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Abstract Magneto-electro-elastic composite materials have extensive applications
inmodern smart structures, because they possess good coupling betweenmechanical,
electrical and magnetic fields. This new effect was reported for the first time by Van
Suchtelen [1] in 1972. Due to their ceramic structure, cracks inevitably exist in
these materials. If these cracks extend, the material may lose its structural integrity
and/or functional properties. In this study we consider functionally graded magneto-
electro-elastic materials subjected to anti-plane time-harmonic load. The purpose
is to evaluate the dependence of the stress concentration near the crack tips on the
frequency of the applied external load. The mathematical model is described by
a boundary value problem for a system of partial differential equations. A Radon
transform is used to derive fundamental solutions in a closed form. Following Wang
and Zhang, for the piezoelectric case, the boundary value problem is reduced to a
system of integro-differential equations along the crack. For the numerical solution,
software code in FORTRAN 77 is developed and validated using available examples
in literature. Simulations show the dependence of the stress intensity factors (SIF)
on frequency of the incident wave for different types of load, crack dispositions and
the magnitude and direction of the material gradient.

Keywords Crack interaction · Anti-plane load · SIF

1 Introduction

Magneto-electro-elastic materials (MEEM) have drawn the interest of researchers in
recent years. Their widespread application is due to their ability to convert mechan-
ical energy into electric and magnetic energy, and vice versa. The magneto-electric
property in piezoelectric/piezomagnetic composite materials was reported for the
first time by Suchtelen [1] in 1972. Unlike single-phase magneto-electric materials,
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composite MEEM possess large magneto-electric effects at room and above, which
makes them suitable for application. Owing to this, composite MEEM are potential
candidates for fabricating new smart and intelligent structures. Functionally graded
MEEM are the next generation of high performance multifunctional materials. Their
structural integrity is becoming increasingly important as their use is extended to
new frontiers. The conception of functionally graded MEEM (FGMEEM) arose for
the first time in 1984 in Japan during the project SPACEPLANE. Structures con-
sisting of several layers have been used in many products. These layered structures
create stress, which can cause failures in products made of such materials. Contrary
to this, FGMEEM do not have this disadvantage, because their material properties
vary in a continuous way. A main disadvantage of the magneto-electro-elastic com-
posites is their brittleness. Cracks or flaws inevitably exist in such materials. These
defects provoke regions of high stress and electric/magnetic field concentrations,
and may initiate fracture and damage. When MEEM with cracks are subjected to
external magneto-electro-mechanical loads, the stress concentration near crack tips
may increase high enough to cause crack extension and eventually lead to a serious
degradation of the material. To understand the failure mechanism of these materials,
an analysis of the behavior of MEEM under applied external loading is necessary.
The solution of the general boundary value problem for continuously inhomogeneous
MEEM requires advanced numerical tools due to the high mathematical complexity
arising from the electro-magneto-elastic coupling combined with the smooth varia-
tion of material characteristics leading to the solution of partial differential equation
with variable coefficients. The aimof the paper is to propose a new effective boundary
integral equation method (BIEM) for solution of the problem. The proposed BIEM
technique is based on a frequency dependent fundamental solution of the equation of
motion derived analytically by the usage of an appropriate algebraic transformation
and Radon transform. To the best of the authors’ knowledge the non-hypersingular
traction BIEM for solution of the dynamic problem of an exponentially graded MEE
composite with multiple cracks has not been developed.

In this paper we study the dynamic behavior ofMEEMwith two cracks, subjected
to an incident time-harmonic anti-plane wave. The numerical results, obtained by
the BIEM, show the dependence of the generalized stress intensity factor on the
normalized frequency of the applied load, wave propagation direction, direction and
magnitude of the material gradient and crack interaction phenomenon.

2 Statement of the Problem

Consider an infinite transversely-isotropic functionally graded linear magneto-
electro-elastic solid in a rectangular coordinate system Ox1x2x3, with the symmetry
axis and poling direction along theOx3 axis; in this caseOx1x2 is the isotropic plane.
The material is subjected to antiplane shear mechanical, and inplane electric and
magnetic time-harmonic load. The geometry of the considered problem in the plane
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Fig. 1 A magnetoelectroelastic plane with two cracks: a general disposition of the cracks; b
collinear cracks; c parallel symmetry cracks. The angle θ shows the wave propagation direction

x3 � 0 is shown on Fig. 1. The problem is two-dimensional, and the anti-plane
time-harmonic wave motion with respect to the plane x3 � 0 is considered.

