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Abstract Fundamental ride and handling aspects of active and semi-active sus-
pensions are presented in a systematic way starting with simple vehicle models as
basic building blocks. Optimal, mostly Linear-Quadratic (H2), principles are used to
gradually reveal and explore key system characteristics where each additional model
Degree-of-Freedom (DoF) brings new insight into potential system benefits and
limitations. The chapter concludes with practical considerations and examples
including some that go beyond the more traditional ride and handling benefits.
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1 Introduction

1.1 Goals/Objectives

During the past several decades there was a substantial activity in the area of
automotive computer controls and related mechatronics developments. This started
in the 1970s with engine controls and later included transmission and overall
powertrain controls. Subsequent additions included brake and driveline controls
such as four- and all-wheel drives, for example.

While there were substantial evolutionary developments in controls of longitu-
dinal direction or X-dimension of vehicle motion, on the other hand there was
relatively less activity and progress in the other two dimensions—lateral or Y and
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vertical or Z dimension—in terms of actual production applications. This is in
particular true for the case of vertical vehicle motion control via appropriate
advanced, controllable suspensions. While there were occasional major waves of
agitated and at times almost frantic activity in this area in the past, currently the
only advanced suspensions that saw some actual market penetration and usage are
the so-called semi-active suspensions, which are essentially controllable dampers.

The main objective of these lectures is to present potential benefits and asso-
ciated requirements and limitations of advanced active and semi-active suspensions.
It is hoped that this will lead to additional insight and revived interest towards
further developments in the above “forgotten dimension”, which may represent a
major yet not fully explored and exploited opportunity. In addition to addressing the
opportunities in more traditional areas of improved ride and handling the new class
of advanced suspensions may be especially attractive and timely addition to overall
vehicle controls in view of ever increasing interests in the areas of active safety,
driver assist technologies and autonomous vehicles. The conglomerate of all those
benefits may eventually lead to wide-spread production of advanced suspensions
benefiting millions of customers.

1.2 Basic Definitions

Before proceeding it is necessary to define some basic notions to avoid possible
misunderstandings, i.e. so that we are all on the same plane going forward through
these notes. In particular, we are concerned with such notions as what sort of
vehicle suspensions we are going to deal with in the sequel. The definitions are
mainly based on the notion of passivity, which is closely related to energy supplied
to or dissipated by the suspension unit.

Passive suspensions. They typically consist of shock absorbers and springs and
as such they don’t require any external energy sources i.e. they dissipate the energy
through the process of heating up the shock absorbers or dampers. They are seen on
most past and contemporary vehicles in the form of Macpherson struts (seen typ-
ically as front suspension on most contemporary vehicles), multilink suspensions
(seen on most luxury-type vehicles) and others.

Active suspensions. Unlike their passive counterparts, active suspensions do
require external sources of energy provided through pumps and electro-motors, for
example, to fully achieve their intended function. In turn they result in superior
performance at the expense of higher costs, increased complexity, more demanding
packaging requirements, and, in general, reduced robustness. In particular, while—
as we will see later—the active suspension can result in substantial improvements
in ride and handling and other benefits, their implementations also face significant
challenges such as containment of the so-called “secondary ride” that is demon-
strated through excitation of higher frequencies typically around and above 10–
20 Hz. In terms of actual practical implementation through different energy media
one distinguishes between:
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• Electro-pneumatic active suspensions including Load-Leveling
• Electro-hydraulic active suspension
• Electrical active suspension

Furthermore one can distinguish between single and double acting (i.e. one- or
two-sided actuation, where controlling force is acting upon one or both sides of an
actuator), and between narrow and wide band actuators depending on the frequency
range or “fidelity” of actuator desired force (or velocity/displacement) delivery.

Semi-Active (SA) suspensions. As their name implies, SA suspensions fall
between active and passive suspensions. They are controllable, “smart” dampers or
shock absorbers that require relatively very small amount of energy to modulate
their damping parameter and thus perform their desired function—produce the
desired force, whenever possible in view of the passivity constraint (to be discussed
next). Due to small energy requirements the SA suspensions can be in practice
regarded as essentially smart passive devices.

Mathematical definition of passivity. The above are more intuitive or practical
definitions of passivity and related passive or active suspensions. A more precise
definition of passivity follows from similar definitions used in the areas of electrical
networks and mathematics (Anderson and Vongpanitlers 1973). Accordingly, an
operator P is passive if there exists some constant k such that the inner product

⟨Pv j v⟩T ≥ k ð1Þ

where the inequality must hold for any final times T and all elements of v(.) from an
extended inner space composed of all functions that do not “explode” i.e. have
finite escape time. Associating v with velocity across actuator and Pv with corre-
sponding force, then the above inequality reflects the energy conservation (in the
case of equality) or dissipation (in the case of inequality) that is characteristic of
passive suspensions consisting of a spring and/or damper or shock absorber,
respectively. In this particular example the above inner product amounts to
time-integration of the product of actuator force and velocity i.e. integration of
power across the actuator, which is the energy dissipated or produced by the
actuator. With passive suspension this energy is positive and larger or equal the
amount of the initial energy contained in the actuator as represented by constant k;
the inequality must hold for any final time T and velocity profile v(t).

For Linear Time-Invariant (LTI) systems the above passivity constraint with
k = 0 is equivalent to a requirement that the associated transfer function matrix P
(s) is Rational Positive Real (RPR) matrix. The RPR matrix P(x) must satisfy a set
of conditions (Anderson and Vongpanitlers 1973) that include P(.) being analytic in
the r.h.s. plane i.e. all elements of P must have poles where Re(s) ≤ 0. Thus it can
be said that for any passive suspension that can be described by the LTI transfer
functions the associated impedance matrix P must be a RPR matrix. This provides
one way of checking if a given suspension constitutive relation can be realized via
passive means or it may require an active actuator implementation.
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1.3 Historical Background

There is a relatively long history of efforts in the area of active suspensions. They
have been mentioned and considered already in the 1960s through theoretical
studies by Bender (1967a, b), Bender et al. (1967), Karnopp and Trikha (1969),
Young and Wormley (1973), Thompson (1971) and others, mostly from MIT.
Since then there were numerous studies on potential benefits and limitations of
active suspensions in the context of ride and to some extent handling; most of this
earlier work is summarized in Sharp and Crolla (1987), Elbeheiry et al. (1995),
Hrovat (1997) and more recently in Mastinu and Ploechl (2014), Tseng and Hrovat
(2015).

While there was much effort and progress in terms of theoretical analysis and
overall insight, the progress in actual production implementation of active sus-
pensions was relatively slow and somewhat sporadic. To this end there was a major
wave and push towards the latter during late 1980s and early 1990s. It started with
the Lotus efforts aimed towards formula F1 racing. In particular, a special Lotus
Esprit experimental vehicle was used through many years of research and devel-
opment resulting in some very impressive media shows and demonstrations. This is
also reflected in the January 21, 1987, New York Times article, with citations from
different automotive media evaluators ranging from “most impressive thing I’ve
ever tried” to “the greatest single advance in car engineering since the war”.

However, it should be pointed out that the most impressive demonstrations were
done on special test tracks that amplified large, low frequency road undulations,
which were “ideal” for exciting the dominant heave mode of body dynamics. The
latter is typically around 1–2 Hz with relatively low damping ratio (Hrovat 1997).
In reality, most actual roads are not of this type and ride benefits were then less
dramatic.

At the time most automotive OEM’s or companies on practically all continents,
but especially in Japan and the US (Akatsu et al. 1990; Goto et al. 1990; Goran
et al. 1992), have been heavily involved in R&D towards realizing a practical active
suspension that would robustly and reliably deliver most of ride and handling
benefits at reasonable cost, weight, packaging and energy requirements. While there
was considerable progress in experimental and test vehicle developments of active
suspensions only a few such systems saw actual production. This was in the form of
limited production series introduced during the 1990s by Nissan in the Infinity
Q45a (Akatsu et al. 1990) and Toyota in the 1989 Celica (Goto et al. 1990) which
were eventually discontinued. One of the main reasons for this lack of wide-spread
usage is that active suspensions at the time did not deliver sufficient value: their
performance as measured in terms of ride and handling improvements were not
noticeable enough while at the same time their cost was prohibitively high for all
but the most luxurious vehicle segments.

Subsequently, for the next two decades the active suspension efforts were mostly
limited to further theoretical developments done mostly in academia and few
industrial R&D institutions. In particular, the latter include long-standing internal
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efforts within Bose in developing their electrical active suspension, which attracted
significant media attention at the time (Moran 2004). At present, there is only one
significant production application of active suspensions—the so-called ABC,
Active Body Control, introduced by Mercedes. This was recently further enhanced
under Magic Body Control (MBC) where for the first time the use of road
roughness preview ahead of the vehicle has been used based on stereo cameras
(Anonymous 2017a; Streiter 2008). It is interesting that the ABC/MBC has been
offered by Mercedes as standard equipment on their top line, luxury models.

Last but not necessarily least, it should be mentioned that while active sus-
pensions did not see wide-spread in-vehicle production applications thus far, their
SA counterparts did find much larger acceptance and can now be found in many
vehicles under different marketing designations such as Continuously Controlled
Damping (CCD), Magnetic Ride/MagneRide Control and others. While their per-
formance was in general somewhat inferior to corresponding active suspension
performance at the time, their cost, robustness, relative simplicity and lower
packaging requirements and parts count all were more favorable. Thus they resulted
in higher value and acceptance rates so far.

1.4 Motivation

Since the first wave of active suspension efforts dating back to 1980s and 90s did
not succeed to bring a widespread production introduction of this high-tech concept
it is appropriate to ask—why reconsider it now? While this is a fair question there
are a number of factors that evolved during the last couple of decades that warrant
re-examination of this relatively dormant field. This includes:

• Further developments and continuous progress in the areas of Control Systems
and Optimization, and related Optimal Control methodologies such as Model
Predictive Controls (MPC) that are becoming more and more applicable to
Automotive Controls (Ulsoy et al. 2012; Rajamani 2012; Hrovat et al. 2011a, b);

• Further developments and progress in computers—both hardware and software,
electronics/mechatronics, conventional (passive) suspensions, and electrical
machinery;

• Ever increasing emphasis on and importance of Active Safety (van Zanten
2014);

• Recent trends in sensors and infrastructure enhancements; this includes cameras,
Lidar, Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) commu-
nications, various forms of mapping including 3D mapping etc. Most of these
new technological developments will facilitate highly effective preview controls
based on, for example, MPC optimization (Xu et al. 2016; Hrovat et al. 2012);

• Recent developments and widespread efforts in Autonomous Vehicles (AV),
which could free many current drivers to do many other tasks and activities such
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as writing a report or playing his or her favorite computer game; all this will be
much easier to accomplish having an AV with a more steady platform facilitated
by a fully active suspension.

1.5 Brief Overview of Automotive Controls

As shown in the previous section, the field of automatic controls is central for many
of the ongoing activities and developments that are highly relevant for the next
possible wave of active suspensions. When speaking of “controls” here we are
primarily focusing on computer controls, which have been prevalent in the auto-
motive field for more than four decades by now. This implies related areas of
control-oriented modeling, which uses appropriately simplified models, along with
many computer-assisted control system design, analysis and simulation tools and
methods such as MATLAB, for example. The latter include open- and closed-loop
control algorithm design and analysis based on both classical as well as so-called
“modern” or advanced controls; optimization/optimal control design; signal pro-
cessing and diagnostics; system identification and estimation; Neural nets, Fuzzy
logic controls, and Artificial Intelligence (AI); along with associated architecture,
sensors, actuators, processes and embedded real-time software/CAE tools.

The automotive computer controls started in 1970s with the advent of micro-
processors, which were first used for engine controls, in particular spark advance
control that was prior to this accomplished through hardware means. Since their
modest beginnings in early 1970s the computer controls then propagated to all
aspects of engine and powertrain operations. This includes: Air-Fuel (A/F) ratio
control; Idle Speed Control (ISC); Exhaust Gas Recirculation (EGR) control; Waste
Gate (WG) control in case of boosted engines; many features of Automatic
Transmission (AT) control; and others (Hrovat et al. 2011a).

In almost all those cases the previous hardware-based controls have been
replaced by software. In the process the functionality and complexity of hardware
solutions that evolved through decades of ingenious refinements was transferred to
software, which grew more and more complex with time. However, one huge
advantage of software control implementations is their inherent flexibility: it is
much easier to modify computer programs then the corresponding hardware
implementations.

Next, the computer or more precisely microcomputer controls propagated to
many areas of chassis and overall vehicle dynamics and related functionality. This
includes, in a somewhat chronometric order, the following features: ABS brake
effectiveness/stopping distance control; Traction Control (TC), which can be
viewed as a counterpart of ABS especially helpful when driving on slippery roads;
Electronic Stability Control (ESC)—a very effective safety feature helping prevent
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many accidents, especially in emergency situations; Load Leveling (LL) used for
vehicle posture control; Four Wheel/All Wheel Drive (4WD/AWD) drivetrain
control that aims at optimizing traction on all four driven wheels, again especially
relevant for driving on slippery, snow- or ice-covered roads; Continuously Con-
trolled Damping (CCD) semi-active suspension control; Adaptive Cruise Control
(ACC) sometimes also called Autonomous Cruise Control due to its ability to
lock-in behind a leading vehicle and keep the related distance constant in terms of
time distance between the two; Electrical Power Assist Steering (EPAS) and
numerous forms of EPAS-based vehicle controls such as Active Front Steer (AFS),
Four Wheel Steer (4WS), Lane Keeping Aid (LKA), Trailer Backup Assist (TBA),
and, more recently various means developed to assist or fully control the parking
tasks such as Fully Automated Parking Assist (FAPA) and Remote Parking Assist
(RePA).

From the above somewhat lengthy list one can observe that most of the auto-
motive computer controls developed to date have been applied—via powertrain,
brake, and 4WD actuation, for example—in the longitudinal or X-direction (or
dimension) of vehicle motion. This is visualized in Fig. 1, which displays various
functionalities placed at their predominant axis of action. Next comes the lateral or
Y-direction, which has seen significant revival of activities lately. On the other hand
there is relatively little activity seen along the Z-axis or vertical motion of a vehicle
where we see only the Mercedes ABC system as a sole representative of active
suspension controls. As we will argue in a sequel, this “forgotten dimension” may
represent a major opportunity for further expansion and application of automotive
computer controls in the future.

Fig. 1 3D representation of various automotive control functionalities
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1.6 LQ Optimal Control Problem

There are many ways one could design an advanced, active vehicle suspension
system. Some of those can be based on different optimization methodologies. In this
work we focus on one of the most popular optimization methodologies—the Linear
Quadratic (LQ) optimal control techniques, which, as we will see in a sequel, is
particularly revealing and well-suited for our vehicle suspension design problem.

Deterministic LQ problem statement and solution. Since most of the opti-
mization work pursued in the present study is based on the Linear Quadratic
(LQ) optimal control approach (Athans and Falb 1966; Anderson and Moore 1971;
Kwakernaak and Sivan 1972; Levine 2011) we will now briefly summarize main
characteristics of this by now well-established and quite popular methodology,
which years back was referred to as “advanced or modern controls”. As it name
implies the LQ technique involves linear vehicle or plant models and quadratic
optimization or performance index. The linear models can be either time-varying or
time-invariant (LTI); presently we will almost exclusively deal with the latter i.e.
LTI models. In addition, we will focus on infinite-time regulator problem that, as
we will see below, results in feedback controls with constant control gains. The
corresponding deterministic LQ optimal control problem can be stated as mini-
mization of the following Performance Index (PI):

Minimizew.r.t.u PI =
Z∞
0

xTðtÞQxðtÞ+ uTðtÞRuðtÞ+2xTðtÞNuðtÞ� �
dt

2
4

3
5 ð2Þ

subject to LTI vehicle model dynamics

dx
dt

=Ax+Bu+Gvd

y=Cx+Du

xð0Þ= x0

ð3Þ

where the PI weighting matrices RT= R > 0, QT= Q ≥ 0, y is the output variable
associated with the PI of Eq. (2), and vd is a vector of deterministic disturbances. In
the present case the latter are typically modeled as unit impulses in ground velocity,
which is equivalent to unit steps in ground displacement (in case of more complex
ground inputs they can sometimes be captured by expanding the state-space to
include the augmented states representing different ground displacement shapes).

Often the above step-like disturbance terms can be fully or partially captured by
the equivalent initial condition vector, x0. For example, in the simple case of a 1D,
1DoF optimization treated in Sect. 3.1, one can approach the underlying deter-
ministic two-state optimization problem as the one with zero initial conditions and
an impulse in ground velocity i.e. step in ground displacement. Alternatively, the
same problem can be approached as the one with zero ground input (vd = 0) and
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non-zero initial conditions where the first state—the one corresponding to the rat-
tlespace displacement—is initially set to 1 (x1 = 1) to represent the initial com-
pression of the suspension space that is equivalent to the above-mentioned unit step
in ground displacement. Later we will discuss another equivalence—the one
between the above deterministic LQ results and corresponding stochastic case. But
first, let us summarize the general solution to the above optimization problem and
then say few words about the important topics of the stability and robustness of the
LQ-optimal solution, which is critical for any possible practical implementation of
the LQ-like control strategy.

The optimal solution to the above deterministic, infinite-horizon,
continuous-time LQ regulator problem is given by following feedback controller:

u*= −Kx ð4Þ

where the constant feedback gain matrix K is given by

K =R− 1 BTP+NT� � ð5Þ

and P is obtained by solving the following Algebraic Riccati Equation (ARE)

ATP+PA− PB+Nð ÞR− 1 BTP+NT� �
+Q=0 ð6Þ

Now, for the case when N = 0, which is most often encountered here, if the pair
(A, B) is stabilizable and (A, C) is observable, where Q = CTC, then the above ARE
has a unique positive-definitive solution P > 0, which results in an asymptotically
stable, LQ-optimal, closed-loop system. If (A, B) is stabilizable and (A, C) is
detectable, then the above ARE has a unique positive semi-definitive solution
P ≥ 0, which again results in asymptotically stable, LQ-optimal, closed-loop
system. When N ≠ 0 then the equivalent, more stringent stability conditions can be
found in Anderson and Moore (1971).

Robustness of LQ regulator. Robustness properties of the deterministic LQ
optimal regulator for the nominal or most often cited case when the cross-weighting
matrix N = 0, are well known. Here under “robustness” we refer to system ability
to still maintain good performance and stability despite the unavoidable errors due
to model mismatch, and many other unpredictable noise factors that typically occur
in practice. Assuming that all the states are available the Single-Input-Single-Output
(SISO) gain margin is very generous and can range between 6 db and infinity, i.e.
the nominal gain of 1 can vary from 0.5 and +∞, whereas the associated phase
margin is 60°. Similar results apply for each individual control channel of the
corresponding Multi-Input-Multi-Output (MIMO) case under some mild additional
assumptions as elaborated by Safonov and Athans (1977).

