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A Statistical Commentary on Mineral oo
Prospectivity Analysis

Adrian Baddeley

Abstract We compare and contrast several statistical methods for predicting the
occurrence of mineral deposits on a regional scale. Methods include logistic regres-
sion, Poisson point process modelling, maximum entropy, monotone regression,
nonparametric curve estimation, recursive partitioning, and ROC (Receiver Oper-
ating Characteristic) curves. We discuss the use and interpretation of these methods,
the relationships between them, their strengths and weaknesses from a statistical
standpoint, and fallacies about them. Potential improvements and extensions include
models with a flexible functional form; techniques which take account of sampling
effort, deposit endowment and spatial association between deposits; conditional sim-
ulation and prediction; and diagnostics for validating the analysis.

2.1 Introduction

The pioneering work of Agterberg (1974) developed a statistical strategy for predict-
ing the likely occurrence of mineral deposits. In essence, the observed association
between known deposits and other known geostructural or geochemical information
is used to predict the spatially-varying abundance of unknown deposits. The associ-
ation between predictors and deposits is modelled by logistic regression.

This general approach to prospectivity analysis has been extended and adopted
across a wide range of applications, for predicting mineral deposits (Chung and
Agterberg 1980; Bonham-Carter 1995), archaeological finds (Scholtz 1981; Kvamme
1983), landslides (Chung and Fabbri 1999; Gorsevski et al. 2006), animal and plant
species (Franklin 2009) and other features which can be treated as points at the scale
of interest. Extensions and modifications include logistic regression for sampled
data, maximum entropy, and weights-of-evidence modelling.

However, the scientific literature contains many conflicting statements about the
interpretation of these methods. For example, there are different understandings of
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the fundamental scope and validity of logistic regression, about the degree of flexi-
bility inherent in the assumptions, and about the interpretation of the results. This is
a concern, because misunderstanding of a statistical technique poses the obvious risk
that it may be mis-applied, its results misinterpreted, or its performance incorrectly
evaluated.

In statistical science the understanding of these techniques has also changed dra-
matically over the last four decades. The modern synthesis of statistical modelling
permits a new and deeper appreciation of prospectivity methods. New tools from
statistical science may enable exploration geologists to perform a more searching
analysis of their survey data.

Accordingly, this article offers a commentary and critique of prospectivity anal-
ysis from the standpoint of modern statistical methodology. We begin by exam-
ining the fundamentals of logistic regression, explaining the interpretation of the
results, and discussing its strengths and weaknesses. We explain the close relation-
ship between logistic regression, point process modelling, and maximum entropy
methods. We canvas some alternative methods which are less well known, includ-
ing monotone regression, nonparametric regression, recursive partitioning models,
and ROC curves. (The popular weights-of-evidence method is not discussed here,
but will be treated in detail in another article.) New tools include robust estimation,
model selection and variable selection, conditional prediction and model diagnos-
tics. Several unanswered questions in prospectivity analysis are identified as topics
for future research in statistical methodology.

2.2 Example Data

For the sake of demonstration and discussion, we shall use a vastly oversimplified
example. The Murchison geological survey data shown in Fig. 2.1 record the spatial
locations of gold deposits and associated geological features in the Murchison area
of Western Australia. They are extracted from a regional survey (scale 1:500,000) of
the Murchison area made by the Geological Survey of Western Australia (Watkins
and Hickman 1990). The features shown in the Figure are the known locations of
gold deposits, the known or inferred locations of geological faults, and greenstone
outcrop. The study region is contained in a 330 X 400 km rectangle. At this scale,
gold deposits are point-like, i.e. their spatial extent is negligible. These data were
previously analysed in Foxall and Baddeley (2002), Brown et al. (2002); see also
Groves et al. (2000), Knox-Robinson and Groves (1997). Data were kindly provided
by Dr. Carl Knox-Robinson, and permission granted by Dr. Tim Griffin, Geological
Survey of Western Australia and by Dr. Knox-Robinson.
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Fig. 2.1 Murchison
geological survey data.
Known gold deposits (blue
crosses), major geological
faults (red lines) and
greenstone outcrop (green
shading) in a survey region
about 200 by 300 km across

