
Chapter 4
Optimal Control of FBSDE with Partially
Observable Information

In this chapter, we study an optimal control problem with state process governed by
a nonlinear FBSDE and with partially observable information, i.e., Problem B in-
troduced in Section 1.2. For simplicity, we take the dimensions n = m = k = k̃ = 1.
Using a direct method and a Malliavin derivative method, we establish two versions
of the stochastic maximum principle for the characterization of the optimal control.
To demonstrate the applicability, we work out an illustrative example within the
framework of recursive utility and then solve it via the stochastic maximum princi-
ple and the stochastic filtering.

4.1 A Direct Method

4.1.1 Some Prior Estimates

Recall that Problem B consists of the state equation
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dxv(t) = b(t,xv(t),v(t))dt +σ(t,xv(t),v(t))dW (t)
+σ̃(t,xv(t),v(t))dW̃ v(t),

−dyv(t) = g(t,xv(t),yv(t),zv(t), z̃v(t),v(t))dt
−zv(t)dW (t)− z̃v(t)dY (t),

xv(0) = x0, yv(T ) = f (xv(T )),

(4.1)

and the cost function

J(v(·)) = E
v
[∫ T

0
l(t,xv(t),yv(t),zv(t), z̃v(t),v(t))dt +φ(xv(T ))+ γ(yv(0))

]

.

(4.2)
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The information is provided by the observation equation
{

dY (t) = h(t,xv(t))dt +dW̃ v(t),
Y (0) = 0,

(4.3)

Recall also that the process Zv(t) is given by (1.16) which helps to transfer W̃ v

into a Brownian motion under a new probability measure P
v.

Let ε ∈ (0,1) and v(·) such that v(·)+u(·)∈Uad . By the convexity of U , u+εv∈
Uad . Denoted by (xu+εv(·),yu+εv(·),zu+εv(·), z̃u+εv(·)) and Zu+εv(·) the solutions of
(4.1) and (1.16) along with the control u(·)+ εv(·). Making use of the Burkholder–
Davis–Gundy (BDG) inequality and Gronwall’s inequality, we get the following
estimates.

Lemma 4.1. Under (H1.6), for any v(·) ∈ Uad there is a constant C > 0 such that
the solutions of (1.15) and (1.16) satisfy

sup
0≤t≤T

E|xv(t)|8 ≤C

(

1+ sup
0≤t≤T

E|v(t)|8
)

,

sup
0≤t≤T

E|yv(t)|2 ≤C

(

1+ sup
0≤t≤T

E|v(t)|2
)

,

E

(∫ T

0
|zv(t)|2dt +

∫ T

0
|z̃v(t)|2dt

)

≤C

(

1+ sup
0≤t≤T

E|v(t)|2
)

,

E|Zv(t)|� < ∞, ∀� > 0.

Lemma 4.2. Under (H1.6), there is a constant C > 0 such that

sup
0≤t≤T

E|xu+εv(t)− x(t)|8 ≤Cε8, sup
0≤t≤T

E|yu+εv(t)− y(t)|2 ≤Cε2,

E

∫ T

0
|zu+εv(t)− z(t)|2dt ≤Cε2, E

∫ T

0
|z̃u+εv(t)− z̃(t)|2dt ≤Cε2,

sup
0≤t≤T

E|Zu+εv(t)−Z(t)|2 ≤Cε2.

We introduce the variational equations
{

dZ1(t) =
(
Z1(t)h(t,x(t))+Z(t)hx(t,x(t))x

1(t)
)

dY (t),

Z1(0) = 0
(4.4)
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and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = {[bx(t,u)− σ̃x(t,u)h(t,x(t)) − σ̃(t,u)hx(t,x(t))]x
1(t)

+ [bv(t,u)− σ̃v(t,u)h(t,x(t))]v(t)}dt

+
[
σx(t,u)x

1(t)+σv(t,u)v(t)
]

dW (t)

+
[
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
]

dY (t),

−dy1(t) =
[
gx(t,u)x

1(t)+gy(t,u)y
1(t)+gz(t,u)z

1(t)

+gz̃(t,u)z̃
1(t)+gv(t,u)v(t)

]
dt

− z1(t)dW (t)− z̃1(t)dY (t),

x1(0) = 0, y1(T ) = fx(x(T ))x
1(T ),

(4.5)

where we used the notation convention of the last chapter. For example,

bx(t,u) = bx(t,x(t),u(t)) and gz(t,u) = gz(t,x(t),y(t),z(t), z̃(t),u(t)).

