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Preface

Forward-backward stochastic differential equations (FBSDEs) are a special type of
stochastic differential equations that have been studied extensively since the early
1990s (see, e.g., El Karoui et al. [19]). It provides a viable tool to solve certain
stochastic control problems. Its applications have been found in many applied sci-
ences, especially in quantitative finance as they can be used to describe effectively
the dynamic behavior of the prices of the financial derivatives, investment portfo-
lios, and other time-varying financial instruments that are stochastic in nature. It is
also worth mentioning that one of the original motivations of a backward stochastic
differential equation (BSDE), initiated by Bismut’s early work in 1973 [10], is to
describe the “adjoint equation” in the stochastic maximum principle.

The study of the optimal control problems for FBSDEs is of theoretical and prac-
tical significance. A standard assumption in the literature is that the stochastic noises
in the model are observed completely. However, this is rarely the case in real-world
situations. The optimal control problems under complete information are studied
extensively. Nevertheless, very little is known about these problems when the infor-
mation is not complete. The goal of this book is to fill this gap in the literature by
presenting a systematical introduction and to attract more research attention to this
exciting subject.

The main difficulty of the optimal control under partial observation is the circular
dependency of the control process and the information filtration obtained from the
observation process. Namely, the control process must be adapted to the observation
filtration, while on the other hand the observation process depends on the control
process. We will introduce a backward separation approach to decouple the filtering
from the control problem.

The backward separation approach is applicable to many classes of nonlinear
control systems such as the controlled FBSDEs. Combining the approach with a
duality technique, we establish stochastic maximum principle (SMP) for optimal-
ity of a stochastic control for FBSDE, which is the conditional expectation of a
certain Hamiltonian function with respect to the available information. In order to
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determine an optimal control, we further study some nonlinear filters of BSDEs
and/or FBSDEs, which are different from the traditional filtering theory.

New control models arising from optimal premium, risk management, and recur-
sive utility are provided. By the theoretical results introduced here, optimal feedback
solutions of these control models are obtained.

This book is written in a style suitable for graduate students in mathematics and
engineering with basic knowledge of stochastic process, optimal control, and math-
ematical finance. This book is organized as follows. In Chapter 1, we present a few
motivating examples, formulate the general problem and various models, and pro-
vide an overview of this book. In Chapter 2, we consider the filtering problem for
the BSDEs and the FBSDEs. In Chapter 3, we study the stochastic maximum prin-
ciple for a general optimal control problem when the information filtration is given
by a general family of sub-σ -fields. Chapter 4 is then devoted to the special case
when the information filtration is provided by an observation process which itself
depends on the control process. Finally, we further specialize the setting to linear
state with quadratic lost functional (LQ problem) and apply to a concrete optimal
premium problem motivated from actuary science. We introduce the BSDEs and the
FBSDEs in the appendix for the convenience of the reader.

Wang acknowledges the financial support from the National Natural Science
Foundation for Excellent Young Scholars of China (61422305), the National Natu-
ral Science Foundation of China (11371228), and the Natural Science Foundation
for Distinguished Young Scholars of Shandong Province of China (JQ201418). Wu
acknowledges the financial support from the National Natural Science Foundation
of China (61573217), the National Natural Science Fund for Distinguished Young
Scholars of China (11125102), the National High-level Personnel of Special Sup-
port Program, and the Changjiang Scholar Program of Chinese Education Ministry.
Xiong acknowledges the financial support from FDCT 025/2016/A1 and start-up
fund of Southern University of Science and Technology Y01286220. We would like
to thank Hancheng Guo, Qizhu Liang, Shuaiqi Zhang, and Jiayu Zheng for their
careful reading of the manuscript and for making many constructive suggestions and
catching many typos from early versions of this manuscript. Finally, we would also
like to thank three anonymous reviewers for their constructive suggestions which
improve this book substantially.
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Chapter 1
Introduction

Stochastic optimal control with incomplete information is composed of filtering and
control. The filtering part is related to two stochastic processes: signal and obser-
vation. The signal process is what we want to estimate based on the observation
which provides the information we can use. Kalman–Bucy filtering is the most suc-
cessful result in linear filtering theory, which was obtained by Kalman and Bucy
[38]. Nonlinear filtering is much more difficult to study. There have been two es-
sentially different approaches so far. One is based on the innovation process, an
observable Brownian motion, with the martingale representation theorem. This the-
ory achieved its culmination with the celebrated paper of Fujisaki et al. [25]. See
also Liptser and Shiryayev [49] and Kallianpur [36] for a systematic account of this
approach. Another approach was introduced by Duncan [18], Mortensen [56], and
Zakai [112] independently, who derived a linear stochastic partial differential equa-
tion (SPDE) satisfied by the unnormalized conditional density function of the signal.
This SPDE is called the Duncan–Mortensen–Zakai equation, or, simply, Zakai’s
equation. Unlike the Kalman–Bucy filtering, nonlinear filtering results in infinite-
dimensional stochastic processes, whose analytical solutions are rarely available in
general. Much effort has been devoted to finding finite-dimensional filters and nu-
merical schemes. See, e.g., Benes̆ [5], Wonham [98], Xiong [104], and Bain and
Crisan [2] for the development of this aspect.

Stochastic optimal control under complete information has been studied exten-
sively. We refer the reader to Pham [69], Touzi [80], Yong and Zhou [109], and the
references therein for more details toward maximum principle, dynamic program-
ming, LQ control, and their applications to mathematical finance.

Stochastic optimal control with incomplete information is substantially more dif-
ficult comparing to its complete information counterpart. In the case of Gaussian
system, partially observable optimal control can be addressed by the traditional sep-
aration principle. This principle allows one to first compute the filtering of the state
process, and then to solve a complete information optimal control problem driven
by the filtering. For non-Gaussian system, however, this principle is usually invalid,

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
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2 1 Introduction

mainly due to the fact that mean square error of filtering depends on control. In prin-
ciple, we may turn this problem into a complete information optimal control driven
by the Zakai’s equation of the non-Gaussian state. This approach nevertheless leads
to an optimal control problem in infinite dimensional space, which is difficult to
solve. See, e.g., the monographs of Bensoussan [6] and Shen et al. [72] for system-
atic accounts. Therefore, new approaches and techniques need to be developed to
study this problem.

Motivated by the fact mentioned above, we propose a backward separation ap-
proach in this book, which decouples control and filtering by first deducing optimal
control and then computing optimal filtering. Since we use the original, finite di-
mensional state and observation equations to calculate the variation of the control
problem, rather than Zakai’s equation of the state which is infinite dimensional in
general, lots of complicated stochastic calculus in infinite dimensional spaces are
avoided, in contrast with Bensoussan [6]. Thus, the backward separation approach
can be used to study the control problem in a more effective way. This is the first
main contribution of this book. The backward separation approach is also applicable
to other classes of nonlinear control systems such as the controlled forward back-
ward stochastic differential equations (FBSDEs). Combining the approach with a
duality technique, we establish a maximum principle (of Pontryagin’s type) for the
optimality of a stochastic control for the FBSDEs, which is the conditional expec-
tation of a certain Hamiltonian function with respect to the available information.
In order to determine an optimal control, we further study some nonlinear filters
of backward stochastic differential equations (BSDEs) and/or FBSDEs, which are
different from the traditional filtering theory. This can be regarded as the second
contribution of this book. The third contribution is as follows. New control models
arising from optimal premium, risk management, and recursive utility are provided.
By the theoretical results introduced here, optimal feedback solutions of these con-
trol models are obtained.

The rest of this chapter is organized as follows. We first give a few motivating
examples for stochastic optimal control with incomplete information. Then, we in-
troduce several main models that arise in practical applications. Finally, we give an
overview of the topics to be covered in this book.

1.1 Motivating Examples

In this section, we introduce three examples arising from different fields of appli-
cation. The first example comes from wireless communication that was in fact the
main motivation for filtering theory at its early stage. The second example comes
from actuarial science where the cash-balance process affecting the stock price is not
observed completely, instead, only the stock price itself is observed. The selection
of the optimal premium rate must be based on the available information from the
stock prices. Finally, in the third example, we introduce a risk minimizing problem
from mathematical finance, where the economic quality is only partially observable
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through the stock prices. Although both examples are based on the available stock
price information, the third example is different from the second that not only the
large deviation from the benchmark of the control strategy is prevented, but also the
risk of the economic quantity is minimized.

Throughout this book, we let T > 0 be a fixed time horizon, Ft be a natural fil-
tration generated by a certain standard Brownian motion up to time t, and F =FT .
Denote by (Ω ,F ,F ≡ (Ft)0≤t≤T ,P) a complete filtered probability space satisfy-
ing the usual conditions. Denote by R

m the m-dimensional Euclidean space, by | · |
(resp. 〈·, ·〉) the norm (resp. inner product) in a Euclidean space, by A� the trans-
pose of A, by fx the partial derivative of f with respect to a variable x. Denote by
L 2

F
(0,T ;S) the set of all S-valued, Ft-adapted, and square-integrable processes,

and by L 2
FT

(Ω ;S) the set of all S-valued, FT -measurable, and square-integrable

random variables. Sometimes, the set S in L 2
F
(0,T ;S) and L 2

FT
(Ω ;S) are omitted

for simplicity. Similar notations are used for other spaces and integrals.

1.1.1 Wireless Communication

A signal process x(t) taking values in a space S is to be transmitted to a receiver.
Because of the inaccuracy of measurements and the noisy environment, this signal
is not directly observable. Instead, we observe a function h(x(t)) of the signal plus
an m-dimensional white noise n(t), i.e.,

y(t) = h(x(t))+n(t),

where h : S → R
m, and y(t) is called the observation process.

Note that as a function of the time variable t, the white noise exists only in the
sense of generalized functions, it is the derivative of a Brownian motion that exists
in the ordinary sense. To obtain a tractable mathematical model for the observation
data, it is natural to consider the accumulated observation process

Y (t) =
∫ t

0
y(s)ds,

and thus, the observation model becomes a stochastic differential equation (SDE)

dY (t) = h(x(t))dt +dW (t), Y (0) = 0,

where W (·) is an m-dimensional Brownian motion defined on (Ω ,F ,(Ft)0≤t≤T ).
Note that no observable information is lost or gained by regarding Y (·) as our

observation data instead of y(·). Define

FY
t = σ{Y (s);0 ≤ s ≤ t}.

Then the filtering problem is to estimate the signal x(t) based on FY
t in an optimal

way.
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1.1.2 Optimal Premium Problem

Consider an insurance firm whose premium rate is denoted by v(·). An insurance
portfolio consists of a large number of independent individual claims, none of which
can affect the total returns significantly. Therefore, by the law of large numbers and
the central limit theorem, the liability process Bv(·) can be approximated by (see,
e.g., Norberg [59] for more details)

−dBv(t) = (v(t)−b(t))dt +σ(t)dW (t).

Here b(·)> 0 represents the expected liability per unit time due to premium loading;
the premium rate v(·) acts as the control variable while the volatility rate σ(·) > 0
measures the liability risk; (W (·),W̃ (·)) is a 2-dimensional standard Brownian mo-
tion defined on a stochastic basis (Ω ,F ,(Ft)0≤t≤T ,P) with a correlation function
ρ(t); and Ft is the natural filtration generated by (W (t),W̃ (t)). Note that we allow
for v(·) < 0 and this can be explained as the “reward rate” or “dividend rate” to
the claim holder. Similar to Norberg [59], we assume that the insurance firm is not
allowed to invest in the risky asset due to the supervisory regulations. Accordingly,
the insurance firm only invests in a money account with compounded interest rate
δ (·), and hence, its cash-balance process xv(·) is

xv(t) = eΔ(t)
(

x0 −
∫ t

0
e−Δ(s)dBv(s)

)
, xv(0) = x0,

where

Δ(t) =
∫ t

0
δ (s)ds,

and x0 ≥ 0 represents the initial reserve. According to Itô’s formula,
{

dxv(t) = (δ (t)xv(t)+ v(t)−b(t))dt +σ(t)dW (t),
xv(0) = x0.

(1.1)

Due to the physical inaccessibility to underlying economic parameters, discrete-
ness of account information, or possible delay in the actual payments, it is possible
that the cash-balance process is only observed partially by the linear factor model

{
dSv(t)
Sv(t) = (a+ cxv(t))dt + γ(t)dW̃ (t),

Sv(0) = s0.
(1.2)

Here both c 	= 0 and a are constants; and γ(·) and γ−1(·) are both bounded, deter-
ministic functions. Model (1.2) is such a special incomplete information model that
it is of both application potentials and theoretical interests, as well as considerable
analytical tractability. In fact, the model has been extensively studied in mathemati-
cal economics, see, e.g., Nagai and Peng [57] in risk sensitive control; Lakner [43]
in portfolio optimization. However, the factor process is free of control in these
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works, and hence, essentially different from ours. One typical example of Sv(·) in
practice is the stock price of the insurance firm. This is supported by Boswijk et al.
[12], where the stock price is closely related to the underlying cash-balance process
through the price-to-cash ratio which is linear. By (1.2), some incomplete informa-
tion control problems arise naturally if we regard xv(·) as the system state while
Sv(·) as the system observation.

For fixed xv(·), it is clear that (1.2) admits a unique solution. Set Y v(·) = logSv(·)
and apply Itô’s formula,

{
dY v(t) =

(
cxv(t)− 1

2γ
2(t)+a

)
dt + γ(t)dW̃ (t),

Y v(0) = lns0.
(1.3)

We emphasize that the observation Y v(·) depends on the premium policy v(·) im-
plicitly through the cash-balance process xv(·) while v(·) also depends on Y v(·). This
constitutes a “coupled circle” which makes the resulting optimal premium problem
difficult to study. We will adopt a decoupling technique to overcome this difficulty.
Note that the technique is inspired by Bensoussan [6]. Let us consider the state and
observation equations

⎧⎨
⎩

dx1(t) = (δ (t)x1(t)−b(t))dt +σ(t)dW (t),
dY1(t) =

(
cx1(t)+a− 1

2γ
2(t)

)
dt + γ(t)dW̃ (t),

x1(0) = x0, Y1(0) = lns0

(1.4)

and ⎧⎨
⎩

ẋv
2(t) = δ (t)xv

2(t)+ v(t),
Ẏ v

2 (t) = cxv
2(t),

xv
2(0) = 0, Y v

2 (0) = 0.
(1.5)

For any v(·) ∈ L 2
F
(0,T ;R), it is easy to check that x1(·)+ xv

2(·) and Y1(·)+Y v
2 (·)

are the unique solutions of (1.1) and (1.3), i.e.,

xv(·) = x1(·)+ xv
2(·), Y v(·) = Y1(·)+Y v

2 (·).

Set FY v

t = {Y v(s);0 ≤ s ≤ t} and FY1
t = σ{Y1(s);0 ≤ s ≤ t}. Since x1(·) in (1.4)

does not depend on v(·), neither does FY1
t . However, FY v

t still depends on v(·) via
xv(·). To avoid the effect of v(·) on FY v

t , we introduce the following definition.

Definition 1.1. A premium policy v : Ω × [0,T ]→ R is called admissible, if v(t) is
both FY v

t and FY1
t -adapted with

E

∫ T

0
v4(t)dt < ∞

for each 0 ≤ t ≤ T ; for given c0 > 0, (1.1) admits a unique solution xv(·) satisfying

Exv(T ) = c0.

The set of all admissible policies is denoted by Uad .



6 1 Introduction

From Definition 1.1, and the equations (1.4) and (1.5), it is easy to check that
if v(·) ∈ Uad , then FY v

t ≡ FY1
t . In fact, it is clear that FY v

t ⊇ FY1
t . On the other

hand, if v(·) ∈ Uad , from (1.5) we know that xv
2(t) is FY1

t -adapted, so is Y v
2 (t).

Then Y v(t) = Y1(t)+Y v
2 (t) is FY1

t -adapted, i.e., FY v

t ⊆FY1
t . This implies that v(·)

depends on FY v

t but FY v

t is not affected by v(·). Thus the aforementioned “coupled
circle” is uncoupled in the setup of Definition 1.1.

For any v(·) ∈Uad , we assume that the cost functional is

J(v(·)) = 1
2
E

{∫ T

0
e−β t [L(t)(xv(t)−A(t))2 +N(t)v2(t)

]
dt

+Me−βT (xv(T )− c0)
2
}
, (1.6)

where L(·)≥ 0, N(·)> 0, N−1(·), δ (·), b(·), σ(·), and A(·) are all deterministic and
uniformly bounded on [0,T ]; the terminal weight M ≥ 0, and the discount factor
β > 0; A(·) is some dynamic pre-set target; and L(·), N(·) and M are the weighting
factors which make (1.6) more general and flexible to accommodate the preference
of the policy-maker. Furthermore, we suppose that A(·) converges to c0 as t goes to
T, that is,

lim
t→T

A(t) = c0.

This assumption is reasonable and arises naturally by noting that A(·) actually rep-
resents the dynamic benchmark of x(·) evolving with time while c0 specifies its
terminal constraint when t = T. Then the optimal premium problem is

Problem (OP). To minimize (1.6) over Uad subject to (1.1) and (1.3).
From (1.6), we can see that the insurance firm has three objectives: first, to min-

imize the “solvency risk,” measured as the deviation between its cash-balance pro-
cess, and some pre-set target A(·); second, to minimize the cost of premium policy
over the whole time horizon; last, to minimize the terminal variance of cash-balance
process satisfying a given constraint. Note that not one but all these three objectives
must be achieved simultaneously. In other words, the concerns of the insurance busi-
ness is to pay due benefits, but at the same time to prevent the cash balance from
large deviations so as to stabilize the insurance schemes.

This is a partially observable LQ optimal control problem driven by SDE, which
has been studied thoroughly by combining the backward separation approach with
maximum principle and filtering for BSDE. We refer the reader to Chapter 5 for
more details on the solution to this problem.

1.1.3 Risk Minimizing Problem

Consider an economic quantity which is governed by
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⎧⎨
⎩

dxv(t) = (A(t)xv(t)+B(t)v(t))dt +(C(t)v(t)+D(t))dW (t)
+

(
C̃(t)v(t)+ D̃(t)

)
dW̃ v(t),

xv(0) = x0,
(1.7)

where v(·) is a control strategy, A(·), B(·), C(·), D(·), C̃(·), and D̃(·) are bounded
and deterministic; W̃ v(·) is a stochastic process depending on v(·).

The economic quantity can be interpreted as the cash-balance, the wealth or the
intrinsic value process in different fields of actuarial science, mathematical finance
or mathematical economics, respectively. Once again, it is possible to observe par-
tially xv(·) via a factor model

{
dY (t) =

(
1
β α(t,x

v(t))− 1
2β

)
dt +dW̃ v(t),

Y (0) = 0,
(1.8)

where β > 0 is a constant, and α satisfies an assumption similar to h in (H1.6) below.
(W (·),Y (·)) is a standard Brownian motion defined on (Ω ,F ,(Ft)0≤t≤T ,P); and
Ft is the natural filtration generated by (W (t),Y (t)).

A typical example of Y (·) in reality is the logarithm of the stock price S(·) related
to x(·). In detail, set S(·) = s0eβY (·) with a constant s0 > 0. Obviously, the stock price
S(·) is the information available to the policymaker. Moreover, it follows from Itô’s
formula that

{
dS(t) = S(t)

(
α(t,xv(t))dt +βdW̃ v(t)

)
,

S(0) = s0,
(under Pv)

where Pv is a new probability measure under which (W (·),W̃ v(·)) is also a standard
Brownian motion defined on (Ω ,F ,(Ft)0≤t≤T ,P

v). See, e.g., Section 1.2.2 below
for more details.

Let ρ(xv(T )) denote the risk of the economic quantity xv(T ), where the risk
measure ρ(·) is convex in the sense of Föllmer and Schied [23], and Frittelli and
Rosazza–Gianin [24]. Define

FY
t = σ{Y (s);0 ≤ s ≤ t}.

We state the risk minimizing problem with partially observable information.
Problem (RM). Find an FY

t -adapted u(·) such that

J(v(·)) = ρ(xv(T ))+
1
2
E

v
∫ T

0
(v(t)−M(t))2 dt (1.9)

is minimized subject to (1.7) and (1.8), where M(·) is a deterministic and bounded
function taking values in R, and is referred to as a dynamic benchmark. (1.9) im-
plies that the policymaker wants not only to prevent the control strategy from large
deviation, but also to minimize the risk of the economic quantity.
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Recently, Rosazza–Gianin [71] established the relationship between the risk
measure ρ(·) and the g-expectation E v

g :

ρ(xv(T )) = E v
g [−xv(T )]≡ yv(0),

where (yv(·),zv(·), z̄v(·)) is the unique solution to the following BSDE:
{−dyv(t) = g(t,yv(t),zv(t), z̃v(t))dt − zv(t)dW (t)− z̃v(t)dW̃ v(t),

yv(T ) = −xv(T ),
(1.10)

with generator g : [0,T ]×R
3 → R satisfying g(t,y,0,0) = 0. Thus, in this situation

Problem (RM) is equivalent to minimizing

J(v(·)) = E
v
[

yv(0)+
1
2

∫ T

0
(v(t)−M(t))2 dt

]

subject to (1.7), (1.8) and (1.10). This is a special optimal control problem driven
by FBSDE with partially observable information.

1.2 Control Models

Motivated by the examples in the previous section, we introduce two optimal con-
trol models of FBSDE. If the available information at time t is only a sub-σ -field
of the complete information Ft , which does not depend on the control process,
we call the control problem of FBSDE a partial information control model. If the
available information is a noisy observation of the state up to time t, we call the
control problem a partially observable control model. Comparing with the partial
information model, the partially observable model is usually harder to study. An
intrinsic difficulty comes from the circular dependence between the control and the
observation. Namely, the control process must be adapted to the observation σ -field
which depends on the control process itself. This results in the inapplicability of the
variational method.

There are two ways to overcome this difficulty. One is the state decomposition
technique for linear system, and the other is the measure transformation technique
for nonlinear system. See, e.g., Bensoussan [6], Wang et al. [88, 89] for more details
about this topic.

1.2.1 Partial Information Model

Consider a fully coupled FBSDE
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⎧⎪⎪⎨
⎪⎪⎩

dxv(t) = b(t,xv(t),yv(t),zv(t),v(t))dt
+σ(t,xv(t),yv(t),zv(t),v(t))dW (t),

−dyv(t) = g(t,xv(t),yv(t),zv(t),v(t))dt − zv(t)dW (t),
xv(0) = x0, yv(T ) = f (xv(T )),

(1.11)

where b,g : Ω × [0,T ]×R
n+n+n×m+k →R

n, σ : Ω × [0,T ]×R
n+n+n×m+k →R

n×m,
f : Ω ×R

n → R
n are continuous functions; v(·) is a control process; W (·) is an m-

dimensional standard Brownian motion defined on (Ω ,F ,(Ft)0≤t≤T ,P); Ft is the
natural filtration generated by W (t); and x0 ∈ R

n.
Let U be a nonempty subset of Rk, and let Gt be a sub-σ -field of Ft , i.e.,

Gt ⊆Ft , t ∈ [0,T ].

Here Gt could be the σ -field generated by some components of the underlying Brow-
nian motion, or could be the time-delay information as follows:

Gt =F(t−δ )+

with a given constant δ > 0. The key difference between Gt here and FY
t in the

partially observable model in the next subsection is that Gt does not depend on the
control process while FY

t there does.
Define

Uad =
{

v(·) : v(·) ∈L 2
G
(0,T ;Rk),v(t) ∈U, t ∈ [0,T ]

}
.

Every element of Uad is called an admissible control.
Set

λ =

⎛
⎝ x

y
z

⎞
⎠ , λ̄ =

⎛
⎝ x̄

ȳ
z̄

⎞
⎠ , and Λ(t, λ̃ ) =

⎛
⎝−g

b
σ

⎞
⎠(t, λ̃ )

with λ̃ = λ , λ̄ . We make the following assumptions.
(H1.1) For any (λ ,v) ∈ R

n+n+n×m ×U, Λ(·,λ ) is an Ft -adapted vector-valued
process defined on [0,T ] with Λ(·,0) ∈L 2

F
(0,T ;Rn+n+n×m).

(H1.2) For any t ∈ [0,T ], the function χ (χ = b,σ ,g, f ) is continuously differ-
entiable in (x,y,z,v), and its partial derivatives χx, χy, χz, and χv are uniformly
bounded.

(H1.3) There are nonnegative constants μ1, μ2, and μ3 such that for any t ∈
[0,T ], λ , λ̄ ∈ R

n+n+n×m and v ∈U,

〈Λ(t,λ )−Λ(t, λ̄ ),λ − λ̄ 〉 ≤ −μ1|x− x̄|2 −μ2(|y− ȳ|2 + |z− z̄|2),
〈 f (x)− f (x̄),x− x̄〉 ≥ μ3|x− x̄|2,

with μ1 +μ2 > 0 and μ2 +μ3 > 0.
(H1.3)’ There are nonnegative constants μ1, μ2, and μ3 such that for any t ∈

[0,T ], λ , λ̄ ∈ R
n+n+n×m and v ∈U,
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〈Λ(t,λ )−Λ(t, λ̄ ),λ − λ̄ 〉 ≥ μ1|x− x̄|2 +μ2(|y− ȳ|2 + |z− z̄|2),
〈 f (x)− f (x̄),x− x̄〉 ≤ −μ3|x− x̄|2,

with μ1 +μ2 > 0 and μ2 +μ3 > 0.
Under (H1.1)–(H1.3) (or (H1.1), (H1.2), and (H1.3)’), for any v(·) ∈Uad , there

is a unique solution (xv(·),yv(·),zv(·)) ∈ L 2
F
(0,T ;Rn+n+n×m) to (1.11). See, e.g.,

Theorem A.3 below or [28, 68] for more information.

Remark 1.1. The assumption (H1.3) or (H1.3)’ is needed for the existence and
uniqueness of the solution of the coupled FBSDE, and hence, not directly needed
for the optimal control results. When the system is decoupled, or, when it reduced to
a BSDE, the results we shall state in this book remain true without this monotonicity
condition.

The cost functional is

J(v(·)) = E

[∫ T

0
l(t,xv(t),yv(t),zv(t),v(t))dt +ψ(xv(T ))+φ(yv(0))

]
, (1.12)

where l : Ω × [0,T ]×R
n+n+n×m+k → R, ψ : Ω ×R

n → R and φ : Rn → R satisfy
(H1.4) for any t ∈ [0,T ], l is continuously differentiable in (x,y,z), and its par-

tial derivatives lx, ly, lz ∈ L 2
F
(0,T ). Moreover, for any v(·) ∈ Uad, l belongs to

L 1
F
(0,T );

(H1.5) ψ and φ are continuously differentiable in x and y, respectively, and their
derivatives ψx and φy grow linearly.

We pose the optimal control problem of fully coupled FBSDE with partial infor-
mation.

Problem A. Find an admissible control u(·) ∈Uad satisfying

J(u(·)) = min
v(·)∈Uad

J(v(·))

subject to (1.11). If such an admissible control exists, we call u(·) an optimal control
and the corresponding state (x(·),y(·),z(·)) = (xu(·),yu(·),zu(·)) an optimal state.

In [67], Peng formulated originally an optimal control problem of decoupled FB-
SDE with convex control domain. Since then, there has been an increasing research
interest about Problem A and its various extensions. Let us list several papers which
are most closely related to the current setup. Wu [99] generalized Peng [67] to the
case that the state is governed by fully coupled FBSDE. Shi and Wu [75] and Wu
[101] studied an optimal control problem of FBSDE with non-convex control do-
main. See also Huang and Shi [29], Ji and Wei [32], Li and Wei [46], Yong [107],
Hu [26], and the references therein for other developments of this topic. Note that
all of the works mentioned above are based on the assumption that the available
information is complete, i.e.,

Gt =Ft , t ∈ [0,T ].
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However, in reality it is possible that only partial information of Ft is obtainable.
With the available information, Meng [54] obtained a maximum principle and a
verification theorem for optimality of Problem A. Øksendal and Sulem [61] studied
an optimal control problem of decoupled FBSDE with jump and diffusion. Wang
and Xiao [90] extended [54, 61] slightly to the case of infinite time horizon. Arrow’s
verification theorem for optimality was derived. Several practical examples arising
from finance and economics were solved explicitly by using the verification theorem
and the filtering of FBSDE. Note that since neither [54] nor [61] contains infinite
horizon and filtering, they are different from [90].

The following two important special cases of Problem A will be studied in more
detail.

Case A1. Neither the state equation (1.11) nor the cost functional (1.12) contains
(yv(·),zv(·)), i.e., for any (ω, t,x,y,z,v) ∈Ω × [0,T ]×R

n+n+n×m ×U ,

b(t,x,y,z,v)≡ b(t,x,v), σ(t,x,y,z,v)≡ σ(t,x,v),
l(t,x,y,z,v)≡ l(t,x,v), g(t,x,y,z,v)≡ 0,

f (x)≡ 0, φ(y)≡ 0.

In this case, Problem A reduces to minimize

J(v(·)) = E

[∫ T

0
l(t,xv(t),v(t))dt +ψ(xv(T ))

]

over Uad subject to
{

dxv(t) = b(t,xv(t),v(t))dt +σ(t,xv(t),v(t))dW (t),
xv(0) = x0.

This case has been well studied under various settings. We refer the reader to Yong
and Zhou [109] and the references therein for more details toward maximum prin-
ciple, dynamic programming, LQ control, and their applications to mathematical
finance. See also Hu and Øksendal [27], Wang and Wu [87], etc. for other develop-
ments about LQ control and mean-variance hedging with partial information.

Case A2. Both state equation (1.11) and cost functional (1.12) are independent
of xv(·), i.e., for any (ω, t,x,y,z,v) ∈Ω × [0,T ]×R

n+n+n×m ×U ,

b(t,x,y,z,v)≡ 0, σ(t,x,y,z,v)≡ 0, ψ(x)≡ 0, f (x)≡ ξ ,
l(t,x,y,z,v)≡ l(t,y,z,v), g(t,x,y,z,v)≡ g(t,y,z,v).

With these restrictions, we get an important class of optimal control problem with
partial information. To find an admissible control v(·) ∈Uad such that

J(v(·)) = E

[∫ T

0
l(t,yv(t),zv(t),v(t))dt +φ(yv(0))

]
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is minimized, subject to
{−dyv(t) = g(t,yv(t),zv(t),v(t))dt − zv(t)dW (t),

yv(T ) = ξ .

Note that since the state is governed by a BSDE rather than an SDE, this problem
is essentially different from that of Case 1. Lim and Zhou [48] solved an LQ version
of Case 2 with complete information. Huang et al. [31] studied the optimal control
problem of Case 2. Via the convex variation, a maximum principle for optimality
was derived and was used to study an LQ example with partial information. Note
that the traditional separation principle is not applicable for the LQ example. In-
stead, a new backward separation approach was introduced. Combining it with the
filtering of FBSDE, an optimal feedback control for the LQ example was obtained
explicitly. We emphasize that the filtering of FBSDE is new and arises naturally
from the deductions of the optimal control, and thus, it should not be viewed as
an artificial extension of the classical filtering. Along this line, Wang and Yu [94]
investigated a nonzero sum differential game of BSDE. Maximum principle and
verification theorem for equilibrium point were derived. An approach to prove the
existence and uniqueness of equilibrium point was found. These theoretical results
obtained in [94] were then used to solve an LQ game and a stock differential game
both in the incomplete information case. In a recent study of Wang et al. [92], the
game in [94] was extended to the case of asymmetric information.

1.2.2 Partially Observable Model

Consider a controlled FBSDE
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxv(t) = b(t,xv(t),v(t))dt +σ(t,xv(t),v(t))dW (t)
+σ̃(t,xv(t),v(t))dW̃ v(t),

−dyv(t) = g(t,xv(t),yv(t),zv(t), z̃v(t),v(t))dt
−zv(t)dW (t)− z̃v(t)dY (t),

xv(0) = x0, yv(T ) = f (xv(T )).

(1.13)

Here v(·) is a control process taking values in a nonempty subset U of R
r; b :

[0,T ]×R
n ×U → R

n, σ : [0,T ]×R
n ×U → R

n×k, σ̃ : [0,T ]×R
n ×U → R

n×k̃,
g : [0,T ]×R

n+m+m×k+m×k̃ ×U →R
m, and f : Rn →R

m are given continuous map-
pings; x0 ∈ R

n is the initial state; (W (·),Y (·)) is a (k + k̃)-dimensional standard
Brownian motion defined on (Ω ,F ,(Ft)0≤t≤T ,P); and W̃ v(·) is a k̃-dimensional
stochastic process depending on v(·). It should be noted that in this case the control
v(·) enters into the diffusion coefficients σ and σ̃ .