However, as shown by Ulsoy et al. (1994), once the non-zero cross-weighting
matrix N is introduced, the above impressive robustness properties of the “standard”
LQ regulator don’t apply anymore and can be significantly reduced. For example,
in the context of the present vehicle dynamics ride and handling optimization
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problem this situation arises when one augments the actuator-only secondary sus-
pension of a quarter-car setting (see Sect. 3.2 below) with some passive counter-
parts such as an additional supporting spring and possibly a damper. These passive
components could reduce maximum and average force and energy requirements
from an active actuator. However, there could be instances when the actuator needs
to provide net active power thus requiring total neutralization of the passive ele-
ments (or partial reduction of the spring stiffness) and if this action is overdone due
to modeling and other errors one could see the potential for significant degradation
in system performance including destabilizing effects of ending up with a net
negative spring or damper effects, for example.

In addition to the above, the robustness of the LQ solution can be further eroded
when not all of the system states are directly measured and available for controls
(Ulsoy et al. 1994). Indeed, more often than not this is the case in practice since
some state measurements are very difficult to make and some may be too costly. If
the system in question is observable then these missing states can be reconstructed
via different state estimation techniques, such as Luenberger observer (Levine
2011), for example. However, the additional dynamics and related dynamic delays
typically result in further reduction of robustness and associated gain and phase
margins. These issues are further amplified in the case when various noises are
present—either in the process i.e. model dynamics and/or state or output mea-
surements that will be discussed next.

Stochastic case—LQG controller. As described later (Sect. 2.2) most road
inputs relevant for vehicle ride dynamics can be described as random, stationary
stochastic processes. In this case the above deterministic LQ optimization problem
transforms to an equivalent stochastic counterpart with an additional assumption
that all random noises are white and of Gaussian character. The resulting opti-
mization problem is then referred to as Linear Quadratic Gaussian (LQG) optimal
control problem. In the context of present usage it can be formulated as mini-
mization of the following Performance Index

Minimizew.r.t.u PI =E xTQx+ uTRu+2xTNu
� �� � ð7Þ

subject to LTI vehicle dynamics

dx
dt

=Ax+Bu+Gwd ð8Þ

where the expectation operator E(.) represents steady-state mean square (co-variance
matrix) values of the affected variables. Here wd is the system disturbance in the form
of aforementioned Gaussian white noise process characterized by

E wdðtÞ½ �=0

E wdðt1Þwdðt2Þ½ �=2πWδ t1 − t2ð Þ ð9Þ
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with δ(.) representing the impulse or Dirac delta function, and W being the
two-sided road (vertical) velocity power spectral density, which is equal to the
product of road roughness coefficient and vehicle velocity (see Sect. 2.2 below).
Special care should be exercised regarding the factor 2π since some road descrip-
tions may imply different factor. This can be traced to different definitions of the
associated Fourier transforms (Weisstein 2017). In practice this means that one
should be aware of the context how different psd data were obtained, especially
when dealing with measured road spectra (Mastinu and Ploechl 2014).

The solution to the stochastic LQG problem is given by the same optimal
feedback gain matrix K as in the corresponding deterministic LQ regulator problem.
The only difference is that in the general LQG case one uses Kalman estimate of the
state vector x, which amounts to a linear unbiased minimum error variance estimate
obtained via Kalman-Busy optimal filtering (Sage and White 1977; Anderson and
Moore 1990; Levine 2011). However, just as in the above deterministic case, the
estimation with associated filter dynamics and measurement noises can significantly
erode the robustness margins of the LQG controller. Indeed, as shown by Doyle
(1978) even a simple two-state example can result in practically zero robustness for
sufficiently large measurement noises and state weighting matrix Q. Another, more
practical i.e. physical example was provided by How and Frazzoli (2010) who used
an LQG controller to stabilize an inverted pendulum on a cart. It is shown that again
one can encounter a situation where vanishingly small robustness margins are
present around the nominally stable closed-loop system.

Calculation of performance metrics. In order to calculate different rms and
mean-square values we use the following Lyapunov-like equation for the
closed-loop covariance matrix X

A−BKð ÞX +X A−BKð ÞT = −GΓGT ð10Þ

where Γ corresponds to the ground velocity psd quantity 2πW. Setting Γ = 1 and
solving the above equation will then result in normalized covariance matrix, where
all relevant entries are normalized by 2πW, i.e. the related rms values are nor-
malized by

ffiffiffiffiffiffiffiffiffiffi
2πW

p
. This type of normalization will be used through most of the

present chapter. Once the covariance matrix X is known one can then calculate the
expected mean-square optimal control input from

E u2
� �

=KXKT ð11Þ

Other output quantities of interest that are linear functions of states can be
calculated in a similar fashion.

To summarize. The infinite time deterministic LQ problem and its stochastic
LQG counterpart share the same optimal feedback control structure and associated
gain matrix K. In the context of present active suspension study, there are number
of equivalent or similar LQ optimization settings that lead to identical control
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structure and gains. First, in the case of a deterministic LQ regulator, there is
equivalence between appropriately posed initial condition response problem and
related step input in ground displacement (or an impulse in ground velocity). Both
of those deterministic settings are equivalent to the stochastic LQG problem for-
mulation where ground input is now represented through white-noise in velocity
process. In all three optimization cases we end up with the same optimal feedback
control structure with the same gain K as per the above Eq. (5).

Regarding the robustness of the LQ regulator there are two different answers
depending on the structure of the problem. In the case when there are no
cross-weight terms (N = 0 in PI) and when all the states are available then the LQ
regulator results in a robust closed loop system with gain margin of at least 6 db and
phase margin of 60°. However, this is in general not the case when N ≠ 0 and/or
when some of the states have to be estimated—either via an estimator or
Kalman-Busy filter. In the present case we will mostly deal with the idealized
situation where N = 0 and all the states are available for controls. While this is an
idealized assumption the main objective of the present study is to establish best
possible performance potentials of active suspensions realizing that eventual actual
implementation will result in some degradation of performance and robustness.
These are important topics for further investigation along the V-diagram of Fig. 2
that should be pursued in the future once the optimal performance has been iden-
tified along with related high-level architecture, bandwidth, and other requirements.

Fig. 2 V diagram representation of system-engineering approach to advanced suspension design
(MB stands for “Model Based”)
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1.7 System-Level Approach

In order to investigate potential benefits and limitations of active suspensions we
propose to start with a system- level (“30,000 ft” or “10,000 m”) study based on
simple vehicle models and related requirements and constraints. In particular, it is
proposed to start with establishing optimal ride and handling potentials based on a
simple, linear one-dimensional (1D) and 2D vehicle models. This is accomplished
by using appropriate optimal control tools such as the well-known optimal
Linear-Quadratic (LQ) methods, to determine global best possible performance
under ideal conditions and constraints.

The rationale being that if we cannot identify sufficient potential benefits within
a simple setting under numerous simplifying, mostly favorable assumptions and
thus less stringent constraints, there is little incentive to proceed with the study
toward more detailed and complex models and optimization settings with many
much more stringent constraints. The advantage of this “30,000 ft approach” is that
due its simplicity it can cover large territory of potential solutions and produce a
global view of the potential benefits and limitations. The key word here is “global”
since many opportunities may be missed or overstated if one focuses on just one or
two isolated points, as is the case with some studies.

On the other hand, depending on the outcome of the above “high-level” global
study one can decide whether to proceed toward more detailed (“10,000 ft and
below”) studies based on more complex, possibly non-linear models. As such this
approach may be viewed as “top-down” as opposed to “bottom-up” approach where
one starts with the complex and very detailed models and then gradually simplifies
them toward control-oriented models and studies. Each approach has some
advantages and disadvantages and may be more or less appropriate depending on a
given task at hand.

The above top-down approach is particularly suitable for applying
system-engineering principles (Anonymous 2017b) following the Model-based
System Engineering V methodology (Anonymous 2017c) shown on Fig. 2. The
entry point to the System V is at the upper left brunch of V starting with overall
customer-level requirements regarding system functionality and conceptual mode
of operations. Starting with overall customer requirements one can then use the
above simple models and appropriate optimization tools to establish what are the
best possible performance metrics and are they good enough to satisfy top level
customer requirements. In addition one can then obtain the outlines of needed
architecture and associated design and other engineering constraints such as desired
actuator configuration and bandwidth or fidelity. Essentially, such a top-level
optimization process uses modeling and related synthesis to produce results that can
in turn then be used as requirements and guidance for subsequent more detailed
lower-level work based on more detailed models and so on as one proceeds down
the left branch of the System V. Eventually the process reverses as one progresses
through the r.h.s. branch of V going through verification and validation phases
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starting from component tests all the way to validation of the whole system
operation and performance.

At this stage, following the above systematic approach we start by specifying the
high-level requirements for an advanced, high-performance vehicle suspension.
They can be listed as follows:

1. Maintain proper vehicle posture when subject to various inertial and external
forces and moments caused by braking, turning, wind gust, and other opera-
tional events and disturbances;

2. Provide superior ride comfort (in an optimal sense to be further elaborated in a
sequel) when subject to road roughness inputs, which act as a major disturbance
to a vehicle;

3. Secure superior road handling (in an optimal sense to be further elaborated in a
sequel) and overall vehicle agility;

4. Avoid excessive suspension stroke to avoid hitting jounce and rebound stops
(this is the so-called “rattlespace” constraint requirement);

5. Enable additional benefits and functionality that will facilitate enhanced active
safety and introduction of new, exciting functionality leading to superior cus-
tomer experience (the “wow” factor).

In practice, the first requirement is typically best addressed through feed-forward
control based on more detailed (possibly non-linear) models since some of the main
disturbances regarding posture control come from known sources such as engine
and brakes, which are initiated by the driver and thus known in advance to some
extent. From the above list we will focus on Ride and Handling requirements 2–4
for most of the subsequent sections with some comments regarding many future
exciting potential benefits being discussed in the last part of the chapter.

2 Setting up the Stage

In this section we will set the stage for the LQ optimization that will be used in the
subsequent section. To this end we will next discuss the appropriate, simple Per-
formance Index (PI) reflecting the above ride and handling requirements along with
pertinent constraints. Next, we will address the numerical description and con-
struction of an appropriately simple vertical road input representing the main dis-
turbance acting upon the system. Also, we will address what are the appropriate,
simple vehicle models that should be paired with the above. Finally, we will briefly
mention many of the underlying assumptions used throughout this chapter.

Note that the key words here are “appropriately simple” since for a global,
comprehensive analysis at this high of a level it is imperative to deal with an
appropriately simplified setting. This means that all aspects of the problem (PI,
constraints, disturbances, models) are in synch as far as the level of complexity is
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concerned. Indeed, it would not make much sense nor it would be efficient to have a
very detailed, 3D vehicle model but a simple “1D” PI or road description, and vice
versa.

2.1 Performance Index and Related Constraints

Since one of the main objectives of the present work is to establish ride benefits of
advanced active and semi-active suspensions, our first task will be to define an
appropriate ride comfort index, which will in turn be used to define the associated
optimization Performance Index (PI). This has been a subject of many investiga-
tions in the past. In its very nature this is an intrinsically subjective metric and as
such may be a subject of many more studies in the future, especially as we face
different modes of transportation such as autonomous driving, for example.

One of the first field-test studies to address the ride comfort metric was done in
the 1970s by Smith et al. (1978). The authors used couple of different vehicles
driven on 18 different roads with a total of 78 passengers. Their conclusion was
that, “excellent correlation was found to exist between the subjective ride ratings
and simple root mean square acceleration measurements at either the vehicle
floorboard or the passenger/seat interface”. The key results of this study are
reproduced in Fig. 3 where the horizontal axis represents the average or mean
personal ratings and vertical axis represents rms acceleration measured for com-
bined vertical and lateral directions. Here higher ratings represent better ride
comfort. Similar results were obtained for the case limited to vertical accelerations
only.

Further refinements of the rms ride comfort PI metric are possible through
introduction of the vehicle or seat-track vertical jerk, which is the derivative of the
vertical acceleration (Fearnsides et al. 1974). The rationale being that the addition
of jerk will capture contributions from high-frequency disturbances that are typi-
cally part of Noise Vibration and Harshness (NVH) spectrum. We will use this
additional jerk term when addressing some elementary ride optimization problem
based on simple, 1D vehicle models.

In addition to the above simple rms-based ride metrics there were number of
attempts to expand this metric in order to include frequency-dependence of human
sensitivity to vibrations. This was captured by the ISO standard 2631, which also
takes into account the length of human exposure to vibration (Anonymous 1972).
Additional information about various ride metrics and their further enhancements—
such as a comprehensive NASA metric applicable to 3D motions—can be found in
Hrovat (1993), Tseng and Hrovat (2015) and references therein.

It is interesting that some of the early comparison studies (Smith 1976; Smith
et al. 1978) found the simple rms metric comparable to more complex counterparts
such as the above ISO standard. Since the usage of proper ride metric depends on
the context of its usage and since in the present setting we focus on simple models,
optimization methods (LQ), and metrics, in what follows we will exclusively use
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the rms ride metrics mentioned above. We remark that, if desired, it is easy to
incorporate frequency-weighting into the LQ-type metric by augmenting the
state-space model with appropriate filter states associated with the desired fre-
quency shaping. Additional considerations may apply when dealing with future
autonomous vehicles where ride sickness effects may be more pronounced due to
lack of driving activity (Wada 2016).

At this point it is important to stress that if the ride comfort were the only
objective of the optimization then the solution would be simple i.e. to keep the rms
acceleration (and jerk) equal to zero for all times by making the total suspension
force equal to vehicle weight for all times. This may work fine in isolated cases of
driving on flat surfaces. However, the main issue with such a suspension would be
that it would require unrealistically large suspension strokes or so-called “rat-
tlespace” to negotiate hills and valleys and similar large road deviations from flat
surfaces (in the extreme, one could consider airplanes as limiting case of such “air
cushion” vehicles).

In practice, the available suspension stroke is limited as determined by jounce
and rebound stops. Although these “bump stops” represent hard constraints they are
often approximated by soft constraints in the form of rms or mean-square

Fig. 3 Least square fit to
experimental data by Smith
et al. (1978) expressing Mean
Personal Rating (MPR) as a
function of rms acceleration
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limitations on rattlespace. The latter are then appended to the mean-square ride
comfort metric to form an overall PI that will be used for LQ or H2 optimization
based on a simplest possible 1D vehicle model to be considered in Sect. 3.1.

In addition to the above rattlespace constraint we will later introduce an addi-
tional constraint when dealing with slightly more detailed 1D or quarter-car vehicle
models. The main purpose of this additional constraint will be to limit tire
wheel-hop, which can be detrimental to vehicle handling as well as ride. This yet
another mean-square constraint (this time on tire deflection or relative motion w.r.t.
ground) will be addressed in Sect. 3.2.

2.2 Road Description

As elaborated in Hrovat (1993) there are two kinds of disturbances that affect
vehicle ride and handling. One is caused by road roughness irregularities and the
other by different inertial and aerodynamic forces due to braking, turning, and wind
gusts, for example. In this paper we focus on road or ground input disturbances,
which are the most relevant for present ride studies.

There are many ways to describe road inputs, which can be classified as shocks
and vibrations. Shocks are discrete events of short duration and high magnitude,
such as encountered while suddenly hitting a pothole or road bump at relatively
high speed. On the other hand, vibrations are characterized by prolonged and
consistent excitations that are typically encountered during long trips on highways
and other roads.

When considering vibration excitation, road roughness is typically described as a
stationary random process of a given displacement power spectral density, p.s.d.
(Bendat and Piersol 1971). An example of measured displacement or roughness
power spectral densities of various roads and terrains from Sevin and Pilkey (1971)
is shown in Fig. 4.

Comparing the actual measured traces with the straight line of negative 2:1 slope
in the log-log scale one obtains the following often used approximation describing
road displacement p.s.d., S(.):

S Ωð Þ=A ̸Ωn ð12Þ

where Ω is the spatial frequency in units of “radians per length” (rad/ft in the case of
Fig. 4) and n ≈ 2. The above displacement spectra imply that the corresponding
vertical velocity spectrum as experienced from a moving vehicle is constant for all
frequencies i.e. white noise with intensity of A * V, where V is vehicle forward
velocity. The white-noise characterization of the road input conveniently matches
the well-known LQG (Linear Quadratic Gaussian) optimal control setting, which
presupposes the white-noise Gaussian process and measurement noises (see
Sect. 1.6).
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Further reinforcements about the above white character of many measured roads
can be seen in Figs. 5 and 6 from Smith (1982).

Additional examples can be found in Hrovat (1993) and references therein where
one can also find references to more elaborate and/or multi-dimensional models of
road roughness such as discussed by Dodds and Robson (1973) and Rill (1983), for
example.

Numerical procedure used to construct an approximate white-in-velocity
Gaussian road sequence for usage in simulations is discussed in Hrovat and Mar-
golis (1975). The procedure starts with a sequence of uniformly distributed random
numbers with triangular autocorrelation function. The corresponding p.s.d. is then

Fig. 4 Measured power spectral densities of various terrain/road surfaces (according to Sevin and
Pilkey (1971) where factor 1/2π was used when relating autocorrelation function to psd)
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approximately white up to certain frequency band, which is controlled by the choice
of random sequence update rate. The sequence is next passed though appropriate
bandpass filter to wash out large road protrusions such as hills and valleys, on the
one hand, and high frequency noise that is well beyond the underlying models
bandwidth fidelity, on the other. In the final step, the sequence is ensemble averaged
to produce the desired Gaussian characteristics.

2.3 Vehicle Models

In order to complete the optimization setting we now briefly introduce some of the
simple vehicle models to be used in the rest of this work. We start with linear, time
invariant models of lowest complexity and gradually add additional dimensions and
Degrees-of-Freedom (DoF). The simplest possible model is shown in Fig. 7.

Fig. 5 Comparison of best-fit
road model with exponent
n = 2.02 and measured Road
#1 (cf. Hrovat 1997)

Fig. 6 Comparison of best-fit
road model with exponent
n = 1.99 and measured Road
#2 (cf. Hrovat 1997)
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It consists of only a sprung mass, Ms, and an active suspension actuator that can
produce any desired force U while supporting vehicle mass Ms.

The vehicle is assumed to traverse an uneven road with constant velocity V,
which creates a vertical input w(t) acting upon the lower mounting point of the
active suspension actuator. The vertical velocity input w(t) is proportional to vehicle
velocity V and the spatial slope of the road unevenness. It is in this context that one
talks about the “moving ground” when referring to w(t). As discussed earlier for the
purpose of the present study the spatial slope is approximated by a white-noise
process so that w(t) is also white with p.s.d. intensity proportional to V.

Next we introduce models resulting from considering only one corner of a
vehicle. These are the so-called quarter-car models—some of which are shown in
Fig. 8. In addition to the sprung mass Ms, which is now appropriately propor-
tionated to a given corner, we also have an unsprung mass, mus, which reflects the
wheel/tire subassembly with associated mass components due to steering links,
knuckles etc. The unsprung mass is typically only a fraction (one-fifth or less) of the

Fig. 7 Simple 1D, One Degree-of-Freedom (DoF) vehicle model

Fig. 8 Various 1D, 2DoF vehicle models: with active suspension (a); with active suspension and
vanishing unsprung mass (b); with passive suspension (c)

128 D. Hrovat et al.



corresponding sprung mass and is suspended between the primary suspension
provided by tire flexibility and secondary suspension that can be passive, active or
semi-active. A point-wise tire-road contact is considered, and the tire filtering effect
may be included, as needed.

