. For every fited H € Fp, with high probability over g and f as
chosen in the AJPS system, we have |{(g1,92) € Gga) X G;a) : H(prh) =
H(=gah)}| ~ |GY™] - 1G5 277

Remark 2. The above heuristic is obtained by considering all H(g1 k) and H(g2h)
values as independent random uniform strings of B bits. The validity of this
heuristic is confirmed by the experiments presented in Appendix A.1.

Let g = g7 + g4 be a solution. The algorithm will only find this g if H(g7h) =
H(—gih), in which case we say H is good for g. By Lemma?2 and assuming
Heuristic1, A(gih, —g5h) < 2w + sy/w happens with high probability, for a

fixed constant s. So, assuming A(gih, —gi3h) < 2w + sy/w, the hash function
n—2w— s/

H is good with probability at least p(B) = % where the probability is

B

over the function family Fp = {Hp : |B| = B}.

Lemma 3. Under the above heuristics, setting« = 1/2 and B = [log,y (:}//3)1 (=
% log(n/w) 4+ O(w)), the time complexity of the algorithm is O ( (Z))

Proof. Ignoring polylogarithmic factors, the complexity of the algorithm equals
|G§”‘)| + |Géa)| + |G§O‘)\ : \Gga)|2_B. Note that |G§”‘)|2—B < 1, by the choice of B

and the fact that |Géa)\ = (Zﬁ) Therefore the complexity of steps 1-4 equals

2|G§°‘)\ + |Géa)| = 3(:}%) =0 (, / (Z})) To achieve constant success probability,

we repeat the algorithm 1/p(B) times, which is, as we will show, polynomial
in n. We use the identity In (") = ¢In(m/¢) + £+ O(Inm) whenever £ = O(y/m),
and the fact that w? ~ n/4. We have:

m% —In (”) ~In (” s Sﬁ> — Bl <” an* Sﬁ) + O(lnn)

p(B B B
w w?
=1+ o(l))% +O(lnn) = (1+ 0(1))? In(n/w) + O(lnn) = O(lnn).

O

4 Quantum Meet-in-the-Middle Attack

We now present our quantum meet-in-the-middle attack. The first example of
a quantum meet-in-the-middle algorithm was the collision finding algorithm of
Brassard et al. [9]. Similar ideas were later used in quantum algorithm for the
subset sum problem [5], and a quantum attack on the NTRU cryptosystem [23],
which have a similar structure to the algorithm presented here. One difference
in our new algorithm is the use of Ambainis’s variable-cost quantum search
algorithm [3], described in Sect. 2.2.

The algorithm presented in this section requires time and space O ((Z) 1 3).

The bulk of the memory required for this quantum algorithm must be quantum
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accessible, meaning it does not need to be able to store a quantum state, but
must be accessible in superposition. Only O(n) of the space used by the algorithm
must be fully quantum memory, capable of being in an arbitrary superposition.

The quantum algorithm presented and analyzed in this section is then very
similar to the classical MITM attack, except we use quantum search to search
over all go € Gga), and then since the complexity of this step of the algorithm
decreases in the quantum case, it is optimal to use o = 1/3 rather than o = 1/2.

Detailed description of algorithm. Our quantum MITM attack proceeds as fol-
lows:

1. Choose a uniformly random H € Fp.
2. Initialize an empty hash table D.
3. For each ¢; € Gﬁ“):
(a) Insert (gi1,H(g1h)) into D.
4. Quantum search (using Theorem 1) for go € Géa) that satisfies the following
checking procedure:
(a) Look up H(—g2h) in D, and let L(gz2) be the resulting list of values g;
such that H(g1h) = H(—g2h).
(b) Quantum search for ¢; in L that satisfies the following checking procedure:
i. If |g1 + g2| = w and |(g1 + g2)h| = w, then output 1.

Analysis of algorithm. We will use a = 1/3. The algorithm requires |Gga)| =
(em) = (Zéz) quantum accessible memory, and O(log \Géa)D = O(n) quantum
memory.

In order to upper bound the time complexity, we will make use of Heuristic 2

with oo = 1/3. Then we have the following.

Lemma 4. Assuming Heuristics 1 and 2 with o = 1/3, setting B = [log, (Z//z)] )
the time complexity of the algorithm is O ((Z) 1/3)‘

Proof. As in the classical algorithm, the time complexity of Steps 1 to 3 of the
quantum algorithm is O(|G§D‘)|) =0 ((27)), which, in this case, is o} (("/3))

aw w/3
For a particular g, € Gga), Steps 4a and 4b together cost (neglecting negligi-

ble factors) 1 + /£(g2), so using variable cost quantum search, as described in
Sect. 2.2, the total cost of Step 4 is

S 1+ Vg2 =0 | \IGE] +

926G

Z (g2)

g2€GLY

By 2 and the choice of B, we have Zgzecg‘” £(ga) =~ |G§a)‘ . |G§a)|2*B < |Géa)|.

Thus, the total complexity of steps 1-4 of the attack is O (\/|Géa)|> =
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O( (2"/3)) =0 (("”)) Finally, as in Sect.3, H is good with probability

2w /3 w/3
(n—zw—sﬁ)
p(B) = % To achieve constant success probability, we repeat 1/p(B)
B
times, which is polynomial in n by a similar reasoning as in Lemma 3. g

5 Analysis of the Beunardeau et al. Attack

Within a week of the publication of the AJPS cryptosystem [1], an experimental
attack was proposed by Beunardeau et al. [6]. This attack exploits the fact that
a certain lattice, derived from the public key of the AJPS cryptosystem and two
well-chosen partitions, has very short vectors. One of these short vectors, which
can be found by means of the LLL lattice reduction algorithm [20], represents
the private key.

Although Beunardeau et al. do not give a clear asymptotic estimate of the
complexity of their attack, they do suggest tentatively that it might run in
time 22“n°W | where w = |/n/2] is the Hamming weight of secret key g €
R [6, Sect.2.2]. More specifically, once a partition is chosen, the attack runs in

polynomial time n®(M) | and the probability that it is successful should be about
272w,

Remark 3. Note that this probability is taken only over the randomness of the
secret key. It is not obvious that one can amplify the success probability for a
fixed key up to a constant by repeating the attack with 22% different partitions.
Indeed, there could be certain keys that are caught by a fraction of partitions
significantly smaller than 272%.

In this section, we propose an analysis of a simplified version of their attack.
Using standard lattice heuristics we can argue that, for each pair of partitions,

the probability that a secret key will be found by applying LLL on the derived

lattice equals (3 — ¢ (%)2 + 0(1))?*, where d is the lattice dimension, and c is

a very small constant, say 1/140. The lattice dimension d corresponds to the
number of blocks in a partition of the bits of f and g. While in theory we can
choose d between 2 and O(w), in order to find f and g for a particular h, we will
generally need to choose d as large as £2(w). We discuss this more at the end of
Sect. 5.3. While asymptotically slightly different from the tentative conclusion
of [6], this analysis certainly does not contradict the fact that this attack is quite
efficient in practice, and remains the best known attack (better than our MITM
attack).

We remark that one could also replace LLL with a perfect SVP-oracle to raise
the success probability to (34 0(1))**, but this would increase the running time
of the lattice reduction step to 2€(?). Namely, for partitions of size d = O(w)
the ratio of the cost over success probability remains at least 22T9)w+o(w) for 5
fixed § > 0.

Finally, we note that this attack can also be sped up with a quantum com-
puter. If, for a particular fixed key g, the probability that a sampled partition
allows the LLL subroutine to find the secret key is p, then there is a quantum
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algorithm that finds the key in only y/1/p calls to the subroutine, compared to
the 1/p calls required by a classical algorithm. So under the heuristic assumption
that p ~ 272% there is a quantum algorithm that recovers the key in time ~ 2v.

Unfortunately, despite some effort, we have not been able to answer the
question left open by Beunardeau et al.: “Are there classes of public keys that
are harder to recover using this lattice attack, and if so, which ones?”

5.1 Partitions

In this section, we show how partitioning of [n] = {0,...,n — 1} can lead to a
short representation of the secret key g € R = Z/NZ. The overall idea is to write
¢ as a binary string in FZ, as before. Since g has a low Hamming weight, one can
imagine the one-valued bits scattered sparsely among the n possible positions.
One then chooses interval-like subsets of [n] such that, with any luck, each one-
valued bit falls in the right-half of one of these subsets. In that case, each subset
of [n] in the partition corresponds to a binary substring of g representing a
“small” number. Consequently, the array of these numbers can be considered as
a short representation of g. An example is depicted in Table 2.

Remark 4. Because of the bit-wise arithmetic in R, it is natural to consider
interval-like partitions only. An interval-like partition P of [n] consists of subsets
that are of the form {a,a + 1,a + 2,...,b — 1,b} for a,b € [n], i.e., subsets
without ‘gaps’. Due to the fact that multiplication by 2 in R simply shifts all
binary representations by 4, we also allow subsets of the form {a,a+1,...,n—2,
n—1,0,1,...,b}.

Remark 5. Formally, our approach is slightly different from the one of
Beunardeau et al. [6]. Namely, they define partitions with black and white blocks,
hoping that all 1-valued bits of the secret key fall into the white blocks of the
partitions. It turns out, however, that the black blocks do not play any role in
the construction of the lattice related to this partition. Therefore, we prefer to
omit the black partitions in our approach. This alteration has no algorithmic
impact and is merely an editorial choice simplifying the analysis.

Table 2. Example partition of g with Hamming weight 3.

g 00100000000001000010

Partition {19,18,17, 16}, {15, 14, 13,12}, {11, ..., 6}, {5,...,0}
g partitioned in a “good” way | 0010 0000 000001 000010

Array of decimal numbers [2,0,1,2], g=2-2"640-2"241.2642.2°
representing g
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5.2 Lattice Reduction

Lattice construction. Given any two interval-like partitions P = {Py,..., Py},
Q ={Q1,...,Q¢} of [n] and a public key h € R. Let p;, ¢; be the least elements
of P;, Q; respectively. Then, one can consider the following lattice.

k ¢
Lponr=19 (@1, . Tk, Y1,---,Ye) ‘ h'z2pi 'xi_Zqu ~y; =0 mod N

i=1 j=1

This lattice Lp,g,» has determinant A = N and dimension d = k+¢. Namely,
as Lp,q.p is a sublattice of Z%, we have det(Lp g ) = det(Z9)-[Z% : Lpgu] = N,
since det(Z?) = 1 and the group index equals N.

This lattice contains vectors of the form (0,...,0,2™,—1,0,...,0), for some
m, which we will call ‘structural’ vectors. These structural vectors have length
VAP + 1 and V4IQiT + 1. For example, (272771, —1,0,...,0) € Lp g1, is a struc-
tural vector which is easily seen to have the described length, observing that
p2 — p1 = |P1]. Applying this example for every two subsequent variables of the
same kind, one arrives at all structural vectors.

Definition 1 (Secret vector). Let h = f/g € R be as in the AJPS-
cryptosystem, suppose P ={Py,..., Py} and Q = {Q1,...,Q¢} are interval-like
partitions of [n] and denote p; = min P; and g¢; = minQ;. We define the secret
vector

§ 1= (gla"'7gk7f17"'7f€) EEP,Q,h;

where 0 < g; < 2Pl and 0 < f; < 2191 are the unique natural numbers such
k , n v
that 37,1 g;-2P" =g and 37, f; - 2% = f.

Remark 6. The vector s is actually just the concatenation of the vectors
(91,---,9k) and (f1,..., f¢), which are constructed from g, P and f,Q respec-
tively as in Table 2.

Applying LLL Let us recall the guarantees provided by the LLL algorithm.

Lemma 5 ([20,21]). For any v > \/4/3, the LLL. -algorithm applied to a d-
dimensional lattice L returns, within polynomial time, a basis (bi,...,bq) of L
satisfying

— |Ib1]] € HF(L) := ~(4=1/2. AlL/d (Hermite factor bound);
— ||b1|| < AF(L) :=~%=1 - X\ (L) (Approzimation factor bound,).

where A1(L) is the length of a shortest nonzero vector of L, and Ay is the
determinant of the lattice L.

In practice, LLL performs much better. For cryptanalytic purposes, one often
assumes v = 1.04, which is corroborated by many experiments [22]. In the current
analysis, this practical value of v will be used.
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The inequalities in Lemma 5 give rise to two so-called regimes of LLL,,, the
Hermite regime and the Approzimation regime. A lattice L lies in the Hermite
regime when HF(L) < AF(L), and lies in the Approximation regime whenever
AF(L) < HF(L). One distinguishes these two cases because the output of LLL
differs significantly between the regimes. This effect is most prominent when a
single, unique short vector causes a lattice to be in the Approximation regime;
in that case LLL typically outputs this particular short vector [10, Sect. 3.3].

One would like to have that this last scenario holds for the lattice Lp g 5 and
the secret vector s. So, informally, one wishes to have no vectors in Lp g, that
are shorter than usual except for the secret vector s. One obstacle could be that
the structural vectors are too short, causing s not to be unique. However, we
will rule out this possibility by comparing the lengths of these structural vectors
to the Gaussian heuristic of Lpg p.

The Gaussian heuristic uses a geometric argument to estimate the length
of the shortest vector of a lattice [10]. For d-dimensional lattices L one expects
M (L) = \/d/(2me) ~A1L/d, according to this heuristic. Applying this to the lattice
of interest, one obtains A1 (Lp,q.n) ~ \/n/(2me) - 2. Recall that the structural
vectors have approximate length 27l and 2/9il. So, whenever |P;|, |Q;| > n/d +
O(logn), we have 27l 21Qil > | /d/(2re) - 2. So, in this case, the structural
vectors are not shorter than the estimate of the Gaussian heuristic and hence
longer than the secret vector s. Note that the average size of |P;|, |Q;| is 2n/d,
meaning that this constraint is not so restrictive.

Therefore, we assume the following heuristic.

Heuristic 3. The attack of Beunardeau et al. is successful in recovering the
secret vector s if s (as in Definition 1) is the shortest vector and causes the lattice
Lp g to fall into the Approximation regime, i.e., AF(Lpon) < HF(Lpo.n).

From the above heuristic we can deduce that the lattice attack succeeds if
5] - 7471 < U472 90 e = HE(Lpqn).

Moreover, according to the study of Albrecht et al. [2] on the behavior
of LLL for unique-SVP instances, this condition should be essentially tight.
More precisely, we expect the attack to fail with overwhelming probability when
AF(Lpg.n) > O(Vd) -HF(Lpgp).

The metric bounds ||s]|ec < || | < Vd- ||l imply that the attack passes
when Vd - || || <y~ (@172 9% and is expected to fail when ||s]|oo > O(V/d) -

= (d=1/2 2% Since ||s||oe = max{g;, f;}, we can write ||s||cc = 2", where r is
the bit size of the maximum of the g; and f;. Putting this in the inequalities and
taking base-two logarithms, yields the following. The attack succeeds whenever
< % (1 =461 —02) and is expected to fail when r > 5(1 — &1 + 02 + O(d/n)),

where did—1) -1 d-1 d
5 _dd=1)logy(y) o d-logy(d)
2n 2n
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5.3 Success Probability Analysis

Let P and @ be partitions with block sizes at least n/d+©(logn), where d = k+¢
with k = |P| and ¢ = |@Q|. We analyze the success probability of the lattice attack
with respect to random f and g € R both of Hamming weight w = |/n/2].

From the previous section, we found that it suffices that the non-zero bits
of f and g fall in the rightmost r bits of each block, in order to make LLL find
the secret vector. So, for g, the total number of bits that are allowed to be one
equals k - r. Therefore, we can approximate the probability of the bits of f and
g all falling in the good region by

-r\Y (k-r\"
n n
Putting in the upper and lower bound for r, we obtain an upper and lower bound
for the success probability p of the attack.

(M)w <p< (fkﬂ 0t ht 0<d/n>>2>“’

d? d?

In order to maximize the above probability, we will assume that k = ¢ = d/2
and d = O(w). Namely, the fraction (Hk)Q attains its maximum at £ = k = d/2.

Recalling w? ~ n/4, we obtain §; = d(d D log,(y) ~ %(E) - log,(y) and
d2 = o(1) as n — oo. Therefore

(1 751; 0(1))2“’ e <1 f512+ 0(1)>2“"

Thus, assuming Heuristic 3, the success probability of LLL recovering a randomly
chosen AJPS secret key pair (f, g) € R? from the lattice Lp g 5, (Where h = f/g),

2

is roughly (7 —cf d) + 0(1)) w, where ¢ = log,(7)/8 = log,(1.04) /8 = 1/140.
This probability value suggests that one should start with partitions with a small
number of blocks, exploiting both the low dimension m of the lattice Lp g 5 and
a slightly larger success probability. Note, however, that it is not likely that the
secret key s = (g, f) will be recovered in this stage; the smaller d is, the fewer
possible partitions there are, so the need to sample new partitions will require
us to increase d to £2(w) for most keys.

Replacing LLL by an SVP-oracle. If one replaces LLL by an SVP-oracle, the
success condition from Heuristic3 needs to be amended. Instead, the attack
would be successful when s is the shortest vector of L. Heuristically this is
the case if and only if s is shorter than what is predicted by the Gaussian
Heuristic A1 (L) =~ \/d/27re-A1L/d. Using a similar analysis, this leads to a success
probability of 272%+°(1)_ Note however that the best SVP-solvers [4] need time
(3/2)%2, which would increase the overall complexity of the attack significantly.
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5.4 Generalization to Scaled Partitions

The attack that is treated above is a simplification of the attack of Beunardeau et
al.; essentially we omitted a ‘scaling’ technique [6, Sect. 2.2, ‘Trying partitions’].
This particular technique allows the variation of partition sizes and the fraction
of each partition block that must consist of leading Os.

The lattice L£p,g 5 scaled by the vector o = (o71,...,0k,0%,...,0,) € R? can
be defined explicitly as follows.

o / /
P,Q.h = {(lel, e S ORTE, O1YL, -, OpYe) ‘

k ¢
h~z2pi ~xi722ql' -y; =0 mod N}.
i=1 j=1

Allocating less weight o; to the content x; of a certain partition P; lets a lattice
reduction algorithm tolerate larger values x;; this means that the required frac-
tion of leading Os in this partition is diminished. This technique implies more
freedom in choosing block sizes and required fractions of leading Os.

Note, however, that scaling the entire lattice L — cL by a constant won’t
affect the attack at all. Therefore, one might require, without loss of generality,
that Hi-czl o; Hle o = 1. This implies that the increase and decrease of the
fractions of leading Os of the blocks are in an equilibrium, not affecting the total
region where non-zero bits are allowed.

So, this extension possibly increases the number of public keys that can be
broken but does not affect the running time nor the success probability of the
attack. Even considering this generalization, we were not able to prove that
this improved attack could recover every key with constant probability in time
22+8)w+to(l) for some small constant § > 0.
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A Experiments

Since our MITM attack is not fully provable due to the presence of Heuristics 1
and 2, we provide some experimental verifications. The python scripts of those
experiments are available at https://github.com/lducas/MiTM-Mersenne.

One tweak in our implementation is that when w is odd, we do not split our
space exactly into two equal parts. Instead we choose w; = Lw / 2J, Wo = W — Wy,
and then choose n, ng, such that (Zi) ~ (Zz) We will also simulate the quantum
case, and choose w; = [w/3], we = w — wy, and then choose ny,ns, such that

(31)2 ~ (32). In both the classical and quantum case, we set B = [log, (;;!)].
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A.1 Verification of Heuristic 2

We recall that Heuristic 2 states that the number of collisions ¢ = [{(g1,92) €
Sy x So : H(g1h) = H(—gzh)}| is approximately given by ¢’ = Sy - |92~ 5. We
measure the ratio r = ¢/¢’ experimentally, over 100 samples for each dimension n.
Infrequently, this ratio may get as large as 3, yet for 90% of the experiments, it
was very close to 1. Figure 1 below shows the 9" decile of r as n grows.

r's 9" decile r's 9" decile
13, w=4 w=5 w=6 w="7 . 13t w=41 . w=5 . w=6
I

Classical setting Quantum setting

Fig. 1. 9*" decile of the ratio between the measured number of collisions ¢ and expected
number of collisions ¢’ according to Heuristic 2, over 100 experiments per dimension.

A.2 Running time and success probability

In Figs. 2 and 3, we report on the practical efficiency of our attack and compare
it to our heuristic prediction. Note that in the quantum regime, the success
probability of this MITM attack in practice is sometimes significantly larger
than the theoretical prediction. This is most likely due to the fact that our

Success rate Success rate
1 w=1 w=5 w="6 w=7 1 w=1 w=5 w=6
i i i i i i i

100 150 200 250 80 100 120 140 160 180

Classical setting Quantum setting

Fig. 2. Success rate of the attack over 100 trials (in blue), compared to the theoretical
success rate (1 — 2w/(n — B))? (in red). The rather discontinuous shape of the red
curve is due to the rounding of w = |\/n/2] and B = |log, (Lﬁ)] (Color figure online)
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time in sec.
Cow=4 w=5 . w=6 . w=T

100 150 200 250 100 150 200 250

Experimental running time Prediction

Fig. 3. Average running time of the classical attack over 100 trials in comparison with

the function 4/ (Z), which is the dominant factor in our asymptotic complexity.

analysis is done for one particular solution, while certain rotations of the same
key may be found as well if its bits are properly balanced with respect to the
split F = G| @ Gs.
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Abstract. The hardness of solving multivariate quadratic (M Q) sys-
tems is the underlying problem for multivariate-based schemes in the
field of post-quantum cryptography. The concrete, practical hardness of
this problem needs to be measured by state-of-the-art algorithms and
high-performance implementations. We describe, implement, and evalu-
ate an adaption of the Crossbred algorithm by Joux and Vitse from 2017
for solving M Q systems over F2. Our adapted algorithm is highly paral-
lelizable and is suitable for solving MQ systems on GPU architectures.
Our implementation is able to solve an MQ system of 134 equations
in 67 variables in 98.39 hours using one single commercial Nvidia GTX
980 graphics card, while the original Joux-Vitse algorithm requires 6200
CPU-hours for the same problem size. We used our implementation to
solve all the Fukuoka Type-I MQ challenges for n € {55,...,74}. Based
on our implementation, we estimate that the expected computation time
for solving an MQ system of 80 equations in 84 variables is about one
year using a cluster of 3600 GTX 980 graphics cards. These parameters
have been proposed for 80-bit security by, e.g., Sakumoto, Shirai, and
Hiwatari at Crypto 2011.

Keywords: Post-quantum cryptography
Multivariate quadratic systems + Parallel implementation + GPU

1 Introduction

With the advent of quantum computing, an adversary can efficiently break uni-
versally adopted public-key cryptographic schemes, e.g. RSA and elliptic-curve
cryptography, with a sufficiently large quantum computer [16,17]. In order to

This work is based on Kai-Chun Ning’s master thesis under the supervision of Ruben
Niederhagen, Tanja Lange, and Daniel J. Bernstein. Date: 2018.01.23. Permanent
ID of this document: £9066£7294db4f2b5fbdb3e791fed78e.

© Springer International Publishing AG, part of Springer Nature 2018

T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 121-141, 2018.
https://doi.org/10.1007/978-3-319-79063-3_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79063-3_6&domain=pdf
http://orcid.org/0000-0002-9362-5282

122 R. Niederhagen, K.-C. Ning and B.-Y. Yang

mitigate this imminent threat, cryptographic schemes that are resistant against
quantum computers have drawn great attention from academia. These schemes
are collectively referred to as post-quantum cryptography (PQC).

One potential candidate for PQC is multivariate cryptography. Multivariate
cryptography relies on the difficulty of solving a system of m polynomial equa-
tions in n variables over a finite field. The complexity of solving a multivariate
polynomial system (MP problem) or a multivariate quadratic system (MQ
problem) where coefficients of the monomials are independently and uniformly
distributed (i.e. random) is well-known to be NP-hard. An arbitrary MP system
can be transformed into an equivalent MQ system by substituting monomials
of degree larger than two with new variables and introducing extra equations to
the system. Furthermore, a polynomial system over any extension field Faon can
be reduced into an equivalent system over Fo using Weil descent.

Since the early 1980s, various asymmetric multivariate encryption schemes
(e.g., [5,14,18]) based on Hidden Field Equations (HFE) [10] as well as signature
schemes (e.g., [6,12,13]) have been proposed. Besides these asymmetric schemes,
some symmetric encryption schemes, e.g., the stream cipher QUAD [1], have
been proposed and analyzed [20].

Introducing a trapdoor into an M Q system for the use in public-key cryptog-
raphy results in a system that is not truly random and typically exhibits a hidden
structure that often can be exploited in its cryptanalysis. However, we do not
focus on the cryptanalysis of any particular cryptographic scheme by exploiting
some hidden structure. Our goal is to investigate the concrete, practical hardness
of the underlying problem of solving random M Q systems over Fs by providing
an efficient, parallel implementation of the state-of-the-art algorithm.

This paper is structured as follows: In Sect. 2, we introduce the Crossbred
algorithm by Joux and Vitse and our adaption to this algorithm. In Sect. 3, we
describe our implementation of the adapted algorithm for a cluster of GPUs.
In Sect.4 we describe how to choose the parameters for our implementation,
given a specific M Q system size, and in Sect. 5, we provide an evaluation of our
implementation.

The source code of our implementation and further information are available
at www.polycephaly.org/mgsolver/.

2 Joux-Vitse’s Crossbred Algorithm

There are several approaches for solving MP systems, e.g., Faugere’s F4 and
F5 algorithms [7,8] based on the computation of Grébner-bases and a family of
algorithms based on extended linearization (XL) [19]. For M Q systems over Fo,
Fast Exhaustive Search (FES) [3], i.e., efficient enumeration over the search
space, was the approach used by the previous record holder [4] of Fukuoka MQ
Type-I and Type-IV challenges'. The record on Type-I challenges is now held
by an implementation of the Crossbred algorithm by Joux and Vitse [11].

! https://www.mqchallenge.org/.
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The basic idea of the XL algorithm is to extend the original MQ system by
multiplying it by all monomials up to a certain degree D — 2 and by treating
monomials in the resulting degree-D system as linear variables. Solving this
linear system gives a solution for the original M Q system with high probability,
if D is chosen large enough.

FES works by enumerating all possible assignments of the variables and by
checking the correctness of each assignment with the original MQ system. In
contrast to a plain brute-force search, the possible assignments are enumerated
in Gray-code order such that there is only one single variable with a different
assignment in each enumeration step. This allows to compute the new evaluation
result efficiently based on the change in regard to the previous evaluation result,
which requires storage and recursive update of partial derivatives up to the total
degree of the system [4].

2.1 The Crossbred Algorithm

The basic idea of Joux and Vitse’s Crossbred algorithm is to extend the original
MQ system to a system with a degree D lower than the degree required for XL
and to derive a sub-system that has at most degree d in the first k variables. This
sub-system is then solved by iterating over the remaining n — k variables and
solving the resulting degree-d system in k variables in each iteration. For d = 1,
this requires to only solve a linear system in k variables for each assignment of
n — k variables.
For example, by fixing the last two variables z3 and x4, the sub-system

T1T4 + Toxz +x1 +x3+24=0
S=< T3+ 2304 +22+1=0
Toxy + ToTy + 324+ 21 + 24 =0

becomes a linear system in ;7 and x5. Clearly, the resulting linear system can be
directly solved with Gaussian elimination, with which solutions to the system S
can be derived efficiently.