For any v(·) ∈ Uad , it is easy to see that under (H1.6), (4.4) and (4.5) admit a
unique solution, respectively.

Lemma 4.3. Under (H1.6), it follows that

E|x1(t)|8 < ∞, E|Z1(t)|4 < ∞. (4.6)

Let

φ ε(t) =
φ u+εv(t)−φ(t)

ε
−φ 1(t) with φ = x,y,z, z̃,Z. (4.7)

Note that φ ε defined in (4.7) is for ε ∈ [0,1), and it should not be confused with φ 1

defined in (4.5).

Lemma 4.4. If (H1.6) holds, then

lim
ε→0

sup
0≤t≤T

E|xε(t)|4 = 0, lim
ε→0

sup
0≤t≤T

E|Zε(t)|2 = 0,

lim
ε→0

E

∫ T

0
|zε(t)|2dt = 0, lim

ε→0
E

∫ T

0
|z̃ε(t)|2dt = 0,

lim
ε→0

sup
0≤t≤T

E|yε(t)|2 = 0.

Proof. It follows from (1.15) and (4.5) that

dxε(t) = bε(t)dt +σε(t)dW (t)+ σ̃ ε(t)dY (t),
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where

bε(t) =

(
b(t,u+ εv)−b(t,u)

ε
−bx(t,u)x

1(t)−bv(t,u)v(t)

)

−
(

σ̃(t,u+ εv)− σ̃(t,u)
ε

− σ̃x(t,u)x
1(t)− σ̃v(t,u)v(t)

)

h(t,x)

−
(

h(t,xu+εv)−h(t,x)
ε

−hx(t,x)x
1(t)

)

σ̃(t,u)

− σ̃(t,u+ εv)− σ̃(t,u)
ε

(
h(t,xu+εv)−h(t,x)

)
,

σε(t) =
σ(t,u+ εv)−σ(t,u)

ε
−σx(t,u)x

1(t)−σv(t,u)v(t),

and

σ̃ ε(t) =
σ̃(t,u+ εv)− σ̃(t,u)

ε
− σ̃x(t,u)x

1(t)− σ̃v(t,u)v(t).

Denote

Θ = (t,x+ ελ (xε + x1),u+ ελv) and Ξ = (t,x+ ελ (xε + x1)).

It is easy to show that

σε(t) = xε(t)
∫ 1

0
σx(Θ)dλ + x1(t)

(∫ 1

0
σx(Θ)dλ −σx(t,u)

)

+v(t)

(∫ 1

0
σv(Θ)dλ −σv(t,u)

)

.

Denote by γε(t) the maximum of
∣
∣φX (t,x+ ελ (xε + x1),u+ ελv)−φX(t,x,u)

∣
∣ (4.8)

for φ and X runs over σ , σ̃ , b, h and x, v, respectively. Then, by (H1.6) and Lem-
mas 4.2 and 4.3, we have

|σε(t)| ≤ K
(|xε(t)|+ (|x1(t)|+ |v(t)|)γε(t)

)
. (4.9)

Similarly, we can prove that

|σ̃ ε(t)| ≤ K
(|xε(t)|+ (|x1(t)|+ |v(t)|)γε(t)

)
,

and
|bε(t)| ≤ K

(|xε(t)|+ (|x1(t)|+ |v(t)|)(γε(t)∨ ε)
)
.

According to Hölder’s inequality and the BDG inequality, we derive
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E|xε(t)|4 ≤ CE

∫ t

0
|xε(s)|4ds

+C
∫ T

0

(
E|x1(t)|8 +E|v(t)|8)1/2

(
E(γε(t)∨ ε)8

)1/2
dt.

Note that E
(
γε(t)8

)→ 0. By Gronwall’s inequality, we obtain the first limit. The
second can be proved similarly.

To prove the other limit, we note that

−dyε(t) = gε(t)dt − zε(t)dW (t)− z̄ε(t)dY (t),

where

gε(t) = ε−1 (g(t,xu+εv,yu+εv,zu+εv, z̄u+εv,u+ εv)−g(t,x,y,z, z̄,u)
)

−(
gx(t)x

1(t)+gy(t)y
1(t)+gz(t)z

1(t)+gz̄(t)z̄
1(t)+gv(t)v(t)

)
.

Applying Itô’s formula, we get

d|yε(t)|2 =
(−2gε(t)yε(t)+ |zε(t)|2 + |z̄ε(t)|2)dt

+2yε(t)zε(t)dW (t)+2yε(t)z̄ε(t)dY (t).

