
Chapter 2
Filtering of BSDE and FBSDE

In this chapter, we develop some filtering results for the solutions to BSDEs and
FBSDEs, which play an important role in studying the optimal control with incom-
plete information. We first state a theorem on the stochastic filtering of a general
stochastic process. The proof of that result can be found in Liptser and Shiyayev
[49], so we omit it here. Then, we apply this result to the stochastic filtering for the
solutions to BSDEs in Section 3.2 and to those for FBSDEs in Section 3.3.

2.1 Stochastic Filtering of Stochastic Processes

Consider a stochastic process

x(t) = x(0)+
∫ t

0
b(s)ds+m(t), (2.1)

where m(·) is an Ft-martingale, and b(·) is a stochastic process with

P

(∫ T

0
|b(s)|ds < ∞

)
= 1.

Assume that x(·) is observed via an Itô process

Y (t) = Y (0)+
∫ t

0
h(s)ds+

∫ t

0
f (s,Y )dW (s).

Here W (·) is a 1-dimensional standard Brownian motion defined on (Ω ,F ,(Ft),P);
h : Ω × [0,T ]→ R and f : [0,T ]×R→ R satisfy

P

(∫ T

0
|h(s)|ds < ∞

)
= 1, P

(∫ T

0
| f (s,Y )|2ds < ∞

)
= 1
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with f (t,Y ), Y ∈ C([0,T ];R), being Bt-measurable for each 0 ≤ t ≤ T . Further-
more, we assume that for any Y , Y1, Y2 ∈ C([0,T ];R), 0 ≤ t ≤ T , there are three
constants C, C1, C2 and a nondecreasing right continuous function 0 ≤ K(t) ≤ 1
such that

| f (t,Y )|2 ≤C1

∫ t

0
|1+Y (s)|2dK(s)+C2|1+Y (t)|2

and

| f (t,Y1)− f (t,Y2)|2 ≤C1

∫ t

0
|Y1(s)−Y2(s)|2dK(s)+C2|Y1(t)−Y2(t)|2.

For a stochastic process X(t), we call

X̂(t)≡ E
[
X(t)|FY

t

]

the optimal filtering of X(t) based on Y (·) up to time t, where FY
t = σ{Y (s);0 ≤

s ≤ t}. We now state the filtering equation of x(t) given in (2.1), whose proof can be
found in Liptser and Shiyayev (Theorem 8.1 of [49]).

Theorem 2.1. Let

sup
0≤t≤T

Ex2(t)< ∞, E

∫ T

0
[b2(t)+h2(t)]dt < ∞, f 2(t,Y )≥C > 0.

Then the optimal filtering of x(t) satisfies

x̂(t) = x̂(0)+
∫ t

0
b̂(s)ds+

∫ t

0

[
D̂(s)+

(̂xh)(s)− x̂(s)ĥ(s)
f (s,Y )

]
dŴ (s),

where (xh)(t) = x(t)h(t),

Ŵ (t) =
∫ t

0

dY (s)− ĥ(s)ds
f (s,Y )

is a Brownian motion, and D(t) is the stochastic process given by

D(t) =
d〈m,W 〉t

dt
.

2.2 Stochastic Filtering for BSDE

Suppose that the stochastic process (y(·),z1(·),z2(·)) is governed by a BSDE

y(t) = ξ +
∫ T

t
g(s,y(s),z1(s),z2(s))ds

−
∫ T

t
z1(s)dW1(s)−

∫ T

t
z2(s)dW2(s), (2.2)
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where (W1(·),W2(·)) is a 2-dimensional standard Brownian motion, ξ ∈L 2
F
(Ω ;R),

and g : [0,T ]×Ω ×R
3 → R is a given function. Equation (2.2) admits a unique

solution (y(·),z1(·),z2(·)) ∈L 2
F
(0,T ;R3) under Conditions (Ha.1–Ha.2). Note that

the solution involves (z1(·),z2(·)), which can be regarded as a control term to the
equation such that the adapted solutions exist. Next, we assume that the observable
process Y (·) is the Itô process given by