For a monomial z® = z{'x5? ... oz 3} .. 23", the total degree of the

first k variables is denoted as deg,z® = Zle o;. Given an MQ system F, the
Crossbred algorithm first computes a degree-D Macaulay matrix with respect
to a monomial order >gee, where monomials are sorted according to deg, in
descending order. Subsequently the algorithm extracts at least k£ equations where
the monomials of deg,, larger than one (which are non-linear in x1,...,xy) are
eliminated and only keeps monomials of deg;, < 1 (which are linear in 21, ..., z).
These equations give a sub-system that can be transformed into a linear system
in the first k& variables by fixing the remaining n — k variables. After one such
sub-system S is obtained, Crossbred performs exhaustive search by fixing the
last n — k variables and testing whether or not the resulting linear system &’ is
solvable. If so, solutions to 8" are checked with the original MQ system F. The
algorithm terminates if a solution is found, otherwise it fixes n — k variables in
S with another set of values and continues the exhaustive search procedure.
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Algorithm 1. The Original Crossbred Algorithm

1: procedure CROSSBRED
2: Input:

3: an MQ system of m equations in n variables F = {f1, f2,..., fm}
4: Macaulay degree: D
5: number of variables to keep: k
6: number of variables to fix during M Q external hybridization: p
7
8: for each (Zn—pt1,...,2n) in {0,1}” do
9: 1. Fix the last p variables in F to obtain an MQ system F.
10: 2. Compute the degree-D Macaulay matrix Mack,
11: where monomials are sorted by deg, based on F.
12: 3. Extract r linearly independent equations S = {s1, s2, ..., sr} from Mach
13: where monomials of deg;,, > 1 have been eliminated.
14:
15: Call FastEvaluate(S, k,n — p) and
16: for each output linear system S’ do
17: 4. Test if S’ is solvable. If so, extract solutions and verify them with F.
18: 5. Continue if no solution is found.
19: Otherwise output the solution and terminate.
20: end for

21: end for
22: end procedure

To obtain a linear system S’ from the extracted sub-system S, the Crossbred
algorithm uses a recursive algorithm called FastEvaluate to fix n — k variables
in S. The basic idea of this algorithm is to split each polynomial into two groups
of monomials. An arbitrary polynomial p can be written as p = pg + x;p1, where
x;p1 are monomials that involve a specific variable x; while py are monomials
that do not. It is clear from this form that py is exactly the result of fixing
z; = 0 in p and pg + p; is the result of fixing x; = 1 in p. This idea can be
applied recursively to fix n — k variables.

One can further fix some variables in the original M Q system before com-
puting Macaulay matrices, which is referred to as external hybridation by the
authors [11]; here, we use the term external hybridization. The authors of the
Crossbred algorithm consider external hybridization merely as a method to dis-
tribute the workload between computers and do not expect it to be asymp-
totically useful [11]. Nevertheless, this technique can be helpful to increase the
number of variables that can be kept for linearization, which reduces the runtime
of the algorithm significantly.

2.2 Adapting the Crossbred Algorithm for Parallel Implementation

The FastEvaluate algorithm proposed by Joux and Vitse has the disadvantage
that computing the subsets py and p; on higher levels of the recursion is relatively
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expensive. We propose to use Gray-code enumeration [3] instead of FastEvalu-
ate, which requires only O(2" % . D - k) machine instructions on the cost of
(’)(Eio (n;k) - k) memory.

Gray-code enumeration was proposed to efficiently evaluate a polynomial
function f(x1,x9,...,x,) in all points (1, x2,...,2,) € F4. To obtain the result
of evaluating f on the next point a € F} from the current result f(a’) where only
the i*® coordinates of @ and a’ differ, O(1) machine instructions are executed to

combine f(a’) with the result of evaluating the first order partial derivative %

on a’ [3]. In particular, f(a) = f(a’) + g—i(a’). This technique can be applied
recursively to evaluate g—i(a’ ) and its higher order partial derivatives until the
partial derivative reduces to a constant. Therefore, if f is of degree D, O(D)
operations are required to compute f(a).

The same technique can also be applied to evaluate a function f whose output
is a linear function in k variables instead of a constant over Fo by simply splitting
the polynomial into a sum of k41 sub-polynomials, one for each of the k variables
and one for a constant term. For example, the polynomial

[ = 212475%T6 + T124T5T7 + T4T5T6T7 + T1T4T5 + T3T4T7 + T3T5

+ Xox4T6 + Taxex7 + T124 + T1T5 + 57 + X7 +T1 + X0+ 24 + 1
which is linear in x1, 22, and x3 can be split into the 4 polynomials

f1 = x1(xawsx6 + Tax507 + 45 + T4 + 25 + 1),
Jo = zo(xae + 1),
f3 = x3(247 + 5),

fa = T4T5T677 + T4TeT7 + T5T7 + TeT7 + T4 + 1,

such that f = fi1 4+ fo + f3+ f4. Now, f can be evaluated by applying Gray-code
enumeration to f1, fa, f3,andfy individually.

Since the result of evaluating f or any of its partial derivatives on a point
a € T} is a linear function that can be represented by four Fy elements (three
variables and the constant term) and the last order partial derivatives reduce to
constants, evaluating f(a) takes at most 3-(3+1)+1 xor-operations and another
4 -2 operations for computing the indices of the coordinates that changed during
enumeration. In general, for a polynomial function f of degree D whose output
is a linear function in k variables, evaluating f requires O(D - k) operations.

Since a machine instruction operates on machine words, which for example
have size 64 for 64-bit architectures or 32 on GPUs, multiple polynomials can be
evaluated with Gray-code enumeration simultaneously. Therefore, the algorithm
described above can be applied to fix n — k variables in an extracted sub-system
S of m equations in n variables using O(D - k) instructions, as long as m is not
larger than the machine word size.

Gray-code enumeration can be easily parallelized: To run the enumeration
with 2! threads in parallel, first fix ¢ variables in the sub-system S with all ¢-
tuples in {0,1}! to create 2! smaller sub-systems in n — ¢ variables. With this
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approach, although the sub-systems are distinct from each other, their last order
partial derivatives with respect to the n — ¢ — k variables that must be fixed are
identical.

3 Implementation

Our target platform for the implementation is a hybrid cluster of workstations
equipped with GPUs. Therefore, we have two processor architectures to our dis-
posal: AMD64 CPUs and Nvidia GPUs (Kepler and Maxwell microarchitecture).
The Gray-code enumeration part of the Crossbred algorithm is particularly easy
to parallelize and therefore suitable for GPU deployment. Thus, we use the CPUs
to generate and process the Macaulay matrix and the GPUs for Gray-code enu-
meration and linear-system solving.

3.1 Macaulay-Matrix Computations

The first step in Joux-Vitse’s Crossbred algorithm is to extend the original MQ
system to a Macaulay matrix of degree D. (Our implementation works for D = 3
and D = 4.) The columns are ordered such that the monomials with deg; > 1
are in the front. Then, several (in our implementation 32) non-trivial vectors
in the left kernel of the Macaulay matrix are computed. Finally, a sub-system
linear in x1,...,x is extracted for Gray-code enumeration.

Since the Macaulay matrix is very sparse, a sparse-system solver like the block
Lanczos algorithm or the block Wiedemann algorithm could be used. However,
the Macaulay matrix exhibits a special structure: Since the Macaulay matrix
is generated from the original system by multiplying the polynomials with all
monomials up to a certain degree, the resulting matrix is close to being diagonal.
Therefore, we decided to exploit this special structure in a specifically adapted
implementation of Gaussian elimination.

The first step is to compute the reduced echelon form of the original input
system. This is a very small computation and requires a negligible amount of
time. Then, we compute the Macaulay matrix M such that the columns are in
the required order. We store M in a sparse representation. Then we search for
rows in the Macaulay matrix that have an increasing number of leading zeros
and swap them into place: Find a row that has no leading zeros and swap it to
the top, find a row that has one leading zero and swap it to the second row, and
so on. Due to the structure of the Macaulay matrix, usually about two thirds of
the rows of the upper-triangular form of M can be obtained just by swapping in
suitable rows. Now, only the remaining one third of the upper-triangular form
of M needs to be computed. Observe that up to this point, M can be stored in
a sparse format and no costly row reductions needed to be performed.

In order to compute the remaining rows of the upper-triangular form of M,
one must perform row reduction. Therefore, we switch over to a dense represen-
tation by first performing row reduction on rows that have not found their final
position during row-swapping with those that did. In this manner, we drop those
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rows and columns that already have been pivoted by row-swapping and obtain a
dense, reduced matrix RM. On this matrix, we perform classical Gaussian elim-
ination in order to compute the desired sub-system that is linear in x1, ..., zg.

After RM is computed, it can be copied to the GPU if the off-chip memory
if large enough to accommodate it. Subsequently a sub-system can be extracted
with Gaussian elimination on the GPU and copied back to the system main
memory. On the other hand, if the size of RM is too large or if the overall work-
load is pipelined between CPU and GPU, Gaussian elimination is simply per-
formed on the CPU. We parallelized the CPU implementation using the POSIX
Thread API to distribute the workload over all CPU cores. We observed during
experiments that our GPU implementation on a Nvidia GTX 980 graphics card
outperforms our CPU version on a AMD FX-8350 4 GHz processor by a factor
of 9 in most cases.

Since the size of registers on a GPU is 32 bits and both Gray-code enumera-
tion and linear system solving require the input system to be stored in column-
wise format, only 32 linearly independent equations need to be extracted from
the reduced Macaulay matrix RM for the sub-system S.

3.2 Fixing Variables in the Sub-system

We implemented the Gray-code enumeration algorithm for fixing n — k variables
in the degree-D sub-system S to enumerate linear systems in k variables for
the GPU architecture. The data structures used by Gray-code enumeration are
allocated from the off-chip global memory. We simply distribute the workload
over 2! threads by fixing ¢ variables in S to obtain individual and independent
smaller sub-systems S;,1 < i < 2! for each thread. Since the last partial deriva-
tives are constants and remain the same for all 2¢ smaller sub-systems as noted
in Sect. 2.2, they can be shared by all threads. Since they are constant, we store
them in read-only constant memory.

The GPU threads in a warp begin enumeration with the same starting point
and consequently they will access partial derivatives in the same order in each
iteration. Therefore, the data structures for one warp can be interleaved to obtain
optimal memory throughput. In addition, because of the cyclic nature of Gray-
code enumeration, the last-level derivatives stored in constant memory are likely
to be cached in the constant memory cache. Since the data of the 32 equations in
the sub-system is stored in column-wise format, in total ("_Dk_t) 32-bit integers
are required for storing the constant last-level derivatives.

As described in Sect. 2.2, the evaluation of a k-linear polynomial is split into
the evaluation of £ + 1 polynomials. Therefore, we store the data for the non-
constant partial derivatives for the 32 threads in one warp in basic units of 32(k+1)
words interleaved in memory. Since for each of the k¥ + 1 polynomials n — k — ¢
variables have to be fixed during enumeration, storing results of evaluating the
non-constant partial derivatives of S; requires Zf;ll ("_’.“_t) such basic memory
units for one warp. Together with the result of evaluatin%si1 a:cl tge tcurrent point

(which requires one basic unit as well) a warp requires > =0 ( i ) basic units.
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Therefore, in total Gray-code enumeration requires (2! - Zf:_ol ("7;“%)) <32 -
(k + 1) words of size 32-bit in global memory and ("_k_t) words of size 32-bit in

D
constant memory.

3.3 Testing the Solvability of a Linear System

After a linear system has been computed during an iteration step of Gray-code
enumeration, the system needs to be checked for solvability. Since the linear
system is small, the straight-forward approach for testing its solvability is to
simply solve it with Gauss-Jordan elimination.

In the standard Gauss-Jordan elimination algorithm, once a pivot row for
the i*" pivot element is located, it is moved to its final position by swapping
with the i*" row. However, we are storing the linear system in column order, so
row swapping is expensive. Therefore, we avoid row-swapping by maintaining a
mask that tracks which rows are in their final position.

After as many rows as the number of variables k in the linear system S; have
been marked as final, the algorithms stops. The remaining unmarked rows are
redundant equations and their first k coefficients which represent the variables
T1,Za,...,T are guaranteed to be zero. Therefore, testing the solvability of S;
is as simple as checking if the constant term of any of the redundant equations
is non-zero.

Clearly, if the system is solvable, a solution can be extracted from the last
column based on the first & columns. In particular, the position of 1 in the 7*"
column points to the value for x; in the last column. Note that before extracting
a solution, one has to test whether or not the system is underdetermined. To
achieve this, one can simply verify that none of the first k£ columns is completely
zero since one such column implies a missing pivot element. This verification can
be done simultaneously while extracting a solution and does not require extra
computation.

We avoid storing data for linear system solving in global memory by storing
the entire data in registers. In order to make sure that the compiler maps data
to registers, we do not use an array data structure to store the data. Instead, we
use a Python script to generate unrolled code with distinct variables for all data.
However, the consequence of generating CUDA code at compilation time is that
the program has to be re-compiled for each choice of k. This takes roughly 6s
on an AMD FX-8350 4 GHz processor, which is negligible.

3.4 Probability of False Positives

There are three possible outcomes of solving the linear system: there can be
no, one, or more than one solution. The expected outcome is that there is no
solution in which case we proceed to the next Gray-code iteration step. Ideally,
we find one single solution only once—which then is also a solution for the
original quadratic system. However, there is a small probability that a solution
for the subsystem S is not a solution for the original system, i.e., it is a false
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positive. Finally, there is also a chance for finding more than one solution which
requires further processing.

Suppose we have a random linear system of m equations in Fy of n variables.
We would like to estimate the probability that this system has at least one
solution. Let A be the augmented matrix of this system (m x (n + 1)).

Assume that during Gaussian elimination the upper-left corner is a pivot.
This means that there is at least one 1 in the first column (2™ — 1 possibilities).
The first row with a leading 1 gets swapped to the top, and the rest of the first
column is eliminated. There are n other entries in the first row (2" possibilities).
The remaining (m — 1) x n sub-matrix remain uniformly random.

We can continue this reasoning conclude that if the Gaussian elimination
have pivots in columns a; < as < -+ < ag < n + 1 exactly

L
22?:1(”‘*‘1—%) H(2m+1*j _ 1)

j=1

times. Thus, when m > n, we can tell that the largest block of consistent systems

have pivots a1 =1, as = 2,..., a, = n, and these number
2n(n+1)/2 H(2m+17j o 1) < 2n(n+1)/2 H(2m+17j) _ 2n(m+1).
j=1 j=1

There are 2™("+1) possible matrices so probability of a full-rank consistent
system is bounded by 2~ More precisely, for large m = n, the probability
of full-rank consistency is -3.7 ... (1 — %) = po = H;il (1 — 2%) ~ 0.288788.
In general a full-rank consistent systems occurs with probability roughly

9—(m—n) H(l _ 2m—n+j) > Do 1= Do - 2—(m—n)/ H (1- 2—j)
j=1 j=1

The second largest block of systems (missing a pivot in column n) is less
likely by a factor of m Systems missing a pivot in column (n — j) are
a further factor of 1/27~ less likely. Thus, probability of consistent systems with
(n—1) pivots is = sprim—y L+ 5+ 1+ 5+ + ze1) ® Grr—s—-

The largest block missing two pivots (in columns n and n — 1) is a factor
smaller than full-rank. Each time we move the first

23(2<m+1—n>_11)(2(m+2—n)_1)
missing pivot left there is a factor of 1/2. Each time we move the second (right-
most) missing pivot left there is a factor of 1/4. Summing over 27477 gets a
factor of 8/3, so we end up having probability of missing 2 pivots close to

N Pm—n
~ 3(2(m+17n) _ 1)(2(m+27n) —1)

Continuing this argument, we note that the largest term missing k pivots is
smaller by a factor of 2F(F+1) (H?Zl(Qm*"Jrk — 1)) Summing over all matrices
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<24, ., _2F
~ 13 2k 1"

missing k pivots is & pm_n/ (Hle(2m—n+k - 1)) (Hle(zk - 1)).
The probability of a set of consistent equations for large m and n approaches

missing k pivots, we get a factor of So the totality of all matrices

Do i 1
gm—n (H}":E”(l - 2*1‘)) =0 (H§:1(2m*n+k - 1)) (H;?:l(zk _ 1))

If we only take two terms, it becomes roughly

Po

omen (M5 0 - 270)

This is consistent with intuition. For example, to have no more than 1 con-
sistent system in 1000, we need m — n > 10. For two further examples, we note
that p; = pg = 0.288788. The probability when m —n =1 of a set of consistent
equations is approximately

(m—n)

— 27 for large m — n.

> 1
pr- kz::O (Hf=1(2’“+1 - 1)) (H?=1(2’“ 71)) = 0.389678.

When m = n, the probability of a set of consistent equations is approximately

> 1
Py - 5 = 0.610322,
k=0 (Hj:l(Qk - 1))

which is exactly the complement of the previous result!

3.5 Verification of Solution Candidates

When a single solution candidate is found, it needs to be verified with the original
MQ system. Ideally, one would copy the solution candidate from the GPU off-
chip memory back to the main memory and verify it on the CPU immediately.
In practice, this is not efficient because checking each solution candidate right
away on the CPU interrupts the workflow of the GPU. Therefore, an alternative
approach is to store all solution candidates in a buffer and only copy them back
to the main memory after the GPU kernel finishes. One caveat of this approach
is that a sufficiently large buffer must be allocated on the off-chip memory,
which may have little capacity left after allocating memory blocks for the data
structures used in Gray-code enumeration. If the number of solution candidates
is larger than the size of the buffer, some candidates must be dropped.

To avoid this pitfall, we copy some polynomials from the original M Q system
to the GPU which serve as a filter. Evaluating a random polynomial over F5 at a
random input results in zero with probability 0.5. Therefore, using ¢ polynomials
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reduces the number of candidates by a factor of 27¢ (for i < n). Only solution
candidates that pass the filter will then be verified with the rest of the equations
in the original M Q system by the CPU.

We are using 32 polynomials that are stored in column-wise format. In this
manner, to apply the filter a thread needs to evaluate nn=1) 4 1 +1 monomials in
the polynomials with the solution candidate. Therefore, this takes at most O(n?)
machine instructions. However, filtering only needs to be applied when the linear
system has a solution, which happened very rarely during our experiments and
its execution time was completely hidden.

If more than one solution is found, more effort is required in order not to
miss the solution. The probability of having more than one solution is very
small for well chosen implementation parameters (see Sect. 3.4). Therefore, our
implementation simply reports when it encounters this case and moves on to the
next iteration step. During all our experiments, this case never occurred.

3.6 Pipelining

When external hybridization is applied, i.e, p variables are fixed in the original
MQ system, one has to extract a sub-system and subsequently perform Gray-
code enumeration at most 2P times. Since we perform Gray-code enumeration
on the GPU, which operates independently from the CPU, we are able pipeline
the two stages. In other words, while performing Gray-code enumeration on the
GPU, a sub-system for the next Gray-code enumeration can be computed in
parallel on the CPU. In this manner, as long as extracting a sub-system takes at
most as much time as Gray-code enumeration, which can be controlled by the
choice of p, only the runtime of extracting the first sub-system will manifest.

4 Choice of Parameters

There are several parameters to choose before the Crossbred algorithm can be
executed on a CPU/GPU cluster. First, we need to know how many variables k
we can keep for linearization. This depends on the Macaulay degree D and the
number of variables p fixed in external hybridization. Finally we need to decide
how many variables to fix before deploying the workload to the GPUs and how
many GPU threads to launch in parallel.

4.1 Number of Variables to Keep

We want to set the parameter k as high as possible in order to reduce the search
space for Gray-code enumeration: For every extra variable that can be kept, the
search space is halved. As described in the original Crossbred algorithm [11],
the maximum of k depends on the Macaulay degree D as well as the number
of variables n and the number of equations m in the original MQ system. The
number of linearly independent equations that can be extracted from a Macaulay
matrix can be computed as the difference of the number of independent rows
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maximum of k

Fig. 1. Maximum number of variables k that can be kept depending on n and m.

Nindep row i the Macaulay matrix and the number of monomials /V,,; which are
non-linear in x1,...,z;. This number must be no less than k; otherwise, there
will not be enough equations in the sub-system to obtain a unique solution.
The maximum value of k for MQ systems with n = m and m = 2n, based on
Macaulay degree D = 3 and 4, can be computed as

N _Jm-(n+1), when D = 3,
indep_row — m-((g)“rn‘f'l)_((?)—’—m)’ when D =4,

wEE0) ()

i=2 j=2 J

!
Nindcp,row - an > k.

Figure 1 shows a graph for the number of variables we can keep in relation to
the system size for n < 200. Clearly, with degree-4 Macaulay matrices one can
keep more variables than with degree-3 Macaulay matrices for large enough n.
However, for some determined systems, e.g. n = 140, using a degree-4 Macaulay
matrix does not allow us to keep more variables than when using a degree-3
matrix. In addition, the gap between the two curves for overdetermined systems
becomes narrower as n grows. Therefore, similar to determined systems, the
effectiveness of degree-4 matrices is expected to become marginal at which point
degree-5 Macaulay matrices are required if one wishes to keep considerably more
variables than when using degree-3 matrices.

Note that & grows linearly in the beginning of each curve, where the degree of
regularity of the M Q system is smaller than or equal to the Macaulay degree. In
this case, a Grobner basis can be extracted directly from the Macaulay matrix,
which immediately yields a solution to the system.
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4.2 Macaulay Degree

As discussed in [11], since the Macaulay matrix is used to induce cancellation
of the monomials where any of the variables 1, x2,...,z; has a degree larger
than one, the degree of the Macaulay matrix must be no less than the degree
of regularity of a random system of m equations in k variables. In addition,
the Macaulay degree is a key factor that determines the maximum value of k.
One should therefore choose a Macaulay degree that is larger than the degree
of regularity requirement and that can provide a sufficient number of linearly
independent equations for the intended value of k.

One caveat of choosing the Macaulay degree is that the memory requirement
must be smaller than the available system memory. Since both the number of
rows and columns of a Macaulay matrix grow considerably when the degree
increases, one might have to choose a smaller Macaulay degree and subsequently
a smaller k in case the available memory is insufficient.

Our implementation supports both degree-3 and degree-4 Macaulay matrices.
Degree-3 Macaulay matrices are useful for small toy examples, while degree-4
Macaulay matrices are sufficient for the largest problem sizes that we target.

4.3 Number of Variables to Fix During External Hybridization

Section4.1 gives the formula for computing the maximum value of k for a given
system. Since the parameter n in the formula is the number of variables in the
MQ system, one can achieve a higher k by fixing some p variables with external
hybridization. In this manner, the number of variables in the system drops by
p but the number of equations remains the same. Therefore, the number of
variables that can be kept may be higher.

For example, an M Q system of 148 equations in 74 variables allows to keep
k = 21 variables with a degree-4 Macaulay matrix. By fixing p = 4 variables, it
becomes a system in 70 variables, which allows to keep one more variable, i.e., k =
22. In this manner, the search space of Gray-code enumeration is split into 2% x
274=4=22 ingtead of 1 x 274721 which reduces the total number of iterations for
Gray-code enumeration by half. On the other hand, 2P sub-systems of Macaulay
matrices need to be computed—so there is a limit on the effectiveness of applying
external hybridization.

4.4 Number of Variables to Fix Before Exhaustive Search

In addition to fixing variables by external hybridization, one can further fix
some variables in the extracted sub-system before entering the exhaustive search
stage. By fixing b variables the sub-system beforehand, one can divide the work-
load evenly into 2° smaller sub-systems which require less resources for applying
exhaustive search. Clearly, since the main purpose of fixing these b variables in
the sub-system is to fine-tune the resource requirement, the choice of b should
be adjusted based on the hardware architecture and the remaining parameters.
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Table 1. Effect of changing the number of GPU threads.

Number of | Memory Total Constant | Search space | Runtime

threads | per thread| memory | memory | per thread | (seconds)
29 15.41kB | 7.70MB | 5320B 221 20.97
210 14.01kB | 14.01MB | 4560B 220 11.93
211 12.68kB | 25.37MB | 3876B 219 7.16
212 11.42kB | 45.69MB | 3264B 218 4.89
213 10.22kB | 81.81MB | 2720B 217 5.15
oM 9.10kB | 145.56 MB | 2240B 16 5.15
218 8.04kB | 257.12MB | 1820B 218 5.04
216 7.04kB | 450.50MB | 1456B o4 4.95
217 6.11kB | 782.00MB | 1144B 213 4.94
218 5.25kB | 1343.00MB| 880B 212 4.79
219 4.45kB | 2278.00MB| 660B ol 4.86
220 3.72kB | 3808.00MB| 480B 210 4.86

4.5 Number of GPU Threads

Typically, more threads than available cores are launched on a GPU in order
to hide memory and instruction latencies. Therefore, there should be a certain
threshold for the number of threads after which increasing the number of threads
on the GPU does not have an influence on the performance anymore. To find
this threshold, we performed a series of experiments by running our GPU kernel
on a randomly generated M Q system of 92 equations in 46 variables with differ-
ent numbers of 2! threads. We performed the experiments on a Nvidia Quadro
M1000M GPU using the following settings:

— GPU: Nvidia Quadro M1000M, 4 GB off-chip memory, 512 CUDA cores
— Macaulay degree: D =3

external hybridization: p = 0

— Number of variables to fix before enumeration: b = 0

Number of variables to keep: k = 16

The results are given in Table 1. As expected, the runtime basically remains
constant for ¢ > 12. For ¢t < 12, the degree of parallelism is not sufficient and
the latencies manifest.

When t = 9, there are 2° = 512 GPU threads deployed, which is exactly
the number of CUDA cores available on this particular GPU. In this case, the
workload is evenly distributed to all the CUDA cores. Nevertheless, the degree
of parallelism is far from enough because executing one single thread per CUDA
core is not enough to hide latencies. For example, when the thread loads data
from the global memory, which requires hundreds of cycles to access, there is no
other thread that can take over the execution resources. Therefore, the CUDA
core has no choice but to stall.
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Starting from ¢t = 10, there are several threads per CUDA core and some
latencies can be hidden. The performance gradually improves until ¢t = 12, where
the degree of parallelism reaches a point where deploying more threads does
not improve the ability of the GPU to hide latencies anymore. Therefore, for
these experimental settings the threshold where the optimal performance of our
implementation can be achieved is 212.

Note that as explained in Sect. 3.2, for each doubling in the number of GPU
threads the amount of global memory required for a single GPU thread reduces
slightly but the total amount of memory required for the GPU kernel increases
nearly twofold. However, since the last-level derivatives stored in constant mem-
ory are shared by all threads, constant memory requirement decreases as t
increases.

