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Preface

At the CISM course “Vehicle Dynamics of Modern Passenger Cars”, a team of six
international distinguished scientists presented advances regarding theoretical
investigations of the passenger car dynamics and their consequences with respect to
applications.

Today, the development of a new car and essential components and improve-
ments are based strongly on the possibility to apply simulation programmes for the
evaluation of the dynamics of the vehicle. This accelerates and shortens the
development process. Therefore, it is necessary not only to develop mechanical
models of the car and its components, but also to validate mathematical–mechanical
descriptions of many special and challenging components such as e.g. the tire. To
improve handling behaviour and driving safety, control schemes are integrated,
leading to such properties as avoiding wheel locking or torque vectoring and more.
Future developments of control systems are directed towards automatic driving to
relieve and ultimately replace most of the mundane driving activities.

As a consequence, this book and its six sections—based on the lectures of the
mentioned CISM course—aim to provide the essential features necessary to
understand and apply the mathematic–mechanical descriptions and tools for the
simulation of vehicle dynamics and its control. An introduction to passenger car
modelling of different complexities provides basics for the dynamical behaviour
and presents the vehicle models later used for the application of control strategies.
The presented modelling of the tire behaviour, also for transient changes of the
contact patch properties, provides the needed mathematical description. The
introduction to different control strategies for cars and their extensions to complex
applications using, e.g., state and parameter observers is a main part of the course.
Finally, the formulation of proper multibody code for the simulation leads to the
integration of individual parts. Examples of simulations and corresponding vali-
dations will show the benefit of such a theoretical approach for the investigation
of the dynamics of passenger cars.

As a start, the first Chapter “Basics of Vehicle Dynamics, Vehicle Models”
comprises an introduction to vehicle modelling and models of increasing com-
plexity. By using simple linear models, the characteristics of the plane vehicle

v



motion (including rear wheel steering), driving and braking and the vertical motion
are introduced. Models that are more complex show the influence of internal vehicle
structures and effects of system nonlinearities and tire–road contact. Near Reality
Vehicle Models, an assembly of detailed submodels, may integrate simple models
for control tasks.

Chapter “Tire Characteristics and Modeling” first presents steady-state tire for-
ces and moments, corresponding input quantities and results obtained from tire
testing and possibilities to formulate tire models. As an example, the basic physical
brush tire model is presented. The empirical tire model known as Magic Formula, a
worldwide used tire model, provides a complex 3D force transfer formulation for
the tire–road contact. In order to account for the tire dynamics, relaxation effects are
discussed and two applications illustrate the necessity to include them.

Chapter “Optimal Vehicle Suspensions: A System-Level Study of Potential
Benefits and Limitations” starts with fundamental ride and handling aspects of
active and semi-active suspensions presented in a systematic way, starting with
simple vehicle models as basic building blocks. Optimal, mostly linear-quadratic
(H2) principles are used to gradually explore key system characteristics, where each
additional model DOF brings new insight into potential benefits and limitations.
This chapter concludes with practical implications and examples including some
that go beyond the traditional ride and handling benefits.

Chapter “Active Control of Vehicle Handling Dynamics” starts with the prin-
ciples of vehicle dynamics control: necessary basics of control, kinematics and
dynamics of road vehicles starting with simple models, straight-line stability. The
effects of body roll and important suspension-related mechanics (including the
Milliken Moment Method) are presented. Control methods describing steering
control (driver models), antilock braking and electronic stability control, all
essential information for an improvement for the vehicle handling, are provided.

In Chapter “Advanced Chassis Control and Automated Driving”, it is stated first
that recently various preventive safety systems have been developed and applied in
modern passenger cars, such as electronic stability system (ESS) or autonomous
emergency braking (AEB). This chapter describes the theoretical design of active
rear steering (ARS), active front steering (AFS) and direct yaw moment control
(DYC) systems for enhancing vehicle handling dynamics and stability. In addition
to recently deployed preventive safety systems, adaptive cruise control (ACC) and
lane-keeping control systems have been investigated and developed among uni-
versities and companies as key technologies for automated driving systems.
Consequently, fundamental theories, principles and applications are presented.

Chapter “Multibody Systems and Simulation Techniques” starts with a general
introduction to multibody systems (MBS). It presents the elements of MBS and
discusses different modelling aspects. Then, several methods to generate the
equations of motion are presented. Solvers for ordinary differential equation
(ODE) as well as differential algebraic equation (DAE) are discussed. Finally,
techniques for “online” and “offline” simulations required for vehicle development
including real-time applications are presented. Selected examples show the con-
nection between simulation and test results.

vi Preface



The application of vehicle and tire modelling, the application of control strate-
gies and the simulation of the complex combined system open the door to inves-
tigate a large variety of configurations and to select the desired one for the next
passenger car generation. Only conclusive vehicle tests are necessary to validate
and verify the simulation quality—an advantage that is utilized for modern car
developments.

To summarize these aspects and methods, this book intends to demonstrate how
to investigate the dynamics of modern passenger cars and the impact and conse-
quences of theory and simulation for the future advances and improvements of
vehicle mobility and comfort. The chapters of this book are generally structured in
such a way that they first present a fundamental introduction for the later investi-
gated complex systems. In this way, this book provides a helpful support for
interested starters as well as scientists in academia and engineers and researchers in
car companies, including both OEM and system/component suppliers.

I would like to thank all my colleagues for their great efforts and dedication to
share their knowledge, and their engagement in the CISM lectures and the con-
tributions to this book.

Vienna, Austria Peter Lugner
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Basics of Vehicle Dynamics, Vehicle
Models

Peter Lugner and Johannes Edelmann

Abstract For the understanding and knowledge of the dynamic behaviour of

passenger cars it is essential to use simple mechanical models as a first step. With

such kind of models overall characteristic properties of the vehicle motion can be

investigated. For cornering, a planar two-wheel model helps to explain understeer–

oversteer, stability and steering response, and influences of an additional rear wheel

steering. Another planar model is introduced for investigating straight ahead accel-

eration and braking. To study ride comfort, a third planar model is introduced. Con-

sequently, in these basic models, lateral, vertical and longitudinal dynamics are sep-

arated. To gain insight into e.g. tyre–road contact or coupled car body heave, pitch

and roll motion, a 3D-model needs to be introduced, taking into account nonlineari-

ties. Especially the nonlinear approximation of the tyre forces allows an evaluation of

the four tyre–road contact conditions separately—shown by a simulation of a brak-

ing during cornering manoeuvre. A near reality vehicle model (NRVM) comprises

a detailed 3D description of the vehicle and its parts, e.g. the tyres and suspensions

for analysing ride properties on an arbitrary road surface. The vehicle model itself is

a composition of its components, described by detailed sub-models. For the simula-

tion of the vehicle motion, a multi-body-system (MBS)-software is necessary. The

shown fundamental structure of the equations of motion allows to connect system

parts by kinematic restrictions as well, using closed loop formulations. A NRVM also

offers the possibility for approving a theoretical layout of control systems, generally

by using one of the simple vehicle models as observer and/or part of the system.

An example demonstrates the possibility of additional steering and/or yaw moment

control by differential braking.

Keywords Vehicle dynamics ⋅ Vehicle handling ⋅ Basic models

Non-linear models

P. Lugner (✉) ⋅ J. Edelmann
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2 P. Lugner and J. Edelmann

1 Introduction

Important features of modern passenger cars with respect to vehicle dynamics are

easy handling for normal driving, appropriate ride comfort, and support of the driver

by control systems e.g. for lane keeping or in critical situations.

In addition to investigate the fundamental dynamic behaviour of the vehicle, the-

oretical methods support the engineer in an early stage of vehicle development in

order to define basic vehicle layout properties, where no experiments are available,

and also for understanding detailed dynamic properties of (sub) systems. Thereby the

use of models of different complexity comprises the understanding of basic proper-

ties as well as the interaction with (human) control systems, by applying simulations

with multi-body-system (MBS) programs, see Lugner (2007), Rill (2012). With the

obtained results, the overall characteristics of the car can be interpreted and recom-

mendations for details of components can be given, as well as the potential for future

developments and improvements demonstrated.

Which kind of mathematical–dynamical vehicle model is needed/will be used

is obviously a matter of the demanded degree of detail with respect to the investi-

gated ride/handling quality. For the understanding and characterization of the basic

behaviour with respect to the longitudinal and lateral dynamics and vertical motion,

different linearized models may be used, see e.g. Mitschke and Wallentowitz (2014),

Plöchl et al. (2015).

More complex models, including proper nonlinear descriptions of the tyre

behaviour, are necessary to describe the spacial carbody motion and tyre–road con-

tact to consider higher accelerations.

For the layout of vehicle components and their kinematic and dynamic interaction,

detailed MBS-models including full nonlinearities are used to establish a near reality

vehicle model (NRVM). Such a model also provides the possibility to investigate the

behaviour of control systems in a theoretical environment—a necessity for the tuning

of structures and parameters for a later realisation.

2 Simple (linear) Vehicle Models

By using basic (planar) linear models with a low number of degrees of freedom

(DoF), the equation of motions may decouple with regard to lateral, longitudinal and

vertical vehicle motion. Thus, cornering, longitudinal dynamics and vertical dynam-

ics can be investigated independently.
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2.1 Cornering, x-y-plane Motion

This well known simplified model of the vehicle is based on merging both wheels

of an axle to a substitutive wheel (axle characteristics) in the centre of this axle, see

Fig. 1. Furthermore, it is assumed that the whole model—called two-wheel model

(or bicycle model)—may move in the x-y-plane only. Since the model is planar, the

CG will also move in this plane only, e.g. Plöchl et al. (2015), Plöchl et al. (2014),

Abe (2009), Popp and Schiehlen (2010). For the nomenclature and explanation of

state variables see also DIN ISO 8855 (2013).

The relevant DoF for this model are the longitudinal and lateral motion and the

rotation about a vertical axis, represented by the velocities vx and vy (or v and side

slip angle of the vehicle 𝛽), and yaw rate �̇� = r, see Fig. 1.

With front and rear steering angles 𝛿F and 𝛿R as inputs to the vehicle, the kinematic

description of the motion of the car provides the side slip angles of front and rear

substitutive wheels with

𝛼F = 𝛿F −
𝜐y + lF�̇�

𝜐x

𝛼R = 𝛿R −
𝜐y − lR�̇�

𝜐x
(1)

Fig. 1 Planar vehicle model
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A linear model as basic description of the lateral tyre/axle forces

Fyi = Ci𝛼i i = R,F (2)

is applied, where the cornering stiffness Ci comprises properties of the tyres and the

suspension stiffnesses.

With the aerodynamic forces WL, WY and the aerodynamic moment MZ the equa-

tions of motion are

x ∶ m(v̇ − aq𝛽) =
(
FxF − FyF𝛿F

)
+
(
FxR − FyR𝛿R

)
− WL (3)

y ∶ m(aq + 𝛽v̇) =
(
FxF𝛿F + FyF

)
+
(
FxR𝛿R + FyR

)
+ WY (4)

z ∶ IZ�̈� =
(
FxF𝛿F + FyF

)
lF −

(
FxR𝛿R + FyR

)
lR + MZ (5)

The lateral acceleration can be expressed by using the radius 𝜌 of the curvature of

the path of the CG

aq = v2
𝜌

(6)

Considering the steering angles 𝛿F, 𝛿R and the longitudinal tyre/axle forces FxF, FxR
(provided by the drive train and brake system) as input quantities, Eqs. (1)–(5), will

describe the motion of the car by v(t), 𝜓(t), 𝜌(t).
With the restriction of the linear description of the lateral tyre forces, neglecting

the influence of the longitudinal force transfer and assuming small accelerations v̇ or

steady state conditions, Eqs. (4) and (5) are sufficient to describe the in-plane-motion

of the vehicle.

For basic investigations of the cornering behaviour a constant longitudinal veloc-

ity is considered, leading to

v ≅ vx = konst ; v = (�̇� + �̇�)𝜌 (7)

aq ≅ ay = v(�̇� + �̇�) (8)

Moreover, for constant velocity v the longitudinal tyre forces will be small. Thus

the expressions Fxi𝛿i in (4) and (5) can be neglected. and the linear matrix equation

of the linear two-wheel model is derived by

ẋ = Fx +G𝛿 (9)

x =
[

vy
�̇�

]
=
[

vy
r

]
, 𝛿 =

[
𝛿F
𝛿R

]
,
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F =
⎡
⎢
⎢
⎣

−CF+CR
mvx

−(lFCF−lRCR)
mvx

− vx

−(lFCF−lRCR)
IZ vx

− l2FCF+l2RCR

IZ vx

⎤
⎥
⎥
⎦
, G =

⎡
⎢
⎢
⎣

CF
m

CR
m

lFCF
IZ

− lRCR
IZ

⎤
⎥
⎥
⎦

Another way to describe the system is to transfer (9) into a second-order-system,

Kortüm and Lugner (1994)

𝛽 + 2K1�̇� + K2𝛽 =
CF

mvx
�̇�F −

CF(lFmv2x − CRlRl)
IZmv2x

𝛿F

+
CR

mvx
�̇�R −

CR(−lRmv2x − CFlFl)
IZmv2x

𝛿R (10a)

r̈ + 2K1ṙ + K2r =
lFCF

IZ
�̇�F +

CFCRl
IZmvx

𝛿F

−
lRCR

IZ
�̇�R −

CFCRl
IZmvx

𝛿R (10b)

with

K1 =
IZ(CR + CF) + m(CFl2F + CRl2R)

2IZmvx
> 0 (11)

K2 =
l2CFCR + (CRlR − CFlF)mv2x

IZmv2x
⋛ 0 (12)

Here it becomes immediately obvious that the expression

(CRlR − CFlF)mv2x (13)

is responsible for the sign of K2 and the possibility for larger velocities vx that K2 < 0.

This is indicating an unstable steady-state motion of the system. To increase the range

of stable behaviour, it will help to put CG closer to the front lF < lR and/or ‘softer’

substitutive tyres at the front CF < CR (e.g. applying a stiffer torsion bar at the front

axle).

2.2 Steady State Cornering Without Rear Wheel Steering
(𝜹R = 𝟎)

In general the common passenger car layout does not have additional rear wheel

steering, but this feature may be used for control purposes in the near future. An

essential information regarding the vehicle behaviour with respect to the influence

of the cornering radius and the velocity is provided by the steady state condition,
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where the cornering radius is equal to the curvature radius 𝜌 = R and

v = const. (14)

�̇� = r = v∕R (15)

ay = v2∕R (16)

The steady state values for the steering angle and the side slip angle of the car

derive directly from (10a) and (10b) with (14) and with 𝛿R = 0:

𝛿F,st = 𝛿Fo +
CRlR − CFlF

CRCFl
may,st (17)

𝛽st = 𝛽o −
lF

CRl
may,st (18)

Using the condition v → 0 the corresponding values of side slip angle and steering

angle (also denoted Ackermann angle 𝛿a) are, see Fig. 2:

𝛽o =
lR
R
, 𝛿a = 𝛿Fo = l

R
= l

𝜐2x
ay,st, 𝛽o =

lR
l
𝛿Fo (19)

To characterize the steering behaviour, an understeer gradient is used:

KUS =
m(CRlR − CFlF)

CRCFl
⋛ 0 (20)

Consequently (17) can be modified, and with the sign of KUS the increase/decrease

of the necessary steering angle with increasing values of velocity or acceleration can

be explained.

𝛿H,st

is
= 𝛿F,st = 𝛿F0 + KUSay,st (21)

As indicated in (21) also the hand wheel steering angle 𝛿H,st together with the steering

system ratio is is introduced. Thus, (21) and KUS may be used to characterise the

steering behaviour of the vehicle:

KUS > understeer behaviour

KUS = neutral steering

KUS < oversteer behaviour

For a graphical presentation of a typical behaviour two kinds of figures are common.

With the data given in Table 1 for an oversteer vehicle A and an understeer vehicle B

the Fig. 3 shows the change of steering angle 𝛿F for constant velocity as function of
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Fig. 2 Driving condition

for v → 0

R

0

lR

CG

F

R

l
0

0β

0β
F0δ

F0δ

Table 1 Vehicle data for the linear 2-wheel models used for the demonstration examples: two

different steering characteristics

Vehicle A B
m 1900 kg

IZ 2900 kgm2

lF 1.44 m

lR 1.36 m

CF 90 000 N rad
−1

60 000 N rad
−1

CR 80 000 N rad
−1

110 000 N rad
−1

KUS −1.95⋅10−3 s2m−1 +6.50⋅10−3 s2m−1

Steering characteristics oversteer understeer

lateral acceleration ay (for variation of R) and constant radius R as function of lateral

acceleration ay (for variation of v), Lugner (2007).

For the oversteer vehicle A with increasing ay the necessary steering angle 𝛿F
decreases. Consequently an increasing sensitivity of the driver is necessary for

proper steering. The understeer vehicle B needs increasing steering angles 𝛿F with

increasing ay, a property that for the driver fits to the expected behaviour. Though

the steering behaviour is quite different for vehicles A and B, the side slip angle 𝛽

characteristics do not show greater differences with increasing ay. For both vehicles

the 𝛽 < 0 indicates an inward turned attitude during cornering.



8 P. Lugner and J. Edelmann

0 1 2 3 4 5

0.01

0.02

0.03

δH
is

= δF
[rad]

ay [m/s2]

δa = l
v2
x
ay

B,KUS > 0

A,KUS < 0

K
U
S
=

0

(a)

0 1 2 3 4 5

0.07=δF0

2δF0

δF
[rad]

A,KUS < 0

B,KUS > 0

KUS = 0

ay [m/s2]

(b)

0
1 2 3 4 5

0.034=β0

−β0

β
[rad]

ay [m/s2]

B

A

(c)

Fig. 3 Steady state steering characteristics, data corresponding to Table 1: a for v = constant=
80 km/h; b for R = constant= 40m; c side slip angles to (b)

2.3 Steady State Cornering with Rear Wheel Steering 𝜹R ≠ 𝟎

The effects of additional rear wheel steering, representing an additional system input,

make it possible to change/improve the steering behaviour or the side slip angle of

the car.

For cornering with very low speed (v → 0), Fig. 4 provides

l
R

= 𝛿Fo − 𝛿Ro (22)

𝛽Ro =
lR
l
𝛿Fo +

lF
l
𝛿Ro =

lR
R

+ 𝛿Ro (23)

according to the relation of these two steering inputs. So 𝛿Ro may be chosen in such

a way that 𝛽Ro = 0 for left/right cornering.

For velocities or accelerations larger than zero the equation corresponding to (17)

becomes

𝛿F,st − 𝛿R,st = 𝛿Fo − 𝛿Ro
+

CRlR − CFlF
CFCRl

may,st (24)

It is obvious that for constant 𝛿Fo − 𝛿Ro and no further change of the rear wheel

steering angle (e.g. 𝛿R,st = 0), the characterisation for under-, neutral- and oversteer

behaviour is the same as before. On the other hand, if (𝛿R,st − 𝛿Ro) is used as a variable

input—e.g. by a control system—one may achieve an arbitrary steering behaviour.
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Fig. 4 Additional rear

wheel steering: steady state

cornering with v → 0

Assuming that there is no change of the initial rear wheel steering angle 𝛿R0, and

𝛿R,st = 0, the side slip angle of the vehicle will become

𝛽R,st = 𝛽Ro + (𝛿R,st − 𝛿Ro) −
lF

CRl
may,st (25)

Compared to (19), this relation indicates a shift in 𝛽st only.

In contrast to (10a) it can be shown that, with a proper control, the side slip angle

𝛽 of the car can be hold at 𝛽st = 0—as considered to be desirable in literature.

𝛽st = 0 = 𝛿F

(
lR
l
−

CFlFmv2x
l2CFCR

)
+ 𝛿R

(
lF
l
+

CRlRmv2x
l2CFCR

)
(26)

Especially in tight curves with vx → 0 this control aim may help the driver regarding

the orientation of the vehicle motion and the direction of his/her view. If it is wanted

to have both a given steering (wheel) characteristic for the driver and the side slip

angle 𝛽 = 0, an additional front wheel steering Δ𝛿F or a variable steering ratio is
need to be used.

2.4 Stability

Under certain conditions the motion of the car—represented by the linear dif-

ferential equations (9) or (10)—can become unstable. Even small disturbances at

steady state driving conditions will result in uncontrolled motions, e.g.

Mitschke and Wallentowitz (2014), Rill (2012).
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The eigenvalues of the equations of motion characterize the stability behaviour.

As well known, the eigenvalues 𝜆1,2 can be derived from the homogenous part of the

differential equations (9) or (10) by

det(F − 𝜆E) = 0 (27)

(where E represents the unity matrix) or

𝜆2 + 2K1𝜆 + K2 = 0 (28)

From (28) the eigenvalues follow immediately with

𝜆1,2 = −K1 ±
√

K1
2 − K2 (29)

In general, stability is given as long as the real parts of the eigenvalues are smaller

than zero. The system will show an unstable behaviour if K2 < 0 . To determine the

sign of K2 Eq. (12) leads to

l2CFCR + (CRlR − CFlF)mvx
2 ⋛ 0

l +
(CRlR − CFlF)

lCRCF
mvx

2 ⋛ 0 (30)

So it is immediately obvious that the expression (see (13))

(CRlR − CFlF)mv2x (31)

is responsible for the sign of K2 and the possibility for larger velocities vx that K2 < 0
indicates the instability of the system.

Using (20) Eq. (30) can be expressed by

𝛿F0 + KUSay,st ⋛ 0; (32)

which is identical with the right hand side of (21). So the sign of the understeer

gradient KUS is also informative regarding the stability. An oversteer vehicle can

become unstable for higher velocities/accelerations.

Since only the homogenous equations are employed for the determination of the

stability, the criterion (32) for a car with additional rear wheel steering needs to be

modified due to (24) to

𝛿F0 − 𝛿R0 + KUSay,st ⋛ 0 (33)

Since 𝛿R0 ⋛ 0 the lateral acceleration ay,st for the stability limit can be changed com-

pared to pure front wheel steering.
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Fig. 5 Steering step input

limits defined by ESV
(Experimental Safety

Vehicle): with two examples

of a passenger car (step input

�̇�H ≅ 500◦∕s, final steady

state lateral acceleration

ay,st ≅ 0.4g)

0 1 2 3 s
Time since steering input

r
rst

1.6

1.2

0.8

0.4

Test speed
40 km/h ≤ vx ≤ 110 km/h

vx = 110 km/h

vx = 40 km/h

2.5 Step Steering Input

In critical situations it may happen that the driver will introduce a step like steering

input. Then the response of the vehicle can be characterized e.g. by the yaw velocity

r which will reach the steady state value rst after the transient phase following the

input. Figure 5 shows accepted limits for r(t).
The corresponding steady state straight ahead driving yaw velocity gain (see

(10b)) is defined by

Gr,st =
r

𝛿H∕is
∕st =

vx

l + KUSvx
2 (34)

where the denominator is already introduced with (30).

For an understeer vehicle KUS > 0 the gain Gr,st will have a maximum at a char-

acteristic speed vch that can be obtained by

𝜕Gr,st

𝜕vx
=

l − KUSv2ch

(l + KUSv2ch)2
= 0

v2ch = l
KUS

, KUS > 0 (35)

In contrast, the oversteer vehicle KUS < 0 will have an unlimited yaw response

for the critical speed vcrit
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A, KUS < 0

B, KUS > 0
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vcrit,A = 136 km/h

vch = 74 km/h

Fig. 6 Behaviour of oversteer, neutral and understeer vehicle with respect to the static yaw velocity

gain; vehicle data for A, B according Table 1

Gr,s ⇒ ∞

v2crit = − l
KUS

, KUS < 0 (36)

Figure 6 shows for the already introduced vehicles A and B (see Table 1) the yaw

velocity gains. The understeer vehicle B shows a nearly equal response for 40 km/h

and more—a driver friendly behaviour. The increasing response of vehicle A will be

a challenge for the driver even for velocities smaller than the critical one.

The corresponding acceleration response is shown in Fig. 7. With the steady state

acceleration

ay,st = r vx

the lateral acceleration response

ay

𝛿H∕is
∕st = Gay,st =

v2x
l + KUSvx

2 (37)

has the same structure as the yaw response. The understeer vehicle B has a limitation

for the ay,st while even a neutral steering vehicle tends to have nonlinear increasing

values of Gay,st.
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Gay,st,B |vx→∞ = 153 m/s2

rad

Fig. 7 Steady state lateral acceleration gain for oversteer KUS < 0, neutral steer KUS = 0 and under-

steer vehicle KUS > 0; vehicle data for A, B according to Table 1

2.6 Frequency Response

To provide an information for an alternating steering the vehicle reaction to harmonic

inputs of different frequencies can be considered. It is assumed that the driver starts

the harmonic input at straight ahead driving; no rear wheel steering is taken into

account.

The yaw velocity frequency response for frequency 𝜈 results again from Eq. (10):

Gr(i𝜈) = ( r
𝛿F

)|i𝜈 = Gr,st
1 + TZ(i𝜈)

1 + 2D
𝜔o
(i𝜈) − 𝜈2

𝜔2
o

(38)

with

TZ =
mvxlF
CRl

𝜔2
o = K2 =

CFCRl2

IZmv2x
(1 +

KUSv2x
l

)

D𝜔o = K1

The response for the lateral acceleration can be calculated using also (10) and

ay = vx(r + �̇�)
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Fig. 8 Normalized acceleration frequency response of the oversteer vehicle A and the understeer

vehicle B (Table 1). No response of vehicle A for v > vcrit = 136 km/h

ay(i𝜈)
𝛿F(i𝜈)

= vx[
r(i𝜈) + i𝜈𝛽(i𝜈)

𝛿F(i𝜈)
]

Gay(i𝜈) = (
ay

𝛿F
) = Gay,st

1 + T1(i𝜈) − T2𝜈
2

1 + 2D
𝜔o
(i𝜈) − 𝜈2

𝜔2
o

(39)

with

T1 =
lR
vx

, T2 =
Iz

CRl

and D, 𝜔0 corresponding to (38).

With Fig. 8 it can be noticed that for the lateral acceleration gain in the region

of normal steering till about 1 Hz the oversteer vehicle shows a strongly frequency

dependent response with large phase angles compared to the driver friendly behaviour

of vehicle B. The low steering response behaviour about 1–2 Hz is a generally

accepted feature.

Examples for measured frequency responses are shown in Fig. 9 for an understeer

vehicle.
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Fig. 9 Measurements of yaw velocity and lateral acceleration responses of an understeer vehicle

(KUS = 0.0062 s
2
m

−1
, vch = 76 km/h) similar to vehicle A for different driving velocities, Lugner

(2007)

2.7 Longitudinal Dynamics, x-z-plane

To investigate the influences of braking or accelerating a plane vehicle model like

Fig. 10 is introduced, Plöchl et al. (2015), Lugner (2007). Thereby no heave and pitch

motions are taken into account.

If the individual rotations of the wheels are included further extensions with

respect to the configuration of the drive train (four-wheel drive, electric hub drive,

Fig. 10 Plane vehicle

model for longitudinal

dynamics; symmetry to

central x-z-plane

l

ξ

r
zF

xF

F

F

l

2F
2F

r
ϑ

z

2F
2F
zR

xR

R

R

ωF

R

ξF

x

Z x
x

R
l

h

G=mg

CG

ω

a

LW

MY

W
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Fig. 11 Model of a wheel
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z
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F
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etc.) and at least the sticking and slipping of a wheel can be considered. Correspond-

ingly Fig. 11 shows the essential features of the wheel motion. It is assumed that in

the wheel hub—also the CG of the wheel—the forces X, Z are transferred to the axle.

The normal force Fz has an offset, the pneumatic trail 𝜉, which represents the rolling

resistance. MD,MB,MF, are driving torque, braking torque and friction moment by

the wheel bearing.

For the kinematics, the simplification that the tyre radius r is equal to the rolling

radius is assumed.

The equations of motion for the vehicle Fig. 10 now can be established:

max = 2FxF + 2FxR − WL − G sin 𝜗 (40)

0 = 2FzF + 2FzR + WZ − G cos 𝜗 (41)

2IF�̇�F + 2IR�̇�R = 2FzR(lR − 𝜉R) − 2FzF(lF + 𝜉F) − 2(FxF + FxR)h + MY (42)

With the aerodynamic components WL,WZ ,MY , the moments of inertia IF, IR of

the wheels with respect to their axes and the whole vehicle mass m. The angular

acceleration of e.g. the rear wheel can be calculated by

IR�̇�R = MDR − MBR − MFR − FzR𝜉R − FxRrR (43)

with the drive torque MDR, the braking moment MBR and possible small friction

effects with MFR ≈ 0.

To determine the effects of the drive train configuration by Eqs. (40)–(43), the

longitudinal acceleration ax initiated by the drive/brake forces has to be considered.

Assuming pure rolling of the wheels and

rR𝜔R = rF𝜔F = r𝜔 = vx

r�̇� = ax (44)
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Fig. 12 Structure of a drive

train with axle and central

differentials

RD FD
central
differential

gear-
box engine

MEclutch
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ωKR ωKF vx

ωR ωF

ωR ωF

MDR MDF

MDR MDF

the longitudinal acceleration of the vehicle becomes

(m +
2IR

r2
+

2IF

r2
)ax =

MD

r
−

MB

r
− Wges (45)

with the substitutes

Wges =
MF

r
+ WR + WL + WG

𝜉F∕r = 𝜉R∕r = fR
WR = fR(2FzR + 2FzF) = fR(G cos 𝜗 − WZ)
WG = mg sin 𝜗
MF = 2(MFR + MFF) ≈ 0
MD = 2MDR + 2MDF

MB = 2MBR + 2MBF

A drive train configuration with symmetric structure, angular velocity 𝜔E of the

engine and 𝜔KR, 𝜔KF for the front and rear drive shafts is established with Fig. 12.

With the transmission ratio NGn of the gear box and the ratio ND of the axle differ-

entials and the torque splitting of the central differential with 𝜈F, 𝜈R, the kinematics

become

𝜔E = 𝜔GNGn,

𝜔G = 𝜈R𝜔KR + 𝜈F𝜔KF

𝜔KR = ND𝜔R, 𝜔KF = ND𝜔F (46)

and the torques for the different kind of drives
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2MDF = MD𝜈F, 2MDR = MD𝜈R

with 𝜈F + 𝜈R = 1
for rear wheel drive ∶ 𝜈R = 1

for front wheel drive ∶ 𝜈F = 1
for 4WD with equal distribution ∶ 𝜈R = 𝜈F = 0.5 (47)

The torque transfer from the engine torque ME(𝜔E) to the wheels, using (44), can

be written by

MD = (2MDF + 2MDR) =

𝜂ME(𝜔E)N − r
[
ΘEN2

r2
+

(IC + IDR + IDF)
r2

N2
Gn

]
ax (48)

with

N = NGnND

𝜂 coefficient of efficiency

ΘE substitutive moment of inertia for the engine

IC moment of inertia for parts of gears and central differential

IDF, IDR moments of inertia: parts of differentials and shafts.

Consequently (45) can be transformed to

(m + mr)ax =
𝜂ME𝜔EN

r
−

MB

r
− Wges (49)

with the reduced mass for the rotational parts:

mr =
1
r2

[
ΘEN2 + (IC + IRD + IFD)N2

GN + (2IR + 2IF)
]

To determine the normal forces Fzi and further on the friction limits for the force

transfer of the tyres, again Eqs. (41) and (42) are used. With the simplification of

pure rolling (44) and equal values 𝜉R = 𝜉F = 𝜉, these equations can be written in the

form

2FzF + 2FzR =G cos 𝜗 − Wz

−2lFFzF + 2lRFzR =
[(

2IF

r
+

2IR

r

)
ax + (max + WL + G sin 𝜗)h

+ MY + 𝜉(G cos 𝜗 − WZ)
]

(50)

Linearization and neglecting small terms and aerodynamic components leads to
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MY ≅ 0, WZ ≅ 0
𝜉(G cos 𝜗) ≪ (max + WL + G sin 𝜗)h

(2IF + 2IR)∕r ≪ mh

FzF

G
=

lR
l
cos 𝜗 − a∗ h

l
(51)

FzR

G
=

lF
l
cos 𝜗 + a∗ h

l

with a∗ =
(

ax

g
+ sin 𝜗 +

WL

mg

)
(52)

q = 100 ⋅ tan 𝜗 in%

If the inclination angle 𝜗 is small (road grade q less than about 10%), then the sin-

function can be linearized too.

With the determination of the normal forces, the rolling resistance WR, see (45),

can be calculated. Corresponding to Fig. 11 without MD,MB,MF and no grade 𝜗 = 0,

the longitudinal force due to tyre flexibility and energy dissipation can be written

with

Fx = −𝜉

r
Fz = −fRFz (53)

Some examples for typical values of the rolling resistance coefficient fR are shown

in Fig. 13, see e.g. Plöchl et al. (2014). As expected the energy dissipation increases

at higher speeds, but in the limits by traffic regulations it is nearly constant.

0 20 40 60 80 100 120 140 160 180 200 km/h 240
v

0.01

0.02

0.03

0.04

fR
SW

S

H V

speed index S, H, V; winter tyre SW

Fig. 13 Rolling resistance coefficient fR for different types of passenger car tyres
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G G G

Fig. 14 Aerodynamic forces Wy, WL and moment MZ by running speed vc and ambient wind vW ;

plane motion

The consequences of the aerodynamics for a vehicle running with v and ambi-

ent wind vW , are shown in Fig. 14, Mitschke and Wallentowitz (2014), Kortüm and

Lugner (1994).

With the cross section area A and aerodynamic coefficients ci, the forces are pre-

sented by

WL = WX = cx(𝜏)A ⋅
vr

2𝜚

2

WY = cy(𝜏)A ⋅
vr

2𝜚

2
(54)

MZ = cM(𝜏)lMA ⋅
vr

2𝜚

2

The coefficients are determined by experiments in a wind tunnel or/and also by soft-

ware packages calculating the aerodynamic flow.

To take into account the angle of attack 𝜏, the coefficients are considered to be

functions of 𝜏. Defining the coefficient for calm air with cw = cx(𝜏 = 0) as an exam-

ple, Fig. 15 shows the normalized value cx(𝜏)∕cw, Kortüm and Lugner (1994). The

values of the coefficient vary depending on the shape of the car body and will be

about cw ∼ 0.3 for passenger cars. The position for point D can be estimated with

lD ≅ 0.3l for passenger cars and lD ≅ 0.17l for more squared like shapes.

To provide driving performance information with respect to available engine

torque ME, transferred to the wheels or corresponding longitudinal forces, the engine

characteristics and drive train structure have to be known.

Figure 16 shows the typical maximal driving torque ME,max(nE) and power Pmax(nE)
of a gasoline engine as function of the engine speed nE = 60(𝜔E∕2𝜋) for steady state

conditions, Lugner (2007).
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Fig. 15 Normalized drag

coefficient cx(𝜏)∕cw as

function of the angle of

attack 𝜏

Fig. 16 Maximum torque

ME,max and power Pmax of a

gasoline combustion engine
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Considering the influence of the throttle position 𝜆T and the engine drag ME,d(nE)
an approximation for the available engine torque can be formulated. For low veloci-

ties/engine speeds, due to the fuel injection, at 𝜆T = 0 the drag ME,d(nE) > 0. In the

range of operation, ME,d is approximated by a linear function of nE.

ME = (ME,max − ME,d) f (𝜆T ) + ME,d, 0 ≤ f (𝜆T ) ≤ 1 (55)

So with the knowledge of f (𝜆T ) and the characteristics for ME,max and ME,d the

whole performance volume of the engine can be presented. Furthermore the trans-

mission ratio N can be introduced. With the effective driving force KE and Wges—

see (49)—the vehicle driving performance becomes

m𝜆ax =KE(v,N) − Wges(v,N) (56)

𝜆 =
m + mR

m

KE =
𝜂ME(nE)NDNGn

r
, KEmax = 𝜂

MEmax(nE)
r

NDNGn (57)
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Fig. 17 Driving characteristics of a passenger car: max engine driving forces KE,max and drag

forces KE,d with 4 gears NGi and driving resistances Wges for different grades q

Now using the engine characteristics Eq. (55), limit values for the principal driv-

ing behaviour of a gasoline engine vehicle with 4 gears can are depicted in Fig. 17.

For a road without grade, q = 0, vmax is determined by the intersection of the resis-

tances with KE,max of the fourth gear (NG4). The velocity v1 results from a downhill

run (q = −10%)without throttle activation. If the car is operated at v2 with the second

gear (NG2) on a uphill road with q = 10%, the (still) available driving force m𝜆ax,2
can be used for accelerating the car.

So Fig. 17 represents an overall diagram for the creation of the effective driving

force KE by engine and drive train transmission to the wheels. In principle, similar

diagrams will also be valid for other kinds of drive train and engines when using

characteristics equivalent to KEmax and KEd.

Alternative propulsion systems in operation today are hybrid systems with a com-

bination of electric engine(s) and combustion engine, and full electric systems. The

later may have a centrally placed engine or wheel hub motors, with the possibility to

provide individual torques to each wheel, Chan (2007). To fully utilize such kinds

of propulsion, control systems have to be introduced, and the individual tyre–road

contacts need to be considered generally in combination with more complex vehicle

models. Examples of such drive trains are investigated e.g. in Galvagno et al. (2013).
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To investigate the braking performance, Eq. (52) needs to be considered again.

For inclination angle 𝜗 and aerodynamic resistance WL the normalized deceleration

𝛽 of the car can be written by

𝛽 = −(
ax

g
+ sin 𝜗 +

WL

mg
) (58)

𝛽 = (−
2FxF

mg
) + (−

2FxR

mg
)

𝛽 = (−F̄xF) + (−F̄xR) (59)

In case of large 𝜗 and aerodynamic drag it may happen that 𝛽 < 0 despite of ax < 0,

meaning downhill acceleration.

Using (51), the normalized tyre forces can be expressed by

FzF = lR + 𝛽h

FzR = lF − 𝛽h (60)

lR =
lR
l
, lF =

lF
l
, h = h

l

Limitations resulting from the force transfer (tyre–road) will be approximated

using constant friction coefficients

𝜇max = 𝜇R,max = 𝜇F,max (61)

|Fxi| ≤ 𝜇maxFzi i = F,R

With (59) and (61) the maximum deceleration 𝛽max = 𝛽ideal is achieved when both

axles are at the limit of locking

|Fxi| = 𝜇maxFzi i = F,R

𝛽max = 𝛽ideal = 𝜇max (62)

and with (59) follows

(−F̄xF) + (−F̄xR) = 𝜇max (63)

A break force balance k by the design of the brake system is defined by (the

negative sign is used to indicate the direction of action of the forces):

k =
−FxF

−FxR

(64)
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Fig. 18 Example of the

braking capability for

𝜇max = 0.4, symmetric

arrangement, optimal brake

balance kopt, 𝛽 > 0

rear wheel locking

front wheel locking

braking domain

B

To utilize the maximum deceleration, that is achieved when both the front and

rear wheels are at their friction limit, the brake balance has to be, using (60):

(−FxF)

(−FxR)
=

lR + h𝜇max

lF − h𝜇max

= kopt. (65)

Further on relations can be established between FxF, FxR for the cases that only

front or rear wheels are locking.

(−FxF) = 𝜇maxFzF; (−FxR) = (−FxF)
1 − h ⋅ 𝜇max

h ⋅ 𝜇max

−
lR
h

(66)

(−FxR) = 𝜇maxFzR; (−FxF) = −(−FxR)
1 + h𝜇max

h ⋅ 𝜇max

+
lF
h

Choosing e.g. 𝜇max = 0.4, Eq. (66) will define a breaking domain: within this area

the vehicle can brake without reaching the friction limits at one of its wheels/axles,

Fig. 18. In point B all wheels are at the friction limit corresponding to (62). The diag-

onal line 𝛽 = 𝜇max = 0.4 is provided by relation (63). With (65), the brake balance

kopt will cross the line of 𝜇max in point B, indicating the utilization of the maximum

braking forces at both axles.

The brake performance diagram, Fig. 19, Lugner (2007), shows the braking

domains for 𝜇max = 0.3 and 𝜇max = 0.8 for loaded and unloaded conditions, 𝛽 > 0.

The curves (a) and (b) represent the points B for all possible 𝜇max values. As an

example: point A on (c), which represents the design brake balance, corresponds to

a normalized deceleration of 𝛽 = 0.4 determined by the intersection of 𝛽 = constant
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Fig. 19 Brake force distribution diagram for a passenger car with 2 loading conditions: a lF = 0.47,

h = 0.2; b lF = 0.52, h = 0.19; design brake balance, c FxF∕FxR = k = 2.63

with the x-axis. The brake balance k is chosen in a way that the front wheels will

lock first for all possible 𝜇max. Generally, if front wheel locking will occur, the vehi-

cle will just move straight ahead, without starting yaw motion. The points A′
i , Ai and

the corresponding 𝛽-diagonals define the achieved decelerations using (59).

With a more complex brake system lay out there may be a brake balance factor

different for different deceleration sections thereby better using the corresponding

braking domains.

The consequences/area of action of an ABS system are indicated by the shaded

areas in Fig. 19. But not only the more or less improvement in deceleration but espe-

cially the avoidance of a wheel locking is essential!

To get some information with respect to 𝜇-split conditions—the wheels of one

side encounter low friction values—a simple extension of the plane longitudinal

vehicle model, Fig. 20, together with a drive train configuration similar to Fig. 12,

and 𝜈 = 𝜈R = 𝜈F = 0.5 according to (47) can be used. Thereby no grade or aero-

dynamic drag are taken into account but the height of the CG above the ground is

considered. Different cases of the locking of the central differential C or axle dif-

ferentials I, II induce yaw moments W⋆
which may result in a spinning of vehicle

if there is no proper reaction by the driver. A DSP (dynamic stability program) will

avoid such a yaw moment and will correspond to the case A in the considered con-

figuration.

As expected the all wheel drive with all differentials locked AC I II will utilize the

maximum 𝜇-value at each wheel providing the largest acceleration ax,max but also the

largest yaw moment W⋆
. For other configurations of the drive train ax,max is reached

if one or more wheels are at their friction limits. E.g. for a standard rear wheel drive

RD the limit is defined by the slipping of wheel 4 while both wheels of the rear axle
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A all wheel drive,  ν = 0.5
RD rear wheel drive
FD front wheel drive

Fig. 20 Different drive train configurations with 𝜇-split conditions, maximum possible accelera-

tion ax,max and yaw moment W∗ = [(Fx1 − Fx2) + (Fx3 − Fx4)](s∕2)

transfer the same longitudinal force. No yaw moment W⋆
is generated. Now locking

the rear axle differential, configuration RD II allows the left wheel 3 to transfer a

higher longitudinal force Fx3 > Fx4 resulting in higher amax but also providing a yaw

moment. When no axle differential is locked—cases RD, FD, A—, no yaw moment

will occur.

2.8 Vertical Motion

Mainly the vertical motion of the car body by heave and pitch resulting from the road

surface structure is responsible for the ride comfort of the passengers. For further

details please refer to the following chapter of this book: D. Hrovath, H.E. Tseng,

J. Deur: Optimal Vehicle Suspensions: A System-level Study of Potential Benefits and
Limitations. In general, the root mean square value of the body acceleration aRMS is

used as comfort measure, with additionally taking into account the human sensitivity

for vibrations.

The human sensitivity was determined by vibration experiments where differ-

ent frequencies and vertical/horizontal accelerations are applied onto a person. The

results are standardized in VDI 2057, ISO 2631-1. For a stochastic input the sig-

nal passes a standardized form filter to provide a weighed aRMS-value as a sensitiv-

ity measure for the effect of vibrations on the whole human body. In Fig. 21, VDI
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Fig. 21 Human sensitivity to harmonic excitation by the value of KZ

2057 edition 1979, larger KZ-values indicate less tolerance to the vibration and less

duration without comfort reduction or pain, Kortüm and Lugner (1994), Popp and

Schiehlen (2010). Obviously in the range of 4–8 Hz the human body with its internal

structure is most sensitive.

For the necessary stochastic input 𝜁 of the road, profile approximations by white

noise and form filter, standard profiles or (more expensive) measurements are used.

Very often the vehicle itself is represented by a simple vibration system, e.g. Popp

(2014), Zhao (2017).

Such a vehicle model with 4 DoF is shown in Fig. 22, Kortüm and Lugner (1994).

The aim is to determine the vertical acceleration aRMS,z to evaluate the impact of the

stochastic input to the wheels by the road excitations 𝜁F(t) and 𝜁R(t) = 𝜁F(t −
l
v
). The

distance 𝜆 characterises the position on the car body.

The linearized equation of motion with constant coefficients and the stochastic

vector h is

Mÿ + Dẏ +Ky = h (67)

z =
⎡
⎢
⎢
⎢
⎣

zC
𝜃

zF
zR

⎤
⎥
⎥
⎥
⎦

= zs + y = zs +
⎡
⎢
⎢
⎢
⎣

yC
𝜃

yF
yR

⎤
⎥
⎥
⎥
⎦
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Fig. 22 Plane vehicle model for the determination of the vertical accelerations

D =
⎡
⎢
⎢
⎢
⎣

dF + dR dFlF − dRlR −dF −dR
dFlF − dRlR dFl2F + dRl2R −dFlF dRlR

−dF −lFdF dF 0
−dR lRdR 0 dH

⎤
⎥
⎥
⎥
⎦

M =
⎡
⎢
⎢
⎢
⎣

m 0 0 0
0 IC 0 0
0 0 mF 0
0 0 0 mR

⎤
⎥
⎥
⎥
⎦

K =
⎡
⎢
⎢
⎢
⎣

cF + cR cFlF − cRlR −cF −cR
cFlF − cRlR cFl2F + cRl2R −lFcF lRcR

−cF −lFcF cF + cT 0
−cR lRcR 0 cR + cT

⎤
⎥
⎥
⎥
⎦
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Fig. 23 Comfort measure KZeq and normalized vertical root mean square value arms∕g for different

positions 𝜆 at the car body (D = 0.3) and as function of the suspension damping D for different

forward velocities v

h = H𝜁 =
⎡
⎢
⎢
⎢
⎣

0 0
0 0

−cT 0
0 −cT

⎤
⎥
⎥
⎥
⎦

[
𝜁F
𝜁R

]

As can be noticed, the small quantities yF, yR are the deviations from the steady-state

wheel positions and yC that from the CG of the car body. The pitch angle for steady

state is assumed to be 𝜃 = 0.

Using the covariance analysis and the comfort measure presented in Fig. 21, the

relevant aRMS∕g-values and KZeg-values can be determined, where the natural damp-

ing D and respective damping constants are related by

dF = 2D
√

cFmlR∕l (68)

dR = 2D
√

cRmlF∕l

Figure 23 shows that aRMS∕g is lowest near to the centre of the vehicle and

the natural damping needs to be about D ⩾ 0.2 to guarantee a reasonable vertical

comfort.

To simplify the 4 DoF model, an assumption with respect to the distribution of

the car body mass can be used.
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Fig. 24 Substitution of the

car body by 3 concentrated

masses

F

F

F

F R

R

R

R

mF

mR

The car body is presented by 3 substitutive masses, see Fig. 24, which need to

fulfill the conditions

mBF + mBR + mK = m,

mBFlF = mBRlR, (69)

mBFl2F + mBRl2R = IC = mi2C

with the whole body mass m and the moment of inertia IC, like before.

By (69) the substitutive masses become

mK = m
(
1 −

i2C
lFlR

)
≅ 0,

mBF = m
i2C
lFl

≅ m
lR
l
, (70)

mBR = m
i2C
lRl

≅ m
lF
l

As indicated with the first equation, if iC ∼
√

lFlR— which is valid in most pas-

senger cars—the vehicle model can be reduced to two separate 2 mass models,

Fig. 25—a well known and investigated approach, e.g. Zhao (2017), Hrovat et al.

(2014).

The two equations of motion, in the similar form like (67), taking into account

the deviations from the static positions, are

Mÿ + Dẏ +Ky = h (71)
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Fig. 25 Vertical two mass

model: proportional body

mass mB, wheel mass mW

y =
[

yB
yW

]
, M =

[
mB 0
0 mW

]

D =
[

d −d
−d d

]
, h =

[
0

−cR𝜁

]

K =
[

c −c
−c c + cR

]

Using (71) and typical parameters, the frequency response function for the body

acceleration with harmonic road excitation 𝜁 = 𝜁a cos𝜔t shows the typical two peaks

near the eigenfrequencies of the system, Fig. 26. Taking into account the human

sensitivity in the range 4–8 Hz (shaded area), the suspension design has to avoid

eigenfrequencies in that area.

3 Extended Nonlinear Models

The linear vehicle models provide useful insight with respect to the overall behaviour

of the system. They are often the basis for control design as well as for observers. But

they do not provide e.g. a realistic (high-frequency) information of the force transfer

between tyre and road. Only narrow limits may be taken into account, see e.g. (62).

To determine the normal tyre forces Fzi, the effects of the suspension system need to

be considered, generally by the combined roll, pitch and heave motion. Additionally

for the calculation of the lateral tyre forces Fyi besides the side slip angles (lateral

slip) the longitudinal slip or/and the longitudinal tyre forces Fxi, provided by braking

or accelerating, have to be known. Then an approximation for the tyre behaviour like
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ζ

Fig. 26 Frequency response function of body acceleration for typical mB,mW

Fig. 27 Example of a

tyre-force characteristic of a

passenger car tyre

Fig. 27, Edelmann et al. (2008) completes the essential characteristics of the tyre–

road force transfer, e.g. Pacejka (2014), see also the chapter Tire Characteristics and
Modeling written by I.J.M. Besselink in this book.

A vehicle model that provides the possibility to investigate a 3D-motion and rela-

tive motion of the car body is shown in Fig. 28, Plöchl (1995). Since this model also

comprises the individual tyre–road contact, it is necessary to use a tyre characteristic

like Fig. 27 to match the model complexity of the vehicle.

The equations of motion for this system may be still established by hand. E.g. by

neglecting small terms, especially within the Euler equations, the structure of these

equations for horizontal surface can be presented in the form:
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Fig. 28 3D-vehicle model

with relative car body

motion and individual

tyre–road contact

ρ

B

θ

x ∶ m dv
dt
cos 𝛽 − m v2

𝜌
sin 𝛽 + mBh4�̈� = fx(Fxi,Fyi, 𝛿i + Δ𝛿i,Wx)

y ∶ m dv
dt
sin 𝛽 + m v2

𝜌
cos 𝛽 − mBh2�̈� = fy(Fxi,Fyi, 𝛿i + Δ𝛿i,Wy)

z ∶ mBḧ = fz(Fzi, (m − mB)g)
x ∶ Ix�̈� = gx(Fxi,Fyi,Fzi, 𝛿i + Δ𝛿i,Wy)
y ∶ Iy�̈� = gy(Fxi,Fyi,Fzi, 𝛿i + Δ𝛿i,Wx)
z ∶ Iz�̈� = Izṙ = gz(Fxi,Fyi, 𝛿i + Δ𝛿i,MW )

i = 1 ÷ 4, vM ≈ v

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

(72)

The whole vehicle mass m comprises body mass mB and the masses of the wheels

and parts of their suspensions. For the moment of inertia Iz, also the whole vehicle

mass distribution is considered. By sin 𝛽 and cos 𝛽 it is indicated that there is no

restriction to small side slip angles. The distances h2 and h4 indicate the possibility

to take into account roll and pitch axes. The additional steering angles Δ𝛿i indicate

the possibility to consider additional control inputs.

To determine the normal forces Fzi, spring and damper properties are essential.

With the knowledge of Fzi, the side slip angles 𝛼i and the longitudinal slip sLi or

Fxi (depending on the input of the drive/brake system and respective mechanical
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Fig. 29 Steady-state cornering, R = 100m, mean front steering angle 𝛿F and vehicle side slip

angle 𝛽: front wheel drive FA, rear wheel drive RA, suspension stiffness ratio front/rear cF∕cR, tyre

pressure distribution pF∕pR

modelling), the lateral tyre forces Fyi can be calculated using an approximation of

the tyre characteristics.

Fzi = pzi(h, 𝜑, 𝜃, ḣ, �̇�, �̇�, (m − mB)g) (73)

Fxi = pxi(sLi(drive∕brake),Fzi)
𝛼i = f𝛼(v, 𝛽, r, 𝛿i +△𝛿i)

Fyi = pyi(Fxi,Fzi, 𝛼i)

For Fyi and Fxi, the road surface condition needs to be taken into account. E.g. for

Fig. 27, the outer envelope of the curves corresponds to about 𝜇max = 0.6 in lateral

direction and 0.7 in longitudinal direction.
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Fig. 30 Emergency braking during cornering

The principal consequences of the complex model with its nonlinearities can

already be investigated for steady-state cornering. The corresponding extension of

Fig. 3 results in Fig. 29 for a vehicle with neutral steering KUS = 0 for v = 0. The

oversteer–understeer characteristics change significantly at higher accelerations for

different vehicle layouts. For the side slip angle 𝛽, the system modifications have a

limited influence.

A simulation of an emergency braking during cornering needs to be done at least

with a model of such complexity, Fig. 30. However, the comparison with the mea-

surement also indicates that higher frequency responses cannot be mapped with this

model. In addition, not ideal initial conditions lead to further deviations.

To demonstrate the possibility to investigate the impact of different local friction

conditions at each wheel, cornering with passing a 𝜇-split area is shown in Fig. 31,

Lugner et al. (1988). The stepwise decrease of the lateral acceleration ay is caused

by encountering a 𝜇-split condition. To detect, which wheels are running on low 𝜇,

in the recognition phase RP an additional steering of inner wheels Δ𝛿1=Δ𝛿3 < 0 is

applied, while outer wheels Δ𝛿2=Δ𝛿4 > 0 steer less taking into account the higher

values of Fzi at the outer wheels. Thereby, the tyre side slip angles slightly change.

Since the lateral acceleration aq still decreases more, the influence of the increasing

side slip angles at the outer wheels do not change the transferred tyre side forces

considerably, as they work near their friction potential. Consequently,Δ𝛿1 andΔ𝛿3 >
0 can be used to compensate partially for the lower friction coefficient at the outer

track in the control phase CP, using a feed forward control.

4 Near Reality Vehicle Model (NRVM)

Though the extended nonlinear model provides quite a lot of details and insight with

respect to tyre–road contact to investigate the impact of design details on vehicle han-
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Fig. 31 Cornering with lower friction at the outer wheels 2 and 4 (𝜇max = 0.25); friction values 𝜇i
of the tyre–road contact, 𝛿R = 0: Recognition phase RP, feed forward control CP

dling, the vehicle components (e.g. steering system) need to be modelled with cor-

responding complexity. Thereby ‘corresponding complexity’ means that the investi-

gated model of the vehicle or parts of it have (nearly) the same depth in the modelling

regarding their subsystems. Thus, for the reliability of simulation results, it will be

essential to have a tuned and also verified model of the different vehicle parts, includ-

ing a proper knowledge of the necessary parameters or nonlinear properties, see Bub

and Lugner (1992).

For the simulation of the vehicle as a whole or parts of it (e.g. for experiments at

testing rigs), multi-body system (MBS) simulation programmes are used. For such a

simulation the preparation of the system structure and the input process is essential—

as well as the interpretation of logically expected results, indicated as ‘Valida-

tion’ in Fig. 32, that visualizes this overall process, Kortüm and Lugner (1994).

The nowadays available software covers most of the (otherwise necessary) steps in
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Fig. 32 Structure of simulation process

Fig. 33 Assembly of component models to the overall vehicle model

the progress of establishing a simulation (environment) of the behaviour of a com-

plex system.

The set up of the physical model is indicated in Fig. 33, Lugner (2007). In most

cases the integration of the components and their interconnection to build the overall

vehicle model can be done by software packages. Also models of the components

themselves are generally established with the use of MBS software.
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Fig. 34 Detailed physical model of a McPherson-type suspension

Fig. 35 Software structure to Fig. 34

An example of a detailed modelling of a McPherson front suspension strut is

shown in Fig. 34, Lugner (2007). This kind of model will also be used for tests on

a virtual test rig. Figure 35 demonstrates how the corresponding software structure

looks like. The connection to the main model and the kinematic constrains have to

be introduced after the physical sub-model is defined.

For the now general motion of the NRVM a 3D kinematic description is necessary,

Kortüm and Lugner (1994). In a first step the position and orientation of a body fixed

frame xB, yB, zB with respect to the inertial system xI , yI , zI will be established Fig. 36.

In the next step the motion of the wheel coordinate system x1, y1, z1, with respect

to the body fixed frame is defined. The position/contact of the wheel with the road

surface, described in the inertial system, closes the ‘loop’, Fig. 37.
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Fig. 36 3D description of car body and relative position of wheel to car body

Fig. 37 Kinematics of tyre road interface

The connection between the system parts are springs and dampers (bushings),

fixed connections or special force elements like the tyre-force characteristics, Fig. 27.

Naturally, the sequence of the time derivatives of the degrees of freedom of the parts

and their connections provide the necessary velocities and accelerations—which is

done by the MBS software. The road surface itself as an input quantity can be mod-

elled e.g. by using a measured spectral density, Fig. 38, Lugner (2007). According

to the complexity of the tyre–road contact and force transfer, the detailed structure

of the surface has to be created with the corresponding complexity. A more sophis-

ticated tyre model, e.g. with a belt structure, has to/may be used for rough road or

single obstacle crossing simulations. An example of such a model is shown in Fig. 39,

see also Oertel et al. (1998), Lugner (2007). An interesting overview of (complex)

tyre models, as well as their applications can be seen in Gruber and Sharp (2015).
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Fig. 38 Digitalized road surfaces based on measured power spectral densities

Fig. 39 Tyre model RMOD-K
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The system equations for the mathematical processing principally look like

ṗ(t) = T(p)v(t);
M(p)v̇ = f (p, v, t) + GT (p)𝜆;

g(p) = 0

ġ(p, v) =
𝜕g(p)
𝜕p

T(p)v = G(p)v = 0

g̈(p, v, v̇) = G(p)v̇ + G(p, v)v = 0 (74)

p ∈ Rnp ∶ generalized coordinates

v ∈ R ∈np ∶ generalized velocities

M(p) ∈ Rnp×np ∶ generalized mass matrix

f (p, v, t) ∈ Rnp ∶ generalized forces, inertia and gyro expressions

𝜆 ∈ Rnz ∶ Lagrange muliplier

g(p) ∈ Rnz ∶ position constrains

It is indicated that there may be constrains due to structural (kinematic) loops.

The kind and number of constrains very much depends on the choice of coordinates

of the system parts.

More details on how to establish the system equations can be found in the contri-

bution of G. Rill: Multibody Systems and Simulation Techniques within this book.

The possibilities for detailed investigations of the behaviour of the vehicle and its

components may be indicated with Fig. 40. The vehicle may move on a rough road

and the motion of the wheels, car-body and steering wheel for straight ahead driving

can be calculated and observed. Moreover, the internal forces and relative motion of

the system (parts), e.g. the steering system, are provided.

A particular field of application of NRVM is the design of control systems within

the car—a more and more important challenge in modern passenger cars, see the

Fig. 40 Symbolical picture for a NRVM moving straight ahead on a rough road
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Fig. 41 Example of a control loop for additional steering and braking (yaw moment control): the

‘Observer’ is based on a basic model, the ‘Vehicle’ is represented by a NRVM

respective chapters of this book: T. Gordon: Active Control of Vehicle Handling
Dynamics and M. Nagai, P. Raksincharoensak: Advanced Chassis Control and Auto-
matic Driving.

For such investigation the NRVM is introduced into the control loop as ‘virtual

prototype’, e.g. in order to check different vehicle configurations. A possible observer

or the description of properties of vehicle components are mainly based on simple

(linear) vehicle models or more complex models, if needed.

An example of a control structure configuration for the application of additional

steering or/and individual braking to generate a desired yaw moment is shown in

Fig. 41, Heinzl et al. (2002), Lugner (2007).

In order to study the overall system behaviour, as essential feature the ‘vehicle’

has to be represented by a NRVM or at least a detailed model, otherwise the impact

of brake pressure changes Δp and additional steering Δ𝛿F, Δ𝛿R cannot be mapped

properly. For the ‘observer’, here a state estimator, a simple 2-wheel model (or a basic

4-wheel model) is used. With the controller, the feed back for yaw and side slip of the

vehicle are calculated additionally, using the respective expression for a correction

of the yaw moment ΔMyaw. The drivers’ inputs are steering wheel angle 𝛿H , corre-

sponding to the desired trajectory, and brake pressure pd. Additional inputs are yaw

rate �̇� , angular velocity 𝜔i of the wheels, the longitudinal and lateral accelerations

ax, ay, and the brake pressure pi at the wheels (possibly altered by an ABS-system,

van Zanten et al. (1994)). These quantities are assumed to be measured or/and pro-

vided by the NRVM.

How different control strategies, based on the scheme of Fig. 41, can improve

the manoeuvre ‘braking during cornering’ with constant positioning of the steering

wheel is demonstrated in Fig. 42, for a high friction surface.

The desired vehicle behaviour will be that the vehicle stays on the demanded

track with constant radius of curvature, independent of the amount of longitudinal
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Fig. 42 Results example to

control scheme Fig. 41;

Braking in a curve 1 s after

starting to brake: normalized

yaw velocity and lateral

acceleration for different

controls

0
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deceleration. In Fig. 42, the normalized values of the lateral acceleration and yaw

velocity 1 s after the starting of the braking indicate the motion tendency of the vehi-

cle. E.g. increased deceleration and yaw velocity correspond to the car turning to the

inside of the curve with increased yaw motion—which becomes essential for the

uncontrolled car for longitudinal decelerations larger than 3 m/s
2
. The different con-

trol strategies with additional steering or yaw moment control by individual braking

minimize the deviations over the whole range up to a deceleration of about 8 m/s
2
.

Only the combination of yaw moment stabilization and additional front wheel steer-

ing indicates an outward turning of the vehicle for higher decelerations. It may be

necessary to change the tuning of the control loop, especially for such a combination

of the control inputs.

5 Conclusion and Consequences

To improve understanding of the fundamental dynamic characteristics of a passen-

ger car, it is possible to consider (almost independent) linear vehicle models for

each of the main motion directions separately. The 3 DoF-model for yaw and plane

motion may explain the cornering properties. For acceleration and braking, a linear

one directional model shows the main influences of drive train and brake system.
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To estimate the impact of an excitation due to road unevenness on ride comfort and

safety, a model describing the vertical and pitch motions only can be used to calcu-

late comfort measures for the driver and the road holding capability represented by

the tyre’s normal forces.

For a more detailed insight into the dynamics of vehicles and the interaction of

tyre and road, 3D-motion of the carbody and suspension properties, and especially

a nonlinear description of the tyre forces needs to be considered. Then, e.g. the uti-

lized friction between tyre and road of individual wheels can be calculated, and limit

manoeuvres, induced by changing road conditions, studied. This kind of models can

already be used as virtual prototypes to check simple control strategies, designed on

the basis of one or more of the linear models.

As its name indicates, the near reality vehicle models (NRVM) integrate a detailed

modelling of components and vehicle parts into a full system model, aiming at rep-

resenting the dynamics of the vehicle and its components in detail and up to higher

frequencies. A component description has to take into account the whole range of

nonlinearities and motion limitations—in particular for the tyres. The separate mod-

elling of components, e.g. the wheel suspension, also makes it possible to test and

verify their dynamic behaviour on test-rigs before an integration into the whole vehi-

cle model. The kinematic and dynamic motion range of the NRVM than has no

restrictions w.r.t its application. Moreover, such a complex model might be needed to

validate control systems, often based on more basic (linear) models, as well as their

parameters. To simulate the motion of the vehicle, its parts and their kinematic and

dynamic interaction, typically available MBS software packages will be used. How-

ever, one aspect needs to be taken into account: the accuracy of the model strongly

correlates to the accuracy of parameters and nonlinearities; often, they are/have to be

tuned corresponding to the investigated problem. In addition, a check and compari-

son between results derived by NRVM and basic (linear) models is recommended.
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Tire Characteristics and Modeling

I. J. M. Besselink

Abstract Tires are the interface between vehicle and road. The forces and moments

generated by the tires determine the motion of a road vehicle. Dedicated tire tests pro-

vide insight in these forces and moments and their dependency on slip, inclination

angle and vertical force. The brush tire model can explain the measured characteris-

tics qualitatively, the Magic Formula is a semi-empirical tire model to quantitatively

describe them. To account for tire dynamic behavior, relaxation effects are discussed

and modeled.

Keywords Tire mechanics ⋅ Brush tire model ⋅ Magic Formula ⋅ Tire dynamics

1 Introduction

1.1 Scope

Road vehicles have been equipped with pneumatic tires for many years. Over these

years there have been improvements in the construction and materials being used,

but apart from a gradual decrease of the aspect ratio and changes of the tread pat-

tern not too much appears to have changed for the casual observer. Nevertheless, the

importance of tires should not be underestimated: tires provide the interface between

vehicle and road and will affect all aspects of vehicle dynamics, for example: ride

comfort, handling behavior and braking performance. The forces and moments gen-

erated by the tire will determine the motions of a road vehicle. Tires also play an

important role in the energy consumption of a road vehicle and the noise produced

by it, but these two aspects are outside the scope of this chapter.

Research on tire behavior, analyzing and modeling the forces and moments gen-

erated for various operating conditions in particular, has a long history. Dedicated

test equipment has been developed to do tire testing in a laboratory environment or
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to monitor the tires on a vehicle while driving. With the massive increase in comput-

ing power over the years vehicle and tire simulation models have become ever more

complex, together with increasing requirements on their accuracy. For a review on

tire modelling reference is made to Pacejka and Sharp (2007).

Despite all efforts, no physics based tire simulation model is available to date that

can predict tire behavior for all possible operating conditions. The friction phenom-

ena between tire and road are rather complex and dependent on for example sliding

velocity, temperature, road roughness, the presence of water or snow, etc. Further-

more, the tire may experience complex deformations, for example when driving over

a rutted road. The forces and moments cannot be predicted accurately yet for these

conditions by existing models. Tire simulation models still rely on full scale tire

measurements for model development, parametrization and validation.

In this chapter the emphasis will be on describing results obtained from tire mea-

surements and accompanying tire modeling. Most of the theory and tire models

described here, have been developed at the Delft University of Technology under

the supervision of professor Hans Pacejka. For a more elaborate discussion on tire

modeling reference is made to the book “Tire and Vehicle Dynamics” by Pacejka

(2012). Here the aim is to provide a concise overview and consistent approach to

modeling the tire in the context of full vehicle simulations. This implies that the

focus is on the overall tire behavior, describing and modeling these characteristics.

A detailed description of the physics governing rubber friction on a road surface

is outside the scope of this chapter. Also the complexity of the tire models will be

limited, e.g. finite element tire models will not be discussed.

1.2 Sign Conventions and Slip Definitions

A sign convention is adopted and a contact point is defined to describe the forces

and moments acting at the tire-road interface. A commonly accepted definition is

the ISO sign convention as shown in Fig. 1, see ISO (1991). The wheel is considered

to be an infinitely thin disk and the road is assumed to be locally flat. The distributed

forces that are present between tire and road across the contact patch are lumped into

three forces and moments that act at the contact center C. The location of this contact

center C is defined by the intersection of three planes:

1. the road plane

2. wheel center plane through the plane of symmetry of the wheel

3. the plane through the wheel spin axis y′ and normal to the road.

Three axis are defined at the contact centerC. The x-axis is defined by the intersection

of plane 1 and 2 and positive in the forward driving direction. The y-axis is defined

by the intersection of plane 1 and 3 and positive to the left. The z-axis is normal

to the road plane and positive upwards. The forces and moments that are generated

between tire and road are assumed to act at the contact center C and are expressed

in the x, y and z-axis of the wheel as defined here.
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Fig. 1 ISO sign convention with adapted inclination angle 𝛾

Three forces and three moments can be distinguished:

∙ longitudinal force Fx
∙ lateral force Fy
∙ vertical force (or normal force) Fz
∙ overturning moment Mx
∙ rolling resistance moment My
∙ self-aligning moment Mz.

It should be noted that in practice the forces and moments are measured at the wheel

center A using a measuring hub or wheel equipped with strain gauges. In order to

calculate the forces at contact center C, both the location of the contact center and

inclination angle 𝛾 are required.

Different tire radii may be distinguished. The free tire radius r0 equals the radius

of the undeformed tire. The loaded radius rl equals the distance between the wheel

center A and contact point C. The effective rolling radius re relates the angular veloc-

ity of the wheel Ω about the wheel spin axis y′ with the forward velocity Vx for a

freely rolling tire according to

re =
Vx

Ω
. (1)

Both the loaded radius rl and effective rolling radius re are dependent on the vertical

force Fz, as is illustrated in Fig. 2. The loaded radius rl decreases almost linearly with

increasing vertical force Fz, whereas the effective rolling radius re shows a smaller

dependency on Fz. A point S may be defined, which corresponds to the instant center

of zero velocity for the freely rolling tire. The distance between point S and the wheel

center A equals the effective rolling radius re.
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Fig. 2 Dependency of the effective and loaded tire radius, re and rl, on the vertical force Fz

The longitudinal slip 𝜅 of the tire is defined as

𝜅 = −
Vsx

|Vx|
= −

Vx − Ωre
|Vx|

, (2)

where Vsx equals the longitudinal sliding velocity of point S, Vx equals the longitu-

dinal velocity of the wheel center A and Ω equals the angular velocity of the wheel.

Note that for a freely rolling wheel 𝜅 andVsx are equal to zero by definition. When the

wheel is locked and does not rotate (Ω = 0) 𝜅 will be equal to −1. The tire behav-

ior can be considered to be linear for small values of longitudinal slip 𝜅, i.e. the

longitudinal force Fx increases linearly with the longitudinal slip 𝜅,

Fx = CF𝜅𝜅 (3)

where CF𝜅 equals the longitudinal slip stiffness.

The side slip angle (or drift angle) 𝛼 of the tire is defined as

tan(𝛼) = −
Vsy

|Vx|
, (4)

where Vsy equals the equals the lateral sliding velocity of point S. The inclination

angle 𝛾 is the angle between the normal to the road plane and the wheel center plane.

In the sign convention adopted here a positive inclination angle 𝛾 corresponds to

a rotation about the x-axis in the negative direction, as shown in Fig. 1. For small

angles, up to a few degrees, the lateral force Fy and self-aligning moment Mz depend

linearly on the side slip angle 𝛼 and inclination angle 𝛾 according to

Fy = CF𝛼𝛼 + CF𝛾𝛾

Mz = −CM𝛼
𝛼 + CM𝛾

𝛾,

(5)

where CF𝛼 equals the cornering stiffness, CM𝛼
the self-aligning stiffness, CF𝛾 the

camber stiffness and CM𝛾
the camber torque stiffness. With the adopted sign conven-

tion of Fig. 1 and (5) these stiffness are all positive for regular tires. An exception
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Fig. 3 Lateral force Fy and
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is the camber stiffness CF𝛾 , which may be zero or even negative force some truck

tires. The pneumatic trail tp relates the self-aligning moment Mz to the lateral force

Fy, according to

tp = −
Mz

Fy
. (6)

The pneumatic trail tp can be interpreted as the moment arm of the lateral force Fy
to produce a self-aligning moment Mz, this is illustrated in Fig. 3. This figure also

shows the effect of an inclination angle 𝛾 on the lateral force Fy and self-aligning

moment Mz. Note that for a positive side slip angle 𝛼 and positive inclination angle

𝛾 the contributions to the self-aligning moment Mz have opposite sign.