Y (t) =
∫ t

0
h(s)ds+

∫ t

0
f (s)dW1(s), (2.3)

where f : [0,T ]→R and h : Ω × [0,T ]→R are measurable mappings. The optimal
nonlinear filtering is to compute X̂(t) = E[X(t)|FY

t ], where X = y, z1 and z2. Since
zi(·) can be calculated by the Malliavin derivatives of y(·) with respect to Wi(·)
(i = 1,2) (see, e.g., El Karoui et al. [19]), we focus on the filtering of y(·). For any
t ∈ [0,T ], we adopt the following notations for simplification of the presentation

ĥ(t) = E[h(t)|FY
t ],

ĝ(t) = E[g(t,y(t),z1(t),z2(t))|FY
t ],

(̂yh)(t) = E[y(t)h(t)|FY
t ].

Also, we need the following assumption on the coefficients of (2.2) and (2.3).
(H2.1) The function g(·,0,0,0) ∈ L 2

F (0,T ;R), and g is Lipschitz in (y,z1,z2)
uniformly for (ω, t) ∈ Ω × [0,T ]. f is bounded and deterministic, and f−1 is also
bounded. h is in L 2

F
(0,T ;R).

We now state the main result of this section, which plays an important role in the
study of incomplete information stochastic control for BSDE.

Theorem 2.2. Under (H2.1), the optimal filtering ŷ(·) is governed by

ŷ(t) = E[ξ |FY
T ]+

∫ T

t
ĝ(s)ds

−
∫ T

t

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s), (2.4)

where

Ŵ (t) =
∫ t

0

1
f (s)

(
dY (s)− ĥ(s)ds

)
(2.5)

is a 1-dimensional standard Brownian motion defined on (Ω ,FY ,(FY
t )0≤t≤T ,P).

Proof. Equation (2.2) admits a unique solution (y(·),z1(·),z2(·)) ∈ L 2
F
(0,T ;R3),

so y(·) can be rewritten as an Itô process as follows:

y(t) = y(0)−
∫ t

0
g(s,y(s),z1(s),z2(s))ds

+
∫ t

0
z1(s)dW1(s)+

∫ t

0
z2(s)dW2(s). (2.6)
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Now (2.6) and (2.3) can be regarded as the state equation and the observation equa-
tion, respectively. Using Theorem 2.1, we have

ŷ(t) = ŷ(0)−
∫ t

0
ĝ(s)ds+

∫ t

0

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s), (2.7)

where Ŵ (·) is given by (2.5). Similarly, we have

ŷ(T ) = ŷ(0)−
∫ T

0
ĝ(s)ds+

∫ T

0

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s). (2.8)

Subtracting (2.8) from (2.7), we obtain that

ŷ(t) = ŷ(T )+
∫ T

t
ĝ(s)ds−

∫ T

t

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s).

The verification of the terminal condition ŷ(T ) = E[ξ |FY
T ] is trivial. Thus the proof

is completed. 	

The following result is an immediate consequence of Theorem 2.2.

Corollary 2.1. Under (H2.1), if g1 : [0,T ]×R
2 → R and h : Ω × [0,T ]→ R satisfy

ĝ(t) = g1(t, ŷ(t), ẑ1(t)) and (̂yh)(t) = ŷ(t)ĥ(t),

respectively, then the optimal filtering (ŷ(·), ẑ1(·)) is a solution of the following back-
ward filtering equation:

ŷ(t) = E[ξ |FY
T ]+

∫ T

t
g1(s, ŷ(s), ẑ1(s))ds−

∫ T

t
ẑ1(s)dŴ (s),

where

Ŵ (t) =
∫ t

0

1
f (s)

(
dY (s)− ĥ(s)ds

)

is a 1-dimensional standard Brownian motion defined on (Ω ,FY ,(FY
t )0≤t≤T ,P).