5 Evaluation

We evaluated the performance of our implementation on the Saber clusters [2].
Saber is located at Eindhoven University of Technology and Saber2 at University
of Illinois at Chicago. The clusters consist of mostly homogeneous workstations.
Out of all the nodes in these two clusters, we used 27 cluster nodes, each equipped
with two Nvidia graphics cards. Twelve out of those 27 nodes have two GTX 780
graphics cards while the remaining 15 nodes have two GTX 980 cards. Each
node has 32 GB RAM and one AMD FX-8350 4 GHz processor, which has four
physical CPU modules (similar to a physical core in an Intel CPU) shared by
eight logical threads (similar to Intel’s hyper threading), 16kB L1 data cache
per thread, 2 MB L2 cache per module, and 8 MB L3 cache shared by the whole
CPU. We used CUDA version 7.5 and compiled our implementation with the
back-end compiler bundled with CUDA, which is GCC version 4.8.

We compare our results to the FES implementations on GPUs from [3] and on
FPGAs from [4] and to the Crossbred implementation on CPUs from [11]. Since
[3] is using an older GTX 295 graphics card, we scale their results as follows: The
GTX 295 graphics card has 480 CUDA cores running at 1242 MHz. Our GTX 980
graphics card has 2048 CUDA cores running at 1278.50 MHz. Therefore, we scale
the results of [3] by a factor of % . % in order to achieve a rough comparison
of the performance. This over-estimates the power of a GTX 295 compared to a
GTX 780 and therefore is in favor of [3] in some of the comparisons.

5.1 Overdetermined Systems—Fukuoka M Q Challenge

We solved some of the Fukuoka MQ challenges using our implementation. These
challenges were created in 2015 in order to help determining appropriate param-
eters for public-key cryptographic schemes based on M Q systems. In particular,
we chose to target Type-I challenges generated with seed 4 because they consist
of MQ systems in n variables and m = 2n equations over Fs.

The experimental results of solving Type-I challenges for n € {55,...,67}
using one single GTX 980 graphics card are given in Table2. The workflow
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Table 2. Solving overdetermined systems with a single GTX 980 graphics card.

Extracting Exhaustive Total ‘Worst-case
Parameters Search space ) .
n (D k, b, t) | 2P x 2b o gn—p—k—b sub-systems search runtime runtime
BB D (seconds) (seconds) (seconds) | (seconds)
55 | (4, 0, 19, 0, 14) 1x1x2%6 387.80 318.25 706.20 706.20
56 | (4, 1, 20, 0, 14) 21 x 1 x 235 491.60 (1) 169.94 (1) 658.67 1317.34
57 | (4, 0, 20, 0, 14) 1x1x2%7 606.75 650.90 1258.73 1258.73
58 | (4, 0, 20, 0, 14) 1x1x 238 670.26 1311.97 1982.74 1982.74
59 | (4, 0, 20, 0, 14) 1x1x 239 741.62 2619.00 3361.77 | 3361.77
60 | (4, 0, 20, 0, 14) 1x 1 x 240 782.12 5211.05 5994.41 5994.41
61 | (4, 0, 20, 1, 14) 1 x 21 x 240 872.34 5204.18 (1) | 6077.13 | 11280.34
62 | (4, 0, 20, 2, 14) 1 x 22 x 240 920.24 10485.95 (2) | 11407.64 | 21892.14
63 | (4, 4, 21, 0, 14) 2% x 1 x 238 9406.21 (11) | 14827.94 (11) | 24234.15 | 35250.72
64 | (4, 3,21, 1, 13) 23 x 21 x 239 1991.48 (2) | 10469.58 (4) | 12456.97 | 49844.24
65 | (4, 3, 21, 2, 14) 23 x 22 x 239 1046.62 (1) | 10517.21 (4) | 11565.10 | 92510.64
66*| (4, 1, 21, 5, 13) 21 x 25 x 239 16268.10 (2) | 133896.93 (51) | 151867.70 | 184295.62
67| (4, 0, 21, 7, 13) 1 x 27 x 239 10298.95 |198835.78 (74)|209172.34| 354231.11

Table 3. Solving overdetermined systems using 27 nodes of the Saber clusters.

Extracting Total ‘Worst-case

n Parameters Search space sub-systems | runtime runtime
D b n—p—k—b -

(D, p, ks b, 1) | 27 X 27 x 2 (seconds) | (seconds) | (GPU-hours)
68| (4,6, 21,2, 13) 26 x 22 x 239 9799.15 12802.11 214.45
69| (4, 8, 22,0, 13) 28 x 1 x 239 11238.49 | 56697.70 229.10
70| (4,7, 22,2, 13) 27 x 22 x 239 14367.71 | 44223.81 452.65
71| (4, 8, 22, 2, 13) 28 x 22 x 239 14392.00 | 87415.91 947.20
72| (4,9, 22, 2, 13) 29 x 22 x 239 13912.39 | 144145.58 1867.44
73| (4, 8, 22, 4, 13) 28 x 2% x 239 18055.07 | 159585.32 3700.87
74| (4, 10, 22, 3, 13) 210 » 23 x 239 15163.72 | 118323.38 8236.05

of the algorithm, i.e., how the search space is split and enumerated, is listed
in the 3'Y column of the table. For parameters p > 0 and b > 0, external
hybridization and Gray-code enumeration need to be repeated at most 2P and
2" times respectively. The numbers inside the parentheses in the 4" and 5"
column specify how many repetitions were performed during the experiments.
For all these small experiments we used the GPU instead of the CPU to extract
sub-systems except for the last two experiments marked with an asterisk, because
the reduced Macaulay matrix was too large to fit into the 4GB off-chip memory
of the GTX 980 graphics card. As shown in Table 2, solving an MQ system of
134 equations in 67 variables requires at most 354231.11 s which equals to 98.39 h
on a single GPU, including the computation time of extracting sub-systems.
For larger Type-I challenges with n € {68,...,74} we used 27 nodes in the
Saber and Saber2 clusters by distributing the 27 smaller M Q systems obtained
from external hybridization evenly over the nodes. The results are given in
Table 3, which basically has the same format and notation as Table2. In these
larger experiments, sub-systems were extracted from degree-4 Macaulay matrices
with the CPU because the GPU off-chip memory cannot accommodate the size of
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the reduced Macaulay matrices. However, these parameters allowed us to pipeline
the extraction of sub-systems on the CPU and the exhaustive search stage on the
GPU. Therefore, the computation time of the former can be completely hidden
except in the first run. Some of the cluster nodes we used have GTX 780 graphics
cards with only 3 GB of off-chip memory while GTX 980 graphics cards have
4 GB. Therefore, we adjusted the parameters ¢t and b according to the memory
size of the GTX 780. Consequently, the 4 GB off-chip memory on the GTX 980
was not fully utilized but there was no noticable impact on performance.

Impact of k. The experiments show that despite the number of variables
increasing by one for each experiment, whenever the maximum value of the
parameter k increases (either with or without external hybridization), the run-
time almost stays the same. For example, for the overdetermined MQ system
Fss, n = 68 by keeping k = 21 variables, there are 47 variables left in Fgg to
enumerate (see Table 3). For the overdetermined MQ system Fgg,n = 69, the
maximum value of k can be increased by one (with external hybridization), so
k = 22 variables can be kept. Therefore, there are also 47 variables to enumerate
for Fgg9. Hence, for both systems the total maximum number of iterations that
need to be performed during Gray-code enumeration is the same. However, since
for Fg9 linear systems in 22 variables instead of 21 have to be computed, the cost
of each iteration of Gray-code enumeration for Fgg is slightly larger than for Fgg.
Thus, the worst-case runtime for n = 69 is slightly larger than for n = 68.

Comparison. Previous records of solving Type-I challenges were held by the
FES and Crossbred algorithms. The FES implementation for FPGAs is able
to perform full enumeration over the search space for an MQ system in 64
variables in 956 days [4]. Therefore, it solves a MQ system of 148 equations in
74 variables in at most 274764.956 days ~ 2900 FPGA-years. The corresponding
GPU implementation in [3] requires 21 min to solve an M Q system with n = 48
variables on a GTX 295 graphics card. Scaling the performance on the GTX 295
to our graphics cards as described before results in 274748 . 21 min - %g . % ~
610 GPU-years. The original Crossbred implementation for CPUs requires at
most 41 CPU-years to solve the challenge [11] using & = 23. As shown in Table 3,
our implementation is most efficient with kK = 22 and requires at most 8236
GPU-hours, i.e., 0.94 GPU-years. Table4 shows an overview of the comparison
including the respective speedup of our implementation.

Estimated Security for n = 74, m = 2n. As mentioned before, a GTX 980
graphics card consists of 2048 CUDA cores operating at 1278.50 MHz. Based on
profiling information, our implementation achieves 37% GPU utilization. There-
fore, we estimate the security strength of this particular M Q system, defined as
the number of operations required to solve the system, as

8236.05 - 2048 - 1278.50 - 10° - 3600 - 0.37 ~ 2646,

Thus, an MQ system with n = 74, m = 2n only provides about 64-bit security.
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Table 4. Worst-case runtime and speedup of our work compared to previous work.

n | m | k| Approach | Worst-case runtime | Our speedup
741148 | — | [4] (2014) | 2900 FPGA-years® 3100.0
74148 | — | [3] (2010) | 610 GPU-years™" 650.0
741148 |23 [11] (2017) 41 CPU-years 44.0
741148 |22 | Our (2018) | 0.94 GPU-years 1.0
46 | 46 | 12| [11] (2017) | 1900 CPU-seconds 23.0
46| 46 |12 | Our (2018) | 82 GPU-seconds 1.0
59| 59 | — | [4] (2014) 30 FPGA-days® 12.0
59| 59 | — | [3] (2010) | 6.8 GPU-days™" 2.8
59| 59 | 13| Our (2018) 2.4 GPU-days 1.0

2extrapolated; Pscaled from GTX 259 to GTX 980

5.2 Determined Systems

Determined systems with n = m are not included in the Fukuoka M@ chal-
lenges. Therefore, we performed experiments for such systems using randomly
generated, solvable systems. We solved those systems with one single GTX 980
graphics card on a node in the Saber2 cluster. The experimental results are given
in Table 5, whose format and notation is the same as Table 2.

For determined systems, the number of variables that can be kept is much
smaller than for overdetermined systems due to that fact that fewer equations
are available. However, the linear systems that are enumerated during Gray-code
enumeration consist of fewer variables. Therefore, the cost of each iteration is
also lower. As Table 5 shows, solving a determined M Q system in n variables is
roughly as difficult as solving an overdetermined MQ system where m’ = 2n’,
n' = n+7 ~ n+8. Nevertheless, Fig. 1 shows that the gap between the number of
variables that can be kept for determined and overdetermined systems gradually
becomes larger as n grows. Therefore, this observation only applies to the systems
in Table 5 but not to larger determined systems, e.g. n = 172.

Comparison. The extrapolated worst-case runtime of the FES algorithm on
FPGAs from [4] is 29764 . 956 days ~ 30 FPGA-days. The corresponding run-
time on GPUs [3] is 2°97%8. 21 min - 1222 - 20 ~ 6.8 GPU-days. Our implemen-
tation requires at most 210601s, i.e., about 2.4 GPU-days. Table4 shows the
speedup of our implementation. Our speedup over FES for n = m = 59 is signif-
icantly lower than for n = 74, m = 148. This shows that the Crossbred algorithm
is less efficient for small k£ and therefore more suitable for larger systems and for
overdetermined systems. The authors of the Crossbred-CPU implementation in
[11] do not provide performance numbers for n = m = 59. Therefore, we show a

comparison for n = m = 46 in Table4.
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Table 5. Solving determined systems with a single GTX 980 graphics card.

Extracting Exhaustive Total ‘Worst-case
Parameters Search space R .
n (D k, b, t) 9P 5 b 5 gn—p—k—b sub-systems search runtime runtime
PPy D (seconds) (seconds) (seconds) | (seconds)
46 | (4, 0, 12, 0, 16) 1x1x2% 33.90 47.63 82.12 82.12
47| (4, 0, 12, 0, 15) 1x1x 23 36.31 96.12 132.92 132.92
48 | (4, 0, 12, 0, 15) 1x1x2%6 39.76 190.59 230.88 230.88
49 | (4, 0, 12, 0, 15) 1x1x 237 42.98 380.91 424.48 424.48
50 | (4, 0, 12, 0, 15) 1x1x238 46.86 754.86 802.34 802.34
51 | (4, 0, 12, 0, 15) 1x1x 239 50.74 1542.07 1593.46 1593.46
52| (4, 0, 12, 0, 14) 1x1x 2% 53.59 3049.07 3103.21 3103.21
53 | (4, 0, 12, 1, 14) 1 x 21 x 240 57.05 6249.61 (2) 6307.22 6307.22
54 | (4, 0, 12, 2, 14) 1 x 22 x 240 60.86 3141.67 (1) 3205.11 12635.54
55 | (4, 1, 13, 1, 14) 21 x 21 x 240 95.30 (1) 3322.54 (1) 3418.48 13480.76
56 | (4, 0, 13, 3, 14) 1 x 23 x 240 118.85 6600.55 (2) 6720.12 26521.05
57 | (4, 0, 13, 4, 14) 1 x 24 x 240 121.54 46053.43 (14) | 46175.72 | 52754.03
58 | (4, 0, 13, 5, 14) 1 x 2% x 240 133.97 105432.90 (32) | 105567.66 | 105567.66
59 | (4, 0, 13, 6, 14) 1 x 26 x 240 144.13 197303.32 (60) | 197448.24 | 210601.00

“80-bit Security”. Sakumoto et al. propose an M Q-based public-key identi-
fication schemes and “80-bit secure” parameters n = 84, m = 80 in [15]. When
using our implementation and hardware for solving such systems, the best con-
figuration is (D, p, k,b,t) = (4,27,16, 1, 14), because this choice gives the largest
k for the smallest p such that the computation on one Macaulay matrix does not
take more time than the corresponding computations on the GPU. Therefore,
the runtime of extracting the sub-systems can be completely hidden by pipelin-
ing CPU and GPU computations. Extracting a sub-system with these parame-
ters takes 985.86s and each GPU kernel launch takes on average 4338.59s for
240 jterations. The worst-case runtime for solving the MQ system is therefore
4338.59 s - 2(84=16-40) ~ 37000 GPU-years.

However, since the probability of obtaining a solution for a determined system
is approximately 1 — % ~ 0.63 [9] and the runtime r for exploring a sub-space of
size 280716 is - = 4338.59 - 2(80-16-40) ~ 9300 GPU-years (with the parameters
as above), the expected runtime of solving an M Q system where n = 84, m = 80
is only

1\ . 1 e
l1==- j —— =1 —— ~ 3600 GPU- .
r < 6) ;zelfl | years

Following the calculation in Sect.5.1, the expected number of operations
required for solving such a system on a GPU is therefore

3600 - 2048 - 1278.50 - 10° - 365 - 24 - 3600 - 0.3706 ~ 2762

i.e., these parameters are roughly “76-bit secure” which is very close to the
security claimed in [15]. Due to the small k, the Crossbred algorithm gives only
a moderate improvement over the FES algorithm as in [3] with an expected cost
of roughly 280 - 4 . Pl 2827 GPU-operations.

However, solving the underlying M Q systems of this public-key identification
scheme using the security parameters of [15] is feasible on average within about
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one year using 3600 GTX 980 graphics cards at the cost of electricity and about
$2 million US dollars for hardware, assuming a price of $550 US dollars per GTX
980 graphics card?. This shows that breaking 80-bit security is within reach at
moderate cost and time using today’s technology and that 128-bit security must
be the minimum requirement for multivariate cryptography.
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Abstract. We investigate the security of a public-key encryption
scheme, the Indeterminate Equation Cryptosystem (IEC), intro-
duced by Akiyama, Goto, Okumura, Takagi, Nuida, and Hanaoka at
SAC 2017 as post-quantum cryptography. They gave two parameter
sets PS1 (n,p,deg X,q) = (80,3,1,921601) and PS2 (n,p,deg X,q) =
(80, 3,2, 58982400019).

The paper gives practical key-recovery and message-recovery attacks
against those parameter sets of IEC through lattice basis-reduction algo-
rithms. We exploit the fact that n = 80 is composite and adopt the idea of
Gentry’s attack against NTRU-Composite (EUROCRYPT2001) to this
setting. The summary of our attacks follows:

— On PS1, we recover 84 private keys from 100 public keys in 30-40s
per key.

— On PS1, we recover partial information of all message from 100
ciphertexts in a second per ciphertext.

— On PS2; we recover partial information of all message from 100
ciphertexts in 30 s per ciphertext.

Moreover, we also give message-recovery and distinguishing attacks
against the parameter sets with prime n, say, n = 83. We exploit another
subring to reduce the dimension of lattices in our lattice-based attacks
and our attack succeeds in the case of deg X = 2.

— For PS2’ (n,p,deg X, q) = (83, 3,2,68339982247), we recover 7 mes-
sages from 10 random ciphertexts within 61,000s ~ 17h per cipher-
text.

— Even for larger n, we can find short vectors from lattices to break
the underlying assumption of IEC. In our experiment, we can found
such vector within 330,000s ~ 4 days for n = 113.

Keywords: Public-key encryption - Indeterminate Equations
Cryptosystem + Post-quantum cryptography

1 Introduction

Algebraic-Surface Cryptosystem (ASC) is a public-key cryptosystem based
on the section-finding problem [AG06,AGM09]. Recently, the new version
© Springer International Publishing AG, part of Springer Nature 2018

T. Lange and R. Steinwandt (Eds.): PQCrypto 2018, LNCS 10786, pp. 142-161, 2018.
https://doi.org/10.1007/978-3-319-79063-3_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-79063-3_7&domain=pdf

Practical Cryptanalysis of a Public-Key Encryption Scheme 143

of ASC, the IEC encryption scheme, was proposed by Akiyama et al. at
SAC 2017 [AGO+18], where IEC stands for Indeterminate Equation Cryptosys-
tem. Let Ry, ¢ := Zg[t]/(t™ —1) and consider R, 4]z, y]. The section-finding prob-
lem over R, 4[x,y] is, given an algebraic surface X (z,y) = 0, finding the section
u = (ug,uy) € R}, such that X(uz,u,) = 0 [AGO+18]. The authors inves-
tigate the security of IECs by considering the lattice-based attacks and define
two sets of parameter values, PS1 (n,p,deg X, q) = (80,3,1,921601) and PS2

(n,p,deg X, q) = (80,3, 2, 58982400019).

1.1 Owur Contribution

We give practical-time lattice-based attacks against the IECs.

Our first attack is combining the original lattice-based attack with Gentry’s
attack [Gen01] against NTRU Composite [Sil01]. Let d be a non-trivial divisor
of n, say, 40. We can consider the subring Ry 4[x,y| instead of R, 4[z,y]. This
modification allows us to employ a smaller lattice than that in the original lattice-
based attacks. Our attack succeeds as follows:

— On PS1, we mount a key-recovery attack. Our attack finds 84 secret keys
from 100 random keys. The attack takes approximately 30s per key.

— On PS1, we mount a partial-message-recovery attack. Our attack finds partial
messages of all 100 pairs of random public key and ciphertext. The attack
takes approximately 0.5s per try.

— On PS2, we mount a partial-message-recovery attack. Our attack finds partial
messages of all 100 pairs of random public key and ciphertext. The attack
takes approximately 30s per try.

We exploit another class of subring R,, 4[z] of Ry, 4[x,y] to reduce the dimen-
sion of lattices in our lattice-based attacks. Our attack succeeds in the case of
deg X = 2 as follows:

— For (n,p,deg X) = (83,3,2), we recover 7 messages out of 10 random cipher-
texts in 61,000s =~ 17h per ciphertext.

— Even for larger n, we can find short vector which enables us to break the
underlying assumption of IEC. We can find such vector for n = 113 within
330,000 =~ 4 days.

Responsible Disclosure Process: We already notified the authors of our attacks
before making this paper public. We informed them by email on Septem-
ber 28th with key-recovery attack on PS1, October 2nd with partial-message-
recovery attack on PS1 and PS2, October 17th with message-recovery attack
on (n,p,deg X) = (83,3,2), and November 2nd with distinguishing attack on
variant of PS2 with n > 83. The authors reported that they have changed
parameter values and they run their experiments further. We publish this paper
after Akiyama et al. published their revised paper and their NIST PQC submis-
sion [AGO+17b,AGO+17a].
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1.2 Organization

We define notations and review lattices in Sect.2. We review the IEC scheme in
Sect. 3 and the original lattice-based attacks in Sect. 4. We recall Gentry’s attack
in Sect. 5. We combine them in Sect. 6. We also give new attacks in Sect. 7. The
experimental results are reported in Sect. 8.

2 Preliminaries

Notations: The security parameter is denoted by k.

For a positive integer ¢, we define Z, := Z/qZ and Z(j :={0,1,...,q — 1}.
For a positive integer n, we define R,, := Z[t]/(t™ — 1). For two positive integers
n and ¢, we define R, 4 := Z,[t]/(t" —1). We also define a subset Ry, 4, of Ry, 4
as a set of all Z;—coefﬁcient polynomials in R, 4, that is,

n—1
Rigp = {f = Z fit' € R, 4

=0

fiE{O,l,...,p—l}CZq}.

Let R be a ring and consider R[z,y]. For R and a set of indices I' C ZQZO, we
define .
S, R) = {f € Rlw,y] | £ = X jperaia'y’ }
a set of all polynomials in R[z,y] which only consists of z'y’ terms for (i,5) € T.
We will refer I" as the term set. (Those notations are borrowed from [AGO+18].)

We define the total degree of f(x,y) € Rlx,y] as the maximum of the sums of
the exponents of the variables in the term aijxiyj.

Polynomials: We review the notations which bridge polynomials in R,, and n-
dimensional vectors (and matrices). For integers n and ¢, let us define two func-
tions:

vecy : Rn,q _)Zn: f = f0+f1t+ "'+fn—1tn_1 = (anflw-wfn—l)
vec, (f)

vee, (tf)
Roty: Ry g — Z"": f = {fj—i mod n}ij=0,.n—1= veen (£ f)
Vecn(t'"_lf)
We have
vec, (f) - Roty,(9) = vee,(f - g) and Rot,(f) - Rot,(g) = Rotyn(f - 9)

Lattices: Given n-linearly independent vectors B = {bg,...,b,—1} C R™, the
lattice generated by them is the set of vectors
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n—1
L(B)=1Z"-B={) ;| z; €L}
=0

The vectors B are known as a basis of the lattice. If n = m, we say the lattice
is the full-rank. In what follows, we only consider full-rank lattices.

The determinant or volume vol(A) of a full-rank lattice A is the absolute
value of the determinant of any given basis B of A, that is, vol(A) = |det(B)|.
The dual of a lattice A, denoted by A*, is the lattice consisting of the set of all
vectors z € R™ orthogonal to any vectors v € A, that is, A* = {z € R™ | (z,y) =
0 for all y € A}.

We also define g-ary lattices. For A € Zy*™,

A(A):={2€Z™|2=5A (mod q) for some s € Z"}
1 L m T _
Ay(A):={e€Z™|eA =0 (modq)}.
We have
Ay (A)=q- A (A) and Ag(A) = q- Ay (A)".

See e.g., [GPVO08, Sect. 5].
The basis of A, is easily obtained. For example, we obtain the basis by

considering a matrix (q‘f‘m ) and taking the row echelon form of the matrix.

SVP and CVP: Finally we define shortest-vector problem and closest-vector
problem. The shortest-vector problem (SVP) is, given a lattice A, finding a non-
zero vector v € A\ {0} such that |[v|| < ||z| for any non-zero lattice vector
x € A\ {0}. The closet-vector problem (CVP) is, given a lattice A and a target
vector ¢, finding a lattice vector w € A such that ||w—t|| < ||z —¢|| for any lattice
vector x € A.

The Gaussian heuristic says that the m-dimensional full-rank lattice contains
a short vector of length approximately

m
= [ —— det(L)"/™.
¥ Sre et(L)

If our target vector v is sufficiently smaller than v, then we expect the LLL
or BKZ algorithm find the short vector v.

3 IEC Scheme

Parameters: In the IEC scheme, we will employ X € R[z,y] as a public key,
r,e € R[z,y| as a random polynomials in ciphertexts. The IEC involves several
parameters, (p,¢,n) and (I'x, T, T'x,):

1. p,q: primes and p < ¢
2. n: the degree of R,, ; = Z4[t]/(t" — 1)
3. T'x: The term set of X(z,vy)
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4. wy: The total degree of X

5. I';: The term set of the random polynomial r(z,y)
6. w, : The total degree of r

7. T'x,: The term set of the random polynomial e(z,y)

Akiyama et al. defined
U o= A{(@7) + (kD) [ (,5) € Tx, (k1) € T}

in order to avoid the linear algebraic attacks against the previous cryptosys-
tems [AGO+18, Sect. 2.2]. They also require large q as

q> #FXT .p(p _ ]_) . (n(p _ 1))wx+w,,. (1)
to make the scheme perfectly correct. They implicitly defined
Ix ={(,j) € 2220 |i+j <wx}and T, ={(i,j) € 2220 it j<w).

Although I'x and I', can be different, they always take I'x = I';.. Hence, they
just parameterize deg X instead of wyx and w,. They give two sets of parameter
values in Table1.

Table 1. Proposed sets of parameter values [AGO+18, Table 3]. PS2’ is obtained by
setting n = 83 in PS2.

n |plq deg X | degr | #' x, | |sk| (bits) | |pk| (bits) | |ct| (bits)
PS1 [80|3 921601 |1 1 6 256 4755 9510
PS2 |80 |3 58982400019 | 2 2 15 256 17174 42935
PS2’ |83 |3 |68339982247 | 2 2 15 264 17928 44820

Key Generation: The secret key is a small solution of the indeterminate
equation X (z,y) = 0. We denote the solution by

w: (2,y) = (uz(t), uy(t)) € R?L,qm'

The public key is the indeterminate equation X (z,y) = 0 that has a small
solution u. We denote it by

X(z,y) = Z aijxiyj, where a;; € Ry, 4.
(4,5)€Tx
Akiyama et al. recommend to choose a;; except agp uniformly at random and

set agg 1= — Z(i,j)eFx\{(0,0)} aiju;ué.

Encryption: A plaintext is treated as m(t) € R, q,p. The ciphertext is
C(JC, y) = m(t) + X(‘T’ y) : T(ZL‘7 y) +Dp- 6(1’, y) € g(FXra Rn,q),

where we choose r(x,y) «— §(Ty, Ry q) and e(x,y) «— F(Cxr, Rigp)-
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Decryption: Given a ciphertext c¢(z,y) € F(Txr, Rnq)s

1. compute ¢(uz, uy) € Ry q
2. regard c(ug,uy) as a polynomial in R,, (= Z[t]/(t
c(ug,uy) mod p, and output m’(t)

n

— 1)), compute m/(t) :=

Notice that c(ug,uy) = m(t) +p - e(ug, uy) € Ry 4 because X (ug,uy) =0 €
R, 4. By the condition on ¢ and p, if ¢ is a valid ciphertext, then ¢(u, u,) mod
g=m(t)+p-e(us, uy) € R,,. Thus, we have m(t) = (¢(uy, uy) mod ¢) mod p.

See our implementation in Sect. A.