As the next logical step in model complexity, we consider the so-called half
vehicle, 2D, models the simplest variant—without unsprung masses—being shown
in Fig. 9. It includes vehicle (sprung mass) pitch motion represented by angle θ, and
vertical or heave motion represented by vertical displacement, z, of its Center of
Mass, CM.

Finally the full 3D models are represented in Fig. 10, which shows the simplest
possible 3D model consisting of vehicle heave, pitch and roll modes. Note that
again the unsprung masses have been neglected for this lowest-level 3D model;
they can be easily added later, as needed.

The above 1D, 2D and 3D model variants are the ones most often used in studies
dealing with system-level advanced suspension optimization and synthesis,.
However, depending on the task at hand one may add some additional elements and
components such as subsystems consisting of an engine/powertrain suspended on
their mounts, and a driver suspended on a seat. Similar 2D, 6 DoF model has been
evaluated through actual vehicle tests and the corresponding results are shown in
Figs. 11 and 12. This illustrates that even a relatively simple, linear, time-invariant
2D models can provide good fidelity up to the bandwidth of 10 Hz and more. If
further improvements in fidelity are desired then one may have to consider addi-
tional modeling details and degrees of freedom and possibly even augment the
present lumped parameter models with flexible counterparts, as needed and
appropriate. The underlying assumption is that we are dealing with linear vehicle
models that are needed for the above LQ optimization approach.

Fig. 9 Half-car, 2D vehicle model
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Fig. 10 Full-car, 3D vehicle model

Fig. 11 Measured and predicted acceleration PSD’s at CG for linear 6 DoF, 2D model per Smith
and Sigman (1981)

130 D. Hrovat et al.



2.4 Assumptions

There are many implicit and explicit assumptions used throughout the course of this
work. Some of them we have already enumerated in the previous sections when
introducing rationale for chosen performance metrics, road disturbance represen-
tation, and different simplified vehicle models. Numerous additional assumptions
can be found in Hrovat (1997) and references therein such as Hrovat (1988). They
include the assumption that in what follows all state variables are available for
controls; that—as indicated earlier—all external load effects will be neglected for
most of the present study and assumed to be treated separately, mostly in the
context of feed-forward controls; and that all actuators are assumed infinitely fast
and accurate.

In addition, since one can consider suspension system to be essentially a filter for
road roughness induced disturbances, this filtering or attenuation should not include
(large) hills and valleys and similar low frequency ground inputs that vehicle should
follow. This can be achieved through appropriate signal processing (detrending) of
key signals used for control. The latter is especially relevant for so-called “sky-
hook” damper and spring implementations to be discussed in a sequel.

3 Optimization Results

In this section we proceed with developing optimal control results for different
scenarios starting with the simplest possible 1D, 1DoF setting and gradually pro-
gressing toward 2D and 3D cases. At each step we build upon the acquired
knowledge and insight, which in turn serves as a footing for the next step based on a

Fig. 12 Measured and predicted unsprung mass acceleration PSD’s for linear 6 DoF, 2D model
per Smith and Sigman (1981)
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more detailed model representation. In the process we reveal essential character-
istics of each optimization setup in terms of potential ride and handling benefits,
and fundamental constraints—such as different invariant points in key frequency
transfer function maps imposed by a given structural constraint, for example. While
focusing on best possible performance outcomes, which typically imply an active
suspension solution, we will also try to put these optimal results in a proper per-
spective by comparing them with the corresponding passive suspension
counterparts.

3.1 Simple 1D, 1DoF Case

Problem statement. Referring to Sect. 2, we can now pose the following optimal
control problem for the case of a simple, 1D, 1DoF model represented in Fig. 7:

Minimizew.r.t.u PI =E x21 + ru2
� �� � ð13Þ

subject to the following second-order state equations

dx1 ̸dt= x2 −w

dx2 ̸dt= u
ð14Þ

where as seen from Fig. 7, the states x1 and x2 represent suspension rattlespace and
sprung mass velocity, respectively, and u is a normalized force U/Ms, which in the
present case equals to sprung mass acceleration. The PI of Eq. (13) then captures
the requirements for smooth ride (low u) balanced against the competing require-
ment for limited rattlespace (low x1). The disturbance w when seen from a moving
vehicle appears as a vertical velocity input caused by road irregularities. It is
modeled according to the aforementioned zero-mean, Gaussian white-noise
velocity characterization discussed in Sects. 1.6 and 2.2.

One DoF LQG problem solution—Skyhook structure. The solution to the
above LQG problem follows the procedure outlined in Sect. 1.6. Since we are
dealing with a simple second-order system it is now possible to obtain an entirely
analytical solution to this problem. We start with the Riccati equation (6)

ATP+PA− PB+Nð ÞR− 1 BTP+NT� �
+Q=0 ð15Þ

where in the present case

A=
0 1
0 0

� �
, B=

0
1

� �
, N =0, Q=

0 0
1 0

� �
, P=

P1 P2

P2 P3

� �
, R= r

ð16Þ
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Substituting these expressions into the above ARE and solving for P we get

P1 =
ffiffiffi
2

p
r
1
4, P2 =

ffiffi
r

p
, P3 =

ffiffiffi
2

p
r
3
4 ð17Þ

so that the optimal control gain matrix from Eq. (5) becomes

K =
1
r

P2 P3½ �= r −
1
2

ffiffiffi
2

p
r −

1
4

� � ð18Þ

Thus the LQ-optimal feedback control uLQ becomes

uLQ = −
1

r1 ̸2 x1 −
ffiffiffi
2

p

r1 ̸4 x2 ð19Þ

Since u represents a normalized force, the optimal suspension structure amounts
to a spring of normalized spring constant r − 1 ̸2, and a damper with normalized
damping constant of

ffiffiffi
2

p
r − 1 ̸4. While the optimal spring is placed between the

vehicle sprung mass and “moving” ground, the optimal damper is placed between
the vehicle sprung mass and an inertial ground. For this reason the latter config-
uration is called “skyhook” damper. The optimal skyhook structure is shown in
Fig. 13 along with the corresponding optimal performance boundary, both shown
as full lines in the figure. Note that this optimal structure could be inferred even
before solving the above LQ problem. This follows from the fact that the LQ
optimal control amounts to a feedback control based on two states with negative
signs resulting from the fact that the closed-loops system is asymptotically stable.

The optimal performance line in Fig. 13 has been calculated using covariance
Eq. (10) of Sect. 1.6, where for the sake of efficiency of presentation both states
have been normalized w.r.t.

ffiffiffiffiffiffiffiffiffiffiffiffi
2πAV

p
so that in general traversing rougher roads and/

or at higher speeds leads to larger normalized acceleration due to limited available
rattlespace. Just as in the case of optimal gain calculation, it has again been possible
to analytically determine all PI quantities of interest. Actual calculation steps can be
found in the Appendix. The resulting optimal trade-off is given by the following
equation

uLQ, rms, norm =
3

ffiffiffi
3

p

8x31, rms, norm
ð20Þ

This is represented in Fig. 13 by solid straight line with a slope of −3 on the
log-log scale so that each 10% increase in available rattlespace facilitates 30%
decrease in rms acceleration levels. The optimal trade-off line is parameterized by
the weighting factor r. As it can be seen from the above equation for normalized
force uLQ, which in the present case equals sprung mass acceleration—larger
weights r result in softer suspension settings with related smaller accelerations and
larger rattlespace requirements.
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In terms of actual practical realization, the skyhook damper structure cannot be
implemented in the configuration shown in Fig. 13 since an inertial ground is not
available from a moving vehicle. Thus in the context of a simple 1D, 1DoF model
under consideration, the suspension members can only be placed between sprung
mass and a “moving” ground. It is then shown in Hrovat (1982) by using the
definition of passivity from Sect. 1.2 that so positioned suspension actuator must be
an active device in order to implement the above LQ-optimal control strategy. It is
interesting to mention that one “almost” optimal all passive structure was shown in
Young and Wormley (1973). It consists of a serial combination of a spring and
damper all in series with the sprung mass. However, although such a structure
resulted in desired transfer functions there was a pole-zero cancellation corre-
sponding to the unstable pole at zero. This reflects the inability of such a structure to
support the sprung mass weight and also it violates the asymptotic stability property
of the LQ-optimal solution.

The skyhook structure has a number of advantages. Since the skyhook damper is
not in direct contact with the moving ground it can be tuned to higher damping
values than its more conventional counterpart placed between the moving ground
and sprung mass. Indeed, typical damping ratios for the conventional passive

Fig. 13 Optimal structure
and performance trade-offs for
1 DoF model with PI of
Eq. 13 (solid lines) and
Eq. 22 (dashed lines)
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suspension are in the range of 0.2–0.3. On the other hand from the above equations
one can see that the LQ-optimal damping ratio is significantly higher and equalsffiffiffi
2

p
̸2≈ 0.7. The latter leads to more effective containment of sprung mass oscil-

lations especially the ones induced by frequencies around vehicle dominant heave
mode of oscillations typically around 1–2 Hz. This is the area where back-to-back
comparison between active and passive suspensions is typically the most impres-
sive when performed on a specially constructed test tracks with large, low fre-
quency undulations that can excite the above heave mode at right vehicle speeds.

Consideration of external loads. It is interesting that the above elevated
damping ratio will also help in containment of load-induced dynamic disturbances
due to inertia effects when braking, accelerating, turning and similar (Hrovat 1997).
Here it should be reminded that, as explained earlier, load disturbances have not
been explicitly considered so far. However, for completeness we briefly mention
the work of Young and Wormley (1973) where the authors address simultaneous
effects of both road as well as load disturbances. The load disturbances were
primarily due to aerodynamic forces acting upon a proposed high-speed ground
transportation vehicle. These aerodynamic forces that included wind gust and
similar were modeled as a random process in the form of a low-pass filtered white
noise. The authors show that large and random load forces can significantly dete-
riorate the LQG performance from Fig. 13 where, depending on the magnitude of
these forces, there could be a significant deviation in the optimal performance line
toward saturation in the direction of the lower r.h.s. of the plot. However, these load
effects become significant at very high wind speeds w.r.t. vehicles that were trav-
elling at speeds up to 300 mph, such as high-speed trains discussed by Young and
Wormley (1973). Another area of relevance is racecars such as Formula 1 vehicles,
which are subject to large aerodynamic loads. For most of conventional vehicles
this is not the case, and besides, since vehicle speed is known, one could use
feed-forward controls to counteract any mean aerodynamic loading (as well as any
loading due to inertia forces caused by braking, turning etc.).

Introduction of Semi-Active (SA) control. Although as discussed before it is
not possible to implement the LQ-optimal skyhook structure using more standard
passive components, one can still attempt to approach the LQ-optimal performance
by using semi-active dampers (Crosby and Karnopp 1973). One such strategy
would be to attempt to reproduce the optimal skyhook damper force whenever
possible i.e. whenever there is a passive power required by the SA damper placed
between sprung mass and moving ground (in reality this will be between sprung
mass and unsprung masses, as discussed in Sect. 3.2 based on quarter-car 2DoF
vehicle models). At any instant when this passivity constraint is not satisfied the SA
force is turned off since this is in some sense the “closest” that one could get to
optimal force at that moment. While not optimal this simple strategy leads to close
to optimal performance in practice.

Inclusion of jerk in PI. Although the vehicle sprung mass vertical acceleration
has been generally accepted as main indicator of passenger ride comfort, some
authors (Fearnsides et al. 1974) argued that in addition to acceleration one should
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also consider jerk—derivative of acceleration—as an additional metric when
evaluating ride comfort. This case was elaborated by Hrovat and Hubbard (1981).
To this end we expand the original PI of Eq. (13) by one additional term propor-
tional to the mean-square of expected sprung mass jerk. The augmented PI is then

PIj =E x21 + r1u2 + r2 du ̸dtð Þ2
h i

ð21Þ

This can be next aligned with the standard LQG formulation by defining the
normalized force i.e. sprung mass acceleration, u, as a new state, x3, so that the
derivative of u, which is equal to sprung mass jerk, then becomes the new control
u1. The resulting LQG optimization problem can now be stated as

Minimizew.r.t.u1 PIj =E x21 + r1x23 + r2u21
� �� � ð22Þ

subject to the following state equations

dx1 ̸dt = x2 −wðtÞ
dx2 ̸dt = u= ̂x3
dx3 ̸dt = u1

ð23Þ

with r1, r2 ≥ 0, r1 + r2 > 0, and the white noise process w(t) specified as before.
The LQ-optimal solution to this problem is given by the following feedback

control law

u1, LQ = −KxðtÞ= − k1x1 − k2x2 − k3x3 ð24Þ

where it was again possible to obtain analytical solutions for control gains k1,k2 and
k3 as a function of weighting parameters r1 and r2 (Hrovat and Hubbard 1981).
Moreover, since the new control, u1, i.e. jerk, is equal to derivative of acceleration,
and the latter is in turn equal to the original control, u, one can now write the
original optimal control—normalized control force as

uLQ = −K
Z

xðtÞdt= − k1

Z
x1dt − k2

Z
x2dt− k3x2 ð25Þ

The first integral term on the r.h.s. equals the integral of rattlespace, second is
integral of sprung mass velocity, which is equal to sprung mass position, and the
last term involves sprung mass velocity. This leads to a structure depicted through
dashed lines in Fig. 13. In addition to the skyhook damper this new LQG-optimal
structure includes a skyhook spring and a (possibly fast) load-leveling device acting
upon the integral of suspension deflection. Both—the skyhook damper and spring
—are attached to an inertial ground that is in practice not available from a moving
vehicle. As implied by the assumptions in Sect. 2.4, this “inertial” ground should
represent a low-pass filtered or smoothed version of the road that retains large hills,

136 D. Hrovat et al.



valleys and similar. In practice this can be achieved through proper signal pro-
cessing such as, for example, high-pass filtering of vehicle accelerations and
velocities that would detrend large, low frequency components. In addition, with
current efforts on 3D road mapping, it should be possible to know some portions of
the road elevation well in advance thus further facilitating a creation of an appro-
priate “inertial” ground.

At this stage it is of interest to see how would the jerk-optimal suspension
compare w.r.t. more standard acceleration-only case. Relevant analytical calcula-
tions have been performed in Hrovat and Hubbard (1981); the results fall
in-between the full and dashed lines in Fig. 13. As indicated previously, the full line
corresponds to the standard 1DoF case with acceleration-only weighting. The
dashed line then represents the other special case when r1 = 0 so that in this case
only the vehicle jerk has been optimized as a measure of ride comfort. For this
jerk-only weighting one can analytically express the relations between optimal
normalized rms rattlespace and acceleration as

x3, rms, norm =

ffiffiffiffiffiffiffiffiffiffi
1000

p

36x31, rms, norm
ð26Þ

This is plotted in the log-log scale of Fig. 13 as a dashed straight line parallel to
the standard case where r2 = 0. As it can be seen from Fig. 13 the difference in
performance in terms of acceleration-rattlespace trade-off is relatively small
in-between the two extreme cases. For example, for the same level of rms sus-
pension stroke the acceleration-only optimal suspension results in up to 26% lower
acceleration levels or, equivalently, the jerk-only optimal suspension results in up to
35% higher rms acceleration levels while substantially reducing the related jerk
(theoretically, for the standard case of acceleration-only weighting the rms jerk
tends toward infinity, which in practice may lead to very large jerk levels).

In addition to the substantial jerk reduction, there are a number of other
advantages associated with jerk-optimal suspension. This includes relatively large
damping ratios between 0.5 and 0.7, and the presence of integrating, load-leveling
component, which can provide good load containment and posture control. As
opposed to more traditional load-leveling systems that may take seconds and
minutes to establish new level, the present load-leveling system can be fast,
depending on the desired overall closed-loop system bandwidth. It should be
pointed out that the above skyhook spring-and-damper structure, and the fact that
the optimal controller includes load-leveling, imply that—just as in the standard
1DoF case—one will necessarily need an active actuator to implement the
jerk-optimal strategy.

Summary. While extremely simple the above standard 1D, 1DoF case provides
many useful data and insightful information about the structure and key charac-
teristics of an optimal suspension. This includes:

• Special so-called “skyhook” damper that provides superior isolation from
road-induced vibrations and shocks;
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• Superior heave mode damping with relatively high damping ratio of 0.7 when
compared to conventional passive suspension damping, which is typically in the
range between 0.2 and 0.3;

• Better dynamic load containment with up to 2–3 times smaller sags due to, for
example, sudden braking or cornering (Hrovat 1997);

• Optimal skyhook algorithm points to a practical strategy for semi-active sus-
pension control—today SA suspensions are already widely used in the industry
and “skyhook” is one of the most popular approaches for controlling the SA
devices.

• As an extension of the above standard 1DoF case one can also consider
including jerk as an additional metric of ride (dis)comfort. This naturally leads
to concepts of skyhook spring and fast load leveling resulting in substantial jerk
reduction and thus further smoothing and filtering of the ground input effects.

It should be stressed again that this simple analysis and synthesis is only the first
step in system-engineering based approach to advanced vehicle suspension design.
For example, reference (Evers 2010) addresses design of optimized cabin suspen-
sions for commercial trucks by starting with LQ design for the simple, 1 DoF
models discussed above. It then introduces much more detailed 4 DoF quarter car
models that include engine/powertrain module suspended on engine mounts and
some other additional effects. It is interesting that after detailed analysis and
appropriate approximations the study concludes that for the quarter-car models
under considerations the acceleration- and jerk-optimal controllers based on the
simple 1 DoF models perform close to the optimal controllers based on the full
eight- and nine-state models, respectively.

It could be said that in terms of the System V diagram from Fig. 2 we are at
around the tip of the left branch of V. While in general many more steps still need to
follow down the System V diagram, including input signal processing, actuator
design, load containment, system diagnostics and similar, nevertheless the above
insight serves as a solid “first base” (in the lingo of American baseball) for sub-
sequent R&D steps. At each such step we should gain some unique insight, which
will in turn point out to additional tasks and details needed to bring
production-worthy advanced active suspension to life.

3.2 Quarter-Car, 2DoF Case

A natural next step when progressing from the above simplest possible 1DoF model
is to include the so-called unsprung mass associated with the wheel-tire component
and all the related attached masses of steering and suspension subsystems. The
resulting “quarter-car” model is shown in Fig. 8. Part (a) from Fig. 8 corresponds to
the active suspension model we will be dealing with next, while models from parts
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(b) and (c) will be used later for comparison purposes in order to put our opti-
mization results in proper perspective.

Wheel-hop dynamics and related constraint. Introduction of unsprung mass
and tire stiffness brings an additional degree-of-freedom and an additional limitation
or constraint upon our system. The constraint comes from the fact that this addi-
tional dynamics may lead to wheel-hop oscillations on uneven roads which in turn
may lead to some loss of vehicle handling capability. More precisely, excessive
wheel hop leads to large variations in tire normal force, which then results in the net
loss of average normal force due to tire nonlinearity (concavity). Net effect is some
loss of tire tractive and cornering i.e. handling capability. The latter is illustrated in
Fig. 14 from Asgari and Hrovat (1991) where it can be seen that there is almost a
linear relation between the rms tire deflection due to wheel hop dynamics and the
percent deviation from an original, straight path of a vehicle subjected to sudden
crosswind disturbance. Thus, as is common in related literature, we will try to limit
the undesirable wheel-hop effects by introducing an additional quadratic penalty
term for tire deflection in the original performance index, Eq. (13).