In what follows, suppose that the conditional probability distribution of y(t)
based on FY

t has the density

ψ(t,x) =
dP(y(t)≤ x|FY

t )

dx
, (t,x) ∈ [0,T ]×R,

which is measurable in (t,x,ω). We proceed to deriving the equation satisfied by
this conditional density. Note that the nonlinear filtering ŷ(·) can be represented by

ŷ(t) = E[y(t)|FY
t ] =

∫ ∞

−∞
xψ(t,x)dx.
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Next, we assume that the observation function h(s) in (2.3) depends on the signal
in a deterministic way, namely, we abuse notation a bit, there is a function h : [0,T ]×
R→ R such that observation equation (2.3) is replaced by

Y (t) =
∫ t

0
h(s,y(s))ds+

∫ t

0
f (s)dW1(s). (2.9)

We introduce the following assumptions:
(H2.2) The function (to be used in Theorem 2.3 below as test function for filter-

ing) ϕ(·) : R→ R and its derivatives up to order 2 are uniformly bounded.
(H2.3) The function ϕ(·) : R→ R has compact support.
(H2.4) The functions g : [0,T ]×R

3 → R and h : [0,T ]×R→ R are Borel mea-
surable, and h is Lipschitz in x ∈ R uniformly for t ∈ [0,T ].

(H2.5) The solution of (2.2) satisfies zi(t) = gi(t,y(t)), where gi : [0,T ]×R→R

(i = 1,2) are also Borel measurable.
(H2.6) The partial derivatives

[ψ(t,x)g(t,x,y,z)]x, [yh(t,x)]x,

[ψ(t,x)(h(t,x)− ĥ(t,x))g(t,x,y,z)]x,

[(y2 + z2)ψ(t,x)]xx and [(y2 + z2)(h(t,x)− ĥ(t,x))ψ(t,x)]xx

exist.
(H2.7)

∫ T

0

∫ ∞

−∞
|ϕ(x)L ∗ψ(t,x)|dxdt < ∞,

E

∫ T

0

∫ ∞

−∞
ϕ2(x)

[
ψ(t,x)

(
h(t,x)− ĥ(t,x)

)
+N ∗ψ(t,x)

]2
dxdt < ∞

with the notations

L ∗ψ(t,x) =−[ψ(t,x)g(t,x,y,z)]x − 1
2
[ψ(t,x)(y2 + z2)]xx

and
N ∗ψ(t,x) =−[ψ(t,x)y]x.

Note that (H2.2), (H2.3), (H2.4), (H2.6), and (H2.7) are standard in the theory of
nonlinear filtering, while (H2.5) is reasonable under some constraints on ξ and g.
We give an example below for which (H2.5) holds.

Example 2.1. We consider the BSDE

y(t) = ξ +
∫ T

t
(a(s)y(s)+b1(s)z1(s)+b2(s)z2(s))ds

−
∫ T

t
z1(s)dW1(s)−

∫ T

t
z2(s)dW2(s),
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where a(·), bi(·) (i = 1,2) are bounded and deterministic, and

ξ = exp

(
2

∑
i=1

∫ T

0
fi(t)dWi(t)

)
.

Then, (H2.5) holds.

Proof. It is easy to see that the BSDE has a unique solution (y(·),z1(·),z2(·)) ∈
L 2

F
(0,T ;R3). In fact, the solution can be represented as

y(t) = E[ξ x(T )|Ft ]

with

x(T ) = exp

{∫ T

0

[
a(t)− 1

2

(
b2

1(t)+b2
2(t)

)]
dt

+
∫ T

0
b1(t)dW1(t)+

∫ T

0
b2(t)dW2(t)

}
.

According to Proposition A.1, zi(·) is expressed by

zi(t) = D(Wi)
t E[ξ x(T )|Ft ]

= E

[
x(T )D(Wi)

t ξ |Ft

]
+bi(t)y(t),

where D(Wi)
t η stands for the Malliavin derivative of η with respect to Wi(·) (i= 1,2).