3.1 Security Assumption
Let X(I'x, Rn.q,p) be the set of X (x,y) which has a small solution u, that is,

X(Tx,Rpnq,p) ={X €F(x,Rngq) | Fug,uy € Ry qp: X(uz,uy) =0}
Akiyama et al. defined the following decision problem:

Definition 3.1 (IE-LWE Problem). For parameters n,p,q,Ux, T, and T x,
we define two sets

U := x(er Rn,q7p) X g(FXr; Rn,q)
T:={(X,Xr+e)| X €eX(T'x,Rnqg,p),r € §Ir,Rnq),e € T xr,Rnqp)}-

The IE-LWE problem is distinguishing the multivariate polynomials chosen from
a ‘noisy’ set T of polynomials from a ‘uniform’ set U.

The IE-LWE assumption states that it is infeasible to solve the IE-LWE problem,
where X is chosen by the key-generation algorithm Gen.

Definition 3.2 (IE-LWE Assumption). For parameters n,p,q,I'x, Ty, and
I'x,, a key-generation algorithm Gen, and an adversary A, we define A’s advan-
tage as

X «— Gen(1%);
780, Rnyg); X « Gen(1%);
AdvEn™s (1) := [Pr e — §(Txr, Rugp)i| — Pr |Y « F(Txy, Rug);
Y :=Xr+e AX,)Y)—1
AX)Y)—1

We say that the IE-LWE assumption on Gen holds if for any PPT adversary A,

its advantage Adviccgi‘f’j(/i) is negligible in k.

Akiyama et al. showed that the IEC scheme (Gen, Enc,Dec) is IND-CPA
secure if the IE-LWE assumption on Gen holds [AGO+18, Theorem 1].

4 Review of Linear-Algebraic Attacks

We review the linear-algebraic attacks in [AGO+18]. In the following, we omit
the subscript n from Rot,, and vec,.
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4.1 Key-Recovery Attack

We review the example in the case deg X = 1.
We are given X (z,y) = ago + a102 + ao1y and want to find a small solution
(us,uy) € R2 , satisfying

@10 - Uy + Qo1 - Uy + ago = 0 (in Ry, 4).
This implies
vec(ug) - Rot(aio) + vec(uy) - Rot(agi) = vec(—agp) (mod gq),

that is,

(vec(ug), vec(uy)) - (ggtgg;?;) = vec(—agg) (mod q).
Therefore, we let

Ayr1 = [Rot(a10)" | Rot(ao1) '] € ZZXQ”
and consider the lattice
A (Ag) ={vez? |v-Al, =0 (mod q)}
= {(vs,vy) € Z*" | vy - Rot(a1g) + vy - Rot(agr) =0 (mod q)}.

Now, we consider a target vector ¢ € Z", an arbitrary solution of ¢ - A, =
vec(—agg) (mod q). Solving the CVP instance (A1 (Aj,1),t), we obtain a vector
w € A (A1), We let @ = (vec(uy ), vec(uy)) i=t — w.

We have @ - A | = vec(—apy) (mod g) because 4 = t — w. In addition, we
expect that the norm of @ is small, since w is the close vector to ¢ and @ is the
difference.

Remark 4.1. In the case of deg X = degr = 2, we have X (z,y) = ago + a10z +
ao1y + ag0x? + a112y + agey? and consider a matrix

Az = [Rot(ai0) " | Rot(ao1) ™ | Rot(az) " | Rot(an) " | Rot(ans) ] € 2.

4.2 Message-Recovery Attack

We again review the example in the case deg X =1 and degr = 1.
Let us consider f(z,y) =p-e(z,y) + m € F(Txy, Ry g). The ciphertext ¢ of
m has the relation

Yooty = > agaty || DD maly |+ Y fua'y

(4,5) €T xr (1,5)€Tx (4,5)€lr (i,5)€lxr
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Let us consider the following matrix

1 T Y 22 xy  y?
1 (A A Ao
Anv1i = Ago Ao An € 736,
(] Ago Ay Ao

where A;; := Rot(a;;) € Z"*". Let

= (VeC(T’oo)7VeC(Tlo),VeC(Tm)) € Zanv
f= (Vec(foo),VeC(fm)aVeC(f1o)7VeC(f20)aVec(fll)avec(fm» €z,
¢ := (vec(cop), vec(cio), vee(cip), vee(cag), vee(cir ), vee(cpz)) € ZO.

According to Eq. 2, we have
E=7Amn +f (mod q).
Now, we consider a lattice
Aq(Amrl) ={z¢€ Z5" | 2 = sAm  (mod q) for some s € ZS"}

and a target vector ¢ € Z%". Solving the CVP instance (A,(Am1), €), we obtain
w € Aq(Amrl). We let 7 :=¢ — w.

Now, we have ¢ = sA + ¥ (mod q) for some s € Z>" and expect that ¥ is
small. If we obtain © = f, we finally obtain m by taking it modulo p.

Remark 4.2. In the case of deg X = degr = 2, we will consider a matrix

1 T y ...zt 2y 2% oayd
1 (A A Ao
X AOO
) Ago 6nx15n
Amrz = z? Ay A Ap €z ’
xy Ay A Ap
y? Ay A Ap

and solve the CVP instance with 15n-dimensional lattice.

Experimental Results: Akiyama et al. estimate IEC’s security by mounting these
attacks against the small parameter sets n = 10,20, ...,60 for deg X = 1 and
n = 10,20, 30, 40 for deg X = 2. Their environment is

CPU: AMD Opteron(TM) Processor 848

— Memory: 64 GB

— OS: Linux version 2.6.18-406.el5.centos.plus
— Software: Magma Ver2.21-5

They also define ¢ as small as possible.
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They mount a key-recovery attack, which succeeds if and only if (uy,u,) €
R, 4.p satisfying X (us,u,) = 0 is found. In their experiments, the key-recovery
attack for deg X = 1 failed for n > 50 and that for deg X = 2 failed even for
n > 10.

They also mount a message-recovery attack, which, given X and Xr + e,
succeeds if and only if e = (eq, ..., es,) with e; € [0, p—1] is found. The message-
recovery attack for deg X = 1 failed for n > 50. Curiously, the attack for deg X =
2 succeed to find short e even for n = 40. (They seem stop their experiment due
to time constraint. Their experiment took about 230000s ~ 2.7 days to process
a 600-dimensional lattice.)

5 Review of Gentry’s Attack

We review Gentry’s attack against NTRU-Composite [Sil01]. Let us consider
NTRU’s key generation and encryption: Roughly speaking, we choose a secret
key (f,g) € Rivq’p and compute a public key as h = g/f € R, 4. The ciphertext
of plaintext m € R,, 4, with randomness r € Ry, 4, is ¢ = phr +m € R,, 4.

Lattice Attack: Coppersmith and Shamir [CS97] pointed out that a short vector
(vecy, (f),vecn(g)) € Z*" is in a lattice spanned by a matrix

— ROt"(l) ROtn(h) 2nx2n
Los = (Rotn(()) Rotn(q) ) €2

We have h = g/f mod ¢ and this implies fh + kg = g for some k € R,.
Therefore, (vec, (f), vec,(k))-Los = (vec,(f), vec,(g)) as we wanted. Hence, we
solve the SVP problem on the lattice and expect to find (vec,,(f), vec,(g)) € Z*"
as the solution.

Gentry’s Attack: Gentry pointed out that there is a ring homomorphism
0: R, — Ry, where d | n is a non-trivial divisor.

Theorem 5.1 ([GenOl1, Theorem 1]). Let n be a composite, and d be a non-
trivial divisor of n. The mapping

d—1 [n/d—1

n—1
G:Rn*)Rd:f:Zfiti'_’Z Z fiavi |
i=0 i=0 \ j=0

18 a ring-homomorphism.

Gentry considered the 2d-dimensional lattice analogue of A(Lcg), the lattice
spanned by a matrix

Rotg4(1) Rotgy(8(h)) 2dx2
ba= (Rot3<o> Rota(q) > S
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The lattice A(Lq) contains a short vector (vecq(6(f)), vecq(6(g))), whose norm is
approximately equals to that of (vecn( 1), vecy, (g)) (see [Gen01, Appendix A.2]).
Therefore, we expect the basis-reduction algorithm, say, LLL or BKZ, finds 6(f)
and 0(g). We can exploit this partial information 6(f) as follows:

1. Message-Recovery Attack: We have 6(f)-0(c) = 6(f)-0(m)+pd(r)-0(g) mod q.
Thus, the expected magnitudes of coefficients of 6(f) - 8(m) + pd(r) - 0(g) are
small, then we can recover 6(m).

2. Secret-Key Recover Attack: Using 6(f) and 6(g) as hint, we again solve the
SVP problem and find (f,g). Indeed, Gentry succeeds to find f in the case
of (n,q,p) = (256,127,2) in his experiment.

6 Attacks Against Composite n

We employ Gentry’s idea. Let us expand the range of the homomorphism
0: R, — Ry to
0: Rn,q['ray] - Rd,q[xvy}'

6.1 Key-Recovery Attack for deg X =1

We are given X (z,y) = ap1z + ap1y + apo and want to find a small solution
(uz,uy) € Ry, satisfying

Q10 - Uz + Qo1 * Uy + Qoo = 0 (in qu).
Applying the homomorphism 6, we have
H(Cll()) . H(UI) + 9((101) . O(uy) + 9(@00) =0 (in Rd’q).

Thus, we can try to find (6(uy),8(uy,)) by using the lattice-basis reduction algo-
rithms on the lattice of dimension 2d (< 2n).

The concrete attack consists of two sub-attacks, finding 6(u,) and 6(u,) and
finding u, and u, by using those hints. The details follow.

Finding 0(uz) and 0(u,): We set
Ar1,a = [Rota(0(a10)) T |Rota((an)) "] € szzd
and want to find a short vector vy satisfying
va - Apr,a = veea(—0(ago))  (mod g). (3)

We consider a lattice Af]- (Axr1,a)- Let t € 72? be an arbitrary solution of Eq. 3.
We solve the CVP instance (Aj‘(Aerd), t) and obtain w € A;-(Akrl,d).
Now, we have “short” 74 := t —w satisfying Eq. 3. Let us interpret the vector

Tq as the pair of polynomials (v;d),véd)) € R . and assume that oD = 0(uy)

and véd) = 0(uy).
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We have vol(Al(Awa)) = ¢ v = /2d/(2me) - Vol(Aql(Aerd))l/zd =
d/me - ¢/, and |Jvg| < 2pv2d. Since v > |lvg||, that is, the target vector
is very shorter than the expected length of the shortest vector, we expect that
the LLL/BKZ algorithm can find v,.
Finding u, and u,: We already have a hint (6(us),6(uy)). In this paper, we
consider a simpler method than Gentry’s one: We set

Rotn(alo)T Rotn(am)T

Akrl,hint =\|1; --- Iy c Z((]n+2d)><2n
o I, - Iy
n/d
and try to find a short vector v satisfying
v - Al—(rrl,hint = (vecn(—aoo),Vecd(ﬁ(um)),vecd(e(uy))) (mod q). (4)

We again consider a lattice Aql (Akr1 hint)- Let ¢ € Z?" be an arbitrary solution
of Eq.4. We solve the CVP instance (Aé‘(Aerhint),t) and obtain w. Now, we
have a short vector v :=t — w satisfying Eq. 4.

Interpreting the vector o as the pair of polynomials (uz,uy,) € thq,
a10 - Uz + ao1 - Uy + ago = 0 in R, 4 as we wanted.

We have vol(AL (A1 wine)) = ¢"%, v ~ /2n/(2me) - vol(AX(A4)) /" =

d/me-¢"t¥" and |0 < pv/2n. Since v > o], we expect that the LLL/BKZ

algorithm can find the target vector v.

we have

6.2 Partial-Message-Recovery Attack for deg X =1

We try to find #(m) mod p from a ciphertext ¢ of m. If so, it easily breaks the
IND-CPA security of the IEC scheme.

For simplicity, we define f(z,y) = pe(z,y) + m, which results in 6(f) =
pb(e) +60(m). Since 0 is a ring homomorphism from R, [z, y] — Rg[z,y], we have

0(c) =0(r)-6(X) +6(f).

Let us consider the following matrix:

1 T Y 22 xy  y?
1 li ! /
00 10 01 X 6d
— ! / / X
Apmrl,d =T AOO AlO AOl €L ’
/ / li
Y Ao Ay A

where Aj; := Rotg(6(ai;)) € Z4*?. Let

Ta 1= (vecd(é(roo)),vecd(G(rlo)),vecd(a(rol))) € 7%,
Za = (veca(8(coo)), veca(0(c10)), veca(0(co1)), veca(8(c20)), veca(B(cr1)), veca(0(co2))) € Z°¢,
Fa == (veca(8(foo)), veca(8(f10)), veca(0(fo1)), veca(8(f20)), veca(0(f11)), veca(0(foz))) € Z°7.
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We have
C4=Tq- Apmrl,d + fd (HlOd Q)

Now, we consider a lattice Ay(Apmr1,a) and solve the CVP instance
(Aq(Apmri,a),€qa) and obtain 74. Let us interpret the vector ¥4 as a tuple of
polynomials (voo, v10, Vo1, V20, V11, Vo2) € qu. Suppose that we have 74 = fg, if
so, we have vgg = 0(foo) and, thus,

voo = 0(foo) = p(eoo) + 0(m) = 0(m) (mod p).
1/6d

We have VO](AL(Apmrl a) = ¢4 v & /6d/(2me) - vol(AS(Aq)) =
3d/me - ¢*/?, and ||T4]| < (n/d)p*v/6d. We expect that the LLL/BKZ algo-
rithm can find 94, because v > ||04]|.

6.3 Partial-Message-Recovery Attack for deg X = 2

In the case of deg X = degr = 2, we consider a matrix

1 T Y coooat :rgy x2y2 :ry3 y4
/ li /
1 [ Ay 10 Aot
T Ago )
_ Y 00 6dx15d
Apmr2,d = 2 / A/ A/ €z )
T 20 11 02 ,
Ty Ao Al Ape
2 / / /
Yy 20 11 02

where Aj; := Rotq(f(a;;)) € Z**%. By the similar way, we solve the CVP
instance (Ag(Apmr2,d), €d) and obtaln Uq, which corresponding to a tuple of poly-
nomials (vgg, V10, - - -, Voa) € - We output vgo mod p as 6(m) mod p.

We have vol(Ag (Apmr2,d>) = ¢, v ~ /15d/(27e) - VOl(Aql(Ad))l/l‘r’d _

15d/2me - ¢3/°, and ||v4]| < (n/d)p*v/15d. We expect that the LLL/BKZ algo-
rithm can find 94 because v > ||vg]|-

7 Attacks Against Prime n

After reporting the previous attacks to the authors of [AGO+18], they set n as
a prime, say, n = 83 (and ¢ = 68339982247) [Akil7]. In this section, we propose
a sub-ring attack, which is applicable to the case that n is a prime.

(Non-trivial) subring: Notice that R,, 4[z] is a subring of R,, 4[z,y]. We consider
a ring homomorphism

7: R g[z,y] = Rnglz]: f(z,y) — f(,0).

We have the relation c(z,y) = r(z,y) - X(x,y) + f(z,y), where f(x,y) =
pe(z,y) + m. Applying the ring homomorphism 7, we obtain

m(c) =m(r) - 7(X) +7(f) =7(r) - 7(X) +p-7(e) +m (modg) (5

and notice that the max norm of 7(f) is at most that of f =p-e+m.
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7.1 Message-Recovery Attack Against deg X =1

Let us recall the message-recovery attack against deg X = 1 in Subsect. 4.2. We
consider
1 T Y 2 zy  y?
1 (Ao Ao Ao
Amrl = AOO AlO AOl € ZS”XS”7
(0 Aoo Ao Aot
¢ := (vecy (coo), vecy (c10), vecy (co1), vecy (ca0), veey (c11), vecy (co2)) € Z5™,
where A;j := Roty(a;;) € Z™"*", and try to solve the CVP instance (Ay(Amr1),¢)
to find f.
In the lattice-based attacks, we often shorten the basis of the lattice and
the target vector to reduce the dimension. Here, we give another approach to
shorten them.

Concrete Attack: Deleting the rows and columns whose indices contain y from
A and ¢, we obtain

1 T x?

A 1 [ Ao Ao c 72nx3n

mr N b
z Ago 10

_/

¢ = (vecn(coo), vecy (cio), vecy (ca0)) € Z°".

Letting

~

= (vecy (ro0), vecn(r10)) € 7",
= (vecn(foo), vecn (f10), veen (fa0)) € Z°7,

|3

<

we have B

d=r-Ay,+f (modqg),
which corresponds to Eq. 5. Thus, solving the CVP instance (A4(A},,;),¢), we
expect to find f’ and obtain m := vec, (foo) mod p.

Gaussian Heuristic: This shortening reduces the dimension of the lattice from
5n = 415 to 3n = 249. We have vol(A4(Al.,)) = ¢" and v =~ /3n/(2me) -
vol(Aq(A’))l/dn =/3n/2me - ¢*/3 and || f'|| < p*v/3n. In our parameter setting,
we have v ~ 380.81 and [|f’|| < 142.02 and the gap between v and || f’|| is not
so large. Thus it seems hard to find f’ in this setting.

7.2 Message-Recovery Attack Against deg X = 2

Let us recall the message-recovery attack against deg X = 2 in Sub-
sect.4.2. We consider Aypp € Z5X15" and ¢ := (vec,(coo), vecn(cio),
vecy, (co1), - - -, vecy(cos)) € Z'®™, and try to solve the CVP instance (Ay(Amy2), €)

to find f.
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Concrete Attack: Deleting the rows and columns whose indices contain y from
A and ¢, we obtain

1 T x? 3 zt
1 [Agp A Ay
3nx5
§nr2 =T Aoy Aig Ao € Z>mxom,
z? Agg Ag Ay

& = (vec,(coo), vecn(c1o0), vecy (€20), vecy (¢30), vecy (ca)) € Z°".

Letting

!

=

= (vecp(ro0), vec, (110), vec, (ra0)) € 73",

= (vecn(foo), vecn (f10)s vecn (f20), veen (f30), vecn (fa0)) € Z°,

il

we have -
d=7-A o+ f (modyq),

which corresponds to Eq. 5. Thus, solving the CVP instance (A4(A},5),¢), we
expect to find f’ and obtain m := vec,,(foo) mod p.

Gaussian Heuristic: We note that this shortening reduces the dimension of
the lattice from 15n = 1243 to 5n = 415. We have vol(A4(Al.,)) = ¢*" and

mr2
v & +/bn/(2me) -vol(Aq(A’))l/sn = /5n/2re - ¢/ and |f'| < p*V5n. In
our parameter setting, v ~ 106330.25 and [|f'|| < 183.35. We expect that the

LLL/BKZ algorithm can find a short vector f’ because of this large gap.

7.3 Distinguishing Attack for deg X = 1 and deg X = 2

Further, we try to falsify the IE-LWE assumption, that is to distinguish (X, ¢) =
(X, Xr+e) from (X, u). In order to do so, we try to find a short vector ¥’ from
Ag(AlL.1). If cis Xr + e, then we have (¢/,7") mod ¢ is “short,” while if ¢ is
chosen uniformly at random, then (¢, ") mod q is distributed according to the
uniform distribution over Zj,.

This can also be applied to the case of deg X = 2.

8 Experiments

We run our experiment on a virtual machine on our company’s internal private
cloud. Our environment is

— CPU: QEMU Virtual CPU version 2.5+

Memory: 32 GB

— OS: CentOS7 (Linux version 3.10.0-693.5.2.€17.x86_64)
Software: SageMath version 8.0
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8.1 Key-Recovery Attack for deg X =1

We mount our attack in Subsect.6.1 with n = 80 and d = 40. We employ the
default BKZ algorithm in SageMath 8.0 as the lattice-basis reduction algorithm
and the rounding algorithm to solve the CVP instance. We generate 100 key
pairs and try to find a pair (us,u,) € Rp ,, satisfying X (uq, uy) = 0. In our
experiment, 84 secret keys are found from 100 public keys. The attack used an
average CPU time of 32.68s per key on a single core of our server. (min: 29.16,
avg: 32.68, med: 32.54, max: 39.11)

We did not check the other settings, say, d = 20 or d = 16.

8.2 Partial-Message-Recovery Attack for deg X =1

We mount our attack in Subsect. 6.2 with n = 80 and d = 10. We employ the
default BKZ algorithm with block size 10 as the lattice-basis reduction algorithm
and the embedding algorithm to solve the CVP instance. We generate 100 pairs of
a public key and a random ciphertext on a random plaintext. In our experiment,
all partial message 6(m) mod p are recovered. The attack used an average CPU
time of 0.47s per key on a single core of our server. (min: 0.29, avg: 0.47, med:
0.46, max: 0.73)

8.3 Partial-Message-Recovery Attack for deg X = 2

We mount our attack in Subsect. 6.3 with n = 80 and d = 10. We employ the
default BKZ algorithm as the lattice-basis reduction algorithm and the embed-
ding algorithm to solve the CVP instance. We generate 100 pairs of a public key
and a random ciphertext on a random plaintext. In our experiment, all partial
message #(m) mod p are recovered. The attack used an average CPU time of
33.40's per key on a single core of our server. (min: 20.95, avg: 33.40, med: 32.41,
max: 84.77)

8.4 Message-Recovery Subring Attack for deg X = 2

We mount our attack in Subsect.7.2 with n = 83 (and ¢ =
68339982247). We employ the BKZ algorithm with options block_size=16,
fp="rr", precision=150 as the lattice-basis reduction algorithm and the
embedding algorithm to solve the CVP instance. We generate 10 pairs of a pub-
lic key and a random ciphertext on a random plaintext. In our experiment, all
message m are recovered. The attack used an average CPU time of 54842.55 s per
key on a single core of our server. (min: 51481.51, avg: 54842.55, med: 54127.69,
max: 61770.88)

8.5 Distinguishing Subring Attack for deg X = 2

We mount our attack in Subsect.7.3 with various prime n with p = 3 and
a smallest prime ¢ satisfying Eq.1. We generate 10 public keys on each n €
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{83,89,97,101, 103,107,109, 113,127,131, 137,139, 149} and try to find a short
vector ¢’ in the lattice Ag(Al ). We employ the BKZ algorithm with options
block_size=10, fp="rr", precision=150 up to n = 113 and block_size=10,
fp="rr", precision=200 for n > 127 as the lattice-basis reduction algorithm.
The timing results are summarized in Fig. 1 and the qualities of ¢’ are sum-
marized in Fig. 2. The attack on n = 83,113,149 used an average CPU time of

57471.10, 309815.82, 762618.22 s per key. The attack on n = 83,113 found short
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vectors ¥ such that the average of ratio ||7’]|/¢ is 0.021, and 0.11. In the case of
n = 149, we fail to find short vectors v’.

We check the quality of o’ as follows. We generate 50000 random errors
ei(z,y) € F(Txr, Rn,q,p) and 50000 random polynomials u;(z,y) € F(Txyr, Rn,q)-
We then compute compute §; := ¥’ - € mod. ¢ and &; := ¥ - 4; mod, g, where
we denote by mod, the centered modulo operator. We check how they vary.

For example, in the case of n = 113, we take the worst vector ¢’ with ||7’||/q =
0.12. Although this is the worst vector, it is enough to distinguish the errors from
uniform as the histogram in Fig. 3 shows.
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Fig. 3. Histogram of §; (blue lines) and &; (orange lines). We count ¢/30 (Color figure
online)

9 Conclusion

In this paper, we propose two strategies to reduce the dimension of lattices in
lattice-based attacks. The first one is for composite n and is inspired by Gentry’s
attack [Gen01] against NTRU Composite [Sil01]. This strategy exploits the ring
homomorphism 6: R, 4[z,y] — Rgq[z,y] to reduce the dimension of lattices in
lattice-based attacks. The second one is for prime n and exploits another class
of subring R, 4[] of R, 4[z,y] to reduce the dimension. The message-recovery
attack succeeds in the case deg X = 2 but fails in the case deg X = 1. The
distinguishing attack also succeeds in larger n, say, n = 113.

We finally note that we have already reported our attacks to
Akiyama et al. and the parameter settings in their paper on Cryptology
ePrint Archive [AGO+17b] and NIST PQC submission [AGO+17a] reflected
our attacks. They further investigated lattice-based attacks and estimated
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the security by following the security-estimation methods of the LWE prob-
lems [AGVW17,ADPS16,BDGL15,Chel3]. See their paper for details.
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A TImplementation

Listing 1.1. ref.sage

# Parameters ====================
def gen_G(upper_bound, lower_bound):
# compare with total deg. if equal, (1,0) < (0,1)
def my_key(a):
return (a[0] + a[l1l], a[l], a[0])
for index of x, j for index of y
[(i,j) for j in range(upper_bound+1) \
for i in range(upper_bound+1) \
if (lower_bound <= i+j) and (i+j <= upper_bound)]
return sorted(l, key=my_key)

#
1

-

GX = gen_G(wx,0); Gr = gen_G(wr,0)
GXr gen_G(wx+wr,0); GXp = gen_G(wx,1)

def bd(n,p):
return len(GXr) * p * (p-1) * (n * (p-1)) " (wx+wr)

q = next_prime(bd(n,p))

# Rings ====================
Zq = Integers(q)

R.<t> = Zql]

Rqg = R.quotient(t"n-1)

Rgd = R.quotient(t"d-1)
F.<x,y> = Rql]

# Random polys ====================
def random_tpoly(p): return R([randint(®,p-1) for _ in range(n)])

def random_template(p,indices):
a=20
for (i,j) in indices:
a += Rg(random_tpoly(p)) * x"i * y"j
return a
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random_r (): return random_template(q,Gr)
random_e (): return random_template(p, GXr)

# Cryptosystem ====================

def

def

def

def

skgen():
return random_tpoly(p), random_tpoly(p)

pkgen (ux,uy):

X = random_template(q, GXp)
X -= X(ux,uy)

return X

encrypt (X,m):
return Rg(m)+ X * random_r() +p * random_e()

decrypt (ux,uy,c):

cu = c(ux,uy)

mt = cu.lift().change_ring(ZZ).change_ring(Integers(p))
# output mt in Rq

return mt.change_ring(Integers(q))
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Abstract. Because they require no assumption besides the preimage or
collision resistance of hash functions, hash-based signatures are a unique
and very attractive class of post-quantum primitives. Among them, the
schemes of the SPHINCS family are arguably the most practical stateless
schemes, and can be implemented on embedded devices such as FPGAs
or smart cards. This naturally raises the question of their resistance to
implementation attacks.

In this paper, we propose the first fault attack against the framework
underlying SPHINCS, GRAVITY-SPHINCS and SPHINCST. Our attack allows
to forge any message signature at the cost of a single faulted message.
Furthermore, the fault model is very reasonable and the faulted signa-
tures remain valid, which renders our attack both stealthy and practical.
As the attack involves a non-negligible computational cost, we propose
a fine-grained trade-off allowing to lower this cost by slightly increasing
the number of faulted messages. Our attack is generic in the sense that
it does not depend on the underlying hash function(s) used.

1 Introduction

Hash-based signatures base their security solely on the hardness of finding col-
lisions or (second) preimages for hash functions, and do not require any addi-
tional assumption. This striking property makes them stand out even among
other post-quantum schemes. From a strict viewpoint of security assumptions,
one can hardly expect better as Rompel [Rom90] has shown that secure signa-
tures exist if and only if one-way functions exist, and Song [Son14] has extended
this result to quantum adversaries. In addition, hash-based signatures are easy
to analyze and their security does not depend on the choice of the underlying
primitive.