Based on the preceding definitions, it is clear that the tire forces and moments are

a function of various slip quantities and inclination angle. In a way the tire can be

considered as a non-linear function with multiple inputs and outputs, as illustrated

by Fig. 4. In the next sections the focus will be on the relation between the inputs

𝜅, 𝛼, 𝛾 , Fz and outputs Fx, Fy and Mz. As already indicated in Fig. 4 there are many

additional factors that have an influence on the tire forces and moments, but they all

will assumed to be constant. In Sects. 2, 3 and 4 the steady-state relations between

the inputs and outputs will be considered. Thereafter the dynamic behavior of the

tire will be discussed in Sect. 5.

Longitudinal slip definition In some literature a different definition for the longitu-

dinal slip is used. Brake slip is defined as:
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Fig. 4 The tire considered as a non-linear function

sxb =
Vx − Ωre

Vx
⋅ 100%, (7)

and drive slip is defined as:

sxd =
Ωre − Vx

Ωre
⋅ 100%. (8)

Both brake and drive slip have a value between 0 and 100%. For modeling purposes

a continuous descriptions as given by (2) is more convenient. The effective rolling

radius re may also be referred to as the dynamic tire radius in some literature. Note

that all definitions of longitudinal slip, (2), (7) and (8), will result in a division by

zero, when the vehicle is standing still (Vx = 0, Ω = 0), which is undesirable from a

computational point of view. In Sect. 5 this will be discussed further.

Sign conventions Over time various sign conventions and axis systems have been

used and standardized. The SAE and ISO sign convention use the same definition

for the x-axis, but have opposite definitions of the y and z-axis. Both SAE and ISO

define the tire side slip angle as

tan(𝛼) =
Vsy

Vx
. (9)

Furthermore SAE and ISO define a positive inclination angle 𝛾 corresponding to a

rotation about the positive x-axis. Though this may seem intuitive at first, a positive

side slip or inclination angle will then result in a lateral force in the negative y-

direction. This makes the definition and interpretation of the cornering and camber

stiffness cumbersome, as they will be negative for a regular tire. In the SAE sign

convention the vertical force Fz will be negative when the tire is loaded, which is

also not very intuitive.
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Adopting the ISO sign convention for expressing the tire forces and moments

and adding a minus sign to the ISO definitions for side slip and inclination angle

results in an intuitive set of tire characteristics, as illustrated by Fig. 5. This figure

was first published by Besselink (2000). Note that with this sign convention a positive

slip value (𝜅, 𝛼) generally results in a positive force or moment and that a positive

inclination angle 𝛾 results in an upward shift of the force or moment curve.

2 Tire Force and Moment Measurements

2.1 Test Equipment and Measurement Program

Dedicated test equipment exists to measure the relations between tire forces and

moments as a function of slip, inclination angle and vertical force. A distinction

can be made between indoor and outdoor testing. For indoor testing traditionally an

external or internal drum is used, but the curvature of the drum surface will affect

the results obtained. To circumvent this problem the Flat-Trac tire testing machine

has been developed, as shown in Fig. 6. In essence it can be considered as a scaled up

version of a belt grinder and the tire fixture allows to prescribe the desired vertical

force, longitudinal slip, camber and side slip angle. In this way experiments can be

executed in a controlled laboratory environment. On the other hand, the sandpaper

surface may not accurately reflect the road surface characteristics and measurements

on snow or ice are not possible. To avoid these issues tire test trailers have been

developed to measure force and moment characteristics on an actual road surface.

As an example the TASS tire test trailer is shown in Fig. 7. Though it allows to do

testing on different road surfaces, it is difficult to precisely control the environmental

conditions (e.g. temperature, humidity, water film depth, etc.) and some processing

of the measurement results is necessary to account for road irregularities.

As shown in Fig. 4, the tire may be considered as a non-linear function with mul-

tiple inputs and outputs. In a traditional force and moment measurement program

typically only one input is varied, while the other inputs are kept constant. Further-

more a distinction can be made between “pure” and “combined” slip conditions.

Pure slip conditions refer to cases where only longitudinal slip or a side slip angle is

applied, so braking in a straight line (𝛼 = 0◦, Fy ≈ 0 N) or drifting of a freely rolling

tire (𝜅 = 0, Fx ≈ 0 N). In the case of combined slip both 𝜅 and 𝛼 are unequal to zero

and a combination of longitudinal and lateral forces will arise. An example of a tradi-

tional tire testing program is listed in Table 1, the results will be discussed next. The

dimensions of the tire under consideration are 195/65 R15 and the inflation pressure

equals 2.0 bar.
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Fig. 6 IABG Flat-Trac tire force and moment testing machine

Fig. 7 TASS tire test trailer
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Table 1 Tire force and moment measurement program

𝜅 (–) 𝛼 (◦) 𝛾 (◦) Fz (kN)

Pure slip
Alpha sweep 0 −15 to 15 −5∕0∕5 2.0/4.5/7.0

Kappa sweep 0 → −1 0 −5∕0∕5 2.0/4.5/7.0

Combined slip
Kappa sweep 0 → −1 −2∕2∕5∕9 0 2.0/4.5/7.0

2.2 Alpha Sweep Results

In an alpha sweep measurement the side slip angle 𝛼 is varied using a triangular wave

signal. In the tests discussed it varies between −15 and 15◦ and the absolute rate of

change is equal to 1 deg/s. The test is executed at a forward velocity of 60 km/h. The

choice of the forward velocity and rate of change of the side slip angle will affect

the heat development in the tire and will influence the results obtained in these tests,

experience has shown that the values mentioned here result in representative tire

force and moment characteristics.

The measured lateral force characteristics for different vertical forces and inclina-

tion angles are shown in Fig. 8a. Near the origin the linear relation between the side

slip angle 𝛼 and lateral force Fy can be observed. As already introduced in (5), this

slope known as the cornering stiffness CF𝛼 , the unit is N/deg. or N/rad. It is defined

as

CF𝛼 =
𝜕Fy

𝜕𝛼

|
|
|
|𝜅=0,𝛼=0,𝛾=0

. (10)

It is clear that this slope dependents on the vertical force Fz, as shown in Fig. 9a.

Note that the cornering stiffness does not increase linearly with the vertical force,

but reaches a maximum for a specific vertical force and then decreases again.

The lateral force Fy saturates and its magnitude reaches a maximum for large

positive and negative side slip angles, at this point the tire is sliding laterally. It can

be seen from Fig. 8a that the increase of the lateral force when changingFz from 2000

to 4500 N is bigger compared to the increase when changing from 4500 to 7000 N.

This implies that magnitude of the maximum lateral force does not increase linearly

with the vertical force. The fiction coefficient 𝜇y relates the maximum magnitude of

the lateral force to the vertical force,

𝜇y =
max(|Fy|)

Fz
. (11)

The dependency of the lateral friction coefficient 𝜇y on the vertical force Fz is shown

in Fig. 9e. A linear decrease with the vertical force Fz is seen.
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Fig. 8 Measured lateral force (a) and self-aligning moment (b) characteristics, pure side slip—free

rolling tire (𝜅 = 0). Legend: black Fz = 7000 N, gray Fz = 4500 N, light gray Fz = 2000 N

The measured self-aligning moment characteristic for different vertical forces and

inclination angles is shown in Fig. 8b. The self-aligning moment Mz reaches a maxi-

mum before it decreases to zero for large side slip angles. The magnitude of the peak

increases progressively with the vertical force Fz. Near the origin of the graph the

self-aligning moment decreases linearly with an increase of the side slip angle 𝛼.

The self-aligning stiffness CM𝛼
is defined as

CM𝛼
= −

𝜕Mz

𝜕𝛼

|
|
|
|𝜅=0,𝛼=0,𝛾=0

. (12)

Note that a minus sign is necessary in (12) to obtain a positive stiffness value due

to the adopted sign convention. The dependency of Cm𝛼 on the vertical force Fz is

shown in Fig. 9b. The pneumatic trail tp can be calculated using (6) and the results
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trail tp (f)

are shown in Fig. 9f. The pneumatic trail decreases with increasing magnitude of the

side slip angle. Increasing the vertical force Fz results in an increase of the pneumatic

trail.

The effect of an inclination angle 𝛾 on the lateral force Fy and self-aligning

moment Mz is also shown in Fig. 8. A positive inclination angle results in an upward

shift of both curves, a negative inclination angle moves them downwards. It is also

clear that the application of a 5◦ inclination angle has far less influence on the lat-

eral force and self-aligning moment compared to introducing 5◦ of side slip angle.

This is also reflected in the camber stiffness CF𝛾 and camber torque stiffness CM𝛾
.

Since the measurements are only done for discrete values of the inclination angle 𝛾
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(−5, 0 and 5◦), the camber stiffness is approximated by

CF𝛾 =
ΔFy

Δ𝛾
|
|
|
|𝜅=0,𝛼=0

. (13)

The camber torque stiffness is calculated as

CM𝛾
=

ΔMz

Δ𝛾
|
|
|
|𝜅=0,𝛼=0

. (14)

In these equations ΔFy is the difference in lateral force for 𝛾 equal to 5 and −5◦,

ΔMz is the difference in the self-aligning moment for 𝛾 equal to 5 and −5◦ and Δ𝛾
is equal to the range of 10◦. The dependency of CF𝛾 and CM𝛾

on the vertical force

Fz is shown in Fig. 9c, d respectively. The most important observation here is that

for this particular tire the camber stiffness CF𝛾 is a factor 15–20 smaller compared

to the cornering stiffness CF𝛼 . For the camber torque stiffness CM𝛾
this factor ranges

from 10 to 40 when comparing to the self-aligning stiffness CM𝛼
. These numbers

indicate that an inclination angle change has only a limited influence on the lateral

forceFy and self-aligning momentMz. But as can be seen from Fig. 8a, the maximum

lateral force Fy increases when an inclination angle is applied. Calculating the lateral

friction coefficient 𝜇y for this part of the curve, an increase of approximately 5% can

be seen when an inclination angle of 5◦ is applied in comparison to zero inclination

angle. This is also shown in Fig. 9e.

When looking carefully at the measurement results, it can be seen that the lateral

force Fy and self-aligning moment Mz are not exactly zero when the sideslip angle

𝛼 and inclination angle 𝛾 are zero. This is not necessarily a measurement error, but

it can be caused non-symmetry of the tire construction. There are two effects:

∙ plysteer is determined by the construction and build-up of the carcass layers of the

tire. The lateral force due to plysteer changes sign when reversing rolling direction

of the tire, so e.g. when going from forward to backward rolling. Plysteer may be

interpreted as a “pseudo” side slip angle, 𝛼ply.

∙ conicity is determined by the shape of the tire and/or carcass. The lateral force

due to conicity does not change sign when reversing the rolling direction of the

tire. Conicity may be interpreted as a “pseudo” camber angle, 𝛾con.

The magnitude of the “pseudo” side slip angle, 𝛼ply is about 0.1◦, the “pseudo” cam-

ber angle, 𝛾con reaches values up to 0.5◦ for the tire under consideration.

2.3 Kappa Sweep Results

In a kappa sweep measurement the longitudinal slip of the tire is varied by modulat-

ing the brake pressure. This results in a reduction of the angular velocity Ω, while

the forward velocity Vx is kept constant at 60 km/h. The longitudinal force Fx as a
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Fig. 10 Measured longitudinal force characteristics (a), slip stiffness CF𝜅 (b) and friction coeffi-

cients (c). Legend graph a: black Fz = 7000 N, gray Fz = 4500 N, light gray Fz = 2000 N

function of longitudinal slip 𝜅 for a number of kappa sweep experiments is shown

in Fig. 10a. For small values of slip the relation between Fx and 𝜅 is linear, the slope

of this curve is known as the longitudinal slip stiffness CF𝜅 , which is defined as:

CF𝜅 =
𝜕Fx

𝜕𝜅

|
|
|
|𝜅=0,𝛼=0,𝛾=0

. (15)

The longitudinal slip stiffness is almost linearly dependent of the vertical force Fz,

as shown in Fig. 10b. Furthermore it can be observed that the magnitude of the lon-

gitudinal force reaches a maximum when the longitudinal slip 𝜅 is in the order of

−0.15. When the wheel is locked (𝜅 = −1) the magnitude of the longitudinal force

Fx that can be transmitted is reduced in comparison to the maximum value. For both

the maximum force and locked wheel situation a friction coefficient may be defined,
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𝜇x,peak and 𝜇x,lock respectively, the are defined as

𝜇x,peak = −
min(Fx)

Fz
, (16)

and

𝜇x,lock = −
Fx

Fz

|
|
|
|𝜅=−1

. (17)

The dependency of these friction coefficients on the vertical force is shown in

Fig. 10c. It can be seen that both decrease with increasing vertical force Fz. Further-

more it can be noted that the lateral friction coefficient is 𝜇y, as previously shown

in Fig. 9e, is more sensitive to changes of the vertical force. A final remark with

respect to Fig. 10a is that the longitudinal slip characteristics are hardly affected by

an inclination angle.

So far braking in a straight line has been discussed, where the side slip angle 𝛼 is

equal to zero. For combined slip conditions, a kappa sweep is executed while a fixed

side slip angle is applied. Some results are shown in Fig. 11a. The introduction of a

side slip angle has a marked influence on the longitudinal slip characteristics. The

slope at the origin, the longitudinal slip stiffness CF𝜅 , is reduced. Also the magnitude

of the maximum longitudinal force is reduced. The longitudinal force for a locked

wheel situation (𝜅 = −1) remains unchanged.

The measured lateral forceFy is shown in Fig. 11b. For a freely rolling tire (𝜅 = 0)

the introduction of a side slip angle 𝛼 will result in a lateral force Fy. As the magni-

tude of the longitudinal slip 𝜅 is increased, the lateral force decreases and becomes

almost zero when the wheel is locked (𝜅 = −1). Another way of plotting the lateral

force Fy is shown in Fig. 12a. The curve obtained from the alpha sweep is plotted.

The lateral force for specific values of longitudinal slip are extracted from Fig. 11b

and added to this graph. Obviously the values for free rolling (𝜅 = 0) correspond

quite well with the alpha sweep results, the differences may be caused by tire tem-

perature effects. When braking the wheel and increasing the magnitude of 𝜅, the

maximum lateral force Fy is reduced and the same is true for the slope near the

origin, the cornering stiffness CF𝛼 . So mutual interactions exist when considering

combined slip:

∙ The introduction of a side slip angle 𝛼 results in a reduction of the longitudinal

slip stiffness CF𝜅 and peak longitudinal force.

∙ The introduction of longitudinal slip 𝜅 results in a reduction of the cornering stiff-

ness CF𝛼 and magnitude of the lateral force.

Another way of plotting combined slip measurement results is shown in Fig. 13,

where Fy is plotted as a function of Fx for different vertical forces and side slip

angles. It is clear that the maximum forces that can be transmitted are limited by a

friction ellipse. The self-aligning moment for combined slip conditions is difficult to

measure accurately, Fig. 12b shows the measurement results.
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Fig. 11 Measured longitudinal force (a) and lateral force (b) characteristics for combined slip

conditions (Fz = 4500 N, 𝛾 = 0◦)

Wheel dynamics during braking Figure 14 shows the wheel being braked, while

the forward velocity Vx remains constant. The equation of motion governing the

rotational dynamics of the wheel is given by

IyyΩ̇ = −Mb − rlFx(𝜅), (18)

where Iyy equals the mass moment of inertia of the wheel about the y axis, Mb equals

the brake moment and rl equals the loaded tire radius. Reformulating the longitudinal

slip Eq. (2) gives

𝜅 =
Ωre
Vx

− 1. (19)
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Fig. 12 Measured lateral force characteristics (a) and self-aligning moment (Fz = 4500 N, 𝛾 = 0◦)

When increasing the brake moment Mb the angular acceleration Ω̇ becomes nega-

tive and thus the angular velocity Ω is reduced. As the forward velocity Vx remains

constant, the longitudinal slip 𝜅 will become negative. This results in a negative lon-

gitudinal force Fx that counteracts the brake moment Mb. When the brake moment is

kept constant, the system will settle for equilibrium and the angular acceleration Ω̇
becomes zero. However when the brake moment Mb exceeds the maximum moment

that can be developed by the tire, Fz𝜇x,peakrl, no stable equilibrium can be found, the

wheel will quickly slow down until the angular velocity becomes zero. In a kappa

sweep the brake moment Mb is increased linearly over time until wheel lock occurs
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Fig. 13 Measured combined slip characteristics (𝛾 = 0◦)

and the brake moment is made zero again, an example is shown in Fig. 15. After

passing the peak of the longitudinal force for 𝜅 = −0.15, 𝜅 quickly decreases to −1.

It will be therefore be difficult to precisely measure the tire characteristics for the 𝜅

range between −0.15 and −1. Considering the short time frame in which this process

takes place, the assumption of steady-state behavior may also be questionable. To

circumvent some of these issues, kappa-sweep measurements are typically repeated

three times and the results are averaged to produce graphs like Fig. 10a.
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Fig. 15 Simulation results of a 𝜅-sweep

3 The Brush Tire Model

3.1 Introduction

In the previous section the results of force and moment testing are presented without

providing an explanation why the characteristics have a specific shape. The brush

tire model is a comparatively simple physical model, that can be used to qualitatively

explain tire behavior. The brush tire model was first described by Fromm, according

to Pacejka (2012).

Before discussing the brush tire model, the fundamentals of this tire model will

be explained by developing a model of a brush, as shown in Fig. 16. The brush is

equipped with bristles that touch the surface. When a vertical force Fn is applied,

and assuming static equilibrium, a distributed vertical force per unit of length qz(x)
will be present between the bristles and surface. The origin of the brush fixed axis

system is defined at the center of the base of the bristles and the contact length is
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Fig. 16 Model of a brush

equal to 2a. The vertical force then equals

Fn = Fz =
a

∫
−a

qz(x)dx. (20)

Assuming that qz(x) is constant the following expression is obtained

qz =
Fz

2a
. (21)

Note that the unit of qz is N/m and since the tire does not stick to the road qz(x) can

not become negative.

The bristles are compliant and can deflect. The bristle deflection 𝜀x is considered

to be positive when moving in the positive x-direction, as shown in Fig. 16. The

bristle stiffness per unit of length equals kb, the unit of kb equals N/m
2
. The relation

between the longitudinal force per unit of length qx(x) and bristle deflection 𝜀x(x)
equals

qx(x) = kb𝜀x(x). (22)

Furthermore a friction coefficient 𝜇 is present between the tip of the bristle and

surface. The magnitude of the longitudinal force per unit of length qx(x) is limited

according to

|qx(x)| ≤ 𝜇qz(x). (23)

This limits the maximum possible deflection of the bristle to:

|𝜀x,max(x)| =
𝜇qz(x)
kb

=
𝜇Fz

2akb
. (24)
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Starting with undeflected bristles and moving the brush over a small distance

Δs towards the left in the negative x-direction, all bristles will start to deflect. The

magnitude of the bristle deflection 𝜀x(x) will be the same for all bristles and equal to

Δs. A force Fs is required to move the brush to the left and this force is in equilibrium

with the force developed by the bristles,

Fs = Fx =
a

∫
−a

qx(x)dx = kb

a

∫
−a

𝜀x(x)dx = 2akbΔs. (25)

Obviously the magnitude of Fx increases linearly with the deflection of the bristles

𝜀x and displacement Δs. When Δs is increased further and the maximum bristle

deflection will be reached and all bristles will start to slide at the same instance. The

longitudinal force Fx is then given by:

Fs = Fx =
a

∫
−a

qx(x)dx = kb

a

∫
−a

𝜀x,max(x)dx = 𝜇Fz (26)

A plot of the force Fs as a function of the displacement Δs is shown in Fig. 17,

where Δs = 0 corresponds to undeflected bristles. For small displacements the bris-

tles are in adhesion with the surface and the force Fs increases linearly with the

bristle deflection. For large displacements all bristles will reach the their maximum

deflection and slide with respect to the surface. The force Fs is then equal to the fric-

tion coefficient multiplied by the vertical force. When reversing the direction of Δs
the bristles will be in adhesion at first, when the displacement is large enough in the

opposite direction they will start to slide again, as shown in Fig. 17.

Figure 18 gives an impression of the brush tire model and bristle deflection when

a side slip angle 𝛼 is applied. Differences between the brush and brush tire mode are:

∙ In the brush tire model a parabolic distribution of the vertical force per unit of

length qz(x) is assumed instead of a constant qz.

Fig. 17 Force as a function

of the displacement Δs for

the brush model
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Fig. 18 The brush tire

model
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∙ In the brush tire model the bristle deflection in the lateral direction 𝜀y(x) is also

considered.

∙ In the brush tire model the wheel rotates, meaning that undeformed brushes enter

the contact region and brushes will leave the contact region again. This causes the

bristle deformation pattern to be more complex, both adhesion and sliding may

occur in the contact zone.

In the brush tire model the wheel is represented by a thin disk, which is equipped

with a single row of bristles around the circumference. The bristles are compliant

in the longitudinal and lateral direction, representing the combined stiffness of the

tire carcass, belt and tread elements. The disk is flattened in the contact region and

the bristles are in contact with the road for a distance known as the contact length,

being equal to 2a. As the wheel is rotating, a bristle element will enter and leave the

contact region after a certain time. It is assumed that a bristle entering the contact

region is undeformed and positioned perpendicular to the road surface. In the contact

region a sliding velocity may be present between the disk and road surface, e.g. due to

the presence of a side slip angle 𝛼. This will cause the bristles to deflect and forces

will develop in the contact region. The longitudinal force Fx, lateral force Fy and

self-aligning moment Mz can be determined by summing the contributions of the

individual bristle elements. Outside the contact region the bristles are undeflected

and do not contribute to the forces and moment. In the next sections the brush tire

model will be analyzed in detail for steady-state conditions, i.e. fixed values of 𝜅, 𝛼

and Fz.
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3.2 Bristle Deflections

Figure 18 shows the brush tire model. The angular velocity of the wheel equals Ω
and at the circumference of the tire the velocity is equal to the rolling speed Vr, which

is related to Ω by

Vr = Ωre, (27)

where re equals the effective rolling radius. As shown in Fig. 18 a coordinate system

is introduced at the center of the contact line and in agreement with earlier definitions

given in Sect. 1.2. The x-coordinate is used to identify the position of a bristle in

contact region. As the wheel is rotating, a bristle element will enter and move though

the contact region, before leaving it again. The time increment ΔT is introduced to

denote the amount of time the bristle is in contact with the road after entering the

contact zone. The following expression applies:

ΔT = a − x
Vr

. (28)

In steady-state conditions the wheel has a fixed side slip angle 𝛼. The velocityV of

the wheel center can be projected on the wheel plane, which results in a longitudinal

velocity component Vx and lateral sliding velocity Vsy.

Vx = V cos(𝛼), (29)

Vsy = −V sin(𝛼), (30)

When assuming a constant, non-time varying side slip angle 𝛼 the entire wheel has

a lateral velocity of Vsy. Thus the lateral velocity of the base of the bristles in the

contact region with respect to the road also equals Vsy. The longitudinal velocity of

the base of the bristles in the contact zone with respect to the road equals

Vsx = Vx − Vr. (31)

Combining (31) with the definition of longitudinal slip 𝜅 (2), the following expres-

sion is obtained

Vr = Vx(1 + 𝜅). (32)

When assuming that the bristle tip sticks to the road after the first contact is made,

then the bristle deflection is calculated by multiplying the velocity with the time the

bristle spends in the contact zone ΔT . The longitudinal bristle tip deflection 𝜀x(x)
and lateral tip deflection 𝜀y(x) then become

𝜀x(x) = −VsxΔT = −(Vx − Vr)
(
a − x
Vr

)

= (a − x) 𝜅

1 + 𝜅
= (a − x)sx (33)
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and

𝜀y(x) = −VsyΔT = −Vsy

(
a − x
Vr

)

= (a − x) tan(𝛼)
1 + 𝜅

= (a − x)sy. (34)

It should be noted that these expressions for the bristle tip deflections are only valid

as long as the bristle tip is in adhesion with the road. To simplify the expressions the

theoretical slip values sx and sy are introduced. The theoretical longitudinal slip sx is

defined as

sx =
𝜅

1 + 𝜅
(35)

and the theoretical lateral slip sy is defined as

sy =
tan(𝛼)
1 + 𝜅

. (36)

As already discussed in the previous section, the maximum bristle deflection will

be limited by the friction coefficient 𝜇. A parabolic distribution of the vertical force

per unit of length is assumed for the brush tire model, as shown in Fig. 18. The

vertical force per unit of length qz(x) is dependent on the longitudinal coordinate x
and given by:

qz(x) =
3Fz

4a

(

1 −
(
x
a

)2)

(37)

Obviously the vertical force Fz is obtained when integrating expression (37) over the

contact length, see (20). Since the friction coefficient 𝜇 and bristle element stiffness

kb are assumed to be constant, the maximum possible bristle tip deflection 𝜀max will

be dependent on qz(x), and thus be a function of the longitudinal coordinate x.

|𝜀max(x)| =
𝜇qz(x)
kb

. (38)

The maximum possible bristle tip deflection will follow the parabolic shape of the

pressure distribution. Both at the leading (x = a) and trailing edge (x = −a) of the

contact region the maximum bristle deflection will be zero, since qz(−a) = qz(a) = 0.

At the center of the contact region (x = 0) the maximum possible bristle tip deflection

will be reached.

As can be seen for the expressions of the longitudinal and lateral bristle tip deflec-

tion (33) and (34), the bristle deflection will increase linearly with its position in the

contact region when moving backwards toward the end of the contact region. This

can be generalized in the combined bristle deflection 𝜀(x), which is the vectorial sum

of the longitudinal and lateral deflection

𝜀(x) =
√

𝜀2x(x) + 𝜀2y(x) = (a − x)
√

s2x + s2y . (39)
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Fig. 19 The brush tire

bristle deflection
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A bristle tip initially sticks to the road when entering the contact region, thereafter

the deflection builds up until a point where it start to slide towards the end of the

contact region. A transition point is defined where the bristle state changes from

sticking to sliding, indicated by the coordinate xt. This is illustrated by Fig. 19. At

the transition point xt the combined bristle deflection equals the maximum bristle

deflection, thus 𝜀(xt) = 𝜀max(xt).

(a − xt)
√

s2x + s2y =
3𝜇Fz

4akb

(

1 −
(
xt
a

)2)

. (40)

This quadratic equation in terms of xt has two solutions, a trival solution xt = a and

a second solution

xt =
4kba3

3𝜇Fz

√

s2x + s2y − a. (41)

Obviously the transition point xt has to be in a physically plausible range, so −a ≤
xt ≤ a. It can be seen that for infinitely small theoretical slip values that (41) provides

xt = −a as a solution. As the theoretical slip increase, xt will increase. The solution

xt = a, indicating that all bristles in the contact region are in the sliding state, is

reached when the following condition is met

√

s2x + s2y ≥
3𝜇Fz

2kba2
. (42)

For this condition all bristles in the contact region are sliding, there are no bristles

in the adhesion state anymore.

3.3 Forces and Moment for Pure Slip Conditions

Before moving to the more complex combined slip case, pure side slip will be ana-

lyzed first. In this case the longitudinal slip 𝜅 will be zero and same applies to the

longitudinal bristle deflection 𝜀x(x). Using (34) the lateral bristle deflection then
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becomes

𝜀y(x) = (a − x) tan(𝛼). (43)

Considering the limit case, when the side slip angle 𝛼 is very small, the assumption

can be made that all bristle elements in the contact region are in the adhesion state.

To calculate the lateral force Fy the lateral force per unit of length qy(x) has to be

integrated over the contact length

Fy =
a

∫
−a

qy(x)dx = kb

a

∫
−a

𝜀y(x)dx = kb tan(𝛼)
a

∫
−a

(a − x)dx (44)

Since 𝛼 is small, tan(𝛼) ≈ 𝛼, and solving the integral gives

Fy = 2kba2𝛼 = CF𝛼𝛼. (45)

Note that we have obtained an expression for the cornering stiffness CF𝛼 of the tire,

being dependent on the bristle stiffness kb and contact length. To calculate the self-

aligning moment Mz the moment arm x has to be taken into account and the expres-

sion becomes

Mz =
a

∫
−a

qy(x)xdx = kb

a

∫
−a

𝜀y(x)xdx = kb tan(𝛼)
a

∫
−a

(a − x)xdx. (46)

Solving the integral gives

Mz = −2
3
kba3𝛼 = −CM𝛼

𝛼. (47)

The expression for the pneumatic trail tp becomes

tp =
CM𝛼

CF𝛼
= 1

3
a. (48)

So far it has been assumed that the side slip angle 𝛼 is infinitely small. To handle

larger values of the side slip angle both sticking and slipping of bristles in the contact

region has to be considered. A generic expression for the transition point xt, (41), has

already been derived in the previous section. For pure side slip it reduces to

xt =
4kba3

3𝜇Fz
| tan(𝛼)| − a. (49)

Sliding of all bristle elements will start to occur when xt = a. The corresponding

side slip angle 𝛼sliding is given by
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| tan(𝛼sliding)| =
3𝜇Fz

2kba2
. (50)

To determine the lateral force Fy and self-aligning moment Mz, similar to (44) and

(46), the lateral force per unit of length qy(x) has to be integrated over the contact

length. However part of the bristles in the contact region are in the adhesion state

between x = xt and x = a, and the other bristles are in the sliding state between x =
−a and x = xt. For both regions different expressions for qy(x) are applicable. For

the sliding part we have qy(x) = 𝜇qz(x), for the adhesion part qy(x) = kb𝜀y(x). The

integral to calculate Fy thus becomes

Fy =
3𝜇Fz

4a

xt

∫
−a

(

1 −
(
x
a

)2)

dx + kb tan(𝛼)
a

∫
xt

(a − x)dx. (51)

For the self-aligning moment Mz the expression is very similar, but the moment arm

x needs to be taken into account,

Mz =
3𝜇Fz

4a

xt

∫
−a

(

1 −
(
x
a

)2)

xdx + kb tan(𝛼)
a

∫
xt

(a − x)xdx. (52)

Note that when |𝛼| ≥ 𝛼sliding that xt = a and second part of the integrals (51) and (52)

disappears. For this condition the following expressions are obtained for the lateral

force Fy and self-aligning moment Mz:

Fy = 𝜇Fz, (53)

and

Mz = 0 (54)

respectively. When |𝛼| ≤ 𝛼sliding the integrals (51) and (52) have to be solved, and

expression (49) is used to determine xt. To simplify the expressions, the parameter

𝜃 is introduced, it is defined as

𝜃 =
2kba2

3𝜇Fz
= 1

| tan(𝛼sliding)|
. (55)

The theoretical lateral slip sy follows from (36), given that 𝜅 = 0

sy = tan(𝛼). (56)

By solving the integrals the expressions for Fy and Mz become
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Fig. 20 The brush tire model results for pure side slip

Fy = 3𝜇Fz𝜃sy

(

1 − |𝜃sy| +
1
3
(𝜃sy)2

)

(57)

Mz = −𝜇Fza𝜃sy

(

1 − 3|𝜃sy| + 3(𝜃sy)2 − |𝜃sy|3
)

. (58)

Using these results, the following expression can be obtained for the pneumatic trail

tp,

tp =
a
3

(1 − 3|𝜃sy| + 3(𝜃sy)2 − |𝜃sy|3

1 − |𝜃sy| +
1
3
(𝜃sy)2

)

. (59)

A graphical representation of the lateral force Fy, self-aligning moment Mz and

pneumatic trail tp is shown in Fig. 20. As the side slip angle 𝛼 increases the bristle

deflection in the contact region increases, and thus the lateral forceFy increases, up to

the level where all bristles have reached the maximum deflection. The self-aligning

moment Mz is a result of the non-symmetric bristle deflection in the leading and

trailing parts of the contact zone. For small side slip angles an increase of the side

slip angle will result in a larger bristle deflection and increase of the self-aligning

moment. For large values of side slip the asymmetry in the bristle deflection in the

leading and trailing part of the contact zone is reduced and vanishes completely

when all bristles are sliding. The pneumatic trail tp corresponds to the centroid of

the bristle deflection. It decreases monotonically with increasing side slip angle, until

it becomes zero when all bristles in the contact zone are sliding.
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The discussion of the pure longitudinal slip case is very similar to the pure lateral

slip case. In this case 𝛼 is equal to zero thus 𝜀y(x) will be zero too, the expression for

𝜀x(x) is given by (33). The expression for the transition point xt becomes

xt =
4kba3

3𝜇Fz

|
|
|
|

𝜅

1 + 𝜅

|
|
|
|
− a = 2𝜃a

|
|
|
|

𝜅

1 + 𝜅

|
|
|
|
− a. (60)

Again full sliding of all bristle elements in the contact zone will occur when xt = a,

thus the following condition has to be met

|
|
|
|

𝜅sliding

1 + 𝜅sliding

|
|
|
|
= 1

𝜃
. (61)

Two solutions exist for 𝜅sliding, for positive 𝜅

𝜅sliding =
1

𝜃 − 1
(62)

and for negative 𝜅

𝜅sliding = − 1
𝜃 + 1

. (63)

Note that the longitudinal slip 𝜅 where full sliding occurs is different for driving

(𝜅 > 0) and braking (𝜅 < 0). The expressions for the bristle deflections 𝜀y(x) (34)

and 𝜀x(x) (33) are very similar, the only difference being that sy is replaced by sx. This

also implies that the function Fx(sx) will be identical to Fy(sy). Thus the equation for

the lateral force Fy (57) can also be used to calculate the longitudinal force Fx when

replacing sy by sx. The theoretical slip sx will be equal to the longitudinal slip 𝜅 for

small values of slip. It allows to determine the longitudinal slip stiffness CF𝜅 , which

equals

CF𝜅 = 2kba2. (64)

Note that the expression for the longitudinal slip stiffness CF𝜅 is identical to the

cornering stiffness CF𝛼 (45).

3.4 Forces and Moment for Combined Slip Conditions

In the case of combined slip, the bristles will deflect both in the longitudinal and

lateral direction. The evaluation of the combined slip case is similar to the pure side

slip case. Next a summary of the equations of the brush model is given, which can

handle both pure and combined slip conditions.

sx =
𝜅

1 + 𝜅
(65)
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sy =
tan(𝛼)
1 + 𝜅

(66)

scomb =
√

s2x + s2y (67)

𝜃 =
2kba2

3𝜇Fz
(68)

When scomb < 1∕𝜃 then

F = 3𝜇Fz𝜃scomb

(

1 − |𝜃scomb| +
1
3
(𝜃scomb)2

)

(69)

tp =
a
3

(1 − 3|𝜃scomb| + 3(𝜃scomb)2 − |𝜃scomb|3

1 − |𝜃scomb| +
1
3
(𝜃scomb)2

)

. (70)

When scomb ≥ 1∕𝜃
F = 𝜇Fz (71)

tp = 0 (72)

The expressions for the longitudinal force Fx, lateral force Fy and self-aligning

moment Mz are:

Fx =
sx

scomb
F (73)

Fy =
sy

scomb
F (74)

Mz = −tp ⋅ Fy (75)

The required model parameters are the bristle stiffness per unit of length kb, the

friction coefficient 𝜇 and half of the tire contact length a. The tire contact length 2a
depends on the vertical tire deflection 𝜌, which is dependent again on the vertical

force Fz. Assuming the tire to behave as a linear spring in the vertical direction, see

e.g. Fig. 2, the tire deflection 𝜌 reads

𝜌 =
Fz

kz
, (76)

where kz equals the vertical tire stiffness. A first estimate for the dependency of half

of the contact length a on the tire deflection 𝜌 can be made by assuming that the wheel

is a rigid circular disk that penetrates the road. The next equation can be obtained

for half of the contact length,
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Fig. 21 Experimental results and equations to describe half of the contact length a

a = r0

√

2
(

𝜌

r0

)

−
(

𝜌

r0

)2

, (77)

where r0 equals the undeformed tire radius. A comparison with experimental results

shows that this is not a very accurate representation, since in reality the contact length

is much shorter, as shown in Fig. 21. By adapting the contact length equation in a

pragmatic way, a better match with the measurement results can be obtained. The

empirical equation for a then becomes

a = r0

√

0.5
(

𝜌

r0

)

+ 3
(

𝜌

r0

)2

. (78)

Implementation: divisions by zero When programming the brush tire model equa-

tions, care has to be taken to avoid divisions by zero. This can occur at several

instances:

∙ when both 𝜅 and 𝛼 are zero, the combined theoretical slip scomb (67) will be

zero, and a division by zero will occur in (73) and (74). A solution is modify

the denominator in expressions (73) and (74). Since scomb ≥ 0 it can be replaced

by max(scomb, 𝜖), where 𝜖 is a small positive number and the function max(a, b)
returns a if a ≥ b or b when b > a.

∙ The brush tire model equations are only valid when Fz ≥ 0. When a wheel lifts

of the ground the vertical tire force Fz will become zero and the calculation of 𝜃

(68) becomes problematic. A solution is to evaluate 𝜃 for a small positive vertical

force, e.g. max(Fz, 𝜖). With this modification the forces Fx, Fy and self-aligning

moment Mz will still be zero when Fz = 0 as a result of the multiplication with Fz
in expression (69).

∙ When the wheel locks up, the angular velocity Ω will be zero and the longitudinal

slip 𝜅 will become −1. A division by zero will occur in the calculation of the the-

oretical slip sx (65) and sy (66). In can be noted that the brush tire model equations

have been derived under the assumption that the wheel is rotating in the forward

direction (Ω > 0) and that the bristles spend a certain time in the contact zone.
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When the wheel is not rotating we basically get the brush model, as discussed in

Sect. 3.1. The resulting force will be equals to 𝜇Fz and in the opposite direction of

the sliding velocity

Fx = −𝜇Fz
Vsx

√
V2
sx + V2

sy

, Fy = −𝜇Fz
Vsy

√
V2
sx + V2

sy

. (79)

Assuming that Ω and Vx cannot become negative, then 𝜅 ≥ −1. The division by

zero can be eliminated by modifying the denominator of expressions (65) and (66)

to max(1 − 𝜅, 𝜖). The results obtained then are still in agreement with (79).

Implementation: forward and backward driving The brush tire model equations

have been derived for specific conditions, for example Vx > 0 and Ω ≥ 0. When

implementing the brush tire model in a vehicle model also other conditions may

appear, e.g. driving backwards, vehicle sliding backwards while the driven wheels

still rotate in the forward direction, vehicle standing still, etc. To handle these condi-

tions, it is more convenient to use the sliding velocities Vsx, Vsy and rolling velocity

Vr to calculate the tire forces and moments, instead of 𝜅 and 𝛼. The theoretical slip

equations have to be adapted. The expressions become

sx = −
Vsx

max(|Vr|,Vr,min)
(80)

sy = −
Vsy

max(|Vr|,Vr,min)
(81)

where Vr,min is a lower boundary for the rolling speed. This value should not be

selected too small (e.g. 1 m/s) as it will make the resulting differential equations

numerically stiff, leading to long simulation times. It can also be verified that when

the rolling speed Vr is equal to zero that (79) will be obtained. Furthermore the pneu-

matic trail tp will change sign when switching from forward to backward driving, and

it will be zero when the rolling speed Vr (or equivalently Ω) is equal to zero. This

can be incorporated in a continuous way by modifying Eq. (75) to

Mz = −tpFy tanh(10Vr). (82)

3.5 Brush Model Validation

In Sects. 2.2 and 2.3 the results of steady-state force and moment measurements for

a specific tire have been presented. Here a comparison will be made with the results

obtained with the brush tire model. The parameters of the brush tire model are listed
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Table 2 Brush tire model parameters for a passenger car tire

Parameter Symbol Value Unit

Free tire radius r0 0.315 m

Vertical stiffness kz 2 × 105 N/m

Friction coefficient 𝜇 1.0 –

Bristle stiffness kb 7 × 106 N/m
2

in Table 2. They have been selected to get the best possible match of the brush tire

model with the measurements and expression (78) is used to calculate half of the

contact length a.

First pure slide slip will be considered and a comparison is shown in Fig. 22 for

the lateral force Fy and self-aligning moment Mz. It can be seen that the shapes are

similar, but the magnitude of the self-aligning moment is largely underestimated.

The same applies for the pneumatic trail tp, as shown in Fig. 23a. The pure longitu-

dinal slip case, consisting of straight line braking, is shown in Fig. 23b. It is clear that

the brush tire model does not differentiate between a peak and locked wheel friction

coefficient, so the match with the measurements is not that good. Furthermore it can

be noted that the slope of the curve near the origin, the longitudinal slip stiffness

CF𝜅 , is too low. Figures 24 and 25 show results for combined slip conditions. It can

be seen that the brush tire model also displays the decrease of the longitudinal slip

stiffness CF𝜅 with increasing magnitude of the side slip angle 𝛼, see Fig. 24a. The

lateral force Fy for combined slip conditions, as shown in Fig. 24b, is fairly accu-

rate. The decrease of the magnitude of the lateral force with increasing magnitude

of the longitudinal slip 𝜅 is captured well. The self-aligning moment Mz is shown

in Fig. 25a. In the measurements Mz does not decrease to zero for large values of

the longitudinal slip 𝜅, so apparently some phenomena are not included in the brush

model. Plotting Fy versus Fx, as is done in Fig. 25b, clearly shows the 𝜇Fz friction

circle which limits the maximum shear forces. In this figure also the forces for the

driving side are shown (𝜅 > 0), which have not been measured. For the smaller side

slip angles some asymmetry can be observed: for the same magnitude of the longitu-

dinal force Fx, the lateral force Fy is smaller when the wheel is driven in comparison

to braking. This phenomenon is also seen in tire measurements.

The differences between model and measurements can also be quantified. The

same combinations of inputs (𝜅, 𝛼 and Fz) as used in the measurements are applied

to the brush tire model and a comparison can be made between the outputs of the

model (Fx, Fy and Mz) and the measured quantities. The following error criterion is

used to numerically assess the differences

𝜖 =
∑n

i=1 |(Fmodel,i − Fmeas,i)|
∑n

i=1 |Fmeas,i|
⋅ 100%, (83)
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Fig. 22 Comparison of brush tire model with measurements for pure side slip, lateral force Fy and

self-aligning moment Mz

where n is the number of measurement points, i an index to identify an individual

measurement point, Fmodel the result of the model and Fmeas the measurement result.

For the different outputs of the brush tire model the error 𝜖 has been calculated and

the results are listed in Table 3. Based on Figs. 22, 23, 24 and 25 it can be seen

that an error of 10% or larger indicates that the measurements are not modeled very

accurately. It is obvious from the Figs. 22b and 25a that the self-aligning moment

representation is very poor in particular.
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Fig. 23 Comparison of brush tire model with measurements for pure side and longitudinal slip,

pneumatic trail tp and longitudinal force Fx

Table 3 Brush tire model errors

Pure (%) Combined (%)

Fx 11.4 9.7

Fy 15.3 16.6

Mz 73.3 97.0
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Fig. 24 Comparison of brush tire model with measurements for combined slip, Fx and Fy (Fz =
4500 N)

Brush tiremodel improvementsThe brush tire model is a relatively simple physical

tire model, that allows to qualitatively describe the tire characteristics. There are

various ways to improve the accuracy of the model:

∙ Separate the stiffness of tread elements and carcass. Introduction of a flexible car-

cass or rigid ring to which the flexible bristle elements are attached.

∙ Improve the accuracy of the distribution of the vertical force per unit of length, so

that it better reflects the actual pressure distribution in the contact area.

∙ Introduce a more refined friction law, the friction coefficient 𝜇 should be a function

of sliding velocity and vertical force.

∙ Introduce multiple, parallel rows of bristles.

In Pacejka (2012) a more advanced brush tire model, called “Treadsim”, is described

that includes most of the improvements listed here.
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Fig. 25 Comparison of brush tire model with measurements for combined slip, Mz and Fy versus

Fx, (Fz = 4500 N)

4 The Magic Formula Tire Model

4.1 Magic Formula Fundamentals

The brush tire model, as discussed in the previous section, is a physical model that

is very useful to explain the shape of the measured tire force and moment charac-

teristics. It is however not capable to accurately represent the measured force and

moment characteristics. Although model enhancements are possible, experience has

shown that a major effort is required to create a truly accurate physical tire model.

Also the computational effort of such a detailed and refined physical tire model may

be high, which will make them not suitable for full vehicle simulations.
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Fig. 26 Stretching the sine function (B = 8, C = 1.5, D = 4500, E = −2)

The tire characteristics do not necessarily have to be modeled using a physical

approach, what we are looking for is a tire model, a “tire function”, that can represent

the measured force and moment characteristics with sufficient accuracy. In a full

vehicle simulation the inputs 𝜅, 𝛼, 𝛾 and Fz will vary continuously, so it should allow

interpolation as the measurements are for example executed for a fixed vertical force

Fz. Furthermore it should allow a plausible extrapolation, as during a full vehicle

simulation conditions may be encountered that have not been tested.

Generic curve fitting techniques, e.g. using polynomials, may be used to capture

the measured tire characteristics, but their performance is not considered to be ade-

quate. The “Magic Formula” is a semi-empirical tire model that employs specifically

designed functions to best represent the measured tire characteristics. The first ver-

sion of this tire model was developed by Egbert Bakker of Volvo Cars Helmond and

professor Pacejka of the TU Delft, Bakker and Pacejka (1987). As all model equa-

tions were published in the open literature from the start, the model rapidly became

popular and it is one of the most used tire models worldwide in full vehicle handling

simulations.

The observation was made is that the longitudinal, lateral and self-aligning

moment characteristics have sinusoidal shape, with a stretched horizontal axis for

large values of slip. This consideration is the base for the Magic Formula tire model.

The accompanying equation reads

y = D sin(C arctan[(1 − E)Bx + E arctan(Bx)]) (84)
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where x would represent a slip variable, 𝜅 or 𝛼 and y the force or moment. Figure 26

illustrates how the sine function is stretched. The atan function results in a saturation

of the input to the sine function, the E parameter provides a way to influence the

position of the peak.

Next to the sine version of the Magic Formula (84), also a cosine version is used

to model specific aspects of the tire, for example the pneumatic trail tp, as shown in

Fig. 9f. The cosine Magic Formula is given by

F = D cos(C arctan[((1 − E)Bx + E arctan(Bx)]). (85)

Both sine and cosine Magic Formula are shown in Fig. 27, including the meaning of

some parameters. We can observe that:

∙ D determines the peak value

∙ C determines the limit value when x is going to plus or minus infinity. For the sine

Magic Formula

C = 2 − 2
𝜋
arcsin

(y∞
D

)

, (86)

and for the cosine Magic Formula

C = 2 − 2
𝜋
arccos

(y∞
D

)

. (87)

note that C ≥ 1.

∙ For the sine Magic Formula the product BCD determines the slope at the origin.

∙ For the cosine Magic Formula the product BC determines the curvature near the

origin.

∙ The parametersB,E andC determine the location of the peak xm for the sine Magic

Formula and point where the curve crosses zero xo for the cosine Magic Formula.

The parameter E can be calculated by

E =
Bx − tan(𝜋∕2C)
Bx − arctan(Bx)

, (88)

where x is either xm or x0. Not that it should hold that E ≤ 1, if E exceeds 1 unre-

alistic curves will be obtained.

Equations (84) and (85) provide the basic equations. To model a tyre accurately for

different operating conditions the parameters are made dependent on for example

the vertical force Fz and inclination angle 𝛾 . More details will be given in the next

sections.

An iterative, non-linear, constrained optimization procedure is typically used to

determine the Magic Formula tire model parameters. The objective of the optimiza-

tion is to minimize the error criterion given by (83), while the constraints C ≥ 1 and

E ≤ 1 are applicable. To start the optimization procedure an initial estimate has to

be provided for the parameters. Thereafter the error criterion is reduced with every
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iteration step, while the constraints are checked and maintained if necessary. The

MATLAB function “fmincon”, which is part of the optimization toolbox, has been

used successfully for this purpose.

In the next sections more details on the Magic Formula tire model will be

introduced. Since its conception, different versions of the Magic Formula have

been developed. The equations presented in the next sections reflect the version as

described by Pacejka (2012) and implemented in the MF-Tyre 6.x software, TASS

(2018). For educational reasons the effects of changes in tire inflation pressure have

been omitted, these extensions have been developed at the TU Eindhoven and are

described by Besselink et al. (2010). The same applies to parking and turn slip behav-

ior, which is described in more detail in Pacejka (2012).

To make the Magic Formula parameters dimensionless, the following parameters

are introduced:

∙ nominal vertical force Fz0
∙ free radius of the non-rolling tire r0.

The nominal vertical force Fz0 should approximately reflect the static vertical tire

force, in case of a passenger car tire it will be in the order of 4000 N. Its value only

affects the magnitude of the Magic Formula parameters, but not the final accuracy

of the model. As will be shown in the next sections, some parameters of the Magic

Formula (e.g. D and E) are dependent on the vertical force. To include these effects

a dimensionless force increment dFz is introduced, defined as:

dFz =
Fz − Fz0

Fz0
. (89)
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Strictly speaking the free tire radius r0 used in the Magic Formula expressions

does not have to reflect the actual free radius of the tire, it is just used to make the

parameters in the expression for the self-aligning moment dimensionless. However

in most tire modeling software r0 is also used in the loaded radius calculation and

therefore should be defined precisely and reflect the actual tire dimension.

4.2 Longitudinal Force

The equations to describe the longitudinal force Fx for pure slip conditions, 𝛼 = 0,

are given by Eqs. (90)–(99). In (90) the sine Magic Formula (84) can be recog-

nized, with additional shifts both in the horizontal and vertical direction, SHx and

SVx respectively. The peak friction coefficient is modeled by (94), a constant part

pDx1 and part linearly dependent on the vertical force pDx2 can be recognized. They

allow to capture the linear decrease of the peak friction coefficient 𝜇x,peak with ver-

tical force Fz, as shown in Fig. 10c. For many tires the dependency of 𝜇x,peak on the

inclination angle 𝛾 will be negligible, so pDx3 may be set to zero in that case. The lon-

gitudinal slip stiffness CF𝜅 = Kx𝜅 is given by (96). In the measurement, see Fig. 10b,

a linear dependency on the vertical force Fz is seen which can be captured by param-

eter pKx1. The parameters pKx2 and pKx3 allow to model a non-linear dependency on

the vertical force Fz. However they should be used carefully, in particular pKx3, as

extrapolation to very high vertical forces may result in physically impossible results

when longitudinal slip stiffness Kx𝜅 becomes negative.

Fxp = Dx sin(Cx arctan[(1 − Ex)Bx𝜅x + Ex arctan(Bx𝜅x)]) + SVx (90)

𝜅x = 𝜅 + SHx (91)

Cx = pCx1 (92)

Dx = 𝜇x,peakFz (93)

𝜇x,peak = (pDx1 + pDx2dFz)(1 − pDx3𝛾2)𝜆𝜇x (94)

Ex = (pEx1 + pEx2dFz + pEx3d2Fz)(1 − pEx4 sgn(𝜅x)) (95)

Kx𝜅 = Fz(pKx1 + pKx2dFz) exp(pKx3dFz)𝜆Kx𝜅 (96)

Bx =
Kx𝜅

CxDx
(97)

SHx = pHx1 + pHx2dFz (98)
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Fig. 28 Combined slip weighting function Gx𝛼 for the longitudinal force Fx

SVx = Fz(pVx1 + pVx2dFz)𝜆𝜇x (99)

To model the forces for combined slip conditions a weighting function Gx𝛼 is

introduced, as can be seen from (100). This weighting function has a value between

0 and 1. This is logical as the longitudinal force Fx is reduced for combined slip

conditions in comparison to pure slip, which is illustrated by Fig. 11a. To model this

weighting function Gx𝛼 the cosine Magic Formula (85) is used, in (101) it appears

both in the numerator as well as the denominator. It can be seen that Gx𝛼 will always

be equal to one when 𝛼 is equal to zero. For a given vertical force Fz and longitudinal

slip 𝜅, the weighting function Gx𝛼 as a function of 𝛼 will have the cosine Magic

Formula shape. The longitudinal slip 𝜅 affects Bx𝛼 and changes the width of the

cosine Magic Formula. Furthermore, Bx𝛼 will be zero when 𝜅 goes to plus or minus

infinity and the weighting function Gx𝛼 equals one again. A plot of the weighting

function Gx𝛼 is shown in Fig. 28.

Fx = FxpGx𝛼 (100)

Gx𝛼 =
cos(Cx𝛼 arctan[(1 − Ex𝛼)Bx𝛼𝛼s + Ex𝛼 arctan(Bx𝛼𝛼s)])

cos(Cx𝛼 arctan[(1 − Ex𝛼)Bx𝛼SHx𝛼 + Ex𝛼 arctan(Bx𝛼SHx𝛼)])
(101)

𝛼s = 𝛼 + SHx𝛼 (102)

Bx𝛼 = (rBx1 + rBx3𝛾2) cos(arctan(rBx2𝜅)) (103)

Cx𝛼 = rCx1 (104)

Ex𝛼 = rEx1 + rEx2dFz (105)
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Fig. 29 Magic Formula (solid lines) and measurements (dots) for the longitudinal force Fx, pure

slip (a) and combined slip (b)

SHx𝛼 = rHx1 (106)

The Magic Formula parameters have been determined for the measurements pre-

sented in Sect. 2.3 and are listed in Table 4. The difference between measurement

and model 𝜖 is also listed in this table, obviously the Magic Formula shows a much

increased accuracy in comparison to the brush tire model (Table 3). The results can

be checked visually in Fig. 29.
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Table 4 Longitudinal force Magic Formula parameters

Constants Fz0 = 5000 N

Fx pure pCx1 = 1.5591
pDx1 = 1.1752, pDx2 = −0.0889, pDx3 = 0
pEx1 = 0, pEx2 = −0.1182, pEx3 = 0.1844, pEx4 = 0
pKx1 = 20.4330, pKx2 = 0, pKx3 = 0
pHx1 = −0.0022, pHx2 = 0
pVx1 = 0, pVx2 = 0

Fx combined rBx1 = 15.9985, rBx2 = 12.1522, rBx3 = 0
rCx1 = 1.0177
rEx1 = 0.1783, rEx2 = −0.2879
rHx1 = 0

Model error Pure: 𝜖 = 1.33%, combined: 𝜖 = 2.39%

4.3 Lateral Force

The equations to describe the lateral force Fy for pure slip conditions, 𝜅 = 0, are

given by Eqs. (107)–(121). The basic approach is very similar to modeling the lon-

gitudinal force Fx. Again a sine Magic Formula is used, including a horizontal an

vertical shift. The friction coefficient 𝜇y is modeled by (111). When ignoring the

contribution of 𝛾 , a linear dependency of 𝜇y on the vertical force Fz can be seen,

as also observed in the measurements, see Fig. 9e. Measurements indicate that the

dependency of the cornering stiffness CF𝛼 on the vertical force Fz is different when

compared to the longitudinal slip stiffness CF𝜅 , see Figs. 9a and 10b. The equation

used modeling the cornering stiffness Ky𝛼 (113) is quite different from the expression

for the longitudinal slip stiffness Kx𝜅 (96). Note that the expression for Ky𝛼 includes

the influence of the inclination angle 𝛾 , whereas 𝛾 is assumed to be zero in the def-

inition of CF𝛼 (10). In earlier versions of the Magic Formula the value of pKy4 was

fixed to 2. Considering that a sine Magic Formula is used for modeling Ky𝛼 the value

of pKy4 should be equal or greater than 1 in any case.

The camber stiffness modeled by Ky𝛾 (114), this expression represents the mea-

sured camber stiffness CF𝛾 , as shown in Fig. 9c. In the measurements the Fy versus 𝛼

curve is shifted vertically as a result of an inclination angle 𝛾 , in the Magic Formula

expressions this is taken into account by the vertical shift SVy𝛾 (121). A horizontal

shift due to camber, SHy𝛾 (118), ensures that when 𝛼 is equal to zero, that the desired

lateral force is obtained. In earlier versions of the Magic Formula the contribution

of the inclination angle 𝛾 was implicitly included in the horizontal shift. This did not

allow to accurately model very large camber angles. With the equations presented

here even motorcycle tire characteristics with inclination angles in excess of 45◦ can

be accurately represented.

Fyp = Dy sin(Cy arctan[(1 − Ey)By𝛼y + Ey arctan(By𝛼y)]) + SVy (107)
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𝛼y = 𝛼 + SHy (108)

Cy = pCy1 (109)

Dy = 𝜇yFz (110)

𝜇y = (pDy1 + pDy2dFz)(1 − pDy3𝛾2)𝜆𝜇y (111)

Ey = (pEy1 + pEy2dFz)(1 + pEy5𝛾2 − (pEy3 + pEy4𝛾) sgn(𝛼y)) (112)

Ky𝛼 = pKy1Fz0 sin
(

pKy4 arctan
( Fz

(pKy2 + pKy5𝛾2)Fz0

))

(1 − pKy3|𝛾|)𝜆Ky𝛼 (113)

Ky𝛾 = Fz(pKy6 + pKy7dFz)𝜆Ky𝛾 (114)

By =
Ky𝛼

CyDy
(115)

SHy = SHy0 + SHy𝛾 (116)

SHy0 = pHy1 + pHy2dFz (117)

SHy𝛾 =
Ky𝛾𝛾 − SVy𝛾

Ky𝛼
(118)

SVy = SVy0 + SVy𝛾 (119)

SVy0 = Fz(pVy1 + pVy2dFz)𝜆𝜇y (120)

SVy𝛾 = Fz(pVy3 + pVy4dFz)𝛾𝜆Ky𝛾𝜆𝜇y (121)

The model for combined slip conditions uses a weighting function Gy𝜅 to modify

the pure slip characteristics. Furthermore a braking induced plysteer force SVy𝜅 is

introduced.

Fy = FypGy𝜅 + SVy𝜅 (122)

The expressions for Gy𝜅 , given by (123)–(128), are almost identical to the expression

for Gx𝛼 , Eqs. (101)–(106). Basically 𝛼 and 𝜅 are exchanged and a few additional

parameters are introduced in these expressions, rBy3 and rHy2. Figure 30 gives an

impression of the shape of the weighting function Gy𝜅 .

Gy𝜅 =
cos(Cy𝜅 arctan[(1 − Ey𝜅)By𝜅𝜅s + Ey𝜅 arctan(By𝜅𝜅s)])

cos(Cy𝜅 arctan[(1 − Ey𝜅)By𝜅SHy𝜅 + Ey𝜅 arctan(By𝜅SHy𝜅)])
(123)
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Fig. 30 Combined slip weighting function Gy𝜅 for the lateral force Fy

𝜅s = 𝜅 + SHy𝜅 (124)

By𝜅 = (rBy1 + rBy4𝛾2) cos(arctan[rBy2(𝛼 − rBy3)]) (125)

Cy𝜅 = rCy1 (126)

Ey𝜅 = rEy1 + rEy2dFz (127)

SHy𝜅 = rHy1 + rHy2dFz (128)

A longitudinal force due braking or driving may introduce an additional plysteer

angle. This results in an additional lateral force that is visible for small side slip

angles in particular. This phenomenon is impossible to be modeled accurately using

weighting functions, so an additional force SVy𝜅 is introduced. In expression (129) a

sine Magic Formula is used, thus parameter rVy5 should be in the range between 1

and 2. In expression (130) a cosine Magic Formula is used, here it is important that

rVy4 is not too small to ensure that the braking induced plysteer force disappears for

larger side slip angles.

SVy𝜅 = DVy𝜅 sin(rVy5 arctan(rVy6𝜅)) (129)

DVy𝜅 = 𝜇yFz(rVy1 + rVy2dFz + rVy3𝛾) cos(arctan(rVy4𝛼)) (130)

The Magic Formula parameters and modeling error 𝜖 have been determined for

the measurements presented in Sects. 2.2 and 2.3, they are listed in Table 5. A com-

parison of measurement and Magic Formula tire model can be found in Fig. 31.
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Fig. 31 Magic Formula (solid lines) and measurements (dots) for the lateral force Fy, pure slip (a)

and combined slip (b)

4.4 Self-aligning Moment

In the Magic Formula the self-aligning moment Mz is described by the following

equation

Mz = −tpFyp0Gy𝜅0 +Mzr + szFx, (131)

where tp equals the pneumatic trail defined by Eqs. (132)–(139), Fyp0Gy𝜅0 is the

combined slip lateral force for zero inclination angle (𝛾 = 0), Mzr is the residual

moment defined by Eqs. (140)–(144), sz equals the moment arm of the longitudinal

force Fx and is defined by (145).

The pneumatic trail tp is modeled using a cosine Magic Formula as expressed by

(132), the final multiplication with cos(𝛼) ensures that the pneumatic trail tp will be
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Table 5 Lateral force Magic Formula parameters

Constants Fz0 = 5000 N

Fy pure pCy1 = 1.2640
pDy1 = 0.9894, pDy2 = −0.1914, pDy3 = 0
pEy1 = −1.3186, pEy2 = −0.7057, pEy3 = 0.3278
pEy4 = −3.5829, pEy5 = 25.1493
pKy1 = 13.2701, pKy2 = 1.4990, pKy3 = 0
pKy4 = 2, pKy5 = 0, pKy6 = 0.7033, pKy7 = 0
pHy1 = −0.0019, pHy2 = 0
pVy1 = 0.0320, pVy2 = 0, pVy3 = 0.1853
pVy4 = 0.4649

Fy combined rBy1 = 6.8792, rBy2 = 5.0932, rBy3 = 0, rBy4 = 0
rCy1 = 1.0665
rEy1 = −0.1376, rEy2 = 0.7782
rHy1 = 0, rHy2 = 0
rVy1 = 0, rVy2 = 0, rVy3 = −0.5938, rVy4 = 20
rVy5 = 2.1557, rVy6 = 10

Model error Pure: 𝜖 = 1.92%, combined: 𝜖 = 7.35 %

zero when the side slip angle 𝛼 equals 90◦. To handle combined slip conditions no

additional equations are used, but an equivalent side slip angle is calculated, 𝛼tp,eq
(133). This approach has some similarities with modeling combined slip in the brush

tire model. Note that the expressions for the pneumatic trail tp include the influence

of the inclination angle 𝛾 . The pneumatic trail tp is multiplied with a lateral force Fy
that is evaluated for 𝛾 = 0 (131).

tp = Dtp cos(Ctp arctan[(1 − Etp)Btp𝛼tp,eq + Etp arctan(Btp𝛼tp,eq)]) cos(𝛼) (132)

𝛼tp,eq = arctan

√

tan2(𝛼tp) +
(
Kx𝜅

Ky𝛼

)2

𝜅2 ⋅ sgn(𝛼tp) (133)

𝛼tp = 𝛼 + SHtp (134)

SHtp = qHz1 + qHz2dFz + (qHz3 + qHz4dFz)𝛾 (135)

Btp = (qBz1 + qBz2dFz + qBz3d2Fz)(1 + qBz4𝛾 + qBz5|𝛾|)
𝜆Ky𝛼

𝜆
𝜇y

(136)

Ctp = qCz1 (137)
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Dtp =
Fzr0
Fz0

(qDz1 + qDz2dFz)(1 + qDz3𝛾 + qDz4𝛾2)𝜆tp (138)

Etp = (qEz1 + qEz2dFz + qEz3d2Fz)(1 + (qEz4 + qEz5𝛾)
( 2
𝜋

)

arctan(BtpCtp𝛼tp)) (139)

When the lateral force is equal to zero, the self-aligning moment does not necessarily

have to be zero. The residual moment Mzr is introduced to incorporate this additional

contribution to Mz.

Mzr = Dr cos(arctan(Br𝛼r,eq)) cos(𝛼) (140)

𝛼r,eq = arctan

√

tan2(𝛼r) +
(
Kx𝜅

Ky𝛼

)2

𝜅2 ⋅ sgn(𝛼r) (141)

𝛼r = 𝛼 + SHy +
SVy
Ky𝛼

(142)

Br = qBz9
𝜆Ky𝛼

𝜆
𝜇y

+ qBz10ByCy (143)

Dr = Fzr0
[
(qDz6 + qDz7dFz)𝜆r + (qDz8 + qDz9dFz)𝛾𝜆Ky𝛾

+(qDz10 + qDz11dFz)𝛾|𝛾|𝜆Ky𝛾
]
𝜆
𝜇y

(144)

For combined slip conditions the longitudinal force Fx may have a contribution to the

self-aligning moment Mz. This can be easily imagined as the contact path having a

lateral deflection with respect to the wheel plane of symmetry. In the Magic Formula

the moment arm of longitudinal force sz is modeled to take this effect into account.

sz = r0

(

ssz1 + ssz2

( Fy

Fz0

)

+ (ssz3 + ssz4dFz)𝛾
)

(145)

The Magic Formula parameters and modeling error 𝜖 have been determined for

the measurements presented in Sects. 2.2 and 2.3 and they are listed in Table 6. A

comparison of measurement and the Magic Formula tire model can be found in

Fig. 32.
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Fig. 32 Magic Formula (solid lines) and measurements (dots) for the self-aligning moment Mz,

pure slip (a) and combined slip (b)

5 Tire Dynamics

5.1 Introduction to Tire Relaxation Behavior

In the previous sections the focus has been on analyzing and modeling the steady-

state forces and moments. The tire is considered and modeled as a complex, non-

linear function with multiple inputs and outputs as shown in Fig. 4. In the steady-state

approach any change of an input will result in an instantaneous change of the out-

puts. As will be shown in this section, this is not how a real tire behaves in dynamic

situations. Typically a tire responds with some delay on abrupt changes of the inputs.

A model to illustrate these effects is shown in Fig. 33. The tire contact patch has a
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Table 6 Self-aligning moment Magic Formula parameters

Constants Fz0 = 5000 N, r0 = 0.315 m

tp qBz1 = 8.6117, qBz2 = −0.8357, qBz3 = −4.2173
qBz4 = −0.2891, qBz5 = 0.6218
qCz1 = 1.1423
qDz1 = 0.1231, qDz2 = 0.0071, qDz3 = 0, qDz4 = 9.6467
qEz1 = −3.1431, qEz2 = 0.7236, qEz3 = −6.4258
qEz4 = −0.3275, qEz5 = 0
qHz1 = −0.0067, qHz2 = 0, qHz3 = 0.1209, qHz4 = 0

Mzr qBz9 = 0, qBz10 = 0.2865
qDz6 = −0.0037, qDz7 = 0.0068, qDz8 = 0.0610
qDz9 = −0.0625, qDz10 = 0, qDz11 = 0

sz ssz1 = 0.0363, ssz2 = 0.0102, ssz3 = −0.5962
ssz4 = 0.2702

Model error Pure: 𝜖 = 7.82%, combined: 𝜖 = 17.12 %

contact patch
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−VsyFy
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αα′
top view
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Fig. 33 Tire model with a lateral degree of freedom for the contact patch

lateral degree of freedom 𝜀y with respect to the wheel, the stiffness associated with

this degree of freedom is ky. The contact patch can slide with respect to the road.

The relative velocity of the contact patch �̇�y with respect to the wheel plane has to

be added to the absolute sliding velocity of point S, Vsy, to obtain the side slip angle

𝛼
′

of the contact patch. The side slip angle angle of the contact patch 𝛼
′

becomes

tan(𝛼′) = −
Vsy + �̇�y

|Vx|
. (146)

Note that in the regular definition of the tire side slip angle 𝛼 (4) that the wheel is

considered as a rigid disk. Assuming linear tire behavior and neglecting the mass

of the contact path, the spring force and lateral force due to side slip have to be in
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equilibrium,

Fy = CF𝛼𝛼
′ = ky𝜀y. (147)

Assuming that CF𝛼 and ky are independent of time, the following expression is

obtained after differentiation with respect to time

�̇�y =
CF𝛼

ky
�̇�
′
. (148)

Substituting (148) in (146) results in

CF𝛼

ky
1

|Vx|
�̇�
′ + tan(𝛼′) = tan(𝛼). (149)

The ratio between cornering stiffness CF𝛼 and lateral stiffness ky is known as the

relaxation length 𝜎y, thus

𝜎y =
CF𝛼

ky
. (150)

The longitudinal velocity Vx is approximately equal to the time derivative of the

traveled distance st. For a positive longitudinal velocity and linearization for small

values of the side slip angle, the following expression is obtained

𝜎y
dt
dst

d𝛼′

dt
+ 𝛼

′ = 𝜎y
d𝛼′

dst
+ 𝛼

′ = 𝛼. (151)

From this equation it becomes clear that the relaxation behavior of a tire is not depen-

dent on time, but on the traveled distance st. Starting from an initial condition where

𝛼
′

and 𝛼 are equal to zero and applying a step in the tire side slip angle 𝛼 with mag-

nitude 𝛼step, the analytical solution of (151) equals

𝛼
′ = (1 − e−st∕𝜎y )𝛼step. (152)

The lateral force Fy becomes

Fy = CF𝛼(1 − e−st∕𝜎y)𝛼step. (153)

Note that this expression is only valid under the assumption of linear tire behavior

and small side slip angles.

As the tire relaxation behavior is a function of the traveled distance, the forward

velocity does not play a role when doing measurements to assess the tire relaxation

behavior and as a result this behavior can be measured at very low speeds. A mea-

surement device that allows to execute relaxation length measurements is the flat

plank tire tester as shown in Fig. 34. The wheel is mounted on a measurement hub
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Fig. 34 TU/e flat plank tire tester
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Fig. 35 Tire response to a step in side slip angle (𝛼step = 1◦, Fz = 4000 N, 𝜎y = 0.412 m, CF𝛼 =
1050N/deg)

that allows to measure the forces and moments that occur at the wheel center. The

road is represented by a plank with a length of approximately 7 m, which can move

in the horizontal plane with a maximum velocity of 0.05 m/s. The measurement hub

can move vertically allowing to press the tire against the plank and thus giving con-

trol over the vertical tire force Fz. Furthermore it can be rotated about the vertical

axis allowing a steering angle to be applied to the wheel.