Suppose that (xv(·),yv(·),zv(·), z̃v(·)) can only be observed partially via Y (·),
which is governed by the SDE

{
dY (t) = h(t,xv(t))dt +dW̃ v(t),
Y (0) = 0,

(1.14)
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where h : [0,T ]×R
n → R

k̃ is a given continuous mapping. Let

FY
t = σ{Y (s);0 ≤ s ≤ t}.

Definition 1.2. A control process v : Ω × [0,T ]→ U is called admissible, if v(t) is
FY

t -adapted such that
sup

0≤t≤T
E|v(t)|8 < ∞.

The set of all admissible controls is denoted by Uad .

(H1.6) The functions b, σ , σ̃ , f , g and h are continuously differentiable with
respect to x,y,z, z̃,v, respectively, and their partial derivatives bx, bv, σx, σv, σ̃x, σ̃v,
hx, gx, gy, gz, gz̃, gv, and fx are uniformly bounded. Moreover, for any (t,x,v) ∈
[0,T ]×R

n ×U, there is a constant C such that

|σ̃(t,x,v)|+ |h(t,x)| ≤C.

Note that the boundedness of h can be relaxed to linear growth with respect to x
under some restrictive assumptions about control processes. See, e.g., Wang et al.
[88] for more details about this generalization.

Inserting (1.14) into (1.13), we have
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxv(t) = [b(t,xv(t),v(t))− σ̃(t,xv(t),v(t))h(t,xv(t))]dt
+σ(t,xv(t),v(t))dW (t)+ σ̃(t,xv(t),v(t))dY (t),

−dyv(t) = g(t,xv(t),yv(t),zv(t), z̃v(t),v(t))dt
−zv(t)dW (t)− z̃v(t)dY (t),

xv(0) = x0, yv(T ) = f (xv(T )).

(1.15)

Since FBSDE (1.15) is decoupled, for any v(·) ∈ Uad , it admits a unique solution
under (H1.6), which is denoted by

(xv(·),yv(·),zv(·), z̃v(·)) ∈L 2
F
(0,T ;Rn+m+m×k+m×k̃).

Let us introduce a process

Zv(t) = exp

{∫ t

0
h�(s,xv(s))dY (s)− 1

2

∫ t

0
|h(s,xv(s))|2ds

}
,

which is the solution to the SDE
{

dZv(t) = Zv(t)h�(t,xv(t))dY (t),
Zv(0) = 1.

(1.16)

Under (H1.6), Zv(·) is an ((Ft)0≤t≤T ,P)-martingale. We can then define a new
probability measure P

v such that for any t,

dPv = Zv(t)dP on Ft . (1.17)
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According to Girsanov’s theorem and (1.14), (W (·),W̃ v(·)) is a (k+ k̃)-dimensional
standard Brownian motion defined on (Ω ,F ,(Ft)0≤t≤T ,P

v).
The associated cost functional is given by

J(v(·)) = E
v
[∫ T

0
l(t,xv(t),yv(t),zv(t), z̃v(t),v(t))dt +φ(xv(T ))+ γ(yv(0))

]
,

(1.18)
where E

v stands for the mathematical expectation on (Ω ,F ,(Ft)0≤t≤T ,P
v), and

the following assumption on l, φ , and γ will be needed.
(H1.7) The mappings l : [0,T ]×R

n+m+m×k+m×k̃ ×U → R, φ : Rn → R and γ :
R

m → R are continuously differentiable with respect to x,y,z, z̃,v, respectively, and
satisfy

E
v
[∫ T

0
|l(t,xv(t),yv(t),zv(t), z̃v(t),v(t))|dt + |φ(xv(T ))|+ |γ(yv(0))|

]
< ∞,

(1.19)
i.e., l(·,xv(·),yv(·),zv(·), z̃v(·),v(·)) ∈L 1

F (0,T ;R) and φ ∈L 1
F (Ω ;R).

Now we pose an optimal control problem of FBSDE with partially observable
information.

Problem B. Seek an admissible control u(·) such that

J(u(·)) = min
v(·)∈Uad

J(v(·)) (1.20)

subject to (1.13) and (1.14). If such an admissible control exists, we call u(·) an
optimal control and the corresponding state

(x(·),y(·),z(·), z̃(·)) = (xu(·),yu(·),zu(·), z̃u(·))

an optimal state.
Obviously, Problem B covers the foregoing Problem (RM) as a special case. Al-

though there exist several papers related to Problem B, generally speaking, it is a
new and unexplored topic. The early study about this topic can be traced back to
Wu [100], where the drift coefficient of the observation equation is bounded, and
the state noise is independent of the observation noise. Using the backward sepa-
ration approach and the traditional techniques in the complete information case, a
maximum principle for optimality was expressed by the conditional expectation of
a function with respect to an observable filtration. Furthermore, the filtering of the
adjoint processes was obtained, and was used to describe an optimal control. Along
this line, there are a few works including Wang and Wu [85] and Xiao [103]. We
emphasize that the drift coefficients of the observation equations in [100, 85, 103]
are uniformly bounded with respect to (t,x,v). The assumption simplifies the com-
putations of this topic. However, it excludes some important applications in reality.
Very recently, Wang et al. [88] improved [100]. They assumed that h grows linearly
with respect to x, but the diffusion coefficient σ is uniformly bounded in (t,x,v);
moreover, the collection of admissible controls is a subset of Uad . Combining high-
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order moment estimates of the adjoint processes of (x(·),y(·),z(·),Z(·)) with an
approximation method by bounded and smooth functions, a maximum principle for
optimality was established.

Note that the approximation method introduced in [88] is invalid to address Prob-
lem B. A main reason is as follows. With the assumption of h being linear with
respect to x, the adjoint process related to (x(·),y(·),z(·),Z(·)) satisfies an FBSDE
with square-integrable stochastic coefficients. In general, it is difficult to study the
solvability and to obtain the high-order moment estimate of the FBSDE. Then the
relevant variational inequality for Problem B cannot be derived under the new prob-
ability P

v. The most recent attempt to address Problem B was done by Wang et
al. [89], where a decomposition approach was introduced to study an LQ case of
Problem B. Combining the decomposition approach with the backward separation
approach and filtering, optimality conditions and a feedback representation of the
optimal control were derived. As an application of the optimality conditions, a gen-
eralized recursive utility problem from financial market was solved explicitly. Other
cases of Problem B are worthy of further study in the future.

The following important special case of Problem B is also very interesting.
Case B1. To minimize

J(v(·)) = E
v
[∫ T

0
l(t,xv(t),v(t))dt +φ(xv(T ))

]

over v(·) ∈Uad , subject to
{

dxv(t) = b(t,xv(t),v(t))dt +σ(t,xv(t),v(t))dW (t)+ σ̃(t,xv(t),v(t))dW̃ v(t),
xv(0) = x0

and (1.14).
This problem has been well understood so far in the case that the diffusion coef-

ficient is independent of the control. We refer to Bensoussan [6] and the references
therein for early studies on maximum principle and LQ control. After that, many
versions of the maximum principles were derived under various settings, say, the
control domain is a non-convex set, and/or the state noise is correlated to the ob-
servation noise, and/or the cost functional is a risk sensitive one. See, e.g., Zhang
[114], Li and Tang [45], Tang [78], and Wang and Wu [86] for more details.

1.3 An Overview

In this section, we provide an outline of the results which will be studied in this
book. In Chapter 2, we present some filtering equations for BSDEs, which are dif-
ferent from the traditional ones. Chapters 3 and 4 are devoted to addressing Problem
A and Problem B, respectively. In Chapter 5, several LQ examples with incomplete
information are solved explicitly. Finally, we will provide an appendix to introduce
the basic material of BSDE and FBSDE which will be used in the rest of this book.
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We refer the reader to Ma and Yong [52], Yong and Zhou [109], and Ma et al. [51]
for detailed treatments of this topic.

We now sketch the results of Chapters 2–5. In Chapter 2, we will introduce some
filtering results for BSDEs. For simplicity of notation, we confine ourselves to the
1-dimensional case, i.e., m = k = k̃ = 1. Also, we adopt the notations

ŷ(t) = E[y(t)|FY
t ], ẑ(t) = E[z(t)|FY

t ], ĥ(t) = E[h(ω, t)|FY
t ],

ĝ(t) = E[g(ω, t,y(t),z1(t),z2(t))|FY
t ], (̂yh)(t) = E[y(t)h(ω, t)|FY

t ].

Suppose that the state process (y(·),z1(·),z2(·)) is governed by

y(t) = ξ +
∫ T

t
g(ω,s,y(s),z1(s),z2(s))ds−

∫ T

t
z1(s)dW1(s)−

∫ T

t
z2(s)dW̃2(s),

whose noisy observation Y (·) satisfies

Y (t) =
∫ t

0
h(ω,s)ds+

∫ t

0
f (s)dW (s).

Here g : Ω × [0,T ]×R
3 →R, h : Ω × [0,T ]→R and f : [0,T ]→R are given map-

pings; ξ is a square-integrable random variable; (W1(·),W2(·)) is a 2-dimensional
standard Brownian motion defined on (Ω ,F ,(Ft)0≤t≤T ,P); and Ft is the natu-
ral filtration generated by (W1(·),W2(·)). According to Malliavin calculus, z1(·) and
z2(·) are equal to the Malliavin derivatives of y(·) with respect to W1(·) and W2(·),
respectively. We are interested in computing the filtering ŷ(t) of y(·) based on the
observable information

FY
t = σ{Y (s);0 ≤ s ≤ t}.

Theorem 1.1. Under suitable conditions about g, h, and f , the filtering ŷ(·) satisfies
a BSDE

ŷ(t) = E
[
ξ |FY

T

]
+

∫ T

t
ĝ(s)ds−

∫ T

t

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s),

(1.21)
where

Ŵ (t) =
∫ t

0

1
f (s)

(
dY (s)− ĥ(s)ds

)
(1.22)

called the innovation process, is a 1-dimensional standard Brownian motion defined
on (Ω ,FY ,(FY

t )0≤t≤T ,P).

With some detailed assumptions, equation (1.21) is reduced to a BSDE rather
than an SDE, which shows the difference from the traditional filtering theory. Here
is an interesting example. Assume that g and h satisfy

ĝ(t) = g(t, ŷ(t), ẑ1(t)) and (̂yh)(t) = ŷ(t)ĥ(t),
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respectively. Then the filtering (ŷ(t), ẑ1(t)) of (y(t),z1(t)) with respect to FY
t is the

solution to the standard BSDE

ŷ(t) = E
[
ξ |FY

T

]
+

∫ T

t
g(s, ŷ(s), ẑ1(s))ds−

∫ T

t
ẑ1(s)dŴ (s),

where Ŵ (·) is defined by (1.22). One more example can be found in Chapter 2,
where the Kalman-Bucy filtering for a class of FBSDEs was obtained.

In Chapter 3, we aim at deriving a stochastic maximum principle and a verifica-
tion theorem for optimality of Problem A. To obtain these results, we first introduce
the following Hamiltonian function

H(t,x,y,z,v; p,q,k) = 〈q,b(t,x,y,z,v)〉+ 〈k,σ(t,x,y,z,v)〉
−〈p,g(t,x,y,z,v)〉+ l(t,x,y,z,v).

For simplicity of notation, we denote

Hu(t) = H(t,x(t),y(t),z(t),u(t); p(t),q(t),k(t)),

for u ∈Uad . Then, we define the adjoint equation
⎧⎨
⎩

d p(t) = −Hu
y (t)dt −Hu

z (t)dW (t),
−dq(t) = Hu

x (t)dt − k(t)dW (t),
p(0) = −φy(y(0)), q(T ) = ψx(x(T ))− f�x (x(T ))p(T ).

(1.23)

In this situation, the resulting deduction is similar to the case of complete informa-
tion. Using the convex variation and the dual technique, we establish the maximum
principle for optimality of Problem A.

Theorem 1.2. Under assumptions (H1.1)–(H1.5), if u(·) is an optimal control, then
(1.23) admits a unique solution (p(·),q(·),k(·)) ∈ L 2

F
(0,T ;Rn+m+m×k) such that

for any v ∈U we have
〈E [Hv(t)|Gt ] ,ν−u(t)〉 ≥ 0. (1.24)

With additional assumptions, the minimum condition given below is sufficient
for the optimality.

Theorem 1.3. Let (H1.1)–(H1.5) hold. Assume that

• (Terminal condition) for any v(·) ∈Uad, yv(T ) = Axv(T ), A ∈ R
n×n;

• (Minimum condition) for any t ∈ [0,T ],

E[H(t)|Gt ] = min
v∈U

E[H(t,x(t),y(t),z(t),v; p(t),q(t),k(t))|Gt ].

• (Convexity) for any t ∈ [0,T ], the Hamiltonian function

H(t,x,y,z,v; p(t),q(t),k(t))

is convex in (x,y,z,v), and ψ and φ are convex in x and y.
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Then u(·) is an optimal control of Problem A.

Remark 1.2. (1) The minimum condition (1.24) in Theorem 1.2 shows that we need
to compute the conditional expectation of the solution to FBSDE in order to obtain
u(·). This is one of the motivations that we study the filtering theory of BSDE in
Chapter 2.

(2) If Gt =Ft , t ∈ [0,T ], then Theorem 1.3 is reduced to a complete information
version. Moreover, the convexity condition of

H(t,x,y,z,v; p(t),q(t),k(t))

with respect to (x,y,z,v) can be weakened to the assumption that

H̃(t,x,y,z) = min
v∈U

H(t,x,y,z,v; p(t),q(t),k(t))

exists and is convex in (x,y,z). With this assumption, Arrow’s sufficient condition
for optimality can be derived, and can be used to solve an LQ example. We refer the
reader to Chapter 3 below for more details.

In Chapter 4, we will derive two versions of the stochastic maximum principle
for Problem B. For simplicity of notation, we only consider the 1-dimensional case.
We introduce the adjoint equations

{−dP(t) = l(t,x(t),y(t),z(t), z̃(t),u(t))dt −Q(t)dW (t)− Q̃(t)dW̃ u(t),
P(T ) = φ(x(T )), (1.25)

and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p(t) = [gy(t,x(t),y(t),z(t), z̃(t),u(t))p(t)
−ly(t,x(t),y(t),z(t), z̃(t),u(t))]dt

+[gz(t,x(t),y(t),z(t), z̃(t),u(t))p(t)
−lz(t,x(t),y(t),z(t), z̃(t),u(t))]dW (t)

+[(gz̃(t,x(t),y(t),z(t), z̃(t),u(t))−h(t,x(t))) p(t)
−lz̃(t,x(t),y(t),z(t), z̃(t),u(t))]dW̃ u(t),

−dq(t) = {[bx(t,x(t),u(t))− σ̃(t,x(t),u(t))hx(t,x(t))]q(t)
+σx(t,x(t),u(t))k(t)+ σ̃x(t,x(t),u(t))k̃(t)

+hx(t,x(t))Q̃(t)−gx(t,x(t),y(t),z(t), z̃(t),u(t))p(t)
+lx(t,x(t),y(t),z(t), z̃(t),u(t))}dt

−k(t)dW (t)− k̃(t)dW̃ u(t),
p(0) = −γy(y(0)), q(T ) =− fx(x(T ))p(T )+φx(x(T )).

(1.26)

Note that because of the dependency of (1.13) on W̃ v(·), (1.25) and (1.26) are dra-
matically different from the classical ones. Moreover, (1.25) is used to treat the terms
induced by partially observable information, which is unnecessary in the cases of
Peng [66], Øksendal and Sulem [61], Wu [100], and Yong [107].
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Combining the Girsanov transformation with the convex variation and Taylor’s
expansion, we obtain the first version of the stochastic maximum principle for Prob-
lem B.

Theorem 1.4. Let Assumptions (H1.6) and (H1.7) hold. Suppose that for any v(·) ∈
Uad, the functions φ , φx ∈ L 2

FT
(Ω ;R), l, lx, ly, lz, lz̃, lv ∈ L 2

F
(0,T ;R). Further-

more, suppose that (1.25) and (1.26) admit unique solutions (P(·),Q(·), Q̃(·)) ∈
L 2

F
(0,T ;R3) and (p(·),q(·),k(·), k̃(·)) ∈ L 2

F
(0,T ;R4), respectively. If u(·) is an

optimal control of Problem B, then for any ν ∈U we have

E
u [

Hv(t,x(t),y(t),z(t), z̃(t),u(t); p(t),q(t),k(t), k̃(t), Q̃(t))(ν−u(t))|FY
t

] ≥ 0,

where the Hamiltonian function H is defined by

H(t,x,y,z, z̃,v; p,q,k, k̃, Q̃)
= b(t,x,v)q+σ(t,x,v)k+ σ̃(t,x,v)k̃+h(t,x)Q̃

−(g(t,x,y,z, z̃,v)−h(t,x)z̃) p+ l(t,x,y,z, z̃,v).

The maximum principle depends explicitly on (1.25) and (1.26), which are usu-
ally very hard to solve. For this reason, we will introduce a method based on Malli-
avin calculus. The main feature of this method is that the backward adjoint process
(q(·),k(·), k̃(·)) in Theorem 1.4 is described almost directly via (forward) SDEs,
while (P(·),Q(·), Q̃(·)) is unnecessary.

We now define the new adjoint processes q̄(·), k̄(·), and ¯̃k(·) as follows:

q̄(t) = Σ(t)+
∫ T

t
Ψ(t,s)ds, k̄(t) = D(W )

t q̄(t), ¯̃k(t) = D(W̃ )
t q̄(t)

with
Ψ(t,s) = Hx(s)Φ(t,s)

and

Σ(t) = φx(x(T ))− fx(x(T )) p̄(T )+
∫ T

t
lx(s,x,y,z, z̃,u)ds,

where

Φ(t,s) = exp
{∫ s

t

[
bx(r,x,u)− σ̃(r,x,u)hx(r,x)− 1

2

(
σ2

x (r,x,u)+ σ̃2
x (r,x,u)

)]
dr

+
∫ s

t σx(r,x,u)dW (r)+
∫ s

t σ̃x(r,x,u)dW̃ (r)
}
,

Hx(t) = Σ(t)(bx(t,x,u)− σ̃(t,x,u)hx(t,x))+σx(t,x,u)D
(W )
t Σ(t)

+σ̃x(t,x,u)D
(W̃ )
t Σ(t)+hx(t,x)D

(W̃ )
t Π(t)−gx(t,x,y,z, z̃,u) p̄(t),

Π(t) = φ(x(T ))+
∫ T

t
l(s,x,y,z, z̃,u)ds,
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and the adjoint process p̄(·) satisfies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p̄(t) =
[
gy(t,x(t),y(t),z(t), z̃(t),u(t)) p̄(t)

−ly(t,x(t),y(t),z(t), z̃(t),u(t))
]
dt

+
[
gz(t,x(t),y(t),z(t), z̃(t),u(t)) p̄(t)

−lz(t,x(t),y(t),z(t), z̃(t),u(t))
]
dW (t)

+[(gz̃(t,x(t),y(t),z(t), z̃(t),u(t))−h(t,x(t))) p̄(t)
−lz̃(t,x(t),y(t),z(t), z̃(t),u(t))]dW̃ u(t),

p̄(0) = −γy(y(0)).

(1.27)

Note that (1.27) is the same as the forward equation for p(·) in (1.26). With the
adjoint processes and the convex variation, we obtain the second version of the
stochastic maximum principle for the optimality of Problem B.

Theorem 1.5. Let (H1.6) and (H1.7) hold. Suppose that (1.27) admits a unique solu-
tion p̄(·)∈L 2

F
(0,T ;D1,2). Assume that φ , φx ∈D1,2, l, lx, andΨ(t,s) are in L1,2(R)

for all 0 ≤ t ≤ s ≤ T . If u(·) is an optimal control, then for any ν ∈U we have

E
u
[
H̄v(t,x(t),y(t),z(t), z̃(t),u(t); p̄(t), q̄(t), k̄(t), ¯̃k(t))(ν−u(t))

∣∣∣FY
t

]
≥ 0,

where H̄v is defined by

H̄v(t,x,y,z, z̄,v; p̄, q̄, k̄, ¯̃k) = bv(t,x,v)q̄+σv(t,x,v)k̄+ σ̃v(t,x,v)
¯̃k

−gv(t,x,y,z, z̃,v) p̄+ lv(t,x,y,z, z̄,v).

Combining Theorem 1.1 with Theorem 1.4 or Theorem 1.5, we will solve several
financial problems explicitly.

Finally, in Chapter 6, we will present two typical models with incomplete in-
formation. The first example is related to an LQ model of FBSDE with partially
observable information. This model generalizes Problem B in the sense that the
drift coefficient in the observation equation is linear with respect to the state, and
thus, this model covers Problem (OP) in Section 1.1 as a special case, although a
state constraint is included there.

Define the processes
(
x0(·),y0(·),z0(·), z̃0(·)), and Y 0(·) by

⎧⎪⎪⎨
⎪⎪⎩

dx0(t) = a(t)x0(t)dt + c(t)dW (t)+ c̃(t)dW̃ (t),
−dy0(t) =

(
A(t)x0(t)+B(t)y0(t)+C(t)z0(t)+C̃(t)z̃0(t)

)
dt

−z0(t)dW (t)− z̃0(t)dW̃ (t),
x0(0) = x0, y0(T ) = Fx0(T ),

(1.28)

and {
dY 0(t) = f (t)x0(t)dt +h(t)dw(t),
Y 0(0) = 0.

(1.29)
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Let v(·) ∈ L 2
F
(0,T ;R) be a control process. Define

(
x1(·),y1(·),z1(·), z̃1(·)), and

Y 1(·) by
⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = a(t)x1(t)+b(t)v(t)+ b̃(t),
−dy1(t) =

(
A(t)x1(t)+B(t)y1(t)+C(t)z1(t)+C̃(t)z̃1(t)

+D(t)v(t)+ D̃(t)
)

dt − z1(t)dW (t)− z̃1(t)dW̃ (t),
x1(0) = 0, y1(T ) = Fx1(T )+G

(1.30)

and {
Ẏ 1(t) = f (t)x1(t)+g(t),
Y 1(0) = 0.

(1.31)

Here the coefficients a(·), b(·), b̃(·), c(·), c̃(·), f (·), g(·), h(·), h−1(·), A(·), B(·),
C(·), C̃(·), D(·), and D̃(·) are uniformly bounded deterministic functions; x0 and F
are constants; and ξ ∈L 2

FT
(Ω ,R).

According to Theorem A.1, it is easy to see that (1.28), (1.29), (1.30), and (1.31)
admit unique solutions, respectively. If we define

xv(t) = x0(t)+ x1(t), yv(t) = y0(t)+ y1(t), zv(t) = z0(t)+ z1(t),
z̃v(t) = z̃0(t)+ z̃1(t), Y v(t) = Y 0(t)+Y 1(t),

(1.32)

it follows from Itô’s formula and (1.28), (1.29), (1.30), (1.31), and (1.32) that
(xv(·),yv(·),zv(·), z̃v(·)), and Y v(·) are the unique solutions of

⎧⎪⎪⎨
⎪⎪⎩

dxv(t) =
(
a(t)xv(t)+b(t)v(t)+ b̃(t)

)
dt + c(t)dW (t)+ c̃(t)dW̃ (t),

−dyv(t) =
(
A(t)xv(t)+B(t)yv(t)+C(t)zv(t)+C̃(t)z̃v(t)

+D(t)v(t)+ D̃(t)
)

dt − zv(t)dW (t)− z̃v(t)dW̃ (t),
xv(0) = x0, yv(T ) = Fxv(T )+G

(1.33)

and {
dY v(t) = ( f (t)xv(t)+g(t))dt +h(t)dW (t),
Y v(0) = 0,

(1.34)

where the superscript of (xv(·),yv(·),zv(·), z̃v(·)), and Y v(·) emphasizes their depen-
dence on v(·). We say (xv(·),yv(·),zv(·), z̃v(·)) is the state related to v(·), and Y v(·)
is the corresponding observation.

Let FY v

t = σ{Y v(s);0 ≤ s ≤ t} and FY 0

t = σ
{

Y 0(s);0 ≤ s ≤ t
}

. Then a natural
definition of admissible control is v(·) ∈L 2

FY v (0,T ;R). It implies that we want to
determine the control by the observation. However, the circular dependence of the
control on the observation leads to an immediate difficulty in determining an optimal
control. This is the main reason that (1.33) and (1.34) are split into two parts.

We now give a definition of admissible control to avoid the aforementioned diffi-
culty. Let U 0

ad be the collection of all FY 0

t -adapted process taking values in R such
that Esup0≤t≤T v2(t)< ∞.
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Definition 1.3. A control process v(·) is called admissible, if v(·) ∈ U 0
ad is FY v

t -
adapted. The set of all admissible controls is denoted by Uad .

The cost functional is of the form

J(v(·)) = 1
2
E

{∫ T

0

[
L(t)(xv(t))2 +O(t)(yv(t))2 +R(t)v2(t)

+2l(t)xv(t)+2o(t)yv(t)+2r(t)v(t)]dt

+M(xv(T ))2 +2mxv(T )+N(yv(0))2 +2nyv(0)
}
.

(1.35)

Here the coefficients L(·)≥ 0, O(·)≥ 0, R(·)≥ 0, l(·), o(·), and r(·) are uniformly
bounded deterministic functions; and M ≥ 0, N ≥ 0, m, and n are constants.

We state the LQ optimal control problem of FBSDE as follows.
Problem (FBLQ). To seek a control u(·) ∈Uad such that

J(u(·)) = min
v(·)∈Uad

J(v(·))

subject to (1.33) and (1.34). If u(·) is optimal, we use notation (x(·),y(·),z(·), z̃(·),
Y (·)) to denote (xu(·),yu(·),zu(·), z̃u(·),Y u(·)).

Note that since Uad depends on v(·), the variational method is not suitable for
studying the LQ problem. However, we can prove

min
v′(·)∈Uad

J(v′(·)) = min
v(·)∈U 0

ad

J(v(·)),

based on the fact that Uad is dense in U 0
ad under the metric of L 2

FY 0 (0,T ;R). Then

it suffices to study the optimality of J(v(·)) over U 0
ad .

Theorem 1.6. Suppose that u(·) is an optimal control of Problem (FBLQ), in the
sense that

d
dε

J(u(·)+ εv(·))|ε=0 = 0

for any v(·)∈Uad, and (x(·),y(·),z(·), z̃(·)) is the corresponding optimal state. Then
the FBSDE

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d p(t) = (B(t)p(t)−O(t)y(t)−o(t))dt
+C(t)p(t)dW (t)+C̃(t)p(t)dW̃ (t),

−dq(t) = (a(t)q(t)−A(t)p(t)+L(t)x(t)+ l(t))dt
−k(t)dW (t)− k̃(t)dW̃ (t),

p(0) = −Ny(0)−n, q(T ) =−F p(T )+Mx(T )+m

admits a unique solution
(

p(·),q(·),k(·), k̃(·)) ∈L 2
F

(
0,T ;R4

)
such that

R(t)u(t)−D(t)E
[
p(t)

∣∣FY
t

]
+b(t)E

[
q(t)

∣∣FY
t

]
+ r(t) = 0 (1.36)

with FY
t = σ{Y u(s);0 ≤ s ≤ t}.

Similar to the proof of Theorem 1.3, we have the following verification theorem.
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Theorem 1.7. Let u(·) ∈Uad satisfy

R(t)u(t)−D(t)E
[
p(t)

∣∣FY
t

]
+b(t)E

[
q(t)

∣∣FY
t

]
+ r(t) = 0,

where (x(·),y(·),z(·), z̃(·), p(·),q(·),k(·), k̃(·)) is a solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = (a(t)x(t)+b(t)u(t)+ b̃(t))dt + c(t)dW (t)+ c̃(t)dW̃ (t),
−dy(t) = (A(t)x(t)+B(t)y(t)+C(t)z(t)+C̃(t)z̄(t)

+D(t)u(t)+ D̃(t))dt − z(t)dW (t)− z̃(t)dW̃ (t),
d p(t) = (B(t)p(t)−O(t)y(t)−o(t))dt

+C(t)p(t)dW (t)+C̃(t)p(t)dW̃ (t),
−dq(t) = (a(t)q(t)−A(t)p(t)+L(t)x(t)+ l(t))dt

−k(t)dW (t)− k̃(t)dW̃ (t),
x(0) = x0, y(T ) = Fx(T )+G,
p(0) = −Ny(0)−n, q(T ) =−F p(T )+Mx(T )+m

with (1.36). Then u(·) is an optimal control of Problem (FBLQ).

Furthermore, we prove the uniqueness of optimal control by the parallelogram
law.

Theorem 1.8. Let R(·) > 0 and R−1(·) be uniformly bounded, deterministic func-
tions. If u(·) is an optimal control of Problem (FBLQ), then u(·) is unique.

The second example in Chapter 5 is an LQ model of Case A2.
Problem (BLQ). To minimize the cost functional

J(v(·)) = 1
2
E

{∫ T

0

[
O(t)(yv(t))2 +R(t)v2(t)

]
dt +N(yv(0))2 +2nyv(0)

}

over Uad subject to the state equation
⎧⎨
⎩

−dyv(t) =
(
B(t)yv(t)+C(t)zv(t)+C̃(t)z̃v(t)+D(t)v(t)

)
dt

−zv(t)dW (t)− z̃v(t)dW̃ (t),
yv(T ) = ξ .

Here O(·) ≥ 0, R(·) ≥ 0, B(·), C(·), C̃(·), D(·), and R−1(·) are uniformly bounded
deterministic functions; N ≥ 0 and n are constants; ξ is a square-integrable random
variable; and (W (·),W̃ (·)) is a 2-dimensional standard Brownian motion. Suppose
that W (t) is observable at time t.

The observation process here looks simple, but the traditional separation princi-
ple still does not work. Fortunately, the backward separation approach introduced
in this book can be used to solve this example explicitly. We first introduce two
ordinary differential equations (ODEs)

⎧⎨
⎩

α̇(t)− (
2B(t)+C2(t)+C̃2(t)

)
α(t)− 1

R(t)
D2(t)α2(t)+O(t) = 0,

α(0) =−N,

(1.37)
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and
⎧⎪⎨
⎪⎩

β̇ (t)−
(

B(t)+C2(t)+C̃2(t)+
1

R(t)
D2(t)α(t)

)
β (t) = 0,

β (0) =−n.

(1.38)

We assume that the solution α(·) of (1.37) satisfies

1
α(t)

C̃2(t)+
1

R(t)
D2(t)≥ 0.

Combining the theory of FBSDE with Theorems 1.1 and 1.2, we have

Theorem 1.9. The optimal control of Problem (BLQ) is given uniquely by

u(t) =
1

R(t)
D(t)(α(t)ŷ(t)+β (t)),

where α(·), β (·) and ( p̂(·), ŷ(·), ẑ(·)) are the solutions of (1.37), (1.38), and

⎧⎨
⎩

d p̂(t) = (B(t) p̂(t)−O(t)ŷ(t))dt +C(t) p̂(t)dW (t),
−dŷ(t) =

(
B(t)ŷ(t)+C(t)ẑ(t)+C̃(t) ˆ̃z(t)+D(t)u(t)

)
dt − ẑ(t)dW (t),

p̂(0) = −Ny(0)−n, ŷ(T ) = ξ̂ .

By applying Theorem 1.1 to the BSDEs in Theorems 1.4, 1.6, and 1.7, optimal
feedback controls of these problems can be obtained in particular cases. However, it
is hard to get analytical solutions in general cases. Therefore, it is highly desirable
to establish some numerical schemes for these problems.

1.4 Notes

The operation of solving a standard LQ Gaussian control model with incomplete
information is separated into two stages in sequence: to compute the filtering of the
state first, and then to solve a complete information LQ control problem driven by
the filtering. The optimal control is designed as the linear feedback of the filtering
of the optimal state. One feature of the optimal control is that the coefficients of the
feedback are the same as those of the LQ Gaussian control model with complete
information. This feature is known as the certainty equivalence principle, originally
introduced in the economic paper of Simon [76]. Note that the certainty equivalence
principle does not hold for general cost functionals.

In 1958, Kalman and Koepcke [39] raised a question of “whether the separate op-
timization of statistical prediction and control system performance yields a system
which is optimal in the over-all sense.” Joseph and Tou [33] answered the ques-
tion by a discrete time combined problem of estimate and LQ Gaussian control.
In 1968, Wonham [96] proved a more general separation result in continuous time,
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i.e., the combined problem of control and filtering, for a Gaussian dynamic system
observed via a noisy linear system with more general cost functional, can still be
separated into two independent problems of filtering and control, respectively. This
result is improved by many scholars under various setups and is referred to as the
(traditional) separation principle, which is one of the primary results in the theory
of stochastic control. See, e.g., Davis [15] and Menaldi [55] for more information.