Problem statement. Based on the above discussion and Fig. 14, we will next
define an appropriate performance index for the 2DoF quarter-car problem as

Minimizew.r.t.u PI =E r1x21 + r2x23 + u2
� �� � ð27Þ

subject to the following quarter-car dynamics corresponding to Fig. 8a

dx1 ̸dt= x2 −w ð28Þ

musdx2 ̸dt= − kusx1 +U ð29Þ

Fig. 14 Percent path deviation versus change in tire deflection for simulated sudden crosswind
disturbance per (Asgari and Hrovat 1991)
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dx3 ̸dt= x4 − x2 ð30Þ

msdx4 ̸dt= −U ð31Þ

where we have introduced an additional term r1 x1
2 in the above PI to penalize

excessive tire deflections. The rest of the symbols are self-explanatory: mus and kus
stand for unsprung mass and (tire) stiffness, respectively; w is again the white-noise
ground velocity input; U represents the active suspension actuator force, and u is
normalized active force, which again equals sprung mass acceleration, u = U/ms.

After normalizing the above set of four state equations one can end up with
another set of four with only two physical parameters instead of the original three
(ms, mus, kus). The two normalized parameters are ω1 = 2πf1= (kus/mus)

1/2, which is
natural “wheel-hop” frequency of the unsprung mass subsystem, and ρ = ms/mus.
The normalized control, u, is now again equal to sprung mass acceleration. The
resulting LQG problem was solved using control systems CAE/CAD tools such as
Matlab and its predecessor Matrixx. Again, we were interested for a global solution
that will provide a comprehensive map and insight into the potential benefits and
limitations of the proposed active suspension concept. This was very much facili-
tated by the above tools.

The optimal control solution was in the form of a linear feedback of states, where
according to Sect. 2.4 we assume that all four states are known

u= − ∑
4

i=1
kixi ð32Þ

With this control and using the covariance Eq. (10) we can next calculate and plot
various performance metrics. The global plot of normalized rms acceleration versus
normalized rms rattlespace is shown in Fig. 15, parameterized by weighting factors
r1 and r2. The plot has been obtained for the case with f1=10 Hz and ρ = 10. From
this “tornado-like” plot it can be seen that higher values of r1 and r2 result in less
comfortable rides. Similar comments apply to Fig. 16, which shows normalize rms
acceleration versus corresponding tire deflection.

More precisely, as it can be seen from Fig. 15, higher value of rattlespace
penalty, r2, results in smaller suspension excursions but larger sprung mass
accelerations i.e. less comfortable ride. Similarly, from Fig. 16 it can be seen that
higher value of the tire wheel-hop deflection penalty, r1, results in smaller tire
excursions but larger sprung mass accelerations, and thus better handling but worse
ride comfort. The shaded areas in Figs. 15 and 16 correspond to the areas of
practical significance for the present vehicle ride optimization problem. The fol-
lowing example from Hrovat (1997) illustrates how could one use the above plots
in early phase of an advanced suspension design.

Illustrative example. Assume that you have been given a task to perform a
preliminary, system-level study of potential benefits of an advanced active sus-
pension applied to an autonomous commuter vehicle. In order to facilitate the
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unhindered activities such as reading, texting, writing and similar, the proposed
suspension should deliver best possible ride quality within given design constraints
during a typical commute at nominal speed of V = 80 ft/s (88.5 km/h) on a road
characterized by road roughness coefficient of A = 1.6 × 10−5 ft (4.9 × 10−6 m).

The design constraints are that the rms tire deflection should remain bounded
within 1 in. (2.54 cm) from static equilibrium value 99.7% of time, and that the rms
of suspension deflection (rattlespace) should remain bounded within 3 in. (7.62 cm)
from its static value 99.7% of time. What would be the best possible i.e. the lowest
rms acceleration in this case based on the above quarter-car model with f1=10 Hz,
ρ = 10, and assuming that the road input is characterized by a Gaussian distribu-
tion? How realistic is the resulting closed-loop design in terms of underlying
dynamics, stability, robustness and bandwidth requirements?

We start by normalizing different constraint variables so that we can then use the
global optimal plots of Figs. 15 and 16. Since for most on-road operations the tire
(wheel-hop) constraint is more stringent than the rattlespace counterpart we first

Fig. 15 Optimal normalized sprung mass acceleration versus rattlespace trade-offs for quarter-car,
2 DoF vehicle model
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explore the limiting case of x1. The Gaussian assumption and 99.7% time
requirement (i.e. the well-known 3σ rule) imply that the rms tire deflection must be
less than 1/3 in. or 0.85 cm. The normalized rms tire deflection for the above speed
and road then must remain within

x1, rms, norm <0.31 s1 ̸2 ð33Þ

Choosing the above as the limiting value we proceed to Fig. 16 from where we
obtain the corresponding limiting i.e. smallest possible normalized rms acceleration

urms, norm ≈ 10 s− 3 ̸2 ð34Þ

Fig. 16 Optimal normalized sprung mass acceleration versus tire deflection trade-offs for
quarter-car, 2 DoF vehicle model
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Choosing urms,norm = 10.9 s−3/2 results in only 3%g rms acceleration. This partic-
ular candidate design is indicated as point A1 in Fig. 16. Note that this level of rms
acceleration is at the lowest r.h.s. end of the scale used for subjective tests in Fig. 3
thus securing highest level of ride comfort.

At this stage we need to check if the rattlespace constraint has been satisfied. To
this end we enter the value of 10.9 s−3/2 into the vertical, normalized rms accel-
eration axis on Fig. 15 from where, for the aforementioned design point A, we get
the normalized rms rattlespace value as

x3, rms, norm =0.605 s1 ̸2 ð35Þ

which then results in actual rms value of only 0.67 in. implying 3σ value of 2 in.
(5.08 cm). This is well within the required ±3 in. constraint thus showing that the
most critical constraint in the present example is on tire deflection and related road
holding and handling. As indicated earlier, this is usually the case with most
on-road operating situations.

For the above design A we can next determine from Fig. 15 the associated PI
weights

r1 = 1100, r2 = 100 ð36Þ

With these values one can then obtain the optimal control gains

k1 = 6.084, k2 = − 0.548, k3 = 10.0, k4 = 4.438 ð37Þ

so that the closed loop system eigenvalues become

e1, 2 = − 2.2± j2.26, e3, 4 = − 2.75± j62.9 ð38Þ

Note that the first set of eigenvalues corresponds to the well-damped oscillatory
mode associated with vehicle sprung mass heave or vertical vibration. It is char-
acterized by a natural frequency of only 0.5 Hz with the damping ratio of 0.7,
which by now should be well known from our previous 1DoF “skyhook” study (it
will be shown later that this 0.7 ratio is also LQ-optimal for vehicle models of
higher dimensions, i.e. 2D and 3D models). The relatively low natural frequency of
0.5 Hz falls significantly below most of current vehicle suspensions and is an
indication of an overall “softer” suspension setting.

The second oscillatory mode corresponds to the wheel-hop dynamics. It is
characterized by natural “wheel-hop” frequency of 10 Hz, and relatively small
damping ratio of only 4.4%. Whether this small amount of wheel-hop damping will
be sufficient will depend on the operating conditions, particular adaptive optimal
control strategy used, and similar factors. For example, this may be acceptable
while driving on the long straight stretches of the road where handling may be less
critical. On the other hand driving on winding stretches of the road may require
much higher wheel hop damping and thus an optimal control strategy that will
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adapt to different driving conditions, as needed. We will address this—along with
some possible hardware i.e. structural modifications—in more detail in subsequent
sections.

Before closing this illustrative example let us summarize how we answered the
original inquiries. First, we have succeeded to quantify what is the best possible ride
comfort level within given design constraints. Moreover, we have obtained some
insight about the resulting closed-loop system dynamics. While stable it did display
some potential issues and challenges such as robust containment of relatively low
wheel-hop damping. The latter may have to be addressed through software and
possibly hardware means, as we will discuss later.

Finally, a word of caution regarding bandwidth requirements of the resulting
closed-loop system. On the first glance, based on the above system eigenvalues it
would appear that the bandwidth requirements on the actuator force production
would extend to 10 Hz and more. However, such relatively high-bandwidth sys-
tems can be challenging to implement in practice since they tend to negatively
influence so-called “secondary ride” i.e. they tend to transmit high frequency road
induced disturbances. This also points out to the fact that force-related bandwidth
requirements are only part of the story. Indeed, even if we were required to keep the
actuator force constant and equal to vehicle weight (for “bestest” possible ride with
zero acceleration) i.e. if we were asked for zero force bandwidth, this task would by
no means be trivial due to the fact that our actuator mounting points are subject to
constant motion and road-induced disturbance. Some of these important
design-related issues will be discussed later and some are beyond the scope of this
system-level study at the left-top end of System V diagram of Fig. 2.

Passive suspension comparison. It can be shown (Smith and Walker 2000) that
the above optimal suspension strategy requires an active device, which is to be
expected based on our previous 1DoF results. At this stage it is appropriate to ask
how does this active suspension (Fig. 8a) compare with a conventional passive
counterpart from Fig. 8c. This is shown in Fig. 17, which focuses on the more
critical constraint i.e. tire deflection versus sprung mass acceleration trade-off. For
simplicity we show only the limiting curves for r1 ≅ 0, and r2 ≅ 0. Superimposed
on the figure are traces of passive suspension performance trade-offs for heave
mode natural frequencies between 1 and 1.5 Hz, and damping ratios varying
between 0.02 and 1.

From Fig. 17 it can be seen that the best passive suspension setting—in terms of
present trade-offs between smooth ride and firm handling—corresponds to point P1
with natural frequency of 1 Hz and damping ratio of 0.3. The latter is typically in
the range seen on most conventional vehicles that have been optimized through
many generations of iterative work primarily based on experience and intuition. In
addition, it can be seen that the best active setting for the same amount of tire
deflection corresponds to point A1, which is only 11% below the passive coun-
terpart in terms of rms acceleration. Thus if one focuses at only this narrow region
(as was the case with prior investigations by some authors) then one would con-
clude that there is not much potential in active suspensions, especially taking into

144 D. Hrovat et al.



account that most likely the results of the present simplified high-level study
constitute upper bounds of best possible performance.

However, one inherent advantage of active suspensions is that they can adapt to
different road/driving conditions so that different control settings can be used on
different stretches of the road. In other words, we could move either to the right or
left of point A1 in Fig. 17. Thus on the long straight stretches of a highway, such as
exist in Nevada, for example, one could relax the settings to mimic a soft sus-
pension with very smooth ride thus moving to the right of point A1. This is shown
as point A, which corresponds to our Illustrative Example design. Note that in this
case there is a 67% reduction in rms acceleration when compared with the passive
case P1. According to Fig. 3, such as large reduction can lead to substantial
improvement in subjective ride comfort ratings.

Alternatively, on winding roads one can go for much firmer suspension settings
for superior road holding and handling. In this case one would move to the left of
point A1 trading improved vehicle agility for reduced ride comfort. This is not

Fig. 17 Comparison between conventional passive suspension (point P1) and optimal active
counterparts (points A1 and A) in terms of ride and handling trade-offs
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possible for passive suspensions, which cannot move much farther to the left from
point P1.

We will next extend our comparison to Frequency Transfer Functions
(FTF) between the above three design cases, A1, P1, and A. This is shown in
Figs. 18, 19 and 20 for the three PI metrics of primary interest, sprung mass
acceleration, tire deflection and suspension stroke, respectively. By associating the
rms values of these quantities with the area under different frequency response
curves we can clearly see from Fig. 18 that design A will lead to much smaller rms
acceleration. On the other hand from Figs. 19 and 20 we can also see that this
design results in a large resonant peak at the tire natural frequency, which will lead
to increased wheel hop. This is in accordance with our previous observation that the
design A will result in relatively small wheel-hop damping. From the above FTF’s
we can make the following additional observations as given in the following
paragraph/subsection.

Invariant Points (IP). Turning our attention back to Fig. 18 it can be seen that
both active suspension settings A and A1, do a good job in reducing the acceler-
ation levels around the dominant, sprung mass heave mode of oscillations in the
neighborhood of 1 Hz. However, this is not the case with the second oscillatory
mode around the wheel hop frequency of 10 Hz where all three transfer functions
seem to pass through the same point. Indeed, it turns out that this is exactly an
invariant point for our original quarter-car structure. This was first observed by
Thompson (1971) and then extended by Hedrick and Butsuen (1990) to include an
additional invariant point at the frequency corresponding to the case of locked
secondary suspension i.e. sprung and unsprung masses vibrating in synch on a tire

Fig. 18 Frequency response function of sprung mass acceleration versus ground input velocity
for passive and active suspensions from Fig. 17
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Fig. 19 Frequency response function of tire deflection versus ground input velocity for passive
and active suspensions from Fig. 17

Fig. 20 Frequency response function of suspension stroke versus ground input velocity for
passive and active suspensions from Fig. 17

Optimal Vehicle Suspensions: A System-Level … 147



spring. This can be seen from the following equations where we start with the
original set of four state Eqs. (28–31). Summing up second and fourth equation we
get the overall momentum-like equation for the two-mass subsystem

ms
dx4
dt

+mus
dx2
dt

= − ktx1 ð39Þ

By defining (absolute) displacements of sprung and unsprung masses as xs and xus,
and substituting xus = x1 + ∫wdt in the above equation, the corresponding Laplace
transform becomes

mssX4ðsÞ+ kt +muss2
� �

X1ðsÞ= −mussWðsÞ ð40Þ

Dividing the above equation by road velocity Laplace transform quantity, W(s), and
defining the three transfer functions associated with the PI acceleration, rattlespace,
and tire deflection metrics as

GAðsÞ= sX4ðsÞ
WðsÞ , GRðsÞ= X3ðsÞ

WðsÞ , GTDðsÞ= X1ðsÞ
WðsÞ ð41Þ

after dividing with W(s) and setting s = jω, we can rewrite the above equation as in
Hedrick and Butsuen (1990)

msGAðjωÞ+ kt −musω
2� �
GTDðjωÞ= −musjω ð42Þ

From this equation we can conclude that at the wheel hop natural frequency
ω1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kt ̸mus

p
the sprung mass acceleration transfer function, GA, has an invariant

point equal to

GAðjω1Þ= − j
ffiffiffiffiffiffiffiffiffiffiffi
muskt

p
ms

= − j
ω1

ρ
ð43Þ

which, for our case with ρ = 10, f1 = 10 Hz, is equal to j 2π. The corresponding
gain or magnitude of GA is 2π or 15.97 dB≈ 16 dB (cf. Fig. 18).

Using similar kind of manipulations starting with the above Eq. (39) but this
time substituting xs= xus+ x3, we end up with the following equation

−msω
2GRðjωÞ+ kt − ms +musð Þω2� �

GTDðjωÞ= − ðmus +msÞjω ð44Þ

From this equation we see that there is now an invariant point at

ω2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt ̸ mus +msð Þ

p
=ω1 ̸

ffiffiffiffiffiffiffiffiffiffi
ρ+1

p
ð45Þ

where the rattlespace or suspension deflection transfer function, GR, has the fol-
lowing constant value
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GRðω2Þ= j
mus +msð Þ
msω2

= j
ρ+1
ρω2

ð46Þ

For our case with ρ = 10, f1 = 10 Hz, we have ω2 = 2π3.02 and corresponding
gain of GR is 0.058 or −24.7 dB (cf. Figure 20). As mentioned previously the above
invariant point frequency ω2 corresponds to natural frequency of a combined
sprung and unsprung mass oscillating on tire spring; it is typically in the range
between 3 and 5 Hz.

Based on Eqs. (42) and (44) it was observed by Hedrick and Butsuen (1990) that
once one of the above three transfer functions is specified the other two follow from
the constraint equations. For example, choosing GA(s) then implies that
GTD(s) follows from Eq. (42), which in turn fixes GR via (44). A physical inter-
pretation of the above invariance is that within the given quarter-car structure of
Fig. 8a we observe that a single suspension actuator placed in-between sprung and
unsprung masses is asked to perform conflicting tasks of minimizing sprung mass
acceleration for improved ride comfort while at the same time providing adequate
wheel hop damping and road holding. It should be pointed out that the above
invariances and related limitations hold independent of the particular suspension
type—passive, active or semi-active—or control strategy used, as long as the
fundamental mechanical structure remains the same.

3.3 Comparison Between 1DoF and 2DoF Cases

In order to put the above results into proper perspective we next try to compare the
two basic active suspension cases studied so far: the simple 1DoF configuration of
Fig. 7 and the 2DoF case from Fig. 8a. To this end we overlay the 1DoF optimal
trade-offs over the corresponding 2 DoF results as shown in Fig. 21. From this
figure we can make two observations. From the lower right side we can see that for
the most part the optimal 1 DoF case results are significantly better i.e. below the 2
DoF trade-offs. This is to be expected since the 2 DoF problem introduced one more
constraint—tire deflection—that should then lead to less favorable outcome.

On the other hand from the upper left side we see that in some areas the reverse
is true i.e. the 1 DoF performance appears even worse than the 2 DoF case! The
reason for this apparent discrepancy is that we are not actually comparing apples to
apples since on the horizontal axis we are comparing total deflection between
sprung mass and ground of the 1 DoF system with the deflection between sprung
and unsprung masses of a 2 DoF system. As the rattlespace constraint becomes
more and more stringent i.e. as the suspension becomes more and more stiff the
advantage of the 2 DoF structure becomes more pronounced due to the ameliorating
effects of primary suspension i.e. due to more pronounced contribution from tire
deflection.
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To rectify this situation and facilitate more appropriate (apples-to-apples)
comparison, we introduce a modified 1 DoF model shown in Fig. 8b. It is a limiting
case of standard 2 DoF model with unsprung mass reduced to zero. The corre-
sponding optimal trade-offs are shown in Fig. 22, where we can now see—as one
would expect—that the upper left side of the plot is close to and below the cor-
responding 2 DoF line. At the same time the lower right side approaches and
merges with the previous “standard” 1 DoF case optimal trade-offs.

The observation that this optimal structure with vanishing unsprungmass,mus= 0,
offers superior performance w.r.t. corresponding 2 DoF counterparts is logical con-
sequence of the fact that reduced unsprung mass for a given sprung mass, i.e. larger ρ,
leads to improved performance trade-offs as shown by Hrovat (1988), for example. In
the context of the present problem the new 1DoF structure can be seen as limiting case
of 2 DoF model as unsprung mass becomes smaller and smaller. Another observation
from the lower right side of the plot is that for most operations where good ride is of

Fig. 21 Comparison between “basic” 1DoF and 2DoF optimization trade-offs
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primary concern, we see that there is a significant loss of performance associated with
the 2 DoF models, which is primarily due to the additional, wheel-hop imposed
constraint.