To apply a step in side slip angle the required steering angle is applied first, then

the wheel is pressed against the plank and thereafter the plank is moved forward with

a low, constant velocity. The lateral force as a function of traveled distance is shown

in Fig. 35. In the same figure (153) is plotted, showing that it can accurately represent

the measurement results. Note that the relaxation length 𝜎y for this experiment equals

0.412 m. In general the relaxation length corresponds to the distance traveled since

the start of the application of the step in side slip angle, when 63.2% of the steady-

state value of the lateral force Fy is reached. Note that the relaxation behavior of the

tire is not dependent on time, but traveled distance. This also means that when the

forward velocity is increased, that the tire force will respond more quickly since the

distance traveled in the same amount of time will increase.

Brush tire model The brush tire model can be used to gain more insight in various

aspects of tire relaxation behavior. Figure 36 shows the response of the brush tire

model to a small step in side slip angle. In this example it is assumed that no sliding

of the bristles will occur and that the steady-state deformation pattern of the bristles
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Fig. 36 Brush tire model transient behavior on a step in side slip angle

is triangular. Initially all bristles are undeformed and upon the application of the

side slip angle the tire needs to move forward over a distance 2a to obtain the steady

state deformation pattern. As a result the lateral force and self-aligning moment will

develop as a function of the traveled distance and relaxation effects become visible.

Various, qualitatively valid observations with respect to relaxation behavior can be

made from the brush tire model step response:

∙ It can be noted that there is a difference in the response of the lateral force Fy
and self-aligning moment Mz. Upon application of the step in side slip angle Fy
starts to increase immediately, whereas the gradient of Mz is equal to zero. This

behavior has also been observed for aircraft tires, for normal passenger car tires

this phenomenon is hardly noticeable.

∙ For large side slip angles the tire will need to travel less than 2a to obtain the

steady state deformation pattern, as the bristles in the trailing part of the contact

patch are already sliding. Thus the relaxation length is expected to decrease with

increasing side slip angle.

∙ As the contact length 2a increases with the vertical force, the relaxation length

will also increase with the vertical force Fz.

∙ When the tire is running at a fixed side slip angle, a stepwise increase of the vertical

force will also result in relaxation effects. The increase of the vertical force results

in a longer contact length and increased maximum bristle deflections. The tire

will need to travel over a certain distance before settling for a new steady-state

deformation pattern.

∙ Since there is no fundamental difference between longitudinal and lateral bristle

deformation, relaxation behavior will not only be present in the lateral direction

but also in the longitudinal direction.
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In the next section a pragmatic tire model will be developed, which includes all the

aforementioned effects.

5.2 Modeling Tire Dynamics

The steady-state Magic Formula tire model will be extended with differential equa-

tions that capture the relaxation behavior up to large side slip angles, furthermore the

model is modified to handle zero forward velocity. It can be noted that in the defini-

tions of the longitudinal slip 𝜅 (2), side slip angle 𝛼 (4) that the longitudinal velocity

Vx appears in the denominator. This implies that a division by zero will occur when

Vx is equal to zero and the equations cannot be solved numerically. A possible solu-

tion is to introduce a lower limit for the longitudinal velocity Vx,min. The longitudinal

slip is then by

𝜅 = −
Vsx

max(Vx,Vx,min)
. (154)

Though it solves the numerical problems, it is not correct from a physical point of

view. For velocities below Vx,min and assuming linear tire behavior, the following

expression is obtained for the longitudinal force

Fx = −
CF𝜅

Vx,min
⋅ Vsx. (155)

So actually a damper is modeled: the longitudinal force Fx is proportional and oppo-

site to the sliding velocity Vsx. This makes it impossible to simulate for example a

car being parked on a slope. The car would slowly move downwards as a sliding

velocity is necessary to generate a longitudinal force, which does not correspond to

the physical reality. The same phenomenon will occur in the lateral direction.

A solution to this problem can be found by multiplying expression (149) with |Vx|

and using the definition of the side slip angle 𝛼, as proposed by Zegelaar (1998). The

following expression is obtained then

CF𝛼

ky
�̇�
′ + |Vx| tan 𝛼′ = −Vsy. (156)

When Vx is equal to zero, the following equation is obtained for 𝛼
′
,

𝛼
′ = −

ky
CF𝛼 ∫ Vsydt. (157)

Assuming linear tire behavior the lateral force Fy becomes
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Fig. 37 Dynamic tire model having a longitudinal and lateral degree (𝜀x and 𝜀y) of freedom to

include motions of the tire belt with respect to the rim

Fy = CF𝛼𝛼
′ = −ky ∫ Vsydt. (158)

So by integrating the sliding velocity Vsy a deflection is obtained which is multiplied

by the non-rolling lateral stiffness ky to obtain the lateral force Fy. When Vx equals

zero, the tire thus behaves as a spring which corresponds to physical reality. It should

be noted when the tire starts sliding and 𝛼
′
becomes very large that this approach does

not yield physically correct results.

A pragmatic model is proposed to include the various observations made when

analyzing the brush tire model transient behavior in a quantitatively correct way.

The stiffness of the tire belt with respect to the rim is modeled separately from the

relaxation behavior of the tread elements attached to the belt, this is illustrated in

Fig. 37. The mass of the tire belt is assumed to be zero in the model described here,

but it is also possible to split the mass of the wheel in two items: rim combined with

tire bead and tire belt. In the lateral direction 𝜀y reflects the displacement of the belt

with respect to the rim. In the longitudinal direction the wheel can be considered

to consist of two concentric rings, that can rotate with respect to each other. The

deformation 𝜀x represents the translation at the circumference of tire as a result of a

relative rotation of the tire belt with respect to the rim. Note that differences between

the effective and loaded tyre radius a neglected in this approach.

The force equilibrium in the longitudinal and lateral direction equals

dx�̇�x + kx𝜀x = Fx,MF(𝜅′
, 𝛼

′
, 𝛾,Fz) (159)

dy�̇�y + ky𝜀y = Fy,MF(𝜅′
, 𝛼

′
, 𝛾,Fz) (160)

where kx (dx) and ky (dy) represent the stiffness (damping) in the longitudinal and

lateral direction, Fx,MF and Fy,MF are the longitudinal and lateral force calculated
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using the Magic Formula. The relaxation behavior of the tread elements is described

by the following equations

𝜎c�̇�
′ + |Vx|𝜅

′ = −Vsx − �̇�x (161)

𝜎c�̇�
′ + |Vx| tan 𝛼′ = −Vsy − �̇�y (162)

where 𝜎c represents the relaxation length of the tread elements in contact with the

road. The magnitude of 𝜎c is typically in the order of half of the contact length a.

After rearranging (159)–(162) the following set of first order differential equations

is obtained

�̇�x =
1
dx
(Fx,MF(𝜅′

, 𝛼
′
, 𝛾,Fz) − kx𝜀x), (163)

�̇�y =
1
dy
(Fy,MF(𝜅′

, 𝛼
′
, 𝛾,Fz) − ky𝜀y), (164)

�̇�
′ = 1

𝜎c
(−Vsx − �̇�x − |Vx|𝜅

′), (165)

�̇�
′ = 1

𝜎c
(−Vsy − �̇�y − |Vx| tan 𝛼′). (166)

This model allows to accurately describe the non-linear dynamic behavior for large

side slip angles. This is illustrated by Fig. 38, which shows a number of relaxation

length measurements with different side slip angles. The non-linear dependency of

the steady-state lateral force is modeled with the Magic Formula. It can be observed

that for larger side slip angles the tire responds more quickly and the relaxation length

is reduced. This effect is correctly captured with Eqs. (164) and (166). A more simple

approach, whereby only the side slip angle is filtered using fixed relaxation length

and equation similar to (149), is not able to show this behavior. In the next section

it will also be shown that the tire response to vertical force variations is correctly

captured by the model presented here.

5.3 Applications

This section will briefly discuss two examples showing the relevance of tire relax-

ation behavior. The shimmy stability of a wheel having a yaw degree of freedom

will be analyzed first. The loss of side force due to vertical force variations will be

discussed next.

Shimmy Shimmy is an instability, which is caused by the interaction of the dynamic

behavior of the suspension and tire. It has been researched already for a long time,

an early paper was written by Von Schlippe and Dietrich (1941). The unstable lat-
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Fig. 38 Comparison of measurements and model response for various steps in side slip angle
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eral and yaw vibration of the wheel can reach considerable amplitudes resulting in

a loss of control of the vehicle or even structural damage. The shimmy frequency is

typically in the range of 5–25 Hz. The most simple system capable of showing the

shimmy instability is the trailing wheel system, as seen in Fig. 39. Linear tire behav-

ior will be assumed in the following analysis. The yaw equation of motion of this

system is given by

(Izz + me2)�̈� + d
𝜓
�̇� + k

𝜓
𝜓 = −CF𝛼(e + tp)𝛼′

. (167)

The relaxation behavior of the tire is described by

𝜎y�̇�
′ + V𝛼′ = −Vsy = V𝜓 + e�̇� (168)

In state-space form (�̇� = 𝐀𝐱) the equations become
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In these equations e equals the length of mechanical trail, k
𝜓

the yaw stiffness and d
𝜓

the yaw damping constant. The total moment of inertia about the swivel axis equals

It = Izz + me2, with m being the mass and Izz the yaw moment of inertia of the wheel,

including the tire.

The stability of the system can be investigated by calculating the eigenvalues of

the matrix 𝐀. For a complex eigenvalue 𝜆 = a + ib the damped eigenfrequency fd in

[Hz] can be calculated by

fd =
b
2𝜋

(170)

and the dimensionless damping ratio 𝜁 equals

𝜁 = − a
|𝜆|

⋅ 100%. (171)

Analytical expressions for the stability can be obtained for the system stability

using the Hurwitz criterion when the yaw damping d
𝜓

is equal to zero. In this case

the stability boundaries are independent of the forward velocity V . Results are shown

in Fig. 40 and the length of the mechanical trail e appears to be a decisive factor. The

trailing wheel system shows an oscillatory unstable behavior for small negative and

positive values of the mechanical trail e.

By adding yaw damping, so d
𝜓
> 0, this instability can be suppressed. The stabil-

ity results will become velocity dependent and no analytical expressions are available

to describe the stability for this situation. The working principle of the yaw damper

can be described as follows. When the yaw angle 𝜓 changes the lateral tire force Fy
responds with some delay due to the relaxation effects. This also implies that the tire

yaw moment about the rotation axis has a delayed response with respect to the yaw
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Fig. 41 TU/e tire

measurement tower

angle, which may result in an instability. The damper k
𝜓

produces a moment with

a phase lead with respect to the yaw angle 𝜓 and can thus counteract the tire yaw

moment with a phase delay.

The shimmy stability of more complex systems has been analyzed by for example

Besselink (2000), the influence of nonlinear tire behavior on shimmy stability has

been researched by Ran (2016).

Cornering on undulated roads When a car is cornering the tires have to develop

lateral forces to keep the car on the circular path. The lateral force that the tire can

develop is influenced by the vertical force variations that may occur as a result of road

irregularities. This phenomenon has been investigated with a lab set-up, as shown in

Fig. 41, where a measurement tower is placed on top of a drum. The wheel is kept

a constant side slip angle 𝛼 and a hydraulic actuator is used to prescribe the vertical

position of the measurement hub. First experiments of this type were reported by

Takahashi and Pacejka (1988) and later by Maurice (2000).

Tests have been executed with a forward velocity of 0.6 m/s and a fixed side slip

angle of 5◦ to illustrate the contribution of tire relaxation effects. The vertical force

Fz has an average value of 4000 N and changes sinusoidally with an amplitude of

2000 N and different excitation frequencies are used: 0.25, 0.5, 1 and 2 Hz. Since

tire relaxation behavior is path dependent, it is convenient to use the wavelength 𝜆

to interpret the results, the following relation holds:

𝜆 = V
f
, (172)
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Fig. 42 Tire relaxation effects due to sinusoidal vertical force changes (𝛼 = 5◦, V = 0.6m/s)

where V is the forward velocity and f the excitation frequency. So in the experiments

the wavelength varies between 2.4 m (f = 0.25 Hz) and 0.3 m (f = 2Hz). Figure 42

shows measurement results, on the horizontal axis the traveled distance, normalized

with the wavelength, is plotted. From Fig. 42b it is clear that a major decrease of

the average later force Fy occurs when the wavelength is reduced by increasing the

excitation frequency. The tire relaxation effects are clearly visible: the lateral force

Fy responds with some delay on an increase of the vertical force, whereas this not

the case for a decreasing vertical force.

Simulations have been executed for the same conditions. The steady-state corner-

ing characteristics are have been measured on the drum and are fitted using the Magic

Formula. The following parameters have been used in dynamic model: ky = 130,000

N/m, dy = 1300 Ns/m and 𝜎c = 0.02 m. The simulated lateral force Fy is shown in
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Fig. 42c. When comparing the simulations with the measurements it is clear that the

main phenomena are captured well by the model, although differences exist. When

comparing the reduction in the average side force and using 𝜆 = 2.4 m as the base-

line, it can be seen in Fig. 42d that the model shows the same trend and appears to

be fairly accurate.

In the optimization process of automotive shock absorbers one of the criteria is

to minimize the vertical tire force variations. Both measurements and simulations

show the loss of average side force due to a varying vertical force when the tire is

subjected to a fixed side slip angle. Though the experiments are executed at a low

forward velocity (2.16 km/h) and the maximum excitation frequency is limited to

2 Hz, the results are still meaningful for road car cornering.
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Optimal Vehicle Suspensions:
A System-Level Study of Potential
Benefits and Limitations

Davor Hrovat, H. Eric Tseng and Joško Deur

Abstract Fundamental ride and handling aspects of active and semi-active sus-
pensions are presented in a systematic way starting with simple vehicle models as
basic building blocks. Optimal, mostly Linear-Quadratic (H2), principles are used to
gradually reveal and explore key system characteristics where each additional model
Degree-of-Freedom (DoF) brings new insight into potential system benefits and
limitations. The chapter concludes with practical considerations and examples
including some that go beyond the more traditional ride and handling benefits.

Keywords Active and semi-active suspensions ⋅ Ride comfort
LQ control ⋅ Preview ⋅ Trajectory optimization ⋅ Active safety

1 Introduction

1.1 Goals/Objectives

During the past several decades there was a substantial activity in the area of
automotive computer controls and related mechatronics developments. This started
in the 1970s with engine controls and later included transmission and overall
powertrain controls. Subsequent additions included brake and driveline controls
such as four- and all-wheel drives, for example.

While there were substantial evolutionary developments in controls of longitu-
dinal direction or X-dimension of vehicle motion, on the other hand there was
relatively less activity and progress in the other two dimensions—lateral or Y and
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vertical or Z dimension—in terms of actual production applications. This is in
particular true for the case of vertical vehicle motion control via appropriate
advanced, controllable suspensions. While there were occasional major waves of
agitated and at times almost frantic activity in this area in the past, currently the
only advanced suspensions that saw some actual market penetration and usage are
the so-called semi-active suspensions, which are essentially controllable dampers.

The main objective of these lectures is to present potential benefits and asso-
ciated requirements and limitations of advanced active and semi-active suspensions.
It is hoped that this will lead to additional insight and revived interest towards
further developments in the above “forgotten dimension”, which may represent a
major yet not fully explored and exploited opportunity. In addition to addressing the
opportunities in more traditional areas of improved ride and handling the new class
of advanced suspensions may be especially attractive and timely addition to overall
vehicle controls in view of ever increasing interests in the areas of active safety,
driver assist technologies and autonomous vehicles. The conglomerate of all those
benefits may eventually lead to wide-spread production of advanced suspensions
benefiting millions of customers.

1.2 Basic Definitions

Before proceeding it is necessary to define some basic notions to avoid possible
misunderstandings, i.e. so that we are all on the same plane going forward through
these notes. In particular, we are concerned with such notions as what sort of
vehicle suspensions we are going to deal with in the sequel. The definitions are
mainly based on the notion of passivity, which is closely related to energy supplied
to or dissipated by the suspension unit.

Passive suspensions. They typically consist of shock absorbers and springs and
as such they don’t require any external energy sources i.e. they dissipate the energy
through the process of heating up the shock absorbers or dampers. They are seen on
most past and contemporary vehicles in the form of Macpherson struts (seen typ-
ically as front suspension on most contemporary vehicles), multilink suspensions
(seen on most luxury-type vehicles) and others.

Active suspensions. Unlike their passive counterparts, active suspensions do
require external sources of energy provided through pumps and electro-motors, for
example, to fully achieve their intended function. In turn they result in superior
performance at the expense of higher costs, increased complexity, more demanding
packaging requirements, and, in general, reduced robustness. In particular, while—
as we will see later—the active suspension can result in substantial improvements
in ride and handling and other benefits, their implementations also face significant
challenges such as containment of the so-called “secondary ride” that is demon-
strated through excitation of higher frequencies typically around and above 10–
20 Hz. In terms of actual practical implementation through different energy media
one distinguishes between:
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• Electro-pneumatic active suspensions including Load-Leveling
• Electro-hydraulic active suspension
• Electrical active suspension

Furthermore one can distinguish between single and double acting (i.e. one- or
two-sided actuation, where controlling force is acting upon one or both sides of an
actuator), and between narrow and wide band actuators depending on the frequency
range or “fidelity” of actuator desired force (or velocity/displacement) delivery.

Semi-Active (SA) suspensions. As their name implies, SA suspensions fall
between active and passive suspensions. They are controllable, “smart” dampers or
shock absorbers that require relatively very small amount of energy to modulate
their damping parameter and thus perform their desired function—produce the
desired force, whenever possible in view of the passivity constraint (to be discussed
next). Due to small energy requirements the SA suspensions can be in practice
regarded as essentially smart passive devices.

Mathematical definition of passivity. The above are more intuitive or practical
definitions of passivity and related passive or active suspensions. A more precise
definition of passivity follows from similar definitions used in the areas of electrical
networks and mathematics (Anderson and Vongpanitlers 1973). Accordingly, an
operator P is passive if there exists some constant k such that the inner product

⟨Pv j v⟩T ≥ k ð1Þ

where the inequality must hold for any final times T and all elements of v(.) from an
extended inner space composed of all functions that do not “explode” i.e. have
finite escape time. Associating v with velocity across actuator and Pv with corre-
sponding force, then the above inequality reflects the energy conservation (in the
case of equality) or dissipation (in the case of inequality) that is characteristic of
passive suspensions consisting of a spring and/or damper or shock absorber,
respectively. In this particular example the above inner product amounts to
time-integration of the product of actuator force and velocity i.e. integration of
power across the actuator, which is the energy dissipated or produced by the
actuator. With passive suspension this energy is positive and larger or equal the
amount of the initial energy contained in the actuator as represented by constant k;
the inequality must hold for any final time T and velocity profile v(t).

For Linear Time-Invariant (LTI) systems the above passivity constraint with
k = 0 is equivalent to a requirement that the associated transfer function matrix P
(s) is Rational Positive Real (RPR) matrix. The RPR matrix P(x) must satisfy a set
of conditions (Anderson and Vongpanitlers 1973) that include P(.) being analytic in
the r.h.s. plane i.e. all elements of P must have poles where Re(s) ≤ 0. Thus it can
be said that for any passive suspension that can be described by the LTI transfer
functions the associated impedance matrix P must be a RPR matrix. This provides
one way of checking if a given suspension constitutive relation can be realized via
passive means or it may require an active actuator implementation.
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1.3 Historical Background

There is a relatively long history of efforts in the area of active suspensions. They
have been mentioned and considered already in the 1960s through theoretical
studies by Bender (1967a, b), Bender et al. (1967), Karnopp and Trikha (1969),
Young and Wormley (1973), Thompson (1971) and others, mostly from MIT.
Since then there were numerous studies on potential benefits and limitations of
active suspensions in the context of ride and to some extent handling; most of this
earlier work is summarized in Sharp and Crolla (1987), Elbeheiry et al. (1995),
Hrovat (1997) and more recently in Mastinu and Ploechl (2014), Tseng and Hrovat
(2015).

While there was much effort and progress in terms of theoretical analysis and
overall insight, the progress in actual production implementation of active sus-
pensions was relatively slow and somewhat sporadic. To this end there was a major
wave and push towards the latter during late 1980s and early 1990s. It started with
the Lotus efforts aimed towards formula F1 racing. In particular, a special Lotus
Esprit experimental vehicle was used through many years of research and devel-
opment resulting in some very impressive media shows and demonstrations. This is
also reflected in the January 21, 1987, New York Times article, with citations from
different automotive media evaluators ranging from “most impressive thing I’ve
ever tried” to “the greatest single advance in car engineering since the war”.

However, it should be pointed out that the most impressive demonstrations were
done on special test tracks that amplified large, low frequency road undulations,
which were “ideal” for exciting the dominant heave mode of body dynamics. The
latter is typically around 1–2 Hz with relatively low damping ratio (Hrovat 1997).
In reality, most actual roads are not of this type and ride benefits were then less
dramatic.

At the time most automotive OEM’s or companies on practically all continents,
but especially in Japan and the US (Akatsu et al. 1990; Goto et al. 1990; Goran
et al. 1992), have been heavily involved in R&D towards realizing a practical active
suspension that would robustly and reliably deliver most of ride and handling
benefits at reasonable cost, weight, packaging and energy requirements. While there
was considerable progress in experimental and test vehicle developments of active
suspensions only a few such systems saw actual production. This was in the form of
limited production series introduced during the 1990s by Nissan in the Infinity
Q45a (Akatsu et al. 1990) and Toyota in the 1989 Celica (Goto et al. 1990) which
were eventually discontinued. One of the main reasons for this lack of wide-spread
usage is that active suspensions at the time did not deliver sufficient value: their
performance as measured in terms of ride and handling improvements were not
noticeable enough while at the same time their cost was prohibitively high for all
but the most luxurious vehicle segments.

Subsequently, for the next two decades the active suspension efforts were mostly
limited to further theoretical developments done mostly in academia and few
industrial R&D institutions. In particular, the latter include long-standing internal
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efforts within Bose in developing their electrical active suspension, which attracted
significant media attention at the time (Moran 2004). At present, there is only one
significant production application of active suspensions—the so-called ABC,
Active Body Control, introduced by Mercedes. This was recently further enhanced
under Magic Body Control (MBC) where for the first time the use of road
roughness preview ahead of the vehicle has been used based on stereo cameras
(Anonymous 2017a; Streiter 2008). It is interesting that the ABC/MBC has been
offered by Mercedes as standard equipment on their top line, luxury models.

Last but not necessarily least, it should be mentioned that while active sus-
pensions did not see wide-spread in-vehicle production applications thus far, their
SA counterparts did find much larger acceptance and can now be found in many
vehicles under different marketing designations such as Continuously Controlled
Damping (CCD), Magnetic Ride/MagneRide Control and others. While their per-
formance was in general somewhat inferior to corresponding active suspension
performance at the time, their cost, robustness, relative simplicity and lower
packaging requirements and parts count all were more favorable. Thus they resulted
in higher value and acceptance rates so far.

1.4 Motivation

Since the first wave of active suspension efforts dating back to 1980s and 90s did
not succeed to bring a widespread production introduction of this high-tech concept
it is appropriate to ask—why reconsider it now? While this is a fair question there
are a number of factors that evolved during the last couple of decades that warrant
re-examination of this relatively dormant field. This includes:

• Further developments and continuous progress in the areas of Control Systems
and Optimization, and related Optimal Control methodologies such as Model
Predictive Controls (MPC) that are becoming more and more applicable to
Automotive Controls (Ulsoy et al. 2012; Rajamani 2012; Hrovat et al. 2011a, b);

• Further developments and progress in computers—both hardware and software,
electronics/mechatronics, conventional (passive) suspensions, and electrical
machinery;

• Ever increasing emphasis on and importance of Active Safety (van Zanten
2014);

• Recent trends in sensors and infrastructure enhancements; this includes cameras,
Lidar, Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) commu-
nications, various forms of mapping including 3D mapping etc. Most of these
new technological developments will facilitate highly effective preview controls
based on, for example, MPC optimization (Xu et al. 2016; Hrovat et al. 2012);

• Recent developments and widespread efforts in Autonomous Vehicles (AV),
which could free many current drivers to do many other tasks and activities such
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as writing a report or playing his or her favorite computer game; all this will be
much easier to accomplish having an AV with a more steady platform facilitated
by a fully active suspension.

1.5 Brief Overview of Automotive Controls

As shown in the previous section, the field of automatic controls is central for many
of the ongoing activities and developments that are highly relevant for the next
possible wave of active suspensions. When speaking of “controls” here we are
primarily focusing on computer controls, which have been prevalent in the auto-
motive field for more than four decades by now. This implies related areas of
control-oriented modeling, which uses appropriately simplified models, along with
many computer-assisted control system design, analysis and simulation tools and
methods such as MATLAB, for example. The latter include open- and closed-loop
control algorithm design and analysis based on both classical as well as so-called
“modern” or advanced controls; optimization/optimal control design; signal pro-
cessing and diagnostics; system identification and estimation; Neural nets, Fuzzy
logic controls, and Artificial Intelligence (AI); along with associated architecture,
sensors, actuators, processes and embedded real-time software/CAE tools.

The automotive computer controls started in 1970s with the advent of micro-
processors, which were first used for engine controls, in particular spark advance
control that was prior to this accomplished through hardware means. Since their
modest beginnings in early 1970s the computer controls then propagated to all
aspects of engine and powertrain operations. This includes: Air-Fuel (A/F) ratio
control; Idle Speed Control (ISC); Exhaust Gas Recirculation (EGR) control; Waste
Gate (WG) control in case of boosted engines; many features of Automatic
Transmission (AT) control; and others (Hrovat et al. 2011a).

In almost all those cases the previous hardware-based controls have been
replaced by software. In the process the functionality and complexity of hardware
solutions that evolved through decades of ingenious refinements was transferred to
software, which grew more and more complex with time. However, one huge
advantage of software control implementations is their inherent flexibility: it is
much easier to modify computer programs then the corresponding hardware
implementations.

Next, the computer or more precisely microcomputer controls propagated to
many areas of chassis and overall vehicle dynamics and related functionality. This
includes, in a somewhat chronometric order, the following features: ABS brake
effectiveness/stopping distance control; Traction Control (TC), which can be
viewed as a counterpart of ABS especially helpful when driving on slippery roads;
Electronic Stability Control (ESC)—a very effective safety feature helping prevent
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many accidents, especially in emergency situations; Load Leveling (LL) used for
vehicle posture control; Four Wheel/All Wheel Drive (4WD/AWD) drivetrain
control that aims at optimizing traction on all four driven wheels, again especially
relevant for driving on slippery, snow- or ice-covered roads; Continuously Con-
trolled Damping (CCD) semi-active suspension control; Adaptive Cruise Control
(ACC) sometimes also called Autonomous Cruise Control due to its ability to
lock-in behind a leading vehicle and keep the related distance constant in terms of
time distance between the two; Electrical Power Assist Steering (EPAS) and
numerous forms of EPAS-based vehicle controls such as Active Front Steer (AFS),
Four Wheel Steer (4WS), Lane Keeping Aid (LKA), Trailer Backup Assist (TBA),
and, more recently various means developed to assist or fully control the parking
tasks such as Fully Automated Parking Assist (FAPA) and Remote Parking Assist
(RePA).

From the above somewhat lengthy list one can observe that most of the auto-
motive computer controls developed to date have been applied—via powertrain,
brake, and 4WD actuation, for example—in the longitudinal or X-direction (or
dimension) of vehicle motion. This is visualized in Fig. 1, which displays various
functionalities placed at their predominant axis of action. Next comes the lateral or
Y-direction, which has seen significant revival of activities lately. On the other hand
there is relatively little activity seen along the Z-axis or vertical motion of a vehicle
where we see only the Mercedes ABC system as a sole representative of active
suspension controls. As we will argue in a sequel, this “forgotten dimension” may
represent a major opportunity for further expansion and application of automotive
computer controls in the future.

Fig. 1 3D representation of various automotive control functionalities
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1.6 LQ Optimal Control Problem

There are many ways one could design an advanced, active vehicle suspension
system. Some of those can be based on different optimization methodologies. In this
work we focus on one of the most popular optimization methodologies—the Linear
Quadratic (LQ) optimal control techniques, which, as we will see in a sequel, is
particularly revealing and well-suited for our vehicle suspension design problem.

Deterministic LQ problem statement and solution. Since most of the opti-
mization work pursued in the present study is based on the Linear Quadratic
(LQ) optimal control approach (Athans and Falb 1966; Anderson and Moore 1971;
Kwakernaak and Sivan 1972; Levine 2011) we will now briefly summarize main
characteristics of this by now well-established and quite popular methodology,
which years back was referred to as “advanced or modern controls”. As it name
implies the LQ technique involves linear vehicle or plant models and quadratic
optimization or performance index. The linear models can be either time-varying or
time-invariant (LTI); presently we will almost exclusively deal with the latter i.e.
LTI models. In addition, we will focus on infinite-time regulator problem that, as
we will see below, results in feedback controls with constant control gains. The
corresponding deterministic LQ optimal control problem can be stated as mini-
mization of the following Performance Index (PI):

Minimizew.r.t.u PI =
Z∞
0

xTðtÞQxðtÞ+ uTðtÞRuðtÞ+2xTðtÞNuðtÞ� �
dt

2
4

3
5 ð2Þ

subject to LTI vehicle model dynamics

dx
dt

=Ax+Bu+Gvd

y=Cx+Du

xð0Þ= x0

ð3Þ

where the PI weighting matrices RT= R > 0, QT= Q ≥ 0, y is the output variable
associated with the PI of Eq. (2), and vd is a vector of deterministic disturbances. In
the present case the latter are typically modeled as unit impulses in ground velocity,
which is equivalent to unit steps in ground displacement (in case of more complex
ground inputs they can sometimes be captured by expanding the state-space to
include the augmented states representing different ground displacement shapes).

Often the above step-like disturbance terms can be fully or partially captured by
the equivalent initial condition vector, x0. For example, in the simple case of a 1D,
1DoF optimization treated in Sect. 3.1, one can approach the underlying deter-
ministic two-state optimization problem as the one with zero initial conditions and
an impulse in ground velocity i.e. step in ground displacement. Alternatively, the
same problem can be approached as the one with zero ground input (vd = 0) and
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non-zero initial conditions where the first state—the one corresponding to the rat-
tlespace displacement—is initially set to 1 (x1 = 1) to represent the initial com-
pression of the suspension space that is equivalent to the above-mentioned unit step
in ground displacement. Later we will discuss another equivalence—the one
between the above deterministic LQ results and corresponding stochastic case. But
first, let us summarize the general solution to the above optimization problem and
then say few words about the important topics of the stability and robustness of the
LQ-optimal solution, which is critical for any possible practical implementation of
the LQ-like control strategy.

The optimal solution to the above deterministic, infinite-horizon,
continuous-time LQ regulator problem is given by following feedback controller:

u*= −Kx ð4Þ

where the constant feedback gain matrix K is given by

K =R− 1 BTP+NT� � ð5Þ

and P is obtained by solving the following Algebraic Riccati Equation (ARE)

ATP+PA− PB+Nð ÞR− 1 BTP+NT� �
+Q=0 ð6Þ

Now, for the case when N = 0, which is most often encountered here, if the pair
(A, B) is stabilizable and (A, C) is observable, where Q = CTC, then the above ARE
has a unique positive-definitive solution P > 0, which results in an asymptotically
stable, LQ-optimal, closed-loop system. If (A, B) is stabilizable and (A, C) is
detectable, then the above ARE has a unique positive semi-definitive solution
P ≥ 0, which again results in asymptotically stable, LQ-optimal, closed-loop
system. When N ≠ 0 then the equivalent, more stringent stability conditions can be
found in Anderson and Moore (1971).

Robustness of LQ regulator. Robustness properties of the deterministic LQ
optimal regulator for the nominal or most often cited case when the cross-weighting
matrix N = 0, are well known. Here under “robustness” we refer to system ability
to still maintain good performance and stability despite the unavoidable errors due
to model mismatch, and many other unpredictable noise factors that typically occur
in practice. Assuming that all the states are available the Single-Input-Single-Output
(SISO) gain margin is very generous and can range between 6 db and infinity, i.e.
the nominal gain of 1 can vary from 0.5 and +∞, whereas the associated phase
margin is 60°. Similar results apply for each individual control channel of the
corresponding Multi-Input-Multi-Output (MIMO) case under some mild additional
assumptions as elaborated by Safonov and Athans (1977).

However, as shown by Ulsoy et al. (1994), once the non-zero cross-weighting
matrix N is introduced, the above impressive robustness properties of the “standard”
LQ regulator don’t apply anymore and can be significantly reduced. For example,
in the context of the present vehicle dynamics ride and handling optimization
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problem this situation arises when one augments the actuator-only secondary sus-
pension of a quarter-car setting (see Sect. 3.2 below) with some passive counter-
parts such as an additional supporting spring and possibly a damper. These passive
components could reduce maximum and average force and energy requirements
from an active actuator. However, there could be instances when the actuator needs
to provide net active power thus requiring total neutralization of the passive ele-
ments (or partial reduction of the spring stiffness) and if this action is overdone due
to modeling and other errors one could see the potential for significant degradation
in system performance including destabilizing effects of ending up with a net
negative spring or damper effects, for example.

In addition to the above, the robustness of the LQ solution can be further eroded
when not all of the system states are directly measured and available for controls
(Ulsoy et al. 1994). Indeed, more often than not this is the case in practice since
some state measurements are very difficult to make and some may be too costly. If
the system in question is observable then these missing states can be reconstructed
via different state estimation techniques, such as Luenberger observer (Levine
2011), for example. However, the additional dynamics and related dynamic delays
typically result in further reduction of robustness and associated gain and phase
margins. These issues are further amplified in the case when various noises are
present—either in the process i.e. model dynamics and/or state or output mea-
surements that will be discussed next.

Stochastic case—LQG controller. As described later (Sect. 2.2) most road
inputs relevant for vehicle ride dynamics can be described as random, stationary
stochastic processes. In this case the above deterministic LQ optimization problem
transforms to an equivalent stochastic counterpart with an additional assumption
that all random noises are white and of Gaussian character. The resulting opti-
mization problem is then referred to as Linear Quadratic Gaussian (LQG) optimal
control problem. In the context of present usage it can be formulated as mini-
mization of the following Performance Index

Minimizew.r.t.u PI =E xTQx+ uTRu+2xTNu
� �� � ð7Þ

subject to LTI vehicle dynamics

dx
dt

=Ax+Bu+Gwd ð8Þ

where the expectation operator E(.) represents steady-state mean square (co-variance
matrix) values of the affected variables. Here wd is the system disturbance in the form
of aforementioned Gaussian white noise process characterized by

E wdðtÞ½ �=0

E wdðt1Þwdðt2Þ½ �=2πWδ t1 − t2ð Þ ð9Þ
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with δ(.) representing the impulse or Dirac delta function, and W being the
two-sided road (vertical) velocity power spectral density, which is equal to the
product of road roughness coefficient and vehicle velocity (see Sect. 2.2 below).
Special care should be exercised regarding the factor 2π since some road descrip-
tions may imply different factor. This can be traced to different definitions of the
associated Fourier transforms (Weisstein 2017). In practice this means that one
should be aware of the context how different psd data were obtained, especially
when dealing with measured road spectra (Mastinu and Ploechl 2014).

The solution to the stochastic LQG problem is given by the same optimal
feedback gain matrix K as in the corresponding deterministic LQ regulator problem.
The only difference is that in the general LQG case one uses Kalman estimate of the
state vector x, which amounts to a linear unbiased minimum error variance estimate
obtained via Kalman-Busy optimal filtering (Sage and White 1977; Anderson and
Moore 1990; Levine 2011). However, just as in the above deterministic case, the
estimation with associated filter dynamics and measurement noises can significantly
erode the robustness margins of the LQG controller. Indeed, as shown by Doyle
(1978) even a simple two-state example can result in practically zero robustness for
sufficiently large measurement noises and state weighting matrix Q. Another, more
practical i.e. physical example was provided by How and Frazzoli (2010) who used
an LQG controller to stabilize an inverted pendulum on a cart. It is shown that again
one can encounter a situation where vanishingly small robustness margins are
present around the nominally stable closed-loop system.

Calculation of performance metrics. In order to calculate different rms and
mean-square values we use the following Lyapunov-like equation for the
closed-loop covariance matrix X

A−BKð ÞX +X A−BKð ÞT = −GΓGT ð10Þ

where Γ corresponds to the ground velocity psd quantity 2πW. Setting Γ = 1 and
solving the above equation will then result in normalized covariance matrix, where
all relevant entries are normalized by 2πW, i.e. the related rms values are nor-
malized by

ffiffiffiffiffiffiffiffiffiffi
2πW

p
. This type of normalization will be used through most of the

present chapter. Once the covariance matrix X is known one can then calculate the
expected mean-square optimal control input from

E u2
� �

=KXKT ð11Þ

Other output quantities of interest that are linear functions of states can be
calculated in a similar fashion.

To summarize. The infinite time deterministic LQ problem and its stochastic
LQG counterpart share the same optimal feedback control structure and associated
gain matrix K. In the context of present active suspension study, there are number
of equivalent or similar LQ optimization settings that lead to identical control
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structure and gains. First, in the case of a deterministic LQ regulator, there is
equivalence between appropriately posed initial condition response problem and
related step input in ground displacement (or an impulse in ground velocity). Both
of those deterministic settings are equivalent to the stochastic LQG problem for-
mulation where ground input is now represented through white-noise in velocity
process. In all three optimization cases we end up with the same optimal feedback
control structure with the same gain K as per the above Eq. (5).

Regarding the robustness of the LQ regulator there are two different answers
depending on the structure of the problem. In the case when there are no
cross-weight terms (N = 0 in PI) and when all the states are available then the LQ
regulator results in a robust closed loop system with gain margin of at least 6 db and
phase margin of 60°. However, this is in general not the case when N ≠ 0 and/or
when some of the states have to be estimated—either via an estimator or
Kalman-Busy filter. In the present case we will mostly deal with the idealized
situation where N = 0 and all the states are available for controls. While this is an
idealized assumption the main objective of the present study is to establish best
possible performance potentials of active suspensions realizing that eventual actual
implementation will result in some degradation of performance and robustness.
These are important topics for further investigation along the V-diagram of Fig. 2
that should be pursued in the future once the optimal performance has been iden-
tified along with related high-level architecture, bandwidth, and other requirements.

Fig. 2 V diagram representation of system-engineering approach to advanced suspension design
(MB stands for “Model Based”)
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1.7 System-Level Approach

In order to investigate potential benefits and limitations of active suspensions we
propose to start with a system- level (“30,000 ft” or “10,000 m”) study based on
simple vehicle models and related requirements and constraints. In particular, it is
proposed to start with establishing optimal ride and handling potentials based on a
simple, linear one-dimensional (1D) and 2D vehicle models. This is accomplished
by using appropriate optimal control tools such as the well-known optimal
Linear-Quadratic (LQ) methods, to determine global best possible performance
under ideal conditions and constraints.

The rationale being that if we cannot identify sufficient potential benefits within
a simple setting under numerous simplifying, mostly favorable assumptions and
thus less stringent constraints, there is little incentive to proceed with the study
toward more detailed and complex models and optimization settings with many
much more stringent constraints. The advantage of this “30,000 ft approach” is that
due its simplicity it can cover large territory of potential solutions and produce a
global view of the potential benefits and limitations. The key word here is “global”
since many opportunities may be missed or overstated if one focuses on just one or
two isolated points, as is the case with some studies.

On the other hand, depending on the outcome of the above “high-level” global
study one can decide whether to proceed toward more detailed (“10,000 ft and
below”) studies based on more complex, possibly non-linear models. As such this
approach may be viewed as “top-down” as opposed to “bottom-up” approach where
one starts with the complex and very detailed models and then gradually simplifies
them toward control-oriented models and studies. Each approach has some
advantages and disadvantages and may be more or less appropriate depending on a
given task at hand.

The above top-down approach is particularly suitable for applying
system-engineering principles (Anonymous 2017b) following the Model-based
System Engineering V methodology (Anonymous 2017c) shown on Fig. 2. The
entry point to the System V is at the upper left brunch of V starting with overall
customer-level requirements regarding system functionality and conceptual mode
of operations. Starting with overall customer requirements one can then use the
above simple models and appropriate optimization tools to establish what are the
best possible performance metrics and are they good enough to satisfy top level
customer requirements. In addition one can then obtain the outlines of needed
architecture and associated design and other engineering constraints such as desired
actuator configuration and bandwidth or fidelity. Essentially, such a top-level
optimization process uses modeling and related synthesis to produce results that can
in turn then be used as requirements and guidance for subsequent more detailed
lower-level work based on more detailed models and so on as one proceeds down
the left branch of the System V. Eventually the process reverses as one progresses
through the r.h.s. branch of V going through verification and validation phases
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starting from component tests all the way to validation of the whole system
operation and performance.

At this stage, following the above systematic approach we start by specifying the
high-level requirements for an advanced, high-performance vehicle suspension.
They can be listed as follows:

1. Maintain proper vehicle posture when subject to various inertial and external
forces and moments caused by braking, turning, wind gust, and other opera-
tional events and disturbances;

2. Provide superior ride comfort (in an optimal sense to be further elaborated in a
sequel) when subject to road roughness inputs, which act as a major disturbance
to a vehicle;

3. Secure superior road handling (in an optimal sense to be further elaborated in a
sequel) and overall vehicle agility;

4. Avoid excessive suspension stroke to avoid hitting jounce and rebound stops
(this is the so-called “rattlespace” constraint requirement);

5. Enable additional benefits and functionality that will facilitate enhanced active
safety and introduction of new, exciting functionality leading to superior cus-
tomer experience (the “wow” factor).

In practice, the first requirement is typically best addressed through feed-forward
control based on more detailed (possibly non-linear) models since some of the main
disturbances regarding posture control come from known sources such as engine
and brakes, which are initiated by the driver and thus known in advance to some
extent. From the above list we will focus on Ride and Handling requirements 2–4
for most of the subsequent sections with some comments regarding many future
exciting potential benefits being discussed in the last part of the chapter.

2 Setting up the Stage

In this section we will set the stage for the LQ optimization that will be used in the
subsequent section. To this end we will next discuss the appropriate, simple Per-
formance Index (PI) reflecting the above ride and handling requirements along with
pertinent constraints. Next, we will address the numerical description and con-
struction of an appropriately simple vertical road input representing the main dis-
turbance acting upon the system. Also, we will address what are the appropriate,
simple vehicle models that should be paired with the above. Finally, we will briefly
mention many of the underlying assumptions used throughout this chapter.

Note that the key words here are “appropriately simple” since for a global,
comprehensive analysis at this high of a level it is imperative to deal with an
appropriately simplified setting. This means that all aspects of the problem (PI,
constraints, disturbances, models) are in synch as far as the level of complexity is
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concerned. Indeed, it would not make much sense nor it would be efficient to have a
very detailed, 3D vehicle model but a simple “1D” PI or road description, and vice
versa.

2.1 Performance Index and Related Constraints

Since one of the main objectives of the present work is to establish ride benefits of
advanced active and semi-active suspensions, our first task will be to define an
appropriate ride comfort index, which will in turn be used to define the associated
optimization Performance Index (PI). This has been a subject of many investiga-
tions in the past. In its very nature this is an intrinsically subjective metric and as
such may be a subject of many more studies in the future, especially as we face
different modes of transportation such as autonomous driving, for example.

One of the first field-test studies to address the ride comfort metric was done in
the 1970s by Smith et al. (1978). The authors used couple of different vehicles
driven on 18 different roads with a total of 78 passengers. Their conclusion was
that, “excellent correlation was found to exist between the subjective ride ratings
and simple root mean square acceleration measurements at either the vehicle
floorboard or the passenger/seat interface”. The key results of this study are
reproduced in Fig. 3 where the horizontal axis represents the average or mean
personal ratings and vertical axis represents rms acceleration measured for com-
bined vertical and lateral directions. Here higher ratings represent better ride
comfort. Similar results were obtained for the case limited to vertical accelerations
only.

Further refinements of the rms ride comfort PI metric are possible through
introduction of the vehicle or seat-track vertical jerk, which is the derivative of the
vertical acceleration (Fearnsides et al. 1974). The rationale being that the addition
of jerk will capture contributions from high-frequency disturbances that are typi-
cally part of Noise Vibration and Harshness (NVH) spectrum. We will use this
additional jerk term when addressing some elementary ride optimization problem
based on simple, 1D vehicle models.

In addition to the above simple rms-based ride metrics there were number of
attempts to expand this metric in order to include frequency-dependence of human
sensitivity to vibrations. This was captured by the ISO standard 2631, which also
takes into account the length of human exposure to vibration (Anonymous 1972).
Additional information about various ride metrics and their further enhancements—
such as a comprehensive NASA metric applicable to 3D motions—can be found in
Hrovat (1993), Tseng and Hrovat (2015) and references therein.

It is interesting that some of the early comparison studies (Smith 1976; Smith
et al. 1978) found the simple rms metric comparable to more complex counterparts
such as the above ISO standard. Since the usage of proper ride metric depends on
the context of its usage and since in the present setting we focus on simple models,
optimization methods (LQ), and metrics, in what follows we will exclusively use
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the rms ride metrics mentioned above. We remark that, if desired, it is easy to
incorporate frequency-weighting into the LQ-type metric by augmenting the
state-space model with appropriate filter states associated with the desired fre-
quency shaping. Additional considerations may apply when dealing with future
autonomous vehicles where ride sickness effects may be more pronounced due to
lack of driving activity (Wada 2016).

At this point it is important to stress that if the ride comfort were the only
objective of the optimization then the solution would be simple i.e. to keep the rms
acceleration (and jerk) equal to zero for all times by making the total suspension
force equal to vehicle weight for all times. This may work fine in isolated cases of
driving on flat surfaces. However, the main issue with such a suspension would be
that it would require unrealistically large suspension strokes or so-called “rat-
tlespace” to negotiate hills and valleys and similar large road deviations from flat
surfaces (in the extreme, one could consider airplanes as limiting case of such “air
cushion” vehicles).

In practice, the available suspension stroke is limited as determined by jounce
and rebound stops. Although these “bump stops” represent hard constraints they are
often approximated by soft constraints in the form of rms or mean-square

Fig. 3 Least square fit to
experimental data by Smith
et al. (1978) expressing Mean
Personal Rating (MPR) as a
function of rms acceleration
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limitations on rattlespace. The latter are then appended to the mean-square ride
comfort metric to form an overall PI that will be used for LQ or H2 optimization
based on a simplest possible 1D vehicle model to be considered in Sect. 3.1.

In addition to the above rattlespace constraint we will later introduce an addi-
tional constraint when dealing with slightly more detailed 1D or quarter-car vehicle
models. The main purpose of this additional constraint will be to limit tire
wheel-hop, which can be detrimental to vehicle handling as well as ride. This yet
another mean-square constraint (this time on tire deflection or relative motion w.r.t.
ground) will be addressed in Sect. 3.2.

2.2 Road Description

As elaborated in Hrovat (1993) there are two kinds of disturbances that affect
vehicle ride and handling. One is caused by road roughness irregularities and the
other by different inertial and aerodynamic forces due to braking, turning, and wind
gusts, for example. In this paper we focus on road or ground input disturbances,
which are the most relevant for present ride studies.

There are many ways to describe road inputs, which can be classified as shocks
and vibrations. Shocks are discrete events of short duration and high magnitude,
such as encountered while suddenly hitting a pothole or road bump at relatively
high speed. On the other hand, vibrations are characterized by prolonged and
consistent excitations that are typically encountered during long trips on highways
and other roads.

When considering vibration excitation, road roughness is typically described as a
stationary random process of a given displacement power spectral density, p.s.d.
(Bendat and Piersol 1971). An example of measured displacement or roughness
power spectral densities of various roads and terrains from Sevin and Pilkey (1971)
is shown in Fig. 4.

Comparing the actual measured traces with the straight line of negative 2:1 slope
in the log-log scale one obtains the following often used approximation describing
road displacement p.s.d., S(.):

S Ωð Þ=A ̸Ωn ð12Þ

where Ω is the spatial frequency in units of “radians per length” (rad/ft in the case of
Fig. 4) and n ≈ 2. The above displacement spectra imply that the corresponding
vertical velocity spectrum as experienced from a moving vehicle is constant for all
frequencies i.e. white noise with intensity of A * V, where V is vehicle forward
velocity. The white-noise characterization of the road input conveniently matches
the well-known LQG (Linear Quadratic Gaussian) optimal control setting, which
presupposes the white-noise Gaussian process and measurement noises (see
Sect. 1.6).
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Further reinforcements about the above white character of many measured roads
can be seen in Figs. 5 and 6 from Smith (1982).

Additional examples can be found in Hrovat (1993) and references therein where
one can also find references to more elaborate and/or multi-dimensional models of
road roughness such as discussed by Dodds and Robson (1973) and Rill (1983), for
example.

Numerical procedure used to construct an approximate white-in-velocity
Gaussian road sequence for usage in simulations is discussed in Hrovat and Mar-
golis (1975). The procedure starts with a sequence of uniformly distributed random
numbers with triangular autocorrelation function. The corresponding p.s.d. is then

Fig. 4 Measured power spectral densities of various terrain/road surfaces (according to Sevin and
Pilkey (1971) where factor 1/2π was used when relating autocorrelation function to psd)
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approximately white up to certain frequency band, which is controlled by the choice
of random sequence update rate. The sequence is next passed though appropriate
bandpass filter to wash out large road protrusions such as hills and valleys, on the
one hand, and high frequency noise that is well beyond the underlying models
bandwidth fidelity, on the other. In the final step, the sequence is ensemble averaged
to produce the desired Gaussian characteristics.

2.3 Vehicle Models

In order to complete the optimization setting we now briefly introduce some of the
simple vehicle models to be used in the rest of this work. We start with linear, time
invariant models of lowest complexity and gradually add additional dimensions and
Degrees-of-Freedom (DoF). The simplest possible model is shown in Fig. 7.

Fig. 5 Comparison of best-fit
road model with exponent
n = 2.02 and measured Road
#1 (cf. Hrovat 1997)

Fig. 6 Comparison of best-fit
road model with exponent
n = 1.99 and measured Road
#2 (cf. Hrovat 1997)
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It consists of only a sprung mass, Ms, and an active suspension actuator that can
produce any desired force U while supporting vehicle mass Ms.

The vehicle is assumed to traverse an uneven road with constant velocity V,
which creates a vertical input w(t) acting upon the lower mounting point of the
active suspension actuator. The vertical velocity input w(t) is proportional to vehicle
velocity V and the spatial slope of the road unevenness. It is in this context that one
talks about the “moving ground” when referring to w(t). As discussed earlier for the
purpose of the present study the spatial slope is approximated by a white-noise
process so that w(t) is also white with p.s.d. intensity proportional to V.

Next we introduce models resulting from considering only one corner of a
vehicle. These are the so-called quarter-car models—some of which are shown in
Fig. 8. In addition to the sprung mass Ms, which is now appropriately propor-
tionated to a given corner, we also have an unsprung mass, mus, which reflects the
wheel/tire subassembly with associated mass components due to steering links,
knuckles etc. The unsprung mass is typically only a fraction (one-fifth or less) of the

Fig. 7 Simple 1D, One Degree-of-Freedom (DoF) vehicle model

Fig. 8 Various 1D, 2DoF vehicle models: with active suspension (a); with active suspension and
vanishing unsprung mass (b); with passive suspension (c)
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corresponding sprung mass and is suspended between the primary suspension
provided by tire flexibility and secondary suspension that can be passive, active or
semi-active. A point-wise tire-road contact is considered, and the tire filtering effect
may be included, as needed.

As the next logical step in model complexity, we consider the so-called half
vehicle, 2D, models the simplest variant—without unsprung masses—being shown
in Fig. 9. It includes vehicle (sprung mass) pitch motion represented by angle θ, and
vertical or heave motion represented by vertical displacement, z, of its Center of
Mass, CM.

Finally the full 3D models are represented in Fig. 10, which shows the simplest
possible 3D model consisting of vehicle heave, pitch and roll modes. Note that
again the unsprung masses have been neglected for this lowest-level 3D model;
they can be easily added later, as needed.

The above 1D, 2D and 3D model variants are the ones most often used in studies
dealing with system-level advanced suspension optimization and synthesis,.
However, depending on the task at hand one may add some additional elements and
components such as subsystems consisting of an engine/powertrain suspended on
their mounts, and a driver suspended on a seat. Similar 2D, 6 DoF model has been
evaluated through actual vehicle tests and the corresponding results are shown in
Figs. 11 and 12. This illustrates that even a relatively simple, linear, time-invariant
2D models can provide good fidelity up to the bandwidth of 10 Hz and more. If
further improvements in fidelity are desired then one may have to consider addi-
tional modeling details and degrees of freedom and possibly even augment the
present lumped parameter models with flexible counterparts, as needed and
appropriate. The underlying assumption is that we are dealing with linear vehicle
models that are needed for the above LQ optimization approach.

Fig. 9 Half-car, 2D vehicle model
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Fig. 10 Full-car, 3D vehicle model

Fig. 11 Measured and predicted acceleration PSD’s at CG for linear 6 DoF, 2D model per Smith
and Sigman (1981)
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2.4 Assumptions

There are many implicit and explicit assumptions used throughout the course of this
work. Some of them we have already enumerated in the previous sections when
introducing rationale for chosen performance metrics, road disturbance represen-
tation, and different simplified vehicle models. Numerous additional assumptions
can be found in Hrovat (1997) and references therein such as Hrovat (1988). They
include the assumption that in what follows all state variables are available for
controls; that—as indicated earlier—all external load effects will be neglected for
most of the present study and assumed to be treated separately, mostly in the
context of feed-forward controls; and that all actuators are assumed infinitely fast
and accurate.

In addition, since one can consider suspension system to be essentially a filter for
road roughness induced disturbances, this filtering or attenuation should not include
(large) hills and valleys and similar low frequency ground inputs that vehicle should
follow. This can be achieved through appropriate signal processing (detrending) of
key signals used for control. The latter is especially relevant for so-called “sky-
hook” damper and spring implementations to be discussed in a sequel.

3 Optimization Results

In this section we proceed with developing optimal control results for different
scenarios starting with the simplest possible 1D, 1DoF setting and gradually pro-
gressing toward 2D and 3D cases. At each step we build upon the acquired
knowledge and insight, which in turn serves as a footing for the next step based on a

Fig. 12 Measured and predicted unsprung mass acceleration PSD’s for linear 6 DoF, 2D model
per Smith and Sigman (1981)
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more detailed model representation. In the process we reveal essential character-
istics of each optimization setup in terms of potential ride and handling benefits,
and fundamental constraints—such as different invariant points in key frequency
transfer function maps imposed by a given structural constraint, for example. While
focusing on best possible performance outcomes, which typically imply an active
suspension solution, we will also try to put these optimal results in a proper per-
spective by comparing them with the corresponding passive suspension
counterparts.

3.1 Simple 1D, 1DoF Case

Problem statement. Referring to Sect. 2, we can now pose the following optimal
control problem for the case of a simple, 1D, 1DoF model represented in Fig. 7:

Minimizew.r.t.u PI =E x21 + ru2
� �� � ð13Þ

subject to the following second-order state equations

dx1 ̸dt= x2 −w

dx2 ̸dt= u
ð14Þ

where as seen from Fig. 7, the states x1 and x2 represent suspension rattlespace and
sprung mass velocity, respectively, and u is a normalized force U/Ms, which in the
present case equals to sprung mass acceleration. The PI of Eq. (13) then captures
the requirements for smooth ride (low u) balanced against the competing require-
ment for limited rattlespace (low x1). The disturbance w when seen from a moving
vehicle appears as a vertical velocity input caused by road irregularities. It is
modeled according to the aforementioned zero-mean, Gaussian white-noise
velocity characterization discussed in Sects. 1.6 and 2.2.

One DoF LQG problem solution—Skyhook structure. The solution to the
above LQG problem follows the procedure outlined in Sect. 1.6. Since we are
dealing with a simple second-order system it is now possible to obtain an entirely
analytical solution to this problem. We start with the Riccati equation (6)

ATP+PA− PB+Nð ÞR− 1 BTP+NT� �
+Q=0 ð15Þ

where in the present case

A=
0 1
0 0

� �
, B=

0
1

� �
, N =0, Q=

0 0
1 0

� �
, P=

P1 P2

P2 P3

� �
, R= r

ð16Þ
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Substituting these expressions into the above ARE and solving for P we get

P1 =
ffiffiffi
2

p
r
1
4, P2 =

ffiffi
r

p
, P3 =

ffiffiffi
2

p
r
3
4 ð17Þ

so that the optimal control gain matrix from Eq. (5) becomes

K =
1
r

P2 P3½ �= r −
1
2

ffiffiffi
2

p
r −

1
4

� � ð18Þ

Thus the LQ-optimal feedback control uLQ becomes

uLQ = −
1

r1 ̸2 x1 −
ffiffiffi
2

p

r1 ̸4 x2 ð19Þ

Since u represents a normalized force, the optimal suspension structure amounts
to a spring of normalized spring constant r − 1 ̸2, and a damper with normalized
damping constant of

ffiffiffi
2

p
r − 1 ̸4. While the optimal spring is placed between the

vehicle sprung mass and “moving” ground, the optimal damper is placed between
the vehicle sprung mass and an inertial ground. For this reason the latter config-
uration is called “skyhook” damper. The optimal skyhook structure is shown in
Fig. 13 along with the corresponding optimal performance boundary, both shown
as full lines in the figure. Note that this optimal structure could be inferred even
before solving the above LQ problem. This follows from the fact that the LQ
optimal control amounts to a feedback control based on two states with negative
signs resulting from the fact that the closed-loops system is asymptotically stable.

The optimal performance line in Fig. 13 has been calculated using covariance
Eq. (10) of Sect. 1.6, where for the sake of efficiency of presentation both states
have been normalized w.r.t.

ffiffiffiffiffiffiffiffiffiffiffiffi
2πAV

p
so that in general traversing rougher roads and/

or at higher speeds leads to larger normalized acceleration due to limited available
rattlespace. Just as in the case of optimal gain calculation, it has again been possible
to analytically determine all PI quantities of interest. Actual calculation steps can be
found in the Appendix. The resulting optimal trade-off is given by the following
equation

uLQ, rms, norm =
3

ffiffiffi
3

p

8x31, rms, norm
ð20Þ

This is represented in Fig. 13 by solid straight line with a slope of −3 on the
log-log scale so that each 10% increase in available rattlespace facilitates 30%
decrease in rms acceleration levels. The optimal trade-off line is parameterized by
the weighting factor r. As it can be seen from the above equation for normalized
force uLQ, which in the present case equals sprung mass acceleration—larger
weights r result in softer suspension settings with related smaller accelerations and
larger rattlespace requirements.
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In terms of actual practical realization, the skyhook damper structure cannot be
implemented in the configuration shown in Fig. 13 since an inertial ground is not
available from a moving vehicle. Thus in the context of a simple 1D, 1DoF model
under consideration, the suspension members can only be placed between sprung
mass and a “moving” ground. It is then shown in Hrovat (1982) by using the
definition of passivity from Sect. 1.2 that so positioned suspension actuator must be
an active device in order to implement the above LQ-optimal control strategy. It is
interesting to mention that one “almost” optimal all passive structure was shown in
Young and Wormley (1973). It consists of a serial combination of a spring and
damper all in series with the sprung mass. However, although such a structure
resulted in desired transfer functions there was a pole-zero cancellation corre-
sponding to the unstable pole at zero. This reflects the inability of such a structure to
support the sprung mass weight and also it violates the asymptotic stability property
of the LQ-optimal solution.

The skyhook structure has a number of advantages. Since the skyhook damper is
not in direct contact with the moving ground it can be tuned to higher damping
values than its more conventional counterpart placed between the moving ground
and sprung mass. Indeed, typical damping ratios for the conventional passive

Fig. 13 Optimal structure
and performance trade-offs for
1 DoF model with PI of
Eq. 13 (solid lines) and
Eq. 22 (dashed lines)
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suspension are in the range of 0.2–0.3. On the other hand from the above equations
one can see that the LQ-optimal damping ratio is significantly higher and equalsffiffiffi
2

p
̸2≈ 0.7. The latter leads to more effective containment of sprung mass oscil-

lations especially the ones induced by frequencies around vehicle dominant heave
mode of oscillations typically around 1–2 Hz. This is the area where back-to-back
comparison between active and passive suspensions is typically the most impres-
sive when performed on a specially constructed test tracks with large, low fre-
quency undulations that can excite the above heave mode at right vehicle speeds.

Consideration of external loads. It is interesting that the above elevated
damping ratio will also help in containment of load-induced dynamic disturbances
due to inertia effects when braking, accelerating, turning and similar (Hrovat 1997).
Here it should be reminded that, as explained earlier, load disturbances have not
been explicitly considered so far. However, for completeness we briefly mention
the work of Young and Wormley (1973) where the authors address simultaneous
effects of both road as well as load disturbances. The load disturbances were
primarily due to aerodynamic forces acting upon a proposed high-speed ground
transportation vehicle. These aerodynamic forces that included wind gust and
similar were modeled as a random process in the form of a low-pass filtered white
noise. The authors show that large and random load forces can significantly dete-
riorate the LQG performance from Fig. 13 where, depending on the magnitude of
these forces, there could be a significant deviation in the optimal performance line
toward saturation in the direction of the lower r.h.s. of the plot. However, these load
effects become significant at very high wind speeds w.r.t. vehicles that were trav-
elling at speeds up to 300 mph, such as high-speed trains discussed by Young and
Wormley (1973). Another area of relevance is racecars such as Formula 1 vehicles,
which are subject to large aerodynamic loads. For most of conventional vehicles
this is not the case, and besides, since vehicle speed is known, one could use
feed-forward controls to counteract any mean aerodynamic loading (as well as any
loading due to inertia forces caused by braking, turning etc.).

Introduction of Semi-Active (SA) control. Although as discussed before it is
not possible to implement the LQ-optimal skyhook structure using more standard
passive components, one can still attempt to approach the LQ-optimal performance
by using semi-active dampers (Crosby and Karnopp 1973). One such strategy
would be to attempt to reproduce the optimal skyhook damper force whenever
possible i.e. whenever there is a passive power required by the SA damper placed
between sprung mass and moving ground (in reality this will be between sprung
mass and unsprung masses, as discussed in Sect. 3.2 based on quarter-car 2DoF
vehicle models). At any instant when this passivity constraint is not satisfied the SA
force is turned off since this is in some sense the “closest” that one could get to
optimal force at that moment. While not optimal this simple strategy leads to close
to optimal performance in practice.

Inclusion of jerk in PI. Although the vehicle sprung mass vertical acceleration
has been generally accepted as main indicator of passenger ride comfort, some
authors (Fearnsides et al. 1974) argued that in addition to acceleration one should
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also consider jerk—derivative of acceleration—as an additional metric when
evaluating ride comfort. This case was elaborated by Hrovat and Hubbard (1981).
To this end we expand the original PI of Eq. (13) by one additional term propor-
tional to the mean-square of expected sprung mass jerk. The augmented PI is then

PIj =E x21 + r1u2 + r2 du ̸dtð Þ2
h i

ð21Þ

This can be next aligned with the standard LQG formulation by defining the
normalized force i.e. sprung mass acceleration, u, as a new state, x3, so that the
derivative of u, which is equal to sprung mass jerk, then becomes the new control
u1. The resulting LQG optimization problem can now be stated as

Minimizew.r.t.u1 PIj =E x21 + r1x23 + r2u21
� �� � ð22Þ

subject to the following state equations

dx1 ̸dt = x2 −wðtÞ
dx2 ̸dt = u= ̂x3
dx3 ̸dt = u1

ð23Þ

with r1, r2 ≥ 0, r1 + r2 > 0, and the white noise process w(t) specified as before.
The LQ-optimal solution to this problem is given by the following feedback

control law

u1, LQ = −KxðtÞ= − k1x1 − k2x2 − k3x3 ð24Þ

where it was again possible to obtain analytical solutions for control gains k1,k2 and
k3 as a function of weighting parameters r1 and r2 (Hrovat and Hubbard 1981).
Moreover, since the new control, u1, i.e. jerk, is equal to derivative of acceleration,
and the latter is in turn equal to the original control, u, one can now write the
original optimal control—normalized control force as

uLQ = −K
Z

xðtÞdt= − k1

Z
x1dt − k2

Z
x2dt− k3x2 ð25Þ

The first integral term on the r.h.s. equals the integral of rattlespace, second is
integral of sprung mass velocity, which is equal to sprung mass position, and the
last term involves sprung mass velocity. This leads to a structure depicted through
dashed lines in Fig. 13. In addition to the skyhook damper this new LQG-optimal
structure includes a skyhook spring and a (possibly fast) load-leveling device acting
upon the integral of suspension deflection. Both—the skyhook damper and spring
—are attached to an inertial ground that is in practice not available from a moving
vehicle. As implied by the assumptions in Sect. 2.4, this “inertial” ground should
represent a low-pass filtered or smoothed version of the road that retains large hills,
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valleys and similar. In practice this can be achieved through proper signal pro-
cessing such as, for example, high-pass filtering of vehicle accelerations and
velocities that would detrend large, low frequency components. In addition, with
current efforts on 3D road mapping, it should be possible to know some portions of
the road elevation well in advance thus further facilitating a creation of an appro-
priate “inertial” ground.

At this stage it is of interest to see how would the jerk-optimal suspension
compare w.r.t. more standard acceleration-only case. Relevant analytical calcula-
tions have been performed in Hrovat and Hubbard (1981); the results fall
in-between the full and dashed lines in Fig. 13. As indicated previously, the full line
corresponds to the standard 1DoF case with acceleration-only weighting. The
dashed line then represents the other special case when r1 = 0 so that in this case
only the vehicle jerk has been optimized as a measure of ride comfort. For this
jerk-only weighting one can analytically express the relations between optimal
normalized rms rattlespace and acceleration as

x3, rms, norm =

ffiffiffiffiffiffiffiffiffiffi
1000

p

36x31, rms, norm
ð26Þ

This is plotted in the log-log scale of Fig. 13 as a dashed straight line parallel to
the standard case where r2 = 0. As it can be seen from Fig. 13 the difference in
performance in terms of acceleration-rattlespace trade-off is relatively small
in-between the two extreme cases. For example, for the same level of rms sus-
pension stroke the acceleration-only optimal suspension results in up to 26% lower
acceleration levels or, equivalently, the jerk-only optimal suspension results in up to
35% higher rms acceleration levels while substantially reducing the related jerk
(theoretically, for the standard case of acceleration-only weighting the rms jerk
tends toward infinity, which in practice may lead to very large jerk levels).

In addition to the substantial jerk reduction, there are a number of other
advantages associated with jerk-optimal suspension. This includes relatively large
damping ratios between 0.5 and 0.7, and the presence of integrating, load-leveling
component, which can provide good load containment and posture control. As
opposed to more traditional load-leveling systems that may take seconds and
minutes to establish new level, the present load-leveling system can be fast,
depending on the desired overall closed-loop system bandwidth. It should be
pointed out that the above skyhook spring-and-damper structure, and the fact that
the optimal controller includes load-leveling, imply that—just as in the standard
1DoF case—one will necessarily need an active actuator to implement the
jerk-optimal strategy.

Summary. While extremely simple the above standard 1D, 1DoF case provides
many useful data and insightful information about the structure and key charac-
teristics of an optimal suspension. This includes:

• Special so-called “skyhook” damper that provides superior isolation from
road-induced vibrations and shocks;
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• Superior heave mode damping with relatively high damping ratio of 0.7 when
compared to conventional passive suspension damping, which is typically in the
range between 0.2 and 0.3;

• Better dynamic load containment with up to 2–3 times smaller sags due to, for
example, sudden braking or cornering (Hrovat 1997);

• Optimal skyhook algorithm points to a practical strategy for semi-active sus-
pension control—today SA suspensions are already widely used in the industry
and “skyhook” is one of the most popular approaches for controlling the SA
devices.

• As an extension of the above standard 1DoF case one can also consider
including jerk as an additional metric of ride (dis)comfort. This naturally leads
to concepts of skyhook spring and fast load leveling resulting in substantial jerk
reduction and thus further smoothing and filtering of the ground input effects.

It should be stressed again that this simple analysis and synthesis is only the first
step in system-engineering based approach to advanced vehicle suspension design.
For example, reference (Evers 2010) addresses design of optimized cabin suspen-
sions for commercial trucks by starting with LQ design for the simple, 1 DoF
models discussed above. It then introduces much more detailed 4 DoF quarter car
models that include engine/powertrain module suspended on engine mounts and
some other additional effects. It is interesting that after detailed analysis and
appropriate approximations the study concludes that for the quarter-car models
under considerations the acceleration- and jerk-optimal controllers based on the
simple 1 DoF models perform close to the optimal controllers based on the full
eight- and nine-state models, respectively.

It could be said that in terms of the System V diagram from Fig. 2 we are at
around the tip of the left branch of V. While in general many more steps still need to
follow down the System V diagram, including input signal processing, actuator
design, load containment, system diagnostics and similar, nevertheless the above
insight serves as a solid “first base” (in the lingo of American baseball) for sub-
sequent R&D steps. At each such step we should gain some unique insight, which
will in turn point out to additional tasks and details needed to bring
production-worthy advanced active suspension to life.

3.2 Quarter-Car, 2DoF Case

A natural next step when progressing from the above simplest possible 1DoF model
is to include the so-called unsprung mass associated with the wheel-tire component
and all the related attached masses of steering and suspension subsystems. The
resulting “quarter-car” model is shown in Fig. 8. Part (a) from Fig. 8 corresponds to
the active suspension model we will be dealing with next, while models from parts
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(b) and (c) will be used later for comparison purposes in order to put our opti-
mization results in proper perspective.

Wheel-hop dynamics and related constraint. Introduction of unsprung mass
and tire stiffness brings an additional degree-of-freedom and an additional limitation
or constraint upon our system. The constraint comes from the fact that this addi-
tional dynamics may lead to wheel-hop oscillations on uneven roads which in turn
may lead to some loss of vehicle handling capability. More precisely, excessive
wheel hop leads to large variations in tire normal force, which then results in the net
loss of average normal force due to tire nonlinearity (concavity). Net effect is some
loss of tire tractive and cornering i.e. handling capability. The latter is illustrated in
Fig. 14 from Asgari and Hrovat (1991) where it can be seen that there is almost a
linear relation between the rms tire deflection due to wheel hop dynamics and the
percent deviation from an original, straight path of a vehicle subjected to sudden
crosswind disturbance. Thus, as is common in related literature, we will try to limit
the undesirable wheel-hop effects by introducing an additional quadratic penalty
term for tire deflection in the original performance index, Eq. (13).