For a non-Gaussian dynamic control system with partially observable informa-
tion, however, the separation principle does not hold usually. We may then reduce
the control problem to the one with completely observable information of the Za-
kai’s equation. The problem can be regarded as an optimization problem driven by a
stochastic partial differential equation (SPDE) in infinite dimensional space, which
is essentially difficult to study. See, e.g., the monograph of Bensoussan [6] for a
systematic account on the problem.

In 2008, Wang and Wu [84] discovered originally an approach of decoupling
control and filtering when they solved a partially observable LQ optimal control
problem driven by SDE. The approach allows us to study a combined problem of
control and filtering by first deducing the optimal control of an augmented dimen-
sional optimality problem and then computing the optimal filtering of the corre-
sponding Hamiltonian system. Since in the current approach, the filtering and the
control are decoupled in the opposite order of the traditional separation principle,
[84] called it the backward separation approach. The approach is applicable to a
board class of nonlinear control systems and can be used to solve them in a more ef-
fective way. There are some references on the topic. We mention in particular Wang
et al. [88, 89, 95].



Chapter 2
Filtering of BSDE and FBSDE

In this chapter, we develop some filtering results for the solutions to BSDEs and
FBSDEs, which play an important role in studying the optimal control with incom-
plete information. We first state a theorem on the stochastic filtering of a general
stochastic process. The proof of that result can be found in Liptser and Shiyayev
[49], so we omit it here. Then, we apply this result to the stochastic filtering for the
solutions to BSDEs in Section 3.2 and to those for FBSDEs in Section 3.3.

2.1 Stochastic Filtering of Stochastic Processes

Consider a stochastic process

x(t) = x(0)+
∫ t

0
b(s)ds+m(t), (2.1)

where m(·) is an Ft-martingale, and b(·) is a stochastic process with

P

(∫ T

0
|b(s)|ds < ∞

)
= 1.

Assume that x(·) is observed via an Itô process

Y (t) = Y (0)+
∫ t

0
h(s)ds+

∫ t

0
f (s,Y )dW (s).

Here W (·) is a 1-dimensional standard Brownian motion defined on (Ω ,F ,(Ft),P);
h : Ω × [0,T ]→ R and f : [0,T ]×R→ R satisfy

P

(∫ T

0
|h(s)|ds < ∞

)
= 1, P

(∫ T

0
| f (s,Y )|2ds < ∞

)
= 1
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with f (t,Y ), Y ∈ C([0,T ];R), being Bt-measurable for each 0 ≤ t ≤ T . Further-
more, we assume that for any Y , Y1, Y2 ∈ C([0,T ];R), 0 ≤ t ≤ T , there are three
constants C, C1, C2 and a nondecreasing right continuous function 0 ≤ K(t) ≤ 1
such that

| f (t,Y )|2 ≤C1

∫ t

0
|1+Y (s)|2dK(s)+C2|1+Y (t)|2

and

| f (t,Y1)− f (t,Y2)|2 ≤C1

∫ t

0
|Y1(s)−Y2(s)|2dK(s)+C2|Y1(t)−Y2(t)|2.

For a stochastic process X(t), we call

X̂(t)≡ E
[
X(t)|FY

t

]

the optimal filtering of X(t) based on Y (·) up to time t, where FY
t = σ{Y (s);0 ≤

s ≤ t}. We now state the filtering equation of x(t) given in (2.1), whose proof can be
found in Liptser and Shiyayev (Theorem 8.1 of [49]).

Theorem 2.1. Let

sup
0≤t≤T

Ex2(t)< ∞, E

∫ T

0
[b2(t)+h2(t)]dt < ∞, f 2(t,Y )≥C > 0.

Then the optimal filtering of x(t) satisfies

x̂(t) = x̂(0)+
∫ t

0
b̂(s)ds+

∫ t

0

[
D̂(s)+

(̂xh)(s)− x̂(s)ĥ(s)
f (s,Y )

]
dŴ (s),

where (xh)(t) = x(t)h(t),

Ŵ (t) =
∫ t

0

dY (s)− ĥ(s)ds
f (s,Y )

is a Brownian motion, and D(t) is the stochastic process given by

D(t) =
d〈m,W 〉t

dt
.

2.2 Stochastic Filtering for BSDE

Suppose that the stochastic process (y(·),z1(·),z2(·)) is governed by a BSDE

y(t) = ξ +
∫ T

t
g(s,y(s),z1(s),z2(s))ds

−
∫ T

t
z1(s)dW1(s)−

∫ T

t
z2(s)dW2(s), (2.2)
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where (W1(·),W2(·)) is a 2-dimensional standard Brownian motion, ξ ∈L 2
F
(Ω ;R),

and g : [0,T ]×Ω ×R
3 → R is a given function. Equation (2.2) admits a unique

solution (y(·),z1(·),z2(·)) ∈L 2
F
(0,T ;R3) under Conditions (Ha.1–Ha.2). Note that

the solution involves (z1(·),z2(·)), which can be regarded as a control term to the
equation such that the adapted solutions exist. Next, we assume that the observable
process Y (·) is the Itô process given by

Y (t) =
∫ t

0
h(s)ds+

∫ t

0
f (s)dW1(s), (2.3)

where f : [0,T ]→R and h : Ω × [0,T ]→R are measurable mappings. The optimal
nonlinear filtering is to compute X̂(t) = E[X(t)|FY

t ], where X = y, z1 and z2. Since
zi(·) can be calculated by the Malliavin derivatives of y(·) with respect to Wi(·)
(i = 1,2) (see, e.g., El Karoui et al. [19]), we focus on the filtering of y(·). For any
t ∈ [0,T ], we adopt the following notations for simplification of the presentation

ĥ(t) = E[h(t)|FY
t ],

ĝ(t) = E[g(t,y(t),z1(t),z2(t))|FY
t ],

(̂yh)(t) = E[y(t)h(t)|FY
t ].

Also, we need the following assumption on the coefficients of (2.2) and (2.3).
(H2.1) The function g(·,0,0,0) ∈ L 2

F (0,T ;R), and g is Lipschitz in (y,z1,z2)
uniformly for (ω, t) ∈ Ω × [0,T ]. f is bounded and deterministic, and f−1 is also
bounded. h is in L 2

F
(0,T ;R).

We now state the main result of this section, which plays an important role in the
study of incomplete information stochastic control for BSDE.

Theorem 2.2. Under (H2.1), the optimal filtering ŷ(·) is governed by

ŷ(t) = E[ξ |FY
T ]+

∫ T

t
ĝ(s)ds

−
∫ T

t

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s), (2.4)

where

Ŵ (t) =
∫ t

0

1
f (s)

(
dY (s)− ĥ(s)ds

)
(2.5)

is a 1-dimensional standard Brownian motion defined on (Ω ,FY ,(FY
t )0≤t≤T ,P).

Proof. Equation (2.2) admits a unique solution (y(·),z1(·),z2(·)) ∈ L 2
F
(0,T ;R3),

so y(·) can be rewritten as an Itô process as follows:

y(t) = y(0)−
∫ t

0
g(s,y(s),z1(s),z2(s))ds

+
∫ t

0
z1(s)dW1(s)+

∫ t

0
z2(s)dW2(s). (2.6)
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Now (2.6) and (2.3) can be regarded as the state equation and the observation equa-
tion, respectively. Using Theorem 2.1, we have

ŷ(t) = ŷ(0)−
∫ t

0
ĝ(s)ds+

∫ t

0

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s), (2.7)

where Ŵ (·) is given by (2.5). Similarly, we have

ŷ(T ) = ŷ(0)−
∫ T

0
ĝ(s)ds+

∫ T

0

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s). (2.8)

Subtracting (2.8) from (2.7), we obtain that

ŷ(t) = ŷ(T )+
∫ T

t
ĝ(s)ds−

∫ T

t

{
ẑ1(s)+

1
f (s)

[
(̂yh)(s)− ŷ(s)ĥ(s)

]}
dŴ (s).

The verification of the terminal condition ŷ(T ) = E[ξ |FY
T ] is trivial. Thus the proof

is completed. ��
The following result is an immediate consequence of Theorem 2.2.

Corollary 2.1. Under (H2.1), if g1 : [0,T ]×R
2 → R and h : Ω × [0,T ]→ R satisfy

ĝ(t) = g1(t, ŷ(t), ẑ1(t)) and (̂yh)(t) = ŷ(t)ĥ(t),

respectively, then the optimal filtering (ŷ(·), ẑ1(·)) is a solution of the following back-
ward filtering equation:

ŷ(t) = E[ξ |FY
T ]+

∫ T

t
g1(s, ŷ(s), ẑ1(s))ds−

∫ T

t
ẑ1(s)dŴ (s),

where

Ŵ (t) =
∫ t

0

1
f (s)

(
dY (s)− ĥ(s)ds

)

is a 1-dimensional standard Brownian motion defined on (Ω ,FY ,(FY
t )0≤t≤T ,P).

In what follows, suppose that the conditional probability distribution of y(t)
based on FY

t has the density

ψ(t,x) =
dP(y(t)≤ x|FY

t )

dx
, (t,x) ∈ [0,T ]×R,

which is measurable in (t,x,ω). We proceed to deriving the equation satisfied by
this conditional density. Note that the nonlinear filtering ŷ(·) can be represented by

ŷ(t) = E[y(t)|FY
t ] =

∫ ∞

−∞
xψ(t,x)dx.
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Next, we assume that the observation function h(s) in (2.3) depends on the signal
in a deterministic way, namely, we abuse notation a bit, there is a function h : [0,T ]×
R→ R such that observation equation (2.3) is replaced by

Y (t) =
∫ t

0
h(s,y(s))ds+

∫ t

0
f (s)dW1(s). (2.9)

We introduce the following assumptions:
(H2.2) The function (to be used in Theorem 2.3 below as test function for filter-

ing) ϕ(·) : R→ R and its derivatives up to order 2 are uniformly bounded.
(H2.3) The function ϕ(·) : R→ R has compact support.
(H2.4) The functions g : [0,T ]×R

3 → R and h : [0,T ]×R→ R are Borel mea-
surable, and h is Lipschitz in x ∈ R uniformly for t ∈ [0,T ].

(H2.5) The solution of (2.2) satisfies zi(t) = gi(t,y(t)), where gi : [0,T ]×R→R

(i = 1,2) are also Borel measurable.
(H2.6) The partial derivatives

[ψ(t,x)g(t,x,y,z)]x, [yh(t,x)]x,

[ψ(t,x)(h(t,x)− ĥ(t,x))g(t,x,y,z)]x,

[(y2 + z2)ψ(t,x)]xx and [(y2 + z2)(h(t,x)− ĥ(t,x))ψ(t,x)]xx

exist.
(H2.7)

∫ T

0

∫ ∞

−∞
|ϕ(x)L ∗ψ(t,x)|dxdt < ∞,

E

∫ T

0

∫ ∞

−∞
ϕ2(x)

[
ψ(t,x)

(
h(t,x)− ĥ(t,x)

)
+N ∗ψ(t,x)

]2
dxdt < ∞

with the notations

L ∗ψ(t,x) =−[ψ(t,x)g(t,x,y,z)]x − 1
2
[ψ(t,x)(y2 + z2)]xx

and
N ∗ψ(t,x) =−[ψ(t,x)y]x.

Note that (H2.2), (H2.3), (H2.4), (H2.6), and (H2.7) are standard in the theory of
nonlinear filtering, while (H2.5) is reasonable under some constraints on ξ and g.
We give an example below for which (H2.5) holds.

Example 2.1. We consider the BSDE

y(t) = ξ +
∫ T

t
(a(s)y(s)+b1(s)z1(s)+b2(s)z2(s))ds

−
∫ T

t
z1(s)dW1(s)−

∫ T

t
z2(s)dW2(s),
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where a(·), bi(·) (i = 1,2) are bounded and deterministic, and

ξ = exp

(
2

∑
i=1

∫ T

0
fi(t)dWi(t)

)
.

Then, (H2.5) holds.

Proof. It is easy to see that the BSDE has a unique solution (y(·),z1(·),z2(·)) ∈
L 2

F
(0,T ;R3). In fact, the solution can be represented as

y(t) = E[ξx(T )|Ft ]

with

x(T ) = exp

{∫ T

0

[
a(t)− 1

2

(
b2

1(t)+b2
2(t)

)]
dt

+
∫ T

0
b1(t)dW1(t)+

∫ T

0
b2(t)dW2(t)

}
.

According to Proposition A.1, zi(·) is expressed by

zi(t) = D(Wi)
t E[ξx(T )|Ft ]

= E

[
x(T )D(Wi)

t ξ |Ft

]
+bi(t)y(t),

where D(Wi)
t η stands for the Malliavin derivative of η with respect to Wi(·) (i= 1,2).

Note that D(Wi)
t ξ = ξ fi(t). Thus, zi(t) = ( fi(t)+bi(t))y(t), and hence (H2.5) holds.

��
Theorem 2.3. (i) If (H2.1), (H2.2), and (H2.5) hold, then the optimal filtering
ϕ̂(y(t)) satisfies

ϕ̂(y(t)) = E[ϕ(ξ )|FY
T ]+

∫ T

t
L̂ ϕ(y(s))ds

−
∫ T

t

{
N̂ ϕ(y(s))+

1
f (s)

[
ϕ̂h(s,y(s))− ϕ̂(y(s))ĥ(s,y(s))

]}
dŴ (s),

(2.10)
where

L̂ ϕ(y(s)) =E[L ϕ(y(s))|FY
s ],

N̂ ϕ(y(s)) =E[N ϕ(y(s))|FY
s ],

ϕ̂h(s,y(s)) =E[ϕ(y(s))h(s,y(s))|FY
s ],

with

L ϕ(y(s)) =ϕx(y(s))g(s,y(s),z1(s),z2(s))− 1
2
ϕxx(y(s))(z

2
1(s)+ z2

2(s)),

N ϕ(y(s)) =ϕx(y(s))z1(s),
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and

Ŵ (s) =
∫ s

0

1
f (t)

(
dY (t)− ĥ(t,y(t))

)
dt.

(ii) If (H2.1), (H2.3), (H2.4), (H2.6), (H2.7), (H2.8), (H2.9), and (H2.10) hold,
then the conditional density ψ(t,x) satisfies

ψ(t,x) = ψ(T,x)+
∫ T

t
L ∗ψ(s,x)ds−

∫ T

t

[
N ∗ψ(s,x)

+
1

f (s)
ψ(s,x)

(
h(s,x)−

∫ ∞

−∞
h(s,x)ψ(s,x)dx

)]
dŴ (s).

(2.11)

Proof. (i) Applying Itô’s formula to ϕ(y(t)), we have

ϕ(y(t)) =ϕ(ξ )+
∫ T

t
L ϕ(y(s))ds

−
∫ T

t
ϕx(y(s))z1(s)dW1(s)−

∫ T

t
ϕx(y(s))z2(s)dW2(s).

By the uniqueness of (y(·),z1(·),z2(·)), Theorems 2.1 and 2.2, the nonlinear filtering
equation (2.10) is obtained directly.

(ii) Due to (H2.5), (2.10) can be rewritten as

∫ ∞

−∞
ϕ(x)ψ(t,x)dx =

∫ ∞

−∞
ϕ(x)ψ(T,x)dx+ I − II, (2.12)

where

I =
∫ T

t

∫ ∞

−∞
L ϕ(x)ψ(s,x)dxds,

II =
∫ T

t

∫ ∞

−∞

[
N ϕ(x)+

1
f (s)

ϕ(x)
(
h(s,x)− ĥ(s,x)

)]
ψ(s,x)dxdŴ (s).

It follows from integration by parts and Fubini’s theorem that

I =
∫ ∞

−∞

∫ T

t
ϕ(x)L ∗ψ(s,x)dsdx.

Similarly,

II =
∫ ∞

−∞

∫ T

t
ϕ(x)

[
N ∗ψ(s,x)+

1
f (s)

ψ(s,x)
(
h(s,x)− ĥ(s,x)

)]
dŴ (s)dx.
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Substituting the above two identities into (2.12), we obtain
∫ ∞

−∞
ϕ(x)ψ(t,x)dx

=
∫ ∞

−∞
ϕ(x)

{
ψ(T,x)+

∫ T

t
L ∗ψ(s,x)ds

−
∫ T

t

[
N ∗ψ(s,x)+

1
f (s)

ψ(s,x)
(
h(s,x)− ĥ(s,x)

)]
dŴ (s)

}
dx.

The arbitrariness of ϕ(·) implies (2.11). The proof is then completed. ��
We emphasize that (2.11) is a new kind of backward stochastic partial differential

equation (BSPDE). Since the noise term is very complicated, it is not easy to prove
the existence and uniqueness of solution to the equation. We pose it here as an open
problem.

2.3 Stochastic Filtering for FBSDE

In this section, we first introduce the four-step scheme in solving FBSDEs. As an
example to this scheme, we then consider an optimization problem. To obtain an
explicit solution, we will apply Girsanov’s transformation to convert it to an LQ
control problem which can be solved in terms of an FBSDE without control variable.
Finally, we study the stochastic filtering problem for this FBSDE based on a linear
observation equation.

Consider a fully coupled FBSDE
⎧⎪⎨
⎪⎩

dx(t) = b(t,x(t),y(t),z(t))dt +σ(t,x(t),y(t),z(t))dW (t),

−dy(t) = g(t,x(t),y(t),z(t))dt − z(t)dW (t),

x(0) = x0, y(T ) = f (x(T )),

(2.13)

where b,g : [0,T ]×R
n+n+n×m →R

n, σ : [0,T ]×R
n+n+n×m →R

n×m, f : Ω×R
n →

R
n are continuous functions; W (·) is an m-dimensional standard Brownian motion

defined on the filtered probability space (Ω ,F ,(Ft)0≤t≤T ,P); Ft is the natural
filtration generated by W (·), and x0 ∈ R

n. Under Conditions (Ha.3-Ha.4), there is a
unique solution (x(·),y(·),z(·)) to (2.13). Furthermore, using the four-step scheme
(see, e.g., Yong and Zhou [109]), y(·) and z(·) can be expressed as a functional of
x(·), respectively. Indeed,

y(t) = U(t,x(t)),

z(t) = Z(t,x(t),U(t,x(t)),Ux(t,x(t))),
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where U , Z, and x(·) satisfy

⎧⎪⎪⎨
⎪⎪⎩

U �
t +

1
2

tr
[
U �

xx(σσ�)(t,X ,U,Z(t,X ,U,Ux))
]
+ 〈b(t,X ,U,Ux),U

�
X 〉

+g�(t,X ,U,Ux) = 0, (t,X) ∈ (0,T )×R
n, �= 1, · · · ,n,

U(T,X) = f (X), X ∈ R
n,

Z(t,X , X̄ , X̃) = X̃σ(t,X , X̄ ,Z(t,X , X̄ , X̃)), (t,X , X̄ , X̃) ∈ [0,T ]×R
n+n+n×n,

and {
dx(t) = b̃(t,x(t))dt + σ̃(t,x(t))dW (t),

x(0) = x0

with
b̃(t,X) = b(t,X ,U(t,X),Z(t,X ,U(t,X),Ux(t,X))),

σ̃(t,X) = σ(t,X ,U(t,X),Z(t,X ,U(t,X),Ux(t,X))).

According to the relationship between (y(·),z(·)), and x(·), it suffices to compute the
optimal filtering of x(·). The detailed arguments are omitted due to the page limit.

To elaborate the above analysis, we present a simple example on filtering of
stochastic Hamiltonian system arising from a stochastic control problem. Specifi-
cally, let us consider a 1-dimensional control system, whose evolution is described
by

{
dx(t) = (A(t)x(t)+B(t)v(t))dt +C1(t)dW̃1(t)+C2(t)dW̃2(t),

x(0) = x0,
(2.14)

where v(·) is an element of the set

Uad =

{
v(·)

∣∣∣v(t) is an Ft-adapted process valued in R

and satisfies E
∫ T

0
v4(t)dt < ∞

}
.

Suppose that the cost functional is given by

J(v(·)) = ȳ(0),

where ȳ(·) is a solution to the BSDE

⎧⎪⎨
⎪⎩
−dȳ(t) = (a(t)x2(t)+b(t)ȳ(t)+ f1(t)z̄1(t)+ f2(t)z̄2(t)+ c(t)v2(t))dt

− z̄1(t)dW̃1(t)− z̄2(t)dW̃2(t),

ȳ(T ) = x2(T ).

(2.15)
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Here a(·) ≥ 0, c(·) ≥ ε > 0, A(·), B(·), C1(·), C2(·), f1(·), and f2(·) are uniformly
bounded, deterministic functions. For any v(·) ∈Uad , it is easy to see that

Eȳ2(T )< ∞,

and thus, there exists a unique solution to (2.14) and (2.15), respectively. Since the
drift term in (2.15) contains (z̄1(·), z̄2(·)), it causes us some trouble to express the
cost functional J(v(·)). To simplify it, we define a probability measure Q on the
space (Ω ,F ) by

dQ
dP

= exp

{∫ T

0
f1(t)dW̃1(t)+

∫ T

0
f2(t)dW̃2(t)− 1

2

∫ T

0
( f 2

1 (t)+ f 2
2 (t))dt

}
.

It follows from Girsanov’s theorem that (W1(·),W2(·)) defined by

W1(t) = W̃1(t)−
∫ t

0
f1(s)ds and W2(t) = W̃2(t)−

∫ t

0
f2(s)ds

is a 2-dimensional Brownian motion defined on the stochastic basis (Ω ,F ,(Ft),Q).
Then we can rewrite (2.14) and (2.15) as

⎧⎪⎨
⎪⎩

dx(t) = (A(t)x(t)+B(t)v(t)+C1(t) f1(t)+C2(t) f2(t))dt

+C1(t)dW1(t)+C2(t)dW2(t),

x(0) = x0,

(2.16)

⎧⎪⎨
⎪⎩
−dȳ(t) = (a(t)x2(t)+b(t)ȳ(t)+ c(t)v2(t))dt

− z̄1(t)dW1(t)− z̄2(t)dW2(t),

ȳ(T ) = x2(T ).

(2.17)

Integrating on both sides of (2.17), we get

J(v(·)) = ȳ(0) = EQ

[∫ T

0
e

∫ t
0 b(s)ds(a(t)x2(t)+ c(t)v2(t))dt + e

∫ T
0 b(t)dtx2(T )

]
.

Then minimizing the cost functional subject to v(·) ∈ Uad and (2.16) formulates
a complete information LQ optimal control problem. Since the drift term in (2.16)
contains the deterministic function C1(·) f1(·)+C2(·) f2(·), the classical technique of
completing squares cannot be used directly to solve the control problem. However,
stochastic maximum principle (see, e.g., Chapters 3–5) provides an alternative tool.
According to the maximum principle, we derive the desired optimal control

u(t) =−1
2

B(t)c−1(t)e−
∫ t

0 b(s)dsy(t),
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where the adjoint process y(·) satisfies a Hamiltonian system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =

(
A(t)x(t)− 1

2
B2(t)c−1(t)e−

∫ t
0 b(s)dsy(t)+C1(t) f1(t)+C2(t) f2(t)

)
dt

+C1(t)dW1(t)+C2(t)dW2(t),

−dy(t) =
(

2a(t)e
∫ t

0 b(s)dsx(t)+A(t)y(t)
)

dt − z1(t)dW1(t)− z2(t)dW2(t),

x(0) = x0, y(T ) = 2e
∫ T

0 b(s)dsx(T ).

It follows from Theorem A.3 that there is a unique solution to the above equation.
Suppose that (x(·),y(·),z1(·),z2(·)) cannot be observed directly; however, we can
observe a noisy process Y (·) related to x(·), whose dynamic is described by

{
dY (t) = (D(t)x(t)+F(t)Y (t)+ f2(t)H(t))dt +H(t)dW2(t),

Y (0) = 0,
(2.18)

where D(·), F(·), H(·), and H−1(·) are uniformly bounded, deterministic functions.
Obviously, there exists a unique solution for (2.18).

We now study the filtering (x̂(t), ŷ(t), ẑ1(t), ẑ2(t)) of (x(t),y(t),z1(t),z2(t)) with
respect to the observation Y (·) up to time t, i.e., we want to derive the explicit
expressions for

x̂(t) = EQ[x(t)|FY
t ], ŷ(t) = EQ[y(t)|FY

t ],

ẑ1(t) = EQ[z1(t)|FY
t ], ẑ2(t) = EQ[z2(t)|FY

t ]
(2.19)

and their square error estimates, where

FY
t = σ{Y (s);0 ≤ s ≤ t}.

The method used here is first to look for the relationship between x(·) and (y(·),z(·))
by the four-step scheme, then to compute (x̂(·), ŷ(·), ẑ1(·), ẑ2(·)) by traditional filter-
ing theory for SDE.

Set y(t) =U(t,x(t)). It follows from the four-step scheme that z1(t) and z2(t) can
be written as

z1(t) =C1(t)Ux(t,x(t)), z2(t) =C2(t)Ux(t,x(t)), (2.20)

where U(t,x) is a classical solution of the PDE

{
Ut(t,x)+LU(t,x)+2a(t)e

∫ t
0 b(s)dsx+A(t)U(t,x) = 0,

U(T,x) = 2e
∫ T

0 b(s)dsx,
(2.21)
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with

LU(t,x) =
1
2
(C2

1(t)+C2
2(t))Uxx(t,x)

+

(
A(t)x− 1

2
B2(t)c−1(t)e−

∫ t
0 b(s)dsU(t,x)

+C1(t) f1(t)+C2(t) f2(t)

)
Ux(t,x).

Noticing the terminal condition of (2.21), we set

U(t,x) =Π(t)x+π(t),

where Π(·) and π(·) satisfy

⎧⎨
⎩

Π̇(t)+2A(t)Π(t)− 1
2

B2(t)c−1(t)e−
∫ t

0 b(s)dsΠ 2(t)+2a(t)e
∫ t

0 b(s)ds = 0,

Π(T ) = 2e
∫ T

0 b(s)ds,

(2.22)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π̇(t)+
(

A(t)− 1
2

B2(t)c−1(t)e−
∫ t

0 b(s)dsΠ(t)

)
π(t)

+(C1(t) f1(t)+C2(t) f2(t))Π(t) = 0,

π(T ) = 0,

(2.23)

respectively. From the classical ODE theory, we know that there exists a unique
solution for (2.22) and (2.23), respectively. Combining (2.20) with (2.23), we get

y(t) =Π(t)x(t)+π(t), z1(t) =C1(t)Π(t), z2(t) =C2(t)Π(t), (2.24)

where x(·) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) =

[(
A(t)− 1

2
B2(t)c−1(t)Π(t)e−

∫ t
0 b(s)ds

)
x(t)

+C1(t) f1(t)+C2(t) f2(t)− 1
2

B2(t)c−1(t)π(t)e−
∫ t

0 b(s)ds
]

dt

+C1(t)dW1(t)+C2(t)dW2(t),

x(0) = x0.

Obviously,
ẑ1(t) =C1(t)Π(t), ẑ2(t) =C2(t)Π(t). (2.25)

Then we only need to compute x̂(t) and ŷ(t). Let P(t) = EQ(x(t)− x̂(t))2 be the
square error of the estimate x̂(t). From the fact that (x(t)− x̂(t)) ⊥FY

t and x(t)−
x̂(t) is Gaussian, we know that x(t)− x̂(t) is independent of FY

t . So
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P(t) = EQ(x(t)− x̂(t))2

= EQ[(x(t)− x̂(t))2|FY
t ].

Thanks to Theorem 2.1, we obtain
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̂(t) =

[(
A(t)− 1

2
B2(t)c−1(t)Π(t)e−

∫ t
0 b(s)ds

)
x̂(t)+C1(t) f1(t)

+C2(t) f2(t)− 1
2

B2(t)c−1(t)π(t)e−
∫ t

0 b(s)ds
]

dt

+(C2(t)+D(t)H−1(t)P(t))dW̄ (t),

x̂(0) = x0,

(2.26)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṗ(t)−2

(
A(t)− 1

2
B2(t)c−1(t)Π(t)e−

∫ t
0 b(s)ds

)
P(t)

+(C2(t)+D(t)H−1(t)P(t))2 −C2
1(t)−C2

2(t) = 0,

P(0) = 0,

where

W̄ (t) =
∫ t

0
H−1(s)(dY (s)−D(s)x̂(s)−F(s)Y (s)− f2(s)H(s))ds

= W2(t)+
∫ t

0
D(s)H−1(s)(x(s)− x̂(s))ds

is an observable standard Brownian motion defined on (Ω ,FY ,(FY
t ),P). Further-

more, taking conditional expectations on both sides of (2.24), we get

ŷ(t) =Π(t)x̂(t)+π(t), (2.27)

where x̂(·) is the solution of (2.26). Then we have

Proposition 2.1. The stochastic filtering process (x̂(·), ŷ(·), ẑ1(·), ẑ2(·)) of the state
process (x(·),y(·),z1(·),z2(·)) based on the observation process Y (·) is given by
(2.26), (2.27), and (2.25).

2.4 Notes

The filtering problem is to obtain the best linear estimate x̂(t) of an unobservable
state x(t) based on the noisy observation data Yt

0 = {Y (s);0 ≤ s ≤ t} related to the
state. If lEx2(t) < ∞, then the best estimate x̂(t) of x(t) is equivalent to finding the
conditional expectation

x̂(t) = lE[x(t)|FY
t ]
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with FY
t = σ{Y (s);0 ≤ s ≤ t}. When the estimate depends linearly on the observa-

tions, we call it the linear filtering. Otherwise, it is referred to as the nonlinear fil-
tering. In the linear filtering theory, the most celebrated result is the linear quadratic
estimation, also known as the Kalman–Bucy filtering. The filtering was discovered
and was developed by Rudolf E. Kalman and Richard S. Bucy during the Cold
War between North American Treaty Organization and Warsaw Treaty Organiza-
tion. The Kalman–Bucy filtering works recursively and runs in real time, and thus,
it has numerous applications in the fields of aerospace, telecommunication, eco-
nomics, and so on. As far as we know, the most famous one among these applica-
tions is the Apollo Project, where the Kalman–Bucy filtering was used to estimate
the trajectories of manned spaceship going to Moon and back.

The filtering equation provided in Theorem 2.1 is one fundamental equation of
the nonlinear filtering theory. Lots of known filtering results can be deduced from
the equation, say, the Kalman–Bucy filtering. The deduction of the fundamental
equation follows the innovation process method, proposed originally by Bode and
Shannon [11], whose modern form was presented first by Kailath [34] and Kailath
and Frost [35]. Along this line, we get the equation of the conditional probability
density ψ(t,x) in Theorem 2.3, which is a new kind of nonlinear backward SPDE.
Historically, a similar SPDE was derived early by Stratonovich [77] and Kushner
[40] when they studied the condition probability density of a forward SDE. The
innovation method achieved its culmination with the famous work of Fujisaki et
al. [25]. The filtering equation is called the Kushner–Stratonovich equation or the
Kushner–FKK equation. Almost at the same time, Duncan [18], Mortensen [56],
and Zakai [112] studied the nonlinear filtering problem by virtue of the Kallianpur–
Striebel formula and the unnormalized filtering. They obtained a linear SPDE of the
unnormalized filtering, which is called the Duncan–Mortensen–Zakai equation, or,
simply, Zakai’s equation. See, e.g., Bensoussan [6] and Xiong [104] for a systematic
account.

Most results of Section 3.2 are taken from Wang et al. [95]. If the diffusion co-
efficients of (2.14) in Section 3.3 contain the state or the control, then (2.14) is
not Gaussian in general. Consequently, it is difficult to obtain an explicit filtering
equation. The filtering example is taken from Wang and Wu [84], where some ap-
plications to optimal control with partially observed information are also studied.



Chapter 3
Optimal Control of Fully Coupled
FBSDE with Partial Information

In this chapter, we study an optimal control problem of fully coupled FBSDE with
partial information, i.e., Problem A introduced in Section 1.2. Using the convex
variation and the duality technique, we derive a stochastic maximum principle and
two verification theorems for optimality of Problem A. As an application of the
optimality conditions, we solve explicitly an LQ optimal control problem and a
cash management problem.

Throughout this chapter, we adopt the following shorthand notations for simplic-
ity:

α(t,v) = α(t,xv(t),yv(t),zv(t),v(t)),

H(t,v) = H(t,xv(t),yv(t),zv(t),v(t); p(t),q(t),k(t)),

and

αX (t,u) =
∂
∂X

α(t,u),

where we set α = b, σ , g, l, H and X = x, y, z, v.