Since Lamport [Lam79] proposed the first hash-based signature scheme —
which could sign only one message —, several constructions have been proposed to
improve its efficiency. They can be separated in two classes: stateful and stateless
constructions. Stateful signatures, introduced by Merkle [Mer90], constrain the
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signer to maintain a record of its used keys. Such a requirement may generate
operational problems, in particular when the key is used by multiples servers.
Stateless signatures, as introduced by Goldreich [Gol86], lift this requirement
but at the cost of a huge blow-up in the signature time and size.

It is only recently that practical stateless constructions have been proposed.
In 2015, Bernstein et al. [BHH+15] proposed SPHINCS, a hash-based signa-
ture scheme which achieved both statelessness and a reasonable efficiency (with
respect to the running time and signature size) by combining the constructions of
Goldreich and Merkle, and using a few-time signature scheme. In 2017, two vari-
ations of SPHINCS were proposed to NIST’s call for post-quantum cryptographic
schemes [NIS16]: GRAVITY-SPHINCS [AE17b] by Aumasson and Endignoux, and
spHINCS' [BDE+17] by Bernstein et al.

Hash functions can be implemented very efficiently on constrained devices
and it is not surprising that several implementations of hash-based signatures
on micro-controllers have been proposed [RED+08, HBB12], including an ARM
implementation [HRS16] of sPHINCS. However, embedded devices are known to
be sensitive to physical attacks such as side-channel analysis or fault attacks.

Since the seminal article of Boneh et al. [BDL97], fault attacks have proved
to be the strongest kind of cryptanalysis on embedded devices. In a fault attack,
we suppose that the attacker is strong enough to corrupt the internal state
of an algorithm during its execution. While this supposes a rather powerful
attacker, these conditions can often be fulfilled in real life and generally result
in devastating attacks. However, to the best of our knowledge, no fault attack
against hash-based signatures has been publicly proposed.

1.1 Owur Contribution

At a very high level, the SPHINCS framework (in this document, this notion
encompasses the original SPHINCS scheme, as well as GRAVITY-SPHINCS and
SPHINCS™) combines hash trees and several one-time signature schemes (OTS)
inside a tree data structure in order to obtain a stateless signature scheme.
We propose the first fault injection attack against the SPHINCS framework. The
attack is done in two steps, a faulting part and a grafting part:

1. The faulting step. Two signatures for the same message are queried. During
the second signature computation, a fault is provoked so that an OTS inside
the sSPHINCS framework ends up signing a different value than the first time.
Usually, an OTS key is only used to sign a single value, but our fault attack
compels it to do otherwise.

2. The grafting step. We show that the knowledge of the two signatures — the
correct one and the faulted one — can be exploited to recover parts of the
secret key of the OTS which was subjected to the fault, and therefore to
partially compromise it. In turn, an attacker will use this compromised OTS
as a mean to authenticate a tree different from the one it is supposed to
authenticate.
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The attacker then generates a tree which is entirely under its control, and
will use the compromised OTS to graft it to the SPHINCS tree, which is why
we call this step the grafting step.

The grafted tree is chosen by the attacker and independent from the secret
key, while allowing to generate valid signatures for some messages. We show
that it is more than enough to provide universal forgery ability to an attacker
while explaining how she can achieve it. The attack requires little power from
the attacker — which makes it practical — and produces valid signatures, which
renders it particularly stealthy.

Whereas this attack comes with a non-negligible computational cost for each
forgery, we propose trade-offs to lower this cost by slightly increasing the number
of faulted signatures available to the attacker. Our attack is generic in the sense
that it targets the SPHINCS framework: it is successful regardless of the underlying
hash function used, and is indifferent to the specificities of the original SPHINCS,
GRAVITY-SPHINCS or SPHINCS™.

1.2 Roadmap

First we will introduce the notions related to trees. In Sect.2, we will give a
quick overview of hash-based signatures constructions. Then we will describe our
attack in Sect. 3. The grafting step will be presented before the faulting step, as
it only requires two signatures by the same OTS and is indifferent to whether
they were obtained through a fault attack. We will then discuss countermeasures
in Sect. 3.4. Section 4 will conclude this paper and expose open questions.

1.3 Related Works

Our grafting technique relies on and extend a result by Bruinderink and
Hiilsing [GBH16] about the security of common OTS’s under two-message
attacks.

Due to their relative novelty, the resistance of post-quantum cryptographic
schemes against fault attacks has only recently been studied. A wide array
of attacks against lattice-based schemes has been covered in [BBK16], and a
loop-abort attack has been demonstrated in [EFGT16]. For schemes based on
supersingular isogenies, loop-abort and point decompression attacks have been
investigated in [BG15,Til7,GW17]. While we know of no fault attack against
hash-based signatures, countermeasures have been studied in [MKAA16].

Hash functions have been targeted by fault attacks on their keyed opera-
tion modes. Notably Hemme and Hoffmann [HH11] propose a differential fault
analysis allowing the attacker to recover the internal state of a SHA-1 instance
using about 1000 faulted hashes with the fault targeting a specific variable in the
computation. A similar attack targeting SHA-3 was presented in 2015 [BGS15].
This attack involves random single bit faults on 80 messages to recover most of
the SHA-3 internal state. In comparison, our attack requires only one fault, and
the precision needed by the attacker in order to succeed is very low.
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2 Preliminaries

We first set up the notations, then introduce the security models used for signa-
ture schemes and present Merkle’s and Goldreich’s constructions.

2.1 Notations and Conventions

We denote by A the security parameter of a signature scheme. H : {0,1}* —
{0,1}* denotes a cryptographic hash function. We will note vectors in bold
lowercase. Whenever we consider faulting the value of a vector v, we denote by
v* the faulted value of v.

2.2 Dendrologic Notations

We recall notions related to trees. We suppose that the definitions of (balanced)
binary tree, parent, child, sibling, root, leaf and internal node are known.

We denote by &f the address of a leaf f. The height of a tree is the length
of the longest path between the root and any node. Two nodes are at the same
height (resp. in the same layer, resp. at the same level) if they lie at the same
distance from the root.

In this article, we also deal with hypertrees, which are trees whose nodes are
trees. The height of a hypertree is the sum of the largest heights of each layer.
To avoid confusion between the hypertree and the node trees, we will refer to
the layers of the hypertree and the levels of the node trees.

As an example, Fig.3 depicts a toy version of a SPHINCS hypertree. This
example has 2 layers of height 2, hence it has a total height of 4. SPHINCS-256
has 12 layers of height 5, so its total height is 60.

2.3 Security Models for Signature Schemes
We briefly recall some classical security notions for signature schemes.

Definition 21. Euxistential forgery — An adversary is able of existential forgery
if there exists a message m such that she can exhibit a valid (message, signature)
pair (m,o*) where o* was not produced by the legitimate signer.

Definition 22. Universal forgery — An adversary is able of universal forgery if
for any message m, she can exhibit a valid signature o*.

Any attacker able of universal forgery is able of existential forgery. For more
formal notations, we refer the reader to e.g. [GBHI16].
2.4 Hash-Based Signatures

Hash-based signatures stem from a very simple idea: the public key is a commit-
ment of the secret key, whereas the signature of a message consists of revealing
some information from which the verifier can recompute the commitment.
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A simple way to build a hash-based one-time signature (OTS) can be defined
as follows. Given a hash function H, let a secret key S = (51, S2) and the message
space be [0, M — 1] for an integer M. The public key is

P = (P, Py) = (HY(S1), HM(S52)).
The signature of a message m € [0, M — 1] is
o= (01,02) = (H™(S1), HY~™(S,)).
The verifier only needs to check that
(017", 05) = (P1, Py).

This scheme is one-time if H is preimage-resistant. However, it is not two-time,
since given signatures for messages m; < my one can compute signatures for any
my < m3 < my, thus breaking existential unforgeability.

We draw the readers’ attention to the fact that in the scheme we presented,
the public key can be computed from any valid signature. This is a common
feature among hash-based signatures and will effectively be the case for all the
schemes considered in this paper. From this feature, one does not need the public
key if it is able to authenticate it. It allows to derive many-times signatures
schemes from OTS by computing signature trees.

In the rest of this section, we present an OTS, two few-times signatures (FTS)
and two many-times signatures, a stateful one and a stateless one.

2.4.1 An OTS: WOTS
WOTS is a one-time signature whose principle was enunciated by Merkle [Mer90]
following an idea from Winternitz. It is parameterized by three values:

— w: the size of the words used by woTS

— {1: the fixed number of words of size w of the messages to be signed

— f5: the fixed number of words of size w of the parity-check value used in the
signature algorithm.

Let ¢ = ¢1 4+ 5 be the fixed number of words of size w of the signature. We
can now detail woOTS.

e Keygen()

1. Let sk = (s;)ij=1,... .0 where the s; are uniformly random w-bits words;
2. For 1 <i </t p; — HY 1(s;);
3. public key: pk «— (p1,...,pe), private key: sk.

e Sign(m, sk)
1. Express m in base w: m = (mima...myg, )w;
2. Compute the parity-check value C' «— Zflzl(w —1-my);

3. Express C in base w: C = (C1C5...Cp,)w;
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4. b= (b1,ba,...,bp) — (m1,...,my,C1,...,Cp) — we will later call it the
b-vector of m;
5. For 1 <i < /{, o, — Hb(s;);
6. signature: o «— (01,...,00).
e Verify(m, o, pk)
1. Compute the b-vector of m as in the signature algorithm (Steps 1-4);
2. Accept if and only if Vi € [1,4], p; = HY =17 (o).

Remark 1. GRAVITY-SPHINCS implements the unmasked version of WwoOTS
described above, but spHINCS(T) replaces WOTS by a variant, woTS+, which
uses random masks in order to replace collision resistance by second preimage
resistance. Since our attack is indifferent to the presence of masks, we present
it only in the case of the mask-less scheme (WOTS) as it makes our exposition
simpler.

Parameters: In practice, SPHINCS-256 (it is the practical instantiation of SPHINCS
proposed in [BHH+15]), GRAVITY-SPHINCS and SPHINCS™ set:

l1 = 64,
ly =3,
w = 16.

These parameters offer a good trade-off between size and speed and are usually
chosen in the most recent constructions.

In [GBH16, Sect. 5], the authors study (among other scenarii) WOTS resis-
tance against existential forgery under two-random-message attacks. They argue
that the probability of being able to forge the signature of a random message
m3 knowing the signature of two known random messages m; and my is roughly
equal to the probability that for all 0 < ¢ < ¢, the i-th coordinate of the b-vector
of mz is lower that the i-th coordinate of the b-vector of m; or my. We will see
that this existential forgery on wOTS can be extended to a universal forgery on
the sSPHINCS framework in Sect. 3.1.

2.4.2 FTS
In order to expand an OTS construction to a FTS signature scheme, one can
generate many OTS, link the public keys using an authentication tree and use
the root of this tree as public key. To sign a message, the signer only needs to
choose a subset of the OTS generated and sign the message with each of them.
The verifier only has to recover the various public keys from the signatures and
to check if the public key is equal to the authentication value associated with
the public keys and the corresponding authentication path.

All three algorithms based on the SPHINCS framework make use of different
FTS. In the context of our attack, one only needs to keep two facts in mind:

— just like woTs, the FTSs are entirely deterministic;
— in each of these FTSs, the public key can be directly computed from a valid
signature.
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2.4.3 A Stateful Construction: Merkle’s Scheme

Merkle’s scheme [Mer90] is based on hash trees, which are (generally balanced)
binary trees in which each internal node is defined as the hash of its two concate-
nated child nodes. In Merkle’s construction, each leaf of a hash tree is an OTS
public key: such a hash tree is called a Merkle tree. The public key for Merkle’s
scheme is the root of the Merkle tree and the private key is the set of all the
OTS private keys paired with the OTS public keys.

For a leaf f of a Merkle tree, we denote by A(f) and call authentication path
of f, the unique set of nodes (with one node per level, excluding the root) such
that the root of the Merkle tree can be recomputed from f and A(f).

To sign a message, the signer chooses an unused OTS key pair (sk;, pk;) in
a leaf of the Merkle tree: he signs m with sk; and sends the signature together
with pk; and its authentication path A(pk;). The receiver verifies that: (1) the
message’s signature using the OTS is valid, and (2) the general public key (which
is the root of the Merkle tree) can be recomputed from pk; and A(pk;).

This scheme has two major drawbacks. First, the signature time — or memory
requirement — is exponential in the tree height, since the whole tree must either
be stored or recomputed each time a signature is performed.! Second, the signer
must keep track of the used OTS key pairs, which makes the scheme stateful.

2.4.4 A Stateless Construction: Goldreich’s Signature

Goldreich’s proposal [Gol86] solves the two aforementioned issues: it is still based
on a binary tree whose leaves are OTS public keys, but internal nodes are now
OTS key pairs. Each node of the tree is uniquely indexed by a bitstring which
is used, together with a seed which is part of the overall private key, to pseudo-
randomly generate the node’s key pair.

The scheme’s public key is the root’s public key and its private key is com-
posed of the root’s private key and the seed referred to above. To sign a message,
one randomly selects a leaf and then signs the message with this key pair. Each
node (specifically the public key inside) between this leaf and the root is then
signed, together with its sibling node, by its father node. The verifier accepts if
and only if all the signatures are valid.

The drawback of this approach is the signature size. For 128 bits of pre-
quantum security, one needs a 256-layer tree; using for example a Winternitz
OTS with parameter w = 16 (see Sect.2.4.1) and a hash function with a 256-bit
output, the signature size reaches 1.65 MB.

2.5 SPHINCS

The aim of SPHINCS is twofold: to achieve moderate signature time and size, and
to get rid of any kind of state. To reach this goal, the SPHINCS tree is designed
as a Goldreich tree whose nodes are Merkle trees.

! There exist techniques which get rid of exponential running time at the expense of
somewhat increasing state size, such as the tree traversal algorithm of [BDS08].
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Fig.1. A Merkle tree. Two merging Fig. 2. A Goldreich tree. In addition to
arrows mean “the parent is the hash the notations of Fig. 1, a dashed arrow
of the two children”. The authentica- means “the leaf signs the root below”.

tion path of f = pkooo would be A(f) =
{pkoo1, Ho1, H1}.

In this new configuration, each leaf in a Merkle tree is used to sign the root of
a Merkle tree located in the layer below. Such a construction can also be found
in GMSS [BDK+07] and XMSS [BDH11,HRB13]. Moreover, leaves of a SPHINCS
tree sign a public key of a few-time signature (FTS) scheme, which security is
not compromised if the same key pair is used on few different messages. This is
summarized in Fig. 3.

In order to have a quick overview of SPHINCS, one can see it as a combination
of 3 types of trees. Namely:

1. The sPHINCS hypertree: a Goldreich tree of height A (60 in SPHINCS-256)
organised in d layers (12 in SPHINCS-256). Each layer’s leaf signs the root of
a Merkle tree.

2. Merkle trees of size h/d (= 5 in SPHINCS-256) whose leaves are public keys
for the OTS used in the Goldreich construction: woTs.

3. The FTS used to sign the message is signed by the last layer of the hypertree.

We now delve a bit deeper into SPHINCS’s machinery.

A SPHINCS tree of height A can be seen as a Goldreich tree of d layers with
Merkle trees of height h/d instead of nodes. In [BHH+15], a few modifications
have been made to the Merkle tree construction described in Sect.2.4.3. One
of them is important for our work: in the leaves of SPHINCS’s Merkle subtrees,
all woTs public keys are compressed as follows: their ¢ parts are considered as
leaves of a binary hash tree; this tree’s root is then computed applying this rule:
if a node has no sibling, then it is lifted to a higher level in the tree until it has
one. The tree’s root stands as the compressed WOTS public key.
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Fig. 3. A sPHINCS hypertree of height 4, which can be seen as a Goldreich tree of two
layers with Merkle trees of height 2 in node places. In addition to the notations of

Figs. 1 and 2, gray discs denote FTS instances (HORST for the original SPHINCS, PORST
for GRAVITY-SPHINCS, FORS for SPHINCS™).

Like in Goldreich’s construction, where each node is indexed, each leaf has
an address in SPHINCS, which contains its layer in the SPHINCS hypertree, the
number of its Merkle tree in the layer and its position in the Merkle tree.

We now describe the original SPHINCS signature scheme (which we will call
O-SPHINCS to disambiguate it from the SPHINCS framework).

e Keygen()
Pick a pair of seeds (S1,52) € {0,1}* x {0,1}* at random and generate the
top Merkle tree (the one in layer d — 1), whose root is the overall public key
pk. The private key is sk « (57, .52).

e Sign(m, sk)

1. Generate 2 pseudo-random values (Ry, Ry) € ({0,1}*)? from m and Sa;

2. Compute D = H(R;||m);

3. idx « the h leftmost bits of Ry;

4. Generate the HORST key pair of index idx;

5. oy = signature of D using this HORST key pair;

6. oy = signature of the HORST public key using the woTs key pair at layer
0, which is (in compressed form) in the leaf fo with &fo = d||idx ;

7. For 1 < i < d, o; = signature of the root of the Merkle tree containing
fi—1, using the woTS key pair in the appropriate leaf f; of the layer i;

8. signature: o = (idx, Ry, 01,00, A(fo), 01, A(f1), ..., 0a-1, Afa-1))-
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e Verify(m, o, pk)

1. Compute D = H(R;||m);

2. Compute the HORST public key assuming oy is valid;

3. For 0 <i<d:
(a) assume that the wOTS signature o is valid and deduce a woTS public

key from it and from the root computed the step before?;

(b) assume that A(f;) is correct and compute the root of its Merkle tree;

4. compare this last root to the SPHINCS public key: accept if and only if
they are equal.

2.6 Gravity-SPHINCS and SPHINCS* Modifications

GRAVITY-SPHINCS was proposed in [AE17b], with several changes to O-SPHINCS
aiming at improving its performance and signature size. The changes relevant to
our attack are the following:

1. The top layer of the hypertree is now cached as it is always used in the
signature algorithm, and its height is increased from 5 to 20 (thus lowering
the number of layers in the hypertree). As a result, the number of leaves in
the topmost Merkle tree is increased from 32 to 22°.

2. The index of the FTS instance is now derived directly from the message and a
public salt computed by the signer from its secret key (this is well summarized
in [AE17a, Fig. 3]). As a consequence, the verifier can verify the index and
the attacker cannot choose it anymore — but we will see that it is easy to get
around this protection.

Independently, SPHINCST was proposed in [BDE+17]. The modification rele-
vant to our attack is that the message digest md and F'TS index idx are computed

(md|lidx) < H (r, pk,m), (1)

where r is a public salt generated by the signer from the message and a private
seed. This change in index generation is similar to the one of GRAVITY-SPHINCS.
For simplicity, this document will only focus on the parameter sets targeting
NIST’s security level 1.

We will see that these modifications, while theoretically increasing the cost
of our attack, actually have a very limited impact on its efficiency.

Parameters. O-SPHINCS, GRAVITY-SPHINCS and SPHINCS™ propose parameters
to provide 128 bits of quantum security against existential forgery (assuming
256-bits messages). Table 1 summarizes these parameters.®> We note that [AE17b]
proposed several trade-offs between efficiency and signature size, as well as vari-
ations on the number of signatures allowed by the context.

2 Which is the value whose signature is o;.
3 We choose the NIST-oriented version of GRAVITY-SPHINCS according to [AE17b].
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Table 1. Parameters for 0-SPHINCS, GRAVITY-SPHINCS and SPHINCS ™

Scheme Security |w | £ |h |d |Sig. size (kB)
O-SPHINCS 128 16|67 60|12 |41
GRAVITY-SPHINCS | 128 1667606 |27
spHINCST-128f | 128 16 |67 60|20 17
SPHINCST-128s 128 16|67 648 | 8

3 A Grafting Attack Against the SPHINCS Framework

In this section we propose a new kind of attack against the hyper-tree structure
of the sPHINCS framework. The goal of this attack is to insert a branch under
our control below a leaf f;_1 (which is an OTS public key) of the top layer. In
order to do this, one must be able to provide a signature for the root of the
branch which is valid for the key f4—1. Once the root is authenticated — and the
branch grafted, one has total control over the branch and can easily modify any
of the nodes inside, both by modifying the seed used for its generation and by
randomizing unverifiable values.

In the rest of this section we will detail the principles of the grafting attack
and its implications in terms of security. Finally, we will provide a practical fault
attack that leads to a universal forgery on the SPHINCS framework, and we will
discuss different complexity trade-offs. At last we will provide a short overview
of the possible countermeasures to our attack.

3.1 Grafting a Branch in the SPHINCS Hyper-Tree

Let us target a leaf f4—1 of the top layer of the hyper-tree. We suppose that
the corresponding WOTS key has signed two different values, which the attacker
knows along with their signatures. According to [GBH16], she is able to forge a
WOTS signature with a probability py =~ 273%. We convert this existential forgery
capability against wOTS into the samea universal forgery capability against any
SPHINCS-style scheme. In order to find a forgeableforge a message m, we proceed
as follows:

1. Randomly generate a seed such that the index of the FTS to be used falls
under the targeted wOTs instance. It happens with probability pr, where py
is 1 for o-spHINCS,* 2720 for GRAVITY-SPHINCS,® and 273 (resp. 27%) for
SPHINCST-128f (resp. -128s).

2. From this seed and the message m, compute the signature up to the penulti-
mate layer of the hyper-tree. With probability py, the root of the layer can
be signed by the attacker capacity on the corresponding WOTS signature.

4 0-sPHINCS provides the verifier no mechanism to check that the FTS index is valid.
An attacker can therefore directly pick a suitable index, hence the probability 1.

5 The probability to find such a seed is equal to the inverse of number of leaves in the
top-most layer of the hyper-tree, which is 272° for GRAVITY-SPHINCS.
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3. Complete the signature using the legitimate authentication path of the signer,
known from the legitimate signature of any message whose authentication
path in the hyper-tree goes through f;_1.

The naive way to convert the existential forgery described above into uni-
versal forgeryachieve the forgery described above is to randomly choose the seed
(from which are generated the OTS and all the FTS used during the signature)
in order to fulfill two requirements:

1. the FTS used is under the targeted wWOTS instance: this happens with the
probabilities py stated in Sect. 3.1.

2. the attacker can sign the root of the Merkle’s tree used in the penultimate
layer with the targeted wOTS secret key: this happens with probability py.

To find a seed which simultaneously fulfills both requirements, an attacker
needs to try about 1/pppw seeds for each message. These trials can be done
entirely offline. We note that the number of hash computations is even higher
as every trial costs around 2'° hashes. However, it is possible to do better.

Indeed, even though an honest signer generates (the OTS secret keys corre-
sponding to the leaves of ) Merkle trees with a private seed, there is no way a veri-
fier can check that this was effectively the case. Therefore, the search of a suitable
Merkle tree for the penultimate layer (by suitable, we mean that its root can be
signed with the targeted woTs key) can be decorrelated from the search for a suit-
able FTS index. This makes the number of trials drop from 1/ppw to 1/pe + 1/py.

In addition, a signature does not contain whole Merkle trees but only, for
each of them, a leaf §;% and its authentication path A(f;); this reduces signature
size as well as verification time. However, it also allows to speed up forgery as
the attacker does not have to generate a suitable Merkle tree but only a leaf f;_o
and an authentication path A(f4—2) which looks like an authentication path in a
suitable Merkle tree. To do this, the attacker can simply choose all the values of
A(fq—2) at random, except the last one. She then tries several values for this last
value, until the root computed from f4_o and A(f4—2) can be signed with f4_;.
With this improvement, each new trial now costs one hash instead of 2'® hashes.

With these improvements, the cost of a forgery on any SPHINCS scheme drops
from up to 2'° /pspw hashes down to 1/ps + 1/py hashes. As an illustration, this
represents a drop from 259 to 234 for GRAVITY-SPHINCS.

3.2 Fault Injection Against the SPHINCS Framework

As we have been seen before, the entire attack depends on the capability of the
attacker to obtain two distinct WOTS signatures for the same secret key. In the
context of the SPHINCS framework, the whole construction of the hyper-tree is
deterministic and a signature is entirely dependent of both the message and the
secret key. This characteristic leads to the fact that no OTS can sign distinct
messages, thus ensuring the security of the scheme.

5 Precisely, the signature contains a WOTS signature from which one can recover f;.
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In the following we present a fault injection attack allowing an attacker to
recover the signature of two different messages with the same woTs key.

Let us denote sk = (s1,s9,...,5¢) the targeted wOTS secret key corre-
sponding to fg—1 and & the Merkle tree root authenticated by it. We ask for
the signature of a message m about which we suppose, without loss of gener-
ality, that at the last step it requires signing 6. We note §’s WOTS signature
04-1=(04-11,...04-1,). We receive the overall signature

g = (idX, Rl,O’H, Uo,A(fo), ey Od_1, A(fd—l))-

In the next step, we will ask again the signature of the same message m. As
the algorithm is entirely deterministic, the resulting signature should be the same
as o. However we will perturb the operations done in the computation of the
authentication path A(f4—2). This perturbation will result in the computation
of a Merkle tree root 6* distinct from 6. The resulting WOTS signature oj_,
of §* gives the attacker the possibility to mount the grafting attack as shown
previously. An overview of the fault can be seen in Fig. 4.

A nice feature of the fault model is that it is a very weak one. Indeed it
verifies the following properties:

— only a single fault is needed per signature as a single fault in the computation
of the Merkle tree of the penultimate layer fulfills the required modification;

— the fault is very permissive as we do not use the actual value of the faulted
variable: we need the variable to change but do not need to know the actual
value of the change;

— the fault can be done in a wide time period. Indeed, since the verification algo-
rithm uses A(f4—2) to compute 6*, this authentication path must be faulted:
otherwise, the attacker would deduce from it the legitimate root § instead
of the faulted one §*. This implies that one cannot directly fault the nodes
which computations are redone by the signature verifier, but faulting all the
other nodes will lead to a successful attack. In other words, one can fault any
node “below” the authentication path, whereas it is not of interest for our
purposes to fault any node “above”. In practice, it means that, in O-SPHINCS
33227 hash computations may eventually be the target of the fault while
273 352 hash computations are available as targets in GRAVITY-SPHINCS with
parameters given in Table 1.

These numbers stands for roughly 6% of the whole 0-SPHINCS computation
and 18% of the whole GRAVITY-SPHINCS'.

Remark 2. The faulted overall SPHINCS signatures produced by this attack are
valid. Indeed, oj_, is the valid signature of 6*, computed from A(fs—2)*, which is
given in the overall signature o*. Moreover, all other elements of o* are correct.
Thus o* is accepted by the verification algorithm.

" If the top layer of GRAVITY-SPHINGS is not cached, this percentage falls drastically
but GRAVITY-SPHINCS also becomes very slow for these parameters, requiring about
230 hashes per signature.
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Fig. 4. Principle of our attack with a SPHINCS hyper-tree of height 4. Fault injection is
denoted by a lightning and the affected elements of the faulted Merkle tree by a star.

We note that the public key PK is not affected. The part of the hyper-tree which is
below vertical dots is irrelevant to our attack.