We introduce a generalized tensor of elasticity CiJKl, i, l � 1, 2; J ,K � 3, 4, 5
in the following way:

Ci33l(x) �
{
c44(x), i � l

0, i �� l
, Ci34l(x) � Ci43l(x) �

{
e15(x), i � l

0, i �� l
,

Ci35l(x) � Ci53l(x) �
{
q15(x), i � l

0, i �� l
, Ci44l(x) �

{
−ε11(x), i � l

0, i �� l
,

Ci45l(x) � Ci54l(x) �
{

−d11(x), i � l

0, i �� l
, Ci55l(x) �

{
−μ11(x), i � l

0, i �� l
,

where c44 is the elastic module, e15 is the piezoelectric coefficient, q15 is the piezo-
magnetic coefficient, ε11 is the dielectric permittivity, μ11 is the magnetic perme-
ability, d11 is the magnetoelectric coefficient. We also introduce a generalized stress
tensor σiJ � (σi3,Di,Bi), i � 1, 2, where σi3 is the mechanical stress, Di and Bi are
the components of the electric displacement and magnetic induction respectively in
the plane x3 � 0. The constitutive equations for this type of medium are see Sladek
et al. [2], Soh and Liu [3]:

σiJ � CiJKluK,l (1)

div �D � ρf , div �B � 0 (2)

where the density of free charges is denoted by ρf and summation under repeated
indexes is assumed, while comma means differentiation. The characteristic frequen-
cies for elastic and electromagnetic processes are fel � 104 Hz and felm � 107 Hz,
respectively. Thus, if we consider dynamic loadings, with temporal changes cor-
responding to fel the changes of the electromagnetic fields can be assumed to be
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immediate, or in other words the electromagnetic fields can be considered like quasi-
static (Parton and Kudryavtsev [4]). So, the quasi-static approximation is valid, pro-
vided that the variations of the electromagnetic field with time are small enough.
The frequency of the electromagnetic field is the same as the frequency of the elastic
wave in the currently considered problem. The assumption is usually valid for elastic
waves at MHz and below, see Sladek et al. [5], Li and Wei [6], and Dineva et al. [7].
Then, the electric and magnetic fields can be presented as gradients of scalar electric
and magnetic potentials. Assuming the quasielectrostatic approximation of MEEM,
the balance equations in the absence of body forces, electric charges and magnetic
currents densities have the following form, see Rangelov et al. [8]:∣∣∣∣∣∣∣∣

(c44(x)u3,i),i + (e15(x)ϕ,i),i + (q15(x)ψ,i),i + ρω2u3 � 0

(e15(x)u3,i),i − (ε11(x)ϕ,i),i − (d11(x)ψ,i),i � 0

(q15(x)u3,i),i − (d11(x)ϕ,i),i − (μ11(x)ψ,i),i � 0,

(3)

Here ω is the frequency of the applied load and ρ is the density. In generalized
notation this system can be written in the following way:

(CiJKl(x)uK,l),l + ρJK (x)ω
2uK � 0, (4)

where ρJK (x) �
{

ρ(x), J � K � 3

0, J ,K � 4 or 5
. FGM is a kind of material in which the indi-

vidual material composition varies continuously along certain directions in a con-
trollable way. The modern fabrication technology of FGM allows the possibility to
manufacture graded components to meet prescribed gradients in properties. More or
less, most mechanical models describing the inhomogeneous material profiles are
based on the assumption that material properties vary in a similar manner, which
is an idealization. This fact is connected with the available computational tools.
For most of them, it is impossible to consider independent variation of the mate-
rial properties. The solution of the general boundary-value problem for continuously
inhomogeneousMEEM requires advanced numerical tools due to its highmathemat-
ical complexity arising from the electro-magneto-elastic coupling plus variation of
material properties. In this aspect any numerical realization for any type of material
gradient is useful because these results can be used as benchmark examples when
validating new computational methods. We assume here that all material properties
depend on x in one and the same way and describe this by an inhomogeneity function
h(x):

c44(x) � h(x)c44 e15(x) � h(x)e15, q15(x) � h(x)q15,

ε15(x) � h(x)ε15, d11(x) � h(x)d11, μ11(x) � h(x)μ11, ρ(x) � h(x)ρ.
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We will consider exponentially inhomogeneous materials with the inhomogeneity
function: h(x) � e2(k1x1+k2x2) � e2<k,x>, where the inhomogeneity coefficient is
denoted by k � (k1, k2).