Evidently, both the geological fault pattern and the greenstone outcrop have “pre-
dictive” value for gold prospectivity, because gold deposits are strongly associated
with proximity to both features. For the purposes of analysis in this article, we require
predictors to be spatial variables. A predictor Z should be a function Z(u) defined
at any spatial location u. For a map of rock type such as the greenstone outcrop, the
simplest choice for the predictor value Z(u) at location u is the “indicator” equal to 1
if the location u falls inside the greenstone, and O if it falls outside. For a map of lin-
ear features such as geological faults, a common choice for the predictor value Z(u)
is the distance from u to the nearest fault. Figure 2.2 shows contours of this distance
function for the Murchison data.

It is important to note that our choice of spatial predictor Z(u) will affect the
results of the analysis: the results would usually be different if we replace the distance
function in Fig. 2.2 by the squared distance or the square root of distance, etc. Several
other choices of spatial predictor derived from geological fault data are canvassed
in Berman and Turner (1992). Likewise for the greenstone outcrop we could have
chosen another predictor, such as the distance function of the greenstone. The choice
of predictor can be revisited after the analysis, as discussed in Sect. 2.4.6.
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Fig. 2.2 Contours of
distance to the nearest fault
in the Murchison survey

2.3 Logistic Regression

Here we recapitulate and re-examine some details of the logistic regression tech-
nique, for the purposes of discussion.

2.3.1 Basics of Logistic Regression

Logistic regression is a general statistical technique for modelling the relationship
between a binary response variable and a numerical explanatory variable
(Berkson 1955; McCullagh and Nelder 1989; Dobson and Barnett 2008; Hosmer
and Lemeshow 2000). The use of logistic regression to predict the presence/absence
of point events was pioneered in geology by Agterberg (1974, 1980), apparently
on the suggestion of the statistician Tukey (1972): see Agterberg (2001). The study
region is divided into pixels; in each pixel the presence or absence of any deposits is
recorded; then logistic regression is used to predict the probability of the presence
of a deposit as a function of predictor variables. This was later independently redis-
covered in archaeology (Scholtz 1981; Hasenstab 1983; Kvamme 1983, 1995) and
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is now a standard technique in GIS applications (Bonham-Carter 1995) including
spatial ecology (Franklin 2009).

The study region is divided into pixels of equal area. For each pixel, we record
whether mineral deposits are present or absent. We then fit the logistic regression
relationship

log =a+ fz 2.1)

P
l-p
where p is the probability of presence of a deposit (or deposits) in a given pixel, and
z is the corresponding value of the predictor variable.

Here a and f are model parameters which are estimated from the data. Some
writers state that the interpretation of @ and f is “obscure” (Wheatley and Gillings
2002, p. 175), perhaps because of the unfamiliar form of the left hand side of (2.1).
The quantity p/(1 — p) is the odds of presence against absence, that is, the probability
p of presence of a deposit, divided by the probability 1 — p of absence. The left hand
side of (2.1) is the logarithm of the odds of presence. (In this paper ‘log’ always refers
to the natural logarithm, with base e.) The logistic regression relationship (2.1) states
that the log odds of presence is a linear function of the predictor z. The straight line
has slope f and intercept a. The transformation log(p/(1 — p)) ensures that

ea+ﬂz

T 1t et 2

p

is a well-defined probability value (between O and 1) for any possible values of «,
and z. The log odds is the “canonical” choice of transformation in order to satisfy
some desirable statistical properties (McCullagh and Nelder 1989), and arises natu-
rally in many applications. Bookmakers often quote gambling odds that are equally
spaced on a logarithmic scale, such as the sequence 2:1, 4:1, 8:1, 16:1. Since logis-
tic regression is widely used in medical and public health research, standard statis-
tical textbooks contain many useful ways to interpret and explain these quantities
(Hosmer and Lemeshow 2000).