Taking integral and then expectation, we have

E|yε(t)|2 −E|yε(T )|2 = E

∫ T

t
2gε(s)yε(s)ds−E

∫ T

t

(|zε(s)|2 + |z̄ε(s)|2)ds

≤ δE
∫ T

t
|gε(s)|2ds+δ−1

E

∫ T

t
|yε(s)|2ds

−E

∫ T

t

(|zε(s)|2 + |z̄ε(s)|2)ds, (4.10)

where δ > 0 is an arbitrary constant.
Similar to (4.9), we can prove that E|yε(T )|2 → 0 and

E|gε(s)|2 ≤ KE
(|xε(s)|2 + |yε(s)|2 + |zε(s)|2 + |z̄ε(s)|2)

+KE
((|x1(s)|2 + |y1(s)|2 + |z1(s)|2 + |z̄1(s)|2 + |v(s)|2)(γ̃ ε(s)∨ ε)

)
,

where K is a constant which may depend on x1 etc., and γ̃ ε is defined as (4.8) with
φ = g and X runs over x, y, z, z̄, v.

Note that γ̃ ε is bounded and convergent to 0, by the dominated convergent theo-
rem, we have

∫ T

0
E
((|x1(s)|2 + |y1(s)|2 + |z1(s)|2 + |z̄1(s)|2 + |v(s)|2)(γ̃ ε(s)∨ ε)

)
ds → 0.

Taking δ small enough such that δK < 1 in (4.10), it then follows from Gron-
wall’s inequality that the last three identities of the lemma hold. ��
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4.1.2 Stochastic Maximum Principle

The following assumption and adjoint equations will be needed in deriving the
stochastic maximum principle.

(H4.1) (i) For any t, τ such that t + τ ∈ [0,T ], and bounded FY
t -measurable

random variable ν , we formulate the control process v(s) ∈U, with

v(s) = νI[t,t+τ)(s), s ∈ [0,T ],

where I[t,t+τ)(s) is the indicator function on the set [t, t + τ ].
(ii) For any v(s) ∈FY

s with v(s) bounded, s ∈ [0,T ], there is an ε > 0 such that
u(·)+ εv(·) ∈Uad for ε ∈ (−1,1).

We formulate the adjoint equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p(t) = [gy(t,u)p(t)− ly(t,u)]dt

+[gz(t,u)p(t)− lz(t,u)]dW (t)

+ [(gz̃(t,u)−h(t,x(t))) p(t)− lz̃(t,u)]dW̃ (t),

−dq(t) = {[bx(t,u)− σ̃(t,u)hx(t,x(t))]q(t)

+σx(t,u)k(t)+ σ̃x(t,u)k̃(t)+hx(t,x(t))Q̃(t)

−gx(t,u)p(t)+ lx(t,u)}dt

− k(t)dW (t)− k̃(t)dW̃ (t),

p(0) = − γy(y(0)), q(1) =− fx(x(T ))p(T )+φx(x(T )),

(4.11)

and {
−dP(t) = l(t,u)dt −Q(t)dW (t)− Q̃(t)dW̃ (t),

P(T ) = φ(x(T )).
(4.12)

Hereinafter we adopt the notation W̃ (·) = W̃ u(·). Note that the appearance of the
driving Brownian motion W̃ v(·) in (4.1) makes adjoint equations (4.12) and (4.11)
dramatically different from the classical FBSDEs. Moreover, (1.25) is used to treat
the terms induced by partially observable information, which is unnecessary in the
cases of Peng [66], Øksendal and Sulem [61], Wu [100], and Yong [107].

We now state the first maximum principle for optimal control of Problem B.

Theorem 4.1. Let (H1.6), (H1.7), and (H4.1) hold. Assume that u(·) is a local min-
imum for J(v(·)), in the sense that for all process v(·) such that v(·)+u(·) ∈Uad,

J (ε) = J(u(·)+ εv(·)), ε ∈ [0,1)

attains its minimum at ε = 0. Suppose that for any v(·) ∈ Uad, the functions
φ , φx ∈ L 2

F
(Ω ;R), l, lx, ly, lz, lz̃, lv ∈ L 2

F
(0,T ;R). Furthermore, suppose that
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(1.25) and (1.26) admit unique solutions (P(·),Q(·), Q̃(·)) ∈ L 2
F (0,T ;R3) and

(p(·),q(·),k(·), k̃(·)) ∈L 2
F
(0,T ;R4), respectively. Then for any ν ∈U we have

E
u [Hv(t,x(t),y(t),z(t), z̃(t),u(t); p(t),q(t),k(t), k̃(t), Q̃(t))(ν −u(t))|FY

t

]≥ 0,

where the Hamiltonian function H : [0,T ]×R
4 ×U ×R

5 → R is defined by

H(t,x,y,z, z̃,v; p,q,k, k̃, Q̃) = b(t,x,v)q+σ(t,x,v)k+ σ̃(t,x,v)k̃+h(t,x)Q̃

−
(

g(t,x,y,z, z̃,v)−h(t,x)z̃
)

p+ l(t,x,y,z, z̃,v).