Problem statement. Based on the above discussion and Fig. 14, we will next
define an appropriate performance index for the 2DoF quarter-car problem as

Minimizew.r.t.u PI =E r1x21 + r2x23 + u2
� �� � ð27Þ

subject to the following quarter-car dynamics corresponding to Fig. 8a

dx1 ̸dt= x2 −w ð28Þ

musdx2 ̸dt= − kusx1 +U ð29Þ

Fig. 14 Percent path deviation versus change in tire deflection for simulated sudden crosswind
disturbance per (Asgari and Hrovat 1991)
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dx3 ̸dt= x4 − x2 ð30Þ

msdx4 ̸dt= −U ð31Þ

where we have introduced an additional term r1 x1
2 in the above PI to penalize

excessive tire deflections. The rest of the symbols are self-explanatory: mus and kus
stand for unsprung mass and (tire) stiffness, respectively; w is again the white-noise
ground velocity input; U represents the active suspension actuator force, and u is
normalized active force, which again equals sprung mass acceleration, u = U/ms.

After normalizing the above set of four state equations one can end up with
another set of four with only two physical parameters instead of the original three
(ms, mus, kus). The two normalized parameters are ω1 = 2πf1= (kus/mus)

1/2, which is
natural “wheel-hop” frequency of the unsprung mass subsystem, and ρ = ms/mus.
The normalized control, u, is now again equal to sprung mass acceleration. The
resulting LQG problem was solved using control systems CAE/CAD tools such as
Matlab and its predecessor Matrixx. Again, we were interested for a global solution
that will provide a comprehensive map and insight into the potential benefits and
limitations of the proposed active suspension concept. This was very much facili-
tated by the above tools.

The optimal control solution was in the form of a linear feedback of states, where
according to Sect. 2.4 we assume that all four states are known

u= − ∑
4

i=1
kixi ð32Þ

With this control and using the covariance Eq. (10) we can next calculate and plot
various performance metrics. The global plot of normalized rms acceleration versus
normalized rms rattlespace is shown in Fig. 15, parameterized by weighting factors
r1 and r2. The plot has been obtained for the case with f1=10 Hz and ρ = 10. From
this “tornado-like” plot it can be seen that higher values of r1 and r2 result in less
comfortable rides. Similar comments apply to Fig. 16, which shows normalize rms
acceleration versus corresponding tire deflection.

More precisely, as it can be seen from Fig. 15, higher value of rattlespace
penalty, r2, results in smaller suspension excursions but larger sprung mass
accelerations i.e. less comfortable ride. Similarly, from Fig. 16 it can be seen that
higher value of the tire wheel-hop deflection penalty, r1, results in smaller tire
excursions but larger sprung mass accelerations, and thus better handling but worse
ride comfort. The shaded areas in Figs. 15 and 16 correspond to the areas of
practical significance for the present vehicle ride optimization problem. The fol-
lowing example from Hrovat (1997) illustrates how could one use the above plots
in early phase of an advanced suspension design.

Illustrative example. Assume that you have been given a task to perform a
preliminary, system-level study of potential benefits of an advanced active sus-
pension applied to an autonomous commuter vehicle. In order to facilitate the
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unhindered activities such as reading, texting, writing and similar, the proposed
suspension should deliver best possible ride quality within given design constraints
during a typical commute at nominal speed of V = 80 ft/s (88.5 km/h) on a road
characterized by road roughness coefficient of A = 1.6 × 10−5 ft (4.9 × 10−6 m).

The design constraints are that the rms tire deflection should remain bounded
within 1 in. (2.54 cm) from static equilibrium value 99.7% of time, and that the rms
of suspension deflection (rattlespace) should remain bounded within 3 in. (7.62 cm)
from its static value 99.7% of time. What would be the best possible i.e. the lowest
rms acceleration in this case based on the above quarter-car model with f1=10 Hz,
ρ = 10, and assuming that the road input is characterized by a Gaussian distribu-
tion? How realistic is the resulting closed-loop design in terms of underlying
dynamics, stability, robustness and bandwidth requirements?

We start by normalizing different constraint variables so that we can then use the
global optimal plots of Figs. 15 and 16. Since for most on-road operations the tire
(wheel-hop) constraint is more stringent than the rattlespace counterpart we first

Fig. 15 Optimal normalized sprung mass acceleration versus rattlespace trade-offs for quarter-car,
2 DoF vehicle model
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explore the limiting case of x1. The Gaussian assumption and 99.7% time
requirement (i.e. the well-known 3σ rule) imply that the rms tire deflection must be
less than 1/3 in. or 0.85 cm. The normalized rms tire deflection for the above speed
and road then must remain within

x1, rms, norm <0.31 s1 ̸2 ð33Þ

Choosing the above as the limiting value we proceed to Fig. 16 from where we
obtain the corresponding limiting i.e. smallest possible normalized rms acceleration

urms, norm ≈ 10 s− 3 ̸2 ð34Þ

Fig. 16 Optimal normalized sprung mass acceleration versus tire deflection trade-offs for
quarter-car, 2 DoF vehicle model
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Choosing urms,norm = 10.9 s−3/2 results in only 3%g rms acceleration. This partic-
ular candidate design is indicated as point A1 in Fig. 16. Note that this level of rms
acceleration is at the lowest r.h.s. end of the scale used for subjective tests in Fig. 3
thus securing highest level of ride comfort.

At this stage we need to check if the rattlespace constraint has been satisfied. To
this end we enter the value of 10.9 s−3/2 into the vertical, normalized rms accel-
eration axis on Fig. 15 from where, for the aforementioned design point A, we get
the normalized rms rattlespace value as

x3, rms, norm =0.605 s1 ̸2 ð35Þ

which then results in actual rms value of only 0.67 in. implying 3σ value of 2 in.
(5.08 cm). This is well within the required ±3 in. constraint thus showing that the
most critical constraint in the present example is on tire deflection and related road
holding and handling. As indicated earlier, this is usually the case with most
on-road operating situations.

For the above design A we can next determine from Fig. 15 the associated PI
weights

r1 = 1100, r2 = 100 ð36Þ

With these values one can then obtain the optimal control gains

k1 = 6.084, k2 = − 0.548, k3 = 10.0, k4 = 4.438 ð37Þ

so that the closed loop system eigenvalues become

e1, 2 = − 2.2± j2.26, e3, 4 = − 2.75± j62.9 ð38Þ

Note that the first set of eigenvalues corresponds to the well-damped oscillatory
mode associated with vehicle sprung mass heave or vertical vibration. It is char-
acterized by a natural frequency of only 0.5 Hz with the damping ratio of 0.7,
which by now should be well known from our previous 1DoF “skyhook” study (it
will be shown later that this 0.7 ratio is also LQ-optimal for vehicle models of
higher dimensions, i.e. 2D and 3D models). The relatively low natural frequency of
0.5 Hz falls significantly below most of current vehicle suspensions and is an
indication of an overall “softer” suspension setting.

The second oscillatory mode corresponds to the wheel-hop dynamics. It is
characterized by natural “wheel-hop” frequency of 10 Hz, and relatively small
damping ratio of only 4.4%. Whether this small amount of wheel-hop damping will
be sufficient will depend on the operating conditions, particular adaptive optimal
control strategy used, and similar factors. For example, this may be acceptable
while driving on the long straight stretches of the road where handling may be less
critical. On the other hand driving on winding stretches of the road may require
much higher wheel hop damping and thus an optimal control strategy that will
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adapt to different driving conditions, as needed. We will address this—along with
some possible hardware i.e. structural modifications—in more detail in subsequent
sections.

Before closing this illustrative example let us summarize how we answered the
original inquiries. First, we have succeeded to quantify what is the best possible ride
comfort level within given design constraints. Moreover, we have obtained some
insight about the resulting closed-loop system dynamics. While stable it did display
some potential issues and challenges such as robust containment of relatively low
wheel-hop damping. The latter may have to be addressed through software and
possibly hardware means, as we will discuss later.

Finally, a word of caution regarding bandwidth requirements of the resulting
closed-loop system. On the first glance, based on the above system eigenvalues it
would appear that the bandwidth requirements on the actuator force production
would extend to 10 Hz and more. However, such relatively high-bandwidth sys-
tems can be challenging to implement in practice since they tend to negatively
influence so-called “secondary ride” i.e. they tend to transmit high frequency road
induced disturbances. This also points out to the fact that force-related bandwidth
requirements are only part of the story. Indeed, even if we were required to keep the
actuator force constant and equal to vehicle weight (for “bestest” possible ride with
zero acceleration) i.e. if we were asked for zero force bandwidth, this task would by
no means be trivial due to the fact that our actuator mounting points are subject to
constant motion and road-induced disturbance. Some of these important
design-related issues will be discussed later and some are beyond the scope of this
system-level study at the left-top end of System V diagram of Fig. 2.

Passive suspension comparison. It can be shown (Smith and Walker 2000) that
the above optimal suspension strategy requires an active device, which is to be
expected based on our previous 1DoF results. At this stage it is appropriate to ask
how does this active suspension (Fig. 8a) compare with a conventional passive
counterpart from Fig. 8c. This is shown in Fig. 17, which focuses on the more
critical constraint i.e. tire deflection versus sprung mass acceleration trade-off. For
simplicity we show only the limiting curves for r1 ≅ 0, and r2 ≅ 0. Superimposed
on the figure are traces of passive suspension performance trade-offs for heave
mode natural frequencies between 1 and 1.5 Hz, and damping ratios varying
between 0.02 and 1.

From Fig. 17 it can be seen that the best passive suspension setting—in terms of
present trade-offs between smooth ride and firm handling—corresponds to point P1
with natural frequency of 1 Hz and damping ratio of 0.3. The latter is typically in
the range seen on most conventional vehicles that have been optimized through
many generations of iterative work primarily based on experience and intuition. In
addition, it can be seen that the best active setting for the same amount of tire
deflection corresponds to point A1, which is only 11% below the passive coun-
terpart in terms of rms acceleration. Thus if one focuses at only this narrow region
(as was the case with prior investigations by some authors) then one would con-
clude that there is not much potential in active suspensions, especially taking into
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account that most likely the results of the present simplified high-level study
constitute upper bounds of best possible performance.

However, one inherent advantage of active suspensions is that they can adapt to
different road/driving conditions so that different control settings can be used on
different stretches of the road. In other words, we could move either to the right or
left of point A1 in Fig. 17. Thus on the long straight stretches of a highway, such as
exist in Nevada, for example, one could relax the settings to mimic a soft sus-
pension with very smooth ride thus moving to the right of point A1. This is shown
as point A, which corresponds to our Illustrative Example design. Note that in this
case there is a 67% reduction in rms acceleration when compared with the passive
case P1. According to Fig. 3, such as large reduction can lead to substantial
improvement in subjective ride comfort ratings.

Alternatively, on winding roads one can go for much firmer suspension settings
for superior road holding and handling. In this case one would move to the left of
point A1 trading improved vehicle agility for reduced ride comfort. This is not

Fig. 17 Comparison between conventional passive suspension (point P1) and optimal active
counterparts (points A1 and A) in terms of ride and handling trade-offs
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possible for passive suspensions, which cannot move much farther to the left from
point P1.

We will next extend our comparison to Frequency Transfer Functions
(FTF) between the above three design cases, A1, P1, and A. This is shown in
Figs. 18, 19 and 20 for the three PI metrics of primary interest, sprung mass
acceleration, tire deflection and suspension stroke, respectively. By associating the
rms values of these quantities with the area under different frequency response
curves we can clearly see from Fig. 18 that design A will lead to much smaller rms
acceleration. On the other hand from Figs. 19 and 20 we can also see that this
design results in a large resonant peak at the tire natural frequency, which will lead
to increased wheel hop. This is in accordance with our previous observation that the
design A will result in relatively small wheel-hop damping. From the above FTF’s
we can make the following additional observations as given in the following
paragraph/subsection.

Invariant Points (IP). Turning our attention back to Fig. 18 it can be seen that
both active suspension settings A and A1, do a good job in reducing the acceler-
ation levels around the dominant, sprung mass heave mode of oscillations in the
neighborhood of 1 Hz. However, this is not the case with the second oscillatory
mode around the wheel hop frequency of 10 Hz where all three transfer functions
seem to pass through the same point. Indeed, it turns out that this is exactly an
invariant point for our original quarter-car structure. This was first observed by
Thompson (1971) and then extended by Hedrick and Butsuen (1990) to include an
additional invariant point at the frequency corresponding to the case of locked
secondary suspension i.e. sprung and unsprung masses vibrating in synch on a tire

Fig. 18 Frequency response function of sprung mass acceleration versus ground input velocity
for passive and active suspensions from Fig. 17
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Fig. 19 Frequency response function of tire deflection versus ground input velocity for passive
and active suspensions from Fig. 17

Fig. 20 Frequency response function of suspension stroke versus ground input velocity for
passive and active suspensions from Fig. 17
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spring. This can be seen from the following equations where we start with the
original set of four state Eqs. (28–31). Summing up second and fourth equation we
get the overall momentum-like equation for the two-mass subsystem

ms
dx4
dt

+mus
dx2
dt

= − ktx1 ð39Þ

By defining (absolute) displacements of sprung and unsprung masses as xs and xus,
and substituting xus = x1 + ∫wdt in the above equation, the corresponding Laplace
transform becomes

mssX4ðsÞ+ kt +muss2
� �

X1ðsÞ= −mussWðsÞ ð40Þ

Dividing the above equation by road velocity Laplace transform quantity, W(s), and
defining the three transfer functions associated with the PI acceleration, rattlespace,
and tire deflection metrics as

GAðsÞ= sX4ðsÞ
WðsÞ , GRðsÞ= X3ðsÞ

WðsÞ , GTDðsÞ= X1ðsÞ
WðsÞ ð41Þ

after dividing with W(s) and setting s = jω, we can rewrite the above equation as in
Hedrick and Butsuen (1990)

msGAðjωÞ+ kt −musω
2� �
GTDðjωÞ= −musjω ð42Þ

From this equation we can conclude that at the wheel hop natural frequency
ω1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kt ̸mus

p
the sprung mass acceleration transfer function, GA, has an invariant

point equal to

GAðjω1Þ= − j
ffiffiffiffiffiffiffiffiffiffiffi
muskt

p
ms

= − j
ω1

ρ
ð43Þ

which, for our case with ρ = 10, f1 = 10 Hz, is equal to j 2π. The corresponding
gain or magnitude of GA is 2π or 15.97 dB≈ 16 dB (cf. Fig. 18).

Using similar kind of manipulations starting with the above Eq. (39) but this
time substituting xs= xus+ x3, we end up with the following equation

−msω
2GRðjωÞ+ kt − ms +musð Þω2� �

GTDðjωÞ= − ðmus +msÞjω ð44Þ

From this equation we see that there is now an invariant point at

ω2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt ̸ mus +msð Þ

p
=ω1 ̸

ffiffiffiffiffiffiffiffiffiffi
ρ+1

p
ð45Þ

where the rattlespace or suspension deflection transfer function, GR, has the fol-
lowing constant value
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GRðω2Þ= j
mus +msð Þ
msω2

= j
ρ+1
ρω2

ð46Þ

For our case with ρ = 10, f1 = 10 Hz, we have ω2 = 2π3.02 and corresponding
gain of GR is 0.058 or −24.7 dB (cf. Figure 20). As mentioned previously the above
invariant point frequency ω2 corresponds to natural frequency of a combined
sprung and unsprung mass oscillating on tire spring; it is typically in the range
between 3 and 5 Hz.

Based on Eqs. (42) and (44) it was observed by Hedrick and Butsuen (1990) that
once one of the above three transfer functions is specified the other two follow from
the constraint equations. For example, choosing GA(s) then implies that
GTD(s) follows from Eq. (42), which in turn fixes GR via (44). A physical inter-
pretation of the above invariance is that within the given quarter-car structure of
Fig. 8a we observe that a single suspension actuator placed in-between sprung and
unsprung masses is asked to perform conflicting tasks of minimizing sprung mass
acceleration for improved ride comfort while at the same time providing adequate
wheel hop damping and road holding. It should be pointed out that the above
invariances and related limitations hold independent of the particular suspension
type—passive, active or semi-active—or control strategy used, as long as the
fundamental mechanical structure remains the same.

3.3 Comparison Between 1DoF and 2DoF Cases

In order to put the above results into proper perspective we next try to compare the
two basic active suspension cases studied so far: the simple 1DoF configuration of
Fig. 7 and the 2DoF case from Fig. 8a. To this end we overlay the 1DoF optimal
trade-offs over the corresponding 2 DoF results as shown in Fig. 21. From this
figure we can make two observations. From the lower right side we can see that for
the most part the optimal 1 DoF case results are significantly better i.e. below the 2
DoF trade-offs. This is to be expected since the 2 DoF problem introduced one more
constraint—tire deflection—that should then lead to less favorable outcome.

On the other hand from the upper left side we see that in some areas the reverse
is true i.e. the 1 DoF performance appears even worse than the 2 DoF case! The
reason for this apparent discrepancy is that we are not actually comparing apples to
apples since on the horizontal axis we are comparing total deflection between
sprung mass and ground of the 1 DoF system with the deflection between sprung
and unsprung masses of a 2 DoF system. As the rattlespace constraint becomes
more and more stringent i.e. as the suspension becomes more and more stiff the
advantage of the 2 DoF structure becomes more pronounced due to the ameliorating
effects of primary suspension i.e. due to more pronounced contribution from tire
deflection.
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To rectify this situation and facilitate more appropriate (apples-to-apples)
comparison, we introduce a modified 1 DoF model shown in Fig. 8b. It is a limiting
case of standard 2 DoF model with unsprung mass reduced to zero. The corre-
sponding optimal trade-offs are shown in Fig. 22, where we can now see—as one
would expect—that the upper left side of the plot is close to and below the cor-
responding 2 DoF line. At the same time the lower right side approaches and
merges with the previous “standard” 1 DoF case optimal trade-offs.

The observation that this optimal structure with vanishing unsprungmass,mus= 0,
offers superior performance w.r.t. corresponding 2 DoF counterparts is logical con-
sequence of the fact that reduced unsprung mass for a given sprung mass, i.e. larger ρ,
leads to improved performance trade-offs as shown by Hrovat (1988), for example. In
the context of the present problem the new 1DoF structure can be seen as limiting case
of 2 DoF model as unsprung mass becomes smaller and smaller. Another observation
from the lower right side of the plot is that for most operations where good ride is of

Fig. 21 Comparison between “basic” 1DoF and 2DoF optimization trade-offs
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primary concern, we see that there is a significant loss of performance associated with
the 2 DoF models, which is primarily due to the additional, wheel-hop imposed
constraint.

3.4 Dynamic Vibration Absorber

At this stage it would be natural to inquiry how we could recover some of the above
lost performance and thus sway the optimal trade-offs in the direction of the arrow
in Fig. 22. To address this inquiry we know from the Invariant Points (IP) discus-
sion that this will not be possible within the given 2 DoF structure of Fig. 8a. Thus
the answer should be pursued through structural i.e. hardware modification. One
logical candidate to consider is tuned mass damper or Dynamic Absorber (DA).

Fig. 22 Comparison between 2DoF and various 1DoF optimization trade-offs
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As we know from the IP subsection, one of the most critical invariant points is at
the wheel-hop frequency and associate pronounced resonant peak due to relatively
low damping in this mode. Thus, if we could increase this damping without neg-
atively influencing sprung mass accelerations we may achieve our goal. This leads
us to the modified quarter-car configuration (3 DoF system) shown in Fig. 23 where
we use a DA tuned to wheel-hop frequency to alleviate the above issue i.e. increase
wheel hop damping without simultaneously increasing sprung mass acceleration.
The DA mass was chosen as one tenth of the unsprung mass and corresponding DA
damping ratio was chosen as 0.2.

The results of this global study are shown in Figs. 24 and 25. As it can be seen,
the DA effectively sways the optimal trade-offs toward the corresponding 1 DoF
case, which is especially pronounced in the case of acceleration versus rattlespace
trade-off in Fig. 24. This means that with the help of DA, our original smooth ride
design point A with very lightly damped wheel-hop mode now transform to point A′,
where based on Figs. 24 and 25 we can see that both the sprung mass acceleration
and tire deflection are further reduced resulting in improved ride comfort and
handling. From these figures we can conclude that further substantial improvements
are possible up to the point where now rattlespace constraint becomes the limiting
factor. For example, for design point A″ we see that suspension deflection
requirement is the same as for the previous design case A while tire deflection and
especially sprung mass acceleration are both reduced.

At this stage to put all this into broader perspective and gain additional insight
into DA benefits, it is appropriate to compare performance of the above designs
A and A′ with design case A1 and related passive case P1 discussed in Sect. 3.2

Fig. 23 Quarter-car 2DoF
vehicle model with dynamic
vibration absorber (DA)
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(also see Fig. 17). The corresponding frequency response curves are given in
Figs. 26 and 27, which show sprung mass acceleration and tire deflection gain
transfer functions, respectively. From Fig. 26 we see that that for all three cases, P1,
A1, and A, the sprung mass accelerations pass through the invariant point at the
wheel-hop frequency of 10 Hz. However, for case A′, which includes a DA, we see
that the invariant peak at 10 Hz has been substantially reduced (by more than
10 dB). This demonstrates that structural changes introduced by DA eliminate this
important and detrimental quarter-car constraint. At the same time, from Fig. 27 it
can be seen that the strong resonant peak in tire deflection at 10 Hz has been
substantially reduced when compared with the soft case A′ with the potential for
further reduction at the resonant peak but at the expense of more narrow notch. All

Fig. 24 Impact of dynamic
absorber on ride versus
rattlespace trade-offs (Hrovat
1997)

Fig. 25 Impact of dynamic
absorber on ride versus
handling/tire deflection
trade-offs (Hrovat 1997)
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those considerations can also be seen in related time responses where excessive
oscillations of the soft suspension case A′ have been contained with the help of DA.

The above study demonstrates significant potential benefits of dynamic vibration
absorbers. Their main drawback is added weight and more challenging packaging
requirements. To date there has been only one widespread, production application
of the DA concept. This was implemented in the highly popular Citroen 2CV
(sub)compact vehicle that was legendary for its supreme ride, especially for such a
small vehicle. According to the June 1987 Car magazine article, the 2CV ride was
characterized by the following statement, “You will be enjoying the scenery on top
of a chassis which, in terms of small car terms, has no peer in ride comfort.”

In closing this section we observe that we did not re-optimize the total 3 DoF
system with the DA included. This would lead to further improvements at the

Fig. 26 Frequency response
function of sprung mass
acceleration versus ground
input velocity for passive and
active suspensions with and
w/o DA

Fig. 27 Frequency response
function of tire deflection
versus ground input velocity
for passive and active
suspensions with and w/o DA
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expense of increased complexity since we would be feeding back six states instead
of four. Additional refinements are possible by optimizing combined or “hybrid”
system consisting of an active actuator and DA with free design parameters (DA
mass, damping, stiffness). One could also contemplate an active or at least SA
dynamic vibration absorber as proposed by Hrovat (1990). We will later focus on
the ultimate i.e. best possible quarter car configuration in the sense of LQG-optimal
performance. But first let us introduce an interesting mechanical element that shares
some (but not all of) characteristics of dynamic vibration absorber.

3.5 Inerter and DA Comparison

Inerter was introduced by Smith (2002) as a mechanical device where inertia-like
force is proportional to the difference of two accelerations across the device ter-
minals shown in the insert of Fig. 28, i.e.

F =Meff
d vL − vRð Þ

dt
ð47Þ

where Meff stands for the effective (linear) inertia due to reflected inertias of the
inner rotational masses within the inerter of Fig. 28, and vL and vR stand for the
corresponding left and right terminal velocities, respectively. Note that, in terms of
bond graphs, the above device is a one-port with two distinct terminals. Further
generalization of this interesting concept might be possible in the form of a two-port

Fig. 28 Race-car suspension with an inerter: schematic diagram (a); equivalent quarter car
schematic (b); and corresponding bond graph (c)
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that represents inertia-coupling that is characteristic of planetary transmissions, for
example (Hrovat et al. 2000).

It can be said that inerter is in part similar to the more common inertia element
where inertia force is proportional to the acceleration of the inertia element or
derivative of the associated momentum (Karnopp et al. 2012). Indeed, by grounding
one of the two terminals we end up with a standard inertia element.

It is interesting that the (generalized) inerter elements were present for quite
some time in different mechanical and hydraulic systems such as differentiators,
planetary gears, engine mounts, and hydraulic suspensions, for example. This can
also be seen from corresponding bond graphs where inerters can be revealed
through non-trivial attachments of inertia elements to a zero junction, where the
latter indicates a difference of two speeds or generalized flows (Karnopp et al. 2012;
Karnopp and Rosenberg 1970; Hrovat et al. 2000). While some of them may not
satisfy somewhat restrictive requirements originally postulated in Smith (2002) they
are certainly very useful as demonstrated through millions of vehicles and other
devices. In any case, Smith deserves credit for explicitly identifying and promoting
this somewhat ubiquitous yet “hidden” structural component, and at the same time
devising an interesting practical mechanical inerter device that has found significant
applications in the car-racing arena.

The device is sketched in Fig. 28 in the context of a racecar application. Based
on available information (Clarke 2012; Smith 2011; Scarborough 2011) the setup
seems to consist of a standard mechanical spring and damper configuration aug-
mented with a black-box device placed across the left and right side of a vehicle
front suspension elements or rockers. Assuming that the black box device is an
inerter without additional internal components and assuming symmetrical road
inputs at the left and right side of a vehicle an equivalent quarter car representation
and corresponding bond graph model are shown in Fig. 28b and c, respectively.

From the bond graph it can be seen that in this particular case the inerter is
represented by an inertia element in differential causality (Karnopp et al. 2012).
However, this may not always be the case. For example, inserting an additional
spring in series with the current C-R-I suspension setup would remove this con-
straint. Based on the bond graph of Fig. 28c, it can be deduced that the sprung and
unsprung masses effectively act in series with the inerter with the reflected inertia,
Jeff. This can be seen directly from the bond graph due to the corresponding
0-junctions.

In reference (Smith 2002) it is shown that under certain conditions the
inerter-based suspension structure can produce notch filter-like effect similar to
tuned mass dampers or dynamic vibration absorbers (DA). Specifically, this was
demonstrated for a single mass case where such mass has been supported by a
vibration absorption-type suspension consisting of a parallel combination of inerter
and spring, which were in turn placed in series with a parallel combination of
another spring and a damper. The underlying assumption was that the mass is
subject to the base input oscillations with strong single-component frequency
content. It was then shown that by tuning the inerter-spring combination to this
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input frequency one could achieve complete disturbance cancellation comparable to
similarly tuned DA.

According to available literature the inerter was used to improve wheel adher-
ence to the track with Formula 1 racecars although the quantitative extent of this
improvement was not given. It is interesting that a DA-type device used by a
competing team was not allowed by the Formula 1 governing body although the
effects were apparently similar (Clarke 2012; Scarborough 2011). It is possible that
this was due to lack of full understanding of how these two devices operate in the
context of car racing.

While there was strong similarity between inerter-based and DA-based vibration
isolation in the case of single mass exposed to base oscillation, this similarity seems
to brake down in the case of a 2DoF quarter car configuration. In particular, note
from Fig. 28 that the inerter, as a one-port device, imposes equal forces on the
sprung and unsprung masses so that the Invariant Point constraint at the critical
wheel-hop frequency still applies (it is interesting that in the case of no system
damping this IP constraint reduces to a singularity). This is fundamentally different
from the DA structure of Fig. 23. Consequently it is expected that the quarter-car
performance will not improve to the degree seen with the DA. Indeed, the available
publications (Smith and Wang 2004; Papageorgiou and Smith 2006; Scheibe and
Smith 2009) seem to confirm this, although they were based on somewhat localized
studies where only one or maximally two attributes were considered at the time.
Further extensions could include jerk as component of ride comfort, although this
may disadvantage inerter-based suspensions due to their inherent inertia-like effects
and potentially less favorable high-frequency roll-off.

3.6 Best Possible Quarter-Car Performance and Related
Structure

Based on encouraging results with DA-enhanced quarter-car structure it was natural
to look into different possible extensions and variations of this concept in a search
toward best possible quarter-car performance. To this end reference (Hrovat 1990)
investigated potential benefits of augmenting the conventional, passive tuned mass
damper or DA with an additional active actuator acting in-between the DA and
unsprung mass. This lead to up to 35% lower sprung mass acceleration and 26%
lower tire deflection w.r.t. previously mentioned LQ optimal case A″ with passive
DA—see Figs. 24 and 25. At the same time the suspension stroke or rattlespace
excursions have been kept almost the same in all cases. Similar results were
obtained for the configuration where only the DA-equivalent mass was kept without
the accompanying spring and damper so that only an active “unsprung” actuator
was used to suspend the DA-equivalent mass. However, the required active actuator
energy and force were significantly higher in this case thus confirming the use-
fulness of a full DA structure even when augmented by an active actuator attached
to the DA mass.
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Observing that significant additional benefits in performance resulted from
having unequal forces acting upon sprung and unsprung masses facilitated by the
DA-like structure, we now pose the following optimization problem as an extension
of the previous analysis. The problem setting is illustrated in Fig. 29a. This time we
are considering two independent actuators—one acting upon the sprung mass and
the other on the unsprung counterpart. Note that while in the previous DA-based
setting we were limited how much force could the unsprung actuator impose due to
limiting motion capabilities of the DA mass, this sort of constraint is not imposed
now.

In addition we make use of the fact that there is a natural two time-scale sep-
aration associated with quarter-car problem, where the slow mode corresponds to
the sprung mass oscillatory mode around 1–2 Hz and the fast mode corresponds to
unsprung mass wheel-hop mode around 8–12 Hz. Anticipating this separation we
structure the states as shown in Fig. 29a. The associated PI then has the same three
components (weighted means square of sprung mass acceleration and tire and
suspension deflection) as before with an additional term penalizing the unsprung
force

Minimizew.r.t.u1, u2 PI =E u21 + r1x23 + r2 x1 − x3ð Þ2 + r3u22
	 
h i

ð48Þ

where u1 is the sprung mass acceleration equal to Us/ms, and u2 corresponds to
normalized unsprung force, i.e. u2= Uus/mus. Now letting the penalty r3 on nor-
malized unsprung force be very small one ends up with the so-called (partially)
cheap controls (Saberi and Sannuti 1987). In the process we can think of the cheap
control u2 as an essentially “structure optimizer”. Eventually letting r3 go toward
zero and transforming the cheap control problem to an equivalent singular pertur-
bation problem we end up with the optimal structure depicted in Fig. 29b (Hrovat
1990).

Fig. 29 Formulation of
optimal 2DoF two-actuator
problem (a), and
corresponding best possible,
optimal structure (b)

158 D. Hrovat et al.



Note that the structure optimizer u2 was used to effectively eliminate the
unsprung mass, which is in accordance with the established fact that reduced
unsprung mass helps the overall ride and handling performance (Hrovat 1988). This
was also confirmed by our previous analysis from Fig. 22 comparing the optimal 2
DoF and 1 DoF performances. In addition, the structure optimizer i.e. cheap and
fast control adjusts the incremental stiffness of primary and secondary suspensions
to best accommodate the respective weights r1 and r3, thus resulting in the best
possible performance. Once the wheel hop mode has been so contained the sprung
mass control u1 can then be used to contain the slow, sprung mass mode according
to the well-known 1 DoF LQ-optimal rules with skyhook damper and an overall
damping ratio of 0.7.

The above “most” optimal quarter-car structure results in additional substantial
benefits. An illustrative example from Hrovat (1990) shows normalized sprung
mass acceleration of only 1.17 s−3/2, with well-contained tire and suspension
deflections. While it would be difficult to realize such a suspension in practice (e.g.
it may require very powerful jets on each, sprung and unsprung masses) these
limiting results can serve as a benchmark of best possible performance that any
practical suspension realization can be compared against. It also confirms our
previous results and intuition about the superiority of a simple 1 DoF structure in
the context of a quarter-car vehicle models.

As a final remark in this section we mention that we could also pose the question
what is the best possible passive two-port suspension setup as a counterpart to the
active setting from Fig. 29a. To this end one could follow similar approach based
on passive network optimization and synthesis that was elegantly done in Papa-
georgiou and Smith (2006) for the case of passive one-port suspension structures. It
is expected that some portions of such a two-port extension would contain DA-like
components. Further optimal passive extensions could include cross-coupling
between left and right as well as front and rear sides of a vehicle, such as can be
seen in so-called interconnecting or equalizing-type suspensions first found on
Citroen 2 CV (Pevsner 1957), which was well-known for its smooth ride.

3.7 2D, Half-Car Models

Since we have pretty much exhausted various quarter-car optimization scenarios the
next logical step is to consider the half-car models and related LQ optimization. We
start with 2 DoF half-car model shown in Fig. 30. It includes vehicle heave and
pitch modes.

This is reflected in the following performance index

PI =E r1 d2z ̸dt2
� �2

+ r2 d2Θ ̸dt2
� �2

+ r3z2f + r4z2r
h i

ð49Þ
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where different quantities have been defined w.r.t. Fig. 30 with zf and zr standing
for the front and rear suspension rattlespace—in the present case where we did not
include the unsprung masses, this is the distance between the ground and front and
rear end of the sprung mass. Note that this PI could be slightly modified to
explicitly include the acceleration at a specific position such as driver’s or some
(VIP) passenger’s seat, for example.

Optimization of the above PI under four state equations representing the simplest
possible 2D, Half-car model has been done in Krtolica and Hrovat (1992). It is
interesting that in this case it was still possible to analytically solve the LQ optimal
problem. The resulting closed-loop control system was again characterized by the
optimal damping ratio of 0.7 in both heave and pitch modes. The same reference
establishes necessary and sufficient conditions to decouple the original
two-dimensional, 2 DoF, half-car LQ optimization problem into two
one-dimensional, 1 DoF, quarter-car problems; these conditions are

Ms ⋅ lf ⋅ lr = Jp
r1 ⋅ lf ⋅ lr = r2

ð50Þ

where Ms and Jp are vehicle sprung mass and pitch moment of inertia about the
center of mass, CM, and lf and lr are front and rear distances from CM (see Fig. 30).
The first condition depends on vehicle physical parameters and is typically satisfied
within 20% by most present vehicles. The second condition depends on the PI
weighting parameters r1 and r2, which are at designer’s disposal and can often be
chosen to satisfy the above constraint while at the same time leading to a reasonable
design, i.e. compromise between heave and pitch aspect of ride.

Through the above decoupling one can see the connection between the previ-
ously established wealth of results for the simple 1 DoF quarter-car vehicle models
and the corresponding 2 DoF, half-car case. This parallel can be extended to more
complex 4 DoF, half-car models that include unsprung masses, as shown in Fig. 31.

Fig. 30 Half-car, 2D vehicle model with 2DoF (heave and pitch)
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It turns out that the same decoupling conditions apply in this case as well leading
to two decoupled 2 DoF, quarter-car models shown in Fig. 31b. This again
establishes the link between more complex half-car models and corresponding
quarter-car counterparts for which there is an abundance of previously established
results. In practice this means that a reasonable approach to an active suspension
system design may start with controlling the corners enhanced with some addi-
tional, typically feed-forward action to counteract different pitch disturbance due to
braking, accelerating and similar.

Fig. 31 Half-car, 4DoF vehicle model (a) and, corresponding decoupled model consisting of two
quarter-car, 2DoF sub-models (b)
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At this stage we note that the 2D setup of Figs. 30 and 31 facilitates preview of
road ahead of certain points of a vehicle. In particular we see that front wheels could
serve as sensors or previewers of road inputs ahead of rear suspension units. In
general, having some advance knowledge of the future disturbances may be
invaluable in some situations and highly beneficial in many.

While in case of most automobiles this kind of preview may be relatively short
and of limited effectiveness, it could be much more pronounced in some other
vehicles such as heavy-duty trucks (“18-wheelers”) and especially trains (Karnopp
1968). Similar applies to some more recent transportation paradigms under con-
sideration such as vehicle platooning or convoys of trucks that is becoming more
and more realistic proposition due to rapid advances in sensors, actuators and
processing intelligence needed for (semi)autonomous driving. This includes pre-
view information provided by on-board cameras, lidars, and availability of 3D road
maps and V2V communication, where vehicles ahead may serve as “sensors” for
following vehicles.

One of the first studies investigating potential benefits of preview was done by
Bender (1967a) who started with logical simplest case of 1 DoF vehicle models.
Using the Wiener-Hopf optimization approach (which is similar to—albeit more
restrictive than—the hereby pursued LQG approach) the author obtained the global
optimal performance maps shown in Fig. 32, where the axes are the same as in
Fig. 13 with horizontal axis corresponding to normalized rattlespace (or, more
precisely, to the distance between sprung mass and road) and vertical axis corre-
sponding to normalized sprung mass acceleration. The straight line for no preview
(i.e. preview time T = 0 s) corresponds to the case studied earlier—this was rep-
resented as the full line in Fig. 13.

On the other hand the line with infinite preview (T = ∞) indicates the best
possible performance under preview. Based on the analysis from Bender (1967a)
the optimal infinite preview line in a log-log scale of Fig. 32 can be expressed as

urms, norm =
3

ffiffiffi
3

p

128x31, rms, norm
ð51Þ

Comparing this expression with the corresponding expression for the 1 DoF case
without preview (see Eq. (20) in Sect. 3.1 and Eq. (72) in the Appendix) one can
conclude that there is a substantial, 16-fold, potential for reducing the sprung mass
acceleration while keeping the overall rattlespace the same. While this requires
knowing all of the future, from Fig. 32 it can be seen that even knowing only 0.5 s
of advanced road ahead could lead to significant benefits in the context of the
present 1 DoF problem.

An extension of the above 1 DoF preview case toward the 2 DoF quarter-car
counterpart was considered in Hrovat (1991a). The approach taken was to shift the
time point of reference so that instead of considering a preview system one ends up
with a dynamic system with delays for which there is an abundance of research
results (Richard 2003; Fridman 2014). This was achieved by shifting the observer
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Fig. 32 Optimal 1DoF active suspension (S) performance for different preview times, T (Bender
1967)

Fig. 33 Conceptual representation of road preview process
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vantage point from vehicle to some distance ahead of vehicle corresponding to the
magnitude of preview. Figure 33 illustrates this graphically.

The resulting carpet plots of normalized rms acceleration versus suspension
rattlespace and tire deflection are shown in Figs. 34 and 35, respectively. While, as
it might have been expected from previous non-preview analysis, the performance
improvements are now less dramatic than for the 1 DoF case of Fig. 32, the plots
still reveal opportunities for further significant improvements in both ride as well as
handling aspects of vehicle performance. In particular, from Fig. 35 one can see
that even a relatively short amount of preview of only 0.1 or 0.2 s can make
significant difference in terms of the sprung mass acceleration versus tire deflection
trade-offs, which is also a reflection of the fact that this particular trade-off is in
good part associated with the fast, wheel-hop mode.

To put this short preview times in proper perspective—a preview of 0.1 s cor-
responds to traversing the distance of little more than one wheelbase length of Ford
Fusion sedan (wheelbase distance between front and rear wheels being 2.84 m in
this case) at speeds of 65 mph or 29 m/s. This indicates that one could in theory
benefit from even such a short preview times or equivalent distances. However, to

Fig. 34 Normalized acceleration versus rattlespace trade-offs for quarter-car, 2DoF vehicle model
with different preview times, tr
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fully exploit such opportunities one would in practice need very fast and accurate
“high-fidelity” actuators and/or some ingenious hardware design measures and
innovations. Additional aspects of preview control in the context of quarter-car
models, such as bandwidth requirements and frequency responses, can be found in
Pilbeam and Sharp (1993), Hac (1992), Hrovat (1997) and references therein.

3.8 3D, Full-Car Models

The optimization problem treated thus far for 1D, quarter-car and 2D, half-car
models can be naturally extended toward the full 3D setting. Thus, following the
above example of 1D–2D extension, one would now add sprung mass roll accel-
eration to the PI of Sect. 3.7 in addition to rattlespace constraint for each of the four
vehicle corners; the resulting PI is given below (see Fig. 10)

PI =E qAz2A + qBz2B + qCz2C + qDz2D + r1 d2z ̸dt2
� �2

+ r2 d2Θ ̸dt2
� �2

+ r3 d2ϕ ̸dt2
� �2h i

ð52Þ

Some of the first studies based on the LQG approach were presented in Barak
(1985), Chalasani (1986), Barak and Hrovat (1988). The approach taken by Hrovat
(1991b) is based on the simplest possible 3D model where one again starts by

Fig. 35 Normalized acceleration versus tire deflection trade-offs for quarter-car, 2DoF vehicle
model with different preview times, tr
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neglecting the unsprung masses. For this particular case with some additional mild
assumptions on the road roughness characterization, it was possible to obtain an
analytical solution even for this 3D problem, as elaborated in Hrovat (1991b).

Fig. 36 Full-car, 3D vehicle model and related simplifications
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Based on these analytical results it was possible to make a number of obser-
vations about the optimal system characteristics. This includes the fact that all three
optimal body modes have the highly desirable damping ratio of 0.7, which is an
extension of similar results for 1D and 2D cases. In addition, under some mild
conditions shown in Fig. 36, the original 3D problem can be decoupled into two
subsystems: one being the 2D pitch and heave subsystem, and another being a
special roll subsystem as depicted in Fig. 36. Furthermore, if the previously
established conditions for 2D decoupling hold (see Fig. 36) then the pitch and
heave subsystem can be further decoupled into two basic, 1D optimization
problems.

This way the original full car optimization problem has been transformed into
much simpler half and quarter car optimization setting. In this manner we have
established a link with the previously obtained wealth of results for 1D and 2D
optimization cases. Some other approaches and results based on the full 3D model
including unsprung masses can be found in Barak (1985), Chalasani (1986), for
example. Further extensions of the 3D model are possible to include flexible modes
(in case of long trucks and similar vehicles) and flexible guideways, such as long
(suspension) bridges and similar structures (Margolis 1978; Karnopp et al. 2012).

4 Model Predictive Control (MPC) as an Extension
of Preview Control

In this section, we review the usage of Model Predictive Control in suspension
control where it can incorporate not only the road preview but the other dynamic
considerations including constraints, mode switchings and other non-linearities.
Figure 37 illustrates suspension travel limits, bumper nonlinearities, and tire road
interaction nonlinearities or constraints.

As indicated earlier (e.g. Sect. 3.1), in semi-active suspension systems, the
suspension force can be modulated through a range of damping force within the

Fig. 37 Dynamic mode switching, nonlinearities, and constraints
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associated passivity constraint. In this case the suspension force cannot track an
arbitrary desired force from the unconstrained LQ optimization-derived control law.
As a compromise, the semi-active control design typically follows its unconstrained
active counterpart when it can, and operates along the passivity envelope when it
cannot. For example, the damping force is adjusted to follow the desired suspension
force derived from the optimal control law, and set to zero when a negative
damping force is required. This control is therefore commonly referred to as
“clipped optimal”.

The optimal control law for the semi-active system has been posed as a con-
strained LQ optimization and solved numerically in Hrovat et al. (1988), Tseng and
Hedrick (1994), involving the iterative solution of a time-varying force constraint.
A specific example in Tseng and Hedrick (1994) showed that up to a 10%
advantage with respect to clipped-optimal can be achieved. However, it also found
that the amount of improvement depends on driven scenarios and is usually very
limited. A later work (Giorgetti et al. 2006) leveraged the explicit hybrid MPC to
confirm analytically the previously obtained numerical finding that clipped optimal
is not the optimal control for semi-active suspensions in general.

In practical suspension design, rebound and jounce bumpers are needed within
the rattle space to ensure no metal to metal contact when the vehicle encounters a
large road disturbance. Since the power and force of an actuator are limited, an
optimal active suspension controller may want to take advantage of this passive
nonlinearity in the vehicle. A hybrid MPC controller was discussed in Xu et al.
(2016) to demonstrate the control’s potential in further enhancing overall suspen-
sion performance, given limited actuation force/power. As is well known, the power
and force of a hardware actuator are limited since they are tightly correlated to the
practical constraints of cost and weight.

Noting that the tire of a vehicle may briefly lose road contact when encountering
a large road disturbance such as an abrupt pothole or a brick on the road, a
preview-based hybrid MPC can be designed (Xu et al. 2016) to take advantage of
the upcoming road profile as well as the knowledge of non-symmetric tire behavior
(when leaving the ground).

In a preview-based Model Predictive Control, not only is the vehicle response in
the future prediction horizon “simulated and evaluated”, but also is the road profile
within the prediction horizon “measured and buffered”. Bringing the future road
profile into the augmented system dynamics is a native capability within the MPC
framework where the look-ahead road input at each sampling time is measured, if
available, and buffered until it reaches the vehicle (See Fig. 33). As such, a road
preview MPC can be developed to enhance performance (Xu et al. 2016) using the
same framework of MPC without preview.

A benchmark simulation comparison for a quarter car going through a curb with
the step change of 0.1 m in road height is illustrated in Fig. 38, where the overall
cost function, rms tire deflection, suspension rms deflection, and sprung mass rms
acceleration are listed. All the controllers (LQR, MPC, and hybrid MPC) utilized
0.1 s preview, while the LQR controller assumed linear model, the MPC controller
constrained the suspension and tire deflection to within their linear and symmetric
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region, and the hybrid MPC accounted for more detailed representation of sus-
pension nonlinearities and unsymmetrical tire behavior. Significant improvement
can be achieved with MPC and hybrid MPC where the realistic nonlinearity can be
predicted and managed to avoid hitting the suspension jounce bumper.

5 Other Concepts, Features, and Related Practical
Considerations

5.1 Other Concepts

As the suspension performance index often includes conflicting terms,
multi-objective optimization—symbolic or numeric—has been widely used to
systematically manage nonlinearities and constraints (Gobbi and Mastinu 2001;
Chatillon et al. 2006; Chen et al. 2003). The solution of a multi-objective opti-
mization finds the best trade-off among the various pre-defined control terms. This
is also known as Pareto optimization used in systematic design procedures, which is
in many cases similar to the global optimization approach pursued in Sect. 3.

On the other hand, there are approaches with simpler concepts that focus on
emulating an ideal damping for the single element in consideration. Among them,
one of the most popular approaches is the skyhook concept which is supposed to
emulate a damper connected between the sprung mass and the sky or a moving
cloud representing an absolute, inertial ground. The skyhook control focuses on

Fig. 38 Benchmark comparison among LQR preview, MPC, and hybrid MPC
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passenger comfort with proper trade-off between suspension travel and tire force
variation. An analogous concept was introduced to focus on the minimization of tire
force variation. Instead of putting a damper between the sprung mass and a moving
cloud (aka sky or “inertial ground”), it suggests to put a heavy duty damper
between the unsprung mass and the moving ground, hence its name “ground hook”
(Novak and Valasek 1996; Valasek et al. 1997). In its implementation, the sus-
pension device located between sprung and unsprung mass emulates a damping of
the unsprung mass with respect to the ground i.e. road. Its emphasis is on the
prevention of road damage and minimization of tire force variations. Practical
advantages for road, soil, and bridges have been supported by experimental results
with a prototype truck (Valasek et al. 1998, 2003). Figure 39 illustrates the concept
of sky hook, ground hook, and their combined implementation.

An attempt to extend the above LQ optimization results to a nonlinear setting is
presented in Karlsson et al. (2000, 2001a, b). The idea was to put additional, higher
order (e.g. quartic) penalty on the rattle space, which in reality is best represented
by hard constraint as opposed to soft constraint representation used in the typical
LQ setting of Sect. 3. As a consequence of this increased penalty, there is more
efficient utilization of rattle space, especially in case of large bumps and potholes
that could otherwise result in unacceptably large impact forces.

5.2 Hydraulic Suspensions and Their Brief History

A brief history of hydraulic-based suspensions is illustrated in Fig. 40 where var-
ious version of hydraulic and related electro-hydraulic suspensions have been
implemented in production vehicles, ranging from low, mid, to high bandwidth,
ride height focused to vehicle roll response motivated. Note that the Kinetic Sus-
pension Technology (Sherman 2011) is essentially a semi-active suspension system
acting between different corners while Nissan Infinity Q45a (Akatsu et al. 1990)

Fig. 39 Illustration of skyhook, groundhook, and their combination
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and Mercedes ABC (Merker et al. 2002) are narrow bandwidth active suspension
(NBAS) systems, to be discussed in Sect. 5.6.

5.3 Self-leveling Feature

Various self-leveling systems have been introduced in the market including the
ones illustrated in Fig. 40. Notable examples include the Hydropneumatic systems
developed by Citroen (Nastasić 2002) and the Electronically-Controlled Air Sus-
pension on Lincoln by Ford Motor Company (Chance 1984). This feature allowed
these vehicles to maintain proper ride height and suspension stiffness over a wider
range of vehicle loading. It adjusts the vehicle ride height, usually very slowly, in
order to balance among (1) soft and comfortable ride from the softer-than-usual
passive spring, (2) proper vehicle attitude/stance, and (3) increased rattle space for
anticipated or unknown road disturbance ahead. This feature has been implemented
in the Lincoln Mark VIII in the 90s and most recently in Tesla Motor Model S
(Edmunds 2012; Korosec 2014). It enables the lowering of the vehicle at highway
speeds to improve aerodynamics and therefore, better fuel economy and driving
range.

Fig. 40 Brief history of hydraulic suspensions
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5.4 Variable Suspension Damping (Semi-active Suspension)
Feature

Production semi-active suspension systems are generally constructed using an
adjustable damper in parallel with the secondary suspension spring. These are
typically constructed from pneumatic and/or hydraulic piston/cylinder combina-
tions with electromechanical control of an orifice. Actuator bandwidth is primarily
determined by the reaction time of the controlling valve and associated pressure/
force production dynamics. A modern version can be found in Lincoln’s Contin-
uous Controlled Damping system introduced in 2006. The Lincoln system uses a
suite of sensors that constantly monitor suspension motion, body movement,
steering and braking inputs and adjusts the suspension in milliseconds, helping keep
the car smoothly on track (See Fig. 41). Specifically, it monitors up to 46 inputs and
reacts on average within 20 ms (Nicolas 2014) to reduce roll, pitch, and heave
motions, while enhancing driving comfort and dynamics, and isolating the vehicle
from road harshness.

Another implementation of adjustable damping is through magneto-rheological
(MR) fluids. MR fluid viscosity can be changed electronically, allowing the force
across the actuator to change quickly (Bodie and Hac 2000). This method benefits
from faster response time, although limited fluid life may contribute to service
concerns. One MR damper application is found in the 2002 Cadillac Seville STS
and 2003 Chevrolet Corvette whose MR fluid system was co-developed by Delphi
and Lord Corporation.

5.5 Variable Suspension Geometry/Low Power Low
Bandwidth Active Suspension Feature

A variable geometry suspension adjusts the ratio of wheel movement to
the deflection of the suspension spring in real-time. By changing the leverage of the
passive suspension spring depending on wheel motion, it essentially controls the
wheel rate or effective spring stiffness.

Fig. 41 Illustration of Lincoln CCD mitigating pothole impact by “stiffening” the damper
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Various systems and hardware configurations that provide variable suspension
geometry have been proposed in the literature (Venhovens and van der Knaap
1995; Sharp 1998; Watanabe and Sharp 1999; Tumova 2004) including the “Delft
Active Suspension” concept that was implemented as a prototype vehicle and
demonstrated experimentally.

A specific variable geometry design, the “Delft Active Suspension” (van der
Knapp 1989; Venhovens et al. 1992; Evers et al. 2008), is realized with a cone
mechanism and illustrated in Fig. 42. This mechanism connects the spring to the car
body on one end and to a rotatable crank on the other end. The crank is
joint-connected to the suspension/wheel control arm and can be rotated at the joint
around the base of the imaginary cone. The cone mechanism serves two purposes;
(1) the length of the spring remains the same as the crank rotates, and (2) the ratio of
movement between the wheel/tire control arm and the crank changes as the crank
rotates (see Fig. 42). The intent is that the power required for geometry variation
and the associated force leveraging of wheel rate will be much less than for directly
changing the desired force. Ideally, with the configuration, the mechanism would
require very low power and low energy. In practice, however, the precise
arrangement and alignment could be compromised by suspension motion and
deflection, and associated always-present friction.

5.6 Narrow Bandwidth Active Suspensions (NBAS)

Narrow bandwidth active suspensions are characterized by relatively low
force-production bandwidth of up to few Hertz, which results from an architecture

Fig. 42 Delft active suspension realized with a cone mechanism
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where the dominant compliance is placed in geometric series with the active force
generator. Most of the NBAS implementations thus far have been of
electro-hydraulic type. Some representative electro-hydraulic active suspension
configurations are shown in Fig. 43. Starting with a general structure shown in
Fig. 43a one can use the bond graph of Fig. 43b to derive an equivalent
all-mechanical structure shown in Fig. 43c. In the special case when the flow source
QB is not present one ends up with the load-leveling-like configuration shown in
Fig. 43d where we assumed a very soft, possibly pneumatic or air spring compli-
ance. Finally, if the flow source QA is not present then we end up with the con-
figuration shown in Fig. 43e. This is similar to some NBAS architectures—note in
particular the serial arrangement between the dominant spring and the active force

Fig. 43 Electro-hydraulic suspension configurations: a general structure; b corresponding bond
graph; c equivalent mechanical system; d typical structure with QB≡ 0; e typical structure with
QA ≡ 0 (based on Karnopp 1987)
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generator represented by the electro-hydraulic actuator that includes the controlled
flow source QB.

As suggested by Hrovat (1997) the above NBAS model could be further
enhanced by inclusion of inertia effects due to hydraulic line dynamics, which can
be especially relevant in case of relatively long and narrow lines or tubing. This is
shown in Fig. 44, where the hydraulic conduit connecting the two flow sources, QA

and QB, and suspension cylinder has been modeled as an inerter element repre-
sented by a differential causality within the associated bond graph of Fig. 44.
A corresponding all-mechanical configuration is also shown in that figure. At this
point, it should be mentioned that more recently there were attempts to develop and
commercialize the hydraulic inerter (Scarborough 2011) as an alternative to its
more common mechanical inerter counterpart. This may have some advantages in
terms of packaging and overall design/cost flexibility, depending on particular
implementation situation.

Further extensions of the above electro-hydraulic structures are possible by
including an additional compliance near the suspension cylinder. This is shown in
Fig. 45a along with an associated controlled damping mechanism. In the case that
the latter is of an on/off type and neglecting all active sources (i.e. setting QA and
QB to zero) one ends up with a semi-passive suspension shown in Fig. 45b. This is
similar to Citroen hydro-pneumatic suspension (Carbonaro 1990) where one uses
the on-off valve to control the effective suspension stiffness. The bond graph for the
generic configuration of Fig. 45a is shown in Fig. 45c. Note in particular, that the
inerter element corresponding to fluid line inertia is now in an integral causality
with corresponding increase in the number of system states. Based on this bond
graph one can easily deduce the corresponding all-mechanical suspension structure
shown in Fig. 45d.

Fig. 44 Electro-hydraulic suspension model including hydraulic inertia (inerter-like) effects,
equivalent bond graph, and all-mechanical counterpart
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A special case of the generic configuration of a typical electro-hydraulic (semi)
active suspension from Fig. 45 is shown in Fig. 46. This is one of the first pro-
duction implementations of the NBAS system developed by Nissan for their Infinity
Q45a luxury vehicle (Akatsu et al. 1990). Note in particular the presence of an
accumulator, which effectively acts in series with the actuator thus limiting the
actuator bandwidth while at the same time filtering high-frequency road-induced
disturbances. This corresponds to the accumulator with stiffness kA in Fig. 45a.
While the Infinity Q45a system used pressure control valve (Fig. 46a) another
alternative would be to use the flow control valve shown in Fig. 46b.

In late 1990s Mercedes introduced their Active Body Control—ABC advanced
suspension control system illustrated in Fig. 47 (Merker et al. 2002), which is
structurally similar to the NBAS architecture generalized in Fig. 45. However, there
is an important practical difference. While Infinity Q45a system used an hydraulic

Fig. 45 Electro-hydraulic suspension configurations including hydraulic inertia (inerter) effects,
and additional compliance and controlled (on-off) damping: a generic structure; b Citroen-like
hydro-pneumatic semi-passive equivalent with QA = QB = 0; c corresponding generic bond
graph; d equivalent all-mechanical system
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accumulator to implement the above mentioned in-series stiffness kA, the
Mercedes ABC suspension uses a mechanical counterpart similar to the one shown
in Fig. 45d. For most cases the two would be equivalent except in the case when
there is significant friction or even stiction within the actuator piston/cylinder
combination in which case the mechanical implementation would lead to smaller
road-induced disturbances resulting in better ride comfort. Through the years
Mercedes has further developed and enhanced their system, which has recently
included preview of the road based on stereo cameras. This system is now marketed
under Magic Body Control (MBC) on their high-end luxury vehicles (Anonymous
2017a; Streiter 2008).

Fig. 46 Nissan infinity Q45a N-B active suspension
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5.7 Broad Bandwidth Active Suspensions (BBAS)

Broad bandwidth active suspensions are characterized by relatively high
force-production bandwidth that may extend up to and beyond the wheel-hop
frequencies. This typically implies a very fast actuation and relatively stiff in-series
compliance kA in Fig. 45. The negative aspect of the latter is that the high-frequency
road-induced disturbances are more easily transmitted to the sprung mass resulting
in increased NVH (Noise, Vibration and Harshness) i.e. less comfortable secondary
ride. While most of the BBAS implementations thus far have been of
electro-hydraulic type equipped with high-fidelity servo-valves, there is also a case
to be made for all electrical actuation, especially in view of increasing emphasis on
Hybrid (HEV) and Battery Electric Vehicles (BEV).

As an example of electro-hydraulic implementation, we will next consider the
BBAS prototype system (Fig. 48) that was developed at Ford Research Laboratory
in the early nineties and successfully demonstrated in a research vehicle. It con-
sisted of four high-fidelity electro-hydraulic servo actuators, one at each corner,
installed onto a 1989 Ford Thunderbird (Goran and Smith 1996). The concept
hardware and software not only verified the potential in ride quality improvement
but also identified the shortcomings of the implemented hardware structure
including actual power consumption, secondary ride harshness, and actuator noise.

The Ford Thunderbird BBAS system was controlled through four-way servo
valves, which have high precision and speed of response. In addition, the BBAS
actuators were based on double-acting cylinders capable of equally fast rebound
and jounce strokes. The vehicle also had one central processor operating at lower

Fig. 47 Mercedes ABC
system (based on Merker
et al. 2002)
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rates, and four corner-unit micro-processors for fast signal/control processing; four
actuator displacement sensors and four load cells for internal (force) loop calcu-
lations; and four air springs—one at each corner placed in parallel with the BBAS
actuators. The air springs serve to support and self-center the vehicle sprung mass
as is typical of load leveling systems. At the same time they provide lower sprung
mass natural frequency for more comfortable basic ride, which is then appropriately
dynamically modified through the BBAS actuators. The system incorporated 26
various sensors, including accelerometers, pressure sensors, vehicle speed sensors
and others.

The BBAS control strategy was based on coordinated individual wheel control
and consisted of two hierarchical control levels (Goran et al. 1992). The outer loop
level operated at a 20 ms rate. It calculated the desired corner forces for the four
BBAS actuators, desired operating modes (handling or ride dominated) and
checked the overall system integrity. The ride related calculations were based on
quarter-car vehicle models aimed at emulating skyhook damping at each corner,
which is often very close to the optimal possible ride benefit (Hrovat 2014). Dif-
ferent effective spring and damping rates were used depending on prevailing
operating modes, i.e. ride or handling. Additional details about the system and its
performance can be found in Goran et al. (1992), Goran and Smith (1996).

An example of an Electrical Active Suspension (EAS) implementation (Davis
and Patil 1991) in a prototype Ford vehicle is shown in Fig. 49. An important
aspect of this BBAS system development was creation of an appropriate validated
model, with special emphasis on actuator model fidelity. The corresponding bond
graph model is shown in Fig. 50. This model was validated using bench testing and

Fig. 48 Illustration of Ford broadband active suspension prototype
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the results—in terms of relevant frequency transfer function plots—are shown in
Fig. 51. It can be seen that there is in general very good correlation between the
model and test data. Once validated, this model was used in the process of this—at
the time very novel—BBAS system development, which culminated in successful
demonstration in a research vehicle. More recent example of an EAS system
development can be seen in Moran (2004), Gysen et al. (2010), Anderson et al.
2013) indicating renewed interest in this promising concept, especially in view of
increased emphasis on electric (HEV and BEV) vehicles.

Fig. 49 Ford broadband electric active suspension (EAS) prototype

Fig. 50 Bond graph of Ford EAS broadband active suspension quarter car
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6 Optimization-Based Analysis of Active Suspensions
for Integrated Vehicle Controls

As discussed in the previous sections, active suspension is commonly considered
under the framework of vertical vehicle dynamics control primarily aimed at
improvements in ride comfort. In this section, we expand upon this traditional
application by introducing some recent developments based on more detailed,
non-linear vehicle models and more general optimization methodology. In partic-
ular, a collocation-type control trajectory optimization method is used to analyze to
which extent the application of fully active suspension (FAS) can be broaden to the
tasks of vehicle handling/cornering control and braking distance reduction, as well
as enhanced active safety, in general. The analysis is extended to the ride control
task for the case of emphasized, discrete road disturbances such as high-magnitude
bumps and potholes. The main optimal control objective is to provide a favorable
trade-off of ride comfort and road holding capability, as well as a robustness against
wheel damage, e.g. at the pothole trailing edge. The presentation is based on the
recent papers (Čorić et al. 2016a, b, 2017), which include more details on vehicle
modeling, optimization problem formulation, and optimization results and related
discussions.

Fig. 51 Ford EAS actuator model validation
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6.1 Vehicle Dynamics Model

The conducted optimization study is mostly based on the 10 DOF passenger vehicle
dynamics model depicted in Fig. 52a, b (Hancock 2006). The model state variables
include longitudinal (U), lateral (V), and heave (W) velocities, and roll (p), pitch (q),
and yaw (r) rates, as well as the four state variables related to the rotational speeds
ωi of each wheel, i = 1, …, 4. For the ride control optimization task, the simple
quarter-car vehicle model shown in Fig. 52c (Hrovat 1997) is mostly used. The 10
DOF model is extended by the unsprung mass dynamics (dashed lines in Fig. 52b)
when verifying the basic 10 DOF model-based optimization results, or when using
the full vehicle model for ride control optimization.

The variable ΔFzi (or Fa in Fig. 52c) represents the FAS control input to be
optimized along with other control inputs such as Δδ1 = Δδ2 (for active front
steering, AFS) and Ti (for active brakes, ABS).

The tire is described by the 1994 Magic formula combined-slip model, including
the relaxation length dynamics for the lateral DOF (Pacejka 2006). The longitudinal
and lateral tire forces are scaled by the tire-road friction coefficient μ.

6.2 Braking Distance Reduction

The optimization objective is to find the control input vector u = [T1,…,T4,ΔFz1,…,
ΔFz4], which minimizes the final longitudinal position X(tf) of the vehicle on the
fixed time interval [0, tf], i.e. the cost function to be minimized is specified as

J0 =Xðtf Þ ð53Þ

The optimization is subject to hard constraints on the tire normal load Fzi, i = 1,
…, 4, the FAS control inputs ΔFzi, and the suspension deflection zi, see Fig. 52b
and Čorić et al. (2017):

Fzi ≥Fzmin ð54Þ

−ΔFzmax ≤ΔFzi ≤ΔFzmax ð55Þ

− dj ≤ zi − z0i ≤ dj ð56Þ

In order to provide a well-damped system response, the cost function (53) is
extended with additive soft constraint terms of mean-square type on the variables ηi̇,
Fżi, ΔFzi, and ΔF ̇zi, where ηi denotes the tire longitudinal slip. Similarly, to ensure
straight ahead motion of the vehicle during the braking maneuver in the case of
split-μ scenario, the mean-square constraints are introduced for the yaw rate (r) and
the lateral displacement (Y) variables, and the active front or rear steering input is
added to the control vector to be optimized.
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Figure 53 shows the vehicle response for a pulse-type, low-high-low transient-μ
scenario, where the FAS and brake control inputs, ΔFzi and Ti, i = 1, …, 4, are
simultaneously optimized. The FAS provides a load boost on those tires that

Fig. 52 10 DOF vehicle
dynamics model (a, b) and
quarter car model (c)
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experience the high-μ condition (first front, Fzf = Fz1+ Fz2, and then rear tires,
Fzr = Fz3+ Fz4). This results in a boost of the longitudinal deceleration –ax, and
finally in reduction of the braking distance by 5.1% (on the given, fixed time
horizon).

The side effects of FAS action include excitation of vehicle heave and pitch
dynamics. This results in the long stroke in the heave, Z, direction (approx.
±10 cm; which is closely related to the suspension deflection constraint (56), with
dj = 10 cm), and the corresponding heave acceleration peak of 0.69 g. The pitch
angle response θ includes some more oscillatory content as the results of FAS
action.

In order to produce a strong tire load boost during the high-μ period and at the
same time satisfy the suspension stroke constraint, the FAS relaxes the tire load
immediately before and after the high-μ interval (see Fzf and Fzr). These tire load
holes have a weaker effect on the deceleration −ax than the load boost, because they
occur during the low-μ intervals.

The analysis is extended in Čorić et al. (2017) for other μ-scenarios. The braking
distance reduction is lower for the step-type, high-low transient-μ case (around 2%
for the same μ levels and time horizon values) and much smaller for the constant-μ
scenario (0.5%). In the latter case, the performance gain is higher (around 2%) if the
ABS actuator bandwidth is lower than the FAS bandwidth. This is because the FAS
can boost the tire load when the braking torque is being settled i.e. when it is close
to maximum, while preparing for the boost through generating the tire load hole in
the early stage of braking torque transient.

Fig. 53 Comparative Brakes and FAS + Brakes optimization results for pulse-type transient-μ
scenario
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In the split-μ scenario (μ1,3 = 1 and μ2,4 = 0.1 in the particular case, Fig. 54),
the FAS again transfers the load to the high-μ tires (the left tires in this case), and
the braking distance is reduced by 2.1%. To keep the vehicle moving straight ahead,
the optimized active front steering (AFS) input δf is such to counteract the yaw
torque caused by unequal left and right braking forces. Between the high-μ tires, the
load is transferred to the non-steered (left rear) tire, because it has a larger longi-
tudinal force potential according to the friction circle (Pacejka 2006). It is important
to note that the overall FAS action is such to form a warp arrangement of the four

Fig. 54 Comparative brakes and brakes + FAS optimization results for split-µ maneuver with
included AFS actuator
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FAS forces (see the normal load, Fzi, responses in Fig. 54). In this case the total
FAS force ΣΔFzi is approximately equal to zero, thus avoiding any notable have
motion, and allowing for control of tire load distribution over long steady-state
intervals. Namely, the load redistribution occurs during the whole maneuver
interval (Fig. 54), unlike in the transient-μ case where only a temporary load boost
(preceded by load hole) was achievable due to the suspension deflection/heave
stroke constraint (Fig. 53). It should also be noted that a chassis roll is induced
towards the high-μ wheels.

The constant-μ scenario has been extended by imposing oscillatory behavior of
the longitudinal slip (through an equality constraint), in order to mimic the
ABS-inherent limit-cycle behavior. The optimized FAS action is such to increase
the tire load in the wheel torque peak periods, thus resulting in a higher tire friction
potential in those periods, and finally boosted deceleration. This is in accordance
with the FAS + ABS control strategy proposed by Alleyne (1997).

6.3 Handling Control—Stabilization

The standardized sine-with-dwell maneuver-based test (Anonymous 2007) is used
to evaluate the FAS control authority in stabilizing the vehicle. In this maneuver, a
“robot” steering wheel angle (SWA) with the amplitude δk, the frequency of 0.7 Hz,
and the dwelling period of 0.5 s, is applied to a vehicle coasting at the velocity
U = 80 km/h for the tire-road friction coefficient µ = 0.9. Unlike the original test
specification, where repetitive tests with a growing SWA are executed, only the
worst-case scenario related to the SWA amplitude δk ≅ 270° is considered in
optimization. In order to reflect the test requests on limiting the yaw rate response
(stabilization) and maximizing the lateral displacement Y (responsiveness) during
the maneuver interval [0, tf = 4 s], the following cost function is considered:

J =
Ztf
0

ðr− rRÞ2dt − kmaxðYÞ ð57Þ

where rR is the target yaw rate generated by a vehicle dynamics reference model,
and k is the weighting factor selected to achieve a trade-off between the two
conflicting objectives. The optimization is subject to inequality constraints (54)–
(56). The optimized control variables are FAS inputs ΔFzi, i = 1, …, 4. A more
detailed elaboration of the optimization problem formulation and a more detailed
discussion of the optimization results are presented in Čorić et al. (2017).

Figure 55 shows the optimization results for the considered sine-with-dwell
maneuver. A typical though simplified feedback-type ESC reference strategy pre-
dominantly brakes the outer front wheel (Fx1) to generate an oversteer compensa-
tion (OSC) component of the yaw torque Mz and stabilize the vehicle (Tseng et al.
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1999). The OSC action is emphasized in the interval around t = 1 s in order to
suppress the excursion of sideslip angle β resulting in stabilization effect, as well as
around t = 2 s, but to a lower extent.

The ESC + FAS optimization results in Fig. 55 point to a significant yaw rate
error reduction leading to 45% lower yaw rate root-mean-square (RMS) error, and
also β-peak reduction resulting in a wider stability margin (see the performance
indices given in Table 1). This is achieved by two distinct actions that can be
observed in Fig. 55: (i) the total tire load boost (see ΣFzi around t = 0.7 s and
t = 1.3 s) that increases the lateral acceleration ay over its saturation level for

Fig. 55 Comparative FAS + ESC optimization results for sine-with-dwell maneuver, including
comparison with passive vehicle and ESC-only cases
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improved handling, and (ii) transfer of load from front to rear tires to generate OSC
yaw torque (see Fzf and Fzr around t = 0.65 s and t = 1.9 s). As side effects, the
former excites significant heave motion (the heave acceleration peak of 0.38 g,
Table 1), while the latter causes emphasized pitch angle magnitudes (θ). The lateral
displacement Y (i.e. the responsiveness) remains largely unaffected. However, the
agility is notably improved in the case of integrated control (U(tf) is higher, tf =
4 s), because the ESC + FAS system uses the brakes to a lower extent than in the
ESC-only case (see Fx1, …, Fx4).