Once the parameters a, f have been estimated from data (as detailed in Sect. 2.3.3),
the predicted probabilities p; can be computed using (2.2) and displayed as colours
or greyscales in a pixel image, as shown in Fig. 2.3. Qualitative interpretation of the
map seems to be adequate for many purposes, while many writers recommend using
only the sign of the slope parameter f (Gorsevski et al. 2006, pp. 405-407). However,
much more can be done with the fitted logistic regression, as we discuss below.

The general appearance of Fig. 2.3 is very similar to the contour plot of distance
to nearest fault in Fig. 2.2. This is a foreseeable consequence of the simple model
(2.1) which implies that contours of probability are contours of distance to nearest
fault. This is not true of more complicated models involving several predictors.
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Fig. 2.3 Fitted probability of a gold deposit in each 10-km-square pixel in the Murchison survey,
estimated by logistic regression. Pixel values are probabilities (between O and 1)

2.3.2 Flexibility and Validity

Some writers describe logistic regression as a ‘nonparametric’ technique (Kvamme
2006, p. 24), which would suggest that it is able to detect and respond to any kind of
relationship, not specified in advance, between the predictor z and the presence prob-
ability p. On the contrary, logistic regression is a parametric model of a very simple
kind. The relationship z and p is rigidly defined by Egs. (2.1) and (2.2): the relation-
ship is linear on the scale of the log odds. The position of the line is determined
by the two parameters @ and f. Logistic regression could be false for a particular
application: that is, the model assumptions could be incorrect.

Logistic regression is an example of a “generalised linear model” (McCullagh
and Nelder 1989; Dobson and Barnett 2008), essentially a linear regression of the
transformed probabilities against the predictor. In the analysis of the Murchison data
shown here, if we replace the distance function Z(u) by its square Z(u)?, or square
root \/Z(u), etc. in the logistic regression, we obtain a different model, which is
incompatible with the original model. If the log odds are a linear function of squared
distance, then they are not a linear function of distance. Consequently, the choice of
predictor variable is very important, and it involves an implicit model assumption
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about the relationship between presence probability p and predictor z. Even the sign
of the fitted slope parameter f could be misleading if the predictor was chosen incor-
rectly.

Such freedom as does exist in the logistic regression model is the freedom to
choose the predictor or predictors Z(u). Once the predictor is chosen, the model
becomes rigid. If there is concern about the form of relationship between p and Z,
one simple strategy is to fit a polynomial, instead of linear, relationship between the
log odds and the predictor variable.

Statistical science has developed an armory of techniques for “validating” a
regression analysis (Harrell 2001; Hosmer and Lemeshow 2000). These include
diagnostics for checking the validity of the logistic regression relationship (2.1),
measures of sensitivity of the fitted model to the data, techniques for selecting
the most important variables and the most informative models, and measures of
goodness-of-fit. As far as the author is aware, these techniques are rarely used in
geoscience. This presents the risk of failing to detect situations where logistic regres-
sion analysis is not appropriate. Model validation is a kind of “due diligence” for data
analysts.

A weakness of all parametric modelling is that, because of its “low degrees
of freedom”, the model predictions at a given location are heavily influenced by
the entire dataset, including data observed under very different conditions. In the
Murchison example, the predicted probability of presence of a gold deposit declines
dramatically between distances 0, 1 and 2 km from the nearest fault. This is not nec-
essarily a reflection of the observed frequency of occurrence of gold deposits at these
distances: rather, it is a consequence of the large negative value of the estimated slope
parameter f, which arises because of the scarcity of gold deposits at much larger dis-
tances.

Extension of the logistic regression technique to account for characteristics of the
mineral deposits, such as total endowment of gold, would be problematic because it
would effectively require a model for the probability distribution of the endowment
(and this might also be spatially-varying). However, it is straightforward to apply
logistic regression to different subsets of the deposits, for example to predict the
occurrence of deposits with endowment exceeding a specified threshold.

The logistic regression technique described here assumes that the relationship
(2.1) holds throughout the study region, with the same parameter values «, # through-
out. This assumption can be avoided using geographically-weighted logistic regres-
sion (Lloyd 2011) or local likelihood estimation (Loader 1999; Baddeley 2017)
which allow the parameters to be spatially-varying.