3.1 Stochastic Maximum Principle

Recall that the state equation for Problem A is given by
⎧⎨
⎩

dxv(t) = b(t,v)dt +σ(t,v)dW (t),
−dyv(t) = g(t,v)dt − zv(t)dW (t),

xv(0) = x0, yv(T ) = f (xv(T )),
(3.1)
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and the cost functional is

J(v(·)) = E

[∫ T

0
l(t,v)dt +ψ(xv(T ))+φ(yv(0))

]
. (3.2)

The information is provided by a sub-σ -field filtration Gt ⊂Ft .
Let u(·) be an optimal control of Problem A, and (x(·),y(·),z(·)) the correspond-

ing optimal state. For any given ε ∈ (0,1) and v such that v + u ∈ Uad . By the
convexity of Uad , we see that u+ εv ∈Uad . Let (xu+εv(·),yu+εv(·),zu+εv(·)) be the
solution of (3.1) along with the control u(·) + εv(·). Then we have the following
continuity dependency of the solution on the control process.

Lemma 3.1. Under (H1.1)–(H1.3), there is a constant C > 0 such that

E

∫ T

0
|xu+εv(t)− x(t)|2dt ≤Cε2

E

∫ T

0
|v(t)|2dt,

E

∫ T

0
|yu+εv(t)− y(t)|2dt ≤Cε2

E

∫ T

0
|v(t)|2dt,

E

∫ T

0
|zu+εv(t)− z(t)|2dt ≤Cε2

E

∫ T

0
|v(t)|2dt.

Proof. Let
χ̄(·) = χu+εv(·)− χ(·),

where χ = x,y,z. It is easy to see from (3.1) that
⎧⎪⎨
⎪⎩

dx̄(t) = [b(t,u+ εv)−b(t,u)]dt +[σ(t,u+ εv)−σ(t,u)]dW (t),

−dȳ(t) = [g(t,u+ εv)−g(t,u)]dt − z̄(t)dW (t),

x̄(0) = 0, ȳ(T ) = f (xu+εv(T ))− f (x(T )).

(3.3)

Applying Itô’s formula to 〈x̄(·), ȳ(·)〉, we get

d 〈x̄(t), ȳ(t)〉 = 〈b(t,u+ εv)−b(t,u), ȳ(t)〉dt −〈g(t,u+ εv)−g(t,u), x̄(t)〉dt

+〈σ(t,u+ εv)−σ(t,u), z̄(t)〉dt +d(mart.).

Taking integration and expectation, we then have

E
〈
x̄(T ), f (xu+εv(T ))− f (x(T ))

〉

= E

∫ T

0
〈b(t,u+ εv)−b(t,u), ȳ(t)〉dt

−E

∫ T

0
〈g(t,u+ εv)−g(t,u), x̄(t)〉dt

+E

∫ T

0
〈σ(t,u+ εv)−σ(t,u), z̄(t)〉dt. (3.4)
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Note that

〈b(t,u+ εv)−b(t,u), ȳ(t)〉
= 〈b(t,u+ εv)−b(t,xu(t),yu(t),zu(t),u(t)+ εv(t)), ȳ(t)〉

+〈b(t,xu(t),yu(t),zu(t),u(t)+ εv(t))−b(t,u), ȳ(t)〉 ,

and by Condition (H1.2),

〈b(t,xu(t),yu(t),zu(t),u(t)+ εv(t))−b(t,u), ȳ(t)〉 ≤ ε2Kδ |v(t)|2 +δ |ȳ(t)|2,

where δ > 0 is a constant which could be made arbitrarily small and Kδ is a constant
depending on δ .

Similar estimates hold for −g and σ . We can then continue (3.4) with

E
〈
x̄(T ), f (xu+εv(T ))− f (x(T ))

〉

≤ E

∫ T

0
〈b(t,u+ εv)−b(t,xu(t),yu(t),zu(t),u(t)+ εv(t)), ȳ(t)〉dt

+E

∫ T

0
〈−g(t,u+ εv)+g(t,xu(t),yu(t),zu(t),u(t)+ εv(t)), x̄(t)〉dt

+E

∫ T

0
〈σ(t,u(t)+ εv(t))−σ(t,xu(t),yu(t),zu(t),u(t)+ εv(t)), z̄(t)〉dt

+E

∫ T

0
δ

(
3ε2|v(t)|2 + |x̄(t)|2 + |ȳ(t)|2 + |z̄(t)|2)dt

≤ E

∫ T

0

(−μ1|x̄(t)|2 −μ2
(|ȳ(t)|2 + |z̄(t)|2))dt

+E

∫ T

0

(
3ε2Kδ |v(t)|2 +δ

(|x̄(t)|2 + |ȳ(t)|2 + |z̄(t)|2))dt, (3.5)

where the last estimate follows from Condition (H1.3). On the other hand, by (H1.3)
again, we have

E
〈
x̄(T ), f (xu+εv(T ))− f (x(T ))

〉 ≥ μ3|x̄(T )|2. (3.6)

Combining (3.5) and (3.6), we arrive at

μ3E|x̄(T )|2 +μ1E

∫ T

0
|x̄(t)|2dt +μ2E

∫ T

0
(|ȳ(t)|2 + |z̄(t)|2)dt

≤ δE
∫ T

0
(|x̄(t)|2 + |ȳ(t)|2 + |z̄(t)|2)dt +3ε2KδE

∫ T

0
|v(t)|2dt. (3.7)
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Further, applying the usual techniques to |x̄(t)|2 and |ȳ(t)|2, we get

sup
0≤t≤T

E|x̄(t)|2 ≤ C1E

[∫ T

0
(|ȳ(t)|2 + |z̄(t)|2)dt + ε2

∫ T

0
|v(t)|2dt

]
,

E

∫ T

0
|x̄(t)|2dt ≤ C1E

[∫ T

0
(|ȳ(t)|2 + |z̄(t)|2)dt + ε2

∫ T

0
|v(t)|2dt

]
,

E

∫ T

0
(|ȳ(t)|2 + |z̄(t)|2)dt ≤ C1E

[∫ T

0
|x̄(t)|2dt + ε2

∫ T

0
|v(t)|2dt

]
,

where C1 is a constant depending on T .
If μ2 > 0, we take δ < μ2

1+K1
; if μ2 = 0, which implies μ1 > 0, we take δ < μ1

1+K1
.

Combining the above four estimates, it is then clear that we always have

E

∫ T

0
(|x̄(t)|2 + |ȳ(t)|2 + |z̄(t)|2)dt ≤Cε2

E

∫ T

0
|v(t)|2dt,

where C depends on μ1, μ2, T , and δ . The proof is then completed. ��
Next, we introduce a variational equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) =
[
bx(t,u)x

1(t)+by(t,u)y
1(t)+bz(t,u)z

1(t)

+bv(t,u)v(t)]dt +
[
σx(t,u)x

1(t)+σy(t,u)y
1(t)

+σz(t,u)z
1(t)+σv(t,u)v(t)]dW (t),

−dy1(t) =
[
gx(t,u)x

1(t)+gy(t,u)y
1(t)+gz(t,u)z

1(t)

+gv(t,u)v(t)]dt − z1(t)dW (t),

x1(0) = 0, y1(T ) = fx(x(T ))x
1(T ),

(3.8)

which has a unique solution under (H1.1)–(H1.3). As we will see from Lemma 3.2
below, (x1,y1,z1) is the derivation in ε of (xu+εv,yu+εv,zu+εv) at ε = 0.

For X = x,y,z, let

Xε(t) =
Xu+εv(t)−X(t)

ε
−X1(t).

Using the arguments similar to Lemma 3.1, we derive the following result.

Lemma 3.2. If (H1.1)–(H1.3) hold, then

lim
ε→0

E

∫ T

0
(|xε(t)|2 + |yε(t)|2 + |zε(t)|2)dt = 0.

Proof. It follows from (3.3), (3.8), and Taylor’s expansion that
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxε(t) = (bε
1(t)x

ε(t)+bε
2(t)y

ε(t)+bε
3(t)z

ε(t)+bε
4(t))dt

+(σε
1 (t)x

ε(t)+σε
2 (t)y

ε(t)+σε
3 (t)z

ε(t)+σε
4 (t))dW (t),

−dyε(t) = (gε
1(t)x

ε(t)+gε
2(t)y

ε(t)+gε
3(t)z

ε(t)+gε
4(t))dt − zε(t)dW (t),

xε(0) = 0, yε(T ) = f ε1 (T )x
ε(T )+ f ε2 (T )x

1(T ),

where

αε
X (t) =

∫ 1

0
αX (t,ϒλ ,ε(t))dλ , X = x,y,z,

αε
4 (t) = [αε

x (t)−αx(t,u)]x
1(t)+ [αε

y (t)−αy(t,u)]y
1(t)

+ [αε
z (t)−αz(t,u)]z

1(t)+

[∫ 1

0
αv(t,ϒλ ,ε(t))dλ −αv(t,u)

]
v(t),

f ε1 (T ) =
∫ 1

0
fx(x(T )+λ (xu+εv(T )− x(T )))dλ ,

f ε2 (T ) = f ε1 (T )− fx(x(T ))

with α = b,σ ,g, and

ϒλ ,ε(t) = (x(t)+λ (xu+εv(t)− x(t)),y(t)+λ (yu+εv(t)− y(t)),

z(t)+λ (zu+εv(t)− z(t)),u(t)+λεv(t)).

Applying Itô’s formula to |xε(t)|2, we get

E|xε(t)|2 ≤ C1E

∫ t

0
(|xε(s)|2 + |yε(s)|2 + |zε(s)|2)ds

+C′
1E

∫ t

0
(|bε

4(s)|2 + |σε
4 (s)|2)ds.

Then,

sup
0≤t≤T

E|xε(t)|2 ≤ C1E

∫ T

0
(|xε(t)|2 + |yε(t)|2 + |zε(t)|2)dt

+C′
1E

∫ T

0
(|bε

4(t)|2 + |σε
4 (t)|2)dt,

and

E

∫ T

0
|xε(t)|2dt ≤ C1TE

∫ T

0
(|xε(t)|2 + |yε(t)|2 + |zε(t)|2)dt

+C′
1TE

∫ T

0
(|bε

4(t)|2 + |σε
4 (t)|2)dt,

where C1 > 0 and C′
1 > 0 are constants. Similarly, we have

E

(
|yε(t)|2 +

∫ T

t
|zε(s)|2ds

)
≤ C2E

∫ T

t
(|xε(s)|2 + |yε(s)|2)ds+C′

2E|xε(T )|2

+C
′′
2E

(
| f ε2 (T )|2 +

∫ T

t
|gε

4(s)|2ds

)
.
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Hence,

E

∫ T

0
(|yε(t)|2 + |zε(t)|2)dt ≤ C′

2(T +2)E

[∫ T

0
(|xε(t)|2 + |yε(t)|2)dt + |xε(T )|2

]

+C
′′
2(T +2)E

(
| f ε2 (T )|2 +

∫ T

0
|gε

4(t)|2dt

)
,

where C2 > 0, C′
2 > 0, and C

′′
2 > 0 are constants.

Applying Itô’s formula to 〈xε(·),yε(·)〉 with (H1.3), we derive

μ3E|xε(T )|2 +μ1E

∫ T

0
|xε(t)|2dt +μ2E

∫ T

0
(|yε(t)|2 + |zε(t)|2)dt

≤ E

[∫ T

0
(〈yε(t),bε

4(t)〉−〈xε(t),gε
4(t)〉+ 〈zε(t),σε

4 (t)〉)dt −〈xε(T ), f ε2 (T )〉
]

≤ C3E

∫ T

0
(|xε(t)|2 + |yε(t)|2 + |zε(t)|2)dt

+C′
3E

[∫ T

0
(|bε

4(t)|2 + |σε
4 (t)|2 + |gε

4(t)|2)dt + | f ε2 (T )|2
]
,

where C3 > 0 and C′
3 > 0 are constants.

Combining the above estimates, we have

E

∫ T

0
(|xε(t)|2 + |yε(t)|2 + |zε(t)|2)dt

≤ C4E

[∫ T

0
(|bε

4(t)|2 + |σε
4 (t)|2 + |gε

4(t)|2)dt + | f ε2 (T )|2
]
,

where C4 > 0 is a constant. Lemma 3.1 and the dominated convergence theorem
with (H1.2) imply the desired equality. ��
Lemma 3.3. Under (H1.1)–(H1.5), if u(·) is an optimal control, then for any v(·)
such that v(·)+u(·) ∈Uad we have the variational inequality

E

{∫ T

0

[
l�x (t,u)x1(t)+ l�y (t,u)y1(t)+ l�z (t,u)z1(t)+ l�v (t,u)v(t)

]
dt

+ψ�
x (x(T ))x1(T )+φ�

y (y(0))y1(0)
}
≥ 0.

(3.9)

Proof. For any v(·) such that v(·)+u(·) ∈Uad , it is easy to see

J(u(·)+ εv(·))− J(u(·))
ε

≥ 0.

Applying Taylor’s expansion, Lemmas 3.1 and 3.2, we derive easily

lim
ε→0

E[ψ(xu+εv(T ))−ψ(x(T ))]
ε

= E

[
ψ�

x (x(T ))x1(T )
]
,
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lim
ε→0

E[φ(Y u+εv(0))−φ(y(0))]
ε

= E

[
φ�

y (y(0))y1(0)
]

and

lim
ε→0

E
∫ T

0 [l(t,u(t)+ εv(t))− l(t,u)]dt
ε

= E

∫ T

0

[
l�x (t,u)x1(t)+ l�y (t,u)y1(t)+ l�z (t,u)z1(t)+ l�v (t,u)v(t)

]
dt.

The proof is then completed. ��
To obtain a more explicit maximum condition, we recall the adjoint equation

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d p(t) = −
[
b�y (t,u)q(t)+σ�

y (t,u)k(t)−g�y (t,u)p(t)+ ly(t,u)
]

dt

−
[
b�z (t,u)q(t)+σ�

z (t,u)k(t)−g�z (t,u)p(t)+ lz(t,u)
]

dW (t),

−dq(t) =
[
b�x (t,u)q(t)+σ�

x (t,u)k(t)−g�x (t,u)p(t)+ lx(t,u)
]

dt − k(t)dW (t),

p(0) = −φy(y(0)), q(T ) = ψx(x(T ))− f�x (x(T ))p(T ).
(3.10)

If we define a Hamiltonian function H : [0,T ]×R
n+n+n×m ×U ×R

n+n+n×m → R

by
H(t,x,y,z,v; p,q,k) =〈q,b(t,x,y,z,v)〉+ 〈k,σ(t,x,y,z,v)〉

−〈p,g(t,x,y,z,v)〉+ l(t,x,y,z,v),

then (3.10) is rewritten as
⎧⎪⎨
⎪⎩

d p(t) = −Hy(t,u)dt −Hz(t,u)dW (t),

−dq(t) = Hx(t,u)dt − k(t)dW (t),

p(0) = −φy(y(0)), q(T ) = ψx(x(T ))− f�x (x(T ))p(T ),

which is called a generalized stochastic Hamiltonian system.
We now state the maximum principle for Problem A. The backward separation

approach appeared here implicitly. Namely, the problems are decoupled by first ob-
taining the optimal solution and then by solving a filtering equation, which is in
reverse order comparing with the usual separation principle. This point will become
more clear in Example 3.2 below.

Theorem 3.1. Under (H1.1)–(H1.5), if u(·) is an optimal control, then (3.10) admits
a unique solution (p(·),q(·),k(·))∈L 2

F
(0,T ;Rn+n+n×m) such that for any v∈U we

have
〈E[Hv(t,u)|Gt ],v−u(t)〉 ≥ 0. (3.11)

Proof. Applying Itô’s formula to 〈p(·),y1(·)〉+ 〈q(·),x1(·)〉 with (3.8) and (3.10),
we derive
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E
[〈x1(T ),ψx(x(T ))〉+ 〈y1(0),φy(y(0))〉

]

= E

∫ T

0
[〈q(t),bv(t,u)v(t)〉+ 〈k(t),σv(t,u)v(t)〉+ 〈p(t),gv(t,u)v(t)〉]dt

−E

∫ T

0

[〈x1(t), lx(t,u)〉+ 〈y1(t), ly(t,u)〉+ 〈z1(t), lz(t,u)〉
]

dt.

Inserting it into (3.9), we get

E

∫ T

0
〈E[Hv(t,u)|Gt ],v(t)〉dt = E

∫ T

0
〈Hv(t,u),v(t)〉dt ≥ 0. (3.12)

Now we prove (3.11) by contradiction. Suppose it does not hold, then there exists
ε > 0 such that E

∫ T
0 1Bε (t)dt > 0, where

Bε = {(t,ω) : 〈E[Hv(t,u)|Gt ],v(t)−u(t)〉<−ε}.

Define
vε(t) = v(t)1Bε (t)+u(t)1Bc

ε (t)−u(t).

Then,

E

∫ T

0
〈Hv(t,u),v

ε(t)〉dt = E

∫ T

0
〈Hv(t,u),v(t)−u(t)〉1Bε (t)dt

≤ −εE
∫ T

0
1Bε (t)dt < 0,

which contradicts from (3.12), and hence, the proof is completed. ��

3.2 Verification Theorem

We now derive some sufficient conditions for the optimality of the controls for Prob-
lem A.

Theorem 3.2. Let (H1.1)–(H1.5) hold. Moreover, we assume that

• (Terminal condition) for any v(·) ∈Uad,

yv(T ) = Axv(T ), A ∈ R
n×n;

• (Existence and Uniqueness) for any (x(·),y(·),z(·)) ∈L 2
F
(0,T ;Rn+n+n×m) and

u(·) ∈Uad, FBSDE (3.10) admits a unique solution (p(·),q(·),k(·)) ∈L 2
F
(0,T ;

R
n+n+n×m);
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• (Minimum Condition) for any t ∈ [0,T ],

E[H(t,u)|Gt ] = min
v∈U

E[H(t,x(t),y(t),z(t),v; p(t),q(t),k(t))|Gt ];

• (Convexity) for any t ∈ [0,T ], H(t,x,y,z,v; p(t),q(t),k(t)) is convex in (x,y,z,v)∈
R

n+n+n×m ×U, and ψ and φ are convex in (x,y) ∈ R
n+n, respectively.

Then u(·) is an optimal control of Problem A.

Proof. For any v(·) ∈Uad , we consider

J(v(·))− J(u(·)) = I1 + I2 + I3 (3.13)

with

I1 = E[φ(yv(0))−φ(y(0))],
I2 = E[ψ(xv(T ))−ψ(x(T ))],

I3 = E

∫ T

0
[l(t,v)− l(t,u)]dt.

Recall that φ is convex in y and p(0) = −φy(y(0)). Applying Itô’s formula to
〈p(t),yv(t)− y(t)〉, we get

I1 ≥ −E

[
p�(0)(yv(0)− y(0))

]

= −E

[
p�(T )A(xv(T )− x(T ))

]

−E

∫ T

0
〈Hy(t,u),y

v(t)− y(t)〉dt −E

∫ T

0
〈Hz(t,u),z

v(t)− z(t)〉dt

−E

∫ T

0
〈p(t),g(t,v)−g(t,u)〉dt. (3.14)

Similarly,

I2 ≥ E

[
(q�(T )+ p�(T )A)(xv(T )− x(T ))

]
(3.15)

with

E

[
q�(T )(xv(T )− x(T ))

]

= E

∫ T

0
〈q(t),b(t,v)−b(t,u)〉dt +E

∫ T

0
〈k(t),σ(t,v)−σ(t,u)〉dt

−E

∫ T

0
〈Hx(t,u),x

v(t)− x(t)〉dt.
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According to (3.13)–(3.15) and I3, it is easy to see from the convexity of the function
H(t,x,y,z,v; p(t),q(t),k(t)) that

J(v(·))− J(u(·)) ≥ E

∫ T

0
(H(t,v)−H(t,u))dt −E

∫ T

0
〈Hx(t,u),x

v(t)− x(t)〉dt

−E

∫ T

0
〈Hy(t,u),y

v(t)− y(t)〉dt −E

∫ T

0
〈Hz(t,u),z

v(t)− z(t)〉dt

≥ E

∫ T

0
E[〈Hv(t,u),v(t)−u(t)〉|Gt ]dt.

Further, using the minimum condition, we get

(
∂
∂v

E[H(t,u)|Gt ]

)�
(v(t)−u(t)) = E[〈Hv(t,u),v(t)−u(t)〉|Gt ]≥ 0.

This implies the desired result. ��
If Gt =Ft , t ∈ [0,T ], Theorem 3.2 is reduced to a Mangasarian sufficient condi-

tion for optimality. Further, the convexity condition of H(t,x,y,z,v; p(t),q(t),k(t))
with respect to (x,y,z,v) can be relaxed, and a generalized verification theorem can
be derived. This point is supported by Theorem 3.3 below, which is also called an
Arrow sufficient condition for optimality.

Theorem 3.3. Let (H1.1)–(H1.5) hold. Moreover, we assume that

• (Terminal condition) for any v(·) ∈Uad,

yv(T ) = Axv(T ), A ∈ R
n×n;

• (Existence and Uniqueness) (x(·),y(·),z(·)) ∈ L 2
F
(0,T ;Rn+n+n×m) and u(·) ∈

Uad, (3.10) admits a unique solution (p(·),q(·),k(·)) ∈L 2
F
(0,T ;Rn+n+n×m);

• (Minimum Condition) for any t ∈ [0,T ],

H(t,u) = min
v∈U

H(t,x(t),y(t),z(t),v; p(t),q(t),k(t));

• (Convexity) the function

H̃(t,x,y,z) = min
v∈U

H(t,x,y,z,v; p(t),q(t),k(t))

exists and is convex in (x,y,z), and ψ and φ are convex in x and y, respectively.

Then u(·) is an optimal control of Problem A.

Proof. Similar to the proof of Theorem 3.2, for any v(·) ∈Uad we have
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J(v(·))− J(u(·)) ≥ E

∫ T

0
(H(t,v)−H(t,u))dt

−E

∫ T

0
〈Hx(t,u),x

v(t)− x(t)〉dt

−E

∫ T

0
〈Hy(t,u),y

v(t)− y(t)〉dt

−E

∫ T

0
〈Hz(t,u),z

v(t)− z(t)〉dt. (3.16)

Now we show that J(v(·))− J(u(·))≥ 0 holds for any v(·) ∈Uad .
According to the minimum condition, for any (t,x,y,z)

H̃(t,x,y,z)− H̃(t,x(t),y(t),z(t))

≤ H(t,x,y,z,v; p(t),q(t),k(t))−H(t,u). (3.17)

Fix t ∈ [0,T ]. Since H̃(t,x,y,z) is convex in (x,y,z), there exist a(t), b(t) ∈ R
n

and c(t) ∈ R
n×m such that

H̃(t,x,y,z)− H̃(t,x(t),y(t),z(t)) ≥ 〈a(t),x− x(t)〉+ 〈b(t),y− y(t)〉
+〈c(t),z− z(t)〉. (3.18)

Define

ϕ(t,x,y,z) = H(t,x,y,z,u(t); p(t),q(t),k(t))−H(t,u)

−〈a(t),x− x(t)〉+ 〈b(t),y− y(t)〉+ 〈c(t),z− z(t)〉.

It follows from (3.17) and (3.18) that ϕ(t,x,y,z) ≥ 0 for all (t,x,y,z). Moreover,
ϕ(t,x(t),y(t),z(t)) = 0. It implies that (x(·),y(·),z(·)) is a minimum point of ϕ .
Because ϕ is differentiable with respect to (x,y,z), we have the partial derivatives

ϕx(t,x(t),y(t),z(t)) = 0, ϕy(t,x(t),y(t),z(t)) = 0, ϕz(t,x(t),y(t),z(t)) = 0,

i.e.,
Hx(t,u) = a(t), Hy(t,u) = b(t), Hz(t,u) = c(t).

Inserting them into (3.18), we see that

H̃(t,x,y,z)− H̃(t,x(t),y(t),z(t)) ≥ 〈Hx(t,u),x− x(t)〉+ 〈Hy(t,u),y− y(t)〉
+〈Hz(t,u),z− z(t)〉. (3.19)

Combing with (3.16) and (3.17) we see that J(v(·))≥ J(u(·)), i.e., u(·) is an optimal
control. The proof is then completed. ��

In the rest of this section, we work out an example to show that the Arrow suffi-
cient condition is really needed.
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Example 3.1. Consider a control system (n = m = k = 1)
⎧⎪⎨
⎪⎩

dx(t) = v(t)dt +dW (t),

−dy(t) = v(t)dt − z(t)dW (t),

x(0) = x0, y(T ) = x(T ),

with U = [0,∞) and

J(v(·)) = E

{∫ T

0
min

{
v2(t)− v(t),1

}
dt +3x(T )− y(0)

}
.

Since the diffusion coefficient is a constant and the drift coefficients do not de-
pend on the state explicitly, the Hamiltonian function and the adjoint equation are
reduced to

H(t,x,y,z,v; p,q,k) = min
{

v2 − v,1
}
+qv+ k− pv

and {
ṗ(t) = 0, p(0) = 1,

dq(t) = k(t)dW (t), q(T ) = 3− p(T ).

Solving the FBSDE above, we get p(t) ≡ 1, q(t) ≡ 2, and k(t) ≡ 0. Substituting it
into the Hamiltonian function, we have

H(t,x,y,z,v; p(t),q(t),k(t)) = min
{

v2 − v,1
}
+ v

=

{
v2, if v ∈ [0,(1+

√
5)/2),

v+1, if v ∈ [(1+
√

5)/2,∞),

which is neither a convex nor a concave function of v on the whole horizon [0,∞). It
is easy to see that H(t,x,y,z,v; p(t),q(t),k(t)) attains its minimum value 0 at v = 0,
i.e., H̃(t,x,y,z)≡ 0. On the other hand, suppose that u(t)≡ 0. Clearly,

H(t,u)≡ min{02 −0,1}+0 = 0.

Then
H(t,u) = min

v∈U
H(t,x(t),y(t),z(t),v; p(t),q(t),k(t))≡ 0.

Now all the assumptions required in Theorem 3.3 are satisfied, and hence, u(t)≡ 0
is an optimal control of Example 3.1.

3.3 An LQ Optimal Control Problem

The aim of this section is to demonstrate the applications of the theoretical results
obtained above via an LQ problem. Although the cost functional looks simple, the
mathematical deductions used to find an optimal control are still nontrivial. One
main motivation for this example is that the observable data is not complete, and
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it is necessary to compute optimal estimates of FBSDEs based on the observable
information. However, these estimates are infinite dimensional, in general.

Example 3.2. Consider a partial information LQ problem with U = R:

min
v(·)∈Uad

J(v(·))

subject to

J(v(·)) = E

[
1
2

∫ T

0
v2(t)dt + yv(0)

]

and a fully coupled FBSDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = (a1x(t)+a2y(t)+a3z1(t)+a4z2(t)+a5v(t))dt

+(b1x(t)+b2y(t)+b3z1(t)+b4z2(t)+b5v(t))dW1(t)

+(c1x(t)+ c2y(t)+ c3z1(t)+ c4z2(t)+ c5v(t))dW2(t),

−dy(t) = (e1x(t)+a1y(t)+b1z1(t)+ c1z2(t)+ e2v(t))dt

− z1(t)dW1(t)− z2(t)dW2(t),

x(0) = x0, y(T ) = x(T ).

(3.20)

For the monotonicity to be satisfied, we make the following assumptions on the
constants: a2 < 0, b2 = −a3, b3 < 0, c2 = −a4, c3 = −b4, c4 < 0, and e1 > 0.
Namely, for any v(·) ∈ Uad , we can check that (H1.1)–(H1.3) are satisfied; then,
(3.20) has a unique solution (xv(·),yv(·),zv

1(·),zv
2(·)) ∈L 2

F
(0,T ;R4).

In this situation, the adjoint equation is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p(t) = (a1 p(t)−a2q(t)+a3k1(t)+a4k2(t))dt

+(b1 p(t)−a3q(t)−b3k1(t)+b4k2(t))dW1(t)

+(c1 p(t)−a4q(t)−b4k1(t)− c4k2(t))dW2(t),

−dq(t) = (a1q(t)+b1k1(t)+ c1k2(t)− e1 p(t))dt

− k1(t)dW1(t)− k2(t)dW2(t),

p(0) = −1, q(T ) =−p(T ).

(3.21)

Since (H1.1), (H1.2), and (H1.3)’ are applicable to (3.21), it admits a unique solution
(p(·),q(·),k1(·),k2(·)) ∈L 2

F
(0,T ;R4). Let

u(t) = e2E[p(t)|Gt ]−a5E[q(t)|Gt ]−b5E[k1(t)|Gt ]− c5E[k2(t)|Gt ]. (3.22)

Clearly, u(·) is in Uad . The Hamiltonian function is

H(t,x,y,z1,z2,v; p,q,k1,k2) =
1
2

v2 +(a1x+a2y+a3z1 +a4z2 +a5v)q

+(b1x−a3y+b3z1 +b4z2 +b5v)k1

+(c1x−a4y−b4z1 + c4z2 + c5v)k2

− (e1x+a1y+b1z1 + c1z2 + e2v)p.
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Then

E[H(t,x(t),y(t),z1(t),z2(t),v; p(t),q(t),k1(t),k2(t))|Gt ]

=
1
2
[v− (e2E[p(t)|Gt ]−a5E[q(t)|Gt ]−b5E[k1(t)|Gt ]− c5E[k2(t)|Gt ])]

2

− 1
2
(e2E[p(t)|Gt ]−a5E[q(t)|Gt ]−b5E[k1(t)|Gt ]− c5E[k2(t)|Gt ])

2

+E[(a1q(t)+b1k1(t)+ c1k2(t)− e1 p(t))x(t)|Gt ]

+E[(a2q(t)−a3k1(t)−a4k2(t)−a1 p(t))y(t)|Gt ]

+E[(a3q(t)+b3k1(t)−b4k2(t)−b1 p(t))z1(t)|Gt ]

+E[(a4q(t)+b4k1(t)+ c4k2(t)− c1 p(t))z2(t)|Gt ].

Furthermore, the function (x,y,z1,z2,v) → H(t,x,y,z1,z2,v; p(t),q(t),k1(t),k2(t))
is convex. Therefore it follows from Theorem 3.2 that u(·), defined by (3.22), is an
optimal control.

The explicit form of (3.22) is rarely available except for some special settings.
In what follows, we will obtain explicit optimal controls by optimal filtering of
FBSDEs for these special cases. We also need an additional assumption.
(H3.1) a3 = a4 = b3 = b4 = c4 = 0 and Gt = σ{W1(s) : 0 ≤ s ≤ t}.

Based on (H3.1), (3.21) is reduced to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d p(t) = (a1 p(t)−a2q(t))dt +b1 p(t)dW1(t)+ c1 p(t)dW2(t),

−dq(t) = (a1q(t)+b1k1(t)+ c1k2(t)− e1 p(t))dt

− k1(t)dW1(t)− k2(t)dW2(t),

p(0) = −1, q(T ) =−p(T ).

(3.23)

Applying Theorems 3.1 and 3.2 to (3.23), we obtain the filtering equation

⎧⎪⎨
⎪⎩

d p̂(t) = (a1 p̂(t)−a2q̂(t))dt +b1 p̂(t)dW1(t),

−dq̂(t) = (a1q̂(t)+b1k̂1(t)+ c1k̂2(t)− e1 p̂(t))dt − k̂1(t)dW1(t),

p̂(0) = −1, q̂(T ) =− p̂(T ).

(3.24)

This is referred to as a kind of fully coupled forward-backward stochastic differen-
tial filtering equation. Note that, since k̂2(·) appears in the BSDE, (3.24) is not a
standard FBSDE, and consequently, the existence and uniqueness of its solution is
not an immediate conclusion.

Noting the terminal condition of (3.23), we set

q(·) = π(·)p(·) (3.25)

with π(T ) = −1, where π(·) is deterministic and will be given later on. Applying
Itô’s formula to (3.25),

dq(t) = [π̇(t)p(t)+π(t)(a1 p(t)−a2q(t))]dt

+b1π(t)p(t)dW1(t)+ c1π(t)p(t)dW2(t).
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Comparing it with the BSDE in (3.23), we derive

k1(t) = b1π(t)p(t), k2(t) = c1π(t)p(t), (3.26)

and

π̇(t)p(t)+π(t)(a1 p(t)−a2q(t))

= e1 p(t)−a1q(t)−b1k1(t)− c1k2(t). (3.27)

Inserting (3.25) and (3.26) into (3.27), we obtain
{

π̇(t)+(2a1 +b2
1 + c2

1)π(t)−a2π2(t)− e1 = 0,

π(T ) =−1.
(3.28)

Recall that a2 < 0 and e1 > 0. Then (3.28) admits a unique solution π(t)≤ 0. Taking
conditional expectations with respect to Gt on both sides of (3.26),

k̂1(t) = b1π(t) p̂(t), k̂2(t) = c1π(t) p̂(t). (3.29)

Substituting the second equality of (3.29) into (3.24), we arrive at

⎧⎪⎨
⎪⎩

d p̂(t) = (a1 p̂(t)−a2q̂(t))dt +b1 p̂(t)dW1(t),

−dq̂(t) =
[
a1q̂(t)+b1k̂1(t)+(c2

1π(t)− e1) p̂(t)
]

dt − k̂1(t)dW1(t),

p̂(0) = −1, q̂(T ) =− p̂(T ).