Since the optimization is inherently conducted over the full time window
(full-horizon preview is available), the comparison between the optimized FAS
control action and the causal ESC action (no preview) is strictly speaking unfair. To
provide a more appropriate comparison between the FAS and ESC systems control
authorities, the same preview-based optimization approach has been applied in the
FAS-only case (ΔFzi inputs are optimized) and active brake-only case (Ti inputs are
optimized). The corresponding results given in Table 1 under the labels ‘FAS1’ and
‘Active brakes’ show that the optimized FAS and active brake systems give
comparable yaw rate RMS errors. The advantages of FAS control include improved
responsiveness (by 17%) and agility (by 40%), while the disadvantages are related

Table 1 Comparative stability control performance indices for different actuator configurations
and FAS control strategies (k = 0.01 in Eq. (57))

Casea max(Y)
(m)

RMSb (rerr)
(rad/s)

Ẇ
�� ��

max
(m/s2)

|β|max

(°)
Θ|max

(°)
U(tf)
(m/s)

No control 4.51 0.471 0.38 29.63 1.08 11.87
ESC 4.22 0.126 0.33 3.82 1.57 18.48
FAS1 4.21 0.073 5.28 2.85 3.37 19.82
FAS2 3.86 0.077 0.81 2.97 3.09 19.83
FAS3 3.81 0.096 0.33 2.46 1.08 19.88
FAS4 4.33 0.088 7.91 3.16 1.28 19.85
FAS5 4.16 0.083 6.23 3.16 1.23 19.90
FAS6 4.23 0.153 0.33 6.48 0.95 19.35
FAS7 3.69 0.097 0.33 2.78 1.05 19.86
ESC + FAS 4.05 0.070 3.80 2.95 2.85 19.12
Active
brakes

3.61 0.074 0.40 3.25 2.00 11.61

aFAS1—Full FAS control
bRMS = Root Mean Square
FAS2—Hard constraint on total actuator force ∑Fzi= 0
FAS3—Laterally anti-symmetric force distribution (ΔFz1 = −ΔFz2, ΔFz3 = −ΔFz4)
FAS4—Longitudinally symmetric force distribution (ΔFz1 = ΔFz3, ΔFz2 = ΔFz4)
FAS5—Warp-related constraint (ΔFz1 = ΔFz4, ΔFz2 = ΔFz3)
FAS6—Longitudinally symmetric and laterally anti-symmetric force distribution
(ΔFz1 = ΔFz3 = −ΔFz2 = −ΔFz4)
FAS7—Coupled warp-related constraint (ΔFz1 = ΔFz4 = −ΔFz2 = −ΔFz3)
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to increased magnitudes of heave acceleration (0.5 g vs. 0.04 g) and pitch angle
(3.4° vs. 2°).

In order to investigate if the ultimate FAS performance can be approached by
simpler control actions based on lower number of control DOFs, the FAS control
input optimization scenarios defined in the legend of Table 1 under the labels
‘FAS2’–‘FAS7’ are also considered. The main conclusions drawn from the cor-
responding performance indices are as follows: (1) the application of zero total FAS
force constraint (FAS2; three control inputs) gives only slight reduction of control
performance, with an advantage of no heave motion excitation (no total tire load
boost is allowed); (2) in the cases of longitudinally symmetric force constraint and
warp-related constraints (FAS4 and FAS5, respectively; two control inputs in both
cases), the performance also remains high, the pitch motion excitation is avoided
(no front/rear tire load transfer is allowed), but the heave acceleration is excessive;
and (3) in the case of coupled warp-related constraint (FAS7; only a single control
input), the performance is notably deteriorated, but it is still better than that of the
ESC case, and both pitch and heave dynamics excitation is avoided. For the coupled
warp-related constraint, the FAS control makes the front tire loads more distinctive
from each other and the rear tire loads more balanced, thus providing an oversteer
compensation action based on the convexity of the lateral force versus normal load
tire curve (Pacejka 2006). At the same time, the total tire load, heave, and sus-
pension deflection are kept approximately constant, so that the control action can be
applied during steady-state turns, as well. FAS3 configuration gives comparable
performance as in the case of FAS7 configuration, but it includes one control DOF
more. FAS6 configuration is inferior to other configuration, because it does not
allow for load boost, front/rear load transfer, and different left/right load transfers on
the two axles.

6.4 Handling Control—Path Following

A path following minimization objective is used along a double lane change
maneuver (DLC) to further investigate the FAS control authority, particularly under
the conditions of understeer behavior (with respect to reference trajectory). The
optimization problem is to find the FAS control inputs ΔFzi (t), 0 ≤ t ≤ tf, i =1,
…, 4, which minimize the cost function

J =
Ztf
0

Y − YRðXÞð Þ2dt
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J0

+ k1

Ztf
0

∑
4

i=1
ðFzi −Fzi0Þ2dt+ k2

Ztf
0

θ2dt+ k3

Ztf
0

ϕ2dt+ k4

Ztf
0

∑
4

i=1
η̇2i dt

ð58Þ
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subject to inequality constraints similar to those given by Eqs. (54)–(56). In
addition to the main, cost function term J0, which penalizes the path following
error, there are other, soft constraint-related terms penalizing the control effort, pitch
and roll magnitudes, and excessive longitudinal slip excursions.

Figure 56 shows the optimization results for the worst-case DLC Maneuver 3.
The reference response corresponds to the passive vehicle for μ = 1, zero driveline
torque, and optimized driver steering input. The achieved vehicle path Y(X) is used
as the reference path for other cases presented in the same figure, where the same
driver steering input is applied, but for the reduced tire-road friction coefficient
μ = 0.6 and the driveline input torque Tin = 250 Nm. Under these conditions the
passive vehicle (‘No control’ case) becomes unstable (see β). The optimized active
front steering (AFS) control stabilizes the vehicle and provides an accurate path
following.

Fig. 56 Comparative AFS and FAS + AFS optimization results for path following task and
Maneuver 3 (μ = 0.6, Tin = 250 Nm)
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The path following RMS error is further reduced (by 30%) when the integrated
AFS + FAS control is applied. Since the AFS has a large control authority over the
lateral vehicle dynamics, the FAS action is focused on the effect of boosting the
total tire load (ΣFzi) and, thus, the lateral acceleration (ay) capacity in the critical
intervals. The FAS also provides a certain rear-to-front tire load transfer by strongly
unloading the rear axle for understeer compensation (USC) around the intervals of
0.3, 1.1, and 2.6 s. The side effects of FAS action are again related to excitation of
heave and pitch dynamics: the heave acceleration peak is 0.6 g while the pitch
angle amplitude is relatively modest (1°).

Table 2 shows the performance indices related to FAS-only optimization results
obtained for Maneuver 1 (μ = 0.6, Tin = 0) and different sets of cost function
weighting factors given in the table legend. In the unconstrained case (no hard and
soft constraints, Case 1), almost ideal path following can be achieved (J0 → 0).
However, this case is unrealistic due to very high heave peaks required by the
strong FAS action (43 cm from the equilibrium Z0), i.e. due to violation of the
suspension stroke limits (±10 cm). After adding the hard constraint on suspension
stroke (Eq. (56); Case 2), the path following RMS error (J0/tf)

1/2 grows signifi-
cantly, but it remains substantially lower compared to the no-control case. By
adding the soft constraint on control effort (Cases 3 and 4), the FAS control
amplitudes become smaller, thus reducing the FAS consumed energy
E=

R
ΔFzivzidt, as well as the pitch angle, heave, and heave acceleration magni-

tudes. This is paid for by reduction of the path following performance, which is
more emphasized in the case with higher control effort weighting factor k1 (Case 4).
When compared to the optimization results for Case 5 (considered in Fig. 56; the
pitch and roll angle magnitudes are constrained), the less restrictive tuning related
to Case 3 provides a significant improvement in the path following performance

Table 2 Comparative performance indices of FAS optimization results for different sets of
constraints and Maneuver 1 (μ = 0.6, Tin = 0)

Casea (J0/tf)
1/2

(m)
|β|max

(°)
X(tf)
(m)

E (kJ) Ẇ
�� ��

max
(m/s2)

|θ|max

(°)
|Z − Z0|max (|zi −
zi0|max) (cm)

No
control

4.493 8.0 103.1 0 0.3 0.7 0.6 (7.0)

Case 1 0.004 5.5 102.3 22.7 15.3 18.8 43.0 (69.0)
Case 2 0.182 5.2 104.4 7.0 10.1 4.6 10.0 (12.8)
Case 3 0.194 5.0 104.7 5.4 7.7 4.2 8.9 (11.1)
Case 4 0.262 4.4 105.5 3.4 4.3 4.2 2.6 (10.2)
Case 5 0.285 4.1 105.7 1.4 2.8 2.5 9.1 (10.1)
a1Unlimited FAS (no hard constraints and k1 = k2 = k3 = 0 in Eq. (58))
2Added suspension deflection constraint (k1 = k2 = k3 = 0)
3Added weak constraint on control effort (k1 = 0.001, k2 = k3 = 0)
4Added strong constraint on control effort (k1 = 0.01, k2 = k3 = 0)
5Added constraints on pitch and roll angle magnitudes (k1 = 0.01, k2 = 0.1, k3 = 0.1)
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(30% lower RMS error). However, the control effort is increased to such extent that
the tire load lower amplitudes approach the limit value set to 500 N.

Table 3 shows the path following RMS errors (m) for various single- and
multi-actuator configurations, and different DLC maneuver types. Maneuver 1 is
similar to the already described Maneuver 3, but the driveline torque is set to zero.
Maneuver 2 is executed for the non-reduced friction coefficient (μ = 1) like in the
reference case, but with a relatively high driveline torque (Tin = 350 Nm). The
results in Table 3 indicate that the FAS-only control is inferior to the AFS/ARS
control, which may appear to be in contrast with the handling control results from
Sect. 6.3, where the FAS was very competitive to active brake control. This is
because in the considered control task a strong USC action is required, including
the preview action during the initial period when the vehicle moves straight ahead
(see δf = δ1 = δ2 in the AFS case in Fig. 56). The fact that the FAS cannot generate
lateral tire force in the absence of tire sideslip angle explains its inferiority com-
pared to AFS. Nevertheless, it effectively stabilizes the vehicle and provides rela-
tively accurate path following.

Table 3 further shows that the ARS is more effective than AFS, because it
utilizes a driver-untapped lateral force potential of rear tires (Deur et al. 2014).
The FAS action is, thus, less effective when integrated with ARS (than with AFS),
and it is reduced solely to the unique ability of FAS to boost the total tire load and
the lateral acceleration. This unique control authority explains why the FAS brings
more significant improvement to the AFS (in the AFS + FAS configuration) than
the ARS does (in the ARS + AFS = 4WS configuration).

There are several other, secondary mechanisms through which the FAS can
improve the vehicle handling performance (Čorić et al. 2016b). First, for a
throttle-on maneuver and the example of rear-wheel-drive vehicle, the FAS unloads
the inner driven tire to increase its longitudinal slip and, thus, weaken its lateral
force to provide USC. Next, as already mentioned in Sect. 6.3, the FAS can
increase the left-right tire load difference on the front axle and make the tire load
more balanced on the rear axle, thus generating OSC yaw torque based on the
convexity feature of the tire lateral force versus load static curve. Finally, the FAS
can provide the vehicle tilting effect as an USC intervention acting through the
front-axle bump steer component of the toe effect.

Table 3 Comparative path following RMS error values (m) for different active steering and FAS
configurations and different DLC maneuver types

Maneuver ARS FAS ARS +
FAS

AFS AFS +
FAS

4WS 4WS +
FAS

1 0.112 0.281 0.077 0.137 0.086 0.091 0.067
2 0.044 0.197 0.025 0.045 0.027 0.030 0.023
3 0.175 0.405 0.141 0.229 0.157 0.163 0.130
Maneuver 1: μ = 0.6, Tin = 0
Maneuver 2: μ = 1, Tin = 350 Nm
Maneuver 3: μ = 0.6, Tin = 250 Nm
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6.5 Ride Comfort and Tire Impact Control for Bumps
and Potholes

In the case of bump-type road disturbance and the quarter-car vehicle model given
in Fig. 52c, the cost function is defined as (see Sect. 3.2):

J = k11

Ztf
0

x ̇24dt

|fflfflffl{zfflfflffl}
J11

+ k12

Ztf
0

ðx1 − x10Þ2dt
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

J12

+ k13

Ztf
0

ðx3 − x30Þ2dt
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

J13

+ k14

Ztf
0

F ̇2adt

|fflfflffl{zfflfflffl}
J14

ð59Þ

where the terms J11, …, J14 penalize the ride discomfort, loss of road holding/
handling ability, excessive suspension stroke, and control input oscillations,
respectively. The only hard constraint applied in the basic optimization case relates
to the FAS actuator force limits: −2500 ≤ Fa [N] ≤ 2500.

The dashed-line blue curves in Fig. 57 represent the corresponding optimization
results for the case of high-amplitude bump (10 cm), bump length of 0.1 s, and the
bump preview time of 0.2 s (see zr response). Immediately before the bump
occurrence, the FAS generates a positive force Fa, which tends to lift the tire (see x1
and Fz, and also Fig. 52c), thus reducing the strong tire-bump impact. Conse-
quently, the sprung mass acceleration dx4/dt is suppressed when compared to the
passive vehicle, thus resulting in better ride comfort. After the wheel hop peak,
occurring around t = 0.3 s (see x1), the FAS abruptly reverses its action (Fa < 0) to
prevent the strong sprung mass (free) fall that would affect the ride comfort.

Fig. 57 Optimization results for emphasized discrete bump-type road disturbance
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However, such “bang-bang”-like FAS action excites strong oscillations of the
system response, which results in residual wheel hops and related temporary losses
of road holding ability (Fz = 0). During the bump preview period (t < 0.2 s), the
FAS prepares for the tire lift action at the leading bump edge by exciting the
unsprung mass oscillations with a proper phase angle.

The solid-line red response in Fig. 57 corresponds to the case of imposing the
lower-limit constraint on the tire normal load (Fz > 1000 N), and also applying the
final time conditions on the state and control variable that are equal to the corre-
sponding initial conditions. The wheel is prevented from hopping (see x1 and Fz

responses) by generating a strong negative FAS force Fa after the bump peak
(0.25 < t (s) < 0.3), which presses the wheel to the ground. However, the reactive
force of the same amount Fa acts on the sprung mass (see Fig. 52), thus causing a
very strong peak of the sprung mass acceleration and affecting the ride comfort.
Therefore, there is an evident trade-off between the ride comfort and road holding
ability. The summarized performance plot shown in Fig. 58 indicate that the cost
function weighting factors can be tuned so that both ride comfort and road holding
indices are notably better than in the passive vehicle case, particularly in the
high-bump case.

The analysis has been extended to the case of full vehicle model (Fig. 52a, b)
with the unsprung mass dynamics included. It has been found that there is an
additional cross-axle FAS control mechanism, which reduces variation of the total
(four-corner) sprung mass/chassis force for improved ride comfort (Čorić et al.
2016a). This mechanism counteracts the anti-wheel-hop peak of suspension force
on the active axle (the one exposed to the bump) by means of suspension force
reduction on the inactive axle.

In the pothole case the cost function is formulated as

J =
Ztf
0

Faðx2 − x4Þð Þ2dt
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J31

+ k32

Ztf
0

x ̇24dt

|fflfflffl{zfflfflffl}
J32

+ k33 −minðzuÞjτp + T
τp

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

J33

+ k34

Ztf
0

F2
adt

|fflfflffl{zfflfflffl}
J34

ð60Þ

Fig. 58 Pareto frontier-like
diagram for two main
performance indices
((J12/ tf)

1/2 versus (J11/ tf)
1/2

based on definition in
Eq. (59)) and low (2 cm) and
high (10 cm) amplitude of
bump-type road disturbance
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The main difference compared to the cost function (59) relates to two additional
terms, J31 and J33, which penalize the FAS actuator energy consumption and the
tire sensitivity to damage during the pothole interval, respectively. The hard con-
straints include the aforementioned actuator force limit and the state variable
boundary condition.

Figure 59 shows the optimization results for the case of square-shape pothole
with the depth of 0.1 m, length of 0.1 s, and the preview time of 0.2 s. Regardless
of the cost function tuning, the optimal system behavior is such that the wheel hops
over the pothole (see xb) to prevent the wheel damage on the pothole trailing edge
(see x1 and Fz immediately after t = 0.3 s). To effectively prepare for the wheel
hop, the FAS first increases the (absolute value of) tire deflection x1 immediately
before the pothole (Fa < 0). It then quickly reverses its control action (Fa > 0) to
lift the wheel near the pothole leading edge (t ≅ 0.2 s) with some significant hop-off
velocity x2. The response of FAS energy consumption E indicates that the FAS
predominantly generates active force (dE/dt > 0), where the power peaks equal
around 1.5 kW.

The main difference between the two active control responses in Fig. 59 is that
the wheel entirely hops over the pothole when the emphasis is on damage pre-
vention (solid red curves) compared to the case when the ride comfort is empha-
sized (dashed blue curves). In the former case, the FAS action Fa is stronger
(longer) both in the preview phase (t < 0.2 s) and during the pothole period

Fig. 59 Optimization results for emphasized discrete pothole-type road disturbance of square
shape

Optimal Vehicle Suspensions: A System-Level … 195



(0.2 < t (s) < 0.3), in order to better prepare for the wheel hop and keep the wheel
lifted action when hopping over. The post-pothole peak of the normal tire force Fz

is not only lower in that case, but it occurs after the trailing edge, thus reducing
further the possibility of wheel damage. However, the ride comfort is reduced (see
dx4/dt) due to the stronger FAS activity before and during the pothole period.

Another cost function tuning case is also considered in (Čorić et al. 2016a),
where the emphasis is on energy consumption. In this case the FAS action is such
that it keeps the suspension deflection x3 approximately constant during the pothole
period (and longer), i.e. no power is consumed in that case (as dx3/dt ≅ 0 holds in
that case). This results in halving the energy consumption compared to the previous
two cases, but the ride comfort or wheel damage robustness is compromised.

The above results are further illustrated by the performance indices listed in
Table 4 based on the definition of the cost function terms in Eq. (60), and for three
characteristic sets of weighting functions. In all cases, the FAS improves the wheel
damage robustness (see J33), and, it also, improves the ride comfort performance
(J32) when compared to the passive vehicle. In Case 3, the wheel damage is
avoided, while the other two cost indices are modestly high. In Case 2 the energy
consumption is the lowest, but ride comfort and wheel damage robustness are
inferior compared to Case 1.

The case of long pothole is analyzed in (Čorić et al. 2016a), as well. In that case
the optimal behavior includes the phases of (i) wheel landing and traveling over the
pothole bottom, and (ii) hopping over the pothole trailing edge.

6.6 Summary

The presented control variable optimization study has pointed to the unique control
authority of FAS, which relates to boosting the tire load for providing an increased
tire friction potential and improved vehicle dynamics control (VDC) performance.
The tire load boost can be applied under conditions of non-uniform tire friction
coefficient μ (the load is increased during the high-μ interval, e.g. for improved
ABS performance) or during the critical handling/cornering maneuvers (to increase
the lateral acceleration over its μ-related saturation level and improve the VDC

Table 4 Comparative
performance indices for
passive vehicle and three FAS
control optimization cases for
pothole-type road disturbance

Case Square-shaped pothole
Cost (J32/ tf)

1/2 (m/s2) E (kJ) J33 (cm)

No control 6.6 – 12.8
Case 1 2.9 0.14 2.5
Case 2 3.5 0.05 3.0
Case 3 4.0 0.12 0.0
In Cases 1, 2, and 3 the emphasis is on ride comfort, energy
saving, and wheel damage robustness, respectively
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performance without affecting the agility). The VDC performance can also be
enhanced by the FAS ability to generate oversteer compensation- or understeer
compensation-yaw torque by transferring the load to rear or front tires, respectively.
There are additional FAS control mechanisms for enhanced VDC, such as those
relying on spinning a driven tire by reducing its load, balancing the left-right tire
load on an axle to boost its lateral force, and increasing the steering effort through
the bump steer component of the toe effect. Finally, in the case of emphasized
discrete road disturbances such as high-amplitude bumps and potholes, a proper
(optimal) FAS control action can improve both ride comfort and road holding
performance. Moreover, in the pothole case, the wheel damage can be prevented by
forcing it to hop over the pothole.

However, the FAS control action has certain side effects and limitations. The tire
load boost and load transfer actions are directly associated with excitation of heave
and pitch dynamics, respectively, thus affecting the driving comfort. Due to the
limited suspension stroke, the FAS actions can last only for a relatively short
interval, and they would, thus, not be very effective in nearly steady-state turns or
transient maneuvers performed at slower rates of change. To emphasize the FAS
control effect (e.g. the tire load boost) and satisfy the suspension stroke constraint,
the FAS action typically includes a preparatory phase during the preview period
(e.g. a tire load hole), and is usually succeeded by a similar relaxation phase. This
makes the control system development more challenging, as it would require some
kind of on-line optimization that is typically included within the model predictive
control framework, and a preview of critical period of maneuver and/or road dis-
turbance. Another limitation relates to the fact that the FAS cannot influence the tire
lateral forces unless the tire is subject to non-zero lateral sideslip angle. This affects
the effectiveness of understeer compensation, particularly when it is a part of
preview control action during straight ahead driving.

There is though a FAS action that is not associated with most of the above side
effects. When the tire normal loads are distributed in the warp-like arrangement, the
FAS action does not excite the heave and pitch dynamics, and it can be applied
during steady-state turns and braking maneuvers in a simplified (more conven-
tional) control law formulation. However, this action has a lower control authority
than the load boost and front/rear load transfer actions, thus usually resulting in
limited control performance enhancement.

It is believed that the encouraging results of this study may serve as a solid basis
and inspiration for future possible extensions, especially when combined with
(semi)autonomous vehicles fortified by V2V, V2I, detailed 3D mapping, and
similar exciting and promising future developments.
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Appendix

In this appendix we establish the LQG-optimal trade-off line for the 1 DoF model of
Fig. 7. We start with the covariance (Lyapunov) equation

A−BKð ÞX +X A−BKð ÞT = −GΓGT ð61Þ

where in our case GT= [−1 0] and Γ = 1 since we are dealing with normalized
covariance,

X =
X1 X3

X3 X2

� �
ð62Þ

where,

X1 = X1, rms, normð Þ2, and X2 = X2, rms, normð Þ2 ð63Þ

Define

ACL =A−BK =
0 1

− k1 − k2

� �
ð64Þ

with optimal control gains

k1 = r − 1 ̸2, k2 =
ffiffiffi
2

p
r − 1 ̸4 ð65Þ

then the covariance equation becomes

ACLX +XAT
CL = −GGT ð66Þ

or

2X3 X2 − k1X1 − k2X3

X2 − k1X1 − k2X3 − 2k1X3 − 2k2X2

� �
=

− 1 0
0 0

� �
ð67Þ

Solving for X1, X2, and X3,

X1 =
3

2
ffiffiffi
2

p r1 ̸4, X2 =
1

2
ffiffiffi
2

p r − 1 ̸4, X3 = −
1
2

ð68Þ
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from where we get the normalized rms rattlespace

x1, rms, norm =
ffiffiffiffiffi
X1

p
=

ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffi
2

ffiffiffi
2

pp r1 ̸8 ð69Þ

The normalized rms sprung mass acceleration then follows from

U =KXKT =
1

2
ffiffiffi
2

p r − 3 ̸4 ð70Þ

so that

U =
27
64

X − 3
1 ð71Þ

resulting in the normalized rms acceleration versus rattlespace equation

urms, norm =
3

ffiffiffi
3

p

8
x− 3
1, rms, norm ð72Þ

which was used to plot the corresponding optimal trade-off line in Fig. 13.
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Active Control of Vehicle Handling
Dynamics

Tim Gordon

Abstract This chapter provides an overview of the basic lateral control of a road

vehicle using actuators such as individually controlled brakes and or rear-wheel steer-

ing. The main focus is on linear control system design for cornering, especially for

the improvement of stability and manoeuvrability of a passenger car. Steering con-

trol is presented in the form of a simple ‘driver model’ that shows the importance of

road preview in providing a stable controller. For nonlinear control, anti-lock brak-

ing and electronic stability control are described; finally there is an introduction to

vehicle motion control at the limits of friction.

Keywords Chassis control ⋅ Vehicle stability ⋅ Rear-wheel steering

Electronic stability control ⋅ Anti-lock braking system ⋅ Driver model

Friction limits

1 Overview of Vehicle Control Applications

In recent years, electronic controls have become an integral part of automobile

engineering. Starting with electronic engine control and anti-lock braking systems

(ABS), the number of electronic functions has expanded almost exponentially over

the past decade. However there are relatively few degrees of freedom associated with

the primary ride and handling of a rigid vehicle—just six. Compared to this, there

may be a large number of actuators available, or at least feasible, for controlling

these six degrees of freedom. If we assume a four-wheel rigid vehicle has indepen-

dent braking/traction at each wheel (drive and brake torque combined together) plus

independent suspension and steering, this gives three independent actuation modes

per wheel, or 12 actuator degrees of freedom in total. In this case, the ratio of actua-

tors to degrees of freedom is 2:1. Fundamentally the automobile is an over-actuated
machine.

Not all degrees of freedom may be actively controlled (for example when bounce,

pitch and roll are controlled by a standard passive suspension). But even then, a
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standard Electronic Stability Control (ESC) system will be over-actuated, having

four individual wheel brakes available and only two degrees of freedom to control:

yaw and body side-slip. So again, motion control becomes over-actuated and some

form of constraint or control allocation is necessary as part of the controller design.

Certain vehicle control modes are more simply described as single-input-single-

output (SISO) systems. An example is cruise control, where the vehicle follows a

set reference speed; the input is the speed reference, the output is the actual vehi-

cle speed, and a suitable performance index would be the root-mean-square error

between the two. Another SISO example is steering control, where lane position is

controlled via steering. Although this might be thought of as an ‘advanced’ control

function for automated driving, it is so fundamental to the control of a road vehicle

that we also analyse the system dynamics when a steering controller is connected

to the base vehicle. These notes adopt a similar approach to the book Abe (2015),

which is recommended for further reading.

In Sect. 2 we consider the basic linear bicycle handling model and the way its

dynamics can be altered by rear-wheel steering. This includes the use of feedforward

control to reduce body sideslip, which is a fundamental concern of ESC. Stability,

even for the linear model, is a key concern and is covered in some detail. In Sect. 3

we introduce the effects of feedback control, with emphasis on actuation by rear-

wheel steering (RWS). But we note that the exact same approaches can be applied

to active-front-steering (AFS) and direct yaw moment control (DYC) using active

differentials or differential braking. In Sect. 4 we consider the fundamentals of lane

keeping, where the system dynamics includes the influence of a steering controller.

Finally, Sect. 5 considers the nonlinear control region, which occurs when the limits

of friction are approached: ABS, ESC plus an introduction to combined path and

speed control at or near the limits of friction.

2 Open-Loop Control of Handling Dynamics

2.1 Overview

Analogous to the quarter-car model of ride dynamics, we require a simple model for

handling dynamics that for control system design, and also as a reference model for

closed-loop control. The bicycle handling model is commonly used, being the sim-

plest model that represents the effect of tyre forces on the lateral and yaw motions

of the vehicle. Cornering forces are generated either by lateral slip of the tyre (slip

angle), by lateral inclination (camber angle), or a combination of the two. The forces

due to camber are relatively small, so here we only consider cornering forces gen-

eration due to slip angle, as represented in Fig. 1. The slip angle of any individual

tyre is analogous to steering angle, except that it measured relative to the velocity of

the wheel center over ground, rather than the longitudinal axis of the vehicle body.

Typically, rear wheels are not steered, but they experience sideslip in order to gen-
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Fig. 1 Slip angle 𝛼i at

wheel i, where vi is the

velocity vector of the wheel

centre relative to the ground.

(X,Y) is the local coordinate

frame of the tyre. Slip angle

𝛼i becomes positive when

vyi < 0

erate cornering forces. For either front or rear, the wheel generates cornering force

due the component of velocity lateral to the wheel vyi, and in the opposite direction.

In Fig. 1 the (X,Y) axes are oriented according to the ISO convention, and we con-

sider the positive slip angle 𝛼i > 0 generating cornering force in the +Y direction;

this is a common, but not universal, convention in vehicle dynamics:

tan 𝛼 =
−vy

vx
(1)

Note that when we introduce the bicycle handling model below, the corresponding

slip angle 𝛽 for the vehicle uses the opposite sign convention, 𝛽 < 0 when the body

is oriented to the left of the velocity vector; this sign convention is almost universal

in the literature.

Friction limits and the complex structure of the pneumatic tyres lead to the non-

linear input-output relationship shown in Fig. 2, which displays a linear region for

small 𝛼, an adhesion peak at which the maximum force Fyp is achieved, and then a

sliding region with reduced force at large slip angles. Under normal driving condi-

tions the tyre remains in the linear region, and hence a satisfactory representation of

the tyre mechanics is given by the simple equation

Fy = C
𝛼
𝛼 (2)

where C
𝛼

(the cornering stiffness of the tyre) is the initial slope of the force-slip curve

in Fig. 2. Typically, this linear tyre model is valid for vehicle handling dynamics up to

lateral accelerations ∼4 ms
−2

.

Note that the cornering stiffness is dependent on many variables: tyre size and

type (radial vs. bias construction), number of plies, cord angles, wheel width, and

tread design, all of which affect the structural performance of the tyre. For a given

tyre, the vertical load and inflation pressure are the main parameters affecting the

value of C
𝛼
.
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Fig. 2 Lateral force Fy versus slip angle 𝛼

2.2 Linear Bicycle Model

The key dimensions and variables for the bicycle handling model are shown in Fig. 3.

Here (XG,YG) represents the global orientation of the in-plane coordinate axes, rela-

tive to which the vehicle body has yaw angle𝜓 . Using the sign convention mentioned

above, the path angle (i.e. the direction of motion of the vehicle mass centre) equals

𝜓 + 𝛽, where 𝛽 is the body sideslip angle.

The model assumes the vehicle forward speed U is constant; also the steer angle

𝛿 is assumed small, so the cornering force at the front axle is considered to act per-

pendicular to the vehicle longitudinal axis. Then the yaw and lateral motions are

controlled by the front and rear lateral tyre forces Fyf and Fyr respectively. The resul-

tant side-force and yaw moment then determine the lateral dynamics of the vehicle.

Roughly speaking, the front steering angle 𝛿 = 𝛿f commands the yaw rate, while

body sideslip follows from the equilibrium of forces between the front and rear axles.

Fig. 3 Bicycle handling model. The left and right wheels are combined at each axle and the axle
cornering stiffness is introduced: C

𝛼f = C
𝛼fl + C

𝛼fr , C
𝛼r = C

𝛼rl + C
𝛼rr . Steer angle 𝛿 is assumed

small, so Fyf = F ́yf cos 𝛿 ≈ C
𝛼f 𝛼f
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Using coordinates fixed with respect to the vehicle, the equations of motion are:

MU
(

d𝛽
dt

+ r
)

= Fyf + Fyr (3)

I dr
dt

= lf Fyf − lrFyr (4)

Here, I is the yaw moment of inertia, lf and lr are the distances of the front and

rear wheel axles from the centre of gravity and l (= lf + lr) is the wheelbase. The

cornering forces (Fyf and Fyr) are the axle totals, and are assumed to act in the vehicle

lateral direction.

As above, for small tyre slip angles we use the linear approximation and assume

small angles:

Fyf = C
𝛼f𝛼f , 𝛼f = 𝛿f − 𝛽 −

lf
U

r (5)

Fyr = C
𝛼r𝛼r , 𝛼r = −𝛽 +

lr
U

r (6)

where C
𝛼f , C

𝛼r refer to the total cornering stiffness at the front and rear axles respec-

tively.

Substituting Eqs. 5 and 6 into Eqs. 3 and 4 we obtain:

MU
d𝛽
dt

+ (C
𝛼f + C

𝛼r)𝛽 + MUr +
(lf C𝛼f − lrC𝛼r)

U
r = C

𝛼f 𝛿f (7)

I dr
dt

+ (lf C𝛼f − lrC𝛼r)𝛽 +
(l2f C

𝛼f + l2r C
𝛼r)

U
r = lf C𝛼f 𝛿f (8)

These are the fundamental equations of vehicle planar motion under the simpli-

fying assumptions stated above. A number of constant parameters repeatedly occur

in these equations

L0 = C
𝛼f + C

𝛼r (9)

L1 = lf C𝛼f − lrC𝛼r (10)

L2 = l2f C
𝛼f + l2r C

𝛼r (11)

these being the pth moments of cornering stiffness, of the form Lp =
∑

i xp
i C

𝛼i with

summation over all wheels. Then, for example, the state-variable form of the bicycle

handling model can be written in a relatively compact form

ẋ = Ax + Bu (12)
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Fig. 4 Step-steer responses

for the linear bicycle

handling model, with either

front or rear wheel steering

as input. For rear-wheel-steer

a negative steering ratio is

used, so that positive

steering induces positive yaw

rate. Data: steering ratio:

15:1 (−15:1 for rear wheel

steering); vehicle mass:

M = 1500 kg; cornering

stiffnesses: C
𝛼i = 1000 N/deg

(each individual tyre);

distance from CG to front/

rear axles: lf = 1.08 m,

lr = 1.62 m; radius of

gyration for yaw: Rg = 1.25

m; forward speed: U = 25

m/s; step-steer angle:

𝛿0 = 45
◦

at the steering

wheel
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A = −
(

L0∕MU 1 + L1∕MU2

L1∕I L2∕IU

)
(13)

B =
(

C
𝛼f∕MU

lf C𝛼f∕I

)
(14)

where x = [x1, x2]T = [𝛽, r]T , u = 𝛿f .

Figure 4 shows (solid lines) the response of the bicycle handling model for a step

input at the steering wheel, assuming front-wheel-steer (FWS). The sideslip angle

and yaw rate responses are shown. Also shown (dashed lines) are the corresponding

responses for rear-wheel-steer (RWS), i.e.when the steering mechanism connects

instead to the rear wheels; we return to this aspect in Sect. 2.5. Focusing attention to

the FWS results, the vehicle takes around 0.5 s to reach steady state, settling with a

negative sideslip angle 𝛽.

Note the following simple relationships, which are easily confirmed; they turn

out to be useful in the algebraic manipulation of the various transfer functions in the

next section:
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L2 − lf L1 = llrC𝛼r

L2 + lrL1 = llf C𝛼f

−L1 + lf L0 = lC
𝛼r

L1 + lrL0 = lC
𝛼f (15)

2.3 Transfer Function Analysis

For the transfer function form of the bicycle handling model we may convert from

state-space or apply the Laplace transform operator to the original equations of

motion, Eqs. 7 and 8. Using s as the Laplace variable, we obtain:

[
MUs + L0 MU + L1∕U

L1 Is + L2∕U

] [
𝛽(s)
r(s)

]
=
[

C
𝛼f

lf C𝛼f

]
𝛿f (s) (16)

where 𝛽(s), r(s) and 𝛿f (s) are the Laplace transforms of 𝛽, r and 𝛿f respectively.

The relevant transfer functions are then found. We solve using the inverse-matrix to

obtain [
𝛽(s)
r(s)

]
= Δ(s)−1

[
Is + L2∕U −(MU + L1∕U)

−L1 (MUs + L0)

][ C
𝛼f

lf C𝛼f

]
𝛿f (s) (17)

where Δ(s) is the system determinant:

Δ(s) ≡
||||
MUs + L0 MU + L1∕U

L1 Is + L2∕U
|||| (18)

System stability is determined from the characteristic equation Δ(s) = 0:

MIU

[
s2 +

ML2 + IL0
MIU

s +
l2C

𝛼f C𝛼r

MIU2 −
L1
I

]
= 0 (19)

where l = lf + lr is the wheelbase. In the above equations, the term L1 = (lf C𝛼f −
lrC𝛼r) relates to the imbalance between front and rear axle cornering forces; if this

parameter is zero, the resultant yaw moment becomes zero only when the front and

rear slip angles are equal, which is the neutral steer condition.

Let Wf = Mglr∕l and Wr = Mglf∕l be the static vertical loads on the front and

rear axles respectively. Then the understeer gradient (USG) Ku is defined as:

Ku =
Wf

C
𝛼f

−
Wr

C
𝛼r

(20)

or equivalently
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Ku = −
MgL1

lC
𝛼f C𝛼r

(21)

Hence the characteristic equation, Eq. 19, can be written

s2 + 2Ds + E = 0 (22)

where the damping and stiffness terms are respectively

2D =
ML2 + IL0

MIU
(23)

E =
C
𝛼f C𝛼rl

MgIU2 (gl + KuU2) (24)

The natural frequency 𝜔n and damping ratio 𝜁 of the vehicle response are defined

from the characteristic equation coefficients:

𝜔
2
n = E (25)

2𝜁𝜔n = 2D (26)

Returning to Eq. 17, after some manipulation we can now obtain the following

simplified forms of the input-output transfer functions:

𝛽(s)
𝛿(s)

=
K
𝛽
(s + a

𝛽
)

s2 + 2𝜁𝜔ns + 𝜔
2
n

(27)

where

K
𝛽
=

C
𝛼f

MU
(28)

a
𝛽
=

llrC𝛼r − Mlf U2

IU
(29)

Similarly, for the yaw rate r(s),

r(s)
𝛿(s)

=
Kr(s + ar)

s2 + 2𝜁𝜔ns + 𝜔
2
n

(30)

where

Kr =
lf C𝛼f

I
(31)

ar =
lC

𝛼r

MUlf
(32)
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In either case, the steady-state gain takes the form

G(0) = Ka
𝜔
2
n

(33)

which is the input-to-output scaling factor in the steady-state limit. For example, in

the case of a step-steer input, when a driver suddenly shifts the steering angle (say

from zero to 𝛿0, e.g. in the initial stage of an evasive manoeuvre) the steady-state

gain Krar∕𝜔2
n determines the yaw rate achieved, and hence the responsiveness of the

vehicle to driver inputs.

Vehicle responsiveness in the step-steer scenario is also measured via the delay
in achieving steady-state. For a second order transfer function of the type in Eq. 30

this is determined by the time constant

Tc =
1

𝜁𝜔n
= 1

D
= 2MIU

ML2 + IL0
(34)

If Tc becomes larger, this means the vehicle becomes slow to respond, but if Tc
becomes too small the driver will have greater difficulty in controlling the vehicle.

For the step-response in Fig. 4, Tc= 0.148 s (and corresponds to a settling time of

around 3Tc, or around 0.45 s in the figure). Eq. 34 shows some simple and natural

trends: (i) when vehicle mass increases then so does Tc (assuming yaw inertia I also

increases with vehicle mass) (ii) the yaw response is slower at higher speeds (iii)

increasing tyre cornering stiffness reduces Tc (the denominator increases in propor-

tion to C
𝛼
).

2.4 Stability

The solutions of Eq. 22 are the system eigenvalues (poles)

𝜆 = −D ±
√

D2 − E (35)

or equivalently

𝜆 = −𝜁𝜔n ± j𝜔n

√
1 − 𝜁

2 (36)

System stability is determined by the condition that the real part of 𝜆 should be

negative; from Eq. 23 it is clear that the first term in Eq. 35 is strictly negative for all

reasonable physical parameters (e.g. positive cornering stiffness). For both solutions

of Eq. 35 to have negative real parts, it is seen that the stability condition is simply

E > 0 (37)
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(consider first the case E = 0 and then let E increase or decrease). If U → ∞ in Eq.

24 then the first term tends to zero and the remaining stability condition is that

lC
𝛼f C𝛼rKu

MgI
> 0 (38)

or more simply that the vehicle understeers, i.e. Ku > 0. Thus for a passive vehicle

operating in the linear region, the necessary and sufficient condition for handling sta-

bility at all speeds is that the understeer gradient is positive. An oversteering vehicle

(Ku < 0) has a critical speed above which the vehicle is unstable—at least if there is

no control intervention.

2.5 Rear-Wheel Steering

The aim now is to design some simple linear handling control laws— using actuators

and feedback control to improve handling via reference model tracking. We assume

the actuator is an automated rear-wheel steering system which responds to the driver

input at the steering wheel 𝛿(t) and/or the vehicle states (𝛽(t), r(t)).
First however we need to revisit the bicycle handling model with a second input,

namely the rear steer angle 𝛿r. Referring to Eqs. 5 and 6, we obtain the simple mod-

ification

Fyf = C
𝛼f𝛼f , 𝛼f = 𝛿f − 𝛽 −

lf
U

r (39)

Fyr = C
𝛼r𝛼r , 𝛼r = 𝛿r − 𝛽 +

lr
U

r (40)

Hence it is a simple matter to expand the previous state-space equations to include

the second input. The A matrix in Eq. 13 is unchanged, while the B from Eq. 14 is

expanded to

B =
(

C
𝛼f∕MU C

𝛼r∕MU
lf C𝛼f∕I −lrC𝛼r∕I

)
(41)

Here state variables are unchanged, but there are two inputs: u1 = 𝛿f , u2 = 𝛿r. Now,

referring once more to Fig. 4, the dashed line represents the use of rear steering, with

the front wheels unsteered. As mentioned, a negative RWS steering ratio is used so

the vehicle turns in the same direction of the steering wheel. In steady-state, the

rate of turn is exactly the same as for FWS. However the yaw rate shows a more

oscillatory response, due to the need for a larger body sideslip angle. This is because

the front wheels are now ‘steered’ via the yaw angle of the entire vehicle body;

contrary to 𝛼r, yawing motion tends to reduce 𝛼f , so (negative) body sideslip must

be increased to achieve equilibrium. Thus, in practice, a driver will find it harder to
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steer a RWS vehicle, even though it is inherently just as stable as a FWS vehicle: the

values of D and E in Eqs. 23 and 24 are independent of which axle is steered.

For transfer function analysis we introduce the transfer function matrix [Gij(s)],
where i denotes the output (xi) and j denotes the input (uj):

[
𝛽(s)
r(s)

]
=
[

G11(s) G12(s)
G21(s) G22(s)

] [
𝛿f (s)
𝛿r(s)

]
(42)

All four transfer functions Gij(s) take the form similar to Eqs. 27 and 30:

Gij(s) =
Kij(s + aij)

s2 + 2𝜁𝜔ns + 𝜔
2
n

(43)

and in this notation K11 = K
𝛽

in Eq. 28, K21 = Kr in Eq. 31 and similarly a11 = a
𝛽
,

a21 = ar.

For the rear steering input, the corresponding transfer functions may be obtained

by setting 𝛿f = 0 and using the rear-steer analogue of Eq. 17

[
𝛽(s)
r(s)

]
= Δ(s)−1

[
Is + L2∕U −(MU + L1∕U)

−L1 (MUs + L0)

] [
C
𝛼r

−lrC𝛼r

]
𝛿r(s) (44)

Following the same type of algebraic manipulation as before, making use of Eq. 15,

and gathering front and rear terms together, we obtain the full set of transfer function

parameters relating to Eq. 43:

[Kij] =
[

K11 K12
K21 K22

]
=
[

C
𝛼f∕MU C

𝛼r∕MU
lf C𝛼f∕I −lrC𝛼r∕I

]
(45)

[aij] =
[
(llrC𝛼r − MU2lf )∕IU (llf C𝛼f + MU2lr)∕IU

lC
𝛼r∕MUlf lC

𝛼f∕MUlr

]
(46)

To emphasize, for both Kij and aij, the first index refers to output (sideslip angle or

yaw rate) and the second index refers to input (front or rear steering). The gain and

phase plots for these transfer functions (frequency responses, with s = j𝜔) are shown

below in Figs. 5 and 6.

As in Eq. 33, we find the steady-state gain by letting s → 0, i.e.

G(0) = Ka
𝜔
2
n
=

MgIU2Ka
lC

𝛼f C𝛼r

1
(gl + KuU2)

(47)

where for clarity we have omitted the ij subscript. For example, setting i = 2 (yaw

rate), j = 1 (front steer) we obtain
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Fig. 5 Frequency response

functions, with input = 𝛿f or

𝛿r, output = yaw rate

(rad/sec). Note in the upper

plot: steady-state gains are
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Fig. 6 Frequency response

functions, with input = 𝛿f or
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G21(0) = lim
s→0

r(s)
𝛿f (s)

=
gU

gl + KuU2 (48)

Interestingly, we also find

G22(0) = lim
s→0

r(s)
𝛿r(s)

= −
gU

gl + KuU2 (49)

i.e. the same result but with a negative sign, confirming that a constant positive rear-

steer angle produces a negative yaw rate; this is in agreement with the upper plot

in Fig. 5 which shows equal gain factors. Thus, if control is applied to make the

rear steer angle equal to the front, then the steady-state yaw rate gain is zero. Note

however that the transient dynamics will not generally cancel out in this way. Indeed,

the gain is higher for the rear-steer (Fig. 5), so the rear input will tend to dominate

the response during transient motions of the steering.

Also note that, from the common term (gl + KuU2)−1, instabilty will result in the

case of an oversteering vehicle Ku < 0; for all of these transfer functions, Gij → ∞
at the critical speed

Uc =
√

gl∕(−Ku) (50)

In reality, the distinction between stable and unstable behaviour is not a sharp one.

A vehicle may become inherently unstable but very slow to respond, and this is what

happens when an oversteering vehicle is close to the critical speed. Fortunately, since

the unstable response is slow, an experienced driver can make corrections to coun-

teract such instability by ‘counter-steering’, i.e. by steering in the opposite direction

to the growing yaw rate. On the other hand, a stable vehicle with fast yaw dynamics

(Tc in Eq. 34 very small) may become unstable in the hands of a novice driver.

2.6 Feedforward Control for Zero Body Sideslip

Using the above models it is relatively easy to craft a control transfer function to

achieve simple objectives. With rear wheel steering it is clearly possible to adjust

body sideslip independent of the yaw rate. For example, if 𝛿r = 𝛿0 is set to a constant,

then to drive in a straight line the driver needs to set 𝛿f = 𝛿0, so the front and rear

wheels steer at the same angle; the yaw rate will be zero but body sideslip angle 𝛽

is not—and the vehicle will move with a somewhat crab-like motion. Clearly this is

counter-intuitive and would make the vehicle difficult to drive!

On the other hand it may be thought desirable to regulate 𝛽 to zero under dynamic

manoeuvres, so the vehicle is always ‘pointing in the right direction’. To impose this

we assume a control law of the form

𝛿r(s) = C(s)𝛿f (s) (51)
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Thus we impose the condition

𝛽(s) = G11(s)𝛿f (s) + G12(s)𝛿r(s)
= (G11(s) + C(s)G12(s))𝛿f (s)
= 0

According to Eq. 43 we have

K11(s + a11) + C(s)K12(s + a12) = 0

from which we obtain the required controller transfer function:

C(s) = −
K11(s + a11)
K12(s + a12)

= −
C
𝛼f

C
𝛼r

⋅
s + (llrC𝛼r − MU2lf )∕IU
s + (llf C𝛼f + MU2lr)∕IU

(52)

This has the form of a standard first order (lead-lag) compensator, and is a famil-

iar type for implementation as a digital controller (once converted to discrete-time

form). By definition the transfer function 𝛽(s)∕𝛿f (s) is zero. Then the transfer func-

tion for yaw rate, including the effect of C(s), is:

r(s)
𝛿f (s)

= G21(s) + C(s)G22(s) (53)

Substitution from Eqs. 43 and 52 yields, after some algebra—which includes can-

cellation of the term (s2 + 2Ds + E)—this reduces to the simple first-order transfer

function:

r(s)
𝛿f (s)

=
lC

𝛼f
C
𝛼r

MIUK12
⋅

1
s + a12

(54)

As expected, for a first-order transfer function the step-response is non-oscillatory—

Fig. 7; the controlled system has a faster response but with reduced steady-state yaw

rate.

This is a satisfactory illustration of the capability of a rear-steer actuator, but there

are several limitations of the approach, in particular (a) control is open-loop: the

controller relies on the bicycle model being an accurate representation of the actual

vehicle dynamics; (b) the design objective is somewhat arbitrary and there is no

design freedom to choose the target (steady-state) yaw rate or response time. In par-

ticular there is considerable steady-state understeer compared with the uncontrolled

vehicle. On the other hand, with zero body sideslip the yaw rate becomes directly

proportional to both lateral acceleration and path curvature, even under transient

conditions. For example the path-lateral acceleration is given by
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Fig. 7 Step response in the

case where feedforward

control imposes zero body

sideslip. Rear wheel steering

remains active in

steady-state, inducing

considerable understeer in

the form of reduced yaw rate

and increased turning radius
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ÿ(s)
𝛿f (s)

= U
�̇�(s) − �̇�(s)

𝛿f (s)
= U r(s)

𝛿f (s)
− U

s𝛽(s)
𝛿f (s)

= U r(s)
𝛿f (s)

(55)

The net result is to suppress the yaw dynamics and force the vehicle to respond as

though it were a simple particle; as to whether this is desirable depends then on

‘human factors’, i.e. whether the coupled vehicle-driver system is a more effective

controller. This very interesting question goes beyond the scope of the current anal-

ysis however.

2.7 Feedforward Control of Yaw Rate

In this case we assume a reference model for how the vehicle ‘ought’ to respond

to steering input, which allows the step-steer response to be directly chosen by the

designer. By analogy to the previous controller, we will require the yaw velocity to

be dominated by a first order response with a specified amplitude and time constant.

Of course other choices are possible. The design intent in this example is to choose

a time constant Td which is smaller than the corresponding time constant Tc of the

passive vehicle (Eq. 34), but with unchanged steady-state gain. The target transfer

function is then

rd(s) =
Kd

1 + Tds
𝛿f (s) ≡ Gd

21(s)𝛿f (s) (56)

where Gd
21(s) is the desired yaw rate transfer function after rear-steer control is

applied, and Kd is the desired steady-state gain. Hence

Gd
21𝛿f = G21𝛿f + G22𝛿r

𝛿r =
Gd

21 − G21

G22
𝛿f
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Fig. 8 Step responses for

feedforward control targeting

a first-order yaw rate

reference (Vehicle data: see

Fig. 4)
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giving a control law of the same form as Eq. 51, and where the controller transfer

function is now second order:

C(s) =
Kd(s2 + 2𝜁𝜔ns + 𝜔

2
n) − K21(s + a21)(1 + Tds)

K22(s + a22)(1 + Tds)
(57)

For this example, Tc = 0.148 s, Td = 0.1 s and, in line with the passive vehicle model,

Kd = 5.77. Results are shown in Fig. 8.

The choice of maintaining the same steady-state yaw rate as the passive (uncon-

trolled) vehicle has the advantage that 𝛿r → 0 in steady-state, which also explains

why body sideslip returns to the passive value. Interestingly, for simple feedforward

control, 𝛿r(s) = C(s)𝛿f (s), there is a direct relationship between the steady state val-

ues of r(t) and 𝛽(t). Considering Eq. 53, together with the analogous expression for

𝛽(s)∕𝛿f (s), we set s = 0 in Eq. 43 to obtain the steady-state values:

𝛽ss = (K11a11 + C(0)K12a12)𝛿0∕E
rss = (K21a21 + C(0)K22a22)𝛿0∕E (58)

where (recall) E = 𝜔
2
n. We illustrate this result in Fig. 9, where the step-steer input

𝛿0 = 3
◦

is again assumed. Irrespective of how the feedforward transfer function C(s)
is designed, the trade-off between steady-state yaw rate and sideslip is fixed. In the

upper plot we see that yaw rate decreases as C(0) increases, while body sideslip has
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Fig. 9 Steady-state relationship between body sideslip angle and yaw rate (Vehicle data: see Fig. 4)

the opposite trend. In the lower plot we more clearly see the inverse relationship

between 𝛽ss and rss. The figure clearly shows the reduction in rss between the passive

case (C(0) = 0 in the upper plot) and zero body sideslip (𝛽ss = 0 in the lower plot).

These results apply for the feedforward controller, independent of the details of the

controller transfer function C(s).

3 Closed-Loop Control of Handling Dynamics

In the above we presented the open-loop control of the vehicle, and also feedforward

control of the lateral dynamics; in these approaches there is no feedback of vehicle

states to the controller, and hence no ‘self-correcting’ mechanism. This is needed

to ensure robustness in cases when the model is not a sufficiently accurate repre-

sentation of the actual vehicle. This arises since basic parameters may vary, e.g. the

mass M changes according to the number of passengers, the cornering stiffnesses C
𝛼i
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Fig. 10 Block diagram for closed-loop control of yaw rate in response to a demand input. The

closed-loop transfer function is
r(s)
rd (s)

= kpG21(s)
s+kpG21(s)

vary with inflation pressure, vertical load etc. And the effects of disturbances such

as crosswinds are not automatically corrected for in such a controller.

In the absence of electronic control, the only feedback loop is via the driver,

adjusting the steering angle to follow a desired path. We consider this type of control

in Sect. 4, where the feedback signal comes from the position and motion of the vehi-

cle relative to the road geometry. In that case, for example, the effect of a crosswind

disturbance will be corrected by a change in steering wheel angle by the driver.

Electronic feedback control can also be used to improve the robustness and sta-

bility of the base vehicle, for example to track a desired yaw rate inferred from the

steering wheel angle.

3.1 Feedback Control of Yaw Rate

We now introduced feedback control, where the effects of disturbances will be largely

rejected, provided there is a sufficiently large gain in the feedback loop. Further, the

inclusion of integral control, will remove undesirable steady-state errors (previously

seen for example in Fig. 7).

The basic feedback loop is shown in Fig. 10. This is shown using front steering

wheel angle to test the approach. Equivalent to the figure, the control equation can

be written:

�̇�f (t) = −kp(r(t) − rd(t)) (59)

which implies for example that steering angle is increased if the current yaw rate is

less than desired, r < rd. Clearly, if the yaw rate demand is constant, as would be the

case on a road of constant curvature, then steady-state (�̇�f = 0) will only be achieved

once the desired yaw rate is achieved (r = rd). This is the result of the integral control

action 1∕s in Fig. 10.

The main concern is now the stability of the feedback loop. This is tested (using

vehicle parameters previously given) via the root-locus plot in Fig. 11. Here kp is

systematically increased and the closed-loop poles (eigenvalues) are plotted. Clearly

the points all have negative real parts, so the system is stable for all values of kp. The

corresponding step responses are shown in Fig. 12, where it is seen that all plots tend

towards the commanded value rd = 1. However, the low gain response is very slow
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Fig. 11 Root locus plot as

kp is increased over the range

0.1 ≤ kp ≤ 10 in Fig. 10. The

system is third order with

one real pole and a pair of

complex poles. Point ‘x’

marks the starting point

(low-gain limit, kp = 0.1).

For RWS (lower plot) the

control law is

�̇�r(s) = +kp(r(s) − rd(s)), the

+ sign being required for

stability
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and high gain response is very oscillatory. Hence a compromise case is required,

for example the tenth point on the root-locus, corresponding to the thick curve in

Fig. 12, kp = 0.9.

For rear-wheel steering the results are quite similar, corresponding to the lower

half of Fig. 11. The control law is now

�̇�r(t) = +kp(r(t) − rd(t)) (60)

where the sign change is needed since positive rear steer angle induces negative

yaw rate. Again the closed-loop system is stable for all values of kp and again a

compromise is required (kp = 0.9 is again suitable). The closed-loop transfer function

is given by

r(s)
rd(s)

=
−kpG22(s)

s − kpG22(s)
(61)

reflecting the sign change applied to kp.
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Fig. 12 Time responses to a step demand in yaw rate corresponding to the upper plot in Fig. 11—

front wheel steer. The highlighted curve corresponds to the the tenth point of the root locus, with

kp = 0.9

3.2 Combined Feedback/Feedforward Control

We now combine the feedforward and feedback control schemes, as shown in Fig. 13.

Starting in the top left corner, the steering command is realistic form of a step-steer,

taking 0.2 s to reach the maximum angle. Across the top and to the right is the

basic input to the vehicle, via the first input 𝛿f , and the three outputs are saved to

workspace (sidelslip, yaw rate and path-lateral acceleration). Feedforward control

is the next component down, where C(s) from Eq. 52 is used to excite a rear-steer

response from the driver input. The lower part of the figure is the yaw rate feedback.

Here the target yaw rate, derived from the steady-state gain (Eq. 33) is compared

with the actual yaw rate, and using the above integral control (with kp = 0.9) we add

feedback and feedforward terms together to complete the control law for rear steer.

Figure 14 shows the step response when the feedforward term is switched off,

hence combining front-wheel-steer direct to the vehicle with rear-wheel-steer based

on yaw rate tracking. Then in Fig. 15 we see the beneficial effect of including the

feedforward term.

The advantage of feedforward control is that there is no ‘waiting time’ for errors

to appear before corrections are applied, leaving smaller errors for feedback control

to correct. And the advantage of feedback is that it counteracts disturbances and
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Fig. 13 SIMULINK block diagram of a combined feedforward/feedback controller for handling

dynamics. The steering wheel angle changes from 0 to 45
◦

in 200 ms, then remains constant
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Fig. 14 Step response in the case where feedforward control is turned off
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Fig. 15 Step response in the case where both feedback and feedforward control actions are

included. Note that because of the integrator in the feedback control loop, steady-state error is

eliminated

can avoid steady-state errors. Figure 15 combines both and overcomes the steady-

state error seen previously in Fig. 7. Note however that the same restriction exists as

before—in steady state, the rear steer angle tends to zero if the passive yaw velocity

gain is to be preserved, and in this case we lose the possibility of cancelling out body

sideslip; see the slip angle plot in Fig. 15.

The above methodology can be applied to other types of actuators. One option is

active-front-steer (AFS) where the control actuator manipulates the actual front steer

angle by controlling an offset relative to the steering wheel, and may be represented

as:

𝛿f = G−1
𝛿s + u2 (62)

where G is the steering ratio, 𝛿s is the angle commanded by driver at the steering

wheel, and u2 is the offset from the control actuator. In this case the exact same

approach can be taken as above, using the same linear bicycle model. Another option

is direct yaw moment control (DYC) where differences in braking or traction torque
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can be applied to affect the yaw response. In this case the equations of motion need to

be further expanded (in a very simple way), and a similar controller design approach

can be taken.

4 Lateral Control

4.1 Overview

We normally assess vehicle dynamic performance as something in the vehicle. But

it is increasingly common (and important) to model and evaluate the interaction

between the steering controller and the vehicle particularly because of ‘smart’ driver

assistance systems e.g. electronic stability control or lane keeping assistant. Many

control tasks in driving are in the form of regulator control:

∙ maintain the center of the lane

∙ maintain speed

∙ maintain following distance

∙ brake to rest at a stop sign.

These are relatively simple control tasks, where a key component is error correction

by feedback—applying steering or speed control (acceleration or braking) to reduce

errors between the actual and intended outputs over time.

In some literature on driver modelling (e.g. Jagacinski and Flach 2003; Weir and

McRuer 1970) the control regulator task is referred to as compensatory control, while

the more dynamic components—for example active steering around an obstacle or

driving on a curved road—is referred to as pursuit control. In the latter type of track-

ing control there is an element of preview and prediction involved, while in compen-

satory control the target is reasonably fixed. There is a clear correspondence with

feedback and feedforward control, the former being closely associated with the reg-

ulator problem, the latter with pursuit of a ‘moving target’. When the target is the

geometry of the road itself, it is a highly predictable target and we expect driving

control to make use of road preview in this case—see below.

In low speed driving control the feedback loop is mostly position-based where

the priorities (for error correction) are based on

∙ lateral position (e.g. in lane or parking spot)

∙ longitudinal position (e.g. moving slowly up to a stop line)

∙ path curvature (turning into driveway).

Lateral control action can then be based on the kinematics of the steering system,

and tyre mechanical properties are hardly involved. This is also the control domain

for low-speed mobile robots.

At normal driving speeds, motion cues are more important, and the control of

the vehicle is more of a challenge, involving visual sensing of motion (foveal and
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peripheral vision), acceleration sensing (e.g. from the vestibular system), steering

torque feedback, brake pedal force, and more general vehicle response cues, such as

pitch and roll motions. Since most control tasks are conducted well within the friction

limits of the vehicle, tyre elastic properties become relevant, but linear dynamics can

reasonably be assumed.

In emergency driving situations, the friction envelope of the vehicle needs to be

exploited to the full, and vehicle control is most reliant to commanding path acceler-

ations and using the yaw dynamics of the vehicle to support this in the best way pos-

sible. Few, if any, validated (human) driver models exist for this regime, but recent

work on friction-limited control does address this area.

4.2 Lateral Offset Steering Control

The simplest driver model involves tracking by simple feedback of position. Accord-

ing to the above this is only likely to be relevant for low-speed motion. The control

task is to follow a target path and apply steering correction to compensate for lat-

eral deviations from the path. Here we investigate the coupled dynamics using the

previously developed linear 2 DOF bicycle handling model for a simple test case:

straight-line driving with the target path represented by the x axis.

It is necessary to expand the vehicle model to include position variables

ẋ = U cos𝜓 − V sin𝜓
ẏ = U sin𝜓 + V cos𝜓
�̇� = r

In the case shown in Fig. 16, the target direction is the x axis, and the vehicle forward

speed U is assumed constant; thus we may ignore the differential equation for ẋ.

According to the equations of motion of the bicycle handling model in state-space

form, Eqs. 12–14, the differential equations for x1 = 𝛽, x2 = r can be rewritten in

an expanded state-space form, with the introduction of two further state variables

x3 = y, x4 = 𝜓 . If we assume small angles, the equations of motion are as follows:

Fig. 16 Position variables

are included within an

expanded state-space model
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ẋ1 = a11x1 + a12x2 + b1𝛿f (63)

ẋ2 = a21x1 + a22x2 + b2𝛿f (64)

ẋ3 = Ux1 + Ux4 (65)

ẋ4 = x2 (66)

Here we write aij for the components of the 2 × 2 matrix A and bi are the components

of the 2 × 1 matrix B; so for example a11 = −L0∕MU etc.

The simplest possible control law for lane keeping is

𝛿f = −k1y (67)

Combining this control law with the state equations we easily determine the

resulting system eigenvalues. We omit the analytical details, but using the previous

vehicle data it is easy to vary the vehicle speed and control gain and then determine

system stability. It turns out that the coupled system can be made stable, but only with

low gain and at very low speeds. For example, if we choose k1 = 10−3 the system

remains stable for U ≤ 12 m/s.

Figure 17 shows part of the root locus diagram with U increasing; a complex pair

of eigenvalues moves into the right half plane as the speed increases. Note however

that, even within the stable speed range, the eigenvalues have very small real parts,

indicating that settling to equilibrium will be very slow and any small disturbance

will cause considerable drift from the target path.

Clearly some improvement is needed! A modest improvement in stability can be

achieved by introducing derivative feedback

𝛿f = −k1y − k2ẏ (68)

Fig. 17 Closed-loop

eigenvalue locations for

increasing speed. Control

gain k1 = 10−3 is fixed and

the vehicle speed is

increased from U = 1 m/s in

increments of 1 m/s
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but realistic driving models require more stability, which can only be achieved using

preview of the road ahead.

4.3 Preview Steering Control

It is worth noting the destabilizing effect of time delay. A human driver does not react

instantaneously to changes in vehicle motion or position, and any performance or

stability analysis should take account of delays in human response. The above results

assume zero time-delay, Td = 0. In the following we should relax this condition and

yet have a realistic chance of finding a control law to satisfactorily regulate the lateral

position of the vehicle.

The preview control scheme is shown in Fig. 18, where the previewed lateral devi-

ation ŷ(t + Tp) is used for feedback control:

𝛿f (t + Td) = −k1ŷ(t + Tp) − k2ẏ(t) (69)

ŷ(t + Tp) = y(t) + UTp sin(𝜓(t) + 𝛽(t)) (70)

The resulting driving control is well behaved, provided the control gains (k1, k2)
and preview time Tp are suitably tuned to provide acceptable tracking and stability

performance, and the valid parameter ranges also depend on the vehicle dynamic

properties as well as the driver delay time Td.

The following results correspond to k1 = k2 = 0.005, with driver time delay Td =
0.25 s and preview time Tp = 0.5 s (Fig. 19). Starting with an initial lateral deviation

of 1 m, the task of the driver model is to return the vehicle to the x-axis. The system

performs the manoeuvre within a few seconds, and is clearly stable and capable

of settling back to the desired path. For more complex situations, where there is

changing road curvature or obstacles to avoid, we expect that additional feedforward

control will be required. However this will take us well beyond the scope of this

chapter.

The choice of feedback gains (k1, k2) can be addressed in a systematic way using

a form of root locus for the linearized system. For example, if the system is defined

Fig. 18 Preview control

variables
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Fig. 19 Closed-loop responses of the vehicle-driver system. Initial lateral offset y(0) = 1 m. The

effect of the driver time delay Td = 0.25 s is clearly seen in the steering response

in Simulink, the linearization (including time delay) is easily performed numerically

and the eigenvalues determined for each set of chosen gains. Here, starting with the

parameters in the above example, k2 is varied over a range of positive and nega-

tive values; the real parts of the system eigenvalues are plotted in Fig. 20. It is seen

that, for the particular case, k2 ≈ 5 × 10−3 gives ‘optimum stability’ meaning that

the maximum real part of the eigenvalue set is as negative as possible. Of course this

result depends on the other parameters chosen, including the time delay Td. Note that

the constant zero eigenvalue is related to longitudinal dynamics and can be ignored.

5 Control of Nonlinear Handling Dynamics

5.1 Overview

Antilock braking and electronic stability control systems (ABS/ESC) operate near

the limits of friction. ABS works in a localized way, controlling the dynamics of indi-

vidual wheels without any significant coordination between them. ESC controls the

overall dynamics of the vehicle and hence has a wider scope and somewhat greater

sensing requirements. Since neither system can ‘see’ the world outside, there is scope

for more capable systems to be developed in the future, to control vehicle motions in

emergency situations taking account of the local road geometry, obstacles etc.; this

wider aspect is introduced in Sect. 5.4.
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Fig. 20 Stability influence

of parameter k2. Upper:

full-range, lower: zoomed-in.

Note One eigenvalue 𝜆 = 0 is

due to a longitudinal speed

integrator, and is not relevant

to lateral stability
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5.2 Anti-lock Braking Systems

ABS works by limiting the slip ratio sx during severe braking. sx defines the rela-

tive speed reduction of the wheel during braking, or alternatively the relative speed

increase during vehicle acceleration. It is this speed reduction relative to a free-

rolling wheel which leads to elastic deformation of the tyre and hence the generation

of longitudinal tyre force for braking:

sx =
𝜔R − vx

vx
(71)

Here 𝜔 is the wheel angular velocity, R is the rolling radius of the tyre and vx is the

longitudinal velocity of the wheel-centre in the local tyre coordinates, and sx < 0
during braking. Similar to the case with lateral tyre force generation, the braking
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Fig. 21 Tyre force versus

slip during braking (plot of

braking force vs. slip ratio).

To avoid wheel-lock, the

ABS control keeps the slip

ratio in the range

−sx2 ≤ sx ≤ −sx1

force experiences an adhesion peak—Fig. 21. When the slip ratio goes beyond this

adhesion peak, there is a tendency for the wheel to lock up under further braking,

which reduces the available braking force and degrades the ability of the (front) tyres

to steer the vehicle. ABS is especially important in conditions where road surface

friction is reduced (e.g. wet or icy road) but is designed to also operate under hard

braking, even when the surface friction is high.

Previously, before ABS became a common feature, the brake pressures on a car

would be biased towards the front wheels so that, in the case of severe braking,

the front wheels would lock before the rear wheels. A locked wheel has no angular

velocity and there is only sliding contact with the road; hence there is a very low

cornering stiffness—lateral forces due to slip angle become correspondingly small.

According to Eq. 20 the denominator of the first term in the understeer gradient

becomes small, so Ku ≫ 0 and the vehicle will severely understeer. The alternative,

rear wheels locking first, leads to severe oversteer and the vehicle will spin out. While

the latter option is clearly worse, severe understeer means that the vehicle tends to

straight-line motion even when the driver turns the steering wheel. Hence, to main-

tain stability with some basic level of steerability, all wheels should be kept from

locking.

ABS requires a hydraulic pump and valves (two per wheel) that allow wheel cylin-

der pressure to: (i) increase (inlet open, return valve closed); (ii) hold a fixed value

(inlet and return valves closed) or (iii) reduce hydraulic pressure (inlet is closed,

return valve is open). The valves are to be actuated to maintain the slip ratio in a

suitable range (−sx2,−sx1) once the lower limit −sx2 is first reached—see Fig. 21.

As mentioned, not only does this increase the braking force to some extent (and

hence reduce straight-line stopping distance), it also preserves adhesion in the con-

tact patch and hence the generation of cornering forces arising from slip angles. In

this way the vehicle can maintain its stability—avoiding oversteer—and at the same

time be capable of responding to steering inputs—avoiding excessive understeer.

A simple ABS control strategy is in the form of a switched (‘bang-bang’) con-

troller. Define the valve states vabs according the values
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Fig. 22 ABS control by

simple hysteresis

vabs =
⎧⎪⎨⎪⎩
+1 increase
0 hold
−1 reduce

(72)

Then the ABS controller can be defined by a simple hysteresis switching rule, as

shown in Fig. 22. This will maintain the slip ratio in the desired range (−sx2,−sx1).
Note that vabs = 0 is not used in this simple function.

However, during a hard braking event, vehicle speed is not easily estimated—

once all wheels decelerate under braking, the vehicle speed over ground becomes

decoupled from the wheel speeds and there is not enough information to calculate

slip ratios. Clearly, uncertainty in the slip ratio is greatly magnified by any uncer-

tainty in the vehicle speed (see Eq. 71). However, since wheel speed itself can be

accurately determined, the rate of change of wheel speed can be used as an alterna-

tive trigger for controlling the valve state vabs. This involves using heuristic switching

rules, tuned to adapt to different conditions of friction and driving. Wheel accelera-

tions are compared to thresholds to allow valve states to be selected. The basic idea

is very simple: a large wheel deceleration cannot arise from a reduction in vehicle

speed, and hence the wheel is tending towards a locked condition. On the other hand

if, after pressure release, there is a large enough wheel acceleration, it is presumed

that the wheel has recovered sufficient rotation to be given another brake actuation.

A typical set of rules are given in Fig. 23. Reading down the first column, brake

pressure is allowed to increase until the first threshold is reached, �̇� < −a1. The

valve state is set to hold (vabs = 0) until the second threshold is reached �̇� < −a2,

at which point the wheel hydraulic pressure is released (vabs = −1). Then, moving

up the second column (↑) the pressure is held when �̇� > −a1 and remains held until

�̇� > a4, i.e. there is appreciable wheel acceleration. Now, with pressure allowed to

increase the wheel will again decelerate, switching to hold when �̇� crosses a4, to

‘slow increase’ after a3 and full release after −a1. The switching will then cycle

through the switching logic of the final two columns of the table (↑, ↓).

In the following example, the effect of ABS control is demonstrated in the sce-

nario where a steering input is applied during hard braking.

ABS example A collision avoidance scenario is defined where the driver applies

an intervention with hard braking and simultaneously applies steering to try to
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Fig. 23 Switching rules for ABS valve states vabs— see Eq. 72—based on wheel rotational accel-

eration thresholds ai. State vabs = 0.5 is slow pressure increase with states alternating between

vabs = 0 and vabs = 1

change lanes. A low-friction surface (𝜇 = 0.4) is assumed, representing for example

a smooth wet concrete road surface. Steering is in the form of a sinus steer, of ampli-

tude 68
◦

and duration 1.6 s; this has sufficient amplitude to execute a lane change if

there were no braking.