3.3 Compromise Between Faulted Signatures and Computational
Power

We have seen that one can achieve universal forgery on the existing schemes of
the SPHINCS family at the price of one faulted signature. However, each of the
signatures forged comes at a non-negligible computational cost as one needs to
try about 1/py a 234 values for the penultimate Merkle tree root (see Sect.3.1)
to be able to use the capacity on wOTS. In this section we provide trade-offs
between the number of faulted signatures allowed to the attacker and the com-
putational cost needed to forge a signature.

3.3.1 Total Break on WOTS
First, we estimate how many faulted signatures are necessary to recover an entire
WOTS private key.

It is safe to model H as a random oracle. As a consequence of this hypothesis,
when the computation of ¢ is faulted, * takes a uniformly random value between
0 and 2* — 1. Each b; for 1 < i < ¢; is therefore 0 with probability 1/w.

Then the checksum C follows the law of a sum of ¢; = 64 random variables
(r.v.) following the uniform law over [0, w — 1] which, thanks to the central limit
theorem, we shall approximate by a normal law with parameters p = ¢ (w—1)/2
and 0% = (1 (w? — 1)/12.
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Let us write C' in base w in the big-endian convention. Then b; = 0 for
¢y < i < ¢ means C mod w? < w/~! with j =i — £;. This event has probability:

Lél(w—l)/wjj qwj+wj—171
P(C mod w! < qu) = Z Z P(C = 2),

q=0 z=quwJ

With P(C = 2) = pp.o(2)/ Snes P (1), Where py, o () = exp(—(z — u)?/(20%)).
We obtain P(bgs = 0) ~ 1/w,P(bss = 0) ~ 0.098, P(bg7 = 0) ~ 27307, This
last value calls for a remark. It means that we have to ask for 2307 signatures in
average to get sg7, which is a lot, but, in the same time, we need sg7 to sign a
root with probability 27397, So, with respect to sg7, we can only look for H (se7).
Given the very high probability of finding this value (P(bgy = 1) =~ 0.80), we shall
suppose that the average number of signatures required to recover sq, ..., Sgg is
high enough to find H(sg7) with overwhelming probability, and therefore we do
not care about sg7 anymore. We will later see that this is verified in practice.

Finally, we rely on the values of P(bgs = 0) and P(bgg = 0) to justify this
approximation which will be done hereafter: by, bs, ..., bgs are viewed as 66 uni-
form deviate in [0,w — 1].

Let us now consider the number of signatures required on average to carry out
the attack. Let X be the random variable which models the number of requested
signatures to find sk (except sg7). Our problem then boils down to computing
E(X).
Let {0'(1)*7 oc@* . ,0'(”)*} be the set of the n requested faulted signatures
at a certain point in the attack. We define: Vj(”) = {aé’lij |1<i< n}, that
is, the set of values taken by the jth coordinate of all received 0'511_)*1’5, when
the attacker has gathered n faulted signatures. We also define the event B,, :=
{31 <j < st.s; ¢ V) It can be shown that P(X = n) = P(B,_1 N B,)
and that it leads to:

P(X =n) =P(B,) — P(Bn-1). (2)

Since the coordinates of oj_; are pairwise independent and follow the same
uniform law over [0,w — 1] by assumption, we have:

P(B,) = ﬁp (ssev™) = (1 - <w;1>">“ . (3)

Composing Egs. 2 and 3 with the parameters set in the SPHINCS schemes, we
estimate that E(X) ~ 74.5. Note that this leads to a probability to find H(se7)
greater than 1 — 27170 which is indeed more than enough to do so.

One whole WOTS private key can thus be recovered querying 74.5 faulted
signatures on average for the parameters used in the SPHINCS schemes.
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3.3.2 Trade-Offs
We have seen that the attack can be mounted with only one faulted signature,
with a non-negligible computational cost needed to forge every signatures, or that
an attacker can make about 75 faulted signatures to ensure a free selection of
the Merkle tree root. We now investigate the various trade-offs we can obtain by
increasing step by step the number of faulted messages available to the attacker.
For this purpose, we extend Hiilsing and Groot Bruinderink’s [GBH16] rea-
soning. Let us denote by ¢ the root which WOTS signature we want to forge, and
by 6,63 ... 5™ p uniformly random roots for which we have valid signa-
tures by the same wOTS private key. Let b = (by,...,bs) be the b-vector of ¢
and b(® = (b:(Li)7 ... ,by)) be the b-vector of §(9 for all 1 < i < n. Then we can
forge a valid woTs signature for § if and only if the following expression is true:

In order to estimate the probability of this event, we make the assumption
that coordinates of the b-vector of a uniformly random word are pairwise inde-
pendent and uniformly distributed in [0,w — 1]. If this assumption is clearly
true for the first /1 coordinates, it is clearly not for the last ¢ ones. However,
we shall see later that the resulting theoretical probabilities are very close to
probabilities obtained by simulations. Thus we work with this assumption for
the sake of simplicity.

Moreover, we make the assumption that random roots §(9 are pairwise inde-
pendent, i.e. that corresponding b-vectors are pairwise independent. By coordi-
nates independence assumption:

(AL Vim £026501) =P (Vi £5,2007) ) = (1B <)) = (1= i st ), (4)
the second equality coming from b-vectors independence assumption and the last
one by identical distribution assumption. Table2 presents the average number
of roots to try before finding one whose signature can be forged, based on the
number of faulted signatures the attacker has — note that the attacker is supposed
to have the legitimate signature in addition to the faulted ones. The numbers
are obtained from Eq.4, and are matched by experiments.

We can observe that the computational complexity of the forgery of a message
m is essentially the sum of the complexities of three operations:

Table 2. Number of grafted trees to generate randomly before finding one that can be
signed by the faulted OTS, in function of the number of faulted signatures. We note
that for 1 faulted signature, this number is 1/py.

Faulted signatures 1 2 3 4 5 10 |20
234.9 224.0 218.0 21442 21147 25.5 22.0

Number of trees to try
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— the number of seeds to try to assign a satisfying index to the message — from
1 for 0-SPHINGCS to 220 for GRAVITY-SPHINCS;

— the number of Merkle tree root values to try before being able to forge the
WOTS signature — depending on the number of faulted signatures, see Table 2;

— the complexity of the signature®.

With this observation, we can state that only 3 faulted messages are needed to
provide universal forgery against GRAVITY-SPHINCS at the cost of about 220 hash
computations.

3.4 Countermeasures

Generic countermeasures such as making the signature computation redundant
can complicate our attack, but they may incur a significant overhead (for redun-
dancy, a factor 2 in time and space). Indeed, a simple verification of the signature
would not be efficient in our case as the attack provides valid signatures. More-
over, only a small part of the execution will be faulted and thus the redundancy
must be checked for each of the roots of a Merkle sub-tree. However redundant
computation is an efficient way to significantly constrain the attacker to a more
powerful model as the fault should be exactly replicable on both executions. As
generic countermeasures are well documented, our discussion will focus on the
countermeasures that are specific to the SPHINCS framework.

In [MKAA16] the authors propose a specific recomputation designed to avoid
faults in Merkle trees, called Recomputating with Swapped Nodes (RESN).
Whereas the countermeasure provides efficient security at an acceptable overhead
by lightly pipelining the circuit, it does not cover the Goldreich construction.
The main impact to our attack additionally from classical recomputation meth-
ods is that it limits the fault to targeting only the computation of the root of
the Merkle tree as any other faulted hash computation would be detected by the
RESN. We note that, in this case, the faulted signature will not be a valid one
anymore and the result could be verified with an additional overcost.

A nalve way to protect SPHINCS against our attack would be to compute
the index of the FTS from public values instead of secret ones. Indeed, if one
computes the index from the message and the public key, the attacker is not
able anymore to choose the index of the message to sign.

However, the cure would be worse than the disease. Indeed, while our attack
would be thwarted by this modification, a malicious user would now be able to
provoke multi-collisions on the index idx of the FTS by trying several messages.

In the schemes studied, the number of FTS leaves is upper bounded by 264.
This implies that given a fixed value for the index idx, an attacker can find
k messages leading to this index with a computational effort about k x 264
Therefore, this modification would lead to universal forgeability of the targeted
schemes without any fault.

8 The complexity of the forged signature can be slightly lowered because the attacker
does not need to compute valid values for the authentication path and can simply
generate random values.
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An efficient countermeasure would be to somehow link the different layers
of the hyper-tree so that a fault in the computation of the tree would result in
a non valid signature, i.e. a root value distinct from the public key. A simple
check of the validity before returning the signature would prevent any fault
attack. However, in order to link these layers, one cannot compute the OTS keys
only from its index and the secret key, so the whole hyper-tree would have to be
recomputed for each signature, ensuing a huge overhead in signing time.

4 Conclusion and Open Questions

In this paper we propose the first fault attack against signature schemes of the
SPHINCS family. After an initial cost of a single faulted message, it allows to forge
signatures for any message at an (offline) cost of 234 hashes per message.

We proposed several trade-offs to lower this computational cost while slightly
increasing the number of faulted messages. For any of the targeted schemes, we
can forge any message at a cost of about 220 hashes functions knowing only 3
faulted messages. Moreover, the fault model is very permissive.

While our attack can be thwarted by generic (but possibly costly) counter-
measures against fault attacks, we did not find any specific countermeasure.

As demonstrated by this work, the deterministic nature of several hash-based
signatures and their internal use of OTS can be a weakness against fault attacks.
On the defensive side, an interesting line of work would be to propose hash-based
constructions which offer some innate resilience against fault attacks.

On the offensive side, a natural extension of this work would be to implement
the proposed fault attack in practice. Our attack target the SPHINCS framework,
but it would be interesting to extend it to other multi-tree constructions such
as multi-tree XMSS or GMSS. One could also devise an alternative way (other
than fault injection) to recover two distinct WOTS signatures for the same key,
which would allow to apply our grafting attack. We leave this for future work.
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Abstract. We investigate the post-quantum security of hash functions
based on the sponge construction. A crucial property for hash functions
in the post-quantum setting is the collapsing property (a strengthening
of collision-resistance). We show that the sponge construction is col-
lapsing (and in consequence quantum collision-resistant) under suitable
assumptions about the underlying block function. In particular, if the
block function is a random function or a (non-invertible) random per-
mutation, the sponge construction is collapsing. We also give a quantum
algorithm for finding collisions in an arbitrary function. For the sponge
construction, the algorithm complexity asymptotically matches the com-
plexity implied by collision resistance.
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1 Introduction

Cryptographic hash functions are one of the central primitives in cryptography.
They are used virtually everywhere: As cryptographically secure checksums to
verify integrity of software or data packages, as building block in security proto-
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signature scheme, to build full-fledged hash-based signature schemes, in trans-
formations for CCA-secure encryption, and many more.
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While all widely deployed public-key cryptography is threatened by the rise
of quantum computers, hash functions are believed to be only mildly affected.
The reason for this is twofold. On the one hand, generic quantum attacks achieve
at most a square-root speed up compared to their pre-quantum counterparts and
can be proven asymptotically optimal [8,13,20]. On the other hand, there do not
exist any dedicated quantum attacks on any specific hash function that perform
better than the generic quantum attacks (except, of course, for hash functions
based on number theory like, e.g., VSH [9]).

One of the most important properties of a hash function H is collision-
resistance. That is, it is infeasible to find x # o’ with H(z) = H(z'). Intuitively,
collision-resistance guarantees some kind of computational injectivity — given
H(x), the value z is effectively determined. Of course, information-theoretically,
z is not determined, but in many situations, we can treat the preimage = as
unique, because we will never see another value with the same hash. For example,
collision-resistant hashes can be used to extend the message space of signature
schemes (by signing the hash of the message), or to create commitment schemes
(e.g., sending H(z||r) for random r commits us to z; the sender cannot change
his mind about x because he cannot find another preimage).

In the post-quantum setting,! however, it was shown by Unruh [18] that
collision-resistance is weaker than expected: For example, the commitment
scheme sketched in the previous paragraph is not binding: it is possible for an
attacker to send a hash h, then to be given a value x, and then to send a random
value r such that h = H(z||r), thus opening the commitment to any desired value
— even if H is collision-resistant against quantum adversaries.? This contradicts
the intuitive requirement that H(x) determines x.

Fortunately, Unruh [18] also presented a strengthened security definition for
post-quantum secure hash functions: collapsing hash functions. Roughly speak-
ing, a hash function is collapsing if, given a superposition of values m, mea-
suring H(m) has the same effect as measuring m (at least from the point of
view of a computationally limited observer). Collapsing hash functions serve as
a drop-in replacement for collision-resistant ones in the post-quantum setting:
Unruh showed that several natural classical commitment schemes (namely the
scheme sketched above, and the statistically-hiding schemes from [12]) become
post-quantum secure when using a collapsing hash function instead of a collision-
resistant one. The collapsing property also directly implies collision-resistance.

In light of these results, it is desirable to find hash functions that are col-
lapsing. Unruh [18] showed that the random oracle is collapsing. (That is, a
hash function H(z) := O(z) is collapsing when O is a random oracle.) However,
this has little relevance for real-world hash functions: A practical hash function

! We mean a situation in which the protocols and primitives that are studied are
classical, but the attacker can perform quantum computations.

2 More precisely, [18] shows that relative to certain oracles, a collision-resistant hash
function exists that allows such attacks. In particular, this means that there cannot
be a relativizing proof that the commitment scheme is binding assuming a collision-
resistant hash function.
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is typically constructed by iteratively applying some elementary building block
(e.g., a “compression function”) in order to hash large messages. So even if we are
willing to model the elementary building block as a random oracle, the overall
hash function construction should arguably not be modeled as a random oracle.?

For hash functions based on the Merkle-Damgard (MD) construction (such
as SHA2 [16]), Unruh [19] showed: If the compression function is collapsing, so
is the hash function resulting from the MD construction. In particular, if we
model the compression function as a random oracle (as is commonly done in the
analysis of practical hash functions), we have that hash functions based on the
MD construction are collapsing (and thus suitable for use in a post-quantum
setting).

However, not all hash functions are constructed using MD. Another popular
construction is the sponge construction [4], underlying for example the current
international hash function standard SHA3 [17], but also other hash functions
such as Quark [2], Photon [11], Spongent [6], and Gluon [3]. The sponge con-
struction builds a hash function H from a block function® f. In the classical
setting, we know that the sponge construction is collision-resistant if the block
function f is modeled as a random oracle, or a random permutation, or an invert-
ible random permutation [5].5 However, their proof does not carry over to the
post-quantum setting: their proof relies on the fact that queries performed by the
adversary to the block function are classical (i.e., not in superposition between
different values). As first argued in [7], random oracles and related objects should
be modeled as functions that can be queried in superposition of different inputs.
(Namely, with a real hash function, an adversary can use a quantum circuit
implementing SHA3 and can thereby query the function in superposition. The
adversary could evaluate the sponge on the uniform superposition over all mes-
sages of a certain length, possibly helping him to, e.g., find a collision.) Thus,
we do not know whether the sponge construction (and thus hash functions like
SHAS3) is collapsing (or at least collision-resistant in the post-quantum setting).

Our contributions. In the present paper we tackle the question whether the
sponge construction is collision-resistant and collapsing in the post-quantum
setting. We show:

— If the block function f is collision-resistant when restricted to the left and right
half of its output and it is hard to find a zero-preimage of f (restricted to the
right half of its output), then the sponge construction is collision resistant.

3 For example, hash functions using the Merkle-Damgéard construction are not well
modeled as a random oracle. If we use MAC (k,m) := H(k||m) as a message authen-
tication code (MAC) with key k, we have that MAC is secure (unforgeable) when
H is a random oracle, but easily broken when H is a hash function built using the
Merkle-Damgard construction.

4 Tt is not called a compression function, since the domain and range of f are identical.

5 [5] shows that the sponge construction is indifferentiable from a random oracle in the
classical setting. Together with the fact that the random oracle is collision-resistant,
collision-resistance of the sponge construction follows.
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— If the block function f is collapsing when restricted to the left and right half of
its output, respectively, and if it is hard to find a zero-preimage of f (restricted
to the right half of its output), then the sponge construction is collapsing.

— If the block function f is a random oracle or a random permutation, then the
sponge construction is collapsing.

— We give a quantum algorithm for finding collisions in any function (given
access to a random oracle), in particular in the sponge construction. The
number of quantum queries to f asymptotically matches our bounds for col-
lision resistance.

It should be stressed that we do not show that the sponge construction is
collapsing (or even collision-resistant) if the block function f is an efficiently
invertible random permutation. In this case, it is trivial to find zero-preimages
by applying the inverse permutation to 0. This means that the present result
cannot be directly used to show the security of, say, SHA3, because SHA3 uses
an efficiently invertible permutation as block function. Our results apply to hash
functions where the block function is not (efficiently) invertible, e.g., Gluon [3].
It seems that this limitation is just a residue of our technique.

Organization. In Sect. 2 (“Collapsing hash functions”), we recall the definition
of collapsing hash functions and some important properties of that definition. In
Sect. 3 (“The sponge construction”) we recall the sponge construction. In Sect. 4
(“Collision-resistance of the sponge construction”) we first show the collision
resistance of the sponge construction. Then in Sect. 5 (“Sponges are collapsing”),
we present our main result — that the sponge construction is collapsing. In Sect. 6
(“Quantum Attack”) we present a quantum algorithm for finding collisions that
uses a random oracle. Additional details, including preliminaries and full proofs
are given in the full version [10].

2 Collapsing Hash Functions

In this section, we recall the notion of collapsing hash functions H from [18]. We
describe both the underlying intuition, as well as the formal definitions.

A hash function is a function H® : X — Y for some range X and domain Y.
(Typically, Y consists of fixed length bitstrings, and X consists of fixed length
bitstrings or {0,1}*.) H can depend on an oracle O. (Typically, O will be a
random function, a random permutation, or simply be missing if we are in the
standard model. Unless specified otherwise, we make no assumptions about the
distribution of O.)

As mentioned in the introduction, intuitively, we wish that H(m) uniquely
identifies m in some sense. In the classical setting, this naturally leads to the
requirement that it is hard to find m # m’ with H(m) = H(m'). Then we
can treat H(m) as if it had only a single preimage (even though, of course, a
compressing H will have many preimages, we just cannot find them). In the
quantum setting, there is another interpretation of the requirement that H(m)
identifies m. Namely, if we are given a register M that contains a superposition
of many values m, then measuring H(m) on that register should — intuitively —
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S S
i F—
m

(a) — Gamey (b) — Games

Fig. 1. Games from the definition of collapsing hash functions. M represents a mea-
surement in the computational basis. (A, B) is assumed to satisfy the property that M
always returns m with H(m) = h. A function is collapsing if the probability of b = 1
is negligibly close in both games.

fully determine m. That is, the effect on the register M should be the same, no
matter whether we measure just the hash H(m) or the whole message m. One can
see that for any compressing function H, it is impossible that measuring H(m)
and m has information-theoretically the same effect on the state.5 However,
what we can hope for is that for a computationally limited adversary, the two
situations are indistinguishable. In other words, we require that no quantum-
polynomial-time adversary can distinguish whether we measure H(m) or m. This
property is then useful in proofs, because we can replace H (m)-measurements by
m-measurements and vice versa.

We can slightly simplify this condition if we require that the register M
already contains a superposition of values m that all have the same hash H(m).
In this case, measuring H(m) has no effect on the state, so we can state the
requirement as: If M contains a superposition of messages m with the same
H(m) = h, then no quantum-polynomial-time adversary can distinguish whether
we measure M in the computational basis, or whether we do not measure it at all.

Or slightly more formally: We let the adversary A produce a register M and
a hash value h (subject to the promise that measuring M would lead to an m
with H(m) = h). The adversary additionally keeps an internal state in regis-
ter S. Then we either measure M in the computational basis (Game;, depicted
in Fig. 1(a)), or we do not perform any such measurement (Gamesg, depicted in
Fig. 1(b)). Finally, we give registers S (the internal state) and M (the potentially
measured message register) to the adversary’s second part B. We call H collaps-
ing if no quantum-polynomial-time (A, B) can distinguish Game; and Games,.

This is formalized by the following definition:

Definition 1 (Collapsing [18]). For algorithms A, B, consider the following
games:
Game; : (S, M, h) — A°(), m — M(M), b — B®(S, M)
Gamey : (S, M,h) — A°(), b— B9(S,M)
% E.g., M could contain 3" 27!™/2|m). Then measuring H(m) will lead to the state
1 . . 1
D ms.t. H(m)—h \/ﬁhn) which is almost orthogonal for large |[H~"(h)| to the

state [m) we get when measuring m.
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Absorbing phase S™ Squeezing phase S°*

Fig. 2. The sponge construction S with a four block input m1||maz||ms|/m4 and a three
block output hi|lhz2||hs. The application of the padding function is not depicted (we
assume mq ||mz||ms||ma = pad(m)).

Here S, M are quantum registers. M(M) is a measurement of M in the compu-
tational basis.

For a set m, we call an adversary (A, B) valid on m for H® iff Pr[H® (m) =
h A m € m] =1 when we run (S,M,h) «— A®() and measure M in the
computational basis as m. If we omit “on m”, we assume m to be the domain
of HO.

A function H is collapsing (on m) iff for any quantum-polynomial-time
adversary (A, B) that is valid for H® (on m), |Pr[b = 1: Game;] — Pr[b =
1: Game2]| is negligible.

The definition follows [18], except that we made the oracle O explicit (which
was implicit in [18]).

Miscellaneous facts. The following properties of collapsing hash functions
will be useful throughout this paper. They are immediate consequences of their
concrete-security variants as shown in Sect. 3.1 of the full version [10].

Lemma 2. If HO is injective, then H® is collapsing.

Theorem 3. If O : {0,1}¢ — {0,1}¢ is a random function with superlogarith-
mic d (in the security parameter), then HC := O is collapsing.

Lemma 4. If G® o H® is collapsing, and G© is quantum-polynomial-time com-
putable, then HC is collapsing.

Lemma 5. If G° and H® are collapsing, and H® is quantum-polynomial-time
computable, then G€ o HO is collapsing.

3 The Sponge Construction

In this section, we review the sponge construction introduced by [4]. The sponge
construction has two internal parameters r and c called the rate and the capacity,
respectively. The internal state has r+c bits. We refer to the first part of the state
as the left state, and to the second part of the state as the right state. Underlying
the sponge construction is a block function f that inputs and outputs r + ¢ bits.
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To hash a message m, the message is first padded to a non-zero multiple of
the rate r. That is, we use some injective padding function pad to get k > 1
message blocks my||...||mr = pad(m).” Then we XOR m; to the left state,
apply f to the (whole) state, XOR mq to the left state, apply f to the state,

.., apply f to the state, XOR my to the left state. The steps performed so
far are referred to as the absorbing phase (denoted in this paper with S*).
Now we start with the squeezing phase S°“': We apply f to the state, read
the left state as hy, apply f to the state, read the left state as ho, .... We
continue to do so until hqllhs| ... contains > n bits (where n is a parameter
specifying the desired output length), and return the first n bits of hq|hs|l....
The whole process described here (padding, absorbing phase, squeezing phase)
is the sponge construction, referred to as S in this paper. Note that the use of
the terms absorbing and squeezing phase in this paper slightly differ from the
description in [4]: In this paper, we end the absorbing phase just before the last
application of f, whilst the original sponge paper includes that application of f
in the absorbing phase. The separation we use helps to simplify the proofs in
later sections. The resulting sponge construction is the same as in [4], though.
The sponge construction is illustrated in Fig. 2 for the special case of £ = 4 and
n = 3r (four input blocks and three output blocks). The following definition
makes the above explanation precise:

Definition 6 (Sponge construction). Fiz integers ¢ > 0 (the capacity) and
r >0 (the rate ), and n > 0 (the output length). Fiz f : {0,1}""¢ — {0,1}"+¢
(the block function ) and pad : {0,1}* — ({0,1}")F (where {0,1}7) is the set
of bit-strings consisting of r-bit blocks).

Formy,...,my €{0,1}", let

Sglmall o lme) = £(ST e (mall . lmi—1)) @ (my]|0°)
S?,Lr,f(ml) = my[|0°

(We call S™ the absorbing phase.)
For s € {0,1}"%¢, let

gout (S)Z{s’||ssﬁff,ns/<f<s>> (n>0)

e fon empty word (n=0)

where s’ consists of the first min{n,r} bits of £(s). (We call S°“ the squeezing
phase .)

Let Scrt.padn = SIWe, 0 St ¢ o pad. We call Sc.p.,pad,n the sponge con-
struction. ’

Usually, c,r,f, pad,n will be clear from the context. Then we omit them and
simply write S™, S, and S.

" The original construction requires that the last block of pad(m) is non-zero, this is
important for other properties than collision-resistance/collapsing. In this work, we
do not put any such requirement on pad. We do, however, assume that pad outputs
at least one block.
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Notation: The sponge construction operates on a state of size r 4+ ¢, and we
will often need to refer to the two halves of that state separately: For any s €
{0,1}7F¢, let s"® denote the first = bits of s, and let s"&" refer to the last ¢ bits
of 5. If f is a function with r + ¢ bit output, then we write f'*® for the function
defined by ff(x) := f(x)"". And fre"* analogously.

As the output of the sponge function can be smaller than the rate, i.e. n <
7, we also define the function f'f/? . {0 1}7+¢ — {0,137 which is the
function that outputs the first min(n, ) bits of f. In particular, f'¢ft/" .= fleft for
n>r.

4 Collision-Resistance of the Sponge Construction

In this section we state our result concerning collision-resistance of the sponge
construction. We motivate our statement with Lemma8 connecting attacks on
some features of the block function with collision-resistance of the overall con-
struction. Those features are collision-resistance of 8" collision resistance of
fleft/n and zero-preimage-resistance of fright,

The last notion is defined as follows: a function f© : {0,1}¢ — {0,1}¢ is
zero-preimage-resistant iff for any quantum-polynomial-time adversary A®, we
have that Pr[f©(x) = 0°¢ : z « A9()] is negligible. Concrete security bounds are
given in the full version [10].

Let us state the main result of this section.

Theorem 7. Assume that £1€" and £'%/" are collision resistant and fr&M s
zero-preimage resistant. Then Sc £ pad,n @5 collision-resistant.

Proof sketch. We prove this theorem by a reduction to adversaries attacking the
block function. Namely finding collisions in f & or f'ft/" or a zero-preimage
under f"&"t, This reduction is presented in Lemma 8. Knowing that every collision
in S results in breach in the security of f'&" or f'*ft/7 allows us to state the claim
of the theorem. O

Lemma 8. Assume that pad is injective. There is a deterministic polynomial-
time oracle algorithm A such that for any m # 1 with S(m) = S(m), Af(m,m),
outputs one of the following:

~ (right, (s,8)) where (s, 3) is a collision of f"&"M,
~ (zero, s) where s is a zero-preimage of friet,
— or (left, (s, 8)) where (s,3) is a collision of £1*f/™

Proof. A starts by computing the first right-state of the squeezing phase on input
of the two colliding messages, i.e., it evaluates f o S o pad. We will denote the
states traversed during this calculation by s; and §; for m and m, respectively.
As our analysis starts with the final state of this computation and revisits the
intermediate states in backwards direction, we denote by sq the final state, whose
left part is output (for n < r only the first n bits), by s_; the state just before
the last application of f and so on. A figure including this notation is presented
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later in Fig. 3. Using p := pad(m) and p := pad(in), the intermediate states s_;
for 1 <i < |p| -1 are defined by s_; := f(s_;_1) @ p|p4+1-4[/0°, 50 := f(s_1) and

5 . . left Sleft
5_p| == p1[0°. As m and rh collide per assumption, we have s m = e /m

1. Algorithm A first checks if s_; or §_; are a preimage of 0¢, or form a collision
under f'eft/7_l. If the right part of sg (or §p) is 0°, s_1 (§_1) is a pre-image of
0¢ under f1&ht and A outputs (zero,s_1) ((zero,$_1), respectively). If s_; #

5_1, A outputs (left,s_1,5_;). These two states form a collision under f'eft/»

because they are the inputs to the last f in S and slgft/n = él(fft/”. Otherwise,

s_1 = §_1 and there are no preimages of zero.