(3.30)

According to (H1.1), (H1.2), and (H1.3)’, the filtering equation (3.30) admits a
unique solution ( p̂(·), q̂(·), k̂1(·)) ∈L 2

G
(0,T ;R3). Therefore, the optimal control is

u(t) = [e2 − (a5 +b1b5 + c1c5)π(t)] p̂(t)

= [(a5 +b1b5 + c1c5)π(t)− e2]e
∫ t

0(a1−a2π(s)− 1
2 b2

1)ds+b1W1(t),
(3.31)

where the second equality follows by solving (3.30).
We conclude the above analysis as follows.

Proposition 3.1. The optimal control of Example 3.2 is given by (3.22). In addition,
if (H3.1) holds, then the optimal control is explicitly expressed by (3.31).

This result extends partially some literature, for example, [54, 61].

3.4 A Cash Management Problem

Cash management has important values in both theoretical and practical aspects.
However, such a class of problems has often been ignored in literature. Let us con-
sider a fully coupled FBSDE (n = m = k = 1)
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⎧⎪⎨
⎪⎩

dx(t) = (−α1x(t)−β1y(t)+ γ1v(t))dt −β2z(t)dW (t),

−dy(t) = (−α1y(t)+α2x(t)+ γ2v(t))dt − z(t)dW (t),

x(0) = x0, y(T ) = ax(T ),

(3.32)

where constants x0 ∈R, a > 0, αi > 0, βi > 0, γi ∈R−{0} (i = 1,2). x(·) describes
a cash flow of an agent, v(·) is a control strategy of the agent and is interpreted as the
rate of capital injection or withdrawal, so as to achieve a goal. y(·) denotes the utility
from v(·), while z2(·) is referred as the utility “volatility.” The terms −β1y(t)dt and
−β2z(t)dW (t) express the influence of the utility and its volatility on the cash flow.
From equation (3.32), we can see intuitively that y(·) is increasing with respect to
the cash x(·), while x(·) is decreasing in y(·).

Suppose that the available information is complete. For any v(·) ∈ Uad , (3.32)
has a unique solution (xv(·),yv(·),zv(·)) ∈L 2

F
(0,T ;R3). Introduce the performance

functional

J(v(·)) = E

[
1
2

∫ T

0
(v(t)−b(t))2dt − yv(0)

]
,

where b(·) is a deterministic and bounded function taking values in R, and is inter-
preted as a dynamic benchmark. Then the cash management problem with stochastic
recursive utility is as follows.

Problem (CM). Find a control strategy u(·) ∈Uad such that

J(u(·)) = min
v(·)∈Uad

J(v(·))

subject to (3.32). This problem applies to an agent who wants not only to prevent
the control strategy from large deviation, but also to maximize the recursive utility.

Recently, Bensoussan et al. [8] solved a cash management problem with ran-
dom gains rate of stock. [75] studied a mean-variance portfolio selection problem
with recursive utility. However, neither [8] nor [75] considered the influence of the
recursive utility and its volatility on the cash flow.

Obviously, Problem (CM) is a special case of Problem A. In this case, the Hamil-
tonian function and the adjoint equation are reduced to

H(t,x,y,z,v; p,q,k) =
1
2
(v−bt − γ2 p+ γ1q)2 − γ2

1 q2 − γ2
2 p2 −β2zk

−(α1x+β1y−2γ1bt)q− (α2x−α1y+2γ2bt)p

and ⎧⎪⎨
⎪⎩

d p(t) = (β1q(t)−α1 p(t))dt +β2k(t)dW (t),

−dq(t) = (−α2 p(t)−α1q(t))dt − k(t)dW (t),

p(0) = 1, q(T ) =−ap(T ).

(3.33)

According to (H1.1), (H1.2), and (H1.3)’, FBSDE (3.33) admits a unique solution
(p(·),q(·),k(·)) ∈L 2

F
(0,T ;R3).

Let
u(t) = b(t)− γ1q(t)+ γ2 p(t). (3.34)
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It is easy to check that

H(t,u) = min
v∈U

H(t,x(t),y(t),z(t),v; p(t),q(t),k(t))

= − γ2
1 q2(t)− γ2

2 p2(t)−β2z(t)k(t)

− (α1x(t)+β1y(t)−2γ1bt)q(t)

− (α2x(t)−α1y(t)+2γ2bt)p(t).

Moreover,
H̃(t,x,y,z) = H(t,x,y,z,u(t); p(t),q(t),k(t))

= min
v∈U

H(t,x,y,z,v; p(t),q(t),k(t))

exists and is convex with respect to (x,y,z). Then, by Theorem 3.3 we have

Proposition 3.2. The optimal strategy of Problem (CM) is given by (3.34), where
(p(·),q(·),k(·)) solves (3.33).

3.5 Notes

Maximum principle is a necessary condition of optimal control for an optimiza-
tion problem. The necessary condition becomes sufficient under some convexity as-
sumptions on cost functional. In 1950s, Pontryagin and his school [70] formulated
and derived a milestone result in optimal control theory, i.e., the maximum principle
for deterministic systems. The result shows that it is necessary for an optimal control
along with the optimal state to satisfy an extended Hamiltonian system, which is a
forward-backward differential equation. The earliest papers concerning sufficiency
of the maximum principle were published by Mangasarian [53] and Arrow and Kurt
[1] with some convex conditions. Shortly after the Pontryagin’s maximum principle
was obtained, Kushner and Schweppe [42] derived the first stochastic analog for
the stochastic diffusion case. The celebrated paper of Peng [66] brings the research
of the stochastic maximum principle to a culmination, where the control system is
possibly degenerate with a non-convex control domain and a control-dependent dif-
fusion. This is the so-called general stochastic maximum principle. The sufficiency
of the general stochastic maximum principle was proved by Zhou [116]. As for the
fully coupled forward-backward stochastic control system, how to derive a general
maximum principle remains open. The first paper on this topic was published in
1993 by Peng [67], where the SDE and the BSDE are decoupled with a convex
control domain and a control-dependent diffusion. After that, lots of attempts were
made to extend Peng [67] to a more general case. We mention only a few papers:
Xu [106], Wu [99], Shi and Wu [75], Yong [107], Wu [101], Hu [26].

Another often used method to solving optimal control problems is dynamic pro-
gramming, which was initiated by Bellman [3] when he studied multistage decision
problems. It seems that the first stochastic version of dynamic programming in con-
tinuous time was obtained by Kushner [41]. Since then, numerous works related
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to this subject have sprung up. See, e.g., Yong and Zhou [109], Peng [63, 65], Wu
and Yu [102], Touzi [81], and literature cited therein. The relationship between the
maximum principle and the dynamic programming principle is summarized in Yong
and Zhou [109]. See also Nie et al. [58] for recent development. The third alternative
method to optimal control is duality theory, which was formulated initially to study
a certain utility maximization problem in a complete market. It was then extended
to the case of incomplete market. We refer the reader to Pham [69] for a systematic
account about the method. See also Bouchard et al. [13] for further development.

The results presented in this chapter are taken mainly from Wu [99] and Wang
and Xiao [90]. When the dimension of x(·) is different from that of y(·), Problem
A can also be studied in a way similar to Sections 3.1 and 3.2. We omit the details
here to save space.



Chapter 4
Optimal Control of FBSDE with Partially
Observable Information

In this chapter, we study an optimal control problem with state process governed by
a nonlinear FBSDE and with partially observable information, i.e., Problem B in-
troduced in Section 1.2. For simplicity, we take the dimensions n = m = k = k̃ = 1.
Using a direct method and a Malliavin derivative method, we establish two versions
of the stochastic maximum principle for the characterization of the optimal control.
To demonstrate the applicability, we work out an illustrative example within the
framework of recursive utility and then solve it via the stochastic maximum princi-
ple and the stochastic filtering.

4.1 A Direct Method

4.1.1 Some Prior Estimates

Recall that Problem B consists of the state equation
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dxv(t) = b(t,xv(t),v(t))dt +σ(t,xv(t),v(t))dW (t)
+σ̃(t,xv(t),v(t))dW̃ v(t),

−dyv(t) = g(t,xv(t),yv(t),zv(t), z̃v(t),v(t))dt
−zv(t)dW (t)− z̃v(t)dY (t),

xv(0) = x0, yv(T ) = f (xv(T )),

(4.1)

and the cost function

J(v(·)) = E
v
[∫ T

0
l(t,xv(t),yv(t),zv(t), z̃v(t),v(t))dt +φ(xv(T ))+ γ(yv(0))

]
.

(4.2)
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The information is provided by the observation equation
{

dY (t) = h(t,xv(t))dt +dW̃ v(t),
Y (0) = 0,

(4.3)

Recall also that the process Zv(t) is given by (1.16) which helps to transfer W̃ v

into a Brownian motion under a new probability measure P
v.

Let ε ∈ (0,1) and v(·) such that v(·)+u(·)∈Uad . By the convexity of U , u+εv∈
Uad . Denoted by (xu+εv(·),yu+εv(·),zu+εv(·), z̃u+εv(·)) and Zu+εv(·) the solutions of
(4.1) and (1.16) along with the control u(·)+ εv(·). Making use of the Burkholder–
Davis–Gundy (BDG) inequality and Gronwall’s inequality, we get the following
estimates.

Lemma 4.1. Under (H1.6), for any v(·) ∈ Uad there is a constant C > 0 such that
the solutions of (1.15) and (1.16) satisfy

sup
0≤t≤T

E|xv(t)|8 ≤C

(
1+ sup

0≤t≤T
E|v(t)|8

)
,

sup
0≤t≤T

E|yv(t)|2 ≤C

(
1+ sup

0≤t≤T
E|v(t)|2

)
,

E

(∫ T

0
|zv(t)|2dt +

∫ T

0
|z̃v(t)|2dt

)
≤C

(
1+ sup

0≤t≤T
E|v(t)|2

)
,

E|Zv(t)|� < ∞, ∀� > 0.

Lemma 4.2. Under (H1.6), there is a constant C > 0 such that

sup
0≤t≤T

E|xu+εv(t)− x(t)|8 ≤Cε8, sup
0≤t≤T

E|yu+εv(t)− y(t)|2 ≤Cε2,

E

∫ T

0
|zu+εv(t)− z(t)|2dt ≤Cε2, E

∫ T

0
|z̃u+εv(t)− z̃(t)|2dt ≤Cε2,

sup
0≤t≤T

E|Zu+εv(t)−Z(t)|2 ≤Cε2.

We introduce the variational equations
{

dZ1(t) =
(
Z1(t)h(t,x(t))+Z(t)hx(t,x(t))x

1(t)
)

dY (t),

Z1(0) = 0
(4.4)
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and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = {[bx(t,u)− σ̃x(t,u)h(t,x(t)) − σ̃(t,u)hx(t,x(t))]x
1(t)

+ [bv(t,u)− σ̃v(t,u)h(t,x(t))]v(t)}dt

+
[
σx(t,u)x

1(t)+σv(t,u)v(t)
]

dW (t)

+
[
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
]

dY (t),

−dy1(t) =
[
gx(t,u)x

1(t)+gy(t,u)y
1(t)+gz(t,u)z

1(t)

+gz̃(t,u)z̃
1(t)+gv(t,u)v(t)

]
dt

− z1(t)dW (t)− z̃1(t)dY (t),

x1(0) = 0, y1(T ) = fx(x(T ))x
1(T ),

(4.5)

where we used the notation convention of the last chapter. For example,

bx(t,u) = bx(t,x(t),u(t)) and gz(t,u) = gz(t,x(t),y(t),z(t), z̃(t),u(t)).

For any v(·) ∈ Uad , it is easy to see that under (H1.6), (4.4) and (4.5) admit a
unique solution, respectively.

Lemma 4.3. Under (H1.6), it follows that

E|x1(t)|8 < ∞, E|Z1(t)|4 < ∞. (4.6)

Let

φε(t) =
φ u+εv(t)−φ(t)

ε
−φ 1(t) with φ = x,y,z, z̃,Z. (4.7)

Note that φε defined in (4.7) is for ε ∈ [0,1), and it should not be confused with φ 1

defined in (4.5).

Lemma 4.4. If (H1.6) holds, then

lim
ε→0

sup
0≤t≤T

E|xε(t)|4 = 0, lim
ε→0

sup
0≤t≤T

E|Zε(t)|2 = 0,

lim
ε→0

E

∫ T

0
|zε(t)|2dt = 0, lim

ε→0
E

∫ T

0
|z̃ε(t)|2dt = 0,

lim
ε→0

sup
0≤t≤T

E|yε(t)|2 = 0.

Proof. It follows from (1.15) and (4.5) that

dxε(t) = bε(t)dt +σε(t)dW (t)+ σ̃ ε(t)dY (t),
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where

bε(t) =

(
b(t,u+ εv)−b(t,u)

ε
−bx(t,u)x

1(t)−bv(t,u)v(t)

)

−
(
σ̃(t,u+ εv)− σ̃(t,u)

ε
− σ̃x(t,u)x

1(t)− σ̃v(t,u)v(t)

)
h(t,x)

−
(

h(t,xu+εv)−h(t,x)
ε

−hx(t,x)x
1(t)

)
σ̃(t,u)

− σ̃(t,u+ εv)− σ̃(t,u)
ε

(
h(t,xu+εv)−h(t,x)

)
,

σε(t) =
σ(t,u+ εv)−σ(t,u)

ε
−σx(t,u)x

1(t)−σv(t,u)v(t),

and

σ̃ ε(t) =
σ̃(t,u+ εv)− σ̃(t,u)

ε
− σ̃x(t,u)x

1(t)− σ̃v(t,u)v(t).

Denote

Θ = (t,x+ ελ (xε + x1),u+ ελv) and Ξ = (t,x+ ελ (xε + x1)).

It is easy to show that

σε(t) = xε(t)
∫ 1

0
σx(Θ)dλ + x1(t)

(∫ 1

0
σx(Θ)dλ −σx(t,u)

)

+v(t)

(∫ 1

0
σv(Θ)dλ −σv(t,u)

)
.

Denote by γε(t) the maximum of
∣∣φX (t,x+ ελ (xε + x1),u+ ελv)−φX(t,x,u)

∣∣ (4.8)

for φ and X runs over σ , σ̃ , b, h and x, v, respectively. Then, by (H1.6) and Lem-
mas 4.2 and 4.3, we have

|σε(t)| ≤ K
(|xε(t)|+ (|x1(t)|+ |v(t)|)γε(t)) . (4.9)

Similarly, we can prove that

|σ̃ ε(t)| ≤ K
(|xε(t)|+ (|x1(t)|+ |v(t)|)γε(t)) ,

and
|bε(t)| ≤ K

(|xε(t)|+ (|x1(t)|+ |v(t)|)(γε(t)∨ ε)
)
.

According to Hölder’s inequality and the BDG inequality, we derive
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E|xε(t)|4 ≤ CE

∫ t

0
|xε(s)|4ds

+C
∫ T

0

(
E|x1(t)|8 +E|v(t)|8)1/2

(
E(γε(t)∨ ε)8

)1/2
dt.

Note that E
(
γε(t)8

)→ 0. By Gronwall’s inequality, we obtain the first limit. The
second can be proved similarly.

To prove the other limit, we note that

−dyε(t) = gε(t)dt − zε(t)dW (t)− z̄ε(t)dY (t),

where

gε(t) = ε−1 (
g(t,xu+εv,yu+εv,zu+εv, z̄u+εv,u+ εv)−g(t,x,y,z, z̄,u)

)
−(

gx(t)x
1(t)+gy(t)y

1(t)+gz(t)z
1(t)+gz̄(t)z̄

1(t)+gv(t)v(t)
)
.

Applying Itô’s formula, we get

d|yε(t)|2 =
(−2gε(t)yε(t)+ |zε(t)|2 + |z̄ε(t)|2)dt

+2yε(t)zε(t)dW (t)+2yε(t)z̄ε(t)dY (t).

Taking integral and then expectation, we have

E|yε(t)|2 −E|yε(T )|2 = E

∫ T

t
2gε(s)yε(s)ds−E

∫ T

t

(|zε(s)|2 + |z̄ε(s)|2)ds

≤ δE
∫ T

t
|gε(s)|2ds+δ−1

E

∫ T

t
|yε(s)|2ds

−E

∫ T

t

(|zε(s)|2 + |z̄ε(s)|2)ds, (4.10)

where δ > 0 is an arbitrary constant.
Similar to (4.9), we can prove that E|yε(T )|2 → 0 and

E|gε(s)|2 ≤ KE
(|xε(s)|2 + |yε(s)|2 + |zε(s)|2 + |z̄ε(s)|2)

+KE
((|x1(s)|2 + |y1(s)|2 + |z1(s)|2 + |z̄1(s)|2 + |v(s)|2)(γ̃ ε(s)∨ ε)

)
,

where K is a constant which may depend on x1 etc., and γ̃ ε is defined as (4.8) with
φ = g and X runs over x, y, z, z̄, v.

Note that γ̃ ε is bounded and convergent to 0, by the dominated convergent theo-
rem, we have

∫ T

0
E

((|x1(s)|2 + |y1(s)|2 + |z1(s)|2 + |z̄1(s)|2 + |v(s)|2)(γ̃ ε(s)∨ ε)
)

ds → 0.

Taking δ small enough such that δK < 1 in (4.10), it then follows from Gron-
wall’s inequality that the last three identities of the lemma hold. ��



64 4 Optimal Control of FBSDE with Partially Observable Information

4.1.2 Stochastic Maximum Principle

The following assumption and adjoint equations will be needed in deriving the
stochastic maximum principle.

(H4.1) (i) For any t, τ such that t + τ ∈ [0,T ], and bounded FY
t -measurable

random variable ν , we formulate the control process v(s) ∈U, with

v(s) = νI[t,t+τ)(s), s ∈ [0,T ],

where I[t,t+τ)(s) is the indicator function on the set [t, t + τ ].
(ii) For any v(s) ∈FY

s with v(s) bounded, s ∈ [0,T ], there is an ε > 0 such that
u(·)+ εv(·) ∈Uad for ε ∈ (−1,1).

We formulate the adjoint equations
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d p(t) = [gy(t,u)p(t)− ly(t,u)]dt

+[gz(t,u)p(t)− lz(t,u)]dW (t)

+ [(gz̃(t,u)−h(t,x(t))) p(t)− lz̃(t,u)]dW̃ (t),

−dq(t) = {[bx(t,u)− σ̃(t,u)hx(t,x(t))]q(t)

+σx(t,u)k(t)+ σ̃x(t,u)k̃(t)+hx(t,x(t))Q̃(t)

−gx(t,u)p(t)+ lx(t,u)}dt

− k(t)dW (t)− k̃(t)dW̃ (t),

p(0) = − γy(y(0)), q(1) =− fx(x(T ))p(T )+φx(x(T )),

(4.11)

and {
−dP(t) = l(t,u)dt −Q(t)dW (t)− Q̃(t)dW̃ (t),

P(T ) = φ(x(T )).
(4.12)

Hereinafter we adopt the notation W̃ (·) = W̃ u(·). Note that the appearance of the
driving Brownian motion W̃ v(·) in (4.1) makes adjoint equations (4.12) and (4.11)
dramatically different from the classical FBSDEs. Moreover, (1.25) is used to treat
the terms induced by partially observable information, which is unnecessary in the
cases of Peng [66], Øksendal and Sulem [61], Wu [100], and Yong [107].

We now state the first maximum principle for optimal control of Problem B.

Theorem 4.1. Let (H1.6), (H1.7), and (H4.1) hold. Assume that u(·) is a local min-
imum for J(v(·)), in the sense that for all process v(·) such that v(·)+u(·) ∈Uad,

J (ε) = J(u(·)+ εv(·)), ε ∈ [0,1)

attains its minimum at ε = 0. Suppose that for any v(·) ∈ Uad, the functions
φ , φx ∈ L 2

F
(Ω ;R), l, lx, ly, lz, lz̃, lv ∈ L 2

F
(0,T ;R). Furthermore, suppose that
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(1.25) and (1.26) admit unique solutions (P(·),Q(·), Q̃(·)) ∈ L 2
F (0,T ;R3) and

(p(·),q(·),k(·), k̃(·)) ∈L 2
F
(0,T ;R4), respectively. Then for any ν ∈U we have

E
u [

Hv(t,x(t),y(t),z(t), z̃(t),u(t); p(t),q(t),k(t), k̃(t), Q̃(t))(ν−u(t))|FY
t

] ≥ 0,

where the Hamiltonian function H : [0,T ]×R
4 ×U ×R

5 → R is defined by

H(t,x,y,z, z̃,v; p,q,k, k̃, Q̃) = b(t,x,v)q+σ(t,x,v)k+ σ̃(t,x,v)k̃+h(t,x)Q̃

−
(

g(t,x,y,z, z̃,v)−h(t,x)z̃
)

p+ l(t,x,y,z, z̃,v).

(4.13)

Proof. Note that

0 ≤ d
dε

J (ε)
∣∣∣
ε=0

= lim
ε→0

J(u(·)+ εv(·))− J(u(·))
ε

= lim
ε→0

1
ε
E

{∫ T

0

[(
Zu+εv(t)−Z(t)

)
l(t,u)

+Zu+εv(t)(l(t,u(t)+ εv(t))− l(t,u))
]

dt

+
(
Zu+εv(T )−Z(T )

)
φ(x(T ))+Zu+εv(T )

(
φ(xu+εv(T ))−φ(x(T ))

)

+γ(yu+εv(0))− γ(y(0))
}
. (4.14)

To deal with Z(·), let Γ (·) = Z1(·)Z−1(·). Making use of (1.16) and (4.4), by Itô’s
formula, we get

⎧⎪⎨
⎪⎩

dΓ (t) = hx(t,x(t))x
1(t)(dY (t)−h(t,x(t))dt)

= hx(t,x(t))x
1(t)dW̃ (t),

Γ (0) = 0.

(4.15)

Applying Itô’s formula to P(·)Γ (·), p(·)y1(·), and q(·)x1(·), respectively, we derive

E
u
[
Γ (T )φ(x(T ))+

∫ T

0
Γ (t)l(t,u)dt

]

= E
u
∫ T

0
Q̃(t)hx(t,x(t))x

1(t)dt,

(4.16)

E
u [

p(T ) fx(x(T ))x
1(T )+ γy(y(0))y

1(0)
]

= −E
u
∫ T

0

[
ly(t,u)y

1(t)+ lz(t,u)z
1(t)+ lz̃(t,u)z̃

1(t)
]

dt

−E
u
∫ T

0

[
gv(t,u)v(t)+gx(t,u)x

1(t)
]

p(t)dt

(4.17)
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and

E
u [

φx(x(T ))x
1(T )− p(T ) fx(x(T ))x

1(T )
]

= E
u
∫ T

0
gx(t,u)x

1(t)p(t)dt

−E
u
∫ T

0

[
lx(t,u)+ Q̃(t)hx(t,x)

]
x1(t)dt

+E
u
∫ T

0

[
bv(t,u)q(t)+σv(t,u)k(t)+ σ̃v(t,u)k̃(t)

]
v(t)dt.

(4.18)

By Lemmas 4.2 and 4.4, we may continue (4.14) with

0 ≤ E
u [

φx(x(T ))x
1(T )+ γy(y(0))y

1(0)
]

+E
u
[
φ(x(T ))Γ (T )+

∫ T

0
Γ (t)l(t,u)dt

]

+E
u
∫ T

0

[
lx(t,u)x

1(t)+ ly(t,u)y
1(t)

]
dt

+E
u
∫ T

0

[
lz(t,u)z

1(t)+ lz̃(t,u)z̃
1(t)

]
dt

+E
u
∫ T

0
lv(t,u)v(t)dt.

(4.19)

Substituting (4.16), (4.17), and (4.18) into (4.19) and recalling Condition (H4.1),
we have

0 ≤ E
u
∫ T

0

[
bv(t,u)q(t)+σv(t,u)k(t)+ σ̃(t,u)k̃(t)

]
v(t)dt

+E
u
∫ T

0
[lv(t,u)−gv(t,u)p(t)]v(t)dt

= E
u
∫ t+τ

t
νHv(s,x,y,z, z̃,u; p,q,k, k̃, Q̃)ds.

(4.20)

Differentiating with respect to τ , we get

E
u [

νHv(t,x,y,z, z̃,u; p,q,k, k̃, Q̃)|FY
t

] ≥ 0.

The proof is then completed. ��

4.2 A Malliavin Derivative Method

We now state the second maximum principle for optimal control of Problem B.

Theorem 4.2. Let (H1.6), (H1.7), and (H4.1) hold. Assume that u(·) is a local min-
imum for J(v(·)), in the sense that for all processes v(·) with u(·)+ v(·) ∈Uad,
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J (ε) = J(u(·)+ εv(·)), ε ∈ [0,1]

attains its minimum at ε = 0. Suppose that (1.27) admits the unique solution p̄(·) ∈
L 2

F (0,T ;D1,2). Assume that φ , φx ∈ D1,2, l, lx, and Ψ(t,s) are in L1,2(R) for all
0 ≤ t ≤ s ≤ T . Then for any ν ∈U we have

E
u
[
H̄v(t,x(t),y(t),z(t), z̃(t),u(t); p̄(t), q̄(t), k̄(t), ¯̃k(t))(ν−u(t))

∣∣∣FY
t

]
≥ 0,

where H̄v is defined by

H̄v(t,x,y,z, z̄,v; p̄, q̄, k̄, ¯̃k) = bv(t,x,v)q̄+σv(t,x,v)k̄+ σ̃v(t,x,v)
¯̃k

−gv(t,x,y,z, z̃,v) p̄+ lv(t,x,y,z, z̄,v).

Proof. If u(·) is a local minimum for J(v(·)), then

0 ≤ d
dε

J (ε)
∣∣∣
ε=0

= E
u
(
φ(x(T ))Γ (T )+

∫ T

0
Γ (t)l(t,u)dt

)

+E
u [
(φx(x(T ))− p̄(T ) fx(x(T )))x1(T )

]
+E

u (
p̄(T ) fx(x(T ))x

1(T )+ γy(y(0))y
1(0)

)

+E
u
∫ T

0

(
lx(t,u)x

1(t)+ ly(t,u)y
1(t)

)
dt

+E
u
∫ T

0

(
lz(t,u)z

1(t)+ lz̃(t,u)z̃
1(t)

)
dt

+E
u
∫ T

0
lv(t,u)v(t)dt.

(4.21)

According to (4.15), Lemmas A.7 and A.8, we have

E
u (φ(x(T ))Γ (T )) = E

u
(
φ(x(T ))

∫ T

0
hx(t,x)x

1(t)dW̃ (t)

)

= E
u
∫ T

0
hx(t,x)x

1(t)D(W̃ )
t φ(x(T ))dt

(4.22)

and

E
u
∫ T

0
Γ (t)l(t,u)dt = E

u
∫ T

0
l(t,u)

∫ t

0
hx(s,x)x

1(s)dW̃ (s)dt

= E
u
∫ T

0

∫ t

0
hx(t,x)x

1(t)D(W̃ )
s l(t,u)dsdt

= E
u
∫ T

0

(∫ T

t
D(W̃ )

t l(s,u)ds
)

hx(t,x)x
1(t)dt.

(4.23)
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Note that, in deriving the last line in (4.23), we used Fubini’s theorem. It then fol-
lows from (4.22) and (4.23) that

E
u
(
φ(x(T ))Γ (T )+

∫ T

0
Γ (t)l(t,u)dt

)

= E
u
∫ T

0

(
D(W̃ )

t φ(x(T ))+
∫ T

t
D(W̃ )

t l(s,u)ds

)
hx(t,x)x

1(t)dt

= E
u
∫ T

0
hx(t,x)x

1(t)D(W̃ )
t Π(t)dt.

(4.24)

Similarly,

E
u [
(φx(x(T ))− p̄(T ) fx(x(T )))x1(T )

]
(4.25)

= E
u
{
(φx(x(T ))− p̄(T ) fx(x(T )))

×
[∫ T

0

(
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

)
dt

+
∫ T

0

(
σx(t,u)x

1(t)+σv(t,u)v(t)
)

dW (t)

+
∫ T

0

(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)

dW̃ (t)

]}

= E
u
∫ T

0
(φx(x(T ))− p̄(T ) fx(x(T )))

×
{
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

+
(
σx(t,u)x

1(t)+σv(t,u)v(t)
)

D(W )
t (φx(x(T ))− p̄(T ) fx(x(T )))

+
(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)

D(W̃ )
t (φx(x(T ))− p̄(T ) fx(x(T )))

}
dt.

By (4.5), and Lemmas A.7 and A.8, we have

E
u
∫ T

0
lx(t,u)x

1(t)dt

= E
u
∫ T

0

∫ t

0

{
lx(t,u)

[
(bx(s,u)− σ̃(s,u)hx(s,x))x1(s)+bv(s,u)v(s)

]

+
(
σx(s,u)x

1(s)+σv(s,u)v(s)
)

D(W )
s lx(t,u)

+
(
σ̃x(s,u)x

1(s)+ σ̃v(s,u)v(s)
)

D(W̃ )
s lx(t,u)

}
dsdt. (4.26)

Simple calculations from (4.26) then yield that
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E
u
∫ T

0
lx(t,u)x

1(t)dt

= E
u
∫ T

0

{∫ T

t
lx(s,u)ds

[
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

]

+
(
σx(t,u)x

1(t)+σv(t,u)v(t)
)∫ T

t
D(W )

t lx(s,u)ds

+
(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)∫ T

t
D(W̃ )

t lx(s,u)ds

}
dt. (4.27)

By (4.25) and (4.27) we then have

E
u
[
(φx(x(T ))− p̄(T ) fx(x(T )))x1(T )+

∫ T

0
lx(t,u)x

1(t)dt

]

= E
u
∫ T

0

{
Σ(t)

[
(bx(t,u)− σ̃(t,u)hx(t,x))x1(t)+bv(t,u)v(t)

]

+
(
σx(t,u)x

1(t)+σv(t,u)v(t)
)

D(W )
t Σ(t)

+
(
σ̃x(t,u)x

1(t)+ σ̃v(t,u)v(t)
)

D(W̃ )
t Σ(t)

}
dt. (4.28)

Applying Itô’s formula to p̄(·)y1(·), we derive

E
u [

p̄(T ) fx(x(T ))x
1(T )+ γy(y(0))y

1(0)
]

= −E
u
∫ T

0

[
ly(t,u)y

1(t)+ lz(t,u)z
1(t)+ lz̃(t,u)z̃

1(t)
]

dt

−E
u
∫ T

0

[
gv(t,u)v(t)+gx(t,u)x

1(t)
]

p̄(t)dt.

(4.29)

Inserting (4.24), (4.28), and (4.29) into (4.21), we have

0 ≤ d
dε

J (ε)
∣∣∣
ε=0

= E
u
∫ T

0

[
Σ(t)(bx(t,u)− σ̃(t,u)hx(t,x))+σx(t,u)D

(W )
t Σ(t)

+σ̃x(t,u)D
(W̃ )
t Σ(t)+hx(t,x)D

(W̃ )
t Π(t)−gx(t,x,y,z, z̃,u) p̄(t)

]
x1(t)dt

+E
u
∫ T

0

[
Σ(t)bv(t,u)+σv(t,u)D

(W )
t Σ(t)+ σ̃v(t,u)D

(W̃ )
t Σ(t)

+ lv(t,u)−gv(t,u) p̄(t)
]
v(t)dt.

(4.30)

Since (4.30) holds for any admissible control v(·), hereafter we take

v(s) = νI(t,t+τ ](s),
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where ν = ν(ω) is a bounded FY
t -measurable random variable, 0 ≤ t ≤ t + τ ≤ T .