Two cases are simulated using (CarMaker 2014); in case (a) there is no ABS

and the wheels lock under hard braking; in (b) the ABS system maintains rotation

of all wheels. For both cases, the initial speed is set at 80 km/h and initial lane-

keeping is via a driver model; the brake/ steer manoeuvre is initiated after 5 s of

simulation. Figure 24 shows that in case (a) the (lighter, blue) car has no appreciable

lateral deviation; the driver model continues braking to minimize collision speed

and the simulation continues until the vehicle stops. In case (b), with ABS enabled,

the (darker, red) vehicle is able to respond to steering and, after the 1.6 s avoidance

manoeuvre, control is resumed by the driver model and the car is able to return safely

to the original lane.

According to Fig. 25 the deceleration advantage of ABS is actually very small—

both cars have approximately the same speed profile. The operation of ABS is clearly

shown in Fig. 26—during the intervention for (a) all wheels lock (slip ratio = −1)

Fig. 24 Vehicle trajectories for an attempted lane change manoeuvre with hard braking: a light

(blue) car locks the wheels and stops in the current lane; b dark (red) car uses ABS and completes

the lane change
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while for (b) there is a controlled reduction of wheel speed giving a minimum slip

ratio ≈ −0.15. In this scenario it is clear that the major effect of ABS is to provide

the driver with continued steering control during braking. Of course, in reality the

human driver may not respond in such an ‘optimal’ way, but the point is clear, that

ABS enables directional control from the driver even under hard braking on a low-

friction surface.

5.3 Electronic Stability Control (ESC)

Electronic Stability Control is referred to under many different names and acronyms

such as Electronic Stability Program (ESP) and Vehicle Stability Control (VSC). In

all cases the basic function is the same: ABS hardware (valves and hydraulic pump)

are used to actuate one or more wheel brakes to provide a corrective yaw moment to

the vehicle, in order to avoid excessive oversteer or understeer. The crucial difference,

compared with ABS, is that the brakes are actuated without the driver pressing the

brake pedal. Also, the control reference comes from the vehicle motion rather than

simply the rotation of the individual wheel.

Additional sensors are required in the form of (i) a steering wheel angle sensor (ii)

a yaw rate sensor. These sensors are relatively inexpensive, and so the development

of ESC from ABS is largely a question of the enhanced software. A third sensor, for

lateral acceleration, is also required. This is because body sideslip angle 𝛽 is part of

the ESC control algorithm, but there is no affordable sensor to directly measure it.

Hence 𝛽 is to be estimated using other sensors, and the accelerometer helps with the

estimation.

ESC is an example of integrated chassis control where one or more actuators

work together to improve the handling performance of the vehicle as a whole.

Oversteer correction Oversteer is commonly characterized by the rear slip angles

being larger than at the front, and in steady-state cornering this follows directly from

the bicycle model equations. Thus, for the case of cornering to the left, 𝛿 > 0, we

expect 𝛼r > 𝛼f > 0 during oversteer. In everyday terms, the rear of the vehicle ‘spins

out’ leading to excessive yaw rate and a large (negative) sideslip angle. Given a ref-

erence model, such as the bicycle handling model of Sect. 2, the model-reference

for these variables may be determined in real-time, xref = [𝛽ref , rref ]T based on the

current vehicle speed U and steering inputs 𝛿(t). Then the oversteer condition is

characterized by

𝛽 < 𝛽ref < 0 (73)

r > rref > 0 (74)

again for the case of turning to the left, using ISO coordinates.

The situation is shown in Fig. 27; the yaw rate r = �̇� is larger than is demanded by

the curvature of the intended path; the rear axle loses grip and the tendency to spin
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Fig. 27 ESC intervention to correct oversteer (spin-out). Left figure: without ESC, right figure:

with ESC. The yaw moment simultaneously balances excessive positive yaw velocity �̇� and nega-

tive body sideslip angle 𝛽

out also leads to an increase in body sideslip. In the case shown, the right-front wheel

is braked under ESC control so that the yaw rate is reduced and simultaneously the

body sideslip angle is restored towards the reference state (shown as dark green at

the center of the vertical bar).

As noted, reference values for r and 𝛽 can be obtained from the bicycle han-

dling model. In state-space form (see Eq. 12) ẋ = Ax + Bu and the reference may be

obtained from a steady-state condition.

xref = −A−1Bu (75)

assuming matrix A is invertible. In fact it is quite common to set the reference side-

slip angle to zero (since typically it is small) and allow the controller to apply cor-

rections only when |𝛽| is larger than around 5
◦
. In steady-state the yaw rate reference

is obtained from Eq. 48

rref (t) =
gU𝛿(t)

gl + KuU2 (76)

Because ESC in this instance is intended only for occasional intervention to prevent

oversteer, a trigger is also required:

if |r − rref | > r0

and
|||||
r − rref

rref

||||| > p (77)

then er = r − rref

else er = 0

The error term er is then used to generate a yaw moment, via braking, for feedback

control—but only if the absolute and relative errors are sufficiently high. A similar

feedback error is required for body sideslip control:
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if |𝛽| > 𝛽0
and 𝛽�̇� > 0
then e

𝛽
= 𝛽 + 𝜏�̇�

else e
𝛽
= 0

(78)

Then, finally, feedback is applied whenever the error terms are non-zero:

Mz = −Krer + K
𝛽
e
𝛽

(79)

The yaw rate feedback is essentially a switched proportional control, while the body

side-slip term includes derivative action also via the term 𝜏�̇� in the expression for e
𝛽
.

The difference of ± signs is clear from Fig. 27—a negative yaw moment is required

in this case, where er > 0 and e
𝛽
< 0.

For oversteer correction, the yaw moment Mz may be obtained by braking the

front outer wheel, creating a stabilizing effect as in Fig. 27. The reasoning here is

that, for oversteer, the rear tyres are operating beyond their adhesion limits and addi-

tional braking will have little effect, so the priority is to brake the relevant front

wheel, which is likely to be working below its adhesion limit. In reality, such single-

wheel control allocation is overly restrictive, and control may be applied to more than

one wheel, depending on the estimated surface friction and vertical tyre loads—for

example including braking of the rear outer wheel; it may also be possible to apply

traction forces at the inner wheels if there are available actuators such as indepen-

dent electric drive. On the other hand, single-wheel braking at the outer front wheel

is well-known as a simple and effective countermeasure for oversteer. The appropri-

ate algorithms for wheel actuator allocation are vehicle-specific, and the parameter

values for r0, p, 𝛽0, 𝜏, Kr and K
𝛽

are obtained by trial-and-error tuning in simulation

and track testing.

Understeer correction For the understeer case, Fig. 28, the countermeasure can be

similar and the same control law, Eq. 79, may be applied. For example, with single-

wheel control allocation and for the case shown, er < 0, e
𝛽
≈ 0 so the correcting

positive yaw moment is applied by braking the rear inner wheel. However, unlike

oversteer correction, the yaw moment will typically have an undesirable side-effect

for body sideslip, generating an increasingly negative value for 𝛽 leading to a second

(oversteer) ESC correction. Overall there will be a desirable effect, since increasing

the magnitude of 𝛽 will increase the cornering force at the rear axle, hence increasing

path curvature, but only temporarily.

In the above ‘classical’ understeer mitigation algorithm, the critical role of vehi-

cle speed is neglected, and it is now known that four-wheel braking can be the most

effective intervention for the understeer case—see Sect. 5.4 below. In brief, four-

wheel braking has three potential benefits for understeer correction: (a) longitudinal

load transfer to the front axle increases its lateral force capacity; (b) speed reduction

directly reduces the understeer effect, presented for example in Eq. 48; (c) the limit-

ing path curvature for a given lateral force capacity increases quadratically with the

reduction in speed:
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Fig. 28 ESC intervention to correct understeer. The yaw moment increases yaw velocity �̇� but

pushes the body sideslip angle 𝛽 towards the oversteer condition

Fy =
MU2

R
⇒ R−1 =

Fy

MU2 (80)

where Fy represents the overall lateral force capacity of both axles and R−1
is the

path curvature. This suggests there should be an optimum balance between the use

of available friction to slow the vehicle and also create the necessary lateral forces

to promote path curvature.

It is clear from the above that, while oversteer correction is mostly concerned with

maintaining the stability of the vehicle so the driver can remain in control, understeer

is more concerned with giving the driver-vehicle system the capability of increasing

path curvature—for example to prevent run-off-road crashes on tight curves. Thus

oversteer mitigation prioritizes yaw moment control for stability, understeer mitiga-

tion prioritizes the magnitude and direction of the resultant force at the mass centre.

5.4 Motion Control Near the Limits of Friction

When the limits of friction are reached, it is beyond the skill of the average driver to

control the path and speed of the vehicle to maintain the stability and safety of the

vehicle. We have seen how ABS and ESC can help with lateral stability, but for path

and speed control they only assist in an indirect way. In the following we introduce a

more sophisticated vehicle control concept which focuses directly on motion control.

Consider once again the problem of understeer when a vehicle approaches a curve,

and the speed is too high or the road surface friction is too low, so that without inter-

vention a dangerous road or lane departure becomes inevitable. As the driver steers

more, the vehicle reaches its overall friction limit and there is no available increase in

path curvature: we term this condition path understeer, which is similar but distinct

from the conventional understeer condition discussed above; conventional understeer

is related to the cornering force limit at the single (front) axle, while path understeer

relates to the overall force capacity of the vehicle.
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Fig. 29 Schematic of the PPR target motion with constant 𝜃 acceleration. The dashed line rep-

resents the target path and the aim is to minimize the maximum off-tracking distance Δ𝜉. This is

equivalent to minimizing the distance traveled in the 𝜉 direction. Hence aref is fixed in the inertial

axes. The optimal choice of 𝜃 depends on initial conditions and surface friction

The problem of path-understeer was addressed in Klomp et al. (2014), where an

optimal control problem was formulated with an objective to minimize the maximum

off-tracking from the reference path. The optimal combination of braking and corner-

ing forces was found to be a parabolic path associated with a reference CG accelera-

tion vector fixed in inertial coordinates. This is shown in Fig. 29. In the coordinates

shown the acceleration vector is 𝐚ref = 𝜇g[− sin 𝜃, cos 𝜃]T where 𝜇g is the limiting

acceleration magnitude and 𝜃 defines the fixed inertial direction. The optimal value

of 𝜃 is chosen so that, at the point of maximum off-tracking, 𝐚ref is perpendicular to

the tangent of the vehicle path. The reference motion is termed the ‘parabolic path

reference’, PPR—(Klomp et al. 2014). Note that for the PPR motion, as the vehicle

path curves and returns to the direction of the desired path, in vehicle coordinates the

acceleration vector changes its bias from combined braking and cornering towards

the pure lateral (cornering) direction. Correspondingly, the path curvature reaches

a maximum at the point of maximum lateral deviation, which is also the point of

minimum vehicle speed.

The high level control concept is quite simple, but to implement it requires a

nonlinear multivariable brake controller. It is no longer sufficient to use single-

wheel braking, and an optimal (or near-optimal) brake force distribution controller is

needed. In the papers Gao et al. (2015, 2016b) the Modified Hamiltonian Algorithm
(MHA) was proposed, and MHA is used in the following. Note, however, that other

optimization methods might be used to achieve the same control objective: track the

target acceleration vector while maintaining lateral stability.

Example: path understeer mitigation This example is due to Yangyan Gao—see

Gao et al. (2016a). The aim is to highlight the fundamental distinction between con-

ventional understeer/ oversteer and path understeer. The example is simulation-based

and makes use of a high fidelity simulation model in CarMaker (2014). Vehicle

parameters are given in Table 1.
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Table 1 Vehicle data

Description Symbol Value

Vehicle mass (kg) m 1675

Vehicle moment of inertia

(kg m
2
)

Izz 2610

Wheelbase (m) l 2.675

Axle distances from CG (m) lf , lr 0.4l, 0.6l
Front and rear track width (m) lw 1.5

Road surface friction

coefficient

𝜇 0.9

Fig. 30 Vehicle trajectory

of negotiating a curve (target

radius R = 27 m): solid line

without marker: standard

vehicle; solid line with cross

marker: terminal understeer

case; solid line with square

marker: terminal oversteer
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To alter the (classical) understeer/ oversteer characteristics, but otherwise main-

tain the same overall properties of the reference vehicle, the front and rear anti-roll

bar stiffness are varied. A stiffer anti-roll bar at the front promotes load transfer at the

front, and results in reduced maximum force at the front axle, giving terminal under-

steer under severe cornering. On the other hand, increasing the anti-roll bar stiffness

at the rear and reducing the anti-roll bar stiffness at the front causes the rear tires to

lose maximum force, and therefore promote terminal oversteer. Various simulations

were performed for the three vehicle configurations (standard, understeer, oversteer)

under both uncontrolled and controlled conditions.

First we present the uncontrolled responses. Figure 30 represents a test condition

where a large step-steer input pushes both axles towards their friction limits. It can

be seen that the understeer vehicle follows a wider path than the standard vehicle,

while the oversteer vehicle follows a tighter curve. In the case of oversteer there is

a much larger body sideslip angle—see Fig. 31—which is responsible for a speed

reduction and leads to the tighter path. Both terminal understeer and oversteer lead
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Fig. 31 Vehicle body

sideslip response: solid line

without marker shows the

body sideslip of the standard

vehicle; solid line with cross

marker shows that of

understeering vehicle; solid

line with square marker

shows that of oversteering

vehicle
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to poorly controlled vehicle motions that endanger the vehicle occupants and other

road users.

Turning to the effect of MHA control, a fixed reference 𝜃 = 53
◦

was tested with

initial velocity U0 = 20 m/s. This value corresponds to surface friction 𝜇 = 0.9 and

a desired path curvature R = 27 m.

Overall off-tracking performance is shown for two of the three cases in Fig. 32,

giving distance, velocity and acceleration in the direction of interest 𝜉. The standard

vehicle responses are not shown because they are almost identical to the understeer

case.

It is seen that, while there are subtle differences in the acceleration time histories

(the oversteer case showing some oscillation), the velocity and distance plots are

nearly identical.

Maximum off-tracking is achieved when the velocity reaches zero at the direction

of 𝜉, as shown by the square markers. Both understeer and oversteer vehicles are

controlled in the same way (the MHA algorithm is not ‘told’ anything about the

change in configuration) and achieve nearly identical results.

However, since the passive dynamic properties are quite different, we expect some

differences when individual braking forces are considered. In Fig. 33 it is seen that

while braking forces are similar at the front axle, there are significant differences at

the rear axle; in the oversteer case there is more of a bias to the right (outer) wheel

braking.

Referring to Fig. 34, the body sideslip turns out to be very similar for both under-

steer and oversteer configurations. This is completely different from the uncontrolled

case in Fig. 31. This emphasizes that optimal (or near-optimal) path understeer miti-

gation is only mildly affected by differences in yaw stability, provided the controller

can stabilize the yaw motion. Hence we expect to see difference in the direct yaw

moment from the commanded braking forces. This is seen in Fig. 35. Since the over-
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Fig. 32 Displacement, velocity and acceleration component in the direction of off-tracking 𝜉, mak-

ers shows point of maximum off-tracking: solid line represents oversteer vehicle response; dashed

line represents understeer vehicle
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Fig. 33 Braking force of four wheels: solid line represents oversteering vehicle; dashed line rep-

resents understeering vehicle
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Fig. 34 Vehicle body

sideslip response during

MHA intervention: solid line

represents oversteering

vehicle; dashed line

represents understeering

vehicle
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Fig. 35 Vehicle yaw

moment from braking force

during MHA intervention:

solid line represents the

understeering vehicle and the

dotted line represents the

oversteering vehicle
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steer vehicle has a tendency to spin, the turn-out yaw moment should be greater (i.e.

Mz should be more negative) and this is clearly seen in the figure.

We conclude that path understeer compensation via four wheel braking deals with

understeering and oversteering configurations in a seamless way—automatically

adjusting the yaw moment compensation to suit the particular chassis. Note that in

both cases there is a negative direct yaw moment arising from braking, i.e. the effect

is a turning out yaw moment, contrary to the standard understeer compensation via

ESC, described above in Sect. 5.3. Clearly the combined slip condition at the tyres

is being taken into account by the controller, and the lateral tyre forces provide suf-

ficient turning-in yaw moment.
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More generally we conclude there are are sufficient actuator degrees of freedom

available from individual wheel braking to deal simultaneously with any inherent

vehicle understeer or vehicle oversteer tendencies, while at the same time addressing

path understeer using a single integrated chassis control algorithm.
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Advanced Chassis Control
and Automated Driving

Masao Nagai and Pongsathorn Raksincharoensak

Abstract Recently, various chassis control and preventive safety systems have been

developed and applied in modern passenger cars, such as Electronic Stability Sys-

tems (ESC), Autonomous Emergency Braking (AEB) etc. This chapter, “Advanced
Chassis Control and Automated Driving", describes the theoretical design of Active

Rear Steering (ARS), Active Front Steering (AFS) and Direct Yaw-moment Control

(DYC) systems for enhancing vehicle handling dynamics and stability. The controller

implementation and effectiveness verification using experimental vehicles are also

demonstrated. In addition to recently deployed preventive safety systems, Adaptive

Cruise Control (ACC) and Lane Keeping Control Systems have been investigated

and developed among universities and companies as key technologies for automated

driving systems. Here, fundamental theories, principles and applications are mainly

presented to give comprehensive understandings in the context of chassis control and

automated driving technology.

Keywords Chassis control ⋅ Control engineering ⋅ Active steering

Direct Yaw moment control ⋅ Handling and stability ⋅ Automated driving

The main purpose of this chapter is to provide an overview of the advanced chassis

control systems aiming for enhancing vehicle handling and stability followed with

the automated driving functions of intelligent vehicles in longitudinal and lateral

vehicle dynamics.

The first half of this chapter will describe the advanced chassis control systems for

enhancing vehicle handling and stability. As the basic performance of current pas-
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senger cars improved, most of drivers feel the need for a quicker response that could

control the direction of vehicle as desired with less effort. Based on the constraint

that only the front tyres can be steered, the chassis performance is limited to a cer-

tain level. Chassis control has objectives to enhance vehicle handling and stability

with respect to the steering input from the driver, and to enhance its limit perfor-

mance avoiding side slip or spin during emergency manoeuvre. Handling and stabil-

ity performance can be enhanced by controlling lateral and yaw motions of vehicle

body, by using front and rear tyre forces in lateral and longitudinal direction. This

chapter describes the design of Active Rear Steering (ARS), Active Front Steering

(AFS) and Direct Yaw-moment Control (DYC) systems for enhancing vehicle lateral

dynamics, i.e. handling and stability. The controlled variables are the vehicle body

side slip angle and the yaw rate.

The latter half of this chapter describes the control system design in the con-

text of automated driving vehicles. Automated driving functionalities as Advanced

Driver Assistance Systems (ADAS) has been currently developed to prevent traf-

fic accidents as well as fatalities, increase driving convenience as well as comfort

and increase traffic and fuel efficiency. A suite of on-board sensors for environ-

ment perception such as camera, radar or LiDAR (Light Imaging Detection And

Ranging) have been progressively developed and the detection performance has been

improved. Actuator technology for steering and braking becomes more advanced and

has good control performance.

ADAS assists human drivers to maintain safe driving in the form of (1) infor-

mation provision, (2) warning by auditory, visual or haptic types and (3) control

intervention. ADAS in the context of control intervention can be classified into two

types: Co-Pilot (Fig. 1) and Auto-Pilot (Fig. 2). The Co-Pilot type ADAS acts in par-

allel with the human driver to control the vehicle not to fall into critical situations.

The human driver still has a full authority to control the vehicle by steering, acceler-

ating and braking. Co-Pilot ADAS may be able to monitor the human driver behavior

in real time in order to adapt the intensity of control intervention. On the other hand,

the auto-pilot ADAS replaces the human driver in the vehicle longitudinal and/or lat-

eral control manoeuvre. The human driver has responsibility to monitor the control

behavior of the system and it is necessary for the human driver to take over the ADAS

in the case that the system cannot handle some difficult situations. In this textbook,

the basic control algorithm of the ADAS in longitudinal and lateral control will be

described.

Fig. 1 Schematic of

co-pilot type advanced driver

assistance system (ADAS)

Co-Pilot

Driver Vehicle

Control

WarningMonitor

Monitor

+

_

Course Motion
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Fig. 2 Schematic of

auto-pilot type advanced

driver assistance system

Driver

Auto-Pilot Vehicle

Monitor

Control
(Take over) Take over

request 

Course

-

+ Motion

1 Active Rear Steering (ARS) Control System
for Enhancing Vehicle Handling and Stability

In conventional front wheel steering vehicles, only the front tyres are involved in

controlling the side slip angle needed for cornering. The rear tyres generate corner-

ing force only by the resulting side slip angle from the front steering angle input.

The rear tyres are not directly involved in controlling the direction of the vehicle.

If the rear tyres can be steered together with the front tyres to control the side slip

angle, the vehicle lateral dynamics can be changed. The idea of steering the rear tyres

simultaneously with the front ones becomes an innovative step forward in the field

of vehicle dynamics control (Furukawa et al. 1989). This chapter shows basic con-

trol system design of the ARS technology in terms of vehicle dynamics and control

techniques (Abe, 2015).

A vehicle which can steer the rear steering angle is called Four-Wheel-Steering

Vehicle (4WS). The equations of lateral and yaw motion of vehicle can be written as

follows:

mV( ̇𝛽 + r) = 2Cf

(
𝛿f −

lf
V

r − 𝛽

)
+ 2Cr

(
𝛿r +

lr
V

r − 𝛽

)
(1)

Izṙ = 2lf Cf

(
𝛿f −

lf
V

r − 𝛽

)
− 2lrCr

(
𝛿r +

lr
V

r − 𝛽

)
(2)

From these equations, we can express the vehicle response in the form of state space

equation as follows:

[
̇

𝛽

ṙ

]
=
[

a11 a12
a21 a22

] [
𝛽

r

]
+
[

b11 b12
b21 b22

] [
𝛿f
𝛿r

]
(3)

where each element is determined from the equations of motion.
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a11 = −
2(Cf + Cr)

mV
, a12 = −1 −

2(lf Cf − lrCr)
mV2 ,

a21 = −
2(lf Cf − lrCr)

Iz
, a22 = −

2(l2f Cf + l2r Cr)
IzV

,

b11 =
2Cf

mV
, b12 =

2Cr

mV
, b21 =

2lf Cf

Iz
, b22 = −

2lrCr

Iz

From the above state space equation indicated in Eq. (3), by taking Laplace trans-

formation, we can express the vehicle response in the form of transfer function as

follows:

[Side slip angle response to the front and rear steering angle]

𝛽(s) =
b11s + (−b11a22 + b21a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿f (s)

+
b12s + (−b12a22 + b22a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿r(s)

(4)

[Yaw rate response to the front and rear steering angle]

r(s) =
b21s + (−b21a11 + b11a21)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿f (s)

+
b22s + (−b22a11 + b12a21)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿r(s)

(5)

1.1 Front Steering Angle Proportional ARS

The basic idea to control the rear steering angle is to make it steer proportional to the

front tyre steering angle which is determined by the driver as the following control

law.

𝛿r = k𝛿f (6)

We can steer the rear steering angle in the same direction with the front steering

angle (k is positive) or in the opposite direction (k is negative). In the case that the

rear steering angle is in the same phase with the front steering angle, it has effect

in reducing yaw rate gain and improving vehicle stability in high speed region and

reducing the body side slip angle during cornering manoeuvre. In contrast, in the case
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that the steering angle is out of phase with the front steering angle, it has effect in

increasing yaw rate gain, improving vehicle agility and improving manoeuvreability

in low speed region, e.g. reducing the turning radius.

The important effect of the front steering angle proportional rear steering angle

is the reduction of the lateral acceleration gain and the phase delay of the lateral

acceleration. As can be noticed from Fig. 3, when increasing rear steering angle gain

k, the lateral acceleration gain with respect to the front steering angle is reduced and

the phase delay of the lateral acceleration is also reduced.

Next, the effect of rear steering angle on the vehicle body side slip angle is

observed. As can be noticed from Fig. 4 increasing the rear steering angle gain k
reduces the body side slip angle gain. This means the vehicle heading direction

becomes the same with the vehicle forward direction resulting in easy controlla-

bility by the driver.

In the case of front-wheel-steering vehicle (2WS), the vehicle attitude changes

depending on the vehicle speed as shown in Figs. 5 and 6. In low speed region, the

vehicle body side slip angle is positive indicating that the vehicle is heading outside

the corner. In high speed region, the vehicle body side slip angle is negative indicat-

ing that the vehicle is heading inside the corner. We can use the side slip angle as the

index to determine the proportional gain k of the rear steering angle in theoretical

manner. If the rear steering angle is controlled to regulate the side slip angle in steady

state condition (steady state cornering), we can derive the control law as follows:
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Fig. 7 Ratio of rear steering
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k=

𝛽(s) =
b11s + (−b11a22 + b21a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿f (s)

+
b12s + (−b12a22 + b22a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿r(s)

(4)

Considering the steady state condition, the Laplace operator s = 0, the gain k can be

derived as follows:

𝛽(0) =
(−b11a22 + b21a12)
(a11a22 − a12a21)

𝛿f (0) +
(−b12a22 + b22a12)
(a11a22 − a12a21)

𝛿r(0) = 0 (7)

(−b11a22 + b21a12)
(a11a22 − a12a21)

𝛿f (0) +
(−b12a22 + b22a12)
(a11a22 − a12a21)

k𝛿f (0) = 0 (8)

k = −
−b11a22 + b21a12
−b12a22 + b22a12

(9)

k = −
2llrCf Cr − lf Cf mV2

2llf Cf Cr + lrCrmV2 (10)

By using zero-side-slip-angle as the control objective, we can derive the speed-

dependent control ARS law as indicated in Eq. (10) and Fig. 7.

1.2 Dynamic Compensation ARS control

In vehicle planar motion, there are two state variables: side slip angle and yaw rate.

Figure 8 shows the block diagram of 2-input 2-output system. In the design of active

rear steering angle controller, we need to select the controlled variable that we want

to control, as we have only one control input. Generally, it is difficult for human

drivers to control the side slip angle. Therefore, in general, most of rear steering

angle control laws are designed to directly control the body side slip angle.
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(A) Design by Using Inverse Dynamics
By referring to the linear equation of body side slip angle including dynamic charac-

teristics, if we set the side slip angle response to be zero not only in the steady state

steering manoeuvre but also dynamic steering manoeuvre, this results in the control

law which generates opposite steering direction of the rear wheel with respect to the

front wheel in the initial steering manoeuvre phase.

𝛽(s) =
b11s + (−b11a22 + b21a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿f (s)

+
b12s + (−b12a22 + b22a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿r(s)

(4)

0 =
b11s + (−b11a22 + b21a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿f (s)

+
b12s + (−b12a22 + b22a12)

s2 + (−a11 − a22)s + (a11a22 − a12a21)
𝛿r(s)

(11)

𝛿r = −
b11s + (−b11a22 + b21a12)
b12s + (−b12a22 + b22a12)

𝛿f (s) (12)

An example of time history of the front and rear steering angles in the case of

vehicle running at a velocity of 100 km/h is shown in Fig. 9. As can be noticed from

Fig. 9, in the initial phase, the rear steering angle is steered in opposite direction

with the front steering angle in order to reduce side slip angle motion as well as

improve the yaw responsiveness in the initial phase of steering manoeuvre. Such

kind of characteristics is called Non-minimal Phase Delay System which refers to

the transfer function which contains the positive zeros in the system.

(B) Design by Using Inverse Dynamics Model II
There is another design method for active rear steering angle based on two-wheel

vehicle model in order to achieve zero-side-slip response. Based on the equations of

Fig. 8 Structure of 2-input

2-output vehicle planar

motion
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(driver)
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Fig. 9 Rear steering angle

with respect to stepwise front

steering angle using inverse

dynamics model design

method for

zero-side-slip-angle

(V = 100 km/h)
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motion shown below,

mV( ̇𝛽 + r) = 2Cf

(
𝛿f −

lf
V

r − 𝛽

)
+ 2Cr

(
𝛿r +

lr
V

r − 𝛽

)
(1)

Izṙ = 2lf Cf

(
𝛿f −

lf
V

r − 𝛽

)
− 2lrCr

(
𝛿r +

lr
V

r − 𝛽

)
(2)

By letting the side slip angle and side slip angular velocity term become zero, and

then solving for the control law of active rear steering angle, the following control

law can be achieved (Yamamoto, 1991).

𝛿r = −
Cf

Cr
𝛿f +

(
mV
2Cr

+
lf Cf − lrCr

CrV

)
r (13)

From the above equation, the rear steering angle is determined as function of linear

combination of front steering angle and the yaw rate. This control law has yaw rate

feedback feature which can compensate the yaw disturbance such as side wind so

that the vehicle is more robust to the disturbance.

Next we will see how the yaw rate response changes by applying the control law

indicated in Eq. (13). The control law indicated in Eq. (13) is substituted into the

equation motion of yaw rate.

Izṙ =
(
2lf Cf + 2lrCf

)
𝛿f

+
(
−2lf Cf

lf
V

− 2lrCr
lr
V

− mlrV − 2lr
lf Cf − lrCr

V

)
r

(14)

By taking the Laplace transformation to the above equation, we can get the

(
IzVs +

(
mlrV2 + 2llf Cf

))
r(s) =

(
2lCf V

)
𝛿f (15)

By rearranging the equation, we can get the modified yaw rate response by the active

rear steering angle control as 1st order delay transfer function while in the case of

conventional front-wheel-steering (2WS) vehicle has 2nd order delay characteristics.

It is known that in the case of high velocity region of conventional front-wheel-



256 M. Nagai and P. Raksincharoensak

10
-2

10
-1

10
0

10
1

0

2

4

6

8

10
-2

10
-1

10
0

10
1

1

1.5

2

2.5

3

3.5

10-2 10-1 100 101
-100

-80

-60

-40

-20

0

20

10-2 10-1 100 101-80

-60

-40

-20

0

Frequency [Hz]

Frequency [Hz]

G
ai

n 
[-]

Ph
as

e 
[d

eg
]

Frequency [Hz]

Frequency [Hz]

V larger (100, 120, 140 km/h)

V larger (100, 120, 140 km/h)

Fig. 10 Effect of zero-side-slip active rear steering angle control on yaw rate response

steering (2WS) vehicle which the resonance peak of yaw rate is dominant and the

damping characteristics is not satisfactory. This bad damping characteristics can be

effectively improved by controlling the active rear steering angle which regulates the

side slip angle to be zero, as shown in Fig. 10.

r(s)
𝛿f (s)

=
2lCf V

IzVs +
(
mlrV2 + 2llf Cf

) (16)

1.3 Active Rear Steering Angle Control by Using Model
Following Control Theory

Alternative methods to design the controller for the active rear steering angle control

system is to apply the model following control theory to the vehicle plant. The model

following control theory is a method to make the vehicle response match a desirable

response based on 2-degree-of-freedom control system consisting of a feedforward
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Fig. 11 Block diagram of model following control ARS

controller and a feedback controller. Generally, the feedforward controller aims to

improve the response with respect to the reference signal input and the feedback

controller aims to compensate the modeling errors and unexpected disturbances.

Both controllers are designed independently so that it is called 2-degree-of-freedom

control system. Mostly, the feedforward controller is designed by using inverse

dynamics via transfer function method, whereas the feedback controller is designed

to compensate the error between the desired response and the actual response by

using a classical controller such as PID or a modern controller using LQR control

theory and etc. Fig. 11 shows the block diagram of active rear steering angle control

system to make the vehicle follow a desired vehicle response model.

If it is possible to control the front steering angle actively using electronic con-

trol device, the active four-wheel-steering control (active 4WS) as shown in Fig. 12

can be realized. The authors have proposed a control system which can control the

front and rear steering angles by a combination of feedforward and feedback com-

pensation to make the steering response characteristics of vehicle side slip angle

and yaw rate follow a virtual vehicle model. A theoretical analysis of a closed-

loop driver-vehicle system reveals that the addition of feedback compensation to the

control system capabilities ensures superior stability in straight-road driving because

the vehicle can respond autonomously to reduce the influence of external distur-

bance. The effects of errors in vehicle modeling and of changes in parameters for the

vehicle or the driver are also studied and the feedback compensation is effective to

compensate the error in modeling and secure the control performance. Besides the

above design methods, the new variable D* which is defined as a linear combination

of yaw rate and lateral acceleration is employed as the controlled variable to be fol-

lowed by using the model following control method. A rear steering angle control

can make the quantity D* follow the output of the desired reference model.

D∗ = kay + (1 − k)Vr (17)
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Fig. 12 Active 4WS for model following control

Moreover, against changes in the state of the vehicle and parameters such as loading

condition, road friction or errors due to the nonlinear factors which are not consid-

ered in the model for the controller design, a control method that can autonomously

adjust the control system parameters to changes of vehicle conditions is required.

This method is called “Adaptive Control”.

1.4 Summary

This section has described various control laws of Active Rear Steering (ARS) con-

trol system. ARS can be classified into two main categories, a feedforward con-

troller type which uses the driver steering wheel angle as input signal and a feedback

controller which uses the vehicle state variables as input signal. ARS is effective

in controlling the body side slip angle. Extensive researches on ARS by applying

modern control theories have been also conducted including the model-matching or

model-following control techniques to achieve desired steering response character-

istics and there are also further studies on adaptive steering control systems to secure

the robustness of the controller against changes in vehicle parameters. As ARS can

modify the vehicle steering response characteristics, it is important to know the vehi-

cle steering response characteristics that is easy for drivers to control the vehicle

motion. Handling quality objectification is also one of essential issues in this area of

study.

2 Active Front Steering (AFS) Control System
for Enhancing Vehicle Handling and Stability

Since 2000’s, Electric Power Steering (EPS) system by using electric motor has been

developed instead of the hydraulic system of conventional power steering system for

increasing the fuel consumption efficiency. EPS has strong potential to improve the



Advanced Chassis Control and Automated Driving 259

vehicle stability, the vehicle responsiveness and driving comfort, by reducing steer-

ing torque effort in manoeuvreing. As EPS has a mechanical linkage, the relationship

between the steering wheel angle and the steering torque cannot be independently

designed. Therefore, to enhance both the vehicle stability and the steering feeling in

manoeuvreing characteristics is limited under the current mechanical type of steer-

ing configuration.

To overcome this problem, Steer-by-Wire (SBW) becomes one of the solutions

since the mechanical linkage between the steering wheel and the front tyre as a

mechanical constraint in motion does not exist anymore. Typically, SBW system has

several merits as follows: (1) Avoiding steering column shaft collision to driver, (2)

Flexibility of interior layout and steering situation, (3) Flexibility of steering con-

figuration design, such as joystick, circular wheel, ellipse, bar. Moreover, SBW can

control the steering angle automatically to stabilize the vehicle behavior and can

control the steering feeling as well as decrease the physical workload, transmit the

vehicle behavior and the road information based on front tyre force to the driver.

From the viewpoint of human-machine interface (HMI), SBW has structural merits

in avoiding interference between the driver and the steering wheel as the mechanical

linkage between them is completely replaced by electric wiring, several actuators

and controllers.

This section describes a chassis control system utilizing the feature of SBW sys-

tem based on the model matching control method to improve handling and stabil-

ity (Shino et al. 2004b; Yoshida et al. 2005). The experiments using an actual test

vehicle equipped with SBW, were carried out and the experimental results show the

effectiveness of the control system.

2.1 Structure of Steer-By-Wire System (SBW)

SBW system consists of a reaction torque generation motor for adjusting steering

reaction torque which relates to steering feeling and a front tyre steering actuator

for actually steering the front tyres to control the vehicle motion with respect to

the driver steering intention. The configuration of SBW is shown in Fig. 13. As a

fail safe mechanism when the system error occurs or it is in a malfunction mode,

this steering system is also equipped with an electromagnetic clutch between the

steering column shaft and the intermediate shaft that connects them together and

thus the conventional mechanical linkage of steering can be resumed.
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Fig. 13 Schematic diagram of Steer-By-Wire system

2.2 SBW Control System Design

For enhancing the handling and stability of vehicle, the yaw rate of the vehicle is

controlled to trace the desired response by using active front steering control input

activated by SBW system. Here, the controlled variable is the yaw rate and the con-

trol input is the actual front steering angle. The reaction torque for adjusting the

steering feeling as an important topic will not be discussed here. With the appli-

cation of model matching control theory, the control system consists of a feedfor-

ward compensator with respect to the steering wheel angle input from the driver and

a feedback compensator designed with the application of disturbance observer to

reduce the sensitivity to the external disturbances. The proposed SBW control law

can be expressed as shown in Fig. 14.

Fig. 14 Block diagram of

Steer-By-Wire control

system
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Design of Feedforward Compensator
The inversed dynamics model can be used to design the feedforward compensator

to make the yaw rate response of uncontrolled vehicle follow the desired steering

response.

The desired yaw rate with respect to the steering wheel angle is assumed to be

the first-order delay system as follows:

r(s)
𝛿sw(s)

= Gd =
krd(V)

𝜏rd(V)s + 1
(18)

where, krd and 𝜏rd are the steady state gain and the time constant of the yaw rate

response respectively.

As shown in Fig. 14, the feedforward compensator can be expressed as a transfer

function from the steering wheel angle to the front steering angle as follows:

𝛿f (s) = Gff (s)𝛿sw(s) (19)

From the linear two-wheel vehicle model, the transfer function from the front tyre

steering angle to the yaw rate can be expressed as follows:

r(s)
𝛿f (s)

=
a1s + a0

s2 + b1s + b0
(20)

where, each coefficient in the above transfer function can be expressed as follows:

a1 =
2lf Cf

Iz
,

a0 =
4lCf Cr

mIzV
,

b1 =
2(Cf + Cr)

mV
+

2(l2f Cf + l2r Cr)
IzV

,

b0 =
4l2Cf Cr

mIzV2 −
2(lf Cf − lrCr)

Iz

Moreover, to avoid complexity in the controller design, the transfer function indi-

cated in Eq. (20) is approximated as the first-order delay system with respect to the

front steering angle as follows:

r(s)
𝛿f (s)

=
a1s + a0

s2 + b1s + b0
≈ P(s) =

kr(V)
𝜏r(V)s + 1

(21)



262 M. Nagai and P. Raksincharoensak

where, kr and 𝜏r are the steady state gain and the time constant of yaw rate response

respectively and P indicates the transfer function of the desired steering response.

Moreover, by comparing the transfer function of the uncontrolled vehicle indicated

in Eq. (20) with the approximated one indicated in Eq. (21), the steady state gain and

the time constant of yaw rate response can be obtained as follows:

kr =
a0
b0

= V

l
(
1 − m

2l2
lf Cf −lrCr

Cf Cr
V2

) (22)

𝜏r =
a0

b0a1
=

IzV

2lf lCf

(
1 − m

2l2
lf Cf −lrCr

Cf Cr
V2

) (23)

Here, by substituting Eq. (19) into Eq. (21), the following equation can be obtained.

r(s) = P(s)Gff (s)𝛿sw(s) (24)

In order to match the actual vehicle yaw rate response with the desired yaw rate

response, let the yaw rate in Eq. (21) be equal to the desired yaw rate response indi-

cated in Eq. (18), and the feedforward controller transfer function can be derived as

follows:

Gff (s) = P−1(s)Gd(s)

=
𝜏r(V)s + 1

kr(V)
⋅

krd(V)
𝜏rd(V)s + 1

=
krd(V)
kr(V)

⋅
𝜏r(V)s + 1
𝜏rd(V)s + 1

(25)

Moreover, the above transfer function can be further rearranged as follows:

Gff (s) =
𝛿f (s)
𝛿sw(s)

=
krd(V)
kr(V)

⋅

[
1 −

[
𝜏r(V) − 𝜏rd(V)

]
s

𝜏rd(V)s + 1

]
(26)

From the above equation, it can be interpreted that the first term refers to the steering

gear ratio between the steering wheel angle and the front tyre steering angle, and

the second term refers to the derivative steering control part, in the other words, the

derivative term of the steering angle input from the driver. The feedforward controller

transfer function depends on the parameters of the desired yaw rate response model

which will be described in the next subsection.

Desired Yaw Rate Model
As described in the previous section, four wheel steering (abbreviated as 4WS) vehi-

cle improves vehicle handling in the low speed region and vehicle stability in the high

speed region. In this paper, the desired yaw rate steering response of zero-side-slip

4WS as the transfer function from the steering wheel angle to the yaw rate can be

expressed as follows:
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rd(s)
𝛿sw(s)

=
krd(V)

𝜏rd(V)s + 1
(27)

where,

krd = V

lf ns

(
1 + mlr

2llf Cf
V2

) (28)

𝜏rd =
IzV

2llf Cf + mlrV2 (29)

In the case without active front steering control, the transfer function from the steer-

ing wheel angle to the yaw rate can be expressed as follows:

r(s)
𝛿sw(s)

=
kr0(V)

𝜏r(V)s + 1
(30)

where, the steady state gain of the yaw rate with respect to the steering wheel angle

is expressed as follows:

kr0 =
V

nsl
(
1 − m

2l2
lf Cf −lrCr

Cf Cr
V2

) (31)

To discuss the characteristics of feedforward compensator, the case of feedforward

controller is compared with the case without control. The parameters used in the

calculation is a small-scale electric vehicle. The yaw rate gain and the time constant

of yaw rate steering response are shown in Fig. 15 and Fig. 16 respectively. In other

words, the equivalent steering gear ratio for Steer-By-Wire system can be expressed

as follows:

nsbw(V) =
kr(V)
krd(V)

=
1 + mlrV2

2llf Cf

1 − m
2l2

lf Cf −lrCr

Cf Cr
V2

lf
l

ns (32)

The above equation shows that this steering gear ratio nsbw has speed-dependent char-

acteristics as shown in Fig. 17.
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Design of Feedback Controller
Generally, using only feedforward controller cannot completely secure the vehi-

cle stability against unexpected disturbance, e.g. crosswind, or unexpected vehicle

parameter changes, e.g. road friction coefficient. Hence, to enhance the vehicle sta-

bility against disturbance, a steering control algorithm of feedback compensator is

proposed by using the theory of disturbance observer.

Figure 18 shows the block diagram of the disturbance observer. The front steering

angle and the yaw rate are measured in order to estimate the yaw rate disturbance.

The relationship between the front steering angle, the vehicle yaw rate and the yaw

rate disturbance can be expressed as follows:
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Control input
for compensating
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r

Fig. 18 Block diagram of feedback controller based on disturbance observer

̂d = r − P(s)𝛿f (33)

The transfer function P(s) is the approximated yaw rate response model as shown

in Eq. 21. To suppress the yaw rate deviation against a disturbance, the active front

steering angle input for compensating the disturbance can be expressed as follows:

Δ ̂

𝛿f = P−1(s) ̂d = P−1(s)r − 𝛿f (34)

In the above equation, the linear inverse function P−1(s) exists and makes the transfer

function of the feedback controller become not proper. In practical cases, some mea-

surement noise in the system might be amplified. A method to solve this problem is

to augment a 1st order delay transfer function with the current feedback controller

transfer function.

Δ ̂

𝛿f =
1

Tdos + 1
[
P−1(s)r − 𝛿f

]
(35)

where, Tdo indicates the time constant of disturbance observer. Setting the value of

Tdo involves the tradeoff relation between the noise problem and disturbance estima-

tion delay. By considering this calculation tradeoff, the value of the time constant is

set to 0.01 s heuristically.

2.3 Effectiveness of SBW Control system

This section demonstrates the effectiveness of Steer-By-Wire control system on han-

dling and stability of vehicle by using a small-scale electric vehicle equipped with

Steer-By-Wire system.
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Effectiveness on Low-Speed Manoeuvre
In low speed manoeuvre such as U-turn manoeuvre, Steer-By-Wire system is very

useful in changing the steering gear ratio so that the amount of turning the steering

wheel angle becomes less. Figure 19 shows the steering wheel angle in the case with

active front steering angle ratio and with the conventional constant gear ratio. It was

found that by the usage of Steer-By-Wire with the feedforward controller, the steering

wheel angle magnitude is significantly reduced during U-Turn manoeuvre.

Effectiveness on Lane-Change Manoeuvre
The improvement of vehicle handling quality by using the feedforward controller

was investigated in lane-change test as a course indicated in Fig. 20. From the exper-

imental results in Fig. 20, the front steering angle was steered earlier than the steering

wheel angle input from the driver. As a result, the phase delay of the yaw rate was

effectively reduced with the Steer-By-Wire control system. The main contribution is

from the derivative steering term of the feedforward controller. From the investiga-

tion of Lissajous diagram between the steering wheel angle and the yaw rate indi-

cated in Fig. 21, the hysteresis of the yaw rate response to the steering wheel angle in

the case of control was smaller than that of the vehicle without active front steering

control. The feedforward controller can effectively make the yaw rate response to the
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Fig. 20 Single lane change course and vehicle behavior

Fig. 21 Lissajous diagram

of steering wheel angle and

yaw rate

steering wheel angle close to a linear relationship. This implies that Steer-By-Wire

control system also significantly enhances vehicle handling so that the driver can

steer the vehicle much easier.
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Effectiveness on 𝝁-Split Road
The vehicle stability against a yaw moment disturbance caused by asymmetric brak-

ing on𝜇-split road was investigated. The effectiveness of the feedback controller with

the application of disturbance observer theory was verified. The vehicle ran straight

at constant speed of 35 km/h into the 𝜇-split road and then conducted full braking

by the driver. To verify the effectiveness of the controller, the corrective steering

manoeuvre by the driver was not conducted. Figure 22 and Fig. 23 show the experi-

mental results in the case without control and with feedback controller respectively.

In the case without control, large yaw rate deviation was generated as a result of yaw

moment disturbance due to asymmetric braking on 𝜇-split road. On the other hand,

in the case with the feedback controller, the control system can effectively suppress

the yaw rate deviation by controlling the front tyre steering angle in real time. With

the proposed Steer-By-Wire control system, it shows that the vehicle stability can be

secured with the application of disturbance observer.
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2.4 Summary

Steer-By-Wire control system for enhancing handling and stability was presented

here. Setting the desired yaw rate response, the feedforward controller of Steer-By-

Wire system can be theoretically determined. With the application of disturbance

observer, the feedback controller can be designed by measuring the steering wheel

angle and the yaw rate. Demonstrations using a small-scale electric vehicle were

shown to verify the effectiveness of the proposed active front steering angle control

based on Steer-By-Wire structure.
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3 Direct Yaw-Moment Control System

Active steering control performance for enhancing handling and stability strongly

depends on the tyre lateral forces, in a range where the lateral acceleration is compar-

atively high and the vehicle is near handling limit, the lateral forces become saturated

and then the active steering control system cannot perform its control effectively

anymore. In such situations, the driver may lose control over his car due to excessive

side slip angle together with unbalance of yaw moment on the car. To overcome this

problem, a strategy using tyre longitudinal forces to control vehicle lateral motion

was proposed, called direct yaw-moment control (DYC). As a common approach for

vehicles in productions, by utilizing the existing ABS (Anti-lock Braking System)

hardware or traction force distribution control, DYC system can be realized in real

applications (Koibuchi et al. 1996; Shibahata et al. 1992; Van Zanten et al. 1996).

Nowadays, in the automobile market, DYC is commonly used for the objective of

side slip prevention, and also effectively for rollover prevention, especially for com-

mercial vehicles.

This chapter describes a chassis control system utilizing DYC by using a model

matching control method to make the steering response of body side slip angle be

constantly zero (Shino et al. 2004a). A concept to enhance vehicle stability during

cornering is to generate additional yaw moment by transverse distribution of lon-

gitudinal forces. As an electric vehicle (EV) has in-wheel-motor structure which

the motors can be controlled to generate wheel torques independently of each other,

transverse distribution of longitudinal forces (traction or braking forces) can be pre-

cisely generated. Furthermore, as the electric motor has comparatively faster torque

response, and easy measurability of torque compared with the conventional engine,

the individual driving/braking torque control by motors is very attractive for engi-

neers in the field of vehicle dynamics. For realizing the proposed control system

using an actual electric vehicle, it is necessary to estimate the side slip angle instead

of measuring it directly. A speed-dependent observer is presented here. With the

objective of enhancing vehicle stability, the control objective is to obtain desirable

steering response by controlling the body side slip angle of the vehicle. Experiments

using an actual electric vehicle is carried out to verify the effectiveness of the pro-

posed chassis control system on cornering performance in a J-turn and Lane Change

tests.

3.1 Direct Yaw-Moment Control System for Side Slip Angle
Regulation

Figure 24 shows the vehicle model used for the controller design. The control objec-

tive of DYC system is to make the side slip angle and the yaw rate trace the responses

of the desired vehicle model for enhancing handling and stability. The direct yaw

moment generated by the traction forces at rear axle is employed as the control input
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to make the actual response trace the desired vehicle response. With the applica-

tion of model matching control method, the control system consists of a feedforward

compensator with respect to the steering angle, and a feedback control compensator

depending on the state deviations of the side slip angle and the yaw rate as shown in

Fig. 25.
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To improve the vehicle stability, the main objective of the control is to make

the side slip angle response with respect to the steering wheel angle input be zero.

First from the governing equations of the vehicle in planar motion, the state space

equation of the vehicle can be written as follows:

̇X = AX + BU + H𝛿f (36)

[
̇

𝛽

ṙ

]
=
[

a11 a12
a21 a22

] [
𝛽

r

]
+
[

b11
b21

]
Mdyc +

[
h11
h21

]
𝛿f (37)

where, each coefficient in the state space equation can be expressed as follows:

X =
[
𝛽

r

]
, U = Mdyc,

a11 = −
2(Cf + Cr)

mV
, a12 = −1 −

2(lf Cf − lrCr)
mV2 ,

a21 = −
2(lf Cf − lrCr)

Iz
, a22 = −

2(l2f Cf + l2r Cr)
IzV

,

b11 = 0, b21 =
1
Iz
, h11 =

2Cf

mV
, h21 =

2lf Cf

Iz

Here, the control input is determined to be the direct yaw moment input and the

steering angle is treated as an excitation input from the driver. As a part of model

matching control system, the feedforward control input is set to be proportional to

the steering wheel angle as follows:

Mff = Kff 𝛿sw (38)

Considering the steady state of motions, the derivative terms in the state space equa-

tion are zero. Then, the feedforward controller gain Kff can be solved under the con-

dition that the zero side slip angle is achieved.

̇

𝛽 = a11𝛽 + a12r + b11
𝛿sw

n
(39)

ṙ = a21𝛽 + a22r + b21
𝛿sw

n
+ b22

(
Kff 𝛿sw

)
(40)

Let the side slip angle term and the derivatives of side slip angle and yaw rate be

zero, the following relationship is obtained.

0 = 0 + a12r + b11
𝛿sw

n
(41)
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0 = 0 + a22r +
(

b21
n

+ b22Kff

)
𝛿sw (42)

Then, the feedforward controller gain Kff can be solved from the system equation as

follows (Fig. 26):

0 = 0 + a22

(
−b11
a12

𝛿sw

n

)
+
(

b21
n

+ b22Kff

)
𝛿sw (43)

Kff =
a22b11 − a12b21

a12b22n
=

4llrCf Cr − 2lf Cf mV2

n(2(lf Cf − lrCr) + mV2)
(44)

By using the feedforward control input for zeroing the side slip angle, the trans-

fer function of the yaw rate with respect to steering angle input can be computed

by substituting the relationship between the steering wheel angle and the front tyre

steering angle as, 𝛿sw = n𝛿f , into Eq. (20) and then the yaw rate r(s) can be derived

as follows:
r(s)
𝛿sw(s)

=
a1s + a0

s2 + b1s + b0
(20)

where,

Fig. 26 DYC feedforward
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a1 =
4Cf

Iz

l2f Cf + l2r Cr

mV2 + 2(lf Cf − lrCr)
,

a0 =
1
n

2Cf V
mV2 + 2(lf Cf − lrCr)

(
4l2Cf Cr

mIzV2 −
2(lf Cf − lrCr)

Iz

)
,

b1 =
2(Cf + Cr)

mV
+

2(l2f Cf + l2r Cr)
IzV

,

b0 =
4l2Cf Cr

mIzV2 −
2(lf Cf − lrCr)

Iz

The desired vehicle response embedded in the model matching control system is

determined in the way that the side slip angle response is zero and the yaw rate is

set to be the first order delay system with respect to the steering wheel angle input

as follows:
𝛽(s)
𝛿sw(s)

= 0 (45)

r(s)
𝛿sw(s)

=
krd

𝜏rds + 1
(46)

where, krd and 𝜏rd are the steady state gain and the time constant of the desired yaw

rate dynamics respectively. It is important to determine the desired yaw rate dynam-

ics as it strongly relates to the handling dynamics evaluated by human drivers. By

comparing the transfer function of the desired yaw rate (Eq. (20)) with the transfer

function in Eq. (46), the steady state gain and the time constant of the desired yaw

rate dynamics can be determined as follows:

krd =
2Cf V

mV2 + 2(lf Cf − lrCr)
⋅
1
n

(47)

𝜏rd =
IzV

2(l2f Cf + l2r Cr)
(48)

To compensate the side slip angle and yaw rate deviations during transient steering

manoeuvre, it is necessary to combine the feedback controller with the feedforward

controller. Here, the state feedback of side slip angle and yaw rate deviation is pre-

sented.

The state deviation between the desired value vector Xd and the actual value vector

X is defined as follows:

E = X − Xd (49)

To formulate the optimal regulator problem, the differentiated value of the above

equation can be written as follows:
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̇E = ̇X − ̇Xd (50)

̇E =
(
AX + BMfb + H𝛿f

)
−
(
AdXd + Hd𝛿f

)
(51)

̇E = A(X − Xd) + BMfb + (A − Ad)Xd + (H − Hd)𝛿f (52)

̇E = AE + BMfb + W (53)

where, W is lumped as a disturbance term of the regulator. The optimal control input

is determined to minimize the deviation of each state variable with respect to its

desired value as follows:

Mfb = −Kfb1(𝛽 − 𝛽d) − Kfb2(r − rd) (54)

where, the feedback gains Kfb1, Kfb2 are determined by the application of opti-

mal linear quadratic regulator (LQR) control theory to minimize the following cost

function.

J =
∞

∫
0

[(
𝛽 − 𝛽d

q1

)2

+
(

r − rd

q2

)2

+
(Mfb

rfb

)2]
dt (55)

where, the weighting coefficients q1 and q2 indicate the maximum allowable values

of the state variables and the coefficients rfb indicates the available yaw moment

control input.

To generate the yaw moment control input on the actual electric vehicle, the dif-

ferential traction forces are exerted on left and rear tyres. With the structural merit

of in-wheel-motor electric vehicles, the transverse distribution of the traction forces

can be done easily.

Considering the case of rear-wheel-driven electric vehicle and the driving resis-

tance is small. If the longitudinal acceleration given by the driver via the accelerator

pedal stroke is given as ax, the governing equation of longitudinal dynamics can be

expressed as:

max = Fx3 + Fx4 (56)

The yaw moment control input which is determined from the controller is given as

follows:

Mdyc = Mff + Mfb =
lw
2
(
Fx4 − Fx3

)
(57)

By rearranging Eqs. (56) and (57), the command traction force of each tyre can be

calculated as follows:

Rear left tyre: Fx3 =
max

2
−

Mdyc

lw
(58)

Rear right tyre: Fx4 =
max

2
+

Mdyc

lw
(59)
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Fig. 27 Block diagram of Direct Yaw-moment Control and Observer for estimating the side slip

angle

Design of Speed-Dependent Side Slip Angle Observer
For implementing the proposed DYC system on the actual vehicle, it is necessary to

estimate the side slip angle instead of direct measurement, as the side slip angle sen-

sor is too expensive to be equipped in production vehicles. According to the theory

of observer for state estimation, the side slip angle can be estimated by measuring the

steering wheel angle, the yaw rate and the vehicle velocity as shown in the schematic

diagram in Fig. 27. As the body side slip angle has speed-dependent characteristics,

it is necessary to design the side slip angle observer with variable observer gains

depending on the vehicle velocity.

The state space equation of the observer can be written as follows:

̇

̂X = A ̂X + BU + L(Y − C ̂X) (60)

̇

̂X = (A − LC) ̂X + BU + LY (61)

where, L indicates the observer gain which can be determined by the pole placement

theory or Kalman Filtering theory. Y is the measurement value which is the vehicle

yaw rate in this case, so the matrix C is expressed as:

Y = r = CX =
[
0 1

] [
𝛽

r

]
(62)
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Fig. 28 Side slip angle estimation results by using the observer

If the error vector of the estimated states is defined as Eob = ̂X − X, the dynamics of

the estimated error can be expressed as follows:

̇Eob = ̇

̂X − ̇X =
[
(A − LC) ̂X + BU + L(CX)

]
− [AX + BU] (63)

̇Eob = (A − LC)Eob (64)

Setting the eigenvalues of the matrix A − LC to be located on the left side of complex

plane results in fast convergence of the estimation error to zero which means the

estimated state variables will be close to the actual state variables very fast.

For example, by using the pole placement method, the desirable poles of the

observer i.e. eigenvalues of the matrix A − LC, are set to be real numbers (𝜆1, 𝜆2),
the observer gains can be calculated as follows:

L =
[

L1
L2

]
=
[
−
{

a11(−a11 + 𝜆1 + 𝜆2) − 𝜆1𝜆2 − a12a21
}
∕a21

a11 + a22 − (𝜆1 + 𝜆2)

]
(65)
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Figure 28 shows the experimental results with respect to the given front steering

angle that is equivalent to slalom driving test with variable speed. This study assumes

that the body side slip angle is correctly estimated when the estimated yaw rate well

matches the measured yaw rate. As a result, Fig. 28 shows that the estimated yaw

rate can effectively trace the actual value by the use of the proposed observer against

the change in velocity. From repeated experiments, it was verified that the proposed

observer is effective against any arbitrary steering inputs.

3.2 Effectiveness of DYC

This section discusses the validity of the proposed DYC system in cornering per-

formance as described in the previous section by experiments using a small-scale

electric vehicle. All experiments are conducted under a dry asphalt road. The front

steering angle is assumed to be calculated from the measured steering wheel angle

divided by the overall steering gear ratio, while neglecting the steering dynamics.

The J-turn and lane-change test were conducted to verify the effectiveness on regu-

lating the body side slip angle of the vehicle.

Effectiveness of DYC in J-Turn Test Manoeuvre
In J-turn test shown in Fig. 29, after the vehicle runs straightly at constant speed of

35 km/h, the front steering angle pattern, as shown in the upper graph of Fig. 29,

is executed by the driver. This test is used to investigate the vehicle behavior for

transient and steady state steering manoeuvres. Figure 29 shows the vehicle behavior

with respect to the given steering manoeuvre input. It was found that, by using DYC,

the vehicle body side slip angle was significantly suppressed during the steady state

cornering. Figure 29 also shows that the body side slip angle during transient state

can be effectively suppressed by using the feedback compensator. Moreover, it was

confirmed that the DYC input is realized by controlling each wheel driving torque

independently to achieve differential traction in real-time.

Effectiveness of DYC in Double Lane-Change Test Manoeuvre
In double lane-change test, the front steering angle as shown in Fig. 30, is executed

at a vehicle velocity of 35 km/h. The driving course was set up equivalently to an

emergency obstacle avoidance manoeuvre at the level of lateral acceleration of 0.5 G.

Figure 31 shows the vehicle behavior against the double lane-change steering input

which can be treated as continuous steering manoeuvre input. Figure 31 shows that,

by using only the feedforward controller, the body side slip angle can be suppressed

as it becomes closer to zero, as compared with the uncontrolled vehicle. It is also con-

firmed that the body side slip angle can be more suppressed by the combination with
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Fig. 29 Control effectiveness of DYC during J-turn at 35 km/h

the feedback compensator. Moreover, in the case without control, large body side

slip angle appeared during the lane-change manoeuvre which causes difficulty for

the driver to trace the given course. There were collisions with pylons in some trials

during the experiment without DYC. According to the subjective comments from

the driver, DYC system significantly enhanced handling performance and vehicle

stability so that the driver could steer the vehicle much more easily.
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3.3 Summary

This section has described the feature and the structure of Direct Yaw-moment Con-

trol (DYC) especially using the structural merits of in-wheel-motor electiric vehicle

and its effect on enhancing vehicle handling and stability against various types of

steering manoeuvre, step steer and lane change. The control objective of DYC is to

regulate the vehicle body side slip angle, i.e. making the vehicle attitude aligned with

the vehicle forward direction, with the application of model matching control theory,

consisting of feedforward and feedback controllers. An additional remark here is that

controlling the side slip angle by DYC when the vehicle is near limits in nonlinear



Advanced Chassis Control and Automated Driving 281

(a) Preceding vehicle detected: the desired velocity is preceding
vehicle velocity and the desired headway is pre-selected by the

driver.

(b) No preceding vehicle exists: the desired velocity is
pre-selected by the driver.

Fig. 32 Basic function of Adaptive Cruise Control (ACC) System

tyre region is more effective compared to active rear steering angle control system

due to limitation of tyre cornering forces.

4 Adaptive Cruise Control System (ACC)

The functional purpose of ACC system is to maintain a desired range clearance

between an ACC-equipped vehicle and its preceding vehicle, when one is present. If

there are no preceding vehicles within a reasonable range, the system performs as a

cruise control system to trace a set velocity, for example 100 km/h (Fig. 32).

4.1 Governing Equation of Longitudinal Vehicle Dynamics

To design the control algorithm of ACC, the longitudinal vehicle dynamics is

used (Rajamani, 2012). The governing equation of longitudinal vehicle motion is

expressed as shown in Eq. (66).

m ̇V = max =
4∑

i=1
Fxi − FR − FA − FG (66)



282 M. Nagai and P. Raksincharoensak

where, m indicates the vehicle mass, V , the vehicle velocity, ΣFx, the actuation

force (longitudinal tyre force) produced by the engine and drivetrain and the braking

system, FR, the tyre rolling resistance force, FA, the aerodynamic drag, FG, the resis-

tance force caused by road gradient.

The entire flow of the vehicle powertrain from the accelerator pedal stroke input

to the wheel torque is shown in Fig. 33. The governing equation of the engine and

drivetrain is described. To simplify the torque characteristics of the driving source

(engine or electric motor in the case of EV), it can be assumed that the engine torque

transfer function with respect to the pedal stroke input (or throttle input) is a first-

order delay system as follows:

𝜏e
̇Te + Te = KePa (67)

Te(s) =
Ke

𝜏es + 1
Pa(s) (68)

where, Pa indicates the accelerator pedal stroke input, 𝜏e, the time constant of the

torque produced by the driving source, Te, the torque produced by the driving source,

Ke, the driving source torque gain.

The governing equation of rotational motion about the engine driveshaft is

expressed as follows:

Ie�̇�e = Te − Tt (69)

where, Iw indicates the moment of inertia of tyre and wheel 𝜔 the rotational velocity

of the tyre and rw the effective radius of the tyre. Next, the governing equation of

rotational motion about the transmission shaft is expressed as follows:

It�̇�t = Tt − igTf (70)

where Ie indicates the moment of inertia of the engine, 𝜔e the rotational velocity of

the engine, and Tt the torque on the transmission side. The governing equation of

rotational motion about the driving wheel is expressed as follows:

Iw�̇� = Tf − Fxrw (71)

where, It indicates the moment of inertia of the transmission,𝜔t the rotational veoloc-

ity of the transmission, i.g. the transmission gear ratio, and Tf the torque on the driv-

ing wheel. The pictorial diagram of the tyre-wheel dynamics is shown in Fig. 34.

From the equation of longitudinal vehicle motion indicated in Eq. (66), the required

driving force to obtain the desired longitudinal motion can be calculated as follows:

4∑
i=1

Fxi = m ̇V + FR + FA + FG (72)
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Fig. 33 Flow of the accelerator pedal stroke to the torque of the driving wheel

Fig. 34 Rotational motion

of driving wheel
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If we assume that the slip ratio of the driving wheel is small in normal driving region,

the relationship between the forward velocity of the vehicle body and the driving

wheel rotational velocity can be written as follows:

̇V = rw�̇� = rwig�̇�e (73)

By using the equations of motions indicated in Eqs. (69)–(73), the relationship

between the desired vehicle acceleration and the required driving torque can be

obtained as shown in the following equation.

Te =
(

Ie + It + i2g
(
Iw + mr2w

)) ̇V
igrw

+ ig
[
rw(FR + FA + FG)

]
(74)

In the above equation, the first term refers to the driving torque to compensate the

inertia of the engine and drivetrain and the second term refers to the driving torque

to compensate the resistance of the vehicle longitudinal motion.

Upper Level
Controller

Lower Level
Controller

Vehicle
acceleration

velocity
position

sensor

Preceding 
Vehicle 
position

& velocity

Fig. 35 Architecture of Adaptive Cruise Control System
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dl

V pV

Preceding vehicleSubject (ego) vehicle

Inter-vehicle distance

Fig. 36 Variables used in car-following scene

4.2 Basic Function and Characteristics of Adaptive
Cruise Control

ACC system design can be divided into two parts: the upper level controller and

the lower level controller as shown in Fig. 35. The upper level controller is designed

to determine the acceleration that is required to follow the preceding vehicle at a

desirable headway distance with zero relative velocity. The lower level controller

is designed to determine the amount of the driving or braking torque to realize the

demand acceleration required from the upper level controller.

The upper level controller design will be described. The variables used are shown

in Fig. 36. From the current positions of the ego vehicle and the preceding vehicle,

after Tp seconds, the error of the headway distance with respect to the desired head-

way distance can be expressed as the following expression.

e =
[
(xp + TpVp) − (x + TpV) − l

]
− T∗

hwV (75)

e =
[
(xp − x − l) + Tp(Vp − V)

]
− T∗

hwV (76)

e =
[
ld + Tp

̇ld
]
− T∗

hwV (77)

Then, the controller determines the amount of acceleration which is proportional to

the error of future headway distance.

ax_des = kpe = kp
[
(ld + Tp

̇ld) − l∗d
]
= kp

(
ld − l∗d

)
+ kpTp

̇ld (78)

ax_des = HR
(
ld − l∗d

)
+ HV

̇ld (79)

where, the coefficient of headway distance error is HR = kp and the coefficient of

relative velocity is HV = kpTp. In the above equation, the first term refers to the feed-

back of headway distance error and the second term refers to the feedback of relative

velocity. Mostly, the desired headway distance can be defined as the function of ego

vehicle velocity as follows:

l∗d = T∗
hwV + ld_stop (80)
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Fig. 37 Block diagram of lower level controller of ACC system

where, ld_stop indicates the headway distance when the vehicle is stopping. In some

literatures, a nonlinear function of desired headway distance such as a quadratic func-

tion is also employed to express the desired headway distance with respect to the ego

vehicle velocity.

The acceleration model following control method can be used to design the lower

level controller as shown in Fig. 37. The feedforward controller determines the driv-

ing torque based on Eq. (74) and the feedback controller determines the compen-

satory driving torque by using the acceleration feedback control such as PI Con-

troller. The feedback controller plays a role to reduce the error of acceleration with

respect to the desired value when there are unexpected disturbances or modelling

error.

T = TFF + TFB

=
Idrivetrain

igrw
ax_des + ig

[
rw(FR + FA + FG)

]

+ Kp(ax_des − ax) +
Ki

s
(ax_des − ax)

(81)

4.3 Control Characteristics of ACC

Next, the control characteristics of the ACC-controlled vehicle velocity with respect

to the preceding vehicle velocity will be discussed. First, assuming that the lower

level controller dynamics, i.e. reference acceleration model following control, can

be approximated as first order delay system, the transfer function from the desired

acceleration to the actual acceleration can be expressed as follows:
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ax(s)
ax_des(s)

= 1
𝜏cs + 1

(82)

Using the relationship, ax = ̇V , ȧx = ̈V ,

̇ld = Vp − V and substitute all into Eq.

(79), the following equation can be obtained.

̈V = − 1
𝜏c

̇V + 1
𝜏c

[
HR(ld − l∗d) + HV (Vp − V)

]
(83)

Then, differentiating the above equation, we get,

⃛V = − 1
𝜏c

̈V + 1
𝜏c

[
HR(Vp − V − T∗

hw
̇V) + HV ( ̇Vp − ̇V)

]
(84)

Then, multiplying the whole equation with 𝜏c, we get,

𝜏c
⃛V = − ̈V +

[
HR(Vp − V − T∗

hw
̇V) + HV ( ̇Vp − ̇V)

]
(85)

Then, taking Laplace Transformation of the above equation, the following equation

can be obtained.

𝜏cs3V(s) = −s2V(s) +
[
HR(Vp(s) − V(s) − T∗

hwsV(s)) + HV (sVp(s) − sV(s))
]

(86)

Rearranging the above equation, the transfer function from the preceding vehicle

velocity to the ego vehicle velocity can be achieved as follows:

V(s)
Vp(s)

=
HVs + HR

𝜏cs3 + s2 + (HV + T∗
hwHR)s + HR

(87)

Figure 38 shows the frequency response of the ego vehicle velocity with respect to

the preceding vehicle velocity while changing the value of relative velocity feed-

back gain HV . As can be noticed from Fig. 38, increasing the value of HV improves

the damping characteristics of the car-following behaviour as the resonance peak

around the natural frequency of the closed loop control characteristics is significantly

reduced.

Next, Fig. 39 shows an example of time history of car-following behaviour by

using the proposed ACC control algorithm when changing the value of relative

velocity feedback gain HV in the situation that the preceding vehicle brakes with

a deceleration of 2 m/s
2
. As can be noticed from Fig. 39, increasing the value of HV

results in less undershoot and more responsiveness of vehicle velocity response.

From the above equation, if the time constant of the lower level controller is com-

paratively smaller than the upper level controller, the transfer function from the pre-

ceding velocity to the ego-vehicle velocity can be expressed as follows:
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V(s)
Vp(s)

=
HVs + HR

s2 + (HV + T∗
hwHR)s + HR

=
𝜔

2
n(Ts + 1)

s2 + 2𝜁𝜔ns + 𝜔

2
n

(88)

From the above transfer function, the relationship between the natural frequency of

the closed-loop control characteristics and the feedback gain of the driver model can

be expressed as follows:

𝜔

2
n = HR ⇒ 𝜔n =

√
HR (89)

From the damping term in the characteristic equation, the following relationship can

be obtained.

2𝜁𝜔n = HV + T∗
hwHR ⇒ 𝜁 =

HV + T∗
hwHR

2
√

HR

(90)

For example, if the desirable time headway is set at 2 s and the desirable damping

ratio of the closed-loop control system is set to be 1.00, the following relationship

about the ACC controller gains can be achieved.