(4.13)

Proof. Note that

0 ≤ d
dε

J (ε)
∣
∣
∣
ε=0

= lim
ε→0

J(u(·)+ εv(·))− J(u(·))
ε

= lim
ε→0

1
ε
E

{∫ T

0

[(
Zu+εv(t)−Z(t)

)
l(t,u)

+Zu+εv(t)(l(t,u(t)+ εv(t))− l(t,u))
]

dt

+
(
Zu+εv(T )−Z(T )

)
φ(x(T ))+Zu+εv(T )

(
φ(xu+εv(T ))−φ(x(T ))

)

+γ(yu+εv(0))− γ(y(0))
}

. (4.14)

To deal with Z(·), let Γ (·) = Z1(·)Z−1(·). Making use of (1.16) and (4.4), by Itô’s
formula, we get

⎧
⎪⎨

⎪⎩

dΓ (t) = hx(t,x(t))x
1(t)(dY (t)−h(t,x(t))dt)

= hx(t,x(t))x
1(t)dW̃ (t),

Γ (0) = 0.

(4.15)

Applying Itô’s formula to P(·)Γ (·), p(·)y1(·), and q(·)x1(·), respectively, we derive

E
u
[

Γ (T )φ(x(T ))+
∫ T

0
Γ (t)l(t,u)dt

]

= E
u
∫ T

0
Q̃(t)hx(t,x(t))x

1(t)dt,

(4.16)

E
u [p(T ) fx(x(T ))x

1(T )+ γy(y(0))y
1(0)

]

= −E
u
∫ T

0

[
ly(t,u)y

1(t)+ lz(t,u)z
1(t)+ lz̃(t,u)z̃

1(t)
]

dt

−E
u
∫ T

0

[
gv(t,u)v(t)+gx(t,u)x

1(t)
]

p(t)dt

(4.17)
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and

E
u [φx(x(T ))x

1(T )− p(T ) fx(x(T ))x
1(T )

]

= E
u
∫ T

0
gx(t,u)x

1(t)p(t)dt

−E
u
∫ T

0

[
lx(t,u)+ Q̃(t)hx(t,x)

]
x1(t)dt

+E
u
∫ T

0

[
bv(t,u)q(t)+σv(t,u)k(t)+ σ̃v(t,u)k̃(t)

]
v(t)dt.

(4.18)

By Lemmas 4.2 and 4.4, we may continue (4.14) with

0 ≤ E
u [φx(x(T ))x

1(T )+ γy(y(0))y
1(0)

]

+E
u
[

φ(x(T ))Γ (T )+
∫ T

0
Γ (t)l(t,u)dt

]

+E
u
∫ T

0

[
lx(t,u)x

1(t)+ ly(t,u)y
1(t)

]
dt

+E
u
∫ T

0

[
lz(t,u)z

1(t)+ lz̃(t,u)z̃
1(t)

]
dt

+E
u
∫ T

0
lv(t,u)v(t)dt.

(4.19)

Substituting (4.16), (4.17), and (4.18) into (4.19) and recalling Condition (H4.1),
we have

0 ≤ E
u
∫ T

0

[
bv(t,u)q(t)+σv(t,u)k(t)+ σ̃(t,u)k̃(t)

]
v(t)dt

+E
u
∫ T

0
[lv(t,u)−gv(t,u)p(t)]v(t)dt

= E
u
∫ t+τ

t
νHv(s,x,y,z, z̃,u; p,q,k, k̃, Q̃)ds.

(4.20)

Differentiating with respect to τ , we get

E
u [νHv(t,x,y,z, z̃,u; p,q,k, k̃, Q̃)|FY

t

]≥ 0.

The proof is then completed. ��

4.2 A Malliavin Derivative Method

We now state the second maximum principle for optimal control of Problem B.