2. If not done yet, s_; = 5_; and A checks for a preimage of 0° or a collision

in frieht If s — ¢ A found a preimage of 0°. This is true as if both
messages ended here then s_; = §_; would imply that p = p (and so m = m)
which contradicts the assumptions of the lemma. Hence, at least one message
must be longer. Assuming the longer message is m, A outputs (zero, s_s) (or
(zero, §_9) if it was ).
Next the algorithm checks if p_; = p_1, where we follow a similar notation
for message blocks as for the states. The last block of the input is denoted
by p_1. If p_1 # p_1, A outputs (right, s_o,5_5). This is a collision of fright
because p_; # p_1 but s_.1 = §_1. Thus f(s_2) # f(5_2) which in turn
implies s_o # §_o while fi&"(s_,) = f8"(3_,). We can be certain that
there are at least two applications of £ both in S(m) and S(7) because the
right half of s_; = §_; is not 0°.

3. If p_1 = p_1 we end up in the same situation as before but now for i = 2.
Namely we have that s_s = §_5 and the algorithm performs the same checks
as before but for a bigger i. Repeat Step 2 for all 2 <14 < min{|p|, |p|}.

If the iteration ends without success, this especially means that no collision
was found but at least one message was fully processed. In this case A out-
puts a preimage of 0°¢ under f€". That is because no collisions means that all
compared message blocks are the same but the two messages are different per
assumption. Hence, they must have different lengths. With different length mes-
sages that traverse the same state values at the point of ¢ = min{|p|, ||} the right
part of both states is 0°, so the algorithm will output (zero,5_j,/_;) (assuming

pl < 1p])- O

5 Sponges are Collapsing

In this section, we show that the sponge constrution is collapsing, under certain
assumptions about the block function f. We only state the qualitative results
here, more precise statements with concrete security bounds will be given in
the full version [10]. The results in this section hold for all distributions of the
oracle O (including the case that there is no oracle O). The specific cases of
random functions and random permutations are covered in Sect.5.1. Since all
adversaries (A4, B, A’, B’,...) and the block function f have oracle access to O
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throughout the section, we omit the oracle O from our notation for increased
readability (i.e., we write A,f instead of A9, f®). Throughout this section, we
assume that f© can be computed in quantum-polynomial-time (given oracle
access to O).

We will analyze the sponge construction in three parts. First, we analyze the
security of the absorbing phase S, then we analyze the security of the squeezing
phase S°“ and finally we conclude security of the whole sponge S, consisting
of padding, absorbing, and squeezing.

First, we analyze the absorbing phase. For the absorbing phase (without
padding or squeezing) to be collapsing, we will need two properties of freht:

— fright ig collapsing. This is the main property required from the block function
f. If we would restrict S™ to fixed length messages, then we could show the
collapsing property of S based on that property alone.

— fright j5 zero-preimage-resistant.

To see why we need this property, consider a block function f where the
adversary can find, e.g., x,y € {0,1}" with f(z||0°) = y||0°. Then we can
see that S™(x||y) = 0°t", and thus S™(z|y||z) = z||0° = S™(z) for any
z € {0,1}". Thus S would not be collision-resistant, and in particular not
collapsing.

We state the result formally:

Lemma 9 (Absorbing phase is collapsing). Assume that f18" is collapsing,
and that f&" s zero-preimage-resistant. Then S™ is collapsing.

Note that this lemma does not explicitly state anything about the size of r
and c¢. But of course, f"&" can only be collapsing and zero-preimage-resistant is
the capacity c is superlogarithmic.

We only give a detailed proof sketch for Lemma9. The full proof is given in
the full version [10].

Proof sketch. Consider a quantum-polynomial-time adversary (A, B) where A
outputs a hash h, and a superposition of messages m on the register M, and B
expects M back and outputs a guess b. We need to show that the two games in
Definition 1 (see also Fig. 1) are indistinguishable, i.e., the probability of b = 1 is
approximately the same in both games. Since the domain of 8™ is ({0,1}")", we
can assume that (A4, B) is valid on ({0,1}")%, i.e., M contains a superposition
of messages m € ({0,1}")" with 8" (m) = h.

To show that the two games are indistinguishable, we start with Games from
Definition 1 (Fig. 1(b)) and transform it step by step into Game;.

Game 1 (M,h) — A(). b — B(M). (Same as Gameg from Definition 1.)

Note that we keep the register S (the state of (A, B)) implicit in this proof
sketch, to improve readability.

Now, in each successive game, we measure more and more information about
the message m contained in M, until in the final game, we measure m completely
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Fig. 3. Values occurring in the computation of h = S™(m), using the notation from
the proof sketch of Lemma9.

(like in Game; from Definition 1). In order to refer to the different values derived
from m that we measure, we will need to use a lot of notation to refer to various
intermediate values occurring in the computation of S*(m). To make it easier to
follow the proof, all relevant notation has been depicted in Fig. 3, which shows
an evaluation of S™(m).

Since (A, B) is valid, we know that S™(m) = h where h is the classical output
of A. That is, h = S™(m) has already been measured.® In the computation
of S™(m), let s_5 refer to the state that goes into the last application of f
(see Fig.3), and let m_q refer to the last block of the input message m (i.e.,
m_1 = Myy). Then h = f(s_3) & (m_1]|0°) by definition of S, and thus
hrieht — frieht(s_,). Now since by assumption, f&" is collapsing, we can reason:
Since f"&" is collapsing, and we have measured the output h"€" of frieht(s_,),
it follows that we can additionally measure s_s, and the adversary B will not
be able to notice the difference. That is, we get the following game with only
negligibly different Pr[b = 1]:

Game 2,¢tempt (M, h) — A(). Measure s_o. b «— B(M).

This would indeed work, if we knew that |m| > 2. However, it could be that |m| =
1. In this case, we have s_5 = L (i.e., s_5 does not occur in the computation).
Worse, if M contains a superposition of messages m, some of length |m| =
1, others of length |m| > 2, then measuring s_o will reveal whether |m| > 2
or |m| = 1. We cannot guarantee that this measurement will not change the
quantum state of M in a noticeable way. Then Pr[b =1: Game 1]  Prjb=1:
Game 2,¢tempt]. The collapsing property of frieht does not help here, because to
apply that property, we need to know that A"&" is indeed the output of frieht
(which is not the case when |m| = 1).

8 In this proof sketch, when we use the expression “measure a” where a is some expres-
sion depending on the message m (e.g., a could be 8™(m)), then we mean that we
measure the register M, but not with a complete measurement, but with a mea-
surement that gives outcome a (e.g., S™(m)) when M contains |m). Formally, that
measurement would consist of the projectors P; defined by P; := > . __.|m)(m|.
E.g., if we “measure S™(m)”, the projectors are P; := > |m){m]|.

m s.t. S"(m)=1
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A similar problem also occurs in later games: Let s_j denote the k-th state
from the end, with h being s_1, the input to the last f being s_», the input to
the previous f being s_g, etc., see Fig. 3. (We count backwards because this will
make notation easier, since our games will start measuring states from the end.)

. ight
When we have measured some right state s"8", we want to argue that we can

measure the previous state s_(;41) because sr_ig,?t = fright(s_(k+1)). Again, this
will not be possible because we do not know whether s_j is not already the first
state of the computation of S®*(m). (That is, we do not know whether |m| = k.)

To get around this problem, we need a mechanism to decide whether a state
s is the initial state, i.e., whether s_j is s_j,, . How do we do that? By

construction of S™, the initial state S_|m| satisfies Srig|';EL| = 0°. Thus, we might

try to decide whether s_j is the initial state by checking whether sr_ig,:' b= 0°.

For example, if we want to measure s_o, we do so only when h'eht = s'iglht # 0°.
This approach is basically sound, but what happens when a state in the middle
has si'gl?t = 0°? We would be mislead, and the proof would break down.

To avoid this problem, we will first measure at which positions this bad case
happens. Let b be the set of all indices k < |m| such that s"&"™ = 0°. (That is,
the indices of all states in which we observe a 0° in the right part, but which
are not the initial state.) Once we know the set b, then we can decide whether
s_r is the initial state or not. Namely, s_j is the initial state (i.e., k = |m]) iff
s"8" — 0¢ and k ¢ b.

So the first step in our sequence of games is to measure the set b:

Game 2 (M,h) — A(). Measure b. b «— B(M).

We assumed that fright is zero-preimage-resistant. This implies that with over-
whelming probability, s™&" = £r8 (s_(ky1)) # 0° for all k < |m|. Thus b = @
with overwhelming probability. Therefore measuring b has only negligible effect
on the quantum state. Thus

Pr[Game 1] ~ Pr[Game 2].

(We use the shorthand Pr[Game 1] for Pr[b = 1 : Game 2]. And & denotes a
negligible difference.) Now we can proceed with measuring more and more states
from the computation of S™(m). First, we measure s_:

Game 4, (M,h) — A(). Measure b and s_1. b «— B(M).

(Note: The numbering of games in this proof sketch has gaps so that the game
numbers here match the game numbers in the full version [10].) Since s_; = h
by definition, and since h is already measured by A, the additional measurement
does not change the quantum state, and we have:

Pr[Game 2] = Pr[Game 4,].

Now we add a measurement whether s_o is defined:
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Game 5; (M, h) < A(). Measureb and s_1 and whether s_o = 1.9 b« B(M).

Given b and s_; we can already tell whether s_» = L. Namely, s_o = L iff
si'glht = 0° and 1 ¢ b. Thus measuring whether s_ = L has no effect on the
quantum state, and we get

Pr[Game 4;] = Pr[Game 54].

Now, finally, we can do what we already intended to do in Game 2,ttempt:
We measure s_p, and use the collapsing property of ff&ht to show that this
measurement does not noticeably disturb the quantum state:

Game 45 (M,h) «— A(). Measure b, and s_1, and whether s_s = 1, and s_».
In case that we measured that s_s = 1, measuring s_o in Game 45 has no effect
on the quantum state (since we know that the outcome will be L). And in case

that we measured that s_, # L, we know that s"8" = fright(s_,) (as already

discussed above), and thus measuring s_» can be noticed with at most noticeable
probability by a quantum-polynomial-time adversary. Thus

Pr[Game 5;] = Pr[Game 45].

And then we continue by adding a measurement whether s_3 # L:

Game 55 (M, h) «— A(). Measure b, and s_1, and whether s_s = 1, and s_o,
and whether s_3 = L. b «— B(M).

Since s_3 = L iff s_. = L or s'_nght = (0° and 2 ¢ b, measuring whether
s_3 = L holds has no effect on the quantum state. Thus we get

Pr[Game 4;] = Pr[Game 5,].

And then we measure s_s:

Game 43 (M, h) «— A(). Measure b, and s_1, and whether s_o = 1, and s_o,
and whether s_3 = L, and s_3. b — B(M).
Using that fr&M is collapsing, we get

Pr[Game 53] =~ Pr[Game 43].

We continue in this way, alternatively adding a measurement whether the next
state s_p = 1, and then adding a measurement of s_g, each time using the
collapsing property of £8". After ¢ such steps, where £ is a polynomial upper
bound on the length of m, we get the following game:

Game 4y (M,h) «— A(). Measure b, measure whether s_1,...,5_4= L1,
measure S_1,...,8_¢. b B(M).

9 Measuring “whether s_ = 1” means a measurement on M defined by projectors P
and 1 — P where P:=37_ . . _ |m)(ml|
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Since in each of the steps, we accrue only a negligible distinguishing proba-
bility between consecutive games, we get:

Pr[Game 4] ~ Pr[Game 4/].

(Details are given in the full version [10].)

In Game 4, we measure $_1, ..., S_g. From these, we can compute |m| (since
s_p = L for k > |m|). Furthermore, each message block m_j (the k-th message
block from the end) can be computed as follows: We have s_p = f(s_(y11)) @
(m—x]|0°), and thus m_g = s'%F & f(s_(k41))"™". Except for m_j,,|, which can

be computed as m_j,, = s'ffltml.

(Cf. Fig.3) Finally, we can compute m as
m = m,‘m‘” ces ||m,1.

Since we can compute m from the measurements performed in Game 4, it
follows that those measurements are equivalent (in their effect on the quantum

state) to a measurement of m. Thus
Pr[Game 4,] = Pr[Game 6]
for the following final game:
Game 6 (M,h) — A(). Measure m. b — B(M).
Altogether, we have shown
Pr{Game 1] ~ Pr[Game 6.

And Game 1 and Game 6 are identical to the games Games and Game; from
Definition 1, respectively. Since (A, B) was an arbitrary quantum-polynomial-time
adversary that is valid for S**, it follows by Definition 1 that S* is collapsing. O

Next, we show that the squeezing phase is collapsing. Let £'*®/" be defined for
n > 0, as the first min(n,r) bits of the output of f (in particular, f'eft/n = fleft
for n > r). Then the collapsing property of the squeezing phase is a relatively
trivial consequence of the fact that f'f/™ is collapsing.

Lemma 10 (Squeezing phase is collapsing). Let n > 0 be the output length
and assume that £'/™ is collapsing. Then S°% is collapsing.

A concrete security variant of this lemma is given in the full version [10].

Proof. Let G, (z) return the first = min(r,n) bits of z. Then G, (S°*(s)) =
f'eft/n(5). Thus the lemma follows directly from Lemma4. |

And finally we get that the sponge construction as a whole is collapsing. This
is a simple corollary from the fact that both the absorbing and the squeezing
phase are collapsing.

Theorem 11 (Sponge construction is collapsing). Letn > 0 be the output
length and assume that £'%/™ and & are collapsing, and that f'&" is zero-
preimage-resistant. Assume that pad is injective. Then S is collapsing.
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A concrete security variant of this theorem is given in the full version [10].

Proof. By Lemma9, Si” is collapsing, and by Lemma 10, S°“! is collapsing. Then
by Lemma5, S°% o S** is collapsing. Since pad is injective, by Lemma 2, pad is
collapsing. Thus by Lemma5, S = (S°“! 0 S™) o pad is collapsing. a

5.1 Using Random Oracles or Random Permutations

In this section, we show that S is collapsing, when O is a random function or
random permutation and f©(x) := O(z). The collapsing of fre" f'eft/? follows
from [18], and the zero-preimage-resistance of f"&" follows from the optimality
of Grover’s algorithm. The computation of the precise advantage is given in the
full version [10].

Theorem 12. If O : {0,1}"¢ — {0,1}"F¢ is a random function, and £ (z) :=
O(x), and r,c and output length n are superlogarithmic, then S is collapsing.

Proof. In the full version, we show that the preconditions of this Lemma follow
from [18]. It then follows immediate from Theorem 11. O

And since random functions and random permutations are known to be indis-
tinguishable, we readily derive the security of the sponge construction also for
block functions that are random permutations.

Theorem 13. If O : {0,1}"t¢ — {0,1}"¢ is a random permutation, and
fO(x) := O(x), and r,c and output length n are superlogarithmic, then S is
collapsing.

A concrete security variant (with security bounds in terms of the number of
oracle-queries) is given in the full version [10].

Proof. Zhandry [20] shows that no adversary making a polynomial number of
queries can distinguish a random permutation from a random function with
more than negligible probability (assuming that the output length is superloga-
rithmic). Thus the advantage of the adversary attacking the collapsing property
of S when O is a random permutation can only be negligibly higher than the
advantage of the same adversary attacking the collapsing property of S when O
is a random function. The latter advantage is negligible by Theorem 12, thus the
former advantage is negligible, too. Hence S is collapsing when O is a random
permutation. a

6 Quantum Attack

In the following we present a quantum collision-finding attack against the Sponge
construction. The attack is based on a quantum collision-finding algorithm for
any function (Theorem 15 below) that assumes access to a random oracle (RO).
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The general working of our attack is to select a suitable function g, run a
collision finding algorithm by Ambainis [1] to obtain a collision for g, and finally
turn this collision into a collision for the target Sponge. The suitable function
in this context refers to the function giving the optimal result. First, we make
a case distinction whether the length of the required collision n is smaller or
bigger than the capacity ¢ of the sponge. In case n < ¢, we simply search for an
output collision in S. In the other case n > ¢, it is more efficient to search for a
right-collision, as these are collisions in a function with ¢ bits of output and can
be extended to arbitrary-length output collisions. Second, the function has to be
selected or rather constructed in a way that allows for efficient iteration, in case
a first run of the core algorithm does not succeed. Our attack makes heavy use
of the following quantum algorithm by Ambainis [1].

Theorem 14 ([1] Theorem 3). Let g : X — Y be a function that has at least
one collision. The size of the set X is M. Then there exists a constant kamp and
a quantum algorithm AMB making kamp - M2/ quantum queries to g that finds
a collision with probability at least 15/16.

We note that [1] also gives guarantees on the actual quantum running time
and memory requirements of the quantum collision-finding algorithm. Con-
cretely, there exist (small) constants £y, ,k% . such that the running time
and quantum memory is at most K, - M?/3 - log¥%mb (M + |Y|). Therefore, all
our results of this section which are stated in terms of query complexity also
yield guarantees on the running time and memory, incurring the same blowup
by a poly-logarithmic factor in the number of queries.

6.1 Quantum Collision Finding with Random Oracle

We start by showing how to use Ambainis’ algorithm to generically find a colli-
sion in any function as long as we have access to a random oracle.

Theorem 15. For finite sets A, B with |B| > 3 and |A| > 40|B|, and any
function h : A — B, there exists a quantum algorithm which requires access to a
random oracle H : T — A and outputs a collision of h with probability at least
1/8 after at most kamy - |B|'/? queries to h and at most 2k, - |B|Y/3 +2 queries
to H where kampy is the constant from Theorem 1/.

As noted after Theorem 14, there exist constants k., kX ., such that the run-
ning time and quantum memory of the collision-finding algorithm is at most
K - [BI'/? - logame (| B)).

Proof. Let T :={1,2,..., [\/|B|_‘ + 1} be a finite set of L”B” + 1 elements.

In the description of our generic collision-finding algorithm COLL-RO below, we
use the random oracle (RO) H : T'— A. When repeating the algorithm in order
to improve the success probability, we assume that a “fresh” random oracle is
used in every run, which can be achieved using standard techniques such as
prepending an iteration-counter to the inputs.
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Algorithm 1. Algorithm COLL-RO

Input: h: A — B and access to random oracle H : T — A
Output: m # m such that h(m) = h(/h) or “fail”
1: Set g := hoM, X := T with size M = L/\Bﬂ +1,Y:=B

2: Run AMB from Theorem 14 on g, making kamb - M?/3 queries to g.
3: If it outputs (¢, %)

4: Set (m,m) = (H(t), H(#))

5: If m # m, output (m,m)

6: Output “fail”

If Ambainis’ algorithm succeeds in outputting a collision and H does not
have any collisions, then we obtain a collision of h. Hence,

Pr[cOLL-RO outputs m # risuch that h(m) = h(1n)]
> Pr[AMB outputs a collision A H does not have collisions]
> Pr[AMB outputs a collision] — Pr[H has a collision]. (1)

We can lower bound the first probability as follows:

Pr[AMB outputs a collision] = Pr[ghas a collision A AMB outputs a collision]

= Pr[ghas a collision] — Pr[g has a collision A AMB does not output a collision]

1
> Pr[ghas a collision] — 6

Note that g maps M messages to B. If these outputs were distributed inde-
pendently and uniformly, we could lower bound the collision probability with a
birthday bound. In our case, these outputs are not necessarily uniformly (due to
h) but still independently (due to H) distributed. It is proven in [15] that in this
case, the same lower bound on the collision probability remains true. Therefore,
it follows (e.g. from [14, Lemma A.16]) that

e ([ViE])

1-[B] = 4-B|

M(M —1)
4-|B|

1
Pr[g has a collision] > > 1

>

In order to upper bound the second term of (1), observe that H maps M messages
to independent and uniform elements in A. From a union bound (see, e.g. [14,
Lemma A.15], noting that M < /2|A|), we get that

M2 (/IB|+2)? |B|+4B|+4 5|B] 1
Pr[Hh Ilision] < < = = =16
r[H has a collision] < o[A] = 2[4 = 2| A| T 204l T 16
(3

)

The second-to-last inequality holds because 4/|B| + 4 < 4|B| for |B| > 3, and
the last inequality is due to our assumption 40|B| < |A|. Combining (2) and
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(3), COLL-RO outputs a collision with probability at least % - 1—16 - 1—16 =
The quantum circuit for g := h o H makes one query to h and two queries to H.
Therefore, the total number of queries to h is at most Eamb-M2/3 = kamp- |B|1/3

and the number of queries to H is at most 2kamp - |B\1/3 + 2. O

=

Theorem 16. Let S. ;¢ paa,n(m) be a sponge construction with arbitrary block
function £. There exists a quantum algorithm COLL-RO making at most g quan-
tum queries to f and g quantum queries to a random oracle H. COLL-RO out-
puts colliding messages m # 1 such that Sc.r £ pad.n(M) = Scrf.pad,n (M) with
probability at least 1/8, where q¢ := 2kamyp, - min{ SEEE2re/3 2ntb3ron/3y =gy g
qr = 2kAmb - min{QC/S, 2”/3} + 2, where kamp s the constant from Theorem 1/
and pad is any padding function which appends at most 2r bits.

Typical padding functions do not append more than r + 1 bits to the mes-
sage, and are therefore covered by the theorem. Otherwise, the proof below can
be easily modified to take longer paddings into account, resulting in increased
factors in the expression of gf above.

Proof. We make a case distinction whether the length n of the required collision
n is smaller or bigger than the capacity ¢ of the sponge. In case n < ¢, it is
more efficient to directly search for an output collision in S. In the other case
n > ¢, it is more efficient to search for collisions in the right internal state, as
these are collisions in a function with ¢ bits of output and can be extended to
arbitrary-length output collisions.

Algorithm 2. Algorithm SPONGE-COLL-RO

Input: Sponge parameters n,c,r and access to RO ‘H

Output: m # M such that Sc ¢ pad,n (M) = Sec,r ¢ pad,n () or “fail”
1: Ifn<ec

2 Set h:= S, domain A := {0,1}""5 and range B := {0,1}".
3: Ifn>c

4 Set h := f&" 6 8™ 6 pad, domain A := {0,1}°"® and range B := {0,1}°
5: Run COLL-RO from Theorem 15 on h, making kamb - \B|1/3 queries to h

6: If it outputs (m,m)
7
8
9
0
1

If n < ¢, output (m,m)
Ifn>c
Set a := (f'*" 0 S™ o pad)(m) @ (£** 0 8™ o pad) (11)
: Output (pad(m)||a, pad(rn)||0")
: Output “fail”

Let us analyze the case n < ¢. According to Theorem 15, COLL-RO outputs a
collision with probability at least % using at most kAmb~|B|1/ 3 = kamp-2"/3 quan-
tum queries to h. A single evaluation of S requires at most 2 - [max{|pad(m)| :
m € {0,1}"*6}/r] < 2. (n+ 6 + 2r)/r queries to the block function f in the
absorbing phase and 2 - [n/r] < 2(n + r)/r queries to f in the squeezing phase.
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Hence, one query to h requires at most 2-(2n+6+3r)/r queries to the block func-
tion f. Therefore, a collision in S can be found with at most 2ka - MZ"/ 3
queries to f. In the other case n > ¢, the algorithm COLL-RO finds two messages
m # 1 such that (f&" o 8" o pad)(m) = (f"&" 0 S™ o pad)(1i) with probability
at least é. Such a right-collision can then be extended to a full-state collision
by appending to the padded colliding messages pad(m) and pad(m) one more
suitably chosen message block resulting in y := pad(m)||a and § := pad(1i)]|0".
As both |y| and |g| are (possibly different) multiples of r, the same bits will
be appended by pad according to our assumptions on the padding function. By
the choice of a in Step 9, we have that (f o S o pad)(y) = (f o S o pad)(y),
i.e. the full states collide and therefore, all n output bits produced from this
state will coincide. The algorithm makes kamp - |B|Y® = kamp - 2¢/% queries to
h := fre"toSino pad. In this case, one query to h requires at most 2-(c+6+2r)/r
queries to the block function f. Therefore, a collision in (f o S™ o pad) can be
found with at most 2kamp - %20/ 3 queries to f, resulting in the claimed
bound. O
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Abstract. SPHINCS is a recently proposed stateless hash-based signa-
ture scheme and promising candidate for a post-quantum secure digital
signature scheme. In this work we provide a comparison of the perfor-
mance when instantiating SPHINCS with different cryptographic hash
functions on both recent Intel and AMD platforms found in personal
computers and the ARMv8-A platform which is prevalent in mobile
phones.

In particular, we provide a broad comparison of the performance of
cryptographic hash functions utilizing the cryptographic extensions and
vector instruction set extensions available on modern microprocessors.
This comes with several new implementations optimized towards the
specific use case of hash-based signature schemes.

Further, we instantiate SPHINCS with these primitives and provide
benchmarks for the costs of generating keys, signing messages and ver-
ifying signatures with SPHINCS on Intel Haswell, Intel Skylake, AMD
Ryzen, ARM Cortex A57 and Cortex A72.

Keywords: Post-quantum cryptography
Hash-based signature schemes - SPHINCS - Implementation - ARM

1 Introduction

Digital signature schemes are one of the fundamental cryptographic algorithms
and are typically used to provide authenticity, integrity and non-repudiation for
a message. They have found several applications in information security, e.g.
certification of public keys, code signing or as an electronic signature. One of
the major threats to the currently widely used digital signature schemes like
DSA/ECDSA is that they are not secure if an attacker can build a large enough
quantum computer. The security of these schemes relies on difficult number
theoretic problems, which can be solved in polynomial time on a quantum com-
puter [33].

There are various solutions for post-quantum secure digital signature schemes,
namely lattice-based, multivariate-quadratic, code-based and hash-based signa-
tures. One of the main advantage of hash-based signature schemes is that the
security reduces to properties of the underlying cryptographic hash function. As
every digital signature scheme requires a one-way function [32] these can be seen
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as the minimal assumptions necessary to construct a secure signature scheme. All
the other previously mentioned signature schemes require further assumptions
by relying on the difficulty of hard problems for which the asymptotic difficulty
might not always hold for the concrete instances used in a cryptographic systems
and they require carefully choosing the parameters.