Note that D(Wi)
t ξ = ξ fi(t). Thus, zi(t) = ( fi(t)+bi(t))y(t), and hence (H2.5) holds.

	

Theorem 2.3. (i) If (H2.1), (H2.2), and (H2.5) hold, then the optimal filtering
ϕ̂(y(t)) satisfies

ϕ̂(y(t)) = E[ϕ(ξ )|FY
T ]+

∫ T

t
L̂ ϕ(y(s))ds

−
∫ T

t

{
N̂ ϕ(y(s))+

1
f (s)

[
ϕ̂h(s,y(s))− ϕ̂(y(s))ĥ(s,y(s))

]}
dŴ (s),

(2.10)
where

L̂ ϕ(y(s)) =E[L ϕ(y(s))|FY
s ],

N̂ ϕ(y(s)) =E[N ϕ(y(s))|FY
s ],

ϕ̂h(s,y(s)) =E[ϕ(y(s))h(s,y(s))|FY
s ],

with

L ϕ(y(s)) =ϕx(y(s))g(s,y(s),z1(s),z2(s))− 1
2

ϕxx(y(s))(z
2
1(s)+ z2

2(s)),

N ϕ(y(s)) =ϕx(y(s))z1(s),
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and

Ŵ (s) =
∫ s

0

1
f (t)

(
dY (t)− ĥ(t,y(t))

)
dt.

(ii) If (H2.1), (H2.3), (H2.4), (H2.6), (H2.7), (H2.8), (H2.9), and (H2.10) hold,
then the conditional density ψ(t,x) satisfies

ψ(t,x) = ψ(T,x)+
∫ T

t
L ∗ψ(s,x)ds−

∫ T

t

[
N ∗ψ(s,x)

+
1

f (s)
ψ(s,x)

(
h(s,x)−

∫ ∞

−∞
h(s,x)ψ(s,x)dx

)]
dŴ (s).

(2.11)

Proof. (i) Applying Itô’s formula to ϕ(y(t)), we have

ϕ(y(t)) =ϕ(ξ )+
∫ T

t
L ϕ(y(s))ds

−
∫ T

t
ϕx(y(s))z1(s)dW1(s)−

∫ T

t
ϕx(y(s))z2(s)dW2(s).

By the uniqueness of (y(·),z1(·),z2(·)), Theorems 2.1 and 2.2, the nonlinear filtering
equation (2.10) is obtained directly.

(ii) Due to (H2.5), (2.10) can be rewritten as

∫ ∞

−∞
ϕ(x)ψ(t,x)dx =

∫ ∞

−∞
ϕ(x)ψ(T,x)dx+ I − II, (2.12)

where

I =
∫ T

t

∫ ∞

−∞
L ϕ(x)ψ(s,x)dxds,

II =
∫ T

t

∫ ∞

−∞

[
N ϕ(x)+

1
f (s)

ϕ(x)
(
h(s,x)− ĥ(s,x)

)]
ψ(s,x)dxdŴ (s).

It follows from integration by parts and Fubini’s theorem that

I =
∫ ∞

−∞

∫ T

t
ϕ(x)L ∗ψ(s,x)dsdx.

Similarly,

II =
∫ ∞

−∞

∫ T

t
ϕ(x)

[
N ∗ψ(s,x)+

1
f (s)

ψ(s,x)
(
h(s,x)− ĥ(s,x)

)]
dŴ (s)dx.
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Substituting the above two identities into (2.12), we obtain
∫ ∞

−∞
ϕ(x)ψ(t,x)dx

=
∫ ∞

−∞
ϕ(x)

{
ψ(T,x)+

∫ T

t
L ∗ψ(s,x)ds

−
∫ T

t

[
N ∗ψ(s,x)+

1
f (s)

ψ(s,x)
(
h(s,x)− ĥ(s,x)

)]
dŴ (s)

}
dx.

The arbitrariness of ϕ(·) implies (2.11). The proof is then completed. 	