In this situation, it is easy to see from (4.5) that

x1(s) = 0, for 0 ≤ s ≤ t. (4.31)

Then (4.30) can be written as

0 ≤J1(τ)+J2(τ) (4.32)

with

J1(τ) = E
u
∫ T

t

[
Σ(s)(bx(s,u)− σ̃(s,u)hx(s,x))+σx(s,u)D

(W )
s Σ(s)

+ σ̃x(s,u)D
(W̃ )
s Σ(s)+hx(s,x)D

(W̃ )
s Π(s)

−gx(s,u) p̄(s)]x1(s)ds

(4.33)

and

J2(τ) = E
u
∫ t+τ

t
ν

[
Σ(s)bv(s,u)+σv(s,u)D

(W )
s Σ(s)+ σ̃v(s,u)D

(W̃ )
s Σ(s)

+ lv(s,u)−gv(s,u) p̄(s)
]
ds.

(4.34)

Note that with the special control v(s) = νI(t,t+τ ](s), we arrive at

dx1(s) = x1(s)
{
[bx(s,u)− σ̃(s,u)hx(s,x)]ds

+σx(s,u)dW (s)+ σ̃x(s,u)dW̃ (s)
}
, for s ≥ t + τ .

Solving the above equation, we get

x1(s) = x1(t + τ)Φ(t + τ ,s),

where

x1(t + τ) = ν
∫ t+τ

t

(
bv(r,u)dr+σv(r,u)dW (r)+ σ̃v(r,u)dW̃ (r)

)

+
∫ t+τ

t
x1(r) [(bx(r,u)− σ̃(r,u)hx(r,x))dr

+σx(r,u)dW (r)+ σ̃x(r,u)dW̃ (r)
]
.



4.2 A Malliavin Derivative Method 71

Then
d

dτ
J1(τ)

∣∣∣
τ=0

=
d

dτ
E

u
[∫ T

t+τ
Hx(s)x

1(t + τ)Φ(t + τ ,s)ds

]
τ=0

=
∫ T

t

d
dτ

E
u [

Hx(s)x
1(t + τ)Φ(t + τ ,s)

]
τ=0 ds

=
∫ T

t

d
dτ

E
u [

x1(t + τ)Ψ(t,s)
]
τ=0 ds.

= J11 +J12,

where

J11 =
∫ T

t

d
dτ

E
u
{
Ψ(t,s)

∫ t+τ

t
x1(r) [(bx(r,u)− σ̃(r,u)hx(r,x))dr

+σx(r,u)dW (r)+ σ̃x(r,u)dW̃ (r)
]}

τ=0
ds

(4.35)

and

J12 =
∫ T

t

d
dτ

E
u
{
νΨ(t,s)

∫ t+τ

t
[bv(r,u)dr

+σv(r,u)dW (r)+ σ̃v(r,u)dW̃ (r)
]}

τ=0
ds.

(4.36)

According to (4.31), Lemmas A.7 and A.8, it is not difficult to derive that

J11 = 0

and

J12 = E
u
∫ T

t
ν
(
Ψ(t,s)bv(t,u)+σv(t,u)D

(W )
t Ψ(t,s)

+σ̃v(t,u)D
(W̃ )
t Ψ(t,s)

)
ds. (4.37)

Similarly,

d
dτ

J2(τ)
∣∣∣
τ=0

= E
u
{
ν

[
Σ(t)bv(t,u)+σv(t,u)D

(W )
t Σ(t)

+σ̃v(t,u)D
(W̃ )
t Σ(t)+ lv(t,u)−gv(t,u) p̄(t)

]}
.

(4.38)

From (4.21), (4.37), and (4.38), we get

0 ≤ d
dε

J (ε)
∣∣∣
ε=0

= E
u
{
ν

[
bv(t,u)q̄(t)+σv(t,u)k̄(t)+ σ̃v(t,u)

¯̃k(t)

+ lv(t,u)−gv(t,u) p̄(t)
]}

.

The proof is then completed. ��
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4.3 A Recursive Utility Optimization Problem

This section focuses on illustrating Theorem 4.2 within the framework of recursive
utility. For convenience, we let C̃(t) = 0 in (1.7), 0 ≤ t ≤ T .

The aim of the policymaker is to find a control strategy u(·) ∈Uad so that

J(u(·)) = min
v(·)∈Uad

E
v
[

1
2

∫ T

0
(v(t)−M(t))2 dt − yv(0)

]
(4.39)

subject to (1.7), (1.8) and Definition 1.2, where M(·) is a pre-set target, and yv(·) is
a generalized recursive utility resulting from x and v. In the sense of El Karoui et al.
[19], yv(·) can be regarded as the solution of

{
−dyv(t) = g(t,xv(t),yv(t),zv(t), z̃v(t))dt − zv(t)dW (t)− z̃v(t)dY (t),

yv(T ) = f (xv(T )),

where f and g satisfy (H1.6). The example captures the scenario where the policy-
maker has two objectives: on one hand, the concern of the policymaker is to prevent
the control strategy v(·) from large deviations so as to stabilize the related economic
scheme, on the other hand, he/she would like to optimize the recursive utility. Note
that utility functional (4.39) is inspired by Shi and Wu [75], where an optimization
problem with complete information was studied.

With this setup, it is easy to see from (1.7) and (1.8) that

b(t,x,v) = A(t)x+B(t)v, σ(t,x,v) =C(t)v+D(t),

σ̃(t,x,v) = D̃(t), h(t,x) = 1
β α(t,x)− 1

2β .

The new adjoint processes are written as

q̄(t) =− fx(x(T )) p̄(T )+
∫ T

t
Hx(s)Φ(t,s)ds,

k̄(t) = D(W )
t q̄(t), ¯̃k(t) = D(W̃ )

t q̄(t)

(4.40)

with
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d p̄(t) = p̄(t)

[
gy(t,x(t),y(t),z(t), z̃(t))dt +gz(t,x(t),y(t),z(t), z̃(t))dW (t)

+

(
gz̃(t,x(t),y(t),z(t), z̃(t))− 1

β
α(t,x(t))+

1
2
β

)
dW̃ (t)

]
,

p̄(0) = 1,

Hx(t) = − fx(x(T )) p̄(T )

[
A(t)− 1

β
D̃(t)αx(t,x(t))

]
+

1
β
αx(t,x(t))D

(W̃ )
t Π(t)

−gx(t,x(t),y(t),z(t), z̃(t)) p̄(t),
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Π(t) =
1
2

∫ T

t
(u(s)−M(s))2 ds

and

Φ(t,s) = exp

{∫ s

t

[
A(r)− 1

β
D̃(r)αx(r,x(r))

]
dr

}
.

According to Theorem 4.2 and (4.40), we have

Proposition 4.1. Let Hx(t)Φ(t,s) ∈ L1,2(R), 0 ≤ t ≤ s ≤ T . If u(·) is an optimal
control strategy, then it is necessary to satisfy

u(t) = M(t)−B(t)Eu [
q̄(t)|FY

t

]−C(t)Eu
[
D(W )

t q̄(t)|FY
t

]
, (4.41)

where q̄(·) is the solution of (4.40).

Note that a more explicit representation of (4.41) strongly depends on the specific

structure of the distributions Eu
[
q̄(t)|FY

t

]
and E

u
[
D(W )

t q̄(t)|FY
t

]
. To illustrate this

point, let us consider a special case of Proposition 4.1 in detail.
(H4.2) Assume that g is independent of (x,y), and

g(t,z, z̃) = c(t)z+ c̃(t)z̃, f (x) = x and α(t,x) = α(t), ∀(t,z, z̃) ∈ [0,T ]×R
2,

where c(·), c̃(·), and α(·) are deterministic and bounded.
It follows from (4.40) that

q̄(t) = p̄(T )Ā(t), D(W )
t q̄(t) = c(t)Ā(t) p̄(T ),

with

Ā(t) =−
∫ T

t
A(s)e

∫ s
t A(r)drds−1.

Next, let
ˆ̄ps,t = E

u[ p̄(s)|FY
t ], 0 ≤ t ≤ s ≤ T

be the optimal extrapolation of p̄(·) with respect to

FY
t = σ{W̃ (r);0 ≤ r ≤ t}.

Then (4.41) is rewritten as

u(t) = M(t)− Ā(t)
(

B(t)+ c(t)C(t)
)

ˆ̄p1,t , (4.42)

where
ˆ̄ps,t = 1+

∫ t

0
c̄(r) ˆ̄p(r)dW̃ (r)

with
ˆ̄p(r) = e

∫ r
0 c̄(θ)dW̃ (θ)− 1

2
∫ r

0 c̄2(θ)dθ and c̄(r) = c̃(r)− 1
β
α(r)+

1
2
β .
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Furthermore, the optimal cost functional can be derived in terms of (4.39) and
(4.42).

We now summarize the result as follows.

Corollary 4.1. Under (H4.2), the optimal control strategy of the underlying problem
is given uniquely by (4.42).

4.4 Notes

The earliest research on partially observable optimal control can be traced back to
Florentin [22]. Since this paper was published in 1962, numerous people have con-
tributed to this field. The interested reader is referred to Davis and Varaiya [16],
Fleming and Pardoux [21], Bensoussan [6], Elliott et al. [20], Zhang and Xie [113],
Tang [78], Shen et al. [72], and references cited therein for the development in vari-
ous subjects, especially in maximum principle as well as dynamic programming.

However, prior to the beginning of 21st century, almost all the combined prob-
lems of control and filtering were formulated under the assumption that the state
processes solve (forward) SDEs. With the rapid development and broad application
of FBSDE in stochastic control theory, it is nature to say whether we can establish a
combined model of filtering and control of FBSDE. Starting about from 2003, Zhen
Wu and his graduate students at the School of Mathematics and System Sciences
(now named the School of Mathematics), Shandong University, began to focus on
exploring such a model. After about 5 years, the first result on Kalman–Bucy fil-
tering of a special class of fully coupled FBSDEs was published, while a backward
separation approach was proposed and was used to solve a partially observable LQ
control problem driven by SDE in Wang and Wu [84]. At almost the same time,
the first partially observable optimal control model of FBSDE was established by
Wang and Wu [84] and Wu [100] from the viewpoint of mathematical finance, and
then was studied by them via combining the backward separation approach with the
maximum principle. Along this line, there are a few interesting papers to extend the
model in several aspects, especially in maximum principle and nonlinear backward
stochastic differential filtering equation. See, e.g., the doctoral dissertation of Wang
[82], the survey paper of Wang et al. [93] for more details on these aspects. Note
that how to obtain a dynamic programming principle corresponding to the partially
observable forward-backward stochastic control model is also valuable topic. As far
as we know, it has, however, not been explored so far.

The results introduced in this chapter are taken mainly from Wang et al. [88].
Similar to Chapter 3, some versions of verification theorem for optimality of Prob-
lem B can be derived. We omit them for the length of the book.



Chapter 5
LQ Optimal Control Models with
Incomplete Information

In this chapter, we consider the so-called LQ problem with incomplete informa-
tion aiming at obtaining more explicit results comparing with those of the previous
chapters. We first consider this problem when the state is given by a linear FBSDE.
After that we will specialize our results to the case when the state is governed by a
BSDE only. In this case, explicit solution will be presented. Finally, we will apply
our results to an optimal premium problem.

5.1 An LQ Model of FBSDE

As we introduced in the first chapter, Problem (FBLQ) we will study in this chapter
consists of a linear FBSDE

⎧⎪⎪⎨
⎪⎪⎩

dxv(t) =
(
a(t)xv(t)+b(t)v(t)+ b̃(t)

)
dt + c(t)dW (t)+ c̃(t)dW̃ (t),

−dyv(t) =
(
A(t)xv(t)+B(t)yv(t)+C(t)zv(t)+C̃(t)z̃v(t)

+D(t)v(t)+ D̃(t)
)

dt − zv(t)dW (t)− z̃v(t)dW̃ (t),
xv(0) = x0, yv(T ) = Fxv(T )+G,

(5.1)

and the cost functional

J(v(·)) = 1
2
E

{∫ T

0

[
L(t)(xv(t))2 +O(t)(yv(t))2 +R(t)v2(t)

+2l(t)xv(t)+2o(t)yv(t)+2r(t)v(t)]dt

+M(xv(T ))2 +2mxv(T )+N(yv(0))2 +2nyv(0)
}
.

(5.2)

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
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The control process v(·) must be adapted to the information filtration derived from
the observation process given by

{
dY v(t) = ( f (t)xv(t)+g(t))dt +h(t)dW (t),
Y v(0) = 0.

(5.3)

5.1.1 Preliminary Results

Since the observation process depends on the control itself, we introduce the follow-
ing decoupling technique. Define the processes

(
x0(·),y0(·),z0(·), z̃0(·)), and Y 0(·)

by
⎧⎪⎪⎨
⎪⎪⎩

dx0(t) = a(t)x0(t)dt + c(t)dW (t)+ c̃(t)dW̃ (t),
−dy0(t) =

(
A(t)x0(t)+B(t)y0(t)+C(t)z0(t)+C̃(t)z̃0(t)

)
dt

−z0(t)dW (t)− z̃0(t)dW̃ (t),
x0(0) = x0, y0(T ) = Fx0(T )

(5.4)

and {
dY 0(t) = f (t)x0(t)dt +h(t)dw(t),
Y 0(0) = 0.

(5.5)

Let v(·) ∈ L 2
F
(0,T ;R) be a control process. Define

(
x1(·),y1(·),z1(·), z̃1(·)), and

Y 1(·) by
⎧⎪⎪⎨
⎪⎪⎩

ẋ1(t) = a(t)x1(t)+b(t)v(t)+ b̃(t),
−dy1(t) =

(
A(t)x1(t)+B(t)y1(t)+C(t)z1(t)+C̃(t)z̃1(t)

+D(t)v(t)+ D̃(t)
)

dt − z1(t)dW (t)− z̃1(t)dW̃ (t),
x1(0) = 0, y1(T ) = Fx1(T )+G

(5.6)

and {
Ẏ 1(t) = f (t)x1(t)+g(t),
Y 1(0) = 0.

(5.7)

Here the coefficients a(·), b(·), b̃(·), c(·), c̃(·), f (·), g(·), h(·), h−1(·), A(·), B(·),
C(·), C̃(·), D(·), and D̃(·) are uniformly bounded deterministic functions; x0 and F
are constants; and ξ ∈L 2

FT
(Ω ,R).

It is easy to see that (5.4), (5.5), (5.6), and (5.7) admit unique solutions, respec-
tively. If we define

xv(t) = x0(t)+ x1(t), yv(t) = y0(t)+ y1(t), zv(t) = z0(t)+ z1(t),
z̃v(t) = z̃0(t)+ z̃1(t), Y v(t) = Y 0(t)+Y 1(t),

(5.8)

it follows from Itô’s formula and (5.4), (5.5), (5.6), (5.7), and (5.8) that (xv(·),
yv(·),zv(·), z̃v(·)) and Y v(·) are the unique solutions of (5.1) and (5.3).
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We will now derive a few results which will be useful when we derive the stochas-
tic maximum principle for Problem (FBLQ). The first is about the identity of the
filtration based on the observation with or without control. This is the first step in
decoupling the filtering-control problem.

Lemma 5.1. For any v(·) ∈Uad, FY v

t =FY 0

t .

Proof. For any v(·) ∈ Uad , since v(t) is FY 0

t -adapted, then it follows from (5.4)
that x1(t) is FY 0

t -adapted, so is Y 1(t). Then Y v(t) = Y 0(t)+Y 1(t) is FY 0

t -adapted,
i.e., FY v

t ⊆ FY 0

t . In a similar way, we get FY 0

t ⊆ FY v

t via the equality Y 0(t) =
Y v(t)−Y 1(t). The proof is thus complete. ��

The following estimates describe the continuity of state with respect to control,
which are derived by Itô’s formula and Gronwall’s inequality. See also [19, 109] for
similar arguments.

Lemma 5.2. For any vi(·)∈L 2
FW,W̃ (0,T ;R), let (xvi(·),yvi(·),zvi(·), z̃vi(·)) be the so-

lution of (1.28) corresponding to vi(·) (i= 1,2). Then there is a constant C0 > 0 such
that

sup
0≤t≤T

E|xv1(t)− xv2(t)|2 ≤C0E

∫ T

0
|v1(t)− v2(t)|2dt,

sup
0≤t≤T

E|yv1(t)− yv2(t)|2 ≤C0
[
E|xv1(T )− xv2(T )|2

+
∫ T

0
sup

0≤s≤t
E|xv1(s)− xv2(t)|2dt

+E

∫ T

0
|v1(t)− v2(t)|2dt

]
.

The next result is the key in decoupling the filtering-control problem.

Lemma 5.3.
inf

v′(·)∈Uad

J(v′(·)) = inf
v(·)∈U 0

ad

J(v(·)).

Proof. From Definition 1.3, we have Uad ⊆U 0
ad , and thus,

inf
v′(·)∈Uad

J(v′(·))≥ inf
v(·)∈U 0

ad

J(v(·)).

In what follows, we prove that the reverse inequality holds by three steps.
Step 1: Uad is dense in U 0

ad under the metric of L 2
FY0 (0,T ;R).

For any v(·) ∈U 0
ad , define

vk(t) =

{
v(0), for 0 ≤ t ≤ δk,
1
δk

∫ iδk
(i−1)δk

v(s)ds, for iδk < t ≤ (i+1)δk,
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where v(0) ∈R, i, k are natural numbers, 1 ≤ i ≤ k−1, and δk = T/k. Then vk(t) is
FY 0

iδk
-adapted for any iδk < t ≤ (i+1)δk, and for any k,

sup
0≤t≤T

|vk(t)| ≤ |v(0)|+ sup
0≤t≤T

|v(t)|.

Thus, vk(·) ∈ U 0
ad . Let (xvk(·),yvk(·),zvk(·), z̃vk(·)) and Y vk(·) be the trajectories

of (5.1) and (5.3) corresponding to vk(·). Similar to [9], from (5.6), (5.7), and
the last equality of (5.8), we verify that vk(·) is adapted to FY 0

t and FY vk
t , and

FY 0

t = FY vk
t . Then vk(·) belongs to Uad , and thus, (5.1) has a unique solution

(xvk(·),yvk(·),zvk(·), z̃vk(·)) ∈ L 2
FW,W̃ (0,T ;R4). On the other hand, vk(·) → v(·) in

probability when k → +∞. Using again the integrability condition of v(·) in U 0
ad ,

we derive vk(·)→ v(·) as k →+∞ in L 2
FY 0 (0,T ;R), i.e., Uad is dense in U 0

ad .
Step 2:

lim
k→+∞

J(vk(·)) = J(v(·)),

where v(·), vk(·) and (xvk(·),yvk(·),zvk(·), z̃vk(·)) are defined as in Step 1.
By (5.2) and Hölder’s inequality, it yields

2|J(vk(·))− J(v(·))|

≤
√

E

∫ T

0
|L(t)(xvk(t)+ xv(t))+2l(t)|2dt

√
E

∫ T

0
|xvk(t)− xv(t)|2dt

+

√
E

∫ T

0
|O(t)(yvk(t)+ yv(t))+2o(t)|2dt

√
E

∫ T

0
|yvk(t)− yv(t)|2dt

+

√
E

∫ T

0
|R(t)(vk(t)+ v(t))+2r(t)|2dt

√
E

∫ T

0
|vk(t)− v(t)|2dt

+
√
E|M (xvk(T )+ xv(T ))+2m|2

√
E|xvk(T )− xv(T )|2

+
√
E|N (yvk(0)+ yv(0))+2n|2

√
E|yvk(0)− yv(0)|2.

Then Lemma 5.2 implies that J(vk(·))→ J(v(·)) when k goes to +∞.
Step 3:

inf
v′(·)∈Uad

J(v′(·))≤ inf
v(·)∈U 0

ad

J(v(·)).

Since vk(·) ∈Uad , then

inf
v′(·)∈Uad

J(v′(·))≤ J(vk(·)),

and consequently, infv′(·)∈Uad
J(v′(·)) ≤ J(v(·)) by sending k → +∞. Due to the ar-

bitrariness of v(·), the desired inequality holds. Thus, the proof is complete. ��
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5.1.2 Optimality Condition

We first establish a necessary condition and then a sufficient condition for optimality
of Problem (FBLQ). According to Lemma 5.3, it suffices to study the optimality of
J[v] over U 0

ad . In addition, U 0
ad is fixed (i.e., independent of control or state), and it

is more convenient to get the optimality conditions in U 0
ad by variational method.

Note that these results are different from the existing literature, say, [31, 54, 61,
75, 96, 88, 103], mainly due to the fact that the drift coefficient of the observation
equation is linear with respect to the state, and the state noise is correlated to the
observation noise.

Theorem 5.1. Suppose that u(·) is an optimal control of Problem (FBLQ), in the
sense that

d
dε

J(u(·)+ εv(·))|ε=0 = 0 for any v(·)+u(·) ∈Uad ,

and (x(·),y(·),z(·), z̃(·)) is the corresponding optimal state. Then FBSDE

⎧⎪⎨
⎪⎩

d p(t) = (B(t)p(t)−O(t)y(t)−o(t))dt +C(t)p(t)dW (t)+C̃(t)p(t)dW̃ (t),

−dq(t) = (a(t)q(t)−A(t)p(t)+L(t)x(t)+ l(t))dt − k(t)dW (t)− k̃(t)dW̃ (t),

p(0) = −Ny(0)−n, q(T ) =−F p(T )+Mx(T )+m
(5.9)

admits a unique solution
(

p(·),q(·),k(·), k̃(·)) ∈L 2
FW,W̃

(
0,T ;R4

)
such that

R(t)u(t)−D(t)E
[
p(t)

∣∣FY
t

]
+b(t)E

[
q(t)

∣∣FY
t

]
+ r(t) = 0 (5.10)

with
FY

t = σ{Y u(s);0 ≤ s ≤ t}.
Proof. According to Lemma 5.3, if u(·) is an optimal control, then

J(u(·)) = inf
v(·)∈U 0

ad

J(v(·)).

For v(·) ∈Uad , we introduce a variational equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1(t) = atx1(t)+b(t)v(t),

−dy1(t) = (A(t)x1(t)+B(t)y1(t)+C(t)z1(t)+C̃(t)z̃1(t)+D(t)v(t))dt

− z1(t)dW (t)− z̃1(t)dW̃ (t),

x1(0) = 0, y1(T ) = Fx1(T ),

which admits a unique solution (x1(·),y1(·),z1(·), z̃1(·)) ∈L 2
FW,W̃

(
0,T ;R4

)
. By the

optimality of u(·) using the first variation of J(v(·)) with Lemma 4.4, we have
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0 =
d

dε
J(u(·)+ εv(·))|ε=0

= E

{∫ T

0
[(L(t)x(t)+ l(t))x1(t)+(O(t)y(t)+o(t))y1(t)

+(R(t)u(t)+ r(t))v(t)]dt

+(Mx(T )+m)x1(T )+(Ny(0)+n)y1(0)

}
.

(5.11)

On the other hand, once (x(·),y(·),z(·), z̃(·)) is determined, (5.9) admits a unique
solution

(
p(·),q(·),k(·), k̃(·)) ∈L 2

FW,W̃

(
0,T ;R4

)
. It follows from Itô’s formula in a

form of differentiation by parts of the product of two stochastic processes that

d(p(t)y1(t)) = − [(O(t)y(t)+o(t))y1(t)+(A(t)x1(t)+D(t)v(t))p(t)]dt

+ p(t)(C(t)y1(t)+ z1(t))dW (t)+ p(t)(C̃(t)y1(t)+ z̃1(t))dW̃ (t).

Thus,

E [F p(T )x1(T )+(Ny(0)+n)y1(0)] (5.12)

= −E

∫ T

0
[(O(t)y(t)+o(t))y1(t)+(A(t)x1(t)+D(t)v(t))p(t)]dt.

Similarly, by differentiation by parts again,

d(q(t)x1(t)) = {[A(t)p(t)− (L(t)x(t)+ l(t))]x1(t)+b(t)q(t)v(t)}dt

+ k(t)x1(t)dW (t)+ k̃(t)x1(t)dW̃ (t),

and then

E [(Mx(T )+m−F p(T ))x1(T )]

= E

∫ T

0
{[A(t)p(t)− (L(t)x(t)+ l(t))]x1(t)+b(t)q(t)v(t)}dt. (5.13)

Recall that R(t), D(t), b(t), and r(t) are deterministic, and u(t) and v(t) are FY 0

t -
adapted. Substituting (5.12) and (5.13) into (5.11), we get

0 = E

∫ T

0
(R(t)u(t)−D(t)p(t)+b(t)q(t)+ r(t))v(t)dt

= E

∫ T

0

(
R(t)u(t)−D(t)E

[
p(t)

∣∣∣FY 0

t

]

+b(t)E
[
q(t)

∣∣∣FY 0

t

]
+ r(t)

)
v(t)dt.

Hence,

R(t)u(t)−D(t)E
[

p(t)
∣∣∣FY 0

t

]
+b(t)E

[
q(t)

∣∣∣FY 0

t

]
+ r(t) = 0.



5.1 An LQ Model of FBSDE 81

Furthermore, since u(·)∈Uad , it follows from Lemma 5.1 that FY 0

t =FY
t , and thus

the desired conclusion. ��
We now study the sufficiency of the above result. Introduce an FBSDE with

(5.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = (a(t)x(t)+b(t)u(t)+ b̃(t))dt + c(t)dW (t)+ c̃(t)dW̃ (t),

−dy(t) = (A(t)x(t)+B(t)y(t)+C(t)z(t)+C̃(t)z̃(t)+D(t)u(t)+ D̃(t))dt

− z(t)dW (t)− z̃(t)dW̃ (t),

d p(t) = (B(t)p(t)−O(t)y(t)−o(t))dt +C(t)p(t)dW (t)+C̃(t)p(t)dW̃ (t),

−dq(t) = (a(t)q(t)−A(t)p(t)+L(t)x(t)+ l(t))dt − k(t)dW (t)− k̃(t)dW̃ (t),

x(0) = x0, y(T ) = Fx(T )+G,

p(0) = −Ny(0)−n, q(T ) =−F p(T )+Mx(T )+m,
(5.14)

which is called a generalized stochastic Hamiltonian system in the field of Pon-
tryagin’s maximum principle. If a process (x(·),y(·),z(·), z̃(·), p(·),q(·),k(·), k̃(·)) ∈
L 2

FW,W̃

(
0,T ;R8

)
satisfies (5.14), we call it an (adapted) solution of (5.14).

Theorem 5.2. Let u(·) ∈Uad satisfy

R(t)u(t)−D(t)E
[
p(t)

∣∣FY
t

]
+b(t)E

[
q(t)

∣∣FY
t

]
+ r(t) = 0,

where (x(·),y(·),z(·), z̃(·), p(·),q(·),k(·), k̃(·)) is a solution to (5.14). Then u is an
optimal control of Problem (FBLQ).

Proof. For any admissible control v(·), the total variation is

J(v(·))− J(u(·)) = I + II (5.15)

with (x(·),y(·)) = (xu(·),yu(·)), the pure quadratic part is

I =
1
2
E

{∫ T

0

[
L(t)(xv(t)− x(t))2 +O(t)(yv(t)− y(t))2

+R(t)(v(t)−u(t))2]dt +M(xv(t)− x(t))2 +N(yv(0)− y(0))2
}
,

and the quasi-linear part is

II = E

{∫ T

0
[(L(t)x(t)+ l(t))(xv(t)− x(t))

+(O(t)y(t)+o(t))(yv(t)− y(t))+(R(t)u(t)+ r(t))(v(t)−u(t))]dt

+(Mx(t)+m)(xv(t)− x(t))+(Ny+n)(yv(0)− y(0))
}
.

(5.16)
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Note that I ≥ 0 holds for any admissible control v(·). Then it is enough to prove that

II = 0.

It follows from Itô’s formula that

d [p(t)(yv(t)− y(t))] = −{(O(t)y(t)+o(t))(yv(t)− y(t))

+ p(t) [A(t)(xv(t)− x(t))+D(t)(v(t)−u(t))]}dt

+ p(t) [C(t)(yv(t)− y(t))+ zv(t)− z(t)]dW (t)

+ p(t)
[
C̃(t)(yv(t)− y(t))+ z̃v(t)− z̃(t)

]
dW̃ (t).

Thus, by using differentiation by parts, similar to (5.12), we get

E [F p(t)(xv(t)− x(t))+(n+Ny0)(y
v(0)− y(0))]

= −E

∫ T

0

{
(O(t)y(t)+o(t))(yv(t)− y(t))

+p(t) [A(t)(xv(t)− x(t))+D(t)(v(t)−u(t))]
}

dt. (5.17)

Similarly by differentiation by parts, similar to (5.13), we obtain,

d [q(t)(xv(t)− x(t))] = [(A(t)p(t)−L(t)x(t)− l(t))(xv(t)− x(t))

+b(t)q(t)(v(t)−u(t))]dt

+ k(t)(xv(t)− x(t))dW (t)+ k̃(t)(xv(t)− x(t))dW̃ (t),

and then

E [(Mx(t)−F p(t)+m)(xv(t)− x(t))]

= E

∫ T

0
[b(t)q(t)(v(t)−u(t))

+(A(t)p(t)−L(t)x(t)− l(t))(xv(t)− x(t))]dt. (5.18)

Plugging (5.17) and (5.18) into (5.16) and using Lemma 5.1, we have

II = E

∫ T

0
(R(t)u(t)−D(t)p(t)+b(t)q(t)+ r(t))(v(t)−u(t))dt

= E

∫ T

0

(
R(t)u(t)−D(t)E

[
p(t)

∣∣∣FY 0

t

]
+b(t)E

[
q(t)

∣∣∣FY 0

t

]
+ r(t)

)

× (v(t)−u(t))dt

= 0.

Then the proof is complete. ��
Corollary 5.1. Let R(·) and R−1(·) be uniformly bounded, deterministic functions.
If u(·) is an optimal control of Problem (FBLQ), then u(·) is unique.
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Proof. Let u(·) and ū(·) be both optimal controls of Problem (FBLQ) with the
same optimum, and let (x(·),y(·),z(·), z̃(·)) and (x̄(·), ȳ(·), z̄(·), ¯̃z(·)) be the corre-
sponding optimal states. It is easy to see that ((x(·)+ x̄(·))/2,(y(·)+ ȳ(·))/2,(z(·)+
z̄(·))/2,(z̃(·)+ ¯̃z(·))/2) is the state corresponding to (u(·)+ ū(·))/2. Then

2J(u(·)) = J(u(·))+ J(ū(·))

= 2J

(
u(·)+ ū(·)

2

)
+E

{∫ T

0

[
L(t)

(
x(t)− xū(t)

2

)2

+O(t)

(
y(t)− yū(t)

2

)2

+R(t)

(
u(t)− ū(t)

2

)2
]

dt

+M

(
x(t)− xū(t)

2

)2

+N

(
y(0)− yū(0)

2

)2
}

≥ 2J(u(·))+E

∫ T

0
R(t)

(
u(t)− ū(t)

2

)2

dt.

Since R(t)> 0, we have u(·) = ū(·). ��

5.1.3 Filtering

It follows from (5.10) that

u(t) =
1

R(t)

(
D(t)E

[
p(t)

∣∣FY
t

]−b(t)E
[
q(t)

∣∣FY
t

]− r(t)
)
.

This shows that it is necessary to compute the optimal filtering of (p(t),q(t)) based
on FY

t . Furthermore, since (p(·),q(·)) is closely related to (x(·),y(·)), we need
to analyze the optimal filtering of FBSDEs (5.1) and (5.9). The earliest work on
filtering for FBSDEs was traced back to Wang and Wu [84], where a Feynman–Kac
formula method was used to calculate the filtering of linear FBSDEs. Note that it
seems that the Feynman–Kac formula method does not work here, mainly due to
the existence of the control v(·).

Recall that Y v(·) governed by (5.3) is the observation. For any v(·) ∈Uad , let

ξ̂ (t) = E

[
ξ (t)

∣∣FY v

t

]
, (5.19)

with ξ (t) = x0(t),xv(t),yv(t),zv(t), z̃v(t), p(t),q(t),k(t),xv(t)yv(t),

Ĝ = E

[
G

∣∣FY v

t

]
and P(t) = E(xv(t)− x̂v(t))2

be the optimal filtering and the mean square error of ξ (t), G and x̂v(t), respectively.
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We state a filtering result of (5.1), which plays an important role in representing
optimal control.