When the incident SH-wave interactswith the cracks a scatteredwave is produced.
The total displacement and traction at any point of the plane can be calculated by the
superposition principle:

uJ � uinJ + uscJ , tJ � tinJ + tscJ (5)

In (5) uinJ and tinJ denote incident wave fields and uscJ and tscJ are the displacement
and traction of scattering by the crack’s wave fields respectively. We impose the
following boundary conditions:

tJ
∣∣
Cr1∪Cr2 � 0, or tscJ

∣∣
Cr1∪Cr2 � −tinJ

∣∣
Cr1∪Cr2 , (6)

uJ (x1, x2) → 0, when (x21 + x22)
1/2 → ∞. (7)

The boundary condition (6) means that the cracks are free of mechanical traction and
also that they are magnetoelectrically impermeable, the same as one of the extreme
models available in the literature, see Sladek et al. [2]. The difference between imper-
meable and permeable crack models is discussed in details in Dineva et al. [7]. The
boundary value problem (4), (6), together with the Sommerfeld-type radiation con-
dition at infinity for the scattered wave field (7) is reduced to an equivalent system
of integrodifferential equations along the cracks and then solved numerically.

3 Boundary Integral Equation Method

The fundamental solution of (4) is the solution of the equation:

σ ∗
iJM ,i + ρJK (x)ω

2u∗
KM � −δJM δ(x, ξ ), (8)

where i � 1, 2, i.e. the direction of the applied unit concentrate force, δ(x, ξ ) is
Dirac’s delta function: < δ(x, ξ ), ϕ(x) >� ϕ(ξ ), where δJM is the Kronecker’s
symbol. The solution of (8) depends on the value of γ � ρω2

ã − |k|2, where |k|2 �
k21 + k22 , ã � c̃44 +

ẽ215
ε̃11

,c̃44 � c44 +
(q15)2

μ11
, ẽ15 � e15 − d11q15

μ11
, ε̃11 � ε11 − (d11)2

μ11
. We

will consider the case when γ > 0 i.e. the case of wave propagation.
Following Wang and Zhang [9] and Gross et al. [10] the following representation

formulae are valid:

tscJ (x) � CiJKlni(x)
∫

Cr1∪Cr2
[(σ ∗

ηJK (x, y, ω)uJ ,η(y, ω) − ρQJω
2u∗

QK (x, y, ω)

uJ (y, ω))δλl − σ ∗
λJK (x, y, ω)uJ ,l(y, ω)]nλ(y)dΓ (y) (9)
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and

uscJ (x, ω) �
∫

Cr1∪Cr2

σ ∗
ηMJ (x, y, ω)uM (y, ω)d�(y), (10)

where uJ � uJ |Cr+ − uJ |Cr− , Cr � Cr1 ∪ Cr2, Cr+ and Cr− are the upper and
lower bound of the cracks correspondingly. uJ are the jumps of the generalized
displacement along the crack, also known as crack opening displacements (COD),
u∗
QK are the fundamental solutions, σ ∗

iJM � CiJK lu∗
KM ,l .

The boundary condition (7) is satisfied because of (10) and the limit
σ ∗

ηMJ (x, y, ω) →
x→∞ 0. Using boundary condition (6) and representation formula (9)

we have:

tinJ (x) � −CiJKlni(x)
∫

Cr1∪Cr2

[(σ ∗
ηJK (x, y, ω)uJ ,η(y, ω) − ρQJω

2u∗
QK (x, y, ω)uJ (y, ω))δλl

− σ ∗
λJK (x, y, ω)uJ ,l (y, ω)]nλ(y)d�(y), x ∈ Cr1 ∪ Cr2 (11)

Since the incident wave field tinJ (x) in (11) is known, a system of integrodifferential
equations for the unknown uJ is obtained. Once the unknown COD are found we
can calculate the traction filed at any point using (9). The stress concentration field
near the crack tips is computed using the following formulae:

KIII � lim
ε→0

t3
√
2πε

KE � lim
ε→0

E2

√
2πε,

KH � lim
ε→0

H2

√
2πε,

where ε is the distance to the crack tip.

4 Numerical Realization and Results

The Eq. (11) is solved numerically. The cracks are discretisized using 7 boundary
elements for each crack. The unknown COD are approximated by parabolic shape
functions. The two-dimensional integrals are solved numerically using the Monte-
Carlo method. FORTRAN 77 code is created for the numerical solution. TheMEEM
is the piezoelectric/piezomagnetic composite BaTiO3/CoFe2O4. The half-length of
the cracks is a � 5mm and the material constants for this composite can be found
in Song and Sih [11], Li [12]. The components of the inhomogeneity function are
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Fig. 2 Comparison between
the results for two collinear
cracks and one crack
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presented in the following way: k1 � β cosα
2a , k2 � β sin α

2a , where α shows the inho-
mogeneity direction and β is the inhomogeneity magnitude.