We emphasize that (2.11) is a new kind of backward stochastic partial differential

equation (BSPDE). Since the noise term is very complicated, it is not easy to prove
the existence and uniqueness of solution to the equation. We pose it here as an open
problem.

2.3 Stochastic Filtering for FBSDE

In this section, we first introduce the four-step scheme in solving FBSDEs. As an
example to this scheme, we then consider an optimization problem. To obtain an
explicit solution, we will apply Girsanov’s transformation to convert it to an LQ
control problem which can be solved in terms of an FBSDE without control variable.
Finally, we study the stochastic filtering problem for this FBSDE based on a linear
observation equation.

Consider a fully coupled FBSDE
⎧⎪⎨
⎪⎩

dx(t) = b(t,x(t),y(t),z(t))dt +σ(t,x(t),y(t),z(t))dW (t),

−dy(t) = g(t,x(t),y(t),z(t))dt − z(t)dW (t),

x(0) = x0, y(T ) = f (x(T )),

(2.13)

where b,g : [0,T ]×R
n+n+n×m →R

n, σ : [0,T ]×R
n+n+n×m →R

n×m, f : Ω ×R
n →

R
n are continuous functions; W (·) is an m-dimensional standard Brownian motion

defined on the filtered probability space (Ω ,F ,(Ft)0≤t≤T ,P); Ft is the natural
filtration generated by W (·), and x0 ∈ R

n. Under Conditions (Ha.3-Ha.4), there is a
unique solution (x(·),y(·),z(·)) to (2.13). Furthermore, using the four-step scheme
(see, e.g., Yong and Zhou [109]), y(·) and z(·) can be expressed as a functional of
x(·), respectively. Indeed,

y(t) = U(t,x(t)),

z(t) = Z(t,x(t),U(t,x(t)),Ux(t,x(t))),
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where U , Z, and x(·) satisfy

⎧⎪⎪⎨
⎪⎪⎩

U �
t +

1
2

tr
[
U �

xx(σσ�)(t,X ,U,Z(t,X ,U,Ux))
]
+ 〈b(t,X ,U,Ux),U

�
X 〉

+g�(t,X ,U,Ux) = 0, (t,X) ∈ (0,T )×R
n, �= 1, · · · ,n,

U(T,X) = f (X), X ∈ R
n,

Z(t,X , X̄ , X̃) = X̃σ(t,X , X̄ ,Z(t,X , X̄ , X̃)), (t,X , X̄ , X̃) ∈ [0,T ]×R
n+n+n×n,

and {
dx(t) = b̃(t,x(t))dt + σ̃(t,x(t))dW (t),

x(0) = x0

with
b̃(t,X) = b(t,X ,U(t,X),Z(t,X ,U(t,X),Ux(t,X))),

σ̃(t,X) = σ(t,X ,U(t,X),Z(t,X ,U(t,X),Ux(t,X))).

According to the relationship between (y(·),z(·)), and x(·), it suffices to compute the
optimal filtering of x(·). The detailed arguments are omitted due to the page limit.

To elaborate the above analysis, we present a simple example on filtering of
stochastic Hamiltonian system arising from a stochastic control problem. Specifi-
cally, let us consider a 1-dimensional control system, whose evolution is described
by

{
dx(t) = (A(t)x(t)+B(t)v(t))dt +C1(t)dW̃1(t)+C2(t)dW̃2(t),

x(0) = x0,
(2.14)

where v(·) is an element of the set

Uad =

{
v(·)

∣∣∣v(t) is an Ft-adapted process valued in R

and satisfies E
∫ T

0
v4(t)dt < ∞

}
.

Suppose that the cost functional is given by

J(v(·)) = ȳ(0),

where ȳ(·) is a solution to the BSDE

⎧⎪⎨
⎪⎩
−dȳ(t) = (a(t)x2(t)+b(t)ȳ(t)+ f1(t)z̄1(t)+ f2(t)z̄2(t)+ c(t)v2(t))dt

− z̄1(t)dW̃1(t)− z̄2(t)dW̃2(t),

ȳ(T ) = x2(T ).