𝜁 =
HV + T∗

hwHR

2
√

HR

⇒ 2
√

HR = HV + 2HR (91)

HV = 2(
√

HR − HR) (92)

Figure 40 shows the simulation result that ACC control system parameters are set

in the condition that realizes the critical damping ratio. It can be confirmed from

the time history that the ego vehicle can follow the preceding vehicle velocity with-

out undershoot behaviour of vehicle velocity according to the theoretical parameter

setting indicated in Eqs. (89) and (92).

4.4 Summary

This section described the theoretical design of Adaptive Cruise Control System

(ACC) aiming at controlling the vehicle velocity and following the preceding vehi-

cle at a certain headway distance. In real applications, the headway distance and the

relative velocity can be measured by using a millimeter wave radar or a stereo cam-

era. The proposed theoretical control system design can be also applied to a vehicle

platooning control. In addition, in the case of curved roadway, if the information of

road curvature can be acquired via a navigation system and digital map, the braking

manoeuvre before entering the curved road will be also combined in order to get

comfortable acceleration during car following situation on curved roadways.
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5 Lane Keeping Control System

An automated steering system is designed to support the driver lateral vehicle control

task to keep the vehicle on the desired lane based on using on-board sensor such as

a vehicle-mounted camera that detects lane markers ahead of the vehicle. This is a

convenience-targeted feature which can potentially reduce driving workload as well

as fatigue on long-time highway driving. The basic design requirements of the lane

keeping control system are as follows:

(1) The automated steering control must accomplish lane keeping task without

driver’s handling manoeuvre.

(2) The steering actuator provides suitable torque smoothly for lane keeping task.

(3) The driver can override the steering system easily if necessary.

The control input of such a steering system can be classified into the steering angle

input and the steering torque input. This subsection describes the design of lane keep-

ing control based on state-feedback control and investigates the physical character-

istics of lane keeping controller using the steering angle and the steering torque as

the control input, and compares their differences (Nagai et al. 2002). Generally, most

of researches about lane keeping control maneuver deal with steering angle control

method due to its excellent robustness to uncertainty in steering nonlinear dynam-

ics. Typically, however, in driving on highways, drivers do not hold steering wheel

with strong restraining force to prevent vehicle from course deviation. In contrast,

the steering torque control provides some degree of freedom in permitting the driver
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to steer the vehicle, thus it has potential for development as a driver assistance sys-

tem witch keeps driver-in-the-loop. Additional intervention, i.e. override by human

driver, could be performed when necessary such as emergency avoidance. There

are a number of lane keeping control methods such as methods based on geometric

and kinematic relationships, feedback control methods based on vehicle-dynamics-

model, sliding mode control methods, model predictive control methods and etc.

For learning the basic characteristics, the following section will show the design of

the lane keeping control system using the steering angle and the steering torque as

the control inputs by employing Linear Quadratic (LQ) control theory (Mouri and

Furusho 1997).

5.1 Governing Equation for Lane Keeping Control
System Design

In the design of lane keeping control system, it is important to know the position of

the vehicle with respect to the desired lane so it is more reasonable to express the

vehicle motion with the earth-fixed coordinate system. Here, the X–Y coordinates

are fixed on the ground and the equations of motions are derived based on the lateral

position and yaw angle variables. The vehicle model in the earth-fixed coordinate

V
lf

lr

Y

X

cy

2Fyf

2Fyr

r=ψ.

Fig. 41 Bicycle model in earth-fixed coordinate system
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system is shown in Fig. 41. Normally, when considering the motion of the vehicle

moving in a straight path and the front steering angle is not large, the direction of the

lateral forces acting on the front and rear tyres almost coincides with Y-direction.

The vehicle lateral and yaw motions can be expressed as below.

m
d2yc

dt2
= 2Fyf + 2Fyr (93)

Iz
d2
𝜓

dt2
= 2lf Fyf − 2lrFyr (94)

The relationship between the lateral velocity and the side slip angle and yaw angle

can be expressed as follows:

ẏc = V (𝛽 + 𝜓) (95)

Therefore, the side slip angle can be rewritten using the variables of lateral velocity

and yaw angle as follows:

𝛽 =
ẏc

V
− 𝜓 (96)

Converting the yaw rate and the side slip angle into the earth-fixed coordinate system

variables, the tyre forces can be rewritten as follows:

Fyf = Cf

(
𝛿f −

lf
V
�̇� −

(
ẏc

V
− 𝜓

))
(97)

Fyr = Cr

(
lr
V
�̇� −

(
ẏc

V
− 𝜓

))
(98)

Then, the vehicle motion in the earth-fixed coordinate system can be expressed as

follows:

mÿc = 2Cf

(
𝛿f −

lf
V
�̇� + 𝜓 −

ẏc

V

)
+ 2Cr

(
lr
V
�̇� + 𝜓 −

ẏc

V

)
(99)

Izz�̈� = 2lf Cf

(
𝛿f −

lf
V
�̇� + 𝜓 −

ẏc

V

)
− 2lrCr

(
lr
V
�̇� + 𝜓 −

ẏc

V

)
(100)

As similar to the previous section, to apply the modern control theory on the vehicle

motion control problem, Eqs. (99) and (100) can be arranged in the form of state-

space equation comprising of four state variables as follows:
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⎡⎢⎢⎢⎣

�̈�

�̇�

ÿc
ẏc

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

a11e a12e a13e 0
1 0 0 0

a31e a32e a33e 0
0 0 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�̇�

𝜓

ẏc
yc

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

b11e
0

b31e
0

⎤⎥⎥⎥⎦
𝛿f (101)

Ẋ = AX + B
f
𝛿f , X =

[
�̇� 𝜓 ẏc yc

]T
(102)

where each element in the matrices are shown as follows:

a11e = −
2(l2f Cf + l2r Cr)

IzV
, a12e =

2(lf Cf − lrCr)
Iz

, a13e = −
2(lf Cf − lrCr)

IzV
,

a31e = −
2(lf Cf − lrCr)

mV
, a32e =

2(Cf + Cr)
m

, a33e = −
2(Cf + Cr)

mV
,

b11e =
2lf Cf

Iz
, b31e =

2Cf

m

5.2 Lane Keeping Control with Steering Angle Input

A lane keeping control system where the steering wheel angle is used as the control

input is referred as steering angle control. Using a simplified linear two-wheel model

in the planar motion as shown in Fig. 41 and the state space equation in Eq. (101),

we can rewrite the state space equation as follows:

⎡⎢⎢⎢⎣

�̈�

�̇�

ÿcr
ẏcr

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

a11e a12e a13e 0
1 0 0 0

a31e a32e a33e 0
0 0 1 0

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�̇�

𝜓

ẏcr
ycr

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

b11e∕n
0

b31e∕n
0

⎤⎥⎥⎥⎦
𝛿sw (103)

where n indicates the steering gear ratio. The state variables of the state space equa-

tion are the vehicle position and attitude with respect to the desired lane. The sub-

script r refers to the relative variables. In the design of lane keeping control, all

variables are regulated to zero in the form of general regulator problem. Here, in the

case of straight path, the desired lateral displacement is a constant value along the

desired lane, thus the lateral deviation is expressed as:

ycr = yc − y∗c (104)

where y∗c denotes the desired lateral displacement, and the desired lateral velocity,

the desired yaw angle and the desired yaw rate are zero.

An example of lane keeping control algorithm design using an optimal regulator

is to determine the steering angle input in a form of full state feedback as follows:



Advanced Chassis Control and Automated Driving 293

𝛿sw = −(K
�̇�

�̇� + K
𝜓

𝜓 + Kẏẏcr + Kyycr) (105)

The feedback gains are determined theoretically in order to minimize the perfor-

mance index or cost function J in the form of integral of linear quadratic terms of

the steering wheel angle and the state variables indicated in Eq. (106).

J =
∞

∫
0

(
q1�̇�2 + q2𝜓2 + q3ẏ2cr + q4y2cr + 𝛿

2
sw
)

dt (106)

where, q (i = 1 ∼ 4) denotes the weighting coefficient of the state variables and r
indicates that of the steering wheel angle input. This control theory is also known

as Linear Quadratic (LQ) Regulator. In the simplified case, the cost function on the

lateral deviation is the most important in the case of lane keeping control, therefore

the cost function can be written as

J =
∞

∫
0

(
qy2cr + 𝛿

2
sw
)

dt (107)

Larger value of q results in small lateral deviation during lane keeping. In addition

to the weighting coefficient of the lateral deviation, the weighting coefficients of the

other state variables can also be added to achieve desirable performance depending

on the controller designers.

From the linear quadratic (LQ) control theory, the feedback gains shown in Eq.

(105) can be calculated as shown in the following equation.

K = −R−1BTP (108)

P is the matrix solution of the Riccati equation shown in Eq. (109) based on optimal

control theory.

PA + ATP − PBR−1BTP + Q = 0 (109)

Figure 42 shows the simulation results of lane keeping control of a passenger car

with respect to the desired step lane given at the time t = 1 s and a velocity of 100

km/h. The control algorithm is LQ regulator, and the linear two-wheel vehicle model

is used in the simulation. Increasing the value of weighting coefficient q provides

better lane tracking. On the other hand, the steering wheel angle becomes larger,

which means that more energy consumption of steering actuator is needed for lane-

tracking performance enhancement.

Figure 43 shows the frequency response of lateral displacement with respect to

the desired lane when increasing the value of the weighting coefficient of lateral

deviation q. As can be noticed from Fig. 43, increasing the weighting coefficient of

lateral deviation results in better lane keeping performance as the gain is close to 1

up to higher frequency region and the phase delay is also improved.
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10
-2

10
-1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

10
-2

10
-1

10
0

10
1

-200

-150

-100

-50

0

Frequency [Hz]

Frequency [Hz]

Ph
as

e 
de

la
y 

[d
eg

]
G

ai
n 

[-] )(
)(

* sy
sy

c

c q larger

q larger

Fig. 43 Frequency response of lateral displacement with respect to the desired lane



Advanced Chassis Control and Automated Driving 295

5.3 Lane Keeping Control with Steering Torque Input

A lane keeping control system where the steering torque is used as the control input

is referred as steering torque control. In this case, the steering system as shown in

Fig. 44 becomes necessary in modeling the vehicle plant. In this paper, the steering

system is configured such that the self-aligning torque (abbreviated as SAT) of the

front tyre is transmitted directly to the steering wheel via the steering gear. In this

case, the governing equation of steering system can be expressed as follows:

Is
̈

𝛿sw = −Cs
̇

𝛿sw −
2𝜉Cf

n

(
𝛿sw

n
−

lf
V
�̇� + 𝜓 −

ẏcr

V

)
+ Ta (110)

where, the left hand side term refers to the inertia, the right hand side terms refers

to the viscous damping, the reaction torque from SAT, the steering assist torque

supplied by the steering actuator, respectively.

Therefore, the model of the control object becomes the 6th order system as

follows:

Steering actuator

Steering wheel

Steering 
gear n

sw
f

δδ =

sI

sC

ξTrail

n

Self-aligning torque
(SAT)

aT

Fig. 44 Simplified steering model for lane keeping control with steering torque input
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⎡⎢⎢⎢⎢⎢⎢⎣

�̈�

�̇�

ÿcr
ẏcr
̈

𝛿sw
̇

𝛿sw

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

a11e a12e a13e 0 0 b11e∕n
1 0 0 0 0 0

a31e a32e a33e 0 0 b31e∕n
0 0 1 0 0 0

a51e a52e a53e 0 a55e a56e
0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

�̇�

𝜓

ẏcr
ycr
̇

𝛿sw
𝛿sw

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

b51e
0

⎤⎥⎥⎥⎥⎥⎥⎦

Ta (111)

where, the elements in the fifth row of the state space equation are determined from

the governing equation of the steering system as follows.

a51e =
2𝜉Cf lf
IsnV

, a52e = −
2𝜉Cf

Isn
, a53e =

2𝜉Cf

IsnV
,

a55e = −
Cs

Is
, a56e = −

2𝜉Cf

Isn2
, b51e =

1
Is

In this case, for the design of lane keeping controller with steering torque input, the

control input can be expressed as the following full state feedback law, including the

feedback of steering wheel angular velocity and steering wheel angle.

Ta = −
(
K
�̇�

�̇� + K
𝜓

𝜓 + Kẏẏcr + Kyycr + K
̇

𝛿

̇

𝛿sw + K
𝛿

𝛿sw
)

(112)

Here, as in the same manner with the case of steering angle control input, the feed-

back gains are determined with the application of the optimal control theory, i.e.

Linear Quadratic (LQ) regulator, which aims to minimize the following performance

index.

J =
∞

∫
0

(
qy2cr + T2

a
)

dt (113)

As same as the case of the steering angle control, the simulation is conducted.

Figure 45 shows the simulation results of lane keeping control with steering torque

input of a passenger car with respect to the desired step lane given at the time t = 1 s

and a velocity of 100 km/h. As similar to the case of lane keeping control with steer-

ing angle input, increasing the value of weighting coefficient q provides better lane

keeping performance. On the other hand, the steering torque input becomes larger,

which means that more energy consumption from the steering actuator is needed for

lane keeping performance enhancement.
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Fig. 45 Simulation results of lane keeping control of a passenger car with steering torque input

5.4 Comparison of Steering Angle Control and Steering
Torque Control

As shown in the previous subsection, both lane keeping control system with steering

angle input and steering torque input act on the vehicle in the same way when the

lane keeping control maneuver is accomplished with the optimal regulator. How-

ever, the control system structure of the two approaches differs from each other. The

structures of lane keeping control systems in the case of steering angle and steering

torque input are shown in Fig. 46 and Fig. 47 respectively. In the case of lane keeping

control with steering angle input, since the actual steering angle must correspond

to the command steering angle, the steering wheel angle control unit is designed

independently of the vehicle lane keeping control. On the other hand, in the case of
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Self-aligning torque (SAT)
acting as a disturbance to the steering system

Vehicle

Steering wheel
angle

Steering 
torque

Lane keeping 
controllerSteering wheel angle command

Steering wheel 
angle servo

VehicleSteering
system

Vehicle motion 
state variables

Steering wheel angle 
controller (minor loop)

Fig. 46 Structure of lane keeping control with steering angle input

Self-aligning torque (SAT)
considered in the controller design

Vehicle

Steering wheel
angleSteering torque command

Lane keeping 
controller

VehicleSteering
system

Vehicle motion 
state variables

Steering wheel
angular velocity

Driver steering torque
(override)

+
+

Fig. 47 Structure of lane keeping control with steering torque input allowing override by driver

steering torque input, the steering angle control and the vehicle motion control for

lane keeping are designed together as the steering torque feedback control input is

determined based on steering system dynamics including the characteristics of self-

aligning torque (SAT). Therefore, in the case of steering angle control, any torques

added to the steering system including the SAT and the driver steering torque input

are all treated as external disturbances. On the other hand, in the steering torque

input, SAT is not treated as an external disturbance, since it has been included in the

system modeling when the feedback gains are determined. From the viewpoint of

driver assistance systems, the lane keeping control with steering torque input allows

the driver to override the automated lane keeping control system such as in the case

that the lane-change manoeuvre or obstacle avoidance manoeuvre must be executed

by the driver if necessary. However, in real steering systems, there are nonlinear char-

acteristics, such as coulomb friction in the steering and the hysteresis between the

lateral acceleration and the steering torque, which are not considered in the model

for lane keeping controller design. Therefore, the lane keeping control using steering

torque input needs to be carefully designed considering such nonlinear characteris-

tics to secure the lane keeping control performance.
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5.5 Summary

This section described the design of automated lane keeping control by the front

steering input, in the cases of steering angle and steering torque input. It was found

that both steering angle control and steering torque control approach equivalent char-

acteristic in lane keeping control via an analysis by using the optimal linear quadratic

control theory. From the viewpoint of the control structure, the steering angle control

treats self-aligning torque as an unknown disturbance, so the additional minor loop

control of steering servo is needed to follow the steering angle command from the

upper-level lane keeping controller. On the other hand, the steering torque control

approach takes the characteristics of self-aligning torque into account, thus it does

not need the minor loop control in the design of lane keeping control. In the case of

steering torque input, the driver steering torque is allowed to override the system if

necessary, thus the system characteristics fits the specification of a driver assistance

system.

6 Direct Yaw Moment Control for Lane Keeping Functions

This section presents an alternative function of DYC which plays a role in enhanc-

ing vehicle safety. Here, an alternative lane keeping control strategy with direct

yaw moment control which utilizes the transverse driving torque distribution will

be described (Raksincharoensak et al. 2006). It is presumed that the information of

road position can be acquired by current technologies such as a vision system using

a CCD camera together with an on-board image processing system. As a feature of

the proposed control law, the lateral deviation detected by CCD camera is converted

into the desired yaw rate for tracing the desired lane. Then, DYC input is theoretically

determined to follow the desired yaw rate. The theoretical analysis of lane keeping

control characteristics using the 2-DOF linear vehicle model on planar motion will

be presented, and an experimental study using a small-scale electric vehicle will be

demonstrated to verify the effectiveness of the proposed strategy.

6.1 Introduction

This section describes a new lane keeping control strategy for enhancing active safety

of automobiles, as one of advanced driver assistance system functions (ADAS).

As one of active chassis control systems to enhance vehicle handling and stability,

the individual wheel torque distribution control of electric vehicle by utilizing in-

wheel-motors in order to achieve direct yaw moment control (DYC) input has been

theoretically studied and experimentally examined as shown the previous section for

reducing the vehicle side slip angle. On the other hand, in the field of automated
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driving and driver assistance systems, lane keeping control systems to prevent lane

departure accidents have been studied extensively. As shown in the previous section,

the lane keeping control with the steering angle and the steering torque input can

be conducted based on the lane marker position information acquired by a cam-

era. Besides the steering control device, transverse distribution of braking forces as

an extension of ABS device has potential to prevent vehicle from lane departure in

emergency case by providing yaw moment to change the vehicle orientation and thus

reduce the time-to-lane-crossing, i.e. risk of lane departure. This section considers

that if DYC with differential driving torques generated by electric motors can be

effectively used for lane keeping, the existing hardware of electric vehicle can be

used while the steering system remains intact for the driver to have full authority

in control. The aspect of lane keeping control system with DYC input is theoreti-

cally described and the effectiveness of the proposed control system is verified by

the experiments using the small-scale electric vehicle.

6.2 Lane Keeping Control System Design

The control objective of lane keeping is to regulate the lateral deviation of vehicle

with respect to the given desired lane. This means that lane keeping control behaviour

is equivalent to the lateral acceleration control. However, DYC is practically a strat-

egy, which uses tyre longitudinal forces to directly control yaw motion, thus it is more

suitable to control the yaw rate instead of the lateral acceleration. Here an alternative

algorithm for lane keeping control by applying yaw rate matching control is proposed

to fulfil the task of lane keeping functionality.

Here, the idea of the 2nd order predictive model for calculating the desired yaw

rate based on the information from CCD camera is used. As shown in Fig. 48, From

Taylor’s 2nd order expansion, the predicted lateral displacement at the distance in

front of vehicle of ls can be expressed as follows:

yc(t + Δt) = yc(t) + Δt ⋅ ẏc(t) +
(Δt)2

2
⋅ ÿc(t) (114)

Fig. 48 Vehicle model in

earth-fixed coordinate

system for control system

design
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Δt =
ls
V

(115)

As the objective of lane keeping control, the desired lateral displacement at pre-

view point and the predicted lateral displacement must be equal (yc(t + Δt) = y∗s (t)).
Consequently, the required lateral acceleration for lane keeping can be calculated as

follows:

ÿc(t) =
2V2

l2s

[
y∗s (t) −

(
yc(t) + ls

ẏc(t)
V

)]
= −2V2

l2s
ysr(t) (116)

When the body side slip angle is negligible, the kinematics relationship between yaw

rate and lateral acceleration can be expressed as follows:

ÿc(t) = V( ̇𝛽(t) + r(t)) ≈ Vr(t) (117)

By substituting Eq. (117) into Eq. (116), the desired yaw rate for lane keeping control

can be obtained as follows:

r(t) = −2V
l2s

ysr(t) (118)

In the case of curved lane tracking, the yaw rate according to the road curvature 𝜌

must be included.

Yaw rate at curved lane ∶ rc(t) =
V
𝜌(t)

(119)

Total yaw rate ∶ rd(t) = r(t) + rc(t) = −2V
l2s

ysr(t) +
V
𝜌(t)

(120)

where, the turning radius of the desired path 𝜌 can be estimated in real time from

the vision information and vehicle lateral dynamics model with the application of

Kalman filter. To make the vehicle trace the desired yaw rate, the yaw moment con-

troller calculates the direct yaw moment control input by using linear inverse dynam-

ics. The transfer function from the yaw moment input to the yaw rate can be calcu-

lated as follows:

r(s) =
a1M + a0M

s2 + b1s + b0
Mdyc(s) (121)

where, each coefficient can be expressed as follows:

a1M = 1
Iz
, a0M =

2(Cf + Cr)
mIzV

,

b1 =
2(Cf + Cr)

mV
+

2(l2f Cf + l2r Cr)
IzV

, b0 =
4l2Cf Cr

mIzV2 −
2(lf Cf − lrCr)

Iz

With the inverse transfer function of Eq. (121), the yaw moment input for tracing the

desired yaw rate can be theoretically calculated as follows:



302 M. Nagai and P. Raksincharoensak

cy
*
sy Vehicle

model

sl

ψ

+

+

+

_ d Mr Yaw rate
Model

Following
control

Desired 
course

Lateral disp.
at CG

Yaw angle

Preview lateral disp. sy

sry Desired
yaw rate

model

Traction
torque

distribution

mrl

dyc

T

mrrT

Lane Keeping Controller

Fig. 49 Block diagram of lane keeping control system by DYC

Mdyc(s) =
s2 + b1s + b0

(a1Ms + a0M)(𝜏0s + 1)
rd(s) (122)

where, 𝜏o denotes the time constant of 1st order lag element to make the transfer

function of the controller become proper.

Practically, the yaw moment input is generated by the differential driving torque

between left and right wheels. The driving torque of each motor can be calculated

as follows:

Left wheel ∶ Tm3(t) = Tst(t) −
rw

lw
Mdyc(t) (123)

Right wheel ∶ Tm4(t) = Tst(t) +
rw

lw
Mdyc(t) (124)

where, Tst indicates the driving torque required for straight running and rw indicates

the effective radius of the wheel. The block diagram of the proposed lane keeping

control system is shown in Fig. 49.

6.3 Experimental Validation

Experiments on Straight Roadway
The structure of the electric-vehicle-based experimental vehicle used for lane keep-

ing control system verification is shown in Fig. 50. First, the validity of the pro-

posed lane keeping control system was proved on straight roadway with a small lane

change course as shown in Fig. 51. Figure 52 shows the experimental results in the

case of straight lane. The vehicle ran straight and accelerated to velocity of 25 km/h

and passed through the course shifting region without driver’s corrective steering.

Figure 52 shows the time history of preview lateral deviation measured from the

CCD camera, the vehicle yaw rate, the front steering angle, the DYC input and the
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Image processing
board

Fig. 50 System configration in micro-scale electric vehicle

15m

0.5 m

Vehicle speed V=25km/h

Lane markerAccel. to 25 km/h 15m

0.5 m

Vehicle speed V=25km/h

Lane markerAccel. to 25 km/h

Fig. 51 Course layout for system validation (straight roadway)

in-wheel-motor torques. The measured yaw rate shows good consistency with the

desired yaw rate, which means the yaw moment controller by yaw rate matching

control method is effective. The in-wheel-motor torques shows that the individual

wheel torque control was actually realized. Figure 53 shows the trajectory of vehicle

centre of gravity, which shows that the vehicle actually traced the set course by the

proposed DYC.

Experiments on Curved Roadway
Next, the validity of the proposed lane keeping control system was proved on curved

roadway with constant radius of curvature of 100 m at velocity of 35 km/h. During

tracing the curved roadway, the driver did not hold the steering wheel. The experi-

mental data is shown in Fig. 54.

Figure 54 shows the time responses of the preview lateral deviation, the

vehicle yaw rate, the estimated road curvature, the DYC control input, the in-wheel-

motor torques. The lateral deviation was suppressed under 50 cm, which was quite
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Fig. 52 Experimental results of straight lane keeping with DYC (V = 25km/h)

Fig. 53 Vehicle trajectory

during lane keeping

experiment

satisfactory. The vehicle yaw rate in steady state traced the reference value well.

The estimated road curvature was satisfactorily consistent with the reference road

curvature.
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Fig. 54 Lane keeping result on curved roadway with constant radius of 100 m (velocity = 35 km/h)

6.4 Summary

This paper examined the feasibility of the automated lane keeping control strategy

with direct yaw moment control (DYC) input generated by differential transverse

driving torques of in-wheel-motors, which is a structural merit of electric vehicle.

The direct yaw moment control (DYC) system was designed to follow the desired

yaw rate, which was determined from lane marker position information acquired by

vision system. From the experimental validation, it was proved that the proposed
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desired yaw rate determination and the yaw rate model matching control for lane

keeping task was valid in actual driving. In addition, in the case of curved lane, since

the desired yaw rate must be corrected due to road curvature, so the road curvature is

estimated based on the information of preview lateral deviation considering vehicle

dynamics in planar motion. As a result, the vehicle can perform lane keeping on

curved lane with small lateral deviation.

7 Conclusion

As a great progress in automotive electronic control units in production cars, chas-

sis control technology together with automated driving system for driver assistance

systems have been developed and put in current production cars. This chapter pro-

vided an overview of the advanced chassis control systems aiming for enhancing

vehicle handling and stability followed with the automated driving functions of intel-

ligent vehicles in longitudinal and lateral vehicle dynamics, by employing the linear

two-wheel vehicle dynamics model. In the controller design, classical control the-

ory based on transfer function method or modern control theory based on optimal

linear quadratic (LQ) control theory can be used depending on the control applica-

tions. Designing driver-friendly active vehicle dynamics control systems is a very

important issue, for example, make the system easy for the driver to override the

system or the system can support the driver to control the vehicle easier. Adaptive

Human-Machine Interface (HMI) is also required to make man-machine closed-loop

characteristics stable and realize good driver acceptance.
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Multibody Systems and Simulation
Techniques

Georg Rill

Abstract This part begins with an introduction to Multibody Systems (MBS). It

presents the elements of MBS and discusses different modeling aspects. Then, differ-

ent methods to generate the equations of motion are presented. Solvers for ordinary

differential equations (ODE) as well as differential algebraic equations (DAE) are

discussed. Finally, techniques for “online” and “offline” simulations including real-

time applications are presented like necessary for car development. Special examples

show the connection between simulation and test results.

Keywords Multibody systems ⋅ Vehicle models ⋅ Equations of motion

Differential equations ⋅ Numerical solution

1 Multibody Systems

1.1 The Multibody Systems Approach to Vehicle Dynamics

For dynamic simulation, vehicles are usually modeled by multibody systems (MBS),

Jagt (2000). Typically, the overall vehicle model is separated into different subsys-

tems, Rauh (2003). The components of a passenger car model that can be used to

investigate handling and ride properties are shown in Fig. 1. A generic vehicle model

consists of the vehicle framework and subsystems for the steering system and the

drive train. It must be supplemented by an approriate model for the tire road interac-

tion. The vehicle framework represents the kernel of the model. It at least includes

the module chassis and modules for the wheel/axle suspension systems.

For standard vehicle dynamics analysis, the chassis can be modeled by one rigid

body, Blundell and Harty (2004). The first eigenmodes of the chassis consist of tor-

sion and bending. These modes can be approximated by a lumped mass model where

the chassis is divided into three parts, Fig. 2. Software packages like MSC.Adams,

Simpack or Recurdyn make it possible to describe the chassis by sophisticated Finite
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Fig. 1 Structure of a

generic vehicle model

Fig. 2 Lumped mass

chassis model

Element Models. But that requires a detailed knowledge of the internal chassis

structure. Hence, for basic studies the rigid body or lumped mass approach will be

more appropriate.

Most wheel/axle suspension systems can be described by typical MBS elements

such as rigid bodies, links, joints, and force elements, Rill (1994). Analytical models

of a double whisbone suspension and a MacPherson axle suspension can be found

in Rill (2012) and Rill and Schaeffer (2014). A purely kinematic suspension model

consists of ideal joints, rigid links, and force elements describing the coil spring,

and the damper, Fig. 3. However, relevant bushing compliancies must be taken into

account for detailed investigations of handling and ride properties, Seibert and Rill

(1998). For that purpose, a hierarchic model structure of the wheel suspension may

be provided. Depending on the objectives and on the availability of data the user

can activate a purly kinematic, a comfort, or a comfort and handling model. The

corresponding model types for a quadra-link rear axle suspension system are shown

in Fig. 4. On most cars the wheel suspension system is attached to a subframe that

is elastically mounted to the chassis, Fig. 5. A double whisbone suspension system
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Fig. 3 Kinematic suspension models

Fig. 4 Hierarchic structure of a suspension system

then consists of two knuckles, two wheels, two lower and two upper wishbones, and

one subframe. These bodies, modeled rigid or flexible, are attached to each other by

several bushings. Rubber elements connect the subframe to the chassis. Spring and

damper elements control the hub motion of each wheel.

Usually the suspension spring and the suspension damper are modeled as non-

linear force elements characterized by

FS = FS(u) and FD = FD(v) (1)

as functions of the spring displacement u and the damper velocity v respectively.

Depending on the layout of the suspension the spring and/or the damper incorporates

bump and rebound stops that are described by additional non-linear force character-

istics. Torsional compliances in the bushings between the wishbones and the sub-

frame or the chassis generate additional or parasitic stiffness and damping effects.

In most cases the damper is mounted elastically to the chassis. The damper top-

mount combination results in a dynamic force characteristic then. Last but not least,

the anti-roll bar couples out of phase movements of the left and right knuckle, Fig. 6.

Today luxury cars offer active anti-roll bars that increase ride comfort and ride savety

simultaneously.

The vehicle framework is supplemented by modules for the load, an elastically

suspended engine, passenger/seat models, and optionally a model for the trailer, Rill
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Fig. 5 Sophisticated model of a double whishbone suspension system

Fig. 6 Double whishbone

suspension system with

anti-roll bar

and Chucholowski (2004). A simple load module just takes the mass and inertia

properties of the load into account. The subsystems elastically suspended engine and

complex passenger/seat models can all be handled by a generic free-body model, Rill

(2006a).

The steering system, shown in Fig. 7, consists of the steering wheel, an optional

overriding gear, a flexible steering shaft, and the steering box, which may also be

power-assisted, Rill and Chucholowski (2005b). A very sophisticated model of the

steering system that includes compliancies, dry friction, and clearance can be found

in Neureder (2002). Today, the power assistance is usually provided by an electric

motor.
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Fig. 7 Steering model including power assistance

The drive train model described in Rill (2006a) takes lockable differentials into

account, and it combines front-wheel, rear-wheel, and all-wheel drive, Fig. 8. The

drive train is supplemented by a module describing the engine torque. It may be

modeled quite simply by a first-order differential equation or by enhanced engine

torque modules.

Tire forces and torques have a dominant influence on vehicle dynamics. In par-

icular the wheel dynamics strongly depends on the tire model, Rill (2007). Usually,

semi-empirical tire models are used for vehicle handling analysis. They combine

a reasonable computer runtime performance with sufficient model accuracy. Com-

plex tire models are valid even for high frequencies and on really rough roads. But,

they are computer time consuming and therefore used in special investigations only.

The “Tyre Model Performance Test (TMPT)” provides information about the effi-

ciency and problems of tire modeling and parameterization as well as the integra-

tion in standard multibody system program codes, Lugner and Plöchl (2007). The

semi-empirical tire model “TMeasy” that is part of the Simpack Automotive pack-

age meets the requirements of both user friendliness and sufficient model accuracy,

Rill (2013a).

Road irregularities and variations in the coefficient of friction present significant

impacts on the vehicle. Therefore a road model must at least provide the road height

and the local friction coefficient, Butz et al. (2004).

Besides that, a driver model is needed to operate the vehicle. Even rather sim-

ple driving maneuvers, like a step-steer input or braking in a turn, require at least a

simple drive torque controller to maintain the given speed. The maneuvers steady

state cornering, lane change, double lane change, or driving along a given path,

demand for a driver model that controls the steer input and the drive torque

simultaneously.
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Fig. 8 Generic drive train model

1.2 Position and Orientation

If the chassis is supposed to be a rigid body, one coordinate system fixed to the

vehicle body will be sufficient to describe the overall motions of the vehicle, Fig. 9.

The vehicle-fixed system V is located in the center C in general. Its xV -axis points

forward, the yV -axis to the left, and the zV -axis upward, which will correspond with

the definitions in the ISO 8855 directive. In complex vehicle models it is often more

convenient to attach the vehicle-fixed axis system V to a representative chassis point

rather than to the center of gravity of the vehicle, because the latter will change with

different loading conditions. The earth-fixed system 0 with the axis x0, y0, z0 serves

as inertial reference frame. Its origin 0 lies in a reference ground plane and its z0-axis
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Fig. 9 Position and

orientation of the vehicle

body

will point in the opposite direction of the gravity vector g. The vector r0C pointing

from 0 to C describes the momentary position of the vehicle then.

The orientation of the vehicle-fixed axis system V with respect to the inertial

frame 0 can be described by a rotation matrix A0V that is defined by a sequence

of three elementary rotations. In vehicle dynamics the angles 𝜓 , 𝜃, and 𝜙 which

represent the yaw, the pitch, and the roll motion of the vehicle body are used for that

purpose.

The first rotation about the z0 = zI-axis defines the intermediate axis system with

xI and yI parallel to the horizontal ground.

The wheel consists of the tire and the rim. Handling tire models simplify the

contact patch by a local plane, which is represented by the contact point P and an

unit vector en perpendicular to this plane. The rim is mounted at the wheel carrier or

knuckle. The suspension system, consisting of force and guidance elements, attaches

the wheel carrier to the chassis. Depending on the type of suspension system, the

wheel carrier and the attached wheel can perform a hub motion z and optionally a

steering motion 𝛿, Fig. 10.

To describe the position and orientation of the wheel carrier or knuckle and the

wheel, a reference frame with the axes xK , yK , zK is fixed to the wheel carrier. The

origin of this axis system is supposed to coincide with the wheel center M. The

position and the orientation of the wheel carrier depend on the hub motion z and

optionally on the steer motion 𝛿. In design position, the corresponding axes of the

Fig. 10 Position and orientation of wheel carrier and wheel
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Fig. 11 Design position of

wheels

frames K and V are supposed to be parallel. The wheel itself rotates with the angle

𝜑 about an axis that is determined by the unit vector eyW , Fig. 10.

1.3 Design Position

The design position of a wheel center M is roughly
1

determined by the wheelbase

a = a1 + a2 and the track widths s1, s2 at the front and rear axles, Fig. 11. If left/right

symmetry is assumed, then the position vector

rFM,D =
⎡
⎢
⎢
⎣

a1
s1∕2

−h + rS

⎤
⎥
⎥
⎦

(2)

denoted in the vehicle-fixed reference frame V will define the design position of

the front left wheel center M relative to the vehicle center C. Here, h denotes the

height of the vehicle center C above the ground and rS names the static tire radius,

which takes the tire deflection caused by the weight of the vehicle into account. By

changing the sign in the second component
(
s1∕2 → −s1∕2

)
, Eq. (2) applies for the

right front wheel too. Finally, the design position of the rear wheels is obtained by

replacing a1 and s1 by −a2 and s2, respectively.

Usually, the wheel rotation axis, which is described by the unit vector eyW , will

not coincide with the yK-axis, which is part of the corresponding axis system located

in the wheel center M and fixed to the knuckle, Fig. 12. The orientation of the unit

vector eyW can be defined either by the angles 𝛿0 and 𝛾0, or by 𝛿0 and �̂�0, where

𝛿0 is the angle between the yV -axis and the projection line of the wheel rotation

axis into the xV yV -plane. The angle �̂�0 describes the angle between the yV -axis and

the projection line of the wheel rotation axis into the yV zV -plane, whereas 𝛾0 is the

angle between the wheel rotation axis eyW and its projection into the xK-yK-plane.

Toe-in and a positive camber angle are indicated by 𝛿0 > and 𝛾0 > 0 or �̂�0 > 0 at the

1
Note: The track width is defined as the distance of the contact points at an axle. On cambered

wheels, the distance of the wheel centers is slightly different.
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Fig. 12 Design position of wheel rotation axis

left wheel. In the design position, where the corresponding axis of the vehicle-fixed

axis system V and the knuckle-fixed coordinate system K are parallel, one gets by

inspecting Fig. 12,

eyW,V = eyW,K = 1
√

tan2 𝛿0 + 1 + tan2 �̂�0

⎡
⎢
⎢
⎣

tan 𝛿0
1

− tan �̂�0

⎤
⎥
⎥
⎦

(3)

On the other hand, applying a series of elementary rotations results in

eyW,V = eyW,K =
⎡
⎢
⎢
⎣

sin 𝛿0 cos 𝛾0
cos 𝛿0 cos 𝛾0

− sin 𝛾0

⎤
⎥
⎥
⎦

(4)

On a flat and horizontal road where the track normal en points in the direction of

the vertical axis zK = zV , the angles 𝛿0 and 𝛾0 correspond to the toe angle and the

camber angle, respectively. To specify the difference between 𝛾0 and �̂�0, the ratio

between the third and second component of the unit vector eyW is considered now.

Equations (3) and (4) deliver

− tan �̂�0
1

=
− sin 𝛾0

cos 𝛿0 cos 𝛾0
or tan �̂�0 =

tan 𝛾0
cos 𝛿0

(5)

Hence, for small angles 𝛿0 ≪ 1, the difference between the angles 𝛾0 and �̂�0 is hardly

noticeable. Kinematics and compliance test machines usually measure the angle �̂�0.

That is why the automotive industry mostly uses this one instead of 𝛾0 to determine

the orientation of the wheel rotation axis in the design position.

Often the position of the wheel rotation axis is defined by the wheel center M and

an additional point D which is called “wheel alignment point”. If this point is located

inside the wheel center, then the unit vector pointing in the direction of the wheel

rotation axis is given by

eyW,V =
rCM,V − rCD,V
|
|rCM,V − rCD,V

|
|

(6)
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where the vectors rCM,V and rCD,V describe the design position of the wheel center M

and the wheel alignment point D relative to the origin C of the vehicle-fixed reference

frame V .

1.4 Kinematics

According to Fig. 10, the absolute position of the wheel carrier or knuckle is defined

by the vector

r0M,0 = r0C,0 + A0V rCM,V (7)

where the vector r0C,0 and the rotation matrix A0V define the momentary position of

the chassis center C and the orientation of the vehicle-fixed frame V with respect

to the inertial frame 0. The vector rCM,V describes the momentary position of the

knuckle fixed reference point M with respect to C and its components are expressed

the vehicle-fixed frame V which is indicated by the corresponding comma separated

index. The multiplication with the rotation matrix A0V transforms a vector via

rCM,0 = A0V rCM,V (8)

from the system V into the system 0. As the rotation matrix is orthonormal

AT
0V A0V = A0V AT

0V = I and A−1
0V = AT

0V (9)

will hold, where I denotes the corresponding matrix of identity.

Even if the knuckle performs only hub motions relative to the chassis the suspen-

sion kinematics will cause the knuckle to rotate as more or less requested. Hence, the

absolute orientation of the knuckle-fixed reference frame is defined by the rotation

matrix

A0K = A0V AVK (10)

where the rotation matrix AVK defines the orientation of the knuckle-fixed system K

relative to the vehicle-fixed frame V.

A three-dimensional vehicle model consists at least of the chassis, 4 knuckles and

4 wheels. The chassis has 6 degrees of freedom, each knuckle can perform at least a

hub motion and each wheel an angular rotation. Describing the steering motions at

the front and optionally at the rear axle by the rack displacements at front and rear,

the three-dimensional vehicle model has f = 6 + 4 + 4 + 2 = 16 degrees of freedom

then. The generalized coordinates that are required to describe the free motions are

usually collected in the vector y. Then

r0i,0 = r0i,0(y) and A0i = A0i(y) (11)

will hold for body i of the vehicle model or a multibody system in general.
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The velocity with which body i is moving relative to the inertial system 0 is deter-

mined by the time derivative of the position vector defined in Eq. (11)

v0i,0 = d
dt

r0i,0(y) = ṙ0i,0(y) =
f∑

m=1

𝜕r0i,0(y)
𝜕ym

ẏm = v0i,0(y, ẏ) (12)

where

𝜕r0i,0(y)
𝜕y

=
[
𝜕r0i,0(y)
𝜕y1

𝜕r0i,0(y)
𝜕y2

⋯
𝜕r0i,0(y)
𝜕yf

]

(13)

denotes the 3 × f -Jacobian matrix of the translational motion of body i.
The time derivative of the rotation matrix multiplied by its transposed results in

a skew-symmetric matrix

�̃�0i,0 = d
dt

(
A0i,0(y)

)
AT
0i,0(y) =

f∑

m=1

𝜕A0i(y)
𝜕ym

ẏm AT
0i,0(y) = �̃�0i,0(y, ẏ) (14)

Its essential components

�̃�0i,0 =
⎡
⎢
⎢
⎣

0 −𝜔0i,0(3) 𝜔0i,0(2)
𝜔0i,0(3) 0 −𝜔0i,0(1)

−𝜔0i,0(2) 𝜔0i,0(1) 0

⎤
⎥
⎥
⎦

(15)

define the vector of the angular velocity 𝜔0i,0 =
[
𝜔0i,0(1), 𝜔0i,0(2), 𝜔0i,0(3)

]T
with

which the body-fixed axis system i rotates relative to the earth-fixed axis system 0.

A direct calculation shows that

�̃�0i,0 r
,0 = 𝜔0i,0 × r

,0 (16)

holds for any vector r
,0, which means that the multiplication of the skew-symmetric

matrix of the angular velocities can be replaced by the corresponding vector- or

cross-product.

Depending on the kind of constraints, the algebraic representation of the velocity

vector v0i,0 = v0i,0(y, ẏ) and the vector of the angular velocities 𝜔0i,0 = 𝜔0i,0(y, ẏ) may

become very complex. However, significant simplifications are possible if the time

derivative of the vector of the generalized coordinates ẏ is replaced via

ẏ = K(y) z (17)

by a corresponding vector of generalized velocities z. Then, the algebraic represen-

tation for the resulting velocities and angular velocities

v0i,0(y, ẏ) ⟹ v0i,0(y, z) and 𝜔0i,0(y, ẏ) ⟹ 𝜔0i,0(y, z) (18)
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will be less complicated. In many cases a simple inspection of the resulting velocity

terms already leads to appropriate generalized velocities and automatically delivers

the kinematical matrix K = K(y), Kane and Levinson (1980). The trivial choice

ẏ = z (19)

is always possible. Here, the kinematical matrix simplifies to the corresponding

matrix of identity.

The time derivatives of the velocities and the angular velocities finally result in

the corresponding accelerations

a0i,0 =
d
dt

v0i,0(y, z) =
f∑

m=1

𝜕v0i,0(y, z)
𝜕ym

ẏm +
f∑

m=1

𝜕v0i,0(y, z)
𝜕zm

żm

𝛼0i,0 =
d
dt

𝜔0i,0(y, z) =
f∑

m=1

𝜕𝜔0i,0(y, z)
𝜕ym

ẏm +
f∑

m=1

𝜕𝜔0i,0(y, z)
𝜕zm

żm

(20)

1.5 Forces and Torques

Point-to-Point Force Elements: Usually, mounts connecting springs, dampers, and

actuators to different bodies can be regarded as ball joints, Fig. 13. Then, the action

line of the force generated by the element that is mounted between the points P and

Q is defined by the unit vector

ePQ,0 =
rPQ,0
|
|
|
rPQ,0

|
|
|

=
r0Q,0 − r0P,0
|
|
|
r0Q,0 − r0P,0

|
|
|

(21)

where

L = |
|
|
rPQ,0

|
|
|
=
√

rT
PQ,0rPQ,0 (22)

Fig. 13 A point-to-point

force element attached

between two bodies
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defines the actual length of the force element in addition. The point P is attached to

body i and point Q to body j. The vectors r0i,0, r0j,0 and the rotation matrices A0i, A0j
describe the momentary position and orientation of axis systems fixed in the center

of each body with respect to the earth-fixed reference frame 0. Then, the position of

the attachment points is defined by

r0P,0 = r0i,0 + A0i riP,i
⏟⏟⏟

riP,0

and r0Q,0 = r0j,0 + A0j rjQ,j
⏟⏟⏟

rjQ,0

(23)

where the vectors riP,i, rjQ,j characterize the position of P and Q with respect to the

corresponding body-fixed axis systems. The deflection of the force element is just

given by

s = L0 − L (24)

where L0 denotes the length of the force element in the design position and the actual

length L is defined by Eq. (22).

It is common practice to describe spring forces via FS = FS(s) as functions of

the force displacement s and dampers via FD = FD(v) as functions of the damper

velocity v. The time derivative of the force element deflection s given in Eq. (24)

delivers the damper velocity at first as

v = ṡ = d
dt
(
L0 − L

)
= −L̇ (25)

By using Eq. (22) it results in

v = −
2 rT

PQ,0ṙPQ,0

2
√

rT
PQ,0rPQ,0

= −
rT

PQ,0
|
|
|
rPQ,0

|
|
|

ṙPQ,0 = −eT
PQ,0

(
ṙ0Q,0 − ṙ0P,0

)
(26)

where Eq. (21) was used to re-insert the unit vector ePQ and to put the time derivative

of the vector rPQ down to the time derivatives of the position vectors r0Q and r0P.

According to Eq. (23), the time derivatives of the position vectors are given by

ṙ0P,0 = v0i,0 + 𝜔0i,0 × riP,0 and ṙ0Q,0 = v0j,0 + 𝜔0j,0 × rjQ,0 (27)

where v0i,0 = ṙ0i,0, v0j,0 = ṙ0j,0 name the absolute velocities of the body centers and

𝜔0i,0, 𝜔0j,0 denote the absolute angular velocities of the bodies. In particular dampers

are designed nonlinear at least by distinguishing between the rebound and compres-

sion mode.

Finally, the force acting in an arbitrary point-to-point force element can be

described by

F = F (s, ṡ, u, x) (28)
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where the dependency on a control signal u will include actuators and the vector x
collects internal states that are required when dynamic force elements are modeled.

Enhanced Dry Friction Model: The braking torque applied to the wheel usually

is generated by friction, Fig. 14. However, a simple dry friction model will cause

severe numerical problems because it is not defined in a locking situation (ΔΩ = 0).

The regularized model that is mostly used in commercial software packages avoids

this problem but becomes less accurate when approaching the locking situation. The

enhanced dry friction model avoids the jump at ΔΩ = 0 and provides an appropriate

locking torque, Rill (2006b). So, the braking torque will here be modeled by

TB = Tst
B + dN ΔΩ and |

|TB
|
| ≤ Tmx

B (29)

where Tst
B names the static or locking torque, dN > 0 is a constant with the dimension

of Nm/(rad/s), Tmx
B denotes the maximum braking torque, and

ΔΩ = Ω − 𝜔K (30)

describes the relative angular velocity between the wheel and the body where the

brake caliper is mounted. Usually this will be the knuckle.

The static part provides a steady-state locking torque when the relative angular

velocity is vanishing, Tst
B (ΔΩ = 0) = Tst

B . In the steady state when Ω̇ = 0 holds in

addition, The torque balance at one wheel delivers

0 = TD − Tst
B − r Fx (31)

where TD names the drive torque, r is the radius of the wheel, and Fx describes the

longitudinal tire force. The rolling restinance torque and additional friction torques

in the wheel bearing are neglected, here. Hence, the static braking torque

Tst
B = TD − r Fx (32)

will counteract appropriately the resulting torque applied to the wheel, namely

consisting of the driving torque TD and the torque r Fx generated by the longitudinal

Fig. 14 Coulomb dry friction model and enhanced brake torque model
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Fig. 15 Rubber elements in

vehicle suspension

tire force. Just like the overall braking torque TB, the steady-state part is bounded to

the maximum braking torque

|
|Tst

B
|
| ≤ Tmx

B (33)

As shown in Rill (2012) the numeric constant dN can be choosen such that the dynam-

ics of a fully braked and freely rolling wheel will be similar.

Rubber Elements: Force elements made of natural rubber or urethane compounds

are used in many locations on the vehicle suspension system, Fig. 15. Those ele-

ments require no lubrication, isolate minor vibration, reduce transmitted road shock,

operate noise-free, offer high load carrying capabilities, and are very durable.

During suspension travel, the control arm bushings provide a pivot point for the

control arm. They also maintain the exact wheel alignment by fixing the lateral and

vertical location of the control arm pivot points. During suspension travel, the rubber

portion of the bushing must twist to allow control arm motion. Thus, an additional

resistance to suspension motion is generated.

Bump and rebound stops limit the suspension travel. The compliance of the top-

mount avoids the transfer of large shock forces to the chassis. The subframe mounts

isolate the suspension system from the chassis and allow elasto-kinematic steering

effects of the whole axle.

It turns out that those elastic elements can hardly be described by simple spring

and damper characteristics, FS = FS(u) and FD = FD(v), because their stiffness and

damping properties change with the frequency of the motion. Here, more sophisti-

cated dynamic models are needed.

Tire Forces and Torques: Tires are very complex. They combine dozens of com-

ponents that must be formed, assembled, and cured together. In normal driving sit-

uations the tire is in contact to the road. The forces and torques transmitted in this

rather small contact area must support and guide the vehicle, Fig. 16. Handling tire

models, like TMeasy, describe the steady state forces and torques as functions of

the longitudinal, the lateral and the turn slip at first. Then, dynamic effects caused
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Fig. 16 Contact forces and

torques

by the tire compliance are taken into account, Rill (2013a). Within TMeasy a set of

first order differential equations is generated that describe the dynamic tire forces

and torques by using internal tire states that describe the tire deflections in longitu-

dinal, lateral, and torsional directions, Rill (2007). For instance, the dynamic force

in longitudinal direction Fx is thus defined by

(
v∗Tx dx + fG

)
ẋe = − v∗Tx cx xe − fG

(
vx − rD Ω

)

Fx = cx xe + dx ẋe
(34)

where cx and dx describe the stiffness and damping properties of the tire in lon-

gitudinal direction. The internal tire state xe characterizes the circumferential tire

deflection, vx defines the longitudinal velocity component of the wheel center, rD is

the dynamic rolling radius, Ω represents the angular wheel velocity, and v∗Tx names

a modified transport velocity with which the tread particles are transported through

the contact patch. Finally, fG = FG∕sG is the global derivative of the generalized tire

characteristics FG = FG(sG) with respect to the generalized slip sG that vectorielly

combines the slips in longitudinal, lateral, and torsional directions, Rill (2013b).

1.6 Equations of Motion

Each body in a multibody system is exposed to applied and constraint forces and

torques. Then, the linear and angular momentum may be written as

mi a0i,0 = Fa
i,0 + Fc

i,0 (35)

ΘSi,0 𝛼0i,0 + 𝜔0i,0 × ΘSi,0 𝜔0i,0 = Ta
i,0 + Tc

i,0 (36)

where mi, ΘSi,0 describe the mass and inertia properties of body i, Fa
i,0, Ta

i,0 are the

applied forces and torques, and Fc
i,0, Tc

i,0 denote the constraint forces and torques

generated by links and joints.

To combine and solve the equations of motion for a multibody system consisting

of i = 1(1)k bodies, the constraint forces and torques have either to be
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eliminated or the set of dynamic equations must be supplemented by algebraic con-

straint equations.

The principle of virtual work (D’Alembert’s Principle) or the principle of virtual

power (Jourdain’s principle) eliminate all constraint forces and torques very effec-

tively. The principle of virtual power, for example, states that the virtual power of

the constraint forces and torques must vanish, because each constraint force or torque

generated by a link or a joint points into a direction that is blocked by this link or

joint. Hence, for a system with k rigid bodies

k∑

i=1

{
𝛿vT

0i,0 Fc
i,0 + 𝛿𝜔

T
0i,0 Tc

i,0

}
(37)

must hold. The virtual velocity and the virtual angular velocity of body i are defined

by

𝛿v0i,0 =
𝜕v0i,0

𝜕z
𝛿z and 𝛿𝜔0i,0 =

𝜕𝜔0i,0

𝜕z
𝛿z (38)

where the f × 1-vector 𝛿z collects the variations of the f generalized velocities 𝛿z1,
𝛿z2, . . .𝛿zf that are required to describe the motions of the multibody system. The

partial derivatives simply named as partial velocities and partial angular velocities

may be arranged in the 3 × f -Jacobian matrices of translation and rotation

𝜕v0i,0

𝜕z
=
[
𝜕v0i,0(y, z)

𝜕z1
,

𝜕v0i,0(y, z)
𝜕z2

…
𝜕v0i,0(y, z)

𝜕zf

]

(39)

𝜕𝜔0i,0

𝜕z
=
[
𝜕𝜔0i,0(y, z)

𝜕z1
,

𝜕𝜔0i,0(y, z)
𝜕z2

…
𝜕𝜔0i,0(y, z)

𝜕zf

]

(40)

Using the Jacobian matrices, the accelerations provided by Eq. (20) can be written

as

a0i,0 =
𝜕v0i,0

𝜕z
ż + aR

0i,0 and 𝛼0i,0 =
𝜕𝜔0i,0

𝜕z
ż + 𝛼

R
0i,0 (41)

where ż is the time derivative of the vector of generalized velocities and

aR
0i,0 =

f∑

m=1

𝜕v0i,0(y, z)
𝜕ym

ẏm and 𝛼
R
0i,0 =

f∑

m=1

𝜕𝜔0i,0(y, z)
𝜕ym

ẏm (42)

abbreviates the remaining terms in the accelerations. By combining Eq. (37) with

Eqs. (35) and (36), one is able to put the constraint forces and torques down to

dynamic terms and the applied forces and torques. Using the notation in Eqs. (41)

and (42), Jourdain’s principle reads as
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k∑

i=1

{
𝜕vT

0i,0

𝜕z

[

mi

𝜕v0i,0

𝜕z
ż + mia

R
0i − Fa

i,0

]

+
𝜕𝜔

T
0i,0

𝜕z

[

Θi,0

𝜕𝜔
T
0i,0

𝜕z
ż + Θi,0𝛼

R
0i + 𝜔0i,0 × Θi,0 𝜔0i,0 − Ta

i,0

]}

𝛿z = 0
(43)

The variations of the generalized velocities 𝛿z are arbitrary. Hence, the expression in

the braces must vanish. The resulting first-order differential equation can be written

as

M(y) ż = q(y, z) (44)

where the f × f -mass-matrix is defined by

M(y) =
k∑

i=1

[
𝜕vT

0i,0

𝜕z
mi

𝜕v0i,0

𝜕z
+

𝜕𝜔
T
0i,0

𝜕z
Θi,0

𝜕𝜔
T
0i,0

𝜕z

]

(45)

and the f × 1-vector of generalized forces

q(y, z) =
k∑

i=1

[
𝜕vT

0i,0

𝜕z

(
Fa

i,0 − mia
R
0i,0

)

+
𝜕𝜔

T
0i,0

𝜕z

(
Ta

i,0 − Θi,0𝛼
R
0i,0 − 𝜔0i,0 × Θi,0 𝜔0i,0

)
] (46)

combines the inertia and gyroscopic forces and torques with the applied forces and

torques. The equations of motion result in a set of two first-order ordinary differential

equations (ODEs). The definition of generalized velocities which is done by Eq. (17)

or in the trivial form by Eq. (19) represent the first set and the dynamic equation

defined in Eq. (44) the second one. Usually, a multibody systems contains dynamic

force elements too. Then, the set of ODEs

ẏ = K(y) z
M(y) ż = q(y, z, s)

ṡ = h(s, y, z, u)
(47)

describes the dynamics of a general multibody system, where the vectors s und u
collect the states of the dynamic force elements und the external inputs, like the

road roughness. Finally, one will end up in a set of Differential-Algebraic-Equations

(DAEs) of index 3

ẏ = K z
M(y) ż = qa + JT

g 𝜆

ṡ = h(s, y, z, u)
0 = g(y)

(48)
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if only some or none at all constraint forces and torques were removed. In this simple

approach, q = qa + qc
separates the generalized force vector into parts of applied and

constraint generalized forces and torques. According to Lagrange
2

it is possible to

reduce the unknown vector of generalized constraint forces and torques via

qc = JT
g 𝜆 where Jg =

dg(y)
dy

K (49)

to the vector of Lagrange multipliers 𝜆 that correspond in its dimension with the

number of constraint equations and just require the derivative of the constraint equa-

tions g(y) with respect to the vector of generalized coordinates y and the kinematical

matrix K in addition. Finally, the vector function g(y) summarizes the (remaining)

constraint equations.

The DAE of index 3 in (48) can be reduced step by step to a DAE of index 1. For

that purpose the constraint equation is replaced by its time derivatives. Making use

of the kinematical differential equation, the first equation in (48), one gets

0 = ġ or 0 =
dg
dt

=
dg
dy

dy
dt

=
dg
dy

ẏ =
dg
dy

K z = Jgz (50)

In general, the Jacobian of the constraint equations Jg is not constant, therefore the

second derivative results in

0 = g̈ or 0 =
d2g
dt2

= d
dt

(
dg
dt

)

= d
dt
(
Jgz
)
= J̇g z + Jgż (51)

The dynamic differential equation, the second equation in (48), delivers

ż = M−1
(

qa + JT
g 𝜆

)
(52)

Inserting this relationship into the constraint equation on acceleration level (51)

results in

0 = J̇g z + Jg M−1
(

qa + JT
g 𝜆

)
(53)

and yields the Lagrange multipliers as

𝜆 = −
(

Jg M−1JT
g

)−1 (
Jg M−1qa + J̇g z

)
(54)

Hence, replacing the original constraint equations 0 = g by 0 = g̈ delivers the

Lagrange multipliers explicitely and thus reduces the DAEs to

2
Joseph-Louis de Lagrange (25 January 1736–10 April 1813).
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ẏ = K z

M(y) ż = qa − JT
g

(
Jg M−1JT

g

)−1 (
Jg M−1qa + J̇g z

)

ṡ = h(s, y, z, u)

(55)

This set of equations has the same structure as the ODEs provinded in (47). How-

ever, the numerical solution requires a special treatment. Besides that, the matrix

Jg M−1JT
g must be invertible, demanding at least for constraint equations that are

free of redundances.

1.7 A Quarter Car Model

Modeling Concept: The quarter car model shown in Fig. 17 consists of the chassis,

a trailing arm that is rigidly attached to the knuckle, and the wheel. The model rep-

resents a quarter car on a hydropulse test rig. That is why, the chassis is supposed

to perform vertical motions only. Revolute joints in B and W connect the trailing

arm with the chassis and the trailing arm with the wheel. The position of the actu-

ator that supports the wheel is controlled to follow a prescribed displacement time

history, u = u(t).
A quarter car model is quite a good but surely limited approximation of real vehi-

cle dynamics. So, the simplification that the wheel center W, the center of the knuckle

and trailing arm K, and the joint in B are arranged in a straight line will correspond to

the overall model quality. In addition, the chassis is supported by a torsional spring

and damper combination for the sake of simplicity.

The parameter for a quarter car model that may represent the rear suspension of

a small front wheel driven car are listed in Table 1.

ODE Kinematical Model: The vertical chassis motion zC as well as the rotation

angles 𝛽K , and 𝜑W are sufficient to describe the momentary position and orientation

of the k = 3 model bodies chassis, trailing arm with knuckle, and wheel. The vectors

Fig. 17 Quarter car model

with trailing arm suspension
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Table 1 Parameter for the quarter car model

s = 0.250 m Joint B to center of knuckle/trailing arm

a = 0.400 m Joint B to center of wheel M

b = 0.310 m Vertical distance chassis center C to joint B

h = 0.600 m Height of chassis center C

r0 = 0.305 m Tire radius

mC = 200 kg Corresponding chassis mass (quarter car)

mK = 35 kg Mass of knuckle/trailing arm

mW = 15 kg Mass of wheel (rim and tire)

ΘK = 0.6 kg m
2

Inertia of knuckle/trailing arm

ΘW = 1.0 kg m
2

Inertia of wheel

T0
S = 1200 Nm Pre-tension torque in torsional spring

cS = 10 000 Nm Torsional suspension spring rate

dS = 800 Nm s Torsional suspension damping

cx = 180 000 Nm s Longitudinal tire stiffness

cz = 220 000 N/m Vertical tire stiffness

dx = 1200 Ns/m Longitudinal tire damping

dF0
x = 90 000 N/– Initial inclination longitudinal force

vN = 0.01 m/s Fictitious velocity

r0C,0 =
⎡
⎢
⎢
⎣

0
0

h + zC

⎤
⎥
⎥
⎦

, r0K,0 =
⎡
⎢
⎢
⎣

−s cos 𝛽K
0

h − b + s cos 𝛽K

⎤
⎥
⎥
⎦

, r0W,0 =
⎡
⎢
⎢
⎣

−a cos 𝛽K
0

h − b + a cos 𝛽K

⎤
⎥
⎥
⎦

(56)

describe the momentary position and the angles 𝛽K , 𝜑W define the rotation of the

trailing arm with knuckle and the wheel about the y0-axis. A detailled model descrip-

tion, the derivation of the equations of motion, as well as the replacement of this

simple torsional spring/damper combination by a point-to-point force element can

be found in Rill (2012).

Applying Jourdain’s principle the dynamics of this quarter car model is defined

by

ẏ = z and M ż = q (57)

where y collects the generalized coordinates zC, 𝛽K , 𝜑W and the vector z defines

trivial generalized velocities. The Eqs. (45) and (46) deliver the mass matrix and the

vector of the generalized forces and torques as

M =
⎡
⎢
⎢
⎣

mC + mK + mW
(
s mK + a mW

)
cos 𝛽K 0(

s mK + a mW
)
cos 𝛽K ΘK + s2mK + a2mW 0

0 0 ΘW

⎤
⎥
⎥
⎦

(58)
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q =
⎡
⎢
⎢
⎣

Fz −
(
mC + mK + mW

)
g +

(
s mK + a mW

)
sin 𝛽K �̇�

2
K

TS −
(
s mK + a mW

)
cos 𝛽K g + a

(
Fx sin 𝛽K + Fz cos 𝛽K

)

−rS Fx

⎤
⎥
⎥
⎦

(59)

The torsional spring damper combination acting at the revolute joint in B generates

a torque that can be modeled as a function of the knuckle rotation angle 𝛽K and its

time derivative. Assuming linear spring and damper characteristics one gets

TS = cS𝛽K + dS�̇�K + T0
S (60)

where cS and dS name the torsinal spring and damper constants and T0
S describes the

pre-tension torque that determines the steady state position of the trailing arm.

In a first approximation, the vertical tire force is given by

Fz =

{
0

cT
(
r0 − rS

) if
rS ≥ r0 (lift off)

rS < r0
(61)

where cT names the radial tire stiffness and r0 describes the unloaded tire radius. The

loaded tire radius is provided by

rs = h + zC − b + a sin(𝛽K) − u(t) (62)

where the distances a, b and h are defined in Fig. 17. According to (34) the longitu-

dinal tire force is defined by

Fx = cx xe + dx ẋe (63)

where cx, dx describe the stiffness and damping properties of the tire in the longitu-

dinal direction and the internal tire state xe is definded by an additional differential

equation

ẋe =
− v∗Tx cx xe − fG

(
vx − rD Ω

)

v∗Tx dx + fG
(64)

where the dynamic rolling radius may be approximated via rD = 2
3
r0 +

1
3
rS by a

weighted combination of the unloaded and loaded tire radius. The global derivative

of the generalized tire characteristics can be approximated by the initial inclination

of the longitudinal tire characteristics fG ≈ dF0
x because no large longitudinal forces

will occur in this particular case. The wheel angular velocity is simply given by

Ω = �̇�W and the longitudinal component of the contact point velocity as well as the

modified transport velocity are defined by

vx = a sin 𝛽K �̇�K and v∗Tx = |
|rD �̇�W

|
| + vN (65)
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where vN > 0 is a small fictitios velocity that is introduced to avoid singularities in

stand still situations.

Hence, the dynamics of the quarter car model described by (57) and (64) corre-

sponds to the typical set of ODEs defined in (47).

DAE Model: Each body is now supposed to move freely in the x0-z0-plane, Fig. 18.

Then, the vectors

r0C,0 =
⎡
⎢
⎢
⎣

0
0
zC

⎤
⎥
⎥
⎦

, r0K,0 =
⎡
⎢
⎢
⎣

xK
0
zK

⎤
⎥
⎥
⎦

, r0W,0 =
⎡
⎢
⎢
⎣

xW
0

zW

⎤
⎥
⎥
⎦

(66)

simply define the position of the chassis center C, the knuckle center K, and the

wheel center W. The chassis is still supposed to perform vertical motions only and

the angles 𝛽K and 𝜑W describe as before the rotations of the knuckle and the wheel

about the y0-axis. The equations of motion will then read as

mC z̈C = −mCg − Bz

mK ẍK = Bx + Wx

mK z̈K = −mKg + Bz + Wz

ΘK 𝛽K = TS − Bxs sin 𝛽K − Bzs cos 𝛽K + Wxw sin 𝛽K + Wzw cos 𝛽K

mW ẍW = Fx − Wx

mW z̈W = −mWg + Fz − Wz

ΘW �̈�W = −rSFx

(67)

where the abbreviation w = a − s describes the distance from the knuckle center K

to the wheel center W and Bx, Bz, Wx, Wz denote the reaction forces acting in the

Fig. 18 Free body diagram

of quarter car model
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revolute joints where the knuckle is attached to the chassis and the wheel to the

knuckle.

Collecting the generalized coordinates in the vector

y =
[

zC xK zK 𝛽K xW zW 𝜑W
]T

(68)

and defining by

ẏ = z (69)

trivial generalized velocities makes it possible to describe the dynamics of the quarter

car model by the matrix differential equation

M ż = qa + qc
(70)

where

M = diag
[

mC mK mK ΘK mW mW ΘW
]

(71)

defines the mass matrix and

qa =
[
−mCg 0 − mKg TS Fx − mWg + Fz − rSFx

]T
(72)

collects the applied forces.

However, the differential equation (70) can not be solved because the reaction

forces Bx, Bz, Wx, Wz are not defined or known yet. In this particular case the con-

straint forces were modeled explictely. This is possible for rather simple models but

extremely cumbersome for complex models. The use of Lagrange multipliers will

be more appropriate then. At first the constraint equations are required. A revolute

joint that connects body i to body j at a specific point prevents body i to perform any

displacement relative to body j at this very point. Hence, the revolute joints in B and

W deliver the constraint equations as

0 = xK + s cos 𝛽K

0 = zK − s sin 𝛽K −
(
zC − b

)

0 = xK − w cos 𝛽K − xW

0 = zK + w sin 𝛽K − zW

⟹ 0 = g(y) (73)

where the abbreviation w = a − s was used again and a, s, b, h are constant model

parameter defined in Fig. 17. Taking (68) into account, the partial derivative of the

constraint equations yields the Jacobian as

Jg =
dg
dy

=
⎡
⎢
⎢
⎢
⎣

0 1 0 −s sin 𝛽K 0 0 0
−1 0 1 −s cos 𝛽K 0 0 0
0 1 0 w sin 𝛽K −1 0 0
0 0 1 w cos 𝛽K 0 −1 0

⎤
⎥
⎥
⎥
⎦

(74)
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The trivial choice of generalized velocities realized in (69) results in a kinematical

matrix K that simply equals the matrix of identity. Then Eq. (49) delivers the vector

of the generalized constraint forces as

qc = JT
g 𝜆 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1 0 0
1 0 1 0
0 1 0 1

−s sin 𝛽K −s cos 𝛽K w sin 𝛽K w cos 𝛽K
0 0 −1 0
0 0 0 −1
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝜆 (75)

where 𝜆 denotes the Lagrange multipliers. In this particular and in similar cases, the

Lagrange multipliers 𝜆will coincide with the constraint forces in B and W. Depicting

the vector of the generalized forces from (67) and rearranging the terms results in

qc =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −1 0 0
1 0 1 0
0 1 0 1

−s sin 𝛽K −s cos 𝛽K w sin 𝛽K w cos 𝛽K
0 0 −1 0
0 0 0 −1
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

Bx
Bz
Wx
Wz

⎤
⎥
⎥
⎥
⎦

(76)

which compared to (75) delivers by inspection 𝜆 =
[

Bx Bz Wx Wz
]T

. In more general

cases, the Lagrange multipliers 𝜆 will just correspond with the constraint forces and

torques but will not necessarily equal them.

The torque TS generated by the torsional spring damper combination, the vertical

tire force Fz, and the dynamic tire force in longitudinal direction Fx are still provided

by (60), (61) and (63) in combination with (64). But the loaded tire radius is now

simply given by

rs = zW − r0 − u(t) (77)

and the longitudinal component of the contact point velocity as well as the modified

transport velocity are defined by

vx = ̇xW and v∗Tx = |
|rD �̇�W

|
| + vN (78)

where Ω = �̇�W provides as before the angular wheel velocity and the dynamic tire

radius rD was defined in the text subsequent to Eq. (64).

Hence, the dynamics of the quarter car model described by (69), (67), (64), and

(74) represents a typical set of DAEs defined in (48).
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A index reduction makes it possible to transfer DAEs into a set of ODEs. How-

ever, the calculation of the Lagrange multipliers via (54) will then require the time

derivative of the Jacobian J̇g in addition. The Jacobian Jg for the quarter car model

is provided by (74). Its time derivative simply results in

dJg

dt
=
⎡
⎢
⎢
⎢
⎣

0 0 0 −s cos 𝛽K
̇𝛽K 0 0 0

0 0 0 s sin 𝛽K
̇𝛽K 0 0 0

0 0 0 w cos 𝛽K
̇𝛽K 0 0 0

0 0 0 −w sin 𝛽K
̇𝛽K 0 0 0

⎤
⎥
⎥
⎥
⎦

(79)

Free Body Model: The equations of motion provided by (67) hold for a system of

free bodies, that consists here of the chassis, the trailing arm with knuckle and the

wheel. The bodies were assembled to a quarter car by constraints that reduce the

number of degrees of freedom in case of the kinematical ode approach or require

additional constraint equations in case of the DAE model. But there is also another

model approach possible if joints and links are modeled by introducing real or ficti-

tious compliancies.

Within this planar quarter car model the revolute joints in B and W may be sup-

plemented by bushings providing forces in longitudinal and vertical directions that

act opposite to the bushing displacements. Introducing the parameter cBx, cBz, cWx,

cWz that describe the stiffness properties of the bushings in B and W in longitudinal

and vertical directions, the bushing forces will simply be provided by

FB =
⎡
⎢
⎢
⎢
⎣

Bx
Bz
Wx
Wz

⎤
⎥
⎥
⎥
⎦

= −
⎡
⎢
⎢
⎢
⎣

cBx 0 0 0
0 cBz 0 0
0 0 cWx 0
0 0 0 cWz

⎤
⎥
⎥
⎥
⎦

g (80)

where g = g(y) defined by the constraint equation in (73) provides the bushing dis-

placements. Adding appropriate damping effects is straight forward and will just

require the time derivative ġ(y) that Eq. (50) defines in general. Finally, the vector

of the generalized “constraint” forces will then be given by

qc = JT
g FB (81)

which is the result of comparing Eq. (76) with Eq. (75).