Theorem 4.2. Let (H1.6), (H1.7), and (H4.1) hold. Assume that u(·) is a local min-
imum for J(v(·)), in the sense that for all processes v(·) with u(·)+ v(·) ∈Uad,
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J (ε) = J(u(·)+ εv(·)), ε ∈ [0,1]

attains its minimum at ε = 0. Suppose that (1.27) admits the unique solution p̄(·) ∈
L 2

F (0,T ;D1,2). Assume that φ , φx ∈ D1,2, l, lx, and Ψ(t,s) are in L1,2(R) for all
0 ≤ t ≤ s ≤ T . Then for any ν ∈U we have

E
u
[
H̄v(t,x(t),y(t),z(t), z̃(t),u(t); p̄(t), q̄(t), k̄(t), ¯̃k(t))(ν −u(t))

∣
∣
∣FY

t

]
≥ 0,

where H̄v is defined by

H̄v(t,x,y,z, z̄,v; p̄, q̄, k̄, ¯̃k) = bv(t,x,v)q̄+σv(t,x,v)k̄+ σ̃v(t,x,v)
¯̃k

−gv(t,x,y,z, z̃,v) p̄+ lv(t,x,y,z, z̄,v).

Proof. If u(·) is a local minimum for J(v(·)), then

0 ≤ d
dε

J (ε)
∣
∣
∣
ε=0

= E
u
(

φ(x(T ))Γ (T )+
∫ T

0
Γ (t)l(t,u)dt

)

+E
u [(φx(x(T ))− p̄(T ) fx(x(T )))x1(T )

]

+E
u (p̄(T ) fx(x(T ))x

1(T )+ γy(y(0))y
1(0)

)

+E
u
∫ T

0

(
lx(t,u)x

1(t)+ ly(t,u)y
1(t)

)
dt

+E
u
∫ T

0

(
lz(t,u)z

1(t)+ lz̃(t,u)z̃
1(t)

)
dt

+E
u
∫ T

0
lv(t,u)v(t)dt.

(4.21)

According to (4.15), Lemmas A.7 and A.8, we have

E
u (φ(x(T ))Γ (T )) = E

u
(

φ(x(T ))
∫ T

0
hx(t,x)x

1(t)dW̃ (t)

)

= E
u
∫ T

0
hx(t,x)x

1(t)D(W̃ )
t φ(x(T ))dt

(4.22)

and

E
u
∫ T

0
Γ (t)l(t,u)dt = E

u
∫ T

0
l(t,u)

∫ t

0
hx(s,x)x

1(s)dW̃ (s)dt

= E
u
∫ T

0

∫ t

0
hx(t,x)x

1(t)D(W̃ )
s l(t,u)dsdt

= E
u
∫ T

0

(∫ T

t
D(W̃ )

t l(s,u)ds
)

hx(t,x)x
1(t)dt.

(4.23)
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Note that, in deriving the last line in (4.23), we used Fubini’s theorem. It then fol-
lows from (4.22) and (4.23) that

E
u
(

φ(x(T ))Γ (T )+
∫ T

0
Γ (t)l(t,u)dt

)

= E
u
∫ T

0

(

D(W̃ )
t φ(x(T ))+

∫ T

t
D(W̃ )

t l(s,u)ds

)

hx(t,x)x
1(t)dt

= E
u
∫ T

0
hx(t,x)x

1(t)D(W̃ )
t Π(t)dt.

(4.24)

Similarly,

E
u [(φx(x(T ))− p̄(T ) fx(x(T )))x1(T )

]
(4.25)

= E
u
{

(φx(x(T ))− p̄(T ) fx(x(T )))

×
[∫ T

0

(
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

)
dt

+
∫ T

0

(
σx(t,u)x

1(t)+σv(t,u)v(t)
)

dW (t)

+
∫ T

0

(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)

dW̃ (t)

]}

= E
u
∫ T

0
(φx(x(T ))− p̄(T ) fx(x(T )))

×
{
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

+
(
σx(t,u)x

1(t)+σv(t,u)v(t)
)

D(W )
t (φx(x(T ))− p̄(T ) fx(x(T )))

+
(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)

D(W̃ )
t (φx(x(T ))− p̄(T ) fx(x(T )))

}
dt.