(2.15)
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Here a(·) ≥ 0, c(·) ≥ ε > 0, A(·), B(·), C1(·), C2(·), f1(·), and f2(·) are uniformly
bounded, deterministic functions. For any v(·) ∈Uad , it is easy to see that

Eȳ2(T )< ∞,

and thus, there exists a unique solution to (2.14) and (2.15), respectively. Since the
drift term in (2.15) contains (z̄1(·), z̄2(·)), it causes us some trouble to express the
cost functional J(v(·)). To simplify it, we define a probability measure Q on the
space (Ω ,F ) by

dQ
dP

= exp

{∫ T

0
f1(t)dW̃1(t)+

∫ T

0
f2(t)dW̃2(t)− 1

2

∫ T

0
( f 2

1 (t)+ f 2
2 (t))dt

}
.

It follows from Girsanov’s theorem that (W1(·),W2(·)) defined by

W1(t) = W̃1(t)−
∫ t

0
f1(s)ds and W2(t) = W̃2(t)−

∫ t

0
f2(s)ds

is a 2-dimensional Brownian motion defined on the stochastic basis (Ω ,F ,(Ft),Q).
Then we can rewrite (2.14) and (2.15) as

⎧⎪⎨
⎪⎩

dx(t) = (A(t)x(t)+B(t)v(t)+C1(t) f1(t)+C2(t) f2(t))dt

+C1(t)dW1(t)+C2(t)dW2(t),

x(0) = x0,

(2.16)

⎧⎪⎨
⎪⎩
−dȳ(t) = (a(t)x2(t)+b(t)ȳ(t)+ c(t)v2(t))dt

− z̄1(t)dW1(t)− z̄2(t)dW2(t),

ȳ(T ) = x2(T ).

(2.17)

Integrating on both sides of (2.17), we get

J(v(·)) = ȳ(0) = EQ

[∫ T

0
e
∫ t

0 b(s)ds(a(t)x2(t)+ c(t)v2(t))dt + e
∫ T

0 b(t)dtx2(T )

]
.

Then minimizing the cost functional subject to v(·) ∈ Uad and (2.16) formulates
a complete information LQ optimal control problem. Since the drift term in (2.16)
contains the deterministic function C1(·) f1(·)+C2(·) f2(·), the classical technique of
completing squares cannot be used directly to solve the control problem. However,
stochastic maximum principle (see, e.g., Chapters 3–5) provides an alternative tool.
According to the maximum principle, we derive the desired optimal control

u(t) =−1
2

B(t)c−1(t)e−
∫ t

0 b(s)dsy(t),
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where the adjoint process y(·) satisfies a Hamiltonian system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =

(
A(t)x(t)− 1

2
B2(t)c−1(t)e−

∫ t
0 b(s)dsy(t)+C1(t) f1(t)+C2(t) f2(t)

)
dt

+C1(t)dW1(t)+C2(t)dW2(t),

−dy(t) =
(

2a(t)e
∫ t

0 b(s)dsx(t)+A(t)y(t)
)

dt − z1(t)dW1(t)− z2(t)dW2(t),

x(0) = x0, y(T ) = 2e
∫ T

0 b(s)dsx(T ).

It follows from Theorem A.3 that there is a unique solution to the above equation.
Suppose that (x(·),y(·),z1(·),z2(·)) cannot be observed directly; however, we can
observe a noisy process Y (·) related to x(·), whose dynamic is described by

{
dY (t) = (D(t)x(t)+F(t)Y (t)+ f2(t)H(t))dt +H(t)dW2(t),

Y (0) = 0,
(2.18)

where D(·), F(·), H(·), and H−1(·) are uniformly bounded, deterministic functions.
Obviously, there exists a unique solution for (2.18).