Lemma 5.4. For any v(·)∈Uad, the optimal filtering (x̂v(t), ŷv(t), ẑv(t), ˆ̃zv(t)) of the
solution (xv(t),yv(t),zv(t), z̃v(t)) to (5.1) with respect to FY v

t satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx̂v(t) =
(
a(t)x̂v(t)+b(t)v(t)+ b̃(t)

)
dt +

(
c(t)+

P(t) f (t)
h(t)

)
dŴ (t),

−dŷv(t) =
(
A(t)x̂v(t)+B(t)ŷv(t)+C(t)ẑv(t)+C̃(t) ˆ̃zv(t)+D(t)v(t)+ D̃(t)

)
dt

− Ẑv(t)dŴ (t),

x̂v
0 = x0, ŷv(T ) = Fx̂v(T )+ G̃,

(5.20)
where the mean square error P(t) of the estimate x̂v(t) is the unique solution of

⎧⎪⎨
⎪⎩

Ṗ(t)−2a(t)P(t)+

(
c(t)+

P(t) f (t)
h(t)

)2

− (c(t)+ c̃(t))2 = 0,

P0 = 0,

(5.21)

Ŵ (t) =
∫ t

0

1
h(s)

[dY (s)− ( f (s)x̂v(s)+g(s))ds]

=
∫ t

0

f (s)
h(s)

(xv(s)− x̂v(s))ds+W (t)
(5.22)

is a standard Brownian motion with values in R, and

Ẑv(t) = ẑv(t)+
f (t)
h(t)

(
̂xv(t)yv(t)− x̂v(t)ŷv(t)

)
. (5.23)

We highlight that Ẑv(t) defined by (5.23) is a part of solution
(
ŷv(t), Ẑv(t)

)
to the

BSDE in (5.20), which can be computed by the Malliavin derivative of ŷv(t) with
respect to Ŵ (t) under some standard conditions [19].

5.1.4 Feedback

In this section, we do our best to give a feedback form of the optimal control u(·).
We assume that O(t) = 0 for simplicity. It implies that the running cost part of (5.2)
does not include the quadratic term of the state y(·). Similar to (5.19), let

̂x(t)q(t) = E
[
x(t)q(t)

∣∣FY
t

]
, x̂m(t) = E

[
xm(t)

∣∣FY
t

]
,

̂xm(t)p(t) = E
[
xm(t)p(t)

∣∣FY
t

]
, m = 1,2,3, · · ·

be the optimal filters of x(t)q(t), xm(t), xm(t)p(t) based on the observation Y (·) up
to time t, respectively.
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We now state a filtering result of the adjoint equation of Problem (FBLQ).

Lemma 5.5. Let O(t) = 0 hold. The optimal filtering of (p(t),q(t),k(t)) depending
on FY

t satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d p̂(t) = (B(t) p̂(t)−o(t))dt +

[
C(t) p̂(t)+

f (t)
h(t)

(
̂x(t)p(t)− x̂(t) p̂(t)

)]
dŴ (t),

−dq̂(t) = (a(t)q̂(t)−A(t) p̂(t)+L(t)x̂(t)+ l(t))dt − K̂(t)dŴ (t),

p̂(0) = −Ny(0)−n, q̂(T ) = Mx̂(T )−F p̂(T )+m
(5.24)

with

K̂(t) = k̂(t)+
f (t)
h(t)

(
̂x(t)q(t)− x̂(t)q̂(t)

)
,

where (x̂(·), ŷ(·)), Ŵ (·), and ̂xm(·)p(·) satisfy (5.20) with v(·) = u(·), (5.22), and
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d ̂xm(t)p(t) =
[
(ma(t)+B(t)) ̂xm(t)p(t)−o(t)x̂m(t)

+m
(
b(t)u(t)+ b̄(t)+ c(t)C(t)+ c̄(t)C̄(t)

)
̂xm−1(t)p(t)

]
dt

+
[
mc(t) ̂xm−1(t)p(t)+C(t) ̂xm(t)p(t)

+
f (t)
h(t)

(
̂xm+1(t)p(t)− x̂(t) ̂xm(t)p(t)

)]
dŴ (t),

̂xm(0)p(0) = − xm
0 (Ny(0)+n), m = 1,2,3, · · · ,

respectively.

Theorem 5.3. Let O(t) = 0 hold. If

u(t) =
1

R(t)
(D(t) p̂(t)−b(t)q̂(t)− r(t))

is the optimal control of Problem (FBLQ), then it can be represented as

u(t) =
1

R(t)
[(D(t)−b(t)Σ(t)) p̂(t)−b(t)π(t)x̂(t)−b(t)θ(t)− r(t)],

where (x̂(·), ŷ(·), ẑ(·), ˆ̃z(·)), (
p̂(·), q̂(·), k̂(·)), π(·), Σ(·), and θ(·) are the solutions

of (5.20) with v(·) = u(·), (5.24), (5.28), (5.29), and (5.30), respectively.

Proof. For any v(·) ∈ Uad , (5.1) admits a unique solution (xv(·),yv(·),zv(·), z̃v(·)),
and consequently, (5.9) admits a unique solution (p(·),q(·),k(·), k̃(·)). Noting the
terminal condition of (5.9), we set

q(t) = π(t)x(t)+Σ(t)p(t)+θ(t) with π(T ) = M,Σ(T ) =−F and θ(T ) = m,
(5.25)
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where π(·), Σ(·), and θ(·) are deterministic and differentiable functions. Substitut-
ing (5.25) into

u(t) =
1

R(t)
(D(t) p̂(t)−b(t)q̂(t)− r(t))

and applying Itô’s formula to (5.25), we obtain

dq(t) = π̇(t)x(t)dt +π(t)dx(t)+ Σ̇(t)p(t)dt +Σ(t)d p(t)+ θ̇(t)dt

=
{
π̇(t)x(t)+π(t)

[
a(t)x(t)+

1
R(t)

b(t)((D(t)−b(t)Σ(t)) p̂(t)

−b(t)π(t)x̂(t)−b(t)θ(t)− r(t))+ b̃(t)
]

+ Σ̇(t)p(t)+Σ(t)(B(t)p(t)−o(t))+ θ̇(t)
}

dt

+(c(t)π(t)+C(t)p(t)Σ(t))dW (t)+(c̃(t)π(t)+C̃(t)p(t)Σ(t))dW̃ (t).

Comparing the above equality with (5.9), it yields

k(t) = c(t)π(t)+C(t)p(t)Σ(t), k̃(t) = c̃(t)π(t)+C̃(t)p(t)Σ(t)

and

π̇(t)x(t)+π(t)
{

a(t)x(t)+
1

R(t)
b(t)[(D(t)−b(t)Σ(t)) p̂(t)−b(t)π(t)x̂(t)

−b(t)θ(t)− r(t)]+ b̃(t)

}
+ Σ̇(t)p(t)+Σ(t)(B(t)p(t)−o(t))+ θ̇(t)

= − (a(t)q(t)−A(t)p(t)+L(t)x(t)+ l(t))

= − (a(t)π(t)+L(t))x(t)− (a(t)Σ(t)−A(t))p(t)−a(t)θ(t)− l(t).
(5.26)

Taking the conditional expectation E
[·∣∣FY (t)

]
on both sides of (5.26),

π̇(t)x̂(t)+π(t)
[

a(t)x̂(t)+
1

R(t)
b(t)((D(t)−b(t)Σ(t)) p̂(t)−b(t)π(t)x̂(t)

−b(t)θ(t)− r(t))+ b̃(t)]+ Σ̇(t) p̂(t)+Σ(t)(B(t) p̂(t)−o(t))+ θ̇(t)
= − (a(t)π(t)+L(t))x̂(t)− (a(t)Σ(t)−A(t)) p̂(t)−a(t)θ(t)− l(t).

(5.27)
Comparing the coefficients of x̂(t) and p̂(t) in (5.27), we derive the following Riccati
equations: ⎧⎨

⎩
π̇(t)+2a(t)π(t)− 1

R(t)
b2(t)π2(t)+L(t) = 0,

π(T ) = M,

(5.28)

⎧⎪⎨
⎪⎩

Σ̇(t)+
(

a(t)+B(t)− 1
R(t)

b2(t)π(t)
)
Σ(t)+

1
R(t)

b(t)D(t)π(t)−A(t) = 0,

Σ(T ) =−F,
(5.29)
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and then
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇(t)+
(

a(t)− 1
R(t)

b2(t)π(t)
)
θ(t)−o(t)Σ(t)− 1

R(t)
b(t)r(t)π(t)

+ b̃(t)π(t)+ l(t) = 0,

θ(T ) = m.

(5.30)

It is clear that there are unique solutions to them, respectively. Thus we have

u(t) =
1

R(t)
[(D(t)−b(t)Σ(t)) p̂(t)−b(t)π(t)x̂(t)−b(t)θ(t)− r(t)].

The proof is then complete. ��
Remark 5.1. The optimal control u(·) in Theorem 5.3 can be represented as the feed-
back of (x̂(·), ŷ(·)) under some additional assumptions, say, A(t) = D(t) = 0.

Remark 5.2. The integrability condition in Definition 1.3 plays an important role
in proving a density property of Uad . If FY v

t does not depend on control or state,
the integrability condition can be weakened. For example, let f (t) = 0 in Problem
(FBLQ). It is easy to see that Uad =U 0

ad via

FY v

t =FY 0

t = σ{W (s);0 ≤ s ≤ t},

and thus, Lemma 5.3 holds automatically. Then the integrability condition can be
relaxed to

E

∫ T

0
v2(s)ds <+∞.

Moreover, all the results obtained in Sections 6.1.2–6.1.4 hold true under the weak-
ened assumption.

5.2 An LQ Model of BSDE

This section is devoted to a special case of Problem (FBLQ), i.e., Problem (BLQ)
introduced in Section 1.3. We adopt the assumptions and the notations introduced
in Section 5.1 unless noted otherwise.

Problem (BLQ) supposes that w(t) is observable at time t. It can be regarded as
the case of (5.3) with f (t) = g(t) = 0 and h(t) = 1. Clearly,

FY v

t =FY 0

t = σ{W (s);0 ≤ s ≤ t},

i.e., FY v

t is given a prior. Just as noted in Remark 5.2, the integrability condition in
Uad can be replaced by

E

∫ T

0
v(t)2dt <+∞.
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Although the observation equation looks simple, the classical separation princi-
ple still does not hold, and hence, the resulting mathematical deductions are non-
trivial in the fields of filtering and control. In order to obtain a unique closed-form
solution, many theoretical results such as Theorems 5.1–5.3, Corollary 5.1, Lem-
mas 5.4, 5.5, and Remark 5.2 are used here. It should be emphasized that [31] first
proposed the problem with n = 0. However, they were unable to completely solve
the problem due to the limit of techniques used there. In detail, they were not able
to include the important process C̃(·)z̃(·) in the drift term of the state equation. The
full case presented here is taken from [89].

We use four steps to solve the problem.
Step 1: Candidate optimal control.
According to Theorem 5.1, if u(·) is optimal, then it is necessary to satisfy

u(t) =
1

R(t)
D(t)E

[
p(t)

∣∣FY (t)
]
,

where FY
t = σ{W (s);0 ≤ s ≤ t}, and (p(·),y(·),z(·), z̃(·))∈L 2

FW,W̃

(
0,T ;R4

)
is the

unique solution of the Hamiltonian system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d p(t) = (B(t)p(t)−O(t)y(t))dt +C(t)p(t)dW (t)+C̃(t)p(t)dW̃ (t),

−dy(t) =
(
B(t)y(t)+C(t)z(t)+C̃(t)z̃(t)+D(t)u(t)

)
dt

− z(t)dW (t)− z̃(t)dW̃ (t),

p(0) = −Ny(0)−n, y(T ) = G.

(5.31)

Using Lemmas 5.4 and 5.5 to (5.31), we get the optimal filtering ( p̂(t), ŷ(t), ẑ(t), ˆ̃z(t))
of (p(t),y(t),z(t), z̃(t)) with respect to FY

t , which is governed by

⎧⎪⎨
⎪⎩

d p̂(t) = (B(t) p̂(t)−O(t)ŷ(t))dt +C(t) p̂(t)dW (t),

−dŷ(t) =
(
B(t)ŷ(t)+C(t)ẑ(t)+C̃(t) ˆ̃z(t)+D(t)u(t)

)
dt − ẑ(t)dW (t),

p̂(0) = −Ny(0)−n, ŷ(T ) = Ĝ.

(5.32)

Note that, (5.32) is not a standard FBSDE because an additional filtering estimate
ˆ̃z(·) is contained. Therefore, its existence and uniqueness is not an immediate con-
sequence of Lemma A.5.

Step 2: Existence and uniqueness of FBSDE (5.35).
We first introduce two differential equations

⎧⎨
⎩

α̇(t)− (
2B(t)+C2(t)+C̃2(t)

)
α(t)− 1

R(t)
D2(t)α2(t)+O(t) = 0,

α(0) =−N
(5.33)

and
⎧⎪⎨
⎪⎩

β̇ (t)−
(

B(t)+C2(t)+C̃2(t)+
1

R(t)
D2(t)α(t)

)
β (t) = 0,

β (0) =−n.

(5.34)
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In fact, these two equations can be obtained similar to (5.28), (5.29), and (5.30). See
also Step 3 of this example for more details.

It is well known that (5.33) and (5.34) admit unique solutions, which are uni-
formly bounded in [0,T ], respectively. Next, we introduce a standard FBSDE

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d p̂(t) = (B(t) p̂(t)−O(t)ŷ(t))dt +C(t) p̂(t)dw(t),

−dŷ(t) =

[
B(t)ŷ(t)+C(t)ẑ(t)+

(
1

α(t)
C̃2(t)+

1
R(t)

D2(t)

)
p̂(t)

]
dt

− ẑ(t)dw(t),

p̂(0) = −Ny(0)−n, ŷ(T ) = Ĝ,

(5.35)

which is subject to an additional assumption condition as follows.
(H5.2) The solution α(·) of (5.33) satisfies

1
α(t)

C̃2(t)+
1

R(t)
D2(t)≥ 0.

Clearly, (5.35) satisfies (H5.1). Thus, it follows from A.5 that (5.35) admits a unique
solution ( p̂(·), ŷ(·), ẑ(·)) ∈L 2

FY

(
0,T ;R3

)
.

Step 3: Equivalence between (5.32) and (5.35).
We first prove that the solution ( p̂(·), ŷ(·), ẑ(·)) of (5.35) is a solution of (5.32).

Set

u(t) =
1

R(t)
D(t) p̂(t).

Then u(·) is an admissible control, and consequently, (5.31) admits a unique solution
(p(·),y(·),z(·), z̃(·)) ∈L 2

FW,W̄

(
0,T ;R4

)
. Similar to Theorem 5.3, set

p(t) = α(t)y(t)+β (t) with α(0) =−N and β (0) =−n, (5.36)

where α(·) and β (·) are deterministic and differentiable functions. Combining
(5.31) with

u(t) =
1

R(t)
D(t) p̂(t),

we get by Itô’s formula

d p(t) = α̇(t)y(t)dt +α(t)dy(t)+ β̇ (t)dt

=
[
α̇(t)y(t)+ β̇ (t)

]
dt

−
(

B(t)y(t)+C(t)z(t)+C̃(t)z̃(t)+
1

R(t)
D2(t) p̂(t)

)
α(t)dt

+α(t)z(t)dW (t)+α(t)z̃(t)dW̃ (t).

Comparing the above equality with the SDE in (5.31), we have

α(t)z(t) =C(t)p(t), α(t)z̃(t) = C̃(t)p(t) (5.37)
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and

α̇(t)y(t)−
(

B(t)y(t)+C(t)z(t)+C̃(t)z̃(t)+
1

R(t)
D2(t) p̂(t)

)
α(t)+ β̇ (t)

= B(t)p(t)−O(t)y(t). (5.38)

Taking E
[·|FY (t)

]
on both sides of (5.37) and (5.38), it yields

α(t)ẑ(t) =C(t) p̂(t), α(t) ˆ̃z(t) = C̃(t) p̂(t) (5.39)

and

α̇(t)ŷ(t)−
(

B(t)ŷ(t)+C(t)ẑ(t)+C̃(t) ˆ̃z(t)+
1

R(t)
D2(t) p̂(t)

)
α(t)+ β̇ (t)

= B(t) p̂(t)−O(t)ŷ(t). (5.40)

According to the second equation of (5.39), it is easy to see that the solution
( p̂(·), ŷ(·), ẑ(·)) of (5.35) solves (5.32). By the way, (5.39) and (5.40) show us how
to get (5.33) and (5.34).

Next, we prove that for fixed u(·), if (5.32) admits a solution in L 2
FY

(
0,T ;R4

)
,

then ( p̂(·), ŷ(·), ẑ(·), ˆ̃z(·)) satisfies (5.35). Take

u(t) =
1

R(t)
D(t) p̂(t).

Then there exists a unique solution (p(·),y(·),z(·), z̃(·)) ∈ L 2
FW,W̄

(
0,T ;R4

)
to

(5.31). Similar to the above analysis, it yields

α(t) ˆ̃z(t) = C̃(t) p̂(t),

where α(·) is the unique solution of (5.33). Putting

ˆ̃z(t) =
1

α(t)
C̃(t) p̂(t) and u(t) =

1
R(t)

D(t) p̂(t)

into (5.32), we arrive at (5.35), which admits a unique solution ( p̂(·), ŷ(·), ẑ(·)) ∈
L 2

FY

(
0,T ;R3

)
. This shows that the solution ( p̂(·), ŷ(·), ẑ(·), ˆ̃z(·)) of (5.32) is a solu-

tion of (5.35).
Therefore, the existence and uniqueness of (5.32) is equivalent to those of (5.35).
Step 4: Optimal feedback.
Define

u(t) =
1

R(t)
D(t)E

[
p(t)

∣∣FY
t

]
=

1
R(t)

D(t) p̂(t), (5.41)

where ( p̂(·), ŷ(·), ẑ(·)) is the unique solution of (5.32). According to the existence
of (5.32), (5.31) with (5.41) admits a unique solution (p(·),y(·),z(·)). Theorem 5.2
and Corollary 5.1 imply that (5.41) is a unique optimal control. Inserting (5.36) into
(5.41), it leads to
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u(t) =
1

R(t)
D(t)(α(t)ŷ(t)+β (t)), (5.42)

where α(·), β (·) and ( p̂(·), ŷ(·), ẑ(·)) are the solutions of (5.33), (5.34) and (5.32).
We summarize the above analysis as follows.

Proposition 5.1. Let (H5.2) hold. Then (5.41) is the unique optimal control of Prob-
lem (BLQ). Furthermore, (5.42) is its feedback representation.

We emphasize that Problem (BLQ) is related to [31], in which the cost func-
tional does not include 2nyv(0); moreover, the uniqueness of optimal control was
not proved.

5.3 An Optimal Premium Problem

The optimal premium problem introduced in Section 1.1, i.e., Problem (OP), is a
special case of Problem (FBLQ), and hence, its optimal solution can be derived
by Theorem 5.3. The main goal of this section is to provide a slightly different
technique to solve Problem (OP) again. In detail, we first assume Problem (OP)
is one with complete information for a while and seek the optimal solution under
such assumption. Second, we construct a candidate optimal premium policy of the
complete information problem and compute its optimal estimate by filtering theory
of SDE. Last, we verify the filtering of the candidate optimal premium policy is
indeed an optimal one of Problem (OP). This is the so-called backward separation
approach introduced by Chapter 1.

Let x̂v(t) = E
[
xv(t)|FY v

t

]
and P(t) = E

[
(xv(t)− x̂v(t))2|FY v

t

]
be the best esti-

mate (in the sense of square error) and the mean squared error estimate. In terms of
(1.4) and (1.5), we have

x̂v(t) = E

[
xv

1(t)+ xv
2(t)|FY v

t

]
= E

[
xv

1(t)|FY1
t

]
+ xv

2(t),

P(t) = E

[
(xv

1(t)− x̂v
1(t))

2|FY1
t

]
.

Applying Theorem 2.1, we get

Corollary 5.2. For any v(·) ∈ Uad, the cash-balance process xv(·) in (1.1) has a
filtering estimate

{
dx̂v(t) = (δ (t)x̂v(t)−b(t)+ v(t))dt +(σ(t)ρ(t)+ cγ(t)−1P(t))dŴ (t),

x̂v(0) = x0,
(5.43)

where the stochastic process

Ŵ (t) = W̃ (t)+
∫ t

0
cγ−1(s)(xv(s)− x̂v(s))ds
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is an observable 1-dimensional standard Brownian motion, and P(·) satisfies

{
Ṗ(t)−2δ (t)P(t)+(σ(t)ρ(t)+ cγ−1(t)P(t))2 −σ2(t) = 0,

P(0) = 0.
(5.44)

We shall now use the backward separation approach to solve Problem B. This
can be illustrated by the following three steps.

Step 1: An optimal premium policy with complete information.
Suppose that Problem (OP) is one with complete information, for a while, in the

sense that the premium policy v(t) is FW
t -adapted. Using the maximum principle

and Lagrangian method, we get the optimal premium policy with complete infor-
mation

u(t) =−N−1(t)eβ t(φ(t)x(t)+ψ(t)),

where x(·), φ(·) and ψ(·) satisfy

⎧⎪⎪⎨
⎪⎪⎩

dx(t) =
[
(δ (t)−N−1(t)eβ tφ(t))x(t)−b(t)−N−1(t)eβ tψ(t)

]
dt

+σ(t)dW (t),

x(0) = x0,

(5.45)

{
φ̇(t)+2δ (t)φ(t)−N−1(t)eβ tφ 2(t)+L(t)e−β t = 0,

φ(T ) = Me−βT
(5.46)

and
{

ψ̇(t)+(δ (t)−N−1(t)eβ tφ(t))ψ(t)−b(t)φ(t)−A(t)L(t)e−β t = 0,

ψ(T ) = θ − c0Me−βT
(5.47)

with

θ =

∫ T
0 ϒ (t)dt + xe

∫ T
0 ϕ(t)dt − c0∫ T

0 N−1(t)eβ t+2
∫ T
t ϕ(s)dsdt

,

ϕ(t) = δ (t)−N−1(t)eβ tφ(t),

and

ϒ (t) = N−1(t)
[∫ T

t

(
eβ tb(s)φ(s)+A(s)L(s)eβ (t−s)

)
e

∫ s
t ϕ(r)drds

+ c0Me
∫ T
t (ϕ(s)−β )ds

]
e
∫ T
t ϕ(s)ds −b(t).

Step 2: A candidate optimal premium policy. Obviously, Uad is a subset of the
decision set of the counterpart of Problem (OP) with complete information. For
Problem (OP), we cannot fully observe the cash-balance process xv(·), but we can
observe the stock price S(·) of the insurance firm. Our intuition is to replace the op-
timal cash-balance process x(·) by its filtering estimate x̂(·) in the optimal premium
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policy of complete information. Based on this conjecture, we introduce a candidate
optimal premium policy

û(t) =−N−1(t)eβ t(φ(t)x̂(t)+ψ(t)), (5.48)

where φ(·) and ψ(·) satisfy (5.46) and (5.47). According to (5.43), the filtering
equation of x̂(·) is

⎧⎪⎪⎨
⎪⎪⎩

dx̂(t) =
[
(δ (t)−N−1(t)eβ tφ(t))x̂(t)−b(t)−N−1(t)eβ tψ(t)

]
dt

+
(
σ(t)ρ(t)+ cγ−1(t)p(t)

)
dŴ (t),

x̂(0) = x0.

Step 3: Proof of optimization.
Since x̂v(t)⊥ (xv(t)− x̂v(t)), cost functional (1.6) can be rewritten as

J(v(·)) = 1
2
E

{∫ T

0
e−β t [L(t)(xv(t)− x̂v(t)+ x̂v(t)−A(t))2 +N(t)v(t)2]dt

+Me−βT (xv(T )− x̂v(T )+ x̂v(T )− c0)
2
}

(5.49)

= J (v(·))+ 1
2

(∫ T

0
e−β tL(t)p(t)dt +Me−βT p(t)

)

with

J (v(·)) = 1
2
E

{∫ T

0
e−β t [L(t)(x̂v(t)−A(t))2 +N(t)v2(t)

]
dt

+Me−βT (x̂v(T )− c0)
2
}
,

where p(·) is the solution of (5.44). Note that p(·) does not depend on the premium
policy v(·). Then for any v(·) ∈Uad it follows that

J(v(·))− J(û(·)) = 1
2
E

{∫ T

0
e−β t [L(t)(x̂v(t)− x̂(t))2 +N(t)(v(t)− û(t))2]dt

+Me−βT (x̂v(T )− x̂(T ))2
}
+Θ (5.50)

with

Θ = E

{∫ T

0
e−β t [L(t)(x̂(t)−A(t))(x̂v(t)− x̂(t))+N(t)û(t)(v(t)− û(t))]dt

+Me−βT (x̂(T )− c0)(x̂
v(T )− x̂(T ))

}
. (5.51)

Since all the terms depending on p(·) have disappeared and the first term at the
right-hand side of (5.50) is nonnegative, it is clear

J(v(·))− J(û(·))≥Θ , ∀v(·) ∈Uad .
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If Θ ≡ 0 holds, then û(·) defined by (5.48) is optimal. In fact, it follows from Itô’s
formula that

d(φ(t)x̂(t)+ψ(t)) =
[
(A(t)− x̂(t))L(t)e−β t −δ (t)(φ(t)x̂(t)+ψ(t))

]
dt

+φ(t)(ρ(t)σ(t)+ cγ−1(t)p(t))dŴ (t)

and

d [(φ(t)x̂(t)+ψ(t))(x̂v(t)− x̂(t))]

= (x̂v(t)− x̂(t))d(φ(t)x̂(t)+ψ(t))+(φ(t)x̂(t)+ψ(t))d(x̂v(t)− x̂(t))

= (x̂v(t)− x̂(t))d(φ(t)x̂(t)+ψ(t))

+(φ(t)x̂(t)+ψ(t)) [δ (t)(x̂v(t)− x̂(t))+ v(t)− û(t)]dt.

Note that Ex̂v(T ) = Ex̂(T ) = c0. Integrating from 0 to T and taking expectations on
both sides of the foregoing equality,

E

[
Me−βT (x̂(T )− c0)(x̂

v(T )− x̂(T ))
]

= E

∫ T

0
(x̂v(t)− x̂(t))d(φ(t)x̂(t)+ψ(t))

+E

∫ T

0
(φ(t)x̂(t)+ψ(t)) [δ (t)(x̂v(t)− x̂(t))+ v(t)− û(t)]dt.

Substituting the above two formulas into (5.51), we get Θ ≡ 0.
Step 4: The optimal cost functional.
This step is similar to that of the complete information case. Thus we omit the

detailed deductions and only give the key results.
Substituting (5.48) into (5.49), we derive

J(û(·)) = 1
2

(∫ T

0
e−β tL(t)p(t)dt +Me−βT p(T )

)

+
1
2

(∫ T

0
e−β tL(t)A2(t)dt +Me−βT c2

0

)

+
1
2
E

{∫ T

0
e−β t

[(
L(t)+N−1(t)e2β tφ 2(t)

)
x̂2(t)

−2
(

A(t)L(t)−N−1(t)e2β tφ(t)ψ(t)
)

x̂(t)

+N−1(t)e2β tψ2(t)
]

dt +Me−βT x̂2(T )−2c0Me−βT x̂(T )
}
.

Applying Itô’s formula to φ(·)x̂2(·)+2ψ(·)x̂(·), we get
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E
(
φ(T )x̂2(T )+2ψ(T )x̂(T )

)

=
∫ T

0

[
φ(t)

(
ρ(t)σ(t)+ cγ−1(t)p(t)

)2 −2ψ(t)
(

b(t)+N−1(t)eβ tψ(t)
)]

dt

+2E
∫ T

0
e−β t

(
A(t)L(t)−N−1(t)e2β tφ(t)ψ(t)

)
x̂(t)dt

−E

∫ T

0
e−β t

(
L(t)+N−1(t)e2β tφ 2(t)

)
x̂2(t)dt +φ0x2

0 +2ψ0x0.

From the above equalities, then it follows

J(û(·)) = 1
2

(∫ T

0
e−β tL(t)A2(t)dt +Me−βT c2

0

)
+

1
2
φ0x2

0 +ψ0x0 − c0θ

+
1
2

∫ T

0

[
φ(t)

(
ρ(t)σ(t)+ cγ−1(t)p(t)

)2
]

dt

+
1
2

∫ T

0
ψ(t)

(
2b(t)−N−1(t)eβ tψ(t)

)
dt

+
1
2

(∫ T

0
e−β tL(t)p(t)dt +Me−βT p(T )

)
. (5.52)

Now we conclude the aforementioned discussion with the following:

Theorem 5.4. The optimal premium policy and the optimal cost functional of Prob-
lem (OP) are given explicitly by (5.48) and (5.52), respectively.

If we remove the terminal constraint condition in Problem (OP), Problem (OP)
is equivalent to minimizing (1.6) subject to (1.3), (1.8) and Uad . In this setting, we
can obtain a result similar to Theorem 5.4 by setting θ = 0.

Note that the optimal premium policy with incomplete information has similar
form to that with complete information, except that the actual state x(·) is replaced
by its filter x̂(·). Nevertheless, it doesn’t imply that Problem (OP) is parallel to its
counterpart with complete information. Instead, the study of Problem (OP) has its
own intrinsic and unparalleled values from both economically illustrating and math-
ematically analyzing perspectives, as demonstrated as follows.

First, the optimal cost functional in incomplete information setup, given by
(5.52), is quite different from that of complete information. This is mainly due to
the essential change of observable filtration. Some interesting features raise when
comparing these two functionals. For example, the quantity p(·) plays an important
role in (5.52) whereas it is totally not involved in the complete information case.
As to this feature, it is important to highlight that p(·) represents some quadratic
deviation of filter to underlying state; thus it can be interpreted as some “informa-
tion cost” to policy-makers due to their knowledge incompleteness. Intuitively, we
can expect the “well-informed” policy-maker should outperform the “worsely in-
formed” policy-maker because the latter is always subject to the “information cost”
which will reduce the efficiency of optimal policy. In some extent, our study to
Problem (OP) verifies this economic intuition from both qualitative and quantitative
aspects by noting the terms involving p(·) in (5.52) are all nonnegative.
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Second, besides its economic relevancy, Problem (OP) also has its mathematical
significance. In fact, Problem (OP) is more difficult and challenging in theoreti-
cal analysis due to the lack of analytical tractability. Consequently, when handling
the incomplete information in Problem (OP), we adopt a “decoupling technique,”
stochastic filtering and a backward separation technique which are not utilized in
the study of the complete information case. These techniques can be viewed as by-
products of Problem (OP) in the sense of mathematical analysis. These by-products,
from our viewpoints, can be applied potentially to other interesting mathematical
problems which are not limited in the present setup.

5.4 Notes

The earliest research on LQ problem can be traced back to Bellman et al. [4],
Kalman [37], and Letov [44] for deterministic system; Kushner [41] and Wonham
[96, 97] for Itô’s stochastic system. There are a large volume of important works on
this subject, see, e.g., Yong and Zhou [109], Tang [79], and literature cited therein
for more information.

Different from the classical LQ control above, the LQ control of (fully coupled)
FBSDE is almost an unexplored field. As far as we know, an early attempt was made
by Dokuchaev and Zhou [17] and Wang et al. [83], where backward LQ control and
forward-backward LQ control were considered, respectively. For further develop-
ment, see, e.g., Lim and Zhou [48], Yong [107], Yu [110], Wang et al. [89], Li and
Yu [47], Shi et al. [73, 74], and Wang et al. [92].

The results introduced in this chapter are taken mainly from Wang et al. [89].
The density argument in Problem (FBLQ) was inspired by Bensoussan [7]. See also
Bensoussan and Viot [9] for early treatment. The decomposition technique used
in Problem (FBLQ) and Problem (OP) plays an important role in decoupling the
circular dependence of the control on the observation. The technique, however, is
restricted to special structures of state and observation equations, say, the case that
(5.1) and (5.3) are linear with respect to (xv(·),yv(·),zv(·), z̃v(·)), the diffusion co-
efficient of (5.1) is deterministic, and the drift coefficient of (5.3) is independent
of (yv(·),zv(·), z̃v(·)). It is worth investigating the availability of the technique to
decompose more general state and observation equations in the future.



Appendix A
BSDE and FBSDE

Nonlinear BSDE and fully coupled FBSDE have interesting applications in stochas-
tic control, mathematical finance, and so on. Since the pioneering work of Pardoux
and Peng [62], a large number of literature regarding BSDE and FBSDE have sprang
up over the past two decades. The goal of this chapter is not to cover all the recent
developments in BSDE and FBSDE, instead we only focus on the existence and
uniqueness of the solution to BSDE and FBSDE.