2.3.3 Fitting Procedure and Implicit Assumptions

For the discussion it will be important to know a few details about the procedure that
is used to fit the logistic regression relationship.
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Fig. 2.4 Illustrative -
example of binary responses
y (filled circles) and fitted

probabilities (solid curve) >
plotted against predictor
value z
o
z
Suppose there are N pixels, with covariate values z, ... , z respectively, and pixel
presence/absence indicators y,, ..., yy respectively, where y; = 1 if the j-th pixel con-

tains a mineral deposit, and y; = 0 if not. The goal is to fit a relationship of the form
(2.2). This is not a simple matter of curve-fitting, because the data (zj, yj) do not lie
“along” or “near” the curve in any sense. See Fig. 2.4. Instead, it is necessary to spec-
ify a measure of closeness or agreement between the curve and the observed data:
the model is fitted by choosing the parameter values a, f which make this agreement
as close as possible.

The classical fitting method is maximum likelihood. Given the datay,, ..., yy and
21, .-+ » 2y, define the likelihood L(a, f) to be the theoretical probability of obtaining
the observed pattern of outcomes (yy, ..., Yy), as a function of the unknown param-

eter values @ and f. The likelihood is a measure of agreement between the logistic
regression curve and the observed data.

To find the likelihood, first consider a single pixel j where j = 1,2,...,N. The
probability of obtaining a presence (y; = 1) in this pixel is

ea+ﬁzj

- ¢ (2.3)
1 + %P5

Dj

and the probability of an absence (y; = 0) is 1 — p;. The likelihood for pixel j is the
probability of obtaining the observed outcome y;,

_ —yr=1J7P ify; =1
Lf_P{Yj_yf}_{l—pj ify; =0

or more compactly

’ Di Vi
— 1=y, — J _
L=p/(-p) Y—<1_p> (1-p)

J

which is a function Lj = Lj(a, p) of the unknown values of the parameters. Then the
full likelihood is the predicted probability of the entire observed pattern of presences
and absences (y;,...,Yy),

L=LL,...Ly, (2.4)
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and is a function L = L(a, f) of the unknown parameter values «, . Equation (2.4)
assumes that the outcomes in different pixels are statistically independent of each
other, because the likelihood is obtained by multiplying likelihood contributions
from each pixel. That is, the logistic regression technique, as it is commonly applied
to presence/absence data, makes two assumptions:

1. the probability of presence p is related to the predictor variable z by a logistic
regression relationship (2.1);

2. presence/absence outcomes in different pixels are statistically independent of
each other.

The (parametric) maximum likelihood fitting rule is to choose the values of the
parameters a, f§ which maximise the likelihood L(a, f#). This is a standard procedure
in classical statistics, carrying with it many useful additional tools such as standard
errors, confidence intervals, and significance tests (Hogg and Craig 1970; Freedman
et al. 2007).

Ignoring some pathological cases (e.g. where no deposits are observed), the like-
lihood is maximised by setting its partial derivatives to zero. Equivalently we may
work with the derivatives of log L. This yields the score equations for logistic regres-
sion

N N
X=X @$)
j=1 j=1

N N
ijzj = Z Yi%j (2.6)
=1 =1

obtained by setting dlogL/da = 0 and dlogL/dp = O respectively. Typically the
score equations have a unique solution in (a, f#), giving the maximum likelihood
estimates @, /? of the parameters. There are no explicit formulae for @, ﬁ and the score
equations must be solved numerically.

The score equations (2.5)—(2.6) have a commonsense interpretation in their own
right. In (2.5) the right hand side is the observed number of deposits, while the left
hand side is the expected (mean) number of deposits according to the model. In
(2.6) the right hand side is the sum of the predictor values at the observed deposits,
while the left hand side is the expected (mean) value of this sum according to the
model. In this case maximum likelihood is equivalent to the “method of moments”
in which parameters are estimated by equating the observed value of a statistic to its
theoretical mean value.