Hash-based digital signature schemes are therefore a very attractive choice.
However most schemes, like XMSS [9] and LMS [14], are stateful, this means that
one has to update the secret key with every signature. This may sound quite
innocent, however it can be a severe difficulty in practice. For instance when
sharing a private key on different computers one has to synchronize all of them
or security can be void. For some applications this might be acceptable, however
in general we desire to have a stateless signature scheme.

Goldreich proposed the first stateless hash-based signature scheme [18], how-
ever the parameters required for this construction to provide a sufficient security
level and reasonable number of signatures per key pair resulting in a fairly large
signature above 1 MB. SPHINCS [5] improves upon this construction in several
aspects and first demonstrates that stateless schemes can be practical and pro-
vide a reasonable signature size (41 KB) while computing hundreds of signatures
per second on a modern CPU.

The performance of SPHINCS directly relates to the underlying crypto-
graphic hash function and therefore the performance of this function is critical,
which will be the main focus of this work. The requirements for this function
also differ from the classic use cases for cryptographic hash functions, as we do
not require collision resistance and the inputs for most calls are rather short,
typically 256 or 512 bits.

Contributions. The main goal of this work is to provide a comparison of per-
formance when instantiating SPHINCS with different hash functions on modern
high-end processors found in personal computers and mobile phones. In order
to achieve this we provide several implementations, for modern Intel, AMD and
ARM CPUs, optimized towards the requirements of SPHINCS. This includes
implementations of SHA256, KECCAK, SIMPIRA, HARAKA and CHACHA opti-
mized for hashing short inputs in parallel utilizing vector instructions and cryp-
tographic extensions available on these microprocessors.

We further instantiate SPHINCS with these implementations and provide a
broad comparison of the costs of generating key pairs, signing messages and ver-
ifying signature on Intel Haswell, Intel Skylake, AMD Ryzen, ARM Cortex A57
and AT72. These are also the first optimized implementations for the ARMv8-A
platform for SPHINCS and improve the understanding of the costs of state-
less hash-based signature schemes. This performance results also indicate that
SPHINCS is practical on the architecture used in a growing number of mobile
phones.

Software. The implementations are put in the public domain and are available
under https://github.com/kste/sphincs.
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Related Work. So far there is only a limited amount of benchmarks for
SPHINCS available. The original paper proposing SPHINCS [5] provides a refer-
ence implementation and an optimized implementation which utilizes the AVX2
vector extensions for speeding up the underlying CHACHA permutation. In [29]
the authors propose a dedicated short-input hash function HARAKA, which uti-
lizes the AES instruction set to speed-up hash-based signature schemes and also
provide some benchmarks for SPHINCS on the recent Intel platforms. The AES-
based permutation design Simpira has recently also been proposed to instantiate
SPHINCS [21] and its performance on Intel Skylake was evaluated. The first
implementation on low-end platforms was provided in [25]. Here the authors
demonstrate that SPHINCS can also be implemented on a 32-bit microcontroller
based on the ARM Cortex M3 with very limited RAM available.

2 The SPHINCS Signature Scheme

In this section we give an overview of the SPHINCS digital signature scheme.
Throughout the paper we will use the same parameters as suggested in [5], which
will give a signature size of 41 KB, public-key size of 1056 bytes and a private-key
size of 1088 bytes. These parameters target a security level of 128 bits against an
adversary who has access to a large enough computer and allow up 2°° signatures
for a key pair. For more details we refer the reader to [5].

First, we will give a brief description of the main components used for
SPHINCS and provide some insights on how much impact the performance of
the underlying primitives has on the performance of SPHINCS. In particular,
we are interested in two functions

F:{0,1}*% — {0,1}**°

H: {0,1}"* — {0,1}*°. o

which, as we will see later, are responsible for most of the computations in
SPHINCS.

2.1 Hash Trees

At various points in the construction, SPHINCS uses a hash tree (also known
as Merkle tree). A hash tree is a full binary tree of height h. We denote the
ith node at level j of this tree as N; ;, hence the root corresponds to Ng .
Each node, which is not a leaf, gets labeled with the hash of its child nodes
N;.; = H(N2; j—1||N2it1,;—1). Note that in order to drop the requirement for a
collision resistant hash function [13], the inputs to H are further masked in all
hash trees used in SPHINCS.

An important term related with hash trees is the authentication path. The
authentication path Auth; serves as a proof that the node N; ; is part of the
hash tree with root N j. It contains the minimal number of nodes which are
required to recompute the root of a hash tree given IV; ;. This newly computed
root can then be compared with the previously commited one to verifiy that IV; ;
is indeed part of the original tree.



208 S. Kolbl

2.2 One-Time Signature: WOTS™T

As a one-time signature SPHINCS uses WOTS™ [24], which has a parameter w
allowing a trade-off between signature size and number of computations. Further,
we derive the following parameters

h= [logww b= {WJ +1, l=10 +1s. (2)

In the case of SPHINCS w = 16, thus | = 67. Additionally, we use F to
construct the chaining function

c'(z) = F(c"H(z) © Qi) 3)

where @; is a round specific bitmask and ¢°(x) = z.

Key Generation. The keys are derived from an initial secret key S which is
expanded using a pseudo-random generator (PRG) to obtain a sequence of secret
keys sk = (ski,...,skgy) for WOTS™. The public key pk is then computed by
applying the chaining function on each part of the secret key

(pky, ..., pkgr) = (cwfl(skl), .. ,c“’fl(skm)). (4)

In order to reduce the size of this public key we build a hash tree on top of it to
obtain pk. As [ is usually not a power of two the L-tree [13] construction is used.
This structure is similar to a binary tree, however if there is an odd number of
nodes on a level the rightmost node is lifted up one level (see Fig.1). The root
of the resulting tree is then used as the public key pk.

Signing. A message m is signed by first computing the base w representation
of the message M = (Mj,... M, ). The next step is to compute a checksum
Zé;l(w — 1 — M;) and also its base w representation C' = (Cy,...,C),). We
concatenate these values and obtain B = (By,...,B;) = M||C. The signature
for M is then given by

o=(01,...,00) = (P (sky), ..., B (sk))). (5)

Verification. The process of verifying a signature o of a message m with the
public key pk is done in a similar way. First, we have to recompute B and then
compute

(pK),...,pk)) = (¢* 1 B1(0y),..., v 1B () (6)
Note that the correct bitmasks have to be used in each step of the chaining

function to get the correct results. The final step is to recompute the root of the
L-tree and check if pk’ = pk.

2.3 Few-Time Signature: HORST

The second important component of SPHINCS is a few-time signature scheme.
SPHINCS uses HORST, which is a variant of HORS [31] with an additional tree
structure. HORST has two parameters ¢ and k, which are ¢t = 2'6 and k = 32 in
the case of SPHINCS.
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S - PRG —*| PRG —| PRG —*| PRG - - » PRG

Fig. 1. WOTS™" key generation using an L-tree for computing the public key.

Key Generation. In order to generate the secret key we expand a secret S to
obtain sk = (sky,...,sk;), similar to the WOTS™ key generation. The elements
of this list are used to generate the leaves of a binary tree by computing F(sk;).
We then compute a hash tree on top of these leaves and the public key is the
root node.

Signing. For signing, the message m is split into k pieces of length logt giving
us M = (M,..., My). Next, we interpret each M, as an integer and compute
the signature as o = (01,...,0k,0k4+1). Each block o; = (skp,, Authyy,) for all
i < k. This corresponds to the M;th element in the secret key and Authj,, are
the elements required for computing the authentication path up to level 10 (see
Fig.2). Finally, o441 contains all nodes at level 10 of the tree.

Verification. The verification process is very similar. First, the received parts
of the secret key are hashed using F. Together with the authentication paths
this allows us to recompute the nodes at level 10 for each sk;. These can then
be verified with the values given in ox41. Finally, the nodes in o1 are used to
recompute the root of the tree which has to be equal to pk.

2.4 Putting Everything Together

SPHINCS uses a nested tree structure consisting of 12 layers of trees of height
5 (see Fig. 3). Each tree is a binary tree where the leaves are the public key of
a WOTS™ key pair. The top layer consists of a single tree and each key pair in
the leaves is used to sign the root of another tree. Hence, on the second layer we
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Level 16
el 10 ~ NS

Fig. 2. Signing process in the HORST few-time signature scheme. In this case sko and
sk7 are chosen by m and all the blue nodes are part of the authentication path and
therefore part of the signature. (color figure online)

will have 32 trees. This process is repeated until we reach the bottom layer. On
the bottom layer we use the final WOTS™ keys to sign a HORST public key,
which is then used to sign the message.

Key Generation. For generating the keys in SPHINCS we choose two random
256-bit values S, S’. The first value is used during the key generation and the
second one for signing. Furthermore, we need to generate all the bitmasks @ for
WOTS™', HORST and the binary hash trees. For the public key pk we only need
to compute the root of the tree at the top and therefore have to generate the 32
WOTS™ key pairs. The secret key is then (S,S’, Q) and the public key (pk, Q).

Signing. The first step is to select a HORST key to sign the message. We use
a pseudorandom function (which involves ') to compute the index idz of the
HORST key pair which we then use to sign a randomized digest R derived from
m giving us the signature cgorsr. Note that the HORST key pair is fully
determined by this idx and the secret key S.

The next step is to generate the WOTS™ key pair which signs the HORST
public key used when computing o yorsr- This again depends entirely on S and
the position in the tree and gives us the WOTS™ signature Ow,1. The public key
for this WOTS™ signature is part of another tree and needs to be authenticated
again. We therefore compute the authentication path Auth, ; for pk,, ;.

This procedure of signing the root with a WOTS™ key pair and computing the
authentication path is repeated until we reach the top layer. The full signature
then consists of

o = (idx, R, 0HORST, Ow,1, Authy, 1,. .., 0w 12, Authy, 12). (7)
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Fig. 3. Virtual tree structure used in SPHINCS.

Verification. The verification process consists of recomputing the randomized
digest for the message and first verifying o gorsr. If this is successful we continue
with the verification of 0,,,; and all further signature o, ; until we reach the root
of our tree. If all verifications succeed and the root of the top tree equals pk the
signature is accepted.

3 How to Instantiate SPHINCS?

The performance of SPHINCS strongly correlates with the performance of two
functions F and H which have the following security requirements

— Preimage Resistance: For a given output y it should be computationally
infeasible to find an input &’ such that y = f(a').

— Second-Preimage Resistance: For a given = and y = H(z) it should be
computationally infeasible to find ' # x such that f(2') = y.

— Undetectability: It should be computationally infeasible for an adversary
to predict the output.

For F we require preimage resistance, second-preimage resistance and unde-
tectability, while H has to be second-preimage resistant. The best generic attacks
against an ideal function with an output size of n bits require 2" calls to the
function respectively 2/2 on a quantum computer using Grover’s algorithm. In
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the case of SPHINCS an attacker with access to a quantum computer should
not be able to succeed in violating any of these properties with less than 228
calls to the underlying function.

Contrary to a generic cryptographic hash function these requirements are
very different. For instance we do not require those functions to be collision
resistant, which in general is a much stronger requirement. Various crypto-
graphic hash functions in the past have been broken in this setting like MD4 [35],
MD5 [37] or SHA-1 [36] and while one can construct collisions in practice for all
these functions, finding a preimage is still very costly, even for MD4 [22,30]. The
second difference is that these functions have a fixed input size. Most hash func-
tions only reach their best performance for longer messages and several attacks
are also only applicable for long messages.

Before, we discuss the different choices we first take a closer look at how many
calls to these functions are required for key generation, signing and verification
(also see Table 1). For generating the key in SPHINCS we need to do 32 WOTS™
key generations (and the corresponding L-tree) and construct the hash tree. In
total this amounts to 32-(67-15) = 32160 computations of F and (32-66)+31 =
2143 computations of H.

Table 1. Costs in term of F and H for the operations in SPHINCS.

Operation Calls to F' | Calls to H
Key generation | 32160 2143
Signing 451456 93406
Verification < 12092 1235

For signing we need to compute one HORST signature and 12 trees which
include the costs for one WOTS™ key generation each. Note that the WOTS™
signature can already be extracted while generating the WOTS™ key pairs. This
means that one signature requires at least 65536 + (12 - 32160) = 451456 calls to
F and 65535 + 12 - 2144 + 2143 = 93406 calls to H.

For verification we need one HORST verification and 12 WOTS™ verifications
(including the L-tree) which corresponds to at most 12 - (67 - 15) + 32 = 12092
calls to F and (12- (66 + 5)) + 383 = 1235 calls to H.

3.1 ChaCha

CHACHA is a family of stream ciphers [4]. In the original SPHINCS design both
F and H are constructed from the 512-bit permutation wceyacua. If Tonacua
represents 12 rounds of the CHACHA permutation then
F (M) = Trunc(meuacua (M ]|C))
H(M,||M3) = Trunc(mcuacua(Tenacua (M1||C) & (M2||0256))
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where M7, My are 256-bit messages and C is a 256-bit constant. Trunc is a
function which truncates the output to 256 bits.

The best attack on the CHACHA stream cipher can recover a secret key for
7 rounds [2], however no concrete analysis exists in the construction used here.
The building block used for the SHA-3 candidate BLAKE [3] shares a lot of
similarities with the permutation used for CHACHA and it is likely that similar
attack strategies can be applied. The best (second)-preimage attacks on BLAKE
only cover 2.75 rounds and a (pseudo) preimage attack on 6.75 rounds of the
compression function exists [16].

3.2 SHA256

SHA256 is one of the most widely used cryptographic hash functions. It was
published in 2001 and designed by the NSA. The compression function processes
blocks of 512-bit using the Davies-Meyer construction and can be directly used
to build both F and H*. We denote these functions as SHA256-F and SHA 256-
H. The best preimage attacks on SHA256 reach 45 out of 64 rounds [28] and are
only slightly faster than bruteforce. In [1], the costs of finding a preimage using
Grover’s quantum algorithm [19] for SHA-256 have been estimated at around
2166 hasic operations.

3.3 Keccak

KECCAK is a family of cryptographic hash functions based on the Sponge con-
struction and has been standardized as SHA-3 (FIPS PUB 202). It offers a range
of permutations of size b = 25 - 2! for [ = 0,...,6. For an output size of 256-bit
the SHA-3 standard specifies to use KECCAK[b = 1600,¢ = 512]. This would
allow us to instantiate F and H with a single call to the permutation, as we can
process up to 1088 bits. However, this seems quite an inefficient use and it might
be beneficial to use a smaller permutation. Recently, two versions of KECCAK
with a reduced number of rounds have been proposed [8]. KANGAROOTWELVE
for 128-bit security and MARSUPILAMIFOURTEEN for 256-bit security.

The capacity c in a sponge directly relates to the security level and in the
classical setting a Sponge requires ¢ = 512, to have 256-bit second-preimage
resistance. However, it is not clear whether we need a capacity of 512 bits if we
only require 2!2® security against a quantum adversary.

In order to evaluate the potential of using KEccak in SPHINCS we choose
both a smaller permutation and reduce the number of rounds

KEccaK-F(M) = Trunc(KEccAK([b = 800, rounds = 12, ¢ = 256)(M))

_ _ T (®)
KEeccAk-H(M) = Trunc(KECCAK[b = 800, rounds = 12, ¢ = 256](M)).

The best preimage attacks on KECCAK with an output size of 256-bit can
cover 4 rounds of KECCAK [23], apart from a slight improvement over brute force

! To separate the domains of the two functions one could use a different IV or round
constants.
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with huge memory for 8 rounds [10]. The costs of applying Grover’s quantum
algorithm to find a preimage for SHA3-256 have also been estimated at around
2166 in [1]. Overall, taking into account the restricted setting a reduced-round
version of KECCAK seems reasonable for this use case.

3.4 Haraka

HARAKA is a short-input hash function, specifically designed for the use in hash-
based signature schemes [29]. The construction uses an efficient 256-bit (resp.
512-bit) permutation based on the AES with a simple mode (see Fig.4) to build
the two functions F and H.

The best preimage attacks by the authors can find a preimage for 3.5 respec-
tively 4 out of 5 rounds. For an earlier version of HARAKA-H there also exists
an attack exploiting weak round constants which can find a preimage in 292
evaluations [26], however this attack is not applicable to the current version.

m ——»E"B—r H(m)

Fig. 4. Using a permutation 7 to construct a short-input hash function.

3.5 Simpira

SIMPIRA is a family of cryptographic permutations [20] that supports an input
size of b - 128. The design is based on generalized Feistel networks and uses the
AES round function for updating the branches. The variants with b = 2 and
b =4 can be used in the same mode as HARAKA to construct

SIMPIRA-F (M) = SIMPIRA[b = 2](M) & M

SIMPIRA-H(M) = Trunc(SIMPIRA[b = 4](M) & M). ©)

The security claim for SIMPIRA is that no distinguisher with costs < 2128

exists, but so far no concrete preimage attacks have been published.

4 Efficient Implementations for F and H

The target platforms for our implementations are on one hand the recent x86
CPUs by Intel (Haswell and Skylake), AMD (Ryzen) and on the other hand the
ARMvS8-A architecture, which has a large share in the mobile phone market.
In order to understand how to efficiently implement our primitives on these
platforms we give a quick overview of the most important features we utilize.
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4.1 Instruction Pipeline

Modern CPUs have an instruction pipeline, which allows some form of paral-
lelism on a single CPU core. This is realized by splitting up an instruction into
different stages which can be executed in the same cycle. In order to assess the
performance of an instructions we use two notions, the latency and the inverse
throughput. Latency corresponds to the number of clock cycles we have to wait
until we get the result of an instruction, while the inverse throughput is the
number of clock cycles we have to wait until we can issue the same instruction
again.

Utilizing the pipeline is an important performance consideration and can
especially be useful for instructions with a high latency and low inverse through-
put. This has previously been studied in various AES-based designs [20,27,29] to
increase the performance of cryptographic operations. In the case of SPHINCS
it is particularly easy to keep the pipeline filled up, as one has multiple inde-
pendent inputs available for most operations. For instance, the WOTS™ chains
can be computed in parallel and most levels of a hash tree allow a high degree
of parallelism.

4.2 Vector Instructions

Another important feature of modern microprocessors are vector units which
provide parallelism through single instruction, multiple data (SIMD) instruc-
tions. These instructions allow to apply the same operation to multiple values
stored in a wvector register and can significantly increase the throughput. For
many cryptographic primitives the fastest implementations utilize SIMD instruc-
tions. While we often have to pack the data in a specific format, these costs are
compensated by processing multiple messages/blocks in parallel. Especially in
the case of hash-based signature where multiple independent inputs are almost
constantly available it allows us to fully utilize this feature for a very efficient
implementation.

On the current Intel and AMD platforms? the vector extensions is called
AVX2, which features 16 registers of 256-bit. This will be further extended to
AVX-5123, allowing to operate on 512-bit vectors which will likely speed-up all
vector implementations through the higher degree of parallelism.

The ARMvS-A architecture offers the NEON instruction set, which allows to
operate on 128-bit vectors. Future ARM platforms [34] will come with a scalable
vector extension (SVE), supporting vectors up to a size of 2048 bits and hence
allowing 16 times the parallelism compared to the current ARM processors.

2 AVX2 is available since Intel Haswell, for older platforms the predecessor AVX can
be used which supports 128-bit vectors.

3 AVX-512 can already be found in Xeon Phi (Knights Landing) and Skylake-X pro-
Cessors.
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4.3 Crypto Extensions

An increasing number of platforms provide instructions carrying out crypto-
graphic operations, which provide a significant speed-up for the supported prim-
itives while also providing a constant running time and protection against cache-
timing attacks. All recent Intel platforms provide instructions for the round func-
tion of the AES and a similar extensions is available on ARMv8-A. Additionally,
the ARM crypto extensions support SHA-1 and SHA256. On the newest AMD
platform Ryzen these instructions are also available and support for them is
also planned for the next generation of Intel processors. An overview of these
instructions and their performance characteristics is given in Table 3.

4.4 ChaCha-F and -H

The CHACHA permutation is very fast in software and benefits strongly from
the SIMD features on modern CPUs, which is also one of the main motivations
why the SPHINCS designers use it for instantiating SPHINCS. As the design
is based on 32-bit words, AVX2 can be utilized to process up to 8 blocks in
parallel. Similar, using ARM NEON we can process 4 blocks in parallel. On
Intel platforms we use the original AVX2 implementation of CHACHA provided
with SPHINCS in [6]. For ARM we use the implementation by Romain Dolbeau
available in Supercop [6], as it is the fastest available using on the ARM Cortex
A57, to construct ChaCha-F and ChaCha-H.

4.5 SHA256-F and -H

SHA256 is also based around operations on 32-bit words and therefore bene-
fits in the same way as CHACHA from the use of SIMD instructions. For Intel
Haswell and Skylake we implemented SHA256 using AVX2 processing 8 blocks
in parallel.

We use eight registers, where each one contains one 32-bit word of the state
S; for all eight blocks (see Fig.5). We assume that the incoming message blocks
lie consecutively in memory and load them into 16 256-bit vectors. In order to
have an efficient implementation of the message expansion we have to transpose
the content of these vectors. This adds an overhead of 32 pack/unpack and 16
permute instructions. Note that this is not required for the state words, as we
can simply use the transposed initial value.

By using this data representation the round function and message expansion
can be implemented very efficiently and we require the same number of oper-
ations as none vectorized implementation. In order to get the correct output
format we have to again transpose the state which adds another 16 pack/unpack
and 8 permute instructions.

For AMD Ryzen and ARM we use the SHA256 crypto extensions as those
implementations compare favorable in performance. The latency of these instruc-
tions is fairly high on both platforms and therefore we interleave four calls in
parallel to make use of the instruction pipeline.
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Fig. 5. On the left the SHA256 state update and on the right the mapping of the state
for the eight blocks to the registers. A7 corresponds to the word A as input to round 4
for block j.

4.6 Keccak-F and -H

KANGAROOTWELVE already utilizes SIMD instructions and we base our con-
struction of KECCAK-F and KECCAK-H on the available implementation [7] of
KEccAk[b = 1600, = 12] processing 4 blocks in parallel. The same strategy can
be used to implement KECCAK[b = 800, = 12] processing 8 blocks in parallel.
Compared to SHA-3 as defined in FIPS PUB 202 we can gain a factor of ~ 4 in
speed as we can process double the number of blocks with half the number of
rounds when using KECCAK[b = 800, = 12].

For ARM we can use a similar approach, however only 2 (for KECCAK[b =
1600, = 12]) resp. 4 blocks can be processed in parallel. For hashing a single
input we use the ARMvS8 implementation provided in the Keccak Code pack-
age [7] and for multiple inputs we implemented a version of KECCAK[b = 800, r =
12] processing four blocks in parallel using a strategy similar to the x86 imple-
mentation.

4.7 Haraka

For x86 we use the latest version of HARAKA available online* and the only
difference between the platforms is to find the optimal number of parallel
calls. Depending on the platform it is better to interleave four or eight calls
to HARAKA-F resp. HARAKA-H, which is related to the latency of the aesenc
instruction (see Table 3). We therefore use eight calls in parallel on Haswell and
four on Skylake/Ryzen.

One of the main difference between the AES instruction set on Intel and
ARM is that on ARM one round of AES is split up into two instructions aese
and aesmc. It is very important that these two instructions are adjacent, as
this significantly reduces the latency®. Another difference is that on Intel the
key addition happens at the end of the round which aligns with the HARAKA

* See https://github.com /kste/haraka.
5 see ARM Cortex A57 Software Optimization Guide, Page 35.
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specification while the aese instruction on ARM adds the key at the beginning.
One AES round on these platforms is therefore defined as

aesenc = AddKey o MixColumns o ShiftRows o SubBytes
aesmc o aese = MixColumns o ShiftRows o SubBytes o AddKey.

(10)

For an efficient implementation we can use a different set of round con-
stants to take this into account. HARAKA-256 uses the round constants RC;
and RCy; 41 in the ith AES layer. In the ARM implementation we use an all
zero constant for the first call and RCy, RC; for the second layer. For the third
AES layer we compute RCj||RC% = mix,ss(RCy, RC3) (see Fig. 6). For the mix-
ing operation used in HARAKA we can replace pack/unpack with the equivalent
instruction on ARM zip1l and zip2.
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Fig. 6. Implementation of HARAKA-256 on ARM using the AES specific instructions.
The order of mix and the addition of round constants are exchanged to facilitate the
free XOR from the key addition of aese.

4.8 Simpira

SIMPIRA is another design which utilizes the AES round function, but in a Feistel
network and therefore can be implemented with the AES instructions available
on both x86 and ARM. The key addition is used to add a constant and to
realize the XOR in the Feistel. On Intel we use the implementation provided by
the SIMPIRA designers® while for ARM we provide a new implementation.

Similar to the case of HARAKA it is important to have aese and aesmc
aligned and interleave the calls to hide the latency. Also the different order of
the key addition needs to be taken into account, which requires an additional
XOR per round for b = 2 respectively two XORs for b = 4 to realize the Feistel
networks used in SIMPIRA. In the x86 implementation these XORs are for free
as the key addition happens at the end of aesenc which can be used to XOR
with the other branches. Overall this adds a slight overhead compared on the
ARM platforms, but still allows a very efficient implementation.

5 See http://mouha.be/simpira/.
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5 Performance Results

We base our implementation of SPHINCS on the source code provided by the
SPHINCS authors, which is also available in [6], and instantiate F and H with
the previously discussed primitives to measure the number of cycles required to
perform key generation, signing and verification.

The platforms we use for benchmarking include an Intel Haswell (i7-4770S
with 3.1 GHz), an Intel Skylake (i7-6700 with 3.4 GHz), an AMD Ryzen (1700
with 3.7 GHz), ARM Cortex A57 (Samsung Galaxy S6 with 2.1 GHz) and an
ARM Cortex A72 (Samsung Chromebook Plus with 2.0 GHz). All benchmarks
are done on a single core and any frequency scaling technologies like Turbo Boost
are deactivated. For measuring the cycle count we use the available performance
counter on Intel/AMD and the wall-clock time on ARM. For compiling we use
gee version 6.3.0 with the flags -03 -mavx2 -march=native -mtune=native
-fomit-frame-pointer on Intel/AMD and for ARM we crosscompile with -03
-mcpu=A57+crypto -fomit-frame-pointer.

As a first step we measured the performance of F and H for all our primitives
on all platforms (see Figs.7 and8). We only highlight here the performance
for processing multiple inputs in parallel, as in SPHINCS only a minority of
the operations can not be parallelized. For single inputs the performance drops
especially for the otherwise vectorized implementations of CHACHA, KECCAK
and SHA256 (on Intel). In general the gap between the implementations utilizing
crypto specific instructions and the vectorized implementations is much smaller
on Intel than on ARM. Especially, KEcCAK suffers from the smaller vector size
and the higher latency and worse throughput of the vector instructions on ARM
(see Table 3).

The performance numbers of these functions reflect directly in the costs for
carrying out key generation, signing and verification in SPHINCS. In Table 2,
we give an overview of the exact number of cycles required for each operation
for the different instantiations of SPHINCS. Unsurprisingly, signing is the most
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Fig. 7. Performance of F on different platforms for processing multiple inputs in par-
allel. All numbers given are in cycles per byte.
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Fig. 8. Performance of H on different platforms for processing multiple inputs in par-
allel. All