4.1 Validation

The proposed numerical scheme is validated using the solution for one crack and
solutions obtained by the dual integral equation method. In the first example we
consider two collinear cracks (see Fig. 1b) when the distance between them is very
large. Under this condition, we expect that the result converges to the case with one
crack, because crack interaction is minimal. The following normalization of the SIF

is used: K∗
III � KIII

tin3
√

πa
and the normalized frequency is � � a

√
ρc−1

44 ω . The results

for normalized SIF versus the normalized frequency at a fixed distance h � 10a are
given in Fig. 2. We see good coincidence of the results in the case of this big distance
between cracks.

As another example we consider two symmetric parallel cracks (see Fig. 1c) as
the distance h between them increases. We expect to obtain the result for one crack,
when the distance between them is large enough. The comparison shown in Fig. 3
shows the distance h between the cracks to be h � 20a.

Our results have been validated with the results of Zhou andWang [13], who used
a dual integral equation method. The cracks are parallel as shown in Fig. 1c, and
the distance h between them is increasing: h � 0.2a, . . . , 6.5a. The external load is
static. We present the comparison in Fig. 4. The difference is no more than 1.5%.

Results for the same scenario but in the case of dynamic load also show good
agreement, see Fig. 5.
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Fig. 3 Comparison between the results for two symmetry parallel cracks and one crack
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Fig. 5 The normalized SIF
versus the ratio h
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4.2 Parametric Studies

Our aim is to show the sensitivity of the generalized SIF to the wave propagation
direction, the distance between the cracks and their geometrical configuration. The
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Fig. 6 Normalized SIF, EFIF and MFIF versus the normalized frequency for a normal incident
wave

electric field intensity factor (EFIF) and magnetic field intensity factor (MFIF) are
normalized as follows: K∗

E � 10 KE

tin3
√

πa
andK∗

H � 104 KH

tin3
√

πa
.

In Fig. 6 we present the dependence of the generalized SIF on the normalized
frequency for a normal incident wave. The cracks are collinear (see Fig. 1b) and
the distance between them is: h � 0.25a, 0.5a, a, 2a. The SIF is increasing until it
reaches its peak at a normalized frequency of � ≈ 0.7, then it starts to decrease. We
see increasing of the SIF when the distance between the cracks is decreasing. The
EFIF and MFIF have similar behavior.

Results for two symmetry parallel cracks at incident angles θ � π
2 and θ � π

3
are given in Fig. 7a, b, where the distance between them is: h � 6; 9; 12mm.
SIF increases in the frequency interval [0.7–1.6], when the distance between them
increases. This is in opposite to the results shown in Fig. 6 for the case of collinear
cracks. This phenomenon, called the crack shielding effect, is discussed in Ratwani
[14], Zhou and Wang [13]. Results for SIFs at the right crack-tip of the left crack
in the case of two collinear cracks (see Fig. 1b) in an inhomogeneous plane at a
fixed distance between them h � 0.5a, normal incident wave θ � π

2 and at different
inhomogeneity magnitudes β � 0.2; 0.4; 0.6 are given in Fig. 7c. It can be seen
that by increasing the inhomogeneity magnitude, the SIF decreases, but this effect is
frequency dependent. So the conclusion is that defect driving force can be reduced
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Fig. 7 Normalized SIF: a homogeneous material, parallel cracks, normal incident wave; b homo-
geneous material, parallel cracks, incident wave angle θ � π

3 ; c inhomogeneous material, collinear
cracks, the distance is fixed h � 0.5a, θ � π

2 , the inhomogeneity angle α � 0, the inhomogeneity
magnitude β � 0.0; 0.2; 0.4; 0.6

by using the concept for the FGM and the idea to replace the homogeneous material
with smoothly inhomogeneous one in the new smart structure technologies works.

5 Conclusion

We present a numerical BIEM solution for a plane of MEEM with two cracks,
subjected to incident SH waves. The numerical results show the sensitivity of SIF,
EFIF and MFIF to wave propagation direction, distance between the cracks, crack
disposition, crack interaction and the material inhomogeneity. The near field results



2D Crack Problems in Functionally … 265

can be applied in computational fracture mechanics, while the information for the
scattered wave field can be used for development of new efficient non-destructive test
methods for monitoring the integrity and reliability of the multifunctional materials
and smart structures based on them.
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