By (4.5), and Lemmas A.7 and A.8, we have

E
u
∫ T

0
lx(t,u)x

1(t)dt

= E
u
∫ T

0

∫ t

0

{
lx(t,u)

[
(bx(s,u)− σ̃(s,u)hx(s,x))x1(s)+bv(s,u)v(s)

]

+
(
σx(s,u)x

1(s)+σv(s,u)v(s)
)

D(W )
s lx(t,u)

+
(
σ̃x(s,u)x

1(s)+ σ̃v(s,u)v(s)
)

D(W̃ )
s lx(t,u)

}
dsdt. (4.26)

Simple calculations from (4.26) then yield that
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E
u
∫ T

0
lx(t,u)x

1(t)dt

= E
u
∫ T

0

{∫ T

t
lx(s,u)ds

[
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

]

+
(
σx(t,u)x

1(t)+σv(t,u)v(t)
)∫ T

t
D(W )

t lx(s,u)ds

+
(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)∫ T

t
D(W̃ )

t lx(s,u)ds

}

dt. (4.27)

By (4.25) and (4.27) we then have

E
u
[

(φx(x(T ))− p̄(T ) fx(x(T )))x1(T )+
∫ T

0
lx(t,u)x

1(t)dt

]

= E
u
∫ T

0

{
Σ(t)

[
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

]

+
(
σx(t,u)x

1(t)+σv(t,u)v(t)
)

D(W )
t Σ(t)

+
(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)

D(W̃ )
t Σ(t)

}
dt. (4.28)

Applying Itô’s formula to p̄(·)y1(·), we derive

E
u [p̄(T ) fx(x(T ))x

1(T )+ γy(y(0))y
1(0)

]

= −E
u
∫ T

0

[
ly(t,u)y

1(t)+ lz(t,u)z
1(t)+ lz̃(t,u)z̃

1(t)
]

dt

−E
u
∫ T

0

[
gv(t,u)v(t)+gx(t,u)x

1(t)
]

p̄(t)dt.

(4.29)

Inserting (4.24), (4.28), and (4.29) into (4.21), we have

0 ≤ d
dε

J (ε)
∣
∣
∣
ε=0

= E
u
∫ T

0

[
Σ(t)(bx(t,u)− σ̃(t,u)hx(t,x))+σx(t,u)D

(W )
t Σ(t)

+σ̃x(t,u)D
(W̃ )
t Σ(t)+hx(t,x)D

(W̃ )
t Π(t)−gx(t,x,y,z, z̃,u) p̄(t)

]
x1(t)dt

+E
u
∫ T

0

[
Σ(t)bv(t,u)+σv(t,u)D

(W )
t Σ(t)+ σ̃v(t,u)D

(W̃ )
t Σ(t)

+ lv(t,u)−gv(t,u) p̄(t)
]
v(t)dt.

(4.30)

Since (4.30) holds for any admissible control v(·), hereafter we take

v(s) = νI(t,t+τ ](s),
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where ν = ν(ω) is a bounded FY
t -measurable random variable, 0 ≤ t ≤ t + τ ≤ T .

In this situation, it is easy to see from (4.5) that

x1(s) = 0, for 0 ≤ s ≤ t. (4.31)

Then (4.30) can be written as

0 ≤J1(τ)+J2(τ) (4.32)

with

J1(τ) = E
u
∫ T

t

[
Σ(s)(bx(s,u)− σ̃(s,u)hx(s,x))+σx(s,u)D

(W )
s Σ(s)

+ σ̃x(s,u)D
(W̃ )
s Σ(s)+hx(s,x)D

(W̃ )
s Π(s)

−gx(s,u) p̄(s)]x1(s)ds

(4.33)

and

J2(τ) = E
u
∫ t+τ

t
ν
[
Σ(s)bv(s,u)+σv(s,u)D

(W )
s Σ(s)+ σ̃v(s,u)D

(W̃ )
s Σ(s)

+ lv(s,u)−gv(s,u) p̄(s)
]
ds.

(4.34)

Note that with the special control v(s) = νI(t,t+τ ](s), we arrive at

dx1(s) = x1(s)
{
[bx(s,u)− σ̃(s,u)hx(s,x)]ds

+σx(s,u)dW (s)+ σ̃x(s,u)dW̃ (s)
}
, for s ≥ t + τ .

Solving the above equation, we get

x1(s) = x1(t + τ)Φ(t + τ ,s),

where

x1(t + τ) = ν
∫ t+τ

t

(
bv(r,u)dr+σv(r,u)dW (r)+ σ̃v(r,u)dW̃ (r)

)

+
∫ t+τ

t
x1(r) [(bx(r,u)− σ̃(r,u)hx(r,x))dr

+σx(r,u)dW (r)+ σ̃x(r,u)dW̃ (r)
]
.
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Then
d

dτ
J1(τ)

∣
∣
∣
τ=0

=
d

dτ
E

u
[∫ T

t+τ
Hx(s)x

1(t + τ)Φ(t + τ ,s)ds

]

τ=0

=
∫ T

t

d
dτ

E
u [Hx(s)x

1(t + τ)Φ(t + τ ,s)
]

τ=0 ds

=
∫ T

t

d
dτ

E
u [x1(t + τ)Ψ(t,s)

]

τ=0 ds.