Logistic regression is a simple two-parameter model, equivalent to linear regres-
sion on a transformed scale. The parameters are estimated using the entire dataset, as
shown by Eq. (2.4) or (2.5)-(2.6). Consequently, the presence probability predicted
by logistic regression, for a pixel with predictor value z, is influenced by data where
the predictor value is very different from z, as discussed above.
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It is not obligatory to use maximum likelihood estimation to fit the logistic
regression model. Although maximum likelihood is theoretically optimal if the
logistic regression model is true, it may fail if the model is false (“non-robust to
mis-specification”) and it is sensitive to anomalies in the data (“non-robust against
outliers”). Robustness against outliers can be improved using penalised likelihood in
which the likelihood L is multiplied by a term b(e, ) which penalises large param-
eter values.

2.3.4 Pixel Size and Model Consistency

Dependence on Pixel Size

The results of a logistic regression analysis clearly depend on the size of the pixels
used. Table 2.1 shows estimates of the parameters a and § in the logistic regression of
gold deposits against distance from the nearest fault, in the Murchison data, obtained
using different pixel grid sizes. Estimates of the slope parameter § are roughly con-
sistent between different grids. The estimate of the intercept parameter a becomes
lower (more negative) as the pixels become smaller, so that the predicted presence
probabilities also become smaller: this is intuitively reasonable, since a smaller pixel
must have a smaller chance of containing a deposit.

The score equations help to explain Table 2.1. If the pixel grid is subdivided into
a finer grid, the right-hand sides of (2.5) and (2.6) are unchanged, so the left-hand
sides must also be unchanged. Since the number of pixels N has been increased by
the subdivision, the predicted probabilities p; must decrease by the same proportion
f, the ratio of pixel areas in the two grids. Using log(p/(1 — p)) ~ log p for small p,
the estimate of @ must decrease by approximately log f.

In order to make the results approximately consistent between different pixel
sizes, the logistic regression (2.1) could be modified to

log

=logA+a+ fz (2.7)
I-p

Table 2.1 Fitted logistic regression parameters for Murchison data

Pixel size (km) a i}

10 -0.260 —0.243

5 —1.321 —0.282
—2.947 —0.261
—4.303 —0.266

0.5 —5.681 -0.270
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Table 2.2 Fitted logistic regression parameters for Murchison data, adjusted for pixel area

Pixel size (km) a I
10 —4.844 —0.243
5 4532 -0.282
—4332 —0.261
—-4.302 —0.266
0.5 -4293 —0.270

where A is the pixel area used. In the language of statistical modelling, the constant
log A plays the role of an offser in the model formula. The resulting, adjusted esti-
mates for the parameters a, f from the Murchison data are shown in Table 2.2, and
they are indeed approximately consistent across different pixel sizes. They could have
been obtained from the results in Table 2.1 by subtracting log A from the estimates
of a.

For reasons explained below, slightly better consistency is achieved by replacing
logistic regression (2.1) by complementary log—log regression

log(—log(l — p)) =logA + a + fz. (2.8)

Large Pixels

Large pixel sizes are preferred by some researchers. A common justification is that
predictions are desired for large spatial regions, for example, the probability that the
entire exploration lease contains at least one deposit. Some researchers also feel that
small pixel sizes are inappropriate because they lead to tiny probability values, which
may be considered physically unrealistic.

However, large pixels are not needed in order to predict the probability of a deposit
in a large spatial region R. Suppose that a logistic regression model has been fitted
using a fine grid of pixels. If the region R is decomposed into pixels, the probability
P(R) of presence of at least one deposit in R satisfies

1-p@® =[] -pp. 2.9)

JER

where Hje r denotes the product over all pixels in R. The left hand side is the proba-
bility that there are no deposits in R. On the right hand side, (1 — p;) is the probability
that there are no deposits in pixel j, and since pixel outcomes are assumed to be inde-
pendent, these pixel absence probabilities should be multiplied together. Hence, p(R)
can be calculated using presence probabilities for a fine pixel grid.