3.4 Dynamic Vibration Absorber

At this stage it would be natural to inquiry how we could recover some of the above
lost performance and thus sway the optimal trade-offs in the direction of the arrow
in Fig. 22. To address this inquiry we know from the Invariant Points (IP) discus-
sion that this will not be possible within the given 2 DoF structure of Fig. 8a. Thus
the answer should be pursued through structural i.e. hardware modification. One
logical candidate to consider is tuned mass damper or Dynamic Absorber (DA).

Fig. 22 Comparison between 2DoF and various 1DoF optimization trade-offs
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As we know from the IP subsection, one of the most critical invariant points is at
the wheel-hop frequency and associate pronounced resonant peak due to relatively
low damping in this mode. Thus, if we could increase this damping without neg-
atively influencing sprung mass accelerations we may achieve our goal. This leads
us to the modified quarter-car configuration (3 DoF system) shown in Fig. 23 where
we use a DA tuned to wheel-hop frequency to alleviate the above issue i.e. increase
wheel hop damping without simultaneously increasing sprung mass acceleration.
The DA mass was chosen as one tenth of the unsprung mass and corresponding DA
damping ratio was chosen as 0.2.

The results of this global study are shown in Figs. 24 and 25. As it can be seen,
the DA effectively sways the optimal trade-offs toward the corresponding 1 DoF
case, which is especially pronounced in the case of acceleration versus rattlespace
trade-off in Fig. 24. This means that with the help of DA, our original smooth ride
design point A with very lightly damped wheel-hop mode now transform to point A′,
where based on Figs. 24 and 25 we can see that both the sprung mass acceleration
and tire deflection are further reduced resulting in improved ride comfort and
handling. From these figures we can conclude that further substantial improvements
are possible up to the point where now rattlespace constraint becomes the limiting
factor. For example, for design point A″ we see that suspension deflection
requirement is the same as for the previous design case A while tire deflection and
especially sprung mass acceleration are both reduced.

At this stage to put all this into broader perspective and gain additional insight
into DA benefits, it is appropriate to compare performance of the above designs
A and A′ with design case A1 and related passive case P1 discussed in Sect. 3.2

Fig. 23 Quarter-car 2DoF
vehicle model with dynamic
vibration absorber (DA)
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(also see Fig. 17). The corresponding frequency response curves are given in
Figs. 26 and 27, which show sprung mass acceleration and tire deflection gain
transfer functions, respectively. From Fig. 26 we see that that for all three cases, P1,
A1, and A, the sprung mass accelerations pass through the invariant point at the
wheel-hop frequency of 10 Hz. However, for case A′, which includes a DA, we see
that the invariant peak at 10 Hz has been substantially reduced (by more than
10 dB). This demonstrates that structural changes introduced by DA eliminate this
important and detrimental quarter-car constraint. At the same time, from Fig. 27 it
can be seen that the strong resonant peak in tire deflection at 10 Hz has been
substantially reduced when compared with the soft case A′ with the potential for
further reduction at the resonant peak but at the expense of more narrow notch. All

Fig. 24 Impact of dynamic
absorber on ride versus
rattlespace trade-offs (Hrovat
1997)

Fig. 25 Impact of dynamic
absorber on ride versus
handling/tire deflection
trade-offs (Hrovat 1997)
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those considerations can also be seen in related time responses where excessive
oscillations of the soft suspension case A′ have been contained with the help of DA.

The above study demonstrates significant potential benefits of dynamic vibration
absorbers. Their main drawback is added weight and more challenging packaging
requirements. To date there has been only one widespread, production application
of the DA concept. This was implemented in the highly popular Citroen 2CV
(sub)compact vehicle that was legendary for its supreme ride, especially for such a
small vehicle. According to the June 1987 Car magazine article, the 2CV ride was
characterized by the following statement, “You will be enjoying the scenery on top
of a chassis which, in terms of small car terms, has no peer in ride comfort.”

In closing this section we observe that we did not re-optimize the total 3 DoF
system with the DA included. This would lead to further improvements at the

Fig. 26 Frequency response
function of sprung mass
acceleration versus ground
input velocity for passive and
active suspensions with and
w/o DA

Fig. 27 Frequency response
function of tire deflection
versus ground input velocity
for passive and active
suspensions with and w/o DA
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expense of increased complexity since we would be feeding back six states instead
of four. Additional refinements are possible by optimizing combined or “hybrid”
system consisting of an active actuator and DA with free design parameters (DA
mass, damping, stiffness). One could also contemplate an active or at least SA
dynamic vibration absorber as proposed by Hrovat (1990). We will later focus on
the ultimate i.e. best possible quarter car configuration in the sense of LQG-optimal
performance. But first let us introduce an interesting mechanical element that shares
some (but not all of) characteristics of dynamic vibration absorber.

3.5 Inerter and DA Comparison

Inerter was introduced by Smith (2002) as a mechanical device where inertia-like
force is proportional to the difference of two accelerations across the device ter-
minals shown in the insert of Fig. 28, i.e.

F =Meff
d vL − vRð Þ

dt
ð47Þ

where Meff stands for the effective (linear) inertia due to reflected inertias of the
inner rotational masses within the inerter of Fig. 28, and vL and vR stand for the
corresponding left and right terminal velocities, respectively. Note that, in terms of
bond graphs, the above device is a one-port with two distinct terminals. Further
generalization of this interesting concept might be possible in the form of a two-port

Fig. 28 Race-car suspension with an inerter: schematic diagram (a); equivalent quarter car
schematic (b); and corresponding bond graph (c)
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that represents inertia-coupling that is characteristic of planetary transmissions, for
example (Hrovat et al. 2000).

It can be said that inerter is in part similar to the more common inertia element
where inertia force is proportional to the acceleration of the inertia element or
derivative of the associated momentum (Karnopp et al. 2012). Indeed, by grounding
one of the two terminals we end up with a standard inertia element.

It is interesting that the (generalized) inerter elements were present for quite
some time in different mechanical and hydraulic systems such as differentiators,
planetary gears, engine mounts, and hydraulic suspensions, for example. This can
also be seen from corresponding bond graphs where inerters can be revealed
through non-trivial attachments of inertia elements to a zero junction, where the
latter indicates a difference of two speeds or generalized flows (Karnopp et al. 2012;
Karnopp and Rosenberg 1970; Hrovat et al. 2000). While some of them may not
satisfy somewhat restrictive requirements originally postulated in Smith (2002) they
are certainly very useful as demonstrated through millions of vehicles and other
devices. In any case, Smith deserves credit for explicitly identifying and promoting
this somewhat ubiquitous yet “hidden” structural component, and at the same time
devising an interesting practical mechanical inerter device that has found significant
applications in the car-racing arena.

The device is sketched in Fig. 28 in the context of a racecar application. Based
on available information (Clarke 2012; Smith 2011; Scarborough 2011) the setup
seems to consist of a standard mechanical spring and damper configuration aug-
mented with a black-box device placed across the left and right side of a vehicle
front suspension elements or rockers. Assuming that the black box device is an
inerter without additional internal components and assuming symmetrical road
inputs at the left and right side of a vehicle an equivalent quarter car representation
and corresponding bond graph model are shown in Fig. 28b and c, respectively.

From the bond graph it can be seen that in this particular case the inerter is
represented by an inertia element in differential causality (Karnopp et al. 2012).
However, this may not always be the case. For example, inserting an additional
spring in series with the current C-R-I suspension setup would remove this con-
straint. Based on the bond graph of Fig. 28c, it can be deduced that the sprung and
unsprung masses effectively act in series with the inerter with the reflected inertia,
Jeff. This can be seen directly from the bond graph due to the corresponding
0-junctions.

In reference (Smith 2002) it is shown that under certain conditions the
inerter-based suspension structure can produce notch filter-like effect similar to
tuned mass dampers or dynamic vibration absorbers (DA). Specifically, this was
demonstrated for a single mass case where such mass has been supported by a
vibration absorption-type suspension consisting of a parallel combination of inerter
and spring, which were in turn placed in series with a parallel combination of
another spring and a damper. The underlying assumption was that the mass is
subject to the base input oscillations with strong single-component frequency
content. It was then shown that by tuning the inerter-spring combination to this
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input frequency one could achieve complete disturbance cancellation comparable to
similarly tuned DA.

According to available literature the inerter was used to improve wheel adher-
ence to the track with Formula 1 racecars although the quantitative extent of this
improvement was not given. It is interesting that a DA-type device used by a
competing team was not allowed by the Formula 1 governing body although the
effects were apparently similar (Clarke 2012; Scarborough 2011). It is possible that
this was due to lack of full understanding of how these two devices operate in the
context of car racing.

While there was strong similarity between inerter-based and DA-based vibration
isolation in the case of single mass exposed to base oscillation, this similarity seems
to brake down in the case of a 2DoF quarter car configuration. In particular, note
from Fig. 28 that the inerter, as a one-port device, imposes equal forces on the
sprung and unsprung masses so that the Invariant Point constraint at the critical
wheel-hop frequency still applies (it is interesting that in the case of no system
damping this IP constraint reduces to a singularity). This is fundamentally different
from the DA structure of Fig. 23. Consequently it is expected that the quarter-car
performance will not improve to the degree seen with the DA. Indeed, the available
publications (Smith and Wang 2004; Papageorgiou and Smith 2006; Scheibe and
Smith 2009) seem to confirm this, although they were based on somewhat localized
studies where only one or maximally two attributes were considered at the time.
Further extensions could include jerk as component of ride comfort, although this
may disadvantage inerter-based suspensions due to their inherent inertia-like effects
and potentially less favorable high-frequency roll-off.

3.6 Best Possible Quarter-Car Performance and Related
Structure

Based on encouraging results with DA-enhanced quarter-car structure it was natural
to look into different possible extensions and variations of this concept in a search
toward best possible quarter-car performance. To this end reference (Hrovat 1990)
investigated potential benefits of augmenting the conventional, passive tuned mass
damper or DA with an additional active actuator acting in-between the DA and
unsprung mass. This lead to up to 35% lower sprung mass acceleration and 26%
lower tire deflection w.r.t. previously mentioned LQ optimal case A″ with passive
DA—see Figs. 24 and 25. At the same time the suspension stroke or rattlespace
excursions have been kept almost the same in all cases. Similar results were
obtained for the configuration where only the DA-equivalent mass was kept without
the accompanying spring and damper so that only an active “unsprung” actuator
was used to suspend the DA-equivalent mass. However, the required active actuator
energy and force were significantly higher in this case thus confirming the use-
fulness of a full DA structure even when augmented by an active actuator attached
to the DA mass.
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Observing that significant additional benefits in performance resulted from
having unequal forces acting upon sprung and unsprung masses facilitated by the
DA-like structure, we now pose the following optimization problem as an extension
of the previous analysis. The problem setting is illustrated in Fig. 29a. This time we
are considering two independent actuators—one acting upon the sprung mass and
the other on the unsprung counterpart. Note that while in the previous DA-based
setting we were limited how much force could the unsprung actuator impose due to
limiting motion capabilities of the DA mass, this sort of constraint is not imposed
now.

In addition we make use of the fact that there is a natural two time-scale sep-
aration associated with quarter-car problem, where the slow mode corresponds to
the sprung mass oscillatory mode around 1–2 Hz and the fast mode corresponds to
unsprung mass wheel-hop mode around 8–12 Hz. Anticipating this separation we
structure the states as shown in Fig. 29a. The associated PI then has the same three
components (weighted means square of sprung mass acceleration and tire and
suspension deflection) as before with an additional term penalizing the unsprung
force

Minimizew.r.t.u1, u2 PI =E u21 + r1x23 + r2 x1 − x3ð Þ2 + r3u22
	 
h i

ð48Þ

where u1 is the sprung mass acceleration equal to Us/ms, and u2 corresponds to
normalized unsprung force, i.e. u2= Uus/mus. Now letting the penalty r3 on nor-
malized unsprung force be very small one ends up with the so-called (partially)
cheap controls (Saberi and Sannuti 1987). In the process we can think of the cheap
control u2 as an essentially “structure optimizer”. Eventually letting r3 go toward
zero and transforming the cheap control problem to an equivalent singular pertur-
bation problem we end up with the optimal structure depicted in Fig. 29b (Hrovat
1990).

Fig. 29 Formulation of
optimal 2DoF two-actuator
problem (a), and
corresponding best possible,
optimal structure (b)
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Note that the structure optimizer u2 was used to effectively eliminate the
unsprung mass, which is in accordance with the established fact that reduced
unsprung mass helps the overall ride and handling performance (Hrovat 1988). This
was also confirmed by our previous analysis from Fig. 22 comparing the optimal 2
DoF and 1 DoF performances. In addition, the structure optimizer i.e. cheap and
fast control adjusts the incremental stiffness of primary and secondary suspensions
to best accommodate the respective weights r1 and r3, thus resulting in the best
possible performance. Once the wheel hop mode has been so contained the sprung
mass control u1 can then be used to contain the slow, sprung mass mode according
to the well-known 1 DoF LQ-optimal rules with skyhook damper and an overall
damping ratio of 0.7.

The above “most” optimal quarter-car structure results in additional substantial
benefits. An illustrative example from Hrovat (1990) shows normalized sprung
mass acceleration of only 1.17 s−3/2, with well-contained tire and suspension
deflections. While it would be difficult to realize such a suspension in practice (e.g.
it may require very powerful jets on each, sprung and unsprung masses) these
limiting results can serve as a benchmark of best possible performance that any
practical suspension realization can be compared against. It also confirms our
previous results and intuition about the superiority of a simple 1 DoF structure in
the context of a quarter-car vehicle models.

As a final remark in this section we mention that we could also pose the question
what is the best possible passive two-port suspension setup as a counterpart to the
active setting from Fig. 29a. To this end one could follow similar approach based
on passive network optimization and synthesis that was elegantly done in Papa-
georgiou and Smith (2006) for the case of passive one-port suspension structures. It
is expected that some portions of such a two-port extension would contain DA-like
components. Further optimal passive extensions could include cross-coupling
between left and right as well as front and rear sides of a vehicle, such as can be
seen in so-called interconnecting or equalizing-type suspensions first found on
Citroen 2 CV (Pevsner 1957), which was well-known for its smooth ride.

3.7 2D, Half-Car Models

Since we have pretty much exhausted various quarter-car optimization scenarios the
next logical step is to consider the half-car models and related LQ optimization. We
start with 2 DoF half-car model shown in Fig. 30. It includes vehicle heave and
pitch modes.

This is reflected in the following performance index

PI =E r1 d2z ̸dt2
� �2

+ r2 d2Θ ̸dt2
� �2

+ r3z2f + r4z2r
h i

ð49Þ
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where different quantities have been defined w.r.t. Fig. 30 with zf and zr standing
for the front and rear suspension rattlespace—in the present case where we did not
include the unsprung masses, this is the distance between the ground and front and
rear end of the sprung mass. Note that this PI could be slightly modified to
explicitly include the acceleration at a specific position such as driver’s or some
(VIP) passenger’s seat, for example.

Optimization of the above PI under four state equations representing the simplest
possible 2D, Half-car model has been done in Krtolica and Hrovat (1992). It is
interesting that in this case it was still possible to analytically solve the LQ optimal
problem. The resulting closed-loop control system was again characterized by the
optimal damping ratio of 0.7 in both heave and pitch modes. The same reference
establishes necessary and sufficient conditions to decouple the original
two-dimensional, 2 DoF, half-car LQ optimization problem into two
one-dimensional, 1 DoF, quarter-car problems; these conditions are

Ms ⋅ lf ⋅ lr = Jp
r1 ⋅ lf ⋅ lr = r2

ð50Þ

where Ms and Jp are vehicle sprung mass and pitch moment of inertia about the
center of mass, CM, and lf and lr are front and rear distances from CM (see Fig. 30).
The first condition depends on vehicle physical parameters and is typically satisfied
within 20% by most present vehicles. The second condition depends on the PI
weighting parameters r1 and r2, which are at designer’s disposal and can often be
chosen to satisfy the above constraint while at the same time leading to a reasonable
design, i.e. compromise between heave and pitch aspect of ride.

Through the above decoupling one can see the connection between the previ-
ously established wealth of results for the simple 1 DoF quarter-car vehicle models
and the corresponding 2 DoF, half-car case. This parallel can be extended to more
complex 4 DoF, half-car models that include unsprung masses, as shown in Fig. 31.

Fig. 30 Half-car, 2D vehicle model with 2DoF (heave and pitch)
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It turns out that the same decoupling conditions apply in this case as well leading
to two decoupled 2 DoF, quarter-car models shown in Fig. 31b. This again
establishes the link between more complex half-car models and corresponding
quarter-car counterparts for which there is an abundance of previously established
results. In practice this means that a reasonable approach to an active suspension
system design may start with controlling the corners enhanced with some addi-
tional, typically feed-forward action to counteract different pitch disturbance due to
braking, accelerating and similar.

Fig. 31 Half-car, 4DoF vehicle model (a) and, corresponding decoupled model consisting of two
quarter-car, 2DoF sub-models (b)
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At this stage we note that the 2D setup of Figs. 30 and 31 facilitates preview of
road ahead of certain points of a vehicle. In particular we see that front wheels could
serve as sensors or previewers of road inputs ahead of rear suspension units. In
general, having some advance knowledge of the future disturbances may be
invaluable in some situations and highly beneficial in many.

While in case of most automobiles this kind of preview may be relatively short
and of limited effectiveness, it could be much more pronounced in some other
vehicles such as heavy-duty trucks (“18-wheelers”) and especially trains (Karnopp
1968). Similar applies to some more recent transportation paradigms under con-
sideration such as vehicle platooning or convoys of trucks that is becoming more
and more realistic proposition due to rapid advances in sensors, actuators and
processing intelligence needed for (semi)autonomous driving. This includes pre-
view information provided by on-board cameras, lidars, and availability of 3D road
maps and V2V communication, where vehicles ahead may serve as “sensors” for
following vehicles.

One of the first studies investigating potential benefits of preview was done by
Bender (1967a) who started with logical simplest case of 1 DoF vehicle models.
Using the Wiener-Hopf optimization approach (which is similar to—albeit more
restrictive than—the hereby pursued LQG approach) the author obtained the global
optimal performance maps shown in Fig. 32, where the axes are the same as in
Fig. 13 with horizontal axis corresponding to normalized rattlespace (or, more
precisely, to the distance between sprung mass and road) and vertical axis corre-
sponding to normalized sprung mass acceleration. The straight line for no preview
(i.e. preview time T = 0 s) corresponds to the case studied earlier—this was rep-
resented as the full line in Fig. 13.

On the other hand the line with infinite preview (T = ∞) indicates the best
possible performance under preview. Based on the analysis from Bender (1967a)
the optimal infinite preview line in a log-log scale of Fig. 32 can be expressed as

urms, norm =
3

ffiffiffi
3

p

128x31, rms, norm
ð51Þ

Comparing this expression with the corresponding expression for the 1 DoF case
without preview (see Eq. (20) in Sect. 3.1 and Eq. (72) in the Appendix) one can
conclude that there is a substantial, 16-fold, potential for reducing the sprung mass
acceleration while keeping the overall rattlespace the same. While this requires
knowing all of the future, from Fig. 32 it can be seen that even knowing only 0.5 s
of advanced road ahead could lead to significant benefits in the context of the
present 1 DoF problem.