= J11 +J12,

where

J11 =
∫ T

t

d
dτ

E
u
{

Ψ(t,s)
∫ t+τ

t
x1(r) [(bx(r,u)− σ̃(r,u)hx(r,x))dr

+σx(r,u)dW (r)+ σ̃x(r,u)dW̃ (r)
]
}

τ=0
ds

(4.35)

and

J12 =
∫ T

t

d
dτ

E
u
{

νΨ(t,s)
∫ t+τ

t
[bv(r,u)dr

+σv(r,u)dW (r)+ σ̃v(r,u)dW̃ (r)
]}

τ=0
ds.

(4.36)

According to (4.31), Lemmas A.7 and A.8, it is not difficult to derive that

J11 = 0

and

J12 = E
u
∫ T

t
ν
(

Ψ(t,s)bv(t,u)+σv(t,u)D
(W )
t Ψ(t,s)

+σ̃v(t,u)D
(W̃ )
t Ψ(t,s)

)

ds. (4.37)

Similarly,

d
dτ

J2(τ)
∣
∣
∣
τ=0

= E
u
{

ν
[
Σ(t)bv(t,u)+σv(t,u)D

(W )
t Σ(t)

+σ̃v(t,u)D
(W̃ )
t Σ(t)+ lv(t,u)−gv(t,u) p̄(t)

]}
.

(4.38)

From (4.21), (4.37), and (4.38), we get

0 ≤ d
dε

J (ε)
∣
∣
∣
ε=0

= E
u
{

ν
[
bv(t,u)q̄(t)+σv(t,u)k̄(t)+ σ̃v(t,u)

¯̃k(t)

+ lv(t,u)−gv(t,u) p̄(t)
]}

.

The proof is then completed. ��
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4.3 A Recursive Utility Optimization Problem

This section focuses on illustrating Theorem 4.2 within the framework of recursive
utility. For convenience, we let C̃(t) = 0 in (1.7), 0 ≤ t ≤ T .

The aim of the policymaker is to find a control strategy u(·) ∈Uad so that

J(u(·)) = min
v(·)∈Uad

E
v
[

1
2

∫ T

0
(v(t)−M(t))2 dt − yv(0)

]

(4.39)

subject to (1.7), (1.8) and Definition 1.2, where M(·) is a pre-set target, and yv(·) is
a generalized recursive utility resulting from x and v. In the sense of El Karoui et al.
[19], yv(·) can be regarded as the solution of

{
−dyv(t) = g(t,xv(t),yv(t),zv(t), z̃v(t))dt − zv(t)dW (t)− z̃v(t)dY (t),

yv(T ) = f (xv(T )),

where f and g satisfy (H1.6). The example captures the scenario where the policy-
maker has two objectives: on one hand, the concern of the policymaker is to prevent
the control strategy v(·) from large deviations so as to stabilize the related economic
scheme, on the other hand, he/she would like to optimize the recursive utility. Note
that utility functional (4.39) is inspired by Shi and Wu [75], where an optimization
problem with complete information was studied.

With this setup, it is easy to see from (1.7) and (1.8) that

b(t,x,v) = A(t)x+B(t)v, σ(t,x,v) =C(t)v+D(t),

σ̃(t,x,v) = D̃(t), h(t,x) = 1
β α(t,x)− 1

2 β .

The new adjoint processes are written as

q̄(t) =− fx(x(T )) p̄(T )+
∫ T

t
Hx(s)Φ(t,s)ds,

k̄(t) = D(W )
t q̄(t), ¯̃k(t) = D(W̃ )

t q̄(t)

(4.40)

with
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d p̄(t) = p̄(t)

[

gy(t,x(t),y(t),z(t), z̃(t))dt +gz(t,x(t),y(t),z(t), z̃(t))dW (t)

+

(

gz̃(t,x(t),y(t),z(t), z̃(t))− 1
β

α(t,x(t))+
1
2

β
)

dW̃ (t)

]

,

p̄(0) = 1,

Hx(t) = − fx(x(T )) p̄(T )

[

A(t)− 1
β

D̃(t)αx(t,x(t))

]

+
1
β

αx(t,x(t))D
(W̃ )
t Π(t)

−gx(t,x(t),y(t),z(t), z̃(t)) p̄(t),
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Π(t) =
1
2

∫ T

t
(u(s)−M(s))2 ds

and

Φ(t,s) = exp

{∫ s

t

[

A(r)− 1
β

D̃(r)αx(r,x(r))

]

dr

}

.