We now study the filtering (x̂(t), ŷ(t), ẑ1(t), ẑ2(t)) of (x(t),y(t),z1(t),z2(t)) with
respect to the observation Y (·) up to time t, i.e., we want to derive the explicit
expressions for

x̂(t) = EQ[x(t)|FY
t ], ŷ(t) = EQ[y(t)|FY

t ],

ẑ1(t) = EQ[z1(t)|FY
t ], ẑ2(t) = EQ[z2(t)|FY

t ]
(2.19)

and their square error estimates, where

FY
t = σ{Y (s);0 ≤ s ≤ t}.

The method used here is first to look for the relationship between x(·) and (y(·),z(·))
by the four-step scheme, then to compute (x̂(·), ŷ(·), ẑ1(·), ẑ2(·)) by traditional filter-
ing theory for SDE.

Set y(t) =U(t,x(t)). It follows from the four-step scheme that z1(t) and z2(t) can
be written as

z1(t) =C1(t)Ux(t,x(t)), z2(t) =C2(t)Ux(t,x(t)), (2.20)

where U(t,x) is a classical solution of the PDE

{
Ut(t,x)+LU(t,x)+2a(t)e

∫ t
0 b(s)dsx+A(t)U(t,x) = 0,

U(T,x) = 2e
∫ T

0 b(s)dsx,
(2.21)
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with

LU(t,x) =
1
2
(C2

1(t)+C2
2(t))Uxx(t,x)

+

(
A(t)x− 1

2
B2(t)c−1(t)e−

∫ t
0 b(s)dsU(t,x)

+C1(t) f1(t)+C2(t) f2(t)

)
Ux(t,x).

Noticing the terminal condition of (2.21), we set

U(t,x) = Π(t)x+π(t),

where Π(·) and π(·) satisfy

⎧⎨
⎩

Π̇(t)+2A(t)Π(t)− 1
2

B2(t)c−1(t)e−
∫ t

0 b(s)dsΠ 2(t)+2a(t)e
∫ t

0 b(s)ds = 0,

Π(T ) = 2e
∫ T

0 b(s)ds,

(2.22)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π̇(t)+
(

A(t)− 1
2

B2(t)c−1(t)e−
∫ t

0 b(s)dsΠ(t)

)
π(t)

+(C1(t) f1(t)+C2(t) f2(t))Π(t) = 0,

π(T ) = 0,

(2.23)

respectively. From the classical ODE theory, we know that there exists a unique
solution for (2.22) and (2.23), respectively. Combining (2.20) with (2.23), we get

y(t) = Π(t)x(t)+π(t), z1(t) =C1(t)Π(t), z2(t) =C2(t)Π(t), (2.24)

where x(·) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =

[(
A(t)− 1

2
B2(t)c−1(t)Π(t)e−

∫ t
0 b(s)ds

)
x(t)

+C1(t) f1(t)+C2(t) f2(t)− 1
2

B2(t)c−1(t)π(t)e−
∫ t

0 b(s)ds
]

dt

+C1(t)dW1(t)+C2(t)dW2(t),

x(0) = x0.

Obviously,
ẑ1(t) =C1(t)Π(t), ẑ2(t) =C2(t)Π(t). (2.25)

Then we only need to compute x̂(t) and ŷ(t). Let P(t) = EQ(x(t)− x̂(t))2 be the
square error of the estimate x̂(t). From the fact that (x(t)− x̂(t)) ⊥FY

t and x(t)−
x̂(t) is Gaussian, we know that x(t)− x̂(t) is independent of FY

t . So
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P(t) = EQ(x(t)− x̂(t))2

= EQ[(x(t)− x̂(t))2|FY
t ].