An extension of the above 1 DoF preview case toward the 2 DoF quarter-car
counterpart was considered in Hrovat (1991a). The approach taken was to shift the
time point of reference so that instead of considering a preview system one ends up
with a dynamic system with delays for which there is an abundance of research
results (Richard 2003; Fridman 2014). This was achieved by shifting the observer
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Fig. 32 Optimal 1DoF active suspension (S) performance for different preview times, T (Bender
1967)

Fig. 33 Conceptual representation of road preview process
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vantage point from vehicle to some distance ahead of vehicle corresponding to the
magnitude of preview. Figure 33 illustrates this graphically.

The resulting carpet plots of normalized rms acceleration versus suspension
rattlespace and tire deflection are shown in Figs. 34 and 35, respectively. While, as
it might have been expected from previous non-preview analysis, the performance
improvements are now less dramatic than for the 1 DoF case of Fig. 32, the plots
still reveal opportunities for further significant improvements in both ride as well as
handling aspects of vehicle performance. In particular, from Fig. 35 one can see
that even a relatively short amount of preview of only 0.1 or 0.2 s can make
significant difference in terms of the sprung mass acceleration versus tire deflection
trade-offs, which is also a reflection of the fact that this particular trade-off is in
good part associated with the fast, wheel-hop mode.

To put this short preview times in proper perspective—a preview of 0.1 s cor-
responds to traversing the distance of little more than one wheelbase length of Ford
Fusion sedan (wheelbase distance between front and rear wheels being 2.84 m in
this case) at speeds of 65 mph or 29 m/s. This indicates that one could in theory
benefit from even such a short preview times or equivalent distances. However, to

Fig. 34 Normalized acceleration versus rattlespace trade-offs for quarter-car, 2DoF vehicle model
with different preview times, tr
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fully exploit such opportunities one would in practice need very fast and accurate
“high-fidelity” actuators and/or some ingenious hardware design measures and
innovations. Additional aspects of preview control in the context of quarter-car
models, such as bandwidth requirements and frequency responses, can be found in
Pilbeam and Sharp (1993), Hac (1992), Hrovat (1997) and references therein.

3.8 3D, Full-Car Models

The optimization problem treated thus far for 1D, quarter-car and 2D, half-car
models can be naturally extended toward the full 3D setting. Thus, following the
above example of 1D–2D extension, one would now add sprung mass roll accel-
eration to the PI of Sect. 3.7 in addition to rattlespace constraint for each of the four
vehicle corners; the resulting PI is given below (see Fig. 10)

PI =E qAz2A + qBz2B + qCz2C + qDz2D + r1 d2z ̸dt2
� �2

+ r2 d2Θ ̸dt2
� �2

+ r3 d2ϕ ̸dt2
� �2h i

ð52Þ

Some of the first studies based on the LQG approach were presented in Barak
(1985), Chalasani (1986), Barak and Hrovat (1988). The approach taken by Hrovat
(1991b) is based on the simplest possible 3D model where one again starts by

Fig. 35 Normalized acceleration versus tire deflection trade-offs for quarter-car, 2DoF vehicle
model with different preview times, tr
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neglecting the unsprung masses. For this particular case with some additional mild
assumptions on the road roughness characterization, it was possible to obtain an
analytical solution even for this 3D problem, as elaborated in Hrovat (1991b).

Fig. 36 Full-car, 3D vehicle model and related simplifications
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Based on these analytical results it was possible to make a number of obser-
vations about the optimal system characteristics. This includes the fact that all three
optimal body modes have the highly desirable damping ratio of 0.7, which is an
extension of similar results for 1D and 2D cases. In addition, under some mild
conditions shown in Fig. 36, the original 3D problem can be decoupled into two
subsystems: one being the 2D pitch and heave subsystem, and another being a
special roll subsystem as depicted in Fig. 36. Furthermore, if the previously
established conditions for 2D decoupling hold (see Fig. 36) then the pitch and
heave subsystem can be further decoupled into two basic, 1D optimization
problems.

This way the original full car optimization problem has been transformed into
much simpler half and quarter car optimization setting. In this manner we have
established a link with the previously obtained wealth of results for 1D and 2D
optimization cases. Some other approaches and results based on the full 3D model
including unsprung masses can be found in Barak (1985), Chalasani (1986), for
example. Further extensions of the 3D model are possible to include flexible modes
(in case of long trucks and similar vehicles) and flexible guideways, such as long
(suspension) bridges and similar structures (Margolis 1978; Karnopp et al. 2012).

4 Model Predictive Control (MPC) as an Extension
of Preview Control

In this section, we review the usage of Model Predictive Control in suspension
control where it can incorporate not only the road preview but the other dynamic
considerations including constraints, mode switchings and other non-linearities.
Figure 37 illustrates suspension travel limits, bumper nonlinearities, and tire road
interaction nonlinearities or constraints.

As indicated earlier (e.g. Sect. 3.1), in semi-active suspension systems, the
suspension force can be modulated through a range of damping force within the

Fig. 37 Dynamic mode switching, nonlinearities, and constraints
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associated passivity constraint. In this case the suspension force cannot track an
arbitrary desired force from the unconstrained LQ optimization-derived control law.
As a compromise, the semi-active control design typically follows its unconstrained
active counterpart when it can, and operates along the passivity envelope when it
cannot. For example, the damping force is adjusted to follow the desired suspension
force derived from the optimal control law, and set to zero when a negative
damping force is required. This control is therefore commonly referred to as
“clipped optimal”.

The optimal control law for the semi-active system has been posed as a con-
strained LQ optimization and solved numerically in Hrovat et al. (1988), Tseng and
Hedrick (1994), involving the iterative solution of a time-varying force constraint.
A specific example in Tseng and Hedrick (1994) showed that up to a 10%
advantage with respect to clipped-optimal can be achieved. However, it also found
that the amount of improvement depends on driven scenarios and is usually very
limited. A later work (Giorgetti et al. 2006) leveraged the explicit hybrid MPC to
confirm analytically the previously obtained numerical finding that clipped optimal
is not the optimal control for semi-active suspensions in general.

In practical suspension design, rebound and jounce bumpers are needed within
the rattle space to ensure no metal to metal contact when the vehicle encounters a
large road disturbance. Since the power and force of an actuator are limited, an
optimal active suspension controller may want to take advantage of this passive
nonlinearity in the vehicle. A hybrid MPC controller was discussed in Xu et al.
(2016) to demonstrate the control’s potential in further enhancing overall suspen-
sion performance, given limited actuation force/power. As is well known, the power
and force of a hardware actuator are limited since they are tightly correlated to the
practical constraints of cost and weight.

Noting that the tire of a vehicle may briefly lose road contact when encountering
a large road disturbance such as an abrupt pothole or a brick on the road, a
preview-based hybrid MPC can be designed (Xu et al. 2016) to take advantage of
the upcoming road profile as well as the knowledge of non-symmetric tire behavior
(when leaving the ground).

In a preview-based Model Predictive Control, not only is the vehicle response in
the future prediction horizon “simulated and evaluated”, but also is the road profile
within the prediction horizon “measured and buffered”. Bringing the future road
profile into the augmented system dynamics is a native capability within the MPC
framework where the look-ahead road input at each sampling time is measured, if
available, and buffered until it reaches the vehicle (See Fig. 33). As such, a road
preview MPC can be developed to enhance performance (Xu et al. 2016) using the
same framework of MPC without preview.

A benchmark simulation comparison for a quarter car going through a curb with
the step change of 0.1 m in road height is illustrated in Fig. 38, where the overall
cost function, rms tire deflection, suspension rms deflection, and sprung mass rms
acceleration are listed. All the controllers (LQR, MPC, and hybrid MPC) utilized
0.1 s preview, while the LQR controller assumed linear model, the MPC controller
constrained the suspension and tire deflection to within their linear and symmetric
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region, and the hybrid MPC accounted for more detailed representation of sus-
pension nonlinearities and unsymmetrical tire behavior. Significant improvement
can be achieved with MPC and hybrid MPC where the realistic nonlinearity can be
predicted and managed to avoid hitting the suspension jounce bumper.

5 Other Concepts, Features, and Related Practical
Considerations

5.1 Other Concepts

As the suspension performance index often includes conflicting terms,
multi-objective optimization—symbolic or numeric—has been widely used to
systematically manage nonlinearities and constraints (Gobbi and Mastinu 2001;
Chatillon et al. 2006; Chen et al. 2003). The solution of a multi-objective opti-
mization finds the best trade-off among the various pre-defined control terms. This
is also known as Pareto optimization used in systematic design procedures, which is
in many cases similar to the global optimization approach pursued in Sect. 3.

On the other hand, there are approaches with simpler concepts that focus on
emulating an ideal damping for the single element in consideration. Among them,
one of the most popular approaches is the skyhook concept which is supposed to
emulate a damper connected between the sprung mass and the sky or a moving
cloud representing an absolute, inertial ground. The skyhook control focuses on

Fig. 38 Benchmark comparison among LQR preview, MPC, and hybrid MPC
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passenger comfort with proper trade-off between suspension travel and tire force
variation. An analogous concept was introduced to focus on the minimization of tire
force variation. Instead of putting a damper between the sprung mass and a moving
cloud (aka sky or “inertial ground”), it suggests to put a heavy duty damper
between the unsprung mass and the moving ground, hence its name “ground hook”
(Novak and Valasek 1996; Valasek et al. 1997). In its implementation, the sus-
pension device located between sprung and unsprung mass emulates a damping of
the unsprung mass with respect to the ground i.e. road. Its emphasis is on the
prevention of road damage and minimization of tire force variations. Practical
advantages for road, soil, and bridges have been supported by experimental results
with a prototype truck (Valasek et al. 1998, 2003). Figure 39 illustrates the concept
of sky hook, ground hook, and their combined implementation.

An attempt to extend the above LQ optimization results to a nonlinear setting is
presented in Karlsson et al. (2000, 2001a, b). The idea was to put additional, higher
order (e.g. quartic) penalty on the rattle space, which in reality is best represented
by hard constraint as opposed to soft constraint representation used in the typical
LQ setting of Sect. 3. As a consequence of this increased penalty, there is more
efficient utilization of rattle space, especially in case of large bumps and potholes
that could otherwise result in unacceptably large impact forces.

5.2 Hydraulic Suspensions and Their Brief History

A brief history of hydraulic-based suspensions is illustrated in Fig. 40 where var-
ious version of hydraulic and related electro-hydraulic suspensions have been
implemented in production vehicles, ranging from low, mid, to high bandwidth,
ride height focused to vehicle roll response motivated. Note that the Kinetic Sus-
pension Technology (Sherman 2011) is essentially a semi-active suspension system
acting between different corners while Nissan Infinity Q45a (Akatsu et al. 1990)

Fig. 39 Illustration of skyhook, groundhook, and their combination
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and Mercedes ABC (Merker et al. 2002) are narrow bandwidth active suspension
(NBAS) systems, to be discussed in Sect. 5.6.

5.3 Self-leveling Feature

Various self-leveling systems have been introduced in the market including the
ones illustrated in Fig. 40. Notable examples include the Hydropneumatic systems
developed by Citroen (Nastasić 2002) and the Electronically-Controlled Air Sus-
pension on Lincoln by Ford Motor Company (Chance 1984). This feature allowed
these vehicles to maintain proper ride height and suspension stiffness over a wider
range of vehicle loading. It adjusts the vehicle ride height, usually very slowly, in
order to balance among (1) soft and comfortable ride from the softer-than-usual
passive spring, (2) proper vehicle attitude/stance, and (3) increased rattle space for
anticipated or unknown road disturbance ahead. This feature has been implemented
in the Lincoln Mark VIII in the 90s and most recently in Tesla Motor Model S
(Edmunds 2012; Korosec 2014). It enables the lowering of the vehicle at highway
speeds to improve aerodynamics and therefore, better fuel economy and driving
range.

Fig. 40 Brief history of hydraulic suspensions
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5.4 Variable Suspension Damping (Semi-active Suspension)
Feature

Production semi-active suspension systems are generally constructed using an
adjustable damper in parallel with the secondary suspension spring. These are
typically constructed from pneumatic and/or hydraulic piston/cylinder combina-
tions with electromechanical control of an orifice. Actuator bandwidth is primarily
determined by the reaction time of the controlling valve and associated pressure/
force production dynamics. A modern version can be found in Lincoln’s Contin-
uous Controlled Damping system introduced in 2006. The Lincoln system uses a
suite of sensors that constantly monitor suspension motion, body movement,
steering and braking inputs and adjusts the suspension in milliseconds, helping keep
the car smoothly on track (See Fig. 41). Specifically, it monitors up to 46 inputs and
reacts on average within 20 ms (Nicolas 2014) to reduce roll, pitch, and heave
motions, while enhancing driving comfort and dynamics, and isolating the vehicle
from road harshness.

Another implementation of adjustable damping is through magneto-rheological
(MR) fluids. MR fluid viscosity can be changed electronically, allowing the force
across the actuator to change quickly (Bodie and Hac 2000). This method benefits
from faster response time, although limited fluid life may contribute to service
concerns. One MR damper application is found in the 2002 Cadillac Seville STS
and 2003 Chevrolet Corvette whose MR fluid system was co-developed by Delphi
and Lord Corporation.

5.5 Variable Suspension Geometry/Low Power Low
Bandwidth Active Suspension Feature

A variable geometry suspension adjusts the ratio of wheel movement to
the deflection of the suspension spring in real-time. By changing the leverage of the
passive suspension spring depending on wheel motion, it essentially controls the
wheel rate or effective spring stiffness.

Fig. 41 Illustration of Lincoln CCD mitigating pothole impact by “stiffening” the damper
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Various systems and hardware configurations that provide variable suspension
geometry have been proposed in the literature (Venhovens and van der Knaap
1995; Sharp 1998; Watanabe and Sharp 1999; Tumova 2004) including the “Delft
Active Suspension” concept that was implemented as a prototype vehicle and
demonstrated experimentally.

A specific variable geometry design, the “Delft Active Suspension” (van der
Knapp 1989; Venhovens et al. 1992; Evers et al. 2008), is realized with a cone
mechanism and illustrated in Fig. 42. This mechanism connects the spring to the car
body on one end and to a rotatable crank on the other end. The crank is
joint-connected to the suspension/wheel control arm and can be rotated at the joint
around the base of the imaginary cone. The cone mechanism serves two purposes;
(1) the length of the spring remains the same as the crank rotates, and (2) the ratio of
movement between the wheel/tire control arm and the crank changes as the crank
rotates (see Fig. 42). The intent is that the power required for geometry variation
and the associated force leveraging of wheel rate will be much less than for directly
changing the desired force. Ideally, with the configuration, the mechanism would
require very low power and low energy. In practice, however, the precise
arrangement and alignment could be compromised by suspension motion and
deflection, and associated always-present friction.

5.6 Narrow Bandwidth Active Suspensions (NBAS)

Narrow bandwidth active suspensions are characterized by relatively low
force-production bandwidth of up to few Hertz, which results from an architecture

Fig. 42 Delft active suspension realized with a cone mechanism
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where the dominant compliance is placed in geometric series with the active force
generator. Most of the NBAS implementations thus far have been of
electro-hydraulic type. Some representative electro-hydraulic active suspension
configurations are shown in Fig. 43. Starting with a general structure shown in
Fig. 43a one can use the bond graph of Fig. 43b to derive an equivalent
all-mechanical structure shown in Fig. 43c. In the special case when the flow source
QB is not present one ends up with the load-leveling-like configuration shown in
Fig. 43d where we assumed a very soft, possibly pneumatic or air spring compli-
ance. Finally, if the flow source QA is not present then we end up with the con-
figuration shown in Fig. 43e. This is similar to some NBAS architectures—note in
particular the serial arrangement between the dominant spring and the active force

Fig. 43 Electro-hydraulic suspension configurations: a general structure; b corresponding bond
graph; c equivalent mechanical system; d typical structure with QB≡ 0; e typical structure with
QA ≡ 0 (based on Karnopp 1987)
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generator represented by the electro-hydraulic actuator that includes the controlled
flow source QB.

As suggested by Hrovat (1997) the above NBAS model could be further
enhanced by inclusion of inertia effects due to hydraulic line dynamics, which can
be especially relevant in case of relatively long and narrow lines or tubing. This is
shown in Fig. 44, where the hydraulic conduit connecting the two flow sources, QA

and QB, and suspension cylinder has been modeled as an inerter element repre-
sented by a differential causality within the associated bond graph of Fig. 44.
A corresponding all-mechanical configuration is also shown in that figure. At this
point, it should be mentioned that more recently there were attempts to develop and
commercialize the hydraulic inerter (Scarborough 2011) as an alternative to its
more common mechanical inerter counterpart. This may have some advantages in
terms of packaging and overall design/cost flexibility, depending on particular
implementation situation.

Further extensions of the above electro-hydraulic structures are possible by
including an additional compliance near the suspension cylinder. This is shown in
Fig. 45a along with an associated controlled damping mechanism. In the case that
the latter is of an on/off type and neglecting all active sources (i.e. setting QA and
QB to zero) one ends up with a semi-passive suspension shown in Fig. 45b. This is
similar to Citroen hydro-pneumatic suspension (Carbonaro 1990) where one uses
the on-off valve to control the effective suspension stiffness. The bond graph for the
generic configuration of Fig. 45a is shown in Fig. 45c. Note in particular, that the
inerter element corresponding to fluid line inertia is now in an integral causality
with corresponding increase in the number of system states. Based on this bond
graph one can easily deduce the corresponding all-mechanical suspension structure
shown in Fig. 45d.

Fig. 44 Electro-hydraulic suspension model including hydraulic inertia (inerter-like) effects,
equivalent bond graph, and all-mechanical counterpart

Optimal Vehicle Suspensions: A System-Level … 175



A special case of the generic configuration of a typical electro-hydraulic (semi)
active suspension from Fig. 45 is shown in Fig. 46. This is one of the first pro-
duction implementations of the NBAS system developed by Nissan for their Infinity
Q45a luxury vehicle (Akatsu et al. 1990). Note in particular the presence of an
accumulator, which effectively acts in series with the actuator thus limiting the
actuator bandwidth while at the same time filtering high-frequency road-induced
disturbances. This corresponds to the accumulator with stiffness kA in Fig. 45a.
While the Infinity Q45a system used pressure control valve (Fig. 46a) another
alternative would be to use the flow control valve shown in Fig. 46b.

In late 1990s Mercedes introduced their Active Body Control—ABC advanced
suspension control system illustrated in Fig. 47 (Merker et al. 2002), which is
structurally similar to the NBAS architecture generalized in Fig. 45. However, there
is an important practical difference. While Infinity Q45a system used an hydraulic

Fig. 45 Electro-hydraulic suspension configurations including hydraulic inertia (inerter) effects,
and additional compliance and controlled (on-off) damping: a generic structure; b Citroen-like
hydro-pneumatic semi-passive equivalent with QA = QB = 0; c corresponding generic bond
graph; d equivalent all-mechanical system
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accumulator to implement the above mentioned in-series stiffness kA, the
Mercedes ABC suspension uses a mechanical counterpart similar to the one shown
in Fig. 45d. For most cases the two would be equivalent except in the case when
there is significant friction or even stiction within the actuator piston/cylinder
combination in which case the mechanical implementation would lead to smaller
road-induced disturbances resulting in better ride comfort. Through the years
Mercedes has further developed and enhanced their system, which has recently
included preview of the road based on stereo cameras. This system is now marketed
under Magic Body Control (MBC) on their high-end luxury vehicles (Anonymous
2017a; Streiter 2008).