However, many joints and links are very stiff in practice. That is why, this rather

simple approach may cause severe problems within the numerical solution. In addi-

tion, if the stiffness of a bushing is not known, an estimated bushing stiffness may

cause unrealistic and unpredictable dynamic effects.
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2 Numerical Methods

2.1 Ordinary Differential Equations

Overview: Ordinary differential equations (ODEs) like the ones defined in (47) are

usually transfered to a state equation in the form of

ẋ = f (t, x) (82)

where the state vector x collects the generalized coordinates y and velocities z as

well as additional states s. For the numerical time integration of ordinary differential

equations (ODEs) numerous methods with one-step and multi-step algorithms are

known, see e.g. Nørsett et al. (2008). The commercial software package Matlab
Ⓡ

for

instance offers seven solvers:

ode23 is a one-step solver. Based on an explicit Runge-Kutta (2,3) pair of Bogacki

and Shampine. It may be more efficient than ode45 at crude tolerances and in the

presence of mild stiffness.

ode45 is a one-step solver. Based on an explicit Runge-Kutta (4,5) formula, the

Dormand-Prince pair. It is a one-step solver—in computing, it needs only the

solution at the immediately preceding time point. In general, ode45 is the best

function to apply as a “first try” for most problems.

ode113 Variable order Adams-Bashforth-Moulton PECE solver. It may be more

efficient than ode45 at stringent tolerances and when the ODE function is partic-

ularly expensive to evaluate. ode113 is a multistep solver—it normally needs the

solutions at several preceding time points to compute the current solution.

ode15s Variable-order solver based on the numerical differentiation formulas

(NDFs). Optionally it uses the backward differentiation formulas, BDFs, (also

known as Gear’s method). Like ode113, ode15s is a multistep solver. If you sus-

pect that a problem is stiff or if ode45 failed or was very inefficient, try ode15s.

ode23s Based on a modified Rosenbrock formula of order 2. Because it is a one-

step solver, it may be more efficient than ode15s at crude tolerances. It can solve

some kinds of stiff problems for which ode15s is not effective.

ode23t An implementation of the trapezoidal rule using a “free” interpolant. Use

this solver if the problem is only moderately stiff and you need a solution without

numerical damping.

ode23tb An implementation of TR-BDF2, an implicit Runge-Kutta formula with

a first stage that is a trapezoidal rule step and a second stage that is a backward

differentiation formula of order 2. Like ode23s, this solver may be more efficient

than ode15s at crude tolerances.

The performance of these solvers were benchmarked in Rill and Schiehlen (2009)

on a complex planar model. It turned out, that for low accuracies and/or real time

simulations a semi-implicit Euler code is an interesting alternative. Applied to a set

of ODEs as defined in (47) one gets
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sk+1 = sk + Δt h
(
sk
, yk

, zk
, uk+1)

zk+1 = zk + Δt M−1(yk) q
(
yk
, zk

, sk+1)

yk+1 = yk + Δt K
(
yk) zk+1

(83)

where Δt denotes the integration step size and the superscripts
k

and
k+1

characterize

the states at t and t + Δt respectively. The input signals uk+1 = u(t + Δt) are com-

puted here at time t + Δt in order to achieve a slightly more implicite touch. The

semi-implicit character comes from the multi-tiered algorithm that makes it possi-

ble to use the implicit states sk+1
and zk+1

in the subsequent equations. This implicit

terms improve the stability of the integration formulas a lot.

Euler Semi-Implicit Versus ode23: The semi-implicit Euler integration formula

(83) was applied to the quarter car model. The predefined movements of the hydraulic

piston u = u(t) represent the vertical excitation of the wheel when a vehicle is driven

with a constant velocity of v = 100 km/h across a country road. The simulation

results are plotted in Fig. 19 where the lower right graph shows the the piston move-

ments u = u(t) that represent the road profil. To assess the quality of this simple inte-

gration formula the results are compared to a simulation performed with the Matlab

solver ode23. The default accuracy of the ode23 solver was reduced to ABSTOL =
0.0001 and RELTOL = 0.001 in order to achieve a “fair” comparison. In par-

ticular, the vertical chassis motion zC and the rotation of the trailing arm 𝛽K are in

Fig. 19 Semi-implicit Euler compared to ode23
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Fig. 20 Integration

stepsizes automatically

choosen by ode23

very good conformity. The stepsize of the ode23 solver is automatically adjusted in

order to meet the error tolerances. Figure 20 shows, that it mean value is slightly

larger than 1 millisecond (ms). That is why, the stepsize of the semi-implicit Euler

formula was fixed to 1 ms. As the accuracy of the semi-implicit Euler formulas is

limited, the time histories of the wheel rotation 𝜑W and the tire forces Fx and Fz
deviate a little from the corresponding signals calculated with the ode23 solver. But,

the semi-implicit Euler generates the results four times faster than the ode23 solver.

Stiff Problems: At the end of Sect. 1.7 a quarter car model is presented that describes

the bearings in B and W by compliant bushings rather than by ideal revolute joints.

Many rear wheel suspension systems based on a trailing arm assemble a bushing at

B that provides a significant compliance in longitudinal direction. This “comfort”

bearing allows the wheel to run more smoothly across bumps. If both bearings in

B and W are modeled with compliant bushings then a simple extension of the DAE

quarter car model delivers the corresponding equations of motion.

The stiffness properties of the bearing in B listed in Table 2 correspond to a real

layout. The stiffness properties for the bushing in W are choosen significantly larger

and equal in the lateral and the vertical directions. Corresponding to the stiffness

properties the bushing displacements in B and W differ a lot in longitudinal direc-

tion (x-displacements), left graph in Fig. 21. In total, the vertical excitation of the

quarter car model results in bushing displacements in z-direction that are an order

of magnitude greater than the displacements in x-direction. The hard bushings in W

result in “stiff” differential equations that require a special treatment while solved

numerically. Figure 22 shows the results of the stiff free body model generated with

the stiff Matlab solver ode23tb compared to the results of the kinematical model

produced with the ode23 solver.

The longitudinal compliance in Bushing B results in larger variations of the lon-

gitudinal force Fx that infect the wheel rotation angle 𝜑W in addition. Differencies

in the vertical chassis motion zC and the rotation of the trailing arm 𝛽K are hardly

Table 2 Stiffness properties of compliant bushings in B and W

cBx = 500 000 N/m Bushing B: longitudinal stiffness

cBz = 200 000 N/m Bushing B: vertical stiffness

cWx = 5 000 000 N/m Bushing W: longitudinal stiffness

cWz = 5 000 000 N/m Bushing W: vertical stiffness
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Fig. 21 Bushing displacements Bx, Wx and Bz, Wz while running across a country road at a velocity

of v = 100 km/h

Fig. 22 Model with bushings compared to kinematical model

noticeable. However, the implicit solver ode23tb needs double the computing time

of the explicit ode23 solver.
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2.2 Differential Algebraic Equations

General Remarks: As shown in Sect. 1.6 a system of differential algebraic equations

(DAEs) can be reduced to a set of ordinary differential equations (ODEs). If the

resulting ODEs are summarized in the state equation (82), a large variety of solvers
3

can be applied, then. Sophisticated solvers like DASSL
4

start from the more general

residual form of the state equation

𝜙 (t, x, ẋ) = 0 (84)

that corresponds for 𝜙 (t, x, ẋ) = ẋ − f (t, x) with (82), but optionally allows the use

of very efficient residual formalisms. The commercial software package SIMPACK

uses the DASSL based integrator SODASRT as the default solver.

An extensive overview of different solvers and applications in multibody dynam-

ics can be found in Arnold et al. (2011).

A direct index 3 solver that processes the DAEs provided by (48) is implemented

in the commercial software packages MSC.ADAMS and RecurDyn. This implicit

solver called HHT or g-alpha is described in Negrut et al. (2006).

Index Reduction: Applying the index reduction technique to the quarter car model

produces the results plotted in Fig. 23. The solver ode23 takes now more time

because the index reduction of the DAEs to the ODEs where performed by sim-

ply executing all the matrix operations provided in Eq. (55) whereas the ODEs of

the kinematical model were provided as analytical expressions. Again, the vertical

chassis motion zC and the rotation of the trailing arm 𝛽K are in very good confor-

mity. But, the time history of the wheel rotation 𝜑W shows a tendency to drift off

from the kinematical solution when time goes on. That drift is the result of the index

reduction where the original constraints defined by g = 0 where replaced by g̈ = 0.

So, the numerical solver controlling the error of the constraints at acceleration level

will automatically result in an increasing contraint violation on position level due

to numerical round-off errors, Fig. 24. Of course, the magnitude of the drift can be

reduced by more stringent error tolerances. But it cannot be avoided in general by

this simple DAE to ODE conversion.

There are several methods available to reduce or avoid this drift. Two of them are

discussed in the following, Gear et al. (1985) and Baumgarte (1972).

Gear-Gupta-Leimkuhler Stabilization: Extending the DAEs in Eq. (48) with fic-

titious Lagrange multipliers 𝜇 in the kinematical differential equation and adding the

constraint equation on velocity level results in a DAE of index 2

3
Several free solvers are provided at http://www.unige.ch/~hairer/software.html.

4
freely available at http://www.netlib.org/ode/.

http://www.unige.ch/~hairer/software.html
http://www.netlib.org/ode/
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Fig. 23 DAE model reduced to ODE compared to kinematical model

Fig. 24 Constraint violations in solution of DAE reduced to ODE
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ẏ = K
(

z + JT
g 𝜇

)

M(y) ż = qa + JT
g 𝜆

ṡ = h(s, y, z, u) (85)

0 = g(y)
0 = ġ(y)

Now, the constraint equation on velocity level results in

ġ =
dg
dy

ẏ =
dg
dy

K
(

z + JT
g 𝜇

)
= Jg

(
z + JT

g 𝜇

)
= 0 (86)

which immediately delivers the fictitious Lagrange multipliers as

𝜇 = −
(

JgJT
g

)−1
Jg z (87)

A index reduction of (85) finally results in a set of ordinary differential equations

(ODEs) that in extension to (55) are provided now by

ẏ =
(

K −
(

JgJT
g

)−1
Jg

)

z

M(y) ż = qa − JT
g

(
Jg M−1JT

g

)−1 (
Jg M−1qa + J̇g z

)

ṡ = h(s, y, z, u)

(88)

This slight modification hardly increases the computing time but results in a much

smaller drift, Fig. 25. Even after t = 10 s simulation time the constraint violation is

below 5 × 10−7 m which in comparisson to Fig. 24 is a reduction of three orders of

magnitude. Now, the contraint equation on velocity level ġ = 0 are controlled by the

solver too. Of course the overall drift cannot be avoided by this technique completely.

Fig. 25 Drift in constraints with Gear-Gupta-Leimkuhler stabilization
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But, more stringent error tolerances or more sophisticated solvers will produce in

most cases neglectable remaining drifts in the constraint equations.

Baumgarte Stabilization: In this approach the constraint equation on acceleration

level provided by (51) is extended by penalty terms that are proportional to the con-

traint equation on velocity and position level

g̈ + 𝛼 ġ + 𝛽 g = 0 (89)

where 𝛼 and 𝛽 serve as weighting coefficients. Finding appropriate values for 𝛼 and 𝛽

is the problem in this approach. But, Eq. (89) has the form of a single mass oscillator.

By introducing the undamped frequency 𝜔0 and the viscous damping 𝜁 Eq. (89) can

be written as

g̈ + 2 𝜁 𝜔0 ġ + 𝜔
2
0 g = 0 (90)

So, the constraint equations will perform damped oscillation about the steady state

solution that is defined by the original constraint equation g(y) = 0. From a practi-

cal point of view, this oscillations should be damped properly. A viscous damping

rate of 𝜁 = 0.5 will grant an optimal decay of the oscillations. To avoid problems

in the numerical solution, the undamped frequency should be choosen not too high,

because then the set of the resulting ordinary differential equations will become stiff.

Usually, the multibody approach to vehicle dynamics is valid up to frequencies

of 20 to 30 Hz. That is why, besides the viscoous damping of 𝜁 = 0.5, the undamped

frequency of 𝜔0 = 2𝜋 ⋅ 30 Hz = 188.5 rad/s was choosen for the Baumgarte stabi-

lization in the case of the quarter car model.

Now, the time histories of the vertical chassis displacement zC, the rotation of the

trailing arm 𝛽K , as well as the rotation of the wheel 𝜑 are in very good conformity to

the results of the kinematical model, Fig. 26. Only small differences show up in the

time histories of the tire forces Fx and Fz.

As can be seen from Fig. 27, the drift in the constraints is for sure sufficient small

and remains small. The Baumgarte simulation with appropriate stabilization param-

eter has nearly no influence on the computing time and is therefor a good choice for

vehicle simulations.

2.3 Real-Time-Simulations

Using a modified implicit Euler algorithm makes it possible to solve the dynamic

equations for vehicles in real time even if axle suspensions with compliancies and dry

friction in the damper elements are taken into consideration. Real-time-simulations

of large vehicle systems are possible too, Rill (1997), Rill and Chucholowski (2005a),

and Rill (2006b).
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Fig. 26 Baumgarte stabilization compared to kinematical model

Fig. 27 Drift in constraints with Baumgarte stabilization
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3 A Three-Dimensional Vehicle Model

3.1 Model Structure

The vehicle framework of a fully three-dimensional vehicle model consists at least of

k = 9 rigid bodies: four knuckles, four wheels, and the chassis, Fig. 28. The vehicle-

fixed axis system V is located now in the middle F of the front wheel centers. As

before, the xV -axis points forward, the yV -axis to the left, and the zV -axis upward.

3.2 Position and Orientation

According to Sect. 1.2 the momentary position and orientation of the vehicle-fixed

coordinate system V with respect to the inertial frame 0 is defined by the position

vector

r0F,0 =
[

x y z
]T

(91)

expressed in the inertial frame 0 and the rotation matrix

A0V =
⎡
⎢
⎢
⎣

c
𝜓
−s

𝜓
0

s
𝜓

c
𝜓

0
0 0 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

c
𝜃

0 s
𝜃

0 1 0
−s

𝜃
0 c

𝜃

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

1 0 0
0 c

𝜙
−s

𝜙

0 s
𝜙

c
𝜙

⎤
⎥
⎥
⎦

(92)

that is defined by a sequence of elementary rotations about the corresponding z- y-

and x-axes. Abbreviations like c
𝜓
= cos𝜓 and s

𝜓
= sin𝜓 were used to shorten the

expressions. The three components x, y, z of the position vector r0F,0, and the three

rotation angles 𝜙, 𝜃, 𝜓 define a first set of generalized coordinates.

Fig. 28 Modell bodies of a three-dimensional vehicle model
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Now, the position of the chassis center C and the orientation of the chassis are

simply given by

r0C,0 = r0F,0 + A0V rFC,V and A0C = A0V (93)

where the vector rFC,V , that describes the position of the chassis center relative to

the vehicle-fixed axis system, is constant and defined by the mass distribution of the

chassis.

Each wheel is supposed to be fully balanced. Then, its center is located on the

rotation axis. In addition, it is assumed that the center of the corresponding knuckle

will be sufficiently close by or will even coincide with the wheel center. As a conse-

quence, the position of each knuckle, and simultaneously of each wheel, is defined

by the vector

r0i,0 = r0F,0 + A0V rFi,V , i = 1(1)4 (94)

If the rotation matrices AVi, i = 1(1)4 describe the orientation of each knuckle-fixed

axis system relative to the vehicle-fixed axis system, then the rotation matrices

A0i = A0V AVi , i = 1(1)4 (95)

will define their orientation with respect to the earth-fixed axis system. A purely

kinematic suspension model describes the position and orientation of each knuckle

as a function of the jounce and rebound motion as well as the steering motion. The

vertical motion zi of each knuckle i = 1(1)4 relative to the chassis may be used to

characterize the jounce and rebound motion.

Assuming a rack and pinion steering system at both axles, the rack movements

uF and uR at the front and rear axle will fully describe the steering motion at the

corresponding axle. Then, the position and orientation of each knuckle and wheel

center relative to the vehicle-fixed axis system are defined by

rFi,V = rFi,V
(
zi, ui

)
, AVi = AVi

(
zi, ui

)
, i = 1(1)4 (96)

where u1 = u2 = uF and u3 = u4 = uR denote the rack displacements at the front and

the rear axle respectively.

Finally, the angles 𝜑Wi, i = 1(1)4 describe the rotation of each wheel relative to

the corresponding knuckle.

The generalized coordinates, describing the position and orientation of the k = 9
bodies are now collected in the 16 × 1 position vector

y =
[

x, y, z, 𝜙, 𝜃, 𝜓, z1, z2, uF, z3, z4, uR, 𝜑W1, 𝜑W2, 𝜑W3, 𝜑W4
]T

(97)
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3.3 Velocities

Expressing the absolute velocity and the absolute angular velocity of the vehicle-

fixed axis system in this axis system results in

v0F,V = AT
0V ṙ0F,0 = AT

0V

⎡
⎢
⎢
⎣

ẋ
ẏ
ż

⎤
⎥
⎥
⎦

(98)

𝜔0V ,V =
⎡
⎢
⎢
⎣

�̇�

0
0

⎤
⎥
⎥
⎦

+ AT
𝜙

⎧
⎪
⎨
⎪
⎩

⎡
⎢
⎢
⎣

0
�̇�

0

⎤
⎥
⎥
⎦

+ AT
𝜃

⎡
⎢
⎢
⎣

0
0
�̇�

⎤
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

=
⎡
⎢
⎢
⎣

1 0 − sin 𝜃
0 cos𝜙 sin𝜙 cos 𝜃
0 − sin𝜙 cos𝜙 cos 𝜃

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

�̇�

�̇�

�̇�

⎤
⎥
⎥
⎦

= KV

⎡
⎢
⎢
⎣

�̇�

�̇�

�̇�

⎤
⎥
⎥
⎦

(99)

where the components of v0F,V and 𝜔0V ,V will be used as generalized velocities fur-

ther on. As a consequence, the absolute velocity and the angular velocity of the chas-

sis are simply defined by

v0C,V = v0F,V + 𝜔0V ,V × rFC,V and 𝜔0C,V = 𝜔0V ,V (100)

The time derivative of Eq. (94) provides the velocities of the knuckle and wheel

centers as

ṙ0i,0
⏟⏟⏟

v0i,0

= ṙ0F,0
⏟⏟⏟

v0F,0

+ 𝜔0V ,0 A0V rFi,V + A0V ṙFi,V , i = 1(1)4 (101)

The transformation into the vehicle-fixed axis system V yields

v0i,V = v0F,V + 𝜔0V ,V rFi,V + ṙFi,V , i = 1(1)4 (102)

where the velocity state of the vehicle-fixed axis system, characterized by v0F,V and

𝜔0V ,V , is defined in Eqs. (98) and (99). The time derivatives of the position vectors

provided by Eq. (96) result in

ṙFi,V =
𝜕rFi,V

𝜕zi
żi +

𝜕rFi,V

𝜕ui
u̇i = tzi,V żi + tui,V u̇i (103)

where tzi,V and tui,V , i = 1(1)4 abbreviate the corresponding partial velocities and

u̇1 = u̇2 = u̇F as well as u̇3 = u̇4 = u̇R name the time derivatives of the rack displace-

ments. Similary, the angular velocities of the knuckles may be written as
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𝜔0Ki,V = 𝜔0V ,V + dzi,V żi + dui,V u̇i, i = 1(1)4 (104)

where dzi,V and dui,V , i = 1(1)4 abbreviate the corresponding partial angular veloci-

ties. Finally, the absolute angular velocity of each wheel is given by

𝜔0Wi = 𝜔0V ,V + dzi,V żi + dui,V u̇i + AVi eyWi,i �̇�Wi, i = 1(1)4 (105)

where the unit vectors eyWi,i, i = 1(1)4, describe the orientation of the wheel rotation

axis in the design position. They are defined by a wheel alignment point or via the

toe and the camber angles respectively.

The partial velocities and the partial angular velocities of the vehicle model con-

sisting of k = 9 model bodies are collected in the Tables 3 and 4, where I denotes

the 3 × 3 matrix of identity, and the cross-products in the velocity equations are sub-

stituted via 𝜔 × r = −r × 𝜔 = −r̃ 𝜔 = r̃T
𝜔 by multiplication with the corresponding

skew symmetric matrices. In this model approach it is assumed that the centers of

each knuckle and wheel will coincide. That is why knuckle and wheel are summa-

rized to one body in Table 3. The components vx, vy, vz of the velocity v0F,V and

the the components 𝜔x, 𝜔y, 𝜔z of the angular velocity 𝜔0V ,V ; the time derivatives

of vertical wheel center displacements ż1 to ż4; the time derivatives of the lateral

rack movements u̇F and u̇R as well as the wheel angular velocities �̇�Wi, i = 1(1)4 are

used as generalized velocities here. The three-dimensional vehicle model then has

f = 3 + 3 + 4 + 2 + 4 = 16 degrees of freedom. All partial velocities and all inertia

tensors are expressed in the vehicle-fixed reference frame.

The partial velocities and the partial angular velocities can be calculated analyti-

cally as done in Sect. 3.5 for the multi-link axle suspension. Alternatively, the posi-

tion and orientation of each knuckle may be provided via look-up tables. A spline

interpolation will then provide the partial velocities too.

3.4 Accelerations

Now, the absolute acceleration of the chassis, expressed in the vehicle-fixed axis

system, is obtained as

a0C,V = v̇0F,V + �̇�0F,V × rFC,V + 𝜔0V ,V × v0C,V (106)

where the fact that the vector rFC,V is constant was already taken into account. The

last term, which does not depend on the time derivatives of the generalized veloc-

ities v̇0F,V or �̇�0F,V represents the remaining term aR
0C,V here. The absolute angular

acceleration, expressed in the vehicle-fixed axis system, is given by

𝛼0C,V = �̇�0C,V + 𝜔0V ,V × 𝜔0C,V = �̇�0F,V + 𝜔0V ,V × 𝜔0V ,V = �̇�0F,V (107)
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ż 4
u̇ R

𝜑
W
1

𝜑
W
2

𝜑
W
3

𝜑
W
4

K
n
u
c
k
le

1
Θ

K
1

0
I

d z
1

0
d u

1
0

0
0

0
0

0
0

W
h

e
e
l

1
Θ

W
1

0
I

d z
1

0
d u

1
0

0
0

e y
W
1

0
0

0

K
n
u
c
k
le

2
Θ

K
2

0
I

0
d z

2
d u

2
0

0
0

0
0

0
0

W
h

e
e
l

2
Θ

W
2

0
I

0
d z

2
d u

2
0

0
0

0
e y

W
2

0
0

K
n
u
c
k
le

3
Θ

K
3

0
I

0
0

0
d z

3
0

d u
3

0
0

0
0

W
h

e
e
l

3
Θ

W
3

0
I

0
0

0
d z

3
0

d u
3

0
0

e y
W
3

0

K
n
u
c
k
le

4
Θ

K
4

0
I

0
0

0
0

d z
4

d u
4

0
0

0
0

W
h

e
e
l

4
Θ

W
4

0
I

0
0

0
0

d z
4

d u
4

0
0

0
e y

W
4

C
h

a
s
s
is
Θ

C
0

I
0

0
0

0
0

0
0

0
0

0



350 G. Rill

and will contain no remaining acceleration terms, 𝛼
R
0C,V = 0. The absolute accelera-

tion of the knuckles and wheel centers, i = 1(1)4, are obtained by

a0i,V = v̇0F,V + �̇�0F,V × rFi,V + tzi,V z̈i + tui,V üj (108)

+ 𝜔0V ,V × ṙFi,V + ṫzi,V żi + ṫui,V u̇j + 𝜔0V ,V × v0i,V

The absolute angular acceleration of the knuckles, i = 1(1)4, is given by

𝛼0Ki,V = �̇�0F,V + dzi,V z̈i + dui,V üj (109)

+ ḋzi,V żi + ḋui,V u̇j + 𝜔0V ,V × 𝜔0Ki,V

and the absolute angular acceleration of the wheels, i = 1(1)4, reads as

𝛼0Wi,V = �̇�0F,V + dzi,V z̈i + dui,V üi + AVieyWi,i�̈�Wi (110)

+ ḋzi,V żi + ḋui,V u̇i + 𝜔Fi,V × AVieyWi,i�̇�Wi + 𝜔0V ,V × 𝜔0Wi,V

The lateral rack movements were abbreviated by ui, where ui = uF holds at the front

axle (i = 1, 2) and ui = uR at the rear axle (i = 3, 4). Each second line in Eqs. (108),

(109), and (110) represents the remaining acceleration terms aR
0Ki,V , aR

0Wi,V , and 𝛼
R
0Ki,V ,

𝛼
R
0Wi,V , respectively. Which in the case of the wheel angular acceleration include the

gyroscopic torques generated by the wheel rotation.

The parts in the remaining accelerations, which are generated by the time deriva-

tives of the partial velocities and partial angular velocities, are small compared to the

other parts in vehicle dynamics and may thus be neglected. This makes it possible to

describe the kinematics of suspension systems very efficiently because complicated

second order derivatives are not required. The kinematics of a Double Wishbone

axle suspension and of a MacPherson axle suspension are described in detail in Rill

(2012) and Rill and Schaeffer (2014). The kinematics of a multi-link axle suspension

will be presented in the following.

3.5 Kinematics of a Multi-Link Axle Suspension

Model Structure: Figure 29 shows the model of a multi link axle suspension. The

guidance of the knuckle is done by 5 rigid links A–B, U–V, W–X, Y–Z and P–Q. By

connecting one of the joints A, U, P, W, or Y to a steering linkage, here point P is

used for that purpose, the knuckle and the wheel will perform hub and steer motions.

The force elements, like spring (F-G), damper (D-E), and anti-roll bar (S) may be

attached to the knuckle or to one of the links. The multi-body suspension represents

a generic axle suspension that will include a double wishbone, a central control axle,

or a Short-Long-Arm (SLA) axle.
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Fig. 29 Multi-link axle

model

Position and Orientation: The motion of the wheel center M and the orientation

of the knuckle-fixed frame xK , yK , zK can be described by a single coordinate, for

instance the hub motion z. If the axle is steered, one of the links is attached to the

steering linkage; here the link P–Q is chosen. Thus, the momentary position of P

depends on the steering angle 𝛿 or the rack displacement u respectively

rMP,V = rMP,V (𝛿) (111)

Now, the position and the orientation of the wheel body depend on two coordinates,

the hub and the steer motion.

The position of the knuckle center M is described by the position vector

rFM,V = rFM,D +
⎡
⎢
⎢
⎣

x
y
z

⎤
⎥
⎥
⎦

(112)

where F denotes the origin of the vehicle-fixed reference frame and rFM,D = const.
describes the knuckle center M in the design position. In the design position the

axes of all coordinate systems are parallel per definition. So, no additional rotation

matrices are required. As done here, all position vectors defined in the design position

are characterized by appending
,D to the subscript.

The orientation of the knuckle-fixed coordinate system xK , yK , zK with respect to

the vehicle-fixed reference frame xV , yV , zV is defined by the rotation matrix

AVK =
⎡
⎢
⎢
⎣

1 0 0
0 cos 𝛼 − sin 𝛼
0 sin 𝛼 cos 𝛼

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎤
⎥
⎥
⎦

(113)

that is composed of three elementary rotations with the angles 𝛼, 𝛽, and 𝛾 .

Constraints: The vertical displacement of the wheel center, the hub motion z and

the steer angle 𝛿 are chosen as generalized coordinates. Hence, the longitudinal and

lateral motion of the wheel center x = x(z, 𝛿), y = y(z, 𝛿) and the angles 𝛼 = 𝛼(z, 𝛿),
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𝛽 = 𝛽(z, 𝛿), 𝛾 = 𝛾(z, 𝛿) are defined by the constraint equations

1
2

rT
ij,V rij,V = 1

2
l 2ij ,

i = A,U,W,Y ,P
j = B,V ,X,Z,Q

(114)

where lij denote the lengths of the links and the factor
1
2

will simplify the calculation

of derivatives later on. The link vectors can be calculated from

rAB,V = rFM,V + AVK rMB,D − rFA,D
rUV ,V = rFM,V + AVK rMV ,D − rFU,D
rWX,V = rFM,V + AVK rMX,D − rFW,D
rYZ,V = rFM,V + AVK rMZ,D − rFY ,D
rPQ,V = rFM,V + AVK rMQ,D − rFP,V

(115)

where the position vector of the wheel center rFM,V and the rotation matrix of the

knuckle AVK follow from (112) and (113). The vectors rMB,D to rMQ,D as well as rFA,D
to rFY ,D are defined by the design position and given by data. If the axle is steered,

the vector from C to P depends on the steering angle rFP,V = rFP,V (𝛿) otherwise it is

simply defined by the design position rFP,V = rFP,D and given by data. The coordi-

nates x, y, 𝛼, 𝛽 and 𝛾 that depend on the hub motion z and the steering angle 𝛿 are

now grouped into a vector

𝜉 = [ x, y, 𝛼, 𝛽, 𝛾 ] (116)

Then, the constraint equations (114) can be written as a nonlinear vector equation of

type

f ( 𝜉, z, 𝛿) = 0 (117)

The Newton-Raphson algorithm leads to an iterative solution. Starting with 𝜉0 = 0
at each step k = 0, 1, 2,… a better approximation is given by

𝜕f
𝜕𝜉

(
𝜉k+1 − 𝜉k

)
= −f (𝜉k) (118)

where the Jacobi matrix is given by

𝜕f
𝜕𝜉

=

⎡
⎢
⎢
⎢
⎢
⎣

rT
AB

𝜕rAB

𝜕x
rT

AB
𝜕rAB

𝜕y
rT

AB
𝜕rAB

𝜕𝛼
rT

AB
𝜕rAB

𝜕𝛽
rT

AB
𝜕rAB

𝜕𝛾

⋮ ⋮ ⋮ ⋮ ⋮

rT
PQ

𝜕rPQ

𝜕x
rT

PQ

𝜕rPQ

𝜕y
rT

PQ

𝜕rPQ

𝜕𝛼
rT

PQ

𝜕rPQ

𝜕𝛽
rT

PQ

𝜕rPQ

𝜕𝛾

⎤
⎥
⎥
⎥
⎥
⎦

(119)

The subscript
,V denoting that a vector is expressed in the vehicle-fixed frame V was

omitted here. The vector rFM,V depends on x, y and z of course. That is why
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𝜕rAB,V

𝜕x
=
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

⋯
𝜕rPQ,V

𝜕x
=
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

(120)

𝜕rAB,V

𝜕y
=
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

⋯
𝜕rPQ,V

𝜕y
=
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

(121)

will hold. The rotation matrix AVK is determined by the angles 𝛼, 𝛽, and 𝛾 . As a

consequence, the corresponding partial derivatives are defined by

𝜕rAB,V

𝜕𝛼
= d

𝛼,V × rMB,V ⋯
𝜕rPQ,V

𝜕𝛼
= d

𝛼,V × rMQ,V (122)

𝜕rAB,V

𝜕𝛽
= d

𝛽,V × rMB,V ⋯
𝜕rPQ,V

𝜕𝛽
= d

𝛽,V × rMQ,V (123)

𝜕rAB,V

𝜕𝛾
= d

𝛾,V × rMB,V ⋯
𝜕rPQ,V

𝜕𝛾
= d

𝛾,V × rMQ,V (124)

where the position vectors

rRB,V = AVK rMB,D, ⋯ rRQ,V = AVK rMQ,D (125)

are defined in (115) and the rotation vectors are given by

d
𝛼,V =

⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

d
𝛽,V =

⎡
⎢
⎢
⎣

0
cos 𝛼
sin 𝛼

⎤
⎥
⎥
⎦

d
𝛾,V =

⎡
⎢
⎢
⎣

sin 𝛼
− sin 𝛼 cos 𝛽
cos 𝛼 cos 𝛽

⎤
⎥
⎥
⎦

(126)

Velocities: The angular velocity of the knuckle fixed reference frame K with respect

to the body fixed reference frame V can be derived from the rotation matrix (113).

Using the rotation vectors from (126) one gets

𝜔VK,V = d
𝛼,V �̇� + d

𝛽,V �̇� + d
𝛾,V �̇� (127)

The velocity of the wheel center M follows from (112)

ṙFM,V =
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

ẋ +
⎡
⎢
⎢
⎣

0
1
0

⎤
⎥
⎥
⎦

ẏ +
⎡
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎦

ż (128)

As x, y as well as 𝛼, 𝛽, 𝛾 depend on the generalized coordinates z and 𝛿
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ẋ = 𝜕x
𝜕z

ż + 𝜕x
𝜕𝛿

�̇� ,

⋮ ⋮ ⋮

�̇� = 𝜕𝛾

𝜕z
ż + 𝜕𝛾

𝜕𝛿
�̇�

(129)

will hold. The partial derivatives of the constraint equation (117) with respect to z
and 𝛿 result in

𝜕f
𝜕𝜉

𝜕𝜉

𝜕z
+

𝜕f
𝜕z

= 0 and
𝜕f
𝜕𝜉

𝜕𝜉

𝜕𝛿
+

𝜕f
𝜕𝛿

= 0 (130)

which represent two linear matrix equations that will deliver the partial derivatives

𝜕𝜉∕𝜕z and 𝜕𝜉∕𝜕𝛿. The Jacobian 𝜕f∕𝜕𝜉 is given by (119) and according to (116)

𝜕𝜉

𝜕z
=
⎡
⎢
⎢
⎣

𝜕x∕𝜕z
⋮

𝜕𝛾∕𝜕z

⎤
⎥
⎥
⎦

and
𝜕𝜉

𝜕𝛿
=
⎡
⎢
⎢
⎣

𝜕x∕𝜕𝛿
⋮

𝜕𝛾∕𝜕𝛿

⎤
⎥
⎥
⎦

(131)

will hold. Finally, the constraint equations (114) deliver

𝜕f
𝜕z

=

⎡
⎢
⎢
⎢
⎢
⎣

rT
AB,V

𝜕rAB,V

𝜕z
⋮

rT
PQ,V

𝜕rPQ,V

𝜕z

⎤
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

r(3)AB,V
⋮

r(3)PQ,V

⎤
⎥
⎥
⎦

and
𝜕f
𝜕𝛿

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0

rT
PQ,V

𝜕rFP,V

𝜕𝛿

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(132)

where the partial derivative 𝜕rFP,V∕𝜕𝛿 results from the steering linkage.

Now, the angular velocity of the knuckle is defined by

𝜔VK,V =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝛼

𝜕z
+ sin 𝛽 𝜕𝛼

𝜕z

cos 𝛼 𝜕𝛽

𝜕z
− sin 𝛼 cos 𝛽 𝜕𝛾

𝜕z

sin 𝛼 𝜕𝛽

𝜕z
− cos 𝛼 cos 𝛽 𝜕𝛾

𝜕z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dKz,V

ż +

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝛼

𝜕𝛿
+ sin 𝛽 𝜕𝛼

𝜕𝛿

cos 𝛼 𝜕𝛽

𝜕𝛿
− sin 𝛼 cos 𝛽 𝜕𝛾

𝜕𝛿

sin 𝛼 𝜕𝛽

𝜕𝛿
− cos 𝛼 cos 𝛽 𝜕𝛾

𝜕𝛿

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

dK𝛿,V

�̇� (133)

and the velocity of the knuckle center is given by
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ṙMR,V =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝜕x
𝜕z
𝜕y
𝜕z
1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⏟⏟⏟

tKz,V

ż +

⎡
⎢
⎢
⎢
⎢
⎣

𝜕x
𝜕𝛿

𝜕y
𝜕𝛿

0

⎤
⎥
⎥
⎥
⎥
⎦

⏟⏟⏟

tK𝛿,V

�̇� (134)

where the vectors dKz,V , tKz,V and dK𝛿,V , tK𝛿,V describe the momentary direction of the

knuckle rotations and the wheel center motions due to the generalized coordinates z
and 𝛿.

Orientation of Link A–B: The link vector rAB,V is defined in (115). Introducing the

rotation matrices

A
𝜑
=
⎡
⎢
⎢
⎣

1 0 0
0 cos𝜑 − sin𝜑
0 sin𝜑 cos𝜑

⎤
⎥
⎥
⎦

; A
𝜓
=
⎡
⎢
⎢
⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤
⎥
⎥
⎦

(135)

rAB,V = A
𝜑

A
𝜓

rAB,D = AVL rAB,D (136)

holds in addition, where rAB,D is given by data and AVL describes the orientation of

the link. Using (135) the first part of (136) can be written as

⎡
⎢
⎢
⎣

1 0 0
0 cos𝜑 sin𝜑
0 − sin𝜑 cos𝜑

⎤
⎥
⎥
⎦

rAB,V =
⎡
⎢
⎢
⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤
⎥
⎥
⎦

rAB,D (137)

The first and third line of these vector equation

r(1)AB,V = r(1)AB,D cos𝜓 − r(2)AB,D sin𝜓

−r(2)AB,V sin𝜑 + r(3)AB,V cos𝜑 = r(3)AB,D

(138)

provide trigonometric equations that deliver the angles 𝜑 and 𝜓 .

Angular Velocity of Link A–B: The roation matrix AVL defined in (136) is composed

of two elementary rotations. The unit vectors

e
𝜑,V =

⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

and e
𝜓,V =

⎡
⎢
⎢
⎣

0
− sin𝜑
cos𝜑

⎤
⎥
⎥
⎦

(139)

define the corresponding rotation axis. Then, the angular velocity of link A–B is

determined by
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𝜔VL,V =
{

e
𝜑,V

𝜕𝜑

𝜕z
+ e

𝜓,V
𝜕𝜓

𝜕z

}

ż +
{

e
𝜑,V

𝜕𝜑

𝜕𝛿
+ e

𝜓,V
𝜕𝜓

𝜕𝛿

}

�̇� (140)

According to (115) the left side of (136) delivers

𝜕rAB,V

𝜕z
= tKz,V + dKz,V × rMB,V and

𝜕rAB,V

𝜕𝛿
= tK𝛿,V + dK𝛿,V × rMB,V (141)

where rMB,V = AVK rMB,D and tKz,V , tK𝛿,V and dKz,V , dK𝛿,V are defined in (128) and

(127). The right side of (136) results in

𝜕rAB,V

𝜕z
= e

𝜑,V × rAB,V
𝜕𝜑

𝜕z
+ e

𝜓,V × rAB,V
𝜕𝜓

𝜕z
(142)

𝜕rAB,V

𝜕𝛿
= e

𝜑,V × rAB,V
𝜕𝜑

𝜕𝛿
+ e

𝜓,V × rAB,V
𝜕𝜓

𝜕𝛿
(143)

Combining (141) with (142) and (143) the partial derivatives are defined as

𝜕𝜑

𝜕z
=

eT
𝜓

(
tRz,V + dRz,V × rRB,V

)

eT
𝜓

(
e
𝜑
× rAB,V

) ; 𝜕𝜓

𝜕z
=

eT
𝜑

(
tRz,V + dRz,V × rRB,V

)

eT
𝜑

(
e
𝜓
× rAB,V

) (144)

𝜕𝜑

𝜕𝛿
=

eT
𝜓

(
tR𝛿,V + dR𝛿,V × rRB,V

)

eT
𝜓

(
e
𝜑
× rAB,V

) ; 𝜕𝜓

𝜕𝛿
=

eT
𝜑

(
tR𝛿,V + dR𝛿,V × rRB,V

)

eT
𝜑

(
e
𝜓
× rAB,V

) (145)

Force Element Attached to Knuckle: The momentary position of a force element

ij that is attached to the knuckle at i and to the chassis at j is given by

rij,V = rFj,D − rFi,V = rFj,D −
(
rFM,V + rMi,V

)
(146)

Then, the actual length and the unit vector into the direction of the element are

defined by

ua
ij =

√
rT

ij,V rij,V and eij,V =
rij,V

ua
ij

(147)

If u0ij denotes the initial length of the force element, the actual displacement is given

by

uij = u0ij − ua
ij (148)

To calculate the generalized forces the partial derivatives of uij with respect to each

generalized coordinate yk are needed
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𝜕uij

𝜕yk
= −

𝜕ua
ij

𝜕yk
= −

2 rT
ij,V

𝜕rij,V

𝜕yk

2
√

rT
ij,V rij,V

= −eT
ij,V

(

−
𝜕rMi,V

𝜕yk

)

= eT
ij,V

(
𝜕rFM,V

𝜕yk
+

𝜕rMi,V

𝜕yk

)

= eT
ij,V

(
tKyk ,V + dKyk ,V × rMi,V

)

(149)

where the partial angular velocities dKyk ,V or dKz,V and dK𝛿,V respectively and the

partial velocities tKyk ,V or tKz,V and tK𝛿,V respectively are defined in (133) and (134)

in this particular case.

Force Element Attached to Link A–B: In general, force elements will not be

attached to a link that is part of the steering system, like the link P–Q here. The

momentary position of a force element ij that is attached to one of the remaining

links, e.g. link A–B, at i and to the chassis at j is given by

rij,V = rFj,D −
(
rFA,D + ABL rAi,D

)
= rAj,D − rAi,V (150)

where the rotation matrix ABL, is defined in (136) and rAj,D and rAi,D are defined by

data. The partial derivative of the spring deflection defined via (148) and (147) with

respect to each generalized coordinate yk now leads to

𝜕uij

𝜕yk
= −

𝜕ua
ij

𝜕yk
= −

2 rT
ij,V

𝜕rij,V

𝜕yk

2
√

rT
ij,V rij,V

= −eT
ij,V

(

−
𝜕rAi,V

𝜕yk

)

= eT
ij,V

𝜕rAi,V

𝜕yk
(151)

The partial derivatives of the link vector rAi,V with respect to each generalized coor-

dinate yk follow from

𝜕rAi,V

𝜕yk
=

𝜕

(
A
𝜑

A
𝜓

rAi,D
)

𝜕yk
=
⎡
⎢
⎢
⎣

1
0
0

⎤
⎥
⎥
⎦

× rAi,V
𝜕𝜑

𝜕yk
+
⎡
⎢
⎢
⎣

0
− sin𝜑
cos𝜑

⎤
⎥
⎥
⎦

× rAi,V
𝜕𝜓

𝜕yk
(152)

where ABL = A
𝜑

A
𝜓

was used and the partial derivatives 𝜕𝜑∕𝜕yk and 𝜕𝜓∕𝜕yk or

𝜕𝜑∕𝜕z to 𝜕𝜓∕𝜕𝛿 respectively are defined in (144) and (145).

Anti-roll Bar: In general, a vertical drop-link connects the anti-roll bar to the control

arm or to a link, Fig. 6. The vertical displacement of the drop link attachment point

determines the torsional deflection of the anti-roll bar in a first approximation.

In some cases, the anti roll bar is attached at i = S to the knuckle. Then, the third

component of (146) provides the vertical displacement

zS = r(3)Fj,D −
(

r(3)FM,V + r(3)Mi,V

)
(153)
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and (149) delivers the partial derivatives with respect to the generalized coordinates

y1 = z and y2 = 𝛿 as

𝜕zS

𝜕yk
= t(3)K𝛽,V + d(1)

K𝛽,V r(2)Mi,V − d(2)
K𝛽,V r(1)Mi,V (154)

where eT
ij,V = [0 0 1] was applied to realize the assumed vertical orientation of the

drop link and the numbers in brackets indicate the vector components.

If the anti roll bar is attached at i = S to link A–B then (150) and (151) deliver the

vertical displacement of the anti roll bar and the partial derivatives of zS with respect

to y1 = z and y2 = 𝛿 as

zS = r(3)Aj,D − r(3)Ai,V and
𝜕zS

𝜕yk
=

𝜕r(3)Ai,V

𝜕yk
(155)

where eT
ij,V = [0 0 1] was applied again to realize the assumed vertical orientation of

the drop link.

3.6 Applied and Generalized Forces and Torques

The principle of virtual power processes the applied forces and torques via (46) to the

vector of generalized forces and torques. This method is applied here to the weight

and inertia forces and to the gyroscopic torques only. In particular, the contribution

of the inertia forces and the gyroscopic torques of body i to the vector of generalized

forces and torques is then given by

q(i) =
𝜕vT

0i,V

𝜕z

(
mig,V − mia

R
0i,V

)

+
𝜕𝜔

T
0i,V

𝜕z

(
−Θi,V𝛼

R
0i,V − 𝜔0i,V × Θi,V 𝜔0i,V

)
i = 1(1)k (156)

where the gravitational force mig,V was processed too. The three-dimensional model

for the vehicle framework consists here of k = 9 bodies, which in the case of transla-

tional motions are reduced to five bodies by combining each knuckle and wheel into

one body. All terms are expressed in the vehicle-fixed axis system now. The applied

torque Ta
i,V is omitted, and the applied force Fa

i,0 is just replaced by the body weight

Gi,V = mig,V , where g
,V denotes the gravity vector expressed in the vehicle-fixed axis

system.

All other applied forces and torques are transformed according to generalized

ones by applying the principle of virtual power seperately. Each force element is

characterized by its force F and its displacement uF that depends on the generalized
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coordinates y. Then, the variation of the force element velocity vF = u̇F(y) is given

by

𝛿vF =
𝜕uF

𝜕y
𝛿ẏ =

𝜕uF

𝜕y
K 𝛿z (157)

where K denotes the kinematical matrix. Finally, the contribution to the vector of

generalized forces and torques is defined by

qF =
(
𝜕uF

𝜕y
K
)T

F (158)

Handling tire models like TMeasy summarize the forces and torques generated in

the contact patch in a resulting force vector FT applied at the center of the wheel M

and in a resulting torque vector TT . Then

qTi =
(
𝜕v0i

𝜕z

)T

FTi +
(
𝜕𝜔0Ki

𝜕z

)T

TTi (159)

provide the corresponding contribution of tire i to the vector of generalized forces

and torques. The partial derivatives of the velocity v0i and the angular velocity 𝜔0Ki
of the knuckle are defined in Tables 3 and 4.

The general layout of the drive train generates braking torques between knuckle

and wheel and transmits driving torques via half-shafts from the chassis-mounted

differentials to the wheels. In this model approach, the wheels are described rela-

tive to the knuckle and those relative to the vehicle (chassis). Then, the driving and

braking torques TDi, TBi, i = 1(1)4, will act directly as generalized torques here in

the components q(13) to q(16). Beyond that, the driving torques TDi, i = 1(1)4, will

generate the reaction terms dT
zieyWiTDi, i = 1(1)4, in the components q(7), q(8), q(10),

q(11), which are related to the jounce and rebound motions z1 to z4 here.

3.7 Model Inputs

Depending on the purpose of investigation the fully nonlinear and three-dimensional

vehicle model may be supplemented by appropriate subsystems for the drive train

and the steering system. Then, the torque at the hand-wheel, the position of the gas,

clutch, and brake pedal will serve as model inputs. However, in many cases the rack

displacements as well as the driving and braking torques may be provided as pre-

defined time histories or generated by an appropriate driver model. Besides that, for

basic studies the complex vehicle model may be substituted by simple model that

are tailored to the specific task.
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4 From Complex to Simple Models

4.1 Simple Maneuverability Model

Handling analysis is mostly performed on nearly horizontal road surfaces. Hence,

the overall performance of the vehicle is mainly characterized by the longitudinal,

the lateral and the yaw motion. The simple track model, shown in Fig. 30, is based on

the Ackermann geometry. The Ackermann geometry holds in a very low acceleration

range where the side slip at the wheels is neglectable small and all wheel move

strictly into their circumferential directions. The vehicle turns around a pivot point P

if the wheels are steered properly. Applied to fictitious center wheels the Ackermann

geometry delivers then

tan 𝛿A = a
R

and tan 𝛽A =
a2
R

(160)

where 𝛿A denotes the Ackermann steering angle at the fictitious front center wheel,

𝛽A defines the Ackermann side slip angle at the vehicle’s center of gravity C, a is the

wheelbase, a2 denotes the distance of the center of gravity to the rear axle, and R
describes the momentary turning radius. In this simple case the rear wheels remain

unsteered.

The position and orientation of the vehicle in the x0-y0-plane may be fixed by

the coordinates x and y that define the center of the fictitious rear wheel and the

yaw angle 𝜓 . Then, the Ackermann geometry provides a set of first order differential

equations

ẋ = v cos𝜓 , ẏ = v sin𝜓 and �̇� = v
a
tan 𝛿A (161)

Fig. 30 Track model
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Fig. 31 Simple handling

model

that can be solved numerically if the velocity v of the vehicle, measured at the ficti-

tious rear wheel, and the Ackermann steering angle 𝛿A are provided as functions of

the time t. In particular, the space requirement of vehicles at parking maneuvers can

be investigated by this approach.

4.2 Simple Handling Model

Within a simple handling model
5

the side slip angle 𝛽 and the distances a1, a2 that

determine the position of the center of gravity within the wheelbase a = a1 + a2
are introduced in addition, Fig. 31. The lateral forces applied to the fictitious center

wheels are approximated by

Fy1 = cS1 sy1 and Fy2 = cS2 sy2 (162)

where cS1, cS2 denote the cornering stiffness at the front and the rear axle. The lateral

slips are defined by

sy1 = −𝛽 −
a1
|v|

�̇� + v
|v|

𝛿 and sy2 = −𝛽 +
a2
|v|

�̇� (163)

where a small yaw velocity |
(
a1 + a2

)
�̇� |≪ |v| as well as small angles 𝛿 ≪ 1 and

𝛽 ≪ 1 were assumed. The dynamics of this simple handling model is then defined

by two first order differential equation that can be written as

5
This simple planar model, often called the “bicycle model,” was first published by P. Riekert and

T. E. Schunck: Zur Fahrmechanik des gummibereiften Kraftfahrzeugs, Ingenieur-Archiv, 11, 1940,

S. 210-224. It is still used for fundamental studies or the basic layout of control systems.
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[
�̇�

�̇�

]

⏟⏟⏟

ẋ

=
⎡
⎢
⎢
⎢
⎣

−
cS1 + cS2

m |v|
a2cS2 − a1cS1

m |v||v|
− v
|v|

a2cS2 − a1cS1
Θ

−
a2
1cS1 + a2

2cS2

Θ |v|

⎤
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

[
𝛽

𝜔

]

⏟⏟⏟

x

+
⎡
⎢
⎢
⎢
⎣

v
|v|

cS1
m |v|

v
|v|

a1cS1
Θ

⎤
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

B

[
𝛿

]

⏟⏟⏟

u

(164)

where 𝜔 = �̇� denotes the yaw velocity, m specifies the mass of the vehicle, and Θ
represents the inertia with respect to the center of gravity about an axis perpenticu-

lar to the x0-y0-plane. This linear state equation can now be used to investigate the

stability of the vehicle, calculate the steady-state or the transient response, and apply

classic control methods. In particular the steady state response delivers the steering

angle

𝛿 =
a1 + a2

R
⏟⏟⏟

𝛿A

+ m
a2 cS2 − a1 cS1

cS1 cS2 (a1 + a2)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

steering tendency k

ay (165)

and the side slip angle measured at the center of gravity

𝛽st =
v
|v|

(
a2
R

− m
a1

cS2(a1 + a2)
ay

)

(166)

as functions of the lateral acceleration ay = v2∕R. The vehicle has an understeer

tendency (k > 0) and will be stable at forward drive when the relationship a2cS2 −
a1cS1 > 0 applies. On forward drive (v > 0), the steady state slip angle decreases

with increasing lateral acceleration. It changes sign at

a𝛽st =0
y =

a2 cS2 (a1 + a2)
a1 m R

(167)

The sign change depends on the position a1, a2 of the center of gravity, the mass m
of the vehicle, and the magnitude of the cornering stiffness cS2 at the rear axle, in

particular.

4.3 Comfort Models of Different Complexity

Much simpler models can be used, however, for fundamental studies of ride comfort

and ride safety. If the vehicle is mainly driving straight ahead at constant speed,

the hub and pitch motion of the chassis as well as the vertical motion of the axles

will dominate the overall movement. Then, planar vehicle models can be used. A

nonlinear planar model consisting of five rigid bodies with eight degrees of freedom

is discussed in Rill and Schiehlen (2009). The model, shown in Fig. 32, considers
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Fig. 32 Sophisticated

planar vehicle model

nonlinear spring characteristics of the vehicle body and the engine suspension, as

well as degressive characteristics of the shock absorbers. Even the suspension of the

driver’s seat is taken into account here. Planar vehicle models suit perfectly with a

single track road model.

In a further simplification, the chassis is considered as one rigid body. The cor-

responding simplified planar model has four degrees of freedom then, which are

characterized by the hub and pitch motion of the chassis zC, 𝜃C, and the vertical

motion of the axles zA1 and zA2, Fig. 33. Asuming small pitch motions (𝜃C ≪ 1) the

equations of motion for this simple planar vehicle model read as

M z̈C = F1 + F2 − M g , (168)

Θ �̈�C = −a1F1 + a2F2 , (169)

m1 z̈A1 = −F1 + FT1 − m1 g , (170)

m2 z̈A2 = −F2 + FT2 − m2 g , (171)

Fig. 33 Simple planar vehicle model for basic studies
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where M, m1, m2 denote the masses of the chassis, the front, and the rear axle. The

inertia of the chassis around an axis located in the chassis center C and pointing into

the lateral direction is described by Θ and a1, a2 represent the distances of the chassis

center C to the front and rear axle. Finally, F1, F2 name the suspension forces and

FT1, FT2 the tire forces. The restrictions FT1 ≥ 0 and FT2 ≥ 0 will take tire lift-off

into account.

The hub and pitch motion of the chassis can be combined to two new coordinates

zC1 = zC − a1 𝜃C

zC2 = zC + a2 𝜃C
or

[
zC1
zC2

]

=
[
1 −a1
1 a2

]

⏟⏞⏟⏞⏟

TC

[
zC
𝜃C

]

(172)

which describe the vertical motions of the chassis in the front and in the rear, Fig. 34.

Then, the Eqs. (168) and (169) arranged in matrix form

[
M 0
0 Θ

] [
z̈C
�̈�C

]

=
[

F1 + F2 − M g
−a1 F1 + a2 F2

]

(173)

can be written as

[
M 0
0 Θ

]
1

a1 + a2

[
a2 a1
−1 1

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

T−1
C

[
z̈C1
z̈C2

]

=
[

1 1
−a1 a2

]

⏟⏞⏞⏟⏞⏞⏟

TT
C

[
F1
F2

]

+
[
−M g
0

]

(174)

where the inverse of the transformation matrix TC defined in Eq. (172) was used

to replace the chassis hub and pitch accelerations by the vertical accelerations of

chassis points located above the front and rear axle. It can be seen also that the

Fig. 34 Chassis split into three point masses
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distribution matrix for the suspension forces F1 and F2 is defined by the transposed

of the transformation matrix. Multiplying Eq. (174) with the inverse of T−1
C finally

results in

1
(
a1 + a2

)2

[
M a2

2 + Θ Ma1a2 − Θ
Ma1a2 − Θ M a2

2 + Θ

] [
z̈C1
z̈C2

]

=
[

F1
F2

]

+ 1
a1 + a2

[
−a2 M g
−a1 M g

]

(175)

The off-diagonal elements in the mass matrix, given by Ma1a2 − Θ, generate a cou-

pling between the chassis acceleration z̈C1 and z̈C2 that are induced by the suspension

forces F1, F2 and the corresponding parts of the chassis weight M g. If the inertia of

the vehicle happens to satisfy the relation

Θ = M a1 a2 (176)

then, the remaining mass diagonal elements

M1 =
M a2

2 + Θ
(
a1 + a2

)2 =
M a2

2 + M a1 a2
(
a1 + a2

)2 =
M a2

a1 + a2
(177)

and

M2 =
M a2

1 + Θ
(
a1 + a2

)2 =
M a2

1 + M a1 a2
(
a1 + a2

)2 =
M a1

a1 + a2
(178)

spread the chassis mass to the front and rear according to the distribution of the

chassis weight. In this particular case, the equations of motion for the front and rear

chassis parts are decoupled and simply read as

M1 z̈C1 = F1 −
M g a2
a1 + a2

and M2 z̈C2 = F2 −
M g a1
a1 + a2

(179)

These equations suplemented by the corresponding differential equations for the

axles provided by the Eqs. (170) and (171) represent two separate models with two

degrees of freedom that describe the vertical motions of the axle and the correspond-

ing chassis mass on top of each axle.

The mass and inertia properties of the chassis may als be judged by three point

masses M∗
, M1, M2, which are located in the chassis center C and on top of the front

and the rear axle, left image in Fig. 34. The point masses must satisfy the relations

M1 + M∗ + M2 = M , a2
1M1 + a2

2M2 = Θ , a1M1 = a2M2 (180)

that ensure the same chassis mass, the same inertia, and the same location of the

center of gravity. Resolved for the point masses one gets
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M1 = Θ
a1(a1 + a2)

and M2 = Θ
a2(a1 + a2)

(181)

as well as

M∗ = M
(

1 − Θ
M a1 a2

)

(182)

It can be seen that the coupling mass vanishes if Θ = M a1 a2 will hold. This relation

coincides with Eq. (176) exactly.

Hence, a a vanishing (M∗ = 0) or at least a neglectible coupling mass (M∗
≪

M1,M2) indicates a specific chassis mass distribution that makes it possible to split

the planar model with four degrees of freedom into two separate models with two

degrees of freedom describing the vertical motions of the axle and the corresponding

chassis mass on top of each axle. By using half the chassis and half the axle mass,

we finally end up in quarter car models.

Finally, the function zR(s) provides road irregularities in the space domain, where

s denotes the distance covered by the vehicle and measured at the chassis center of

gravity. Then, the irregularities at the front and the rear axle are given by zR(s + a1)
and zR(s − a2), respectively, where a1 and a2 locate the position of the chassis cen-

ter of gravity C in the longitudinal direction. A quarter car model with a trailing

arm suspension was presented in Sect. 1.7. For most vehicles the axle mass is much

smaller than the corresponding chassis mass, mi ≪ Mi, i = 1, 2. Hence, for a first

basic study, axle and chassis motions can be investigated independently. Now, the

quarter car model is further simplified to two single mass models, Fig. 35. The chas-

sis model neglects the tire deflection and the inertia forces of the wheel. For the high

frequent wheel motions, the chassis can be considered fixed to the inertia frame. The

equations of motion for the chassis and the wheel model read as

M z̈C + dS żC + cS zC = dS żR + cS zR (183)

m z̈W + dS żW + (cS + cT ) zW = cT zR (184)

where zW and zC define the vertical motions of the wheel mass and the corresponding

chassis mass with respect to the steady-state position. The constants cS, dS describe

Fig. 35 Simple vertical vehicle models
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the suspension stiffness and damping. The dynamic wheel load is calculated by

FD
T = cT

(
zR − zW

)
(185)

where cT is the vertical or radial stiffness of the tire and zR denotes the road irreg-

ularities. In this simple approach the damping effects in the tire are not taken into

account.

5 Applications

5.1 Vehicle Parameter

The fully nonlinear and three-dimensional model described in Sect. 3 requires many

parameters. At first the mass, the inertia, and the design position of each model body

is required. The kinematics of the axle suspension system is characterized by its type

(Double Wishbone, MacPherson, Multi-link,…) and the design position of the joints

(hardpoints). The force elements (spring, damper, anti-roll bar, stops) are defined by

their characteristics and the design position of the attachment points. A left/right

symmetry of the axle layout reduces the number of parameters significantly. Then,

the parameter of the tire model must be specified of course. The TMeasy tire model

of version 5 requires 52 parameters in total. The main advantage of TMeasy is, that

its model parameter can easily be identified by measurements or set properly by an

Engineer’s guess, if no or not all measurements are available, Rill (2015). Adding

subsystems (steering system, drive train, engine suspension, …) demands for more

model parameter. Finally, the environment must be characterized too. At least the

road surface must be defined by its profile (flat or uneven) and friction property (dry,

wet, 𝜇-split). Some applications require aero-dynamic properties (drag coefficient,

center of pressure) too.

5.2 Vehicle Handling

Vehicle Model: To investigate the handling properties of a vehicle, the chassis can

be regarded as one rigid body. However, the suspension system as well as the tire

must be modeled completely nonlinear and in detail. This kind of vehicle models

may be set up as described in Sect. 3 or by using commercial software packages,

Hirschberg et al. (2009). The characteristic data for typical fullsize and midsize cars

are provided in Tables 5 and 6.

The fullsize car is equipped with rear wheel and the midsize car with front wheel

drive. That is why, a MacPherson suspension that leaves enough space for the trans-

versely mounted engine is used at the front axle of the midsize car.
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Table 5 Characteristic parameter of a fullsize car

Wheel base 2.900 m

Track widh front | rear 1.530 m | 1.524 m

Height of CoG 0.54 m

Total mass and inertia 2140 kg and

⎡
⎢
⎢
⎢
⎣

600 0 0
0 3100 0
0 0 3350

⎤
⎥
⎥
⎥
⎦

kg m
2

Axle load front | rear 10.75 kN | 10.25 kN

Suspension front | rear double wishbone | double wishbone

Tire front | rear 265/40 R18 | 265/40 R18

Table 6 Characteristic parameter of a midsize car

Wheel base 2.600 m

Track widh front | rear 1.5244 m | 1.4878 m

Height of CoG 0.515 m

Total mass and inertia 1450 kg and

⎡
⎢
⎢
⎢
⎣

425 0 0
0 1800 0
0 0 2020

⎤
⎥
⎥
⎥
⎦

kg m
2

Axle load front | rear 8.0 kN | 6.2 kN

Suspension front | rear MacPherson | multi-link

Tire front | rear 205/50 R15 | 205/50 R15

Steady State Cornering: The steering tendency of a vehicle is determined by the

driving maneuver called steady-state cornering. The maneuver is performed quasi-

static. The driver tries to keep the vehicle on a circle with the given radius R. He

slowly increases the driving speed v and, due to ay = v2∕R, also the lateral accelera-

tion until reaching the limit. Characteristics signals, like the steering wheel angle and

the side slip angle, are plotted versus the lateral acceleration, Fig. 36. Both vehicles

show moderate understeer tendencies (11◦∕g and 21◦∕g) in the lower acceleration

range. As typical for most front wheel driven cars, the midsize car has a stronger

understeer tendency as the rear wheel driven fullsize car. Starting at ay ≈ 0.4g the

understeer tendencies become stronger and stronger while finally approaching the

limit range at amax
y ≈ 0.85g for the fullsize and amax

y ≈ 0.9g for the midsize car respec-

tively.

At very low accelerations ay ≈ 0 the Ackermann geometry will apply. Hence, the

steering angle as well as the side slip angle correspond with the purely kinematical

values determined by the wheel base and the curve radius. According to the axle

loads and the wheel bases provided by the Tables 5 and 6 the distancies of the centers

of gravity to the rear axle are defined by
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Fig. 36 Steady state cornering results for a typical fullsize and a midsize car at a curve radius of

R = 100 m

aF
2 = 2.9 ∗ 10.75

2140 ∗ 9.81
= 1.485 m and aM

2 = 2.6 ∗ 8.0
1450 ∗ 9.81

= 1.462 m (186)

where the superscripts F and M indicate fullsize and midsize. The second part of Eq.

(160) delivers the Ackermann side slip angles as

𝛽
F
A = arctan 1.485

100
= 0.85◦ and 𝛽

M
A = arctan 1.462

100
= 0.84◦ (187)

These values conform quite well with the results of the three-dimensional vehicle

model, when the graphs in the right plot of Fig. 36 are extrapolated to ay → 0 by a

simple inspection.

The accelerations 0.26g for the fullsize and 0.29g for the midsize car where the

slip angle 𝛽 changes the sign are in the lower acceleration range. Hence, the relation-

ship (167) derived for the linear handling model will apply and deliver the cornering

stiffness at the rear axle. The vehicle for the fullsize and the midsize car result in

cF
S2 =

a1 R
a2 (a1 + a2)

m a𝛽st =0
y = 1.415 ⋅ 100

1.485 ⋅ 2.9
⋅ 2140 ⋅ 0.26 ⋅ 9.81 ≈ 180 kN/– (188)

cM
S2 =

a1 R
a2 (a1 + a2)

m a𝛽st =0
y = 1.138 ⋅ 100

1.462 ⋅ 2.6
⋅ 1450 ⋅ 0.29 ⋅ 9.81 ≈ 124 kN/– (189)

The steering tendency

k = 𝛿

ay
= m

a2 cS2 − a1 cS1
cS1 cS2 (a1 + a2)

(190)
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defined in (165) can now be used to determine the cornering stiffness cS1 at the front

axle. In the linear range where the handling model applies the steering wheel angle

𝛿SW and the steering angle 𝛿 at the fictitious front wheel are related by the steering

ratio iS = 𝛿SW∕𝛿. The first part of Eq. (160) delivers the Ackermann steering angles

when the fullsize and the midsize cars are driven at vanishing lateral acceleration on

a radius of R = 100 m

𝛿
F
A = arctan 2.9

100
= 1.6611◦ and 𝛿

M
A = arctan 2.6

100
= 1.4897◦ (191)

The left plot in Fig. 36 delivers the steering wheel angles at ay → 0 and makes it

possible to calculate the steering ratios

iFS = 27.8◦
1.6611◦

= 16.74 and iMS = 30.2◦
1.4897◦

= 20.28 (192)

Now, the steering tendencies derived from the graphs can be matched with the one

that holds for the simple handling model. One gets

kF =
11∕16.74

9.81
𝜋

180
= 0.00117 and kM =

21∕20.27
9.81

𝜋

180
= 0.00184 (193)

Resolving (190) for the cornering stiffness at the front axle results in

cS1 =
m a2

m a1 + k cS2 (a1 + a2)
cS2 (194)

and delivers the values

cF
S1 ≈ 157 kN/– and cM

S1 ≈ 117 kN/– (195)

In case of the fullsize car where aF
1 ≈ aF

2 holds the light understeer tendency is

achieve by a smaller cornering stiffness at the front axle cF
S1 < cF

S2. Whereas the

stronger understeer tendency of the midsize car is the result of aM
1 < aM

2 .

The parameter k that determines the steering tendency of the vehicle is related to

the stability of the vehicle. That is why k > 0 implying stability and an understeer

tendency is applied at most vehicles.

Dynamic Maneuvers: Step like or sinusoidal steer inputs are used to judge the

dynamic reactions of a vehicle. Here, the dynamics of the tires as well as elastic

properties of the wheel axle suspension have to be taken into account. The closed

loop performance of driver and vehicle is tested in double lane change maneuvers.

Simulation results of autonomous obstacle avoidance maneuvers including off-road

scenarios are published in Castro et al. (2017).

Critical Maneuvers: Braking in a corner or at 𝜇 split may cause critical situations.

Different braking scenarios, including no braking at all, are shown in Fig. 37. At the



Multibody Systems and Simulation Techniques 371

(a) (b) (c) (d)

Fig. 37 Braking in a turn with different scenarios

beginning, the vehicle, a standard passenger car, is cornering with a driving velocity

of v = v0 = 80 km/h on a radius of R ≈ 100 m, which results in a lateral acceleration

of ay ≈ (80∕3.6)2∕100 = 4.94 m/s
2
. All braking scenarios start at t = 3 s. In the

standard case, the braking torques at the front wheels are raised within 0.1 s to 900

Nm and at the rear wheels to 270 Nm, which stops the vehicle in barely 4 s. If large

braking torques of 1500 Nm are applied only at the front wheels, the vehicle will stop

in nearly the same time. But, the front wheels will lock now and cause the vehicle to

go straight ahead instead of further cornering. If the same braking torques are put on

the rear wheels only, the vehicle becomes unstable, rotates around, is then stabilized

by the locked rear axle, which has come to the front, and finally comes to a stand

still.

If a vehicle without an anti-lock system is braked on a 𝜇-split surface, then the

wheels running on 𝜇low will lock in an instant, thus providing small braking forces

only. The wheels on the side of 𝜇high, however, generate large braking forces that gen-

erate a severe yaw impact. The rear wheel on 𝜇low is locked and provides no lateral

guidance at all. At full braking, the rear wheel on 𝜇high is close to the friction limit

and therefore is not able to produce a lateral force large enough to counteract the yaw

impact. As a consequence, the vehicle starts to spin around the vertical axis. Screen

shots of a commercial trailer from the company Robert Bosch GmbH, explaining the

need for controlled systems
6

compared with the results of a simulation with a full

6
Anti-Lock-System (ABS) or Electronic Stability Program (ESP).
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t = 0 −→

−→ t = T

Fig. 38 Braking on 𝜇-split: Field test and simulation results taken from Rill and Chucholowski

(2004)

vehicle model are shown in Fig. 38. Despite different vehicles and estimated friction

coefficients for the dry (𝜇high = 1) and the icy part (𝜇low = 0.05) of the test track, the

simulation results are in good conformity with field tests. Whereas the reproducibil-

ity of field tests is not always given, a computer simulation can be repeated exactly

with the same environmental conditions.

5.3 Vehicle Handling and Comfort

For detailed investigations of ride safety and ride comfort, sophisticated road and

vehicle models are needed, Seibert and Rill (1998). The three-dimensional and

fully nonlinear vehicle model, shown in Fig. 39, includes an elastically suspended

engine and dynamic seat models. The elasto-kinematics of the wheel suspension

was described as fully nonlinear. In addition, dynamic force elements for the damper

topmount combination and the hydro-mounts are used. Such sophisticated models

Fig. 39 Complex vehicle

model for handling and

comfort analysis
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Fig. 40 Measurements and simulation results to asses handling properties and ride comfort taken

from Seibert and Rill (1998)

provide simulation results with one set of parameter that are in good conformity to

measurements in a wide range of applications, Fig. 40. Whereas in the simulation a

perfectly flat road is easily realized, field test, will usually be characterized by slight

disturbances induced by a nonperfect road surface. As can be seen in the left plot of

Fig. 40 the measured steering angle is a little bit noisy. Measurements and simulation

results conform very well. Again, the understeer tendency, indicated by the slope of

the graph steering angle versus lateral acceleration, increases with the lateral accel-

eration. The simulation results indicate a maximum acceleration of approximately

0.75g here.

In a hydropuls test the simulation results are also very close to the measurements,

left plot of Fig. 40. The magnification factor of the vertical chassis acceleration is a

sensitive signal to assess the ride comfort of a vehicle. To achieve this good confor-

mity between measurements and simulation even the dry friction in the suspension

system had to be taken into account. Of course, the engine suspension plays a mature

part here. Attaching the engine rigidly to the chassis produces the broken line in the

right graph of Fig. 40. This broken line generated by a simpler model deviates a lot

from the measurements and can not be used to predict the ride comfort of a vehicle

seriously.
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