A.1 BSDE

Consider a nonlinear BSDE

y(t) = ξ +
∫ T

t
g(s,y(s),z(s))ds−

∫ T

t
z(s)dW (s), (A.1)

where g : Ω× [0,T ]×Rn+n×m → Rn is a mapping; W (·) is an m-dimensional Brow-
nian motion defined on the filtered probability space (Ω ,F ,(Ft)0≤t≤T ,P); Ft is
the natural filtration generated by W (t); and ξ ∈ L 2

FT
(Ω ;Rn). If there is a pair

of processes (y(·),z(·)) ∈L 2
F (0,T ;Rn+n×m) which solves (A.1), we call (y(·),z(·))

an adapted solution of (A.1). Note that (A.1) is a kind of terminal value problem of
SDE involving Itô’s stochastic integral. However, we cannot simply reverse the time
to get a solution for (A.1), because it would destroy the adaptiveness of the solution.
This is essentially different from the case of ordinary differential equation (ODE).

To obtain the existence and uniqueness of the solution to (A.1), we make the
assumptions below.
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(Ha.1) For any (y,z) ∈ Rn+n×m, g(·,y,z) ∈L 2
F (0,T ;Rn).

(Ha.2) There is a constant C > 0 such that for any (ω, t) ∈Ω × [0,T ], (y1,z1) ∈
Rn+n×m and (y2,z2) ∈ Rn+n×m,

|g(t,y1,z1)−g(t,y2,z2)| ≤C(|y1 − y2|+ |z1 − z2|).

Now we proceed to establishing a unique solution to BSDE (A.1). We will need
a few lemmas.

Lemma A.1. For any y(0) ∈ Rn, g ∈ L 2
F (0,T ;Rn) and b ∈ L 2

F (0,T ;Rn×m), we
define an Itô’s process

y(t) = y(0)+
∫ t

0
g(s)ds+

∫ t

0
b(s)dW (s).

Then, for any constant β > 0, we have

|y(0)|2 +E
∫ T

0

(
β
2
|y(t)|2 + |b(t)|2

)
eβ tdt

≤ E|y(T )|2eβT +
2
β

E
∫ T

0
|g(t)|2eβ tdt.

Proof. Applying Itô’s formula to |y(t)|2eβ t〉, we derive

eβT |y(T )|2 = |y(0)|2 +
∫ T

0
|b(t)|2eβ t〉dt

+2
∫ T

0
〈g(t)dt +b(t)dW (t),y(t)eβ t〉

+β
∫ T

0
eβ t |y(t)|2dt.

Taking expectations on both sides of the above equation and noticing the elementary
inequality 2ab ≤ a2 +b2, we arrive at

|y(0)|2 +E
∫ T

0

(
β |y(t)|2 + |b(t)|2)eβ tdt

= E|y(T )|2eβT −2E
∫ T

0
〈g(t),y(t)eβ t〉dt

≤ E|y(T )|2eβT +E
∫ T

0

(
2
β
|g(t)|2 + β

2
|y(t)|2

)
eβ tdt.

The proof is then completed. ��
Lemma A.2. For any ξ ∈ L 2

FT
(Ω ;Rn) and g ∈ L 2

F (0,T ;Rn), there is a unique

process (y(·),z(·)) ∈L 2
F (0,T ;Rn+n×m) which satisfies
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y(t) = ξ +
∫ T

t
g(s)ds−

∫ T

t
z(s)dW (s). (A.2)

Proof. Equation (A.2) can be rewritten as

y(t) = y(0)−
∫ t

0
g(s)ds+

∫ t

0
z(s)dW (s).

First we prove the uniqueness of the solution. If there are two solutions, we denote
the difference by (ȳ(·), z̄(·)). Then,

ȳ(t) = ȳ(0)+
∫ t

0
z̄(s)dW (s).

By Lemma A.1 with β = 2, we have

0 ≤ |ȳ(0)|2 +E
∫ T

0

(|ȳ(t)|2 + |z̄(t)|2)e2tdt ≤ 0.

This implies the uniqueness.
We now prove the existence. Let

y(t) = E
[
ξ +

∫ T

0
g(s)ds|Ft

]
−

∫ t

0
g(s)ds. (A.3)

Since E
[
ξ +

∫ T
0 g(s)ds|Ft

]
is a square-integrable martingale, there is a unique pro-

cess z(·) ∈L 2
F (0,T ;Rn×m) such that

y(t) = E
[
ξ +

∫ T

0
g(s)ds

]
+

∫ t

0
z(s)dW (s)−

∫ t

0
g(s)ds. (A.4)

Combining the equality (A.4) with the definition (A.3) of y(·), we have

y(T ) = E
[
ξ +

∫ T

0
g(s)ds

]
+

∫ T

0
z(s)dW (s)−

∫ T

0
g(s)ds (A.5)

= ξ .

Then (A.2) follows from (A.4) and (A.5), i.e., (y(·),z(·)) ∈L 2
F (0,T ;Rn+n×m) is a

solution of (A.2). ��
Theorem A.1. Under (Ha.1)–(Ha.2), BSDE (A.1) admits a unique solution (y,z) in
L 2

F (0,T ;Rn+n×m).

Proof. For any fixed (y(·),z(·)) ∈ L 2
F (0,T ;Rn+n×m), it follows from (Ha.1) and

(Ha.2) that g(·,y(·),z(·)) ∈L 2
F (0,T ;Rn). Consider a linear BSDE

Y (t) = ξ +
∫ T

t
g(s,y(s),z(s))ds−

∫ T

t
Z(s)dW (s). (A.6)
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By Lemma A.2, (A.6) admits a unique solution (Y (·),Z(·)) ∈ L 2
F (0,T ;Rn+n×m).

Then we can define a mapping I : L 2
F (0,T ;Rn+n×m) → L 2

F (0,T ;Rn+n×m) by
(y(·),z(·)) �→ (Y (·),Z(·)) via (A.6). We are going to prove that for some β > 0,
I is a contraction mapping on the metric space L 2

F (0,T ;Rn+n×m) with metric ρβ
given by

ρβ ((Y1,Z1),(Y2,Z2))
2 = E

∫ T

0
(|Y1(t)−Y2(t)|2 + |Z1(t)−Z2(t)|2)eβ tdt.

To this end, we take any (y1(·),z1(·)), (y2(·),z2(·)) ∈L 2
F (0,T ;Rn+n×m), and set

(Y1(·),Z1(·)) = I(y1(·),z1(·)), (Y2(·),Z2(·)) = I(y2(·),z2(·)).

Let β > 0 be a constant to be decided later. Using (Ha.2) and Lemma A.1 to

Y1(t)−Y2(t) =
∫ T

t
(g(s,y1(s),z1(s))−g(s,y2(s),z2(s)))ds

−
∫ T

t
(Z1(s)−Z2(s))dW (s),

we arrive at

E
∫ T

0

(
β
2
|Y1(t)−Y2(t)|2 + |Z1(t)−Z2(t)|2

)
eβ tdt

≤ 2
β

E
∫ T

0
|g(t,y1(t),z1(t))−g(t,y2(t),z2(t))|2eβ tdt

≤ 4C2

β
E

∫ T

0
(|y1(t)− y2(t)|2 + |z1(t)− z2(t)|2)eβ tdt.

Choose β = max{2,8C2}. Then it is easy to see

E
∫ T

0
(|Y1(t)−Y2(t)|2 + |Z1(t)−Z2(t)|2)eβ tdt

≤ 1
2

E
∫ T

0
(|y1(t)− y2(t)|2 + |z1(t)− z2(t)|2)eβ tdt.

It implies the existence and uniqueness of solution to (A.6). ��

A.2 FBSDE

Consider a fully coupled FBSDE
⎧⎪⎨
⎪⎩

dx(t) = b(t,x(t),y(t),z(t))dt +σ(t,x(t),y(t),z(t))dW (t),

−dy(t) = g(t,x(t),y(t),z(t))dt − z(t)dW (t),

x(0) = x0, y(T ) = f (x(T )),

(A.7)
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where (b,σ ,g) : Ω × [0,T ]×Rn+m+m×k → Rn+n×k+m and f : Ω ×Rn → Rm are
given mappings; W (·) is a k-dimensional standard Brownian motion defined on
(Ω ,F ,(Ft)0≤t≤T ,P); Ft is the natural filtration generated by W (t); and x0 ∈ Rn.
If there is a triple of processes (x(·),y(·),z(·)) ∈ L 2

F (0,T ;Rn+n×m) which solves
(A.7), we call (x(·),y(·),z(·)) an adapted solution of (A.7).

For any λ = (x,y,z)�, we set Λ(t,λ ) = (−G�g,Gb,Gσ)�(t,λ ), where G is a
given m×n full-rank matrix, and Gσ = (Gσ1, · · · ,Gσk).

To establish the existence and uniqueness of the solution to the fully coupled
FBSDE (A.7), we impose the following assumption.

(Ha.3) For any (t,λ ) ∈ [0,T ]×Rn+n+n×m, Λ(t,λ ) and f (x) are uniformly Lips-
chitz with respect to λ and x, and Λ(·,λ ) and f (x) are in L 2

F (0,T ;Rn+n+n×m) and
L 2

F (Ω ;Rm), respectively.
(Ha.4) There are nonnegative constants μ1, μ2 and μ3 such that for any t ∈ [0,T ],

λ , λ̄ ∈ Rn+n+n×m,

〈Λ(t,λ )−Λ(t, λ̄ ),λ − λ̄ 〉 ≤ −μ1|G(x− x̄)|2 −μ2(|G�(y− ȳ)|2 + |G�(z− z̄)|2),
〈 f (x)− f (x̄),G(x− x̄)〉 ≥ μ3|G(x− x̄)|2,

with μ1+μ2 > 0 and μ2+μ3 > 0. Moreover, we have μ1 > 0, μ3 > 0 (resp., μ2 > 0)
when m > n (resp., n > m).

Remark A.1. If FBSDE (A.7) is decoupled, i.e., the coefficients b and σ do not de-
pend on y and z, then the condition (Ha.3) is enough for the existence and unique-
ness of the solution. However, for the fully coupled case, we need to impose the
extra monotonicity condition (Ha.4).

Theorem A.2. Under (Ha.3) and (Ha.4), FBSDE (A.7) has at most one solution in
L 2

F (0,T ;Rn+m+m×k).

Proof. Assume that λ (·) = (x(·),y(·),z(·))� and λ̄ (·) = (x̄(·), ȳ(·), z̄(·))� are two
solutions to (A.7). Set χ̃(·) = χ(·)− χ̄(·), where χ = λ ,x,y,z. Applying Itô’s for-
mula to 〈Gx̃(·), ỹ(·)〉, we get

E〈 f (x(T ))− f (x̄(T )),Gx̃(T )〉−E〈ỹ(t),Gx̃(T )〉

= E
∫ T

t
〈Λ(s,λ (s))−Λ(s, λ̄ (s)), λ̃ (s)〉ds

≤ −μ1E
∫ T

t
|Gx̃(s)|2ds−μ2E

∫ T

t
|G�ỹ(s)|2ds.

Noting that x̃(0) = 0, it follows from the monotonicity condition (Ha.4) of f that

μ1E
∫ T

0
|Gx̃(t)|2dt +μ2E

∫ T

0
|G�ỹ(t)|2dt ≤ 0.

The rest of the proof is divided into three cases.
Case 1: m> n. In this case μ1 > 0, then |Gx̃(·)|2 = 0. It implies that x(·) = x̄(·). In

particular, f (x(T )) = f (x̄(T )), and hence, it follows from Theorem A.1 that y(·) =
ȳ(·) and z(·) = z̄(·).
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Case 2: m < n. In this case μ2 > 0, and hence, |GT ỹ(·)|2 = 0. It implies that
y(·) = ȳ(·). Applying Itô’s formula to |ỹ(·)|2 = 0, we get

∫ T

0
|z(t)− z̄(t)|2dt = 0,

i.e., z(·) = z̄(·). Then it follows from the uniqueness of SDE that x(·) = x̄(·).
Case 3: m = n. Then, μ1 > 0 or μ2 > 0. The proofs follow from the same argu-

ment as that for Case 1 and Case 2, respectively. ��
Next, we proceed to establishing the existence of a solution to FBSDE (A.7).

Lemma A.3. Let κ be a nonnegative constant, x ∈ Rn, φ ∈ L 2
F (0,T ;Rn), ψ ∈

L 2
F (0,T ;Rn×k), γ ∈L 2

F (0,T ;Rm), and ξ ∈L 2
FT

(Ω ; lRm). Then the linear FBSDE

⎧⎪⎪⎨
⎪⎪⎩

dx(t) =
(
−μ2G�y(t)+φ(t)

)
dt +

(
−μ2G�z(t)+ψ(t)

)
dW (t),

−dy(t) = (μ1Gx(t)+ γ(t))dt − z(t)dW (t),

x(0) = x0, y(T ) = κGx(T )+ξ

has a unique solution (x(·),y(·),z(·)) ∈L 2
F (0,T ;Rn+m+m×k).

Proof. First we assume n ≤ m. Since G�G is strictly positive definite, we set

⎛
⎝ x1

y1

z1

⎞
⎠ =

⎛
⎝ x

G�y
G�z

⎞
⎠

and (
y2

z2

)
=

((
Im −G(G�G)−1G�)

y(
Im −G(G�G)−1G�)

z

)
.

Multiplying Im −G(G�G)−1G� on both sides of the BSDE, we get
⎧⎪⎨
⎪⎩
−dy2(t) =

(
Im −G(G�G)−1G�

)
γ(t)dt − z2(t)dW (t),

y2(T ) =
(

Im −G(G�G)−1G�
)
ξ ,

where Im denotes the m × m identity matrix. It follows from Theorem A.1 that
(y2(·),z2(·)) is determined uniquely. Similarly, multiplying G� on both sides of the
same BSDE,

⎧⎪⎪⎨
⎪⎪⎩

dx1(t) = (−μ2y1(t)+φ(t))dt +(−μ2z1(t)+ψ(t))dW (t),

−dy1(t) =
(
μ1G�Gx1(t)+G�γ(t)

)
dt − z1(t)dW (t),

x1(0) = x0, y1(T ) = κG�Gx1(T )+G�ξ .

(A.8)
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To solve (A.8), we introduce a symmetric matrix-valued ODE
{

K̇(t)−μ2K2(t)+μ1G�G = 0,

K(T ) = κG�G.

It is well known that the ODE has a unique solution. We then define a linear BSDE

⎧⎪⎪⎨
⎪⎪⎩

−d p(t) =
(
−μ2K(t)p(t)+K(t)φ(t)+G�γ(t)

)
dt

+(K(t)ψ(t)− (In +μ2K(t))q(t))dW (t),

p(T ) = G�ξ ,

and an SDE
{

dx1(t) = [−μ2(K(t)x1(t)+ p(t))+φ(t)]dt +(ψ(t)−μ2(t)q(t))dW (t),

x1(0) = x0.

It is easy to check that

(x1(·),y1(·),z1(·)) = (x1(·),K(·)x1(·)+ p(·),q(·))

is the solution of (A.8). Once (x1(·),y1(·),z1(·)) and (x2(·),y2(·)) are resolved, then
(x(·),y(·),z(·)) is determined uniquely by

x(·) = x1(·),
y(·) = G(G�G)−1y1(·)+ y2(·),
z(·) = G(G�G)−1z1(·)+ z2(·).

The proof for the case of n > m is similar and we omit it. ��
For any α ∈ [0,1], we introduce an auxiliary family of FBSDEs

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dxα(t) =
[
(α−1)μ2G�yα(t)+αb(t,λα(t))+φ(t)

]
dt

+
[
(α−1)μ2G�zα(t)+ασ(t,λα(t))+ψ(t)

]
dW (t),

−dyα(t) = [(α−1)μ1Gxα(t)+αg(t,λα(t))+ γ(t)]dt − zα(t)dW (t),

xα(0) = x0, yα(T ) = α f (xα(T ))+(1−α)Gxα(T )+ξ ,

(A.9)

where φ , ψ, γ ∈L 2
F (0,T ;Rn+n×k+m), and ξ ∈ L 2

FT
(Ω ;Rm). Note that (A.9) be-

comes (A.7) when α = 1.

Lemma A.4. Let (Ha.3) and (Ha.4) hold. Suppose that there exists α0 ∈ [0,1) such
that (A.9) with α = α0 has a solution (Xα0(·),Yα0(·),Zα0(·)). Then there exists a
positive constant δ0 (independent of α0) such that for each δ ∈ [0,δ0], (A.9) with
α = α0 +δ has a solution (Xα0+δ (·),Yα0+δ (·),Zα0+δ (·)).
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Proof. Let δ0 be a constant to be decided later, and let δ ∈ [0,δ0]. For each λ (·) =
(x(·),y(·),z(·))� ∈L 2

F (0,T ;Rn+m+n×m), we solve successively the FBSDE
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dX(t) =
[
(α0 −1)μ2G�Y (t)+α0b(t,U(t))+δ (μ2G�y(t)+b(t,λ (t)))+φ(t)

]
dt

+
[
(α0 −1)μ2G�Z(t)+α0σ(t,U(t))+δ (μ2G�z(t)+σ(t,λ (t)))+ψ(t)

]
dW (t),

−dY (t) = [(α0 −1)μ1GX(t)+α0g(t,U(t))+δ (g(t,λ (t))−μ1Gx(t))+ γ(t)]dt −Z(t)dW (t),

X(0) = x0, Y (T ) = α0 f (X(T ))+(1−α0)GX(T )+δ ( f (x(T ))−Gx(T ))+ξ ,

where U(·) = (X(·),Y (·),Z(·))�.
According to Theorem A.2 and the assumption of Lemma A.4, the above equa-

tion has a unique solution. We then define a mapping

(U(·), X(T )) = Iα0+δ (λ (·), x(T )) :

L 2
F (0,T ;Rn+m+m×k)×L 2

FT
(Ω ;Rn)→L 2

F (0,T ;Rn+m+m×k)×L 2
FT

(Ω ;Rn).

We now prove that if δ is small enough, then the mapping is a contraction with
respect to norm ‖ · ‖ given by

‖(U(·), X(T ))‖2 = E
[∫ T

0
|U(t)|2dt + |X(T )|2

]
.

Let λ̄ (·) = (x̄(·), ȳ(·), z̄(·))� and Ū(·) = (X̄(·),Ȳ (·), Z̄(·))�. Suppose that λ̄ (·) ∈
L 2

F (0,T ;Rn+m+m×k) and Ū(·) ∈L 2
F (0,T ;Rn+m+m×k). Set

λ̃ (·) = (x̃(·), ỹ(·), z̃(·))� = (x(·)− x̄(·),y(·)− ȳ(·),z(·)− z̄(·))�,
Ũ(·) = (X̃(·),Ỹ (·), Z̃(·))� = (X(·)− X̄(·),Y (·)− Ȳ (·),Z(·)− Z̄(·))�.

Applying Itô’s formula to 〈GX̃(·),Ỹ (·)〉, we get

α0E〈 f (X(T ))− f (X̄(T )),GX̃(T )〉+(1−α0)E〈GX̃(T ),GX̃(T )〉
+δE〈 f (x(T ))− f (x̄(T ))−Gx̃(T ),Gx̃(T )〉

= E
∫ T

0
〈α0(Λ(t,U(t))−Λ(t,Ū(t))),Ũ(t)〉dt

− (1−α0)E
∫ T

0
(μ1〈GX̃(t),GX̃(t)〉+μ2〈G�Ỹ (t),G�Ỹ (t)〉

+μ2〈G�Z̃(t),G�Z̃(t)〉)dt

+δE
∫ T

0
(μ1〈GX̃(t),Gx̃(t)〉+μ2〈G�Ỹ (t),G�ỹ(t)〉

+μ2〈G�Z̃(t),G�z̃(t)〉−〈X̃(t),G�g̃(t)〉+ 〈G�Ỹ (t), b̃(t)〉+ 〈Z̃(t),Gσ̃(t)〉)dt,

where χ̃(t) = χ(t,λ (t))− χ(t, λ̄ (t)) with χ = g,b,σ . It follows from (Ha.3) and
(Ha.4) that
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(α0μ3 +1−α0)E|GX̃(T )|2 +μ1E
∫ T

0
|GX̃(t)|2dt

+μ2E
∫ T

0
(|G�Ỹ (t)|2 + |G�Z̃(t)|2)dt

≤ δK1E
[∫ T

0
(|λ̃ (t)|2 + |U(t)|2)dt + |X̃(T )|2 + |x̃(T )|2

]
.

Similarly, applying usual techniques to 〈X̃(·), X̃(·)〉 and 〈Ỹ (·),Ỹ (·)〉, we derive the
following estimates

sup
0≤t≤T

E|X̃(t)|2 ≤ K1E
∫ T

0
(δ |λ̃ (t)|2 + |Ỹ (t)|2 + |Z̃(t)|2)dt,

E
∫ T

0
|X̃(t)|2dt ≤ K1T E

∫ T

0
(δ |λ̃ (t)|2 + |Ỹ (t)|2 + |Z̃(t)|2)dt,

E
∫ T

0
(|Ỹ (t)|2 + |Z̃(t)|2)dt ≤ K1δE

[∫ T

0
|λ̃ (t)|2dt + |x̃(T )|2

]

+K1E
[∫ T

0
|X̃(t)|2dt + |X̃(T )|2

]
.

Here the constant K1 depends on the Lipschitz constants, G, μ1, μ2, and T . If μ3 > 0,
then α0μ3 +1−α0 ≥ μ , μ = min(1,μ3)> 0. Combining the above four estimates,
then it is clear that, whatever μ1 > 0, μ3 > 0, μ2 ≥ 0 or μ1 ≥ 0, μ3 ≥ 0, μ2 > 0, we
always have

E
[∫ T

0
|Ũ(t)|2dt + |X̃(T )|2

]
≤ KδE

[∫ T

0
|λ̃ (t)|2dt + |x̃(T )|2

]
.

Here the constant K depends on μ1, μ2, μ3, K1, and T . If we choose δ0 = 1
2K ,

then for any fixed δ ∈ [0,δ0], the mapping Iα0+δ is a contraction. It follows that
this mapping has a unique fixed point (Xα0+δ (·),Yα0+δ (·),Zα0+δ (·)) which is the
solution to (A.9) for α = α0 +δ . Then the proof is completed. ��
Theorem A.3. Under (Ha.3) and (Ha.4), FBSDE (A.7) admits a unique solution in
L 2

F (0,T ;Rn+m+m×k).

Proof. If we let κ = 1 and ξ = 0 in Lemma A.3, then it implies that (A.9) admits a
unique solution when α = α0 = 0. According to Lemma A.4, there exists a positive
constant δ0 depending on Lipschitz constants, μ1, μ2, μ3, and T such that for each
δ ∈ [0,δ0] there exists a unique solution to (A.9) with α = α0 + δ . Repeat this
process for N-times with 1 ≤ Nδ0 < 1+ δ0. It follows that there exists a unique
solution to (A.9) with α = 1 and ξ = 0. Thus the proof is completed. ��
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The following FBSDE
⎧⎪⎨
⎪⎩

dx(t) = b(ω, t,x(t),y(t),z(t))dt +σ(ω, t,x(t),y(t),z(t))dW (t),

−dy(t) = g(ω, t,x(t),y(t),z(t))dt − z(t)dW (t),

x(0) =Ψ(y(0)), y(T ) = ξ ,

is slightly different from (A.7), where (ω, t,x,y,z)∈Ω× [0,T ]×R
3, b : Ω× [0,T ]×

R
3 →R, σ : Ω × [0,T ]×R

3 →R, g : Ω × [0,T ]×R
3 →R andΨ : R→R are four

mappings. Define

λ =

⎛
⎝ x

y
z

⎞
⎠ and Λ(t,λ ) =

⎛
⎝−g

b
σ

⎞
⎠(ω, t,λ ).

To obtain a unique solution, we assume
(H5.1) (i) Λ(t,λ ) and Ψ(x) are uniformly Lipschitz with respect to λ and x,

respectively. For each λ , Λ(·,λ ) belongs to L 2
FW

(
0,T ;R3

)
with

FW (t) = σ{W (s);0 ≤ s ≤ t}.

(ii)
⎧⎨
⎩

〈
Λ(t,λ )−Λ(t, λ̄ ),λ − λ̄

〉 ≤−μ1|x− x̄|2 −μ2(|y− ȳ|2 + |z− z̄|2),
〈Ψ(y)−Ψ(ȳ),y− ȳ〉 ≤ −μ3|y− ȳ|2,
∀ λ = (x,y,z), λ̄ = (x̄, ȳ, z̄),

where μ1, μ2, and μ3 are nonnegative constants with μ1 +μ2 > 0 and μ1 +μ3 > 0.

Lemma A.5. (Yu and Ji [107]) Let (H5.1) hold. The FBSDE admits a unique solu-
tion (x(·),y(·),z(·)) ∈L 2

FW

(
0,T ;R3

)
.

A.3 Malliavin Derivatives

For the convenience of the reader, we collect some basic material about the Malli-
avin calculus needed in this book. Let Ω = C([0,T ]) and P the Wiener mea-
sure on Ω . Namely, W (t) : Ω → R given by W (t,ω) = ω(t), t ∈ [0,T ] is a
Brownian motion under P. Let S denote the set of random variables F of the
form F = φ(W (h1), · · · ,W (hk)), where φ ∈ C∞

b (R
k), hi ∈ L2([0,T ]), and W (hi) =∫ T

0 hi(s)dW (s). We define the Malliavin derivative of F as a stochastic process

DtF =
k

∑
j=1

∂φx j(W (h1), · · · ,W (hk))h j(t).
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We define a norm ‖ · ‖1,2 on S by

‖F‖2
1,2 = E

[
|F |2 +

∫ T

0
|DtF |2ds

]
.

Let D1,2 be the completion of S with respect to the norm ‖ · ‖1,2. It can be
shown that D has a continuous extension to D1,2. Let L1,2 be the set of progressively
measurable processes {F(t,ω);0 ≤ t ≤ T,ω ∈Ω} such that:

i) For 0 ≤ t ≤ T , F(t, ·) ∈ D1,2;
ii) DtF ∈L 2

F (0,T ;R) admits a progressively measurable versions;
iii)

‖F‖2
1,2,a ≡ E

(∫ T

0
|F(t,ω)|2dt +

∫ T

0

∫ T

0
|DsF(t,ω)|2dsdt

)
< ∞.

The following results can be found in Nualart [60]. We state them here without
their proofs.

Lemma A.6. If F ∈ D1,2 is Fs-measurable, then DtF = 0 for all t > s.

Lemma A.7. If F ∈ D1,2 and φ(·) ∈L 2
F (0,T ;R), then

E
(

F
∫ T

0
φ(t)dW (t)

)
= lE

∫ T

0
φ(t)DtFdt.

Lemma A.8. If F(t,ω) ∈ L1,2,, then

∫ T

0
F(t,ω)dt,

∫ T

0
F(t,ω)dW (t) ∈ D1,2,

Ds

∫ T

0
F(t,ω)dt =

∫ T

θ
DsF(s,ω)ds,

Ds

∫ T

0
F(t,ω)dW (t) = F(s,ω)+

∫ T

s
DsF(s,ω)ds.

Finally, we consider the solution to the following BSDE
{−dY (t) = g(t,Y (t),Z(t))dt −Z(t)dW (t),

Y (T ) = F.
(A.10)

The following result can be found in El Karoui et al. [19].

Proposition A.1. Suppose that F ∈ D1,2 and g : Ω × [0,T ]×R2 → R is contin-
uously differentiable in (y,z), with uniformly bounded and continuous derivatives
and such that, for each (y,z), g(·,y,z) is in L1,2 with Malliavin derivative denoted
by Dsg(t,y,z). Let (Y,Z) be the solution of the BSDE (A.10). Also, suppose that

•
E

(∣∣∣∣
∫ T

0
|g(t,0,0)|2dt

∣∣∣∣
2

+ |F|4
)

< ∞.
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• ∫ T

0
E(|DsF |2)ds+

∫ T

0
E(|Dsg(t,Y,Z)|2)ds < ∞,

and for any t ∈ [0,T ] and any (y1,z1,y2,z2),

|Dsg(t,y
1,z1)−Dsg(t,y

2,z2)| ≤ Ks(t)(|y1 − y2|+ |z1 − z2|),

where for a.e. s ∈ [0,T ], {Ks(t) : 0 ≤ t ≤ T} is an adapted process satisfying
E

∫ T
0 |Ks(t)|2dt < ∞.

Then, (Y,Z) ∈L 2
F (0,T ;D2

1,2) and

DsY (t) = DsZ(t) = 0, 0 ≤ t < s ≤ T ;

DsY (t) = DsF +
∫ T

t

(
gy(r,Y (r),Z(r))DsY (r)+gz(r,Y (r),Z(r))DsZ(r)

+Dsg(r,Y (r),Z(r)
)

dr−
∫ T

t
DsZ(r)dW (r), 0 ≤ t ≤ T.

Moreover, {DtY (t) : 0 ≤ t ≤ T} is a version of {Z(t) : 0 ≤ t ≤ T}.

A.4 Notes

The existence and uniqueness results provided here are mainly taken from Pardoux
and Peng [62] and Peng and Wu [68]. Note that Condition (Ha.4) is only a sufficient
one for the existence and uniqueness of solution to (A.7). For example, Theorem A.3
still holds true if (Ha.4) is replaced by the following condition.

(Ha.4)’ There are nonnegative constants μ1, μ2, and μ3 such that for any t ∈
[0,T ], λ , λ̄ ∈ Rn+n+n×m,

〈Λ(t,λ )−Λ(t, λ̄ ),λ − λ̄ 〉 ≥ μ1|G(x− x̄)|2 +μ2(|G�(y− ȳ)|2 + |G�(z− z̄)|2),
〈 f (x)− f (x̄),G(x− x̄)〉 ≤ −μ3|G(x− x̄)|2

with μ1+μ2 > 0 and μ2+μ3 > 0. Moreover, we have μ1 > 0, μ3 > 0 (resp., μ2 > 0)
when m > n (resp., n > m).

For other alternative sufficient conditions for Theorem A.3, we refer the reader
to the recent work by Ma et al. [51]. About how to solve an FBSDE, please see Ma
et al. [50] for the four-step scheme. See also, e.g., Cvitanić and Zhang [14], Zhao et
al. [115], and literature cited therein for numerical approaches.
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A� the transpose of A, 3
H(t,v), 41
D1,2, 107
L1,2(R), 107
α(t,v), 41
αX (t,u), 41
L 2

F (0,T ;S), 3
L 2

FT
(Ω ;S), 3

U 0
ad , 21

D1,2, 107
L1,2(R), 107
fx the partial derivative, 3

A
accumulated observation process, 3
adjoint equation, 17, 18, 47
adjoint process, 72
admissible control, 9
admissible policy, 5
admissible process, 22
admissible set Uad , 5
Arrow sufficient condition, 50, 51

B
backward filtering equation, 30
backward separation approach, 2, 47, 91, 92
backward stochastic partial differential

equation, 34

C
cash management problem, 55
circular dependence, 8

Condition (H1.1), 9
Condition (H1.2), 9
Condition (H1.3), 9
Condition (H1.3)’, 9
Condition (H1.4), 10
Condition (H1.5), 10
Condition (H1.6), 13
Condition (H1.7), 14
Condition (H2.1), 29
Condition (H2.2), 31
Condition (H2.3), 31
Condition (H2.4), 31
Condition (H2.5), 31
Condition (H2.6), 31
Condition (H2.7), 31
Condition (H3.1), 54
Condition (H4.1), 64
Condition (H4.2), 73
Condition (H5.1), 106
Condition (H5.2), 89
Condition (Ha.1), 98
Condition (Ha.2), 98
Condition (Ha.3), 101
Condition (Ha.4), 101
Condition (Ha.4)’, 108
control process, 13
Convexity, 17
convexity, 49, 50
cost functional, 6, 10, 22, 23

D
decoupling, 77
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F
FBSDE filtering equation, 54
FBSDEs, vii
filtering problem, 3
four-step scheme, 34

H
Hamiltonian function, 17, 19, 47

I
information cost, 95
information filtration, 76
innovation process, 16

L
linear factor model, 4
LQ optimal control problem, 52

M
Malliavin derivative, 106
Mangasarian sufficient condition, 50
maximum principle, 64, 66
minimum condition, 17, 49, 50

N
necessary condition, 79

O
observation model, 3
observation process, 3, 76

optimal control, 10, 14
optimal filtering, 28, 29
optimal premium policy, 92, 95
Optimal premium problem, 4
optimal state, 10, 14

P
partial information control model, 8
partially observable control model, 8
partially observable information, 64
Problem (BLQ), 23
Problem (CM), 56
Problem (FBLQ), 22, 75, 79, 87
Problem (OP), 6, 91
Problem (RM), 7
Problem A, 10, 41, 50
Problem B, 14, 59

R
recursive utility, 72
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separation principle, 1
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stochastic Hamiltonian system, 47
stochastic maximum principle, 19, 20
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