Fig. 46 Nissan infinity Q45a N-B active suspension
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5.7 Broad Bandwidth Active Suspensions (BBAS)

Broad bandwidth active suspensions are characterized by relatively high
force-production bandwidth that may extend up to and beyond the wheel-hop
frequencies. This typically implies a very fast actuation and relatively stiff in-series
compliance kA in Fig. 45. The negative aspect of the latter is that the high-frequency
road-induced disturbances are more easily transmitted to the sprung mass resulting
in increased NVH (Noise, Vibration and Harshness) i.e. less comfortable secondary
ride. While most of the BBAS implementations thus far have been of
electro-hydraulic type equipped with high-fidelity servo-valves, there is also a case
to be made for all electrical actuation, especially in view of increasing emphasis on
Hybrid (HEV) and Battery Electric Vehicles (BEV).

As an example of electro-hydraulic implementation, we will next consider the
BBAS prototype system (Fig. 48) that was developed at Ford Research Laboratory
in the early nineties and successfully demonstrated in a research vehicle. It con-
sisted of four high-fidelity electro-hydraulic servo actuators, one at each corner,
installed onto a 1989 Ford Thunderbird (Goran and Smith 1996). The concept
hardware and software not only verified the potential in ride quality improvement
but also identified the shortcomings of the implemented hardware structure
including actual power consumption, secondary ride harshness, and actuator noise.

The Ford Thunderbird BBAS system was controlled through four-way servo
valves, which have high precision and speed of response. In addition, the BBAS
actuators were based on double-acting cylinders capable of equally fast rebound
and jounce strokes. The vehicle also had one central processor operating at lower

Fig. 47 Mercedes ABC
system (based on Merker
et al. 2002)
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rates, and four corner-unit micro-processors for fast signal/control processing; four
actuator displacement sensors and four load cells for internal (force) loop calcu-
lations; and four air springs—one at each corner placed in parallel with the BBAS
actuators. The air springs serve to support and self-center the vehicle sprung mass
as is typical of load leveling systems. At the same time they provide lower sprung
mass natural frequency for more comfortable basic ride, which is then appropriately
dynamically modified through the BBAS actuators. The system incorporated 26
various sensors, including accelerometers, pressure sensors, vehicle speed sensors
and others.

The BBAS control strategy was based on coordinated individual wheel control
and consisted of two hierarchical control levels (Goran et al. 1992). The outer loop
level operated at a 20 ms rate. It calculated the desired corner forces for the four
BBAS actuators, desired operating modes (handling or ride dominated) and
checked the overall system integrity. The ride related calculations were based on
quarter-car vehicle models aimed at emulating skyhook damping at each corner,
which is often very close to the optimal possible ride benefit (Hrovat 2014). Dif-
ferent effective spring and damping rates were used depending on prevailing
operating modes, i.e. ride or handling. Additional details about the system and its
performance can be found in Goran et al. (1992), Goran and Smith (1996).

An example of an Electrical Active Suspension (EAS) implementation (Davis
and Patil 1991) in a prototype Ford vehicle is shown in Fig. 49. An important
aspect of this BBAS system development was creation of an appropriate validated
model, with special emphasis on actuator model fidelity. The corresponding bond
graph model is shown in Fig. 50. This model was validated using bench testing and

Fig. 48 Illustration of Ford broadband active suspension prototype
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the results—in terms of relevant frequency transfer function plots—are shown in
Fig. 51. It can be seen that there is in general very good correlation between the
model and test data. Once validated, this model was used in the process of this—at
the time very novel—BBAS system development, which culminated in successful
demonstration in a research vehicle. More recent example of an EAS system
development can be seen in Moran (2004), Gysen et al. (2010), Anderson et al.
2013) indicating renewed interest in this promising concept, especially in view of
increased emphasis on electric (HEV and BEV) vehicles.

Fig. 49 Ford broadband electric active suspension (EAS) prototype

Fig. 50 Bond graph of Ford EAS broadband active suspension quarter car
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6 Optimization-Based Analysis of Active Suspensions
for Integrated Vehicle Controls

As discussed in the previous sections, active suspension is commonly considered
under the framework of vertical vehicle dynamics control primarily aimed at
improvements in ride comfort. In this section, we expand upon this traditional
application by introducing some recent developments based on more detailed,
non-linear vehicle models and more general optimization methodology. In partic-
ular, a collocation-type control trajectory optimization method is used to analyze to
which extent the application of fully active suspension (FAS) can be broaden to the
tasks of vehicle handling/cornering control and braking distance reduction, as well
as enhanced active safety, in general. The analysis is extended to the ride control
task for the case of emphasized, discrete road disturbances such as high-magnitude
bumps and potholes. The main optimal control objective is to provide a favorable
trade-off of ride comfort and road holding capability, as well as a robustness against
wheel damage, e.g. at the pothole trailing edge. The presentation is based on the
recent papers (Čorić et al. 2016a, b, 2017), which include more details on vehicle
modeling, optimization problem formulation, and optimization results and related
discussions.

Fig. 51 Ford EAS actuator model validation
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6.1 Vehicle Dynamics Model

The conducted optimization study is mostly based on the 10 DOF passenger vehicle
dynamics model depicted in Fig. 52a, b (Hancock 2006). The model state variables
include longitudinal (U), lateral (V), and heave (W) velocities, and roll (p), pitch (q),
and yaw (r) rates, as well as the four state variables related to the rotational speeds
ωi of each wheel, i = 1, …, 4. For the ride control optimization task, the simple
quarter-car vehicle model shown in Fig. 52c (Hrovat 1997) is mostly used. The 10
DOF model is extended by the unsprung mass dynamics (dashed lines in Fig. 52b)
when verifying the basic 10 DOF model-based optimization results, or when using
the full vehicle model for ride control optimization.

The variable ΔFzi (or Fa in Fig. 52c) represents the FAS control input to be
optimized along with other control inputs such as Δδ1 = Δδ2 (for active front
steering, AFS) and Ti (for active brakes, ABS).

The tire is described by the 1994 Magic formula combined-slip model, including
the relaxation length dynamics for the lateral DOF (Pacejka 2006). The longitudinal
and lateral tire forces are scaled by the tire-road friction coefficient μ.

6.2 Braking Distance Reduction

The optimization objective is to find the control input vector u = [T1,…,T4,ΔFz1,…,
ΔFz4], which minimizes the final longitudinal position X(tf) of the vehicle on the
fixed time interval [0, tf], i.e. the cost function to be minimized is specified as

J0 =Xðtf Þ ð53Þ

The optimization is subject to hard constraints on the tire normal load Fzi, i = 1,
…, 4, the FAS control inputs ΔFzi, and the suspension deflection zi, see Fig. 52b
and Čorić et al. (2017):

Fzi ≥Fzmin ð54Þ

−ΔFzmax ≤ΔFzi ≤ΔFzmax ð55Þ

− dj ≤ zi − z0i ≤ dj ð56Þ

In order to provide a well-damped system response, the cost function (53) is
extended with additive soft constraint terms of mean-square type on the variables ηi̇,
Fżi, ΔFzi, and ΔF ̇zi, where ηi denotes the tire longitudinal slip. Similarly, to ensure
straight ahead motion of the vehicle during the braking maneuver in the case of
split-μ scenario, the mean-square constraints are introduced for the yaw rate (r) and
the lateral displacement (Y) variables, and the active front or rear steering input is
added to the control vector to be optimized.
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Figure 53 shows the vehicle response for a pulse-type, low-high-low transient-μ
scenario, where the FAS and brake control inputs, ΔFzi and Ti, i = 1, …, 4, are
simultaneously optimized. The FAS provides a load boost on those tires that

Fig. 52 10 DOF vehicle
dynamics model (a, b) and
quarter car model (c)
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experience the high-μ condition (first front, Fzf = Fz1+ Fz2, and then rear tires,
Fzr = Fz3+ Fz4). This results in a boost of the longitudinal deceleration –ax, and
finally in reduction of the braking distance by 5.1% (on the given, fixed time
horizon).

The side effects of FAS action include excitation of vehicle heave and pitch
dynamics. This results in the long stroke in the heave, Z, direction (approx.
±10 cm; which is closely related to the suspension deflection constraint (56), with
dj = 10 cm), and the corresponding heave acceleration peak of 0.69 g. The pitch
angle response θ includes some more oscillatory content as the results of FAS
action.

In order to produce a strong tire load boost during the high-μ period and at the
same time satisfy the suspension stroke constraint, the FAS relaxes the tire load
immediately before and after the high-μ interval (see Fzf and Fzr). These tire load
holes have a weaker effect on the deceleration −ax than the load boost, because they
occur during the low-μ intervals.

The analysis is extended in Čorić et al. (2017) for other μ-scenarios. The braking
distance reduction is lower for the step-type, high-low transient-μ case (around 2%
for the same μ levels and time horizon values) and much smaller for the constant-μ
scenario (0.5%). In the latter case, the performance gain is higher (around 2%) if the
ABS actuator bandwidth is lower than the FAS bandwidth. This is because the FAS
can boost the tire load when the braking torque is being settled i.e. when it is close
to maximum, while preparing for the boost through generating the tire load hole in
the early stage of braking torque transient.

Fig. 53 Comparative Brakes and FAS + Brakes optimization results for pulse-type transient-μ
scenario
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In the split-μ scenario (μ1,3 = 1 and μ2,4 = 0.1 in the particular case, Fig. 54),
the FAS again transfers the load to the high-μ tires (the left tires in this case), and
the braking distance is reduced by 2.1%. To keep the vehicle moving straight ahead,
the optimized active front steering (AFS) input δf is such to counteract the yaw
torque caused by unequal left and right braking forces. Between the high-μ tires, the
load is transferred to the non-steered (left rear) tire, because it has a larger longi-
tudinal force potential according to the friction circle (Pacejka 2006). It is important
to note that the overall FAS action is such to form a warp arrangement of the four

Fig. 54 Comparative brakes and brakes + FAS optimization results for split-µ maneuver with
included AFS actuator
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FAS forces (see the normal load, Fzi, responses in Fig. 54). In this case the total
FAS force ΣΔFzi is approximately equal to zero, thus avoiding any notable have
motion, and allowing for control of tire load distribution over long steady-state
intervals. Namely, the load redistribution occurs during the whole maneuver
interval (Fig. 54), unlike in the transient-μ case where only a temporary load boost
(preceded by load hole) was achievable due to the suspension deflection/heave
stroke constraint (Fig. 53). It should also be noted that a chassis roll is induced
towards the high-μ wheels.

The constant-μ scenario has been extended by imposing oscillatory behavior of
the longitudinal slip (through an equality constraint), in order to mimic the
ABS-inherent limit-cycle behavior. The optimized FAS action is such to increase
the tire load in the wheel torque peak periods, thus resulting in a higher tire friction
potential in those periods, and finally boosted deceleration. This is in accordance
with the FAS + ABS control strategy proposed by Alleyne (1997).

6.3 Handling Control—Stabilization

The standardized sine-with-dwell maneuver-based test (Anonymous 2007) is used
to evaluate the FAS control authority in stabilizing the vehicle. In this maneuver, a
“robot” steering wheel angle (SWA) with the amplitude δk, the frequency of 0.7 Hz,
and the dwelling period of 0.5 s, is applied to a vehicle coasting at the velocity
U = 80 km/h for the tire-road friction coefficient µ = 0.9. Unlike the original test
specification, where repetitive tests with a growing SWA are executed, only the
worst-case scenario related to the SWA amplitude δk ≅ 270° is considered in
optimization. In order to reflect the test requests on limiting the yaw rate response
(stabilization) and maximizing the lateral displacement Y (responsiveness) during
the maneuver interval [0, tf = 4 s], the following cost function is considered:

J =
Ztf
0

ðr− rRÞ2dt − kmaxðYÞ ð57Þ

where rR is the target yaw rate generated by a vehicle dynamics reference model,
and k is the weighting factor selected to achieve a trade-off between the two
conflicting objectives. The optimization is subject to inequality constraints (54)–
(56). The optimized control variables are FAS inputs ΔFzi, i = 1, …, 4. A more
detailed elaboration of the optimization problem formulation and a more detailed
discussion of the optimization results are presented in Čorić et al. (2017).

Figure 55 shows the optimization results for the considered sine-with-dwell
maneuver. A typical though simplified feedback-type ESC reference strategy pre-
dominantly brakes the outer front wheel (Fx1) to generate an oversteer compensa-
tion (OSC) component of the yaw torque Mz and stabilize the vehicle (Tseng et al.
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1999). The OSC action is emphasized in the interval around t = 1 s in order to
suppress the excursion of sideslip angle β resulting in stabilization effect, as well as
around t = 2 s, but to a lower extent.

The ESC + FAS optimization results in Fig. 55 point to a significant yaw rate
error reduction leading to 45% lower yaw rate root-mean-square (RMS) error, and
also β-peak reduction resulting in a wider stability margin (see the performance
indices given in Table 1). This is achieved by two distinct actions that can be
observed in Fig. 55: (i) the total tire load boost (see ΣFzi around t = 0.7 s and
t = 1.3 s) that increases the lateral acceleration ay over its saturation level for

Fig. 55 Comparative FAS + ESC optimization results for sine-with-dwell maneuver, including
comparison with passive vehicle and ESC-only cases

Optimal Vehicle Suspensions: A System-Level … 187



improved handling, and (ii) transfer of load from front to rear tires to generate OSC
yaw torque (see Fzf and Fzr around t = 0.65 s and t = 1.9 s). As side effects, the
former excites significant heave motion (the heave acceleration peak of 0.38 g,
Table 1), while the latter causes emphasized pitch angle magnitudes (θ). The lateral
displacement Y (i.e. the responsiveness) remains largely unaffected. However, the
agility is notably improved in the case of integrated control (U(tf) is higher, tf =
4 s), because the ESC + FAS system uses the brakes to a lower extent than in the
ESC-only case (see Fx1, …, Fx4).

Since the optimization is inherently conducted over the full time window
(full-horizon preview is available), the comparison between the optimized FAS
control action and the causal ESC action (no preview) is strictly speaking unfair. To
provide a more appropriate comparison between the FAS and ESC systems control
authorities, the same preview-based optimization approach has been applied in the
FAS-only case (ΔFzi inputs are optimized) and active brake-only case (Ti inputs are
optimized). The corresponding results given in Table 1 under the labels ‘FAS1’ and
‘Active brakes’ show that the optimized FAS and active brake systems give
comparable yaw rate RMS errors. The advantages of FAS control include improved
responsiveness (by 17%) and agility (by 40%), while the disadvantages are related

Table 1 Comparative stability control performance indices for different actuator configurations
and FAS control strategies (k = 0.01 in Eq. (57))

Casea max(Y)
(m)

RMSb (rerr)
(rad/s)

Ẇ
�� ��

max
(m/s2)

|β|max

(°)
Θ|max

(°)
U(tf)
(m/s)

No control 4.51 0.471 0.38 29.63 1.08 11.87
ESC 4.22 0.126 0.33 3.82 1.57 18.48
FAS1 4.21 0.073 5.28 2.85 3.37 19.82
FAS2 3.86 0.077 0.81 2.97 3.09 19.83
FAS3 3.81 0.096 0.33 2.46 1.08 19.88
FAS4 4.33 0.088 7.91 3.16 1.28 19.85
FAS5 4.16 0.083 6.23 3.16 1.23 19.90
FAS6 4.23 0.153 0.33 6.48 0.95 19.35
FAS7 3.69 0.097 0.33 2.78 1.05 19.86
ESC + FAS 4.05 0.070 3.80 2.95 2.85 19.12
Active
brakes

3.61 0.074 0.40 3.25 2.00 11.61

aFAS1—Full FAS control
bRMS = Root Mean Square
FAS2—Hard constraint on total actuator force ∑Fzi= 0
FAS3—Laterally anti-symmetric force distribution (ΔFz1 = −ΔFz2, ΔFz3 = −ΔFz4)
FAS4—Longitudinally symmetric force distribution (ΔFz1 = ΔFz3, ΔFz2 = ΔFz4)
FAS5—Warp-related constraint (ΔFz1 = ΔFz4, ΔFz2 = ΔFz3)
FAS6—Longitudinally symmetric and laterally anti-symmetric force distribution
(ΔFz1 = ΔFz3 = −ΔFz2 = −ΔFz4)
FAS7—Coupled warp-related constraint (ΔFz1 = ΔFz4 = −ΔFz2 = −ΔFz3)
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to increased magnitudes of heave acceleration (0.5 g vs. 0.04 g) and pitch angle
(3.4° vs. 2°).

In order to investigate if the ultimate FAS performance can be approached by
simpler control actions based on lower number of control DOFs, the FAS control
input optimization scenarios defined in the legend of Table 1 under the labels
‘FAS2’–‘FAS7’ are also considered. The main conclusions drawn from the cor-
responding performance indices are as follows: (1) the application of zero total FAS
force constraint (FAS2; three control inputs) gives only slight reduction of control
performance, with an advantage of no heave motion excitation (no total tire load
boost is allowed); (2) in the cases of longitudinally symmetric force constraint and
warp-related constraints (FAS4 and FAS5, respectively; two control inputs in both
cases), the performance also remains high, the pitch motion excitation is avoided
(no front/rear tire load transfer is allowed), but the heave acceleration is excessive;
and (3) in the case of coupled warp-related constraint (FAS7; only a single control
input), the performance is notably deteriorated, but it is still better than that of the
ESC case, and both pitch and heave dynamics excitation is avoided. For the coupled
warp-related constraint, the FAS control makes the front tire loads more distinctive
from each other and the rear tire loads more balanced, thus providing an oversteer
compensation action based on the convexity of the lateral force versus normal load
tire curve (Pacejka 2006). At the same time, the total tire load, heave, and sus-
pension deflection are kept approximately constant, so that the control action can be
applied during steady-state turns, as well. FAS3 configuration gives comparable
performance as in the case of FAS7 configuration, but it includes one control DOF
more. FAS6 configuration is inferior to other configuration, because it does not
allow for load boost, front/rear load transfer, and different left/right load transfers on
the two axles.

6.4 Handling Control—Path Following

A path following minimization objective is used along a double lane change
maneuver (DLC) to further investigate the FAS control authority, particularly under
the conditions of understeer behavior (with respect to reference trajectory). The
optimization problem is to find the FAS control inputs ΔFzi (t), 0 ≤ t ≤ tf, i =1,
…, 4, which minimize the cost function

J =
Ztf
0

Y − YRðXÞð Þ2dt
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J0

+ k1

Ztf
0

∑
4

i=1
ðFzi −Fzi0Þ2dt+ k2

Ztf
0

θ2dt+ k3

Ztf
0

ϕ2dt+ k4

Ztf
0

∑
4

i=1
η̇2i dt

ð58Þ
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subject to inequality constraints similar to those given by Eqs. (54)–(56). In
addition to the main, cost function term J0, which penalizes the path following
error, there are other, soft constraint-related terms penalizing the control effort, pitch
and roll magnitudes, and excessive longitudinal slip excursions.