Moreover, the use of large pixels in logistic regression causes difficulties, related
to the aggregation of points into geographical areas (Elliott et al. 2000; Waller and
Gotway 2004; Wakefield 2007, 2004). The most important of these is the statisti-
cal bias due to aggregation (‘ecological bias’, Wakefield (2004, 2007) or ‘aggre-
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gation bias’, Dean and Balshaw (1997), Alt et al. (2001)). The ‘ecological fallacy’
(Robinson 1950) is the incorrect belief that a model fitted to aggregated data will
apply equally to the original un-aggregated data. The ‘modifiable area unit problem’
(Openshaw 1984) or ‘change-of-support’ (Gotway and Young 2002; Banerjee and
Gelfand 2002; Cressie 1996) is the problem of reconciling models that were fitted
using different pixel sizes or aggregation levels.

Our analysis in Baddeley et al. (2010) shows that aggregation bias is highly
dependent on the smoothness of the predictor as a function of spatial location. The
distance-to-nearest-fault predictor in the Murchison example, and indeed the dis-
tance transform of any spatial feature, is a Lipschitz-continuous function of spa-
tial location, which leads to relatively small aggregation bias. This is illustrated by
Table 2.2. However, a predictor which indicates a classification, such as rock type,
may have very substantial bias due to aggregation, persisting even at small pixel sizes
(Baddeley et al. 2010).

Strictly speaking it can be impossible to reconcile two spatial logistic regression
models fitted to the same spatial point pattern data using different pixel grids. Two
such models are often logically incompatible (Baddeley et al. 2010), because the
product rule (2.9) is incompatible with the logistic relation (2.1). It may help to
recall that the pixels are artificial. A logistic regression model, using pixels of a
particular size, makes an implicit assumption about the spatial random process of
points in continuous space. For different pixel sizes, the corresponding assumptions
are different, and generally incompatible. There is no random process in continuous
space which satisfies a logistic regression model when it is discretised on every pixel
grid. Two research teams who apply spatial logistic regression to the same data, but
using different pixel sizes, may obtain results that cannot be reconciled exactly. This
incompatibility can be eliminated by using complementary log—log regression (2.8)
instead of logistic regression.

Small Pixels

Mathematical theory suggests that pixels should be as small as possible, in order to
reduce the unwanted effects of aggregation (Baddeley et al. 2010). However, if this is
taken literally, several practical problems arise. Small pixel size implies a large num-
ber of pixels. Software for logistic regression may suffer from numerical overflow. In
a fine pixellation, the overwhelming majority of pixels do not contain a data point, so
the overwhelming majority of response values y; are zero. This may cause numerical
instability and algorithm failure. The standard algorithm for fitting logistic regres-
sion, Iteratively-Reweighted Least Squares (McCullagh and Nelder 1989), relies on
second-order Taylor approximation of the log likelihood: the algorithm itself may
fail when it encounters a numerically singular matrix, or the associated statistical
tools may behave incorrectly due to the Hauck-Donner effect (Hauck and Donner
1977).

One valid strategy for avoiding these problems is to take only a random sample
of the absence-pixels (the pixels with y; = 0), and to apply logistic regression to the
subsampled data, using an additional offset to adjust for the sampling (Baddeley et al.
2015, Sect. 9.10).

A more natural and comprehensive solution is described in the next section.
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2.4 Poisson Point Process Models

Pixels are artificial, so it is reasonable to ask whether logistic regression for pixel
data has a well-defined meaning in continuous space, without reference to the pixel
grid and pixel size. The appropriate meaning is that of the Poisson point process,
studied below.

2.4.1 Logistic Regression with Infinitesimal Pixels

Logistic regressions fitted using different pixel sizes may be logically incompatible,
except when the pixel size is very small. Accordingly, the only consistent interpre-
tation of logistic regression is obtained by making the pixels infinitesimal.

Infinitesimal pixel size is a mathematical rather than a physical concept; it is com-
parable to the use of infinitesimal increments dx in differential and integral calculus.
The practical user will not be required to “construct” infinitesimal pixels; they will
exist only in the mathematical theory. Real physical measurements will be expressed
as integrals over these infinitesimal pixels.

The presence probability p in an infinitesimal pixel will be infinitesimal. A more
tangible quantity is the intensity or rate A, loosely defined as the expected number
of deposit points per unit area. In a pixel of very small area A, at most one deposit
point will be present, so the expected number of points is equal to the probability of
presence, and we have 4 ~ p/A.