According to Theorem 4.2 and (4.40), we have

Proposition 4.1. Let Hx(t)Φ(t,s) ∈ L1,2(R), 0 ≤ t ≤ s ≤ T . If u(·) is an optimal
control strategy, then it is necessary to satisfy

u(t) = M(t)−B(t)Eu [q̄(t)|FY
t

]−C(t)Eu
[
D(W )

t q̄(t)|FY
t

]
, (4.41)

where q̄(·) is the solution of (4.40).

Note that a more explicit representation of (4.41) strongly depends on the specific

structure of the distributions Eu
[
q̄(t)|FY

t

]
and E

u
[
D(W )

t q̄(t)|FY
t

]
. To illustrate this

point, let us consider a special case of Proposition 4.1 in detail.
(H4.2) Assume that g is independent of (x,y), and

g(t,z, z̃) = c(t)z+ c̃(t)z̃, f (x) = x and α(t,x) = α(t), ∀(t,z, z̃) ∈ [0,T ]×R
2,

where c(·), c̃(·), and α(·) are deterministic and bounded.
It follows from (4.40) that

q̄(t) = p̄(T )Ā(t), D(W )
t q̄(t) = c(t)Ā(t) p̄(T ),

with

Ā(t) =−
∫ T

t
A(s)e

∫ s
t A(r)drds−1.

Next, let
ˆ̄ps,t = E

u[ p̄(s)|FY
t ], 0 ≤ t ≤ s ≤ T

be the optimal extrapolation of p̄(·) with respect to

FY
t = σ{W̃ (r);0 ≤ r ≤ t}.

Then (4.41) is rewritten as

u(t) = M(t)− Ā(t)
(

B(t)+ c(t)C(t)
)

ˆ̄p1,t , (4.42)

where
ˆ̄ps,t = 1+

∫ t

0
c̄(r) ˆ̄p(r)dW̃ (r)

with
ˆ̄p(r) = e

∫ r
0 c̄(θ)dW̃ (θ)− 1

2
∫ r

0 c̄2(θ)dθ and c̄(r) = c̃(r)− 1
β

α(r)+
1
2

β .
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Furthermore, the optimal cost functional can be derived in terms of (4.39) and
(4.42).

We now summarize the result as follows.

Corollary 4.1. Under (H4.2), the optimal control strategy of the underlying problem
is given uniquely by (4.42).

4.4 Notes

The earliest research on partially observable optimal control can be traced back to
Florentin [22]. Since this paper was published in 1962, numerous people have con-
tributed to this field. The interested reader is referred to Davis and Varaiya [16],
Fleming and Pardoux [21], Bensoussan [6], Elliott et al. [20], Zhang and Xie [113],
Tang [78], Shen et al. [72], and references cited therein for the development in vari-
ous subjects, especially in maximum principle as well as dynamic programming.

However, prior to the beginning of 21st century, almost all the combined prob-
lems of control and filtering were formulated under the assumption that the state
processes solve (forward) SDEs. With the rapid development and broad application
of FBSDE in stochastic control theory, it is nature to say whether we can establish a
combined model of filtering and control of FBSDE. Starting about from 2003, Zhen
Wu and his graduate students at the School of Mathematics and System Sciences
(now named the School of Mathematics), Shandong University, began to focus on
exploring such a model. After about 5 years, the first result on Kalman–Bucy fil-
tering of a special class of fully coupled FBSDEs was published, while a backward
separation approach was proposed and was used to solve a partially observable LQ
control problem driven by SDE in Wang and Wu [84]. At almost the same time,
the first partially observable optimal control model of FBSDE was established by
Wang and Wu [84] and Wu [100] from the viewpoint of mathematical finance, and
then was studied by them via combining the backward separation approach with the
maximum principle. Along this line, there are a few interesting papers to extend the
model in several aspects, especially in maximum principle and nonlinear backward
stochastic differential filtering equation. See, e.g., the doctoral dissertation of Wang
[82], the survey paper of Wang et al. [93] for more details on these aspects. Note
that how to obtain a dynamic programming principle corresponding to the partially
observable forward-backward stochastic control model is also valuable topic. As far
as we know, it has, however, not been explored so far.

The results introduced in this chapter are taken mainly from Wang et al. [88].
Similar to Chapter 3, some versions of verification theorem for optimality of Prob-
lem B can be derived. We omit them for the length of the book.
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