Figure 56 shows the optimization results for the worst-case DLC Maneuver 3.
The reference response corresponds to the passive vehicle for μ = 1, zero driveline
torque, and optimized driver steering input. The achieved vehicle path Y(X) is used
as the reference path for other cases presented in the same figure, where the same
driver steering input is applied, but for the reduced tire-road friction coefficient
μ = 0.6 and the driveline input torque Tin = 250 Nm. Under these conditions the
passive vehicle (‘No control’ case) becomes unstable (see β). The optimized active
front steering (AFS) control stabilizes the vehicle and provides an accurate path
following.

Fig. 56 Comparative AFS and FAS + AFS optimization results for path following task and
Maneuver 3 (μ = 0.6, Tin = 250 Nm)
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The path following RMS error is further reduced (by 30%) when the integrated
AFS + FAS control is applied. Since the AFS has a large control authority over the
lateral vehicle dynamics, the FAS action is focused on the effect of boosting the
total tire load (ΣFzi) and, thus, the lateral acceleration (ay) capacity in the critical
intervals. The FAS also provides a certain rear-to-front tire load transfer by strongly
unloading the rear axle for understeer compensation (USC) around the intervals of
0.3, 1.1, and 2.6 s. The side effects of FAS action are again related to excitation of
heave and pitch dynamics: the heave acceleration peak is 0.6 g while the pitch
angle amplitude is relatively modest (1°).

Table 2 shows the performance indices related to FAS-only optimization results
obtained for Maneuver 1 (μ = 0.6, Tin = 0) and different sets of cost function
weighting factors given in the table legend. In the unconstrained case (no hard and
soft constraints, Case 1), almost ideal path following can be achieved (J0 → 0).
However, this case is unrealistic due to very high heave peaks required by the
strong FAS action (43 cm from the equilibrium Z0), i.e. due to violation of the
suspension stroke limits (±10 cm). After adding the hard constraint on suspension
stroke (Eq. (56); Case 2), the path following RMS error (J0/tf)

1/2 grows signifi-
cantly, but it remains substantially lower compared to the no-control case. By
adding the soft constraint on control effort (Cases 3 and 4), the FAS control
amplitudes become smaller, thus reducing the FAS consumed energy
E=

R
ΔFzivzidt, as well as the pitch angle, heave, and heave acceleration magni-

tudes. This is paid for by reduction of the path following performance, which is
more emphasized in the case with higher control effort weighting factor k1 (Case 4).
When compared to the optimization results for Case 5 (considered in Fig. 56; the
pitch and roll angle magnitudes are constrained), the less restrictive tuning related
to Case 3 provides a significant improvement in the path following performance

Table 2 Comparative performance indices of FAS optimization results for different sets of
constraints and Maneuver 1 (μ = 0.6, Tin = 0)

Casea (J0/tf)
1/2

(m)
|β|max

(°)
X(tf)
(m)

E (kJ) Ẇ
�� ��

max
(m/s2)

|θ|max

(°)
|Z − Z0|max (|zi −
zi0|max) (cm)

No
control

4.493 8.0 103.1 0 0.3 0.7 0.6 (7.0)

Case 1 0.004 5.5 102.3 22.7 15.3 18.8 43.0 (69.0)
Case 2 0.182 5.2 104.4 7.0 10.1 4.6 10.0 (12.8)
Case 3 0.194 5.0 104.7 5.4 7.7 4.2 8.9 (11.1)
Case 4 0.262 4.4 105.5 3.4 4.3 4.2 2.6 (10.2)
Case 5 0.285 4.1 105.7 1.4 2.8 2.5 9.1 (10.1)
a1Unlimited FAS (no hard constraints and k1 = k2 = k3 = 0 in Eq. (58))
2Added suspension deflection constraint (k1 = k2 = k3 = 0)
3Added weak constraint on control effort (k1 = 0.001, k2 = k3 = 0)
4Added strong constraint on control effort (k1 = 0.01, k2 = k3 = 0)
5Added constraints on pitch and roll angle magnitudes (k1 = 0.01, k2 = 0.1, k3 = 0.1)
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(30% lower RMS error). However, the control effort is increased to such extent that
the tire load lower amplitudes approach the limit value set to 500 N.

Table 3 shows the path following RMS errors (m) for various single- and
multi-actuator configurations, and different DLC maneuver types. Maneuver 1 is
similar to the already described Maneuver 3, but the driveline torque is set to zero.
Maneuver 2 is executed for the non-reduced friction coefficient (μ = 1) like in the
reference case, but with a relatively high driveline torque (Tin = 350 Nm). The
results in Table 3 indicate that the FAS-only control is inferior to the AFS/ARS
control, which may appear to be in contrast with the handling control results from
Sect. 6.3, where the FAS was very competitive to active brake control. This is
because in the considered control task a strong USC action is required, including
the preview action during the initial period when the vehicle moves straight ahead
(see δf = δ1 = δ2 in the AFS case in Fig. 56). The fact that the FAS cannot generate
lateral tire force in the absence of tire sideslip angle explains its inferiority com-
pared to AFS. Nevertheless, it effectively stabilizes the vehicle and provides rela-
tively accurate path following.

Table 3 further shows that the ARS is more effective than AFS, because it
utilizes a driver-untapped lateral force potential of rear tires (Deur et al. 2014).
The FAS action is, thus, less effective when integrated with ARS (than with AFS),
and it is reduced solely to the unique ability of FAS to boost the total tire load and
the lateral acceleration. This unique control authority explains why the FAS brings
more significant improvement to the AFS (in the AFS + FAS configuration) than
the ARS does (in the ARS + AFS = 4WS configuration).

There are several other, secondary mechanisms through which the FAS can
improve the vehicle handling performance (Čorić et al. 2016b). First, for a
throttle-on maneuver and the example of rear-wheel-drive vehicle, the FAS unloads
the inner driven tire to increase its longitudinal slip and, thus, weaken its lateral
force to provide USC. Next, as already mentioned in Sect. 6.3, the FAS can
increase the left-right tire load difference on the front axle and make the tire load
more balanced on the rear axle, thus generating OSC yaw torque based on the
convexity feature of the tire lateral force versus load static curve. Finally, the FAS
can provide the vehicle tilting effect as an USC intervention acting through the
front-axle bump steer component of the toe effect.

Table 3 Comparative path following RMS error values (m) for different active steering and FAS
configurations and different DLC maneuver types

Maneuver ARS FAS ARS +
FAS

AFS AFS +
FAS

4WS 4WS +
FAS

1 0.112 0.281 0.077 0.137 0.086 0.091 0.067
2 0.044 0.197 0.025 0.045 0.027 0.030 0.023
3 0.175 0.405 0.141 0.229 0.157 0.163 0.130
Maneuver 1: μ = 0.6, Tin = 0
Maneuver 2: μ = 1, Tin = 350 Nm
Maneuver 3: μ = 0.6, Tin = 250 Nm
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6.5 Ride Comfort and Tire Impact Control for Bumps
and Potholes

In the case of bump-type road disturbance and the quarter-car vehicle model given
in Fig. 52c, the cost function is defined as (see Sect. 3.2):

J = k11

Ztf
0

x ̇24dt

|fflfflffl{zfflfflffl}
J11

+ k12

Ztf
0

ðx1 − x10Þ2dt
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

J12

+ k13

Ztf
0

ðx3 − x30Þ2dt
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

J13

+ k14

Ztf
0

F ̇2adt

|fflfflffl{zfflfflffl}
J14

ð59Þ

where the terms J11, …, J14 penalize the ride discomfort, loss of road holding/
handling ability, excessive suspension stroke, and control input oscillations,
respectively. The only hard constraint applied in the basic optimization case relates
to the FAS actuator force limits: −2500 ≤ Fa [N] ≤ 2500.

The dashed-line blue curves in Fig. 57 represent the corresponding optimization
results for the case of high-amplitude bump (10 cm), bump length of 0.1 s, and the
bump preview time of 0.2 s (see zr response). Immediately before the bump
occurrence, the FAS generates a positive force Fa, which tends to lift the tire (see x1
and Fz, and also Fig. 52c), thus reducing the strong tire-bump impact. Conse-
quently, the sprung mass acceleration dx4/dt is suppressed when compared to the
passive vehicle, thus resulting in better ride comfort. After the wheel hop peak,
occurring around t = 0.3 s (see x1), the FAS abruptly reverses its action (Fa < 0) to
prevent the strong sprung mass (free) fall that would affect the ride comfort.

Fig. 57 Optimization results for emphasized discrete bump-type road disturbance
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However, such “bang-bang”-like FAS action excites strong oscillations of the
system response, which results in residual wheel hops and related temporary losses
of road holding ability (Fz = 0). During the bump preview period (t < 0.2 s), the
FAS prepares for the tire lift action at the leading bump edge by exciting the
unsprung mass oscillations with a proper phase angle.

The solid-line red response in Fig. 57 corresponds to the case of imposing the
lower-limit constraint on the tire normal load (Fz > 1000 N), and also applying the
final time conditions on the state and control variable that are equal to the corre-
sponding initial conditions. The wheel is prevented from hopping (see x1 and Fz

responses) by generating a strong negative FAS force Fa after the bump peak
(0.25 < t (s) < 0.3), which presses the wheel to the ground. However, the reactive
force of the same amount Fa acts on the sprung mass (see Fig. 52), thus causing a
very strong peak of the sprung mass acceleration and affecting the ride comfort.
Therefore, there is an evident trade-off between the ride comfort and road holding
ability. The summarized performance plot shown in Fig. 58 indicate that the cost
function weighting factors can be tuned so that both ride comfort and road holding
indices are notably better than in the passive vehicle case, particularly in the
high-bump case.

The analysis has been extended to the case of full vehicle model (Fig. 52a, b)
with the unsprung mass dynamics included. It has been found that there is an
additional cross-axle FAS control mechanism, which reduces variation of the total
(four-corner) sprung mass/chassis force for improved ride comfort (Čorić et al.
2016a). This mechanism counteracts the anti-wheel-hop peak of suspension force
on the active axle (the one exposed to the bump) by means of suspension force
reduction on the inactive axle.

In the pothole case the cost function is formulated as

J =
Ztf
0

Faðx2 − x4Þð Þ2dt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J31

+ k32

Ztf
0

x ̇24dt

|fflfflffl{zfflfflffl}
J32

+ k33 −minðzuÞjτp + T
τp

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J33

+ k34

Ztf
0

F2
adt

|fflfflffl{zfflfflffl}
J34

ð60Þ

Fig. 58 Pareto frontier-like
diagram for two main
performance indices
((J12/ tf)

1/2 versus (J11/ tf)
1/2

based on definition in
Eq. (59)) and low (2 cm) and
high (10 cm) amplitude of
bump-type road disturbance

194 D. Hrovat et al.



The main difference compared to the cost function (59) relates to two additional
terms, J31 and J33, which penalize the FAS actuator energy consumption and the
tire sensitivity to damage during the pothole interval, respectively. The hard con-
straints include the aforementioned actuator force limit and the state variable
boundary condition.

Figure 59 shows the optimization results for the case of square-shape pothole
with the depth of 0.1 m, length of 0.1 s, and the preview time of 0.2 s. Regardless
of the cost function tuning, the optimal system behavior is such that the wheel hops
over the pothole (see xb) to prevent the wheel damage on the pothole trailing edge
(see x1 and Fz immediately after t = 0.3 s). To effectively prepare for the wheel
hop, the FAS first increases the (absolute value of) tire deflection x1 immediately
before the pothole (Fa < 0). It then quickly reverses its control action (Fa > 0) to
lift the wheel near the pothole leading edge (t ≅ 0.2 s) with some significant hop-off
velocity x2. The response of FAS energy consumption E indicates that the FAS
predominantly generates active force (dE/dt > 0), where the power peaks equal
around 1.5 kW.

The main difference between the two active control responses in Fig. 59 is that
the wheel entirely hops over the pothole when the emphasis is on damage pre-
vention (solid red curves) compared to the case when the ride comfort is empha-
sized (dashed blue curves). In the former case, the FAS action Fa is stronger
(longer) both in the preview phase (t < 0.2 s) and during the pothole period

Fig. 59 Optimization results for emphasized discrete pothole-type road disturbance of square
shape
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(0.2 < t (s) < 0.3), in order to better prepare for the wheel hop and keep the wheel
lifted action when hopping over. The post-pothole peak of the normal tire force Fz

is not only lower in that case, but it occurs after the trailing edge, thus reducing
further the possibility of wheel damage. However, the ride comfort is reduced (see
dx4/dt) due to the stronger FAS activity before and during the pothole period.

Another cost function tuning case is also considered in (Čorić et al. 2016a),
where the emphasis is on energy consumption. In this case the FAS action is such
that it keeps the suspension deflection x3 approximately constant during the pothole
period (and longer), i.e. no power is consumed in that case (as dx3/dt ≅ 0 holds in
that case). This results in halving the energy consumption compared to the previous
two cases, but the ride comfort or wheel damage robustness is compromised.

The above results are further illustrated by the performance indices listed in
Table 4 based on the definition of the cost function terms in Eq. (60), and for three
characteristic sets of weighting functions. In all cases, the FAS improves the wheel
damage robustness (see J33), and, it also, improves the ride comfort performance
(J32) when compared to the passive vehicle. In Case 3, the wheel damage is
avoided, while the other two cost indices are modestly high. In Case 2 the energy
consumption is the lowest, but ride comfort and wheel damage robustness are
inferior compared to Case 1.

The case of long pothole is analyzed in (Čorić et al. 2016a), as well. In that case
the optimal behavior includes the phases of (i) wheel landing and traveling over the
pothole bottom, and (ii) hopping over the pothole trailing edge.

6.6 Summary

The presented control variable optimization study has pointed to the unique control
authority of FAS, which relates to boosting the tire load for providing an increased
tire friction potential and improved vehicle dynamics control (VDC) performance.
The tire load boost can be applied under conditions of non-uniform tire friction
coefficient μ (the load is increased during the high-μ interval, e.g. for improved
ABS performance) or during the critical handling/cornering maneuvers (to increase
the lateral acceleration over its μ-related saturation level and improve the VDC

Table 4 Comparative
performance indices for
passive vehicle and three FAS
control optimization cases for
pothole-type road disturbance

Case Square-shaped pothole
Cost (J32/ tf)

1/2 (m/s2) E (kJ) J33 (cm)

No control 6.6 – 12.8
Case 1 2.9 0.14 2.5
Case 2 3.5 0.05 3.0
Case 3 4.0 0.12 0.0
In Cases 1, 2, and 3 the emphasis is on ride comfort, energy
saving, and wheel damage robustness, respectively
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performance without affecting the agility). The VDC performance can also be
enhanced by the FAS ability to generate oversteer compensation- or understeer
compensation-yaw torque by transferring the load to rear or front tires, respectively.
There are additional FAS control mechanisms for enhanced VDC, such as those
relying on spinning a driven tire by reducing its load, balancing the left-right tire
load on an axle to boost its lateral force, and increasing the steering effort through
the bump steer component of the toe effect. Finally, in the case of emphasized
discrete road disturbances such as high-amplitude bumps and potholes, a proper
(optimal) FAS control action can improve both ride comfort and road holding
performance. Moreover, in the pothole case, the wheel damage can be prevented by
forcing it to hop over the pothole.

However, the FAS control action has certain side effects and limitations. The tire
load boost and load transfer actions are directly associated with excitation of heave
and pitch dynamics, respectively, thus affecting the driving comfort. Due to the
limited suspension stroke, the FAS actions can last only for a relatively short
interval, and they would, thus, not be very effective in nearly steady-state turns or
transient maneuvers performed at slower rates of change. To emphasize the FAS
control effect (e.g. the tire load boost) and satisfy the suspension stroke constraint,
the FAS action typically includes a preparatory phase during the preview period
(e.g. a tire load hole), and is usually succeeded by a similar relaxation phase. This
makes the control system development more challenging, as it would require some
kind of on-line optimization that is typically included within the model predictive
control framework, and a preview of critical period of maneuver and/or road dis-
turbance. Another limitation relates to the fact that the FAS cannot influence the tire
lateral forces unless the tire is subject to non-zero lateral sideslip angle. This affects
the effectiveness of understeer compensation, particularly when it is a part of
preview control action during straight ahead driving.

There is though a FAS action that is not associated with most of the above side
effects. When the tire normal loads are distributed in the warp-like arrangement, the
FAS action does not excite the heave and pitch dynamics, and it can be applied
during steady-state turns and braking maneuvers in a simplified (more conven-
tional) control law formulation. However, this action has a lower control authority
than the load boost and front/rear load transfer actions, thus usually resulting in
limited control performance enhancement.

It is believed that the encouraging results of this study may serve as a solid basis
and inspiration for future possible extensions, especially when combined with
(semi)autonomous vehicles fortified by V2V, V2I, detailed 3D mapping, and
similar exciting and promising future developments.

Acknowledgements Assistance of Dr. Li Xu and Dr. Mirko Čorić in preparation of these class
notes and related slides, and the help of Professor Rill with some figures, is gratefully
acknowledged.
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Appendix

In this appendix we establish the LQG-optimal trade-off line for the 1 DoF model of
Fig. 7. We start with the covariance (Lyapunov) equation

A−BKð ÞX +X A−BKð ÞT = −GΓGT ð61Þ

where in our case GT= [−1 0] and Γ = 1 since we are dealing with normalized
covariance,

X =
X1 X3

X3 X2

� �
ð62Þ

where,

X1 = X1, rms, normð Þ2, and X2 = X2, rms, normð Þ2 ð63Þ

Define

ACL =A−BK =
0 1

− k1 − k2

� �
ð64Þ

with optimal control gains

k1 = r − 1 ̸2, k2 =
ffiffiffi
2

p
r − 1 ̸4 ð65Þ

then the covariance equation becomes

ACLX +XAT
CL = −GGT ð66Þ

or

2X3 X2 − k1X1 − k2X3

X2 − k1X1 − k2X3 − 2k1X3 − 2k2X2

� �
=

− 1 0
0 0

� �
ð67Þ

Solving for X1, X2, and X3,

X1 =
3

2
ffiffiffi
2

p r1 ̸4, X2 =
1

2
ffiffiffi
2

p r − 1 ̸4, X3 = −
1
2

ð68Þ
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from where we get the normalized rms rattlespace

x1, rms, norm =
ffiffiffiffiffi
X1

p
=

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

pp r1 ̸8 ð69Þ

The normalized rms sprung mass acceleration then follows from

U =KXKT =
1

2
ffiffiffi
2

p r − 3 ̸4 ð70Þ

so that

U =
27
64

X − 3
1 ð71Þ

resulting in the normalized rms acceleration versus rattlespace equation

urms, norm =
3

ffiffiffi
3

p

8
x− 3
1, rms, norm ð72Þ

which was used to plot the corresponding optimal trade-off line in Fig. 13.
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