Thanks to Theorem 2.1, we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂(t) =

[(
A(t)− 1

2
B2(t)c−1(t)Π(t)e−

∫ t
0 b(s)ds

)
x̂(t)+C1(t) f1(t)

+C2(t) f2(t)− 1
2

B2(t)c−1(t)π(t)e−
∫ t

0 b(s)ds
]

dt

+(C2(t)+D(t)H−1(t)P(t))dW̄ (t),

x̂(0) = x0,

(2.26)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṗ(t)−2

(
A(t)− 1

2
B2(t)c−1(t)Π(t)e−

∫ t
0 b(s)ds

)
P(t)

+(C2(t)+D(t)H−1(t)P(t))2 −C2
1(t)−C2

2(t) = 0,

P(0) = 0,

where

W̄ (t) =
∫ t

0
H−1(s)(dY (s)−D(s)x̂(s)−F(s)Y (s)− f2(s)H(s))ds

= W2(t)+
∫ t

0
D(s)H−1(s)(x(s)− x̂(s))ds

is an observable standard Brownian motion defined on (Ω ,FY ,(FY
t ),P). Further-

more, taking conditional expectations on both sides of (2.24), we get

ŷ(t) = Π(t)x̂(t)+π(t), (2.27)

where x̂(·) is the solution of (2.26). Then we have

Proposition 2.1. The stochastic filtering process (x̂(·), ŷ(·), ẑ1(·), ẑ2(·)) of the state
process (x(·),y(·),z1(·),z2(·)) based on the observation process Y (·) is given by
(2.26), (2.27), and (2.25).

2.4 Notes

The filtering problem is to obtain the best linear estimate x̂(t) of an unobservable
state x(t) based on the noisy observation data Yt

0 = {Y (s);0 ≤ s ≤ t} related to the
state. If lEx2(t) < ∞, then the best estimate x̂(t) of x(t) is equivalent to finding the
conditional expectation

x̂(t) = lE[x(t)|FY
t ]
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with FY
t = σ{Y (s);0 ≤ s ≤ t}. When the estimate depends linearly on the observa-

tions, we call it the linear filtering. Otherwise, it is referred to as the nonlinear fil-
tering. In the linear filtering theory, the most celebrated result is the linear quadratic
estimation, also known as the Kalman–Bucy filtering. The filtering was discovered
and was developed by Rudolf E. Kalman and Richard S. Bucy during the Cold
War between North American Treaty Organization and Warsaw Treaty Organiza-
tion. The Kalman–Bucy filtering works recursively and runs in real time, and thus,
it has numerous applications in the fields of aerospace, telecommunication, eco-
nomics, and so on. As far as we know, the most famous one among these applica-
tions is the Apollo Project, where the Kalman–Bucy filtering was used to estimate
the trajectories of manned spaceship going to Moon and back.

The filtering equation provided in Theorem 2.1 is one fundamental equation of
the nonlinear filtering theory. Lots of known filtering results can be deduced from
the equation, say, the Kalman–Bucy filtering. The deduction of the fundamental
equation follows the innovation process method, proposed originally by Bode and
Shannon [11], whose modern form was presented first by Kailath [34] and Kailath
and Frost [35]. Along this line, we get the equation of the conditional probability
density ψ(t,x) in Theorem 2.3, which is a new kind of nonlinear backward SPDE.
Historically, a similar SPDE was derived early by Stratonovich [77] and Kushner
[40] when they studied the condition probability density of a forward SDE. The
innovation method achieved its culmination with the famous work of Fujisaki et
al. [25]. The filtering equation is called the Kushner–Stratonovich equation or the
Kushner–FKK equation. Almost at the same time, Duncan [18], Mortensen [56],
and Zakai [112] studied the nonlinear filtering problem by virtue of the Kallianpur–
Striebel formula and the unnormalized filtering. They obtained a linear SPDE of the
unnormalized filtering, which is called the Duncan–Mortensen–Zakai equation, or,
simply, Zakai’s equation. See, e.g., Bensoussan [6] and Xiong [104] for a systematic
account.

Most results of Section 3.2 are taken from Wang et al. [95]. If the diffusion co-
efficients of (2.14) in Section 3.3 contain the state or the control, then (2.14) is
not Gaussian in general. Consequently, it is difficult to obtain an explicit filtering
equation. The filtering example is taken from Wang and Wu [84], where some ap-
plications to optimal control with partially observed information are also studied.
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