Logistic regression with infinitesimal pixels can be derived heuristically by letting
the pixel size tend to zero. A rigorous argument is laid out in Baddeley et al. (2010),
Warton and Shepherd (2010a, b). Assume that, for a small enough pixel size, logistic
regression holds in the adjusted form (2.7), and that pixel outcomes are independent.
Since p is small, log(p/(1 — p)) = log p, so that the logistic regression implies

logp =logA + a + fz

or equivalently
log i =a+ pz.

This gives a consistent limit as pixel area tends to zero. In the limit, the intensity A(u)
at a spatial location u is a loglinear function of the predictor,

Mu) = exp(a + PZ(u)) (2.10)

where Z(u) is the predictor value at location u.

Contrary to the claim that logistic regression is a flexible “nonparametric”” model,
we conclude that logistic regression is tantamount to assuming a loglinear (exponen-
tial) relationship between the density of deposits per unit area A and the predictor
variable Z.
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2.4.2 Poisson Point Process

Logistic regression, as commonly applied to presence/absence data, implicitly
assumes that pixel outcomes are independent of each other. If independence holds
for sufficiently small pixel size then, invoking the classical Poisson limit theorem,
the random number of deposits falling in any spatial region R must follow a Poisson
distribution.

Definition 1 A random variable K taking nonnegative integer values has a Poisson
distribution with mean g if
sk

PIK=k)=e"os @2.11)

forany k =0,1,2,....

Consequently (Warton and Shepherd 2010a, b; Baddeley et al. 2010; Renner et al.
2015)

Theorem 1 If logistic regression holds in the adjusted form (2.7) for sufficiently
small pixels, then the random spatial pattern of deposit points must follow a Poisson
point process with intensity of the form (2.10).

Definition 2 The spatial Poisson point process with intensity function A(u), u € R?
is characterised by the following properties:

(PP1) Poisson counts:  the number n(X N B) of points falling in any region B has
a Poisson distribution;

(PP2) intensity:  the number n(X N B) of points falling in a region B has expected
value

H(B) =EnXNB)] = / A(u) du (2.12)
B

(PP3) independence: if By, B,, ... are disjoint regions of space then n(X n B)),
n(X N B,), ... are independent random variables;

(PP4) conditional property: given that n(X N B) = n, the n points are independent
and identically distributed, with common probability density

fw =22 2.13)

where I = [, A(u) du.

The intensity function A(x) completely determines the Poisson point process
model. It encapsulates both the abundance of points (by Eq. (2.12)) and the spatial
distribution of individual point locations (by Eq. (2.13)). Values of intensity have
dimension length™2.
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The properties listed above can be used directly to simulate random realisations
of the Poisson process. See Daley and Vere-Jones (2003, 2008) for an authoritative
treatise on point processes, or (Baddeley et al. 2015, Chaps. 5, 9) for an introduc-
tion, and Kutoyants (1998), Mgller and Waagepetersen (2004) for further details of
statistical theory for point processes.

Theorem 1 establishes a logically consistent, physical meaning in continuous
space for the logistic regression model fitted to pixel presence/absence data. Whereas
logistic regression models can be somewhat difficult to interpret in practical terms,
the infinitesimal-pixel limit of logistic regression is a very simple model, a Poisson
point process whose intensity A(x) depends exponentially (log-linearly) on the pre-
dictor Z(u) through (2.10). This model is well-studied, and permits highly detailed
predictions to be made about various quantities, such as the expected number of
points in a target region (using PP2), the probability of exactly k points in a target
region (using PP1), and the probability distribution of distance from a fixed starting
location to the nearest random point.

The conclusion of Theorem 1 remains true in the more general case where
the pixel outcomes are weakly dependent on each other (Baddeley et al. 2010,
Theorem 3).

From a statistical perspective, the Poisson point process is the fundamental model,
while logistic regression is a practical technique for fitting this model approximately
on a discretised grid. The connection between them is not a surprise: indeed it is
strongly suggested by the